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Superconductivity

Zero resistance and diamagnetism
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Superconductivity is a thermodynamic state.
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Superconductivity

Superconducting materials

Many materials become superconducting at low
temperatures or high pressures.
"New" discoveries:

cuprate family: YBCO (1987), BSCCO (1988), ...
boron-doped group-IV semiconductors (diamond, silicon,
...) (since 2001)
FeAs-based superconductors (2006)
SiH4 (2008, under high pressure)

Future: new forms of superconductivity?
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superconducting 
state (Meissner state)

normal state

H

TTc

Hc (T)

Type-I

In general, type-II superconductors have much higher Hc , Jc

and also Tc than type-I superconductors. Here, we study type-II
superconductors.
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Superconductivity

Magnetic flux quantization

Magnetic flux quantification in type-II superconductors ⇒ vortices

B = nφ0, φ0 = h
2e = 2.07 × 10−7 G·cm2.

Vortex lattice observed in Bi2Sr2CaCu2Ox with micro Hall
probes, H//c = 12 Oe, T = 81 K.
A. Grigorenko et al., Nature 414, 728 (2001).
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Superconductivity

Vortex distribution in real superconductors

An ideal vortex lattice yields jc = 0, R 6= 0.
jc is the critical current.

Vortex pinning by material defects (pinning centers) ⇒
Vortex distribution is no longer uniform ⇒ jc > 0, R = 0.

Bean’s bulk pinning model (1962).

dBx
dz − dBz

dx = µ0j ,
where j = jc , -jc or 0.
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pinning

Magneto-optical imaging
(MOI) measures the averaged
flux density.

Image intensity gradient ∼ jc .
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Superconductivity

Nonuniform vortex distribution observed by MOI:
surface barrier

BSCCO

Even in the absence of bulk pinning, there is
still a surface barrier.

Once vortices overcome the barrier, they
accumulate in the center of the sample, yielding
a dome profile.

Weak surface pinning, strong bulk pinning ⇒ Bean’s profile.

Strong surface pinning, weak bulk pinning ⇒ Dome profile.
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Influences of bulk pinning and surface barrier to other
measurements
Example: Nuclear Magnetic Resonance (NMR)

Inhomogeneous field distribution!

Questions:

Is all the sample probed by NMR experiments?

Supercurrent affects the density of states and thus the NMR Knight shift
data. Is this influence important?
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Method to obtain ac current distribution
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NMR

ac current distribution in YBa2Cu4O8 (Tc = 82 K)

Three regimes

negligible screening current (T > 70 K)

surface barrier flow (20 K < T < 70 K)

bulk pinning flow (T < 20 K)
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ac current distribution in YBa2Cu4O8 (Tc = 82 K)
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Results: ac field penetration

Only the regions where the ac field penetrates
are probed by NMR measurements.
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NMR

Discussions

Questions:
Is all the sample probed by NMR measurements?

Supercurrent affects the density of states and thus the NMR
Knight shift data. Is this influence important?

Answers obtained from our NMR model experiment:

At low temperatures (bulk pinning regime), only the sample
edges are probed by NMR measurements.

For certain materials whose jc is large, the supercurrent may
affect the NMR Knight shift data.

At intermediate temperatures (surface barrier regime), only the
sample bulk is probed.

There may be a tiny Ks due to the current at the edges only.
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High temperature superconductors

New paradigm (∼ 1989): existence of a vortex liquid state.
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Vortex lattice melting in BSCCO

vortex lattice melting:

jump in vortex density.

R → 0.

However, pinning centers do not disappear!

Why R → 0 at the vortex liquid-lattice transition?
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Shear property

Resistance appears at vortex lattice melting

In 2D: by the appearance of free vortex lattice dislocations.
Resistance is related to the free dislocation density
(Nelson-Halperin theory).

In 3D: unclear. Is plastic motion of vortex lines important?

Answer:
Measure the vortex shear properties.
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Shear property

How to measure the shear viscosity?

Method

Introduce artificial shear flow in weak pinning channel between strong
pinning walls.

Hydrodynamic description

−γv + η ▽2
⊥

v + f = 0

Result

ρ = ρf [1 − 2δ
L tanh( L

2δ )]

when δ(T ) ≡
√

η/γ >> L, one
has:

Relation between shear
viscosity and resistivity:

ρ(T ) ∼ B2 L2

η(T )
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Shear property

Previous work
H. Pastoriza and P. H. Kes, Phys. Rev. Lett. 75, 3525 (1995)

Interpretation

c66 = 0 in the vortex liquid state while c66 > 0 in
the vortex solid state (c66: shear modulus).

But surface barrier problem ...
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Signature of surface barrier in transport
D. T. Fuchs et al., Phys. Rev. Lett. 81, 3944 (1998)

Signature of surface barrier

Nonlinear resistance in the
liquid vortex state.

Normalized R(T) of the
square and strip crystal in the
vicinity of the first order
transition at H//c = 300 Oe and
with 10 mA current.

Measurements performed on Bi2Sr2CaCu2O8 single crystals.
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Our approach

Objective

Bulk viscosity measurements without surface barrier.

Method

Contacts and channel structure are remote from the sample
edges. Furthermore, the contacts are heavily irradiated in order
to attract the current.
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Sample preparation

Experimental procedures

Selection of BSCCO single crystals

⇓

Realization of channel structure through irradiation

⇓

Realization of electrical contacts for transport measurements
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Sample preparation

Selection of BSCCO single crystals

The channels (weak pinning) should not contain any
macroscopic defects. ⇒ Necessary to select macroscopic
defect-free single crystals.
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Sample preparation

Realization of channel structure through irradiation
(GANIL)

Selective irradiation through nickel masks
Thickness of a nickel mask is 6 ∼ 10 µm. 4 to 5 masks were superposed to
block the Pb56+ ion beam of 1 GeV.

Definition of matching field Bφ

Bφ ≡ ndφ0, where nd is the density of columnar defects introduced by ion
irradiation.
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bulk pinning vs. surface pinning

Experimental results: MOI

Mapping of critical current
Field modulated MOI acquired at T = 80.5 K with field
modulation of 0.5 Oe, base field = 25 Oe, on BSCCO
crystal "iv" (clean 20 µm wide channels).

Current path imaging
Current modulated differential
image acquired at T = 68 K,
H//c = 100 Oe, with I = +30 mA,
-30 mA, on BSCCO crystal "24-4"
(channels + low density of
columnar defects (Bφ = 10 G) in the
channels).
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bulk pinning vs. surface pinning

Experimental results: transport measurements
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bulk pinning vs. surface pinning

Summary: bulk pinning vs. surface pinning

Experimental facts
Field modulated differential magneto-optical imaging ⇒ jc,walls > jsurface.

Current path imaging ⇒ current flows through the irradiated structure.

Transport measurements: no nonlinear resistance ⇒ no surface barrier
effect in liquid vortex state.

Therefore we probe the bulk.
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Magneto-optical imaging and transport measurements
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Magneto-optical imaging and transport measurements

Characteristic fields and temperatures
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Comparison with 2D melting model

D = 2: Nelson-Halperin model

scaling law of resistivity

ρ(T ) ≈ C1exp[−2C2(
Tm

T−Tm
)0.37],

where C1 ∼ ρflux−flow , C2 ∼ 1, and Tm is
the melting (freezing) temperature.

Remarkably, R(T ) of our 3D superconductor is well fitted
with 2D scaling law ...
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Comparison with 2D melting model

I-V characterization

2D Nelson-Halperin
melting property

Power law: V = Ia, where
the exponent a has a
universal jump from 1 to 3 at
T = Tm (characteristic of 2D
melting).

This jump is observed!

Measurements performed on a Bi2Sr2CaCu2O8 single crystal, containing

clean 20 µm wide channels.
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Comparison with 2D melting model

Possible explanations

Current flows only at the top layer. (B. Khaykovich et al., Phys.
Rev. B 61, R9261 (2000))

A dimension cross-over takes place nearly simultaneously with
the liquid (2D) - solid (3D) transition.

Layered structure of Bi2Sr2CaCu2O8

Suggestion

Multi-terminal transport
measurements with
electrical contacts on both
the top and bottom surfaces.
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Comparison with 3D Bose-glass model
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Comparison with 3D Bose-glass model

D = 3 with columnar defects: Bose-glass model

Marchetti and Nelson’s proposal

Introduce a low density of columnar defects in the channels. A Bose liquid
state should be realized in the channels.

Prediction

Vortex liquid to Bose-glass transition at TBG.

Near TBG, ρ(T ) ∼ L2|T − TBG|
v⊥z for channel confined

vortices.

v⊥ is the static critical exponent, z is the dynamic critical
exponent. Simulations: v⊥ ≈ 1,z ≈ 4.6.

Reference: non-confined Bose-liquid

Near TBG, ρ(T ) ∼ |T − TBG|
v⊥(z−2)
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Comparison with 3D Bose-glass model

Experimental data vs. 3D Bose-glass model
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Comparison of different types of confinement
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Confinement realized in a uniformly irradiated sample

Magnetic decoration with
B = 8Bφ, Bφ = 10 G.
From: M. Menghini et al.,
PRL 90, 087004 (2003)
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Summary

Bulk vortex properties have been successfully probed.
Both of the 2D and 3D models fit with the experimental
resistance data approaching zero-resistance. Why?

ρc → 0.
Surface barrier contribution when it becomes effective.
Defects in 3D vortex lattice yield similar contribution to ρ(T )
as defects in 2D vortex lattice.
Defects in vortex lattice in layered BSCCO resemble 2D
defects (i.e., pancake vortices).

Field modulated differential magneto-optical imaging can
serve as a tool for estimating transport current flow
distribution prior to the transport measurements.

Outlook
Varying channel width: size effect.
Establishing electrical contacts on both the top and bottom
surfaces: c-axis correlation.
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