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@ Perfect conductivity.
@ Exclusion of magnetic field (known as the Meissner effect).

Superconductivity is a thermodynamic state.
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Superconductivity

Superconducting materials

@ Many materials become superconducting at low
temperatures or high pressures.
@ "New" discoveries:

@ cuprate family: YBCO (1987), BSCCO (1988), ...

@ boron-doped group-1V semiconductors (diamond, silicon,
...) (since 2001)

o FeAs-based superconductors (2006)

@ SiH4 (2008, under high pressure)

@ Future: new forms of superconductivity?
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Two types of superconductors

H.(T) normal state

superconducting

state (Meissner state) Meissner St

Type-| Type-l

In general, type-Il superconductors have much higher Hc, J;

and also T than type-l superconductors. Here, we study type-Ii
superconductors.
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Magnetic flux quantization

Magnetic flux quantification in type-ll superconductors =- vortices
B = n¢o, ¢o = 55 = 2.07 x 10~/ G-cm?.

Type-II superconductor

’ I
—— — — ]
I — — — I

Vortex lattice observed in BioSr,CaCu,Oy with micro Hall
probes, H//C =12 Oe, T =81 K.
A. Grigorenko et al., Nature 414, 728 (2001).

/BdA = hze =@,
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Superconductivity

Vortex distribution in real superconductors

@ An ideal vortex lattice yields jc =0, R # 0.
jc is the critical current.

@ Vortex pinning by material defects (pinning centers) =
Vortex distribution is no longer uniform = j. >0, R = 0.

@ Bean'’s bulk pinning model (1962).

dB dB .
@ — ax — Mol

where j =jc, -jc or 0.
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Nonuniform vortex distribution observed by MOI: bulk
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Nonuniform vortex distribution observed by MOI: bulk
pinning

lincarly polarized
reflected light

incidept light T =11.6 K, Field increasing R
=0 Faraday rotation 10 Og 100 Oe full penetratioﬁ
0.=VB o 4 PR ' e ‘
substrate ] £ o7 -
1111”111(11 . 1 : :

| MO indicator

—T—Al mirror

'{ ample B G ! Pl
\ - flus lines
Magneto-optical images of a

ical i q NbN thin film (T, = 14 K) with a
Magneto'optlca Imaging thickness of 76 nm (deposited on

(MOI) measures the averaged a 12 nm thick Pt-Co layer with Si
as the substrate).

flux density.

Magneto-optical image fc
a YBa,Cu,O;q single crysth
acquired at T=10 K and
H, =180 Oe.




Introduction
00000080

Superconductivity

Nonuniform vortex distribution observed by MOI: bulk

pinning
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Magneto-optical images of a
NbN thin film (T, = 14 K) with a
thickness of 76 nm (deposited on
a 12 nm thick Pt-Co layer with Si
as the substrate).

Magneto-optical image fc
a YBa,Cu,O;q single crysth
acquired at T=10 K and
H, =180 Oe.
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Superconductivity

Nonuniform vortex distribution observed by MOI:

surface barrier

Even in the absence of bulk pinning, there is
still a surface barrier.

Once vortices overcome the barrier, they
accumulate in the center of the sample, yielding
a dome profile.

Weak surface pinning, strong bulk pinning = Bean'’s profile.

Strong surface pinning, weak bulk pinning =- Dome profile.
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NMR

Influences of bulk pinning and surface barrier to other

measurements

Example: Nuclear Magnetic Resonance (NMR)

Inhomogeneous field distribution!

@ Is all the sample probed by NMR experiments?

@ Supercurrent affects the density of states and thus the NMR Knight shift
data. Is this influence important?
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Method to obtain ac current distribution

NMR-like field configuration
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ac current distribution in YBa,Cu4Og (T, = 82 K)
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ac current distribution in YBa,Cu4Og (T, = 82 K)
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Three regimes

@ negligible screening current (T > 70 K)
@ surface barrier flow (20 K < T < 70 K)
@ bulk pinning flow (T < 20 K)
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Only the regions where the ac field penetrates
are probed by NMR measurements.
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@ Supercurrent affects the density of states and thus the NMR
Knight shift data. Is this influence important?
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Discussions

@ Is all the sample probed by NMR measurements?

