## Heterogeneous vortex dynamics in high temperature superconductors

### Feng YANG

Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128 Palaiseau, France.

June 18, 2009/PhD thesis defense

| Introduction<br>000000000000000000000000000000000000 | Methods | Results<br>0000000 | Discussions | Summary |
|------------------------------------------------------|---------|--------------------|-------------|---------|
| Quilling                                             |         |                    |             |         |

## Outline



### Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid

## 2 Methods

- Experimental procedures
- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

## 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

## 4 Discussions



### Introduction

### Superconductivity

- Model NMR experiments
- Shear viscosity of the vortex liquid

## 2 Methods

- Experimental procedures
- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

## 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

## Discussions

5 Summary

### Superconductivity

## Zero resistance and diamagnetism



### Perfect conductivity.

Exclusion of magnetic field (known as the Meissner effect).

Superconductivity is a thermodynamic state.

・ロト ・雪 ト ・ ヨ ト

э

Results

Discussions

Summary

### Superconductivity

## Zero resistance and diamagnetism





- Perfect conductivity.
- Exclusion of magnetic field (known as the Meissner effect).

Superconductivity is a thermodynamic state.

Results

Discussions

Summary

#### Superconductivity

## Zero resistance and diamagnetism





・ロ と く 聞 と く 回 と く 回 と

- Perfect conductivity.
- Exclusion of magnetic field (known as the Meissner effect).

### Superconductivity is a thermodynamic state.

Results

Discussions

Summary

Superconductivity

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988),
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)
  - FeAs-based superconductors (2006)
  - SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

Results

Discussions

Summary

Superconductivity

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)
  - FeAs-based superconductors (2006)
  - SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)

- FeAs-based superconductors (2006)
- SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)

- FeAs-based superconductors (2006)
- SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)

- FeAs-based superconductors (2006)
- SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)

- FeAs-based superconductors (2006)
- SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

Superconductivity

## Superconducting materials

- Many materials become superconducting at low temperatures or high pressures.
- New" discoveries:
  - cuprate family: YBCO (1987), BSCCO (1988), ...
  - boron-doped group-IV semiconductors (diamond, silicon, ...) (since 2001)

- FeAs-based superconductors (2006)
- SiH<sub>4</sub> (2008, under high pressure)
- Future: new forms of superconductivity?

| Introduction<br>000000000000000000000000000000000000 | Methods<br>cooccocccccccccccccccccccccccccccccc | Results<br>0000000 | Discussions | Summary |
|------------------------------------------------------|-------------------------------------------------|--------------------|-------------|---------|
| Superconductivity                                    |                                                 |                    |             |         |

## Two types of superconductors



In general, type-II superconductors have much higher  $H_c$ ,  $J_c$  and also  $T_c$  than type-I superconductors. Here, we study type-II superconductors.

(日) (日) (日) (日) (日) (日) (日) (日)

| Introduction<br>000000000000000000000000000000000000 | Methods<br>cooccocccccccccccccccccccccccccccccc | Results<br>ooooooo | Discussions | Summary |
|------------------------------------------------------|-------------------------------------------------|--------------------|-------------|---------|
| Superconductivity                                    |                                                 |                    |             |         |

## Two types of superconductors



In general, type-II superconductors have much higher  $H_c$ ,  $J_c$  and also  $T_c$  than type-I superconductors. Here, we study type-II superconductors.

(日) (日) (日) (日) (日) (日) (日) (日)

| Introduction<br>000000000000000000000000000000000000 | Methods<br>cooccocccccccccccccccccccccccccccccc | Results<br>ooooooo | Discussions | Summary |
|------------------------------------------------------|-------------------------------------------------|--------------------|-------------|---------|
| Superconductivity                                    |                                                 |                    |             |         |

## Two types of superconductors



In general, type-II superconductors have much higher  $H_c$ ,  $J_c$  and also  $T_c$  than type-I superconductors. Here, we study type-II superconductors.

 Introduction
 Methods
 Results
 Discussions
 Summary

 coco
 coco
 coco
 coco
 Suppreconductivity
 Suppreconductivity

## Magnetic flux quantization

Magnetic flux quantification in type-II superconductors  $\Rightarrow$  vortices

$$B = n\phi_0, \ \phi_0 = \frac{h}{2e} = 2.07 \times 10^{-7} \text{ G} \cdot \text{cm}^2.$$



Vortex lattice observed in  $Bi_2Sr_2CaCu_2O_x$  with micro Hall probes,  $H_{//c} = 12$  Oe, T = 81 K. A. Grigorenko et al., Nature **414**, 728 (2001). Introduction Methods

Results

Discussions

・ロット (雪) (日) (日) (日)

Summary

Superconductivity

## Vortex distribution in real superconductors

- An ideal vortex lattice yields  $j_c = 0$ ,  $R \neq 0$ .  $j_c$  is the critical current.
- Vortex pinning by material defects (pinning centers) ⇒
  Vortex distribution is no longer uniform ⇒ *j<sub>c</sub>* > 0, *R* = 0.
- Bean's bulk pinning model (1962).

