
HAL Id: tel-00550331
https://pastel.hal.science/tel-00550331v1

Submitted on 27 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming with first-class modules in a core language
with subtyping, singleton kinds and open existential

types
Benoît Montagu

To cite this version:
Benoît Montagu. Programming with first-class modules in a core language with subtyping, singleton
kinds and open existential types. Programming Languages [cs.PL]. Ecole Polytechnique X, 2010.
English. �NNT : �. �tel-00550331�

https://pastel.hal.science/tel-00550331v1
https://hal.archives-ouvertes.fr

THÈSE

présentée à
l’École Polytechnique

pour obtenir le titre de
Docteur de l’École Polytechnique

Spécialité
Informatique

Programmer avec des modules de première classe
dans un langage noyau pourvu de sous-typage,
sortes singletons et types existentiels ouverts

soutenue par
Benoît Montagu
le 15 Décembre 2010

Jury

Président M. Gilles Dowek
Rapporteurs M. Jacques Garrigue

M. Claudio V. Russo
Examinateurs Mme Catherine Dubois

M. Hugo Herbelin
Directeur M. Didier Rémy

Projet Gallium— INRIA Paris-Rocquencourt

Programming with first-class modules
in a core language with subtyping,

singleton kinds and open existential types

Abstract

This thesis explains how the adjunction of three features to System Fω allows writing programs in a
modular way in an explicit system à la Church, while keeping a style that is similar to ML modules.
The first chapter focuses on open existential types, which provide a way to consider existential
types without scope restrictions: they permit to organize programs in a more flexible manner. The
second chapter is devoted to the study of singleton kinds, which model type definitions: in this
framework, we give a simple characterization of type equivalence, that is based on a confluent and
strongly normalizing reduction relation. The last chapter integrates the two previous notions into a
core language equipped with a subtyping relation: it greatly improves the modularity of Fω to a
level that is comparable with the flexibility of ML modules. A translation from modules to this core
language is defined, and is used to precisely compare the two languages.

Résumé

Cette thèse décrit comment l’ajout de trois ingrédients à Système Fω permet d’écrire des programmes
de façon modulaire dans un système explicite à la Church, tout en gardant un style proche des
modules de ML. Le premier chapitre s’intéresse aux types existentiels ouverts, qui confèrent la
possibilité d’utiliser des types existentiels sans restriction de portée : cela offre une plus grande
flexibilité dans l’organisation des programmes. Le deuxième chapitre est consacré à l’étude des kinds
singletons, qui modélisent les définitions de types : dans ce cadre, on donne une caractérisation
simple de l’équivalence de types, fondée sur une relation de réduction confluente et fortement
normalisante. Le dernier chapitre intègre les deux notions précédentes dans un langage noyau
muni d’une relation de sous-typage : cela apporte à Fω un gain de modularité important, de niveau
comparable à celui des modules deML. Une traduction des modules vers ce langage est esquissée,
permettant une comparaison précise des deux langages.

v

Remerciements

En premier lieu, je souhaite dire un grand merci aux deux rapporteurs de cette thèse, Claudio V.
Russo et Jacques Garrigue, qui ont su faire abstraction des typos, initialement très nombreuses,
pour lire en profondeur ce document : la qualité et la minutie de leur travail et des suggestions et
critiques qu’ils m’ont adressées ont été extrêmement appréciables. Je tiens également à remercier
les autres membres du jury, qui m’ont fait l’honneur d’accepter d’examiner ces travaux.
Ensuite, mon directeur de thèse, Didier Rémy, pour son perfectionnisme et sa grande rigueur

scientifique, mérite un remerciement particulier. Il m’a aidé à traverser des épreuves difficiles et n’a
jamais tari d’encouragements à mon égard. Plus important (et plus difficile ?) il a été capable de me
supporter pendant plus de trois ans !

J’ai eu le plaisir d’être accueilli au sein du projet Gallium, qui constitue un cadre de travail proche
de l’idéal. J’adresse donc un grand merci aux membres du projet et de son projet frère Moscova.
Je dois avouer que les pauses café, souvent d’une grande richesse culturelle, resteront dans mon
souvenir pour leur caractère singulier et chaque fois renouvelé.

Un merci spécial aux post-doctorants, doctorants et stagiaires qui m’auront accompagnés ou que
j’aurai croisés dans cette aventure : merci donc à (dans un ordre indéterminé) Yann, Boris, Zaynah,
Benoît, Jean-Baptiste, Keiko, Nicolas, Arthur, Tahina, Jade, Vivien, Gabriel, Alexandre, Jonathan et
Julien, qui ont su, chacun à leur manière, me faire lever la tête pour sortir de mes preuves et autres
lettres grecques.
Je ne peux oublier Stephen, qui lui aussi, a eu le mérite de me supporter pendant plus de trois

années successives. Je ne sais toujours pas ce qu’il pouvait penser lorsqu’il me voyait passer certains
de mes soirées, nuits ou week-ends à taper sur un ordinateur tantôt des lignes d’OCaml, tantôt de
Coq, tantôt de LATEX. L’image que j’ai pu lui donner, bien malgré moi, de la recherche mérite sans
aucun doute que l’on s’y attarde.

