Constructive completeness proofs and delimited control

PhD thesis defence

Danko Ilik

École Polytechnique – INRIA – Université Paris Diderot

thesis directed by Hugo Herbelin

Paris, October 22, 2010

Constructive Mathematics and Computer Science

- ► The Curry-Howard correspondence:
 - proofs are programs;
 - theorems are specifications.
- Constructive type theory and the Coq proof assistant
- Coq is a tool for developing formal proofs:
 - of theorems in Constructive Mathematics;
 - of correctness of programs with respect to a specification.

Completeness theorems as programs

- ➤ A formalised Completeness theorem a tool to switch between model theoretic and proof theory arguments inside Coq
- Conections between Completeness and Normalisation-by-Evaluation

Outline

Boolean completeness

Classical NBE

Intuitionistic NBE

Delimited control in Logic

Outline

Boolean completeness

Classical NBI

Intuitionistic NBE

Delimited control in Logic

Completeness for standard semantics

Theorem (Gödel 1930)

A is valid if and only if A is derivable

A - derivable there is a derivation tree for A in classical 1st-order logic

A - valid Tarski's truth definition:

$$\mathcal{M} \vDash A \land B := \mathcal{M} \vDash A \text{ and } \mathcal{M} \vDash B$$

$$\mathcal{M} \vDash A \lor B := \mathcal{M} \vDash A \text{ or } \mathcal{M} \vDash B$$

$$\mathcal{M} \vDash A \to B := \mathcal{M} \vDash A \text{ implies } \mathcal{M} \vDash B$$

$$\mathcal{M} \vDash \exists x A(x) := \text{ exists } t \text{ with } \mathcal{M} \vDash A(t)$$

$$\mathcal{M} \vDash \forall x A(x) := \text{ for any } t, \mathcal{M} \vDash A(t)$$

Is it constructive?

Theorem (McCarty 1996)

No? – Completeness implies Markov's Principle (MP)

Is it constructive?

Theorem (McCarty 1996)

No? – Completeness implies Markov's Principle (MP)

Theorem (Krivine 1996)

Yes? – Gödel's proof is constructive, if we allow one more model – the model that validates \bot

What is the algorithm behind Krivine's proof?

- ► Krivine's proof carried out in *classical* 2nd-order arithmetic
- ► From the form of the statement, he concludes there is a proof in intuitionistic 2nd-order arithmetic
- ► Formalisation in Phox (PA₂) by Raffalli; algorithm extracted but "unreadable"
- ► Proof unwound in (Berardi-Valentini 2004): main ingredient a constructive ultra-filter theorem

Constructive Ultra-filter Theorem

 \mathscr{B} countable Boolean algebra
Filter subset of \mathscr{B} which is inhabited, \leq -closed and \land -closed $b \in \uparrow X = \exists a_1, \dots, a_n \in X. \ a_1 \land \dots \land a_n \leq b$ X-complete $(\dot \neg c \in X \longrightarrow \dot \bot \in X) \longrightarrow c \in X$, for all $c \in \mathscr{B}$

Constructive Ultra-filter Theorem

countable Boolean algebra

Filter subset of \mathcal{B} which is inhabited, \leq -closed and \land -closed

$$b \in \uparrow X = \exists a_1, \dots, a_n \in X. \ a_1 \land \dots \land a_n \le b$$
X-complete $(\dot \neg c \in X \longrightarrow \dot \bot \in X) \longrightarrow c \in X$, for all $c \in \mathcal{B}$

Theorem (Berardi-Valentini 2004)

Every filter F can be extended to a complete filter Z(F), so that $F \sim Z(F)$ $(\bot \in F \longleftrightarrow \bot \in Z(F))$

Proof.