 $\frac{dB_z}{dz} - \frac{dB_z}{dx} = \mu_0 j,$ where  $j = j_c$ ,  $-j_c$  or 0.

Superconductivity

## Vortex distribution in real superconductors

- An ideal vortex lattice yields  $j_c = 0$ ,  $R \neq 0$ .  $j_c$  is the critical current.
- Vortex pinning by material defects (pinning centers) ⇒
  Vortex distribution is no longer uniform ⇒ *j<sub>c</sub>* > 0, *R* = 0.

・ロット (雪) (日) (日) (日)

• Bean's bulk pinning model (1962).



#### Superconductivity

## Vortex distribution in real superconductors

- An ideal vortex lattice yields j<sub>c</sub> = 0, R ≠ 0.
  j<sub>c</sub> is the critical current.
- Vortex pinning by material defects (pinning centers) ⇒
  Vortex distribution is no longer uniform ⇒ j<sub>c</sub> > 0, R = 0.

• Bean's bulk pinning model (1962).



#### Superconductivity

## Vortex distribution in real superconductors

- An ideal vortex lattice yields  $j_c = 0$ ,  $R \neq 0$ .  $j_c$  is the critical current.
- Vortex pinning by material defects (pinning centers) ⇒
  Vortex distribution is no longer uniform ⇒ *j<sub>c</sub>* > 0, *R* = 0.

• Bean's bulk pinning model (1962).

$$\frac{dB_x}{dz} - \frac{dB_z}{dx} = \mu_0 j,$$
  
where  $j = j_c, -j_c$  or 0.

Introduction Methods Results Discussions Summary

#### Superconductivity

## Vortex distribution in real superconductors

- An ideal vortex lattice yields j<sub>c</sub> = 0, R ≠ 0.
  j<sub>c</sub> is the critical current.
- Vortex pinning by material defects (pinning centers) ⇒
  Vortex distribution is no longer uniform ⇒ *j<sub>c</sub>* > 0, *R* = 0.
- Bean's bulk pinning model (1962).

$$\frac{dB_x}{dz} - \frac{dB_z}{dx} = \mu_0 j,$$
  
where  $j = j_c, -j_c$  or 0.



< □ > < 同 > < 回 >

(日) (日) (日) (日) (日) (日) (日) (日)

Superconductivity

# Nonuniform vortex distribution observed by MOI: bulk pinning

Magneto-optical imaging (MOI) measures the averaged flux density.

Image intensity gradient  $\sim j_c$ .

### Superconductivity

# Nonuniform vortex distribution observed by MOI: bulk pinning



Magneto-optical imaging (MOI) measures the averaged flux density.

Image intensity gradient  $\sim j_c$ .

T = 11.6 K, Field increasing

100 Oe

full penetration

### Superconductivity

# Nonuniform vortex distribution observed by MOI: bulk pinning



Magneto-optical imaging (MOI) measures the averaged flux density.

### Image intensity gradient $\sim j_c$ .



10 Oe

mm





### Superconductivity

## Nonuniform vortex distribution observed by MOI: bulk pinning



### Magneto-optical imaging (MOI) measures the averaged flux density.









Magneto-optical images of a NbN thin film  $(T_c = 14 \text{ K})$  with a thickness of 76 nm (deposited on a 12 nm thick Pt-Co layer with Si as the substrate).



Magneto-optical image of a YBa<sub>2</sub>Cu<sub>4</sub>O<sub>8</sub> single crystal, acquired at T = 10 K and  $H_0 = 180 \text{ Oe}.$ 

### Superconductivity

# Nonuniform vortex distribution observed by MOI: bulk pinning



Magneto-optical imaging (MOI) measures the averaged flux density.

### Image intensity gradient $\sim j_c$ .











Magneto-optical images of a NbN thin film ( $T_c = 14$  K) with a thickness of 76 nm (deposited on a 12 nm thick Pt-Co layer with Si as the substrate).



Magneto-optical image of a YBa<sub>2</sub>Cu<sub>4</sub>O<sub>8</sub> single crystal, acquired at T = 10 K and H<sub>a</sub> = 180 Oe.

### Superconductivity

## Nonuniform vortex distribution observed by MOI: surface barrier



Even in the absence of bulk pinning, there is still a surface barrier.

Once vortices overcome the barrier, they accumulate in the center of the sample, yielding a dome profile.

Weak surface pinning, strong bulk pinning  $\Rightarrow$  Bean's profile.

### Superconductivity

## Nonuniform vortex distribution observed by MOI: surface barrier



Even in the absence of bulk pinning, there is still a surface barrier.

Once vortices overcome the barrier, they accumulate in the center of the sample, yielding a dome profile.

Weak surface pinning, strong bulk pinning  $\Rightarrow$  Bean's profile.

### Superconductivity

## Nonuniform vortex distribution observed by MOI: surface barrier



Even in the absence of bulk pinning, there is still a surface barrier.

Once vortices overcome the barrier, they accumulate in the center of the sample, yielding a dome profile.

Weak surface pinning, strong bulk pinning  $\Rightarrow$  Bean's profile.

