

Développement d'éléments finis de coque pour le calcul des ouvrages d'art

L'Houcine Ait-Ali

▶ To cite this version:

L'Houcine Ait-Ali. Développement d'éléments finis de coque pour le calcul des ouvrages d'art. Matériaux. Ecole Nationale des Ponts et Chaussées, 1984. Français. NNT: . tel-00529363

HAL Id: tel-00529363 https://pastel.hal.science/tel-00529363

Submitted on 25 Oct 2010 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 76669

NS

NS 13252

THESE

PRÉSENTÉE A

L'ECOLE NATIONALE DES PONTS ET CHAUSSEES

POUR OBTENIR LE TITRE DE

DOCTEUR-INGENIEUR EN GÉNIE-CIVIL

- PAR

.

L'HOUCINE AIT-ALI

SUJET DE THESE : DEVELOPPEMENT D'ELEMENTS FINIS DE COQUE POUR LE CALCUL DES OUVRAGES D'ART

LE 27 JUIN 1984 A L'ECOLE NATIONALE DES PONTS ET CHAUSSEES

Devant le Jury composé de : MM.	8. J.L.	HALPHEN BATOZ	Président Rapporteur
OLE NATION	J. G. P.	BROZETTI FEZANS HUMBERT LADEVEZE	Examinateurs
PÉDAGOGIQUE M DOCUMENTATION	J.C.	PARRIAUD	Invité

.

REMERCIEMENTS

J'exprime ma profonde reconnaissance à Messieurs HUMBERT et FEZANS qui m'ont initié à la méthode des éléments finis et m'ont guidé tout au long de ce travail.

Je tiens à exprimer toute ma gratitude à Monsieur HALPHEN qui a suivi avec intérêt l'élaboration de ce travail et me fait l'honneur de présider ce Jury.

- 2

đ

Je remercie Messieurs BATOZ, BROZETTI et LADEVEZE pour l'intérêt qu'ils ont apporté à ce travail en acceptant de faire partie du Jury.

J'adresse tous mes remerciements à Madame DOH et Monsieur BOURAI pour avoir réalisé la dactylographie et la présentation de cette thèse avec tant de gentillesse.

Je remercie tous les membres de la section Modèles Numériques où j'ai effectué ce travail et les camarades thésards pour leur agréable compagnie.

Cette étude a été effectuée au Laboratoire Central des Ponts et Chaussées, section Modèles Numériques, je remercie Monsieur PARRIAUD, son directeur, qui a mis à ma disposition tous les moyens nécessaires au bon déroulement de ce travail.

RESUME

L'objectif de ce travail est la mise au point et le test d'une série d'éléments finis de coque permettant de prendre en compte l'essentiel des situations rencontrées dans le calcul des ouvrages d'art.

Pour ce faire, nous avons ainsi considéré trois catégories d'éléments :

- Nous avons tout d'abord étudié les éléments de plaque en flexion à 3 et 4 noeuds (DKT et DKQ) basés sur les hypothèses de Love-Kirchhoff sous forme discrète.

Après avoir étendu leur formulation pour permettre le calcul de coques de forme quelconque et d'épaisseur variable, nous avons effectué une série de tests numériques (plaque, coque cylindrique, structure de type caisson, barrage-voûte) qui permettent d'évaluer leurs performances.

 Nous avons par la suite étudié le comportement des éléments de coque épaisse à 8 noeuds basés sur les hypothèses cinématiques de Mindlin.
 Les tests numériques effectués nous ont permis de vérifier que ces éléments sont très adaptés au calcul des structures épaisses et des structures dans lesquelles les effets de membrane sont importants.

- Pour permettre l'étude de structures coques comportant des parties massives devant être modélisées par des éléments tridimensionnels nous avons également étudié des éléments de coque épaisse de type tridimensionnel à 16 ou 12 noeuds permettant grâce à des éléments de transition une connection facile avec les éléments massifs. PLAN DE LA THESE

I - INTRODUCTION.

II - FORMULATION DES ELEMENTS CONSIDERES

1 - ELEMENTS DE COQUE EPAISSE A 12 ET 16 NOEUDS.

2 - ELEMENTS DE COQUE EPAISSE A 6 ET 8 NOEUDS.

3 - ELEMENTS DE COQUE MINCE A 3 ET 4 NOEUDS.

III - COMPORTEMENT DE CES ELEMENTS DANS LE DOMAINE STATIQUE.

IV - COMPORTEMENT DE CES ELEMENTS DANS LE DOMAINE DYNAMIQUE.

V - CONCLUSION.

BIBLIOGRAPHIE.

ANNEXES.

TABLEAUX DES RESULTATS.

I - INTRODUCTION :

Dans le domaine du génie civil on a souvent besoin de calculer des structures de type "coque" qui peuvent être relativement complexes (ponts à caisson, dalles, barrages ...).

Pour de tels ouvrages il est très rare que l'on puisse obtenir une solution analytique du problème en utilisant les théories classiques des plaques et des coques. De ce fait, on est la plupart du temps obligé d'avoir recours à des méthodes numériques comme la méthode des éléments finis.

Les éléments de poutre permettent souvent d'avoir une première approximation du comportement de nombreux ouvrages simples. Néanmoins, ils se révèlent insuffisants pour l'étude d'ouvrages plus complexes. Dans ces derniers cas, il faut donc utiliser des éléments plus performants comme les éléments finis de coque ou les éléments finis tridimensionnels.

L'objet de ce travail est la mise au point et le test d'une série d'éléments finis de coque permettant de prendre en compte l'essentiel des situations rencontrées dans le calcul des ouvrages d'art.

Une étude bibliographique complète de tous les travaux portant sur l'analyse des coques par éléments finis constitue un travail considérable et n'est pas l'objet de notre étude. Pour situer notre travail par rapport aux recherches déjà effectuées dans ce domaine, nous nous contentons ici d'esquisser les quatre approches les plus fréquemment utilisées en renvoyant le lecteur aux références | 19 à 23 | pour une analyse bibliographique plus détaillée.

L'utilisation d'éléments plats |25 | (éléments triangulaires à 3 noeuds et quadrilétères à 4 noeuds) pour discrétiser les structures coques est la première des approches que nous pouvons considérer. L'avantage essentiel des éléments appartenant à cette catégorie est leur simplicité relative.

En effet leur formulation repose sur les théories classiques des plaques. De ce fait on évite toutes les complexités dues à la prise en compte des courbures dans les théories des coques. Ces éléments ont néanmoins certains inconvénients. Basées la plupart du temps sur des hypothèses cinématiques de type love-Kirchhoff, ils ne prennent pas en compte l'énergie de déformation due au cisaillement transversal. Ils sont donc relativement peu adaptés au calcul des structures épaisses où cette énergie est non négligeable.

De plus le couplage flexion-membrane existant dans une structure coque courbe n'est pas prise en compte au niveau de chaque élément. Il n'est pris en compte que par l'assemblage de plusieurs éléments non coplanaires. On conçoit donc facilement que pour les calculs de coque où les efforts de membrane sont importants, il faille avec des éléments de cette catégorie, concevoir des maillages relativement fins.

Les éléments de ce type sont cependant très utilisés dans les programmes industriels de calculs de structure car leur emploi est relativement simple et leur coût de calcul reste raisonnable (largeur de bande peu élevée par rapport à des maillages constitués d'éléments isoparamétriques tridimensionnels).

Une seconde approche consiste à discrétiser la structure considérée à l'aide d'éléments dérivés des théories bidimensionnelles classiques des coques à double courbure. Si ces éléments ont des performances souvent très satisfaisantes, ils sont néanmoins assez rarement utilisés dans la pratique industrielle. Ceci est certainement dû à leur formulation et à leur mise en oeuvre relativement complexe.

L'analyse des coques par l'intermédiaire d'éléments dérivés des éléments isoparamétriques tridimensionnels constitue la troisième approche que nous pouvons considérer. Dérivés des hypothèses cinématiques de Mindlin ces éléments permettent la prise en compte de l'énergie de déformation due au cisaillement transversal. De ce fait, ces éléments sont souvent appelés éléments de coque épaisse | 1 | , |17 | , |24 | .

Basés sur le concept d'élément isoparamétrique, ils peuvent être courbes et donc bien représenter la géométrie réelle de la structure considérée tout en évitant les théories des coques.

La dernière approche que nous pouvons distinguer est l'utilisation d'éléments isoparamétriques tridimensionnels classiques pour modéliser les structures coques étudiées. Cette approche entraîne malheureusement des coûts de calcul qui restent encore souvent dissuasifs. Si les éléments de poutre sont souvent insuffisants pour permettre une analyse assez fine du problème considéré, il est néanmoins courant que l'on puisse se contenter d'une étude effectuée à l'aide d'éléments de coque "simples". Ces éléments doivent donc appartenir naturellement à la première des approches que nous avons considérée ci-dessus. Néanmoins on peut distinguer de nombreux types d'éléments appartenant à cette catégorie. A l'heure actuelle un certain consensus semble cependant se dessiner dans la littérature pour reconnaître que les éléments de plaque en flexion (triangle à 3 noeuds (DKT) et quatrilatère à 4 noeuds (DKQ)) basés sur les hypothèses de Love-Kirchhoff sous forme discrète sont à ce jour parmi les plus performants. Ces éléments ont été essentiellement développés par Batoz [19], [20], [21].

Une partie de notre étude portera ainsi sur ces éléments. La plupart des articles actuellement publiés sont consacrés à l'étude du comportement de ces éléments dans le calcul des plaques en flexion pure. Notre travail étend ces études à l'analyse des coques ; les coques considérées pouvant avoir une épaisseur variable à chaque noeud. Pour évaluer la performance de ces éléments, nous avons effectué de nombreux tests numériques sur des structures classiques (plaque, coque cylindrique) et sur des structures de types ouvrages d'art (pont à caisson, barrage).

D'une manière générale, les éléments appartenant à la première des catégories d'éléments que nous avons définie, sont bien adaptés au calcul des structures minces ayant un comportement dominant de flexion. Dans la pratique de nombreux ouvrages d'art ne répondent pas à ces critères. Les dalles constituant les ouvrages (ponts) sont en effet souvent relativement épaisses ; de mêmes les ames de ponts à caisson ont essentiellement un comportement en membrane. Pour ces structures les éléments de type coque épaisse peuvent alors sembler plus adaptés que les éléments de coque mince à 3 et 4 noeuds. C'est pourquoi une autre partie de notre travail sera consacrée à l'étude du comportement de ce type d'éléments. Leurs performances seront alors comparées à celles des éléments de coques minces (DKT et DKQ) précédemment définis.

Les éléments de coques épaisses que nous avons étudiés sont de deux "formes" différentes. Nous avons ainsi d'abord considéré des éléments de coque épaisse dits de "type surface moyenne". Ces éléments sont soit des triangles à 6 noeuds, soit des quadrilatères à 8 noeuds. Ils peuvent avoir une épaisseur variant au niveau de chaque noeud.

Chaque noeud possède les 6 degrés de libertés classiques des éléments de coque (trois déplacements, trois rotations).

Ces éléments ont déjà fait l'objet ces dernières années de nombreuses publications 1 à 18 . Néanmoins, la plupart de ces dernières portent principalement leur attention sur le type d'intégration numérique à utiliser (intégration normale, réduite ou sélective) pour le calcul des matrices de rigidité élémentaires. De ce fait les tests considérés ne portent souvent que sur les résultats en déplacement. Le présent travail complète ces études en examinant grâce à une série relativement complète de tests numériques les performances de ces éléments tant en déplacement qu'en contraintes.

Quand les structures à étudier sont constituées localement de parties massives dont on souhaite connaître le comportement avec précision, il est utile de pouvoir relier des éléments de coques à des éléments purement tridimensionnels. A cet effet nous avons ainsi considéré deux éléments de coque épaisse de type tridimensionnels ; un pentaèdre à 12 noeuds et un hexaèdre à 16 noeuds.

16 noeuds

12 noeuds

Chacun des noeuds de ces éléments ne comporte cette fois que trois degrés de liberté (3 déplacements).

Ces éléments peuvent être utilisés en liaison avec des "éléments de transition" qui permettent leur connection à des éléments purement tridimensionnels.

. ...

él. volume

Parallèlement aux tests effectués dans le domaine statique pour évaluer la performance des éléments considérés, nous avons également effectué une série de tests pour étudier leur comportement dans le domaine dynamique.

Notre travail comporte trois chapitres principaux. Dans le premier de ces chapitres nous décrivons la formulation de chacun des éléments considérés.

Nous parlerons ainsi tour à tour :

- des éléments de coque épaisse de "type tridimensionnel",
 des éléments de coque épaisse de "type surface moyenne",

÷.

5

- des éléments de coque mince à 3 et 4 noeuds basés sur les hypothèses de Love-Kirchhoff sous forme discrète.

A travers une série de tests numériques, nous effectuerons dans le chapitre suivant une évaluation des performances des éléments considérés dans le domaine statique.

Le troisième de ces chapitres sera consacré au comportement de ces éléments dans le domaine dynamique.

II - FORMULATION DES ELEMENTS CONSIDERES

1 - ELEMENTS DE COQUE EPAISSE A 12 ET 16 NOEUDS.

2 - ELEMENTS DE COQUE EPAISSE A 6 ET 8 NOEUDS.

7

3 - ELEMENTS DE COQUE MINCE A 3 ET 4 NOEUDS.

1. ELEMENTS DE COQUE EPAISSE A 12 ET 16 NOEUDS.

.

INTRODUCTION.

1.1. DEFINITION GEOMETRIQUE DES ELEMENTS.

1.2. CHAMP DE DEPLACEMENT.

1.3. LOI DE COMPORTEMENT.

1.4. CALCUL DE LA MATRICE DE RIGIDITE ELEMENTAIRE.

.

5

1.5. CALCUL DES CONTRAINTES.

INTRODUCTION

1

L'en Malter (n Marianez - 1

- Star We

Dans ce paragraphe nous all'ons décrire la formulation des éléments de coque épaisse de type tridimensionnel à 12 et à 16 noeuds.

Ce sont des éléments isoparamétriques tridimensionnels à interpolation linéaire suivant l'épaisseur.

De plus, conformément à ce qui est couramment adopté dans le calcul des coques, la loi de compôrtement utilisée sera établie en considérant l'hypothèse suivant laquelle la contrainte normale à la surface moyenne de l'élément (σ_{33}) est négligeable.

La géométrie de ces éléments peut se définir de la manière suivante :

(1)
$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = \sum_{K=1}^{n} H^K (r,s,t) \begin{cases} x_1^k \\ x_2^k \\ x_3^k \end{cases}$$

avec :

N : Nombre de noeuds de l'éléments considéré (N = 12 ou 16) x_i (i=1,3) : Coordonnées Cartésiennes d'un point courant de l'élément. r,s,t : Coordonnées curvilignes de ce même point. H^K : Fonction d'interpolation du noeud K (voir Annexe 1). x_i^k (i=1,3) : Coordonnées Cartésiennes du noeud K. 1.2. CHAMP DE DEPLACEMENT

Les éléments considérés sont isoparamétriques. De ce fait, le déplacement d'un point courant de ces éléments s'exprimera à l'aide des fonctions d'interpolation utilisées pour définir leur géométrie.

Nous aurons ainsi :

(2)
$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \sum_{K=1}^{N} H^K (r,s,t) \begin{pmatrix} u_1^k \\ u_2^k \\ u_2^k \\ u_3^k \end{pmatrix}$$

u_i (i=1,3) : Composantes du déplacement d'un point de l'élément de coordonnées curvilignes r,s,t.

 u_i^k (i=1,3) : Composantes du déplacement du noeud K.

Nous pouvons noter que la prise en compte d'une interpolation linéaire suivant l'épaisseur des éléments est équivalente à la prise en compte des hypothèses cinématiques de Mindlin [26, 1951] utilisées de manière classique dans le calcul des coques "épaisses".

.

En élasticité tridimensionnelle la relation contrainte-déformation peut se mettre sous la forme suivante :

(3)
$$\{\sigma\} = [E_T] \{\epsilon\}$$

avec :
 $\{\sigma\}^T = \{\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}, \sigma_{13}\}$
 $\{\epsilon\}^T = \{\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, 2\epsilon_{12}, 2\epsilon_{23}, 2\epsilon_{13}\}$

		Γ λ+2G	λ	λ	0	0	0 7
	λ	λ+2G	λ	0	0	0	
	λ	λ	λ +2G	0	0	0	
(4)	ί τ ι =	0	0	0	G	0	0
		0	0	0	0	G	0
		LO	0	0	0	0	G

 λ,G : Coefficients de Lamé.

(5)
$$\lambda = \frac{E_{\nu}}{(1+\nu)(1-2\nu)}$$
 $G = \frac{E}{2(1+\nu)}$

E : Module Young.

v : Coefficient de Poisson.

Conformément à ce qui est couramment adopté pour le calcul des coques, contrainte nous modifierons cette relation (4) pour tenir compte du fait que la contrainte normale à la surface moyenne de l'élément (σ_{33}) est négligeate du ble.

Dans un repère local \vec{V}_1 , \vec{V}_2 , \vec{V}_3 orthonormé et tel que \vec{V}_3 soit perpendiculaire à la surface t = cst nous pouvons ainsi écrire d'après (4)

(6)
$$\sigma'_{33} = \lambda(\varepsilon'_{11} + \varepsilon'_{22}) + (\lambda + 2G) \varepsilon'_{33} = 0$$

d'où

(7)
$$\varepsilon_{33}^{\prime} = -\frac{\lambda}{\lambda+2G} (\varepsilon_{11}^{\prime} + \varepsilon_{22}^{\prime})$$

1 25175

5

Compte-tenu de cette équation (7) nous avons d'après (4)

(8)
$$\sigma'_{11} = \frac{E}{2} \varepsilon'_{11} + \frac{\nu E}{2} \varepsilon'_{22}; \sigma'_{22} = \frac{\nu E}{2} \varepsilon'_{11} + \frac{E}{2} \varepsilon'_{22}$$

 $1 - \nu = 1 - \nu = 1 - \nu$

Compte-tenu de l'hypothèse $\sigma'_{33} = 0$ la loi de comportement (3) peut ainsi s'écrire :

$$(9) \qquad \begin{cases} \sigma_{11}^{\prime} \\ \sigma_{22}^{\prime} \\ \sigma_{33}^{\prime} \\ \sigma_{12}^{\prime} \\ \sigma_{23}^{\prime} \\ \sigma_{13}^{\prime} \\ \sigma_{13}^{$$

 σ'_{ij} , ε'_{ij} : Composantes des tenseurs de contraintes et de déformations exprimées dans le repère local \vec{V}_1 , \vec{V}_2 , \vec{V}_3

La matrice intervenant dans cette relation n'est malheureusement pas applicable sous cette forme, car elle n'est pas inversible. Comme les forces extérieures correspondant au pincement suivant l'axe 3 sont en général très faibles, on ne crée qu'une erreur négligeable dans la condition $\sigma'_{33} = 0$ en introduisant une valeur non nulle pour le troisième

terme diagonal. On choisit arbitrairement de prendre ce terme égal à E pour conserver le même ordre de grandeur que les autres termes diagonaux |27|. Dans le repère local la loi finalement adoptée s'écrira :

(10)
$$\{\sigma'\} = \{E_L\} \{\epsilon'\}$$

avec :

$$\begin{bmatrix} 1 & v & 0 & 0 & 0 & 0 \\ v & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 - v^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1 - v}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1 - v}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1 - v}{2} & 0 \end{bmatrix}$$

Nous pouvons obtenir les composantes de ces tenseurs σ' et ϵ' dans le repère global par l'intermédiaire d'une matrice de passage $\lfloor R \rfloor$ 16 telle que

1--

(11)
$$\{\sigma\} = \lfloor R \rfloor \{\sigma'\}$$
; $\{\varepsilon'\} = \lfloor R \rfloor^T \{\varepsilon\}$

Compte-tenu des relations (10) et (11), nous pourrons relier les composantes de \underline{g} aux composantes de $\underline{\varepsilon}$ par la relation :

(12) $\{\sigma\} = \lfloor E \rfloor \{\varepsilon\}$ (13) où $\lfloor E \rfloor = \lfloor R \rfloor \lfloor E_{\perp} \rfloor \lfloor R \rfloor^{\mathsf{T}}$

avec :

		C_1^2	d_1^2	e_1^2	2C ₁ d ₁	$2d_1e_1$	$2e_1c_1$
		C_2^2	d_2^2	e_2^2	$2C_2d_2$	$2d_2e_2$	$2e_2c_2$
	C_3^2	d_3^2	2 e 3	2C ₃ d ₃	2d3e3	2e ₃ c ₃	
(14)	[R] =	C_1C_2	$d_1 d_2$	e_1e_2	$c_1d_2+c_2d_1$	$d_1e_2+d_2e_1$	$e_1c_2+e_2c_1$
		C ₂ C ₃	d ₂ d ₃	e ₂ e ₃	c ₂ d ₃ +c ₃ d ₂	$d_2e_3+d_3e_2$	e ₂ c ₃ +e ₃ c ₂
j	C ₃ C ₁	d _l d ₃	e _l e ₃	$c_3d_1+c_1d_3$	d ₃ e ₁ +d ₁ e ₃	e ₃ c ₁ +e ₁ c ₃ —	

avec $:v_1(1)$	= c ₁	;	$v_1(2)$	= c ₂	;	$v_1(3) = c_3$
v ₂ (1)	= d ₁	;	$v_{2}(2)$	= d ₂	;	$v_2(3) = d_3$
v ₃ (1)	= e ₁	•	v ₃ (2)	= e ₃	•	$v_{3}(3) = e_{3}$

۲

.,

•

Nous utiliserons le principe des travaux virtuels pour exprimer l'équilibre de l'élément. Ce principe peut s'écrire :

1

(15)
$$\int_{V} \sigma_{ij} \delta \epsilon_{ij} d V = \delta W^{e}$$

V : Volume de l'élément.

