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A Probabilistic Numerical Method for Fully Non-linear Parabolic
Partial Differential Equations

Abstract en Francgais: Cet these a deux patrtie. La partie premiere introduit
une methode probabiliste numerique pour les EDPs parabolique et completement
non-linaire et puis on consider sa properietes asymptotiques (convergence et taux
de convergence) et aussi I'analyse de l'erreur due & "approximation de l'espérance
conditionnelle par une méthode de type Monte Carlo. Les EDPs complétement non-
linaires apparaissent dans plusieurs applications en ingénierie, economie et finance.
Citons par example le probleme de propagation de front par courbure moyenne, ou
le probléme de selection de portefeuille. Une classe importante ’EDP complete-
ment non-linéaire est constituée par les équations de HJB découlant du controle
optimal stochastique. Dans la plupart des cas, il n’existe pas de solution dans le
sense classique. Par conséquent, la notion de solution de viscosité est utilisé pour
les EDP compeletement non-linéaires. En raison de manque de de solution explicite
dans de nombreuses applications, les schémas d’approximation sont devenus trés
importants. Pour montrer la convergence, la méthode utilisée dans cette thése a
été introduite par Barles et Souganidis. Leurs travaux fournissent le résultat de
convergence vers des solutions de viscosité pour une solution approchée obtenue
a partir cohérente, monotone et stable régime. Afin d’obtenir le taux de conver-
gence, nous avons supposé que le EDP a non-linéarité concave de type HJB. En
d’autres termes, la non-linéarité est une borne inférieure des opérateurs linéaires.
La thése a utilisé la méthode de Krylov des coefficients secoué et d’approximation
par un systéme d’équations HJB couplées pour obtenir des bornes sur les taux de
convergence. La mise en seuvre du schémas requiert d’introduire une approximation
des espérances conditionnelles. Pour une classe d’estimateurs, nous avons obtenu
une borne inférieure sur le nombre de chemins échantillon qui préserve la vitesse
de convergence obtenue avant. La généralisation de la méthode & des équations
intégro-différentielles est simple et on peut utiliser les mémes agruments que dans le
cas local pour obtenir la convergence et le taux de convergence. Notons cependant
que le cas non local introduit la difficulté supplémentaire d’approximation des termes
non locaux. La premiére partie sera terminée est illustrée par quelques expériences
numériques. La méthode est utilisée pour résoudre le probléme géométrique des
flux de courbure moyenne, le probléme de la sélection sur un portefeuille d’actifs
avec volatilité stochastique dans le modéle de Heston, et le probléme de sélection
de portefeuille de deux actifs & la fois avec une volatilité stochastique, on satisfait
modéle de Heston et 'autre CEV modéle.

La deuxiéme partie de la thése traite de la politique de production optimale dans
le marché des allocations des permis d’émission de carbone. Le marché des per-
mis d’émissions de carbone est une approche de marché pour mettre en suvre le
protocole de Kyoto. Nous avons calculé la production optimale dans 4 cas: quand
il n’y a pas un tel marché, quand il y a un tel marché, mais sans grand produc-
teur de carbone, quand il y a un gros producteur qui n’est pas teneur de marché,
et quand il existe un marché avec un grande producteur. Nous avons montré que
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dans les premiers, la production optimale est toujours diminuée. Cependant, dans
le dernier cas, nous avons montré que le gros producteur peut bénéficier du marché
en changeant la prime de risque de 'allocation de carbone en raison de sa produc-
tion d’appoint. Cette partie est illustrée par quelques expériences numériques qui
montre des cas que le grand producteur peut bénéficier d'une production d’appoint.




Abstract in English: This thesis is divided into two parts. First part in-
troduces a probabilistic numerical method for fully non—linear parabolic PDEsand
consider its asymptotic properties (convergence and rate of convergence) and the
error analysis due to approximation of conditional expectation. Fully non-linear
PDEs appear in many applications in engineering, economics and finance (see e.g.
problem of portfolio selection and mean curvature flow). An important class of
Fully non-linear PDEs is the HJB equations arising in stochastic optimal control.
In most cases, there exists no solution in classical sense. Therefore, the notion of
viscosity solution is used for the Fully non-linear PDEs. Due to the lack of closed
form solution in many applications, the approximation schemes have become ap-
pealing. Then one needs to guarantee the convergence of the approximate solution
to the viscosity solution of Fully non-linear PDEs. The method hired in this thesis
to obtain the convergence result, is introduced by Barles and Souganidis in citebar-
lessouganidis. Their work provides the convergence result to viscosity solutions for
any approximate solution obtained from consistent, monotone and stable scheme.
In order to achieve rate of convergence, we supposed that the PDE has a concave
non-linearity of HJB type. In other words, the non-linearity is an infimum of linear
operators. The thesis used the Krylov method of shaking coefficients and switching
system approximation of HJB equations to obtain convergence rates from above and
below. The implementation of the scheme needs the conditional expectations inside
the method to be replaced by an appropriate estimator. For a class of estimators, we
obtained a lower bound on the number of sample paths which preserves the rate of
convergence obtained before. The generalization of the method to non-local PDEs
is straight forward and one can use the same agruments as the local case to achieve
the convergence and the rate of convergence. There is one exception in non-local
case which differs from local case i.e. the Monte Carlo approximation of intergal
(non-local) term. This is done by using suitable jump—diffusion process. The first
part will be ended by some numerical experiments. The method is used to solve
the geometric problem of mean curvature flow, the problem of portfolio selection on
one asset with stochastic volatility in Heston model, and the problem of portfolio
selection on two assets both with stochastic volatility, one satisfies Heston model
and the other CEV model.

The second part of the thesis deals with the optimal production policy under the
carbon emission allowance market. The carbon emission allowance market is a mar-
ket approach to implement Kyoto protocol. We calculated the optimal production
in 3 cases: when there is such a market but without any large carbon producer,
when there is a large producer who is not market maker, and when there is a large
producer market maker. We showed that in second cases, the optimal production
is always less than the first case and in the third case it is even less than the sec-
ond case. On the other hand, we showed that the market maker (if there exist
any) can benefit from the market by changing the risk premium of the carbon al-
lowance due to her extra production. The model we used here for the price of carbon
allowance is a BSDE. Then we introduce a stochastic optimization problem. The
carbon producer wants to maximaze her utility from her wealth. Her wealth consists
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of two parts: a self-financing portfolio over the carbon emission allowance papers
and the benefit from her production. As expected, the optimal production does
not depend on the utility. One could pass to a new optimization problem which
gives the optimal production. We choose to solve the stochastic optimization prob-
lem by the means of HJB equations. We obtained the verification and uniqueness
result for the HJB equation. This part is closed by some numerical experiments
which shows cases which the large producer can benefit from extra production.
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Notations

For scalars a,b € R, a A b := min{a, b}, a V b := max{a, b}, and a™ := max{a,0}.
R := R?\ {0}.

C4 is the collection of all bounded real functions on R%,

M(n, d) is the collection of all n x d matrices with real entries.

The collection of all symmetric matrices of size d is denoted by Sy, and its subset
of nonnegative symmetric matrices is denoted by S;. By “<” we denote the partial
order induced by the positive cone Sj.

For a matrix A € M(n,d), A" is the transpose of A. For A, B € M(n,d), A- B :=
Tr[ATB]. In particular, for d = 1, A and B are vectors of R” and A - B reduces to
the Euclidean scalar product.

A~ is the pseudo—inverse of the matrix A.

For a suitably smooth function ¢ on Q7 := (0,T] x R, define

t,x) — ot o’
oo = sup lp(ta)] and ol i= lploo + sup LD =@
(t,x)eQr QrTxQT |:E — CL‘/| + |t — t’|§

Finally, the L”—norm of a r.v. R is denoted by ||R||, := (E[|R|P])MP.



CHAPTER 1

Introduction

In the areas of engineering and mathematics; including finance, the Monte Carlo
methods are always referred to as the computational methods based on the random
sampling. In the approximation of the solutions of PDEs, the Monte Carlo methods
play an important role especially when the dimension of problem is large. The
finite difference and finite element methods usually are not implementable in large
dimensions. However, the Monte Carlo methods are generally less sensitive with
respect to dimension and could provide implementable schemes.

The Monte Carlo methods for PDEs starts by the famous Feynman—Kac formula
for linear PDEs. The extension of Feynman—Kac to the non-linear PDEs can not
easily be done by a simple conditional expectation. However, it could be extended
for the semi-linear parabolic equations through Backward Stochastic Differential
equations (BSDEs). For more details see [51], [52] and [53]. Semi-linear parabolic
equations have the general form

—LXv(t,z) — F(t,z,v(t,x),c ' Dv(t,z)) = 0 on [0,T) x R?
o(T,) = g(-) on R,

where £LX¢ = %—f +u- Do+ %a - D2y is the infinitesimal generator of a diffusion
process X and a := oo'. The Monte Carlo approximation of the solution of the
semi-linear equation is given by a decoupled system which consists of the stochastic
differential equation (SDE) and a backward stochastic differential equation (BSDE):

dY, = F(t, X, Yy, Zo)dt + Z,dW,
Yr = g(Xrp).

More precisely, assuming sufficient regularity for the solution of PDE, one has the
correspondence v(t, X;) = Y; and Dv(t, X;) = Z;. The numerical methods for the
BSDEs are initially developed by the use of the classical solutions of semi-linear
parabolic PDEs in [49]. In that work, the authors imposed a restrictive regularity
condition over coefficients which implies the existence of classical solutions for the
semi-linear PDEs . Moreover, this method depends on the approximation of the
solution of PDEs which appears to be difficult in high dimensions.

The theory of BSDEs provides an extension of Feynmen—Kac to the semi-linear
case. The purely Monte Carlo method for BSDEs relies on the discretization of
the forward diffusion process X and then to find a solution for discretized BSDE
backward in time. The advantage of this approach is that it could also be used to



2 Chapter 1. Introduction

approximate the solution of semi-linear parabolic PDEs. See for instance Chevance
[26], El Karoui, Peng and Quenez [32], Bally and Pagés [2|, Bouchard and Touzi
[18] and Zhang [59]. In particular, the latter papers provide the convergence of the
“natural” discrete-time approximation of the value function and its partial space
gradient with the same L? error of order v/h, where h is the length of time step.
The discretization involves the computation of conditional expectations, which need
to be further approximated in order to result into an implementable scheme. We
refer to |2], [18] and [35] for an complete asymptotic analysis of the approximation,
including the regression error.

Therefore, instead of using PDE to approximate the solution of BSDE, we use
BSDE to approximate the solution of PDE. More precisely, for a time discretization
{t;}¥, of [0,T7], the approximation for Y and Z could be done by:

VN = g(x)

. 1 .
N N
N = o B[V, AWii4]

YtN = Eimﬁl] - AtiHF(ti,XtJyafﬁivathy),

where E; = E[-|F},], Atip1 = tiy1 — t; and AWy = Wy, — Wy, For more details
on error analysis of discretization of BSDEs, we refer to [18], [35], [59], [60], and
[17]. The optimal error of this discretization is the same as for forward SDEs e.g.
|7|/2 where |7| := sup{At;|li = 1,--- ,N}.

For fully non-linear parabolic equations, the starting point is [25] where they
proposed a system called second order BSDE (2BSDE) corresponding to the follow-
ing final value problem.

— L%(t,x) — F (t,z,0(t,z),0" Do(t,x), D*v(t,x)) =0, on [0,T) x RY, (1.0.1)
v(T,-) =g, onR% (1.0.2)
where
dy 1
X 2
= — 4 4u-Dp+=a-D%.
LY ot +p-Dp+ 2a %)

and g and o are two maps from Ry x R? to M(d,d) and R? a := oot

from Ry x R? to Sd+, and

is a map

F:(t,z,r,p,7) eR. xRIXxRxRIxS; —— F(z,7,p,7) €R.
A 2BSDE is a system of SDEs given by

in = F(t,Xt,Yi,Zt,Pt)dt - Zt Oth
dZ, = Audt+TdW,
Yr = g(XT)>

where o stands for Stratonovich integral. The solution of the 2BSDE is an adapted
quadruple (Y, Z;, Ay, T'y) which satisfies the above equations. Under the regularity



of the solution of the the final value problem (1.0.1)-(1.0.2), the correspondence
between the fully non-linear PDE and the system of 2BSDE is given by

i = w(t,Xy)

Z, = o'Du(t,X;)
Iy = D*(t X))
Ay = LEDu(t, Xy).

By discretizing the 2BSDE, one can propose the following scheme:

5 1 .
Y = EEi[Zg+1AWi+1]
. 1 .
N N
B = g B AW (1.0.3)
vV o= Y- At P, XYY, 2N D).

The main subject of this thesis is to introduce a probabilistic numerical method
for the fully non-linear parabolic PDE (1.0.1)-(1.0.2) based on the (1.0.3). Fully
non-linear PDEs arise in many problems in applied mathematics and engineering
including finance. For example the problem of motion by curvature, portfolio
optimization under different type of constraints, option pricing under illiquidity
cost, etc. Non—local fully non—linear PDEs arise from stochastic optimization prob-
lems for controlled jump—diffusion processes e.g. problem of portfolio optimization
in Lévy markets. There are only few examples with explicit and quasi-explicit
solution; for example see [8] or [9]. We consider local PDEs and non-local PDEs
case separately in two chapters.

Now, we briefly discuss the contents of each chapter together with a review on
the relevant literatures.

Chapter 2

In this Chapter, we observe that the backward probabilistic scheme of [25| can
be introduced naturally without appealing to the notion of backward stochastic
differential equation. This is shown is Section 2.1 where the scheme is decomposed
into three steps:

(i) The Monte Carlo step consists in isolating the linear generator of some underlying
diffusion process, so as to split the PDE into this linear part and a remaining non—
linear one.

(ii) Evaluating the PDE along the underlying diffusion process, we obtain a natural
discrete-time approximation by using a kind of finite differences approximation of
derivatives in the remaining non-linear part of the equation.

(iii) Finally, the backward discrete-time approximation obtained by the above steps
(i)-(ii) involves the conditional expectation operator which is not computable in
explicit form. An implementable probabilistic numerical scheme therefore requires
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to replace such conditional expectations by a convenient approximation, and induces
a further Monte Carlo type of error.

In the present chapter, we do not require the fully non—linear PDE to have a
smooth solution, and we only assume that it satisfies a comparison result in the
sense of viscosity solutions. Our main objective is to establish the convergence
of this approximation towards the unique viscosity solution of the fully-non-linear
PDE, and to provide an asymptotic analysis of the approximation error.

Our main results are the following. We first prove the convergence of the discrete-
time approximation for general non-linear PDEs, and we provide bounds on the
corresponding approximation error for a class of Hamilton-Jacobi-Bellman PDEs.
Then, we consider the implementable scheme involving the Monte Carlo error, and
we similarly prove a convergence result for general non-linear PDEs, and we provide
bounds on the error of approximation for Hamilton-Jacobi-Bellman PDEs. We
observe that our convergence results place some restrictions on the choice of the
diffusion of the underlying diffusion process. First, an ellipticity condition is needed;
we believe that this technical condition can be relaxed in some future work. More
importantly, the diffusion coefficient is needed to dominate the partial gradient of
the remaining non-linearity with respect to its Hessian component. Although we
have no theoretical result that this condition is necessary, our numerical experiments
show that the violation of this condition leads to a serious mis-performance of the
method, see Figure 2.5.

Our proofs rely on the monotonic scheme method developed by Barles and
Souganidis [6] in the theory of viscosity solutions, and the recent method of shaking
coefficients of Krylov [43], [44] and [45] and Barles and Jakobsen [5], [4] and [3].
The use of the latter type of methods in the context of a stochastic scheme seems to
be new. Notice however, that our results are of a different nature than the classical
error analysis results in the theory of backward stochastic differential equations, as
we only study the convergence of the approximation of the value function, and no
information is available for its gradient or Hessian with respect to the space variable.

The followings are two related numerical methods based on finite differences in
the context of Hamilton-Jacobi-Bellman non-linear PDEs:

e Bonnans and Zidani [14] introduced a finite difference scheme which satisfies
the crucial monotonicity condition of Barles and Souganidis [6] so as to ensure
its convergence. Their main idea is to discretize both time and space, approx-
imate the underlying controlled forward diffusion for each fixed control by a
controlled local Markov chain on the grid, approximate the derivatives in cer-
tain directions which are found by solving some further optimization problem,
and optimize over the control. Beyond the curse of dimensionality problem
which is encountered by finite differences schemes, we believe that our method
is much simpler as the monotonicity is satisfied without any need to treat sep-
arately the linear structures for each fixed control, and without any further
investigation of some direction of discretization for the finite differences.

e An alternative finite-differences scheme is the semi-Lagrangian method which



solves the monotonicity requirement by absorbing the dynamics of the un-
derlying state in the finite difference approximation, see e.g. Debrabant and
Jakobsen [29]. Loosely speaking, this methods is close in spirit to ours, and
corresponds to freezing the Brownian motion W}, over each time step h, to its
average order v/h. However it does not involve any simulation technique, and
requires the interpolation of the value function at each time step. Thus it is
also subject to the curse of dimensionality problems.

We finally observe a connection with the recent work of Kohn and Serfaty
[42] who provide a deterministic game theoretic interpretation for fully non-linear
parabolic problems. The game is time limited and consists of two players. At each
time step, one tries to maximize her gain and the other to minimize it by imposing
a penalty term to her gain. The non-linearity of the fully non-linear PDE appears
in the penalty. Also, although the non—linear penalty does not need to be elliptic, a
parabolic non-linearity appears in the limiting PDE. This approach is very similar
to the representation of [25] where such a parabolic envelope appears in the PDE,
and where the Brownian motion plays the role of Nature playing against the player.

Chapter 3

The present Chapter generalizes the probabilistic numerical method in [34] for ap-
proximation of the solution of fully non—linear parabolic PDEs to non-local PDEs.
Here by non—local PDEs, we mean the integro—partial differential equations which
sometimes are referred to as integro—partial differential equations (IPDE). As men-
tioned in the previous Chapter, the method is originated from [25] where a similar
probabilistic numerical method is suggested based on 2BSDEs!.

As in Chapter 2, the main idea is to separate the equation into a purely linear
part and a fully non—linear part. Then, we use the time discretization of a suitable
jump—diffusion process to approximate the derivatives and integral term in the non—
linear part. The separation into linear and non-linear part is arbitrary up to the
satisfaction of some assumptions. The assumptions needed for this result are de-
generate ellipticity condition for the remaining non-linearity and that the diffusion
coefficient is needed to dominate the partial gradient of the remaining non—linearity
with respect to its Hessian component.

The other contribution of this Chapter is the Monte Carlo method for approx-
imation of the integral with respect to Lévy measure which appears in the non—
local PDEs. The method is referred to in this Chapter as Monte Carlo Quadrature
(MCQ). We treat the jumps as in [16] for finite activity jump—diffusion processes.
For infinite activity jump-—diffusion processes, we truncate the Lévy measure near
zero and then treat them as in the finite measure case. We introduce bounds for the
truncation error with respect to the derivatives of integrand and truncation level.

Although MCQ is independent of the numerical scheme, we choose to approxi-
mate the Lévy integral inside the non-linearity by MCQ. In this case, we also need

!Second order backward stochastic differential equations
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to choose appropriate truncation bound with respect to time step which retains the
convergence and rate of convergence as in the local case in Chapter 2.

The idea of the proof is captured from [6] for the convergence result and from [12]
for the rate of convergence. However, in the non-local PDEs, we need to conquer
the new difficulties due to lack of Lipschitz continuity of non-linearities appearing
in many interesting PDEs e.g. HJB equations. More precisely, if the non—local non—
linearity is of HJB type, then it is Lipschitz if and only if Lévy measure inside the
non-local integral is finite. This difficulty makes it impossible to use directly the
methods in [6] and [12]. We showed that if the truncation threshold; x; is properly
dependent on time step; h; then one can produce the approximate solution which
converges to the solution of the non—local problem.

The first result concerns the convergence of the approximate solution obtained
from the scheme; (3.3.3); to the viscosity solution of the final value problem. The
difficulty which makes the direct use of the method in Chapter 2 impossible, is that
when we have a Lévy integral with respect to infinite Lévy measure in the non-
linearity, the non-linearity is no more Lipschitz. If we truncate the Lévy measure,
the non-linearity is Lipschitz but as truncation threshold tends to 0, the Lipschitz
constant blows up. We solved this problem through manipulatiing the original final
value problem to an other whose corresponding scheme is monotone. Turning the
manipulation back, we obtain a bounded approximate solution. This approximation
is near the approximate function created by the scheme (3.3.3), if the truncation
threshold depends appropriately on h.

The second result provides rate of convergence in the case of concave non-—
linearity. The proof of the rate of convergence uses the results in [12] and [13]
which generalizes the result of [6] to non-local case. The method is based on the
approximation of the solution of the equation with regular sub and super—solutions.
Plugging the regular sub or super—solution into scheme and then usage of the con-
sistency provides the upper and lower bounds. Here, we also need to impose the
condition that the truncation threshold depend appropriately on the time step in
order to preserve the rate of convergence after truncation. For the rate of conver-
gence, we also need to manipulate the equation to obtain a strictly monotonicity for
the scheme which is a crucial requirement in using the method in [12].

Finally, as mentioned in Chapter 2 for non-local case, it is worthy of noticing
the relation with the generalization of [42| to non—local case introduced in [38] which
provides a deterministic game theoretic interpretation for fully non—linear parabolic
problems. The game consists of two players. At each time step in a predetermined
time horizon, one tries to maximize her gain and the other to minimize it by imposing
a penalty term to her gain. More precisely, she starts in an initial position and
chooses a vector p, a matrix I', and a function . Then, he will plug an arbitrary
vector w together with p, I' and ¢ in a non-linear penalty term which should be
paid by her and change her position by taking one step with appropriate length in
the direction of vector w. At the final stage, she will earn as much as a function
of her final position. As time step goes to zero, her value function at any time
and any position will converge to the solution of a fully non-linear parabolic PDE



whose non-linearity consists of the (elliptic envelop of the) penalty term. Vector
p, a matrix I' and a function ¢ represent the first and second derivatives and the
solution function, respectively.

Chapter 4

The long term costs of global warming is believed to be significantly more than the
cost of controlling it by reducing the pollution due to greenhouse gases (see [50]).
One direct way to reduce the emission is to impose the taxation on the installations
whose production increases the pollution. One can propose the standard taxation
system which imposes a limitation level on the production of each installation over
a time period and any amount of production above this level will be penalized. This
taxation method has some significant disadvantages. First, there is no change in
the production of the installations whose current optimal production policy does
not reach the level. Second, there is no benefit for those who are below their level to
keep their position. This effect also creates incentive to merge with other installation
who needs to produce above their level.

The Kyoto protocol in 1997 concerns with the reduction of the greenhouse gases
including CO4 and is accepted by several countries e.g. European Union mem-
bers. In 2000, the European Commission launch European Climate Change Program
(ECCP) to implement Kyoto protocol in Europe. As an alternative to standard tax-
ation, ECCP proposed European Union Emission Trading Scheme (EU ETS) which
provides a way to control the emission of CO2 within carbon polluters through trad-
ing the papers which allows them extra emission. More precisely, ETS imposes a
cap over the total carbon emission. Within ETS, certain industrial installations
with intensive carbon pollution are given free allowances. If any installation wants
to produce more than her initial allowance, she should buy allowance through EU
ETS. However, the allowances will be needed if the total carbon emission per mem-
ber state violates imposed cap. On the other hand, if such installations, are far away
from their production limit, they could sell their allowance through the market.

First phase of the program was run from January 2005 to the end of 2007. All
the included installations who violate their limits, were supposed to provide enough
allowances, if the cap on total emission is reached. The cap for the second phase
(2008-2012) has been revised after the collapse in the first phase in April 2006 due
to the release of the information about the unreachability to total carbon emission
cap. Moreover, in the second phase, ECCP proposed to relevant installations to put
off execution of the first phase emission allowance to the second phase by paying 40
euros per tone. The same mechanism is determined between the second phase and
the third phase by the cost of 100 euros per tone. This mechanism, which is referred
to as banking, proposes an option for the allowance holder to execute the allowance
to offset the excess production or to keep it for the next phase. For more details see
[19], [20], [21], [22], [23] and [50].

