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Ultracold gases in random potentials

Ultracold gases Disorder
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Ultracold gases

Source: A. Recati

λdB ∼ d

λdB ∼ d
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Ultracold gases

Ultra-cold/quantum gases:
⇒ atomic matter-waves

T < 1 µK↔ λdB > 300 nm

Bosons
⇒ Bose-Einstein condensate:

Anderson et al.
Science 1995

Andrews et al. Science 1997

← Giant coherent matter-wave

Interactions (⇒ superfluidity)→

Abo-Shaer et al. Science 2001

Gross-Pitaevskii equation (analogous to light in Kerr medium):

i~∂tψ =− ~2

2m ∇2ψ+V (r)ψ+g|ψ|2ψ
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Assets of ultracold gases

Versatility
- quantum statistics, dimensionality, tunable interactions,

shape, bulk/lattice...

Variety of diagnostic tools
- absorption imaging, collective oscillations, Bragg spectroscopy,

noise correlation...

Mott-insulator transition

Greiner et al. Nature 2002

BKT cross-over

© 2006 Nature Publishing Group 

 

Berezinskii–Kosterlitz–Thouless crossover in a
trapped atomic gas
Zoran Hadzibabic1, Peter Krüger1, Marc Cheneau1, Baptiste Battelier1 & Jean Dalibard1

Any state of matter is classified according to its order, and the type
of order that a physical system can possess is profoundly affected
by its dimensionality. Conventional long-range order, as in a
ferromagnet or a crystal, is common in three-dimensional systems
at low temperature. However, in two-dimensional systems with a
continuous symmetry, true long-range order is destroyed by
thermal fluctuations at any finite temperature1,2. Consequently,
for the case of identical bosons, a uniform two-dimensional fluid
cannot undergo Bose–Einstein condensation, in contrast to the
three-dimensional case. However, the two-dimensional system can
form a ‘quasi-condensate’ and become superfluid below a finite
critical temperature. The Berezinskii–Kosterlitz–Thouless (BKT)
theory3,4 associates this phase transition with the emergence of a
topological order, resulting from the pairing of vortices with
opposite circulation. Above the critical temperature, proliferation
of unbound vortices is expected. Here we report the observation of
a BKT-type crossover in a trapped quantum degenerate gas of
rubidium atoms. Using a matter wave heterodyning technique, we
observe both the long-wavelength fluctuations of the quasi-
condensate phase and the free vortices. At low temperatures, the
gas is quasi-coherent on the length scale set by the system size.
As the temperature is increased, the loss of long-range coher-
ence coincides with the onset of proliferation of free vortices.
Our results provide direct experimental evidence for the micro-
scopic mechanism underlying the BKT theory, and raise new
questions regarding coherence and superfluidity in mesoscopic
systems.
The BKT mechanism is very different from the usual finite-

temperature phase transitions. It does not involve any spontaneous
symmetry-breaking and emergence of a spatially uniform order
parameter. Instead, the low-temperature phase is associated with a
quasi-long-range order, with the correlations of the order parameter
(for example, the macroscopic wavefunction of a Bose fluid) decay-
ing algebraically in space. Above the critical temperature this quasi-
long-range order is no longer maintained, and the correlations decay
exponentially. This picture is applicable to a wide variety of two-
dimensional (2D) phenomena, including superfluidity in liquid
helium films5, the superconducting transition in arrays of Josephson
junctions6, and the collision physics of 2D atomic hydrogen7. These
experiments have provided evidence for the BKT phase transition by
looking at the macroscopic properties of the system, but could
not reveal its microscopic origin—the binding and unbinding of
vortex–antivortex pairs3,4.
Harmonically trapped atomic gases generally provide an excellent

testing ground for the theories of many-body physics. In particular,
they arewell suited for thepreparation of low-dimensional systems and
the detection of individual vortices. Quasi-2D quantum degenerate
Bose gases have been produced in single ‘pancake’ traps or at the
nodes of one-dimensional (1D) optical lattice potentials8–15.
Recently, matter wave interference between small disk-shaped