 δW^{e} : travail virtuel des efforts extérieurs appliqués à l'élément.

Sous forme matricielle nous pouvons écrire :

(16) $\int_{\mathbf{v}} \sigma_{ij} \delta \varepsilon_{ij} d\mathbf{V}^{\mathbf{e}} = \int_{-1-1-1}^{1-1-1} \{\delta \varepsilon\}^{\mathsf{T}} \{\sigma\} | \det J | d\mathbf{r} ds dt$

det J : Valeur absolue du déterminant de la matrice jacobienne.

(17)
$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} x_{1}, r_{2}, r_{3}, r_{1}, r_{2}, r_{3}, r_{1}, r_{1}, r_{2}, r_{3}, r_{1}, r_{1}, r_{2}, r_{3}, r_{1}, r_{1}, r_{2}, r_{3}, r_{1} \end{bmatrix}$$

D'après les hypothèses effectuées sur le champ de déplacement nous pouvons écrire d'autre part :

(19)
$$\{\epsilon\} = \lfloor B \rfloor \{U\}$$
, $\{\delta \epsilon\} = \lfloor B \rfloor \{\delta U\}$
 $6\times 1 \quad 6\times 3N \quad 3N\times 1$

avec :

 $\{U\}^{\mathsf{T}} = \{U_1^1, U_2^1, U_3^1, U_1^2, U_2^2, U_3^2, \dots, U_1^{\mathsf{N}}, U_2^{\mathsf{N}}, U_3^{\mathsf{N}}\}$

[B] : Matrice reliant les composantes de tenseur des déformations nodaux (voir annexe 3) De manière classique nous pouvons aussi écrire que : 👘 🦂

(20)
$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = \{\delta U\} [K_e] \{U\}$$

[K_] : Matrice de rigidité élémentaire telle que :

 $[K_{e}] = \iiint_{1}^{1} [B]^{T} [E'] [B]$ det J dr ds dt

Les termes de ces matrices de rigidité élémentaires sont évalués par intégration numérique.

Pour les 2 types d'éléments considérés, l'intégration suivant l'épaisseur (coordonnée t) sera effectuée à l'aide de 2 points de Gauss.

Six points de Hammer seront utilisés dans le plan r,s pour l'élément à 12 noeuds.

Une intégration numérique réduite à 4 points de Gauss ou une intégration complète à 9 points de Gauss sera utilisée dans le plan r,s pour les éléments à 16 noeuds (voir annexe 4).

1.5. CALCUL DES CONTRAINTES

.

D'après les équations (12) et (19), nous pouvons exprimer les composantes du tenseur des contraintes dans le repère global en un point quelconque de l'élément comme suit : ~ ~ひ

$$\{\sigma_{(r,s,t)}\} = \lfloor E_{(r,s,t)} \rfloor \lfloor B_{(r,s,t)} \rfloor \{U\}$$

$$6x1 \qquad 6x6 \qquad 6x3N \qquad 3Nx1$$

.

 $\{\sigma\}$: Composantes du tenseur des contraintes au point de coordonnées curviligne r, s, t.

- 2 - ELEMENTS DE COQUE A 6 ET 8 NOEUDS

INTRODUCTION

- 2.1 CALCUL DE LA MATRICE DE RIGIDITE ELEMENTAIRE CAS LINEAIRE
- 2.2 CALCUL DES CONTRAINTES
- 2.3 CALCUL DES FORCES NODALES
- 2.4 CALCUL DES MATRICES MASSE

2 · · · · · · ·

.

.

2 1 - CALCUL DE LA MATRICE DE RIGIDITE ELEMENTAIRE - CAS LINEAIRE.

2 * *

- 2.1.1. Définition géométrique.
- 2.1.2. Définition du champ de déplacement.
- 2.1.3. Loi de comportement utilisée.
- 2.1.4. Expression de la matrice de rigidité élémentaire.

Introduction

Le présent paragraphe rappelle la formulation des éléments de coque épaisse ("type surface moyenne") triangulaires à 6 noeuds et quadrangulaires à 8 noeuds. Ces éléments peuvent être courbes et d'épaisseur variable à chaque noeud.

Ces éléments et en particulier l'élément à 8 noeuds ont fait l'objet ces dernières années de nombreuses publications |1 à 18| et sont de plus en plus employés dans les programmes industriels de calcul de structures.

Basés sur les hypothèses cinématiques de Mindlin, ces éléments prennent en compte les effets de cisaillement transverse.

Conformément à ce qui a été montré par de nombreux auteurs |2|, |3|, |4|, |18|, une intégration numérique dite "réduite" est utilisée pour le calcul de la matrice de rigidité élémentaire de l'élément à 8 noeuds.

Cette intégration améliore notablement les performances de cet élément et autorise son utilisation pour le calcul de structures relativement minces.

2.1.1. Définition géométrique :

La géométrie des éléments de coque à 6 et 8 noeuds peut se définir comme suit [17] :

(1)
$$x_{i}(r,s,t) = \sum_{K=1}^{N} H^{K}(r,s) x_{i}^{K} + \frac{t}{2} \sum_{K=1}^{N} H^{K}(r,s) e^{K} V_{3i}^{K}$$

x; (i = 1,3) : Coordonnées cartésiennes d'un point quelconque de l'élément de coordonnées curvilignes r, s, t. Les relations (1) définissent pour un élément, la correspondance entre les coordonnées cartésiennes x_1 , x_2 , x_3 et les coordonnées curvilignes r,s,t. $H^{k}(r,s)$: Fonction d'interpolation du noeud K (voir Annexe 2). $x_{i}^{K}(i=1,3)$: Coordonnées cartésiennes du noeud K. ۶K : Epaisseur de la coque au niveau du noeud K. : Nombre de noeuds de l'élément (N=6 pour l'élément N triangulaire, N=8 pour l'élément quadrangulaire). $V_{3i}^{K}(i=1,3)$: Composantes dans le repère global d'un vecteur unitaire ₹^K normal à la surface moyenne de l'élément au niveau du noeud K.

. : . :

Hypothèse :

Toute normale à la surface moyenne reste droite après déformation mais n'est plus forcement normale à la surface moyenne déformée (Hypothèses cinématiques de Mindlin). א ג'

Compte-tenu de cette hypothèse, nous pouvons exprimer le déplacement d'un point quelconque M(r,s,t) de l'élément comme suit [17] :

Nous pouvons écrire d'autre part que :

$$(3) \quad \begin{bmatrix} \circ_{1}^{'K} \\ \circ_{2}^{'K} \end{bmatrix} = \begin{bmatrix} v_{11}^{K} & v_{12}^{K} & v_{13}^{K} \\ v_{21}^{K} & v_{22}^{K} & v_{23}^{K} \end{bmatrix} \quad \begin{cases} \circ_{1}^{K} \\ \circ_{2}^{K} \\ \circ_{3}^{K} \end{cases}$$

avec :

 Θ_1^K , Θ_2^K , Θ_3^K : Rotations au noeud K par rapport aux axes x_1 , x_2 , x_3 du repère global.

Compte-tenu des relations (3) les équations (2) peuvent s'écrire :

$$(4) \begin{cases} u_{1}(r,s,t) & \\ u_{2}(r,s,t) & = \sum_{K=1}^{N} H^{K}(r,s) \begin{cases} u_{1}^{K} \\ u_{2}^{K} \\ u_{3}^{K} \end{cases} + \frac{t}{2} \sum_{K=1}^{N} H^{K}(r,s) e^{K} \left[\phi^{K} \right] \begin{pmatrix} \Theta_{1}^{K} \\ \Theta_{2}^{K} \\ \Theta_{3}^{K} \end{pmatrix}$$

avec :

$$\begin{bmatrix} \phi^{K} \end{bmatrix} = \begin{bmatrix} 0 & v_{33}^{K} & -v_{32}^{K} \\ -v_{33}^{K} & 0 & v_{31}^{K} \\ v_{32}^{K} & -v_{31}^{K} & 0 \end{bmatrix}$$

Les équations (4) expriment le vecteur déplacement d'un point quelconque de l'élément en fonction des paramètres nodaux :

$$(u_1^K, u_2^K, u_3^K, \Theta_1^K, \Theta_2^K, \Theta_3^K; K = 1,N)$$

•

2.1.3. - Loi de comportement utilisée :

ı

Hypothèse : Conformément à ce qui est couranment adopté pour le calcul des coques, nous considèrerons que la contrainte normale à la surface moyenne de l'élément (σ'_{33}) est négligeable.

Compte-tenu de cette hypothèse nous pouvons relier les composantes du tenseur des contraintes en un point M à celle du tenseur des déformations de la manière suivante :

(5)
$$\{\sigma\} = [E_{1}] \{\varepsilon\}$$

soit:
(6) $\begin{cases} \sigma_{11}^{\dagger} \\ \sigma_{22}^{\dagger} \\ \sigma_{12}^{\dagger} \\ \sigma_{23}^{\dagger} \\ \sigma_{13}^{\dagger} \end{cases} = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 & 0 & 0 \\ \nu & 1 & 0 & 0 & 0 \\ 0 & 0 & (1-\nu)/2 & 0 & 0 \\ 0 & 0 & 0 & \beta(1-\nu)/2 & 0 \\ 0 & 0 & 0 & 0 & \beta(1-\nu)/2 \end{bmatrix} \begin{cases} \varepsilon_{11}^{\dagger} \\ \varepsilon_{22}^{\dagger} \\ \varepsilon_{22}^{\dagger} \\ \varepsilon_{23}^{\dagger} \\ \varepsilon_{13}^{\dagger} \end{cases}$

E, v : Module d'Young et coefficient de Poisson du matériau utilisé. β : Facteur correctif de cisaillement transversal. $\beta=5/6$.

Les composantes de g' et de g' (point M (r,s,t)) sont exprimées dans un repère local dont un des vecteurs \vec{V}_3^M est normal à surface moyenne au point M_0 (r,s,o).

Nous pouvons obtenir les composantes de ces mêmes tenseurs dans le repère global par l'intermédiaire de deux matrices R et R^{*} (Annexe 5) telles que :

(7) $\{\sigma\} = [R] \{\sigma'\}$; $\{\varepsilon'\} = [R^*] \{\varepsilon\}$ 6x1 6x5 5x1 5x1 5x6 6x1

 $\begin{cases} \sigma \}^{T} = (\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}, \sigma_{13}) \\ \{ \varepsilon \}^{T} = (\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}, 2\varepsilon_{12}, 2\varepsilon_{23}, 2\varepsilon_{13}) \\ \sigma_{ij} \text{ et } \varepsilon_{ij} \text{ (i = 1,3 ; j = 1,3) sont les composantes des tenseurs des contraintes et des déformations, au point M, dans le repère global. }$

- _1 - _

Compte-tenu de (5) et (7), nous avons alors :

_,►

.

-

(8) $\{\sigma\} = [E] \{\varepsilon\}$ avec

.

4

(9) [E] = [R][E_L][R^{*}].

2.1.4. - Expression de la matrice de rigidité élémentaire :

Nous utiliserons le principe des travaux virtuels pour exprimer l'équilibre de l'élément. Ce principe peut s'écrire :

- |

(10)
$$\int_{V} \sigma_{ij} \delta \epsilon_{ij} dV = \delta W^{e}$$

: Volume de l'élément. V

_

δW^e : Travail virtuel des efforts extérieurs appliqués à l'élément.

De manière classique nous pouvons écrire :

(11)
$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = \iiint_{ij} \{\delta \varepsilon\} [E] \{\varepsilon\} |det J| dr ds dt$$

. .

avec :

det J : Déterminant de la matrice jacobienne [J] de la transformation entre coordonnées cartésiennes et coordonnées curvilignes.

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} x_{1,r} & x_{2,r} & x_{3,r} \\ x_{1,s} & x_{2,s} & x_{3,s} \\ x_{1,t} & x_{2,t} & x_{3,t} \end{bmatrix}$$

Soit {u} le vecteur dont les composantes sont les paramètres nodaux de l'élément :

$$\{u\}^{\mathsf{T}} = (u_1^1, u_2^1, u_3^1, \Theta_1^1, \Theta_2^1, \Theta_3^1, \dots u_1^N, u_2^N, u_2^N, \Theta_1^N, \Theta_2^N, \Theta_3^N)^{\mathsf{T}}$$

Nous allons exprimer le vecteur $\{\varepsilon\}$ en fonction du vecteur $\{u\}$ par l'intermédiaire d'une matrice [B] telle que :

(12)
$$\{\epsilon\} = [B] \{u\}.$$

Pour déterminer l'expression de cette matrice, nous procèderons en trois étapes :

a) Nous exprimerons tout d'abord le vecteur déformation $\{\epsilon\}$ en fonction des dérivées des déplacements par rapport aux coordonnées cartésiennes. Nous avons en effet :

$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,x_j} + u_{j,x_i} \right)$$

d'où: (13) $\{\epsilon\} = [A] \{u, x\}$ $\{u, x\}^{T} = (u_{1, x_{1}}, u_{1, x_{2}}, \dots, u_{3, x_{3}})$ 6x1 6x9 9x1

[A] : Voir Annexe 6

b) Nous exprimerons ensuite les dérivées des déplacements par rapport aux coordonnées cartésiennes en fonction des dérivées des déplacements par rapports aux coordonnées curvilignes r, s, t.

Si la correspondance entre coordonnées cartésiennes et coordonnées curvilignes (1) est bijective, nous pouvons écrire :

(14)
$$\begin{cases} u_{i,x_{1}} \\ u_{i,x_{2}} \\ u_{i,x_{3}} \end{cases} = \begin{bmatrix} J^{-1} \end{bmatrix} \begin{pmatrix} u_{i,r} \\ u_{i,s} \\ u_{i,t} \end{pmatrix}$$
 $i = 1,3$

ou J^{-1} est l'inverse de la matrice J .

Nous aurons alors :

(15)
$$\left\{ u, x \right\} = \begin{bmatrix} J^{-1} & 0 & 0 \\ 0 & J^{-1} & 0 \\ 0 & 0 & J^{-1} \end{bmatrix}; \left\{ u, y \right\} = \begin{bmatrix} T \end{bmatrix} \left\{ u, y \right\}$$

avec
$$\{u, r\}^{T} = (u_{1,r}, u_{1,s}, u_{1,t}, \dots, u_{3,t})$$

c) Nous utiliserons enfin les équations (4) pour exprimer les dérivées des déplacements par rapport aux coordonnées curvilignes en fonction des paramètres nodaux de l'élément.

22

5

Nous aurons ainsi :

(16)
$$\{u, r\} = \sum_{K=1}^{N} \begin{bmatrix} L^{K} \end{bmatrix} \begin{bmatrix} u_{1}^{K} \\ u_{2}^{K} \\ u_{3}^{K} \\ \Theta_{1}^{K} \\ \Theta_{2}^{K} \\ \Theta_{3}^{K} \end{bmatrix}$$

 $\lfloor L^K \rfloor$: Voir Annexe 7.

D'après les relations (13), (15) et (16) le vecteur $\{\epsilon\}$ peut maintenant s'écrire :

$$(17) \{\varepsilon\} = [B] \{u\} = [A] [T] [L] \{u\}$$

Avec :

 $\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} L^1 & L^2 & \dots & L^N \end{bmatrix}$ 9x6N

La matrice de rigidité élémentaire sera donc telle que :

(18)
$$K_e = \int_{-1}^{+1} [B]^T [E][B] | det J | dr ds dt$$

Elle sera calculée par intégration numérique. Pour l'élément à 8 noeuds on utilisera une intégration numérique dite réduite (2x2 points de Gauss pour les termes en r, s et 2 points de Gauss pour les termes en t).

Pour l'élément à 6 noeuds nous utiliserons 6 points de Hammer pour les termes en r, s et 2 points de Gauss pour les termes en t.

Remarque

Prise en compte d'une rigidité fictive relative à la rotation autour d'un axe perpendiculaire à la surface moyenne (Θ_3^{+}) .

- , 🎔

Ł

Une rigidité fictive relative aux rotations $\Theta_3^{'K}$ autour des vecteurs V_3^K est prise en compte pour éviter les singularités éventuelles après assemblage.

La valeur de ce terme de rigidité fictif est prise égale à :

$$R_{\Theta_{3}^{1}} = 10^{-4} \times \frac{E h^{3}}{12 (1-v^{2})}$$
 avec

E, ν : Module Young et coefficient de Poisson de l'élément considéré.
h : Plus faible épaisseur de l'élément considéré.

La part de rigidité affectée au paramètre local $\theta_3^{'K}$ constituera une matrice $[K_{\theta_3}]$ telle que :

 $\lfloor K_{\theta_{3}} \rfloor = \lfloor r^{\mathsf{T}} \rfloor \lfloor K_{\theta_{3}} K \rfloor \lfloor r \rfloor$

2.2 - CALCUL DES CONTRAINTES

2.2.1. Calcul des contraintes en un point quelconque de l'élément.2.2.2. Calcul des contraintes généralisées.

7

.

En un point donné les contraintes seront toujours exprimées dans un repère local \vec{V}_1 , \vec{V}_2 , \vec{V}_3 , tel que le vecteur \vec{V}_3 soit normal à la surface moyenne de l'élément au point considéré.

D'après (5), (7) nous aurons ainsi :

$$\{\sigma'\} = \lfloor E_1 \rfloor \{\varepsilon'\} = \lfloor E_1 \rfloor \lfloor R^* \rfloor \{\varepsilon\}$$

De même d'après (17) nous pouvons écrire :

(19) $\{\sigma'\} = \lfloor E_{\downarrow} \rfloor \lfloor R^{\star} \rfloor \lfloor B \rfloor \{U\}$

La relation (19) nous permet ainsi de déterminer les contraintes σ'_{xx} , σ'_{yy} , σ'_{xy} , σ'_{xz} , σ'_{yz} en un point quelconque de l'élément.

Un traitement particulier sera néanmoins effectué pour les contraintes de cisaillement σ'_{xz} et σ'_{yz} dans le cas de l'élément à 8 noeuds.

Comme nous le verrons dans le Chapitre 3 en examinant les tests numériques, ces contraintes peuvent être très erronées si on ne les calcule pas aux points de Gauss (2x2).

Compte-tenu du peu de précision obtenu sur ces contraintes de cisaillement transverse, nous nous contenterons dans le programme de donner une seule valeur par élément de σ'_{xz} et σ'_{yz} calculée en moyennant les contraintes

trouvées aux 4 points de Gauss.
2.2.2. Calcul des contraintes généralisées.

Les contraintes généralisées N_{xx} , N_{yy} , N_{xy} , N_{yz} , N_{xz} , M_{xx} , M_{yy} , M_{xy} sont définies de la manière suivante :

(20)
$$N_{xx} = \int_{-\frac{e}{2}}^{\frac{e}{2}} \sigma_{xx}^{'} dz ; N_{yy} = \int_{-\frac{e}{2}}^{\frac{e}{2}} \sigma_{yy}^{'} dz ; N_{xy} = \int_{-\frac{e}{2}}^{\frac{e}{2}} \sigma_{xy}^{'} dz$$
$$N_{yz} = \int_{-\frac{e}{2}}^{\frac{e}{2}} \sigma_{yz}^{'} dz ; N_{xz} = \int_{-\frac{e}{2}}^{\frac{e}{2}} \sigma_{xz}^{'} dz$$

$$M_{xx} = \int_{-\frac{e}{2}}^{\frac{e}{2}} z \sigma'_{xx} dz ; M_{yy} = \int_{-\frac{e}{2}}^{\frac{e}{2}} z \sigma'_{yy} dz ; M_{xy} = \int_{-\frac{e}{2}}^{\frac{e}{2}} z \sigma'_{xy} dz$$

avec :

 σ'_{xx} , σ'_{yy} , σ'_{xy} , σ'_{yz} , σ'_{xz} : Composantes du tenseur des contraintes dans le repère local.

z : Coordonnée suivant un axe normal à la surface moyenne.

e : Epaisseur de la coque au point considéré.

Les valeurs de N et M seront calculées en utilisant une intégration numérique avec deux points de Gauss suivant l'axe z.

