

École doctorale nO396 : Economie, organisation, société

Doctorat ParisTech

T H È S E
pour obtenir le grade de docteur délivré par

l’École nationale supérieure des mines de Paris

Spécialité « Economie et finance »

présentée et soutenue publiquement par

Jan EILHARD
le 14 mai 2010

Tapping Into the Source : Corporate involvement in open source
software

Directeur de thèse : François LEVEQUE
Co-encadrement de la thèse : Yann MENIERE

Jury
M. Marc BOURREAU, Professeur, SES, Paris Telecom - Paristech Rapporteur
M. Eric BROUSSEAU, Professeur, Economix, Université de Paris X Examinateur
M. Eric STROBL, Professeur, CECO, Ecole Polytechnique Examinateur
M. Mikko VALIMAKI, Professeur, Helsinki University of Technology Rapporteur
M. François LEVEQUE, Professeur, CERNA, Ecole des Mines - Paristech Directeur de thèse

MINES ParisTech
CERNA

60 boulevard Saint Michel 75272 PARIS cedex 06

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

http://pastel.archives-ouvertes.fr/pastel-00527647/fr/
http://hal.archives-ouvertes.fr

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

L’implication des entreprises aux logiciels libres

Résumé : La participation des entreprises aux logiciels libres touche des domaines différents aux

sciences économiques et sciences sociales. Elle est parmi d’autres une expérience naturelle pour

la production des biens publics, pour l’innovation collective, pour les technologies disruptives, pour

l’externalisation des technologies ou pour les organisation décentralisée. Cette thèse se concentre sur

la production des biens publics, l’innovation collective et l’externalisation des technologies. Dans notre

analyse, nous utilisons une base de données de 10,000 logiciels libres trouvable sur SourceForge et

lions l’information des développeurs aux profiles académiques, salariés et bénévoles.

Mots clés : Logiciel libre, innovation ouverte, économétrie

Tapping Into the Source: Corporate involvement in open source software

Abstract: Corporate participation in open source software touches upon a number of different is-

sues in economics and social sciences. It is, among others, a natural experiment for the private

provision of a public good, for gift giving, for collective invention, for disruptive technologies, for tech-

nology outsourcing or for decentralized organizations. Little does it surprise then that academia strives

to understand corporate involvement in open source software. This thesis focuses on three aspects

within this vast field: the private provision of a public good, collective invention as well as outsourcing

of technology. For our analysis, we use a dataset of 10,000 open source applications from Source-

Forge and relate information about developers to three categories as academic, corporate or private

ones.

Keywords: Open source software, open innovation, econometrics

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Acknowledgements

I am grateful to Professor Lévêque for his support and guidance through this intellectual

adventure. I would also like to thank Yann Ménière without whom this work would not

have been possible. Working with the two of them has been a great pleasure.

I thank Professor Strobl for his comments on my dissertation and earlier versions of my

working papers. I am grateful to Professor Bourreau, Professor Brousseau and Professor

Välimäki for their remarks on the thesis.

I would like to thank Professor Glachant for organizing the PhD seminars and providing

invaluable feedback on my papers.

I thank all PhD students at CERNA for making work fun, in particular Antoine Deche-

zlepretre, Timothée Olivier, Henry Delcamp and Benjamin Bureau. I would especially

like to thank Stéphanie Fen Chong and Yéhoudit Cohen for sharing the office and their

friendship.

I would like to thank Sésaria Ferreira for organizing my PhD defense and for helping me

tackle all administrative hurdles.

I thank the staff of the Berkman Center of Internet and Society for their hospitality.

On a personal note, I thank my parents and my family for everything. Even if it sounds

trite, it’s true that I owe everything to them.

Thank you.

i

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

ii

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

La nécessité est, d’ailleurs, de tous les maîtres,

celui qu’on écoute le plus et qui enseigne le mieux.

— Jules Verne (L’île mystérieuse)

iii

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

iv

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Contents

Preface xi

Introduction 1

1 Corporate Open Source - A Literature Review 5

1.1 Introduction . 5
1.2 Open Source as a Public Good . 7
1.3 Corporate Use of Open Source Software 9
1.4 Open Source Business Models . 12
1.5 Open Source and Proprietary Software . 14
1.6 Contribution . 17
1.7 Corporate Strategies . 21

1.7.1 Protection of Intellectual Property 23
1.7.2 Types of Corporate Contribution 27

1.8 Conclusion . 30

2 A Look Inside the Forge: Developer productivity and spillovers in

SourceForge projects 33

2.1 Introduction . 33
2.2 Background . 36

2.2.1 Programmers . 36
2.2.2 Organization . 37
2.2.3 Firms’ involvement in open source projects 38
2.2.4 Spillovers . 39

2.3 Econometric Model . 39
2.4 Data . 42

2.4.1 Data Source . 42
2.4.2 Descriptives . 44

2.5 Discussion . 47
2.5.1 Developer Productivities . 48
2.5.2 Scale effects . 50
2.5.3 Spillovers . 53

v

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

2.6 Conclusion . 56

3 Loose Contracts, Tight Control: Corporate contributions in Source-

Forge projects 61

3.1 Introduction . 61
3.2 Background . 63

3.2.1 Incomplete Contracts . 63
3.3 Data . 69

3.3.1 Quantitative Data . 69
3.3.2 Exploratory Survey . 77

3.4 Discussion . 80
3.5 Concluding Remarks . 86

Conclusion 88

A Source Code of Email Tracer Application 94

B Survey Questions 105

C Cross-section Regressions for Corporate Participation Rates 112

vi

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

List of Figures

1.1 Importance of Interoperability . 11
1.2 Reasons to Contribute . 20
1.3 Corporate Policies towards Revealing . 22
1.4 Protective Measures . 25
1.5 Types of Corporate Contribution . 29

2.1 Projects per Topic . 45
2.2 Maximal Number of Developers per Projects 46
2.3 Number of Releases . 47
2.4 Simulations 1 . 52
2.5 Simulations 2 . 52

3.1 Survey Question 1 . 79
3.2 Survey Question 2 . 79
3.3 Survey Question 4 . 79
3.4 Marginal Effects 1 . 85
3.5 Marginal Effects 2 . 85

B.1 Survey Question 3 . 111

vii

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

viii

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

List of Tables

1.1 Open Source Business Models . 14

2.1 Summary Statistics . 46
2.2 Development Stages . 47
2.3 Likelihood Ratio Test . 48
2.4 Computed Marginal Products . 49
2.5 Main Results . 58
2.6 Impact of Average Input Factors . 58
2.7 Results for Spillovers 1 . 59
2.8 Results for Spillovers 2 . 60

3.1 Summary Statistics (N=74,004) . 70
3.2 Predictions . 75
3.3 Regression on Corporate Participation . 83
3.4 Control Regressions on Corporate Participation 84

C.1 Cross-section Results for Corporate Participation Rate 113

ix

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

x

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Preface

• Chapter 1 : “Corporate Open Source: A Literature Review” is an extract of the

report “Open Source Incorporated” (January 2009) available on SSRN:

http://ssrn.com/abstract=1360604

• Early drafts of Chapter 2 : “A Look Inside the Forge: Developer productivity and

spillovers in Sourceforge projects” were presented at

– the “Economics and Econometrics of Innovation” seminar in Paris in December

2008,

– the MERIT-UNU seminar in Maastricht 2009,

– the International Industrial Organization Conference in Boston, 2009,

– the FLOSSworkshop 2009 in Padova, 2009.

• Drafts of Chapter 3 : “Loose Contracts, Tight Control: Corporate contributions in

SourceForge projects” were presented at

– the International Industrial Organization Conference in Washington, 2008,

– the Berkman Center in Cambridge, MA, 2008

xi

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

xii

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Introduction

Open source software was born out of necessity. As the anecdote goes, Richard Stallman

conceived the idea for free/open source software because he did not want to walk to a

shared printer for nothing. When he wanted to add a small computer program to the

printer that would notify him when a print was finished, he was barred access to the

software of the printer. Frustated by the state of commercial, proprietary software, he

set out to do things differently. Richard Stallman drafted the first version of the General

Purpose License, the first open source license, in 1989. Its principles were simple. Anyone

can modify and redistribute software licensed under the GPL as long as they credit the

original developer and allow others to do the same. This premise turns software into a

public good, non-excludable and non-rival.

Necessity and intellectual curiosity are still the main drivers of open source develop-

ment today. There are countless software projects that address a wide variety of needs,

from printing utilities to computer games, from scientific tools to commercial applications.

Thousands of volunteers from around the world contribute in these software projects, com-

municating problems and sharing ideas. Besides volunteers, one can observe more and

more professional programmers who work with open source software. It appears that

companies realize the power of tapping into the curiosity of the many.

To state that open source software has become important to firms and expect astonish-

ment in 2010 is moot. Even the most ardent critic acknowledges by now the commercial

potential of open source software. Examples such as the close collaboration between

Microsoft and Novell or Oracle’s acquisition of Sun, whose main products are all open

1

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Introduction

source, are just the proverbial tip of the iceberg. Technology firms use and produce open

source software with increasing ease and many to do so successfully.

A recent study suggests that 85% of surveyed firms use open source software (Gartner,

2008). The same survey asserts that usage is evenly divided between mission critical and

non-critical processes. Industry experts estimate that companies are heavily involve in

its production (Ghosh et al., 2002; Lakhani and Wolf, 2005). The estimated figures range

between 38% to 54% of developers who are paid for their work.

In light of this situation, the question at hand is not anymore whether firms use open

source software and contribute in its development. The predominant issues are rather

how can they create profitable business models, why do firms contribute in open source

software and what are the effects of corporate contributions on open source development.

These are the questions we want to investigate in this thesis.

Our endeavor is worthwhile for another reason than the commercial importance of

open source software. Corporate participation in open source software touches upon a

number of different issues in economics and social sciences. It is, among others, a nat-

ural experiment for the private provision of a public good, for gift giving, for collective

invention, for disruptive technologies, for technology outsourcing or for decentralized or-

ganizations. Little does it surprise then that academia strives to understand corporate

involvement in open source software. This thesis focuses on three aspects within this vast

field: the private provision of a public good, collective invention as well as outsourcing of

technology.

How can firms provide a public good? This is a question that lies at the core of the

economic analysis of public goods. Public goods are non-excludable and non-rival. This

means on one hand that, once they are made available to someone, anyone has access to

them. Nobody can be excluded. On the other hand, it also means that there is no scarcity

of the product. The consumption of the good does not affect its availability to others. The

nature of public goods render their private provision difficult. Economic theory predicts

that firms and private individuals will generally underinvest in the production of the good.

2

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Introduction

We look at corporate open source software to understand the possibilities to provide

a public good privately. Open source licenses create software that is, to some extent,

non-exclusive. Anyone who uses the software can also modify and redistribute it. This

renders applications with an open source license difficult to market. The firm needs to

find alternative ways to create value for the consumer and sell their product or service.

Reviewing the existing literature on corporate open source software, we point out common

business models and possible forms of investment in open source software.

What are the effects of corporate interaction with open source communities? This

question addresses collective invention and more generally open innovation. Open inno-

vation proposes that the firm benefits from opening up research and development (Ches-

brough, 2003). Involving external actors in research can lead to economies of scale or

scope and knowledge spillovers. The notion that the firm benefits from collaborating in

research and sharing information is not new. Muntz (1909), writing about the iron ore

industry, already noted that

“Each individual has some cherished bit of knowledge, some trade secret which

he hoards carefully. Perhaps by sharing it with others, he might impart useful

information; but by an open discussion and interchange he would, almost for

certain, learn a dozen things in exchange for the one given away.”

Corporate involvement in open source software provides us with useful information on

the performance of one form of open innovation. To shed light on the effectiveness of

involving corporate with voluntary developers and of knowledge spillovers, we estimate the

coefficients of a production function of the average open source project. This estimation

gives us an indication on how well open innovation works in open source software.

Why do firms contribute in open source software? This question is set into the broader

context of technology outsourcing. We contend that corporate use of open source software

is a kind of technology contracting. The firm signs the open source license in return for

certain functionalities of the application. Contracting external suppliers can entail risks.

3

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Introduction

Transactions are costly to enforce, contracts cannot encompass all possible contingencies

and specific investments might be made before transactions take place. These risks can

deter the firm from entering into deals in the first place. To overcome these obstacles, the

firm devises additional mechanisms to secure its transactions, e.g. vertical integration or

long-term contracts.

The open source license is an incomplete contract. It does not encompass any specifi-

cations, deadlines or specific features neither does it allow for any future contigencies. We

argue that these potential deficiencies in the contract between the firm and open source

project lead the firm to dedicate programmers to work on the software. Corporate open

source contribution is therefore a form of vertical integration.

For our empirical analyses, we use data on all open source projects which are hosted

on the SourceForge website (Gao et al., 2007). SourceForge is an online repository that

provides a platform for open source developers to manage their software projects and

for users to find open source applications more easily. It is the largest of its kind with

around 230,000 software projects and 2 million registered users (SourceForge, 2010). For

comparison, Savannah, a similar repository hosts around 3,200 projects.

This database is extended with background information on registered developers. We

relate the developers’ email addresses with top-level domain names, download the cor-

responding website and check its content for several keywords.1 Counting the frequency

of occurence for these keywords, we can rank each website according to three categories:

Academic, corporate or private. This method allows us to have a proxy of corporate in-

volvement in SourceForge projects. We discuss the downsides of this method in Chapter

2.

This thesis is divided into three parts. Chapter 1 presents the literature review on

corporate open source software. Chapter 2 focuses on the production of open source

software and Chapter 3 deals with corporate contributions due to incomplete contracting.

1See Appendix A for the Python source code.

4

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1

Corporate Open Source - A

Literature Review

1.1 Introduction

The improbable success of open source software stirs the interest of economists. For

the last twenty years, open source software has gained more and more momentum in

technology sectors. It is used for diverse applications such as servers, embedded systems

or consumer products. Its success is improbable because open source software is provided

voluntarily by a large number of private individuals, academics and, increasingly, by

companies. What makes this phenomenon even more remarkable is the fact that open

source software is a public good.

The private provision is a centerpiece in the economic analysis of public goods ever

since the seminal works of Olson (1971) and Coase (1974). Traditional economic theory

contends that public goods create market failures. A market failure arises because the

private benefit derived from the good does not coincide with the social benefit. Conse-

quently, the private provision of a public good is riddled with free-riding, coordination

issues and conflicts of interests. Despite these obstacles, open source applications have

managed to enter and, in some cases, even to dominate former monopolistic markets.

5

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

In this sense, the research on the corporate provision of open source software is an

extension of the public goods literature. It sheds light on a particular case of a public

good: Software with an open source license. Researchers illustrate various aspects of

its provision. They uncover the incentives for individuals to contribute in its provision.

Other scholars examine the mode of open source production and community governance.

A growing body of economic literature explores the reasons for corporate use and

provision of open source and its implications for the software industry. Our objective in

this chapter is to present a comprehensive survey of the economic literature on corporate

open source software. Our approach is twofold. First, we look at why firms use open source

software, in the course of which we shed light on the different open source business models.

Then, we consider the reasons for corporate provision of open source software. Most of

the papers in this field are empirical studies and there has been little theoretical work

on corporate open source software. A notable exception is the literature on the strategic

interactions between open source and proprietary software (Bitzer, 2004; Mustonen, 2005;

Economides and Katsamakas, 2006).

The chapter begins with a discussion of the properties that make open source software

a public good. We then turn to the reasons for corporate use of open source software.

Next, we look at the different business models that have arisen around open source soft-

ware and then consider the interaction between proprietary and open source software.

The second part of the chapter deals with corporate contribution in open source software.

We talk about the reasons for firms to contribute. Finally, we end the chapter with a

discussion of the different corporate strategies for contribution which include the adoption

of business processes, the protection of intellectual property and the types of corporate

contribution.

6

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

1.2 Open Source as a Public Good

Open source licenses are the building blocks for open source applications. They lay out

the rules for modification and redistribution. The aim of open source licenses is ultimately

to open up computer applications, encourage collective development and promote redis-

tribution (Rosen, 2004). To study and improve the software, developers need to access

an application’s source code, the programming instructions in human-readable form. To

this end, the source code needs to be open, hence the term open source.

These licenses create a public good. Open source applications are non-rival and to

some extent excludable. Because it is an information good, the open source application

is by its very nature non-rival: One’s own consumption does not diminish the availibility

to others. A potential user of an open source application has to agree to the conditions

of the open source license upon installing the software. Once he accepts the terms, he

is a member of the community of this application, he benefits from the application, but

at the same time has to abide by the rules of the license agreement. All such licenses

delineate the way modifications to the software are treated and how one can redistribute

the software. These restrictions make open source software in fact a specific kind of public

good: A club good. The open source license acts as a gatekeeper who ensures that the

rules of the open source community apply to every user of the software. In contrast to the

textbook example, open source software does not suffer from congestion for all members.

Open source communities may experience positive externalities through increased use.

More users can help find programming glitches and problems, as Raymond (2001) states

“given enough eyeballs, all bugs are shallow”. This might not be true for contributors,

though. As the number of contributors increases, congestion in development activities

may occur.

A public good is non-exclusive which means that everyone can benefit for free from

the effort of others. This creates a disincentive for each individual to provide the good

in sufficient quantities because they may not extract the full benefits from their effort.

7

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

The lack of incentive results in underprovision or complete failure of the provision. This

situation is the typical free rider problem. How is this relevant for open source software?

Although open source communities are excludable, they are so only until one signs the

open source license. Once a user is a member of the community, he has a non-exclusive

access to the software and all its modifications. Following economic theory, we expect to

find similar underprovision and lack of incentives in the open source community.

Moreovere, coordination costs can hinder the voluntary provision of open source soft-

ware. The development of a software application imposes strong constraints on its or-

ganization. As Brooks (1978) notes in his famous phrase that “adding manpower to a

late project makes it later ”, traditional software production quickly runs into decreas-

ing returns to scale. Brooks (1978) attributes rising coordination cost as the reason for

decreasing productivity. In traditional software creation, changes in one part of the soft-

ware have ramifications on all other parts of the software. Accordingly, each developer

needs to know what all other developers do. As a consequence, the cost of communication

increases exponentially as more developers join the project.

The ability to modify and redistribute open source software are important elements

in its success as they may reduce the free-riding and coordination problem (Benkler,

2002). Modification is rendered easier through the modular design of large open source

applications. It reduces the coordination costs implicit in organizing a large-scale software

development project. Modular design breaks a complex system down into smaller parts,

called modules. These modules can function independently as well as together to perform

a more complex task with only a minimum of communication (Langois and Gazarelli,

2008). By hiding information, developers treat each module as a black-box (Baldwin

and Clark, 2006): They do not need to know how it works only what goes in and what

comes out. Each module has an interface with which programmers or other modules can

interact. Standardized and open interface ensure that other developers can write code that

attaches seamlessly to modules. Modular design hence avoids constant communication

between development teams, they only need to define interfaces once and can then work

8

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

independently. Modular software supports parallel development. Different modules can

be developed at the same time without depending on the completion of other parts of an

application.

Redistribution, on the other hand, allows individuals to share their personal modi-

fications with others. The concept of innovations led by the needs of users finds many

examples outside the software market: the industries for semiconductors, scientific in-

struments and windsurfing are but a few (von Hippel, 1988; Shah, 2000). Its main tenet

is that users are in a better position to solve their problems than producers. This is

so, because some information is sticky : User requirements and preferences are either too

specific or too costly to transfer from the users to the producers. This means there is

an information asymmetry between the two groups as well as an incentive for users to

customize their product. Users therefore begin to add small improvements to the product

themselves. The Internet facilitates sharing improvements and exchanging information

about problems, especially for software. It is a cheap distribution and communication

channel. Lakhani and Wolf (2005) and von Hippel (2001) show that user needs are im-

portant motives for individual contributions. These user needs ensure that developers

have a personal interest in contributing code and adding new features. Users become

developers in open source packages. This personal benefit reduces the risk of free-riding.