Nowadays, there are other regional markets implementing similar schemes as EU
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ETS, e.g. the US REgenial CLean Air Incentive Market (RECLAIM) or Regional
Greenhouse Gas Incentive (RGGI). Throughout this chapter, by emission market
we mean the emission trading scheme EU ETS.

In this chapter, we analyze the effect of emission market in reducing the carbon
emission through the change on production policy of the relevant firms. The firm’s
objective is to maximize her utility on her wealth which is made of both the profit of
her production and the value of her carbon allowance portfolio over her production
and her portfolio strategy. We solve the utility maximization problem on portfolio
strategy by the duality argument and then on the production by the use of Hamilton—
Jacobi-Bellman (HJB) equations.

We observe that the market always reduces the optimal production policy of the
small producers and large producers who can not affect the risk premia. However,
under certain cases, the large producer can have a larger optimal production in the
market. The comparison is based on the fact that negative of the derivative of the
value function with respect to the total emission imposed by the firm is equal to the
price of the carbon allowance, under some assumptions.

More precisely, we define the rate of profit of the firm for the production rate
q by m(q) where 7 a strictly concave function 7 on its production with 7(0) = 0,
7(00) = —oo and 7'(0+) > 0, and the the rate of emission of the firm caused by the
production rate ¢ by e(q) where e is an increasing concave function.

In the as-usual-business case , optimal production ¢© is such that W’(q_(o)) = 0.
When the standard taxation is applied the optimal production, ¢(® should satisfies

' (q©) - EY [a]l{E%w)zEmax}]e'(Q(U)) =0,
where Egﬂw) is the accumulated emission of the firm , Enay is the cap on the emission
the firm and is the so-called risk-neutral measure or the stochastic discount factor
of the firm. By the concavity assumption on e. It is clear that g© > ¢(©.

On the existence of the market, on has the relation 7/(¢(M)) + Ve(z)e’(q(l)) = 0 for
the small producers. In order to have the comparison with respect to previous cases,
we need to pass through the crucial step of verifying Ve2) = —5; which indicates
that ¢(@ > ¢, Despite g1, ¢ does not depend on the utility of the firm and so
the market approach provides an externality for the carbon price which allows to
manage the production without knowing the utility of the firm.

For large producers with no impact on the risk premium of the market, compar-
ison is provided by

71_/(q(2)) _ e/(q(2)) (St _ Vy(?) (t, Eg<2> , Ytq<2>))

where V) is the value function of the firm which corresponds to the optimization
problem and Vj is the sensitivity of the value function with respect to the total
emission of CO2 and Y7 is the total emission process according to the production
activity ¢ of the large producer. We show that V,, is non-positive and therefore,
¢?® < ¢ which means that the large producer should even reduce his production
policy more than the case of small producer.



For the large producer which has impact on the risk premium of the market, we
have

1
(q®) + E(MI)(QB)) +e (@) + V) =N (@) =0

where A(g) is the the risk premium according to the production activity ¢ of large
producer, V®) is the value function of the firm, Vy(s) is the sensitivity of the value
function with respect to the total emission of COo, Ve(g) is the sensitivity of the
value function with respect to the production policy, and v, n and (§ are positive
constants in the model. In order to have the comparison with respect to previous
cases, one need to verify Ve(?’) = —S,;. Then, the comparison of ¢® by ¢V and ¢
depends on the sign of the following term:

1
—e/(¢®) BV + X (¢?) (Wf” - nA(q(?’))>

We provided numerical examples to show that this is possible to have ¢(*) greater
than ¢®.






CHAPTER 2
A Probabilistic Numerical

Method for Fully Nonlinear
Parabolic PDEs

This Chapter! is organized as follows. In Section 2.1, we provide a natural pre-
sentation of the scheme without appealing to the theory of backward stochastic
differential equations. Section 2.2 is dedicated to the asymptotic analysis of the
discrete-time approximation, and contains our first main convergence result and the
corresponding error estimate. In Section 2.3, we introduce the implementable back-
ward scheme, and we further investigate the induced Monte Carlo error. We again
prove convergence and we provide bounds on the approximation error. Finally, Sec-
tion 2.4 contains some numerical results for the mean curvature flow equation on
the plane and space, and for a five-dimensional Hamilton-Jacobi-Bellman equation
arising in the problem of portfolio optimization in financial mathematics.

2.1 Discretization

Let 4 and o be two maps from Ry x R? to R? and M(d,d), respectively. With
a:=co'. We define the linear operator:

0 1
LYo = 8—f+u-Dg0—|—§a-D2<p.

Given a map
F:(t,z,r,p,7) eR. xRIXRxRY xSy — F(z,r,p,7) €R
we consider the Cauchy problem:

~LXv — F (-,v,Dv,D*v) =0, on [0,T) x R, (2.1.1)
o(T,-) =g, on €R% (2.1.2)

Under some conditions, a stochastic representation for the solution of this prob-
lem was provided in [25] by means of the newly introduced notion of second order
backward stochastic differential equations. As an important implication, such a
stochastic representation suggests a probabilistic numerical scheme for the above
Cauchy problem.

!This work is reported on a paper co—authored with Nizar Touzi and Xavier Warin.
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The chief goal of this section is to obtain the probabilistic numerical scheme
suggested in [25] by a direct manipulation of (2.1.1)-(2.1.2) without appealing to
the notion of backward stochastic differential equations.

To do this, we consider an R%valued Brownian motion W on a filtered proba-
bility space (2, F,F,P), where the filtration F = {F;, ¢ € [0,T]} satisfies the usual
completeness conditions, and Fq is trivial.

For a positive integer n, let h :=T/n, t; = ih, i =0,...,n, and consider the one
step ahead Euler discretization

XpTi=a+ pt,o)h+ ot z)(Wien — We), (2.1.3)

of the diffusion X corresponding to the linear operator £X. Our analysis does
not require any existence and uniqueness result for the underlying diffusion X.
However, the subsequent formal discussion assumes it in order to provides a natural
justification of our numerical scheme.

Assuming that the PDE (2.1.1) has a classical solution, it follows from Ito’s
formula that

tit1
Eti,z [U (ti+1, Xti+1)] = v (ti, LL’) + Eti,az |:/ ,CXU(t, Xt)dt:|
t;

where we ignored the difficulties related to local martingale part, and E , :=
E[-|X¢, = x| denotes the expectation operator conditional on {X;, = z}. Since
v solves the PDE (2.1.1), this provides

tit1
v(tiz) = By [v(tis1, Xepr)] + Bty U F(-,U,DU,DQU)(t,Xt)dt].

t;
By approximating the Riemann integral, and replacing the process X by its Euler
discretization, this suggest the following approximation of the value function v

VM(T,.) =g and v"(t;,z) = Tp["(t;, 2), (2.1.4)

where we denoted for a function ¢ : Ry x R — R with exponential growth:
Ty [W)(t,2) =B [y(t + h, X,ff)] 4 RE (-, D) (£, 2)(2.1.5)
Di(t,x) := E[D*(t + h, X0)], k=0,1,2, Dytp := (Db, Dhap, D) ' (2.1.6)

and DF is the k—th order partial differential operator with respect to the space
variable z. The differentiations in the above scheme are to be understood in the
sense of distributions. This algorithm is well-defined whenever g has exponential
growth and F' is a Lipschitz map. To see this, observe that any function with
exponential growth has weak gradient and Hessian because the Gaussian kernel is a
Schwartz function, and the exponential growth is inherited at each time step from
the Lipschitz property of F.

At this stage, the above backward algorithm presents the serious drawback of
involving the gradient Dv"(t;,1,.) and the Hessian D?v"(t;,1,.) in order to compute
v"(t;,.). The following result avoids this difficulty by an easy integration by parts
argument.
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Lemma 2.1.1 For every function ¢ : Qr — R with exponential growth, we have:
Dupltia) = E|p(tir, X" Halti )|
where Hy, = (HE, HY, H)T and
1 W

Hy=1, H = (") ==, H}=(o")

—1 WhWE—hId _1
h —_——— O .

= (2.1.7)

Proof. The main ingredient is the following easy observation. Let G be a one
dimensional Gaussian random variable with unit variance. Then, for any function
f R — R with exponential growth, we have:

E[f(G)H*(@)] = E[fM(G)), (2.1.8)

where f*) is the k—th order derivative of f in the sense of distributions, and H* is
the one-dimensional Hermite polynomial of degree k.

1  Now, let ¢ : R — R be a function with exponential growth. Then, by direct
conditioning, it follows from (2.1.8) that

d
b, 1 8‘10 ot.x
E[@(X;; )Wh] - hZE[a (X )aji(t,:n)],
j=1 i

and therefore:
E oMt )| = olt,2)E |[Ve(X;7)].

2 For i # j, it follows from (2.1.8) that
-, 7 j t,x
E (X3 wimi| = hZE [axk (XE" Wiowlt, x)}

= A2 LTy 5 :
= h l;lﬂ-z [ Forde (X )1t x) ot x)],

and for j = i:

A . d 2 A
E[o(X5) (W2 =m)] = w3 E{afkgxl<X;vx>au<t,x>am<t,x>].
k=1
This provides:
E[p(X3)HE (b 0)| = olt,2)E [V2e(X)")a(t2)]

O

In view of Lemma 2.1.1, the iteration which computes v"(t;,.) out of v/ (t;,1,.)
n (2.1.4)-(3.1.8) does not involve the gradient and the Hessian of the latter function.
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Remark 2.1.1 Clearly, one can proceed to different choices for the integration by
parts in Lemma 2.1.1. One such possibility leads to the representation of Dggo as:

-1 Wh/2 W];I‘/2 !
(h/2) (h/2)

Dip(t.z) = E|o(X,")(0")

This representation shows that the backward scheme (2.1.4) is very similar to the
probabilistic numerical algorithm suggested in [25].

Observe that the choice of the drift and the diffusion coefficients ¢ and o in
the nonlinear PDE (2.1.1) is arbitrary. So far, it has been only used in order to
define the underlying diffusion X. Our convergence result will however place some
restrictions on the choice of the diffusion coefficient, see Remark 2.2.3.

Once the linear operator £ is chosen in the nonlinear PDE, the above algorithm
handles the remaining nonlinearity by the classical finite differences approximation.
This connection with finite differences is motivated by the following formal inter-
pretation of Lemma 2.1.1, where for ease of presentation, we set d = 1, p = 0, and
o(x)=1:

e Consider the binomial random walk approximation of the Brownian motion
Wy, = Z?Zl wj, ty = kh, k > 1, where {wj,j > 1} are independent random
variables distributed as % ((5 Vi To_ \/E) Then, this induces the following

approximation:

P(t,x + Vh) = (t,z — Vh)
2vh ’

which is the centered finite differences approximation of the gradient.

Dly(t,z) :=E [w(t +h, X}?)HH ~

e Similarly, consider the trinomial random walk approximation Wtk = Z§:1 wy,

tr = kh, k > 1, where {wj,j > 1} are independent random variables dis-
tributed as ¢ (5{\/ﬁ} + 4640y + 5{7\/@}) , so that E[w?] = E[W}] for all in-
tegers n < 4. Then, this induces the following approximation:

l,x + \/ﬁ) _ 2’9[1(25,%’) + ¢(ta$ — \/%>
3h ’

Ditp(t,z) = [¢(t + h, XZ’I)HS] ~ i
which is the centered finite differences approximation of the Hessian.

In view of the above interpretation, the numerical scheme studied in this paper can
be viewed as a mixed Monte Carlo—Finite Differences algorithm. The Monte Carlo
component of the scheme consists in the choice of an underlying diffusion process
X. The finite differences component of the scheme consists in approximating the
remaining nonlinearity by means of the integration-by-parts formula of Lemma 2.1.1.
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2.2 Asymptotics of the discrete-time approximation

2.2.1 The main results

Our first main convergence results follow the general methodology of Barles and
Souganidis [6], and requires that the nonlinear PDE (2.1.1) satisfies a comparison
result in the sense of viscosity solutions.

We recall that an upper-semicontinuous (resp. lower semicontinuous) function
v (resp. @) on [0,7] x R?, is called a viscosity subsolution (resp. supersolution) of
(2.1.1) if for any (t,z) € [0,T) x R? and any smooth function ¢ satisfying

0= (w-p)ta) = max (=) (resp. 0= (0= @)(tia) = min (7).

we have:
—LXp — F(t,z,Dp(t,x)) < (resp. >) 0.

Definition 2.2.1 We say that (2.1.1) has comparison for bounded functions if for
any bounded upper semicontinuous subsolution v and any bounded lower semicon-
tinuous supersolution v on [0,T) x RY, satisfying

Q(T7 ) < @(T7 ')7
we have v < 7.

Remark 2.2.1 Barles and Souganidis [6] use a stronger notion of comparison by
accounting for the final condition, thus allowing for a possible boundary layer. In
their context, a supersolution ¥ and a subsolution v satisfy:

min {—EXE(T, z) — F(T,z,Do(T, z)),v(T,z) — g(x)}
max {—EXQ(T, x) — F(T, 2, Dv(T,z)),v(T,z) — g(x)}

(2.2.1)
(2.2.2)

IV IA

We observe that, by the nature of our equation, (2.2.1) and (2.2.2) imply that the
subsolution v < g and the supersolution T > g, i.e. the final condition holds in the
usual sense, and no boundary layer can occur. To see this, without loss of generality
we suppose that F(t,z,r,p,7) is decreasing with respect to r (see Remark 2.2.7).
Let ¢ be a function satisfying
0=(@—-¢)(T z)= max (v—g)
[0,T]xR4

Then define ¢k (t,-) = p(t,) + K(T —t) for K > 0. Then v — ¢ also has a
maximum at (T, z), and the subsolution property (2.2.1) implies that

min {—Exnp(T, z) — F(T,z,Dp(T,z)) + K,v(T,z) — g(z)} < O.

For a sufficiently large K, this provides the required inequality v(7,z) — g(x) < 0.
A similar argument shows that (2.2.1) implies that v — g > 0.
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In the sequel, we denote by F;., F}, and F), the partial gradients of I’ with respect
to 7, p and ~, respectively. We also denote by F~ the pseudo-inverse of the non-
negative symmetric matrix F,. We recall that any Lipschitz function is differentiable
a.e.

Assumption F (i) The nonlinearity F is Lipschitz-continuous with respect to
(z,7,p,7) uniformly in t, and |F(-,-,0,0,0)|00 < 00;
(ii) F is elliptic and dominated by the diffusion of the linear operator £X, i.e.

V,F<a on RIxRxR?xS; (2.2.3)
(iii) F, € Image(F,) and |F} F Fp| < +oc.
Remark 2.2.2 Assumption F (iii) is equivalent to

|mplee < 00 where mp := min {F, w+w Fw}. (2.2.4)
weR
This is immediately seen by recalling that, by the symmetric feature of F,, any
w € R? has an orthogonal decomposition w = w; +ws € Ker(F,) @ Image(F,), and
by the nonnegativity of F,:

Fp-w—l—wTwa = Fp-w1+Fp-w2+w2TF7w2

17 1,
= Byt o+ [G(F)Y -y = B P

Remark 2.2.3 The above Condition (3.3.2) places some restrictions on the choice
of the linear operator £ in the nonlinear PDE (2.1.1). First, F is required to be
uniformly elliptic, implying an upper bound on the choice of the diffusion matrix
o. Since ool € Sj, this implies in particular that our main results do not apply
to general degenerate nonlinear parabolic PDEs. Second, the diffusion of the linear
operator o is required to dominate the nonlinearity F' which places implicitly a lower
bound on the choice of the diffusion o.

Example 2.2.1 Let us consider the nonlinear PDE in the one-dimensional case
—% - % (a%;fx — b%;m) where 0 < b < a are given constants. Then if we restrict
the choice of the diffusion to be constant, it follows from Condition F that %ag <
0% < b?, which implies that a®> < 3b%. If the parameters a and b do not satisfy
the latter condition, then the diffusion ¢ has to be chosen to be state and time

dependent.

Theorem 2.2.1 (Convergence) Let Assumption F hold true, and |u|1, |01 < oo
and o is invertible. Also assume that the fully nonlinear PDE (2.1.1) has comparison
for bounded functions. Then for every bounded Lipschitz function g, there exists a
bounded function v so that

ot — v locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (2.1.1)-(2.1.2).
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Remark 2.2.4 Under the boundedness condition on the coefficients p and o, the
restriction to a bounded terminal data ¢ in the above Theorem 2.2.1 can be relaxed
by an immediate change of variable. Let g be a function with a—exponential growth
for some a > 0. Fix some M > 0, and let p be an arbitrary smooth positive function
with:

p(z) = el for |z| > M,

so that both p(z)"!Vp(z) and p(x)~'V?2p(z) are bounded. Let
u(t,z) = p(x) to(t,z) for (t,x) € [0,T] x R%

Then, the nonlinear PDE problem (2.1.1)-(2.1.2) satisfied by v converts into the
following nonlinear PDE for wu:

— L%~ F (-,u, Du, D2u) =0 on [0,T) x R? (2.2.5)
U(Ta ) = g = P_lg on Rda
where
- _ 1 _ _
E(ta,rp,y) = ru(@)-p~ Vot STr[a(z) (rp™ Vip+2pp~ Vpl)]

+p ' F (t,2,7p, vV p+ pp,rV2p + 2pVp" + py) .

Recall that the coefficients p and o are assumed to be bounded. Then, it is easy to
see that F' satisfies the same conditions as F. Since g is bounded, the convergence
Theorem 2.2.1 applies to the nonlinear PDE (2.2.5). O

Remark 2.2.5 Theorem 2.2.1 states that the inequality (3.3.2) (i.e. diffusion must
dominate the nonlinearity in «) is sufficient for the convergence of the Monte Carlo—
Finite Differences scheme. We do not know whether this condition is necessary:

e Subsection 2.2.4 suggests that this condition is not sharp in the simple linear case,
e however, our numerical experiments of Section 2.4 reveal that the method may
have a poor performance in the absence of this condition, see Figure 2.5.

We next provide bounds on the rate of convergence of the Monte Carlo—Finite
Differences scheme in the context of nonlinear PDEs of the Hamilton-Jacobi-Bellman
type in the same context as [5]. The following assumptions are stronger than As-
sumption F and imply that the nonlinear PDE (2.1.1) satisfies a comparison result
for bounded functions.

Assumption HIB  The nonlinearity F' satisfies Assumption F(ii)-(iii), and is of
the Hamilton-Jacobi-Bellman type:

1
fa-y—i—b-p—kF(t,x,r,p,y) = inf{ﬁa(t,l‘,’l“,p,’)/)}
2 acA

1
LYtz rp,y) = §Tr[aaaaT(t, x)y] + b*(t, z)p + *(t, x)r + fO(t, x)
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where the functions p, o, %, b%, ¢ and f satisfy:

[Hloo + 0]oo + Sug(lao‘ll 0%+ [+ M) < oo
ae

Assumption HIB+  The nonlinearity F' satisfies HIB, and for any § > 0, there
exists a finite set {a,—}i]\i‘sl such that for any o € A:

inf (0% = 0% + [BY — 6% oo + e = ¥ |oo + | f* — foe < 4.
1<i<Ms

Remark 2.2.6 The assumption HJB+ is satisfied if A is a separable topological
1

space and o®(-), b*(-), ¢*(-) and f<(-) are continuous maps from A to CbQ’l; the

space of bounded maps which are Lipschitz in x and %fHélder in ¢.

Theorem 2.2.2 (Rate of Convergence) Assume that the final condition g is
bounded Lipschitz-continuous. Then, there is a constant C' > 0 such that:

(i) under Assumption HIB, we have v — v < Ch/*,

(ii) under the stronger condition HIB+, we have —ChY'0 <y — oM < ChY/4,

The above bounds can be improved in some specific examples. See Subsection
2.2.4 for the linear case where the rate of convergence is improved to Vh.

We also observe that, in the PDE Finite Differences literature, the rate of con-
vergence is usually stated in terms of the discretization in the space variable |Ax|.
In our context of stochastic differential equation, notice that |Az| is or the order
of h'/2. Therefore, the above upper and lower bounds on the rate of convergence
corresponds to the classical rate |Az|'/? and |Axz|'/®, respectively.

2.2.2 Proof of the convergence result

We now provide the proof Theorem 2.2.1 by building on Theorem 2.1 and Remark 2.1
of Barles and Souganidis [6] which requires the scheme to be consistent, monotone
and stable. Moreover, since we are assuming the (weak) comparison for the equation,
we also need to prove that our scheme produces a limit which satisfies the terminal
condition in the usual sense, see Remark 2.2.1.

Throughout this section, all the conditions of Theorem 2.2.1 are in force.

Lemma 2.2.1 Let ¢ be a smooth function with bounded derivatives. Then for all
(t,x) €[0,T] x Re:

lim [c+ @] (t',2") — Tplc+ (', 2)

',y — (t,2) h
(h, c) — ((),())
t'+h<T

= — (EX<p + F(-, ¢, Dy, D2g0)) (t,x).
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The proof is a straightforward application of Ité’s formula, and is omitted.

Lemma 2.2.2 Let ¢, : [0,T] x R — R be two Lipschitz functions. Then.:
o<y = Tulpl(t,z) < Thl](t, ) + ChE[(Y — @) (t + h, X;)")] for some C >0
where C' depends only on constant K in (3.3.1).

Proof. By Lemma, 2.1.1 the operator T}, can be written as:

Tuyl(ta) = B[o(XE)] + b (62 ERp(Xe") Ha(t,2)])

Let f := v — ¢ > 0 where ¢ and ¢ are as in the statement of the lemma. Let
F; denote the partial gradient with respect to 7 = (r,p,7y). By the mean value
Theorem:

Tule)(t.2) — Tulel(t o) = E[f(X)7)] +hF(0)- Duf(£]7)

= E|J(X7) (14 hF(0) - Ha(t, )
for some 6 = (t,z,7,p,7). By the definition of Hy(t,x):
ThlY]-Tale] = B [f(X5) (1 4+ hFy + By (o) Wo + BT F, - (@) (Wi = aDo ™) |

where the dependence on 6 and x has been omitted for notational simplicity. Since
F, <a by (3.3.1) of Assumption F, we have 1 — a”l. F, > 0 and therefore:

. -1 _ -1 _
Tul] — Talg] > E [f(X;f; )(hFr—l-Fp.aT Wi+ h 'F, - o7 W wle 1)}
St,x -1Wy aAWRWE
= E [f(XfL’ )(hFT—l—th.aT T+hF7-aT Tha 1.
Let my := max{—mp,0}, where the function mp is defined in (3.3.1). Under

Assumption F, we have K := |m | < 00, then

_ A W,WE
FP'UT 1%+hF7-UT VRV h

12 o1 > -K

one can write,

Tol] - Tulg] = E|[f(X}") (hF, = hK)| = —C'RE | £(X}7)]

for some constant C' > 0, where the last inequality follows from (3.3.1). O

The following observation will be used in the proof of Theorem 2.2.2 below.
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Remark 2.2.7 The monotonicity result of the previous Lemma 2.2.2 is slightly
different from that required in [6]. However, as it is observed in Remark 2.1 in [6],
their convergence theorem holds under this approximate monotonicity. From the
previous proof, we observe that if the function F' satisfies the condition:

1

Fr—

T y—
FyF F, > 0, (2.2.6)
then, the standard monotonicity condition

p < ¢ = Tulgl(t,z) < Taly](t,z) (2.2.7)

holds. Using the parabolic feature of the equation, we may introduce a new function
u(t,z) == e?T=Yy(t, ) which solves a nonlinear PDE satisfying (2.2.6). Indeed,
direct calculation shows that the PDE inherited by u is:

— L%~ F (-,u, Du,D*u) =0, on [0,T) x R (2.2.8)
w(T,z) = g(x), on RY, (2.2.9)
where F(t,z,r,p,v) = T VE(t, z,e 0Ty =0T =p o=0(T=1)~) 4 g7 Then, it

is easily seen that F satisfies the same conditions as F together with (2.2.6) for
sufficiently large 6.

Lemma 2.2.3 Let ¢,% : [0,T] x R — R be two L>®°—bounded functions. Then
there exists a constant C > 0 such that

IThle] = Taltlloe < | — Ploc(l 4+ Ch)

In particular, if g is L®—bounded, the family (v"), defined in (2.1.4) is
L°°—bounded, uniformly in h.