Comme pour les contraintes σ'_{xz} et σ'_{yz} , un traitement particulier sera utilisé pour calculer les contraintes généralisées N_{yz} et N_{xz} dans le cas de l'élément à 8 noeuds. Nous ne définirons en effet qu'une seule valeur de N_{yz} et N_{xz} par élément obtenue en moyennant les valeurs calculées aux 4 points de Gauss (2 x 2).

j

2.3 - CALCUL DES FORCES NODALES

- 2.3.1. Forces nodales dues au poids.
- 2.3.2. Forces nodales dues à une pression uniforme.
- 2.3.3. Forces nodales dues à une pression non uniforme.
- 2.3.4. Forces nodales dues à un chargement de surface quelconque.

. .

Le travail virtuel des efforts extérieurs correspondant à l'action du poids peut s'écrire :

.....

(21)
$$\delta W^{e} = \int_{V} P_{V} (a \, \delta u_{1} + b \, \delta u_{2} + c \, \delta u_{3}) \, dV$$

a, b, c : Composantes dans le repère global du vecteur unitaire indiquant la direction suivant laquelle s'applique le poids.

V : Volume de l'élément.

 δu_1 , δu_2 , δu_3 : Composantes du champ de déplacement virtuel.

Sous forme matricielle, le travail virtuel ₆W^e peut s'écrire :

(22)
$$\delta W^{e} = \int_{V} \{\delta u\}^{T} \left\{ \begin{array}{c} a \\ b \\ c \end{array} \right\} P_{V} dV$$

D'après l'équation (4), nous pouvons exprimer $\{\delta u\}$ de la manière suivante

(23)
$$\{\delta u\} = \begin{cases} \delta u_1 \\ \delta u_2 \\ \delta u_3 \end{cases} = \begin{bmatrix} N \end{bmatrix} \{ \delta U \} = \sum_{K=1}^{n} \begin{bmatrix} N^K \end{bmatrix} \{ \delta U^K \}$$

3x6n 6nx1 K=1 3x6 6x1

avec :

$$\{\mathbf{U}^{\mathbf{K}}\}^{\mathsf{T}} = \{\mathbf{u}_{1}^{\mathbf{K}}, \mathbf{u}_{2}^{\mathbf{K}}, \mathbf{u}_{3}^{\mathbf{K}}, \Theta_{1}^{\mathbf{K}}, \Theta_{2}^{\mathbf{K}}, \Theta_{3}^{\mathbf{K}}\}$$

$$\begin{bmatrix} H^{K} & 0 & 0 & 0 & \frac{t}{2} e^{K} H^{K} V_{33}^{K} & -\frac{t}{2} e^{K} H^{K} V_{32}^{K} \\ 0 & H^{K} & 0 & -\frac{t}{2} e^{K} H^{K} V_{33}^{K} & 0 & \frac{t}{2} e^{K} H^{K} V_{31}^{K} \\ 0 & 0 & H^{K} & \frac{t}{2} e^{K} H^{K} V_{32}^{K} & -\frac{t}{2} e^{K} H^{K} V_{31}^{K} & 0 \end{bmatrix}$$

Le travail virtuel des efforts extérieurs correspondant à l'action du poids peut alors s'écrire :

(24)
$$\delta W^{e} = \{\delta u\}^{T} \{F\}$$

{F} : Vecteur des forces nodales correspondant à l'action du poids. Ce vecteur est tel que :

$$\{F\} = \int [N]^{T} \left\{ \begin{matrix} a \\ b \\ c \end{matrix} \right\} = V \left\{ \begin{matrix} F_{1}^{1} \\ F_{1}^{$$

avec :

į.

$$\{F^{K}\} = \int_{V} [N^{K}]^{T} \begin{cases} a \\ b \\ c \end{cases} P \quad dV$$

Soit

(25) {
$$F^{K}$$
} = $\int_{r,s,t}$ { F^{K} } = $\int_{r,s,t}$ { $\frac{t}{2}e^{K}H^{K}(c V_{32}^{K} - b V_{33}^{K})$ } P_V | det J | dr ds dt
 $\frac{t}{2}e^{K}H^{K}(a V_{33}^{K} - c V_{31}^{K})$
 $\frac{t}{2}e^{K}H^{K}(b V_{31}^{K} - a V_{32}^{K})$

Le travail virtuel des efforts extérieurs correspondant à l'action d'une pression uniforme sur la surface de l'élément peut s'écrire :

(26)
$$\delta W_e = \int_s \{\delta u\}^T \begin{cases} n_1 (r,s) \\ n_2 (r,s) \\ n_3 (r,s) \end{cases} P dS$$

P : Valeur de la pression appliquée sur la surface.

 $n_1,\ n_2,\ n_3$: Composantes dans le repère global d'un vecteur unitaire normal à la surface moyenne en un point de coordonnées r,s.

S : Surface moyenne (t=0) de l'élément.

,

Nous avons :

.

(27)
$$\vec{n}_{(r,s)} = \begin{cases} n_1 (r,s) \\ n_2 (r,s) \\ n_3 (r,s) \end{cases} = \frac{1}{\|\vec{x}_{,r} \wedge \vec{x}_{,s}\|} \quad \vec{x}_{,r} \wedge \vec{x}_{,s}$$

avec :

(28)
$$\vec{x}_{,r} = \begin{cases} x_{1}, r \\ x_{2}^{2}, r \\ x_{3}, r \end{cases}; \quad \vec{x}_{,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}$$
$$\vec{x}_{,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{2}^{2}, s \\ x_{3}, s \end{cases}; \quad \vec{x}_{1,s} = \begin{cases} x_{1}, s \\ x_{1}, s \\ x_{2}^{2}, s \end{cases}; \quad \vec{x}_{1}, s \end{cases}; \quad \vec{x}_{1}, s \end{cases}; \quad \vec{x}_{1}, s \end{cases}; \quad \vec{x}_{1}, s \end{cases}$$

.

(29)
$$dS = \|\vec{x}, r \wedge \vec{x}, s\| dr ds$$

• ~~ . * ..

v

Comme nous l'avons vu dans le paragraphe précédent, nous pouvons écrire d'autre part :

(30)
$$\{\delta u\} = [N] \{\delta U\} = \sum_{K=1}^{n} [N^{K}] \{\delta U^{K}\}$$

Pour calculer le travail virtuel des efforts extérieurs, nous considére-rons que la pression uniforme s'exerce sur la surface moyenne de l'élément.

De ce fait nous avons t = 0. La matrice $\lfloor N^K \rfloor$ s'écrit alors simplement :

	Гн ^К	0	0	0	0	٦٥
$[N^{K}] =$	0	н ^К	0	0	0	0
	Lo	0	н ^К	0	0	_ ہ

Compte-tenu des équations (27), (29) et (30) le travail δW^e peut ainsi s'écrire :

$$\delta W^{e} = \{\delta U\}^{T} \{F\}$$

2

{F}

: Vecteur des forces nodales dues à une pression uniformément répartie.

avec :

(31)
$$\{F^{K}\} = \int P [N^{K}]^{T} \left\{ \begin{array}{c} n_{1} \\ n_{2} \\ n_{3} \end{array} \right\} \xrightarrow{\rightarrow} r, s = n dr ds$$

soit :

.

(32) {F^K} =
$$\int_{r,s} \begin{cases} H^{K} & n_{1} \\ H^{K} & n_{2} \\ H^{K} & n_{3} \\ 0 \\ 0 \end{cases}$$
 P $\|\vec{x}, r \wedge \vec{x}, s\|$ dr ds

Le vecteur des forces nodales dues à une pression non uniforme s'écrit d'après (32)

.

$$\{F^{K}\} = \int_{\mathbf{r},\mathbf{s}} \begin{pmatrix} H^{K} & n_{1} \\ H^{K} & n_{2} \\ H^{K} & n_{3} \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{P \parallel \mathbf{x}, \mathbf{r} \mathbf{x} \mathbf{x}, \mathbf{s} \parallel d\mathbf{r} \ d\mathbf{s}}$$

Nous ferons ici l'hypothèse que P peut s'exprimer en fonction de ses valeurs aux noeuds, comme suit :

(33)
$$P = \sum_{K=1}^{n} H^{K}(r,s) P^{K}$$

 P^{K} : Valeur de la pression au noeud K.

Le travail virtuel des efforts extérieurs correspondant à l'action de forces de surfaces "guelcongues" peut s'écrire :

(34)
$$\delta W^{e} = \int_{S} \{\delta u\}^{T} \begin{cases} f_{1}(r,s) \\ f_{2}(r,s) \\ f_{3}(r,s) \end{cases} dS$$

 $f_1(r,s)$, $f_2(r,s)$, $f_3(r,s)$: Composantes dans le repère global du vecteur force de surface au point de coordonnées r,s.

Nous supposerons que f_1 , f_2 , f_3 peuvent s'exprimer en fonction de leur valeur aux noeuds comme suit :

(35)
$$f_i = \sum_{K=1}^{n} H^K(r,s) f_i^K$$
 (i = 1,3)

 f_i^K : Valeur de fi au noeud K.

Compte-tenu des équations (30), (34) et (35) nous pouvons ainsi écrire :

$$\delta W^{e} = \{\delta U\}^{T} \{F\}$$

avec :

1

(. . **. -**

2.4. CALCUL DE LA MATRICE MASSE

12

7

v

L'expression de la matrice masse élémentaire s'obtient en considérant le travail virtuel des forces d'inerties δW_a .

(37)
$$\delta W_a = \int_V \rho \ddot{u}_i \delta u_i dV$$

avec :

ρ : masse volumique.

ü; (i=1,3) : Composantes du vecteur accélération dans le repère global.

D'après l'équation (4), nous pouvons écrire :

$$(38) \qquad \{\ddot{u}_{(t)}\} = \begin{cases} \ddot{u}_1 \\ \ddot{u}_2 \\ \ddot{u}_3 \end{cases} = \lfloor N \rfloor \{ \ddot{U} \} = \sum_{K=1}^{N} \lfloor N^K \rfloor \{ \ddot{U}^K \}$$

N : Nombre de noeuds de l'élément considéré (N = 6 ou 8) { \vec{U}^{K} }^T = { \vec{u}_{1}^{K} , \vec{u}_{2}^{K} , \vec{u}_{3}^{K} , Θ_{1}^{K} , Θ_{2}^{K} , Θ_{3}^{K} } : Vecteur contenant les paramètres du noeud K.

D'après (4), $\lfloor N^K \rfloor$ est d'autre part une matrice qui s'écrit comme suit :

 $(39) \quad [N^{K}] = \begin{bmatrix} H^{K} & 0 & 0 & 0 & \frac{t}{2} H^{K} e^{K} V_{33}^{K} - \frac{t}{2} H^{K} e^{K} V_{32}^{K} \\ 0 & H^{K} & 0 & -\frac{t}{2} H^{K} e^{K} V_{33}^{K} & 0 & \frac{t}{2} H^{K} e^{K} V_{31}^{K} \\ 0 & 0 & H^{K} & \frac{t}{2} H^{K} e^{K} V_{32}^{K} - \frac{t}{2} H^{K} e^{K} V_{31}^{K} & 0 \end{bmatrix}$

1:

Le travail virtuel des efforts d'inertie peut alors s'écrire sous la forme matricielle suivante :

(40)
$$\delta W_a = \{\delta U\} [M_e] \{U\}$$

[M_e] : Matrice de masse élémentaire.

$${\ddot{U}} = \frac{d}{dt^2} \{U\}$$

La matrice de masse élémentaire $[M_e]$ est telle que :

(41)
$$[M_e] = \int_{V} \rho [N]^T [N] dV$$

Elle sera calculée par intégration numérique en utilisant 3x3x2 points de Gauss pour l'élément à 8 noeuds et 6 points de Hammer x 2 points de Gauss pour l'élément à 6 noeuds.

i

3 - ELEMENTS DE COQUE A 3 ET 4 NOEUDS

INTRODUCTION

3.1. CALCUL DE LA MATRICE DE RIGIDITE ELEMENTAIRE - CAS LINEAIRE.

3.2. CALCUL DES CONTRAINTES.

3.3. CALCUL DES FORCES NODALES.

3.4. CALCUL DES MATRICES MASSE.

51

INTRODUCTION

.

5 arres

Les éléments de coque mince à 3 et 4 noeuds basés sur les hypothèses de Love-Kirchhoff sous forme discrète (DKT, DKQ) connaissent à l'heure actuelle un certain engouement grâce aux publications de Batoz $\ |19$ à 21 | .

 ≤ 3

đ

Ces publications ont en effet montré l'efficacité de ces éléments dans le calcul des plaques en flexion pure.

Dans ce paragraphe nous allons développer la formulation d'éléments de coque à 3 et 4 noeuds dont les matrices de rigidité élémentaires sont obtenues en superposant la matrice prenant en compte les effets de flexion et développée par Batoz, à une matrice prenant en compte les effets de membrane. 3.1. CALCUL DE LA MATRICE DE RIGIDITE ELEMENTAIRE

3.1.1. Définition géométrique.

- 3.1.2. Hypothèses cinématiques. Champ de déplacement. Champ de déformation.

3.1.3. Loi de comportement.

3.1.4. Travail virtuel de déformation.

3.1.5. Construction des matrices de rigidité élémentaires...

- A) Termes de flexion.
- 3) Termes de membrane.
- C) Expression de la matrice de rigidité dans le repère global.
- D) Prise en compte d'une rigidité fictive suivant θ_{τ} .

3.1.1. <u>Définition géométrique</u>

La géométrie des éléments de coque à 3 et 4 noeuds peut se définir comme suit :

. ?

Un repère local sera défini pour chaque élément. Pour l'élément triangulaire, il sera défini comme suit :

<u>.</u>

 \vec{e}_1 : Vecteur unitaire porté par les côtés 1-2 de l'élément. \vec{e}_3 : Vecteur unitaire normal au plan de l'élément. $\vec{e}_2 = \vec{e}_3$ \vec{e}_1 .

Pour l'élément quadrilatère ce repère local sera défini comme suit :

C : Point de coordonnées curvilignes r = o, s = o, t = o.

Dans les repères locaux précédemment définis, nous ferons l'hypothèse que le déplacement d'un point quelconque de l'élément peut s'exprimer comme suit :

(2)
$$\begin{cases} u (x,y,z) = u_0 (x,y) + z \ominus_y (x,y) \\ v (x,y,z) = v_0 (x,y) - z \ominus_x (x,y) \\ w (x,y,z) = w_0 (x,y) \end{cases}$$

u, v, w : Composantes dans le repère local du vecteur déplacement d'un point de l'élément.

u_o, v_o, w_o : Composantes dans le repère local du vecteur déplacement d'un point de la surface moyenne de l'élément.

 Θ_x, Θ_y : Rotations de la normale à la surface moyenne au point considéré autour des axes x et y.

x, y, z : Coordonnées du point considéré dans le repère local.

Compte-tenu des équations (2), les composantes du tenseur des déformations s'écriront comme suit :

(3)
$$\begin{cases} \varepsilon_{xx} = u_{0,x} + z \Theta_{y,x} \\ \varepsilon_{yy} = v_{0,y} - z \Theta_{x,y} \\ 2 \varepsilon_{xy} = u_{0,y} + v_{0,x} + z(\Theta_{y,y} - \Theta_{x,x}) \\ 2 \varepsilon_{yz} = w_{0,y} - \Theta_{x} \\ 2 \varepsilon_{xz} = w_{0,x} + \Theta_{y} \end{cases}$$

Nous noterons :

$$(4) \{ \varepsilon_{\mathbf{f}} \} = \begin{cases} \Theta_{\mathbf{y}, \mathbf{x}} \\ -\Theta_{\mathbf{x}, \mathbf{y}} \\ \Theta_{\mathbf{y}, \mathbf{y}} - \Theta_{\mathbf{x}, \mathbf{x}} \end{cases}, \quad \{ \varepsilon_{\mathbf{m}} \} = \begin{cases} u_{\mathbf{0}, \mathbf{x}} \\ v_{\mathbf{0}, \mathbf{y}} \\ u_{\mathbf{0}, \mathbf{y}} + v_{\mathbf{0}, \mathbf{x}} \end{cases}, \quad \{ \varepsilon_{\mathbf{c}} \} = \{ w_{\mathbf{0}, \mathbf{y}} - \Theta_{\mathbf{x}} \\ w_{\mathbf{0}, \mathbf{x}} + \Theta_{\mathbf{y}} \end{cases}$$

13 C

ļ

ĺ

.

{ε _f }	:	termes	de	flexion.
{ ε _m }	•	termes	de	membrane.
{ε _c }	:	termes	de	cisaillement.

3.1.3. Loi de comportement

Hypothèse :

Conformément à ce qui est couramment adopté pour le calcul des coques, nous considèrerons que la contrainte normale à la surface moyenne de l'élément (σ_{ZZ}) est négligeable.

Compte-tenu de cette hypothèse, nous pouvons relier les composantes du tenseur des contraintes en un point à celles du tenseur des déformations de la manière suivante :

(5) $\{\sigma\} = \lfloor E \rfloor \{\varepsilon\}$ soit:

(6)
$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{xz} \end{cases} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 & 0 & 0 \\ v & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1 - v}{2} & 0 & 0 \\ 0 & 0 & 0 & \beta(1 - v)/2 & 0 \\ 0 & 0 & 0 & 0 & \beta(1 - v)/2 \end{bmatrix} \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 2\varepsilon_{xy} \\ 2\varepsilon_{yz} \\ 2\varepsilon_{yz} \\ 2\varepsilon_{xy} \end{pmatrix}$$

E, v : Module Young et coefficient de Poisson du matériau utilisé.

1

 β : Facteur correctif de cisaillement transversal ($\beta = 5/6$).

3.1.4. Travail virtuel de déformation - SWd

Pour un élément le travail virtuel de déformation peut d'une manière générale s'écrire :

۲

L

1

(7) $\delta W d = \int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV$

V : Volume de l'élément.

Compte-tenu de l'équation (5), δWd pourra s'exprimer sous forme matricielle de la manière suivante :

(8)
$$\delta W d = \int_{V} \{\delta \varepsilon\}^{\mathsf{T}} [\mathsf{E}] \{\varepsilon\} dV$$

D'après (3), (4) et (6) nous pouvons également écrire :

$$\delta Wd = \int_{V} z^{2} \{\delta \varepsilon_{f}\}^{T} [E_{f}] \{\varepsilon_{f}\} dV \qquad (flexion)$$

$$+ \int_{V} \{\delta \varepsilon_{m}\}^{T} [E_{f}] \{\varepsilon_{m}\} dV \qquad (membrane)$$

$$+ \int_{V} \{\delta \varepsilon_{c}\} [E_{c}] \{\varepsilon_{c}\} dV \qquad (cisaillement)$$

avec :

$$(10) \quad \begin{bmatrix} E_{f} \end{bmatrix} = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} , \quad \begin{bmatrix} E_{c} \end{bmatrix} = \begin{bmatrix} \frac{\beta E}{2(1+\nu)} & 0 \\ 0 & \frac{\beta E}{2(1+\nu)} \end{bmatrix}$$

3.1.5. Construction des matrices de rigidité élémentaires

Pour la construction des matrices de rigidité élémentaires, nous négligerons l'énergie de déformation due aux termes de cisaillement. Dans le calcul de structures minces, celle-ci est en effet la plupart du temps négligeable devant l'énergie due aux effets de flexion. 22

. . . .

5

Dans ce qui suit nous définirons successivement les termes de rigidité dûs aux effets de flexion et les termes de rigidité dûs aux effets de membrane.

A) Termes de flexion

Le travail virtuel des efforts intérieurs dû aux effets de flexion peut d'après l'équation (9) s'écrire de la manière suivante :

(11)
$$\delta W d_{f} = \int_{V} z^{2} \left\{ \delta \varepsilon_{f} \right\}^{T} \left[\varepsilon_{f} \right] \left\{ \varepsilon_{f} \right\} dV$$

D'après les relations (4) nous voyons que l'équation (11) ne contient que les dérivées premières des fonctions Θx et Θy . Il nous suffit donc d'assurer la continuité Co de ces fonctions.

Nous ferons l'hypothèse suivante :

a) $\ominus x$ et $\ominus y$ varient de la manière quadratique sur l'élément.

Nous écrirons ainsi :

(12)
$$\Theta_{x} = \sum_{K=1}^{n} H^{K}(r,s) \Theta_{x}^{K}$$
; $\Theta_{y} = \sum_{K=1}^{n} H^{K}(r,s) \Theta_{y}^{K}$

- H^{K} (r,s) : fonction d'interpolation auadratique du noeud K (voir Annexe 2).
- n : n = 6 pour l'élément triangle ; n = 8 pour l'élément quadrangulaire.

 $\Theta_{\mathbf{x}}^{\mathbf{K}}$, $\Theta_{\mathbf{v}}^{\mathbf{K}}$: rotations au noeud K.