The private benefit of adding a feature may exceed the cost of writing it (Bessen, 2005).

1.3 Corporate Use of Open Source Software

Surveys show that firms predominantly use open source software for their servers (Bonac-

corsi and Rossi, 2003b; UNU-MERIT, 2006). Scholars find two main reasons for corporate

use of open source software (Wichmann, 2002b; UNU-MERIT, 2006): Cost reduction and

standardization.

Companies use open source software to reduce cost. As soon as the quality of open

source software becomes good enough for normal use, it can be a less expensive alternative

9

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

to proprietary software (Hawkins, 2004). Wichmann (2002b) investigates what managers

consider a reason to use open source software. He finds that 56% of respondents agree

that the pricing and licensing policy is the main motive. The cost reduction does not

simply arise because there are no ad hoc licensing fees, however. Royalties are only part

of the total cost of ownership, which include also training and maintenance (Weiss, 2005).

Hence the actual decision to implement corporate software depends also on the necessity

to customize the software during implementation as well as training and maintenance

services.

A lock-in arises because switching a software, once it is put in place, is costly. These

cost can come from the investment in human skills and training as well as from compati-

bility issues. On the one hand, the use of a software requires a certain level of experience.

Depending on the specificity of the software, replacing it can require additional expendi-

tures for staff training. On the other hand, computer software is rarely used by one person

alone. Documents and files are exchanged regularly among different users. Switching soft-

ware may inhibit the exchange or, in the worst case, render a user unable to interact with

other users all together. A firm can thus get locked-in on one software application.

The cost advantage of using open source software arises when firms need to substan-

tially customize the software. Firms, like private users, can adapt open source software to

their specific needs (von Hippel, 2001). This flexibility allows a firm to adjust to change

more quickly. This requires corporate developers to have the technical expertise to write

and adapt the open source software. In case the developers lack the necessary human

capital, a firm can rely on external open source service providers. These services are more

competitive than those for proprietary software.

Standardization is another reason to use open source software. Standards are im-

portant in an industry in which multiple different applications and systems regularly

inter-operate. West (2003) sees one of the main advantages of open source software in

facilitating open platforms and infrastructures. Platforms and standards are costly to

establish and open source software offers another means to coordinate standards among

10

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Source: UNU-MERIT (2006)

Figure 1.1: Importance of Interoperability

firms. The open source licenses provide a common framework which ensures that the

platform remains accessible to everyone. The survey by UNU-MERIT (2006) sheds light

on the importance of open source software as an open platform. It finds that open source

users place a higher value on interoperability than users who do not use open source

software, see Figure 1.1.

Wichmann (2002a) corroborates these findings. In his study, 33% of respondents

attach at least a high importance to open source software for the firm’s information tech-

nology infrastructure, which include applications to support ongoing business processes

and communications.

The use of open source software entails a risk also (Jeon and Petriconi, 2009). The

lack of warranties or a corporate supplier can be a burden when liability issues arise.

Firms which accept open source licenses waive all warranty claims against open source

project or its developers. This means that, in case the software malfunctions, a firm

has no possibility to obtain reimbursements or charges for breach of contract from the

development community. At the same time, the lack of protection creates a business

opportunity for specialized software firms to provide these warranties.

11

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

1.4 Open Source Business Models

Since open source software is a public good, companies cannot simply sell the software.

They need to bundle the open source software with a marketable product or service.

Business models based on open source software center around the complementarity be-

tween the open source application and a service or product. This complementarity can

take two forms. Either there is a complementarity in demand or a complementarity in

production. Complementarity in demand is a positive network effect and means that as

open source software is adopted more widely, the demand for the marketable product

increases too. Hence, as the demand for the open source product increases, the firm can

sell more services or secondary products. Complementarity in production on the other

hand stands for a positive network externality and means that as the developer base for

the open source software increases, a firm receives more and more bug fixes, program

improvements and support. These can then be included in other marketable products

based on the open source software. Doing so reduces the cost of production and entails

external innovation (Chesbrough, 2003).

Along these lines of complementarity of demand or production, economists distinguish

four broad open source business models. Firms can (i) provide services based on the open

source software, (ii) supply products which make use of open source software, (iii) offer

modules and add-ons to open source software or (iv) sell corporate, closed source versions

of the open source applications.

Service providers for open source software offer the open source software for a small

fee and sell support, maintenance and other services. The open source software drives

the demand for the complementary services. The higher the installed base of the open

source application is, the higher the demand for additional services will be. The firm’s

competitive advantage is its human capital (Hecker, 1999). Because of its strong involve-

ment in the development process, the firm is in a unique position to offer superior services

and warranties for the open source software. Due to the nature of open source software

12

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

however, complementary service providers can face fierce competition (Behlendorf, 1999).

Since the software is open, rivals can easily enter the market, adopt the application and

provide similar services.

Hardware producers offer their product in conjunction with open source software.

There is a complementarity in production because firms can outsource some of their de-

velopment effort to external developers, either private or corporate, for free. Hence the

open source software reduces their production cost - in addition to saving the licensing

fees. Unlike service providers, hardware producers face less competition from their open

source engagement. The specificity of the hardware protects them from imitators, while

most external developers either work in different markets or are hobbyists (Henkel, 2006).

Customized hardware is of little value to other producers with different hardware speci-

fications. This specificity reduces the risk of free-riding from competitors as they cannot

adapt the open source code for their products.

The third business model is the sale of complementary modules or add-ons. Open

source software is often build in a modular way. Using this modular architecture, firms

can market specific modules to existing applications (Behlendorf, 1999). These add-ons

fit into the main software and provide additional services or features for paying customers.

Customization and adaptation to the needs of clients are the main sources of revenue.

Here, a firm benefits from complementarity in demand. The link between the open source

application and the module implies that as the application becomes more popular and

its user base increases, the demand for the firm’s modules increases too. The reliance on

the main open source software however also entails a downside. The firm depends on the

success of the overall software and the decisions taken by the development community.

Involvement in the development and the decision-making process of the main software

project is one means for the firm to protect its open source investment.

The dual-license business model is closest to the traditional software vendor (Välimäki,

2003). A firm provides an open source and a close source version of the same program.

Both versions are basically identical apart from the license. Customers can obtain a

13

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Table 1.1: Open Source Business Models

proprietary license and thus keep their modifications hidden from the open source com-

munity. This way they can create value-adding features and customizations to the ap-

plication without sacrificing their competitive advantage. This business model offers the

best of both worlds (Välimäki, 2003): it harnesses the development effort of an open

source community to improve the software, while, at the same time, it generates revenue

the traditional way through selling software licenses.

1.5 Open Source and Proprietary Software

As software firms adopt open source business models, the rivalry between open source

firms and proprietary software producers becomes a prevalent topic and one with high

stakes for both parties concerned. Usually the incumbents in these markets follow a tra-

ditional proprietary business model and so they face unlikely opponents: companies using

communities of volunteers. Outsourcing software development to a group of people who

work for free gives open source firms a considerable cost advantage towards proprietary

firms. Empirical evidence suggests that, until now, open source firms are far from de-

throning the proprietary incumbents (Bonaccorsi and Rossi, 2003b). But this coexistence

of the two different business models is all the more reason to search for factors affecting

this type of market outcome and to shed light on the underlying dynamics of the market

and firm interaction.

Because of the ease with which one can simplify this problem to a duopolistic market

structure, it lends itself to game theoretic analysis. A variety of theoretical economists ex-

14

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

plore the duopolistic competition between proprietary and open source software providers

(Bitzer, 2004; Mustonen, 2005; Casadesus-Masanell and Ghemawat, 2006; Economides

and Katsamakas, 2006). Their works differ with respect to strategic interactions, the

firms’ cost structures and the time horizon of the analysis.

Bitzer (2004) considers a market in which a proprietary software firm competes with

one open source firm. Their two pieces of software are sufficiently differentiated that both

firms can charge a price higher than marginal cost. The open source firm does not invest

in innovation. By contrast, the proprietary firm spends money on innovation, e.g. to

add functionality or to increase compatibility. Bitzer (2004) is able to show that in this

setting, the proprietary firm coexists with an open source rival in the long run, if the

differentiation between their two products remains large enough due to innovation on the

part of the proprietary firm. This finding entails two corrolaries. First, a proprietary firm

has an interest in differentiating away from the open source application, because doing

so secures a market segment and a client base. Second, differentiation however is costly

and depends on the extent to which the proprietary firm funds innovation. If the cost of

innovation becomes too high, differentiation decreases and the proprietary firm’s profits

may fall below average cost, leading it to exit the market.

Mustonen (2005) looks at the factors that lead proprietary firms to render their soft-

ware compatible to competing open source software. The two computer applications,

one proprietary and the other one open source, are differentiated products and create

positive network externalities to the respective consumers. By increasing the user base,

compatibility is a two-edged sword. On the one hand, it benefits the proprietary firm

by increasing the network effects for the firm’s own consumers. The consumers benefit

from services offered on the open source application and thus also value more highly the

proprietary software. On the other hand, the proprietary company may lose its competi-

tive advantage over the open source software, if it has itself the larger user base to begin

with. The firm’s choice depends on the strength of the network effect and the quality

of the open source application. Mustonen (2005) finds that, as the size of the network

15

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

effects increases, the firm’s incentives turn in favor of compatibility. By contrast, a pro-

prietary incumbent might find it profitable to remain incompatible to ensure his price

setting power, especially if the two software products are close substitutes.

Casadesus-Masanell and Ghemawat (2006) extend the literature with a dynamic anal-

ysis. They model a duopolistic market in which demand-side learning effects create net-

work externalities over time. As consumers adopt the open source software, later con-

sumers learn from these previous decisions. These learning effects trigger a momentum

in favor of the open source software. Casadesus-Masanell and Ghemawat (2006) assert

that, regardless of the strength of the learning effect, the proprietary application remains

in the market as long as the quality difference between the two pieces of software is large

enough. Not surprisingly, the arrival of the open source alternative reduces the profit of

the proprietary incumbent and in general increases total welfare.

Economides and Katsamakas (2006) use a two-sided market analysis to investigate

the impact of an open source alternative on a proprietary software producer. A two-

sided market is essentially a platform which trades with several distinct groups. These

groups benefit from each other’s presence on the platform, which translates into network

externalities across the platform. The platform in turn can internalize some of these

network benefits and sets its prices for the different groups accordingly. This kind of

market is particularly useful to analyze software platforms, such as operating systems

where there are consumers on one side and application providers on the other.

Economides and Katsamakas (2006) derive three conclusions. First, they show that,

when consumers value highly variety in applications, application providers earn higher

profits on the proprietary platform than on the open source one. This result stems from

the inability of the open source platform to internalize the network benefit accrueing from

consumers. Second, the authors show that with free entry, open source platforms have

a larger variety of applications than proprietary platforms. This finding is due to the

zero price of open source platforms and the resulting adoption among consumers. Third,

Economides and Katsamakas (2006) also contend that an industry-wide adoption of an

16

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

open source platform is welfare enhancing due to the larger availibility of complementary

applications. In all, they are able to formulate a market setting which can explain why

proprietary firms can coexist with open source firms.

1.6 Contribution

Corporate open source contributions are investments in software communities. As with

other investments, a firm wants to reap the returns of its open source engagement. We

have seen in the last section that a firm cannot simply market the resulting product.

Alternative benefits have to be realized. The reasons to contribute depend on corporate

strategy and the business model of a firm. Bearing this in mind, we find that there

are either technical or strategic reasons to contribute (Wichmann, 2002b; Henkel, 2006;

Osterloh and Rota, 2007). Among the technical reasons are complexity, compatibility and

standardization. Strategic reasons comprise gaining a reputation within the open source

community and competitive considerations.

Complexity can be a reason for firms to contribute in open source development (Mc-

Govan, 2001; Bessen, 2005). Bessen (2005) contends that software applications consist of a

large number of features and that, in contrast to proprietary pre-packaged software, open

source software allows customization to individual needs. Proprietary software producers

offer pre-packaged applications that address the average consumer. Due to transaction

cost and asymmetric information, he cannot provide every feature for every customer.

Firms have heterogeneous preferences for functionality and some might benefit from cus-

tomizing the software on their own. Contributing in open source development therefore

allows these firms to modify an existing software and more appropriately match their

needs with the application.

Compatibility is another reason for corporate contributions. Firms contribute to en-

able compatibility between their product and the open source software. These contri-

butions are generally rather limited (Bonaccorsi and Rossi, 2003b) and minimize the

17

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

exposure of the corporate product to the open source software - and restrictive open

source licenses (Wichmann, 2002b).

Standards are pivotal elements in software platforms. As these platforms transform

from valuable, differentiating assets into low-cost components in various hardware prod-

ucts, firms are interested in reducing the cost of maintaining them. One such way is

through open source software, which remains accessible to everyone. The development

and maintenance cost are divided among all participants. Maintaining the open source

platform thus becomes a collaborative effort of private individuals and corporate devel-

opers from various firms. Theoretically, this could lead to an arms race in contributions.

Companies want common standards for open source platforms. Moreover, they prefer to

have their standards adopted in these platforms, hence firms may intensify their open

source engagement to get their standards integrated in the project.

Showing good open source citizenship is one more reason for corporate open source

activity (Osterloh and Rota, 2007). Open source developers generally follow a kind of

hacker codex (Raymond, 2001). This means that there are certain social norms and

customs which determine how developers contribute to the development and communicate

with other developers. By contributing, a firm wants to show that it plays by the rules.

The collaboration between community and firm depends on trust. Sharing code with the

community earns trust and creates good will. This in turn leads to a more beneficial

cooperation between firm and open source community.

Trust between community and firm is especially important when it comes to corporate-

led or corporate-owned open source projects (Shah, 2006). The difference between leading

and owning a software project lies in who keeps the copyright of the source code. A

corporate developer might act as the project administrator, i.e. he heads the project, but

the copyright for the source code still remains with either the each individual contributor

or the development community. By contrast, a company-owned open source project owns

the source code and obliges its contributors to transfer the copyright to the company.

Corporate leadership and ownership influence the effectiveness of open source devel-

18

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

opment (O’Mahony and West, 2005; Shah, 2006). More and more companies use and

initiate open source software as useful additions to their product lines (Bonaccorsi and

Rossi, 2003b; UNU-MERIT, 2006). Developers are suspicious of corporate projects, how-

ever. They are wary of free-riding on the part of the firm as well as a lack of attribution

of their contributions (Shah, 2006). These fears stem from the perception that firms are

less bound by social norms or reciprocity and more bound by profitability. Yet, develop-

ers contribute because either there is no private open source alternative or the corporate

project offers better quality.

In her study, Shah (2006) indeed finds that there is a large difference in developer moti-

vations between private and corporate open source projects. Respondents disapprove with

company-run projects because the company alone controls the copyright of the project

and therefore is the sole owner of the source code. Contributors suspect that the firm can

arbitrarily restrict the use and distribution of private contributions. As a consequence,

individuals feel less obligated to reciprocate with the development community.

To overcome these reservations, companies have to interact carefully with open source

communities. They can create goodwill within the open source community through several

measures (Shah, 2006; Osterloh and Rota, 2007): (1) involving private contributors in

the decision-making process, (2) using a restrictive open source license which effectively

prevents corporate code hijacking, or (3) hiring renowned open source developers to show

the commitment to the open source idea.

Competitive considerations can drive open source contributions as well. In most fields,

open source projects compete with proprietary applications. Firms can use open source

software to undermine a competitor’s dominant position and commoditize an application

(Ven and Mannaert, 2007). They contribute to the projects to improve it up to the point

where the program is good enough for day-to-day use. Undermining an incumbent’s mar-

ket position entails two benefits. Firstly, it reduces the cost for upstream markets. Firms

which use proprietary platforms may want to replace them with open source alternatives

to cut the licensing cost. Secondly, firms may benefit from the release of proprietary

19

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Source: Henkel (2006)

Figure 1.2: Reasons to Contribute

software by an increased demand for complementary products.

Henkel (2006) gives an overview of the corporate developers’ opinions on why their

firm reveals source code, see Figure 1.2. He finds supporting evidence for most of the

aforementioned motives. Most developers agree that they contribute because the open

source license requires them to do so. This response shows that firms, unlike individual

contributors, are less driven by ideological considerations - the license makes them reveal

source code. Obtaining the trust of the open source community ranks high. What is more,

responses addressing reciprocity or cost arguments rank high too. These responses are

related to the a firm’s good will in the community. Individuals who trust a company are

more inclined to provide bug fixes and new features. Hence the more a firm contributes

20

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

the more individuals trust the company; the more they trust the company, the more

they contribute. Firms realizing this link have an incentive to contribute to open source

projects.

1.7 Corporate Strategies

Research suggests that, before a firm can release source code or contribute in open source

projects, it is advantageous to create specific open source strategies (Hecker, 1999). Open

source contribution entails software specific challenges. To reap the full benefit of the

open source engagement and protect a firm’s valuable assets at the same time, a firm

could consider several aspects. It can delineate rules that define which pieces of code

could be revealed (Ven and Mannaert, 2007; Henkel, 2008) and can establish a platform

for open source software within as well as outside the firm (Hecker, 1999; von Hippel and

Katz, 2002).

Corporate developers who work on open source projects face a dilemma (Henkel,

2008). Their affiliation with the open source community may conflict with the loyalty

to their firms. Because they act as interface between the company and the open source

project, they have a pivotal role in the open source engagement of the firm. The decision

to reveal code to the community ultimately lies with them. Rules may strike a balance

between the uncertainty faced by the developer on what to disclose and managers’ risk

perception of their open source engagement. Henkel (2008) proposes that these rules

could be drawn up in collaboration with management, intellectual property lawyers and

the developer team. Figure 1.3 shows the share of corporate developers who agree with

the given statements.

Additionally, a firm can create internal processes for open source software development

(Hecker, 1999). These processes include the preparation of the source code as well as a

change in the mode of development. Source code for in-house use may differ from source

21

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Source: Henkel (2008)

Figure 1.3: Corporate Policies towards Revealing

code published for an open source project. The system architecture might be adopted

for release and the application modularized to accommodate the open source mode of

production. This might also make it easier to decide which parts should be disclosed

and which should not. Moreover, firms often use proprietary third-party technologies in

their applications. Before release to the open source project, the firm can either seek

permission to use proprietary third-party technologies or replace it with an open source

compatible pieces of code.

The inclusion of potentially large numbers of external developers is an advantage of

open source software. Apart from providing the source code, a firm can create a positive

social context to motivate and coordinate open source developers. Dedicated corporate

coordinators with experience in open source projects can impose stronger control on the

open source community (Eilhard, 2008a). Henkel (2008) points out, however, that cor-

porate coordinators and developers should not have a strong ideological attitude towards

open source software as this will lead to excessive revealing of corporate intellectual prop-

erty.

In case a firm initiates an open source project, it can also provide proper external

22

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

facilities, for instance user forums, tools to report bugs and to submit contributions.

Moreover, firms may also provide user-tool kits (von Hippel and Katz, 2002). These

software development kits not only help to facilitate the adoption of the project, but also

give the firm innovations as well as information about user needs that can be used for

future products (Jeppesen and Frederiksen, 2006). These kits can speed up development

considerably (von Hippel and Katz, 2002). Moreover, the external infrastructure creates

a good reputation for the firm (Dahlander and Magnusson, 2005). Reputation gives a

firm a stronger clout on open source project leadership.

