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Image-Based Physiological and Statistical Models of the Heart
Application to Tetralogy of Fallot

Abstract: This thesis presents image-based methods for diagnosis, prognosis and

therapy planning of patients with repaired tetralogy of Fallot, a severe congenital

heart disease. This was achieved by combining advanced medical image processing

with both statistical and physiological modelling.

First, we proposed a demons-based image registration algorithm to estimate the

3D myocardium strain from routine medical images, which is challenging due to

the aperture problem (only the apparent motion is visible). The algorithm relies on

elasticity and incompressibility constraints, rigorously implemented thanks to a new

justification of the demons regularisation. Experiments on synthetic data and cine

MRI of patients demonstrated that the proposed constraints improve the accuracy

of the estimated cardiac displacements.

Second, a generative model of the pathological right ventricle growth was pro-

posed using a well-posed statistical framework for shape analysis, based on the

“currents” shape representation. Principal component analysis was used to identify

shape features that are relevant to the disease. Partial least squares and canonical

correlation analysis were employed to design a generative model of heart growth.

Applied on the right ventricles of 32 patients with tetralogy of Fallot, the method

identified the right ventricle dilation, basal bulging and apical dilation reported in

the clinical literature. The model showed that these features appear progressively

as the child grows.

Finally, we introduced an electromechanical model of the heart for personalised

simulations of valve replacement in repaired tetralogy of Fallot patients. The elec-

tromechanical model simulates the main features of the cardiac function observed in

these patients. Once personalised from clinical data, the model was used to predict

the effects of pulmonary valve replacement on the postoperative cardiac function.

Tested on two patients, the model managed to qualitatively reproduce their cardiac

function. As expected, valve replacement predicted a significant improvement of

the right ventricle but also of the left ventricle, suggesting a tight inter-ventricular

relationship.

The combination of medical imaging, statistical analysis and biophysical mod-

elling provides a powerful framework for a more personalised computer-aided medicine.

Keywords: Medical Imaging; Image Registration; Myocardium Strain; Statisti-

cal Shape Analysis; Cardiac Remodelling; Electromechanical Model; Personalised

Therapy Simulation; Tetralogy of Fallot
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Modèles physiologiques et statistiques du cœur
guidés par imagerie médicale. Application à la tetralogie de Fallot

Résumé: Les travaux de cette thèse sont consacrés à la quantification de car-

diopathies, la prédiction de leur évolution et la planification de thérapies, avec pour

application principale la tétralogie de Fallot, une malformation congénitale grave

du cœur. L’idée sous-jacente est d’utiliser des modèles informatiques sophistiqués

combinant traitement d’images, statistique et physiologie, pour assister la gestion

clinique de ces patients.

Dans un premier temps, nous proposons une nouvelle méthode de recalage

d’images plus précise pour estimer la déformation cardiaque à partir d’images médi-

cales anatomiques, où seulement le mouvement apparent du cœur est visible. L’algo-

rithme proposé s’appuie sur la méthode dite des démons, que l’on contraint de

manière rigoureuse à être élastique et incompressible grâce à une nouvelle justifica-

tion de l’étape de régularisation de l’algorithme. Les expériences réalisées sur des

images synthétiques et réelles ont démontré que l’ajout de ces contraintes améliore

de manière significative la précision des déformations estimées.

Nous étudions ensuite la croissance du cœur par une approche statistique basée

sur les “courants”. Une analyse en composantes principales permet d’identifier des al-

térations morphologiques dues à la pathologie. L’utilisation conjointe de la méthode

PLS (moindres carrés partiels) et de l’analyse des corrélations canoniques permet de

créer un modèle statistique moyen de croissance du cœur. L’analyse du ventricule

droit de 32 patients avec tétralogie de Fallot a révélé une dilatation du ventricule,

une déformation de sa base et un élargissement de son apex, caractéristiques que

l’on retrouve dans la littérature clinique. Le modèle de croissance montre qu’elles

apparaissent progressivement au fil du temps.

Enfin, nous adaptons un modèle électromécanique du cœur pour simuler la fonc-

tion cardiaque chez des patients et tester diverses stratégies de pose de valves pul-

monaires. Le modèle électromécanique simule les caractéristiques principales de la

fonction cardiaque. Une fois personnalisé, le modèle est utilisé pour prédire les effets

postopératoires de la pose de valves chez le patient. Le modèle a été ainsi capable de

reproduire, de manière qualitative, la fonction cardiaque de deux patients. Comme

attendu, la fonction simulée du ventricule droit est améliorée après pose de valves,

ainsi que celle du ventricule gauche, suggérant une relation étroite entre les deux

ventricules du cœur.

Les méthodes de traitement d’images médicales, d’analyses statistiques et de

modèles de la physiologie du cœur forment un cadre puissant pour le développe-

ment d’une médecine plus personnalisée et assistée par ordinateur.

Mots clés: Imagerie médicale; recalage d’images; déformation du myocarde; anal-

yse statistique de formes; remodelage du cœur; modèle électromécanique; simulation

personnalisée de thérapies; tétralogie de Fallot





"Essentially, all models are wrong, but some are useful", G. Box
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Chapter 1

Introduction

Contents

1.1 Clinical Context . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problems Investigated . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organisation of the Thesis and Main Contributions . . . . . 6

1.1 Clinical Context

Diagnosis, prognosis, therapy planning. Three steps of the clinical practice that are

seriously challenged by chronic diseases. Congenital heart defects are such patholo-

gies. They involve severe anatomical and functional abnormalities of the heart that

often require surgical repair early in infancy. In some cases however, that repair

yields sequels that, although initially asymptomatic, can become life-threatening

decades after the intervention. The very large time-scale of cardiac failure greatly

challenges the management of these patients. In particular, the diversity in child

growth results in a wide variety of pathology evolutions. Repeated and long-term

follow-ups are therefore necessary. A question then emerges in light of these diffi-

culties: can computational models of the heart assist the cardiologists in the man-

agement of these patients?

The last decades have seen tremendous advances in the processing of medical

images, the analysis of organ shapes and the physiological modelling of the cardiac

function. Medical image analysis is providing more and more efficient and non-

invasive algorithms to quantify the cardiac shape and function from medical images.

In parallel, recent well-posed mathematical theories enable one to perform statistics

on 3D shapes. Finally, intense research is aiming to develop detailed models of

cardiac function to understand its mechanisms.

It is easy to imagine how such tools can improve the clinical workflow. On the

one hand, they can help in interpreting clinical data, extracting quantitative and

meaningful parameters otherwise impossible to reach. Diagnosis would be improved.

On the other hand, clinical data would enable to personalise these models to the pa-

tient physiology. It would then be possible to predict the evolution of the pathology

and test therapies. Nonetheless, translating these tools in the clinics is remarkably

challenging due to the sparse clinical data available for a patient, especially in pae-

diatrics. Three strategies can be distinguished. For instance, one can use models

of cardiac physiology to enhance the accuracy of purely image-based algorithms.



4 Chapter 1. Introduction

Conversely, detailed biomechanical models of the heart can be simplified such that

they can be personalised from clinical data. Finally, when no direct models can

be designed due to the complexity of the studied biological phenomena, statistical

approaches can be used to explore their features.

A large part of this thesis was performed within the Health-e-Child1 project,

a four-year European project partially funded by the European Community (6th

Framework Program). The project was coordinated by Siemens AG, Erlangen (Ger-

many), and involved eleven technical partners (including INRIA) and four clinical

partners, namely Ospedale Pediatrico Bambino Gesù (Rome, Italy), Hôpitaux de

Paris, Necker-Enfants Malades (Paris, France); Great Ormond Street Hospital (Lon-

don, U.K.) and Ospedale Pediatrico Gaslini (Genoa, Italy). Health-e-Child goal was

to develop a biomedical Grid platform that connects European paediatric centres and

provides them with technologies that integrate the heterogeneous clinical data for

data sharing, processing and knowledge discovery about paediatric diseases [Freund

et al., 2006] (Figure 1.1). Health-e-Child technical developments were motivated by

three paediatric diseases: brain tumours, juvenile idiopathic arthritis and congenital

heart diseases. During the four years of the project, a large multi-centric database

of patients was created. Nonetheless, only standard clinical data were gathered. In

cardiology for instance, the data acquired were mainly clinical features, echocardiog-

raphy evaluations, standard short-axis cine Magnetic Resonance Images (MRI) and

ECG. These restrictions motivated our work.

Figure 1.1: Diagram of the Health-e-Child grid infrastructure for connecting paedi-

atrics centres. The grid provides clinicians with integrative tools for data sharing,

processing and knowledge discovery (Image from [Freund et al., 2006]).

1IST-2004-027749, http://www.health-e-child.org/
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Among the investigated congenital heart diseases, repaired tetralogy of Fallot

(ToF) focused most of the work. ToF is a severe congenital heart defect of the right

ventricle (RV) that requires surgical repair early in infancy. Blood leakage through

the pulmonary valve subsequent to that initial repair makes the ventricle dilate in

the long term, which may yield life-threatening functional abnormalities decades

after repair. Nowadays, it is acknowledged that replacing the valves significantly

increases life expectancy in these patients.

A major difficulty in ToF management is to determine the best timing for valve

replacement. To date, no clear-cut clinical criteria are available. Metrics that quan-

tify the intrinsic cardiac deformation could provide a more comprehensive view of

the myocardium integrity. Unfortunately, this task is challenging in paediatrics as

only standard anatomical images of the beating heart are usually available. How

can we estimate cardiac function from standard anatomical images? In fact, one

would want to predict if the heart will deteriorate in the near future. Yet, how

the heart evolves in ToF is far from being understood. How can we quantify heart

growth in ToF? Finally, several strategies are available for valve replacement and

their effects can vary from one patient to another. Can we predict the effects of

pulmonary valve replacement therapies on a patient? All these questions motivated

the developments of this thesis, providing a unique and stimulating clinical context

to the methodological contributions.

1.2 Problems Investigated

The clinical context of this thesis, centred on tetralogy of Fallot (but not only), led

us to consider three specific questions on how advanced computational models of the

heart could improve the clinical workflow, namely diagnosis, prognosis and therapy

planning.

Q1. Diagnosis

− Quantification of the Cardiac Deformations from Anatomical Images −

Assessing the cardiac function in ToF can provide the cardiologist with crucial in-

formation to determine the best timing for re-intervention. However, in paediatrics,

only standard clinical images are usually acquired. In Health-e-Child for instance,

only cine MRI (cMRI) were available for processing. The question we tackle is there-

fore: Can we estimate the myocardial deformation from these images? A standard

approach to estimate deformations from dynamic medical images is to use non-linear

image registration to track the moving structures. However, the lack of myocardial

texture in cMRI and the coarse slice thickness seriously hinder the registration algo-

rithm. The idea is thus to constrain the registration with physiological priors about

the heart constitution: provided deformations are elastic and incompressible. From

a methodological point of view the question thus becomes:

• How can we efficiently register two images such that estimated deformations

are elastic and incompressible?
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Q2. Prognosis

− Identification and Prediction of Pathological Features of the Heart

Shape −

Evaluating the present cardiac condition is primordial, but predicting its evolution

is decisive. This is all the more important in ToF as predicting whether the heart

will fail in the near future will considerably support the decision for immediate valve

replacement. Yet, cardiac remodelling is a very complex phenomenon. The intricacy

and the large time scale of the phenomenon hampers the development of direct

biophysical models, which would require extremely detailed methods to simulate the

biological mechanisms that are involved. Recently, new mathematical methods for

modelling populations of shapes are laying the foundations of well-posed statistical

analyses of 3D shapes. As a result, it becomes possible to statistically relate shapes

to external variables. Instead of directly modelling the pathological mechanisms, one

can statistically explore the common factors between clinical indices that quantify

the severity of a pathology and observed shapes. The second question we ask is

therefore:

• Can we statistically relate the 3D shape of the heart to clinical features that

quantify the severity of a pathology in order to identify pathological shape pat-

terns and model their evolution over time?

Q3. Therapy Planning

− Personalised Simulation of Cardiac Therapies −

Finally, at the time of treatment, several therapeutic options are usually available

to the clinician. In ToF, two pulmonary valve replacement strategies are competing.

However, what are their effect on the cardiac function of a specific patient is difficult

to predict. Can models help in choosing the optimal therapy for a specific patient?

The recent advances in biomechanical modelling of the heart promise in-silico sim-

ulations of cardiac function. The idea is to adjust a virtual heart to the physiology

of a patient to test therapies, thus helping the cardiologist in deciding the optimal

strategy. As we seek personalised simulations, the model must be controlled by

parameters that can be estimated from clinical data. The last question we tackle is

thus:

• Can we simulate the effects of a therapy on the cardiac function of a patient

by using electromechanical models of the heart?

1.3 Organisation of the Thesis and Main Contributions

This thesis is organised around the three questions listed in the previous section. We

first start with forewords about the heart and tetralogy of Fallot. We also introduce

a multi-purpose segmentation pipeline that is required for the methodological con-

tributions of this thesis. We then detail the methods to tackle the three questions

addressed in this manuscript. It is worth stressing that although our contributions
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are motivated by tetralogy of Fallot, they are general enough to be employed for

other cardiac pathologies. For that reason, the methodological contributions are

purposely separated from their applications on tetralogy of Fallot. The detailed

description of the material covered by each chapter is given below.

Chapter 2 introduces the heart, its anatomy and how it works. After a short

presentation of the different anatomical components that constitute the heart, we

briefly describe the different phases of the cardiac cycle and the underlying electrical

and biomechanical mechanisms that govern it. This chapter also outlines the differ-

ent imaging modalities that are available to describe the heart anatomy, constitution

and function. Finally, we present the tetralogy of Fallot, its physiopathology and

the clinical challenges related to it.

Chapter 3 presents an integrated pipeline for the segmentation of the beating

heart in medical images. Although cardiac segmentation is not the main topic

of this thesis, this stage is crucial for our analyses and modelling. In this chap-

ter we propose a modular solution to the cardiac segmentation problem

that is suitable for any imaging modality and can cope with the extreme

anatomical variability observed in ToF patients. In simple words, the cardiac

borders are first interactively delineated using a 3D surface modeller based on vari-

ational implicit surfaces. The resulting surfaces are then automatically propagated

throughout the cardiac sequence using non-linear image registration and simplex

deformable models. The modularity of the pipeline enables to integrate results from

other methods, like those computed by other Health-e-Child partners.

Part I − Diagnosis

Quantification of the Cardiac Deformation on Anatomical Images

Chapter 4 details our approach to the problem of estimating cardiac deforma-

tion from dynamic anatomical images. We start from the log-domain demons, an

efficient non-linear image registration algorithm [Vercauteren et al., 2008] that com-

putes diffeomorphic deformations parameterised by stationary velocity fields. First,

we propose a mathematical justification to the ad-hoc Gaussian regular-

isation of demons algorithm. The proposed formulation is based on Tikhonov

regularisation and enables us to integrate more complex regularisation schemes.

With our framework, we show how elasticity and incompressibility can be

integrated rigorously in the algorithm. We replace the Gaussian smoothing by

an efficient elastic-like vector filter regularisation. We compute incompressible de-

formation fields by minimising the registration energy in the space of divergence-free

velocity fields. The proposed algorithm, called iLogDemons, is compared with the

original log-domain demons on synthetic images deformed by known incompressible

transformations. Results demonstrate that iLogDemons do improve the accuracy of

the estimated transformations.
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Chapter 5 illustrates how iLogDemons can be used to assess the cardiac defor-

mation from the cMRI of real patients. As the heart is a near-incompressible elastic

tissue, we investigate whether the proposed incompressibility and elastic-

ity constraints can improve the estimation of the cardiac deformations.

With a recursive tracking algorithm, we estimate the 3D cardiac deformation in

two adult patients with heart failure and one child with repaired ToF. Computed

displacements and strains are compared with tagged MRI and 2D-strain echocar-

diography. The results confirm that iLogDemons provides more reliable results than

the original log-domain demons thanks to the elastic and incompressibility model.

Part II − Prognosis

Identification and Modelling of Pathological Heart Growth

Chapter 6 proposes a statistical strategy to identify and predict pathological pat-

terns of heart shape. The idea is to relate the heart shapes observed in a population

of patients to clinical features in order to identify the morphological patterns that are

relevant to the disease and model the heart growth. This approach is made possible

thanks to the recent advances in computational anatomy and in particular to the

method based on “currents” proposed by [Durrleman et al., 2009a], which enables

statistics on shapes. To identify pathological shape patterns, we propose to

represent the heart shape by a low-dimensional shape vector computed using prin-

cipal component analysis (PCA). We then relate the shape vectors to clinical

features to identify the modes that are relevant to the disease. To model

heart growth, we instead propose to perform a cross-sectional analysis between

the shapes and the patient body surface area or age. The novelty is to use the

Partial Least Squares (PLS) space decomposition to reduce the model

dimensionality and to increase statistical significance. Contrary to PCA,

PLS automatically extracts the modes that are relevant to two sets of variables.

Canonical correlation analysis (CCA) then provides the generative model of heart

growth.

Chapter 7 reports the results of the statistical analyses of the right ventricle in

a population of 32 patients with repaired ToF. We first investigated the link

between right ventricle shape and pulmonary regurgitation, an important

pathological feature of these patients. The statistical analyses with respect to

three different metrics of pulmonary regurgitations identified a basal and apical

bulging of the ventricle with an elongation of the outflow tract and the apparition

of an aneurysm. These observations are consistent with reports found in the clinical

literature. We then estimated a generative model of right ventricle growth

computed using the proposed PLS-CCA method on patient body surface

area. The model showed plausible evolution patterns, with progressive ventricle

dilation, basal bulging and outflow tract aneurysm at later stages of child growth.

The model was also tested on seven new patients. It managed to predict their body

surface area with acceptable prediction errors. Finally, we compared the added-
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value of PLS over PCA to compute predictive models. PLS provided a more

compact and more explicative space decomposition.

Part III − Therapy

Personalised Simulation of Cardiac Therapies

In Chapter 8 we propose an electromechanical model of the beating heart for

in-silico therapy simulations. The goal is to personalise the model from medical

data to simulate the cardiac function of ToF patients and to predict the outcomes

of pulmonary valve replacement. This task is challenged by the limited clinical

data. Consequently, the level of detail of the models must be chosen accordingly. In

this work, we rely on the electromechanical model developed by [Sermesant et al.,

2006b], which is compatible with the clinical data. Because of the complexity

of ToF, we have to improve that model to simulate the specificities of

that disease. The proposed model is built as a modular workflow, from anatomy

to electrophysiology, biomechanics and hemodynamics. We integrate a 3-element

Windkessel model and develop a simple regurgitation constraint to simulate the im-

paired hemodynamics. We also employ a new boundary condition, based on contact

forces, which fixes the heart in the 3D space, yielding a more realistic cardiac motion.

For each element of the model, we suggest alternative models and personalisation

strategies for patient-specific simulations.

Chapter 9 reports the personalised simulations of pulmonary valve replacement

therapies in two patients with repaired ToF. First, we personalise the elec-

tromechanical model of the heart using the available clinical data. The

simulation is compared to the cMRI of the patient. Then, we use the person-

alised electromechanical model to simulate two pulmonary valve replace-

ment strategies and compare their outcomes. In the first strategy, we only

replace the pulmonary valves: this is achieved by stopping the regurgitation in the

model. In the second strategy, we replace the valves and reconstruct the right ventri-

cle by resecting myocardium lesions using SOFA, a real-time soft-tissue intervention

platform. Finally, we re-run the simulation on the postoperative anatomy. Despite

the simplifications of the model, it qualitatively managed to recover the cardiac

function of these patients. The simulations of valve replacement suggest that right

ventricle reconstruction improves cardiac function. Interestingly, the experiments

also indicate a tight left-right ventricle relationship: right ventricle reconstruction

also improves left ventricular function.

Chapter 10 concludes this thesis by summarising the proposed contributions.

Some perspectives for future work are listed.





Chapter 2

From a Normal Heart to

Tetralogy of Fallot

Contents

2.1 Structure and Function of the Normal Heart . . . . . . . . . 11

2.1.1 The Cardiovascular System . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Cardiac Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Cardiac Function . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 The Cardiac Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Imaging the Heart . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Echocardiography . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Cardiac Magnetic Resonance Images . . . . . . . . . . . . . . . 23

2.2.3 Cardiac Computed Tomography . . . . . . . . . . . . . . . . . 27

2.3 Tetralogy of Fallot: Physiopathology and Clinical Challenges 28

The heart is a fantastic biological machine that pumps the blood through the hu-

man body. Its function is thus vital. On average, the heart beats 70 times and ejects

5 L of blood per minute. With a simple calculation, one can estimate about 3 billion

heart beats in an average life! Despite these tremendous numbers, the heart never

fails. Breakdown of cardiac function is dreadfully life-threatening. Understanding,

evaluating and predicting cardiac function is therefore of great importance.

2.1 Structure and Function of the Normal Heart

2.1.1 The Cardiovascular System

The cardiovascular system is a closed loop that transports the blood towards the

organ to provide them with oxygen and nutrients collected in the lungs and the diges-

tive system. The human cardiovascular system is divided into two main parts: the

pulmonary circulation and the systemic circulation (Figure 2.1). The pulmonary

circulation is a closed loop that ensures the oxygenation of the blood. The oxygen-

depleted blood quits the heart from the pulmonary artery, it goes into the lungs

where it is oxygenated and then comes back to the heart through the pulmonary

veins. The systemic circulation is much larger than the pulmonary circulation. It

transports the oxygenated blood away from the heart towards the other organs. The
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blood first flows through the aorta, then goes into other great arteries, then into

the arterioles and finally into the capillaries where it releases the nutrients and the

oxygen. The blood then comes back to the heart through the venules, veins and

finally inferior and anterior venae cavae.

Consistently with the two circulatory systems, the heart is constituted of two

main parts, the left and the right heart, which are themselves made up of two

cavities, the atria and the ventricles (Figure 2.3). The oxygen-depleted blood first

arrives into the right atrium through the inferior and superior venae cavae. It is

then transferred into the right ventricle and then ejected towards the lungs through

the pulmonary artery. The blood then comes back through the pulmonary veins to

the left atrium, before entering into the left ventricle and pumped out through the

aorta towards the other organs. Normally, the entire system is sealed, the blood

cannot leave the network.

Figure 2.1: Drawing of the cardiovascular system. In blue Blood poor in oxygen. In

red Blood rich in oxygen (See text for details).

Finally, each ventricle can be segmented into three segments. The blood enters

first in the inflow tract, or inlet, just below the atrioventricular valves. Below the

inflow tract is the apical segment, the larger part of the ventricle. Finally, the outflow

tract, or outlet, is just below the arterial valves, from where the blood leaves the

ventricle. In the right ventricle the outflow tract as a typical funnel-shape connecting

the right ventricle to the pulmonary artery.
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Figure 2.2: Ventricle subdivisions. The blood enters the ventricle through the inlet,

or inflow tract. It then fills the apical region and is pumped through the outlet, or

outflow tract.

2.1.2 Cardiac Anatomy

The heart is a powerful muscular organ whose shape and function optimise the pump

function while minimising the muscular work. The heart is mainly made up of a

thick striated muscle, called myocardium. The outer myocardium is often referred

to as the free wall as it forms the exterior shape of the heart. Internally, the left and

the right cavities are separated by the septum, which is part of the left heart. The

myocardium is protected by two thin layers of endothelial tissues: the endocardium

inside the cavities and the epicardium outside. The heart is further protected by

the pericardium, a thin fibrous sac that does not contract. The pericardium isolates

the heart from the other organs. A thin fluid layer between the pericardium and

the epicardium reduces frictions to ensure smooth cardiac motions.

The thickness of the myocardium varies over the heart according to the speed at

which the blood must be ejected. The left and right atria for instance have thin walls

(≈ 2 mm) as they do not need to contract significantly to push the blood forward the

ventricles. The free wall of the right ventricle is slightly thicker (≈ 5 mm), to pump

the blood towards the lungs, whereas the left ventricle is ≈ 15 mm-thick as it must

pump the blood over the systemic system. Because of these variations, the contrast

of the myocardium in medical images greatly varies from one chamber to another.

The left ventricle is often well-defined in MR images but the right ventricular free

wall is hard to detect, which challenges its quantitative assessment.

The heart chambers are separated by one-way valves that control the direction of

the blood flow during the cardiac cycle. Constituted of connective tissues, the valves

open and close according to the gradient of pressure between the cavities and arteries.

The atrioventricular valves, namely the mitral valves for the left heart and the

tricuspid valves for the right heart, ensure that the blood flows from the atria to the

ventricles and not conversely. These valves open as soon as the pressures in the atria

are higher than the pressures in the ventricles. When the pressures in the ventricles
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Figure 2.3: Structure and function of the normal heart. (Image modified from

Mariana Ruiz Villareal, Public Domain).

are higher than in the atria, the valves close and remain sealed thanks to the papillary

muscles and the chordae tendineae. Similarly, the aortic and the pulmonary artery

valves control the blood flow towards the arteries. They open as soon as the pressures

in the ventricles are higher than in the arteries. When the valves do not close

perfectly, the blood can flow backwards, which is called regurgitations. Chronic

regurgitations can lead to severe cardiac dilation and functional impairment, as in

repaired tetralogy of Fallot (see Section 2.3).

2.1.3 Cardiac Function

Cardiac contraction and relaxation are controlled automatically by the autonomous

sympathetic system. The heart beat is the result of two tightly calibrated biological

phenomena. First, an electrical wave propagates over the myocardium to activate

its contraction. Then, the activated cardiac cells, called myofibres, muscle fibres or

cardiac myocytes, contract and then relax, resulting in the global cardiac motion.

Although the heart is constituted by a succession of myocytes separated by inter-

calated discs, it is a functional syncytium as the electrical wave and the cardiac

contraction happen globally over the myocardium to achieve synchronous motion.

That is why local abnormalities can quickly deviate into severe global functional

malfunctions.

2.1.3.1 Cardiac Electrophysiology

The cardiac activity is controlled by the periodic propagation of an electrical wave

that depolarises the myocytes to make them contract [Keener and Sneyd, 1998].

The electrical wave is triggered by the autonomous sympathetic system. It starts

in the atria, at the sinoatrial nodes, the physiological pacemaker (Figure 2.4). As
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the electrical wave propagates towards the atrioventricular nodes, it depolarises

the atrial myocytes, which contract and pump the blood to the ventricles. The

electrical impulse is then stopped for a few milliseconds to synchronise the heart.

This “pause” is fundamental as it enables the atria to fully contract and completely

pump the blood into the ventricles. Finally, the electrical wave is propagated at

very high speed (≈ 2000 mm/s) downwards the apex (the tip of the heart) through

the left and right bundles branches. It reaches the Purkinje fibres and propagates

throughout the entire myocardium, from endocardium to the epicardium, at a lower

speed (≈ 500 m/s) [Murgatroyd and Krahn, 2002].

The electrical wave propagates from cell to cell by modifying the ion concen-

tration on both sides of the cell membrane [Keener and Sneyd, 1998] (Figure 2.5).

When a cardiac cell is stimulated (by the sympathetic system or an excited neigh-

bouring cell), sodium ions (Na+) flood inside the cell through specific ion channels.

To counter-balance the increased membrane voltage, potassium ions (K+) are re-

leased but at the same time calcium channels opens and calcium ions (Ca2+) enter

into the cell. This release of calcium keeps the cell depolarised and triggers the

contraction of the myocyte through a calcium-induced calcium release mechanism

(CICR) [Endo, 1977]. Once depolarised, the cell cannot be excited anymore for a

small period, called refractory period, during which it stays contracted. Then, it

repolarises by re-equilibrating the ion concentrations, and relaxes, to come back to

its rest state. The transient polarisation/depolarisation of the cell is called action

potential and its duration is commonly abbreviated APD (action potential dura-

tion). The synchrony of the cardiac motion is ensured by a tight calibration of the

APD over the myocardium. Typically, the APD is longer in the septum, as this re-

gion depolarises first and depolarises last, and shorter in the free wall [Murgatroyd

and Krahn, 2002]. Sub-endocardial APD is also generally longer than sub-epicardial

APD.

In a clinical routine, cardiac electrophysiology is assessed non-invasively with

electrocardiograms (ECG). The ECG is obtained by placing on the torso of the

patient two or more skin electrodes that measure the tiny electrical signal produced

by the heart. The ECG signal of healthy subjects is characterised by well-defined

patterns that correspond to precise cardiac events (Figure 2.4, right panel). The

ECG signal starts with the P wave, which is the manifestation of the initial atrial

depolarisation triggered by the sinuoatrial nodes. The pause at the atrioventricular

nodes is reflected by a short return to the rest state of the ECG signal, the PR

interval. When the electrical wave spreads over the ventricles, it generates the QRS

complex of the ECG. Finally, the T wave corresponds to the repolarisation of the

myocardium. Contrary to the QRS complex, the shape and length of the T wave

depend on the cardiac rhythm. The higher the heart rate, the shorter the T wave.

Analysing the shape, trigger times and lengths of the ECG waves provides crucial

insights into the cardiac electrophysiology of a patient. ECG is often sufficient to

detect bundle branch blocks or severe arrhythmia. Yet, slight variations in cardiac

conductivity cannot be detected by the ECG. Their quantitative evaluation requires

invasive endocardial mappings obtained through catheter.
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Heart Conduction System Schematic ECG

Figure 2.4: Left panel: Heart conduction system. the electrical activity of the heart

is triggered by the sinuatrial nodes (1) and then the atrioventricular nodes (2). It

is transported by the left bundle (5) and the right bundle (10) branches and finally

transmitted to the myocardium (8) through the Purkinje fibres (9). Right panel:

Simplified ECG with the main electrical waves (Images from Wikipedia).

Because the electrical wave controls the cardiac contraction, its healthiness is

crucial for an efficient cardiac function. The vast majority of sudden deaths are

due to local alterations of the cardiac electrophysiology. The APD can be locally

altered by lesions, after a myocardial infarct for instance or due to chronic diseases

or surgery sequels. Such adverse events can indeed damage cardiac cells, reducing

their electrical conductivity, thus hampering the cardiac synchrony. Regions of

non-excitable cells can for instance yield wave re-entry, the main source of cardiac

fibrillation. Modelling cardiac electrophysiology is therefore a very active research

field to predict complex and life-threatening cardiac abnormalities.

Figure 2.5: Ion exchanges at the surface of the cell membrane that generate the

action potential (Figure from [Marbán, 2002]).
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Figure 2.6: Drawing of a myocyte and its constituent (©Penn State Altoona).

2.1.3.2 Cardiac Biomechanics

A cardiac cell is made up of several myofibrils, which are themselves a succession

of sarcomeres, the contractile unit of the cardiac muscle (Figure 2.6). A sarcomere

is delimited by two Z-discs, between which interleaved proteins of constant length,

termed filaments, are stacked: actin and myosin (Figure 2.7). Actin is a thin fila-

ment that is partially connected to the Z-discs. Myosin is a thick filament, indirectly

connected to the Z-discs by a very thin protein, titin. Myosin is characterised by

myosin-binding proteins, the myosin heads, that are tightly connected to the myosin

filament and that can also bind to the actin. These bindings are the engines of the

sarcomere contraction.

When the calcium ions enter into the sarcomere, the myosin heads are “enabled”

and connect to the actin filaments (Figure 2.8). They progressively slide towards

the Z-discs, outwards, which results in the shortening of the sarcomere. The space

between the myosin filaments and the Z-discs, called I band, shortens and the H zone,

the space between neighbouring actin filaments disappears. When the calcium ions

are released back from the cell, the myosin-bindings are disabled: The myosin heads

unbind from the actin and the sarcomere comes back to its rest state.

2.1.4 The Cardiac Cycle

The cardiac cycle consists of a succession of four different phases as reported in

Figure 2.9. When the ventricles start contracting, the atrioventricular valves close

(first heart noise) and the ventricular pressures quickly rise. It is the isovolumetric

contraction phase. As soon as the ventricular pressures become higher than the

arterial pressures (80 mmHg for the aorta and 15 mmHg for the pulmonary artery in

normal hearts), the arterial valves open and the blood is ejected. This is the ejection

phase. During this stage, the ventricular pressures continue rising as the ventricles

continue contracting and then decrease as the myocardium starts relaxing. When

the ventricular pressures fall below the arterial pressures, the arterial valves close

(second heart noise) and the isovolumetric relaxation phase starts. The pressures

continue decreasing until they become lower than the atrial pressures (12 mmHg for
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Figure 2.7: Sarcomere constitution and sliding model of cell contraction (Images

from Wikipedia).
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Figure 2.8: Cardiac contraction model. A- The sarcomere is activated, the myosin

heads bind to the actin filament. B- The myosin heads fold and C- the myosin

slides along the actin: the sarcomere contracts. D- When the cell is deactivated,

the myosin heads unbind and the sarcomere returns to its rest position (Images from

Wikipedia).

the left atrium and 5 mmHg for the right atrium). At this point, the atrioventricular

valves open and blood flows into the ventricles. This is the filling phase. During the

initial stages of the filling, the blood passively flows into the ventricles because of

the pressure gradient between the cavities. As the sinoatrial nodes are stimulated,

which starts a new cardiac cycle, the atria contract and further pump the blood into

the ventricles, with a small increase of the atrial pressures: this is the active filling.

The contraction phases (contraction and ejection) constitute the cardiac systole.



2.2. Imaging the Heart 19

Figure 2.9: Cycle of the left ventricle. The right ventricle goes through an identical

cycle but with lower pressures (Images from Wikipedia).

Similarly, the relaxation phases (relaxation and filling) constitute the cardiac dias-

tole. The end-systole time frame corresponds to the time when the heart is fully

contracted whereas at the end-diastole time, the heart is maximally filled.

The arterial pressures also vary during the cardiac cycle. During ejection, the

arterial pressures quickly increase, followed by a progressive decrease. This phe-

nomenon, known as Windkessel effect [Frank, 1899] is due to the compliance of the

arteries. Intuitively, the arterial walls dilate during ejection to accommodate the

cardiac pulse (Figure 2.10). The artery stores the excess of blood that cannot be

injected into the circulatory system, which has a finite capacity. As a result, the ar-

terial pressures increase as the arteries dilate. When the ejection strength decreases,

the excess of blood that has been stored by the arteries is progressively released to

the circulatory system. In other words, the arteries transform the discontinue blood

flow pumped by the heart into the steady flow of the circulatory system.

2.2 Imaging the Heart

Assessing the cardiac function of patients requires visualising the myocardium to

detect functional abnormalities and lesions. Several imaging modalities are available

in clinics, each one with its advantages and limitations. This section provides an

overview of the most common imaging modalities. It is not an exhaustive review

but rather a brief presentation of the images that are used in the remainder of
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Systole Diastole

Figure 2.10: The Windkessel effect. During systole, the artery dilates to accommo-

date the cardiac pulse. When the valves close, the blood is released progressively

in the circulatory system (©Urban and Fischer 2003, Roche Lexikon Medizin, 5.

Aufl.)

this manuscript. The reader is referred to [Liang and Lauterbur, 1999; Chambers,

2001; Shah et al., 2005; Teske et al., 2007; Topol and Califf, 2007] or other related

references for further details.

Three main cardiac imaging techniques are used for diagnosis in cardiology:

echocardiography, cardiac magnetic resonance imaging (CMR) and cardiac com-

puted tomography (CT). Nowadays, all of them provide 3D images of the beating

heart although the clinical evaluation of cardiac anatomy and function is still based

on 2D views wisely selected by the radiologist. Four standard 2D views have been de-

fined (Figure 2.11) according to their orientation with respect to the long axis of the

left ventricle (the axis that passes through the apex and the mitral valve). The short

axis views are orthogonal to the long-axis (Figure 2.11, bottom row). They display

the two ventricles and are used to assess the radial deformations (heart thickening)

and the circumferential displacements (heart twisting). The four-chamber view is

used when the four cavities must be assessed. The two chamber view enables to as-

sess the left atrium and ventricle only, while the long-axis view is used to analyse the

aortic valves. For regional assessment, the left myocardium is divided into 3 planes:

the base close to the valve, the mid-plane and the apical plane, which are subdivided

into 16 regions as defined by the American Heart Association, with the apical cap

being a standalone region (the 17th region) [Cerqueira et al., 2002] (Figure 2.11).

2.2.1 Echocardiography

2.2.1.1 Overview

Echocardiography is the most common imaging device in clinics thanks to its ubiq-

uity, ease of use and low cost. Echocardiography is based on ultrasound waves.

Like sonar in submarines, a probe sends multidirectional ultrasound waves through

the body. At tissue interfaces, the waves are reflected, generating echoes that are

captured by the probe and used to reconstruct the 2D images. Echocardiography

thus provides images of tissue interfaces.
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Figure 2.11: Main 2D views of the heart with AHA subdivision of the left ventricle

(Image from [Lang et al., 2005], AHA subdivision from [Cerqueira et al., 2002])

In a clinical routine, echocardiography is used to evaluate the cardiac anatomy

and function of patients [Topol and Califf, 2007] (Figure 2.12). The large majority

of machines render 2D slices of the beating heart along the direction defined by the

cardiologist. Usually, the ultrasound probe is placed on the thorax of the patient

but in some cases the cardiologist may introduce the probe in patient oesophagus

to visualise myocardium regions that may be hidden by the ribs. In the last decade,

3D echocardiography machines have been introduced into the clinical environment

to provide a full view of the heart and to reduce rater variability. The current 3D

techniques consist in stitching 2D slices together to reconstruct 3D volumes. These

techniques may require several heart beats to reconstruct one 3D volume, resulting

in low frame-rates. This limitation is being relieved by new ultrasound probes that

achieve real-time full-volume 3D echocardiography imaging and capture the 3D heart

in one heart-beat, paving the way to consistent and comprehensive assessment of

cardiac anatomy and function [Zamorano, 2009].

Echocardiography also enables to evaluate the 1D cardiac motion and blood flows

through Doppler imaging. Spatial velocity along the ultrasound probe is estimated

using the Doppler effect of travelling waves. 1D blood flows can be estimated,

enabling the quantification of valve regurgitations or septal defects (Figure 2.12).

Similarly, unidirectional tissue velocities is used to estimate the strain rate (the

variation of velocities between two spatial points) and, after time integration, the

strain along the ultrasound beam (Tissue Doppler Imaging, TDI [Teske et al., 2007]).

By wisely positioning the ultrasound probe the clinician can have a 1D estimate of

the longitudinal or the radial myocardium strain.

Recently, 2D strain imaging has been developed to estimate the 2D strain of
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Figure 2.12: Echocardiography of a patient with repaired tetralogy of Fallot. A-

Left ventricle. B- Right ventricle. C- Left atrium. D- Right atrium (Images from

APHP, Necker-Enfants Malades, Paris).

the myocardium. The underlying principle is to track the ultrasound noise, called

speckle, using an optical flow algorithm. Indeed, ultrasound speckled is consis-

tent over time as it is generated by the diffraction of the ultrasound waves by

the tissues. It hence depends on the tissue properties. The displacements recov-

ered by the speckle tracking are then used to estimate the 2D myocardium strain

[Ledesma-Carbayo et al., 2002]. This technique has received a great interest from

the cardiologists since it is more comprehensive and accurate than TDI [Teske et al.,

2007]. However, it still suffers from large inter rater variability [Chung et al., 2008].

The recent real-time full-volume 3D machines extend this technique to 3D strain

measurements, aiming at alleviating the rater variability issue and providing 3D

assessment of the heart [Zamorano, 2009].

2.2.1.2 Advantages and Current Limitations

The main advantages of echocardiography are:
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+ Non-invasive

+ Low cost

+ Ubiquity

+ Good spatial resolution

+ High frame rate

+ Enable to quantify cardiac deformations and blood flows

and its current limitations:

- Low tissue contrast

- High noise and image artefacts

- Blind regions, masked by highly reflective tissues like bones

- Large high rater variability [Chung et al., 2008]

The advantages of echocardiography make this imaging modality the first choice

for quick assessment of the cardiac function. However, because of the inter-rater

variability and of the poor image quality, more advanced imaging techniques are

required for more accurate evaluations.

2.2.2 Cardiac Magnetic Resonance Images

2.2.2.1 Overview

Cardiac Magnetic Resonance Imaging (MRI) is gaining a leading position in cardi-

ology, in particular for diagnosis and evaluation of congenital heart defects where

MRI is considered as the gold standard [Helbing and De Roos, 2000; Krishnamurthy,

2008]. In simple terms, MR scanners use strong magnetic fields to image biological

tissues. Within the MR scanner, a strong and constant magnetic field of 1T to 3T

(and more for research), according to the machine, aligns the spin of the hydrogen

atoms. An additional magnetic field, called pulse, is overlaid to re-orient the aligned

spins. When the pulse is disabled, the spins come back to their initial orientation

along the reference magnetic field in an amount of time that depends on the bio-

logical tissue. MRI thus consists in measuring this time. The spatial sampling is

obtained by applying gradients to the magnetic field, meaning that the field varies

over space. We refer the reader to [Liang and Lauterbur, 1999] for further details.

Tissue response to the magnetic fields depends on the length, amplitude and

frequency of the pulse fields. In other words, different pulse sequences yield differ-

ent tissue contrast. The radiologist can thus choose which tissue to visualise or to

remove from the images. For instance, fat can be explicitly removed from the images

by using fat-removal sequences. For cardiology, special acquisition techniques have

been developed to accommodate the cardiac motion. First, the acquisition is gated,

i.e. synchronised, to the ECG to acquire images at a specific instant of the cardiac

cycle. This enables to acquire a 3D image of the heart over several heart beats. Two

gating strategies are commonly used: prospective gating and retrospective gating.

The prospective strategy consists in acquiring the images at a very specific instant

of the cardiac cycle defined by the ECG. Conversely, the retrospective strategy con-

sists in first acquiring all the data, independently of the instant of the cardiac cycle.
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The data is subsequently reorganised according to the recorded ECG. Another diffi-

culty of cardiac MRI is the respiratory motion, which can seriously affect the image

quality by blurring the images. Breath-hold strategies have been designed to min-

imise motion artefacts. The subject holds its breath for a short time, during which

the radiologist acquires a small portion of the image. To acquire a full view of the

heart, several breath holds are required, which may introduce slice misalignments

when the subject holds its breath at different position (see Section 3.2.2.1). Respira-

tory navigators can also be used to synchronise the acquisition with the respiratory

motion.

In cardiology, the state-of-the-art pulse sequence is the Steady State Free Pre-

cession (SSFP), which is an improved T1 sequence especially tailored to the cardiac

tissues [Liang and Lauterbur, 1999; Shah et al., 2005] (Figure 2.13). When SSFP

sequence is used alone, one gets the anatomical cardiac cine MRI (cMRI) widely

used in clinical settings to visualise the cardiac anatomy and the apparent motion.

Isometric 3D images of the heart at end-diastole are acquired by gating the acquisi-

tion at the end-diastole time instant (usually identified as the R wave of the ECG).

Dynamic sequences of the beating heart are also available by stacking short-axis

or long-axis 2D+t slices together. The underlying principle is to acquire at each

breath hold images of the cardiac motion observed in a specific 2D plane. The

2D+t planes are then stacked to reconstruct the 3D+t volume (Figure 2.14). Such

an approach provides good in plane spatial resolution (in the order of magnitude of

the millimetre) and temporal frame rates (about 40 frames or more with the most

recent machines). However, the slice thickness is usually large (about 1 cm) and the

3D volume may suffer from slice misalignments due to inconsistencies in the breath

hold.

The versatility of MRI has allowed the development of pulse sequences for imag-

ing the cardiac function and tissue integrity. While standard SSFP MRI only exhibit

the cardiac anatomy and the apparent motion of the myocardium, tagged MRI aims

at evaluating the complete cardiac deformation. First introduced by [Zerhouni et al.,

1988], tagged MRI consists in marking the tissues, in particular the myocardium,

with a grid by using strong magnetic fields (Figure 2.13). SSFP pulse sequences

are then employed to image the marked beating heart over time. During post-

processing, the tag grids are tracked and the estimated displacements are used to

compute the cardiac deformations [McVeigh, 1998; Moore et al., 2000]. Nowadays,

tagged MRI is considered the gold standard for assessing the circumferential and the

longitudinal cardiac motion, which is hardly visible in anatomical cine MRI. More

sophisticated sequences have been developed in the last decade to measure the car-

diac deformation, for instance displacement encoding (DENSE encoding) [Aletras

et al., 1999; Kim et al., 2004; Feng et al., 2009], velocity encoding for blood flows

and myocardium motion [Van Dijk, 1984; Bogren and Buonocore, 1999] and finally

direct strain encoding [Osman et al., 2001; Youssef et al., 2008].

Tissue integrity is evaluated on MRI by imaging how contrast products like

gadolinium are fixed by the biological tissues. This approach is commonly used

in patients with heart failures to identify and quantify myocardium scars that may
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Patient with repaired Tetralogy of Fallot (APHP, Necker, Paris)

Patient with heart failure (King's College, London)

Ex-vivo pig heart
(Sunnybrook Health Sciences

 Centre, Toronto)

Short axis SSFP Long axis 4-chamber SSFP 3D angiography

Late enhancement Tagged MRI DTI
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Figure 2.13: Example of MR images. A- Left ventricle, B- Right ventricle, C- Left

atrium, D- Right atrium. Angiography colours are artificial to highlight the vessels.

DTI colours encode fibre directions.

hamper the cardiac function. A similar technique is employed to image the coronary

arteries and the great arteries. The contrast product makes the blood very bright in

the images, facilitating the visualisation of small vessels. This modality is referred

to as MR angiogram (MRA).

A last MR modality that can have a great impact in cardiology is diffusion

tensor imaging (DTI). DTI measures the diffusivity of proton particles in anisotropic

media. Its most common application is brain imaging, where it is used to quantify

the direction of the axon bundles in the white matter [Le Bihan et al., 1986; Basser

et al., 1994]. The diffusion signal is measured along several direction, called gradients

(at least 6 directions are needed). Then, a diffusion tensor is estimated, which

encodes the three main directions of diffusion in the 3D space. Tracking algorithms

can finally be applied to track the fibres through space. In cardiology, numerous

DTI studies have been carried out to image the 3D orientation of myocytes in ex-

vivo hearts [Geerts et al., 2002; Helm et al., 2005a], yielding spatially consistent 3D

characterisations of fibre orientations in contrast to dissection studies that do not

preserve the cardiac anatomy. However, in-vivo applications are still challenging due
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Figure 2.14: ECG gated MRI acquisition of 3D+t images (Image from [Sermesant,

2003])

to the cardiac motion that fades the diffusion signal. Intense research is striving to

design efficient sequences for imaging in-vivo fibre orientation in patients. Some of

them correct the diffusion signal using myocardium 3D strain measured with velocity

encoding [Tseng et al., 2000; Chen et al., 2005]. Nonetheless, the acquisition is time

consuming and requires long breath holds, which make this modality challenging to

apply in clinical routine [Wu et al., 2009]. To tackle this limitation, [Toussaint et al.,

2010] propose to acquire few 2D slices at wise cardiac positions and orientations,

and then to extrapolate the diffusion signal elsewhere using a computational model

of fibre orientation.

2.2.2.2 Advantages and Current Limitations

The main advantages of cardiac MRI are:

+ Non-invasive

+ Good spatial resolution according to the MR modalities

+ High frame rate

+ High image contrast

+ Little rater variability

+ Enable to quantify cardiac deformations and blood flows

+ High versatility, the radiologist can fine tune the sequences to get the optimal

contrast

and its current limitations:

- High cost

- Not comfortable for the patient

- Metal sensitive

- Prone to slice misalignments and image phantoms
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Despite its elevated commercial and operational cost, MRI is becoming the gold

standard in cardiology, in particular in paediatrics. It significantly reduces rater

variability and its high contrast makes the assessment of the cardiac anatomy and

function more accurate than with echocardiography. However, MRI is not always

available. Furthermore, patients may feel uncomfortable inside the machine because

of claustrophobia or just cannot have MRI scanner because of metal implants. In

some cases, complete anaesthesia with controlled respiratory stops are required, in

particular in very young patients.

2.2.3 Cardiac Computed Tomography

2.2.3.1 Overview

The underlying idea of computed tomography (CT) scan is to acquire X-ray images

along several directions and to recombine them on computers to reconstruct the

3D image [Topol and Califf, 2007; Schoenhagen et al., 2005]. As for CMR, the

acquisition is ECG gated to accommodate the cardiac motion. With the advance

of multi-slice CT scans (up to 256 slices can be acquired simultaneously in recent

machines), the heart can be imaged during the entire cardiac cycle, the spatial and

temporal resolution depending on the number of slices the machine can acquire

simultaneously.

CT is used to visualise the cardiac anatomy and its apparent motion (Fig-

ure 2.15). CT images benefit from higher spatial resolution than MR and the 3D

images are usually isotropic. Like some MR sequences, CT images are quantitative.

The grey level values are proportional to the mass density. Furthermore, CT is not

affected by metallic objects: it can be used after the implant of pacemakers or any

other device. However, the patient is irradiated by a large amount of X-rays to ac-

count for the cardiac motion, which can be dangerous for the patient as X-rays are

carcinogenic. That is why CT imaging is avoided in paediatrics as children are more

sensitive than adults to X-rays. Current research is striving to reduce the amount

of irradiation to acceptable levels while keeping good image quality.

B

A
D

C
B

A

E F F

A

Figure 2.15: Different views of a 3D CT image of the heart. A- Left ventricle, B-

Right ventricle, C- Left atrium, D- Right atrium, E- Pulmonary artery, F- Aorta.
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2.2.3.2 Advantages and Limitations

The main advantages of cardiac CT are:

+ Excellent isotropic spatial resolution

+ Good image contrast

+ No rater variability

and its current limitations:

- Invasive, the patient is irradiated by hazardous x-ray beams

- Image cardiac anatomy only

During this thesis, only cMRI of the beating heart were available for processing

as we dealt with children and teenagers. Echocardiography was also performed

on these patients but these images could not be processed for technical reason.

Because of that, the developments described later on in this manuscript focus on

cMRI although they are general enough to be applied on other modalities.

2.3 Tetralogy of Fallot: Physiopathology and Clinical

Challenges

Tetralogy of Fallot (ToF) is a severe congenital heart defect that affects mainly the

right ventricle (RV) of the heart. It is the most common defect among the cyanotic

congenital heart diseases (better known as “blue-baby” syndrom) and it accounts for

5 to 6% of all congenital heart diseases, with an incidence of 1 out of 2500 births

[Hoffman and Kaplan, 2002]. ToF was described in 1672 by Niels Stensen, in 1773

by Edward Sandifort but the name of the pathology was given by Etienne-Louis

Arthur Fallot in 1888. It is characterised by four major defects (Figure 2.16):

Pulmonary Stenosis The right ventricle outflow tract (RVOT) and the pulmonary

artery are narrower than in normal subjects due to overgrown cardiac tissues

proximal to the pulmonary valves. Because of the stenosis, the right ventricle

pressure is higher than in normal to accommodate the abnormal resistance

towards the lungs.

Ventricular Septal Defect (VSD) A hole in the inter-ventricular septum creates

a blood shunt between the two ventricles. The VSD is generally in the upper

part of the septum, just below the arteries. It can be relatively large.

Overriding Aorta The root of the aorta and the aorta valves are placed directly on

top of the VSD. The aorta is bi-ventricular, meaning that its root is connected

to the left ventricle and to the right ventricle.

Right Ventricular Hypertrophy. The right ventricle is much thicker than in nor-

mal subjects, mainly due to the pulmonary stenosis.
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Figure 2.16: Structure and function of the heart in tetralogy of Fallot subjects. Due

to the defects, oxygen-depleted blood comes back to the systemic system. (Images

by Mariana Ruiz Villareal, Public Domain)

Normal Subject (Age: 28)
From St Thomas Hospital, London, UK

Patient with Repaired ToF (Age: 16)
From Necker-Enfants Malades, Paris, France

LV

RV RV

LV

RVOT Aneurysm

Figure 2.17: Left panel : MRI of a normal heart. Right panel : MRI of a patient with

repaired tetralogy of Fallot. Observe the dilated right ventricle (RV) compared to

the left ventricle (LV) in ToF in contrast with the normal heart. The patient also

has an RVOT aneurysm due to the corrective patch.