Pour relier les rotations Θ_x^K et Θ_y^K au déplacement w, nous ferons d'autre part les hypothèses suivantes :

- b) Les hypothèses de Kirchhoff sont introduites :
 - b1) aux noeuds coins (1,2,3 pour triangle), (1,2,3,4 pour quadrilatère).

(13)
$$\{\varepsilon_{c}\} = \{ \begin{matrix} w_{0}, y & -\Theta_{x} \\ w_{0}, x & +\Theta_{y} \end{matrix} = \{ \begin{matrix} 0 \\ 0 \end{matrix} \}$$

- b₂) aux noeuds milieux (4,5,6 pour triangle), (5,6,7,8 pour quadrilatère).
- $(14) \qquad \Theta_n^m w, \frac{m}{s} = 0$

5 -1

- n : Vecteur unitaire appartenant au plan de l'élément et normal au côté contenant le noeud milieu considéré.
- e_n^m : Rotation de la normale à la surface moyenne de l'élément au noeud m autour de \vec{n} .

s : Coordonnée curviligne le long du côté considéré.

c) Les variations de w le long des côtés sont cubiques.

Nous aurons ainsi :

$$W_{(s)} = a + bs + cs^2 + ds^3$$

d'où l'on tire :

(15)
$$w_{s}^{m} = \frac{3}{2\lambda_{ij}} (w^{i} - w^{j}) - \frac{1}{4} (w^{i}_{s} + w^{j}_{s})$$

w^m : déplacement w du noeud milieu m.
wⁱ, w^j : déplacements w des noeuds sommets i et j.
^l_{ij} : longueur du côté i - j.

d) On impose une variation linéaire de ⊖_s le long des côtés.

(16)
$$\Theta_{s}^{m} = \frac{1}{2} (\Theta_{s}^{i} + \Theta_{s}^{j})$$

Les hypothèses a, b, c, d vont nous permettre d'exprimer les rotations Θ_x , Θ_y en fonction des variables nodales wⁱ, Θ_x^i , Θ_y^i . (i = 1,2,3 pour l'élément triangle), (i = 1,2,3,4 pour l'élément quadrilatère).

Pour ce faire nous aurons besoin des relations suivantes :

(17)
$$\begin{cases} \Theta_{\mathbf{x}} \\ \Theta_{\mathbf{y}} \end{cases} = \begin{bmatrix} \mathbf{c} - \mathbf{s} \\ \mathbf{s} & \mathbf{c} \end{bmatrix} \begin{cases} \Theta_{\mathbf{n}} \\ \Theta_{\mathbf{s}} \end{cases}$$

(18)
$$\left\{\begin{array}{c} \Theta_{n} \\ \Theta_{s} \end{array}\right\} = \left[\begin{array}{c} c & s \\ -s & c \end{array}\right] \left\{\begin{array}{c} \Theta_{x} \\ \Theta_{y} \end{array}\right\}$$

(19)
$$\begin{cases} w, s \\ w, n \end{cases} \begin{bmatrix} -s & c \\ c & s \end{bmatrix} \begin{cases} w, x \\ w, y \end{cases}$$

 γ_{ij} : Angle entre l'axe x du repère local et la normale \vec{n} au côté i-j.

. c'' Dans l'expression (12), nous avons introduit les variables intermédiaires Θ_x^m , Θ_y^m (m = 4,5,6 pour le triangle), (m = 5,6,7 8 pour l'élément guadrilatère).

A l'aide des relations b, c, d nous allons exprimer cesavariables en fonction des paramètres nodaux, w^i , Θ^i_x , Θ^j_x (déplacements et rotations des noeuds sommets).

Soit $\boldsymbol{\Theta}_X^m$, la rotation autour de l'axe local x du noeud m, milieu du côté i-j.

Nous avons :

$$\begin{split} \Theta_{x}^{m} &= c\Theta_{n}^{m} - s\Theta_{s}^{m} \qquad (d'après (17)) \\ &= cw_{,s}^{m} - s\Theta_{s}^{m} \qquad (d'après (14)) \\ &= c(-\frac{3}{2\varrho}w^{i} - \frac{1}{4}w_{,s}^{i} + \frac{3}{2\varrho}w^{j}) - \frac{s}{2}(\Theta_{s}^{i} + \Theta_{s}^{j}) (d'après (15), (16)) \\ &= c(-\frac{3}{2\varrho}w^{i} - \frac{1}{4}(s\Theta_{y}^{i} + c\Theta_{x}^{i}) + \frac{3}{2\varrho}w^{j} - \frac{1}{4}(s\Theta_{y}^{j} + c\Theta_{x}^{j})) \\ &- \frac{s}{2}(-s\Theta_{x}^{i} + c\Theta_{y}^{i} - s\Theta_{x}^{j} + c\Theta_{y}^{j}) \qquad (d'après (13), (18), (19)) \end{split}$$

soit :

(20)
$$\Theta_{\mathbf{x}}^{\mathbf{m}} = -\frac{3}{2\ell} \mathbf{c} \mathbf{w}^{\mathbf{i}} + \frac{3}{2\ell} \mathbf{c} \mathbf{w}^{\mathbf{j}}$$

+ $(-\frac{1}{4} \mathbf{c}^{2} + \frac{1}{2} \mathbf{s}^{2}) \Theta_{\mathbf{x}}^{\mathbf{i}} - \frac{3}{4} \mathbf{cs} \Theta_{\mathbf{y}}^{\mathbf{j}}$
+ $(-\frac{1}{4} \mathbf{c}^{2} + \frac{1}{2} \mathbf{s}^{2}) \Theta_{\mathbf{x}}^{\mathbf{j}} - \frac{3}{4} \mathbf{cs} \Theta_{\mathbf{y}}^{\mathbf{j}}$

D'après les équations (12) et (20), nous pouvons ainsi écrire :

6

$$(21) \quad \Theta_{\mathbf{X}} = \{ \mathbf{H}_{\mathbf{X}} \}^{\mathsf{T}} \{ \mathbf{U}_{\mathsf{f}} \}$$

avec :

$$\{U_f\}^T = \{w^1, \Theta_X^1, \Theta_y^1, w^2, \Theta_X^2, \Theta_y^2, w^3, \Theta_X^3, \Theta_y^3\} \text{ pour l'élément triangle.}$$

$$\{U_f\}^T = \{w^1, \Theta_X^1, \Theta_y^1, ------, w^4, \Theta_X^4, \Theta_y^4\} \text{ pour l'élément quadrilatère}$$

$$\{H_X\}^T = \{H_{X_1}, H_{X_2}, ------, H_{X_N}\} N = 9 \text{ pour l'élément triangle}$$

$$\{12 \text{ pour l'élément quadrilatère}$$

Soient :

$$\begin{array}{l} x_{ij} = x_{i} - x_{j} ; y_{ij} = y_{i} - y_{j} ; c_{ij} = -y_{ij}/\ell_{ij} ; s_{ij} = x_{ij}/\ell_{ij} \\ a^{m} = -x_{ij}/\ell_{ij}^{2} ; b^{m} = \frac{3}{4} x_{ij} y_{ij}/\ell_{ij}^{2} ; c^{m} = (\frac{1}{4} x_{ij}^{2} - \frac{1}{2} y_{ij}^{2})/\ell_{ij} \\ d^{m} = -y_{ij}/\ell_{ij}^{2} ; e^{m} = (-\frac{1}{2} x_{ij}^{2} + \frac{1}{4} y_{ij}^{2}) / \ell_{ij}^{2} \end{array}$$

avec m milieu de i-j.

Nous avons ainsi, compte-tenu des relations (20), (21) et (22) :

```
- pour l'élément triangle.
H_{x_1} = 1.5 (-H^4d^4 + H^6d^6)
H_{x_2} = (H^1 - H^4 e^4 - H^6 e^6)
H_{X_3} = (H^4b^4 + H^6b^6)
H_{X_{h}} = 1.5 (-H^{5}d^{5} + H^{4}d^{4})
H_{x_{5}} = (H^{2} - H^{5}e^{5} - H^{4}e^{4})H_{x_{6}} = (H^{5}b^{5} + H^{4}b^{4})
H_{x/} = 1.5 (-H^6 d^6 + H^5 d^5)
H_{xg}^{2} = H^{3} - H^{6}e^{6} - H^{5}e^{5}
H_{x_9} = H^6 b^6 + H^5 b^5
- pour l'élément quadrilatère
H_{X_1} = 1.5 (-H^5d^5 + H^8d^8)
H_{x_2} = H^1 - H^5 e^5 - H^8 e^8
H_{x_3} = H^5 b^5 + H^8 b^8
H_{X_{L}} = 1.5 (-H^{6}d^{6} + H^{5}d^{5})
H_{x_{5}} = H^{2} - H^{6}e^{6} - H^{5}e^{5}
H_{x_{6}} = H^{6}b^{6} + H^{5}b^{5}
H_{X_{1}} = 1.5 (-H^{7}d^{7} + H^{6}d^{6})
H_{Xg} = H^3 - H^2 - H^2
H_{x_9} = H^7 b^7 + H^6 b^6
H_{x_{10}} = 1.5 (-H^{8}d^{8} + H^{7}d^{7})H_{x_{11}} = H^{4} - H^{8}e^{3} - H^{7}e^{7}
H_{X_{12}}^{11} = H_{b}^{3} + H_{b}^{7}
```

Par un raisonnement analogue à celui fait pour $\boldsymbol{\Theta}_{\boldsymbol{X}}$ on trouve pour $\boldsymbol{\Theta}_{\boldsymbol{y}}$:

<u>ر</u> با

$$(23) \quad \Theta_{\mathbf{y}} = \{ \mathbf{H}_{\mathbf{y}} \}^{\mathsf{T}} \{ \mathbf{U}_{\mathbf{f}} \}$$

avec pour l'élément triangle :

$$H_{y_{1}} = 1.5 (H^{4}a^{4} - H^{6}a^{6})$$

$$H_{y_{2}} = H^{4}b^{4} + H^{6}b^{6}$$

$$H_{y_{3}} = H^{1} - H^{4}c^{4} - H^{6}c^{6}$$

$$H_{y_{4}} = 1.5 (H^{5}a^{5} - H^{4}a^{4})$$

$$H_{y_{5}} = H^{5}b^{5} + H^{4}b^{4}$$

$$H_{y_{6}} = H^{2} - H^{5}c^{5} - H^{4}c^{4}$$

$$H_{y_{7}} = 1.5 (H^{6}a^{6} - H^{5}a^{5})$$

$$H_{y_{8}} = H^{6}b^{6} + H^{5}b^{5}$$

$$H_{y_{9}} = H^{3} - H^{6}c^{6} - H^{5}c^{5}$$

et pour l'élément quadrilatère :

$$H_{y_{1}} = 1.5 (H^{5}a^{5} - H^{8}a^{8})$$

$$H_{y_{2}} = H^{5}b^{5} + H^{8}b^{8}$$

$$H_{y_{3}} = H^{1} - H^{5}c^{5} - H^{8}c^{8}$$

$$H_{y_{4}} = 1.5 (H^{6}a^{6} - H^{5}a^{5})$$

$$H_{y_{5}} = H^{6}b^{6} + H^{5}b^{5}$$

$$H_{y_{6}} = H^{2} - H^{6}c^{6} - H^{5}c^{5}$$

$$H_{y_{6}} = 1.5 (H^{7}a^{7} - H^{6}a^{6})$$

$$H_{y_{8}} = H^{7}b^{7} + H^{6}b^{6}$$

$$H_{y_{9}} = H^{3} - H^{7}c^{7} - H^{6}c^{6}$$

$$H_{y_{10}} = 1.5 (H^{8}a^{8} - H^{7}a^{7})$$

$$H_{y_{11}} = H^{8}b^{8} + H^{7}b^{7}$$

$$H_{y_{12}} = H^{4} - H^{8}c^{8} - H^{7}c^{7}$$

Nous pouvons maintenant exprimer la part de rigidité dûe aux effets de flexion.

.

21

5

.

D'après l'équation (11), nous avons en effet :

$$\delta W_{df} = \int_{V} \{\delta \varepsilon_{f}\}^{T} [\varepsilon_{f}] \{\varepsilon_{f}\} z^{2} dV$$

avec :

$$\{\varepsilon_{f}\} = \begin{cases} \Theta_{y,x} \\ -\Theta_{x,y} \\ \Theta_{y,y} - \Theta_{x,x} \end{cases}$$

Nous avons la relation suivante :

(24)
$$\begin{cases} \Theta_{\alpha,x} \\ \Theta_{\alpha,y} \end{cases} = \begin{bmatrix} r,x & s,x \\ r,y & s,y \end{bmatrix} \{ \Theta_{\alpha,r} \\ \Theta_{\alpha,s} \end{cases}$$
$$\begin{bmatrix} J^{-1} \end{bmatrix}$$

Dans le cas du triangle, nous avons :

(25)
$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} x, r & y, r \\ x, s & y, s \end{bmatrix} = \begin{bmatrix} x_{13} & y_{13} \\ x_{23} & y_{23} \end{bmatrix}; \begin{bmatrix} J^{-1} \end{bmatrix} = \frac{1}{2A} \begin{bmatrix} y_{23} & -y_{13} \\ -x_{23} & x_{13} \end{bmatrix}$$

avec :

$$2A = \left| \begin{array}{c} x_{13} & y_{23} - x_{23} & y_{13} \end{array} \right|$$

Dans le cas du quadrilatère, nous avons :

$$(26) \quad [J] = \frac{1}{4} \begin{bmatrix} x_{21} + x_{34} + s(x_{12} + x_{34}) & y_{21} + y_{34} + s(y_{12} + y_{34}) & J_{11} & J_{12} \\ x_{32} + x_{41} + r(x_{12} + x_{34}) & y_{32} + y_{41} + r(y_{12} + y_{34}) \end{bmatrix} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$

Nous aurons ainsi :

$$[J^{-1}] = \left[\frac{j_{11}}{j_{21}}\right] = avec :$$

$$(27)j_{11} = \frac{1}{\det J} J_{22}, j_{12} = \frac{-1}{\det J} J_{12}, j_{21} = \frac{-1}{\det J} J_{21}, j_{22} = \frac{1}{\det J} J_{11}$$

avec :

det J =
$$\frac{1}{8}$$
 (y₄₂ x₃₁ - y₃₁ x₄₂) + $\frac{r}{8}$ (y₃₄ x₂₁ - y₂₁ x₃₄) + $\frac{s}{8}$ (y₄₁ x₃₂ - y₃₂ x₄₁)

Nous avons ainsi :

avec :

$$(29) \quad \begin{bmatrix} B_{f} \end{bmatrix} = \begin{cases} j_{11} \{H_{y,r}\}^{T} + j_{12} \{H_{y,s}\}^{T} \\ - j_{21} \{H_{x,r}\}^{T} - j_{22} \{H_{x,s}\}^{T} \\ j_{21} \{H_{y,r}\}^{T} + j_{22} \{H_{y,s}\}^{T} - j_{11} \{H_{x,r}\}^{T} - j_{12} \{H_{x,s}\}^{T} \end{cases}$$

La matrice de rigidité dûe aux effets de flexion peut ainsi s'écrire :

.

(30)
$$[K_f] = \int_{V} [B_f]^T [E_f] [B_f] z^2 dx dy dz$$

Nous avons :

(31)
$$z = \frac{t}{2} \int_{K=1}^{3 \text{ ou } 4} N^{K} e^{K} = t \frac{e}{2} ; z^{2} = t^{2} \frac{e^{2}}{4}$$
$$dz = \frac{e}{2} dt$$

avec :

e^K : épaisseur de la coque au niveau du noeud K

e : épaisseur de la coque au point considéré.

D'après (30) $[K_f]$ peut alors s'écrire :

(32) $[K_{f}] = \int_{A(r,s)} [B_{f}]^{T} [E_{f}] [B_{f}] [det J] \frac{e^{3}}{12} (r,s) dr ds$

La matrice K_f sera calculée par intégration numérique.

Pour l'élément triangulaire nous utiliseront 6 points de Hammer, tandis que pour l'élément quadrilatère nous utiliserons 3x3 points de Gauss.

3) Termes de membrane

Le travail virtuel des efforts intérieurs dû aux effets de membrane peut d'après l'équation (9) s'écrire de la manière suivante :

(33)
$$\delta W_{dm} = \int_{V} \left\{ \delta \varepsilon_{m} \right\}^{T} \left[E_{f} \right] \left\{ \varepsilon_{m} \right\} dV$$

avec :

$$\varepsilon_{m}^{l} = \begin{cases} u_{o,x} \\ v_{o,y} \\ u_{o,y} + v_{o,x} \end{cases}$$

Les termes de rigidité de membrane seront définis de manière classique : Nous écrirons : · • .1

(34)
$$u_0 = \sum_{K=1}^{n} N^K(r,s) u^K$$
; $v_0 = \sum_{K=1}^{n} N^K v^K$

n : Nombre de noeuds de l'élément (3 pour triangle, 4 pour quadrilatère).

N^K : Fonction d'interpolation du noeud K. (voir Annexe 2).

 $\{\boldsymbol{\epsilon}_m\}$ peut se mettre sous la forme suivante :

$$(35) \quad \{\varepsilon_{m}\} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} u_{0,x} \\ u_{0,y} \\ v_{0,x} \\ v_{0,y} \end{pmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{pmatrix} u_{0,x} \\ u_{0,y} \\ v_{0,x} \\ v_{0,y} \end{pmatrix}$$
$$(36) \quad \begin{pmatrix} u_{0,x} \\ u_{0,y} \\ v_{0,x} \\ v_{0,y} \end{pmatrix} = \begin{bmatrix} J^{-1} \\ J^{-1} \end{bmatrix} \begin{pmatrix} u_{0,r} \\ u_{0,s} \\ v_{0,r} \\ v_{0,s} \end{pmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} u_{0,r} \\ u_{0,s} \\ v_{0,r} \\ v_{0,s} \end{pmatrix}$$

D'après les relations (33), nous pouvons ainsi écrire :

$$(37) \quad \begin{cases} u_{o,r} \\ u_{o,s} \\ v_{o,r} \\ v_{o,s} \end{cases} = \lfloor L \rfloor \{ U_{m} \}$$

avec :

$$\{U_{m}\}^{T} = \{u^{1}, v^{1}, u^{2}, v^{2}, u^{3}, v^{3}, (u^{4}, v^{4})\}$$

pour quadrilatère

La matrice de rigidité dûe aux effets de membrane peut ainsi s'écrire :

$$\begin{bmatrix} K_{m} \end{bmatrix} = \int_{V} \begin{bmatrix} B_{m} \end{bmatrix}^{T} \begin{bmatrix} E_{f} \end{bmatrix} \begin{bmatrix} B_{m} \end{bmatrix} dx dy dz$$

$$(38) = \int_{S} \begin{bmatrix} B_{m} \end{bmatrix}^{T} \begin{bmatrix} E_{f} \end{bmatrix} \begin{bmatrix} B_{m} \end{bmatrix} \begin{bmatrix} det J \end{bmatrix} e (r,s) dr ds$$

avec :

-

$$\begin{bmatrix} B_{N} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} L \end{bmatrix}$$
$$e(r,s) = \sum_{K=1}^{n} N^{K} (r,s) e^{K}$$

- ---

Dans le cas particulier de l'élément triangle, la matrice $\lfloor K_m \rfloor$ s'écrit comme suit :

avec : $a = \frac{E}{1-v^2}$, $b = \frac{vE}{1-v^2}$, $c = \frac{E}{2(1+v)}$

- 0

C) Expression de la matrice de rigidité dans le repère global

avec :

 $\{ u^{K}, v^{K}, w^{K}, \Theta_{X}^{K}, \Theta_{y}^{K} \} : \text{ paramètres du noeud K dans le repère local.}$ $\Theta_{Z}^{K} : \text{ rotation fictive autour de l'axe z du repère local.}$ $\{ u_{1}^{K}, u_{2}^{K}, u_{3}^{K}, \Theta_{1}^{K}, \Theta_{2}^{K}, \Theta_{3}^{K} \} : \text{ paramètres du noeud K dans le repère global.}$ $\{ \Theta_{1}^{K}, \Theta_{2}^{K}, \Theta_{3}^{K} \} : \text{ rotations autour des axes } x_{1}, x_{2}, x_{3} \text{ du repère global.}$

$$\lfloor r \rfloor = \begin{bmatrix} \pounds_1 & m_1 & n_1 \\ \pounds_2 & m_2 & n_2 \\ \pounds_3 & m_3 & n_3 \end{bmatrix}$$

 a_i, m_i, n_i : composantes dans le repère global du vecteur du repère σ local \dot{e}_i .

La matrice de rigidité des éléments de coque à 3 ou 4 noeuds s'écrira alors dans le repère global comme suit :

 $\begin{bmatrix} K_e \end{bmatrix} = \begin{bmatrix} R^T \end{bmatrix} \begin{bmatrix} K'e \end{bmatrix} \begin{bmatrix} R \end{bmatrix}$ matrice de rigidité dans le repère local. $\begin{bmatrix} R \end{bmatrix} : Matrice de 6 ou 8 sous matrices [r] suivant que l'élément$ est à 3 ou 4 noeuds. D) Prise en compte d'une rigidité fictive suivant Θ_{z} .