Cette énumération serait terriblement incomplète si je n’accordais pas un remerciement particulier
aux coureurs infatigables de chez RAP : la frénésie sportive de Philippe et la combativité de Mathieu,
ainsi que leur bonne humeur, sont extrêmement contagieuses, au point de donner l’envie de courir un
marathon, et d’entraîner dans nos courses certains doctorants de chezGalliumou Secret. L’exercice de
la thèse et l’épreuve du marathon, d’ailleurs, partagent de manière intéressante des traits communs.
Un grand merci à eux pour cette heureuse contamination.
Je n’oublie pas mes amis de l’X ou de prépa restés anonymes, qui m’ont permis de garder les

pieds sur terre en me faisant garder à l’esprit qu’un monde existe en dehors de la thèse.
Aurélie, avec qui j’ai partagé des « week-ends rédaction » mais aussi beaucoup plus, a tenu une

place très particulière durant ces dernières années. Reçois toute mon affection.
Enfin, mes parents et mon frère, que je n’ai pas vus assez souvent ces dernières années, m’ont

entouré de leurs encouragements et de leurs soins. Merci à vous trois.

Les travaux présentés dans ce document ont été effectués dans le cadre d’une allocation de
recherche AMX et du contrat ANR U3CAT.

vii

« Ce n’est qu’en essayant continuellement que l’on finit
par réussir. Ou en d’autres termes : plus ça rate, plus
on a de chances que ça marche. »

(Principe de base de la logique Shadok)

ix

Contents

1 Introduction 1
1.1 A short overview of MLmodules . 1
1.2 Russo’s interpretation of modules . 4
1.3 Problematics and outline . 5
1.4 Published work . 5

2 Open existential types 7
2.1 Existential types in System F . 7
2.2 A core calculus with open existential types . 8

2.2.1 More atomic constructs for existential types . 8
2.2.2 The appearance of recursive types . 14
2.2.3 About coercibility . 14

2.3 A definition for Core F. 15
2.3.1 A more restrictive zipping . 15
2.3.2 Syntax . 16
2.3.3 Typing rules . 19
2.3.4 Reduction semantics . 19

2.4 Soundness . 23
2.4.1 Basic syntactic lemmas . 23
2.4.2 Main syntactic lemmas . 24
2.4.3 Properties of coercibility . 25
2.4.4 Properties of results and ε-reductions . 27
2.4.5 Type soundness . 27
2.4.6 A mechanized proof of soundness . 28
2.4.7 Type erasure semantics . 29

2.5 Adequacy with System F . 29
2.5.1 From F to F. 30
2.5.2 From F. to F . 30
2.5.3 The logical facet . 36

2.6 Extensions of F. 36
2.6.1 Weakening . 36
2.6.2 More liberal equations . 37
2.6.3 Double vision . 40
2.6.4 Recursive types . 41
2.6.5 Recursive values . 42
2.6.6 Soundness of the extensions . 43

2.7 Related work . 49
2.8 Conclusion and future work . 51

2.8.1 Limitations of F. 52
2.8.2 Future work . 52

xi

Contents

3 Type definitions and singleton kinds 55
3.1 Singleton kinds: Harper-Stone system . 56

3.1.1 Harper-Stone’s system: definitions . 56
3.1.2 Examples . 58
3.1.3 Harper-Stone’s system: properties . 60
3.1.4 Harper-Stone normalization algorithm and decidability result 62

3.2 Goals of this chapter . 64
3.3 Preliminary results: some composition properties for rewriting systems 65
3.4 Warm-up: the simply-typed case . 67

3.4.1 Definitions . 68
3.4.2 Subject reduction . 70
3.4.3 Confluence and strong normalization . 70
3.4.4 Adequacy . 72

3.5 Small-step extensional equivalence for singleton types 76
3.5.1 Definition . 76
3.5.2 Translation into the simply typed λ-calculus 79
3.5.3 Subject reduction . 80
3.5.4 Confluence and strong normalization . 81
3.5.5 Properties of expansors . 82
3.5.6 Soundness of convertibility . 84
3.5.7 Completeness of convertibility . 85
3.5.8 Adequacy . 98
3.5.9 Insertions of expansors and minimal kinds . 99
3.5.10 A second reading of Stone-Harper’s normalization algorithm 103

3.6 Related work . 104
3.7 Future work . 105

4 A tentative design 107
4.1 Definitions . 107

4.1.1 Terms . 108
4.1.2 Types and kinds . 108
4.1.3 Coercibility . 112
4.1.4 A powerful notion of subtyping . 114
4.1.5 Environments . 117
4.1.6 Dynamic semantics . 118
4.1.7 Conjectures . 118

4.2 Examples and remarks . 119
4.2.1 Local definitions . 119
4.2.2 Renaming or relocation of existential items . 119
4.2.3 Phase-split style . 120

4.3 Comparisons . 121
4.3.1 F.ω

S6 vs. System Fω . 121
4.3.2 F.ω

S6 vs. ML . 122
4.4 Conclusion and future work . 133

5 Conclusion 135

xii

List of Figures

1.1 Sample code: ordered types and finite sets. 2

2.1 Open existential constructs. 13
2.2 Zipping of bindings (preliminary definition). 13
2.3 Coercibility (Core F.). 14
2.4 Zipping: definition. 16
2.5 Syntax: types, terms, values, and results. 17
2.6 Universally-weakened environment. 17
2.7 Wellformedness of types. 17
2.8 Wellformedness of environments. 17
2.9 Typing rules of the core system. 18
2.10 Coercible types. 18
2.11 Example of extrusion. 20
2.12 Reduction rules. 22
2.13 Type normalization. 26
2.14 Type erasure. 29
2.15 Encoding from F to F.. 30
2.16 Encoding from F. to F, stage 1: recovering packs. 30
2.17 Encoding from F. to F, stage 2: recovering unpack s (congruence rules are omitted). . 31
2.17 Encoding from F. to F, stage 2 (continued). 32
2.18 Zipping of sets of bindings . 38
2.19 Closing mutually recursive type equations. 42
2.20 Typing rules of the extended system. 44
2.21 Weaker environments. 44
2.22 Wellformed environments. 45
2.23 Wellformed types. 45
2.24 Coercible types (co-inductive definition). 45
2.25 Similar types. 46

