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Chapter 1

Introduction

Superconductivity is a phenomenon occurring in certain materials at low temperatures,
characterized by the absence of electrical resistance and the exclusion of magnetic fields.
A superconductor acts as a perfect conductor and a perfect diamagnet.

Superconductivity was discovered in 1911 [1] by the Dutch physicist Heike Kamer-
lingh Onnes (1853 - 1926), who had succeeded in liquefying helium in 1908 at a temper-
ature of 4.2 K. Performing low temperature experiments with liquid helium, he observed
that certain metals, such as Hg, Pb, completely lose their electrical resistance below the
critical temperature Tc (order of a few degrees in Kelvin).

22 years later, in 1933, Walther Meissner (1882 - 1974) and Robert Ochsenfeld (1901
- 1993) [2] discovered that below the superconducting transition temperature Tc, tin and
lead specimens became perfectly diamagnetic, i.e., the magnetic field is completely ex-
pelled from the interior of the superconductor. This effect is distinct from zero resistance
and is called the Meissner effect.

In 1957, John Bardeen, Leon Cooper, and Robert Schrieffer [3] proposed a micro-
scopic theory of superconductivity (BCS theory): the electronic system becomes unstable
with respect to the formation of electron pairs, called the Cooper pairs, below the criti-
cal temperature. These Cooper pairs form a coherent macroscopic quantum state. This
macroscopic quantum state is refereed to the superconducting condensate.

High-temperature superconductivity was discovered in 1986 in La2−xBaxCuO4 [4]. A
considerable number of the materials, such as Y Ba2Cu3O7−δ (YBCO) [5] and compounds
of the Bi2Sr2CanCun+1O2n+6−δ (BSCCO) and T l2Ba2CanCun+1O2n+6−δ families [6], are
in the superconducting state at temperatures above the boiling point of liquid nitrogen (77
K or -196 ◦C). In this thesis, we will consider the electrodynamic properties of two high
Tc superconductors Y Ba2Cu4O8 and Bi2Sr2CaCu2O8+δ.
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14 CHAPTER 1. INTRODUCTION

The ability to use relatively inexpensive and easily handled liquid nitrogen for cooling
has increased the range of practical applications of superconductivity. For example, the
development of cryogenic techniques has allowed the world’s first superconductor power
transmission cable system, based on YBCO, to be integrated in a commercial power grid
in Holbrook, New York, United States in June 2008. Superconductor cables can transport
much more current than traditional cables and can transport electricity without any en-
ergy loss along the cable below the critical temperature (in this case at -200◦C) since the
electrical resistance is zero.

1.1 Superconductivity as a thermodynamic state
Flux exclusion from superconductors cannot be explained only by zero resistance (Fig-
ure 1.1). Suppose that one has two ellipsoid samples: one of which becomes a perfect
conductor when cooled below its critical temperature, Tc, and the other becomes a super-
conductor when cooled below Tc. One finds that when the two specimens are cooled in
a magnetic field, the superconductor behaves differently than the perfect conductor. A
superconductor expels the magnetic flux while a perfect conductor retains the magnetic
flux.

Experiment 1: Sample cooled in zero 
magnetic field

Experiment 2: Sample cooled in 
applied magnetic field

Perfect conductor
T > Tc

T < Tc

Superconductor
T > Tc

Perfect conductor Superconductor

T < Tc

Figure 1.1: A superconductor does not behave as a perfect conductor.

The existence of such a reversible Meissner effect implies that superconductivity is
a thermodynamical state which does not depend on previous history. Superconductivity
is suppressed by a critical magnetic field Hc, which is related thermodynamically to the
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free-energy difference between the normal and superconducting states at zero magnetic
field, the so-called condensation energy of the superconducting state. If we denote fn and
fs the Helmholtz free energies per unit volume in zero magnetic field in normal and in
superconducting states respectively, the thermodynamical critical field Hc is determined
by: µ0H2

c /2 = fn(T )− fs(T ). From experiments performed on superconducting metals,
it has been found that: Hc(T ) ∝ Hc(0)[1− (T/Tc)2].

Since the transport current generates a magnetic field in the superconductors, the exis-
tence of a critical magnetic field Hc implies that there also exists a critical current density
jc. However this jc is not what limits the usefulness of technical superconductors. Re-
searchers on applied superconductivity aim to obtain superconducting materials with high
critical temperature, high critical magnetic field and high critical current density. Ideally,
the material should be easily manufactured in industry.

1.2 Magnetic properties for superconductors

1.2.1 Magnetization curves for type-I and type-II superconductors
Since the magnetic field is excluded completely from the interior of a superconducting
sample (Figure 1.1) until the applied magnetic field exceeds its critical field value Hc, we
may expect that the magnetization curve for a superconductor would be the following as
shown in Figure 1.2:

B

HHc

Figure 1.2: Reversible magnetization curve for a Type-I superconductor.

Many superconducting elements’ magnetic properties obey the behavior showed in
Figure 1.2 and these are called the type I superconductors.

Most superconductors, including the high-Tc superconductors and superconducting
alloys, behave differently. There are two critical magnetic fields Hc1 and Hc2. The
magnetic field is completely expelled when H < Hc1 and only partially expelled when
Hc1 < H < Hc2 (Figure 1.3).



16 CHAPTER 1. INTRODUCTION

B

HHc1
Hc2

Hc

Figure 1.3: Reversible magnetization curve for a
Type-II superconductor.

Ha

Figure 1.4: The flux quantum passes through the
core of each vortex surrounded by supercurrents. The
arrows along the edges indicate the surface screening
current flow.

In a type-II superconductor, the magnetic field penetrates the bulk as quantized flux
lines: each flux line, represented by the cylinders in Figure 1.4, corresponds to one flux
quantum, of φ0 = h/2e. Its numerical value in cgs units is: φ0 = 2.07×10−7 Gauss · cm2

and in SI units: φ0 = 2.07×10−15 Wb. One thus has: B = nvφ0, where B is the magnetic
flux density, nv is the vortex number density.

Each flux line is surrounded by a vortex of supercurrent. Therefore one says that a
type-II superconductor is in the vortex state when Hc1 < H < Hc2. The core of the vortex,
is in the normal state and is surrounded by dissipationless supercurrent. The vortex state
is also called the mixed state since the superconducting regions and the normal regions
coexist, the latter in the core of the vortices.

The interface separating a normal region from a superconducting region cannot be a
sharp surface, but must be a domain wall. The magnetic field decreases continuously from
a finite value to zero, and the density of superconducting electrons increases continuously
from zero to the value found in the interior of the superconducting region. The domain
wall energy comes from two parts: (1) the decrease of the magnetic field energy as the
magnetic field penetrates within a depth of λ in the superconducting region, −µ0λH2/2
per unit area of surface, and (2) the increase of the condensation energy as the density
of superconducting electrons decreases within a length ξ (called the coherence length),
µ0ξH2

c /2 per unit area of surface.

1. If ξ >
√

2λ, the wall energy is positive for H < Hc. It is not favorable to form a
domain wall in this case which corresponds to type-I superconductors.

2. If ξ <
√

2λ, the wall energy is positive for H < Hc1 but negative for Hc1 < H < Hc2,
and the formation of the domain walls are favorable. These correspond to the vortex
lines characterizing the mixed state in type-II superconductors.
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Both ξ and λ are temperature dependent. According to the Ginzburg-Landau theory
[7], λ(T ) and ξ(T ) vary as (Tc−T )−1/2 when T approaches Tc, while their ratio κ = λ(T )

ξ(T )
remains finite at Tc and is practically temperature independent [7]. κ is known as the
Ginzburg-Landau parameter of the material.

1.2.2 Magnetic measurements
From the point of view of an experimenter, one can generate a uniform magnetic field
Hext by a solenoid: Hext ∝ nI, where n is the number of turns per unit length, and I is the
current through the solenoid. The superconducting sample understudy is immersed in this
uniform field. By using, for example, SQUID magnetometer, one measures the magnetic
moment m; With micro-Hall probe sensors, one measures the local magnetic flux density
B above the sample.

In the ideal situation where B is uniform in the entire sample, the information that
one obtains by a global magnetic measurement faithfully reflects the magnetic properties
of the material. However, this is nearly never the case. In particular, the superconductor
samples to be used are thin platelets, most often measured in perpendicular fields.

For superconductors, there are no microscopic magnetic moments and the difference
between the measured magnetic flux density B and the applied external field µ0Hext is
produced by the supercurrents circulating in the sample. For this reason, this difference
is called the self-field Hs, defined by:

Hs ≡ B/µ0−Hext (1.1)

If one denotes the current density in a superconducting sample as j(r), the self-field
Hs can be determined by Biot-Savart’s law if j(r) is known, i.e.,

Hs(r) =
1

4π

∫

V

j(r′)× (r− r′)
(r− r′)3 d3r′, (1.2)

and so is the magnetic moment m of the whole superconductor sample:

m =
1
2

∫

V
r× j(r)d3r. (1.3)

1.3 Vortex lattice
Vortices of the same vorticity repel each other and the vortices of opposite vorticity attract
each other [8]. In a type-II superconductor, the applied external magnetic field maintains
the vortices inside the superconductor. Taking into account the mutual repulsion of the
vortices, without other forces, the vortices form a lattice to keep each vortex in equilibrium
and to maximize the average vortex spacing in order to arrange themselves into a state of



18 CHAPTER 1. INTRODUCTION

Figure 1.5: Schematic diagram of square and tri-
angular vortex lattices. The dashed lines outline the
basic unit cell. The magnetic field is directed out of
the paper (Figure from [10]).

Figure 1.6: Triangular flux lattice ob-
served by Bitter decoration method on a
Bi2.1Sr1.9Ca0.9Cu2O8+δ single crystal at T
= 4.2 K, B = 20 G, the bar is 10 µm in
length (Figure from [11]).

low energy [9]. The two natural possibilities to form a close-packed arrangement are the
square and the triangular lattices, shown in Figure 1.5.

One defines a distance a0 by the following expression: a0 ≡ (φ0
B )1/2, where B is the

average flux density. For the square lattice, the area for a basic unit cell is S2 = a2
2, which

associates a single vortex. Compared to the definition of a0, the lattice spacing, i.e., the
nearest neighbor distance between vortices, a2 = a0.

In the triangular lattice, each vortex is surrounded by a hexagonal array of other vor-
tices. In this lattice, the area for a basic unit cell which associates a single vortex is
S4 =

√
3

2 a2
4. The lattice spacing a4 = ( 2√

3
)1/2(φ0

B )1/2 = 1.075a0.

Thus for a given flux density, a4 > a2. Taking into account the mutual repulsive force
between vortices, the structure with the greatest separation of the nearest neighbors has
the lowest energy and would be favored. This argument explains why the triangular lattice
is the most favorable structure observed in the vortex state of many type-II superconduc-
tors (Figure 1.6).

Taking into account the vortex lattice structure, one can model the constitutive behav-
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ior that relates the thermodynamical value for B and H [10], [12].

B =
2φ0√
3λ2

{ln[
3φ0

4πµ0λ2(H−Hc1)
]}−2 Regime near Hc1 (1.4)

H ≈ B/µ0 +Hc1
ln(µ0Hc2/B)

lnκ
Intermediate: Hc1 ≤ B/µ0 ¿ Hc2 (1.5)

B/µ0 = H− Hc2−H
2κ2−1

Regime near Hc2 (1.6)

For high-κ materials like BSCCO (κ > 100), one can make the approximation B ≈ µ0H
for H >> Hc1.

1.3.1 Surface barriers: the Bean-Livingston surface barrier and the
geometrical barrier

The reversible magnetization curves illustrated in Figure 1.3 can be only obtained in an
ideal sample without pinning or barriers that prevent the motion of the vortices. In real
superconducting samples, i.e., of finite spatial extent, the vortices necessarily interact
with the Meissner current. This phenomena is at the origin of surface barriers. Two types
of entrance barriers exist for field penetration in high-Tc superconductors: the so-called
Bean-Livingston surface barrier and the geometrical barrier.

The Bean-Livingston surface barrier is caused by the competition between an attrac-
tive force to the surface and a repulsive force due to the Meissner current exerted on a
vortex. The presence of the Bean-Livingston surface barrier leads to a vortex-free region
of extent ξ < x < λ, at the sample boundary [13]. It is believed that the sample boundary
should be smooth on this scale for the Bean-Livingston surface barrier to be effective and
experimentally observable.

The geometrical barrier [14] is a macroscopic entrance barrier related to the cross
sectional shape of the sample. It should therefore not be sensitive to small defects on the
surfaces, i.e., it is much more robust to disorder than the Bean-Livingston surface barrier.
The geometrical barrier results from the competition between the vortex line tension at
the corners of non-ellipsoidal samples and the repulsive force due to the Meissner current.

Both kinds of barriers exist only for vortex entry but not for vortex exit1. Due to the
surface barriers, a hysteresis on magnetization curves (or self-field) can thus occur even
in the absence of bulk pinning.

1 There is a small barrier for vortex exit in the sense that the zero magnetization branch is not at thermody-
namic equilibrium. Being at a constant field, the vortex system would evolve toward the equilibrium vortex
distribution.
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Magnetic properties for superconductors with a platelet shape

The magnetization behavior for samples of platelet geometry is discussed here since
it is this geometry that we encounter for the experiments that follow.

The geometrical barrier in a platelet shape crystal was studied and observed exper-
imentally with micro-Hall probe sensors by E. Zeldov et al. [14]. Figure 1.7 shows
the vortex concentration in the center of the sample due to the geometrical barrier for a
platelet-shaped BSCCO crystal.

Figure 1.7: Geometrical barrier revealed by micro Hall probe sensors (Figure from [14]).
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Figure 1.8: The relation between the equilibrium
field Hequilibrium f ield (also called the thermodynamic
field) and the magnetic flux density according to
Equation (1.7): H(B) = (Hα

c1 +Bα)1/α with α = 3.

Figure 1.9: Magnetic field lines in pin-free super-
conducting strip, calculated by E. H. Brandt. (Figure
from slides provided by E. H. Brandt).

E. H. Brandt ([15], [16]) and J. R. Clem [17] have extensively studied this subject.
The numerical simulation work performed by E. H. Brandt on platelet-shaped supercon-
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ductors describes the hysteresis behavior in the magnetization loop and shows the vortex
concentration in the center of the sample (Figure 1.9). The approach and the notations em-
ployed by E. H. Brandt is the "Method II" approach as discussed in the Appendix A. The
magnetization M 6= 0 in this approach and one has M = 1

2V
∫

V r× j(r)d3r. M is related
with the thermodynamic magnetic field H and B through the relation: M = B/µ0−H.

The model constitutive laws H = H(B) and E = E(J) that E. H. Brandt employed in
[15] and [16] are listed below:

H(B) = (Hα
c1 +Bα)1/α, α = 3 (1.7)

E(jH,B,r) = ρ( jH ,B)jH(r), ρ( jH ,B) = ρ0B
( jH/ jc)σ

1+( jH/ jc)σ (1.8)

where jH refers to the current that drives the vortices (Lorentz force) and can be cal-
culated via:

jH = j+ curl (H−B/µ0) (1.9)

E. H. Brandt remarked that if one approximates H(B) by its high-field value H ≈
B/µ0, the geometric edge barrier effect cannot be obtained. One should use the forms
which describe this low-field behavior: |H(B)| → Hc1 for B → 0. The boundary condi-
tions on H(r) is set by H = B/µ0 at the surface and div B = 0. For example, Equation
(1.7) (plotted in Figure 1.8) has been applied in E. H. Brandt’s calculations in [15] to ob-
tain the geometrical barrier result. One can see that the low-field behavior is actually the
Meissner response of a superconductor. It is consistent with the fact that the geometrical
barrier is related with the Meissner current.

Because of the Meissner current, the vortices concentrate in the center of the sample.
This effect can influence strongly the transport measurements since the edges become less
resistive than the bulk and the current may flow only at the surfaces of a superconductor
sample [18].

1.3.2 Vortex motion in type-II superconductors
The most important application right now for type-II superconductivity is in produc-
ing stable magnetic fields in large volumes. Thus, there is a need of superconducting
solenoids which can provide steady fields of over 10 T without dissipation of energy be-
cause of the persistent current.

The current density which determines the net driving force on a vortex is not the total
current but only the non-equilibrium part [10]. Denoting this current by jext , the net force
per unit length on a single vortex fL is given by:

fL = jext ×φ0ẑ, (1.10)

where ẑ is the unit vector of the B-field direction.
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This force is directed perpendicularly to the current and to the B-field direction. As-
suming that the vortex motion is impeded only by damping [10], and that, the friction
force per unit length is γvL, one has, in the steady state,

jext ×φ0ẑ = γvL (1.11)

The motion of flux lines induces a spatially averaged electric field E:

E = B×vL, (1.12)

parallel to jext . A voltage drop
∫

Edl is thus established over the sample, yielding a non-
zero dissipated power

∫
V E · jextdV . Combining Equation (1.11) and (1.12), one has:

E =
Bφ0

γ
jext (1.13)

Therefore, due to flux flow, the superconductor obeys Ohm’s law, with the so-called
flux-flow resistivity ρ f given by:

ρ f =
E
jext

= B
φ0

γ
(1.14)

If γ is independent of B, ρ f should be proportional to B.
To understand how the dissipation actually occurs due to a moving vortex, J. Bardeen

and M. J. Stephen proposed a model based on a local approximation for a superconductor
applying Ohm’s law in the core of the vortex and using London equations outside the
core [19]. They found a relation between the flux-flow resistivity ρ f and the normal state
resistivity ρn:

ρ f ≈ B
µ0Hc2

ρn (1.15)

As M. Tinkham has pointed out [10], this simple form shown in Equation (1.15) does
not result from a static distribution of normal cores, even if the fraction of normal part
were B/µ0Hc2. If the vortices are in a static configuration, the current would simply avoid
the normal cores and flow only through the superconducting regions. The results given by
the Bardeen-Stephen flux-flow model show that the normal current density in the core just
equals the applied transport current density driving the motion of the vortices. Thus the
transport current flows right through the moving cores and produces dissipation. If there
are other contributions to the force balance, such as the Magnus force or forces from the
linear or planar extended defects leading to guided vortex motion, the vortices move at
an angle smaller than 90◦ with respect to the transport current. Also, in the presence of
a pinning force due to crystalline defects in the material, the current density through the
core is less than the applied transport current density2. One then has less dissipation in
the core and thus a lower resistance.
2 M. Tinkham proposed the following image: the transport current is uniform in the whole sample, while
there exists a backflow of current at pinning vortices. The superposition of the uniform transport current
and the backflow current yields that the current density through the core is less than the applied transport
current density [10].
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1.3.3 Vortex pinning in type-II superconductors and irreversible mag-
netization

If the vortices are completely pinned, there is no measurable resistance. Denoting the
pinning force by fp, if fL < fp, the vortices are prevented from motion and there is no
resistance. As the current density is increased, fL becomes larger. At the critical current
density jc, fL > fp and the pinned vortices begin to move and cause power dissipation.
This critical current density jc is called the depinning critical current density3.

The pinning force opposing vortex motion is the origin of the irreversible magnetiza-
tion (or self-field) of type-II superconductors. The hysteresis in the M-H loop is due to
pinning and the width of the hysteresis is proportional to the pinning force and therefore
the depinning critical current density.

Critical state model (Bean’s model)

One considers an infinite slab which has a width 2w along the x-axis and extends in
the y-direction. The magnetic field Ha is applied along the z-axis (Figure 1.10 (a)). In
Bean’s model, the current density can only take three values: ± jc and 0 [20]. For "field-
free" regions or for "field-invariant" regions, j = 0 and for "critical" regions, |j| = jc. The
critical state behavior as the applied field Ha is increased for a sample initially in the virgin
state is given by Equation (1.16) for current distribution and by Equation (1.17) for field
distribution.

jy(x) =





jc −w < x≤−a,

0 −a < x < a,

− jc a≤ x < w.

(1.16)

Bz(x) =

{
0 0≤ |x|< a,

µ0(|x|−a) jc a≤ |x|< w.
(1.17)

with a determined by: a = w− Ha
jc

.
The situation is more complicated in other geometries, but the gradient of the magnetic

flux density remains proportional to the critical current density jc. Here we report the
calculated results for a thin film of thickness d under the same field configuration as that

3 There is another critical current density which has the name depairing critical current density since above
this current density, the Cooper pairs would be broken. In general, the depairing critical current density is
a factor of 100 higher than the depinning critical current density. For practical reasons, the critical current
density for type-II superconductors always refers to the depinning critical current density.
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Figure 1.10: (a) An infinite type-II superconducting slab immersed in a magnetic field Ha. Ha is along
the z-axis. In the Bean’s model, the slope of Bz(x) is proportional to the critical current density jc. (b)
Current and field profiles for a slab (top) and a thin film (bottom) which are initially in the virgin state.
Arrows indicate the progression of field penetration (Figure from [21]).

of the slab illustrated in Figure 1.10 (a) [21]:

jy(x) =





jc −w < x≤−a,

−2 jc
π arctan( x

w

√
w2−a2

a2−x2 ) −a < x < a,

− jc a≤ x < w.

(1.18)

Bz(x) =





0 |x| ≤ a,

B f ln |x|
√

w2−a2+w
√

x2−a2

a
√
|x2−w2| |x|> a.

(1.19)

where B f = 1
πµ0d jc and a is determined by: a = w

cosh(µ0Ha/B f )
. The above results are

plotted in Figure 1.10 (b).

1.4 High-Tc superconductors
In 1986, J. G. Bednorz and K. A. Müller discovered "high-Tc superconductivity" in La2−xBaxCuO4
at 30 K [4]. Soon thereafter, M. K. Wu et al. discovered superconductivity at 93 K in
Y Ba2Cu3O7−δ [5]. The attractive paring interaction in high-Tc superconducting cuprates
is thought to be magnetic in origin. Its paring symmetry is d-wave in YBCO and BSCCO.
The phase diagram for the vortex system in high-Tc is more complicated than conven-
tional superconductors. Besides the vortex lattice phase, there exists a vortex liquid
phase at higher temperature and field part. Now we discuss the general properties of
Bi2Sr2CaCu2O8+δ.
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The crystal structure of Bi2Sr2CaCu2O8+δ is shown in Figure 1.11 (a). The thickness
of the CuO2 bilayer is s = 3 Å and the thickness of the Bi2Sr2O4 isolating layer between
two conducting layers is d = 12 Å. The material cleaves easily between two BiO planes
and we have used this property for obtaining good quality of BSCCO single crystals for
study.

s

d

conducting layer

conducting layer

charge reservoir

charge reservoir

charge reservoir

(a) (b)

Figure 1.11: (a) Crystal structure for Bi2Sr2CaCu2O8+δ (Figure provided by E. W. Hudson). (b) Koshelev
crossing lattices: Josephson vortices and pancake vortices (Figure provided by A. Koshelev).

It is believed that only the CuO2 double layers are superconducting. Consequently, the
superconducting order parameter is higher there, while it is small or zero in the rocksalt-
like BiO blocking layers. The coherence length parallel to the ab plane is denoted as ξab
and the coherence length along the c-axis is denoted as ξc. The ratio ξab/ξc is called
the anisotropy constant. For optimally doped Bi2Sr2CaCu2O8+δ crystals, this anisotropy
constant is between 350 and 500 [22], [23]. The Abrikosov vortex lines in BSCCO can be
regarded as a stack of Josephson coupled pancakes vortices in each of the CuO2 planes
(Figure 1.11 (b)).

Since the ab plane is isotropic for Bi2Sr2CaCu2O8+δ crystals, which is the subject of
this thesis, from now on, the term "in-plane" means parallel to the ab plane; the term "out
of plane" means perpendicular to the ab plane. Experiments show that in the normal state,
the out of plane electrical resistivity ρc is much higher than the in-plane resistivity ρab.
Approximately, one has: ξab/ξc ≈

√
ρc/ρab.
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1.5 Melting of the vortex lattice
Similar to real crystals, the Abrikosov vortex lattice melts to a vortex liquid when the
temperature is increased under a fixed external magnetic field Hext . This first-order melt-
ing transition of the vortex lattice melting has been discovered through the observation
of a discontinuity in the local magnetic induction (vortex density) in Bi2Sr2CaCu2O8 sin-
gle crystals [24] and later confirmed to exist in Y Ba2Cu3O7−δ single crystals through the
measurement of the latent heat [25].