Dans le paragraphe précédent nous avons exprimé la matrice de rigidité élémentaire dans le repère global.

Pour ce faire, nous avons été amenés à introduire pour chaque noeud le paramètre de rotation Θ_{τ}^{K} .

Ce paramètre de rotation est un paramètre fictif car il ne lui correspond aucun terme de rigidité.

Ceci peut entraîner l'obtention d'une matrice de rigidité globale singulière quand, en particulier, certains éléments sont coplanaires dans le maillage considéré.

Pour lever cette difficulté on peut en tous les noeuds posant problème effectuer un changement de repère tel que l'un des axes du nouveau repère soit normal à la facette de l'élément.

Il suffit alors d'imposer que la rotation autour de cet axe soit nulle.

Si cette procédure est théoriquement satisfaisante, elle est néanmoins pénible à mettre en oeuvre et prête le flan à de nombreuses erreurs.

Compte-tenu de ces considérations, nous préférons lever la difficulté décrite ci-dessus en introduisant au niveau élémentaire une rigidité fictive correspondant à chacune de ces rotations O₂.

Ce terme de rigidité fictive a été pris égal à 10^{-4} fois le plus petit terme diagonal de la matrice de rigidité en flexion de l'élément considéré.
3.2. CALCUL DES CONTRAINTES

3.2.1. Calcul des contraintes en un point quelconque de l'élément.

- 17 11

- A) Contraintes σ_{XX} , σ_{YY} , σ_{XY} .
- B) Contraintes de cisaillement σ_{xz} , σ_{yz} .
- 3.2.2. Calcul des contraintes généralisées.

3.2.1. Calcul des contraintes en un point quelconque de l'élément

 $\sum_{i=1}^{n}$

5

A) Contraintes σ_{XX} , σ_{yy} , σ_{XY}

D'après les équations (9), (10) nous avons :

$$(40) \quad \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = \frac{E}{1-\nu} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \quad \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 2\varepsilon_{xy} \end{cases} = \lfloor E_{f} \rfloor \quad \{\varepsilon\}$$

D'après 3 et 4, nous avons également :

(41)
$$\{\varepsilon\} = z \{\varepsilon_{f}\} + \{\varepsilon_{m}\}; \{\varepsilon_{f}\} = \begin{cases} \Theta_{y,x} \\ -\Theta_{x,y} \\ \Theta_{y,y} - \Theta_{x,x} \end{cases}$$
, $\{\varepsilon_{m}\} = \begin{cases} u_{0,x} \\ v_{0,y} \\ u_{0,y} + v_{0,x} \end{cases}$

D'après (28) et (37) nous avons également :

(42)
$$\{\varepsilon_{\mathbf{f}}\} = \lfloor \mathsf{B}_{\mathbf{f}} \rfloor \{\mathsf{U}_{\mathbf{f}}\}$$
, $\{\varepsilon_{\mathbf{m}}\} = \lfloor \mathsf{B}_{\mathbf{m}} \rfloor \{\mathsf{U}_{\mathbf{m}}\}$

Les contraintes σ_{xx} , σ_{yy} , σ_{xy} seront ainsi obtenues comme suit :

(43)
$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = \lfloor E_{f} \rfloor (z \lfloor B_{f} \rfloor \{U_{f}\} + \lfloor B_{m} \rfloor \{U_{m}\})$$

- B) Calcul des contraintes $\sigma_{\chi Z}$ et $\sigma_{\chi Z}$
- a) Calcul de σ_{xz}

Les contraintes de cisaillement transverse $\sigma_{\chi z}$ et $\sigma_{\chi z}$ seront obtenues par l'intermédiaire des équations d'équilibre.

.

Nous écrirons :

(44)
$$\sigma_{xx,x} + \sigma_{xy,y} + \sigma_{xz,z} = 0$$
.

d'où :

$$\sigma_{xz,z} = -\sigma_{xx,x} - \sigma_{xy,y}$$

D'après l'équation (6) nous pouvons écrire :

$$\sigma_{xz,z} = -A \epsilon_{xx,x} - B \epsilon_{yy,x} - C 2 \epsilon_{xy,y}$$

avec :

A =
$$\frac{E}{1-v^2}$$
; B = $\frac{Ev}{1-v^2}$; C = $\frac{E}{2(1+v)}$

D'après (25) nous pouvons également écrire :

(45)
$$\sigma_{xz,z} = -A (j_{11} \varepsilon_{xx,r} + j_{12} \varepsilon_{xx,s})$$
$$-B (j_{11} \varepsilon_{yy,r} + j_{12} \varepsilon_{yy,s})$$
$$-C (j_{21} 2\varepsilon_{xy,r} + j_{22} 2\varepsilon_{xy,s})$$

D'après (28) et (29) nous pourrons alors écrire

(46)
$$\sigma_{xz,z} = z \{H_{xz}\}^T \{U_f\}$$

9 x 1 pour l'élément triangle.
12 x 1 pour l'élément quadrilatère.

 $\{{\rm H}_{\chi Z}\}$: Vecteur dont les composantes sont indépendantes de z.

Après intégration suivant z et prise en compte des conditions aux limites

$$\sigma_{xz} \left(\frac{+}{2}\frac{e}{2}\right) = 0$$

Nous obtenons :

(47)
$$\sigma_{xz} = \left(\frac{z^2}{2} - \frac{e^2}{8}\right) \{H_{xz}\}^T \{U_f\}$$

avec :

$$\{H_{xz}\}^{T} = -A (j_{11}^{2} \{H_{y,rr}\}^{T} + j_{11}j_{12} \{H_{y,sr}\}^{T} + j_{12}j_{11} \{H_{y,rs}\}^{T} + j_{12}^{2} \{H_{y,ss}\}^{T}) -B (-j_{11}j_{22} \{H_{x,rr}\}^{T} - j_{11}j_{22} \{H_{x,sr}\}^{T} - j_{12}j_{21} \{H_{x,rs}\}^{T} - j_{12}j_{22} \{H_{x,ss}\}^{T}) -C (j_{21}^{2} \{H_{y,rr}\}^{T} + j_{21}j_{22} \{H_{y,sr}\}^{T} - j_{21}j_{11} \{H_{x,rr}\}^{T} - j_{21}j_{12} \{H_{x,sr}\}^{T}) + j_{22}j_{21} \{H_{y,rs}\}^{T} + j_{22}^{2} \{H_{y,ss}\}^{T} - j_{22}j_{11} \{H_{x,rs}\}^{T} - j_{22}j_{21} \{H_{x,ss}\}^{T})$$

•

b) Calcul de _{oyz}

Nous définirons σ_{yz} par un procédé analogue à celui que nous avons utilisé pour définir σ_{xz} en partant de l'équation d'équilibre suivante :

(49)
$$\sigma_{yx,x} + \sigma_{yy,y} + \sigma_{yz,z} = 0$$

d'où

$$\sigma_{yz,z} = -\sigma_{yy,y} - \sigma_{yx,x}$$

$$= -B \varepsilon_{xx,y} - A \varepsilon_{yy,y} - 2C \varepsilon_{xy,x}$$

$$= -B (j_{21} \varepsilon_{xx,r} + j_{22} \varepsilon_{xx,s})$$

$$-A (j_{21} \varepsilon_{yy,r} + j_{22} \varepsilon_{yy,s})$$

$$-C (j_{11} 2 \varepsilon_{xy,r} + j_{12} 2 \varepsilon_{xy,s})$$
(50)

Comme nous l'avons fait pour la contrainte $\sigma_{\rm XZ}$, nous pourrons alors écrire $\sigma_{\rm YZ}$ sous la forme :

(51)
$$\sigma_{yz} = (\frac{z^2}{2} - \frac{e^2}{8}) \{H_{yz}\}^T \{U_f\}$$

avec :

$$\{H_{yz}\}^{T} = -B(j_{21}j_{11}\{H_{y,rr}\}^{T} + j_{21}j_{12}\{H_{y,sr}\}^{T} + j_{22}j_{11}\{H_{y,rs}\}^{T} + j_{22}j_{12}\{H_{y,ss}\}^{T})$$

$$(52) - -A(-j_{21}^{2}\{H_{x,rr}\} - j_{21}j_{22}\{H_{x,sr}\}^{T} - j_{22}j_{21}\{H_{x,rs}\}^{T} - j_{22}^{2}\{H_{x,ss}\}^{T})$$

$$-2C(j_{11}j_{21}\{H_{y,rr}\}^{T} + j_{11}j_{22}\{H_{y,sr}\}^{T} - j_{11}^{2}\{H_{x,rr}\}^{T} - j_{11}j_{12}\{H_{x,sr}\}^{T}$$

$$+ j_{12}j_{21}\{H_{y,rr}\}^{T} + j_{12}j_{22}\{H_{y,ss}\}^{T} - j_{12}j_{11}\{H_{x,rs}\}^{T} - j_{12}^{2}\{H_{x,ss}\}^{T})$$

-

3.2.2. Calcul des contraintes généralisées.

Les contraintes généralisées N_{xx} , N_{yy} , N_{xy} , N_{yz} , M_{xx} , M_{yy} , M_{xy} sont définies de la manière suivante :

(56) $N_{xx} = \int_{-e/2}^{e/2} \sigma_{xx} dz \qquad N_{yy} = \int_{-e/2}^{e/2} \sigma_{yy} dz \qquad N_{xy} = \int_{-e/2}^{e/2} \sigma_{xy} dz$ $N_{yz} = \int_{-e/2}^{e/2} \sigma_{yz} dz \qquad N_{xy} = \int_{-e/2}^{e/2} \sigma_{xz} dz$ $M_{xx} = \int_{-e/2}^{e/2} z \sigma_{xx} dz \qquad M_{yy} = \int_{-e/2}^{e/2} z \sigma_{yy} dz \qquad M_{xy} = \int_{e/2}^{+e/2} z \sigma_{xy} dz$

avec :

σ_{xx}, σ_{yy}, σ_{xy}, σ_{yz}, σ_{xz} : Composantes du tenseur des contraintes dans le repère local.
 z : Coordonnée suivant un axe normal à la surface moyenne.

e : Epaisseur de la coque au point considéré.

Les valeurs de N et de M seront calculées en utilisant une intégration numérique avec deux points de Gauss suivant l'axe z.

3.3. CALCUL DES FORCES NODALES

3.3.1. Forces nodales dûes au poids.

3.3.2. Forces nodales dûes à une pression uniforme.

3.3.3. Forces nodales dûes à une pression non uniforme.

3.3.4. Forces nodales dûes à un chargement de surface quelconque.

 $\sum_{i=1}^{n}$

Le travail virtuel des efforts extérieurs correspondant à l'action du poids peut s'écrire :

89

4

(57) $\delta W_{\mu} = \int_{V} P_{v} (a \, \delta u + b \delta v + c \delta w) \, dV$

- a, b, c : Composantes dans le repère local lié à l'élément d'un vecteur indiquant la direction suivant laquelle s'applique le poids.
- P_v : Poids volumique.
- V : Volume de l'élément.

δu, δv, δw : Composantes dans le repère local du champ de déplacement virtuel.

La formulation des éléments à 3 et 4 noeuds est telle que l'on ne connaît pas la forme explicite de w en un point quelconque de l'élément (On ne la connaît que sur les côtés). De ce fait, nous allons faire les hypothèses suivantes pour calculer les forces nodales équivalentes à l'action du poids :

(

n

NK

: Nombre de noeuds de l'élément considéré (3 ou 4)

: Fonction d'interpolation associée au noeud K.

Sous forme matricielle le travail SW_ peut s'écrire :

(59)
$$\delta W_{e} = \int_{V} \{\delta u\}^{T} \left\{ \begin{array}{c} a \\ b \\ c \end{array} \right\} P_{V} dV$$

D'après les équations (2), (34) et (58) nous pouvons exprimer $\{\delta u\}$ de la manière suivante :

-- أسه

.c.

$$\begin{cases} 60 \end{pmatrix} \quad \{\delta u\} = \begin{cases} \delta u \\ \delta v \\ \delta w \end{cases} = \begin{bmatrix} N \end{bmatrix} \{\delta U_{L}\} = \sum_{K=1}^{n} \begin{bmatrix} N^{K} \end{bmatrix} \{\delta U_{L}^{K}\} \\ 3x6n & 3x6 \end{cases}$$

avec :

$$\left\{ \mathsf{U}_{\mathsf{L}}^{\mathsf{K}} \right\}^{\mathsf{T}} = \left\{ \mathsf{u}^{\mathsf{K}}, \mathsf{v}^{\mathsf{K}}, \mathsf{w}^{\mathsf{K}}, \Theta_{\mathsf{X}}^{\mathsf{K}}, \Theta_{\mathsf{y}}^{\mathsf{K}}, \Theta_{\mathsf{z}}^{\mathsf{K}} \right\}$$

(61)
$$\lfloor N^{K} \rfloor = \begin{bmatrix} N^{K} & 0 & 0 & 0 + zN^{K} & 0 \\ 0 & N^{K} & 0 - zN^{K} & 0 & 0 \\ 0 & 0 & N^{K} & 0 & 0 & 0 \end{bmatrix}$$

Le travail virtuel correspondant à l'action du poids peut alors s'écrire :

(62)
$$\delta W_e = \{\delta U_L\}^T \{F_L\}$$

 $\{F_L\}$: Vecteur (dans le repère local) des forces nodales correspondant à l'action du poids.

Ce vecteur est tel que :

$$(63) \quad \{F_{L}\} = \int_{V} [N]^{T} \left\{ \begin{array}{c} a \\ b \\ c \end{array} \right\} P_{V} dV = \left\{ \begin{array}{c} \{F_{L}^{\perp}\} \\ \{F_{L}^{K}\} \\ \{F_{L}^{n}\} \end{array} \right\}$$

avec :

.

$$(64) \qquad \{F_{L}^{K}\} = \int_{V} \left[N^{K} \right] \left\{ \begin{array}{c} a \\ b \\ c \end{array} \right\} = \int_{V} dV$$

Soit :

(65)
$$\{F_{L}^{K}\} = \int_{r,s} Pv$$
 $\begin{cases} N^{K} a e(r,s) \\ N^{K} b e(r,s) \\ N^{K} c e(r,s) \\ 0 \\ 0 \\ 0 \end{cases}$ $det J$ $dr ds$

Dans le cas particulier du triangle nous avons :

(66)
$$\begin{bmatrix} \det J \end{bmatrix} = 2S \\ \int_{r,s} N^{1} e(r,s) dr ds = \frac{1}{24} (2e^{1} + e^{2} + e^{3}) \\ \int_{r,s} N^{2} e(r,s) dr ds = \frac{1}{24} (e^{1} + 2e^{2} + e^{3}) \\ \int_{r,s} N^{3} e(r,s) dr ds = \frac{1}{24} (e^{1} + e^{2} + 2e^{3}) \end{bmatrix}$$

Le vecteur $\{F_L\}$ s'écrit ainsi :

-

$$\{F_{L}\}^{T} = \frac{SP_{v}}{12} \{ (2e^{1} + e^{2} + e^{3}) a, (2e^{1} + e^{2} + e^{3}) b, (2e^{1} + e^{2} + e^{3}) c, 0, 0, 0, 0, 0, (e^{1} + 2e^{2} + e^{3}) a, (e^{1} + 2e^{2} + e^{3}) b, (e^{1} + 2e^{2} + e^{3}) c, 0, 0, 0, 0, 0, (e^{1} + 2e^{2} + e^{3}) c, 0, 0, 0, 0, 0, (e^{1} + e^{2} + 2e^{3}) a, (e^{1} + e^{2} + 2e^{3}) b, (e^{1} + 2e^{2} + e^{3}) c, 0, 0, 0, 0, 0 \}$$

Dans le quadrilatère, nous avons d'après (27) :

$$\int_{r,s} N^{1} \det J e(r,s) dr ds = \frac{1}{4} (j e_{1} + \frac{1}{3} (Ke_{3}+le_{4}-je_{3}-Ke_{1}-je_{4}-le_{1}) + \frac{1}{9} (le_{2}-Ke_{2}+je_{2}+Ke_{4}+le_{3})) = A_{1}$$

$$\int_{r,s} N^{2} \det J e(r,s) dr ds = \frac{1}{4} (je_{1} + \frac{1}{3} (Ke_{3}+le_{4}+je_{3}+Ke_{1}-je_{4}-le_{1}) + \frac{1}{9} (le_{2}-Ke_{2}-je_{2}-Ke_{4}-le_{3})) = A_{2}$$

$$\int_{r,s} N^{3} \det J e(r,s) dr ds = \frac{1}{4} (je_{1} + \frac{1}{3} (Ke_{3}+le_{4}+je_{3}+Ke_{1}+je_{4}+le_{1}) + \frac{1}{9} (le_{2}+Ke_{2}+je_{2}+Ke_{4}+le_{3})) = A_{3}$$

$$\int_{r,s} N^{4} \det J e(r,s) dr ds = \frac{1}{4} (je_{1} + \frac{1}{3} (Ke_{3}+le_{4}-je_{3}-Ke_{1}+je_{4}+le_{1}) + \frac{1}{9} (-le_{2}+Ke_{2}-je_{2}-Ke_{4}-le_{3})) = A_{4}$$

v

0 04 mil

· • *

۲

.

~

avec :

 $e_{1} = e^{1} + e^{2} + e^{3} + e^{4} , \qquad e_{2} = e^{1} + e^{3} - e^{2} - e^{4}$ $e_{3} = e^{2} + e^{3} - e^{1} - e^{4} , \qquad e_{4} = e^{3} + e^{4} - e^{1} - e^{2}$

$$j = \frac{1}{8} (y_{42} x_{31} - y_{31} x_{42})$$

$$K = \frac{1}{8} (y_{34} x_{21} - y_{21} x_{34})$$

$$g = \frac{1}{8} (y_{41} x_{32} - y_{32} x_{41})$$

Le vecteur $\{F_L\}$ s'écrit ainsi pour le quadrilatère :

$$\{F_{L}\}^{I} = P_{v} \{A_{1}a, A_{1}b, A_{1}c, 0, 0, 0, A_{2}a, A_{2}b, A_{2}c, 0, 0, 0 \\A_{3}a, A_{3}b, A_{3}c, 0, 0, 0, A_{4}a, A_{4}b, A_{4}c, 0, 0, 0\}$$

Dans le repère global, nous écrirons :

$$\{\mathsf{F}^{\mathsf{K}}\} = \begin{bmatrix} \left[\begin{array}{c} \mathsf{r} \right] \\ & \left[\begin{array}{c} \mathsf{r} \end{array}\right] \end{bmatrix}^{\mathsf{T}} \quad \{\mathsf{F}_{\mathsf{L}}^{\mathsf{K}}\}$$

[r] : Matrice définie par l'équation (39).

Le travail virtuel des efforts extérieurs correspondant à l'action d'une pression uniforme sur la surface moyenne de l'élément peut s'écrire :

(68)
$$\delta W_e = \int_S \delta w p dS$$

p : Valeur de la pression appliquée sur la surface.

Si nous utilisons l'hypothèse formulée par l'équation (58) nous avons :

(69)
$$\delta w = \sum_{K=1}^{n} N^{K}(r,s) \delta w^{K}$$

Sous forme natricielle nous avons ainsi :

$$\delta W_e = \{ \delta U_L \}^T \{ F_L \}$$

avec :

.

(70)
$$\{F_L^K\} = \int_{r,s} p \begin{cases} 0\\0\\N^K\\0\\0\\0 \end{cases} \mid det J \mid dr ds$$

Dans le cas du triangle, nous avons ainsi :

(71)
$$\{F_{L}\}^{T} = \{0, 0, \frac{PS}{3}, 0, 0, 0, 0, 0, 0, \frac{PS}{3}, 0, 0, 0, 0, 0, \frac{PS}{3}, 0, 0, 0, 0, \frac{PS}{3}, 0, 0, 0, 0\}$$

170

ار ال الرامة

, .

141 -

Dans le cas du quadrilatère nous avons :

$$\int_{r,s} N^{1} |\det J| dr ds = j - \frac{1}{3} K - \frac{1}{3} \ell = B_{1}$$

$$\int_{r,s} N^{2} |\det J| dr ds = j + \frac{1}{3} K - \frac{1}{3} \ell = B_{2}$$

$$\int_{r,s} N^{3} |\det J| dr ds = j + \frac{1}{3} K + \frac{1}{3} \ell = B_{3}$$

$$\int_{r,s} N^{4} |\det J| dr ds = j - \frac{1}{3} K + \frac{1}{3} \ell = B_{4}$$

.

Le vecteur $\{F_L\}$ s'écrira ainsi :

(72)
$$\{F_L\}^T = \{0,0, pB_1, 0,0,0,0,0, pB_2, 0,0,0,0,0, pB_3, 0,0,0,0,0,0, pB_4, 0,0,0\}$$

5.1

-

3.3.3. Forces nodales dûes à une pression non uniforme.

Dans ce cas nous écrirons que :

.