### Superconductivity

## Nonuniform vortex distribution observed by MOI: surface barrier



Even in the absence of bulk pinning, there is still a surface barrier.

Once vortices overcome the barrier, they accumulate in the center of the sample, yielding a dome profile.

Weak surface pinning, strong bulk pinning  $\Rightarrow$  Bean's profile.

### Superconductivity

## Nonuniform vortex distribution observed by MOI: surface barrier



Even in the absence of bulk pinning, there is still a surface barrier.

Once vortices overcome the barrier, they accumulate in the center of the sample, yielding a dome profile.

Weak surface pinning, strong bulk pinning  $\Rightarrow$  Bean's profile.

| Introduction | Methods | Results<br>0000000 | Discussions | Summary |
|--------------|---------|--------------------|-------------|---------|
| NMR          |         |                    |             |         |
| Outline      |         |                    |             |         |



## Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid

## 2 Methods

- Experimental procedures
- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

・ロット (雪) (日) (日) (日)

## 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

## Discussions

5 Summary

・ロ と く 聞 と く 回 と く 回 と

-

#### NMR

## Influences of bulk pinning and surface barrier to other measurements Example: Nuclear Magnetic Resonance (NMR)

### Inhomogeneous field distribution!

### Questions:

- Is all the sample probed by NMR experiments?
- Supercurrent affects the density of states and thus the NMR Knight shift data. Is this influence important?

#### NMR

## Influences of bulk pinning and surface barrier to other measurements Example: Nuclear Magnetic Resonance (NMR)

### Inhomogeneous field distribution!

### Questions:

- Is all the sample probed by NMR experiments?
- Supercurrent affects the density of states and thus the NMR Knight shift data. Is this influence important?

Results

Discussions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

NMR

## Method to obtain ac current distribution


dc

# Differential image acquisition procedure

YBa<sub>2</sub>Cu₄O<sub>8</sub>

y (axis a)



Results

Discussions

Summary

NMR

# ac current distribution in $YBa_2Cu_4O_8$ ( $T_c = 82$ K)

#### Three regimes

- negligible screening current (T > 70 K)
- surface barrier flow (20 K < T < 70 K)</p>
- bulk pinning flow (T < 20 K)</p>

Results

Discussions

Summary

#### NMR

# ac current distribution in $YBa_2Cu_4O_8$ ( $T_c = 82$ K)



### Three regimes

- negligible screening current (T > 70 K)
- surface barrier flow (20 K < T < 70 K)</p>
- bulk pinning flow (T < 20 K)</p>

Results

Discussions

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

NMR

## Results: ac field penetration

Only the regions where the ac field penetrates are probed by NMR measurements.

Introduction Methods

Results

Discussions

Summary

NMR

# Results: ac field penetration

# Only the regions where the ac field penetrates are probed by NMR measurements.



# Discussions

### **Questions:**

- Is all the sample probed by NMR measurements?
- Supercurrent affects the density of states and thus the NMR Knight shift data. Is this influence important?

### Answers obtained from our NMR model experiment:

• At low temperatures (bulk pinning regime), only the sample edges are probed by NMR measurements.

For certain materials whose  $j_c$  is large, the supercurrent may affect the NMR Knight shift data.

 At intermediate temperatures (surface barrier regime), only the sample bulk is probed.

There may be a tiny  $K_s$  due to the current at the edges only.

# Discussions

### **Questions:**

- Is all the sample probed by NMR measurements?
- Supercurrent affects the density of states and thus the NMR Knight shift data. Is this influence important?

### Answers obtained from our NMR model experiment:

 At low temperatures (bulk pinning regime), only the sample edges are probed by NMR measurements.

For certain materials whose  $j_c$  is large, the supercurrent may affect the NMR Knight shift data.

 At intermediate temperatures (surface barrier regime), only the sample bulk is probed.

There may be a tiny  $K_s$  due to the current at the edges only.

| Introduction   | Methods<br>oo@oooooooooooooo | Results<br>0000000 | Discussions | Summary |
|----------------|------------------------------|--------------------|-------------|---------|
| Shear property |                              |                    |             |         |
| Outline        |                              |                    |             |         |



## Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid
- 2 Methods
  - Experimental procedures
  - Verification: bulk or surface properties?
  - Magneto-optical imaging and transport measurements

・ロット (雪) (日) (日) (日)

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model
- Discussions
- 5 Summary

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |

# High temperature superconductors

New paradigm ( $\sim$  1989): existence of a vortex liquid state.

- ロト・日本・日本・日本・日本・日本

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |
| 0                                       |                                         |         |             |         |

## High temperature superconductors



New paradigm ( $\sim$  1989): existence of a vortex liquid state.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



## High temperature superconductors





◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

## New paradigm ( $\sim$ 1989): existence of a vortex liquid state.

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |

# Vortex lattice melting in BSCCO



#### vortex lattice melting:

- jump in vortex density.
- $R \rightarrow 0$ .

#### However, pinning centers do not disappear!

Results

Discussions

#### Shear property

# Vortex lattice melting in BSCCO



#### vortex lattice melting:

- jump in vortex density.
- $R \rightarrow 0$ .