3.1 Wellformed environments and wellformed kinds. 57
3.2 Subkinding and kind equivalence. 57
3.3 Wellformed types. 58
3.4 Type equivalence. 59
3.5 Natural kind. 62
3.6 Head reduction. 63
3.7 Head normalization. 63
3.8 Type normalization. 63
3.9 Path normalization. 63
3.10 Kind normalization. 63
3.11 βπη-equality. 69
3.12 Minimal kinds. 99
3.13 Natural kinds. 102

xiii

List of Figures

4.1 Typing rules of F.ω
S6 . 109

4.2 Wellformed types. 111
4.3 Wellformed kinds. 112
4.4 Subkinding. 112
4.5 Equivalent kinds. 112
4.6 Type equivalence. 113
4.7 Coercible types. 114
4.8 Coercible kinds. 115
4.9 Subtyping rules. 116
4.10 Wellformed environments. 117
4.11 Environment weakening. 117
4.12 Zipping environments. 118
4.13 Extending System Fω in three directions, and translating back to System F. 121
4.14 Syntax of an idealized ML module language. 123
4.15 Translation of module expressions. 125
4.16 Translation of structure bindings. 127
4.17 Translation of signatures. 128
4.18 Translation of signature bindings. 129
4.19 Translation of first-class modules. 132

xiv

Chapter 1

Introduction

Today’s hardware and software probably belong to the most complex creations and inventions of
mankind. This complexity may result from the possible intrinsic sophistication of the employed
algorithms, but also from the elaborateness of the architecture of programs. Rigor, organization and
separation of independent components become a necessity, with programs gaining in size: modular
programming is the key to the successful development of large pieces of programs.
Programming languages can bring programmers a valuable help, and encourage modular de-

velopment. The module systems from the family of the ML language [MTHM97] are powerful
languages that help programming in the large. They have been successfully implemented and used
for dozens of years in the languages Standard ML [SML, RRS00] and OCaml [LDG+10], to cite only a
few.
Other techniques, such as object orientation, mixins, traits, or type classes, also permit modular

development and code reuse, but will not be treated in this document.

1.1 A short overview of ML modules

MLmodules constitute a layer on top of a base language. For this reason, modules are second class
citizens: they are not considered as values of the base language, and, conversely, terms from the base
languages are not module expressions. In this section, we review the main ingredients on which the
ML module system is built. Pierce’s book contains a thorough introduction to ML modules [HP05].
An exhaustive and more technical presentation of the works on MLmodules can be found in the
introduction of Dreyer’s thesis [Dre05b].

Structures and signatures Structures are the base elements of modules: they contain the pieces of
code; in some narrow sense, they are similar to compilation units in other languages. Interfaces,
or signatures, describe the specifications of modules, that is, they specify which values, functions,
types and modules are exported. For instance, the OrderedType signature of Figure 1.1 on the
following page describes every module that has a type component t and a function compare of type
t→ t→ int. The module OrderedInt implements the interface OrderedTypewhere the type t is
the type int. Structures can be nested, so that they permit hierarchical composition of modules.
They are very similar to records with structural types and width and depth subtyping.

Type definitions The possibility to define intermediate names for types is given by type components
in structures and signatures. They provide not only the possibility to define types within a structure,
but also to reuse a definition by exporting it in the interface. This way, type definitions can be shared
between modules, but also between the argument of a functor and its body (see the paragraph on
functors on page ??). For example, a structure that has the signature OrderedType with type t = int
exports a type component t that is equal to the type int.

1

Chapter 1 Introduction

(* Interface of ordered types *)
module type OrderedType = sig

type t
val compare : t→ t→ int

end

(* Integer as an ordered type *)
module OrderedInt : OrderedType with type t = int
= struct

type t = int
let compare x y =

if x < y then -1
else if x = y then 0
else 1

end

(* Interface of sets *)
module type Set = sig

type t (* the type of sets *)
type elt (* the type of their elements *)
val empty : t
val is_empty : t→ bool
val add : elt→ t→ t
val remove : elt→ t→ t
val union : t→ t→ t
val fold : ∀α.(elt→ α→ α)→ t→ α→ α
. . .

end

(* Interface of sets of ordered types *)
module type OrderedSet = sig

include Set
val min_elt, max_elt : t→ elt

end

(* Interface of sets of integers *)
module type IntSet = OrderedSet with type elt = int

(* Generic implementation of finite sets over ordered types *)
module MakeSet(O : OrderedType) : OrderedSet with type elt = O.t
(* The type of sets is abstract *)
= struct
(* Implementation of finite sets *)
. . .

end

(* Sets of integers, built from the MakeSet functor *)
module IntSet = MakeSet(OrderedInt)

Figure 1.1: Sample code: ordered types and finite sets.