1.7.1 Protection of Intellectual Property

Involuntarily releasing valuable ideas is an risk in corporate open source engagements. In

fact, the mode of open source production consists of regularly disclosing information to

everyone. Information is particularly prone to misappropriation and imitation, because

it is a public good. Once disclosed, anyone can use the knowledge in the information

and the commercial value for the inventor is severely reduced. Traditional means to

protect intellectual property are patents, copyright, lead time, secrecy or complementary

marketing or manufacturing (Cohen et al., 2000). These measures are often used in

combination to provide stronger protection. Apart from traditional means, the literature

finds means specifically designed for open source software.

Research identifies several ways to protect intellectual property specific to open source

software (Bonaccorsi and Rossi, 2003b; Henkel, 2006): Selective revealing, hybrid licensing

schemes, delaying disclosure and circumventing the licenses. A firm does not need to

reveal all the modifications to the open source community. Even though restrictive open

source licenses require the disclosure of all modifications, a firm does not have to actively

publish its source code. The licenses only ask for the availability of the source code, hence

firms may either distribute the source code on demand or, when the number of users is

very small, arrive at the common understanding with the users to not publish the source

code at all (Henkel, 2006).

23

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Another means to protect corporate intellectual property is to use a mixed licensing

scheme (Bonaccorsi and Rossi, 2003b; Rosen, 2001). Restrictive open source licenses

do not place a limitation on the ability to distribute an application under proprietary

licenses. A firm can thus distribute an open source version and a closed source version

of the same software. Users of the proprietary version can keep their modifications secret

and still benefit from a large external development community.

Delaying the publication of the source code is yet another way to secure one’s own

intellectual property (Henkel, 2006). Lead time is especially important in software and

computer markets. By extending the time between product development and its market

launch, a firm delays the source code disclosure and effectively fend off competitors. This

time advantage then secures its investment in the development of the software. Henkel

(2006) notes this behavior in the embedded software case.

Finally, a firm can circumvent restrictive licensing conditions by hiding open source

code within proprietary packages (Ven and Mannaert, 2007) or by simply not provid-

ing active support for the source code (Henkel, 2006). The former method, although

technically not allowed under restrictive open source licenses, is rather effective. Once

the source code is incorporated in a closed source module, identification of the infringing

parts of source code is difficult. The latter method discourages development by individual

developers. A firm might not provide clear documentation of its software for instance.

These practices - if revealed - are proscribed by the open source community. Henkel

(2006) offers a measure of how often firms rely on these means (Figure 1.4).

In addition, Dahlander (2005) explores the use of traditional intellectual property

protection in five open source software firms. He finds that firms use a mix of protective

measures for their product. Four out of five firms rely on copyright to protect their

contributions, followed by secrecy, three out of five. Only two out of five firms protect

their intellectual property with first-mover advantages or complementary assets. ? explore

the relationship between a firm’s patent and trademark portfolio and its open source

24

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Source: Henkel (2006)

Figure 1.4: Protective Measures

engagements in their study of 461 firms. They find that firms with large portfolios of

software patents or hardware trademarks are more likely to release open source software.

This could indicate that firms can use open source software as a complement to their

patented products. In contrast, they also reveal that firms with a large number of software

trademarks or hardware patents are less likely to release open source software.

Proponents of open source software often depict software patents as its nemesis (Perens,

2006). In their view, the existence of patentable software code is the greatest threat to

the open source development process. Evans and Layne-Farrar (2004) point out the main

lines of the conflict between open source software and software patents supporters.

Restrictive open source licenses require mandatory licensing of software patents. To

accord with the software license, any patented code has to be licensed to all users of the

open source software for free. This one-size-fits-all condition does not pose a problem for

one’s own patents, but it does for third-party patents. The open source license basically

voids any means to recoup cost for research and development. Less-restrictive licenses,

on the other hand, allow proprietary software patents to be merged with open source

25

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

software.

Among the different reasons against software patents, the most important ones are

the reduction of the software commons and the weakness of software patents (Perens,

1999). Open source proponents argue that open source software creates a software com-

mons, a stock of knowledge shared by all developers and accumulated through the code

contributions in open source projects. Software patents, to use the image of pasture,

creates a fence around parts of this commons and excludes the public. Put differently,

software patents limit the possibility to freely include all available source code in open

source software. Evans and Layne-Farrar (2004) assert that this view only considers the

static perspective, whereas the dynamic innovative process is neglected. Were software

patents to promote innovation, their elimination would decrease the incentive to create

new software and thus less software would be written.

Bessen and Maskin (2000) counter this argument. They contend that, if innovations

are sequential and complementary, patent protection can inhibit their invention. Sequen-

tial innovations build on preceding inventions, such as early versions of Microsoft Windows

were build on DOS. According to Bessen and Maskin (2000), complementary innovations

are different research approaches that lead to the same goal. Because of the complemen-

tarity, the overall likelihood of invention increases with each approach. There are many

examples for complementary innovations in open source applications: Gnome and KDE,

MySQL and PostgreSQL or Firefox and Epiphany. Consequently, a firm obtaining first

a software patent can prevent its competitors from developing further innovations based

on similar ideas. In case the patent-holding firm lacks the creativity of its competitors,

patents slow down the rate of invention.

The weakness of their validity is another often-cited downside of software patents.

Patents are supposed to protect inventions which are non-obvious, new and useful. The

weakness of software patents stems from the filing of oftentimes old or obvious inventions.

Weak patents are per se not a problem - litigation can ultimately determine the validity

and strength of a patent. The real damage arises from injunctions, which bare all sale of

26

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

potentially infringing products (Lévêque and Ménière, 2006). Faced with an immediate

loss in revenue and the prospect of a long litigation process, firms are willing to pay high

royalties even for weak patents. Evans and Layne-Farrar (2004) contend that weak patents

will disappear with time as patent offices begin to gather a reference database on prior

art in software patents and can then better determine the novelty and non-obviousness

of the patent claims.

1.7.2 Types of Corporate Contribution

The extent to which a firm interacts with a community depends on its business model.

In case a firm relies heavily on external development, it needs to interact more closely

with the project. On the other hand, a firm may simply scan communities and projects

to keep up-to-date on software development. In this case, a firm free-rides on the devel-

opment effort of the open source project without contributing back to the community.

The decision to contribute depends on the trade-off between the benefits and the cost of

the open source engagement.

Along these two cases, Dahlander and Magnusson (2005) find three different ap-

proaches to corporate involvement in open source projects: symbiotic, commensalistic

and parasitic. The symbiotic approach describes a situation in which the firm actively

interacts with and supports the open source development community. The parasitic ap-

proach is the exact opposite. Here, a firm focuses on its own benefit regardless of the

effects to the open source community. The commensalistic approach is a compromise

in which a firm co-exists with the open source community. Although it benefits from

developments provided by the community, it interacts and gives back little.

Using the symbiotic approach, a firm considers the open source development com-

munity as a direct extension of its knowledge base. It interacts regularly and takes an

active interest in the leadership of the open source project. Dahlander and Wallin (2006)

explore the intensity of communications within an open source project. They find that

firm-sponsored individuals communicate more with others than vice versa. Additionally,

27

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

these corporate participants interact with core members of communities. There are differ-

ences between firms which are dedicated OSS companies and firms which are incumbents

in the software market. Henkel (2006) investigates the revealing behavior of corporate

developers in a embedded Linux projects. He finds that firms reveal almost half of their

contributions to the community. These results vary significantly among firms, but not

across industries. The revealing behavior depends on firm characteristics, such as size and

experience with open source software. Positive experience increases corporate developers

willingness to contribute.

Figure 1.5 represents the types of corporate contributions revealed to open source

projects. The results are split between hardware (HW) and software producers (SW).

One can see that the surveyed firms mostly disclose generic pieces of code. Interestingly,

the share of firms that release critical source code is high. One possible explanation is

that software firms use code releases to increase their reputation and to signal technical

excellence. Another explanation may be excessive revealing on the part of corporate

developers who, lacking clear rules for revealing, contribute too much in open source

projects.

In a recent study, Lamastra (2009) sheds light on the impact of corporate contributors

on the quality of open source development. She finds that the quality of development

activities increases in terms of code contributions. By contrast, all non-development activ-

ities of a community decrease due to the involvement of corporate developers. Lamastra

(2009) suggests that this indicates a short-term perspective on the part of the firm and

may lead to higher future cost.

The parasitic approach is one of pure free-riding. Firms copy and use source code

provided by software projects without reciprocating. What distinguishes it to the com-

mensalistic approach is the negative effect it has on the development community. The

community may perceive a free-riding firm as such, if it violates rudimentary social norms

and principles. Since this approach is not a sustainable way to interact with open source

28

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

Source: Henkel (2006)

Figure 1.5: Types of Corporate Contribution

projects, few firms would claim to be parasitic. Yet, the line between what constitutes

simply passive use of open source software and intentional free-riding and abuse of the

open source development effort may be subjective and depends on a community’s per-

ception of acceptable behavior. Bonaccorsi and Rossi (2003a) find that 46% of surveyed

firms selling open source related products or services do not actively contribute in open

source projects. Henkel (2006) obtains similar results in his sample: 51% of firms do not

reveal their contributions to the community.

The commensalistic approach describes firms which co-exist with open source commu-

nities. Even though they benefit from the communities their own direct contributions are

few. In contrast to pure free-riding, they honor the social norms and try to gain accep-

tance in the open source projects. In case they reveal code this code generally is generic.

Bonaccorsi and Rossi (2003a) identify a lot of firms who only contribute in a few projects.

68% of the surveyed firms are active in at most 2 projects and only 8% in more than 10.

They then relate social, economic and technological motives to firm activity in projects.

They find that firms with high economic motivations coordinate less projects. Also firms

29

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

which are more socially motivated do not contribute in more projects. In contrast, the

number of accepted contributions increases with social motivation. Moreover, Henkel

(2008) finds that the level of identification with the open source community influences

the level of contributions in an open source project. He shows that corporate developers,

although they identify with the community, feel a less strong commitment than private

developers.

1.8 Conclusion

In the past ten years, economic research has come a long way in understanding why firms

use open source applications and why they take part in their development. This chapter

showed that open source software and commercial goals are compatible and that indeed

there is an economic rationale to develop open source software.

The literature gives two main reasons for corporate use of open source software. First,

open source software can give cost advantages. Apart from the lack of licensing fees,

open source applications also entail lower maintenance cost and are less prone to lock-in.

Empirical studies support this contention. They find that companies use open source

software to avoid these cost. Second, open source software can promote standardization.

Establishing a common technology platform is costly and difficult to coordinate across

different parties. Open source software offers a common framework for collaboration and

rules to coordinate collective development.

We present five motives for firms to contribute in open source software. Economists

contend that firms contribute in open source software because computer applications

contain a large number of features. The inability of the proprietary software producer to

provide all features to every client induces firms to contribute in open source software and

produce these feature themselves. Enabling compatibility can be another reason. Firms

contribute to render their product compatible with an open source application. The

literature also brings forward that companies participate in open source development to

30

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

establish a standard. The control over standards and platforms is pivotal in the software

sector. The more a firm contributes, the more it influences the creation of a potential

standard. Companies also contribute to gain reputation in open source communities.

Voluntary contributors are wary of corporate involvement in open source development.

To counter the suspicion of corporate free-riding and opportunism, firms contribute and

show their adherence to the open source ideology. Companies can also contribute for

strategic reasons. Software markets often have a dominant incumbent who is protected

by high barriers to entry. Open source applications offer a possibility to undermine the

position of the incumbent. Contributing in open source software thus is a way to put

pressure on the incumbent and to changes the software sector into a contestible market.

Our findings on corporate provision beg the question whether we need government aid

to promote the adoption and development of open source software. Some governments

put in place requirements to choose open source software over proprietary software in

public institutions. Germany, for instance, has several initiatives to oblige the public

sector to adopt open source software. In addition, there are several programs to subsidize

the production of open source software. The United States subsidizes firms that create

open source software, for example the Beowulf Linux Clusters. Is there a market failure

that might justify governmental action?

There are two possible sources of market failure with regards to the software sector.

Due to network effects or learning effects, consumers face high switching cost: They can

only change the piece of software by incurring a considerable cost in terms of learning

the new software or incompatibilities with users of other computer applications. They

are locked-in on a piece of software which in turn might lead to a monopoly in the

specific software market. Another source of market failure is the existence of knowledge

externalities. These knowledge spillovers can accrue as a result of using or producing

the software. Users share their knowledge about the software. Developers exchange

information on specific programming issues. It is important to note that these spillovers

might benefit the firm also. In case these knowledge externalities are higher for open

31

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 1. Corporate Open Source - A Literature Review

source than for proprietary software, the government might increase social welfare by

promoting open source software. So, is there a case for government support of open

source software?

Leaving aside political economy, our discussion of open source adoption and business

models indicates that open source software is quite capable of competing with proprietary

software without state intervention. It is safe to say that lock-in effects exist in some

software sectors and create inertia in software adoption, but we also see that technologies

are highly dynamic and, because of this, render software markets strongly contestible.

A firm that enjoys a monopoly in one niche, may find itself in fierce competition as

technologies change. Governmental action, however well intended, might come too late

or provide the wrong incentives. Knowledge externalities, on the other hand, are not

limited to open source software. Proprietary software firms also establish means to share

information and foster knowledge sharing among users and developers. There is as yet no

empirical evidence that suggests that these knowledge spillovers are lower than the ones

in open source software.1

In all, we see that the analysis of corporate provision of open source software is a

worthwhile enterprise. What is more, the insights of our discussion are valid beyond the

software sector. The challenges posed by collectively-provided goods as well as by digital

distribution channels will not go away and are likely to increase in the future.

1To read more on governmental subsidies and open source see (Schmidt and Schnitzer, 2003)

32

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2

A Look Inside the Forge: Developer

productivity and spillovers in

SourceForge projects

2.1 Introduction

“The ability of the [open source software] process to collect and harness the collective

IQ of thousands of individuals across the Internet is simply amazing.” This comment

stems from a Microsoft software engineer made in the so-called Halloween memos in 1998

(Valloppillil, 1998). Already ten years ago, the world’s largest software producer under-

stood the potential of open source software production. Today, this original productive

model has demonstrated economic success. As a matter of fact, major proprietary appli-

cations face serious competition from open source rivals such as Linux or Apache. Even

more significantly, the open source movement has largely permeated corporate software

development. Google’s Android mobile phone platform, Sun’s OpenOffice office suite

or, to a lesser extent, Apple’s App Store bear witness to the phenomenal power of the

collaborative effort of thousands of individuals.

The success of open source software is puzzling in many respects. Open source licences

33

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

require that source code be disclosed and available to all for free. Some so called restrictive

licences, such as the General Public License, even impose that any extension of open source

software be in turn licensed under the same terms. These legal provisions confer open

source software the characteristics of a public good, and make it all the more striking that

a large number of developers contribute to develop it. Against this backdrop, research in

economics has been mostly interested in highlighting the various reasons why firms and

private developers do contribute (Lerner and Tirole, 2002; Bonaccorsi and Rossi, 2003a;

Lakhani and Wolf, 2005).

In this chapter, we explore another key aspect of the success of open source, namely

the process of software code production in open source projects. Using a panel of 10,553

open source projects tracked on the SourceForge repository website from February 2005

until June 2007, we estimate the individual productivity of voluntary and corporate de-

velopers, as well as spillovers flowing from other projects. Our choice of a flexible translog

specification of the project production function makes it possible to assess scale effects

and interactions between voluntary and corporate developers.

Our empirical analysis sheds light on several important features of open source pro-

duction. We find that corporate developers are more productive than voluntary ones.

However a negative interaction term indicates that associating the two groups entails a

decrease in productivity. Our results also suggest that the way open source projects are

organized makes it possible to manage large projects quite efficiently. Indeed the pro-

duction of open source code is not subject to strong decreasing returns to scale, thereby

contrasting with proprietary software production.

Finally, we provide evidence of knowledge spillovers flowing between projects of the

SourceForge repository. The possibility to reuse code from other projects is frequently

presented as a strong advantage of the open source model (Raymond, 2001). Our findings

confirm this statement: the amount of software code available in other projects substan-

tially increases a project’s productivity. Spillovers benefit mainly to mature projects, and

take place between projects that share the same topic and/or programming language.

34

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Moreover, it appears that corporate programmers are better able to exploit spillovers

than voluntary ones.

This work is one of the first empirical studies on the open source production process.

One other paper estimates a production function based on SourceForge projects (Giuri

et al., 2010).

Three other papers, all of which using data from the SourceForge repository, inves-

tigate related topics like sorting of programmers and R&D spillovers. Belenzon and

Schankerman (2008) use the license types to infer the motives of programmers. They find

in particular that corporate sponsorship – reported through a separate survey – tends

to attract more contributions by developers under a less-restrictive license, and does not

affect contributions by developers under a restrictive license. Using a different method

(based on the email addresses of developers) to track corporate involvement, we com-

plement their work by finding evidence of a productivity loss when corporate developers

interact with voluntary ones.

Taking the number of downloads as a measure of outputs, Fershtman and Gandal

(2008) show in turn that substantial spillovers flow within networks of projects and net-

works of developers. In a similar vein, Singh et al. (2008) focus on spillovers due to

personal relationships among developers. Relating source code contributions with re-

peated interactions, they argue that trust and cohesion determine the size of the knowl-

edge spillovers and thus affect the success of a project. By contrast, we propose another

approach of spillovers, which is directly based on the availability of source code. Using

source code releases as a measure of output, we take the quantity of code available in

other projects as the source of spillover flows. We can thereby relate these flows with the

projects’ development stage, topic, programming language, and category of programmers.

The chapter is structured in seven sections. We review in Section 2 the economic

literature on open source production. Next, we develop our regression model (Section 3)

and, in turn, present our data (Section 4). We discuss our results in Sections 5 and 6, the

latter being specifically devoted to spillovers. Section 7 concludes.

35

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

2.2 Background

This section reviews the literature on open source software production. After quickly

presenting the incentives of developers, we discuss the organization of code production

within projects and the effects of knowledge spillovers in open source software.

2.2.1 Programmers

Traditionally, open source developers have been volunteers who contribute code for in-

dividual motives. Studies find that between 59% (Lakhani and Wolf, 2005) and 49%

(Ghosh et al., 2002) of surveyed open source contributors are unpaid volunteers. They

submit pieces of source code for a variety of reasons. Lakhani and Wolf (2005) find that

59% of their respondents contribute because they need a specific feature. Some also

contribute because it is fun to solve challenging programming tasks (Shah, 2006), for

ideological motives opposing free software to proprietary software, or to improve or signal

their programming skills (Lerner and Tirole, 2002).

Apart from private volunteers, firms increasingly participate in open source develop-

ment as well. According to a recent survey, they develop 15% of all open source software

world-wide (UNU-MERIT, 2006). More strikingly, Lakhani and Wolf (2005) find that

around 40% of surveyed open source developers are paid to contribute to projects. There

are different reasons why firms use open source software. It may be a cheaper alternative

to in-house software development or buying proprietary software (Eilhard, 2008b). Firms

can also make profits by combining it with the proprietary code, hardware or services they

supply to consumers (Lerner and Tirole, 2005; Henkel, 2006). Why firms contribute code

is a more difficult question. Available surveys highlight various motives. Besides com-

plying with open source licenses, these motives especially include being accepted by the

community of developers and influencing the development path of the software (Henkel,

2006).

It is unclear whether corporate programmers are more productive than voluntary ones.

36

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Empirical evidence shows that voluntary and corporate contributors spend approximately

the same amount of time on working in open source projects (Ghosh et al., 2002), although

we do not know exactly whether they allocate their time equally on the same types of

projects. Differences in individual productivity may also depend on skills. Corporate

programmers are paid professionals, while many voluntary programmers contribute to

projects to demonstrate or improve their skills (UNU-MERIT, 2006). Lamastra (2009)

investigates the impact of corporate developers on the quality of SourceForge projects.