### However, pinning centers do not disappear!

## Introduction Methods

Results

Discussions

э

#### Shear property

# Vortex lattice melting in BSCCO



#### vortex lattice melting:

- jump in vortex density.
- $R \rightarrow 0$ .

### However, pinning centers do not disappear!

Results

Discussions

#### Shear property

# Vortex lattice melting in BSCCO



### vortex lattice melting:

- jump in vortex density.
- $R \rightarrow 0.$

### However, pinning centers do not disappear!

・ロット (雪) (日) (日) (日)

#### Shear property

# Resistance appears at vortex lattice melting

- In 2D: by the appearance of free vortex lattice dislocations. Resistance is related to the free dislocation density (Nelson-Halperin theory).
- In 3D: unclear. Is plastic motion of vortex lines important?

#### Answer:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Shear property

# Resistance appears at vortex lattice melting

- In 2D: by the appearance of free vortex lattice dislocations. Resistance is related to the free dislocation density (Nelson-Halperin theory).
- In 3D: unclear. Is plastic motion of vortex lines important?

#### Answer:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Shear property

# Resistance appears at vortex lattice melting

- In 2D: by the appearance of free vortex lattice dislocations. Resistance is related to the free dislocation density (Nelson-Halperin theory).
- In 3D: unclear. Is plastic motion of vortex lines important?

#### Answer:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Shear property

# Resistance appears at vortex lattice melting

- In 2D: by the appearance of free vortex lattice dislocations. Resistance is related to the free dislocation density (Nelson-Halperin theory).
- In 3D: unclear. Is plastic motion of vortex lines important?

### Answer:

Discussions

Summary

Shear property

# How to measure the shear viscosity?

#### Method

Introduce artificial shear flow in weak pinning channel between strong pinning walls.

#### Hydrodynamic description

$$-\gamma \mathbf{v} + \eta \bigtriangledown^2_{\perp} \mathbf{v} + \mathbf{f} = \mathbf{0}$$

### Result

$$\rho = \rho_f [1 - \frac{2\delta}{L} tanh(\frac{L}{2\delta})]$$

when  $\delta(T) \equiv \sqrt{\eta/\gamma} >> L$ , one has:

$$ho(\mathbf{T}) \sim \mathbf{B}^2 rac{L^2}{\eta(\mathbf{T})}$$

Discussions

Shear property

# How to measure the shear viscosity?

### Method

Introduce artificial shear flow in weak pinning channel between strong pinning walls.



#### Hydrodynamic description

 $-\gamma \mathbf{v} + \eta \bigtriangledown^2 \mathbf{v} + \mathbf{f} = \mathbf{0}$ 

#### Result

$$\rho = \rho_f [1 - \frac{2\delta}{L} tanh(\frac{L}{2\delta})]$$

when  $\delta(T) \equiv \sqrt{\eta/\gamma} >> L$ , one has:

$$ho(T) \sim B^2 rac{L^2}{\eta(T)}$$

Discussions

Shear property

# How to measure the shear viscosity?

### Method

Introduce artificial shear flow in weak pinning channel between strong pinning walls.



Result  

$$\rho = \rho_f [1 - \frac{2\delta}{L} tanh(\frac{L}{2\delta})]$$

when  $\delta(T) \equiv \sqrt{\eta/\gamma} >> L$ , one has:

$$ho(\mathbf{T}) \sim \mathbf{B}^2 rac{L^2}{\eta(\mathbf{T})}$$

Discussions

Shear property

# How to measure the shear viscosity?

### Method

Introduce artificial shear flow in weak pinning channel between strong pinning walls.



Result  

$$\rho = \rho_f [1 - \frac{2\delta}{L} tanh(\frac{L}{2\delta})]$$

when  $\delta(T) \equiv \sqrt{\eta/\gamma} >> L$ , one has:

$$\rho(T) \sim B^2 \frac{L^2}{\eta(T)}$$

| Introduction                          | Methods<br>ായറററററററററററ          | Results<br>0000000          | Discussions | Summary |
|---------------------------------------|-----------------------------------|-----------------------------|-------------|---------|
| Shear property                        |                                   |                             |             |         |
| Previous wor<br>H. Pastoriza and P. H | <b>ʻk</b><br>I. Kes, Phys. Rev. I | _ett. <b>75</b> , 3525 (199 | 5)          |         |

#### nterpretation

 $c_{66} = 0$  in the vortex liquid state while  $c_{66} > 0$  in the vortex solid state ( $c_{66}$ : shear modulus).

But surface barrier problem ...

(日)

э

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |

# Previous work

#### H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)





(日)

#### Interpretation

 $c_{66} = 0$  in the vortex liquid state while  $c_{66} > 0$  in the vortex solid state ( $c_{66}$ : shear modulus).

But surface barrier problem ..

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |

# Previous work

#### H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)





イロト イ得ト イヨト イヨト

### Interpretation

 $c_{66} = 0$  in the vortex liquid state while  $c_{66} > 0$  in the vortex solid state ( $c_{66}$ : shear modulus).