2

1.1 A short overview of ML modules

Abstract types Hiding type information is possible through the use of abstract types: a type
that has been made abstract, or opaque, is ensured to be different from any other type, but itself
(up to expansion of type definitions). For instance, in Figure 1.1, in the definition of the mod-
ule OrderedInt, if one had not written the constraint with type t = int, the signature ascription
OrderedInt : OrderedTypewould have rendered the type OrderedInt.t abstract, and thus different
from the type int. One often says that, in this case, the signature ascription has generated a new
type t, hence the name of generativity. Signatures can contain multiple type components, that
can be concrete (or transparent, or manifest) while others are abstract (or opaque). This is the case of
the signature Set with type elt = int, for example: its type component elt is concrete, whereas
its type component t is abstract. This notion of signatures that mix opaque and manifest type
components were originally described by Leroy’s manifest types [Ler94, Ler96] and, independently,
by Lillibridge’s transluscent sums [Lil97, HL94]. More recently, singleton kinds [SH06] were used
to model them, and were put in practice in the TILT compiler [PCHS01].

Functors The penultimate definition of Figure 1.1 deals with a generic implementation MakeSet
of the interface OrderedSet, which is parametrized by an implementation of OrderedType. This is
called a functor, that is, a function from modules to modules. Functors can be higher order, and are
first-class citizens in the layer ofmodules. The last line of the figure defines an instance of the MakeSet
functor on integers, to build an implementation of sets of integers. It is worth noting that the MakeSet
functor has the following module type: functor (O : OrderedType)→ OrderedSet with type elt =
O.t. This type illustrates the dependency that exists between the argument of the functor and the
type of its result. Functors are essential to build generic libraries and increase the possibility of code
reuse. It is important to notice that, although functor types might look like dependent types, theML
module system enjoys a phase distinction property [HMM90]: the type of the body only depends
on the static part, i.e. on the type components, of the argument.

Generative and applicative functors The MakeSet functor gives a result that contains a type compo-
nent t (i.e. the type of sets), which is abstract. But will every new application of MakeSet yield
a different type for the type of sets? It depends on whether the functor is considered generative
or applicative. If it is considered as a generative functor, then every new application generates a
new abstract type. If it is considered as an applicative functor, then the abstract type will depend
on the nature of its argument. For instance, in OCaml, if we define a module OrderedFloat of or-
dered floats and then define module FloatSet = MakeSet(OrderedFloat), then FloatSet.t and
IntSet.t are incompatible types. In contrast, if we define a second instance of sets of integers with
module IntSet2 = MakeSet(OrderedInt), then IntSet.t and IntSet2.t are compatible: indeed,
since the functor is applied twice to identical arguments, there is no reason to make the resulting
types distinct. The analysis of identity in OCaml is based on the notion of paths. Standard ML imple-
ments generative functors only; OCaml has applicative functors by default; and Moscow ML has
both of them, which are distinguished by their types. Dreyer’s thesis [Dre05b] analyses cases where
applicative functors cannot enforce enough invariants on structures, although they stay type-safe,
and forbids their problematic uses: it is, for example, the case of functors whose bodies have side
effects.

First-class modules The two-layers structure of modules, permits to add the power of the ML
module system to any other language [Ler00]. However, in the case of ML, this stratification
somehow duplicates concepts: there are functions and functors, structures and records, and a form
of polymorphism at both levels. It certainly creates issues for newcomers to learn and understand
the language. Unifying the two layers rapidly becomes a need: Moscow ML and, very recently, OCaml
offer the possibility to embed a module in a package as a value, and to recover a module from a
packaged module. This way, one gets first-class modules, which greatly extends the expressivity of

3

Chapter 1 Introduction

the whole language [FG10]. First-class modules make the frontier between the base and the module
layers blurry, but the two layers still remain distinct.

1.2 Russo’s interpretation of modules

At first sight, modules of ML incorporate notions that are not present in the ML base programming
language: generativity, applicativity, opaque type components, dependent types, paths. . . It seems
the distance between the two layers is not narrow.

However, as shown by Russo [Rus99, Rus03], modules can be given non-dependent types: more
precisely, types of System F are enough. One can indeed interpret modules as programs typed in Sys-
tem Fω. The higher order part of the type language is only necessary to encode parametrized types.
This interpretation has recently been formalized in Coq [RRD10]. Russo’s original interpretation
had the semantic objects of the definition of Standard ML [MTHM97] as a target.

The interpretation shares an idea due to Mitchell and Plotkin [MP88], that abstract types are
existential types. This has been exploited in other translations of modules into Fω [Sha98, cS06].
Consequently, abstract type components in a covariant position are interpreted as existential types;
when they are in a contravariant position, they are interpreted with universal types. This way, a
general schema for the type of functors is

∀α.(τ[α]→ ∃β.τ ′[α][β])

where the αs correspond to the abstract type components of the signature of the argument, whereas
the βs represent the abstract type components of the signature of the body. Notice that, first, type
definitions have been unfolded, and second, that the dependency between the argument and the
body is handled externally via the universal quantification. The type of the SetMake functor from
Figure 1.1 would be translated to some type close to the following one:

∀αelt.{compare : αelt → αelt → int}→

∃βt.

empty : βt
is_empty : βt → bool
add : αelt → βt → βt
. . .

Russo’s approach generalizes well to applicative functors: to express the dependency between the

abstract types of the result with respect to the types of the arguments, he uses higher-order types.
In the case of the SetMake functor, its applicative interpretation would have type:

∃(βt :: ?⇒ ?)
∀αelt.{compare : αelt → αelt → int}→

empty : βt (αelt)
is_empty : βt (αelt)→ bool
add : αelt → βt (αelt)→ βt (αelt)
. . .

Russo’s approach also extends to first-class modules and to recursive modules [Rus01], and is at

the origin of the implementation of modules in Moscow ML.