(72) $p(r,s) = \sum_{K=1}^{n} N^{K}(r,s) P^{K}$

P^K : Pression sur le noeud K.

D'après ce que nous avons vu dans le paragraphe 1.3.2., nous pouvons écrire dans ce cas :

~

(73) {F_L^K} =
$$\int_{r,s} P_{(r,s)} \begin{pmatrix} 0 \\ 0 \\ N^{K} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 | det J| dr ds

Dans le cas du triangle nous aurons ainsi :

$$(74) \{F_{L}\}^{T} = \frac{S}{12} \{0,0,(2p^{1}+p^{2}+p^{3}),0,0,0,0,0,(p^{1}+2p^{2}+p^{3}),0,0,0,0,0,(p^{1}+p^{2}+2p^{3}),0,0,0,0\}$$

. .

Dans le cas du quadrilatère, nous pouvons écrire :

$$\int_{r,s} N^{1} \det J p(r,s) dr ds = \frac{1}{4} (jp_{1} + \frac{1}{3} (Kp_{3} + \ell p_{4} - jp_{3} - Kp_{1} - jp_{4} - \ell p_{1}) + \frac{1}{9} (-\ell p_{2} - Kp_{2} + jp_{2} + Kp_{4} + \ell p_{3})) = C_{1}$$

$$\int_{r,s} N^{2} \det J p(r,s) dr ds = \frac{1}{4} (jp_{1} + \frac{1}{3} (Kp_{3} + \ell p_{4} + jp_{3} + Kp_{1} - jp_{4} - \ell p_{1}) + \frac{1}{9} (\ell p_{2} - Kp_{2} - jp_{2} - Kp_{4} - \ell p_{3})) = C_{2}$$

$$\int_{r,s} N^{3} \det J p(r,s) dr ds = \frac{1}{4} (jp_{1} + \frac{1}{3} (Kp_{3} + \ell p_{4} + jp_{3} + Kp_{1} + jp_{4} + \ell p_{1}) + \frac{1}{9} (\ell p_{2} + Kp_{2} + jp_{2} + Kp_{4} + \ell p_{3})) = C_{3}$$

$$\int_{r,s} N^{4} \det J p(r,s) dr ds = \frac{1}{4} (jp_{1} + \frac{1}{3} (Kp_{3} + \ell p_{4} - jp_{3} - Kp_{1} + jp_{4} + \ell p_{1}) + \frac{1}{9} (-\ell p_{2} + Kp_{2} - jp_{2} - Kp_{4} - \ell p_{3})) = C_{4}$$

~····

...

avec :

j, K, L : définis au paragraphe 1.3.1.

		1		2		3		4				1		3		2		4
p_1	=	Р	+	Þ	+	р	+	Р	;	P_2	=	р	+	р	-	р	-	р
		2		3		1		4				3		4		1		2
P3	=	р	+	р	-	р	-	р	;	рц	=	р	+	р	-	р	-	р

Le travail virtuel des efforts extérieurs correspondant à l'action de forces de surface quelconques peut s'écrire :

(76)
$$\delta W_{e} = \int_{S} \{\delta u_{L}\}^{T} \begin{cases} f_{1}(r,s) \\ f_{2}(r,s) \\ f_{3}(r,s) \end{cases} dS$$

 $\{\delta \mathbf{u}_{\mathbf{L}}\}^{\mathsf{T}} = \{\delta \mathbf{u}, \delta \mathbf{v}, \delta \mathbf{w}\}$

 $f_1(r,s)$, $f_2(r,s)$, $f_3(r,s)$: Composantes dans le repère local lié à l'élément du vecteur force de surface au point de coordonnées r,s.

Nous supposerons que f_1 , f_2 , f_3 peuvent s'exprimer en fonction de leur valeur aux noeuds comme suit :

(77)
$$f_i(r,s) = \sum_{K=1}^{n} N^K(r,s) f_i^K$$
 (i = 1,3)

 f_i^{K} : Valeur de la fonction f_i au noeud K.

D'après l'équation (60) nous pouvons écrire :

$$\{\delta u\} = [N] \{\delta U_{L}\} = \sum_{K=1}^{n} [N^{K}] \{\delta U_{L}^{K}\}$$

avec dans notre cas :

$$(78) [N^{K}] = \begin{bmatrix} Y^{K} & 0 & 0 & 0 & 0 \\ 0 & N^{K} & 0 & 0 & 0 \\ 0 & 0 & N^{K} & 0 & 0 & 0 \end{bmatrix}$$

đ

Compte-tenu des équations (76), (77) et (78) nous pouvons écrire :

$$\delta W_{e} = \{\delta U_{L}\}^{T} \{F_{L}\}$$

avec :

(79)
$$[F_{L}^{K}] = \int_{r,s} [N^{K}]^{T} \begin{cases} f_{1} \\ f_{2} \\ f_{3} \end{cases}$$
 |det J| dr ds

soit :

÷

(80)
$$\{F_{L}^{K}\} = \int_{S} \left\{ \begin{array}{ccc} N^{K} f_{1} (r,s) & |det J| \\ N^{K} f_{2} (r,s) & |det J| \\ N^{K} f_{3} (r,s) & |det J| \\ 0 \\ 0 \\ 0 \end{array} \right\} dr ds$$

Dans le cas particulier du triangle, nous aurons :

Dans le cas du quadrilatère, nous avons :

(82) $\int N^{K} f_{i} |\det J| dr ds = D_{i}^{K}$ (K = 1,4), (i = 1,3)

 D_i^K s'exprime de la même manière que C_K (1.3.3) sous réserve de remplacer p par f_i .

Compte-tenu de (81), nous avons dans le cas du quadrilatère :

i

1.

· , :

3.4. CALCUL DE LA MATRICE MASSE

L'expression de la matrice masse élémentaire s'obtient en considérant le \ldots travail virtuel des forces d'inertie δWa .

(84)
$$\delta W_a = \int \rho \ddot{u}_i \delta u_i dV$$

avec :

ρ : Masse volumique.

 \ddot{u}_i (i=1,3) \dot{v}_i : Composantes du vecteur accéllération dans un repère localors de lié à l'élément.

Nous ferons également ici les hypothèses exprimées par les équations (58). De ce fait nous pouvons écrire :

(85)
$$\{\ddot{u}_{L}\} = \{\ddot{\ddot{v}}_{u}\} = [N] \{\ddot{U}_{L}\} = \sum_{K=1}^{n} [N^{K}] \{\ddot{U}_{L}^{K}\}$$

 $\lfloor N^K \rfloor$: Matrice donnée par l'expression (61).

 $\{ \overset{\sim}{\mathsf{U}}_{\mathsf{L}}^{\mathsf{K}} \}^{\mathsf{T}} = \{ \overset{\sim}{\mathsf{u}}^{\mathsf{K}} , \overset{\sim}{\mathsf{v}}^{\mathsf{K}} , \overset{\sim}{\mathsf{w}}^{\mathsf{K}} , \overset{\sim}{\Theta}_{\mathsf{X}} , \overset{\sim}{\Theta}_{\mathsf{y}} , \overset{\sim}{\Theta}_{\mathsf{z}} \}$

Le travail virtuel des efforts d'inertie peut alors se mettre sous la forme matricielle suivante :

(86)
$$\delta W_a = \{\delta U_L\}^T [M_L] \{U_L\}$$

La matrice de masse élémentaire $[M_1]$ est telle que :

(87)
$$[M_{\downarrow}] = \int_{V} \rho [N]^{\downarrow} [N] dV$$

Elle est obtenue par intégration analytique suivant l'épaisseur (axe t) et par intégration numérique dans le plan r,s.

Dans le repère global cette matrice de masse élémentaire s'écrit :

ì

 $(\dot{8}8) [M_e] = [R]^T [M_L] [R]$

£ .

[R] : Matrice définie dans le paragraphe 3.1.5-C.

III - COMPORTEMENT DE CES ELEMENTS DANS LE DOMAINE STATIQUE

1. STRUCTURE DE TYPE POUTRE.

2. PLAQUES CARREES SIMPLEMENT APPUYEES

3. PORTION DE PLAQUE CIRCULAIRE.

4. COQUE CYLINDRIQUE PINCEE.

5. STRUCTURE DE TYPE CAISSON CIRCULAIRE.

.

6. STRUCTURE DE TYPE BARRAGE-VOUTE.

1. STRUCTURE DE TYPE POUTRE

Nous avons noté dans le chapitre II-2 que dans le cas des éléments de coque épaisse à 8 noeuds les contraintes de cisaillement σ_{xz} , σ_{yz} et les

efforts résultants $N_{\chi Z}$, $N_{\chi Z}$ devaient être calculés aux points de Gauss.

Les premiers tests que nous allons décrire ci-dessous vont illustrer cette nécessité.

Considérons la structure de type poutre définie par la planche 1.

Pour un maillage de 5 éléments à 8 noeuds, les figures 1 et 2 montrent les résultats obtenus pour le déplacement w et le moment M_{xx} .

Nous constatons que les résultats sont ici en parfaite concordance avec les solutions analytiques.

La figure 3 indique les résultats obtenus pour l'effort tranchant $N_{x,7}$ sur

une ligne de points incluant les points de Gauss. Elle montre que les valeurs de l'effort tranchant sont rigoureusement exactes aux points de Gauss et deviennent rapidement très mauvaises et tout à fait inutilisables dès que l'on s'en éloigne.

Ces résultats surprenants sont assez similaires à ceux décrits par Zienkiewicz | 24, page 283 | pour des éléments plans de type Serendip à 8

noeuds (voir figure 4).

Parish H |29| avait également noté que pour les éléments de coque épaisse les efforts résultant $N_{\chi Z}$ et $N_{\chi Z}$ étaient meilleurs quand ils

étaint évalués aux points de Gauss.

La figure 5 montre les résultats obtenus aux points de Gauss pour N_{xz}

.

quand les éléments sont distordus. Dans ce cas également les résultats sont bien meilleurs aux points de Gauss que sur la ligne des noeuds. Néanmoins, nous voyons sur cette figure que les résultats obtenus sur l'effort tranchant N_{yy} sont relativement sensibles à la distorsion des

éléments. Ils montrent également que dans ce cas le calcul, conseillé par certains auteurs, des contraintes de cisaillement transverse par extrapolation linéaire à partir des résultats aux points de Gauss peut dans ce cas entraîner aussi l'obtention de résultats pas très significatifs. Cette étude nous a incité à ne donner qu'un seul résultat par élément pour les contraintes de cisaillement transverse σ_{xz} , σ_{yz} et les efforts

résultants $N_{\chi Z}$ et $N_{\chi Z}$; résultat obtenu en moyennant les valeurs trouvées

aux 4 points de Gauss. Nous pouvons constater sur la figure 5 que les résultats calculés en effectuant cette moyenne restent proches de la solution analytique quand les éléments sont distordus.

Les figures 6 et 7 montrent l'effet de cette distorsion sur les résultats en flèche W et en moment M_{xx} . Elles nous permettent de constater que ces

deux grandeurs sont beaucoup moins sensibles à la distorsion que l'effort tranchants $N_{x\tau}$.

Les figures 8 et 9 montrent les résultats obtenus avec les éléments à 3 et 4 noeuds pour respectivement le déplacement w et le moment M_{xx} . Nous

pouvons constater que les résultats sont en parfaite concordance avec la ... solution analytique.

Les figures 10 et 11 représentent les mêmes grandeurs obtenues cette fois avec le maillage distordu (distorsion 2) précédemment défini.

Quand les éléments sont droits, les résultats obtenus pour l'effort tranchant N_{x7} coincident exactement avec la solution analytique.

La figure 12 montre les résultats obtenus au centre des éléments quand ces derniers sont distordus.

<u>Planche 1</u>

Poutre encastrée soumise à un chargement uniforme sur son extrémité.

Ε	:	Module Young	Ε	=	1.
ν	:	Coefficient de Poisson	ν	=	0.
h	:	Epaisseur de la poutre	'n	=	0,05

Fig. 2 : Poutre encastrée. Moment Mxx

Fig. 3 : Poutre encastrée Effort tranchant Nxz suivant la ligne AB

Fig. 4 : Poutre Cantilever modélisée à l'aide de 4 éléments bidimensionnels à 8 noeuds. Extrait de 24 page 283

Fig. 5 : Influence de la distorsion des éléments à 8 noeuds sur le calcul de l'effort tranchant Nxz

Fig. 8 : Poutre encastrée - Déplacement w avec DKT et DKQ

Fig. 9 : Poutre encastrée - Moment Mxx avec DKT et DKQ

Fig. 12 : Infuence de la distortion des éléments à 4 noeuds (DKQ) sur le calcul de l'effort tranchant

2. PLAQUES CARREES SIMPLEMENT APPUYEES

La figure 13 montre les résultats obtenus pour la flèche W dans le cas d'une plaque carrée simplement appoyée, relativement épaisse (1/h = 10) soumise à une charge concentrée.

Conformément à ce que l'on pouvait attendre les éléments à 8 noeuds d'une part, les éléments à 3 et 4 noeuds d'autre part ne convergent pas vers la même solution.

En effet, basés sur les hypothèses cinématiques de Mindlin, les éléments à 8 noeuds convergent vers la solution analytique obtenue en considérant ces hypothèses (solution plaque épaisse). Les éléments à 3 et 4 noeuds convergent eux vers la solution analytique obtenue en considérant les hypothèses de Love-Kirchhoff (solution plaque mince).

Ce simple test montre déjà l'intérêt de l'utilisation des éléments à 8 noeuds pour le calcul des structures épaisses.

Dans la figure 14, on considère la même plaque, mais soumise cette fois à un chargement uniforme. Nous constatons que dans ce cas là, les éléments convergent beaucoup plus rapidement vers leurs solutions respectives.

Les figures 15 et 16 considèrent cette fois une plaque mince d'élancement l/h = 100. Dans ce cas là, la différence entre les solutions analytiques obtenues en considérant les hypothèses de Mindlin ou les hypothèses de Love-Kirchhoff est négligeable. De ce fait, nous pouvons constater que les éléments à 3, 4 et 8 noeuds convergent vers la même solution.

Nous pouvons également voir dans ce cas que les éléments à 3 et 4 noeuds permettent d'obtenir de bons résultats à un moindre coût que les éléments à 8 noeuds. En effet, ces derniers entraînent l'utilisation de maillages tels que la largeur de bande est plus importante que pour les éléments à 3 et 4 noeuds. De plus le calcul des matrices de rigidité élémentaires est plus onéreux pour les éléments à 8 noeuds que pour les éléments à 3 et 4 noeuds.

En considérant toujours une plaque carrée simplement appuyée soumise à un chargement uniforme (1/h = 100), nous pouvons sur la figure 17 comparer les performances des trois éléments considérés (c_3, c_4, c_8) avec les éléments

de coque utilisés dans le programme SAPIV |28|, STRUDL |28| et ROSALIE |30|. Nous pouvons ainsi constater en particulier que la convergence des éléments c_3 et c_4 est remarquable.

La figure 18 représente les résultats obtenus pour les moments M_{xx} , M_{vv} au

centre de cette plaque. Nous remarquons que les trois types d'éléments considérés convergent de manière très satisfaisante vers la solution analytique.

Les figures 19 et 20 représentent la variation des moments M_{xx} et M_{yy} sur l'arête A-B de la plaque considérée. Nous pouvons observer lâ encoré une très bonne concordance des résultats obtenus avec la solution analytique.

La figure 21 indique les résultats obtenus pour l'effort tranchant $N_{\chi Z}$ suivant la ligne A-C. Nous pouvons noter que pour les éléments à 8 noeuds (c₈) les valeurs de $N_{\chi Z}$ calculées aux points de Gauss concordent très bien avec la solution de référence. Comme nous l'avons déjà indiqué dans le paragraphe précédent, les valeurs de $N_{\chi Z}$ calculées directement aux noeuds

de l'élément sont par contre très mauvaises.

Cet exemple confirme donc bien la nécessité pour les éléments à 8 noeuds de faire le calcul des efforts de cisaillement transverse aux points de Gauss (2 x 2).

Cette figure montre également que si les résultats obtenus pour les éléments à 4 noeuds (c_4) sont moins bons que ceux obtenus pour les

éléments à 8 noeuds, ils restent néanmoins très satisfaisants.

Planche 2

Plaque carrée simplement appuyée

1° <u>Définition</u>

1	=	longueur de la plaque	1	=	1
h	≠	épaisseur	'n	=	0,1 ou 0,01
Ε	:	Module Young	ε	Ξ	105
ν	:	coefficient de Poisson	ν	=	0,3
W	:	flèche au centre de la plaque	α	=	$\frac{W.D}{D^{12}} \times 10^{2}$
D	:	$Eh^{3}/12(1 - v^{2})$			pr-

2° <u>Conditions aux limites et conditions de symétrie</u>

Fig. 14 · Plaque carrée simplement appuyée soumise à un chargement uniforme (1/ $_{\rm h}$ = 10) Déplacement w

Fig. 15 : Plaque carrée simplement appuyée soumise à une charge concentrée (1/h = 100) Déplacement w

Fig. 16 : Plaque carrée simplement appuyée soumise à un chargement uniforme $(1/_h$ = 100) Déplacement w

Erreur

Mxx et Myy au centre de la plaque

3. PORTION DE PLAQUE CIRCULAIRE

· · ·

Dans ce paragraphe, nous considérons une portion de plaque circulaire simplement appuyée sur ces 2 arêtes extrémités.

Trois chargements correspondant respectivement à des charges concentrées appliquées aux points A, B, C sont étudiés (voir planche 3). Cet exemple a déjà été analysé par de nombreux auteurs |19 à 22| .

Les figures 22 à 24 montrent les résultats obtenus pour le déplacement w le long de la ligne A, B, C pour les 3 cas de chargement considérés et pour chacun des 3 types d'éléments étudiés (c₃, c₄, c₈) .

La figure 25 représente les résultats obtenus pour le moment fléchissant $\rm M_{_{\rm VV}}$ pour les 3 types de chargement.

7

Sur chacune de ces figures, nous pouvons là encore constater que les résultats sont en bonne concordance avec la solution de référence.

Planche 3

Portion de plaque circulaire

Définition géométrique

Fig. 22 : Portion de plaque circulaire soumise au chargement A Déplacement suivant la ligne A B C

Eléments à 3 noeuds

Fig. 23 : Portion de plaque circulaire soumise au chargement B Déplacement suivant la ligne A B C

Fig. 24 : Portion de plaque circulaire soumise au chargement C Déplacement suivant la ligne A B C

5

Fig. 25 : Evaluation du moment $M_{\ensuremath{\textbf{yy}}}$ le long de AC

4. COQUE CYLINDRIQUE PINCEE

χ.

. .

÷ 7

Après avoir examiné le comportement des éléments DKT, DKQ et C8 dans le calcul de plaques, nous allons nous intéresser ici à leurs performances dans le calcul d'une coque cylindrique pincée possédant un diaphragme rigide à chacune de ces extrémités.

La planche 4 définit de manière détaillée cette structure. Ce test a déjà été utilisé par certains auteurs |31 | |33| pour évaluer la performance d'éléments de coque. n, n, r

Il s'agit là d'un exemple rendu relativement sévère par les conditions aux limites considérées (diaphragmes rigides, charges concentrées).

La figure 26 représentant la déformée de la coque suivant l'arc BC permet de s'en convaincre aisément.

La figure 27 indique le pourcentage d'erreur en flèche sous la charge en fonction du coût de calcul pour divers maillages constitués à l'aide des 3 types d'éléments considérés. Les maillages utilisés sont "réguliers". Les nombres d'éléments divisent en côtés égaux les côtés AB et BC sont ainsi toujours identiques.

L'utilisation en abscisse du coût de calcul n'est pas très habituelle. Néanmoins, la prise de ce facteur nous apparaît plus adaptée que l'emploi plus classique du nombre d'équations ou du nombre d'éléments pour comparer des éléments aussi différents que les éléments DKT, DKQ et C8.

Cette figure 27 nous permet de comparer la vitesse de convergence vers la solution des trois types d'éléments considérés.

Nous pouvons ainsi constater que dans ce cas particulier ces derniers ont sensiblement les mêmes performances.

Les figures 28, 29, 30 indiquent les résultats obtenus pour le déplacement W_n le long de l'arc BC. Nous pouvons ainsi noter que les solutions

trouvées sont pour les trois types d'éléments considérés en excellente concordance avec la solution de référence |32| . Mise à part dans le très proche voisinage de la charge, les résultats obtenus avec un faible nombre d'éléments (exemple : 9 éléments à 8 noeuds) peuvent même être considérés comme très satisfaisants.

Les figures 31, 32, 33 indiquent les résultats trouvés pour le déplacement u le long de l'arc AD, tandis que les figures 34, 35, 36 indiquent les solutions obtenues pour le déplacement w sur le côté DC. Nous pouvons encore constater ici que les résultats obtenus sont en bon accord avec la solution de référence.

