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Garrido-Alzar and Felix Kröger at the Institut d’Optique. I am also sincerely grateful
to Jocelyne Armand from the administration of the institute, who kindly adapted to my
last-minute requests on several occasions.

A number of people at the Institut d’Optique and in our group contributed to making
this PhD a good time. I am thinking of Francesca as a precious friend, of Gaël, Patrick
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Introduction

Disorder is present in all natural media to a certain degree, but its effects are often neglected
in first approaches to the description of physical systems. However, even a small amount of
disorder may produce large and counter-intuitive effects.

One such emblematic effect in quantum systems is Anderson localization [1], which demon-
strates that even weak disorder may alter the transport properties of quantum particles, up to
the point of inhibiting any transport, and turning a conductor into an insulator. Although the
concept of Anderson localization was formulated more than fifty years ago to explain certain
metal-insulator transitions in solids, evidence for localization remained elusive for decades [2].
The mechanism underlying Anderson localization is a subtle interference process which localizes
single-particle wave functions in space. It has since been realized that Anderson localization
may affect all kinds of waves and quantum particles, as its elementary ingredients are just co-
herence and disorder. Anderson localization has therefore been embraced by a variety of fields
outside of solid-state physics, including optics [3], acoustics [4] and atomic physics [5].

In its original form, the concept of Anderson localization applies to non-interacting particles.
The question as to how disorder combines with interactions in many-body systems is a funda-
mental issue in the understanding of the effects of disorder. One of the most notorious results
of the interplay of disorder and interactions in condensed-matter systems is the destruction of
superfluidity in “dirty” superconductors and liquid helium in porous media. Above a certain
amount of disorder, superfluidity is lost in these systems because of particle localization [6–8].
The influence of disorder in superconductors and liquid helium has been studied intensively
since the beginning of the eighties [9–11]. Strong correlations and a limited control over both
the randomness and the strength and range of interactions often complicate the interpretation
of experiments with condensed-matter systems [10]. Thus, many questions on the influence of
disorder in interacting systems are still open.

The achievement of Bose-Einstein condensation (BEC) in ultracold atomic gases [12–14] has
opened a new avenue in the study of disordered quantum systems [15, 16]. Ultracold atomic
gases offer a high degree of control and versatility [17–19]. Both bosons and fermions can
be cooled down to degeneracy, and their interactions can be tuned from non-interacting to
strongly correlated regimes by means of Feshbach resonances. Also, trapping potentials can be
designed so as to choose the effective dimensionality of the system, and laser light fields can be
used to tailor potentials for the atoms. The realization of a strongly correlated Mott-insulator
phase in optical lattices [20] and the observation of Berezinskii-Kosterlitz-Thouless physics in
a two-dimensional trap [21] have illustrated the degree of flexibility and control available with
ultracold atoms. Remarkably, while laser light may be used to create phonon- and defect-free
lattice potentials for the atoms, optical potentials can also be employed to generate disorder in a
controlled way [22–24]. Hence, since 2005, experiments have been investigating the influence of
disorder on ultracold Bose gases [25–28]. The observation of Anderson localization in a regime
of vanishing interactions has been one of the results of this activity [29, 30].
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The study of disorder with ultracold atoms has many appealing features. Interactions and
disorder in these systems are not only controllable, but also well characterized. The statistical
properties of the optical random potentials currently used in experiments are very well known.
They may be calibrated in-situ by using the atoms themselves as probes [31], in order to avoid
systematic errors. Additionally, and in contrast for instance to liquid helium, ultracold atomic
gases are dilute. Their low-temperature collision properties are thus accurately described by a
single parameter, the scattering length [32]. This allows ab initio calculations and analytical
approaches to give a clear picture of the processes at work.

This thesis

In this thesis, we examine the localization properties of weakly-interacting Bose gases in one-
dimensional random potentials, a subject which is currently attracting both theoretical and
experimental attention [33]. Here the emphasis is set on a microscopic description of the
disordered Bose gas and on the role of the statistical correlations of the random potential. In
the absence of interactions and in the presence disorder the bosons are expected to be localized.
In the absence of disorder and in the presence of weak repulsive interactions the bosons form a
delocalized superfluid (quasi-) BEC phase at sufficiently low temperature. The core questions
are therefore: How do statistical correlations affect the Anderson localization of non-interacting
bosons? How do interactions alter the Anderson localization of bosons? How does disorder
affect the (quasi-) condensate phase? What is the localization-delocalization scenario between
the regime of Anderson localization and the superfluid (quasi-) BEC regime? What are the
forms of collective localization in the interacting case?

Outline

This thesis is organized as follows.
In chapter 1 we present a few general notions about disordered systems. We introduce

key concepts of the theory of Anderson localization of non-interacting particles, such as mul-
tiple scattering, the exponential localization of eigenstates, the Lyapunov exponent or inverse
localization length, and the dependence on dimensionality. Experimental results are briefly
reviewed. We then turn to many-body systems, and point out the challenges associated with
the understanding of disorder in interacting systems. Available results for the case of disor-
dered 1D bosons are presented. A few general ideas related to weakly-interacting Bose gases
are discussed. In the last part of the chapter, we focus on the statistical properties of disorder,
and discuss a few elementary properties of correlation functions. As a model of disorder, we
present speckle potentials and their fundamental properties.

Chapter 2 is devoted to the one-dimensional Anderson localization of non-interacting parti-
cles in correlated random potentials. In 1D all single-particle states are known to be localized
under fairly general assumptions, and exact solutions are available for uncorrelated random
potentials. We show that statistical correlations may introduce new features, such as a strong
dependence of the localization process on the single-particle energy. A strong dependence arises
for instance in random potentials with a high-momentum cutoff in their spatial Fourier spec-
trum. Speckle potentials are a particularly important example of such random potentials, as
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they are used in current experiments with ultracold atoms, and have been shown to give rise
to interesting localization properties [29, 34]. For those potentials the standard perturbative
estimate of the Lyapunov exponent, called the Born approximation, vanishes on extended re-
gions of the single-particle energy spectrum. We carry out a weak-disorder expansion of the
Lyapunov exponent two orders beyond the Born approximation, and discuss the regimes of lo-
calization on such spectral regions. While our approach is general, speckle potentials appear as
an original class of disorder, which allows the exploration of correlated, non-Gaussian statistics.

In chapter 3, we investigate the ground-state properties of a weakly-interacting Bose gas
in a correlated 1D random potential, and establish a zero-temperature quantum state diagram
of the Bose gas as a function of the chemical potential and the disorder strength. Three
regimes are identified: the (quasi-) BEC regime, the regime of fragmented BEC, and a regime
which we call the Lishits glass regime. In the delocalized BEC regime, which correponds
to the limit of intermediate interactions and weak disorder, we analyze precisely the density
modulations imposed on the Bose gas by the random potential. With increasing disorder, the
BEC ultimately fragments. We analyze the dependence of the fragmentation threshold on the
strength of interactions (or the chemical potential), and both the amplitude and the correlation
length of the disorder. The crossover from BEC to fragmented BEC is expected to correspond to
the transition from the superfluid to the Bose glass expected at weak interactions. The Lifshits
glass denotes the insulating regime found for very weak interactions and strong disorder. In
that regime, the bosons populate strongly localized single-particle states which belong to the
low-energy tail of the single-particle spectrum. We derive a mean-field equation of state of the
Bose gas, and use scaling arguments to locate the crossover to the regime of fragmented BEC.

Finally, in chapter 4 we study the elementary excitations of a disordered, weakly-interacting
Bose gas deep in the BEC regime (or quasi-BEC regime in 1D), where the mean-field interactions
are larger than the amplitude of the disorder. The Bogolyubov theory for condensates and quasi-
condensates is briefly reviewed. In the framework of this theory, the elementary excitations of
the Bose gas are quasi-particles (Bogolyubov quasi-particles, BQPs) which experience both the
presence of the external potential and the interactions with the density background of the Bose
gas. We develop a perturbation expansion around the exact Bogolyubov-de Gennes equations
which govern the quasi-particle excitations, and find a mapping on an effective Schrödinger
equation which describes the scattering of BQPs in weak inhomogeneous potentials. We then
specialize to the 1D case, and examine the Anderson localization of BQPs in a correlated
random potential. We discuss in detail the role of disorder correlations, and the screening of
the random potential by the interactions.





C H A P T E R 1

Disorder and interactions:
condensed-matter physics
and ultracold atoms

Disorder plays an important role in condensed-matter systems. Usually, our understanding
of solid-state physics starts from the concepts of crystalline order, Bloch bands, and metallic
conduction. However, Anderson, Mott and others have shown that disorder might be a fun-
damental aspect to consider, as it may cause a phase transition from metal to insulator in
solids because of a localization of the electronic wave functions in space. This effect, known
as Anderson localization, was originally put forward for non-interacting electrons. Anderson
localization is nowadays a field of intense research as it is has be recognized to be transversal
to various areas of physics beyond electrons in solids [2], and because localization has many
facets which are not yet fully understood. In particular, the interplay of disorder and interac-
tions is a long-standing question of condensed-matter physics, which has become acute with
the discovery that disorder may destroy superconductivity or superfluidity due to localization
effects. Ultracold atomic gases offer appealing possibilities to study the physics of disordered
quantum systems, as many parameters, including disorder and interactions, may be controlled
in these ultracold gases.

This chapter is devoted to the presentation of concepts which form the background of chap-
ters 2 to 4. In section 1.1 we review a few key elements of the theory of Anderson localization
of non-interacting waves and quantum particles. In section 1.2 we turn to localization ef-
fects in interacting many-body systems, and review available results in the case of disordered
one-dimensional bosons. Finally, in section 1.3 we discuss models of disorder and introduce
fundamental properties of the speckle random potentials which are used in current experiments
with ultracold atoms.

1.1 Localization of non-interacting waves

In this section, we focus on the localization of non-interacting waves and quantum particles.
Illuminating introductions to the subject can be found e.g. in Refs. [2,35–37]. In section 1.1.1, we
emphasize the origin of Anderson localization in coherence effects which entail the breakdown
of diffusive transport. Key concepts of the theory of localization, such as the exponential
localization of single-particle states, mobility edges, and a strong dependence on dimensionality
are presented in section 1.1.2. In section 1.1.3, we specialize to the case of the one-dimensional
geometry, where localization effets are known to be the strongest, and exact results are available.
Finally, an overview of available experimental results is provided in section 1.1.4.
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1.1.1 Coherent transport

In his 1958 publication [1], Anderson showed how an electron (a “spin”), initially placed at some
site of a disordered lattice, might remain localized in the vicinity of its initial position under the
effect of the random potential, instead of diffusing and spreading to infinity. In the language
developed throughout the years, the electron is prevented from diffusing because of (coherent)
scattering from the random variations of the potential landscape, and destructive interference
effects which localize the electron. The precursor of Anderson localization is a phenomenon
called weak localization, whereby the diffusive motion of classical waves and quantum particles
is reduced by such coherent scattering and interference effects. This reduction of diffusion
signals the breakdown of the semi-classical theory of electron transport.

Limitations of the semi-classical theory of transport

In the semiclassical (Drude-Bloch-Boltzmann) theory of electronic transport, electrons are
Bloch waves which are free to move across a perfectly ordered lattice. These electrons are
scattered on impurities, dislocations, and phonons representing the thermal vibrations of the
lattice. The static conductivity of a sample is given by [38]

σB =
ne2τ

m
, (1.1)

where m is the (effective) electron mass, n is the density of electrons participating to transport
(i.e. those which lie at the Fermi energy EF ), and τ is the elastic transport mean free time i.e.
the average time an electron travels before its direction is randomized through collisions with
scatterers [35]. All types of collisions are treated on the same footing, and it is assumed that
each collision redistributes the quasi-momentum of a Bloch wave and causes it to lose phase
coherence. The result is a diffusive motion, which allows the wave to extend to infinity [37].
According to the so-called Mathiessen rule, the collision rates 1/τi of independent sources of
scattering (static disorder, phonons, ...) add up: 1/τ =

∑
i 1/τi [35, 36]. If the temperature of

the sample is lowered, the scattering with phonons steadily decreases until the scattering from
the static disorder dominates. The semi-classical theory of electron transport hence predicts
a monotonous increase of conductivity (i.e. a monotonous decrease of resistivity) towards the
lower temperatures. However, a series of experiments has shown that in samples with strong
disorder or confinement in lower-dimensional geometries (1D, 2D), the resistivity eventually
regrows at low temperatures [36]. Fig. 1.1 shows the temperature dependence of the resistance
in a 2D copper sample and the regrowth observed at low temperature [39].

Multiple scattering

The reason for the failure of the semi-classical theory to explain the increase of resistivity at
low temperature is the fact that, while scattering with a bath of phonons indeed destroys the
phase coherence of the Bloch waves, elastic scattering from the static impurities does not. We
can associate a phase-coherence length Lφ to the scattering with phonons (and other sources
of decoherence), and define a scattering mean free path ℓs as the average distance travelled
by the waves between two collisions with a static impurity. If Lφ is smaller than ℓs, the
phase accumulated by the wave between two scattering events on the impurities is random,
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Figure 1.1: Dependence on the temperature of the resistance of a thin copper film [39].

the scattering amplitudes of the waves on different impurities have no phase correlation, and
transport is well described by the semi-classical law (1.1) with diffusion constant DB. At low
temperature, however, the phase-coherence length Lφ may exceed the scattering mean-free-
path ℓs, and (coherent) multiple scattering from the impurities has to be taken into account.

Weak localization

Multiple scattering can be described within the framework of an elaborate theory of trans-
port [35, 40–42]. This theory has proven able to describe the aforementioned deviations from
semi-classical predictions [35, 43]. For the purpose of this chapter, we simply borrow a few
qualitative arguments from the presentation given in Ref. [35].

To understand the effect of multiple scattering on transport properties, let us consider the
situation depicted in Fig. 1.2. The disordered medium is represented by a random arrangement
of static, point-like impurities. Schematically, the propagation of the wave (field) associated
with the particle from point r to r′ is described by the sum

∑
i ai(r, r

′) of the complex am-
plitudes ai correponding to all possible scattering paths i between r and r′. One such path is
represented in solid line in Fig. 1.2(a). As the particle density is given by the squared modulus
of the field, a trajectory of the complex conjugate field is represented as well. The particle
density at r′ is determined by a product of the form

∑
i,j a

∗
i (r, r

′) aj(r, r
′), and depends on the

interference of all the scattering paths. The average conduction properties of the medium are
obtained by considering a product of the form [35,44]

P (r, r′) =

〈
∑

i,j

a∗i (r, r
′)aj(r, r

′)

〉
=
∑

i

〈
|ai(r, r

′)|2
〉

+
∑

i6=j

〈a∗i (r, r′)aj(r, r
′)〉 , (1.2)

where 〈· · ·〉 denotes statistical averaging over the distribution of scatterers. The quantity
P (r, r′) represents the probability of a quantum particle initially located at position r to reach r′

at a later time.1 The phase of a a∗i (r, r
′) aj(r, r

′) term is directly related to the different lengths

1The time dependence in not included in expression (1.2) for the simplicity of the discussion.
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Figure 1.2: Interference contributions to the transport of intensity between two points r and r′.
Scattering paths followed by the field (solid line) and its complex conjugate (dashed line). The
contributions such as (a), where the field and its conjugate do not visit the same scatterers,
vanish on average. Diagram (b) is the classical diffusion contribution to transport, and (c) is an
interference contribution. Diagram (d) is the same as (c) with r = r′ as represents an increased
probability of return of the wave to its starting point.

of the paths taken by the field and its complex conjugate. Therefore, contributions such as the
one shown in Fig. 1.2(a) cancel out of the sum once the average is taken.

The contributions which survive the disorder average are those where the field and its
complex conjugate visit the same scatterers. Such is the case of the term

Pcl =
∑

i

〈
|ai(r, r

′)|2
〉
, (1.3)

which corresponds to contributions such as the one depicted in Fig. 1.2(b), where the field
and its complex conjugate follow exactly the same path, and no relative phase is accumulated.
These contributions, where coherence plays no role, correspond to the diffusive transport of the
classical Drude-Boltzmann theory. It turns out, however, that other terms survive the disorder
average, such as the one shown in Fig. 1.2(c), where the field and its conjugate follow reversed
paths. Such interference terms are not present in the Drude-Boltzmann theory. Diagram 1.2(d),
where r′ is set equal to r, shows that such interference terms enhance the probability of return
of the wave to its starting point. From the point of view of transport, this means that both the
diffusion and the conductivity σ in the sample are reduced with respect to the classical Drude
theory [45]:

σ = σB − δσ. (1.4)

As the reduction of conductivity originates from an increased dwell time of the electrons in
certain regions of the sample, one speaks of a weak-localization correction to the diffusive
motion.

In the regime of weak localization, transport is hampered by multiple scattering and inter-
ference in the disordered medium, but a residual diffusive motion nevertheless allows quantum
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particles and waves to spread to infinity. Eventually, however, the destructive interference ef-
fects may be so strong as to forbid any diffusive transport at all. This situation corresponds to
the regime of Anderson (or strong) localization, which we discuss below.

1.1.2 Anderson localization

Exponential localization of single-particle states

The idea that the presence of disorder might lead to a complete absence of transport in a system
of non-interacting quantum particles was first formulated by Anderson in 1958. In his seminal
paper [1], Anderson considered non-interacting particles (“spins”) on a lattice, described by a
tight-binding Hamiltonian [36, 46]

H =
∑

i

ǫiĉ
†
i ĉi −

1

2

∑

〈i,j〉
(Jij ĉ

†
i ĉj + h.c.), (1.5)

where i and j denote lattice sites, ĉi and ĉ†i are particle destruction and creation operators,
Jij are hopping amplitudes, 〈i, j〉 indicates a summation over nearest neighbors, and the ǫi
are uncorrelated, random on-site energies uniformly distributed in an interval [−W/2,W/2].
Anderson analyzed the time evolution of the probability amplitude of a particle initially located
on some site j to occupy it at a latter time, and found that for a given particle energy E and for a
sufficient strength of disorder (measured in the model by the breadth W ), the particle remains
localized around its orginal location, with a probability amplitude decreasing exponentially
with the distance from the center. A connection is thereby established between the absence
of transport and the exponential localization of the single-particle states of the electrons. The
typical length scale on which localized states decay is called localization length Lloc. Strong
(Anderson) localization affects the transport properties of the system when the localization
length is much smaller than the system size.

Mobility edges

In the Anderson model, the single-particle states at a given energy are localized if the disorder
is strong enough. Conversely, for a given strength of disorder, some single-particle states are
localized, while some others may be delocalized (extended). A qualitative picture of localization
in the Anderson model is shown in Fig. 1.3. According to an argument attributed to Mott,
no localized state can exist in energy regions with extended states, as an infinitesimal change
in the random potential would couple this localized state with extended states and hybridize
it into new extended states [41, 43].2 Localized and extended states are therefore separated
by critical energies called mobility edges [48–51]. For weak disorder, the electron states close
to the band edge are localized, but the states close to band center remain extended. With
increasing disorder, the mobility edges move towards the band center with increasing disorder,
and eventually merge at a critical disorder strength Wc, above which all states are localized [36,
52]. As the transport properties are determined by the electrons at the Fermi surface, the
system is expected to be conducting if the states at the Fermi energy are delocalized, and
insulating if they are localized. When the Fermi energy crosses a mobility edge under a change

2The argument does not apply to inhomogeneous random potentials. See e.g. Ref. [47].
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Figure 1.3: Qualitative picture of localization in the 3D Anderson model (following Refs. [36,
43,45]). The density of states D(E) (solid line) has no singularities as in the disorder-free case
(dashed line), and develops smooth tails at the band edges (dashed arrows) under the influence
of disorder (see section 3.4.1 and Ref. [43]). The states close to the band edges are localized,
and separated from the extended states at the band center by mobility edges Ec and E ′

c.

of the disorder strength or of the electron density, the system undergoes a (metal-insulator)
phase transition between the metallic and the insulating regime.

Scaling theory

Anderson localization strongly depends on the dimension of the system, and one of the central
results of the theory of localization is that, while both extended and localized states may exist
in 3D, all states are generally localized in 1D and 2D, provided the waves are non-interacting.

One important step towards such a qualitative description of the effect of dimensionality was
provided by the scaling theory developed by Abrahams et al. [53]. These authors considered the
“dimensionless conductance” g(L) (a conductance measured in nuits of e2/~) of a hypercube
of volume Ld, where d is the dimension of space. The transport properties of the system are
examined as some Fermi energy EF . A scaling function

β =
d ln g

d lnL
(1.6)

is introduced to analyze how the conductance evolves with the system size. The result of the
analysis of Abrahams et al. is reproduced in Fig. 1.4. The curved lines with arrows represent the
trajectories of (ln g, β) as L grows. In 3D, two situations arise. If the disorder is weak enough
so that, for some finite value of L, the conductance g(L) exceeds the critical value gc, then β is
positive, and the conductance g grows with L. On the other hand, if the disorder is so strong
that we have g(L) < gc for some L, then the system follows the path at negative β. In the
limit of very large L, the three-dimensional system is hence either a conductor or an insulator,
depending on the strength of disorder. This result agrees with the analysis of the Anderson
model. In 1D and 2D, however, the trajectories all lead into the insulating state g → 0,
whatever the initial situation and the amount of disorder are. This indicates a localization of
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Figure 1.4: Scaling flow of the one-parameter scaling theory of localization [53]. The behavior
of the conductance g(L) for L→ ∞ depends crucially on the dimension d of the system.

all states for an arbitrarily small amount of disorder. As this is a fundamental result, let us
outline the reasoning behind it.

The scaling arguments developed to establish diagram 1.4 are summarized in a number of
review papers (see e.g. Refs. [37, 43, 54]). In brief, the key assumption in the scaling theory of
Abrahams et al. is that, for large enough samples, the scaling function β does not depend on
the microscopic details of the sample (e.g. the amplitude of disorder), nor on the absolute value
of the length L, but only on the dimensionless conductance g(L) itself.3 The assumption that
β depends only on g is known as the one-parameter scaling hypothesis. With this assumption
at hand, the diagram is obtained by interpolating between two limiting regimes. In the limit of
weak disorder (g ≫ 1, metallic regime), g is related to the usual Ohmic conductance G(L) =
L2−dσB , where σB is the classical Drude conductivity [see Eq. (1.1)]. In this limit, the scaling
function β takes the value

β ≃ 2 − d (g ≫ 1), (1.7)

which defines the horizontal asymptotes towards large g in the figure. In the limit of strong
disorder (g ≪ 1), exponential localization is assumed in all dimensions, and g is argued to fall
off exponentially with L: g = g0 e−αL, so that

β ≃ ln g + cd (g ≪ 1), (1.8)

where cd is some constant. Between the limits at large and small g, the quantity β is assumed
to be a monotonous continuous function of g, which yields the curves in Fig. 1.4.

The scaling theory predicts that no true metallic (conducting) state exists in 1D and 2D, as
an insulator is obtained for large systems. The two-dimensional geometry is identified as the
marginal case where this occurs [58, 59], and localization is found to be the strongest in 1D.
Let us now introduce a few tools and concepts of localization theory in 1D.

3 In the regime where L exceeds the mean free path, the dimensionless conductance g is actually not related
directly to the macroscopic conductivity. Following earlier studies by Edwards, Thouless and Licciardello [55–
57], the conductance g is then rather defined as a number which uniquely describes how the transport properties
of a hypercube are modified when it is matched with another hypercube to build a larger system. The quantity g
is therefore put forward as the only relevant variable is the scaling of the system properties with L [37, 43].
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1.1.3 Localization in one dimension

As all states are generally strongly localized in 1D, the length scale on which the states localize,
called localization length, is usually one of the observables sought in the first place. Other
physical quantities, such as the density of states [60, 61], or the conductance of an equivalent,
open system [62], may be derived from it. Generally, however, instead of the localization
length Lloc, one rather calculates its inverse

γ = 1/Lloc, (1.9)

which is called the Lyapunov exponent. Below, we briefly discuss how the Lyapunov charac-
terizes the eigenstates and conduction properties of disordered 1D systems.

Lyapunov exponent

A vast body of literature on disordered one-dimensional systems relies on their description
by products of random matrices [59, 63–76]. The concept of Lyapunov exponent, or inverse
localization length, naturally emerges from such approaches.

Transfer matrices - Consider the discretized Schrödinger equation

− J [ψn+1 + ψn−1 − 2ψn] + Vnψn = Eψn, (1.10)

where J = ~
2/2m(∆z)2 is the kinetic term, ∆z = zn+1−zn is the discretization step, ψn ≡ ψ(zn)

and Vn is the value of a random potential V at point zn.This equation rewrites as a recursion
formula for ψn+1 as a function of ψn and ψn−1. For any initial condition {ψ0, ψ1}, the value of
the wave function ψ at point zn+1 is determined by a product of transfer matrices Tj :

(
ψn+1

ψn

)
= Tn · · ·T1

(
ψ1

ψ0

)
with Tj =

(
Vj−E

J
+ 2 −1

1 0

)
. (1.11)

The matrix T1···n = T1 · · ·Tn is the product of a large number of random matrices, parametrized
by the energy E and a realization of the random potential V . Theorems by Oseledec [77] and
Furstenberg [78] are invoked to describe the behavior of such products [43,59,79–81]. One finds
that, for almost all sets {Vn}n (i.e. for almost all “realizations” of the random potential), an
initial vector (ψ0, ψ1)

T grows or decays asymptotically as e±γ′(E)n for n → ∞, where γ′(E) is
a positive, non-random quantity. This defines a Lyapunov exponent, which in absolute units
reads γ(E) = γ′(E)/∆z. The Lyapunov exponent γ(E) describes the exponential growth or
decay of ψ.

Localized eigenstates - For every set {Vn}n, there is only one vector which decays expo-
nentially as n → ∞ [81]. Therefore, if one imposes the energy E and the initial condition
(ψ0, ψ1)

T, numerical and analytical calculations almost surely yield a function ψn which grows
exponentially at rate γ′(E) as n → ∞ (see chapter 2). Such functions are not normalizable,
and the energy E is therefore not part of the spectrum. For E to be part of the spectrum, two
branches need to be connected which ensure the decay of ψn for both n→ −∞ and n→ +∞.
The corresponding eigenstates of the system are localized, and decay exponentially on either
sides of a localization center on the length scale Lloc(E) = 1/γ(E) [81,82]. The aforementioned
calculations at fixed E and (ψ0, ψ1)

T can be used to determine the Lyapunov exponent γ(E).
An example of localized eigenstate is shown in Fig. 1.5.
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Figure 1.5: Wave function amplitude (a) and envelope (b) of a localized state, obtained by
numerical solution of the Schrödinger equation (1.10). The length scale σR is the correlation
length of the (speckle) random potential used for the calculation (see section 1.3). Fig. (b)
shows that the eigenstate tends to decay exponentially.

Exponential decay of the transmission - While the above considerations apply to eigen-
states in a closed system, the Lyapunov exponent also describes the asymptotic behavior of
waves sent across an open, disordered 1D system. The transmission of such waves can also be
described by a product of transfer matrices. These matrices take a slightly different form than
the Tj matrices above [75, 83], but they share the same asymptotic behavior. It can be shown
that the intensity transmission coefficient T of a wave which is sent across a sample of size
L = n∆z writes [70, 75, 83]

T =
1

cosh2(x)
, (1.12)

where, almost surely, x scales asymptotically as x ∼ γ(E)L with the system size. As T ∝ e−2x

for x ≫ 1, this relation indicates an exponential decay of the transmission. The intensity
transmission coefficient T itself is related to transport properties of the medium. In the context
of electronic systems, for instance, the conductance G of the sample is G = Te2/π~ according
to Landauer’s formula [63, 75].

Fluctuations

The asymptotic decay of eigenfunctions and transmission coefficients is determined by the
Lyapunov exponent, which does not depend on the realization of the random potential. At finite
distances, however, fluctuations are observed from one realization to the next. In Fig. 1.5(b),
the logarithmic profile is also seen to fluctuate around the straight red lines which indicate
the rate of asymptotic decay. These fluctuations at finite distance are characterized by a
probability distribution. For the transmission coefficient T and in the case of uncorrelated
random potentials, a probability distribution is obtained in the form4 [81, 84, 85]

P [lnT ] =
1√

2πσL

e−
1
2
(− ln T−µL)2/σ2

L with µL = − 2L

Lloc
and σL =

√
4L

Lloc
. (1.13)

4We identify here identify here Lloc with the mean free path l of Ref [84] and the localization length ξ of
Ref. [75]. Note that this distribution makes sense in the regime T ≪ 1, as the Gaussian cannot extend to values
T > 1. As an additional caveat, let us note that the Gaussian distribution (1.13) is the result of a perturbative
calculation [84].
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The fluctuations of the observable lnT hence obey a Gaussian distribution with mean µL and
standard deviation σL. As σL ∝

√
|µL|, the probability distribution of lnT narrows down to

a well-defined value, which coincide with −2L/Lloc = −2γL, in the limit γL = L/Lloc ≫ 1.
Because of this property, the observable lnT is said to be self-averaging [86,87]. Equation (1.13)
shows that the Lyapunov exponent γ can be obtained as5 γ = limL→∞〈−1

2
lnT 〉. The self-

averaging property of lnT means that a good estimate of γ can be obtained by averaging over
a small number of realizations at large distances. Conversely, the Lyapunov is a quantity which
is well representative of the distribution of lnT .

Uncorrelated potentials

A Lyapunov exponent γ(E) > 0 indicates that the states at energy E are localized, and its
magnitude measures the rate of exponential decay of the eigenstates around their localization
center. In the case where the values of the random potential at different points are uncorrelated,
the Lyapunov exponent can be calculated exactly. In the case of the continuous Schrödinger
equation, the Lyapunov exponent reads6 [86]

γ(E) =

√
2mEδ

~2

∫∞
0

dy
√

y

2
e
− y3

12
− E

Eδ
y

∫∞
0

dy 1√
y
e
− y3

12
− E

Eδ
y
, (1.14)

where Eδ = (mD2/2~
2)1/3, and the quantity D, which parametrizes the auto-correlation func-

tion C2(z) = Dδ(z) of the potential [see Eq. (1.36) below], measures the strength of disorder.
The Lyapunov exponent (1.14) is plotted in Fig. 1.6 as a function of the single-particle

energy E. The origin E = 0 corresponds to the average value of the potential. This figure
shows that, in an uncorrelated potential, the Lyapunov exponent is strictly positive for all E,
and decreases monotonously with increasing energy. The state with large negative energy have
a Lyapunov exponent roughly proportional to

√
|E|, and resemble in this respect the bound

states of a quantum well (although interference phenomena are still important to localize the
particles). For E ≫ Eδ, although the energy of the particle lies well above the typical amplitude
of the potential, the states are also localized. Their Lyapunov exponent scales as

γ(E) ∝ 〈V 2〉
E

[E ≫ Eδ], (1.15)

as indicated by the dashed line in Fig. 1.6. High-energy states are thus localized on longer
length scales.

1.1.4 Experimental observations

Anderson localization is remarkable in the sense that i) as a process which originates from
coherent scattering, it contrasts with the classical physics of trapping, percolation and random
walk in complex media [41], ii) the insulating behavior is due neither to trivial band-gap effects,
nor to interactions between the particles [36], and iii) above all, it is rather ubiquitous in the

5See Eq. (2.7) for a similar definition of the Lyapunov exponent for eigenstates.
6In the formula on page 142 of Ref. [86], y2 should be replaced by y3.
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Figure 1.6: Lyapunov exponent of a Schrödinger particle in an uncorrelated 1D random
potential, as a function of the particle energy E. The Lyapunov exponent γ(E) [solid
blue line] is determined by Eq. (1.14). Energy and Lyapunov exponent are normalized
with Eδ = (mD2/2~

2)1/3, where D is defined as the parameter of the two-point correlator
C2(z) = Dδ(z) and measures the strength of disorder. The dashed and dotted lines correspond
to the asymptotes at large positive energy [γ(E)

√
~2/2mEδ ∼ Eδ/(4E)] and at large negative

energy [γ(E)
√

~2/2mEδ ∼
√
|E|/Eδ], respectively [86].

sense that it may affect the behavior of a great variety of waves in disordered media [2, 5]. As
a consequence, it has been studied in a number of contexts beyond the physics of electrons
in solids. One of the motivation for studies with other systems was the absence of Coulomb
interaction, the effect of which is difficult to measure and control in electronic systems.

Localization has been reported so far with ultrasound [4,88,89], microwaves [90,91], light at
optical wave lengths in “free” space [92,93] and disordered photonic band-gap material [94,95],
as well as cold [96–98] and ultracold atoms [5, 29, 30].

The first experiments performed in the nineties with microwaves and visible light involved
measurements of the sole transmission coefficient T as a function of the sample size, and raised
questions about the role of absorption. Later experiments with microwaves [91] took account of
the statistics of T , in particular its variance [see Eq. (1.13)], to provide evidence of localization
even in the presence of absorption. In time-resolved transmission experiments with light [93],
the long-time decay of short pulses sent through the samples was measured, and evidence of path
lengths that are incompatible with diffusion were found. More recently, 1D and 2D disordered
photonic crystals were used to observe directly the localization of light by imaging the light
intensity profiles in transmission experiments [94,95]. In those experiments, the light was sent
into the sample on one facet, and its transverse spreading was measured on the opposite facet.
Evidence of strong localization was provided by the transverse intensity profiles, localized within
a few lattice sites of the photonic crystal.

Localization of ultrasound in a three-dimensional sample of aluminium beads was reported
in Ref. [88]. As in the case of photonic crystals, a source and a detector were placed on
opposite facets of the sample, and the transverse intensity profile was measured. Transmission
measurements resolved both in space and time were performed in the localized regime. Taking
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the localization length and a few other parameters as inputs, the data was well fitted by a novel
version [42] of the self-consistent theory used to describe localization in higher dimensions [41].

Disorder with cold atoms - Cold atomic clouds may be used as disordered medium for
light. This approach has been successfully used to study signatures of weak localization in
so-called coherent backscattering effects [99]. Conversely, light fields may be used to introduce
disorder into cold atomic gases. Following this path, cold atoms have been employed to realize
a quantum version of so-called kicked rotors [100, 101] and observe Anderson localization in
momentum space [96–98]. In such experiments, the atoms experience the presence of a peri-
odically pulsed 1D optical lattice potential, and the spreading of their momentum distribution
with time is measured. In the pioneering experiments of Refs. [96,97], the momentum distribu-
tion was measured after some drift time to convert velocities into positions, and the equivalent
of exponential 1D localization was found in momentum space. In Ref. [98], an analog of the
3D Anderson model was realized, the momentum distribution of the atoms was directly mea-
sured by Raman spectroscopy, and the Anderson transition was studied precisely, leading to
the determination of a critical exponent.

Ultracold atoms - Ultracold atoms have allowed a direct observation of the 1D Anderson
localization of matter waves in coordinate space [5,29,30]. In those experiments, Bose-Einstein
condensates (BECs) were left to expand in random [29] and quasi-periodic [30] 1D potentials
created with laser light. A regime of negligible interactions was reached either by sufficient
dilution of the BEC [29], or with the help of a so-called Feshbach resonance [30]. Absorption
images were taken to measure directly the density profiles of the localized matter waves. In
Ref. [29], localization lengths were extracted directly from the absorption images, and were
found to be in good agreement with theoretical ab initio calculations. The observation of
higher-dimensional versions of Anderson localization can also be envisioned with BECs released
from a harmonic trap. Such a scheme to observe 3D Anderson localization has been studied
theoretically in Ref. [102].

As we shall see below, two interesting features of ultracold atoms are the ability i) to
control interactions, so as to study the interplay of localization and interactions (see section 1.2
below), and ii) to implement a variety of random potentials in order to examine the role of
statistical correlations (see section 1.3). Let us first turn to the former aspect. Indeed, Anderson
localization in its original form is a single-particle phenomenon, and one of the related challenges
is to describe how it is affected by interactions. In a broader scope, this question is about
understanding how interactions and disorder determine the properties of quantum systems.

1.2 Disorder in interacting systems

Disorder lies at the heart of some of the most complex phenomena in many-body systems,
such as localization-induced metal-insulator transitions, the physics of spin glasses, high-Tc

superconductivity, or quantum chaos (see Ref. [19] and references therein). In particular, the
interplay of disorder and interactions is one of the important puzzles of condensed-matter
physics. In this context, questions arise on two prominent fronts. The first one concerns the
effect of interactions on Anderson localization, and the second one, the possible destruction
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of superfluidity (or superconductivity) by disorder. These two aspects may be interrelated, as
shown below.

1.2.1 Insulators, conductors, and superfluids

The combined action of disorder and interactions give rise to a rich variety of phenomena in
many-body systems. We shall outline here a few results and open questions which form the
background of the following chapters.

Anderson localization

The effect of Coulomb interactions on the localization and transport of electrons in disor-
dered solids has been considered for a number of years (for reviews on the subject, see e.g.
Refs. [103,104]). For weak interactions, Altshuler and coworkers [44,105,106] have shown that
the effect of disorder and interactions amplify each other, so that interactions help localizing
the particles. In particular, this result suggests that in the 2D geometry, which is the marginal
dimension according to the scaling theory of Abrahams et al. [53] (see section 1.1.2), all states
should remain localized at T = 0 [104]. Support for such a scenario is given in a more re-
cent publication [107], where it is shown that in regimes where all the single-particle states
are localized by the disorder, no delocalization transition takes place under the effect of weak
interactions at zero temperature. On the other hand, renormalization group calculations by
Finkel’stein [108] have shown that, for weak disorder and sufficiently strong interactions, the
resistivity of a 2D system might scale towards a finite value at low temperature. These cal-
culations are considered not to be conclusive on the existence of a metallic phase because of
the limited regime of validity of the approach [104]. On the experimental side, observations
of conductor-insulator transitions driven by the electron density have been reported [104,109].
However, the interpretation of the experimental results lead to a considerable debate, and the
nature of the phases on either side of the observed transitions seems to be an open question [103].

The above considerations apply to fermions with repulsive interactions, and to the transition
from a normal (metallic) conductor to an Anderson insulator. In certain systems, however, the
disorder-free system is superfluid at low temperatures. In that case, the focus lies on the effects
of disorder on the superfluid phase and on the transition from the normal to the superfluid
phase, or the possibility of a direct transition from the superfluid to an insulating state at low
temperatures.

Superfluidity

Macroscopically, superfluidity characterizes an absence of viscosity, dissipationless flow, and
the possibility of persistent currents [32, 110]. Superfluidity is common to condensed bosons
found in liquid 4He, atomic Bose gases (23Na, 87Rb, . . . ), and bosonic excitations (polari-
tons, . . . ), and to paired fermions in superconductors, atomic Fermi gases (6Li, 40K), and liquid
3He [18,32,110,111]. In all cases, the superfluid behavior originates from the presence of inter-
actions. Interestingly, experiments with “dirty” electronic systems [112,113] and 4He in porous
media [114, 115] have shown that superfluidity may be destroyed by disorder [7].
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Disordered superconductors - In the Bardeen-Cooper-Schrieffer (BCS) theory of con-
ventional superconductivity, electrons pair due to a weak effective attraction mediated by
phonons and form a superfluid many-body state at sufficiently low temperatures [116]. In-
vestigations into the effect of disorder on the properties of superconductors started in the
fifties [117], mostly focusing on the modification of the critical temperature Tc of the normal-
to-superconductor transition. These investigations culminated with the question of whether
a localization of the electrons may affect pairing and superconductivity altogether [9, 37]. It
has been recognized that, while the presence of weak (non-magnetic) impurities does not affect
significantly Tc [118–120], stronger disorder may completely suppress superconductivity [9].7

In the latter regime, the theoretical analysis is complicated by the fact that disorder modi-
fies simultaneously several ingredients in the system, such as the coupling between electrons
and phonons, the Coulomb repulsion of electrons, and the density of states of the normal
state [37, 122]. It is also believed that the dominant processes in the destruction of super-
fluidity (phase fluctuations or a suppression of the amplitude of the “order parameter”) may
depend on the type of disorder [9], and whether it is homogeneous, or rather coarse grained, as
in granular superconductors [11, 112, 123].

Superfluid helium - The effect of disorder on superfluid bosons, on the other hand, has been
studied with 4He in porous media (see e.g. Ref. [124] for an early publication, and Ref. [10]
for a review). Interesting phenomena have been observed in these disordered systems, such
as a modification of the critical behavior at the normal-superfluid transition [125]. The most
remarkable result of this activity, however, has been the observation of a complete suppression of
superfluidity in films of 4He adsorbed on a porous substrate [114,126,127]. In these experiments,
the superfluid behavior is lost when the density of 4He covering the substrate is lowered below a
critical value. Superfluidity is recovered above that threshold. In 1979, Hertz et al. [6] proposed
that the insulating behavior may be due to a localization of the bosons below the critical density
(for small chemical potentials), and probably coined the term of “Bose glass” (see below). The
picture which emerged from the experiments was that of a superfluid-to-insulator transition
connected with a localization or delocalization of the bosons, and determined by the interplay
of the disorder and interactions. This discovery triggered an intense activity around the “boson
localization problem” [7, 8, 121, 128–133], many aspects of which are not yet fully understood.

The role of quantum statistics

Non-interacting particles are generally localized by disorder at all energies in 1D and 2D, and
below the mobility edge in 3D.8 The addition of interactions gives rise to a complex interplay,
even in the ground state of many-body systems. Quantum statistics play an essential role
in this respect, as an infinite number of non-interacting bosons can populate the same single-
particle ground state, whereas fermions cannot occupy the same state due to the Pauli exclusion
principle, and fill all the single-particle states up to the Fermi energy instead [134]. The effect of
finite but very weak interactions on many-body system is therefore expected to be qualitatively

7See e.g. Refs. [8, 121] for a description of the superconductor-insulator transition in 1D.
8However, we will see in chapter 2 that the localization length in 1D might experience sharp crossovers,

where it changes by orders of magnitude as a function of the single-particle energy, in certain types of correlated
disorder, like speckle potentials.
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quite different in the case of bosons and fermions. Bosons are interesting in their own right since
i) even for weak interactions, their behavior is expected to be a collective one, and ii) disorder-
free bosonic systems often exhibit superfluidity for weak interactions. Moreover, the problem
of boson localization may help understanding some features of disordered superconductors, in
regimes where the picture of Cooper pairs is adequate [135].

1.2.2 Disordered bosons: weak and strong interactions

In this section, we focus on the ground-state (T = 0) properties of interacting bosons in a
disordered potential. Such disordered bosons have a different behavior depending on the regime
of interactions, and on whether additionally they experience a periodic lattice potential or not.
Below, we summarize a few general ideas and results which are known for the 1D geometry.

General phenomenology

Non-interacting bosons - At T = 0, non-interacting bosons all populate the single-particle
ground state, which is extended (delocalized) in the absence of disorder, and form a Bose-
Einstein condensate (BEC).9 In the presence of disorder, the single-particle ground state is
localized, and so are all the bosons.

Weak interactions - In the absence of disorder and in the presence of weak interactions,
the bosons form a condensate10 and, additionally, display superfluidity. In the presence of
disorder, however, the bosons may be localized in accordance with the non-interacting limit,
and in that case superfluidity is unlikely. However, weak repulsive interactions are expected
to have a delocalizing effect on an assembly of bosons localized by disorder in some region of
space, as those particles otherwise pay the price of mutual interaction for occupying the same
location. Weak interactions might therefore restore superfluidity.

Strong interactions (lattice bosons) - It is known that strong repulsive interactions may
localize particles, even in the absence of disorder, and destroy superfluidity. A prime example
of such a localization induced by interactions is provided by the Mott-insulator phase [136]
which is formed for strong interactions or small tunneling in the presence of a lattice. For an
integer average number of particles per lattice site (“integer” or “commensurate” filling), the
system forms a Fock state in which the particles are localized on single sites. Phase coherence
is lost because of the vanishing number fluctuations. The strong on-site interaction creates an
energy gap in the excitation spectrum, turning the system into an insulator. The transition
to this state has been studied extensively for fermions [137, 138] and since the eighties for
bosons [128, 139–141]. It has recently been observed with ultracold atoms [20, 142–145]. In
the context of the Mott transition, localization occurs because of the interplay of the lattice
potential, the kinetic energy which tends to delocalize the particles, and the strong inter-particle
interactions which impose a toll on such a delocalization [146,147]. In the Mott insulating phase,

9In 1D, the density of state prevents the formation of a BEC in the homogeneous case. If interactions are
turned on, however, 1D bosons form a quasi-condensate with superfluid properties, as in higher dimensions.

10Or a quasi-condensate in 1D. See section 3.3.1.
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the boson density remains homogeneous on long length scales, and the term of “localization”
is used to characterize the many-body state.

The above considerations show that interactions may either hamper or favor localization in
inhomogeneous systems. Let us now review how this shapes the behavior of bosons in 1D. The
one-dimensional geometry is interesting, as the effects of both the disorder and the interactions
are generally expected to be at their strongest [147]. Another advantage of one-dimensional
systems is that they can be, to some extent, treated analytically, and that they may give some
insight into the physics governing their higher-dimensional analogues.

Disordered bosons in 1D

Quantum phase diagrams - We reproduce in Fig. 1.7 the quantum phase diagrams worked
out in Refs. [8, 148] for disordered bosons with and without lattice.

For strong interactions, disordered bosons enter an insulating phase.11 In the presence of a
lattice and for integer filling, this insulating phase is either a Mott insulator, characterized by
a gapped excitation spectrum and vanishing compressibility, or a gapless compressible phase
called Bose glass [128] [see Fig. 1.7(a)]. In the absence of a lattice, however, there is no insulating
Mott phase, and the only phase present for strong interactions is the Bose glass [see Fig. 1.7(c)].
The gapless Bose glass is an insulator because of the localization effects of the disorder [128].

For moderate repulsive interactions and weak disorder, on the other hand, an extended
(delocalized) superfluid phase is predicted. Starting from this superfluid phase, as put forward
in Refs. [8,148,149], stronger disorder drives the system back into an insulating phase, identified
with the same Bose glass. In diagrams such as those reproduced in Fig. 1.7, the superfluid phase
is enclosed in a lobe attached to the line of vanishing disorder, and separated from the line of
vanishing interaction by an insulating phase. The prevailing argument explaining the latter
feature is that for an infinitesimal amount of disorder non-interacting bosons in 1D all populate
the Anderson-localized single-particle ground state, with no superfluid properties.

Open questions - It seems well established numerically that there is no phase transition
between the strongly- and weakly-interacting regimes of the insulator found in the continous
case, and that the phase enclosing the superfluid lobe is a unique Bose-glass phase [148].
However, this phase is expected to exhibit qualitative differences between the two regimes. In
particular, the processes leading to localization and an insulating behavior in the two regimes
are recognized to be different.12 Much attention has been devoted to the strongly-interacting
part of the quantum phase diagram of disordered 1D bosons, especially to the lattice case.

11This has been shown analytically for the continuum case using Luttinger liquid theory and renormalization
group (RG) techniques [8], and for the lattice case using scaling arguments [128], Monte-Carlo [130,149], real-
space renormalization [150,151] or density matrix renormalization group (DMRG) [148] calculations.

12The precise shape of the lobe displayed in Fig. 1.7(b) confirms that disorder and interactions cooperate in
the transition to the Bose glass in the regime of strong interactions, while they compete for weak interactions.
Strictly speaking, the data displayed in Fig. 1.7(b) does not correspond to the continuous case. Because of
the absence of Mott phase, however, it probably lies closer to the continuous case than the commensurate case
shown in Fig. 1.7(a). Note that in the latter case, there are points in the Bose glass phase from which a stronger
disorder and constant interactions drive the system back into the superfluid phase. This introduces a nuance
in the rule of thumb indicating that strong interactions cooperate with disorder. An explanation is given in
Ref. [148].
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(a) DMRG study of the
commensurate lattice case
(Fig. 1 of Ref. [148]).

(b) DMRG study of the
lattice case at half filling
(Fig. 2 of Ref. [148]).

(c) Luttinger liquid and renormaliza-
tion group study of the continuous
case (Fig. 3 of Ref. [8]).

Figure 1.7: Quantum phase diagrams of strongly interacting 1D bosons in disorder. (a),(b) Re-
sults of DMRG calculations performed for the lattice case from the Bose-Hubbard Hamiltonian
with on-site interaction energy U and random on-site energies ǫi uniformly distributed in an
interval [−∆,∆]. The energies in the figures are normalized by t = 1 where t/2 is the (ki-
netic) hopping term of the Hubbard model. (c) Analysis of the continuous case. The arrows
show the RG flow of the disorder strength D and the Luttinger liquid parameter K, which
are renormalized when a short-wavelength cutoff in the low-energy Luttinger liquid theory is
sent to infinity. In this figure, K is zero for non-interacting bosons, and increases with the
strength of repulsive intreactions. The quantity D parametrizes an uncorrelated disorder with
autocorrelation function C2(z) = Dδ(z) [see Eq. (2.45)].

Interestingly, the weakly-interacting regime itself is not well characterized. The dashed lines
left in Figs. 1.7(b) and 1.7(c), for instance, raise questions about the location of the phase-
transition boundary. Further important issues are connected with the dominant mechanisms
triggering the transition, a characterization of the weakly-interacting Bose glass beyond that
boundary, and a description of the Bose glass found close to the line of vanishing interactions,
where pure Anderson localization occurs.

1.2.3 Ultracold atomic Bose gases

At sufficiently low temperatures, atomic Bose gases form a Bose-Einstein condensate (BEC), or
a quasi-BEC in low-dimensional geometries [32, 111, 152]. Condensates and quasi-condensates
exhibit (quasi-) long-range order, which makes them ideal tools to study the effects of co-
herence and disorder. The theory of Bose-Einstein condensation can be found in standard
textbooks [153] and review articles [111]. We touch upon a few points below. We also highlight
a few well-known but significant aspects of theory and experiment with ultracold atomic Bose
gases. Ultracold Bose gases are naturally weakly-interacting, and can therefore be described
accurately with simple theoretical tools. From the experimental point of view, ultracold gases
offer a high degree of control.

Bose-Einstein condensation

Non-interacting case - Bose-Einstein condensation is often introduced by considering non-
interacting bosons at thermal equilibrium in the grand-canonical ensemble. Then, the system
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is described on a basis of single-particle states with energies Ei. The occupation of these states
at temperature T is given by

Ni =
1

eβ(Ei−µ) − 1
, (1.16)

where β = 1/kBT , and the chemical potential µ is determined by the average number N of
bosons:

∑
iNi(µ, β) = N . In this framework, Bose-Einstein condensation is a phase transition

which occurs if, for some temperature Tc, the population of excited states saturates below Tc,
and the occupation N0 of the single-particle ground state becomes of the order of N . Such
is the case in free space in 3D, and in harmonic traps in 3D and 2D [32]. Key ingredients
for condensation to occur in the single-particle ground state are the indistinguishability of
the bosons, their ability to occupy the same single-particle state, and the saturation of the
population of excited states. The occurence of such a saturation depends on the single-particle
density of states, hence also on the dimensionality. In a homogeneous 1D geometry, bosons do
not form a true BEC, even at T = 0. In the presence of weak interactions, however, they form
a quasi-condensate (see section 3.3.1), which displays some form of coherence (quasi-long-range
order), and shares with higher-dimensional analogues the property of superfluidity [18].

Interacting case - Bose-Einstein condensation is not restricted to non-interacting sys-
tems. In general, the description of Bose-Einstein condensation in an interacting system re-
quires the explicit consideration of its many-body states. All the statistical and quantum-
mechanical information about the state |Ψ〉 of a many-body system is contained in its den-
sity matrix ρ̂. Few-body correlation functions describing |Ψ〉 are obtained from the p-body
density matrices ρ̂p, whose elements in the position basis are ρp(r1, · · · , rp, r

′
1, · · · , r′p) =

〈Ψ|Ψ̂(r1)
† · · · Ψ̂(rp)†Ψ̂(r′1) · · · Ψ̂(r′p)|Ψ〉. In this expression, Ψ̂(r) is the bosonic field operator

which creates a particle at position r. The one-body density matrix

ρ1(r, r
′) = 〈Ψ|Ψ̂(r)†Ψ̂(r′)|Ψ〉, (1.17)

in particular, reflects the one-particle properties of the many-body state. The density matrix
is a key concept for the definition of Bose-Einstein condensation in interacting systems. The
one-body density matrix is Hermitian and positive semi-definite, and can be diagonalized in an
orthonormal basis of eigenfunctions χi:

ρ1(r, r
′) =

∑

i

Niχ
∗
i (r)χi(r

′), (1.18)

with Ni ≥ 0. A Bose-Einstein condensate is said to be present when at least one of the
eigenvalues Ni is of the order of the average number N of particles in the system (and remains
so if N is sent to infinity at constant particle density) [111, 154–157]. Now the system might
have different properties depending on whether only one or several eigenvalues have a magnitude
comparable to N . If a single eigenvalue N0 is comparable to N , the system displays a simple
BEC, and χ0 is called the wave function of the condensate. On the other hand, if several
eigenvalues Ni are comparable to N , the system is said to be in a state of fragmented BEC [111,
157]. The latter situation will be encountered and discussed in sections 3.3.3 and 3.4.2.
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Weakly-interacting Bose gases

Modeling interactions - Ultracold atomic gases are naturally dilute and weakly-interacting.
This has several advantages. First, interactions between the atoms can be described by two-
body scattering processes [110]. In the case of bosons at temperatures below the millikelvin
(i.e. even far above the typical condensation temperatures), these processes are dominated by
s-wave scattering, and determined by a single parameter, the s-wave scattering length as [18].
Hence, interactions can be modeled with a simple contact interaction potential

Vint(r − r′) =
4π~

2as

m
δ(r − r′), (1.19)

where m is the mass of the atoms [32]. In contrast, a complicated interaction potential is
required to describe interactions in liquid 4He [158]. Second, the atom density n and the
scattering length as in ultracold Bose gases are usually such that na3

s ≪ 1, which defines
a regime of weak interactions.13 As a consequence i) almost pure BECs can be obtained in
systems of ultracold atoms (in 3D), with condensate fractions N0/N close to one, ii) mean-field
approaches provide a reasonable starting point to explain a wealth of phenomena [32].

Description of the many-body system - In the standard mean-field picture, the many-
body state |Ψ〉 is simply represented by a macroscopic coherent matter wave of the form Ψ0(r) =√
N0χ0(r) [18]. In the Bogolyubov approach [159], correlations beyond the mean field are

included by considering small quantum fluctuations δΨ̂(r) around the mean field, and writing
the field operator as

Ψ̂(r) ≃ Ψ0(r) + δΨ̂(r). (1.20)

The concept of a macroscopic wave function is also known from the field of superconductors
and superfluid 4He. In those cases, however, it only provides a phenomenological description
of the superfluids [18]. In the case of 4He, for instance, interactions are generally strong, and
the condensate fraction is believed to be typically 10% only, even at zero temperature [155].
On the contrary, the mean-field and the mean-field-plus-Bogolyubov pictures provide accurate
microscopic descriptions of BECs in atomic gases.

Experiments with ultracold gases

Since the achievement of Bose-Einstein condensation in 1995, ultracold atomic gases have
demonstrated their versatility by allowing the exploration of topics from fields as diverse as
condensed-matter physics [20] and quantum optics [160]. Assets of ultracold gases are the high
degree of control and the number of available diagnostic tools.

Control and versatility - With ultracold atoms, the experimentalist can choose the quan-
tum statistics, and has control over the temperature and the number of atoms. Laser light,
magnetic fields or radio-frequency fields can be used to design potentials for the atoms. Those
potentials may serve as waveguides, traps, coupled wells or lattice potentials. Tightly-confining

13Strong interactions can nevertheless be achieved by tuning as with Feshbach resonances. Alternatively,
strongly correlated regimes can be reached at small na3

s by loading the atoms into an optical lattice, which
quenches their kinetic energy [18, 146].
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traps can be used to reduce the effective dimension of the system. Periodic lattice potential, on
the other hand, are used mimic solid state physics. The strength of interactions may be tuned
by means of Feshbach resonances. Finally, special atomic species and internal structures give
access to new types of interactions in spinor gases and dipolar gases.

Diagnostic tools - Many types of measurements can be performed on systems of ultracold
atoms. Absorption, fluorescence or phase-contrast imaging can be used to measure density
profiles in-situ, or velocity distributions after time-of-flight. The position and the energy of
the atoms may be very finely measured by using light-shift tomography. Internal states can
be resolved by adapting the probe laser light. Collective excitations can be measured by mod-
ulating trapping potentials. One- and two-body correlation functions can be measured with
interference experiments, Raman or Bragg spectroscopy, and noise correlation spectroscopy.

For the above reasons, ultracold atoms also constitute an excellent arena to study the physics
of disordered quantum systems. One of the appealing features of ultracold atoms in this re-
spect is the controlled generation of random potentials. In the following section, we address the
statistical properties of random potentials, and possible implementations of disorder in systems
of ultracold atoms.

1.3 Random potentials

Disorder may take different shapes. In the Anderson Hamiltonian (1.5), for instance, either
the on-site energy ǫi or the hopping term Jij , or even both, may be random functions of the
position. What is more, these quantities could be random function of time as well, and this
would just be one of the many conceivable ways to model disorder. In this thesis we only
consider quenched disorder (i.e. time-independent disorder) which takes the form of a random
potential V . Below, we present those properties and ways of characterizing random potentials
which are relevant to our study (sections 1.3.1 and 1.3.2). In section 1.3.3, we provide a brief
description of speckle potentials. Those speckle potentials are relevant to current experiments
with ultracold atomic gases, and have original statistical properties.

1.3.1 Correlation functions

A random potential is a random function V (r) of the position r, associated to a probability
measure P [V ]DV . A realization of the random potential is a particular outcome of the process
of drawing the potential values V (r) for all r. For simplicity, we sometimes also refer to such
an outcome as “the random potential” itself. We denote by

〈· · ·〉 =

∫
· · ·P [V ]DV (1.21)

the statistical average with respect to the probability P . In the framework of the following
chapters, we need not know the complete probability density P , and the set of n-point auto-
correlation functions 〈V (r1)V (r2) · · ·V (rn)〉 is sufficient. Without loss of generality, we assume
that V has a vanishing spatial average: 〈V (r)〉 = 0. We detail below two additional (key)
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assumptions, namely that the statistical properties of the potential are “homogeneous”, and
that statistical correlations disappear at infinity.

Spatial homogeneity

The random potential is assumed to be homogeneous in the sense that its statistical properties
do not depend on the absolute position in the sample. As a consequence, the n-point correlation
functions Cn depend on n− 1 relative coordinates only:

Cn(r1, . . . , rn−1) = 〈V (r0)V (r0 + r1) · · ·V (r0 + rn−1)〉. (1.22)

Disappearance of statistical correlations at infinity

Another standard assumption on the random potential is the disappearance of statistical cor-
relations between values of the potential at points with infinitely large separation. This is
expressed by the factorization of averages [86]

〈V (r0) · · ·V (rm−1)V (rm +d) · · ·V (rn−1 +d)〉 −−−−→
|d|→∞

〈V (r0) · · ·V (rm−1)〉×〈V (rm) · · ·V (rn−1)〉.
(1.23)

In particular, the two-point correlator, or auto-correlation function C2, drops to zero at infinity
by virtue of the assumption 〈V 〉 = 0. We call correlation length σR a typical width of the
correlation function C2.

The function C3 also vanishes in a factorization such as the one encountered on the right-
hand side of formula (1.23). For higher-order correlation functions, however, this is in general
not the case. For instance, the four-point correlation function may not vanish in the limit

〈V (r0)V (r1)V (r2 + d)V (r3 + d)〉 −−−−→
|d|→∞

〈V (r0)V (r1)〉 × 〈V (r2)V (r3)〉. (1.24)

This means that the absence of correlation between two points does not imply the disappearance
of all correlations.

Cumulants

The correlation functions Cn correspond to various moments of the continuous random vari-
able V (r). For the analysis of higher-order correlations, it proves useful to define also the
cumulants Kn of the random potential [35, 161]. In brief, the cumulants Kn are obtained from
the moments Cn by substracting all possible factorized contributions:

K2(r1) = 〈V (r0)V (r0 + r1)〉 − 〈V (r0)〉 × 〈V (r0 + r1)〉 (1.25)

K3(r1, r2) = 〈V (r0)V (r0 + r1)V (r0 + r2)〉 − 〈V (r0)V (r0 + r1)〉 × 〈V (r0 + r2)〉
−〈V (r0 + r1)V (r0 + r2)〉 × 〈V (r0)〉 − 〈V (r0 + r2)V (r0)〉 × 〈V (r0 + r1)〉 (1.26)

· · · = · · ·
Since 〈V 〉 = 0, the lower-order cumulants K2 and K3 coincide with the moments C2 and C3,
respectively. The fourth-order cumulant reads

K4(r1, r2, r3) = C4(r1, r2, r3) − C2(r1)C2(r2 − r3)

−C2(r2)C2(r3 − r1) − C2(r3)C2(r1 − r2). (1.27)
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Owing to the factorization of averages [ see Eq. (1.23)], the cumulant K4(r1, r2, r3) vanishes as
soon as any of its arguments ri becomes infinitely large.

Symmetries

The assumption of homogeneity implies the symmetries

C2(r1) = C2(−r1) (1.28)

Ĉ2(q1) = Ĉ2(−q1) (1.29)

C3(r1, r2) = C3(−r1, r2 − r1) = C3(−r2, r1 − r2) = C3(r2, r1) (1.30)

Ĉ3(q1,q2) = Ĉ3(q1,−q1 − q2) = Ĉ3(q2,−q2 − q1) = Ĉ3(q2,q1), (1.31)

where Ĉn(q1, . . . ,qn−1) is the Fourier transform

Ĉn(q1, . . . ,qn−1) = (2π)−(n−1)d/2

∫
dr1 · · ·

∫
drn−1Cn−1(r1, . . . , rn−1)e

i(q1.r1+···+qn−1.rn−1).

(1.32)
However, homogeneity alone does not guarantee the symmetries14 C3(r1, r2) = C3(−r1,−r2)
and Ĉ3(q1,q2) = Ĉ3(−q1,−q2).

1.3.2 Gaussian disorder

Gaussian random potentials form a particular class of disorder, described by a probability
measure15 [35]

P [V ]DV =
1

Z e−
1
2

RR

dr dr′ V (r)B(r−r′)V (r′)DV, (1.33)

where Z is a normalization factor, the function B satisfies
∫

dr′′B(r − r′′)C2(r
′ − r′′) = δ(r − r′), (1.34)

and C2 is the two-point correlation function C2(r
′ − r) = 〈V (r)V (r′)〉.

Essential property - Gaussian random potentials have the fundamental property that all
cumulants Kn of order n > 2 vanish identically.16 Since 〈V 〉 = 0, this implies that all correlation
functions (i.e. moments) Cn of odd order n vanish identically, and that correlation functions
Cn of even order expand into products of two-point correlation functions C2. In particular the
four-point correlator of a Gaussian potential reads

CG
4 (r1, r2, r3) = C2(r1)C2(r2 − r3) + C2(r2)C2(r3 − r1) + C2(r3)C2(r1 − r2). (1.35)

The statistical properties of a Gaussian random potential are hence entirely determined by the
two-point correlator C2.

14A simple counter-example is found with a 1D potential made of scarcely, randomly placed impurities with
asymmetric shape [see model (1.37)]. It can be checked that such a potential is not isotropic and thatC3(r1, r2) 6=
C3(−r1,−r2).

15In certain specific contexts, one may find that a random potential is said to be Gaussian when its single-
point probability distribution P [V (r)] is a Gaussian, or when its two-point correlation function C2(r1) Gaussian.
In both cases, the random potential may not be Gaussian in the sense of the definition given here.

16This property is known as a consequence of the so-called Gaussian moment theorem. It also directly follows
from the very definition of the cumulants with the help of a generating functional [35, 161].
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Gaussian white noise - The model of uncorrelated Gaussian disorder, or Gaussian white
noise [162], corresponds to

C2(r1) = D δ(r1), (1.36)

where δ is the d-dimensional Dirac function, and D =
∫

dr1C2(r1) parametrizes the strength
of the potential. Note that D has dimension (energy)2 × (length)d, where d is the spatial
dimension.

Example - A standard model of disorder is the random impurity potential, or Edwards
model, in which the random potential arises from the contribution of identical and randomly
placed impurities [35]:

V (r) =
∑

i

f(r− ri). (1.37)

In this expression, the ri denote the random positions of the impurities, and f is the single-
impurity potential. The potential V is characterized by the impurity density n, i.e. the average
number of impurities per unit volume, and the typical amplitude f0 of the single-impurity
potential f [e.g. f0 = f(0)]. In the limit of dense impurities, which corresponds to taking
n → ∞ while keeping nf 2

0 constant, the impurity potential is Gaussian, and its correlation
function is

C2(r) = n

∫
dr′f(r′)f(r′ + r). (1.38)

Quite often, the single-impurity potential is assumed to be proportional to a Dirac distribution,
in which case the disorder is uncorrelated [162,163].

Gaussian random potentials are widely used in the literature [162–167] because i) they often
allow explicit calculations and ii) they offer a good description of processes which result from the
sum of a large number of random variables (for uncorrelated variables, the central limit theorem
ensures the convergence to a Gaussian distribution). It is common to approximate true disorder
by an uncorrelated Gaussian random potential if the correlation length of the true potential is
much smaller than all other relevant length scales in the physical problem [167]. We examine
in the following chapters situations where such is not the case.

1.3.3 Speckle potentials

Optical potentials have proved to be an efficient tool to trap and manipulate ultracold atoms.
In the field of a laser light which is close to resonance with a transition from the ground state
to an excited state, atoms experience the potential [18]

Vdip(r) =
3πc2Γ

2ω3
0

I(r)

δ
, (1.39)

due to the electric dipole coupling of atom and field. In this expression, Γ is the decay rate
(width) of the excited state, ω0 is the transition frequency, δ = ωL − ω0 is the detuning of the
laser frequency from the transition, and I(r) is the intensity of the field at position r:

I(r) =
1

2
cǫ0|E(r)|2, (1.40)
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Figure 1.8: Experimental speckle pattern (courtesy of J. Billy). False colors indicate the
intensity of the light field (blue: minimim; red: maximum). Here the optical set-up is built so
as to produce elongated speckle grains, with a correlation length exceeding the system size in
the vertical direction. The speckle potential is then effectively 1D.

where E is the amplitude of the electric field.17 Expression (1.39) holds for Γ ≪ |δ| ≪ ω0. If
the laser is blue-detuned with respect to the transition (ωL > ω0), the potential is repulsive,
and the atoms seek low field intensities. If the laser is red-detuned (ωL < ω0), the potential is
attractive, and the atoms seek strong intensities.

The high degree of control offered by optical dipole potentials has been used to confine
ultracold atoms into low-dimensional geometries and to create lattice potentials for the atoms,
allowing an exploration of condensed-matter problems [20,21,168,169]. Optical potentials can
also be used to create disorder in a controlled way [25–27, 30, 170–173], e.g. in the form of
speckle patterns [22–24]. Such a speckle pattern is displayed in Fig. 1.8. Other schemes exist or
have been proposed to impose random or pseudo-random potentials on ultracold atoms. They
include the use of disordered magnetic traps on atom chips with rough wires [174, 175], static
impurity atoms [176–178] or radio-frequency fields [179]. Speckle potentials have advantages
from both a practical and a fundamental point of view. First, speckle potentials are easily
implemented with simple optical components, and their statistical properties are well known
(see Refs. [180, 181] and below). Second, speckle potentials are correlated random potentials,
and their correlation functions can be designed by adapting the geometry of the optical setup
used to produce them. Speckle potentials thereby allow to investigate the effect of statistical
correlations. Finally, both the amplitude and the correlation length of speckle potentials can
be precisely controlled and calibrated [31], so that quantitative comparisons with the theory
are possible [29].

What is speckle ?

Speckle fields typically arise as a result of the reflection or transmission of a coherent wave
on a rough surface. Such a situation is depicted schematically in Fig. 1.9(a). A laser beam is
passed through a diffusive plate, giving rise to partial waves with different phases (and possibly

17With this standard notation the intensity I is homogeneous to the energy flux of the laser light, rather than
the squared modulus of the electric field. For simplicity, we also refer to the latter quantity as the intensity.
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Figure 1.9: Transmission through a ground-glass diffuser. The partial waves created on the
diffuser interfere at the observation spot (ρ, y). In coherent light (wave vector kL), this inter-
ference produces a speckle pattern.

different amplitudes) due to the tickness variations of the diffusive plate. The complex field
amplitude E(r) at some observation point r = (ρ, y) results from the interference of these
partial waves, and forms a random pattern.

Elementary properties

The statistics of speckle are reviewed in detail in Refs. [180,181]. Let us summarize here some
elementary properties. For simplicity, we assume that the field is scalar, and the diffuser is
regarded as being composed of N independent elementary scatterers. Then, at every position
r, the complex electric field amplitude can be written as a sum of elementary contributions (see
Fig. 1.9(a))

E =
1√
N

N∑

n=1

|en|eiφn. (1.41)

The roughness of the diffuser is assumed to be such that the phases φn are uniformly distributed
in the interval [0, 2π], and that, for all n, the amplitude |an| and the phase φn are uncorrelated.
Then, the sum (1.41) appears as the result of a random walk in the complex plane. The real
and imaginary parts R = Re[E ] and I = Im[E ] are uncorrelated variables with zero mean
and equal variance. The central limit theorem ensures that, as sums of N independent and
identically-distributed random variables, R and I have Gaussian probability distributions for
large N . The field E itself is a complex Gaussian random field.

Light intensity - As a first consequence of their Gaussian distribution, R and I have the
joint probability density

PR,I(R, I) =
1

2πσ2
e−

R2+I2

2σ2 , (1.42)

where σ2 is the variance of both R and I. Switching to a polar representation with |E|2 =
R2 + I2 and Φ = arctan(I/R), the probability distribution for the field intensity I = cǫ0|E|2/2
is readily derived as

PI(I) =

{
e−I/〈I〉

〈I〉 if I > 0

0 otherwise
, (1.43)
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where 〈I〉 is the average value of the intensity. Note that this distribution is highly asymmetric
around the mean, and that it has a lower bound, but no upper bound.

The speckle random potential is defined as V = Vdip − 〈Vdip〉 = VR(I/〈I〉 − 1), where

VR =
3πc2Γ

2ω2
0

× 〈I〉
δ
. (1.44)

Then, V has a vanishing average, a root-mean-square amplitude |VR|, and a single-point prob-
ability distribution

P [V (r)] =

{
V −1

R
e
−V (r)

VR
+1

if V (r)
VR

> −1

0 otherwise
. (1.45)

Equation (1.44) shows that the disorder amplitude |VR| is directly controlled by the laser power
via 〈I〉. The sign of VR, on the other hand, is controlled by the sign of the detuning δ. For
blue-detuned laser light, VR is positive, and the potential is bounded below. For red-detuned
light, VR is negative and the potential is bounded above.

Speckle grain size - The typical grain size of the speckle pattern is determined by the
width of its (two-point) autocorrelation function. We denote by Ei the value of the complex
field at some point ri. For all i, j, the correlation functions 〈EiEj〉 and 〈E∗

i E∗
j 〉 vanish [181], so

that the two-point correlation properties of the field E are entirely determined by correlators
of the form 〈E∗

i Ej〉. Moreover, the Gaussian moment theorem applies to E (see section 1.3.2),
so that all higher-order correlation functions factorize into products of two-point correlators.
In particular, the two-point intensity correlation function 〈I0I1〉 ∝ 〈E∗

0E∗
1E0E1〉 is obtained from

the expansion
〈E∗

0E∗
1E0E1〉 = 〈E∗

0E0〉〈E∗
1E1〉 + 〈E∗

0E1〉〈E∗
1E0〉. (1.46)

This result can be cast in the form18

〈I0I1〉
〈I〉2 = 1 +

〈E∗
0E1〉〈E∗

1E0〉
〈E∗E〉2 (1.47)

or, equivalently,
〈V0V1〉
V 2

R

=
〈E∗

0E1〉〈E∗
1E0〉

〈E∗E〉2 . (1.48)

For points ri = (ρi, y) located in a plane at distance y from the diffusive plate [see Fig. 1.9(b)],
the field correlation function 〈E∗

0E1〉 = 〈E∗(ρ0, y)E(ρ1, y)〉 ≡ C⊥
E (ρ1 − ρ0) obeys [181]

C⊥
E (ρ1 − ρ0)

C⊥
E (0)

=

∫
dρ′F (ρ′) e−i

kL
y

(ρ1−ρ0).ρ
′

∫
dρ′F (ρ′)

, (1.49)

where F (ρ′) = 〈|E ′(ρ′)|2〉, and E ′(ρ′) is the complex amplitude at the level of the diffusing
plate. The parameter kL = 2π/λL is the wave number of the laser light. Hence, Eq. (1.48) and
the non-constant term of Eq. (1.47) write

C⊥
2 (ρ1 − ρ0)

V 2
R

=
〈E∗

0E1〉〈E∗
1E0〉

〈E∗E〉2 =

∣∣∣∣∣

∫
dρ′F (ρ′)e−i

kL
y

(ρ1−ρ0).ρ
′

∫
dρ′F (ρ′)

∣∣∣∣∣

2

, (1.50)

18We assume that 〈I〉 and VR are constant in the spatial region of interest.
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Figure 1.10: Typical set-up for an experiment with speckle potentials. The speckle pattern is
observed behind a diffusing plate, in the back focal plane of a lens, where the atoms are placed.
The correlation functions of the speckle field E can be designed by choosing the shape and size
of the aperture A and the intensity profile of the free laser beam. A speckle potential V can be
created which, on the scale of the cloud of atoms, varies only along the z-direction.

where C⊥
2 (ρ1 − ρ0) is the two-point autocorrelation function of the speckle potential. Equa-

tion (1.48) shows that the two-point correlation function of the intensity pattern (and of the
speckle potential V ) in the transverse plane directly depends on the Fourier transform of the
intensity distribution F (ρ′) on the diffuser. Therefore, the typical speckle grain correponds
to the diffraction spot associated with the illuminated portion of the diffuser. A broad inten-
sity distribution F (ρ′) implies small speckle grains (i.e. a small correlation length σR), while a
narrow distribution creates large grains.

Experiments - The correlation functions can be directly controlled in the experiments by
changing the aperture of the optical system, thereby modifying the intensity pattern 〈|E ′(ρ′)|2〉
on the diffuser. A typical experimental setup is sketched in Fig. 1.10. A lens is added in front
of the diffusive plate to concentrate the laser power on the atoms, but the wave-front curvature
imposed by the lens does not modify the correlation properties of the speckle pattern in the
back focal plane. The aperture A, on the other hand, limits the portion of the diffuser which
is illuminated, and its geometry is used to control the correlation functions. High numerical
apertures allow to produce correlation lengths σR of the order of the laser wave length λL.19

Small correlation lengths are important, for instance, for the observation of Anderson local-
ization on small, measurable length scales. Conversely, the aperture can be made narrow in a
given direction to create random potentials which are effectively translation invariant in that
direction. Figure 1.8 shows the speckle pattern obtained with a rectangular aperture which
is wide in one direction, and narrow in the other. The result is a highly anisotropic speckle
pattern, which can be used as a truly 1D random potential.

19A correlation length σR of 0.26µm was achieved in Ref. [29]. A precise definition of the correlation length
in the context of speckle potentials is given below.
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Original features

Speckle potentials are easily tuned in amplitude, geometry and correlation length. They are also
interesting from a fundamental point of view for a number of reasons. First, speckle potentials
have special long-range correlations that correspond to a sharp cutoff in their spatial Fourier
spectrum. Second, they form a class of non-Gaussian potentials, which nevertheless inherit
some of the properties of a Gaussian field. Both of these features can be exploited to study the
role of correlations in an original (but realistic) model of disorder.

Cutoff in the Fourier spectrum - Information about the spatial Fourier components of
the speckle potential in a transverse plane (at constant distance y in Fig. 1.9(b)) are obtained
from the Fourier transforms of Eqs. (1.46) and (1.48). For the field correlation function, the
Fourier transform reads

Ĉ⊥
E (q) ∝ F

(
− y

kL
q

)
, (1.51)

where F (ρ′) = 〈|E ′(ρ′)|2〉 is the intensity profile on the diffuser. Due to the finite aperture of
the optical system, F has a compact support, and Ĉ⊥

E (q) vanishes identically for |q| exceeding
some critical value kc. For speckle potentials, we now define the correlation length σR as the
inverse of this cutoff:20

σR ≡ 1

kc

. (1.52)

For the two-point correlation function of the potential, one obtains

Ĉ⊥
2 (q)

Ĉ⊥
2 (0)

=

∫
dρ′F (ρ′)F (ρ′ + y

kL
q)

∫
dρ′F (ρ′)2

. (1.53)

For |q| > 2kc, the supports of F (ρ′) and F (ρ′ + y
kL

q) have no overlap, and the Fourier trans-
form of the autocorrelation function of the potential vanishes. In other words, the random
potential V has no spatial Fourier component such that |q| > 2kc. The presence of a cutoff kc

is a generic property of speckle potentials, which is related to the way they are produced. This
cutoff distinguishes speckle potentials from white-noise potentials, which have a flat Fourier
spectrum, but also from other standard models of disorder with a Fourier spectrum which de-
cays smoothly at infinity (e.g. impurity potentials with exponential, Gaussian, or Lorentzian
two-point correlator). The sharp cutoff in Fourier space also implies that speckle potentials have
long-range correlations. We shall see in chapter 2 that it has a strong effect on localization in
1D.

Higher-order statistics - Speckle potentials derive from the intensity of a speckle pattern,
that is, from the squared modulus of the field amplitude E . Since E is a Gaussian random field,
all the correlation functions of a speckle potential can be expressed in terms of an elementary
brick, the two-point field-field correlation function 〈E∗

j Ei〉 [181]. The first example is provided by
Eqs. (1.46) to (1.48). More generally, the n-point correlation function of the speckle potential

20As such, σR corresponds typically to a minimal length scale on which the speckle potential varies, i.e. to
the speckle grain size.
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is found to expand as

〈V0V1 · · ·Vn−1〉 ∝
∑

Π∈S′
n

〈E∗
Π(0)E0〉〈E∗

Π(1)E1〉 · · · 〈E∗
Π(n−1)En−1〉, (1.54)

where S ′
n denotes an ensemble of permutations of the indices 0, . . . , n−1. Precisely, the elements

of S ′
n are those permutations which leave no index unchanged.21 The latter criterion stems from

the requirement 〈V 〉 = 0. Expression (1.54) reveals that i) since the third-order correlation
function (n = 3) does not vanish, speckle potentials are non-Gaussian, ii) they nevertheless
factor almost as Gaussian potentials do, iii) each of the factors in Eq. (1.54) has the same
cutoff at a critical value kc for Fourier components in the transverse plane. In the following, we
shall examine systems confined to the transverse plane, so that each of the field-field correlators
has a cutoff in Fourier space.

1.4 Conclusion

Disorder is present everywhere, and understanding its repercussions on the properties of physical
systems is of prime importance, as even as small amount of disorder may have large effects.

From condensed-matter physics emerged the concept of Anderson localization, or the dis-
covery that the presence of disorder at the microscopic scale may completely suppress the
transport of quantum particles and waves, due to coherent scattering and inteference. As the
basic ingredients of Anderson localization are just disorder and coherence, this phenomenon is
transversal to various domains of physics, ranging from solid-state to atomic physics, and from
optics to acoustics. Anderson localization is a pure single-particle effect, which is particularly
strong in lower dimensions.

The physics of disordered quantum systems is even richer when interactions are present,
as the interplay of disorder and interactions may trigger transitions to quantum phases which
are absent from clean systems. Among those, the superfluid-insulator transition of disordered
bosons is an interesting case, as the system becomes insulating both at strong and at very
weak interactions, for quite distinct reasons. A precise picture of the insulating regime at weak
interactions is lacking. In particular, the transition from the superfluid to the insulating regime,
the limiting case of very weak interactions, and the regime in between are of particular interest.

Ultracold quantum gases offer appealing possibilities to study disordered quantum systems,
as many parameters, such as the quantum statistics, the dimensionality and the strength of
interactions, may be chosen in the experiments [16]. Furthermore, disorder may be created in a
controlled fashion with optical potentials. These potentials are easily implemented, and allow
to study the effect of disorder correlations.

In the following chapters, we examine the role of both statistical correlations of the random
potential and interactions on the localization of bosons in one dimension.

21Formula (1.54) is discussed in further detail in appendix A.





C H A P T E R 2

Anderson localization of single particles
in correlated one-dimensional disorder:
beyond the Born approximation

A small amount of disorder can strongly affect the properties of non-interacting waves and
quantum particles. While incoherent scattering from the random defects of a disordered medium
results in diffusive transport, coherent interference effects may lead to a complete suppression
of diffusion and prevent the waves from extending to infinity [37]. This was first put forward
by Anderson in 1958 to explain certain metal-insulator transitions in electronic systems [1]. In
his analysis, Anderson showed that single electrons introduced into a disordered lattice may
not diffuse away from their original location, and that the presence of a random potential
may instead localize them by leading to an exponential decay of their wave functions in space.
Subsequent theoretical and experimental work revealed that Anderson localization arises with
a great variety of waves [2, 35].

The onset of Anderson localization depends crucially on the dimension of the system [53].
The effect of disorder is at its strongest in 1D, where the particles are scattered either in the
forward or the backward direction, and single particles are exponentially localized on a length
scale (the localization length) which is simply proportional to the transport mean free path [75].

Rigorous proofs have been given for the 1D localization problem (see section 2.1.2), and
all particles are known to be localized under fairly general assumptions, irrespective of their
energy [2]. This strong property should not eclipse subtles dependencies of the localization
process on the statistical properties of the disorder, e.g. long-range correlations. Interesting
effects have been shown to arise with models of disorder whose power spectrum has a finite
support [29,34,182,183], and for which leading-order perturbation theory predicts an absence of
backscattering and, hence, of localization on an extended region of the single-particle spectrum.

In this chapter, we study the localization of non-interacting particles in weak, correlated
random potentials. A perturbative calculation of the Lyapunov exponent, or inverse localization
length, is carried out beyond the usual leading-order approximation to account for higher-order
scattering processes. The results are applied to speckle potentials [181] such as those currently
used in experiments with ultracold atoms [15, 26, 29]. In addition to a high-momentum cutoff
in their power spectrum, speckle potentials have special non-Gaussian statistics deriving from
a Gaussian field (see chapter 1). For this class of disorder, we show the existence of a series of
sharp crossovers (effective mobility edges) between regions of the single-particle energy spectrum
where the localization lengths differ by orders of magnitude.

The chapter is organized as follows. In section 2.1, we define the framework of our study, and
we briefly present the body of studies and proofs of localization in 1D. In section 2.2 we carry
out a perturbation calculation of the Lyapunov exponent two orders beyond the usual Born
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approximation, and obtain formulas which are valid for any model of correlated disorder. In
section 2.3 we apply our expressions to speckle potentials. The existence of a series of effective
mobility edges is discussed for generic speckle potentials. The first few orders of the Lyapunov
exponent are calculated explicitly for a simple speckle model and compared to the results of
numerical transfer matrix calculations. Finally, we use our results to examine localization
beyond the effective mobility edge found in recent theoretical and experimental studies with
ultracold atoms in speckle potentials.

2.1 Framework

2.1.1 Single particles in correlated one-dimensional disorder

In this chapter, we consider non-interacting particles in an infinite 1D system. These particles
are described by the time-independent Schrödinger equation

− ~
2

2m
∂2

zψ(z) + V (z)ψ(z) = Eψ(z), (2.1)

where E is the energy of the particle, and V is a random potential drawn from some statistical
ensemble. Without loss of generality, we assume that V has zero average, i.e. 〈V 〉 = 0, where
〈.〉 denotes statistical averaging. The statistical properties of the potential are assumed to be
homogeneous, which means that they do not depend on the (absolute) position in the system.

Correlation functions

In the framework of this chapter, a sufficient characterization of the random potential is given
by the set of n-point autocorrelation functions

C2(z1) = 〈V (z0)V (z0 + z1)〉 (2.2)

C3(z1, z2) = 〈V (z0)V (z0 + z1)V (z0 + z2)〉 (2.3)

· · · = · · ·
Cn(z1, · · · , zn−1) = 〈V (z0)V (z0 + z1) · · ·V (z0 + zn−1)〉 (2.4)

· · · = · · ·

A key assumption is the disappearance of statistical correlations between the values taken by
the potential at points with infinitely large separation.1 Since 〈V 〉 = 0, this implies that the
correlation function Cn vanishes as soon as any point in {z0, z0 + z1, · · · , z0 + zn−1} is sent to
infinite distances from all the other points. In particular, the two-point correlator C2(z1) drops
to zero for z1 → ∞.

We call correlation length σR a typical width2 of C2, and define reduced correlation functions
cn by

Cn(z1, z2, · · · , zn−1) = V n
R
cn(u1, u2, · · · , un−1), (2.5)

1 This requirement naturally excludes periodic potentials, or the quasi-periodic potentials used in certain
studies of Anderson localization [184].

2A precise definition might depend on the model of disorder or some choice of normalization (see chapter 1).
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where ui = zi/σR. The factor VR may take positive as well as negative values. Allowing
negative values of VR is useful for the description of potentials with asymmetric probability
distribution, such as speckle potentials (see section 2.3). The magnitude of VR is defined as the
root-mean-square amplitude of the disorder

|VR| =
√
〈V 2〉 =

√
C2(0). (2.6)

The limit of white noise, or uncorrelated disorder, corresponds to taking σR → 0 while keeping
V 2

R
σR constant [see Eq. (2.46)].

Lyapunov exponent

Single-particle states in 1D, which are defined as solutions of the Schrödinger equation (2.1)
with the requirement that their wave function ψE be normalizable, are almost surely localized
in the presence of disorder. The rate of exponential decay of the wave functions is given by the
Lyapunov exponent

γE = − lim
|z−z0|→∞

〈
ln
[
‖ψE(z)‖ / ‖ψE(z0)‖

]

|z − z0|

〉
. (2.7)

In definition (2.7), ‖.‖ is a norm, chosen as the modulus | . | if the wave functions ψE are
complex, and defined by ‖ψE(z)‖ =

√
ψE(z)2 + α[∂zψE(z)]2 if they are required to be real. In

the latter case, α is a positive constant, which is introduced to avoid the cancelling of ‖ψE(z)‖
at the nodes of ψE(z), and can be chosen arbitrarily without altering γE. A common choice
is α = ~

2/2mE = 1/k2 (see section 2.2.1). The angular brackets in expression (2.7) indicate
averaging with respect to the probability law of V .

A convenient way to calculate the Lyapunov exponent, both numerically and analytically,
consists in solving the Schrödinger equation for fixed E and initial conditions at some point z0
in space, e.g. ψE(z0) = a and ∂zψE(z0) = b. With probability one, such a function grows
exponentially instead of decaying (see section 1.1.3), and the rate of asymptotic growth is
obtained by using expression (2.7) with a plus sign. In that case, ψE does not correspond to an
eigenstate of the system, but the Lyapunov exponent extracted from its asymptotic behavior
nevertheless yields the rate of exponential decay of the eigenstates which lie (almost) at the
same energy.

2.1.2 One-dimensional Anderson localization

Proofs of localization in 1D

The localization problem in one dimension has been studied for decades, with various tech-
niques, and a wealth of results is available [37, 65, 75, 185–187].

The most important result might be that in 1D, quite loosely stated, almost all single-
particle states are localized. Mott and Twose [188] are credited for having first pointed out
with qualitative arguments that it might be so, and a first proof in the physical literature is
attributed to Borland [189], who showed the exponential localization of all states in a chain
of identical, non-overlapping potential barriers with random separation. In an earlier work
of 1959, Gertsenshtein and Vasil’ev had actually already derived and solved Fokker-Planck
equations describing the complete transmission statistics of waves sent through a 1D waveguide
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with weak uncorrelated disorder [75, 190]. The conclusion that all states are localized in 1D
is now well established, as it was also reached from scaling arguments [53, 66], diagrammatic
calculations [185,191], as a by-product of exact scaling equations for the (multi-channel) quasi-
1D geometry [75, 76] or field-theoretical methods [192].

First mathematical proofs of Anderson localization in 1D for the continuous Schrödinger
operator appeared in the late seventies [193–195]. These early proofs assumed some kind of
absence of correlation. Interestingly, localization in models with correlations is an active field
of research in the mathematical literature (see e.g. [196–198]).

Why study correlations ?

The absence of spatial correlations in the random potential is a very common assumption
in the physical literature3 because (i) calculations and proofs can be carried out much more
easily with delta correlation functions, (ii) the replacement of the true disorderd potential by
a delta-correlated one might not be the strongest approximation made in certain fields (e.g. in
condensed matter), (iii) under certain physical circumstances only long-wavelength excitations
might be relevant to determine the properties of a system, and on the scale of those excitations
the random potential appears as uncorrelated disorder [147], (iv) some qualitative conclusions
may indeed remain unchanged in the presence of correlations.

Nevertheless, considering correlations may be relevant, for instance, in the context of ultra-
cold atoms, as these systems both offer a high degree of control, and a relatively easy ab initio
description. What is more, the observation that certain correlated potentials might give rise to
interesting physics or require special care is supported by two well-known models.

The first of these models is the bichromatic lattice potential of the Aubry-André model [184],
which is immediately relevant to experiments with ultracold lattice gases [30], and which yields
an interesting localization-delocalization transition even in 1D. Such a potential has only a
discrete set of incommensurate Fourier components and is therefore called quasi-periodic. While
this potential may locally resemble true short-range disorder, one quite naturally expects almost
identical copies of a given potential pattern, analogous to a revival of Rabi oscillations in
the time domain, to occur in systems that are large enough. Such revivals traduce long-
range correlations even for highly incommensurate frequencies.4 Some recent experiments have
provided evidence of the striking features of this 1D model [30, 199].

The second example is the random dimer model, a lattice Schrödinger model akin to the
Anderson model [1], with the difference that the random on-site energies are distributed among
pairs of neighboring sites instead of individual ones [200]. This model was first said to exhibit a
considerable set of extended states and a so-called superdiffusive behavior, that is, a departure
from the diffusionless localized regime. This claim led to some controversy, and it is now
established mathematically that the eigenstates in this model are exponentially localized for
all but two critical energies [201], and yet there is mathematical support for superdiffusive
behavior [202]. This particular behavior can be attributed to the strong pair correlation enforced
by the model.

Neither of the above examples contradicts the approximate statement that in 1D, and for

3See e.g. the scaling theory exposed in Ref. [66], to cite only one of the most prominent examples.
4Correlation functions in quasi-periodic systems do not fall off at infinity. For this reason at least, quasi-

periodic potentials cannot be handled with the techniques of the present chapter.
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true disorder, all states are localized in the spectral sense except, possibly, for a set of measure
zero. They do however show that there is room for rich physics and interesting considera-
tions beyond such a general statement, due to correlations. The speckle potentials which have
been used in recent experiments with ultracold atoms [25–27, 203] have a twofold appeal in
this respect. First of all, from the experimental point of view, they are easily set up and cal-
ibrated [31]. Their properties are robust against experimental imperfections and determined
by a small number of parameters (amplitude and correlation length) which can be tuned in
the experiments. Then, from the theoretical point of view, speckle potentials form a class
of disorder with interesting statistical properties, namely (i) a skewed single-point probability
distribution (the potential is not invariant under the change VR → −VR), (ii) particular non-
Gaussian statistics deriving from a Gaussian process, and (iii) particular long-range correlation
functions, which are associated with a sharp cutoff in their Fourier spectrum. The impact of
this cutoff on localization properties is discussed in section 2.3.

2.2 Weak-disorder expansion for the Lyapunov exponent

Exact results are difficult to derive for disorder of arbitrary strength, except in a few limiting
cases, and one has to resort to numerical calculations or perturbation expansions around an
exactly solvable situation to gain insight. Notable exceptions are non-perturbative results ob-
tained for white-noise potentials, for potentials of non-overlapping impurities, or in the vicinity
of some special points of the spectrum [162,163,204–208]. No such exact results are available for
correlated potentials.5 The Lyapunov exponent can nevertheless be calculated perturbatively.
A robust formalism to do so in 1D, while covering most of the single-particle energy spectrum
and all types of correlated continuous potentials, is the phase formalism presented below.

Subsections 2.2.2 and 2.2.3 contain the technical details of the perturbation expansion. The
results are summarized in subsection 2.2.4.

2.2.1 Phase formalism for the Schrödinger operator

Phase variable

Consider a real-valued solution ψ of the Schrödinger equation (2.1) at energy E. A repre-
sentation which proves efficient for the localization problem in 1D is obtained by introducing
amplitude and phase coordinates (r, θ) such that

ψ(z) = r(z) sin[θ(z)] (2.8)

∂zψ(z) = k r(z) cos[θ(z)], (2.9)

where k is defined from the energy E by

E =
~

2k2

2m
. (2.10)

This transformation simply amounts to a polar representation of the vector [ψ(z), ∂zψ(z)/k]T,
and is always possible once ψ is chosen real (see Fig. 2.1). Note that the phase θ and the

5The scattering from non-overlapping impurities, for instance, can still be treated as a random sequence of
uncorrelated events.
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1
k
∂zψ

ψ

θ

r

V = 0

Figure 2.1: Phase formalism for the Schrödinger particle of energy E = ~
2k2/2m. In the

absence of an external potential (V = 0), the evolution of the eigenstate ψ with respect to
coordinate z is described by a circular orbit r(z) = r0, and the Prüfer phase θ(z) grows linearly
at rate k.

amplitude r introduced in this picture differ from those which would be obtained in the polar
representation of a complex wave function ψ̃ = r̃ exp(iθ̃).

With these coordinates, the logarithmic derivative of the wave function reads

∂zψ(z)

ψ(z)
= k cotan[θ(z)]. (2.11)

Taking the derivative of both sides of this expression with respect to z and using the Schrödinger
equation (2.1) we obtain

− k ∂zθ

sin2(θ)
=
∂2

zψ

ψ
−
(
∂zψ

ψ

)2

=
2m

~2
V − k2(1 + cotan2θ), (2.12)

and a closed equation for θ follows:

∂zθ(z) = k − 2mV (z)

~2k
sin2[θ(z)]. (2.13)

In the process, we have traded the linear, second-order Schrödinger equation, for a first-order,
non-linear differential equation for the phase θ alone. The absence of the amplitude r from
the equation for the phase θ has to be traced back to the representation of the real-valued
function ψ [see Eqs. (2.8) and (2.9)]. No such closed equation is found for the phase θ̃ of a
complex function ψ̃ = r̃ exp(iθ̃). The formal solution of Eq. (2.13) is

θ(z) = θ0 + kz − 2m

~2k

∫ z

0

dz′V (z′) sin2[θ(z′)], (2.14)

where θ0 = θ(0) is taken as initial condition.
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Remark - The phase variable θ sometimes appears in the mathematical literature under the
name of Prüfer phase.6

Lyapunov exponent

The spatial dependence of the amplitude

r =

√
ψ2 +

(∂zψ)2

k2
(2.15)

is determined by

∂z ln(r) =
∂zr

2

2r2
=

1

2r2
∂z

[
ψ2 +

(∂zψ)2

k2

]
=
∂zψ

r2

[
ψ +

∂2
zψ

k2

]
=

2mV ψ ∂zψ

~2k2r2
, (2.16)

where the last equality follows from (2.1). The amplitude r is a norm of the wave function ψ,
such as the one defined below Eq. (2.7), with α = ~

2/2mE = 1/k2. Finally, using Eqs. (2.8)
and (2.9) we obtain

∂z ln[r(z)] =
mV (z)

~2k
sin[2θ(z)], (2.17)

or, equivalently,

ln[r(z)/r0] =
m

~2k

∫ z

0

dz′V (z′) sin[2θ(z′)]. (2.18)

The latter expression is especially relevant in the context of localization, since the amplitude
r(z) of localized eigenstates is expected to scale exponentially with the distance z from the
origin. In the framework of the phase formalism, the Lyapunov exponent is defined as

γ(k) = + lim
|z|→∞

〈ln[r(z)/r0]〉
|z| , (2.19)

which is left to compute from Eq. (2.18). The plus sign in Eq. (2.19) is set assuming that the
function ψ is determined by initial conditions.7

2.2.2 Born approximation

Equation (2.14) is a closed equation for the phase which, for a weak potential V , can be solved
in a perturbation expansion

θ(z) =
∞∑

n=0

θ(n)(z), (2.20)

6 The phase angle θ was originally introduced by Prüfer [209]. It is a standard tool for the study of the 1D
Schrödinger equation, as well as a broader class of differential equations called Sturm-Liouville problems [210].
Sturm theory is associated to the well-known result that, for the Schrödinger operator, the number of states
up to energy E is related to the number of nodes found in an eigenfunction at energy E. The phase formalism
has been used extensively since the early studies on the localization problem in the physics litterature, with
a special emphasis on the density of states [186], and in some mathematical proofs of localization (see e.g.
Refs. [193, 211]). The connection with more general Sturm-Liouville problems, as e.g. obtained from coupled
1D Schrödinger equations, is interesting to keep in mind, as it might be possible to calculate the Lyapunov
exponent for quasi-1D geometries as well, using a matrix version of the Prüfer phase [210,212–216].

7See section 1.1.3 and the discussion below Eq. (2.7).
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where the superscripts indicate increasing powers of the potential amplitude VR [see Eq. (2.6)].
As we are interested in asymptotic properties of the wave function and will ultimately take the
limit |z| → ∞, we choose the origin z0 = 0 such that θ0 = 0 to simplify the notations.8 Hence,
we have

θ(0)(z) = kz (2.21)

θ(1)(z) = − 2m

~2k

∫ z

0

dz′V (z′) sin2(kz′). (2.22)

For notational convenience, we define x(z) = ln[r(z)/r0]. Then, we write the expansions of
Eqs. (2.18) and (2.19) in the form

ln[r(z)/r0] =
∞∑

n=1

x(n)(z) (2.23)

γ =

∞∑

n=1

γ(n). (2.24)

Equation (2.24) can be called the Born series for the Lyapunov exponent, in analogy with
the infinite perturbation series solving implicit problems like Eq. (2.14) by iterated insertions.
Expanding the sine function in the integrand of Eq. (2.18) to first order as

sin[2θ(z′)] = sin[2θ(0)(z′)] + 2 cos[2θ(0)(z′)]θ(1)(z′) + · · · , (2.25)

we obtain

x(1)(z) =
m

~2k

∫ z

0

dz′V (z′) sin(2kz′) (2.26)

x(2)(z) =
( m

~2k

)2
∫ z

0

dz′
∫ z′

0

dz′′V (z′)V (z′′)
[
−4 cos(2kz′) sin2(kz′′)

]
. (2.27)

Taking the average of Eq. (2.26), and owing to the prescription 〈V 〉 = 0, we have

〈x(1)(z)〉 =
m

~2k

∫ z

0

dz′〈V (z′)〉 sin(2kz′) = 0 (2.28)

γ(1) = lim
|z|→∞

〈x(1)(z)〉
|z| = 0. (2.29)

The average of Eq. (2.27) reduces to

〈x(2)(z)〉 =
( m

~2k

)2
∫ z

0

dz′
∫ z′

0

dz′′C2(z
′′ − z′)

[
−4 cos(2kz′) sin2(kz′′)

]
(2.30)

=
( m

~2k

)2
∫ z

0

dz′
∫ 0

−z′
dz1C2(z1)

[
−4 cos(2kz′) sin2(kz′ + kz1)

]
. (2.31)

From this expression we need to extract

γ(2) = lim
|z|→∞

〈x(2)(z)〉
|z| . (2.32)

8This is always possible with a suitable translation to a node of the wave function, provided the energy of
the particle is high enough for the wave function to have a node. In practice, this will always be the case in the
regime of validity of the perturbative results derived in this chapter (see below).
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The quickest route

Integral (2.31) is represented schematically in Fig. 2.2. An inspection of the integrand and
the domain of integration allows a quick calculation which circumvents an explicit evaluation
of 〈x(2)(z)〉 for all z.

The limit (2.32) can be argued to follow from (2.31) as 9

γ(2) =
( m

~2k

)2
∫ 0

−∞
dz1C2(z1) lim

z→∞

1

z

∫ z

0

dz′
[
−4 cos(2kz′) sin2(kz′ + kz1)

]
. (2.33)

Between Eq. (2.31) and Eq. (2.33), the order of integration on z′ and z1 has been interchanged,
and the integration boundary for z1 sent to −∞. The latter step is reasonable if C2 falls
off “quickly enough” when z1 becomes larger than a few σR. The limit in the integral (2.33)
is then easily obtained as an average of the trigonometric integrand with respect to z′. A
straightforward calculation leads to

γ(2) =
( m

~2k

)2
∫ 0

−∞
dz1C2(z1) cos(2kz1). (2.34)

The assumption that V has homogeneous statistical properties implies that C2(z) is an even
(and real-valued) function of z. The above result therefore also writes

γ(2) =

√
2π

2

( m

~2k

)2

Ĉ2(2k), (2.35)

where Ĉ2 is the Fourier transform of the two-point correlation function C2. This Fourier trans-
form can also be referred to as the power spectrum10 of V .

Formulation in Fourier space

Result (2.34) can be given a rigorous footing by considering

〈x(2)
η1

(z)〉 =
( m

~2k

)2
∫ z

0

dz′
∫ 0

−z′
dz1 C2(z1) e+η1z1

[
−4 cos(2kz′) sin2(kz′ + kz1)

]
, (2.36)

where η1 > 0. Then, the exponent γ(2) is given by

γ(2) = lim
z→+∞

lim
η1→0+

〈x(2)
η1 (z)〉
z

. (2.37)

9The argument reads as follows. Without loss of generality, we can restrict z to the positive axis as 〈x(2)(z)〉
is an even function of z. A schematic picture of the integrals in Eqs. (2.30) and (2.31) is given in Fig. 2.2.
Partial integration on the domain z′ ∈ [0, zpart] in Eq. (2.31), where zpart is some constant, yields a finite result
whose contribution to 〈x(2)(z)〉/z vanishes once z is send to infinity. For every zpart, the distance z can be
chosen large enough to make this contribution negligible in the evaluation of the Lyapunov exponent. Thus,
we can consider that only large z′ contribute to the asymptotic form of the double integral. By large we mean
that a minimum value of z′ can be chosen which exceeds an arbitrary number of correlation lengths. The lower
bound of the integral on z1 can then be approximated by −∞ due to the decay of the correlator C2 beyond
a few correlation lengths. Once the lower bound for z1 has been sent to −∞, the order of integration can be
swapped, which yields Eq. (2.33).

10The Wiener-Khintchin theorem establishes the equality Ĉ2(q) = (2π)d/2〈|V̂ (q)|2〉, where 〈|V̂ (q)|2〉 is the
power spectrum of V , and the factor (2π)d/2 comes from the normalization of the Fourier transform.
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z′
z

z′′

z − σR ∼ z

σR

0

0

z1

Figure 2.2: Domain of integration for the evaluation of the Lyapunov exponent γ(2). The
periodic structure represents the trigonometric part of the integrand in Eqs. (2.30) and (2.31).
The two-point correlator is constant on lines parallel to the diagonal, and is assumed to drop off
“quickly” outside a stripe of typical width σR, shown in red. For large z′, the lower boundary
on z1 can then be effectively taken to −∞. The length of the stripe along z′ grows asymptotically
as z.

Expressing C2(z1) in terms of Fourier components, we have

〈x(2)
η1

(z)〉 =
( m

~2k

)2

(2π)−1/2

∫
dq1Ĉ2(q1)h2(q1, k, η1, z), (2.38)

where

h2(q1, k, η1, z) =

∫ z

0

dz′
∫ 0

−z′
dz1 ei(q1−iη1)z1

[
−4 cos(2kz′) sin2(kz′ + kz1)

]
. (2.39)

An explicit calculation of this integral shows

h2(q1, k, η1, z) =
z

2i

[
1

q1 − 2k − iη1
+

1

q1 + 2k − iη1

]
+ O

z→∞
(1). (2.40)

Hence, for Eq. (2.37) we obtain11

γ(2) = lim
η1→0+

( m

~2k

)2 (2π)−1/2

2i

∫
dq1Ĉ2(q1)

[
1

q1 − 2k − iη1

+
1

q1 + 2k − iη1

]
, (2.41)

Using the symmetry12 Ĉ2(q) = Ĉ2(−q), and the identity

lim
η→0+

1

q − iη
= P

(
1

q

)
+ iπδ(q), (2.42)

11One has to check that the limits η1 → 0+ and z → +∞ commute by looking precisely at the O(1) term in
Eq. (2.40). We leave this calculation aside here.

12As C2(z) is an even and real-valued function of z, its Fourier transform Ĉ2 is also real and even.
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where P denotes the Cauchy principal value, we find

γ(2) =

√
2π

2

( m

~2k

)2

Ĉ2(2k), (2.43)

in agreement with result (2.34).

Born approximation

Equation (2.43) is a standard result. Since the first order γ(1) vanishes, γ(2) provides the leading-
order approximation of the exact Laypunov exponent in the weak-disorder expansion. As such,
γ(2) is called the Born approximation to the Lyapunov exponent.

Result (2.43) calls for a few comments. First, as γ(2) is proportional to V 2
R , changing the sign

of the potential does not change the Lyapunov exponent at this level of approximation. Then,
the term Ĉ2(2k) suggests that the particle essentially samples the disordered potential at spatial
frequency 2k, and that localization occurs because of elastic backscattering.13 Finally, the
m/~2k factor is directly related to the unperturbed kinetic energy of the Schrödinger particle.
All other factors left aside, a larger kinetic energy reduces the strength of localization, as
expected from the scattering by a weak potential [217].

Altogether, the Lyapunov exponent is determined by the kinetic energy of the particle,
and by the availability and amplitude of a Fourier component in the disorder which is able to
backscatter the particle elastically.

White-noise limit

A given model of disorder is defined by the set of reduced correlation functions cn defined in
Eq. (2.5). The corresponding white-noise potential is obtained by taking the limit σR → 0 while
keeping V 2

R σR constant. The quantity

D =

∫

R

dz C2(z) = V 2
R
σR

∫

R

du c2(u) (2.44)

is left invariant in the process, and the two-point correlation function tends to14

Cw.n.
2 (z) = Dδ(z). (2.45)

For this white-noise potential, the Born approximation for the Lyapunov exponent reads

γ(2)
w.n. =

m2D

2~4k2
. (2.46)

13Here the wave function ψ is real-valued, and corresponds in principle to two counter-propagating waves,
but the 2k-component in Eq. (2.43) and the higher-order results (2.81) and (2.41) indicates that the process
at work is a process of elastic backscattering in which the potential imparts a momentum −2~k to the particle
(wave) and transfers it from ~k to −~k. The important feature of Eq. (2.43) is the absence of forward scattering
which, at the level of the Born approximation, involves the component Ĉ2(0). Such a contribution is known
from the one-particle Green function calculation of the scattering mean-free path [35], and causes dephasing,
but no localization.

14The constant D appears with different normalizations in the literature [86, 147, 162]. It is sometimes
normalized to represent a diffusion term [86]. Here, we simply define D as the integral of the two-point
correlator, thereby following Ref. [147].
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This expression is also obtained with other techniques, which are suitable for white-noise po-
tentials only15 [86, 162, 206, 218]. Result (2.43) offers a generalization of (2.46) to correlated
potentials.

2.2.3 Phase formalism beyond the Born approximation

The Born term (2.43) provides the leading term of the expansion of the Lyapunov exponent in
powers of the disorder amplitude VR. Not so much to deal with stronger disorder amplitudes, but
rather to study the properties of potentials with special correlations, it proves useful to carry out
the weak-disorder expansion a few orders beyond the Born term. In particular, this is the case
when the power spectrum Ĉ2(q) vanishes identically on some range of Fourier components, and
the Born approximation predicts an absence of localization at the corresponding single-particle
energies (see section 2.3).

Setup of the expansion

Our starting point is the set of equations (2.14), (2.18) and (2.19) with θ0 = 0:

θ(z) =

∞∑

n=0

θ(n)(z) = kz − 2m

~2k

∫ z

0

dz′V (z′) sin2[θ(z′)] (2.47)

ln[r(z)/r0] =

∞∑

n=1

x(n)(z) =
m

~2k

∫ z

0

dz′V (z′) sin[2θ(z′)] (2.48)

γ(k) =

∞∑

n=1

γ(n)(k) = lim
|z|→∞

〈ln[r(z)/r0]〉
|z| . (2.49)

The superscripts (n) indicate increasing powers of VR in the series. The various orders are
obtained by expanding the functions sin2(θ) and sin(2θ) in the above equations into Taylor
series around the homogeneous solution θ(z′) ≃ kz′ = θ(0)(z′).

Expansion of the phase - The Taylor expansion of Eq. (2.47) takes the form

∞∑

n=0

θ(n)(z) = kz − m

~2k

∫ z

0

dz′V (z′)

{
1 −

∞∑

m=0

2m

m!
cos(m)(2kz′)

[ ∞∑

p=1

θ(p)(z′)

]m}
. (2.50)

The superscript on the cosine indicates differentiation [ cos(m)(u) = dm cos(u)/dum(u)], and
should not be confused with the order in VR. As each term on the right hand side picks up of
factor V (z′), the θ(n) can be calculated recursively. For an expansion of γ up to γ(4), we only
need to expand the term in the curly brackets above as far as

2 sin2 [θ(z′)] ≃ 1 − cos(2kz′)

+2 sin(2kz′)
[
θ(1)(z′) + θ(2)(z′)

]

+2 cos(2kz′)
[
θ(1)2(z′)

]
. (2.51)

15In particular, result (2.46) corresponds to the high-energy or weak-disorder expansion γ(E) ∼
√

2m/~2 ×
E

3/2
δ /(4E) found for Eδ ≪ E from Eq. (1.14) [86].



2.2 Weak-disorder expansion for the Lyapunov exponent 55

Identifying the contributions of same order in VR on the left- and right-hand sides of Eq. (2.50)
yields

θ(0)(z) = kz (2.52)

θ(1)(z) = − m

~2k

∫ z

0

dz′V (z′)
[
2 sin2(kz′)

]
(2.53)

θ(2)(z) = − m

~2k

∫ z

0

dz′V (z′)
[
2 sin(2kz′) θ(1)(z′)

]
(2.54)

θ(3)(z) = − m

~2k

∫ z

0

dz′V (z′)
[
2 sin(2kz′) θ(2)(z′) + 2 cos(2kz′) θ(1)2(z′)

]
. (2.55)

For notational convenience, we define the functions

ck(z) = cos(2kz) (2.56)

sk(z) = sin(2kz) (2.57)

Sk(z) = 2 sin2(kz). (2.58)

The first few terms obtained in the recursive procedure for θ read

θ(0)(z) = kz (2.59)

θ(1)(z) =
m

~2k

∫ z

0

dz′V (z′) [−Sk(z
′)] (2.60)

θ(2)(z) =
( m

~2k

)2
∫ z

0

dz′
∫ z′

0

dz′′V (z′)V (z′′) [2sk(z
′)Sk(z

′′)] (2.61)

θ(3)(z) =
( m

~2k

)3
∫ z

0

dz′
∫ z′

0

dz′′
∫ z′′

0

dz′′′V (z′)V (z′′)V (z′′′)

[−4sk(z
′)sk(z

′′)Sk(z
′′′) − 4ck(z

′)Sk(z
′′)Sk(z

′′′)] . (2.62)

In the last term of Eq. (2.62) we have used

θ(1)2(z′) =
( m

~2k

)2
∫ z′

0

dz′′
∫ z′′

0

dz′′′V (z′′)V (z′′′) [2Sk(z
′′)Sk(z

′′′)] , (2.63)

where the original integration domain [0, z′]2 has been halved by using the symmetry of the
integrand.

Expansion of the amplitude - A similar procedure applied to Eq. (2.48) with the expan-
sion

∞∑

n=1

x(n)(z) =
m

~2k

∫ z

0

dz′V (z′)
∞∑

m=0

2m

m!
sin(m)(2kz′)

[ ∞∑

p=1

θ(p)(z′)

]m

(2.64)
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yields

x(1)(z) =
m

~2k

∫ z

0

dz′V (z′) [sk(z
′)] (2.65)

x(2)(z) =
m

~2k

∫ z

0

dz′V (z′)
[
2ck(z

′)θ(1)(z′)
]

(2.66)

x(3)(z) =
m

~2k

∫ z

0

dz′V (z′)
[
2ck(z

′)θ(2)(z′) − 2sk(z
′)θ(1)2(z′)

]
(2.67)

x(4)(z) =
m

~2k

∫ z

0

dz′V (z′)

[
2ck(z

′)θ(3)(z′) − 4sk(z
′)θ(1)(z′)θ(2)(z′) − 4

3
ck(z

′)θ(1)3(z′)

]
.

(2.68)

The first two orders have been discussed in section 2.2.2 [see Eqs. (2.26) and (2.27)]. We recall,
in particular, that 〈x(1)(z)〉 vanishes for all z since 〈V 〉 = 0. The analysis of higher orders
seems complicated by the growing number of terms involved and the fact that these various
contributions are multi-dimensional integrals with different domains. Fortunately, symmetries
can be used to reduce the integrals, as in Eq. (2.63). Those integrals which do not have the
proper symmetries can be split up into pieces which all have the same domain upon a change
of variables. In particular, we can write

θ(1)(z′)θ(2)(z′) =
( m

~2k

)3
∫ z′

0

dz′′
∫ z′′

0

dz′′′
∫ z′′′

0

dz′′′′V (z′′)V (z′′′)V (z′′′′)

[−2Sk(z
′′)sk(z

′′′)Sk(z
′′′′) − 4sk(z

′′)Sk(z
′′′)Sk(z

′′′′)] (2.69)

θ(1)3(z′) =
( m

~2k

)3
∫ z′

0

dz′′
∫ z′′

0

dz′′′
∫ z′′′

0

dz′′′′V (z′′)V (z′′′)V (z′′′′)

[−6Sk(z
′′)Sk(z

′′′)Sk(z
′′′′)] . (2.70)

Collecting all terms in Eqs. (2.67) and (2.68), we obtain

x(3)(z) =
( m

~2k

)3
∫ z

0

dz′
∫ z′

0

dz′′
∫ z′′

0

dz′′′V (z′)V (z′′)V (z′′′)g3(z
′, z′′, z′′′) (2.71)

x(4)(z) =
( m

~2k

)4
∫ z

0

dz′
∫ z′

0

dz′′
∫ z′′

0

dz′′′
∫ z′′′

0

dz′′′′ V (z′)V (z′′)V (z′′′)V (z′′′′)g4(z
′, z′′, z′′′, z′′′′).

(2.72)

where

g3(z
′, z′′, z′′′) = [ 4 ck(z

′)sk(z
′′)Sk(z

′′′) − 4 sk(z
′)Sk(z

′′)Sk(z
′′′)] (2.73)

g4(z
′, z′′, z′′′, z′′′′) = [− 8 ck(z

′)sk(z
′′)sk(z

′′′)Sk(z
′′′′) − 8 ck(z

′)ck(z
′′)Sk(z

′′′)Sk(z
′′′′)

+ 8 sk(z
′)Sk(z

′′)sk(z
′′′)Sk(z

′′′′) + 16 sk(z
′)sk(z

′′)Sk(z
′′′)Sk(z

′′′′)

+ 8 ck(z
′)Sk(z

′′)Sk(z
′′′)Sk(z

′′′′) ] . (2.74)
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In these expressions, the variables are fully ordered according to 0 ≤ z′′′′ ≤ z′′′ ≤ z′′ ≤ z′ ≤ z.
The averages of Eqs. (2.71) and (2.72) evaluate to

〈x(3)(z)〉 =
( m

~2k

)3
∫ z

0

dz′
∫ 0

−z′
dz1

∫ z1

−z′
dz2 C3(z1, z2)g3(z

′, z′ + z1, z
′ + z2) (2.75)

〈x(4)(z)〉 =
( m

~2k

)4
∫ z

0

dz′
∫ 0

−z′
dz1

∫ z1

−z′
dz2

∫ z2

−z′
dz3C4(z1, z2, z3)g4(z

′, z′+z1, z
′+z2, z

′+z3).

(2.76)

The asymptotic behavior of 〈x(3)(z)〉 and 〈x(4)(z)〉 determines the next orders in the expansion
of the Lyapunov exponent.

Exponent γ(3)

The term C3(z1, z2) = 〈V (z0)V (z0 + z1)V (z0 + z2)〉 in Eq. (2.75) decays whenever either z1 or
z2 exceeds a few correlation lengths, due to the factorization property

〈V (zi)V (zj)V (zk)〉 → 〈V (zi)V (zj)〉〈V (zk)〉 for min(|zk − zi|, |zk − zj |) → ∞. (2.77)

As in the derivation of Eq. (2.33), the lower integration boundaries on z1 and z2 in Eq. (2.75)
can be sent to −∞ and we obtain

γ(3) =
( m

~2k

)3
∫ 0

−∞
dz1

∫ z1

−∞
dz2C3(z1, z2) lim

z→∞

1

z

∫ z

0

dz′g3(z
′, z′ + z1, z

′ + z2). (2.78)

As g3 consists only of trigonometric functions, the limit is easily computed as a spatial average,
and gives

γ(3) = −2
( m

~2k

)3
∫ 0

−∞
dz1

∫ z1

−∞
dz2C3(z1, z2) sin(2kz2). (2.79)

This result can be expressed in terms of

Ĉ3(q1, q2) =
1

2π

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2C3(z1, z2) e−i(q1z1+q2z2), (2.80)

which is called bispectral density (or simply bispectrum) of the random potential V . We obtain

γ(3) = −2
( m

~2k

)3

P
∫

dq
Ĉ3(q, 2k) + Ĉ3(−q,−2k)

2q
, (2.81)

where P denotes a Cauchy principal value.

Remark - Result (2.81) is also obtained from a careful derivation along the lines of Eqs. (2.36)
to (2.43). The calculations involved in such a derivation are cumbersome. Using a software for
symbolic calculus, we find

γ(3) = lim
η1,η2→0+

( m

~2k

)3 i

2π

∫
dq1

∫
dq2

Ĉ3(q1, q2)

(q1 − iη1)
×

[
1

(q2 − 2k − iη2)
− 1

(q2 + 2k − iη2)

− 1

(q1 + q2 − 2k − iη1 − iη2)
+

1

(q1 + q2 + 2k − iη1 − iη2)

]
, (2.82)
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0 z′′′′ z′′′ z′′ z′ z

z1
z2
z3

Figure 2.3: Ordering of coordinates in the expression for the fourth-order Lyapunov exponent.
As explained in the text, a large separation of z′′ and z′′′ does not imply a vanishing C4(z1, z2, z3)
correlator.

Using the identity (2.42) and the symmetries of the bispectrum16 Ĉ3, we recover expres-
sion (2.81). This agreement validates the arguments used in Eq. (2.78) for a quick calculation
in coordinate space.

Exponent γ(4)

Factorization of averages - Unlike C2 and C3, the four-point correlator C4 does not
necessarily decay as soon as one of its arguments grows beyond a few correlation lengths.
Consider, for instance, the case depicted in Fig. 2.3, where the points z′, ..., z′′′′ are ordered as
in the integrals (2.72) and (2.76). If z′′ is sent away from z′′′ (and from z′′′′ because of the
ordering), we have the factorization

〈V (z′)V (z′′)V (z′′′)V (z′′′′)〉 −−−−−−−→
z′′−z′′′→+∞

〈V (z′)V (z′′)〉〈V (z′′′)V (z′′′′)〉. (2.83)

If z′ and z′′ on the one hand, and z′′′ and z′′′′ on the other hand are kept at finite distances,
the four-point correlator does not necessarily vanish. Therefore, the argument developed for
Eqs. (2.31) and (2.75) does not directly apply to the correlator C4 in Eq. (2.76). This correlator
can always be written in the form

C4(z1, z2, z3) = K4(z1, z2, z3)+C2(z1)C2(z2−z3)+C2(z2)C2(z3−z1)+C2(z3)C2(z1−z2), (2.84)

where K4(z1, z2, z3) is the fourth-order cumulant of the potential (see section 1.3.1). As dis-
cussed below Eq. (1.27), K4(z1, z2, z3) vanishes when one or several of its arguments are sent to
infinity. Therefore the technique used for Eqs. (2.31) and (2.75) can be applied to the K4 part
of C4 at least. The remaining contribution to γ(4), which contains the products of two-point
correlators, needs to be calculated carefully.

Non-Gaussian part - The fourth-order cumulant K4 vanishes for Gaussian disorder (see

section 1.3.2). Therefore, we may call non-Gaussian part γ
(4)
NG the contribution to γ(4) which

arises from K4 alone [219,220]. Applying the argument developed in Eqs. (2.33) and (2.78), we

16Here we use Ĉ3(q1, q2) = Ĉ3(q1,−q1− q2). This symmetry is derived from C3(z1, z2) = 〈V (0)V (z1)V (z2)〉 =
〈V (−z2)V (z1 − z2)V (0)〉 = C3(z1 − z2,−z2), which follows from the assumption of homogeneous statistics.
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have

γ
(4)
NG =

( m

~2k

)4
∫ 0

−∞
dz1

∫ z1

−∞
dz2

∫ z2

−∞
dz3K4(z1, z2, z3) lim

z→∞

1

z

∫ z

0

dz′g4(z
′, z′ + z1, z

′ + z2, z
′ + z3).

(2.85)
Evaluating the limit in the integral, we find

γ
(4)
NG = −2

( m

~2k

)4
∫ 0

−∞
dz1

∫ z1

−∞
dz2

∫ z2

−∞
dz3K4(z1, z2, z3) {cos[2k(−z1 + z2 + z3)] + 2 cos[2kz3]} .

(2.86)
It turns out that this compact formula in coordinate space can be extended to the “Gaussian”
part of C4, which contains products of two-point correlators (see below).

Formulation in Fourier space - Following the approach of Eqs. (2.36) to (2.43), the
long-range behavior of the complete four-point correlator is controlled by considering

〈x(4)
{ηi}(z)〉 =

( m

~2k

)4
∫ z

0

dz′
∫ 0

−z′
dz1

∫ z1

−z′
dz2

∫ z2

−z′
dz3 C4(z1, z2, z3) ×

eη1z1+η2z2+η3z3g4(z
′, z′ + z1, z

′ + z2, z
′ + z3). (2.87)

Then, the Lyapunov exponent is given as

γ(4) = lim
z→+∞

lim
ηi→0+

〈x(4)
{ηi}(z)〉
z

. (2.88)

After a lengthy (computer-assisted) calculation along the lines of Eqs. (2.38) to (2.41), we
obtain

γ(4) = lim
η1,η1,η3→0+

( m

~2k

)4 −i

(2π)3/2

∫
dq1

∫
dq2

∫
dq3 Ĉ4(q1, q2, q3) ×

[
1

(q1 +q2 +q3−2k− iη1− iη2− iη3)(q2 +q3−4k− iη2− iη3)(q3−2k− iη3)

+
1

(q1 +q2 +q3 +2k− iη1− iη2− iη3)(q2 +q3 +4k− iη2− iη3)(q3 +2k− iη3)

+
2

(q1 +q2 +q3−2k− iη1− iη2− iη3)(q2 +q3−2k− iη2− iη3)(q3−2k− iη3)

+
2

(q1 +q2 +q3 +2k− iη1− iη2− iη3)(q2 +q3 +2k− iη2− iη3)(q3 +2k− iη3)

]
.(2.89)

The limits ηi → 0 (i = 1, 2, 3) are calculated with the help of identity (2.42). This gives rise
to large number of terms, even more so since C4 may expand into several constituants (K4 and
two-point correlators).17 For the factorizable (“Gaussian”) part of C4, this expression can be
simplified.

17As in the case of γ(2) and γ(3), though, it might be possible to simplify this expression by using the
symmetries of C4.
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Example - Consider the term C2(z1)C2(z3−z2) in Eq. (2.84).18 For easy reference, we denote
this term by CA

4 . In Fourier space, we have ĈA
4 (q1, q2, q3) =

√
2πĈ2(q1)Ĉ2(q3)δ(q2 + q3), so that

the corresponding contribution to γ(4) is

γ
(4)
A = lim

η1,η1,η3→0+

( m

~2k

)4 −i

2π

∫
dq1

∫
dq3 Ĉ2(q1)Ĉ2(q3) ×

[
1

(q1−2k− iη1− iη2− iη3)(−4k− iη2− iη3)(q3−2k− iη3)

+
1

(q1 +2k− iη1− iη2− iη3)(+4k− iη2− iη3)(q3 +2k− iη3)

+
2

(q1−2k− iη1− iη2− iη3)(−2k− iη2− iη3)(q3−2k− iη3)

+
2

(q1 +2k− iη1− iη2− iη3)(+2k− iη2− iη3)(q3 +2k− iη3)

]
. (2.90)

Taking the limits ηi → 0 and using the symmetry Ĉ2(q) = Ĉ2(−q), which is always valid, we
find

γ
(4)
A = − 5

2k

( m

~2k

)4

Ĉ2(2k) P
∫

dq
Ĉ2(q + 2k)

q
. (2.91)

The other contributions to γ(4) have more complicated expressions (see appendix B).

Extension of the formula in coordinate space - The infinitesimals ηi > 0 in Eq. (2.87)
can also be used to extend directly formula (2.86) to the complete correlator C4. For each
positive set of parameters ηi > 0, the function C4(z1, z2, z3) eη1z1+η2z2+η3z3 decays for zi → −∞,
so that the arguments leading to Eq. (2.86) apply. Taking ηi → 0+ at the end of the calculation,
we obtain the Lyapunov exponent for the correlation function C4:

γ(4) = −2
( m

~2k

)4

lim
ηi→0+

∫ 0

−∞
dz1

∫ z1

−∞
dz2

∫ z2

−∞
dz3 C4(z1, z2, z3) eη1z1+η2z2+η3z3 ×

{cos[2k(−z1 + z2 + z3)] + 2 cos[2kz3]} . (2.92)

A straightforward calculation shows that this expression is identical to formula (2.89).

18This term is represented by the circles in Fig. 2.3.
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2.2.4 Summary of the leading orders

We summarize here the results found in the previous sections [see Eqs. (2.34), (2.35), (2.79),
(2.81), (2.89), and (2.92)].

The three leading orders of the Lyapunov exponent for a particle of energy E = ~
2k2/2m

in a correlated disorder can be written in the form:

γ(n)(k) = σ−1
R

(
ǫR
kσR

)n

fn(kσR), (2.93)

where

ǫR =
VR

Eσ
=

2mσ2
RVR

~2
. (2.94)

The parameter Eσ = ~
2/2mσ2

R
is sometimes called the correlation energy of the random poten-

tial [221]. The function fn(κ) depends only on the reduced n-point correlation function cn of
the random potential, defined in Eq. (2.5). The first few terms read

f2(κ) = +
1

4

∫ 0

−∞
du c2(u) cos(2κu) (2.95)

f3(κ) = −1

4

∫ 0

−∞
du

∫ u

−∞
dv c3(u, v) sin(2κv) (2.96)

f̃4(κ) = −1

8

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw c4(u, v, w) {cos[2κ(−u+v+w)] + 2 cos[2κw]} . (2.97)

The tilde on f̃4 indicates that the c4 correlator should be replaced by c4(u, v, w) eη1u+η2v+η3w,
with ηi → 0+, to ensure a convergence of the integral. The equivalent representations in
momentum space are:

f2(κ) = +

√
2π

8
ĉ2(2κ) (2.98)

f3(κ) = −1

4
P
∫

dq
ĉ3(q, 2κ) + ĉ3(−q,−2κ)

2 q
. (2.99)

The fourth-order term has a cumbersome expression. We leave it here in the form

f4(κ) = lim
η1,η1,η3→0+

−i

16(2π)3/2

∫
dq1

∫
dq2

∫
dq3 ĉ4(q1, q2, q3) ×

[
1

(q1 +q2 +q3−2κ− iη1− iη2− iη3)(q2 +q3−4κ− iη2− iη3)(q3−2κ− iη3)

+
1

(q1 +q2 +q3 +2κ− iη1− iη2− iη3)(q2 +q3 +4κ− iη2− iη3)(q3 +2κ− iη3)

+
2

(q1 +q2 +q3−2κ− iη1− iη2− iη3)(q2 +q3−2κ− iη2− iη3)(q3−2κ− iη3)

+
2

(q1 +q2 +q3 +2κ− iη1− iη2− iη3)(q2 +q3 +2κ− iη2− iη3)(q3 +2κ− iη3)

]
. (2.100)
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Comments

Isotropy - It is clear from Eqs. (2.93) to (2.97) that γ(n) is left unchanged under the replace-
ment of k by −k. However, as ψ is real-valued, this replacement does not imply a propagation
in opposite direction, but the choice of a different phase [see Eqs. (2.8), (2.9) and (2.14)]. The
isotropy of the Lyapunov exponent is analyzed by replacing z by −z in the previous derivations
or, equivalently, cn(u1, .., un−1) by cn(−u1, ..,−un−1) and ĉn(q1, .., qn−1) by ĉn(−q1, ..,−qn−1) in
the above results. Expressions (2.98) and (2.99) clearly yield an isotropic Lyapunov exponent
even if the random potential itself is not isotropic. Note also that Eq. (2.99) simplifies if V
itself is isotropic [ĉ3(q1, q2) = ĉ3(−q1,−q2)].

The third-order term - To our knowledge, the third-order term had not been derived
and documented in the literature prior to our work [222],19 even in studies of non-Gaussian
potentials [219]. In such potentials, however, C3 does not vanish in general. Interestingly, for the
same model of disorder (i.e. for the same reduced correlators cn), the sign of γ(3) changes with
the sign of VR. This contrasts with the Born approximation, where the strength of localization
appears independent of the overall sign of the potential. The third-order term in non-Gaussian
potentials may thus enhance or reduce localization.20

Validity - The results summarized above are general, as we have made no other assumptions
on the potential than homogeneous statistics and statistical independence of the values taken
by the potential at points with infinite separation.21 A truncated perturbation expansion
γ(2) + · · · + γ(n) provides an accurate approximation of the exact Lyapunov exponent γ if the
leading-order terms dominate the (sum of the) following orders in the perturbation series. Quite
generally, owing to the factor (ǫR/kσR)n in Eq. (2.93), this requires the potential amplitude VR

to be small or the energy of the particle to be large. This leads to the definition of a small
parameter for the perturbation expansion, which is discussed below. However, the amplitude of
the n-th order term in the Lyapunov exponent may also crucially depend on the details of the
correlation functions. In particular, if a function fn is small or even vanishes for some values
of kσR, then the other perturbation orders need to be examined.

Small parameter

In Eq. (2.93), the total Lyapunov exponent appears as an expansion in powers of the parameter

ǫR
kσR

=
VR√
EσE

. (2.101)

Because of this factor, all the individual perturbation orders γ(n) blow up in the limit k → 0
(E → 0). This signals a breakdown of the perturbation expansion, as it is known that the
Lyapunov exponent tends to a finite value at vanishing energy [162, 207]. It is tempting to

19See, however, the study which was published simultaneously in Ref. [220].
20See the inset of Fig. 2.6. The exponents γ+ and γ− displayed in the inset refer to the exact Lyapunov

exponent in a speckle potential with VR > 0 and VR < 0, respectively. In this example, the reduction or
enhancement of localization by odd terms in the expansion amounts to half the magnitude of the Born term.

21Going back to the analysis of Eqs. (2.36) and (2.43), for instance, it should be possible to determine how
fast correlations have to decay at the level of the Born approximation.
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identify ǫR/kσR as the small parameter of the perturbation expansion. Requiring it to be much
smaller than one would guarantee a good approximation of γ by the the first few perturbation
terms. However, this criterion appears not to be sufficient in general. The low-energy limit
has been analyzed in detail by Derrida and Gardner [207] (see also Refs. [162,206,223]), and it
turns out that the smallness of higher-order terms rather requires

ǫ
2/3
R ≪ kσR. (2.102)

This conclusion follows from the comparison of γ(2), γ(3) and γ(4) in a model of uncorrelated
disorder, and the observation that, while γ(n) scales as (VR/k)

n for n = 2, 3, the fourth-order
term γ(4) scales as V 4

R
/k5 because of the contribution of factorizable (“Gaussian”) terms.22

Then, the comparison of the Born and fourth-order terms leads to criterion (2.102). As the
Born term itself obeys γ(2)σ ∝ (ǫR/kσR)2 at low energy (assuming that ĉ2(q) tends to a finite
value for q → 0), criterion (2.102) rewrites γ(2) ≪ k, or simply [86]

γ ≪ k. (2.103)

This criterion is understandable in physical terms, as the potential can be said to be weak if
the decay of the wave function on the length scale of a wavelength is small.

Effective mobility edges

Equation (2.98) shows that γ(2) may vanish identically on some extended region of the single-
particle energy spectrum. This happens, for instance, when the Fourier transform ĉ2(q) of
the two-point correlation function has a finite support, bounded above by a cutoff 2κc. If
so, the Lyapunov exponent calculated in the Born approximation vanishes for κ > κc (i.e.
k > kc = κc/σR) and, if the potential is weak, the strength of localization for k > kc is expected
to be significantly reduced. Then, kc defines an effective mobility edge [34,183], which separates
the region k < kc where the localization is significant from the region k > kc where localization
occurs with a much smaller Lyapunov exponent. In 3D, the so-called mobility edge separates
localized states from extended ones (see section 1.1.2). In 1D, on the other hand, as general
results exclude delocalization on some extended region of the spectrum (see section 2.1.2), the
states at k > kc are expected to be localized. In system of finite size, however, an effective
mobility edge may separate states which are well localized inside the system, and states with
localization lengths exceeding by far the system size [225].

The fact that the leading-order approximation of the Lyapunov exponent may have a cutoff
was naturally pointed out a while ago (see e.g. Ref. [182]). Interestingly, such a cutoff at the level
of the Born approximation has been shown to have significant consequences on the transport
and localization of waves packets in 1D [34] and quasi-1D [225] geometries. Both numerical

22See Eq. (13) in Ref. [207], which we translate here in our notations. The results of Ref. [207] have been
derived for uncorrelated potentials on a lattice, but the conclusions are expected to be more general, as the
lattice and the detailed correlations should play a marginal role in the limit k → 0. Numerical calculations
performed with correlated speckle potentials by D. Delande [224] have shown to be in agreement with the non-
trivial scaling of the exact Lyapunov exponent at low energy which was worked out by Derrida and Gardner.
Note also that, starting from criterion γ ≪ k, and the high-energy or weak-disorder expansion γ(E) ∝ V 2

R/E of
the exact Lyapunov exponent in a continuous white-noise potential [see Eq. (1.15)], one finds a criterion similar
to Eq. (2.102).
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[34, 182, 183, 225, 226] and experimental studies [29] have confirmed these predictions, and the
question naturally arises how localization occurs beyond a cutoff in the Born approximation of
the Lyapunov exponent.

Equation (2.99) shows that the third-order term may also have a cutoff. If the support
of the bispectrum ĉ3(q1, q2) is enclosed in a disk of radius 2κ′c, then γ(3) vanishes identically
for k > k′c = κ′c/σR. This result is relevant for potentials which do not have a symmetric
probability distribution (or are invariant with respect to an overall change of sign VR → −VR).
Such a symmetry is often assumed for simplicity, and then γ(3) is simply zero. Expression (2.99)
shows that cutoffs in the leading orders arise for a larger class of random potentials, and that
the fourth-order term γ(4) may be the first non-vanishing order for some values of k, whether
the potential is symmetric or not.

The formulas derived above for the fourth-order term γ(4) allow a calculation of the Lya-
punov exponent in the event that the two leading orders both have a high-momentum cutoff.
In the following section, we analyze the behavior of γ(4) for a class of random potentials where
such is the case.

2.3 Localization in weak speckle potentials

In this section we study the Lyapunov exponent of non-interacting particles in weak speckle
potentials, such as those used in current experiments with ultracold atoms. Speckle potentials
have a cutoff at a certain value 2kc in their spatial (power) spectrum, and have been shown
to give rise to an effective mobility edge in 1D, associated with the fact that the Lyapunov
exponent vanishes in the Born approximation for particles with momenta ~k > ~kc [29,34,183].
We apply here the results of the previous section to characterize localization around the effective
mobility edge at kc and beyond.

Localization beyond a high-momentum cutoff ~kc in the Born approximation was also ad-
dressed in Ref. [219]. In this reference, models of disorder with symmetric probability distri-
bution were studied, and fourth-order terms for the exponent lim|z−z0|→∞ ln[〈r(z)/r0〉]/|z − z0|
were calculated. Examples were exhibited for which localization occurs even for k > kc, but on
much longer length scales than for k < kc. It was also concluded that for Gaussian disorder,
there is a second mobility edge at 2kc, while for non-Gaussian disorder, it is generally not so.
These results do not apply to speckle potentials, the probability distribution of which is asym-
metric (see section 1.3.3). Moreover, although speckle potentials are not Gaussian, they derive
from the squared modulus of a Gaussian field and, as shown below, the conclusions of Ref. [219]
regarding higher-order cutoffs needs to be re-examined. Finally, the exponent used in Ref. [219]
is not a self-averaging quantity [87]. It can be used as an indicator of localization, but its pre-
cise quantitative relationship with the localization length is unclear beyond the second-order
perturbation theory [219,220].23 The formulas derived in the previous section for the Lyapunov
exponent γ = lim|z−z0|→∞〈ln[r(z)/r0]〉/(z − z0), on the other hand, allow a quantitative study
of the (self-averaging) localization length.

Below, we first study generic speckle potentials, and show the existence of a series of
effective mobility edges at k

(p)
c = pkc, with integer p, which delimit intervals [k

(p−1)
c , k

(p)
c ] where

23Note, however, that the technique of ordered cumulants used in Ref. [219] has been adapted in Ref. [220]
to the calculation of the (self-averaging) Lyapunov exponent and the case of asymmetric potentials.



2.3 Localization in weak speckle potentials 65

localization results from scattering processes of increasing order. At each effective mobility
edge, the Lyapunov exponent is thus expected to experience sharp crossovers and drop by
orders of magnitude in weak potentials. The existence of the first two effective mobility edges
is proved by analyzing the three leading perturbation orders γ(2), γ(3) and γ(4) of the Lyapunov
exponent. Arguments are given for the higher-order cutoffs. Then, the leading orders of γ are
calculated explicitly for the specific model of speckle potential used in the experiments. The
analytical expressions are compared to numerical transfer matrix calculations. The results of
these calculations reveal how the Lyapunov exponent behaves beyond the first effective mobility
edge at weak and intermediate disorder strengths.

2.3.1 Speckle potentials

Correlation functions

Speckle potentials have been introduced in section 1.3.3. The models we consider in this thesis
are completely determined by the specification of an amplitude VR, a correlation length σR, and
the correlation function ca(u) = 〈a∗(0)a(u)〉 of the reduced complex electric field amplitude a
which couples to the atoms. By definition, ĉa(q) has a high-q cutoff

ĉa(q) = 0 for |q| > kcσR = κc = 1. (2.104)

The speckle potential V is proportional to the squared modulus of a, and shifted so as to have
zero mean (see Eq. A.5). The reduced correlation functions of V are

c2(u) = |ca(u)|2 (2.105)

c3(u, v) = ca(u)ca(v − u)ca(−v) + c.c. (2.106)

c4(u, v, w) = cA4 (u, v, w) + cB4 (u, v, w) + cC4 (u, v, w)

+[cD4 (u, v, w) + c.c.] + [cE4 (u, v, w) + c.c.] + [cF4 (u, v, w) + c.c.], (2.107)

where cA4 , cB4 and cC4 are the factorized (“Gaussian”) components

cA4 (u, v, w) = |ca(u)|2|ca(w − v)|2 (2.108)

cB4 (u, v, w) = |ca(v)|2|ca(u− w)|2 (2.109)

cC4 (u, v, w) = |ca(w)|2|ca(v − u)|2, (2.110)

and cD4 , cE4 and cF4 are the unfactorized parts

cD4 (u, v, w) = ca(u)ca(v − u)ca(w − v)ca(−w) (2.111)

cE4 (u, v, w) = ca(v)ca(w − v)ca(u− w)ca(−u) (2.112)

cF4 (u, v, w) = ca(w)ca(u− w)ca(v − u)ca(−v). (2.113)

Note that the latter come along with their complex conjugates in Eq. (2.107).
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Cutoffs in the perturbation terms

Taking the Fourier transform of Eqs. (2.105) and (2.106), and using the equality c∗a(u) = ca(−u),
we derive

ĉ2(2κ) =
1√
2π

∫
dq′
︷ ︸︸ ︷
ĉa(q

′)ĉa(q
′ − 2κ) (2.114)

ĉ3(q, 2κ) =
1√
2π

∫
dq′
[
ĉa(q

′)
︷ ︸︸ ︷
ĉa(q

′ − q)ĉa(q
′ − q − 2κ)

+ĉa(q
′)
︷ ︸︸ ︷
ĉa(q

′ + q)ĉa(q
′ + q + 2κ)

]
. (2.115)

Since ĉa(q) vanishes for |q| > 1, the supports of those ĉa correlators which appear under braces
in Eqs. (2.114) and (2.115) do not overlap for κ > 1, and in that case the functions ĉ2(2κ) and
ĉ3(q, 2κ) vanish. Let us reproduce here Eqs. (2.98) and (2.99):

f2(κ) = +

√
2π

8
ĉ2(2κ) (2.116)

f3(κ) = −1

4
P
∫

dq
ĉ3(q, 2κ) + ĉ3(−q,−2κ)

2 q
. (2.117)

As a consequence of these relations, the functions f2(κ) and f3(κ) also vanish identically for
κ > 1. In other words, we find that the Born term γ(2)(k) and the next-order term γ(3)(k)
vanish for single-particle states with k > kc = 1/σR.

To calculate the function f4(κ), we may use formula (2.97). Because of the various parts of
the four-point correlator, we end up with many integrals to calculate. Details of this lengthy
task are given in appendix B. It turns out that f4(κ) can be expressed as the sum of a reduced
number of “elementary” integrals (labeled Ri

κ below), which resemble those in Eqs. (2.114) and
(2.115), and in which cutoffs are easily identified by considering the overlap of the ĉa correlators.
A complete list of the elementary integrals and their cutoffs is given in appendix B. Let us
illustrate these cutoffs by reproducing a few of these terms:

R1
κ = − 1

8πκ

∫
dq
︷ ︸︸ ︷
ĉa(q)ĉa(q + 2κ)×

∫∫
dq dq′

ĉa(q)ĉa(q
′)

q − q′ + 2κ
(cA4 , κc) (2.118)

R11
κ =

π

4

∫
dq
︷ ︸︸ ︷
ĉa(q)ĉa(q + 4κ) ĉa(q + 2κ)2 (cD4 , c

E
4 , κc/2) (2.119)

R3
κ = − 1

4π

∫∫∫
dq dq′ dq′′

︷ ︸︸ ︷
ĉa(q)ĉa(q

′)ĉa(q
′′)ĉa(−q + q′ + q′′ − 2κ)

(q′ − q)(q − q′ + 2κ)
(cB4 , 2κc) (2.120)

R17
κ = − 1

4π

∫∫∫
dq dq′ dq′′

︷ ︸︸ ︷
ĉa(q)ĉa(q

′)ĉa(q
′′)ĉa(q − q′ + q′′ + 2κ)

(q − q′ + 2κ)(q′ − q′′)
(cF4 , 2κc) (2.121)

R5
κ =

∫
dq

2q

{[
ĉ2(2κ)−

︷ ︸︸ ︷
ĉ2(q+2κ)

]dĉ2
dq

(q)+
[dĉ2

dq
(2κ)−

︷ ︸︸ ︷
dĉ2
dq

(q+2κ)
]
ĉ2(q)

}
(cC4 , 2κc). (2.122)

In these expressions, the integrals with quotients are understood as principal values. The
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parentheses in front of the equation numbers indicate from which part of the correlator c4 the
terms originate [see Eqs. (2.108) to (2.113)], and where their cutoffs lie.24

The contributions to the fourth-order Lyapunov exponent in a speckle potential all have a
cutoff. More precisely, these cutoffs are found at κ = κc/2, κc, 2κc. In particular, some terms
extend beyond the cutoff at κ = κc = 1 found in the Born term γ(2) and the third-order term
γ(3). These terms are all listed in Eqs. (2.120) to (2.122). It can be checked with specific forms
of ĉa that, in general, the contributions at κ > 1 do not cancel out (see section 2.3.2). For
weak-enough disorder, they will not be cancelled by higher-order terms in the expansion of γ
either. However, they do vanish at a cutoff κ = 2κc imposed by the field-field correlator ĉa.

Localization beyond the first effective mobility edge

Equations (2.120) to (2.122) show that the single-particle states are localized beyond the cutoff
kc in the Born term. Note that contributions for k > kc arise both from the Gaussian (cB4 , cC4 )
and the non-Gaussian (cF4 ) parts of the four-point correlator.

Higher-order cutoffs - Remarkably, all terms of γ(4) that contribute to k > kc vanish
identically for k > 2kc, which suggests that cutoffs might occur for every integer multiple pkc

of the first cutoff kc. As the power-dependence of the leading-order Lyapunov exponent on
the disorder amplitude VR changes across each of these cutoffs, localization is expected to be
dramatically reduced from one region [k

(p−1)
c , k

(p)
c ] to the next when the disorder is weak. The

existence of several cutoffs is not specific to speckle potentials. In particular, such a series
of effective mobility edges should occur in any Gaussian potential with a cutoff in the power
spectrum, since higher-order correlation functions of the potential factorize into products of
two-point correlators.

The occurence of a second effective mobility edge at 2kc in Gaussian potentials was pointed
out in Ref. [219]. An example of non-Gaussian disorder with a similar cutoff in the power-
spectrum but without second effective mobility edge was also exhibited. Conversely, the above
analysis shows that the non-Gaussian character of the disorder is not a sufficient criterion to
conclude on the absence of higher-order effective mobility edges. In brief, higher-order effective
mobility edges occur systematically in Gaussian potentials with a cutoff in the power-spectrum,
but also in some classes of non-Gaussian potentials.

In any case, higher orders in the expansion of the Lyapunov exponent are expected to cover
the whole positive k axis step by step and ensure localization at all energies, in agreement with
the general understanding of one-dimensional systems.

Odd terms - Interestingly, speckle potentials have an asymmetric probability distribution,
and bring along odd powers in the expansion of the Lyapunov exponent, as exemplified by γ3

and f3 in this section. Depending on the sign of VR, these odd (non-Gaussian) terms might
enhance or reduce localization. As the Lyapunov exponent calculated from definition (2.19) is,
with probability one, a positive quantity, it is clear that odd terms cannot be the leading orders
in any spectral region. This argument is consistent with the observation that γ(3) has the same
cutoff than γ(2) in speckle potentials, and suggests that, in general, if γ(2p) has a cutoff and
odd terms are present, then γ(2p+1) should have the same cutoff than γ(2p). For weak speckle

24For the analysis of Eq. (2.122), note that ĉ2 has twice the width of ĉa.
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potentials we thus expect the Lyapunov exponent to scale with (ǫR/kσR)2 for k < σR, with
(ǫR/kσR)4 for σR < k < 2σR, and with (ǫR/kσR)6 at most for k > 2σR.

2.3.2 The simplest speckle model

We now work out the exact functional dependence of the leading exponents γ(n) [n = 2, 3, 4],
for the field-field correlator

ca(u) = sinc(u) ≡ sin(u)

u
. (2.123)

This correlation function arises in the diffraction pattern created behind a square aperture with
uniform illumination [31], which is relevant for current experiments with ultracold atoms [26,
27, 29, 31]. The Fourier transform of ca has the simple form

ĉa(q) =

√
π

2
Θ(1 − |q|), (2.124)

where Θ is the Heaviside step function.

Correlation functions - The first two correlation functions of the potential V are also
simple in Fourier space:

ĉ2(q) =

√
π

2

(
1 − |q|

2

)
Θ

(
1 − |q|

2

)
(2.125)

ĉ3(q, q
′) = π

(
1 − max(|q|, |q′|, |q + q′|)

2

)
Θ

(
1 − max(|q|, |q′|, |q + q′|)

2

)
. (2.126)

The last expression clearly shows that the support of the bispectrum ĉ3 is enclosed in a disk of
minimum radius 2, so that γ(3) vanishes for κ > 1.

fn functions - The above correlators are inserted into Eqs. (2.98) and (2.99), and we find

f2(κ) =
π

8
(1 − κ)Θ(1 − κ) (2.127)

f3(κ) =
π

4

[
κ ln

(
1

κ

)
+ (1 − κ) ln

(
1

1 − κ

)]
Θ(1 − κ). (2.128)

The calculation of f4(κ) is detailed in appendix B. The result can be cast into the form

f4(κ) = f
[0,1/2]
4 (κ)Θ(1/2 − κ) + f

[0,1]
4 (κ)Θ(1 − κ) + f

[1,2]
4 (κ)Θ(2 − κ)Θ(κ− 1). (2.129)
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The functions f
[α,β]
4 in this expression are defined on the interval [α, β] and read

f
[0,1/2]
4 (κ) = −π

3

16
(1 − 2κ) (2.130)

f
[0,1]
4 (κ) =

π

64

{
4 − 6κ− 10π2

3
(1 − 2κ) −

(
5

κ
− 3κ

)
ln(1 − κ)

+ 22(1 − κ) ln2(1 − κ) − 16(1 − κ) ln(1 − κ) ln(κ)

− 4(1 − κ) ln(1 − κ) ln(1 + κ) − (4 − 2κ) ln(κ) − (4 − 8κ) ln2(κ)

− 32(1 + κ) ln(κ) ln(1 + κ) +

(
1

κ
+ κ

)
ln(1 + κ)

+ (18 + 14κ) ln2(1 + κ) − 24(1 + κ)Li2(κ) + 32(1 + κ)Li2

(
κ

1 + κ

)

− 8κLi2

(
2κ

1 + κ

)
− 8(1 − 2κ)Li2

(
2 − 1

κ

)}
(2.131)

f
[1,2]
4 (κ) =

π

32

{
−2 +

(
1 +

π2

3

)
κ−

(
2

κ
− 2 + κ

)
ln(κ− 1)

− 2(κ− 1) ln2(κ− 1) + 4κ ln(κ− 1) ln(κ) + 4κLi2(1 − κ)

}
, (2.132)

where Li2(x) is the dilogarithm function [227], which is documented in appendix C.25 The
function f4 has a quite complicated expression, but its behaviour is clear when it is plotted
(see Fig. 2.4). While f2(κ) and f3(κ) vanish for κ > 1, the support of f4(κ) extends up to
κ = 2. This result agrees with the findings of section 2.3.1, showing that there is localization
(on longer length scales) beyond the cutoff in the Born term.

Let us mention a few other remarkable features of f4. We find a kink at κ = 1/2 which
originates from the terms such as (2.119), and logarithmic divergences at κ = 0 and κ = 1:

f4(κ) ∼ − π

16
ln(κ) [κ→ 0+] (2.133)

f4(κ) ∼ − π

32
ln |1 − κ| [κ→ 1±]. (2.134)

The logarithmic divergence at κ = 1 may require further study, as it happens just at the
first effective mobility edge. Numerical calculations presented in section 2.3.3 suggest that
the Lyapunov exponent γ remains continuous across the cutoff at κ = 1. The divergence
of γ(4) indicates that in a very narrow interval around each effective mobility edge, a non trivial
summation of the entire perturbation series might be necessary.

Lyapunov exponent - The full functional dependence of the Lyapunov exponent for the
simple speckle potential (2.123), evaluated two orders beyond the Born approximation, on the
wavenumber k, the disorder amplitude VR, and the correaltion length σR is shown in Fig. 2.5.

25Note that expressions (2.131) and (2.132) can be written in many equivalent ways (which may appear quite
different) since the dilogarithm satisfies a number of functional identities which can be used to simplify the
results (see appendix C).
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Figure 2.4: Functions fn for n = 2, 3, 4 and for the simple speckle potential ĉa(q) ∝ Θ(1 − |q|)
created with a square aperture. The solid lines represent expressions (2.127), (2.128) and
(2.129). The points with error bars correspond to numerical transfer matrix calculations (see
section 2.3.3). The support of f4(κ) extends up to κ = 2, as shown in the inset.

A clear step, which becomes sharper with weaker disorder, separates the spectral regions k <
kc = 1/σR and k > kc. The logarithmic divergence at the first effective mobility edge k = kc

does not appear on the graph due to the finite resolution of the sampling grid. The drop at
low energy is due to the negative tail of f4(κ) and the dominating behavior of (ǫR/kσR)4 for
small κ, and most probably signals that the truncated perturbation series γ(2) + γ(3) + γ(4)

offers a poor approximation of γ in that regime, where the Lyapunov is expected to have a
monotonous behavior (see Fig. 2.6). The spectral region where this occurs becomes narrower
for weak disorder.

2.3.3 Transfer matrix calculations

In one dimension, the Lyapunov exponent can be computed numerically by means of transfer
matrix calculations. The data presented in Figs. 2.4 and 2.6 has been obtained by D. Delande.
Below, we outline the principle of transfer matrix calculations. We also emphasize a few points
which become important with the analysis of higher-order terms in the Lyapunov exponent,
and the strategy that has been used by D. Delande to obtain the data of Figs. 2.4 and 2.6.

Set-up

In transfer matrix calculations, the Schrödinger equation is discretized on a regular lattice with
spacing ∆z between sites, and eigenstates at energy E obey

− ~
2

2m

ψn+1 − 2ψn + ψn−1

(∆z)2
+ Vnψn = Eψn. (2.135)

Solutions of this equation are completely determined by the specification of the energy E and
some initial conditions ψ0 and ψ1.
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Figure 2.5: Lyapunov exponent γ calculated analytically up to two orders beyond the Born
approximation for a speckle potential with field-field correlator ĉa(q) ∝ Θ(1− |q|), and plotted
as a function of the particle wave number k and the strength of the disorder ǫR = 2mσ2

R
VR/~

2,
where VR and σR are the amplitude and the correlation length of the disorder. The blue lines
correspond to ǫR = 0.1 and ǫR = 0.02, that is, experimental conditions of Ref. [29]; see text.

Transfer matrices - Equation (2.135) defines a recursion formula which allows the calcu-
lation of ψn for all n, given a set of initial conditions ψ0 and ψ1. This recursion formula is most
conveniently cast into a matrix form. Here we chose the representation [59]

(
ψn+1

ψn

)
= Tn

(
ψn

ψn−1

)
(2.136)

where the components ψn are real, and Tn is a 2 × 2 transfer matrix defined as

Tn =

(
2 + Vn−E

Ez
−1

1 0

)
, (2.137)

with Ez = ~
2/2m(∆z)2. For n → ∞, the eigenvalues of the product Tn · · ·T2T1 eventually

converge to the set (e+γn∆z, e−γn∆z), where γ > 0 is the positive Lyapunov exponent of interest.
As, with probability one, an arbitrary initial vector v1 = [ψ1, ψ0]

T has a component along the
direction of exponential growth, analyzing the growth of the vector Tn · · ·T2T1v1 (i.e. propa-
gating only a two-component vector vn instead of the 2 × 2 matrix) suffices to determine the
Lyapunov exponent. The norm of the vector can defined by

rn = [ψ2
n + (ψn − ψn−1)

2/(k∆z)2]1/2 (2.138)

as in the phase formalism [see Eq. (2.15)]. Monitoring the asymptotic growth of |φ| for a
complex φ should yield the same result [224].
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System sizes - For n → ∞, the quantity ln[rn+1/r1]/(n∆z) approaches a limit which is
independent of the initial conditions, and is equal to the Lyapunov exponent.26 A single
realization of the random potential suffices in principle for an accurate estimate of the Lyapunov
exponent, provided the system is large enough. In practice, propagation over samples of large
size is combined with averaging over several realizations of the random potential, in order to
obtain a good estimate of the Lyapunov exponent at the smallest possible computational cost.
How large should the system size n be in each realization ? The analysis of the fluctuations of
the logarithmic growth of the wave function around the Lyapunov exponent (see Eq. 1.13) shows
that ψ should be propagated on a large number of localization lengths, which here translates
into

n≫ 1/(γ∆z). (2.139)

Additionally, the conditions

∆z ≪ σR, ∆z ≪ 1

k
(2.140)

must be satisfied to ensure that the details of the correlation function are reproduced accurately,
and that the discretization of the Schrödinger operator does not affect significantly the free
dispersion relation E = ~

2k2/2m in the regime of interest. For numerical data shown in
Figs. 2.4 and 2.6, the parameters are ∆z/σR = π/16 and n∆z/σR = 108π.

Generating long speckle potentials - Speckle potentials are generated numerically by
computing the fast Fourier transform (FFT) of a random field (see chapter 1). Even though the
FFT algorithm has complexity O(n logn), generating speckle samples which are large enough
to study γ(4) is expensive in terms of computation time and memory. Concatenating different
speckle samples should be avoided, as the interface between two uncorrelated speckle samples
produces small reflections which significantly alter the estimate of the Lyapunov exponent for
small energies and small disorder amplitudes [224]. The strategy developed by D. Delande
for the data presented here consists in: i) generating a random (Gaussian) delta-correlated
source field, ii) applying a “short” FFT to part of this field (of size 1024πσR) to generate the
corresponding sources in k space, iii) truncating the sequence in k space at the cutoff value kc,
iv) applying an inverse FFT to obtain a speckle field with the required correlation functions,
and v) choosing a sufficient overlap (typically 64πσR) between successive source field in step (i)
so that discontinuity effects are negligible. The results were checked not to depend on the
length of the overlaps. The Lyapunov exponent was extracted by fitting log[rn+1/r1] by an
affine law an + b, rather than just retrieving the value log[rN+1/r1]/N∆z, where N is the size
of the system. Additionally, averaging was performed over 8 potential samples for the data in
the figures.

Application to the simple speckle potential

Lyapunov exponent - Results of such transfer matrix calculations for the speckle poten-
tial (2.124) are shown in Fig. 2.6 and compared to analytical expressions of the Lyapunov ex-
ponent in the Born approximation and two orders beyond. The numerical curves are obtained
from series of calculations at variable kσR values and fixed ǫR parameter. The values ǫR = 0.02
and ǫR = 0.10 correspond to VR/~ = 2π × 16Hz in Fig. 3 of Ref. [29], and VR/~ = 2π × 80Hz

26This is a consequence of the self-averaging properties of 〈ln[r(z)/r0]〉/|z − z0|. See section 1.1.3
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Figure 2.6: Lyapunov exponent as a function of the momentum k in the speckle poten-
tial (2.124), as obtained from numerical transfer matrix calculations (red line), the Born ap-
proximation γ(2) (green dotted line), and the fourth-order approximation γ(2) +γ(3) +γ(4) of the
Lyapunov exponent (dashed blue line). The values of ǫR = VR/Eσ correspond to experimental
conditions of Ref. [29]. Inset: contribution of odd terms, normalized by the Born approxima-
tion, for ǫR = 0.1 (red solid line: numerical calculations; dashed blue line: third-order analytical
result).

in Figs. 3 and 4 of Ref. [29], respectively. For sufficiently weak disorder (ǫR = 0.02), we find
an excellent agreement of the numerical data with the analytical expression γ(2) + γ(3) + γ(4)

down to kσR ≃ 0.1. In particular, the drop of γ by about two orders of magnitude at the first
effective mobility edge is reproduced, and γ(4) is found to provide an accurate description of γ
beyond the first effective mobility edge. For larger disorder (here ǫR = 0.1), the numerical data
confirm the trend announced by the analytical approximation, but the truncated weak-disorder
expansion breaks down sooner at low energy, and a discrepancy by a factor of roughly two is
observed beyond the first effective mobility edge. This signals that, while the three leading or-
ders indeed provide a reasonable estimate of γ, higher-order terms (e.g. γ(5)) start contributing
significantly for such values of ǫR.

Odd terms - Experimentally and numerically, the odd terms in the weak-disorder expansion
of γ can be evaluated by forming (γ+ − γ−)/2, where γ+ and γ− are the values of γ obtained
for VR > 0 and VR < 0, respectively, with the same k and σR. The inset of Fig. 2.6 emphasizes
the role of these odd terms. For ǫR = 0.1 and kσR values ranging from 0.6 to 0.9, the odd
terms amount to 30 to 70% of the Born term. The contribution of odd terms can therefore
be significant in current experiments with speckle potentials. For weak disorder and away
from the divergence at kσR = 1, the odd terms are well approximated by the sole third-order
contribution γ(3).

fn functions - The fn functions can be obtained numerically by computing the Lyapunov
exponent at fixed kσR and for various potential strength ǫR, and fitting the result by a polyno-
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mial law of ǫR. The coefficients of the fit are the fn functions evaluated at point kσR:

γσR =
∑

fn(kσR)

(
ǫR
kσR

)n

. (2.141)

For the fitting procedure to be accurate, the number of free parameters in the fit, i.e. the
number of terms in the sum (2.141), has to be kept low. This imposes to perform calculations
at very low VR to avoid contributions from higher-order terms, especially at low energy. The
procedure is straightforward for the two leading orders f2 and f3. The fourth order f4 is more
difficult to extract. For each value of kσR, the Lyapunov exponent was computed for ǫR in the
range [−0.03kσR,+0.03kσR], and a polynomial fit of degree 8 was used to extract the fn(kσR)
coefficients. To improve the procedure and discriminate better between the contributions of
successive terms, even terms can be extracted from (γ+ +γ−)/2, while odd terms are extracted
from (γ+ − γ−)/2.

The terms f2, f3 and f4 extracted with the above scheme for the speckle model (2.123) are
displayed as data points in Fig. 2.4. The agreement with the analytical formulas (2.127) to
(2.129) proves to be excellent. In particular, the numerical calculations reproduce the predicted
kink at kσR = 1/2. These calculations corroborate the analytical expressions found for speckle
potentials and, more generally, the expressions derived for the third- and fourth-order Lyapunov
exponents in generic random potentials.

2.3.4 Anderson localization of matter waves in speckle potentials

First experiments aiming at the observation of Anderson localization in coordinate space with
ultracold atoms were carried out in 2005 [26–28]. In these experiments, the expansion of inter-
acting BECs through speckle potentials was monitored to observe localization effects. However,
the experiments were performed in a regime of strong disorder, which prevented the observation
of Anderson localization [183]. Subsequently, an experimental scheme was proposed in Ref. [34]
in which weak speckle potentials are used in order to reach a regime of Anderson localization of
non-interacting particles. The theoretical analysis of Ref. [34] also predicted that a signature
of the first effective mobility edge of the speckle potential (at k = kc = 1/σR) should be found
in the crossover from a regime of exponential localization of the wave packet to a regime where
the density profile decays according to a power law. The experiments of Ref. [29] provided
evidence of Anderson localization, and confirmed this scenario. They also raised the question
as to how particles localize beyond the first effective mobility edge. As we shall see below, the
results of this chapter provide an answer to this question.

Let us first summarize the experimental scheme, the theoretical model describing the local-
ization process, and the experimental results. Details can be found in Refs. [29, 34, 183, 203].

Theoretical model

In the experiment envisioned in Ref. [34], an interacting BEC is released from a harmonic trap
and left to expand in a 1D geometry, in the presence of a speckle potential (see Fig. 2.7). The
amplitude of the speckle potential is chosen to be much smaller than the chemical potential of
the BEC initially at rest in the trap. This choice ensures a conversion of the initial interaction
energy into kinetic energy before localization in the random potential.
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Figure 2.7: Experimental scheme of Ref. [29], where the 1D Anderson localization of matter
waves in a speckle potential was observed. (a) Atomic Bose-Einstein condensate initially held at
rest in the combined potential formed by a magnetic trap (gray), a 1D speckle potential created
by a blue-detuned laser, and a 1D wave guide created by a red-detuned laser. (b) Stationary,
localized density profile observed after expansion of the BEC in the wave guide.

Expansion - A two-stage model is adopted to describe the expansion. The disorder is
assumed to play no role during the onset of the expansion, as its amplitude is much smaller
than the interaction energy per atom in the initial trap. At the end of this first stage, the wave
packet has a momentum distribution D(k) known from the analysis of the expansion without
disorder. The distribution D(k) has a high-k cutoff kmax set by the chemical potential of the
initial (trapped) cloud. In the second stage, the gas has become dilute and the interaction
energy is much smaller than the typical kinetic energy. The wave packet is described by a
collection of non-interacting waves φk which are scattered elastically by the random potential
and localize. Assuming that the relative phases of the wave-packet components φk have been
scrambled by the random potential, the total density writes

n0(z) = 2

∫ ∞

0

dkD(k)〈|φk(z)|2〉. (2.142)

The behavior of the densities 〈|φk(z)|2〉 is analyzed at the level of the Born approximation [228,
229]. Thus, for k < kc, the 〈|φk(z)|2〉 are exponentially localized with a Lyapunov exponent
determined in the Born approximation. For k > kc, on the other hand, the φk components
are assumed not to localize on the length scale of the system27 and not to contribute to the
localized profile of the wave packet. The integration is therefore truncated at kc in Eq. (2.142).
As the distribution D(k) has a high-k cutoff kmax, Eq. (2.142) rewrites

n0(z) = 2

∫ min(kc,kmax)

0

dkD(k)〈|φk(z)|2〉. (2.143)

The asymptotic behavior of n0(z) at large z is dominated by the φk components close to the
cutoff set by kc or kmax, as those states have the longest localization lengths [34,183].

27It has been checked numerically in Ref. [34] that, for parameters which are close to those of the experiment
of Ref. [29], the localization lengths for k > kc exceeds the system sizes achievable in current experiments.
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Localization regimes - The analysis of Eq. (2.143) shows that the asymptotic behavior of
n0(z) depends qualitatively on which of the two cutoffs kc and kmax is the limiting one. For
kmax < kc, an exponential localization of n0(z) is found. For kmax > kc, on the other hand, the
asymptotic decay of n0(z) follows a power law n0(z) ∝ |z|−2. In that case, the components φk

with k < kc are (individually) exponentially localized, but their contributions sum up to an
algebraic (power-law) density profile.

Experiment

Figure 2.7 shows a schematic of the experiment performed in Ref. [29]. A Bose-Einstein con-
densate is initially held at rest in a magnetic trap [in gray in Fig. 2.7(a)] in the presence of a
blue-detuned speckle potential. A red-detuned laser beam additionally creates a wave guide
to restrict the subsequent motion of the atoms to the direction along the z-axis. The speckle
potential is created behind a rectangular aperture, and therefore follows model (2.123), with
a correlation length σR = 0.26µm in the z-direction. At time t = 0, the harmonic trap is
switched off, and the cloud starts expanding in the 1D wave guide as the interaction energy of
the atoms present in the trap is converted into kinetic energy. Absorption images reveal that
the atomic wave packet reaches a stationary density profile after an expansion time of the order
of one second [Fig. 2.7(b)]. In the tails of the stationary profile, the gas is very dilute, and the
kinetic energy by far exceeds the interaction energy. Localization is characterized by fitting the
density n0(z) in the wings of the stationary profile (see Fig. 2.8).

Results - Evidence for both the exponential localization and the algebraic regime was found
in the experiments of Ref. [29]. Figure 2.8 shows stationary density profiles obtained in the
experiment. The density profile in Fig. 2.8(a) is obtained for kmax > kc = 1/σR, and decays
with a power law, as shown by the double-logarithmic plot (main graph). In Fig. 2.8(b), the
data is obtained for kmax > kc = 1/σR, and the density profile decays exponentially, as shown
by the log-linear plot in the inset. These findings demonstrate the consequences an effective
mobility edge may have on the localization properties of non-interacting particles.

Beyond the first effective mobility edge

The algebraic regime for kmax > kc arises because of the drop of the Lyapunov exponent at the
effective mobility edge and the fact that the atoms with k > kc = 1/σR are not localized within
the system size. The results of this chapter allow a more precise description of the regime
kmax > kc as i) they provide an precise estimate of the localization lengths of wave-packet
components with k > 1/σR, ii) they can be used to discuss when the contribution of these
components can be neglected, and iii) conversely, they can form the basis of an analysis beyond
the algebraic regime.

In Fig. 2.9, we plot the analytical expression γ(2) + γ(3) + γ(4) for the same parameters
as in Figs. 2.8(a) and 2.8(b), and we indicate in thick lines those momentum classes that
are populated. The vertical lines correspond to the cutoffs kmax imposed by the momentum
distribution of the cloud. The typical system size (i.e. the size of the experimentally-accessible
region) is indicated by a horizontal line (see caption of Fig. 2.8). For kmaxσR = 0.65, which
corresponds to the exponential regime, all k components are well localized within the system.
In the case kmaxσR = 1.15, which corresponds to the algebraic regime, the Lyapunov exponent
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Figure 2.8: Stationary density profiles of a matter wave in a 1D speckle potential. The scales
(log-log in the main graphs, semi-log in the insets) reveal the difference between the algebraic
(kmaxσR > 1) and exponential (kmaxσR < 1) regimes. Here kmax corresponds to a cutoff in the
momentum distribution of the cloud, and σR is the correlation length of the speckle potential
(σR = 0.26µm, Eσ/h = 860 Hz). (a) Algebraic regime observed for kmaxσR = 1.16. The wings
are fitted with a power law 1/|z|β which yields values of β close to 2 [29]. (b) Exponential
regime observed for kmaxσR = 0.65. The wings are fitted with exponentials. The potential
amplitudes in (a) and (b) are VR/Eσ = 0.09 and VR/Eσ = 0.04, respectively.
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Figure 2.9: Effect of the first effective mobility edge in a speckle potential on the localization
of an expanding wave packet. The thin blue lines correspond the Lyapunov exponent of single
particles with energy E = ~

2k2/2m, calculated two orders beyond the Born approximation
(see section 2.3.2 and Fig. 2.6), for the values of ǫR = VR/Eσ in Fig. 2.8. The thick lines on
top indicate which momentum classes are populated in the expanding BECs of Fig. 2.8 (the
lowest momentum classes are not shown). The cutoffs of the momentum distributions appear
as dashed lines. The horizontal line indicates the localization length which corresponds to half
the system size, defined by both the field width of the absorption images which are taken of the
cloud and the 1/e extent of the 1D speckle field along z. Localization lengths of up to 2 mm
have been measured in Ref. [29].
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of the k components beyond the effective mobility edge drop well below the inverse system
size. These components are therefore effectively extended on the length scale of the system.
Physically, this most probably means that the associated wave packet leaves the system.

Hence, Fig. 2.9 shows that the contribution of the atoms beyond the first effective mobility
in the case kmaxσR = 1.15 can be neglected. The analysis carried out in this section thereby
corroborates the findings of Refs. [29,34], and confirms the relevance of effective mobility edges
in speckle potentials.

Finally, our analysis shows that exponential localization of the wave packet can be expected
even in the regime kmax > 1/σR. To observe this regime, however, much longer systems and an
accurate measurement of very low atom densities would be required.

2.4 Conclusion

In this chapter we studied one-dimensional Anderson localization of non-interacting particles
in correlated random potentials. A weak-disorder perturbative expansion of the Lyapunov
exponent (inverse localization length) was carried out two orders beyond the usual Born ap-
proximation to describe the localization caused by higher-order scattering processes in the
potential.

The phase formalism used in the expansion directly leads to a perturbation series for the
exact Lyapunov exponent, without any additional approximation, such as the diffusion approx-
imation used in higher dimensions [40,41]. Moreover, the Lyapunov exponent calculated in the
expansion is a self-averaging quantity [86], and therefore describes the typical behavior of large
disordered systems.

We found simple expressions for the three leading orders of the Lyapunov exponent as a
function of the single-particle energy and the correlation functions of the random potential.
These results apply to potentials which need not be delta-correlated, Gaussian, or symmetric.

We examined models of random potentials whose spatial power spectra have a finite support,
limited e.g. by a high momentum cutoff. For these models, the Lyapunov exponent calculated
in the Born approximation vanishes identically over an extended region of the single-particle
spectrum. An inspection of the higher-order terms in the perturbation series shows that, quite
generally, higher-order terms extend the region of localization. However, higher orders may
also have cutoffs. This is systematically the case for Gaussian potentials which have a cutoff
in their power spectrum. We showed that this can also be the case in non-Gaussian potentials,
for instance in the speckle potentials used in current experiments with ultracold atoms.

Each of the cutoffs found in the perturbation orders defines an effective mobility edge, which
separates regions of the single-particle spectrum where localization is caused by scattering pro-
cesses of increasing order. In weak potentials, these effective mobility edges thus correspond to
sharp drops in the magnitude of the Lyapunov exponent. Experiments with ultracold atoms
in speckle potentials have shown that an effective mobility edge might affect significantly the
transport and localization properties of non-interacting wave packets. We provided an quanti-
tative answer to the question of how the single-particle states beyond such an effective mobility
edge localize.

In higher-dimensions, elastic scattering is possible at various deflection angles, and the ran-
dom potential can transfer a continuum of momentum values to the particles. As a consequence,
the effects associated with cutoffs in 1D are expected to be washed out. It would nevertheless
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be interesting to study whether such special long-range correlations have a non-trivial effect on
localization in 2D and 3D.





C H A P T E R 3

Weakly-interacting Bose gas in a
correlated 1D random potential

In his seminal publication, Anderson showed that disorder could have dramatic effects on the
transport of non-interacting particles [1], and subsequent work lead to the astounding conclusion
that, generally, an infinitesimal amount of disorder leads to an exponential localization of
all single-particle states in one and two dimensions [53]. In chapter 2, we showed that the
strength of localization in 1D could depend crucially on the statistical properties of the disorder.
Localization was nevertheless found to occur. However, an important challenge arises with the
description of interacting systems, as there is no simple theoretical answer on the interplay of
disorder, interactions and kinetic energy, even in the ground state of a many-body system. In
particular, it is known that interactions may compete or cooperate with disorder to localize the
particles, depending on the regime of interactions (see section 1.2.2 and below). Elucidating this
interplay is central to the understanding of metal-insulator or superfluid-insulator transition in
the presence of disorder.

In this chapter, we study the ground-state of a disordered Bose gas with weak repulsive
interactions. We assume that the disorder is one-dimensional, but allow for transverse degrees
of freedom of the Bose gas. We discuss the quantum states of the Bose gas as a function of
the strength of interactions and disorder, focusing on localization properties from the point
of view of the boson density distribution and on a microscopic description of the underlying
states.1 For interactions which are strong enough, while remaining compatible with mean-field
approaches (see below), the Bose gas forms a delocalized, disordered Bose-Einstein condensate
(BEC) phase. For weaker interactions, the BEC is fragmented under the influence of the
random potential. For very weak interactions, on the other hand, the Bose gas populates a
small number of low-energy single-particle states called Lifshits states. The range of parameters
for which this microscopic description of the many-body state applies is called Lifshits glass
regime.

This chapter is organized as follows. In section 3.1, we emphasize the relevance of a micro-
scopic description of the weakly-interacting regime of disordered 1D bosons. In section 3.2, we
precisely define the framework of our study. In section 3.3 we describe the BEC phase, starting
from the limit without disorder. The Lishits glass regime, on the other hand, is described in
section 3.4, starting from the non-interacting case. Finally, section 3.5 provides a discussion of
the quantum-state boundaries. This discussion is based both on scaling arguments and explicit
results derived in this chapter.

1Our findings are summarized in the quantum-state diagram of Fig. 3.10 on page 122. In this diagram, the
interactions increase from left to right and the amplitude of disorder from bottom to top.
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3.1 Introduction

Initially triggered by experiments on liquid helium in porous media [10], the “dirty boson”
problem [6–8, 128] has attracted a lot of attention since the eighties, as it raises the question
of the possible destruction of superfluidity by disorder and disorder-induced localization phe-
nomena. These localization effects are determined by the complex interplay of disorder and
interactions, the understanding of which is probably the most advanced in the one-dimensional
geometry.

Figure 3.1(a) displays the result of a numerical study of the ground-state quantum-phase
diagram of disordered 1D bosons in the presence of a lattice. The average number of bosons
per lattice site in this figure (filling 0.5) is such that, qualitatively, the conclusions apply to
the continuous case (without lattice potential).2 For moderate interactions and weak disorder,
the bosons form a delocalized superfluid phase, as in a disorder-free Bose system. For strong
disorder, a disordered, gapless insulating phase is found, which is called Bose glass [8, 128].
Interestingly, this phase extends to the range of weak disorder for both weak and strong inter-
actions, and encloses the superfluid regime.

The insulating regime depicted close to the left axis in Fig. 3.1(a) is consistent with the
behavior expected on the line of vanishing interactions. On that line, the bosons are all localized,
according to general results on the localization of non-interacting particles in 1D. However, as
pointed out in Ref. [128], this does not guarantee an easy description of the region for very
weak but non-vanishing repulsion between the bosons. The situation where all the bosons
populate the localized single-particle ground-state is often said to be unstable with respect to
the introduction of a small amount of interactions. This point will be addressed in section 3.4.

As for the presence of the Bose glass phase both for weak and strong disorder, it is ex-
plained by two different effects depending on the disorder strength. This twofold effects of
interactions were explicitly put forward by Scalettar et al. [130]. Figure 3.1(b) reproduces their
observation of the non-monotonous behavior of the superfluid density ρs as a function of the
interaction strength. In lattice systems without disorder, ρs is maximum at low V/t, and de-
creases monotonously as V/t increases. In the presence of disorder, however, the superfluid
density vanishes for the lowest values of V/t.3 This destruction of superfluidity is attributed to
an Anderson-like localization of the bosons [130]. The increase of ρs observed in Fig. 3.1(b) for
slightly larger V/t ratios, on the other hand, is interpreted as a manifestation of the fact that
weak interactions compete with the disorder, and favor a delocalization of the bosons.4

In contrast, it is recognized that strong interactions cooperate with the disorder to localize
the particles, reduce the number fluctuations and destroy the phase coherence of the many-body
systems [128, 130, 148]. This behavior is consistent with the propensity of strongly-interacting
bosons to form a localized Mott insulator in the presence of a disorder-free lattice poten-
tial [136, 146,147]. Let us emphasize that, in such a regime of strong interactions, the term of
“localization” takes a different meaning than in the Anderson case. In the case of Anderson
localization, the density profile of the gas is highly inhomogeneous on long length scales. For
strong interactions, this term is used to characterize the many-body system from the point of

2Diagram 3.1(a) agrees qualitatively with the analytical results of Ref. [8] for the continuous 1D case.
3Scalettar et al. emphasize that for the parameters of Fig. 3.1(b) the superfluid fraction vanishes identically

below a threshold interaction strength, which is small, but strictly positive.
4This behavior is understood at the mean-field level (see sections 3.3.2 and appendix D) as a penalty imposed

by interactions on highly inhomogeneous, localized density profiles.



3.1 Introduction 83

(a) DMRG, filling 0.5, hopping
t/2 = 1/2 (Fig. 2 of Ref. [148]).

(b) Monte Carlo, filling 0.625, hopping t, disorder
∆/t = 10 (?) (Fig. 4 of Ref. [130]).

Figure 3.1: Phases of disordered 1D lattice Bose gases. (a) Quantum phase diagram of the 1D
disordered Bose Hubbard with random on-site energies ǫi ∈ [−∆,∆], at filling 0.5, obtained by
DMRG calculations in Ref. [148]. (b) Superfluid fraction ρs of a disorder 1D lattice Bose gas
as a function of the ratio of on-site repulsion V to tunneling energy t. The data was obtained
by Scalettar et al. in a Monte-Carlo study of the disorder Bose-Hubbard model with random
on-site energies ǫi ∈ [−∆,∆], for ∆/t = 10 (?), at incommensurate filling 0.625.

view of correlation functions, and the density profile of the gas is globally delocalized [8].

Numerical calculations support the conclusion that the weakly- and strongly-interacting
regimes surrounding the superfluid phase form a unique Bose glass phase [148]. This phase
is characterized by a gapless excitation spectrum, a vanishing superfluid fraction and a non-
vanishing compressibility, following the definition by Fisher et al. [128]. In the numerical
calculations of Ref. [148], no abrupt change in macroscopic observables such as the compress-
ibility and the superfluid fraction (indicating a phase transition) was found between the weakly-
and strongly-interacting regimes of the insulator. However, as explained above, the effect of
interactions is different in those two regimes, and providing physically-transparent pictures of
the microscopic processes at work in both regimes is of considerable interest. For the regime
of strong interactions, analytical results describing the superfluid-insulator transition at weak
disorder were derived in Ref. [8] (see Fig. 1.7(c) on page 29).

In this chapter, we address the weakly-interacting part of the zero-temperature quantum-
phase diagram.5 The subject of disordered, weakly-interacting bosons itself has seen a surge
of interest in recent years. Theoretical studies have focused so far on the effect of disorder
on the condensate and superfluid fractions as a function of disorder strength [132, 230–233],
thermodynamics and the normal-superfluid transition [132,234,235], collective oscillations [236,
237], transport [238–241], sound propagation [231, 233], density modulations [171, 242] and
elementary excitations (see chapter 4) in the (quasi-) BEC regime. Here, we concentrate on
the description of the zero-temperature quantum states of the system, in order to characterize

5In the quantum phase diagrams of Figs. 3.1(a) and 3.1(b), this regime corresponds qualitatively to the part
found left of the tip of the superfluid lobe, both in the superfluid and in the Bose-glass regimes. Thus, as far as
the (Bose-glass) insulator is concerned, it corresponds entirely to the regime called Anderson glass by Scalettar
et al. [130].
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the superfluid (quasi-BEC) and insulator phases from the point of view of localization, and to
locate quantum-state boundaries [243]. We examine the disordered (quasi-) BEC phase and the
crossover to the (insulating) regime of fragmented BEC, as well as the deep insulating regime
found for very weak interactions or strong disorder.

Related and complementary studies appeared in Refs. [28, 244–247]. In Refs. [28, 244],
the destruction of localization by a weak non-linearity and the superfluid-insulator transition,
respectively, were studied numerically. Recently, the deep fragmentated regime at very weak
interactions and strong disorder has also been addressed in Refs. [245–247].

3.2 Framework of the analysis

3.2.1 Weakly-interacting Bose gases

Many-body Hamiltonian

We consider in this chapter d-dimensional ultracold Bose gases, with weak repulsive interac-
tions.6 These interactions are modeled by a contact interaction potential

Vint(r − r′) = gδ(r− r′), (3.1)

where g is a positive coupling constant. The many-body Hamiltonian describing the system
then takes the form [248,249]

Ĥ =

∫
dr

{
Ψ̂†(r)

[
−~

2∇2

2m
+ Vext(r)

]
Ψ̂(r) +

g

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
, (3.2)

where Ψ̂ and Ψ̂† are field operators which satisfy bosonic commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), [Ψ̂(r), Ψ̂(r′)] = 0, (3.3)

m is the mass of the particles, and Vext is an external potential acting on them.
The assumption of weak interactions implies

n1−2/d ≪ ~
2

mg
, (3.4)

where n is the d-dimensional gas density. In 3D, the coupling constant reads [32]

g =
4π~

2as

m
, (3.5)

where as is the 3D s-wave scattering length [111]. Hence, weak interactions are achieved for

na3
s ≪ 1 (3.6)

6Low-dimensional systems (d < 3) are achieved by using strongly confining potentials. Such potentials
create an energy splitting for “transverse” single-particle excitations (i.e. excitations out of the “longitudinal”
d-dimensional geometry) by a mere finite-size effect. If this splitting is larger than any relevant energy scale
of the d-dimensional problem, the particles are frozen into the transverse single-particle ground state, and the
system is effectively d-dimensional.
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in 3D. For lower-dimensional geometries, effective coupling constants are obtained from the 3D
case [250–252].

The density n is related to the quantum state |Ψ〉 under consideration through

n(r) = 〈Ψ|Ψ̂(r)†Ψ̂(r)|Ψ〉, (3.7)

and to the number N of atoms in the system via

N =

∫
drn(r). (3.8)

Criterion (3.4) is derived from the requirement that the interaction energy gn be much smaller
than the kinetic energy ~

2/2ma2 associated with the mean interparticle spacing a = n−1/d, so
that forming a crystal of regularly spaced particles costs the system more kinetic energy than
the interaction energy gained by such a localization. In that case, the correlations induced by
interactions between particles are assumed to be small or negligible. This distinguishes weakly-
interacting Bose gases from strongly correlated systems. Note that inequality (3.4) is satisfied
for dilute systems in 3D [253], and for high densities in 1D [251,254,255]. The 2D geometry is
the marginal case, and the criterion for weak interactions has no dependence, or only a weak
logarithmic dependence, on the density [252, 256].

What determines the properties of the Bose gas ?

We work here in the grand canonical ensemble, where the system is assumed to exchange both
energy and particles with a reservoir. Then, the system is described by the grand-canonical
Hamiltonian

K̂ = Ĥ − µN̂ =

∫
dr

{
Ψ̂†(r)

[
−~

2∇2

2m
+ Vext(r) − µ

]
Ψ̂(r) +

g

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
, (3.9)

where µ is the chemical potential of the Bose gas, and N̂ is the number operator

N̂ =

∫
drΨ̂†(r)Ψ̂(r). (3.10)

In the grand-canonical Hamiltonian, the number of particles is allowed to have statistical fluc-
tuations,7 but the average number of particles N = 〈Ψ|N̂ |Ψ〉 is imposed by µ.8 Physically,
the chemical potential corresponds to the energy gained by the system upon addition of one
particle. Hence, we can think of µ as a typical energy per particle, although it differs from the
average energy per particle because of interactions.

7Then, the density matrix of the system necessarily has entries corresponding to Fock states with various
numbers of particles. This is also the case when the quantum field Ψ̂ is assumed to be in a coherent state, as
in descriptions of a Bose condensate by a classical field with well-defined phase [257].

8The choice of the grand-canonical ensemble can be motivated on physical grounds, or by technical reasons.
The introduction of a chemical potential proves convenient when seeking a ground state of Ĥ , i.e. a quantum
state |Ψ〉 minimizing 〈Ψ|Ĥ |Ψ〉, under the constraint of a given average number of particles N = 〈Ψ|N̂ |Ψ〉. In
the grand-canonical ensemble, µ is a Lagrange multiplier used to solve this problem of constrained optimization
(see section 3.3.2). Such a Lagrange multiplier is systematically used in descriptions of the Bose gas where the
number of particles is not known a priori, such as the non-conserving Bogolyubov approach [258].
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In equation (3.9) we identify the various forms of energy whose interplay determines the
properties of the Bose gas: a term of kinetic energy, the external potential Vext, the chemical
potential µ, and an interaction term of magnitude gn. In this chapter, we study the ground
state of a weakly-interacting Bose gas in a 1D random potential, described below.

3.2.2 Trap geometry and disorder

For the discussion of the combined effect of disorder and weak interactions on a Bose gas, we
consider a 3D Bose gas confined to a box of length 2L in the longitudinal z-direction, in the
presence of a 1D random potential V (z). We assume that the gas is trapped in the transverse
directions by a two-dimensional harmonic potential V⊥ with homogeneous frequency ω⊥:

Vext(ρ, z) = V⊥(ρ) + V (z) (3.11)

V⊥(ρ) =
1

2
mω2

⊥ρ
2, (3.12)

where ρ =
√
x2 + y2 is the radial coordinate in the plane perpendicular to the z-axis. Note

that the random potential is translation-invariant in that transverse plane. When the harmonic
confinement is so tight that the energy splitting ~ω⊥ between the oscillator levels exceeds any
other energy scale in the problem (in particular the chemical potential µ), the particles are
frozen into the ground state of the radial oscillator, and the system is kinematically 1D. Then,
the analysis can be carried out in the framework of Eqs. (3.1) to (3.10) with d = 1 and the sole
random potential V (z). Conversely, if the trapping is shallow, transverse degrees of freedom
need to be considered explicitly.

The disorder is assumed to have a vanishing average (〈V 〉 = 0) and to be homogeneous
in the sense that its statistical properties are independent of absolute coordinates along z (see
section 1.3.1). We write

V (z) = VRv(z/σR), (3.13)

where |VR| =
√
〈V 〉 is the root-mean-square amplitude of the potential, and σR its correlation

length.9 As in chapter 2, the model of disorder is then characterized by a set of reduced n-point
correlation functions

〈v(u0)v(u1) · · · v(un−1)〉 = cn(u1 − u0, · · · , un−1 − u0) (3.14)

with, in particular, a reduced autocorrelation function

c2(u) = 〈v(u0)v(u0 + u)〉 (3.15)

which has amplitude c2(0) = 〈v2〉 = 1 at the origin, and typical width unity. The ratio of the
potential amplitude VR and the energy scale Eσ = ~

2/2mσ2
R

associated with the correlation
length appears either as

ǫR =
VR

Eσ
(3.16)

or as

αR =
1

ǫR
(3.17)

9A definition of the correlation length may depend on the precise model of disorder. See the discussion of
section 1.3.1.
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to comply with the notations of chapter 2 and Ref. [243]. Neither ǫR nor αR need be small.
As an illustration of our approach, we will consider a repulsive (“blue-detuned”) 1D speckle

potential, which in the present context means that v has the single-point probability distribution

P [v(u)] =

{
e−[v(u)+1] if v(u) ≥ −1
0 otherwise

. (3.18)

The reduced autocorrelation function assumes the form

c2(u) = sinc(u)2 ≡ sin(u)2

u2
, (3.19)

as for a speckle pattern created from a square diffusive plate with uniform illumination [31].

3.3 Delocalized BEC regime

The present chapter aims at developping a microscopic description of disordered, weakly-
interacting Bose gases, and at characterizing the density profile of the gas from the point
of view of localization. In this section we examine the case where the disorder is weaker than
the interactions. A priori, this means that the amplitude of the random potential should be
smaller than the chemical potential (VR ≪ µ). This turns out to be a sufficient criterion. A
more accurate criterion, which involves the detailed correlations of the random potential, is
derived in our analysis. In this regime of weak disorder, the Bose gas forms a delocalized Bose-
Einstein condensate, or a quasi-BEC in elongated geometries (see below). The density profile
of the Bose gas is described starting from the homogeneous case, where the random potential
is absent, and the weak potential is introduced as a perturbation.

This section is organized as follows. We briefly present the standard field theory and mean-
field description of weakly-interacting Bose gases. Then, a perturbation expansion is presented
which allows for a precise description of the ground-state density profile in (arbitrary) weak
potentials. Finally, these results are applied to the study a trapped Bose gas in correlated 1D
disorder. In this last part, in particular, we discuss the regime of parameters for which the
Bose gas indeed forms a single delocalized phase.

3.3.1 Quantum field for condensates and quasi-condensates

Condensates and quasi-condensates

Weakly-interacting 3D Bose gases undergo Bose-Einstein condensation at low temperatures,
when they reach a phase-space density nλ3

dB larger than one, where λdB = (~2/2πmkBT )1/2

is the thermal de Broglie wavelength of the atoms at temperature T . Following the crite-
rion of Penrose and Onsager [154, 155] and the subsequent work of C. N. Yang [156],10 con-
densation is characterized by off-diagonal long-range order in the one-body density matrix
ρ1(r, r

′) = 〈Ψ|Ψ̂†(r)Ψ̂(r′)|Ψ〉, which essentially means that ρ1(r, r
′) does not decay to zero for

large separation of r and r′ [259, 260].

10Yang showed the equivalence of the criterion of a large eigenvalue of the one-body density matrix ρ̂1 with
the presence of off-diagonal long-range order in ρ̂1 and higher-order density matrices.
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Under certain circumstances, which we touch upon below, the field operator can be written
Ψ̂(r) = Exp[iθ̂(r)]

√
n̂(r), where n̂ and θ̂ are density and phase operators, respectively. It is

known that in infinite homogeneous 1D and 2D systems, no condensate exists at any temper-
ature T > 0, due to long-wavelength phase fluctuations [261–263]. In 1D, the absence of true
condensate persists down to zero temperature, where a power-law decay of the one-body density
matrix ρ1 is found as a function of the separation |r − r′| [139, 147].11 Remarkably, however, a
weakly-interacting 1D Bose gas close to the ground state has reduced density fluctuations, as
in the case of BEC [251, 263, 264]. Therefore, such a 1D Bose gas with fluctuating phase and
reduced density fluctuations is called quasi-condensate, or quasi-BEC.12 It turns out that BEC
and quasi-BEC can be treated on the same footing (see Ref. [256] and below) and, as long as
one is interested in the properties of the gas density, as is the case here, the distinction between
BEC and quasi-BEC is not crucial. In the following, we shall not systematically distinguish
between the two.

Hamiltonian in the density-phase picture

In fact, the weak density fluctuations also allow for the above representation of the field operator
as

Ψ̂(r) = eiθ̂(r)
√
n̂(r), (3.20)

where

n̂(r) = Ψ̂†(r)Ψ̂(r). (3.21)

In these expressions, θ̂(r) and n̂(r) are Hermitian phase and density operators [256,264,269,270],
which satisfy the commutation relation13

[n̂(r), θ̂(r′)] = iδ(r− r′). (3.22)

Then, in terms of the phase and density operators, Hamiltonian (3.2) and the number operator
are rewritten as

Ĥ =

∫
dr

{
~

2

2m

[
(∇

√
n̂)2 +

√
n̂(∇θ̂)2

√
n̂+ i∇

√
n̂∇θ̂

√
n̂− i

√
n̂∇θ̂∇

√
n̂
]

+ Vext(r)n̂

}

+
g

2

∫
dr

√
n̂ e−iθ̂n̂ eiθ̂

√
n̂ (3.23)

11Systems with power-law decay of correlation functions are sometimes said to display quasi-long-range order.
12Phase fluctuations are important for elongated systems. In the presence of a trapping potential, a low-

energy (long-wavelength) cutoff is imposed on excitations carrying phase fluctuations [265]. This leads to the
formation of partial phase coherence across the system, characterized by a phase coherence-length. Depending
on the system size, a crossover is observed between a quasi-BEC regime, where the phase coherence-length is
smaller than the system size, and a BEC in the opposite case where the phase coherence-length exceeds the
system size [251, 252, 266–268], and the gas displays global phase coherence. In our model, the Bose gas is
expected to be qualitatively close to the one-dimensional quasi-BEC regime if the radial oscillator energy ~ω⊥

exceeds µ, and µ itself exceeds by far a finite-size cutoff of the form ~
2/mL2 [251].

13The definition of a phase operator with those desired properties is a standard problem of quantum optics
(see e.g. Refs. [271], [272] and references therein). For non-zero but small fluctuations of the associated density
operator n̂ around a large expectation value n, however, it is admitted that the phase and density operators are
well behaved and satisfy relation (3.22).
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and

N̂ =

∫
dr n̂(r). (3.24)

In this formulation, the Bogolyubov approach leading to Eq. (1.20) is generalized, and the
density operator n̂(r) is expanded as

n̂(r) = n(r) + δn̂(r), (3.25)

where n(r) is a classical field, and δn̂(r) is a small fluctuation field: ||δn̂(r)|| ≪ n(r). To zeroth
order in δn̂(r)/n(r), i.e. when the density fluctuations are completely neglected, the second line
of Eq. (3.23) simplifies, as the classical field n(r) commutes with the phase operator θ̂(r). Then,
the Hamiltonian contains only phase gradients ∇θ̂, and no reference to the phase θ̂ itself. This
observation holds in careful expansions of the Hamiltonian beyond the zeroth-order term,14 as
expected from the symmetry of the exact Hamiltonian. This fact is appreciated in the study of
low-dimensional systems, where phase fluctuations are important [256,264,269,270], and when
ones wants to avoid the symmetry-breaking point of view where the perturbation expansion of
the field operator is carried out around a classical field with well-defined phase.

Phase gradients, on the other hand, can also be expanded as

∇θ̂(r) = ∇θ(r) + [∇θ̂(r) −∇θ(r)], (3.26)

where ∇θ̂(r) −∇θ(r) is a small fluctuations field. It is readily checked that a non-zero phase
gradient ∇θ, which corresponds to a superfluid current associated with the motion of the con-
densate, only increases the kinetic energy of the quantum state. As we are generally interested
in the ground state and the fluctuations around the ground state of the Hamiltonian, we can
set ∇θ(r) = 0.

Form (3.23) proves to be a convenient starting point to derive equations for the density
n and the fluctuations δn̂ and ∇θ̂. Here we use the density-phase picture to derive a mean-
field equation for the ground-state density profile without resorting to the symmetry-breaking
approximation (1.20).

3.3.2 Mean-field description of the ground state

In the mean-field description of the ground state, the fluctuations ∇θ̂ and δn̂ are neglected
altogether. Then, the ground-state density profile n0(r) is found by minimizing the energy
functional

H [n] =

∫
dr
√
n(r)

{
−~

2∇2

2m
+ Vext(r) +

g

2
n(r)

}√
n(r) (3.27)

associated with Hamiltonian (3.23), under the constraint

N [n] =

∫
drn(r) = N. (3.28)

Here N [.] is a functional counting the particles, and N is the total number of atoms in the
system. The existence and unicity of such a ground-state solution in a harmonic trap has been
proved by Lieb et al. [273].

14See Eq. (40) of Ref. [256]. The interaction term on the second line of Eq. (3.23) generates infinities when

the operators are reordered so as to eliminate θ̂: Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) = n̂(r)2 − n̂(r)[Ψ̂(r), Ψ̂†(r)], where the
commutator evaluates to δ(0). The technicalities involved in dealing with this term are naturally avoided at
the level of the mean-field.
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Gross-Pitaevskii equation

It can be shown that the ground-state solution of (3.27) with constraint (3.28) should minimize

K[n, µ] =

∫
dr
√
n(r)

{
−~

2∇2

2m
+ Vext(r) +

g

2
n(r) − µ

}√
n(r) (3.29)

with respect to variations of n(r), i.e. satisfy

δK

δn

∣∣∣∣
(n0,µ)

= 0. (3.30)

Functional derivation of Eq. (3.29) with the condition δK/δn = 0 yields the Gross-Pitaevskii
equation (GPE) [274,275]

[
−~

2∇2

2m
+ Vext(r) + gn0(r) − µ

]√
n0(r) = 0. (3.31)

In this equation, the constraint of the number of bosons is replaced by the specification of µ.
For a each µ, several solutions n0(r) may coexist, and a ground state is found among those
solutions as a minimizer of H .15 We assume that such a ground state is unique. Then, n0(r)
and N =

∫
drn0(r) are uniquely defined by µ. Conversely, the number of atoms uniquely

defines the ground-state value of µ.
This approach completely determines the ground-state density profile of a weakly-interacting

Bose gas, at the level of the mean field.

Chemical potential and healing length

Differentiation of (3.27) shows that µ = dH [n
(N)
0 ]/dN , where H [n

(N)
0 ] is the energy of the mean-

field ground-state, calculated for N particles [253]. Therefore, µ is identified with a chemical
potential, i.e. the energy gained by the system upon addition of one particle.

It proves convenient to associate a length scale to the chemical potential. This is done by
defining the healing length

ξ =
~√
4mµ

(3.32)

such that

µ =
~

2

4mξ2
. (3.33)

15The minimization of Hamiltonian (3.27) under the constraint (3.28) is achieved by introducing the functional

L[n, λ] = H [n] − λ (N [n] −N) ,

where λ acts as a Lagrange multiplier. If n0 minimizes H under the constraintN [n0] = N , then n0 is to be found
among the stationary points of L, i.e. the points (n, λ) = (n0, µ) where δL/δn|(n0,µ) = 0 and ∂L/∂λ|(n0,µ) = 0.
Observing that L[n, µ] = K[n] + µN , where K[.] is the grand-canonical energy functional (3.29) and N the
number of atoms, it is established that the ground-state solution should satisfy δK/δn|(n0,µ) = 0. This, however,
provides only a necessary condition for n0 to be a ground state of H . Equation (3.31) may have several solutions
corresponding to non-ground-state stationary states of the GPE [276,277].
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The factor of four, which differs from definitions found elsewhere, is introduced for later con-
venience. The GPE then eventually rewrites

[
−2ξ2∇2 +

Vext(r)

µ
+
gn0(r)

µ
− 1

]√
n0(r) = 0. (3.34)

This expression allows for a discussion of the relative weights of the various forms of energy
(kinetic energy, external potential, mean-field interactions) which contribute to shaping the
ground-state density profile.

The ground-state solutions of the GPE are well known in standard geometries and po-
tentials (free space, harmonic traps, isolated delta impurities [278], 1D piece-wise continuous
potentials [277, 279],...). Those standard potentials which are relevant to our study are de-
tailed in appendix D. We now address the case of generic potentials of small amplitude, with
application to random potentials.

3.3.3 Perturbation of the density profile by a weak potential

Motivation

In the absence of interactions, an infinitesimal amount of disorder can have dramatic effects.
In particular, in 1D and 2D all single-particle states undergo Anderson localization irrespective
of their energy. We have seen in chapter 2 that the asymptotic decay of the single-particle
wave functions originates from a process which is independent of the absolute amplitude of
those wave functions, in agreement with the linearity of the Schrödinger equation. It was also
argued that conventional perturbation theory on the wave function was ascertained to run into
trouble. In the non-linear GPE, on the contrary, the absolute magnitude of the density enters
the balance of energies via the mean-field term gn0(r), and the homogeneous properties of the
potential can be used in a hand-waving argument to rule out localization of the density profile
on asymptotically long length scales.

The intuitive argument goes as follows. We consider the ground state of an interacting gas
in a random potential, in an infinite system. We choose two finite subsystems A and B such
that the variations of the random potential in B closely resemble those found in A, to the extent
at least that the average value of the potential is roughly the same in both subsystems. We
now assume ad absurdum that the density profile is localized on long length scales, and that we
can still pick A and B with closely similar potentials, with now significantly different average
densities, as shown in Fig. 3.2. In both subsystems, the density profile solves a local GPE which
involves the kinetic energy and the mean-field interaction energy of the Bose gas, the potential
and a chemical potential. Assuming, for simplicity, that the kinetic energy associated with the
modulations of the density profile is roughly the same in A and B, the typical kinetic energy,
interaction energy, and average potential amplitude sum up to different chemical potentials in
A and B, in contradiction with the equilibrium required in the ground state.

The above reasoning can be rephrased by saying that, in the interacting system, the mean-
field energy term balances out the chemical potential, the external potential and the kinetic
energy in the GPE. If the potential has homogeneous properties on long length scales, the
density cannot drop on those length scales. This applies to random and non-random potentials.
The argument does not rule out localization in the Schrödinger case, as the absolute amplitude
of the wave function plays no role in the Schrödinger equation. And neither does the argument
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A

B

g〈n〉B
g〈n〉A

Figure 3.2: Hand-waving argument for the absence of localization of the ground-state density
profile in the interacting Bose gas. The blue line (bottom) represents the external potential,
and the black line (top) the density profile. The potential variations in subsystems A and
B are closely similar. Significant differences between the average densities in A and B are
incompatible with a unique chemical potential, i.e. with equilibrium, because of the mean-field
interaction terms.

rule out strong modulations of the density of the interacting gas on short length scales if the
external potential is strong. Note also that the argument applies to the density profile, and not
to the correlation functions of the many-body system.

In the absence of localization, the density profile of the interacting gas in a weak potential
can be sought in a perturbation expansion around the homogeneous case (V = 0).

Assumptions

In this section we analyze the ground-state solutions of the Gross-Pitaevskii equation

[
−~

2∇2

2m
+ V (r) + gn0(r) − µ

]√
n0(r) = 0 (3.35)

when no trapping potential is present, and V (r) is a weak potential. This notion of weakness
is stated more precisely below. To begin with, we require the potential to be everywhere
much smaller than the chemical potential: |V (r)| ≪ µ. Calling VR a typical amplitude of the
potential, this condition reads

|VR| ≪ µ. (3.36)

We will see below that a less stringent criterion on the amplitude of the potential can be
derived.16 Without loss of generality, we assume that V has a vanishing spatial average:

〈V 〉 = 0. (3.37)

The potential V might be either deterministic or random, and mean values are here understood
as spatial averages. The spatial variations of the potential are characterized by a minimal length

16See the discussions following Eqs. (3.52) and (3.70).
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scale σR. If V is a random potential with homogeneous statistical properties,17 σR is chosen as
a typical width of the autocorrelation function C2(r) = 〈V (r′ + r)V (r)〉. If V is periodic, σR is
chosen as the smallest period of the d-dimensional lattice. In any case, σR serves as a scale for
the smallest spatial features of V .

In the absence of potential (VR = 0), the density profile is homogeneous:

n
(0)
0 (r) = 〈n(0)

0 〉 =
µ

g
. (3.38)

In the presence of a weak potential, the density profile n0 is only weakly perturbed around the
homogeneous solution n

(0)
0 and an exact solution of the GPE (3.35) can be sought in the form

of a perturbation series of
√
n0 in powers of VR/µ. The density profile then follows as

n0(r) = n
(0)
0 + n

(1)
0 (r) + n

(2)
0 (r) + · · · (3.39)

Details of the expansion can be found in appendix E and Ref. [242], where this approach was
developed. The main results are reviewed below.

Smoothing solution of the Gross-Pitaevskii equation

Most generally, the density profile can be cast into

n0(r) =
µ− Ṽ (r) + ∆

g
, (3.40)

where Ṽ is a fluctuation with zero average, i.e. such that

〈Ṽ 〉 = 0, (3.41)

and the quantity
∆ = g〈n0〉 − µ (3.42)

measures a deviation from the homogeneous equation of state (µ = g〈n0〉). Both Ṽ and ∆
vanish for VR = 0. In the presence of a weak potential, they remain small compared to µ and
admit expansions of the form

Ṽ (r) =
∑

i≥1

Ṽ (i)(r) (3.43)

∆ =
∑

i≥1

∆(i), (3.44)

where the superscripts indicate increasing powers of VR/µ. It turns out that ∆ vanishes at first
order:

∆(1) = 0. (3.45)

17Statistical properties of a random potential are said to be homogeneous when they do not depend on absolute
position in the system. Unless stated otherwise, the random potentials studied here always have homogeneous
statistical properties. Averages like 〈V 〉 or 〈V 2〉 and other correlation functions then coincide with spatial
averages.
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Therefore, the leading-order expansion of the density profile reads

n0(r) ≃
µ− Ṽ (1)(r)

g
. (3.46)

The first-order fluctuation term is found as

Ṽ (1)(r) =

∫
dr′ Gξ(r − r′)V (r′), (3.47)

where Gξ(r) is a Green function which depends on the healing length ξ and is most conveniently
written in Fourier space:18

Gξ(q) =
(2π)−d/2

1 + (|q|ξ)2
. (3.48)

The function Gξ acts as a positive convolution kernel with unit sum (
∫

drGξ(r) = 1) and width ξ
in coordinate space. Therefore, the amplitude and the shape of the density modulations depend
not only on the amplitude of the external potential, but also crucially on the competition of
two length scales, namely the scale of potential variations σR and the healing length ξ [242].

Thomas-Fermi limit - If ξ ≪ σR, the potential V varies on length scales much longer than
ξ, and we obtain

Ṽ (1)(r) ≃ V (r) (ξ ≪ σR) (3.49)

in Eq. (3.47). In other words, the density profile almost exactly follows the shape of the external
potential:

n0(r) ≃
µ− V (r)

g
(ξ ≪ σR). (3.50)

Expression (3.50) coincides with the result obtained from the Thomas-Fermi approximation,
which consists in discarding the Laplacian term in the GPE (3.35). As in the cases studied
in appendix D, the Thomas-Fermi approximation is valid in the regime where the mean-field
interaction gn0 ≃ µ is much larger than the kinetic energy Eσ associated with the variations of
the external potential:

Eσ =
~

2

2mσ2
R

. (3.51)

While this approximation generally applies irrespective of the potential strength, it is recovered
here as a limiting case for a weak potential.

Smoothing - If, on the other hand, we have ξ & σR (or, equivalently, µ . Eσ), the short-
wavelength variations of the external potential V (r) are smoothed out in the convolution prod-
uct (3.47). Turning to Fourier space, we obtain

Ṽ (1)(q) =
V (q)

1 + (|q|ξ)2
, (3.52)

18Throughout this thesis, the Fourier transform is defined with the normalization f(q) =
(2π)−d/2

∫
drf(r)e−iq.r, where d is the dimension of space. From now on, we add hats to the Fourier transforms

only when there is ambiguity between a function and its transform, as e.g. for adimensional arguments.
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which shows that the imprint of all spatial frequencies of V on the density profile is reduced,
but that Fourier components with q larger 1/ξ tend to be particularly suppressed. In the case
ξ & σR, this affects a considerable part of the spatial spectrum of V .

In general, the density thus follows the smoothed variations of the external potential V , and
Ṽ (1) is therefore called a smoothed potential [242]. An inspection of higher-order terms suggests
that such a smoothing occurs at all orders of the perturbation theory [see e.g. Eq. (E.19) in
appendix E].

Finally, let us emphasize the relevance of a description which goes beyond the Thomas-
Fermi approximation. Experiments now implement ordered and disordered potentials with
submicron length scales, which brings σR close to the healing ξ and invalidates the Thomas-
Fermi approximation. Chapter 4 will also provide an example where the precise description of
the ground state is required for the study of elementary excitations of the condensate.

Application to random potentials

In the context of the present chapter, we wish to understand the properties of n0 in the case
where V is a random potential, with a special focus on localization properties.

We now assume that V is a random potential with homogeneous statistical properties, an
amplitude VR such that

|VR| =
√

〈V 2〉, (3.53)

and an autocorrelation function

C2(r) = 〈V (r′)V (r′ + r)〉 = V 2
R c2(r/σR), (3.54)

where σR is the correlation length.

Smoothed potential - Applying the results of the previous paragraphs, we find that the
density profile is extended and that, up to first order in the disorder strength VR, it follows [see
Eqs. (3.46) and (3.47)]

n0(r) ≃
µ− Ṽ (1)(r)

g
(3.55)

where

Ṽ (1)(r) =

∫
dr′ Gξ(r− r′)V (r′) (3.56)

is a smoothed random potential with zero mean. Figure 3.3 displays the density profile and the
smoothed random potential computed numerically for a 1D Bose gas in a weak speckle potential.
The agreement of expression (3.55) with the exact density profile is excellent, especially when
compared to the Thomas-Fermi approximation. In Fig. 3.3, differences between the exact
density profile and the first-order approximation (3.55) are visible only in the deep dip close to
the origin, which is caused by a peak of large amplitude in the potential. The response of the
density profile to such large potential variations is captured by higher orders in the perturbation
expansion.
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Figure 3.3: Density profile of a 1D Bose gas placed in a speckle potential with autocorrelation
C2(z) = V 2

R
sinc(z/σR)2 with VR/µ = 0.1 and σR = ξ. The exact density profile (thick blue

line), obtained numerically by propagation in imaginary time, is compared to the first order
smoothing solution (thin red line) given by Eq. (3.56). Differences are visible only at the
location of the deepest density dip. The Thomas-Fermi approximation (green dashed line)
defined by Eq. (3.50) and the homogeneous density profile in the absence of disorder (brown
dotted line) are shown for comparison.

Autocorrelation and power-spectrum of the density modulations - Expressions
(3.55) and (3.56) allow an explicit calculation of the statistical properties of the modulations

of the density profile n0. By construction of the Ṽ (n) functions [see Eqs.(3.40) to (3.42)], and

in agreement with Eq. (3.56), we have 〈Ṽ (1)〉 = 0, that is, 〈n0〉 ≃ µ/g to first order in the
perturbation theory. To analyze the modulations of n0 around the average, we define the
autocorrelation function of the smoothed potential Ṽ (1) as

C̃
(1)
2 (r) = 〈Ṽ (1)(r′)Ṽ (1)(r′ + r)〉. (3.57)

In Fourier space, this autocorrelation function has a simple expression in terms of the autocor-
relation function C2 of the bare potential V :

C̃
(1)
2 (q) =

C2(q)

[1 + (|q|ξ)2]2
. (3.58)

By virtue of the Wiener-Khintchin theorem, the Fourier transforms in equality (3.58) are the

power spectra of V and Ṽ (1):

〈V (q)V (q′)∗〉 = (2π)d/2C2(q)δ(q′ − q) (3.59)

〈Ṽ (1)(q)Ṽ (1)(q′)∗〉 = (2π)d/2C̃
(1)
2 (q)δ(q′ − q). (3.60)

Amplitude of the density modulations - Integrating Eq. (3.58) over q, we obtain the
average quadratic amplitude (variance) of the density modulations

〈Ṽ (1)(r)2〉 = (2π)−d/2

∫
dq

C2(q)

[1 + (|q|ξ)2]2
. (3.61)
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This result can be written in a rescaled form with the help of the reduced correlator introduced
in Eq. (3.54):

C2(q) = V 2
R σ

d
Rĉ2(qσR). (3.62)

The root-mean-square amplitude of density modulations follows as

|Ṽ (1)
R | =

√
〈Ṽ (1)2〉 = |VR|

√
I2(ξ/σR) (3.63)

where, for all n ≥ 0, we define

In

(
ξ

σR

)
=

σd
R

(2π)d/2

∫
dq

ĉ2(qσR)

[1 + (|q|ξ)2]n
. (3.64)

Note that integral In depends only on the model of disorder and the ratio ξ/σR. For small or
large ξ/σR ratio, we obtain

In

(
ξ

σR

)
≃ 1 −

(
ξ

σR

)2
n

(2π)d/2

∫
dκ|κ|2ĉ2(κ) for ξ ≪ σR (3.65)

In

(
ξ

σR

)
≃

(
σR

ξ

)d
Γ(n− d/2)

2d/2Γ(n)
ĉ2(0) for σR ≪ ξ, n > d/2, (3.66)

where Γ is the gamma function.19

Since ĉ2 is a positive function [see Eqs. (3.59) and (3.62)], the functions defined in Eq. (3.64)
satisfy 0 < · · · ≤ In+1 ≤ In ≤ · · · ≤ I0. As c2 is normalized so that

I0 =
σd

R

(2π)d/2

∫
dq ĉ2(qσR) = c2(0) = 1, (3.67)

we obtain the following ordering, valid for all ξ/σR and in any dimension d:

0 < · · · ≤ I2 ≤ I1 ≤ 1. (3.68)

In particular, the inequality

I2

(
ξ

σR

)
≤ 1, (3.69)

combined with result (3.63), shows that the amplitude of the smoothed random potential is
always smaller than the amplitude of the bare potential V :

|Ṽ (1)
R | ≤ |VR|. (3.70)

This reduction of the modulations of the density profile originates from the smoothing effect
discussed above. The magnitude of the smoothing effect depends crucially on the competition

19The gamma function is defined by Γ(z) =
∫∞

0
tz−1e−t for complex numbers z with positive real part [280].

Here, the relevant values are obtained from the recursion relation Γ(z+1) = zΓ(z) with Γ(1/2) =
√
π, Γ(1) = 1.



98 Weakly-interacting Bose gas in a correlated 1D random potential

of the correlation length σR and the healing length ξ [242]. Limiting behaviors are obtained
from the expansions (3.65) and (3.66):

∣∣∣∣∣
Ṽ

(1)
R

VR

∣∣∣∣∣ ≃ 1 −
(
ξ

σR

)2

(2π)−d/2

∫
dκ|κ|2ĉ2(κ) for ξ ≪ σR (3.71)

∣∣∣∣∣
Ṽ

(1)
R

VR

∣∣∣∣∣ ≃
(
σR

ξ

)d/2√
2−d/2Γ(2 − d/2)ĉ2(0) for σR ≪ ξ. (3.72)

In the Thomas-Fermi limit ξ ≪ σR, the variations of the density profile have the same amplitude
as the random potential. For ξ & σR, however, they tend to be smoothed out. The example
in Fig. 3.3 shows that a significant reduction of the amplitude of the density modulations is
already obtained when ξ is of the order of σR.

Criterion for weak disorder - The density profile is weakly perturbed around the homo-
geneous solution µ/g as long as

|Ṽ (1)
R | ≪ µ. (3.73)

Note that this provides us with a criterion of validity for the perturbation expansion which is
somewhat looser than the naive assumption |VR| ≪ µ.20

In the opposite case where |Ṽ (1)
R | & µ, the density profile is no longer weakly perturbed

by the random potential. While it is reasonable to assume that the density profile retains
homogeneous statistics on length scales much larger than the correlation length (and that, in
this sense, the density profile is not asymptotically localized), large local fluctuations of the
random potential eventually cause the density to drop to zero in some regions of the system
and the gas to fragment into disconnected volumes.21

Leading-order deviation from the homogeneous equation of state

The variations Ṽ of the density profile are well captured by the smoothed potential at first
order in VR. The first correction to the homogeneous equation of state, on the other hand,
requires an expansion at second order, which is carried out in appendix E. The result reads

g〈n0〉 − µ ≃ ∆(2) (3.74)

with

∆(2) =
V 2

R
σd

R

2(2π)d/2µ

∫
dq

(|q|ξ)2

[1 + (|q|ξ)2]2
ĉ2(qσR) (3.75)

or, equivalently,

∆(2) =
V 2

R

2µ
[I1 − I2] . (3.76)

20The results found for the first couple of terms Ṽ (1) and Ṽ (2) [see Eq. (E.29 in appendix E] suggest that
smoothing indeed extends to all perturbation orders V (n). Therefore, criterion (3.73) probably holds beyond
the first-order approximation (3.55).

21Strictly speaking, there is always residual tunneling unless the potential takes on infinite values.
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With the ordering (3.68), we find

0 < ∆(2) ≤ V 2
R

2µ
. (3.77)

The first inequality is consistent with the fact that the chemical potential µ of weakly-repulsive
bosons in a potential with zero mean is smaller than the average mean-field energy g〈n0〉, as
argued in Ref. [129]:

µ < g〈n0〉. (3.78)

Note that these results are general, and V need not be random.22

Limiting cases - In the Thomas-Fermi limit ξ ≪ σR, the deviation ∆(2) behaves as

∆(2) ≃ V 2
R

2µ

(
ξ

σR

)2

(2π)−d/2

∫
dκ|κ|2ĉ2(κ) (ξ ≪ σR), (3.79)

so that

∆(2)/µ ∝ (VR/µ)2(ξ/σR)2 ≪ (VR/µ)2 ≪ 1. (3.80)

Let us now discuss the opposite limit when V is random, and C2(q) has a limit when q → 0.
In the regime σR ≪ ξ, we approach in principle the white-noise limit, where the correlation
length is set to zero: Cw.n.

2 (r) = Dδ(r). Starting from any model of disorder, this limit is
usually obtained by letting σR vanish while keeping the product V 2

R σ
d
R constant.23 At the end

of the process, the properties of the system are expected not to depend on the details of the
autocorrelation function originally used. Carried out at fixed µ and ξ, this procedure should
amount here to letting the ratio σR/ξ tend to zero at fixed V 2

R σ
d
R, and legitimize the replacement

of the rescaled power spectrum ĉ2 in Eqs. (3.62) and (3.75) by a constant: ĉ2(qσR) ≃ ĉ2(0).
In fact, the integrand dq(|q|ξ)2/ [1 + (|q|ξ)2]

2
in Eq. (3.75) scales as qd−3dq for high momenta

(q ≫ 1/ξ), and such a white-noise limit is correctly defined only for d = 1. In one dimension,
we then obtain

∆(2) ≃
√
πV 2

R
σR

4
√

2µξ
ĉ2(0) (σR ≪ ξ; d = 1), (3.81)

so that

∆(2)/µ ∝ (VR/µ)2(σR/ξ) ≪ (VR/µ)2 ≪ 1. (3.82)

For d ≥ 2, the limit σR → 0 cannot be taken in the correlator ĉ2 without causing an ultraviolet
divergence of the integral. This shows that in dimensions higher than one the exact result for
∆(2) depends on the detailed form of the autocorrelation function and the decay of ĉ2(κ) as a
function of κ.

Application to lattice and speckle potentials - In figure 3.4, expression (3.75) is com-
pared to exact numerical calculations of ∆ at various σR/ξ ratios, for a speckle random potential

22It might be worth pointing out that this result stands in contrast with the typical increase in chemical
potential caused by boundary effects (see appendix D).

23See the discussion preceding Eq. (2.45).
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Figure 3.4: Correction to the homogeneous equation of state for a 1D speckle potential with
auto-correlation function C2(z) = V 2

R
sinc(z/σR)2 and a 1D lattice V (z) = VR

√
2 cos(z/σR). The

analytical result for the leading-order correction ∆(2) [lines defined by Eq. (3.75)] is compared
to numerical calculations of ∆ [circles and triangles] for VR = 0.1µ. The calculations were
performed in a 1D box with periodic boundary conditions to avoid kinetic terms arising from
the boundaries.

and a monochromatic lattice in a 1D geometry. The reduced autocorrelation functions of the
speckle potential used here are

c2(u) = sinc(u)2 (3.83)

ĉ2(κ) =

√
π

2
(1 − |κ|/2)Θ(1− |κ|/2), (3.84)

where sinc(u) ≡ sin(u)/u and Θ is the Heaviside step function [see Eq. (2.125)]. The corre-
sponding deviation reads

∆(2) =
V 2

R

2µ

[
σR

2ξ
arctan

(
2ξ

σR

)
− σ2

R

4ξ2
ln

(
1 +

4ξ2

σ2
R

)]
. (3.85)

The lattice potential is defined as

V (z) =
√

2VR cos(z/σR), (3.86)

which translates into

c2(u) = cos(u) (3.87)

∆(2) =
V 2

R
(ξ/σR)2

4µ [1 + (ξ/σR)2]2
. (3.88)

As expected, the agreement is good for values of VR/µ as small as the one chosen in the figure.
We checked that the small discrepancy between ∆(2) and ∆ in the random case agrees well with
the contributions of order V 3

R (not detailed here), which are absent in a monochromatic lattice.
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3.3.4 Trapped Bose gas in one-dimensional disorder

We now consider the situation of section 3.2.2, where the bosons are confined to a box of size
2L along one direction, and trapped harmonically in the two-dimensional transverse plane.
A random potential V with amplitude VR and correlation length σR is added along the main
direction. The GPE then reads

[
−~

2∇2

2m
+

1

2
mω2

⊥ρ
2 + V (z) + gn0(ρ, z) − µ

]√
n0(ρ, z) = 0 (3.89)

where ρ is the radial coordinate in the transverse plane. We can now apply the results of the
preceding sections.

Assuming that the box size is large enough (~2/2mL2 ≪ µ, ~ω⊥) so that the boundaries of
the box play no role, the system can be considered homogeneous along the z-direction in the
absence of disorder24. Note that in this configuration, the smallest possible value of µ is the
ground-state energy ~ω⊥ of the 2D radial oscillator. We therefore introduce

µ′ = µ− ~ω⊥, (3.90)

which measures the chemical potential from the ground-state energy of the harmonic trap.

Tight harmonic trapping

For a tight harmonic trapping, i.e. µ′ ≪ ~ω⊥, the transverse motion of the atoms is frozen in
the radial oscillator ground-state. The density profile then separates in longitudinal and radial
components:

√
n0(ρ, z) = φ⊥(ρ)

√
n1D

0 (z), (3.91)

where n1D
0 (z) is the linear density along the z-axis, and φ⊥(ρ) is the normalized oscillator

ground-state wave function

φ⊥(ρ) =
e−ρ2/2a2

ho√
πaho

, (3.92)

with

aho =

√
~

mω⊥
. (3.93)

The radial wave function solves the Schrödinger equation of the 2D harmonic oscillator with
eigen-energy ~ω⊥: [

−~
2∇2

ρ

2m
+

1

2
mω2

⊥ρ
2 − ~ω⊥

]
φ⊥(ρ) = 0. (3.94)

The problem then reduces to a 1D Gross-Pitaevskii equation for the linear density

[
−~

2∂2
z

2m
+ V (z) + g1Dn

1D
0 (z) − µ′

]√
n1D

0 (z) = 0 (3.95)

24Standard results on the ground-state solution of the GPE in box potentials and harmonic traps are reviewed
in appendix D.
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where the effective 1D coupling constant g1D is obtained by integration over transverse degrees
of freedom in Eq. (3.27) or Eq. (3.29):

g1D = g

∫
dρ|φ⊥(ρ)|4 =

g

2πa2
ho

, (3.96)

that is,

g1D =
2~

2as

ma2
ho

, (3.97)

where as is the 3D scattering length. These expressions are valid provided that aho is still
large enough so that low-energy s-wave scattering theory applies (i.e. aho ≫ r0, where r0 is the
effective range of the true atom-atom interaction potential) and that aho ≫ as [250, 251].

For a weak potential such that VR ≪ µ′, the GPE (3.95) is solved with the approach of
section 3.3.3, and we obtain the longitudinal part of expression (3.91):

√
n1D

0 (z) ≃
√

µ′

g1D

[
1 − Ṽ (1)(z)

2µ′

]
(3.98)

where

Ṽ (1)(z) =

∫
dz′Gξ′(z − z′)V (z′) (3.99)

is a smoothed random potential with 1D smoothing kernel [242]

Gξ′(z) =
e−|z|/ξ′

2ξ′
(3.100)

and healing length

ξ′ =
~√

4mµ′ . (3.101)

Putting the radial and the longitudinal components together, we finally obtain

√
n0(ρ, z) ≃

√
2µ′e−ρ2/a2

ho

g

[
1 − Ṽ (1)(z)

2µ′

]
, (3.102)

where g is the 3D coupling constant.
The density profile is only weakly perturbed around the solution without disorder when

the root-mean-square amplitude |Ṽ (1)
R | of the smoothed potential Ṽ (1) is much smaller than µ′.

Using relation (3.63), this condition reads

µ′ ≫ |VR|
√
I2(ξ′/σR), (3.103)

where

I2

(
ξ′

σR

)
=

σR√
2π

∫
dq

ĉ2(qσR)

[1 + (qξ′)2]2
(3.104)

and ĉ2 is the Fourier transform of the reduced autocorrelation function of V .
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Loose harmonic trapping

Let us now consider the case of loose radial confinement: ~ω⊥ ≪ µ′. In this case, the offset
introduced by the ground-state energy ~ω⊥ need not be considered: µ′ ≃ µ. The condition of
loose radial confinement can then be written ξ ≪ aho. For V = 0, the density is invariant along
the z-direction, and the density profile obeys the radial GPE

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + gn0

0(ρ, z) − µ

]√
n0

0(ρ, z) = 0. (3.105)

As the mean-field interaction energy exceeds by far the level splitting of the harmonic oscillator,
the gas adopts a radial Thomas-Fermi profile, obtained by neglecting the kinetic term:

[
1

2
mω2

⊥ρ
2 + gn0

0(ρ, z) − µ

]√
n0

0(ρ, z) ≃ 0, (3.106)

so that

n0
0(ρ, z) ≃

{ µ
g

(1 − ρ2/R2
⊥) if ρ < R⊥

0 otherwise
, (3.107)

with

R⊥ =

√
2µ

mω2
⊥
. (3.108)

In the presence of the random potential V (z) with VR ≪ µ, the density profile and the chem-
ical potential are only weakly affected. Neglecting the radial kinetic energy in the equilibrium
equation for the gas is therefore still legitimate. The longitudinal kinetic energy associated
with the modulations of the density profile, however, depends on the detailed form of V , which
might vary on length scales smaller than ξ. We therefore write the GPE as

[
−~

2∂2
z

2m
+

1

2
mω2

⊥ρ
2 + V (z) + gn0(ρ, z) − µ

]√
n0(ρ, z) ≃ 0. (3.109)

For every ρ < R⊥, the z-dependence of the density profile is worked out with the technique of
section 3.3.3, and we obtain

n0(ρ, z) ≃
µ(ρ) − Ṽ (1)(ρ, z)

g
, (3.110)

where

µ(ρ) = µ− 1

2
mω2

⊥ρ
2 = µ

(
1 − ρ2

R2
⊥

)
. (3.111)

The smoothed random potential Ṽ (1) derives from the bare potential V via

Ṽ (1)(ρ, z) =

∫
dz Gξ(ρ)(z − z′)V (z′), (3.112)

where

Gξ(ρ)(z) =
e−|z|/ξ(ρ)

2ξ(ρ)
(3.113)

ξ(ρ) =
~√

4mµ(ρ)
. (3.114)
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The effective healing length ξ(ρ) increases from the center of trap, where it assumes the value
ξ(0) = ξ, to the edge of the Thomas-Fermi parabola. In the radial regions where the correlation

length σR of the potential is such that σR . ξ(ρ), the random potential Ṽ (1)(ρ, z) follows the
smoothed variations of V (z). The increase of ξ(ρ) from ρ = 0 to ρ = R⊥ means that the
smoothing effect becomes more important close to edge of the radial profile. The highest
absolute amplitude of the density modulation therefore occurs at the trap center (relative
amplitudes are discussed below).25 If σR ≪ ξ, the smoothing effect is considerable all over the
radial profile. If on the other hand we have ξ . σR, then the smoothing is reduced. In particular
when ξ ≪ aho . σR, result (3.110) turns into the expected Thomas-Fermi approximation
with respect to both the radial and the longitudinal components of the external potential:
gn0(ρ, z) ≃ µ−mω2

⊥ρ
2/2 − V (z).

For a weak random potential (VR ≪ µ), the typical amplitude of Ṽ (1)(ρ, z) is much smaller
than µ(ρ) on most of the radial profile. Expression (3.110) therefore expands as

√
n0(ρ, z) ≃

√
µ(ρ)

g

(
1 − Ṽ (1)(ρ, z)

2µ(ρ)

)
(3.115)

or, equivalently,

√
n0(ρ, z) ≃

√
µ(1 − ρ2/R2

⊥)

g

(
1 − Ṽ (1)(ρ, z)

2µ(ρ)

)
. (3.116)

Note the formal analogy of this expression with the pure 1D case (obtained by setting here
ρ = 0 and identifying g with the 1D coupling constant), and the similarity of the longitudinal
dependence with the tight-confinement result (3.102).

The density profile at given distance ρ of the z-axis is weakly perturbed by the random
potential if the root-mean-square amplitude |Ṽ (1)

R (ρ)| of the smoothed random potential is such
that

µ(ρ) ≫ |Ṽ (1)
R (ρ)|, (3.117)

where µ(ρ) = µ(1 − ρ2/R2
⊥). Adapting Eq. (3.63) as

|Ṽ (1)
R (ρ)| = |VR|

√
I2

[
ξ(ρ)

σR

]
(3.118)

and using the fact that ξ(ρ)2 = ξ2/(1 − ρ2/R2
⊥), we find that this condition rewrites

µ2(1 − ρ2/R2
⊥)2 ≫ |VR|2

σR√
2π

∫
dq

ĉ2(qσR)

[1 + (qξ)2/(1 − ρ2/R2
⊥)]

2 . (3.119)

25The formal divergence of ξ(ρ) when ρ approaches R⊥ can be disregarded as the description in terms of a
Thomas-Fermi profile breaks down anyway in the region where µ(ρ) becomes smaller than ~ω⊥ (i.e. when ξ(ρ)
becomes larger than aho). This region is very small as soon as loose trapping (ξ ≪ aho) is guaranteed. The
considerations developed within the radial domain of validity of the Thomas-Fermi approximation also show
that the largest absolute amplitude of the density modulations occurs at the trap center, while their relative
amplitude grows with the distance from the z-axis. Qualitatively, these results can be extrapolated to the edge
of the radial profile.
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Finally, we obtain the condition

µ2 ≫ |VR|2
σR√
2π

∫
dq

ĉ2(qσR)

[1 − ρ2/R2
⊥ + (qξ)2]

2 . (3.120)

As ĉ is a positive function, the right-hand-side grows with the distance ρ. In other words,
relative density modulations increase from the trap center to the edges of the radial profile and
the less stringent criterion on the potential strength is met at the trap center (ρ = 0).

If the potential is not weak enough, fragmentation enters the gas from the edges of the
radial Thomas-Fermi profile, and a complete disconnection under the influence of a potential
fluctuation is achieved when the density drops to zero on the z-axis. As in the pure 1D case,
we end up with the condition

µ≫ |VR|
√
I2(ξ/σR), (3.121)

with

I2

(
ξ

σR

)
=

σR√
2π

∫
dq

ĉ2(qσR)

[1 + (qξ)2]2
. (3.122)

If condition (3.121) is not satisfied, the Bose gas forms a fragmented BEC.

3.4 Lifshits glass regime

Let us now examine the case where interactions are vanishingly small. We assume that the
random potential has a lower bound Vmin = min(V ). Then, the single-particle spectrum is
also bounded below, and we assume that a single-particle ground state can be isolated. In the
absence of interactions, the bosons all populate this single-particle ground state.

The non-interacting limit of disordered bosons is often said to be pathological as the situa-
tion where a large number of bosons populates the sole single-particle ground state is unstable
with respect to the introduction of a finite repulsion between the particles. In turn, we show
here how the set of lowest-energy eigenstates of the disordered single-particle problem offers a
good basis to describe the redistribution of bosons as very weak interactions are turned on.

3.4.1 Non-interacting case: the Lifshits tail

The non-interacting system is described by the 1D single-particle Hamiltonian

ĥ = −~
2∇2

ρ

2m
− ~

2∂2
z

2m
+

1

2
mω2

⊥ρ
2 + V (z) (3.123)

which, given the cylindrical geometry, separates into radial and longitudinal components. In
the ground-state of the system, or for excitation energies which are much smaller than the
radial oscillator splitting ~ω⊥, the radial wave function is constrained to the harmonic oscillator
ground state (3.92). We are then left to study the 1D Schrödinger problem

[
− ~

2

2m

d2

dz2
+ V (z)

]
χν = Eνχν , (3.124)

where χν(z) accounts for the longitudinal motion of the atoms. The eigenstates of the 1D
disordered Schrödinger operator are generally all localized in the sense of Anderson, irrespective
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of their energy. However, it turns out that the processes which give rise to localization in the
random potential are of somewhat different nature in the high- and in the low-energy regimes.
In order to describe the low-energy eigenstates, let us therefore start by reviewing some ways
to characterize localization.

Measures of localization

Localization is characterized by properties of both the wave functions χν and the eigenvalues Eν .

Localization length - The eigenfunctions of the disordered 1D Schrödinger operator undergo
Anderson localization, which means that they decay exponentially with the distance from a
center (randomly) located somewhere in the system. In infinite systems, the landmark of
Anderson-localized wave functions is therefore a finite localization length. This characteristic
length scale is defined as the inverse of the Lyapunov exponent γ, which measures the rate of
exponential decay of χν(z) at asymptotically large distances:

γ = − lim
|z|→∞

〈ln ‖χ(z)‖〉
|z| . (3.125)

In this expression, 〈.〉 denotes statistical averaging, and ‖.‖ stands for a suitably chosen norm.26

The Lyapunov exponent is a non-random quantity which depends on the statisitical properties
of the random potential, as well as the energy E of the particle (see chapter 2).

Participation length - Strictly speaking, a positive Lyapunov exponent is all is needed
to define Anderson-localized eigenfunctions. Note, however, that the Lyapunov exponent only
captures exponential decay and asymptotic properties of the wave functions. As an alternative
measure of localization, it is possible to introduce the participation length

Pν =
1∫

dz|χν(z)|4
(3.126)

which, for an eigenfunction χν normalized to unity, estimates the size of the region where
the amplitude of χν is significant. As the weighting of the integral favors high densities, the
participation length is related to the typical width of a localized state around its center, rather
than the length scales of decay in the wings. As Pν measures the typical width of a state, it
decreases for localization on shorter length scales.

The participation length defined in Eq. (3.126) is often divided by the system size (in
finite systems). In that case it is called participation ratio. The participation ratio and the
participation length are often used in numerical studies where their scaling with the system size
is analyzed to locate possible delocalization transitions or estimate the localization length of
localized states [81]. A participation ratio which remains close to one despite of the scaling of the
system size indicates the possibility of a delocalized state. Conversely, the participation ratio
of a localized state starts dropping as soon as the system size exceeds the localization length.
In the Lifshits tail studied below, however, the participation length and the localization length
are seen to have different meanings.

26See e.g. definition (2.15) for excitations of positive energy.
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Spectral properties - From the point of view of the eigenvalues Eν , localization manifests
itself in a dense pure-point spectrum of eigenvalues Eν . The pure-point nature of the spectrum
can be associated with the fact that the χν are square-integrable bound states. The dense
character of the spectrum means that, with probability one, the vicinity of a given point E of
the spectrum contains either zero or an infinity of eigenvalues [86]. It is possible to define the
density of states (DoS) D(E), which counts the number dN of eigenvalues in an interval dE
around the energy E, per unit of system length. Most importantly, as the Lyapunov exponent,
the density of states is a self-averaging quantity in the case of homogeneous disorder. In other
words, the calculation of D in a system whose size tends to infinity and statistical averaging
yield the same non-random limit [86, 281]. Similarly, the cumulative (or integrated) density of
states (CDoS)

N (E) =

∫ E

−∞
dE ′D(E ′), (3.127)

which counts the number of eigenvalues up to energy E (per unit length), converges to a non-
random limit for large system sizes. In the following, we denote by D2L (N2L) the DoS (CDoS)
integrated on the length 2L of the box which confines our system, and assume that 2L is large
enough so that D2L/2L (N2L/2L) is representative of D (N ). Then, both D2L and N2L are
bound to grow linearly with L.

The reference cumulative density for the 1D Schrödinger operator without disorder is

N0(E) =

{
1
π

√
2mE/~2 if E ≥ 0

0 otherwise
, (3.128)

and the density is obtained as D0(E) = dN0(E)/dE. In the presence of disorder, the leading
high-energy dependence of the cumulative density of states generally retains the form of the
free particle case [197], that is

N (E) ∼ 1

π

√
2mE/~2 [E → +∞]. (3.129)

In contrast, the low-energy behavior is strongly affected by the presence of disorder.

The Lifshits tail

Particles of moderate and high energy E localize because of repeated scattering events on the
random potential. Let us take the average value of the potential as zero-energy reference. Then,
particles with positive energy tend to accumulate phase, and the destructive interference caused
by the scattering events eventually leads to an exponential decay of the wave function on rather
long length scales (see chapter 2). Therefore, those localized states are best described by the
asymptotic properties captured in the Lyapunov exponent (or inverse localization length).

Eigenstates with negative energy, on the other hand, tend to be trapped by fluctuations
of the random potential. They decay exponentially because they lack, on average, the kinetic
energy to escape potential wells created by those fluctuations.27 In particular, if the potential

27In the case of a perfect lattice, tunneling creates extended Bloch states even for E = Vmin i.e. at the
band bottom. While the states at the band bottom are extended, they nevertheless essentially grow and decay
exponentially between two adjacent sites of the lattice. This reflects the fact that their energy lies below the



108 Weakly-interacting Bose gas in a correlated 1D random potential

-300 -200 -100 0 100 200 300

0

2

4

6

8

-30-20-10 0 10 20 30
-1.0

-0.5

0.0

0.5

1.0

V
(z

)/
V

R

z/σR

Figure 3.5: Lifshits state in a 1D speckle potential. The eigenstate represented in light red line
(indicated by an arrow) on top of a random potential landscape is the single-particle ground
state computed in a box of size roughly 105σR, for a realization of a speckle potential (solid
blue line) such that VR/Eσ = 1. This state has eigen-energy E close to the potential minimum
Vmin = −VR (E/VR + 1 ≃ 0.07), and is created by a rare event where the random potential
assumes nearly its minimum value (within 10% of VR) on twelve correlation lengths. This was
checked to be the longest such span in the sample. We also checked that the probability of such
spans of size w decreases exponentially with w. The inset shows a magnification of the vicinity
of the localization center, around which the z-axis is centered artificially. The eigenfunction
is normalized arbitrarily and placed so that the values in the far wings correspond to the
eigenvalue E on the potential scale.

is bounded below by some constant

Vmin = min(V ), (3.130)

then the spectrum is also bounded below by Vmin, and the eigenstates close the spectrum
boundary are created by rare fluctuations of the random potential where V assumes values
close to Vmin on a large region of space, bordered by less exceptional fluctuations. Figure 3.5
shows the occurence of such a rare fluctuation in a blue-detuned speckle potential and the
subsequent creation of a deep eigenstate. If we call w the width of such a potential well,
Ew = ~

2/2mw2 the associated kinetic energy, and if we assume that the walls of the well are
steep enough, the energy of the lowest trapped state is E ≃ Vmin + Ew. Statistically, or in
an infinite system, it is always possible to find a fluctuation with larger w and, hence, states
closer to Vmin. The probability of finding such a fluctuation, however, decreases exponentially
with the width w =

√
~2/2mEw of the well.28 Therefore, the probability of finding states up

to energy E = Vmin + Ew is argued to scale as exp(−C ′′/
√
E − Vmin), where C ′′ is a positive

average of the potential. In a sinusoidal lattice with amplitude V0 and period λ, the effect is pronounced if V0

and λ are large (V0 ≫ ~
2/2mλ2). Because of the perfect order in the lattice, the sequence of growth and decay

does not lead to an asymptotic decay. Hence, and in order to resort to a physical picture, the localization of
low-energy eigenstates in a random potential might be attributed to the absence of resonant tunneling [197].

28In higher dimensions, this probability decreases exponentially with the volume (~2/2mEw)d/2.
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Figure 3.6: Cumulative density of state N (E) of Schrödinger particles in a speckle potential
with autocorrelation function C2(z) = V 2

R sinc(z/σR)2, bounded below by Vmin = −VR, and such
that VR/Eσ = 1. The numerical data (thick blue line) was obtained by direct diagonalization
and averaging over 100 samples of size roughly 103σR. The dashed purple line is a fit by a
stretched exponential of the form (3.132) with β = 1/2, and the brown dotted line represents
the free-particle cumulative density of state (3.128).

constant, in 1D. According to this qualitative argument, the cumulative density of state should
take the form of a stretched exponential

N (E) ∼ C ′e−C′′/
√

E−Vmin [E → V +
min], (3.131)

with constant C ′ and C ′′, when E approaches Vmin from above. This form of the cumulative
density of states in disordered systems was first proposed and studied by I.M. Lifshits, and is
therefore called the Lifshits tail of the spectrum [282, 283]. Eigenstates which belong to the
Lifshits tail are termed Lifshits states. Figure 3.6 displays the cumulative density of states
computed for a 1D speckle potential. The CDoS assumes a form compatible with a stretched
exponential at low energy,29 and crosses over to the free-particle limit (3.129) at high energy.

Interestingly, the precise form of the stretched exponential generally depends on the statis-
tical properties of the random potential [197,281]. For simplicity, and without loss of generality
in the ensuing discussion of the very-weakly-interacting many-body problem, we assume that
the cumulative density of states near the bottom of the spectrum takes the form

N (E) ∼ C ′e
−c

“

VR
E−Vmin

”β

, [E → V +
min] (3.132)

with β > 0. We have here introduced the typical amplitude VR of the random potential, which
is assumed to be positive. In the case of a blue-detuned speckle potential, we have Vmin = −VR

owing to the exponential single-point probability distribution (3.18). Numerical calculations
performed for such a speckle potential show a reasonable agreement with law (3.132).

29We briefly discuss this point in appendix F. A rigorous proof lies beyond the scope of our study.
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Localization and participation lengths

For single particles in standard models of disorder, the strength of localization increases with
decreasing energy.30 The Lifshits states at the bottom of the spectrum tunnel across a potential
landscape of average height −Vmin. Hence, those states decay asymptotically with a Lyapunov
exponent of the order of

√
−2mVmin/~2. As soon as the system is large enough, i.e. such that

−Vmin ≫ EL = ~
2/2mL2, the tails of the Lifshits states decay on length scales much shorter

than the system size. For a correlated speckle potential, we find localization lengths of the
order of

√
~2/2mVR = σR

√
Eσ/VR at the bottom of the spectrum, that is, a few correlation

lengths for VR/Eσ of the order of one.31

The typical size of the localized states around their localization center is measured by the
participation length P . In every energy interval, P assumes a whole distribution of values,
corresponding to different local configurations of the potentials which give rise to eigenstates in
that interval. We denote by P̄ (E) the average of the distribution of P at energy E. Figure 3.7
shows the probability distribution of P obtained for a speckle potential. The average participa-
tion length P̄ (E) is seen to decrease from the high-energy region of the spectrum to the regime
of negative energies. Deep in the Lifshits tail, the average participation ratio increases again
due to the growing size of the potential wells which support the states of lowest energy. This
regrowth, however, appears significant only in a region very close to the lower boundary of the
spectrum. As shown in Fig. 3.7, the regime of intermediate negative energies is characterized
by an almost constant average participation length of a few correlation lengths.

Low-energy eigenstates in a system of finite but large size

As the deepest states in the Lifshits tail are created only by very rare events in the random
potential, let us now examine the relevant features which characterize the eigenstates of lowest-
energy for a typical realization of the random potential in a system of finite but large size.

Figure 3.8 shows the results obtained for such a realization of a speckle potential in a box
of size 2L. Note that the ratio of L and σR chosen in this example corresponds to realistic
experimental conditions [26, 29, 31, 171, 172]. The reference energy EL = ~

2/2mL2 chosen here
corresponds roughly to the low-energy cutoff for longitudinal single-particle excitations in the
absence of disorder.

The main graph in Fig. 3.8(a) represents the number N2L(E) of eigenstates up to energy E,
and shows that the cumulative density of states takes the form of a Lifshits tail at low energy,
whereas it approaches the free-particle expression for high energies. The participation ratio
displayed in the inset fluctuates around the average value shown in Fig. 3.7, and globally
decreases with decreasing energy, due to stronger localization. Because of the finite size of the
sample, no eigenstates are found arbitrarily close to the bottom of the spectrum (the ground
state has here an energy around −Vmin/2), as the necessary fluctuations of the random potential
have an exponentially small probability to occur in a single sample. Accordingly, no regrowth

30This statement holds for white-noise potentials, and the speckle potential examined here. A very different
behavior may be observed with quasi-particles in an interacting system, such as the Bogoyubov quasi-particles
studied in chapter 4.

31The estimate σR

√
Eσ/VR for the limiting value of the localization length was checked to be accurate within

10% in numerical calculations for VR/Eσ = 0.1, 1, 10. This confirms the assumption that the dominant mecha-
nism in the localization of the eigenstates of lowest energy is decay through tunneling (trapping). Interference
effects are expected to produce only marginal corrections at the bottom of the spectrum.
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Figure 3.7: Distribution of participation lengths P as a function of the single-particle energy E
in a speckle potential with VR/Eσ = 1. The solid curves represent the average participation
length P̄ (E) obtained by direct diagonalization (purple: 2L/σR = 104; blue: additional data
for 2L/σR = 105). The data was averaged over spectral intervals of width 0.025VR and over 500
to 5000 realizations of the potential depending on the system size. The background color
indicates the probability density of P , normalized to the maximum in each energy interval
(white: zero; red: one). The minimum participation length appears as a dotted line.

of the participation length is observed, and the eigenstates of lowest energy are characterized
by a small, almost constant participation length P (E) of a few correlation lengths (P (E) ≪ L).

Figure 3.8(b) shows the wave functions χ0, χ1, . . . of the ground state and the first few
excited states, indexed in order of increasing energy. These states are all strongly localized and
have a typical size of a few correlation lengths, in agreement with the computed participation
ratios. Most importantly, they appear to be distributed randomly in the box, and hardly
overlap due to the (very fast) decay of their wings on the length scale of a few correlation
lengths.

3.4.2 Lifshits regime

We now address the regime of finite but very weak interactions. The exact ground state of
the interacting system is delicate to derive. However, when the chemical potential µ lies in the
Lifshits tail of the longitudinal single-particle spectrum, the Lifshits states χν offer a convenient
basis to work with. As these states hardly overlap, they can be regarded as trapping microsites,
populated by a given number of bosons whose longitudinal motion is frozen to χν . This picture
is discussed below from a many-body point of view. We then derive equations for the associated
mean-field density profile.

Many-body description

The solutions {χν , ν ∈ N} of the Schrödinger equation (3.124) form a complete set which can
be used to describe the longitudinal distribution of the atoms. When the chemical potential of
the interacting Bose gas lies in the Lifshits tail of the single-particle spectrum, the atoms lack
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Figure 3.8: Low-energy single-particle states in a typical realization of a speckle random poten-
tial. The correlation length is here σR = 2×10−3L, where L is half the box size. The amplitude
of the disorder is VR = 104EL, with EL = ~

2/2mL2 (ǫR = 0.04, αR = 25). (a) Integrated cumu-
lative density of states N2L (red solid line) crossing over from a stretched exponential (black
solid line) to the free-particle expression (blue dotted line) with increasing energy. Inset: par-
ticipation length normalized by the system size. (b) Wave functions of the first few low-energy
Lifshits states.

energy to populate high-energy single-particle orbitals. Hence, their longitudinal distribution
can be expanded on the set of low-lying Lifshits states. We show here that the set of Lifshits
states indeed offers a convenient representation of the interacting many-body states of the Bose
gas.

The Lifshits states χν are strongly localized eigenstates of the single-particle problem. Their
wave functions decay exponentially beyond a few correlation length from the localization center.
Strictly speaking, we may call microsite ν the location of the corresponding χν or the “central
part” of the wave function χν . In Fig. 3.8(b), the microsites correspond to the visible part
of the wave functions χν .

32 The difference only lies in the tails of the Lifshits states, which
fall off exponentially fast. In the following description of the very-weakly-interacting Bose gas,
however, we shall completely neglect the role of the tails of the Lifshits states. Then, Lifshits
states and microsites can be identified.

When the chemical potential lies deep in the Lifshits tail of the spectrum, only a few
distant Lifshits states are populated (see below). Then, interaction-induced couplings between
the microsites can be neglected, and the Lifshits states can be regarded as trapping microsites

32This definition is, of course, only qualitative. For a rigorous analysis, e.g. in terms of coupled Josephson
junctions, the microsites wave functions should be chosen as an orthogonal set.
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with on-site interaction only.
An important question is to know how the bosons populate the various microsites. In the

presence of interactions, we expect that mean-field energy shifts will bring distant microsites to
resonance, and it is natural to ask whether the best approximate single-particle basis consists
of linear combinations of the Lifshits states, or if the bosons form number states localized on
individual microsites.

If the overlap (coupling) of the Lifshits states with the surrounding microsites is not com-
pletely neglected, the ground state and dynamics of the interacting bosons populating the
microsites can be described by the physics of Josephson junctions [111, 284–288]. Such an
analysis shows that, in the regime where the on-site mean-field interaction energy (also called
charging energy Ec) exceeds the coupling energy (often labelled EJ), the system enters a Fock
regime, where the fluctuations of the number of particles on each site are suppressed [287].
In that case, the relative phase between sites is undefined. One might say that phase-locking
mechanisms between the sites vanish along with the amplitude of the couplings.

Here, we neglect couplings between microsites. Then, each microsite ν contains exactly Nν

bosons. These bosons interact weakly and occupy the same ground-state radial Hartree-Fock
orbital φν(ρ). The corresponding N -body states take the form

|Ψ〉 =
∏

ν

1√
Nν !

(b†ν)
Nν |0〉, (3.133)

where |0〉 is the vacuum, the occupation numbers Nν sum up to N ,
∑

ν

Nν = N, (3.134)

and b†ν is the bosonic creation operator in state φν(ρ)χν(z),

b†ν =

∫
dρ

∫
dz φν(ρ)χν(z)Ψ̂

†(ρ, z). (3.135)

Each microsite with large Nν contains a BEC. The entire system, however, is not phase-coherent
because of the fragmentation along the z-axis [111].

Ground-state density

The energy of state (3.133) is evaluated from 〈Ψ|Ĥ|Ψ〉, where Ĥ is the many-body Hamiltonian

Ĥ =

∫
dr

{
Ψ̂†(r)

[
−~

2∇2

2m
+ Vext(r)

]
Ψ̂(r) +

g

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
. (3.136)

Taking advantage of the fact that the χν form an orthonormalized set of functions which solve
[
− ~

2

2m

d2

dz2
+ V (z)

]
χν = Eνχν , (3.137)

we expand the Hamiltonian as

H =
∑

ν

∫
dρ

{
Nνφ

∗
ν(ρ)

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + Eν

]
φν(ρ) +

gν
2D

2
Nν(Nν − 1)|φν(ρ)|4

}

+2
∑

ν 6=ν′

∫
dρ

{
g

2

(∫
dz|χν(z)|2|χν′(z)|2

)
NνNν′ |φν(ρ)|2|φν′(ρ)|2

}
, (3.138)
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where gν
2D is an effective on-site coupling constant, defined as

gν
2D = g

∫
dz|χν(z)|4 =

g

Pν
. (3.139)

In this expression, Pν is the participation length of eigenstate ν. An effective low-energy
Hamiltonian is derived by restricting the expansion over microsites to the lowest Lifshits states
χν . As those low-lying states have a negligible overlap, characterized by

√
PνPν′

∫
dz|χν(z)|2|χν′(z)|2 ≪ 1 for ν 6= ν ′, (3.140)

the second line of expression (3.138) can be neglected. We finally obtain

H ≃
∑

ν

∫
dρ

{
Nνφ

∗
ν(ρ)

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + Eν

]
φν(ρ) +

gν
2D

2
N2

ν |φν(ρ)|4
}
, (3.141)

where, assuming a large occupation of the microsites, Nν(Nν − 1) is approximated by N2
ν .

To find the ground-state occupation numbers Nν and wave functions φν , the energy H is
minimized under the constraint of a total number of bosons N =

∑
ν Nν . As in section 3.3.2, the

constraint is embedded by using a Lagrange multiplier in the form of the chemical potential µ.
Rather than working with the two degrees of freedom Nν and φν on each microsite, let us
introduce the radial densities

n2D
ν (ρ) = Nν |φν(ρ)|2. (3.142)

We can, of course, restrain ourselves to positive, real-valued φν(ρ), as phase gradients along ρ
would introduce kinetic energy. Then, the ground state is found among the stationary points
of

L[{n2D
ν }, λ] = H [{n2D

ν }] − λ(N [{n2D
ν }] −N) (3.143)

with respect to {n2D
ν } and λ. Here, the energy and atom-number functionals H [.] and N [.] are

defined as

H [{n2D
ν }] =

∑

ν

∫
dρ

{√
n2D

ν (ρ)

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + Eν

]√
n2D

ν (ρ) +
gν
2D

2
n2D

ν (ρ)
2
}

(3.144)

and

N [{n2D
ν }] =

∑

ν

∫
dρn2D

ν (ρ). (3.145)

Evaluating the functional derivatives of Eq. (3.143), and imposing δL/δn2D
ν |(n2D

ν ,λ) = 0, we find
a set of Gross-Pitaevskii equations for the radial profiles:

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + gν

2Dn
2D
ν (ρ) + Eν − µ

]√
n2D

ν (ρ) = 0. (3.146)

Solving the radial GPEs in each microsite for the same chemical potential µ gives access to the
2D densities n2D

ν (ρ), the microsite populations

Nν =

∫
dρn2D

ν (ρ), (3.147)
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and the normalized wave functions

φν(ρ) =

√
n2D

ν (ρ)

Nν
for Nν > 0. (3.148)

In Eq. (3.146), the quantity µ − Eν plays the role of an effective on-site chemical potential,
which determines the level of filling of the microsites. Atoms populate microsite ν under the
condition

µ′ − Eν = µ− ~ω⊥ −Eν > 0, (3.149)

where ~ω⊥ is the ground state energy of the radial oscillator. Note also that, in general, the
above procedure does not yield integer populations Nν , as imposed in the Fock state (3.133).
For large-enough fillings Nν , however, the difference of ground-state energy, microsite popula-
tions and radial wave functions introduced by the fact that these fillings should be integers is
negligible.33 For increasing µ′−Eν , the radial profile n2D

ν (ρ) continuously turns from a Gaussian
(µ′ − Eν ≪ ~ω⊥) into a Thomas-Fermi inverted parabola (µ′ − Eν ≫ ~ω⊥).

3.4.3 Domain of validity

The description of the system in terms of Lifshits states is based on a few assumptions. Let
us recapitulate them here. First of all, the atoms populate micro-sites centered at the location
of the lowest-lying Lifshits states χν . Then, the longitudinal motion of the atoms in each of
these trapping sites is assumed to be frozen in the state χν(z). Finally, the overlap of the
Lifshits state is small enough so that interactions can be considered local i.e. restricted to the
atoms within the individual microsites. Let us now discuss the conditions under which these
assumptions are expected to be appropriate.

As explained above, the location of the microsites is robust against the presence of interac-
tions. As the Lifshits states originate from energetically favorable fluctuations of the potential,
it remains advantageous to distribute the atoms among those locations in the first place. Since
the shape and position of the Lifshits states is determined by important local fluctuations of the
potential, and the Lifshits states are strongly localized, they are immune to the particles placed
elsewhere in the system. This justifies the use of the Lifshits states as a basis of microsites. As
mean-field interactions increase on a given site, either because particles are added or because
interactions are turned on, one might expect the density profile to buldge. This, in particular,
might be the case in the radial direction, if the trapping is very loose (µ′ −Eν & ~ω⊥). Before
the cloud located on a microsite starts buldging in the longitudinal direction, however, it will
become favorable to populate another Lifshits state, possibly located far away in the system,
and very close in energy if the system is large enough. The relevant energy scales for such

33From a purely technical point of view, note that it is not necessary to start from a Fock state in the first
place to derive the mean-field equations (3.146). As the eigenstates χν form a complete basis, the field operator
can be written Ψ̂(ρ, z) =

∑
ν χν(z)Ψ̂ν(ρ). In the low-energy Hamiltonian, the sum runs only over the lowest

Lifshits states, whose spatial overlap can neglected, so that

Ĥ ≃
∑

ν

∫
dρ

{
Ψ̂†

ν(ρ)

[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 + Eν

]
Ψ̂ν(ρ) +

gν
2D

2
Ψ̂†

ν(ρ)Ψ̂†
ν(ρ)Ψ̂ν(ρ)Ψ̂ν(ρ)

}
.

Then, replacing the field operators Ψ̂†
ν(ρ) by a classical field

√
n2D

ν (ρ) directly leads to expression (3.144).
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a redistribution are likely to be the energy of the first longitudinal single-particle excitation
in the potential well associated with a given Lifshits state, and the energy splitting between
this Lifshits state and another distant one. For a large system and weak interactions, it is
reasonable to assume that the particles distribute among microsites whose longitudinal shape
remains unaffected.

In such a picture, a breakdown of the description in terms of Lifshits states occurs primar-
ily when atoms start populating nearby sites whose overlap cannot be neglected. As filling
microsite ν requires inequality (3.149) to hold, the number of populated microsite is directly
controled by the chemical potential. Precisely, the number of Lifshits states which are popu-
lated in the box of size 2L is N2L(µ′). This number should be smaller than the index νmax

2L of
the highest Lifshits state such that all lower Lifshits states hardly overlap:

N2L(µ′) ≤ νmax
2L . (3.150)

If the tails of the χν are neglected, νmax
2L should roughly be equal to the system size over the

typical participation length in the Lifshits tail. A precise definition of νmax
2L , based e.g. on the

evaluation of terms such as the left-hand-side of (3.140), might involve another characteris-
tic length scale in the Lifshits tail. In any case, both N2L and the index νmax

2L derive from
the properties of the single-particle problem, and grow linearly with the system size for large
enough L.34 This allows for the formulation of a criterion of validity which is independent of
the system size, as shown below.

In general, N2L(E) and νmax
2L have complex dependencies on the single-particle energy E,

the potential amplitude VR, the correlation length σR, and the model of disorder. General
properties can nevertheless be discussed on the basis of a rescaled form of the single-particle
problem (3.124): [

−αR

d2

du2
+ v(u)

]
ϕν(u) =

Eν

VR

ϕν(u), (3.151)

where

u = z/σR (3.152)

v(u) = V (z)/VR (3.153)

ϕν(u) =
√
σR χν(z) (3.154)

and

αR =
Eσ

VR

=
~

2

2mσ2
R
VR

. (3.155)

For L ≫ σR, the boundaries on u play no role, and the properties of eigenvalues and eigen-
functions are seen to depend only on the parameter αR after renormalization of energies and
lengths. As N2L(E) and νmax

2L become extensive in this limit, we can write

N2L(E) =
2L

σR

ζ(αR, E/VR) (3.156)

νmax
2L =

2L

σR

η(αR), (3.157)

34Recall that N2L(E)/2L converges to the non-random limit N (E). For large enough L, doubling the system
size amounts to creating a copy with identical statistical properties.
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where ζ and η are functions which depend only on the model of disorder v. Then, condi-
tion (3.150) rewrites

ζ(αR, µ
′/VR) ≤ η(αR). (3.158)

As ζ is an increasing function of its second argument, expression (3.158) defines an upper bound
on the chemical potential. This bound has the form

µ′ ≤ VRF (αR), (3.159)

where the function F is defined by the solution of η(αR, F (αR)) = η(αR), and depends only on
the model of disorder v.

If condition (3.159) is not satisfied, several populated Lifshits state will overlap, and the
Bose gas will start forming a fragmented BEC. Each fragment will be a superposition of Lifshits
states, and its shape will be modified by the interactions. The sensitivity of the shape of the
fragments to interactions is expected to increase as the size of the puddles formed by overlapping
Lifshits grows, and the kinetic energy associated with their boundaries decreases. The crossover
from the Lifshits regime to the regime of fragmented BEC should therefore come along with
variations in the compressibility of the gas.

Note also that the description we have given above in terms of Fock states of Lifshits states
completely neglects the coupling between Lifshits states or microsites. To approach the crossover
between the Lifshits regime and what we call the fragmented BEC regime, a description e.g.
in terms of an array of Josephson junctions might be developed where these couplings are
considered. A complication in this approach lies in the statistical nature of on-site energies and
coupling elements.

3.4.4 Mean-field equation of state

We now derive the equation of state which relates the chemical potential µ to the number of
bosons. The “thermodynamic limit” is obtained by relating µ to the average linear density of
bosons 〈n1D

0 〉 = N/2L in the longitudinal direction.35

The starting point of the analysis is formed by the set of GPEs derived in section 3.4.2 for
the radial densities n2D

ν (ρ) on each microsite ν:
[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 +

g

Pν
n2D

ν (ρ) + Eν − µ

]√
n2D

ν (ρ) = 0. (3.160)

In terms of the associated populations and normalized wave functions

Nν =

∫
dρn2D

ν (ρ) (3.161)

φν(ρ) =

√
n2D

ν (ρ)

Nν
for Nν > 0, (3.162)

the radial GPEs also write
[
−~

2∇2
ρ

2m
+

1

2
mω2

⊥ρ
2 +

g

Pν

Nν |φν(ρ)|2
]
φν(ρ) = (µ−Eν)φν(ρ). (3.163)

35It might be useful to stress that in the Lifshits regime, and in contrast to the delocalized BEC regime, the
local density n1D

0 (z) is very different from the average value 〈n1D
0 〉 = N/2L.
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Note that, while Pν might assume a range of different values for the same single-particle en-
ergy Eν (see Fig. 3.7), the quantities n2D

ν (ρ)/Pν , Nν/Pν and φν(ρ) in Eqs. (3.160) and (3.163)
are uniquely determined by the interplay of µ, ~ω⊥ and Eν . In particular, only those microsites
with

µ′ = µ− ~ω⊥ > Eν (3.164)

are populated.

General case

We define a function fg(µ, ~ω⊥, E) such that, for all Nν and Pν ,

Nν

Pν

= fg(µ, ~ω⊥, Eν). (3.165)

As explained above, fg is uniquely defined by the ground-state solution of a 2D Gross-Pitaevskii
equation, it increases with µ, and vanishes for µ− ~ω⊥ < E. Note also that fg is homogeneous
to a linear density. Let now N̄(µ, ~ω⊥, E) be the number of bosons per microsite at energy E,
averaged over the distribution of participation lengths. From the definition of fg, we obtain

N̄(µ, ~ω⊥, E) = P̄ (E)fg(µ, ~ω⊥, E). (3.166)

The total number of atoms in the system is obtained by summing the populations over Lifshits
states, in a continuous formulation with level density D2L:

N =

∫
dED2L(E)N̄(µ, ~ω⊥, E). (3.167)

Dividing by the system size, we find

〈n1D
0 〉 =

∫ µ−~ω⊥

Vmin

dED(E)P̄ (E)fg(µ, ~ω⊥, E), (3.168)

where D and P̄ are determined from the properties of the 1D single-particle Lifshits states, and
fg accounts for the 2D problem with mean-field interactions.

As in the BEC regime, we now examine explicitly the cases of tight and loose radial con-
finement.

Tight harmonic trapping

We assume here that the chemical potential and the radial trapping frequency are such that
µ′ − Vmin ≪ ~ω⊥. Then, the inequality

µ′ −Eν ≪ ~ω⊥ (3.169)

is satisfied for all populated Lifshits states, and the atoms in each microsite are confined to the
ground state of the radial oscillator,

φν(ρ) ≃
e−ρ2/2a2

ho√
πaho

. (3.170)
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The populations are obtained from the radial integration of Eq. (3.163):

~ω⊥ +
gNν

Pν

∫
dρ|φν(ρ)|4 ≃ µ−Eν , (3.171)

which yields

Nν ≃
{

2πa2
hoPν(µ′−Eν)

g
if µ′ > Eν

0 otherwise
. (3.172)

From (3.168), we deduce

〈n1D
0 〉 ≃

∫ µ′

Vmin

dED(E)P̄ (E)
2πa2

ho

g
(µ′ − E). (3.173)

In this expression we recognize an effective 1D coupling constant

g1D =
g

2πa2
ho

(3.174)

for the case of tight harmonic confinement (see Eq. 3.96). This result has a straightforward
generalization in the sense that the equation of state for any tight transverse confinement obeys

g1D〈n1D
0 〉 ≃

∫ µ′

Vmin

dED(E)P̄ (E)(µ′ − E), (3.175)

where g1D is the suitable 1D coupling constant, obtained from the transverse ground-state wave
function φ⊥ as g1D = g

∫
dρ|φ⊥(ρ)|4.

If we assume that the average participation length is almost constant in the Lifshits tail,
i.e. that

P̄ (E) ≃ σRp0(αR), (3.176)

where p0 is a dimensionless quantity which depends only on the model of disorder and αR =
Eσ/VR, then Eq. (3.175) can be integrated by part:

g1D〈n1D
0 〉 ≃ σRp0(αR)

∫ µ′

Vmin

dEN (E). (3.177)

We now also assume that the cumulative density of state in the Lifshits tail follows Eq. (3.132),
and cast it into the form

N (E) = σ−1
R
b(αR)e−c(αR)(E/VR−vmin)−β

(3.178)

with vmin = Vmin/VR. Then, Eq. (3.177) evaluates to

g1D〈n1D
0 〉 ≃ VRp0(αR)b(αR)

c(αR)1/β

β
Γ

(
− 1

β
, c(αR)

[
µ′

VR

− vmin

]−β
)
, (3.179)

where the functions p0, b and c are determined by the model of disorder, and

Γ(s, x) =

∫ +∞

x

ts−1e−tdt (3.180)
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Figure 3.9: Chemical potential of a Bose gas in a speckle potential with the same parameters
as in Fig. 3.8, in the case of tight radial confinement (µ′ − Eν ≪ ~ω⊥). The black dots are
obtained from the numerical resolution of a 1D Gross-Pitaevskii equation. The limiting form
of the equation of state in the Lifshits regime (solid red line) is given by Eq. (3.179). The
asymptote µ′ ≃ g1D〈n1D

0 〉 for the BEC regime (blue dotted line) appears here without inclusion
of the leading order correction (3.74), which has been studied in Fig. 3.4.

is the incomplete gamma function. For speckle potentials, we have vmin = −1. As Γ(s, x) ∼
xs−1e−x for x → +∞, it is easily checked that in the limit µ′ → V +

min, the product g1D〈n1D
0 〉

itself follows a stretched exponential with the same exponent −β as the cumulative density of
states.

Figure 3.9 shows the result of numerical computations of the chemical potential as a function
of the interaction strength, for a speckle potential in the regime of tight trapping. The data
was obtained by solving the GPE in a 1D box through propagation in imaginary time. The
same disorder sample was used as in Fig. 3.8, and the parameters p0(αR), b(αR), and c(αR) were
extracted from the latter study assuming β = 1/2. These parameters were plugged into the
equation of state (3.179), represented by the red asymptote in Fig. 3.9. The crossover between
the Lifshits and BEC regimes is clearly visible, and the chemical potential obtained numerically
agrees well with formula (3.179) in the Lifshits regime.

Loose harmonic trapping

Let us now assume that the harmonic trapping is loose (µ′ − Vmin ≫ ~ω⊥) so that for most
populated Lifshits states

µ′ − Eν ≫ ~ω⊥. (3.181)

Then the radial density profile are inverted Thomas-Fermi parabolas

n2D
ν (ρ) ≃

{
Pν

g
(µ− Eν)(1 − ρ2/R2

ν) if ρ < Rν

0 otherwise
(3.182)

with

Rν =

√
2(µ− Eν)

mω2
⊥

, (3.183)
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and the populations are

Nν ≃
{

πPν(µ−Eν)2

gmω2
⊥

if µ > Eν

0 otherwise
. (3.184)

The linear density follows as

〈n1D
0 〉 ≃

∫ µ

Vmin

dED(E)P̄ (E)
π

gmω2
⊥

(µ− E)2. (3.185)

An explicit expression is again readily derived under the assumption that P̄ does not depend
on the energy in the Lifshits tail.

3.5 Quantum state diagram

The results of sections 3.3 and 3.4 allow us to draw a schematic quantum-state diagram of
the zero-temperature weakly-interacting Bose gas placed in 1D disorder, as a function of the
chemical potential µ and the disorder strength VR.36 Such a diagram is displayed in Fig. 3.10.
Below, we recapitulate the various quantum states, and derive equations for the crossover
boundaries which appear in Fig. 3.10.

We have in this chapter explicitly taken account of the possibility and consequences of a
non-zero disorder correlation length σR. It should be stressed that the cut through parameter
space in Fig. 3.10 is performed at constant αR = Eσ/VR, where Eσ = ~

2/2mσ2
R. Therefore,

when VR varies in the figure, the correlation length σR changes along too. This representation
is motivated by the fact that, upon adequate rescaling, the properties of the single-particle
problem depend on a single parameter (αR) instead of two (VR and σR). Keeping σR fixed
in diagram 3.10 would require the explicit knowledge of the properties of the single-particle
problem on αR. Our result is here general, and applies to any random potential which is
bounded below.

The chemical potential µ is related to the average interaction term g1D〈n1D
0 〉 by the equation

of state, which is illustrated in Fig. 3.9, and for which we have derived asymptotic forms in
the various regimes [see Eqs. (3.74) and (3.175)]. Through this equation of state, Fig. 3.10
translates into a quantum state diagram as a function of disorder amplitude VR and interaction
strength g1D〈n1D

0 〉. The shape of the crossover boundaries will, of course, be modified when
trading µ for g1D〈n1D

0 〉.
Experimentally, the value of the mean-field interaction term g1D〈n1D

0 〉 can be changed by
adjusting the density of the Bose gas [26, 29, 183], or by tuning the scattering length as in
Eq. (3.5) with so-called Feshbach resonances.37

3.5.1 Quantum states

Let us summarize here the findings of the previous sections.

36For the sake of simplicity, we set here µ = µ′. It turns out that, in the framework of our study, the identified
quantum states and their boundaries in the quantum state diagram arise essentially from the characteristics of
the 1D problem on the z-axis, and depend very little on the radial degrees of freedom. In the discussion of the
crossover boundaries below, we refer to the results of the previous sections, where the radial degrees of freedom
were examined explicitly.

37See Ref. [17] and references therein.
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Figure 3.10: Schematic ground-state quantum-state diagram of a weakly repulsive Bose gas in
1D disorder. The variable VR denotes the root-mean-square amplitude of the disorder, and µ is
the chemical potential of the Bose gas. Interactions therefore increase from left to right in the
diagram. The boundaries in the diagram (corresponding to crossovers) are controlled by the
parameter αR = ~

2/2mσ2
R
VR, where σR is the correlation length of the random potential. The

parameter αR is kept constant as µ and VR vary in the figure. The random potential is assumed
to have a lower bound Vmin, and the hatched part corresponds to the unphysical case µ < Vmin.

For strong mean-field interactions (large chemical potential µ) or weak disorder, the Bose gas
forms a delocalized (quasi-) BEC whose density profile follows almost exactly the modulations
of the random potential. This regime appears in red in Fig. 3.10, under the label BEC. When
the strength of disorder VR increases or µ decreases, the relative fluctuations of the density
profile generally grow. Due to a larger healing length, however, this growth is possibly affected
by the smoothing of the short length-scale fluctuations. In that case, the BEC is said to be
smoothed to distinguish it from the Thomas-Fermi regime.

For stronger disorder or weaker interactions, the Bose gas eventually fragments, that is,
breaks up into localized islands with negligible tunneling. Each of these islands might retain
superfluid properties and be compressible, but the entire system is expected to be an insulator.
As such, the regime which appears in blue under the label of fragmented BECs can be
identified with a Bose glass [128]. We derive below an equation for the boundary between
the BEC and the fragmented BEC regime which is based on a fragmentation criterion for the
ground-state density profile. This criterion is developed at the level of the linear response (first-
order perturbation theory) of the density profile to the external potential, and determines the
locus of a crossover region between regimes where the density is weakly or strongly affected by
the random potential.

For even weaker interactions, the fragments are well separated and their shape is mostly
determined by the variations of the random potential. In particular, when the chemical poten-
tial drops below the average of the potential and enters the Lifshits tail of the single-particle
spectrum, close to the minimum value Vmin, a description in terms of Lifshits states applies.
In this limiting regime, shown in green under the label of Lifshits glass, the bosons populate
strongly localized single-particle orbitals, the longitudinal shape of which remains unaffected
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by interactions. As the fragmented Bose gas is expected to turn continuously into a Lifshits
glass, the boundary between the two regime corresponds to a crossover.

3.5.2 Crossover boundaries

Building on the results of the previous sections, we now briefly discuss the crossover boundaries.
Recall that diagram 3.10 is drawn for constant αR = Eσ/VR.

Lifshits glass to fragmented BEC - In section 3.4.3, the description of the disordered
Bose gas in terms of a Lifshits glass was shown to cover the parameter space

µ ≤ VRF (αR) [Lifshits glass], (3.186)

where F is a function which accounts for the properties of both the density of states and the
eigenfunctions in the Lifshits tail of the single-particle problem (3.151), and which depends
only on the model of disorder. In diagram 3.10, this defines a straight boundary, the slope of
which is set by the dependence of F on αR.

Thomas-Fermi BEC to smoothed BEC - On the delocalized BEC side, the condition
for a Thomas-Fermi profile and the absence of smoothing was discussed around Eqs. (3.50),
(3.71) and (3.114), and worked out to be ξ ≪ σR or, equivalently, µ≫ Eσ = αRVR. Conversely,
smoothing occurs for

µ . αRVR [smoothed BEC], (3.187)

which defines another straight boundary.

BEC to fragmented BEC - From Eqs. (3.73), (3.103) or (3.121), we recall that a weak per-

turbation of the density profile in the BEC regime requires µ≫ Ṽ
(1)

R , where Ṽ
(1)

R = VR

√
I2(ξ/σR)

is the amplitude of the smoothed potential, evaluated at first order, and ξ/σR =
√
αRVR/µ.

The function I2 is defined by

I2

(
ξ

σR

)
=

σR√
2π

∫
dq

ĉ2(qσR)

[1 + (qξ)2]2
(3.188)

in 1D. Fragmentation, on the other hand, occurs for a strong perturbation around the homo-
geneous density profile. We may say that fragmentation of the density profile occurs when
the relative (r.m.s.) amplitude of density modulations exceed a certain threshold t, i.e. when

t ≤ ṼR/µ. At the level of the first-order approximation ṼR ≃ Ṽ
(1)

R , this criterion rewrites

t ≤ VR

µ

√√√√I2

(√
αR

VR

µ

)
[fragmented BEC]. (3.189)

Since the inequality is saturated for (VR, µ) pairs with constant VR/µ ratio, we obtain a straight

boundary as well. While the first-order estimate Ṽ
(1)

R is accurate for small values of the thresh-
old t (t ≪ 1), higher-order terms in the perturbation expansion of the density are in principle
required for a quantitative study when the perturbation of the density profile is strong. How-
ever, the scaling analysis outlined in the next section shows that the above conclusions remain
qualitatively unchanged for stronger disorder, as far as the density profile is concerned.
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Fragmentation with and without smoothing - If we start from the Thomas-Fermi BEC
sector of the quantum state diagram 3.10, i.e. from a regime where the chemical potential
by far exceeds the amplitude VR and the “correlation energy” Eσ = ~

2/2mσ2
R

= αRVR of the
random potential, and if we keep VR and αR fixed, and start reducing the chemical potential,
two effects occur. On the one hand, smoothing arises when the healing length ξ = ~/

√
2mµ

exceeds σR (and the imprint of the random potential on the density profile is then somewhat
reduced). On the other hand, fragmentation occurs when the strength of the potential becomes
strong compared to the chemical potential. The onset of these two effects is described by
Eqs. (3.189) and (3.187). The slopes determined by these equations allow for two scenarios.
In the first case, which is depicted in the quantum state diagram 3.10, smoothing is significant
before fragmentation occurs. In the second case, the fragmentation threshold is reached before
smoothing becomes significant. Let us check for which parameters these scenarios are possible.

Smoothing We assume 1 ≪ αRVR/µ, so that smoothing is significant. Then, using ex-
pansion (3.72), the fragmentation criterion (3.189) writes

t . α
−1/4
R

(
VR

µ

)3/4 [
2−1/2Γ(3/2)ĉ2(0)

]1/2
. (3.190)

For simplicity, we set t and the factor between square brackets to one. Then, fragmentation
with smoothing occurs for

VR

µ
≫ 1

αR

and
VR

µ
& α

1/3
R . (3.191)

These two conditions are compatible and satisfied e.g. for VR/µ & α
1/3
R when αR ≫ 1. The en-

semble of (VR/µ, αR) pairs which satisfy (3.191) is represented by a light blue sector in Fig. 3.11.

No smoothing We assume αRVR/µ≪ 1, so that smoothing is negligible. This allows us
to use expansion (3.71) and to rewrite the fragmentation criterion as

t .
VR

µ

[
1 − αRVR

µ
√

2π

∫
dκκ2ĉ2(κ)

]
≃ VR

µ
. (3.192)

Setting t = 1, fragmentation without smoothing is seen to occur for

VR

µ
≪ 1

αR

and
VR

µ
≥ 1. (3.193)

These conditions are compatible only for αR ≪ 1, that is, ~
2/2mσ2

R
≪ VR. This corresponds to

potentials with large or long-length-scale variations, as expected. The range of parameters for
which fragmentation occurs without smoothing is shown as a dark blue sector in Fig. 3.11.

Remark With the definition αR = Eσ/VR, the criterion (3.190) for a fragmentation of the
Bose gas in the presence of smoothing is rewritten

t .
VR

µ3/4E
1/4
σ

[
2−1/2Γ(3/2)ĉ2(0)

]1/2
. (3.194)



3.5 Quantum state diagram 125

10-2 10-1 100 101 102
10-2

10-1

100

101

102

TF fragmented

smoothed fragmented

TF BEC

smoothed BEC
ΣR<Ξ

ΣR>Ξ

µ/VR

V
R
/
E

σ
=

1
/
α

R

(a) Slopes: −1, 3, ∞

10-2 10-1 100 101 102
10-2

10-1

100

101

102

TF fragmented

smoothed fragmented

TF BEC

smoothed BEC
ΣR<Ξ ΣR>Ξ

µ/Eσ

V
R
/
E

σ
=

1
/
α

R

(b) Slopes: 3/4, 1, ∞

Figure 3.11: Schematic characterization of the density profile of a disordered, weakly-repulsive
Bose gas at the crossover between the regimes of (quasi-)BEC and fragmented BEC. The
ground-state density profile is characterized in terms of smoothing and fragmentation, as a
function of the chemical potential µ, the disorder amplitude VR, and the energy Eσ = ~

2/2mσ2
R

associated with the correlation length σR of the random potential. The boundaries (thick
dashed lines) are defined by Eqs. (3.191) and (3.193). The thin dotted lines serve as guide for
the eye. The difference between (a) and (b) lies in the rescaled energies chosen as coordinates.
In each case, VR/Eσ = 1/αR is used for the vertical axis, so that a path in the quantum state
diagram 3.10 corresponds to a horizontal line in both (a) and (b). The Bose gas may start
crossing over to the Lifshits glass regime (not depicted here) for the lowest values of µ.

If Eσ = ~
2/2mσ2

R is kept constant instead of αR when VR and µ are left to change, this defines
a boundary

VR

Eσ
∝
(
µ

Eσ

)3/4

, (3.195)

as shown in the lower left corner of Fig. 3.11(b). This result is strikingly similar to the relation
(VR/Eσ) ∝ (U/Eσ)0.75±0.03 found by Fontanesi et al. in their recent numerical study of the 1D
superfluid-to-Bose-glass transition, reported in Ref. [244]. In the latter expression, U is the
mean-field interaction energy. Most numerical calculations in this study have been performed
for VR/Eσ ≤ 1 or, equivalently, αR ≥ 1, i.e. a regime where smoothing is significant at the
crossover from BEC to fragmented BEC. Fontanesi et al. observed that the exponential decay of
first-order correlation functions in the Bose-glass phase was due to sudden drops and attributed
the latter to the presence of “weak links” in the Bose gas. On the superfluid side, on the other
hand, a rather smooth power-law decay of the first-order correlation functions was found. It
would be interesting to investigate whether the (fragmentation) statistics of the ground-state
density profile, as presented in this chapter, can be related to the statistics of such weak links
and to the transition from power-law to exponential decay of correlation functions, as suggested
by the similarity of relation (3.195) with the numerical findings of Ref. [244]. In this respect,
it might be worth emphasizing that the perturbation expansions which form the basis of our
analysis in the BEC regime can be carried out at fixed g〈n0〉 and ξ̄ = ~/

√
4mg〈n0〉, instead of

fixed µ and ξ = ~/
√

4mµ, as shown in appendix E. In particular, at the level of the first-order
perturbation theory, µ can simply be replaced by g〈n0〉 in the formulas.
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3.5.3 Scaling

The boundaries derived above follow from the results of section 3.3.4, where radial degrees
of freedom were analyzed carefully. It turns out that identical conditions are obtained by
reducing the problem of weakly-interacting bosons to the longitudinal z-axis. The boundary
of the Lifshits glass regime was obtained by considering a rescaled form of a 1D Schrödinger
equation. In the delocalized BEC regime, the density profile is obtained from a 1D Gross-
Pitaevskii equation, and it proves equally useful to write such a GPE in a form which allows
for scaling arguments. Defining

u = z/σR (3.196)

v(u) = V (z)/VR (3.197)

̺(u) = n1D
0 (z)/〈n1D

0 〉, (3.198)

we obtain [
− d2

du2
+
VR

Eσ

v(u) +
g1D〈n1D

0 〉
Eσ

̺(u) − µ

Eσ

]√
̺(u) = 0 (3.199)

or, equivalently, [
−αR

d2

du2
+ v(u) +

g1D〈n1D
0 〉

VR

̺(u) − µ

VR

]√
̺(u) = 0. (3.200)

The comparison of the first and last terms in the brackets, in particular, immediately provides
the inequalities which define the Thomas-Fermi and the smoothed BEC regime [see expression
(3.187)]. Equation (3.200) also shows that, for a constant αR, the ratio VR/µ uniquely deter-
mines the rescaled ground-state density ̺, the average density 〈n1D

0 〉 and, thereby, the relative
modulations of the density profile. As a consequence, the boundary derived for the crossover to
the fragmented regime is expected to remain straight even beyond the first-order perturbation
expansion, for any fragmentation threshold t or any refined criterion based on the statistics of
the density modulations.

Let us finish with a couple of remarks on the latter boundary. We wish to stress here that
the scaling arguments developed above define the location of a crossover between two regimes of
weak and strong fluctuations of the mean-field density profile (the quasi-BEC and fragmented
BEC regimes, respectively). On the other hand, the route from the quasi-BEC regime to
the Bose glass in the weakly-interacting regime is expected to involve a transition [244, 289],
characterized e.g. by an abrupt change in correlation functions or response functions at critical
disorder or interaction strengths. Whether a crossover boundary predicted on the basis of
mean-field features of the condensate overlaps with the transition boundary, and follows a
similar scaling, remains an interesting question.