4

1.3 Problematics and outline

1.3 Problematics and outline

The formal interpretation into System Fω [RRD10] showed, on the one hand, that ML modules can
be understood as a stylized way of constructing programs in System Fω, and, in the other hand,
that directly constructing them by hand would not be easy. In this thesis, we try to understand why:
what, precisely, does System Fω lack to permit the construction of programs in a way that would
be as elegant, comfortable and modular as it would be with the use of modules? Or, to express it
differently, what can we add to System Fω to bring it closer to ML modules?

The organization of this document follows the way our answer to the above question is articulated:
two main features are present in ML but not in Fω. The possibility to handle programs with abstract
types (that is, with existential types) in a modular and convenient manner is one of the major
differences: this is treated in Chapter 2 by studying F. (F-zip), a language featuring open existential
types, that extends System F to allow the unpacking of existentials in an open scope. A large
subset of F.was formalized in the Coq proof assistant. Our second central point of interest is the
support for type definitions: in Chapter 3, we focus on this topic and present a method to decide
type equivalence in the singleton kind system of Stone and Harper [SH06], that is based on a well
behaved reduction relation. Finally, we merge the two systems in Chapter 4, where we also add
subtyping: the resulting language F.ω

S6 (F-zip-full) is then compared with ML through the definition
and analysis of an interpretation of ML into F.ω

S6 .

1.4 Published work

The results from Chapter 2 were published or presented in the following documents.

[1] Benoît Montagu and Didier Rémy. Modeling abstract types in modules with open existential
types. In Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages.
ACM, January 2009

[2] Benoît Montagu and Didier Rémy. Types abstraits et types existentiels ouverts. In Éric
Cariou, Laurence Duchien, and Yves Ledru, editors, Actes des deuxièmes journées nationales
du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel, pages 147–148,
Université de Pau, Mars 2010

[3] Benoît Montagu. Experience report: Mechanizing core F-zip using the locally nameless
approach. Presented at the 5th ACM SIGPLAN Workshop on Mechanizing Metatheory,
Baltimore, September 2010

5

http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~montagu/publications/2010/montagu_WMM2010.pdf
http://gallium.inria.fr/~montagu/publications/2010/montagu_WMM2010.pdf

« On nous cache tout, on nous dit rien,
Plus on apprend, plus on ne sait rien,
On nous informe vraiment sur rien. »

(Jacques Dutronc)Chapter 2

Open existential types

This chapter deals with type abstraction in module-like languages. The possibility to create abstract
types is one of the strengths of the ML module system. Indeed, abstract types provide a way to
strongly isolate components of a program: a library that exports an abstract type is guaranteed not
to leak more information than the one given in its signature, that is, provided by the public functions
that manipulate the abstract type. This feature provides security to the implementer of a library:
not only can he hide the implementation details, but also protect internal invariants from potential
misuses. He is also assured that changing an implementation for an extensionally equivalent one
will not break the compilation or the correctness of existing programs that use the library.

For instance, the library of finite sets from the Objective Caml [LDG+10] distribution implements
sets as pseudo-balanced binary search trees, but this is hidden thanks to type abstraction. If
the implementation was concrete, the property of being a search tree could be broken by a user,
and consequently lead to incorrect results. If the implementation was not sealed with the use of
abstract types, the invariant of being pseudo-balanced could also be broken, which would degrade
performance, whithout affecting correctness.

The type-theoretic interpretation of abstract types is existential types [MP88]. They can already be
used in System F, but, as we will see, not in an as convenient way as abstract types are used in ML
(Section 2.1). This chapter tries to answer the question: what does System F lack to permit modular uses
of existential types? For this purpose, we will introduce in Section 2.2 the language F. (read F-zip),
that features open existential types: they get rid of some limitations of System F and bring it closer to
the practice of ML modules. We prove F.’s correctness in Section 2.4 and study its correlation with
System F in Section 2.5. A proof of soundness of a large subset of F.was mechanized in the Coq
proof assistant. Section 2.6 considers extensions of F. to cope with more advanced features, some
of them being related to recursive modules in ML. The chapter ends with a study of related work
(Section 2.7 on page 49), among which lies RTG [Dre07a], which shares some similarities in terms of
design. The chapter finally concludes with some critical observations (Section 2.8 on page 51).

2.1 Existential types in System F

Mitchell and Plotkin [MP88] showed that abstract types could be understood as existential types.
However, it has also been noticed that existential types do not accurately model type abstraction in
modules, because they lack some modular properties.
In System F, existential types are introduced by the pack construct: provided the termM has

some type τ ′[α← τ], the expression pack 〈τ,M〉 as ∃α.τ ′ hides the type information τ, called the
witness of the existential, from the type ofM so that the resulting type is ∃α.τ ′.

Pack
Γ `M : τ ′[α← τ]

Γ ` pack 〈τ,M〉 as ∃α.τ ′ : ∃α.τ ′

Existential types are eliminated by the unpack construct: providedM has type ∃α.τ, the expression
unpackM as 〈α, x〉 inM ′ binds the type variable α to the witness of the existential and the value

7

Chapter 2 Open existential types

variable x to the unpacked termM in the body ofM ′. The resulting type is the one ofM ′, in which
αmust not appear free. The reason for this restriction is that otherwise α, which is bound inM ′,
would escape its scope.