Si l'on peut obtenir des résultats en déplacement satisfaisants avec des maillages constitués de relativement peu d'éléments, il n'en va pas de même pour les contraintes. En effet ces dernières varient brutalement au voisinage de la charge et entraînent donc la nécessité de maillages plus fins.

La figure 37 présente les valeurs obtenus pour le moment $M_{_{\rm P}}$ le long de

l'arc BC. Les trois types d'éléments considérés ayant comme nous l'avons vu dans l'étude des plaques un très bon comportement en flexion, nous pouvons constater sur cette figure que les résultats trouvés pour le moment M_{q} sont satisfaisants.

Les figures 38 et 39 montrent les résultats trouvés pour les efforts résultants N $_{\rm Y}$ et N $_{\rm B}$ le long de l'arc BC.

Pour ces deux types de résultats, il semble ici que le comportement des éléments à 4 noeuds (DKT) soit légèrement plus satisfaisant que celui des éléments à 3 noeuds (DKT).

Planche 4

Coque cylindrique pincee avec diaphragme rigide

1° Définition géométrique

E= 1

- R= 1
- P= 1
- L= 2
- t= 0.01
- v = 0.3

2° Conditions aux limites

Fig. 26 : Déformée de la section médiane de la coque cylindrique pincée.

ig. 27 : Deplacement sous la charge Convergence des trois types d'éléments

Fig. 28 : Evaluation du déplacement W_n suivant l'arc BC (éléments à 3 noeuds : DKT)

(éléments à 4 noeuds : DKQ)

(éléments à 8 noeuds : C8)

g. 36 : Evaluation du deplacement w sulvant l (éléments à 8 noeuds : C8)

Eléments à 3 noeuds

Fig. 37 : Evaluation du moment M β suivant BC

Fig. 38 : Evaluation de N α suivant l'arc BC

Fig. 39 : Evaluation de NJ suivant l'arc BC

5. STRUCTURE DE TYPE CAISSON CIRCULAIRE

La structure considérée ici est un caisson circulaire simplement appuyé en ses deux extrémités et soumis à une charge concentrée dans la section médiane.

Les deux extrémités de ce caisson sont fermées. Cet exemple a déjà été étudié par quelques auteurs soit de manière numérique soit de manière expérimentale |34 | , |35 | , |36 | .

La plupart des auteurs traitant ce problème par éléments finits considèrent des éléments différents pour modéliser les hourdis et les âmes. Worsak - Kanok - Nukulchai 36 propose par exemple de distinguer les éléments du hourdis et les éléments des âmes par une intégration numérique différente.

Nous avons ici considéré que cet effort n'était pas indispensable. De ce fait nous avons utilisé les mêmes types d'éléments pour les différentes parties de la structure.

Les planches 6 et 7 définissent les différents types de maillages considérés pour calculer cette structure.

Pour les éléments à 3 et 4 noeuds nous pouvons ainsi remarquer que nous avons choisi deux types de maillage se distinguant par le nombre d'éléments dans l'âme. Ceci a été fait pour apprécier l'influence du comportement en membrane de ces éléments.

Les figures 40 et 41 représentent le déplacement W. le long de l'arc IJ pour différents maillages d'éléments à 3 et 4 noeuds.

Ces courbes nous permettent de constater que le fait d'augmenter le nombre d'éléments dans l'âme (maillage A \rightarrow B) ne modifie pas les résultats obtenus et ne semble donc pas nécessaire. Le fait d'augmenter le nombre de "tranches" (5 \rightarrow 10) modifie par contre de manière sensible les résultats trouvés. Nous pouvons également noter que dans cet exemple les éléments à 4 noeuds (DKQ) ont des performances supérieures à celles des éléments à 3 noeuds (DKT). De manière générale les résultats obtenus avec les maillages A x 10 ou B x 10 concordent de manière satisfaisante avec les solutions de référence.

La figure 42 montre les résultats trouvés par les éléments à 8 noeuds. Nous pouvons ainsi constater que les 4 types de maillage étudiés donnent des résultats très satisfaisants. Les éléments de coque épaisse à 8 noeuds semblent donc très performants dans cet exemple. Les figures 43 et 44 indique les contraintes tangentielles obtenues le long des côtés KL et MN pour différents maillages d'éléments à 3 noeuds (DKT). Comme nous l'avions déjà constaté dans l'analyse les figures précédentes nous obtenons à même nombre de tranches les résultats sensiblement identiques pour les maillages A et B.

Pour les maillages A x 10 et B x 10 nous pouvons également noter que si les résultats obtenus sont légèrement différents de la solution de référence au voisinage de la charge concentrée, ils deviennent rapidement satisfaisants dès que l'on s'en éloigne.

Les figures 45 et 46 indiquent les résultats obtenus avec cette fois les éléments à 4 noeuds. De manière générale nous pouvons faire ici les mêmes commentaires que pour les éléments à 3 noeuds. Nous pouvons quand même noter que les performances des éléments DKQ sont légèrement plus satisfaisants que celles des éléments DKT.

La figure 47 indique les résultats obtenus avec les éléments de coque épaisse. Nous pouvons ainsi constater que quelque soit le maillage considéré les résultats obtenus sont ici très satisfaisants.

La figure 48 montre les résultats obtenus pour les contraintes tangentielles le long de l'arc OP. Pour les trois types d'éléments considérés nous pouvons constater la bonne concordance des résultats avec la solution de référence.

Dans le calcul de ce type les éléments de coque épaisse à 8 noeuds semblent plus performants que les éléments à 3 et 4 noeuds (DKT et DKQ).

Tout d'abord, comme nous l'avons déjà indiqué, ces structures sont telles que de nombreux éléments (âme) ont un comportement dominant de membrane. Or, les éléments à 8 noeuds, pour lesquels les termes de rigidité en membrane sont déterminés à partir d'une interpolation quadratique des déplacements, ont un meilleur comportement en membrane, que les éléments à 3 et 4 noeuds, pour lesquels ces termes sont calculés à partir d'une interpolation linéaire des déplacements.

De plus pour les éléments à 3 et 4 noeuds, la continuité des déplacements n'est pas assurée le long des arêtes de connection âme-hourdis. En effet le déplacement cubique des arêtes des éléments des hourdis correspond au déplacement linéaire des éléments des âmes. Ce problème n'est pas rencontré avec les éléments de coque épaisse à 8 noeuds pour lesquels toutes les composantes du déplacement ont le même degré d'interpolation.

Les avantages présentés par les éléments de coque épaisse pour le calcul de structure de ce type ne condamne pas pour autant l'utilisation des éléments à 3 et 4 noeuds. Comme nous l'avons déjà indiqué les résultats obtenus avec ces éléments peuvent être tout à fait satisfaisants. De plus ils présentent l'avantage d'être d'une utilisation plus facile.

Planche 5

Caisson circulaire soumis à une charge concentrée

 $E = 4 \times 10^5$ psi P = 20 lb v = 0,36

5

Typesde maillage considéré avec les éléments à 3 et 4 noeuds

Types de maillage considéré avec les éléments à 8 noeuds

đ

Fig. 42 : Déplacement suivant l'arc IJ (éléments à 8 noeuds : C8)

.

Fig. 43 : Contraintes tangentielles-Maillage A (éléments à 3 noeuds : DKT)

Fig. 44 : Contraintes tangentielles-Maillage B (éléments à 3 noeuds : DKT)

(éléments à 4 noeuds : DKQ)

Fig. 47 : Contraintes tangentielles-Maillage C D E F (éléments à 8 noeuds : C8)

Μ

N

.

6. STRUCTURE DE TYPE BARRAGE VOUTE

Les planches 8 et 9 définissent les caractéristiques de la structure de type barrage voûte considérée dans ce paragraphe. Cet exemple a déjà été par de nombreux auteurs |36|, |39|, |40|, |41|.

La solution de référence que nous utiliserons sera basée sur les résultats obtenus par Ergatoudis et al |41| par un calcul éléments finis effectué à l'aide d'un maillage d'éléments isoparamétriques tridimensionnels à 20 noeuds.

Nous comparerons dans ce paragraphe les résultats obtnus par trois modélisations. La première utilise un maillage constitué d'éléments de coque épaisse à 8 et 6 noeuds, la deuxième un maillage constitué d'éléments à 3 et 4 noeuds tandis que la troisième emploie un maillage constitué d'éléments de coque épaisse de type tridimensionnel à 16 et 12 noeuds.

La figure 49 indique les résultats obtenus pour le déplacement radial suivant l'axe z pour chacune des trois modélisations effectuées.

Les figures 50 et 51 montrent les résultats trouvés pour les contraintes tangentielles et les contraintes verticales le long de l'axe z.

Sur chacune de ces trois courbes nous pouvons noter la très bonne concordance de tous les résultats obtenus avec la solution de référence.

Ces très bons résultats peuvent s'expliquer ici par le fait que la structure considérée est simple à la fois par sa géométrie et par le chargement imposé.

Planche 8

Barrage voûte

E = 2x10⁹ kgf/m² R_{int} = 43,25 m R_{ext} = 46,25 m v = 0,15

Planche 9

Maillage utilisé avec les éléments à 3 et 4 noeuds

Maillage utilisé avec les éléments à 8 et 6 noeuds (face du maillage constitué d'éléments à 16 et 12 noeuds)

đ

ŝ

Fig. 49 : Déplacement radial suivant l'axe z (section médiane)

Fig. 50 : Contraintes tangentielles suivant l'axe z (section médiane)

-

Fig. 51 : Contraintes verticales suivant l'axe z (section médiane)

<u>ار</u>

IV - COMPORTEMENT DES ELEMENTS DKT - DKQ ET DE COQUE EPAISSE A 8 NOEUDS DANS LE DOMAINE DYNAMIQUE.

5

.

Pour vérifier l'aptitude des trois types d'éléments considérés à traiter les problèmes dynamiques, nous avons dans ce chapitre calculé les premières fréquences propres de trois structures pour lesquelles nous disposons de solutions analytiques ou expérimentales.

La première structure considérée est une plaque carrée simplement appuyée définie par la planche 10. Les tableaux 1, 2 et 3 indiquent les résultats obtenus pour les modes (1,1), (1,3), (3,1) et (3,3) avec différents maillages d'éléments à 3, 4 ou 8 noeuds.

-Nous pouvons remarquer que pour tous ces éléments les résultats convergent de manière satisfaisante vers la solution de référence | 42;4-5-121 | .

La seconde structure considérée est une plaque rectangulaire encastrée (planche 10). Cette plaque a été étudiée expérimentalement au Laboratoire Central des Ponts et Chaussées pour Mesta |43|.

La troisième structure étudiée est une portion de coque cylindrique (planche 9) pour laquelle il existe également des résultats expérimentaux 291. Les tableaux 4 à 7 indiquent les résultats obtenus dans l'étude de ces deux structures par les trois types d'éléments considérés.

Nous pouvons également constater ici que les résultats obtenus concordent bien avec les solution de référence.

Planche 10

Plaque carréee simplement appuyée sur tout son contour

Plaque rectangulaire encastrée sur tout le contour

L = 0, 18 m1 = 0, 13 m $h = 6 \times 10^{-4} m$ $E = 2,07 \times 10^{11}$ = 0,3 $\rho = 7700$

Portion de coque cylindrique : Test de Mac Neal

Analyse dynamique d'une plaque carrée simplement appuyée (éléments à 3 noeuds : DKT)

Madaa		Nombre d'éléments				
Modes	8	18	32			
(1,1)	433,24	409,47	400,72	λ ₁ = 389,64		
(1,3)	14 486	12 844	11 530	λ ₂ = 9 740,91		
(3,1)	19 182	14 654	12 414	$\lambda_3 = 9 740,91$		
(3,3)	42 467	46 198	41 137	$\lambda_4 = 31 560,55$		

-

Analyse dynamique d'une plaque carrée simplement appuyée (éléments à 4 noeuds : DKQ)

Mode	<u> </u>	Nombre d'	éléments		Solution Analytique	
	4	9	16	64		
(1,1)	435,36	409,43	400,6	392,30	$\lambda_1 = 389,64$	
(1,3)	18 966	14 021	12 022	10 267	λ ₂ = 9 740,91	
(3,1)	18 966	14 022	12 022	10 268	$\lambda_3 = 9740,91$	
(3,3)	67 522	48 205	40 336	33 551	λ ₄ = 31 560,55	

-- --

Analyse dynamique d'une plaque carrée simplement appuyée (éléments à 8 noeuds : C8)

		Solūtion			
Mode	4	9	16	64	Analytique
(1,1)	395,10	389,63	389,4	389,36	λ ₁ = 389,64
(1,3)	12 828	9 983,0	9 777,5	9 709,9	$\lambda_2 = 9 740,91$
(3,1)	12 828	9 983	9 777,5	9 710	$\lambda_3 = 9 740,91$
(3,3)	77 470	46 029	32 916	31 371	λ _μ = 31 560,55

Tableau 4

Analyse dynamique d'une plaque rectangulaire encastrée sur tout son contour (éléments à 3 noeuds : DKT)

Mode		Nombre d'éléments					
	12	48	108				
(1,1)	249,9	249,7	249,42	248,5			
(1,3)	734,05	693,61	680,51	691			
(3,1)	1 290,04	1 232,5	1 172,6	1 096,5			
(3,3)	1 525,2	1 575,4	1 533,3	1 498			

• ,

.

Analyse dynamique d'une plaque rectangulaire encastrée sur tout son contour (éléments à 4 noeuds : DKQ)

Mode		Expérience		
-	6	24	54	
(1,1)	257,12	251,34	250,11	248,5
(1,3)	772,43	697,64	681,62	691
(3,1)	1 357,5	1 247,0	1 177,6	1 096,5
(3,3)	1 836,6	1 636,7	1 560,7	1 498

t

TABLEAU S

Analyse dynamique d'une plaque rectangulaire encastrée sur tout son contour (éléments à 8 noeuds : C8)

Mode		Nombre d'éléments					
	6	24	54	- <u></u> -			
(1,1)	339	250,84	249,16	248,5			
(1,3)	929,05	686,29	669,9	691			
(3,1)	1 318,6	1 137,7	1 120,2	1 096,5			
(3,3)	1 870,7	1 535,7	1 485,6	1 498			

.

7

<u>`</u>____

Analyse dynamique d'une portion de coque cylindrique (Test de Mac-Neal)

Expérience	86,6	135,5	258,9	350,6	295,2	531,1	743,2
16 C 8	85,9	139,06	249,05	346,7	403,69	547,4	754,28
64 C 8	85,4	138	246	340,8	384,27	527,4	725,08
16 C ₄ DKQ	87,6	138	272	353	387	617	792
36 C ₄ DKQ	87,6	140	257,6	356,8	394,8	577,1	782,7
32 C ₃ DKT	101,8	156	302	370	422	618	749
72 C 3 DKT 3	97,69	153,60	271,04	384,55	422,46	579,39	793,02

V - CONCLUSION

đ

Nous avons noté dans l'introduction de ce travail que les éléments de plaque en flexion à 3 noeuds (DKT) et 4 noeuds (DKQ) basés sur les hypothèses de Love-Kirchhoff sous forme discrète semblaient être à l'heure actuelle parmi les plus performants. Ce jugement s'appuyait essentiellement sur les articles de Batoz | 19|, | 20|, | 21|.

Les tests numériques que nous avons effectués dans ce travail confirment les très bonnes performances de ces éléments dans le calcul de plaques en flexion.

En superposant la prise en compte des effets de membrane aux effets de flexion, Bathe et al |31| ont pu tester le comportement des éléments à 3 noeuds (DKT) dans le calcul de structures coques. Cet élément a ainsi récemment été implanté dans le programme ADINA. Les tests effectués dans cet article sont néanmoins relativement incomplets.

Nous avons contribué à compléter ces travaux en étendant tout d'abord la formulation des éléments DKT et DKQ pour permettre le calcul de structures coques de forme quelconque et d'épaisseur variable. Grâce à une série complète de tests numériques nous avons ainsi validé la formulation effectuée et montré que les résultats obtenus tant en déplacement qu'en contraintes sont satisfaisants.

Le comportement des éléments de coque épaisse à 8 noeuds a déjà été étudié par de nombreux articles |1 à 18| . La plupart de ces articles se polarisent néanmoins sur les problèmes d'intégration numérique. De ce fait, les tests considérés ne portent souvent que sur les résultats en déplacement. Grâce à la série complète d'exemples abordés dans ce travail, nous avons pu ainsi compléter ces publications. Nous avons pu ainsi confirmer que ces éléments sont tès adaptés au calcul de structures épaisses. De plus, ils semblent très performants dans le calcul de structures de type ponts à caisson. Ceci s'explique par leur bon comportement en membrane et par le fait qu'ils assurent parfaitement la continuité des déplacements le long des lignes intersection des hourdis et des <u>âmes</u>.

Nous avons montré que les éléments de coque épaisse de type tridimensionnel à 16 noeuds ont également un bon comportement (barrage). Néanmoins leur utilisation pratique est plus lourde (génération de maillage ...) et leur emploi sera réservé aux calculs de structures coques comportant des parties massives devant être modélisées par des éléments tridimensionnels.

Pour compléter ce travail, il nous semblerait intéressant d'effectuer des recherches supplémentaires pour améliorer le comportement en membrane des éléments à 3 et 4 noeuds. De plus comme nous l'avons noté dans le paragraphe III.1, l'obtention de résultats satisfaisants pour les contraintes de cisaillement transverse ("effort tranchant") est relativement délicate. Des études semblent également ici nécessaires pour mieux appréhender ce phénomène.

Bibliographie

i de la composición d

1.2

.

[1]	AHMAD S., IRONS B.M., ZIENKIEWICZ O.C., "Analysis of thick and thin shell structures by curved finite elements".
	Int. J. for Num. Meths. in Engng., Vol. 2, 419-451, (1970).
[2]	ZIENKIEWICZ O.C., TAYLOR R.L., TOO,J.H., "Reduced integration technique in general analysis of plates and shells".
	Int. J. for Num. Meths. in Engng., Vol.23, 275-290, (1971).
[3]	PAWSEY S.F., CLOUGH R.W., "Improved numerical integration of thick shell elements".
	Int. J. for Num. Meths. in Engng., Vol. 3, 575-586, (1971).
[4]	PUGH E.D.L., HINTON E., ZIENKIEWICZ O.C., "A study of quadrilateral plate pending elements with reduced integration".
	Int. J. for Num. Meths. in Engng., Vol. 12, (1059-1079) (1978).
[5]	HINTON E., SALONEN E.M., BICANIC N., "A study of locking phenomena in isoparametric elements".
:	pp. 443-447 or J.R. Whiteman (Ed.). "The mathematics of finite elements and applications III", MAFELAP 1978, Academic press, LonDon, (1979).
[6]	RAMM E. "A plate/shell element for large deflections and rotations".
	in "Formulations and computational algorithms in finite element analysis", Bathe K.J., Oden J.T., Wunderlick W. (eds), M.I.T. Press (1977).
[7]	PARISH H. "A critical survey of the 9 node degenerated shell element vith special emphasis on thin shell applica- tion and reduced integration".
	Comp. Meths. in Appl. Mechs. and Engng., 20, (1979), pp. 323-350.

[8] BOLOURCHI S., BATHE K.J., "A geometric and material non linear plate and shell element".

Computers and structures, Vol. 11, pp. 23-48, (1980).

[9] ZIENKIEWICZ O.C., HINTON E., "Reduced integration, function smoothing and non comformity in finite element analysis (with special reference to thick plates)".

Journal of the Franklin Institute, Vol. 302, N° 386, (Nov., Dec. 1976).

÷

[10] HUGHES T.J.R., TAYLOR R.L., KANOK NUKULCHAI W., "A simple and efficient finite element for plate bending".

Int. J. for Num. Meths. in Engng., Vol. 11, 1529-1543, (1977).

[11] HUGHES T.J.R., COHEN M., HAROUN M., "Reduced and selective integration techniques in the finite element analysis of plates".

Nuclear Engng. and Design, 46, 203-222, (1978).

- [12] HUGHES T.J.R., COHEN M., "The 'heterosis' finite element for plate bending". Computers and Structures, Vol. 9, 445-450, (1978).
- [13] MAC NEAL R.H., "A simple quadrilateral shell element" Computers and structures, Vol. 8, 173-183, (1978).
- [14] PARISH H., "Geometrical non linear analysis of shells". Comp. Meths. in appl. Mechs. and Engng., 3, (1974), pp. 237-253.

Ł

- [16] NOR S. "Etude et réalisation d'un élément de coque d'Ahmad"
 - Thèse de Docteur-Ingénieur présentée à l'Université de 🔤 🚽
- [17] FEZANS G. "Analyse lineaire et non linéaire géométrique des coques par éléments finis isoparamétriques tridimensionnels dégénérés".