As a consequence of these defects, oxygen-depleted blood returns to the systemic

system without being re-oxygenated into the lungs. The “blue” aspect of ToF babies

is the physiological symptom of this poor oxygenation, which, in the most severe

cases, can lead to death. ToF infants thus require paliative surgical repair in their

early months. Performed the first time by C. Walton Lillehei at the University of

Minnesota in 1954, ToF complete repair consists in closing the VSD with a Gore-

Tex patch or homograft and in relieving the pulmonary stenosis by resecting the
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stenosis to reduce the pressure overload. The RVOT or the pulmonary artery may

be enlarged by placing a ventricular patch, a trans-annular patch or a homograft to

further reduce the stenosis.

Nowadays, ToF repair is relatively standard, with very low perioperative mor-

tality (< 5%) [Murphy et al., 1993]. Nonetheless, pulmonary valves may be dam-

aged by the surgery which, together with the enlargement of the RVOT, may cause

chronic pulmonary regurgitations. During child growth, the regurgitations are usu-

ally asymptomatic. However, they yield severe long-term complications such as

extreme RV dilation, RVOT aneurysm (Figure 2.17, right panel), arrythmias and

RV function impairment with consequences on the LV pump efficiency due to an

abnormal motion of the inter-ventricular septum [Oosterhof et al., 2006]. In addi-

tion, residual pulmonary stenosis may remain, further impairing the RV function.

If nothing is done to control these complications, the risks of life-threatening events

increases and life expectancy is reduced [Nollert et al., 1997].

The clinical challenges raised by ToF are therefore shifted from the initial re-

pair of the congenital malformation to the long-term management of these patients.

Thanks to the low mortality and morbidity of the initial repair, the population with

repaired ToF is steadily increasing, requiring more clinical efforts to regularly follow

them and detect when their cardiac function becomes too impaired. To decrease the

risks of sudden death, pulmonary valve replacement is considered to be an effective

treatment. It has been shown that the RV can recover an almost normal shape

and function after valve replacement [Therrien et al., 2005; Geva, 2006]. Because

most of the repaired ToF patients are asymptomatic, cardiologists tend to wait as

long as possible to avoid multiple re-interventions due to the limited lifespan of the

implanted valves. However, if the valves are implanted too late, the RV does not

recover a normal shape and function anymore: it is definitively damaged [Therrien

et al., 2000; Oosterhof, 2006]. There is therefore a need of quantitative and

reproducible metrics to comprehensively evaluate the cardiac function in

these patients. Unfortunately, defining the best timing for re-intervention is con-

troversial. The most used criterion is based on the RV end-diastole volume (EDV)

but it is not clear whether this indicator represents all the risks of sudden death and

impaired function [Gatzoulis et al., 1995; Geva, 2006]. There is thus a need of

methods to model the cardiac shape and function in the future to predict

possible cardiac failures that would justify immediate valve replacement.

In addition to the timing for re-intervention, there is controversy on which PVR

strategy to apply for a given patient. Two PVR techniques are becoming prevalent

(Figure 2.18). On the one hand, the cardiologist replaces the pulmonary valves

through surgery or, more recently, using catheters (the procedure is then called per-

cutaneous PVR (PPVR) [Khambadkone et al., 2005]). Note that PPVR is possible

only if the RVOT diameter is lower than 22 mm due to the limited diameter of the

artificial valves [Schievano et al., 2007]. With this strategy, the RV progressively re-

models on its own to recover a normal cardiac function. On the other hand, a recent

surgical technique consists in reducing the RVOT, replacing the pulmonary valves

and remodelling the RV directly [del Nido, 2006]. The surgeon not only replaces
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the valves but also intentionally resects the regions of the RV myocardium that are

impaired by fibrosis or scars, to reduce RV volume and improve its function directly.

However, postoperative effects of these techniques upon the RV function are diffi-

cult to predict as they mostly depend on the patient physiopathology. Choosing

the appropriate therapy for a given patient remains a clinical challenge. There is

hence a need for personalised therapy planning.

Valve Replacement Valve Replacement and
RV Volume Reduction

Scar

New Pulmonary

Valve

Right Ventricle

Pulmonary Artery

Aorta Aorta

Figure 2.18: Pulmonary valve replacement strategies. Left panel : Pulmonary valves

are replaced with RVOT reduction if too dilated. RV scars and fibrosis far from the

valve insertion may be left. Right panel : Valve replacement and direct RV volume

reduction. The RV is resected till the apex to remove any scar tissue (Image modified

from [del Nido, 2006]).

Quantifying and predicting the RV remodelling in repaired ToF patients is there-

fore crucial for the clinical management and therapy planning of these patients. How

much the myocardium of a patient is impaired? Will his right ventricle deteriorate

in the near future? Is now the best timing for pulmonary valve replacement? If

yes, which valve replacement strategy should one apply for a specific patient? What

will be the effects of the valve implant on his cardiac function? Nowadays, no clin-

ical criteria provide clear-cut answers to these questions. The cardiologist relies on

thumb rules and its personal experience. The problem is all the more challenged

by the extreme variability of ToF physiopathology: one patient may have a unique

pathology course. Finally, because patients are children, invasive assessment of the

cardiac function are not recommended (no CT images, no endocardial electrophys-

iological maps, no pressure catheter, etc.). This constraint further challenges the

diagnosis. The works done in this thesis are motivated by these clinical

difficulties. The idea is to study how computational models can provide

the cardiologists with hints on the cardiac function in repaired ToF de-

spite the sparse clinical data, how it will evolve in the future and how
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it will be affected by valve replacement. In the following, tetralogy of Fallot

(ToF) always refer to the condition after the initial repair.
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3.1 Motivation

The methods presented later in this manuscript rely on segmentations of the patient

myocardium. The algorithm for estimating the cardiac function in medical images

requires a mask of the bi-ventricular myocardium (Chapter 4, page 61 and Chap-

ter 5, page 89). The statistical analyses of the right ventricle shape are performed

directly on the 3D surfaces of the right ventricle endocardia (Chapter 6, page 107

and Chapter 7, page 133). The electromechanical models of the heart are computed

on 3D volume meshes that represent the myocardium of the patient and calibrated

using the variation of blood pool volumes computed from the segmentations, among

other data (Chapter 8, page 155 and Chapter 9, page 193). Segmenting the heart

is therefore crucial, although not the main topic of the thesis. In some studies, no

fully-automatic and off-the-shelf methods were at our disposal.
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The task of cardiac segmentation was all the more challenged when dealing with

repaired tetralogy of Fallot patients. For these patients only clinical short-axis cMRI

with standard image quality and large slice thickness were available. Additionally,

the cardiac anatomy of these patients was extremely variable, with various degrees

of right ventricle dilation and, in some cases, with a large aneurysm of the right

ventricle outflow tract. These features make the automated segmentation of the

heart in this population very challenging.

We thus developed an integrated segmentation pipeline that combines specific

image processing algorithms to cope with the variability in imaging modalities and

cardiac morphology encountered during this thesis. Nevertheless, each element of

the pipeline was independent from the others such that the whole framework could

be adapted to other modalities, pathologies or advances in image processing. The

aim was not to develop a “better than state-of-the-art algorithm” but rather a multi-

purpose tool that can be used to start the forthcoming analyses and be adapted to

other applications.

State of the Art

Delineating the myocardium in cardiac images is a fundamental step of the clinical

evaluation of the cardiac anatomy and function. However, the manual delineation

of the myocardium is a time-consuming and tedious task, sensitive to rater ex-

pertise. In the recent years, a large amount of studies proposed solutions for the

automatic segmentation of the heart in medical images. If few studies relied ex-

clusively on image information [Sonka and Fitzpatrik, 2000; Jolly, 2006; Lempitsky

et al., 2009; Cousty et al., 2010], the large majority of methods use higher-level

models to make the segmentation robust to the often poor quality of medical im-

ages [Frangi et al., 2001]. A standard technique consists in using deformable models,

as first proposed by [McInerney and Terzopoulos, 1995] for cardiac segmentation, to

cope with the ill-defined anatomical boundaries. The recent progresses are leading

to push-button full-heart segmentation algorithms, like those proposed by [Zheng

et al., 2008; Ecabert et al., 2008].

While some methods drive the deformable model using prior knowledge about

cardiac biomechanics [Sermesant et al., 2003; Bistoquet et al., 2007; Zhu et al.,

2010], the heart is usually segmented on medical images by deforming atlases or

using shape models like active shape models (ASM) [Cootes et al., 1995], like in

[van Assen et al., 2006], or active appearance models (AAM) [Cootes et al., 1998],

like in [Mitchell et al., 2002; Andreopoulos and Tsotsos, 2008; Zhang et al., 2010b].

In these approaches, the deformable model is guided towards the cardiac boundaries

under a shape constraint learned from a training set of data. Advanced boundary

detectors can then be implemented to improve the training stage [Peters et al., 2010].

Model-based methods present some limitations that make their use challeng-

ing in tetralogy of Fallot patients. All reported studies showed good segmentation

accuracy. However, they are all designed for a specific imaging modality (echocar-

diography [Noble and Boukerroui, 2006], MRI [Andreopoulos and Tsotsos, 2008] or
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CT [Ecabert et al., 2008; Zheng et al., 2008]) and often tested on normal subjects.

Because they heavily rely on prior knowledge, they cannot be applied directly to

other imaging modalities or pathologies without relearning the underlying model.

In [Zhang et al., 2010b], the authors developed an AAM model to segment the bi-

ventricular myocardium in repaired ToF patients. Yet, that model cannot be applied

directly on healthy subjects or adults with heart failure.

Another limitation is the sensitivity of model-based segmentation algorithms to

initialisation and to local minima. To cope with the initialisation problem, some

authors proposed to register an atlas of the heart to the image to process [Lorenzo-

Valdes et al., 2004], to use generalised Hough transform to localise the heart in the

images [Pednekar et al., 2006; Ecabert et al., 2008] or to employ machine learning

object detection techniques to automatically detect reliable fiducials [Zheng et al.,

2008; Lu et al., 2009; Zheng et al., 2009]. The risk of finding local minima is re-

duced by integrating additional constraints like temporal consistency [Montagnat

and Delingette, 2005; Lynch et al., 2008] or coupled endocardium/epicardium seg-

mentation [Kaus et al., 2004; Zhu et al., 2010]. Multi-resolution schemes have also

been proposed [Montagnat and Delingette, 1998]. In [Ecabert et al., 2008] for in-

stance, the authors successively detect the heart, rigidly align an atlas to it, which

is deformed using piecewise affine transformation and finally refined using a shape-

constrained parametric deformable model. Fast and efficient machine learning al-

gorithms based on probabilistic boosting trees [Tu, 2005] have also been proposed

to automatically find the optimal segmentation, yielding efficient segmentations. In

[Zheng et al., 2008] for instance, the heart is first detected using marginal space

learning. A 4-chamber model of the heart is then automatically positioned and

refined to match the observed myocardium boundaries.

Nevertheless, the vast majority of the solutions relies on assumptions that may

be violated by the extreme anatomy encountered in ToF patients. For this reason,

we developed an interactive approach that can be applied to any situation, although

more user inputs are required to get accurate delineations.

3.2 A Pipeline for the Dynamic Segmentation of the My-

ocardium

3.2.1 Overview of the Segmentation Pipeline

The segmentation of the bi-ventricular myocardium in dynamic cMRI is achieved

in four main steps (Figure 3.1). First, the raw images are prepared for processing

(Section 3.2.2). This step corrects the image artefacts and the large slice thickness

that characterise cMRI. Next, the user manually delineates the boundaries of the

left ventricle (LV), of the right ventricle (RV) and of the epicardium on the first

frame of the preprocessed cardiac sequence (Section 3.2.3). This is achieved with an

interactive 3D segmentation tool based on implicit variational surfaces. The man-

ual delineations are then automatically propagated over the cardiac sequence by

using diffeomorphic demons [Vercauteren et al., 2009], an efficient non-linear image
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registration algorithm (see Chapter 4, page 61 for details), and simplex-based de-

formable model [Delingette, 1999] (Section 3.2.4). Finally, the dynamic myocardium

is automatically reconstructed from the propagated delineations (Section 3.2.5).

Image 

Preprocessing 

Interac0ve Delinea0on of 

Myocardium Boundaries 

at End‐Diastole 

Automa0c Propaga0on of 

Manual Delinea0ons 

Myocardium 

Reconstruc0on 

4D Images 

Myocardium 

Segmenta0on 

Figure 3.1: Main steps of the segmentation pipeline.

Notations In the following, we denote by Ik, k = 0 . . . N − 1 the N frames of

the cardiac sequence. We assume that I0 is the reference end-diastole time frame.

Mlk is the binary mask of the structure l (LV, RV, Epicardium or Myocardium) at

the frame k. Tlk is the 3D triangulation of the structure l at the frame k. x is the

spatial coordinate vector x = (x, y, z)T .

3.2.2 Image Preprocessing

The purpose of this step is to prepare the images for the segmentation of the beating

myocardium and further processing like the tracking of the myocardium. The idea

is to correct the most common artefacts of standard cMRI: slice misalignment, large

slice thickness and low contrast.

3.2.2.1 Semi-Automatic Correction of Slice Misalignment

The first important image artefact we need to deal with is slice misalignment due

to inconsistent breath-holds (Figure 3.2, left panel). Automatically correcting slice

misalignment is an active research topic in both image acquisition and image pro-

cessing. The problem is ill-posed as one needs to replace the misaligned slices at

their correct position in the 3D space, using the 3D information estimated from the

other slices (which can also be misaligned). A common approach consists in using

2D-to-3D image registration algorithms [Chandler et al., 2008]. Others propose to

use several views simultaneously (short axis, long axis, 4-chamber, etc.) to guide
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the slice correction [Elen et al., 2010]. However, such images are not always avail-

able and the patients may have moved during the different acquisitions. During this

thesis we had to deal with these artefacts, although their automatic correction was

not the main topic of research. We thus simplified the problem and used existing

tools.

To correct slice misalignment we assumed that a misaligned slice is only trans-

lated or rotated with respect to the image volume: the displacement is only 2D.

Correcting that slice thus consists in estimating the 2D transformation that replaces

it back into the volume. This is achieved by registering the misaligned slice with the

previous slice in the 3D image using a 2D-to-2D image registration algorithm. Of

course, assuming 2D displacements does not always hold as the misalignment is most

probably three-dimensional. The automatic correction may thus be suboptimal. In

case of failure, the correction can be manually adjusted using Isis1, an interactive

volume reconstruction software developed at Asclepios. It has to be noted however

that during this thesis, no manual refinement has been needed.

Because several slices may be misaligned in the volume, the 2D rigid transfor-

mations are estimated recursively, from bottom to top. Lets denote n the number

of slices of the 2D stack, S0 the first slice, Sn−1 the last slice and Sa the first mis-

aligned slice. We first estimate the 2D transformation that aligns Sa to Sa−1, which

we denote Ra. To this end, we use the block matching rigid registration algorithm

proposed by [Ourselin et al., 2001]. This algorithm relies on a dense displacement

field that minimises block matching differences between the two images to estimate

the parameters of the global rigid transformation. This approach is well-suited for

our purposes as it takes into account local displacements everywhere in the images.

Information provided by other structures like the right ventricle, the liver or the

ribs automatically helps the algorithm to preserve the longitudinal curvature of the

heart. To increase the convergence speed and the robustness of the algorithm, a

multi-resolution scheme with 5 levels is used. Once estimated, the transformation

Ra is applied to the misaligned slice and we continue on the following misaligned

slices to correct the entire volume (Algorithm 1). We finally apply the transfor-

mations Ra’s to the respective slices of the other time frames to correct the whole

cardiac sequence consistently. Figure 3.2, right panel, shows a result of automated

slice correction.

3.2.2.2 Isotropic Resampling of Images

Large slice thickness may reduce the accuracy of the interactive delineation and of

the myocardium tracking. To avoid these limitations, we resample all the images

of the corrected cardiac sequence to have isotropic voxel size. To this end, we take

the smallest spacing and then resample the images along the other dimensions using

trilinear interpolation. Let dx × dy × dz and vx × vy × vz be the dimensions and

voxel spacings of the original image. We assume without loss of generality that the

smallest spacing is s = vx. Since the real dimensions in mm of the image must not

1http://www-sop.inria.fr/asclepios/software.php
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Algorithm 1 Automatic Correction of 2D Slice Misalignment

Require: Cardiac sequence If=0...N−1 (N number of time frames)

Require: List of misaligned slices in increasing order A

1: {Stage 1}

2: Split I0 into n 2D slices Si=1...n

3: for all a ∈ A do

4: Estimate the 2D rigid transformation Ra that registers Sa to Sa−1 using block-

matching rigid registration algorithm [Ourselin et al., 2001].

5: Update the misaligned slice Sa ← Ra ◦ Sa

6: {Stage 2}

7: for all f ∈ 1 . . . N − 1 do

8: Split If into n 2D slices Si=1...n

9: for all a ∈ A do

10: Apply Ra to Sa, Sa ← Ra ◦ Sa

11: Rebuild the volume If from the n corrected slices Si=1...n

12: return Corrected volumes If

Raw Image Slice-Corrected Image

Figure 3.2: Automatic correction of slice misalignment using slice-by-slice block-

matching 2D rigid registration. One can see how the second slice has been corrected

(yellow arrow).

change after resampling, the dimensions of the resampled image write:

d′x = dx d′y = ⌈dyvy/s⌉ d′z = ⌈dzvz/s⌉ (3.1)

where ⌈·⌉ denotes the ceiling function. We then scan the voxels of the new isotropic

image and compute their grey level intensity by using trilinear interpolation. An

example of isotropic resampling is reported in Figure 3.3.

3.2.2.3 Histogram-Based Improvement of Image Contrast

The last step consists in improving the contrast of the images and in normalising

the grey level intensities with respect to a fixed scale. Each image of the cardiac

sequence is processed independently in order to have constant image intensities. The

contrast is automatically enhanced by clamping the tails of the grey level histogram.

Let lk and Lk be the grey level intensities of the 1st and 99th quantiles of the

histogram of the image Ik. Voxels whose intensity is lower than lk or higher than
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Lk are modified such that their intensity becomes lk or Lk respectively. In other

words, we automatically window the grey level intensities by saturating the very

dark and very light voxels. Afterwards, the grey levels are normalised by scaling

them between a fixed range, [0 − 255] in our experiments, according to the scaling

equation: Ik(x) = 255(Ik(x)− lk)/(Lk− lk). Figure 3.4 illustrates the effects of this

processing.

Slice-Corrected Image Resampled Image

Figure 3.3: Image resampling to get isometric voxel spacing
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Figure 3.4: Image clamping and normalisation to get a consistent range of grey

level intensities over the cardiac cycle. In these images, the contrast has been set

to the minimum and maximum grey levels to highlight the differences in intensity

dynamics.
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3.2.3 Interactive 3D Segmentation of Myocardium Boundaries us-

ing Interpolating Implicit Surfaces

The next step of the segmentation pipeline is the delineation of the boundaries

of the heart. For that matter, we developed an interactive 3D surface modeller

to delineate the left endocardium (LV), the right endocardium (RV) and the bi-

ventricular epicardium on the first frame of the cardiac sequence. The idea is to

sculpt 3D surfaces by placing control points inside, on and outside the boundaries to

delineate (Figure 3.5). Our approach relies on interpolating implicit surfaces, also

known as variational implicit surfaces [Turk and O’brien, 2002]. The control points

are strong constraints of the implicit function. In the current implementation, no

image information is used during the delineation: the tool relies entirely on the user

interactions.

This approach has been preferred to the standard slice-by-slice painting as it

naturally handles the 3D nature of the heart. The user works directly in the 3D

space, without switching between the different 2D views. The segmentation is spa-

tially consistent and easier to achieve. In addition, our approach automatically

provides smooth meshes of the delineated boundaries and an accurate mask of the

inner volume of the surface. In the following we detail the underlying principles.

Figure 3.5: Interface of the interactive 3D segmentation tool.

3.2.3.1 Interpolating Implicit Surfaces

An implicit surface S is defined as the 0-level set of a scalar-valued function f(x)

of the image space Ω ∈ R
3 [Bloomenthal and Bajaj, 1997]. For instance, a circle of

radius one is the 0-level set of the implicit function f(x) = 1 − ‖x‖ (Figure 3.6).

Proposed by [Turk and O’brien, 2002], interpolating implicit surfaces interpolate a
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set of control points while minimising the curvature of the surface. They are smooth

by construction and can represent 3D objects of any topology. Let ci, i = 1 . . . m,

be the spatial positions of m control points, or constraints, defined by the user and

hi ∈ R their scalar value. The interpolating surface defined by the ci’s is the 0-level

set of the implicit function f that optimises the constrained problem:







f = argminf

(∫

Ω

∂2f

∂x2
(x) +

∂2f

∂x∂y
(x) +

∂2f

∂y2
(x) dx

)

hi = f(ci), ∀i = 1 . . . m

(3.2)

Figure 3.6: A circle of radius 1 is the 0-level set of the implicit function f(x) = 1−‖x‖

Equation 3.2 is known as the scattered data interpolation problem [Wendland,

2005]. A large literature in the computer graphics community is devoted to the

efficient resolution of this equation (see [Turk and O’brien, 2002; Wendland, 2005]

and references therein). An elegant solution consists in using functions that are

linear combinations of radial basis functions (RBF) centred on the control points

[Schaback, 1995; Turk and O’Brien, 1999a]. RBF are radially symmetric functions

about a single point, called centre. The most common RBF for surface reconstruc-

tion are the functions r(x) = ‖x‖2 log(‖x‖) in 2D and r(x) = ‖x‖3 in 3D [Schaback,

1995; Wendland, 2005]. More advanced RBF have been proposed to reconstruct sur-

faces from very dense scattered points [Morse et al., 2001], 4D interpolation [Turk

and O’Brien, 1999b] or even anisotropic distributions [Dinh et al., 2001]. But for

our application, where few control points are used (< 200), the standard 3D RBF

r(x) = ‖x‖3 is largely sufficient [Schaback, 1995]. With this framework, the inter-

polating implicit function is of the form:

f(x) =
m∑

j=1

λjr(x− cj) + P (x) (3.3)

In this equation, the λj ’s are weight factors and the polynomial P (x) = p0 + p1x +

p2y + p3z accounts for the linear and constant portions of f . A minimiser of Equa-

tion 3.2 that writes as in Equation 3.3 is calculated by finding the weights λj and

the coefficients pi such that f verifies all the constraints [Turk and O’brien, 2002;
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Wendland, 2005]:

hi = f(ci) =
m∑

j=1

λjr(ci − cj) + P (ci),∀i

with the conditional constraints:

m∑

j=1

λj = 0,

m∑

j=1

λjcjx = 0,

m∑

j=1

λjcjy = 0,

m∑

j=1

λjcjz = 0

We have m + 4 linear equations and m + 4 variables (the λj ’s and the p′is), which

are gathered into the linear system:
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(3.4)

In this equation, rij is the value at ci of the RBF centred in cj , rij = r(ci − cj).

When all the control points are distinct, the submatrix of the rij ’s is definite

positive and the Equation 3.4 has one unique solution. If few constraints are used,

as in our case, direct solvers based on LU decomposition for instance can be used to

compute the weights of the interpolating implicit function f(x) that satisfies all the

constraints. Then, the interpolating implicit function f is evaluated at every point

of a sampling grid Γ of the image space Ω. Finally, the marching cubes algorithm

[Lorensen and Cline, 1987] is applied to compute the 3D triangulated mesh T of the

0-level set of f . The interpolation algorithm is summarised in Algorithm 2.

Algorithm 2 Interpolating Implicit Surfaces
Require: Spatial position of m control points ci and their value hi, i = 1 . . . m

1: Compute the implicit function parameters λi, p0, p1, p2 and p3 (Equation 3.4)

2: Evaluate the implicit function f on the sampling grid Γ

3: Compute the interpolating triangulated mesh T of the 0-level set of f (marching

cubes algorithm [Lorensen and Cline, 1987]).

From a computational point of view, the complexity of the interpolation algo-

rithm only depends on the number of constraints m and on the resolution of the

sampling grid on which the implicit function f is evaluated. The computational

complexity of the LU solver increases in O(m3) as m increases. In parallel, the
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computation time related to the evaluation of the implicit function f at every point

of the sampling grid Γ increases linearly in m. The resolution of the sampling

grid is also critical as the implicit function must be evaluated on the entire grid

to extract the implicit surface. Yet, these limitations are not observed in practice

since the number of control points that are placed by the user is low (m < 200) in

contrast with the typical data sets processed by the computer graphics community

(m > 10000) [Turk and O’brien, 2002; Morse et al., 2001].

3.2.3.2 Interactive 3D Segmentation

The interpolating implicit surfaces are the heart of the interactive surface modeller.

The tool allows placing three types of points in the 3D image space (Figure 3.7):

on points: They identify the voxels through which the interpolating surface must

pass. Their value is 0.

inside points: They identify the inner region of the surface (the blood pools for

instance). Their value is fixed to +1.

outside points: They identify the outer region of the surface (the background).

Their value is fixed to −1.

Inside points

Outside points

On points

Normal constraintImplicit

Surface

Figure 3.7: The implicit surface is interactively sculpted by placing control points

inside, on and outside the boundary to delineate. Pairs of on/outside points can be

used to control the surface normal.

The interpolating surface is defined as the 0-level set of the implicit function f

computed according to the Algorithm 2. Each time the user adds, deletes or moves a

control points, the interpolation algorithm is called and the 0-level set triangulation

T is updated in real-time. The mesh related to the 0-level set is immediately visible

in the 3D space and in all the 2D views of the image. To increase the accuracy

of the segmentation and to control the speed of the algorithm, the sampling grid

Γ is isotropic and embeds the image space Ω. The resolution of Γ is computed

from the smallest voxel spacing of the image. It can be made coarser, to speed

up the algorithm when images are large but at the price of a lower accuracy, and

conversely. This strategy enables the user to accurately segment images with large

slice thicknesses.
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A useful side-product of the method is its ability to provide automatically an

accurate mask of the segmented surface. By construction, the interpolating implicit

function f is positive inside the surface and negative outside. A binary mask of

the inner region is therefore obtained by a simple thresholding (Figure 3.8). This

feature is particularly useful for propagating the segmentation to the other frames

of the cardiac sequence, as we shall see in Section 3.2.4.

At the end of that stage, one has the 3D triangulations of the LV, RV and

epicardium at the end-diastole time frame (TLV0
, TRV0

and TEpi0) and their related

binary masks (MLV0
, MRV0

and MEpi0) (Figure 3.9).

Implicit Function Mask

1.0

-2.0

-5.0

0-level set

<0

>0

Implicit Surface

Fg
255

Bg
0

Figure 3.8: Left panel: Example of an implicit function. The interpolating implicit

surface is defined by the 0-level set. Right panel: The mask of the interpolating

implicit surface is obtained by thresholding the implicit function.

Guidelines for Fast and Intuitive Surface Modelling

1. Starts by placing an inside point within the structure to segment

2. Sculpt the 3D surface by positioning on points

3. To control the curvature of the surface, prefer using inside and outside points

4. To control the surface normal, place pairs of on point and outside point very

close to each other. The segment defined by the two points define the surface

normal (Figure 3.7)

5. During the sculpting, reduce the resolution of the sampling grid Γ if necessary

to maximise the reactivity of the tool.

6. At the end of the process, set the resolution of the sampling grid Γ according

to the required resolution of the final segmentation.

These guidelines are consistent with the strategies listed in [Turk and O’brien, 2002].

However, in [Turk and O’brien, 2002], the different types of constraints are used sep-

arately. In our application, the user can use all of them simultaneously to precisely

delineate the cardiac boundaries as illustrated in Figure 3.102.

2A movie illustrating the interactive segmentation tool in action is available at: http://www-

sop.inria.fr/asclepios/software/CardioViz3D/howto/
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Interactive segmentation of LV, RV and epicardium surfaces

LV mask RV mask Epicardium mask

Figure 3.9: Interactive delineation of left endocardium (in red), right endocardium

(in blue) and epicardium (in green). The surfaces are sculpted in 3D using the

interactive 3D segmentation tool. The binary masks are automatically computed

by thresholding the interpolating implicit function.

3.2.4 Smooth Propagation of the Segmentation over the Cardiac

Sequence

Once the 3D surfaces of the LV, RV and epicardium are defined, we automatically

propagate them over the cardiac cycle (Figure 3.1). A standard strategy consists

in estimating the cardiac motion from the images by using non-linear image regis-

tration. The segmentations are then warped with the estimated deformations and

propagated over the entire sequence [Perperidis et al., 2005; Bistoquet et al., 2007].

However, the quality of the dynamic segmentation highly depends on the quality of

the motion estimation. Noisy deformations yield irregular segmentations, with holes

and bumps. To cope with this issue, we developed an ad-hoc two-step propagation

approach:

1. The heart is tracked using the diffeomorphic demons, a non-linear registration

algorithm [Vercauteren et al., 2009] (Chapter 4). Demons yields dense defor-

mation fields that map the first frame of the sequence to the following frames.

The LV, RV and epicardium masks are then warped using the estimated de-

formations.

2. The binary masks are iteratively meshed using simplex deformable models

[Delingette, 1999] to ensure smooth and temporally consistent segmentations.

As a side product, point-to-point correspondence over the temporal sequence

is obtained.
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Short Axis 3D

Figure 3.10: Interactive 3D segmentation of the left ventricle endocardium. From

top to bottom, the user adds control points inside (green points), on (red points)

and outside (blue points) the left ventricle endocardium to interactively sculpt the

3D mesh (19 points used in this example).
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3.2.4.1 Step 1: Cardiac Motion Estimation

The transformation φk that match the initial frame I0 to the frame Ik is estimated

with the diffeomorphic demons [Vercauteren et al., 2009]. We refer the reader to

Chapter 4, which provides a detailed description of that algorithm along with some

contributions for cardiac motion estimation. The transformations φk are recursively

estimated to increase registration accuracy and to minimise error propagation. As-

sume that the transformation φk that registers I0 to Ik is known. We first compute

the frame-by-frame transformation Φk→k+1 that matches Ik to Ik+1. We then esti-

mate the transformation φk+1 by initialising the demons algorithm with the com-

posed transformation φk◦Φk→k+1. This strategy is more stable than frame-by-frame

propagation and more robust to large deformations than directly registering I0 to Ik.

Furthermore, it can be partially parallelised by computing all the frame-by-frame

registrations on a cluster of computers. The overall computational time is therefore

not much longer than direct tracking. In the following, the φk’s are known.

3.2.4.2 Step 2: Segmentation Propagation using Simplex Deformable

Models

To propagate the manual delineations of the myocardium over the cardiac sequence,

one could directly deform the 3D surfaces with the previously computed transfor-

mations. Each vertex of the mesh would be transported according to the displace-

ment estimated at its spatial position. However, this approach is highly sensitive

to the quality of the transformation and often yields irregular and bumpy meshes.

We tackle this limitation by propagating instead the binary masks of the surfaces

MLVk
, MRVk

and MEpik (Figure 3.15 and 3.16). The dynamic 3D surfaces are then

computed by iteratively segmenting the masks with 2D simplex deformable models,

which regularise the boundaries and ensure temporal consistency.

About Deformable Models

Algorithms based on deformable models are efficient techniques to segment ob-

jects in images. Appeared in [Kass et al., 1988], they are curves or surfaces that

evolve within the image according to forces that ensure their smoothness and drive

them towards the boundaries of the object to delineate. Two main types of de-

formable models can be distinguished: parametric deformable models [Terzopoulos,

1984; Kass et al., 1988] and geometric deformable models [Caselles et al., 1997; Mal-

ladi et al., 1995]. We refer the reader to [Montagnat et al., 2001] for a detailed

review. Parametric deformable models, or snakes, rely on a parametric representa-

tion of the surface to deform it. The convergence is fast, which makes the method

suitable for real-time applications. However, the driving forces must derive from

potential energies. Furthermore, the model parameterisation can degenerate (point

accumulation for instance), thus requiring regular remeshing steps. Geometric de-

formable models rely on the curve evolution theory and on the level set method

[Sethian et al., 1999]. In this approach, the contours are defined as the 0-level set of
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an implicit function as with the interpolating implicit surfaces. They can be driven

by forces that do not necessarily derive from a potential energy and, as they are

parameter-free, can handle topology changes easily. Furthermore, the regularisation

is based on curvature flows, which yields smoother results than parametric models.

First introduced by [Delingette, 1999], simplex deformable models have the ad-

vantages of both worlds. A simplex model is a parametric model represented by the

dual of triangulation. To each face of a triangulation corresponds a vertex of a sim-

plex mesh. Hence, every vertex of a closed simplex mesh has exactly 3 neighbours

(Figure 3.11). Similar to snakes, simplex models are driven by an external force,

which moves the vertices along the surface normal, proportionally to the distance

to the closest point of interest [Kimia et al., 1992]. Similar to the geometric mod-

els, simplex models are regularised using internal force based on surface curvature,

which ensures mesh smoothness. Overall, simplex deformable models present four

key advantages over the snakes:

1. the external force does not necessarily derive from potential energies

2. the surface curvature is simple to compute, resulting in efficient internal forces

based on curvature that do not necessarily derive from a potential energy,

3. the distribution of the vertices can be controlled during the surface evolution

for increased accuracy. No remeshing is needed.

4. the regularisation preserves the shape of the mesh, there is no “shrinking-effect”

The reader is referred to [Delingette, 1999] for further details.

Figure 3.11: Duality between triangulation (plain lines, circles) and 2D simplex

meshes (dashed lines, squares). To each face of the triangulation corresponds a

vertex of the simplex mesh, which has exactly 3 neighbours. (Image Courtesy

of [Delingette, 1999])
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A Simplex Deformable Model for Mask Regularisation

In our pipeline, we segmented the propagated masks using a standard simplex model.

The internal force minimises the surface curvature but preserves its global area

[Delingette, 1999]. We also employ an isotropic face constraint (all the faces of the

simple mesh should have the same area) to get as regular meshes as possible. The

external force is based on image isocontours (Figure 3.12). Assume that the back-

ground intensity is 0 and the foreground grey level is 255. The external force at a

given vertex P of the simplex mesh is oriented along the simplex normal and pro-

portional to the distance between P and the closest point M on the 128 isocontour.

P

M

Binary object to segment

Simplex Deformable

Model

Isocontour

Scan line

fe

Figure 3.12: Each vertex P of the simplex deformable model is driven towards the

boundaries of the object to segment by an external force fe perpendicular to the

simplex model and proportional to the distance PM .

Propagation of Segmentation over the Cardiac Sequence

Let MLVk
, MRVk

and MEpik be the masks propagated over the cardiac sequence

using the cardiac deformations estimated during the first stage. We first convert the

manual end-diastole triangulations TLV0
, TRV0

and TEpi0 into simplex meshes ΣLV0
,

ΣRV0
and ΣEpi0 . Let Σ0 be one of these simplex meshes without loss of generality.

The segmentation of the mask Mk+1 is initialised using the simplex model Σk that

results from the segmentation of the mask Mk. To preserve point correspondence,

the parameters of the simplex evolution are set such that the simplex model moves

slowly and smoothly towards the object boundaries (large internal force and low

external force). The rigidity of the model is strong to regularise holes and bumps.

The first three columns of Figure 3.15 and Figure 3.16 illustrate the dynamic

segmentation of the left and right endocardia and the epicardium in a patient with

repaired ToF. From these images one can see how the simplex deformable model

regularises the propagated masks. The surfaces are smoother than the propagated

masks, which are particularly noisy at end-systole when the papillary muscles visu-

ally “merge” with the myocardium, thus misleading the registration algorithm.
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3.2.5 Reconstruction of the Beating Myocardium

We finally reconstruct the dynamic myocardium from the smooth surfaces. To that

end, we rasterise the surfaces into binary masks whose voxel values are either zero or

one. Myocardium reconstruction is then easily performed by applying the arithmetic

formula on the voxels:

Mmyok
(x) = MEpik(x)− [MLVk

(x) + MRVk
(x)] (3.5)

Intuitively, we remove from the epicardium mask the voxels that are laying within

the endocardia.

However, applying directly this formula may yield holes in the myocardium if the

endocardial surfaces or the epicardium have not been propagated properly. To tackle

this issue, we reconstruct the myocardium such that its thickness is at least 3mm,

the thickness of a normal right ventricle wall in children. During our experiments, we

observed that the propagation of the endocardial surfaces is much more reliable than

the propagation of the epicardium because of the high contrast between the cardiac

muscle and the blood. We thus keep the endocardia and modify the epicardium

such that the thickness of the reconstructed myocardium is at least 3mm. An

Euclidian distance map is computed from the boundaries of the RV mask MRVk
by

using Chamfer algorithm [Borgefors, 1996]. Let dRVk
be this map. Inside the mask,

dRVk
= 0. Outside the mask, dRVk

(x) > 0. A voxel belongs to the myocardium if it

belongs to the epicardium mask or if its distance to the boundaries of the RV mask

is lower than 3mm. The reconstruction formula thus writes:

MMyok
(x) = [MEpik(x) || (dRVk

≤ 3)]− [MLVk
(x) + MRVk

(x)] (3.6)

Figure 3.13 illustrates that arithmetic operation on the images.

Lef Ventricle

Right Ventricle

Epicardium

Distance to RV

RV

3mm band

Reconstructed

Myocardium

Figure 3.13: The myocardium is reconstructed from the LV, RV and epicardium

masks. 3-mm myocardium thickness is ensured through Chamfer distance maps

from the RV mask.
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Myocardium reconstruction is performed for all the frames k of the cardiac se-

quence. The user can also use a valve plane to cut the bi-ventricular myocardium

at the base for simulation purposes for instance. This can be achieved using arith-

metic on images as previously: MMyok
(x) = [MEpik(x) || (dRVk

≤ 3)]− [MLVk
(x) +

MRVk
(x)] ∗ (Mvalve), where Mvalve is a binary image whose voxel grey level is zero

above the valve plane and one below. Afterwards, the triangulated mesh TMyo re-

lated to the myocardium is extracted from the first frame using meshing algorithms

such as marching cubes or CGAL3. Finally, the mesh is propagated over the cardiac

sequence using the previous simplex deformable model to ensure mesh consistency

and point correspondence.

3.3 Results on Tetralogy of Fallot

3.3.1 Segmentation of the Myocardium on cMRI of Patients with

Repaired Tetralogy of Fallot

Figures 3.14, 3.15 and 3.16 illustrate the dynamic segmentation of the bi-ventricular

myocardium of a patient with repaired tetralogy of Fallot. One can identify from

the 3D representation of patient’s heart the aneurysm of the right ventricle outflow

tract (RVOT).

000 200 400

600 800 1000

Normalised Time in ms

RVOT

Aneurysm
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Figure 3.14: Example of dynamic 3D segmentation of the myocardium (brown),

the left ventricle (LV, in red) and the right ventricle (RV, in blue). Observe the

aneurysm at the right ventricle outflow tract (RVOT) often visible in patients with

repaired tetralogy of Fallot.

3http://www.cgal.org
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Figure 3.15: Short axis view of the dynamic myocardium segmentation in a patient

with repaired tetralogy of Fallot. The time is normalised to 1 s. The first free

columns show the propagated masks and the final simplex deformable models that

regularise them. The last column shows the reconstructed myocardium segmenta-

tion. The segmentation is visually satisfying, in particular when considering the

challenges raised by cMRI and ToF patients.
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Figure 3.16: Long axis view of the dynamic myocardium segmentation in a patient

with repaired tetralogy of Fallot. The time is normalised to 1 s. In this view the

impacts of the simplex regularisation are more evident. In particular, at end-systole

(t = 0.20 s and t = 0.40 s) the simplex deformable model smoothes the bumps and

fills the holes of the propagated mask. In that patient the myocardium was cut at

the base using a user-defined valve plane (see text for details)
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3.3.2 Quantification of the Cardiac Function from Segmentation

The dynamic segmentation of the myocardium enables to compute key clinical pa-

rameters about the cardiac function. For instance, one can easily compute the blood

pool volumes and how they vary over time (Figure 3.17, left panel). From the vol-

umes at end-diastole (ED) and end-systole (ES), one computes the ejection fraction

(EF) of each ventricle, a key clinical parameter that quantifies the cardiac pump

efficiency. EF is calculated as:

EF = (V olume(ED)− V olume(ES))/V olume(ED) ∗ 100 (3.7)

In addition to volume quantification, the dynamic segmentation of the my-

ocardium enables to assess the radial displacements of the muscle over time. Such

a measurement is useful to detect cardiac asynchrony and abnormal radial motion

patterns. In virtue to the point correspondences provided by the smooth iterative

simplex-based propagation, we can estimate the displacement of any vertex of the

mesh with respect to the end-diastolic position of reference. The displacements are

then projected along the surface normal at the vertex position to get the radial

displacement. Figure 3.17, right panel, illustrates the radial displacements of the

heart in our patient. The dyskinetic motion of the RVOT aneurysm is immediately

identified. At end-systole, when the heart is contracted (inward motion highlighted

in red), the outflow tract goes outwards (in blue).
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Figure 3.17: Left panel : Volume curves computed from the dynamic segmentation.

From these curves we quantify a normal LV ejection fraction (61%) but a below-

normal RV value (41%). We also observe a left/right dyssynchrony (vertical bars,

about 100 ms shift between LV and RV end-systole peaks). Right panel : Radial

displacements. One can see the dyskinetic motion of the right ventricle outflow

tract, which dilates (in blue) when the heart contracts (in red).

3.3.3 Examples on Other Pathologies and Imaging Modalities

This segmentation pipeline has been successfully applied to other pathologies and

imaging modality. In particular, it has been applied on CT images of patients with
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heart failure [Peyrat et al., 2009] (Figure 3.18, A), on MR images of patients with

heart failure [Billet et al., 2009; Sermesant et al., 2009] (Figure 3.18, B), on healthy

subjects [Billet et al., 2008; Mansi et al., 2009d] (Figure 3.18, C) and even on animals

[Chabiniok et al., 2009] (Figure 3.18, D).

(A) Patient with heart Failure (CT)

Courtesy [Peyrat et al., 2009] (B) Patient with heart Failure (MRI)

(C) Healthy Subject (MRI)

Courtesy [Billet et al., 2008]
(D) Pig Heart (MRI)

Courtesy [Chabiniok et al., 2009]

Figure 3.18: Other applications of the proposed segmentation pipeline

3.4 Discussion

Most of the contributions of this thesis rely on 3D surfaces of the patients’ cardiac

anatomy. Developing a segmentation pipeline was therefore needed although not

the main topic of research. We decided to develop a modular framework that com-

bines specific algorithms that already exist. The choice of every component was

guided by the difficulties of the problem. In particular, we wanted a tool that could

cope with any imaging modality, but most especially cMRI as these images were the

only available during this thesis. We wanted to quickly segment the myocardium of

any subject, but with particular focus on tetralogy of Fallot patients, whose right

ventricle anatomy challenged most of the state-of-the-art algorithms. Because no au-

tomatic tools that were available could cope with such a variability, we implemented
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an interactive 3D surface modeller and made it available to the community as part

of the free software CardioViz3D4 [Toussaint et al., 2008]. The delineated surfaces

were then propagated automatically using non-linear image registration and sim-

plex deformable models to ensure spatial and temporal consistency. Qualitatively,

the results were satisfying and adapted to the subsequent analyses. Unfortunately,

the lack of ground truth prevented quantitative evaluations, in particular regarding

the automatic propagation. Finally, the modularity of the framework enabled us to

integrate results from other segmentation algorithms when available.

The interactive surface modeller is probably the most important contribution of

this section. We use it for the interactive segmentation of anatomical structures, as

an interactive sketcher [Mao et al., 2009]. This contrasts with previous approaches

that use variational implicit surfaces to reconstruct surfaces from sparse anatomical

data [Yoo et al., 2001]. As it has been shown in Section 3.3.3, the surface modeller

has been employed with success by other users [Billet et al., 2008; Toussaint et al.,

2008; Sermesant et al., 2009; Billet et al., 2009; Peyrat et al., 2009] and [Chabiniok

et al., 2009]. Working directly in the 3D space, it yields segmentations that are

smooth and spatially consistent. The left ventricle is particularly easy to segment

thanks to its ellipsoidal shape that suits perfectly the implicit surface framework.

The modeller has room for improvements. At the present time, it relies exclu-

sively on user inputs, no image information is used. An interesting development thus

consists in adding image information to interactively guide the sculpted surface to

the closest boundaries. An idea would be to transform, at the end of the mod-

elling process, the interpolating implicit surface into a simplex deformable model.

The model would then be driven towards image boundaries but constrained to pass

through the on control points placed by the user [Delingette et al., 2001]. Another

limitation of the tool raises from the use of 3D thin-plate RBF, which are easy to

implement and fast to compute but have global support. Because they have non-null

values everywhere in space, each constraint has an influence everywhere in the im-

age. This can yield undesired behaviours during the surface modelling. The shape

of the surface can globally change when adding a single point. One can alleviate

this limitation by using more complex RBF with compact support, as proposed by

[Schaback, 1995; Morse et al., 2001]. The influence of each constraint would become

local, the user thus controls the local shape of the surface perfectly. Additionally,

despite the increased complexity of the RBF, the computational efficiency would be

improved as the evaluation of the implicit function at a given voxel of the sampling

grid would require evaluating only the few neighbouring RBF.

Other interesting developments consist in improving the propagation of the man-

ual delineation over the cardiac sequence. In our pipeline, no prior knowledge is used

about the cardiac motion. The masks are directly propagated, without constraints.

A first idea consists in using the incompressible demons algorithm we present in the

Chapter 4 to improve the accuracy of the recovered deformations. Alternatively,

reconstructing the myocardium from the propagated surfaces could also be done

under the incompressibility constraint, like in [Zhu et al., 2010], which could yield

4http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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more accurate results than our ad-hoc minimal-thickness rule. The tracking algo-

rithm can also be improved by enforcing temporal constraints as in [Declerck et al.,

1997; Perperidis et al., 2004; Delhay et al., 2007; Yang et al., 2008b; Ionasec et al.,

2009, 2010]. The simplex deformable model could also be constrained temporally

[Montagnat and Delingette, 2005]. Nevertheless, the more complex the algorithm

is, the more priors are integrated and the less general the algorithm becomes.
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In Chapter 3 we proposed a pipeline for delineating the myocardium from medical

images. The segmentation gives us hints on the heart shape and apparent motion.

Yet, the heart is a moving organ and quantifying its intrinsic three-dimensional

deformation is crucial for a comprehensive evaluation of its condition [Moore et al.,

2000]. Imaging modalities have been developed to measure the cardiac deformation

but when they are not available, little can be provided to the clinicians to assist

their diagnosis. Unfortunately, this situation is common in paediatrics.

This chapter and Chapter 5 tackle the objective of estimating the cardiac de-

formation from dynamic anatomical images like standard cMRI. To cope with the

scarce textures and the low image quality, we constrain a non-linear image regis-

tration algorithm based on demons approach to provide elastic and incompressible

deformations, two major features of the myocardium [Glass et al., 1991]. This leads

us to closely investigate demons regularisation. In the following sections, we present

the proposed methodology. How it applies to cardiac deformation recovery is de-

tailed in Chapter 5.
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4.1 Motivation

Tissue tracking in sequences of medical images is an important task in many clinical

applications, either for disease diagnosis or therapy guidance. However there is no

easy way to achieve it, even with user input. A standard approach is to use non-

linear image registration to estimate dense spatial transformations between images.

For instance, cardiac motion is commonly estimated by non-linearly co-registering

the frames of a cardiac sequence, yielding a dense displacement field that quantifies

myocardium motion [Rueckert et al., 2006b; Bistoquet et al., 2008].

In practice, non-linear image registration is performed by minimising a dissim-

ilarity criterion between the images to register, up to a regularisation term that

models prior knowledge about the spatial transformations. For clinical applications,

it is often required to estimate smooth one-to-one mappings for consistent analyses.

In addition, the transformations must be compatible with the properties of the tis-

sue to track, such as elasticity and incompressibility. This is all the more important

if the estimated deformations are used to analyse anatomical changes between dif-

ferent time points [Ashburner et al., 1998]. Nevertheless, adding these constraints

to image registration algorithms often yields additional computational complexity.

State of the Art

Diffeomorphic Non-Linear Image Registration

With the recent advances in computational anatomy, mathematical frameworks

based on diffeomorphic deformations have been developed to estimate one-to-one

differentiable mappings between two images. Recent algorithms parameterise the

transformations by velocity fields according to the Lagrange transport equation

[Arnold, 1989]. When the velocity fields vary over time, large diffeomorphic de-

formations can be estimated using the Large Deformation Diffeomorphic Metric

Mappings (LDDMM) [Miller et al., 2002b; Beg et al., 2005]. However, complex

partial differential equations must be integrated over time, resulting in a large com-

putational cost. To tackle this limitation, recent works relied on stationary velocity

fields, which are efficiently integrated through exponential maps [Arsigny et al.,

2006a; Bossa et al., 2007; Hernandez et al., 2009].

Among the methods based on stationary velocities, logDemons [Vercauteren

et al., 2008] is an efficient non-linear registration algorithm based on the demons

alternate optimisation [Thirion, 1998]. Two images are registered by alternating an

optimisation step, which updates the stationary velocity field in a voxel-wise man-

ner, and a Gaussian smoothing step, which models a diffusion motion. LogDemons

algorithm is appealing as it ensures diffeomorphic mappings, it enables one to work

on velocities and transformations simultaneously, and its complexity is linear in the

number of voxels. However, the diffusion prior may not be appropriate for tracking

biological tissues as it has no physical meaning. Mathematical justification of the

demons optimisation step has been provided [Cachier et al., 2003; Vercauteren et al.,

2009] but the theoretical foundations of the Gaussian regularisation still has to be
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consolidated [Pennec et al., 1999; Modersitzki, 2004; Cahill et al., 2009].

Elastic Non-Linear Image Registration

First introduced by [Broit, 1981], elastic registration algorithms consist in regular-

ising the transformations by using the linear elasticity equation, also known as the

Lamé equation. Nonetheless, these regularisers are suitable for small displacements

only and can yield discontinuities in the derivatives of the regularised deformations,

and thus in the strains [Modersitzki, 2004]. Techniques based on smooth elastic-body

splines have been developed [Rueckert et al., 1999; Sorzano et al., 2005]. Yet, they

are computationally demanding and diffeomorphic mappings are ensured through

ad-hoc penalisation of the registration energy [Rueckert et al., 2006a; DeCraene

et al., 2009], which makes the computation of the inverse transformation critical.

[Cachier and Ayache, 2004] demonstrated that the linear Lamé equation is actually

a specific first order isotropic differential quadratic form (IDQF) of the transforma-

tion. High order IDQF can be designed, resulting in elastic-like regularisation of

any order of smoothness. [Cachier and Ayache, 2004] also conjectured a separable

elastic-like vector filter that behaves like an IDQF of infinite order. This filter has

been used in demons algorithms in place of the Gaussian kernel [Cachier and Ayache,

2004; Mansi et al., 2009d], resulting in efficient and stable elastic-like registration.

Yet, its link with IDQF energies is still not clear.

Incompressible Non-Linear Image Registration

Incompressible deformations cannot be recovered with elastic regularisers alone, ex-

plicit constraints must be added. A transformation is locally volume-preserving if its

Jacobian determinant equals one. This constraint is non-linear and requires ad-hoc

numerical schemes that are computationally demanding. Jacobian determinant can

be directly constrained [Haber and Modersitzki, 2004] or introduced as a penalty

term in the registration energy [Tanner et al., 2002; Rohlfing et al., 2003]. In [Bis-

toquet et al., 2008], the authors proposed to use the linear approximation of that

constraint, i.e. the divergence of the displacements is null. However, volume drifts

appear when deformations become large, which the authors controlled by penalising

the energy functional.

When estimating fluid motion, incompressibility is satisfied if the velocity of

the fluid is divergence-free. Building up on this observation, countless optical flow

techniques [Horn and Schunck, 1981] based on the continuity equation and the

divergence-free constraint have been developed to estimate incompressible fluid mo-

tion from 3D images (see [Heitz et al., 2009] and reference therein). [Song and

Leahy, 1991] and [Gorce et al., 1997] applied this approach to estimate 3D cardiac

velocity from 4D CT images. [Cuzol et al., 2007] combined the optical flow algo-

rithm with the Helmholtz decomposition to estimate 2D fluid motion parameterised

by divergence-free and curl-free parameter maps. [Saddi et al., 2007] constrained a

fluid registration algorithm to be incompressible by projecting the update velocities

onto the space of divergence-free vector field using Helmholtz decomposition. All



64 Chapter 4. Efficient Elastic Incompressible Image Registration

these techniques showed satisfying results and demonstrated that incompressibility

constraints can improve the estimation of incompressible fluid motion. However,

the fluid model may not be suitable for tracking elastic biological tissues: the in-

compressibility condition on the transformation is usually preferred for biological

applications.