B
 (

G
)

T (K)

Ha=53 Oe

Vortex Liquid Vortex Lattice

(a) (b)

Figure 1.12: Vortex lattice melting observed through the local magnetic induction measurements. (a)
Temperature scan: local magnetic flux density step at the first-order vortex-lattice melting (freezing) tran-
sition in Bi2Sr2CaCu2O8 measured with Hall sensor technique by decreasing the temperature at constant
field of 53 Oe. The sample was cooled very slowly (5 ∼ 15 mK/min) (b) Field scan: local magnetic flux
density step as the melting line is crossed by increasing the applied field at 80 K. Inset: the entire local
magnetization curve (also called the self-field curve), B−Ha, as a function of increasing applied field Ha
(Figures from [24]).

E. Zeldov et al. observe [24] that in swept field measurements (Figure 1.12 (b)), the
step occurs at the same value of the local induction Bz at various locations across the
sample, but at different values of Hext due to the non-uniformity of the Bz profile across
the sample.

As a result, in standard global magnetization measurement, the observed step is ac-
tually an value averaged over the entire sample; the variation of the magnetic moment
with external field is in general broader and smoother, masking the underlying physical
phenomena [24].

The microscopic Hall probe sensors used in [24] have an active area of 3×3 µm2 and
the active layer of these sensors were located only ∼ 0.1 µm below the surface. There-
fore a very accurate measurement of the local magnetic field with the spatial resolution
corresponding to the size of the active area, 3 µm, was obtained.

Experiments show that the vortex density in its liquid state is higher than that in its
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lattice state (Figure 1.12). By temperature scans as shown in Figure 1.12 (a), one can
define the melting temperature Tm above which the magnetic induction (increasing) step
occurs; Similarly, by field scans as shown in Figure 1.12 (b), one can define the melting
field Bm above which the magnetic induction (increasing) step occurs. Plotting the corre-
sponding values of (Tm, Bm) on a T-B diagram, one obtains a line that separates the vortex
liquid state and vortex lattice state (Figure 1.13). This line is called the first-order melting
(freezing) transition line.

vortex liquid state

vortex lattice state

Figure 1.13: Vortex liquid to lattice transition line in Bi2Sr2CaCu2O8 as measured by field scans (©)
and temperature scans (2). The solid line is a fit to Bm(T ) = B0(1−T/Tc)α, where α = 1.55, B0 = 990 G,
and Tc = 94.2 K (Figure from [24]).

1.6 Phase diagram for vortex system in BSCCO with dis-
order and vortex shaking experiments

The phase diagram for Bi2Sr2CaCu2O8 is shown in Figure 1.14. On this phase diagram,
the blue line, which also corresponds to a first order transition and seems to the continua-
tion of the melting transition at lower temperature, separates two phases: a rather weakly
pinned vortex lattice at low fields, and a more strongly pinned vortex liquid or glass at
high fields [26], [27].

At high temperatures, vortex system is influenced by thermal fluctuations and pin-
ning by defects in the superconductor is relatively weak. When temperature is decreased,
the defects begin to pin the vortices and therefore it is more and more difficult to reach
thermodynamic equilibrium in the sense of achieving a ground state with lowest energy.
Experiments with micro-Hall probe sensors performed by E. Zeldov et al. [24] on BSCCO
showed that the local magnetic induction step at melting was no longer observed when
the temperature was decreased below a certain value (38 K for their sample shown in
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Figure 1.14: BSCCO phase diagram (Based on the phase diagram provided by E. Zeldov).

Figure 1.15), called the critical point. If the same measurement is repeated in presence
of an in-plane ac field, one finds a fully reversible magnetization and the self-field step
characteristic for a first order transition can be once again observed [28] (Figure 1.16).

T = 38 K

B ~ 400 G

 Critical point:

m

m

Figure 1.15: Magnetization step, characteristic for
a first order transition, was not any more observed be-
low 38 K in BSCCO single crystals measured by E.
Zeldov et al. (Figure from [24]).
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Figure 1.16: Magnetization loop with "vortex shak-
ing". With the application of an in-plane ac field, the
hysteresis is suppressed and the reversible magnetiza-
tion step is observed (Figure based on slides provided
by E. Zeldov).

Questions remain about the nature of the "shaken" equilibrium compared to a real
thermodynamic equilibrium. As P. Gammel has pointed out, the unique properties of
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shaken equilibrium can lead to phase diagrams determined by the shaking itself, rather
than by a thermodynamic variable such as temperature [29].

The existence of the "vortex glassy state" is not yet confirmed, i.e., whether the dashed
depinning line is a vortex liquid to "vortex glass" phase transition or just a continuous
variation of the vortex mobility. If one can probe the dynamics of the vortex motion near
to the depinning line, one can thus obtain information on the nature of the vortex state in
this region.

1.7 Scope of this thesis
Three different length scales can be defined in high-Tc superconductors:

1. Microscopic level: properties of single flux lines and interaction of individual flux
lines with defects.

2. Mesoscopic level: length scales ≥ 1 µm, i.e., defined on length scales larger than
the correlation length of collective behavior of vortices.

3. Macroscopic level: the entire superconductor.

It is extremely important to obtain experimental information on mesoscopic level in high-
Tc superconductors since it is on this length scale that the distribution of critical currents is
defined [30]. Moreover, the macroscopic inhomogeneities can be revealed by observation
on this level, which permits one to verify whether the intrinsic properties of material under
study have been obtained [31].

In this thesis, two experimental techniques have been employed and combined. Chap-
ter 2 is devoted to the magneto-optical imaging technique, which corresponds to mesoscopic-
level observation on superconducting samples. Differential magneto-optical imaging with
different kinds of modulation are discussed in this Chapter. Magneto-optical imaging has
been used for sample selection, verification after irradiation experiments, characteriza-
tion, and transport current visualization in this work.

Chapter 3 deals with the experimental aspects of transport measurements. A good
quality of electrical contacts on single BSCCO crystals is essential for performing trans-
port measurements. We used photolithography to achieve electrical contacts on the sur-
face of the crystals. This permits us to visualize the transport current flow in our BSCCO
samples.

Chapter 4 studies the field and current distribution for a superconductor in a NMR
field configuration. Conclusions drawn from this chapter are useful to correctly interpret
the NMR data on type-II superconductors.

Chapter 5 is the main part of this thesis. In order to investigate the mechanisms that
govern the vanishing of linear resistance, we have measured the vortex shear viscosity
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in a 20 µm-wide channel confined structure [32]. The vortex confinement effects among
different kinds of confinements are compared. The heavily irradiated contact pads remote
from the edges allow one to probe vortex bulk properties. The shear flow resistivity
data are compared with two models describing vortex liquid-solid transitions: the two
dimensional melting mediated by separation of dislocation pairs and the three dimensional
Bose-glass transition.



Chapter 2

Magneto-optical imaging

In global magnetic measurements, one obtains an averaged value for the magnetic flux
density over the entire sample. However, the physical phenomena under study are often
masked or otherwise inaccessible because the averaging masks out small local changes of
the flux density. A good example is the magnetization of a ferromagnet which contains the
averaged information of flux density variations associated with the presence of magnetic
domains. It is thus important to perform local magnetic field measurements. Magneto-
optical imaging is a powerful tool since it permits one to obtain an image of the local
magnetic flux density at the surface of the entire sample. The physical principe underlying
magneto-optical imaging is the Faraday effect.

2.1 Faraday effect
The Faraday effect is a consequence of the fact that the magnetic field removes the sym-
metry for the propagation of left-handed and right-handed circularly polarized light.
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Figure 2.1: Linearly polarized incident light traverses the media (from the left to the right) in the presence
of an axial magnetic field B (along the z-axis). k denotes the wave vector of the light. The electric field
vector E rotates an angle θF = V BL. This effect was discovered by M. Faraday (1791 - 1867) in 1845.

Linearly polarized light can be seen as a combination of a right circularly polarized

31
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wave and a left circularly polarized wave with the same phase. When linearly polarized
light propagates through certain media with different indices of refraction for waves of the
two polarizations (right circular and left circular) in the presence of a magnetic field, at
exit the right and left circularly polarized waves will have acquired different phases. The
transmitted light at the exit is still linearly polarized but its electric field vector E has been
rotated over an angle θF which is proportional to the magnitude of the axial magnetic
field B and the length L that the light has traversed in the media: θF = V BL, where V is
called the Verdet constant, which is material and wavelength dependent.

There is a simple relation between the Verdet constant and the wavelength dependence
of the index of refraction which was first derived by J. Larmor using a semi-classical
calculation in 1898 [33]:

V =− e
2mc

λ
dn
dλ

, (2.1)

where e is the charge of an electron, m is the mass of an electron, c is the speed of light,
λ is the wavelength of light and n is the index of refraction of the medium. This relation
works very well for gases, while for solids, one needs to add a dimensionless constant C
to include the deviation of the Verdet constant from the value predicted by Equation (2.1):

V =−C
e

2mc
λ

dn
dλ

(2.2)

In cgs units, the Verdet constant has units of radians ·Gauss−1 · cm−1.
The Verdet constant for most materials is extremely small. For example, V = 3.80×

10−6 radians ·Gauss−1 · cm−1 for water at 20 ◦C and for light at 589 nm.

The Faraday effect can be used for magnetic measurements. As most of the supercon-
ductors have very small Verdet constant, one places an "indicator film" which presents a
high Verdet constant on the top surface of the superconductor in question. This indicator
film detects the magnetic field at the surface of the superconductor. The Faraday active
layer in the magneto-optical indicators that we use in our laboratory is a ferrimagnetic
bismuth doped yttrium-iron garnet (Bi:YIG) layer.

Now we discuss the properties of magneto-optical indicators and the characteristics
that we look for in a magneto-optical indicator.

2.2 Magneto-optical indicators
The YIG layers used in this work are a few microns thick. They are grown by liquid-
phase epitaxy on a transparent gadolinium-gallium-garnet (GGG) substrate so that it can
stand alone. To use it in a reflection mode, a very fine layer of Al, serving as a mirror, is
evaporated on top of the YIG surface. The mirror is covered by a thin protective Ti-TiN
layer and an anti-reflective layer is added to the substrate layer (Figure 2.2 (a)).
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The indicators that we use have a thickness of 4 µm for the YIG layer and a thickness
of 0.5 mm for the substrate. Figure 2.2 (b) shows that a wafer of magneto-optical film was
cut into different sizes adapted to samples of different dimensions.

(a) (b)

Figure 2.2: (a) Schematic representation for different layers in a magneto-optical indicator. (b) A wafer
of magneto-optical indicators.

2.2.1 Magnetic properties of the layer Bi: YIG

The MO indicator material is ferrimagnetic with a spontaneous magnetization, Ms, and
the easy axis lying in the film plane. A magnetic field B applied at an angle α (see Figure
2.3 (b)) will force the magnetization vector to turn out of the plane. We decompose B into
the in-plane field component Bx and the out-of-plane field component Bz: Bx = BcosϕB,
Bz = BsinϕB. The Faraday rotation angle is given by: θF = V LMssinφ. There exists a
saturation rotation angle: θsat = V LMs. The presence of a parallel magnetic field yields
a reduced Faraday rotation angle θF . This behavior can be explained as follows.

(a) (b)

Figure 2.3: (a) The perpendicular magnetic field B induces the rotation of the magnetization vector Ms.
The perpendicular component of Ms produces the Faraday rotation. (b) The equilibrium tilt angle φ of the
magnetization Ms is determined by the balance between the magneto-crystalline anisotropy of the Bi-YIG
layer and its tendency to align with the external field B.
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Adopting the simplest form to find the equilibrium tilt angle φ, one minimizes the total
magnetic energy composed of the anisotropy energy EA(1−cosφ) and the dipolar energy:

E(B,φ) = EA(1− cosφ)+BMs[1− cos(ϕB−φ)].

The condition ∂E
∂φ = 0 yields:

tanφ =
Bz

BA +Bx
,

where the anisotropy field BA ≡ EA/Ms. As the Faraday rotation angle is proportional to
the component of Ms parallel to the propagation direction of the light (z-axis) it follows
that:

θF ∝ sinφ =
Bz√

(BA +Bx)2 +B2
z
.

This model describes both the reduced Faraday rotation angle θF by a parallel field
and also the saturation for large Bz (sinφ → 1 for Bz À BA). Under normal operation
conditions for magneto-optical imaging, Bx is small and the Faraday rotation angle is
given by:

θF = V LMssinφ = V LMs
Bz√

B2
A +B2

z

.

The relation between θF and Bz is approximately linear for a not too large value of Bz
(compared to BA defined by BA ≡ EA/Ms ∼ 600 - 1000 G, depending on the indicator
film):

θF = BzLV
Ms

BA
≡ BzLVMO, (2.3)

where the Verdet constant for a MO indicator VMO is defined by:

VMO = V
Ms

BA
= V

M2
s

EA
(2.4)

2.2.2 Doubled Faraday rotation to enhance the sensitivity
If, after passing through the magneto-optical layer, the light is reflected by a mirror and
travels through the media again (the axial magnetic field is always present), the Faraday
rotation will be doubled (Figure 2.4).

Denoting Iin as the incident light intensity, Ir as the reflected light intensity of the
magneto-optical indicator, of thickness L and absorption coefficient β (if one takes into
account the optical absorption by the magneto-optical layer), one has: Ir = Iine−2βL. The
doubled Faraday rotation angle θ = 2θF , where θF = VMOBL. One defines a characteristic
constant k for an "indicator film" in reflection mode by: k≡ θ/B = 2VMOL, k has the unit
◦/G. To reveal the Faraday rotation effect, one places an analyzer which is in crossed
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Figure 2.4: Faraday rotation doubled by a mirror. The Faraday rotation effect takes place at the Magneto-
Optic Layer (MOL).

position to the polarization of the incident light. According to Malus’s law, the light
intensity Iout behind the analyzer is then:

Iout = Irsin2(2V BL) = Iine−2βLsin2(2VMOBL). (2.5)

As one wishes to have a large signal Iout , Equation (2.5) shows that a magneto-optical
indicator should have a high Verdet constant and a low absorption coefficient.

If one takes into account the imperfection of the polarizer and the analyzer, the inten-
sity measured once the light has passed the analyzer is: I = K0 +E2

0 sin2θ, where θ = kB
is the Faraday rotation angle due to the presence of the magnetic field B, K0 corresponds
to the background intensity, which describes the stray light and noise contribution to the
signal, and E2

0 ≡ Iine−2βL. For a given indicator, β and L are constants, for convenience,
one uses E2

0 , which has already taken into account the optical absorption by the magneto-
optical layer, to denote the incident light intensity. The polarizer and analyzer are usually
not perfectly crossed, their relative angle is denoted as 90◦−α. The light intensity mea-
sured after the analyzer is then:

I = K0 +E2
0 sin2(θ+α). (2.6)

2.3 Magneto-optical imaging
The magneto-optical (MO) indicator is placed with the mirror side in contact with a flat
sample (magnetic or superconductor, etc.). The linearly polarized light is incident on the
indicator film from above, and is reflected from the aluminium layer placed in contact with
the sample surface. While traveling in the indicator film, the light experiences a Faraday
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rotation proportional to the perpendicular component of the local magnetic field. The lo-
cal magnetic field information is obtained by observation through an analyzing polarizer,
allowing one to detect the angle of Faraday rotation at each point on the sample surface.
The image formed by the light, after it has passed through the analyzer is observed by an
optical microscope (Figure 2.5 (a)). The intensity of the light is determined by the local
perpendicular field Bz at the sample surface: bright regions in the magneto-optical image
corresponds to high Bz, while dark regions in the magneto-optical image corresponds to
low Bz (Figure 2.5 (b)).

(a) (b)

Figure 2.5: (a) Magneto-optic set-up for local magnetic flux density imaging at LSI (figure kindly pro-
vided by Minoru Uehara, based on a photo of the real set-up at LSI). (b) Magneto-optical image formation:
the contrast of the light intensity at the exit of the analyzer reflects the variation of the magnetic flux intensity
of the surface covered by the MO indicator.

θ and α are usually less than 4◦, i.e., 0.07 in radian units, very small compared to π/2.
Applying sin(x)≈ x for x¿ 1, one has1:

I = K0 +E2
0 sin2(θ+α)∼= K0 +E2

0(θ+α)2 (2.7)

1 In our study, we always work in this situation with magneto-optical imaging. The maximal value of
the magnetic field generated by the coils that we use is about 400 Oe, this corresponds to a maximum
rotation angle of 4◦ (0.07 in radian units). The maximal difference between sin(x) and x in our study is thus
|sin(0.07)−0.07|= 5.71×10−5, which is negligible.
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2.3.1 Magneto-optical indicators characterization: determination of
the absolute rotation angle

Equation (2.7) has three unknowns, K0, E2
0 and θ. In order to recover the absolute value of

θ, one should perform three independent measurements of the intensity. For example, one
chooses to measure at α = −α0, 0, and +α0 (α0 ≈ 2◦), the corresponding light intensities
are denoted by I− , I0, and I+.

Using Equation (2.7), the Faraday rotation angle can be obtained by the following
equation [34]:

θ =
α0

2
I+− I−

I+−2I0 + I−
(2.8)

To perform this measurement, a Faraday active film (YIG garnet with perpendicular
anisotropy) inserted in a copper coil is added in the optical path. The incident light ex-
periences a Faraday rotation due to the nonzero magnetization of this YIG film when a
current is applied to the coil. By changing the current, we modulate the angle α. We have
used this method to characterize the magnetic response of our MO indicators.
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Figure 2.6: Magneto-optical indicator film characterization on the indicator denoted as "VS-55-K". (a)
Measured Faraday rotation angle as a function of the external field, perpendicular to the plane of the garnet
film, at T = 315 K and with white light. The relation is approximately linear and the proportionality constant
is about 0.01◦/Oe. (b) Measured Faraday rotation angle as a function of the temperature at H⊥plane = 90 Oe
with green light (wavelength λ ≈ 530 nm) by using a filter equipped in the interior of the microscope.

The measurements demonstrate (Figure 2.6 (a)) that our magneto-optical indicators
present a significant Faraday rotation (1◦ per 100 Oe). The response of the indicators
is approximately linear with very weak magnetic hysteresis. The value of the saturation
field is about 900 Oe.

The indicator was cooled to T = 20 K with the presence of a constant perpendicular
field of 90 Oe and then the liquid helium flow was stopped. A temperature was read every
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5 seconds and its corresponding rotation angle was measured during warm-up.
Figure 2.6 (b) shows that at low temperatures, our indicator presents a larger Faraday

effect. This is consistent with the ferrimagnetic nature of the YIG layer: as the sponta-
neous magnetization Ms decreases when temperature is raised, one has a lower Verdet
constant VMO due to the Equation (2.4).

2.3.2 Optimization of image contrast
The field sensitivity of magneto-optical (MO) imaging is typically several Gauss. The
non-uniform illumination, inhomogeneity of the MO indicator and dust presented on the
optical path (dust on the indicator, infra-red filter, polarizers and other optical parts of
the microscope) are the factors limiting the effective field resolution of the MO imaging
technique.

Taking into account the imperfection of the analyzer, to optimize the image contrast,
the analyzer and polarizer are set a little deviated from the crossed position. This angle
was denoted as α in Equation (2.7).

E2
0 denotes the incident light intensity; T// and T⊥ denote the transmittance of the light

polarized parallel and perpendicular to the transmission direction of the analyzer.
The light intensity received by the camera without (I1) and with (I2) application of the

magnetic field are:
I1 = E2

0 sin2α ·T// +E2
0 cos2α ·T⊥ (2.9)

I2 = E2
0 sin2(α+θ) ·T// +E2

0 cos2(α+θ) ·T⊥ (2.10)

Developing Equation (2.10) as the first order in θ, one gets:

I2 = E2
0 sin2α ·T// +θ ·E2

0 T//sin2α+E2
0 cos2α ·T⊥−θ ·E2

0 T⊥sin2α

We define a contrast parameter C = I2−I1
I1

and maximize it. Assuming T⊥
T//
¿ 1 and

α,θ¿ 1 yields

Copt ≈ 2θ

√
T//

T⊥

for αopt =
√

T⊥
T//

.
The value for polarizer extinction varies typically from 20 dB to 40 dB. We can thus

estimate that the optimal deviation angle lies between 0.57 ◦ ∼ 5.7◦.
The above calculation was presented in [35]. In practice, we determine the deriva-

tion angle α by the maximum contrast perceived by eye. The main reason is that we
need to adjust the definition of the contrast parameter as a function of our experimental
goal: revealing inhomogeneity and macroscopic defects (contrast between different re-
gions within one sample), or the diamagnetic behavior revealed by the superconducting
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sample as a whole (contrast between the sample and the background) in order to deter-
mine, e.g., the critical temperature Tc or the critical current density jc.

2.4 Experimental setup for magneto-optics

The sample covered by the magneto-optical indicator is mounted in a special cryostat
(Oxford Instruments MicrostatHer) providing temperatures as low as 6 K with optical
access from above. The sample can be viewed through a window (it is also an infra-red
filter in order to avoid the thermal radiation) in the cryostat and details of the magnetic
flux distribution could be studied using a microscope with polarized light. Focusing and
XY-translation are enabled by mounting the cryostat on an adjustable XYZ-stage.

The MO indicator and the sample are placed on a OFHC (Oxygen-Free High Conduc-
tivity) copper sample holder, which is directly fixed to the cold finger of the flow cryostat.
An indium foil is crushed between the sample holder and the cold finger in order to im-
prove thermal contact. The whole mount is inserted into the cylindrical vacuum space.

A split coil copper magnet is mounted on the aluminium lids of the vacuum chamber.
These coils are used for the application of a magnetic field component (up to 550 Oe) per-
pendicular to the sample plane. In addition, one can also apply a magnetic field parallel
to the sample plane by using another copper wire magnet. An iron core can be added into
this wire magnet in order to strengthen the magnetic field. The whole setup is mounted
on an optical table to minimize mechanical vibrations (Figure 2.7).
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(b)

Figure 2.7: (a) Photo of the experimental set-up at LSI for magneto-optics. (b) Scheme of the experimen-
tal setup.
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(1) Cooling system and temperature control

A transfer line links a helium storage dewar to the cryostat. Liquid helium flows
through the inner tube of this line to the heat exchanger of the cryostat. The returning
helium gas flows along the outer tube of the line to the exhaust port. The exhaust line is
linked to a helium gas flow controller and a small diaphragm pump. With the controlled
flow of helium, the MicrostatHer cools down quickly. The set-up permits us to reach a
minimum temperature of 6 K. The temperature of the sample holder could be stabilized
(variation≤ 0.02 K) in a broad range (from 10 K to 500 K) using a temperature controller
(Lakeshore 340). However, the liquid helium flow rate must be regulated by the experi-
menter depending on the temperature range.

(2) Probes for measuring the temperature and the magnetic fields

Pt sensor
Hall sensor B

z

Hall sensor B
y

Hall sensor B
x

carbon sensor

(a) (b)
Figure 2.8: (a) Photo of the MicrostatHer. (b) Photo of the sample holder and placement of the sensors.
The sensors are situated near to the sample, but in the opposite side of the sample holder.

Two temperature sensors (Pt-sensor and Allen-Bradley carbon sensor) were glued on
the sample holder in order to measure the temperature. Three Hall probes are used for
measuring the magnetic field components (Bx, By,Bz). These are positioned near to the
sample on the opposite side of the sample holder (see Photo 2.8 (b)).

The electrical access onto the MicrostatHer system (see Photo 2.8 (a)) is via a 10-pin
connector and an additional 19-pin Amphenol connector. The connections (1, 2, 3, 4) are
for carbon sensor, (5, 6, 7, 8) are for Schlumberger Hall probe to measure the Bz field, (9,
10, 13, 14) and (11, 12, 13, 14) are for two Toshiba Hall probes to measure the Bx and
the By fields. (15, 16, 17, 18) are reserved for 4-wire resistivity measurements. 19 is not
connected.
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(3) Camera system

We use a Hamamatsu C4742-98 peltier cooled gray-scale charge-coupled device (CCD)
camera. Images acquired by the camera are digitized by 16-bit analog-to-digital convert-
ers located on the CCD chip and then transferred to the computer. With this camera, the
scale conversion factor for objective 10× of the microscope is about 1 pixel/µm.

(4) Spatial resolution

In our case, the spatial resolution is determined by the thickness of the indicator. Be-
cause the magnetic field contrast is significantly attenuated with increasing distance from
the sample surface, it is important that the magneto-optical film side is placed in intimate
contact with the surface of the sample for maximum spatial resolution. Our apparatus
permits a spatial resolution about 5 ∼ 10 µm.