Proof. Let f := ¢ — 1. Then, arguing as in the previous proof,

h

Tyle] — Th[y] = E [f(f(h) (1 —a ' F, + h|Ay* + hE, — 4FEF;FP>] .

where

1

- -1 W,
A =5 (F))PF, — F)Pa" Sk,

h

Since 1 — Tr[a™'F,] > 0, |F}|oo < 00, and |F) F; Fploo < 00 by Assumption F, it
follows that

IThle] = Tallle < [floo (1—a™" - Fy + hE[|Ax[*] + Ch)

But, E[|A|%] = %FEF{FP + a1 F,. Therefore, by Assumption F

Tl - Tlollee < Ifle (14 5EF B 4CN) < Iflul1+Cn)
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To prove that the family (v");, is bounded, we proceed by backward induction. By
the assumption of the lemma v*(T,.) = ¢ is L°°—bounded. We next fix some i < n
and we assume that ]vh(tj, )|oe < Cj for every i +1 < j < n — 1. Proceeding as in
the proof of Lemma 2.2.2 with ¢ = vh(ti“, .) and ¥ = 0, we see that

‘vh(ti, .)LO < R|F(t,2,0,0,0)| + Cii1(1+ Ch).

Since F'(t,x,0,0,0) is bounded by Assumption F, it follows from the discrete Gron-
wall inequality that |v"(t;,.)]ee < Ce®T for some constant C independent of h.
O

Remark 2.2.8 The approximate function v" defined by (2.1.4) is only defined on
{ihli = 0,---,N} x RY. Our methodology requires to extend it to any ¢ € [0, T].
This can be achieved by any interpolation, as long as the regularity property of v”
mentioned in Lemma 2.2.4 below is preserved. For instance, on may simply use
linear interpolation.

Lemma 2.2.4 The function v" is Lipschitz in x, uniformly in h.

Proof. We report the following calculation in the one-dimensional case d = 1 in
order to simplify the presentation.

1. For fixed ¢t € [0,7 — h|, we argue as in the proof of Lemma 2.2.2 to see that for
z, 2’ € R? with « > 2

o (t,x) —o"(t,2') = A+ hB, (2.2.10)
where, denoting 6% := DFo"(t + h, X}'¥) — DFo(t + h,f(fl’x/) for k =0,1,2:
A = E[O] + h(F(t,w’,Dvh(t + h, X};’”C)) - F(t,x’,Dvh(t - h,Xff’))
= E[(1+hF)6O + hE,6W 4+ hE,63)],
IB| = ‘F(t 2, DuM(t + h,f(;‘;w)) - F(t, o, D (t + h,f(ff))‘ < |Fyloolz — 2],

by Assumption F (i). By Lemma 2.1.1 we write for k = 1,2:
E[6M] = EOH L)+ (t+ 0, X)) (HE (o) - HE(ta))]

k—1
— E[6OH} (¢, ) + Dt + h, X1 (VZ") (J(t, )7k — ot :E’)_k) o(t,z")].

Then, dividing both sides of (2.2.10) by « — 2’ and taking limsup, if follows from
the above equalities that

o (t, ) — v"(t,2'))|

lim sup
|lz—2'|\0 (.T - iL’l)
h(t 4+ h, XE®) — v (t + h, X0¥ W2—h
< E||timsup LT EY) ZEE Ry h)<1+hFr+Fp Wo | p Wi )
NG (z —a') o(t,x) o(t,z)2h

A —20,(t, x) ox(t,x)
h t,x 3
+Dv"(t + h, X)) <T/VhFW(7 . + hF, (t7) + Ch.
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2. Assume v"(t + h,.) is Lipschitz with constant L;,j. Then
|vh(ta l’) — Uh(ta .QZ'/)’

lim sup
|lz—2'|\0 (.%' - J)/)
VhN N? E
< LipEl(1+ pg(t, 2)h + og(t, hN)(1+ hE, + F. F. -
< Lign H( + i (t, ) + op(t, 2)Vh )( + + pa(t’$)+ Tolt, 2)? o*(t,:n)Q)
—20,(t, ) 04(t, )
hNF. hF, h.
TVANE, o(t,r)? + Po(t, x) +c

Observe that

— =0 .
o /}7’y o F’Y 750
Since all terms on the right hand-side are bounded, under our assumptions, it fol-

lows that |F,%2| < oo (we emphasize that the geometric structure imposed in
Assumption F (iii) provides this result in any dimension). Then:

o (t, ) — v"(t,2"))|

lim sup
|lz—2'|\0 (.%’ - ZL'/)
VhN N2 E,
< v _
< Liwn (E “(1 + pia(t, @) + 04 (t, 2)VAN) (1 TR T x)2)
—20,(t, )
+\/ENF70(WG)2” + Ch> + Ch.

3. Let P be the probability measure equivalent to P defined by the density

F.
Z:=1—a+aN? where o= T,
o(t,x)?
Then,
. ’vh<t7 .’E) B ’Uh(t,{L‘/)’ P -1 \/EN
1 <Ly E (1 St )+ ot hN)(1 Z7\F )
B e S O A A T
1 —20,(t, )
+Z WhNE, 22\ + Ch ) + Ch.
o(t,x)?
By Cauchy—Schwartz inequality, we have
h(t,z) —oh(t, o’ p hN
lim sup w2 (¢ @) v/( )| <Ly <EP[ (1 + pz(t, x)h + ax(t,w)\/EN> (1 +Z71F, vh )
le—2'[\0 r—x o(t,z)
1
—20,(t 2713
7 WaNE, =20 R TR o) o
o(t,x)?
By writing back the expectation in terms of probability P,
h(t,z) —oh(t, o' hN
Jim sup 102 ”,( N py <E [Z‘ (1 + pp(t, )R+ Uz(t,m)\/ﬁN> (1 + Z7F, Vh )
|z—a'|\0 r—x a(t,x)
1
—20,(t,7)|%] 2
+Z’1\/ENFWL§) ] +Ch> +Ch.
o(t,z)
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By expanding the quadratic term inside the expectation, we observe that expectation
of all the terms having v/h, is zero. Therefore,

() () ; 1 VAN
) VAN
timsup (T L (B || (1t 0h + o) VRN ) (14276, 0 )
9.1
+Z_1\/ENF7M “yCh)+Ch
o(t,z)?

éLt+h<(1 L OR)? + Ch) + Ch,

which leads to

h h !
t — t /
lim sup [v" (¢, z) U/( @) < CeCT/2’
VNG (z —a')

for some constants C, C’ > 0. O

Finally, we prove that the terminal condition is preserved by our scheme as the
time step shrinks to zero.

Lemma 2.2.5 For each x € R? and t;, = kh with k =1,--- ,n, we have;
[Vt w) = g(a)] < C(T —t)2.

Proof. 1. By the same argument as in the proof of Lemma 2.2.3, we have: and for
j >

VX7 = By [ X (- o+ )

+h (Fg + FIEy, [0" (41, X{00 )] + Fi - By [DV" (41, X" )}) ,

ti+1 tit1

where Fg = F(tj,Xf;’x,0,0,0), aj, F!, Fg are Ji,—adapted random variables
Wi W

defined as in the proof of Lemma 2.2.3 at ¢;, and N; = I has a standard
Gaussian distribution. Combine the above formula for j from ¢ to n — 1, we see that

n—1
V't w) =B [Q(Xéf’m)Pi,n} +HE Y " F+ B W (t, X0 )+ F] By [Do" (841, X7,
j=i

where P;j = H?;il (1 — o+ aijQ) >0as foralll <i<k<mnand P; = 1.
Obviously {P;x,i < k < n} is a martingale for all ¢ < n, a property which will
be used later. Since |F(-,-,0,0,0)|sx < 400, and using Assumption F and Lemmas
2.2.4 and 2.2.3:

ot 2) — g(@)| < [B[(9(X5") - 9(@) P] |+ O 1) (2:211)
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2. Let {gc}e be the family of smooth functions obtained from g by convolution with
a family of mollifiers {p.}, i.e. g = g * p.. Note that we have

|ge — gloo < Ce, |Dgeloo < |Dgloo and ]D2gg|OO < 5*1|Dg|oo. (2.2.12)

Then
(o) - 9()) Pa] | < E[Jo(X5) - go(X87) P
+ ’E [(ga (X% — gs(w)> Pi,n} ~ gloo
< Ce+ ‘E [(QE(X?’I) - ga(fv)) B,n}
< Ce+ ‘E[Pm /: (Dgg?w Imy [D295>&]> (s, X307 ds]

+’ n/ Dg.(X5")6(s)dWs] |, (2.2.13)

where we denoted b(s) = b(t;, X 1t“"]c) and 6(s) = a(t],X ) for t; < s < tj41 and
a = 676. We next estimate each term separately.

2.a. First, since {P; ;,i < k < n} is a martingale:
tjr1

- ‘ ZE[P%,n DQE(X?@)&(S)dWS]
£

j=i J

Pn / Dy (X5)5(s)dW]

tj

[ D e ]

n—1
< Z ‘E[Pi,j—&-l

ti+1

- z]E [Pyt [ Do(Xim)am]]].
tj
Notice that
tit1 N, 9 tj+1 Ay
By | Pjj+1 Dge(Xg")dWs| = B |(Wej oy = W) Dge (X)W
t; tj

— ]Et~

J

tj+1 .
/ 2WDg. (Xt")ds| .
t

J

Using Lemma 2.1.1 and (2.2.12), this provides:

n/ Dge(X1)&(s)dWs] (2.2.14)

A N2 B ot
QZ’E P, j16(t;) hEtJ[/t, sD?g. (X5 )ds]] ,
J

j =1

IN

< Ce' ) h < C(T -t (2.2.15)
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2.c. By (2.2.12) and the boundedness of b and o, we also estimate that:
o 1 . .
‘Dgg(X£i7x)b(S, Xty 4 5Tr |:D2g€(X§iym>d(st£iyx):| ’ < C+Ce122.16)
2.b. Plugging (2.2.15) and (2.2.16) into (2.2.13), we obtain:

E[(0:(X5") = 9:(2)) P

which by (2.2.11) provides:

< C(T—t)+CO(T —t)et,

Wh(ti,x) — glz)] < Ce+CO(T —t)e 4+ C(T - t;).
The required result follows from the choice € = /T — ¢;. O
Corollary 2.2.1 The function v is 1/2-Hélder continuous on t uniformly on h.

Proof. The proof of %—H(’jlder continuity with respect to ¢ could be easily pro-
vided by replacing g and v"(t,-) in the assertion of Lemma respectively by v"(¢, )
and v"(¢,-) and consider the scheme from 0 to time ¢ with time step equal to h.
Therefore, we can write;

W (t,x) — (', 2)| < C{t —1)z,

where C' could be chosen independent of ¢’ for ¢/ < T. O

2.2.3 Derivation of the rate of convergence

The proof of Theorem 2.2.2 is based on Barles and Jakobsen 5], which uses switching
systems approximation and the Krylov method of shaking coefficients [43].

2.2.3.1 Comparison result for the scheme

Because F' does not satisfy the standard monotonicity condition (2.2.7) of Barles
and Souganidis [6], we need to introduce the nonlinearity F of Remark 2.2.7 so that
I satisfies (2.2.6). Let u” be the familiy of functions defined by

uM(T,.) = g and u”(t;, x) = Ty [u"](t;, z), (2.2.17)

where for a function ¢ from [0, 7] x R% to R with exponential growth:

Tu[ul(t,2) == E [6(t + b, X17)] + hF (-, Duty) (8, 2),
and set

T (ts,z) = e Tl (t,2), i=0,...,n. (2.2.18)

h h

The following result shows that the difference v is of higher order, and thus
h

reduces the error estimate problem to the analysis of the difference " — v.

-
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Lemma 2.2.6 Under Assumption F, we have

limsup h (" —3")(t, )]ew < o0
AN\.0

Proof. By definition of F, we directy calculate that:
t(tx) = e (1 +hO)EF"(t + h, Xo7)] + hF (t + h,a, DR, 3:)) .

Since 1 4 hf = " + O(h?), this shows that T"(t,z) = T,[0"](t,z) + O(h?). By
lemma 2.2.3, we conclude that:

(@ = ")t ) < (L4 CR)|E" —0")(t+ b, )| + O(R?),

which shows by the Gronwall inequality that [(7" — v")(t, )| < O(h) for all t <
T — h. ]

By Remark 2.2.7, the operator T, satisfies the standard monotonicity condition
(2.2.7):

¢ < ¢ = Tile] < Thly). (2.2.19)

The key-ingredient for the derivation of the error estimate is the following compar-
ison result for the scheme.

Proposition 2.2.1 Let Assumption ¥ holds true, and set § := |F,|oo. Consider
two arbitrary bounded functions ¢ and 1) satisfying:

Wt (e—Thlgl) < g1 and b (¢ = Th[¥]) > g2 (2.2.20)
for some bounded functions g1 and go. Then, for everyi=0,--- n:
(p—¥)(tix) < LT =) (T, )|oo + (T = )T (g1 — g2) (2:2.21)

To prove this comparison result, we need the following strengthening of the
monotonicity condition:

Lemma 2.2.7 Let Assumption F hold true and let B := |F,|s. Then, for every
a,b € Ry, and every bounded functions ¢ < 1, the function §(t) := BTt (q +
b(T —t)) satisfies:

Proof. Because § does not depend on z, we have Dp[p + 8] = Drp + 6(t + h)eq,
where e1 := (1,0,0). Then, it follows from the regularity of F' that there exist some
& such that:

F(t + h,z, Dy + 0](t, x)) = F(t + h, z, Dpp(t, x)) +0(t+h)F, (t + h,z,&e1 + Dro(t, :U)),
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and

Tulp +0](t,x) = 8(t+h) +E[p(t +h, X;")] + hF (t + h,2, Dyo(t, x))
+hd(t + h)Fy(t + h,z,&er + Dpo(t, z))
= Tulel(t,z) +0(t + h) {1+ hF,(t + h,z,&e1 + Drp(t, z)) }
< Thlel(t,z) + (1 + Bh)6(t+ h).
Since T}, satisfies the standard monotonicity condition (2.2.19), this provides:
Thlp +0](t,x) < Thp[Y](t,x) +8(t) + ((t), where ((t):= (1+ Bh)d(t+ h) — 5(t).

It remains to prove that ((¢) < —hb. From the smoothness of §, we have §(t + h) —
d(t) = hd'(t) for some t € [t,t + h). Then, since § is decreasing in ¢, we see that

RC(t) = &)+ B0(t+h) < &)+ B5(E) < —beP T,

and the required estimate follows from the restriction b > 0. O

Proof of Proposition 2.2.1. We may refer directly to the similar result of [5].
However in our context, we give the following simpler proof. Observe that we may
assume without loss of generality that

o(T,") <(T,:) and g1 < gs. (2.2.22)
Indeed, one can otherwise consider the function
V= ¢+ T (@ +b(T — 1) where a= (o~ ) (T, )|, b= (g1~ 92)"|ocs

and 3 is the parameter defined in the previous Lemma 2.2.7, so that (T, -) > ¢(T), )
and, by Lemma (2.2.7), 1(t, z) — Th[¥](t, ) > h(g1 V g2). Hence (2.2.22) holds true
for ¢ and 1.

We now prove the required result by induction. First o(T,-) < ¢(T,-) by
(2.2.22). We next assume that ¢(t + h,-) < 1 (t+h,-) for some t +h < T. Since T},
satisfies the standard monotonicity condition (2.2.19), it follows from (2.2.22) that

Thlp](t,z) < Tu[Y](t,z).
On the other hand, under (2.2.22), the hypothesis of the lemma implies:
o(t,x) — Tple](t,z) < (t,z) — Tp[y](t, ).
Then ¢(t, ) < (t, ). O

2.2.3.2 Proof of Theorem 2.2.2 (i)

Under the conditions of Assumption HJB on the coefficients, we may build a
bounded subsolution v® of the nonlinear PDE, by the method of shaking the co-
efficients, which is Lipschitz in z, 1/2—Ho6lder continuous in ¢, and approximates
uniformly the solution v:

v—e <0 <.
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Let p(t,x) be a C* positive function supported in {(¢t,z) : t € [0,1],]z| < 1} with
unit mass, and define

1 t
€ e € £ (> «-— -
w®(t,x) := v % p° where p°(t,z):= e <€2, 6) (2.2.23)
so that, from the convexity of the operator F',
w® is a subsolution of (2.1.1), |w® —v| < 2e. (2.2.24)

Moreover, since v¢ is Lipschitz in x, and 1/2—Hélder continuous in ¢,

w® is C*°, and ‘Q?OD’GMg < Cet=2P0 B for any  (Bp, ) € N x N%\ (DP,25)

where |B|; = 25:1 Gi, and C > 0 is some constant. As a consequence of the
consistency result of Lemma 2.2.1 above, we know that

Ru[wf)(t,x) = zv%uaﬂ——:hwaaaﬂ + LY (t,2) + F(-,w®, Duw®, D*w°)(t,x)

converges to 0 as h — 0. The next key-ingredient is to estimate the rate of conver-

gence of Rp,[w®] to zero:

Lemma 2.2.8 For a family {¢:}o<e<1 of smooth functions satisfying (3.3.21), we
have:

IRu[pelle, < R(h,e):=C he™ for some constant C > 0.

The proof of this result is reported at the end of this section. From the previous
estimate together with the subsolution property of w®, we see that w® < Tj[w®] +
Ch?e~3. Then, it follows from Proposition 2.2.1 that

w® — 7" < O(w® — )T, .)|oo + Che 2 < Ce + he™?). (2.2.26)
We now use (2.2.24) and (2.2.26) to conclude that
v—T" <v—w +uw 7" < Cle+he™®).

Minimizing the right hand-side estimate over the choice of € > 0, this implies the

upper bound on the error v — v™:

v—o" < ChY/* (2.2.27)

2.2.3.3 Proof of Theorem 2.2.2 (ii)

The results of the previous section, together with the reinforced assumption HJB—+,
allow to apply the switching system method of Barles and Jakobsen [5] which pro-
vides the lower bound on the error:

v—7" > —ir;g{Cel/?’JrR(h,e)} = —C'BM,
€
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for some constants C,C’ > 0. The required rate of convergence follows again from
Lemma 2.2.6 which states that the difference v — o" is dominated by the above
rate of convergence.

Proof of Lemma 2.2.8 Notice that the evolution of the Euler approximation X;x
between t and t + h is driven by a constant drift u(¢,x) and a constant diffusion
o(t,x). Since Dy, is bounded, it follows from Itd’s formula that:

1 N 1 t+h ot N
h Ep.(t + h7Xlng) - ‘Ps(ta x) —ﬁXgos(t, x) = hE/ (['Xt QPe(qu;C) - EXSOs(tvx)) du,
t

where £X" is the Dynkin operator associated to the Euler scheme:
ot 1
Lo 2 = Ot a') + plt,x) Dot ) + §Tr la(t,x)D?*p(t,2)] .
Applying again It6’s formula, and using the fact that EXt’zDaps is bounded, leads

to

1 ~ ]. t+h u t,x t, T A~

7 [Egpg(t+h,X}f) — et x)| — LY (t,x) = hE/ / X" X e(s, X7 )dsdu.
t t

Using the boundedness of the coefficients p and o, it follows from (3.3.21) that for

e € (0,1):

Epe(t + h,f(ﬁf) — e(t,x)
h

— L%p.(t,z)| < Ro(h,e):=C he3.

Step 2 This implies that

Epe(t +h, X}%) — @e(t, x)
h

+ |F(x,g0€(t,l‘),Dgpe(t,x),DQ(pe(t,l‘)) - F(HDh[SOs](t?x)H

‘Rh[%f](t’ :ZJ)‘ - £X§06(t7$)

2
Ro(h,e) +CY ‘Echpg(t +h, X5%) — Dro.(¢, x)‘ (2.2.28)
k=0

IN

by the Lipschitz continuity of the nonlinearity F'.
By a similar calculation as in Step 1, we see that:

IEDY(t + h, X;") — Dye(t,x)] < Che™ '™ i=0,1,2,

which, together with (2.2.28), provides the required result. O
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2.2.4 The rate of convergence in the linear case

In this subsection, we specialize the discussion to the linear one-dimensional case
F(y) = o, (2.2.29)

for some ¢ > 0. The multi-dimensional case d > 1 can be handled similarly. As-
suming that ¢ is bounded, the linear PDE (2.1.1)-(2.1.2) has a unique bounded
solution

v(t,z) = Elg (v + VI+2cWr_y)] for (t,z)€[0,7] xRL  (2.2.30)

We also observe that this solution v is C*° ([0,7) x R) with
DFu(t,z) = E [g(k) (z+V1+2e WT_t)} L t<T, z€R  (2.231)

This shows in particular that v has bounded derivatives of any order, whenever the
terminal data g is C° and has bounded derivatives of any order.

Of course, one can use the classical Monte Carlo estimate to produce an approx-
imation of the function v of (2.2.30). The objective of this section is to analyze the
error of the numerical scheme outlined in the previous sections. Namely:

oM(T, ) =g, VM (ti1,x) = E [vP(ts, x + Wh)} + chE [vh(ti,x + Wh)Hél] , 1< m.
(2.2.32)
Here, 0 =1 and pu = 0 are used to write the above scheme.
Proposition 2.2.2 Consider the linear F of (2.2.29), and assume that DDy s
bounded for every k > 0. Then

1/2

limsup h 2ol —v|ee < oo

h—0

Proof. Since v has bounded first derivative with respect to z, it follows from Itd’s
formula that:

h
v(t,z) = Eu(t+h,x+ W)+ cE {/ Av(t+ s,v+ Wy)ds|
0

Then, in view of Lemma 2.1.1, the error u := v — v" satisfies u(t,, X;,) = 0 and for
1 <n—1:

U (tiv Xti) = K [u (ti+17 Xt¢+1)] + ch E; [Au (tiJrla th‘+1)]

h
+cEi/ [Av (ih + s, Xinys) — Dv ((i + 1)h, X(Hl)h)] 42,2.33)
0

where E; := E[-|F,] is the expectation operator conditional on F%,.
Step 1 Set

h
ot = E [Atu (ti,Xti)} R - E/ [Mv (tio1 + 5, X1,y 4s) — Ok (ti,Xti)} ds,
0
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and we introduce the matrices

[an}

1 =1 0 --- 0 0 1 0

e
I
—
|
[S—
o
li
— o

0 -« --- 0 1 ()

@)

and we observe that (2.2.33) implies that the vectors a* := (a¥,...,af)T and ¥ :=
by, ..., b5)T satisfy Aa* = chBa**! + ¢BbF for all k > 0, and therefore:

1 1 o1

i . X 0 1 oo 1
= chA'Ba"! 4 cA7'BY* where A7'=| | = (2234

o --- 0 1

By direct calculation, we see that the powers (A~'B)* are given by:

i1
<A_1B)ﬁj:]1{j>i+k}<]kil ) forall k>1landi,j=1,...,n

In particular, because af = 0, (A7 B)"~a* = 0. Iterating (2.2.34), this provides:
n—2
a® = ch(A'B)a' +c(AT'B)W = ... = ch+1hk(A_1B)k+lbk,
k=0

and therefore:

n—2
u(0, ) Z AT'B)TEE, (2.2.35)

Because of
—1pyk J—2 .
(A 1B>Lj = Lyj>144} (k B 1) forall k>1landj=1,...,n,

we can write (2.2.35):

n—2 n .
u(0,z) = cZ(ch)k Z (‘];2>b§?—1.
k=0

j=k+2

By changing the order of the summations in the above we conclude that:

= cif ch) ( )bk ! (2.2.36)

7=2 k=0
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Step 2 From our assumption that D?**1y is L>°—bounded for every k > 0, it

follows that
t;
/.

for some constant C. We then deduce from (2.2.36) that:

i < E

AFy(s, X,) — Akv(tj,th)‘ ds] < Ch3?

j—2

7 .
u(0,2)] < cCh? (ch)k(] k2>.
0

n j—
=2 k=

So,

n n—1 _
w(0,2)] < cCh¥? Y (14ch))™2 = cCH*/? (HC’?}L Lo ovn
j=2

2.3 Probabilistic Numerical Scheme

In order to implement the backward scheme (2.1.4), we still need to discuss the
numerical computation of the conditional expectations involved in the definition of
the operators T, in (3.1.8). In view of the Markov feature of the process X, these
conditional expectations reduce to simple regressions. Motivated by the problem of
American options in financial mathematics, various methods have been introduced
in the literature for the numerical approximation of these regressions. We refer to
[18] and [35] for a detailed discussion.