Interestingly, one can demonstrate that diffeomorphic transformations parame-

terised by divergence-free velocity fields through the transport equation are incom-

pressible [Evans, 1998]. [Hinkle et al., 2009] for instance used this property to guide

image reconstruction of incompressible organ with LDDMM and divergence-free

time varying velocity fields.

Model-Based Non-Linear Image Registration

For tracking biological tissues, some authors proposed to guide non-linear registra-

tion algorithms with biomechanical models. These approaches have been success-

fully applied in cardiac motion estimation [Papademetris et al., 2000; Sinusas et al.,

2001; Veress et al., 2005; Phatak et al., 2009; Sundar et al., 2009a] and brain shift

estimation [Ferrant et al., 2001; Clatz et al., 2005]. However, the underlying models

often rely on physical parameters that are difficult to determine for a given patient.

Besides, such models may not apply anymore in pathological cases. Finally, they

all require meshing the space domain in order to solve complex partial differential

equations. For all these reasons we prefer here a purely image-driven algorithm.

This chapter describes a consistent and efficient framework for elastic incom-

pressible non-linear registration based on logDemons algorithm. The registration is

entirely performed in the log-domain. The constraint is strongly ensured and is ap-

plied directly in the demons minimisation space. After a brief introduction to the log-

Demons algorithm (Section 4.2), we propose a mathematical justification of demons

Gaussian regularisation that enables to adapt the algorithm to other transforma-

tion models (Section 4.3). We then replace that regulariser with multi-order IDQF

whose minimiser is exactly computed with [Cachier and Ayache, 2004] elastic-like

vector filter. Finally, strong incompressibility is ensured by constraining the station-

ary velocity fields that parameterise the transformations to be divergence-free (Sec-

tion 4.4). Our method, hereafter termed iLogDemons, is mathematically consistent,

all its elements and parameters are controlled. The proposed demons framework

results in the following advantages with respect to previous techniques: i) the elastic

regulariser and the incompressibility constraint are linear, yielding low computa-

tional overhead, ii) they are rigorously integrated in the demons energy functional,

yielding closed form minimisers that can be easily enabled/disabled by the user and

applied to subdomains of the images, and iii) incompressibility constraint is strongly

enforced: no volume drifts appear. Section 4.5 reports results on synthetic datasets

with known ground truth.
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4.2 Background: Log-Domain Diffeomorphic Demons

Proposed by [Vercauteren et al., 2008], log-domain diffeomorphic demons algorithm,

hereafter termed logDemons, is an efficient non-linear registration algorithm based

on demons approach [Thirion, 1998]. Given a reference image R and a template

image T , logDemons estimates a dense spatial transformation φ that best aligns

T to R. This is achieved by alternating an optimisation step, which updates the

transformation in a voxel-wise manner, and a regularisation step, which traditionally

consists in a Gaussian smoothing. In [Cachier et al., 2003], the authors justified the

demons algorithm by the alternate minimisation of the energy functional:

E(φ, φc) =
1

σ2
i

‖R− T ◦ φc‖2L2
+

1

σ2
x

dist(φc, φ) +
1

σ2
d

‖∇φ‖2L2
(4.1)

In this equation, φ is the dense spatial transformation to estimate and φc is an

intermediate transformation, called correspondences, that matches the two images

without considering the regularity of the transformation. The first term of Equa-

tion 4.1 is the similarity criterion or data term. It measures how R and T ◦ φc

are similar. σ2
i relates to the noise in the images. The last term of Equation 4.1 is

the regulariser whose strength is controlled by σ2
d. It ensures the spatial smooth-

ness of the transformation φ, here by penalising large gradients, and models prior

knowledge about the transformation to recover. The second term of Equation 4.1

couples the correspondences φc with the smooth transformation φ. It unifies in a

common mathematical framework the optimisation step, which amounts to min-

imising E(φ, φc) with respect to φc, and the regularisation step, which consists in

minimising E(φ, φc) with respect to φ.

In logDemons, the registration energy E(φ, φc) is adapted to estimate spatial

transformations that are parameterised by stationary velocity fields v through the

exponential map φ = exp(v). Such transformations belong to the subspace of diffeo-

morphisms G generated by the one-parameter subgroups of diffeomorphisms. The

tangent space of velocities V is the log-domain. As v is stationary, the exponential

map exp(v) is efficiently computed using a “scaling-and-squaring” algorithm [Ar-

signy et al., 2006a] (see appendices). Alternatively, φ can be defined as the solution

of the Lagrange transport equation: ∂φ(x, t)/∂t = v(φ(x, t)), φ(x, 0) = x. With

φ = exp(v) and φc = exp(vc), logDemons energy writes in the log-domain:

E(v,vc) =
1

σ2
i

‖R− T ◦ exp(vc)‖2L2
+

1

σ2
x

‖ log(exp(−v) ◦ exp(vc))‖2L2
+

1

σ2
d

‖∇v‖2L2

(4.2)

During the optimisation step, we minimise E(v,vc) with respect to vc. The cor-

respondence field φc is modelled with the diffeomorphic update rule φc = exp(vc) =

φ◦exp(δv), where φ is the current estimate of the transformation to recover and δv is

an unknown small update velocity field, the so-called demons force. Gauss-Newton
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algorithm and an efficient second-order minimisation (ESM) scheme yield:

δv(x) = −R(x)− T ◦ φ(x)

‖J(x)‖2 + σ2
i /σ2

x

J(x) (4.3)

where J(x) is the symmetric gradient J(x) = (∇R(x) +∇(T ◦ φ)(x))/2. In virtue

of the diffeomorphic update rule φc = φ ◦ exp(δv) = exp(v) ◦ exp(δv), we can apply

Baker-Campbell-Hausdorff (BCH) formula to estimate the correspondence velocity

vc without computing the logarithm of the updated correspondences φc. Indeed,

BCH formula gives an approximation of the velocity field vc = Z(v, δv) such that

exp(vc) = exp(v) ◦ exp(δv). As shown in [Vercauteren et al., 2008], the first order

approximation is sufficient for image registration purposes. We thus have:

vc = Z(v, δv)

= v + δv + 1/2[v, δv] + 1/12[v, [v, δv]] + O(‖δv‖2)
(4.4)

In the previous equation, the Lie bracket [·, ·] is defined by [v, δv] = (∇v)δv −
(∇δv)v. Although it is not clear whether theoretically the space G is a BCH-Lie

group [Glockner, 2006], BCH composition of diffeomorphisms of G has experimen-

tally shown promising results in terms of image registration and statistics on diffeo-

morphisms [Bossa et al., 2007; Vercauteren et al., 2008].

Once vc is calculated, Equation 4.2 is minimised with respect to v. This step

is performed by smoothing vc with a Gaussian kernel Gσ. Next section investigates

how this smoothing relates to E(v,vc). The main steps of the logDemons algorithm

are reported in the pseudo-code (Algorithm 3).

Algorithm 3 LogDemons Registration

Require: Stationary velocity field v0. {Usually v0 = 0, i.e. φ0 = Id}.

1: loop {over n until convergence}

2: Compute the update velocity: δvn (Equation 4.3).

3: Fluid-like registration: δvn ← Gσf
⋆ δvn, Gσf

is a Gaussian kernel.

4: Update the velocity field: vn ← Z(vn−1, δvn) (Equation 4.4).

5: Diffusion-like registration: vn ← Gσ ⋆ vn, Gσ is a Gaussian kernel.

6: Update the warped image T ◦ φn = T ◦ exp(vn).

7: return v, φ = exp(v) and φ−1 = exp(−v).

About LogDemons Parameters LogDemons is controlled by four parameters:

the image noise σ2
i , the uncertainty on the correspondences σ2

x and the regularisa-

tion strengths σ2
f and σ2. The noise in the images is estimated at every voxel by

σ2
i (x) = |R(x) − T ◦ φ(x)|2 [Cachier et al., 1999; Vercauteren et al., 2009]. As in

Thirion demons, such an estimator normalises δv to prevent too large updates that

would hamper the stability of the algorithm. In particular, building on [Cachier

et al., 1999], Vercauteren et al. demonstrated that the maximum amplitude of the

update velocity δv is upper bounded by σx/2 [Vercauteren et al., 2009]. More global
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noise estimators fail to limit the update velocities, which can become large and ul-

timately yield non diffeomorphic transformations. This behaviour was confirmed

experimentally using Gaussian based noise estimated. σ2
f controls the strength of

the fluid-like regularisation. In practice, σ2
f = 0.5 is recommended. Finally, σ2

controls the strength of the regularisation, as we shall discuss in the next section.

It has to be stressed that here, the three parameters σ2
x, σ2

f and σ2 are explicitly

decoupled as in [Cachier et al., 2003; Vercauteren et al., 2008] in contrast to other

formulations of demons where σ2
x is implicit.

4.3 From Demons Gaussian Regularisation to Elastic-

Like Regularisation

4.3.1 Insights into LogDemons Gaussian Regularisation

A consistent mathematical formulation of logDemons regularisation is required to

adapt the algorithm to other transformation models. In scale-space theory, one can

demonstrate that the Gaussian smoothing is the solution to the Tikhonov estima-

tion problem with equal weighting of the spatial derivatives in the Taylor series

sense [Nielsen et al., 1994]. We thus replace the first-order logDemons regulariser

‖∇v‖2/σ2
d by the infinite sum Tikhonov regulariser defined by:

Rdif (v) =

∫

Ω

+∞∑

k=1

∂i1..ikvik+1
∂i1..ikvik+1

σ2
xσ2k

d k!
(4.5)

In this equation, Ω is the image domain and ∂ik..il denotes the composition of

spatial derivatives ∂ik ..∂il . A simplified Einstein notation convention is used: In-

dices that are repeated twice in a product are summed all over their range (e.g.

vivi = v2
1 + v2

2 + v2
3 if v : R

3 → R
3). Rdif has been divided by σ2

x to simplify the

integration of the regulariser with demons coupling term. The regularisation weight

σ2
d is function of the derivative orders to preserve the shape of the impulse response

related to the regulariser [Nielsen et al., 1994]. Minimising the registration energy

Equation 4.2, modified using Equation 4.5, with respect to v amounts to minimising

the regularisation energy:

Ereg(v) =
1

σ2
x

‖ log(exp(−v) ◦ exp(vc))‖2L2
+

∫

Ω

+∞∑

k=1

∂i1..ikvik+1
∂i1..ikvik+1

σ2
xσ2k

d k!
(4.6)

By linearising the first term using the zeroth order approximation of BCH formula

(Equation 4.4), log(exp(−v) ◦ exp(vc)) ≈ vc−v, Equation 4.6 becomes a Tikhonov

estimation problem:

Ereg(v) =
1

σ2
x

‖vc − v‖2L2
+

∫

Ω

+∞∑

k=1

∂i1..ikvik+1
∂i1..ikvik+1

σ2
xσ2k

d k!
(4.7)
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It follows from the optimal condition ∂vEreg(v) = 0:

v +
+∞∑

k=1

(−1)k

σ2k
d

∆kv

k!
= vc

where ∆ is the Laplacian operator. We solve this equation in the Fourier domain.

Let v̂(w) = F(v(x)) be the Fourier transform of the velocity field v(x), w is the

frequency variable. We have:
∞∑

k=0

(wTw)k

σ2k
d k!

v̂(w) = exp

(
wTw

σ2
d

)

v̂(w) = v̂c(w) (4.8)

where the exponential appears from its Taylor series. Let σ2 = 2/σ2
d. The velocity

v is obtained by smoothing vc with the Gaussian kernel

Gσ = 1/
√

2πσ2
d
exp(−xTx/(2σ2))

d being the image dimension. We retrieve the demons regularisation. We verify that

the higher σ2
d, the lower σ2 and the less regularised the transformation: The width

σ2 of the Gaussian kernel corresponds to the strength of the regularisation σ2
d. It

has to be noted that the derivation of Equation 4.7 with respect to v implies that all

the spatial derivatives of v vanish at the boundaries ∂Ω of Ω. Gaussian smoothing

must be performed accordingly by extending the image periodically for instance or

by ensuring that the moving structure stays far from the image boundaries.

Scale-space theory provides another interesting insight into the algorithm. As

shown in [Nielsen et al., 1994], the Gaussian smoothing, which is now the exact

minimiser of the regularisation energy Ereg(v), is also the solution of the heat equa-

tion. This further justifies why logDemons, and demons algorithms in general, are

considered as diffusion registration methods [Pennec et al., 1999; Modersitzki, 2004;

Cahill et al., 2009].

4.3.2 Elastic-Like LogDemons

The previous developments enable us to directly integrate an elastic regularisation

in the logDemons framework. To preserve demons computational efficiency, we pro-

pose a regulariser based on multi-order isotropic differential quadratic forms (IDQF)

whose minimiser is exactly computed using the separable elastic-like kernel filter pro-

posed by [Cachier and Ayache, 2004]. With the simplified Einstein convention, the

kth-order IDQF of a vector field v is defined by:

Qk
el(v) = αk∂i1..ikvik+1

∂i1..ikvik+1
+ βk∂i1..ikvik+1

∂ik+1i2..ikvi1 (4.9)

αk and βk are scalar coefficients of R, αk ≥ 0 and βk ≥ −αk to ensure the positive-

ness of Qk
el. With αk = 1/k! we recognise in the first term of Qk

el the kth term of the

previous Tikhonov regulariser (Equation 4.5). Elasticity is thus obtained through

the second term of Qk
el. We define the elastic regularisation as:

Ereg(v) =
1

σ2
x

‖vc − v‖2L2
+

∫

Ω

+∞∑

k=1

Qk
el(v)

σ2k
d σ2

x

(4.10)



4.3. From Gaussian Regularisation to Elastic-Like Regularisation 69

From the functional derivatives:

∂v(∂i1..ikvik+1
∂i1..ikvik+1

) = (−1)k∆kv

∂v(∂i1..ikvik+1
∂ik+1i2..ikvi1) = (−1)k∆k−1∇∇Tv

It follows the optimal condition:

v +
∞∑

k=1

(−1)k

σ2k
t

[

αk△kv + βk△k−1∇∇Tv
]

= vc (4.11)

which is solved in the Fourier domain. Note that when k = 1, the regulariser

becomes the first-order Lamé elastic equation. According to the identities

F

(

△kv(x)
)

= (−1)k
(
wTw

)k
v̂(w)

F(△k−1∇∇Tv(x)) = (−1)k(wTw)k−1wwT v̂(w)

Equation 4.11 is transformed as:









(

1 +
∞∑

k=1

αk(w
Tw)k

σ2k
d

)

︸ ︷︷ ︸

A

Id +

(
∞∑

k=1

βk(w
Tw)k−1

σ2k
d

)

︸ ︷︷ ︸

B

wwT









v̂(w) = v̂c(w)

Since A and B are scalars, we can apply Sherman-Morrison inversion formula, which

yields the closed form solution:

v̂(w) =

[
1

A
Id− 1

A

(
B

A + BwTw

)

wwT

]

︸ ︷︷ ︸

M

v̂c(w)

The optimal velocity field v is therefore obtained by filtering the correspondence

velocity vc with the filter M in the Fourier domain. Computational efficiency is

greatly improved by choosing the coefficients αk and βk such that M is separable.

If αk = 1/k!, A is the Gaussian kernel found in the previous section. One can

demonstrate that if βk is defined by (see appendices, page 84):







β0 = 0,

βk =
k∑

i=1

γi σ2i
d /(k − i)!, ∀k ≥ 1

and γ ∈ R, then the second term of the filter M is proportional to the Hessian of the

Gaussian kernel exp(wTw/σ2
d). With σ2 = 2/σ2

d and γ = σ2κ/(κ + 1) we retrieve

the elastic-like separable vector filter proposed by [Cachier and Ayache, 2004]:

v =

(

Gσ Id +
σ2κ

1 + κ
HGσ

)

⋆ vc = Gσ,κ ⋆ vc (4.12)
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HGσ(x) is the Hessian of the Gaussian kernel Gσ and Gσ,κ is the elastic-like vector

filter. When κ = 0, Gσ,κ=0 is the Gaussian filter and the elastic regularisation

energy (Equation 4.10) is exactly the diffusion energy (Equation 4.7). It is therefore

straightforward to switch between regulariser.

As for diffusion regularisation, σ2 controls the strength of the regularisation.

The elastic parameter κ behaves like the Poisson ratio ν of the theory of elasticity

by controlling the cross-effects of the smoothing between the vector components.

In [Cachier and Ayache, 2004], the authors showed that the higher κ, the more

incompressible the deformation. This property still holds here even though Gσ,κ

acts on velocities and not on deformations. Indeed, the stationary velocities v

are parameters of the deformations, their norm is directly related to the length of

the deformations (
∫ 1
0 ‖v(t)‖2V dt1/2 = ‖v(t = 0)‖2V , V is the space of velocities).

Smoothing v(t = 0) thus amounts to smoothing φ. This is very different from fluid

registration which regularises the infinitesimal increments i.e., the instant velocities

v(t). However, elastic-like regularisation may not be sufficient to recover locally

incompressible deformations. κ only controls incompressibility at a global scale as

it is a global parameter. Furthermore, perfect incompressibility would be reached

only when κ→∞. Hard constraints must be used when strong incompressibility is

required.

4.4 Incompressible LogDemons

A transformation φ is locally incompressible if its Jacobian determinant |∇φ| equals

one. This non-linear constraint however is computationally demanding. For dif-

feomorphic transformations one can show that the condition on fluid motion holds.

Integrating divergence-free velocities over time yields incompressible deformations

(see appendices, page 84). Making logDemons incompressible is thus achieved by

constraining the velocity field v to be divergence-free. This only alters the reg-

ularisation step as the optimisation stage minimises E(v,vc) with respect to the

correspondence velocity vc, which is not constrained.

Helmholtz decomposition states that any velocity v that vanishes at infinity can

be uniquely decomposed into the sum of a divergence-free field and a curl-free field.

Using variational calculus and Lagrangian multipliers, Simard and Mailloux demon-

strated that the Helmholtz decomposition projects v onto the space of divergence-

free vector field in the L2-norm sense [Simard and Mailloux, 1988]. We employ here

a similar technique to integrate the divergence free constraint in the registration

energy.

We want to minimise Equation 4.10 under the divergence-free constraint ∇ ·v =

0. Let p be the Lagrangian multiplier associated to the constraint. p is a scalar field

of the Sobolev space H1(Ω) = {p ∈ L2(Ω) | ∀i ∂p/∂xi ∈ L2(Ω)} that vanishes at

infinity (p ∈ H1
0 ). Intuitively, p is the pressure field that generates the sinks and the

sources of the velocity field. Minimisers of the energy Equation 4.10 (or Equation 4.7
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if κ = 0) under the divergence-free constraint are optima of the Lagrange function:

Preg(v, p) =
1

σ2
x

‖vc − v‖2L2
+

∫

Ω

+∞∑

k=1

Qk
el

σ2
xσ2k

d

− 2

σ2
x

∫

Ω
p ∇ · v (4.13)

The Gâteaux derivatives of the previous equation yields two optimal conditions:

∇ · v = 0 (4.14)

v +

∞∑

k=1

(−1)k

σ2k
d

(αk△kv + βk△k−1∇∇Tv) = vc −∇p (4.15)

with p = 0 at the boundaries ∂Ω of the image domain. The optimal velocity field v is

therefore computed by smoothing the right hand side of Equation 4.15, g = vc−∇p,

with the kernel Gσ,κ. To compute g, we take the divergence of Equation 4.15.

Knowing that under the optimal condition we ∇·v = 0, we get the Poisson equation

under 0-Dirichlet boundary conditions:

∆p = ∇ · vc ∈ H−1(Ω) (4.16)

where H−1(Ω) is the dual of H1
0 (Ω)1. p can thus be computed independently of

v by solving Equation 4.16. This is exactly the Helmholtz decomposition of vc.

g = vc −∇p is the L2 projection of vc to the space of divergence-free vector fields,

as ∇ · g = ∇ · vc − ∆p = 0. ∇p is the orthogonal curl-free component. Ensuring

divergence-free velocity fields thus consists in projecting the correspondence velocity

onto the space of divergence-free vector fields and smoothing the result.

With this approach, the incompressibility constraint can be applied within a sub-

domain Γ ⊂ Ω only by defining p ∈ H1
0 (Γ), p = 0 on Ω/Γ. This may be useful for

tracking incompressible tissues localised in space, like the cardiac muscle. However,

particular care must be taken at the domain boundaries ∂Γ. Although Gaussian

smoothing theoretically preserves vector field divergence, in practice unconstrained

velocities close to ∂Γ may leak inside the incompressible domain due to the Gaussian

convolution, ultimately resulting in volume drifts. Yet, Gaussian filter and vector

derivatives commute for well-designed filters such as Deriche recursive filters [De-

riche, 1993]. We therefore replace the theoretical “project-and-smooth” strategy by a

“smooth-and-project” approach that preserves the divergence close to ∂Γ. To further

limit numerical instabilities, a smooth domain transition is implemented in a narrow

band around Γ by diffusing the pressure field p using heat-transfer equation [Evans,

1998]. The main steps of the proposed algorithm, henceforth termed iLogDemons,

are summarised in (Algorithm 4). Note that the incompressibility constraint can be

easily disabled by skipping the 6th and 7th steps of the algorithm.

1In the continuous domain, one would need p to be twice differentiable in order to compute

the Laplacian. H1
0 is sufficient in practice as Equation 4.16 is solved on a discrete grid, the

Laplacian being computed on discrete points which can be seen as delta Dirac. The Sobolev space

of distributions H−1(Ω) is thus enough to calculate ∆p.
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Algorithm 4 iLogDemons: Incompressible Elastic LogDemons Registration

Require: Stationary velocity field v0. {Usually v0 = 0 i.e. φ0 = Id}.

1: loop {over n until convergence}

2: Compute the update velocity: δvn (Equation 4.3).

3: Fluid-like regularisation: δvn ← Gσf
⋆ δvn, Gσf

is a Gaussian kernel.

4: Update the correspondence velocity: vn ← Z(vn−1, δvn) (Equation 4.4).

5: Elastic-like regularisation: vn ← Gσ,κ ⋆ vn (Equation 4.12).

6: Solve: ∆p = ∇ · vn with 0-Dirichlet boundary conditions (Equation 4.19).

7: Project the velocity field: vn ← vn −∇p.

8: Update the warped image T ◦ φn = T ◦ exp(vn).

9: return v, φ = exp(v) and φ−1 = exp(−v).

About Divergence-Free Update Velocity One could also constrain the corre-

spondence field φc to be incompressible in order to find the optimal image matching

that satisfies the constraint (see appendices, page 86). When the transformation φ

is incompressible, it follows from the diffeomorphic update rule φc ← φ ◦ exp(δv)

that φc is incompressible if δv is divergence-free. Yet, from a theoretical perspective,

adding such a constraint to the iLogDemons would have little effect on the result. In

theory, constraining v to be divergence-free amounts to projecting vc to the space of

divergence-free vector fields. φc is therefore incompressible. Since the composition

of two continuous incompressible fields is incompressible, exp(δv) is also incompress-

ible and δv is divergence-free. When the zeroth order BCH approximation is used

to compute vc, the linearity of the projector yields the same conclusion. The two

approaches are hence equivalent. Yet, small differences may arise in practice due to

the numerical approximations (scaling-and-squaring integration, numerical accuracy

of the composition, etc.). We will experimentally evaluate when it is necessary to

use this additional constraint.

Numerical Implementation The algorithm has been implemented using ITK

and the open source implementation of the log-domain demons [Dru and Ver-

cauteren, 2009]. The Poisson Equation 4.16 is discretised on the image grid using

finite difference schemes [Simard and Mailloux, 1988] as the incompressible domain

Γ may be of irregular shape. Its resolution is performed using PETSc library (see

appendices, page 87).

Algorithm Complexity Despite the additional constraints, the complexity of

the algorithm remains reasonable. Demons update velocity is computed at each

voxel. The elastic-like filter is computed using Gaussian convolutions, no signifi-

cant overhead is added to the original Gaussian filtering. The complexity of the

divergence-free projector directly depends on the number of voxels of the incom-

pressible domain Γ. It requires computing i) the divergence of the velocity field,

ii) the gradient of the pressure field p, and iii) solving a linear system with n × n

elements, where n is the number of voxels of the incompressible domain. The di-
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vergence and gradient operators are linear in the number of voxels. The Poisson

Equation 4.16 is solved at each iteration using iterative solvers like GMRES [Saad,

2003]. To speed up the process, we build the linear matrix and precondition it only

once, at the very beginning of the algorithm, as the matrix is constant. However

the system resolution can be time consuming if the domain is large. Should the

incompressibility be ensured over the entire image domain Ω, more efficient Fourier

techniques can be preferred [Hinkle et al., 2009].

4.5 Experiments and Results

Three experiments were performed on synthetically generated datasets to evaluate

how much iLogDemons improves the recovery of incompressible deformations with

respect to the original logDemons.

1. As a preliminary experiment, we verified that deformations parameterised by

divergence-free stationary velocity fields are actually incompressible.

2. Then, we tested the ability of the elastic regularisation alone to estimate ran-

dom incompressible deformations.

3. Finally, we evaluated the incompressibility constraint on large analytic incom-

pressible transformations.

In the following, logDemons refers to the unconstrained logDemons algorithm,

either with diffusion or elastic-like regularisation (Algorithm 3). iLogDemons refers

to the proposed incompressible logDemons algorithm, where the velocities v are

constrained to be divergence-free (Algorithm 4). We also evaluated the fully con-

strained iLogDemons, where both the update velocities δv and the velocity v are

divergence-free. This algorithm is called i2LogDemons.

4.5.1 Incompressibility of Deformations Parameterised by Divergence-

Free Velocities

We first verified that “scaling-and-squaring” divergence-free velocity fields (Algo-

rithm 5, page 83) yields incompressible deformations. One hundred 3D velocity

fields were generated on a 1mm-isotropic grid. Each voxel was assigned a ran-

dom velocity according to a Gaussian distribution with high standard deviation

(SD) (SD= 5000mm/s) to get large deformations (large displacements and large

strains). The resulting fields were smoothed with a Gaussian kernel (SD = 3mm)

and normalised to get a L2-norm of 2 mm. On the one hand, we integrated these

velocities to get deformations of reference (mean ± SD of deformation amplitude:

1.91 ± 0.99mm). On the other hand, we projected the velocities to the space of

divergence-free vector fields by using Helmholtz decomposition and integrated the re-

sulting vector fields, which theoretically yields incompressible deformations (average

amplitude: 1.65 ± 0.79 mm). This experiment showed that despite the numerical

approximations, the deformations parameterised by divergence-free velocity fields
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are nearly incompressible. Their Jacobian determinant was close to the incompress-

ibility condition (|∇φ| = 0.99 ± 0.03) in contrast to the Jacobian determinant of

the reference fields (|∇φ| = 1 ± 0.53) (Figure 4.1).

a) b) c)

Figure 4.1: Scaling-and-squaring integration of stationary velocity fields. a) 2D

slice of a random 3D velocity field v. b) Jacobian determinant of the deformation

parameterised by v c) Jacobian determinant of the deformation parameterised by

the projection of v onto the space of divergence-free velocities. One can clearly see

that integrating divergence-free velocities yields almost incompressible deformations.

4.5.2 Global Incompressibility Recovery Using Elastic Regularisa-

tion

Elastic regulariser theoretically provides more incompressible deformation fields,

controlled by the global parameter κ. Here, we experimentally test how much this

feature alone (without incompressibility constraint) can help in recovering random

volume-preserving deformation fields.

4.5.2.1 Illustration on Translated Cubes

We first tested the elastic-like regularisation on a toy example to have an intuition

of the results. Two translated black-and-white small cubes were co-registered using

diffusion (σ2 = 1, κ = 0) and elastic-like (σ2 = 1, κ = 0.5) regularisation. As il-

lustrated in Figure 4.2, the elastic-like regularisation yielded deformations globally

more incompressible as it distributed the smoothing across deformation components.

The compressions around the cube were decreased, propagated over the image do-

main.

4.5.2.2 Quantitative Evaluation on Random Incompressible Deforma-

tions

The impact of the elastic-like regularisation on the estimation of incompressible

deformations was quantified on synthetic data sets generated as follows. A 3D

isotropic Steady-State Free Precession (SSFP) MR image of the heart (53× 60× 60
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Registraton of

translated cubes

Recovered Deformatons

Difusion Elastc Incompressible

Jacobian

Determinant
0.60

0.80

1.00

1.20

1.40

Figure 4.2: Registration of two translated cubes using diffusion logDemons, elastic-

like logDemons and iLogDemons. At similar grey level RMSE, elastic-like regularisa-

tion yielded a stiffer deformations but only iLogDemons provided an incompressible

deformation close to the true translation.

slices, 1 mm3 voxel spacing), henceforth called test image, was warped by 50 random

incompressible deformation fields. Warped and test images were then altered with

slight Gaussian noise (SD= 3, range of grey level intensities: [0, 198]) (Figure 4.3A-

B).

The random incompressible deformation fields were generated by integrating

divergence-free velocity fields. Each voxel was assigned a random velocity according

to a Gaussian distribution with high standard deviation to get large displacements

and large strains (SD= 5000mm/s). The resulting velocity field was smoothed

with a Gaussian kernel (SD= 3mm) and its L2-norm was normalised to 2 mm.

We then made it divergence-free using Helmholtz decomposition and integrated

the result with the “scaling-and-squaring” algorithm to get the final incompress-

ible deformation (Figure 4.3C). The average L2-norm of the deformation fields was

1.83 ± 0.77 mm (mean ± standard deviation SD) and, as expected, their Jacobian

determinant was 0.99± 0.03, close to the incompressibility condition (Figure 4.3D).

We registered the 50 warped images to the test image with and without elastic

regularisation. The following registration parameters were used, σ2
f = 1, σ2 = 1

and σx = 1. No multi-resolution scheme was used as we aimed at comparing two

methods rather than pure performance. The number of demons iterations was fixed

to 50. Several elastic parameter values were tested κ = {0, 0.1, 0.5, 1, 2, 10, 100}.
Registration accuracy was measured using the distance to the true deformation field

(DTF) and the relative mean squared error of image intensities (RMSE) defined by:

DTF(φ, φref ) = ‖φ− φref‖L2

RMSE(T, R ◦ φ) = ‖T −R ◦ φ‖2 / ‖T −R‖2

For both indices, the lower the value, the better. Variations in registration perfor-

mances were quantified using the coefficients of variation ν = sd/mean of RMSE,

DTF and Jacobian determinant. Low ν values mean little impact of the elastic

regularisation on a particular metric.

The results showed that deformation field recovery and image matching accu-

racy did not change significantly by increasing κ (νDTF ≈ 1.6%, νRMSE ≈ 8.5%,
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A- Test Image B- Warped Image

C- Deformation Field D- Jacobian Determinant

Figure 4.3: Synthetic 3D image warped with a random incompressible deformation

field (here represented by a warped grid).

Figure 4.4: Effect of elastic-like regularisation on registration performances. These

curves show that elastic regularisation, controlled by the parameter κ, does not

affect registration accuracy (low variation of distance to true field, left panel) while

it significantly decreases Jacobian determinant standard deviation (right panel).

The deformation is globally more incompressible.

Figure 4.4). However, increasing κ largely reduced the standard deviation of the Ja-

cobian determinant (νstd(Jac.) ≈ 36%) while its mean was close to one (νmean(Jac.) ≈
0.18%). The elastic regularisation thus improved global incompressibility of the de-

formation. However, it did not change the local accuracy of the registration. Strong
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constraints are needed to better recover locally incompressible deformations.

4.5.3 Local Incompressibility Recovery Using Volume-Preserving

Constraint

We now evaluate how much the incompressibility constraint, without elastic regu-

larisation, can recover locally but strong volume-preserving deformation fields.

Illustration on Translated Cubes

As for the elastic regularisation, we first tested the incompressibility constraint on

the small cubes to get an intuition of the results. Elastic regularisation was disabled

(σ2 = 1, κ = 0) and the incompressibility constraint was turned on. As one can

see in Figure 4.2, the incompressibility constraint also prevented the compressions

around the cubes. Qualitatively, the true global translation was better recovered.

Quantitative Evaluation on Analytic Incompressible Whirls

We quantified the previous qualitative observation on synthetic data generated by

warping the test image with analytic whirl transformations (Figure 4.5). We decided

not to use the previous synthetic dataset to avoid any bias as the deformations were

generated using divergence free velocities, like the proposed constraint. Further-

more, analytic whirls enable to work on much larger but still volume-preserving

deformations.

Eight volume preserving whirl transformations were created as in [Saddi et al.,

2007]. The voxel O at the centre of the image domain was the centre of the whirl.

All the voxels P that were outside the sphere of radius R and centred in O did not

move. The voxels P inside the sphere were rotated with respect to O with an angle

α(P ) = α0(1 − dist(P,O)/R)2. The strength of the deformation was controlled by

the whirl angle α0, spanning from 10◦ to 80◦. Within the whirl domain, the L2-norm

varied from 0.52 mm to 4.78 mm but the Jacobian determinant remained close to

one (worst value: |φα0=80◦ | = 1± 0.04).

Test Image Whirl (α0 = 50◦) Warped Images

Figure 4.5: Synthetic 3D image warped with an analytic whirl transformation (here

represented by a warped grid).
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The 8 images T warped using the whirl transformations φα0
were registered to

the test image R using LogDemons and iLogDemons (σx = 1, σ2 = 1, σ2
f = 1, κ = 0,

number of iterations fixed to 150 to ensure convergence at any whirl angle). RMSE,

Jacobian determinant and DTF are reported in Figure 4.6. As expected, the de-

formation fields estimated with iLogDemons were almost incompressible. Jacobian

determinants were always equal to 1 ± 0.02 independently of the strength of the

whirl to recover. Image matching accuracy was not affected by the incompressibil-

ity constraint, showing only 0.6% decrease. The higher RMSE at small whirl angles

is due to the relative nature of that metric. In those cases, the images are already

fairly close to each other. Slight image matching errors yield larger RMSE. Most

importantly, iLogDemons significantly improved the accuracy of the recovered de-

formation fields. Means and standard deviations of DTF were systematically lower

(average improvements of 29% and 36% respectively). The larger the deformation,

the more significant the improvement while RMSE stayed comparable. This ex-

periment demonstrated the importance of the transformation model. As illustrated

in Figure 4.7, regions with homogeneous grey levels provided few information to

accurately estimate the whirl. With the iLogDemons, the incompressibility con-

straint helped the algorithm by ensuring that the estimated deformation is of the

same type as the true field. This feature is particularly interesting for clinical ap-

plications, where deformations must be reliably estimated from ill-textured images.

We also investigated whether the performances were improved using i2LogDemons,

which enforces the update velocity field to be divergence-free. Results, reported in

Figure 4.6, were in agreement with the theoretical considerations (Section 4.4). Rel-

evant differences only appeared at large deformations (α0 ≥ 70◦). Finally, it should

be noted that all these observations continue to hold with σx = 2, 4 and on ran-

dom incompressible fields (experiments not reported here), supporting robustness

to parameters.

Robustness of iLogDemons with Respect to the Slice Thickness

With a view to the estimation of myocardium strain from clinical cardiac images

with poor through-plane resolution, we tested the robustness of the iLogDemons

with respect to image slice thickness. To this end, reference and warped images

of the whirl data sets were degraded by artificially increasing the slice thickness

along the z-axis (Figure 4.8). Every N consecutive slices were grouped together and

averaged to simulate partial volume effect. In-plane resolution was preserved. The

resulting images were resampled to get 1mm-isotropic voxels. Four datasets were

generated with slice thicknesses spanning from 1mm to 10mm. The registration

parameters were σ2
f = 1, σ2 = 1 and σx = 1. Results are reported in Figure 4.9.

Not surprisingly, increasing the slice thickness decreased the overall registra-

tion accuracy as less image information was available: RMSE and DTF steadily

increased. LogDemons yielded better image matching (lower RMSE) but the recov-

ered deformation fields were less accurate than those estimated using iLogDemons
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Figure 4.6: Results of the registration of whirl datasets. With similar image match-

ing performances (similar RMSE of image intensities, top-left panel), iLogDemons

provided more incompressible deformations (Jacobian determinant closer to one,

top-right panel) and outperformed LogDemons in terms of deformation field accu-

racy (lower DTF, bottom panel). Constraining the update velocity to be divergence-

free (i2LogDemons) did not improve the results significantly.

(higher DTF). Incompressibility constraints helped the algorithm to recover the in-

compressible whirl. This experiment further confirmed that i2Logdemons did not

improve registration accuracy with respect to iLogDemons, even with large slice

thickness. Figure 4.10 illustrates these findings on a particular case. Far from image

gradients, the deformation estimated by logDemons were weak and erroneous (arrow

A). Even worse, near strong image gradients, the deformation field can be wrong

(arrow B). Thanks to the incompressibility constraint, iLogDemons alleviated these

pitfalls and recovered a plausible through-plane motion (arrow C). These results

motivate the use of iLogDemons to estimate the motion of incompressible organs in

medical images.

To conclude, the experiments on synthetic data showed that i) elastic regular-

isation does provide globally more incompressible deformation fields but does not

significantly improve the local accuracy of the registration; ii) the proposed strong

incompressibility constraint provides almost incompressible deformations and do

improve the recovery of volume preserving deformations. Both contributions are
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Test Image True Whirl

LogDemons iLogDemons

Amplitude

Figure 4.7: Streamlines of true and estimated whirl deformations (whirl angle α0 =

60◦). Colours encode deformation amplitude in mm. iLogDemons better estimated

the whirl transformation in regions with poor texture (yellow arrow), providing more

accurate motion and deformation amplitude.

therefore complementary and can be used jointly to obtain smooth, globally and

locally incompressible deformation fields.

4.6 Discussion

This chapter presented a method for elastic incompressible diffeomorphic registra-

tion based on the logDemons algorithm proposed by [Vercauteren et al., 2008]. We

first established that logDemons Gaussian regularisation minimises an infinite or-

der Tikhonov regulariser. Our formulation constitutes a well-posed formulation of

demons algorithm with controlled parameters. An important theoretical condition

on the coupling term ‖ log(φ−1 ◦ φc)‖2 appeared. One must be able to linearise

this term such that the regularisation energy is written as a least-square problem to

justify the Gaussian regularisation.

Equipped with a closed form expression of demons regularisation, we adapted it

to elastic registration by replacing the Tikhonov regulariser with the infinite sum of

isotropic differential quadratic forms whose minimiser is exactly computed through

convolution with the separable elastic-like vector filter proposed by [Cachier and

Ayache, 2004].

We then enforced the algorithm to provide incompressible deformations by con-

straining the search space of stationary velocities to the space of divergence-free
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Original Image Warped Image Thick Slices + PVE Resampling

Figure 4.8: Synthetic images with user-defined slice thickness
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Figure 4.9: RMSE and DTF with respect to the slice thickness for two different

whirl angles. Despite higher RMSE, estimated deformation fields were systemati-

cally more accurate using incompressible constraints (iLogDemons) than using log-

Demons. One can also see that constraining the update velocity to be divergence-free

(i2LogDemons) did not improve the results in terms of DTF.

vector fields. In practice, this is achieved by adding a new term to the deformation

field estimated by the logDemons. The constraint can therefore be enabled/disabled

by the user, no ad-hoc minimisation schemes being required. Compared with tradi-

tional methods, our approach is well posed, provides diffeomorphic transformations,

introduces only one extra parameter, the elastic parameter κ, and can be applied
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Figure 4.10: Streamlines of 3D whirl transformations (α0 = 60◦) recovered from

an image with 6mm-thick slices. Contrary to logDemons, which failed to recover

the whirl transformation in homogeneous regions (A) and was misguided by strong

gradients (B), iLogDemons improved the recovery of the through-plane whirl defor-

mations (C) despite the lack of image information. Colours encode the amplitude

of the through-plane z-direction in mm.

within a localised area of the image only.

The synthetic experiments demonstrated that the proposed elastic-like regu-

lariser provides elastic deformations with infinite order of smoothness. Contrary to

more traditional approaches based on the linear Lamé equation, our method relies

on separable vector filters that can be implemented using efficient Gaussian filters

[Deriche, 1993]. As it relies on a kernel, our technique may recall spline-based elastic

registration algorithms [Sorzano et al., 2005]. However, the transformation provided

by the iLogDemons are diffeomorphic and estimated everywhere in the image.

The synthetic experiments also supported the proposed incompressibility con-

straint. We showed that deformations parameterised by stationary divergence-free

velocities are nearly incompressible despite the approximations and the numerical

accuracy. The linearity of the divergence allows efficient implementation of the

constraint, in contrast to previous approaches based on the non-linear determinant

constraint which was ensured either by ad-hoc numerical schemes [Haber and Moder-

sitzki, 2004] or energy penalisation [Tanner et al., 2002; Rohlfing et al., 2003; Bisto-

quet et al., 2008]. In all our experiments, the Jacobian determinant of the estimated

deformations remained close to one independently of the strength of the deforma-

tions. We also showed i2LogDemons, which also constrains the update velocities

to be divergence-free, does not significantly improve the recovery of incompressible

deformations.

Some theoretical aspects still need to be consolidated. When the incompressibil-

ity constraint is applied within a limited subdomain of the image, smooth transitions

are ensured by artificially diffusing the Lagrangian pressure field p. Intuitively, this

technique would be equivalent to using a mask of the incompressible domain with

smooth transitions. Experiments supported this approach as no numerical insta-

bilities appeared. However, a rigorous formulation that explicitly integrates the

mask into the registration energy functional would enable more efficient numerical
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schemes.

A second theoretical challenge to investigate is the fluid-like Gaussian regulari-

sation, or better said viscous regularisation, of the update velocities δv (third step

of Algorithm 3, page 66 and Algorithm 4, page 72). Intuitively, this intermediate

smoothing controls the regularity of the log-domain, which must be smooth enough

to ensure that the integrated transformations are diffeomorphisms [DoCarmo, 1992].

Although this step is optional, its use greatly contributes to the stability of the al-

gorithm: A slight smoothing of the update velocities is recommended. It would

be interesting however to develop a theoretical proof of this intuition to implement

more sophisticated regularisation schemes. A possible direction would be to endow

the space of velocity fields with a kernel norm, like in [Hernandez et al., 2009].

Numerically, our approach is relatively simple to implement as it is based on

Gaussian filters and it requires solving a linear system with constant stiffness ma-

trix. In this work the Poisson equation was solved in the space domain to be able

to constrain incompressibility in regions of arbitrary shapes, which would have been

difficult to achieve with Fourier techniques. Nevertheless, elastic-like divergence-

free filters implemented in the Fourier domain are more efficient for whole-domain

incompressibility constraint, as in [Hinkle et al., 2009]. As additional future direc-

tions, it would be interesting to integrate our approach into registration methods

based on time-varying velocity fields [Beg et al., 2005; Hinkle et al., 2009]. Also,

more advanced regularisation schemes could be integrated like the locally adaptive

regularisers proposed by [Stefanescu et al., 2004; Cahill et al., 2009].

4.7 Appendices

Time-Integration of Stationary Velocity Fields

[Arsigny et al., 2006a] devised an efficient way to compute the exponential map of

a stationary velocity field φ = exp(v) by observing that, in virtue of the properties

of one-parameter subgroups (t 7→ exp(tv)), we have ∀n ∈ N, exp(v) = exp(v/n)n.

If n is large enough, exp(v/n) can be approximated by v/n (scaling), which is then

composed log2(n) times to get the exponential (squaring). The pseudo-code of the

algorithm is:

Algorithm 5 Scaling-and-Squaring Algorithm
Require: Velocity field v

1: Choose n such that ‖v/2n‖ ≤ 0.5

2: Explicit first-order integration: u← v/2n

3: loop {n times}

4: u← u ◦ u
5: return Displacement field u
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On the Equivalence Between Divergence-Free Velocities and Incom-

pressible Diffeomorphic Transformations

In fluid dynamics, a fluid is said incompressible if the divergence of its velocity v is

null, ∇ · v = 0 [Evans, 1998]. Interestingly, deformations of the one-parameter sub-

group G are incompressible if the velocity field that parameterise them is divergence-

free. As transformations φ ∈ G are solutions to the Lagrangian ODE






∂φ(x, t)

∂t
= v(φ(x, t)),

φ(x, 0) = x

(4.17)

they are incompressible if and only if at each time instant t, det(∇φ(x, t)) = 1. This

relation holds for t = 0 as det(∇φ(x, 0)) = det(∇x) = 1. For t > 0, the variation of

volume due to φ is given by the time-derivative of the determinant:

∂ det(∇φ(x, t))

∂t
= det (∇φ(x, t)) tr

(

∇φ(x, t)−1 ∂(∇φ(x, t))

∂t

)

Swapping time and spatial derivatives yields:

∂ det(∇φ(x, t))

∂t
= det (∇φ(x, t)) tr

(
∇φ(x, t)−1∇v(φ(t,x))

)

It follows from the chain rule on ∇v(φ(t,x)):

∂ det(∇φ(x, t))

∂t
= det (∇φ(x, t)) ∇ · v(x)

When the velocity v is divergence-free, the previous equation is homogeneous

and its solution is constant. Since det(∇φ(x, 0)) = 1, we have det(∇φ(x, t)) = 1

for all t > 0. The two constraints are equivalent. In simple words, ∇ · v(x) = 0 is

the Eulerian condition of incompressibility, which focuses on a specific location x of

space. Conversely, det(∇φ(x, t)) = 1 is the Lagrangian condition of the constraint,

which tracks the material point as it moves within the domain. The Lagrangian

frame and the Eulerian frame are bridged by the transport Equation 4.17.

Conditions on IDQF Parameters to Get Separable Vector Filters

As described in Section 4.3.2, logDemons elastic-like regularisation is obtained by

solving in the Fourier domain the optimal condition:
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Sherman-Morrison inversion Lemma gives:
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We seek αk and βk such that the filter M is separable to preserve demons computa-

tional efficiency. αk = 1/k! yields A = exp(wTw/σ2
t ). As a result, if B/(A+BwTw)

is a scalar γ ∈ R, the inverse Fourier transform of the second term of M is the Hes-

sian of F−1(γ exp(−wTw/σ2
d)). The idea thus consists in finding the coefficients βk

such that B/(A + BwTw) = γ. With β0 = 0, this writes:

∞∑

k=0

βk+1

σ
2(k+1)
d

(wTw)k =

∞∑

k=0

γ

(
1

σ2k
d k!

+
βk

σ2k
d

)
(
wTw

)k

This equation defines a recursive relationship between the βk’s:







β0 = 0

βk+1 = γ

(
σ2

d

k!
+ βk

)

∀k ≥ 1

from which we deduce the closed form:

βk =

k∑

i=1

γi σ2i
d

(k − i)!

The proof of this relationship is achieved by recurrence. The previous formula is

verified for k=1. We assume it to be true for k and we verify it still holds for k + 1.

To this end, we replace βk by the conjectured formula in the recursive expression of

βk+1:

βk+1 = σ2
dγ

(

1

k!
+

k∑

i=1

γi σ2i
d

(k − i)!

)

=
γ σ2

d

k!
+

k∑

i=1

γi+1 σ
2(i+1)
d

(k − i)!

=
γ σ2

d

k!
+

k+1∑

i=2

γi σ2i
d

(k − (i− 1))!
=

k+1∑

i=1

γi σ2i
d

(k + 1− i)!

which proves the result. With these coefficients, the filter M writes:

v̂(w) =
(
exp(−wTw/σ2

d) Id− γ wwT exp(−wTw/σ2
d)
)

⋆ v̂c(w)

which becomes in the space domain (∆ is the Hessian operator and d is the dimension

of the image domain Ω)

v(x) =
√

σ2
d/(4π)

d

exp(−4σ2
dx

Tx) ⋆ vc(x)

+ γ ∆

(√

σ2
d/(4π)

d

exp(−4σ2
dx

Tx)

)

⋆ vc(x)

Defining σ2 = 2/σ2
d and γ = σ2κ/(1 + κ) yields Equation 4.12.
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Demons Optimisation under the Divergence-Free Constraint

Divergence-free update velocities are computed by minimising the constrained opti-

misation energy:







Ecor(δv) =
1

σ2
i

‖R− T ◦ φ ◦ exp(δv)‖2L2
+

1

σ2
x

‖ log(φ−1 ◦ φ ◦ exp(δv)‖2L2

∇ · δv = 0

Let p(x) be a scalar field belonging to the Sobolev space H1
0 (Ω) that vanishes at

infinity. The Lagrangian function Pcorr(δv, p) related to the constrained correspon-

dence energy Ecorr(δv) writes (the Lagrangian multiplier p(x) has been multiplied

by 2 to simplify calculations):

Pcorr(δv, p) =
1

σ2
i

∫

Ω
‖R(x)− T ◦ φ ◦ exp δv(x)‖2 dx

+
1

σ2
x

∫

Ω
‖δv(x)‖2 dx− 2

∫

Ω
p(x) ∇ · δv(x)dx

Differentiating Pcorr(δv, p) with respect to p yields the constraint ∇ · δv = 0. To

differentiate Pcorr(δv, p) with respect to δv, we linearise the similarity criterion as

in [Vercauteren et al., 2009]:

‖R(x)− T ◦ φ ◦ exp δv(x)‖2 ≈ ‖R(x)− T ◦ φ(x) + J(x)T δv(x)‖2

where J(x) is the symmetric gradient J(x) = (∇R(x) +∇(T ◦ φ)(x))/2. It follows

the linear least square problem:

Pcorr(δv, p) =
1

σ2
i

∫

Ω
‖R(x)− T ◦ φ(x) + J(x)T δv(x)‖2dx

+
1

σ2
x

∫

Ω
‖δv(x)‖2dx− 2

∫

Ω
p(x) ∇ · δv(x)dx

The optimal condition ∂δvPcorr(δv, p) = 0 thus writes:

(

J(x)J(x)T +
σ2

i

σ2
x

Id

)

︸ ︷︷ ︸

D(x)

δv(x) = −J(x)
(

R(x)− T ◦ φ(x)
)

− σ2
i∇p(x)

As the tensor D(x) is always invertible, we can calculate the optimal divergence-free

update velocity field:

δv∗(x) = −
(

R(x)− T ◦ φ(x)
)

D(x)−1J(x)
︸ ︷︷ ︸

δv(x)

−σ2
i D(x)−1∇p(x) (4.18)

The first term of the previous equation is exactly the logDemons update velocity

field δv (Equation 4.3). The scalar field p is calculated by solving the Poisson



4.7. Appendices 87

equation under 0-Dirichlet boundary conditions that results from the divergence of

the previous equation:

∇ ·
(
σ2

i D(x)−1∇p(x)
)

= ∇ · δv(x) (4.19)

Because the tensor D(x) is updated at each iteration, the operator ∇ · (σ2
i D

−1∇)

is not constant. The matrix of the related linear system must therefore be built

and pre-conditioned at each time step, which can be computationally demanding

if the domain Ω is large. Furthermore, D(x) is computed at every voxel of the

image domain Ω independently. The resulting tensor field can therefore be noisy,

likely yielding numerical instabilities. To alleviate this limitation, D is smoothed

using Log-Euclidian techniques [Arsigny et al., 2006b]: each component of log(D)

is smoothed with a Gaussian kernel GσD
and the result is exponentiated to get a

smooth tensor field. We fixed σD equal to the strength σf of the fluid regularisation.

Numerical Implementation of Poisson Equations

Let f be a vector field defined over a rectangular image domain Ω in R
d. The

dimension of Ω along the ith axis is si and the voxel spacing vi. We want to solve

the Poisson equation with 0-Dirichlet boundary conditions:

∇ · (M∇p) = ∇ · f

This equation is solved by discretising the spatial derivatives, which results in the

matrix form

Kp = R (4.20)

The matrix K, so-called stiffness matrix of the linear system, is a n × n matrix

where n is the total number of voxels of Ω. R is the n × 1 right-hand side vector.

The stiffness matrix K is sparse symmetric positive if M is symmetric positive and

if divergence and gradient operators are conjugate. The latter property is satisfied

when the gradient and divergence operators are discretised using backward and

forward first-order finite difference schemes respectively.

For convenience we define the mapping µ : N
d → N that associates a unique index

ι to each voxel of the image. ιth row of the right-hand side vector R is therefore

the divergence of f at the ιth voxel of the image. Let (ei)i=1...d be the canonical

coordinate system of the image domain Ω and M(x) = (mi,j(x)). With the forward

and backward first order finite difference schemes for the divergence and gradient

operators respectively we have:

∇p(x) =
d∑

i=1

p(x)− p(x− ei)

vi
ei

M(x)∇p(x) =
d∑

j=1

(
d∑

i=1

mj,i(x)
p(x)− p(x− ei)

vi

)

ej
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and finally:

∇ ·M(x)∇p(x) =
d∑

j=1

d∑

i=1

(

mj,i(x + ej)
p(x + ej)− p(x + ej − ei)

vjvi

−mj,i(x)
p(x)− p(x− ei)

vjvi

)
(4.21)

When M = Idd the Laplacian operator writes:

∆p(x) =
d∑

i=1

(
p(x− ei) + p(x + ei)

v2
i

− 2p(x)

v2
i

)

We use these expressions to populate the stiffness matrix K. Assume that the ιth

voxel of the image is at the physical point x (µ(x) = ι). The ιth row of K is

populated according to Equation 4.21 as follows:

Kι,ι = −
d∑

j=1

d∑

i=1

mj,i(x)/vjvi

∀j, Kι,µ(x+ej) =

d∑

i=1

mj,i(x + ej)/vjvi

∀i, Kι,µ(x−ei) =
d∑

j=1

mj,i(x− ei)/vjvi

∀(j, i), Kι,µ(x+ej−ei) = −mj,i(x + ej − ei)/vjvi

If M = Idd, these relations become:

Kι,ι = −
d∑

i=1

2/v2
i

Kι,µ(x−ei) = Kι,µ(x+ei) = 1/v2
i ∀i = 1 . . . d

When a voxel is outside or on the boundary of the domain Ω, the related factor

is not reported in the stiffness matrix K as p equals 0 at that voxel (0-Dirichlet

boundary conditions).
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In the following we investigate the clinical question that motivated the devel-

opment of the iLogDemons: Can we estimate the myocardium deformation from

standard anatomical cMRI? As the heart is an elastic near-incompressible tissue

[Glass et al., 1991], it is reasonable to use these priors to enhance the accuracy of

the estimated displacements. In this chapter we test that idea on real cases.

5.1 Motivation

Analysing cardiac motion provides crucial insights into the condition of the car-

diac function. Myocardium strain can be quantitatively assessed with tagged MRI

(tMRI) or ultrasound modalities like 2D-strain based on speckle tracking (recently

3D-strain is becoming available). On the one hand, tMRI is nowadays considered the

gold standard for myocardium motion assessment [Zerhouni et al., 1988; McVeigh,

1998]. However, that MR protocol is still experimental and is not readily available

in paediatrics. On the other hand, 2D speckle tracking is available in clinical envi-

ronment. Nonetheless, it only provides a partial, two-dimensional evaluation of the

myocardium motion [Teske et al., 2007]. Estimating the myocardium strain from

clinical gated cMRI constitutes an attractive alternative. cMRI is widely available

and yields detailed 3D anatomical images of the beating heart with constant image

quality over time. Yet, accurately estimating the 3D cardiac motion from these

images is challenging. Due to the lack of consistent texture within the myocardium,

only the apparent radial motion of the heart can be assessed. Furthermore, due to

acquisition limitations, slice thickness of cMRI is usually very large, of the order of

the centimetre. Prior knowledge about cardiac dynamics is thus required.
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Regardless of the difficulty, various methods have been proposed to estimate

the deformation of the myocardium from cMRI. Some approaches drive an image

registration algorithm with biomechanical finite element models that simulate the

passive properties of the myocardium [Papademetris et al., 2000; Veress et al., 2005;

Schaerer et al., 2010]. These methods successfully estimate the left ventricle my-

ocardium displacement. Nonetheless, they rely on specific biomechanical parameters

that are difficult to determine for a given patient. Besides, such models may not ap-

ply anymore in pathological cases. Finally, they require meshing the space domain

to solve complex partial differential equations, which may be difficult to achieve.

Purely image-driven methods have thus been proposed. In [Delhay et al., 2007],

the authors estimate the cardiac motion using a spatio-temporal model based on

Free-Form Deformation (FFD) [Rueckert et al., 1999] and Kalman filters, under

the assumption of periodic motion. Yet, the proposed approach may not provide

deformations consistent with the biomechanical properties of the myocardium. In

[Feng et al., 2008], the authors use a B-spline FFD algorithm regularised with my-

ocardium contours that are manually delineated on all the time frames. The results

are consistent with tagged MRI but the method requires manual contours for all the

time frames, which may hinder its application in clinical settings.

During the cardiac cycle, it has been reported that the volume of the heart mus-

cle does not vary significantly (about 5% of volume variation [Glass et al., 1991]). It

is therefore reasonable to use incompressibility constraints to estimate the cardiac

motion, as in [Bistoquet et al., 2008]. In that work, the authors present an FFD-like

algorithm that ensures myocardium near-incompressibility. To that end, the dense

deformation field is interpolated using divergence-free radial basis functions. How-

ever, divergence-free displacements are incompressible only when the deformations

are small, which may not be the case at the end-systole when the heart is fully

contracted. An ad-hoc penalisation is used to control volume drifts. Nonetheless,

constraining the displacements to be divergence-free may not reflect the true motion

as incompressible deformations are not necessarily divergence-free.

In the following we apply iLogDemons to estimate the 3D strain of the left-

ventricular (LV) myocardium from standard anatomical cMRI of the heart. Con-

trary to [Bistoquet et al., 2008], here we employ a strong incompressibility constraint,

completed with an elastic-like regularisation to estimate physiologically plausible de-

formations. The algorithm is tested on two adults with heart failure and one teenager

with repaired ToF. The results are compared with those obtained using the origi-

nal logDemons, to quantify the added value of our method, and the ground truth

provided by tagged MRI (in the adult patients) and echocardiography 2D-strain (in

the young patient).
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5.2 Cardiac Tracking Algorithm and Strain Calculation

Tracking Protocol

The displacement of the heart muscle is estimated by tracking the organ over the car-

diac cycle using iLogDemons. We recall that iLogDemons estimates a deformation

φ = Id+u that maps two images, u is the displacement field. φ is parameterised by a

stationary velocity field v through the exponential map φ = exp(v). In iLogDemons,

v is divergence-free. An important observation is that demons algorithm, like other

common registration algorithms, provides resampling fields. In other words, the 3D

displacement u of structures that move between the images I0 and In is calculated

by registering In to I0 as illustrated in Figure 5.1.

O Ox x

yy

Fixed Image Moving Image

Registraton

u(x)

Figure 5.1: Registering the moving image to the fixed image yields a displacement

field u(x) that maps each voxel x of the fixed image to a point in the moving image.

The field u(x) is called the resampling field.

In that way, estimating the deformation of the heart amounts to “stabilising”

the cardiac sequence: All the frames are registered back to a frame of reference,

usually the end-diastole time frame identified by the R-wave peak. At that instant

of the cardiac cycle, the heart is nearly at rest position, i.e. almost relaxed. From

a computational point of view, it is also easier to estimate compressions than ex-

pansions due to the fixed-size sampling grid. To minimise error propagation and

ensure temporal consistency, the stabilisation is performed recursively as depicted

in Figure 5.2. Without loss of generality, lets I0 be the reference frame and In

the subsequent frames. Assume now that the deformation φIn−1→I0 and thus the

velocity field vIn−1→I0 , are known. We first estimate the frame-by-frame trans-

formation parameterised by the velocity vIn→In−1
to take advantage of the small

inter-frame cardiac deformation. We then concatenate the resulting transformation

to φIn−1→I0 , which amounts to composing the velocity fields using BCH formula,

vconcat = Z(vIn−1→I0 ,vIn→In−1
). The deformation parameterised by vconcat would

normally map the current frame In to the reference frame I0 but to further reduce
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registration errors, we refine the transformation by registering In to I0 with initial

velocity vconcat.

I0  In‐1  In 

vIn‐1 I0  vIn In‐1 vIn I0 

Z(vIn‐1 I0  
, vInIn‐1 

) 

Figure 5.2: Recursive tracking algorithm. Knowing the velocity vIn−1→I0 (green):

i) Estimate vIn→In−1
(blue). ii) Concatenate vIn→In−1

and vIn−1→I0 (grey) using

BCH formula. iii) Estimate vIn→I0 using ii) as initialisation (red).

In cardiac sequences, other structures surrounding the heart may have their vol-

ume vary. Ventricular blood pools in particular are not incompressible, the isovolu-

metric phase being usually too short to be visible in standard clinical dynamic im-

ages. Considering them as incompressible may yield “locking”, i.e. the myocardium

remains frozen as the entire volume of the heart cannot change. To cope with that,

we apply the incompressibility constraint only within the myocardium (Figure 5.3).

Besides, this greatly decreases the computation time as the Poisson equations related

to the constraint are solved on a subspace of the image only. It has to be noted that

owing to the backward stabilisation strategy, the myocardial region must be defined

only on the reference frame in contrast to previous approaches [Papademetris et al.,

2000; Feng et al., 2008]. This can be achieved using the interactive surface modeller

presented in Chapter 3 for instance.

Image Domain Ω

Incompressible

Domain Γ

Short-Axis View (In-Plane) Long-Axis View (Through-Plane)

Incompressible Domain Γ

Lef

Ventricle

Lef

Ventricle

Right

Ventricle

Right

Ventricle

Figure 5.3: Short-axis cMRI of patient 1. Incompressibility is ensured only within

the myocardium (outlined in yellow). Note the lack of consistent texture within the

myocardium even in the in-plane image (left panel) and the coarse through plane

resolution (right panel).
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Strain Calculation

The 3D myocardium strain at the spatial position x is computed from the estimated

displacement u(x) using the 3D Lagrangian finite strain tensor:

E(x) =
1

2

[
∇u(x) +∇uT (x) +∇uT (x)∇u(x)

]

The strain tensor is projected onto a local prolate coordinate system to get the radial,

circumferential and longitudinal indices commonly used in clinics [Moore et al., 2000]

(Figure 5.4, left panel). The local prolate coordinate system is defined as follows.

At each material point of the myocardium, the radial axis er is the outward normal

of the epicardial surface. The circumferential axis is the cross product of the left

ventricle (LV) long axis eLA with er: ec = eLA ∧ er. ec lies in the transverse plane

of the heart. Finally, the longitudinal axis is the cross product of the radial axis

with the circumferential axis: el = ec ∧ er. el lies in the transverse plane and is

tangential to the epicardial surface. The 3D strain E(x) in the direction v(x) is given

by Ev(x) = v(x)T E(x)v(x). Finally, the myocardium is automatically subdivided

into 17 AHA zones for regional assessment [Cerqueira et al., 2002] (Figure 5.4, right

panel and Section 2.2, page 19).

Longitudinal

Radial

Circumferental

el

erec

eLA

Basal

Mid

Apical

1

2

3

4

5

6
7

8

9

10

11

1213

14

15

1617

Figure 5.4: Left panel : Prolate coordinate system. The radial direction er is given

by the outward normal of the epicardium surface. The circumferential direction ec

is computed at each point of the myocardium by ec = eLA ∧ er, where eLA is the

long-axis direction. The longitudinal direction el is finally obtained by el = ec ∧ er.

Right panel : AHA subdivision of the myocardium (see Section 2.2, page 19).

5.3 Experiments and Results

5.3.1 Left Ventricle Myocardium Strain in Patients with Heart

Failure

5.3.1.1 Patient Selection and Image Preparation

We first tested our algorithm on two patients with heart failure recruited at Saint

Thomas Hospital, King’s College London, U.K. Anatomical cMRI were acquired in

the short axis view with multiple breath-holds (Achieva, Philips Medical System,
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30 time frames, 1.4 mm2 isotropic in-plane resolution, 10 mm slice thickness). For

the first patient, 3D tagged MR images (tMRI) were acquired during the same

exam (CSPAMM encoding, 23 time frames, 1.0 mm3 isotropic resolution, tag size ≈
7 mm, Figure 5.5. No manual tracking of the tag grids was available since this

task is extremely difficult due to the 3D nature of the motion. For the second

patient, 2D tMRI were acquired in the short axis view (23 time frames, 1.1 mm2

in-plane resolution, 18 mm slice thickness, tag size ≈ 6 mm). For this case, manual

tracking of the tag grids was performed by an expert in the short axis view. All

images fully covered both ventricles. The two cMRI and the 3D tMRI presented

no slice misalignments. The tMRI were spatially and temporally aligned to the

cMRI using DICOM information. For the incompressibility constraint, we manually

delineated the myocardium on the end-diastole time frame using the interactive

surface modeller (Chapter 3). Finally, the dense transformations were defined on

an isotropic sampling grid adjusted to the image dimensions to cope with the large

slice thickness that can introduce high frequencies in the transformations, resulting

in numerical instabilities and lower registration accuracy. In practice, this amounts

to linearly resampling the cMRI to get isotropic voxels.

Figure 5.5: 3D tMRI of patient 1.

The heart was tracked using both logDemons and iLogDemons for comparison.

Registration parameters were fixed: σx = 1, σ2 = 2 and σ2
f = 0.5. For the iLog-

Demons only, elastic regularisation was applied everywhere in the image with κ = 1.

A 2-level multi-resolution scheme was used and the registration was automatically

stopped as soon as RMSE stopped decreasing.

5.3.1.2 Comparison with 3D tMRI

In a first stage, we estimated the cardiac motion of patient 1 by tracking the heart in

the 3D tMRI using both iLogDemons and logDemons. We verified that iLogDemons

preserved the volume of the myocardium below the values reported in the literature

during the entire cardiac cycle (average volume variation: 2%, maximum volume

variation: 6%) contrary to logDemons (average volume variation: 26%, maximum

volume variation: 32%) (Figure 5.6, top-left panel). We also observed that the
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incompressibility constraint reduced the deviations of the estimated displacements

throughout the cardiac cycle despite the simple tracking procedure.

Jacobian Determinant, Patient 1, tMRI Jacobian Determinant, Patient 1, cMRI

Figure 5.6: Jacobian determinant of myocardium deformation. Curves represent

mean (plain lines)± standard deviation (dashed lines). Incompressibility constraint

significantly decreased myocardium volume variations during the cardiac cycle and

controlled the volume deviation at the end of the cycle.

Long-Axis ViewShort-Axis View

iLogDemons
logDemons

Figure 5.7: Virtual grids warped using the displacements estimated from tMRI using

logDemons (in red) and iLogDemons (in green). Visually, no significant differences

were noticed within the myocardium, which was confirmed by the low L2-distance

between the fields (1.7± 0.71mm)

For visual assessment, we applied the estimated deformations on virtual planes

manually positioned at end-diastole (Figure 5.8). Realistic deformations consistent

with the tag grids were obtained with both algorithms (Figure 5.7). The similar per-

formances between logDemons and iLogDemons, quantified by the low L2-distance

between recovered deformation fields (Table 5.1), is justified by the fact that the

tag grids provided enough texture information within the myocardium to guide the

registration. As no ground truth was available, we considered the displacements

estimated on the 3D tMRI using iLogDemons as reference.
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We then estimated the 3D motion of the heart from the cMRI and compared

the results with the reference tMRI deformation. Visual assessment of the warped

virtual planes showed that the incompressibility constraint did help in recovering

longitudinal and circumferential displacements despite the large slice thickness and

the lack of texture features within the myocardium (Figure 5.8, blue and red curves).

The average and standard deviation of the L2-distance between the displacements

estimated from cMRI and the reference tMRI displacements improved by 12% and

22% respectively (Table 5.1). The longitudinal and circumferential strains computed

over the entire myocardium confirmed this finding (Figure 5.9). Values obtained

using iLogDemons were much closer to the reference (86% of improvement for radial

strain, 89% for circumferential strain and 65% for longitudinal strain). Similar

degrees of improvement were obtained with respect to the motion estimated from

tMRI using logDemons. The amplitude of the radial strain was more plausible

and the temporal variations of the circumferential and longitudinal strains were

consistent with the clinical literature [Moore et al., 2000]. Note that logDemons

exhibited a wrong lengthening in both longitudinal and circumferential directions

at the beginning of the cardiac contraction. Furthermore, the variability in strain

measurements is significantly reduced using iLogDemons, which suggests that the

estimated motion is globally more consistent.

Table 5.1: L2-distances averaged over the cardiac cycle between estimated displace-

ments. Values to be compared with the tag size: 6mm. Tracking cardiac motion

on tMRI with logDemons and iLogDemons yielded globally little differences. When

tracking the heart on cMRI, iLogDemons improved the results thanks to the incom-

pressibility constraint and the elastic-like regularisation, which cope with the lack

of myocardial texture and the large slice thickness.
Method L2-distance (mean ± sd, max)

iLogDemons (tMRI ) reference

logDemons (tMRI ) 1.7± 0.71mm, 3.2mm

logDemons (cMRI ) 3.2± 0.92mm, 4.6mm

ilogDemons (cMRI ) 2.8± 0.72mm, 4.0mm

5.3.1.3 Comparison with Manual Tracking

We then estimated the cardiac motion of the second patient using logDemons and

iLogDemons on cMRI and compared the results with manual tracking of 2D tag

grids. As with the previous patient, iLogDemons controlled the variations of my-

ocardium volume over the cardiac cycle compared to logDemons (average volume

variation: 7% and maximum volume variation: 10% for iLogDemons; average vol-

ume variation: 42% and maximum volume variation: 54% for logDemons, see Fig-

ure 5.10).

Point-wise motion comparison between cMRI and manual tracking was not pos-

sible due to a non-perfect tMRI-to-cMRI alignment because of tMRI slice misalign-
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Short-Axis (In-Plane Motion) Long-Axis (Through-Plane Motion)

Figure 5.8: Close-up of the tMRI of patient 1 at end-systole. The virtual tag planes

were warped with the deformation estimated on the tMRI using iLogDemons (green)

and with those estimated on the cMRI using logDemons (red) and iLogDemons

(blue). From the blue and red planes one can see that iLogDemons better estimated

myocardium motion even in cMRI.

ment and patient motion between scans. We thus compared the regional displace-

ments averaged over the 12 basal and mid-ventricular AHA zones (Figure 5.4, right

panel). For fair comparison, we transformed the 3D displacements estimated from

the cMRI to apparent 2D displacements by warping the short-axis displacements

(XY-plane) along the through plane motion (Z-direction).

The results showed that iLogDemons, in this patient, improved the accuracy of

the recovered motion. The amplitude of the radial displacements was closer to the

ground truth (global error with respect to tag displacements from 2.4 ± 2.4mm to

1.2 ± 1.6mm, about the voxel size, Figure 5.11). One can observe that logDemons

already estimated realistic radial motion patterns, yet over-estimated, as the cardiac

motion visible in cMRI is mainly radial to the LV boundaries (we mainly see the

thickening of the heart). Both LogDemons and iLogDemons recovered negative

radial displacements, i.e. towards the centre of the LV blood pool (Figure 5.4), for

most of the LV regions. The two algorithms also detected the abnormal dyskinetic

motion of the 3rd and 9th zones of the inter-ventricular septum (Figure 5.4). Their

displacement was positive, i.e. towards the right ventricle. This abnormal pattern

may be due to an electrical asynchrony or to a lesion.

The circumferential displacements provided by iLogDemons were also more real-

istic than those estimated using logDemons, yet still under-estimated (Figure 5.12).

The sign of the estimated circumferential displacements were more consistent with

the ground truth estimated from tMRIs. For instance, contrary to logDemons, iLog-

Demons correctly estimated the counter-clockwise motion of the 3rd and 9th zones

(positive values, arrow A in Figure 5.12) and the clockwise motion of the 1st and

7th zones (negative values, arrow B in Figure 5.12). Quantitatively, the overall error

decreased by 34%, from 3.5±2.0mm to 2.3±1.7mm. In conclusion, the incompress-

ibility constraint assisted the registration algorithm by redistributing the apparent

radial displacement across the other directions to preserve myocardium volume.
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Radial Strain in % Circumferential Strain in %

Longitudinal Strain in %

Figure 5.9: Myocardium strains computed from cMRI and 3D tMRI of patient 1.

Mean and standard deviation computed over the entire left ventricle. iLogDemons

better estimated circumferential and longitudinal strains despite the lack of image

information and the large slice thickness.

5.3.2 Left Ventricle Myocardium Strain in a ToF Patient

5.3.2.1 Patient Selection and Image Preparation

In a second experiment we evaluated the iLogDemons on a patient (age=10) with

repaired ToF. The estimated myocardium strains were compared with echocardiog-

raphy 2D-strain measurements.

Anatomical SSFP cMRI of the heart were acquired in the short-axis view cover-

ing the entirety of both ventricles (10 9.6 mm-thick slices; 1.02× 1.02 mm2 in-plane

resolution; 25 frames) using a 1.5T MR scanner (Avanto, Siemens Medical Systems,

Erlangen, Germany). No long-axis cMRI were available. Visual inspection of the

images revealed no slice misalignment. As in the previous experiments, the images

were made isotropic to get well-defined dense deformation fields. Circumferential

2D-strain measurements were performed in the short-axis view (frame-rate: 80 fps)

using Automatic Functional Imaging (Vivid7, General Electrics, Vingmed Ultra-

sound) as described in [Teske et al., 2007].
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Jacobian Determinant, Patient 2, cMRI

Figure 5.10: Jacobian determinant of myocardium deformation. Curves represent

mean (plain lines)± standard deviation (dashed lines). As for the first patient, the

incompressibility constraint significantly decreased myocardium volume variations

during the cardiac cycle.
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Figure 5.11: Basal and mid-ventricular radial displacements of patient 2 (in mm,

averaged per zone). Compared with the radial displacements measured by an expert

on tMRI (left panels), the displacements estimated on cMRI using iLogDemons (mid

panel) had more realistic amplitudes compared with those estimated with logDemons

(right panels). Note that both algorithms recovered realistic radial motion patterns

over the cardiac cycle as the image gradients of the cMRI are sufficient to estimate

the thickening of the heart.
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Manual on tMRI iLogDemons on cine MRI LogDemons on cine MRI
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Figure 5.12: Basal and mid-ventricular circumferential displacements of patient 2 (in

mm, averaged per zone). Limited by the lack of consistent texture information, the

circumferential displacements of the heart estimated on cMRI using both logDemons

(right panel) and iLogDemons (mid panel) were globally under-estimated when com-

pared to manual tracking on tMRI (left panel). Yet, iLogDemons motions presented

more realistic patterns, as highlighted by the directions of the displacements of zones

3-9 (A) and zones 1-7 (B) for instance (positive displacement: counter-clockwise;

negative displacement: clockwise).

5.3.2.2 Comparison with Echocardiography 2D-Strain

The heart was tracked on the cMRI using iLogDemons. Registration parameters

were kept identical to the previous experiments: σx = 1, σ2 = 2, σ2
f = 0.5, and

κ = 1. A 2-level multi-resolution scheme was also used and the registration was

automatically stopped as soon as RMSE stopped decreasing. For fair comparisons,

we transformed the estimated 3D displacements into 2D apparent displacements by

warping the short axis displacements (XY-plane) along the through-plane motion

(Z-axis).

Despite of the different nature of the measurements, results provided by the

iLogDemons were fairly similar to the measured 2D-strains. As one can see in

Figure 5.13, estimated regional circumferential strains exhibited variation patterns

similar to the 2D strain measurements. Nonetheless, a more thorough validation

would be necessary to quantify this result. Furthermore, care should be taken when

comparing with 2D-strain as this measurement is only partial (only the 2D defor-

mations are measured) and prone to rater variability [Chung et al., 2008].
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Figure 5.13: Circumferential strain throughout the cardiac cycle. Top panel : 2D-

strain measurement. Bottom panel : cMRI estimation with iLogDemons. Colours

between the two images correspond to the same myocardium regions. iLogDemons

recovered plausible strain patterns from cMRI. In particular, it correctly identified

the abnormal motion of the anterior zone (in cyan).
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5.3.3 Computation Time

For the first adult patient, the frame-by-frame registration took on average 130 s

with logDemons (4.8 s per iterations), 300 s with iLogDemons (10.9 s per iterations)

and 1310 s with i2LogDemons (48.6 s per iterations) on a MacPro 2 × 3.2GHz Quad-

Core Intel Xeon, 16GB of RAM but mono-core execution. The incompressibility was

ensured on about 97000 voxels ( ≈ 4% of the image size 171×61×83). iLogDemons

was about 2 times slower than logDemons but with still reasonable computational

time although the algorithm was not at all optimised. i2LogDemons was too compu-

tationally intensive while yielding no significant improvements due to the repeated

building, preconditioning and resolution of the linear system (the results are not

reported here for the sake of clarity). In iLogDemons, the linear system was built

and preconditioned only once, at the beginning of the registration. Similar computa-

tion times were obtained for the other two patients. In the current implementation,

iLogDemons already appears to be faster than other methods [Tanner et al., 2002;

Haber and Modersitzki, 2004; Saddi et al., 2007], although direct comparison is not

evident due to the different experimental set-up. Fourier-based methods [Hinkle

et al., 2009] or optimised multi-grid system resolution [Saddi et al., 2007] will most

probably further improve our method.

5.4 Discussion

This chapter demonstrated the effectiveness of iLogDemons algorithm to recover

cardiac motion from short-axis gated cMRI. Of course, we do not claim that track-

ing the heart on standard clinical images using iLogDemons should replace cardiac

motion estimation from tMRI or more recent imaging modalities, which, must be

preferred whenever they are available. We only see iLogDemons as a complementary

tool that could estimate the myocardium strain when only anatomical images are

at the clinician disposal, for retrospective studies or in paediatrics for instance.

During our experiments, we observed that enforcing incompressible elasticity sig-

nificantly enhanced the realism and the accuracy of the estimated displacements and

strains in two adults with heart failure and one young patient with repaired ToF. Re-

covered deformation fields were closer to those computed automatically or manually

from tMRI and 2D-strain. The physiological constraints reoriented the displace-

ment vectors within the myocardium, which enabled the recovery of longitudinal

and circumferential motions despite the poor myocardium texture information and

the large slice thickness. We also observed that iLogDemons slightly improved the

estimation of the deformation from tMRI, making the tracking more robust to tag

fading.

The possibility of applying the incompressibility constraint in a limited domain

of the image has been crucial for this application, as only the myocardium is incom-

pressible. Blood pool volume must vary to ensure correct registration, otherwise

locking may happen. Moreover, as the myocardial region is relatively small, little

computational overhead is added to the logDemons algorithm.
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Despite the promising results, some limitations have still to be tackled for that

particular application. In this thesis, we used isotropic elastic regularisation. Be-

cause the cardiac muscle is anisotropic, that transformation model may not be ideal.

Yet, designing efficient anisotropic smoothing is not straightforward and, in that

case, it is even more challenged by the spatial variation of the cardiac anisotropy.

We thus decided to use isotropic filters for the sake of efficiency but thanks to

the proposed regularisation framework, more advanced anisotropic regularisation

schemes could be investigated in the future.

Another limitation is the proposed tracking strategy, which is rather simple.

The focus of our work was on the improvement of the frame-by-frame registration

algorithm. However, the tracking can also be enhanced to take into account the

specificities of the cardiac motion. We could for instance integrate temporal priors

like in [Ledesma-Carbayo et al., 2002; Perperidis et al., 2004; Delhay et al., 2007;

DeCraene et al., 2009] or use more sophisticated 4D registration techniques [Sundar

et al., 2009b]. These improvements will most probably increase the accuracy of the

estimated deformations.

From a clinical point of view, an effort of validation must be conducted on both

tMRI and cMRI. In that study we relied on manual tracking of the tMRI but this

task is tedious, prone to rater variability or even impossible for 3D tMRI. Compar-

ison with other well-established tools would help in evaluating our method [Young

et al., 1995; Chandrashekara et al., 2004; Rueckert et al., 2006b; Arts et al., 2010].

We are currently acquiring and working on larger datasets of patients with heart

failure. Finally, iLogDemons can be applied on other cardiac imaging modalities, in

particular 3D ultrasound and CT images.
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Clinical prognosis of patients with chronic disease is often required to plan ther-

apies. Understanding how a pathology will alter the heart is thus of primary impor-

tance. For instance, predicting the heart shape in repaired tetralogy of Fallot (ToF)

is crucial for planning valve replacement.

However, predicting the remodelling of the heart is tremendously challenging,

even in healthy subjects. In that context, we tackled that question from a statistical

point of view. Inspired from strategies seen in neuroscience and functional brain

imaging, the idea is to detect in a population of patients the patterns of the heart

shape that are relevant to the disease under study. Cross-sectional analyses are

then applied to model the observed heart remodelling. This chapter describes the

methodology of the approach, based on group-wise statistical analyses. Results

specific to ToF patients are detailed in Chapter 7.
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6.1 Motivation

In recent years, increasing evidence has been reported on the tight relationship be-

tween heart shape and function [Narula et al., 2008]. The heart naturally remodels

itself during growth: It becomes larger and thicker so as to adapt its pump efficacy

to the growing body. Similarly, pathologies can seriously affect the heart. Patients

with heart failures usually have dilated, thin and akinetic myocardium [Remme and

Swedberg, 2001]. Congenital heart diseases and corrective surgery can have tremen-

dous long-term sequels on the heart [Oosterhof et al., 2006]. Analysing how the heart

shape is altered by pathologies and how it evolves over time can provide precious

insights into pathological mechanisms and their time course, eventually resulting in

quantitative metrics that can be used for disease diagnostic and therapy planning.

However, the extreme variability in heart shape and the 3D nature of the prob-

lem make this task dauntingly complex. So far, only global indicators, like volume,

cardiac output, etc. have been used to quantify pathological remodelling [Therrien

et al., 2005; Oosterhof, 2006]. Furthermore, the large variety of biological phenom-

ena involved in cardiac remodelling makes prohibitively difficult the construction of

universal direct models of myocardium growth. To date, proposed models focus on

specific remodelling phenomena only, like cardiac fibre realignment or myocardial

thickening for instance [Rodriguez et al., 1994; Geerts-Ossevoort, 2002; Kroon et al.,

2007, 2009].

Recent advances in image processing now enable computational analyses of shape

in large populations of patients. Tools have been developed to identify abnormal

patterns in patients compared to controls [Ashburner et al., 1998] and to study organ

remodelling over time [Thompson et al., 2000], with particular emphasis on brain

structures. These studies are now attainable thanks to consistent mathematical

frameworks and complex registration algorithms. It is now possible to attack the

problem of 3D heart remodelling from a statistical point of view. This strategy is

commonly known as computational anatomy [Grenander and Miller, 1998; Pennec,

2008].

Two categories of approaches for shape analysis can be distinguished: parametric

methods and non-parametric methods. Although both categories share the same

philosophy, i.e. analysing the principal components of shapes descriptors; they are

fundamentally different in the way shapes are computationally represented.

Parametric methods consist in studying the variability of anatomical landmark

positions among a population [Bookstein, 1986; Kendall, 1989]. If consistent land-

marks can be identified in a population of shapes, the variation of their spatial

position indicates the variation of the shapes. Performing principal component

analysis (PCA) on the landmark positions provides the observed shape variabil-

ity. This model is often call point distribution model (PDM). [Cootes et al., 1995]

for instance relied on PDM to guide a deformable model for image segmentation

using shape priors. Although very powerful, PDM suffer from a major limitation:

they require accurate and consistent landmarks. Solutions to that issue have been

proposed, like the Minimum Description Length strategy [Davies et al., 2001] or
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Spherical Harmonic parameterisation [Styner et al., 2004]. However, the uncer-

tainty on the landmark positioning may include bias in the subsequent statistical

analyses.

Non-parametric approaches study how a representative template, or atlas, of the

population deforms within this population. The idea is not to look at the shapes

per se but at the transformations that deform the template to the observations

[Thompson, 1917; Grenander and Miller, 1998; Rueckert et al., 2001]. The main

advantage of these methods is that no mesh correspondences are needed, thanks to

well-posed correspondence-free registration algorithms. However, these approaches

rely on an ideal template that best represents the population of study, which can be

difficult to estimate [Guimond et al., 2000; Joshi et al., 2004; Allassonniere et al.,

2007; Durrleman et al., 2008].

As a first step towards the personalised characterisation of 3D pathological pat-

terns of the heart shape and their evolution in patients, we propose to carry out

group-wise analyses relating shape to clinical features. The overall aim is two-fold.

First, we exhibit shape patterns relevant to the severity of a pathology by relating

the shape descriptors to clinical indices. Second, we propose to build a genera-

tive atlas of heart remodelling through a cross-sectional regression analysis of heart

shapes.

Figure 6.1 outlines the main steps of the proposed approach. We first estimate

an unbiased template of the observed heart shapes and the related deformations

(Section 6.2). We then perform two independent analyses. On the one hand, we

relate the observed shapes to clinical indices that quantify the severity of a pathology

(Section 6.3). To that end, we compute shape variability using principal component

analysis (PCA) and project the observations onto the PCA subspace to reduce model

dimensionality and increase statistical significance. The resulting low-dimensional

shape representation is related to the clinical indices using standard univariate and

multivariate designs. On the other hand, we estimate a generative model of heart

growth from the observations (Section 6.4). To that end, we project the observations

onto a subspace estimated by partial least squares (PLS) between deformations and

a clinical feature that represents patient growth, like age or body surface area. PLS

is more suitable for that purpose than PCA as it automatically extracts modes

that are simultaneously relevant to shape and the clinical feature.The generative

model of growth is then obtained using canonical correlation analysis (CCA). The

following sections describe the methods of the analyses, illustrated on a small dataset

of pulmonary arteries. Chapter 7 reports the results specific to tetralogy of Fallot.

6.2 Unbiased Template of Shapes Using Currents

6.2.1 Background and State of the Art

The first step of the analysis consists in estimating an ideal template of the heart

shape from a cohort of subjects. Let a population of N patients whose hearts have

been segmented from medical images (using the pipeline described in Chapter 3 for
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Figure 6.1: Framework for statistical analyses and modelling of the heart shape

based on currents, exploratory statistics and regression models.

instance). The cardiac anatomy of a patient is represented by a surface Si, the

superscript i stands for the patient index (Figure 6.2). We assume that the surfaces

have been rigidly aligned to a common space. In the following, we call shapes, or

observations, the computational representations of the surfaces Si of the patients

and denote them by T i. They belong to the space of observations. Note that the

T i’s are usually different from the theoretical surfaces Si. In the large majority of

applications, the T i’s are triangulated surface meshes that approximate the Si’s.

We call template, or atlas, the reference shape from which the deformations are

computed. That template must be as unbiased as possible from the population used

to estimate it. The atlas belongs to the ideal space of shapes.

In non-parametric shape representations, the observations can be modelled in

two different ways, resulting in two different constructions of the ideal template. The

backward approach models the template as the average of the deformed observations

plus some residuals that account for variabilities in the space of shapes [Guimond

et al., 2000; Joshi et al., 2004]. Let T i be the observed heart shape of the patient

i, T the ideal template, εi the residuals, φi the transformation that maps T i to T
and ∗ the action of the transformation on the shape. The backward model writes:

T = φi
∗T i + εi
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Figure 6.2: Triangulated surfaces of the cardiac anatomy of a patient with repaired

tetralogy of Fallot.

Such a template is efficiently computed from the observations using iterative reg-

istration/averaging techniques [Guimond et al., 2000]. However, the parameters of

the observations cannot be easily estimated from the data. In particular, how the

residuals are mapped back to the space of observations is not evident. Moreover,

separating shape variations and noise due to data artefacts is not obvious with this

framework. These uncertainties make this a challenging approach for the statistical

analyses of shapes.

The forward approach reverses the point of view by representing the observa-

tions as deformations of the template plus some residuals [Allassonniere et al., 2007;

Durrleman et al., 2008], which writes

T i = φi
∗T + εi

In this framework, the parameters are easier to identify. The transformation φi maps

the ideal template to the observation, it encodes most of the shape information that

is represented by the template. The residuals are defined in the space of the observa-

tions: they correspond to the shape features that are not captured by the template

and the deformations, such as topology changes, shape outliers due to image arte-

facts, etc. Model parameters can therefore be faithfully estimated from images and

clinical data. Nevertheless, this frameworks requires more complex mathematical

tools to represent the shapes, deformations and residuals in a consistent way.

In our analyses, we rely on the forward approach as we aim to statistically

relate shapes to clinical features. More precisely we use the method proposed by

[Durrleman et al., 2009a], which is particularly suitable for our purposes as i) it

relies on currents, an elegant non-parametric representation of shapes that defines

vector spaces; ii) the template and the deformations are computed simultaneously

and consistently; and iii) the parameters are well-defined, the amount of shape

information to analyse is fully controlled.
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6.2.2 Data Preparation

The very first step of the analysis consists in extracting 3D surfaces of the heart from

medical images. As the method is non-parametric, no point correspondences are nec-

essary, any image segmentation algorithm can be used to segment the boundaries

of the heart. Once the surfaces have been delineated, we align them in a com-

mon space to remove positioning effects in the subsequent statistical analyses. If

point correspondences are available, standard least square rigid registration can be

employed [Mosier, 1939; Arun et al., 1987]. Otherwise, non-parametric rigid regis-

tration can be used [Jian and Vemuri, 2005; Hufnagel et al., 2007]. In the following,

we assume the meshes are already aligned.

6.2.3 Unbiased and Non-Parametric Statistical Models on Surfaces

This section briefly outlines the forward model of shapes for the sake of completeness.

The reader is referred to [Durrleman et al., 2009a; Durrleman, 2010] for further

details.

6.2.3.1 Non-Parametric Representation of Shapes with Currents

Currents are used to represent the surfaces Si and the residuals εi. Before going into

the mathematical details, let’s consider a simple analogy illustrated in Figure 6.3.

In the recent years, 3D scanners have been developed to digitalise material objects.

These machines acquire the geometry of an object by probing its surface with laser

beams. The diffraction of the beams on the surface is captured by cameras and the

resulting signal is used to reconstruct the object on the computer. Likewise, currents

characterise shapes by probing them using varying vector fields ω ∈W (the scanner

laser beams). The shape is characterised by how it integrates these vector fields (the

scanner camera).

Figure 6.3: 3D scanners digitalise objects by probing their shape using varying laser

beams (left panel). Currents work in the same way. They characterise a shape by

probing it using varying vector fields (right panel)

Mathematically, a current is a continuous linear mapping LW (ω) from a vector

space W to R, i.e. it is an application that integrates vector fields. The current

of a surface S is the flux of a test vector field ω ∈ W across that surface. The
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shape T of the surface S is uniquely characterised by the variations of the flux as

the test vector field varies. The core element that makes this framework possible

is to choose as vector space of the test vector fields W a vector space generated by

a kernel, typically the Gaussian kernel KW (x,y) = exp(−‖x − y‖2/λ2
W ) (W is a

reproducible kernel Hilbert space (r.k.h.s.)). W is the dense span of basis vector

fields of the form ω(x) = KW (xa,x)a, where the vectors a are given and fixed at the

spatial positions xa. The kernel KW defines an inner product in W that is easily

computed by < ω(.), ν(.) >W =< KW (xa, .)a, KW (xb, .)b >W = aT KW (xa,xb)b,

where ω(.) = KW (xa, .)a and ν(.) = KW (xb, .)b are two vector fields of W . A

consequence of these properties is that the space of currents W ∗, which is the dual

of W , is the dense span of the dual representations of the basis vectors ω(.), called

Dirac delta currents δa
xa

(ω) and defined by:

δa

xa
(ω) =< KW (xa, .)a, ω(.) >W = aT ω(xa) (6.1)

Intuitively, a Dirac delta current is an infinitesimal vector a that is concentrated at

the spatial position xa. In that way, the current T of a surface S can be decomposed

into an infinite set of Dirac delta currents defined at each point of the surface and

oriented along the surface normal. Computationally, the surfaces are represented by

discrete triangulated meshes: Their current representation is the finite sum

T (ω) =
∑

k

δak
xk

(ω) (6.2)

where xk are the barycentres of the mesh faces and ak their normal (Figure 6.4, left

panel). The vector field ω dual of the current T (ω) is the spatial convolution of every

normal vector ak with the kernel KW , ω(x) =
∑

k KW (x,xk)ak. In [Durrleman

et al., 2009a], the authors propose an efficient greedy algorithm to approximate

the current representation of a surface by a minimal yet optimal set of Dirac delta

currents (Figure 6.4, right panel). Computational complexity is further decreased

by using FFT-based kernel convolution techniques.

As currents are linear applications, they define a vector space on shapes de-

noted W ∗. The sum of two currents is the union of their Dirac delta currents, i.e.

the union of the two surfaces. Likewise, scaling a current amounts to scaling the

amplitude of the Dirac delta currents. In addition to that, the space of currents

W ∗ is equipped by construction with the inner-product < δa
xa

(ω), δb
xb

(ω) >W ∗=<

KW (xa, .)a, KW (xb, .)b >W = aT KW (xa,xb)b. The distance between two shapes

can therefore be computed as the W -norm of the difference of their currents. The

space of currents thus enables one to compute mean, standard deviations and other

descriptive statistics on shapes. Finally, discrete Gaussian variables in the space of

currents can be defined to model the residuals εi. In practice, we place a random

vector ap that follows a normal distribution at each point xp of a 3D grid that

embeds the shape T .

We conclude this section with an important remark about the width λW of the

kernel KW that controls the resolution of the current representation. Basically, the

larger λW , the coarser the resolution and the less “accurate” the representation. This
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Original Shape (1476 delta currents) Compressed Shape (281 delta currents)

Figure 6.4: The Dirac delta currents of a triangulated mesh are the normal vectors of

every face, centred at the face barycentres. A greedy algorithm reduces the amount

of delta currents needed to represent the shape while preserving the accuracy of the

representation.

A) B)

Figure 6.5: The size of the kernel KW enables one to choose the level of details of

the current representation. Large λW discards subtle shape features (A) that would

be recovered using smaller λW (B) (Images courtesy of S. Durrleman)

parameter thus sets the level of shape details we want to study. As it is illustrated in

Figure 6.5; small λW values enable one to capture little differences between surfaces,

whereas large λW discard them.

6.2.3.2 Surface Registration Using LDDMM on Currents

The smooth diffeomorphic transformation φi that registers the template T to the

observations T i is estimated using the Large Deformation Diffeomorphic Metric

Mappings (LDDMM) [Dupuis et al., 1998; Miller et al., 2002a; Beg et al., 2005] on

currents [Vaillant and Glaunes, 2005; Glaunes, 2005]. Diffeomorphic transformations

are crucial to ensure one-to-one mapping between the two shapes. No material loss

nor topology changes are allowed, thus guaranteeing the consistency of the analysis.

Similar to the iLogDemons (Chapter 4), φi is calculated by integrating the La-

grangian transport equation ∂φi(x, t)/∂t = vi(φi(x, t), t), φi(x, t = 0) = x. How-

ever, the velocity field vi are now time-dependent, yet completely determined by

the initial velocity field vi(x, t = 0), denoted vi
0(x) to simplify the notations. The

initial velocity vi
0(x) belongs to a r.k.h.s. V generated by the Gaussian kernel

KV (x,y) = exp(−‖x−y‖2/λ2
V ), which defines an inner product of V . The vi

0’s are

therefore defined as the convolution of sets of moment vectors βi by the kernel KV .

Intuitively, the moment vectors contain the initial kinetic energy that is necessary
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to cover the geodesic path φi. For discrete surfaces, the moments are defined at

the locations xk of the Dirac delta currents δak

xk
and the initial velocity field satisfies

vi
0(x) =

∑

k KV (xk,x)βi
k. The inner product between two velocities vi

0 and v
j
0 thus

writes:

< vi
0,v

j
0 >V =

∑

k,l

βiT

k KV (xk,xl) βj
l

The transformation φi is estimated by minimising the registration energy defined

on the current:

E(v) = ‖φi(t = 1)∗T − T i‖2W ∗ + ν

∫ 1

0
‖v(t)‖V dt (6.3)

In this equation, ν is a weight parameter that controls the strength of the regu-

larisation and φi(t = 1)∗T is the action of the diffeomorphism at time t = 1 on

the template T . How this energy is minimised is detailed in [Glaunes, 2005; Vail-

lant and Glaunes, 2005]. What is important to consider for our application is the

effect of the kernel KV on the estimated deformations. The matching criterion is

regularised by minimising the length along the geodesic diffeomorphism, which is

computed by integrating the V -norm of the velocity field v(t) over time. Hence, the

kernel KV controls the smoothness of the velocity v0, and indirectly of the trans-

formation φ. Intuitively, λ2
V controls the size of the spatial region that is deformed

consistently. When λ2
V is large, wide spatial regions are deformed in a coherent way,

and conversely. One can thus control the scale of shape deformation to analyse. For

studying global shape differences, large λ2
V are suggested, and conversely.

6.2.3.3 Unbiased Template of Shapes

The template T and the deformations φi are estimated jointly and consistently by

means of an alternate two-step strategy. The idea is to consider the forward model

as a Bayesian problem where the shapes T i are the observations, the template T is

the unknown, the transformations φi that register T to the observations are hidden

variables and the residuals εi are random Gaussian variables represented by currents.

To compute T and the φi’s simultaneously, we solve the approximated minimisation

problem:

(T , φi) = argminT ,vi
0

{

‖φi(t = 1)∗T − T i‖2W ∗ + τ
N∑

i=1

‖vi
0‖2V

}

(6.4)

where τ weights the geodesic regularisation and vi
0 is the initial velocity field that

parameterises the transformation φi. This equation is similar to the registration

energy (6.3), except that here the template T is also unknown. The first term is the

distance between two currents, the transformed template φi
∗T and the target subject

T i. The second term is the geodesic regularisation, applied to all the transformations

to estimate.

[Durrleman et al., 2009a] proposed an alternate minimisation of that energy

(Figure 6.6). We first assume the template T is known. Minimising Equation 6.4
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with respect to the φi’s amount to registering the present estimate of the template

T to each patient independently. Once the φi’s are calculated, Equation 6.4 is

minimised with respect to the template T . This is achieved using a gradient descent

method, see [Durrleman et al., 2009a] for details. Intuitively, this second stage

updates the template from the transformations φi to reduce the overall registration

error. The new template minimises the registration errors for all the patient at the

same time, i.e. it is more centred with respect to the population. The algorithm

is initialised with the mean current of all the observations and it is iterated until

convergence. In all our experiments, we fixed τ = 10−3. Only the more intuitive

kernel sizes λ2
V and λ2

W were adjusted.

A- Estimate the Transformations φi’s B- Centre the Template
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Figure 6.6: Joint estimation of template and transformations. Given a template,

the transformations that map it to the shapes are first estimated (A). The template

is then centred to minimise the overall registration error (B).

A parallel implementation of the algorithm has been developed to process large

amounts of subjects on clusters of computers (Algorithm 6). A scheduler script

controls the execution of the algorithm. It dispatches the template-to-patient reg-

istrations to all the available computers as these steps are independent from each

other (Figure 6.6, Step A). It then waits for the computers to perform the regis-

trations, after which it centres the template (Figure 6.6, Step B) and loop until

convergence. As a result, the computation time required to estimate the template

minimally depends on the number of subjects.

6.2.4 Results on Pulmonary Arteries

As an illustration, we computed the average template of the pulmonary artery in five

patients with repaired tetralogy of Fallot. In these patients, the pulmonary artery

is severely altered due to chronic pulmonary regurgitations subsequent to the initial

cardiac repair (see Section 2.3, page 28). Of course, no clinical conclusions can be

drawn from this experiment due to the small size of the population. We just aim to

illustrate the methodology.
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Algorithm 6 Parallel Template and Deformations Estimation

Require: N linearly registered currents T i.

1: Compute the initial template T 0
, the average of the N currents.

2: loop {over n until convergence, T n
= T n−1

}

3: Dispatch: estimate the transformation φin that registers T n−1
to T i ∀i.

4: Wait: all the registrations are done

5: Update: compute the new template T n
from the deformations φin and the

previous template T n−1

6: return Final template T n
and deformations φin .

For the five selected patients, we segmented the pulmonary artery from MR

angiography through image thresholding and manual corrections. The artery was

segmented from the pulmonary valve annulus, which connects the artery to the right

ventricle, to about 1 − 2 cm after the pulmonary branches, which go towards the

lungs. Figure 6.7 illustrates the segmentations. From the segmented meshes, we

computed the unbiased template, illustrated in Figure 6.8
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Figure 6.7: Pulmonary arteries of five patients suffering form repaired tetralogy

of Fallot. One can see the different patterns of dilation, with different degrees of

bulging of the pulmonary trunk.

6.2.5 Towards Statistical Analyses of Shapes

Equipped with a consistent framework for representing the shapes of a population of

patients, we can now relate the observed shape features to pathology indices. As we

have seen in the previous sections, the shape information is captured by either the

deformations φi’s or the residuals εi’s. The amount of information present in each

component is controlled by the user through the parameters λV and λW . The φi’s

encode the features that are represented by the template T whereas the residuals

εi capture all the remaining characteristics. The question of which information to
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Figure 6.8: Template of the pulmonary artery estimated from a population of five

patients with repaired ToF. Observations are represented in wireframe.

use is therefore crucial. In our application, we analyse the deformations φi only as

we mainly focus on the regional changes of the heart anatomy due to the pathology.

Besides, heart segmentation is prone to local inconsistencies due to image artefacts,

which may challenge the analysis of the residuals.

The major difficulty of statistical analyses of shapes is the very large dimen-

sionality of the data to analyse. The deformations φi’s are studied by considering

the initial velocities vi
0’s, which can be parameterised by thousands of moments βi

(one at each point of the current representation). A large number of patients would

thus be necessary to get statistical significance. In addition to that, neighbouring

moments are highly correlated by construction, hence resulting in collinear shape de-

scriptors that may violate assumptions of the most usual statistical tests. To tackle

these issues, we propose to project the initial velocities vi
0 on optimal subspaces.

The idea is to reduce the number of variables that are necessary to describe an

observation. Two subspace techniques are investigated. To explore shape patterns

relevant to pathologies, we rely on the traditional Principal Component Analysis

(PCA), which extracts components that best explain the shape variance of the pop-

ulation. To predict the shape from an external variable, we instead use partial least

squares (PLS), which estimates the optimal subspace that best explains both the

observed shape variance and its covariance with the external variable.

6.3 Identification of Pathological Heart Shape Patterns

6.3.1 Background and State of the Art

The first aim of the analysis is to identify shape patterns that relates to pathologies

in a population of patients. Numerous studies investigated the shape variability

observed in populations. The large majority of them compare groups of patients

with controls to identify differences due to the pathology (see [Cates et al., 2008]
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and references therein for instance).

In this thesis we explore an alternative idea, which is to correlate the heart

shape variability with clinical parameters that quantify the severity of the pathol-

ogy. The hypothesis is that such correlations may reveal quantitative 3D patterns of

the pathological morphology. Few related strategies can be found in the literature.

In [Querol et al., 2006], the authors use PCA to relate the main modes of variation of

bone shapes with biomechanical properties simulated using finite element methods.

This approach enabled them to identify variations of bone stress due to changes

in bone anatomy. In [Boisvert et al., 2008], the authors performed PCA on shape

descriptors of scoliotic spines to classify patients with different pathological spine

morphology. Resulting shape modes were consistent with the clinical classification

of reference. More recently, Blanc et al. proposed to mix shape descriptors and

explicit anatomical constraints representative of bones morphology to get anatom-

ically consistent shape modes [Blanc et al., 2009]. The obtained statistical model

was able to generate realistic bone shapes by discarding variations due to noise for

instance.

In this work we apply standard statistical design to select the modes of variation

that are relevant to the studied pathology. Figure 6.9 presents the different steps of

the method. We first compute deformation modes using PCA. The modes represent

the shape variations observed in our population. We then project each patient to

a subspace of modes to reduce the dimensionality of the problem. Each patient

is represented by a shape vector constituted of few elements. We finally apply

standard statistical analyses between shape vectors and clinical indices to explore

shape patterns that may relate to the pathology.
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Figure 6.9: Shape analysis pipeline. Pathological shape patterns are identified by

relating PCA deformation modes to clinical parameters. Model dimensionality is

reduced using PCA to increase statistical significance.