But surface barrier problem ..

| Introduction                            | Methods                                 | Results | Discussions | Summary |
|-----------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |         |             |         |

# Previous work

#### H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)





## Interpretation

 $c_{66} = 0$  in the vortex liquid state while  $c_{66} > 0$  in the vortex solid state ( $c_{66}$ : shear modulus).

### But surface barrier problem ...

Discussions

Summary

Shear property

## Signature of surface barrier in transport D. T. Fuchs et al., Phys. Rev. Lett. **81**, 3944 (1998)

### Signature of surface barrier

Nonlinear resistance in the liquid vortex state.

Normalized R(T) of the square and strip crystal in the vicinity of the first order transition at  $H_{//c} = 300$  Oe and with 10 mA current.

### Measurements performed on $Bi_2 Sr_2 CaCu_2 O_8$ single crystals.

Results

Discussions

Summary

#### Shear property

### Signature of surface barrier in transport D. T. Fuchs et al., Phys. Rev. Lett. **81**, 3944 (1998)



### Signature of surface barrier

Nonlinear resistance in the liquid vortex state.

Normalized R(T) of the square and strip crystal in the vicinity of the first order transition at  $H_{//c} = 300$  Oe and with 10 mA current.

### Measurements performed on $Bi_2 Sr_2 CaCu_2 O_8$ single crystals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results

Discussions

Summary

#### Shear property

### Signature of surface barrier in transport D. T. Fuchs et al., Phys. Rev. Lett. **81**, 3944 (1998)



### Signature of surface barrier

Nonlinear resistance in the liquid vortex state.

Normalized R(T) of the square and strip crystal in the vicinity of the first order transition at  $H_{//c} = 300$  Oe and with 10 mA current.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Measurements performed on  $Bi_2 Sr_2 CaCu_2 O_8$  single crystals.

Results

Discussions

Summary

#### Shear property

### Signature of surface barrier in transport D. T. Fuchs et al., Phys. Rev. Lett. **81**, 3944 (1998)



## Signature of surface barrier

Nonlinear resistance in the liquid vortex state.

Normalized R(T) of the square and strip crystal in the vicinity of the first order transition at  $H_{//c}$  = 300 Oe and with 10 mA current.

Measurements performed on  $Bi_2 Sr_2 CaCu_2 O_8$  single crystals.

| Introduction   | Methods | Results<br>0000000 | Discussions | Summary |
|----------------|---------|--------------------|-------------|---------|
| Shear property |         |                    |             |         |
| Our approach   | า       |                    |             |         |

### Objective

Bulk viscosity measurements without surface barrier.

#### Method

Contacts and channel structure are remote from the sample edges. Furthermore, the contacts are heavily irradiated in order to *attract* the current.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| Introduction                            | Methods      | Results | Discussions | Summary |
|-----------------------------------------|--------------|---------|-------------|---------|
| 000000000000000000000000000000000000000 | 000000000000 |         |             |         |
| Shear property                          |              |         |             |         |
| Our approach                            | า            |         |             |         |
|                                         |              |         |             |         |

### Objective

Bulk viscosity measurements without surface barrier.

### Method

Contacts and channel structure are remote from the sample edges. Furthermore, the contacts are heavily irradiated in order to *attract* the current.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

| Introduction   | Methods | Results<br>ooooooo | Discussions | Summary |
|----------------|---------|--------------------|-------------|---------|
| Shear property |         |                    |             |         |
| Our approacl   | า       |                    |             |         |
|                |         |                    |             |         |

## Objective

## Bulk viscosity measurements without surface barrier.

## Method



| Introduction       | Methods | Results<br>0000000 | Discussions | Summary |
|--------------------|---------|--------------------|-------------|---------|
| Sample preparation |         |                    |             |         |
| Outline            |         |                    |             |         |

## Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid

## 2 Methods

### Experimental procedures

- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

・ロット (雪) (日) (日) (日)

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

## 4 Discussions

5 Summary



## Selection of BSCCO single crystals

₩

### Realization of channel structure through irradiation

∜

Realization of electrical contacts for transport measurements

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで
Discussions

#### Sample preparation

# Selection of BSCCO single crystals



The channels (weak pinning) should not contain any macroscopic defects.  $\Rightarrow$  Necessary to select macroscopic defect-free single crystals.

Discussions

Summary

#### Sample preparation

# Realization of channel structure through irradiation (GANIL)

#### Selective irradiation through nickel masks

Thickness of a nickel mask is 6  $\sim$  10  $\mu m.$  4 to 5 masks were superposed to block the Pb<sup>56+</sup> ion beam of 1 GeV.

## Definition of matching field $B_d$

#### Sample preparation

# Realization of channel structure through irradiation (GANIL)



selective irradiation

#### uniform irradiation

Pb56+ ion beam of 1 GeV

#### Selective irradiation through nickel masks

Thickness of a nickel mask is 6  $\sim$  10  $\mu m.$  4 to 5 masks were superposed to block the Pb^{56+} ion beam of 1 GeV.