quasi-condensates has revealed the occasional presence of free
vortices16, but a systematic temperature study was not possible.
Theoretically, because the density of states in a 2D harmonic trap
allows for finite temperature Bose–Einstein condensation in an ideal
gas17, the nature of the superfluid transition in an interacting gas has
been a topic of some debate18–24. Our results indicate that the BKT
picture is applicable to these systems, even though in our finite-size
system the transition occurs as a finite-width crossover rather than a
sharp phase transition25.
We start our experiments with a quantum degenerate three-

dimensional (3D) cloud of 87Rb atoms, produced by radio-frequency
evaporation in a cylindrically symmetric magnetic trap. Next, a 1D
optical lattice with a period of d ¼ 3mm along the vertical direction z
is used to split the 3D gas into two independent clouds and to

LETTERS

Figure 1 | Probing the coherence of 2D atomic gases using matter wave
heterodyning. a, An optical lattice potential of period d ¼ 3mm along the
vertical direction z is formed by two laser beamswith awavelength of 532 nm
intersecting at a small angle. It is used to split a quantum degenerate 3D gas
into two independent planar systems. The transparent ellipsoid indicates the
shape of the gas before the lattice is ramped up. b, After the confining
potential is abruptly switched off, the two atomic clouds expand, overlap
and interfere. The interference pattern is recorded onto a CCD camera using
the absorption of a resonant probe laser. The waviness of the interference
fringes contains information about the phase patterns in the two planar
systems. c, d, Examples of interference patterns obtained at a low and a high
temperature, respectively.

1Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France.

Vol 441|29 June 2006|doi:10.1038/nature04851

1118

Hadzibabic et al. Nature 2006
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Assets of ultracold gases

Model systems→ direct comparison with theory
- dilute gases: simple interaction potential
- textbook Hamiltonians, parameters known ab-initio

Controlled disorder
- optical speckle, impurity atoms, radio-frequency fields,

quasi-periodic potentials...

⇒ Good laboratory for physics of disordered quantum systems
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Multiple scattering and interference

Classical particles

Multiple scattering⇒ diffusion

Quantum particles and waves
P(r, r′) = |∑i Ai |2 = ∑i AiA∗i +∑i 6=j AiA∗j

Weak disorder: `e� λ (`e mean free path)
P(r, r′)' ∑i AiA∗i

However . . . ⇒ Interference corrections

enhanced probability of return

diffusion constant D = DB−δD

conductivity σ = σB−δσ
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Anderson (strong) localization
Anderson, Phys. Rev. 1958

Strong disorder
⇒ absence of diffusion
⇒ exponential decay of

wave function in space

Anderson localization

Signatures of localization

(open systems) transport properties
e.g. transmission T across a 1D sample of length L

1
2 〈lnT (L)〉 ∼ −L/Lloc (L→ ∞)

(closed systems) localized eigenstates
dummy

〈ln |ψ(r)|〉 ∼ −|r|/Lloc (|r| → ∞)

Lloc: localization length ↔ γ = 1/Lloc: Lyapunov exponent
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The role of dimensionality

Scaling theory of localization: Abrahams et al. PRL 1979

1D, 2D: all states localized for arbitrary amplitude of disorder

3D: metal-insulator phase transition

3D Anderson model (presence of a lattice):

Ec , E ′c mobility edges Vollhardt and Wölfle, in Electronic phase transitions, Elsevier (1992)
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Experimental results
Recent reviews: A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Physics Today 62, 24 (2009)
Recent reviews: A. Aspect and M. Inguscio, Physics Today 62, 30 (2009)
Recent reviews: L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. (2009), in press; arXiv:0911.0629

Electronic systems (80s)
Coulomb interaction and phonons

Classical waves (90s-today):
acoustic waves, microwaves, light...

transmission experiments:
Wiersma et al. Nature 1997 (light);
Chabanov et al. Nature 2000 (microwaves);
Störzer et al. PRL 2006 (light);
Hu et al. Nat. Phys. 2008 (ultrasound) ...