6.3.2 Model Reduction on Principal Components

Principal Component Analysis (PCA) is applied on the initial velocity fields vi
0 to

extract the main deformation modes observed in the population. PCA finds basis
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vectors, the modes, of the space of variables (here the initial velocities) that best

explain their variance. The modes p are calculated by solving the eigenvalue problem

Σp = µp, where the elements σi,j of the covariance matrix Σ are calculated in the

kernel space V by:

σij =< vi
0 − v0,vj

0 − v0 >V =
∑

xk,xl

(βi
xk
− βxk

)KS(xk,xl)(β
j
xl
− βxl

) (6.5)

v0 is the mean initial velocity field computed over the population and the super-

scripts i and j denote two different subjects. The principal components are obtained

by computing the spectral decomposition Σ = PMP T . M is the diagonal matrix of

the eigenvalues σm, or variances, sorted in decreasing order and P is the orthonor-

mal matrix (in the L2-norm sense) of the eigenvectors pm. The mth loading lm of

the PCA decomposition is given by the formula:

lm =
∑

i

pm[i](βi − β) (6.6)

In this equation, pm[i] is the ith element of the mth eigenvector of Σ, βi = (βi
x1

. . . βi
xr

)T

is the r×3 matrix that gathers the r moment vectors of patient i, and β is the aver-

age moment. By construction, the loadings lm belong to the space of moments. We

observe that the V -norm of the initial velocity field parameterised by lm, denoted

v0lm
, equals the mth variance σm:

‖v0lm
‖2V = lm

T

KS lm =

(
∑

i

pm[i](βi − β)

)

KS

(
∑

i

pm[i](βi − β)

)

=
∑

i,j

pm[i]pm[j] (βi − β)KS (βj − β)
︸ ︷︷ ︸

σi,j

= pmT

Σpm = σm

As a result, the variability captured by the mth deformation mode between [−kσm; +kσm]

is visualised by deforming the template T with the deformations φ−m and φ+m pa-

rameterised by the moments β − klm and β + klm respectively.

By construction there is at most N − 1 PCA modes, where N is the number of

observations. Using all of them fully describe the observations but usually only a

subspace is considered by choosing p < N − 1 components. A standard approach is

to chose the p first modes that explain at least π% =
∑p

m=1 σm of the total variance.

Each subject is then projected onto the selected PCA subspace and is represented

by a unique shape vector si = {si,m}m=1..p whose elements are the scalar product

between the initial velocity vi
0 of the patient and the velocity of the mth mode:

si,m =< vi
0 − v0,v0lm

>V

=
∑

xk,xl

[βi
xk
− β]KS(xk,xl)l

m
xl

The si,m’s quantify the amount of variability along the mth mode present in patient

deformation.
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In conclusion, we have reduced the amount of data needed to represent the shape

of a patient by two or more orders of magnitude. The precision of the representation

is controlled by the number of components of the PCA subspace. However, it has to

be observed that modes with low variances may still be relevant to external clinical

parameters. For instance, a mode that captures a local bulging is probably more

related to the pathology than a global scaling of the shape although this bulging is

not very visible in the population. Consequently, we will be fairly conservative in

the selection of the PCA subspace and select the modes based on their relationship

with the clinical parameters of interest and not their variance as described in the

following sections.

6.3.3 Results on Pulmonary Arteries

As an illustration, we consider the previous set of five pulmonary arteries of tetralogy

of Fallot patients. From the estimated template and deformations, we computed the

first three PCA deformation modes and applied them to the template to visualise the

shape variations. As one can see from Figure 6.10, the deformation modes captured

different degrees of elongation of the pulmonary branches and bulging or bending of

the pulmonary trunk. The idea in the following sections is to correlate these modes

with clinical parameters in order to identify features relevant to the pathology.

Template

Mode 1

Mode 3

+ sigma

+ sigma

- sigma

- sigma

+ sigma

Mode 2

- sigma

0cm

6cm

3cm

Figure 6.10: Template and first three deformation modes of pulmonary artery com-

puted from five ToF patients. The deformation modes captured different degrees of

elongation of the pulmonary branches and bulging or bending of the trunk.
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6.3.4 Exploring Factors between Shape and Clinical Features

Deformation modes relevant to the pathology are explored by statistically relating

the shape vectors si to clinical parameters. Two categories of parameters can be

distinguished. On the one hand, ordinal parameters are qualitative or quantitative

indices that classify patients by ordered levels. Pulmonary regurgitation for instance

can be qualitatively classified as none, trace, mild or severe. Patients can be quan-

titatively classified by their age. On the other hand, continuous parameters are

obtained by direct measurements of physical entities like flows, volumes or surfaces.

Because of the different nature of the parameters, two approaches are needed.

In the following sections, a statistical nomenclature is adopted. The PCA shape

vectors si are gathered into an N × p matrix of variables, X = (s1 . . . sN )T (Fig-

ure 6.11). N is the number of patients in the population and p the number of

elements of the shape vectors, i.e. the number of components of the PCA subspace.

The columns of X, which correspond to a specific mode, are called predictors and are

seen as different variables of a single observation. Similarly, the q clinical parameters

under study are gathered into an N × q matrix Y, called response variables. In this

work, only one clinical parameter is studied at a time (q = 1) to have full control

on the statistical analyses and to maximise significance.

X = 
ith pa'ent 

jth component of 

PCA shape vector s 

si1  sij  sip …  … 

s1j 

sNj 

1  …  j  p 

1 

i 

N 

… 

…
 

…
 

…
 

…
 

…
 

…
 

… … 

Y = 

Clinical Variable  

(Response) 

ith pa'ent 

…
 

…
 

1 

i 

N 

…
 

yi 

y1 

yN 

Shape Variables (Predictors) 

… … 

…
 

…
 

…
 

Figure 6.11: Matrices of the clinical variable Y and the shape descriptors X.

6.3.4.1 Relating Shape to Ordinal Parameters

Ordinal parameters classify patients in different groups. Deformation modes are

selected based on their ability to separate these groups. When the number of ob-

servations is not sufficient to convert ordinal parameters into continuous numbers,

non-parametric statistical tools based on ranks must be employed. These approaches

are robust to non-normal errors and resistant to outliers. The analysis is performed

in two steps. First, we test if groups of patients can be distinguished. In the affir-

mative, post-hoc pair-wise tests are applied to detect which groups actually differ.

In our studies we prefer univariate analyses to multivariate designs to maximise

statistical power and control the statistical tests, although inter-component effects
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may exist.

Rank-based Kruskal-Wallis one-way analysis of variance is used to test if a

mode can distinguish groups of patients [Saporta, 2006]. This analysis is the non-

parametric variant of the one-way analysis of variance (ANOVA) in what it detects

if two groups of patients have different median ranks. Let xm be the mth predictor

(mth column of X) and Y be the ordinal clinical parameter. Kruskal-Wallis analysis

consists in ordering the elements of xm in increasing order, replacing their value by

their rank and grouping the observations according to the clinical levels defined in

Y. The analysis then tests if median ranks can be distinguished although it does

not say which groups differ.

A post-hoc two-way rank-based Wilconxon test is required to detect which

groups actually differ, as ANOVA requires post-hoc two-way Student’s t-test. Let

A and B be two groups of patients identified by Y, and si,m
A and sj,m

B the shape

descriptors along the mth mode of the ith patient of group A and the jth patient

of group B. This test compares the groups A and B by analysing the distribution

of the sorted pairs (si,m
A , sj,m

B ). If the two groups come from a same distribution,

the number of pairs that verify si,m
A > sj,m

B should be pretty close to the number

of pairs with si,m
A < sj,m

B . This test is rejected if this equality is not verified. As

multiple comparisons are performed (levels are compared pair-wise), the probability

of rejecting the hypothesis just by chance increases significantly. Bonferroni correc-

tion for multiple tests is thus used, which consists in dividing the chosen level of

significance (the maximum p-value) by the total number of tests.

These two steps are complementary since finding an effect between a mode and

the investigated clinical parameter does not necessarily mean that this mode is able

to differentiate levels. In particular, when the variance of each group is sufficiently

high to mask the distance between their mean, no level can be differentiated. It has

to be noted that finding no effects does not mean that there is no effect between

a mode and the clinical parameter. With more patients for instance, new findings

may be obtained. At the end of the process, we come up with a subset of modes that

can distinguish different levels of the clinical parameters under study. Visualising

these modes may reveal anatomical patterns related to the pathology.

6.3.4.2 Relating Shape to Continuous Parameters

A similar approach can be applied to relate the deformation modes to continuous

clinical parameters by replacing the Kruskal-Wallis analysis by ANOVA and the

post-hoc Wilconxon test by Student’s t-test. However, a regression approach is

preferred in order to account for cross-component effects and to detect the direction

of correlations. The idea is to perform a multiple linear regression between the shape

descriptors si and the clinical parameter Y, which is usually known as Principal

Component Regression [Massy, 1965; Rosipal and Krämer, 2006]. Mathematically,

the multiple linear regression writes:

Y = a0 +

p
∑

l=1

alx
m = a0 + aT X (6.7)
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In the previous equation, a0 is the intercept and a is the column vector of the re-

gression coefficients al. The al’s reflect the conditional correlations between the

predictors and the response. Their sign shows the direction of the correlation, in-

formation that we cannot get with univariate analyses. Their value quantifies the

amount of information that a single predictor adds to the model when all the re-

mainder predictors are already included. This information is difficult to interpret

as it depends on the other modes. Yet, one can assess whether a predictor is signif-

icant to the overall linear model by testing the null hypothesis H0 that al = 0 using

Student’s t-test on the ratio between al and its standard error [Saporta, 2006]. This

information is provided by any statistical software. We can therefore discard the

modes that are not significant to the linear model, and thus not relevant to the re-

sponse variable, through step-wise manual approaches or exhaustive criterion-based

automatic techniques.

Step-wise mode selection consists in iteratively removing the less significant pre-

dictors from the linear model until model overall significance stops increasing (i.e.

the p-value related to the null hypothesis that the estimated linear model is a con-

stant model, stops decreasing). The remaining modes are those that are relevant to

the response variable Y. Although this approach showed promising results in previ-

ous studies [Mansi et al., 2009c], the selected modes may be unstable with respect

to the observations. Different modes may be selected if new patients are added into

the database. We shall prefer more robust and automatic modes selection based on

criterion evaluation.

Two major criteria are available in the literature: the Bayesian Information Cri-

terion (BIC), also known as Schwartz criterion [Schwartz, 1978] and the Akaike In-

formation Criterion (AIC) [Akaike, 1974]. The idea is to maximise the log-likelihood

of the model according to its predictors (seen as parameters of a probabilistic model)

while penalising the amount of parameters of the model. Combination of predictors

are exhaustively tested and the model which minimises the criterion is chosen.

Let L(Θ) be the likelihood of the linear model whose parameters are Θ, namely

the predictors X. BIC and AIC write:

BIC = −2 lnL(Θ) + ln(N)p (6.8)

AIC = −2 lnL(Θ) + 2p (6.9)

Apparently very similar, these two criteria often yield different models. When the

number of observations is high (N > 8), BIC penalisation on the number of parame-

ters is higher than AIC penalisation. This criterion thus favours models with as less

parameters as possible. Coming from Bayes theory, BIC tries to find the most prob-

able model given the observations. It can be demonstrated that when the number

of observations N is very large, the probability to find the “true” underlying model

tends to one. BIC should therefore be used to design models that best explain the

data, although the definition of a “true” model is far from being clear. AIC penali-

sation on the number of parameters is less severe. AIC has been developed from the

Kullback-Leibler divergence, which measures how a given distribution differs from a

reference distribution. In simple words, AIC estimates how much information is lost
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by using the reduced model instead of the theoretical distribution. It thus favours

models whose distributions parameterised by the selected predictors are as close as

possible to the unknown theoretical distribution. Models with highest likelihood,

and therefore with higher predictive power, will be preferred. Nonetheless, AIC

may never find the “true” underlying model even for large N . In our experiments,

reported in Chapter 7, the modes that are selected by the three strategies (step-wise

backward selection, AIC and BIC) are compared.

6.4 Estimation of a Generative Model of Heart Growth

6.4.1 Background and State of the Art

In the previous sections we described tools to identify shape characteristics that are

relevant to a pathology. Can we go beyond shape description and predict a heart

shape from clinical data? Can we apply statistical methods to derive an atlas of the

cardiac remodelling observed in a population?

Ideally, one would use longitudinal data to study organ remodelling, as in [Thomp-

son et al., 2000; Beg et al., 2004; Qiu et al., 2008; Aljabar et al., 2008; Durrleman

et al., 2009b]. However, such datasets are challenging to acquire, entailing long-term

projects with rigorous protocols. In this thesis, too few longitudinal datasets were

available to perform longitudinal analyses. We therefore relied on cross-sectional

regression to estimate an average generative model of the heart growth. The under-

lying idea is to consider each subject as a time-point realisation of a hidden event

and to model how these realisations “evolve” over time through regression analyses

(Figure 6.12).
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Figure 6.12: Cross-sectional regression of shapes. Each subject is associated to a

point in time (his age for instance). A regression model is derived from the temporal

data.

Cardiac remodelling over time is investigated by regressing the initial velocities

vi
0 that parameterise the deformations φi with an index that represents patient

growth. Patient age is a typical choice but in paediatrics it may not reflect growth

precisely, as teenagers can enter into puberty at different ages. For this population,
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clinicians prefer using body surface area (BSA), a quantitative and continuous index

of body physiology, calculated from subject height and weight, which correlates with

age. Among the several formula available in the literature, Dubois formula [DuBois

and DuBois, 1915] is a standard choice:

BSA(m2) = 0.007184× weigth(kg)0.425 × height(cm)0.725 (6.10)

As in the previous section, the dimensionality of the problem must be reduced

to get statistically significant regressions. Furthermore, we need to remove any co-

linearity of the predictors to get reliable regression models. A standard strategy con-

sists in regressing on principal components (Section 6.3.4). Although this approach

yielded promising results on 18 tetralogy of Fallot patients [Mansi et al., 2009c],

it may not be optimal as PCA decomposition does not consider the effect of body

surface area. In the following, we propose instead to project the observations onto

a subspace estimated with Partial Least Squares (PLS) [Wold, 1966; Rosipal and

Krämer, 2006]. Given two sets of variables X and Y, PLS computes the components

that span the spaces of variables which best explain the variance of X, the variance

of Y and the covariance between X and Y. Furthermore, the PLS components are

such that the regression Y = f(X) is optimal. PLS is therefore suited for exhibiting

deformation modes that best relate to an external parameter. Furthermore, PLS is

much more efficient than standard regression when the number of predictors is much

higher than the number of observations. Thanks to these advantages, PLS has been

largely applied in computational chemistry [Wold et al., 2001] and more recently

in functional brain imaging [Worsley, 1997; McIntosh and Lobaugh, 2004; Ji et al.,

2009], where it is used to predict activation patterns related to cognitive activity. In

medical imaging, [Ablitt et al., 2004] relied on PLS to predict cardiac motion from

respiratory signals to improve cardiac image acquisition. More recently, [Rao et al.,

2008] used PLS and canonical correlation analysis to predict the shape of a brain

structure from neighbouring anatomies in view of automatic brain segmentation. In

both approaches PLS showed good prediction power.

Contrary to PCA, PLS is not symmetric as it extracts modes that optimise the

regression Y = f(X). In some cases one would prefer canonical correlation analysis

(CCA), which is symmetric. However, contrary to CCA, PLS can be applied to

datasets that have much less observations than variables, like in our case, as it

does not require inverting large matrices. Ideally, we would like to use PLS to

have a model that predicts the heart shape from BSA, shape = f(BSA). Yet,

performing this regression directly is not possible due to the large number of variables

we would need to predict (the deformation parameters) compared to the predictors

(the BSA). We thus revert the point of view and apply PLS with the predictive

model BSA = f(shape) to select the optimal subspace relevant to both shape and

BSA, as illustrated in Figure 6.13. The observations are then projected onto the PLS

subspace, resulting in a compact shape representation of the observations. Finally,

CCA is applied to estimate the generative model of heart growth.



6.4. Estimation of a Generative Model of Heart Growth 127

Ini$al Veloci$es 

of Deforma$ons 

Model Reduc$on 

Par$al Least Square 

Regression 

Growth Model 

Canonical 

Correla$on Analysis 

>1000  <20  <20 

Model Dimensionality 

Body Surface 

Area 
Shapes 

Number of 

parameters 

Body Surface 

Area 

Genera<ve 

Growth Model 

Figure 6.13: Generative model of the heart growth. Partial least squares is used

to exhibit deformation modes that maximise shape variance and shape covariance

with BSA. Canonical correlation analysis is used to build the generative model on

the selected PLS modes.

6.4.2 Model Reduction on Partial Least Squares Components

PLS combines PCA and linear regression to predict response variables Y from a set

of predictor variables X. Contrary to principal components regression, PLS auto-

matically finds an orthonormal basis of the space of predictors X that is also relevant

to Y. The basis vectors, called scores, components or modes, maximise the variances

of both sets of variables and their covariance. In simple words, PLS does PCA,

model selection and linear regression at the same time to provide the optimal result

[Höskuldsson, 1988]. Mathematically, PLS consists in estimating the normalised

weight vectors r and s that verify:

max
|r|=|s|=1

cov(Xr,Ys) = max
|r|=|s|=1

var(Xr) corr(Xr,Ys)2 var(Ys) (6.11)

under the constraint of optimal regression between the predictors X and the response

Y. For comparison, PCA solves the optimisation problem max|r|=1 var(Xr).
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Figure 6.14: Matrices of BSA, Y, and centred moment vectors that parameterise

the deformations, X.
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PLS deformation modes that are relevant to BSA are computed as follows. The

predictor variables X are the r moments βi that parameterise the initial velocity

fields vi
0, gathered into a N × 3r matrix. The response variable Y is the N × 1

matrix of the BSA values. N is the number of observations (patients) (Figure 6.14).

We define Xc and Yc the centred variables Xc = X−X and Yc = Y−Y respectively.

They are modelled by the linear relationships:

Xc = TPT + E (6.12)

Yc = UQT + F (6.13)

These equations are similar to the PCA decomposition: T and U are the matrices of

PLS modes (equivalent to the PCA modes); P and Q are the matrices of loadings;

and E and F are residuals matrices that are null if the ranks of T and U equal those

of Xc and Yc respectively. T and U are orthonormal, i.e. TT T = UT U = Id, but

contrary to PCA, the loadings are not necessarily orthogonal. The PLS modes also

verify the linear regression equation:

U = TD + G (6.14)

where D is a diagonal weight matrix and G is the matrix of residuals. Note that

PLS asymetry is due to the previous equation. By integrating (6.14) into (6.13),

we get Yc = TCT + F∗. We can then express the PLS modes T in function of Xc,

T = (Xc−E)PT+

, where PT+

is the Moore-Penrose pseudo inverse of PT . The PLS

regression model thus write:

Y∗
c = XcB (6.15)

where Y∗
c are the predicted response variables Yc and B is the matrix of regression

coefficients given by B = PT+

DQT .

The optimal PLS modes and loadings are computed iteratively, as illustrated

in Algorithm 7. The idea is to find, for a given set of variables Xc and Yc, the

unitary weight vectors r and s that maximise the PLS criterion (6.11). It can be

demonstrated that r and s are the first eigenvector of the squared covariance matri-

ces XT
c YcY

T
c Xc and YT

c XcX
T
c Yc respectively [Höskuldsson, 1988]. The PLS modes

t and u are then linear combination of the variables Xc and Yc weighted by r and

s respectively. To find the following modes, we remove from the data the variance

explained by r and s. For the variables Xc, this step, called deflation, consists in

subtracting from Xc the matrix tpT (cf. Equation 6.12). The same approach is

applied to the variables Yc although here we have to take into account the regres-

sion. According to Equation 6.13 and Equation 6.14, Yc is deflated by subtracting

t[tT Y]/(tnT
tn). The algorithm loops until all the PLS modes are extracted.

One can demonstrate that the PLS modes are automatically ordered by decreas-

ing variance, like PCA, and covariance between the variables [Höskuldsson, 1988].

PLS modes are therefore also ordered by decreasing correlation, as we shall see in

the results on tetralogy of Fallot reported in Chapter 7. We can thus select a subset

of PLS modes by taking the first p PLS modes that simultaneously explain πX% of

variance of Xc and πY % of variance of Yc.
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Algorithm 7 Partial Least Squares Space Decomposition
Require: X, Y, p number of PLS modes to extract, p ≤ N − 1.

1: X0
c ← X−X

2: Y0
c ← Y −Y

3: for n = 1 to p do

4: rn ← first eigenvector of XnT

c Yn
c YnT

c Xn
c {weight vector of Xn

c }

5: rn ← rn/‖rn‖ {normalisation}

6: tn ← Xn
c r

n {nth PLS mode of X}

7: sn ← YnT

c tn/(tnT
tn) {weight vector of Yn

c }

8: sn ← sn/‖sn‖ {normalisation}

9: un ← Yn
c sn {nth PLS mode of Y}

10: pn ← XnT

c tn/(tnT
tn) {nth loading of X}

11: qn ← YnT

c un/(unT
un) {nth loading of Y}

12: Xn+1
c ← Xn

c − tnpnT
{deflation}

13: Yn+1
c ← Yn

c − tn[tnT
Yn/(tnT

tn)] {deflation with regression}

14: return T = (tn)n=1···p, P = (pn)n=1···p, U = (un)n=1···p, Q = (qn)n=1···p

As in the previous section, the patients are represented by PLS shape vectors ti =

{tm,i}m=1...p, whose elements tm,i are the scalar products < bi − b,pm >, bi is the

column-wise deformation moments of the patient i, bi = (βi
1x, βi

1y, β
i
1z, . . . β

i
px, βi

py, β
i
pz)

T ,

b is the average moment vector computed over the population and pm is the mth

PLS loading.

6.4.3 A Generative Model of Heart Growth

The PLS modes constitute an optimal subspace for relating shape to BSA. In our

framework, they optimise the linear regression that predicts BSA from the deforma-

tion modes, BSA = f(shape). Yet, our aim is the converse, to predict the shape

given a BSA. We thus need to know how much each PLS mode varies when BSA

varies. To that end, we employ canonical correlation analysis (CCA) on the PLS

shape vectors ti’s. CCA generalises the notion of scalar correlation coefficients to

sets of variables [Hotelling, 1936]. Basically, CCA finds bases of the space of vari-

ables of maximum correlation. The basis vectors quantify how much a variable of

one set correlates with a variable of the second set. Mathematically, CCA calcu-

lates the components r and s that maximise the correlation between the two sets of

variables:

max
|r|=|s|=1

corr(Xr, Ys)2 (6.16)

where Y is the one-column matrix of population BSA’s and X is the matrix that

gathers the p PLS shape descriptors ti (Figure 6.15). Variance and covariance

matrices are defined by:

VXX =
1

N − 1
XT X VY Y =

1

N − 1
YT Y VXY =

1

N − 1
XT Y
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Figure 6.15: Matrices of BSA’s Y and PLS shape vectors X.

The matrix Γ = V
−1/2
XX VXY V

−1/2
Y Y can be seen as a multi-variate generalisation

of the uni-dimensional correlation coefficient r = σxy/
√

σxxσyy. The sought corre-

lations are obtained by SVD decomposition of Γ:

Γ = ASBT

S is the diagonal matrix of the correlation coefficients between correlation vectors

and A and B are rotation matrices of correlation vectors, i.e. AT A = BT B = Id. In

our application, Y is a one-column matrix. Hence, S has only one non-null coefficient

R, which is the overall correlation between the PLS shape vectors X and BSA. B is a

scalar equal to ±1 that determines the direction of BSA correlation. The elements of

the first correlation vector of A, denoted by ρ, relate to the amplitude and direction

of correlations of each predictor, namely each PLS mode, when Y varies along the

direction defined by the sign of B. In other words, when BSA varies by 1, the kth

predictor varies by BRρ[k]. We can therefore compute a generative average model

of heart growth by artificially increasing BSA and deforming the template T with

the growth deformation Φ parameterised by the moments µ = B . R .
∑

k ρ[k]pk,

where pk is the kth PLS loading.

Test of Significance Bartlett-Lawley test can be used to test if the correlations R

and ρ are statistically different from 0 [Fujikoshi and Veitch, 1979]. The underlying

principle consists in iteratively testing the rank of the matrix Γ. In the general

case, let γk be the eigenvalues of Γ sorted in decreasing order. If rank(Γ) = 0, the

predictors X and the response Y are not correlated. We assume that Γ is of rank

k − 1. We can then test the hypothesis H0 that the kth eigenvalue is null, i.e. Γ is

of rank k − 1, by calculating the statistic:

L(Γ) = −
(

N − 1− k − 0.5(p + q + 1) +

k∑

i=1

γ−2
i

)

ln





min(q,p)
∏

k+1

(1− γ2
i )





In this equation, p and q are the number of predictors and responses respectively.

Asymptotically, L(Γ) follows a χ2 distribution with (p − k + 1)(q − k + 1) degrees
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of freedom, yielding a p-value that reflects the probability to reject H0. In our case,

q = 1 (only one clinical parameter, the BSA). The rank of Γ can hence be only 0 or

1. L(Γ) writes:

L(Γ) = −
(
N − 2− 0.5(p + 2) + γ−2

1

)

− ⋄ −

In the next chapter, this framework is applied on the right ventricle of patients

with repaired ToF to identify pathological patterns of the RV shape and to estimate

a generative model of heart remodelling.
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In Chapter 6 we proposed a framework to analyse and model the heart shape

in a population of patients and to relate it to specific clinical features. In this

chapter we apply it to the specific case of repaired tetralogy of Fallot (ToF). Two

key clinical questions are investigated. On the one hand, it is crucial to understand

the morphological changes of the right ventricle (RV) shape due to the disease.

Identifying and quantifying such abnormal patterns could constitute new shape-

based features for clinical decision support. On the other hand, predicting how the

RV will evolve in the future is one of the key question cardiologists need to answer

to decide the optimal time for pulmonary valve replacement. As a first step towards

these aims, we apply the group-wise methods previously described on tetralogy of

Fallot data. Exhibited pathological shape patterns and cardiac remodelling were

consistent with observations reported in the clinical literature. The analysis also

demonstrated that partial least squares provides more realistic and predictive models

than standard PCA approaches.
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7.1 Motivation: What are the Anatomical Evidences of

Tetralogy of Fallot?

Contrary to the left ventricle, whose shape under pathological conditions is well

documented (see [Zhong et al., 2010] and references therein), RV anatomy is complex

and varies tremendously among ToF patients. Several studies investigated possible

correlations between clinical parameters in ToF [Therrien et al., 2005; Geva, 2006;

Samyn et al., 2007; Frigiola et al., 2008; Bodhey et al., 2008]. However, few works

have quantified the anatomical alterations of the RV due to the disease [Geva, 2006;

Sheehan et al., 2007; Zhang et al., 2010b]. In [Sheehan et al., 2007], the authors

measured the most striking differences in RV shape compared to normals, which

enabled to identify abnormal RV remodelling in ToF. Yet, only one-dimensional

indices were considered in that study despite the availability of 3D segmentations.

Complex 3D deformations may thus have been overlooked. In [Zhang et al., 2010b],

the authors presented a 4D active appearance model of the beating heart based on

point distribution models to segment the RV in MRI. New shape-based indices were

proposed to classify patients from controls, achieving very good classification rates.

Nevertheless, the authors did not correlate their model with clinical features of ToF.

The clinical challenges raised by ToF encourage us to apply image-based shape

analysis techniques to model the anatomical alterations of the RV due to patholog-

ical factors. In Chapter 6, we presented a framework based on a forward model of

shapes that is suitable for statistical analyses. That framework enables to correlate

3D shapes with clinical parameters of interest and to build, from a population of pa-

tients, a statistical model of anatomical growth. Starting from the assumption that

pulmonary regurgitations is an important factor of RV dysfunction [Frigiola et al.,

2004; Geva, 2006], we first investigate their effect on the RV anatomy (Section 7.3).

To that end, we relate the 3D RV anatomy to pulmonary and tricuspid regurgi-

tations as quantified from echocardiography and MRI evaluations. The idea is to

identify quantitative 3D shape features of RV integrity relevant to the regurgitation

severity. In a second stage, we build a statistical model of RV remodelling by using

the partial least squares (PLS) - canonical correlation analysis (CCA) method (see

Section 6.4, page 125). The idea is to investigate the average remodelling observed

in a population. Such a model could help in understanding the progression of the

disease (Section 7.4). Before detailing these analyses, we present in the next section

the investigated population and the construction of the ideal template.

7.2 Patient Selection and Data Preparation

7.2.1 Patient Selection

32 young ToF patients (19 males and 13 females) were selected according to the

following criteria:

1. Patient body surface area, ultrasound evaluation of pulmonary and tricuspid

regurgitations, cine MR images (cMRI) and pulmonary regurgitation fractions
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measured from flow MRI were available,

2. Patient age was from 10 to 30 years,

3. Pulmonary regurgitation fraction was higher than 10%,

4. Patients have undergone no valve replacement

Eight out of 32 patients had an aneurysm of the right ventricle outflow tract (RVOT).

Body-surface area (BSA) was computed for each patient using Dubois formula

[DuBois and DuBois, 1915]. Table 7.1 reports the mean and standard deviations

(SD) of these parameters.

7.2.2 Data Preparation

Echocardiography

Colour Doppler ultrasound (sweep speeds: 50-100 mm/s) was used to quantify tri-

cuspid (TriReg) and pulmonary (TPVReg, TPV for trans-pulmonary valve) regur-

gitations according to the guidelines reported in [Pongiglione and Trocchio, 2006].

From the regurgitant jet flows identified by colour Doppler imaging, five levels of

TriReg and TPVReg were identified: none, trace, mild, moderate and severe regur-

gitations. Because of the small number of patients, levels were grouped as follows

to enhance the statistical power of the analysis.

• None, Trace and Mild TPVReg were grouped together as Mild level; Moderate

and Severe were grouped as Severe level, thus resulting in two different groups:

Mild and Severe

• Mild, Moderate and Severe TriReg were grouped together as Moderate level,

thus resulting in three different TriReg groups: None, Trace and Mild.

MR Image Preparation

Steady-State Free Precession (SSFP) cMRI of the heart were acquired with 1.5T MR

scanners (Avanto, Siemens at GOSH and Necker; Achieva Philips at OPBG). Images

were acquired in the short-axis view covering entirely both ventricles (10-15 slices;

isotropic in-plane resolution: 1.1 × 1.1 mm to 1.7 × 1.7 mm; slice thickness: 5 mm

to 10 mm; 25 to 40 phases). Pulmonary regurgitation fractions (PRF), defined as

the percentage of backward blood flow (blood that comes back to the RV) over

the outward flow (blood that goes to the lungs), were estimated using 2D+t flow

MRI acquired at the proximal pulmonary artery section. In 25 patients, both end-

diastole volume (EDV) and end-systole volume (ESV) were calculated from man-

ual segmentations of the RV endocardium at end-diastole and end-systole. Stroke

volumes (SV = EDV - ESV) and pulmonary regurgitant volumes (PRV = (EDV -

ESV)×PRF) were then derived (Table 7.1).
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Table 7.1: Mean and standard deviation (SD) of clinical parameters in 32 ToF

patients. Values with * are computed on a subset of 25 patients.

Parameters Mean± SD

Age 16.1± 4.1 year

Body Surface Area (BSA) 1.53± 0.35 m2

End-Diastole Volume (EDV) 211± 90 mL*

End-Systole Volume (ESV) 116± 52 mL*

Pulmonary Regurgitation Fraction (PRF) 39± 11%

Pulmonary Regurgitation Volume (PRV) 38± 24 mL*

RVOT Aneurysm 8/32 patients

Surface Mesh Preparation

In this study we focused on the RV shape at end-diastole, when the anatomical

features of the pathology are the most evident [Sheehan et al., 2007]. The RV en-

docardium at end-diastole was segmented on the MRI cardiac sequence using the

methods proposed by [Zheng et al., 2008; Yang et al., 2008b]. In simple words,

the RV endocardium was delineated by fitting an anatomically accurate geometrical

model. Its position, orientation and scale in the end-diastole image was determined

automatically using marginal space learning. Then, local boundaries were estimated

by training a probabilistic boosting tree classifier with steerable features. The mesh

was finally resampled in local anatomical coordinates to guarantee vertex corre-

spondence. We could hence use a standard least-square method to rigidly align

the patients to a common space to reduce positioning effects in the shape analyses

(Figure 7.1, left panel) (the method first appeared in [Mosier, 1939] but is better

known in computer vision from [Arun et al., 1987]). In non-reported experiments,

we observed that small perturbations in the rigid-body alignment does not affect the

statistical findings significantly, thanks to the unbiased estimation of the template.

7.2.3 Statistical Atlas of the Right Ventricle in ToF

As it has been described in Chapter 6, estimating the unbiased RV template re-

quires setting two parameters: λV , which defines the “stiffness” of the non-linear

diffeomorphic deformations (the higher λV , the more rigid the transformations);

and λW , which characterises the resolution of the currents representation (low λW

values enable to analyse subtle shape features). As we were mainly interested in

the regional alterations of the RV due to ToF (dilation, valve enlargement, regional

bulging), the “rigidity” parameter of the transformation, λV , was set to 30 mm,

about the diameter of the pulmonary annulus. The currents resolution was set to

λW = 10 mm to have good mesh matching while discarding features due to im-

age artefacts (small bumps, cuts, etc.). Besides, lower λW values would have been

inappropriate as the image slice thickness was ≈ 10 mm.

Five iterations of the alternate minimisation were needed to reach convergence.

The resulting template was well centred (standardised mean ν = mean/sd = 0.2).
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Rigid-body Alignment Non-linear registration to the template

Figure 7.1: 3D RV meshes of 32 young ToF patients. Left panel : The meshes

were rigidly registered to a representative patient of the dataset. Observe the large

variability in shape. Right panel : The meshes are registered back to the unbiased

template using the non-linear deformations estimated during the template creation.

Figure 7.1, right panel, shows the meshes of all the patients matched back onto

the unbiased template. As one can see, most of the shape variability visible in

the linear registration (Figure 7.1, left panel) was captured by the diffeomorphic

template-to-subject transformations. Remaining local differences were mostly due

to segmentation artefacts, thus not relevant for our analyses.

Interestingly, the age of the closest patient to the template, in terms of the

norm in the space of currents W , was 16 and his BSA was 1.64 m2. These indices

were fairly close to the observed averages (Table 7.1), which suggested that in our

population, the mean shape was consistent with the mean age and BSA.

7.3 Exploring Right Ventricle Shape Patterns Related

to Regurgitations in Tetralogy of Fallot

Equipped with the template and the deformations that map it to the patients, we

now investigate the relationships between shapes and clinical indices that quantify

regurgitation severity. Shape modes relevant to these indices may identify patholog-

ical morphological patterns. To that end, we first performed principal component

analysis (PCA) on the deformations as described in Section 6.3.2, page 119. The

first 14 deformation modes were selected, representing more than 90% of the spectral

energy (Figure 7.2). Then, the patient shape vectors si were computed by project-

ing the initial velocities vi
0 onto the PCA subspace (the si’s are 14-element vectors).

For the following exploratory analyses, the statistical tests were performed on the

PCA shape vectors si as described in Section 6.3. The level of significance was set

at p < 0.1 and multiple comparisons were corrected using Bonferroni adjustment.
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Template

PCA Mode 1 PCA Mode 2 PCA Mode 3 PCA Mode 4

+
σ

−
σ

PCA Mode 5 PCA Mode 6 PCA Mode 7 PCA Mode 8

+
σ

−
σ

PCA Mode 9 PCA Mode 10 PCA Mode 11 PCA Mode 12

+
σ

−
σ

PCA Mode 13 PCA Mode 14

+σ −σ +σ −σ

Figure 7.2: 14 first PCA deformation modes from a population of 32 patients suf-

fering from repaired tetralogy of Fallot (90% of variance).
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Correlating Shape with Colour Doppler Evaluation of Regurgitations

Kruskal-Wallis analysis between shape vectors si and transpulmonary regurgitation

(TPVReg) revealed a significant effect of pulmonary regurgitations on two defor-

mation modes, 5 and 7 (p < 0.05). Post-hoc pair-wise Wilconxon test confirmed

the finding, both modes separated the mild and severe levels (p < 0.05). Visually,

mode 5 captured a bulging of the RV basis. The bulging was associated with strong

deformations of the valves and the apparition of an aneurysm on the outflow tract.

Mode 7 separated regional bulging of the free wall: basal bulging on the one hand

and apical bulging on the other hand (Figure 7.2).

Kruskal-Wallis analysis showed a significant effect of tricuspid regurgitations

(TriReg) on deformation mode 13 (p < 0.1). According to pair-wise Wilconxon test,

this mode separated two TriReg levels: none versus mild (p < 0.1). As one can see

from Figure 7.3, it captured a deformation of the tricuspid annulus, from circular

to ovoid, and of the RV inflow tract (base and apex).

It has to be note however that these analyses did not provide the direction of

the correlations. We did not know the evolution of the mode when the severity of

the regurgitation increased.

Mode 13, −σ Mode 13, +σ

Figure 7.3: Deformation mode related to tricuspid regurgitations (TriReg). The

mode captured a deformation of the tricuspid valve and of the RV inflow tract.

Correlating Shape with MRI Pulmonary Regurgitation Volume

We then tested the shape vectors si with respect to pulmonary regurgitation vol-

ume (PRV) as measured from MRI. Because of missing data, that analysis was

performed on 25 patients only. As PRV is a quantitative and continue parameter,

we analysed the shape vectors by linear regression (PRV = a0 +
∑14

l=1 als[l]), which

yielded good and significant correlation (R2 = 0.77, p = 0.08). BIC and backward

model reduction selected the same deformation modes (1, 4, 5, 7, 8 and 12), with

still good model fit (R2 = 0.66, p < 0.005), whereas AIC criterion kept two more

deformation modes (6 and 11, R2 = 0.71, p < 0.005). Table 7.2 reports the re-

gression coefficients al. Interestingly, among the selected modes, we retrieved the

deformation modes that were found relevant to TPVReg (mode 5, p < 0.05, mode

7, p < 0.01). This result suggested a good stability of our analysis. The sign of the

regression coefficients indicated the direction of correlation (Figure 7.4). Mode 5

was negatively correlated, suggesting that when PRV increases, the 5th deformation

modes goes towards −σ, i.e. the RV base bulges and an RVOT aneurysm appears.



140 Chapter 7. Identification and Modelling of RV Growth in ToF

The RV basal bulging was already reported by [Sheehan et al., 2007]. Similarly, the

positive coefficient associated to mode 7 indicated that the RV apex dilates when

PRV increases (+σ). This is consistent with the findings reported by [Bodhey et al.,

2008]. We finally noticed that the first mode, which mainly captured an overall

RV dilation, was positively correlated with PRV (the RV dilates as PRV increases),

suggesting cross-effects between PRV and RV growth as we shall see in the next

section.

Mode 5, −σ Mode 7, +σ

Figure 7.4: Deformations related to increasing pulmonary regurgitation volumes

(PRV). Mode 5 suggested basal bulging and apparition of RVOT aneurysm as PRV

increases. Mode 7 captured localised dilations of the RV apex. These two modes

were also relevant to TPVReg, confirming the consistency of the analysis.

Table 7.2: Regression coefficients al between PCA shape vectors s and pulmonary

regurgitation volume (PRV). Significant coefficients are highlighted in bold (p <

0.1). Coefficients were fairly constant after model reduction, confirming the stability

of the analysis. The sign indicates the direction of the modes for increasing PRV.

PCA-All PCA-BIC PCA-AIC

R2 = 0.78, p = 0.076 R2 = 0.66, p = 0.001 R2 = 0.72, p = 0.003

Coef. t-values Coef. t-values Coef. t-values

a0 43.5 10.3 41.94 12.48 43.13 12.91

a1 5.9810−3 2.38 7.5710−3 4.11 7.1510−3 3.95

a2 6.05 10−3 0.84

a3 6.84 10−3 0.54

a4 0.017 0.95 0.020 2.09 0.022 2.35

a5 −0.021 -1.97 −0.017 -2.22 −0.017 -2.33

a6 -0.017 -1.27 -0.015 -1.34

a7 0.034 1.55 0.040 3.07 0.042 3.2

a8 0.025 1.55 0.023 1.64 0.022 1.64

a9 -0.014 -0.74

a10 0.023 1.15

a11 0.050 1.59 0.03 1.24

a12 -0.045 -1.75 −0.046 -2.09 −0.048 -2.25

a13 0.019 0.51

a14 -0.035 -0.94
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Correlating Shape with MRI Pulmonary Regurgitation Fraction

We finally tested the shape vectors si against the pulmonary regurgitation fractions

(PRF) measured from MRI, although this index is not very representative of the RV

preload as it is relative to the output blood flow [Grosse-Wortmann and Redington,

2009]. Linear regression between shape vectors and PRF (PRF = a0 +
∑14

l=1 als[l])

had a low and not significant fit (R2 = 0.4, p = 0.81). Only mode 5 was found

significant to the model (p = 0.06) with negative coefficient, as with PRV, which

further supported the stability of the analysis. However that mode was not kept by

AIC, BIC and backward model reduction. The poor correlation between shape and

PRF may be related to the low relevance of the PRF index for assessing the severity

of RV impairment.

7.4 Generative Statistical Model of the RV Growth in

ToF

We then investigated the heart growth observed in our population using the PLS

method presented in Section 6.4, page 125. The results were compared to PCA

regression to quantify the added value of PLS.

7.4.1 Partial Least Square Regression of Shapes

Patient growth was quantified by body surface area (BSA) index. In our dataset,

BSA correlates with age (R2 > 0.5, p < 0.001). We first reduced the dimensionality

of the problem by projecting each individual onto the subspace of partial least

squares (PLS) modes (Algorithm 7, Chapter 6). We selected the 7 first modes,

which represented 98% of the observed BSA variability and 66% of the observed

shape variability in the population (Figure 7.5). It has to be noted that in that

analysis, we were mainly interested in the shape information that is relevant to BSA

and not to the total shape variability. This contrasts with PCA, which explains only

the observed shape variability independently of external variables. From the selected

7 modes, we computed the PLS shape vectors ti of all the patients by projecting

their initial velocity vi
0 onto the PLS subspace.

By construction, PLS already provided a regression between deformation mo-

ments and BSA. However, here PLS was used for space decomposition and model

reduction. Similar to PCA space decomposition, we estimated a linear regression

model between PLS shape vectors and BSA, BSA = a0 +
∑7

l=1 alt[l], to get the

directions of the correlations between the PLS modes and BSA. Table 7.3 reports

the regression coefficients al, the related t-values and the overall model significance.

The fit was very strong (R2 = 0.85, p < 10−5), with low residual standard er-

ror (σεPLS
= 0.16 m2). We used that regression to remove the uncertainty on the

direction of the PLS mode. We chose to orient them such that the correlations

were positive (PLS mode towards +σ when BSA increases). Linear model reduction

(AIC, BIC and backward strategy) kept all the 7 components: PLS automatically
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Figure 7.5: Cumulative percentage of variance explained by PLS modes. 7 compo-

nents simultaneously explained 98% of BSA variance and 66% of shape variance.

Table 7.3: Coefficients al of the linear regression between PLS shape vectors and

BSA (R2 = 0.85, p < 10−5). All the coefficients were found very significant (p <

0.005). PLS automatically extracted deformation modes relevant to BSA. Coefficient

sign was used to specify PLS mode direction: positive when BSA increases.

a0 a1 a2 a3 a4 a5 a6 a7

Coef. ×10−4 1.52.104 9.2 10.0 19.2 13.4 12.4 11.6 3.5

t-values 50.7 10.6 9.16 6.87 6.56 5.52 4.65 3.16

found the modes that were pertinent to BSA. Furthermore, the t-values of the re-

gression coefficients steadily decreased, which confirmed that PLS extracts modes

with decreasing covariance with BSA.

Figure 7.6 illustrates the exhibited PLS modes. Visually, PLS mode 1 captured

an overall RV dilation. The second mode was very similar to the 5th PCA mode that

was found relevant to pulmonary regurgitations (Figures 7.2 and 7.4): the RV base

bulges and an aneurysm appears in the RVOT. This observation further supported

the hypothesised relationship between the growing heart in ToF and the severity

of pulmonary regurgitations, which impact the RVOT (bulging and apparition of

aneurysm). Mode 3 exhibited a significant bulging of the RV apex, while mode 4

showed a deformation of the apical shape towards the pulmonary artery. Mode 5

and 7 captured a clear elongation of the RVOT which, along with mode 2, may

capture the RVOT aneurysm. Finally, mode 6 exhibited a strong enlargement of

the tricuspid valve and pulmonary annulus.

7.4.2 Generative Model of RV Growth

We then computed the generative model of RV growth using Canonical Correlation

Analysis (CCA) on the PLS shape vectors as described in Section 6.4, page 125.

Overall correlation between PLS shape vectors ti and BSA was R = 0.92, confirming

the strong correlation between the PLS modes and BSA. Bartlett-Lawley test of
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Template

PLS Mode 1 PLS Mode 2 PLS Mode 3 PLS Mode 4

+
σ

−
σ

PLS Mode 5 PLS Mode 6 PLS Mode 7

+
σ

−
σ

Figure 7.6: Seven first PLS loadings computed with respect to body surface area

from a population of 32 patients with repaired tetralogy of Fallot. The 7 loadings

explained 98% of the covariance between shape and BSA and 66% of the shape vari-

ability observed in the population. Shape evolves towards +σ when BSA increases.

correlation significance confirmed these results with a returned probability value

lower than p < 10−6. The canonical correlation coefficients were

ρPLS = {0.74, 0.45, 0.34, 0.34, 0.13, 0.07, 0.02},

as illustrated in Figure 7.7, left panel. All the correlation coefficients were positive

since the direction of the PLS modes was explicitly chosen such that the regres-

sion coefficients were positive. Two important observations can be done from the

correlation coefficients ρPLS (Figure 7.7, left panel). First, the ρPLS [m]’s steadily

decreased as a consequence of the PLS algorithm: the PLS modes were automatically

ordered by decreasing correlation. Second, the decay of the correlation coefficients
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Figure 7.7: CCA correlation coefficients for the three RV growth model: PLS, PCA-

BIC, PCA-AIC. Black line: fitted exponential. PLS model provided better corre-

lation with body surface area, required less modes and their individual correlation

with BSA decreased much faster than for PCA models.

was exponential. In particular, the “time” constant τ of the fitted exponential was

equal to 1.75, which means that 1.75 modes were necessary to divide the correlation

coefficients by e ≈ 2.72. After 7 modes, the correlation was already of 0.02.

We finally computed the generative model of RV growth from the ρPLS , as de-

tailed in Section 6.4.3, page 129. Visually, the obtained RV growth model was found

realistic (Figure 7.8). As BSA increased, RV volume increased while the RV free-

wall, the tricuspid valve and the RVOT dilated. In proportion, the RV apex dilated

much more than the RV inlet and outlet, which was consistent with the observations

reported by [Bodhey et al., 2008]. We also observed a progressive deformation of the

RVOT: an aneurysm appeared at the late stages of the growth model. Our model

thus suggested that the aneurysm appears later during patient life, as a consequence

of the cross-effects between growth and regurgitations identified by the second PLS

mode (Figure 7.6), which was very similar to the 5th PCA mode (Figure 7.2) that

was found relevant to pulmonary regurgitations (Section 7.3). However, the septum

of the statistical model of growth became more concave as BSA increased. More

precisely, the dilation of the RV inlet folded the septum close to the tricuspid valve.

This feature was rather counter intuitive with respect to what is usually observed

in ToF patients. Normally, the RV in these patients is rounder than in normals

due to increased RV pressure subsequent to myocardium impairment [Geva, 2006;

Sheehan et al., 2007]. By analysing the patients of the study, we observed that they

did have relatively concave septum, in particular in young adults. This pattern may

be particular to our population. Yet, the septum may still be less concave than in

normal. Comparison with controls would help in quantifying this feature.

7.4.3 Comparison with PCA Regression

To quantify the added value of the PLS method in our application, we compared the

RV growth model obtained on the PLS subspace with models computed on PCA

subspaces like in [Mansi et al., 2009c] (Section 6.3.4).
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Figure 7.8: Statistical atlas of RV remodelling computed from a population of 32

ToF patients using partial least squares (PLS) subspace and canonical correlation

analysis (CCA). While BSA increases, RV globally enlarge. The apex and valves

dilate. Simultaneously, the RV free wall becomes rounder and the septum more

concave due to the dilation of the RV inlet. At high BSA, an aneurysm appears in

the RVOT.
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Table 7.4: Linear regression coefficients al between PCA shape vectors and BSA.

Coefficient sign of the selected modes was used to specify mode direction: positive

when BSA increases. Significant coefficients are highlighted in bold (p < 0.1).

Coefficients were fairly constant after model reduction, confirming the stability of

the statistical tests. BIC and backward model reduction yielded the same reduced

models.
PCA-All PCA-BIC PCA-AIC

R2 = 0.71, p = 0.07 R2 = 0.60, p = 0.002 R2 = 0.69, p = 0.004

Coef. t-values Coef. t-values Coef. t-values

a0 1.52100 28.6 1.53100 31.7 1.52100 32.8

a1 7.410−5 2.4 7.910−5 2.9 7.310−5 -2.7

a2 2.710−4 2.8 2.310−4 2.9 2.910−4 -3.5

a3 8.2 10−6 0.1

a4 6.5 10−5 0.6

a5 −5.8 10−5 -0.5

a6 4.110−4 2.1 3.810−4 2.2 4.110−4 2.5

a7 −5.7 10−5 0.3

a8 2.5 10−4 1.3 2.5 10−4 1.4

a9 5.810−4 2.2 5.010−4 2.1 6.010−4 2.6

a10 −1.4 10−4 -0.6

a11 4.2 10−4 1.3 4.4 10−4 1.5

a12 3.7 10−4 1.0 4.0 10−4 1.2

a13 1.410−3 2.5 1.210−3 2.6 1.410−3 3.0

a14 7.3 10−4 1.5 7.6 10−4 1.7 7.4 10−4 1.7

We determined the linear regression between the PCA shape vectors si and BSA.

The modes relevant to the linear model were selected using backward model reduc-

tion, AIC and BIC criteria for comparison. Six deformation modes were selected

with the backward model reduction strategy and the BIC criterion (1, 2, 6, 9, 13

and 14), henceforth termed PCA-BIC model. These six modes represented about

51% of the observed shape variability. Three more modes (8, 11 and 12) were added

according to the AIC criterion. That model, called PCA-AIC from now on, repre-

sented about 59% of the shape variability. Table 7.4 reports the overall significance

of each model, the regression coefficients and their t-values.

Thanks to the three additional modes, the PCA-AIC model had a better pre-

diction power as highlighted by the higher model fit (R2 = 0.69) and lower residual

errors (σεPCA−AIC
= 0.24 m2) than the PCA-BIC model (R2 = 0.60, σεPCA−BIC

=

0.25 m2). This slight increase in performance, which was theoretically expected, was

achieved at the price of more variables. Nonetheless, both PCA models were less

fitted to BSA and less accurate than the PLS model (R2 = 0.85, σεPLS
= 0.16 m2).

The added value of PLS was even more evident on the 95% confidence intervals of

the linear models, which quantify the confidence on the fitted values according to the

confidence on the regression coefficients al. The confidence interval of the PLS model
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was 0.11 m2, from 2.5 to 3 times narrower than PCA-BIC (0.26 m2) and PCA-AIC

(0.29 m2) confidence intervals. Finally, although only seven PLS modes were used,

they explained more shape variability (66%) than the two PCA models (51% and

59% for PCA-BIC and PCA-AIC respectively), with greater BSA prediction power.

We can therefore conclude that the PLS model was more accurate, more precise

and required less components than PCA-based models while still representing more

shape and BSA variability.

We also computed the RV growth model using CCA on the PCA-AIC and PCA-

BIC modes and visually compared them to the PLS RV growth model. For the PCA-

BIC model, overall correlation coefficient with BSA was R = 0.77. The correlation

vector of the PCA-BIC deformation modes was

ρPCA−BIC = {0.55, 0.47, 0.35, 0.29, 0.39, 0.34},

(Bartlett-Lawley correlation significance test p < 0.005). For the PCA-AIC model,

overall correlation with BSA was slightly improved (R = 0.83) thanks to the addi-

tional variables, with the correlation vector

ρPCA−AIC = {0.50, 0.48, 0.33, 0.20, 0.29, 0.16, 0.07, 0.39, 0.31},

(Bartlett-Lawley correlation significance test p < 0.005). Yet, both PCA models

were less correlated with BSA than the PLS model (R = 0.92), suggesting a poorer

representation of the visible anatomical changes that occur during growth.