She finds that corporate involvement increases development activities, but reduce the

quality of all tasks not related to development.

2.2.2 Organization

The most striking feature of open source production being that it is realized by com-

munities of peers (von Hippel and von Krogh, 2003), several authors seek to understand

how coordination works within each project. Lerner and Tirole (2002) emphasize the

existence of informal hierarchies in open source projects. Each project is organized in

circles of more or less involved developers (from those who report bugs to those who fix

them) around one or several ‘charismatic’ leaders recognized as such by their peers. By

contrast, Benkler (2002) contends that the organization of open source production differs

from both the hierarchical and market models. In his view, labour division between small

contributors hinges on the combination of voluntary contribution and modular software

design, which the development of information and communication technologies has made

possible.

Arguably, this productive model can ensure a more efficient division of labor than

traditional ways of developing software code (Bonaccorsi and Rossi, 2003c). The modular

design makes it possible for volunteers to select for themselves on which problems they

want to work, without having to care about the other modules. Matching their skills

with the tasks at hand, they moreover take up tasks which more closely fit their set

of capabilities (Amabile, 1983). Self-assignment thus can lead to a better use of human

37

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

capital in open source projects and hence to a higher effectiveness compared to traditional

software production (von Krogh et al., 2003).

In a recent empirical study based on SourceForge projects, Belenzon and Schankerman

(2008) find that the sorting of programmers also strongly depends on the license type,

project’s size and corporate sponsorship. Interestingly, they show that the effect of the

license type on contributions varies with the project type: a restrictive license will draw

more contributions for end user projects, and less for developer tool projects.

2.2.3 Firms’ involvement in open source projects

Cooperation between voluntary and corporate developers is of particular interest. The

open innovation paradigm (Chesbrough, 2003) suggests that complementarities in skills

and objectives may further boost open source production. Firms are for instance more

interested in improving user interfaces or interoperability with hardware – two dimen-

sions which are usually neglected by voluntary user-developers (Lerner and Tirole, 2002;

Scotchmer and Maurer, 2006). Yet corporate developers may also be reluctant to share

source code if the competitive advantage of their firm is at stake (Henkel, 2008). As a

result, they practice various forms of selective revealing to protect valuable information

from leaking to open source projects (Bonaccorsi and Rossi, 2003b; Dahlander and Wallin,

2006; ?).

Reflecting the conflict of interest, Henkel (2006) observes that 51% of surveyed firms do

not reveal their contributions to open source projects at all. Still, many firms contribute

to open source projects, some of them intensively (Dahlander and Magnusson, 2005).

Beyond compliance with open source licenses, they do so to be able to influence the

project’s development path, which in turn requires being perceived as a good player by

voluntary programmers (Henkel, 2006). Accordingly, corporate developers tend to work

in key positions in open source projects, and to interact more frequently than others with

core developers (Dahlander and Wallin, 2006).

38

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

2.2.4 Spillovers

Spillovers are another aspect of the open innovation paradigm. As stated by Raymond

(2001): “Good programmers know what to write. Great ones know what to rewrite (and

reuse).” Indeed source code under open source licenses being publicly available, the stock

of open source software has become a wide library in which programmers are free to pick

and reuse the pieces of code they need for a particular project. Put in economic terms,

the knowledge – the code – generated for each projects spills over to other projects.

Although spillovers may be a key factor in the spectacular growth of the open source

movement, empirical studies have been missing until very recently. Fershtman and Gan-

dal (2008) focus on spillovers flowing through projects involving the same developers,

and through developers involved in the same project. They show that a project indeed

benefits of spillovers when (i) it is directly connected to other projects (ii) it is close to

a large number of projects beyond their immediate connections (iii) it occupies a central

position in a network of projects. Taking a closer look at contributors, Singh et al. (2008)

explore spillovers which accrue through social interaction. They argue that projects are

more successful when developers have (i) a high degree of internal cohesion, which leads to

mutual trust and reciprocity norms, and (ii) a moderate level of relationships with devel-

opers outside the project. This suggests that, while information flows among developers

are important, spillovers are not restricted to projects that share common developers.

2.3 Econometric Model

The measurement of open source projects’ productivity encounters the same type of dif-

ficulties as any attempt to measure the true productivity of research (Hausman et al.,

1984). Ideally, we would need a measure of the social return of each project, including

the utility users derive from the software as well as the spillovers to other projects. Unlike

corporate research, the prices of innovative goods cannot proxy spillovers, let alone users’

utility, for open source software is distributed royalty free. It might be more realistic

39

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

to infer private returns, namely the returns for contributors, from their degree of indi-

vidual involvement. Such a work would require precise information on their individual

productivity and the time they spend on each project.

Our objective in this paper is more modest and constitutes a first step in that direction.

We focus on the determinants of technical success in open source software development, as

measured by software releases. Such releases signal that a new version of the open source

software is ready for download. They provide an interesting proxy of innovative output

since released versions are generally improvements upon the previous versions which they

replace.

Releases have another advantage over other methods to measure software production,

e.g. lines of code or function points (Boehm, 1981; Wheeler, 2002). They have a straight-

forward economic interpretation. While more technical measures track software creation

more precisely, they do not readily translate into new software products. Apart from the

problem of comparing projects with different programming languages, there is a more

important issue here: Software developers regularly add and remove lines of code from

the source code. How can we measure developer productivity with this? Are developers

more productive simply because they write more lines of code? If we take the analogy

of a creative writer, we see that these technical measures miss the point for an economic

analysis. Creative writers are not economically productive because they write long novels.

Writers are productive when they publish books. The same holds for software developers.

We, as economists, are not interested in the elegance of the source code, in contrast to

computer scientists. We want to measure the working pieces of software that the open

source community produces during a specific time period.

We have no priors about the true functional form of the open source production

function. Since our dependent variable, the number of releases for project � in each time

period � � �� �� ���� ��, ���, only takes on non-negative integer values, we assume that it is

generated by a Poisson process. We model the single parameter of the Poisson distribution

function, ���, as a function � ����� �� where ��� is a vector of labor inputs for each project

40

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

� in time period � and its respective parameters, �. We also add a set of control variables,

���, which includes changes in project topic, in development stages, licenses and time

dummies per month. We use a project-level fixed effect estimation. The term �� captures

all time-constant, unobservable effects, �� contains time dummies for each month and ���

includes unobservable, time-variant productivity factors.

�� ����� � �� ����� � � ��� � ��� � � �� � �� � ��� (2.1)

To reduce clutter, we drop the subscripts for projects and time periods in the further

presentation when the interpretation is unambiguous. We want to analyze the produc-

tivity of the three different groups of contributors. Without any prior constraints on

the function � �����, we estimate the coefficients of a translog production function for

all open source projects. The translog function is an attractive flexible specification. It

has both linear and quadratic terms with the ability of using more than two factor in-

puts, and can be approximated by a second order Taylor series (Christensen and Greene,

1976). Applied to our three labor inputs, the translog production function can be written

in logarithmic form as:

� ������ �� �
�

�

�� ���� �
�

�

�

�

�

�

��� ���� ���� � � ��� (2.2)

where ���� is the respective number of developers for academic, corporate or private

developer groups, �� � � ����� ��, and ��� is a spillover proxy which we will define later

in the chapter.

Observe that the translog function can be transformed in a standard Cobb-Douglas

function by imposing zero-value coefficients on the second order terms. This would im-

ply that the estimated elasticity of output with respect to each input be constant by

assumption. For sake of comparison, we also estimate this constrained specification.

41

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Besides its flexibility, another advantage of the translog function lies in the interpreta-

tion of the second order terms. The sign of the coefficients for the squared logarithms of

labor inputs hints towards increasing or decreasing elasticity of output. We can therefore

use it as an indicator of increasing or decreasing returns with respect to each category

of programmers. Moreover, positive or negative coefficients for the interaction terms,

���� ����, make it possible to derive conclusions on the effect of interactions between

different categories of developers.

Estimating a production function creates a simultaneity problem (Marschak and An-

drews, 1944; Olley and Pakes, 1996). In the traditional setting, firms choose the factors of

production according to profit-maximizing, first-order conditions. Because they consider

firm-specific productivity differences, more productive firms use more factors of produc-

tion, rendering it more difficult to establish a causal link between production factors and

output. The control variables in �� are a first way to capture differences in productivity

between projects. These variables include dummies for changes in the development stage

of the projects and their topic of application, and several channels of knowledge spillovers

from other projects. We moreover address the simultaneity problem by using a project-

level fixed-effect estimation method. This approach eliminates major misspecification,

which are transmitted to the factor decisions and are constant over time (Griliches and

Mairesse, 1998). It however requires the assumption that unanticipated elements of the

error term at period � do not affect factor decisions at later periods.

2.4 Data

2.4.1 Data Source

We use a balanced panel of 10,553 open source projects tracked on SourceForge from

February 2005 until June 2007 (T = 28 months). SourceForge is an internet platform

for open source projects. It helps new projects attract developers and users. Sourceforge

provides the necessary tools for managing a software project, such as user fora, bandwidth

42

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

for downloads and a version control system to keep track of contributions. SourceForge

is the largest internet repository with almost 300,000 projects, similar, but considerably

smaller, platforms are GoogleCode or Kenai.

SourceForge as an incubator includes a large number of small or inactive projects.

Since creating new projects is costless, many projects may be started, just to be subse-

quently abandoned after a short while. For this reason Howison and Crowston (2004)

caution the use of SourceForge projects to draw conclusions about open source projects

in general. In this regard our approach is especially valuable, because we only look at

projects which have already released a version of their software, thus avoiding inactive

projects all together.

Open source projects regularly release newer versions of their software. These file re-

leases fix programming bugs, add new features or improve performance. Larger projects

generally announce their releases in advance; smaller projects may post updates inter-

mittently. There are various forms in which users can obtain these releases: compressed

source code, binary installers or text files. To have comparable observations, we only look

at compressed files. We only look at gzip files, as these were the most common types of

compressed files (30%) in the sample. This allows us to look at projects across different

operating systems, because binary installers often are operating system specific.

In addition to information on software projects, we obtained developer backgrounds

using their email addresses. These email addresses were related to the corresponding web-

sites and sorted into three categories: academic, private and corporate. We sampled ten

websites to obtain keywords for each category and counted the occurrences of each word.

We established a ranking and were thus able to attribute an email address with either

category, for example ’hotmail.com’ to the private category, ’ibm.com’ to the corporate

and ’ensmp.fr’ to the academic one. In all, we checked approximately 15,000 websites. We

then retained projects where all developer backgrounds were known as well those which

actually released a file update during the observed time period. so we could account

for all registered developers in a project, 10,553 projects remained in our sample. Lerner

43

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

et al. (2006) use a similar method in their study. Their analysis encompasses the top-level

domain names, i.e. ’.com’ for corporate developers or ’.edu’ for academic ones. This has

clear disadvantages compared to our method, because top-level domain names, especially

for ’.com’, confound private email accounts, such as for ’yahoo.com’, with corporate ones.

Our method has two drawbacks. On the one hand, we might see a type I error. We

overestimate the number of corporate developers for those who use their work email for

private purposes. They subscribe to SourceForge using their office email and thus pass as

corporate developers, even though their company does not directly promote open source

development. On the other hand, we might see a type II error. Contributors might use

their private email addresses for subscription, although their firms do support open source

projects. There is no direct way to mitigate these issues. One possibility is to argue by

deduction. Finding statistically significant differences between corporate, private and

academic developers might support the validity of our data collection method.

2.4.2 Descriptives

SourceForge offers 222 different topics for open source software. After regrouping these

categories in broader application fields, we obtain a more manageable 19 topics. Figure

2.1 shows the number of projects per topic in our data sample. We immediately see that

a lot of projects focus on four topics: software development, internet, communications

and system administration. The figure also shows the tremendous variety in topics that

we find on SourceForge. There are projects on religion - for instance an application to

calculate the Islamic prayer times - as well as scientific software and games - incidentally,

approximately 200 versions of Tetris are available on Sourceforge.

The number of developers is a possible indicator for project size. Figure 2.2 shows

that our sample contains an overwhelmingly large number of small projects. We see that

almost 80% of the observed projects have only one registered developer over the entire

time period. This begs the question whether these project have a significantly different

mode of production than projects with more developers. To test the impact of this possible

44

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Figure 2.1: Projects per Topic

bias, we will estimate the production function with a sub-sample of the projects with at

least two developers (n’ = 2,406). A more detailed look at the developer categories reveals

that on average each project has at least one private developer and every fifth project has

a corporate one. Also, every fifth project has an academic contributor (Table 2.1).

Projects release new updates irregularly. Figure 2.3 depicts the number of projects

for the maximal number of file releases within the 28 months. We see that the majority of

projects has only one release over the entire period and that there are few projects which

are very productive, having more than ten releases.

We measure spillovers with the size of the code commons, i.e. size of the available

knowledge base. We compute the code commons available to project � as the sum of

the number of bytes of the new releases at time �, ��� �
�

�������������, for all other

projects � , where � �� � , in a particular topic �, �� � ���� ��� ���� ����. We consider topic

to be a meaningful boundary of the code commons, because it encompasses software

with similar objectives, similar problems and, likely, similar solutions. Following the

same reasoning, we also calculate the available code commons with respect to topics and

programming languages. We assume that Table 2.1 shows that average size of the code

commons is considerable. Projects have on average 81 terabytes of - compressed - source

code available to copy and reuse. The refined knowledge base of projects with same topic

45

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Figure 2.2: Maximal Number of Developers per Projects

Table 2.1: Summary Statistics

and same programming language still encompasses almost 10 terabytes of source code

which is about the size of the printed collection of the U.S. Library of Congress.

SourceForge provides a way to measure the development status of each project. Project

administrators indicate in which of the seven different stages the project is: planning,

pre-alpha, alpha, beta, stable, mature or inactive. Although the choice of one stage over

another is based on subjective criteria, it gives us a general idea of the progress and sta-

bility of the project. Table 2.2 shows the frequencies of projects within each development

stage. The mean gives the percentage share of each category within our sample. We see

46

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Figure 2.3: Number of Releases

Table 2.2: Development Stages

that around 60% of the projects in our sample are in beta or later stages. This provides

further evidence that we are indeed dealing with actively developed projects.

2.5 Discussion

Table 2.5 shows the results of the regressions. Models 1 and 2 show the estimates for

the full sample (n = 10,553). We progressively render the functional form more flexi-

ble, beginning with a classic Cobb-Douglas production function (model 1) and using the

complete translog specification (model 2). The same translog specification is estimated

in models 9 and 10, respectively for the sample of projects with at least two developers

(n’ = 2,406) and for projects in beta or later development stages (n” = 7,018). All re-

gressions are fixed-effects models. A Hausman test shows that random-effects estimates

are inconsistent, refuting the assumption that unobservable project characteristics are

47

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Table 2.3: Likelihood Ratio Test

uncorrelated with past, present or future values of the regressors. Considering the nature

of the independent variable, the count of file releases, the use of a Poisson panel regression

lends itself rather directly. The absence of zeros in the dependent variable prevents the

use of negative binomial regressions to test for overdispersion. We argue instead by visual

inspection (see table 2.1) that the assumptions for a Poisson regression are met, namely

that �������������� � � ������������.

We check the validity of our specification with a likelihood ratio test. Comparing the

complete translog function (model 2) with a Cobb-Douglas specification (model 1), we

test the null hypothesis that the each restricted model is a more adequate representation

of the data than the translog function. Table 2.3 shows the chi-squared and the respective

p-values in parentheses. The null hypothesis cannot be supported, thus suggesting that

indeed model 2 is the best specification for our data.

2.5.1 Developer Productivities

As can be seen in Table 2.5, we find significant coefficients for each category of developer

in the Cobb-Douglas specification (model 1). Recall that by construction this specifi-

cation implies constant elasticity of output with respect to each input. The estimated

input coefficients measure these elasticities. They suggest a slightly lower elasticity for

corporate programmers than for private and academic ones. However, this conclusion is

not confirmed statistically, the coefficients being equal with a high probability (p-value

= 0.85).

Model 2 makes it possible to go further in the comparison. The translog function

relaxes the assumption of constant elasticity by taking into account additional input

variables, namely the squared logs and the crossed logs of developers. This flexible spec-

ification also makes it possible to disentangle the different effects captured in each Cobb

48

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Table 2.4: Computed Marginal Products

Douglas coefficient. Although the simple logs of developers remain significant in model 2,

they have lower values than in model 1, and the estimated coefficient become now higher

for corporate developers. Moreover, significant and positive coefficients for squared logs

show that elasticity of output with respect to each category of developer is in fact increas-

ing. In line with simple logs, these coefficients are higher for corporate developers than

for the other two categories. As shown in Table 2.5, the crossed effects are significant

only when corporate developers are involved, and then negative in each case. In other

term, we find empirical evidence of a negative effect of interactions between corporate

developers and other categories on the productivity of open source projects.

In sum, the productivity of corporate developers is subject to conflicting effects. On

the one hand, coefficients of simple logs and squared logs suggest that corporate developers

are more productive than other categories. On the other hand, corporate developers also

have a negative effect on production when they are associated with other categories.

Making comparisons between categories of developers requires taking into account

these conflicting effects. As a first step in this direction, we calculate the marginal product

of each developer group for each project in model 2. Table 2.4 presents the average and

the median computed marginal products for each developer group as well as the respective

t-statistics for equality of means. We see that the average corporate marginal product is

significantly higher than the marginal product for the other two groups. The difference

is statistically significant at the 1% level.

Our results suggest that corporate developers are on average more productive than pri-

vate or academic contributors. Table 2.4 shows that an additional corporate developer is

on average 42% more productive than a private contributor and approximately 78% more

productive than an additional academic developer. The median marginal productivity

49

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

might mitigate outliers and give a more accurate picture of the productivities in our data

sample. Considering the medians, the difference in productivities between contributor

groups is even more pronounced. Here, adding a corporate contributor increases produc-

tivity by 54% more compared to an additional private developer and 72% more compared

to an additional academic one.

2.5.2 Scale effects

Looking at the average marginal product gives only a partial picture, for this leaves out

diminishing or rising marginal productivity. To address this limitation, we consider now

the relationship between productivity and the scale of open source projects.

The simple Cobb-Douglas specification in model 1 makes it possible to derive clear

conclusions on returns to scale. The sum of the estimated coefficients for each category

of programmers is equal to 1.9813 – much above 1 – which suggests that open source

production is subject to increasing returns to scale. The quadratic and interaction terms

make it more difficult to identify returns to scale in the translog model. To address this

problem, we simulate five scenarios based on model 2: Projects with (i) all corporate,

(ii) all private, (iii) all academic, (iv) cooperation in which the number of contributors is

equally divided between the developer groups and (v) cooperation where the number of

developers is weighted among academic, private and corporate contributors with respect

to their sample frequencies. Figure 2.4 presents these simulations. In the first three

scenarios the project’s output is clearly a convex function of the number of developers

within the range of developers we observe. In other terms, each new contributor increases

the average developer productivity.

Returns to scale are increasing for projects that have developers with the same back-

ground. The question though is how well do the ’all-with-one-background’ scenarios cor-

respond to our sample. These three scenarios are clearly polar cases and we need to

look at what goes on in between these three extreme examples. We therefore calculate

two more simulations in which we assume that developers are added from each developer

50

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

group.

In Figure 2.4b, we can see that the curves for the fourth and fifth scenario are slightly

concave. We add a 45° line to make the concavity easier to see. For scenario 4 (equal

distribution), each new contributor is a less productive than the one before him. Average

productivity decreases as more developers are added to a project. The decreasing returns

to scale are less obvious in the fifth scenario (weighted distribution). Nonetheless, as more

developers are added to a project, average productivity decreases slightly, as can be seen

by comparing it with the 45° line.

The last two scenarios show that open source projects exhibit slight, decreasing returns

to scale. Our results depend on the functional form of the production function and

on the assumed entry to open source projects of developers with different backgrounds.

The heterogeneity of development communities determines whether we are more likely

to observe open source development resembling scenarios 1-3 or scenarios 4 or 5. To

be sure, all five scenarios are extreme cases that do not completely represent the actual

productivity in open source development. These scenarios give us an indication on the

average dynamics inside open source development projects.

Figure 2.5 represents the notion that these scenarios are the upper and lower bounds

in which our model predicts the returns to scale. The upper bound is the “one-single-

background” scenario for corporate developers and the lower bound is scenario 4 in which

we add contributors from all three backgrounds equally. Scenario 4 is the lower bound,

because the negative interaction effects between groups are largest in this scenario. The

area in between these bounds shows the potential returns to scale for any distribution of

contributor groups in a development community. Looking at the area between the two

bounds, we can infer that there is a considerable potential for increasing returns to scale

in open source projects.

A possible factor driving these results could have been a qualitative difference in nature

between the releases observed in nascent and more mature project. Developing the first

version of a software product may indeed take more time than subsequent improvement.

51

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Figure 2.4: Simulations 1

(a) Same Background

(b) Cooperation

Figure 2.5: Simulations 2

52

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

We have therefore estimated the same translog specification respectively for the sample

of projects with at least two developers (n’ = 2,406) and for projects in beta or later

development stages (n” = 7,018). As can be seen in Table 2.5 (models 9 and 10), the

results do not differ substantially from model 2. Another possible explanation lies in the

way we measure the developers’ contribution. The increasing returns to scale we observe

might reflect the fact that developers tend to devote more time on large mature projects

– which we cannot control for. Still, our results indicate that open source production is

hardly subject to decreasing returns. Despite a possible bias in time measurement, this

sheds light on the intrinsic efficiency of this software production model. The combination

of modular design and voluntary contributions seem to be an efficient way to divide labor,

even for large projects.

2.5.3 Spillovers

In Tables 2.7 and 2.8, we present several models assessing the spillovers effects flowing

between projects through various channels. They show that the coefficients for spillovers

are positive and significant. The size of the code commons has a differentiated effect

on production depending on the developer group, topic, programming language and the

development stage of the project.

Model 2 includes a unique spillover variable denoting the number of terabytes of source

code available in other projects of the same topic. Albeit small, we find a positive and

significant coefficient for spillovers. Calculating the impact of the average input factors

and spillovers on production, we find that spillovers account for 2.5%, whereas developers

make out 97.5% of the entire effect (table 2.6).

We need to address the size of the spillovers on overall productivity. Why is the

spillover effect so small? On the one hand, this may be due to the difference between

codified information and tacit knowledge. In contrast to codified information, tacit knowl-

edge can only be learnt through face-to-face interaction or experience. Tacit knowledge

spillovers may be therefore less commensurable with our definition of code commons and

53

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

are left out of our estimation. This measurement error can lead us to underestimate the

effect of knowledge spillovers. On the other hand, it is also possible that the effect of

knowledge spillovers on productivity is small compared to other factor inputs. As we said

before, we conflate the influence of labor and capital inputs in our estimation. Compared

to these, the overall gains from knowledge spillovers might be minute. In the end, soft-

ware development may come down to having a powerful computer and spending a lot of

manpower on a project.

Despite the small size of the spillover effect, it is worthwhile to look more closely at

the channels through which spillovers flow. Looking at the interaction terms of developer

groups and spillovers (model 3), we find that the coefficients are significant for corporate

and academic contributors. The results indicate that adding another terabyte of code

commons increases the productivities for these two developer groups, but not for the

private one.

It thus seems that academic and corporate contributors copy and reuse more than

private developers and hence benefit more from the available code commons. There is no

significant difference between the effects for academic and corporate contributors (Chi² =

1.02). According to the adage that “good programmers know what to write. Great ones

know what to rewrite (and to reuse)” (Raymond, 2001), it would appear that academic

and corporate contributors are better open source developers than private ones. Of course,

there is another way to read these results. One could argue that corporate and academic

contributors are more pragmatic and goal-oriented than private ones. They may not

write software for fun or to learn. Using available source code in other projects helps

them achieve their objectives more quickly. This pragmatism might cause the larger

spillover effect for academic and corporate developers.

Furthermore, Model 4 looks at the impact of the license type on spillovers. We find

that the coefficient for same license type is positive, but not significant. By contrast the

coefficient for different license type is positive and slightly significant. Sharing the same

license type does not appear to promote knowledge spillovers, however the size of the

54

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

knowledge base matters for projects from different license family. Leaving the differences

in statistical significance aside - indeed at 10%, the latter coefficient is only slightly

significant -, this finding might say that, once source code is made public, contributors

care little about the license type and whether the license is restrictive or not. They may

simply use the available source code regardless of the constraints on license proliferation.

Hazarding a guess, we might say that there is a commingling of different license types at

the source code level.

Model 5 and 8 show that the further advanced a project is in its development, the more

it benefits from the available source code in other projects. Spillovers are significant only

in projects with Production and Mature status. A Wald test shows there is a significant

difference in spillovers between projects in Beta and Production stages (Chi² = 38.72).

It thus appears that spillovers are not a critical resource to start new projects, but rather

to improve and extend more mature projects. This suggests that spillovers could relate

to bug fixing or generic functionalities rather than the core of new software. Since they

mainly benefit the developers of mature projects, this result also provides an interesting

explanation for the non-decreasing returns to scale we observe in SourceForge projects.

We fail to find a significant difference between spillovers from projects with the same

topic and programming language and spillovers from projects with different programming

languages in model 4. Separating the proxies further, however, shows that spillovers for

projects with the same programming language are significantly stronger than for projects

with different languages (model 6). A Wald test reveals that there is a significant differ-

ence between spillovers of same versus different programming languages in production-

stage projects (Chi² = 4.45) and mature ones (Chi² = 7.6). Moreover, we find significant

spillover effects from projects with the same programming language, but different topics

in models 5 and 6. In model 5, the difference between the spillover effects is signifi-

cant for same topic-different programming language spillovers and different topic-same

programming language.

Finally, we find significant spillover effects from projects with the same programming

55

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

language, but different topics in models 5 and 6. In model 5, the difference between the

spillover effects is significant for same topic-different programming language spillovers and

different topic-same programming language.

2.6 Conclusion

The purpose of this paper was to study empirically the production of open source software.

Using a panel of 10,553 projects registered on SourceForge over a period of 28 months

(February 2005 until May 2007), we have estimated a production function relating the

number of file releases with the number of corporate, private and academic contributors.

We have considered two possible specifications of the production function, namely a Cobb-

Douglas function and a more flexible Translog specification. This approach made it

possible to highlight various interesting results, concerning the productivity of corporate

and other developers, the effects of their interactions within open source projects, returns

to scale driven by labor division and the existence of spillovers between projects.

Our first findings concern the developers’ productivity. We find empirical evidence

that corporate developers are generally more productive than voluntary ones. However,

this result must be balanced with the negative effect of interactions between the two

categories of developers. In other terms, although corporate developers are more efficient

individually, they seem less efficient in cooperating with other categories of developers

within a given project, which suggest possible conflicts or at least coordination failures

due to vested interests and/or different ways of approaching their work.

Our estimations suggest that open source projects may not be subject to decreasing

returns to scale. This result should be taken with caution due to a lack of data on the time

developers spend on each project. Still, it denotes a striking constrast with decreasing

returns that are oberserved in more traditional software production (Brooks, 1978). This

suggests that the peculiar organization of production in open source projects – based

on a combination of user-driven innovation, voluntary contribution and modular design –

56

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

enables an efficient division of labor between programmers. Such organizational efficiency

may explain why large open source projects such as Linux or Apache are particularly fierce

competitors for proprietary software.

Finally, we find evidence for positive spillovers between projects of the Source Forge

repository. We test different possible channels, and show that spillovers mainly flow

between projects with the same topic and, to a lesser extent, between projects with the

same programming language. Projects involving corporate and academic developers are

more likely to benefit from spillovers. Project development stage also matters: spillovers

only seem to benefit mature projects, thereby increasing further the total productivity

of large projects. Surprisingly, the license type neither favors nor hinders the flow of

spillovers between projects.

57

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Table 2.5: Main Results

Table 2.6: Impact of Average Input Factors

58

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Table 2.7: Results for Spillovers 1

59

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 2. A Look Inside the Forge: Developer productivity and spillovers in
SourceForge projects

Table 2.8: Results for Spillovers 2

60

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3

Loose Contracts, Tight Control:

Corporate contributions in

SourceForge projects

3.1 Introduction

Companies increasingly contribute in the development of open source software. A recent

study shows that 70% of the development work for the Linux kernel has been done by

corporate developers (Kroah-Hartman et al., 2009). To be sure, this is not a singular

phenomenon. Firms are responsible for a considerable share of the development work in

all kinds of open source projects. Lakhani and Wolf (2005) find that around 40% of open

source developers are paid to contribute in projects found on the SourceForge website,

while Ghosh et al. (2002) observe that 54% of their surveyed open source developers are

paid.

But what leads firms to contribute in open source software? The academic literature

proposes several answers to this question (Wichmann, 2002b; Henkel, 2006). Firms con-

tribute in open source software to promote standardization. Contribution thus becomes

a collaborative standardization process. Each firm contributes to have its specifications

61

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

included in the final standard. In a similar vein, companies might send programmers to

open source projects to ensure compatibility with their products. Research also shows

that firms contribute to gain reputation within a development community. Lastly, firms

contribute for strategic reasons, for example to undermine a dominant incumbent.

We propose in this chapter a complementary approach to the standards and compat-

ibility reasoning. After all, the development community creates and improves software

voluntarily. So why doesn’t the firm simply request that a standard be included in a

piece of software or an application be made compatible to a product? We argue that it

contributes to mitigate the risks of the open source license. By using the open source

software the firm signs an incomplete contract, the open source license. The lack of fixed

feature specifications, delivery dates or development priorities render the software license

incomplete and create contractual hazards for the company. Therefore, it imposes addi-

tional governance structure in its relation with open source communities by dedicating

developers to the software project.

We use a two-fold empirical method to shed light on this issue. Our first empirical

looks at 2,643 open source projects extracted from Sourceforge to establish a relation

between contractual incompleteness and corporate participation. We find quantitative

evidence of to the notion that firms face contractual incompleteness when dealing with

open source communities. Our results suggest that projects are indeed more likely to

have high corporate participation when they show high degrees of contractual hazards.

In particular, the longer it takes for projects to treat requests and the more variable

the treatment is the higher is the share of corporate developers in the project. Supporting

the incomplete contracts hypothesis further, we find that as the frequency of the treated

submissions increases, corporate open source participation decreases. This is in line with

the transaction cost literature which asserts that the rate of repeated transactions can

mitigate the problem of incomplete contracts.

An exploratory survey provides additional insights on the attitudes towards firms

within different development communities. From May until July 2009, we conducted

62

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

a short email survey among 7,914 project maintainers who coordinate the development

work in open source communities and obtained 60 valid responses. Their comments con-

sistently mention the unwillingness of the community to pay special attention to corporate

needs. This qualtitative evidence suggests that there can be merit in using the theory of

transaction cost and incomplete contracts on corporate open source software. By partici-

pating, firms can affect the structure of the transaction with the development community

and can more closely control their exposure to contractual incompleteness.

Our analysis is unique in that we provide a theoretical underpinning to the growing

body of empirical evidence on corporate open source participation. We complement

previous literature in this field with tools and insights of New Institutional Economics.

In a broader context, this chapter links the literature of technology outsourcing to the

phenomenon of corporate open source software.

Additionally, we present a novel approach to measure incomplete contracts. The

chapter has four parts. The next section presents the theory of incomplete contracts

and the relation with corporate open source. Next, we introduce the data used for our

preliminary results. Then, we establish an econometric model for the SourceForge data.

Lastly, we discuss the results for both the regressions and the survey.

3.2 Background

3.2.1 Incomplete Contracts

We use a simplified setup to represent corporate open source software. In this setup, we

have a firm and a development community who provides an open source application. The

firm needs a computer application to perform a certain task. If the firm decides to use

the open source application, a transaction takes place between the firm and the develop-

ment community. The application has a given set of services in terms of features. The

development community in turn adds new features and improves existing functionality to

the application.

63

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Unlike other commercial transactions, the firm does not sign a legal contract for the

open source application. The terms of trade between firm and application are laid out in

the open source license. If the firm needs additional features or improved functionality,

e.g. to accommodate new hardware, it has to interact with the development community.

The interactions between firm and community can take the form of bug reports, support

or feature requests, but can also be posts on mailing lists, submissions to fora or direct

contacts with developers.

A bug report for instance is a short message to a bug tracking system that contains

information about what in the application does not work and with which computer hard-

ware and operating system the malfunction has been experienced. Here is an actual bug

report from the JBoss project on Sourceforge.net:

”When I attempt to execute ’build all’ on the latest source, using my w2k machine,

I get the following error.

BUILD FAILED java.lang.OutOfMemoryError

I have set ANT_OPTS=-Xmx640m.

Even the ’build clobber’ command requires 60 MB of memory. Does this make sense?

Isn’t clobber just deleting a bunch of directories?

My latest attempt to ’build all’ topped out at 90 MB.

Could someone please run this [program] through a profiler? There’s probably a

memory leak in there somewhere. Given the nature of the task, it’s hard for me

to believe that it really requires 90+ MB.

Are there any workarounds for this?”
1

Messages like the one above are then posted on the web site of the development community

to which other users and developers can respond.

These messages are requests to subcontract development work to the community. Even

though the open source license is not a formal contract (Laurent, 2004), it defines the

terms under which interactions between the firm and the development community take

place. The license sets only the framework for mutual collaboration. This means that it

defines the terms of modification and redistribution, but waives all warranty claims and
1Here is a rough translation for the less technology savvy. The person who submitted the bug report

apparently has a problem with creating the application from the source code with the given option of ’build
all’. He uses the Microsoft Windows 2000 operating system and receives a message from the program
that he does not have enough main memory. After explaining his problem, he asks the development
community to run a program analysis tool, the so-called profiler, on the source code and suggests that
there is a programming glitch in the source code somewhere.

64

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

responsibility for errors in the software (Rosen, 2004). In this regard, the open source

license is indeed an incomplete contract (McGovan, 2001). It only defines a minimal set

of conditions for the transaction.

Contracts are incomplete when they do not encompass all possible contingencies of a

transaction (Williamson, 1967). The aim of a contract is to outline the terms of trade;

the conditions under which a transaction takes place. Especially for complex contracts

these conditions cannot include all possible future circumstances. If an unforeseen cir-

cumstance occurs, the incentives for the trading parties may change and they may deviate

from the contract after signing it. This opportunistic behavior creates uncertainty about

the contract ex ante. Why draw up a contract which the other party will not honor

anyway? Knowing about the potential opportunism, trading partners might not engage

in transactions in the first place.

To overcome contractual incompleteness and thus to enable the transaction, trading

partners establish additional governance arrangements. These arrangements can range

from full integration (Grossman and Hart, 1986), long-term contracts (Joskow, 1985),

partial ownership agreements (Hennart, 1988), to off-setting relationship-specific invest-

ments (Heide and John, 1988). The firm thus imposes control over its transactions with

a combination of contract and governance structures. Economic theory asserts that the

trading partners will find the best arrangement to reduce the risk of opportunism (She-

lanski and Klein, 1995). This means that all transactions we can observe already have

sufficient governance structures in place.

When the firm decides to use an open source application, it faces also contractual

incompleteness. As mentioned before, development communities supply new features,

bug fixes and support services. All interactions between the development community and

the firm are voluntary, however. Therefore, the firm does not know whether and when

the development community treats its submissions and requests. The company cannot

impose any conditions on the open source developers about the priorities of its requests.

The firm can reduce the incompleteness of the contract by setting up additional gov-

65

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

ernance arrangements. Contributing in the development process of the open source com-

munity can be such an arrangement. Assigning a paid programmer to develop in an open

source project is similar to partial vertical integration. The programmer participates in

the development effort of an open source community and establishes a degree of control

over the transaction between the firm and the community. He becomes the interlocutor

for the firm inside the development community. In environments that change quickly

and hence render the incompleteness of the contract more important, firms may need to

impose more control over the development process and thus assign more developers to

a project. Corporate contribution is a flexible way of vertically integrating open source

software development. Doing so permits the firm to reduce the contractual incomplete-

ness.

In New Institutional Economics, the attributes of the transaction play an important

role in determining the incompleteness of the contract and create contractual hazards

(Williamson, 1991). These attributes can comprise measurement difficulties and the fre-

quency of repeated transactions, but also relationship-specific assets or weaknesses in the

institutional environment. We can find these contractual hazards in the corporate open

source software also.

Measurement difficulties and the frequency of repeated transactions are key elements

in contractual hazards (Shelanski and Klein, 1995; Williamson, 1996). Difficulties in

measuring the outcome of a transaction can lead to a principal-agent problem. When the

outcome of a transaction cannot be fully ascertained, one trading partner may have an

incentive to shirk the contract. In turn, the other partner may be unsure about the quality

of the traded good and refrain from the transaction entirely. The frequency at which

transactions take place plays an important role in determining contractual incompleteness.

Few transactions over long periods of time increase the risk of uncertainty and the problem

of incomplete contracts is more pronounced. The possibility of changing circumstances is

high and, as unforeseen contigencies occur, contracts adjust only slowly. Moreover, with

little repeated trading, partners do not face a reputational effect in contracting. One-off

66

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

deviance cannot be punished easily and uncertainty about a transaction increases.

Relationship-specific investments (Klein et al., 1978; Joskow, 1985) can render the

incompleteness of a contract more prevalent. When a firm has to invest in relationship-

specific assets prior to a transaction, unforeseen contingencies or even a failure of the

transaction is costly for the investing party. Asset specificity occurs when there is little

salvage value to an investment outside the transaction. This creates a holdup problem for

the partner who paid for the machine: Due to his investment, he has a weak bargaining

position in case the contract is renegotiated. Again, knowing this beforehand, the partner

might not be willing to invest in the relationship-specific asset in the first place and the

transaction fails.

Embedded systems using open source software are such specific assets. These systems

are electronic devices for specific purposes or built as fixed hardware-software bundles,

such as GPS receivers, medical devices or cellphones. The cost to adapt the software to the

firm’s hardware and to meet the functional requirements can be significant. The specificity

of the embedded system arises through the modifications to the open source software as

well as the design of the electronic hardware. Corroborating our contention, embedded

systems are prominent examples of corporate open source participation (Henkel, 2006).

One well-documented example of an embedded system is the Maemo software platform

and Nokia’s smartphones. Maemo is an operating system for cellphones which is based on

open source software components (Jaaksi, 2006). Using open source software, Nokia still

incurs cost to modify the software and adapt the hardware. As Jaaksi (2009), Nokia’s

vice-president of open source operations, points out ”[i]n addition of getting the most

significant parts of the code from community projects, the Nokia Maemo team has a huge

job to develop, finalize, optimize, fine tune, test, and integrae [sic] the devices into ready

packages.” These investments in the embedded platform are made prior to marketing the

actual smartphones. Future transactions between Nokia and open source applications run

the danger of a holdup due to the specificity of the Maemo platform and the handheld

devices. To reduce this risk, Nokia shares not only its modifications, but also participates

67

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

in the general development of the open source applications.

Lastly, weak institutational environments can reinforce the incompleteness of con-

tracts. The strength of the intellectual property right regime is important in the trans-

action between the firm and the open source application. In case the firm already has

additional governance arrangements in place, for example a corporate developer, the type

of open source license influences the contractual incompleteness. The corporate devel-

oper works in the development community and contributes source code to the applica-

tion. These contributions are investments in the open source application. The firm wants

to appropriate its investment and protect its intellectual property in the open source

application (Dahlander and Magnusson, 2005; Fosturi et al., 2008).

The appropriation of intellectual property in open source software is difficult. The

type of the open source license plays an important role. Some types of open source licenses

allow the use of the source code in proprietary software and thus facilitate appropriation,

others do not. Scholars call the former less-restrictive, or academic licenses, and the

latter restrictive, or strong copyleft licenses. According to which type of open source

license the open source application runs, the firm needs to establish more governance

arrangements, perhaps vertically integrating the open source application and obtaining

the entire copyright over the application’s source code.

This gives the firm another way to impose control over its open source transactions,

apart from corporate contribution. The firm can retain the copyright of the source code

and oblige other contributors to transfer the copyright of the source code to the firm.

This method gives the firm legal leverage to enforce its control over the development

community. It is a common practice for corporate-led open source applications. MySQL,

Mozilla and Microsoft are typical examples of this practice. We note that the success of

this method depends crucially on the willingness of the open source community to accept

these constraints and trust the company in its open source comittment (Shah, 2006).

68

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

3.3 Data

We use a twofold approach to the analysis of corporate open source software in light of

incomplete contract theory. First, we estimate a reduced form model with a large data

set. Our regression relates the share of corporate developers with proxies for contractual

hazards and incompleteness. Second, we review the responses of 60 project maintainers

in an exploratory survey. The responses and comments that we obtained in this survey

shed some light on the interaction between development community and firm. We find

that the two analyses give converging pieces of evidence on the validity of incomplete

contract theory in corporate open source software.

3.3.1 Quantitative Data

We use data of development communities, or so-called projects, on SourceForge. Source-

Forge (SF) is an Internet platform that acts as an intermediary between project initiators,

developers and users of open source software. Subscription to SF is free and only needed

to participate in any phase of project development, i.e. for fixing a bug, contributing

code or authorizing another release. SF offers the necessary infrastructure to maintain

developer communities, the bandwidth for downloads as well as facilities to manage mail-

ing lists and search facilities for users. We track 2,643 projects over a time period of 28

months from February 2005 until June 2007 (N = 74,004). Table 3.1 presents a list of all

variables.

We retrace the possible factors that affect a firm’s perception of contractual incom-

pleteness and lead it to partially integrate the development of an open source application.

According to our hypothesis, a firm would choose to contribute if the expected probabil-

ity of having its request fixed by the community is low. To approximate this probability,

we use characteristics of the development community about the lengths of time taken to

treat submissions and the number of treated submissions.2

2On a technical note, the uncertainty disappears, if a firm knows the exact probability distribution.
So, we have to assume some form of imperfect information on the part of the company. To mimic this,
we use variables that are observable by the firm, but that do not assume a given probability distribution

69

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Table 3.1: Summary Statistics (N=74,004)

70

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

We use the percentage of corporate developers with respect to all contributors in a

development community as a measure of firms’ involvement in a project. This corporate

participation rate (cprate), see Table 3.1, lies well below the findings of other studies on

corporate contributions Ghosh et al. (2002); Lakhani and Wolf (2005); Hammond et al.

(2009). However, previous empirical research on SF notes that a large share of projects

are abandoned or have only one developer (Howison and Crowston, 2004). Bearing the

strong heterogeneity of SF projects in mind, it is also not surprising that participation

rates are distributed very unevenly. Few projects attract a lot of corporate attention,

whereas a large share has no paid developer at all.

Our premise is that the measures for contractual incompleteness and contractual haz-

ards influence the firm’s choice to contribute in the open source community and thus to

establish additional governance. By contrast, we assume that corporate contribution does

not affect our measures of contractual hazard in return. This means that we can observe

our measure of contractual incompleteness, even though there is corporate participation.

This might seem paradoxical because one would normally expect contractual incom-

pleteness to diminish when the firm establishes additional governance. However, we be-

lieve that the firm deals only with the corporate developer witihin the open source com-

munity. As mentioned before, the corporate developer acts as an interlocutor between

firm and community.

Our proxies for contractual incompleteness and hazards comprise all requests to the

development community, not only the corporate ones. Therefore, the firm may perceive

a mitigation in contractual incompleteness, while we observe no reduction in our proxies.

Put differently, those corporate contributors we observe in the development community

specifically work on the requests of the firm and do not affect the overall functioning of

the development community.

We look at three types of submissions. In our data sample, users or developers can

about the treatment of submissions. This prevents us from using more sophisticated econometric methods
to measure transactional uncertainty.

71

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

submit either a bug report, file a support request or ask for a particular feature. These

three categories differ in terms of the overall submissions received, of the development

effort needed and also of the value to the development community. We measure the lapsed

time between submission and treatment as well as the number of treated submissions.

Both variables are proxies for the probability of having one’s submission treated. The

first variable considers more closely the time dimension of a transaction. Timeliness is

important for corporate users. We can extend the duration variable a little further. We

calculate the average duration of a submission as well as its standard deviation. These

variables give us an indication about the average time until a submission is treated. For

the other measure, we compute the number of treated submissions per developer for each

open source community. The number of treated submissions indicates the frequency of

transactions taking place for each community and using the per-developer average allows

us to compare communities of different sizes.

The proxies for contractual incompleteness are (i) the time it takes a community to re-

solve a submission and (ii) the average number of submissions per developer each commu-

nity treats. Submissions in SF, such as bug reports (BR), feature requests (FR) or support

requests (SR), can come from developers or users. For each of the three main categories,

we calculate the mean (dur_XXmeanmth) and standard deviation (dur_XXsdmth) of

the duration of solving the submission. The duration goes from the date of submission to

the date of reporting it fixed. We censor the data at the last month in case the submission

has not been fixed during the observed time period. Our data set includes submissions

from before our observation period. In fact, 80% of them were submitted before February

2005, the first month we track data on project properties. We can see that the average

lifespans of bug reports, feature requests or support requests are around 30 months.

The other variables we use to measure contractual hazards are the number of treated

feature requests per developer (r_FRfixed), the number of closed support requests per

developer (r_SRfixed) and the number of fixed bug reports per developer (r_BRfixed). In

contrast to the lifespan of a submission, we here look at the frequency of the transactions

72

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

between users and community. These variables capture the average resolution rate per

developer in each community. The standard deviation shows that the average resolution

rates vary a lot across development communities.

SF projects are grouped into seven development stages: planning, pre-alpha, alpha,

beta, production, mature or inactive. These are indicators about a project’s life-cycle

and represent the stability and number of features of a project. The pivotal stage is

generally beta status in which, in contrast to earlier stages, the software runs smoothly

and encounters relatively few crashes. The head of project chooses the development stage.

There is one particularity with SF projects as there also exists an inactive development

stage, in which development has basically ceased. Our sample contains a considerable

number of projects in beta or later development phases (71%). We also find that the

share of inactive projects (1%) is smaller than in other studies on SF projects (Howison

and Crowston, 2004).

Like previous research (Perens, 1999; Lerner and Tirole, 2002), we distinguish open

source licenses into three categories: academic, weak copyleft and strong copyleft licenses.

These categories follow license’s restrictions to use derivative work in proprietary software

and their obligations to licensees to distribute modified software under the same license.

Along these two axes, academic licenses allow the combination of derivative work in

proprietary applications and do not require the same license for any modified version.

weak copyleft licenses, in turn, allow the combination of modified software in proprietary

applications, but oblige licensees to publish derivative work under the same license. strong

copyleft restricts the combination of derivative work with proprietary applications and

requires the continuation of the same license for any work that is based on the original

source code. The projects in our sample run to 69% under strong copyleft, to 17%

under academic and to 10% under weak copyleft licenses. The category ”Other licenses”

encompasses all projects that are signed with an older, now defunct, license.

We also have categories for the audiences the project is intended for and the operating

system for which it is developed. SF lists 19 intended audiences among which are a variety

73

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

of general fields, such as science, government or end-user. We adopt a categorization used

by Lerner and Tirole (2002): end-users, developers and system administrators. We find

that 53% of the projects are intended for developers, 33% for end-users and 12% for

system administrators. This slightly skewed distribution towards software development

can be expected from a user-driven development model. The distribution of operating

systems is more interesting. Here the most popular system is middleware (32%), followed

by Posix (23%), embedded systems (15%) and Microsoft-based operating systems (13%).

Middleware encompasses all projects that run independently of the operating system.

It acts as an interpreter between the application and the operation system. The Posix

category includes all varieties of Unixes, such as Linux, AIX or Solaris.

There are two main sources of measurement errors within the data. First, there is

a sample selection bias in the SF data for small and medium-sized projects. Previous

studies (Howison and Crowston, 2004; Lerner and Tirole, 2005; David and Rullani, 2006)

show that SF contains a large number of small or inactive projects. Without a comparable

data set with projects outside a repository, our result cannot be verified for statements on

OSS in general. A possible other consequence is that we underestimate project activity

in the actual SF project population. The second source of measurement errors is more

important for this study. We likely face type I and type II errors on corporate affiliations

that are due to our data collection method. Corporate developers might use their work

email addresses for private purposes. Thus, even though we find a corporate affiliation,

there is in fact no coordinated firm strategy on OSS. The potential type II error is that

corporate developers could use their private email addresses for work related projects.

Without interviewing each developer, there is no possibility of knowing how strong these

two effects are.

Table 3.2 repeats the predictions based on the hypotheses we established with regards

to corporate open source software. We expect that the variables for the treatment duration

have a positive impact on the expected participation rate. The longer it takes and the

more distributed the time-span between submission and fixing becomes, the stronger

74

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Table 3.2: Predictions

is the contractual uncertainty and the more likely it is that a firm assigns a developer

to the community. Along the same lines, the higher the number of treated requests per

developers is, the higher is the frequency of transactions and the smaller is the contractual

hazard.

3.3.1.1 Econometric Model

We want to regress the share of corporate developers among all developers on a set

of project characteristics and measures of contractual incompleteness. The corporate

participation rate is bounded between 0 and 1 with a positive probability of being at each

limit. Ordinary least squares has the downside that it cannot ensure that the predicted

values lie within the bound per se, similarly to the well-known linear probability model.

Tobit estimation, on the other hand, takes into account these bounds, but treats them as

truncations and thus does not include them in the calculation.

Papke and Wooldridge (1996) propose an estimation method that takes into account

the special nature of the explained variable and proves to be robust to misspecification.

They estimate the conditional mean of the explained value with the nonlinear function

����, which satisfies � � ���� � �, and compute the parameters with a quasi-maximum

likelihood estimation. In most applications ���� is a cumulative distribution function,

75

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

such as a logit, a probit or a loglog function.3 The conditional mean of the corporate

participation rate on the explanatory variables is:

������ � ����� (3.1)

We then obtain the estimates with a Bernoulli log-likelihood function:

����� � � ���������� � �� � �� ������������ (3.2)

Setting a functional form for ����, we derive the influence of each explanatory vari-

able and the predicted values for corporate participation rates. Following Papke and

Wooldridge (1996), we use the logit function for ����. Since it is a nonlinear function,

the effects of changes in one explanatory variable on the expected value of corporate

participation have to be simulated for specific values of all explanatory variables, ��:

�������
���

� ���
������ � �������� ���������� (3.3)

Note that we estimate the coefficient as a cross section instead of a panel and adjust

the standard errors for clustered data, in this case each project. Two properties of the

data sample justify this method. First, the data varies very slightly over time. For ex-

ample, overall participation rates change for only 55 of the 74,004 observations. Running

regressions on the actual cross sections for each time period show that there is no signif-

icant difference between the two approaches (see table C.1). Secondly, we have to adjust

standard errors for heteroskedacity (Papke and Wooldridge, 1996) and can do so using

the clustered robust standard errors, which in this case are similar (see table C.1).

3An added benefit of this estimation method is that it can be easily done using standard econometric
software.

76

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

3.3.2 Exploratory Survey

Between June and July 2009, we conducted an email survey on 7,914 project maintainers

and received 60 valid responses.4 Although the response rate is quite low at 0.76%

compared to Henkel (2006), it is inline with research using a similar methodology (Haaland

et al., 2009). The list of project maintainers comes from the SourceForge database at

Notre Dame University (Gao et al., 2007). We contacted them in batches of 50 over a

time period of several days and recontacted unanswered emails after a few weeks.

The survey contains four questions that aim at the treatment of user requests by

the development community. The questions touch upon the treatment of generic user

requests, the treatment of corporate requests as well as the use of a ranking system to

signal priorities or personal communication to motivate voluntary contributions. We focus

on user requests because we believe they are good indicators for the interaction between

development community and firm. Note that the survey does not look at the transaction

between the open source application and the firm, but rather at the attitude within

the development community towards corporate requests. Our contention is that the less

interested the development community is to fix corporate requests, the stronger weighs

the contractual incompleteness on the firm and to more incentive it has to contribute in

the development.

Figure 3.1 shows the responses to question 1. Multiple answers are possible so that

the overall number of responses does not necessarily coincide with the number of respon-

dents. Project maintainers identify difficulty and low interest as the main reasons for slow

responses to user requests. One respondent states that ”[a]s soon as a project reaches a

certain size (typically attained by big user-oriented applications like a word processor for

instance), it becomes very hard to recruit developers. I believe the reason is simply that

in the case of volunteer collaboration, you can only devote parts of your free time to the

project.”

Figure 3.2 depicts the responses to question 2. Project administrators believe that
4Appendix B shows the entire email message with the survey.

77

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

little interest from voluntary contributors is the prevalent reason for corporate requests

to take long. The lack of interest may be linked to the specificity of corporate requests.

One administrator believes that “[...] businesses often want a much more complete and

personally tailored solution, as opposed to developers who can handle much of the work

themselves after you give them a small amount of assistance.” Along the same lines, an-

other respondent states ”[...] requested changes sometimes enhance the project itself very

little, and instead are geared towards meeting the requesting business’s goals instead.”

It appears that the firm faces considerable contractual hazard in trading with the open

source application and in turn dealing with the development community. The disinterest

of the development community in corporate requests renders repeated subcontracting of

corporate development work unlikely or difficult. To reduce the contractual hazard, the

firm needs to establish additional governance arrangements.

Figure 3.3 shows the responses to question 4.5 To accelerate the treatment of requests,

project maintainers rely frequently on their own effort and only occasionally on others.

This confirms a property of the development community that Shah (2006) has pointed

out before: The project maintainer has limited executive authority in his project. He

cannot command voluntary contributors to work on particular requests. If they do not

choose themselves, he often has to work on the request himself. This finding has an im-

portant implication for the firm engaging with the development community. To establish

governance, it is not enough for the firm to win over the project administrator or, in

a more extreme case, to replace him with a paid developer. The firm has to take into

account the development community to keep the external development going and create

additional governance arrangements.

The discussion of our survey shows that (i) corporate requests may incite less interest

from the development community and (ii) the project administrator has little influence

on the behavior of other contributors. The first point helps to interpret the results of the

5We skip question 3 because it overlaps with question 4 and adds little additional insight for our
analysis at hand. The responses can be seen in figure B.1 in Appendix B.

78

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Figure 3.1: Do you think requests in general take long, because they...

Figure 3.2: Do you think requests by firms take long, because they...

Figure 3.3: To accelerate requests do you...

79

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

econometric analysis in the following section, when we look at the mean treatment time

and its variability of different types of requests. The second point shows that the attitude

of the open source developers towards the firm is an important factor in the transaction

between the firm and the open source application.

3.4 Discussion

Table 3.3 presents the estimates for the regression of corporate participation rates on

the transaction uncertainty variables and the control variables. We add stepwise more

control variables to the equation. None of the added control variables in columns 2 to 4

are significant. The joint hypothesis tests on the control variables on status, audience and

operating systems are all statistically insignificant. For model 4, the respective �� values

(p-values) are 4.14 (0.66), 3.65 (0.16) and 2.21 (0.53). Also, the RESET tests show that

the functional form is not misspecified, e.g. that the population model includes squared

terms of mean duration. In fact, the simplest model is the preferred one. In the following

analysis, we will focus on model 1 and use its parameter values to compute the marginal

effects.

We see that indeed the duration variability for treating feature requests (dur_FRsdmth)

and the respective mean duration (dur_FRmeanmth) are statistically significant and pos-

itive. This suggests that the more time it takes to fix a request or the more variable the

treatment of requests is the higher is the expected corporate participation rate. Also,

the average number of feature requests fixed per developer (r_FRfixed) has a, strongly

significant, negative effect on corporate participation. Increasing the number of treated

feature requests per developer thus translates into lower expected corporate participa-

tion rates. These results lend support to the notion that firms contribute to reduce the

incompleteness of their open source transaction.

Combining these results with the findings of our exploratory survey allows us to draw

a more complete picture. To wit, our respondents state that requests in general take

80

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

long because there are programming difficulties or because there is little interest by the

development community. Project maintainers also contend that corporate requests more

often encounter little interest than requests in general. This leads us to believe that

the firm experiences strong contractual incompleteness and contractual hazard due to

disinterest when there is a long mean duration of requests and larger variability.

The results for r_BRfixed and r_SRfixed in Table 3.3 are counter-intuitive. The aver-

age number of bugs fixed per developer (r_BRfixed) has a positive effect on the expected

participation rate. The average number of support requests per developer (r_SRfixed),

although not significant at the 5% level, points in the same direction. We are likely to

conflate two effects here. On the one hand, there is an uncertainty effect, the longer it

takes or the fewer requests are resolved, the higher is the contractual hazard that one’s

own submissions will not be treated. On the other hand, there is a performance effect.

Better performing projects are more likely to fix bugs and address feature requests than

less performing ones and could therefore also attract more attention from firms. If all

three variables, r_FRfixed, r_BRfixed and r_SRfixed capture the same effect, this can

create a problem in the results. The variables are likely correlated and thus adding the

three can bias the coefficients of all three. The problem becomes clear when we attempt

to interpret the results with respect to our predictions. Does a positive coefficient for the

average number of fixed bugs mean for instance that we do not find supporting evidence

for our transaction cost hypothesis or does this simply capture the performance effect?

One possible solution is to make use of the omitted variable bias. Assuming that the

three variables represent the same effect and that they thus are correlated, we can run

several regressions including all variables except for this uncertainty measure. We then

observe whether the coefficients of the remaining variables change significantly. If they do,

we know that the three variables represent the same underlying effect and are correlated

in some form. The change in the remaining coefficients shows that these take up part of

the effect of the omitted variables. In contrast, if the coefficients do not change signs,

it lends support to the notion that in fact they measure two separate effects altogether.

81

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Hence, if the performance effect is prevalent among the set of omitted variable and the

remaining variables, the estimates of the remaining variables will change signs. If the

different variables measure two separate effects, they do not change.

Table 3.4 shows the estimates for the complete model (column 1) and the six re-

gressions with different sets of uncertainty measures omitted. We see that, although the

duration variables for feature requests vary, they remain positive across all steps (columns

3 - 7). The duration variables for support requests and bug reports fluctuate around zero

for all iterations. This supports the finding that they are statistically insignificant, with

the exception of the mean treatment duration of support request in column 5. More in-

teresting for our purposes are the coefficients for average treated requests per developer.

The coefficients for the average number of fixed feature requests remain negative in all

columns. The coefficients for the average number of fixed bug reports is positive across

all columns and the the coefficients for r_SRfixed remains also relatively stable.

What can we take away from the discussion of the last two paragraphes and the

analysis in table 3.4? Assuming the potential direction of the omitted variable bias, we are

able to show that the signs of the parameters for contractual incompleteness do not change

significantly as we leave out different variables in the regressions. This lends support to

our assertion that (i) dur_FRsdmth and dur_FRmeanmth capture part of the contractual

incompleteness, (ii) r_FRfixed can be interpreted as a measure of transactional frequency,

or more appropriately of subcontracting frequency, and (iii) r_BRfixed can be seen as a

performance measure for the development community.

As we include more control variables, the coefficients stay stable. In all, we find sup-

porting evidence for the hypothesis that less-restrictive licenses induce higher corporate

participation. The coefficients for the intended audiences suggest that expected corpo-

rate participation rates are higher for projects directed towards developers compared to

projects intended for end-users, but the estimate is insignificant at the 5% level. Lastly,

we find no significant effect of operating systems on corporate participation rates.

Figure 3.4 presents the marginal effects for the variables dur_FRsdmth and dur_FRmeanmth

82

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Table 3.3: Regression on Corporate Participation

83

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Table 3.4: Control Regressions on Corporate Participation

84

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Figure 3.4: Marginal Effects 1

Figure 3.5: Marginal Effects 2

on the expected corporate participation rate for a project under an academic license. We

have fixed all other variables on either their mean values or zero for statistically in-

significant coefficients. For dur_FRsdmth the effect reaches a maximum at 33 months,

after which the variability of time to treat feature requests has a positive, but dimin-

ishing, impact on the expected corporate participation rate. The marginal effect of

dur_FRmeanmth reaches a maximum at 53 months at which date increases in the average

time to treat feature requests increases the expected participation rate to a lesser extent.

Figure 3.5 shows the marginal effect of the average number of fixed feature requests per

developer, r_FRfixed. It decreases continuously and approaches zero.

85

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

Endogeneity is an issue in our analysis. It occurs because corporate participation likely

affects the average number of treated feature requests per developer, the average dura-

tion for each request and its variability. This causes a bias in the estimated coefficients.

The standard way to treat endogeneity is to instrument the variables. Unfortunately,

we are unable to appropriately instrument all variables. We caution therefore that the

coefficients are likely biased. The direction of the endogeneity bias depends on the im-

pact of corporate participation on the treatment of requests. If communities with a lot

of corporate developers respond more slowly to submissions and hence increase mean

duration and variability, we will obtain an upward bias. In case, corporate developers

positively affect the treatment of submissions, we have a downward bias and we obtain

too negative estimates compared to the population coefficients. Lamastra (2009) explores

the influence of corporate developers on the quality of the development of SF projects.

She shows that, when corporate developers enter SF communities, code development in-

creases and non-development activities decrease in terms of quality. This may indicate

that high corporate participation rates positively affect the treatment of feature requests

and bug reports and negatively influences those of support requests. We might observe

too small an effect for the treatment of feature requests and bug reports and too large an

effect on support requests. Considering Table 3.3, these findings confirm our results and

corroborate our interpretation.

3.5 Concluding Remarks

The question on how to control open source projects is of paramount importance for

corporate strategy in open source software. We attempt to shed light on some aspects

of this issue. With regards to contribution, we find evidence that firms opt for projects

with higher measures of contractual incompleteness. This indicates that firms estab-

lish additional governance arrangements in form of dedicated corporate contributors in

open source communities. This type of vertical integration mitigates part of the risk of

86

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Chapter 3. Loose Contracts, Tight Control: Corporate contributions in SourceForge
projects

transacting with open source applications under an incomplete contract.

There are ample points of entry for future research on corporate contribution, control

and open source software. First, the analysis of corporate control on open source software

could be enhanced with adding firm characteristics and refining the measures for project

control. Second, the strategic behavior of firms within open source projects merits further

consideration. Do firms cooperate in common projects or do they drive other companies

out of projects? Third, the interaction between private and corporate developers raises

interesting questions on the development of individual incentives to contribute.

On a different note, we show that corporate open source software can be understood

with the tools provided by the theory of incomplete contracts and transaction cost. This

might open a way to investigate corporate provision of open source software in terms of

technology outsourcing and open innovation. Indeed, the growing implication of firms

in open source software may render it possible for social scientists to shed light on these

concepts and gain more insights into the obstacles of external development and production

of technology and innovation.

87

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

My thesis addresses three aspects of corporate involvement in open source software: the

private provision of a public good, open innovation as well as technology outsourcing.

We broach the first issue by way of a literature survey that focuses on the commercial

viability of the provision of a public good. Accordingly, the first essay discusses the

research on corporate use and provision of open source software. In the second essay,

we turn to open innovation and look at the interaction between corporate and voluntary

contributors in the production of an open source application. In particular, we investigate

the potential productivity effects of this interaction as well as of knowledge spillovers

which are often evoked as a great boon of open innovation. The third essay considers

technology outsourcing in open source software and its governance issues. We contend that

corporate contribution in open source software can be understood in terms of incomplete

contracts and transaction cost.

What can we learn from open source software on the private provision of public goods?

Despite its public good properties, open source software is amenable to corporate objec-

tives. We present business models and ways of corporate involvement that are economi-

cally viable and engage volunteers at the same time. Moreover, we show what can happen

to firms that directly compete with collectively-provided public goods.

Our insights can be useful for the analysis of sectors in which companies struggle

with voluntarily-provided digital content, for instance newspapers, encyclopedias or tele-

vision channels. News articles, editorials or encyclopedic entries are pieces of information

that can be produced by a large number of individuals and redistributed easily at little

88

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

cost. Prominent examples are Wikipedia, the blog aggregator Global Voices, the social

networking site Twitter or the user-driven news site Reddit. These sites attract several

million viewers a day and thus pose a threat to traditional media outlets. Although our

examples are all cases with a global scale, our discussion works also, and perhaps even

better, on a smaller scale between local media and local bloggers for instance.

The discussion about proprietary and open source software competition delineates

several possible strategies for traditional publishing houses. We will mention only two

of them here. They could invest more to obtain high quality content, to hire better

journalists or to provide a more diverse set of news, therefore differentiating themselves

from the volunteer-driven alternatives. This will ultimately be futile as it leads to an

arms race between traditional media and online competitors that the traditional media

cannot win. Volunteers will always be able to modify - some might say imitate - and to

redistribute the news or editorials. Therefore the investment will not create a significant

competitive advantage and the publishing house spends money for nothing.

Another strategy is to embrace the user-driven production method. By allowing read-

ers and volunteers to contribute in the production of editorials, newspaper articles or

content in general, traditional media companies may be able to kill two birds with one

stone. They reduce production costs without decreasing the value to the consumer or the

advertiser at the same time. Outsourcing part of the provision of content to volunteers

allows traditional media houses to focus on other competitive advantages, for instance

providing editorials, signalling reliable news or ameliorating the incentives to contribute.

An example of a successful implementation is Google Knol. It is a free encyclopedia that

pays contributors for submitting articles based on the number of views and sells online

advertising.

In a digital network, a key aspect is the enforcement and protection of intellectual

property. We have seen that in the case of open source software, the firm has several

possibilities to deal with this issue. Publishers and commercial content providers, on the

other hand, struggle to find similar means of protection.

89

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

Besides the provision of a public good, corporate involvement in open source software

allows us to explore open innovation and its productivity benefits. Much has been writ-

ten about the productivity gains in research made possible by including external actors.

Scholars often attribute economies of scope and knowledge spillovers as the sources for

these productivity gains. We attempt to shed light on this using the case of corporate

involvement in open source software.

There is scarce empirical evidence about the productivity effect of rising corporate

participation in open source development. As the number of corporate contributors in-

side software projects rises, the need to understand their effect on open source production

becomes important. There are good reasons to believe that corporate participation may

not improve productivity. Firms do not necessarily share the same objectives as vol-

untary contributors on the direction of the development process. Conflicts of interests

might hampen software production and may ultimately lead to the forking of an open

source project. Moreover, the work processes of corporate developers may not be readily

applicable to the open source production model. Large companies have long delays in

decision-making which might decrease a project’s productivity as programming tasks are

left undone in the meantime.

We find that there are indeed negative productivity effects due to the interaction of

corporate developers with voluntary contributors. These negative effects might be due to

the aforementioned friction and conflicts of interest. However, knowledge spillovers can

mitigate parts of the loss in productivity and the predominance of corporate or voluntary

contributors in a community might reduce the impact of this friction.

Can we generalize these findings to other cases of open innovation? Our results show

that open innovation is not a panacea to boost research and technology production per

se. To be successful, the firm needs to be aware of the caveats. Motivating the volunteers

and aligning the objectives of the community with those of the firm is crucial. Even

though this might seem obvious, cases of failed open source engagements show that firms

do not always heed this advice. Moreover, the firm needs to learn to let go. To reap the

90

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

benefits of its open source engagement, the firm might want to meet the development

community halfway by contributing to the development. In the course of the open source

engagement, the firm might re-evalutate its intellectual property.

In addition, corporate involvement in open source software might trigger a re-appraisal

of the competitive advantages of a firm. Companies might see that the competitive edge

is not the source code of a software, but the human component of software production.

Open source software may augment the value of human capital and commoditize the

actual piece of software. In this regard, open source software is a true process innovation

with profound implications for ICT labor markets.

Related to the issue of productivity is the inter-firm collaboration inside open source

communities. Even though it is widely acknowledged that firms collaborate in the de-

velopment of open source software, researchers have yet to provide insights into how

this collaboration works and what effect it has on software creation. In this sense, open

source projects are similar to R&D joint ventures. Important questions in this respect

are to what extent firms cooperate to establish common standards and how firms can

appropriate their investment in the software development.

In the last essay, we touch upon the issue of contracting research and technology.

The interaction between the firm and external suppliers of technology raises the question

of governance and transactional uncertainty. In a world with an unknown future and

limited resources, how can the firm ensure the fulfillment of its contract by the supplier?

We believe that corporate open source software is an ideal case in point for the analysis

of this question.

We argue that the firm establishes additional governance arrangements to ensure the

completion of the transaction with the open source community. These arrangements can

take different forms, for instance the acquisition of the ownership rights for the source

code, source code hijacking or corporate contributions. Dedicating a developer to work

on an open source project is a kind of partial vertical integration. The firm can scale the

integration, i.e. dedicate more developers, depending on the perceived uncertainty of the

91

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

transaction. Using this approach, we can provide a complementary explanation to the

literature of corporate contributions in open source software.

Our analysis of incomplete contracts is useful for the evaluation of corporate partici-

pation in projects of crowd-sourced production. Crowd-sourcing is a concept that takes

user-driven innovation and modularity in production and applies them to sectors outside

the software industry. Its initiators hope to carry over the productivity benefits seen in

open source software. As it stands, crowd-sourcing gains momentum in diverse fields,

such as research, political activisim or Do-It-Yourself tinkering. Prominent examples are

Nasa’s Clickworkers, the UK’s Conservatives “Make IT Better” program or Bug Labs’

The Bug.

One of the advantages of including external developers in the production is the extent

to which the firm can reduce its own production costs. Can the firm outsource enough to

the crowd to make the production worthwhile? This is, above else, a question of creating

sufficient incentives for external agents to contribute. These developers need to find some

personal benefit or altruistic meaning in the production of the good. This said, there is

a second part to this questions. How does the firm design the user contract so that the

firm is not obliged to contribute too much?

The discussion of incomplete contracts and corporate contributions in open source

sheds light on the governance structure between the firm and development community.

Contractual hazards oblige the firm to contribute in the production of an open source

application. For crowd-sourced production, this means that the firm faces a double-edged

sword. On the one hand, it can create a very restrictive contract to reduce contractual

hazards with fixed specifications, delivery deadlines or strict conditions of use. However,

this may scare away external contributors and reduce the productivity benefits of crowd-

sourcing. On the other hand, the firm can offer a contract similar to open source licenses,

in which it delineates only the rudimentary rules of collaboration. Promoting contribu-

tions, this type of contract may mean that the firm needs to get involved too much to

control the production.

92

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Conclusion

We are interested in the commercial viability of corporate crowd-sourced engagements

and the design of possible user contracts. How can the firm design a contract that entices

users to contribute, while creating revenue for the firm? We do not have an answer

for these questions, but we believe that our discussion about incomplete contracts and

corporate contributions is a first step to understand this fascinating problem.

93

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A

Source Code of Email Tracer

Application

Listing A.1: Python Source Code for JET Application (jet.py)

###

##

JET (Jan’s Email Tracer)

version 3

##

##

###

__author__ = ’Jan Eilhard ’

__version__ = ’Version 3.0’

__date__ = ’Date: 24/11/2007 ’

__copyright__ = ’Copyright (c) 2007 Jan Eilhard ’

__license__ = ’Open Software License ’

import auxfunctions

94

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

import sys

from sys import argv

import os

def getConfig ():

""" Ask questions on project name , configuration files &

proxy settings

"""

configuration = {}

print "Welcome to the configuration of JET."

print " What is the name of the project? ",

try:

configuration["project"] = sys.stdin.readline ().

strip()

print "Enter the filename which contains your

email addresses: ",

filename = sys.stdin.readline ().strip ()

configuration["emails"] = auxfunctions.checkTxt(

str(filename)) and os.path.join(filename) or

None

print "Enter the names of the search categories (

single words only): ",

configuration["search"] = {}. fromkeys(sys.stdin.

readline ().strip ().split(" "))

for cat in configuration["search"].keys():

print "Please enter the filename

containing search terms for %s: " % cat

filename = sys.stdin.readline ().strip ()

configuration["search"][cat] =

95

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

auxfunctions.checkTxt(str(filename))

and os.path.join(filename) or None

print "Do you have special proxy settings (Y/N)? "

,

configuration["proxy"] = (sys.stdin.readline ().

strip() == "Y") and raw_input("Please enter

your proxy settings: ") or None

print "\n".join(["%s = %s" % (k,v) for k,v in

configuration.items ()])

print "Is this configuration correct (Y/N)? ",

(sys.stdin.readline ().strip() == "Y") and

auxfunctions.createDir(str((configuration["

project"]))) or getConfig ()

print "Do you want to start the Internet search

right now (Y/N)? ",

return (sys.stdin.readline ().strip() == "Y") and

configuration or auxfunctions.saveFile(

configuration , "config")

except:

print "An error has occurred."

def startInterface(argv=None):

""" Dispatch either JET directly or run configuration

"""

auxfunctions.clearScreen ()

try:

configuration = auxfunctions.checkTxt(str(argv [2])

) and auxfunctions.readFile(str(argv [2])) or

getConfig ()

96

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

startSearch(configuration)

except:

pass

def startSearch(configuration):

""" startSearch(cofiguration): Gets configuration dict ,

prepares mails dictionary , then filterHTML

& returns None (side effect: saves output file)

"""

try:

mails = auxfunctions.readFile(configuration["

emails"])

print mails

for key in configuration["search"].keys():

configuration["search"][key] = [elem for

elem in auxfunctions.readFile(

configuration["search"][key])]

print configuration

list = []

for key in mails.keys():

list.append(key.partition("@")[2])

mails = mails.fromkeys (["www." + elem for elem in

list])

for key in mails.keys():

mails[key] = auxfunctions.searchSite(key ,

configuration["search"])

except:

print "An error occurred in startSearch."

return 1

97

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

if __name__ == "__main__" :

startInterface(argv=None)

98

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

Listing A.2: Python Source Code for Auxillary Functions (auxfunctions.py)

Created on November 19, 2007

def info():

"""Auxilliary functions for JET

"""

def clearScreen(numlines =100):

"""clearScreen(numlines =100): Clear the console.

"""

print ’\n’ * numlines

def createDir(dirname):

"""createDir(dirname): Takes a string , creates directory

for project

& returns ’1’ or ’0’

"""

import os

try:

os.mkdir(os.path.join(os.getcwd (), dirname))

return 1

except:

print "The name you entered for the project is

invalid. Please try again. \n"

return 0

def getDict(list , delimiter="\t"):

"""getDict(list , delimiter): Gets list , converts into a

99

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

dictionary using <delimiter >

& returns a dictionary

"""

keys = []

values = []

try:

for elem in list:

dump = elem.partition(delimiter)

keys.append(dump [0]. strip ())

values.append(dump [2]. strip ())

return dict(zip(keys ,values))

except:

print "List to dictionary conversion failed."

return 0

def readFile(filename , delimiter="\t"):

"""readFile(filename): Gets string <filename >, opens &

reads data

& returns dictionary

"""

try:

infile = open(filename , "rb")

data = infile.read()

infile.close ()

list = data.splitlines ()

datadict = getDict(list , delimiter)

if datadict.has_key("search"):

datadict["search"] = datadict["search"].

strip("{")

datadict["search"] = datadict["search"].

strip("}")

100

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

datadict["search"] = datadict["search"].

replace(’\’’, ’’)

datadict["search"] = datadict["search"].

split(",")

datadict["search"] = getDict(datadict["

search"], str(":"))

else:

pass

return datadict

except:

print "An error reading the file occured."

return 0

def saveFile(filedata , type , mode="w"):

"""saveFile(filedata , type , mode): Takes data & saves it

into a file in path depending on file type

& returns ’1’ or ’0’

"""

import os

try:

outfile = open(os.path.join(os.getcwd (), filedata[

"project"], type + ".txt"), mode)

outfile.write("".join(["%s \t%s\n" % (k, v) for k,

v in filedata.items()]))

outfile.close ()

if type == "config":

print "File saved. Exiting \n"

print "Have a nice day."

return 1

else:

print "File saved."

101

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

return None

except:

print "Saving failed."

return clearScreen ()

def checkTxt(filename , delimiter="\t"):

"""checkTxt(filename , delimiter="\t"): Checks if a file is

a txt file with ’delimiter ’ separated fields

& returns ’1’ or ’0’

"""

try:

infile = open(filename , "rb")

data = infile.read()

infile.close ()

list = data.splitlines ()

datadict = getDict(list , delimiter)

if len(datadict) != 0:

return 1

else:

return 0

except:

return 0

def filterHTML(URL):

pass

""" filterHTML(URL): Gets URL , calls site , parses html ,

searches in tags <description > and <keywords >

& returns dictionary

results = {}

102

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

for topic in SearchTopics:

hits = []

count = 0

searchname = "%sSearchTerms" % topic

#print searchname

searchterms = globals ()[searchname]

#print searchterms

for words in searchterms:

hits.extend(re.findall(words , feed.lower()

))

for elem in hits:

count += 1

result[topic] = hits

return dictResult

"""

def searchSite(email , searchterms , tags= None):

"""searchSite(email , searchterms , tags): Gets a string URL

, searchterms and , optionally , tags to fetch the

content of a URL and count the hits on the site for

each key in searchterms according to respective values

& returns a dictionary

"""

import urllib2

while (len(email) > 0):

address = ’http://’ + email

request = urllib2.Request(address)

request.add_header(’User -Agent ’, ’

103

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix A. Source Code of Email Tracer Application

OSSResearchProject + http :// www.cerna.ensmp.fr/

CVs/Eilhard.html ’)

print address

try:

opener = urllib2.build_opener ()

feed = opener.open(request).read()

except:

dump = email.split(".")

email = ".".join([elem for elem in dump

[1:]])

print email

print "An error occurred in searchSite."

print 1

if __name__ == "__main__":

print info.__doc__

104

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B

Survey Questions

Listing B.1: Survey Questions

Dear Madame , Dear S i r ,

We a r e economi s t s (from Cerna , Mines Pa r i s t e c h , France) i n v o l v e d

i n an e m p i r i c a l r e s e a r c h p r o j e c t on the gove rnance o f open

sou r c e p r o j e c t s l i s t e d on SourceForge . ne t (s e e our p r e v i o u s

works on t h i s t o p i c he r e) .

As l e a d e r s o f open sou r c e p r o j e c t s , your answer s to the f o u r

q u e s t i o n s l i s t e d below would g r e a t l y h e l p us i n f r am ing our

a n a l y s i s . Thank you v e r y much f o r t a k i n g the t ime to read

t h i s ema i l and go through the q u e s t i o n s .

Us ing data from SourceForge , our goa l i s to e s t ima t e the

p r o b a b i l i t y o f f i x i n g a bug or f e a t u r e r e q u e s t ove r a p e r i o d

o f 28 months . Keeping a l l o t h e r f a c t o r s cons tant , our

p r e l i m i n a r y r e s u l t s s ugge s t t ha t r e q u e s t s submi t t ed by

105

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

pe r s on s w i th a c o r p o r a t e background take l o n g e r to be f i x e d .

Your o p i n i o n would g r e a t l y h e l p us i n e x p l a i n i n g t h i s

s u r p r i s i n g f i n d i n g , and more g e n e r a l l y i n unde r s t and i ng the

r o l e o f the p r o j e c t s l e a d e r s . To s t r u c t u r e the r e spon s e s , we

have f o rmu l a t ed f o u r q u e s t i o n s :

Ques t ion 1 :

Do you t h i n k tha t r e qu e s t s , i n g ene r a l , t ake l ong because

. . . they a r e more d i f f i c u l t to s o l v e ?

Yes/No/No op i n i o n

. . . i t i s more d i f f i c u l t to f i n d i n t e r e s t e d

d e v e l o p e r s ?

Yes/No/No op i n i o n

. . . t h e r e i s a d i s ag r e emen t between p r o j e c t l e a d e r s

about t ha t t a s k ?

Yes/No/No op i n i o n

Ques t ion 2 :

Do you t h i n k tha t r e q u e s t s by b u s i n e s s companies take l ong to be

106

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

completed ?

Yes/No/No op i n i o n

I f Yes , i s i t because

. . . they a r e u s u a l l y more d i f f i c u l t to s o l v e

t e c h n i c a l l y than o th e r r e q u e s t s ?

Yes/No/No op i n i o n

. . . they a r e u s u a l l y l e s s impo r tan t than o th e r r e q u e s t s i n the

v iew o f d e v e l o p e r s w i th o th e r backgrounds ?

Yes/No/No op i n i o n

. . . t h e r e i s a d i s ag r e emen t between p r o j e c t l e a d e r s

about t ha t t a s k ?

Yes/No/No op i n i o n

Ques t i on 3 :

As a p r o j e c t l e a d e r , do you a l l o c a t e t a s k s i n p r o j e c t s ?

. . . by u s i n g the p r i o r i t y system p r o v i d ed by SourceForge , and

l e t t i n g d e v e l o p e r s v o l u n t e e r

107

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

Always / F r e qu en t l y / O c c a s i o n a l l y /

Never

. . . by i n v i t i n g s p e c i a l i z e d d e v e l o p e r s to work on t a s k s

Always / F r e qu en t l y / O c c a s i o n a l l y /

Never

Ques t ion 4 :

As a p r o j e c t l e a d e r , do you a c c e l e r a t e the f i x i n g o f a

p a r t i c u l a r t a s k

. . . by u s i n g the p r i o r i t y system p ro v i d ed by SourceForge ?

Always / F r e qu en t l y / O c c a s i o n a l l y /

Never

. . . by i n v i t i n g a s p e c i a l i z e d d e v e l o p e r to work on the t a s k ?

Always / F r e qu en t l y / O c c a s i o n a l l y /

Never

. . . by cod ing y o u r s e l f ?

Always / F r e qu en t l y / O c c a s i o n a l l y /

108

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

Never

Again , thank you f o r your p a t i e n c e and c o n t r i b u t i o n . Of cour se ,

we would welcome any f u r t h e r comment you may want to make on

our p r o j e c t and r e s e a r c h q u e s t i o n s .

I f you would l i k e to ge t update s on our r e s e a r c h , p l e a s e say so

i n your r e p l y .

Yours s i n c e r e l y ,

Jan E i l h a r d

��

PhD Cand idate

Cerna (Cente r o f I n d u s t r i a l Economics)

Mines Par i sTech

60 bd Sa i n t Miche l , 75272 Pa r i s cedex 6

Tel . : 33 (1) 40 51 92 27

Fax : 33 (1) 44 07 10 46

109

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

ht tp : //www. ce rna . ensmp . f r

110

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix B. Survey Questions

Figure B.1: How do you distribute requests?

111

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix C

Cross-section Regressions for

Corporate Participation Rates

112

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix C. Cross-section Regressions for Corporate Participation Rates

Ta
bl

e
C

.1
:

C
ro

ss
-s

ec
ti
on

R
es

ul
ts

fo
r

C
or

po
ra

te
Pa

rt
ic

ip
at

io
n

R
at

e

113

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Appendix C. Cross-section Regressions for Corporate Participation Rates

114

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Amabile, T. (1983). The social psychology of creativity: A componential conceptualiza-

tion. Journal of Personality and Social Psychology, 45(2):357–376.

Baldwin, C. and Clark, K. (2006). Does code architecture mitigate free riding in the open

source development model. Management Science, 52(7).

Behlendorf, B. (1999). Open source as a business strategy. In DiBona, C., Ockman,

S., and Stone, M., editors, Open Sources: Voices from the Open Source Revolution,

chapter 11, pages 149–170. O’Reilly & Associates.

Belenzon, S. and Schankerman, M. A. (2008). Motivation and sorting in open source

software innovation. SSRN eLibrary.

Benkler, Y. (2002). Coase’s penguin, or, linux and the nature of the firm. Yale Law

Journal, 112(3):367–445.

Bessen, J. E. (2005). Open source software: Free provision of complex public goods.

SSRN eLibrary.

Bessen, J. E. and Maskin, E. S. (2000). Sequential innovation, patents, and imitation.

SSRN eLibrary.

Bitzer, J. (2004). Commercial versus open source software: the role of product hetero-

geneity in competition. Economic Systems, 28(4):369–381.

Boehm, B. (1981). Software engineering economics. Englewood Cliffs.

115

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Bonaccorsi, A. and Rossi, C. (2003a). Contributing to the common pool resources in open

source software. a comparison between individuals and firms.

Bonaccorsi, A. and Rossi, C. (2003b). Licensing schemes in the production and distribu-

tion of open source software: An empirical investigation. SSRN eLibrary.

Bonaccorsi, A. and Rossi, C. (2003c). Why open source software can succeed. Research

Policy, 32(7):1243–1258.

Brooks, F. (1978). The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Casadesus-Masanell, R. and Ghemawat, P. (2006). Dynamic mixed duopoly: A model

motivated by linux vs. windows. Management Science, 52(7):1072 – 1084.

Chesbrough, H. (2003). Open Innovation: The New Imperative for Creating and Profiting

from Technology. Harvard Business School Press.

Christensen, L. and Greene, W. (1976). Economies of scales in us electronic power gen-

eration. Journal of Political Economy, 84:655–676.

Coase, R. (1974). The lighthouse in economics. Journal of Law and Economics, 17(2):357–

376.

Cohen, W., Nelson, R., and Walsh, J. (2000). Protecting their intellectual assets: Appro-

priability conditions and why US manufacturing firms patent (or not). NBER Working

Paper.

Dahlander, L. (2005). Appropriation and appropriability in open source software. Inter-

national Journal of Innovation Management, 9(3):259–285.

Dahlander, L. and Magnusson, M. (2005). Relationships between open source soft-

ware companies and communities: Observations from nordic firms. Research Policy,

34(4):481–493.

116

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Dahlander, L. and Wallin, M. (2006). A man on the inside: Unlocking communities as

complementary assets. Research Policy, 35:1243–1259.

David, P. A. and Rullani, F. (2006). Micro-dynamics of free and open source software

development: Lurking, laboring and launching new projects on sourceforge. Stanford

Institute for Economic Policy Research Mimeo.

Economides, N. and Katsamakas, E. (2006). Two-sided competition of proprietary vs.

open source technology platforms and the implications for the software industry. Man-

agement Science, 52(7):1057–1071.

Eilhard, J. (2008a). Loose contracts, tight control? Firms on SourceForge. Cerna Working

Paper.

Eilhard, J. (2008b). Open source incorporated. Cerna Working Paper.

Evans, D. and Layne-Farrar, A. (2004). Software patents and open source: The battle

over intellectual property rights. SSRN eLibrary.

Fershtman, C. and Gandal, N. (2008). Microstructure of Collaboration: The Network of

Open Source Software. SSRN eLibrary.

Fosturi, A., Giarratana, M., and Luzzi, A. (2008). The penguin has entered the build-

ing: The commercialization of open source software products. Organization Science,

19(2):292–328.

Gao, Y., Van Antwerp, M., Christley, S., and Madey, G. (2007). A research collabora-

tory for open source software research. Available at: http://www.nd.edu/ oss/Paper-

s/FLOSS07.pdf.

Gartner (2008). Gartner says as number of business processes using open-source soft-

ware increases, companies must adopt and enforce an oss policy. Available at:

http://www.gartner.com/it/page.jsp?id=801412.

117

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Ghosh, R., Glott, R., Krieger, B., and Robles, B. (2002). Free/libre and open source

software: Survey and study (floss), final report, Part 4: Survey of developers. Technical

report. available at: http://www.infonomics.nl/FLOSS/report.

Giuri, P., Ploner, M., Rullani, F., and Torrisi, S. (2010). Skills, division of labor and

performance in collective inventions: Evidence from open source software. International

Journal of Industrial Organization, 28(1):54 – 68.

Griliches, Z. and Mairesse, J. (1998). Production functions: The search for identification.

pages 169–203.

Grossman, S. and Hart, O. (1986). The costs and benefits of ownership: A theory of

vertical and lateral integration. The Journal of Political Economy, 94(4):691–719.

Haaland, K., Sowe, S. K., Ghosh, R., and David, P. A. (2009). Inves-

tigating the productivity of open source software developers. Available at:

http://www.decon.unipd.it/personale/curri/manenti/floss/haaland.pdf.

Hammond, J., Gerush, M., and Silekis, J. (2009). Open source software goes mainstream.

Forrester Enterprise and SMB Software Survey.

Hausman, J., Hall, B., and Griliches, Z. (1984). Econometric models for count data with

an application to the patents-R&D relationship. Econometrica, 52(4):909–938.

Hawkins, R. (2004). The economics of open source software for a competitive firm.

NETNOMICS, 6(2):103–117.

Hecker, F. (1999). Setting up shop: The business of open-source software. Software,

IEEE, 16(1):45–51.

Heide, J. and John, G. (1988). The role of dependence balancing in safeguarding

transaction-specific assets in conventional channels. The Journal of Marketing, pages

20–35.

118

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Henkel, J. (2006). Selective revealing in open innovation processes: The case of embedded

linux. Research Policy, 35(7):953–969.

Henkel, J. (2008). Champions of revealing - the role of open source developers in com-

mercial firms. SSRN eLibrary.

Hennart, J. (1988). A transaction costs theory of equity joint ventures. Strategic Man-

agement Journal, pages 361–374.

Howison, J. and Crowston, K. (2004). The perils and pitfalls of mining sourceforge. Pro-

ceedings of the International Workshop on Mining Software Repositories (MSR 2004),

pages 7–11.

Jaaksi, A. (2006). Building consumer products with open source. Available at:

http://www.linuxdevices.com/articles/AT7621761066.html.

Jaaksi, A. (2009). How do we build maemo devices? Available at:

http://jaaksi.blogspot.com.

Jeon, D.-S. and Petriconi, S. (2009). Dynamics of knowledge-based service industry and

open source.

Jeppesen, L. and Frederiksen, L. (2006). Why do users contribute to firm-hosted user

communities? Organization Science, 17(1):45–63.

Joskow, P. (1985). Vertical integration and long-term contracts: The case of coal-burning

electric generating plants. Journal of Law, Economics, and Organization, 1(1):33–80.

Klein, B., Crawford, R., and Alchian, A. (1978). Vertical integration, appropriable rents,

and the competitive contracting process. Journal of Law and Economics, pages 297–

326.

Kroah-Hartman, G., Corbet, J., and McPherson, A. (2009). Linux kernel development:

How fast it is going, who is doing it, what they are doing, and who is sponsoring it (an

august 2009 update). Linux Foundation.

119

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Lakhani, K. and Wolf, R. (2005). Why hackers do what they do: Understanding moti-

vation and effort in free/open source software projects. In Feller, J., Fitzgerald, B.,

Hissam, S. A., and Lakhani, K. R., editors, Perspectives on Free and Open Source

Software, chapter 1, pages 3–22. MIT Press, Cambridge.

Lamastra, C. (2009). Firms’ participation in open source projects: Which

impact on software quality and success. Working Paper. available at:

http://www2.druid.dk/conferences/viewpaper.php?id=6067&cf=32.

Langois, R. and Gazarelli, G. (2008). Of hackers and hairdressers: Modularity and

the organizational economics of open-source collaboration. Industry and Innovation,

15(2):125–143.

Laurent, A. (2004). Understanding open source and free software licensing. O’Reilly

Media, Inc.

Lerner, J., Pathak, P., and Tirole, J. (2006). The dynamics of open-source contributors.

The American Economic Review, pages 114–118.

Lerner, J. and Tirole, J. (2002). Some simple economics of open source. Journal of

Industrial Economics, 50(2):197–234.

Lerner, J. and Tirole, J. (2005). The economics of technology sharing: Open source

and beyond. Journal of Economic Perspectives, 19(2):99–120. Retrieved from

http://ideas.repec.org/a/aea/jecper/v19y2005i2p99-120.html.

Lévêque, F. and Ménière, Y. (2006). Copyright versus patents: The open source software

legal battle. CERNA Working Paper.

Marschak, J. and Andrews, W. (1944). Random simultaneous equations and the theory

of production. Econometrica, 12(3):143–172.

McGovan, D. (2001). Legal implications of open-source software. University of Illinois

Law Review, 1:241–304.

120

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Muntz, G. (1909). The relation between science and practice and its bearing on the utility

of the institute of metals. Journal of the Institute of Metals, 1:289–291.

Mustonen, M. (2005). When does a firm support substitute open source programming?

Journal of Economics & Management Strategy, 14(1):121–139.

Olley, G. and Pakes, A. (1996). The dynamics of productivity in the telecommunications

equipment industry. Econometrica, 64(6):1263–1297.

Olson, M. (1971). The Logic of Collective Action. Harvard Universtity Press, Cambridge,

MA.

O’Mahony, S. and West, J. (2005). What makes a project open source? mitigating from

organic to synthetic communities. Academy of Management Annual Meeting, Honnolulu

(August).

Osterloh, M. and Rota, S. (2007). Open source software development-just another case

of collective invention? Research Policy, 36(2):157–171.

Papke, L. and Wooldridge, J. (1996). Econometric methods for fractional response vari-

ables with an application to 401 (k) plan participation rates. Journal of Applied Econo-

metrics, pages 619–632.

Perens, B. (1999). The open source definition. In DiBona, C., Ockman, S., and Stone,

M., editors, Open Sources: Voices from the Open Source Revolution, chapter 12, pages

171–188. O’Reilly & Associates.

Perens, B. (2006). The monster arrives: Software patents lawsuits against open source

developers. available at: http://technocrat.net/d/2006/6/30/5032.

Raymond, E. (2001). The cathedral and the bazaar. Musings on Linux and Open Source

by an accidental revolutionary. O’Reilly.

Rosen, L. (2001). Which open source licens should I use for my software? available

at:http:/:www.rosenlaw.com/html/GL5.pdf.

121

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Rosen, L. (2004). Open Source Licensing: Software Freedom and Intellectual Property

Law. Prentice Hall PTR.

Schmidt, K. and Schnitzer, M. (2003). Public subsidies for open source? some economic

policy issues of the software market. CEPR Discussion Papers.

Scotchmer, S. and Maurer, S. (2006). Open source software: The new intellectual prop-

erty paradigm. In Hendershott, T., editor, Handbook of Economics and Information

Systems, pages 285–319. Elsevier, Amsterdam.

Shah, S. (2000). Sources and patterns of innovation in a consumer products field: Inno-

vations in sporting equipment. Sloan School of Management, Massachusetts Institute

of Technology, Cambridge, MA, WP-4105.

Shah, S. (2006). Motivation, governance, and the viability of hybrid forms in open source

software development. Management Science, 52(7):1000–1014.

Shelanski, H. and Klein, P. (1995). Empirical research in transaction cost economics: a

review and assessment. Journal of Law, Economics, and Organization, 11(2):335–361.

Singh, P. V., Tan, Y., and Mookerjee, V. (2008). Network effects: The influence of

structural social capital on open source project success. SSRN eLibrary.

SourceForge (2010). available at: http://www.sourceforge.net.

UNU-MERIT (2006). Study on the: Economic impact of open source software on innova-

tion and the competitiveness of the information and communication technologies (ict)

sector in the eu. Technical report, UNU-MERIT, the Netherlands.

Valloppillil, V. (1998). Halloween documents. Internal Strategy Microsoft Memorandum.

avaliable at: http://www.catb.org/ esr/halloween/halloween1.html.

Ven, K. and Mannaert, H. (2007). Challenges and strategies in the use of open source

software by independent software vendors. Information and Software Technology, pages

991–1002.

122

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Välimäki, M. (2003). Dual licensing in open source software industry. Systemes

d’Information et Management, 1:2003.

von Hippel, E. (1988). The sources of innovation. Oxford University Press, New York.

von Hippel, E. (2001). Innovation by user communities: Learning from open-source

software. (cover story). MIT Sloan Management Review, 42(4):82–86.

von Hippel, E. and Katz, R. (2002). Shifting innovation to users via toolkits. Management

Science, 48(7):821–833.

von Hippel, E. and von Krogh, G. (2003). Open source software and the "private-

collective" innovation model: Issues for organization science. Organization Science,

14(2):209–223.

von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining, and special-

ization in open source software innovation: a case study. Research Policy, 32(7):1217–

1241.

Weiss, A. (2005). Real world open source: The TCO question. Serverwatch. available at:

http://www.serverwatch.com/tutorials/article.php/3529871.

West, J. (2003). How open is open enough?: Melding proprietary and open source plat-

form strategies. Research Policy, 32(7):1259–1285.

Wheeler, D. (2002). More than a gigabuck: Estimating gnu/linux’s size. available from:

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

Wichmann, T. (2002a). Free/libre and open source software: Survey and study (floss), fi-

nal report, part I: Use of open source software in firms and public institutions. Technical

report.

Wichmann, T. (2002b). Free/libre and open source software: Survey and study (floss),

final report, part II: Firms’ open source activities-motivations and policy implications.

Technical report.

123

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

Bibliography

Williamson, O. (1967). Hierarchical control and optimum firm size. The Journal of

Political Economy, 75(2):123–138.

Williamson, O. (1991). Comparative economic organization: The analysis of discrete

structural alternatives. Administrative science quarterly, 36(2):219–44.

Williamson, O. (1996). Economics and organization: A primer. California Management

Review, 38(2):131–146.

124

pa
st

el
-0

05
27

64
7,

 v
er

si
on

 1
 -

19
 O

ct
 2

01
0

	Title
	Summary
	Acknowledgements
	Table of Content
	Preface
	Introduction
	Corporate Open Source - A Literature Review
	A Look Inside the Forge: Developer productivity and spillovers in SourceForge projects
	Loose Contracts, Tight Control: Corporate contributions in SourceForge projects
	Conclusion
	Appendix A
	Appendix B
	Appendix C