@ Supercurrent affects the density of states and thus the NMR
Knight shift data. Is this influence important?

.

Answers obtained from our NMR model experiment:

@ At low temperatures (bulk pinning regime), only the sample
edges are probed by NMR measurements.

For certain materials whose j; is large, the supercurrent may
affect the NMR Knight shift data.

@ At intermediate temperatures (surface barrier regime), only the
sample bulk is probed.

There may be a tiny Ks due to the current at the edges only.
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@ Introduction

@ Shear viscosity of the vortex liquid
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High temperature superconductors

normal
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New paradigm (~ 1989): existence of a vortex liquid state.
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Vortex lattice melting in BSCCO
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Vortex lattice melting in BSCCO
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Vortex lattice melting in BSCCO
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vortex lattice melting:

@ jump in vortex density.
@ R—0.
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Vortex lattice melting in BSCCO
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vortex lattice melting:

@ jump in vortex density.
@ R—0.

However, pinning centers do not disappear!

Why R — 0 at the vortex liquid-lattice transition?
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Shear property

Resistance appears at vortex lattice melting

@ In 2D: by the appearance of free vortex lattice dislocations.
Resistance is related to the free dislocation density
(Nelson-Halperin theory).

@ In 3D: unclear. Is plastic motion of vortex lines important?

Measure the vortex shear properties.
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How to measure the shear viscosity?

Introduce artificial shear flow in weak pinning channel between strong

pinning walls.
a® Flux-liquid
channel
*J
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y
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How to measure the shear viscosity?

Introduce artificial shear flow in weak pinning channel between strong

pinning walls.
:40) Flux-liquid
channel
©J s % e
_____ - oo
y ST _ 26 L
S ML AR CORRRE p = p[1 — Ptanh(5)]
. X 11 ||
ool DU o oo

Hydrodynamic description
—-W4+nviv+f=0
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Shear property

How to measure the shear viscosity?

Introduce artificial shear flow in weak pinning channel between strong
pinning walls.

a® Flux-liquid
channel

CEPR)

p = pr[L — Ztanh(5;)]

e H || when 6(T) = +/ajq >= L, one J

X .
Bose-glass | Bose-glass h as:
contact -—0L

contact

el G C CEEHeT Relation between shear
~WH+nviv+f=0 viscosity and resistivity:
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H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)
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Previous work
H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)
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Previous work

H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)
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Cgs = 0 in the vortex liquid state while cge > 0 in
the vortex solid state (cgs: Shear modulus).
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Previous work

H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)
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Cgs = 0 in the vortex liquid state while cge > 0 in
the vortex solid state (cgs: Shear modulus).
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Signature of surface barrier in transport
D. T. Fuchs et al., Phys. Rev. Lett. 81, 3944 (1998)

Measurements performed on Bi,Sr,CaCu,0Og single crystals.
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Signature of surface barrier in transport
D. T. Fuchs et al., Phys. Rev. Lett. 81, 3944 (1998)
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Measurements performed on Bi,Sr,CaCu,0Og single crystals.
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Signature of surface barrier in transport
D. T. Fuchs et al., Phys. Rev. Lett. 81, 3944 (1998)
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Signature of surface barrier

Nonlinear resistance in the
liquid vortex state.

Measurements performed on Bi,Sr,CaCu,0Og single crystals.
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Signature of surface barrier in transport
D. T. Fuchs et al., Phys. Rev. Lett. 81, 3944 (1998)

300 Oe, 10 mA

o102 104
50 g
2103
i 10 square %
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7 =
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105 I «c
106 10°
: . 1 L
1.2 1.6 2 2.4 50 35 60 65 7
100/T [100/K] T (K)

Normalized R(T) of the
square and strip crystal in the
Nonlinear resistance in the vicinity of the first order
liquid vortex state. transition at H//c =300 Oe and
with 10 mA current.

Signature of surface barrier

Measurements performed on Bi,Sr,CaCu,0Og single crystals.
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Our approach

Objective
Bulk viscosity measurements without surface barrier.
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Our approach

Objective
Bulk viscosity measurements without surface barrier.