localized wave functions:
Schwartz et al. Nature 2007, Lahini et al. PRL 2008

Aegerter et al. Europhys. Lett. 2006

Schwartz et al. Nature 2007

Cold atoms (90s-today)

Localization in momentum space Moore et al. PRL 1995, Chabé et al. PRL 2008

Ultracold atoms

Localized atomic wave functions Billy et al. Nature 2008, Roati et al. Nature 2008
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1D Anderson localization of a BEC in a speckle potential

Theory: L. Sanchez-Palencia et al. PRL 98, 210401 (2007); NJP 10, 045019 (2008)

Experiment: J. Billy et al. , Nature 453, 891 (2008)

Measured localization lengths in agreement with theory↗
P. Lugan Ultracold Bose gases in random potentials... 11



Disorder in interacting quantum systems

Interplay of disorder and interactions

Anderson localization in the presence of interactions ?

Remarkable properties of disorder-free interacting systems:
- Superconductivity of weakly-attractive fermions
- Superfluidity of repulsive bosons
⇒ extended coherent many-body states

To what extent do disorder and localization phenomena alter
those properties ?

Reppy J. Low Temp. Phys. 1992

P. Lugan Ultracold Bose gases in random potentials... 12



Outline

1 Anderson localization of non-interacting particles
in correlated one-dimensional disorder

2 Localization in weakly-interacting Bose gases
in one-dimensional disorder

Fragmentation of the ground-state density profile

Localization of elementary excitations
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Statistical properties of disorder

Random potential:

Average: 〈V 〉= 0

Amplitude: VR =
√〈V 2〉

Correlation functions:

C2(z1) = 〈V (z0)V (z0 + z1)〉
C3(z1,z2) = 〈V (z0)V (z0 + z1)V (z0 + z2)〉

. . . = . . .

Correlation length : σR ← width of C2
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Lyapunov exponent of single particles in 1D

− ~2

2m ∂2
zψ+V (z)ψ = Eψ

Single-particle states are all localized in 1D
Gertsenshtein and Vasil’ev 1959
Mott and Twose 1961
Borland 1963

Mathematical proofs e.g. :
Goldsheid, Molchanov, and Pastur 1977
Kotani and Simon 1987

Lyapunov exponent in an uncorrelated potential

C2(z) = Dδ(z)

Eδ =
(

mD2

2~2

)1/3

Lyapunov exponent in a correlated potential

Born approximation: γ'
√

2π

2

(
m

~2k

)2
Ĉ2(2k) E = ~2k2

2m
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Speckle potentials

Blue-detuned light
⇒ repulsive potential V (z) ∝ I(z)/δ

grain size ∆z ∝ σR inversely proportional to aperture size

D. Clément et al., New J. Phys. 8, 165 (2006)

auto-correlation C2(z) = V 2
R sinc(z/σR)2

precise experimental control of amplitude VR
and correlation length σR

sharp cut-off in Fourier spectrum: kc = 1/σR

⇒ Born approximation γ'
√

2π

2

(
m

~2k

)2
Ĉ2(2k) vanishes for k > kc
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Phase formalism for the Schrödinger equation

−∂
2
zψ+V (z)ψ = k2

ψ (k =
√

E , 〈V 〉= 0)

Polar representation:

ψ(z) = r(z)sin [θ(z)]
∂zψ(z) = kr(z)cos [θ(z)]

Phase: ∂zθ(z) = k− V (z)
k sin2 [θ(z)]

Weak-disorder expansion: θ = kz +∑n≥1 δθ(n)

Wave function amplitude: ln[r(z)/r(0)] =
R z

0 dz ′ V (z ′)
2k sin [2θ(z ′)]

Lyapunov exponent: γ = + lim|z|→∞

〈ln[r(z)]〉
|z|
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Phase formalism for the Schrödinger equation

⇒ Perturbation series for the Lyapunov exponent:

γ(k) = ∑n≥2 γ(n)(k)

γ
(n) = σ

−1
R (εR/kσR)n fn(kσR) εR =

2mσ2
RVR

~2

f2(κ) = +
1
4

Z 0

−∞

du c2(u)cos(2κu) [Born]

f3(κ) = −1
4

Z 0

−∞

du
Z u

−∞

dv c3(u,v)sin(2κv)

f4(κ) = −1
8

Z 0

−∞

du
Z u

−∞

dv
Z v

−∞

dw c4(u,v ,w)

×{2cos(2κw)+cos[2κ(v+w−u)]
}
.