We also observed that the individual correlations of the PCA modes with BSA

did not depend on their variance. Modes with low variance, like mode 13 for instance,

had higher correlation with BSA than first modes, like mode 6 (Figure 7.7, mid and

right panel). This observation confirmed that PCA modes, contrary to PLS, can be

relevant to external clinical parameters even if they explain little shape variability. It

is therefore crucial to keep as much PCA modes as possible in the analysis. Artificial

cut-off can discard shape information related to the clinical parameter of interest.

For this reason we also analysed more PCA modes until 98% of the spectral energy

was explained and before model over-fitting. No other PCA deformation modes were

found relevant to BSA.

We also investigated the correlation decay by reordereding the PCA modes ac-

cording to their correlation to BSA. As illustrated in Figure 7.7, the correlation co-

efficients did not decrease as fast as in the PLS coefficients (time constants of fitted

exponentials: τPCA−BIC = 8.33, τPCA−AIC = 4.76 and τPLS = 1.75). More modes

were required to explain less correlation than in PLS model. These experiments

confirmed another advantage of PLS over PCA decomposition: PLS automatically

determines the minimum yet optimal number of components that simultaneously ex-

plain shape variability, BSA variability and their covariance, ordered by decreasing

order of covariance and correlation.

Finally, we visually compared the PLS and PCA growth models. PCA-AIC

and PCA-BIC models were very similar, with a maximum point-to-point distance

of 1.6mm (about the in-plane resolution of the original images) over the entire
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growth model. The additional PCA modes kept by the AIC criterion did not added

significant information on the remodelling of the RV shape. Compared to the PLS

model however the PCA growth models significantly differed in two different regions

(Figure 7.9). First, the PCA models showed a more elongated RVOT at low BSA,

elongation that progressively disappeared at larger BSA. PLS model exhibited the

exact contrary: the RVOT was first normal and then deformed to be more elongated,

with a clear enlargement of the pulmonary annulus and with the apparition of an

aneurysm at the late stages. Second, the PCA models captured a dilated RV apex

at low BSA, which disappeared, relatively to the basal bulging, as BSA increased.

Again, PLS model exhibited the inverse phenomenon: the apex was relatively normal

at low BSA, without bulging of the apical free-wall. Then, it progressively dilated

along with the basal bulging to yield a “rounder” free wall. The differences in these

two regions was quantified by large point-to-point distances between the two models

(≈ 9 mm at the pulmonary valve annulus and ≈ 7 mm at the apex). The anatomical

changes captured by the PLS growth model were more consistent with observations

reported in the literature than the PCA models [Sheehan et al., 2007; Bodhey et al.,

2008].

7.4.4 Validation of the Model Generalisation

Generalising the statistical model of RV remodelling is crucial for patient manage-

ment and therapy planning. We thus tested the robustness of our model on seven

new patients who matched the selection criteria (mean age ± SD = 20 ± 5). Ide-

ally one would like to predict the RV shape of a patient for a given BSA. However,

this challenging task is still subject to intense research as it involves acquiring large

databases of longitudinal data and developing tools based on complex mathemati-

cal theories, like parallel transport on Riemannian manifolds [DoCarmo, 1992]. In

this work, we rather tested our model by predicting the BSA of the seven test pa-

tients from their RV shape. Although this application has little clinical relevance,

it enables to evaluate the ability of the model to represent new patients.

The unbiased template estimated in Section 7.2.3 was registered to each test

patient. The resulting deformations φi were then projected onto the PLS subspace

to get the shape vectors ti of the new patients. For comparison, we also computed

the PCA shape vectors si
PCA−BIC and si

PCA−AIC by projecting the deformations φi

onto the PCA-BIC and PCA-AIC subspaces. We finally estimated the BSA from the

shape vectors using the previously estimated PLS, PCA-BIC and PCA-AIC linear

models. 95% prediction intervals were also computed for each model to quantify the

intervals into which the predicted values have 95% of chance to fall. The narrower

the interval, the more precise the model. Results are reported in Table 7.5.

For all the models (PLS, PCA-AIC and PCA-BIC), the predicted BSA values

compared successfully with the measured values, the average error was below the

BSA standard deviation of the training population (Table 7.1). The PLS model

provided better predictions in 4 patients out of 7 (1,3,4 and 7), as showed in Fig-

ure 7.10, left panel. On average about 33% and 25% of improvements were obtained
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Figure 7.9: Point-to-point distance between PLS RV growth model and PCA-AIC

model. The main differences were at the outflow tract and apex. The PLS model

showed a more realistic growth pattern than PCA models according to observations

reported in the literature (See text for details).

Table 7.5: Average prediction errors and 95% prediction intervals for the PLS, PCA-

AIC and PCA-BIC models. PLS provided the best predictions both in terms of

accuracy and precision.
Model Mean Error 95% Prediction Interval

PLS 0.18 m2 0.35 m2

PCA-AIC 0.27 m2 0.59 m2

PCA-BIC 0.24 m2 0.60 m2

with respect to PCA-AIC and PCA-BIC respectively. Moreover, the PLS model

was much more precise than the PCA models. PLS 95% prediction interval was

about 40% narrower than for PCA models, about 1SD of the measured BSA in the

training population. These results confirmed that the PLS modes better captured

the anatomical changes relevant to patient growth under tetralogy of Fallot, with

encouraging generalisation.

It should be noted however that the BSA of patients 5 and 7 could not be
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predicted by any model, and in particular by the PLS model. A possible reason for

this is the high BSA of these patients. They are thus at the tail of the population

distribution (Figure 7.10, right panel), the model is less precise for these subjects.

Adding more patients with similar BSA would probably improve the results.
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Figure 7.10: Left panel : Measured BSA (in black) and estimated values using PLS,

PCA-AIC and PCA-BIC models. 95% prediction interval are represented in filled

patches. One can see from the prediction intervals that the PLS model yielded more

precise predictions (bellow population BSA standard deviation). PLS fit was better

for 4 patients (1, 3, 4 and 7) out of 7. Right panel : Population distribution with

respect to BSA and RV end diastolic volume (EDV). Patients 5 and 7 are in red.

They are clearly at the limit of the distribution, which may explain why the model

is less representative for these patients.

7.5 Discussion

In this chapter, we studied the correlations between the shape of the right ventricle

at end-diastole and clinical parameters to identify pathological shape patterns and

quantify right ventricle remodelling. The shape at end-diastole was considered as it

is the time when the effects of the pathology on the anatomy are the most evident

[Sheehan et al., 2007]. An unbiased template was estimated from a population of

32 ToF patients using currents representation and LDDMM registration algorithm.

Multivariate statistical analyses on the deformations highlighted shape patterns re-

lated to the severity of the regurgitations and provided a generative model of the

observed RV remodelling. The findings were found clinically pertinent as they exhib-

ited realistic changes in RV anatomy previously reported in the literature [Sheehan

et al., 2007; Bodhey et al., 2008]. To the best of our knowledge, that study consti-

tutes a first attempt at correlating the 3D shape of the right ventricle with clinical

measurements in ToF. These analyses may yield quantitative image-based indices

about RV anatomy and remodelling in ToF.
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The effects of regurgitation severity measured from colour Doppler ultrasound

were analysed on a component-by-component basis to preserve the statistical power

of the tests due to the ordinal nature of the ultrasound data. The groups were

not sufficiently populated to apply more comprehensive statistics. However, despite

this limitation, selected PCA deformation modes were consistent with those found

by analysing the shape with pulmonary regurgitation fraction and regurgitation

volumes measured from MRI. These latter analyses also provided the direction of

correlation, further specifying the shape evolution as pulmonary regurgitation in-

creases. In particular, we identified that the base bulges, the apex dilates and an

aneurysm appears in the RVOT at the late stage of growth. These findings were

consistent with reported observations in the literature. The selected modes can

therefore constitute quantitative features of regurgitation severity.

The effects of growth on the RV shape was modelled using partial least squares

space decomposition. We compared the results with the more classical PCA decom-

position and showed that the PLS model was visually more consistent with reported

observations and quantitatively more predictive and precise than PCA models. It

also required less components to explain more shape and BSA variability than PCA

approaches. PLS thus constitutes an ideal tool for this kind of analyses.

Several technical and clinical questions still remain open. From a technical point

of view, it would be interesting to apply the statistical model of RV remodelling to

predict the RV shape of a given patient, going from group analysis to individual

analysis. That work would indeed have a tremendous clinical impact. To that end,

parallel transport algorithms would be necessary to “transport” the deformation as-

sociated to the growth model to the patient RV anatomy. However, this task is not

trivial as it requires algorithms tailored to the Riemannian manifold of diffeomor-

phisms [DoCarmo, 1992; Qiu et al., 2008]. As a first step, one could use a simplified

parallel transport, as the method proposed by [Rao et al., 2002]. Similar techniques

could be used to investigate the 4D cardiac motion in order to correlate shape and

function with pathology and growth. Parallel transport would then be used to

transport the patient cardiac motion to the template space [Rao et al., 2002; Beg

et al., 2004]. An alternative for the 4D analysis would be to use the spatio-temporal

model developed by [Durrleman et al., 2009b] although more complex models that

take into account the cardiac biomechanics would be preferable in order to constrain

the statistical analyses. A possible direction would be to use manifold learning for

instance (see [Hamm et al., 2010] and references therein for further details).

Another possible improvement is to better integrate the PLS algorithm into the

currents and LDDMM frameworks. In this work, we applied the standard PLS

decomposition algorithm on the deformation moments. However, we do know that

the moments are parameters of velocity fields that belong to a Gaussian kernel

space. Kernel PLS [Rosipal and Trejo, 2002] would therefore be a natural way to

handle these data, like we did for the PCA decomposition. Such an approach is

expected to provide better predictions and precision. Similarly, the linear models

used in this study may be too restrictive. It is indeed acknowledged that teenager

growth follows a rather “sigmoidal” trend. Based on this observation, one could fit
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polynomial or sigmoidal models to the data. A more elegant way to cope with this

would be to perform kernel regression and kernel canonical correlation analysis by

taking advantage of the kernel space of the initial velocities.

From a statistical point of view, the main limitation of our study is the absence

of stability analysis of the findings with respect to the training population. Although

obtained results were qualitatively consistent with those published in [Mansi et al.,

2009c] and those obtained in non-reported experiments on different datasets, more

quantitative evaluations would be necessary to confirm the presented results. A

first task towards this aim is to gather much more patients in order to get enough

statistical power and, above all, to be able to perform cross-validation. Three-fold

leave-one out analyses could then be carried out as follows. The patient set would be

divided into three groups of equal size. The first group of patients would be used to

estimate the unbiased template of RV shape. We could then compare the resulting

templates and quantify their variations with respect to the training population.

Then, we would use the second group of patients to estimate the PLS growth model

and to identify anatomical features related to regurgitation severity. This stage

would enable to quantify the stability of the selected modes relevant to the clinical

parameters. Finally, we would use the third group to test the models. However, to

carry out such an experiment we would need at least 100 patients, which were not

available during this work.

This leads us to the main clinical limitation: too few patients were involved. As

a result, we considered all the available patients, indifferently of the type of initial

repair, to maximise the statistical power. Recent studies suggested that the type

of initial surgery can lead to different RV remodelling [Samyn et al., 2007; Frigiola

et al., 2008]. It would be interesting to investigate the growth patterns in these two

populations separately. Nevertheless, this question is extremely difficult to handle

as surgical techniques vary from one clinical centre to the other and, above all,

improve over time. Finally, the lack of normal data prevented us from studying the

differences between ToF patients and healthy subjects. Group-wise analyses would

further help in identifying pathological shape patterns.

Other interesting clinical questions related to ToF could be investigated using

our approach. First, we could apply the PLS method to investigate how the RV

shape evolves when regurgitation volume increases. Preliminary analyses exhibited

a very similar trend, which could be explained by cross-effects between growth, dila-

tion and regurgitation severity. Further work however needs to be done in order to

confirm these first results. Another possible research direction is to investigate the

effect of the genes that regulate myocardium stiffness on the long-term RV remod-

elling. Patients with stiffer myocardium are known to be more protected against

regurgitations. The decision for valve implant may therefore be based on differ-

ent features for these patients. The LV-RV interaction could also be investigated

by creating models of the bi-ventricular myocardium. These models could help in

understanding how the septum deforms when the RV dilates. Preliminary results

supported this idea. Finally, the approach could also be applied on postoperative

data to study the long-term impact of valve implant on RV anatomy.
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In the Parts I and II of this thesis, we presented methods to quantify and model

patient-specific cardiac shape and function from medical images that aim to improve

diagnosis and prognosis. Yet, these are only the first steps of the clinical framework.

Treatment must be planned and applied to a patient. In most of the cases, several

therapeutical strategies are available. One needs to figure out which one is optimal

for a given patient. So far, that choice is based on evidences drawn from clinical trials

on large populations. However, complex pathologies like cardiovascular diseases,

congenital diseases or cancers require personalised approaches to accommodate the

specificities of each patient.

In this chapter, we propose to use an electromechanical model of the heart com-

patible with clinical data for personalised predictions of therapy effects. In the
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following we describe the proposed methodology. How it is used to predict the post-

operative effects of pulmonary valve replacement in patients with repaired ToF is

detailed in Chapter 9.

8.1 Motivation

Since the seminal works in cardiac modelling of the early 60’s [Fitzhugh, 1961;

Noble, 1962], more and more detailed electromechanical (EM) models of the heart

have been formulated to simulate the biological phenomena that govern the cardiac

activity, from electrophysiology to biomechanics, from the cells to the organ [Glass

et al., 1991; McCulloch et al., 1998; Hunter et al., 1998; Nash and Hunter, 2000;

Bestel et al., 2001; Hunter et al., 2003b; Sermesant et al., 2006b,a]. These models

greatly contributed to the understanding of the heart by allowing the modellers to

quantitatively test hypotheses in-silico. It is now recognised among the modelling

and the clinical communities that such models can have a tremendous impact on

the clinical practice, and especially in the personalised management of patients

and therapy planing [Ayache, 2004; Crampin et al., 2004; Bassingthwaighte et al.,

2009; Ayache et al., 2009]. One could use a virtual heart to test on a computer

different therapies and to choose the most suited treatment for a given patient.

Nonetheless, translating these tools into precise clinical applications is dauntingly

complex, challenged by the discrepancy between the numerous model parameters

and the sparse clinical data. Various international initiatives like the Physiome

Project [Hunter et al., 2003a] or the Virtual Physiological Human (VPH) framework

[Ayache et al., 2006] aim to develop solutions to these scientific challenges.

Despite the difficulties, recent research aims to apply models of the beating heart

for patient-specific simulations [Sermesant et al., 2006a; Wong et al., 2007; Tang

et al., 2007a; Yang et al., 2008a; Sermesant et al., 2009; Mihalef et al., 2009]. The

major difficulty is to find the right compromise between accurate models controlled

by large sets of parameters and too simplistic approaches that cannot represent the

pathology of the patient. A model is valid only for the question it has been designed

for: There is likely no general model that can answer all clinical questions. The

strategy employed in these studies, and in this thesis, consists in focusing on a very

particular clinical question, on a particular therapy. The model is adapted to the

specificities of the pathology and used to predict the effects of the therapy on the

cardiac function of the patients. In addition to its possible clinical impact, this

approach enables to validate the models from a practical point of view, where their

predictive power is preferred to the accuracy of the simulation.

In this thesis, we built upon existing models [Sermesant et al., 2006a] to develop

a modular framework for personalised simulations of congenital heart diseases from

medical images, with particular emphasis on repaired tetralogy of Fallot (see Chap-

ter 2.3). How is the cardiac function of a patient? Can we simulate the variation

of the right ventricular pressure? Can we predict the effects of pulmonary valve

replacement or of right ventricle volume reduction on cardiac function? The idea is

to use an electromechanical model of the cardiac ventricles to test these therapies on
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a computer. The problem is all the more challenging that our patients are children.

The quality of the cardiac images is often poor, and an invasive but comprehensive

assessment of cardiac function are almost impossible (no pressure measurements, no

endocardial mappings). Therefore, the complexity of the electromechanical model

must be tailored to the available clinical data for calibration and validation [Serme-

sant et al., 2006a; Tang et al., 2007b].

As illustrated in Figure 8.1, the model is constituted of four elements: anatomy,

electrophysiology, biomechanics and hemodynamics. The anatomical model is a

computational representation of the bi-ventricular myocardium of the patient on

which the partial differential equations (PDE) that model the cardiac activity are

solved. In this work, the anatomical model is built from medical images, onto which

knowledge about cardiac fibres and myocardium lesions are automatically mapped

(Section 8.2). A model of cardiac electrophysiology is then used to simulate the elec-

trical wave that commands cardiac contraction (Section 8.3). This model is essential

as it enables one to simulate disturbances in the cardiac rhythm, in particular the

bundle branch blocks that often occur in repaired tetralogy of Fallot. A biomechani-

cal model of the myocardium is coupled to the cardiac electrophysiology to simulate

the cardiac contraction (Section 8.4). The finite element method (FEM) is used to

solve the PDE’s. Finally, cardiac hemodynamics are modelled as constraints of the

electromechanical model (Section 8.5). That model is adapted to the specificities of

tetralogy of Fallot by integrating in particular a simple constraint-based model of re-

gurgitations. For each component, we describe the main concepts of the model, the

parameters that govern it and strategies for personalisation from clinical data that

enabled us to perform personalised simulations of the cardiac function in tetralogy

of Fallot (Chapter 9).

8.2 Cardiac Anatomy Model

The first question to ask when one aims to simulate the cardiac function of a pa-

tient is how to represent the cardiac anatomy. What is the best computational

representation of the patient heart that satisfies the requirements of the study?

What anatomical information is needed and what data is available for personal-

isation? What are the requirements of the electromechanical models in terms of

domain discretisation? The answers to these questions will guide the construction

of an accurate anatomical model suited for the simulations to be performed.

An anatomical model of the heart is a discrete representation of the patient my-

ocardium on which the constitutive laws of the cardiac electromechanics are solved.

The discrete model represents the cardiac geometry and integrates knowledge about

myocardial structure such as the orientation of the cardiac fibres and the location

of lesions. A 3D object is commonly discretised in a connected mesh when the

constitutive equations are solved with finite differences or finite element methods

(FEM) [Bathe, 1996]. The mesh is discretised into small elements like hexahedron

(six rectangular faces) or tetrahedron (four triangular faces). On the one hand, hex-

ahedral meshes offer a greater numerical accuracy compared to tetrahedral meshes.
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Figure 8.1: Framework for the personalised simulation of cardiac electromechanics

in patients. Each part must be personalised from clinical data that can be “patient-

friendly” (in green) or invasive (in red). Arrows point out the dependencies between

the elements of the model.

One hexahedron can be enough to discretise a space-varying field according to the

basis functions. On the other hand, linear tetrahedral meshes require many more

elements to precisely represent the domain since the field inside a tetrahedron is

linear, although some techniques are available for high-order polynomial tetrahedral

interpolation schemes. Nonetheless, tetrahedral meshes can be generated from sur-

faces of any shape in contrast with hexahedral meshes, which are more difficult to

obtain. Furthermore, because they do not rely on complex interpolation schemes,

linear tetrahedral FEM methods can be faster to solve when the number of elements

stay reasonable.

Recently, mesh-free approaches have been proposed as an alternative to FEM

[Belytschko et al., 1996]. With this framework, the governing equations are solved

using radial basis functions on point clouds, which can have any shape. For that

matter, mesh-free methods require no remeshing at large deformations and non-

linear interpolation can be easily implemented, resulting in accurate simulations

even with few nodes [Wong et al., 2010]. However, discontinuous domain boundaries,

for instance between the myocardium and the blood pools, are difficult to obtain

because of the continuity of the basis function.

Our aim is to simulate the cardiac function of a patient. We thus need to rep-

resent any heart shapes. Moreover, efficient discretisation schemes are required for
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Figure 8.2: Different discretisation schemes. Hexahedra and tetrahedra are used

in FEM. Hexahedra provide more accurate results than tetrahedra but their per-

sonalisation to a patient anatomy is more challenging as it is often based on mesh

deformation. Mesh-free methods combine the advantages of hexahedra (high ac-

curacy) and tetrahedra (personalisation ability) but domain boundaries are more

difficult to represent faithfully.

fast simulations in order to personalise the model. Based on these constraints, we

decided to rely on linear tetrahedral meshes despite their limitations. A personalised

model of the cardiac anatomy is generated directly from myocardium segmentations

(Section 8.2.1) and the resulting mesh is automatically labelled for regional person-

alisation (Section 8.2.2). A model of fibre direction (but not of fibre sheets as we

shall see) is finally mapped onto the mesh to account for myocardium anisotropy

(Section 8.2.3).

8.2.1 3D Model of Cardiac Geometry for Personalised Simulations

8.2.1.1 Available Models: Generic Anatomies of the Bi-Ventricular My-

ocardium

Most of the electromechanical models published in the literature are solved on

generic ventricular anatomies. The simplest model is the bi-ellipsoidal model, where

the left and right ventricles are represented by truncated ellipsoids [Mercier et al.,

1982] (Figure 8.3, left panel). These simplistic models have been widely used as they

can be parameterised by closed-form coordinate systems [Nash, 1998] and enable the

easy computation of generic fibre models (see Section 8.3) [Guccione and McCulloch,

1991; Arts et al., 2001; Sermesant et al., 2006a; Kroon et al., 2009]. These models

can be discretised using either hexahedra or tetrahedra. However, they are too ideal

for being representative of the phenomena that occur in real-life geometries.

For this exact reason, highly detailed geometries have been constructed from

ex-vivo hearts. The cardiac mechanics research group of the University of Califor-

nia, San Diego (UCSD) built a very detailed model of rabbit and pig hearts from

histological slices1 [Vetter and McCulloch, 1998] (Figure 8.3, mid panel). The ven-

1Models as part of the Continuity package, http://www.continuity.ucsd.edu/Continuity



160 Chapter 8. Personalised Model of Cardiac Electromechanics

Bi-Ellipsoidal Model UCSD Pig Model Auckland Canine Model

Figure 8.3: Generic models of cardiac anatomy.

tricles were fixed mechanically and filled with silicon. The authors then sliced the

heart and imaged each slice to create the model. The Auckland Bioengineering

Institute created a canine heart2 using a similar technique but by slicing the heart

from epicardium to endocardium to better preserve the cardiac fibre organisation

[Nielsen et al., 1991; LeGrice et al., 1995] (Figure 8.3, right panel). Both models are

discretised into hexahedral meshes with bicubic Hermite finite elements expressed in

prolate spheroidal coordinates. Recently, anatomical models computed using high-

resolution MRI of ex-vivo animal hearts have been proposed [Vadakkumpadan et al.,

2009]. As they embed very accurate details of the cardiac anatomy, they are widely

used in the modelling community. Nonetheless, these models come from non-human

specimen. It is not clear to which extent they can be used for patient-specific heart

simulations.

8.2.1.2 Selected Model: Patient-Specific Anatomy from MRI Data

The previous generic models may not be suited for simulating cardiac function in

patients. The geometry of pathological heart can deviate significantly from the

normal shape due to the disease. The ventricle can dilate and the myocardium

become thinner. The global shape can even be deteriorated by surgery. One must

consider these patient-specific variations to increase the accuracy of the simulation.

A first strategy consists in registering one of the above-mentioned generic mesh

to the patient geometry. This approach has been used in [Sermesant et al., 2006a;

Niederer et al., 2009] for instance. The main advantage is that the registration maps

the mesh discretisation and the anatomical priors that are embedded into the model,

like the fibre architecture. This is particularly appealing when the finite elements

are hexahedra, which are challenging to build in non-standard geometries. How-

ever, the registration may yield badly-shaped elements that may result in numerical

instabilities. This limitation can be coped by a subsequent re-meshing.

The models used in this work are solved using tetrahedral finite elements. Ef-

ficient tools are therefore available for meshing any geometry with tetrahedra, en-

abling the construction of patient-specific anatomical models from clinical images

directly. We first compute a binary mask of the bi-ventricular myocardium by using

2Model as part of the CMISS package, http://www.cmiss.org/
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Figure 8.4: From mask of patient myocardium to surface mesh to tetrahedral mesh

the pipeline presented in Chapter 3 for instance or any other method [Zheng et al.,

2008; Ecabert et al., 2008] (Figure 8.4, left panel). The mesh is taken at the mid-

diastole time frame (just before the atrial contraction), when the heart is close to the

rest position. As we shall see later in this chapter, valve motion, atrial biomechanics

and arterial motions are not simulated directly. This simplifies the generation of

the model as only the compact bi-ventricular myocardium is required. Papillary

muscle, trabeculae, atria and arteries are excluded from the anatomical model. A

triangulated mesh of the myocardium is then computed from a binary mask of the

segmentations by means of the INRIA software CGAL3 (Figure 8.4, mid panel).

The number of triangles is controlled by defining the average edge length. Finally,

we transform the surface mesh into a tetrahedral mesh with GHS3D4, another IN-

RIA software program (Figure 8.4, right panel). The surface triangulation is used

as reference to create the volume mesh, the more regular the surface discretisation

the better the volume mesh.

8.2.2 Anatomical Labelling for Regional Personalisation

The tetrahedral mesh is labelled to identify regions that require special treatments

during the simulations. Three types of labels are automatically reported on the

mesh: the myocardium interfaces (epicardium, left endocardium and right endo-

cardium), the lesions, and some myocardial zones for regional personalisation.

8.2.2.1 Identification of the Myocardium Interfaces

Myocardial interfaces, namely the endocardium and the epicardium, play an impor-

tant role in cardiac mechanics as they interact with the structures that neighbour

the heart. It is thus essential to define them on the personalised anatomy. An in-

terface is defined as a list of triangles that belong to the surface of the myocardium

volume mesh. These triangles can be automatically detected as they belong to only

one tetrahedron. In the following, those lists are termed surface zones. One can

manually pick the surface triangles to define the myocardium interfaces [Sermesant,

2003]. However, this task is time consuming, especially if the mesh has a large

3http://www.cgal.org
4http://www-roc.inria.fr/gamma/gamma/ghs3d/ghs.php
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number of elements. We thus developed an automatic algorithm that labels the sur-

face of the volume mesh from the triangulations of the epicardium and endocardia

segmentations.

A closest point approach is used. Let TLV , TRV and TEpi be the surface meshes

of the left endocardium, the right endocardium and the epicardium respectively.

For each surface triangle E of the volume mesh, we compute the point-to-surface

distances between the centre of E and the segmentations. E is assigned to the

surface zone that corresponds to the closest segmentation TEpi, TLV or TRV . To

avoid any ambiguities, we also check that normal of the surface triangle E is oriented

approximately in the same direction as the normals of proximal triangles of selected

segmentation. Figure 8.5 illustrates the endocardial and epicardial surface zones

related to a patient.

Figure 8.5: Automatic labelling of myocardium interfaces from segmented triangu-

lations (white wireframe). In red is the left endocardium, in blue the right endo-

cardium and in green the epicardium.

The surface zones enable to automatically identify the left and right ventricles

for regional personalisation, labelled as mesh zones. Given a tetrahedron T of the

mesh, we compute the point to surface distances between the barycentre of T and the

surface zones, denoted dLV , dRV and dEpi (Figure 8.6). We assign T to a ventricle

according to the following rules:

• dLV ≤ dRV , independently of dEpi. The tetrahedron T is closer to the left

endocardium than to the right endocardium, it belongs to the left ventricle.

• dRV ≤ dLV ≤ dEpi. The tetrahedron T is closer to the right endocardium

but farther from the epicardium than from the left endocardium. T is in the

septum, which belongs to the left ventricle.

• In all the other cases, the tetrahedron T belongs the right ventricle.

The LV and RV zones computed from the mapped surface zones of Figure 8.5 are

showed in Figure 8.6, right panel.
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Figure 8.6: Automatic left (in red) and right (in blue) mesh labelling. In transparent

the original delineations. A tetrahedron is automatically assigned to a ventricle

according to its proximity to the epicardium and to the left and right endocardia

(see text for details).

8.2.2.2 Mapping of Scars and Lesions

If the myocardium tissue is damaged by a chronic pathology, a myocardium infarc-

tion or surgery sequels, we map the lesions onto the mesh to simulate their impact

on the cardiac function. Myocardium scars and other lesions can be assessed with

late-enhancement MRI. In these images, the clinicians observe how the scar fix a

contrast agent, typically gadolinium. As the scar becomes much brighter than the

healthy myocardium, it can be segmented manually or automatically [Setser et al.,

2003; Prasad et al., 2004]. The mask of the scar is reported onto the anatomical

model using the approach proposed by [Sermesant, 2003] based on Bresenham ras-

terisation algorithm [Bresenham, 1965]. Let Mscar be the binary image of the scar

and T be a tetrahedron of the myocardium mesh. Using the Bresenham rasterisa-

tion algorithm we pick the image voxels that lay inside the tetrahedron T . From

the picked voxels we count those that belong to the scar too. If they represent

more than 50% of the picked voxels, the tetrahedron T is assigned to the scar zone.

Several scars or lesions can be mapped with different identifiers, thus enabling fine

modelling of these abnormal tissues. However, in our implementation a tetrahedron

belongs to only one zone at a time. Adaptive meshing can be necessary to accurately

represent lesions with complex shapes [Lamecker et al., 2009]. Figure 8.7 shows an

example of myocardium scar in a patient with heart failure.

8.2.2.3 Myocardium Subdivision in Standard Anatomical Zones

We finally assign to each tetrahedron of the volume mesh an anatomical region

as defined by the American Heart Association [Cerqueira et al., 2002] (Chapter 2,

Section 2.2) for regional personalisation. Below the base plane, the left ventricle is

divided into four layers: base, mid plane, apical plane and apex. The base and the

mid planes are divided into six concentric regions of equal size whereas the apical

plane is divided into four zones, resulting in 17 divisions of the left ventricle. The
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Figure 8.7: Left panel : Late enhancement MRI showing a myocardium scar in red

in a patient with heart failure. The scar is manually delineated. Right panel : The

scar is automatically mapped onto the patient-specific volume mesh: left ventricle

(in red), right ventricle (in yellow), scar (in white).

right ventricle is divided in a similar way (Figure 8.8).

The AHA subdivision is performed automatically from the mapped endocardial

and epicardial surface zones. We first define what we call the heart coordinate system

Υ of the ventricles (Figure 8.8). The origin of Υ, denoted G, is the LV barycentre

computed from the LV endocardium surface. The direction of the LV long axis,

represented by the unitary vector el, is given by the line that passes through G

and the centre of the mitral valve, namely the barycentre of the edges of the LV

endocardium surface. The LV transverse axis is then oriented along the vector

et = (el ∧ l)/‖el ∧ l‖, where l is the segment that connects G to the RV barycentre.

Finally, the LV-RV axis is oriented along the vector er = (et∧el)/‖et∧el‖. It points

approximately towards the middle of the septum. The vertices of the volume mesh

can now be expressed in the new coordinate system Υ = (G, el, er, et) through the

transformation matrix P = (el er et). Let x be the spatial position of a mesh vertex

in the global coordinate system, the new coordinates are given by:

xΥ = P−1x− P−1G

In the new coordinate system it is straightforward to automatically detect the

apex, which is the point of lowest altitude along the LV long axis. The apex zone

therefore contains all the tetrahedra whose altitude is bounded by the LV endo-

cardium apex and the epicardium apex. The total height of the LV endocardium is

then divided into three evenly spaced regions that correspond to the base, mid-plane

and apical planes. We finally use the 2D angle α between the vertex position and

the LV-RV axis in the (el, et) plane er (Figure 8.8, right panel) to subdivide each

anatomical plane, clockwise, in the appropriate number of regions. The user can

rotate the subdivision for final adjustments. Figure 8.8 shows an example of AHA

labels.
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Figure 8.8: Myocardium subdivision into AHA zones for regional personalisation.

The subdivision is computed automatically from the long axis (el), the LV-RV axis

(er) and the transverse axis (et)

8.2.3 Model of Cardiac Fibre Directions

8.2.3.1 Available Models

The last information we need to map onto the anatomical model is the cardiac fibre

architecture. Cardiac fibres play a pivotal role in the function of the heart (see

[Glass et al., 1991] and references therein). The propagation of the electrical wave is

faster in the direction of the fibres, the muscle contracts in the fibre direction and it

is stiffer in that same direction. It is thus essential to consider the fibre architecture

in electromechanical models of the heart.

The distribution of the fibres across the myocardium has been widely studied

on ex-vivo hearts [Streeter, 1979; Glass et al., 1991; LeGrice et al., 1995; Sanchez-

Quintana et al., 1996; Vetter and McCulloch, 1998]. With the advent of diffusion

tensor imaging (DTI), a growing literature has been published on the 3D charac-

terisation of the fibre orientation. Contrary to histological studies, DTI preserves

the geometry of the heart, thus yielding more accurate measurements [Geerts et al.,

2002; Peyrat et al., 2007; Pop et al., 2009]. However, in-vivo DTI acquisition of

the cardiac fibre orientations remains an open challenge, despite the impressive ad-

vances achieved in the last few years in terms of MRI acquisition techniques [Wu

et al., 2009]. We must therefore rely on generic models of fibre directions for the

simulations.

For patient-specific simulations, a standard approach is to map a generic model

of fibre architecture to the patient anatomy. One can for instance map the fibres of

the Auckland canine model [LeGrice et al., 1995] or of the UCSD rabit data [Vetter

and McCulloch, 1998] to the geometry of the patient by using mesh registration

techniques [Sermesant et al., 2006b; Wong et al., 2010]. However, these models were

built from animal specimens. Their validity in a patient is therefore questionable.

An alternative is to synthesise the fibre architecture from analytical laws formulated

from ex-vivo studies or post-mortem DTI [Streeter, 1979; Arts et al., 2001]. The
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elevation angle of the fibres, i.e. their angle with respect to the short axis plane,

varies almost linearly across the myocardium, from −70◦ on the epicardium to 0◦ at

mid-wall to +70◦ on the endocardium [Arts et al., 2001]. Nevertheless, such a generic

model does not reflect more complex variations in the fibre architecture. It has been

observed for instance that the apical fibre architecture is significantly different from

the basal architecture [Rijcken et al., 1999]. Recently, [Peyrat et al., 2007] computed

an atlas of cardiac fibre architecture from DTI of ex-vivo canine hearts5. That

atlas captures the average fibre architecture and the variability observed among a

population of 9 dog hearts. Interestingly, the authors showed that the fibre directions

are consistent among the individuals and, more importantly, are consistent with

human hearts (comparison with a human heart specimen).

8.2.3.2 Selected Model: Analytical Fibre Model from Atlas Prior

Because in-vivo measurements of cardiac fibres are still unreachable in clinical rou-

tine, we rely on analytical fibre directions that are adapted to the patient anatomy

and whose angles are set according to those observed in the atlas of [Peyrat, 2009].

Fibre elevation is set at the epicardium and endocardium and then linearly in-

terpolated across the myocardium, one tetrahedron receiving one fibre direction.

Figure 8.9 shows synthetic fibres in a patient-specific geometry.

Figure 8.9: Synthetic fibre directions mapped on a patient-specific geometry.

Colours encode fibre directions.

8.3 Cardiac Electrophysiology Model

Once the cardiac anatomy is represented, we simulate the propagation of the electri-

cal wave, or action potential, across the ventricular myocardium. Simulating cardiac

electrophysiology is crucial as it commands the cardiac motion. Sudden deaths and

heart failures are often caused by electrophysiological troubles. Less severe, cardiac

5Atlas available at http://www-sop.inria.fr/asclepios/data/heart/index.php



8.3. Cardiac Electrophysiology Model 167

asynchronous motions are often the consequence of electrical blocks that prevent

direct and synchronised excitation of the myocardium. Having a model of cardiac

electrophysiology would enable to simulate and predict these adverse events in pa-

tients. Numerous models are available in the literature, at different biological scales

and theoretical complexity. Which model to choose? Should we prefer complex

and detailed models to simplified approaches? The answer to these questions is not

trivial and greatly depends on the application. In fact, the answer will certainly be

guided by the clinical parameters we want to predict and the availability and the

quality of the clinical data used for fitting the model.

8.3.1 Available Models

Since the seminal work of [Hodgkin and Huxley, 1952; Fitzhugh, 1961; Nagumo et al.,

1962], a large variety of models have been proposed to reproduce the propagation of

the electrical wave across the heart muscle. The reader can find a very nice review

of these models in [Clayton and Panfilov, 2008]. Three categories of models can be

identified according to the scale at which the problem is approached: biophysical,

phenomenological and Eikonal.

Biophysical Models These models work at the cell level to simulate the ionic

interactions at the cell membranes [Noble, 1962; Luo and Rudy, 1991; Noble et al.,

1998; Ten Tusscher et al., 2004]. They are very detailed models of the underlying

biological phenomena, with often more than 50 parameters to control every ion

channel. Sophisticated semi-linear reaction-diffusion partial differential equations

(PDE) integrate the cell models at the cardiac continuum. Two major categories

can be distinguished: mono-domain, which consider the myocardium as a single

excitable tissue, or bidomain, which separate the intra and extra cellular domains

[Coudière and Pierre, 2006; Bourgault et al., 2009].

Phenomenological Models Historically, these models were the first to be pro-

posed [Fitzhugh, 1961; Nagumo et al., 1962]. Yet, one can see them as simplifications

of the biophysical models since they work at a more macroscopic level. In particular,

they describe the propagation of the action potential over the cardiac continuum di-

rectly, without focusing on the detailed ionic phenomena. Like the phenomenological

models, these models can be monodomain [Aliev and Panfilov, 1996] or bidomain

[Mitchell and Schaeffer, 2003]. They also rely on semi-linear reaction-diffusion PDEs

but they depend on fewer parameters than the biophysical models, typically 2 to 3

parameters.

Eikonal Models These models are the simplest ones. They simulate the propa-

gation of the electrical wave by computing its arrival time at a given point of the

myocardium [Colli Franzone et al., 1990; Keener and Sneyd, 1998]. The action po-

tential is not directly simulated. These models are governed by only one parameter

and they are solved very efficiently using Fast Marching Methods [Sethian et al.,
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1999]. However, because of the extreme simplifications introduced in these models,

extreme phenomena like fibrillations are difficult to reproduce, although some recent

experiments showed that wave reentry could be reproduced [Pernod et al., 2010].

Biophysical models are extremely complex and rely on too many parameters, too

many of them relate to ionic interactions that cannot be measured in clinics. As a

result, although such models are of great interest for the understanding of the organ

and of complex pathological dysfunctions, they cannot be readily used for person-

alised simulations in clinics. Phenomenological and Eikonal models are more appro-

priate and choosing one or the other depends mostly on the electrical abnormalities

one wants to simulate. Phenomenological models can capture some pathological

patterns, but they are still computationally demanding as they rely on PDE’s. Con-

versely, Eikonal models enable near real-time simulations. One heart beat can be

simulated in few seconds in a standard computer using anisotropic multi-front Fast

Marching algorithm [Sermesant et al., 2007]. However, complex pathologies like

fibrillations are very challenging to simulate. Recent work demonstrated that both

types of model can be personalised from clinical data ([Moreau-Villéger et al., 2006;

Relan et al., 2010] for the phenomenological models, [Chinchapatnam et al., 2008] for

the Eikonal models). Eikonal models require measurements of depolarisation times,

which can be acquired using contact or non-contact endocardial mappings; whereas

phenomenological models also require measurements of transmembrane potential

measurements, which are more difficult to obtain.

8.3.2 Selected Model: Anisotropic Eikonal Model

For our simulations no clinical data about patient cardiac electrophysiology were

available. We therefore had to rely on strong assumptions about model parameters.

The less parameters, the less assumptions and degrees of freedom. Furthermore, we

sought personalised models for intervention simulation, which requires fast models.

Finally, the investigated pathologies did not present with extreme abnormalities of

the cardiac electrophysiology. Eikonal models were therefore a good compromise.

Eikonal models calculate the depolarisation time Td at each vertex of the anatom-

ical mesh. We used the dynamic multi-front Eikonal model proposed by [Sermesant

et al., 2007]:

v2
(
∇T T

d D∇Td

)
= 1 (8.1)

v is the local conduction velocity and D is the tensor relating to the conduction

anisotropy. D is defined by D = ADAT , where A is the matrix defining the fibre

orientation in the global coordinate system and D = diag(1, λ, λ). λ is the conduc-

tion anisotropy ratio between longitudinal and transverse directions. It is about 0.3

to 0.5 in human myocardium [Clayton and Panfilov, 2008; Tomlinson, 2000]. The

equation is solved using the Fast Marching Method [Sethian et al., 1999], which

considers each tetrahedron of the volume mesh as an automata with incremental

discrete states: rest, unknown, excited. The action potential duration (APD) is
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modelled by forcing an element to stay in the “excited” state a fixed period of time.

The reader is referred to [Sermesant et al., 2007] for further details.

Parameters The Eikonal model is controlled by two main parameters, the anisotropy

ratio λ and the conduction velocity v, which can vary locally on the myocardium.

The former parameter can be assumed constant over the myocardium. We fixed

it in all the experiments as its direct measurement in clinics is nowadays impossi-

ble. The latter parameter must be adjusted to capture the cardiac electrophysiology

and the resulting motion of the patient heart. In addition to these model parame-

ters, the user must define the regions from where the electrical propagation starts

(Figure 8.10, left panel), the trigger time Td0
when the electrical wave starts its

propagation, and the action potential duration (APD). All these parameters can be

set locally to finely reproduce the cardiac activity.

8.3.3 Personalisation Strategy

Recent studies on adults with heart failure demonstrated that the conduction veloc-

ity v of the Eikonal model can be estimated locally from endocardial mappings of

depolarisation times [Chinchapatnam et al., 2008; Sermesant et al., 2009]. However,

in our studies no electrophysiological data were available. We had to personalise the

electrophysiology from the visible motion in MRI. The bundle branches are approxi-

mated by large initialisation surface zones on the left and right septum (Figure 8.10,

left panel). Purkinje fibres are simulated by setting high conduction velocity on

the endocardial surfaces (v = 2000 mm.s−1, the nominal velocity measured in the

Purkinje fibres [Murgatroyd and Krahn, 2002]). The conduction velocity in the

myocardium is set to 500 mm.s−1 but it can be changed according to the cardiac

motion visible in the MRI. Each initialisation zone can be “excited” at different

times to simulate bundle branch blocks. APD is as described in [Murgatroyd and

Krahn, 2002], 300 ms to the free wall and 400 ms to the septum (Figure 8.10, right

panel). APD can also be personalised regionally. Figure 8.11 illustrates simulated

isochrones with nominal conductivity velocities and septal electrical initialisations

as defined in Figure 8.10, left panel. Table 8.1 summarises the default parameters

controlling cardiac electrophysiology.

8.4 Cardiac Biomechanics Model

8.4.1 Available Models

The myocardium is an active, non-linear, anisotropic visco-elastic tissue whose mo-

tion is controlled by the cardiac electrophysiology. Its constitutive law is complex,

it includes an active element, which simulates the active contraction of the muscle

controlled by the action potential, and a passive element, which simulates the me-

chanical elasticity of the tissue. In practice, the active contraction is viewed as a

transient external force that makes the myocardium contract. The passive prop-



170 Chapter 8. Personalised Model of Cardiac Electromechanics

Initalisaton

RV/LV septum

RV endocardium

v = 2000 mm.s
-1

LV Endocardium

v = 2000 mm.s
-1

Myocardium v = 500 mm.s-1

Map of Action Potential DurationElectrophysiology Parameters

RV

LV

RV
LV

Acton Potental Duraton (in ms)

300 400
350

Figure 8.10: Left panel : Default configuration of the cardiac electrophysiology

model. Right panel : Default action potential duration of the myocardium.

Figure 8.11: Simulated isochrones (each colour correspond to a given depolarisation

time). The electrical wave is initialised on the septal endocardia, then propagated

on the endocardial surfaces and through the myocardium.

erties of the tissue are internal forces that ensures realistic motions [Hunter et al.,

2003b]. Three categories of active contraction models can be distinguished:

Biophysical They model the ion interactions and the actin-myosin bindings that

generate the cardiac motion [Hunter and Smaill, 1988; Hunter et al., 1996,

1998; Nash and Hunter, 2000; Niederer et al., 2006; Niederer and Smith, 2008].

These very detailed models have been designed from experimental studies on

ex-vivo animal hearts. They reproduce the biological mechanisms of sarcomere

contraction, resulting in complex equations at the tissue level. These models

are controlled by a large number of parameters (20 and more) related to ionic

phenomena, which cannot be directly measured in patients.
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Multi-Scale Phenomenological These models rely on multi-scale integrations to

derive from the mechanisms at the actin-myosin bindings phenomenological

equations at the organ level [Bestel et al., 2001; Chapelle et al., 2001; Caillerie

et al., 2003]. They simplify the biophysical models, resulting in laws controlled

by few parameters (usually 4 to 5 parameters).

Lumped These models are analytical models of the fibre contraction that do not

consider spatial variability: They do not require meshes to be solved. Lumped

models focus on one single myocyte, for which several laws characterise the

contraction of the cell [Arts et al., 1979, 1991]. These models can be solved very

efficiently but they cannot capture regional abnormalities of the myocardium

in patients.

The models of the active contraction are coupled with constitutive laws of the

myocardium passive properties. Here again, a large variety of models have been

proposed in the last decades. A first technique consists in using transverse isotropic

linear elasticity [Sermesant et al., 2006b], a simple but fast elastic model. The pas-

sive law is controlled by two parameters: the Young modulus E, which controls the

stiffness of the tissue, and the Poisson coefficient ν; which controls the incompress-

ibility of the tissue. The downside of this model however is that it is inaccurate

for large deformations, artificial dilations can appear. Non-linear models are there-

fore preferred by modellers to simulate myocardium biomechanics. One could use

non-linear extensions of linear elasticity, termed hyper-elastic models, such as the St

Venant-Kirchhoff model [Picinbono et al., 2003; Delingette and Ayache, 2004]. But

the standard approach is to derive the elastic stresses from non-linear stress-strain

energies established from in-vitro experiments where slabs of myocardium tissues are

stretched in several directions [Hunter and Smaill, 1988; Humphrey et al., 1990a,b;

Häfner et al., 2002]. This approach has produced several well-known constitutive

laws, like the pole-zero law [Hunter and Smaill, 1988] or the more recent Costa

law [Costa et al., 2001]. Nowadays, the Costa law is the reference model as it has

demonstrated the most accurate simulations compared to ex-vivo experimental data

[Schmid, 2006]. A reason for this success is that it considers the entire fibre archi-

tecture: the anisotropy along the fibre direction but also the effect of the fibre sheets

on the myocardium motion and in particular on its thickening. However, improving

the model accuracy is achieved at the price of complexity, with increasing number

of parameters. The Costa law for instance is governed by seven parameters, most

of them difficult to estimate in-vivo.

8.4.2 Selected Model: Simplified Multi-Scale Linear Model

For the purposes of this work, very complex models are not adapted as they cannot

be personalised without strong assumptions on the numerous parameters. Further-

more, the model must be solved in a reasonable amount of time to test different sets

of parameters. That is why we decided to use the model developed by [Sermesant

et al., 2006b], which relies on a linear version of the multi-scale phenomenological
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model proposed by [Bestel et al., 2001] and on linear elasticity. Despite its relative

simplicity with respect to the more detailed approach, this model is able to simu-

late the main features of cardiac motion as observed in images of healthy subjects

and patients with less severe diseases [Sermesant et al., 2006a]. It is controlled by

few clinically-related parameters and is fast enough to allow personalisation from

clinical data. This is exactly the level of details that are needed for our purpose.

Furthermore, such modelling can constitute a first estimate of the cardiac function

that can be used to personalise more complex models.

The equations of the model are solved using the Finite Element Method (FEM)

on linear tetrahedrisation. The model is based on a Hill-Maxwell rheological scheme.

The muscle is represented by two parallel elements: an active contractile element,

which accounts for the active force controlled by the electrical command u(t), and

a passive elastic element, which accounts for the passive material properties (Fig-

ure 8.12, left panel).
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Figure 8.12: Left panel : Circuit diagram of the biomechanical model. In the balloons

are the related parameters. Right panel : Variation of the active contraction stress

σc(t) (in blue) with respect to the electrical command u(t) (in red) governed by the

cardiac electrophysiology model.

The passive element is linear, anisotropic, visco-elastic. It is controlled by two

parameters: the Young modulus E, i.e. the stiffness of the tissue, and the Poisson

ratio ν, namely the incompressibility of the tissue. The active element is controlled

by a command u(t) that directly depends on the depolarisation time Td and the re-

polarisation time Tr provided by the Eikonal model of the cardiac electrophysiology.

u(t) is a switch function that depends on the electrical state of the cell. When the

cell depolarises (Td < t < Tr), u(t) is constant and equals +kATP . When the cell

repolarises (Tr < t < Td + HP , HP is the heart period), u(t) is switched to −kRS

(Figure 8.12, right panel). The command u(t) modifies the active stress σc(t) of the

tetrahedral element according to the linearisation of the multi-scale model proposed

by [Bestel et al., 2001]:

dσc(t)

dt
+ |u(t)|σc(t) = |u(t)|+σ0 (8.2)

In this equation, σ0 is the maximum asymptotic contraction and |u(t)|+ is the pos-

itive part of the command function u(t). The analytical resolution of this equation
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writes: {
if Td ≤ t ≤ Tr : σc(t) = σ0

[
1− e+kATP (Td−t)

]

if Tr < t < Td + HP : σc(t) = σc(Tr) e−kRS(Tr−t) (8.3)

The parameters kATP and kRS are therefore directly related to the myocardium

stress: they control the contraction and relaxation rates respectively (Figure 8.12,

right panel). For a given tetrahedron with fibre direction f (f is a column vector),

the active stress σc(t) results in the 3D anisotropic stress tensor Σ(t) = σc(t) f fT ,

from which we get the contraction force vector:

Fc =
1

4

∫

S
Σ(t)ndS (8.4)

where S is the surface of the tetrahedron and n the surface normal.

The dynamic system for all the nodes of the mesh writes:

MÜ + CU̇ + KU = Fc + Fp + Fb (8.5)

In this equation U is the displacement vector of the mesh nodes, U̇ is the velocity of

the nodes and Ü their acceleration. M is the diagonal mass matrix (mass lumping),

C is a Rayleigh damping matrix (C = d .M , where d is a damping constant) and K

is the anisotropic linear elastic stiffness matrix. In linear elasticity, K is constant,

it is built and preconditioned only once at the beginning of the simulation. The

construction of K is based on the linear Hookean constitutive law between the

Cauchy stress tensor and the linear strain tensor (the linear approximation of the

Lagrangian strain tensor, see [Sermesant, 2003] for more details). In Equation 8.5,

Fp captures the pressures applied to the endocardia during the various cardiac phases

(see Section 8.5.1) and Fb accounts for the external boundary conditions as described

in the next section.

Parameters The biomechanical model is controlled by 4 free parameters: the

maximum contraction σ0, the contraction and relaxation rates kATP and kRS re-

spectively, and the Young modulus E. In addition, one can control the time de-

lay between the cell depolarisation and the beginning of the contraction Tδ, the

anisotropy ratio γ of the passive properties, the damping d, the myocardium mass

density ρ and incompressibility through the Poisson ratio ν. However, these param-

eters were fixed in all our experiments to their nominal values: Tδ = 0.01s, γ = 3

[Costa et al., 1999], d = 3000, ρ = 1.07g/mL and ν = 0.48 (near incompressibility).

8.4.3 Biomechanical Boundary Conditions

The dynamic equation (8.5) is well-defined only under boundary conditions that

reflect the external conditions of the myocardium. In particular, the virtual heart

must be fixed in the 3D space like the heart is fixed in the body. A standard

approach is to fix the vertices of the heart base with springs whose stiffness κ is set

by the user. However, this approach results in non-realistic cardiac motions: the

base is fixed and the apex moves, exactly the reverse of the true cardiac motion.
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Furthermore, it has been shown that such a constraint can have a significant inpact

on the simulations, even on simulated global parameters like end-diastole and end-

systole ventricular volumes [Niederer et al., 2009]. One could use image information

to get realistic base motion [Billet et al., 2009] but that approach is not suitable for

prediction.