Thèse de Docteur-Ingénieur présentée à l'Ecole Nationale Supérieure de l'Aéronautique et de l'Espace de Toulouse, de l'Aéronautique et de l'Aéronautique et de l'Espace de Toulouse, de l'Aéronautique et de l'Aéronautique et de l'Espace de Toulouse, de l'Aéronautique et de l'

[18] FEZANS G., VERCHERY G. "Some results on the behaviour of Degenerated Shell (D.S.) elements".

Nuclear Engng. and Design 70, (1982), 27-35.

[19] BATOZ J.L. "Evaluation of a new quadrilateral thin plate bending element".

Int. J. for Num. Meths. in Engng, vol. 18 (1655-1677). (1982)

[20] BATOZ J.L. "An explicit formulation for an effecient triangular plate bending element".

Int. J. for Num. Meths. in Engng, vol. 18 (1077-1089). (1982)

- [21] BATOZ J.L., BATHE, LEE-WING HO. "A study of three-node triangular plate bending elements". Int. J. for Num. Meths. in Engng, vol. 15 (1771-1812). " (1980)
- [22] BATOZ J.L. "Analyse non linéaire des coques minces élastiques de forme arbitraire par éléments triangulaires courbes".

Thèse Université de Laval, département de Génie-Civil, Québec, Mars 1977. [23] GALLAGHER R.H. "Shell elemente",

World Congress on finite methods in structural mechanics, Bournemouth, Dorset, Englend, (1975).

- [24] ZIENKIEWICZ O.C. "The finite element method" Mc. Graw-Hill, 1977.
- [25] ZIENKIEWICZ O.C., réf. 24 , p. 239-355.
- [26] MINDLIN R.D., NEW YORK N.Y., "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plate" J. Appl. Mech. 18 (1951) 31.
- [27] CARNOY, LASCHET "Elément de coque isoparamétrique"
 Rapport LTAS SF-108, Novembre 1982.
 Laboratoire d'Aéronautique de l'Université de Liège.
- [28] MASSON, BESNIER "Comparaison de différents éléments finis de flexion dont l'élément quadrangulaire de SAPIV". Document de la CISI.
- [29] PARISH H. "Thick shell elements".
 Rapport ASKA UM 214.
 Institut Für Statik und Dynamik der Luft-und
 Raumfahrtkonstrunktionen, University of Stuttgrat.
- [30] GUELLEC P., HUMBERT P., RICARD A. "La méthode des éléments finis et le système Rosalie".
 Bull. Liaison Lab. P. et Ch. n° 81 Ref. 1801.

[31] BATHE and LEE-WING HO. "A simple and effective element for Analysis of general shell structures"

Computer and Structures vol. 13 - pp. 673-681 (1981).

- [32] LINDBERG, M.D. OLSON and COWPER. "New developpements in the finite element analysis of shells".
 Cité par BATHE 31 .
- [33] BOLOURCHI "On-finite element non linear analysis of general shell structures".

P.H.D. Massachusettes Institute of Technology (May 1979).

- [34] ADEL R.M. FAM.and C. TURKSTRA "Model study of horizontally Curved box girder" Journal of the structural division. ASCE, V. 102.: ST5 May 76 pp. 1097-1108.
- [35] I.K. ANEJA, And F. ROLL "Model analysis of Curved box-beam highway bridge"
 Journal of the structural division. ASCE, V. 97 NO ST12, December 1971, pp. 2861-2878.
- [36] WORSAK KANOK-NUKULCHAI "A simple and effecient finite element for general shell analysis".
 Int. J. for Num. Meths in Engng., Vol. 14, 179-200 (1979).
- [37] BOUBERGUIG, JIROUSEK "A family of Special purpose elements for analysis of ribbed and reinforced shells".

Computers and Structures, Vol. 12, n° 2, pp. 253-264 (1980).

[38] 30UBERGUIG "Calcul des coques nervurées et précontraintes par éléments finis avec pré et post-processeur".

Anales de L'ITBTP. n° 422 Fév. 1984.

- [39] ERGATOUDIS, IRONS, ZIENKIEWICZ "Three dimensional analysis of arch dams and their foundations".
 Proc. Symp. Arch. Dams, Inst. Civ. Engng. London pp. 37-50.
- [40] AHMAD S., IRONS B.M., ZIENKIEWICZ O.C., "Analysis of thick and thin shell structures by Curved finite elements"

Int. J. for Num. Meths. in Engng., Vol. 2, 419-451 (1970).

÷

[41] ERGATOUDIS "Three dimensional analysis of arch dams by the finite elements method".

Report to arch Dam Committee of Instr. Civ. Engrs, AD/1735, 1966 (Nov) and AD/1745, 1966 (Déc).

- [42] TIMOSHENKO, WOINOWSKY-KRIEGER "Theory of plates and shells" Mc. Graw-Hill book Company.(1959)
- [43] MESTA "Etude du comportement dynamique des plaques avec défauts".

Thèse de Docteur-Ingénieur présentée à l'Ecole des Ponts et Chaussés (Octobre 1983).

[44] DHATT, TOUZOT "Une présentation de la méthode des éléments finis"

Les Presses de l'Université Laval - QUEBEC Maloine S.A. Editeur Paris.

[45] IMBERT J.F. "Analyse des structures par éléments finis". CEPADUES Editions, 1979.

ANNEXES

Annexe 1	:	Elément de transition.	
Annexe 2	:	Fonctions d'interpolation.	<u>.</u> .,
Annexe 3	:	Matrice B.	., * • <u>†</u> .
Annexe 4	:	Points d'intégration 12 et 16 noeuds.	
Annexe 5	:	Matrice $[R]$ et $[R^*]$.	
Annexe 6	:	Matrice [A] .	
Annexe 7	:	Matrice [L ^K] .	

Annexe 1

Eléments de transition.

Ce sont des éléments isoparamétriques tridimensionnels dont le nombre de noeuds est compris entre 8 et 20. Ils assurent la connection des éléments massifs et des éléments de coque épaisse.

Etélément de base utilisé pour construire ces éléments de transition est l'élément à 20 noeuds.

A l'exception des 8 noeuds sommets on peut supprimer n'importe lequel des noeuds de cet élément de base pour construire un élément de transition.

Exemple :

X : indique le noeud que l'on a supprimé.

Annexe 2

1) Hexaèdres

 $H^{i} = \sigma^{i}$

Les fonctions d'interpolation (H_i) d'un élément à 20 noeuds, des éléments de transition et de coque épaisse à 16 noeuds s'obtiennent de la manière suivante :

🗧 Pour les noeuds milieux d'un élément à 20 noeuds on a :

i = 9.20

avec

$$g^{i} = G(r, r_{i}) \times G(s, s_{i}) \times G(t, t_{i})$$

οù

 $G(\beta, \beta_{i}) = \frac{1}{2}(1 + \beta\beta_{i}) \text{ pour } \beta_{i} = \frac{1}{2}$ $\begin{cases} (\beta, \beta_{i}) = 1 - \beta^{2} \text{ pour } \beta_{i} = 0 \end{cases}$

- Les fonctions d'interpolation des noeuds sommets de l'élément à 20 noeuds sont obtenus en retranchant à la fonction g^i (i = 1,8) la demisomme des fonctions d'interpolation des noeuds adjacents.

Exemple

$$H^{1} = g^{1} - \frac{1}{2} (g^{9} + g^{15} - g^{13})$$

N [*] Noeuds	Hi	N° Noeuds	H ⁱ
1	1/8 (1-r)(1-s)(1-t)	11	$1/4 (1-r^2)(1+s)(1-t)$
2	1/8 (1+r)(1-s)(1-t)	12	$1/4 (1-r)(1-s^2)(1-t)$
3	1/8 (1+r)(1+s)(1-t)	13	$1/4 (1-r)(1-s)(1-t^2)$
4	1/8 (1-r)(1+s)(1-t)	14	$1/4 (1+r)(1-s)(1-t^2)$
5	1/8 (1-r)(1-s)(1+t)	15	$1/4 (1+r)(1+s)(1-t^2)$
6	1/8 (1+r)(1-s)(1+t)	16	$1/4 (1-r)(1+s)(1-t^2)$
7	1/8 (1+r)(1+s)(1+t)	17	$1/4 (1-r^2)(1-s)(1+t)$
8	1/8 (1-r)(1+s) (1+t)	18	$1/4 (1+r)(1-s^2)(1+t)$
9	$1/4 (1-r^2)(1-s)(1-t)$	19	$1/4 (1-r^2)(1+s)(1+t)$
10	$1/4 (1+r)(1-s^2)(1-t)$	20	$1/4 (1-r)(1-s^2)(1+t)$

Pour un élément à 20 noeuds les fonctions d'interpolation sont ainsi :

Les fonctions d'interpolation des éléments de transition et des éléments de coque épaisse à 16 noeuds s'obtiennent tout simplement en donnant $g^i=0$ si le noeud i n'existe pas.

2) Pentaèdre à 12 noeuds (coque épaisse) :

i	н ⁱ	i	H
1	-r(1-2r)a	7	4rsa
2	-s(1-2s)a	8	4sλa
3	$-\lambda(1-2\lambda)a$	9	4rla
4	-r(1-2r)b	10	4rsb
5	-s(1-2s)b	11	4s2b
6	-λ(1-2λ)b	12	4rab

 $0\dot{u}$ $a = \frac{1}{2}$, $b = \frac{1}{2}$, $\lambda = 1 - r - s$

3) Eléments de coque mince à 3 et 4 noeuds : DKT et DKQ

4) Eléments de coque épaisse de type surface moyenne à 6 noeuds :

. .

5) Eléments de coque épaisse de type surface moyenne à 8 noeuds :

 $H_{1} = -1/4 (1-r)(1-s)(1+r+s)$ $H_{2} = -1/4 (1+r)(1-s)(1-r+s)$ $H_{3} = -1/4 (1+r)(1+s)(1-r-s)$ $H_{4} = -1/4 (1-r)(1+s)(1+r-s)$ $H_{5} = 1/2 (1-r^{2})(1-s)$ $H_{6} = 1/2 (1+r)(1-s^{2})$ $H_{7} = 1/2 (1-r^{2})(1+s)$ $H_{8} = 1/2 (1-r)(1-s^{2})$

Annexe 3

Expression de la matrice |B| pour les éléments de coque épaisse de type tridimensionnel à 16 et à 12 noeuds.

On a : $\{\varepsilon\} = \lfloor B \rfloor \{U\}$

Pour déterminer l'expression de cette matrice, nous procèderons en 3 étapes :

a) Nous exprimerons tout d'abord le vecteur déformation $\{\epsilon\}$ en fonction des dérivées du déplacement par rapport aux coordonnées cartésiennes.

Nous avons en effet :

$$\varepsilon_{ij} = \frac{1}{2} (U_i, x_j + U_j, x_i)P$$

d'où :

$$\{\varepsilon\} = \lfloor A \rfloor \begin{cases} U_1, x_1 \\ U_1, x_2 \\ U_1, x_3 \\ U_2, x_1 \\ U_3, x_3 \end{cases} = \lfloor A \rfloor \{UX\}$$

|A| voir Annexe 6.

b) Nous exprimerons ensuite les dérivées des déplacements par rapport aux coordonnées cartésiennes, en fonction des dérivées des déplacements par rapport aux coordonnées curvilignes r, s, t nous pouvons écrire :

$$\begin{cases} U_{i}, x_{1} \\ U_{i}, x_{2} \\ U_{i}, x_{3} \end{cases} = \begin{bmatrix} J^{-1} \end{bmatrix} \begin{cases} U_{i}, r \\ U_{i}, s \\ U_{i}, t \end{cases}$$

$$o\bar{u} J^{-1}$$
 est l'inverse de $[J] \times = \begin{bmatrix} x_1, r & x_2, r & x_3, r \\ x_1, s & x_2, s & x_3, s \\ x_1, t & x_2, t & x_3, t \end{bmatrix}$

. ... " Nous avous alors : - C-UA-X+ u, 22 UL.A. UL, Xz. W,E ur, x U2, A 42,22 42,5 <u>.</u> T-Uz,t 42, 2, 43, r 42, ×, 43, x, (43, x3 Uz, E J 9×1____9×9 --- 9x.1 c) Nous exprimerous les déplacements par rapport aux coordonneis constituyses en fonction de déplacements géneralisés de l'élément.

UI, F UI, D U, t UrrA K Uz,s K2 K Un + Uz R l'alend N= montre de mono U3,D 42 F 9x Sx N 3 * N * 1 Jx_ avec HR $\{8\} = [B] \{U\} = [A] \{UX\} = [A] [J] \{UX\}$ $\{\mathcal{E}\} = [A] [JA] [L] \{U\},$ 7 [B] = [A] [JA] [

Innexe direction 1) Points Gauss 2 * 15 Ľ. points of integration n: nombre <u>r: Coordonnées de points d'intégra</u> pondérah equation our un 75 18 1/2 1/8 - 2/3 1616, 1/6 a 6, a, 6, -)a 26 AB a, 1-2a b, 1-25 ; 6=0,091576213509771 a= 0,445948490315365 A-0,11169073483905 B=0,05497587182766 1

.

. .

3) ontégration numérique utilisée Element ٢ -Trauntim 3 Coque épaisse : H16 2 3 3 intégration normale Coque épaise : H16 2 2 2 integration reduite Coque épaisse de type su fair moyeurs C.8 2 2 2 Coque mince Analytique 3 3 DKQ.C4 Elements r, A (Hammer) E (Gaux) Coque épaisse <u>P12</u> Coque épaisse de type surface jusque Ż G Coous mince Analytique DKT: C3

٠

Annexe 5 Expression & matuces [R] et [R*] $\int c^2 d^2$ Ed.e. 2Gd 20,01 Gi di 2.C2de___ Edzes_ - 2 ez Cz_ 2C3d3 2 dz ez_ 2 - - - -GC2 d,d2 Gd2+C2d, cheg + dy et e+ 62+e2 6+-CIC3 drag $C_2 d_3 + C_2 d_2$ de est da ez l2 C3 + l3 C2 C_1C_1 d_3d_1 $C_3d_1+C_1d_3$ d3 e, + d+ e3 e3 C+ + e, C3-[R*] = [RT] $V_{3}(1) = e_{1}$ $V_{3}(1) = e_{2}$ $\frac{-3}{V_A} \frac{V_A(1) = C_A}{V_A(2) = C_2}$ $\frac{V_A(2) = C_2}{V_A(2) = C_3}$ $\frac{1}{\sqrt{2}} \frac{\sqrt{2(1)}}{\sqrt{2}} \frac{d_1}{d_2}$ 12(3)=d3 tv3(3) = e3 ou Vi, V2, V2 en la base du répère la cal: 1/2 étant ai la pulace progenue. ----_

Annexe 6

Matrice A

.

1

1

-

Annexe 7

.

.

•

•

Matrice L^k

Juflueure de la distorsion des éléments à 8 nouds sur le calcul de l'effort tranchant.

-	droit		distorsion 2		ALL AND 3.4 5 ALL AND 3.4 5 ALL AND 3.4 5 ALL AND 3.4 ALL AND 3.4 5 ALL AND 5 ALL AND 5		
	_×	Jxz-	<u>ک</u>	Nzz	<u></u> ح	Nzz	-
	_ 0	1.67,665	O	123,71		188,73	
 	0.21132	<u>.</u> 82,335	0,24183 0,57217	<u>2,17-88</u> lug,72_	92235_ 0.5288	1,078 _93,7	
	0.7887 1.	1. 167,665	0150251 1,1463	- 1, 4035 217, 5	0,33421 1,057	0,807	. <u>-</u>
	٨.	167,665	1,1443	193,45	1,057	135,995	_
	1.1132	1. 	1,2867 1,5-	<u>3, 2028</u> 32, 215	1,2447 1.5	1,142/ 66135	
	1.7887 2	1. 	Erof, L F228, L	2,3~ 191,9	1,755_ _1,9623	1,035 1352995	
	2.	167,665	1.8557	239,65	1,9423	2112.42	
	2,21132 2,5	li 	2,128	01465 1191075	2,178	_0,948 104,26	
	2,7587 3.	1. 167,665	2,872 3,1443	0,63375 239, 94	2,822 3,057	0,963 24,42	-
	3.	167,665	3, 1443	95,405	3,057	126,F3	- ·
	3, UB 3.5.	1. - 82,335	3,2947 3.5	1, 4 -45, 695	3,244 3.5	1,019 -61,82	
	3,7587	1. 167,665	3,7057	1,094,95	3,755 3,5349.3	0,987 126,63	
	4.	16 F, 665-	72027	217,55	3,5413	140,63	
	4,27B 4,5	1. 82,335	4,0975	1,03 7, 22	4,165 4,471	1,032 -33,85	
	4,7987 5.	1- 167,665	4,)\$33 5.	1, 01 217, 52	4,776	0,939 190,69	

Plaque Carrée simplement apprugée

···· - ·· - - ···

1/4=10

.

Elément à	8 nouds: c8	Charge Concentree	Charge Uniforme	- -
Nombre : d'éléments	Nombre d'équations	valeur de <u>e</u> <u>wxD</u> xho <u>Pl</u> 2	valeur de wxD_x/02	
	9	1,189	0,406098	
	36	<u> </u>	0, 42701422	····
9	81	1,340	0, 427237	
je	<u>, 1 4 4</u>	1,355	0,48727	· · · ·
64	296	A, 3 8 8	0,42727	· · · · · · · · · · · · · · · · · · ·
Eléments a	4 nouds:)	кд		
J	3	<u>_</u> 5_0	0, 37758	
4	12	1,268	0,40453	
9	٤٦	1, 215	0, 40574	···· ··· ··· ··· ··· ··· ··· ···
<u>کر</u>	48	1,194	0,4060	
64	192	1,170	0,40619	
E léments	a' 3 neud: 1	SKT.	ali an ang ang ang ang ang ang ang ang ang	
2	3	1,248	0,41615	
8	12	e 3 1,1	0,40559	
18	27	1,165	0,40635	
3 &	48		0,40648	

- -

Elaque Carrée simplement apprugée

1/2= 100

Eléments à 8 nouds: C8		charge Concentrée	Charge Uniforme	
Nombre d'élévents	Nombre d'équations	Valent de wit D x lo ²	valeur de wrD rlo2	
1	33	0, 6.89	0,189737	
4	36	<u>, 130</u>	0,40.204	
<u> </u>	81	1_53	0,406153	
λ6	144	1,158	0,406409	
64	576	1,162	0,406446	· · · ·
Elévent à	4_ncends.	DKQ		
L	3	1,51.0		
4	18	1,268	0,40453	
9	27	1,215	0,40574	······································
1_6	48	1,194	0,4060	
64	198	1,170	0,40619	
Eléments	a' 3 mands:[)KT	· · · · · · ·	
۶.	3	ب, 248	0,41615	-
8	12	1,169	0,40559	
8 λ	27	1, 165	0,40635	
32	48		0,40548	
			-	

,

Plaque Carrée simplement appourée soumise à une charge Uniforme. P/R= 100. de la place ue. Taxcentre Haz inf =0,0479 you Timoshieko Maix an centre de la glaque Nombre Nonbre d'devents Erreur % d'équations d'élément 0,5065 x 104 5,74 5 X 0,4930 x 10-1 29 36 4 0,4855×10 81 9 0,4818,10 0,58 144 16 (César) 0,4795260 0,1 64 576 0,5990x10-1 25 3 L 0,5008 x10 4,55 12 4 1.86 9 0,4879×10 27 DKQ 0,4838x10-16 48 1,002 (Cesar) 152 0,4800,66 0,2 64 0,64 91 x 10' 35,51 3 Ł 7,64 0,5156x10' 27 3,64 0,49647x10-DKT 18 32 0,4885,10 کی لا 48 (Cesar) 0,68 Mx 10-1 128 192 0,4 0,23 x 10-1 -51,9 1 3 0,41.\$8 x 151 12,73 12 4 Rosalie 0,452 x 15 2 27 5,6 (démention 0,464×101 48 16 3, 13 4 needy 0,475210 192 64 0,3

Coque Cylindrique prince avec diaphrequise rigide.

 $w_{ref} \times 10^{-3} = 16,390$

···· ·

.

- - -

d'élémeintr	Nombre d'équations	w x Lo ³	Errent %	d'élémente
4	72	11,638	29	
و	162	14,610	_10,8	
L6	188	15,750	3,9	<u>C</u> 8
64	USU	16,390	0	Cesar
<u> </u> <u> </u> <u> </u> <u> </u> <u> </u>		1,413	- 21,4	
9	_5_4	S, 774	64,8	•
	96	10,47	38,2	DKQ
64	384	15, 472	5,6	César
8	24	,069	93	
78	<u>S_</u> le	hr.ll.4	75	
32	9.6	8,087	50	
ILR	_3 3 4	14,177	13,5	DKT
20-0	600	15,165	7.4	
800	2400	1 6, 244	1,5	Lesu
Jeo	600	16,023	2,23	Eléments ai 4 nœuds Rosalie
200	2400	<u>л</u> 4, 803	9,68	e lémentis a' 3 mondes Rosalie -