$$F_0 := F$$

$$F_{n+1} := \uparrow (F_n \cup \{b \mid \lceil b \rceil = n, F_n \sim \uparrow (F_n \cup \{b\})\})$$

$$Z := \bigcup_{i=1}^n F_i$$

From Ultra-filter theorem to Completeness

Instantiate \mathcal{B} with the Lindenbaum Boolean algebra:

$$a \le b := a \vdash b$$

$$a \wedge b := \vdash \neg (a \Rightarrow \neg b)$$

If *X* is a set of axioms, then

$$a \in Z(\uparrow X)$$

means

$$\exists n. \exists \Gamma \subseteq F_n(\uparrow X). \Gamma \vdash a$$
,

which implies,

$$\exists \Gamma \subseteq X. \ \Gamma \vdash a.$$

Computational content

Reflection:

$$(a \Rightarrow b) \in Z \longrightarrow a \in Z \longrightarrow b \in Z$$

 $m \mapsto n \mapsto \max(m, n)$

Reification:

$$(a \in Z \longrightarrow b \in Z) \longrightarrow (a \Rightarrow b) \in Z$$

let $c := (a \Rightarrow b)$ in Z-complete

Z-complete is a kind of meta-level $\neg \neg_E$:

$$((c \in Z \longrightarrow \bot \in Z) \longrightarrow \bot \in Z) \longrightarrow c \in Z$$

Conclusion

Contribution:

- detailed Henkin-style argument formalised in Type Theory;
- generalisation to setoids of the Ultra-filter Theorem.

Future work:

- develop a proof/algorithm not parametrised by an enumeration (using delimited control);
- finish the Coq formalisation.

Outline

Boolean completeness

Classical NBE

Intuitionistic NBE

Delimited control in Logic

Classical Completeness via Kripke-style Models Motivation

Get a completeness theorem for **computational** classical calculi – reduction relation should be preserved.

Follow Normalization-by-Evaluation (NBE) methodology (Berger-Schwichtenberg 1991):

Theorem (Soundness/Evaluation)

$$\Gamma \vdash A \longrightarrow \forall w, w \Vdash \Gamma \longrightarrow w \Vdash A$$

Theorem (Completeness/Reification)

$$(\forall w, w \Vdash \Gamma \longrightarrow w \Vdash A) \longrightarrow \Gamma \vdash^{nf} A$$

Corollary (NBE)

The composition (Completeness \circ Soundness) normalizes proof terms into η -long β -normal form.

Standard Kripke models

Start with a structure $(K, \leq, D, \Vdash, \Vdash_{\perp})$, and extend \Vdash to non-atomic formulas:

```
\mathbf{w} \Vdash
A \land B \quad w \Vdash A \text{ and } w \Vdash B
A \lor B \quad w \Vdash A \text{ or } w \Vdash B
A \to B \quad \text{for any } w' \ge w, \text{ if } w' \Vdash A \text{ then } w' \Vdash B
\forall x P(x) \quad \text{for any } w' \ge w \text{ and any } a \in D(w'), w' \Vdash P(a)
\exists x P(x) \quad \text{there is } a \in D(w) \text{ such that } w \Vdash P(a)
```

Kripke-style models (Call-by-value variant)

Like with Kripke models, start with a structure $(K, \leq, D, \Vdash_s, \Vdash_{\perp})$, and extend **strong forcing** (\Vdash_s) to non-atomic formulas:

```
\mathbf{w} \Vdash_{\mathbf{s}}
```

 $A \wedge B$ $w \vdash A$ and $w \vdash B$

 $A \vee B$ $w \vdash A \text{ or } w \vdash B$

 $A \rightarrow B$ for any $w' \ge w$, if $w' \Vdash A$ then $w' \Vdash B$

 $\forall x P(x)$ for any $w' \ge w$ and any $a \in D(w')$, $w' \Vdash P(a)$

 $\exists x P(x)$ there is $a \in D(w)$ such that $w \vdash P(a)$

where the non-s-annotated \vdash is (**non-strong**) **forcing**:

$$w \vdash A := \forall w_1 \ge w. (\underbrace{\forall w_2 \ge w_1.w_2 \vdash_{\mathbf{s}} A \to w_2 \vdash_{\perp}}) \to w_1 \vdash_{\perp}$$
"refutation" \(w_1:A \vdash_{\perp} \)