To cope with this limitation, we propose a new boundary condition that fix the

pericardium of the heart while keeping the base free to contract. In a body, the heart

is fixed to the neighbouring organs through the pericardium. The heart lays on top

of the diaphragm, just below the ribs and in front of the lungs. It is connected to

the great arteries and veins: it cannot translate nor rotate very significantly. It can

only contract within the pericardial bag, facilitated by the pericardial fluid between

the pericardium and the epicardium.

The idea thus consists in limiting the transverse motions of the heart outside an

authorised zone while preserving contractions, slidings and twistings (Figure 8.13).

Let Ω be this “free” zone. Ω is approximately the pericardium bag at its maximal

extension. A rough estimation of it is obtained by artificially dilating the epicardium

mask at end-diastole of about 1 − 2mm. The heart motion is constrained to Ω by

applying a contact force fs to the vertices of the epicardium. The intensity and

direction of fs depends on the position of the vertex. Let P be such a vertex and x

its spatial position. If P is inside the free zone, it can move freely in any direction:

the contact force is null fs(x) = 0. If P is outside the free zone, it must be brought

back inside Ω while preserving the sliding and twisting motions of the heart. One

way to achieve it is to push P along the direction normal to the epicardium. The

contact force fs(x) is therefore aligned with the normal at the closest point of the

boundary δΩ of the free zone. This direction is easily approximated at any spatial

position by the gradient of a distance map DδΩ computed from δΩ. Furthermore,

the farther P from δΩ, the stronger fs(x), to bring the point back into the free zone.

The strength of fs(x) is therefore controlled by the distance map DδΩ. However, to

avoid numerical instabilities we upper-bound the amplitude of the contact force fs(x)

using Geman-McLure M-estimator. A parameter k is added to explicitly control the

strength of fs. The contact force finally writes:






fs(x) = 0, x ∈ Ω

fs(x) = k
DδΩ(x)2

DδΩ(x)2 + m2
∇DδΩ(x), x /∈ Ω

(8.6)

where ∇DδΩ(x) is the gradient direction of the distance map at x. Figure 8.13,

left panel, shows how m and k influence the amplitude of the contact force fs. k

controls the maximum amplitude of the force far from the free zone boundary. It

is called contact force amplitude in the following. m controls how fast the contact

force reaches its maximum amplitude. It is called contact force rate. In practice, m

defines a smooth transition between the free zone and the “forbidden” area, which

guarantees numerical stability. In our experiment, m and k were fixed and equal to

m = 2mm and k = 10N . Finally, the contact force fs for each node of the mesh are

gathered into the boundary force vector Fb of the dynamic system Equation 8.5.
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Figure 8.13: Left panel: 1D model of the boundary contact force. In the free

zone, the force is null. As soon as we quit this zone, the strength of the contact

force quickly rises according to the Geman-McLure equation to reach a user-defined

maximum. Right panel: 3D implementation of the boundary contact force.

Figure 8.14 illustrates the improvements provided by the proposed contact bound-

ary condition on the heart position at end-systole. As one can see, strong basis

stiffness (κ = 40 N.m−1) prevents the base plane from moving towards the apex,

as observed in real hearts. Furthermore, the blood pressures on the endocardial

surfaces make the heart geometry at end-systole look unrealistically elongated. The

contact boundary condition alleviates these issues. The base is now free to move

towards the apex (a slight basis stiffness was kept to simulate atrial and arterial

tensions on the ventricles, κ = 4N.m−1). Furthermore, the contact force preserves

the heart shape by avoiding unrealistic elongations. Finally, myocardium thickening

improves as a consequence of the basal contraction.

It is worth stressing on the fact that the proposed boundary contact force is

not a model of the pericardium bag but rather a spatial boundary condition that

fixes the heart in the 3D space. An appropriate model of the pericardium, seen as

a pressure field that applies on the epicardium and whose strength depends on the

variation of volume of the pericardial bag is under study [Freeman and LeWinter,

1984]. However, these models introduce new parameters that need to be estimated.

Figure 8.15 illustrates a generic simulation on a patient-specific anatomy but

with nominal parameters [Bestel, 2000; Shi and Liu, 2003; Sermesant et al., 2006b]

(Table 8.1). The biomechanical model is triggered by the electrical command illus-

trated in Figure 8.10, with the APD showed in Figure 8.10. Figure 8.16 reports the

simulated volume and pressures variations in the blood pool and the main arter-

ies. PV loops can be obtained, which, after personalisation, can be used to extract

parameters quantifying the cardiac pump efficacy.
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Figure 8.14: Effects of the contact force over the simulated cardiac motion compared

to basis boundary conditions only. Strong basis constraints prevent the base plane

to contract towards the apex and can lead to “elongated” end-systole (ES) shapes.

The contact boundary condition alleviates these limitations: the base contracts

downwards, the shape is preserved and myocardium thickening is improved.

8.4.4 Personalisation Strategies

The automatic calibration of the biomechanical parameters remains an open chal-

lenge despite the increasing research interest in this direction [Shi and Liu, 2003;

Sermesant et al., 2006a; Wong et al., 2007; Billet et al., 2008; Moireau et al., 2008;

Billet et al., 2009; Zhang et al., 2010a]. One of the key of success is to use models

especially tailored to the sparse clinical data and to the clinical question to investi-

gate. We choose to use simpler model in order to have less but clinically-meaningful

parameters.

The personalised simulations performed during this thesis were calibrated man-

ually through trial and errors. This was possible since the simulation of the whole

cardiac cycle took about 15-30 minutes only on a standard 2.4GHz Intel Core 2 Duo

computer with 4GB of memory, on meshes of about 50000 elements. The manual

calibration was performed as follows.

Assume we have dynamic 3D images of the beating heart (3D ultrasound, CT or

MRI), on which the heart has been segmented over the entire cardiac cycle, using ap-

proaches like the one presented in Chapter 3. The dynamic segmentations quantify

the variation of ventricular volumes over time. The dynamic images show the appar-

ent motion of the heart. We also assume that the models of cardiac electrophysiology

and hemodynamics have been fitted to the patient physiology (see Section 8.3 and

Section 8.5). We first start with nominal parameter values as reported in the liter-

ature (σ0 = 100 kPa.mm−2; kATP = 10 s−1; kRS = −20 s−1; E = 50MPa [Bestel,

2000; Shi and Liu, 2003; Sermesant et al., 2006b], see Table 8.1). The contractile

element of the lesions, if any, is decreased or disabled to reproduce their abnormal

motion. The maximum contraction σ0 is then set iteratively such that the simu-
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Figure 8.15: Example of biomechanical simulation. Colours encode the active con-

traction triggered by an electrical command simulated using the Eikonal model.

This motion is simulated on a pathological anatomy but with nominal parameters

(Table 8.1).
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Figure 8.16: Quantitative indices of the left (LV) and right (RV) ventricles cor-

responding to the simulation of Figure 8.15. On the volume curves, vertical bars

denote the cardiac phases: 1) Isovolumetric contraction, 2) Ejection, 3) Isovolu-

metric relaxation, 4) Ejection. Simulated ejection fractions: 57% (LV) and 60%

(RV)

lated end-systole volumes match the measured ones. The Young modulus E is set

such that the simulated cardiac relaxation matches the observed one, as the motion

of this cardiac phase is mostly due to the relaxation of cardiac myocytes. Finally,

the contraction and relaxation rates kATP and kRS are set such that the slopes of

volume variation during systole and diastole respectively match.

8.5 Cardiac Hemodynamics Model

The myocardium function largely depends on external conditions that are mostly

determined by the blood flows and the circulatory system. Cardiac hemodynamics

must therefore be considered in the model. A standard approach is to simulate

the blood flow with fluid-dynamic models (CFD) coupled with the myocardium

through fluid-structure interaction (FSI) models. This approach is very detailed

but also tremendously complex to solve, with coupled systems controlled by large

set of parameters (see [McQueen and Peskin, 2000; Taylor and Draney, 2004; Mihalef

et al., 2009] and references therein). An alternative strategy simplifies the problem



8.5. Cardiac Hemodynamics Model 179

by modelling the blood flow as pressure constraints of the biomechanical model. The

constraints are computed from lumped models of the circulatory system [Keener and

Sneyd, 1998; Arts et al., 2005; Kerckhoffs et al., 2007] or directly input by the user

[Sainte-Marie et al., 2006; Sermesant et al., 2006b]. These simplified approaches

greatly reduces the computational complexity of the models and decrease the number

of parameters to set. However, these models completely ignore the flow patterns in

the ventricles, patterns that may have long-term impact in the cardiac function or

on the effects of a therapy.

Again, the choice of a strategy depends on the clinical question we want to inves-

tigate, the clinical parameters to predict and the available data for the personalisa-

tion. If the focus is on the flow patterns through valves or arteries and that nice flow

data is available (3D US doppler or more recently 4D flow MRI), then a complete

model would be of interest, as in [Mihalef et al., 2009]. Conversely, if only global pa-

rameters like ventricular pressure or volume variation must be predicted and if few

flow data are available, then simpler model could be more appropriate. In this work,

we were mainly interested in predicting the cardiac motion and the global output

of the heart, as ejection fractions, volume variations and global pressure changes.

We thus decided to use a simple model where hemodynamics is considered as a

constraint of the electromechanical model. In particular, we improved the cardiac

cycle model proposed by [Sermesant et al., 2006a], briefly described in Section 8.5.1,

to simulate the Windkessel effect of arteries (Section 8.5.2) and valve regurgitations

(Section 8.5.3).

8.5.1 Simulation of the Cardiac Cycle

8.5.1.1 A Rule-Based Valve Model

We simulate the four cardiac phases − filling, isovolumetric contraction, ejection,

isovolumetric relaxation − (Figure 8.17) using a rule-based approach [Sermesant

et al., 2006a]. In simple words, the phases are simulated by alternating different

boundary conditions of the electromechanical model.

Filling During filling, the ventricular pressure is close to the atrial pressure. A

pressure force fp whose amplitude equals the atrial pressure is thus applied

to the endocardial surface to make the ventricle dilate. The atrial contrac-

tion triggered by the P-wave is simulated by artificially increasing the atrial

pressure (Figure 8.17A).

Isovolumetric Contraction As soon as the ventricle starts contracting, the cav-

ity volume starts decreasing. The ventricular flow Φ changes sign (positive

during dilation, negative during contraction) and the atrial valves in healthy

hearts close. We thus switch from filling to isovolumetric contraction by de-

tecting the change of flow sign. During this short phase the cavity volume is

constant since all the valves are closed (the ventricular pressure is still lower

than the arterial pressure). This constraint is implemented using a Lagrangian

approach [Billet, 2010]. At each time step, a penalty pressure fp is applied to
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the endocardial vertices such that the ventricular volume stays constant. The

amplitude of fp is exactly related to the ventricular pressure, which raises as

the ventricle contracts (the higher the contraction strength, the higher the

penalty) (Figure 8.17B).

Ejection Once the ventricular pressure is high enough to open the arterial valves,

the blood can flow into the arteries. The ventricular pressure equals the arterial

pressure, which is simulated using a Windkessel model (see Section 8.5.2). We

apply a pressure force fp to the endocardium whose amplitude equals the

arterial pressure (Figure 8.17C).

Isovolumetric Relaxation When the cardiac cells repolarises and the ventricle

relaxes, the cavity volume increases again: the ventricular flow Φ changes sign

(from negative to positive). This would close the arterial valves: we enter in

the isovolumetric relaxation. Because the ventricular pressure is still higher

than the atrial pressure, all the valves are closed and the ventricular volume

stays constant despite myocardium relaxation. The same strategy as the one

used during the isovolumetric contraction is applied (Figure 8.17D).
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Figure 8.17: The four cardiac phases

The phase model is therefore controlled by both pressures (to exit isovolumetric

phases) and blood flows (to enter isovolumetric phases), which are computed as

the variation of the cavity volume V per time step ∆t: Φ(t) = [V (t) − V (t −
∆t)]/∆t. Denoting p(t) the ventricular pressure, pat(t) the atrial pressure and par(t)

the arterial pressure, we have the following rules:

• Φ(t−∆t) > 0 and Φ(t) ≤ 0: switch from filling to isovolumetric contraction.

• p(t) ≥ par(t): switch from isovolumetric contraction to ejection.

• Φ(t−∆t) < 0 and Φ(t) ≥ 0: switch from ejection to isovolumetric relaxation.

• p(t) ≤ pat(t): switch from isovolumetric relaxation to filling.

During the phases, the pressure force applied to the endocardial surfaces is computed

for each vertices, fp, and gathered into the global pressure vector Fp of the dynamic

systems (Equation 8.5).
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In this model, the phases are handled independently for the left and right ven-

tricles to simulate asynchronous cardiac motions. No constraint on the cardiac

synchrony is employed. However, the phases are alternated sequentially. We can-

not come back to the previous phase. Although this seems quite reasonable for

normal cases, extreme pathologies with very impaired myocardium function can

lead to transient abnormal valve closure/opening, which cannot be modelled by our

algorithm.

Parameters This model of the cardiac cycle is controlled by the following param-

eters:

• Left and right atrial baseline pressures pLat and pRat. These pressures corre-

spond to the pressure in the atria at rest.

• Left and right atrial pressures multiplicative coefficients cLat and cRat. When

the atria are excited by the electrical wave, they contract and the atrial pres-

sures increase. These coefficients are used to calculate the atrial pressures at

highest contraction, when the valves open

• Initial aorta and pulmonary artery pressures at time t = 0, p0aorta and p0pulmo
.

These pressures evolve over time according to the Windkessel model, as de-

scribed in Section 8.5.2.

8.5.1.2 Personalisation Strategy

These parameters can be measured in clinical environment. In routine, ultrasound

Doppler imaging can provide a rough estimate of the peak pressures in the atria and

arteries when regurgitation are present. This is achieved using Bernoulli’s principle

between flow speed and pressure [Yock and Popp, 1984]. More accurate measure-

ments can be obtained using catheter pressure probes, but these procedures are

invasive and employed only during some interventions. These measurements are di-

rectly input into the model as constraints. However, this approach is limited when

the aim is to predict the cardiac function after a therapy. What pressures should

we use then? How will they change? Immediate postoperative effects could be sim-

ulated by assuming no or little changes in atrial and arterial pressures (according

to the type of therapy of course). This approximation resulted in promising results

[Mansi et al., 2009a; Sermesant et al., 2009], but long-term effects require more

sophisticated models.

8.5.2 Simulation of the Arterial Windkessel Effect

8.5.2.1 Available Models

As mentioned in Chapter 2, the arterial pressures vary during ejection to accommo-

date the cardiac pulse. The arterial walls dilate, gathering the blood that cannot

be ejected to the circulatory system, which has finite capacity. When the valves

close, the arteries relax and the excess of blood is released to the system. This is
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the Windkessel effect (WK) [Frank, 1899]. Several WK models have been devel-

oped, from the most simpled lumped models of the arteries to the more complex

travelling-wave theory [Crépeau and Sorine, 2007] (see [Westerhof et al., 2009] and

reference therein). In this work, we improved the current electromechanical model

to reproduce the WK effect using the popular 3-element model [Westerhof et al.,

1971; Stergiopulos et al., 1999; Sermesant et al., 2006b], as this model has shown

good fits to real curves.

8.5.2.2 Selected Model: 3-Element Windkessel Model

The 3-element WK model is derived from electrical circuit analogies where the blood

flow is the current and the arterial pressure is the voltage. First introduced by

[Westerhof et al., 1971], this model was designed as an extension of the original

2-element model [Frank, 1899] to faithfully recover the variations of the arterial

pressures during the cardiac cycle. More advanced models have been proposed since

them, in particular the 4-element WK model, to increase the accuracy of the fitted

parameters but the 3-element model remains widely used thanks to its simplicity,

its small number of parameters to set and its ability to reproduce realistic pressure

patterns.

Figure 8.18 shows the circuit diagram of the 3-element WK model. The first

element of the model is a peripheral resistance Rp, which accounts for the distal

resistance of the circulatory system mainly due to the small vessels. The compliance

C accounts for the elasticity of the arterial walls whereas the characteristic resistance

Rc accounts for the blood mass and for the compliance of the artery proximal to

the valves. Let Φar(t) be the arterial flow at time t, defined as the opposite of the

ventricular flow Φar(t) = −Φ(t), par(t) be the arterial pressure at time t and pr be

a constant low pressure of reference (typically the pressure of the remote veinous

system). When the blood flows into the arteries (Φar(t) > 0), during ejection, the

3-element model writes:

dpar(t)

dt
= Rc

dΦar(t)

dt
+

(

1 +
Rc

Rp

)
Φar(t)

C
− par(t)− pr

RpC
(8.7)

When the arterial valves are closed, the blood flow is stopped (Φar(t) = 0) and the

model writes:
dpar(t)

dt
= −par(t)− pr

RpC
(8.8)

These equations are integrated using first-order implicit schemes. Two inde-

pendent WK models are used for the aorta and the pulmonary artery as we are

mainly interested in phenomena that occur at the heart-beat scale. Long-term

interactions between the pulmonary and systemic systems are not considered. Fig-

ure 8.19 shows simulated aortic pressures given an input flow and standard WK

parameters (pr = 82 mmHg, C = 1.6 mL/mmHg, Rp = 0.5 mmHg/mL/s, Rc =

0.03 mmHg/mL/s).
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Figure 8.18: Circuit analogy of the 3-element Windkessel model
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Figure 8.19: Example of simulated pressure curves in the aorta according to input

flows (simulated using the electromechanical model).

Parameters The pressure of each artery (aorta and pulmonary artery) is con-

trolled by four parameters:

• Artery compliance, C: elasticity of the arterial wall.

• Peripheral resistance, Rp: distal resistance of the circulatory system mainly

due to small vessels.

• Characteristic resistance, Rc: proximal compliance and local inertia.

• Remote pressure, pr: constant distal pressure in the remote veinous system.

These parameters must be set independently for the aorta and the pulmonary artery.

8.5.2.3 Personalisation Strategies

Several studies reported in the literature have shown that calibrated 3-element WK

models can faithfully reproduce and predict clinical measurements ([Stergiopulos

et al., 1995; Segers et al., 2008; Westerhof et al., 2009] and references therein), al-

though the compliance C may be overestimated and the characteristic resistance
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Rc underestimated [Stergiopulos et al., 1999]. This model is therefore well-suited if

one seeks to reproduce the curves without interpreting the values of the parameters.

Despite this limitation, the 3-element WK has received a great interest from the

community as it can be easily personalised from pressure and volume curves. When

such data are available, a large variety of methods can be employed, based on expo-

nential fitting or parameter estimation methods [Lankhaar et al., 2006; Westerhof

et al., 2009]. However, when no pressure curves are available (as during this thesis),

the calibration becomes more complex.

Studies have shown that the time constant τ = RpC, which characterises the

pressure decay when no blood is flowing in the artery, is relatively constant among

individuals (τ ≈ 0.80s [Lankhaar et al., 2006]). We can thus fix τ , and start from

nominal values reported in the literature to adjust the WK parameters. Figure 8.20

shows the effect of simultaneously increasing Rp and decreasing C while keeping

the time variable τ constant. Intuitively, this consists in increasing the pressure in

the small vessels (hypertension) while making the artery more elastic. In this case,

the peak systolic pressure also increases but the whole curve is shifted upwards,

making the calibration difficult when only the pressure at peak systole is available.

We then fixed Rp and C and made the characteristic resistance Rc vary. We can

see from Figure 8.21 that in this case, only the peak systole pressure is increased

and the overall shape of the pressure curve is preserved. Calibrating the model with

this parameter only is thus much easier. This is the strategy employed during this

thesis.
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Figure 8.20: Variations of the simulated aorta pressure with respect to the peripheral

resistance Rp and artery compliance C. The time constant τ = RpC = 0.80 ms, Rc

and pr are kept constant. Increasing Rp and decreasing C shift the curves towards

high pressures (C in mL/mmHg and Rp in mmHg/mL/s).
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Figure 8.21: Variations of the simulated aorta pressure with respect to the charac-

teristic resistance Rc. Remaining WK parameters are kept constant. Increasing Rc

increases the pressure at peak systole but does not shift the curve. Rc can be used to

adjust the WK model when no pressure curves are available (Rc in mmHg/mL/s).

8.5.3 Simulation of Valve Regurgitations

8.5.3.1 Available Models

During this thesis, we had to simulate the cardiac function of patients with repaired

tetralogy of Fallot. This disease is characterised by chronic pulmonary valve regur-

gitations, in addition to extreme dilation of the right ventricle and impaired cardiac

function. In simple words, the blood can flow backwards from the pulmonary artery

to the ventricles, which is normally prevented by the pulmonary valves. We thus

needed a model of valve regurgitations.

The vast majority of regurgitation models rely on fluid-dynamics models and

fluid-structure interactions to simulate valves, their kinematics and the blood flow

across them [Formaggia et al., 2001; Taylor and Draney, 2004; Gerbeau et al., 2005;

Korakianitis and Shi, 2006; Wenk et al., 2010]. These approaches are ideal for

studying the flow patterns and the causes and effects of regurgitations. However,

linking these models with electromechanical models of the heart is very complex as

the two models are tightly coupled [McQueen and Peskin, 2000; Tang et al., 2007b;

Yang et al., 2008a]. Furthermore, adding more models into the simulation adds

complexity and parameters, which then need to be personalised. We therefore choose

to use a simplified model of regurgitations compatible with our electromechanical

model and with the available data. Measured regurgitation flows are directly used

as constraints.
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8.5.3.2 Selected Model: Regurgitations as Hemodynamics Constraints

Regurgitations may be translated in our model by isovolumetric phases that are no

longer isovolumetric. Indeed, during the ejection (resp. filling) phase, the variation

of ventricle volumes is the direct consequence of the myocardium contraction (resp.

relaxation). We do not have access to the amount of blood that passes through the

valves. However, during the isovolumetric phases, we know that the ventricle vol-

umes should be constant. When valves regurgitate, this volume changes, according

to the regurgitation flow that depends on the level of valve leakage. This flow is mea-

sured in clinics using flow imaging (ultrasound Doppler imaging or flow MRI). We

can therefore include this data directly in our model by relieving the isovolumetric

constraints.

The isovolumetric phases are modified as follows. Let Φc and Φr be the regurgi-

tation flows measured at isovolumetric contraction and relaxation respectively. At

each instant t, we first estimate the infinitesimal volume variation ∆V that we would

have without isovolumetric constraint. Then:

• If |∆V | > |Φ{c,r} ∆t|, a penalty constraint is applied to each vertex of the en-

docardium such that the resulting ventricle volume varies of ∆V = Φ{c,r}∆t.

The effect of myocardium contraction or relaxation is therefore partially com-

pensated.

• Otherwise, no penalty constraint is applied. The myocardium can contract/relax

freely, all the variation of volume is authorised.

With this simple model, the blood pool volume can change during the isovolumetric

phases according to the measured regurgitation flows, as illustrated in Figure 8.22.
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Figure 8.22: Simulated pressure-volume loops of the right ventricle without (left

panel) and with (right panel) regurgitations. Regurgitations are implemented by

allowing the cavity volume to vary during the isovolumetric phases.

Parameters Regurgitations are controlled by two parameters per ventricle:
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• The regurgitation flow during isovolumetric contraction Φc

• The regurgitation flow during isovolumetric relaxation Φr

8.5.3.3 Personalisation Strategies

An approximate estimation of the regurgitation flows can be obtained from ultra-

sound Doppler imaging or flow MRI. As the isovolumetric phases are very brief,

we assume that the regurgitation flows during these phases are constant. We can

thus estimate Φc and Φr by dividing the average regurgitant volume Vreg measured

during the shortest period of time tiso that includes the isovolumetric phases by

tiso: Φ{c,r} = Vreg/tiso

8.6 Discussion

This chapter described a framework for personalised simulations of the cardiac func-

tion whose complexity is compatible with the available clinical data. Relying on

simplified models, the framework is computationally efficient and controlled by few

parameters, all having clinical meaning (Table 8.1). The proposed framework has

been especially designed for simulating the cardiac function of patient with repaired

tetralogy of Fallot, as described in Chapter 9. However, each element can be adapted

individually to simulate other pathologies, like in [Sermesant et al., 2009].

Modelling the cardiac function is a complex task and the pipeline presented

in this chapter is the result of incremental improvements on existing algorithms.

However, contributions were brought to the original model [Sermesant et al., 2006b]

to adapt it to our specific problem. In particular:

1. A pipeline for the automatic creation of anatomical models of the heart from

clinical images was developed.

2. Implementation of a boundary contact force to constrain the heart in the 3D

space while keeping the base free to contract as in the real cardiac motion.

3. Implementation of the Windkessel model to simulate arterial pressures

4. Implementation of a regurgitation model that, although simplified, provided

realistic simulations of the cardiac function in tetralogy of Fallot (Chapter 9)

5. Design of personalisation strategies for the manual calibration of the biome-

chanical parameters, yielding first personalised simulations of the cardiac func-

tion in tetralogy of Fallot (Chapter 9)

The simplifications introduced in the model to make it “personalisable” are its

strengths but also its weaknesses in contrast with more detailed models. These

limitations open several perspectives of research for finding computationally efficient

solutions still controlled by few clinically-relevant parameters.
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For the anatomical model, the most important limitation is the definition of the

fibres, which is still generic in our framework. It is indeed not clear how well a generic

model of fibre architecture can fit the anatomy of a patient. For instance, fibres

surrounding myocardial scars reorient to limit the loss in cardiac output [Geerts-

Ossevoort, 2002; Wu et al., 2007]. To cope with this uncertainty, one could model

the fibre reorientation [Kroon et al., 2009]. However, such models consider only one

remodelling stimulus at a time (homogeneous myocardium stress-strain in [Rijcken

et al., 1999; Kroon et al., 2009]) and introduce new parameters to set. The solution

will most probably come from the recent advances in in-vivo DTI acquisition and

post-processing [Wu et al., 2009; Toussaint et al., 2010], which promise to provide

patient-specific data that we could use in the model. In parallel, an increasing liter-

ature reports that fibre orientations have little influence on global parameters such

as ventricular volume or pressures (see [Niederer et al., 2009] and references therein),

although their effect on local indices such as strain may be significant. The question

of which parameter to predict is therefore crucial to evaluate the reliability of the

simulation given a set of fibre orientations. At last, we do not consider the cardiac

fibre sheets, although it has been shown that the spatial arrangement of these sheets

plays an important role in the myocardium thickening [Costa et al., 1999]. However,

integrating this additional constraint is achieved at the price of increased computa-

tional complexity, with more complex constitutive laws. Furthermore, fibre sheets

are even more difficult to acquire in-vivo and statistical analyses on a population of

dogs showed that their variations among individual could not be neglected [Peyrat

et al., 2007]. Because of these difficulties we decided not to consider them.

Simulating the cardiac electrophysiology using Eikonal models is very appealing

as they are fast and controlled by very few parameters. However, complex patholog-

ical patterns cannot be simulated with these models. The patients studied during

this thesis did not report any major abnormality in their cardiac electrophysiol-

ogy, which justified this choice. The most severe cases were affected by right bundle

branch block, which can be simulated by the Eikonal model. However, in pathologies

where tachycardia or fibrillation happens, more sophisticated models are necessary.

Mono-domain approaches are good candidates [Aliev and Panfilov, 1996; Mitchell

and Schaeffer, 2003] and can be integrated easily in the model with the price of

additional computational complexity.

The biomechanical model we employed is transverse isotropic linear elastic with

linear electromechanical coupling. This is probably the coarsest simplification of

the framework. Rigid body rotation of linear elastic models results in wrong posi-

tive strain. Moreover, the myocardium is a non-linear elastic tissue, with non-linear

electromechanical coupling. Yet, despite that simplification, realistic cardiac motion

was obtained (see Chapter 9, [Sermesant et al., 2006b, 2009; Billet et al., 2009]).

More advanced models could be used, in particular the reference Costa model of the

passive myocardium [Costa et al., 2001] coupled with the complete Bestel-Clement-

Sorine multi-scale model of cardiac contraction [Bestel et al., 2001]. Solving these

models is more demanding but recent approaches pave the way to efficient imple-

mentations of non-linear tissue models [Delingette, 2008b,a]. Benchmark studies
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between linear and non-linear model, in the framework of personalised models for

clinical prediction, would be of great interest, effectively quantifying the loss in accu-

racy of the linear models in contrast with the increase in computational complexity.

This would enable to implement hybrid models mixing non-linear and linear passive

models of the myocardium tissue depending on the length of the deformations.

The biomechanical model was personalised manually, by trial and errors. This

approach was possible on few cases but is clearly not a definite solution to the

personalisation problem, in particular when the number of cases to treat is large.

Automatic parameter estimation is a very intense research topic, challenged by the

very large number of degrees of freedom to estimate. Yet, the small number of pa-

rameters enable to use variational methods [Billet, 2010], filtering methods [Moireau

et al., 2008, 2009; Wong et al., 2010], direct methods such as Powel NEWUOA [Pow-

ell, 2008] or more exhaustive approaches based on genetic algorithms. Experiments

in these directions are in progress.

Finally, the model of cardiac hemodynamics can also be improved. The current

implementation of the cardiac cycle does not allow the simulation of complex regur-

gitation patterns for instance nor severe valve abnormalities due to extreme cardiac

asynchrony. The opening and closure of the valves should be done based on the ven-

tricular pressures only as in [Sainte-Marie et al., 2006; Niederer et al., 2009]. Current

work aims to implement a pressure-based model of the cardiac phases. Besides, the

current model had also a direct consequence on the modelling of the valve regurgi-

tations, which can be done only during the isovolumetric phases. We chose to use a

constraint approach for easy personalisation. This was appropriate for our problem

since the simulated therapies consisted in stopping the regurgitations. However, this

technique is not suitable for predicting the regurgitations after cardiac remodelling

for instance. Which regurgitation flow should we use? A solution would consist in

using a 0D lumped model of regurgitations, where the valves are modelled as a resis-

tance to the blood flow. Valve closure would be modelled by an infinite resistance.

However, such an approach is possible only if the cardiac cycle is pressure controlled

rather than flow controlled. Other more sophisticated improvements would consist

in plugging a lumped model of the cardiovascular system [Keener and Sneyd, 1998]

to our electromechanical model of the heart, similar to [Arts et al., 2005; Kerckhoffs

et al., 2007]. Or, more interestingly, we can couple the heart model with a per-

sonalised fluid-dynamics model of the blood flow across the valves [McQueen and

Peskin, 2000; Gerbeau et al., 2005; Nordsletten et al., 2009].
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Table 8.1: Parameter list of the electromechanical model (1/2). All the parameters can be set for specific regions of the myocardium

for regional personalisation. Anisotropy ratios are for fibre/cross-fibre ratios. DTI: Diffusion tensor imaging, ECG: Electrocardiogram,

tMRI: tagged MRI.

Notation Parameters Clinical Data for Personalisation Default Values References

Anatomical Model

× Heart geometry Anatomical images × ×

e Myocyte elevation angle in-vivo DTI eendo = +70◦, eepi = −70◦ [Arts et al., 2001]

Electrophysiology Model

Td0
Trigger time ECG Td0

= 100 ms [Murgatroyd and Krahn, 2002]

v Electrical conductivity Endocardial mapping vendo = 2000 mm.s−1, vmyo = 500 mm.s−1 [Murgatroyd and Krahn, 2002]

λ Conductivity anisotropy × 3 [Keener and Sneyd, 1998]

APD Action potential duration Endocardial mapping, ECG APD = 300 ms [Murgatroyd and Krahn, 2002]

∆tel Electrical time step × ∆tel = 1 ms ×

Biomechanical Model

ρ Muscle mass density × 1070 g/L [Glass et al., 1991]

E Young modulus Dynamic images, tMRI, etc. E = 50 MPa [Shi and Liu, 2003]

γ Elasticity anisotropy × 3 [Costa et al., 1999]

ν Poisson coefficient × 0.48 [Glass et al., 1991]

σ0 Maximum contraction Dynamic images, tMRI, etc. σ0 = 100 kPa [Bestel, 2000]

kATP Contraction rate Dynamic images, tMRI, etc. kATP = 10 s−1 [Bestel, 2000]

kRS Relaxation rate Dynamic images, tMRI, etc. kRS = −20 s−1 [Bestel, 2000]

d Damping × d = 3000 N.m.g−1
×

∆tmec Mechanical time step × ∆tmec = 1 ms ×

Boundary Conditions

κ Base stiffness Dynamic images 4000 N.m−1
×

k Contact force amplitude × 10 N ×

m Contact force rate × 2 ×
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Table 8.2: Parameter list of the electromechanical model (2/2). Art: arterial, US: ultrasound.

Notation Parameters Clinical Data for Personalisation Default Values References

Hemodynamics Model

pat Atrial pressures Pressure probes, echocardiography pLat = 12 mmHg, pRat = 5 mmHg [Schäffler and Schmidt, 1999]

cat Atrial contraction coefficient Pressure probes cLat = cRat = 1.5 ×

p0 Initial art. pressures Pressure probes, echocardiography
p0aorta = 80 mmHg,

p0pulmo
= 15 mmHg

[Schäffler and Schmidt, 1999]

C Art. compliance Pressure probes + ventricle volumes Caorta = 1.6 mL/mmHg,

Cpulmo = 2.1 mL/mmHg
[Westerhof et al., 2009]

Rp Art. peripheral resistance Pressure probes + ventricle volumes
Rpaorta = 0.5 mmHg/mL/s,

Rppulmo
= 0.4 mmHg/mL/s

[Westerhof et al., 2009]

Rc Art. characteristic resistance Pressure probes + ventricle volumes
Rcaorta = 0.03 mmHg/mL/s,

Rcpulmo
= 0.015 mmHg/mL/s

[Westerhof et al., 2009]

pr Remote art. pressure Pressure probes + ventricle volumes
praorta = 60 mmHg,

prpulmo
= 4 mmHg

×

Φc Systolic regurgitation flows Flow imaging (MRI, US) Φc = 0 mL.s−1
×

Φr Diastolic regurgitation flows Flow imaging (MRI, US) Φr = 0 mL.s−1
×
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We described in Chapter 8 the tools to realise personalised simulations of the

beating heart in patients with repaired tetralogy of Fallot (ToF). The idea is to

use the virtual heart to test the postoperative effects of different pulmonary valve

replacement (PVR) strategies on the cardiac function of the patients. We investigate

in the following the feasibility of that approach on two young adults.

9.1 Motivation: Can we Predict the Postoperative Ef-

fects of Pulmonary Valve Replacement?

In this chapter we are in the situation where the cardiologist decided to replace the

pulmonary valves to a patient. This decision was made based on the current cardiac

function, estimated using among other indices the iLogDemons for instance, and on

a bad prognosis of the heart condition, estimated from common clinical indices like

blood pool volume or based on a statistical model of the heart growth like the one

we presented in the second part of this thesis. The problem the cardiologist now has

to tackle is to evaluate the type of valve replacement strategy he can apply to that

patient. Should he replace the valves only, and let the heart remodel itself to its

new condition? Or should he directly reduce the right ventricle, taking advantage of

the surgery to remove scars and fibrosis? Nowadays, there is no clear-cut consensus

on which strategy one should employ for specific patients.
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To guide the cardiologist, we propose in this chapter to personalise the simpli-

fied electromechanical model (EM) of the heart presented in the previous chapter to

reproduce the cardiac function of the patient in-silico. With a virtual heart, the car-

diologist can test the two PVR strategies and predict their postoperative outcomes

on the patient’s cardiac function.

A first simulation of PVR for ToF patients was presented by [Tang et al., 2007b].

In that work, the authors made use of a fluid-structure interaction model coupled

with a passive isotropic model of the myocardium to simulate patient-specific PVR

and right ventricle (RV) volume reduction surgery. Obtained results were promising

and supported the surgical RV reduction. However, the authors did not simulate

the preoperative regurgitations and, most importantly, the active contraction of the

myocardium, which may be affected by the surgery. We propose instead to use our

active anisotropic electromechanical (EM) model of the heart. Figure 9.1 shows

the different steps of the experiment. The compact bi-ventricular myocardium is

segmented from clinical 4D cine MRI. The mid-diastole myocardium mesh is used as

3D anatomical model to simulate patient cardiac function and PVR therapies. The

variation of the blood pool volumes throughout the cardiac cycle and the apparent

motion on MRI are used to manually calibrate the EM model. After calibration,

the resulting virtual heart reproduces the cardiac function of the patient on the

computer. We can then test the effects of pulmonary valve replacement, by disabling

the regurgitations in the model, and RV volume reduction, by virtually resecting

tissues of the RV outflow tract (RVOT) using SOFA1, an open source soft-tissue

intervention platform [Allard et al., 2007]. In the following, we briefly describe the

virtual surgery framework and present the results on two young adults with repaired

ToF.

Cine MRI Observations

3D anatomical model
Personalised

EM model

PPVR

PVR with RV
volume reduction

Dynamic
segmentation

EM simulation

Calibration

Virtual RV volume reduction

EM simulation
without regurgitations

Clinical data

Figure 9.1: Pipeline for personalised model-based simulation of PVR therapies (see

details in text).

9.2 Real-Time Simulation of Cardiac Volume Reduction

RV volume reduction is performed in real-time using SOFA [Allard et al., 2007], a

soft-tissue intervention platform (Figure 9.2). The user reduces the RV volume by

resecting tissues that have been identified as pathological. After resection, the RV

1Available at www.sofa-framework.org
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cavity is reconstructed in real-time by sewing the free wall to the septum. Large

displacements and rotations of the elements are coped with co-rotational finite ele-

ment models [Nesme et al., 2005]. A GPU-based implicit solver is used to update

the mesh position [Comas et al., 2008].

Figure 9.2: Screenshot of the SOFA platform. The anatomical model of a heart is

being remodelled by the user. After resection, the user is closing the free-wall by

pulling it close to the septum (green line). Grabbing, cutting and closing interactions

are controlled in real-time during the virtual intervention.

9.2.1 Tissue Resection

Tissue resection is performed interactively by removing all the connected tetrahedra

of the mesh that are inside a user-defined sphere region. The centre of the sphere

follows the mouse pointer, enabling the user to define interactively the zone to

remove. The radius of the sphere is defined through a pop-up menu. The resection

of myocardium tissue is achieved successively by varying the centre and the radius of

the sphere region (Figure 9.3, left panel). Internally, tetrahedra are removed using

the method proposed by [Andre and Delingette, 2008]. Intuitively, the indices of the

mesh elements and the meta data attached to them are stored into contiguous array,

ensuring fast and direct access to the elements. In that way, when the properties

of the mesh are locally modified, the time to update the data structure does not

depend on the total number of mesh elements but only on the number of modified

elements. However, this approach implies element renumbering when elements are

removed from the data structure, in particular during interactive tissue resection.

Nonetheless, this procedure is transparent to the user in our experiment as the

number of mesh elements was usually fairly low (less than 60 000 elements).
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Figure 9.3: Virtual suture of the right ventricle. Each side of the resected area

(left panel) is brought close to each other (mid panel) by adding a “spring” between

two user-defined vertices pw and ps. Several springs can be added (right panel) to

reconstruct the RV free wall. All the steps are performed in real-time.

9.2.2 Tissue Attachment

After resection, the RV cavity is reconstructed interactively by progressively draw-

ing the RV free wall close to the inter-ventricular septum (Figure 9.3, mid panel).

To that end, the user “grabs” the RV free wall and pulls it close to the septum2.

Then, two vertices are picked, one on the free wall and the other on the septum. A

spring between the two triangles is created, with a stiffness of k = 100N m−1, which

progressively brings the two walls close to each other. During the “sewing” interac-

tion, the user can place several springs as a surgeon would sew the myocardium at

several points. Once all the connections are established, the user exits the “sewing”

interaction: the stiffness of the springs becomes tenfold higher (k = 1000N m) to

seal the free wall to the septum (Figure 9.3, right panel). During the process, the

computational efficiency of the sewing is improved by fixing the vertices of the left

ventricle (LV) in the 3D space and disabling the biomechanical model on the LV,

which does not move to preserve its shape during the virtual surgery. The anatom-

ical model is re-meshed after rasterisation as a binary image to remove holes at the

surgical junction. Finally, a scar zone is mapped onto the postoperative anatomy to

simulate the effects of the surgical scar on the cardiac function.

9.2.3 Myocardium Fibre Recovery

During the virtual surgery, the RV is resected and deformed but the orientation of the

cardiac fibre must be preserved locally as they are intrinsic to the myocardium tissue.

This constraint is ensured by encoding the fibre directions in the local barycentric

coordinate system of each tetrahedron. In that way, their relative orientation within

a given tetrahedron is preserved during element deformations. During the final re-

meshing, the fibres are transferred to the final postoperative anatomical model by

using an intermediate rasterisation of the fibre directions as a vector image.

2See video at www-sop.inria.fr/members/Erik.Pernod/Movies/heart_suture_HeC.php
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9.3 Personalised Simulation of Pulmonary Valve Replace-

ment

9.3.1 Patient Selection and Data Preparation

Virtual pulmonary valve replacement (PVR) was tested on two randomly selected

patients with repaired tetralogy of Fallot. Patient evaluation, echocardiography

and magnetic resonance imaging (MRI) was performed for all patients. MRI was

performed using 1.5T MR scanner (Avanto, Siemens Medical Systems, Erlangen,

Germany) in all the centres. Retrospective gated steady-state free precession (SSFP)

cine MRI of the heart were acquired in the short-axis view covering the entirety

of both ventricles (Figure 9.4A). To date, these patients have undergone no PVR

therapy to date. This means that no ground truth was available to validate the

simulated post-PVR cardiac function.

9.3.1.1 Patient Selection

Patient 1 The first patient was a 16-year old boy recruited at Hôpitaux de Paris,

Necker-Enfants Malade, Paris, France. Echocardiography showed moderate pul-

monary and tricuspid regurgitations with moderate RV dilation (third level out of

four regurgitation grades). RV pressure at end-systole was about 50 mmHg, value

estimated from the regurgitation flow using Bernoulli’s principle. Peak regurgitation

flows Φc and Φr were estimated at 50 mL.s−1. Visual inspection of the SSFP cine

MRI (10 slices; 1.33 mm isotropic in-plane resolution; 8 mm slice thickness; 25 tem-

poral frames) showed a dilated RVOT with a large aneurysm and severe dyskinetic

motion (the RVOT dilates when the heart contracts). However, despite these abnor-

malities, LV and RV ejection fractions were just below normal and electrophysiology

was almost normal.

Patient 2 The second patient was a 21-year old boy recruited at Great Ormond

Street Hospital, London, U.K. Echocardiography showed moderate pulmonary re-

gurgitations, mild tricuspid regurgitations and mild RV dilation. The analysis of

the SSFP cine MRI (10 slices; 1.77 mm isotropic in-plane resolution; 10 mm slice

thickness; 40 temporal frames) confirmed the mild RV dilation but with a rela-

tively preserved RV shape. A large translation of the left ventricle was visible at

end-systole. Ejection fractions were low but electrophysiology was almost normal.

9.3.1.2 Image and Mesh Preparation

Cine MRI images underwent slice misalignment correction, contrast enhancement

and tri-linear resampling for isotropic voxel size as described in Section 3.2.2. Af-

ter image preparation, the compact bi-ventricular myocardium was segmented as

follows.

For patient 1, RV endocardium at the end-diastole time frame was segmented

using the method proposed by [Zheng et al., 2008], as in Section 7.2.1, page 134. LV
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endocardium and bi-ventricular epicardium were segmented interactively using the

3D surface modeller presented in Section 3.2.3, page 40. The myocardium was then

reconstructed from the endocardial and epicardial surfaces and tracked throughout

the cardiac sequence as described in Section 3.2.4, page 45 (Figure 9.4).

For patient 2, the RV endocardium, the LV endocardium and the LV epicardium

were segmented using the method proposed by [Zheng et al., 2008] and propagated

over the cardiac sequence by using an optical flow method with one-step prediction

[Yang et al., 2008b]. The propagated RV epicardium was artificially reconstructed

by dilating the RV endocardium by 5 mm, which is slightly larger than the normal

RV myocardium thickness to account for RV atrophy in ToF and avoid possible

numerical instabilities during the electromechanical simulation. Finally, the compact

bi-ventricular myocardium was reconstructed from the propagated surfaces.

For all the patients, visual assessment of the dynamic segmentations showed

good agreement despite the dilated RV and the abnormal motions. From the dy-

namic meshes, we computed the volume curves, reported in Figure 9.6 (dashed green

curves) and the ejection fractions (EF ) of each ventricle, reported in Table 9.2. EF

is defined by the formula:

EF = 100.
EDV − ESV

EDV
%

where, EDV is the end-diastole volume and ESV is the end-systole volume. Ejec-

tion fractions, volume curves and MRI were used as reference for adjusting the EM

model to the cardiac function of the patient.

RV
LV LV

Myocardium

RV

EpicardiumA CB

Figure 9.4: Segmentation of the compact bi-ventricular myocardium of patient 1

from cine MRI. A- Cine MRI. B- Contours at end-diastole. C- Tracked myocardium

contour at end-systole.

9.3.2 Personalised Simulation of the Preoperative Cardiac Func-

tion

9.3.2.1 Model Personalisation

Anatomy The anatomical models of the bi-ventricular myocardium were gener-

ated from the mid-diastole mesh. The resulting tetrahedral models comprised 59768

(patient 1) and 43549 (patient 2) elements. Left ventricle, right ventricle and AHA
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myocardium zones were automatically mapped onto the mesh for regional adjust-

ment (Section 8.2.2). Synthetic fibre orientations were generated as described in

Section 8.2.3. Finally, abnormal regions like the dyskinetic RVOT of patient 1 were

manually reported on the anatomical models for their simulation. Figure 9.5 illus-

trates the personalised anatomical model of the two patients.

Patient 1 Patient 2

Figure 9.5: Personalised anatomical models. In red LV. In blue RV. In brown

dyskinetic area. Colour lines Myocardium fibres .

Electrophysiology Since there was no visible anomaly in electrophysiology of

these patients, electrophysiology parameters were adjusted as in a healthy heart

(Table 8.1). Time synchronisation was performed using the beginning of systole.

Without biomechanics, electrophysiology simulation took about 1 minute to com-

pute thanks to the efficient multi-front fast marching scheme.

Biomechanics Passive biomechanical properties were kept to their nominal values

(see Table 8.1) while the parameters related to the active element were manually ad-

justed. This was made possible by the relatively fast computation: 1 full cycle took

between 15 to 30 minutes on a MacPro 2 × 3.2GHz Quad-Core Intel Xeon, 16GB of

RAM, depending on the number of mesh elements. We started with nominal values

(Table 8.1). The contractile element of the lesions were disabled to reproduce their

abnormal motion. The contact boundary force was used (Section 8.4.3) and some

stiffness along the long-axis (k = 2.104 N.m−1) was added to the basis to simulate

the effect of atria and arteries on the bi-ventricular motion. Then, through trial

and error, we adjusted the parameters for both ventricles to simulate the observed

cardiac function. The simulation was compared to the MRI and the estimated vol-

ume curves and ejection fractions. Table 9.1 reports the final parameters for each

patient. It should be noted that the parameters did not vary significantly from one

patient to another. The personalisation of successive patients was much easier than

the first one, only a few trials were necessary to adjust the model. In all the cases,
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RV contractility was lower than normal, probably because of its dilated morphology

and possible fibrosis.

Hemodynamics Aorta Windkessel parameters were fixed to their nominal values.

When the RV end-systolic pressure was available, we personalised the Windkessel

parameters of the pulmonary artery by modifying only the pulmonary characteristic

resistance, as suggested by the results on synthetic data (Section 8.5.2). Pulmonary

peripheral resistance and compliance were kept to their nominal values. Pulmonary

regurgitation flows Φc and Φr were estimated directly from the clinical observations

when available, standard realistic values were used otherwise (Table 9.1).

Table 9.1: Adjusted parameters of the cardiac model. Non-reported parameters

were kept at their nominal values (see Table 8.1).

Parameters Patient 1 Patient 2

Maximum contraction
σ0 (in kPa.mm−2)

σ0LV
= 100

σ0RV
= 70

σ0dysk
= 0

σ0LV
= 70

σ0RV
= 70

Contraction rate kATP
(in s−1)

kATP = 10
kATPLV

= 15

kATPRV
= 5

Relaxation rate kRS
(in s−1)

kRS = −10 kRS = −10

Pulmo. regurgitations
flows Φc, Φr (in ml.s−1)

Φc = Φr ≃ 50 Φc = Φr ≃ 30

RV end-systole pressure
pRV ES (in mmHg)

PRV ES = 50 PRV ES = 33

Pulmo. characteristic
resistance Rc (in

mmHg mL−1)

Rc = 0.03 Rc = 0.04

9.3.2.2 Preoperative Simulation

After model adjustment, realistic ejection fractions (Table 9.2) and volume varia-

tions (Figure 9.6, solid curves) were obtained. The discrepancy observed for patient 2

comes from the different meshes used to compute the volumes, the anatomical model

was different from the segmented meshes that also captured the arterial valves and

trunks. Simulated radial displacements computed from the mid-diastole position

were locally consistent with those computed from the segmentation. In particular,

the simulation of the dyskinetic RVOT observed in patient 1 was consistent with

the observations (Figure 9.7). The cardiac motion of patient 2 was also satisfyingly

recovered, as displayed by the images in Figure 9.8. In particular, the abnormal

LV translation was captured by the model, suggesting that this motion is a con-

sequence of the RV dilation and weak contractility. The EM model managed to

provide, for these patients, realistic contraction patterns. Capturing the relaxation
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motion was more difficult, in particular for the second patient. Probable reasons are

a coarsely fitted electrical activation pattern (no clinical data was available to finely

adjust electrophysiology) and the limitations of the model, which does not consider

the early active relaxation of the myocardium [Sengupta et al., 2008]. Despite our

simple regurgitation model, the simulated pressure-volume (PV) loops were consis-

tent with measurements in ToF reported in the literature [Redington et al., 1990]

(unfortunately, these data were not available for these patients for comparisons).

Table 9.2: Ejection fractions (EF, in percentage) computed from the dynamic seg-

mentation and the simulations. One can see that the adjusted model managed to

capture patients EF. If pulmonary valve replacement alone did not exhibit changes

in EF, RV volume reduction improved RV and LV EF, suggesting a relationship

between RV and LV functions.

Patient 1 Patient 2

LV EF RV EF LV EF RV EF

Segmentation

61% 41% 42% 40%

Simulation: Preoperative

59% 40% 41% 37%

Simulation: PVR

59% 40% 41% 36%

Simulation: PVR and RV reduction

63% 51% 54% 46%

9.3.3 Personalised Simulation of PVR in ToF Patients

Valve replacement was simulated by stopping the pulmonary regurgitations of the

adjusted heart model. Virtual RV volume reduction was performed as illustrated

in Figure 9.9. The RVOT was resected, manually remodelled and reconstructed in

real-time. The dyskinetic area of patient 1 was entirely removed (Figure 9.5, left

panel). Finally, a postoperative scar was simulated by setting the local conduction

velocity v and maximum contraction σ0 near the surgical junction to 0 m.s−1 and

0 MPa respectively. The frame-rate of the virtual surgery was about 20−25 fps on

a 64b-Linux Core2Duo 2GHz machine with 4GB of RAM and GeForce 8800 Ultra

GPU.

Replacing only the valves reduced the duration of the isovolumetric phases and

slightly improved the end-systolic pressure as showed by the simulated volume curves

and pressure-volume diagrams (Figure 9.6). Yet, no global improvements of the

pump function were obtained, ejection fraction stayed unchanged (Table 9.2). This

relatively surprising result may be due to our simple regurgitation model that alters

the isovolumetric phases only and discard the impact of regurgitations on the other
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Figure 9.6: RV volume curves and pressure-volume loops. Left panels: cavity volume

curves computed from segmentation (green curve) and simulations (black, blue and

red curves). Vertical bars delineate the simulated cardiac phases. The volume

discrepancy between segmentation and simulation in Patient 2 was due to differences

between the segmentation meshes (whole ventricles + arterial roots) and anatomical

meshes (ventricles cut at the base plane). Right panel : simulated pressure-volume

loops of the right ventricle. (See text for details)
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16

-12.4

0

Simulated Radial Displacements Measured Radial Displacements

Dyskinetc RVOT

Figure 9.7: Radial displacements (in mm) at end-systole of patient 1, computed with

respect to the end-diastole position. Positive values denote outward motion. Similar

colour patterns between the simulated motion and segmentation confirm that the

simulated model was able to exhibit realistic motion, in particular the dyskinetic

right ventricle outflow tract (RVOT).

cardiac phases. However, personal discussions with cardiologists confirmed that the

cardiac function is not significantly improved by PVR just after valve implant: the

most important changes in cardiac function come late after the intervention, after

natural remodelling of the heart, which we do not consider here.