## Definition of matching field $B_d$

・ロット (雪) (日) (日) (日)

#### Sample preparation

# Realization of channel structure through irradiation (GANIL)



#### uniform irradiation

Pb56+ ion beam of 1 GeV

### Selective irradiation through nickel masks

Thickness of a nickel mask is 6  $\sim$  10  $\mu m$  4 to 5 masks were superposed to block the Pb^{56+} ion beam of 1 GeV.

## Definition of matching field $B_d$

・ロット (雪) ・ ( 目) ・ ( 日) ・

#### Sample preparation

# Realization of channel structure through irradiation (GANIL)



#### uniform irradiation

Pb56+ ion beam of 1 GeV



### Selective irradiation through nickel masks

Thickness of a nickel mask is 6  $\sim$  10  $\mu m$  4 to 5 masks were superposed to block the Pb^{56+} ion beam of 1 GeV.

## Definition of matching field $B_{\phi}$

## Plasma etching

↓

## Photolithography



| Introduction                   | Methods<br>∞∞∞०००० <b>०</b> ००० | Results<br>0000000 | Discussions | Summary |
|--------------------------------|---------------------------------|--------------------|-------------|---------|
| bulk pinning vs. surface pinni | ng                              |                    |             |         |
| Outline                        |                                 |                    |             |         |

## Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid

# 2 Methods

- Experimental procedures
- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

# Discussions

5 Summary

 Results

Discussions

Summary

bulk pinning vs. surface pinning

# Verification: bulk or surface properties?

- Mapping of critical current.
- Current path imaging.
- Transport measurements.

 Results

Discussions

Summary

bulk pinning vs. surface pinning

Verification: bulk or surface properties?

- Mapping of critical current.
- Current path imaging.
- Transport measurements.

#### bulk pinning vs. surface pinning

# Experimental results: MOI



#### Mapping of critical current

Field modulated MOI acquired at T = 80.5 K with field modulation of 0.5 Oe, base field = 25 Oe, on BSCCO crystal "*iv*" (clean 20  $\mu m$  wide channels).

#### Current path imaging

Current modulated differential image acquired at T = 68 K,  $H_{//c}$  = 100 Oe, with I = +30 mA, -30 mA, on BSCCO crystal "24-4" (channels + low density of columnar defects ( $B_{\phi}$  = 10 G) in the channels).

(日) (日) (日) (日) (日) (日) (日)

#### bulk pinning vs. surface pinning

# Experimental results: MOI



### Mapping of critical current

Field modulated MOI acquired at T = 80.5 K with field modulation of 0.5 Oe, base field = 25 Oe, on BSCCO crystal "*iv*" (clean 20  $\mu m$  wide channels).



### Current path imaging

Current modulated differential image acquired at T = 68 K,  $H_{//c}$  = 100 Oe, with I = +30 mA, -30 mA, on BSCCO crystal "24-4" (channels + low density of columnar defects ( $B_{\phi}$  = 10 G) in the channels). Introduction Methods

Results

Discussions

Summary

bulk pinning vs. surface pinning

# Experimental results: transport measurements



Bulk flow.Signature of shear flow.

#### bulk pinning vs. surface pinning

# Experimental results: transport measurements



Arrhenius plot of the voltage vs temperature for selected magnetic fields. The measuring current density was  $1\times 10^6$   $A/m^2$ .  $\Box:10$  mT,  $\bigcirc:20$  mT,  $\bigtriangleup:30$  mT,  $\bigtriangledown:40$  mT,  $\circlearrowright:40$  mT,  $\diamondsuit:40$  mT,  $\lhd:40$  mT, a:40 mT, a=40 mT, a:40 mT, a:40 mT, a=40 m,



Bulk flow.Signature of shear flow

#### bulk pinning vs. surface pinning

# Experimental results: transport measurements



Arthenius plot of the voltage vs temperature for selected magnetic fields. The measuring current density was  $1\times 10^6$   $A/m^2,\ \Box:10$  mT,  $\bigcirc:20$  mT,  $\bigtriangleup:30$  mT,  $\bigtriangledown:40$  mT,  $\circlearrowright:40$  mT,  $\diamondsuit:40$  mT, filled symbols: before irradiation. Open symbols: after irradiation.





Bulk flow.Signature of shear flow.

・ロット (雪) (日) (日)

ъ

#### bulk pinning vs. surface pinning

# Experimental results: transport measurements



Arthenius plot of the voltage vs temperature for selected magnetic fields. The measuring current density was  $1\times 10^6$   $A/m^2,\ \Box:10$  mT,  $\bigcirc:20$  mT,  $\bigtriangleup:30$  mT,  $\bigtriangledown:40$  mT,  $\circlearrowright:40$  mT,  $\diamondsuit:40$  mT, filled symbols: before irradiation. Open symbols: after irradiation.







・ロット (雪) (日) (日)

bulk pinning vs. surface pinning

# Summary: bulk pinning vs. surface pinning

#### **Experimental facts**

- Field modulated differential magneto-optical imaging  $\Rightarrow j_{c, walls} > j_{surface}$ .
- Current path imaging  $\Rightarrow$  current flows through the irradiated structure.
- Transport measurements: no nonlinear resistance ⇒ no surface barrier effect in liquid vortex state.