Strictly speaking, fragmentation is never complete, but a Bose glass is expected to form
when tunneling between the fragments is significantly reduced. This requires e.g. the upper
limit t used above to be of the order of one, rather than infinitly small, and takes the mean-
field approach beyond the first-order perturbation theory. The arguments developed above
show that for fixed αR, the statistics of the relative density modulations depend only on the
ratio of VR and µ, even deeply in the non-linear regime. Nevertheless, it would be interesting to
determine whether other scaling laws can be worked out when the correlation length σR is kept
fixed, and αR = Eσ/VR varies, or when VR is plotted against the mean-field interaction energy
g1D〈n1D

0 〉.
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3.6 Conclusion

In this chapter we examined the ground-state properties of a weakly-interacting Bose gas in
one-dimensional, correlated disorder. We discussed the quantum states resulting from the com-
petition of the disorder and interactions, and derived analytical boundaries for the crossovers
between the various regimes.

In the delocalized BEC regime found for dominating mean-field interactions, we described
in detail the response of the density profile to the external potential. We discussed the impact
of both the strength of disorder and its correlation length on the amplitude of the modulations
imposed on the BEC density profile.

The insulating phase found for dominating disorder was approached from the non-interacting
limit, and a novel description was given for the regime of very weak interactions. In this
regime called Lifshits glass, the bosons were shown to populate strongly localized, spatially
well separated single-particle states. A smooth crossover from this picture to the regime of
fragmented BEC (or Bose glass) was argued to occur with increasing interactions as more of
such states become populated and develop overlaps.

The deterministic density modulations imprinted on the density profile by the disorder in
the BEC regime have been observed experimentally [171]. As now both random potentials and
Feshbach resonances to tune the interactions are available on some experimental set-ups [30],
the regime of very weak interactions might hopefully also be explored soon.





C H A P T E R 4

Elementary excitations of disordered
weakly-interacting Bose gases

In chapter 3 we examined the ground-state properties of weakly-interacting Bose gases in a 1D
random potential. For weak disorder, or moderate interactions exceeding the disorder strength,
the density profile of the Bose gas is extended due to the non-linearity introduced by interactions
at the mean-field level. Deep in this regime the density profile is only weakly affected by the
presence of the external potential and, if the density is everywhere sufficient, the Bose gas is
expected to form a single Bose-Einstein condensate (or a quasi-BEC in 1D or elongated 3D
Bose gases).

We now turn to the elementary excitations of the disordered Bose gas in the BEC regime.
The elementary excitations we study here are small fluctuations around the ground state of the
system, and take the form of quasi-particles. A description of these quasi-particles is given by
the Bogolyubov theory, applied to the case of weakly-interacting spinless bosons [159]. This
description goes one step beyond mean field, and takes account of correlations introduced by
interactions between the particles.

At non-zero temperature, the quasi-particle modes are populated thermally, and determine
the properties of the Bose gas well below the critical condensation temperature. Interestingly,
however, these modes also describe the correlation and response functions of the ground state
and the quantum fluctuations around the mean-field at zero temperature. Their study is
therefore essential to characterize the interacting many-body state. On the one hand, the
spectrum of excitations is strongly linked with macroscopic quantities like the velocity of sound
[290] and superfluid properties, as emphasized by Landau’s criterion for superfluidity [111,249,
291,292]. On the other hand, the density of states and the wave functions of the quasi-particles
essentially determine the correlation functions of the Bose gas, phase coherence and long-range
order [244, 256]. It is of prime importance to determine how disorder affects these quantities.

In this chapter we develop an analytical approach to describe the scattering and localization
of Bogolyubov quasi-particles (BQPs) in weak, correlated random potentials. The weakness
of disorder allows the set-up of a systematic perturbation expansion. We show that in the
leading orders, the equations governing the Bogolyubov quasi-particles map approximately onto
a Schrödinger-like problem. This is achieved by introducing a transformation which decouples
some small and fast degrees of freedom from relevant ones, while covering the whole range of
BQP excitation energies. The scattering and localization of Bogolyubov quasi-particles can
then be described by applying results known for the non-interacting case.

The chapter is organized as follows. In section 4.1 we briefly run through the Bogolyubov
theory for weakly-interacting Bose gases to set up the Boglyubov-de Gennes equations (BdGEs)
which govern the elementary excitations. In section 4.2 we develop a perturbation expansion
and show that in the leading orders the BdGEs can be solved by means of a Schrödinger-like
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equation which accounts for the scattering properties of the BQPs. In section 4.3 we adapt
the technique of chapter 2 and derive the Lyapunov exponent of BQPs in a one-dimensional
geometry. In section 4.4, we discuss higher-order perturbation terms and their possible relevance
for the limit of vanishingly small quasi-particle energy.

4.1 Bogolyubov quasi-particles

Here we give a brief presentation of the Bogolyubov theory of elementary excitations in the
condensed phase of weakly-interacting bosons. For the sake of simplicity and following the
original prescription by Bogolyubov, the derivation presented below is formulated in the grand-
canonical ensemble, and the condensate wave function is assumed to have a well-defined phase
(see the discussion of sections 3.2.1 and 3.3.1). The many-body system is described by the
grand-canonical Hamiltonian

K̂ =

∫
dr

{
Ψ̂†(r)

[
−~

2∇2

2m
+ V (r) − µ

]
Ψ̂(r) +

g

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
, (4.1)

where m is the mass of the bosons, V is the external potential, µ is the chemical potential, and
g > 0 is the coupling constant of the two-body interaction potential Vint(r − r′) = gδ(r − r′).
Assuming that most atoms are condensed in a unique single-particle state ψ0 (normalized to
unity), the field operator is expanded as

Ψ̂(r) = Ψ0(r) + δΨ̂(r), (4.2)

with
Ψ0(r) =

√
N0 ψ0(r), (4.3)

where ψ0 is the condensate wave function, N0 is the population of the condensate, and δΨ̂ is a
small fluctuation field such that

‖δΨ̂(r)‖ ≪ Ψ0(r). (4.4)

The quantum field δΨ̂ describes non-condensed particles, which can be created when the system
is excited out of the ground state (e.g. at non-zero temperatures or under the effect of an
external perturbation), but also exist in the ground state of the system due to the presence of
interactions (this effect, which is called quantum depletion of the condensate, plays a marginal
role for weakly-interacting gases, and is neglected here). Bogolyubov’s approach assumes that
such a depletion of the condensate, whether thermal or quantum, is small.

Bogolyubov’s theory in its original form is often recognized as the best simple approx-
imate theory which successfully describes essential features of the Bose-condensed system,
e.g. a gapless excitation spectrum which is linear at low energy, and the slope of which co-
incides with the macroscopic velocity of sound [248, 293]. Some consequences and limitations
of approximation (4.4) have been addressed and refined theories have been developed e.g. in
Refs. [256, 293–296]. In particular, the isolation of a condensate wave function ψ0 with well-
defined phase makes a priori little sense in low-dimensional geometries, where phase fluctuations
are known to be important. For such geometries, a phase-density representation of the field
operators in the form

Ψ̂(r) = eiθ̂(r)
√
n̂(r), Ψ̂†(r) =

√
n̂(r)e−iθ̂(r) (4.5)
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is preferred, and the perturbation expansion is carried out around a classical density field n0,
without reference to a privileged phase [251, 252, 256, 264, 297, 298]. The reformulation of the
Bogolyubov theory in the phase-density picture is presented in section 4.1.2.

4.1.1 Bogolyubov theory in the symmetry-breaking approach

We review here the results obtained when the field operators are expanded around a classical
field Ψ0 with well-defined phase.

Perturbation expansion of the Hamiltonian

To find the ground state and excitations of the Bose gas, Hamiltonian (4.1) is expanded as

K̂ = K̂0 + K̂1 + K̂2 + K̂3 + K̂4, (4.6)

where the subscripts indicate increasing powers of the small parameter ‖δΨ̂‖/Ψ0. These various
orders read

K̂0 =

∫
dr
{

Ψ∗
0(r)LµΨ0(r) +

g

2
|Ψ0|4

}
(4.7)

K̂1 =

∫
dr
{
δΨ̂† [Lµ + g|Ψ0|2

]
Ψ0 + δΨ̂

[
Lµ + g|Ψ0|2

]
Ψ∗

0

}
(4.8)

K̂2 =

∫
dr
{
δΨ̂† [Lµ + 2g|Ψ0|2

]
δΨ̂ +

g

2

[
Ψ2

0δΨ̂
†2 + Ψ∗

0
2δΨ̂

2
]}

(4.9)

K̂3 =

∫
dr
{
g
[
Ψ∗

0δΨ̂
†δΨ̂

2
+ Ψ0δΨ̂

†2δΨ̂
]}

(4.10)

K̂4 =

∫
dr

g

2
δΨ̂†2δΨ̂

2
, (4.11)

where Lµ is the operator

Lµ = −~
2∇2

2m
+ V − µ. (4.12)

The operators δΨ̂ and δΨ̂† satisfy the same bosonic commutation relations as Ψ̂ and Ψ̂†:

[δΨ̂(r), δΨ̂†(r′)] = δ(r− r′), [δΨ̂, δΨ̂] = 0, [δΨ̂†, δΨ̂†] = 0. (4.13)

Mean field

In the ground state, the classical field Ψ0(r) is required to minimize K̂0 = K[Ψ0]. This condition
yields the Gross-Pitaevskii equation (GPE)

[
Lµ + g|Ψ0|2

]
Ψ0 = 0, (4.14)

which is parametrized by the chemical potential µ. If several solutions coexist for a given µ,
the ground state is found as the solution minimizing H [Ψ0], where

H [Ψ0] =

∫
dr

{
Ψ∗

0(r)

[
−~

2∇2

2m
+ V (r)

]
Ψ0(r) +

g

2
|Ψ0|4

}
. (4.15)
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We assume that this ground state solution is unique [273]. Then, the number of particles in the
condensate N0 =

∫
dr|Ψ0|2 uniquely depends on the chemical potential µ, and vice versa. For

weak interactions, we have N0 ≃ N , where N is the (average) number of atoms in the system.
The equation of state, which relates the chemical potential to the average density or number
of particles in the system, is therefore determined with reasonable accuracy by the solution of
the Gross-Pitaevskii equation.1

Bogolyubov Hamiltonian

Since Ψ0 solves the GPE (4.14), the first-order term K̂1 vanishes ([Lµ + g|Ψ0|2]Ψ0 = 0). The
third- and fourth-order terms are usually discarded as small corrections, so that the approximate
Hamiltonian reads

K̂ ≃ K0[Ψ0] + K̂2. (4.16)

Here K0[Ψ0] appears as an offset which does not involve the quantum fields δΨ̂ and δΨ̂†, and
hence does not contribute to the fluctuations around the classical field. Let us reproduce K̂2

for clarity:

K̂2 =

∫
dr
{
δΨ̂† [Lµ + 2g|Ψ0|2

]
δΨ̂ +

g

2

[
Ψ2

0δΨ̂
†2 + Ψ∗

0
2δΨ̂

2
]}

. (4.17)

This Hamiltonian forms the starting point for the analysis of the quantum fluctuations and
excitations of the weakly-interacting Bose gas around the mean field Ψ0. Its form is close
to the Hamiltonian used to describe excitations around the pairing mean field in the BCS
theory [300].

Canonical transformations and equations of motion

Hamiltonian K̂2 is often said to be “solved” by a simple canonical transformation. Let us
illustrate this concept. As K̂2 is a Hermitian quadratic “form” of δΨ̂ and δΨ̂†, one expects to
be able to bring it into a more compact form

∑

ν

ǫν b̂
†
ν b̂ν (4.18)

by means of a suitable transformation. Because of the square terms δΨ̂2 and δΨ̂†2 in K̂2, the
operator b̂ν should have the general form

b̂ν =

∫
dr
[
αν(r)δΨ̂(r) + βν(r)δΨ̂

†(r)
]
, (4.19)

and b̂†ν should follow as its Hermitian conjugate. The product of this transformation, b̂†ν and
b̂ν , are operators acting on the Fock basis. If they satisfy canonical commutation relations of
the form

[̂bν , b̂
†
ν′ ]η = δν,ν′ , [̂bν , b̂ν′ ]η = 0, (4.20)

with [̂bν , b̂
†
ν′ ]η ≡ b̂ν b̂

†
ν′−ηb̂†ν′ b̂ν and η = ±1, then b̂†ν and b̂ν are identified as the usual creation and

annihilation operators, which are here seen to create or destroy an excitation of energy ǫν from

1The first corrections to the equation of state given by the Gross-Pitaevskii equation arise with K̂2, and can
be evaluated within the Bogolyubov theory. See e.g. Refs. [256, 299].
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an excitation vacuum. Since sum (4.18) takes the shape of a Hamiltonian without interactions,
such excitations of the field Ψ̂ resemble non-interacting particles. However, because of the
mixing of the field operator and its Hermitian conjugate in expression (4.19), the excitations are,
by definition, quasi-particles. If the relations (4.20) are satisfied with η = +1, the excitations are
bosonic, and for η = −1 they are fermionic. In the present case, the quasi-particle excitations
are expected to be bosonic.2

In Equation (4.23), the coefficients αν(r) ≡ αν,r and βν(r) ≡ βν,r are identified as the

“matrix elements” of a transformation T from (δΨ̂, δΨ̂†)T to (b̂, b̂†)T.3 Such a transformation
is said to be canonical if it preserves the commutation relations of the field operators, which
here means that the b̂ν and b̂†ν should satisfy Eq. (4.20) with η = +1. A study of the generic
properties of canonical transformations can be found in Ref. [301].

The “diagonalization” of the Bogolyubov Hamiltonian K̂2 appears as a standard result in the
literature. The procedure commonly used are nevertheless manifold. A first approach directly
resorts to canonical transformations to map the Bogolyubov Hamiltonian onto an equivalent
representation in a basis of quasi-particles [301]. In a second approach, which does not anticipate
on the success of a quasi-particle basis, equations of evolution are written down for the field
operators δΨ̂ and δΨ̂† in the Heisenberg picture, and eigenstates of the time-evolution operator
are sought for [253,296]. These eigenstates, which correspond to the excitations of the Bose gas,
are then used for a modal expansion of the field operators and the Bogolyubov Hamiltonian.
As a variant of the latter approach, classical equations of motion may me considered for the
bosonic field variables [256, 302,303].

The various approaches follow close paths and yield identical results, which we summarize
below.

Bogolyubov Hamiltonian in canonical form

The results reported below apply whenever Ψ0 is a local minimum of the GPE (4.14) [253,
301, 303]. This is the case here, as we consider the ground-state solution. Then, as shown in
particular in Refs. [253, 294,301,304], the Bogolyubov Hamiltonian K̂2 expands as

K̂2 = K̃2 + αP̂ 2 +
∑

ν

ǫν b̂
†
ν b̂ν , (4.21)

where K̃2 and α are scalars which we do not detail here, and the quantities ǫν are real and
strictly positive. The operators b̂†ν and b̂ν satisfy bosonic commutation rules:

[̂bν , b̂
†
ν′ ] = δν,ν′ , [̂bν , b̂ν′ ] = 0. (4.22)

They are obtained from the field operators as4

b̂ν =

∫
dr
[
u∗ν(r)δΨ̂(r) − v∗ν(r)δΨ̂

†(r)
]

(4.23)

2The bosonic nature of the excitations need not be assumed, and may emerge naturally from the analysis of
the Bogolyubov Hamiltonian (see e.g. Ref. [296]).

3The sign T denotes transposition.
4Several sign conventions coexist in the literature. If +v∗ν is used instead of −v∗ν in Eq. (4.23), all the

subsequent formulas in this chapter apply upon replacement of (u, v) by (u,−v).



134 Elementary excitations of disordered weakly-interacting Bose gases

and its Hermitian conjugate. The last term in Eq. (4.21) is equivalent to a free Hamiltonian,
and describes non-interacting quasi-particles. The excitations described by this part of the
Hamiltonian are called Bogoyubov excitations, or Bogolyubov quasi-particles. The P̂ 2 term
describes the motion of a collective variable associated the condensate mode, and does not
represent an elementary excitation of the Bose gas (see below).

Bogolyubov-de Gennes equations

The functions uν and vν of transformation (4.23) are the solutions for ǫν > 0 of the Bogolyubov-
de Gennes equations (BdGEs) [159, 300,305]

[
−~

2∇2

2m
+ V (r) − µ+ 2g|Ψ0(r)|2

]
uν(r) + gΨ0(r)

2vν(r) = ǫνuν(r) (4.24)

[
−~

2∇2

2m
+ V (r) − µ+ 2g|Ψ0(r)|2

]
vν(r) + gΨ∗

0(r)
2uν(r) = −ǫνvν(r). (4.25)

They naturally satisfy so-called relations of biorthogonality,5 which here take the form

〈uν|uν′〉 − 〈vν |vν′〉 =

∫
dr [u∗ν(r)uν′(r) − v∗ν(r)vν′(r)] = 0 for ǫν 6= ǫν′ , (4.26)

〈v∗ν |uν′〉 − 〈u∗ν|vν′〉 =

∫
dr [vν(r)uν′(r) − uν(r)vν′(r)] = 0, (4.27)

and are chosen and normalized so that

〈uν |uν′〉 − 〈vν |vν′〉 =

∫
dr [u∗ν(r)uν′(r) − v∗ν(r)vν′(r)] = δν,ν′. (4.28)

The latter prescription is required for the commutation relations (4.22) to hold.
The BdGEs can be put in the algebraic form

BGP

(
u
v

)
= ~ω

(
u
v

)
(4.29)

where

BGP =

(
Lµ + 2g|Ψ0|2 gΨ2

0

−gΨ∗
0
2 −Lµ − 2g|Ψ0|2

)
. (4.30)

We shall refer to BGP as the Bogolyubov operator. It is easily checked that each solution of
Eq. (4.29) with eigenvalue ~ω comes along with a solution for −~ω. These eigenvalues are
often called frequencies to distinguish them from the energy ǫ, which in the present context is
always positive. It is worth stressing that the solutions of negative ~ω are taken into account
in transformation (4.23), and that one should stick to the rule of solving the BdGEs (4.24)
and (4.25) for strictly positive energies ǫν in order for the b̂ν and b̂†ν to be annihilation and
creation operators, respectively, and not the opposite. If the BdGEs were to be solved for
negative energies ǫν and transformation (4.23) was left unchanged, the Kronecker delta in

5The vectors (uν , vν)T are eigenvectors of a non-Hermitian operator BGP (see below). The biorthogonality

relations arise from the orthogonality of these eigenvectors to the eigenvectors of the Hermitian adjoint B†
GP

(see e.g. page 884 of Ref. [306]).
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(4.22) would be affected by a minus sign, and the creation and annihilation operators would
be interchanged. Physically, the positivity of ǫν for the proper commutation relations (4.22)
means that populating the quasi-particles modes can only increase the energy of the system.
This property of spectral or thermodynamical stability follows from the assumption that Ψ0 is
a local minimum of the GPE [253,303]. The BdGEs also have a solution of zero energy,

(
u0

v0

)
=

(
ψ0

−ψ∗
0

)
. (4.31)

This mode is commented on below.

The set of eigenvectors

The Bogolyubov operator BGP has the remarkable property of not being Hermitian (self-
adjoint): BGP 6= B†

GP. This property is a consequence of the bosonic nature of the field Ψ̂,6,7 and
explains the somewhat unusual and weaker orthogonality relations (4.26) to (4.28). Unlike Her-
mitian operators, to which the spectral theorem applies, non-Hermitian operators are generally
not diagonalizable (i.e. their eigenvectors do not span the whole vector-space), their eigenvalues
may be complex, and their eigenvectors may not be orthogonal. Here, in spite of the lack of
Hermiticity, the symmetries of BGP and the assumption that Ψ0 is a local minimum of the GPE
suffice to derive expansion (4.21) and the properties listed below. From Refs. [253, 301, 303]
we also infer that this assumption on Ψ0 makes BGP almost diagonalizable in the sense that
one and only one eigenvector is missing to form a complete set.8 The basis is completed by a
generalized eigenvector (

ua

va

)
=

(
ψa

ψ∗
a

)
(4.32)

6See e.g. chapter 3 in Ref. [301] and section 6 in Ref. [253]. In the BCS theory, both the original fields
and the Bogolyubov excitations are fermionic. The coefficients u and v of the Bogolyubov transformation are
solutions of

BBCS

(
uν

vν

)
= ǫν

(
uν

vν

)
, BBCS =

(
Lµ ∆
∆∗ −Lµ

)
.

In this equation, ∆ is diagonal in the position basis and hence symmetric, so that BBCS is Hermitian.
7It is well known that Eq. (4.29) is also obtained for the vector (δΨ, δΨ∗)T in a perturbation expansion of

the time-dependent Gross-Pitaevskii equation with Ψ = Ψ0 + δΨ, where Ψ0 is some solution of the GPE, and
δΨ is a classical perturbation [32,253]. In other words, the non-Hermitian operator BGP also arises for classical
fields. In that case, the non-Hermiticity of BGP originates from the structure of Hamilton’s equations of motion,
which describe the time evolution of conjugate variables [302]. So why refer to specific quantum statistics to
explain the non-Hermiticity of BGP ? Complex numbers are indeed used in classical representations of bosonic
fields. Hamilton’s classical equations are then used instead of Heisenberg’s equations of motion (which involve a
commutator) for conjugate operators of a bosonic quantum field (see e.g. Ref. [256, 302]). For fermions, on the
other hand, “classical” equations of motion would have to involve anticommuting Grassmann numbers instead
of normal complex numbers, and Hamilton’s equations cannot be used as such.

8We refer in particular to section III.C of Ref. [303], pages 63 and 65 of Ref. [301], and section 7.9 of Ref. [253].
If Ψ0 is a local minimum of the GPE, the Hermitian operator MGP defined by

MGP = σ3BGP =

(
Lµ + 2g|Ψ0|2 gΨ2

0

gΨ∗
0
2 Lµ + 2g|Ψ0|2

)
, σ3 =

(
1 0
0 −1

)

is positive semi-definite. Then, as shown in Ref. [301], the operator BGP has only real eigenvalues, and the
solutions of Eq. (4.29), together with the vector (ua, va)T of Eq. (4.32), form a complete set.
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sought as eigenvector of B2
GP with eigenvalue zero, and chosen so as to share with the (uν , vν)

T

and (u0, v0)
T adequate biorthonormality relations, as explained in Refs. [294, 296].

With this basis at hand, the field operators are expanded as
(
δΨ̂(r)

δΨ̂†(r)

)
=

1

i~
Q̂

(
ψ0(r)
−ψ∗

0(r)

)
+ P̂

(
ψa(r)
ψ∗

a(r)

)
+
∑

ν

b̂ν

(
uν(r)
vν(r)

)
+ b̂†ν

(
v∗ν(r)
u∗ν(r)

)
, (4.33)

where b̂ν and b̂†ν are defined in Eq. (4.23), and the coefficients Q̂ and P̂ are defined by

P̂ =

∫
dr
[
ψ∗

0(r)δΨ̂(r) + ψ0(r)δΨ̂
†(r)
]

(4.34)

Q̂ = i~

∫
dr
[
ψ∗

a(r)δΨ̂(r) − ψa(r)δΨ̂
†(r)
]
. (4.35)

These operators P̂ and Q̂ are Hermitian and satisfy the commutation relation [Q̂, P̂ ] = i~.
Finally, replacing the field operators by expressions (4.33) in Hamiltonian (4.17) leads to the
expansion (4.21).

As explained above, the last term in Hamiltonian (4.21) describes non-interacting, bosonic
quasi-particle excitations. Let us now briefly comment on the P̂ 2. Unlike the b̂ν and b̂†ν opera-
tors, P̂ is Hermitian and commutes with Hamiltonian K̂2. Therefore, the P̂ operator plays no
role in the time dynamics of the fluctuations field δΨ̂, which is given by the Heisenberg equation
of motion i~∂tδΨ̂ = [δΨ̂, K̂2]. And neither does the Q̂ operator which appears in the expansion
of the field operators have an influence on their dynamics. According to Refs. [294, 296], Q̂
and P̂ should be interpreted as a collective phase coordinate and its conjugate momentum.9

The P̂ 2 contribution to the Hamiltonian is attributed to the use of an approach which does not
conserve the number of atoms [270, 294, 296, 301], and is shown to result in a phase diffusion
of the condensate [294, 296]. We shall regard this part of the Hamiltonian as resulting from a
spurious mode [301], and concentrate on the quasi-particle part.

4.1.2 Bogolyubov excitations in the density-phase picture

Let us now turn to the representation of the field operator in the density-phase picture: Ψ̂(r) =

eiθ̂(r)
√
n̂(r). Then, as shown in section 3.3.1, the grand-canonical Hamiltonian rewrites

K̂ =

∫
dr

{
~

2

2m

[
(∇

√
n̂)2 +

√
n̂(∇θ̂)2

√
n̂ + i∇

√
n̂∇θ̂

√
n̂− i

√
n̂∇θ̂∇

√
n̂
]

+ [V (r) − µ] n̂

}

+
g

2

∫
dr

√
n̂ e−iθ̂n̂ eiθ̂

√
n̂ . (4.36)

For sufficiently strong mean-field interactions, the Bose gas close to the ground state has weak
density fluctuations.10 This allows for an expansion of the density operator around a classical
field:

n̂(r) = n0(r) + δn̂(r) [‖δn̂(r)‖ ≪ n0(r)]. (4.37)

9The P̂ 2 contribution represents a kinetic term. The difference with a harmonic oscillator, for instance, is
that no potential term quadratic in Q̂ appears in the Hamiltonian, so that the collective motion associated with
Q̂ and P̂ is unbounded.

10The validy of this assumption is checked a posteriori in the theory. See e.g. Ref. [251].
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While no assumption is made on the phase θ̂, it is shown in Ref. [264] that weak density fluctua-
tions also imply weak fluctuations of the phase gradient ∇θ̂. The grand-canonical Hamiltonian
K̂ is then expanded in powers of δn̂ and ∇θ̂. The two fields can be regarded as infinitesimal
quantities of the same order [270,296]. Then, the expansion takes the form K̂ = K̂0 + K̂1 + · · ·
where the subscripts indicate the total order in δn̂ and ∇θ̂. As before, the hierarchy is truncated
after the second order to obtain a Hamiltonian which is quadratic in the fluctuations.

Mean-field density profile

To zeroth order, we obtain the functional

K0[n0] =

∫
dr
√
n0(r)

{
−~

2∇2

2m
+ V (r) +

g

2
n0(r) − µ

}√
n0(r) (4.38)

and the Gross-Pitaevskii equation
[
−~

2∇2

2m
+ V (r) + gn0(r) − µ

]√
n0(r) = 0, (4.39)

which determine the mean-field features studied in chapter 3. The ground-state solution
√
n0(r)

has the same properties as the field ψ0(r) = Ψ0(r)/
√
N0 of the previous section, which can be

chosen to be real-valued and positive in the ground state.

Density and phase fluctuations

As n0(r) is a solution of the GPE (4.39), the first order K̂1 vanishes, and we have again

K̂ ≃ K0[n0] + K̂2. (4.40)

A modal expansion of the fields δn̂ and θ̂, and of the Hamiltonian, is obtained from the analysis
of K̂2. At this level, the density-phase picture gives rise to a few more technicalities than the
approach with the field operators δΨ̂ and δΨ̂†, in particular because of commutation relations.
As shown in Ref. [256], the expansion of the Hamiltonian is left unchanged,

K̂2 = K̃2 + αP̂ 2 +
∑

ν

ǫν b̂
†
ν b̂ν . (4.41)

The bosonic annihilation and creation operators b̂ and b̂† are now obtained from the quantum
fields as

b̂ν =

∫
dr

[
f+

ν
∗
(r)

2
√
n0(r)

δn̂(r) − i
√
n0(r)f

−
ν

∗
(r)θ̂(r)

]
(4.42)

and its Hermitian conjugate. The functions f+
ν and f−

ν are determined as the solutions of the
set of equations

[
−~

2∇2

2m
+ V (r) − µ+ gn0(r)

]
f+

ν (r) = ǫνf
−
ν (r) (4.43)

[
−~

2∇2

2m
+ V (r) − µ+ 3gn0(r)

]
f−

ν (r) = ǫνf
+
ν (r), (4.44)
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for ǫν > 0. The identification f±
ν (r) = uν(r)∓vν(r) shows that this set of equations is equivalent

to the BdGEs (4.24) and (4.25).11 The functions f+
ν and f−

ν are normalized so that
∫

dr
[
f+

ν
∗
(r)f−

ν′ (r) + f−
ν

∗
(r)f+

ν′ (r)
]

= 2δν,ν′. (4.45)

Finally, the modal expansions of the phase and density fluctuations are

θ̂(r) =
1

2i
√
n0(r)

∑

ν

[
f+

ν (r)b̂ν − f+
ν

∗
(r)b̂†ν

]
− 1

~
Q̂ (4.46)

δn̂(r) =
√
n0(r)

∑

ν

[
f−

ν (r)b̂ν + f−
ν

∗
(r)b̂†ν

]
+ 2
√
n0(r)ψa(r)P̂ , (4.47)

where ψa(r) is a real-valued function [256]. The P̂ and Q̂ operators can be left aside as a
consequence of the lack of particle conservation in Hamiltonian (4.40). Thus, f+ and f−,
which are associated with regular modes of the Bogolyubov Hamiltonian, are identified as
wave-functions of the phase and density fluctuations, respectively. The coupling of Eqs. (4.43)
and (4.44) shows that an elementary excitation of the weakly-interacting Bose gas carries both
phase and density fluctuations, albeit in different proportions.

As pointed out by Popov [297] (see also Ref. [256]), the set of equations obtained in
the phase-density representation turns out to be equivalent to those obtained from the usual
Bogolyubov-de Gennes theory, where a shift is applied to the field operator, Ψ̂ =

√
n0 + δΨ̂,

and K̂ is expanded up to quadratic terms in the fluctuation δΨ̂ (see section 4.1.1). The latter
approach assumes weak fluctuations of both the phase and the density around a unique classical
field

√
n0 which breaks the phase symmetry of the Hamiltonian. The phase-density picture,

on the contrary, does not rely on this assumption, and proves suitable for the description of
condensates as well as quasi-condensates. The derivation of the BdGEs in the density-phase
picture therefore offers a useful extension of the standard Bogolyubov theory.

It is also worth emphasizing that the elementary excitations described by this set of equa-
tions are essentially the same as in approaches which conserve the number of particles. In such
approaches, the excitation spectrum is exacly the same. Remarkably, however, the spurious
modes are absent from Hamiltonian and field operators [296]. This justifies neglecting their
role in non-conserving approaches. Finally, the regular modes of the conserving approach are
the same as those of the non-conserving approach up to a projection orthogonally to the con-
densate wave function [296]. It is easily checked that this projection does not change any of
the conclusions below.

4.1.3 Summary

The GPE [
−~

2∇2

2m
+ V (r) + gn0(r) − µ

]√
n0(r) = 0, (4.48)

11Several sign conventions for the coherence factors u and v coexist in the literature [see the footnote above
Eq. (4.23)]. For u and v, we follow here the notations of Refs. [296], and construct f+ and f− so as to associate
them with phase and density fluctuations, respectively, as e.g. in Ref. [251]. As a mnemonic device, we observe
that for low-energy excitations, f+ is large, and f− is small. On the other hand, if (u,−v) is used instead
of (u, v), then the superscripts in f+ and f− indicate that f+ and f− are the sum and the difference of the
coherence factors u and v, respectively (it goes the other way round here).
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and the BdGEs
[
−~

2∇2

2m
+ V (r) − µ+ gn0(r)

]
f+

ν (r) = ǫνf
−
ν (r) (4.49)

[
−~

2∇2

2m
+ V (r) − µ+ 3gn0(r)

]
f−

ν (r) = ǫνf
+
ν (r), (4.50)

form a closed set which describes the ground-state and excitations of the Bose gas, as obtained
from a quadratic expansion of Hamiltonian K̂ in the quantum fluctuation fields. Equations
(4.49) and (4.50) determine the energy spectrum and the wave functions of non-interacting,
bosonic quasi-particles which form the elementary excitation of the Bose gas. Interactions
between these quasi-particles only arise with higher-order terms in the expansion of K̂, which
we neglect here. Therefore, to study the properties of the Bose gas close to equilibrium at zero
temperature, in the external potential V (r), we are left with the sole modes defined by the
GPE (4.48) and BdGEs (4.49) and (4.50).

Let us now examine the solutions of these equations in the absence of an external potential.
These solutions provide a useful starting point for the case of weak potentials.

4.1.4 Homogeneous case

When no external potential is present (V = 0), and the system is either infinite or required
to have periodic boundary conditions, the density profile is homogeneous (n0 = µ/g), and the
BdGEs reduce to

− ~
2∇2

2m
f+

ν (r) = ǫνf
−
ν (r) (4.51)

[
−~

2∇2

2m
+ 2µ

]
f−

ν (r) = ǫνf
+
ν (r). (4.52)

The solutions of these equations are plane-wave modes

(
f+
k (r)
f−
k (r)

)
=

( √
ρk

1/
√
ρk

)
eik.r (4.53)

with wave vector k and energy

ǫk =

√
~2k2

2m

(
2µ+

~2k2

2m

)
= 2µ

√
k2ξ2 (1 + k2ξ2). (4.54)

In these expressions, we have used ξ = ~/
√

4mµ and defined

ρk =
µ

ǫk
+

√

1 +

(
µ

ǫk

)
. (4.55)

This coefficient also writes ρk =
√

1 + 1/(kξ)2, or ρk = ǫk/Ek, where Ek = ~
2k2/2m is the

energy of a bare particle with same wave vector k. The coefficients ρk stands for the ratio of
the functions f+

k and f−
k .
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Figure 4.1: (a) Dispersion relation of Bogolyubov quasi-particles in the absence of external
potential (blue solid line). The dashed purple line and the dotted brown line correspond to
the low- and high-energy limits given by Eqs. (4.56) and (4.57), respectively. (b) Coefficient of
the Bogolyubov transformation as a function of the quasi-particle energy. The blue solid line
indicates the ratio f−

k /f
+
k of relative density fluctuations to phase fluctuations carried by the

quasi-particle. The black dashed line represents the relative weight |vk|/uk = (f+
k − f−

k )/(f+
k +

f−
k ) of the particle and hole components in the BQP [see transformation (4.23)].

The quasi-particle dispersion relation (4.54) is plotted in Fig. 4.1(a). It crosses over from a
linear dispersion relation at low energy,

ǫk ∼ ~ck [kξ → 0], (4.56)

to a free-particle dispersion relation plus a mean-field offset at high energy,

ǫk ∼ gn0 +
~

2k2

2m
[kξ → ∞], (4.57)

with gn0 = µ. The coefficient c =
√
gn0/m is well known to correpond to the macroscopic

velocity of sound in the Bose gas [290].
Figure 4.1(b) shows the relative amplitude of the coherence factors of the Bogolyubov trans-

formation. The ratio f−
k /f

+
k = 1/ρk drops to zero for kξ → 0, indicating that the low-energy,

long-wavelength excitations hardly carry density fluctuations, and are mostly phase-like excita-
tions. The ratio |vk|/uk = (f+

k −f−
k )/(f+

k +f−
k ) shows that these long-wavelength quasi-particles

consist in nearly equal parts of a bare particle and a bare hole [248]. The high-energy, short-
wavelength quasi-particles, on the other hand, resemble bare particles.

4.2 Perturbation expansion for Bogolyubov quasi-particles

in weak potentials

The BdGEs are difficult to solve for arbitrary potentials. The first reason for this is the
presence of the density term n0, which is determined by the non-linear GPE. What is more,
the BdGEs (4.49) and (4.50) themselves form a set of two coupled, second-order differential
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equations, which amounts to a differential problem of order four. In the following, we develop
a perturbative approach, valid in the limit of a weak potential V (r), which enables us to solve
Eqs. (4.48), (4.49) and (4.50) rigorously, and to interpret the scattering and localization of
BQPs in simple physical terms.

We now assume that V is a weak potential with vanishing spatial average (〈V 〉 = 0) and
standard deviation |VR| =

√
〈V 2〉. The potential is said to be weak whenever |VR| ≪ µ.12 We

will focus on disorder in section 4.3. Note, however, that the perturbative approach introduced
here is general, and V need not be random. In any case, we write the auto-correlation function
of V as

〈V (r)V (r′)〉 = V 2
R c2[(r − r′)/σR], (4.58)

where σR stands either for a typical correlation length of V in the random case, or for a
characteristic length scale in the periodic case.

4.2.1 Ground-state density background

Solving the BdGEs requires knowledge of the density background n0(r), which is determined by
the GPE. In the case of a weak potential, the GPE can be solved perturbatively. We reproduce
here the results of the analysis carried out in section 3.3.3.

In general, the density n0 can be written

n0(r) =
µ+ ∆ − Ṽ (r)

g
, (4.59)

where Ṽ (r) = g〈n0〉 − gn0(r) is the fluctuating part of the density modulations, and ∆ =
g〈n0〉 − µ is the deviation equation of state µ = gn0 obtained in the homogeneous case.

Both Ṽ and ∆ vanish for V = 0, and remain small for a weak external potential V and
strong-enough repulsive interactions. Expansions of Ṽ and ∆ in the form

Ṽ (r) = Ṽ (1)(r) + Ṽ (2)(r) + . . . (4.60)

∆ = ∆(1) + ∆(2) + . . . , (4.61)

where the superscripts indicate increasing powers of VR/µ, are obtained from a perturbation
expansion of the GPE. The first-order terms read

∆(1) = 0 (4.62)

and

Ṽ (1)(r) =

∫
dr′Gξ(r − r′)V (r′), (4.63)

where the convolution kernel Gξ has a simple Lorentzian shape in Fourier space, namely

Ṽ (1)(q) =
V (q)

1 + (|q|ξ)2
. (4.64)

12We have shown in chapter 3 that a less stringent criterion on the strength of the potential is sufficient to
ensure weak modulations of the ground-state density profile, due to smoothing. See also Ref. [242].
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Equation (4.63) defines a smoothed potential, the root-mean-square amplitude of which satisfies

Ṽ
(1)

R ≡
√
〈Ṽ (1)〉 ≤ VR. (4.65)

We assume that this result holds for the exact Ṽ (r), i.e. ṼR ≤ VR.

The leading-order deviation from the homogeneous equation of state is obtained as

∆(2) =
V 2

R

2µ
[I1 − I2] , (4.66)

where

In

(
ξ

σR

)
=

σd
R

(2π)d/2

∫
dq

ĉ2(qσR)

[1 + (|q|ξ)2]n
, (4.67)

and ĉ2 is the Fourier transform of the reduced autocorrelation function c2. The functions I1
and I2 satisfy 0 ≤ I2 ≤ I1 ≤ 1, so that 0 ≤ ∆(2) ≤ V 2

R /(2µ).

4.2.2 Decoupling basis for the Bogolyubov-de Gennes equations

With the help of Eq. (4.59), and without approximation at this stage, the BdGEs (4.49) and
(4.50) can be cast into

[
− ~

2

2m
∇2 + V + ∆ − Ṽ

]
f+

ν = ǫνf
−
ν (4.68)

[
− ~

2

2m
∇2 + 2µ+ V + 3∆ − 3Ṽ

]
f−

ν = ǫνf
+
ν , (4.69)

where ∆, V (r) and Ṽ (r) are small compared to µ. As n0(r) is the ground-state solution of
the GPE (4.48), thermodynamical and dynamical stability is ensured [253, 301], and we need
only consider real-valued, strictly positive eigenvalues of the BdGEs. Now, given such an
eigenvalue ǫν , we are interested in the properties of the corresponding mode {f+

ν (r), f−
ν (r)}.

The {f+, f−} representation of the BQP components is not the most convenient, as f+

and f− are strongly coupled by the right-hand-side terms of Eqs. (4.68) and (4.69) even in the
absence of an external potential. Following the approach we developed in Ref. [307], which is
detailed in appendix G, we introduce the linear transformation

g+
ν (r) = +

√
ρνf

+
ν (r) +

1√
ρν
f−

ν (r) (4.70)

g−ν (r) = − 1√
ρν

f+
ν (r) +

√
ρνf

−
ν (r), (4.71)

where ρν is chosen so as to cancel the coupling between g+
ν (r) and g−ν (r) in the homogeneous

case (V = 0):

ρν =
µ

ǫν
+

√

1 +

(
µ

ǫν

)2

. (4.72)
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Here ρν is a shorthand notation for ρǫν . This expression defines a function of the eigenvalue ǫν
which does not depend on the details of the specific mode under consideration.13 Then, in the
basis of the g±ν (r) functions, the BdGEs take the form:14

~
2k2

ν

2m
g+

ν = − ~
2

2m
∇2g+

ν +

[
V − 3 + ρ2

ν

1 + ρ2
ν

(Ṽ − ∆)

]
g+

ν − 2ρν

1 + ρ2
ν

(Ṽ − ∆)g−ν (4.73)

−~
2β2

ν

2m
g−ν = − ~

2

2m
∇2g−ν +

[
V − 1 + 3ρ2

ν

1 + ρ2
ν

(Ṽ − ∆)

]
g−ν − 2ρν

1 + ρ2
ν

(Ṽ − ∆)g+
ν , (4.74)

where

~
2k2

ν

2m
=

√
µ2 + ǫ2ν − µ (4.75)

~
2β2

ν

2m
=

√
µ2 + ǫ2ν + µ. (4.76)

Both k and β are real-valued, positive functions of the energy ǫ, so that the associated g+ and
g− functions are essentially of the oscillating and the evanescent type, respectively, owing to
the signs of the left-hand-side terms in Eqs. (4.73) and (4.74).15

This qualitative property of the g+ and g− components is consistent with the limit of a
vanishing external potential (V = 0, and thus Ṽ = 0, ∆ = 0), where the equations for g+ and
g− are decoupled:

− ~
2

2m
∇2g+

ν =
~

2k2
ν

2m
g+

ν (4.77)

− ~
2

2m
∇2g−ν = −~

2β2
ν

2m
g−ν . (4.78)

This set of differential equations has obvious solutions of the form

(g+(r), g−(r)) ∝ e±ik.r(1, 0) and (g+(r), g−(r)) ∝ e±β.r(0, 1). (4.79)

The first family of solutions corresponds to oscillating, plane-wave BQP modes with wave
vector k, such that kν = |k| ≡ k. The energy ǫν = ǫk of these modes is given by Eq. (4.75),
which coincides with the usual Bogolyubov dispersion relation (4.54). The second family in
(4.79) corresponds to monotonous functions which grow or decay exponentially at rate β in
space. These modes are forbidden if the system is infinite or required to have periodic boundary
conditions. In other words, for V = 0, the g− component of BQPs vanishes identically, while
g+ is non-zero.

In the presence of an external potential, the g− component does not vanish identically,
due to the coupling to g+ in Eqs. (4.73) and (4.74). Note also that the BQPs are no longer
characterized by a well-defined wave vector for V 6= 0. Therefore, Eqs. (4.75) and (4.76) should
be understood as definitions of some auxiliary quantities kν and βν which depend on the BQP
energy ǫν . In general, Eq. (4.75) is not a dispersion relation.

13This definition is consistent with the coefficient ρk introduced in Eq. (4.55) for the homogeneous case.
14See Eqs. (G.16) and (G.17) in appendix G.
15We call essentially evanescent a function ψ which has negative kinetic term −~

2∇2ψ/(2mψ) in the spatial
average.
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4.2.3 Effective Schrödinger equation (first order)

While the g−ν function vanishes identically in the absence of an external potential, this is no
longer true when V couples g−ν to g+

ν via Eqs. (4.73) and (4.74). For a weak external potential,
however, all the terms introduced by g−ν in Eq. (4.73) are at least of second order in VR, so that
we can neglect the third term on the r.h.s of Eq. (4.73).16 Similarly, we neglect the terms of

order two and higher in the expansion of the factor Ṽ − ∆ which appears between brackets.
Then, we are left with the following closed equation for g+

ν , valid to first order in VR:

− ~
2

2m
∇2g+

ν (r) + Vǫν (r)g
+
ν (r) ≃ ~

2k2
ν

2m
g+

ν (r), (4.80)

where

Vǫν(r) = V (r) − 3 + ρ2
ν

1 + ρ2
ν

Ṽ (1)(r). (4.81)

Equation (4.80) is formally equivalent to a Schrödinger equation for a bare particle of energy
~

2k2
ν/2m in an effective potential Vǫν(r).

17 This potential differs from both the bare potential

V (r) and the smoothed potential Ṽ (r), and depends explicitly on the BQP energy ǫν via the
parameter ρν . Note also that the potential Vǫν has a vanishing average.

To gain more insight on Vǫ(r), let us turn to Fourier space:

Vǫ(q) = V (q) − 3 + ρ2

1 + ρ2
Ṽ (1)(q). (4.82)

By virtue of Eq. (4.64), we obtain

Vǫ(q) = V (q)

[
1 − 3 + ρ2

1 + ρ2

1

1 + (|q|ξ)2

]
. (4.83)

Since ρ ≥ 1 according to Eq. (4.72), we easily find that |Vǫ(q)| ≤ |V (q)| for any Fourier compo-
nent q and any BQP energy ǫ. Hence, keeping in mind that Vǫ results from the competition of
the bare potential V and the ground-state density background n0 in the BdGEs, we term Vǫ a
screened potential. The screening thus affects all Fourier components of the external potential.
This result holds in any dimension. To illustrate these features of Vǫ in a 1D system, we have
plotted in Fig. 4.2 the screened potential associated with a given realization of a speckle poten-
tial, in coordinate space and for two values of the BQP energy. Note that Vǫ(r) is significantly

different from the bare potential V (r) and the smoothed potential Ṽ (r).
Once Eq. (4.80) has been solved (possibly self-consistently) for g+

ν , the function g−ν can be
computed from g+

ν . For VR ≪ µ, as shown in appendix G, the function g− is everywhere much
smaller than g+, so that the second term in the r.h.s of Eq. (4.74) can be neglected, and we
find

g−ν (r) ≃ 2m

~2β2
ν

2ρν

1 + ρ2
ν

∫
dr′G1/βν (r − r′)Ṽ (r′)g+

ν (r′), (4.84)

where G1/β is the Green function associated with the differential operator −(1/β)2∇2 +1. This
function has a simple expression in Fourier space: G1/β(q) = (2π)−d/2/[1 + (|q|/β)2].

16See appendix G and Eq. (4.84) in the present section.
17Note that the effective energy ~

2k2
ν/2m appearing in the Schrödinger-like equation (4.80) is different from

the actual energy ǫν of the considered BQP, as shown by Eq. (4.75).
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Figure 4.2: Plot of the screened potential Vǫ(z) for the same 1D speckle potential as in Fig. 3.3
(σR = ξ, VR/µ = 0.1), for ǫ/µ = 0.1 and ǫ/µ = 10. The bare potential V (z) and the smoothed

potential Ṽ (z) are shown for comparison.

For analytical purposes, the g±ν functions hence usefully replace the physically meaningful
quantities f±

ν , which can readily be recovered by inverting transformation (4.70). In particular,
as far as asymptotic localization properties in random potentials are concerned, Eq. (4.84) tells
us that the typical amplitude of g−ν evolves parallel to the amplitude of g+

ν on intermediate to

long length scales, if Ṽ is a potential with homogeneous statistical properties. In this respect,
the benefit of the mapping of the exact BdGEs onto Eqs. (4.80) and (4.81) is that we can
apply standard techniques for bare Schrödinger particles in weak random potentials, in any
dimension, as long as these are consistent with the lowest-order approximation used to derive
the effective equation (4.80). Similarly, the Schrödinger-like equation (4.80) can be used instead
of the full BdGEs to capture the asymptotic properties of BQPs in isolated scattering events.
Yet, the scattering and localization properties of BQPs differ substantially from those of usual
bare particles, because of the peculiar features of the screened potential Vǫ(r).

4.2.4 Scattering by weak potentials

Before turning to random potentials, let us analyze the scattering of a BQP by a weak poten-
tial V of finite range. Since Eq. (4.80) has the form of a Schrödinger equation, we can apply
standard results on the elastic scattering of Schrödinger particles.18

Consider a free particle of mass m and wave vector k, described by a plane wave

ψin(r) = eik.r = eikz, (4.85)

where k = |k| and the z-axis is oriented along k [see Fig.4.3(a)]. By definition this wave function
solves the homogeneous wave equation [∇2 + k2]ψin = 0. In the presence of a the potential
V , the plane wave ψin is no longer a solution of the exact Schrödinger equation, and gives rise

18See e.g. §45 and §123 of Ref. [217].
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to a scattered field ψout. We assume that V has a finite range, or fall offs quickly outside a
finite region of size a around the origin. In 3D, and at large distance r from the region where
the amplitude of V is significant, the total wave-function ψ = ψin + ψout is known to take the
asymptotic form19

ψ ≃ eikz + f(k, θ)
eikr

r
. (4.86)

The function f is called the scattering amplitude. It depends on the scattering angle θ, that is,
the angle between the z-axis and the direction of the scattered particle. Under the assumption
that V is invariant by rotation around the z-axis, the scattering amplitude does not depend on
the azimuthal angle φ around the z-axis. The differential cross-section dσ for scattering into a
solid angle dΩ around the direction (θ, φ) is given by dσ = |f(k, θ)|2dΩ. In this direction, the
scattered particle is locally a plane wave of wave vector kf. Since the scattering is assumed to
be elastic, we have |kf| = |k| and kf .k = k2 cos(θ).

For a weak potential, the scattering amplitude can be calculated in a perturbation expansion
in powers of the scattering potential V . The leading-order result for the 3D case reads

f(k,kf) = − m

2π~2

∫
drV (r)e−i(kf−k).r. (4.87)

This expression is simply proportional to the Fourier component V (q), where ~q = ~(kf − k)
is the momentum transferred to the particle. The approximation made here is called the Born
approximation in collision theory [308]. Its validity depends on the typical amplitude U of the
potential V , the range a and the long-distance fall-off of V , the momentum ~k of the particle,
and the dimension of space. In 3D, the Born approximation usually holds if V falls off quickly
enough, and any of the conditions U ≪ ~

2/ma2 or U ≪ (~2/ma2)ka is satisfied [217].20 We
assume that this is the case here.

Since the first-order approximation leading to Eqs. (4.86) and (4.87) is consistent with the
derivation of the effective Schrödinger equation (4.80), these results also apply upon replacement
of V by Vǫ and ψ by g+. To compare the scattering amplitudes of a BQP and a bare particle
with same wave vector k, we need only compare the Fourier components V (q) and Vǫ(q), where

19The total field ψ = ψin + ψout is an exact solution of the Schrödinger equation
[
∇2 + k2

]
ψ = (2m/~2)V ψ

if and only if
[
∇2 + k2

]
ψout = (2m/~2)V ψ. This equation can be solved formally for ψout by considering the

right-hand side as an inhomogeneous term, and using the Green function associated with the operator −∇2+k2.
Adding ψint, this leads to the Lippmann-Schwinger equation

ψ(r) = ψint(r) +
2m

~2

∫
dr′G+,dD

k (r′ − r)V (r′)ψ(r′),

with

G+,1D
k (r) =

eik|r|

2ik
, G+,2D

k (r) =
H

(1)
0 (k|r|)

4i
, G+,3D

k (r) = − eik|r|

4π|r| ,

where H
(1)
0 is a Hankel function of the first kind [306]. In the Born approximation, ψ is simply replaced by ψint

under the integral. Then, the asymptotic expression for the 3D case and expression (4.87) are obtained from

the far-field expansion |r − r
′| ≃ r − (r′.r)/r in the Green function G+,3D

k .
20In 1D, the condition of validity is derived as U ≪ (~2/ma2)ka, and the perturbation theory breaks down

at low k, where the amplitude of the scattered wave diverges as 1/k. Note that the Born approximation defined
here differs from the Born approximation of the 1D Lyapunov exponent introduced in chapter 2 in the sense
that the latter approximation is of second order in the potential amplitude.
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(a) Scattering process (b) Relative scattering amplitude of a Bogolyubov quasi-particle

Figure 4.3: (a) Schematic of the process of elastic scattering. (b) Relative scattering amplitude
|Vǫ(kf − k)/V (kf − k)| of BQPs, as compared to bare particles in the same potential V , with
the same initial and final wave vectors k and kf. The ratio appears in polar coordinates (kξ, θ),
where k = |k| = |kf|, and θ is the BQP deflection angle (kf .k = k2 cos θ). The magnitude of
this ratio ranges from 0 (blue, complete screening) to 1 (red, no screening). The thin white line
indicates the zeros of the function. Note that the function changes sign on this line, and takes
negative values in a sector of forward scattering. The radial coordinate can also be read in terms
of the energy ǫ of the scattering BQP. The closed, thick black line, defined by ǫ/µ = 1 (i.e.
kξ ≃ 0.46), serves as guide for the eye. The red solid line corresponds to elastic backscattering
(θ = π) and represents the screening function S(kξ) introduced in section 4.3.

q = kf − k, and kf describes the final scattering state. Rewriting Eq. (4.83), we have

Vǫ(q)

V (q)
= 1 − 3 + ρ2

1 + ρ2

1

1 + (|q|ξ)2
. (4.88)

The ratio of scattering amplitudes immediately follows as

Vǫ(kf − k)

V (kf − k)
=

2(kξ)2

1 + 2(kξ)2
× 2(kξ)2(1 − cos θ) − cos θ

2(kξ)2(1 − cos θ) + 1
, (4.89)

where we have used the fact that ρ2 = 1+1/(kξ)2 and |kf−k|2 = 2k2(1−cos θ). This expression
depends only on the norm k of the initial or final wave vectors, and on the scattering angle
θ. The second term in the product on the r.h.s of Eq. (4.89) is the angular envelope function
introduced in Ref. [309], where the angular dependence of the scattering of BQP was studied
in a 2D geometry. Remarkably, this angular dependence simply derives here from the Fourier
spectrum of the effective potential Vǫ.

Expression (4.89) is plotted in Fig. 4.3(b). The vertical coordinate and the color code
indicate the magnitude of |Vǫ(kf −k)/V (kf −k)|, as a function of the polar coordinates (kξ, θ).
The distance from the origin of the graph represents the magnitude k = |k| = kf of the wave
vector of the BQP. The cartesian coordinates kξ cos θ and kξ sin θ represent the projections of
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the final wave vector kf along the z-axis and an orthogonal direction. Figure 4.3(b) shows that
the scattering of BQPs is suppressed at small wave vectors (low energy), in comparison with
bare particles with the same wave vector. At large wave vectors (high energy), on the other
hand, the ratio of BQP and bare-particle scattering amplitudes approaches one in absolute
magnitude, except for a narrow angular region where its changes sign due to the interplay of
the external potential and the density background of the Bose gas. The presence of this node in
the angular scattering structure has been analyzed in Ref. [309]. We checked by expanding the
k-dependent angular pattern in expression (4.89) on spherical harmonics that the scattering
of BQPs is dominated by p-wave scattering for kξ ≪ 1 (ǫ ≪ µ), and by s-wave scattering for
kξ ≫ 1 (ǫ≫ µ), as discussed in Ref. [309].

In conclusion, the BQP scattering properties derived here agree with those reported in
Ref. [309], and demonstrate the efficiency of the Schrödinger-like equation (4.80).

4.3 Anderson localization of Bogolyubov quasi-particles

in one-dimension

We now assume that V is a weak 1D random potential, and we apply perturbation theory to
calculate the Lyapunov exponent (inverse localization length) of the BQPs. Our analysis is
based on the effective Schrödinger equation (4.80).

4.3.1 Phase formalism in the Born approximation

In 1D, the Lyapunov exponent γk of a bare particle of energy Ek = ~
2k2/2m in a random

potential V (z) is simply related to the amplitude of backscattering from V . For a weak disorder,
this exponent can be extracted from a perturbation expansion in the phase formalism discussed
in chapter 2. In the lowest-order (Born) approximation, the Lyapunov exponent reads:21

γk ≃
√

2π

8k2

(
2m

~2

)2

C2(2k), (4.90)

where C2(q) is the Fourier transform of the two-point autocorrelation function C2(z) of the po-
tential. In this formulation, V (z) has a vanishing average, and k thus stands for the mean wave
vector of the particle under consideration. The quantity k, rather than the related energy Ek,
is the meaningful quantity in the interference effect which causes Anderson localization of the
wave function in space. Applying this result to the Schrödinger-like equation (4.80), we derive
the Lyapunov exponent Γ of a BQP of energy ǫ in the Born approximation:

Γ ≃
√

2π

8k2

(
2m

~2

)2

Cǫ(2k), (4.91)

where Cǫ(q) is the Fourier transform of the two-point correlator of Vǫ(z), and k is the mean
wave vector, which depends on ǫ through Eq. (4.75) as we are now dealing with BQPs. From

21See Eq. (2.34) in section 2.2.2.
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the Wiener-Khinchin theorem, we have Cǫ(q) ∝ 〈|Vǫ(q)|2〉, so that, according to Eq. (4.82), the
relevant spectral component of Vǫ for the calculation of Γ is

Vǫ(2k) = V (2k) − 3 + ρ2

1 + ρ2
Ṽ (1)(2k). (4.92)

Then, inserting Eq. (4.64) into Eq. (4.92), and taking advantage of the equality ρ2 = 1+1/(kξ)2,
we obtain

Vǫ(2k) = S(kξ)V (2k), (4.93)

where

S(kξ) =
2(kξ)2

1 + 2(kξ)2
. (4.94)

Finally, Eq. (4.91) can be rewritten as

Γ ≃ [S(kξ)]2γk, (4.95)

where22

γk ≃
√

2π

32

(
VR

µ

)2
σR

k2ξ4
ĉ2(2kσR). (4.96)

Equation (4.95), together with Eqs. (4.94) and (4.96), completely determines the Lyapunov
exponent of a BQP in a weak, correlated, 1D random potential.