Unpack
Γ `M : ∃α.τ Γ, α, x : τ `M ′ : τ ′ α /∈ ftv(τ ′)

Γ ` unpackM as 〈α, x〉 inM ′ : τ ′

From now on, we assume that System F is equipped with records and with the above primitive
constructs, although they could also be provided as a well-known syntactic sugar [Rey83] by
inversion of control:

∃α.τ , ∀β.(∀α.τ→ β)→ β

pack 〈τ,M〉 as ∃α.τ ′ , (Λα. λ(x : τ ′)Λβ. λ(k : ∀α.τ ′ → β) k αx) τ M

unpackM as 〈α, x : τ〉 inM ′ : τ ′ , (λ(x : ∃α.τ)Λβ. λ(k : ∀α.τ→ β) xβ k)Mτ ′ (Λα. λ(x : τ)M ′)

As the above lines show, the constructs pack and unpack can be defined as combinators.

2.2 A core calculus with open existential types

2.2.1 More atomic constructs for existential types

In this section we split off the constructs for existential types. Indeed, both pack and unpack have
modularity problems, but in different ways.

The crucial issue with unpack is non-locality: it imposes the same scope to the type variable α and
the value variable x, which is emphasized by the non-escaping condition on α. As a result, all uses
of the unpacked term must be anticipated. In other words, the only way to make the variable α
available in the whole program is to put unpack early enough in the program, which is a non local,
hence non modular, program transformation. The reason is that unpack is doing too many things at
the same time: opening the existential type, binding the opened value to a variable, and restricting
the scope of the fresh type variable.

The problemwith pack is mostly verbosity: it requires to completely specify the resulting type, thus
duplicating type information in the parts that have not been abstracted away. This can be annoying
when hiding only a small part of a term, when this term has a very large type. This duplication
happens, for instance, when hiding the type of a single field of a large record, or maybe worse, when
hiding some type information deeply inside a record. It is caused by the lack of separation between
the introduction of an existential quantifier, and the description of which parts of the type must be
abstracted away under that abstract name.

In both cases, the lack of modularity is related to the lack of atomicity of the constructs. Therefore,
we propose to split both of them into more atomic pieces, recovering modularity while preserving
expressiveness of existential types. To achieve this decomposition, we first need to enrich typing
environments with new items.

Richer contexts for typing judgments

The contexts of typing judgments in System F are sequences of items, where an item is either a
binding x : τ from a value variable to a type, which is introduced while typing functions, or a
universal type variable ∀α, which is introduced while typing polymorphic expressions.

We augment typing environments with two new items: existential type variables ∃α to keep track
of the scope of (open) abstract types, and type definitions ∀(α = τ) to concisely mediate between

8

2.2 A core calculus with open existential types

the abstract and concrete views of types. That is, typing environments are as follows:

Γ ::= ε | Γ, b (Environments)
b ::= x : τ | ∀α | ∀(α = τ) | ∃α (Bindings)

Wellformedness of typing environments will ensure that no variable is ever bound twice. We
shall see below that existential variables have to be treated linearly. It is sensible to consider them as
Skolem’s constants and to understand type definition bindings as explicit type substitutions. For the
moment, we consider environments as sequences modulo reordering of independent items. Their
structure will be enriched again in Section 2.6.4 on page 41.
We define the domain of a binding as follows:

dom(x : τ) , x and dom(∀α) , dom(∀(α = τ)) , dom(∃α) , α

The domain of an environment is, as usual, the union of the domains of the bindings it contains.
In addition, we may use the following notations for specific domains:

dom' Γ , {α | ∀(α = τ) ∈ Γ }
dom∀ Γ , {α | ∀α ∈ Γ } dom∃ Γ , {α | ∃α ∈ Γ }

We also use in the rest of the chapter the notion of pure environments.

Definition 2.2.1 (Purity). When dom∃ Γ is empty, we say that Γ is pure and write Γ pure.

Splitting unpack

We replace unpack with two orthogonal constructs, opening and restriction, that implement scopeless
unpacking of existential values and scope restriction of abstract types, respectively.
The opening open 〈α〉M expectsM to have an existential type ∃α.τ and opens it under the name

α, which is tracked in the typing environment by the existential item ∃α. The rule can also be read
bottom-up, treating the item ∃α as a linear resource that is consumed by the opening.

Open
Γ `M : ∃α.τ

Γ, ∃α ` open 〈α〉M : τ

The fact that, when it is read bottom-up, rule Open makes the environment decrease might seem
unusual. Indeed, it imposes that the subterm should not mention the type variable with which it is
opened. It follows a subtle control of scope that is already present in works on resourceful λ-calculi:
Kesner and Lengrand [KL07] introduce, for instance, an explicit weakening construct, that makes
the environment decrease and hence finely controls the scope of a variable.
Interestingly, rule Open also looks dual to the usual rule of type generalization:

Gen
Γ, ∀α `M : τ

Γ ` Λα.M : ∀α.τ

In rule Gen, the quantifier moves downwards from the environment to the type, whereas it happens
in the opposite way in rule Open.
The restriction να.M implements the non-escaping condition of rule Unpack. First, it requires α

not to appear free in the type ofM, thus enforcing a limited scope. Second, it provides an existential
resource ∃α in the environment, that ought to be consumed by some open〈α〉M ′ expression occurring

9

Chapter 2 Open existential types

withinM.
Nu
Γ, ∃α `M : τ α /∈ ftv(τ)

Γ ` να.M : τ

As with RTG [Dre07a], one may recover unpack as syntactic sugar:

unpackM as 〈α, x〉 inM ′ , να. (let x = open 〈α〉M inM ′)

This makes explicit the simultaneous operations performed by unpack, which turns out not to be
atomic at all: first, it defines a scope for the name α of the witness of the existential type ofM; then,
it opensM under the name α; finally, it binds the resulting value to x in the remaining expression
M ′.

The main flaw of unpack, i.e. the scope restriction for the abstract name, is essentially captured by
the restriction construct. However, since the scope restriction has been separated from the unpack, it
is not mandatory anymore to put a scope restriction when one wants to open an existential. The
abstract type αmay now be introduced at the outermost level or given by the typing context and
freely made available to the whole program.

Splitting pack

We replace packwith three orthogonal constructs: existential introduction, which creates an existential
type, open witness definition, which introduces a type witness and gives it a name, and coercion, which
determines which parts of types are to be hidden. We present this separation in two stages: first,
we separate the (closed) definition of a witness from the information of which parts are abstracted
away; then, we split the definition of a witness again into two pieces that introduce an existential
quantifier and the witness, separately.

The closed witness definition ∃(α = τ)M introduces an existential type variable αwith witness τ
(more precisely, the definition ∀(α = τ)) in the environmentwhile typingM, and bindsα existentially
in the resulting type.

Γ, ∀(α = τ) `M : τ ′

Γ ` ∃(α = τ)M : ∃α.τ ′

The coercion (M : τ) replaces the type ofM with some coercible type τ. The coercibility relation
under context Γ , written ∼, is the smallest congruence that contains all type-definitions occurring in
Γ . A coercion is typically employed to specify where some abstract types should be used instead of
their witnesses in the typing ofM.

Coerce
Γ `M : τ ′ Γ ` τ ′ ∼ τ

Γ ` (M : τ) : τ

The expressiveness of pack is retained, since it can be provided as the following syntactic sugar:

pack 〈τ,M〉 as ∃α.τ ′ , ∃(α = τ) (M : τ ′) if α /∈ ftv(M)

However, the description of what is being hidden can now be separated from the action of hiding,
which avoids repeating some type information. Hence, it makes the creation of existential values,
shorter, thus easier, and more maintainable. Indeed, it allows for putting the information of hiding
parts of a type deeply inside a term, like in the following record, in which some leaves have been

10

2.2 A core calculus with open existential types

abstracted away.
∃(α = int)

let x = {`1 = (1 : α) ; `2 = 2} in
let y = {`1 = x ; `2 = x} in
{`1 = y ; `2 = y}

The corresponding System F term requires to repeat the type of the whole term.

let z =
let x = {`1 = 1 ; `2 = 2} in
let y = {`1 = x ; `2 = x} in
{`1 = y ; `2 = y} in

pack 〈int, z〉 as
∃α.{`1 : {`1 : {`1 : α ; `2 : int} ; `2 : {`1 : α ; `2 : int}} ;

`2 : {`1 : {`1 : α ; `2 : int} ; `2 : {`1 : α ; `2 : int}}}

Moreover, whereas the information of hiding was located at a single place in the F. term, it is
duplicated in the F term, as if each leaf of the record had been abstracted independently.
To complete the separation, we now split ∃(α = τ)M further. The existential introduction ∃α.M

introduces an existential type variable in the environment while typingM, and makes α existentially
bound in the resulting type. This is the exact counterpart of the open construct.

Exists
Γ, ∃α `M : τ

Γ ` ∃α.M : ∃α.τ

As the rule Nu, it introduces an existential binding in the context. The difference is that the rule Nu
does not change the result type, whereas Exists introduces an existential quantifier.
The open witness definition Σ 〈β〉 (α = τ)M introduces the witness τ for the type variable α:

similarly to what is done for ∃(α = τ)M, the equation ∀(α = τ) is added to the context while typing
M. In addition, an external name β is provided, in the same way as for the open construct. The
internal name α and its equation are only reachable internally, but the witness is denoted externally
by the abstract type variable β. The resulting type does not mention the internal name, since it
has been substituted for the external one. In other words, the witness definition defines a frontier
between a concrete internal world and an abstract external one. To keep the system sound, we ensure
that a unique witness is hidden behind an external name, hence the use of an existential resource.
The typing rule will be refined later (Section 2.6.3 on page 40) to handle the double vision problem
[Dre07a].

Sigma
Γ, ∀(α = τ) `M : τ ′

Γ, ∃β ` Σ 〈β〉 (α = τ)M : τ ′[α← β]

Again, the split construct ∃(α = τ)M can be recovered by the following syntactic sugar:

∃(α = τ)M , ∃β.Σ 〈β〉 (α = τ)M if β /∈ ftv(τ,M)

It is worth noting that the open witness definition corresponds to type abstraction as it is currently
done in module languages: a type definition is kept hidden for the outer environment and a type
name is generated so that we can refer to it without knowing its concrete definition. Usual existential
types are recovered by closing the open witness definition, i.e. by hiding the external name for the
witness.

As an example, the following piece of program, written in an ML-like syntax, defines an abstract

11

Chapter 2 Open existential types

module of integers:

module X : sig type t val z : t val s : t→ t end =
struct type t = int val z = 0 val s = λ(x : int) x+ 1 end

It provides the zero constant z and the successor function s. The type X.t is abstract and available in
the whole program. Its counterpart in F. is defined hereafter, for which we assume the context ∃β:

Σ 〈β〉 (α = int)
({z = 0 ; s = λ(x : int) x+ 1} : {z : α ; s : α→ α})

The two pieces of code look similar, except for the fact that the signature ascription has been
replacedwith an openwitness definition. The counterpart of the signature is the type in the coercion.
Note that no type component, hence no name for the module, is needed: the counterpart of X.t is
the abstract type β, which is present in the typing context. It is available in the whole program and
does not refer to a value variable.