#### Therefore we probe the bulk.

bulk pinning vs. surface pinning

# Summary: bulk pinning vs. surface pinning

### **Experimental facts**

- Field modulated differential magneto-optical imaging  $\Rightarrow j_{c, walls} > j_{surface}$ .
- Current path imaging  $\Rightarrow$  current flows through the irradiated structure.
- Transport measurements: no nonlinear resistance ⇒ no surface barrier effect in liquid vortex state.

### Therefore we probe the bulk.

| Introduction                                       | Methods                                 | Results | Discussions | Summary |
|----------------------------------------------------|-----------------------------------------|---------|-------------|---------|
| 000000000000000000000000000000000000000            | 000000000000000000000000000000000000000 | 0000000 |             |         |
| Magneto-optical imaging and transport measurements |                                         |         |             |         |
| Outline                                            |                                         |         |             |         |
|                                                    |                                         |         |             |         |

## Introduction

- Superconductivity
- Model NMR experiments
- Shear viscosity of the vortex liquid

# 2 Methods

- Experimental procedures
- Verification: bulk or surface properties?
- Magneto-optical imaging and transport measurements

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

# Discussions

5 Summary

Introduction Methods

Results 0000000 Discussions

Summary

Magneto-optical imaging and transport measurements

# Signature of shear flow in transport measurements



 Introduction Methods

Results

Discussions

Summary

Magneto-optical imaging and transport measurements

# Characteristic fields and temperatures



| Introduction | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Results<br>●000000      | Discussions | Summary |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|---------|--|--|
| Comparisor   | with 2D melting model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |             |         |  |  |
| Outli        | Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |             |         |  |  |
| 1            | Introduction <ul> <li>Superconductivity</li> <li>Model NMR experim</li> <li>Shear viscosity of the second s</li></ul> | ients<br>e vortex liqui | d           |         |  |  |
| 2            | Methods <ul> <li>Experimental process</li> <li>Varification: bulk or statemental</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dures                   |             |         |  |  |

Magneto-optical imaging and transport measurements

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

# 4 Discussions

5 Summary

Introduction Methods

Results o●ooooo Discussions

Summary

Comparison with 2D melting model

# D = 2: Nelson-Halperin model



#### scaling law of resistivity

 $\rho(T) \approx C_1 \exp[-2C_2(\frac{T_m}{T-T_m})^{0.37}],$ where  $C_1 \sim \rho_{flux-flow}, C_2 \sim 1$ , and  $T_m$  is the melting (freezing) temperature.

・ロト ・雪 ト ・ ヨ ト

Remarkably, R(T) of our 3D superconductor is well fitted with 2D scaling law ...

Introduction Methods

Results o●ooooo Discussions

Summary

#### Comparison with 2D melting model

# D = 2: Nelson-Halperin model



Remarkably, R(T) of our 3D superconductor is well fitted with 2D scaling law ...

Discussions

Comparison with 2D melting model

# D = 2: Nelson-Halperin model



Remarkably, R(T) of our 3D superconductor is well fitted with 2D scaling law ... Introduction Methods

Results oo●oooo Discussions

Summary

Comparison with 2D melting model

# I-V characterization

# 2D Nelson-Halperin melting property

Power law:  $V = I^a$ , where the exponent *a* has a universal jump from 1 to 3 at  $T = T_m$  (characteristic of 2D melting).

## This jump is observed!

Measurements performed on a  $Bi_2Sr_2CaCu_2O_8$  single crystal, containing clean 20  $\mu m$  wide channels.

Results oo●oooo Discussions

Summary

Comparison with 2D melting model

# I-V characterization



2D Nelson-Halperin melting property Power law:  $V = I^a$ , where the exponent *a* has a universal jump from 1 to 3 at  $T = T_m$  (characteristic of 2D melting).

This jump is observed!

Measurements performed on a  $Bi_2Sr_2CaCu_2O_8$  single crystal, containing clean 20  $\mu m$  wide channels.



- Current flows only at the top layer. (B. Khaykovich et al., Phys. Rev. B 61, R9261 (2000))
- A dimension cross-over takes place nearly simultaneously with the liquid (2D) solid (3D) transition.



#### Suggestion

Multi-terminal transport measurements with electrical contacts on both the top and bottom surfaces.



- Current flows only at the top layer. (B. Khaykovich et al., Phys. Rev. B 61, R9261 (2000))
- A dimension cross-over takes place nearly simultaneously with the liquid (2D) solid (3D) transition.



## Suggestion

Multi-terminal transport measurements with electrical contacts on both the top and bottom surfaces.

| Introduction | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Results<br>○○○●○○       | Discussions | Summary |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|---------|--|
| Comparison   | with 3D Bose-glass model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |             |         |  |
| Outlin       | Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |             |         |  |
| 1            | Introduction <ul> <li>Superconductivity</li> <li>Model NMR experim</li> <li>Shear viscosity of th</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ients<br>e vortex liqui | d           |         |  |
| 2            | Methods <ul> <li>Experimental procession</li> <li>Verification: bulk or set to the set of the set o</li></ul> | lures<br>surface prope  | erties?     |         |  |

Magneto-optical imaging and transport measurements

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# 3 Results

- Comparison with 2D melting model
- Comparison with 3D Bose-glass model

## 4 Discussions

5 Summary

Results ○○○○●●

Comparison with 3D Bose-glass model

# D = 3 with columnar defects: Bose-glass model

#### Marchetti and Nelson's proposal

Introduce a low density of columnar defects in the channels. A Bose liquid state should be realized in the channels.