(5) Time resolution

The magneto-optical imaging technique has a great advantage for the study of dy-
namic processes. In principe, the time resolution is only limited by the spin reversal in the
indicator, which occurs on a time scale of nanoseconds. In practice, when we record the
magneto-optical images with a CCD camera and transfer to a computer for processing,
the time resolution is limited by the image detector and image transfer time (about 40 ms
for our apparatus).

2.4.1 Application of direct magneto-optical imaging to superconduc-
tors

If a magneto-optical image is acquired in a single shot, one calls it as a direct magneto-
optical image. One can also perform differential measurements by subtracting two direct
magneto-optical images acquired under different conditions, e.g., at two different mag-
netic fields, or two different temperatures, with or without a transport current, etc. Images
acquired in this manner are called differential magneto-optical images. We present the
direct magneto-optical imaging to superconductors first, then the differential magneto-
optical imaging to superconductors with different kinds of modulation is discussed.

We carefully glue the superconductor samples to a copper sheet with n-C19H40, a
polymer the melting temperature of which is around 30 ◦C, then we mount them in the
cryostat. The MO-indicator is placed with mirror side down on the superconductor sam-
ple. The magneto-optical image in Figure 2.9 shows that the field does not penetrate
into the superconductor (black corresponds to zero field). The magnetic field lines bend
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around the superconductor due to the screening effect, and thus concentrate near the edges
which are the brightest areas on the image.

(a) (b)

Figure 2.9: Screening of magnetic field by a superconducting sample observed with magneto-optical
imaging. (a) Photograph of the crystal BSCCO "24-2". (b) Direct MO image of BSCCO "24-2" acquired at
T = 7 K, H//c = 456 Oe, zero-field cooling.

The magnetic flux penetrates a sample from outside to the inside. In a superconductor,
flux pinning counteracts flux penetration into the bulk. In Bean’s model, also called the
critical state model, only three values are allowed for the electric current density: zero
current for regions where no magnetic flux has penetrated and ± jc elsewhere; the sign
is determined by Lenz’s law and the progression of the current reversal front from the
sample boundary. The flux density gradient is constant and given by the value of the
critical electric current through the Equation: ∇×B = µ0jc.

(a) (b) (c)

Figure 2.10: (a) Photograph of the NbN film. (b) Direct magneto-optical image at full penetration, T =
11 K. (c) Direct magneto-optical image at its remanent state after full penetration, T = 11 K.

Here we report the experimental results performed on a NbN thin film (Tc = 14 K).
The film was prepared by IFPAN (Institute of Physics of Polish Academy of Sciences) in
Warsaw. The NbN film has a thickness of 76 nm and is deposited on a 12 nm thick Pt-Co
layer. These two layers are grown on Si substrate. Figure 2.10 (b) shows a direct MO
image at full penetration state of this film and Figure 2.10 (c) shows a direct magneto-
optical image at its remanent state after full penetration. The magnetic field is applied
perpendicular to the plane of the NbN film.
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2.4.2 Interpretation of magneto-optical imaging at its differential mode

The influences due to the inhomogeneity of the indicator and the non-uniform illumination
can be strongly reduced by a subtraction of the background. Also, an increased signal-
to-noise ratio can be obtained by repeating this differential measurement. A. Soibel et al.
have used this technique that they pioneered to observe the vortex-lattice melting process
in Bi2Sr2CaCu2O8 in the presence of disorder [36] with field and temperature modula-
tions. The measurement can be done in different ways. First of these is the Differential
Magneto-Optical (DMO) imaging with field modulation, since this is the most widely
employed method in our further study.

The field modulation protocol is as follows: one acquires a magneto-optical image
denoted as M1 at a magnetic field H1, and another magneto-optical image denoted as M2
at another magnetic field H2; then one subtracts M1 from M2, pixel by pixel, to obtain the
differential image MDi f f = M1−M2.

We follow the notation of section 1.2.2: K0 denotes the background intensity; E2
0

denotes the incident light intensity; The angle α denotes the deviation angle from the fully
crossed relative orientation between the analyzer and the polarizer; θ(B) is the Faraday
rotation angle created by the perpendicular magnetic field at the position of the garnet
film (the so-called MO indicator).

Let us now consider the differential signal yielded by subtraction of two direct MO
images acquired under two different magnetic fields H1 and H2. I1 and I2 denote the light
intensities of the two magneto-optical images respectively. B1 and B2 denote the corre-
sponding local magnetic flux density at the top surface of the sample under consideration,
which is covered by the MO indicator. Remember that H1 and H2 are the applied external
magnetic field strengths, and they take constant values in space while B1 and B2 depend
on the positions in the sample. Since the magneto-optical image is a map of the local
magnetic flux density at the sample surface (lying in the xy plane), the spatial dependence
of B(x,y) can be derived explicitly from:

I1(x,y) = K0 +E2
0 sin2[α+θB1(x,y)] (2.11)

and
I2(x,y) = K0 +E2

0 sin2[α+θB2(x,y)]. (2.12)

The differential intensity Idi f f is:

Idi f f (x,y) = I1(x,y)− I2(x,y)

= E2
0{sin2[α+θB1(x,y)]− sin2[α+θB2(x,y)]}

= E2
0{[

1
2
− 1

2
cos(2α+2θB1(x,y))]− [

1
2
− 1

2
cos(2α+2θB2(x,y))]}

= E2
0 sin(θB1(x,y)−θB2(x,y)) · sin(2α+θB1(x,y)+θB2(x,y)) (2.13)
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We recall the linear relation: θ = kB, where k is a characteristic constant of the indi-
cator film (k ≈ 0.01◦/G for the indicator film that we use).

Equation (2.13) can thus be written as:

Idi f f (x,y) = E2
0 sin[k(B1(x,y)−B2(x,y))] · sin[2α+ k(B1(x,y)+B2(x,y))] (2.14)

Using the approximation: sin(x) .= x for x¿ 1, one gets:

Idi f f (x,y)
.= kE2

0(B1(x,y)−B2(x,y)) · [2α+ k(B1(x,y)+B2(x,y))] (2.15)

If one defines ∆B(x,y)≡B1(x,y)−B2(x,y) and B(x,y)≡ B1(x,y)+B2(x,y)
2 , then Equation

(2.15) reads:
Idi f f (x,y)

.= 2kE2
0 ∆B(x,y) · [α+ kB(x,y)] (2.16)

The apparent differential magnetic permeability µ is defined as2: µH ≡ dB(H)
dH . Apply-

ing this definition locally, one replaces ∆B(x,y) by µH(x,y)∆H in Equation (2.16), where
µH(x,y) is called the local differential apparent magnetic permeability, or local "perme-
ability" for short, measured under an external magnetic field H, and then one obtains:

Idi f f (x,y)
.= 2kE2

0 µH(x,y)∆H · [α+ kB(x,y)] (2.17)

If H1 and H2 are sufficiently close, B1(x,y) and B2(x,y) should be close also to their
average value BH(x,y) ≡ B1(x,y)+B2(x,y)

2 . For simplicity, one defines a constant C ≡ 2kE2
0

and then Equation (2.17) reads:

Idi f f (x,y)
.= C∆H · [α+ kBH(x,y)]µH(x,y). (2.18)

Equation (2.18) provides the following interpretation concerning the DMO image with
field modulation: the differential signal with field modulation is the square root of the
direct image intensity (ignoring the background intensity K0) multiplied by the local ap-
parent differential magnetic permeability.

In a typical measurement, α is set around 2◦. Analysis shows that in order to achieve
an optimal image contrast, the value of α should be set between 1◦ ∼ 6◦ depending on
the extinction ratio of the polarizer. Furthermore, k ≈ 0.01◦/G, and the field range of our
experiments lies between 0 and 400 Oe. The value of kBH(x,y) is thus between 0 and 4◦,
which is of the same order as the value of α and therefore cannot be neglected.

The interpretation of DMO (differential magneto-optical) images with field modula-
tion as a map of the local "permeability" is valid in the situations listed below:

2 As a matter of fact, the definition of this apparent local differential magnetic permeability is not necessary
for the discussions. While defining this quantity permits one to compare with magnetic materials.
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1. The spatial variation of B(x,y) can be ignored in Equation (2.18). Consequently,
BH(x,y) is replaced by a constant C

′
and Equation (2.18) reduces to Idi f f (x,y)

.=
CC

′∆HµH(x,y) ∝ µH(x,y). This is the case for the study of magnetic films by the
magneto-optical imaging technique. For high-Tc superconductors, the screening
current density is nearly zero when sufficiently close to their irreversibility lines;
Then, BH(x,y) is almost uniform and the DMO images with field modulation can
be interpreted as a map of the local "permeability".

2. BH(x,y) is sufficiently small compared to α/k, i.e., BH(x,y) << α/k, then the spa-
tial variation of α + kBH(x,y) due to BH(x,y) can be ignored and Equation (2.18)
reduces to Idi f f (x,y)

.= C∆H ·α ·µH(x,y) ∝ µH(x,y).

In the case that the spatial variation of local "permeability" is negligible, the differen-
tial image resembles the direct image. Furthermore, since the differential measurement
can significantly reduce perturbations due to the inhomogeneity of the indicator film and
the non-uniform illumination, one obtains a neater magneto-optical image using the dif-
ferential measurement. By repeating this differential operation, the signal-to-noise ratio
S/NN is raised (S/NN = S/N0 ·

√
N, where S/N0 is the signal-to-noise ratio of one single

frame, N is the number of averaged frames) and a resolution of 0.1 G can be attained in
our set-up with this differential image acquisition procedure3.
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Figure 2.11: (a) Quadratic relation between the light intensity I and the magnetic field H perpendicular to
the plane of the indicator in direct magneto-optical image. (b) Averaged intensity of the acquired calibration
DMO images as a function of the modulation field. DMO images are acquired at T = 85 K, base field Hz =
250 Oe, modulation field varied from -1 Oe to -9 Oe (along the z-axis).

In direct image mode, there is a quadratic relation between the light intensity I and the
magnetic field intensity H perpendicular to the plane of the garnet film (MO indicator):

3 Normally 200 frames are averaged to obtain this resolution.
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I = K0 +E2
0(α+kB)

2
, as illustrated in Figure 2.11 (a). Since the polarizer and the analyzer

are nearly crossed, i.e., α≈ 0, the bright regions in a direct MO image correspond to high
field regions. In differential mode, if the magnetic flux density BH(x,y) is uniform, e.g.,
when one acquires an image of the sole indicator film only or of the superconducting
sample in the normal state covered by the indicator, Equation (2.18) yields ∆I ∝ ∆H.
This linear relation between the light intensity ∆I in DMO image and the value of the
modulation field ∆H has been verified experimentally (see Figure 2.11 (b)).

2.4.3 Differential magneto-optical imaging of superconductors
For superconductors, bulk pinning and surface barrier govern the dynamics of vortex mo-
tion, as well as the spatial distribution of the vortex density, i.e., the spatial distribution
of the magnetic flux density. The critical-state model (Bean’s model) incorporates the
bulk pinning effect and permits one to study the distribution of magnetic flux density. In
the following, we apply Bean’s model into Equation (2.15) and provide interpretations of
DMO images with field modulation perpendicular to the sample plane.

DMO imaging with field modulation perpendicular to the sample plane

The differential intensity given by Equation (2.15) can be rewritten as:

Idi f f (x,y)
.= k2E2

0 [B1(x,y)−B2(x,y)] · [2α/k +B1(x,y)+B2(x,y)] (2.19)

If one considers the case for a thick sample and a one dimensional approximation is
justified (e.g., slab), using the Bean’s model: dB/dx ∼ jc, one thus has:

d[2α/k +B1(x)+B2(x)]/dx∼ 2 jc (2.20)

and
d[B1(x)−B2(x)]/dx∼C0 jc ∼ 0 (2.21)

where C0 is a constant and C0 ∼ 0.
Applying the above results to Equation (2.19) to calculate the gradient of the differ-

ential intensity Idi f f , one obtains:

dIdi f f (x)/dx∼ 2k2E2
0 µH∆H · jc (2.22)

where one uses the definition of the local magnetic permeability µH and replaces B1(x,y)−
B2(x,y) by µH∆H, with ∆H ≡ H1−H2. The gradient of the intensity in the field mod-
ulated DMO images is thus related to the critical current density value. If this gradient
is no longer discernable, i.e., when one can no longer distinguish the superconducting
region from the surrounding background in a field modulated DMO image, the critical
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current density value vanishes to zero. The irreversibility line can thus be determined in
this manner from field modulated DMO images.

The DMO images in Figure 2.12 are obtained on the same NbN film as that in Figure
2.10. Figure 2.12 shows the partial magnetic field penetration pattern into this NbN film
at T = 11.65 K at different applied magnetic fields perpendicular to its plane with a fixed
modulation field ∆Ha = 5 Oe.

(a) (b) (c)

Figure 2.12: Differential magneto-optical images acquired at T = 11.65 K. The modulation field is 5 Oe.
(a) Base field Ha = 10 Oe. (b) Base field Ha = 60 Oe. (c) Base field Ha = 100 Oe.

As we have pointed out previously, field modulated DMO imaging can be used to de-
termine the irreversibility line for superconductors. Figure 2.13 shows the DMO images
with base field Ha = 0 at different temperatures in the vicinity of Tc on the same NbN
film (Tc = 14 K) as in Figure 2.10 and 2.12. Figure 2.13 shows that approaching Tc, the
gradient of the intensity in DMO images vanishes.

(a) (b) (c)

Figure 2.13: Differential magneto-optical images acquired at different temperatures. (a) The image was
acquired at T = 13.3 K, base field Ha = 0 Oe, and modulation field ∆Ha= 5 Oe. (b) The image was taken at
T = 13.7 K, base field Ha = 0 Oe, and modulation field ∆Ha= 5 Oe. (c) The image was acquired at T = 14.1
K, base field Ha = 0 Oe, and modulation field ∆Ha= 5 Oe.
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DMO imaging with field modulation parallel to the sample plane

In a direct MO image, the light intensity I is:

I ≈ K0 +E2
0(α+θ)2

where K0 is the off-set light intensity, E2
0 is the incident light intensity, θ = kB⊥, the

proportionality constant k ≈ 0.01◦/G, B⊥ is the magnetic flux density perpendicular to
the garnet film (MO indicator). Now we discuss the situation with field modulation,
denoted as Hac in Figure 2.14, parallel to the sample plane.

Figure 2.14: Field configuration: dc magnetic field is applied along the z-axis; The modulation field Hac
is applied along the x-axis.

The dc field Hdc induces a shielding current Idc in the superconducting sample. The ac
field Hac induces an ac screening current Iac in the superconducting sample. Bac denotes
the z-component of magnetic field generated by Iac and Bdc denotes the z-component of
magnetic field generated by Idc. Let us denote the Faraday rotation angle due to the dc
field as θ|dc and the Faraday rotation angle due to the ac field as θ|ac, one has: θ|dc = kBdc
and θ|ac = kBac. In the presence of both of an ac field and a dc field, one has θ|ac&dc =
k(Bac +Bdc).

Without the ac field, the light intensity is:

I0 = K0 +E2
0(α+θ|dc)2 (2.23)

With the presence of the ac field, the light intensity is:

Iac = K0 +E2
0(α+θ|ac&dc)2 (2.24)

The light intensity in the resulting differential image Idi f f is thus:
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Idi f f = Iac− I0 = E2
0(α+θ|ac&dc)2−E2

0(α+θ|dc)2

= E2
0(θ|ac&dc−θ|dc)(2α+θ|ac&dc +θ|dc)

= k2E2
0 Bac(2α/k +Bac +2Bdc) (2.25)

Strictly speaking, the linear relation between Idi f f and Bac is only achieved once the
condition Bac+2Bdc ¿ 2 α/k is satisfied. This condition can be met by choosing a large
enough value of α. If one defines Idi f f |ac ≡ k2E2

0 Bac, Equation (2.25) can be rewritten as:

Idi f f = Idi f f |ac(2α/k +Bac +2Bdc) (2.26)

DMO imaging with current modulation

Now we move to discuss the DMO imaging with current modulation: a dc magnetic
field is applied perpendicular to the sample plane, while a transport current is applied par-
allel to the plane of the sample. For example, one can consider that the transport current
is applied along the y-axis as illustrated in Figure 2.14. Following the same calculations
as one has done for DMO imaging with field modulation parallel to the sample plane,
one finds that the light intensity difference, with the presence of the transport current and
without this transport current, is:

Idi f f = k2E2
0 B|current(2α/k +B|current +2Bdc),

where B|current is the z-component of the magnetic field (the so-called self-field) generated
by the transport current. The differential signal is thus the self-field signal of the transport
current convoluted with the applied dc magnetic field signal.

2.4.4 Visualization of the vortex-lattice melting transition with dif-
ferential magneto-optical technique

To visualize the vortex-lattice melting transition with MO imaging technique, the task is
to observe a magnetic flux density difference of 0.1 ∼ 0.4 Gauss in a background (on
the order of hundreds of Gauss) which appears as a bright ring (see Figure 2.15), which
indicates the location of the expanding solid-liquid interface, on a dark background of a
noise level about 0.5 Gauss with differential magneto-optical imaging technique.

In the studies undertaken by A. Soibel et al. [36]-[38], they discussed the situation
where the bulk pinning is absent, i.e., the task is then to observe a magnetic flux density
difference of 0.1 ∼ 0.4 Gauss in a unform background where only white noise is present.
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In the situation where the bulk pinning is present, and the irreversibility line is higher
or superposed with the first-order melting transition line on H-T phase diagram, then the
dome-shaped profile shown in Figure 2.15 (a) for the vortex density distribution (with a
maximum vortex density at the center) should be replaced by Bean’s profile. In this case,
the observation of the vortex-lattice melting transition, i.e., the observation of the bright
ring would be rather difficult.

(a) (b)

Figure 2.15: (a) Schematic illustration of visualization of vortex-lattice melting by differential magneto-
optical technique. The field B in the liquid phase is larger by ∆B than in the solid (blue profile). Figure from
Ref. [38]. (b) DMO image of the melting process in a BSCCO crystal (Tc = 91 K) of area 0.35×0.27 mm2

at T = 60 K, δHa = 1 Oe and Ha is along the c-axis. The bright ring indicates the location of the expanding
solid-liquid interface. Image from Ref. [38].

For example, as shown in Figure 2.11 (b), a 1 G signal corresponds to a difference
of 40 on the gray-level in a DMO image obtained with a 16-bit CCD (gray-level value
situates between 0 ∼ 65536). The theoretical magnetic flux density resolution limit is
then 1 G/40 = 0.025 G. The spatial resolution of the common optical microscope is 10
µm, which corresponds to 10 pixels with a 10× magnification objective and the 16-bit
CCD camera that we use in our measurements. In the presence of bulk pinning and if
one applies Bean’s approximation, i.e., the vortex density has a gradient dB(x)

dx which is
proportional to the critical current density jc. Then the local vortex density resolution is
determined by the product of jc and the spatial resolution. For example, if the gradient
dB(x)

dx is 0.01 G/µm, then the vortex density resolution is 0.01 G/µm × 10 µm = 0.1 G. In
this case, to observe the melting by differential magneto-optical imaging, one needs to be
able to resolve a magnetic flux density difference of 0.1 G, which yields the bright ring,
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in a heterogeneous background where both a white noise and a vortex density gradient
are present. This is a more difficult task. Following this argument, the bright ring, i.e.,
location of the expanding solid-liquid interface, is easier to observe in a crystal where the
bulk pinning is weak (and the surface barrier effect is strong) than that where the bulk
pinning is strong (and surface barrier effect is weak).
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Chapter 3

Transport measurements for
Bi2Sr2CaCu2O8 single crystals

Resistivity measurements permit one to study the motion of vortices in type II supercon-
ductors. The resistivity is not a thermodynamic property as the equilibrium is disturbed by
the transport current. However, resistivity measurements can show the signature of phase
transitions of the vortex system since the resistive properties may change dramatically
between different phases. For example, a sharp decrease of resistance may be observed
during the vortex liquid to vortex solid transformation. In order to measure a resistance,
one needs to inject a current, I, with a current source and measure the voltage, V , through
a voltmeter. The resistance R is defined by the formula R = V/I. If the ratio is constant
over a wide range of currents and voltages, the material is said to be ohmic. If the ratio de-
pends on the current and voltage applied, the material is said to be non-ohmic. Four-point
probe measurements should be used for low resistances.

3.1 Fabrication of the electrical contacts on Bi2Sr2CaCu2O8

single crystals by photolithography
We began by using the silver paint and gold wires of 50 µm to establish the electrical
contacts on sputtered gold pads as illustrated in Figure 3.1 (a). The contact resistance is
about several Ohms for the best cases, however, the contacts achieved by this way cannot
resist cooling.

In order to obtain high quality electrical contacts, we used a method of fabrication
with thin Au contacts on the top of the crystals BSCCO by photolithography, which do
not disturb the magneto-optical imaging. Photolithography is the photographic transfer of
a pattern to a surface. During this process the electric contacts have been established using
a chromium photomask. This part of work was done in the cleanroom of the laboratory
Unité Mixte de Physique CNRS/Thales (UMR 137).

53
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(a)

���

(b)

Figure 3.1: (a) Electrical contacts established with silver paint on the crystal BSCCO "15". (b) Designed
mask for photolithography.

We have designed 4 photomasks of the same pattern illustrated in Figure 3.1 (b) for
different sizes of the crystals: 500 µm, 750 µm, 1000 µm, and 1500 µm. The outer contact
pads are designed for current injection and the inner contact pads are designed for voltage
measurements. A shadow mask is fabricated using photolithography and etching and
includes designed pattern for 4 different sizes mentioned above.

There are two methods for fabrication of the electrical contacts by photolithography:
the "lift-off method" and the "chemical etching method". We have tested both and have
chosen the "chemical etching method" for our work since we found that with the "lift-
off method" the gold layer evaporated on the sample seemed difficult to remove (after 2
days immersed in Acetone) from the regions where it was not desired. Before performing
photolithography, the BSCCO single crystals are glued onto the sapphire substrate.

3.1.1 Gluing the BSCCO single crystals onto the sapphire substrate
The BSCCO crystals are glued to sapphire substrates1 using the Norland Optical Adhesive
("NOA 61"). The glue is applied specifically to compensate the thickness of the crystals
(∼ 20 µm) and provide a smooth ramp between the sample’s top edges to the sapphire
surface (Figure 3.2). The steps for the utilization of the NOA 61 glue are detailed as
follows:

1. Clean a sapphire substrate (Figure 3.2 (a)).

1 We choose sapphire as the substrate for its good thermal conductivity and high transmittance for UV light
along its c-axis.
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Figure 3.2: Steps for the utilization of the NOA 61 glue.

2. Put a small drop of the "NOA 61" glue onto the sapphire substrate surface (Figure
3.2 (b)).

3. Position the BSCCO single crystal on the drop of the "NOA 61" glue (Figure 3.2
(c)).

4. Precure with a 100 Watt UV light for 10 seconds; The precure allows one to fix the
single crystal on the sapphire substrate. After the precure, excess adhesive can be
wiped up with alcohol or acetone (Figure 3.2 (d)).

5. Add and adjust the quantity of "NOA 61" glue to form a ramp under an optical
microscope (Figure 3.2 (e)).

6. Final cure with a 100 Watt UV light for 10 minutes (Figure 3.2 (f)).

3.1.2 Chemical etching process
Here are the steps for the chemical etching process that we used:

1. Plasma etching for cleaning the surfaces of the crystals: 2 minutes in a plasma
Ar/O2 (ratio 1:4) with a pressure of 1×10−2 mbar and a power of 15 W.

2. Evaporation of a 500 nm gold layer. (Plasma Ar, 2.5×10−3 mbar, DC current 200
mA, deposit speed of 0.8 nm/s)

3. Cover the sapphire (5×5 mm2) with primer (spun at 6000 rpm for 30 seconds) and
then with S1813 photoresist (spun at 6000 rpm for 1 minute). The layer of the
photoresist is about 1 µm thick obtained with the above parameters.
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4. Heat at 90◦C for 1 minute.

5. Expose to UV light through the negative mask: 40 mJ. The photoresist in the ex-
posed regions will be dissolved in the developper in the following step. The gold
in the exposed regions will be removed later since in these regions, the gold is not
protected by the photoresist layer anymore.

6. Development by Microposit Developer MF319 (1 minute and 30 seconds), and rinse
with deionized water (3 minutes) to stop the chemical reaction.

7. Verification under an optical microscope.

8. Etching with KI2 (45 seconds), and rinse with deionized water.

9. Plunge the sample in acetone to dissolve the resist covering the surface of the re-
maining gold layer, and then plunge the sample in propanol to remove the acetone
trace.

1 mm

low contact 
resistance (good) 

high contact 
resistance (problem)

short
circuit

Figure 3.3: Electrical contacts obtained by photolithography for the sample BSCCO "24-4".

Figure 3.3 shows the result achieved by the above method for a BSCCO single crystal.
The resistance of the contacts is less than several Ohms. The photolithography method
described above permits us to obtain sufficiently low resistance contact for a large contact
width. While for narrow contact width, the contact resistance could be very high (Figure
3.3). It is possible that some gold is not removed properly during the chemical etching
process, one can use a razor blade delicately to remove the gold in the regions where it is
not desired, e.g., the short circuit shown in Figure 3.3.
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3.1.3 Quality of the contacts
The quality of the contacts manifests itself through the contact resistance. For transport
measurements, we expect robust contacts which have sufficiently low contact resistance.
Our experience showed that with the method described above, the quality for the narrow
width contact is still not satisfactory. We have examined the electrical contacts of the
samples with Scanning Electron Microscope. Figure 3.4 shows clearly that there are
discontinuities of the gold track at the edges of the sample. In this case, we need to add
some silver paint at the edges to "repair" the contact for transport measurements.

(a) (b)

Figure 3.4: (a) Scanning Electron Microscope (SEM) image for the sample BSCCO "11" (150 ×). (b)
SEM image for the contact "E" marked on the left-hand figure (2200 ×). The SEM images are acquired by
Dr. D. Lucot at the Laboratoire de Photonique et de Nanostructures (CNRS-UPR20), Marcoussis, France.

3.2 Experimental set-up for resistivity measurements

3.2.1 Cryogenic system
The cryogenic system (Figure 3.5) is composed of a helium flow cryostat placed inside a
100-liter dewar filled with liquid helium. The Variable Temperature Insert (VTI) designed
by Dr. M. Konczykowski was made by the ABT Sorime company, and equipped with a
superconducting magnet (NbTi coil) with Imax = 19 A and the proportionality constant of
77 Oe/A, calibrated at the position of the sample with a Hall probe (Toshiba THS118) at
low temperatures and with a Gaussmeter at ambient temperature.

The flow of gas helium is regulated by a needle valve (C) at the entrance of liquid
helium to the cryostat and a flow meter (D) at the exit of helium gas. The sample space
(G) is surrounded by a coil heater. A platinum temperature sensor is placed on the sample
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Figure 3.5: The cryogenic and measurement systems.

mount to measure its temperature. We can stabilize the temperature of the sample between
5 K and 300 K with a precision of 20 mK.

3.2.2 Measurement systems
The sample glued to the sapphire substrate (5× 5 mm2) is mounted on a 24-pin IC sup-
port. We use a homemade connection box to connect the 24 contacts of the chip to the
instruments. The measurement system is composed of (Figure 3.5):

1. Temperature controller Lakeshore 331;

2. Sourcemeter Keithley 2400;

3. Nanovoltmeter Keithley 2182A;

4. Superconducting Magnet Power Supply (Model: CRYOGENIC SMS 10);
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5. A computer with a GPIB interface for the control of the instruments and the data
acquisition.

In order to cancel the thermal voltage errors in the system, the current is inverted. The
final resistance calculation is: R = (V1−V2)/ | 2I | where: R is the resistance of sample
understudy, V1 is the first measured voltage with a current I, and V2 is the second measured
voltage with current of opposite polarity, −I. With the trigger link cable between the
SourceMeter Keithley 2400 and the Nanovoltmeter Keithley 2182A, the current reversal
can be done up to 24 Hz in our set-up.

3.2.3 Noise considerations
In our dc resistance measurement, the noise level observed in our resistance data is di-
rectly related with the contact resistance. We consider that the main noise in our measure-
ment is due to thermal noise. Thermal noise, also called the Johnson-Nyquist noise ([39],
[40]), is the voltage fluctuations caused by the random Brownian motion of charge carri-
ers (usually the electrons) in a resistive medium, which happens regardless of any applied
voltage. Thermal noise is a broadband white noise and if modeled by a noise voltage
source in series with the resistor of resistance R, the root mean square value of this noise
level (nV/

√
Hz) is given by: Vnoise =

√
4kBRT , where kB is the Boltzmann constant and T

is the temperature of the resistor.
The resistances of the electrical contacts established between the BSCCO single crys-

tals and the Au contacts achieved by photolithography vary from several Ohms to hun-
dreds of Ohms depending on the quality of the contacts. To reduce this noise, we need to
achieve low electrical resistance contacts. Our experience showed that with the method
described above, very low contact resistance could be obtained for relatively large size
BSCCO single crystals (for example, for the surface about 1.5×1.5 mm2) while this goal
remained difficult to achieve for much smaller BSCCO crystals (Figure 3.4). In order
to reduce the noise level for small samples with a relatively high contact resistance, the
resistance measurements were repeated at a fixed point and the measured values were
averaged to give the resistance value for each point of acquisition. For example, for the
resistance measurements presented in Chapter 5, in order to achieve a resolution of 10−7

Ω with an applied current that does not exceed 10 mA, 1024 measurements had been done
at a fixed point and then been averaged to obtain the resistance value.

3.3 The Importance of achieving good quality electrical
contacts

When a barrier between the metallic contact (e.g., gold layer in our case) and the super-
conducting crystals exists, the V-I behavior could be perturbed by the presence of this
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barrier. In order to obtain good measurements, one wishes to have a low barrier. The
following example shows that a sufficient low barrier is primordial to be able to perform
resistivity measurements correctly.

10-5

10-4

10-3

10-2

10-1

100

55 60 65 70 75

I = 20 µA
I = 100 µA
I = 300 µA
I = 600 µA
I = 2000 µA

R (
  Ω

  )

"T ( K )"
Figure 3.6: Resistance as a function of the temperature measured at zero-field on an optimally doped
sample (BSCCO "20A"). The thermalization was not good enough and the value for the temperature pre-
sented in the above graph was thus not accurate. Since the contact resistance is very high, Joule heating
causes the resistance curve shifts with the following currents: 300 µA, 600 µA, and 2000 µA. Due to a
barrier between the crystal and the Au layer, current was not injected properly. One can see this from the
resistance curves with the applied current of 20 µA and 100 µA.

Figure 3.6 illustrates the perturbation of this barrier to the resistivity measurements.
The resistivity curve shifts with the following currents: 300 µA, 600 µA and 2000 µA,
are caused by the Joule heating effect due to the large contact resistance while the re-
sistance curve measured with the current of 20 µA and 100 µA indicate clearly that the
current was not injected properly. In order to understand this current injection anomaly,
we performed I-V characterization at T = 60 K (This is the recorded temperature value.
Since the thermalization was found to be unsatisfactory, the accurate temperature of the
sample was unknown, but from the resistivity curves shown in Figure 3.6, one knows that
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the resistance of the BSCCO sample RBSCCO ≈ 0 at this temperature.) as compare with a
bilayer model detailed below.

The bilayer model is shown in Figure 3.7. The electrical contact between the BSCCO
crystal and Au-layer is contaminated by a barrier. Current should flow through this barrier
first, and then flows into the BSCCO sample. If one denotes Rvoltmeter as the internal
resistance of the voltmeter, RBSCCO as the resistance of the BSCCO crystal, and Rbarrier
as the resistance of the contamination layer (barrier layer), whose value depends on the
injection current and can be modeled as: Rbarrier = R0exp(−I/I0), where R0 and I0 are
constants, I is the injected current. The measured voltage signal V is then:

V = I
1

1
RBSCCO+Rbarrier

+ 1
Rvoltmeter

= I
1

1
RBSCCO+R0exp(−I/I0)

+ 1
Rvoltmeter

(3.1)

contamination (barrier)
BSCCO

I+ V+ V- I-

V

Figure 3.7: Bilayer model for resistance modeling.

When one fits the I-V curve with Equation (3.1), one finds very small values for
RBSCCO. Setting RBSCCO = 0, comparing with the experimental I−V curve, we find the
following values for the parameters in Equation (3.1): R0 = 0.14858 Ω, I0 = 48.291 µA,
Rvoltmeter = 1×109 Ω. Those values are quite reasonable. Figure 3.8 also shows that this
bilayer model can explain very well the measured I-V characteristics. Combining with the
resistance measurement results shown in Figure 3.6, one sees that the quality of electrical
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Figure 3.8: Comparison between measured V-I curve and the fit according to Equation (3.1).

contacts plays a central role for performing resistance measurements since it not only in-
fluences the resolution of the resistance measurements, but also determines whether one
can probe correctly the transport properties of the sample understudy.



Chapter 4

Magneto-optical imaging of a
superconductor in a NMR experimental
configuration

4.1 Motivation

In this chapter, we present a magneto-optical study that aims to clarify the spatial distribu-
tion of a time-varying magnetic field and the associated screening current in a supercon-
ductor in the geometry where the applied periodic magnetic field is oriented perpendicu-
larly to a static magnetic field. This configuration mimics that used in Nuclear Magnetic
Resonance (NMR) experiments. An important question concerning NMR experiments on
superconductors is to what extent fields penetrate the material under study, and therefore,
to what extent the NMR signal is representative of the material bulk. The motivation of
these experiments comes from the recent discovery of certain unconventional supercon-
ductors with an anomalous NMR response, mainly, the absence of a modification of the
NMR Knight shift at the superconducting transition [41], [42].

Conventional superconductors are well described by the Bardeen-Cooper-Schrieffer
(BCS) theory in which, in the presence of the Fermi sea, the Coulomb repulsion between
electrons is overcome by the exchange of phonons between electrons of energies εk lying
in a narrow energy band around to the Fermi energy εF . Due to the Pauli exclusion prin-
ciple, the presence of any attractive interaction between electrons (in three dimensions)
renders the Fermi sea unstable towards the formation of two-particle states, or Cooper
pairs. In the original BCS theory, these are singlet states with zero total spin, S = 0,
and orbital part of s symmetry (s-wave superconductivity). The energy needed to break
a Cooper pair is called the superconducting gap ∆. In principle, the gap depends on the
wavevector k in reciprocal space, ∆ = ∆(k), but in the s-wave state, ∆ is isotropic. The
gap is, in fact, a thermodynamic function reflecting the occupation probability of Cooper
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pair states. The self-consistency relation for the gap reflects the coherent nature of the
superconducting state: a non-zero gap is possible only if sufficiently many Cooper pair
states are occupied. The electronic density of states becomes

E0
k =

√
ξ2

k + |∆(k)|2,

where ξk = εk−εF . The gap ∆(k) in the electronic density of states affects many thermo-
dynamic properties, such as the specific heat, and the Pauli spin susceptibility such as this
is measured by the NMR Knight shift. In the BCS s-wave theory, the latter is observed to
go smoothly to zero as T → 0 [43]-[45].

Different pairing interactions, involving the exchange of bosons other than phonons,
may well be responsible for superconductivity in some of the more exotic organic, heavy-
fermion, and high-Tc copper oxide superconductors. The superconducting order parame-
ter has an orbital part1 and a spin part. If the orbital part has odd parity (such as p-wave,
f-wave), the spin part should have even parity (spin-triplet) because of anti-commutation
of fermions.

Nuclear Magnetic Resonance (NMR) experiments have shown that the Knight shift
for PuCoGa5 goes down but does not tend to zero when temperature goes to 0 K [42].
For Sr2RuO4, the Knight shift remains constant on passing through the superconducting
transition temperature [41]. It is thought that this provides strong evidence for the iden-
tification of Sr2RuO4 as a spin-triplet superconductor. In spin-singlet superconductors
(such as s-wave and d-wave), the Knight shift decreases below Tc. In contrast, it remains
constant in spin-triplet superconductivity (such as p-wave, f-wave). So if one measures
Knight shift, one can distinguish these two types.

However it must be noted that the Knight shift depends on the density of states, which
itself is strongly affected by the presence of supercurrent flow. In superconductors with
an anisotropic gap, for example, the d-wave symmetry of the gap in the Y Ba2Cu4O8
compound to be considered below, the current largely enhances the density of states inside
the superconducting gap due to the supercurrent induced Doppler shift. This effect, known
as Volovik effect [46], may strongly influence the low temperature Knight shift data.
Thus, if conclusions from the NMR Knight shift measurements on the pairing mechanism
are to be correct, this influence must be properly taken into account in the interpretation
of the Knight shift data.

The magneto-optical imaging experiments to be presented below yield the current dis-
tribution in a YBa2Cu4O8 single crystal (with Tc = 82 K) for temperatures varied between
15 and 80 K. With these results, we show that for very low temperatures, the NMR signal
comes mainly from the crystal edges where the screening current is flowing. Moreover,
the Volovik effect is important and should be considered. For higher temperatures the

1 The orbital part of the order parameter ψ(r) has the property that ψ∗(r)ψ(r) = ns(r), where ns(r) is the
local superconducting electron density.
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NMR signal comes from the entire bulk sample and moreover the Volovik effect could be
neglected.

4.2 NMR model experiment

4.2.1 Experiment description
In order to model this effect, a model experiment in the NMR configuration was per-
formed on a Y Ba2Cu4O8 single crystal. In the NMR configuration, a time-periodic prob-
ing magnetic field Hr f is oriented perpendicularly to the static magnetic field Hdc used to
polarize the nuclear spins. In the case of a superconductor, the rf probing field generates
large screening supercurrents. The distribution of the ac screening current can be visual-
ized using the Differential Magneto-Optical (DMO) technique. In our model experiment,
we use the same geometrical arrangement as in a real NMR experiment. However, in-
stead of a rf field, we use a very low frequency probing field, fmodel ∼ 10−7 fr f . This can
be justified by the assumption that vortex dynamics in the MHz range is not essentially
different from that in the dc limit. Since the depinning frequency is several orders higher
than that of the ac field, it is thus the flux pinning that plays the dominant role in vortex
dynamics in both cases [47], [48].

The single crystal used in this experiment is of the Y Ba2Cu4O8 compound, and has
Tc = 82 K [49]. This has a tetragonal crystalline structure. The crystal is free of impurities
and macroscopic defects. It is strip-shaped, of dimensions 1220× 328× 88 µm3 (see
Figure 4.1).

Figure 4.1: Photograph (10 ×) of the Y Ba2Cu4O8 single crystal obtained through a polarized light mi-
croscope.

We reproduce the field configuration employed in NMR (see Figure 4.2): a dc field
of 250 Oe is applied along the z-axis (c-axis of Y Ba2Cu4O8 single crystal) and a periodic
transverse field is applied along the x-axis. The periodic field induces a screening current
in the superconductor which modifies the local flux density. The z-component of the flux
density induced by the presence of this screening current is detected by the Differential
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Magneto-Optical (DMO) imaging technique. The screening current due to the ac field
has an y-component and a z-component. The screening current flow on the side surfaces
is indicated by the narrow arrow and on the top surface, the screening current flows along
the y-axis as indicated by Jy(x,y) in Figure 4.2. Jy(x,y) produces a magnetic field in the
xOz plane. The z-component of the magnetic field produced by Jy(x,y) can be observed
with the DMO imaging technique.

Figure 4.2: Experimental field configuration: dc magnetic field Hdc = 250 Oe is applied along z-axis; An
ac field Hac is applied along x-axis.

Figure 4.3: Image acquisition procedure for differential magneto-optical imaging with in-plane field
modulation.

A transverse field of 10 Oe was applied by a coil with its axis along the x-axis, 10
MO images were acquired and averaged. The transverse field was then removed, another
10 images were collected, averaged and subtracted from the first average. This procedure
was repeated 20 times (see Figure 4.3). The self-field due to the screening of a 10 Oe
transverse field Hac of frequency 50 mHz can be observed in this manner (see Figure 4.4
(a)).
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(a) (b)

Figure 4.4: (a) DMO image obtained at T = 45 K with the following parameters: Hz = 250 Oe, Hx = 0,
and δHx = 10 Oe. (b) Direct MO image obtained at T = 27.15 K with the following parameters: Hz = 105
Oe, Hx = 0.

4.2.2 Results: DMO images at varied temperatures

This differential imaging procedure was performed at temperatures varying between 15
K and 80 K with a step up of 5 K. The obtained images are shown in Figure 4.5. Unfor-
tunately, the images obtained at low temperatures below 35 K are strongly perturbed by
magnetic domain walls in the indicator (see Figure 4.5 (a-d)).

4.3 Treatment of the obtained DMO images

The sheet current J(x,y) is defined as J(x,y) ≡ ∫ d
0 J(x,y,z), where J(x,y,z) is the local

current density, d is the thickness of the sample. Since the y-dimension (1220 µm) is
considerably larger than the x-dimension (328 µm), one ignores the dependence of the
shielding sheet current density on the y-coordinate in order to simplify the treatment that
follows. In fact, this approximation was justified through the 2D inversion method [50] to
examine the variation of the sheet current density along the y-axis. In the following, the
screening current is thus denoted as Jy(x).

Let I denotes the light intensity detected by the camera; Hz denotes the perpendicular
magnetic field applied to the sample. As the magneto-optical images were taken in dif-
ferential mode at Hz = 250 Oe, one needs the value of ∆I/∆Hz at Hz = 250 Oe to convert
the gray levels of the differential magneto-optical images into real Bz values. The field
was modulated along the z-axis at Hz = 250 Oe. The modulation field varied from -1 Oe
to -9 Oe. DMO images were collected at the same condition as those of the experiments
performed before (see Figure 4.3) while at a higher temperature T = 85 K. The averaged
intensity of the acquired calibration DMO images at T = 85 K as a function of the mod-
ulation field was traced in Figure 4.6. The result yields a linear relation with δI/δHz =
49.163.

A 16-bit CCD is used for image acquisitions in our set-up. The zero-value light inten-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.5: DMO images obtained at different temperatures with the following parameters: Hz = 250 Oe,
Hx = 0, and δHx = 10 Oe. (a) 18.8 K; (b) 24.6 K; (c) 30 K; (d) 35 K; (e) 40 K; (f) 45 K; (g) 50 K; (h) 55
K; (i) 60 K; (j) 65 K; (k) 70 K; (l) 75 K. An image contrast enhancement was performed to all the obtained
raw images with Photoshop. Since the light intensity value of all the pixels lies between 104 and 144, the
light intensity value of each pixel is mapped onto the range 0 - 255. This corresponds to a linear relation
between the intensities of the raw images and the contrast enhanced images: y = 6.375(x−104), where x
is the intensity value in the raw images and y is the intensity value in the contrast enhanced images.

sity 32809 that we obtained from the calibration is very close to the middle value 216/2
= 32768. This is the reason why the opposite signs of the magnetic field can be clearly
resolved in DMO images (see Figure 4.7) since the dark and bright regions correspond
to the perpendicular fields of opposite directions. Consequently the current direction can
thus be revealed in DMO images according to the right hand rule (see Figure 4.7).

A profile of light intensity along a line (see Figure 4.8) across the Y Ba2Cu4O8 strip
(x-axis) can be easily obtained from the image. In Figure 4.8, we can see the contour of
the sample. The grey levels are converted to colors within the RGB color model in Figure
4.8 by Matlab. The red color and blue color indicate the opposite signs of the magnetic
induction Bz at the upper and lower edges. In order to reduce the noise, we average the
profiles in a rectangular region where there aren’t any curved edges or other defects. The
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Figure 4.6: Experimental linear relation between ∆I and ∆H for differential MO images at T = 85 K and
base field Hz = 250 Oe, with field modulated along the z-axis.

Figure 4.7: Comparison between a DMO image with field modulation along the x-axis (left) and a direct
MO image (right). (a) DMO obtained at T = 45 K, Hz = 250 Oe with modulation field along the x-axis (Hx
= 0, δHx = 20 Oe). ∆Bz due to the field modulation along the x-axis can be observed. (b) Direct MO image
obtained at T = 27.15 K with the following parameters: Hz = 105 Oe, Hx = 0. Screening current due to the
static field Hz forming a circle around the sample edges.

light intensity profile along x-axis is shown in Figure 4.9. One can thus convert the grey
levels into Bz values with real unit (Figure 4.10 (a)) using the calibration obtained above:
∆I/∆Hz = 49.163.
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Figure 4.9: Averaged profile of the light intensity from the differential magneto-optical image at T = 45
K and with in-plane modulation of 10 Oe, Hdc = 250 Oe. We subtracted 32000 from the absolute value of
light intensity in order to set the zero value outside of the sample.

The screening current distribution Jy(x) (Figure 4.10 (b)) is calculated by inversion
of the Biot-Savart law using the 1D inversion method provided in the Ref. [51]. The
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Figure 4.10: (a) DMO image of the perpendicular component of the induction, induced by Hin−plane,
obtained at T = 45 K with a 10 Oe square wave modulation along the x-axis. (b) Corresponding sheet
current Jy(x) (A · mm−1).

distance from the upper surface of the superconductor to the plane of observation, i.e.,
the indicator’s plane, is set as 1 µm in the calculation. As the measured thickness of the
crystal is d = 88 µm, the current density at the two edges are respectively 5.04× 107

(A/m2) and 2.65× 107 (A/m2) for T = 45 K. We have compared this asymmetry with
the theoretical calculations provided by G. P. Mikitik et al. in [52]. They have studied
the field penetration for a superconducting strip in a magnetic field applied at an angle
θ to the normal of their plane. They have found that an asymmetry in flux penetration
should occur at the sample edges and this asymmetry is enhanced for large value of tilt
angle θ. In our NMR model experiment, θ ≈ 0.04 in radian units. Compared with the
simulation results in [52], the asymmetry of field penetration at the edges should be less
than 10%. While the current density in one edge is almost twice as that of the other edge,
we thus attribute the observed asymmetry to the artifact of DMO imaging. Although the
signal of the screening current due to the ac field is unambiguously extracted by DMO
imaging technique (see Figure 4.4 and 4.7), while due to the quadratic relation between
light intensity and magnetic field intensity in a direct MO image, the z-component of the
magnetic field generated by the shielding current Idc due to the static field is also present
in the DMO images (see the analysis below). The difference of the magnitude decreases
when temperature increases (see Figure 4.12 (b)). This can be explained by the analysis
presented on Page 48-49 in Chapter 2.

The inversion operation using the Biot-Savart law is performed to Idi f f (Equation
(2.25) in Chapter 2), which is considered to be proportional to Bac, to obtain the current
distribution. Examining our situation, Bac ∼ 10 G, Bdc ∼ 250 G, α/k ∼ 2◦/(0.01◦/G) =
200 G. Idi f f in the obtained DMO images is thus not only due to Bac, but convoluted with
the term 2α/k +Bac +2Bdc.
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At one edge, Bac and Bdc are in the same direction; while at the other edge, Bac and
Bdc are in the opposite direction. The obtained Idi f f is thus enhanced at one edge and
weakened at the other edge compared to the real signal Idi f f |ac.

Nevertheless, the signal of the ac screening current due to the ac magnetic field is
unambiguously extracted by DMO imaging technique (see Figure 4.4 and 4.7). Equation
(2.25) in Chapter 2 shows that the sign of Idi f f is determined by the sign of Bac (the sign
of 2α/k + Bac + 2Bdc is fixed since |Bac| ¿ |2α/k + 2Bdc|). Figure 4.7 illustrates this
point unambiguously. At high temperatures, Bac and Bdc distribute uniformly across the
whole sample, Equation (2.26) in Chapter 2 reduces to Idi f f ∼ Idi f f |ac. This can explain
the much weakened asymmetry of the current densities at the edges shown in Figure 4.12
(b) at high temperatures.

In the case that the sample itself presents some inhomogeneities at the two edges
(different properties between the two edges, e.g., smoothness, purity, sectional geometry,
etc.), this factor needs to be taken into consideration if one conducts a rigorous analysis
of this asymmetry. But even in this case, the above argument is still valid to explain the
large difference of the magnitudes of current densities extracted from DMO images at the
edges. We mention that D. G. Gheorghe et al. [53] have studied flux penetration into
superconducting Nb3Sn in oblique magnetic fields by magneto-optical imaging (direct
imaging mode) and they have found an agreement between their experimental results and
the theoretical calculations in [52].

4.4 Screening current distribution and transverse field
reconstruction

The profiles of the perpendicular magnetic flux density Bz and the current distribution Jy
for T = 40 K to T = 70 K obtained in this manner are presented in Figure 4.11 and Figure
4.12 respectively2. Figure 4.12 shows that the current concentration at the edges become
more and more important when temperature increases from T = 40 K and reaches its
maximum concentration at T = 55 K (i.e., the sheet current Jy is nearly zero in the middle
of the sample). When the temperature continues to increase (for example, T = 60 K and
T = 65 K), this concentration becomes less important; The current distribution at T = 70
K is nearly uniform across the sample as in a metallic conductor. At low temperatures,
material disorder pins the vortices and prevents their motion, resulting in a finite critical
current. In this case the transport current is expected to flow in a way similar to the case of
the Meissner state where Bac(x) is expelled from the sample. The measured perpendicular
flux density Bz profile at T = 18.8 K is shown in Figure 4.13 (a). Without the disturbance
of the magnetic domain walls in the indicator, we would have a Bz profile with two peaks
at the edges (in unit of mm: x1 = -0.164, x2 = 0.164).

2 The units in the Figure 4.11, 4.12 and 4.13 are not real physical units for Bz and Jy.
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Figure 4.11: Perpendicular flux density Bz profiles extracted from DMO images presented in Figure 4.5:
(a) 40 K - black, 45 K - green, 50 K - cyan, 55 K - yellow; (b) 55 K - yellow, 60 K - magenta, 65 K - red,
70 K - blue.

Three regimes for the current flow are clearly manifest: At T > 70 K, current flow is
uniform; At T < 20 K, one has the critical state due to bulk flux pinning. The current flows
in the regions penetrated by the ac field only; At intermediate temperatures 20 K < T <
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Figure 4.12: The sheet current distribution obtained by the 1D inversion method of the Ref. [51] with h
= 1 µm (h is the distance from the upper surface of the superconductor to the plane of observation) to the Bz
data of Figure 4.11. (a) 40 K - black, 45 K - green, 50 K - cyan, 55 K - yellow; (b) 55 K - yellow, 60 K -
magenta, 65 K - red, 70 K - blue.

70 K, current flows only at the sample edges due to the surface barrier effects (see Figure
4.12) [54].

From the current distribution, one can reconstruct the magnitude of the transverse field
Hx modulation normalized to Hac (see Figure 4.14). This corresponds to the local probing
field in NMR. For T > 20 K, the transverse field is almost homogenous, the whole sample
contributes to the NMR signal. For T < 20 K, only a thin surface layer is probed by the
NMR measurements.
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Figure 4.13: (a) Perpendicular flux density Bz profile at T = 18.8 K obtained from Figure 4.5 (a). (b) The
sheet current distribution obtained by the 1D inversion method applied to the Bz data shown in Figure (a).
The region enclosed in the rectangle is perturbed by magnetic domain walls in the MO indicator (garnet
film).
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Figure 4.14: Magnitude of the transverse field Hx modulation normalized to Hac: asterisk 65 K, square
55 K, circle 40 K, plus sign 35 K. The anomaly of the data at T = 35 K is due to the strong perturbation by
magnetic domain walls in the indicator.
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4.5 Effects of the screening current on NMR Knight shift
data

As a first example, let us consider the investigated crystal at T = 45 K; the sheet current Jd
(integrated over the sample thickness d = 88 µm) at the edges is then 4.5×103 Am−1. The
maximum current density j = 5× 107 Am−2. At T < 20 K, the current density reaches
108 Am−2, which results in vs ≈ 5 ms−1, to be compared to vF ≈ 1.2× 105 ms−1 [55],
TF ≈ 4000 K, i.e., a Doppler shift of 0.15%. Let us now estimate the Volovik effect [46]:
N(0,H)/N0 = 〈pF ·vs〉/∆0 ≈ K

√
H/Hc2. Using K ≈ 1, Hc2 = 100 T, and H = 1 T (NMR

experimental condition), this yields N(0,H)/N0 = 10 %. The effect due to the screening
current due to Hac can thus be ignored for our Y Ba2Cu4O8 crystal. But for other high-Tc
superconductors, e.g., Bi2Sr2CaCu2O8, in which screening currents of the order of 1010

Am−2 are attained, the Doppler shift due to screening current may strongly influence the
NMR Knight shift data below 20 K.

For a d-wave superconductor like Y Ba2Cu4O8, a linear dependence of the Knight shift
on temperature should be observed for 0.1Tc < T < 0.4Tc. While the Volovik contribution
may lead to a non-vanishing Knight shift for T → 0, the Doppler shift due to the screening
current may lead to a nonlinear dependence of the Knight shift on temperature which
would be determined by the temperature dependance of the critical current.

4.6 Summary and conclusions
The above experiments show that the penetration of a time-periodic magnetic field, per-
pendicular to a static magnetic field, into a superconductor is counteracted by vortex pin-
ning at low temperatures. At high temperature regime, near to Tc, another problem arises
since the Hc2(T ) is small at this temperature regime and the static field applied in NMR
measurements might be very close to the value of Hc2(T ) and the decrease of the Knight
shift below Tc may be delayed. This point of view is held by Y. Matsuda, Professor of the
Department of Physics, Kyoto University, Japan [56]. The debate on the p-wave nature of
the pairing symmetry in Sr2RuO4 continues until today [57]. More recent NMR data per-
formed on Sr2RuO4 provided less clear evidence [57] for the p-wave nature of Sr2RuO4
than the data obtained by K. Ishida et al [41] in 1998.

The dependence of the in-plane field penetration on temperature obtained from the
magneto-optical experiments is general for all type-II superconductors. When one per-
forms NMR Knight shift measurements to determinate the pairing symmetry in high tem-
perature superconductors, the following issues should be carefully considered: (1) At low
temperatures, only the edges are probed by the NMR measurements and moreover, the
contribution of Doppler shifted quasi-particles (Volovik effect) to the Knight shift should
be considered properly; (2) At higher temperatures, the NMR measurements probe the
entire sample but one should assure that the static field is well below Hc2(T ).
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The NMR Knight shift measurement is one way to probe the density of states. There
is another type of measurement which permits one to distinguish the pairing symmetry in
superconductors, the phase-sensitive measurements. For example, C. C. Tsuei et al. [58]
have shown the d-wave pairing symmetry in Y Ba2Cu3O7−δ in a convincing way with a
tricrystal superconducting ring of Y Ba2Cu3O7−δ.
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Chapter 5

Shear viscosity of the vortex liquid
measurements in optimally doped
Bi2Sr2CaCu2O8 in channel confined
geometry

5.1 Introduction

The most important feature of the phase diagram of vortex matter in high-Tc superconduct-
ing single crystals is the first order phase transition - the vortex lattice melting transition
[24], [25], [59] - [62], from a vortex lattice to a vortex liquid. The vortex lattice phase is
the ordered phase, most often, a triangular lattice. This lattice structure has been observed
in Bi2Sr2CaCu2O8 by Bitter decoration [63] and neutron diffraction [64] techniques. The
vortex liquid phase is the disordered phase and no signal could be obtained from the vortex
ensemble using structural probes like Bitter decoration or neutron diffraction techniques.

This first order vortex lattice melting transition has been demonstrated in Bi2Sr2CaCu2
O8+δ by H. Pastoriza et al. [61] and by E. Zeldov et al. [24]. Both authors showed that
the vortex lattice melting is accompanied by a discontinuous jump of the vortex density
nv, which could be measured by the local magnetic induction B since B = nvφ0. It was
also shown that the vortex liquid phase is denser than the vortex lattice phase. Similar
magnetic measurements performed by U. Welp et al. [62] on Y Ba2Cu3O7−δ single crys-
tals have confirmed this vortex density jump in that material. Further more, the latent
heat associated with the vortex lattice melting transition was measured in Y Ba2Cu3O7−δ
single crystals by A. Schilling et al. [25] and by M. Roulin et al. [65].

Aside from the above thermodynamic signatures, this phase transition also manifests
itself in transport measurements. Indeed, the first indications of vortex lattice melting
were obtained from dynamic measurements. A discontinuous drop of the resistance was

79
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observed at the vortex liquid to lattice phase transition in Y Ba2Cu3O7 single crystals by H.
Safar et al. [59] and by W. K. Kwok et al. [60] and later in Bi2Sr2CaCu2O8 single crystals
by D. T. Fuchs et al. [66]. This resistance jump is related with the disappearance of the
critical current [67]. The resistivity is not a thermodynamic property as the equilibrium
of the vortex ensemble is disturbed by the transport current. Resistivity measurements
probe the motion of vortices and can thus show the signature of phase transitions of the
vortex system, because the dynamic properties may change dramatically between differ-
ent phases. The definition of the resistance is given by Ohm’s formula: R = V/I. If the
resistance is current-independent, we call it a linear resistance.

The vortex liquid shows a linear resistance behavior, meaning that the vortex motion
is diffusive. In the regime above the melting line, vortex motion is thermally activated,
and the resistivity was described by an Arrhenius law, ρ = ρ0exp(−U0/T ) [68], [69]. The
activation energy U0 depends on magnetic field and field orientation. This linear resis-
tance behavior implies the absence of superconducting phase coherence at long distance.
Related is the sudden decrease of the coherence between superconducting layers (c-axis
correlation) observed by S. Colson et al. [70] by using the Josephson plasma resonance
technique at the melting transition in Bi2Sr2CaCu2O8+δ single crystals.

The onset of the nonlinearity of the dynamic response shows that a non-zero critical
current density exists in the low temperature vortex solid phase due to the pinning by the
crystalline defects, i.e., the so-called bulk pinning, or alternatively, by the vortex interac-
tion with the sample boundaries, the so-called surface pinning. The onset of a non-zero
critical current density defines the so-called irreversibility line on a H-T phase diagram.
In clean superconducting single crystals, the vortex lattice melting line coincides very of-
ten with the irreversibility line. But they are of different natures: the irreversibility line is
a dynamic property while the vortex lattice melting line is intrinsically thermodynamic.
Indeed, D. Majer et al. showed a distinction between the irreversibility line and the melt-
ing line [71]. Whether the irreversibility line in disordered systems is related to melting
in pure systems depends on the degree and type of disorder in a specific sample.

The origin of the sudden depinning of the vortex lattice at the melting transition is
not clear. Since neither the bulk pinning nor the surface pinning disappears at the melt-
ing transition, the change of the vortex system’s elastic properties at melting must be
responsible. It was conjectured that the vortex solid has a non-zero shear modulus while
the liquid state has vanishing shear modulus [72]. It is argued that the proliferation of
the vortex lattice dislocations upon melting [73] or the vanishing of flux cutting barriers
upon melting [74] may be the reason of the vanishing of the shear modulus at the melting
transition.

In two-dimensional superconducting thin films, the proliferation of vortex lattice dis-
locations has been recognized as the melting mechanism [75]. The experimentally mea-
sured vortex liquid shear viscosity in two-dimensional α−Nb3Ge films was found to be
in good agreement with the theory of two-dimensional melting [76]. In three-dimensional
superconductors, whether melting of the vortex lattice is also mediated by the spontaneous
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generation of dislocation loops in the vortex lattice or by other mechanisms, for example,
flux line cutting, remains unanswered yet.

In real high-Tc superconductors, the underlying melting always take place in the pres-
ence of disorder, such as oxygen vacancies or twin boundaries. The transport measure-
ments are thus influenced by the presence of this disorder. There are two types of disorder
which affect vortex motion: point-like microscopic disorder, for example, oxygen va-
cancies, and correlated disorder, for example, twin boundaries or columnar defects. In
order to study their influence on vortex matter, experiments involving irradiation of super-
conductors by high energy electrons [77] or heavy ions [78], [79] have been carried out.
These techniques permit the introduction of disorder in superconductors in a controlled
way [22], [80] - [87].

5.1.1 Point-like microscopic disorder
Irradiation with high energy electrons introduces point-like microscopic disorder into the
superconducting single crystals, in the guise of vacancy-interstitial pairs (Frenkel pairs)
[77], [88]. It has been studied theoretically [89] and demonstrated experimentally [90],
[80] that sufficiently weakly pinning point-like defects do not change the nature of the
melting transition and the melting line in the H-T phase diagram may be only slightly
lowered when the amount of point disorder increases.

J. A. Fendrich et al. [81] found that point-like disorder introduced by high energy
electron irradiation (1 MeV) with a fluence of 1× 1019 electrons/cm2 in an untwinned
Y Ba2Cu3O7−δ single crystal lead to an apparent disappearance of the vortex melting tran-
sition, accompanied by a much more gradual decrease of the resistivity. However, M.
Konczykowski et al. [82] showed that in Bi2Sr2CaCu2O8, the vortex melting transition
seems to be robust to the introduction of point-like disorder by high energy electron irradi-
ation (2.3 MeV) up to a fluence of 1.7×1020 electrons/cm2. This was demonstrated by the
vortex density jump through micro-Hall probe measurements [82]. Both of the irradiation
experiments were performed at low temperatures, 40 K in [81] for Y Ba2Cu3O7−δ single
crystal and 20 K in [80], [82], [88] for Bi2Sr2CaCu2O8 single crystals; different melting
mechanisms in YBCO and BSCCO may be the origin for these different conclusions.

5.1.2 Correlated disorder
Irradiation with high energy heavy ions introduces amorphous columnar defects into high-
Tc superconducting single crystals. For example, in Bi2Sr2CaCu2O8, the latent columnar
tracks have a diameter of about 7 nm when the crystal is bombarded with a 1 GeV Pb56+

beam [91] - [93], [79]. Columnar tracks provide a pinning energy much stronger than
those provided by oxygen vacancies or other point defects; Hence, vortices are preferen-
tially localized on the amorphous tracks in the vortex solid as well as in the vortex liquid
[94], [95].
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The matching field Bφ is defined as Bφ ≡ ndφ0, where nd is the number of columnar
defects per unit area, φ0 is the magnetic flux quantum, φ0 = h/2e. A small density nd
of columnar defects, i.e., nd < nV ≡ B

φ0
, is susceptible to produce a porous vortex matter,

in which vortices not localized on a track are surrounded by a matrix of vortices pinned
by the columnar defects [83] (see Figure 5.1 (b)). The vortices form a polycrystalline
structure in this case. The grain size and the boundaries are determined by the spatial
distribution of columnar defects, which could be modeled by Poisson statistics.

(a) (b)

Figure 5.1: (a) Illustration of pinned vortices localized on the columnar defects and the unpinned vortices
outside of the columnar defects. The magnetic field is along the columnar defect, which is also parallel
to the c-axis of the BSCCO crystal. (b) Magnetic decoration with columnar defects. The matching field
is Bφ = 10 G and the applied field is 8 times of the matching field: B = 80 G. The vortex density is thus
8 times of the density of columnar defects. The vortices localized on the columnar defects are strongly
pinned and form a rigid matrix. In contrast the vortices that reside in the pores are weakly pinned and they
are surrounded by a rigid matrix. Figure from Ref. [83].

S. S. Banerjee et al. [84] have argued that because of the rigid matrix defined by
the columnar defects, a two-step transition takes place upon freezing: (1) a normal liquid
vortex state to a so-called nano-liquid vortex state due to the freezing at the pinned matrix;
(2) freezing of the interstitial crystallites, i.e., the freezing of the so-called nano-liquid
vortex state to the ordered vortex crystallites [84].

An increase of the columnar defect density leads to the complete amorphization of
the vortex ensemble, which now forms a so-called Bose-glass vortex state [96], [97]. It
is generally believed that the first order melting transition is suppressed with an increas-
ing density of columnar defects [96], [97]. Nevertheless, experiments probing the vortex
force-velocity curve [98] as well as Josephson Plasma Resonance measurements on heav-
ily irradiated underdoped Bi2Sr2CaCu2O8+δ [70] suggest that the first order transition in
this material is robust up to latent track densities of at least 1×1011 cm−2.
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Experiments performed at relatively high irradiation fluences showed that in contrast,
the irreversibility lines were pushed up to considerably higher fields, and that the newly
irreversible region of the H-T phase diagram shows the characteristics of a Bose-glass
phase [85], [86], [87], [22].

Upon increasing the columnar defect density, the irreversibility field in Bi2Sr2CaCu2O8
saturates to a defect-independent value Bmax

irr , that is phenomenologically well described
by the expression:

Bmax
irr = BΛ

ε0s
kBT

exp(
ε0s
kBT

) (5.1)

where BΛ = φ0[λ−2
ab +γ−2s−2]−1, λab is the in-plane penetration length, γ is the anisotropy

factor, s is the distance between the adjacent CuO2 bi-layers (s ≈ 1.5 nm), and ε0 =
φ0/4πµ0λ2

ab. This upper limit represents a "delocalization line" above which two-dimensional
pancake vortices can diffuse from their equilibrium site in the vortex solid and the "line-
like" character of vortices is lost [22]. Equation (5.1) is inspired from a two-dimensional
dislocation-unbinding model in a "discrete superconductor" defined by the allowed vor-
tex positions (localized at the columnar defects) and is valid for B < 1

6Bφ < Bcr. The
two-dimensional to three dimensional crossover field Bcr = φ0/γ2s2 separates a two-
dimensional flux fluctuations part (high field) and a three-dimensional flux fluctuations
part (low field) [99].

For a small dose of heavy ions, one remarks that the delocalization line of the rigidly
pinned matrix (of vortices localized on columns, and surrounding the puddles of vortex
nano-liquid) introduced by S.S. Banerjee et al. [84] corresponds to a rapid drop of the
resistivity. Its position coincides with the saturation position of the irreversibility line at
high columnar defect density given by Equation (5.1). It is therefore legitimate to ask
whether the mobility of vortex lattice dislocations is responsible for these results.

5.1.3 Major controversial issues in vortex dynamics in high-Tc super-
conductors

To summarize, several questions remain unanswered concerning the vortex dynamics in
high-Tc superconductors, and notably in Bi2Sr2CaCu2O8.

1. The resistance jump at the vortex lattice melting transition in two-dimensional su-
perconducting films has been well understood through the vortex lattice dislocation
unbinding mechanism [75], [76]. The shear viscosity of the vortex ensemble is in-
versely proportional to the density of free vortex lattice dislocations. Near to the
vortex lattice melting transition, the shear viscosity diverges due to the binding of
free dislocations into pairs. Since the resistance is determined by the shear viscos-
ity of the vortex ensemble, the mechanism of resistance jump associated with the
vortex lattice melting transition in two-dimensional superconducting films can thus
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be clearly explained. In three-dimensional superconductors, the mechanism related
to the resistance jump at the melting transition remains unknown.

2. Besides the vortex lattice phase, various other vortex phases were proposed to de-
scribe the behavior of vortices in high-Tc superconductors. They are named the
Bragg glass, the vortex glass and the Bose glass. A Bragg glass phase may be re-
alized in a vortex system where only weakly pinning point-like defects are present
[89], [90], [100], [101]. In this phase, the dependence of the bundle activation bar-
rier U due to collective pinning, on current density j, is shown to be of power-law
type: U( j) ∼ j−α [102]. The vortex glass, realized for strongly pinning point-like
disorder [103], is an analogy to the spin glass. The E-j characteristic for the vortex
glass is thought to be E ∼ exp((− j0

j )α), derived from a droplet model. The Bose
glass phase [96] in the presence of correlated disorder is the best understood glassy
phase for the vortex system. In the region B ¿ Bφ, all the flux lines are localized
on a columnar defect; In the region B≥ Bφ, the situation is more complicated since
there is a co-existence of pinned vortices situated on the columnar defects, and un-
pinned vortices outside of the columnar defects. A picture of polycrystallites was
proposed in [83] and used in [84] to investigate the vortex transport properties in
this situation.

It is believed that vortex motion is determined by collective jumps of correlated
regions of the lattice in the Bragg glass phase [104], [105], [101], [90]. In the
vortex glass phase, the average vortex velocity is limited either by the activation
rate of individual lines from the strongly pinning defects, or more likely, by the
poorly understood motion of vortex lattice dislocations (plastic creep) [106], [107].
In the Bose glass phase, vortex motion for B ¿ Bφ is understood to take place via
the half-loop, or double kink nucleation process [96], [97], [85], [86] or via vortex
variable range hopping [96], [97]. For the situation when B≥ Bφ, the vortex lattice
dislocations are considered to play an important role in the vortex motion.

Since the vortex lattice dislocations substantially modify the shear modulus of the
vortex ensemble [108], it seems important to measure this quantity.

3. Whether the delocalization line described in [84] is related with the irreversibility
line in [22] has not yet been confirmed. Since the model [22] is inspired on two-
dimensional physics, a measurement of the shear modulus or shear viscosity should
provide valuable information to enrich our understanding of the topics listed above.

5.1.4 Relation between resistivity and shear viscosity in a channel
confined geometry

The shear properties of the vortex system can be probed in a channel confined geometry
proposed by M. C. Marchetti and D. R. Nelson [109] through resistivity measurements
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near to the vortex liquid-solid transition. Experiments of this kind have been performed
in two-dimensional superconducting films [110], [76].

In the vortex liquid state, vortices are believed to be free to move past one another
and a hydrodynamic description should be used to study the vortex velocity distribution
[109]. Consider the flow of an isotropic flux fluid in a channel contained between two flat
strongly pinning boundaries in the yz-plane at x = −L/2 and x = L/2, shown in Figure
5.2.

y

x

Figure 5.2: A weakly irradiated channel of size L where the flux liquid is sandwiched between two
heavily irradiated Bose-glass contacts. A current J applied across the channel yields flux motion along the
channel. (Figure from Ref. [32])

The magnetic field is in the z direction. The transport current is applied along x̂,
J = Jx̂, and yields a constant driving Lorenz force:

f = nvφ0ẑ×J (5.2)

in the y direction, where nv is the areal vortex density. The equation to describe the
velocity distribution of the vortex liquid is:

− γv+η52
⊥ v+ f = 0. (5.3)

Equation (5.3) is a hydrodynamic description of flux flow which is valid on scales large
compared to the intervortex spacing.

Here v is the vortex velocity, γ is the vortex "friction" coefficient of Bardeen and
Stephen, augmented by the effects of weak microscopic disorder such as oxygen vacan-
cies [111]. The parameter η is the vortex shear viscosity.

Once the vortex velocity distribution is obtained, the electric field profile can be found
immediately from: E(r) = B×v(r). Equation (5.3) can then be rewritten as an equation
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for the local electric field E:
−δ2∇2

⊥E+E = ρ f J, (5.4)

where the viscous length δ≡
√

η/γ characterizes the importance of viscous drag. When
the first term −δ2∇2

⊥E in Equation (5.4) is absent, i.e., the flux liquid viscosity is suffi-
ciently small, Equation (5.4) reduces to Ohm’s law with the flux-flow resistivity given by
the bulk value, ρ f .

In the following, we assume v = 0 at the strongly pinning walls. The solution of
Equation (5.3) is then:

vy(x) = v∞(1− cosh(x/δ)
cosh[L/(2δ)]

). (5.5)

Here the v∞ = f/γ is the usual Bardeen-Stephen limiting flux-line velocity in the absence
of any strong pinning centers. If one takes into account the velocity distribution given by
Equation (5.5) to compute the resistivity, one finds:

ρ = ρ f [1− 2δ
L

tanh(
L
2δ

)], (5.6)

where ρ f = (nvφ0)2/γ = B2/γ is the limiting Bardeen-Stephen flux-flow resistivity for a
sample without columnar defects.

Sufficiently close to the vortex liquid-solid phase transition, one has δ(T ) >> L, and
therefore one has: tanh ( L

2δ) ∼ L
2δ - 1

3( L
2δ)3. We then have:

ρ(T )≈ 1
12

(nvφ0)2 L2

η(T )
∼ B2 L2

η(T )
, (5.7)

so that the resistivity ρ(T ) is inversely proportional to the vortex shear viscosity η(T ) of
the liquid vortex system and proportional to the square of the channel width.

The above geometry has been used extensively for the study of the mechanism of
vortex lattice melting in two-dimensional superconducting films [76], [112]. This melting
is thought to occur via successive vortex lattice dislocation and disclination unbinding and
is a continuous transition. This mechanism was first proposed by D. R. Nelson and B. I.
Halperin [75] and A. P. Young [113] in 1979 and involves two transitions of the Kosterlitz-
Thouless kind [114].

In the low temperature phase, vortex dislocation pairs are bound together (see Figure
5.3 (b)), the vortex lattice possesses a quasi-long-range positional order and a long-range
orientational order; When the temperature is increased, the quasi-long-range positional
order is lost, at melting, due to the spontaneous separation of paired dislocations. Nev-
ertheless, long-range orientational order persists (see Figure 5.3 (c)). At melting, one
thus enters, in theory, an intermediate phase, the so-called hexatic liquid, characterized
by two order parameters: a short-range positional order and a quasi-long-range orienta-
tional (sixfold) order. When the temperature continues to increase, the quasi-long-range
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Figure 5.3: Two-dimensional melting through the separation of dislocation pairs: (a) A dislocation. (b)
Paired dislocations of opposite effects. (c) Separation of paired dislocations.

orientational (sixfold) order is destroyed due to disclination unbinding. This transforms
the hexatic liquid into an isotropic liquid (short-range positional and orientational order).

For a vortex system, the correlation function C(r) is defined as C(r) = 〈ρG(r) ·ρ∗G(0)〉,
where ρG(r) is the local Fourier component of the vortex density evaluated at reciprocal
lattice vector G [115]. The brackets signify the thermal average of the scalar product at
two lattice points over all possible orderings.

Above the melting temperature Tm, the correlation function C(r) begins to decay ex-
ponentially on a length scale given by the typical spacing between dislocations: C(r) ∼
e−r/ξ+(T ), where the translation correlation length ξ+(T ) scales with the inverse square-
root of the density of free dislocations n f . This is itself inversely proportional to the shear
viscosity η(T ) [75]: η(T,B) ∼ 1/a2

0µ̃n f ∼ ξ2
+(T,B), with a0 the lattice spacing and µ̃ a

typical dislocation mobility.
Approaching the solid to (hexatic) liquid melting transition, η mimics the strong di-

vergence of ξ+. The renormalization-group analysis gives the following result:

ξ+ = ξ+0exp[b′(
Tm

T −Tm
)ν] (5.8)

with ν = 0.36963... for triangular lattices, b
′
is non-universal constant of order unity. This

divergence is faster than any power law defined by ξ+ ∼ |T −Tm|−s since the correlation
length exponent s = ∞ in Equation (5.8).

The shear viscosity η(T,B) thus follows an exponential divergence scaling approach-
ing this transition, explicitly one has

η(T,B) ∼ ξ2
+0exp[2b

′
(

Tm

T −Tm
)ν]

∼ ξ2
+0exp[2b

′′
(

Bm

B−Bm
)ν] (5.9)

where ν = 0.36963... for triangular lattices, b
′
, b

′′
are non-universal constants of order

unity and ξ+0 ≈ a0 (the lattice spacing), being the smallest length scale of the system.
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M. H. Theunissen et al. [76] performed the vortex liquid shear viscosity measurements
in this channel confined geometry in two-dimensional α−Nb3Ge films. The dependence
of the measured vortex shear viscosity on temperature and on magnetic field showed a
good agreement with the two-dimensional melting theory. The dependence of the melting
temperature and the melting magnetic field on channel width measured in α−Nb3Ge
films also fitted well with the two-dimensional melting theory under the assumption that
free dislocations in the liquid line up along the channel edges, i.e., the correlation length
ξ+ equals to the effective channel width we f f .

5.1.5 Vortex shear viscosity in a Bose liquid
If the weakly pinning channels contain dilute columnar defects, the Bose-glass model
may be applied to find a scaling form for resistivity [109]. In the following, TBG denotes
the Bose-glass transition temperature. In our study, the columnar defects are along the
c-axis of the crystal. The magnetic field is applied along the columnar defects (see Figure
5.1 (a)).

The Bose glass correlation length in the ab-plane is: ξ⊥ ∼ |T −TBG|−v⊥ [109] while
the correlation length along the field direction is: ξ// ∼ ξζ

⊥ ∼ |T −TBG|−v⊥ζ, with ζ the
anisotropy exponent. In our case, for linear defects (columnar defects) illustrated in
Figure 5.1 (a), one has: ζ = 2. The correlation time controlling the relaxation of criti-
cal fluctuations is assumed to diverge as: τ ∼ ξz

⊥, with z the dynamic critical exponent
[32]. The exponents have been determined via simulations to be v⊥ ∼= 1 and z ∼= 4.6
[116]. In bulk samples in three dimensions, the linear resistivity ρ⊥ of the vortex liquid
for currents applied in the ab plane is predicted to vanish as T → TBG from above as:
ρ⊥ ∼ |T −TBG|v⊥(z−2) by scaling in the Bose glass model. If δ << L, the bulk result is
recovered:

ρ(T,L)' ρ(T )∼ |T −TBG|v⊥(z−2). (5.10)

In narrow channels, or near the Bose-glass transition, δ >> L, and one has:

ρ(T )∼ L2|T −TBG|v⊥z. (5.11)

Since the resistivity is inversely proportional to the vortex shear viscosity, one finds:
η ∼ |T −TBG|−v⊥z. Then the shear viscosity η is just proportional to the z-th power of
the Bose glass correlation length ξ⊥: η ∼ ξz

⊥. The divergence of the shear viscosity is
controlled by the dynamic exponent z.

The above results rest on the identification of the dynamic length scale δ with the static
correlation length ξ⊥ as stressed by M. C. Marchetti and D. R. Nelson [32]. We recall
the result obtained in the theory of the continuous melting in two dimensions: η∼ 1/ξ2

d ,
where η is the liquid shear viscosity and ξd the average distance between unbound dislo-
cations, which diverges at the vortex lattice melting transition and results the divergence
for the viscosity. In two dimensions, it is the dislocation-mediated melting mechanism
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that establishes the precise relationship between static and dynamic correlation lengths.
In three dimensions, for the vortex or Bose glass transitions, the relationship between
static and dynamic correlation lengths is based on the assumption that the growing corre-
lations associated with vortex localization in the disorder potential drives the divergence
of dynamical properties, namely the viscosities, in the liquid phase.

5.1.6 Vortex liquid shear viscosity measurement in Bi2Sr2CaCu2O8

H. Pastoriza and P. H. Kes [72] have performed shear viscosity measurements on three-
dimensional, heavy-ion irradiated Bi2Sr2CaCu2O8 single crystals containing 2.5 µm wide
un-irradiated channels. Their results suggest that the vortex lattice shear modulus vanishes
at the first order vortex lattice melting transition. However, the channels prepared in [?]
were extended to the edges of the crystals, and the onset of vortex flow could be equally
well explained by the demise of the surface barrier effects near to the first order vortex
lattice melting transition [117].

D. T. Fuchs et al. have performed the transport measurements on Bi2Sr2CaCu2O8
single crystals of square and strip geometries (see Figure 5.4) [117]. The current injection
contacts are far away from the edges for the square crystals. A square crystal of 1.3(w)×
1.7(l)× 0.013(d) mm3 was cut to a strip crystal with a width of 0.29 mm (see the inset
of Figure 5.4). Four Ag/Au pads for electrical contacts were thermally evaporated and
had dimensions of 100× 200 µm2 with 75 µm separation. The same contacts were used
for transport measurements in the square and strip geometries. The magnetic field was
applied parallel to the crystalline c axis, and the resistance was measured using an a.c.
bridge with four-point probe method.

The surface barrier dominates the vortex motion in the strip crystal and shows a highly
nonlinear resistance at low currents in the liquid vortex state (see Figure 5.4), which tends
to approach the bulk value, i.e., the resistance of the square crystal, as the current is in-
creased. This nonlinear resistance in the liquid vortex state is due to the fact that the
height of the surface barrier decreases with increasing transport current. At low currents,
the surface barrier is very high and the resistance of the strip crystal is significantly re-
duced.

Since the surface barrier effect is more important in the strip crystal than the square
crystal, a much stronger nonlinear behavior is observed in the strip crystal compared to
the square crystal. The surface barrier plays an important role in vortex motion both in the
vortex liquid phase and in the vortex solid phase. Figure 5.5 shows the normalized R(T )
curves in the vicinity of the first order transition (vortex solid-liquid transition) in the strip
crystal and in the square crystal with 10 mA under a magnetic field of H//c = 300 Oe. In
order to probe unambiguously the bulk properties of the vortex ensemble, the contacts for
current injections in resistivity measurements and the channel structure should be remote
from the sample edges.
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Figure 5.4: Arrhenius plot of the normalized resistance of Bi2Sr2CaCu2O8 crystal at H//c = 700 Oe. Thick
curves: Resistance of the square sample with 5 and 15 mA current. Thin curves: Nonlinear resistance in
the cut strip geometry for 0.5 to 15 mA currents. (Figure reproduced from [117])

50 55 60 7065
T(K)

Figure 5.5: Normalized R(T ) of the square and strip crystal in the vicinity of the first order transition at
H//c = 300 Oe and with 10 mA current. (Figure reproduced from [117])

5.2 Experimental details
The optimally doped Bi2Sr2CaCu2O8 single crystals (Tc ≈ 87 K) that we use in this work
were grown by Ming Li, of the research group of Professor P. H. Kes at the Kamerlingh
Onnes Laboratory of Leiden University (the Netherlands). The samples were obtained
from a batch grown using the traveling solvent floating zone technique under 200 mBar
O2 pressure, and were subsequently annealed in air at 800 ◦C for six hours [118], [119].

The channel confined geometry requires an array structure in which the weakly pin-
ning channels are separated by strongly pinning walls. This can be achieved by selective
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heavy ion irradiation at GANIL (Grand Accélérateur National d’Ions Lourds, situated in
Caen, France) through a suitable nickel mask on the crystals.

The channels are weakly pinning on the condition that they do not contain any pre-
existing macroscopic defects, for example, an inhomogeneous oxygen distribution or the
intergrowth of other phases different from Bi2Sr2CaCu2O8 (Bi-2212). We therefore need
to select Bi2Sr2CaCu2O8 crystals of the highest purity and free of any macroscopic defects
prior to the irradiation.

5.2.1 Selection of Bi2Sr2CaCu2O8 crystals
During the selection step, we cleaved the crystals to obtain samples with a thickness
less than 20 µm. This is because the range of 1 GeV Pb56+ ions in Bi2Sr2CaCu2O8 is
about 30 µm [120]. In thicker crystals (more than 30 µm), the columnar tracks would
not extend through the whole thickness since the ion energy drop below the threshold for
track formation before leaving the sample. In crystals of intermediate thickness (20 ∼ 30
µm), ions deviate from their trajectory. For further selection, we use the magneto-optical
imaging technique.

Magneto-optical imaging provides an efficient way to detect macroscopic defects in
superconductor crystals. The application of a magnetic field induces screening currents in
the superconductor. If there is a defected region where the current flow is distorted, this
is reflected in the magnetic field distribution, which may be observed in magneto-optical
images.

The most commonly observed defect structures are:

1. Grain boundaries
Many seeds may be formed when a sample starts to crystallize, seeds grow until they

meet at the boundaries. A grain is a single crystal. Properties along these boundaries are
different from those inside the grains. For superconductors, the grain boundaries have a
lower critical current density value than that found in a single crystal [121].

Single crystals can be obtained by cutting the crystal along its grain boundaries with a
wire saw machine. The photo of the crystal shown in Figure 5.6 (a) was obtained through
a polarized light microscope. We notice that very often the grain boundaries can be per-
ceived directly prior to performing magneto-optical imaging measurements.

2. Arclike defects
The arclike defects revealed in Figure 5.7 (a) are due to the difficulty to regulate a

constant rate of crystallization. The arclike defect structure is nearly perpendicular to the
growth direction.

Differential Magneto-Optical (DMO) imaging shows that the arcs have a lower Tc
than the bulk, typically ∆Tc ∼ 1 K. At a fixed temperature near Tc, flux penetration first
occurs in the arcs, and then in the bulk [122]. The formation of the arclike defects is due
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(a)

(b)

Figure 5.6: (a) The BSCCO crystal was glued to a thin copper plate with n−C19H40, a polymer the
melting temperature of which is around 30 ◦C. (b) A magneto-optical image obtained at 23.52 K under a
field of 140 Oe parallel to the c-axis of the BSCCO crystal. Flux penetration to the grain boundaries can be
observed as indicated by the arrows.

(a) (b)

- growth direction - growth direction

Figure 5.7: Different kinds of defects revealed by the Magneto-Optical (MO) imaging technique in
a BSCCO crystal (numerated as BSCCO 01-06-2007, with gold strip). (a) Arclike defects revealed by
differential MO imaging at T = 83 K with a base field of zero, and a field modulation δH//c of 2 Oe along
the c-axis of the BSCCO crystal. (b) Intergrowth defects revealed by direct MO imaging at T = 31 K with
the application and removal of a field of 280 Oe parallel to the c-axis, in the same crystal as in (a).

to the thermal gradient during the crystal growth (see Figure 5.8).

3. Intergrowth defects
Due to the fact that Bi2Sr2CaCu2O8 melts incongruently, it is very difficult to maintain

a stable molten zone during the crystal growth. In particular, a solid phase of different
composition can form, appearing henceforth as a defect structure.

By performing magneto-optical imaging as well as transport measurements, M. Li et
al. [123] have identified that the line defects (see Figure 5.7 (b)) occurring in Bi2Sr2CaCu2O8
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Figure 5.8: Sketch of the crystal growth process in the traveling floating zone method (left-hand panel).
The feed and the seed shafts rotate in opposite directions. The right-hand panel shows a schematic expanded
cross-sectional view of the molten zone. The growth front is curved by the thermal gradient. Arclike
structures (broken lines) observed by magneto-optical imaging method are parallel to the growth front.

(Bi-2212) crystals grown in air are due to the intergrowth of the Bi2Sr2Ca2Cu3O10+x (Bi-
2223) phase with a critical temperature near to 110 K. Magneto-optical imaging (see Fig-
ure 5.7 (b)) shows that the Bi-2223 phase forms as small needle shaped filaments oriented
along the growth direction.

We remark that by the magneto-optical imaging technique, the Bi-2223 phase inter-
growth defects (see Figure 5.7 (b)) are most noticeable at a temperature interval between
20 K and 35 K while the arclike defects (see Figure 5.7 (a)) are revealed at high tempera-
tures close to Tc since the arcs have a lower Tc than the bulk.

4. Surface steps and embedded stacking defects
A dislocation cannot end within a crystal since it can only be contained within a crystal

as a complete loop; the dislocation lines end at the sample surface. In single crystals, the
majority of dislocations are formed at the surface. The small steps on the surface and
the embedded stacking defects can be revealed by MO imaging technique. Figure 5.9
shows the surface step revealed by MO imaging. Clearly, crystals containing such defect
structures are to be avoided for further study. The surface step defects can be avoided
by cleaving the BSCCO single crystals between two BiO planes, since they are weakly
bonded.

Selected homogeneous crystals are cut into square or rectangular pieces in order to
obtain macroscopic defect-free single crystals. The selected single crystals are glued to
nickel masks for the irradiation experiments. Figure 5.10 shows the MO images for a
selected BSCCO crystal free of any macroscopic defect.
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(a) (b)

Figure 5.9: (a) Photograph of the sample BSCCO XII through a polarized light microscope. (b) Direct
MO image at T = 24.22 K, H//c = 363.1 Oe, after zero-field cooling. The left arrow marks the grain
boundary defect, while the right arrow marks the surface step defect.

(a) (b)

Figure 5.10: MO images for a selected crystal (BSCCO-III) free of macroscopic defects. (a) Direct MO
image of the remanent state at T = 23.8 K after the application and removal of a field of 273 Oe, parallel
to the c-axis of the BSCCO crystal. (b) Field modulated DMO images of BSCCO iii at T = 83 K with field
modulation of 0.5 Oe. The magnetic field is along the c-axis of the BSCCO crystal.

5.2.2 Fabrication of the nickel masks
The nickel masks were fabricated by electrodeposition at the Institute of Physics, Pol-
ish Academy of Sciences (Warsaw, Poland) by Dr. P. Gierlowski. In order to stop the
high energy Pb56+ beam, 4 to 5 layers of Ni-masks with a thickness of 6 ∼ 8 µm were
superposed.

Clear Ni-films with a well-defined apertures are thinner than 8 µm. Thicker films have
blocked apertures with the electrodeposition method. Under an optical microscope, 4 to
5 layers of 8 µm thick Ni-films are aligned using a ring-shaped permanent magnet. The
Ni-films were piled into masks for the heavy ion irradiation and glued together using an
acrylocyanate glue.

5.2.3 Selective heavy ion irradiation to obtain the channel structure
Strongly pinning areas are introduced by selective irradiation through nickel masks (see
Figure 5.11) using a 1 GeV Pb56+ beam. The Pb56+ ions create columnar defects along
the c-axis in BSCCO crystals which provide the potential wells to pin the vortices. Two
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fluences have been used to obtain the channel confined geometry: one is 1×1011 ions per
cm2 (a matching field of 2 T), another is 1×1010 ions per cm2 (a matching field of 0.2 T).

Figure 5.11: Selective irradiation through Ni masks.

The heavy ion irradiation causes a self-doping by oxygen displacements in Bi2Sr2CaCu2O8+δ
crystals [119]. This effect modifies the critical temperature Tc. For an underdoped BSCCO
crystal, after the heavy ion irradiation, its critical temperature Tc increases and for an op-
timally doped BSCCO crystal, after the heavy ion irradiation, its critical temperature Tc
decreases. The variation of Tc is approximately 1 K for an equivalent irradiation dose of
2 Tesla.

For the optimally doped BSCCO crystal that we study, the critical temperature Tc for
the strongly pinning walls is thus lower than that of the un-irradiated regions. To reduce
this difference in Tc, the fluence of 1× 1010 ions per cm2 (a matching field of 0.2 T) is
chosen.

Regions exposed to the ion beam are damaged and will contain many amorphous
columnar latent tracks, which serve as strong pinning centers. By designing a mask such
that only parallel rectangular regions of the crystals are exposed, we created strongly
pinning walls artificially (see Figure 5.11).

Masks with different channel widths (5 µm, 10 µm, and 20 µm) were prepared for
heavy ion irradiation experiment. But our irradiation results showed that only the masks
with a channel width of 20 µm produced well-defined channel structures in the BSCCO
crystals. The masks with channel widths of 5 µm and 10 µm produced ill-defined apertures
in BSCCO crystals, i.e., the strongly pinning walls and the channels were not clearly
separated. In the following, relevant MO images serving to check the selective irradiation
experiment are presented.
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2.5 x 

Figure 5.12: Channel structure examined by MO imaging for the sample BSCCO 24-4, Bφ = 0.2 T. Left-
hand panel: direct MO Image (10 x) at T = 34 K, H//c = 418 Oe, after zero-field cooling. Right-hand panel:
direct MO image (2.5 x) obtained at T = 5 K, with the application and removal of a field of H//c = 456 Oe.

5.2.4 Sample check by magneto-optical imaging after selective heavy
ion irradiation

The channel structures were characterized using the Magneto-Optical (MO) imaging tech-
nique. The left-hand panel of Figure 5.12 shows a direct magneto-optical image taken at
T = 34 K under a field of H//c = 418 Oe along the c-axis of the crystal BSCCO "24-4".
After zero-field cooling, the irradiated areas (dark regions) screen out the magnetic field,
while the rest of the crystal (bright regions) is penetrated by the magnetic field.

The channel structure is clearly revealed by the MOI technique (see Figure 5.12). The
irradiated, strongly pinning walls do not admit the vortices and show up as dark areas. The
channel structure indicated by two arrows include 10 channels (showing up as bright) and
10 pinning walls (showing up as dark). The distance between the two arrows is 400 µm.
The channel width is thus L = 400

10 · 1
2 = 20 µm.

The heavily irradiated square pads are for current injection and the two contact pads
inside are for voltage measurements. Within the pads, below a certain temperature and a
certain magnetic field, i.e., below the irreversibility line of the strongly irradiated pinning
walls, there is no flux flow so that only the voltage drop over the channel structure is
measured.

The heavily irradiated part has a lowered critical temperature. As we have mentioned
in the last section, the variation of Tc is approximately 1 K for an equivalent irradiation
dose of Bφ = 2 Tesla. The decrease of Tc for optimally-doped BSCCO samples due to
heavy ion irradiation could be observed by magneto-optical imaging. Here we report on
the sample denoted as BSCCO "iv" (1800×1750×20 µm3), the irradiation dose is Bφ = 2
Tesla and its critical temperature is Tc ≈ 87.5 K for the unirradiated part.
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(a) (b) (c)

Figure 5.13: Variation of Tc in BSCCO due to the self-doping mechanism induced by heavy ion irradi-
ation, observed by MO imaging. (a) Direct MO image at T = 43 K, under a field of H//c = 97 Oe. The
heavily irradiated parts screen out the magnetic field and appear as dark regions. (b) Differential MO image
at T = 86 K, H//c = 0 with a modulation field δH//c = 1 Oe. The heavily irradiated part has a lower Tc than
the unirradiated part. The magnetic flux begins to penetrate first to the irradiated part, which shows up as
bright regions (the irradiated pad on the right is bright). (c) Differential MO image at T = 87 K, H//c = 0
with a modulation field δH//c = 1 Oe. Since the heavily irradiated part has a lower Tc than the unirradiated
part, the magnetic flux penetrates to the irradiated part which shows up as bright areas. At 87 K, the whole
irradiated part shows up bright [122].

Figure 5.13 (a) is a direct MO image taken at T = 43 K under a field H//c = 97 Oe,
parallel to the c-axis of the crystal BSCCO iv. The heavily irradiated part appears dark in
the image since magnetic field is screened out. Figure 5.13 (b) and (c) are DMO images
taken near to Tc, we see that, contrary to the situation in Figure 5.13 (a), magnetic flux
penetrates to the irradiated regions first because of the lowered Tc in those regions.

Here are other examples (see Figure 5.14, Figure 5.15 and Figure 5.16) of well-defined
channel structure created through selective Pb56+ ion irradiation experiment with the Ni
masks. The channel structure can be also perceived directly through an optical micro-
scope, see e.g. in sample BSCCO "20" (see Figure 5.15 (a)) and BSCCO "25-4" (see
Figure 5.16 (a)).

Figure 5.14: Channel structure examined by MO imaging for the crystal BSCCO "24-3", Bφ = 2 T. Figure
shows a direct MO image of this sample taken at T = 7 K, H//c = 457 Oe.

Examples of ill-defined channel structure or perturbed by other macroscopic defects
are presented below. In Figure 5.17, the channels and the strongly pinning walls are not
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(a) (b)

Figure 5.15: Channel structure examined by MO imaging for the sample BSCCO 20, Bφ = 2 T. (a)
Photograph of the sample BSCCO 20 with the Au contacts added by evaporation through an identical Ni-
mask as that used in the selective irradiation experiments. (b) Direct MO image of BSCCO "20" taken at T
= 33.6 K, H//c = 342 Oe.

(a) (b)

Figure 5.16: Channel structure examined by MO imaging for the sample BSCCO 25-4, Bφ = 2 T. (a)
Photograph of the sample BSCCO 25-4. (b) Direct MO image of BSCCO "25-4" taken at T = 34.3 K, H//c
= 300 Oe.

totally separated. In Figure 5.18, the channel structure is disturbed by another macro-
scopic defect.

5.2.5 Small dose uniform re-irradiation

In order to compare our results to the predictions [109] for the Bose liquid vortex, we
have re-irradiated several crystals uniformly (see Figure 5.19) with a fluence of 5× 107

Pb56+ ions per cm2 (1 GeV). This corresponds to a matching field of Bφ = 10 G. Such
crystals were compared to homogenously irradiated crystals without channel structure.

For example, a single crystal denoted as BSCCO "24-4", containing a channel struc-
ture with pinning walls of defect density corresponding to Bφ = 0.2 T was homogeneously
re-irradiated to a fluence corresponding to Bφ = 10 G (1 mT). After irradiation, the crystals
were glued on a 200 µm-thick sapphire substrate with Norland Optical Adhesive (NOA
61). Since the surfaces of the Bi2Sr2CaCu2O8 single crystals after irradiation are not very
clean in general, a plasma etching for cleaning the surfaces is used: 2 minutes in a plasma
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(a) (b)

Figure 5.17: Ill-defined channel structure illustration. The hairline one sees on the images is due to a
defect (a) Direct MO image (2.5×) taken at T = 25.63 K, H//c = 354.7 Oe in sample BSCCO 2.3. (b) Direct
MO image (10 ×) taken at T = 35.29 K with the application and removal of a field of H//c = 354.7 Oe in
sample BSCCO "2.3".

(a) (b)

Figure 5.18: Channel structure perturbed by surface steps, marked by the arrows. (a) Direct MO image
taken at T = 32.66 K, H//c = 333 Oe in sample BSCCO 23-2. (b) Direct MO image taken at T = 25.93 K,
H//c = 274 Oe in sample BSCCO "26".

Figure 5.19: Uniform irradiation.