Contacts and channel structure are remote from the sample
edges. Furthermore, the contacts are heavily irradiated in order
to attract the current.
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Sample preparation

Experimental procedures

Selection of BSCCO single crystals

4

Realization of channel structure through irradiation

4

Realization of electrical contacts for transport measurements
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Sample preparation

Selection of BSCCO single crystals

growth direction _ growth direction

/’j — >
feed P4 sl Gidiics o
rod ’_/ ¥ X

molten zone

Non constant

intergrowth, a different chemical

crystal crystallization velocity phase as Bi,Sr,CaCu,0,

i
grown |
N

rain boundaries

The channels (weak pinning) should not contain any
macroscopic defects. = Necessary to select macroscopic
defect-free single crystals.
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Realization of channel structure through irradiation
(GANIL)

selective irradiation uniform irradiation

Pb*¢" ion beam of 1 GeV/ Pb56* jon beam of 1 GeV

nickel masks W

not-irradiated zone

thickness of
BSCCO crystal
<20 pm

irradiated zone

Selective irradiation through nickel masks

Thickness of a nickel mask is 6 ~ 10 um. 4 to 5 masks were superposed to
block the Pb®** ion beam of 1 GeV.
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Sample preparation

Realization of channel structure through irradiation
(GANIL)

selective irradiation uniform irradiation

Pb*¢" ion beam of 1 GeV/ Pb56* jon beam of 1 GeV

nickel masks W

not-irradiated zone

thickness of
BSCCO crystal
<20 um

irradiated zone

Selective irradiation through nickel masks

Thickness of a nickel mask is 6 ~ 10 um. 4 to 5 masks were superposed to
block the Pb®** ion beam of 1 GeV.

Definition of matching field B,

B, = nq¢o, Where nq is the density of columnar defects introduced by ion
irradiation.
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Sample preparation

Realization of electrical contacts

Plasma etching

I
Photolithography
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bulk pinning vs. surface pinning

Verification: bulk or surface properties?

@ Mapping of critical current.
@ Current path imaging.

@ Transport measurements.
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bulk pinning vs. surface pinning

Experimental results: MOI

Mapping of critical current

Field modulated MOI acquired at T = 80.5 K with field
modulation of 0.5 Oe, base field = 25 Oe, on BSCCO
crystal "iv* (clean 20 um wide channels).
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bulk pinning vs. surface pinning

Experimental results: MOI

Mapping of critical current

Field modulated MOI acquired at T = 80.5 K with field
modulation of 0.5 Oe, base field = 25 Oe, on BSCCO
crystal "iv* (clean 20 um wide channels).

Current path imaging

Current modulated differential
image acquired at T = 68 K,

H,,c =100 Oe, with | = +30 mA,
-30 mA, on BSCCO crystal "24-4"
(channels + low density of
columnar defects (B, = 10 G) in the
channels).

v
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bulk pinning vs. surface pinning

Experimental results: transport measurements

R(Q)
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bulk pinning vs. surface pinning

Experimental results: transport measurements
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bulk pinning vs. surface pinning

Experimental results: tra

sport measurements
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bulk pinning vs. surface pinning

Experimental results: transport measurements
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Summary: bulk pinning vs. surface pinning

Experimental facts

@ Field modulated differential magneto-optical imaging = jc walis > jsurface-

@ Current path imaging = current flows through the irradiated structure.

@ Transport measurements: no nonlinear resistance =- no surface barrier
effect in liquid vortex state.
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Summary: bulk pinning vs. surface pinning

Experimental facts

@ Field modulated differential magneto-optical imaging = jc walis > jsurface-
@ Current path imaging = current flows through the irradiated structure.

@ Transport measurements: no nonlinear resistance =- no surface barrier
effect in liquid vortex state.

Therefore we probe the bulk.
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@ Magneto-optical imaging and transport measurements
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Magneto-optical imaging and transport measurements

Signature of shear flow in transport measurements
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Magneto-optical imaging and transport measurements

Characteristic fields and temperatures
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Comparison with 2D melting model

D = 2: Nelson-Halperin model

scaling law of resistivity

p(T) ~ Crexp[~2Ca(+1%-)""],
where C1 ~ prux—fiow, C2 ~ 1 and T, is
the melting (freezing) temperature.
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Comparison with 2D melting model

D = 2: Nelson-Halperin model
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Comparison with 2D melting model

D = 2: Nelson-Halperin model
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Remarkably, R(T) of our 3D superconductor is well fitted
with 2D scaling law ...
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Comparison with 2D melting model

[-V characterization

2D Nelson-Halperin
melting property

Power law: V = |2, where
the exponent a has a
universal jump from 1 to 3 at
T = Ty (characteristic of 2D
melting).

Measurements performed on a Bi,Sr,CaCu,Og single crystal, containing
clean 20 um wide channels.
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Comparison with 2D melting model

[-V characterization
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Measurements performed on a Bi,Sr,CaCu,Og single crystal, containing
clean 20 um wide channels.



Results
[e]e]e] ]

Comparison with 2D melting model

Possible explanations

@ Current flows only at the top layer. (B. Khaykovich et al., Phys.
Rev. B 61, R9261 (2000))

@ A dimension cross-over takes place nearly simultaneously with
the liquid (2D) - solid (3D) transition.
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Layered structure of Bsr,CaCuyOg
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Comparison with 2D melting model

Possible explanations

@ Current flows only at the top layer. (B. Khaykovich et al., Phys.
Rev. B 61, R9261 (2000))

@ A dimension cross-over takes place nearly simultaneously with
the liquid (2D) - solid (3D) transition.

- - - - -
A‘/. ® o o .ﬁ
- - - -

w 1] .
& - o & < H Suggestion
:‘ > & o e H Multi-terminal transport
Y L & < o H measurements with
: | electrical contacts on both
L, ® * & H the top and bottom surfaces.
rs -
w ]

Layered structure of Bsr,CaCuyOg



Results
[ le]e}

Comparison with 3D Bose-glass model

Outline

e Results

@ Comparison with 3D Bose-glass model
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Comparison with 3D Bose-glass model

D = 3 with columnar defects: Bose-glass model

Marchetti and Nelson’s proposal

Introduce a low density of columnar defects in the channels. A Bose liquid
state should be realized in the channels.
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Comparison with 3D Bose-glass model

D = 3 with columnar defects: Bose-glass model

Marchetti and Nelson’s proposal

Introduce a low density of columnar defects in the channels. A Bose liquid
state should be realized in the channels.

| N

Prediction
@ Vortex liquid to Bose-glass transition at Tgg.
@ Near Tgg, p(T) ~ L?|T — Tgg|"+? for channel confined
vortices.
@ v is the static critical exponent, z is the dynamic critical
exponent. Simulations: v, ~ 1,z ~ 4.6.

N
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D = 3 with columnar defects: Bose-glass model

Marchetti and Nelson’s proposal

Introduce a low density of columnar defects in the channels. A Bose liquid
state should be realized in the channels.

| A\

Prediction
@ Vortex liquid to Bose-glass transition at Tgg.
@ Near Tgg, p(T) ~ L?|T — Tgg|"+? for channel confined
vortices.

@ v is the static critical exponent, z is the dynamic critical
exponent. Simulations: v, ~ 1,z ~ 4.6.

N

Reference: non-confined Bose-liquid

Near Tgg, p(T) ~ |T — Tgg|'+ @2
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Comparison with 3D Bose-glass model

Experimental data vs. 3D Bose-glass model
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we find: s = 0.8 + 0.0032H.




Discussions

Comparison of different types of confinement

O 20 um wide channels in pristine crystal ("iv")
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Degree of confinement comparison:

20 ym wide channels + B4 =10 G
~ By = 10 G > 20 pm wide clean channels > pristine.




Discussions

Confinement realized in a uniformly irradiated sample
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Summary

Summary

@ Bulk vortex properties have been successfully probed.
@ Both of the 2D and 3D models fit with the experimental
resistance data approaching zero-resistance. Why?
@ p. — 0.
@ Surface barrier contribution when it becomes effective.
@ Defects in 3D vortex lattice yield similar contribution to p(T)
as defects in 2D vortex lattice.
o Defects in vortex lattice in layered BSCCO resemble 2D
defects (i.e., pancake vortices).
@ Field modulated differential magneto-optical imaging can
serve as a tool for estimating transport current flow
distribution prior to the transport measurements.

@ Outlook
@ Varying channel width: size effect.
o Establishing electrical contacts on both the top and bottom
surfaces: c-axis correlation.
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