Completeness for Kripke-style models and LK_{$\mu\tilde{\mu}$}

Theorem (Soundness)

```
c: (\Gamma \vdash \Delta) \implies \text{for any } w, w \Vdash \Gamma \text{ and } w: \Delta \Vdash \text{ implies } w \Vdash_{\perp}
\Gamma \vdash t : A \mid \Delta \implies \text{for any } w, w \mid \vdash \Gamma \text{ and } w : \Delta \mid \vdash \text{ implies } w \mid \vdash A
\Gamma | e : A \vdash \Delta \implies \text{for any } w, w \Vdash \Gamma \text{ and } w : \Delta \Vdash \text{ implies } w : A \vdash \Gamma
```

Theorem (Completeness)

```
(\Gamma, \Delta) \Vdash A \Longrightarrow there is a term t such that <math>\Gamma \vdash_{cf} t : A \mid \Delta
(\Gamma, \Delta): A \Vdash \Longrightarrow there is an ev. context e such that \Gamma|e: A \vdash_{cf} \Delta
```

Proof.

Make a Universal model \mathcal{U} from the derivation system:

- worlds are pairs (Γ, Δ)
- strong forcing is cut-free derivability of atoms: $(\Gamma, \Delta) \Vdash_s X := \exists t. \ \Gamma \vdash_{cf} t : X \mid \Delta$
- ▶ exploding nodes are cuts: $(\Gamma, \Delta) \Vdash_{\bot} := \exists c. \ c : (\Gamma \vdash_{cf} \Delta)$

Conclusion

- New notion of model for classical logic
- Not as simple as Boolean models
- But, reduction is preserved
- Dual notion of model that gives call-by-name normalization strategy
- Proofs formalised in Coq

Outline

Boolean completeness

Classical NBI

Intuitionistic NBE

Delimited control in Logic

Completeness of Intuitionistic Logic for Kripke models

- Kripke models are a standard semantics for intuitionistic logic
- ▶ But, there is no (simple) constructive proof with \lor , \exists :
 - classical Henkin-style proofs (Kripke 1965)
 - using Fan Theorem (Veldman 1976)
 - a constructive proof would imply MP (Kreisel 1962)
- ▶ On the other hand, a well-typed functional program for NBE of $\lambda^{\rightarrow \vee}$ (Danvy 1996)
 - using delimited-control operators shift and reset (Danvy-Filinski 1989)

Completeness/NBE for $\lambda^{\rightarrow \vee}$ What the problem is

Theorem (NBE)

$$\downarrow_{\Gamma}^{A}("reify"): \Gamma \Vdash A \longrightarrow \Gamma \vdash^{nf} A$$
$$\uparrow_{\Gamma}^{A}("reflect"): \Gamma \vdash^{ne} A \longrightarrow \Gamma \Vdash A$$

Proof of case $\uparrow^{A \lor B}$.

Given a derivation $\Gamma \vdash^{\text{ne}} A \lor B$, decide: $\Gamma \Vdash A \text{ or } \Gamma \Vdash B$?

Shift (\mathcal{S}) and reset (#) delimited control operators (#)

$$\#V \to V$$

$$\#F[\mathcal{S}k.p] \to \#p\{k := \lambda x.\#F[x]\}$$

Shift (\mathcal{S}) and reset (#) delimited control operators (#)

$$\#V \to V$$

$$\#F[\mathcal{S}k.p] \to \#p\{k := \lambda x.\#F[x]\}$$

$$1 + \#(2 + \mathcal{S}k.k(k4))$$

$$\to 1 + \#((\lambda a.\#(2+a))((\lambda a.\#(2+a))4))$$

$$\to^{+}1 + \#(\#(\#8))$$

$$\to^{+}9$$

Completeness/NBE for $\lambda^{\rightarrow \vee}$

Solution of Danvy: use delimited control operators shift (\mathcal{S}) and reset (#)

Theorem (NBE)

$$\downarrow_{\Gamma}^{A}("reify"): \Gamma \Vdash A \longrightarrow \Gamma \vdash^{nf} A
\uparrow_{\Gamma}^{A}("reflect"): \Gamma \vdash^{ne} A \longrightarrow \Gamma \Vdash A$$

Proof of case $\uparrow^{A \lor B}$.

Given a derivation *e* of $\Gamma \vdash^{\text{ne}} A \lor B$, decide: $\Gamma \Vdash A$ or $\Gamma \Vdash B$, by

$$\mathcal{S}k. \vee_E e(x \mapsto \#k(\operatorname{left}\uparrow_{x:A,\Gamma}^A x)) \ (y \mapsto \#k(\operatorname{right}\uparrow_{y:B,\Gamma}^B y))$$

Completeness/NBE for $\lambda^{\rightarrow \vee}$ Solution of Danvy: Issues

▶ We are convinced the **program** computes correctly

- There should be a corresponding completeness proof for Kripke model
- ► Type-and-effect system: types $A \rightarrow B$ become $A/\alpha \rightarrow B/\beta$, what is the logical meaning?
- Typing via classical logic

Completeness for Intuitionistic Predicate Logic (IQC)

Extracting a notion of model from Danvy's solution

Like with Kripke models, start with a structure $(K, \leq, D, | \vdash_{\mathbf{s}}, | \vdash^{(\cdot)}_{\perp})$, and extend **strong forcing** $(| \vdash_{\mathbf{s}})$ to non-atomic formulas:

```
\mathbf{w} \Vdash_{\mathbf{s}}
A \land B \quad w \Vdash A \text{ and } w \Vdash B
A \lor B \quad w \Vdash A \text{ or } w \Vdash B
```

 $A \rightarrow B$ for any $w' \ge w$, if $w' \Vdash A$ then $w' \Vdash B$

 $\forall x P(x)$ for any $w' \ge w$ and any $a \in D(w')$, $w' \Vdash P(a)$

 $\exists x P(x)$ there is $a \in D(w)$ such that $w \vdash P(a)$

where the non-s-annotated \vdash is (non-strong) forcing:

$$w \vdash A := \forall \mathbb{C}. \forall w_1 \geq w. (\forall w_2 \geq w_1. w_2 \vdash_s A \rightarrow w_2 \vdash_{\mathbb{C}} \bot) \rightarrow w_1 \vdash_{\mathbb{C}} \bot$$

Completeness for IQC via Kripke-style models

Theorem (NBE)

$$\downarrow_{\Gamma}^{A}("reify"): \Gamma \Vdash A \longrightarrow \Gamma \vdash^{nf} A
\uparrow_{\Gamma}^{A}("reflect"): \Gamma \vdash^{ne} A \longrightarrow \Gamma \Vdash A$$

Proof of case $\uparrow^{A \lor B}$.

Given a derivation e of $\Gamma \vdash^{\text{ne}} A \lor B$, prove $\Gamma \Vdash A \lor B$ i.e.

$$\forall C. \ \forall \Gamma_1 \geq \Gamma. \ (\forall \Gamma_2 \geq \Gamma_1. \ \Gamma_2 \Vdash_S A \text{ or } \Gamma_2 \Vdash_S B \rightarrow \Gamma_2 \vdash_{\perp}) \rightarrow \Gamma_1 \vdash_{\perp}$$

by

$$k \mapsto \bigvee_{E} e(x \mapsto k(\text{left} \uparrow_{x:A,\Gamma}^{A} x)) (y \mapsto k(\text{right} \uparrow_{y:B,\Gamma}^{B} y))$$

Conclusion

Contribution:

- ▶ New notion of model for Intuitionistic logic
- β -Normalises λ -calculus with sum
- But, not as simple as Kripke models
- Formalised in Coq
- Future work:
 - Find a good logical system for delimited control that can prove completeness for standard Kripke models

Outline

Boolean completeness

Classical NBI

Intuitionistic NBE

Delimited control in Logic

Delimited control operators in Logic

- ► Should allow us to give a constructive proof of completeness for Kripke semantics (Danvy's NBE functional program)
- ► Herbelin: delimited control allows to derive Markov's Principle (Herbelin 2010) and the Double Negation Shift
- ► Allow to simulate any monadic computational effect (Filinski 1994)

Proof term λ -calculus with $\mathcal S$ and

Proof terms:

$$p,q,r ::= a \mid \iota_1 p \mid \iota_2 p \mid \text{case } p \text{ of } \left(a.q \parallel b.r\right) \mid (p,q) \mid \pi_1 p \mid \pi_2 p \mid \lambda a.p \mid$$
$$\mid pq \mid \lambda x.p \mid pt \mid (t,p) \mid \text{dest } p \text{ as } (x.a) \text{ in } q \mid \#p \mid \mathscr{S}k.p$$

Proof term λ -calculus with $\mathcal S$ and

Proof terms:

$$p, q, r ::= a \mid \iota_1 p \mid \iota_2 p \mid \text{case } p \text{ of } (a.q \parallel b.r) \mid (p, q) \mid \pi_1 p \mid \pi_2 p \mid \lambda a.p \mid$$

 $\mid pq \mid \lambda x.p \mid pt \mid (t, p) \mid \text{dest } p \text{ as } (x.a) \text{ in } q \mid \#p \mid \mathscr{S}k.p$

Values:

$$V ::= a \mid \iota_1 V \mid \iota_2 V \mid (V, V) \mid (t, V) \mid \lambda a.p \mid \lambda x.p$$

Proof term λ -calculus with $\mathcal S$ and

Proof terms:

$$p,q,r ::= a \mid \iota_1 p \mid \iota_2 p \mid \text{case } p \text{ of } \left(a.q \parallel b.r\right) \mid (p,q) \mid \pi_1 p \mid \pi_2 p \mid \lambda a.p \mid$$
$$\mid pq \mid \lambda x.p \mid pt \mid (t,p) \mid \text{dest } p \text{ as } (x.a) \text{ in } q \mid \#p \mid \mathscr{S}k.p$$

Values:

$$V ::= a \mid \iota_1 V \mid \iota_2 V \mid (V, V) \mid (t, V) \mid \lambda a.p \mid \lambda x.p$$

Pure evaluation contexts:

$$P ::= [\] \mid \mathsf{case}\ P \ \mathsf{of} \ \left(a_1.p_1 \| a_2.p_2\right) \mid \pi_1 P \mid \pi_2 P \mid \mathsf{dest}\ P \ \mathsf{as}\ (x.a) \ \mathsf{in}\ p \mid \\ Pq \mid (\lambda a.q)P \mid Pt \mid \iota_1 P \mid \iota_2 P \mid (P,p) \mid (V,P) \mid (t,P) \mid (t,P$$

Proof term λ -calculus with $\mathcal S$ and

Proof terms:

Introduction

$$p, q, r ::= a \mid \iota_1 p \mid \iota_2 p \mid \text{case } p \text{ of } (a.q \mid b.r) \mid (p, q) \mid \pi_1 p \mid \pi_2 p \mid \lambda a.p \mid pq \mid \lambda x.p \mid pt \mid (t, p) \mid \text{dest } p \text{ as } (x.a) \text{ in } q \mid \#p \mid \mathscr{S} k.p$$

Values:

$$V ::= a \mid \iota_1 V \mid \iota_2 V \mid (V, V) \mid (t, V) \mid \lambda a.p \mid \lambda x.p$$

Pure evaluation contexts:

$$P ::= [\] \mid \mathsf{case}\ P \text{ of } (a_1.p_1 \| a_2.p_2) \mid \pi_1 P \mid \pi_2 P \mid \mathsf{dest}\ P \text{ as } (x.a) \text{ in } p \mid Pq \mid (\lambda a.q)P \mid Pt \mid \iota_1 P \mid \iota_2 P \mid (P,p) \mid (V,P) \mid (t,P) \mid Pt \mid (P,P) \mid$$

Reduction: (Call-by-value strategy)

$$(\lambda a.p) V \rightarrow p\{V/a\} \quad \text{case } \iota_i V \text{ of } \left(a_1.p_1 \| a_2.p_2\right) \rightarrow p_i \{V/a_i\}$$

$$(\lambda x.p) t \rightarrow p\{t/x\} \quad \text{dest } (t, V) \text{ as } (x.a) \text{ in } p \rightarrow p\{t/x\}\{V/a\}$$

$$\pi_i(V_1, V_2) \rightarrow V_i \quad \#P[\mathscr{S}k.p] \rightarrow \#p\{(\lambda a.\#P[a])/k\}$$

$$\#V \rightarrow V \quad E[p] \rightarrow E[p'] \text{ when } p \rightarrow p'$$

Typing/Logical system MQC⁺

The usual rules of MQC (minimal predicate logic), potentially annotated,

$$\frac{\cdots \vdash_T^+ \cdots}{\cdots \vdash_T^+ \cdots}$$

plus rules for reset and shift:

$$\frac{\Gamma \vdash_{T}^{+} p:T}{\Gamma \vdash_{\diamond}^{+} \# p:T}$$

$$\frac{\Gamma, \mathbf{k}: A \Rightarrow T \vdash_{T}^{+} \mathbf{p}: T}{\Gamma \vdash_{T}^{+} \mathcal{S} \mathbf{k}. \mathbf{p}: A}$$

T denotes a $\{\Rightarrow, \forall\}$ -free formula (" Σ -formula")

Deriving MP and DNS

Markov's Principle (predicate logic version):

 $\neg \neg S \Rightarrow S$, for S a Σ -formula

 $\lambda a.\# \perp_E (a(\lambda b. \mathscr{S} k.b))$

Deriving MP and DNS

Markov's Principle (predicate logic version):

$$\neg \neg S \Rightarrow S$$
, for S a Σ -formula

$$\lambda a.\# \perp_E (a(\lambda b. \mathscr{S} k.b))$$

Double Negation Shift (predicate logic version):

$$\forall x(\neg \neg A(x)) \Rightarrow \neg \neg (\forall x A(x))$$

$$\lambda a.\lambda b.\#b(\lambda x. \mathcal{S}k.axk)$$

Equiconsistency of MQC⁺ with MQC

By the call-by-value continuation-passing-style translation (related to Glivenko's double-negation translation)

$$A^T := (A_T \Rightarrow T) \Rightarrow T$$

$$A_T := A$$
 if A is a atomic $(A \square B)_T := A_T \square B_T$ for $\square = \vee, \wedge$ $(A \Rightarrow B)_T := A_T \Rightarrow B^T$ $(\exists A)_T := \exists A_T$ $(\forall A)_T := \forall A^T$

Relationship to classical and intuitionistic logic

Theorem (Equiconsistency)

Given a derivation of $\Gamma \vdash^+ A$, which uses $\mathscr S$ and # for the Σ -formula T, we can build a derivation of $\Gamma_T \vdash^m A^T$.

Theorem (Glivenko's Theorem extended to quantifiers)

$$\vdash^+ \neg \neg A \longleftrightarrow DNS \vdash^i A^\perp \longleftrightarrow \vdash^c A$$

Properties of MQC⁺

Theorem (Subject Reduction)

If $\Gamma \vdash^+_{\diamond} p : A \ and \ p \rightarrow q$, then $\Gamma \vdash^+_{\diamond} q : A$.

Theorem (Progress)

If $\vdash_{\diamond}^+ p: A$, p is not a value, and p is not of form $P[\mathscr{S}k.p']$, then p reduces in one step to some proof term r.

Theorem (Normalisation)

For every closed proof term p_0 , such that $\vdash^+ p_0 : A$, there is a finite reduction path $p_0 \to p_1 \to ... \to p_n$ ending with a value p_n .

Corollary (Disjunction and Existence Properties)

If $\vdash^+ A \lor B$, then $\vdash^+ A$ or $\vdash^+ B$. If $\vdash^+ \exists x A(x)$, then there exists a closed term t such that $\vdash^+ A(t)$.

Conclusion

- Contribution:
 - A typing system for delimited control which remains intuitionisitc (DP and EP) while deriving MP, DNS
 - But, only one use of MP is allowed
- Future work:
 - ▶ Annotating a derivation by a context Δ , like in (Herbelin 2010):

$$\frac{\Gamma \vdash_{\alpha:T,\Delta}^{+} p:T}{\Gamma \vdash_{\Delta}^{+} \#_{\alpha} p:T}$$

$$\frac{\Gamma, k:A \Rightarrow T \vdash_{\alpha:T,\Delta}^{+} p:T}{\Gamma \vdash_{\alpha:T,\Delta}^{+} \mathscr{S}_{\alpha} k.p:A}$$

- Connection to Fan Theorem, Open Induction, and other principles of Intuitionistic Reverse Mathematics
- A logical study of computational effects