Ar/O2 (ratio 1:4) with a pressure of 1×10−2 mbar and a power of 15 W. Photolithography
technique was used to establish electrical contacts on the crystals for transport measure-
ments. The procedure was detailed in Chapter 3.
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5.3 Competition between surface pinning and bulk pin-
ning

One expects to obtain a current flow through the channels with the help of the heavily
irradiated current injection pads situated in the center of the samples. Both the bulk
pinning and the surface pinning contribute to flux pinning in a type II superconducting
sample; these pinning mechanisms compete with each other. In [117] and [124], it was
reported that surface barriers significantly affect vortex motion in Bi2Sr2CaCu2O8 single
crystals. On the contrary, the authors of Ref. [125] assert that the effect of surface barriers
on vortex motion in Bi2Sr2CaCu2O8 single crystals can be neglected, i.e. vortex motion
is essentially governed by bulk effects. The field-modulated DMO imaging technique
provides a contact-free method to experimentally determine whether the bulk pinning or
surface pinning dominates vortex motion in a specific sample in different temperature and
magnetic field regimes.

As we have already seen in Chapter 2, the gradient of the intensity in the field mod-
ulated DMO images is related to the local critical current density value. If this gradient
is no longer discernable over some superconducting regions, i.e. when one can no longer
distinguish the superconducting region from the surrounding background, the local criti-
cal current density has all but vanished. This is the principle we use for the determination
of the position of the irreversibility lines from field-modulated DMO images.

As an example, observing the field-modulated DMO images obtained on crystal BSCCO
"iv" (see Figure 5.20), one sees that, below 82.5 K1, for fixed temperature and increasing
field, the edges of the sample vanish from view before the irradiated contact pads and
the strongly pinning walls introduced by Pb56+ ion irradiation in field modulated DMO
images. If one denotes Hedges

irr as the irreversibility field value for the edges and H pads
irr as

the irreversibility field value for the irradiated pads and the strong pinning walls created
through irradiation, one has Hedges

irr < H pads
irr . This result suggests that below 82.5 K, the

edges are more resistive than the irradiated regions and the bulk pinning dominates vortex
motion in the sample BSCCO iv in transport measurements.

For the crystals BSCCO "24-4" (see Figure 5.21) and BSCCO "042008-17" (see Fig-
ure 5.22), one also finds that under fixed temperatures, upon field increasing, the edges
vanish before the irradiated pads and the strong pinning walls. Furthermore, the current
is injected through the irradiated pads, which are remote from sample edges, for transport
measurements. The resistance data obtained in this way on samples BSCCO "iv", BSCCO

1 For the high temperature part (near to Tc), the situation is different: (1) The heavily Pb56+ ion irradiated
part has a shifted Tc. For optimally-doped BSCCO crystals, the Tc was lowered after Pb56+ ion irradiation.
(2) The columnar defect pinning is very weak at this temperature regime and can be ignored. The presence
of the columnar defects should have little influence to the thermodynamic melting transition. Since we
are interested by the divergence behavior of the shear viscosity at liquid vortex phase, the regime at high
temperature near to Tc is irrelevant to our study and we will discuss this point at the end of this Chapter.
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(a) (b) (c)

Figure 5.20: Field modulated DMO images of BSCCO iv at T = 80.5 K with field modulation of 0.5 Oe.
The magnetic field is along the c-axis of the BSCCO crystal. (a) base field = 0. (b) base field = 10 Oe. (c)
base field = 25 Oe.

"24-4", and BSCCO "042008-17" at their liquid vortex states should be nearly unaffected
by the surface barrier effects.

(a) (b) (c)

Figure 5.21: Field modulated DMO images of BSCCO "24-4" at T = 77 K with field modulation of 0.5
Oe. The magnetic field is along the c-axis of the BSCCO crystal. (a) base field = 30 Oe. (b) base field = 85
Oe. (c) base field = 110 Oe.

(a) (b) (c)

Figure 5.22: Field modulated DMO images of BSCCO "042008-17" at T = 79 K with field modulation
of 0.5 Oe. The magnetic field is along the c-axis of the BSCCO crystal. (a) base field = 2 Oe. (b) base field
= 16 Oe. (c) base field = 36 Oe.

Since the surface barriers contribute to a strongly nonlinear resistance even in the vor-
tex liquid phase (see Figure 5.4), if one performs resistance measurements with different
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currents on a superconducting sample, one can infer from the presence or absence of this
nonlinear resistive behavior whether the surface barriers dominate the vortex transport
properties. Turning to the crystal BSCCO "iv", with dimensions 1800×1750×20 µm3,
the dc current is injected through the two bottom exterior pads and the potential differ-
ences are measured between the two bottom interior pads (see Figure 5.24 (a)). To avoid
Joule heating, the applied transport current did not exceed 10 mA.
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Figure 5.23: Resistance as a function of the temperature of BSCCO "iv" (channels only, no columnar
defects in the channels) measured with different currents. (a) H//c = 116 Oe, with three different currents: 1
mA, 4 mA, and 8 mA. Inset: Field modulated DMO image at T = 71.15 K, H//c = 110 Oe, field modulation
δH//c = 1 Oe. The magnetic field is screened by the strongly pinning walls and the contact pads, but not the
sample edges. (b) H//c = 155 Oe, with two different currents: 4 mA and 8 mA. Inset: Field modulated DMO
image at T = 71.16 K, H//c = 150 Oe, field modulation δH//c = 1 Oe. The magnetic field is screened by the
strongly pinning contact pads but not the sample edges. (c) H//c = 310 Oe, with two different currents: 4
mA and 8 mA. Inset: Direct MO image at T = 39.45 K, H//c = 290.8 Oe. Sample edges are visible but the
contrast at the edges, i.e., gradient of the vortex intensity, is much less important compared to that of the
strongly pinning walls and contact pads.

A strongly nonlinear resistive behavior is not observed in the vortex liquid state in this
crystal. Figure 5.23 shows the resistance as function of the temperature measured with
different currents under different magnetic fields (along the crystal c-axis), varied from
116 Oe to 310 Oe. These data confirm that surface barrier effects are weak in this sample
and that the current flows essentially in the bulk.

In addition, imaging of the self-field due to transport current using current-modulated
magneto-optical imaging has been performed to study the current flow path and the effi-
ciency of the irradiated contact pads. A current of 10 mA was applied, and ten magneto-
optical images were acquired and summed; A current of the same value but of the opposite
polarity (- 10 mA) was applied and ten other images were acquired and successively sub-
tracted from the first sum. In order to increase the signal to noise ratio to obtain satisfac-
tory self-field images, this procedure was repeated 20 times or even up to 100 times and
the resulting images were averaged to produce the final self-field image due to transport
current.
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Figure 5.24: Current-modulated magneto-optical images obtained for BSCCO "iv" with current I = ± 25
mA.

Figure 5.24 shows the self-field images obtained for sample BSCCO "iv". The current
entry and exit path, defined by a sharp contrast on the current-modulated magneto-optical
images, can be clearly recognized using the right-hand rule.

Even though the images obtained by differential magneto-optical imaging with cur-
rent modulation (Figure 5.24) always show visible sample edges, we cannot immediately
deduce that a part of transport current flows by the edges since the differential image
acquired is always convoluted by the corresponding direct image (see Chapter 2). The
self-field image obtained with current modulation under a magnetic field in the way de-
scribed above is generated by the shielding current and the transport current. The shield-
ing current always renders the sample edges visible. In the case where the current flows
essentially though the bulk, the current-modulated Differential Magneto-Optical (DMO)
images also produce visible sample edges.

Figure 5.25 shows a current-modulated DMO image acquired for the sample BSCCO
"24-4". Due to the shielding current, the sample edges are visible. The irradiated pattern
and the current exit are clearly revealed in Figure 5.25. The characteristic contrasts2

associated with the transport current show that the current flows through the irradiated
pads.

2 Figure 4.7 in Chapter 4 shows a comparison between shielding current and transport current in magne-
to-optical images.
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Figure 5.25: Current-modulated magneto-optical image obtained for BSCCO "24-4" at T = 68 K, with
current I = ± 30 mA and under a field of 100 Oe parallel to the c-axis of the crystal.

This is direct evidence for the efficiency of the irradiated contact pads to "attract"
the current. The transport current circulates through the irradiated regions since there is
strong pinning there which provides a larger critical current density jc and consequently
a lower resistance compared to the unirradiated parts, including the sample edges. We
remark that the current flows through the Au pattern (added by photolithography) until it
reaches the irradiated pads (Figure 5.24 and 5.25).

5.3.1 Correspondences between the magneto-optical measurements
and the resistance measurements

Resistance measurements performed on BSCCO "iv" in different magnetic fields parallel
to its crystalline c-axis are shown in Figure 5.26. The kink points on the resistance curves
are marked by the arrows TCD

irr in Figure 5.26.

Except for the high temperature part3 (near to Tc), the kink points on the resistance
curves, correspond to the temperatures at which pinning in the heavily irradiated walls
becomes effective which causes a sharp decrease of the resistance. Figure 5.27 shows
the characteristic lines of BSCCO "iv" obtained from DMO imaging measurements and
resistivity measurements. The line formed by the kink points identified from the resistance
curves, marked by the arrows TCD

irr in Figure 5.26, is superposed on the irreversibility line

3 The kink point at high temperature may correspond to a vortex liquid-lattice melting transition but could
also be attributed to the surface barrier effect.
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Figure 5.26: Resistance as a function of the temperature in different magnetic fields parallel to its crys-
talline c-axis. The transport current is 8 mA for all the measurements. Measured during the cooling.

derived from the field modulated DMO images4. These two lines correspond to the same
physical origin: the onset of strong pinning by the heavily irradiated walls. Below this
4 Because of the spatial resolution limit and the weakened signal due to the thickness of the gold layer (0.5
µm), it was difficult to clearly resolve the channels in the DMO images. Since the irradiation dose for the
strongly pinning walls was the same as the irradiated contact pads, one can associate the onset of pinning in
the irradiated contact pads as an indication for the effectiveness of pinning in the heavily irradiated walls.
The irreversibility line for the strongly pinning walls is derived from the field-modulated DMO images in
this manner.
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line, the shear flow of the liquid vortex is realized in the channels.
If one plots the line R = 10−7 Ω, determined from resistance measurements, and the

irreversibility line for the edges, determined by the field modulated DMO images on this
H−T graph, one finds that these two lines are also superposed (see Figure 5.27). From
this point of view, the resistivity data should be unaffected by the surface barriers in
BSCCO "iv" for T < 82 K until approaching 10−7 Ω. This conclusion is consistent with the
absence of nonlinear resistance at the liquid vortex state (see Figure 5.23). The resistivity
data measured in the way that we described in this Chapter allows one to probe the bulk
properties of the vortex system and furthermore, since the vortex motion is confined in
the channels, one obtains directly the shear properties from the resistivity measurements.
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Figure 5.27: Characteristic lines of BSCCO iv derived from resistance measurements and field modulated
DMO images. The fulfilled blue squares correspond to the kink points marked by the arrows TCD

irr on the
resistance curves in Figure 5.26. The unfilled black plus (+) signs refers to the irreversibility field and
temperature of the strongly pinning walls determined from DMO images. The line formed by the fulfilled
red circles correspond to the R = 10−7 Ω line determined from resistance measurements. The unfilled black
circles refers to the irreversibility field and temperature of the sample edges determined from DMO images.

5.3.2 Comparison of different types of confinement
Figure 5.28 shows the temperature dependance of the resistance for four crystals (BSCCO
"ref", BSCCO "iv", BSCCO "24-4" and BSCCO "10G") under the fields H//c = 116 Oe
and H//c = 155 Oe. The first crystal is an unirradiated reference sample. The resistance
has been renormalized to the normal resistance value of BSCCO "iv" for comparison.
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Figure 5.28: Renormalized resistance as a function of the temperature for three Bi2Sr2CaCu2O8 crystals.
(a) Resistance data under the field H//c = 116 Oe. The thin line presents the resistance data of a pristine
sample under the same magnetic field (multiplied by a factor of 0.024 for comparison). It shows the con-
tinuation of the resistance for a sample without confinement effect. Inset: direct magneto-optical image of
the central part of the crystal BSCCO "24-4", taken as T = 35 K and an applied field H//c = 456 Oe. The
bright regions correspond to those parts of the crystal that are penetrated by the magnetic field and the dark
regions are the irradiated areas that screen the magnetic field. (b) Resistance data under the field H//c = 155
Oe.

Two of the crystals (BSCCO "iv" and BSCCO "24-4") contain a channel confined structure
created by selective Pb56+ ion irradiation through the Ni-masks with 1×1011 and 1×1010

columnar defects per cm2 respectively (dose-matching field Bφ = 2 T for BSCCO "iv" and
Bφ = 0.2 T for BSCCO "24-4"). This difference in irradiation dose is irrelevant for the
physics that we discuss here since the field applied in our study is much lower than 0.2
T. The crystal BSCCO "iv" was only irradiated once through the Ni-masks so that the
channels in the crystal BSCCO "iv" are free of defects compared to the crystal BSCCO
"24-4" which was subsequently homogeneously irradiated with a fluence of 5×107 cm−2

1 Gev Pb+56 ions (dose-matching field Bφ = 10 G), producing weakly pinning channels
that contain a low density of columnar defects. The last crystal BSCCO "10 G" was
only homogeneously irradiated with a fluence of 5× 107 cm−2 1 Gev Pb+56 ions (dose-
matching field Bφ = 10 G) serving as the reference for comparison.

The signature of the strong pinning by the walls is clearly observable at TCD
irr /Tc =

0.891 and is indicated by the arrow in Figure 5.28 (b). The presence of the strongly
pinning walls clearly reduces the resistivity with respect to the un-irradiated crystal (see
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Figure 5.28 (a)). The resistivity at temperatures below the "knees" in Figure 5.28 is deter-
mined by the flow of the vortex liquid through the 20 µm-wide channels, and is therefore
inversely proportional to the vortex liquid shear viscosity. An even stronger decrease of
the resistance due to the addition of a small columnar defect density was observed. The
resistance of the crystal BSCCO "24-4" (20 µm wide channels plus 5×107 cm−2 colum-
nar defects, matching field Bφ = 10 G) follows nearly the same temperature dependance
as that of the crystal BSCCO "10G".

Thus, the small dose of irradiation (matching field Bφ = 10 G) significantly reduces
the resistivity. Here we provide an explanation: The vortices localized on the columnar
defects due to the Pb56+ ion irradiation with a matching field of Bφ = 10 G form a rigid
matrix (see Figure 5.1 (b)). This rigid matrix may play the same role as the channel
confined geometry. Along with this assumption, the rigid matrix defines an equivalent
confined geometry whose characteristic channel width is the average grain size. For a
matching field of Bφ = 10 G, the grain size is about 1 ∼ 5 µm. Since it is the smaller
length between the channel width L (20 µm) and the average grain size Dav that should
be compared to the correlation length at the vortex liquid-solid transition, the channel
structure may have little effect on the vortex dynamics in this situation.

5.4 Confrontation between theory and resistivity data
We now compare the temperature dependence of the resistivity due to vortex shear, i.e.,
below the "knees", to the Nelson-Halperin model (continuous melting by dislocation un-
binding) and the Bose-glass model, which yield different scaling laws for the divergence
behavior of the shear viscosity, and consequently yield different scaling laws describing
the vanishing of the resistivity approaching the solidification transition.

In the Nelson-Halperin model, the scaling law of resistivity (under a constant magnetic
field) is expressed as follows:

ρ(T )≈C1exp[−2C2(
Tm

T −Tm
)0.37] (5.12)

where C1 is approximately the corresponding normal state resistivity, C2 is a non-universal
constant of order unity, and Tm is the continuous melting (freezing) temperature.

In the Bose-glass model, the scaling behavior for the resistivity is:

ρ≈ C |T −TBG|s (5.13)

where TBG is the Bose-glass transition temperature, s = v⊥(z−2) for the bulk sample and
s = v⊥z for confined geometry, C is a constant.

Scaling laws are valid sufficiently near to the phase transition. The range of validity
of any fit is confined to the lowest resistance region below the "knees", at temperatures
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to Equation (5.12). The right-hand panel shows the fit parameters. C2 is set to a common
value: C2 = 1.25 for all the fits.

at which vortex flow is shear flow. We compare with the Nelson-Halperin model (two-
dimensional melting by dislocation unbinding) first and then with the Bose-glass model
(three-dimensional).

5.4.1 Comparison with the Nelson-Halperin model

Remarkably, almost all the resistivity data for different types of confinement (BSCCO
"iv", BSCCO "24-4", and BSCCO "10G") can be fitted well with Equation (5.12) which
results from the two-dimensional melting theory. More than two decades can be fitted by
Equation (5.12). We find that the exponent 0.37 in Equation (5.12), which is characteristic
of continuous melting for triangular lattices, is not strictly required to fit the data. In fact,
any exponent value in the interval 0.20∼ 0.65 can equally fit our resistivity data and yield
reasonable results, namely, the melting temperature Tm.

In Bi2Sr2CaCu2O8, for a certain temperature regime, the interlayer coupling is ex-
tremely weak. The layers may act approximately independently. It was theoretically pro-
posed that the decoupling takes place simultaneously with the melting transition [126]. In
this scenario, vortex lines lose their line integrity and dissociate into uncorrelated vortex
pancakes in the CuO planes [127].

At very low fields, a nonlinear resistive behavior is observed in our BSCCO samples.
Figure 5.32 shows this behavior for the sample BSCCO "iv" under various magnetic fields
below 56 Oe. The arrows TNL in Figure 5.32 separate a linear-resistance regime and a
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Figure 5.32: Onset of nonlinear resistivity at small fields in BSCCO "iv" crystal (channels only). (a) H//c
= 11 Oe. (b) H//c = 16 Oe. (c) H//c = 35 Oe. (d) H//c = 56 Oe.

nonlinear-resistance regime. It is often considered that the resistance changes its behavior
at the first-order transition (FOT), i.e., vortex liquid-lattice transition. In the liquid state,
the resistance is linear; and in the solid state, the resistance is nonlinear. We found that
the values of TNL are much higher than the commonly reported FOT temperature for an
optimally doped single crystal Bi2Sr2CaCu2O8 [24], [128]. Moreover, if the FOT is the
origin of this nonlinear behavior reported in Figure 5.32, it is unlikely that this behavior is
suddenly strongly weakened at 56 Oe (see Figure 5.32 (d)). We now investigate whether
this corresponds to a continuous two-dimensional melting transition by performing I-V
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characterizations.
According to the two-dimensional melting theory mediated by the separation of the

vortex dislocation pairs, the unbinding of the vortex dislocation pairs under a driving
current leads to a power-law V-I characteristic: V ∼ Ia, where the exponent a has the
simple form a(T ) = 1 + 2TKT /T (a has a

√
TKT −T behavior close to TKT ) [129], [130].

For T > TKT , the unbound pairs can be thermally excited without a driving current, the
V-I behavior is linear. Thus a universal jump in the exponent a = 1 to a = 3 is expected
when one passes through TKT .
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Figure 5.33: To avoid Joule heating, the applied transport current should not exceed 10 mA. Experiment
performed on the sample BSCCO "iv" at T = 86.88 K, H//c = 35 Oe. The discontinuous jump of the
measured temperature is an artifact and is due to the resolution of the temperature sensor and Lakeshore
331.

In order to avoid Joule heating, the maximum current that we were allowed to apply
to our samples was 10 mA (see Figure 5.33). In the low current region, due to the thermal
noise and the nanovoltmeter resolution, the nonlinear I-V characterization performed on
our samples was rather rudimental. Our preliminary results of I-V characterization (see
Figure 5.34) show a jump for the exponent a to 3 in a narrow window around 86 K. Similar
results are found in [124] and is explained as a sharp reduction in interplanar coupling
between vortex pancakes when the temperature passes through the melting temperature
[124]. While it was reported that the vortex correlation along the c-axis were amplified
after the introduction of columnar defects [131], [132].

Our resistivity data at fields above 77 Oe always lie in the linear-resistance regime,
i.e., the vortex system is always in its liquid phase until the sensitivity limit of current
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set-up5. So, one cannot conclude that a continuous two-dimensional melting (freezing)
transition really takes place simply because a good fit of the decreasing resistivity and the
scaling law given by Equation (5.12) is found.

Even if the two-dimensional melting scenario cannot be denied in BSCCO "iv" by
the above I-V characterization, as a matter of fact, the surface barrier effect provides
a more pertinent explanation for the above observed nonlinear behavior since the two-
dimensional melting cannot explain the suddenly strongly weakened nonlinear behavior
for fields above 56 Oe either.
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Figure 5.34: Measured critical-exponent as a function of the temperature under a field of H//c = 35 Oe,
for the crystal BSCCO "iv" (channels only). Inset: I-V characteristics of BSCCO "iv" under the same field
(H//c = 35 Oe). From the left to the right the data were obtained at the following temperatures: 86.88 K,
86.70 K, 86.50 K, 86.30 K, 86.13 K, 86.04 K, 85.93 K, 85.73 K, 85.55 K. The solid lines are the fits to the
data according to the nonlinear relation V ∼ Ia.

The surface barrier can also introduce a strong nonlinear resistance in the vortex liquid
state as we have already seen in the section 5.1.6, the arrows TNL thus separate in fact a
uniform flow (high temperature part) and a surface barrier current flow (low temperature
5 The resistance could be resolved to 10−7 Ω with an applied current of 8 mA, which corresponds to a
voltage signal of 1 nV .
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part) [18], [117]. The heavily irradiated pads and walls have a lowered Tc. At higher
temperatures near Tc (see Figure 5.13 (b) (c)), the heavily irradiated part is in the normal
state. The magnetic field penetrates these regions and a normal-superconducting interface
forms. Since the pads for current injection are located at this interface, the surface barrier
effect is significant for the vortex motion in the high temperature regime near Tc. When
the temperature is lowered (more explicitly, below 85 K), this normal-superconducting in-
terface disappears and bulk pinning advances towards surface pinning. The vortex motion
is then dominated by the bulk pinning and the nonlinear resistance behavior thus disap-
pears. It is reported that the surface barrier can be suppressed when a sufficiently large
field (of the order 50 Oe) is applied to a BSCCO single crystal where correlated defects
are presented [133]. From Figure 5.32, the surface barrier is suppressed for a field around
56 Oe for the BSCCO "iv".

5.4.2 Comparison with Bose-glass model

To investigate the power law in Equation (5.13) experimentally, one usually calculates the
inverted logarithmic derivative (δ logR/δT )−1, which should be proportional to T −TBG
with a slope of 1/s. This method is widely used to investigate the power law behavior
at Tesla fields. By extrapolating (δ logR/δT )−1 to zero resistivity, one finds TBG. When
applying this method to the resistivity data under relatively low magnetic fields, of the
present study, one can compare the temperature dependence of the resistivity with scaling
laws only when the vortex shear flow is realized; Unfortunately, the data of (δ logR/δT )−1

is very noisy in this region and it is rather difficult to obtain the right value for the slope
1/s. This is illustrated in Figure 5.35.

Due to the above reason, the following fits are obtained directly from resistivity data
compared to Equation (5.13). Whenever possible, the exponent s is fixed so that a model
with three parameters (TBG, s, C ) reduces to a two-parameter fit. The fits shown in Figures
5.36, 5.37, and 5.38 yield reasonable "Bose-glass transition" temperatures and for a given
sample, the constant C does not vary so much at different magnetic fields. We obtain
a field-independent exponent s = 1.9 for sample BSCCO "iv" and for sample BSCCO
"24-4". While for BSCCO "10G", the exponent s is field-dependent.

Following the argument in Ref. [83], for a homogeneously irradiated crystal, as a
first order approximation, the fraction of vortices involved in topological defects, ρde f ,
is ρde f ≈ K (Bφ/B)1/2, where K is a proportionality constant. The fraction of vortices
forming the crystallites surrounded by the contours (rigid matrix), is thus 1− ρde f ≈
1−K (Bφ/B)1/2. With increasing field, the fraction of vortices confined in the rigid matrix
increases. In the case of channel confined structure, such as those in BSCCO "iv" and
BSCCO "24-4", the fraction of confined vortices in the channels remains constant upon
changes of the field since the strong pinning walls do not admit vortices in the range of
the field of this study (much lower than the matching field of 0.2 Tesla). This may provide
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perature. The resistance curve is also plotted on the same graph for comparison.

an explanation for the field-dependence of the exponent s found in sample BSCCO "10G"
contrary to the unique s found in sample BSCCO "iv" and in sample BSCCO "24-4". If
one takes the average value 1.2 for the exponent s as the bulk result (unconfined medium),
compared to s = 1.9 found for the channel confined medium, one finds v⊥≈ 0.35, z≈ 5.40.
The prediction made by Marchetti and Nelson [109], [32] is thus roughly verified.