The chief object of this section is to investigate the asymptotic properties of our
suggested numerical method when the expectation operator E in (2.1.4) is replaced
by some estimator EN corresponding to a sample size N:

T\ [Y](t,z) = EN [@b(wh,f(;f)] +hE (-,ﬁw) (t, ), (2.3.1)
T[Nt x) = —Kulg] v TR [)(E ) A K] (2:3.2)

where
Duto(t, @) i= BY [6(t+ b, X3 ) Hn(t,2)] , Knlt] = [lloc (1 + C1h) + Coh,
where
1 _
Cy = 1|1~;[,TF7 Fpleo + |Frloo and Cy = |F(t,2,0,0,0)|s0-
The above bounds are needed for technical reasons which were already observed in
[18].
With these notations, the implementable numerical scheme is:

o (t, z,w) = TN [%](t, z, w), (2.3.3)
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where ’i‘hN is defined in (2.3.1)-(2.3.2), and the presence of w throughout this section
emphasizes the dependence of our estimator on the underlying sample.

Let Ry be the family of random variables R of the form (W) H;(W}) where 9
is a function with || < b and H;’s are the Hermite polynomials:

Ho(z) =1, Hi(z) =z and Hy(z) =Tz —h Vo e R

Assumption E There exist constants Cy, \,v > 0 such that “EN[R] — E[R]H <

b
Cyh™ N~V for every R € Ry, for some p > 1.

Example 2.3.1 Cousider the regression approximation based on the Malliavin in-
tegration by parts as introduced in Lions and Reigner [46], Bouchard, Ekeland and
Touzi [15], and analyzed in the context of the simulation of backward stochastic
differential equations by [18] and [28]. Then Assumption E is satisfied for every
p > 1 with the constants A\ = % and v = ﬁ, see [18].

Our next main result establishes conditions on the sample size N and the time
step h which guarantee the convergence of @}]{, towards v.

Theorem 2.3.1 Let Assumptions E and F hold true, and assume that the fully
nonlinear PDE (2.1.1) has comparison with growth q. Suppose in addition that

lim PM2NY = oo (2.3.4)
h—0
Assume that the final condition g is bounded Lipschitz, and the coefficients p and o
are bounded. Then, for almost every w:

ﬁ]}{,h(~,w) — locally uniformly,

where v is the unique viscosity solution of (2.1.1).

Proof. We adapt the argument of [6] to the present stochastic context. By Remark
2.2.7 and Lemma 2.2.6, we may assume without loss of generality that the strict
monotonicity (2.2.6) holds.

By (2.3.2), we see that 9" is uniformly bounded. So, we can define:

O.(t,z) ;== liminf "¢ 2') and o*(t,z):= limsup o"(¢,2'}2.3.5)
(t',m') — (t,x) ', 2"y — (t,x)
h — 0 h—0

Our objective is to prove that 0, and 0* are respectively viscosity superpersolution
and subsolution of (2.1.1). By the comparison assumption, we shall then conclude
that they are both equal to the unique viscosity solution of the problem whose
existence is given by Theorem 2.2.1. In particular, they are both deterministic
functions.

We shall only report the proof of the supersolution property, the subsolution
property follows from the same type of argument.
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In order to prove that 0. is a supersolution of (2.1.1), we consider (tg,zo) €
[0,T) x R™ together with a test function ¢ € C2([0,T) x R"), so that

0 = min{0, — p} = (0« — ¢)(to, x0)-

By classical manipulations, we can find a sequence (ty, zy, hn) — (to, 2o, 0) so that
0" (t, ) — 4 (to, 20) and

(0" — ©)(tn, zn) = min{o" — p} =: C,, — 0.
Then, 9" > ¢ 4 C),, and it follows from the monotonicity of the operator T} that:
Ty, [6""] > T, [ + Chl.
By the definition of 9" in (2.3.3), this provides:
" (t, ) = Th,lp + Cul(t, ) — (Th, — T, )[03] (1 2),

where, for ease of notations, the dependence on INj, has been dropped. Because
0" (tn, 2n) = @(tn, 2p) + Oy, the last inequality gives:

W(tru -Tn) + Cn - Thn [QO + Cn](tna xn) + han > 07 Ry = hrjl(Thn - Thn)[@hn](tnu xn)
We claim that
R, — 0 P —a.s. along some subsequence. (2.3.6)

Then, after passing to the subsequence, dividing both sides by h,, and sending
n — 00, it follows from Lemma 2.2.1 that:

_EXQD - F ('7307D§07 DQ()O) > Oa

which is the required supersolution property.

It remains to show (2.3.6). We start by bounding R,, with respect to the error
of estimation of conditional expectation. By Lemma 2.2.3, | T}, [0""]|s < K}, and
so by (2.3.2), we can write:

‘ (Thn _ Thn) [6"](n, )

< ‘(Thn - Thn) [6"] ()| . (2.3.7)
By the Lipschitz-continuity of F', we have:

] (Thn _ Thn) [6"] (0, )

< C (80 + h, &1 + hngz) .
where:

E = |(E—E)" (tn + hn, Xim ) H™ (tn, 20)]]

( (Thn _ Thn) [6"] (0, )

< of|E-BR)

+ |- B)R])

+ 1t (- B[R]

).
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where R, = " (t, + hp,zn + o(2)Wy,)H;(Wy,), i = 1,2,3 and H; is Hermite
polynomial of degree i. This leads the following estimate for the error R,:

Rl < o (|E@-BIRY|+ @ - DRy

+ | (B - B[R]

) . (2.3.8)

Because R! € R, with bound obtained in Lemma 2.2.3 by Assumption E we have,:
|Bally < Chi 2N, Y,

so by (2.3.4) we have ||R, |, — 0 which implies (2.3.6). O

We finally discuss the choice of the sample size so as to keep the same rate for
the error bound.

Theorem 2.3.2 Let the nonlinearity F' be as in Assumption HIB, and consider a
regression operator satisfying Assumption K. Let the sample size Ny be such that

lim PAMTIONY > 0. (2.3.9)
h—0 h

Then, for any bounded Lipschitz final condition g, we have the following ILP—bounds
on the rate of convergence:

””_f}h”p < OV

Proof. By Remark 2.2.7 and Lemma 2.2.6, we may assume without loss of gener-
ality that the strict monotonicity (2.2.6) holds true.
We proceed as in the proof of Theorem 2.2.2 to see that

v—t" < v—vh 4o, —0" = e+ R(he) v — 0"

Since 0" satisfies (2.3.3),

i

ht (@h - Th[@h]> > —Ru[0"] where Rylp] = % ‘(Th - Th) ]

where, in the present context, R,[0"] is a non-zero stochastic term. By Proposition
2.2.1, it follows from the last inequality that:

v—"<C <€ + R(h,e) + Rh[@hD ;

where the constant C' > 0 depends only on the Lipschitz coefficient of F', § in
Lemma 2.2.7 and the constant in Lemma 2.2.8.

Similarly, we follow the line of argument of the proof of Theorem 2.2.2 to show
that a lower bound holds true, and therefore:

v <C (51/3 + R(h,e) + Rh[ﬁh]) :
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We now use (2.3.9) and proceed as in the last part of the proof of Theorem 2.3.1 to
deduce from (2.3.8) and Assumption F that

IBp[0"ll, < CRY.
With this choice of the sample size N, the above error estimate reduces to

lo" = vl < € (2 + Rh,e) + h/1),

and the additional term hY/19 does not affect the minimization with respect to e.
O

Example 2.3.2 Let us illustrate the convergence results of this section in the con-
text of the Malliavin integration by parts regression method of [46] and [18] where
A= % and v = % for every p > 1. So, for the convergence result we need to choose
Ny, of the order of h~™*° with ag > % + 4p. For the LP-rate of convergence result,
we need to choose NV}, of the order of A~ with ay > % + %.

2.4 Numerical Results

In this section, we provide an application of the Monte Carlo-finite differences
scheme suggested in this paper in the context of two different types of problems.
We first consider the classical mean curvature flow equation as the simplest front
propagation example. We test our backward probabilistic scheme on the example
where the initial data is given by a sphere, for which an easy explicit solution is
available. A more interesting geometric example in space dimensions 2 is also con-
sidered. We next consider the Hamilton-Jacobi-Bellman equation characterizing the
clagsical optimal investment problem in financial mathematics. Here, we again test
our scheme in dimension two where an explicit solution is available, and we consider
more involved examples in space dimension 5, in addition to the time variable.

In all examples considered in this section the operator F(¢,z,r,p,v) does not
depend on the r—variable. We shall then drop this variable from our notations, and
we simply write the scheme as:

MT,):=¢g and

’ ; 241
h(ti,x) = E[Uh(ti_i_l,Xf;)] + hF (ti,x,thh(ti7$)) ( )

v
v
where
Dyt == (D, Di¥)
and D}L and D,Ql are defined in Lemma 2.1.1. We recall from Remark 2.1.1 that:

-1 (Wtﬁ-h — Wti)(Wti+h — Wti)T —hlg 4
E 7

Dyoltne) — E [@(ti T 2n, X457 (67)

-1 Wypn — Wy,

- (2.4.2)

_ & [D}Lgo(ti X5 (o7)
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The second representation is the one reported in |25] where the present backward
probabilistic scheme was first introduced. These two representations induce two
different numerical schemes because once the expectation operator E is replaced
by an approximation EN, equality does not hold anymore in the latter equation for
finite N. In our numerical examples below, we provide results for both methods. The
numerical schemes based on the first (resp. second) representation will be referred
to as scheme 1 (resp. 2). An important outcome of our numerical experiments is
that scheme 2 turns out to have a significantly better performance than scheme 1.

Remark 2.4.1 The second scheme needs some final condition for D} ¢(T, Xg_h’x).
Since ¢ is smooth in all our examples, we set this final condition to Vg. Since the
second scheme turns out to have a better performnace, we may also use the final
condition for Z suggested by the first scheme.

We finally discuss the choice of the regression estimator in our implemented
examples. Two methods have been used:

e The first method is the basis projection a la Longstaff and Schwartz [47], as
developed in [35]. We use regression functions with localized support : on each
support the regression functions are chosen linear and the size of the support
is adaptative according to the Monte Carlo distribution of the underlying
process.

e The second method is based on the Malliavin integration by parts formula
as suggested in [46] and further developed in [15]. In particular, the opti-
mal exponential localization function ¢*(y) = exp(—n*y) in each direction
k is chosen as follows. The optimal parameter n is provided in [15] and
should be chosen for each conditional expectation depending on k. Our nu-
merical experiments however revealed that such optimal parameters do not
provide sufficiently good performance, and more accurate results are obtained
by choosing n, = 5/v/At for all values of k.

2.4.1 Mean curvature flow problem

The mean curvature flow equation describes the motion of a surface where each
point moves along the inward normal direction with speed proportional to the mean
curvature at that point. This geometric problem can be characterized as the zero-
level set S(t) := {x € R?: v(t,x) = 0} of a function v(¢,z) depending on time and
space satisfying the geometric partial differential equation:

Dv - D2vDv

- A
VUt v+ |Dv\2

=0 and v(0,z)=g(x) (2.4.3)
and g : RY — R is a bounded Lipschitz-continuous function. We refer to [55]
for more details on the mean curvature problem and the corresponding stochastic
representation.
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To model the motion of a sphere in R? with radius 2R > 0, we take g(z) :=
4R? —|z|? so that g is positive inside the sphere and negative outside. We first solve
the sphere problem in dimension 3. In this case, it is well-known that the surface
S(t) is a sphere with a radius R(t) = 2V/R? —t for t € (0, R?). Reversing time, we
rewrite (2.4.3) for t € (0,T) with T = R%

1
— vy — §UZAU + F(xz,Dv,D*v) =0 and o(T,z) = g(z), (2.4.4)
where
1 5 zZ-YZ
F(x,z,v) = v <20 — 1> + TR

We implement our Monte Carlo-finite differences scheme to provide an approxima-
tion 9" of the function v. As mentioned before, we implement four methods: Malli-
avin integration by parts-based or basis projection-based regression, and scheme 1
or 2 for the representation of the Hessian.

" we deduce an approximation of the surface S h(t) =

Given the approximation
{x € R : 9"(t,z) = 0)} by using a dichotomic gradient descent method using the
estimation of the gradient D'v estimated along the resolution. The dichotomy is

stopped when the solution is localized within 0.01 accuracy.

Remark 2.4.2 Of course the use of the gradient is not necessary in the present
context where we know that S(t) is a sphere at any time ¢ € [0,7). The algorithm
described above is designed to handle any type of geometry.

Remark 2.4.3 In our numerical experiments, the nonlinearity F' is truncated so
that it is bounded by an arbitrary value taken equal to 200.

Our numerical results show that Malliavin and basis projection methods give
similar results. However, for a given number of sample paths, the basis projection
method of [35] are slightly more accurate. Therefore, all results reported for this
example correspond to the basis projection method.

Figure 2.1 provides results obtained with one million particles and 10 x 10 x 10
mesh with a time step equal to 0.0125. The diffusion coefficient ¢ is taken to be
either 1 or 1.8. We observe that results are better with ¢ = 1. We also observe that
the error increases near time 0.25 corresponding to an acceleration of the dynamics
of the phenomenon, and suggesting that a thinner time step should be used at the
end of simulation.

Figure 2.2 plots the difference between our calculation and the reference for
scheme 1 and volatility 1 and 1.8 for varying time step. The corresponding results
with scheme 2 are reported in figure 2.3. We notice that some points at time 7" = 0.25
are missing due to a non convergence of the gradient method for a diffusion o = 1.8.
We observe that results for scheme 2 are slightly better than results for scheme 1.
With ¢ = 1, it takes 150 seconds on a Nehalem intel processor 2.9 GHz to obtain the
result at time ¢ = 0.15 with the regression method, while it takes 1500 seconds with
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Hean Curvature Flow in 3D for a sphere

1
"analytical éulution"
"Solution with step 8.80125 volatility 1" ——
0.9 | "Solution with step B8,80125 wolatility 1.8" ——
a.8
a.7
8.6
@
E
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]
o
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a 8.85 8.1 a.15 a2 0,25
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Figure 2.1: Solution of the mean curvature flow for the sphere problem

the Malliavin method (notice that the dichotomy used with the gradient method is
a very inefficient method).

We finally report in Figure 2.4 some numerical results for the mean curvature
flow problem in dimension 2 with a more interesting geometry: the initial surface
(i.e. the zero-level set for v) consists of two disks with unit radius, with centers
positioned at -1.5 and 1.5 and connected by a stripe of unit width. We give the
resulting deformation with scheme 2 for a diffusion ¢ = 1, a time step h = 0.0125,
and one million particles. Once again, the Malliavin integration by parts based
regression method and the basis projection method with 10 x 10 meshes produce
similar results. We used 1024 points to describe the surface.

One advantage of this method is the total parallelization that can be performed
to solve the problem for different points on the surface : for the results given paral-
lelization by Message Passing (MPI) was achieved.

2.4.2 Continuous-time portfolio optimization

We next report an application to the continuous-time portfolio optimization problem
in financial mathematics. Let {S;, ¢t € [0,7]} be an It6 process modeling the price
evolution of n financial securities. The investor chooses an adapted process {6;,t €
[0, T]} with values in R™, where 6} is the amount invested in the i—th security held
at time ¢. In addition, the investor has access to a non-risky security (bank account)
where the remaining part of his wealth is invested. The non-risky asset S is defined
by an adapted interest rates process {r¢,t € [0,T]}, i.e. dSP = SPridt, t € [0,1].
Then, the dynamics of the wealth process is described by:

dSy ds? B dSy

dX? =0, . =L 1 (x0 —9, - 1)—t =0, . —*
{ =0 +(X{ — 0 )S? g,

+(X? -0, - 1)rdt,
St
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Figure 2.2: Mean curvature flow problem for different time step and diffusion:
scheme 1

where 1 = (1,---,1) € R% Let A be the collection of all adapted processes 6 with
values in R?, which are integrable with respect to S and such that the process X?
is uniformly bounded from below. Given an absolute risk aversion coefficient n > 0,
the portfolio optimization problem is defined by:

vy = ZEEIE {— exp (—an?)} . (2.4.5)

Under fairly general conditions, this linear stochastic control problem can be char-
acterized as the unique viscosity solution of the corresponding HJB equation. The
main purpose of this subsection is to implement our Monte Carlo-finite differences
scheme to derive an approximation of the solution of the fully nonlinear HJB equa-
tion in non-trivial situations where the state has a few dimensions. We shall first
start by a two-dimensional example where an explicit solution of the problem is
available. Then, we will present some results in a five dimensional situation.

2.4.2.1 A two dimensional problem

Let d =1, r, = 0 for all ¢t € [0,1], and assume that the security price process is
defined by the Heston model [36]:

dS, = pSedt + /Y, S, dw !
dY, = k(m—Y)dt+c/Y; (det(” + /1o p2th(2)> :

where W = (WM, W®)) is a Brownian motion in R2. In this context, it is easily
seen that the portfolio optimization problem (2.4.5) does not depend on the state
variable s. Given an initial state at the time origin ¢ given by (X;,Y;) = (z,y), the
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Figure 2.3: Mean curvature flow problem for different time step and diffusions:

scheme 2

value function v(t, z,y) solves the HJB equation:

o(T, z,y) = —e " and 0 = —v; — k(m — y)v, — 2c2yvy, — sup
0cR
Vg + PCYULy)?
= —vr = k(m — y)vy — 5¢%yvyy + (v 5 PeYUry)”
YVza
(2.4.6)

A quasi explicit solution of this problem was provided by Zariphopoulou [61]:

v(t,z,y) = —e

where the process Y is defined by

1 T fL2 :)
exp | —— —ds
p< 2/t Y.

(2.4.7)

L1-p2

Y, = y and dy, = (k(m — fft) — pep)dt + ¢ Y, dW,.

In order to implement our Monte Carlo-finite differences scheme, we re-write (2.4.6)

as:

— v — k(m —y)vy

1

2

1
YUyy — —0%0yy + F (y, Du, D2v) =0, v(T,z,y) = —e ",

2

(2.4.8)

where o > 0 and the nonlinearity F : R x R? x Sy is given by:

F(y,

1
z,y) = *027114-

2

(nz1 + peyriz)?
2y711 '

Notice that the nonlinearity F' does not to satisfy Assumption F, we consider the

truncated nonlinearity:

FE,M(yv 2, /7)

1
20

2
Y11 — Sup
e<O<M

1
(292(1/ Voe)y + 0(pz + pe(y Vv 6)712) ,

1
<292yvm + 0z + pcyvxy)>
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Figure 2.4: Mean curvature flow problem in 2D

for some e,n > 0 jointly chosen with ¢ so that Assumption F holds true. Under
this form, the forward two-dimensional diffusion is defined by:

ax{V = oawV, and dxX? = k(m - Xt + o/ xPaw . (2.49)

In order to guarantee the non-negativity of the discrete-time approximation of the
process X we use the implicit Milstein scheme [41]:

2 2
2 _ X7S,—)1 + kmAt + ¢ Xr(z—)lfn\/ﬂ-i- %CQA(gg - 1)
" (2.4.10)

1+ kAt

where (&,)n>1 is a sequence of independent random variable with distribution
N(0,1).

Our numerical results correspond to the following values of the parameter: p =
0.15, ¢c=0.2, k=0.1, m = 0.3, Yy = m, p = 0. The initial value of the portfolio is
xo = 1, the maturity T is taken equal to one year. With this parameters, the value
function is computed from the quasi-explicit formula (2.4.7) to be vy = —0.3534.

We also choose M = 40 for the truncation of the nonlinearity. This choice turned
out to be critical as an initial choice of M = 10 produced an important bias in the
results.

The two schemes have been tested with the Malliavin and basis projection meth-
ods. The latter was applied with 40 x 10 basis functions. We provide numerical
results corresponding to 2 millions particles. Our numerical results show that the
Malliavin and the basis projection methods produce very similar results, and achieve
a good accuracy: with 2 millions particles, we calculate the variance of our estimates
by performing 100 independent calculations:
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e the results of the Malliavin method exhibit a standard deviation smaller than
0.005 for scheme one (except for a step equal to 0.025 and a volatility equal
to 1.2 where standard deviation jumped to 0.038), 0.002 for scheme two with
a computing time of 378 seconds for 40 time steps,

e the results of the basis projection method exhibit a standard deviation smaller
than 0.002 for scheme 1 and 0.0009 for scheme two with a computing time of
114 seconds for 40 time steps.

Figure 2.5 provides the plots of the errors obtained by the integration by parts-
based regression with Schemes one and two. All solutions have been calculated as
the average of 100 calculations. We first observe that for a small diffusion coefficient
o = 0.2, the numerical performance of the algorithm is very poor: surprisingly, the
error increases as the time step shrinks to zero and the method seems to be biased.
This numerical result hints that the requirement that the diffusion should dominate
the nonlinearity in Theorem 2.2.1, might be a sharp condition. We also observe that

Error for scheme one, financial problem one Error for scheme tuo, financial problem one

"volatility 8.6 schene 1 —— "volatility 8.6 schene 3 ——
volatility 1 schene 1 —+— volatility 1 schen —
volatility 1.2 schene 1 —%— volatility 1.2 schede 2 —%—

Difference

.82 8,84 8,86 8,88 8.1 8,12  8.14 8,16  8.18 8.2 8,22 a.82 8,84 a.86 a.88 8.1 8,12 8,14 8,16 8,18 8.2

tine step tine step

Figure 2.5: Difference between calculation and reference for scheme one and two

scheme one has a persistent bias even for a very small time step, while scheme two
exhibits a better convergence towards the solution.

2.4.2.2 A five dimensional example

We now let n = 2, and we assume that the interest rate process is defined by the
Ornstein-Uhlenbeck process:

dry = k(b—r)dt + caw .

While the price process of the second security is defined by a Heston model, the
first security’s price process is defined by a CEV-SV models, see e.g. [48] for a
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presentation of these models and their simulation:

ds? = pSsWat+ Ui\/@st(i)mdwt(i’l% B2 =1,

v

i (mi = ¥ ) b+ ey, Daw D

where (W(O),W(l’l),W(m),W(2’1),W(2’2)) is a Brownian motion in R°, and for
simplicity we considered a zero-correlation between the security price process and
its volatility process.

Since By = 1, the value function of the portfolio optimization prob-
lem (2.4.5) does not depend on the s(®—variable. Given an initial state
(Xt,rt,St(l),Yt(l),Yt(Q)) = (x,r, 81,y1,y2) at the time origin ¢, the value function
v (t,x,r, s1,y1,y2) satisfies the HIB equation:

0 = —u— (LT+LY—|-LSI)U—7’9:U$

_ 1 _

= sup {01 o= 1o + 0Tt o, + g Ghotnst 4 Bt |
1,92

= —u—(L"+ LY + LSl)v — PV,

(11— r)vg + odyisi™  oge)? | ((p2 — 1)v,)?

+ + (2.4.11)
QJ%ylsf’gl_zvm 203Y2Vne
where
1 2 1
L'v=r(b—r)v, + §C2vw, LYy = Z ki (mg — yi) vy, + ic?yivyiyi,
i=1
st L 5
and L v = pisivs, — 501511 Us1s1-

In order to implement our Monte Carlo-finite differences scheme, we re-write (2.4.11)
as:

—Ut — (LT + LY + LSl)'U - %Uzvzz +F ((.’E,T‘, SlaylayQ)aDvaDQU) = O’

2.4.12
U(T7$>7"751a3/17y2) = _efna:7 ( )

where o > 0, and the nonlinearity F : R> x R® x Sy is given by:

1 — 29)z1 + 02aax P Ty )2 )2 )2
Fu,z,7) = 502711 — 117221 + (( 2) 21 2;1_42 : ") + ({2 5 2)21)
2071475 Y1 2055711
where v = (z1,- -+ ,x5). We next consider the truncated nonlinearity:
L2 2 2611
Fe(u,2,7) = 50 M1 T T1T2z - sup {(9 (= rl)z 4 boi (w4 Ve)(z3 Ve) 713
e<|f|<M

1 _
+§(9%a%(x3 Ve)(zg V 8)251 24 9%03(1’5 V 5))711},
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where ¢, M > 0 are jointly chosen with o so that Assumption F holds true. Under
this form, the forward two-dimensional diffusion is defined by:

dXx = gdw”, dX? = k(b — xP)dt + cawV
dX® = 1 xOdt + o0/ xOXOaw D ax® = ky(my — XD)dt + e/ XDaw ),
dX ) = ky(my — XP)dt + cpr/ XD dw*?