Remarkably, Eq. (4.95) shows that the Lyapunov exponent Γ of a BQP can be simply related
to the exponent of a bare Schrödinger particle with the same average wave vector k [307]. The
function S(kξ) which appears in the prefactor in Eq. (4.95) is plotted in Fig. 4.4. It is worth
noting that S(kξ) coincides with the value of expressions (4.88) and (4.89) for kf = −k or,
equivalently, θ = π. Therefore, S(kξ) can be interpreted as the ratio of the backscattering
amplitudes of a BQP and a bare particle with the same mean wave vector k, in the same
potential. The influence of the S(kξ) factor on localization properties will be discussed below.

4.3.2 Localization regimes

The combination of Eqs. (4.95) and (4.96) yields a unique expression for the Lyapunov exponent
of BQPs:

Γ ≃
√

2π

8

(
VR

µ

)2
k2σR

[1 + 2(kξ)2]2
ĉ2(2kσR). (4.97)

Expression (4.97) shows that apart from the quadratic dependence on the potential ampli-
tude VR, which is characteristic of the Born approximation for the Lyapunov exponent, the
dimensionless quantity Γξ depends only on two parameters kξ and σR/ξ. We recall however
that this expression aggregates three distinct contributions [see Eqs. (4.95) and (4.96)]: i) a
1/k2 term which is representative of the kinetic energy of a bare particle, ii) the squared screen-
ing function S(kξ)2, and iii) the spectral density of disorder V 2

R
σRĉ2(2kσR) at wave vector 2k.

Hereafter, we discuss the role of these various contributions.

22This expression derives from Eq. (4.90) with µ = ~
2/4mξ2, and ĉ2 is the Fourier transform of the reduced

auto-correlation function defined in Eq. (4.58).
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Figure 4.4: Screening function S(kξ). The dashed lines show the asymptotic behaviors in the
phonon [S(ǫ) ≃ 2(kξ)2 for kξ ≪ 1] and free-particle [S(ǫ) ≃ 1 for kξ ≫ 1] regimes.

Screening in the phonon regime

Let us first discuss the case of a white-noise potential [310], which is obtained by the limiting
process σR → 0, VR → ∞, V 2

R
σR = const, in which the spectral density ĉ2 uniformly approaches

a flat distribution with an amplitude of the order of one. In this limit, the disorder spectrum
plays no special role, and we are left with the competition of the 1/k2 and S(kξ)2 terms.

Figure 4.4 shows that the magnitude of S(kξ) changes significantly depending on whether kξ
is smaller or larger than one. For BQPs in a homogeneous Bose gas, this threshold corresponds
to the crossover from pair excitations with a linear dispersion relation ǫk ≃ ~ck for ǫk ≪ µ and
kξ ≪ 1 (phonon regime; PH) to nearly single-particle excitations with a quadratic dispersion
relation ǫk ≃ Ek = (~2/2m)k2 for ǫ ≫ µ and kξ ≫ 1(free-particle regime; FP).23 In the free-
particle regime, we have S ≃ 1 and Γ ∼ 1/k2 ∼ 1/ǫ. In other words, BQPs localize exactly like
bare Schrödinger particles in this regime, as expected. In the phonon regime, on the contrary,
the kinetic term is dominated by the S2 factor, which is approximately quartic in k (or ǫ). We
then get the scaling Γ ∼ k2 ∼ ǫ2, which is consistent with known results on the localization of
acoustic phonons in 1D [65,311].

Interestingly, Eq. (4.95) combines the two limiting models in a unified picture, and provide a
physical interpretation for the decreasing localization of phonon modes with decreasing energy.
The function S reflects the competition of the bare external potential V and the interaction of
the BQPs with the quasi-BEC density background gn0, which appears here as Ṽ . In particular,
the strong decay of S in the phonon regime can be interpreted as an increasing screening of the
external potential by the static quasi-BEC background, which adapts to the long-wavelength
modulations of the potential (see Sec. 3.3.3).

23See section 4.1.4.
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Figure 4.5: Contour plot of the Lyapunov exponent of BQPs in a speckle potential, as given by
Eq. (4.100). Beyond kσR = 1 (black dashed line), the Lyapunov exponent vanishes completely
in the Born approximation, due to the finite support of the speckle power spectrum. The green
solid line represents the wave vector of maximum localization for each ratio σR/ξ. The blue
dotted line encloses the region ǫ . ǫ∆ (i.e. k . k∆) discussed in section 4.4.2.

Correlated potentials

To analyze the role of the correlation length σR in Eq. (4.97), we consider a speckle potential
with reduced auto-correlation function

c2(u) = sin(u)2/u2, (4.98)

as in section 2.3. The Fourier spectrum of c2, i.e. the reduced power spectrum of V , is

ĉ2(kσR) =

√
π

2

(
1 − kσR

2

)
Θ

(
1 − kσR

2

)
, (4.99)

where Θ is the Heaviside step function, so that Eq. (4.97) reads

Γ ≃ π

8

(
VR

µ

)2
k2σR(1 − kσR)

[1 + 2(kξ)2]2
Θ(1 − kσR). (4.100)

This expression is plotted in Fig. 4.5. Correlation, that is, the finiteness of σR, introduces
several features we now comment on.

Effective mobility edge - Equation (4.100) shows that the Lyapunov exponent Γǫ vanishes
identically for kσR > 1 (see also Figs. 4.5 and 4.6). This feature originates from the special
correlation properties of speckle potentials, the power spectrum of which has a high-momentum
cutoff [see Eq. (4.99)]. Because of this cutoff, the power spectrum contains no 2k component
able to backscatter a wave travelling with wave vector k > 1/σR according to the process
+k → −k in the Born approximation [34]. Higher-order terms in the expansion are expected
to carry contributions to γk and Γ which do not all vanish identically for kσR > 1, but their
larger power dependence on the small parameter VR/µ makes them negligible for our purposes.
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As a matter of fact, the third-order contribution to Γ, proportional to V 3
R
, can be shown to

vanish abruptly for momenta above the same cutoff at 1/σR, so that corrections to Eq. (4.100)
beyond that cutoff scale as V 4

R
at least.24 Hence, we recover for BQPs the physics of effective

mobility edges discussed for pure Schrödinger particles in chapter 2. This behavior is specific to
potentials with cutoffs in their Fourier-transformed correlation functions [34,182,219,220,222].

Localization maxima - In the white-noise limit, the BQPs localize best for kξ = 1/
√

2 (i.e.
ǫ =

√
3µ), that is, in the crossover region between the phonon and the free-particle regime [310].

This behavior results from the competition of bare kinetic energy and mean-field interactions
via the screening effect, as discussed above. With correlations, however, the detailed statistical
properties of the disorder enter the competition as well. In model (4.99), the wave vector of
maximum localization kmax decreases with increasing correlation length σR. More generally, it
can be checked from Eq. (4.97) that for any correlated disorder with monotonously decreasing
power spectrum akin to model (4.99), the wave vector of maximum localization is shifted to
lower values than the corresponding white-noise value. The locus of kmax as a function of the
correlation and the healing lengths is plotted in green in Fig. 4.5. For each σR/ξ ratio, we
indeed find a unique maximum kmax with

kmax ≃ 1√
2 ξ

(
1 − σR/ξ

2
√

2

)
, σR ≪ ξ, (4.101)

kmax ≃ 2

3 σR

, σR ≫ ξ. (4.102)

These asymptotic expressions show that kmax is controlled by the longest length scale in the
problem. Finally, we find an absolute maximum at fixed ξ for σR =

√
3/2 ξ and kξ = 1/

√
6,

which yields a localization length

Lmax(ξ) = Γ−1
max(ξ) =

512
√

6

9π

(
µ

VR

)2

ξ. (4.103)

Current experiments with ultracold atoms implement random potentials with correlation lengths
of the order of σR ≃ 0.25µm [29,31,172], which yields Lmax ≃ 230µm for VR = 0.2µ. Since this
value can be of the order of or even smaller than the system size, we conclude that localization
of BQPs in ultracold (quasi-) BECs is relevant for present-day experiments. It remains to be
determined whether the localization length of BQPs could be measured, for instance, in Bragg
spectroscopy experiments [266, 312–315]. The localization of BQP modes in coordinate space
implies a broadening of the dynamic structure factor S(ω,q) [249, 316]. Further studies would
be required to assess other sources of broadening (as e.g. the finite size of the system, the finite
life-time of the quasi-particles, the finite duration of the Bragg pulse,...).

4.3.3 Validity of the leading-order result

Before turning to some numerical tests, let us review the validity conditions of the leading-
order result discussed above. The result (4.95) requires (i) the first-order smoothing solution

which consists in replacing Ṽ by Ṽ (1) in Eq. (4.59), (ii) the first-order decoupling of the g+

24See section 4.4.3.
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and g− modes that leads to Eq. (4.80), and (iii) the Born approximation (4.90) to be valid. A

weak disorder condition ṼR ≪ µ alone ensures (i) and (ii). Note that this condition of weak
disorder imposes a less stringent criterion on the bare potential V (i.e. on the ratio VR/µ), since

smoothing reduces the amplitude of Ṽ with respect to V . As for requirement (iii), the regime
of validity of the Lyapunov exponent derived for bare Schrödinger particles in a weak-disorder
expansion is in itself a subtle issue, as the successive terms in the perturbation series all depend
on the disorder amplitude and the kinetic energy of the particle. The resulting asymptotic series
is well-behaved in the high-energy limit. A precise inspection of the low-energy limit (see e.g.
Ref. [207]), where the terms of the series blow up, is necessary to exhibit a rigorous criterion
of validity for a truncated perturbation expansion. For single particles, γk ≪ k is usually
retained as a satisfactory criterion (see Ref. [86] and the end of section 2.2.3). In physical
terms, this inequality means that the localization length should exceed the typical wavelength
of the particle. This sets a VR-dependent lower bound on the single-particle energies for which
the perturbative result is meaningful. Translating the above criterion to BQPs (Γ ≪ k), we
obtain

VR

µ

√
σR

ξ

√
ĉ(2kσR) ≪ (kξ)3/2 +

1

2(kξ)1/2
. (4.104)

This validity condition resembles the corresponding one for Schrödinger particles, namely
(VR/µ)

√
σR/ξ

√
ĉ(2kσR) ≪ (kξ)3/2, which is derived from expression (4.96). As expected, the

two coincide in the FP regime (k ≫ 1/ξ). However, they differ significantly in the PH regime
(k ≪ 1/ξ). Indeed, for free particles, perturbation theory always breaks down at low energy
(i.e. k → 0). In contrast, for BQPs in the PH regime, the strong screening of the random poten-
tial leads to a completely different condition: (VR/µ)

√
σR/ξ

√
ĉ(2kσR) ≪ 1/(kξ)1/2. The latter

is always valid at low energy, under the assumption e.g. that ĉ(2kσR) is bounded for k → 0.
We thus find that the validity condition (4.104) is easily satisfied on the whole spectrum by a
potential that is weak enough, i.e. for (VR/µ)

√
(σR/ξ) ≪ 1.

4.3.4 Numerical calculations

In order to test the accuracy of the perturbative approach introduced in this section, we per-
formed numerical calculations of the Lyapunov exponent of BQPs in a 1D speckle potential,
for various σR/ξ ratios (see Fig. 4.6). We briefly outline the numerical procedure below. The
speckle potential is produced as explained in chapter 1. We focus here on the computation
of the GPE ground state and Bogolyubov excitations, and the extraction of the Lyapunov
exponent.

In a first step, we determined the ground-state solution n0 of the GPE (4.48), using propa-
gation in imaginary time with a Crank-Nicholson scheme [317,318]. As a precise determination
of n0(z) is required for a correct calculation of the low-energy eigenmodes of the BdGEs (4.49)
and (4.50), we compared the result of this procedure with a smoothing expansion including up
to ten perturbation orders (see appendix E). The values of ∆ computed with the two methods
for σR =

√
3/2 ξ agreed within a relative difference δ∆/∆ of 0.3% for VR = 0.05 and 3% for

VR = 0.20, while the r.m.s. difference of the computed density profiles typically amounted to
a few 10−4VR/g and 10−2VR/g respectively. Periodic boundary conditions were used to avoid
corrections to the equation of state solely due to kinetic terms at the boundaries of the system.
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In a second step, the BdGEs (4.49) and (4.50) were solved for eigen-energies and eigen-
modes. The density profile n0(z) obtained numerically was included in the exact BdGEs (4.49)
and (4.50), and the associated differential operator was put in a discretized form in a one-
dimensional box with zero Dirichlet boundary conditions (see comment below). Eigenvalues
and eigenvectors of the resulting large, non-Hermitian band matrices were obtained for a limited
set of target energies using the MATLAB software, and the underlying standard ARPACK rou-
tines. Diagonalization was preferred over open-end transfer-matrix calculations, or traditional
methods for boundary-value problems, like shooting [319], as the propagation by a first-order
differential operator ξ∂z or a second-order operator ξ2∂2

z , as described in appendix G, leads to
an exponential divergence on the length scale of a few healing lengths due to the coupling into
evanescent modes.

Despite the large system size of up to 2 × 106 discretization steps, the “diagonalization”
routines proved efficient for band matrices with 4 or 6 diagonals (depending on the ordering
of the BQP components), as used to represent the Bogolyubov differential operator with zero
Dirichlet boundary conditions.25 Periodic boundary conditions increase the number of diagonals
to 8 or 10, respectively. In this case, the same routines required much more computational
resources, and eigenstates could be computed only at the expense of losing several (typically
two or three) orders of magnitude in the achievable system size. As large systems are needed
for a precise numerical estimate of the Lyapunov exponent, zero Dirichlet boundary conditions
were preferred. These boundary conditions are not strictly consistent with those imposed on the
ground-state density. We checked that this choice had no noticeable effect on the eigenstates
with quasi-particle energies down to 10−3µ, in a periodic potential with similar amplitude and
length scales as those of the speckle potential.

Finally, the Lyapunov exponent Γ of a BQP mode was obtained by computing estimators
of

− lim
z→∞

〈ln[r(z)/r(z0)]〉
|z − z0|

, (4.105)

where r =
√
f 2 + (∂zf)2/k2 (see section 2.2.1), and the real-valued function f under scrutiny

was chosen as f+ for simplicity. We checked that, exchanging f+ for the other eigenvector
component f−, or the derived functions g±, the results agreed within 5% for all the parameters
in this study, including the low-energy limit. In expression (4.105), the value z0 is the position
of the localization center, which varies from eigenstate to eigenstate. The disorder average was
performed over 200 randomly generated speckle patterns, and the box size was chosen large
enough (of the order of 105 correlations length) so as to approach the stationary distribution
of the logarithm at infinity in the far wings of the computed eigenfunctions, for a wide range
of σR/ξ and kξ parameters altogether.

The numerical data shown in Fig. 4.6 are in good agreement with the predictions of
Eq. (4.100), plotted in solid lines. Even for VR/µ = 0.05, as used in this figure, result (4.100) is
in excellent qualitative and fair quantitative agreement with the numerical data on the whole
spectral range studied here, which spans the phonon regime and the transition to the free-
particle regime. As shown in the figure, the observable discrepancies can be attributed mostly
to fluctuation terms which contribute to the exact Lyapunov exponent Γ beyond the second

25Working with 6 diagonals decreases the number of zeros on the “significant” diagonals of the matrix. This
saves storage space. The efficiency of the diagonalization procedure, however, does not significantly depend on
this choice.
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Figure 4.6: Numerical calculation of the Lyapunov exponent of BQPs in a speckle potential for
σR = 3.7 ξ (blue diamonds), σR =

√
3/2 ξ (red open triangles), and σR = 0.4 ξ (green dots), and

VR/µ = 0.05. The solid lines are given by Eq. (4.100), and the dashed lines to small corrections
of the order of V 3

R (see text).

order in VR. The dashed lines in the figure are discussed in section 4.4.3. These contributions
do not change overtly the qualitative behavior of the Lyapunov exponent Γ. In the numerical
study, these contributions show up because of the intermediate values of VR/µ which we have
used.26 The choice of VR/µ was motived by experimental relevance and numerical tractability
for an entire set of σR/ξ and kξ parameters. These fluctuation corrections to Γ are expected
to be negligible for lower VR/µ. At any rate, these numerical results validate our perturbative
approach.

4.4 Beyond the Born approximation

4.4.1 Discussion

In section 4.2, simplified equations for the coherence factors of the BQPs were obtained by
introducing auxiliary functions g+ and g−, and by developping a first-order perturbation theory
in the potential amplitude VR. Carried out at this order, the procedure allowed the oscillating
g+(r) functions to be completely decoupled from the evanescent g−(r), and the exact density
background n0(r) of the Bose gas to be replaced by a first-order approximation.

In section 4.3, this approach was applied to the problem of Anderson localization of BQPs in
a 1D geometry. It was shown that for the BQPs of low energy ǫ, in the phonon regime, the dis-
order is strongly screened by the mean-field interactions, and that the Lyapunov exponent Γ of

26Note that the small deviations from Eq. (4.100) which appear in the data of Ref. [307] are smaller than
those of the present work, for comparable parameters. The present results are actually more acurate, as only a
lowest-order smoothing expansion was used to compute the density n0 in Ref. [307].
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BQPs drops to zero for ǫ→ 0.27 This result, derived in the framework of the Born approxima-
tion for the Lyapunov exponent, is in stark contrast with the case of bare Schrödinger particles.
For those bare particles, the Born approximation and higher-order perturbation terms of the
Lyapunov exponent diverge in the limit of vanishing energy. For BQPs, the 1/k2 divergence of
the bare-particle exponent in the Born approximation is dominated by the quartic dependence
of the screening factor S(kξ)2 in the limit k → 0. One might wonder whether such a screening
persists at all individual orders of the perturbation expansion of the Lyapunov exponent Γ,
or whether the screening in the leading-order result is only accidental, and hides divergences
of individual higher orders. From the bare-particle case, we know that this can be the case
although the exact result is finite (as opposed to infinite) for k = 0 [207], and one might wonder
whether the low-energy properties of BQPs are, likewise, non-trivial.

This question also arises for the excitation spectrum. In a potential which is bounded
below, the density of states of bare particles is known to take the non-perturbative form of a
Lifshits tail at the bottom of the spectrum (see chapter 3). For BQPs, the effective potential Vǫ

derived in the first-order perturbation theory has a vanishingly small effect on quasi-particles
with energy ǫ approaching zero (in the leading-order scattering theory at least; see Fig. 4.3(b)
in this respect), so that the bottom of the spectrum is unlikely to be dominated by those rare
events in the potential which give rise to a Lifshits tail.28

The consideration of the spectrum and the strength of localization of elementary excitations
is of prime importance for the characterization of the disordered Bose gas. Deviations both
from the Γ ∝ ǫ2 dependence of the Lyapunov exponent and from a constant density of states
at low energy have been reported in Refs. [244, 289] for the regime of strong disorder, close to
the transition of the weakly-interacting Bose gas from superfluid to insulator. In the following
section, we shall simply examine some features which arise one step beyond the leading-order
perturbation theory.

4.4.2 Decoupling beyond the first-order approximation

Equation (4.80) is obtained from the BdGE (4.73) by keeping only the potential terms which
are of first order in VR. For the description of the scattering and localization of BQPs beyond
the Born approximation on the basis of such a Schrödinger-like equation, higher-order terms
in Eq. (4.73) need to be considered as well, so as to keep track consistently of all terms of the
same order.

Schrödinger-like equation

We revisit here the approximation of Eq. (4.73) by Eq. (4.80) to include second-order terms.
It turns out (see appendix G) that a new Schrödinger-like equation for g+, which contains all

27See Eq. (4.97). We assume again that ĉ2(2kσR) is bounded when k → 0. Note also that this result is
consistent with a hand-waving continuity argument, based on the observation that the extended ground-state
density profile which solves the GPE is also a solution of the BdGEs for zero energy.

28Taking the limit ǫ → 0 in Eq.(4.81), we are left with V (r) − Ṽ (1)(r), a potential with suppressed long-
wavelength components. The rare, wide potential wells hosting the lowest Lifshits states should therefore also
be suppressed.
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the next order terms, can be derived for BQPs of low energy, such that k ≪ min(1/σR, 1/ξ).
29

This equation takes the form

~
2k2

2m
g+ ≃ − ~

2

2m
∇2g+ + [Vǫ(r) + Vn(r) + V−(r)] g+, (4.106)

where Vǫ is the screened potential (4.81), and Vn and V− are potentials proportional to V 2
R
:

Vn(r) = −3 + ρ2

1 + ρ2

[
Ṽ (2)(r) + ∆(2)

]
(4.107)

V−(r) = − 8mρ2

~2β2 (1 + ρ2)2

∫
dr′G1/β(r − r′)Ṽ (1)(r)Ṽ (1)(r′). (4.108)

The potential term Vn follows from a second-order expansion of the ground-state density profile,
and V− originates from the coupling between g+ and g−.

Kinetic term (phase formalism)

In constrast to Vǫ, the potentials Vn and V− do not have a vanishing average. Equation (4.107),
for instance, displays an offset proportional to ∆(2). We define V ′

n = Vn − 〈Vn〉 and V ′
− =

V− − 〈V−〉 as the fluctuations of Vn and V− around their mean. Then, Eq. (4.106) rewrites

~
2k′2

2m
g+ ≃ − ~

2

2m
∇2g+ +

[
Vǫ(r) + V ′

n(r) + V ′
−(r)

]
g+, (4.109)

where ~
2k′2/2m is build to absorb the averages 〈Vn〉 and 〈V−〉. Its expression is worked out as

~
2k′2

2m
=

~
2k2

2m
− 3 + ρ2

1 + ρ2
∆(2) +

ǫ2

2µ
D(2)(ǫ), (4.110)

where k still follows the definition (4.75), and D(2)(ǫ) is the offset term

D(2)(ǫ) =
16mµρ2

~2β2ǫ2 (1 + ρ2)2

∫
drG1/β(r)〈Ṽ (1)(0)Ṽ (1)(r)〉. (4.111)

The function D(2)(ǫ) is proportional to (VR/µ)2. It depends on the model of potential and the
ratio σR/ξ, and tends to a finite value when ǫ → 0. The ∆(2) term has been documented in
section 4.2.1.

Since 〈Vǫ〉 = 〈V ′
n〉 = 〈V ′

−〉 = 0, expression (4.110) is identified as the average kinetic term
〈−~

2∇2g+/2mg+〉 in the second-order Schrödinger-like equation for g+, and k′ appears as the
corresponding average “wave vector”. The quantities ~

2k′2/2m and k′ differ slightly from
their counterparts ~

2k2/2m and k, which hold in the homogeneous case and in the first-order
approach. In particular, ~

2k′2/2m also depends on the amplitude of the bare potential V . The
values of k′2 and k2 as a function of energy are shown in Fig. 4.7 for a weak random potential.
The difference between the two functions is visible only on a small energy interval at the bottom
of the BQP spectrum, displayed in the inset.

29This equation might actually cover the whole BQP spectrum with good accuracy. See in this respect the
end of section 4.4.3 below.
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Figure 4.7: Values of k′2 (solid red line) and k2 (black dotted line) as a function of the BQP
energy ǫ, for a speckle potential with VR = 0.05µ and σR/ξ =

√
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The value of β2 (blue dashed line) is shown for comparison. The inset shows the low-energy
region around ǫ∆ ≃ 0.02µ.

Remark Note that the kinetic term 〈−~
2∇2ψ/2mψ〉 used in the phase formalism differs

from the actual kinetic energy −(~2/2m)
∫
ψ∗∇2ψ. In particular, it can be shown that only

some of the terms in Eq. (4.110) correspond to a renormalization of the kinetic energy. The
phase formalism nevertheless isolates 〈−~

2∇2ψ/2mψ〉 as the relevant quantity which determines
the oscillatory behavior and the localization of a wave function ψ.

In the low-energy limit, the last term in Eq. (4.110) becomes negligible even compared
to ∆(2), and we obtain the low-energy and small-VR expansion [see Eq. (G.34) in appendix G]

~
2k′2

2m
≃ −∆(2) +

ǫ2

2µ
, (4.112)

where, according to Eqs. (4.66) and (4.67),

∆(2) =
V 2

R σ
d
R

2(2π)d/2µ

∫
dq

(|q|ξ)2ĉ2(qσR)

[1 + (|q|ξ)2]2
. (4.113)

In this expression (4.112), ∆(2) can be replaced by ∆ for simplicity. We introduce the energy

ǫ∆ =
√

2µ∆ (4.114)

which, for VR < µ, compares with other energy scales as shown in Fig. 4.8. For ǫ ≫ ǫ∆, the
quantity ~

2k′2/2m need not be distinguished from ~
2k2/2m (see Fig. 4.7). For ǫ . ǫ∆, on

the other hand, ~
2k′2/2m becomes negative. This implies that, for BQPs in this limit of the

spectrum, the regions of space where g+(r) decays or grows exponentially, possibly alternatively,
should exceed in volume those regions where g+(r) accumulates phase. From the consideration
of cases without disorder, e.g. bare Schrödinger particles in a periodic potential, we know that
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ǫ∆0 VR∆ µ
energy

Figure 4.8: Ordering of the energy scales appearing in this chapter, for a weak potential of
root-mean-square amplitude VR ≪ µ, where µ is the chemical potential of the Bose gas. The
deviation ∆ from the homogeneous equation of state is introduced in section 4.2.1, and the
energy ǫ∆ is defined in Eq. (4.114). The BQP energies ǫ span the whole positive axis.

this does not generally imply the presence of a gap in the spectrum, or localization.30 In
particular, it should be emphasized that Eq. (4.112) is not a dispersion relation. On the other
hand, Schrödinger particles are usually strongly localized when their average kinetic energy is
small or negative. It is therefore useful to examine the origin and the possible implications of
the energy scale ǫ∆.

Here, the potential is indeed random, but we can argue that ~
2k′2/2m < 0 should not be

taken as an indication of a localization of the BQPs, and should instead be related to the form of
the GPE ground state, which is extended. We recall that ~

2k′2/2m stands for the average value
of −~

2∇2g+/(2mg+) in Eq. (4.106), which is a second-order approximation of the BdGE (4.73)
in powers of VR. Taking the limit ǫ→ 0 in Eq. (4.73), we find31

[
−~

2∇2

2m
+ V + gn0 − µ

]
g+
0 = 0. (4.115)

In this limit, the function g+ coincides with the GPE solution
√
n0. Now, using the second-

order approximation gn0 −µ ≃ ∆(2) − Ṽ (1) − Ṽ (2) and taking the spatial average of Eq. (4.115)

with 〈V 〉 = 〈Ṽ (1)〉 = 〈Ṽ (2)〉 = 0, we obtain
〈−~

2∇2√n0

2m
√
n0

〉
=

〈−~
2∇2g+

0

2mg+
0

〉
≃ −∆(2). (4.116)

Hence, a negative kinetic term does not necessarily imply a large Lyapunov exponent. This
statement is true for ground-state

√
n0 = g+

0 (which solves the non-linear GPE and has a
vanishing Lyapunov exponent), and might be extended to regular BQP modes with small
energy ǫ > 0, in a hand-waving continuity argument.

4.4.3 Lyapunov exponent in one dimension

We apply the 1D phase formalism of chapter 2 to the Schrödinger-like equation (4.106) for
g+, and retain the terms up to order V 3

R
in the expression of the Lyapunov exponent. Using

Eqs. (2.34) and (2.79), we obtain

Γ ≃ Γ
(2)
Vǫ,Vǫ

+ Γ
(3)
Vǫ,Vn

+ Γ
(3)
Vǫ,V−

+ Γ
(3)
Vǫ,Vǫ,Vǫ

(4.117)

30Particles near the bottom of the first Bloch band, with energy below the mean value of the periodic
potential, have a negative “kinetic term“. They are nevertheless described by extended Bloch waves. Their
pseudo-momentum should be distinguished from ~k′.

31For ǫ→ 0, we have k → 0 and ρ→ ∞. We use Ṽ − ∆ = µ− gn0, which follows from the definition (4.59).
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where

Γ
(2)
Vǫ,Vǫ

=
1

4

(
2m

~2k

)2 ∫ 0

−∞
dz1〈Vǫ(0)Vǫ(z1)〉 cos(2kz1) (4.118)

Γ
(3)
Vǫ,Vn

=
1

4

(
2m

~2k

)2 ∫ 0

−∞
dz1
[
〈Vǫ(0)Vn(z1)〉 + 〈Vn(0)Vǫ(z1)〉

]
cos(2kz1) (4.119)

Γ
(3)
Vǫ,V−

=
1

4

(
2m

~2k

)2 ∫ 0

−∞
dz1
[
〈Vǫ(0)V−(z1)〉 + 〈V−(0)Vǫ(z1)〉

]
cos(2kz1) (4.120)

Γ
(3)
Vǫ,Vǫ,Vǫ

= −1

4

(
2m

~2k

)3 ∫ 0

−∞
dz1

∫ z1

−∞
dz2〈Vǫ(0)Vǫ(z1)Vǫ(z2)〉 sin(2kz2). (4.121)

The exponents (4.118) and (4.121) follow from a simple application of the formulas found for

Schrödinger particles to the potential Vǫ, which is first order in VR. The term Γ
(2)
Vǫ,Vǫ

is equal to
the Lyapunov exponent (4.91) found in the Born approximation for BQPs. The contributions
(4.119) and (4.121) also correspond to the Born approximation of the phase formalism for
Schrödinger particles. Here they involve the two-point cross-correlators between Vǫ, Vn and V−
which arise in the expansion of the two-point autocorrelation function of the complete potential
of Eq. (4.106).

For the derivation of the Lyapunov exponent (4.117), we started from Eq. (4.106). In this
equation, the potential does not have zero average, and k is not the average wave vector.
In principle, the standard phase formalism should be applied to Eq. (4.109) instead, and k,
Vn and V− should be replaced by k′, V ′

n and V ′
− in expressions (4.118) to (4.121). Here we

take advantage of the fact that, when using k, Vn and V−, the error made on the Lyapunov
exponent should be proportional to V 4

R , i.e. beyond the scope of the present calculation. Indeed,
if VA and VB are two potentials with zero mean, and δA and δB are offsets, then we have
〈(VA + δA)(VB + δB)〉 = 〈VAVB〉+ δAδB, and the error made on a the two-point correlator scales
as δAδB. In the case of Vn and V−, the offsets are proportional to V 2

R
, and we may argue that

errors made in any of the expressions (4.118) to (4.121) is of fourth order at least.32

Remarkably, all the contributions to the Lyapunov exponent (4.117) can be expressed as
functions of the correlation functions of the bare potential V , by going to Fourier space. The
resulting expressions are cumbersome, but share generic features. While the second-order term
Γ

(2)
Vǫ,Vǫ

satisfies

Γ
(2)
Vǫ,Vǫ

∝
(
VR

µ

)2
σR

k2ξ4
[S(kξ)]2 ĉ2(2kσR), (4.122)

where S(kξ) is the screening factor defined in Eq. (4.94) and shown in Fig. 4.4, and ĉ2 is the
Fourier transform of the reduced two-point correlator of the bare potential, the third-order
terms all follow

Γ(3) ∝
(
VR

µ

)3
σα+1

R

kα+2ξ2α+4
S(kξ)

∫
dq F (q)ĉ3(q, 2kσR) (4.123)

where α ∈ {0, 1}, F (q) is some function or distribution parametrized by the energy ǫ, and ĉ3 is
the Fourier transform of the reduced three-point correlation function. For simplicity, we have

32The argument may need to be made rigorous by a careful inspection of the perturbation expansion. Here
we assume that the argument is valid.
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assumed that the bare potential V is isotropic. This form resembles the bare-particle result

γ
(3)
iso = − 1

32

(
VR

µ

)3
σ2

R

k3ξ6

∫
dq
ĉ3(q, 2kσR)

q
(4.124)

derived from Eq. (2.99) with ĉ3(q1, q2) = ĉ3(−q1,−q2). In particular, from expression (4.123)
we deduce that all third-order contributions vanish identically if the bispectrum ĉ3 of the bare
potential has a finite support, as in the bare-particle case.

Figure 4.9 displays the result of a numerical evaluation of formula (4.117) for a speckle
potential with field-field correlator ca(u) = sin(u)/u (see section 2.3.2), and various correla-
tion lengths σR.33 The third-order Lyapunov exponent indeed drops to zero at a critical energy
corresponding to kσR = 1. Qualitatively, this Lyapunov exponent behaves like the Born approx-
imation shown in thin solid line. In particular, as shown in the inset, the Lyapunov exponent
still has a dependence Γ ∼ ǫ2 for ǫ → 0. The contribution stemming from the coupling of g+

and g−, shown in red dashed line, appears to be much smaller than all the other third-order
contributions, and supports the idea that the decoupling of g+ and g− is indeed a legitimate
approach. It also suggests that the effective potential (4.106), which has been derived on the
basis of a low-energy approximation of the coupling between g+ and g− (see appendix G),
might be accurate to second order in VR over the whole BQP spectrum. Interestingly, and in
spite of the screening factor S(kξ) appearing in expression (4.123), the contributions Γ

(3)
Vǫ,Vn

and

Γ
(3)
Vǫ,Vǫ,Vǫ

do not drop to zero in the limit ǫ → 0. The functions F (q) in (4.123) would therefore

require further analysis. Remarkably, however, the contributions Γ
(3)
Vǫ,Vn

and Γ
(3)
Vǫ,Vǫ,Vǫ

appear
to cancel out exactly in the limit ǫ → 0, although they seem to have quite distinct origins
in the perturbation theory. As this cancellation is most probably not accidental, it would be
interesting to search for a representation which does not separate the two.

Finally, we refer to the numerical data of Fig. 4.6, where result (4.117) appears in dashed
lines. The data points show a fair qualitative and quantitative agreement with the estimated
correction beyond the Born approximation for BQPs (for the largest σR/ξ ratios at least). The
discrepancy observed for the smallest σR/ξ ratio was shown to persist after averaging over a
larger number of realizations of the random potential, and is probably due to even-higher orders
in the Lyapunov exponent.

As the low-energy limit of the spectrum is of great physical relevance, but also seems
technically more demanding, it would be interesting to explore it numerically. This limit of
the spectrum, however, is also the most challenging to explore numerically, as large systems
sizes and averaging over larger statistical samples are probably required. The ground-state
density also needs to be computed with good accuracy. In spite of an encouraging similarity
in the density profile obtained by standard propagation in imaginary time and a higher-order
smoothing algorithm (see the figures of section 4.3.4), the two numerical methods produced
contrasting BQP behavior at the very bottom of the spectrum.34 The profile obtained from
propagation in imaginary time with a Crank-Nicholson scheme produced a gapless spectrum
(down to the level spacing associated with the finite size of the box used for the computations),

33We checked that the case σR/ξ ≃ 0.4 of Fig. 4.9(b) essentially displays the features found closer to the
white-noise limit (for even smaller σR/ξ ratios).

34Precisely, such a behavior was observed for ǫ . 10−2µ for the parameters of Fig. 4.6, i.e. in a puzzling
vicinity of the energy scale ǫ∆ discussed around Eq. (4.114). For the three sets of data displayed in Fig. 4.6, ǫ∆
is of the order of 2 × 10−2µ, which corresponds to k∆ξ ≃ 10−2.
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Figure 4.9: Lyapunov exponent of BQPs one order beyond the Born approximation, in speckle
potentials with VR/µ = 0.1. The thick dashed line corresponds to result (4.117), which is
the sum of the Born approximation [purple solid line, Eqs. (4.118) and (4.96)] and third-order
contributions originating from: i) the screened potential Vǫ and the second-order expansion of
the quasi-BEC density profile [green dash-dotted line, Eq. (4.119)], ii) the third-order Lyapunov
exponent for Vǫ [blue dotted line, Eq. (4.121)], iii) Vǫ and the coupling between g+ and g−

[red dashed line, Eq. (4.120)]. Inset: log-log plot of the Lyapunov exponents in the Born
approximation, and one step beyond. At low energy, both scale as Γ ∼ ǫ2.
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but the modes of lowest energy displayed a re-increasing Lyapunov exponent and rather erratic
wave functions, suggesting numerical artifacts. With the smoothing algorithm, on the other
hand, the computed Lyapunov exponent monotonously dropped at low energy, but the BQP
spectrum displayed a (very small) energy gap. This suggests that a precise control of the
ground-state density (and boundary conditions) is required for the precise study of the low-
energy excitations. It is also worth emphasizing that the low-energy physics of the disordered
quasi-BEC cannot simply be brought to higher energies by increasing the strength of disorder
with random potentials which are unbounded, like speckle potentials, since fragmentation is
then very quickly reached.

4.5 Conclusion

In this chapter, we described the scattering and 1D localization of elementary excitations in
an inhomogeneous weakly-interacting Bose-condensed gas. In such a Bose gas, the elementary
excitations are, to a very good approximation, quasi-particles described by the Bogolyubov-
de Gennes theory. In this framework, the quasi-particles have no mutual interaction, but
experience the external potential V imposed on the system, as well as the mean-field interaction
potential created by the density background of the condensed atoms. We addressed the case
where the chemical potential µ of the Bose gas (and hence also the strength of the mean-field
interaction term) is much larger than the amplitude VR of the external potential. As shown in
chapter 3, this condition ensures that the Bose gas lies deep in the superfluid regime.

We developed a perturbation theory around the exact time-independent Bogolyubov-de
Gennes equations governing the quasi-particle modes. In this perturbation expansion, the only
small parameter is VR/µ. The approach presented in this chapter differs in this respect from
a number of standard approximations: (i) the approximation of the Bogolyubov-de Gennes
equations by classical hydrodynamical equations, which confine the theory to excitations of
typical wavelength λ ≫ ξ (i.e. energy ǫ ≪ µ), where ξ is the healing length of the conden-
sate [253,310], (ii) the Thomas-Fermi approximation of the ground-state density profile, which
is valid only under the assumption ξ ≪ σR, where σR is the typical (minimal) length scale on
which the external potential varies [310], (iii) when V is random, a white-noise approximation
which requires at least σR ≪ λ [233,310]. The approach developed here holds for any ordering
of the length scales ξ, σR and λ.

For a weak potential (VR ≪ µ), the Bogolyubov-de Gennes equations map approximately
onto a Schrödinger equation, with an effective potential Vǫ which depends on the bare poten-
tial V , the condensate density background, and the quasi-particle energy. An inspection of the
Fourier components of Vǫ reveals that the scattering of Bogolyubov quasi-particles is suppressed
in the low-energy phonon regime (ǫ . µ), due to the efficient screening of the long-wavelength
modulations of the external potential V by the condensate density background. In particu-
lar, screening affects the backscattering amplitude of Bogolyubov quasi-particles in the phonon
regime. These results hold in any dimension.

Localization of Bogolyubov quasi-particles in a random potential was studied in a 1D ge-
ometry. The Lyapunov exponent of the quasi-particle excitations was obtained by applying
the phase formalism of chapter 2 to the effective potential Vǫ. The phase formalism captures
the spatial decay of the quasi-particle modes in a simple fashion, and allows for the consider-
ation of correlated random potentials. In particular, the applicability of this technique is not
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restricted to (i) Gaussian disorder, (ii) (uncorrelated) white-noise potentials or (iii) models of
non-overlapping impurities, which are tractable analytically with transfer matrix methods [310].

Our results show a suppression of the localization of Bogolyubov quasi-particles for ǫ/µ → 0,
which is consistent with known results on the localization of phonons [65] and studies in the
white-noise limit [310]. The potential Vǫ provides a physical interpretation of this result in
terms of screening, and a unified description of the phonon (ǫ ≪ µ) and free-particle (ǫ ≫ µ)
regimes. In the free-particle regime, the Lyapunov exponent asymptotically approaches the
exponent of a bare Schrödinger particle. In uncorrelated potentials, the Lyapunov exponent of
Bogolyubov quasi-particles thus falls off as 1/ǫ in the high energy limit, and admits a maximum
around ǫ ≃ µ [310], at the crossover between the phonon and free-particle regimes.

In correlated potentials, the strength of localization is also determined by the detailed
Fourier spectrum of the correlation functions. In particular, the energy for which the strongest
localization is observed depends on the competition of the healing length ξ and the correlation
length σR. When the power spectrum of the random potential has a finite support, effective
mobility edges arise as in the bare-particle case discussed in chapter 2.

At second order in VR/µ, the effective Schrödinger equation displays the first correction
to the relation between the energy of the quasi-particle and its average wave vector. The
Lyapunov exponent Γ calculated one step beyond the Born approximation is qualitatively
similar to leading-order result. In particular, Γ scales as ǫ2 in the limit ǫ→ 0, for the correlated
speckle potential studied here. This result is probably generic at this level of the perturbation
theory.

Screening is expected to be present also for stronger disorder. It remains to be determined
how screening and strong disorder compete to shape the spectrum and the spatial properties
of the elementary excitations of the Bose gas at low energy.



Conclusion

In this thesis we have studied localization effects induced by the presence of quenched (static)
disorder in non-interacting and weakly-interacting one-dimensional Bose gases.

In chapter 2, we have concentrated on the one-dimensional Anderson localization of non-
interacting particles in correlated potentials. Our study has been motivated by the realization
that the localization properties of ultracold atoms in speckle potentials are strongly affected by
the presence of a high-momentum cutoff in the power spectrum of such random potentials, be-
yond which the Lyapunov exponent vanishes in the Born approximation [29,34]. While general
results establish that all single-particle states are exponentially localized in 1D, the question as
to how localization occurs beyond such a cutoff was open. We have calculated the Lyapunov
exponent in a weak-disorder expansion, two orders beyond the usual Born approximation. Our
results are general, and apply to potentials which may be e.g. correlated, non-Gaussian, or
asymmetric about the mean. We have shown that exponential localization occurs beyond the
momentum cutoff in speckle potentials, due to higher-order scattering processes, and shown
that the Lyapunov exponent undergoes a sharp drop across the cutoff for weak disorder, in
agreement with the existence of an effective mobility edge in 1D.

The remaining part of the thesis has been devoted to localization effects in interacting
one-dimensional Bose gases. In chapter 3, we have examined the ground state of a weakly-
interacting, disordered Bose gas, and established a diagram of the zero-temperature quantum
states as a function of the chemical potential and the disorder strength. We have identified
three regimes: a regime of delocalized disordered (quasi-) BEC for weak disorder and strong
mean-field interactions, a Lifshits-glass regime at very weak interactions or strong disorder, and
an intermediate regime of fragmented BEC. In the regime of fragmented BEC, the Bose gas is a
compressible insulator, identified with the Bose glass expected at weak interactions. No phase
transition, but a crossover is expected between the regimes of Lifshits glass and fragmented
BEC. In the Lifshits glass regime, the Bose gas populates a small number of strongly localized
single-particle states. The crossover to the regime of fragmented BEC proceeds as an increasing
number of single-particle states are populated and start developing overlaps. We have discussed
the location of the crossover boundary on the basis of scaling arguments. Conversely, the
crossover from BEC to fragmented BEC occurs as the amplitude of the density modulations
imposed on the Bose gas by the random potential becomes large. We have derived the shape of
the corresponding boundary from a precise analysis of the ground-state density modulations,
and emphasized the role of the correlation length of the disorder in driving the Bose gas either
into the smoothing regime or into the Thomas-Fermi regime. Finally, we have derived mean-
field equations of state in the limiting BEC and Lifshits-glass regimes, which we have found to
be in agreement with numerical calculations.

In chapter 4, finally, we have considered the elementary excitations of a disordered, weakly-
interacting Bose gas deep in the (quasi-) BEC regime. In dilute Bose gases, these elementary
excitations are accurately described by non-interacting Bogolyubov quasi-particles (BQPs).
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For weak external potentials, we have mapped the exact Bogolyubov-de Gennes equations
governing the quasi-particle modes on a Schrödinger-like equation. The effective potential
of this equation accounts for the combined effect of the external potential and the mean-
field density background on the quasi-particles, and shows that the low-energy excitations
are screened from the external potential by the density background. Specializing to the one-
dimensional geometry, we have shown that BQPs undergo Anderson localization, and we have
derived the corresponding Lyapunov exponent in the Born approximation. While BQPs localize
as bare Schrödinger particles at high energy, their localization is suppressed by screening in the
phonon regime at low energy. In uncorrelated potentials, the strongest localization occurs for
an excitation energy of the order of the chemical potential. In general, the energy of strongest
localization is determined by the competition of the healing length of the quasi-condensate
and the correlation length of the disorder. In the low-energy limit, which is important to
characterize the disordered Bose gas, a quadratic dependence of the Lyapunov exponent on the
BQP energy has been found, and shown to persist one order beyond the Born approximation.

Outlook

Anderson localization and the phenomena associated with the interplay of disorder and inter-
actions in quantum systems form an important field of research in condensed-matter physics.
Since 2005, experiments with ultracold atomic gases have multiplied to address the physics
of disordered systems [15], and the high degree of control of these systems offers original
prospects [16]. Systematic experimental investigations into the interplay of disorder and in-
teractions are just starting, focusing in particular on the weakly-interacting regime of one-
dimensional Bose gases [33]. A special emphasis has been set in this thesis on analytical
approaches which take statistical correlations of the disorder into account. Correlations are
present in any realistic random potential, and may change the qualitative behavior of disordered
systems. Two such effects have been presented in this thesis. The first one is the possibility of
an effective mobility edge in 1D, revealed in the studies of Refs. [29,34] and analyzed in detail
in chapter 2. The second one is the different power-law dependence of the boundary between
the regimes of BEC and fragmented BEC, which reflects the importance of the smoothing of
the disorder in the interacting Bose gas. As the statistical properties of disordered optical po-
tentials are well controlled in experiments with ultracold atoms, the effects of both interactions
and statistical correlations should be observable in ongoing and future experiments.

From the theoretical point of view, we identify several possible extensions of our work and
directions of future research. First, in connection with the Anderson localization of single
particles in 1D, a possible extension would be the analysis of fluctuations around the Lyapunov
exponent in correlated potentials. Such fluctuations are an important aspect of localization [81].
For uncorrelated potentials, the full probability distribution of the fluctuations is known from
the solution of Fokker-Planck equations [75,86]. These equations cannot be solved for arbitrary
correlations. The phase formalism, on the other hand, may be used to calculate not only the
average exponential decay, but also all the higher moments. Such calculations would be relevant
to analyze deviations from the Gaussian fluctuations (1.13) and possible deviations from one-
parameter scaling in correlated potentials. A few first steps have been made in this direction,
and preliminary results, to be checked, indicate a departure from Gaussian fluctuations in
non-Gaussian disorder.
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Second, in connection with the characterization of the disordered weakly-interacting Bose
gas, an important task would be to develop beyond-mean-field approaches to describe many-
body correlations. Possibles avenues to analyze the crossover between Lifshits glass and frag-
mented BEC, the fragmented BEC itself, and the insulator-superfluid transition would be
multi-orbital mean-field calculations, modeling of the Bose gas with Josephson junctions, and
Bogolyubov theory. The two latter approaches have been recently used in Refs. [244, 289] to
describe some aspects of the transition from superfluid to Bose glass.

Finally, the study of the Anderson localization of Bogolyubov quasi-particles in disordered
BECs could be pursued both theoretically and experimentally. Theoretically, it would be
interesting to describe the localization of BQPs in higher dimensions, using diagrammatic
approaches to quantum transport [320]. An original feature in such developments would be the
anisotropic scattering of BQPs (see Ref. [309] and section 4.2.4). In principle, the screening
of low-energy excitations from the disorder by the ground-state background could lead to a
striking result, namely the possible existence of two mobility edges in 3D. In such a scenario,
a first delocalization transition would occur at high-energy, as for bare particles, and a second
one would occur towards the low energies, as the effect of disorder is suppressed in the limit of
vanishing BQP energy. Conversely, we can speculate about a regime of parameters where no
BQP state would be localized at all. Experimentally, the Anderson localization of BQPs should
be observable with Bragg-spectroscopy techniques, which allow the excitation of a (quasi-)
condensate at given wave vector and energy [315].





APPENDIX A

Correlation functions of speckle
potentials

We derive in this appendix the correlation functions of speckle potentials. Such potentials have
been presented in section 1.3.3. In brief, they derive from a light intensity pattern I(r):

V (r) = VR

(
I(r)

〈I〉 − 1

)
with I(r) ∝ |E(r)|2, (A.1)

where |VR| =
√
〈V 2〉 is the root-mean-square amplitude of the potential, the sign of VR might

be positive or negative [see Eq. (1.44)], and E is the electric field amplitude, which is taken as
a scalar. The field E is a complex Gaussian random field, which is assumed to have homoge-
neous statistical properties. Its two-point correlation function CE(r) = 〈E(r0)E(r0 + r)〉 has a
cutoff at some critical value kc for Fourier components in the transverse plane [see Eqs. (1.51)
and (1.52)].1 We use this cutoff to define the correlation length σR of speckle potentials:

σR ≡ 1

kc
. (A.2)

Speckle correlation functions

The correlation functions of V are defined as

Cn(r1, . . . , rn−1) = 〈V (r + r1) · · ·V (r + rn−1)〉, (A.3)

and we introduce reduced correlation functions cn to scale out the disorder amplitude and the
correlation length:

Cn(r1, r2, · · · , rn−1) = V n
R
cn(u1,u2, · · · ,un−1), (A.4)

where ui = ri/σR. Accordingly, we may write the speckle potential as

V (r) = VR ×
(
|a (r/σR)|2 − 〈|a (r/σR)|2〉

)
, (A.5)

where the function a(u) is proportional to the electric field amplitude E(r), and is therefore
a (circular) complex Gaussian random field [181]. As a consequence of the Gaussian moment
theorem, the n-point correlation functions of |a|2 factorize into products of two-point correlators:

〈a∗0 · · ·a∗n−1a0 · · ·an−1〉 =
∑

Π∈Sn

〈a∗0aΠ(0)〉 · · · 〈a∗n−1 · · ·aΠ(n−1)〉, (A.6)

1For simplicity, we do not discuss the “longitudinal” correlation function of the speckle field. In turns out
that this longitudinal component also has a sharp cutoff in the Fourier spectrum [321].
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where ap is a shorthand for a(up), and Π runs trough the n! permutations of [0, n − 1℄. The
properties of expression (A.6) are entirely determined by the field-field correlator

ca(u1) = 〈a∗(u0)a(u0 + u1)〉. (A.7)

Properties of the reduced field correlator

Owing to the expansion 〈|a|4〉 = 2〈|a|2〉2, the normalization VR =
√
〈V 2〉 imposes

ca(0) = 〈|a|2〉 = 1. (A.8)

Homogeneity of the statistical properties of the speckle field implies

ca(−u) = c∗a(u), (A.9)

which ensures that the Fourier transform ĉa is real. As noted above, a key property of the
electric field-field correlator CE in a speckle pattern is that it bears no Fourier components
beyond the high-momentum cutoff kc in the “transverse plane” (the plane perpendicular to the
optical axis in Fig. 1.10). Denoting by c⊥a (u) the restriction of ca(u) to vectors in that plane,
we find that c⊥a (u) has a compact support, bounded above by one:

ĉ⊥a (q) = 0 for |q| > 1 = kcσR. (A.10)

In this thesis, we only consider geometries which are confined to the transverse plane. Then,
the correlator ca coincides with c⊥a , and has the same cutoff.

Reduced correlation functions of the speckle potential

In Eq. (A.6) we almost recognize the n-point correlation function of the potential. Because the
average of 〈|a|2〉 has been substracted from the definition of the potential, we obtain instead

cn(u1, . . . ,un−1) =
∑

Π∈S′
n

ca(uΠ(0) − u0)ca(uΠ(1) − u1) · · · ca(uΠ(n−1) − un−1), (A.11)

where u0 = 0 and S ′
n is the ensemble of the permutations of [0, n− 1℄ which leave no element

unchanged. Since ca(0) = 1, the number of those permutations is

cn(0, . . . , 0) =
〈(I − 〈I〉)n〉

〈I〉n = 〈I〉−n

n∑

p=0

n!

p!(n− p)!
(−1)p〈I〉p〈In−p〉 =

n∑

p=0

(−1)pn!

p!
, (A.12)

where we have used the fact that 〈Im〉 = m!〈I〉m [181]. With this, the first few correlators read

c2(u) = |ca(u)|2 (A.13)

c3(u,v) = ca(u)ca(v − u)ca(−v) + c.c. (A.14)

c4(u,v,w) = cA4 (u,v,w) + cB4 (u,v,w) + cC4 (u,v,w)

+[cD4 (u,v,w) + c.c.] + [cE4 (u,v,w) + c.c.] + [cF4 (u,v,w) + c.c.], (A.15)
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Figure A.1: Graphical representation of the components of the correlators cn [a) n = 2, b) n = 3,
c) n = 4] for speckle potentials V such that 〈V 〉 = 0. The correlators are obtained by drawing all
possible ways to connect the n points in closed, oriented, possibly disconnected paths, without
leaving isolated points.

where

cA4 (u,v,w) = |ca(u)|2|ca(w − v)|2 (A.16)

cB4 (u,v,w) = |ca(v)|2|ca(u −w)|2 (A.17)

cC4 (u,v,w) = |ca(w)|2|ca(v − u)|2 (A.18)

and

cD4 (u,v,w) = ca(u)ca(v − u)ca(w − v)ca(−w) (A.19)

cE4 (u,v,w) = ca(v)ca(w − v)ca(u −w)ca(−u) (A.20)

cF4 (u,v,w) = ca(w)ca(u− w)ca(v − u)ca(−v). (A.21)

The terms (A.16) to (A.18) may be called the Gaussian part of the four-point correlation
function, as they factorize into two-point correlators, and the terms (A.19) to (A.21), with their
complex conjugates, would form the non-Gaussian part. All these term can be constructed in a
pictorial approach shown in Fig. A.1, where the correlators are obtained from all the possible
ways to connect n points in closed, oriented, but possibly disconnected paths. The prescription
〈V 〉 = 0 amounts to excluding all graphs with isolated points. In expressions (A.14) and (A.15),
the complex conjugates corresponds to paths with reversed direction [compare e.g. Eq. (A.14)
and Fig. A.1(b)]. It is therefore clear that the correlation functions of the speckle potential are
all symmetric with respect to a simultaneous change of sign of all the coordinates, whatever the
form of the field correlator ca is. This symmetry is essentially due to the Gaussian nature of
the underlying electric field, the group structure of Sn, and the fact that for every permutation
(path) Π left in S ′

n, its inverse (the reversed path) Π−1 is also in S ′
n.





APPENDIX B

Fourth-order Lyapunov exponent in a
speckle potential

In this appendix we calculate the fourth perturbation order of the Lyapunov exponent of a
single particle in a 1D speckle potential. The particle is described by the 1D Schrödinger
equation [

−~
2∇2

2m
+ V (z)

]
ψ(z) = Eψ(z), (B.1)

where V is a speckle potential (see section 1.3.3). The wave function ψ is assumed to be real
and to correspond to an eigenstate of the Schrödinger operator. Then, the Lyapunov exponent
is defined as

γ = − lim
|z−z0|

〈ln[r(z)/r(z0)]〉
|z − z0|

, (B.2)

where r =
√
ψ2 + (∂zψ)2/k2, and k is related to the energy through E = ~

2k2/2m.

For weak disorder, the Lyapunov exponent can be calculated in a perturbation expansion

γ = γ(2) + γ(3) + γ(4) + · · · , (B.3)

where the superscripts indicate increasing powers of the potential amplitude VR. Generic ex-
pressions for γ(n) (n = 2, 3, 4) have been expounded in chapter 2. The general form is

γ(n) =

(
ǫR
kσR

)n

fn(kσR), (B.4)

where ǫR = 2mσ2
RVR/~

2, the parameter σR is the correlation length of the disorder, and fn is
a function which depends on the reduced n-point correlation function cn of the potential [see
Eqs. (2.95) to (2.100)].

In speckle potentials, the correlation functions are all determined by a field-field correlator ca
which has a cutoff in Fourier space (see appendix A):

ĉa(q) = 0 for |q| > κc = 1. (B.5)

The functions f2 and f3 for speckle potentials have been derived in section 2.3.1. Here we
present the results of a calculation of the function f4 for arbitrary ca, as well as the specific
speckle potential studied in section 2.3.2.
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Correlation functions

The reduced four-point correlation function of a 1D speckle potential reads (see appendix A)

c4(u, v, w) = cA4 (u, v, w) + cB4 (u, v, w) + cC4 (u, v, w)

+[cD4 (u, v, w) + c.c.] + [cE4 (u, v, w) + c.c.] + [cF4 (u, v, w) + c.c.], (B.6)

where cA4 , cB4 and cC4 are the factorized (“Gaussian”) components

cA4 (u, v, w) = |ca(u)|2|ca(w − v)|2 (B.7)

cB4 (u, v, w) = |ca(v)|2|ca(u− w)|2 (B.8)

cC4 (u, v, w) = |ca(w)|2|ca(v − u)|2, (B.9)

and cD4 , cE4 and cF4 are the unfactorized parts

cD4 (u, v, w) = ca(u)ca(v − u)ca(w − v)ca(−w) (B.10)

cE4 (u, v, w) = ca(v)ca(w − v)ca(u− w)ca(−u) (B.11)

cF4 (u, v, w) = ca(w)ca(u− w)ca(v − u)ca(−v). (B.12)

The f4 function

Here we calculate the function f4 starting from formula (2.92):

f4(κ) = −1

8
lim

ηi→0+

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw c4(u, v, w) eη1u+η2v+η3w ×

{cos[2κ(−u+v+w)] + 2 cos[2κw]} . (B.13)

Integral (B.13) is split into terms of the form

IL
κ = lim

ηi→0+

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw cL4 (u, v, w) eη1u+η2v+η3w ei2κw (B.14)

JL
κ = lim

ηi→0+

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw cL4 (u, v, w) eη1u+η2v+η3w ei2κ(−u+v+w), (B.15)

where L = A,B,C,D,E, F . Then, we obtain f4(κ) as the sum

f4(κ) = − 1

16
Re [ 2IA

κ + 2IA
−κ + JA

κ + JA
−κ+

2IB
κ + 2IB

−κ + JB
κ + JB

−κ+

2IC
κ + 2IC

−κ + JC
κ + JC

−κ+

4ID
κ + 4ID

−κ + 2JD
κ + 2JD

−κ+

4IE
κ + 4IE

−κ + 2JE
κ + 2JE

−κ+

4IF
κ + 4IF

−κ + 2JF
κ + 2JF

−κ ] . (B.16)

As calculating all the terms in (B.16) is a lengthy task, we do not reproduce all the details
here. Let us simply outline the principle of the calculation by an example.
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Example

Consider the integral IA
κ for the part of the correlation function which reads1

cA4 (u, v, w) = ca(u)ca(−u)ca(w − v)ca(v − w). (B.17)

Going to Fourier space, we have

IA
κ = lim

ηi→0+

1

(2π)2

∫∫∫∫
dq1 dq2 dq3 dq4 ĉa(q1)ĉa(q2)ĉa(q3)ĉa(q4) ×

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw eiu(q1−q2−iη1)eiv(−q3+q4−iη2)eiw(q3−q4+2κ−iη3). (B.18)

The triple integral in coordinate space evaluates to

∫ 0

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw eiu(q1−q2−iη1)eiv(−q3+q4−iη2)eiw(q3−q4+2κ−iη3) =

i

(q1 − q2 + 2κ− iη1 − iη2 − iη3)(2κ− iη2 − iη3)(q3 − q4 + 2κ− iη3)
. (B.19)

Taking the limit ηi → 0+ and using the identity

lim
η→0+

1

q − iη
= P

(
1

q

)
+ iπδ(q), (B.20)

where P(1/q) denotes the Cauchy principal value, we obtain

IA
κ =

i

(2π)2

∫∫∫∫
dq1 dq2 dq3 dq4 ĉa(q1)ĉa(q2)ĉa(q3)ĉa(q4) ×

[
1

q1−q2+2κ
+ iπδ(q1−q2+2κ)

]
× 1

2κ
×
[

i

q3−q4+2κ
+ iπδ(q3−q4+2κ)

]
, (B.21)

where we have dropped the P symbol for simplicity. Taking the real part, we find

Re[IA
κ ] = 2Rκ

1 , (B.22)

where Rκ
1 is defined as

R1
κ = − 1

8πκ

∫
dq
︷ ︸︸ ︷
ĉa(q)ĉa(q + 2κ)×

∫∫
dq dq′

ĉa(q)ĉa(q
′)

q − q′ + 2κ
(cA4 , κc). (B.23)

The brace in this expression indicates a product of field correlators ca which vanishes when κ
exceeds a certain threshold. This threshold is equal κc in R1

κ, so that R1
κ vanishes for κ > κc.

1This is simple rewriting of Eq. (B.7), owing to the property ca(−u) = ca(u)∗.
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Other terms

The other terms in Eq. (B.16) are calculated along the lines of Re[IA
κ ]. We find that they are

determined by a number of “elementary” building blocks Ri
κ:

Re[IA
κ ] = 2R1

κ (B.24)

Re[JA
κ ] = R1

κ (B.25)

Re[IB
κ ] = 2R2

κ +R3
κ (B.26)

Re[JB
κ ] = R4

κ (B.27)

Re[IC
κ ] = R5

κ (B.28)

Re[JC
κ ] = R6

κ (B.29)

Re[ID
κ ] = 3R7

κ +R8
κ (B.30)

Re[JD
κ ] = 2R9

κ +R10
κ +R11

κ (B.31)

Re[IE
κ ] = R12

κ +R12
−κ +R13

κ +R14
κ (B.32)

Re[JE
κ ] = R15

κ +R15
−κ − R10

κ +R11
κ (B.33)

Re[IF
κ ] = 2R16

κ +R17
κ +R8

−κ (B.34)

Re[JF
κ ] = 2R12

κ +R18
κ +R14

κ (B.35)

Note that some Ri
κ terms appear several times in Eqs. (B.24) to (B.35).

On the table of the following pages we have listed the expressions of the Ri
κ terms for an

arbitrary field-field correlator ĉa and for

ĉa(q) =
√
π/2Θ(1 − |q|), (B.36)

where Θ is the Heaviside step function. The terms Ri
κ all have a cutoff, indicated in the right

column. Braces in the left column indicate which correlators introduce the largest cutoff. The
expressions for Re[IL

−κ] are obtained from those listed for Re[IL
+κ] by substituting κ for −κ in

the Ri
κ terms. For field-field correlators ca which are even in Fourier space, such as (B.36),

the substitution leaves the integrals Ri
κ unchanged. In the explicit expressions for the simple

speckle potential (B.36) listed in the table, κ should be read as |κ|.
Ultimately, with the elements listed in the table, the function f4 for a speckle potential

reads

f4(κ) = − 1

16

{
5R1

κ + 4R2
κ + 2R3

κ + R4
κ +

2R5
κ + R6

κ + 12R7
κ + 8R8

κ +

4R9
κ + 4R11

κ + 12R12
κ + 4R13

κ +

6R14
κ + 4R15

κ + 8R16
κ + 4R17

κ +

5R1
−κ + · · ·

· · · + 4R17
−κ

}
(B.37)

It turns out that the R10 and R18 terms do not appear in the final sum for f4.

Remark - The results obtained for the “Gaussian“ component of the speckle potentials
(integrals Rκ

i , i = 1..6 below) are expressed both as functions of the field-field correlated ca and
as functions of the two-point correlator c2. In the latter form, they apply not only to speckle
potentials, but also to other models of disorder.
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R1
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4κ
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dq
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R4
κ =

∫
dq

q

︷ ︸︸ ︷
∂ĉ2(q − 2κ)[ĉ2(q + 2κ)−

︷ ︸︸ ︷
ĉ2(2κ)]

Cutoff: κc ≡ 1
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R4
−κ = R4

κ

R4
κ = Θ(1/2 − κ)

π

4
{2 − 6κ − (1 + κ) ln(1 − κ) + 2κ ln(κ) + (1 − κ) ln(1 + κ)}

+Θ(κ − 1/2)Θ(1 − κ)
π

4
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}
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∂ĉ2(q − 2κ)[ĉ2(q + 2κ)−

︷ ︸︸ ︷
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ĉ2(q − 2κ)[∂ĉ2(q + 2κ)−
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R7
κ = − 1

4π
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R15
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APPENDIX C

The dilogarithm function Li2

The dilogarithm function [227], plotted in Fig. C.1 below, is defined by

Li2(x) =
∞∑

k=1

xk

k2
=

∫ 0

x

ln(1 − t)

t
dt (C.1)

on the real-valued domain x ∈] − ∞, 1]. It is a specialization of the polylogarithm function
Lis(x) =

∑∞
k=1 x

k/ks for s = 2, and arises in chapter 2 from the integration of the natural
logarithm, as can be seen in the definition above.
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1.0

x

Li2(x)/Li2(1)

Figure C.1: Dilogarithm function on the domain ] −∞, 1], normalized by Li2(1) = π2/6.

The dilogarithm satisfies a number of functional identities. We quote here the most useful
ones in the context of chapter 2 and appendix B:

Li2(x) + Li2(1 − x) =
π2

6
− ln(x) ln(1 − x) (C.2)

Li2(1 − x) + Li2(1 − 1/x) = −1

2
ln2(x). (C.3)

These identities can be used to rewrite some of the contributions to the function f4 of Eq. (2.129)
and the expressions listed in appendix B in a different fashion. Let us also give a few limiting
values which are relevant for the analysis:

Li2(1) = ζ(2) =
π2

6
(C.4)

Li2(1/2) =
π2

12
− 1

2
ln2(2) (C.5)

Li2(0) = 0 (C.6)

Li2(x) ∼ −1

2
ln2(−x) [x→ −∞]. (C.7)

Here ζ is Riemann’s zeta function.





APPENDIX D

Gross-Pitaevskii equation in standard
geometries

At the level of the mean field, the ground-state density profile n0(r) of weakly-interacting bosons
with chemical potential µ is determined by the Gross-Pitaevskii equation (GPE)

[
−~

2∇2

2m
+ Vext(r) + gn0(r) − µ

]√
n0(r) = 0, (D.1)

where g is the coupling constant of the bosons (assumed to be positive) and Vext is the external
potential (see section 3.3.2).

We review here well-known results on the ground-state solution of the GPE in a few ge-
ometries which are relevant to the study of chapter 3. We focus on the ground-state wave
function

√
n0 and on the equation of state, which relates the chemical potential µ to the num-

ber of bosons, N =
∫
n0, or their average density 〈n0〉 in the system.

The simple cases presented below also provide an elementary illustration of the competition
of the energy and length scales which shape the ground-state density profile. The same type of
competition is analyzed in the case of random potentials in chapters 3 and 4.

Free space

In free space, the potential and kinetic energy terms vanish in the GPE, so that the density
profile is homogeneous:

n0(r) =
µ

g
. (D.2)

The system has an infinite number of particles, but a finite density determined by the chemical
potential µ > 0. The equation of state then reads

µ = g〈n0〉, (D.3)

where 〈n0〉 is the average number of bosons per unit volume. These results obviously hold for
a constant potential V0 and a chemical potential µ = g〈n0〉 + V0 > V0.

1D box potential

Consider a one-dimensional box [−L,L] with N bosons, i.e. an average density 〈n0〉 = N/2L.
The potential Vext(z) is assumed to vanish identically inside the box. If periodic boundary
conditions are imposed, the problem is translation invariant, the density profile is homogeneous
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and the equation of state reads µ = gN/2L. If, on the other hand, the density profile is required
to vanish on the box boundaries, i.e. if we consider

Vext(z) =

{
0 if |z| < L
+∞ otherwise

, (D.4)

then kinetic terms arise because of the inhomogeneity of the density profile, and the full non-
linear GPE needs to be solved.

Density profile

Simple solutions of the GPE exist for piece-wise constant potentials [277,279]. For the 1D box
potential (D.4), we find

√
n0(z) =

√
N

2L

√
ηK(η)

K(η) − E(η)
sn
[( z
L

+ 1
)
K(η); η

]
, (D.5)

where sn(u; η) is a Jacobi elliptic function [280]. The parameter η is determined as the unique
solution on the interval [0, 1] of the equation 2 [K(η) − E(η)] = Eg/EL, where Eg = gN/2L
is the average mean-field interaction energy, EL = ~

2/2mL2 is a kinetic energy associated
with the boundaries (and, roughly, with the single-particle ground-state energy in the same
potential). The functions K and E are called complete elliptic integrals of the first and second
kind, respectively [280].

The Thomas-Fermi approximation

Expression (D.5) is plotted in Fig. D.1 for various ratios of Eg and EL. The density profile
“buldges“ with increasing Eg/EL. For dominating mean-field interaction energy (Eg/EL ≫ 1),
the density is almost homogeneous over the entire system. At the boundaries, it drops to
zero on the length scale of a few ξ, where ξ is the healing length, defined from the chemical
potential µ as ξ = ~/

√
4mµ.

The qualitative shape of this density profile is a very well known result. We may take
it as a trivial illustration of the fact that, when the mean-field interaction energy dominates
the kinetic energy associated with the spatial scale of the variations of the potential, the density
profile almost perfectly adapts to the local value of the potential. In other words, quantum kinetic
terms play a marginal role in this limit. In the present case, the potential is flat inside the box,
so the density profile approaches a flat distribution. This result generalizes to inhomogeneous
potentials, and forms the basis of the well-known Thomas-Fermi approximation for weakly
interacting gases.

In this thesis, we examine certain regimes where the length scale of the variations of the
potential does play a role, invalidating the Thomas-Fermi approximation (see chapters 3 and 4).

Equation of state

In the absence of interactions, the chemical potential µ is simply equal to the single-particle
ground-state energy π2EL/4. Approaching the Thomas-Fermi limit (Eg/EL ≫ 1), we have
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Figure D.1: Ground-state solution of the Gross-Pitaevskii equation in a 1D potential box of size
2L with zero Dirichlet boundary conditions. The profiles

√
n0(z) depend on the competition of

the mean-field interaction energy Eg = gN/2L and the kinetic energy EL = ~
2/2mL2 associated

with the boundaries. The curves follow from the analytical solution (D.5), with values of η such
that Eg/EL = 0, 1, 10, 100,∞ (in solid, dotted, dashed, thick, and flat solid line respectively).

µ ∼ Eg, that is, µ ∼ g〈n0〉, as expected from the homogeneous limit.1 Since we have µ ∼ Eg in
this limit, the criterion Eg/EL ≫ 1 can also be written ξ ≪ L.

Harmonic trap

Let now Vext be a d-dimensional harmonic trap with isotropic frequency ω,

Vext(ρ) =
1

2
mω2ρ2, (D.6)

where ρ is the distance from the trap centre.

Non-interacting case

In the absence of interactions, the bosons populate the ground-state of the harmonic oscillator,
with density

n0(ρ) =
N

(
√
πaho)d

e−ρ2/a2
ho , (D.7)

where aho is the harmonic oscillator length [32]

aho =
√

~/mω. (D.8)

The corresponding chemical potential is

µ =
d

2
~ω. (D.9)

1The exact result is found as

µ =
(1 + η)K(η)

2[K(η) − E(η)]
Eg,

which for Eg/EL ≫ 1 expands as µ ≃ Eg(1 +
√

2EL/Eg ).
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Thomas-Fermi limit

The interacting case has no simple analytic solution. As in the 1D box potential, however, the
Thomas-Fermi limit, where the mean-field interactions or the chemical potential by far exceed
the ground-state single-particle kinetic energy, is easy to discuss. The Thomas-Fermi limit is
obtained here for

µ ≫ ~ω (D.10)

or, equivalently,

ξ ≪ aho, (D.11)

with ξ = ~/
√

4mµ.

Density profile - An inspection of the GPE shows that the kinetic energy associated with
the oscillator ground-state has a relative contribution of order (ξ/aho)

2 ≪ 1 to the chemical
potential. In the Thomas-Fermi regime, the kinetic term in the GPE is usually simply discarded,
so that the density profile reads

n0(r) ≃
{ µ−Vext(r)

g
if Vext(r) < µ

0 otherwise
. (D.12)

For the harmonic trap (D.6), this approximation gives the cloud the shape of an inverted
parabola:

n0(ρ) ≃
{

µ
g

(1 − ρ2/R2) if ρ < R =
√

2µ
mω2

0 otherwise
. (D.13)

The Thomas-Fermi approximation breaks down only in a small region at the edges of the cloud,
where the kinetic energy plays an important role and the density smoothly drops to zero [32].

Equation of state - Integration of the density profile (D.13) yields the equation of state2

gN ≃ (2π)d/2µ1+d/2

Γ
(

d
2

+ 2
)
(mω2)d/2

(D.14)

or, equivalently,

µ ≃
[
(2π)−d/2Γ

(
d

2
+ 2

)
(mω2)d/2gN

]2/(2+d)

, (D.15)

with mω2 = ~ωa−2
ho .

Intermediate regime

In the intermediate regime, the density profile changes continuously from the oscillator ground-
state Gaussian into the Thomas-Fermi inverted parabola, and the equation of state crosses

2Γ is the gamma function [280], with the relevant values Γ(5/2) = 3
√
π/4, Γ(2) = 2, and Γ(7/2) = 15

√
π/8.
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Figure D.2: Equation of state in a 2D harmonic trap (ω is the trapping frequency, g the 2D
coupling constant, and N the number of atoms in the 2D geometry). The solid line is given by
Eq. (D.16), and the red circles represent data obtained by solving the 2D GPE numerically.

over from the oscillator ground-state energy (D.9) to expression (D.15) for increasing mean-
field interactions. In the particular case d = 2, an efficient interpolation between the two
limiting regimes is provided by

µ =

√
(~ω)2 +

mω2

π
gN. (D.16)

To our knowledge, it is difficult to provide a rigorous justification of this formula [322]. However,
numerical calculations seem to be in perfect agreement with this expression. We solved the 2D
GPE for the ground state, using standard schemes of propagation in imaginary time [317,318].
The numerical results, shown in Fig. D.2, agree with formula (D.16) within 1% over the whole
range of parameters.





APPENDIX E

Perturbative solution of the
Gross-Pitaevskii equation
for a weak potential

We determine here the ground-state solution of the Gross-Pitaevskii equation (GPE)
[
−~

2∇2

2m
+ V (r) + gn0(r) − µ

]√
n0(r) = 0 (E.1)

for a potential V with typical amplitude VR such that

VR ≪ µ or VR ≪ g〈n0〉, (E.2)

where 〈n0〉 is average number of bosons per unit volume. Averages are here understood in
the spatial sense. If V is a random potential, we assume that its statistical properties are
independent of absolute position in the system, and statistical averages then coincide with
spatial averages.

Any of the assumptions in (E.2) allows to seek an exact solution in the form

n0(r) = n
(0)
0 + δn0(r) (E.3)

where n
(0)
0 is the homogeneous solution found in the absence of potential (see below), and

δn0(r) is a small perturbation which satisfies |δn0(r)| ≪ n
(0)
0 . The perturbation is found as an

expansion
δn0(r) = n

(1)
0 (r) + n

(2)
0 (r) + · · · , (E.4)

where the superscripts indicate increasing powers of VR.
Solution (E.3) can always be written

n0(r) =
µ− Ṽ (r) + ∆

g
, (E.5)

where
Ṽ (r) = g〈n0〉 − gn0(r) (E.6)

is a field with vanishing average, and the offset term

∆ = g〈n0〉 − µ (E.7)

measures the deviation from the equation of state obtained in the unperturbed case (µ = g〈n0〉).
The quantities Ṽ and ∆ have their own expansion in powers of VR, which are identified term
by term from the r-dependent and constant parts in the expansion of n0(r).
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In general, ∆ does not vanish, and the perturbation expansion takes a slightly different form
depending on whether the chemical potential µ or the average density 〈n0〉 is kept constant
in the process. In the latter case, for instance, the chemical potential is also expanded. We
therefore present both derivations below.

Expansion at fixed chemical potential

In this section, the GPE is solved for a given chemical potential. Accordingly, the invariant
length scale in the problem is the healing length

ξ =
~√
4mµ

, (E.8)

the GPE rewrites [
−2ξ2∇2 − 1 +

V (r)

µ
+
gn0(r)

µ

]√
n0(r) = 0, (E.9)

the unperturbed solution (obtained for V = 0) is

n
(0)
0 =

µ

g
, (E.10)

and the small parameter of the expansion is

β =
VR

µ
. (E.11)

Form (E.9) suggests an expansion of the square root of the density as

√
n0(r) =

√
µ

g

[
φ(0)(r) + φ(1)(r) + φ(2)(r) + . . .

]
, (E.12)

where φ(0)(r) = 1 is the solution in the absence of external potential, and the functions φ(n)(r)
are real-valued. We thus have

n0(r) =
µ

g

∑

i,j

φ(i)(r)φ(j)(r), (E.13)

and the quantities of interest at any order in the expansion series are readily obtained by
collecting the terms at the corresponding order:

n
(n)
0 (r) =

µ

g

∑

0≤i,j≤n
i+j=n

φ(i)(r)φ(j)(r) for n ≥ 0, (E.14)

whence

∆(0) = 0 (E.15)

∆(n) = µ
∑

0≤i,j≤n
i+j=n

〈φ(i)φ(j)〉 for n ≥ 1, (E.16)
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and

Ṽ (0)(r) = 0 (E.17)

Ṽ (n)(r) = ∆(n) − µ
∑

0≤i,j≤n
i+j=n

φ(i)(r)φ(j)(r) for n ≥ 1. (E.18)

The functions φ(n)(r) are determined by inserting the perturbation series (E.12) into the
GPE (E.9) and by collecting the terms of order n. The explicit calculation of φ(n) becomes
increasingly tedious for larger n values, as the number of terms involved grows like n2. Yet,
the above perturbation hierarchy produces a simple recursion formula which can be used in
analytical or numerical calculations. Following the procedure outlined above, for all n ≥ 1, we
obtain

φ(n) = −1

2
Gξ ∗



V

µ
φ(n−1) +

∑

i+j+k=n

0≤i,j,k≤n−1

φ(i)φ(j)φ(k)


 (E.19)

In this expression, Gξ(r) is the Green function associated with the operator −ξ2∇2 + 1, and
the star denotes the convolution product

(f ∗ g)(r) =

∫
dr′ f(r − r′)g(r′). (E.20)

The convolution kernel Gξ is best written in Fourier space, where it takes a simple Lorentzian
form:

Gξ(q) =
(2π)−d/2

1 + (|q|ξ)2
. (E.21)

The Fourier transform is defined here as

f(q) = (2π)−d/2

∫
drf(r)e−iq.r. (E.22)

Applying the recursive procedure up to second order, we find

φ(0) = 1 (E.23)

φ(1) = − 1

2µ
Gξ ∗ V (E.24)

φ(2) =
1

8µ2
Gξ ∗

[
2V (Gξ ∗ V ) − 3(Gξ ∗ V )2

]
. (E.25)

Then, using Eqs. (E.16) and (E.18), we find

∆(1) = 0 (E.26)

Ṽ (1) = Gξ ∗ V (E.27)

and

∆(2) =
1

4µ

〈
Gξ ∗

[
2V (Gξ ∗ V ) − 3(Gξ ∗ V )2

]
+ (Gξ ∗ V )2

〉
(E.28)

Ṽ (2) = ∆(2) − 1

4µ

{
Gξ ∗

[
2V (Gξ ∗ V ) − 3(Gξ ∗ V )2

]
+ (Gξ ∗ V )2

}
. (E.29)
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Note, in particular, that the leading-order fluctuation field Ṽ (1) has a very simple form:

Ṽ (1)(r) =

∫
dr′ Gξ(r− r′)V (r′) (E.30)

Ṽ (1)(q) =
V (q)

1 + (|q|ξ)2
. (E.31)

The leading-order deviation from the homogeneous equation of state, on the other hand, is
readily rewritten as

∆(2) =
1

2µ

〈
V (Gξ ∗ V ) − (Gξ ∗ V )2

〉
. (E.32)

Introducing the autocorrelation function1

C2(r) = 〈V (r′)V (r′ + r)〉, (E.33)

and its reduced version c2 defined by

C2(r) = V 2
R
c2(r/σR), (E.34)

where σR is chosen as a characteristic scale of variation of the potential V , we finally obtain

∆(2) =
V 2

R
σd

R

2(2π)d/2µ

∫
dq

(|q|ξ)2

[1 + (|q|ξ)2]2
ĉ2(qσR). (E.35)

Expansion at fixed average density

The GPE (E.1) is now solved for a given average density 〈n0〉. As the perturbation orders differ
from those obtained at fixed chemical potential, the quantities are here labeled with a bar (e.g.
β̄ instead of β) to avoid any ambiguity as to which quantities change or remain unchanged.
The invariant length scale in the problem is now

ξ̄ =
~√

4mg〈n0〉
, (E.36)

the GPE rewrites [
−2ξ̄2∇2 − µ̄

g〈n0〉
+
V (r)

g〈n0〉
+
n̄0(r)

〈n0〉

]√
n̄0(r) = 0, (E.37)

the unperturbed solution is

n̄
(0)
0 = 〈n0〉 (E.38)

µ̄(0) = g〈n0〉, (E.39)

and the small parameter of the expansion is

β̄ =
VR

g〈n0〉
. (E.40)

1Note that, since averages are here understood in the spatial sense, the autocorrelation function C2 takes
only one argument, whether V is random or not.
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The square root of the density and the chemical potential are expanded as
√
n̄0(r) =

√
〈n0〉

[
φ̄(0)(r) + φ̄(1)(r) + φ̄(2)(r) + . . .

]
(E.41)

µ̄ = g〈n0〉
[
m̄(0) + m̄(1) + m̄(2) + . . .

]
(E.42)

with

φ̄(0)(r) = 1 (E.43)

m̄(0) = 1. (E.44)

The density follows as

n̄0(r) = 〈n0〉
∑

i,j

φ̄(i)(r)φ̄(j)(r) (E.45)

n̄
(n)
0 (r) = 〈n0〉

∑

0≤i,j≤n
i+j=n

φ̄(i)(r)φ̄(j)(r) for n ≥ 0. (E.46)

As the average density is kept constant, the offset introduced by the potential between the
chemical potential and the average mean-field energy is now carried by µ̄, and the higher-order
terms of n̄0(r) have only fluctuations. Therefore, defining

¯̃
V (r) = g〈n0〉 − gn̄0(r) (E.47)

∆̄ = g〈n0〉 − µ̄, (E.48)

so that

n̄0(r) =
µ̄− ¯̃

V (r) + ∆̄

g
, (E.49)

we obtain

∆̄(0) = 0 (E.50)

∆̄(n) = −µ̄(n) = −g〈n0〉m̄(n) for n ≥ 1 (E.51)

and

¯̃
V

(0)

(r) = 0 (E.52)

¯̃
V

(n)

(r) = −gn̄(n)
0 = −g〈n0〉

∑

0≤i,j≤n

i+j=n

φ̄(i)(r)φ̄(j)(r) for n ≥ 1. (E.53)

A perturbation hierarchy is obtained by inserting expressions (E.41) and (E.42) into the Gross-
Pitaevskii equation (E.37), and collecting the terms of order n. Because of the modified chemical
potential, the perturbation hierarchy now takes the following form for n ≥ 1:

φ̄(n) = −1

2
Gξ̄ ∗




V

g〈n0〉
φ̄(n−1) +

∑

i+j+k=n

0≤i,j,k≤n−1

φ̄(i)φ̄(j)φ̄(k) −
n−1∑

n′=1

m̄(n′)φ̄(n−n′)


+

m̄(n)

2
. (E.54)
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The additional unknown m̄(n) is determined from the requirement that

n̄
(n)
0 = 2φ̄(n) +

n−1∑

n′=1

φ̄(n′)φ̄(n−n′)

= −Gξ̄ ∗ [· · · ] + m̄(n) +
n−1∑

n′=1

φ̄(n′)φ̄(n−n′) (E.55)

should vanish in the mean, so that for all n ≥ 1

m̄(n) =

〈
Gξ̄ ∗




V

g〈n0〉
φ̄(n−1) +

∑

i+j+k=n

0≤i,j,k≤n−1

φ̄(i)φ̄(j)φ̄(k) −
n−1∑

n′=1

m̄(n′)φ̄(n−n′)


−

n−1∑

n′=1

φ̄(n′)φ̄(n−n′)

〉
.

(E.56)
Equations (E.43), (E.44), (E.54) and (E.56) completely determine all terms of the perturbation
series at fixed average density.

Up to second order, we find

m̄(0) = 1 (E.57)

φ̄(0) = 1 (E.58)

m̄(1) = 0 (E.59)

φ̄(1) = − 1

2g〈n0〉
Gξ̄ ∗ V (E.60)

m̄(2) = − 1

4(g〈n0〉)2
〈Gξ̄ ∗

[
2V (Gξ̄ ∗ V ) − 3(Gξ̄ ∗ V )2

]
+ (Gξ̄ ∗ V )2〉 (E.61)

φ̄(2) =
1

8(g〈n0〉)2
Gξ̄ ∗

[
2V (Gξ̄ ∗ V ) − 3(Gξ̄ ∗ V )2

]
+
m̄(2)

2
. (E.62)

Then, using Eqs. (E.51) and (E.53) we obtain

∆̄(1) = 0 (E.63)

¯̃
V

(1)

= Gξ̄ ∗ V (E.64)

and

∆̄(2) =
1

4g〈n0〉
〈
Gξ̄ ∗

[
2V (Gξ̄ ∗ V ) − 3(Gξ̄ ∗ V )2

]
+ (Gξ̄ ∗ V )2

〉
(E.65)

¯̃
V

(2)

= ∆̄(2) − 1

4g〈n0〉
{
Gξ̄ ∗

[
2V (Gξ̄ ∗ V ) − 3(Gξ̄ ∗ V )2

]
+ (Gξ̄ ∗ V )2

}
, (E.66)

that is, the same expressions as in the first section of this appendix upon replacement of µ and
ξ by the invariant quantities g〈n0〉 and ξ̄.

Let us finish with a few comments.
First, as µ and g〈n0〉 (or ξ2 and ξ̄2, respectively) are different in the presence of an external

potential (differences arise from the second order in VR), the formal equivalence of the results
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obtained for ∆ and ∆̄ on the one hand, and ξ and ξ̄ on the other hand, is not expected to hold
with higher-order terms.

Second, both approaches produce the same qualitative results [compare Eqs. (E.27), (E.64),
(E.28), and (E.65)]. The quantitative differences arising with higher-order terms are expected
to be relevant for moderate potential strengths, and negligible for sufficiently weak potentials.

Finally, the perturbation expansion and the recursive schemes presented above can be used
in numerical calculations to solve the GPE equation for the ground-state. This approach offers
an efficient alternative to propagation in imaginary time for small and moderate potential
strengths. In principle, it is possible to use any of the two above schemes (either at fixed
chemical potential, or at fixed average density) in such a numerical calculation. If an average
density g〈n0〉 is imposed in the physical problem and the algorithm for fixed chemical potential
is used, it is possible to start with g〈n0〉 as input for µ, then compute ∆, then use g〈n0〉−∆ as a
new input estimate for µ, and so on, till convergence is reached. It is however more convenient
to use directly the suitable among the two perturbation schemes presented above.





APPENDIX F

Lifshits tail in a speckle potential

We examine here the low-energy spectrum of the 1D Schrödinger problem

[
~

2

2m

d2

dz2
+ V (z)

]
χν(z) = Eνχν(z) (F.1)

in the case where V (z) is a speckle potential.

Lifshits tails

In disordered systems, the single-particle density of states D(E) is strongly affected at low
energies. At the level of the cumulative density of states

N (E) =

∫ E

−∞
dE ′D(E ′), (F.2)

this leads to the formation of so-called Lifshits tails in the spectrum [282,283]. The eigenstates
which belong to the Lifshits tail are created by the ocurrence of rare fluctuations in the potential
(see section 3.4.1). In particular, if the random potential is bounded below by some minimum
value

Vmin = min(V ), (F.3)

the asymptotic behavior of the cumulative density of state N (E) when E approaches Vmin from
above is described by a stretched exponential which drops to zero at E = Vmin. In the seminal
analysis by I.M. Lifshits [282, 283], the stretched exponential takes the form

N (E) ∼ C ′e−C′′/
√

E−Vmin [E → V +
min]. (F.4)

In general, the precise form of the Lifshits tail depends on the statistical properties of
the random potential [197, 281]. The asymptotic form (F.4) was confirmed for various forms
of impurity potentials [204, 323, 324], including potentials of randomly placed impurities with
correlated single-impurity potential [324]. In the latter case, the single-impurity potential f(z)
which determines the autocorrelation function is required to decay faster than 1/|z|3 at infinity
for result (F.4) to hold. On the other hand, if f(z) decays as 1/|z|α with 1 < α < 3, then the
stretched exponential takes a slightly different form [197,281,325]:

N (E) ∼ C ′e−C′′(E−Vmin)
− 1

α−1
[E → V +

min]. (F.5)
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Figure F.1: Cumulative density of states in a speckle potential and fit of the low-energy tail
by the law (F.4). The autocorrelation function of the potential is C2(z) = V 2

R
sinc(z/σR)2, with

2mσ2
RVR/~

2 = 1. The minimum of the potential is Vmin = −VR. The quantity N2L(E) is the
average number of states up to energy E in a system of size 2L. In the limit of large L, it
becomes representative of 2LN (E). Here the numerical data (blue solid line) was obtained by
direct diagonalization in a box of size 2L = 5×103σR, and averaged over 250 potential samples.
The data is arranged for a linear fit (see inset). The result of this fit (dashed purple line) is
reproduced in Fig. 3.6.

The different power dependence in the stretched exponential is characterized by the limit1

lim
E→V +

min

ln [− ln[N (E)]]

ln[E − Vmin]
(F.6)

which, for a tail of the form (F.5), is equal to −1/(α−1) and, for Lifshits tail of the form (F.4),
is equal to −1/2.

Speckle potentials

Figure F.1 shows the result of a numerical study of the low-energy spectrum in a speckle poten-
tial with autocorrelation function C2(z) = V 2

R sinc(z/σR)2 and VR/Eσ = 1, where Eσ = ~
2/2mσ2

R.
The dashed line is a fit with law (F.4), which turns out to provide a good approximation of the
cumulative density of states in the low-energy tail of the spectrum.

A more thorough analysis was carried out with larger system sizes, and for various ratios
of the amplitude VR and the “correlation energy” Eσ. The result displayed in Fig. F.2 suggest
possible deviations from law (F.4), as no clear convergence of the exponent (F.6) towards a
unique value, e.g. 1/2, was observed.2 The inset of Fig. F.2, on the other hand, suggests

1For clarity, we leave aside normalizations by the dimensions of C′ and C′′. The limit computed in Eq. (F.6)
is called Lifshits exponent in Ref. [281]. This exponent is zero for a periodic potential [281]. Note also that
it provides only a weak form of the asymptotic expressions in (3.131) and (F.5), as it hides possible weak
dependencies (e.g. sub-power-law dependencies of C′′ and power-law dependencies of C′) on E − Vmin.

2The reduced autocorrelation function c2(u) = sin(u)2/u2 used in our studies with speckle potential might be
said to fall between a 1/|u|2 and a 1/|u|3 decay of correlations. As a consequence, a law of the type (F.5) could
be observed. And yet, the low-energy tail in speckle potentials may differ significantly from those results for
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Figure F.2: Asymptotic behavior of the cumulative density of states N (E) in the Lifshits
tail of a speckle potential with autocorrelation function C2(z) = V 2

R
sinc(z/σR)2 and minimum

Vmin = −VR. The cumulative density of state was computed numerically for VR/Eσ = 0.1, 1, 10
(in dotted, solid and dashed lines, respectively), where Eσ = ~

2/2mσ2
R
. The data was ob-

tained from transfer matrix calculations by counting the nodes of the wave functions at a
given energy. System sizes of the order of 108σR were used, and averaging was performed
over 10 realizations of the speckle potential. Inset: attempt to observe the convergence of
L(E) = ln[− ln[πσR

√
Eσ/VRN (E)]]/ ln[(E − Vmin)/VR] to a limit of the type (F.6).

that a convergence might be reached for much larger system sizes (not necessarily to a value
independent of VR/Eσ, though). Remarkably, the behavior which is closest to a convergence to
an exponent of the order of 1/2 is observed for the largest ratio of VR/Eσ (i.e. VR/Eσ = 10). In
the regime VR/Eσ ≫ 1, the random potential has wide modulations of large amplitude, akin to
infinitely deep potential wells with large, variables widths. The original argument of Lifshits
might apply in this limiting regime and lead to an exponent 1/2.

A precise determination of the full asymptotic form of the CDoS for generic speckle poten-
tials would require further analytical or numerical studies which lie beyond the scope of the
present work. At any rate, the stretched exponential (F.4) provides a good description of the
Lifshits tail in the speckle potentials studied in this thesis. It should also be noted that the
description of the Lifshits glass presented in chapter 3 does not depend qualitatively on the
precise form of the Lifshits tail.

correlated impurity potentials. The Lifshits tails are created by rare configurations where the potential assumes
values close to the minimum Vmin on one or several correlation lengths. In this sense, these configurations involve
a large number of “points”. Except for a few simple cases, their probability is likely not to be captured entirely
by the two-point correlation function, and to depend on higher-order correlation functions or, ultimately, on
the entire probability density of the potential.





APPENDIX G

Decoupling basis for the
Bogolyubov-de Gennes equations

In chapter 4 we develop a perturbation theory to solve the Bogolyubov-de Gennes equations
(BdGEs)

[
− ~

2

2m
∇2 + V (r) + ∆ − Ṽ (r)

]
f+

ν (r) = ǫνf
−
ν (r) (G.1)

[
− ~

2

2m
∇2 + 2µ+ V (r) + 3∆ − 3Ṽ (r)

]
f−

ν (r) = ǫνf
+
ν (r), (G.2)

where V is a weak potential, and ∆ and Ṽ , which derive from the fluctuations and the average
value of the mean-field interaction term gn0, are also small quantities. The differential problem
of Eqs. (G.1) and (G.2) is parametrized by the energy ǫν , and we wish to solve this set of
equations for f+

ν (r) and f−
ν (r). Even in the absence of external potential (V = 0, and hence

Ṽ = 0, ∆ = 0), the two above equations are strongly coupled by the terms on the right-hand
side. We show in this appendix that this technical difficulty is circumvented by the introduction
of auxiliary functions g+ and g−, in the basis of which the BdGEs are decoupled to zeroth order
in the amplitude of the potential, and which prove convenient for a perturbative solution of the
BdGEs.

Matrix formulation

To gain insight into the structure of the BdGEs, we cast them into the algebraic form

ξ2∇2F (r) = Fǫ(r)F (r), (G.3)

where

F (r) =

(
f+(r)
f−(r)

)
, (G.4)

and Fǫ(r) is a real-valued, symmetric matrix which expands as Fǫ(r) = F (0)
ǫ + δF(r), with

F (0)
ǫ =

(
0 −ǫ/2µ

−ǫ/2µ 1

)
(G.5)

δF(r) =
1

2µ

(
V (r) + ∆ − Ṽ (r) 0

0 V (r) + 3∆ − 3Ṽ (r)

)
. (G.6)
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The two differential equations on f+ and f− associated with Eq. (G.3) are strongly coupled

via the off-diagonal terms in F (0)
ǫ . Since δF is small (at most of first order in VR), it is

worth working in the basis which diagonalizes F (0)
ǫ . Indeed, although the change of basis may

introduce (coupling) off-diagonal terms in δF , these terms will remain small. We will show
that this approach is suitable for the set-up of a perturbation theory.

Solutions in the homogeneous case

In the absence of an external potential (V = 0), the matrix δF(r) vanishes identically. Then,

the matrix Fǫ(r) = F (0)
ǫ has two eigenvalues,

1 −
√

1 + (ǫ/µ)2

2
≡ −k2ξ2 (G.7)

1 +
√

1 + (ǫ/µ)2

2
≡ +β2ξ2, (G.8)

respectively associated to the eigenvectors

Fk ∝
( √

ρǫ

1/
√
ρǫ

)
and Fβ ∝

(
−1/

√
ρǫ√

ρǫ

)
, (G.9)

where

ρǫ =
µ

ǫ
+

√
1 +

(µ
ǫ

)2

. (G.10)

How do these solutions compare with the well-known results reported in section 4.1.4 ?
For simplicity, let us restrict our discussion to the 1D case1. Since Eq. (G.3) is of second

order, each eigenspace corresponds to two possible solutions of the BdGEs. First, the solutions
corresponding to +β2ξ2 have the form e±βzFβ, and either grow or decrease exponentially. Here,
the system is infinite, or required to have periodic boundary conditions. Since no solution of
Eq. (G.3) in the subspace spanned by these eigenvectors can satisfy the boundary conditions on
both boundaries of the system, these modes are forbidden in the case of vanishing V . Second,
the solutions corresponding to −k2ξ2 are e±ikzFk, which are oscillating (plane-wave) modes.
These modes are allowed for V = 0. They correspond to the well-known physical solutions of
the BdGEs (4.49) and (4.50), reported in section 4.1.4.

Inhomogeneous case

The above procedure allowed us to decouple the BdGEs in homogenous space. Let us now
introduce the external potential V (r). Working in the eigenbasis of F (0)

ǫ , equation (G.3) reads

ξ2∇2G(r) = Gǫ(r)G(r). (G.11)

where

G(r) = P−1
ǫ F (r), (G.12)

1The conclusions are naturally extended to higher dimensions.
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and P−1
ǫ is the inverse of the transformation matrix from the F -basis to the G-basis, i.e. 2

P−1
ǫ =

( √
ρǫ 1/

√
ρǫ

−1/
√
ρǫ

√
ρǫ

)
. (G.13)

The matrix Gǫ(r) represents the Bogolyubov-de Gennes equations in the G-basis, and expands

as Gǫ(r) = G(0)
ǫ + δGǫ(r), where

G(0)
ǫ =

(
−k2ξ2 0

0 β2ξ2

)
(G.14)

and δGǫ(r) = P−1
ǫ δF(r)Pǫ, that is,

δGǫ =
1

2µ




V − 3+ρ2
ǫ

1+ρ2
ǫ
(Ṽ − ∆) − 2ρǫ

1+ρ2
ǫ
(Ṽ − ∆)

− 2ρǫ

1+ρ2
ǫ
(Ṽ − ∆) V − 1+3ρ2

ǫ

1+ρ2
ǫ
(Ṽ − ∆)


 . (G.15)

In Eq. (G.14), k and β are functions of ǫ defined exactly as in Eqs. (G.7) and (G.8). The benefit
of the transformation from the F -basis to the G-basis is that a weak external potential only
weakly couples the two equations associated to Eq. (G.11), via δGǫ. Since now the coupling

terms are at most of first order in V (as ṼR ≤ VR and 2ρǫ/(1 + ρ2
ǫ ) ≤ 1), we can promote the

G-basis as a suitable representation, which takes into account the full structure of the BdGEs,
and which allows for a perturbative approach in the case of weak disorder.

Approximate mapping onto Schrödinger-like equations

For the sake of clarity, let us first write explicitly the two equations associated to Eq. (G.11),
which are now weakly coupled, and still parametrized by the BQP energy ǫ :

− ~
2

2m
∇2g+ +

[
V − 3 + ρ2

1 + ρ2
(Ṽ − ∆)

]
g+ − 2ρ

1 + ρ2
(Ṽ − ∆)g− = +

~
2k2

2m
g+ (G.16)

− ~
2

2m
∇2g− +

[
V − 1 + 3ρ2

1 + ρ2
(Ṽ − ∆)

]
g− − 2ρ

1 + ρ2
(Ṽ − ∆)g+ = −~

2β2

2m
g−. (G.17)

Here g+ and g− are the components of the quasi-particle in the G-basis, G(r) = (g+(r), g−(r))T.
They are obtained from f+ and f− via transformation (G.12):

g±(r) = ±ρ±1/2f+(r) + ρ∓1/2f−(r). (G.18)

We have dropped the subscript in ρǫ for conciseness. The coefficients on the right-hand side of
Eqs. (G.16) and (G.17) are defined as in Eqs. (G.7) and (G.8), and read

~
2k2

2m
=

√
µ2 + ǫ2 − µ (G.19)

~
2β2

2m
=

√
µ2 + ǫ2 + µ. (G.20)

Equations (G.16) and (G.17) are equivalent to the BdGEs, without any approximation. We
now develop the perturbation theory in the G-basis.

2For simplicity, we leave easide a normalization which would make Pǫ unitary. This choice does not affect
Eqs. (4.73), (4.74) and following.
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First-order terms

Since Eqs. (G.16) and (G.17) are weakly coupled, we can resort to the following self-consistent
approach. We assume that g− is smaller than g+ by at least one order in VR/µ for small VR,
and we neglect the second term on the left-hand side of Eq. (G.17). Then, solving the latter
equation for g−, we obtain3

g−(r) ≃ 2m

~2β2

2ρ

1 + ρ2

∫
dr′G1/β(r − r′)Ṽ (1)(r′)g+(r′), (G.21)

where G1/β(q) = (2π)−d/2/[1 + (|q|/β)2] is the Green function associated with the differential
operator −(1/β)2∇2+1, written in Fourier space. The positive smoothing functionG1/β satisfies∫

dr′G1/β(r′) = 1, and decays on the length scale 1/β, which is smaller than the healing length ξ
and than 1/k, i.e. the typical length scale over which g+ varies. Thus, owing to the fact that
2m/(~2β2) < 1/µ and 2ρ/(1 + ρ2) < 1, we can safely write

|g−(r)| <
1

µ

∫
dr′G1/β(r − r′) × |Ṽ (1)(r′)| × |g+(r′)|.

Then, in terms of orders of magnitude,

|g−| .
Ṽ

(1)
R

µ
|g+|

∫
dr′G1/β(r − r′)

.
Ṽ

(1)
R

µ
|g+| ≪ |g+|, (G.22)

which is consistent with our initial assumption, i.e. g− is small compared to g+. Figure G.1
displays numerical results which corroborate expression (G.21). As for the data of Fig. G.2,

they confirm that g− is a term of order Ṽ
(1)

R /µ at most as compared to g+, over the entire BQP
spectrum.

From the upper bound (G.22), we infer that the third term on the left-hand side of Eq. (G.16)

is of the order of Ṽ
(1)

R (Ṽ
(1)

R /µ)|g+| at most, while the second term contains terms scaling as
VR|g+|. Hence, we neglect the former contribution, and obtain a closed equation for g+ that is

valid up to first order in Ṽ
(1)

R /µ:

− ~
2

2m
∇2g+ + Vǫ(r)g

+ ≃ ~
2k2

2m
g+, (G.23)

where

Vǫ(r) = V (r) − 3 + ρ2

1 + ρ2
Ṽ (1)(r). (G.24)

These are the expressions reproduced in Eqs. (4.80) and (4.81), which form the basis of our
approach to study the spatial properties of BQP modes.

3Note that ∆ is at least of second order in VR (see section 4.2.1 or appendix E).
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Figure G.1: Components of a BQP mode in the G-basis. This eigenmode was computed for
a speckle potential with VR = 0.05µ and σR/ξ =

√
3/2, and has energy ǫ ≃ 1.1µ. The g+

and g− components obtained numerically are given by the black dashed line and the blue solid
line, respectively. The thick red line represents the convolution formula (G.21), and the green
dotted line the somewhat cruder approximation (G.26) to g−. Note that all the representations
of g− have been rescaled by µ/VR for better comparison with g+. With the parameters above,

the smoothed potential Ṽ (1) has root-mean-square amplitude Ṽ
(1)

R ≃ 0.6 VR.

Second-order terms - offset and fluctuations

We now consider explicitly the terms in Eq. (G.16) that are of second order in VR.4 Their
discussion takes a technical twist, but allows for the determination of a precise range of validity
of the simple effective equation (4.80).

The second term on the left-hand side of Eq. (G.16) contains both a fluctuation term Ṽ (2)

and an offset ∆(2) which are proportional to V 2
R
.5 Likewise, the crossed term Ṽ g− introduces

elements of order (V 2
R /µ)|g+| into Eq. (G.16). Since g− itself is of order (VR/µ)|g+|, we need

only consider the contribution of Ṽ (1)g− in Ṽ g−. This contribution reads

2ρ

1 + ρ2
Ṽ (1)(r)g−(r) ≃ 2m

~2β2

4ρ2

[1 + ρ2]2
Ṽ (1)(r)

∫
dr′G1/β(r − r′)Ṽ (1)(r′)g+(r′), (G.25)

where we have used approximation (G.21), which is valid to the required order. As the g+

function appears in the integrand of Eq. (G.25), the latter expression cannot be used as such
to reduce Eq. (G.16) to a closed Schrödinger-like equation for g+. In the low-energy limit,
however, the contribution of g− may be simplified. For k ≪ min(1/σR, 1/ξ), we expect g+ to
vary much more slowly than the other quantities in the integrand of Eq. (G.21), and we can
use the approximation

g−(r) ≃ 2m

~2β2

2ρ

1 + ρ2
g+(r)

∫
dr′G1/β(r − r′)Ṽ (r′). (G.26)

4We now drop the distinction between smoothed and bare amplitudes (e.g. between Ṽ
(1)
R and VR) in the

discussion of orders of magnitude.
5Expressions for Ṽ (2) and ∆(2) are given in section 4.2.1 and in Eqs. (E.28) and (E.29) of appendix E.
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Figure G.2: Relative amplitude of g+ and g− as a function of the BQP energy ǫ, for speckle po-
tentials with VR = 0.05µ and σR/ξ =

√
3/2. The amplitudes are measured with help of the en-

velope functions r± =
√
g±2 + (∂zg±/k)2. The circles show: the maximum value of r−(z)/r+(z)

in systems as large as 105σR[green], the fraction of space where r−(z) > (Ṽ
(1)

R /µ) r+(z) [blue],

the ratio
[∫
r2
−/
∫
r2
+

]1/2
[red] and the ratio

[∫
|g−|2/

∫
|g+|2

]1/2
[black] as a function of the BQP

energy. The data was averaged over 200 realizations, and the small vertical bars denote plus
or minus two standard deviations. The black dashed line corresponds to the value of Ṽ

(1)
R /µ.

In this regime, g+ can also be taken out of the integral in formula (G.25). Hence, we get a new
closed equation for g+, which now comprises all the terms up to order V 2

R and is legitimate in
the low-energy limit:

~
2k2

2m
g+ ≃ − ~

2

2m
∇2g+ +

[
Vǫ(r) −

3 + ρ2

1 + ρ2

(
Ṽ (2)(r) − ∆(2)

)]
g+

− 2m

~2β2

4ρ2

(1 + ρ2)2

[
Ṽ (1)(r)

∫
dr′G1/β(r − r′)Ṽ (1)(r′)

]
g+. (G.27)

We identify the two last terms on the right-hand side with a potential acting on g+. Its
expression is rather cumbersome. We shall nevertheless try and go one step beyond the first-
order perturbation theory of Eqs. (G.23) and (G.24), in order to discuss possible limitations.
In particular, the discussion which follows is based on the observation that the potential on the
right-hand side of Eq. (G.27) contains fluctuations around the mean, and an offset, which is
obtained by taking the spatial average of that potential.

From the analysis in chapter 2, we recall that the Lyapunov exponent of a Schrödinger par-
ticle in a random potential directly depends on the n-point autocorrelation functions Cn of the
potential: C2 ∝ V 2

R
, C3 ∝ V 3

R
, . . . These correlation functions tend to zero at large separations,

because the potential is taken with zero average.6 Here, the random potential acting on g+ is
the sum of several contributions. The Lyapunov exponent derived from Eq. (G.27) therefore
depends on the autocorrelators as well as the cross-correlators of these various contributions.

6We refer to the discussion around Eq. (1.23).
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In particular, the second-order fluctuations on the right-hand side of Eq. (G.27) contribute to
the Lyapunov exponent Γ by terms of order V 3

R (when these fluctuations are crossed with Vǫ,
which is of order VR, to build a two-point cross-correlator of order V 3

R
) and higher. We do not

detail here these higher-order contributions to the Lyapunov exponent, and concentrate instead
on the offset terms, which have to be isolated from the fluctuations for the calculations of the
Lyapunov exponent to hold.

When offset terms are introduced into the potential of a Schrödinger equation, they renor-
malize the parameter ~

2k2/2m, and modify, for instance, the Fourier component k at which
the correlation functions entering the Lyapunov exponent are evaluated. An inspection of
Eq. (G.27) shows that the right-hand side indeed contains an offset, proportional to V 2

R . We
can define a corrected kinetic term which cancels this offset:

~
2k′2

2m
=

~
2k2

2m
− 3 + ρ2

1 + ρ2
∆(2) +

ǫ2

2µ
D(2)(ǫ). (G.28)

Here k is still defined by Eq. (G.19), and

D(2)(ǫ) =
16mµρ2

~2β2ǫ2 (1 + ρ2)2

∫
drG1/β(r)〈Ṽ (1)(0)Ṽ (1)(r)〉 (G.29)

is introduced to absorb the average value of the term proportional to g+ on the second line of
Eq. (G.27) at the leading order. Since the last two terms in Eq. (G.28) are proportional to V 2

R ,
significant changes in the relation linking the BQP energy and the average kinetic term will
indeed be restricted to a range of low energies, which has yet to be defined.

Expression (G.29) is easily evaluated in terms of the reduced auto-correlation function of
the bare potential V :

D(2)(ǫ) =
V 2

R
(2π)−d/2σd

R

µ2β2ξ2 (2β2ξ2 − 1)2

∫
dq

ĉ(qσR)(
1 + q2

β2

)
(1 + q2ξ2)2

(G.30)

and expanded as

D(2)(ǫ) =

(
VR

µ

)2
[
I3 −

(
I3 +

I4
4

)(
ǫ

µ

)2

+ O
ǫ
µ
→0

(
ǫ4

µ4

)]
(G.31)

where In is defined by

In

(
ξ

σR

)
=

σd
R

(2π)d/2

∫
dq

ĉ2(qσR)

[1 + (|q|ξ)2]n
, (G.32)

as in section 3.3.3, and ĉ2 is the Fourier transform of the reduced autocorrelation function of
the bare potential V . Note that with this definition the leading deviation ∆(2) is cast into [see
Eq. (3.76)]

∆(2) =
V 2

R

2µ
[I1 − I2] . (G.33)

Finally, using Eqs.(G.31) and (G.33), we obtain a low-energy expansion of Eq. (G.28) as

~
2k′2

2m
≃ −∆(2) +

ǫ2

2µ

[
1 +

(
VR

µ

)2(
I3 +

I2 − I1
2

)]
. (G.34)
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This expression is actually already the product of the low-energy approximation (G.26), which
may put into question the meaning and accuracy of the terms proportional to ǫ2 in expression
(G.34). The ∆(2) term, on the other hand, is a safe term, as can be seen by taking the limit
ǫ → 0 (and hence, ρ→ ∞) in Eq. (G.16) or (G.21).

Let us emphasize that the terms in Eq. (G.28) do not necessarily (all) correspond to a
renormalization of the average kinetic energy. However, they do correspond to a renormalization
of the average wave vector which should be relevant in scattering processes and localization.
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Résumé

Ce mémoire présente une étude théorique des propriétés de localisation de gaz de Bose avec
interactions faibles, en présence de désordre uni-dimensionnel. Nous abordons trois aspects de
ces systèmes désordonnés. En premier lieu, nous étudions le cas d’un gaz sans interactions. Des
résultats généraux stipulent que tous les états à une particule sont localisés en une dimension.
Nous montrons que pour certaines classes de désordre corrélé, la dépendance de la longueur
de localisation des atomes vis-à-vis de leur énergie est marquée par d’abruptes transitions à
faible désordre. Ceci permet l’interprétation de résultats expérimentaux récents, au-delà des
analyses précédentes. Dans un deuxième temps, nous étudions l’état fondamental d’un gaz avec
interactions répulsives, et établissons un diagramme des états quantiques du système en fonction
de l’amplitude du désordre et des interactions. Nous analysons les modulations de densité
imposées au gaz par le désordre afin de décrire le passage du régime de condensat de Bose-
Einstein délocalisé à celui de condensat fragmenté. Pour le régime des très faibles interactions,
nous développons une description microscopique du système sur la base des états propres de
basse énergie du hamiltonien à une particule. Ces résultats contribuent à la caractérisation de
la phase de verre de Bose encore peu explorée aux faibles interactions. Enfin, nous étudions la
localisation des excitations élémentaires du gaz de Bose dans le régime de (quasi-) condensat.
Nous montrons que la localisation réduite des excitations de plus faible énergie est imputable
à un écrantage efficace par le (quasi-) condensat des variations de grande longueur d’onde du
potentiel extérieur.

Abstract

In this thesis, we theoretically investigate the localization properties of weakly-interacting Bose
gases in the presence of one-dimensional disorder. We focus on three aspects of those disor-
dered systems. First, we study the case of a non-interacting gas. According to general results,
all single-particle states are localized in one dimension. We show that for certain classes of
correlated disorder, the dependence of the localization length of the atoms on their energy un-
dergoes sharp crossovers for weak disorder. These findings allow for the interpretation of recent
experiments beyond previous analyses. Then, we examine the ground state of an interacting
gas, and establish a diagram of the quantum states as a function of the strength of disorder and
interactions. We analyze the density modulations imposed on the gas by the disorder, in order
to describe the crossover from the regime of delocalized Bose-Einstein condensate to the regime
of fragmented condensate. For the regime of very weak interactions, we develop a microscopic
description of the system on the basis of the eigenstates of the single-particle Hamiltonian.
These results contribute to characterizing the Bose-glass phase at weak interactions, which has
yet to be explored thoroughly. Finally, we study the localization of the elementary excitations
of the Bose gas in the (quasi-) condensate regime. We show that the suppressed localization of
the excitations of lowest energy is due to an efficient screening by the (quasi-) condensate of
the long-wavelength variations of the external potential.
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