Reduced correlation functions: Cn(z1, ...,zn−1) = V n
Rcn (z1/σR, ...,zn−1/σR)
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Lyapunov exponent in a speckle potential

γ(n) = σ
−1
R (εR/kσR)n fn(kσR)

fn functions for usual speckle:

numerics by
D. Delande

Remarkable features: f3 has same cut-off as Born term n = 2

f4 has cut-off at kσR = 2
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Effective mobility edges in speckle potentials

εR = VR
Eσ

Eσ = ~2

2mσ2
R

PL, A. Aspect, L. Sanchez-Palencia, D. Delande, C. A. Müller, B. Grémaud, and C. Miniatura, PRA 80, 023605 (2009)

see also L. Tessieri, J. Phys. A 35, 9585 (2002); E. Gurevich and O. Kenneth, PRA 79, 063617 (2009)
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Effective mobility edge in the experiment

Theory: L. Sanchez-Palencia et al. PRL 98, 210401 (2007)

Experiment: J. Billy et al. , Nature 453, 891 (2008)

Beyond the Born approximation:
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Effective mobility edge in the experiment

Theory: L. Sanchez-Palencia et al. PRL 98, 210401 (2007)

Experiment: J. Billy et al. , Nature 453, 891 (2008)

Beyond the Born approximation:

P. Lugan Ultracold Bose gases in random potentials... 21



Effective mobility edge in the experiment

Theory: L. Sanchez-Palencia et al. PRL 98, 210401 (2007)

Experiment: J. Billy et al. , Nature 453, 891 (2008)

Beyond the Born approximation:

P. Lugan Ultracold Bose gases in random potentials... 21



Outline

1 Anderson localization of non-interacting particles
in correlated one-dimensional disorder

2 Localization in weakly-interacting Bose gases
in one-dimensional disorder

Fragmentation of the ground-state density profile

Localization of elementary excitations
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The boson localization problem
Hertz et al. PRL 43, 942 (1979)

Ground-state quantum-phase diagram
of disordered repulsive bosons in 1D

1.2 Disorder in interacting systems 29

(a) DMRG study of the
commensurate lattice case
(Fig. 1 of Ref. [148]).

(b) DMRG study of the
lattice case at half filling
(Fig. 2 of Ref. [148]).

(c) Luttinger liquid and renormaliza-
tion group study of the continuous
case (Fig. 3 of Ref. [8]).

Figure 1.7: Quantum phase diagrams of strongly interacting 1D bosons in disorder. (a),(b) Re-
sults of DMRG calculations performed for the lattice case from the Bose-Hubbard Hamiltonian
with on-site interaction energy U and random on-site energies εi uniformly distributed in an
interval [−∆,∆]. The energies in the figures are normalized by t = 1 where t/2 is the (ki-
netic) hopping term of the Hubbard model. (c) Analysis of the continuous case. The arrows
show the RG flow of the disorder strength D and the Luttinger liquid parameter K, which
are renormalized when a short-wavelength cut-off in the low-energy Luttinger liquid theory is
sent to infinity. In this figure, K is zero for non-interacting bosons, and increases with the
strength of repulsive intreactions. The quantity D parametrizes an uncorrelated disorder with
autocorrelation function C2(z) = Dδ(z) [see Eq. (2.45)].

the transition, a characterization of the weakly-interacting Bose glass beyond that boundary,
and a description of the Bose glass found close to the line of vanishing interactions, where pure
Anderson localization occurs.