#### Prediction

- Vortex liquid to Bose-glass transition at T<sub>BG</sub>.
- Near T<sub>BG</sub>, ρ(T) ~ L<sup>2</sup>|T − T<sub>BG</sub>|<sup>v⊥Z</sup> for channel confined vortices.
- v<sub>⊥</sub> is the static critical exponent, z is the dynamic critical exponent. Simulations: v<sub>⊥</sub> ≈ 1,z ≈ 4.6.

#### Reference: non-confined Bose-liquid

Near 
$$T_{BG}$$
,  $\rho(T) \sim |T - T_{BG}|^{v_{\perp}(z-2)}$ 

Results ○○○○●●

Comparison with 3D Bose-glass model

# D = 3 with columnar defects: Bose-glass model

#### Marchetti and Nelson's proposal

Introduce a low density of columnar defects in the channels. A Bose liquid state should be realized in the channels.

#### Prediction

- Vortex liquid to Bose-glass transition at T<sub>BG</sub>.
- Near T<sub>BG</sub>, ρ(T) ~ L<sup>2</sup>|T − T<sub>BG</sub>|<sup>V⊥Z</sup> for channel confined vortices.
- v<sub>⊥</sub> is the static critical exponent, z is the dynamic critical exponent. Simulations: v<sub>⊥</sub> ≈ 1,z ≈ 4.6.

#### Reference: non-confined Bose-liquid

Near 
$$T_{BG}$$
,  $\rho(T) \sim |T - T_{BG}|^{\nu_{\perp}(z-2)}$ 

Results ○○○○●○

Comparison with 3D Bose-glass model

# D = 3 with columnar defects: Bose-glass model

#### Marchetti and Nelson's proposal

Introduce a low density of columnar defects in the channels. A Bose liquid state should be realized in the channels.

#### Prediction

- Vortex liquid to Bose-glass transition at T<sub>BG</sub>.
- Near T<sub>BG</sub>, ρ(T) ~ L<sup>2</sup>|T − T<sub>BG</sub>|<sup>V⊥Z</sup> for channel confined vortices.
- v<sub>⊥</sub> is the static critical exponent, z is the dynamic critical exponent. Simulations: v<sub>⊥</sub> ≈ 1,z ≈ 4.6.

#### Reference: non-confined Bose-liquid

Near 
$$T_{BG}$$
,  $\rho(T) \sim |T - T_{BG}|^{v_{\perp}(z-2)}$ 

#### Comparison with 3D Bose-glass model

# Experimental data vs. 3D Bose-glass model



BSCCO "24-4", containing low density columnar defects ( $B_{\phi}$  = 10 G) in the 20  $\mu m$  wide channels. s = 1.9



BSCCO "10G", uniformly irradiated with a dose of  $B_{\phi}$  = 10 G. 1.2 < s < 1.8 we find: s = 0.8 + 0.0032*H*.

Discussions

Summary

# Comparison of different types of confinement



## Degree of confinement comparison:

20  $\mu$ *m* wide channels +  $B_{\phi}$  = 10 G

 $\overline{\approx B_{\phi}}$  = 10 G > 20  $\mu m$  wide clean channels > pristine.

# Confinement realized in a uniformly irradiated sample



Magnetic decoration with  $B = 8B_{\phi}, B_{\phi} = 10$  G. From: M. Menghini et al., PRL **90**, 087004 (2003)

・ロット (雪) (日) (日) (日)

| Introduction | Methods | Results<br>0000000 | Discussions | Summary |
|--------------|---------|--------------------|-------------|---------|
| Summar       | V       |                    |             |         |

- Bulk vortex properties have been successfully probed.
- Both of the 2D and 3D models fit with the experimental resistance data approaching zero-resistance. Why?
  - $\rho_{\rm c} \rightarrow 0.$
  - Surface barrier contribution when it becomes effective.
  - Defects in 3D vortex lattice yield similar contribution to ρ(T) as defects in 2D vortex lattice.
  - Defects in vortex lattice in layered BSCCO resemble 2D defects (i.e., pancake vortices).
- Field modulated differential magneto-optical imaging can serve as a tool for estimating transport current flow distribution prior to the transport measurements.
- Outlook
  - Varying channel width: size effect.
  - Establishing electrical contacts on both the top and bottom surfaces: *c*-axis correlation.
Introduction Methods Results Discussions Summary

## Acknowledgment

Kees van der Beek Marcin Konczykowski Rozenn Bernard Javier Briatico Panayotis Spathis Tatiana Taurines

. . .

Thank you for your attention!

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで