
HAL Id: tel-00529021
https://pastel.hal.science/tel-00529021

Submitted on 24 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructive Completeness Proofs and Delimited
Control
Danko Ilik

To cite this version:
Danko Ilik. Constructive Completeness Proofs and Delimited Control. Software Engineering [cs.SE].
Ecole Polytechnique X, 2010. English. �NNT : �. �tel-00529021�

https://pastel.hal.science/tel-00529021
https://hal.archives-ouvertes.fr

Thèse

présentée pour obtenir le grade de

Docteur de l’Ecole Polytechnique

Spécialité :

Informatique

par

Danko ILIḰ

Titre de la thèse :

Preuves constructives de complétude et
contrôle délimité

Soutenue le 22 octobre 2010 devant le jury composé de :

M. Hugo HERBELIN Directeur de thèse
M. Ulrich BERGER Rapporteur
M. Thierry COQUAND Rapporteur
M. Olivier DANVY Rapporteur
M. Gilles DOWEK Examinateur
M. Paul-André MELLIÈS Examinateur
M. Alexandre MIQUEL Examinateur
M. Wim VELDMAN Examinateur

Constructive Completeness Proofs and

Delimited Control

Danko ILIḰ

ABSTRACT. Motivated by facilitating reasoning with logical meta-theory in-
side the Coq proof assistant, we investigate the constructive versions of some
completeness theorems.

We start by analysing the proofs of Krivine and Berardi-Valentini, that
classical logic is constructively complete with respect to (relaxed) Boolean
models, and the algorithm behind the proof.

In an effort to make a more canonical proof of completeness for classi-
cal logic, inspired by the normalisation-by-evaluation (NBE) methodology of
Berger and Schwichtenberg, we design a completeness proof for classical logic
by introducing a notion of model in the style of Kripke models.

We then turn our attention to NBE for full intuitionistic predicate logic,
that is, to its completeness with respect to Kripke models. Inspired by the
computer program of Danvy for normalising terms of λ-calculus with sums,
which makes use of delimited control operators, we develop a notion of model,
again similar to Kripke models, which is sound and complete for full intuition-
istic predicate logic, and is coincidentally very similar to the notion of Kripke-
style model introduced for classical logic.

Finally, based on observations of Herbelin, we show that one can have an
intuitionistic logic extended with delimited control operators which is equi-
consistent with intuitionistic logic, preserves the disjunction and existence
properties, and is able to derive the Double Negation Shift schema and Mar-
kov’s Principle.

RÉSUMÉ. Motivés par la facilitation du raisonnement sur des méta-théories
logiques à l’intérieur de l’assistant de preuve Coq, nous étudions les versions
constructives de certains théorèmes de complétude.

Nous commençons par l’analyse des preuves de Krivine et Berardi-Va-
lentini qui énoncent que la logique classique est constructivement complète
au regard des modèles booléens relaxés, ainsi que l’analyse de l’algorithme de
cette preuve.

En essayant d’élaborer une preuve de complétude plus canonique pour
la logique classique, inspirés par la méthode de la normalisation-par-évalua-
tion (NPE) de Berger et Schwichtenberg, nous concevons une preuve de com-
plétude pour la logique classique en introduisant une notion de modèle dans
le style des modèles de Kripke, dont le contenu calculatoire est l’élimination
des coupures, ou la normalisation.

Nous nous tournons ensuite vers la NPE pour une logique de prédicats
intuitionniste (en considérant tous les connecteurs logiques), c’est-à-dire, vers
sa complétude par rapport aux modèles de Kripke. Inspirés par le programme
informatique de Danvy pour la normalisation des termes du λ-calcul avec
sommes, lequel utilise des opérateurs de contrôle délimité, nous développons
une notion d’un modèle, encore une fois semblable aux modèles de Kripke,
qui est correct et complet pour la logique de prédicats intuitionniste, et qui
est, par coïncidence, très similaire à la notion de modèle de Kripke introduit
pour la logique classique.

Finalement, en se fondant sur des observations de Herbelin, nous mon-
trons que l’on peut avoir une logique intuitionniste étendue avec des opéra-
teurs de contrôle délimité qui est equiconsistante avec la logique intuition-
niste, qui préserve les propriétés de disjonction et d’existence, et qui est capa-
ble de dériver le schéma « Double Negation Shift » et le principe de Markov.

Contents

Acknowledgements 5

Introduction 7

Chapter 1. Constructive completeness for Boolean models 11
1.1. Historical overview 11
1.2. Constructive ultra-filter theorem 19
1.3. Constructive Henkin-style proof 21
1.4. Computational content 24
1.5. Aspects of the Coq formalisation 25
1.6. Related and future work 29

Chapter 2. Kripke-style models for classical logic 31
2.1. Normalisation-by-evaluation as completeness 31
2.2. Sequent calculus LKµµ̃ 34
2.3. Kripke-style models, call-by-name variant 37
2.4. Kripke-style models, call-by-value variant 48
2.5. Computational content 52
2.6. Aspects of the Coq formalisation 53
2.7. Related and future work 56

Chapter 3. Kripke-style models for intuitionistic logic 59
3.1. Historical overview 59
3.2. Type-directed partial evaluation for λ-calculus with sum 62
3.3. Completeness for Kripke-style models 65
3.4. Computational content 70
3.5. Aspects of the Coq formalisation 71
3.6. Related and future work 71

Chapter 4. Extension of intuitionistic logic with delimited control 75
4.1. The system MQC+ 76
4.2. Relationship to MQC and CQC 80
4.3. Subject reduction and progress 83
4.4. Normalisation, disjunction and existence properties 85
4.5. Applications, related and future work 91

Bibliography 99

Appendix A. Additional material for MQC+ 107
A.1. Call-by-name translation for MQC+ 107
A.2. Explicit version of the two-level CPS transform 108

3

Acknowledgements

This thesis is not individual work, I just happen to write it. Any credit it
possibly gets is to be shared between all those who have been around in the
past, teachers, family, and friends.

My director Hugo Herbelin was a guide as one can only wish to have. I am
deeply grateful to him for his trust in me and for his evergreen enthusiasm. I
will never forget the many afternoons of delirious discussions about Logic and
control operators.

Behind the scenes was the support of my family. My belle-mère Jeanne Del-
croix Angelovski spent many months in Paris taking care of our son Gricha. My
mother in Skopje spent all of her free time helping out. The love of Despina
and Gricha was a constant catalyst and a well of inspiration. Among friends
which have been encouraging me and keeping contact are Dragan Bocevski,
Georgi Stojanov, Andrea Maura Castilla, Irfan Junedi Khaja Mohammad, Takako
Nemoto, and Monica and François.

Paris was the best place I could have been in to do a thesis. I thank all of my
colleagues and friends from the laboratories LIX and PPS. It was very inspiring to
be among them. I would also like to thank everyone from the Logic Masterclass
in Utrecht and Nijmegen; it is in a sense where my thesis started and it was cer-
tainly the single one year I have learnt the most in my entire life. Andrej Bauer
and Giovanni Sambin have been my hosts for the research visits to Ljubljana and
Padova, I thank them for their hospitality.

Special thanks go to the rapporteurs and the members of jury. They were
prepared to read my thesis, give valuable comments, come to Paris, and re-
sponded on short notice. I deeply thank them.

Finally, I would like to thank the founding agencies without which I would
not have been writing these lines. First, The Swedish Institute for granting me a
MSc studies scholarship in Sweden; I do not believe that I would have had the
opportunity to do scientific research without them. Second, the Netherlands’
Mathematical Research Institute for financing my Masterclass studies. Finally,
the École Polytechnique provided me with a generous grant for PhD studies
which gave me the best possible working conditions.

It has been three years. I am happy to be finished and looking forward to
continuing.

5

Introduction

The Curry-Howard correspondence has provided a major impulse for cross-
fertilisation of the fields of Theoretical Computer Science (Programming Lan-
guages) and Mathematical Logic (Proof Theory). It consists of the observation
that to each proof in a system of intuitionistic logic, there corresponds a pro-
gram in a statically typed effect-free functional programming language, and vice
versa.

This allows, on one hand, to get a direct computational interpretation of In-
tuitionistic Mathematics1, and, on the other hand, to use Mathematics as a lan-
guage for specifying the desired behaviour of programs. A well-typed program
is a correct program, since it represents itself a proof of its own correctness with
respect to the specification.

In the past three decades, special purpose software called “proof assistants”
have emerged allowing formal computer-aided development of intuitionistic
proofs and programs. They, on one hand, present environments in which a
mathematician can automatically check whether his proofs can be traced back
to the axioms, and, on the other hand, they present programming languages in
which a computer scientist can write programs and formally verify whether they
are correct, that is, conform to a specification.

In this thesis, we apply the Curry-Howard correspondence both ways. We
first study the computational content of a completeness theorem from Mathe-
matical Logic, and then, starting from certain normalisation algorithms, we de-
velop new completeness theorems. We also propose an extension of the Curry-
Howard correspondence to account for not widely accepted intuitionistic prin-
ciples, and to account for certain “delimited” control operators that allow to go
beyond effect-free programming languages.

The work of this thesis was started under the title “Applied Formal Meta-
theory in Coq”. Coq is a proof assistant, originally based on Coquand’s Calculus
of Constructions. The purpose of our work was to make reasoning about logi-
cal systems inside Coq easier for its user. The idea, due to Herbelin, was that if
we formalise a constructive version of some completeness theorem, for example
Gödel’s completeness theorem for classical predicate calculus, we would have
a certified procedure allowing us to switch back-and-forth between proof theo-
retic and model theoretic reasoning about classical predicate logic. This would
have the following practical advantages for users of the Coq proof assistant:

• when reasoning “model theoretically”, the usual tactics and automa-
tion of Coq could be used, instead of having to manipulate directly the
data encoding the proof theoretic side;

1The Curry-Howard correspondence has been also extended to Classical Mathematics.

7

8 INTRODUCTION

• the semantic characterisation of the model theory would represent just
a fragment of the quite strong type theory of Coq, a fragment which
would exactly capture, for example, first-order classical validity;

• finally, users would be spared from the problems connected to α-con-
version when reasoning with binders (quantifiers) formally: the con-
structive proof of completeness would take care of that automatically.

model

theory
deductive

system

Coq’s constructive type theory

completeness

soundness

Soon after starting the project, we saw that there are many interesting the-
oretical questions still asking for attention, from a constructive (intuitionistic)
point of view, therefore, although the completeness proofs of this thesis were
formalised in Coq, we did not pursue the goal of their practical “real life” appli-
cability.

The work is divided into four chapters, each of which has a proper introduc-
tion, here we just list their contributions.

Chapter 1 investigates the constructive versions of Gödel’s proof of com-
pleteness for classical predicate logic, following the works of Krivine, and of Be-
rardi and Valentini.

• We fill-in the details of how to do a constructive Henkin-style proof,
avoiding the explicit building of an infinite sequence of language exten-
sions, supplementing the work of Berardi and Valentini, and of Henkin;

• We formalise a larger part of the argument in Coq, and, based on that,
give a characterisation of its computational behaviour;

• In the historic review, we give an English introduction to Krivine’s arti-
cle written in French.

Chapter 2 introduces a notion of model similar to Kripke models for which
classical predicate logic is sound and complete. A part of the results of this chap-
ter has been published as article [109].

• We give a notion of model which relies on a dual to the “forcing” rela-
tion, and therefore more directly captures classical validity than what
would be possible with usual Kripke models and a double-negation
translation to intuitionistic logic;

• The notion of model is at the same time a kind of continuations monad,
a structure well understood in computer science; in particular, it has a

INTRODUCTION 9

direct computational interpretation, unlike semantic cut-elimination
proofs that rely on set comprehension;

• We give a computational characterisation of completeness via normali-
sation-by-evaluation-like algorithms, based on a reify-reflect pair;

• We fully formalise the arguments in Coq;
• We show that a dual notion of model is possible, the original one giving

rise to a call-by-name evaluation strategy, the dual one giving rise to a
call-by-value strategy.

Chapter 3 develops a completeness proof for intuitionistic predicate logic,
with ∨ and ∃, based on a new notion of model similar to the one of Chapter 2.

• Using the proposed models, we are able to prove completeness without
the Fan theorem, unlike the case for Kripke and Beth models;

• Also, we are able to avoid the use of delimited control operators that
Danvy uses in an algorithm for partial evaluation of λ-calculus with
sum, that is at the origin of our work;

• We fully formalise the arguments in Coq;
• We make a connection with the models of Chapter 2, that relies solely

on the continuations (not) being able to change their answer types.

Chapter 4 proposes an extension of intuitionistic predicate logic to a system
that has the disjunction and existence properties, but can also derive predicate-
logic versions of the Double Negation Shift schema and Markov’s Principle.

• We provide a typing system for delimited control operators that is close
to already proposed systems, but crucially relies on certain types rep-
resenting Σ

0
1-formulae;

• We connect delimited control operators to bar recursive realisability;
• We partially extend the work of Herbelin on an intuitionistic logic that

can prove Markov’s Principle;
• We obtain the extension of Glivenko’s theorem for our system.

All proofs in this thesis are constructive, except for the proof sketches from
the historical overview of Chapter 1.

CHAPTER 1

Constructive completeness for Boolean models

In Foundations of Mathematics, the completeness problem appears as a
natural question as soon as we start to consider formal systems for giving a rig-
orous treatment of mathematical arguments. The problem, for classical predi-
cate logic apparently first posed in print by Hilbert and Ackermann in [104], is
the problem of adequacy of the formal system under consideration, that is, the
question: Can every true statement be derived in finitely many steps by means
of the axioms and rules of inference of the formal system?

While from the work of Bernays [34] it was known that the answer is positive
for the propositional fragment, due to the existence of the decision procedure
based on truth tables, for predicate logic the existence of such a procedure was
unknown, and was actually a major research problem known as the Entschei-
dungsproblem. (German for ’decision problem’)

Not long after Hilbert and Ackermann, the completeness problem was re-
posed and answered positively for predicate logic by Gödel in his doctoral dis-
sertation [82], published as article in [83]. His solution circumvented the Entschei-
dungsproblem, which remained unsolved until the results of Church [46] and
Turing [167].

In this chapter we will take a fresh look at the completeness theorem for
classical predicate logic. We will start with a historic overview of the versions
of the proof from the one of Gödel, through the one of Henkin [94], to the one
of Krivine [125], which represents the first constructive proof. Then, we will go
on, following Berardi and Valentini [29], to develop a detailed constructive argu-
ment (Sections 1.2 and 1.3), which was a subject of partial formalisation in the
Coq proof assistant [62] (Section 1.5), and to discuss the computational content
(Section 1.4) and the remaining related works (Section 1.6).

1.1. Historical overview

1.1.1. Basic definitions. The completeness theorem connects an intuitive
notion of truth of a mathematical statement to that of its provability in a formal
system. At the time of Gödel’s early works, and up to the 1950s, around was a
notion of truth that was an intuitive extension, to deal with quantifiers, of the
truth-table validity of propositional logic. Today, the intuitive notion that Gödel
and others worked with can be recognised as an instance of the standard Tarski
truth definition of Model Theory.1

1However, Tarski’s truth definition only took its definite model-theoretic form in [159], while
the first publish theory of truth of Tarski [158] had a more generic approach. In [158] Tarski pro-
posed a syntactic notion of truth, based on two separate formal languages: an object language L
(the language whose truth is to be defined), and a meta-language M (the language used to define
truth of sentences of L). In the spirit of his time, Tarski assumed [105] that L and M would be based
on some kind of higher-order logic, but he was aware of the fact that M has to be stronger than L

11

12 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

1.1.1. Definition. A signature K is a collection of individual constants c0,c1, . . .
(finitely or infinitely many), and predicate and function symbols with finite ari-
ties, P0,P1, . . .Pn and f0, f1, . . . fm .

1.1.2. Definition. The language of signature K consists of formulae, which are
built up inductively, using individual variables, standard logical constants, and
the symbols of K :

• ⊥ is a formula
• Pi (t1, . . . , tn) is a formula, if t1, . . . , tn are terms;

– an individual variable x is a term;
– an individual constant c j of K is a term;
– if t1, . . . , tm are terms, so is fl (t1, . . . , tm).

• if A,B are formulae, then A∧B , A∨B , and A → B are formulae;
• if A is a formula, possibly containing x as a free individual variable,

then ∃x A and ∀x A are formulae.

The formulae of the first two forms are called prime or atomic. The formula ¬A

is an abbreviation for A →⊥. We call sentence a formula in which all individual
variables are bound by a quantifier.

1.1.3. Remark. Often, a special predicate symbol “=” is taken as a default mem-
ber of every signature. For simplicity, similarly to Gödel, Henkin, and Krivine,
we do not treat “=” as special.

1.1.4. Definition. A structure of signature K ,

M = (M ,PM

0 , . . . ,PM

n , f M

0 , . . . , f M

m ,cM

0 ,cM

1 , . . .),

consists of:

• a domain of individuals M , typically a set;
• for each predicate symbol P of arity k of K , a k-ary relation PM on the

domain M , that is, a subset of M k ;
• for each function symbol f of arity k of K , a k-ary function f M from

M k into M ;
• for each constant symbol c of K , an element cM of M to denote c.

1.1.5. Definition. We say that a structure M is a model of a formula A, that M

satisfies A, or that M realises A, and write M Í A, if the following primitive-
recursive meta-language interpretation of A holds:

• for A ≡⊥, M 6Í ⊥;
• for A ≡ P (a1, . . . , ak), M Í A if (a1, . . . , ak) ∈ PM ;
• for A ≡ A1 ∧ A2, M Í A if M Í A1 and M Í A2;
• for A ≡ A1 ∨ A2, M Í A if M Í A1 or M Í A2;
• for A ≡ A1 → A2, M Í A if M Í A1 implies M Í A2;
• for A ≡∀xB , M Í A if M Í B [a/x] for all a ∈ M ;
• for A ≡∃xB , M Í A if M Í B [a/x] for some a ∈ M .

We say that A is satisfiable, or realisable, or has a model, if there exists a structure
M which is a model of A.

in order for the Liar paradox [85] to be avoided. Nowadays, in Model Theory, a full set theory with
an axiom of choice is standardly assumed for M.

1.1. HISTORICAL OVERVIEW 13

1.1.6. Definition. Let K be a signature. We say that a formula A, written in the
language of signature K , is true, or valid, if any structure M of signature K is a
model of A.

We now have set up the basic framework for looking at the major instances
of the theorem which appeared through history. In this chapter ⊢ A will stand
for derivability of A inside a system for classical predicate logic. In Subsections
1.1.2, 1.1.3, and 1.1.4, we assume also a classical metalanguage.

1.1.2. Gödel’s proof. We give a sketch of Gödel’s original proof, based on
[84, 83, 82]. The key role is played by the following lemma, today known as
Model Existence Lemma.

1.1.7. Lemma. For every formula A of a language with signature K , either there

exists a structure M of signature K such that M Í A, or ⊢¬A.

1.1.8. Theorem (Completeness). If A is true, then A is derivable.

PROOF. We apply Lemma 1.1.7 on the formula ¬A. Then, if there is a model
M of ¬A, we obtain contradiction, since M is by hypothesis also a model of A.
Otherwise, the formula ¬¬A is derivable, hence A is itself derivable . �

PROOF SKETCH OF LEMMA 1.1.7. We say that a formula A is refutable if ¬A

is derivable. Gödel shows that every formula is either satisfiable or refutable,
by showing that every formula in prenex normal form is either satisfiable or
refutable, since we know that the equivalence between a formula and its prenex
normal form is derivable. Actually, it is enough to consider prenex normal forms
where the left-most quantifier is universal, because each prefixing existential
quantifier can be immediately eliminated by replacing the variable it binds with
a constant. Let the degree of such a prenex normal formula be the number of
blocks of universal quantifiers separated by existential ones. The proof is by in-
duction on the degree:

(1) If every formula of degree k is either satisfiable or refutable, then so is

every formula of degree k + 1. This is proved by Skolemisation. A for-
mula of degree k +1 is transformed into one of degree k which is equi-
satisfiable with the first one. New function symbols are introduced in
the process.

(2) Every formula of degree 1 is either satisfiable or refutable. A formula P

of degree 1 is of the form ∀~r∃~n A(~r ;~n), where ~r denotes a q-tuple of
variables, and ~n denotes an s-tuple of variables. Let (~rn) be an infinite
sequence of q-tuples of variables x0, x1, x2 . . . generated in (some) lexi-
cographical order:

~r1 = (x0, x0, . . . , x0)

~r2 = (x1, x0, . . . , x0)

~r3 = (x0, x1, . . . , x0)

...

14 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

We define the sequence of formulae An by

A1 = A(~r1; x1, x2, . . . xs)

A2 = A(~r2; x1+s , x2+s , . . . x2s)∧ A1

...

An = A(~rn ; x(n−1)s+1, x(n−1)s+2, . . . xns)∧ An−1

...

where, for each An , the variables put in the places bound by the exis-
tential quantifier do not appear in the formulae Am for m < n. We de-
note by Pn the formula ∃x0 · · ·∃xns An . It is easy to show that P ⇒ Pn is
derivable. Now, because each of An is a formula of propositional logic,
(a) either some An is refutable, and hence P is refutable because Pn is

refutable;
(b) or, no An is refutable, that is, all An are satisfiable, and hence we

get an infinite sequence of models

M1 ⊆M2 ⊆ ·· · ⊆Mn ⊆ ·· · .

Then M :=∪i∈NMi is a model of the formula P .

�

The introduction notes to [82, 83, 84] see in the last step an application
of Kőnig’s lemma, although Gödel himself justifies the step by “familiar argu-
ments”.

1.1.3. Henkin’s proof. It was Henkin who apparently first remarked the slight
imprecision in the Skolemisation step of Gödel’s proof. Namely, in order to elim-
inate existential quantifiers that follow universal ones, Skolemisation introduces
new function symbols which are not interpreted in the models M1 ⊆ M2 ⊆ ·· · ,
because they come from an extended language.

It is Henkin’s proof which is standard in today’s textbooks on logic. It was
carried out in his PhD thesis and published in article form as [94]. Henkin’s the-
sis goes beyond the article [94], because it also discusses completeness in the
context of higher-order logic and proves, using completeness, Stone’s represen-
tation theorem for Boolean algebras.

The key role is played by the following Model Existence Lemma.

1.1.9. Lemma. Let S0 be a signature. If Λ is a set of sentences of signature S0,

which is consistent (Λ 6⊢ ⊥), then Λ has a model.

PROOF SKETCH. Let Si+1 be a signature that extends Si with countably many
new constant symbols ui+1

0 ,ui+1
1 , A set of sentences Γ of signature S will be

called maximal consistent if, for any sentence A of signature S, A 6∈ Γ→ Γ, A ⊢

⊥ & Γ 6⊢ ⊥, that is, if (Γ, A ⊢⊥→ Γ⊢⊥) implies A ∈ Γ.
We will now construct Γ0, a maximal consistent set of sentences of S0, that

contains the given set Λ. Let Γ0,0 := Λ. We fix an enumeration of formulae of
signature S0. Let Γ0,1 := Γ0,0 ∪ {B1}, where B1 is the first formula from the enu-
meration such that Γ0,0 ∪ {B1} is consistent. In general, let Γ0,i+1 := Γ0,i ∪ {Bi+1},
where Bi+1 is the (i +1)-th formula from the enumeration such that Γ0,i ∪ {Bi+1}
is consistent. We set Γ0 :=∪i∈NΓ0,i , for which we have that:

1.1. HISTORICAL OVERVIEW 15

• Λ⊆ Γ0;
• Γ0 is consistent, because each one of Γ0,i is consistent by definition;
• Γ0 is maximal consistent: given A such that Γ0, A ⊢ ⊥ → Γ0 ⊢ ⊥, that

is, given Γ0, A 6⊢ ⊥, that is, given Γ0, A is consistent, we have that each
Γ0,i , A is consistent. Since A also appears in the enumeration of formu-
lae, for some j , A ∈ Γ0, j , hence A ∈ Γ0.

We have thus built a maximally consistent set of sentences of S0, Γ0.
We will now proceed to build a maximally consistent set of sentences of sig-

nature S1, Γ1.
Fix an enumeration of the sentences of Γ0. Select the first sentence of form

∃x A from the enumeration, and let A′ := A{u1
1/x}. We have replaced the free

variable x of A with the first new constant from S1. The set Γ0, A′ is consistent: if
Γ0, A′ ⊢⊥, then Γ0 ⊢ ¬A′, hence Γ0 ⊢ ∀x¬A, and Γ0 ⊢ ¬∃x A, which contradicts
the fact that Γ0 is consistent, since A ∈ Γ0.

Hence we can add to Γ0 all such A′, keeping it consistent. We now construct
Γ1 in the same way we constructed Γ0, but starting from the consistent set of
sentences Γ0, A′

1, A′
2,

We can iterate this procedure constructing a maximally consistent set Γi of
sentences of signature Si , by starting from the consistent set Γi−1, Ai

1
′
, Ai

2
′
,

We can now define the set of sentences Γω := ∪i∈NΓi , and easily see that it
satisfies two properties:

(1) Γω is a maximally consistent set of sentences of signature Sω;
(2) if (∃x A) ∈ Γω, then A′ ∈ Γω.

Actually, as Henkin remarks, the entire construction was just in order to obtain
these two properties.

We can now define the model promised by the statement of the Lemma. Let
I be a structure of signature Sω in which the domain of individuals consists
of all individual constants (the old constants of S0 and all the new ones). For an
atomic formula A, we define the truth of A in I , by the derivability of A from Γω.
The use of properties (1) and (2) is in showing that the extension to composite
formulae A of the property,

I Í A iff Γω ⊢ A,

holds, that is, that validity in I is well defined. The proof is by induction on the
complexity of A. Property (1) is used to handle implication (and negation), and
property (2) is used to handle the quantifiers. �

1.1.10. Theorem (Completeness). If A is a valid sentence of S0, then ⊢ A.

PROOF. If A is valid, then ¬A has no model, which, by contraposition of
Lemma 1.1.9, means that ¬A ⊢⊥. Therefore ⊢ A. �

In the version of proof that we will give in this chapter, we will avoid the
explicit infinite sequence of language extensions. That this can be done, is also
a subsequent realisation of Henkin [95, p.156].

16 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

1.1.4. Krivine’s proof. Krivine was the first to give a constructive proof [125]
of Gödel’s completeness theorem.2 He shows that the statement of complete-
ness for first-order logic can be formalised as a true formula TC of classical second-
order logic, with the axiom schema of comprehension and the axiom of full
second-order induction. The formula TC uses five function symbols {0, s, ,→
,σ,@}, but no axioms are supposed for the last three of those.

A concrete proof of completeness of first-order logic can be obtained by build-
ing a concrete second-order model M0, which interprets the five function sym-
bols in the intended way:

• the domain of individuals of M0 is the set of first-order sentences of
a signature L which, besides the five function symbols, contains also
countably many constant symbols;

• for a fixed enumeration of the sentences, the nullary function symbol 0
is interpreted as the first formula in the enumeration, and s is a unary
function symbol that, given a formula, returns the next one according
to the enumeration;

• the binary function symbol ,→ is interpreted as implication between
sentences;

• for a fixed bijection G 7→ tG between sentences and closed terms of sig-
nature L, the function symbol σ is interpreted as substitution:

σ(∀x A′,B) := A′{tB /x},

σ(A,B) := A, if A is not a universal formula.

and @ is interpreted as a generator of fresh terms:

@(A,B) := tC

where C is a sentence such that the term tC does not appear in A and
B .

• the second order variables of arity n are interpreted, as usually for second-
order models, by n-ary relations on the domain of M0.

Krivine’s proof is constructive because the formula TC has a form such that
its double-negation translation is equivalent to TC inside intuitionistic second-
order logic.

Since the article [125] contains a very detailed formal argument, we will here
content ourselves to just describing the formula TC and giving a sketch of the
proof.

Let M and J be unary second-order variables. In the model M0, such an
entity is a collection of formulae. Let ∀x Ent(x) denote the axiom of second-
order induction, that is, let Ent(x) be the formula:

∀X
(
∀y

(
X y → X (s y)

)
→ X 0 → X x

)
.

2N.B. Observations that Gödel’s proof is essentially constructive appear already, in a couple
of places, in the papers [119, 116, 120] of Kreisel.

1.1. HISTORICAL OVERVIEW 17

We define the predicate Mod(M), to be read as “M is a model”, by the conjunc-
tion of the following formulae:

∀x y
(
M(x ,→ y) → M x → M y

)

∀x y
(
Ent(x) → (M x → M y) → M(x ,→ y)

)

∀x y
(
M x → M(σ(x, y))

)

∀x
(
Ent(x) → (∀y M(σ(x, y))) → M x

)

We also define a predicate Ded(J), to be read as “J is closed by deduction”, by the
conjunction of the following formulae, which, in the model M0, express that J is
a collection of formulae closed under deduction from the rules of Hilbert’s sys-
tem for propositional calculus plus the axioms for introduction and elimination
of the universal quantifier.

∀x y J (y ,→ x ,→ y)

∀x y z J ((x ,→ y) ,→ (x ,→ y ,→ z) ,→ x ,→ z)

∀x y J (((x ,→ y) ,→ x) ,→ x) Peirce’s law

∀x y J (x ,→ y) → J x → J y modus ponens

∀x y J (x ,→σ(x, y))

∀x y J
((
σ

(
x,@

(
x, y

))
,→ y

)
,→ y

)
→ J

((
x ,→ y

)
,→ y

)

Now, starting from the simple version of completeness specified by the for-
mula

(TC0) ∀x (∀M (Mod(M) → M x) →∀J (Ded(J) → J x)) ,

we generalise to the full statement of completeness, where the formula x is valid
and derivable modulo a collection of formulae P (that is, a collection of axioms),

(TC0(P)) ∀x (∀M (Mod(M) → P ⊆ M → M x) →∀J (Ded(J) → P ⊆ J → J x)) ,

and we finally arrive at

(TC) ∀x∀J (∀M (Mod(M) → J ⊆ M → M x) → Ded(J) → J x)

which is equivalent to ∀P.TC0(P).

1.1.11. Theorem. The formula TC is a valid formula of both intuitionistic and of

classical second-order logic, with as axioms the comprehension schema and full

second-order induction, in the language {0, s, ,→,σ,@}.

PROOF SKETCH. The proof is carried out in classical second-order logic, and
is afterwards translated by a double-negation interpretation into intuitionistic
second-order logic.

Although the full proof from [125] works independently of interpretation,
this sketch works in the intended model M0.

Let G0,G1, . . . be an enumeration of sentences, and let a be a given sentence.
We define by recursion a sequence of sentences φ0,φ1, . . . by:

φ0 := a

φn+1 :=φn if (Gn ,→φn) ,→φn ∈ J

φn+1 := (G ′
n{c/x} ,→φn) ,→φn otherwise, if Gn is of form ∀xG ′

n

φn+1 := (Gn ,→φn) ,→φn otherwise

18 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

where c is a constant symbol not appearing in φn ,Gn . Now, define

M̃ := {φ | ∃n.((φ ,→φn) ,→φn) ∈ J }.

It rests to show that Mod(M̃) and a 6∈ M̃ . �

In his article, Krivine also attempts to solve the “specification problem” for
TC, that is, to determine the common operational behaviour of all different pro-
grams that correspond to proofs of TC. He claims that the specification of TC
is the one of an “interactive disassembler equipped with protection for system
calls”.

1.1.5. The proof of Berardi and Valentini. Berardi and Valentini “reverse
engineered” Krivine’s proof into a more conventional and less formal one, at the
same time isolating what they see as the main principle behind, a constructive
version of the Ultra-filter Theorem for countable Boolean algebras.

Krivine uses a notion of truth which is not the standard one, namely, there
is no requirement that ⊥ be not true in a model. This, as he himself remarks,
means that, classically, there is exactly one model which is not a standard Tarski
model, the all-true model. Additionally, Berardi and Valentini remark that, due
to a result of McCarthy [135], if completeness of classical predicate logic with re-
spect to standard Tarski models was provable intuitionistically, then there would
be an intuitionistic proof of Markov’s Principle; however, Markov’s Principle is
independent of intuitionistic logic (Heyting Arithmetic) [119].

A similar phenomenon happens with intuitionistic completeness of intu-
itionistic logic (that will be treated in Chapter 3): in order to avoid the meta-
mathematical results of Gödel and Kreisel [120], Veldman [175] has to give spe-
cial treatment to ⊥ in the semantics by allowing “exploding” nodes that can val-
idate ⊥.

1.1.12. Definition. A minimal model is a set of sentences M which is:

• implication-faithful: A ⇒ B ∈ M ↔ (A ∈ M → B ∈ M);
• for-all-faithful: for every formula A with at most one free variable x,
∀x.A(x) ∈ M ↔ for any closed term t , A(t) ∈ M ;

• meta-DN : (¬A ∈ M →⊥∈ M) → A ∈ M

1.1.13. Definition. A standard model is a minimal model M with the additional
property that ⊥ 6∈ M .

1.1.14. Remark. For any standard model M there corresponds a model M in
the sense of Definition 1.1.5, and vice versa. What we call “standard model” is
known as “the theory” of a Tarski model, that is the set of all sentences true in
the Tarski model.

In [29], Berardi and Valentini prove in detail their constructive version of the
Ultra-filter theorem, and outline how a Henkin-style proof based on it should
look like. In the following sections we give a detailed proof of both the Ultra-
filter Theorem and the completeness theorem, generalising slightly the Ultra-
filter Theorem to setoids (sets equipped with an equality relation which is not
necessarily substitutive).

1.2. CONSTRUCTIVE ULTRA-FILTER THEOREM 19

1.2. Constructive ultra-filter theorem

1.2.1. Definition. A Countable Boolean Algebra over a setoid (B ,=̇), B, consists
of an interpretation of the constants {∧̇,∨̇,⊥̇,⊤̇,¬̇,p·q} which satisfies the follow-
ing axioms.

x∧̇x=̇x (x∨̇y)∧̇z=̇(x∧̇z)∨̇(x∧̇z)

x∨̇x=̇x (x∧̇y)∨̇z=̇(x∨̇z)∧̇(x∨̇z)

x∧̇y=̇y∧̇x ⊥̇∧̇x=̇⊥̇

x∨̇y=̇y∨̇x ⊥̇∨̇x=̇x

x∧̇(y∧̇z)=̇(z∧̇y)∧̇z ⊤̇∧̇x=̇x

x∨̇(y∨̇z)=̇(z∨̇y)∨̇z ⊤̇∨̇x=̇⊤̇

x∧̇(x∨̇y)=̇x x∧̇¬̇x=̇⊥̇

x∨̇(x∧̇y)=̇x x∨̇¬̇x=̇⊤̇

pxq= pyq→ x = y

1.2.2. Fact. The following defines a partial order on B:

x≤̇y := (x∧̇y)=̇x.

We will now need to talk about a collection F of elements of B . Although we
think of it as a predicate over B , we will use the notation F ⊆ B and say that F is
a subset. We will denote interchangeably by F x and x ∈ F membership in F. No
use of a power-set axiom is made.

1.2.3. Definition. A subset F ⊆ B is called a filter if it is:

• inhabited: ∃x : B ,F x

• upwards closed: ∀x y : B ,F x → x≤̇y → F y

• meet-closed: ∀x y : B ,F x → F y → F (x∧̇y)

1.2.4. Definition. If X ⊆ B , the closure of X , ↑X , is the set of all elements of B

which are greater than some finite meet of elements of X i.e.

↑X :=λb.∃y1, . . . , yn ∈ X . y1∧̇ · · · ∧̇yn≤̇b

1.2.5. Definition. X ⊆ F is inconsistent if X ⊥̇, and X ,Y ⊆ B are equiconsistent

(X ∼ Y) if X ⊥̇↔ Y ⊥̇.

1.2.6. Definition. X ⊆ B is element-complete for b ∈ B if

(X ∼↑(X ∪ {b})) → b ∈ X .

X is complete if it is element-complete for all b ∈ B .

1.2.7. Remark. Note that this definition of “complete”, classically equivalent to
the more usual one (for all b, either b ∈ F or ¬̇b ∈ F), is key to having a construc-
tive proof of the Ultra-filter Theorem.

1.2.8. Fact. We list without proof some easy properties of filters. These are
proved in the Coq formalisation.

(1) For every X ⊆ B , the closure ↑X is a filter.
(2) If F is a filter, then ⊤̇ ∈ F .
(3) For any X ⊆ B , X ⊆↑X .

20 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

(4) If X ⊆ Y ⊆ B , then ↑X ⊆↑Y .
(5) If F is a filter, then F =↑F .

1.2.9. Proposition. If F ⊆ B is a filter, then x=̇y and x ∈ F imply y ∈ F .

PROOF. Immediate from F being upwards closed. �

We will need the following definition and properties for the proof of the
Ultra-filter Theorem.

1.2.10. Definition. Let F be a filter. Using the enumeration p·q : B → N, define
the primitive-recursive fixed point Fn ⊆ B by

F0 := F

Fn+1 :=λb. ↑(Fnb ∨ (pbq= n ∧Fn ∼↑(Fn ∪ {b}))) .

1.2.11. Lemma. For every n, Fn is a filter.

PROOF. A simple induction on n using Fact 1.2.8(1). �

1.2.12. Lemma. If n ≤ m, then Fn ⊆ Fm .

PROOF. By induction on the generation of the relation ≤ (because ≤ has an
inductive definition), and using Fact 1.2.8(1). �

1.2.13. Lemma. For every n, F0 ∼ Fn . For every n,m, Fn ∼ Fm . For any k, and Z

as defined in the next theorem, Z ∼ Fk .

PROOF. By induction on n, we prove the first part, the other two are easy
consequences of it.

The base case is immediate. Let F ∼ Fn and let ⊥̇ ∈ Fn+1. We have to prove
that ⊥̇ ∈ F . By definition, ⊥̇ ∈ Fn+1 means that

∃y1, . . . , yl ∈ {Fn ∪ {b | pbq= n ∧Fn ∼↑(Fn ∪ {b})}} . y1∧̇ · · · ∧̇yl ≤̇⊥̇.

Now, either all of yi belong to Fn , in which case ⊥̇ ∈ Fn ∼ F ; or, some of them
are equal to a b such that pbq= n, but, in that case, ⊥̇ ∈↑(Fn ∪ {b}) ∼ Fn ∼ F . �

1.2.14. Theorem. If F is a filter, then Z := λb.∃n.Fnb = ∪n∈NFn is a complete

filter extending F , that is equiconsistent with F .

PROOF. Z is a filter: it is inhabited because F0 is inhabited, it is upwards
closed because each one of Fn is (Lemma 1.2.11), and Z is meet-closed because
of Lemma 1.2.12.

Z ∼ F because of Lemma 1.2.13.
To show that Z is complete, let x : B with Z ∼↑(Z ∪ {x}) be given. We show

that x ∈ Z , by showing that Fn ∼↑(Fn ∪ {x}), when n = pxq. Direction Fn⊥̇ →↑

(Fn ∪ {x})⊥̇ follows from Fact 1.2.8(3). Let ↑(Fn ∪ {x})⊥̇. Then ↑(Z ∪ {x})⊥̇, by
Fact 1.2.8(4). By equiconsistency with Z , we have Z ⊥̇. By Lemma 1.2.13, we get
Fn⊥̇. �

The theorem we just proved is the one that is used for proving the complete-
ness theorem of the next section. We now proceed to give a more familiar form
of the Ultra-filter Theorem as a corollary.

1.2.15. Definition. A filter H is an ultra-filter if, whenever G is a filter such that
H ∼G and H ⊆G , then also G ⊆ H .

1.3. CONSTRUCTIVE HENKIN-STYLE PROOF 21

1.2.16. Corollary. For any starting filter F , Z (F) is an ultra-filter.

In particular, if F is consistent (⊥̇ 6∈ F), we get a proof of a standard formula-

tion of the Ultra-filter Theorem.

PROOF. Let G be a filter such that Z (F) ⊆ G and Z (F) ∼ G . To prove that
G ⊆ Z (F), let a ∈ G and use the completeness of Z (F). We have to show that
Z (F) ∼↑(Z (F)∪ {a}). One direction is obvious, for the other, let ⊥̇ ∈↑(Z (F)∪ {a}).
From the hypotheses and Fact 1.2.8, we get that ⊥̇ ∈↑G =G ∼ Z (F). �

1.3. Constructive Henkin-style proof

We now proceed to the constructive completeness proof à la Henkin. The
main difference with other such proofs is that we do not build an infinite ex-
tension of signatures S0,S1, . . . explicitly, as Henkin does, but instead extend the
grammar of formulae with a separate class of constants, Henkin constants. In
the end, when completeness is stated, we require that the input formula con-
tains no Henkin constants, hence the completeness theorem works only for stan-
dard formulae.

1.3.1. Definition. The extended language of signature K consists of extended for-

mulae, which are built up inductively, using individual variables, standard logi-
cal constants, the symbols of K , and a special constant symbol cA for each for-
mula A:

• ⊥ is a formula
• Pi (t1, . . . , tn) is a formula, if t1, . . . , tn are terms;

– an individual variable x is a term;
– an individual constant c j of K is a term;
– a Henkin constant cA , for A-formula, is a term;
– if t1, . . . , tm are terms, so is fl (t1, . . . , tm).

• if A,B are formulae, then A∧B , A∨B , and A → B are formulae;
• if A is a formula, possibly containing x as a free individual variable,

then ∃x A and ∀x A are formulae.

In other words, the extended formulae are built from three kinds of expressions:
formulae can be constructed from terms, terms can be constructed from con-
stants, and constants can be constructed from formulae.

For a derivation system we take the one of Table 1.

A ∈ Γ
AX

Γ⊢ A

Γ, A1 ⊢ A2 ⇒I
Γ⊢ A1 ⇒ A2

Γ⊢ A1 ⇒ A2 Γ⊢ A1 ⇒E
Γ⊢ A2

Γ⊢ A x-fresh
∀I

Γ⊢∀x A
Γ⊢∀x A

∀E
Γ⊢ A{t/x}

Γ⊢⊥
⊥E

Γ⊢ A
Γ⊢ (A ⇒⊥) ⇒⊥

¬¬E
Γ⊢ A

Table 1: Classical natural deduction with {⇒,∀,⊥}

22 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

1.3.2. Fact. Given a derivation Γ ⊢ A, we can replace a constant c with a fresh
variable x, obtaining a derivation Γ{x/c} ⊢ A{x/c}.

The proof of this fact is very technical, but since it is well known and we did
prove it formally in Coq, we leave it out.

1.3.3. Definition. Given a set of sentences (axioms) A , the theory of A , Th(A),
is the set of formulae which are derivable from the axioms.

1.3.4. Definition. The set of Henkin-axioms H is the set of formulae of form
A(c∀x A) ⇒∀x A for A such that ∀x A is closed.

1.3.5. Definition. A set of formulae T is Henkin-complete if H ⊆T .

1.3.6. Lemma. If A is a set of sentences (axioms) which contains no Henkin con-

stants, then the theories Th(A ∪H) and Th(A) are equiconsistent.

PROOF. That ⊥ ∈ Th(A) →⊥ ∈ Th(A ∪H) is clear. Let ⊥ ∈ Th(A ∪H) i.e.
Γ ⊢ ⊥ for some Γ ∈ A ∪H . We show that we can eliminate all Henkin axioms
from Γ, by showing that we can eliminate one at a time, when the Henkin con-
stant the axiom is based on does not appear in the other formulae of the context.
Once we show that, we just need to reorder3 the Henkin axioms from Γ so that
the most complex ones are eliminated first.

Let (A(c∀x A) ⇒∀x A),∆⊢⊥, where the constant c∀x A does not appear in ∆.
We want to show ∆⊢⊥. It will be enough to show that ∆⊢ ∀y¬(A ⇒∀x A), be-
cause this produces a contradiction with a tautology of classical predicate logic,
the Drinker paradox:4

⊢¬∀y¬(A ⇒∀x A)

Let y be a fresh variable. We need to show that ∆ ⊢ ¬(A ⇒ ∀x A)(y). Since
∀x A is closed, we can rewrite the hypothesis (A(c∀x A) ⇒ ∀x A),∆ ⊢ ⊥ as ∆ ⊢

¬(A ⇒∀x A)(c∀x A). Now, since c∀x A does not appear in ∆, it is enough to apply
Fact 1.3.2. �

1.3.7. Definition. The Lindenbaum Boolean algebra {B,=̇,∧̇,∨̇,⊥̇,⊤̇,¬̇,p·q} is de-
fined by:

B is the set of closed formulae

A1=̇A2 iff ⊢ A1 ⇒ A2 and ⊢ A2 ⇒ A1

A1∧̇A2 :=¬(A1 ⇒¬A2)

A1∨̇A2 :=¬A1 ⇒ A2

⊥̇ :=⊥

⊤̇ :=⊥⇒⊥

¬̇A :=¬A

The enumeration p·q is defined via the Cantor pairing function in Section 1.5.2.

1.3.8. Lemma. Every theory is a filter in the Lindenbaum Boolean algebra.

PROOF. This is easy to show. For details have a look at the formal proof. �

3Actually, the correctness of the reordering(sorting) algorithm is the only part of the proof
which was not fully formalised in Coq. See Section 1.5 for more details.

4Which can be phrased in natural language by: “There is someone in the pub such that, if he
is drinking, everyone in the pub is drinking”.

1.3. CONSTRUCTIVE HENKIN-STYLE PROOF 23

Let Fn be defined by setting F0 := Th(A ∪H) in the fixpoint of Defini-
tion 1.2.10, and let Z be defined, like in Theorem 1.2.14, as B ∈Z ↔∃n.B ∈Fn .

1.3.9. Lemma. For every n, the filter Fn is the theory with axiom set Gn , where

G0 :=A ∪H

Gn+1 :=λb. (Gnb ∨ (pbq= n ∧Fn ∼↑(Fn ∪ {b}))) .

The complete filter Z is the theory with axiom set ∪n∈NGn .

PROOF. Direction “→” of the first part is by induction on n. F0 is a theory
by definition. Let Fn = Th(Gn) and A ∈ Fn+1. We have to show that there is a
derivation Γ⊢ A such that Γ⊆Gn+1. By the definition of the fixpoint,

A ∈↑(Fn ∪ {b | pbq= n & Fn ∼↑(Fn ∪ {b})}) ,

that is,

∃y1, . . . , ym ∈Fn ∪ {b | pbq= n & Fn ∼↑(Fn ∪ {b})} . y1∧̇ · · · ∧̇ym≤̇A,

and, by the induction hypothesis,

∃z1
1 , . . . , z

k1
1 , z1

2 , . . . , z
k2
2 , . . . , z1

m , . . . , z
km
m ∈Gn+1. z1

1∧̇ · · · ∧̇z
km
m ≤̇A,

from which the goal follows by the interpretation of ∧̇ and ≤̇ in the Lindenbaum
algebra.

Direction “←” is immediate because Gn ⊆Fn for every n.
The statement Z ⊆ Th(∪n∈NGn) follows directly from the first part.
To show Th(∪n∈NGn) ⊆Z , let Γ⊢ A and Γ⊆∪n∈NGn . Note that Γ⊆∪n∈NGn

is just a shortcut for ∀x A ∈ Γ, A ∈ ∪n∈NGn . To show that A ∈ Z means to find m

such that A ∈ Fm . We simply need to take for m the maximum n such that all
formulae of Γ belong to Fn (by Lemma 1.2.12). Now, from Γ⊢ A, we have

∧̇
Γ≤̇A,

therefore, since Fm is a filter, A ∈Z .
�

We are now ready to prove the main theorem.

1.3.10. Theorem (Model Existence). Let A be a set of axioms that does not con-

tain any Henkin constants. Then Z is an equiconsistent extension of Th(A) that

is implication-faithful, for-all-faithful, and meta-DN.

PROOF. That Z is an equiconsistent extension of Th(A) follows from Lemma
1.3.6 and Theorem 1.2.14. We need to show that Z is a minimal model.

• Z is meta-DN. Let A be a sentence such that ¬A ∈Z →⊥∈Z . We need
to show that A ∈Z . We will use the fact that Z is complete, that is,

Z ∼↑(Z ∪ {A}) → A ∈ Z .

The direction “→” of Z ∼↑(Z ∪ {A}) is trivial. Let ⊥ ∈↑(Z ∪ {A}). We
show that ⊥ ∈ Z by applying the first hypothesis, but then we have to
show that ¬A ∈Z . By the definition of ↑ we have that

∃y1, y2, . . . , ym ∈Z ∪ {A}.y1∧̇y2∧̇ · · · ∧̇ym≤̇⊥.

Now, we look at two cases:
(1) Either all yi are in Z , and then, by Z being a filter, ¬A ∈ Z , be-

cause
y1∧̇y2∧̇ · · · ∧̇ym≤̇⊥≤̇¬A.

24 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

(2) Or, yρ(1), yρ(2), . . . , yρ(m−1) ∈Z and yρ(m) = A, and then, since

yρ(1)∧̇yρ(2)∧̇ · · · ∧̇yρ(m−1)∧̇A≤̇⊥,

we have that

yρ(1)∧̇yρ(2)∧̇ · · · ∧̇yρ(m−1) ≤¬A.

Since Z is a filter, ¬A ∈Z .
• Z is implication-faithful. We have to show that

(A ⇒ B) ∈Z ↔ (A ∈Z → B ∈Z).

Direction “→” follows directly by the ⇒E rule, because Z is a theory by
Lemma 1.3.9.

Let A ∈ Z → B ∈ Z . We show (A ⇒ B) ∈ Z by applying the fact we
proved above, that Z is meta-DN, hence we have to show that

¬(A ⇒ B) ∈Z →⊥∈Z .

Let ¬(A ⇒ B) ∈ Z . Since Z is a (classical) theory, we have that A ∈ Z

and ¬B ∈Z . Now, from the hypothesis and A ∈Z we get B ∈Z , hence
⊥∈Z .

• Z is for-all-faithful. We have to show that, for any formula A such that
∀x A is closed,

(∀x A) ∈Z ↔ for any closed term t , A{t/x} ∈Z .

Direction “→” is by the ∀E rule, because Z is a theory.
Let for any closed term t , A(t) ∈ Z . By definition, Z is Henkin-

complete. Then, we can show that ∀x A ∈ Z by using implication-
fatefulness on the Henkin axiom,

A(c∀x A) ⇒∀x A,

because from the hypothesis we can conclude that A(c∀x A) ∈Z .

�

Let Γ Í A denote that, for every minimal model M , Γ ⊆ M implies A ∈ M .
We have the following corollary.

1.3.11. Corollary (Completeness). For any Γ and A that do not contain Henkin

constants, if ΓÍ A, then Γ⊢ A.

PROOF. Let the set of axioms C be the finite set Γ∪{¬A}. By Theorem 1.3.10,
there is a minimal model M := Z (C) that extends Th(C) and is equiconsistent
with it. Because A is true in any model in which Γ is true, and because Γ ⊆

Th(C) ⊆ M , we have that A ∈ M . But, because also ¬A ∈ Th(C) ⊆ M , we get
that ⊥ ∈ M . Since M and Th(C) are equiconsistent, also ⊥ ∈ Th(C), which, by
definition, means that Γ,¬A ⊢⊥. Hence, Γ⊢ A. �

1.4. Computational content

The computational content of the completeness proof is to be read off Theo-
rem 1.3.10. We do not give a succinct characterisation of it like the one of Krivine,
mentioned at end of section 1.1.4, but instead discuss multiple aspect.

Theorem 1.3.10 builds the model Z using a fixed-point, starting from Th(A∪

H). The built model Z is equiconsistent with Th(A), so the Henkin axioms

1.5. ASPECTS OF THE COQ FORMALISATION 25

somehow “disappear”. The procedure behind this is described in the proof of
Lemma 1.3.6: we take a derivation Γ⊢ A that uses Henkin axioms, we order the
axioms according to the depth of the formula which is annotating the Henkin
constant, and then we eliminate them one by one by using the Drinker’s paradox
and Fact 1.3.2, which replaces all occurrences of a constant inside a derivation
by a free variable.

Let us now pose the question: how does Theorem 1.3.10 “normalise” proofs
involving implication, that is, what is the procedure to construct a derivation
Γ⊢ B from derivations ofΓ⊢ A ⇒ B andΓ⊢ A. When we think of calculi that sat-
isfy the Brouwer-Heyting-Kolmogorov interpretation [161, p.10] of logical con-
nectives, we think of this proof transformation as the β-reduction relation on
proof terms.

The statement A ⇒ B ∈ Z determines an “approximation” of Z , a number
n such that A ⇒ B ∈ Fn , and A ∈ Z determines a number m such that A ∈ Fm .
Then, the proof that Z is a theory from Lemma 1.3.9, shows the way to prove
that B ∈ Z : we take the common approximation of Z of all formulae used in a
derivation of B , and return that number. In the simplest case we have above, we
return max(n,m).

In the next chapters we will refer to the statement

(A ⇒ B) ∈Z → A ∈Z → B ∈Z

as reflection. The converse,

(A ∈Z → B ∈Z) → (A ⇒ B) ∈Z ,

will be referred to as reification. In Theorem 1.3.10, reification is proved via the
meta-DN property of Z ,

for any formula C , (¬C ∈Z →⊥∈Z) →C ∈Z .

Using reflection, we can transform this to

for any formula C , ((C ∈Z →⊥∈Z) →⊥∈Z) →C ∈Z ,

from which we see that meta-DN transforms a higher-order proof, written in a
kind of continuation-passing style [143], into a flat classical proof.

1.5. Aspects of the Coq formalisation

The source code of the formalisation is available at the address ❤tt♣✿✴✴

✇✇✇✳❧✐①✳♣♦❧②t❡❝❤♥✐q✉❡✳❢r✴⑦❞❛♥❦♦✴❝♦❞❡.
As we mentioned in the introduction, the formalisation is not complete. The

missing part is the correctness of the sorting algorithm needed in Lemma 1.3.6.
The reason why this part remained unfinished is that in the formal proof of the
lemma, we used a sorting specification which was convenient for the proof, but
was an ad hoc specification as far as general list sorting is concerned, thus we
could not reuse the already proven results about general list sorting in Coq. For
lack of time, we contented ourselves by testing in Coq that the sorting algorithm
computes as expected.

http://www.lix.polytechnique.fr/~danko/code
http://www.lix.polytechnique.fr/~danko/code

26 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

1.5.1. Formal syntax of formulae and co-finite rule for ∀I . The syntax of
formulae is defined using the following inductive datatype.

P❛r❛♠❡t❡rs ❢✉♥❝t✐♦♥ ♣r❡❞✐❝❛t❡ ❝♦♥st❛♥t✵ : ❙❡t.

■♥❞✉❝t✐✈❡ ❢♦r♠✉❧❛ : ❙❡t :=
| ❜♦t : ❢♦r♠✉❧❛

| ✐♠♣ : ❢♦r♠✉❧❛→ ❢♦r♠✉❧❛→ ❢♦r♠✉❧❛

| ❛❧❧ : ❢♦r♠✉❧❛→ ❢♦r♠✉❧❛

| ❛t♦♠ : ♣r❡❞✐❝❛t❡ → t❡r♠→ ❢♦r♠✉❧❛

✇✐t❤ t❡r♠ : ❙❡t :=
| ❜✈❛r : ♥❛t→ t❡r♠

| ❢✈❛r : ♥❛t→ t❡r♠

| ❝♥st : ❝♦♥st❛♥t→ t❡r♠

| ❢✉♥❝ : ❢✉♥❝t✐♦♥ → t❡r♠→ t❡r♠

✇✐t❤ ❝♦♥st❛♥t : ❙❡t :=
| ♦r✐❣✐♥❛❧ : ❝♦♥st❛♥t✵ → ❝♦♥st❛♥t

| ❛❞❞❡❞ : ❢♦r♠✉❧❛→ ❝♦♥st❛♥t.

One thing to notice is that we have a truly mutually inductive data-type, the
clause for constants depending on the one for formulae, because of Henkin con-
stants (the ones with marker ❛❞❞❡❞).

Another thing to notice is that the predicate and function constructors, ❛t♦♠
and ❢✉♥❝, take only a single term as an argument. For the completeness proof
to be practically useful in Coq, however, an extension to multi-argument con-
structors would be necessary. Our goal has been a more theoretical one, to see
the details and computational contents of a formal type-theoretic completeness
proof.

A third thing to comment about is the formal handling of variables. This is
an often neglected aspect of informal proofs, but quite an important one when
formalisation is concerned. In the theory of programming languages there is a
community effort in progress, for definite settling on good formalisation prac-
tises connected to variable binding, known as the POPLMark challenge [183].
Following one of the most successful approaches to binders, the “locally name-
less” representation [18], we represent bound variables and free variables sepa-
rately, via two separate constructors, ❜✈❛r and ❢✈❛r. ❜✈❛r-s range over numbers,
deBruijn indices, while ❢✈❛r-s can range over any set with decidable equality, for
example the set of character strings. Thus, formally, a formula ∀x∀y(P (x) ⇒
Q(x)) is represented by ❛❧❧ ✭✐♠♣ ✭P ✭❜✈❛r ✵✮✮ ✭◗ ✭❜✈❛r ✶✮✮✮, and a for-
mula ∀x(P (x) ⇒∀yQ(y)) is represented by ❛❧❧ ✭✐♠♣ ✭P ✭❜✈❛r ✵✮✮ ✭❛❧❧ ✭◗

✭❜✈❛r ✵✮✮✮✮. Substitutions are defined via the following fixpoint.

❋✐①♣♦✐♥t

♦♣❡♥ r❡❝ (k : ♥❛t) (u : t❡r♠) (t : ❢♦r♠✉❧❛) {str✉❝t t} : ❢♦r♠✉❧❛ :=
♠❛t❝❤ t ✇✐t❤

| ❜♦t⇒ ❜♦t
| ✐♠♣ t1 t2 ⇒ ✐♠♣ (♦♣❡♥ r❡❝ k u t1) (♦♣❡♥ r❡❝ k u t2)
| ❛❧❧ t1 ⇒ ❛❧❧ (♦♣❡♥ r❡❝ (❙ k) u t1)
| ❛t♦♠ p t1 ⇒ ❛t♦♠ p (♦♣❡♥ r❡❝ t❡r♠ k u t1)

❡♥❞

✇✐t❤

1.5. ASPECTS OF THE COQ FORMALISATION 27

♦♣❡♥ r❡❝ t❡r♠ (k : ♥❛t) (u : t❡r♠) (t : t❡r♠) {str✉❝t t} : t❡r♠ :=
♠❛t❝❤ t ✇✐t❤

| ❜✈❛r i ⇒ ✐❢ ❜❡q ♥❛t k i t❤❡♥ u ❡❧s❡ (❜✈❛r i)
| ❢✈❛r x ⇒ ❢✈❛r x

| ❝♥st c ⇒ ❝♥st c

| ❢✉♥❝ f t1 ⇒ ❢✉♥❝ f (♦♣❡♥ r❡❝ t❡r♠ k u t1)
❡♥❞.

❉❡❢✐♥✐t✐♦♥ ♦♣❡♥ t u := ♦♣❡♥ r❡❝ 0 u t.
◆♦t❛t✐♦♥ "t ˆˆ u" := (♦♣❡♥ t u) (❛t level 67).
◆♦t❛t✐♦♥ "t ˆ x" := (♦♣❡♥ t (❢✈❛r x)).

The important point with this representation of variables is that we are able
to state the ∀I rule in a co-finite way. Instead of saying that ∀x A is derivable
when A(x) is derivable for some fresh x, we say that ∀x A is derivable when there
exists a finite list of variables L, such that for every x 6∈ L, A(x) is derivable. This
later form is more convenient than the former one when doing formal proofs
by induction on the derivation, because the induction hypothesis is of a more
flexible form.

Outside of programming language research, this rule has been used in the
context of traditional logic at least by Krivine in [124] to characteriseα-conversion
of System F types (formulae).

1.5.2. Enumeration of formulae. The enumeration of formulae needed for
defining the Lindenbaum algebra of Lemma 1.3.7 was defined using the Cantor
pairing function [182]. In particular, we were able to use an already existing
implementation and correctness proof of the pairing function in Coq, coming
from the formalisation of Gödel’s incompleteness theorem of O’Connor [146].

The definition of the enumeration goes via a mutually recursive fixpoint on
formulae, terms and constants.

❙❡❝t✐♦♥ ❊♥✉♠❡r❛t✐♦♥.
❆❞❞ LoadPath "pairing".
❘❡q✉✐r❡ ■♠♣♦rt ❝P❛✐r.

❉❡❢✐♥✐t✐♦♥ ❡♥✉♠♣ := ❢✉♥ p ⇒ ❝P❛✐r 11 (❡♥✉♠ ♣r❡❞✐❝❛t❡ p).
❉❡❢✐♥✐t✐♦♥ ❡♥✉♠❝✵ := ❢✉♥ c ⇒ ❝P❛✐r 12 (❡♥✉♠ ❝♦♥st❛♥t✵ c).
❉❡❢✐♥✐t✐♦♥ ❡♥✉♠❢✉♥❝ := ❢✉♥ f ⇒ ❝P❛✐r 13 (❡♥✉♠ ❢✉♥❝t✐♦♥ f).

❋✐①♣♦✐♥t ❡♥✉♠❢ (f :formula) : ♥❛t :=
♠❛t❝❤ f ✇✐t❤

| (❛t♦♠ p t) ⇒ ❝P❛✐r 1 (❝P❛✐r (❡♥✉♠♣ p) (❡♥✉♠t t))
| (❛❧❧ g) ⇒ ❝P❛✐r 2 (❡♥✉♠❢ g)
| (✐♠♣ g h) ⇒ ❝P❛✐r 3 (❝P❛✐r (❡♥✉♠❢ g) (❡♥✉♠❢ h))
| ❜♦t⇒ 4

❡♥❞

✇✐t❤ ❡♥✉♠t (t:term) : ♥❛t :=
♠❛t❝❤ t ✇✐t❤

| (❢✉♥❝ phi t’) ⇒ ❝P❛✐r 5 (❝P❛✐r (❡♥✉♠❢✉♥❝ phi) (❡♥✉♠t t’))
| (❝♥st c) ⇒ ❝P❛✐r 6 (❡♥✉♠❝ c)
| (❢✈❛r x) ⇒ ❝P❛✐r 7 x

| (❜✈❛r x) ⇒ ❝P❛✐r 8 x

❡♥❞

28 1. CONSTRUCTIVE COMPLETENESS FOR BOOLEAN MODELS

✇✐t❤ ❡♥✉♠❝ (c:constant) : ♥❛t :=
♠❛t❝❤ c ✇✐t❤

| (❛❞❞❡❞ x) ⇒ ❝P❛✐r 9 (❡♥✉♠❢ x)
| (♦r✐❣✐♥❛❧ x) ⇒ ❝P❛✐r 10 (❡♥✉♠❝✵ x)

❡♥❞.

❊✈❛❧ ❝♦♠♣✉t❡ ✐♥ (❡♥✉♠❢ (✐♠♣ ❜♦t ❜♦t)).

❙❝❤❡♠❡ ■♥❞✉❝t✐♦♥ ❢♦r formula ❙♦rt Pr♦♣

✇✐t❤ ■♥❞✉❝t✐♦♥ ❢♦r term ❙♦rt Pr♦♣

✇✐t❤ ■♥❞✉❝t✐♦♥ ❢♦r constant ❙♦rt Pr♦♣.

❚❤❡♦r❡♠ ❝♦✉♥t❛❜❧❡ ❢t❝ :
(∀ f g, ❡♥✉♠❢ f = ❡♥✉♠❢ g → f = g)
∧ (∀ t s, ❡♥✉♠t t = ❡♥✉♠t s → t = s)
∧ (∀ c k, ❡♥✉♠❝ c = ❡♥✉♠❝ k → c = k).

❉❡❢✐♥✐t✐♦♥ ❡♥✉♠ := ❡♥✉♠❢.

❉❡❢✐♥✐t✐♦♥ ❝♦✉♥t❛❜❧❡ : ∀ x y, ❡♥✉♠ x = ❡♥✉♠ y → x = y

:= ♣r♦❥✶ ❝♦✉♥t❛❜❧❡ ❢t❝.

❊♥❞ ❊♥✉♠❡r❛t✐♦♥.

1.5.3. Representation of finite quantifications. The constructions of form

∃y1, . . . , yn ∈ X . y1 ∧·· ·∧ yn ≤ z

were represented using finite lists and the standard fold-left function from func-
tional programming, that takes a list and a function, and applies cumulatively
the function to all members of the list from left to right. For example, the closure
of X , ↑X , was encoded by:

❉❡❢✐♥✐t✐♦♥ ✉♣ (X :B→Prop) := ❢✉♥ z:B ⇒

∃ n:nat, ∃ ys:list ❇ , ❧❡♥❣t❤ ys = n ∧

❢♦❧❞ ❧❡❢t (❢✉♥ (a:Prop)(b:B) ⇒ ❛♥❞ a (X b)) ys ❚r✉❡ ∧

❧❡q (❢♦❧❞ ❧❡❢t♠❡❡t ys t♦♣) z.

Choosing this representation required a few technical lemmas which were
tricky to prove, but overall we are satisfied with the choice, because it gave us
the possibility to discharge parts of the proof by pure computation, a technique
in the type-theoretic jargon known as “proof by reflection”.

1.5.4. Setoids and Prop versus Set; the Ring tactic. Subsets of the abstract
Boolean algebra B are represented as predicates, that is propositional functions
B → Prop. This decision propagates to the definition of model, where sets of
formulae are also represented as propositional functions. The choice of Prop
instead of Set, is motivated by practical rather than mathematical arguments
(no use of impredicativity is being made). The reason is simply that, at the time
when the formalisation was being carried out, the Coq proof assistant supported
only setoids where the equivalence relation is in Prop, not in Set.

We were able to instantiate the ❘✐♥❣ tactic of Coq with the semi-ring struc-
ture of B , and to use it to automatically resolve a couple of complex equations in
B .

1.6. RELATED AND FUTURE WORK 29

1.5.5. Other aspects of the formalisation. In retrospective, we do not think
that many of the components of the formalisation can be implemented in a sub-
stantially better way. One exception is the handling of theories related to the
Model Existence Lemma. There, we formally manipulated simultaneously both
an axiom set and a theory over that axiom set, while the later is predetermined
by the former, which means that the corresponding formal proofs can probably
be cut in size. This problem is not noticeable in the informal version given in
section 1.3.

1.6. Related and future work

In section 1.1 we reviewed the origins of our work. There is a number of
other related works, which we mention here.

The proof of Krivine, which is actually a complete formalisation on paper,
was checked by Raffalli in the PhoX proof assistant. [152]

In a series of articles [42, 37, 43, 41, 38, 39, 40], Braselmann and Koepke
describe their formalisation of Gödel’s completeness theorem in the proof assis-
tant Mizar [165], which is based on Tarski-Grothendieck set theory, an extension
of the Zermelo-Fraenkel set theory.

Russell O’Connor has formalised the incompleteness theorem of Gödel in-
side the Coq proof assistant [146]. We reused from his formalisation a part of the
source code which defines the Cantor pairing function and proves it bijective.

In future, we would like to finish the correctness proof of the sorting algo-
rithm, and to allow multi-argument predicate and function symbols in the syn-
tax of formulae, so that the Coq formalisation becomes practically usable.

CHAPTER 2

Kripke-style models for classical logic

We saw that the computational content of the completeness theorem pre-
sented in Chapter 1 reduces to finding a sufficiently large approximation to the
ultrafilter Z , that is enough to contain all relevant formulae (in a derivation we
can only use finitely many formulae).

From today’s perspective, when we know that proof terms for classical logic
also have a computational behaviour similar to λ-calculus, the computational
contents presented in Section 1.4 seems rather ad hoc: instead of β-reduction
for the modus ponens rule, we have the max(m,n) operation, whose outcome
depends on the particular way one defines the enumeration of formulae.

In this chapter we present work that was started as a general framework for
more canonical treatment of completeness proofs, based on the observation of
Herbelin that completeness is just one aspect of a normalisation-by-evaluation
(NBE) proof.

In Section 2.1, we will review NBE and explain what kind of completeness
is hidden behind it. In Section 2.2, we will introduce the LKµµ̃ classical sequent
calculus. In Section 2.3, we will introduce, by analogy with NBE for intuitionistic
logic, a notion of model, similar to Kripke models, with respect to which we can
prove soundness and completeness of LKµµ̃. In Section 2.4, we will present a
dual notion of model, which is also proved sound and complete. In Section 2.5,
we will discuss the computational content of the two completeness proofs; it is
that of a cut-elimination procedure, each of the two models defining a different
cut-elimination strategy. In Section 2.6, we discuss some aspects of the Coq for-
malisation of the proofs of this chapter, and, finally, we conclude in Section 2.7,
by a discussion of related and future work.

2.1. Normalisation-by-evaluation as completeness

In the proof theoretic study of λ-calculi and Semantics of programming lan-
guages, normalisation is a property of abstract rewrite systems [180]. An ab-
stract rewrite system is normalising if every sequence of rewrite steps described
by it is finite. An instance is the simply typed λ-calculus with rewriting defined
by β-reduction. Another case that can be fit into this framework are the proofs
of normalisation of natural deduction calculi, thanks to the Curry-Howard cor-
respondence with λ-calculi.

Normalisation-by-evaluation (NBE) is a technique, introduced by Berger and
Schwichtenberg in [33], for proving that a calculus of proof terms is normalis-
ing without working directly with the reduction/rewrite relation of an abstract
rewrite system. Instead, the proof terms are interpreted in the ambient meta-
language, and from that interpretation a proof term in normal form is extracted.
The desired equality between the starting and the ending proof term is proved,

31

32 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

typically βη-equality. The trick is to avoid reasoning with the reduction rela-
tion of the object language by relying on reduction provided by the ambient lan-
guage.

NBE was first used in [33] to show normalisation of simply typed lambda
calculi, by giving an “inverse” to the evaluation function,

J−K : Λ→ D,

from Church-style simply typed lambda terms into some ambient language, or
denotational model. The inverse function ↓, called reification, is defined by re-
cursion on the type τ of the term, at the same time defining an auxiliary function
↑, called reflection:

↓τ : D →Λ-nf

↓τ := a 7→ a τ-atomic

↓τ→σ := S 7→λa. ↓σ (S· ↑τ a) a-fresh

↑τ : Λ-ne → D

↑τ := a 7→ a τ-atomic

↑τ→σ := e 7→ S 7→↑σ e(↓τ S)

The kinds of λ-terms that appear as a (co)domain can be sorted out accord-
ing to the following inductive definition:

Λ ∋ p, q :=aτ | λaτ.pσ | pτ→σqτ λ-terms

Λ-nf ∋ r :=λaτ.rσ | eτ λ-terms in normal form

Λ-ne ∋ e :=aτ | eτ→σr τ neutral λ-terms

Obviously, Λ-ne ⊆Λ-nf ⊆Λ.
In the above definition we used S to range over members of D , and we used

7→ and · for abstraction and application at the meta-level.
A term in normal form p ′ is then computed from any term p with type τ,

by first evaluating p, and then extracting p ′ directly from the denotation of the
evaluation, that is, by setting

p ′ :=↓τ JpK.

Berger and Schwichtenberg proved that the result is correct i.e. that p ′ =βη p.
It was a subsequent realisation, which we trace back to Catarina Coquand

[48, 49], and Coquand and Dybjer [51], and which is explicitly present especially
in [49], that an NBE algorithm can be seen as a composition of a soundness
theorem with a completeness theorem for Kripke semantics [123, 117].

2.1.1. Definition. A Kripke model is given by a preorder (K ,≤) of possible worlds,
a binary relation of forcing (−) (−) between worlds and atomic formulae, and
a family of domains of quantification D(−), such that,

for all w ′ ≥ w , w X → w ′ X , and

for all w ′ ≥ w ,D(w) ⊆ D(w ′).

2.1. NORMALISATION-BY-EVALUATION AS COMPLETENESS 33

The relation of forcing is then extended from atomic to composite formulae by
the clauses:

w A∧B := w A and w B

w A∨B := w A or w B

w A ⇒ B := for all w ′ ≥ w, w ′ A ⇒ w ′ B

w ∀x.A(x) := for all w ′ ≥ w and t ∈ D(w ′), w ′ A(t)

w ∃x.A(x) := for some t ∈ D(w), w A(t)

w ⊥ := false

w ⊤ := true

Of course, for NBE of simply typed λ-calculus, only the part for implication
is used from the above definition in the connection to completeness. Conjunc-
tion and ∀ can be easily accounted for, while the connection between NBE and
completeness for full intuitionistic predicate logic, with ∨ and ∃, is a subject of
Chapter 3.

We denote by Γ ⊢ p : A the typability of the term p with type A and open
variables listed in Γ, and, by the Curry-Howard correspondence, Γ ⊢ p : A also
denotes the derivability of the formula A from the hypotheses in Γ. Let w Γ

mean that w B for any B ∈ Γ.
The evaluation function J−K : Λ→ D can be written in the form of a Sound-

ness theorem, as follows.

2.1.2. Theorem (Soundness). If Γ ⊢ p : A then, in any Kripke model, for any

world w, if w Γ then w A.

PROOF. By a simple induction on the derivation. �

The reification function takes the form of Theorem 2.1.4. The proof goes via
a model constructed from components of a derivation system, as described in
the following lemma.

2.1.3. Lemma (Model Existence). There is a model U (the “universal model”)

such that, if at every world w of U , w Γ implies w A, then there exists a term

p and a derivation Γ⊢ p : A.

PROOF. The universal model U is built by setting:

• K to be the set of contexts Γ, that is finite sets of variable declarations
(a : A);

• “≤” to be the subset relation of contexts;
• “Γ X ” to be Γ⊢ X , for X an atomic formula.

We than prove simultaneously, by induction on the complexity of A, that the
two functions defined above, reify (↓) and reflect (↑), are correct, that is, that ↓
maps a member of Γ A to a normal proof term (derivation) Γ ⊢ p : A, and ↑

maps a neutral term (derivation) Γ⊢ e : A to a member of Γ A.
The proof is easy and has been formalised in Alf [49] and Coq [102, 156]. �

2.1.4. Theorem (Completeness). If in any Kripke model, at any world w, w Γ

implies w A, then there exists a term p and a derivation Γ⊢ p : A.

PROOF. If w B in any Kripke model, then also w B in the model U

above, hence there exists a term p such that Γ⊢ p : A. �

34 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(AxL)
Γ|A ⊢ A,∆

(AxR)
A,Γ⊢ A|∆

Γ, A ⊢∆
(µ̃)

Γ|A ⊢∆

Γ⊢ A,∆
(µ)

Γ⊢ A|∆

Γ⊢ A|∆ Γ|B ⊢∆
(⇒L)

Γ|A ⇒ B ⊢∆

Γ, A ⊢ B |∆
(⇒R)

Γ⊢ A ⇒ B |∆

Γ|A ⊢∆ Γ|B ⊢∆
(∨L)

Γ|A∨B ⊢∆

Γ⊢ Ai |∆ (∨i
R)

Γ⊢ A1 ∨ A2|∆

Γ|A ⊢∆
(∧i

L)
Γ|A1 ∧ A2 ⊢∆

Γ⊢ A|∆ Γ⊢ B |∆
(∧R)

Γ⊢ A∧B |∆

Γ|A(x) ⊢∆ x fresh
(∃L)

Γ|∃x A(x) ⊢∆

Γ⊢ A(t)|∆
(∃R)

Γ⊢∃x A(x)|∆

Γ|A(t) ⊢∆
(∀L)

Γ|∀x A(x) ⊢∆

Γ⊢ A(x)|∆ x fresh
(∀R)

Γ⊢∀x A(x)|∆

(⊥L)
Γ|⊥⊢∆

(⊤R)
Γ⊢⊤|∆

Γ⊢ A|∆ Γ|A ⊢∆
(Cut)

Γ⊢∆

Table 1: The sequent calculus LKµµ̃

2.2. Sequent calculus LKµµ̃

All the models presented so far (Sections 1.1, 1.3, 2.1) were built from com-
ponents of a derivation system. We will use the sequent calculus LKµµ̃of Curien
and Herbelin [53] (Table 1) in the rest of this chapter. It is a variant of Gentzen’s
LK sequent calculus, with the following differences.

• Sequents come with an explicitly distinguished formula on the right or
on the left, or no distinguished formula at all, resulting in three kinds
of sequents: “Γ⊢∆”, “Γ|A ⊢∆” and “Γ⊢ A|∆”. In particular, the distin-
guished formula plays an “active” rôle in the rules;

• Accordingly, the axiom rule splits into two variants, (AxL)and (AxR), de-
pending on whether the left active formula or the right active formula
is distinguished. There are also two new rules, (µ) and (µ̃), for making
a formula active;

• There are no explicit contraction rules: contractions are derivable from
a cut against an axiom as follows.

– Left contraction:
(AxR)

Γ, A ⊢ A |∆ Γ, A | A ⊢∆
(Cut)

Γ, A ⊢∆

2.2. SEQUENT CALCULUS LKµµ̃ 35

– Right contraction:

Γ⊢ A | A,∆
(AxL)

Γ | A ⊢ A,∆
(Cut)

Γ⊢ A,∆

• Consequently, the notion of normal proof, or cut-freeness, is slightly
different from the notion of cut-freeness in LK: a normal proof is a proof
whose only cuts are of the form of a cut between an axiom and an in-
troduction rule1. This is the notion that we refer to when below, very
often, we say cut-free or provable without a cut.

Derivations in LKµµ̃ can be written as proof terms, that is, LKµµ̃ is a typing
system for a calculus of proof terms, similar to λ-calculus, the λ̄µµ̃-calculus.

2.2.1. Definition. The proof “terms” of λ̄µµ̃ are defined by simultaneously defin-
ing three categories of expressions:

c := 〈p‖e〉 commands

p, q := a | λa.p | ι1p | ι2p | (p, q) | λx.p | (t , p) | µα.c | tt terms

e, f :=α | p ·e | [e, f] | π1e | π2e | t ·e | λx.e | µ̃x.c | ff eval. contexts

There are three kinds of variables, proof term variables a,b, . . ., evaluation con-
text variables α,β, . . . and individual (quantifier) variables x, y, We rely on
these conventions to resolve the apparent ambiguity of the syntax: the abstrac-
tion λa.p is a proof term for implication, λx.p is a proof term for ∀, while λx.e
is an evaluation context for ∃; also, the application p · e is an evaluation context
for ⇒, while t · e is an evaluation context for ∀; finally, (p, q) is a proof term for
∧, while (t , q) is a proof term for ∃.

Properly speaking, proof terms are only those ones that can annotate valid
derivations of LKµµ̃ according to Table 2.

As any other λ-calculus, λ̄µµ̃ comes with a set of reduction rules that de-
scribe its computational behaviour. A difference with more conventional λ-
calculi, but a similarity with such calculi for classical logic, is that the reduction
is not defined on proof terms proper. Rather, reduction is defined on commands,
which compound a proof term with an environment (evaluation context).

2.2.2. Definition. The reduction relation on λ̄µµ̃-commands is defined via the
following rewrite rules:

〈λa.p‖q ·e〉→ 〈q‖µ̃a.〈p‖e〉〉 (→⇒)

〈(p1, p2)‖πi e〉→ 〈pi‖e〉 (→∧)

〈ιi p‖[e1,e2]〉→ 〈p‖ei 〉 (→∨)

〈λx.p‖t ·e〉→ 〈p{t/x}‖e〉 (→∀)

〈(t , p)‖λx.e〉→ 〈p‖e{t/x}〉 (→∃)

〈µα.c‖e〉→ c{e/α} (→µ)

〈p‖µ̃a.c〉→ c{p/a} (→µ̃)

There are no reduction rules for ⊤ and ⊥.

1The rules (µ) and (µ̃) are not introduction rules, because they do not construct a formula.

36 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(AxL)
Γ|α : A ⊢ (α : A),∆

(AxR)
(a : A),Γ⊢ a : A|∆

c : (Γ, (a : A) ⊢∆)
(µ̃)

Γ|µ̃a.c : A ⊢∆

c : (Γ⊢ (α : A),∆)
(µ)

Γ⊢µα.c : A|∆

Γ⊢ p : A|∆ Γ|e : B ⊢∆
(⇒L)

Γ|p ·e : A ⇒ B ⊢∆

Γ, (a : A) ⊢ p : B |∆
(⇒R)

Γ⊢λa.p : A ⇒ B |∆

Γ|e : A ⊢∆ Γ| f : B ⊢∆
(∨L)

Γ|[e, f] : A∨B ⊢∆

Γ⊢ p : Ai |∆
(∨i

R)
Γ⊢ ιi p : A1 ∨ A2|∆

Γ|e : Ai ⊢∆
(∧i

L)
Γ|πi e : A1 ∧ A2 ⊢∆

Γ⊢ p : A|∆ Γ⊢ q : B |∆
(∧R)

Γ⊢ (p, q) : A∧B |∆

Γ|e : A(x) ⊢∆ x fresh
(∃L)

Γ|λx.e : ∃x A(x) ⊢∆

Γ⊢ p : A(t)|∆
(∃R)

Γ⊢ (t , p) : ∃x A(x)|∆

Γ|e : A(t) ⊢∆
(∀L)

Γ|t ·e : ∀x A(x) ⊢∆

Γ⊢ p : A(x)|∆ x fresh
(∀R)

Γ⊢λx.p : ∀x A(x)|∆

(⊥L)
Γ|ff : ⊥⊢∆

(⊤R)
Γ⊢ tt : ⊤|∆

Γ⊢ p : A|∆ Γ|e : A ⊢∆
(Cut)

〈p‖e〉 : (Γ⊢∆)

Table 2: The sequent calculus LKµµ̃ with proof terms

We will only need the reduction relation on λ̄µµ̃ in Section 2.5, when we dis-
cuss the computational content of our completeness proofs, because the point
of normalisation-by-evaluation was precisely to bypass reasoning with a rewrite
system.

In the following lemmas, we give some standard results about derivations in
LKµµ̃. All proofs are by a simple induction on the derivation, proving simulta-
neously the three clauses for commands, terms and evaluation contexts. Also,
it will be important for the completeness theorems later, that the proofs do not
introduce any new cuts.

2.2.3. Lemma. The following hold for LKµµ̃:

c : (Γ⊢∆) −→ for all (Γ′,∆′) ≥ (Γ,∆), c : (Γ′ ⊢∆
′)

Γ⊢ p : A|∆−→ for all (Γ′,∆′) ≥ (Γ,∆), Γ′ ⊢ p : A|∆′

Γ|e : A ⊢∆−→ for all (Γ′,∆′) ≥ (Γ,∆), Γ′|e : A ⊢∆
′

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 37

2.2.4. Lemma. The following hold for LKµµ̃, for any free variable x and any indi-

vidual term t:

c : (Γ⊢∆) −→ c{t/x} : (Γ{t/x} ⊢∆{t/x})

Γ⊢ p : A|∆−→ Γ{t/x} ⊢ p{t/x} : A{t/x}|∆{t/x}

Γ|e : A ⊢∆−→ Γ{t/x}|e{t/x} : A{t/x} ⊢∆{t/x}

2.2.5. Corollary. The following hold for LKµµ̃, for any x that does not appear in

Γ and ∆, and any individual term t:

Γ⊢ p : A(x)|∆−→ Γ⊢ p{t/x} : A(t)|∆

Γ|e : A(x) ⊢∆−→ Γ|e{t/x} : A(t) ⊢∆

2.3. Kripke-style models, call-by-name variant

We will now define a notion of model, which is similar to the notion of in-
tuitionistic Kripke model, but which we can show sound and complete for the
LKµµ̃ sequent calculus. To account for classical logic, we modify the traditional
notion of Kripke model in the following two ways.

(1) Not taking the forcing relation as primitive. We take as primitive the
notion of “strong refutation”, and define forcing in terms of it. The forc-
ing definition we get in this way partially coincides with the traditional
definition of forcing, as shown by Proposition 2.3.5.

(2) Allowing certain nodes to validate absurdity. We allow certain possi-
ble worlds to be marked as “fallible”, or “exploding”. This approach
has been taken for Kripke models by Veldman [175], for Beth models
by Friedman [161], and for Boolean models by Krivine (Section 1.1),
and seems necessary in order to have a constructive proof of complete-
ness, in the view of the meta-mathematical results of Gödel, Kreisel and
McCarthy [120, 136, 135, 137], which preclude constructive proofs of
completeness in case one wants to retain that absurdity must never be
valid in a possible world.

2.3.1. Definition. A classical Kripke model, or classical Kripke-style model, is
given by:

• a preorder (K ,≤) of possible worlds;
• a unary relation on worlds (−)⊥ labelling a world as exploding;
• a binary relation (−) : (−) s of strong refutation between worlds and

atomic formulae, such that

for all w ′ ≥ w, w : X s→ w ′ : X s ,

w : ⊥s is true,

w : ⊤s iff w ⊥;

• and a domain of quantification D(w) for each world w , such that

for all w ′ ≥ w,D(w) ⊆ D(w ′).

The relation (−) : (−)s of strong refutation is extended from atomic to composite

formulae inductively and by simultaneously defining two new relations, forcing
and (non-strong) refutation:

⋆ A formula A is forced in the world w (notation w A) if any world w ′ ≥

w , which strongly refutes A, is exploding;

38 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

⋆ A formula A is refuted in the world w (notation w : A) if any world
w ′ ≥ w , which forces A, is exploding;

• w : A∧B s if w : A or w : B ;
• w : A∨B s if w : A and w : B ;
• w : A ⇒ B s if w A and w : B ;
• w : ∀x.A(x)s if w : A(t) for some t ∈ D(w);
• w : ∃x.A(x)s if, for any w ′ ≥ w and t ∈ D(w ′), w : A(t).

We have the following basic properties of the defined relations.

2.3.2. Lemma. Strong refutation, forcing and refutation are monotone in any

classical Kripke model.

PROOF. Monotonicity of strong refutation is proved by induction on the com-
plexity of the formula, while monotonicity of forcing and of non-strong refuta-
tion follows directly from their definitions. �

2.3.3. Lemma. In all worlds w and for all formulae A, if w : A s , then w : A .

PROOF. Immediate, from the definition of refutation. �

We will write w : Γ s , w Γ, and w : Γ , to mean that all formulae of Γ
are, respectively, strongly forced, refuted, and forced. We now have the follow-
ing theorem that says that we can evaluate LKµµ̃ derivations into inhabitants of
classical Kripke models.

2.3.4. Theorem (Soundness). In any classical Kripke model the following hold:

c : (Γ⊢∆) −→ for any w such that w Γ and w : ∆, w ⊥

Γ⊢ p : A|∆−→ for any w such that w Γ and w : ∆, w A

Γ|e : A ⊢∆−→ for any w such that w Γ and w : ∆, w : A

PROOF. One proves easily the three statements simultaneously, by induc-
tion on the derivation. �

It is natural to wonder about the relationship between the intuitionistic and
the classical forcing relations. We characterise that relationship in the next two
propositions.

2.3.5. Proposition. The following hold in any world w of any classical Kripke

model:

w A ⇒ B ←→ for all w ′ ≥ w, w ′ A ⇒ w ′ B(1)

w ∀x.A(x) ←→ for all w ′ ≥ w and t ∈ D(w ′), w ′ A(t)(2)

w ⊥←→ w ⊥(3)

w ⊤←→ true(4)

w A∧B ←→ w A and w B(5)

w A∨B ←− w A or w B(6)

w ∃x.A(x) ←− for some t ∈ D(w), w A(t)(7)

PROOF. (1) Suppose w A ⇒ B , w ′ ≥ w and w ′ A. To show w ′ B we
let w ′′ ≥ w ′ and w ′′ : B s and have to show that w ′′ is exploding. Since then
w ′′ : A ⇒ B s holds by monotonicity and Lemma 2.3.3, the claim follows from

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 39

the definition of w A ⇒ B . For the other direction, suppose a world w ′ ≥ w in
which A ⇒ B is strongly refuted, i.e. w ′ A and w ′ : B , and we have to show
w ′ is exploding. But, this is immediate, since B is also forced by hypothesis (the
right-hand side of the equivalence).

(2) By definition, w ∀x.A(x) iff ∀w ′ ≥ w, (∃s ∈ D(w ′).w ′ : A(s)) ⇒ w ′ ⊥,
which is equivalent to the right-hand side of the equivalence thanks to Lemma 2.3.3
and refutation being defined in terms of forcing. (We used quantifier symbols at
meta-level.)

(5) Assume w A, w B , w ≤ w ′, and w ′ : A ∧B s . Therefore we have
w ′ : A or w ′ : B . Each case leads to w ′ ⊥ since w ′ A, w ′ B with mono-
tonicity.

The rest of the cases follow from the definitions and the monotonicity of “”
and D(−). �

2.3.6. Remark. Note, however, that although the characterisations of our and in-
tuitionistic forcing “match” on the fragment {⇒,∧,∀,⊤,⊥}, that does not mean
that a formula in that fragment is forced in our sense if and only if it is forced in
the intuitionistic sense. The law of Peirce ((A ⇒ B) ⇒ A) ⇒ A is one counterex-
ample to that, it is classically but not intuitionistically forced; this is so because
in our forcing, hidden under the surface, there lays a notion of refutation which
can be used.

We now consider the following double-negation translation (·)∗, which is the
one of Gödel[87, 161], except that atomic formulae are not doubly negated:

X ∗ := X (X -atomic)

(A∧B)∗ := A∗∧B∗

(A → B)∗ := A∗ → B∗

(∀x.A)∗ := ∀x.A∗

(A∨B)∗ := ¬(¬A∗∧¬B∗)

(∃x.A)∗ := ¬∀x.¬A∗

2.3.7. Proposition. Every classical Kripke model C = (K ,≤,D,s ,⊥) gives rise to

an intuitionistic Kripke model with exploding worlds I = (K ,≤,D,i ,⊥), that

inherits all components of C , except for i which is defined for atomic formulae

by non-strong forcing, i.e.

w i X iff w X

The translation (·)∗ relates C and I , that is, for any world w and any formula A,

we have

w i A∗ iff w A.

40 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

PROOF. By induction on the complexity of A and by using Lemmas 2.3.5 and
2.3.3. We detail only the induction case for ∨, which is the most involved one:

w i (A∨B)∗ ←→

w i ¬(¬A∗∧¬B∗) ←→

(∀w ′ ≥ w) [w ′ i ¬A∗, w ′ i ¬B∗ −→ w ′ i ⊥] ←→

(∀w ′ ≥ w)[(∀w ′′ ≥ w ′)[w ′′ i A∗ −→ w ′′ i ⊥],

(∀w ′′ ≥ w ′)[w ′′ i B∗ −→ w ′′ i ⊥]

−→ w ′ i ⊥] ←→

(∀w ′ ≥ w)[(∀w ′′ ≥ w ′)[w ′′ A −→ w ′′ ⊥],

(∀w ′′ ≥ w ′)[w ′′ B −→ w ′′ ⊥]

−→ w ′ ⊥] ←→

(∀w ′ ≥ w) [w ′ : A , w ′ : B −→ w ′ ⊥] ←→

(∀w ′ ≥ w) [w ′ : A∨B s−→ w ′ ⊥] ←→

w A∨B

�

We now define a universal model U analogous to the one for intuitionistic
completeness from Lemma 2.1.3.

2.3.8. Definition. The Universal classical Kripke model U is obtained by setting:

• K to be the set of contexts (Γ,∆) of LKµµ̃;
• (Γ,∆) ≤ (Γ′,∆′) iff both Γ⊆ Γ

′ and ∆⊆∆
′;

• (Γ,∆) : X s iff the sequent Γ|X ⊢∆ is provable without a cut2 in LKµµ̃;
• (Γ,∆)⊥ iff the sequent Γ⊢∆ is provable without a cut in LKµµ̃;
• for any w , D(w) is the set of individuals of LKµµ̃(that is, D(−) is a con-

stant function from worlds to sets of individuals).

(−) : (−)s is monotone because of Lemma 2.2.3.

We now have the following theorem.

2.3.9. Theorem (Cut-Free Completeness for U , simplified). For any closed for-

mula A and closed contexts Γ and ∆, the following hold in U :

(Γ,∆) : A −→ {p | Γ⊢ p : A|∆} (↓ −term reify)(1)

(Γ,∆) : A −→ {e | Γ|e : A ⊢∆} (⇓−eval. context reify)(2)

Moreover, the derivations constructed in (1) and (2) are cut-free.

The proof of this version of the theorem was given in our article [109], and
it will be given in the form of a λ-term in Section 2.5. We will proceed now to
prove a more complex version of it. The reason for doing that is that it is this
more complex version the one that we formalised in Coq, and only for it can we
guarantee the computational behaviour described in Section 2.5.

For the more complex version we proceed like in the proof of Lemma 2.1.3.
We need two notions of “neutrality”, by analogy to neutral terms of page 32.

2Recall that by “cut” we do not mean the simple application of the CUT rule, but what we
explained on page 35.

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 41

2.3.10. Definition (NT(−)). A variable declaration a : A is said to be neutral with

respect to provability in the context (Γ,∆) (notation NT(a : A,Γ,∆)), if, for any
evaluation context e and any (Γ′,∆′) ≥ (Γ,∆), we have that

Γ
′|e : A ⊢∆

′ −→〈a‖e〉 : (Γ′ ⊢∆
′).

2.3.11. Definition (NE(−)). A variable declaration α : A is said to be neutral with

respect to refutability in the context (Γ,∆) (notation NE(α : A,Γ,∆)), if, for any
proof term p and any (Γ′,∆′) ≥ (Γ,∆), we have that

Γ
′ ⊢ p : A|∆′ −→〈p‖α〉 : (Γ′ ⊢∆

′).

We will omit the proof term annotations in order to decrease the level of
detail, however we remark that the formalisation was carried out with proof term
annotations.

2.3.12. Theorem (Cut-Free Completeness for U). For any closed A,Γ and ∆, the

following hold in U :

(Γ,∆) A −→ Γ⊢ A|∆ (↓ −term reify)(1)

NT(A,Γ,∆) −→ (Γ,∆) A (↑ −term reflect)(2)

(Γ,∆) : A −→ Γ|A ⊢∆ (⇓−eval. context reify)(3)

NE(A,Γ,∆) −→ (Γ,∆) : A (⇑−eval. context reflect)(4)

Moreover, the derivations on the right-hand side of (1) and (3) are cut-free.

PROOF. We proceed by simultaneously proving all four statements by induc-
tion on the complexity of A.

Base case. In the base case we have forcing and refutation on atomic formu-
lae, which by definition reduce to strong refutation on atomic formulae, which
by definition reduces just to statements about the deductions in LKµµ̃

(1) Suppose that

(*) ∀(Γ′,∆′) ≥ (Γ,∆). Γ′|X ⊢∆
′ → Γ

′ ⊢∆
′

Then:
(AxL)

Γ|X ⊢ X ,∆
(*)

Γ⊢ X ,∆
(µ)

Γ⊢ X |∆

(2) The hypothesis is NT(X ,Γ,∆). Given (Γ′,∆′) ≥ (Γ,∆) such that Γ′|X ⊢∆
′,

we have:

Γ
′|X ⊢∆

′

NT(X ,Γ,∆)
Γ
′ ⊢∆

′

(3) We have (Γ,∆) : X , i.e.,

(*) ∀(Γ′,∆′) ≥ (Γ,∆).
{
∀(Γ′′,∆′′) ≥ (Γ′,∆′). Γ′′|X ⊢∆

′′ → Γ
′′ ⊢∆

′′
}
→ Γ

′ ⊢∆
′

We can show Γ|X ⊢∆ by applying the (µ̃)-rule and (*), but we also have
to show the sub-statement in curly brackets of (*):

because X ∈ (X ,Γ) ⊆ Γ
′′

(AxR)
Γ
′′ ⊢ X |∆′′

Γ
′′|X ⊢∆

′′

(Cut)
Γ
′′ ⊢∆

′′

42 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(4) Suppose NE(X ,Γ,∆) and suppose (Γ′,∆′) ≥ (Γ,∆) such that

(#) ∀(Γ′′,∆′′) ≥ (Γ′,∆′). Γ′′|X ⊢∆
′′ → Γ

′′ ⊢∆
′′

Then:
(AxR)

Γ
′, X ⊢ X |∆′

NE(X ,Γ,∆)
Γ
′, X ⊢∆

′

(µ̃)
Γ
′|X ⊢∆

′

(#)
Γ
′ ⊢∆

′

Induction case for implication.

(1) We can strengthen the hypothesis (Γ,∆) A1 ⇒ A2 using the induction
hypotheses to obtain:

(#) ∀(Γ′,∆′) ≥ (Γ,∆). NT(A1,Γ′,∆′) → NE(A2,Γ′,∆′) → Γ
′ ⊢∆

′

Now we have:
(#)

A1,Γ⊢ A2,∆
(µ)

A1,Γ⊢ A2|∆ (⇒R)
Γ⊢ A1 ⇒ A2|∆

And we have to show NT(A1, (A1,Γ), (A2,∆)) and NE(A2, (A1,Γ), (A2,∆)),
which is easy using weakening because the neutral formulae already
appear in the contexts.

(2) Suppose NT(A1 ⇒ A2,Γ,∆) and suppose (Γ′,∆′) ≥ (Γ,∆) such that (Γ′,∆′)
A1 and (Γ′,∆′) : A2 . The induction hypotheses give us that Γ′ ⊢ A1|∆

′

and Γ
′|A2 ⊢∆

′. Now we have:

Γ
′ ⊢ A1|∆

′
Γ
′|A2 ⊢∆

′

(⇒L)
Γ
′|A1 ⇒ A2 ⊢∆

′

NT(A1 ⇒ A2,Γ,∆)
Γ
′ ⊢∆

′

(3) We have (Γ,∆) : A1 ⇒ A2 , i.e.,

∀(Γ′,∆′) ≥ (Γ,∆). {∀(Γ′′,∆′′) ≥ (Γ′,∆′). NT(A1,Γ′′,∆′′) →

NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′} → Γ
′ ⊢∆

′
(*)

(*)
Γ⊢ A1,∆

(µ)
Γ⊢ A1|∆

(*)
Γ, A2 ⊢∆

(µ̃)
Γ|A2 ⊢∆

(⇒L)
Γ|A1 ⇒ A2 ⊢∆

Due to the use of (*) we have to show the sub-expression in curly brack-
ets. Let us show only one case, the other is symmetric:

(AxL), since (A1,∆) ⊆∆
′′

Γ
′′|A1 ⊢∆

′′

NT(A1,Γ, (A1,∆))
Γ
′′ ⊢∆

′′

(4) Let NE(A1 ⇒ A2,Γ,∆) and let (Γ′,∆′) ≥ (Γ,∆) be given such that:

(#) ∀(Γ′′,∆′′) ≥ (Γ′,∆′). NT(A1,Γ′′,∆′′) → NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′

We show Γ
′ ⊢∆

′:
(#)

A1,Γ′ ⊢ A2,∆′

(µ)
A1,Γ′ ⊢ A2|∆

′

(⇒R)
Γ
′ ⊢ A1 ⇒ A2|∆

′

NE(A1 ⇒ A2,Γ,∆)
Γ
′ ⊢∆

′

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 43

For the application of (#) we have to show the corresponding NT(A1, (A1,Γ′), (A2,∆′))
and NE(A2, (A1,Γ′), (A2,∆′)), but this is easy since the formulae are al-
ready inside the corresponding contexts.

Induction case for ∨.

(1) Suppose (Γ,∆) A1 ∨ A2, which can be strengthened using the induc-
tion hypotheses to:

(*) ∀(Γ′,∆′) ≥ (Γ,∆). NE(A1,Γ′,∆′) → NE(A2,Γ′,∆′) → Γ
′ ⊢∆

′

Here is a derivation of Γ⊢ A1 ∨ A2|∆:

(*)
Γ⊢ A2, A1, A1 ∨ A2,∆

(µ)
Γ⊢ A2|A1, A1 ∨ A2,∆

(∨2
L)

Γ⊢ A1 ∨ A2|A1, A1 ∨ A2,∆
(AxL)

Γ|A1 ∨ A2 ⊢ A1, A1 ∨ A2,∆
(Cut)

Γ⊢ A1, A1 ∨ A2,∆
(µ)

Γ⊢ A1|A1 ∨ A2,∆
(∨1

L)
Γ⊢ A1 ∨ A2|A1 ∨ A2,∆

(AxL)
Γ|A1 ∨ A2 ⊢ A1 ∨ A2,∆

(Cut)
Γ⊢ A1 ∨ A2,∆

(µ)
Γ⊢ A1 ∨ A2|∆

It is only left to prove that NE(A1,Γ, (A2, A1, A1∨A2,∆)) and NE(A2,Γ, (A2, A1, A1∨

A2,∆)), but that is trivial because the neutral formulae are already in the
context.

(2) Let NT(A1 ∨ A2,Γ,∆) and suppose given a (Γ′,∆′) ≥ (Γ,∆) such that (by
induction hypotheses) NE(A1,Γ′,∆′) and NE(A2,Γ′,∆′).

(AxR)
Γ
′, A1 ⊢ A1|∆

′

NE(A1,Γ′,∆′)
Γ
′, A1 ⊢∆

′

(µ̃)
Γ
′|A1 ⊢∆

′

(AxR)
Γ
′, A2 ⊢ A2|∆

′

NE(A2,Γ′,∆′)
Γ
′, A2 ⊢∆

′

(µ̃)
Γ
′|A2 ⊢∆

′

(∨L)
Γ
′|A1 ∨ A2 ⊢∆

′

NT(A1 ∨ A2,Γ,∆)
Γ
′ ⊢∆

′

(3) Using the induction hypotheses we get from (Γ,∆) : A1 ∨ A2 :

∀(Γ′,∆′) ≥ (Γ,∆). {∀(Γ′′,∆′′) ≥ (Γ′,∆′). NE(A1,Γ′′,∆′′) →

NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′} → Γ
′ ⊢∆

′
(*)

We can have the following derivation

(*)
Γ, A1 ⊢∆

(µ̃)
Γ|A1 ⊢∆

(*)
Γ, A2 ⊢∆

(µ̃)
Γ|A2 ⊢∆

(∨L)
Γ|A1 ∨ A2 ⊢∆

but, we have to prove that the sub-statement in curly brackets from (*)
holds for both the context A1,Γ and the context A2,Γ. Here is one of
them: (the other is analogous)

(AxR), since (A1,Γ) ⊆ Γ
′′

Γ
′′ ⊢ A1|∆

′′

NE(A1,Γ′′,∆′′)
Γ
′′ ⊢∆

′′

(4) Suppose NE(A1∨ A2,Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and, using the induction hy-
pothesis, suppose:

(*) ∀(Γ′′,∆′′) ≥ (Γ′,∆′). NE(A1,Γ′′,∆′′) → NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′

44 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(*)
Γ
′ ⊢ A2, A1,∆′

(µ)
Γ
′ ⊢ A2|A1,∆′

(∨2
L)

Γ
′ ⊢ A1 ∨ A2|A1,∆′

NE(A1 ∨ A2,Γ,∆)
Γ
′ ⊢ A1,∆′

(µ)
Γ
′ ⊢ A1|∆

′

(∨1
L)

Γ
′ ⊢ A1 ∨ A2|∆

′

NE(A1 ∨ A2,Γ,∆)
Γ
′ ⊢∆

′

This constitutes a derivation as required, given that it is easy to prove
NE(A1,Γ′, (A2, A1,∆′)) and NE(A2,Γ′, (A2, A1,∆′)) which arise from the
use of (*).

Induction case for ∧.

(1) Let

(*) ∀(Γ′,∆′) ≥ (Γ,∆). NE(A1,Γ′,∆′) or NE(A2,Γ′,∆′) → Γ
′ ⊢∆

′

Here is the required derivation:

(*)
Γ⊢ A1,∆

(µ)
Γ⊢ A1|∆

(*)
Γ⊢ A2,∆

(µ)
Γ⊢ A2|∆ (∧R)

Γ⊢ A1 ∧ A2|∆

Where it is easy to show that A1 and A2 are neutral in the two cases
arising from the use of (*).

(2) Suppose NT(A1 ∧ A2,Γ,∆). To show (Γ,∆) A1 ∧ A2, let (Γ′,∆′) ≥ (Γ,∆)
and (NE(A1,Γ′,∆′) or NE(A2,Γ′,∆′)) be true. Without loss of generality,
let NE(A1,Γ′,∆′) be true. Then:

(AxR)
Γ
′, A1 ⊢ A1|∆

′

NE(A1,Γ′,∆′)
Γ
′, A1 ⊢∆

′

(µ̃)
Γ
′|A1 ⊢∆

′

(∧1
L)

Γ
′|A1 ∧ A2 ⊢∆

′

NT(A1 ∧ A2,Γ′,∆′)
Γ
′ ⊢∆

′

(3) Suppose (Γ,∆) : A1 ∧ A2 , which can be strengthened using the induc-
tion hypotheses to:

∀(Γ′,∆′) ≥ (Γ,∆). {∀(Γ′′,∆′′) ≥ (Γ′,∆′). NE(A1,Γ′′,∆′′) or

NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′} → Γ
′ ⊢∆

′
(*)

Now we have:
(*)

Γ, A1 ∧ A2 ⊢∆
(µ̃)

Γ|A1 ∧ A2 ⊢∆

But we have to show the hypothesis of (*). Let (Γ′′,∆′′) ≥ ((A1∧A2,Γ),∆)
and suppose, without loss of generality, that the left disjunct is true, i.e.,
we have NE(A1,Γ′′,∆′′). Then:

(AxR)
Γ
′′ ⊢ A1 ∧ A2|∆

′′

(AxR)
Γ
′′, A1 ⊢ A1|∆

′′

NE(A1,Γ′′,∆′′)
Γ
′′, A1 ⊢∆

′′

(µ̃)
Γ
′′|A1 ⊢∆

′′

(∧1
L)

Γ
′′|A1 ∧ A2 ⊢∆

′′

(Cut)
Γ
′′ ⊢∆

′′

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 45

(4) Suppose NE(A1 ∧ A2,Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and, using the induction hy-
potheses, suppose:

(#) ∀(Γ′′,∆′′) ≥ (Γ′,∆′). NE(A1,Γ′′,∆′′) or NE(A2,Γ′′,∆′′) → Γ
′′ ⊢∆

′′

We have:
(#)

Γ
′ ⊢ A1,∆′

(µ)
Γ
′ ⊢ A1|∆

′

(#)
Γ
′ ⊢ A2,∆′

(µ)
Γ
′ ⊢ A2|∆

′

(∧R)
Γ
′ ⊢ A1 ∧ A2|∆

′

NE(A1 ∧ A2,Γ,∆)
Γ
′ ⊢∆

′

where NE(A1,Γ′, (A1,∆′)) and NE(A2,Γ′, (A2,∆′)) arising from the use of
(#) are easy to prove, because the formulae are already inside the con-
texts.

Induction case for ∀. In the induction cases for ∀ and ∃ we leave out the
membership in the domain of individuals D(−) since in U we have a constant
domain and we use the quantifier symbols also at the meta-level, to shorten the
notation.

(1) Let (Γ,∆)∀x.A(x). Using the induction hypotheses we get:

(*) ∀(Γ′,∆′) ≥ (Γ,∆). (∃t . NE(A(t),Γ′,∆′)) → Γ
′ ⊢∆

′

Here follows the required derivation:

(*)
Γ⊢ A(x),∆

(µ)
Γ⊢ A(x)|∆

(∀R), x-fresh
Γ⊢∀x.A(x)|∆

One easily shows that NE(A(x),Γ, (A(x),∆)).
(2) Suppose NT(∀x.A(x),Γ,∆), (Γ′,∆′) ≥ (Γ,∆) and we have t such that, by

induction hypothesis, Γ′|A(t) ⊢∆
′. Here is a derivation of Γ′ ⊢∆

′:

Γ
′|A(t) ⊢∆

′

(∀L)
Γ
′|∀x.A(x) ⊢∆

′

NT(∀x.A(x),Γ,∆)
Γ
′ ⊢∆

′

(3) Suppose (Γ,∆) : ∀x.A(x) . We strengthen this using the induction hy-
pothesis to:

∀(Γ′,∆′) ≥ (Γ,∆). {∀(Γ′′,∆′′) ≥ (Γ′,∆′).

(∃t . NE(A(t),Γ′′,∆′′)) → Γ
′′ ⊢∆

′′} → Γ
′ ⊢∆

′
(*)

This
(*)

Γ,∀x.A(x) ⊢∆
(µ̃)

Γ|∀x.A(x) ⊢∆

is the derivation we need, in case we prove the sub-expression in curly
brackets of (*). Therefore, suppose (Γ′′,∆′′) ≥ ((∀x.A(x),Γ),∆) and sup-
pose a t with NE(A(t),Γ′′,∆′′). We have to prove Γ

′′ ⊢∆
′′:

(AxR)
Γ
′′ ⊢∀x.A(x)|∆′′

(AxR)
Γ
′′, A(t) ⊢ A(t)|∆′′

NE(A(t),Γ′′,∆′′)
Γ
′′, A(t) ⊢∆

′′

(µ̃)
Γ
′′|A(t) ⊢∆

′′

(∀L)
Γ
′′|∀x.A(x) ⊢∆

′′

(Cut)
Γ
′′ ⊢∆

′′

46 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(4) Suppose NE(∀x.A(x),Γ,∆). To show (Γ,∆) : ∀x.A(x) , let (Γ′,∆′) ≥

(Γ,∆) and let

(*) ∀(Γ′′,∆′′) ≥ (Γ′,∆′).
(
∃t . NE(A(t),Γ′′,∆′′)

)
→ Γ

′′ ⊢∆
′′

Here is the required derivation:

(*)
Γ
′ ⊢ A(x),∆′

(µ)
Γ
′ ⊢ A(x)|∆′

(∀R), x-fresh
Γ
′ ⊢∀x.A(x)|∆′

NE(∀x.A(x),Γ,∆)
Γ
′ ⊢∆

′

For the application of (*) one can easily show that NE(A(x),Γ′, (A(x),∆′)).

Induction case for ∃.

(1) Suppose (Γ,∆) ∃x.A(x), which using the induction hypothesis can be
strengthened to:

(*) ∀(Γ′,∆′) ≥ (Γ,∆). (∀t . NE(A(t),Γ′,∆′)) ⇒ Γ
′ ⊢∆

′

The following is a good derivation

(*)
Γ⊢∃x.A(x),∆

(µ)
Γ⊢∃x.A(x)|∆

if we manage to show the hypothesis from applying (*). For that, let
t ,Γ′ ⊇ Γ,∆′ ⊇ (∃x.A(x),∆) be given such that Γ′ ⊢ A(t)|∆′.

Γ
′ ⊢ A(t)|∆′

(∃R)
Γ
′ ⊢∃x.A(x)|∆′

(AxL)
Γ
′|∃x.A(x) ⊢∆

′

(Cut)
Γ
′ ⊢∆

′

(2) Let NT(∃x.A(x),Γ,∆) and (Γ′,∆′) ≥ (Γ,∆) be given and suppose

(#) ∀t . Γ′|A(t) ⊢∆
′

The required derivation is:

(#)
Γ
′|A(x) ⊢∆

′

(∃L), x-fresh
Γ
′|∃x.A(x) ⊢∆

′

NT(∃x.A(x),Γ,∆)
Γ
′ ⊢∆

′

(3) Suppose (Γ,∆) : ∃x.A(x)which gives, thanks to the induction hypoth-
esis:

∀(Γ′,∆′) ≥ (Γ,∆). {∀(Γ′′,∆′′) ≥ (Γ′,∆′).

(∀t . NE(A(t),Γ′′,∆′′)) ⇒ Γ
′′ ⊢∆

′′} ⇒ Γ
′ ⊢∆

′
(*)

The required derivation is

(*)
Γ, A(x) ⊢∆

(µ̃)
Γ|A(x) ⊢∆

(∃L), x-fresh
Γ|∃x.A(x) ⊢∆

but we also have to show the statement in curly brackets arising from
the use of (*). Therefore, suppose (Γ′′,∆′′) ≥ ((A(x),Γ),∆) and suppose,
using the induction hypothesis, that ∀t . Γ′′|A(t) ⊢∆

′′. We have to prove
Γ
′′ ⊢∆

′′:
(AxR)

Γ
′′ ⊢ A(x)|∆′′

(#)
Γ
′′|A(x) ⊢∆

′′

(Cut)
Γ
′′ ⊢∆

′′

2.3. KRIPKE-STYLE MODELS, CALL-BY-NAME VARIANT 47

(4) Suppose NE(∃x.A(x),Γ,∆) and let (Γ′,∆′) ≥ (Γ,∆) such that (Γ′,∆′)
∃x.A(x). Using the induction hypothesis, this last thing strengthens to:

(*) ∀(Γ′′,∆′′) ≥ (Γ′,∆′). (∀t . NE(A(t),Γ′′,∆′′)) ⇒ Γ
′′ ⊢∆

′′

To show Γ
′ ⊢ ∆

′, we immediately apply (*) and then have to show the
hypothesis: let t ,Γ3,∆3 be such that Γ3 ⊢ A(t)|∆3 and (Γ3,∆3) ≥ (Γ′′,∆′′).
Then this is what we are looking for:

Γ3 ⊢ A(t)|∆3 (∃R)
Γ3 ⊢∃x.A(x)|∆3 NE(∃x.A(x),Γ,∆)

Γ3 ⊢∆3

Induction case for ⊤.

(1) Immediate, from (⊤R).
(2) Easy, using Proposition 2.3.5.
(3) Easy, using Proposition 2.3.5.
(4) Easy, a (Cut) with ⊤ and then (⊤R) and (AxL).

Induction case for ⊥.

(1) Easy, using Proposition 2.3.5.
(2) Easy, a (Cut) with ⊥ and then (⊥L) and (AxR).
(3) Immediate, from (⊥L).
(4) Immediate, by applying the hypothesis.

All the given derivations are cut-free. By inspection of the proof trees, hav-
ing in mind that NT,NE and weakening do not introduce new cuts, we convince
ourselves that the completeness theorem indeed produces only cut-free deriva-
tions. �

2.3.13. Corollary. For any A,Γ and ∆, the following hold in U :

(1) If A ∈ Γ then (Γ,∆) A.

(2) If B ∈∆ then (Γ,∆) : B .

PROOF. (1) follows from (2) of Theorem 2.3.12, and (2) follows from (4) of
Theorem 2.3.12. �

2.3.14. Corollary (Completeness of Classical Logic). If in every classical Kripke

model, at every possible world, the formula A is forced whenever all the formulae

of Γ are forced and all the formulae of ∆ are refuted, then there exists a derivation

in LKµµ̃ of the sequent Γ⊢ A|∆.

PROOF. If the hypothesis holds for any classical Kripke model, so does it
hold for U . To show Γ ⊢ A|∆, by Theorem 2.3.12, it is enough to show that
(Γ,∆) B for all B ∈ Γ and (Γ,∆) : C for all C ∈ ∆, something shown in Corol-
lary 2.3.13. �

A constructive cut-free completeness theorem can also be used for proof
normalisation.

2.3.15. Corollary (Semantic Cut-Elimination). For all closed contextsΓ,∆, if there

is a derivation of Γ⊢∆, then there is a cut-free derivation of Γ⊢∆.

PROOF. From the hypothesis Γ ⊢ ∆, the soundness theorem applied to U

gives us that there is indeed a cut-free derivation for Γ ⊢ ∆ because the world

48 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

(Γ,∆) forces all formulae of Γ and refutes all formulae of ∆ as shown in Corol-
lary 2.3.13. Notice that the composition of soundness and completeness, that is
characteristic of NBE, takes place via Corollary 2.3.13. �

2.4. Kripke-style models, call-by-value variant

In this section we give an alternative version of classical Kripke model, in
which we again do not take forcing as primitive, but we now have a primitive
relation of strong forcing from which refutation and (non-strong) forcing are de-
fined.

2.4.1. Definition. A classical Kripke model, or classical Kripke-style model, is
given by:

• a preorder (K ,≤) of possible worlds;
• a unary relation on worlds (−)⊥ labelling a world as exploding;
• a binary relation (−)s (−) of strong forcing between worlds and atomic

formulae, such that

for all w ′ ≥ w, w s X → w ′ s X ,

w s ⊤ is true,

w s ⊥ iff w ⊥;

• and a domain of quantification D(w) for each world w , such that

for all w ′ ≥ w,D(w) ⊆ D(w ′).

The relation (−)s (−) of strong forcing is extended from atomic to composite for-

mulae inductively and by simultaneously defining two new relations, refutation
and (non-strong) forcing:

⋆ A formula A is refuted in the world w (notation w : A) if any world
w ′ ≥ w , which strongly forces A, is exploding;

⋆ A formula A is forced in the world w (notation w A) if any world w ′ ≥

w , which refutes A, is exploding;
• w s A∧B if w A and w B ;
• w s A∨B if w A or w B ;
• w s A ⇒ B if for all w ′ ≥ w , w A implies w B ;
• w s ∀x.A(x) if for all w ′ ≥ w and all t ∈ D(w ′), w ′ A(t);
• w s ∃x.A(x) if w A(t) for some t ∈ D(w).

We have the following basic properties, which are proved analogously to the
ones of Section 2.3.

2.4.2. Lemma. Strong forcing, refutation and forcing are monotone in any clas-

sical Kripke model.

2.4.3. Lemma. In all worlds w and for all formulae A, if w s A, then w A.

2.4.4. Theorem (Soundness). In any classical Kripke model the following hold:

c : (Γ⊢∆) −→ for any w such that w Γ and w : ∆, w ⊥

Γ⊢ p : A|∆−→ for any w such that w Γ and w : ∆, w A

Γ|e : A ⊢∆−→ for any w such that w Γ and w : ∆, w : A

2.4. KRIPKE-STYLE MODELS, CALL-BY-VALUE VARIANT 49

The characterisation of forcing from Proposition 2.3.5 remains the same, but
its proof is different (although analogous). Also, as in Proposition 2.3.7, we can
construct an intuitionistic Kripke model starting from a classical one, but the
double-negation translation is the one of Kolmogorov.

2.4.5. Proposition. The following hold in any world w of any classical Kripke

model:

w A ⇒ B ←→ for all w ′ ≥ w, w ′ A ⇒ w ′ B

w ∀x.A(x) ←→ for all w ′ ≥ w and t ∈ D(w ′), w ′ A(t)

w ⊥←→ w ⊥

w ⊤←→ true

w A∧B ←→ w A and w B

w A∨B ←− w A or w B

w ∃x.A(x) ←− for some t ∈ D(w), w A(t)

PROOF. Direction “←” of all statements is by Lemma 2.4.3. Direction “→”
we show for ⇒ and ∧, the rest of the cases are either analogous, or follow by
definition and monotonicity.

Let w A ⇒ B and w ′ ≥ w with w ′ A be given. Let also w ′ : B . To show
w ′ ⊥ we use the first hypothesis, and then given w ′′ ≥ w ′ and w ′′ s A ⇒ B we
have to show w ′′ ⊥, but that follows directly from the rest of the hypotheses and
monotonicity.

Let w A∧B . We show only w A, because the proof of w B is analogous.
Let w ′ ≥ w be such that w ′ : A . After applying the first hypothesis, we are given
w ′′ ≥ w ′ with w ′′ s A∧B , that is, w ′′ A and w ′′ B , and have to show w ′′ ⊥,
but this is immediate from the second hypothesis and monotonicity. �

This time, we consider the double-negation translation (·)k, which is the one
of Kolmogorov[115, 161], except that atomic formulae are not doubly negated:

X k := X (X -atomic)

(A∧B)k := ¬¬(Ak ∧B k)

(A → B)k := ¬¬(Ak → B k)

(∀x.A)k := ¬¬(∀x.Ak)

(A∨B)k := ¬¬(Ak ∨B k)

(∃x.A)k := ¬¬(∃x.Ak)

2.4.6. Proposition. Every classical Kripke model C = (K ,≤,D,s ,⊥) gives rise to

an intuitionistic Kripke model with exploding worlds I = (K ,≤,D,i ,⊥), that

inherits all components of C , except for i which is defined for atomic formulae

by non-strong forcing, i.e.

w i X iff w X

The translation (·)k relates C and I , that is, for any world w and any formula A,

we have

w i Ak iff w A.

PROOF. By induction on the complexity of A. This time the proof is direct,
because Kolmogorov’s translation closely matches our definition of non-strong
forcing. �

50 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

2.4.7. Definition. The Universal classical Kripke model U is obtained by setting:

• K to be the set of contexts (Γ,∆) of LKµµ̃;
• (Γ,∆) ≤ (Γ′,∆′) iff both Γ⊆ Γ

′ and ∆⊆∆
′;

• (Γ,∆)s X iff the sequent Γ⊢ X |∆ is provable without a cut in LKµµ̃;
• (Γ,∆)⊥ iff the sequent Γ⊢∆ is provable without a cut in LKµµ̃;
• for any w , D(w) is the set of individuals of LKµµ̃(that is, D(−) is a con-

stant function from worlds to sets of individuals).

(−)s (−) is monotone because of Lemma 2.2.3.

This time we will not prove a more complex version of the theorem, because
it is the simpler version that we formalised in Coq.

2.4.8. Theorem (Cut-Free Completeness for U). For any closed formula A and

closed contexts Γ and ∆, the following hold in U :

(Γ,∆) A −→ {p | Γ⊢ p : A|∆} (↓ −term reify)(1)

(Γ,∆) : A −→ {e | Γ|e : A ⊢∆} (⇓−eval. context reify)(2)

Moreover, the derivations constructed in (1) and (2) are cut-free.

PROOF. We will once again skip writing the proof term annotations in order
to decrease the level of detail. The algorithm behind this proof that concentrates
on proof terms is given in Table 7, page 55.

Base case. Let (Γ,∆) A for A-atomic. By definition, this is

(*) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
∀

(
Γ
′′,∆′′

)
≥

(
Γ
′,∆′

)
. Γ′′ ⊢ A|∆′′ → Γ

′′ ⊢∆
′′
)
→ Γ

′ ⊢∆
′.

We can deriveΓ⊢ A|∆by first applying the (µ)rule, and then (*) with the (AxL)rule.
Let (Γ,∆) : A for A-atomic, that is, let

(#) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) . Γ′|A ⊢∆

′ → Γ
′ ⊢∆

′.

The derivation of Γ|A ⊢∆ is immediate by applying (µ̃), (*) and (AxR).
Induction case for (∧). Let (Γ,∆) A∧B , that is,

(*) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
∀

(
Γ
′′,∆′′

)
≥

(
Γ
′,∆′

)
.

(
Γ
′′,∆′′

)
 A and

(
Γ
′′,∆′′

)
B → Γ

′′ ⊢∆
′′
)
→ Γ

′ ⊢∆
′.

We derive Γ⊢ A∧B |∆ by the rule (∧R)and show each of the conjuncts separately.
For example, to show Γ⊢ A|∆, we apply (µ), then (*), and then, given

(Γ, (A,∆)) A and (Γ, (A,∆))B ,

we have to show Γ⊢ A,∆, but that is immediate by the induction hypothesis (1)
and the (AxL)rule.

Let (Γ,∆) : A∧B , that is,

(#) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
Γ
′,∆′

)
 A and

(
Γ
′,∆′

)
B → Γ

′ ⊢∆
′.

To derive Γ|A ∧ B ⊢ ∆, we apply (µ̃)and then (#). We have to prove each of
((A∧B ,Γ),∆) A and ((A∧B ,Γ),∆) B separately. Let (Γ′,∆′) ≥ ((A ∧B ,Γ),∆)
and let (Γ′,∆′) : A . We show Γ

′ ⊢ ∆
′ by using (AxR), (∧1

L) and the induction
hypothesis (2). The proof of ((A∧B ,Γ),∆)B is analogous.

2.4. KRIPKE-STYLE MODELS, CALL-BY-VALUE VARIANT 51

Induction case for (∨). Let (Γ,∆) A∨B , that is,

(*) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
∀

(
Γ
′′,∆′′

)
≥

(
Γ
′,∆′

)
.

(
Γ
′′,∆′′

)
 A or

(
Γ
′′,∆′′

)
B → Γ

′′ ⊢∆
′′
)
→ Γ

′ ⊢∆
′.

We derive Γ|A∨B ⊢∆ by the rule (µ)and applying (*). Then, given

((A∨B ,Γ) ,∆) A or ((A∨B ,Γ) ,∆)B ,

we have to show that A∨B ,Γ⊢∆. This is done by case distinction; if ((A∨B ,Γ) ,∆)
A, then we use the induction hypothesis (1) to obtain A∨B ,Γ⊢ A|∆, and hence,
using (∨1

R) and (AxL)we get A∨B ,Γ⊢∆. The case ((A∨B ,Γ) ,∆) A is analogous.
Let (Γ,∆) : A∨B , that is,

(#) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
Γ
′,∆′

)
 A or

(
Γ
′,∆′

)
B → Γ

′ ⊢∆
′.

To derive Γ|A ∨B ⊢∆, we apply (∨L) and we have to derive each of Γ|A ⊢∆ and
Γ|B ⊢∆ separately. We only derive the first one, by applying (µ), then (Cut)with
(AxR)and applying induction hypothesis (2) for A: given ((A,Γ),∆) s A, we can
use (#) and Lemma 2.4.3 to derive (A,Γ) ⊢∆.

Induction case for (⇒). Let (Γ,∆) : A ⇒ B , that is,

(*) ∀
(
Γ
′,∆′

)
≥ (Γ,∆) .

(
∀

(
Γ
′′,∆′′

)
≥

(
Γ
′,∆′

)
.

[
∀(Γ′′′,∆′′′) ≥ (Γ′′,∆′′). (Γ′′′,∆′′′) A → (Γ′′′,∆′′′)B

]
→ Γ

′′ ⊢∆
′′
)
→ Γ

′ ⊢∆
′

To derive Γ⊢ A ⇒ B |∆, we apply (⇒R), then (µ), then (*), and, given

(#) ∀(Γ3,∆3) ≥ ((A,Γ), (B ,∆)). (Γ3,∆3) A → (Γ3,∆3)B ,

we have to derive Γ3 ⊢ ∆3. We apply (Cut)with the formula B , and then use IH
(1) followed by (#). Now, we have to show (Γ3,∆3) A. Let (Γ4,∆4) ≥ (Γ3,∆3) and
(Γ4,∆4) : A . We derive Γ4 ⊢ ∆4 by a (Cut)with (AxR)and IH (2) applied to the
last hypothesis.

Let now (Γ,∆) : A ⇒ B , that is,
(#)
∀

(
Γ
′,∆′

)
≥ (Γ,∆) .

[
∀(Γ′′,∆′′) ≥ (Γ′,∆′). (Γ′′,∆′′) A → (Γ′′,∆′′)B

]
→ Γ

′ ⊢∆
′.

We deriveΓ|A ⇒ B ⊢∆by applying (µ̃), then (#), and then, given ((A ⇒ B ,Γ),∆)
A and ((A ⇒ B ,Γ),∆) : B , we can derive A ⇒ B ,Γ ⊢ ∆ by a (Cut)with A ⇒ B ,
using the evaluation context constructed by combining the last two hypothesis
with IH (1) and IH (2), respectively.

The induction cases for ∀ and ∃ are proved analogously to those of ⇒ and ∨,
but more simply. The cases of ⊤ and ⊥ are trivial. �

2.4.9. Corollary. For any sentence A and contexts of sentences Γ,∆, the following

hold for U :

(1) If A ∈ Γ then (Γ,∆) A.

(2) If B ∈∆ then (Γ,∆) : B .

PROOF. (1) Assume A ∈ Γ, (Γ′,∆′) ≥ (Γ,∆) and (Γ′,∆′) : A . Then, by
Theorem 2.4.8, Γ′ | A ⊢∆

′, hence we can obtain a cut-free proof of Γ′ ⊢

∆
′ using left contraction (page 34).

(2) Assume B ∈ ∆, (Γ′,∆′) ≥ (Γ,∆) and (Γ′,∆′) s B . Then, by Lemma 2.4.3
and Theorem 2.4.8, Γ′ ⊢ B |∆′, hence we can obtain a cut-free proof of
Γ
′ ⊢∆

′ using right contraction (page 35).

52 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

�

2.4.10. Corollary (Completeness of Classical Logic). If in every classical Kripke

model, at every possible world, the formula A is forced whenever all the formulae

of Γ are forced and all the formulae of ∆ are refuted, then there exists a derivation

in LKµµ̃ of the sequent Γ⊢ A|∆.

PROOF. Analogous to Corollary 2.3.14, by using Corollary 2.4.9. �

We again have the following corollary.

2.4.11. Corollary (Semantic Cut-Elimination). For all contexts Γ,∆ of sentences,

if there is a derivation of Γ⊢∆, then there is a cut-free derivation of Γ⊢∆.

PROOF. From the hypothesis Γ ⊢ ∆, the soundness theorem applied to U

gives us that there is indeed a cut-free derivation for Γ ⊢ ∆ because the world
(Γ,∆) forces all formulae of Γ and refutes all formulae of ∆ as shown in Corol-
lary 2.4.9. Note, however, that the proof of Corollary 2.4.9 is not analogous to the
one of Corollary 2.3.13. �

2.5. Computational content

So far, we have not justified the headings “call-by-name variant” and “call-
by-value variant” of Sections 2.3 and 2.4. We do that in this section by show-
ing that the computational content of Corollary 2.3.15 is λ̄µµ̃-command nor-
malisation in call-by-name strategy, while the computational content of Corol-
lary 2.4.11 is call-by-value normalisation.

One of the strengths of the λ̄µµ̃-calculus is that it is able to very simply char-
acterise call-by-name (CBN) and call-by-value (CBV) evaluation strategies. If we
consider again the reduction rules of Definition 2.2.2, we see that there is a crit-
ical pair 〈µα.c‖µ̃a.c ′〉 for which we do not know whether to first apply the →µ

rule or the →µ̃ rule. As it is shown in [53], giving priority to the →µ̃ rule gives rise
to a CBN reduction strategy, while giving priority to the →µ rule gives rise to a
CBV strategy.

Now, since we have formalised our proofs in the Coq proof assistant, which
is based on a constructive theory of types, we can compute with the proofs di-
rectly, and see how “semantic cut-elimination” is performed. This is the tech-
nique of proof by reflection that we mentioned in Section 1.5. We restrict our-
selves to the propositional fragment, because we did not formalise the quantifier
version of the CBN classical Kripke model (see Section 2.6). The results are given
in Tables 3 and 4.

We can see that Corollary 2.3.15 reduces all commands in perfect accord
with the reduction relation of Definition 2.2.2 for CBN strategy, however, Corol-
lary 2.4.11 is not in perfect accord, because, although it reduces all commands
according to the CBV strategy, there are two η-redexes dangling on the evalua-
tion context side. Hence, one is forced to perform two more steps of reduction,

〈
p‖µ̃d .

〈
µδ.〈d‖δ〉‖β

〉〉
→µ̃

〈
µδ.

〈
p‖δ

〉
‖β

〉
→µ

〈
p‖β

〉
,

in order to obtain a final cut-free form.
We have tracked this difference of behaviour down to the difference in the

proofs of Corollaries 2.3.13 and 2.4.9. However, we do not claim that the same
problem with a final η-redex would happen if the simplified Theorem 2.3.9 had

2.6. ASPECTS OF THE COQ FORMALISATION 53

〈
µα.

〈
a‖β

〉
‖µ̃b.

〈
c‖γ

〉〉
→

〈
c‖γ

〉
〈
µα.〈a‖α〉‖β

〉
→

〈
a‖β

〉
〈
λa.a‖b ·β

〉
→

〈
b‖β

〉

〈(a,b)‖π1α〉→ 〈a‖α〉

〈(a,b)‖π2α〉→ 〈b‖α〉
〈
ι1a‖[α,β]

〉
→〈a‖α〉

〈
ι2a‖[α,β]

〉
→

〈
a‖β

〉

(different letters stand for distinct entities)

Table 3: Algorithmic behaviour of the CBN models

〈
µα.

〈
a‖β

〉
‖µ̃b.

〈
c‖γ

〉〉
→

〈
a‖µ̃d .

〈
µδ.〈d‖δ〉‖β

〉〉
→2 〈

a‖β
〉

〈
µα.〈a‖α〉‖β

〉
→

〈
a‖µ̃d .

〈
µδ.〈d‖δ〉‖β

〉〉
→2 〈

a‖β
〉

〈
λa.a‖b ·β

〉
→

〈
b‖µ̃d .

〈
µδ.〈d‖δ〉‖β

〉〉
→2 〈

b‖β
〉

〈(a,b)‖π1α〉→
〈

a‖µ̃d .
〈
µδ.〈d‖δ〉‖α

〉〉
→2 〈a‖α〉

〈(a,b)‖π2α〉→
〈

b‖µ̃d .
〈
µδ.〈d‖δ〉‖α

〉〉
→2 〈b‖α〉

〈
ι1a‖[α,β]

〉
→

〈
a‖µ̃d .

〈
µδ.〈d‖δ〉‖α

〉〉
→2 〈a‖α〉

〈
ι2a‖[α,β]

〉
→

〈
a‖µ̃d .

〈
µδ.〈d‖δ〉‖β

〉〉
→2 〈

a‖β
〉

(different letters stand for distinct entities)

Table 4: Algorithmic behaviour of the CBV models

been used for computation. It may well be that a different notion of call-by-
value model is necessary in order to obtain full normalisation, for example a
model along the lines of the CPS translation of Section 4.2.

We have manually extracted the algorithms behind the proofs of Theorems
2.3.9, 2.3.12 and 2.4.8, because the machine extracted algorithms of 2.3.12 and
2.4.8 contain too many details to be comprehensible, while 2.3.9 was not at all
formalised. They are given in Tables 5, 6, and 7. For meta-level abstraction and
application we use “7→” and “·”, for meta-level pair projections we use “fst” and
“snd”, while for meta-level left- and right-injection we use “inl” and “inr”. Defi-
nition by cases is written as usually in Mathematics, pairs are written by (H ,G),
and there is a shortcut “ret ·H” which stands for “G 7→G ·H”.

2.6. Aspects of the Coq formalisation

The source code of the Coq formalisation is available at the address ❤tt♣✿✴✴
✇✇✇✳❧✐①✳♣♦❧②t❡❝❤♥✐q✉❡✳❢r✴⑦❞❛♥❦♦✴❝♦❞❡. We had formalised first the proof
of Theorem 2.3.12, only for the fragment {⇒,∧,∨}, and then we rewrote the
formalisation for Theorem 2.4.8, in parallel to developing the formalisation of
Chapter 3. These last two formalisations include also the quantifiers. We re-
mark that the proof of Theorem 2.4.8 is analogous to the one of Theorem 2.3.9,

http://www.lix.polytechnique.fr/~danko/code
http://www.lix.polytechnique.fr/~danko/code

54 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

↓A : (Γ,∆) A → {p | Γ⊢ p : A|∆}

↑A : NT(a : A,Γ,∆) → (Γ,∆) A

⇓A : (Γ,∆) : A → {e | Γ|e : A ⊢∆}

⇑A : NE(α : A,Γ,∆) → (Γ,∆) : A

↓X := H 7→µα.H ·α

↑X := H 7→ H ′ 7→ H ·H ′

⇓X := H 7→ µ̃a.H · (e 7→ 〈a‖e〉)

⇑X := H 7→ H ′ 7→ H ·
(
µα.H ′ ·α

)

↓A∧B := H 7→

(
µα.H ·

(
inl ·

(
⇑A p 7→ 〈p‖α〉

))
,

µα.H ·
(
inr ·

(
⇑B p 7→ 〈p‖α〉

)))

↑A∧B := H 7→ H ′ 7→

{
H ·

(
ι1

(
µ̃a.H ′′ ·

(
↑A e 7→ 〈a‖e〉

)))
if H ′ = inl ·H ′′

H ·
(
ι2

(
µ̃a.H ′′ ·

(
↑B e 7→ 〈a‖e〉

)))
if H ′ = inr ·H ′′

⇓A∧B := H 7→ µ̃a.H ·

(
H ′ 7→

{
〈a‖π1

(
µ̃b.H ′′ ·

(
↑A e 7→ 〈b‖e〉

))
〉, if H ′ = inl ·H ′′

〈a‖π2
(
µ̃b.H ′′ ·

(
↑B e 7→ 〈b‖e〉

))
〉, if H ′ = inr ·H ′′

)

⇑A∧B := H 7→ H ′ 7→ H ·

(
µα.H ′ ·

(
inl ·

(
⇑A p 7→ 〈p‖α〉

))
,

µα.H ′ ·
(
inr ·

(
⇑B p 7→ 〈p‖α〉

)))

↓A∨B := H 7→µγ.
〈
ι1

(
µα.

〈
ι2

(
µβ.H ·

(
⇑A p 7→ 〈p‖α〉,⇑B p 7→ 〈p‖β〉

))
‖γ

〉)
‖γ

〉

↑A∨B := H 7→ H ′ 7→ H ·

[
µ̃a.

(
fst ·H ′

)
·
(
↑A e 7→ 〈a‖e〉

)
,

µ̃a.
(
snd ·H ′

)
·
(
↑B e 7→ 〈a‖e〉

)]

⇓A∨B := H 7→

[
µ̃a.H ·

(
H ′ 7→

(
fst ·H ′

)
·
(
↑A e 7→ 〈a‖e〉

))
,

µ̃a.H ·
(
H ′ 7→

(
snd ·H ′

)
·
(
↑B e 7→ 〈a‖e〉

))]

⇑A∨B := H 7→ H ′ 7→ H ·
(
ι1

(
µα.H ·

(
ι2

(
µβ.H ′ ·

(
⇑A p 7→ 〈p‖α〉,⇑B p 7→ 〈p‖β〉

)))))

↓A⇒B := H 7→λa.µα.H ·
(
↑A e 7→ 〈a‖e〉

)
·
(
⇑B p 7→ 〈p‖α〉

)

↑A⇒B := H 7→ H ′ 7→ H ·
((
↓A fst ·H ′

)
·
(
⇓B snd ·H ′

))

⇓A⇒B := H 7→
(
µα.H ·

(
↑A p 7→ 〈p‖α〉

))
·
(
µ̃a.H ·

(
⇑B e 7→ 〈a‖e〉

))

⇑A⇒B := H 7→ H ′ 7→ H ·
(
λa.µα.H ′ ·

(
↓A e 7→ 〈a‖e〉

)
·
(
⇓B p 7→ 〈p‖α〉

))

Table 5: The normalisation algorithm behind Theorem 2.3.12

which we gave in our article [109], therefore obtaining a formal version of the
theorem from the article should not be too difficult.

The way of representing binders, substitutions and the co-finite quantifica-
tion rule is the same as in Section 1.5, except that the definition of formulae does
not include Henkin constants. However, the definition of individual terms from
the formalisations of Chapters 2 and 3, allows to have multiple arguments for
predicate and function symbols, which means that these completeness proofs
are more prepared for practical application inside Coq, that the one of Chap-
ter 1. Formally, in type theory, fixed points for working with such individual

2.6. ASPECTS OF THE COQ FORMALISATION 55

↓A : (Γ,∆) A → {p | Γ⊢ p : A|∆}

⇓A : (Γ,∆) : A → {e | Γ|e : A ⊢∆}

↓X := H 7→µα.H ·α

⇓X := H 7→ µ̃a.H · (e 7→ 〈a‖e〉)

↓A∧B := H 7→

(
↓A

(
H ′ 7→ H ·

(
ret ·

(
inl ·H ′

)))
,

↓B
(
H ′ 7→ H ·

(
ret ·

(
inr ·H ′

))))

⇓A∧B := H 7→ µ̃a.H ·

(
H ′ 7→

{
〈a‖π1

(
⇓A H ′′

)
〉, if H ′ = inl ·H ′′

〈a‖π2
(
⇓B H ′′

)
〉, if H ′ = inr ·H ′′

)

↓A∨B := H 7→µα.
〈
ι1

(
µβ.

〈
ι2

(
µγ.H ·

(〈
H ′ 7→↓A H ′‖γ

〉
,
〈

H ′ 7→↓B H ′‖γ
〉))

‖β
〉)
‖α

〉

⇓A∨B := H 7→

[
⇓A

(
H ′ 7→ H ·

(
H ′′ 7→

(
fst ·H ′′

)
·H ′

))
,

⇓B
(
H ′ 7→ H ·

(
H ′′ 7→

(
snd ·H ′′

)
·H ′

))]

↓A⇒B := H 7→λa.µα.H ·
(
H ′ 7→

〈
a‖ ⇓A

(
ret ·H ′

)〉
, H ′ 7→

〈
↓B H ′‖α

〉)

⇓A⇒B := H 7→ µ̃a.H ·
(
H ′ 7→

〈
a‖

(
↓A

(
fst ·H ′

))
·
(
⇓B

(
snd ·H ′

))〉)

Table 6: The normalisation algorithm behind Theorem 2.3.9

↓A : (Γ,∆) A → {p | Γ⊢ p : A|∆}

⇓A : (Γ,∆) : A → {e | Γ|e : A ⊢∆}

↓X := H 7→µα.H · (p 7→ 〈p‖α〉)

⇓X := H 7→ µ̃a.H ·a

↓A∧B := H 7→

(
µα.H ·

(
H ′ 7→ 〈↓A

(
fst ·H ′

)
‖α〉

)
,

µα.H ·
(
H ′ 7→ 〈↓B

(
snd ·H ′

)
‖α〉

))

⇓A∧B := H 7→ µ̃a.H · (H ′ 7→ 〈a‖π1(⇓A H ′)〉, H ′ 7→ 〈a‖π2(⇓B H ′)〉)

↓A∨B := H 7→µα.H ·

(
H ′ 7→

{
〈ι1

(
↓A H ′′

)
‖α〉, if H ′ = inl ·H ′′

〈ι2
(
↓B H ′′

)
‖α〉, if H ′ = inr ·H ′′

)

⇓A∨B := H 7→

[
µ̃a.〈a‖ ⇓A

(
H ′ 7→ H ·

(
inl ·

(
ret ·H ′

)))
〉,

µ̃a.〈a‖ ⇓B
(
H ′ 7→ H ·

(
inr ·

(
ret ·H ′

)))
〉
]

↓A⇒B := H 7→λa.µα.H ·
(
H ′ 7→ 〈↓B

(
H ′ ·

(
H ′′ 7→ 〈a‖ ⇓A H ′′〉

)
‖α〉

))

⇓A⇒B := H 7→ µ̃a.H ·
(
H ′ 7→ H ′′ 7→ 〈a‖

(
↓A H ′

)
·
(
⇓B H ′′

)
〉
)

Table 7: The normalisation algorithm behind Theorem 2.4.8

terms require a “trick” so that they are definable by primitive (structural) recur-
sion. We have to mutually define two fixpoints, one working on an individual,
the other on a list of individuals, but the one that works on lists has to be a local
definition to the first one. For example, here is the formalisation of the fixpoint

56 2. KRIPKE-STYLE MODELS FOR CLASSICAL LOGIC

which substitutes the free variable k of the individual term a with the individual
term d :

❋✐①♣♦✐♥t subst indiv (k:nat)(a:indiv)(d:indiv) {str✉❝t a} : indiv :=
❧❡t subst list := fix subst list (l:list indiv) {str✉❝t l} : list indiv :=
♠❛t❝❤ l ✇✐t❤

| nil ⇒ nil

| cons a’ l’ ⇒ cons (subst indiv k a’ d) (subst list l’)
❡♥❞ ✐♥

♠❛t❝❤ a ✇✐t❤

| func f ld ⇒

func f (subst list ld)
| fvar x ⇒ fvar x

| bvar i ⇒ ✐❢ beq nat k i t❤❡♥ d ❡❧s❡ bvar i

❡♥❞.

This kind of definition is analogous to the one of the Ackermann function
using higher-type primitive recursion.

Coq was clever in being able to generate for us, using the ❙❝❤❡♠❡ command,
a mutual induction predicate for derivations of LKµµ̃. A slight anomaly was,
however, that it knew how to generate such predicates only for sort Prop, not
sort Type.

We can also say that in general the separation Prop/Set of Coq was not very
convenient. While “usually”, when an algorithm and its correctness proof are
well separated, this distinction makes extracted terms be more readable, in these
kind of meta-theoretic algorithms, logic is an integral part of the computation. It
was thus necessary to rewrite a couple of lemmas from the Coq standard library,
that deal with lists and number comparison, so that they live in Set instead of
Prop.

2.7. Related and future work

2.7.1. Normalisation by evaluation. In Section 2.5 we showed that the com-
putational content of the completeness proofs of this chapter is cut-elimination,
or proof normalisation. However, we did not obtain a result as good as the one
of Berger and Schwichtenberg [33], because they showed that the input and the
output of their NBE algorithm are βη-equal. In future, we would like to extend
our work in that direction. We will have to be more careful when treating η-
equality in the context of λ̄µµ̃ because a more finely grained reduction rule for
(→⇒) will then be needed (see the Habilitation thesis of Herbelin [98]).

The work of Okada [147] is related to NBE for classical logic. Directly in-
spired by Girard’s phase semantics [80] for linear logic, Okada shows that there
is a uniform cut-eliminating completeness proof for various extensions of in-
tuitionistic linear logic, including classical predicate calculus. His approach is
more algebraic than ours. While he defines his phase semantics from an ab-
stract monoid structure and uses set comprehension to interpret the logical con-
stants, we rely on a Kripke-style model, which is nothing else but a continuations
monad. We are not aware of any explicit algorithms for cut-elimination that fol-
low his approach.

Okada’s semantics is related to Sambin’s pre-topology semantics [153].

2.7. RELATED AND FUTURE WORK 57

There are a number of works connected to NBE for intuitionistic systems
that we review in Section 3.6.

2.7.2. Using Intuitionistic Kripke models on doubly negated formulae. Al-
though one could probably use a double-negation interpretation A∗ of formulae
and an intuitionistic completeness theorem for tradition Kripke models to ob-
tain a normalisation result, one would have to do it in multiple phases,

(*) ⊢c A −→⊢i A∗ −→i A∗ −→⊢
nf

i
A∗ −→⊢

nf
c A

where “i” stands for “intuitionistic”, “c” for “classical” and “nf” for “in normal
form”, in which how to do the last step is not obvious. We consider that to be a
detour since we can prove, simply,

⊢c A −→c A −→⊢
nf
c A

The interest in having a direct-style semantics for classical logic is the same
as the interest in having a proof calculus for classical logic instead of restricting
oneself to an intuitionistic calculus and working with DN-translated formulae;
or, in the theory of programming languages, to having a separate constant call/cc

instead of writing all programs in continuation-passing style.
Avigad shows in [16] how classical cut-elimination is a special case of intu-

itionistic one, work which resembles the phases (*). However, his work is spe-
cialised to negative formulae, that is, it is not clear how to extend it to formulae
that use ∨ and ∃.

2.7.3. Boolean versus Kripke semantics for classical logic. We began this
chapter by a desire to obtain a more “canonical” completeness proof for classical
logic. We showed that completeness w.r.t. classical Kripke models consists of
β-reduction of λ̄µµ̃-commands, while for Boolean models the computational
contents is finding maximum values using a supplied enumeration of formulae.

In future, we would like to investigate how practical classical Kripke models
are for model theoretic reasoning. Some work along those lines has been done
in the 1960s by Fitting [77]. Although conducted in a classical meta-language,
the work indicates that it is possible to use “intuitionistic” Kripke models to ex-
press elegantly some cumbersome constructions of model theory, like set theo-
retic forcing [54, 77]. Indeed, the connection between the two had been spot-
ted already by Kripke [122, 123] and that is why the term “forcing” appeared in
his semantics. (however, see also [117]) We hope that looking at those kind of
constructions inside Kripke models, but this time inside a constructive meta-
language, might be one way to finding out the constructive content of tech-
niques of classical model theory.

In this respect, our work can also be seen as a contribution to the field of
constructive model theory of classical logic.

CHAPTER 3

Kripke-style models for intuitionistic logic

We saw in Section 2.1 that normalisation-by-evaluation can be seen as com-
pleteness for intuitionistic logic with respect to Kripke models, with “⇒” as the
sole logical connective. It is easy to add “∧” to the picture (by NBE for λ-calculus
with pairs), as well as “∀” (see [102] for a formal proof in Coq). The starting point
for the work presented in this chapter was the attempt to extend completeness
for Kripke models to handle also the connectives “∨” and “∃”.

The problem of the possibility of a constructive completeness proof for full
intuitionistic logic has been considered in the past, notably by Kreisel and Veld-
man, as we review in Section 3.1. In Section 3.2, we look at the other side of
the coin NBE/completeness, an algorithm of Danvy related to NBE, the one of
type-directed partial evaluation (TDPE) for λ-calculus with sums. In Section 3.3,
inspired from Danvy’s TDPE algorithm, we introduce a notion of model, similar
to Kripke models, for which intuitionistic predicate logic (with ∨ and ∃) can be
shown to be sound and complete. In Section 3.4, we give the normalisation al-
gorithm behind the completeness proof of Section 3.3. In Section 3.5, we discuss
some aspects of the Coq formalisation of the proofs, and, finally, we conclude in
Section 3.6 by discussing related and future work.

3.1. Historical overview

The intuitionistic interpretation of the logical constants today known as the
Brouwer-Heyting-Kolmogorov (BHK) interpretation appeared, implicitly, in the
PhD thesis of Brouwer.1 It was Kolmogorov the first who explicitly wrote about
what it means for a formula to be intuitionistically true, for the propositional
fragment, and, independently, Heyting gave essentially the same explanation
that we know today, based on the notion of proof as a mathematical object: A is
valid if there is a proof of A; a proof of A ∨B is a proof of either A or B , together
with information about which one of the two has been proved; a proof of A ⇒ B

is a procedure which transforms a proof of A into a proof of B ; etc.
Kleene [113] took an alternative approach, by proposing interpretations of

formulae by “realisability”: a formula A is realisable if there is a recursive proce-
dure computing a witness for A. For a historical overview of realisability, from
Kleene to modern times, the article of van Oosten is to be recommended [174].

Both the BHK and Kleene’s interpretation, as well as the various semantics
that go under the heading Algebraic semantics ([162, Section 13.5]), can be seen
as just an informal reformulation of the derivation rules of a formal system for
intuitionistic logic. The earliest semantics that is not immediately connectible

1For references and more detail about this paragraph please look at Troelstra’s historical sur-
vey [164].

59

60 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

to a derivation system is the one of Beth [163], who was also the first to pro-
pose a completeness proof for it.2 The importance of Beth’s semantics is in its
giving an independent way to characterise intuitionistic validity, something that
should be parallelled to what happens in the classical case: Boolean semantics
and classical provability appear to be different ways to specify classical validity.

After Beth, Kripke [123] also presented such an independent kind of se-
mantics (given in Definition 2.1.1), based on his previous work on semantics
of modal logic [121], together with a classical completeness proof for it, a more
modern version of which can be found in [161, Section 2.6]. Kripke’s intuitionis-
tic semantics was inspired from Gödel’s embedding of intuitionistic into modal
logic [86] (see Troelstra’s introduction note to [86] and the introduction section
of [123]).

3.1.1. Kreisel’s meta-mathematical argument. In the interim between Beth
and Kripke, in a series of articles [119, 116, 120]3, Kreisel, based on observa-
tions of Gödel, treated the problem of constructive provability of completeness
for intuitionistic logic (Heyting’s predicate calculus, IQC), while being purposely
imprecise [119, pp.318–320] about the notion of truth used.

He considers a formula A to be valid (Í A) if it is valid for any domain of
quantification D and any interpretation ~P of atomic formulae appearing in A

(notation (D,~P) Í A), without going into details of how (D,~P) Í A is to be de-
fined. He just remarks that his approach is parallel to the one of Gödel, when
Gödel proved completeness relying on an intuitive notion of Boolean semantics
(Section 1.1), and that both Beth’s and Topological (Algebraic) semantics can be
fit into this framework. Because every Kripke model can be converted to a Beth
model4, the results of Kreisel apply also to Kripke models.

However, it is not completely clear which principles are necessary to show
the equivalence of the intuitive intuitionistic semantics “à la Tarski” and Beth
semantics. In [116], Kreisel uses his system FC (abbreviation for “free choice
sequences”) to connect the two, while Troelstra and van Dalen [162, Sections
13.1-3] use the Fan theorem.

In the mentioned series of papers, Kreisel considers four statements of com-
pleteness, (we denote by M a pair (D,~P))

SC: Strong completeness: (∀M . M Í A) →⊢ A;
WC: Weak completeness: 6⊢ A →¬ (∀M . M Í A);
SCS: Strong completeness by substitution: ∃M (M Í A →⊢ A);
WCS: Weak completeness by substitution: ∃M (6⊢ A →M 6Í A),

for which the following implications hold:

SCS //

��

SC

��
WCS // WC

2Beth’s proof turned out to be faulty, as noticed by Dyson and Kreisel [64], but it is possible
to repair it. (See for example [162, Chapter 13].)

3See also the reviews [140, 139, 141].
4But not vice versa, since there are Beth models where A ∨B holds, but neither A nor

B hold.

3.1. HISTORICAL OVERVIEW 61

In Chapters 1 and 2 we have been proving SCS (but where ⊢ was classi-
cal derivation), by building universal models from which completeness in any
model follows.

He then proves these results, about certain subclasses of formulae:

• IQC is WCS for negative formulae (i.e. without∨,∃ and where all atomic
formulae are negated), that is, formulae having the form of a result of
Gödel’s double-negation translation; [119, Theorem 4]

• IQC is WCS for formulae where each atomic formula and each logical
connective are doubly negated, that is, formulae that are a product of
Kolmogorov’s double-negation translation; [119, Theorem 5];

• IQC is SCS for quantifier-free and prenex formulae; [116, Theorem 5].

But, more interestingly for us, he also proves the following two theorems,
that connect weak and strong completeness via Markov’s Principle,

(MP) ¬∀n A0(n) →∃n¬A0(n),

and two schemes related to the Double-negation shift (DNS) schema, restricted
to Σ

0
1-formulae,

(DNSΣ
+) ∀α¬¬∃n A0(α,n) →∀α∃n A0(α,n),

and

(DNSΣ) ∀α¬¬∃n A0(α,n) →¬¬∀α∃n A0(α,n),

where A0 is a primitive recursive formula of HAω(i.e. A0 is such that there exists a
primitive recursive function f , such that HAω ⊢∀α∀n(f (α,n) = 0 ↔ A0(α,n))).

3.1.1. Theorem (Theorem 2 of [119]). Given Markov’s Principle, weak complete-

ness of IQC implies strong completeness.

PROOF. The derivability predicate is primitive recursive, that is, there is a
primitive recursive function Prf, and an enumeration of formulae p·q, such that
⊢ A is a shortcut for ∃n.Prf(n,pAq) = 0.

Let now ∀M . M Í A. Then also ¬¬∀M . M Í A. By “contraposition” of WC,
we get that ¬ 6⊢ A, that is, ¬¬∃n.Prf(n,pAq) = 0, which is in a form equivalent to
the premise of MP. Hence, MP gives us that ∃n.¬¬Prf(n,pAq) = 0, and, since Prf
is primitive recursive, ∃n.Prf(n,pAq) = 0 i.e. ⊢ A. �

The proof did not use a definition of validity of A, and so it holds for any
kind of semantics, that is, regardless of our previous comments about the link
between intuitive and Beth/Kripke semantics via the Fan theorem.

3.1.2. Theorem (Theorem 1 of [120]). If strong completeness of IQC holds, so

does DNSΣ
+. In particular, from the strong completeness of the negative fragment

of formulae, MP holds.

Kreisel announces this theorem already in [119], credits the observation to
Gödel, and gives a proof in [120], saying that the result essentially relies on
Gödel’s incompleteness theorem. However, due to his use of the system FC (a
system that diverges from both constructive and intuitionistic (in today’s sense)
systems), we have not yet been able to understand the proof.

3.1.3. Corollary. Weak completeness of IQC implies DNSΣ.

62 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

PROOF. From SC → DNSΣ
+, we get ¬¬ SC →¬¬ DNSΣ

+, hence5

WC →¬¬ DNSΣ

+ → DNSΣ.

�

Thus, strong and weak completeness are equivalent in the presence of MP.
Finally, Kreisel remarks that, due to Theorem 3.1.2, the possibility of having

strong completeness for IQC is not “plausible.”, because MP is “not at all plausi-
ble on the intended interpretation of logical constants”; while, the possibility of
weak completeness is “not so implausible”, because DNSΣ “may be provable on
the basis of as yet undiscovered axioms which hold for the intended interpreta-
tion”.

3.1.2. Veldman’s proof. Nevertheless, Veldman gave in [175] an intuition-
istic completeness proof for IQC with respect to Kripke models. He reasoned
that one can circumvent the argument of Gödel and Kreisel, if “loosely speak-
ing, negation is treated positively”. He modified the notion of Kripke model to
allow certain worlds to force absurdity, and proved strong completeness by sub-
stitution, that is, he built a universal Kripke model out of a derivation system,
the set of possible worlds being a spread [161], and then used the Fan theorem
to handle the cases of “∨” and “∃”.

Note that, if one is interested only in completeness of minimal logic (MQC),
Veldman’s modified Kripke models become the same thing as standard Kripke
models. In the models that we will give in Section 3.3, we will also use exploding
nodes to “treat negation positively”.

Veldman’s approach has been extended by Friedman to handle Beth models.
It appears that he did not publish his results, we know about them only from the
detailed reconstruction by Troelstra and van Dalen [162, Chapter 13]. They, too,
make use of the Fan theorem.

3.2. Type-directed partial evaluation for λ-calculus with sum

Instead of trying to find out the computational content of the arguments
of the previous section by looking at realisability interpretations which validate
the Fan theorem, we decided to follow the trail of an approach from Theoretical
Computer Science.

It is the one of Danvy, who developed a computer program that charac-
terises quite succinctly the computational content behind NBE for λ-calculus
with sums. Actually, what he gave was an algorithm for type-directed partial

evaluation (TDPE) of such a calculus.
Partial evaluation, in general, is a group of techniques from Semantics of

Programming Languages, that allow a program to be specialised when some of
its inputs are known in advance (static inputs), before the program is actually
run on other inputs determined by the run-time environment (dynamic inputs).
If we represent a program by a term in some typed λ-calculus,

⊢ p : τs → τd → τr ,

5 Note, however, that WC :=¬¬ SC , and WC as defined in the beginning of this subsection,
are only equivalent over intuitionistic logic; if one uses minimal logic, a principle like DNS⇒

T
of

Section 4.2 is needed.

3.2. TYPE-DIRECTED PARTIAL EVALUATION FOR λ-CALCULUS WITH SUM 63

(where τs is a type for the static input, τd is a type for the dynamic input, and
τr is a type of the result) a partial evaluator’s task is to produce from p, and
some fixed static input s, another program ⊢ ps : τd → τr such that the original
and the produced program evaluate to the same value for any dynamic input
d . Of course, one can trivially define ps := ps, but the point in the context of
programming languages is for the specialised program ps to be more efficient
than p applied to s at run-time. Typically, ps is generated from p in order to skip
unnecessary case distinctions on the input s, since branching (case distinction,
if-then-else) is an expensive operation in today’s microprocessors.

Type-directed partial evaluation is a technique invented by Danvy [57, 56]
for generating a specialised program ps , by recursion on the structure of the (de-
sired) type of ps , starting from the static input – evaluated/compiled version of
the original program p. Danvy remarked that TDPE for simply typed λ-calculus
coincides6 with Berger and Schwichtenberg’s NBE from Section 2.1, that is, we
have the same pair of “reify” and “reflect” functions, but this time extended to
the case of “∨”:

↓τ : D →Λ-nf

↓τ := a 7→ a τ-atomic

↓τ→σ := S 7→λa.# ↓σ (S· ↑τ a) a-fresh

↓τ∨σ := S 7→

{
ι1(↓τ S′) , if S = inl ·S′

ι2(↓σ S′) , if S = inr ·S′

↑τ : Λ-ne → D

↑τ := a 7→ a τ-atomic

↑τ→σ := e 7→ S 7→↑σ e(↓τ S)

↑τ∨σ := e 7→S κ.case e of
(
a1.#κ · (inl ·(↑τ a1))‖a2.#κ · (inr ·(↑σ a2))

)
ai -fresh

As before, we can characterise explicitly typedλ-terms, normalλ-terms, and
neutral λ-terms by the following inductive definitions.

Λ ∋ p, q :=aτ | λaτ.pσ | pτ→σqτ | ι1p | ι2p | case pτ∨σ of
(
aτ

1 .q
ρ
1 ‖aσ

2 .q
ρ
2

)

Λ-nf ∋ r :=eτ | λaτ.rσ | ιτ1r | ιτ2r

Λ-ne ∋ e :=aτ | eτ→σr τ | case eτ∨σ of
(
aτ

1 .r
ρ
1 ‖aσ

2 .r
ρ
2

)

The new symbols that appear in the algorithm above, # and S , read “re-
set” and “shift”, are known as delimited control operators [58, 59].7 They are a

6For a nice connection between normalisation and partial evaluation, the lecture notes of
Dybjer and Filinski [63] are to be recommended.

7A different kind of delimited control operators were proposed independently by
Felleisen[69], based on his previous works with Friedman, Kohlbecker, Duba and Merrill.[71, 72,

70]. For a historic reflection on the discovery of these delimited control operators see Felleisen’s
appendix to the article of Ariola and Herbelin [12], or the PhD thesis of Biernacki [35].

64 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

very general way for allowing side-effects in the otherwise pure (effect-free) λ-
calculus. Actually, in a sense, shift and reset are the most general way of sup-
plying side-effects, because of the result of Filinski [73, 74], that shift and reset
can simulate any monadic computational effect. A proper treatment of these
delimited control operators is the subject of Chapter 4, here we give by example
an explanation of their computational behaviour.

Reset # is a “control delimiter”, its purpose is to limit the scope of the control
operators shift (S) it envelops. Shift (S κ.π) then captures the part of the pro-
gram (the “context” P [·]) between the delimiter and itself, names it κ, and then
inverts the context and π. (The precise reduction rules can be seen in Defini-
tion 4.1.6.) This is to be contrasted with what happens with the common use of
control operators like call/cc, where the effect of a call to the control operator is
not limited, that is, the entire context the program is run in is captured.

Let us look at some examples of computation with a λ-calculus extended by
shift and reset, and where we have the plus operation on numbers. (plus binds
more strongly than reset and shift)

1+#2+S k.4 → 1+#4
{

(λa.#2+a)
/

k
}

= 1+#4 → 1+4 → 5

In this example, the continuation variable k, which represents the environment
up to the reset, was not used, hence shift just “escaped” with its result to the
delimiter, ignoring the context “2+�” it was wrapped in.

1+#2+S k.k4+k8

→1+#(λa.#2+a)4+ (λa.#2+a)8

→+1+#(#6)+ (#10)

→+1+#6+10

→+17

In this example, the abstracted context was used twice, in two independent sub-
expressions.

We can treat the continuation variable k as any other variable, hence also
compose it with itself, as the following example shows.

1+#2+S k.k(k4)+k8

→1+#(λa.#2+a) ((λa.#2+a)4)+ (λa.#2+a)8

→+1+#(##8)+ (#10)

→+1+#8+10

→+19

We now show how the TDPE algorithm works, by applying it to the lambda
term λa.a at type τ∨σ→ τ∨σ, where both τ and σ are atomic types. We sup-
pose that λa.a has been evaluated to the identity id := α 7→ α in the domain of
interpretation D (recall the evaluation function J−K : Λ→ D of Section 2.1), al-
though we have not specified anything about D . A precise specification of it is
the subject of Sections 3.3 and 3.4.

We first remark that, for a fresh variable a, we have

↑τ∨σ a =S κ.case a of
(
a1.#κ · (inl · ↑τ a1)‖a2.#κ · (inr · ↑σ a2)

)

=S κ.case a of (a1.#κ · (inl ·a1)‖a2.#κ · (inr ·a2)) .

3.3. COMPLETENESS FOR KRIPKE-STYLE MODELS 65

Now,

↓τ∨σ→τ∨σ id =λa.# ↓τ∨σ
(
id · ↑τ∨σ a

)

=λa.# ↓τ∨σ
(
↑τ∨σ a

)

=λa.#

{
ι1(↓τ S′) , if inl ·S′ =↑τ∨σ a

ι2(↓σ S′) , if inr ·S′ =↑τ∨σ a

=λa.#case a of
(
a1.#ι1(↓τ a1)‖a2.#ι2(↓σ a2)

)

=λa.#case a of (a1.#ι1a1‖a2.#ι2a2)

=λa.case a of (a1.ι1a1‖a2.ι2a2),

where, after the step for shift, we implicitly used the equations

ι1(↓τ a1) =

{
ι1(↓τ S′) , if inl ·S′ = inl ·a1

ι2(↓σ S′) , if inr ·S′ = inl ·a1

and

ι2(↓σ a2) =

{
ι1(↓τ S′) , if inl ·S′ = inr ·a2

ι2(↓σ S′) , if inr ·S′ = inr ·a2.

3.3. Completeness for Kripke-style models

There is a close connection between shift and reset, and the continuation-
passing style (CPS) translations, that is, the double-negation translations [143].
In fact, shift and reset have been invented for the purpose of being able to pro-
gram in direct style, what would normaly have to be programmed in continuation-
passing style. Besides the original [58, 59], Section 4.2 and Appendix A are ex-
plicit about the connection.

In this section we present a notion of model that we developed when writ-
ing a continuation-passing style proof based on Danvy’s direct-style program.
We show that intuitionistic predicate logic (IQC) is sound and complete for that
notion of model.

The reader will see that the introduced notion is very similar to CBV Kripke
models for classical logic from Section 2.4. However, the similarity was not in-
tended by design, it was a subsequent realisation that the two notions share the
same structure.

3.3.1. Definition. An intuitionistic Kripke-style model is given by:

• a preorder (K ,≤) of possible worlds;

• a binary relation on worlds (−)(−)
⊥

labelling a world as exploding;

• a binary relation (−)s (−) of strong forcing between worlds and atomic
formulae, such that

for all w ′ ≥ w, w s X → w ′ s X ,

w s ⊤ is true,

w s ⊥ iff ∀C .w C
⊥;

• and a domain of quantification D(w) for each world w , such that

for all w ′ ≥ w,D(w) ⊆ D(w ′).

The relation (−) s (−) of strong forcing is extended from atomic to composite

formulae inductively and by simultaneously defining one new relation, (non-
strong) forcing:

66 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

⋆ A formula A is forced in the world w (notation w A) if, for any formula C ,

∀w ′ ≥ w.
(
∀w ′′ ≥ w ′. w ′′ s A → w ′′ C

⊥

)
→ w ′ C

⊥;

• w s A∧B if w A and w B ;
• w s A∨B if w A or w B ;
• w s A ⇒ B if for all w ′ ≥ w , w A implies w B ;
• w s ∀x.A(x) if for all w ′ ≥ w and all t ∈ D(w ′), w ′ A(t);
• w s ∃x.A(x) if w A(t) for some t ∈ D(w).

3.3.2. Remark. The differences with Definition 2.4.1 are framed. We can also
present the classical (non-strong) forcing relation using binary exploding nodes,
by:

∀w ′ ≥ w.
(
∀w ′′ ≥ w ′. w ′′ s A →∀I .w ′′ I

⊥

)
→∀O.w ′ O

⊥;

The difference between forcing in intuitionistic and classical Kripke-style mod-
els is, then, that both have the form of a continuations monad (see Lemma 3.3.4),
but while for intuitionistic forcing the answer type of the monad and of the in-
side continuation is the same, C , in classical forcing we are allowed to change
the answer type of the continuation, I , when computing the answer type of the
monad, O.

3.3.3. Lemma. Strong forcing and (non-strong) forcing are monotone in any Kripke-

style model.

PROOF. Monotonicity of strong forcing is proved by induction on the com-
plexity of the formula, while that of forcing is by definition. The proof is easy
and available in the Coq formalisation. �

3.3.4. Lemma. The following monadic operations are definable for Kripke-style

models:

“unit” η(·) : w s A → w A

“bind” (·)∗(·) : (∀w ′ ≥ w. w ′ s A → w ′ B) → w A → w B

PROOF. The proof for unit is obvious. Let

(3) ∀w ′ ≥ w. w ′ s A → w ′ B ,

let w A, and let a formula C and a world w ′ ≥ w be given s.t.

(4) ∀w ′′ ≥ w ′. w ′′ s B → w ′′ C
⊥ .

To prove w ′ C
⊥

we apply w A and then, given w ′′ ≥ w ′ and w ′′ s A, we have
to prove w ′′ C

⊥
. This follows from Lemma 3.3.3 by combining (3) and (4).

If we leave implicit the handling of formulae C , worlds, and monotonicity,
we have the following procedures behind the proofs.

η(α) = κ 7→ κα

(φ)∗(α) = κ 7→α(β 7→φβκ)

We did not mark explicitly meta-level application by “·” here, like we did in Sec-
tion 2.5, because there is no risk of confusion, for no object-language applica-
tion has been introduced yet. �

3.3. COMPLETENESS FOR KRIPKE-STYLE MODELS 67

(a : A) ∈ Γ
AX

Γ⊢ a : A
Γ⊢ff : ⊥

⊥E
Γ⊢ a : A

Γ⊢ p : A1 Γ⊢ q : A2
∧I

Γ⊢ (p, q) : A1 ∧ A2

Γ⊢ p : A1 ∧ A2
∧i

EΓ⊢πi p : Ai

Γ⊢ p : Ai
∨i

IΓ⊢ ιi p : A1 ∨ A2

Γ⊢ p : A1 ∨ A2 Γ, a1 : A1 ⊢ q1 : C Γ, a2 : A2 ⊢ q2 : C
∨E

Γ⊢ case p of
(
a1.q1‖a2.q2

)
: C

Γ, a : A1 ⊢ p : A2
⇒I

Γ⊢λa.p : A1 ⇒ A2

Γ⊢ p : A1 ⇒ A2 Γ⊢ q : A1
⇒E

Γ⊢ pq : A2

Γ⊢ p : A(x) x-fresh
∀I

Γ⊢λx.p : ∀x.A(x)

Γ⊢ p : ∀x.A(x)
∀E

Γ⊢ pt : A(t)

Γ⊢ p : A(t)
∃I

Γ⊢ (t , p) : ∃x.A(x)

Γ⊢ p : ∃x.A(x) Γ, a : A(x) ⊢ q : C x-fresh
∃E

Γ⊢ dest p as (x.a) in q : C

Table 1: Proof term annotation for the natural deduction system of IQC

With Table 1, we fix a derivation system for IQC. We use the same convention
for names of variables and terms as in Definition 2.2.1. We also give the syntax
of raw λ-terms via the following inductive definitions, in order to supplement
the characterisation of normal and neutral terms from page 63.

Λ ∋ p, q :=a | λa.p | pq | case p of
(
a1.q1‖a2.q2

)
| (p, q) | π1p | π2p |

λx.p | pt | (t , p) | dest p as (x.a) in q

Λ-nf ∋ r :=e | λa.r | ι1r | ι2r | (r1,r2) | λx.r | (t ,r)

Λ-ne ∋ e :=a | er | case e of (a1.r1‖a2.r2) | π1e | π2e | et |

dest e as (x.a) in r

As before, let w Γ denote that all formulae from Γ are forced.

3.3.5. Theorem (Soundness). If Γ ⊢ p : A, then, in any world w of any Kripke-

style model, if w Γ, then w A.

PROOF. This is proved by a simple induction on the derivation. We give the
algorithm behind it in section 3.4. �

3.3.6. Remark. The condition “for all formula C ” in Definition 3.3.1 is only nec-
essary for the soundness proof to go through, more precisely, the cases of elimi-
nation rules for∨ and⇒. The completeness proof goes through even if we define
forcing by

∀w ′ ≥ w.
(
∀w ′′ ≥ w ′. w ′′ s A → w ′′ A

⊥

)
→ w ′ A

⊥ .

3.3.7. Definition. The Universal Kripke-style model U is obtained by setting:

68 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

• K to be the set of contexts Γ of IQC;
• Γ≤ Γ

′ iff Γ⊆ Γ
′;

• Γs X iff there is a derivation in normal form of Γ⊢ X in IQC;
• ΓC

⊥
iff there is a derivation in normal form of Γ⊢C in IQC;

• for any w , D(w) is a set of individuals for IQC (that is, D(−) is a constant
function from worlds to sets of individuals).

(−)s (−) is monotone because of the weakining property for intuitionistic “⊢”.

3.3.8. Remark. The difference between strong forcing and the exploding node
predicate in U is that the former is defined on atomic formulae, while the latter
is defined on any kind of formulae.

3.3.9. Lemma. We can also define the monadic “run” operation on the universal

model U , for atomic formulae A:

µ(·) : w A → w s A.

PROOF. Trivial, by setting C := A. �

3.3.10. Theorem (Cut-Free Completeness for U). For any closed formula A and

closed context Γ, the following hold for U :

Γ A −→ {p | Γ⊢ p : A} (“reify”)(↓)

Γ⊢ e : A −→ Γ A (“reflect”)(↑)

Moreover, the target of (↓) is a normal term, while the source of (↑) is a neutral

term.

PROOF. We will once again skip writing the proof term annotations in order
to decrease the level of detail. The algorithm behind this proof that concentrates
on proof terms is given in Section 3.4.

Base case. (↓) is by “run” (Lemma 3.3.9), (↑) is by “unit” (Lemma 3.3.4).
Induction case for ∧. Let Γ A∧B i.e.

∀C . ∀Γ′ ≥ Γ.
((
∀Γ′′ ≥ Γ

′. Γ′′ A and Γ
′′ B → Γ

′′ ⊢C
)
→ Γ

′ ⊢C
)

.

We apply this hypothesis by setting C := A∧B and Γ
′ := Γ, and then, given Γ

′′ ≥ Γ

s.t. Γ
′′ A and Γ

′′ B , we have to derive Γ
′′ ⊢ A ∧B . But, this is immediate by

applying the ∧I rule and the induction hypothesis (↓) twice, for A and for B .
Let Γ ⊢ A ∧B be a neutral derivation. We prove Γ A ∧B by applying unit

(Lemma 3.3.4), and then applying the induction hypothesis (↓) on ∧1
I , ∧2

I , and
the hypothesis.

Induction case for ∨. Let Γ A∨B i.e.

∀C . ∀Γ′ ≥ Γ.
((
∀Γ′′ ≥ Γ

′. Γ′′ A or Γ′′ B → Γ
′′ ⊢C

)
→ Γ

′ ⊢C
)

.

We apply this hypothesis by setting C := A∨B and Γ
′ := Γ, and then, given Γ

′′ ≥ Γ

s.t. Γ′′ A or Γ′′ B , we have to derive Γ
′′ ⊢ A∨B . But, this is immediate, after a

case distinction, by applying the ∨i
I rule and the induction hypothesis (↓).

We now consider the only case (besides ↑∃x A(x) below) where using shift and
reset, or our Kripke-style models, is crucial. Let Γ⊢ A∨B be a neutral derivation.
Let a formula C and Γ

′ ≥ Γ be given, and let

(#) ∀Γ′′ ≥ Γ
′.

(
Γ
′′ A or Γ′′ B → Γ

′′ ⊢C
)

.

We prove Γ
′ ⊢C by the following derivation tree:

3.3. COMPLETENESS FOR KRIPKE-STYLE MODELS 69

Γ⊢ A∨B

Γ
′ ⊢ A∨B

A ∈ A,Γ′

AX
A,Γ′ ⊢ A

(↑)
A,Γ′ A

inl
A,Γ′ A or A,Γ′ B

(#)
A,Γ′ ⊢C

B ∈ B ,Γ′

AX
B ,Γ′ ⊢ B

(↑)
B ,Γ′ B

inr
B ,Γ′ A or B ,Γ′ B

(#)
B ,Γ′ ⊢C

∨E
Γ
′ ⊢C

Induction case for ⇒. Let Γ A ⇒ B i.e.

∀C . ∀Γ′ ≥ Γ.
((
∀Γ′′ ≥ Γ

′.
(
∀Γ3 ≥ Γ

′′. Γ3 A → Γ3 B
)
→ Γ

′′ ⊢C
)
→ Γ

′ ⊢C
)

.

We apply this hypothesis by setting C := A ⇒ B and Γ
′ := Γ, and then, given

Γ
′′ ≥ Γ s.t.

(#) ∀Γ3 ≥ Γ
′′. Γ3 A → Γ3 B

we have to derive Γ
′′ ⊢ A ⇒ B . This follows by applying (⇒I), the IH for(↓), then

(#), and finally the IH for (↑) with the AX rule.
Let Γ ⊢ A ⇒ B be a neutral derivation. We prove Γ A ⇒ B by applying

unit (Lemma 3.3.4), and then, given Γ
′ ≥ Γ and Γ

′ A, we have to show that
Γ
′ B . This is done by applying the IH for (↑) on the (⇒E) rule, with the IH for

(↓) applied to Γ
′ A.

Induction case for ∀. We recall that the domain function D(−) is constant in
the universal model U . Let Γ∀x A(x) i.e.

∀C . ∀Γ′ ≥ Γ.
((
∀Γ′′ ≥ Γ

′.
(
∀Γ3 ≥ Γ

′′. ∀t ∈ D. Γ3 A(t)
)
→ Γ

′′ ⊢C
)
→ Γ

′ ⊢C
)

.

We apply this hypothesis by setting C := ∀x A(x) and Γ
′ := Γ, and then, given

Γ
′′ ≥ Γ s.t.

(#) ∀Γ3 ≥ Γ
′′. ∀t ∈ D. Γ3 A(t)

we have to derive Γ
′′ ⊢∀x A(x). This follows by applying (∀I), the IH for(↓), and

then (#).
Let Γ ⊢ ∀x A(x) be a neutral derivation. We prove Γ ∀x A(x) by applying

unit (Lemma 3.3.4), and then, given Γ
′ ≥ Γ and t ∈ D , we have to show that Γ′

A(t). This is done by applying the IH for (↑) on the (∀E) rule and the hypothesis
Γ⊢∀x A(x).

Induction case for ∃. Let Γ ∃x A(x) i.e.

∀C . ∀Γ′ ≥ Γ.
((
∀Γ′′ ≥ Γ

′.
(
∃t ∈ D. Γ′′ A(t)

)
→ Γ

′′ ⊢C
)
→ Γ

′ ⊢C
)

.

We apply this hypothesis by setting C := ∃x A(x) and Γ
′ := Γ, and then, given

Γ
′′ ≥ Γ s.t. ∃t ∈ D. Γ′′ A(t), we have to derive Γ

′′ ⊢ ∃x A(x). This follows by
applying (∃I) with t ∈ D , and the IH for(↓).

Let Γ⊢ ∃x A(x) be a neutral derivation. Let a formula C and Γ
′ ≥ Γ be given,

and let

(#) ∀Γ′′ ≥ Γ
′.

(
∃t ∈ D.Γ′′ A(t) → Γ

′′ ⊢C
)

.

We prove Γ
′ ⊢C by the following derivation tree:

Γ⊢∃x A(x)
Γ
′ ⊢∃x A(x)

A(x) ∈ A(x),Γ′

AX
A(x),Γ′ ⊢ A(x)

(↑)
A(x),Γ′ A(x)

(#)
A(x),Γ′ ⊢C x-fresh

∃E
Γ
′ ⊢C

70 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

The output is in normal form. By inspection of the proof. �

3.3.1. A variant without the preorder≤. We end this section by mentioning
that a variant of Kripke-style models is possible where the preorder on the set of
possible worlds is not primitive, but defined. Namely, using the exploding nodes
predicate, we can define

w ≤ w ′ :=∀C . w C
⊥→ w ′ C

⊥ .

It is easy to see that this is a preorder.
In the universal model U , the definition amounts to the implication

(
∀C . Γ⊢C → Γ

′ ⊢C
)
→ Γ⊆ Γ

′.

3.4. Computational content

By reflection inside the Coq proof assistant, we can check that the computa-
tional content of the composition of Theorem 3.3.5 and Theorem 3.3.10 is proof
normalisation. The reader can look by himself at the examples in the Coq for-
malisation. The reduction relation here is just the standard one for λ-calculus,
unlike the one of Chapter 2.

Also, unlike in Chapter 2, the question of whether we obtained call-by-value
or call-by-name evaluation strategy does not make much sense, since in the in-
tuitionistic case, a well-typed λ-term reduces to a unique normal form, regard-
less of the reduction strategy.

We again give hand-extracted versions of the algorithms behind the proofs,
that deliberately avoid manipulating worlds and universally quantified formula
C , in order to make the computational content clearer.

The following is the evaluation procedure, that is, the algorithm behind the
proof of Soundness. We skip using “·” for meta-level application, because there
is no risk of confusion.

JΓ⊢ p : AK : w Γ→ w A

J(p, q)K := ρ 7→ η
(
JpKρ,JqKρ

)

Jπ1pK := ρ 7→ κ 7→ JpKρ
(
γ 7→ κ(fstγ)

)

Jπ2pK := ρ 7→ κ 7→ JpKρ
(
γ 7→ κ(sndγ)

)

Jι1pK := ρ 7→ η
(
inl

(
JpKρ

))

Jι2pK := ρ 7→ η
(
inr

(
JpKρ

))

Jcase p of
(
a1.q1‖a2.q2

)
K := ρ 7→ κ 7→ JpKρ

(
γ 7→

{
Jq1K(ρ,α)κ if γ= inlα
Jq2K(ρ,β)κ if γ= inrβ

)

Jλa.pK := ρ 7→ η
(
α 7→ JpK(ρ,α)

)

JpqK := ρ 7→ κ 7→ JpKρ
(
ret

(
JqKκ

))

3.6. RELATED AND FUTURE WORK 71

The following is the algorithm behind the completeness proof. Here we use
“·” for meta-level application and no symbol for object-level application.

↓A : Γ A →
{

p ∈Λ-nf | Γ⊢ p : A
}

↑A : {e ∈Λ-ne | Γ⊢ e : A} → Γ A

↓X :=α 7→µ ·α X -atomic

↑X := e 7→ η ·e X -atomic

↓A∧B := η ·
(
γ 7→

(
↓A (fst ·γ),↓B (snd ·γ)

))

↑A∧B := e 7→ η
(
↑A π1e,↑B π2e

)

↓A∨B := η ·

(
γ 7→

{
↓A α if γ= inl ·α
↓B β if γ= inr ·β

)

↑A∨B := e 7→ κ 7→ case e of
(
a1.κ ·

(
inl · ↑A a1

)
‖a2.κ ·

(
inr · ↑B a2

))

↓A⇒B := η ·
(
φ 7→λa. ↓B

(
φ· ↑A a

))

↑A⇒B := e 7→ η ·
(
α 7→↑B

(
e
(
↓A α

)))

3.5. Aspects of the Coq formalisation

The formalisation is available at the address ❤tt♣✿✴✴✇✇✇✳❧✐①✳♣♦❧②t❡❝❤♥✐q✉❡✳
❢r✴⑦❞❛♥❦♦✴❝♦❞❡.

The fragment without quantifiers was formalised independently of the for-
malisations of Chapter 2. For the version with quantifiers, once we realised that
the intuitionistic and classical CBV Kripke-style models share the same struc-
ture, we developed it in parallel to the classical one. Thus, we have nothing to
add that was not remarked already in Section 2.6. The sole difference is that in
this chapter we rely on a natural deduction system, while in Chapter 2 we relied
on a sequent calculus.

We did not include the ∧ connective in the formalisation, because we knew
that it would not be problematic to add it later.

3.6. Related and future work

3.6.1. The problem of canonical η-long normal form for sums. Although
Danvy’s program, and our proof, do produce η-long normal forms, these normal
forms are not canonical.

Consider, for example, the proof term λa.a, normalised for the formula (A∨

B ⇒C) ⇒ A∨B ⇒C , (where A,B ,C are atomic formulae)

↓(A∨B⇒C)⇒A∨B⇒C λa.a =λa.λb.a (case b of (c1.ι1c1‖c2.ι2c2)) .

We should expect that the proof term

λa.λb.case b of (c1.a (ι1c1)‖c2.a (ι2c2)) ,

when normalised for the same formula, should be identified to the result of
the first normalisation above, since they denote essentially the same derivation.

http://www.lix.polytechnique.fr/~danko/code
http://www.lix.polytechnique.fr/~danko/code

72 3. KRIPKE-STYLE MODELS FOR INTUITIONISTIC LOGIC

However, we get as result the starting term itself:

↓(A∨B⇒C)⇒A∨B⇒C λa.λb.case b of (c1.a (ι1c1)‖c2.a (ι2c2)) =

=λa.λb.case b of (c1.a (ι1c1)‖c2.a (ι2c2)) .

This may be seen as a defect, and we might want to add to Danvy’s program,
or to our proof, a rewrite rule which would produce the same result on the two
different inputs above. While that would work for this concrete example, adding
just one more rewrite rule would not solve the problem in general.

Actually, the problem is related to Tarski’s High-School Algebra Problem.
Tarski asked [44] whether any true formula8 of the structure (N,+, ·, (−)(−),1),
that is, number theory with addition, multiplication, exponentiation and 1, can
be deduced only on the basis of the eleven arithmetic identities taught in high-
school:

1 · x = x x · y = y · x (x · y) · z = x · (y · z)

x1 = x 1x = 1 x y ·z = (x y)z

(x · y)z = xz · y z x + y = y +x (x + y)+ z = x + (y + z)

x · (y + z) = x · y +x · z x(y+z) = x y · xz

While for the fragments (N,+, ·,1) and (N, ·, (−)(−),1) a corresponding fragment
of the above identities suffices, Wilkie showed in [184] that there exists a true
equation which is not derivable on the bases of the above identities alone. Fur-
thermore, Gurevič [93] showed that no finite number of identities added to the
above ones would suffice, by giving an infinite number of equations resembling
Wilkie’s one.

This problem has a direct connection to intuitionistic logic, by its connec-
tion to typed λ-calculi, made precise in [76]. There, Fiore, Di Cosmo, and Balat,
show that an infinite sequence of type isomorphisms analogous to Gurevič’s
equations exists, and that, therefore, the notion of canonical normal form for
λ-calculus with sums is not finitely axiomatisable.

Although, as a consequence of their work, giving such a canonical normal
form does not seem easy, Balat, Di Cosmo, and Fiore, propose, for practical pur-
poses, to narrow down the notion of normal form arising from Danvy’s program.
In [22, 19, 20], they propose three kinds of optimisations to expand the equiv-
alence classes of normal terms, and implement them [21] using delimited con-
trol. For example, by using their TDPE algorithm, the two example terms this
section was started with would be normalised to the same term.

In the future, we would like to investigate the problem of canonical normal
forms in the context of the logical system proposed in Chapter 4.

3.6.2. Normalisation by evaluation for intuitionistic systems. We mentio-
ned the semantic cut-elimination techniques of Girard, Okada and Sambin in
Section 2.7, which also apply to the intuitionistic case.

In [10], Altenkirch, Dybjer, Hofmann, and Scott, give a categorical proof of
NBE for a typed λ-calculus with sums, by constructing a sheaf model. The con-
necting between sheaves and Beth semantics is well known. While the proof is

8Recall the truth definition of page 12.

3.6. RELATED AND FUTURE WORK 73

constructive, due to their use of topos theory, we could not see what the algo-
rithm behind their proof is and how they manage to produce canonical normal
forms in spite of their non finite-axiomatisability.

We remark that, for the fragment {⇒,∀,∧}, NBE can also be seen as com-
pleteness for Beth semantics, since forcing in Beth and Kripke models is the
same thing on that fragment.

The NBE method has been applied to higher order and dependently typed
intuitionistic systems, in the works of Abel, Aehlig, Coquand, and Dybjer [6, 7,

9, 3, 5].

3.6.3. Macedonio-Sambin’s models. In [133], Macedonio and Sambin pre-
sent a notion of model for extensions of Basic logic (a sub-structural logic that
is more basic than Linear logic), which, for intuitionistic logic, appears to be
related to our notion of model. However, they insist that their “set of worlds”
must be saturated, while we do not. Also, Sambin and Macedonio remark [134]
that their notion of model is neither Beth nor Kripke’s one.

3.6.4. Using call/cc or exceptions instead of delimited control. The conti-
nuation-passing style proof of completeness (given as program in Section 3.4)
could not be written in direct style by using the call/cc control operator. This is
so, because the calls to the continuations in the case of sum-reflection are not
tail calls, while it is well known that the CPS translation of a program that uses
call/cc always produces a program where continuations only perform tail calls.

Nevertheless, in [25], Barral gives a program for NBE ofλ-calculus with sums
by just using the exceptions mechanism of a programming language, which is
something a priori strictly weaker than using delimited control.

3.6.5. Constructive completeness for standard Kripke models. In Subsec-
tion 4.5.11, we discuss the possibility of a completeness proof w.r.t. standard

Kripke models, in the context of the logical system introduced in Chapter 4.

CHAPTER 4

Extension of intuitionistic logic with delimited control

One starting point for the work presented in this chapter was the search for
a more direct way of formulating the intuitionistic completeness proof of Chap-
ter 3, that is, the quest for logical understanding of delimited control operators.
Soon after the completeness proof of Chapter 3 was formalised, Herbelin ob-
served that:

(1) If one restricts the computational power of delimited control to ac-
count for computational effects corresponding to programming lan-
guage exceptions, one can build a simple intuitionistic logic that is ca-
pable of deriving Markov’s Principle;

(2) Using the full power of delimited control, one is able to derive the Dou-
ble Negation Shift schema.

The first point was worked out by Herbelin in [100]. In this chapter, we pro-
pose a logical system for addressing the second point. This is, of course, not
the first attempt to extend intuitionistic logic with control operators. Since Grif-
fin’s observation [92] that the control operator call/cc can be assigned a type
expressing Peirce’s law, there has been much research on the computational
content of classical logic. One particularly far reaching approach is Krivine’s
[126, 127, 128]. However, from the perspective of the Curry-Howard isomor-
phism, such approaches suffer a defect of using classical logic for program spec-
ification: for example, a proof of an existential statement does not necessarily
contain the witness of existence, therefore one has to rely on meta-theorems in
order to know that a witness will eventually (if ever) be computed from the proof.

We have introduced, from the computational perspective, the shift/reset de-
limited control operators in Chapter 3. From the logical perspective, in the con-
text of proof terms, we see delimited control as means of being able to access a

certain part of the surroundings of a proof term from inside the proof term itself,
as opposed to non-delimited control (essentially the call/cc operator) where
the proof term can only access the entire surroundings indiscriminately, which
amounts computationally to aborting the entire computation and waiting to be
restarted by a meta-level interpreter. The part of the surrounding that we want
to be able to access will be defined as a “pure evaluation context” in Section 4.1;
logically, it is the surroundings of a proof term for a {⇒,∀}-free formula, which
is the predicate logic equivalent of arithmetic Σ

0
1-formulae, for which we know

that classical and intuitionistic provability coincide. In other words, we will pro-
pose a proof term calculus for a logic which is essentially intuitionistic, except
that at the fragment Σ0

1 we are allowed to use classical reasoning to obtain more
efficient proofs.

The system proposed in this chapter does not come out of the blue. In fact,
we think of this work as a contribution to merging two very active but distinct

75

76 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

research directions: the search for logical meaning of computational effects (or
delimited control) from Semantics of Programming Languages and the realis-
ability interpretations related to bar recursion from Mathematical Logic.

In the next section, Section 4.1, we will introduce the system MQC+. The
acronym comes from Troelstra: IQC is intuitionistic predicate logic, MQC is
minimal predicate logic (IQC without the ⊥E rule), and CQC is classical pred-
icate logic.

In Section 4.2, we will give an elementary proof of equiconsistency with
MQC, and further comparisons with provability in CQC and MQC. In particu-
lar, we will show that an extension to predicate logic of Glivenko’s theorem holds
for our system, unlike for MQC.

In Section 4.3, we will use the reduction relation on proof terms, to prove
that: 1) reduction between proof terms does not change their logical meaning
(Subject Reduction); 2) if a proof term is not in final form (a value), it will further
reduce (Progress).

In Section 4.4, we will prove that every reduction sequence of proof terms
is finite and ends with a value (Normalisation), and deduce that the disjunction
and existence properties hold for MQC+.

In the final Section 4.5, we will discuss related work and give a couple of
possible directions for future work.

4.1. The system MQC+

The natural deduction system of MQC+ is shown in Table 1. The derivations
can be annotated by a {⇒,∀}-free formula T , but, at the moment1, at most one

such formula is allowed globally.2 The symbol ⋄ is used in the annotations as
a wild-card, to mean that there either is an annotating formula T , or there is
none. In the proof rules where the wild-card appears both above and below the
line, it means that either there is an annotation both above and below, or there
is no annotation above and no annotation below. Following Ulrich Berger [31],
we call the {⇒,∀}-free formulae, Σ-formulae, and denote them by S,T,U , while
general formulae are denoted by A,B ,C .

The proof rules of MQC+ are the proof rules of MQC, plus two new rules, (S)
and (#). The intuitionistic rules neither use nor set the annotating Σ-formula.
The rule (#) can only be applied when the conclusion is a Σ-formula; since those
formulae, loosely speaking, correspond to the Σ

0
1-formulae of the arithmetical

hierarchy, the (#) rules envelop a piece of “classical” reasoning from which wit-
nesses for disjunction and existential quantification can be “extracted”. To use
another metaphor, the (#) rule sets a “control delimiter” (for the Σ-formula T be-
ing set for the annotation) above which we can perform computational effects
as long as the result of the entire computation is the data-type, or Σ-formula, T .
The rule (S) can be used only in a sub-derivation of a (#) derivation, that is, only
above an already set control delimiter. The role of (S) is to “escape” to the near-
est enclosing control delimiter once an intuitionistic witness for the Σ-formula
from the annotation has been found. Multiple uses of (#) and (S) are allowed
in a derivation, but due to current restrictions to only one global annotating Σ-
formula, the uses of (#) and (S) must be on the same annotating formula. In

1See Subsection 4.5.10 for a discussion.
2Were we in IQC, a natural choice for the global formula would be ⊥.

4.1. THE SYSTEM MQC+ 77

A ∈ Γ
AX

Γ⊢⋄ A

Γ⊢⋄ A1 Γ⊢⋄ A2 ∧I
Γ⊢⋄ A1 ∧ A2

Γ⊢⋄ A1 ∧ A2
∧i

EΓ⊢⋄ Ai

Γ⊢⋄ Ai
∨i

IΓ⊢⋄ A1 ∨ A2

Γ⊢⋄ A1 ∨ A2 Γ, A1 ⊢⋄ C Γ, A2 ⊢⋄ C
∨E

Γ⊢⋄ C

Γ, A1 ⊢⋄ A2 ⇒I
Γ⊢⋄ A1 ⇒ A2

Γ⊢⋄ A1 ⇒ A2 Γ⊢⋄ A1 ⇒E
Γ⊢⋄ A2

Γ⊢⋄ A(x) x-fresh
∀I

Γ⊢⋄ ∀x.A(x)
Γ⊢⋄ ∀x.A(x)

∀E
Γ⊢⋄ A(t)

Γ⊢⋄ A(t)
∃I

Γ⊢⋄ ∃x.A(x)
Γ⊢⋄ ∃x.A(x) Γ, A(x) ⊢⋄ C x-fresh

∃E
Γ⊢⋄ C

Γ⊢T T
(“reset”)

Γ⊢⋄ T

Γ, A ⇒ T ⊢T T
S (“shift”)

Γ⊢T A

Table 1: Natural deduction system of MQC+

particular, when the (#) rule is applied with a conclusion which is annotated,
the premise keeps the same annotation, and hence such a rule has no real use –
the control delimited has already been set further down in the derivation.

As examples, we give the derivations for (generalisations of) the minimal-
logic versions3 of Markov’s Principle,

(MPT) (T ⇒ S) ⇒ ((S ⇒ T) ⇒ T) ⇒ S,

and Double Negation Shift,

(DNST) ∀x. ((A(x) ⇒ T) ⇒ T) ⇒ (∀x.A(x) ⇒ T) ⇒ T,

where, according to the already set convention, T and S are Σ-formulae, while
A(x) is a general one.

AX
· · · ⊢S T ⇒ S

AX
· · · ⊢S (S ⇒ T) ⇒ T

AX
· · · ,S ⊢S S

S
· · · ,S ⊢S T

⇒I
· · · ⊢S S ⇒ T

⇒E
· · · ⊢S T

⇒E
T ⇒ S, (S ⇒ T) ⇒ T ⊢S S

#
T ⇒ S, (S ⇒ T) ⇒ T ⊢ S

⇒I
⊢ (T ⇒ S) ⇒ ((S ⇒ T) ⇒ T) ⇒ S

3The distinguished formula T plays the role of ⊥ and the hypothesis T ⇒ S plays the role of
the ex-falso rule.

78 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

AX· · ·

· · ·
∀E ,⇒R , and AX

∀x. ((A(x) ⇒ T) ⇒ T) ,∀x.A(x) ⇒ T, A(x) → T ⊢T T
S

∀x. ((A(x) ⇒ T) ⇒ T) ,∀x.A(x) ⇒ T ⊢T A(x)
∀I , x-fresh

∀x. ((A(x) ⇒ T) ⇒ T) ,∀x.A(x) ⇒ T ⊢T ∀x.A(x)
⇒E

∀x. ((A(x) ⇒ T) ⇒ T) ,∀x.A(x) ⇒ T ⊢T T
#

∀x. ((A(x) ⇒ T) ⇒ T) ,∀x.A(x) ⇒ T ⊢ T
⇒I

∀x. ((A(x) ⇒ T) ⇒ T) ⊢ (∀x.A(x) ⇒ T) ⇒ T
⇒I

⊢∀x. ((A(x) ⇒ T) ⇒ T) ⇒ (∀x.A(x) ⇒ T) ⇒ T

We will now define a calculus of proof term annotations for the natural de-
duction system of MQC+, a version of lambda calculus with constants for han-
dling the additional logical connectives and the delimited control operator, and
then a reduction system for proof terms. All this is standard material, see for ex-
ample the calculi of [14, 155, 185]. What is new is the connection to MQC and
CQC, and the elementary proofs specific to our typing system.

(a : A) ∈ Γ
AX

Γ⊢⋄ a : A

Γ⊢⋄ p : A1 Γ⊢⋄ q : A2
∧I

Γ⊢⋄ (p, q) : A1 ∧ A2

Γ⊢⋄ p : A1 ∧ A2
∧i

EΓ⊢⋄ πi p : Ai

Γ⊢⋄ p : Ai
∨i

IΓ⊢⋄ ιi p : A1 ∨ A2

Γ⊢⋄ p : A1 ∨ A2 Γ, a1 : A1 ⊢⋄ q1 : C Γ, a2 : A2 ⊢⋄ q2 : C
∨E

Γ⊢⋄ case p of
(
a1.q1‖a2.q2

)
: C

Γ, a : A1 ⊢⋄ p : A2
⇒I

Γ⊢⋄ λa.p : A1 ⇒ A2

Γ⊢⋄ p : A1 ⇒ A2 Γ⊢⋄ q : A1
⇒E

Γ⊢⋄ pq : A2

Γ⊢⋄ p : A(x) x-fresh
∀I

Γ⊢⋄ λx.p : ∀x.A(x)

Γ⊢⋄ p : ∀x.A(x)
∀E

Γ⊢⋄ pt : A(t)

Γ⊢⋄ p : A(t)
∃I

Γ⊢⋄ (t , p) : ∃x.A(x)

Γ⊢⋄ p : ∃x.A(x) Γ, a : A(x) ⊢⋄ q : C x-fresh
∃E

Γ⊢⋄ dest p as (x.a) in q : C

Γ⊢T p : T
(“reset”)

Γ⊢⋄ #p : T

Γ,k : A ⇒ T ⊢T p : T
S (“shift”)

Γ⊢T S k.p : A

Table 2: Proof term annotation for the natural deduction system of MQC+

4.1.1. Definition. The set of proof terms is defined by the following grammar
rules,

p, q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

)
| (p, q) | π1p | π2p | λa.p | pq |

λx.p | pt | (t , p) | dest p as (x.a) in q | #p | S k.p

4.1. THE SYSTEM MQC+ 79

where a,b,k, l denote hypotheses variables, x, y, z denote quantifier variables,
and t ,u, v denote quantifier terms (individuals); hence, λa.p is a constructor
for implication, while λx.p is a constructor for universal quantification; (p, q) is
a constructor for conjunction while (t , p) is a constructor for existential quan-
tification, and pq is a destructor for implication while pt is a destructor for uni-
versal quantification.

Actually, we will call proof terms only those proof terms that can be given a
valid derivation according to the rules of Table 2.

4.1.2. Remark. The S in S k.p is a binder, it binds k in p just as λ binds a in q

in some λa.q .

4.1.3. Definition. The subset of proof terms known as values is defined by:

V ::= a | ι1V | ι2V | (V ,V) | (t ,V) | λa.p | λx.p

4.1.4. Definition. The set of pure evaluation contexts, a subset of all proof terms
with one placeholder or “hole”, is defined by:

P ::= [] | case P of
(
a1.p1‖a2.p2

)
| π1P | π2P | dest P as (x.a) in p |

P q | (λa.q)P | P t | ι1P | ι2P | (P, p) | (V ,P) | (t ,P)

The association of proof terms to natural deduction derivations is given in
Table 2. P [p] denotes the proof term obtained from P by replacing its place-
holder [] with the proof term p.

In order to define a reduction relation on proof terms we also need the no-
tion of (non-pure) evaluation context.

4.1.5. Definition. The set of evaluation contexts is given by the following gram-
mar rule:

E ::= [] | case E of
(
a1.p1‖a2.p2

)
| π1E | π2E | dest E as (x.a) in p |

E q | (λa.q)E | Et | ι1E | ι2E | (E , p) | (V ,E) | (t ,E) | #E

The set of evaluation contexts is larger than the set of pure evaluation con-
texts, because it includes #. As before, E [p] denotes the proof term obtained
from E by replacing its placeholder [] with the proof term p.

4.1.6. Definition. The reduction relation on proof terms “→” is defined by the
following rewrite rules:

(λa.p)V → p{V /a} case ιi V of
(
a1.p1‖a2.p2

)
→ pi {V /ai }

(λx.p)t → p{t/x} dest (t ,V) as (x.a) in p → p{t/x}{V /a}

πi (V1,V2) →Vi #P [S k.p] → #p {(λa.#P [a])/k}

#V →V E [p] → E [p ′] when p → p ′

The last rule is known as the “congruent closure” of the preceding rules. The rule
for S applies only when the evaluation context P is pure. The reduction strategy
determined by the rules is call-by-value reduction.

4.1.7. Example. The following are proof terms corresponding to the derivations
given for MPT and DNST in the beginning of this section.

λe.λa.#e(a(λb.S k.b))

80 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

λa.λb.#b(λx.S k.axk)

Remark that the proof term for MPT does not make use of the continuation k,
but only uses the S operator to pass the value b, once it has been found in the
course of the computation, back to the control delimiter #.

4.2. Relationship to MQC and CQC

In this section we define a translation of MQC+-derivations to MQC-deriva-
tions, thus obtaining the equiconsistency of the two systems, and some char-
acterisation of the mutual-provability in MQC, CQC and MQC+. The idea is to
use a kind of continuations monad for interpreting a formula A whose structure
depends on the syntactic shape of A.

4.2.1. Definition. The superscript translation AT of a formula A with respect to
a Σ-formula T is defined via the subscript translation AT , which is defined by
recursion on the structure of A:

AT :=(AT ⇒ T) ⇒ T

AT :=A if A is atomic

(A�B)T :=AT�BT for �=∨,∧

(A ⇒ B)T :=AT ⇒ B T

(∃A)T :=∃AT

(∀A)T :=∀AT

We write ΓT for the translation (−)T applied to each formula of a context Γ indi-
vidually.

The translation is the standard call-by-value CPS translation of types [151],
and is similar to the Kuroda translation [161], the difference being that we add
a double negation, not only after ∀, but also after ⇒. Curiously, when interpret-
ing, using DNS, the negative translation of the axiom of countable choice AC0, a
transformation from the Kuroda translation of AC0 into our form, with ¬¬ after
⇒, seems [114, p. 200] to be needed. Avigad has remarked [17] that the Kuroda
translation makes essential use of the ⊥E rule.

4.2.2. Remark. A call-by-name version of the translation (·)T can be used as well,
as shown in Appendix A. We decided to stick with the call-by-value translation
in order to correspond more closely with the simulation result of Section 4.4.

It will be sometimes convenient to use the standard monadic operations for
manipulating the (·)T translation. These take the form of proof transformations.

4.2.3. Lemma. The following operations are definable for MQC:

“unit” η(·) : Γ⊢ AT → Γ⊢ AT

“bind” (·)∗(·) :
(
∀Γ′ ≥ Γ. Γ′ ⊢ AT → Γ

′ ⊢ B T
)
→ Γ⊢ AT → Γ⊢ B T

“run” µ(·) : Γ⊢ T T → Γ⊢ T

4.2. RELATIONSHIP TO MQC AND CQC 81

PROOF. Using the proof terms:

η=α 7→λk.kα

µ=α 7→α(λa.a)

φ∗q =λk.q(λa.(φ ·a)k)

�

Notice that we can only “run” a monad when it is of form T T and T is a Σ-
formula.

We will denote derivation in MQC+by “⊢+”, derivation in MQC by “⊢m”,
derivation in IQC by “⊢i ”, and the one in CQC by “⊢c ”.

4.2.4. Theorem (Equiconsistency). Given a derivation of Γ ⊢+ A, which uses S

and # for the Σ-formula T , we can build a derivation of ΓT ⊢m AT .

PROOF. By induction on the derivation. For each rule we use a correspond-
ing proof term from the table below, except in the cases for ∧,∨,∃ – when the
formula being proved is a Σ-formula – then we can simply apply the last used
derivation rule on the induction hypotheses.

a =λk.ka = η ·a

λa.p =λk.k
(
λa.λk ′.p

(
λb.k ′b

))

pq =λk.p
(
λ f .q

(
λa. f a (λb.kb)

))

(p, q) =λk.p
(
λa.q (λb.k (a,b))

)

π1p =λk.p (λc.k (π1c))

ι1p =λk.p (λa.k (ι1a))

case p of
(
a1.q1‖a2.q2

)
=λk.p

(
λc. case c of

(
a1.q1k‖a2.q2k

))

λx.p =λk.k
(
λx.λk ′.p

(
λb.k ′b

))

pt =λk.p
(
λ f . f tk

)

(t , p) =λk.p (λa.k(t , a))

dest p as (x.a) in q =λk.p
(
λc. dest c as (x.a) in qk

)

#ap =λk.k
(
p(λa.a)

)
= η · (µ ·p)

S l .p =λk.
(
p(λa.a)

){
λa.λk ′.k ′ (ka)

/
l
}

=λk.
(
µ ·p

){
λa.η · (ka)

/
l
}

�

We would now like to compare the MQC+-provability of certain forms of
formulae with their probability in MQC and CQC. Please note that we abuse the
language by taking CQC to be MQC plus the double-negation elimination rule
relative to a global fixed formula T i.e. ⊢c ¬T ¬T A →⊢c A. By ¬T A we denote
the formula A ⇒ T . When it is clear from the context, we omit the annotation T

from ¬T .

4.2.5. Definition. The Markov Principle for T is the following generalisation of
the minimal-logic version of Markov’s principle:

(MPT) (T ⇒ S) ⇒¬T ¬T S ⇒ S,

82 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

or, more symmetrically,

¬T ¬T S ⇒¬S¬ST.

4.2.6. Definition. The Double Negation Shift for T (DNST) is the following gen-
eralisation of the usual DNS schema, extended with a clause handling implica-
tion:

∀x.¬T ¬T A(x) ⇒¬T ¬T (∀x.A(x))(DNS∀
T)

(A →¬T ¬T B) ⇒¬T ¬T (A → B)(DNS⇒
T)

4.2.7. Proposition. DNST ⊢m ¬T ¬T A ⇔ AT .

PROOF. Induction on the complexity of A. When A is atomic, AT =¬¬A.

(∧) Both directions are via the proof term

λc.λk.IHA

(
λk ′.c

(
λd .k ′ (π1d)

)
(
λa.IHB

(
λk ′.c

(
λd .k ′ (π2d)

))
(λb.k (a,b))

))
.

(∨) Both directions are via the proof term

λa.λk.a (λc.

case c of (a1.IHA (λl .l a1) (λb.k (ι1b))‖a2.IHB (λl .l a2) (λb.k (ι2b))))

(∃) Analogous to case (∨).
(⇒) From left to right via the proof term

λc.λk.IH→
A

(
λk ′.k

(
λa.λk ′′.k ′a

))
(
λa.IH←

B

(
λk ′.c

(
λ f .k ′

(
f a

)))(
λb.k

(
λa′.b

)))
.

From right to left, had we had the ex-falso rule, we could have given
the proof term

λc.λk.IH←
A

(
λk ′.k

(
λa.abort(k ′a)

))
(
λa.IH→

B

(
λk ′.c

(
λ f .k ′

(
f a

)))(
λb.k

(
λa′.b

)))
.

But, since we are in minimal logic, we use DNS⇒
T :

λc.λk.IH←
A

(
λk ′.DNS⇒

T

(
λa.λk ′′.k ′a

)
k
)

(
λa.IH→

B

(
λk ′.c

(
λ f .k ′

(
f a

)))(
λb.k

(
λa′.b

)))
.

It is not known to the author if the use of DNS⇒
T can be avoided.

(∀) We have:

(∀x A(x))T =¬¬(∀x AT (x))
IH
↔¬¬(∀x¬¬A(x))

DNS∀
T

↔ ¬¬¬¬∀x A(x) ↔¬¬∀x A(x)

�

4.2.8. Lemma. Γ⊢c A if and only if ΓT ⊢m AT .

PROOF. The direction right-to-left follows from the previous lemma. The
other direction is by induction on the derivation of Γ⊢c A. Actually, we can use
the CPS translation of Theorem 4.2.4 to treat all cases, except for the ¬¬E rule

4.3. SUBJECT REDUCTION AND PROGRESS 83

which was not covered by the translation. To show that ΓT ⊢m AT follows from
ΓT ⊢m (¬¬A)T , we use the fact that ⊢m ¬¬(TT) ↔ T (by the µ and η operators):

(¬¬A)T = ((A ⇒ T) ⇒ T)T =¬¬((AT ⇒¬¬T) ⇒¬¬T)

⇔¬¬((AT ⇒ T) ⇒ T) =¬¬¬¬AT ⇔¬¬AT = AT .

�

4.2.9. Corollary. For any formula A, we have:

⊢+ A
4.2.4 // ⊢m AT

4.2.7
��

oo 4.2.8 // ⊢c A

⊢+ ¬¬A DNST ⊢m ¬¬Aoo

4.2.10. Corollary. For any formula A, we have the following diagram:

⊢+ ¬¬A
4.2.4 // ⊢m (¬¬A)T

4.2.7
��

oo 4.2.8 // ⊢c A

DNST ⊢m ¬¬A

OO

DNST ⊢m ¬¬¬¬Aoo

In particular, the statement⊢+ ¬¬A ←→⊢c A represents an extension of Glivenko’s

theorem [81, 171, 181] to predicate logic.

4.3. Subject reduction and progress

In this section we prove that the reduction on proof terms satisfies Subject
Reduction and Progress. First, a couple of lemmas are in order.

4.3.1. Lemma (Annotation Weakening). If Γ⊢ p : A, then Γ⊢T p : A for any T .

PROOF. A simple induction on the derivation. �

4.3.2. Lemma (Substitutions). The following hold:

(1) If Γ, a : A ⊢⋄ p : B and Γ⊢⋄ q : A, then Γ⊢⋄ p{q/a} : B.

(2) If Γ⊢⋄ p : B(x), where x is fresh, and t is a closed term, then Γ⊢⋄ p{t/x} :
B(t).

PROOF. The proof is standard, by induction on the derivation (see for exam-
ple [155]). The new rules S and # pose no problems, since we can use the identi-
ties (#p){q/a} = #(p{q/a}) and (S k.p){q/a} =S k.(p{q/a}) when k is fresh. �

4.3.3. Lemma (Decomposition). If Γ ⊢T P [S k.p] : B, then there is a formula A

and derivations Γ,k : A ⇒ T ⊢T p : T and Γ, a : A ⊢T P [a] : B.

PROOF. The proof is by induction on the derivation. We only need to con-
sider the rules that can generate a pure evaluation context of the required form.
Of the rules that we consider, for the intuitionistic rules, the proof is simply by
using the induction hypothesis, as shown below for the ∧I rule; and the only
non-intuitionistic rule to consider is S , because # does not generate a pure eval-
uation context.

• For ∧I , there are two cases to consider, depending on whether the pure
evaluation context is (P [S k.p], q) or (V ,P [S k.p]), but the proofs are
analogous. Let the last rule in the derivation be:

84 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

Γ⊢T P [S k.p] : B1 Γ⊢T q : B2

Γ⊢T (P [S k.p], q) : B1 ∧B2

The induction hypothesis gives us a formula A1 and two derivations,
Γ,k : A1 ⇒ T ⊢T p : T and Γ, a : A1 ⊢T P [a] : B1, from which the goal
follows by choosing A := A1.

• For S , the pure evaluation context must be the empty one, so the last
used rule is:

Γ,k : B ⇒ T ⊢T p : T

Γ⊢T [S k.p] : B

If we set A := B , the goal follows from the premise of the rule above and,
for Γ, a : A ⊢T [a] : A, from the AX rule.

�

4.3.4. Lemma (Annotation Strengthening). Γ⊢S V : T −→ Γ⊢V : T

PROOF. The proof is by induction on the derivation and very simple. We only
need to consider the intuitionistic rules that introduce a value and that prove a
Σ-formula, that is, the rules AX, ∧I , ∨1

I , ∨2
I , and ∃I . S and # do not introduce a

value. �

4.3.5. Theorem (Subject Reduction). If Γ⊢⋄ p : A and p → q, then Γ⊢⋄ q : A.

PROOF. The proof is by induction on the derivation and is standard (see for
example [155]), by using Substitutions Lemma 4.3.2 and Decomposition Lemma
4.3.3. Below, we consider the new rules and, for illustration, one of the intuition-
istic rules.

(#) We have Γ ⊢⋄ #p and #p → q for some q . We look at three possible
cases, because there are three rules for rewriting a term of form #p. If
q ≡ #q ′ and the reduction was by the congruence rule, we have p → q ′;
now use IH and the # rule to finish the proof. If p is a value and q ≡ p,
then Γ ⊢T q : T ; now use Strengthening Lemma 4.3.4 to conclude Γ ⊢

q : T . The third case is when p ≡ P [S k.p ′] and q ≡ #p ′{(λa.#P [a])/k},
and the proof is by combining Lemmas 4.3.2 and 4.3.3.

(S) This case is impossible, since there are no rules for reducing a term
of form S k.p on its own, and the set of evaluation contexts does not
include a clause for S k.[].

(∧1
E) We have Γ⊢⋄ p : A∧B , Γ⊢⋄ π1p : A, and π1p → q . If the reduction was

by the congruence rule, then q ≡ π1q ′ for some q ′, and we can use IH.
Otherwise, p ≡ (V1,V2) and q ≡ V1, and Γ ⊢⋄ p : A ∧B must have been
proved by the ∧I rule, which is enough.

�

While the theorem above shows that reducing a proof term does not change
its logical specification, the next one shows that a proof term which is not in
normal form does not get “stuck”.

4.3.6. Theorem (Progress). If ⊢⋄ p : A, p is not a value, and p is not of form

P [S k.p ′], then p reduces in one step to some proof term r .

PROOF. By induction on the derivation. The cases AX, (⇒I), and (∀I) intro-
duce a value, while the case (S) introduces a S k.p term.

4.4. NORMALISATION, DISJUNCTION AND EXISTENCE PROPERTIES 85

(∧I) We have that ⊢⋄ (p, q) : A ∧B and (p, q) is neither a value nor of form
P [S k.p ′]. Then also none of p, q is of form P [S k.p ′]. If p is not value,
by IH, for some r , (p, q) → (r, q). If p is a value, then q must be a non-
value, and then we use IH on q .

(∧1
E) We have that ⊢⋄ π1p : A and that π1p, hence p itself, is not of form

P [S k.p ′]. If p is a value, then it must be a pair (V1,V2), so π1(V1,V2) →
V1. If p is not a value, we can use IH to obtain π1p →π1r for some r .

(∨I) From ⊢⋄ ι1p : A ∨B and ι1p a non-value and not of form P [S k.p ′], we
have that p is not a value and not of that form, so we use IH to obtain
an r such that p → r , hence ι1p → ι1r .

(∨E) We have ⊢⋄ case p of
(
a1.p1‖a2.p2

)
: C . If p is a value, then it is of

form ιi V , therefore case ιi V of
(
a1.p1‖a2.p2

)
→ pi {V /ai }. If p is of form

P [S k.p ′], then so is case p of
(
a1.p1‖a2.p2

)
. Otherwise, we use IH to

obtain an r such that case p of
(
a1.p1‖a2.p2

)
→ case r of

(
a1.p1‖a2.p2

)
.

(⇒E) We have ⊢⋄ pq : B . If either p or q is of form P [S k.p ′], then so is
pq . If p is a value, then it is of form λa.r ; if q is a value E [(λa.r)q] →
E [r {q/a}]; if q is not a value, by IH, E [(λa.r)q] → E [(λa.r)q ′] for some
q ′. Otherwise, by IH, p → r for some r , so pq → r q .

(∀E) We have ⊢⋄ pt : A(t). If p is of form P [S k.p ′], then so is pt . If p is a
value, then it is of form λx.r , hence (λx.r)t → r {t/x}. Otherwise, by IH,
p → r for some r , so pt → r t .

(∃I) From ⊢⋄ (t , p) : A(t) and (t , p) a non-value and not of form P [S k.p ′],
we have that p is not a value and not of that form, so we use IH to obtain
an r such that (t , p) → (t ,r).

(∃E) We have ⊢⋄ dest p as (x.a) in q : C . If p is a value, then it is of form
(t ,V), therefore dest (t ,V) as (x.a) in q → q {t/x} {V /a}. If p is of form
P [S k.p ′], then so is dest p as (x.a) in q . Otherwise, we use IH to obtain
an r such that dest p as (x.a) in q → dest r as (x.a) in q .

(#) We have ⊢⋄ #p : T . If p is a value, then #p → p. If p ≡ P [S k.p ′], then
#p → #p ′{λa.#P [a]/k}. If p is neither a value nor of form P [S k.p ′], by
IH, p → p ′, so #p → #p ′.

�

4.4. Normalisation, disjunction and existence properties

In this section we prove that every well-delimited4 proof term of MQC+,
which is not a value, reduces to a value in finitely many steps.

A first approach would be to use Normalisation of MQC and Theorem 4.2.4,
and prove in addition only that the CPS translation preserves reduction, that is,
if ⊢+ p : A and p → r , then pk →+ r k, for any proof term k of the right type.
For the case of simply-typed call-by-value lambda calculus, and a CPS trans-
lation equivalent to ours, this statement is known as Plotkin’s simulation the-
orem [151]. But, even for that restriction of our calculus (no pairs, no sums,
and no delimited control), Plotkin had to come up with a technique known as
the “colon” translation, in order to deal with “administrative” η-redexes, and the
overall translation proceeds in two phases.

4By well-delimited, we will refer to proof terms in which there is an enclosing reset delimiter
for the shift operators used. That is, a proof term is well-delimited, when it corresponds to a
derivation ⊢+ without an annotating Σ-formula at the root of the derivation tree.

86 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

Instead of extending the colon translation to the additional constructs that
we have, we took the approach of Danvy and Filinski from [60]. They give a
one-phase proof of simulation for the call-by-value lambda calculus that avoids
the colon translation, and also shows how to handle the extra logical connec-
tives and delimited control. The trick is to use a two-level lambda calculus: a
meta-level consisting of the meta- function abstraction and application, and an
object-level lambda calculus as target of the translation. In that way, the admin-
istrative η-redexes can be handled by the meta-language.

The two-level CPS translation is given in Table 3. The meta-level abstraction
and application are denoted by “7→” and “α ·b”, to differ from the object level
ones, “λ” and “ab”. The Greek letter κ will stand for meta-continuations, that is,
proof transformations of type ΓT ⊢m AT → ΓT ⊢m T , and the letters α,β,γ,φ will
stand for derivations ΓT ⊢m C . The meta-continuation “id” will stand for α 7→α.
For the typing of the two-level translation of p we thus have

p : (ΓT ⊢m AT → ΓT ⊢m T) → ΓT ⊢m T.

Note, however, that for the lemmas of this section to be well-typed, we need to
be slightly more general in the typing as described in Appendix A. The added
complexity does not change the argument, therefore we give a version which
closelly follows the original work of Danvy and Filinski.

a = κ 7→ κ ·a

λa.p = κ 7→ κ ·
(
λa.λk.p ·

(
β 7→ kβ

))

pq = κ 7→ p ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

(p, q) = κ 7→ p ·
(
α 7→ q ·

(
β 7→ κ ·

(
α,β

)))

π1p = κ 7→ p ·
(
γ 7→ κ ·

(
π1γ

))

ι1p = κ 7→ p · (α 7→ κ · (ι1α))

case p of
(
a1.q1‖a2.q2

)
= κ 7→ p ·

(
γ 7→

(
case γ of

(
a1.q1 ·κ‖a2.q2 ·κ

)))

λx.p = κ 7→ κ ·
(
λx.λk.p ·

(
β 7→ kxβ

))

pt = κ 7→ p ·
(
φ 7→φt (λb.κ ·b)

)

(t , p) = κ 7→ p · (α 7→ κ · (t ,α))

dest p as (x.a) in q = κ 7→ p ·
(
γ 7→

(
dest γ as (x.a) in q ·κ

))

#p = κ 7→ κ ·
(
p · id

)

S l .p = κ 7→
(
p · id

){
λa.λk.k (κ ·a)

/
l
}

Table 3: Two-level CPS translation

4.4.1. Lemma. If ⊢+ V : A for V a value, then, for any κ, we have that V ·κ =

κ · (V · id).

PROOF. We do induction on the derivation and consider only the rules that
can introduce a value (Definition 4.1.3).

(AX) a ·κ= (κ 7→ κ ·a) ·κ= κ ·a = κ · ((κ 7→ κ ·a) · id) = κ · (a · id).

4.4. NORMALISATION, DISJUNCTION AND EXISTENCE PROPERTIES 87

(∧I)

(V1,V2) ·κ=V1 ·
(
α 7→V2 ·

(
β 7→ κ ·

(
α,β

)))

=V2 ·
(
β 7→ κ ·

(
V1 · id,β

))

= κ ·
(
V1 · id,V2 · id

)

= κ ·
(
V2 ·

(
β 7→

(
V1 · id,β

)))

= κ ·
(
V1 ·

(
α 7→V2 ·

(
β 7→

(
α,β

))))

= κ ·
(
V1 ·

(
α 7→V2 ·

(
β 7→ id ·

(
α,β

))))
= κ ·

(
(V1,V2) · id

)

(∨1
I)

ι1V ·κ=V · (α 7→ κ · (ι1α))

= κ ·
(
ι1

(
V · id

))

= κ ·
(
V · (α 7→ (ι1α))

)

= κ ·
(
V · (α 7→ id · (ι1α))

)
= κ ·

(
ι1V · id

)

(⇒I)

λa.p ·κ= κ ·
(
λa.λk.p ·

(
β 7→ kβ

))

= κ ·
(
id ·

(
λa.λk.p ·

(
β 7→ kβ

)))
= κ ·

(
λa.p · id

)

The cases (∀I) and (∃I) are analogous to the ones of (⇒I) and (∨1
I). �

4.4.2. Lemma. If Γ ⊢+ q : A and V is a closed value, then q{V /a} ·κ =
(
q ·κ

)
{V ·

id/a}, for any κ, a.

PROOF. By induction on the derivation of q .
If Γ ⊢+ q : A is derived by the AX rule, then q is a variable. If q = a, then by

Lemma 4.4.1, a{V /a} ·κ = V ·κ = κ · (V · id) = (κ 7→ κ · (V · id)) ·κ = ((κ 7→ κ · a) ·
κ){(V · id)/a} = (a ·κ){V · id/a}. Otherwise, V = b 6= a and the substitution has no
effect.

The rest of the cases are directly by the induction hypothesis, using the fact
that V is closed and that the binders λ and S bind fresh variables, hence the
substitution {V /a} can traverse the structure of q . We give one case for illustra-
tion.

(
S l .p

)
{V / a} ·κ=S l .

(
p {V / a}

)
·κ

=
(
p {V / a} · id

){
λb.λk.k (κ ·b)

/
l
}

=
(
p · id

){
V · id

/
a
}{

λb.λk.k (κ ·b)
/

l
}

=
(
p · id

){
λb.λk.k (κ ·b)

/
l
}{

V · id
/

a
}

=S l .p
{

V · id
/

a
}

�

88 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

4.4.3. Lemma. If P is a pure evaluation context, then, for every κ,

P [S l .s] ·κ=
(
s · id

){
λa.λk.k(P [a] ·κ)/l

}
.

PROOF. By induction on the derivation of P , considering only rules that can
construct a pure evaluation context (Definition 4.1.4).

For the empty pure evaluation context [], the equality follows directly from
the two-level CPS translation of S :

[S l .s] ·κ=
(
s · id

){
λa.λk.k (κ ·a)

/
l
}

=
(
s · id

){
λa.λk.k

(
[a] ·κ

)/
l
}

For the other cases, it is enough to show that Q[P [r]] = P [r] ·κ for some κ and
any r . For example,

P [S l .s]q ·κ= P [S l .s] ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

=
(
s · id

){
λa.λk.k

(
P [a] ·

(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

)))/
l
}

=
(
s · id

){
λa.λk.k

(
P [a]q ·κ

)/
l
}

.

From the sole form of the two-level CPS, this follows for the cases P [S l .s]q ,

(P [S l .s], q), (V ,P [S l .s]), π1P [S l .s], ι1P [S l .s], case P [S l .s] of
(
a1.q1‖a2.q2

)
,

P [S l .s]t , (t ,P [S l .s]), and dest P [S l .s] as (x.a) in q . Hence we have to check

only
(
λa.p

)
P [S l .s] (and

(
λx.p

)
P [S l .s] which is analogous):

(λa.p)P [r] ·κ=λa.p ·
(
φ 7→ P [r] ·

(
α 7→φα (λb.κ ·b)

))

=
(
φ 7→ P [r] ·

(
α 7→φα (λb.κ ·b)

))
·
(
λa.λk.s ·

(
β 7→ kβ

))

= P [r] ·
(
α 7→

(
λa.λk.s ·

(
β 7→ kβ

))
α (λb.κ ·b)

)

�

4.4.4. Lemma. If V is a value, then so is V · id.

PROOF. By a simple induction on the derivation of V . We need to use Lemma
4.4.1 for the case of ∧,∨ and ∃. �

The following lemma is a strengthening of Theorem 4.3.6 that, besides prov-
ing that the proof term p reduces in one step to r in MQC+, proves also that its
two-level CPS translation applied to a meta-continuation κ gives rise to:

• no reduction in MQC, when p → r by one of the two reduction rules for
reset;

• at least one step of reduction in MQC, when p → r by normal weak-
head reduction, that is, by a reduction rule which is not one for reset
and not the congruence rule;

• the same number of reduction steps in MQC, as the number of steps by
the congruence rule.

4.4. NORMALISATION, DISJUNCTION AND EXISTENCE PROPERTIES 89

We will use the wild-card notation →⋄ to denote this dependency of the
number of reduction steps for the translation, on the sort of the reduction rule
used in MQC+. We also use the wildcard for the Σ-formula annotation of ⊢+, but
the two uses of the wildcard are of course not related.

4.4.5. Lemma (CPS-Progress). If ⊢+
⋄ p : A, p is not a value, and p is not of form

P [S k.p ′], then, for some r , p →1 r and, for any κ, p ·κ→⋄ r ·κ.

PROOF. The proof has the same structure as the one of Theorem 4.3.6, there-
fore we will just amend it with the part concerning the two-level CPS translation.

(∧I) We consider the pair (p, q). If p → r , then (p, q) ·κ = p · (α 7→ q · (β 7→

κ · (α,β)))
IH
→⋄ r · (α 7→ q · (β 7→ κ · (α,β))) = (r, q) ·κ.

If p is a value and q → r , then (p, q)·κ= p ·(α 7→ q ·(β 7→ κ·(α,β)))
IH
→⋄

p · (α 7→ r · (β 7→ κ · (α,β))) = (p,r) ·κ.
(∧1

E) We consider the termπ1p. If p is a value, it is a pair (V1,V2) andπ1(V1,V2) →
V1. Then, by using Lemma 4.4.1 and Lemma 4.4.4,

π1(V1,V2) ·κ= (V1,V2) · (γ 7→ κ · (π1γ))

=V1 ·
(
α 7→V2 ·

(
β 7→

(
γ 7→ κ ·

(
π1γ

))
·
(
α,β

)))

=V2 ·
(
β 7→

(
γ 7→ κ ·

(
π1γ

))
·
(
V1 · id,β

))

=
(
γ 7→ κ ·

(
π1γ

))
·
(
V1 · id,V2 · id

)

= κ ·
(
π1

(
V1 · id,V2 · id

))

→ κ ·
(
V1 · id

)

=V1 ·κ.

If p is not a value, then π1p →π1r for some r , and

π1p ·κ= p · (γ 7→ κ · (π1γ))

IH
→⋄ r · (γ 7→ κ · (π1γ))

=π1r ·κ.

(∨I) We need to consider ι1p when p is neither a value nor of form P [S k.p ′],
and when there is an r such that p → r .

ι1p ·κ= p · (α 7→ κ · (ι1α))

IH
→⋄ r · (α 7→ κ · (ι1α))

= ι1r ·κ.

(∨E) We consider case p of
(
a1.q1‖a2.q2

)
. If p is a value, we know that

case ιi V of
(
a1.q1‖a2.q2

)
→ qi {V /ai },

90 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

and then, by using Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.4,

case ιi V of
(
a1.q1‖a2.q2

)
·κ= ιi V ·

(
γ 7→

(
case γ of

(
a1.q1 ·κ‖a2.q2 ·κ

)))

=V ·
(
α 7→

(
γ 7→

(
case γ of

(
a1.q1 ·κ‖a2.q2 ·κ

)))
· (ιiα)

)

=V ·
(
α 7→

(
case ιiα of

(
a1.q1 ·κ‖a2.q2 ·κ

)))

=
(
case ιi

(
V · id

)
of

(
a1.q1 ·κ‖a2.q2 ·κ

))

→ (qi ·κ){V · id/ai }

= qi {V /ai } ·κ.

Otherwise, p → r for some r , and

case p of
(
a1.q1‖a2.q2

)
·κ= p ·

(
γ 7→

(
case γ of

(
a1.q1 ·κ‖a2.q2 ·κ

)))

IH
→⋄ r ·

(
γ 7→

(
case γ of

(
a1.q1 ·κ‖a2.q2 ·κ

)))

= case r of
(
a1.q1‖a2.q2

)
·κ.

(⇒E) We consider the proof term pq . If p and q are both values, then p =

λa.s and pq → s{q/a}. Then, by using Lemma 4.4.1 and Lemma 4.4.2,

(λa.s)q ·κ=λa.s ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

=
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))
·
(
λa.λk.s · (b 7→ kb)

)

= q ·
(
α 7→

(
λa.λk.s · (b 7→ kb)

)
α (λb.κ ·b)

)

→+ q ·
(
α 7→

(
s · (b 7→ κ ·b)

)
{α/a}

)

= q ·
(
α 7→

(
s ·κ

)
{α/a}

)

= (s ·κ){q · id/a}

= s{q/a} ·κ.

In the →+ step we used the fact that s can have at most a as free vari-
able, which follows from p =λa.s being a closed term.

If p is a value λa.s and q is not, then q → r for some r , and

(λa.s)q ·κ=λa.s ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

→⋄ λa.s ·
(
φ 7→ r ·

(
α 7→φα (λb.κ ·b)

))

= (λa.s)r ·κ.

Otherwise, when p is not a value, and p → r for some r , we have
that

pq ·κ= p ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

→⋄ r ·
(
φ 7→ q ·

(
α 7→φα (λb.κ ·b)

))

= r q ·κ.

(∀E) By analogy with ⇒E , but simpler.
(∃I) By analogy with ∨I .
(∃E) By analogy with ∨E .

(#) We consider the proof term #p. If p is a value, then #p → p and

#p ·κ= κ · (p · id) = p ·κ.

4.5. APPLICATIONS, RELATED AND FUTURE WORK 91

If p is of form P [S l .q], then

#P [S l .q] ·κ= κ ·
(
P [S l .q] · id

)

(by Lemma 4.4.3) = κ ·
(
q · id

){
λa.λk.k

(
P [a] · id

)
/l

}

= κ ·
(
q · id

){
λa.λk.

(
β 7→ kβ

)
·
(
P [a] · id

)
/l

}

= κ ·
(
q · id

){
λa.λk.#P [a] ·

(
β 7→ kβ

)
/l

}

= κ ·
(
q · id

){
λa.#P [a] · id/l

}

= κ ·
(
q {λa.#P [a]/l } · id

)

= #q {λa.#P [a]/l } ·κ.

Otherwise, when #p → #r because p → r , by the induction hypoth-
esis we have

#p ·κ= κ · (p · id) →⋄ κ · (r · id) = #r .

�

4.4.6. Theorem (Normalisation). For every closed proof term p0, such that ⊢+

p0 : A, there is a finite reduction path p0 → p1 → . . . → pn ending with a value pn .

PROOF. A step of reduction p → r in MQC+ translates either into more then
one step of reduction p ·κ→+ r ·κ in MQC, or into definitional equality p ·κ= r ·κ,
if the reduction was by a rule for reset. However, a reset-reduction “spends” its
argument, the # or the S , hence it can occur only a finite number of times in

a row in a reduction sequence. Therefore, an infinite reduction path in MQC+

would give rise to an infinite reduction path in MQC. �

We are now ready to prove the disjunction and existence properties for the
well-delimited derivations of MQC+.

4.4.7. Corollary. If ⊢+ A∨B, then ⊢+ A or ⊢+ B. If ⊢+ ∃x A(x), then there exists a

closed term t such that ⊢+ A(t).

PROOF. Let ⊢+ p : A∨B . By Normalisation and Subject reduction, p →···→

V and ⊢+ V : A∨B . Since V is a value, V must be of form ι1V ′ or ι2V ′, therefore
either ⊢+ V ′ : A or ⊢+ V ′ : B . The case for “∃” is analogous. �

4.5. Applications, related and future work

4.5.1. Double negation shift. The first use of a schema equivalent to DNS
appears to be in modal logic, by Barcan [24, 23, 78], who introduced what is
today known as Barcan’s formula,

∀x�A(x) →�∀x A(x),

or, equivalently,
♦∃x A(x) →∃♦A(x).

Veldman kindly pointed to us that DNS is also known as Kuroda’s Conjecture
[129]. In [123], Kripke showed that Kuroda’s Conjecture and Markov’s Principle
(however, see also [117] for criticism of Kripke’s argument) are underivable in
intuitionistic logic.

92 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

In [118, Section 2.11], Kreisel used the principle

(GMP) ¬∀n A(n) ⇒∃n¬A(n),

for A(n) an arbitrary formula, to deal with implication while giving a transla-
tion of formulae of Analysis into functionals of finite type. In [148], Oliva calls
this principle the Generalised Markov Principle and remarks that HAω ⊢ DNS ↔

¬¬GMP. Kreisel does not give a justification of GMP in his paper.
The term “double negation shift” appears for the first time in [157] to denote

the formula

(DNS) ∀n¬¬A(n) ⇒¬¬∀n A(n).

There, Spector builds upon previous works of Gödel [88, 89, 90], namely he re-
alises DNS by adding the schema of bar recursion to Gödel’s system T. The name
“bar recursion” comes from the Bar Principle of Brouwer which is used in jus-
tifying it. However, Spector attaches no particular interest to the DNS schema
itself; he writes:

The schema [DNS] is chosen not because we believe it is of
intuitionistic significance, but to provide a formal system in
which classical analysis is easily interpreted, and whose logi-
cal basis is intuitionistic.[157]

We treat DNS at the level of predicate logic, not of arithmetic, and we hope
to explore in the future the status of this change.

4.5.2. Negative translation of Countable Choice. The Axiom of Countable
Choice is,

(AC0) ∀x0∃yρ A(x, y) ⇒∃ f 0→ρ∀x0 A(x, f (x)),

a formula schema of HAω, Heyting Arithmetic in all finite types. The type 0
stands for the set of natural numbers N, the type 1 = 0 → 0 stands for the func-
tions N→N, 2 stands for the functionals (0 → 0) → 0, and so on. Spector showed
that the Kuroda [114, p.163] negative translation, ¬¬(AC0

∗), of AC0,

(ACN
0) ∀x0¬¬∃yρ A∗(x, y) ⇒∃ f 0→ρ∀x0¬¬A∗(x, f (x)),

is provable from DNS and the intuitionistic AC0. Since AC0 is realisable in HAω,
and DNS is realisable by bar recursion, so is ACN

0 . His approach was extended to
Dependent Choice (DC) by Luckhardt [132] and Howard [106]. In recent years,
Kohlenbach, Berger, and Oliva gave their own versions of bar recursion (see [30]
for a comparison).

Since we treat DNS at the level of logic, we are only able to give an open proof
term deriving the negative translation of AC0,

(AC0T) ∀x0¬T ¬T ∃yρ AT (x, y) ⇒¬T ¬T ∃ f 0→ρ∀x0¬T ¬T AT (x, f (x)).

Given a variable c to denote a proof of the intuitionistic AC0, we can use a
proof term similar to the one of DNST for deriving the above schema:

λa.λk.#k(c(λx.S k ′.ax(λd .k ′(νd)))),

where ν is a proof term for ∃y AT (x, y) ⇒∃y AT (x, y).
The proof term being open means that we can not immediately use it for

computation. We would have to either develop a realisability semantics for MQC+,

4.5. APPLICATIONS, RELATED AND FUTURE WORK 93

or add delimited control to a system with strong existential quantifiers, like Martin-
Löf type theory, which can derive AC0. To us, the second approach seems more
attractive, but we do not pursue it in any more detail than what is given in the
next subsection.

4.5.3. ACN
0 and strong existential quantifiers. Herbelin has already looked

into the behaviour of non-delimited control operators (call/cc) in the context
of strong existentials (Σ-types). In [99] he shows that: 1) in the absence of uni-
verses, Martin-Löf type theory becomes “proof irrelevant” with the addition of
call/cc; 2) in the presence of universes, adding call/cc makes it inconsistent.

We explain briefly the reasons for this behaviour. Namely, a proof using
call/cc is allowed to “lie” a number of times, before giving a valid proof. For
example, to prove ∃x.2 = x, using call/cc, one can build a proof term which
first gives the number 3 as the witness, and afterwards gives the right witness,
2. Then, if one defines the reduction rules for call/cc to commute with any con-
structor preceding it, as usually done, we can derive a proof of 2 = 3.

However, with delimited control, the control operator does not simply com-
mute with every constructor before it; it only does so within a pure evaluation
context delimited by a reset. For example, let us imagine that we have a Martin-
Löf type theory extended with shift/reset, and let wit and prf denote the first and
second projection of Σ-types. The proof term for AC0 would then be:

c :=λb.(λx.wit(bx),λx.prf(bx)).

If we substitute it for the open variable c in the proof term for ACN
0 ,

λa.λk.#k(c(λx.S k ′.ax(λd .k ′(νd)))),

we would get

λa.λk.#k
(
λx.wit

(
S k ′.ax

(
λd .k ′ (νd)

))
,λx.prf

(
S k ′.ax

(
λd .k ′ (νd)

)))
.

We see that shift can not by itself immediately commute with wit and prf,
regardless of the content supplied for the parameters a and k, as call/cc would
do. More work is needed in order to see whether we can add delimited control
to Martin-Löf type theory.

4.5.4. Other realisers for ACN
0 . Berardi, Bezem and Coquand [28] gave an-

other realisability interpretation of ACN
0 using Gödel’s system T extended with a

kind of “store” computational effect. Krivine [127] gave an interpretation of the
negative translation of dependent choice based on a λ-calculus extended with
the undelimited5 control operator call/cc.

Our work is similar to [28] and [127] in that it uses a purely functional lan-
guage extended by some kind of computational effect, however, delimited con-
trol is known to be able to simulate computationally both call/cc and store [74],
while neither call/cc nor store alone can simulate delimited control. Actually,
a combination of call/cc, store, and exceptions can simulate delimited control
[74].

5Strictly speaking, being undelimited is not a property of call/cc itself, but so far all imple-
mentations of call/cc inside programing languages treat call/cc as undelimited. It is possible to
add a delimiter to call/cc also, see for example [11, 13].

94 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

4.5.5. Negative translation of Dependent Choice. We mentioned that the
approach of Spector had been extended to handling the negative translation of
the schema of Dependent Choice,

(DC) ∀x0∀yρ∃zρ .A(x, y, z) ⇒∃ f 0→ρ∀x0 A(x, f x, f (x +1)).

An axiom schema similar in shape to DNS is used for this purpose (see [114,
p.208]),

∀x0∀cρ¬¬∃aρ∀bτA0(x,c, a,b) ⇒¬¬∃u0→ρ∀y0∀vτA0(y,uy,u(y +1), v),

where A0 is a decidable formula. We have not yet pursued the goal of treating
this schema in our system.

4.5.6. Fan Theorem. Another attractive direction for further work concerns
principles arising form Brouwer’s Bar Principle. It is folklore that all practical
consequences of the Bar Principle are already consequences of the Fan Princi-
ple,

(FAN) ∀α1∃n0 A0(αn) ⇒∃N 0∀α1∃n ≤ N .A0(αn),

where A0(x, y) is a decidable formula, and αn denotes the initial segment of
length n of the infinite stream α.

We started to work on giving a proof term for FAN, but due to lack of time we
had to stop. Our approach was to restate FAN, so that the right hand side of the
implication becomes a Σ-formula:

(FAN’) ∀α1∃n0 A0(αn) ⇒∃N 0∀m0 < 2N∃n ≤ N .A0(m̃n),

where m̃n turns a natural number m into its binary representation, appending
zeros to it if the binary representation has less than n bits. Since the internal
quantification over α is bounded, we can work in a bounded arithmetic system
like G3 Aω

i
(which is strong enough to encode variable-length finite sequences

[114, p.54]) and consider the right-hand side of the implication as a Σ-formula.
Bauer [26] reported to have used, together with Pretnar, delimited control to

give an alternative implementation of Escardó’s fan functional [65] for exhaus-
tive search of Cantor space.

4.5.7. Open Induction and Bar Induction. In the context of Intuitionistic
Reverse Mathematics, Veldman considered the relationship between various in-
tuitionistic principles [177, 176]. In particular, he recovered a result of Moschovakis
and Solovay [142], that

BI+MP ⊢ DNS.

Besides other equivalences, he also connected the Open Induction Principle
[50] on Cantor space (OI(C)) to the DNS schema.

Definition (OI(C)). For any U open subspace of Cantor space 2N and < the lex-
icographical order on 2N, if

∀α.(∀β<α.β ∈U) →α ∈U

then

∀α.α ∈U .

4.5. APPLICATIONS, RELATED AND FUTURE WORK 95

He shows that
MP ⊢ DNS ⇔ OI(C),

hence
DNS+MP ⇔ OI(C)+MP,

and also that FAN is strictly weaker than OI(C), by giving a proof from OI(C) of
the Paris-Harrington theorem [150], which is independent of HA, while it was
established by Troelstra [160] that FAN is conservative over HA.

4.5.8. Shift and reset. The shift/reset delimited control operators have been
introduced in [58, 59]. The purpose for introducing them was to exploit the ex-
pressive power beyond the traditional CPS translation [151]; traditionally, pro-
grams written in continuation passing style are of a specific form, all function
applications calls are tail applications, but one can write programs in CPS that
make non necessarily tail calls6, and then the question arises what are the origi-
nal direct style operators that are translated into this extended-CPS form. Danvy
and Filinski’s answer is shift/reset. They also generalise this procedure, making
a CPS translation of the already extended-CPS translated terms, and get a hierar-
chy of shiftn/resetn operators, level n corresponding to the n-th extended-CPS
translation.

A typing system (known as “type-and-effect” system) for shift/reset appears
already in [58], but it is difficult to connect to traditional logic because impli-
cation is a quaternary not a binary connective. A typing system which is a spe-
cialisation of Danvy-Filinski’s, but again has a ternary implication connective,
appears in [144]. In his paper on simulating monadic effects [73], Filinski uses
a typing system similar to ours, where implication is binary and the answer type
T is fixed.

Our work is different in that we look at the typing system in the context of
logic, with all usual connectives, not in the context of programming languages.
Also, our proofs of subject reduction and progress are direct, while for Murthy’s
and Filinski’s system these properties follow [35] from the embedding in Danvy-
Filinski’s system.

Asai-Kameyama [14] revisit the type-and-effect system of Danvy-Filinski and
extend it to a polymorphic one. Kiselyov-Shan give a typing system expressing
a sub-structural logic, and small-step operational semantics (we give a big-step
semantics) for shift/reset. Zeilberger[186] investigates delimited control in the
context of polarised linear logic. Munch-Maccagnoni connects delimited con-
trol to co-dereliction of differential linear logic. This list of related work refer-
ences is far from exhaustive.

4.5.9. Felleisen’s control/prompt delimited control operators. There is a
variety of delimited control operators in the programming languages literature.
One of the earliest ones are Felleisen’s control (F) and prompt (#). Their de-
velopment was not motivated by the study of the extended CPS translation, but
directly by the programming need of being able to compose continuations like
any other first class object inside a programing language (Scheme). The rela-
tionship between control/prompt and shift/reset has been studied by many au-
thors. Although shift/reset and control/prompt are mutually interpretable, and

6Indeed, the completeness proof of Chapter 3 uses non-tail calls in the case of disjunction.

96 4. EXTENSION OF INTUITIONISTIC LOGIC WITH DELIMITED CONTROL

their big-step operational semantics is quite similar,

#P [S k.p] → #p {(λa.#P [a])/k}

#P [Fk.p] → #p {(λa.P [a])/k} ,

operationally they behave differently: while shift sets a new control delimiter
around its former pure evaluation context, control does not. The PhD thesis of
Biernacki [35] contains a thorough comparison of shift and control, and further
references.

In connection to MQC+, we have tried to check all the proofs with having
F instead of S . While most of the time the difference does not matter, in the
subject reduction theorem, when using control, we do not have to carry out a
weakening step as with shift, but for the normalisation theorem it is not clear
which two-level CPS translation to take if we had control instead of shift.

4.5.10. Herbelin’s calculus for Markov Principle. In [100], Herbelin presents
IQCMP, an intuitionistic calculus that derives Markov’s Principle. The calculus
MQC+ that we present here has been derived starting from Herbelin’s calculus.
There are two big differences between the two:

(1) Derivations of IQCMP are annotated by a context of Σ-formula, not just
one formula. This permits, for example, to have a derivation which uses
multiple and different instances of Markov’s Principle.

We had also tried to have a version of MQC+ with context anno-
tations, but encountered a problem with the CPS translation. Namely,
when multiple Σ-formula annotations are present, one has to have a
uniform way to compose the monadsΓS ⊢ AS ,ΓT ⊢ AT , . . . indexed with
different Σ-formulae S,T, We hope to address this problem in the
future.

(2) The second difference with IQCMP is in the rules for the delimited con-
trol operators:

Γ⊢α:T,∆ p : T
CATCH

Γ⊢∆ catchαp : T

Γ⊢∆ p : T (α : T) ∈∆
THROW

Γ⊢∆ throwαp : A

While catch is just #, the proof term throw p is a particular case of
S k.p that does not use the continuation k inside p.

Note that if we had context- and not single-formula-annotations for MQC+,
then we would have the following characterisation of provability of Σ-formulas
S:

⊢+ S
4.2.4 //

⊢i S⊥

by def. of (·)⊥

oo 4.2.8 // ⊢c S

MP⊥ ⊢i S

OO

⊢i ¬¬Soo

4.5.11. Completeness for standard Kripke models. We started to investi-
gate the logical meaning of delimited control because of Danvy’s program of
Section 3.2, that is, because of the possibility of a constructive completeness
proof for full intuitionistic logic and standard Kripke semantics.

May we now close the circle and use MQC+to give such a proof? We believe
that further work is necessary: 1) on having multipleΣ-formula annotations, like

4.5. APPLICATIONS, RELATED AND FUTURE WORK 97

in the system of Herbelin described in Subsection 4.5.10; 2) on allowing a certain
degree of “polymorphism” in the rules for shift and reset.

If we go back to the the algorithm of page 63, we see that, in a completeness
proof having as base the given algorithm, the reset in the implication-reification
case would be used for the Σ-formula

∃q. Γ, a : τ⊢ q : σ,

and shift would be used for a Σ-formula of the same form, ∃r. Γ ⊢ r : ρ, which
means that the continuation bound by the shift would have the type

κ : ∀Γ′ ≥ Γ.
(
Γ
′ σ or Γ′ τ→∃r. Γ′ ⊢ r : ρ

)
.

Note that it is not possible to use the simpler typing of κ,

κ : Γσ or Γ τ→∃r. Γ⊢ r : ρ,

because the continuation is applied in two contexts, inside the ❝❛s❡ expression,
that are enriched by a1 and a2; the reset-s are there applied for the Σ-formulae

∃r. Γ, a1 : τ⊢ r : ρ and ∃r. Γ, a2 : σ⊢ r : ρ.

Then, it is clear that the shape of the formula that completeness (or reifica-
tion) is applied to, determines how many Σ-formulae we would need to anno-
tate our derivations with. It is also clear that we have to account somehow for
the polymorphic behaviour of the contexts. We thus propose the following rules
for a future extension of MQC+,

Γ⊢(α:T),∆ p : T (w,φ)
#α

Γ⊢∆ #αp : T (w,φ)

Γ,k : ∀w ′ ≥ w.A(w ′,φ) ⇒ T (w ′,φ) ⊢∆ p : T (w,φ) (α : T (w,φ)) ∈∆
Sα,

Γ⊢∆ Sαkp : A(w,φ)

which would be able to prove completeness for standard Kripke models if we let
T (w,φ) encode intuitionistic provability of formulaφ in the context w , T (w,φ) :=
∃n. pw ⊢ n : σq, and let A(w,φ) represent Kripke-validity of formula φ in the
context w , A(w,φ) := w φ.

If the preorder between the individuals is to be avoided, we could use its
definability from page 70, to replace

k : ∀w ′ ≥ w.A(w ′,φ) ⇒ T (w ′,φ)

by
k : ∀w ′.

[
∀ψ.T (w,ψ) ⇒ T (w ′,ψ)

]
⇒ A(w ′,φ) ⇒ T (w ′,φ).

4.5.12. Normalisation-by-evaluation for MQC+. The pass to the 2-level λ-
calculus in order to give a simpler proof of reduction-preservation by the CPS
translation, indicates that there should be an NBE algorithm behind, which would
express the normalisation proof in two distinct phases (reflection and reifica-
tion). In future, we hope to be able to develop such a proof, by modifying the
notion of model from Chapter 3.

A work-in-progress towards an NBE program for shift/reset has been pre-
sented in [166].

4.5.13. Monadic computational effects. Finally, we would like to see what
specific monadic effects look like when expressed in a direct way, using shift/reset,
in our system. The PhD thesis of Filinski [74] is a guide on how to do that.

Bibliography

[1] Proceedings, Sixth Annual IEEE Symposium on Logic in Computer Science, 15-18 July, 1991,

Amsterdam, The Netherlands. IEEE Computer Society, 1991.
[2] 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,

Poland, Proceedings. IEEE Computer Society, 2007.
[3] Andreas Abel. Weak beta-theta-normalization and normalization by evaluation for system

F. In Cervesato et al. [45], pages 497–511.
[4] Andreas Abel. Typed applicative structures and normalization by evaluation for system Fω.

In Grädel and Kahle [91], pages 40–54.
[5] Andreas Abel. Towards normalization by evaluation for the beta-eta-calculus of construc-

tions. In Blume et al. [36], pages 224–239.
[6] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation for Martin-Löf

type theory with one universe. Electr. Notes Theor. Comput. Sci., 173:17–39, 2007.
[7] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-

Löf type theory with typed equality judgements. In LICS [2], pages 3–12.
[8] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-

Löf type theory with typed equality judgements. In LICS [2], pages 3–12.
[9] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic beta-eta-conversion

test for Martin-Löf type theory. In Audebaud and Paulin-Mohring [15], pages 29–56.
[10] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. Normalization by

evaluation for typed lambda calculus with coproducts. In LICS, pages 303–310, 2001.
[11] Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In Thirti-

eth International Colloquium on Automata, Languages and Programming, ICALP ’03, Eind-

hoven, The Netherlands, June 30 - July 4, 2003, volume 2719 of Lecture Notes in Computer

Science, pages 871–885. Springer, 2003.
[12] Zena M. Ariola and Hugo Herbelin. Control reduction theories: the benefit of structural

substitution. J. Funct. Program., 18(3):373–419, 2008.
[13] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic foundation of delimited

continuations. Higher Order and Symbolic Computation, 22(3):233–273, September 2009.
online from 2007.

[14] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations. In APLAS,
pages 239–254, 2007.

[15] Philippe Audebaud and Christine Paulin-Mohring, editors. Mathematics of Program Con-

struction, 9th International Conference, MPC 2008, Marseille, France, July 15-18, 2008. Pro-

ceedings, volume 5133 of Lecture Notes in Computer Science. Springer, 2008.
[16] Jeremy Avigad. Algebraic proofs of cut elimination. J. Log. Algebr. Program., 49(1-2):15–30,

2001.
[17] Jeremy Avigad. A variant of the double-negation translation. Technical report, Carnegie

Mellon University, 2006. Technical Report CMU-PHIL 179.
[18] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie

Weirich. Engineering formal metatheory. In Necula and Wadler [145], pages 3–15.
[19] Vincent Balat. Une étude des sommes fortes : isomorphismes et formes normales. PhD thesis,

Université Paris 7, 2002.
[20] Vincent Balat. Keeping sums under control, 2004.
[21] Vincent Balat. Ocaml implementation of tdpe for sums, 2004.
[22] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisation and type-

directed partial evaluation for typed lambda calculus with sums. In Jones and Leroy [110],
pages 64–76.

99

100 BIBLIOGRAPHY

[23] Ruth C. Barcan. The deduction theorem in a functional calculus of first order based on strict
implication. The Journal of Symbolic Logic, 11(4):115–118, 1946.

[24] Ruth C. Barcan. A functional calculus of first order based on strict implication. The Journal

of Symbolic Logic, 11(1):1–16, 1946.
[25] Freiric Barral. Exceptional nbe for sums. In Olivier Danvy, editor, Informal proceedings of the

2009 Workshop on Normalization by Evaluation, August 15th 2009, Los Angeles, California,
pages 21–30, 2009.

[26] Andrej Bauer. personal communication, March 2010.
[27] Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors. Logical Ap-

proaches to Computational Barriers, Second Conference on Computability in Europe, CiE

2006, Swansea, UK, June 30-July 5, 2006, Proceedings, volume 3988 of Lecture Notes in Com-

puter Science. Springer, 2006.
[28] Stefano Berardi, Marc Bezem, and Thierry Coquand. On the computational content of the

axiom of choice. J. Symbolic Logic, 63(2):600–622, 1998.
[29] Stefano Berardi and Silvio Valentini. Krivine’s intuitionistic proof of classical completeness

(for countable languages). Ann. Pure Appl. Logic, 129(1-3):93–106, 2004.
[30] U. Berger and P. Oliva. Modified bar recursion and classical dependent choice. In M. Baaz,

S.D. Friedman, and J. Kraijcek, editors, Logic Colloquium ’01, Proceedings of the Annual

European Summer Meeting of the Association for Symbolic Logic, held in Vienna, Austria,

August 6 - 11, 2001, volume 20 of Lecture Notes in Logic, pages 89–107. Springer, 2005.
[31] Ulrich Berger. A computational interpretation of open induction. In F. Titsworth, editor,

Proceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, pages
326–334. IEEE Computer Society, 2004.

[32] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program ex-
traction from normalization proofs. In Typed Lambda Calculi and Applications, number 664

in Lecture Notes in Computer Science, pages 91–106. Springer Verlag, 1993.
[33] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for

typed lambda-calculus. In LICS [1], pages 203–211.
[34] Paul Bernays. Axiomatische untersuchung des aussagen-kalkuls der principia mathemat-

ica. Mathematische Zeitschrift, (25):305–320, 1926.
[35] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited Con-

tinuations. PhD thesis, DAIMI, Department of Computer Science, University of Aarhus,
Denmark, 12 2005. BRICS DS-05-08.

[36] Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors. Functional and Logic Pro-

gramming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010.

Proceedings, volume 6009 of Lecture Notes in Computer Science. Springer, 2010.
[37] Patrick Braselmann and Peter Koepke. Coincidence lemma and substitution lemma. For-

malized Mathematics, 13(1):17–26, 2005.
[38] Patrick Braselmann and Peter Koepke. Consequences of the sequent calculus. Formalized

Mathematics, 13(1):41–44, 2005.
[39] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models.

Formalized Mathematics, 13(1):45–48, 2005.
[40] Patrick Braselmann and Peter Koepke. Gödel’s completeness theorem. Formalized Mathe-

matics, 13(1):49–53, 2005.
[41] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. Formalized

Mathematics, 13(1):33–39, 2005.
[42] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas: Elementary

properties. Formalized Mathematics, 13(1):5–15, 2005.
[43] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. part ii. the con-

struction of first-order formulas. Formalized Mathematics, 13(1):27–32, 2005.
[44] Stanley Burris and Simon Lee. Tarski’s high school identities. The American Mathematical

Monthly, 100(3):231–236, 1993.
[45] Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors. Logic for Programming, Ar-

tificial Intelligence, and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar,

November 22-27, 2008. Proceedings, volume 5330 of Lecture Notes in Computer Science.
Springer, 2008.

BIBLIOGRAPHY 101

[46] Alonzo Church. An unsolvable problem of elementary number theory. American journal of

mathematics, (58):345–363, 1936.
[47] Mario Coppo, Elena Lodi, and G. Michele Pinna, editors. Theoretical Computer Science, 9th

Italian Conference, ICTCS 2005, Siena, Italy, October 12-14, 2005, Proceedings, volume 3701
of Lecture Notes in Computer Science. Springer, 2005.

[48] Catarina Coquand. From semantics to rules: A machine assisted analysis. In CSL ’93, vol-
ume 832 of Lecture Notes in Computer Science, pages 91–105. Springer, 1993.

[49] Catarina Coquand. A formalised proof of the soundness and completeness of a simply typed
lambda-calculus with explicit substitutions. Higher Order Symbol. Comput., 15(1):57–90,
2002.

[50] Thierry Coquand. A note on the open induction principle, 1997.
[51] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization

proofs. Mathematical Structures in Computer Science, 7(1):75–94, 1997.
[52] John Corcoran, editor. Logic, Semantics, Metamathematics, papers from 1923 to 1938. Hack-

ett Publishing Company, Indianapolis, 1983.
[53] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP, pages 233–

243, 2000.
[54] Bernd I. Dahn. Constructions of classical models by means of Kripke models (survey). Stu-

dia Logica, 38(4):401–405, 1979.
[55] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational isomorphisms

in classical logic. Theor. Comput. Sci., 294(3):353–378, 2003.
[56] Olivier Danvy. Pragmatics of type-directed partial evaluation. In Selected Papers from the

Internaltional Seminar on Partial Evaluation, pages 73–94, London, UK, 1996. Springer-
Verlag.

[57] Olivier Danvy. Type-directed partial evaluation. In POPL, pages 242–257, 1996.
[58] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical

report, Computer Science Department, University of Copenhagen, 1989. DIKU Rapport
89/12.

[59] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Program-

ming, pages 151–160, 1990.
[60] Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS transforma-

tion. Mathematical Structures in Computer Science, 2(4):361–391, 1992.
[61] Martin Davis, editor. The undecidable: basic papers on undecidable propositions, unsolvable

problems, and computable functions. Raven Press, Hewlett, N.Y., 1965.
[62] The Coq development team. The Coq proof assistant v8.2 reference manual. available at

❤tt♣✿✴✴❝♦q✳✐♥r✐❛✳❢r, 2009.
[63] Peter Dybjer and Andrzej Filinski. Normalization and partial evaluation, 2002.
[64] V. H. Dyson and G. Kreisel. Analysis of Beth’s semantic construction of intuitionistic logic.

Technical report, Applied mathematics and statistical laboratories, Stanford University,
1961. Technical Report 3.

[65] Martín Hötzel Escardó. Infinite sets that admit fast exhaustive search. In LICS, pages 443–
452, 2007.

[66] Solomon Feferman, editor. Collected works. Publications 1929–1936, volume 1. The Claren-
don Press Oxford University Press, New York, 1986.

[67] Solomon Feferman, editor. Collected works. Publications 1938–1974, volume II. The Claren-
don Press Oxford University Press, New York, 1990.

[68] Solomon Feferman, Jr. John W. Dawson, Warren Goldfarb, Charles Parsons, and Robert M.
Solovay, editors. Collected works. Unpublished essays and lectures, volume III. The Claren-
don Press Oxford University Press, New York, 1995.

[69] Matthias Felleisen. The theory and practice of first-class prompts. In POPL, pages 180–190,
1988.

[70] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. Reason-
ing with continuations. In LICS, pages 131–141, 1986.

[71] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. Beyond
continuations. Technical report, Indiana University, 1987.

[72] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. A syntac-
tic theory of sequential control. Theor. Comput. Sci., 52:205–237, 1987.

http://coq.inria.fr

102 BIBLIOGRAPHY

[73] Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 446–457, 1994.
[74] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer Science, Carnegie Mel-

lon University, 1996. Technical Report CMU-CS-96-119 (144pp.).
[75] Andrzej Filinski and Henning Korsholm Rohde. A denotational account of untyped normal-

ization by evaluation. In Walukiewicz [178], pages 167–181.
[76] Marcelo P. Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed

lambda calculi with empty and sum types. Ann. Pure Appl. Logic, 141(1-2):35–50, 2006.
[77] Melvin Fitting. Intuitionistic Logic, Model Theory, and Forcing. North-Holland Publishing

Co., 1969.
[78] Melvin Fitting. Barcan both ways, 1997.
[79] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann.,

112(1):493–565, 1936.
[80] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
[81] Valery Ivanovich Glivenko. Sur quelques points de la logique de M. Brouwer. In Bulletins de

la classe des sciences, volume 15 of 5, pages 183–188. Academie Royale de Belgique, 1929.
[82] Kurt Gödel. On the completeness of the calculus of logic, pages 61–101. Volume 1 of Feferman

[66], 1929. PhD thesis.
[83] Kurt Gödel. The completeness of the axioms of the functional calculus of logic, pages 103–

123. Volume 1 of Feferman [66], 1930.
[84] Kurt Gödel. Lecture on completeness of the functional calculus. In Feferman et al. [68],

pages 17–29.
[85] Kurt Gödel. On formally undecidable propositions of principia mathematica and related

systems. In Feferman [66], pages yyy–xxx.
[86] Kurt Gödel. An interpretation of the intuitionistic propositional calculus, pages 301–303. Vol-

ume 1 of Feferman [66], 1933.
[87] Kurt Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathe-

matischen Kolloquiums, 4:34–38, 1933.
[88] Kurt Gödel. In what sense is intuitionistic logic constructive, pages 189–200. Volume III of

Feferman et al. [68], 1941. early lecture on the Dialectica interpretation.
[89] Kurt Gödel. On a hitherto unutilized extension of the finitary standpoint, pages 241–251.

Volume II of Feferman [67], 1958.
[90] Kurt Gödel. On an extension of finitary mathematics which has not yet been used, pages

271–280. Volume II of Feferman [67], 1972.
[91] Erich Grädel and Reinhard Kahle, editors. Computer Science Logic, 23rd international Work-

shop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal, September 7-11,

2009. Proceedings, volume 5771 of Lecture Notes in Computer Science. Springer, 2009.
[92] Timothy Griffin. A formulae-as-types notion of control. In POPL, pages 47–58, 1990.
[93] R. Gurevič. Equational theory of positive numbers with exponentiation. Proceedings of the

American Mathematical Society, 94(1):135–141, 1985.
[94] Leon Henkin. The completeness of the first-order functional calculus. Journal of symbolic

logic, (14):159–166, 1949.
[95] Leon Henkin. The discovery of my completeness proofs. Bulletin of Symbolic Logic,

2(2):127–158, 1996.
[96] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent calcu-

lus structure. In CSL ’94, volume 933 of Lecture Notes in Computer Science, pages 61–75.
Springer, 1994.

[97] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme

calcul de λ-termes et comme calcul de stratégies gagnantes. Ph.D. thesis, Université Paris 7,
Jan. 1995.

[98] Hugo Herbelin. C’est maintenant qu’on calcule: au coeur de la dualité. Habilitation thesis,
University Paris 11, Dec. 2005.

[99] Hugo Herbelin. On the degeneracy of sigma-types in presence of computational classical
logic. In Urzyczyn [170], pages 209–220.

[100] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. In Proceedings, 25th

Annual IEEE Symposium on Logic in Computer Science (LICS ’10), Edinburgh, UK, 11-14 July

2010, page N/A. IEEE Computer Society Press, 2010.

BIBLIOGRAPHY 103

[101] Hugo Herbelin and Silvia Ghilezan. An approach to call-by-name delimited continuations.
In Necula and Wadler [145], pages 383–394.

[102] Hugo Herbelin and Gyesik Lee. Forcing-based cut-elimination for Gentzen-style intuition-
istic sequent calculus. In Hiroakira Ono, Makoto Kanazawa, and Ruy J. G. B. de Queiroz, ed-
itors, WoLLIC, volume 5514 of Lecture Notes in Computer Science, pages 209–217. Springer,
2009.

[103] Arend Heyting, editor. Constructivity in Mathematics, Proceedings of the colloqium held at

Amsterdam, 1957, Studies in Logic and The Foundations of Mathematics. North-Holland
Publishing Company Amsterdam, 1959.

[104] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik. Springer,
Berlin, 1928.

[105] Wilfrid Hodges. Tarski’s truth definitions. In Edward N. Zalta, editor, The Stanford Encyclo-

pedia of Philosophy. Fall 2008 edition, 2008.
[106] W. A. Howard. Functional interpretation of bar induction by bar recursion. Compositio

Math., 20:107–124 (1968), 1968.
[107] W. A. Howard and G. Kreisel. Transfinite induction and bar induction of types zero and one,

and the role of continuity in intuitionistic analysis. The Journal of Symbolic Logic, 31(3):325–
358, 1966.

[108] Joe Hurd and Thomas F. Melham, editors. Theorem Proving in Higher Order Logics, 18th In-

ternational Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, volume
3603 of Lecture Notes in Computer Science. Springer, 2005.

[109] Danko Ilik, Gyesik Lee, and Hugo Herbelin. Kripke models for classical logic. Annals of Pure

and Applied Logic, 161(11):1367 – 1378, 2010. Special Issue: Classical Logic and Computa-
tion (2008).

[110] Neil D. Jones and Xavier Leroy, editors. Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16,

2004. ACM, 2004.
[111] Yukiyoshi Kameyama. Axioms for control operators in the CPS hierarchy. Higher-Order and

Symbolic Computation, 20(4):339–369, 2007.
[112] Oleg Kiselyov. Call-by-name linguistic side effects. Slides from ESSLLI 2008 Workshop on

Symmetric calculi and Ludics for the semantic interpretation. 4-7 August, 2008. Hamburg,
Germany., 2008.

[113] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic

Logic, 10(4):109–124, 1945.
[114] U. Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2008.
[115] Andrey Nikolayevich Kolmogorov. O principe tertium non datur. Matematiceskij Sbornik,

32:646–667, 1925. English translation in van Heijenoort 1967, pp. 416–437.
[116] G. Kreisel. A remark on free choice sequences and the topological completeness proofs. The

Journal of Symbolic Logic, 23(4):369–388, 1958.
[117] G. Kreisel. Review: [Semantical analysis of intuitionistic logic I. by Saul A. Kripke]. The Jour-

nal of Symbolic Logic, 35(2):330–332, 1970.
[118] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types.

In Heyting [103], pages 101–127.
[119] Georg Kreisel. Elementary completeness properties of intuitionistic logic with a note on

negations of prenex formulae. Journal of Symbolic Logic, 23(3):317–330, 1958.
[120] Georg Kreisel. On weak completeness of intuitionistic predicate logic. J. Symb. Log.,

27(2):139–158, 1962.
[121] Saul Kripke. A completeness theorem in modal logic. J. Symb. Log., 24(1):1–14, 1959.
[122] Saul Kripke. Semantical considerations on modal and intuitionistic logic. Acta Philos. Fen-

nica, 16:83–94, 1963.
[123] Saul A. Kripke. Semantical analysis of intuitionistic logic i. In Formal Systems and Recursive

Functions, pages 92–130. North Holland, 1965.
[124] J. L. Krivine. Lambda-calculus, types and models. Ellis Horwood, Upper Saddle River, NJ,

USA, 1993.
[125] Jean-Louis Krivine. Une preuve formelle et intuitionniste du théorème de complétude de la

logique classique. Bulletin of Symbolic Logic, 2(4):405–421, 1996.

104 BIBLIOGRAPHY

[126] Jean-Louis Krivine. Typed lambda-calculus in classical zermelo-frænkel set theory. Arch.

Math. Log., 40(3):189–205, 2001.
[127] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci., 308(1-

3):259–276, 2003.
[128] Jean-Louis Krivine. Algèbres de réalisabilité: un programme pour bien ordonner r. CoRR,

abs/1002.3438, 2010.
[129] Sigekatu Kuroda. Intuitionistische untersuchungen der formalistischen logik. Nagoya

Mathematical Journal, (2):35–47, 1951.
[130] Saunders M. Lane. Categories for the Working Mathematician (Graduate Texts in Mathemat-

ics). Springer, 2nd edition, 1998.
[131] Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical

sequent calculus. Electr. Notes Theor. Comput. Sci., 86(4), 2003.
[132] Horst Luckhardt. Extensional Gödel functional interpretation. A consistency proof of classical

analysis. Lecture Notes in Mathematics, Vol. 306. Springer-Verlag, Berlin, 1973.
[133] Damiano Macedonio and Giovanni Sambin. From meta-level to semantics via reflection: a

model for basic logic and its extensions. available from the authors.
[134] Damiano Macedonio and Giovanni Sambin. personal communication, April 2009.
[135] D. C. McCarthy. Undecidability and intuitionistic incompleteness. Journal of Philosophical

Logic, (25):559–565, 1996.
[136] David Charles McCarty. On theorems of Gödel and Kreisel: Completeness and Markov’s

principle. Notre Dame Journal of Formal Logic, 35(1):99–107, 1994.
[137] David Charles McCarty. Intuitionistic completeness and classical logic. Notre Dame Journal

of Formal Logic, 43(4):243–248, 2002.
[138] Eugenio Moggi. Notions of computation and monads. Inform. and Comput., 93(1):55–92,

1991. Selections from the 1989 IEEE Symposium on Logic in Computer Science.
[139] Joan Rand Moschovakis. Review: [A remark on free choice sequences and the topological

completeness proofs. by Georg Kreisel]. The Journal of Symbolic Logic, 32(2):283, 1967.
[140] Joan Rand Moschovakis. Review: [Elementary completeness properties of intuitionistic

logic with a note on negations of prenex formulae. by Georg Kreisel]. The Journal of Sym-

bolic Logic, 32(2):282–283, 1967.
[141] Joan Rand Moschovakis. Review: [On weak completeness of intuitionistic predicate logic.

by Georg Kreisel]. The Journal of Symbolic Logic, 34(1):119–120, 1969.
[142] Joan Rand Moschovakis. Classical and constructive hierarchies in extended intuitionistic

analysis. The Journal of Symbolic Logic, 68(3):1015–1043, 2003.
[143] Chetan Murthy. Extracting Classical Content from Classical Proofs. PhD thesis, Department

of Computer Science, Cornell University, 1990.
[144] Chetan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems: A-

translation at work. In Proceedings of the ACM SIGPLAN Workshop on Continuations CW92,
pages 49–72. Stanford University, 1992. Technical Report STAN-CS-92-1426.

[145] George C. Necula and Philip Wadler, editors. Proceedings of the 35th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008. ACM, 2008.
[146] Russell O’Connor. Essential incompleteness of arithmetic verified by Coq. In Hurd and Mel-

ham [108], pages 245–260.
[147] Mitsuhiro Okada. A uniform semantic proof for cut-elimination and completeness of vari-

ous first and higher order logics. Theor. Comput. Sci., 281(1-2):471–498, 2002.
[148] Paulo Oliva. Understanding and using Spector’s bar recursive interpretation of classical

analysis. In Beckmann et al. [27], pages 423–434.
[149] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural de-

duction. In Logic Programming and Automated Reasoning: International Conference LPAR

’92 Proceedings, St. Petersburg, Russia, pages 190–201. Springer-Verlag, 1992.
[150] Jeff Paris and Leo Harrington. A mathematical incompleteness in peano arithmetic. In Jon

Barwise, editor, HANDBOOK OF MATHEMATICAL LOGIC, volume 90 of Studies in Logic and

the Foundations of Mathematics, pages 1133 – 1142. Elsevier, 1977.
[151] G. D. Plotkin. Call-by-name, call-by-value and the [lambda]-calculus. Theoretical Computer

Science, 1(2):125–159, 1975.
[152] Christophe Raffalli and Paul Rozière. Phox. In Wiedijk [179], pages 67–71.

BIBLIOGRAPHY 105

[153] Giovanni Sambin. Pretopologies and completeness proofs. J. Symb. Log., 60(3):861–878,
1995.

[154] Alexis Saurin. A hierarchy for delimited continuations in call-by-name. In Foundations of

Software Science and Computational Structures, pages 374–388.
[155] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,

Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc.,
New York, NY, USA, 2006.

[156] Matthieu Sozeau and Thorsten Altenkirch. Kripke semantics for simply-typed lambda cal-
culus, 2008. http://mattam.org/research/coq.en.html.

[157] Clifford Spector. Provably recursive functionals of analysis: a consistency proof of analy-
sis by an extension of principles formulated in current intuitionistic mathematics. In Proc.

Sympos. Pure Math., Vol. V, pages 1–27. American Mathematical Society, Providence, R.I.,
1962.

[158] Alfred Tarski. The concept of truth in the languages of the deductive sciences. In Corcoran
[52], pages 152–278.

[159] Alfred Tarski and Robert L. Vaught. Arithmetical extensions of relational systems. Composi-

tio Mathematica, (13):81–102, 1956.
[160] A. S. Troelstra. Note on the fan theorem. The Journal of Symbolic Logic, 39(3):584–596, 1974.
[161] A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. I, volume 121 of Stud-

ies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amster-
dam, 1988. An introduction.

[162] A. S. Troelstra and D. van Dalen. Constructivism in mathematics. Vol. II, volume 123 of Stud-

ies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amster-
dam, 1988. An introduction.

[163] Anne Sjerp Troelstra and Paul van Ulsen. The discovery of E.W. Beth’s semantics for intu-
itionistic logic. available online.

[164] A.S. Troelstra. History of constructivism in the 20th century.
[165] Andrzej Trybulec. Mizar. In Wiedijk [179], pages 20–23.
[166] Kanae Tsushima and Kenichi Asai. Towards type-directed partial evaluation for shift and

reset. In Informal proceedings of the 2009 Workshop on Normalization by Evaluation, 2009.
❤tt♣✿✴✴✇✇✇✳❜r✐❝s✳❞❦✴⑦❞❛♥✈②✴◆❇❊✵✾✴✐♥❢♦r♠❛❧✲♣r♦❝❡❡❞✐♥❣s✴.

[167] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem,
volume 2, pages 230–265. 1937. correction in ibid. 43, 544–546.

[168] Christian Urban. Classical Logic and Computation. Ph.D. thesis, University of Cambridge,
October 2000.

[169] Christian Urban and Diana Ratiu. Classical logic is better than intu-
itionistic logic: A conjecture about double-negation translations, 2006.
http://www.doc.ic.ac.uk/∼svb/CLaC06/programme.html.

[170] Pawel Urzyczyn, editor. Typed Lambda Calculi and Applications, 7th International Confer-

ence, TLCA 2005, Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes

in Computer Science. Springer, 2005.
[171] Mark van Atten. The development of intuitionistic logic. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.
[172] Steffen van Bakel, Stéphane Lengrand, and Pierre Lescanne. The language X : Circuits,

computations and classical logic. In Coppo et al. [47], pages 81–96.
[173] Jean van Heijenoort. From Frege to Gödel. A source book in mathematical logic, 1879–1931.

Harvard University Press, Cambridge, Mass., 1967.
[174] Jaap van Oosten. Realizability: A historical essay. Mathematical Structures in Computer Sci-

ence, 12(3):239–263, 2002.
[175] Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate logic. J.

Symb. Log., 41(1):159–166, 1976.
[176] Wim Veldman. Brouwer’s fan theorem as an axiom and as a contrast to Kleene’s alternative.

Technical report, Department of Mathematics, Radboud University Nijmegen, 2005. Report
No. 0509.

[177] Wim Veldman. The principle of open induction on the unit interval [0,1] and some of its
equivalents. Slides, May 2010.

http://www.brics.dk/~danvy/NBE09/informal-proceedings/

106 BIBLIOGRAPHY

[178] Igor Walukiewicz, editor. Foundations of Software Science and Computation Structures, 7th

International Conference, FOSSACS 2004, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,

Proceedings, volume 2987 of Lecture Notes in Computer Science. Springer, 2004.
[179] Freek Wiedijk, editor. The Seventeen Provers of the World, Foreword by Dana S. Scott, volume

3600 of Lecture Notes in Computer Science. Springer, 2006.
[180] Wikipedia. Abstract rewriting system — Wikipedia, the free encyclopedia, 2009. [Online;

accessed 20-June-2010].
[181] Wikipedia. Glivenko’s theorem — Wikipedia, the free encyclopedia, 2009. [Online; accessed

1-July-2010].
[182] Wikipedia. Pairing function — Wikipedia, the free encyclopedia, 2010. [Online; accessed

11-June-2010].
[183] Wikipedia. POPLmark challenge — Wikipedia, the free encyclopedia, 2010. [Online; ac-

cessed 11-June-2010].
[184] A. J. Wilkie. On exponentiation - a solution to tarski’s high school algebra problem. Techni-

cal report, 2001.
[185] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inform.

and Comput., 115(1):38–94, 1994.
[186] Noam Zeilberger. Polarity and the logic of delimited continuations. In Proceedings, 25th

Annual IEEE Symposium on Logic in Computer Science (LICS ’10), Edinburgh, UK, 11-14

July 2010, page N/A. IEEE Computer Society Press, 2010.

APPENDIX A

Additional material for MQC+

A.1. Call-by-name translation for MQC+

The CPS translation and reduction rules of Chapter 4 were based on the call-
by-value version of the shift-reset calculus. Using the monadic operations from
Lemma 4.2.3, we can define an alternative, call-by-name, CPS translation,

(·) : Γ⊢+ A → Γ
T ⊢m AT

a = a

λa.p = η(λa.p)

pq = (α 7→λk.p(λ f . f (ηα)k))∗q

(p, q) = η(p, q)

π1p = (α 7→π1α)∗p

ι1p = η(ι1p)

case p of
(
a1.q1‖a2.q2

)
= (α 7→ case α of

(
a1.q1‖a2.q2

)
)∗p

λx.p = η(λx.p)

pt = (α 7→αt)∗p

(t , p) = η(t , p)

dest p as (x.a) in q = (α 7→ dest α as (x.a) in q)∗p

#p = p

S k.p =λk ′.µ
(
p

{
η(λa.η(k ′a))

/
k
})

,

which can be used together with a double-negation translation similar to Kol-
mogorov’s,

AT :=(AT ⇒ T) ⇒ T

AT :=A if A is a Σ-formula

(A�B)T :=AT�B T for �=∨,∧,⇒

(�A)T :=�AT for �=∃,∀,

to give a call-by-name version of Theorem 4.2.4. The only difference is that the
target for the translation is not ΓT ⊢m AT , but ΓT ⊢m AT . We give the case for
shift also as a proof tree:

107

108 A. ADDITIONAL MATERIAL FOR MQC+

IH ⇒I
Γ

T ⊢ (A ⇒ T)T ⇒ T T

Γ
T , AT ⇒ T ⊢ (A ⇒ T)T ⇒ T T

· · · ⇒E
Γ

T , AT ⇒ T, AT ⊢ T

Γ
T , AT ⇒ T, AT ⊢ TT η

Γ
T , AT ⇒ T, AT ⊢ T T

⇒I
Γ

T , AT ⇒ T ⊢ AT ⇒ T T
η

Γ
T , AT ⇒ T ⊢ (A ⇒ T)T

⇒E
Γ

T , AT ⇒ T ⊢ T T
µ

Γ
T , AT ⇒ T ⊢ T

⇒I
Γ

T ⊢ AT

Note, however, that in the translation AT we now stop the recursive descent
on the structure of A, once A has the form of a Σ-formula, not of an atomic
formula.

This might appear as an arbitrary choice, however, it allows us to easily de-
fine the µ(·) (“run”) operator for the monads of form Γ ⊢ T T ; a standard de-
scent down to atomic formulae would have forced us to make as the target of the
(·)T translation, second order logic, because in that case we would have needed
(predicative) polymorphism over the formula T in order to define “run”. For the
call-by-value translation, ST = S by definition. (S,T are Σ-formulae)

It would be challenging to carry out the entire development of Chapter 4 for
call-by-name delimited control, since such calculi have only recently started to
be studied, notably by Ghilezan, Herbelin, Kiselyov, and Saurin [101, 112, 154].

A.2. Explicit version of the two-level CPS transform

This section contains the explicit versions of the two-level CPS-translation
and the associated lemmas, from Section 4.4.

Γ⊢+ p : A : ∀C . (ΓT ⊢C → ΓT ⊢ T) → (ΓT ⊢ AT → ΓT ⊢C) → ΓT ⊢C

a =C 7→ L 7→ κ 7→ κ ·a

λa.p =C 7→ L 7→ κ 7→ κ ·
(
λa.λk.p ·T · id ·

(
β 7→ kβ

))

pq =C 7→ L 7→ κ 7→ p ·C ·L ·
(
φ 7→ q ·C ·L ·

(
α 7→φα (λb.κ ·b)

))

(p, q) =C 7→ L 7→ κ 7→ p ·C ·L ·
(
α 7→ q ·C ·L ·

(
β 7→ κ ·

(
α,β

)))

π1p =C 7→ L 7→ κ 7→ p ·C ·L ·
(
γ 7→ κ ·

(
π1γ

))

ι1p =C 7→ L 7→ κ 7→ p ·C ·L · (α 7→ κ · (ι1α))

case p of
(
a1.q1‖a2.q2

)
=C 7→ L 7→ κ 7→ p ·C ·L ·

(
γ 7→

(
case γ of

(
a1.q1 ·C ·L ·κ‖a2.q2 ·C ·L ·κ

)))

λx.p =C 7→ L 7→ κ 7→ κ ·
(
λx.λk.p ·T · id ·

(
β 7→ kxβ

))

pt =C 7→ L 7→ κ 7→ p ·C ·L ·
(
φ 7→φt (λb.κ ·b)

)

(t , p) =C 7→ L 7→ κ 7→ p ·C ·L · (α 7→ κ · (t ,α))

dest p as (x.a) in q =C 7→ L 7→ κ 7→ p ·C ·L ·
(
γ 7→

(
dest γ as (x.a) in q ·C ·L ·κ

))

#p =C 7→ L 7→ κ 7→ κ ·
(
p ·T · (α 7→ L · id ·(κ ·α))

)

S l .p =C 7→ L 7→ κ 7→
(
p ·T · id ·(α 7→ L · (κ ·α))

){
λa.λk.k (L · (κ ·a))

/
l
}

A.2. EXPLICIT VERSION OF THE TWO-LEVEL CPS TRANSFORM 109

Lemma (Explicit version of 4.4.1). If ⊢+ V : A for V a value, then, for any C ,L

and κ, such that

L : ⊢C →⊢ T κ : ⊢ AT →⊢C ,

we have that

V ·C ·L ·κ= κ ·
(
V · AT · (α 7→ L · (κ ·α)) · id

)
.

Lemma (Explicit version of 4.4.2). If Γ⊢+ q : A and V is a closed value, then for

any C ,L,κ and a, such that

L : ⊢C →⊢ T κ : ⊢ AT →⊢C ,

we have that

q{V /a} ·C ·L ·κ=
(
q ·C ·L ·κ

){
V · AT · (α 7→ L · (κ ·α)) · id

/
a
}

.

Lemma (Explicit version of 4.4.3). If P is a pure evaluation context s.t. Γ⊢+ P : A,

then, for every C ,L and κ, such that

L : ⊢C →⊢ T κ : ⊢ AT →⊢C ,

we have that

P [S l .s] ·C ·L ·κ=
(
s · AT · (α 7→ L · (κ ·α)) · id

){
λa.λk.k(L · (P [a] ·C ·L ·κ))

/
l
}

.

Lemma (Explicit version of 4.4.4). If V is a value, then so is V · AT ·κ · id, for any

κ : ΓT ⊢ AT → ΓT ⊢ T .

Lemma (Explicit version of 4.4.5). If ⊢+
⋄ p : A, p is not a value, and p is not of

form P [S k.p ′], then, for some r , p →1 r and, for any C ,L and κ, such that

L : ⊢C →⊢ T κ : ⊢ AT →⊢C ,

we have that

p ·C ·L ·κ→⋄ r ·C ·L ·κ.

	Acknowledgements
	Introduction
	Chapter 1. Constructive completeness for Boolean models
	1.1. Historical overview
	1.2. Constructive ultra-filter theorem
	1.3. Constructive Henkin-style proof
	1.4. Computational content
	1.5. Aspects of the Coq formalisation
	1.6. Related and future work

	Chapter 2. Kripke-style models for classical logic
	2.1. Normalisation-by-evaluation as completeness
	2.2. Sequent calculus LK
	2.3. Kripke-style models, call-by-name variant
	2.4. Kripke-style models, call-by-value variant
	2.5. Computational content
	2.6. Aspects of the Coq formalisation
	2.7. Related and future work

	Chapter 3. Kripke-style models for intuitionistic logic
	3.1. Historical overview
	3.2. Type-directed partial evaluation for -calculus with sum
	3.3. Completeness for Kripke-style models
	3.4. Computational content
	3.5. Aspects of the Coq formalisation
	3.6. Related and future work

	Chapter 4. Extension of intuitionistic logic with delimited control
	4.1. The system MQC+
	4.2. Relationship to MQC and CQC
	4.3. Subject reduction and progress
	4.4. Normalisation, disjunction and existence properties
	4.5. Applications, related and future work

	Bibliography
	Appendix A. Additional material for MQC+
	A.1. Call-by-name translation for MQC+
	A.2. Explicit version of the two-level CPS transform