1.2.3 Ultra-cold atomic Bose gases

At sufficiently low temperatures, atomic Bose gases form a Bose-Einstein condensate (BEC), or
a quasi-BEC in low-dimensional geometries [32, 111, 152]. Condensates and quasi-condensates
exhibit (quasi-) long-range order, which makes them ideal tools to study the effects of co-
herence and disorder. The theory of Bose-Einstein condensation can be found in standard
textbooks [153] and review articles [111]. We touch upon a few points below. We also highlight
a few well-known but significant aspects of theory and experiment with ultra-cold atomic Bose
gases. Ultra-cold Bose gases are naturally weakly-interacting, and can therefore be described
accurately with simple theoretical tools. From the experimental point of view, ultra-cold gases
offer a high degree of control.

Bose-Einstein condensation

Non-interacting case - Bose-Einstein condensation is often introduced by considering non-
interacting bosons at thermal equilibrium in the grand-canonical ensemble. Then, the system
is described on a basis of single-particle states with energies Ei. The occupation of these states

D amplitude of disorder, K ' strength of interactions

Giamarchi and Schulz, Europhys. Lett. 3, 1287 (1987)

See also DMRG calculations: Rapsch et al. , Europhys. Lett. 46, 559 (1999)

Localization-delocalization scenario in the weakly-interacting regime ?
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Disordered 1D Bose gases at T = 0

n1−2/d � ~2/mg (d = 1)
V (z) = VRv(z/σR)

Ground-state quantum-state diagram
of a weakly-interacting Bose gas in 1D disorder

(fixed αR = ~2/2mσ2
RVR)

L. Sanchez-Palencia, PRA 74, 053625 (2006)

PL, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein, and L. Sanchez-Palencia, PRL 98, 170403 (2007)
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Density profile in the BEC regime[
− ~2

2m ∇2 +V (z)+gnc(z)
]√

nc(z) = µ
√

nc(z) healing length ξ: µ = ~2

4mξ2

Thomas-Fermi regime: ξ� σR

nc(r)' [µ−V (z)]/g

Smoothing regime: ξ & σR

nc(r)' [µ− Ṽ (z)]/g

Ṽ smoothed potential

Ṽ (z) =
Z

dz ′Gξ(z− z ′)V (z ′)

Ṽ (q) =
V (q)

1+(qξ)2

ṼR ∼ (σR/ξ)1/2VR [ξ� σR]

L. Sanchez-Palencia, PRA 74, 053625 (2006)
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Ṽ (q) =
V (q)

1+(qξ)2
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Scaling of the fragmentation threshold

Fragmentation threshold:

Thomas-Fermi regime (σR� ξ): VR ∝ µ

Smoothing regime (σR� ξ): ṼR ∝ µ⇒ VR ∝ µ3/4

Smoothing regime: same scaling as in numerical study of Bose-glass transition of Fontanesi et al. PRL 103, 030403 (2009)

See also Aleiner et al. arXiv:0910.4534
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Many-body description of the weakly-interacting Bose gas

Grand-canonical Hamiltonian

K̂ = Ĥ−µN̂ =
Z

dr

{
Ψ̂

†
[
− ~2

2m
∇

2 +V (r)−µ
]

Ψ̂+
g
2

Ψ̂
†
Ψ̂

†
Ψ̂Ψ̂

}
Density-phase picture: Ψ̂ = exp(iθ̂)

√
n̂

Quasi-BEC in 1D (suppressed density fluctuations):

n̂(r) = nc(r)+δn̂(r)

P. Lugan Ultracold Bose gases in random potentials... 27



Ground state and excitations

Ground state: Gross-Pitaevskii equation (GPE)[
− ~2

2m
∇

2 +V +gnc

]√
nc = µ

√
nc

Excitations: density and phase fluctuations

θ̂(r) =
−i

2
√

nc(r)
∑
ν

[
f +
ν (r)b̂ν−H.c.

]
δn̂(r) =

√
nc(r)∑

ν

[
f−ν (r)b̂ν +H.c.