PVR with direct RV volume reduction yielded significant improvements in both

RV and LV function for all the patients. RV volume effectively decreased (Figure 9.6,

red curve) and RV postoperative EF improved significantly (Table 9.2). What was

more surprising, is that the simulated LV function also improved although we did not

modified its shape nor its electromechanical parameters. This experiment confirmed

the tight relationship between the two cavities through the inter-ventricular septum.

9.4 Discussion

In this chapter, we have tested the potential of image processing techniques, EM

models and virtual soft-tissue intervention platforms to perform virtual and person-

alised assessment of PVR therapies on ToF patients. The results were promising

and suggested that such tools might be used, after comprehensive validation, by

clinicians to test different PVR therapies.

For this experiment, we used the modular cardiac simulation framework pre-

sented in Chapter 8 as few clinical data were available to personalise more complex

models. Yet, despite the simplifications, the model was able to capture the cardiac

function of all the considered patients, in particular the systolic motion. For these

patients, we found that PVR with direct RV volume reduction would have better

results just after intervention than PVR alone. By removing lesions and scars and

by reducing the RV volume manually, the cardiologist improved the RV function
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Patient 2, Preoperative Simulation

t = 000 ms t = 500ms

t = 100 ms t = 600ms

t = 200 ms t = 700ms

t = 300 ms t = 800ms

t = 400 ms t = 900ms

Figure 9.8: Comparison of personalised simulation (yellow) with MRI and segmen-

tation (red : LV, blue: RV). The model is not guided by the image. One can see that

the model managed to capture the abnormal leftward translation of the LV due to

the dilated and impaired RV.
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Figure 9.9: Virtual RV volume reduction surgery. From left to right: original

mesh, after resection, sewing and final mesh. Colour lines : fibre orientations. Black

area: postoperative scar.

Patient 1 Patient 2

Figure 9.10: Postoperative anatomies with the surgical scar in black.

and, simultaneously, improved the LV function by minimising abnormal septal mo-

tions. However, this procedure is invasive (open-heart surgery), with high risks for

the patient. Furthermore, the long term advantages of this procedure over the PVR

approach is not clear [Therrien et al., 2000]. On the one hand, the effects of PVR

alone are visible few months after implant, when the heart has remodelled to its new

loading condition. On the other hand, heart remodelling can reduce the effects of

the surgical RV volume reduction to accommodate the surgical scar. It is therefore

crucial to model postoperative cardiac remodelling to provide the cardiologist with

a full vision of the effects of PVR treatment on a patient. A possible direction would

consist in using the statistical models presented in this thesis for instance.

This work constitutes one of the first attempts towards personalised simulation

of PVR in ToF. The lack of postoperative data prevented us from validating the

simulated PVR effects and, as a consequence, our cardiac model. Yet, obtained re-

sults were found qualitatively reasonable by cardiologists, which encouraged further

work in that direction.
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Patient 1, Preoperative EM Simulation

RV LV LV RV RV LV LV RV

Figure 9.11: Simulated cardiac function of the Patient 1. Colours encode the active

contraction in MPa (0 MPa in the dyskinetic area). RVOT dyskinetic motion was

recovered by disabling its active contraction. RV contractility was decreased to

capture the pathological RV motion.
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Patient 1, After RV volume reduction

RV LV LV RV RV LV LV RV

Figure 9.12: Simulated cardiac function of Patient 1 after virtual RV volume re-

duction. Colours encode the active contraction in MPa. The dyskinetic area was

removed and a surgical scar was simulated. The scar did not contract (no electrical

conductivity and no contractility). RV volume reduction significantly improved the

function of both ventricles (Table 9.2).
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Patient 2, Preoperative EM Simulation

RV LV LV RV RV LV LV RV

Figure 9.13: Simulated cardiac function of Patient 2. Colours encode the active

contraction in MPa. Observe the abnormal leftward translation of the LV due to

the dilated and impaired RV, in particular the apical septal region.
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Patient 2, After RV volume reduction

RV LV LV RV RV LV LV RV

Figure 9.14: Simulated cardiac function of Patient 2 after virtual RV volume re-

duction. Colours encode the active contraction in MPa. The RV was surgically

remodelled and a surgical scar was simulated. RV volume reduction significantly

improved the function of both ventricles (Table 9.2).
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Several research directions can be explored to improve the framework. First of

all, the approach must be validated a posteriori on postoperative data or in animal

experiments. This is a mandatory step before applying these tools in the clinical

workflow. It has to be noted however that similar experiments on adults with

heart failure showed promising predictive powers of the model [Sermesant et al.,

2009]. Second, the regurgitation model can be improved to take into account the

other compartments and the other cardiac phases. In particular, models like those

presented in [Keener and Sneyd, 1998] could be implemented if the cardiac cycle

is pressure-controlled [Sainte-Marie et al., 2006]. Another alternative is to couple

fluid-dynamics models of the pulmonary flow with our electromechanical model of

the ventricles [Gerbeau et al., 2005; Mihalef et al., 2009; Nordsletten et al., 2009].

Cardiac biomechanics can also be enhanced by using more sophisticated models

of the passive myocardium, like the orthotropic non-linear Costa law for instance

[Costa et al., 2001]. It would be interesting however to quantify the added value of

more detailed models with respect to the increased computational time and number

of parameters. For Costa law for instance, it would be important to evaluate how

sensitive is the simulation to the orientation of the fibre sheets as this data is difficult

to attain in clinics. Another improvement would be to model the active relaxation to

improve the simulation of diastole. This could be done by modifying the mechano-

electrical coupling, like in the original model of [Bestel et al., 2001]. The mechano-

electrical feedback could also be studied as the extreme dilation of the right ventricle

may lead to arrhythmias. Finally, automated parameter estimation methods would

greatly benefit these applications. Identified parameters would then be used as

quantitative features of the cardiac condition for diagnostic support.
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Linking advanced physiological and statistical models of the heart with medical

images can have tremendous repercussions in the clinical management of patients.

In particular, it can provide a new set of tools for a more patient-specific medicine

[Hunter et al., 2003a; Ayache et al., 2006; Bassingthwaighte et al., 2009]. Guided

by the clinical context of repaired tetralogy of Fallot (ToF), we investigated in

this thesis this precept for three specific clinical questions: How can physiological

priors of the cardiac tissue improve an image registration algorithm to estimate

the cardiac deformation from standard anatomical images? How can we model the

cardiac growth observed in a population and identify anatomical patterns related

to a pathology? How can we predict the postoperative outcomes on the cardiac

function of a patient?

Of course, this thesis does not provide the final answers to these questions but

rather constitutes small steps towards the global scope of model-based cardiology. In

the following sections the main contributions of this work are summarised, followed

by some general research perspectives.

10.1 Summary of the Contributions

This thesis was realised in a unique multidisciplinary setting. The work was per-

formed in the Asclepios research group, INRIA, with a strong involvement within

the Health-e-Child European Project1 and motivated by close collaborations with

cardiologists from different countries. As a result, the methodological developments

of this work also had some clinical impacts. Moreover, some of the results were

integrated into the Health-e-Child platform, thus contributing to the global achieve-

ments of the project.

1http://www.health-e-child.org/
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10.1.1 Methodological Contributions

Cardiac Segmentation Pipeline

Although not the main topic of that thesis, we had to develop a multi-purpose

segmentation pipeline to delineate the cardiac geometry from medical images as

this step was mandatory for most of our investigations (Chapter 3, page 3). The

most important contribution in that matter is probably the interactive 3D surface

modeller that enables to delineate the 3D myocardium boundaries. The method

relies on variational implicit functions that are generated on-the-fly through user

interactions. Publicly available as part of the CardioViz3D software, this tool was

presented among other CardioViz functionalities at the VCBM workshop, 2008 [Tou-

ssaint et al., 2008]. Since then, it has been used as initial stage of several studies,

in particular for myocardium tissue tracking [Billet et al., 2008, 2009; Mansi et al.,

2009d, 2010b] and personalised simulations of cardiac electromechanics [Mansi et al.,

2009a; Sermesant et al., 2009; Chabiniok et al., 2009].

It has to be noted that the investigations performed in the framework of Health-e-

Child, like the statistical analyses of the right ventricle shape (Chapter 7, page 133)

and the personalised simulations of the heart in ToF (Chapter 9, page 193), re-

lied on segmentations computed by Siemens Corporate Research using the methods

presented in [Zheng et al., 2008; Yang et al., 2008b].

Estimation of Myocardium Deformation from Clinical Images

To estimate the three-dimensional myocardium strain from dynamic anatomical im-

ages, we proposed to constrain the logDemons registration algorithm [Vercauteren

et al., 2008] with physiological priors about the cardiac tissue (Chapter 4, page 61,

and Chapter 5, page 89). Since the myocardium is an elastic incompressible tis-

sue, we constrained the demons algorithm to provide elastic and volume-preserving

deformations to cope with the lack of textures and the low image quality of clin-

ical routine MRI that hinder image registration. The proposed algorithm, named

iLogDemons, is the result of the following methodological contributions:

• New insights into the ad-hoc Gaussian regularisation of the demons

algorithm were provided. Contrary to [Cahill et al., 2009], who justifies

demons as an approximation of the stationary solution of a diffusion equa-

tion, we explained demons Gaussian regularisation as a Tikhonov regularisa-

tion thanks to the intermediate correspondence field and its coupling to the

transformation to estimate. Our interpretation is well-posed and enables to

seamlessly integrate more enhanced regularisation schemes.

• We integrated an elastic-like regulariser based on isotropic differen-

tial quadratic forms (IDQF) whose solution is exactly the separable

vector filter proposed by [Cachier and Ayache, 2004]. This was achieved

by demonstrating the link between multi-order IDQF and separable Gaussian

vector filters. As a result, no linear system must be solved, the filter is sep-

arable and calculable through Gaussian smoothing, yielding fast elastic-like
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regularisation. In our experiments, the estimated elastic deformations were

smooth at any order.

• The logDemons was constrained to be incompressible by parameter-

ising the diffeomorphic deformations with stationary divergence-free

velocities. Since deformations parameterised by divergence-free velocities are

incompressible, the volume-preserving condition is ensured by constraining the

velocities to be divergence-free using the Lagrangian multiplier method. We

demonstrated that this constraint amounts to projecting the stationary ve-

locity fields onto the space of divergence-free vector fields through Helmholtz

decomposition. As a result, the proposed constraint is strong, it does not re-

quire ad-hoc numerical schemes and it can be imposed in subregions of the

image domain only.

• On synthetic data, our method provided quantitatively more accurate esti-

mations of incompressible deformations. On real data, iLogDemons sig-

nificantly enhanced the accuracy of the cardiac deformations esti-

mated on standard clinical images when compared to tagged MRI

and 2D-strain echocardiography. Elastic regularisation and incompress-

ibility improved the registration in regions with low textures by reorienting

the displacements such that incompressibility is ensured. iLogDemons could

constitute a complementary tool to get hints about the myocardium integrity

when no myocardium displacement imaging modalities are available.

The justification of demons Gaussian regularisation and the incompressibility con-

straint presented in this thesis have been accepted for publication at the MICCAI

2010 conference [Mansi et al., 2010b]. The complete details of the elastic incom-

pressible algorithm have been submitted to an international journal [Mansi et al.,

2010a]. Note that a previous version of that work was presented at the FIMH 2009

conference [Mansi et al., 2009d].

Statistical Analysis of the Heart Remodelling

Having in mind the long-term myocardium damages observed in repaired ToF, we

investigated a statistical approach to quantify and to model the remodelling of the

heart (Chapter 6, page 107, and Chapter 7, page 133). To that end, the non-

parametric framework based on currents proposed by [Durrleman et al., 2009a] was

used. In that framework, the observed shapes were encoded by the deformations

that map an ideal atlas to the patients.

Instead of directly modelling the biological phenomena that are involved in car-

diac remodelling, we observed how the heart shapes varied in a population of patients

with different ages. The idea, commonly used in neuroscience and socio-economics,

consists in relating the shape variations to clinical indices to identify shape fea-

tures relevant to the pathology and to study the anatomical evolutions. Despite the

change of paradigm, from an explicative approach to an explorative one, obtained



216 Chapter 10. Conclusions and Perspectives

results were surprisingly plausible. This approach yielded the following methodolog-

ical contributions:

• We proposed a statistical framework to identify shape patterns rel-

evant to a pathology. The heart shape of a patient was compactly repre-

sented by a shape vector defined on a PCA subspace of deformations. Then,

standard statistical analyses were performed between the PCA shape vectors

and clinical variables to identify the deformation modes, which encoded the

shape variabilities, that were relevant to the pathology.

• We developed an algorithm based on partial least squares (PLS)

and canonical correlation analysis (CCA) to estimate a generative

model of heart growth. The model computes an average heart shape for a

given clinical index, the body surface area (BSA) in this thesis. Contrary to

most studies that use PLS to predict new variables [McIntosh and Lobaugh,

2004; Rao et al., 2008; Yang et al., 2008c], in this thesis PLS was employed

to estimate an optimal subspace of deformations that was also relevant to

BSA. The heart shapes were then represented by a shape vector defined on

the PLS subspace. CCA between BSA and the PLS shape vectors provided

the generative model of heart growth. This strategy enabled us to model

how the shape evolves during growth.

• For the specific case of the statistical modelling of heart growth, we demon-

strated that PLS space decomposition was much more efficient than

the traditional PCA approach, with better generalisation and in-

creased plausibility of the generative heart growth model. Contrary

to PCA, PLS automatically extracts the deformation modes that are also

relevant to the external clinical parameter under study. This may include

deformation modes that could be considered as noise by PCA (i.e. with low

variance).

A first version of that work, without the PLS method, was presented at the MICCAI

2009 conference [Mansi et al., 2009c]. A methodological paper based on Chapter 6

and Chapter 7 is in preparation, with a planned submission in August-September

2010. It has to be noted that the proposed statistical framework could be applied

to other organs or clinical questions, which opens new methodological and clinical

perspectives.

Electromechanical Modelling of the Heart

for Personalised Therapy Simulations

We finally tackled the question whether direct electromechanical models of the heart

could help in planning therapies by predicting their postoperative effects (Chapter 8,

page 155, and Chapter 9, page 193). As modelling the cardiac function is a complex

task, we started from an existing model [Sermesant et al., 2006b], which we improved

to simulate the specificities of repaired ToF. In particular:
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• We developed tools for the automatic generation of anatomical models

of the heart from clinical images. These tools paved the way for patient-

specific simulations as they enabled to build the geometrical models on which

electromechanical PDE’s were solved. These tools are now used in the mod-

elling experiments performed in Asclepios [Billet et al., 2009; Sermesant et al.,

2009].

• We proposed a new boundary contact force to constrain the heart

position in the 3D space, rather than imposing irrealistically strong stiffness

at the heart base. In our experiments, the resulting motion was more

realistic, the base could contract almost freely while the apex did

not move. The stiffness of the base constraint was used exclusively to simulate

the constraints related to the arteries and atria.

• We improved the model of cardiac hemodynamics to adapt it to the specificities

of ToF. In particular, we proposed a simple regurgitation model where

measured regurgitation flows were used as constraints of the model.

Despite the simplicity of the approach, simulated hemodynamics were fairly

plausible. A 3-element Windkessel model was also implemented to

simulate the arterial pressures [Stergiopulos et al., 1999]. To avoid numerical

instabilities, an implicit integration scheme was used.

• We proposed a method based on SOFA framework2 for the person-

alised simulation of pulmonary valve replacement in repaired ToF.

In that framework, the user simulate some steps of a virtual surgery, in real-

time. The virtual surgery in SOFA was performed with Barbara André and

Erik Pernod from Asclepios.

• These contributions, together with simple personalisation strategies, enabled

us to simulate the cardiac function of two patients with repaired tetralogy of

Fallot before and after pulmonary valve replacement.

The simulation pipeline and the results on the first patient with ToF were published

in [Mansi et al., 2009a] and presented at the 3DPH workshop, Zermatt, 2008. The

tools for the automatic generation of anatomical models have also been used in

other studies, in particular [Chinchapatnam et al., 2009; Sermesant et al., 2009]. A

journal paper describing the complete methodology with the new simulation results

is in preparation. The submission is planned in August-September 2010.

10.1.2 Clinical Impacts

The developments presented in this thesis were motivated by clinical questions re-

lated to repaired ToF. As a result, the methodological contributions that were pro-

posed naturally yielded the following clinical use:

2http://www.sofa-framework.org
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• Morphological changes of the right ventricle shape related to the re-

gurgitations in repaired ToF were identified (Section 7.3, page 137). The

exhibited 3D pathological shape patterns could constitute quantitative met-

rics of ToF severity. Our findings were consistent with observations reported

in the literature [Geva, 2006; Sheehan et al., 2007; Bodhey et al., 2008]. To

the best of our knowledge, this study is the first that relates the complete 3D

right ventricle shape to functional abnormalities in repaired ToF.

• A first model of right ventricle growth in repaired ToF estimated

from a population of 32 patients was proposed (Section 7.4, page 141).

The model provided information on the 3D evolution of the right ventricle in

these patients. These results received a great interest among the clinicians,

which are now willing to use these techniques to investigate other questions

related to repaired ToF and other cardiac pathologies. New projects are being

set up to further investigate cardiac remodelling. To the best of our knowledge,

this work shows for the first time the evolution of the 3D right ventricle shape

in repaired ToF.

• Using personalised models of the cardiac function in two ToF patients, we

observed that valve replacement with right ventricle reconstruction

may improve both right and left ventricular functions (Chapter 9,

page 193). Contrary to previous studies [Yang et al., 2008a], we employed here

an active model of cardiac biomechanics with a simple model of regurgitations

in order to investigate the consequences of the surgery on the systolic motion.

Despite the lack of quantitative validation, this result was found clinically

promising by cardiologists, leading to new projects to validate the approach

and the findings.

The personalised simulations of pulmonary valve replacement were presented at the

Congress of the French Society of Paediatrics [Mansi et al., 2008, 2009b]. In 2010, a

special session for in-silico models in Paediatrics was organised by this congress, at

which we were invited to present our recent results about the cardiac modelling and

the statistical analyses of the right ventricle in ToF [Mansi et al., 2010c]. Finally,

the great interest of the clinical community raised by the statistical analyses of ToF

hearts motivates us to submit a clinical paper about these findings. This matter is

currently in discussion with cardiologists.

10.1.3 Software Development

Software Contributions

The interactive 3D surface modeller presented in Chapter 3, page 33 is freely avail-

able as part of the CardioViz3D package3. Other contributions to CardioViz3D

were also provided, among them the automatic estimation of kinematic metrics

about cardiac simulations (strains, displacements, volume variation, etc.).

3http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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Similarly, the model of the right ventricle growth has been released to the Virtual

Physiological Human community and freely accessible4 along with the source codes

of the “currents” framework developed by S. Durrleman and J. Glaunès.

Finally, the iLogDemons was developed from the publicly available ITK source

code of the logDemons [Dru and Vercauteren, 2009]. It is available in the Asclepios

image processing library, MIPS. A public release is planned for Autumn 2010.

Software Integration for the Health-e-Child Project

Most of the works performed during this thesis were integrated in the Health-e-Child

European project. In particular:

• Our results were included in numerous demonstrations of the Health-e-Child

technical achievements. The most relevant are:

– The personalised simulations of pulmonary valve replacement in ToF pa-

tients were part of the Health-e-Child demonstration that won the Ex-

hibit Grand Prize at the European ICT 2008 conference.

– Two presentations were given at the final public conference organised by

the project at Sestri Levante, April 23-24, 20105. In that conference, the

personalised electromechanical models and the statistical analyses in ToF

were presented, with positive and fruitful feedbacks.

– Our work was presented in collaboration with clinicians at the annual

reviews of the project at the European Community.

• CardioViz3D and SOFA6, a soft-tissue intervention platform, were integrated

into the Health-e-Child platform with the help of Nicolas Toussaint and Erik

Pernod, from Asclepios. The tool was released to the clinicians for visualising

personalised simulations and performing virtual surgeries.

• We published a multimedia website7 that describes the various results achieved

by Health-e-Child in terms of disease modelling [Pennec et al., 2007-2009-

2010]. Interactive contents (movies, 3D models, etc.) were used to explain

the principles of advanced modelling of the heart. The website was regularly

updated to disseminate our findings to the community.

10.2 Perspectives

Many short-term research directions have been reported in the conclusion sections

of this manuscript. Those perspectives are mainly focused on the specific questions

tackled by each chapter. In the following, we summarise the most important ones

4http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php
5http://conference.health-e-child.org/
6http://www.sofa-framework.org
7http://www-sop.inria.fr/asclepios/projects/Health-e-Child/DiseaseModels/index.html
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and provide some more general perspectives in the context of the Virtual Physio-

logical Human [Hunter et al., 2003a; Ayache et al., 2006; Bassingthwaighte et al.,

2009].

An Electromechanical Model of the Heart

for Patient-Specific Simulations

The development of an electromechanical model of the heart for personalised sim-

ulation and therapy prediction is a dauntingly complex task. In this thesis, we

studied the feasibility of such an approach in patients with repaired ToF (Chap-

ter 9, page 193). Nonetheless, a lot of work still needs to be done before these

methods are used routinely in the clinics.

A first crucial task to perform is validation. The results reported in this thesis

were found qualitatively plausible by the cardiologists. However, because of the

lack of postoperative data, they could not be validated. Ideally, one would first

personalise the model on preoperative data and then simulate the therapy in-silico,

comparing the simulated outcomes with the real ones a posteriori. This approach,

already employed by [Sermesant et al., 2009] for instance, enables to validate the

model for the specific clinical question that is tackled. Indeed, here the objective is

not to develop the most accurate cardiac model but rather to design a model that

predicts the effects of a given therapy with enough accuracy. This paradigm simpli-

fies the problem as only a subset of phenomena needs to be represented. Of course,

these simplifications must be controlled in order to ascertain the generalisation of

the simulations. “Models should be made as simple as possible, but not simpler”, as

stated by Einstein about scientific theories [Einstein, 1934].

The limitations of our model open new research directions. In the following we

mention few of them.

Myocardium Biomechanics It is now accepted that linear elasticity is not enough

to reliably simulate the cardiac function [Hunter and Smaill, 1988; Costa et al.,

2001; Schmid, 2006]. This limitation was noticeable in our simulations during

diastole, whose calibration was challenging. Ideally one would use non-linear

models [Hunter and Smaill, 1988; Costa et al., 2001]. It would be interesting

though to benchmark the different models in order to quantify their domain of

validity. In some cases, linear elasticity may be enough and thus preferred for

its computational efficiency, and vice versa. Such a benchmarking would en-

able to implement model-adaptive simulators of the beating heart as in [Picin-

bono et al., 2003]. Regions with small displacements would be modelled using

linear transverse isotropic elasticity, whereas regions with large displacements

would be modelled using the non-linear Costa model.

Regurgitation Model Ideally, regurgitations should be simulated and not con-

strained. As regurgitations are pressure-dependent, we should control the

different phases of the cardiac cycle through the ventricular pressures [Sainte-

Marie et al., 2006; Niederer et al., 2009]. We are currently working on this.
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More advanced approaches could be investigated. For instance, fluid-dynamics

models could be coupled with the electromechanical model to simulate the re-

gurgitations and the flow patterns [McQueen and Peskin, 2000; Gerbeau et al.,

2005; Nordsletten et al., 2009]. This would enable to simulate the impact of

the regurgitant blood flow on the myocardium wall stress, suspected to be a

source of pathological myocardium stiffening and remodelling.

Automatic Parameter Estimation In this work the electromechanical model

was personalised manually, through trials and errors. Despite the promising

results, automatic methods would greatly facilitate this task and reduce user

variability. Nonetheless, automatic parameter estimation is extremely chal-

lenging due to the large number of degrees of freedom. Scientists are striving

to develop methods to reach this goal. Preliminary works are showing promis-

ing results in that sense [Moireau et al., 2009; Wong et al., 2010; Billet, 2010].

Several possibilities are available, from variational approaches [Billet, 2010]

to filtering methods [Moireau et al., 2009; Wong et al., 2010] or trust-region

techniques [Chinchapatnam et al., 2008] or even more exhaustive techniques

like genetic algorithms [Khalil et al., 2006]. Yet, all these methods require

that the model is compatible with the available clinical data. To cope with

this issue, coarse-to-fine approaches could be investigated [Relan et al., 2010],

where simplified models would be used as input to more complex models.

Improving the Quantification and the Simulation

of the Cardiac Function Using 3D Myocardium Strain Maps

The initial rationale of the iLogDemons algorithm was to estimate the 3D my-

ocardium strain from standard clinical images to quantify the cardiac motion when

no tagged MRI (tMRI) or related imaging modalities are available. The long-term

objective was to integrate the estimated strain maps into the electromechanical

model of the heart. Of course, we do not claim that iLogDemons method should

substitute advanced medical imaging technologies like tMRI. It rather constitutes a

tool to evaluate the cardiac deformation when such data are not available. The car-

diologist would always have a way to estimate the myocardium strain, which would

open new diagnostic opportunities [Moore et al., 2000]. Regions with abnormal

strains could highlight localised cardiac asynchrony for instance [Helm et al., 2005b]

due to myocardium lesions. In repaired ToF, myocardium strain could constitute a

quantitative feature for pulmonary valve replacement [Eyskens et al., 2010].

In addition to the short-term research perspectives listed in Section 4.6, page 80

and Section 5.4, page 102 (validation of the algorithm, comparison with existing

tools, etc.), we can identify more long-term research directions towards the scope of

model-based medicine. In particular:

Myocardium Strain Atlases After validation, iLogDemons could be used to es-

timate myocardium strain atlases from large databases of cardiac images by

using the method proposed by [Peyrat et al., 2007] on strain tensors. Tech-
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niques based on parallel transport [DoCarmo, 1992; Rao et al., 2002; Qiu

et al., 2008], inter-subject 4D image registration [Peyrat et al., 2009] or tem-

plate comparison [Aljabar et al., 2008] could be investigated to compare the

cardiac function of different patients. Thanks to well-posed frameworks for

statistics on tensor fields [Arsigny et al., 2006b], techniques like those pre-

sented in Chapter 6 could be used to identify changes in myocardium strain

relevant to pathologies and to estimate a model of cardiac function remod-

elling. From a clinical point of view, such atlases would provide new insights

into the pathologies.

Electromechanical Model Personalisation from Strain Estimated 3D strains

could be used to automatically personalise the electromechanical model of the

heart. Nowadays, this task is achieved using the apparent myocardium ve-

locity [Moireau et al., 2008] or the position of its boundaries [Moireau et al.,

2009; Billet, 2010; Wong et al., 2010]. Tissue motion inside the myocardium

is discarded. Using 3D myocardium strain would further constrain the inverse

problem, thus reducing the uncertainty on the model parameters as the full

3D motion would be considered. To that end, approaches based on the min-

imisation of a cost function could be employed. Another alternative would be

to integrate the electromechanical model directly into the iLogDemons algo-

rithm, similar to what [Sundar et al., 2009b] proposed. The cardiac model

would be implemented as a regularisation term, which is now possible thanks

to our justification of demons regularisation.

Strain-Structure Interaction Strain-driven personalisation of electromechanical

models of the heart would enable to investigate the interactions between strain

and structure. One could use for instance the estimated myocardium strain to

study how the fibre architecture remodels [Rijcken et al., 1999; Ubbink et al.,

2006; Kroon et al., 2009]. Investigations in that direction could greatly benefit

from the recent advances in in-vivo cardiac DTI [Wu et al., 2007; Toussaint

et al., 2010]. Similarly, estimated strains could also drive a model of myocardial

growth [Rodriguez et al., 1994; Kroon et al., 2007].

Non-Invasive Electrophysiology Quantification Finally, ilogDemons could be

applied on 3D ultrasound images with high frame-rate to recover the propaga-

tion of the electrical wave from the observed cardiac biomechanics [Sanchez-

Ortiz et al., 2005]. This work would result in image-based assessment of patient

electrophysiology, which could be employed to further personalise the elec-

tromechanical model of the heart. We could also study the mechano-electrical

coupling in patients to whom invasive measurements cannot be performed.

Investigated by Adityo Prakosa, this strategy already provided promising re-

sults.
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Towards a “Growing” Model of the Heart

The identification and modelling of the right ventricle remodelling in repaired ToF

received a great enthusiasm among the clinicians. Our approach constitutes another

way to study the 3D alterations of the cardiac anatomy due to a pathology. Of

course, a more thorough validation is required to confirm these results, using for

instance leave-one-out cross-validation. We refer the reader to Section 7.5, page 150

for specific comments on that matter. Still, this work opens several research direc-

tions, both from methodological and clinical point of views.

Growth Model of the Beating Heart From a methodological point of view, it

would be interesting to extend the analysis to the 4D cardiac motion to build

a growth model of the beating heart. The approach would be different from

the method proposed by [Durrleman et al., 2009b] since, contrary to follow-up

data, the cardiac motion is periodical, with well-defined temporal landmarks

and driven by controlled biomechanical phenomena. A first direction would

be to analyse the heart shape and the myocardium deformation jointly, using

methods like in [Aljabar et al., 2008]. A more challenging approach would be

to build a complete 4D template of the heart. The idea is to create an atlas

of the heart shape from the observations. Then, the cardiac deformations of

each patient would be mapped to the atlas space using parallel transport in

order to create an average beating heart [DoCarmo, 1992; Rao et al., 2002].

Cross-sectional analyses would finally be applied to get a 5D model of the

long-term remodelling of the beating heart.

Predicting Patient Heart Shape How can we apply the average statistical model

of growth to the patient anatomy? In this thesis, we only studied the average

growth of the right ventricle observed in a population. Yet, the true clinical

question that motivated our work is to predict the heart shape of a specific

patient. The answer to this question is far from being straightforward. First,

one needs to map the growth model to the patient geometry. Again, this could

be achieved using parallel transport but this would probably not be enough.

Indeed, the pathological time course can vary tremendously from one patient

to another, variability that may not be captured by cross-sectional analyses

which tend to “smooth” the temporal observations. A solution would consist

in using longitudinal data [Thompson et al., 2000; Aljabar et al., 2008; Durrle-

man et al., 2009b]. On the one hand, longitudinal data would make the model

of heart remodelling more accurate. On the other hand, we could use the

previous exams of a patient to “deform” the average growth model such that

it matches the pathology evolution of that patient. In that way, acceleration

or deceleration in the evolution of the pathology would be better captured.

Left-Right Ventricle Interaction in ToF Other key clinical questions related

to tetralogy of Fallot and other pathologies could be investigated using the

same approach. For instance, left and right ventricles could be analysed simul-

taneously to study the inter-ventricular interactions [Zervan et al., 2009]. Pre-
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liminary results not reported in this manuscript showed that the left ventric-

ular shape also varies over time, with visible flattening of the inter-ventricular

septum as the right ventricle dilates. More thorough work is required to con-

firm these results but full-heart analyses would without any doubt provide

more complete insights into the pathology.

Long-Term Effects of a Therapy after Remodelling A second interesting study

would be to apply the proposed strategy to investigate the long-term effects of

therapies on the cardiac anatomy. For instance, one could study the effects of

the initial repair of ToF on the right ventricle shape and function. This would

help in identifying the main factors of right ventricle degeneration, which could

then be minimised. Is the ventricular patch related to the RVOT aneurysm?

Similarly, the method could be applied to study the postoperative remodelling

due to pulmonary valve replacement or cardiac resynchronisation.

A Statistical Physiological Model of the Heart

Finally, an appealing research direction is to investigate how statistical models of

the heart growth could guide direct models of cardiac electromechanics.

A first idea would be to use the statistical model to identify the changes in

the heart shape related to external parameters of interest and to derive

constitutive laws about the cardiac remodelling due to those parame-

ters. Those laws would reflect the visible changes of the cardiac shape and function

identified by the statistics. Such an approach could help in enhancing the models

of cardiac remodelling already proposed in the literature [Rodriguez et al., 1994;

Kroon et al., 2007]. An alternative direction would consist in using a statistical

model of heart remodelling to validate direct biomechanical models of growth as

they represent the average remodelling observed in a population. At a longer term,

models of cardiac remodelling could be used to predict the cardiac remodelling in

patients due to a pathology or after therapy.

In parallel, statistical models of the heart shape could be directly inte-

grated in the electromechanical model to study the variations of the sim-

ulated cardiac functions when the anatomy varies. Stochastic partial differ-

ential equations and polynomial chaos theory would constitute a suitable framework

to mix the two approaches (see [Jakeman and Roberts, 2009] and references therein).

Stochastic PDE are PDE with additional random variables. In that framework, the

statistical anatomical model could be seen as the random Gaussian variable of the

stochastic model. Simulations would automatically consider the random geometry

and provide a set of solutions that depends on the stochastic anatomy. Such an

analysis would provide precious insights into the sensitivity of the model parame-

ters but also help in personalising the simulations to the patient cardiac function

by choosing, among the results, the simulation that best matches the patient heart

function.



10.2. Perspectives 225

Future

We conclude this manuscript with a long-term, blue-sky scenario. In the future,

electromechanical and statistical models of the heart should play an important role

in the clinical management of patients. As illustrated in Figure 10.1, electromechan-

ical models of the heart would be able to integrate heterogenous clinical data in a

common framework, providing a global view of patient pathology. One would query

them to get additional information for a more personalised cardiology. For instance,

a cardiologist would input all the clinical data he acquired for a given patient into

the model to get a virtual, in-silico, representation of the cardiac function of that

patient. The diagnosis would be improved as the personalised virtual heart would be

able to return quantitative features of the cardiac integrity that cannot be measured

in clinics. The virtual heart would also provide hints on patient prognosis thanks to

statistical or direct models of cardiac remodelling. The cardiologist would then have

quantitative predictors for therapy planning. Finally, all the possible therapeutical

strategies would be tested in-silico to choose the optimal option for the patient.

The combination of medical imaging, statistical analysis and biophysical modelling

promise powerful tools for a personalised computer-aided medicine.
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Figure 10.1: Towards a virtual physiological heart for patient-specific simulations.

10.2.1 Publications

The work realised during this thesis led to the following publications.

Article in Journals or Book Chapters

Published articles and book chapters:

1. [Mansi et al., 2009a] T. Mansi, B. André, M. Lynch, M. Sermesant, H. Delingette,

Y. Boudjemline and N. Ayache. Virtual Pulmonary Valve Replacement In-



226 Chapter 10. Conclusions and Perspectives

terventions with a Personalised Cardiac Electromechanical Model. In Recent

Advances in the 3D Physiological Human, volume 5528 of Lecture Notes in

Computer Science, pages 201–210. Springer, 2009.

2. [Sermesant et al., 2008] M. Sermesant, J.M. Peyrat, P. Chinchapatnam, F. Bil-

let, T. Mansi, K. Rhode, H. Delingette, R. Razavi and N. Ayache. Toward

patient-specific myocardial models of the heart. Heart Failure Clinics, vol. 4,

no. 3, pages 289–301, 2008.

Submitted articles:

1. [Mansi et al., 2010a] T. Mansi, X. Pennec, M. Sermesant, H. Delingette

et N. Ayache. iLogDemons: A Demons-Based Registration Algorithm for

Tracking Incompressible Elastic Biological Tissues. International Journal of

Computer Vision. Submitted.

Articles in preparation:

1. T. Mansi et al. A Generative Statistical Analysis of the Heart Shape for

Prediction of Remodelling and Therapy Planning. Planned submission: Au-

gust/September 2010.

2. T. Mansi et al. An Image-Based Framework for Personalised Simulations of

Cardiac Therapies: Application to Pulmonary Valve Replacement. Planned

submission: August/September 2010.

A clinical paper about the statistical analyses of the right ventricle shape in repaired

ToF is in discussion with cardiologists.

International Conference Articles

(Full, peer-reviewed and archived articles)

1. [Mansi et al., 2010b] T. Mansi, X. Pennec, M. Sermesant, H. Delingette et

N. Ayache. LogDemons Revisited: Consistent Regularisation and Incompress-

ibility Constraint for Soft Tissue Tracking in Medical Images. In Medical

Image Computing and Computer Assisted Intervention (MICCAI), Lecture

Notes in Computer Science. Springer, 2010. In press.

2. [Mansi et al., 2009c] T. Mansi, S. Durrleman, B. Bernhardt, M. Sermesant,

H. Delingette, I. Voigt, P. Lurz, A. M Taylor, J. Blanc, Y. Boudjemline, X.

Pennec and N. Ayache. A Statistical Model of Right Ventricle in Tetralogy of

Fallot for Prediction of Remodelling and Therapy Planning. In Medical Image

Computing and Computer Assisted Intervention (MICCAI), volume 5761 of

Lecture Notes in Computer Science, pages 214–221, London, UK, September

2009. Springer.

3. [Mansi et al., 2009d] T. Mansi, J.M. Peyrat, M. Sermesant, H. Delingette, J.

Blanc, Y. Boudjemline and N. Ayache. Physically-Constrained Diffeomorphic



10.2. Perspectives 227

Demons for the Estimation of 3D Myocardium Strain from Cine-MRI. In

Proceedings of Functional Imaging and Modeling of the Heart 2009 (FIMH’09),

volume 5528 of Lecture Notes in Computer Science, pages 201–210, 3-5 June

2009. Springer.

4. [Pop et al., 2009] M. Pop, M. Sermesant, T. Mansi, E. Crystal, J. Detsky,

Y. Yang, P. Fefer, E.R. McVeigh, A. Dick, N. Ayache Characterization of Post-

infarct Scars in a Porcine Model – A Combined Experimental and Theoretical

Study. In Proceedings of Functional Imaging and Modeling of the Heart 2009

(FIMH’09), volume 5528 of Lecture Notes in Computer Science, page 10, 3-5

June 2009. Springer.

5. [Sermesant et al., 2009] M. Sermesant, F. Billet, R. Chabiniok, T. Mansi, P.

Chinchapatnam, P. Moireau, J.M. Peyrat, K. Rhode, M. Ginks, P. Lambiase,

S. Arridge, H. Delingette, M. Sorine, A. Rinaldi, D. Chapelle, R. Razavi and N.

Ayache. Personalised Electromechanical Model of the Heart for the Prediction

of the Acute Effects of Cardiac Resynchronisation Therapy. In Proceedings

of Functional Imaging and Modeling of the Heart 2009 (FIMH’09), volume

5528 of Lecture Notes in Computer Science, pages 239–248, 3-5 June 2009.

Springer.

6. [Chinchapatnam et al., 2009] P. Chinchapatnam, K. Rhode, M. Ginks, T. Mansi,

J.M. Peyrat, P. Lambiase, A. Rinaldi, R. Razavi, S. Arridge et M. Sermesant.

Estimation of Volumetric Myocardial Apparent Conductivity from Endocardial

Electro-Anatomical Mapping. In Proceedings of 31st Annual International

IEEE on Engineering in Medicine and Biology Society Conference (EMBS),

page 2907, 2009.

International Conference Articles

(Full and peer-reviewed articles)

1. [Lamecker et al., 2009] H. Lamecker, T. Mansi, J. Relan, F. Billet, M. Ser-

mesant, N. Ayache and H. Delingette. Adaptive Tetrahedral Meshing for

Personalized Cardiac Simulations. In MICCAI Workshop on Cardiovascular

Interventional Imaging and Biophysical Modelling (CI2BM09), pages 149–158,

London United Kingdom, 2009.

2. [Toussaint et al., 2008] N. Toussaint, T. Mansi, H. Delingette, N. Ayache

and M. Sermesant. An Integrated Platform for Dynamic Cardiac Simulation

and Image Processing: Application to Personalised Tetralogy of Fallot Simula-

tion. In Proc. Eurographics Workshop on Visual Computing for Biomedicine

(VCBM), Delft, The Netherlands, 2008.

Articles and Abstracts in French Clinical Journals

1. [Mansi et al., 2010c] T. Mansi, M. Sermesant, H. Delingette, X. Pennec, N.

Ayache et Boudjemline Y. In-Silico Models for the Simulation and Prediction



228 Chapter 10. Conclusions and Perspectives

of the Cardiac Function. Archives de Pédiatrie, vol. 17, no. 6, pages 611-612,

Juin 2010.

2. [Mansi et al., 2009b] T. Mansi, B. André, M. Sermesant, H. Delingette, N.

Ayache and Y. Boudjemline. Simulation personnalisée de replacements valvu-

laires pulmonaires grâce à l’utilisation d’un modèle mathématique du coeur.

Archives de Pédiatrie - Congrès des Sociétés Françaises Médico-chirurgicales

Pédiatriques, June 2009.

3. [Mansi et al., 2008] T. Mansi, M. Sermesant, M. Huber, A. Taylor, G.

Pongiglione, X. Pennec and Y. Boudjemline. Modélisation électromécanique

du coeur et analyse d’images. Archives de Pédiatrie - Congrès des Sociétés

Françaises Médico-chirurgicales Pédiatriques, February 2008. Archives de Pé-

diatrie 15(5):1032 – Special award for best presentation.

Others

1. [Pennec et al., 2007-2009-2010] X. Pennec, C. Basso, Y. Boudjemline, S. Dur-

rleman, E. Konukoglu, T. Mansi, G. Pongiglione, M. Santoro, M. Sermesant,

B. Stos, N. Toussaint and G. Trocchio. Third generation disease models: Im-

age analysis tools, pediatric heart diseases, inflammatory diseases and brain

tumors. Deliverables D11.2, D11.3 and D11.48, European project Health-e-

Child (IST-2004-027749), June 2007-2009-2010.

Invited Talks

1. In-Silico Models for the Simulation and Prediction of the Cardiac Function

in Patients, Congress of French Paediatrics Society, Round-table conference

about “In-Silico Models in Pediatrics”, Paris, France, 16 June, 2010.

2. Personalised Simulation of Pulmonary Valve Replacement in Repaired Tetral-

ogy of Fallot Patients, Necker-Enfants Malades, Hôpitaux de Paris, Paris,

France, 15 October 2008. Hosted by: Dr. Younes Boudjemline, M.D.

8http://www-sop.inria.fr/asclepios/projects/Health-e-Child/DiseaseModels



Part VI

Appendices





Appendix A

On the Image Noise Parameter of

the LogDemons Algorithm

Contents

A.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.2.1 Current Formulation of Demons Optimisation . . . . . . . . . . 231

A.2.2 On the Importance of the Noise Parameter σ2

i
. . . . . . . . . . 232

A.2.3 Levenberg Demons Optimisation . . . . . . . . . . . . . . . . . 233

A.3 Preliminary Experiments and Discussions . . . . . . . . . . . 234

A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.1 Motivation

In the logDemons algorithm (Chapter 4), the level of noise in the images, σ2
i , is

estimated locally, voxel by voxel, to control the amplitude of the update velocity.

Although this definition implicitly ensures the numerical stability of the algorithm

(it constraints the gradient to be finite), it is mathematically inconsistent as σ2
i is

spatially-dependent and varies with the demons iterations. Region-wise estimation

of the image noise should be preferred but this may yield numerical instabilities as

the amplitude of the update velocity and its gradient are not bounded anymore. In

this appendix we propose a formulation that enables one to estimate the noise in

the images in a region-wise manner to have a theoretically grounded optimisation

method, without hampering the stability and the performances of the algorithm.

The idea is to modify the Gauss-Newton scheme proposed by [Vercauteren et al.,

2008, 2009] (Chapter 4), by a Levenberg strategy that always ensures bounded

update velocity.

A.2 Methods

A.2.1 Current Formulation of Demons Optimisation

The logDemons algorithm alternately minimises the energy functional:

E(vc,v) =
1

σ2
i

‖R− T ◦ exp(vc)‖2L2
+

1

σ2
x

‖ log(exp(−v) ◦ exp(vc))‖2L2
+

1

σ2
d

R(v)
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In the previous equation, R is the fixed reference image, T is the moving template

image, v and vc are the stationary velocity fields that parameterise the deformation

field φ = exp(v) and the correspondence field φc = exp(vc) respectively. R(v) is

the regulariser. σ2
i accounts for the noise in the images. The question we address is

how to estimate σ2
i from the images R and T ◦ φ in a consistent way.

We focus on the optimisation step, which minimises E(vc,v) with respect to

vc to calculate the optimal correspondence field φc. This is achieved using the

diffeomorphic update rule φc = φ ◦ exp(δv), where φ is the current estimate of the

transformation and δv is the optimal update velocity to find (see Chapter 4). With

this rule, the correspondence energy writes:

Ecorr(δv) =
1

σ2
i

‖R− T ◦ φ ◦ exp(δv)‖2L2
+

1

σ2
x

‖δv‖2L2
(A.1)

A closed form minimiser of this energy is found with a Gauss-Newton approach.

The first term is linearised using the ESM scheme proposed in [Vercauteren et al.,

2009]. Let J(x) be the symmetric gradient at the spatial position x defined by

J(x) = (∇R(x) +∇(T ◦ φ)(x))/2. The optimal condition ∂Ecorr = 0 writes:

(

JJT +
σ2

i

σ2
x

Id

)

δv = −(R− T ◦ φ)J (A.2)

which gives the optimal Gauss-Newton update:

δv(x) = − R(x)− T ◦ φ(x)

‖J(x)‖2 + σ2
i /σ2

x

J(x) (A.3)

In [Cachier et al., 1999; Vercauteren et al., 2009], the authors estimate σ2
i locally,

at every voxel of the images:

σ2
i (x) = |R(x)− T ◦ φ(x)|2 (A.4)

A.2.2 On the Importance of the Noise Parameter σ
2
i

With the local noise estimator (Eq. A.4), it can be demonstrated that the norm of

the Gauss-Newton update is always upper bounded by σx/2 [Cachier et al., 1999;

Vercauteren et al., 2009]. This guarantees the stability of the algorithm. However, σ2
i

depends on the spatial position x and on the current estimate of the transformation

φ. Therefore, it must be considered when calculating the functional derivative of

the correspondence energy (Eq. A.1). Moreover, the estimated noise is sensitive to

local outliers (for instance spikes) as it does not consider neighbouring information.

A more regional estimator of the image noise is thus needed.

Lets consider the following region-wise noise estimator:

σ2
i (x) = [(Gσn ⋆ |R− T ◦ φ|) (x)]2 (A.5)

In the previous equation, Gσn is a Gaussian kernel with standard deviation σn,

which defines the region around the spatial position x where the noise is estimated.
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This definition is more grounded from an estimation point of view. When σn is

sufficiently high, σ2
i does not depend on x and φ at the first order, locally. The

Gauss-Newton update (Eq. A.3) is valid at the first order. However, its amplitude

is not bounded anymore. Lets α = |R− T ◦ φ|. We have:

‖δv(x)‖ =
α(x) ‖J(x)‖

‖J(x)‖2 + (Gσn ⋆ α)2/σ2
x

which is upper bounded by (according to the inequality a2 + b2 > 2ab)

‖δv(x)‖ ≤ σx

2

α(x)

(Gσn ⋆ α)(x)

In this equation we can see that if the noise is estimated locally using Eq. A.4, the

update velocity is upper bounded by ‖δv(x)‖ < σx/2. This is not the case anymore

with the proposed regional noise. For instance, when the algorithm is close to

convergence, R and T ◦ φ are similar and ‖J(x)‖ → 0. If the images present white

noise (independent at each voxel), we can have α(x) 6= 0 at x but (Gσn ⋆ α)(x)

very close to 0. α(x)/(Gσn ⋆ α)(x) thus tends to +∞. This behaviour seriously

hampers the stability of the algorithm. Similar problems occur when the image

similarity metric is changed from the Sum of Squared Differences (SSD) to the Sum

of Absolute Differences (SAD) or multimodal ones like mutual information.

A.2.3 Levenberg Demons Optimisation

As a solution to the above-mentioned stability issue we propose a Levenberg ap-

proach. The idea is to damp the optimal condition (Eq. A.2) such that the numeri-

cal stability of the algorithm is ensured everywhere in the images, at any iteration.

A similar approach was already employed in [Yeo et al., 2009] to ensure bounded

Gauss-Newton updates calculated on a non-regular grid. The Levenberg modifica-

tion of the optimal condition writes:
(

JJT +
σ2

i

σ2
x

Id + λId

)

δv = −(R− T ◦ φ)J (A.6)

where λ is a non-negative damping factor. We choose λ such that the update velocity

δv is always bounded. We have:

δv(x) = − R(x)− T ◦ φ(x)

‖J(x)‖2 + σ2
i /σ2

x + λ
J(x) (A.7)

whose norm is ‖δv(x)‖ = α(x) ‖J(x)‖/(‖J(x)‖2 + σ2
i /σ2

x + λ). By applying the

same technique as in the previous section, an upper bound of ‖δv(x)‖ is found:

‖δv(x)‖ ≤ α

2
√

σ2
i /σ2

x + λ
(A.8)

The norm of the Gauss-Newton update is upper bounded by σx/2 if the damping

factor verifies:
α2 − σ2

i

σ2
x

< λ and 0 < λ (A.9)
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This condition is valid for any estimator of the image noise σ2
i . As λ must be

positive, when α2 ≤ σ2
i , we set λ = 0.

Optimal convergence speed is achieved when the norm of the Gauss-Newton

update is maximal, under the constraint of numerical stability. We thus define λ

equal to the lower bound given by Eq. A.9 and the stabilised Gauss-Newton update

becomes:

δv(x) = − R(x)− T ◦ φ(x)

‖J(x)‖2 + max(σ2
i , α

2)/σ2
x

J(x) (A.10)

When the local noise estimator is used (Eq. A.4), σ2
i = α2, we retrieve the

original update velocity.

A.3 Preliminary Experiments and Discussions

The proposed Levenberg stabilisation was tested on synthetic data with known

ground truth. A 3D isotropic Steady-State Free Precession (SSFP) MR image of

the heart (53× 60× 60 slices, 1 mm3 isotropic voxel spacing), henceforth called test

image, was warped by a random diffeomorphic deformation field computed from a

random velocity field. The test image and the warped image were then altered with

a slight Gaussian noise (Figure A.1).

Test image Deformation Field Warped Image

Figure A.1: Synthetic 3D image warped with a random diffeomorphic deformation

field (represented by a warped grid).

The test image was registered to the warped image using the original local noise

estimator, σi(x) = |R(x) − T ◦ φ(x)|2, and a global estimator of the image noise

defined as the average over the image domain of the squared intensity differences,

σi(x) = mean(|R(x)− T ◦ φ(x)|2), which is thus constant. The global estimator is

tested with and without the proposed Levenberg stabilisation.

Registration results are reported in Figure A.2. As one can see, the non-stabilised

global noise estimator diverges after some iterations, when the images are almost

registered (low MSE). This is exactly the situation described in Section A.2.2. As

the registration evolves, the two images become similar. The global noise and the
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amplitude of the gradient J thus tend to 0, which may yield unbounded update

velocity at the grey level spikes. Figure A.3, mid panel, illustrates the resulting de-

formation. In this example, strong, non diffeomorphic deformations appeared at the

image boundaries. The proposed stabilisation approach solves this issue. Numerical

stability is guaranteed. Obtained registration is very similar to the reference result

obtained with the local noise estimator. Non-reported experiments with a regional

image noise estimator resulted in similar conclusions.

MSE L2-distance to true field
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Figure A.2: Without Levenberg-like stabilisation, using a global estimator of image

noise yields numerical instabilities after few iterations (deviation from the optimal

solution, negative Jacobian determinants). The proposed stabilisation prevents the

instabilities and ensures similar performances as the local noise estimator.

A.4 Conclusions

To conclude, by decoupling the noise estimation problem from the algorithm stabil-

isation with bounded updates, the Levenberg method that we propose is providing

a generic and theoretically fully grounded optimisation method without any loss of

performances. This opens new possibilities for the generalisation of the demons.

Other more advanced noise estimators could be used to cope with intensity non-
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Local Estimator Global Estimator Stabilised Global Estimator

Figure A.3: Estimated deformation fields. The proposed stabilisation method pre-

vents the strong deformations that appear, in this example, at the image boundaries.

uniformity artefacts. Similarly, different image similarity metrics can now be used

as we can bound the updates whatever criterion the forces are coming from, without

having to tweak with a theoretically unjustified point-wise noise estimation.
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