Since in BSCCO "iv", the channels are free of any columnar defects, the Bose-glass
model is a priori not justified to describe the scaling law in this sample. Combining all the
analysis above, we suggest that a good fit between the experimental resistivity data and
different kinds of the scaling laws, notably the Bose-glass scaling law, may be resulted
from a confinement effect. The unique exponent s ≈ 1.9±0.2 found on sample BSCCO
"iv" and on sample BSCCO "24-4" may be only a characteristic of the confinement effect
due to the 20-µm channel. In the polycrystallite crystal BSCCO "10G", the vortex is con-
fined in the contours (rigid matrix) and the degree of the confinement is field-dependent



116CHAPTER 5. SHEAR VISCOSITY OF THE VORTEX LIQUID MEASUREMENTS IN OPTIMALLY DOPED BI2SR2CACU2O8 IN CHANNEL CONFINED GEOMETRY

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

60 65 70 75 80 85 90

310 Oe
155 Oe
116 Oe
77 Oe
56 Oe
35 Oe
16 Oe
11 Oe
Zero-fieldR

 (
  Ω

  )

T (K)

Fit with Bose-glass model: R = C(T-T
BG

)s, s = 1.9

BSCCO "iv"

H//c (Oe) TBG (K) C

310 63.59 3.66×10−7

155 74.35 1.06×10−6

116 77.70 1.76×10−6

Figure 5.36: "Bose-glass fit" (There are no columnar defects in the channels in this sam-
ple) for the resistivity data of BSCCO "iv" (channels only) according to Equation (5.13).
The right-hand panel shows the fit parameters. s is set to a common value: s = 1.9 for
different fields.



5.4. Confrontation between theory and resistivity data 117

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

80 82 84 86 88 90

155 Oe
116 Oe
77 Oe
35 Oe
Zero-field

R
 (

  Ω
  )

T (K)

Fit with Bose-glass model: R = C(T-T
BG

)s, s = 1.9

BSCCO "24-4"

H//c (Oe) TBG (K) C

155 80.84 4.50×10−5

116 82.02 4.93×10−5

77 83.52 6.07×10−5

Figure 5.37: Bose-glass fit for the resistivity data of BSCCO "24-4" (channels containing
columnar defects of Bφ = 10 G) according to Equation (5.13). The right-hand panel shows
the fit parameters. s is set to a common value: s = 1.9 for different fields.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

70 75 80 85 90

310 Oe
155 Oe
116 Oe
77 Oe
56 Oe

R
 (

  Ω
  )

T  ( K )

Fit with Bose-glass model: R = C(T-T
BG

)s

BSCCO "10G"

H//c (Oe) TBG (K) C s

310 73.91 2.38×10−5 1.81
155 78.57 6.05×10−5 1.32
116 80.39 8.00×10−5 1.17

Figure 5.38: Bose-glass fit for the resistivity data of BSCCO "10G" (homogenously ir-
radiated, Bφ = 10 G) according to Equation (5.13). The right-hand panel shows the fit
parameters. We remark that s takes different values for different fields.
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Figure from Ref. [83].

which yields a field-dependent exponent value s (see Figure 5.39).
In the lower range field in this study, the first order transition line exists and lies below

the "Bose-glass transition" lines obtained from the fits for the three samples (BSCCO "iv",
BSCCO "24-4" and BSCCO "10G") (see Figure 5.40). Doubts still remain concerning
whether the region below the so-called Bose-glass lines is a Bose-glass phase or simply
a confined liquid phase with a very small linear resistance (beyond the resolution of the
actual experimental set-up in this study).

The DMO images taken at the relevant temperature and field regime show that the
irradiated pads and walls present a much higher critical current density than that of the
sample edges, the surface barrier effect should not play an important role on the vortex
motion in the temperature and field range under consideration. The absence of nonlinear
resistance in the vortex liquid state in this temperature and field regime strongly supports
the above argument. The properties probed by our transport measurements on the samples
with the irradiated pattern correspond to the bulk properties of the vortex system. It is thus
highly desirable to investigate the scaling behavior on the samples with narrower channel
structures. Explicitly, if one obtains different values for the exponent s in samples with
channel confined structure of different channel widths (for example 10 µm, 5 µm), then
the accordance between the experimental resistivity data and the scaling laws does not
correspond to any phase transitions but only describe a confinement effect which mimics
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B0 = 275 G, Tc ≈ 89.5 K which is in good agreement with the experimental data for optimally doped
Bi2Sr2CaCu2O8 single crystals [24], [128].

that in a vortex liquid to disordered vortex solid transition. Unluckily the irradiation
experiments aiming to obtain channels of width less than 20 µm failed in our work. If
one obtains the same value for s≈ 1.9±0.2, then the I-V characterizations (using pulsed
current in order to avoid the Joule heating) are pursued for the investigation of the vortex
system at its Bose-glass state.
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Chapter 6

Conclusions

In this thesis, two experimental techniques are combined in order to study vortex dynam-
ics in high temperature superconductors: magneto-optical imaging and transport mea-
surements. These methods are applied to the characterization of high temperature super-
conducting single crystals, notably Bi2Sr2CaCu2O8. Magneto-optical imaging is used
to investigate the distribution of flux density and screening currents in superconduc-
tors to which orthogonal magnetic fields are applied, in the configuration of a Nuclear
Magnetic Resonance experiment. Finally, the shear properties of the vortex liquid in
Bi2Sr2CaCu2O8 single crystals are studied on approaching the vortex liquid-to-solid tran-
sition. In both cases, magneto-optical imaging is an invaluable tool to identify the path
of current flow, and thereby the physical mechanism at the origin of the electrodynamic
response of the superconductor, and at the origin of dissipation.

In the latter experiments, the shear viscosity of the vortex system can be measured
directly by introducing an artificial structure in Bi2Sr2CaCu2O8 single crystals that are
otherwise free of any macroscopic defects. Strongly pinning walls, introduced by heavy
ion irradiation through a 30 µm thick Ni mask, define weakly pinning channels through
which the vortex ensemble is forced to flow. An additional, essential ingredient of the
experiment is the inclusion of heavy-ion irradiated contact pads directly adjacent to the
channel structure, and far removed from the crystal boundaries. By injecting the transport
current through these irradiated pads, one forces the transport current to flow through
the bulk; shear flow of the vortex ensemble then takes place through the channels. The
shear viscosity of the vortices in the bulk can then be probed by a standard resistivity
measurement. The signatures of shear flow are clearly noticeable in the resistance curves.
The nature of the various features of the resistivity curves can be unambiguously identified
by comparing them to magneto-optical images of the magnetic field distribution created
by a transport current.

By comparing our results with the former work performed by H. Pastoriza and P. H.
Kes [72] and the work of D. T. Fuchs et al. [117] in Bi2Sr2CaCu2O8 single crystals, we
conclude that the vortex properties obtained in [72] correspond to the response of the
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surface of the Bi2Sr2CaCu2O8 crystal. Our work probes the bulk vortex properties; as
a consequence, we observed no sharp jump of the resistance within the resolution limit
(10−7 Ω) of our set-up.

We have compared our resistance data with two different models: two-dimensional
(2D) Nelson-Halperin melting model and the three-dimensional (3D) Bose-glass model.
Both the 2D and 3D models well describe the experimental resistance data as one ap-
proaches zero-resistance. There are several ways to understand this. First, in layered
Bi2Sr2CaCu2O8 single crystals, the interaction between the CuO2 planes is very weak
in the liquid vortex state. The vortex system might thus be considered as an ensem-
ble 2D vortices at the crystal surface; correspondingly, vortex lattice defects in layered
Bi2Sr2CaCu2O8 single crystals resemble 2D defects. However, the fact that the irradiated
structure is defined through the entire sample thickness means that the current is also dis-
tributed over the whole thickness: a plausible alternative is therefore that the vortex lattice
flows as an ensemble of rectilinear lines, and that vortex lattice defects (edge dislocations)
extend from crystal top to crystal bottom.

As we investigate the 3D glass model, one remarks that the obtained parameters within
the framework of the Bose-glass model correspond to the predictions of Marchetti and
Nelson [109]: a higher value of the critical exponent for confined vortex matter. It is also
noteworthy that glass-like features of the resistivity are observed, even though one is in
the vicinity of a first order transition of the vortex lattice. The fact that the resistance data,
even in the low fields investigated, can be well fitted by the power scaling law derived from
glass model may be attributed to the fact that plastic vortex motion in confined medium
mimics the vortex liquid to vortex glass transition. This point of view finds an analogy in
the recently reported shear-induced solid-to-fluid transition in soft glassy materials such
as foams, emulsions, gels, or colloidal suspensions.

There are various opportunities for the continuation of this work. Magneto-optical
imaging is a powerful experimental tool to study vortex dynamics in superconductors.
However, the relation between the light intensity in a magneto-optical image and the
magnetic flux intensity (B-field) is quadratic. We find that in the normally used differ-
ential imaging procedure [36], the signal is the true differential signal, convoluted with
the direct signal. If one incorporates a light polarization modulation procedure into the
image acquisition step, one can obtain a linear-in-B-field mapping, rather than (kB+α)2.
By performing a differential operation on the images of B-field, one would obtain true
differential signal, e.g., dB

dH , dB
dT . It would be very interesting to study the flux density pat-

tern at vortex lattice melting further in the presence of disorder with this new differential
magneto-optical imaging technique and reconsider the correlation between the melting
propagation and the resistivity change revealed by simultaneous magneto-optical imag-
ing and transport measurements. The first study of this correlation is reported in the thesis
work of A. Soibel [38], while this study only considered the situation where bulk pinning
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is absent.
We point out that the interpretation of differential magneto-optical imaging with an

in-plane field modulation presented in the fourth chapter of this thesis relies on the hy-
pothesis that the vortex responses under an in-plane field and a perpendicular field are
independent. This hypothesis needs more careful examination and the interpretation for
differential imaging with an in-plane field modulation could be more complicated.

Concerning the studies of confined vortex matter, if one succeeds in making new
masks with narrower channel widths, then comparisons of resistivity data with different
channel widths could be achieved and the size effects could be studied.
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Appendix A: Units, Notations, and
Conventions

A-1 Units
The two systems of electromagnetic units in most common use today are the SI and cgs-
Gaussian systems. The SI system is convenient in engineering applications and the cgs-
Gaussian system is more suitable for microscopic problems. This thesis is written with the
SI system throughout except for a few formulas that are explicitly quoted in cgs-Gaussian
system for convenience.

A-2 Definitions to study magnetic materials
The magnetic fields of magnets or generated by currents are characterized by the magnetic
induction or flux density B, with Tesla as its unit in SI system and Gauss as its unit in cgs-
Gaussian system (1 Tesla = 104 Gauss). When one applies a magnetic field on magnetic
materials which themselves contribute internal magnetic field, to distinguish the part of
the field that comes from the external applied field and the part from the material itself, one
defines another magnetic field quantity, which is independent of the material’s magnetic
response, called the magnetic field strength and designated by H, through the following
relation:

H≡ B0/µ0 ≡ B/µ0−M (A-1)
or

B = µ0(H+M) (A-2)
where M is called the magnetization density (magnetic moment per unit volume) of the
material, µ0 is a universal constant called the magnetic permeability of free space and µ0
≡ 4π×10−7 H/m in SI system1. H and M have the the same units, A/m, in SI system.

In the special case where the magnetization density is proportional to the external
applied magnetic field, one can rewrite Equation (A-2) as B = µH, where µ is defined as
1 In vacuum, B = µ0H. Its counterpart in cgs-Gaussian system is B = H. Equation (A-2) in cgs-Gaussian
system is: B = H+4πM.
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the magnetic permeability of the material. The ratio of the magnetic permeability of the
material µ to magnetic permeability of free space µ0, defined by µr ≡ µ/µ0, is called the
relative permeability of the material.

For paramagnetic substances, µr is greater than unity; For diamagnetic substances, µr
is smaller than unity; For ferromagnetic substances, there is no unique relation between
B and H. Another quantity, called the magnetic susceptibility, defined as χ ≡ µr − 1,
specifies how much the relative permeability differs from unity.

A-3 Convention employed to describe magnetic response
of superconductors

Equation (A-2) is a constitutive law for material. To model the behavior of supercon-
ductors, one can use two equivalent approaches as discussed in Ref. [8] and listed in
Table (A-1): in the so-called "Method I", M = 0 in the constitutive Equation (A-2) and
the supercurrent js contains two terms: the external applied current js,app and the induced
supercurrent js, ind due to the application of external magnetic field; while in the so-called
"Method II", M 6= 0 and the supercurrent js only refers to the external applied current
js,app. The constitutive relations are only to model the behavior of the material and are
not fundamental. The two modeling methods are related through the following relation:
curl M = js, ind so that all the experimentally observed phenomena can be consistently
described by both methods.

Quantity Method I (M = 0) Method II (M 6= 0)

Supercurrent jI
s = js,app + js, ind jII

s = js,app

Magnetic field HI = B/µ0 HII = B/µ0−M

Table A-1: Comparison between two modeling approaches.

We choose the approach "Method I" in this thesis to describe magnetic response of
superconductors. The difference between the measured magnetic flux density B and the
applied external magnetic field µ0Ha is defined as the self-field, designated by µ0Hs, i.e.,
µ0Hs ≡ B−µ0Ha. If one defines Ba ≡ µ0Ha and Bs ≡ µ0Hs, then one has: B = Ba +Bs.
The term self-field Hs employed in this thesis corresponds to the term "magnetization"
when one uses the second approach ("Method II") to describe magnetic behavior of su-
perconductors.
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Notations and conventions for magnetic and electric fields
on microscopic length scale
One uses h(r) to denote the local value of the magnetic induction or flux density, which
typically varies on the scale of the penetration depth λ. One reserves the use of B to denote
the value of h(r) averaged over such microscopic lengths but still capable of varying
smoothly over the macroscopic dimensions of the sample2. For notation symmetry, one
defines a microscopically varying electric field e(r), whose spatial average is E. The
macroscopic averages B and E satisfy the Maxwell’s equations, which are listed below
(expressed with SI units):

curl E = −∂B
∂t

,

curl B = µ0j+µ0ε0
∂E
∂t

,

div E =
ρ
ε0

,

div B = 0.

where j is the total current density3; ρ is the total charge density (including polarization
charges); µ0 is a universal constant called the magnetic permeability of free space and µ0
≡ 4π× 10−7 H/m in SI system; ε0 is a universal constant called the permittivity of free
space and ε0 = 1/c2µ0 ≈ 8.8542×10−12 F/m, with c the speed of light in vacuum.

2 I follow the conventions employed by P. G. De Gennes and M. Tinkham. 3 j = jc + jm + jp, where jc
is the conduction current density, jm is the magnetization current density defined as jm = curlM, jp is the
polarization current density defined as jp = ∂P/∂t, with P the electric dipole moment per unit volume.
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Appendix B: Nuclear Magnetic
Resonance and Knight shift

B-1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) provides a powerful tool for the identification and
the structure determination of complex molecules. It is possible to use the radiofrequency
signals from the nuclei to build up a detailed picture of the three-dimensional structure of
an object. A major medical application of NMR is Magnetic Resonance Imaging (MRI),
which allows 3D resolution of abnormal growths, configurations, and reactions in the
whole body.

The key elements to understand NMR are presented in the following. This simple
quantum mechanical description is inspired from C. P. Slichter’s book « Principles of
magnetic resonance » [134]. A nucleus possesses a total moment µ and a total angular
momentum ~I. The two vectors are parallel and are related by µ = γ~I, where γ is a
scalar called the gyromagnetic ratio. The application of a magnetic field H produces an
interaction energy of the nucleus of amount −µ ·H. One has, therefore, a very simple
Hamiltonian: H = −µ ·H. One denotes Iz as the component of I along the z-direction.
Taking the field to be H0 along the z-direction, one finds H = −γ ~ H0Iz. The eigenvalues
of this Hamiltonian are multiples (−γ ~H0) of the eigenvalues of Iz. Therefore the allowed
energies are: E = −γ ~ H0m, m = I, I−1, ...,−I.

In order to detect the presence of such a set of energy levels by spectral absorption
measurements, one needs to have an interaction that can cause transition between levels.
If one uses an alternating magnetic field of an amplitude Hac

x applied perpendicular to the
static field to produce magnetic resonances, one gets a perturbing term in the Hamiltonian
of H pert =−γ ~ Hac

x Ix cosωt. To satisfy the conservation of energy, the angular frequency
ω satisfies that ~ω = ∆E, where ∆E is the energy difference between the initial and final
nuclear Zeeman energies. The operator Ix has matrix elements between states m and m′,
(m′|Ix|m), which vanish unless m′ = m± 1. Consequently only the transitions between
adjacent energy levels are allowed, giving ~ω = ∆E = γ ~ H0 or ω = γH0. For example:
for the proton (γ = 2.675× 108 s−1T−1) in a magnetic field of 1 Tesla, the resonance
frequency is ν = 42.58 MHz (a radiofrequency).
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B-2 NMR probe of superconductors

B-2.1 NMR Knight shift

One finds that, in a given field H, the frequency νm at which nuclear resonance is observed
in a metal is higher than the frequency νi at which it occurs, for the same nucleus, in an
insulator. The ratio K = (νm−νi)/νi is called the Knight shift after its discoverer, and the
effect is due to the presence of conduction electrons in the metal [135].

The so-called hyperfine interaction is the magnetic interaction between the magnetic
moment I of the nucleus and the magnetic moment µe of the electrons [136]. As observed
from the nucleus, the interaction is caused by the magnetic field originating from the
magnetic moment µBJ of the electrons (here µB = e~/2m = 9.27×10−24 J/T is the Bohr
magneton). In the presence of electronic density n ∼ |Ψ(0)|2, where Ψ(0) denotes the
value of the electronic wavefunction at the nucleus, one has

U =−µ ·µe|Ψ(0)|2 ≈ 2γ~µB|Ψ(0)|2I ·J. (B-1)

Here J = L + S, L is the orbital angular momentum and S is the spin of the electron in
units of ~.

If the electrons are in a state with nonzero orbital angular momentum L, there is an
orbital electronic current about the nucleus. But, even if the electrons are in a state of zero
angular momentum, there is still a spin current about the nucleus, which gives rise to the
so-called contact hyperfine interaction:

Uc =−µ ·µe|Ψ(0)|2 ≈ 2γ~µB|Ψ(0)|2I ·S. (B-2)

The hyperfine constant a is defined by U = aI ·S, compared to Equation (B-2), one thus
gets:

a≈ 2γ~µB|ψ(0)|2. (B-3)

Taking into account this contact hyperfine interaction, the interaction energy of the
nucleus is

H =−γ~H0Iz +a < Sz > Iz, (B-4)

where the first term is the interaction with the applied magnetic field H0 and the second
is the average hyperfine interaction of the nucleus with the conduction electrons.

The average conduction electron spin < Sz > is related to the Pauli spin susceptibility
χspin of the conduction electrons through Mz (magnetization component along z-direction
per unit volume): Mz = χspinH0, where χspin = µ2

BN(EF)/EF , here EF is the Fermi energy
and N(EF) is the density of states at the Fermi surface. This relation is obtained by the
application of the Fermi-Dirac distribution to electrons [137]. Let N denote the number
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of electrons per unit volume, Mz can also be expressed by Mz = 2NµB < Sz >. One thus
gets:

< Sz >=
χspinH0

2NµB
. (B-5)

If one defines ∆H as ∆H ≡− aχspin

2NµBγ~ ·H0, the interaction energy can be expressed as:

H =−γ~H0(1+
∆H
H0

)Iz (B-6)

The Knight shift is:

K =
νm−νi

νi
=−∆H

H0
=

aχspin

2NµBγ~
(B-7)

Putting the expression of a in Equation (B-3) into the above Equation (B-7), one gets:

K≈χspin < |ψ(0)|2 >av

N
(B-8)

The Knight shift is therefore a measure of the Pauli spin susceptibility and so also a
measure of the density of states at the Fermi surface.

B-2.2 Knight shift measurements in superconductors
In superconductors, for the spin-singlet pairing, the ratio of the spin susceptibility of the
Cooper pair χs to that of the normal state χn is given by [41]:

χs

χn
=− 2

N0

∫ ∞

0
Ns(E)

∂ f (E)
∂E

dE (B-9)

where N0 and Ns(E) are the quasi-particle Density of States (DOS) in the normal and in
the superconducting state, respectively, and f (E) is the Fermi distribution function.

This is just the sort of tool one needs to explore the nature of the superconducting
state, since the coherent Cooper pair states are formed at energies near the Fermi energy.
Also, since the energy involved in the superconducting transition is small, it is unlikely
that the value ψ(0) of the wavefunction of a conduction electron at the position of a
nucleus is appreciably affected when the specimen goes superconducting. It would thus
be interesting to investigate the Knight shift in a superconductor from above Tc to as close
to 0 K as is reachable. In a singlet superconductor, the electrons in the Cooper pairs are
bound in spin singlets; they are not polarized at all in the small fields applied in NMR
experiments. As a result, the Knight shift or the Pauli spin susceptibility vanishes at zero
temperature [138].
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For the s-wave paring, the DOS is given by Ns(E)/N0 = |E|/
√

E2−∆2 (for |E|> ∆)
and Ns = 0 (for |E|< ∆), in which ∆ is a function of T/Tc. Equation (B-9) reduces to the
Yosida function Y (T/Tc) [139]. At low T, χs decreases exponentially as exp(−∆/kBT )
(see Figure B-1 (b), dashed line). In a spin-singlet d-wave state, the decay of χs is not
exponential. The gap symmetry in Y Ba2Cu4O8 compound is dx2−y2 symmetry and can be
modeled as: ∆(k) = ∆(φ) = ∆0cos(2φ), where ∆0 is the maximum gap, φ is the angle on
the cylindrical Fermi surface of the CuO2 plane. In the absence of a magnetic field,

Ns(E)/N0 =
1

2π

∫ 2π

0
Re[

E√
E2−∆2(φ)

]dφ =
2
π

E
∆0

K(
E
∆0

), (B-10)

Here Re(x) means the real part of x and K(x) is the complete elliptic integral. For small
E
∆0

, or when T < 0.4Tc, numerical evaluation shows that Ns(E) increases linearly with E
[140]. χs is proportional to T at low T (see Figure B-1 (b), solid line). As long as the
pairing is spin-singlet, χs diminishes to zero as T → 0 K. But for triplet superconductors
with the parallel spins lying in the plane, the application of a magnetic field in the plane
changes the relative numbers of pairs with spin parallel and antiparallel to the field, and
the Knight shift is unchanged from its value in the normal state [41] (see Figure B-3).

0

(a) (b)

Figure B-1: (a) Density of states for s-wave and d-wave superconductors according to Equation (B-10).
Dashed line: s-wave; Solid line: d-wave. Figure from Ref. [140]. (b) Normalized spin susceptibility
versus reduced temperature for the underdoped high-Tc superconductor, Gd : Y Ba2Cu4O8 (Tc = 82 K).
The measurements in [138] confirmed the linear temperature dependence at low temperatures for a d-
wave superconductor: Gd : Y Ba2Cu4O8. Solid line: Fit to a d-wave coupling model with maximum gap
∆0 = 2.3kBTc; Dashed line: s-wave weak coupling Yosida function. Figure from Ref. [138].

Taking, for example, a d-wave superconductor, the supercurrent enhances the effec-
tive density of states near the gap nodes, therefore the effective value of χs is higher than
expected. This is known as the Volovik effect. If one knows the current density distribu-
tion Js(r) in a superconductor, one can estimate the superfluid velocity, and therefore the
influence of the Volovik effect on the NMR Knight shift data.
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Node
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Figure B-2: (a) s-wave: isotropic gap ∆. (b) d-wave: anisotropic gap ∆ = ∆0 cos(2φ).

(a) (b)

Figure B-3: Knight shift measured for Sr2RuO4 (Tc = 1.4 K) with the field parallel to the ab plane. (a)
Definition of K1x and K1y. (b) Temperature dependence of K1x and K1y at low temperatures. Broken lines
below Tc indicate the calculation for the spin-singlet d-wave state in two dimensions with dx2−y2 symmetry,
using the parameters ∆(φ) = ∆0 cos(2φ) and 2∆0 = 8kBTc which are compatible with those of Y Ba2Cu3O7.
φ is the angle on the cylindrical Fermi surface of the CuO2 plane. Figure from Ref. [41].
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