The component X 15(2)

X = e (x| Zb) 4 \/ eXp QmAt)ém

(2.4.13)
is simulated according to the exact discretization:

where (&,)n>1 is a sequence of independent random variable with distribution
N(0,1). The following scheme for the price of the asset guarantees non-negativity

(see |1]) :

nX® 10 x® 4 (,“ Lot (x9) X;fg) At o (x@)"/xD, 2w
where AW,gl’z) = W,(Lm) - WS_? We take the following parameters p; = 0.10,

o1 = 0.3, 1 = 0.5 for the first asset, k1 = 0.1, my = 1., ¢; = 0.1 for the diffusion
process of the first asset. The second asset is defined by the same parameters as in

the two dimensional example: puo = 0.15, co = 0.2, m = 0.3 and YO(2)
the interest rate model we take b = 0.07, X, ( =0, ¢(=0.3.

The initial values of the portfolio the assets prices are all set to 1. For this test

= m. As for

case we first use the basis projection regression method with 4 x 4 x 4 x 4 x 10
meshes and three millions particles which, for example, takes 520 seconds for 20
time steps. Figure 2.6 contains the plot of the solution obtained by scheme 2, with
different time steps. We only provide results for the implementation of scheme 1
with a coarse time step, because the method was diverging with a thinner time step.
We observe that there is still a difference for very thin time step with the three
considered values of the diffusion. This seems to indicate that more particles and
more meshes are needed. While doing many calculation we observed that for the
thinner time step mesh, the solution sometimes diverges. We therefore report the
results corresponding to thirty millions particles with 4 x 4 x 4 x 4 x 40 meshes. First
we notice that with this discretization all results are converging as time step goes to
zero: the exact solution seems to be very closed to —0.258. During our experiments
with thirty millions particles, the scheme was always converging with a very low
variance on the results. A single calculation takes 5100 seconds with 20 time steps.

Remark 2.4.4 With thirty millions particles, the memory needed forced us to use
64-bit processors with more than four gigabytes of memory.
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volatility ——
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Figure 2.6: Five dimensional financial problem and its results for different volatilities
with 3 millions and 30 millions particles

2.4.2.3 Conclusion on numerical results

The Monte Carlo-Finite Differences algorithm has been implemented with both
schemes suggested by (2.4.2), using the basis projection and Malliavin regression
methods. Our numerical experiments reveal that the second scheme performs better
both in term of results and time of calculation for a given number of particles,
independently of the regeression method.

We also provided numerical results for different choices of the diffusion param-
eter in the Monte Carlo step. We observed that small diffusion coefficients lead
to poor results, which hints that the condition that the diffusion must dominate
the nonlinearity in Assumption F (iii) may be sharp. On the other hand, we also
observed that large diffusions require a high refinement of the meshes meshes, and
large number of particles, leading to a high computational time.

Finally, let us notice that a reasonable choice of the diffusion could be time and
state dependent, as in the classical importance sampling method. We have not tried
any experiment in this direction, and we hope to have some theoretical results on
how to choose optimally the drift and the diffusion coefficient of the Monte Carlo
step.



CHAPTER 3

Probabilistic Numerical Methods
for Fully non-linear non—local
Parabolic PDEs

This Chapter is organized as follows: In Section 3.1, the problematic features of
non-local fully non-linear PDEs is discussed on a naive generalization of the Monte
Carlo method from local case in Chapter 2 to non-local case. In Section 3.2 the
Monte Carlo quadrature (MCQ) is presented as a purely Monte Carlo approximation
of Lévy integral together with the error analysis. Section 3.3 contains the results of
convergence and asymptotic properties of the scheme.

3.1 Preliminaries and features for non—local PDEs

Let p and o be functions from [0,7] x R? to R? and M(d, d) respectively, n be a
function from [0, T] x R? x R? to R?, and a = o' o. Suppose the following non-local
Cauchy problem:

—LYv(t,x) — F (t,z,v(t, z), Du(t,x), D*v(t,x),v(t,-)) =0, on[0,T) xRY  (3.1.1)
v(T,) =g, on € R (3.1.2)

where F: R. x R X R x R? x Sy x Cg — R and £X given by:

) 1
LXp(t,x) = (af +u- Do+ sa D%) (t,z)

+ [ (et ntt2) — olt ) = L Dt ) ne,2) ).
£X is the infinitesimal generator of a jump-diffusion, X;, satisfying SDE:

dXt = ,u(t, Xt)dt+ O'(t,Xt)th + / T](t7Xt_,Z)J(dt,dZ) + / T](t,Xt_,Z)j(dt, dZ),
{lz[>1} {lz[<1}

where J and J are respectively a Poisson jump measure and its compensation who
associate to Lévy measure v by:

W(A) = EUAJ([O,u,dz)}
J(dt,dz) = J(dt,dz) — dt x v(dz).
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For more details on jump—diffusion processes, see 7] and the references therein or
the classic work of [57].

Now, we provide a discretization for the process X. Suppose that h = %, t; = ih,
and k > 0. We define the Euler discretization of jump—diffusion process X; with
truncated Lévy measure by:

Xp™R = x4 fut, x)h + o (t, )Wy, + / n(t,z,2)J([0,h],dz), (3.1.3)
{lzI>r}
> ’\tzﬁXZjN’ s
Xpr =X, and X% = (3.1.4)
where fi(t,x) = p(t,z) + f{IZ\>1} n(t,x, z)v(dz) and we make the choice of Kk = 0
when v is a finite measure. Let Nf and Nf be respectively the Poisson process
derived from jump measure J by counting all jumps of size greater than s which

happen in time interval [0,¢] and its compensation, i.e.
NE = / J([0,4,dz) and NF = / J(0.4,d2).  (3.15)
{l2|>~} {|z]>~}

One can write the jump part of X;zﬁ as a compound Poisson process (see for
example [27])
Ny
Xy = a pe(t,x)h + o(ta)Wh + > n(t,z, Z), (3.1.6)
i=1
where p(t, ) = p(t, ) — f{f@<|z|§1} n(t,z, 2)v(dz), Zss are i.i.d. R¢—valued random
variables, independent of W and N*, and distributed as ]l{|z|>,{}%ﬁu(dz).
The classical solution for the problem (3.1.1)-(3.1.2) does not exist in general

and therefore, we appeal to the notion of viscosity solutions for non—local parabolic
PDEs. We remind that:

Definition 3.1.1 e The wviscosity sub(super)-solution of (3.1.1)-(3.1.2) is a upper
semi—continuous (lower semi—continuous) function v(v): [0,T] x R — R such that:

1. for any (to,x0) € [0,T) x R? and any smooth function ¢ with:
0 = max(min){v — ¢} = (7 — ) (fo, 20)
We have:
0 > (<) —LX¢(to, o) — F (-0, Do, D*0, () (to, z0)-

2. 9() 2 o(T, ) (< 0(T,)).
The function v which is both wviscosity sub and super solution, is called viscosity
solution of (3.1.1)-(3.1.2).
e We say that (3.1.1) has comparison for bounded functions if for any bounded lower
semi—continuous viscosity super—solution v and any bounded upper semi—continuous
sub—solution v, satisfying

E(,1—17 ) 2 Q<T7 ')7

we have © > v on [0,T] x R4,
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3.1.1 The scheme for non—local fully non-linear parabolic PDEs

In this section, we introduce a probabilistic scheme by following directly the same
idea as the scheme for the local PDEs. Then, we consider some problems which
prevent us to utilize the scheme in many interesting applications. Therefore, we in-
troduce a modified version of the scheme which works for the class of non-linearities
of HIB type (Hamilton—Jacobi-Bellman).

Following the same idea as in Chapter 2, one can obtain the following immature
scheme.

vMT,.) =g and o"(t;,xz) = Tp[")(t;, z), (3.1.7)
where for every function ¢ : Ry x R — R with exponential growth:

Tu[u](t,):=E [¢ (t+ 0, X17)| + hF (b2, Duws it + b)), (3.1.8)
th = (Dgl/% Dflﬂ/% D%ﬂ/]) )

where
Dy(t,z) = E [w(t + h, XPPRYHP(E, x)} k=0,1,2, (3.1.9)

where

1 WaWE =Ry
o —_— 0 .

Hy =1, H} = (o7) s

HS = (O‘T)
The details of approximation of derivatives with Hermit polynomials can be found
in Lemma 2.1 in Chapter 2.

For the above scheme, there is an obvious extension which could be done im-
mediately by the following assumptions analogous to Assumption F in Chapter 2,
ie.

Assumption F (i) The nonlinearity F is Lipschitz-continuous with respect to
(x,7,p,7v,¥) uniformly in t, and |F(-,-,0,0,0,0)|ec < 00;
(ii) F is elliptic and dominated by the diffusion of the linear operator LX , i.e.

V,F<a on RIxRxR?!xS;xCy (3.1.10)

(iii) Fp € Image(F,) and |F,JF; F,|_ < +oo.
We remind that the non—local non-linearity F is called elliptic if

1. F is non—decreasing on the second derivative component, i.e.
F<t7xarap7’717¢) SF(t7$7r7pa727w) for 71 S’Y?

2. F is non—decreasing on the non-local component, i.e.

F(tvwar7p777¢1) S F(t7x7rap7fy7w2) for 1/]1 S wQ-
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Then, we have the following Theorem.

Theorem 3.1.1 Let Assumption F hold true, and |u|i, |o)1 < oo and o is invert-
ible. Also assume that the fully nonlinear PDE (3.1.1) has comparison for bounded
functions. Then, for every bounded Lipschitz function g, there exists a bounded
function v such that

vt — locally uniformly.

In addition, v is the unique bounded viscosity solution of problem (3.1.1)-(3.1.2).

The proof is an straight forward implementation of the Subsection 3.2 of Chapter
2.

Example 3.1.1 Let v be a finite positive measure and F(t,z,r,p,v,v) =
G(t,z,7m,p, 7, [ga V(@ +0(t, 2, 2))((t, z,2)v(dz)) for some function G such that As-
sumption F is valid for F'. Then, the above Theorem is applicable. O

However, in the rest if this Section, we show that there are many interesting appli-
cations for which Theorem 3.1.1 fails to provide the convergence result. One of the
major class of fully non—linear PDEs is the class of HJB equations which come from
stochastic control problems arising in many applications including finance. The
non-linearity of HJB equations do not satisfies Assumption F in general. Even for
local PDEs of HJB type, Assumption F is not valid, because F' is not uniformly
Lipschitz with respect to . In addition, when the Lévy measure v is an infinite
Lévy measure, there is no chance for £’ to be uniformly Lipschitz with respect to .

The other problem which occurs in many applications is the lack of explicit form
for non-linearity F. We present the following example in order to mention this
problem.

Example 3.1.2 Suppose that we want to implement the scheme for the fully non-
linear equation:

—v; — F(z, Du(t, ), D*v(t, x),v(t,")) = 0
o(T,) = g()

where

F(z,p,v,%) = sup {Ee(p,’y)-i-/ 1/1(x+92)y(dz)} (3.1.11)

feR .

L%(p,n) = 6Obp+ %QQaQ’y (3.1.12)

I(x,)? = Y(x + 02)v(dz). (3.1.13)
R

This fully non-linear equation solves the problem of portfolio management for one
asset in the Black-Scholes model including jumps in asset price. For the sake of
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simplicity, for the moment we forget about infinite activity jumps. Observe that if
v =0 (the asset price never jumps) then F becomes of the form:

1
F(z,p,v,¢) = eselﬁgp {9bp+ 292a27},
+

which could be given in explicit form by:

_ (bp)?
2a2v’

F(x,p,v,7) =

and the scheme could be eastly implemented as in Chapter 2 and even for more
complicated examples (see Section 2.4). But, when v # 0 (jump do exists), the
explicit form for F is not known and the supremum should be approzimated. This
problem is in common with other numerical methods for fully non—linear PDEs e.g.
finite difference.

Although his problem is obviously beyond the subject of this thesis, we address
it here in order to mention that why we provide MC(Q in Section 3.2 to approximate
the integral inside the supremum. More precisely, when there is no explicite form
for the non-linearity, one has to calculate the Lévy integral inside the supremum
for each 6 and then, apply some numerical methods to approximate the supremum
over all possible 0s. Therefore, we proposed a Monte Carlo Quadrature method
to approximate the integral in a purely probabilistic way. The MCQ could be
considered independently in other applications.

Now, suppose that v is an infinite measure and therefore in Example 3.1.2,
(3.1.13) should be written of the form

I(x,v) = / (¢(x +0z) — P(x) — Ly <y 0DY(x) - z) v(dz).
In this case, there are two ways to treat with singular Lévy measure; one is to
truncate Lévy measure near zero (as we did for discretization of X) and the other
is to approximate infinite small jumps by a Brownian motion. In both cases, the
general form for the approximate F' is

1
Fi(x,r,p,v,%) = sup {c,ir + 0bp + 592(127 + / (x4 Hz)y(dz)} )

0cR {lz[>k}

where

Cr :—/ v(dz) and b, := b/ zv(dz).
{lzI>r} {12]2]>r}

Examining the assumptions of Theorem 3.1.1 to function Fj;, one can easily check
that derivatives of F}, with respect to r, p and ¢ blow up to infinity as x vanishes
which destroys the convergence result. To overcome this problem, we will show that
k could be chosen dependent on h, so that the corresponding scheme satisfies the
requirements of [6] for the proof of convergence.
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Thus in Section 3.3, we will introduce the modified scheme (3.3.3) based on the
approximation of non—linearity F' obtained from truncation of infinite Lévy measure
and MC(Q) in Section 3.2 and then provide asymptotic results like in Chapter 2 for
non—local case.

3.2 Monte Carlo Quadrature (MCQ)

In this section, we propose a Monte Carlo method the value of the following Lévy
generator:

I[el(z) = /Rd (o (= +n(2)) — @(x) = L. j<ayn(z) - Do(@)) v(dz). (3.2.1)

The method is a pure Monte Carlo method to approximate (3.2.1) and, therefore
could be used in the approximation of Lévy integral inside the scheme (3.3.3). Be-
cause, the result of this section is independent of the numerical scheme (3.3.3)
introduced in this Chapter, one can read it independently from other Section.
Through out this Section, we drop the dependency with respect to (¢,x) or other
variables and for the sake of simplicity and just write n(z).

Notice that in order for (3.2.1) to be well-defined for regular functions, we impose
the following assumption on #:

|z| A1

for some constant C. (3.2.2)

We present MCQ in three cases with respect to the behavior of Lévy measure near
Zero:

e finite measure; f{IZ\<1} v(dz) < oo,
e infinite measure;

— case [: f{|z|§l} In(2)|v(dz) < oo,
— case II: f{|z\§1} In(2)|?v(dz) < oo.

3.2.1 Finite Lévy Measure

When Lévy measure is finite, we choose x = 0. In this case, we introduce Lemma
3.2.1 which proposes a way to approximate the Lévy integral of general form:

| ela+ e, (323

*

and then we use this Lemma to approximate the Lévy infinitesimal generator (3.2.1).
Let J be a jump Poisson measure with intensity given by Lévy measure v, and
{N¢}t>0 be the Poisson process given by N; = fg Jra J(ds,dz) whose intensity is
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A= [pav(dz). By (3.1.6), we can write X® by

N
XP = x+pot+oWi+ Y n(Z) (3.2.4)
=1

where Z;s are i.i.d. random variables with law $v(dz). We also introduce a Lévy
process Y; by

Ny
> ). (3.2.5)
=1

Next Lemma shows that (3.2.3) could be approximated by a Monte Carlo formula
purely free of integration.

Lemma 3.2.1 Lei

(o) (z) = E

[ e+ et (326)

*

Then, for every bounded function ¢ : R* — R:

@) = FERRDY

Proof. For the sake of simplicity, we just concentrate on the jump part of process
X* and without loss of generality, we write X¥ = 2 + Zl . n(Y;). The right hand
side can be expressed as:

(AR)"

n!

E[go(Xif)Yh} - *”LZE[ (X2) Yh|Nh_n}

Then by (3.2.4)~(3.2.5),

E[SO(XZ)Yh} = e‘AhAhiE ¢<l‘+én( )(ZC >] h);”
¢z

eofen)es

Notice that in the above expression, the summation starts from n = 1 because
Y;, = 0 when Np, = 0. Because Z;s are i.i.d. one can conclude that,

Y E [tp (:c + Zn(&-)) ((Z))| = nE [w (m + Zn(&-)) (2,
Jj=1 i=1 i=1

Then, one can write
=E [ (0(2) + X)) C(2)INy = n = 1]

@ (cc +n(Zi > 77(&)) ¢(Z1)

=2

E
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where Z is dependent of Z;s but has the same law as Z;s. Therefore, we can conclude
that:

> n—1
E [SO(Xfo)Yh] = e Mah E E [gp(n(Z) + X}f)((Z)‘Nh =n— 1} Ei\bh—) 1)!,
n=1

But, we know that

Therefore,
E[e(Xi)Ya] = ME[p(m(2)+X7)(2)).

Because the density of Z is @,

E [@(X,f)Yh] — IE

JRCCE Xﬁx(z)du(z)] .

*

O
In the light of Lemma (3.2.1), we propose the following approximation for (3.2.1):

Tll(2) = 7" — () /

R¢

d) — Dpla) - [ n(zwde).

R¢

Next Lemma provide error bound for this approximation.
Lemma 3.2.2 For any Lipschitz function ¢ we have:

(Zn —D)[@llse < CVAIDP|oo. (3.2.7)

Proof. As a direct consequence of Lemma (3.2.1), ﬁg’l = %E[gp(f(,’f)Nh] Therefore,

one can conclude that,
(T-Tllle < CIDYIE |IXf — 2] .
So, because

E [])A(fj - 1L'|} < C (h /]Rd In(z)|v(dz) + \/ﬁ> , (3.2.8)

which provides the result. O
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3.2.2 Infinite Lévy Measure

In the case of singular Lévy measure, we truncate Lévy measure near zero and
reduce the problem to a finite measure. In other words, for any x > 0 we have the
truncation approximation of integral operator (3.2.1).

Tigl@) = /{ (0 (2 +1(2)) — (@) — Lyyeryn(z) - Do(e)) v(dz).

|z[>~}

Then, we use Lemma (3.2.1) to present the MCQ approximation for (3.2.1).

Tonlel(x) = ﬁ:,z;,i—so(x)/ () /{ n(t,z,2) - Dp()du(2),

{Iz[>~} 12[z|>k}

where by Lemma (3.2.1)

ol = /{ oy Ptz 2)elde) = WE [N
Z|>K

)

Following Lemma provides the error of MCQ approximation of (3.2.1) in the case
of infinite Lévy measure.

Lemma 3.2.3 Let function ¢ be Lipschitz.
1. 1f f{|z\g1} |z|v(dz) < oo, then

(Tt — Dl < CIDEL (Vﬁ + /{ |zru<dz>> L (329

0<|z|<k}

2. If f{|z\§1} |z]2v(dz) < oo, then

— zlv(dz 2 00 2|%u
(T = D)oo < c(|Dso|oo(¢E+ ) len(dz)) + 1D /{ L n}w@m
Proof.
1. Notice that,
(T = Zew)llle < (T = Z)leloe + (T = Zun) [@lloo:

By (3.2.2), the truncation error is given by:

(T — Zo)[glloo < 21Dl /{ NCIZCE! (3.2.11)

On the other hand, by (3.2.8) and (3.2.2), we observe that

C1Dglso (h /{ ) + Jﬁ)

C|D¢|os (h/{ . }z|y(dz)+m>

which together with (3.2.11) provides the result.

(Zis = Zie.n)[]loo

IN

IN
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2. By (3.2.2), the truncation error is given by:

|(Z - Z)[¢llc < CID2<ploo/ |2[*v(dz), (3.2.12)
{0<|z|<K}

for any function ¢ with bounded derivatives up to second order. On the other
hand, (3.2.8) allows us to calculate the Monte Carlo error by:

|(IH _In,h)[(/)”oo < C‘D(P‘oo (h/{‘ |Z’V(d2’) + \/E>

|z[>r}

which completes the proof. O

3.3 Asymptotic results

This section is devoted to the convergence result for the scheme (3.3.3). We first
remind the notion of viscosity solution and provide the assumptions required for
the main results together with the statement of main results. Then, we provide the
proof of the results in two separate subsection.

we need to impose the following assumption on the non-linearity F' to obtain
the convergence Theorem.

Assumption IHIJB1: Function F satisfies:

1
—a(t,z) v+ u(t,z) -p+ F(t,x,r,p,v,%):= inf Sup{ﬁa’ﬁ(t, x,r,p,)
2 a€A geB
+Ia’ﬂ(t7w,r,p,%¢)}
for given sets A and B where

1
ﬁaﬁ(t z,T,p, ’Y) ::§aa7ﬁ<t7 3}) Y+ baﬂ(t? x) “p+ Ca,ﬁ(h .’IJ)T’ + kaﬁ(t7 I’),

and
()= [ (6 (0 ) == ey, ) vid:)
where for any (o, B) € A x B, a®B, b8, B kB and n™P satisfy

aB(.
sup {|aa7ﬂ|1+|ba,ﬁ1+|Ca,ﬁ|1+’ka7ﬁ|1+M} < 0.
a€A,BeB |z| A1

The non-linearity is dominated by the diffusion of the linear operator LX, i.e. for
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any t, x, z, a and

la=a® Py <00 and 0<a®’ <a, (3.3.1)
n®P, b*P € Image(a®®) and SXI,IB) B|(ba’ﬂ)T(aa’ﬂ)_ba’ﬁ|oo <oo, (3.3.2)
acA,pE
BT (qo.B)—pa,B
[T @) b
acA,BeB LA 2]
Oévﬁ T Oévﬁ - avﬁ
sup  [17) (e )277 o _ o
a€A,BEB LA 2|

Remark 3.3.1 A function F' which satisfies Assumption IHJB1 is not well-defined
for arbitrary (¢,z,7,p,7,7%) € Ry x R x R x R? x Sy x C4. But, for any sec-

ond order differentiable function, v, with bounded derivatives with respect to x,
F(t,z,¢(t,z), DY(t, ), D*)(t, z),9(t,-)) is well-defined.

Now, we propose a Monte Carlo scheme for (3.1.1)-(3.1.2) based on the same
idea as in Chapter 2, and also the approximation of the non-linearity.

v"M(T, ) =g and v™P(t;, ) = Twn[v™")(t:, 2), (3.3.3)
where for every function ¥ : Ry x R — R with exponential growth:

Tnl)(t2)=E [ (4 R, X177 + b (8,2, D, 0t + b, ), (3.34)
Diyp = Dy, Dyth, D)

1
Fn,h(ta T, TPy, w) :ctrel,fat Zgg{Qaa,ﬁ(t7 ZE) - -+ ba’ﬁ(t, .’E) - p + Ca7ﬁ(t, .’IZ‘)T —+ ka’ﬁ(t, l‘)

T /{len}@?w;w(t’ M) =7 — 1Pt z, 2) .p> V(dz)},

and
Diy(t,z) = E [w(t + b, XEPR)ER (L, x)} k=0,1,2, (3.3.5)

where

S WA -k

Hy =1, Hp = (o7)" v

o Hé’ = (JT)
The details of approximation of derivatives with (3.3.5) can be found in Lemma 2.1
in Chapter 2. In order to have the convergence result, we also need to impose the
following assumption over Fj j,.