]
Coherence terms f +, f−:
’wave functions’ of phase and density fluctuations respectively
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Bogolyubov-de Gennes equations

Ground state: Gross-Pitaevskii equation (GPE)[
− ~2

2m
∇

2 +V +gnc

]√
nc = µ

√
nc

Excitations: Bogolyubov-de Gennes equations (BdGEs)[
− ~2

2m
∇

2 +V + gnc−µ
]

f +
ν = ενf−ν[

− ~2

2m
∇

2 +V +3gnc−µ
]

f−ν = ενf +
ν

⇒ Bogolyubov quasi-particles
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Weak-potential: VR� µ

Develop 1st order perturbation theory around V = 0:

GPE:
gnc(r)' µ− Ṽ (r)

BdGEs: [
− ~2

2m
∇

2 +V − Ṽ

]
f +
ν = ενf−ν[

− ~2

2m
∇

2 +2µ+V −3Ṽ

]
f−ν = ενf +

ν

Introduce

g+
k =

√
ρk f +

k +
1√
ρk

f−k

g−k = − 1√
ρk

f +
k +
√

ρk f−k

ρk =
√

1+1/(kξ)2
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∇
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∇
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BdGE: Schrödinger-like equation for a weak potential

− ~2

2m
∇

2g+
k +Vk(r)g+

k '
~2k2

2m
g+

k

Vk(r) = V (r)− 1+4(kξ)2

1+2(kξ)2 Ṽ (r)

Formally equivalent to a Schrödinger equation
for a non-interacting particle
with energy ~2k2/2m ( 6= εk )

in a potential Vk(r).

Valid in any dimension.
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BdGEs: screened potential
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Lyapunov exponent of Bogolyubov quasi-particles in 1D

Γk = [S(kξ)]2γk S(kξ) =
2(kξ)2

1+2(kξ)2

S drops to zero in the phonon regime:
screening of the external potential.
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Lyapunov exponent of Bogolyubov quasi-particles in 1D

Γk '
√

2π

8

(
VR

µ

)2 k2σR

[1+2(kξ)2]2
ĉ2(2kσR)

Speckle potential:

σR = 3.7 ξ σR = 1.2 ξ σR = 0.4 ξ

PL, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia, PRL 99, 180402 (2007)

White noise limit: N. Bilas and N. Pavloff, EPJD 40, 387 (2006)
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Conclusion

1D Anderson localization
of single-particles

in correlated potentials

effective mobility edges

Ground state of
weakly-interacting Bose gases

in 1D disorder

smoothing effect and scaling of
fragmentation threshold

Anderson localization of
Bogolyubov quasi-particles in 1D

competition of correlation length
and healing length
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Perspectives

Anderson localization of non-interacting particles

Localization in potentials with exotic correlation functions

Localization properties in a trap

Consequences of special correlations on localization in 2D, 3D

Ground state of weakly-interacting disordered Bose gases

Experiments at fragmentation threshold Deissler et al. arXiv:0910.5062v1

Beyond-mean-field description of fragmented regime

Anderson localization of Bogolyubov quasi-particles

Experimental observation with Bragg spectroscopy

Higher dimensions (2D, 3D), mobility edges in 3D
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Comparison with transfer matrix calculations

Lyapunov exponent in a speckle potential

εR = VR/(~2/2mσ2
R)

Born (n = 2)
Born+2 (n = 2..4)
numerics (TM)

Transfer matrix calculations by D. Delande
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Boundaries in the quantum state diagram

αR = ~2/2mσ2
RVR is fixed

FRAGMENTED
       BECs
     (Bose glass)

Sm
ooth

ed
 B

EC

BEC (n
ot s

m
ooth

ed
)

V R

µ

LIFSHITS
  GLASS

BEC

0

(not fragmented)

pure T-F BEC versus smoothing :

σR ' ξ i.e. µ = αRVR

single BEC versus fragmentation :

µ' ṼR = VR
√

Σ0(σR/ξ)
µ/VR = F(

√
µ/VR/

√
αR)

Lifshits regime :

N2L(µ)≤ νmax

Scaling arguments:

νmax = L
σR

G(αR)
N2L(ε) = L

σR
η(αR,ε/VR)
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Smoothing and fragmentation in the BEC regime

3.5 Quantum state diagram 125
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/
E
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=
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α

R

(a) Slopes: −1, 3, ∞
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Figure 3.11: Schematic characterization of the density profile of a disordered, weakly-repulsive
Bose gas at the cross-over between the regimes of (quasi-)BEC and fragmented BEC. The
ground-state density profile is characterized in terms of smoothing and fragmentation, as a
function of the chemical potential µ, the disorder amplitude VR, and the energy Eσ = !2/2mσ2

R

associated with the correlation length σR of the random potential. The boundaries (thick
dashed lines) are defined by Eqs. (3.191) and (3.193). The thin dotted lines serve as guide for
the eye. The difference between (a) and (b) lies in the rescaled energies chosen as coordinates.
In each case, VR/Eσ = 1/αR is used for the vertical axis, so that a path in the quantum state
diagram 3.10 corresponds to a horizontal line in both (a) and (b). The Bose gas may start
crossing-over to the Lifshits glass regime (not depicted here) for the lowest values of µ.

Remark With the definition αR = Eσ/VR, the criterion (3.190) for a fragmentation of the
Bose gas in the presence of smoothing is rewritten

t ! VR

µ3/4E
1/4
σ

[
2−1/2Γ(3/2)ĉ2(0)

]1/2
. (3.194)

If Eσ = !2/2mσ2
R

is kept constant instead of αR when VR and µ are left to change, this defines
a boundary

VR

Eσ

∝
(

µ

Eσ

)3/4

, (3.195)

as shown in the lower left corner of Fig. 3.11(b). This result is strikingly similar to the relation
(VR/Eσ) ∝ (U/Eσ)0.75±0.03 found by Fontanesi et al. in their recent numerical study of the 1D
superfluid-to-Bose-glass transition, reported in Ref. [244]. In the latter expression, U is the
mean-field interaction energy. Most numerical calculations in this study have been performed
for VR/Eσ ≤ 1 or, equivalently, αR ≥ 1, i.e. a regime where smoothing is significant at the cross-
over from BEC to fragmented BEC. Fontanesi et al. observed that the exponential decay of
first-order correlation functions in the Bose-glass phase was due to sudden drops and attributed
the latter to the presence of “weak links” in the Bose gas. On the superfluid side, on the other
hand, a rather smooth power-law decay of the first-order correlation functions was found. It
would be interesting to investigate whether the (fragmentation) statistics of the ground-state
density profile, as presented in this chapter, can be related to the statistics of such weak links
and to the transition from power-law to exponential decay of correlation functions, as suggested
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BdGE: the decoupling basis

− ~2

2m
∇

2g+
k =

~2k2

2m
g+

k

− ~2

2m
∇

2g−k = −ρ
2
k
~2k2

2m
g−k

Boundary conditions (BC): zero Dirichlet or periodic.

Oscillating modes g+
k are quantized by BC.

Evanescent modes g−k are forbidden by BC in the absence of an
external potential.
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Elastic scattering of BQPs: envelope function

Vk(k′−k)/V (k′−k) with k′.k = k2 cos(θ)

single particles: s-wave scattering pattern
phonons: p-wave scattering pattern

First studied by C. Gaul and C.A. Müller, Europhys. Lett. 83, 10006 (2008)
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Lyapunov exponent of BQPs in the Born approximation

Lyapunov exponent:
〈
ln |g+

k (z)|〉∼−Γk |z|
Known:

Γk =
√

2π

8k2

(
2m
~2

)2

Ĉk(2k)

Ĉk(q) Fourier transform of the autocorrelation function of Vk(r)
Wiener-Khinchin:

Ĉk(q) ∝ 〈|V̂k(q)|2〉
Here:

V̂k(z) = V (z)− 1+4(kξ)2

1+2(kξ)2 Ṽ (z), Ṽ (q) =
V (q)

1+(qξ)2

V̂k(2k) = S(kξ)V̂ (2k), S(kξ) =
2(kξ)2

1+2(kξ)2

Conclusion:

Γk = [S(kξ)]2γk (γk : free particles)
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Lyapunov exponent of BQPs: numerical calculations

with smoothed potential with exact density profile
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