Assumption Inf-Sup: For any k > 0, t € [0,T], x and 2’ € R? and any Lipschitz
functions v and @, there exists a (a*, 3*) € A x B such that

2, gl(t,2,2') = T Wt 7) — T2 [l (8,
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where
PN, )(t, 1) = inf TP (t, ) — sup TPl (t,2), (3.3.6)
and
Tt ) = 5™ Do(t,a) + 6 Dolt,x) + ot 2) + KO (1, )
+/ (ﬁga’ﬁ’l(cﬁ(tw))(fﬂ) — ¢(t,x) —n™P(t,x,2) - Do(t,x))v(dz).
{l2[>x}

The first result concerns the convergence of the convergence of v*" for k appro-
priately chosen with respect to h.

Theorem 3.3.1 (Convergence) Let n, p and o be bounded and Lipschitz con-
tinuous on x uniformly on t and z, o is invertible and Assumptions IHIB1 and
Inf-Sup hold true, and assume that (3.1.1) has comparison for bounded functions.
Then, if Ky is such that:

lim kp, =0 and lim sup (9,%} h=0 (3.3.7)
h—0 h—0 '
where
0. = sup|09’|, (3.3.8)
a?/B
with

T
o = Py / v(dz) + i(bo"ﬁ—/ no"ﬁ(z)u(dz)>
{ {

|z|>K} 1>|z|>k}

(e (10 /{ o) ).

1>|z|>k}

then v*n" converges to some function v locally uniform. In addition, v is the unique
viscosity solution of (3.1.1)-(3.1.2).

Specially, if Lévy measure is finite, for the choice of ky, = 0 the assertion of the
Theorem hold true.

Remark 3.3.2 It is always possible to choose xj, such that (3.3.7) is satisfied. To
see this, notice that 6, in (3.3.8) is non-increasing on &

lim 6, = +oo and limsupf, < co.

k—0 K—00
Then, we define ry, := inf{x|6, < h™2} + h. By the definition of ry, 0,, < h™2.
Because Observe that kj, is non—decreasing with respect to h and limp_g kp = 0.
If there exists a ¢ such that, g := limy,_gkp > 0, then, for kK < ¢, we would have
0. = oo which obviously contradicts the fact that for k > 0, 6, < co. Therefore, K,
satisfies (3.3.8).
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Remark 3.3.3 The choice of k;, in the above Theorem seems to be crucial for the
convergence. Otherwise, we only have the following convergence result.

Proposition 3.3.1 Under the same assumption as Theorem 3.3.1, when Lévy mea-
sure v s infinite, for every Lipschitz bounded function g, we have

lim lim v™" = v
k—0 h—0

where v is the unique viscosity solution of (3.1.1)—(3.1.2) assuming that it exists.

Proof. . Let v” be the solution of the following problem:

—EXv“(t,x)—Fn(t,w,v"(t, z),Dv(t, z),D*v"(t, ) v (¢, D) = 0,0n[0, T)xR%, (3.3.9)
v"(T,) = g("), on € R%(3.3.10)

wheran:RJrdexRdedexCdHRisgivenby:

Fo(t,z,r,p, v, ) = ;ggzug{ﬁa’ﬂ(t,wmpw)+I,?ﬂ(t,:v,r,p,%¢)}
S

where

T2t @, p, s w):Z/{l(Tl;(ﬂf + 00t m,2)) — r = Lgayn™®(t, 2, 2) - p)r(dz)  (3.3.11)

where a®?, b*P 8 k*P and n®P are as in Assumption IHIB1. Let v*" be the
approximate solution given by the scheme (3.3.3). Let x > 0 be fixed. Because
the truncated Lévy measure is finite, by Theorem 3.3.1, v converges to v* locally
uniformly as o — 0. Let v" be the solution of (3.3.9)-(3.3.10). By Theorem 5.1 of
[13] and Assumption IHIJB1, we have:

v =" < Csup </ 1B (-, 2) goy(dz)> (3.3.12)

, 3
< C(/0<|Z<n|z|oou(dz)> . (3.3.13)

Therefore, one can choose £ > 0 so that [v" — v|s be small enough. Then, when h
goes to 0, v converges to v". a

The above limit proposes to implement the numerical scheme in two steps:

e First by choosing x so that v" is near enough to v, we obtain a uniform
approximation of v.

e Second by sending h — 0, we obtain locally uniform convergence of v*" to v*.
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Notice that the above convergence is not uniformly on (k,h). However, the con-
vergence in Theorem 3.3.1, is uniform on A when the choice of x is made suitably
dependent on h.

Remark 3.3.4 By Remark 3.7 in Chapter 2,the boundedness condition on g can
be relaxed.

In order to obtain the rate of convergence result, we impose Assumptions THJB2
and THJB2-+ which restrict us to concave non-linearities.

Assumption IHIB2 The non-linearity F satisfies Assumption IHIJB1 with B
be a singleton set

Remark 3.3.5 Therefore, when the non-linearity F satisfies IHJB2, we can drop
the super script 8 and write F' by

golte)  ulte) - p+ Fltripnw) o= it £(tanpn)
+Z(t, x,, p,’y,w)}
where
LYtz p,y) = %Tr [(ao‘)T] (t,z)y + b*(t,x)p + c*(t,x)r + k*(t, x),
and
It x,r,p,0b) = /Rd (1/) (x+n%(t,2,2)) —r — Ly <yn®(t, z, 2) -p) v(dz).

In this case, the non-linearity is a concave function of (r,p,~y, ).

Assumption IHIB2-+ The non—linearity F' satisfies IHIB2 and for any 6 > 0,
there exists a finite set {ai}f\iél such that for any o € A:

inf { |0 — 0% o0 + |0 — b% |0 + |¢* — Yoo
1<i<M;

R — ke 4 [ (0% = 7)) () } <5
R¢

Remark 3.3.6 The Assumption IHJB2-+ is satisfied if A is a compact separa-
ble topological space and o®(-), b*(-), and ¢*(-) are continuous maps from A to

1
CbZ’l([O,T] x R?); the space of bounded maps which are Lipschitz on 2 and %f
Holder on t and n®(-) is continuous maps from A to {cp 1 [0,T] x R x R? —

R“Rf lo(-, 2)|2 v (dz) < oo}.
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Theorem 3.3.2 (Rate of Convergence) Assume that the final condition g is
bounded and Lipschitz-continuous. Then, there is a constant C > 0 such that

e under Assumption IHJB,
v— vl < O (hi 102 + he ™3 + hi0, + hy/B, + h™ T f{|z|<ﬁ}|z|21/(dz)) .

e under Assumplion IHJB2+,
—C (h1/10 + R150,, + hy/B, + h™ 1o szKN}]z\QV(dz)) < — vt

In addition, if it is possible to find Kk such that

lim kp, =0, limsup hieﬁh < oo and limsup h2 / 12)?v(dz) < o£3.3.14)
h—0 h—0 h—0 0<|z|<kp,
then, there is a constant C > 0 such that
o under Assumption IHJB, v — vl < ChY/A,

o under Assumption IHJB2+, —ChY/10 < v — yfinh,
Example 3.3.1 For the Lévy measure
v(dz) = 1Rg|z\_d_1dz,

one can always find Ky, such that the condition of Theorem 3.5.2 is satisfied. In the
other words, it 1s always enough to choose Ky such that

lim sup h_%/@h =0.
h—0

3.3.1 Convergence

We suppose the all the assumptions of Theorem 3.3.1 holds true throughout this
subsection.

We first manipulate the scheme to provide strict monotonicity by the similar
idea as in Remark 3.13 and Lemma 3.19 in Chapter 2. Let u*" be the solution of

uMT, ) =g and u™(t;,x) = Tpplu™"(t;, x), (3.3.15)

where

TynlY](t z):=E [w (t + h, X;"”’“)} + BF o, (t, 2, Dpab, (t + b, ) (3.3.16)

and

_ 1
Fron(t,2,7,p,7, ) =sup i%f{ 5™ T (¢ 4 B)r 4 TR (1)
(e}

+/{ CANIOETES FRULLE -p)V(dZ)}'

2|2k}
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Remark 3.3.7 Assumption Inf—Sup is also true if we replace j,.?’ﬂ by
- 1
TEPW(t,w) =5a™7 - D2o(t, 2) + 67 - D(t, ) + (¢ + 0x)o(t, 2) + TR (1, )

T /{ (7" ({1, (@) — ot 7) — 11,2, 2) - D(t, 2))w(dz).

|z[=r}

The proof is straight forward.

We have the following Lemma which shows that for proper choice of 6, the
scheme (3.3.15) is strictly monotone.

Lemma 3.3.1 Let 0, be as in (3.3.8) and ¢ and ¥ : [0,T] x R — R be two
bounded functions. Then:

o<ty = Tunle] <Tenld]

Proof. Let f := 1 —p > 0 where ¢ and v are as in the statement of the lemma. For
simplicity, we drop the dependence on (¢, ) when it is not necessary. By Assumption
THJB1 and Lemma (3.2.1), we can write:

Ty n[¥] — Teplo] = E[f(t + h, Xp)]

+h (inf sup JP[9](t + h, z) — inf sup TP (@) (t + h, x)) ,
* B * B

where q/b\(t,m) = IE[gb(t,X,’f)] for ¢ = ¢ or 1. Therefore,
Tn0] = Tunle) = E[f(t+h, Xn)] + h®20[, B (t + by, 2),
where éﬁ’ﬁ is defined by
e[, ¢l(t, @) = inf Tt ) —Slépjf?’ﬁ[w](tax')-
By Assumption Inf-Sup, there exists (a*, 5*) so that
Tonlt] = Tonlel 2 BLA(+ b X))+ 4 (TN +h,2) = TERE+Rz)
Observe that by the linearity of J&' B , one can write:
TG+ ha) = B[Ol +h, X0

By the definition of j,?ﬁ and Lemma 2.1 in Chapter 2,
J— — A~ o ﬁ* a* 5* Ty—1 Wh
T [U]-Tnle) 2 B[ F(00) (14 h(c + . 4+077 - (o) 50

1 e g L WRWE —hly s
+ 5 (o) T 1)>+fw2 ’1(f)],
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where bgﬁ = b0 — f{1>|z\2n}naﬂ(z)y(dz) and C?ﬁ = — f{|z|25}y(dz)'

Therefore, by the same argument as in Lemma 3.12 in Chapter 2, one can write:

Ty

)

— EeS ]. * * OZ* * *
nl] = Tunlel > E[f(Xh) <1 =5 a T  h (|47 P+ 0,

1 * * * *\ Oé* * n%
- T ) e ),

where

Ot* * ]_ Oé* * _ ]_ Oé* * Oé* *
AXPT 2 (o B2 T 1Wh+§((a BYY2p0787  (3.3.17)

Therefore, by positivity of f and Assumption IHJB1, one can deduce:

Tt~ Toalel 2 HE|F(R0) (k4 60 = 4057027 )|

By the choice of 6, in (3.3.8), we have

Tonl] = Tenle] > 0.

Then, sending € to zero provides the result. O

The following Corollary shows the monotonicity of scheme 3.3.3.
Corollary 3.3.1 Let ¢,v: [0,T] x R? — R be two bounded functions. Then:

02h2 1,2,k
p <t = Tunlp] < Tual] - ~5—e ""E[(¥ — )(t + b, X)),

In particular, if Ky, satisfies (3.3.7), then
o<t = Tunle) < Tu,nlv] + CRE[W — @)(t + b, X"

for some constant C.

Proof. Let 6, be as in Lemma 3.3.1 and define ¢, (t,z) := ef(T—1)

V(t,z) := (T4 (t, x). By Lemma 3.3.1,

o(t, ) and

Tn,h [90;4] < Tfe,hw}n]-

0x(T=1) e have

By multiplying both sides by e~
(e—9~h(1 +0,h) — 1)1@[@(75 + hy X555 4 T, )
< (1 + Och) = 1) B[t + b X57)] + Talul.
So,

Tunlel < (€7 (U+0uh) = 1) B — @)t + b X175)] + Ty,
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But, e %"(1 +60,.h) — 1 < —@e‘aﬁh. So,

02h?

Toilel < M — )+ b KE)] + Toalu)
which (3.3.7) provides the result. O

K,h

In order to provide a uniform bound on v*", we bound u®" with respect to 6,

as in the following Lemma.

Lemma 3.3.2 Let ¢ and ¢ : [0,T] x RY — R be two L>®—bounded functions.
Then

I Trnle] = Ton[Yllos <l — Yoo (1 + (C + 6,)h)

where C' = sup,, g|c® Bloo. In particular, if g is L°—bounded, for a fized r the family
(u™P(t, )y defined in (3.3.3) is L®—bounded, uniformly in h by

(C + |gloo)e HO=IT1).

Proof. Let f:= ¢ —1. Then, by Assumption Inf-Sup and the same argument as
in the proof of Lemma 3.3.1,

Tonle] - Tonld]<E [f(f(h) (1 —a a4 (AP 4 e 10,

* * * T * Q%
vt = (0 [ ) @)
{lz |>H} {1>[2|2x}

< /M;; ) )+ )|

where A‘;*”g* is given by (3.3.17). On the other hand,

] <1k [ v

|2|=r}

Therefore ,
T,{yh[(p] — Tﬁ,h[¢] S ’f’ooEUl — a—l . aOé*,ﬁ* + h<‘Az*’ﬂ*|2 + Coﬂﬁﬂ* + QH

A e e - )]

By Assumption THIJB1 and (3.3.8), 1 —a~'-a®%" and

* * * * * * T * * * * * *
O g l<ba 8 _/ oo (z)zx(dz)) (™" )= (ba 3 _/ oo (z)y(dz)>
4 { {

1>|z|>k} 1>|z|>k}
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are positive. Therefore, one can write

Tl ~ Toalt] < o1 a4 R(BAT P4 10, (339

1 . e . o T * Q% * 2% * 3%
— — (v —/ T (2v(dz)) (@) (57 —/ 07 (2)v(dz) )
4( {1>]2]>K} ) ( {1>]2]>k} ))

But, Notice that
E[AS 2] = hlat . o

+i(ba*’5* —/{ na*’ﬁ*(z)y(dz))Tao‘*’B*il(ba*’ﬁ* —/{ na*’ﬁ*(z)y(dz)).

1>|z|>k} 1>|z|>k}
By replacing E[| A" |?] into (3.3.18), one obtains

[floo (L4 R(c™ 7" +6))
[floo (1 + (€ + 6,)h),

Tn,h [4,0] - T/-c,h[w]

IN A

with C' = sup,, 3 |c*P| . By changing the role of ¢ and 9 and implementing the

same argument, one obtains

[ Tunle] = Teplt]l . < [floo(l+(C+0:)h).

To prove that the family (u"");, is bounded, we proceed by backward induction
as in Lemma 3.14 in Chapter 2. By choosing in the first part of the proof ¢ =
@™ (t;y1,.) and ¢ = 0, we see that

W5ty oo < ACEP T w5 (111, ) oo (1 + (C + 0,)h),
where C := sup,, 4 |k®P| . Tt follows from the discrete Gronwall inequality that

W (t, Yoo < (C(T — t;) + |gloo)e CHONTt),

Define

,l—)n,h —0.(T—1)

=e u™h, (3.3.19)
Next Corollary provides a bound for v*" uniformly on x and h.
Corollary 3.3.2 %" is bounded uniformly on h and r, and
jooh — 5%k < KO2h  for some constant K.
If also, Ky, satisfies (3.3.7), then

lim [v0h — el
h—0
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Proof. By Lemma 3.3.2 for fixed x, we have:
W, Yoo < (T |gon)elCHDT—),
Therefore,
0"t o < (O |gloc)e®T 0.

For the next part, define @*"(t, z) = e?~(T=y"" (¢, ). Direct calculations shows
that

a™" = (1 — 0,h)E {a"’h (t + hX}fL“)} +hFep (t,x,Dha”’h,ﬂ“’h(t + h, -)) .
By an argument similar to Lemma 3.19 in Chapter 2, we have

1
[(uh — @MY (t, )] < 502h2|a"’h(t + By )oo (3.3.20)
+(1 4 (C 4 0,)h) (™" — @MYt + h, )|oo,

where C is as in Lemma 3.3.2. By repeating the proof of Lemma 3.3.2 for 4", one
can conclude,

fch

(@t Yoo < (O + Igloa)e @01 4 =

).

T—t)

So, by multiplying 3.3.20 by efx( , we have

1~ K
(=)t < 2CO2CT0( 4 P

+e (L4 (C + 0)R)| (0" = o) (E + Dy ) oo,

)e—e,qh

for some constant C. Because e~ %<"(1 + (C + 0,)h) < e one can deduce from
discrete Gronwall inequality that

’(T)K’h_vmh)(t?')‘oo < Kezhﬂ

for some constant K independent of x which provides the second part of the
theorem. O

We continue with the following consistency Lemma.

Lemma 3.3.3 Let @ be a smooth function with the bounded derivatives. Then for
all (t,z) € [0,T] x R4:

e(t',2") = Typle + @] (', 2")
h

lim
(t 2")—(t,2)
(h,c)—(0,0)

t/+h<T

= — (LXp+ F(-, 0, Dp, D*p,¢(t, ")) (t,x).
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Proof. The proof is straightforward by Lebesgue dominated convergence Theorem.
a

To complete the convergence argument, we need to proof the the approximate
solution v"n" converge to the final condition as

Lemma 3.3.4 Let rj, satisfy (3.3.7), then 9" is uniformly Lipschitz with respect
to x.

Proof. We report the following calculation in the one-dimensional case d = 1 in
order to simplify the presentation.

For fixed t € [0,T — h], we argue as in the proof of Lemma 3.3.2 to see that for
z, 2’ € R with z > 2/

u”’h(t, x) — u“’h(t, 7)) = E[(u”’h(t + h, X’t’x) — u“’h(t + h, Xt7x/))]

+h (inf sup jgﬁ[ﬁ} (t + h,x) — inf sup j,f‘ﬁ[lff\h](t + h, x'))
> B > B

< E[(un,h(t + h’Xt,w) N u/@,h(t +h, Xt,m’))]
+h (sup j,f‘ﬁ[vj’f\h](t + h,x) — inf j,f‘ﬁ[vf"“\h] (t+ h, a;')) .
B «

Observe that by (3.3.6), one can write
Wt z) w2y < B[ (Wt b X) a4 b, X)) |
+h(<i>aﬁ[qﬁl, W (t+ by, x’)),

where ® is defined in the proof of Lemma 3.3.2. By Assumption Inf-Sup, there
exists (a*, 3*) such that

B [umh umh)(t + by @, ') = T8 [wsh] (¢ + h, ) — T8 [urh) (t + h, ).
Therefore,
uh(t, ) — uth(t, 7)) <E [(u”’h(t + h, Xt’x) — u“’h(t + h, Xt’xl))]
+h(Te )t + by @) = Tefuws P+ hya) ).
For the other in equality we do the same except that when we
uh(t, x) —utt(t,2)) < A+ hB+ hC,
where
A= B[ (w4 b, K)o, X))

th (2 R+ hyw) = T @R+ b))
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with @ (y) = u(y + 2’ — ),
B = JT (@Rt + hyx) — T urk) (¢ + ha),
and
C o= o 7 W (4 b)) (@) — o W+ b)) ().
We continue the proof in the following steps.
Step 1.

C = hE[(w(t+ h, X5) = st (4 b, X)) N

where X*% := g+ > ﬁl n® 8" (x, Z;) with Z;s are i.i.d. random variables distributed
v(dz)
as .
Ak

Step 2. By the definition of J,

1 * * * * * * * *
B = S(a® P () = a® P (@) Djur " (t 4 hoa’) + (007 (@) = b2 (2'))

xDu (t 4+ h,z') + (P (z) — P () D" (t + b, 2)
+EO0 () — kP (),

where b7 (2) = b8 (z) — f{1>|z|>ﬁ} n®P(z, z)v(dz). On the other hand,

-, W k—1
DF =E | Du""(t + h, X¥) (ha_l(z:’)) , for k=1,2.

h

So,

(') + (07 (2) 0P ("))

K

X DuFh(t + hy XE)+ (P ) — Pl )l (t + h, XF )] +FP ) — o).

Step 3. By the definition of j,f"ﬁ, one can observe that

T (4 hyw) = T @ ¢+ o)

= 50 (@0 4 B, (@)5(1) + e ()5(0)

where c}; and b} are defined in the proof of Lemma 3.3.1, and

5 = B |DFuh(t 4 h, XT) — DPu (4 b, XT)| for k=0,1,2.
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By Lemma 2.1 in Chapter 2, for k = 1 and 2

60 = B[(uw(t+h, X7) - w4, XF)) HE(E )
+u“’h(t—|—h,X}f')H,’j(t,m)< - "k(;)))}

= E[(u“’h(wrh,f(;f) ut(t 4+ b, XT)
+Duh(t 4+ h, XT) <I/Zh> o(z") (O'_k(l') - a_k(;v'))].

Therefore, one can write

A < E [(u”“’h(t +h, XT) — w4 b, X,f’))
X (1 — @ +a@ N+ he + b:m/ﬁ) ()
FROL (2 ) DUt + by X o (2!) (07 (@) — o7 ()
+a* () Durh (t + b, XE)WhNo(2') (0~ 2(z) — 0—2(95/))} ,

where a* := %aa*’ﬁ*a a* = %a_laa*’ﬂ*; =P et =" 40, and b = b2 P
Step 4. By dividing both sides by x — 2/ and taking the limit we have:
Duh(t, z) < E{Du“’h(t + h, X¥) ((1 + hjil, + Vho'N + Jﬁ,h)
X <1 —a*+a*N% 4 het + b:N\/E)
! 1, .
+h((br) - 62 ) + (5(09 By g1 qoB 2 )\FN)
o

DUt (4, X7 (1 Vot j;’jh) N;;} + Ot TDp,

where J, j, == f{‘z|>ﬁ} n(2)J([0, ], dz), j;’:h = f{|z|>ﬁ} 7' (2)J([0,R],dz), and NJ is
a Poisson process with intensity A := f{|Z|>f<} v(dz).
Let Ly := |Du®"(t,-)|so. Then

E[Du“’h(t +h, X7 (1 +uth j;fh> N;;] < LegnCh (A + X9,

where \* := f{‘z|>n} n™*(2)v(dz). Let G := N + b%a\/ﬁ By the change of measure

dQ (b o)? bro
dIP)._exp< Th+ > VhN ),
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we have G ~ N(0,1) under Q and one can write

Duth(t,z) < E° [C‘gm” Mt + h, XF) (( + (i, — 67”) +Vha'G + Jn,h>
x(1-a"+a"G? + (e - (6“2”)2))
+h((b2) — bi = %") + <%(aa*”8*)’0_1 o8 2 )\F c)]

+LisnCh (Ao + X7) + CeP*T=Dp,
Step 5. Notice that 1 — a* + a*G? + h(c} — @) is positive and therefore, one

can take as a density for the new measure Q%. So,

_Z
EQ[Z]

dP
:‘i,h < QZ
Du™"(t,z) <E [d@

(o0 -2 - 2) o (o - ) )

+ L nCh (A + A2) 4 C5 T,

b -
Duh(t + h Xh)<(1 + (i, — “70) +Vho'G + Jﬂ,h>

So,
Duh(t, z) < EY [(jg) (Du™(t -+ h, X7))%|*

XE@Z[((1+h(g;—b )+\faG—|—J,.ih>

E3
w2 (0 =82 = B2) 4 (S o -0 ) i)
+LinCh (A + NF) + CeP™ =0,

Notice that

EQZ[@S) (DuM (e + 0 X707 < L2 es( (Bi0)h).

On the other hand,

o [dQ ((1 +h(it, — 50 4 VRo'G 4 h) + Z—l(h((b*)’ - b”;i - bz")

dP 2 >
+ Qoo - ) i)
= E[Z«l + h(fi, — b:;) +Vho'G + J, h) +z7! (h((bj;)’ - bﬁj _ bﬁ;’)

(g Yot a0 ) VRG) )]

By calculation of the right hand side of the above equality, one can observe that all
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the terms of order v/h vanish and we have:

E? [d@((l ©h(E — 57 4 Vho'G h) - Z‘l(h((b*) - b**/ - b’i)

dPP 2 2
1 * Q% *
+ (G - 5)vie))
* (bZ)Q * / *\/ b: ' b* 2 %

< _ _ _

< (1+h(c + b — 0 — Bioo’ + (5) +O(h6? )))
Therefore, by the choice of kp, for h small enough we have

b *x _/ b:

Li < Loin exp( h(C + Ok, — brn o0’ + (bkp) — 227 5" o mh))

+C e (T,
< Lyypexp (h(C + Hﬁh)) —I—Ceg'fh (T*t)h‘

By discrete Gronwall inequality,
Li < (|Dglos + C(T —t))el0rn T,
Therefore, by definition of 7", we have

[De "y < ¢“TTI(|Dgloe + C(T — 1),

Lemma 3.3.5 Let k), satisfies (3.3.7), then
lim 0" (t,x) = :
lim o™(t ) = g(x)

Proof. We follow the same notations as in the proof of the previous Lemma and
write

Wt ) = B w4, X50)| 4 hinf sup TR (¢ + by o)
“ B
< E [u""h(t + h, X”)} + hsup jgﬁ[ﬁ] (t+ h,x).
B

Observe that by (3.3.6), one can write

Wt ) < B[us (e X50)| 4 h (85 s, 0)(+ by w,a!) ) + hsup |2,
a7ﬂ

By Assumption Inf-Sup, there exists (a*, 5*) so that
wh(t,2) < E [u"’h(t +h, th’v)] RO [ur Rt + b, x) + hC,
where C := sup, g | f*#|s. Therefore, for any j =4,--- ,n — 1 one can write

wh(ty, XY < EQ[ h(t;0q, XD +1)(1 — 4} +aiG? +h0*>} el
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where a7 = a*(tj, X t“m) C; = (g — (b 0) )(tJ,th’x) and Gjs are independent
standard Gaussian random varlables under the new equlvalent measure Q. By the
consecutive use of the above inequality and the fact that 1 —a} + CL;TG2 + hC7 is

positive, one can write

n—1 n—1
u (i, @) < E@[ X1 (1 —ai alG? + hc;)} +ChY et
i=i —

Notice that in the above inequality we used the fact that
EP[1-a) +ajG2+hC;| = 1+ hEQ[C]] <1+ ,h.

On the other hand, Z = [T}=) (1 - a} + a}G2 + hC} ) is positive there for 77,

could be considered as a density of a new measure Q% with respect to P. Therefore,
ne
uh(t;, ) < E@[Z}EQZ {g(XtT‘m)} +Ch Z exti,
By the definition of %", one can write

n—1
0ty 1) < e 0T tIEQ[Z)EQ” [g(X;i’I)] + e 0 TICR Yy " efnts,

Therefore,

0P (1, 2) — g(x) < e TIRSZIES [Jg(Xr7) - g(a)]] + Cly(@) (T — ) + e -T2 E(T -

Notice that g(Xt“m) — g(x) converges to zero P-a.s. and therefore Q% a.s. as
(tiyh) — (T,0). So, by Lebesgue dominated convergence Theorem,
limsup o (t;,z) — g(x) < 0.
(ts,h)—(T,0)
By the similar argument one can prove that:
liminf " (t;,2) — >0,
T e) o) 2

which completes the proof. O

Remark 3.3.8 By extending the above proof as in the Lemma 3.17 and Corollary
3.18 of Chapter 2, one can proof that

0"t (tx) — g(a)| < C(T —t)2,

Also, observe that by the similar argument as in Chapter 2, v*»"

is %belder ont
uniformly on h and x.

So, the approximate solution "+ both satisfies the requirement of the conver-
gence established in [6] and converges to a function v locally uniformly. Moreover,
v is the unique viscosity solution of (3.1.1)—(3.1.2). So, by Corollary 3.3.2, the same

assertion is true for v™".

).
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3.3.2 Rate of Convergence

The proof of the rate of convergence for the non—local scheme is the same as the
local case; Subsection 2.2.3. More precisely, The generalization of the method we
used in Subsection 2.2.3 for the rate of convergence to non—local case, is developed
in [12] and [13] where the scheme needs to be consistent and satisfies comparison
principle. Therefore in this Subsection, we only present the results which enable us
to apply the generalization in [12] and [13] to the scheme 3.3.3.

Before, providing consistency and comparison principle result for the scheme
(3.3.15), we show that truncation error could be handled by the Theorem of con-
tinuous dependence for (3.1.1)—(3.1.2). More precisely, if v and v" are solutions of
(3.1.1)-(3.1.2) and (3.3.9)-(3.3.10), respectively; then by Theorem 5.1 in [13]

v—1" < C / |zv(d2)
0<|z|<k

Therefore, By choosing xj, so that f0<‘z|<nh |z|2v(dz) < C’h%, one can just concen-

D=

trate on the rate of convergence of v*" to v".

We shift to 7%»" which is is derived from the strictly monotone scheme (3.3.15)
and find the rate of convergence for ", The following Corollary shows that this
shift do not effect the rate of convergence.

Corollary 3.3.3 Let F' which satisfies IHIB1, and F(t,z,0,0,0,0) = 0. Then,
ol — yrh| < ChoZ, .
In addition, if kp, is such that

3
lim sup hiﬁzh < 00,

h—0
then
‘@H}Lah _ U“ihzh‘ S Chi
Proof. The proof is straightforward by the proof of Lemma 3.3.2. O

Form now on, we concentrate on the approximate solution " which is obtained
from strictly monotone scheme 3.3.15 through (3.3.19). In order to provide the
result, we need to use the consistency of the scheme for the regular approximate
solutions. Then, the comparison principle for the scheme provides bounds over the
difference between v and regular approximate solutions. Let

w(ta 'T) - Tn,h[w] (ta :ﬁ)
; + LXp(t, x)

+FH(‘7 1/}7 D¢7 D2¢7 1/’(@ ’))(t7 (L‘)

R,{’h[l/}](t, (E) =
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Lemma 3.3.6 For a family {¢:}o<c<1 of smooth functions satisfying

‘GfoDﬁgos < Ce' 7208 for any  (By, 8) € Nx N\ {0},  (3.3.21)

where |31 := 2?21 i, and C > 0 is some constant, we have:

|z|<r}

Renlpell, < R(hye) = C <h5—3+heﬁs—1+h\/é +e71 / |z|2u(dz)>,
{

for some constant C > 0 independent of k. If in addition

lim sup hﬁzh < oo and limsupVh 12)?v(dz) < oo,
et h—0 {lzl<r}
we have:
Repnleell, < R(hye) = C (he ®+Vhe™).

Proof. R, [pc] is bounded by

1 ZT,K 1 (6% T,k
sup{ \E[ﬁ(gog(t + R X" = et @) + ST [a (D*@e(t+ h, X; ™) = D*ec(t, x))}
+b%(Depe(t + hy X;™") = Depe(t, ) + (0 + ) (pe(t + by X5 ™%) = e(t, )

+I%pel(t, x) — I el (t + A, az)} ‘}

For the Lévy integral term by Lemma 3.2.3, we have:

Toe] (1. 2) — Tolpe(t 4+ ho)] < c(\Dsoaoowﬁ h /{ )

MDDl [ \z|2v<dz>)

{lzl<x}
< C <h6_3 + hm+5_1/ |z|2u(dz)> .
{lzl<x}

By the same argument as Lemma 3.22 in Chapter 2 all the other terms are bounded
by he™3 except

On (pe(t + b, X1°%) = (b))

which is bounded by #;,he~!. The second assertion of the Lemma is straightforward.
a

Next we need to have maximum principle for scheme 3.3.15. Note that Lemma
3.21 in Chapter 2 holds true for scheme 3.3.15 with 5 = 6, +C where C' = sup,, |c®|.
Therefore, Proposition 3.20 in Chapter 2 holds true for non-local case. More pre-
cisely, we have the following Proposition.
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Proposition 3.3.2 Let Assumption IHIB1 holds true, and consider two arbitrary
bounded functions ¢ and i satisfying:

(e —Thlgl) < g1 and b (¢ = Th[¥]) > g2

for some bounded functions g1 and go. Then, for every i =0,--- ,n:

(¢ —¥)(tie) < ™D (p =) (T, )]oo + (T = )P +OAT (g — g2) |

where C' = sup,, |c“|.

The approximation of the solution of non—local PDE by the Krylov method
of shaking coefficients and switching system is developed in [12] who provides the
result of rate of convergence of general monotone schemes for the non-local PDEs
satisfying Assumption IHJB. In the regularity result for (3.3.22), provided by [13], it
is proved that (v') is Lipschitz with respect to  and locally 1/2-Hélder continuous
with respect to t. However, in the case of the scheme (3.3.3), we need the solution
of (3.1.1)~(3.1.2) be uniformly 1-Halder continuous on t. It is because we need the
regular approximate solutions obtained from Krylov method and switching solution
to satisfy (3.3.21). Therefore, in the present work we need to rebuild Lemma 5.3 in
[13] under the Assumption IHJB to obtain global 3-Hblder continuous on ¢ for the
solution of the switching system.

Therefore, we continue this subsection by introducing the switching system of
non-local PDEs with the regularity result needed for the solution of this system.
Let k£ be a non-negative constant. Suppose the following system of PDEs:

max {—,CXUi(t,:U) — F; (t,x,vi(t, ), Dv;(t, ), D*v;(t, x), v(t, )) , U — /\/liv} =0

vi(T,-) = gi(°), (3.3.22)

where i =1, --- , M and
Fi(t,z,rp,y, ) = inf {L%(t 2,7 p,7,7) + It 2,707, 9))

1
LYtz p,y,y) = iTr [a®(t, x)y] + b (t,z) - p+ c*(t, x)r + k*(t, x)
Ia(t7.1‘,7“,p7’y7w) = /Rd (w (tv$+na(t7xvz)) _T_ﬂ{\z|§1}77a(taxvz) p) dl/(Z)

Mir = minr; + k.
J#i

We would like to emphasize that g;s need to satisfy g; — M'g < 0 where g =
(g1,--+ ,gnm). If for all 4, g; = g then we obviously have g; — M'g < 0.

Existence and comparison principle result for the above switching system is
provided in Proposition 6.1 [12]. Also, it is known from Theorem 6.3 in [12], that if
(vh, .-+ ,vM) and v be respectively the solutions of (3.3.22) and (3.1.1)-(3.1.2) with
A=UM, A; and A;s are disjoint sets, then

0<v'—v<Cks for i=1,---, M. (3.3.23)

The following Lemma provide the uniform 1/2-Hélder continuity for (v?).
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Lemma 3.3.7 Assume IHIB2 holds for each i and let (v*) be the viscosity solution
of (3.3.22). Then there exist a constant C' such that for anyi=1,--- /M:

’Uill < C

Proof. Lipschitz continuity with respect to z is due to Lemma 5.2 in [13]. To
obtain uniform 1/2—Hélder continuity with respect to ¢, we modify the the proof of
Lemma 5.3 in [13] by using assumption THIB2.
Fix y € R and ¢/ > 0. Let t € Ry be such that t < ¢". For each i = 1,---, M,
define:

L

Giltx) = A3 [eA“’—t)yx —y2+ Bt — t)} + Kt —t)+ A‘lg + it y)

Where L = J|v|; and A, a and  will be defined later. Then:

duiiltr) = A (AACI—yP 4 B) K
Dii(t,z) = 2ALe "V (z —y)
D*p(t,z) = ALeA DI,
So,
—Op; — Citfelg{ﬁa(ta z, i, Dy, D*;) + I°(t, @, 95, Di/)i)}

/ 1 /
= AL (AeA(t Dz —y|? + B) + K — inf {QALeA(t “DTr [a®(t, 2)]

acA

AL (8, 2) - (@ — y) + (@) + K (E2) + A§6A<t'—t>
X /Rd(’w +n%(t,z, 2) — y\Q — |z — y\Z _ 2]1{|Z|§1}77a(t7x, 2) - (x — y)) dy(z)}.

By THJB2, we can choose K and A so that,

|06%00 < K, 000 S K, Yoo < K, [0 < K, K" <A< K
|V]oo < K [17(t, 2, 2)| < K (1A [2]).
Without loss of generality and with the similar argument as in Remark 2.2.7, we

can suppose that for any «, ¢* < 0. So by choosing positive large A, there exists
non—negative constants C1, Cy, C3 and Cy such that:

~ Oy — inf {8,265, Dby, D) + T (8,60, D) }
/ A 1
> ALAV K ((K - 2) |z —y|? — Ci|z — y| + CoB — 03> —Cy.

Therefore, choice of large B and A makes the right hand side non—negative.

_81577[)1 - {La(t7x7¢iv lev DQQ;Z)’L) +Ia(ta %wi, quz)l)} Z 0.

inf
acA
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On the other hand,

Yt z) = g Nz —yl> + 271 + ' (', y).
Minimizing with respect to A,

Y(t',x) > Lz —y| + o' (', y) > o', ).

We can conclude that v; is a super solution of (3.3.22). So, by comparison Theorem
in [12],

So,

g AB(E =)+ A71) +0'(t,y) > v'(t,p).

Therefore, for A = (t' — t)_% we have
Vit y) — vt y) < CVE —1t.
The other inequality can be done similarly by choosing:
Pi(t,x) = —)\g AV —y2— Bt —t)| — K(t' —t) — A‘lg + o (', y).

O

Remark 3.3.9 Notice that all the result of switching system is correct for (3.1.1)-
(3.1.2) satisfying IHIJB2 by simply setting M = 1 and k£ = 0.

Therefore, by [12] there are regular functions w? and w¥ which are respectively
the regular sub— and super—solution of

— L5 (t,x) — Fy (t,z,u"(t,x), Du(t,z), D*u"(t,x), u"(t, ) =0, on[0,T) x R4,
UK(TF) =9, on ERd.

where

Fultsw,ropys) = inf {LY(t 2, p,7) + T2t @, p 7y, 9)}
(one can replace supinf by inf sup) where
LYtz p,y) = %Tr [aaaaT(t, z)y] + 0% (t, )p + (< (t, ) + O,)r,
and

-’Zg(t,l', r7p7’77w)::/ (1/)(55 + na(ta z, Z)) -—r—= ﬂ{\z|§1}na(t7$7 Z) p)u(dz)

{lz[>~}
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Then, by Proposition 6.2 and Theorem 6.3 of [12], Lemma 3.3.6 and Proposition
3.3.2,

(W =Mt r) < —wlf - u )t a)

< CellntC(T=t) (6 +he 3+ et + h/0, +e! / z\2y(dz)>
{

|l2|<r}
and
(Wt —uf)(tx) < (W — w4+ W — u®) (L, x)

CelOr+C(T-1) (515 +he ™ + hue ™ + h/0, + 7! / |z21/(d2)> :
{

IN

|z|<r}

Notice that v*(t,z) = e~/ (T=y"(t, z). So,

ot — gt < C (E +he ™+ et + hy/0, +e7! / ]z\Qu(dz)>
{

|z[<r}

and

ool — e < C <€§ + he 3 + h@ng_l + h\/a-f- 8_1/ |Z|2V(dz)) :
{

|z[<x}

On the other hand, because of (3.3.14) and by Lemma (3.3.2), the second part of
Theorem 3.3.2 is provided after choice of optimal €.

3.4 Conclusion

The scheme presented in this Chapter is the first probabilistic numerical method
for fully non-linear non-local problems. As in local case (Chapter 2), it converges
to the viscosity solution of the problem and a rate of convergence is known for the
convex (concave) non-linearities. Moreover, with the same argument as in Section
4 in Chapter 2, Monte Carlo approximations of expectations inside the scheme do
not affect the asymptotic results if enough number of samples would be used. The
error analysis for MC() shows that the appropriate approximation of jump-diffusion
process with compound Poisson process could be applied in discretization procedure.
On the other hand there are some features where the scheme is not implementable
in non-local case, e.g. when the non-linearity is of HJB type. This could be the
challenge of future works.



CHAPTER 4
Optimal Production Policy under
the Carbon Emission Market

In this chapter, we analyze the effect of emission market in reducing the carbon
emission through the change on production policy of the relevant firms. The firm’s
objective is to maximize her utility on her wealth which is made of both the profit of
her production and the value of her carbon allowance portfolio over her production
and her portfolio strategy. We solve the utility maximization problem on portfolio
strategy by the duality argument and then on the production by the use of Hamilton—
Jacobi-Bellman (HJB) equations!.

4.1 Small producer with one-period carbon emission
market

Let (2, F,P) be a complete probability space endowed with a one-dimensional Brow-
nian motion W. We denote by F = {F;,t > 0} the completed canonical filtration of
the Brownian motion W, and by E; := E[-|F;] the conditional expectation operator
given Fy.

We consider a production firm with preferences described by the utility function
U:R — RU{oc} assumed to be strictly increasing, strictly concave and C'! over
{U < oo}. We denote by m(w, q) the (random) time ¢ rate of profit of the firm for
a production rate g. Here m: Ry x Q x Ry — R is an F—progressively measurable
map. As usual we shall omit w from the notations. For fixed (¢,w), we assume that
the function m(+) := 7(t, ) is strictly concave, C! in q and satisfies

m,(0+) >0 and m(o0) < 0.

Let us denote by e;(q;) the rate of carbon emissions generated by a production rate
q. Here, e (.) :  x [0,T] x Ry is an F—progressively measurable map and C! in
q € Ry. Then the total quantity of carbon emissions induced by a production policy
{qt,t € [0,T]} is given by

T
EZ, ::/0 er(qe)dt. (4.1.1)

The aim of the carbon emission market is to incur this cost to the producer so as
to obtain an overall reduction of the carbon emissions.

!This work is reported on a paper co—authored with Redouane Belaouar and Nizar Touzi.
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From now on, we analyze the effect of the presence of the carbon emission market
within the cap-and-trade scheme.

In order to model the carbon emission market, we introduce an (unobservable)
state variable Y defined by the dynamics:

dYy = pdt + v dWy, (412)

where 1 and v are two bounded F—adapted processes and v > 0.

We assume that there is one single period [0, T'| during which the carbon emission
market is in place. At each time t > 0, the random variable Y; indicates the market
view of the cumulated carbon emissions. At time T', Y7 > k (resp. Y < k) means
that the cumulated total emission have (resp. not) exceeded the quotas k, fixed by
the trading scheme. Let a be the penalty per unit of carbon emission. Then, the
value of the carbon emission contract at time 7T is:

S = algyse-

The carbon emission allowance could be viewed as a derivative security defined by
the above payoff. The carbon emission market allows for trading this contract in
continuous-time throughout the time period [0,7]. Assuming that the market is
frictionless, it follows from the classical no-arbitrage valuation theory that the price
of the carbon emission contract at each time ¢ is given by

Sy = E2[Sy] = aQq [V > k], (4.1.3)

where Q is a probability measure equivalent to IP, the so-called equivalent martingale
measure, E;Q and Q; denote the conditional expectation and probability given F;.
Given market prices of the carbon allowances, the risk-neutral measure may be
inferred from the market prices. Since the market is frictionless, the value of the
initial holdings in (free) allowances, E™** can be expressed equivalently in terms
of their value in cash SyE™a*,

In the present context, and in contrast with the standard taxation (Remark
4.1.1), production firms have a clear incentive to reduce emissions as they have the
possibility to sell their allowances on the emission market. Hence, the financial
market induces a mutualization of carbon emissions, and there is no incentive to
merge for the single objective of avoiding the carbon taxes. We will see however
that large producers can have a negative impact.

We now formulate the objective function of the firm in the presence of the
emission market. The primary activity of the firm is the production modeled by the
rate g; at time ¢. This generates a gain m(¢q;). The resulting carbon emissions are
given by e;(q:). Given that the price of the externality is available on the market,
the profit on the time interval [0,77] is given by:

T T
/ Wt(qt)dt — ST/ €t(qt)dt. (414)
0 0
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In addition to the production activity, the company trades continuously on the
carbon emissions market. Let {6;,t > 0} be an F—adapted process which is
S—integrable. For every t > 0, 6, indicates the number of contracts of carbon
emissions held by the company at time ¢. Under the self-financing condition, the
wealth accumulated by trading on the emission market is:

T
0

where x is the sum of the initial capital of the company and the market value
of its free emission allowances contracts. By (4.1.4) and (4.1.5), together with an
integration by parts, the total wealth of the firm at time 7T is

X4 + B (4.1.6)

where

T T T
XjQ =+ / 0:dS;, B% = / (Wt(qt) — Stet(qt)) dt — / EgdSt,
0 0 0

and
¢
E} ::/ eu(qu)du, for all te [0,T].
0

We assume that the firm is allowed to trade without any constraint. Then, the
objective of the manager is:

v = sup{E[U(x4+B3)|: ved qeQ}. (4.1.7)

where A is the collection of all F—adapted processes such that the process X is
bounded from below by a martingle, and Q is the collection of all non-negative
F—adapted processes.

Notice that the stochastic integrals with respect to S can be collected together
in the expression of XTQ + BY. since A is a linear subspace, it follows that the
maximization with respect to ¢ and 8 are completely decoupled, this problem is easily
solved by optimizing successively with respect to ¢ and 6. The partial maximization
with respect to ¢ provides an optimal production level ¢(V) defined by the first order
condition:

(97rt

om Oer
Jq

") = 875 ). (1.1.8)

Because of the assumptions on m(.) and e;(.), we deduce immediately that qt(l) is

less than the optimal production of the firm in the absence of any restriction on the
emission, meaning that the emission market leads to a reduction of the production,
and therefore a reduction of the carbon emissions.
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We next turn to the optimal trading strategy by solving:

a

) T
supE [U <X§5’9_Eq + Bq(1)>} where B?:= / (me(qr) — Stee(qe)) dt.
0 0

In the present context of a complete market, the solution is given by:

T
(1) _ g @ _ gyt (,04Q
1:+/0 (et Ef )dStJrB = (U (y -
where the Lagrange multiplier y) is defined by:

EQ [(U’)‘l <y(1)(j§>} = 2+EQ [Bq‘“} .

Let us sum up the present context of a small firm:

e the trading activity of the company has no impact on its optimal production
policy,

e the firm’s optimal production ¢V is smaller than that of the business-as-usual
situation, so that the emission market is indeed a good tool for the reduction
of carbon emissions,

e the emission market assigns a price to the externality that the firm manager
can use in order to optimize his production scheme.

Remark 4.1.1 Let us examine the case where there is no possibility to trade the
carbon emission allowances. This is the standard taxation system where « is the
amount of tax to be paid at the end of period per unit of carbon emission. Assuming
again that the firm’s horizon coincides with this end of period, its objective is:

Vo == supE [U </0T e(qe)dt — o (Bf — EmaX)Jrﬂ

q.€Q

where E™?* ig the free allowances of the market. Direct calculation leads to the
following characterization of the optimal production level:

ome (@) _ 0et [ (0)\ no® ¢ max
(1) — a2 () [re, (8- pw)] s

where

dQ(®
dP

/ T (0) qt(O) max i
U\ [y m(q )dt—a|E} —FE

- . (4.1.10)

fO (g )dt —a | Ef —E
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The natural interpretation of (4.1.9) and(4.1.10) is that the production firm assigns
an individual price to its emissions:

(0)
S, = oEX” {]1[R+ (E; —EmaXﬂ , (4.1.11)

i.e. the expected value of the amount of tax to be paid under the measure Q(©
defined by her marginal utility as a density. The probability measure Q) is the
so-called risk-neutral measure in financial mathematics, or the stochastic discount
factor of the firm. Given this evaluation, the firm optimizes her adjusted profit
function, m¢(q) — e+(q)St;

Omy
dq

8et

0y — Z=t,0ng,.
(@) 94 (@) St
We continue by commenting on the optimal production policy defined by (4.1.9)-

(4.1.10):

e assuming that the firms know the nature of their utility functions, the system
of equations (4.1.9)-(4.1.10) is still a nontrivial nonlinear fixed point problem.

e This problem would be considerably simplified if the manager were to know
the market price for carbon emissions (4.1.11). But of course, in the present
context, this is an individual subjective price which is not quoted on any
financial market.

e The present situation, based on a classical taxation policy, offers no incentive
to reduce emissions beyond E™#*, Indeed, if the optimal production in the
absence of taxes produces carbon emissions below the level E™#% then it is
indeed the same as the business-as-usual situation. So, the taxation does not
contribute to reduce the carbon emissions. As a consequence, the only way to
benefit from having carbon emissions below the level E™#* is to merge with
another firm whose emissions are above its given free emissions allowances.
Hence, such a policy puts a clear incentive to mergers. O

The emission market provides an evaluation of the externality of carbon emissions
by firms. Given this information there is no more need to know precisely the utility
function of the firm in order to solve the nonlinear system (4.1.9)-(4.1.10). The
quoted price of the externality is then very valuable for the managers as it allows
them to better optimize their production scheme.

4.2 Large producer with one-period carbon emission
market
In this section, we consider the case of a large carbon emitting production firm. We

shall see that this leads to different considerations as the trading activity will have
an impact on the production policy of the company.
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We model this situation by assuming that the state variable Y is affected by the
production policy of the firm:

AV = (e + Bed(ar)) dt + 7dWs (4.2.1)

where § > 0 is a given impact coefficient. The price process S of the carbon
emission allowances is, as in the previous section, given by the no-arbitrage valuation
principle:

SP = aQf [Y} > k], (4.2.2)

and is also affected by the production policy q. The equivalent martingale measure

Q1 is defined by
dQ? T 1 [T
Q = exp <—/ At(qr)dWy — 2/ /\t(CIt)th) (4.2.3)
0 0

P

Fr
where A : Ry x Q2 xR, — R is an F—progressively measurable map. The dynamics
of the price process S are given by
asi
5721 = 0y (th + )\t(qt)dt) 5 t < T, (424)

where the volatility function of is progressively measurable and depends on the

control process {¢gs,0 < s < T'}. As in the previous section, the wealth process of
the company is given by:

T T T
X/:IL“!,@ =x 4+ / thSf and B% = / Wt(qt)dt — Sg«/ et(qt)dt
0 0 0

4.2.1 Large Carbon emission with no impact on risk premia

In this subsection, we restrict our attention to the case of large emitting firm with
no impact on the risk premia, i.e.

At(q) is independent of ¢ for any ¢ > 0. (4.2.5)
The objective of the large emitting firm is:
Vo(z) = sup E [U (X;’e + B%)} .
q.€9, cA

Proposition 4.2.1 Assume (4.2.5), and that the market is complete with unique
risk-neutral measure Q. Then, the optimal production policy is independent of the
utility function of the producer U, and obtained by solving:
sup E© [BL] . (4.2.6)
q.€Q
Moreover, if ¢ is an optimal production scheme, then the optimal investment strat-
egy 02 is characterized by
d d
xz0% 4 pa® — () ,92Y L go [B%@)} — EQ () FOLNATE
dP dP
(4.2.7)
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Proof. We first fix some production strategy q. Since the market is complete, the
partial maximization with respect to 6 can be performed by the classical duality
method:

d
x4 B = (U ng , (4.2.8)
dpP
where the Lagrange multiplier y? is defined by
d
EC [(U’)l (yqﬁ)] = z+E?[B]]. (4.2.9)
This reduces the problem to:
d
sup E [Uo (U1 <qu>]. (4.2.10)
q.20 dP

Notice that U o (U’)~! is decreasing and the density % > (0. Then (4.2.10) reduces
to

inf {y?: ¢ > 0}.
Since (U’)~! is also decreasing, (4.2.9) converts the problem into
sup {EQ [BL]: q € Q}.
Finally, given the optimal strategy ¢(?), the optimal investment policy is character-

ized by (4.2.8). O

In order to push further the characterization of the optimal production policy
¢?, we specialize the discussion to the Markov case by assuming that m(q) =
w(t,q), e(q) = e(t,q), and A(q) = A(t) for some deterministic functions 7, e :
Ry xR, — Rin CY(R; xR,), \: Ry x Ry — Rin C°(R,), and

aY? = (u(t, V) + Be(t, i) dt +~(t, Y,1)dW,,

for some continuous deterministic functions p, v : Ry x R — R.
The state variable E is now defined by the dynamics

dE! = e(t,q)dt (4.2.11)

which records the cumulated carbon emissions of the company. The dynamic version
of the producer planning problem (4.2.6) is given by:

T
V(Q) (t, e, y) = Ssup Eier y |:/ T('(t, qt)dt — OAE%]I{Y;>O}:| . (4212)
eeQ 77 Lt

Then, V& solves the dynamic programming equation:

oV ) 1 au

0 = — + (n— A7)V )+§'y (A%
+max {(t,q) + e(t, )V + Be(t, ) VP } (4.2.13)

q>0
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together with the terminal condition
VA (Te,y) = —aelpsg- (4.2.14)

For the moment assume that the value function V?) is smooth. Then, the optimal
strategy is given by

(1) = e ) ()

By the definition of the value function V3 in (4.2.12), we expect that

~VO(t, B, V) = S (4.2.15)
Then
om(, @) _ 9e(, @ @)y g® ya®
9 (t,qt ) = 9 (t,qt )(St—Vy (t, Ef .Y} )) (4.2.16)

Also, it is clear that V@ is non-increasing in y. Then, comparing the previous
expression with (4.1.8), it follows from the assumption on 7 and e that:

In other words, the impact of the production firm on the prices of carbon emission
allowances increases the cost of the externatlity for the firm. This immediately
affects the profit function of the firm and leads to a decrease of the level of optimal
production. Hence, the presence of the emission market is playing a positive role in
terms of reducing the carbon emissions.

The following result shows that under certain assumptions, the above formal
calculation is valid in our model.

Theorem 4.2.1 Suppose that u: is continuous and deterministic, v is constant,
Aq) = Xo, and e(q) = e1q + eg where Ao, e1 and ey are non-negative constants.
Assume that 7 is C%1([0,T] x Ry.), strictly concave in q and

on or

—(,0+) >0 d —(t, < 0.

oo(t.04) >0 and 5 (t,00)
Then V2 exists and (4.2.15) holds true. In addition, if problem (4.2.13)—(4.2.14)
has a bounded solution in C*12([0,T) x Ry x R), then there exists an optimal
production strategy satisfying (4.2.16).

Proof. The existence of V, is due to the fact that V is concave on e and Proposition
4.5.1 verifies (4.2.15).

For the last assertion of the Theorem, notice that by Lemma (4.4.1), V' is the unique
bounded viscosity solution of (4.2.13)—(4.2.14). Therefore, by the assumption of the
Theorem, V € CL12([0,T) x Ry x R) and one can use the dynamic programming
principle to deduce ¢(® obtained from (4.2.16) is an optimal strategy. O
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4.2.2 Large Carbon emission Impacting the Risk-Neutral Measure

We now consider the general case where the risk premium process is impacted by
the emissions of the production firm:

L= e <— /OTMqt)th—; /OTA(qo?dt)-

The partial maximization with respect to 6, as in the proof of Proposition 4.2.1, is
still valid in this context, and reduces the production firm’s problem to

aQr
dP

q
supE |Uo (U)7 (2 o (4.2.17)
q.€Q d]P’
where y? is defined by
q
EY [(U’)_1 (y" Ci%)] = z+EY[BY]. (4.2.18)

We also assume that the preferences of the production firm are defined by an expo-
nential utility function

U(x) = —e ™ xeR.

Then U o (U")"Y(y) = —y/n, and (4.2.17) reduces to
dQ1
i q - q
;réfOE [y ] ;réfo y. (4.2.19)

Finally, the budget constraint (4.2.18) is in the present case:

-1 y? dQ?
EY [BY] = —EY|In(Z —
T+ [T] 7 n 7 dP

) )

so that the optimization problem (4.2.19) is equivalent to:

q
sup E¥’ [B% + 1 In <dQ)]
n

q.€Q dIP)
; T )\2 T
= sup E¢ [/ (7‘(‘ + > (t,q)dt — S%/ et(qt)dt] . (4.2.20)
¢.€Q 0 2n 0

Notice the difference between the above optimization problem, which determines
the optimal production policy of the production firm, and the problem (4.2.6). In
the present situation where the risk premium process is impacted by the carbon
emissions of the firm, the firm’s optimization criterion is penalized by the entropy
of the risk-neutral measure with respect to the statistical measure.



Chapter 4. Optimal Production Policy under the Carbon Emission
88 Market

The firm’s optimal production problem (4.2.20) is a standard stochastic control
problem. We continue our discussion by considering the Markov case, and introduc-
ing the dynamic version of (4.2.20):

T 2
A
®) (¢ .= sup EY’ / Z ) (¢, q)dt — Edal 4.2.21
V(L e,y) S B | ] ™ T o (t, qt) 100 vasoy | ( )
where the controlled state dynamics is given by:

dY;fq = (M(t, sz-fq) +ﬁ€(t7Qt) - ’Y(tv Y;fq))‘(tv qu)) dt +’Y(tv Y;fq)thqv

dEg = e(ta qt)dta

W1 is a Brownian motion under Q?, and p, e,v, A are as in (H1)—(H2).
By classical arguments, we then see that V3 solves the dynamic programming

equation:
oV ) 1
1
+ max {m, 0) + 5ot )2 + e(t, ) (VD + V) = A, q)V;g’}
q€R 2n

together with the terminal condition
VO (T,e,y) = —aelpygy. (4.2.23)

In terms of the value function V), the optimal production policy is obtained as the
maximizer in the above equation. Under the technical Assumption (4.4.2) below,
an interior maximum occurs, and if V) is regular enough, then the first order
condition is:

or

on 1, O\ e )
dq

G £ (N2 (o) Gy (13 VO ~Z2 (BN B — 0. (4.9.24
(q )+n( aq)(q )+8q(q YV + BV,™) vaq(q Wy » )
where the dependency with respect to (¢, e,y) has been omitted for simplicity. As
before, we expect that the value function (4.2.21) is regular enough and that the
price of the carbon emissions allowance contract, as observed on the emission market,

is given by:
S, = —VO(@ E,Y). (4.2.25)

Then, it follows that the optimal production policy of the firm is defined by:

on Oe
5, 6a%) = 5a®) (5= VPt Y: )
N, 3 3) Ly ®
+87q(t’q ) (7Y (ta}/;E,Et)_E)‘(tvq )) . (4.2.26)

The latter expression is the main formula for our financial interpretation and our
subsequent numerical experiments. In contrast with the previous case where the
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risk-premium process was not impacted by the carbon emissions of the large firm,

we can not conclude from the above formula that ¢( is smaller than ¢(!); recall

that the optimal production policy in the absence of a financial market defined by
on Oe

il Wy = 2= 1)

This is due to the fact that the difference term

SV B + 500 (WY E) - A )
has no known sign, and there is no economic argument supporting that it should
have some specific sign. The economic intuition hidden in this term is that the large
producer may take advantage of his impact on the emission market by manipulating
the prices so as to achieve a profit from its trading activity which compensates a
higher production activity inducing larger carbon emissions. In the present situa-
tion, we see that the emission market has a negative effect on the carbon emissions:
the large firm may optimally choose to increase its carbon emissions thus increasing
its profit by means of its ability to manipulate the financial market.

Next Theorem shows that for some choice of the coefficients, (4.2.25) holds true
and we have the relation (4.2.26).

Theorem 4.2.2 Suppose that u; is continuous and determi?mstic, v 48 constant,
e(q) = erq+eo and A(q) = A\iq+ o, and 7 (q) :== m(q) + % 1s determanistic and
strictly concave tn q with

7;(0) > 0 and 73 (—o00) < 0.

Then V¥ ezists and (4.2.25) holds true. In addition, if problem (4.2.22)-(4.2.23)
has a solution in C12([0,T) x Ry x R), then there exists an optimal production
strategy satisfying (4.2.26).

Proof. The proof follows the same line of argument as the proof of Theorem 4.2.1.
O

4.3 Numerical results

4.3.1 A linear-quadratic example

The main goal of the numerical results is to understand the behavior of the optimal
strategy
on Oe

Lt g®y = ®3) — 8V ®
I I CR Al )

oA 1
T3¢ q®) (W;?’)(t,n,ﬂ) - A, q<3>)) (4.3.1)
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and more precisely find an example where ¢(3) > ¢(1).
We consider the Dynamic Programming Equation

1
%+M%+§$mw+@%m%nw@=0 (4.3.2)
a>
where 6 is defined by

1 : «
0(g, Ve, Vy) = (8 0) + 3\t 0)° + et Q) (V) + BVD) — ¢, q) VP,
and with the terminal boundary condition
V(Tv €, y) = _ae]l{yzo}.

Here, we consider a simple case where

m(q) =q(1—q), e(q) =Xq)=¢q, =1,and a = 1.

Note that this example satisfies the assumption of Theorem 4.2.2. So, V, = —5;
and therefore one can compare ¢/, ¢@ and ¢®). Tt follows that

1
Q(Q?‘/&V;/):_ <1_277> q2+(1+%+(1_7)vy)q

We next assume that n > % so that the function 6 is strictly concave in the ¢

variable. Then, it follows from the first order condition that the optimal production
policy is given by:

1
¢® = 27p(1 + Vet (1=7Vy)

: 1
with p = (1 — %>, and
B0, Ve Vy) = = (14 Vit (1 — V)
I?Zaé(q’e’y_élp_‘_e—i_ —V)Vy) -
Then, the Dynamic Programming Equation (4.3.2) reduces to:
1

1, (Ve (1= NVy)? =0. (4.3.3)

1
m+u%+§¢%yk
Note that, in order to to compare with ¢!), optimal strategy (4.3.1) could be written

as:
o (¢®) =¢ (a¥) S~ 7(e,w),

where the correction term 7(e,y) is defined by

_ 21 —v)
7_(67 y) - 27,’ -1 ‘/y +

14 Ve).
m—1(+e)
The main objective of our numerical implementation is to exhibit examples of pa-
rameters which induce 7(e,y) < 0, or equivalently in terms of the optimal strategy
(3) e
> g
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4.3.2 Numerical scheme

The first step is to set a computational bounded domain [0, L] X [—L,, L,] for the
(e,y) space domain and discretize the computational domain by the grid {(e;, y;)}i,;-
Since we deal with non-linear advection and diffusion phenomena, it is natural to
consider Neumann boundary conditions.

Let At be the time step and t*) = kAt for k = 0,--- ,n := | £ ]. We set the
discrete terminal data Viz-(”) = —eilyy, >0}
The main difficulty in solving the equation (4.3.3) is the semi-linear terms. In

order to overcome this difficulty, we used a time-splitting discretization which divides
our scheme into two steps:

e Step 1: we use an implicit finite-differences scheme to solve the diffusion part
of the model. This means that on a time step [t(), t(* 1], we solve

1
Vi + szvyy = 0. (4.3.4)

e Step 2: we solve the coupling between the advection part with the non-linear
effects
1

o (1+Ve+ (1 =7V, =0. (4.3.5)

Vi + pVy +

In this important part, we used a relaxation scheme introduced by C. Besse
[10]. The scheme is constructed as follow: We rewrite (4.3.5) as the system of
two equations:

1
Vik ¥y o (1 Vet (1= )V, 0 = 0. (4.3.6)
p= 1+Ve+(1—7)Vy (4.3.7)

which are solved using a leap-frog scheme in time.

Compared to the Crank-Nicholson scheme, which is also based on a time-centering
method, this scheme allows us to avoid a costly numerical treatment of the nonlin-
earity and to preserve the flexibility of spatial discretization choice.

4.3.3 Results

For parameters ;= 0.1, v = 0.65, n = 5 and the final time is 7' = 10 we produced
the following results.
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Donné final

Figure 4.1: Terminal boudary condition V) (T = 10, e, y)

Figure 4.2: The solution of the dynamic programming equation V3(e,y) at time
t=0.2
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Figure 4.3: The difference term 7(e,y) at time ¢t = 0.2

The blue region shows the couples (e,y) for which we have ¢® > ¢@ and
therefore within this region the large producer optimally increases her production.

4.4 Uniqueness and verification

Let
T
V(t,e,y) = supEiey [/ 7(s,qs)ds — aE%’e]l{Yq,y>,€}] , (4.4.1)
q.€9 t T =
where
d}/tq = </’L(t7Y;fq) +56(t, Qt) +’Y(t7n))\(t7qt)>dt+7(t7}/;q)th7

dE} = eq)dt

with T, € ! R+ X R+ — R in 00’1(R+ X R+), A R+ X R+ — R are in CO(R+)7
w7 : Ry x R — R are continuous in ¢ and Lipschitz in y, and v > 0.

Notice that V = V® or V) when 7 := 7 or 7 + é\—;, respectively. Also for
simplicity, the dependency of martingale measure with respect to ¢ in the defini-
tion of V@ or V® is absorbed in the dynamic of Y. Therefore in the current
Appendix the reference expectation [E is with respect to the measure P under which
the dynamic of Y,? is as in the above.

Throughout the Appendix, we suppose

(i) 7, e, and X are in C%1([0,T] x R,),

(13) e is convex and, A and e are increasing in g, (4.4.2)

0q Jdq

The following Lemma is needed for the proof of Theorems 4.2.2 and 4.2.1.

(i4i) 7 is strictly concave in ¢ , (t,04) >0 and (t,00) < 0.
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Lemma 4.4.1 There exists some q such that:
T
V(t,e,y) = sup Ey ey [/ 7(t, q)dt — E%a]l{y%zzo} , (4.4.3)
q.Eé t
where Q is the collection of all q. € Q with 0 < ¢ < 7.

Proof. By (4.4.2)(i), we can introduce g such that 7(q) < 0 and 7 is decreasing in
q € [g,0). Therefore, if § := q A G, then F%¢ < E%¢ and 7(q) > 7(q)-
On the other hand, by Theorem 1.1 in [37], Y'Y < Y}¥ a.s.. Therefore,
J(q) = J(q) as.,
where J(q) := ftT 7(t, q)dt — E%a]l{ngzo}. O

The next result states that V' can be characterized by the PDE Therefore, V'
solves the dynamic programming equation:

ov 1
+ max {7(t, q) + e(t, q) (Ve + BVy) —7A(H, 9V, }
0<q<q
together with the terminal condition
V(T,e,y) = —aelyp)- (4.4.5)

Theorem 4.4.1 Let (4.4.2) hold true. Then V is the unique bounded viscosily so-
lution of (4.4.4)-(4.4.5) on [0,T] x Ry x R.

Proof. Notice that one can write (4.4.4) as

oV
0 7+H(t7y7vya‘/€7vyy)

~ ot
where
1
H(t7y77117712,7111) = ,U;(t, y)’Ul + 572(t7y)7}11
+ max {7(t, q) +e(t, q)(v2 + Bvr) — y(t, y)A(t, q)v1 } -

By continuity of H, one can apply Theorem 7.4 in [58] to obtain that V satisfies
(4.4.4) in viscosity sense on [0,7) x Ry x R.
On the other hand, for any ¢ € O, ]l{YTt,(q,y)zﬁ}

and e a.s. as t — T, respectively. Therefore, by Lebesgue dominated convergence

and Erfp’(q’e) converges to ]l{yzﬁ}

Theorem
thjgl_, V(ta ¢, y) = _ae]l{yZN} = V(T7 ¢, y)

Consequently, we can deduce that V is the bounded viscosity solution of the bound-

ary value problem (4.4.4)—(4.4.5).

The uniqueness follows from the comparison principle for viscosity solutions in [58].
O
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4.5 Existence of optimal production policy

We first show that the existence of an optimal production policyallows to relate the
value function V to the market price of carbon allowance S;.

Lemma 4.5.1 Let the assumption (4.4.2) hold true. If there exists an optimal con-
0

* |4 —
trol ¢* for any (t,e,y) then G- (t,e,y) = _O‘E[]I{YTt’y’q*zn}]'
Remark 4.5.1 Lemma 4.5.1 is crucial for the comparison between ¢ and ¢

or ¢, Notice that S, = a1 is market price which is observable and

vt 2]
<7r+ %) is concave in q. Therefore, one can replace V. by —Sy in (4.2.24) and
examine the sign of Vy to establish comparison.

Proof. Notice that by the concavity of V in e, %—‘e/ exists almost everywhere.

Suppose that e > ¢/. Then, by direct calculations one can write

V(t7 €, y) - V(tv elv y) + (6 - QI)CYE []l{y%vva* 2,{}] < 07
where ¢* is an optimal strategy for V(¢,e,y). This implys that
Vt,e,y) —V(t, e, y)
— TE [Lyrnisy] < 0
By passing to the limite as ¢/ — e,
Vve(tv €, y) < -E |:]l {qu,y,q*zﬁ}} .
For the other side inequality use €’ > e. O

We next provide a sufficient condition for the existence of an optimal production
policy.

Proposition 4.5.1 Let u be deterministic, v be constant and
e(t,q) :==erq+ey and Ait,q) = g+ X, q>0, (4.5.1)

where eg, Ao, €1, A1 are nonnegative constants. Then the control problem (4.4.1) has
an optimal control ¢* in Q.
In particular, in this setting we have V. (t, E} | Y1 ) = —5,.

Proof. If e; = Ay = 0, the result is trivial. Therefore we suppose that at least one
of them is non—zero. Notice that when p and v are deterministic, one can write

¢ ¢
V=Y + / (Be(qs) + YA(gs)) dt with Y0 =y + / (psds +~yWs).
0 0
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By Girsanov theorem, we notice that, for every ¢ € Q, the random variable Y7
has a Gaussian distribution under the equivalent probability measure % = 5( —
(Be(qr) + v g + ut)yflth). Here £ is the Doleans-Dade exponential. Then, the
distribution of Y} is absolutely continuous with respect to the Lebesgue measure on
[0,T] for all ¢ € Q.

In other words, the distribution of Y} has no atoms, and the cumulative distri-
bution function of the random variable Y} is continuous.

Let (¢")n>1 be a maximizing sequence of Vp, i.e.
"€ Q foralln>1and J(¢") — W.

Step 1. Since the processes ¢" are uniformly bounded, we deduce from weak con-
vergence and Mazur’s lemma that, after possibly passing to a subsequence, there
exists a convex combination ¢" of (¢7,7 > n) such that:

q" = Z /\;‘qj — ¢ inLYQx[0,T]) and m @ P — a.s. (4.5.2)
jzn

where m is the Lebesgue measure on [0,7]. Here A7 > 0 and }_ -, AT = 1. Clearly
q* € Q. Since Y? is linear in ¢, this implies that

orn ny @ *
Y=Y NYE — Yf, as. (4.5.3)

jzn

Step 2. By direct estimation and use of Hélder inequality, Yj‘fn is tight under P and
therefore under any equivalent probability measure P with density in L?(P). Hence
after passing to a subsequence, it should converge in distribution to a Fr random
variable Y7 which must be equal to Yq*;

Yﬁn — ng* in distribution under IP.
Since the convergence in distribution is equivalent to convergence of the correspond-
ing cumulative density functions at all points of continuity, because the probability

distribution of Y} is absolutely continuous with respect to Lebesgue measure, it
follows that for any positive random variable Z with E[Z] = 1 and E[Z?] < oo,

1 {Yj‘i*zm}] . (4.5.4)

Step 3. Notice that because e and A are affine, One can write:

/OT e(qs)ds = 6 (Yj‘zj -YP - c) :
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where § := (Be1 + A1)t and ¢ := Beg + YAo. By the concavity condition (4.4.2),
we see that:

T
Z)‘?J (qj) S E /0 ﬁ'(t,(j?')dt )‘;Z]l{yqﬂ> }/ QS )

jzn

T )
. ~ ~n - n ¢ 0 )
~ E /0 7t )t — a 3N (Vi - ¥R —c) LIS

Jjzn

Observe that V¥ — Y2 — ¢ = (Y;ZJ — :‘i) + 2t -7 on {Y{ > K} where Z* :=
(Y2 +c—r)E+1.

S7) < B[ [ wiie-a e (7 -#)']

jzn jzn
n + ) _ n - )
+ad Yy AR [Z 11%]2“}] ady NE [Z ]1%]2”}] .
jzn i>n
By the convexity of the function y — y™
(o r_ in +
SN (@) < E[/ 7(t, G0 dt — ad (YT —/<;> }
j=n 0
n +
+ad Y " NE {Z 1

jzn

—a6 Y MR [Z‘]l {ngMJ ,

j>n

o zﬁ}}

Finally, by applying Step 2 successively to Z := Z* and Z~, one can write

T
Vit,ey) = nli_)rgoZ)\?J (¢') <E {/0 7(t, q*)dt — aY} 1{Yﬁ*>n}:|

Jjzn

by dominated convergence. Since ¢* € Q, we deduce that J(¢*) = V. a

Remark 4.5.2 Proposition (4.5.1) is also valid if we replace Condition (4.5.1) by
Aq) = a+be(q) and 7(t,e~1(q)) is convex on q. The modification is straightforward.
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