Notice that it is also possible to rewrite this program in two parts, by first creating an existential
term and then opening it under the name β. Again, we assume the context ∃β.

let x =
∃(α = int)
({z = 0 ; s = λ(x : int) x+ 1} : {z : α ; s : α→ α}) in

open 〈β〉 x

It has essentially the same effect: in fact the latter will reduce to the former. It shows however that
the mechanisms for type abstraction and opening of existentials are the same.

Generative functors

Following Russo [Rus03], generative functors are functions that have a type of the form ∀α.(τ1 →
∃β.τ2). In ML, generativity is implicitly released when the functor is applied. In F., however, the
result of the function must be explicitly opened, because generativity and evaluation are two separate
notions. To get the same result with another fresh type, it suffices to open it again under another
name.

A summary of the constructs for open existential types

The different constructs introduced for open existential types are gathered on the diagram of
Figure 2.1 on the facing page, which describes their impact on both the typing environment and the
resulting type. To increase readability, terms are not printed on the judgments.
The topmost judgment corresponds to a concrete program (of type τ[α← τ ′]) with an equation
∀(α = τ ′) in its environment. With the use of coercions one can mediate to a type τ where the
equation has been folded and then go back to the concrete version. Then, using a Σ, we can make
the witness abstract by removing the definition from the typing environment and using the external
name β instead. In this process, the variable β is marked as existential and the internal name is
replaced with the external one. If the external name does not occur free in the resulting type, we
can remove the existential item from the environment, without changing the type, to get the bottom
right judgment. If this is not the case, we can close the type by transferring the existential quantifier
to the type (bottom left judgment). We can then go back by re-opening the existential.

12

2.2 A core calculus with open existential types

Γ, ∀(α = τ ′) ` τ[α← τ ′]

Γ, ∀(α = τ ′) ` τ

Γ, ∃β ` τ[α← β]

Γ ` ∃β.τ[α← β] Γ ` τ[α← β]

([·] : τ) ([·] : τ[α← τ ′])

Σ 〈β〉 (α = τ ′) [·]

∃β. [·]open 〈β〉 [·] νβ. [·]
if β /∈ ftv(τ[α← β])

Figure 2.1: Open existential constructs.

b . b = b if b 6= ∃α ∃α . ∀α = ∃α ∀α . ∃α = ∃α

Figure 2.2: Zipping of bindings (preliminary definition).

Linearity to control openings and open witness definitions

As openings and open witness definitions use abstract names given by the environment, one must
be careful to avoid “abstraction capture”, as in the following (ill-typed) example.

let f = Σ 〈β〉 (α = int) (λ(z : int) z+ 1 : α→ α) in
let x = Σ 〈β〉 (α = bool) (true : α) in f x

Here, f and x result from two different openings under the same nameβ. Hence, f and x are assigned
types β → β and β, respectively, using the same abstract name β. However, each branch uses a
different witness for β (int and bool respectively). This yields to the unsound application f x, which
evaluates to true + 1.
To prevent abstraction capture, it suffices that every name β be used in exactly one opening or open

witness definition under name β. This may be achieved by treating the existential items of the typing
environment in a linearway. As usual in the literature, linearity can easily be enforced in typing rules
by a zipping operation that describes how typing environments of the premises must be combined to
form the one of the conclusion. We give in Figure 2.2 and in this paragraph a preliminary definition
of zipping to convey the intuition. It will be completed later. Zipping is a binary operation (· . ·)
that proceeds by zipping individual bindings pointwise. For all items but existential type variables,
zipping requires the two facing items to be identical, as usual. The interesting case is when one of
the two items is an existential variable ∃α: the intuition is that, in this case, the other item must be
the universal variable ∀α, hence the zipper image. This ensures that an existential variable in the
conclusion can only be used up in one of the premises. Zipping can also be explained in terms of
internal and external choice: the side that makes use of ∃αwill make an internal choice by giving
the witness. Therefore the other side must consider the choice of the witness as external, which is
why it is given the item ∀α.

Note that an equivalent presentation, using two contexts, one of them being linear, is also feasible.

13

Chapter 2 Open existential types

Coerce-Eq
Γ ` ok ∀(α = τ) ∈ Γ

Γ ` α ∼ τ

Coerce-Refl
Γ ` τ :: ?
Γ ` τ ∼ τ

Coerce-Sym
Γ ` τ2 ∼ τ1
Γ ` τ1 ∼ τ2

Coerce-Trans
Γ ` τ1 ∼ τ2 Γ ` τ2 ∼ τ3

Γ ` τ1 ∼ τ3

Rules for congruence are omitted.

Figure 2.3: Coercibility (Core F.).

However, the current presentation makes extensions easier to define.

2.2.2 The appearance of recursive types

The above idea of zipping is unfortunately too generous: it introduces recursive types through the
back door. Indeed the decomposition of unpack into opening and restriction opens up the way to
recursive types, because it allows one to reference an abstract type variable before its witness has
been given. Recursive types can appear through type abstraction, i.e. through openings or open
witness definitions, in two ways.

We call internal recursion the first way, which is highlighted by the following example:

∃β. let x = ∃(α = β→ β)M in open 〈β〉 x

The abstract type variable β is used in a witness to define xwhich is then opened under the name β.
By reducing this expression we get ∃β. open 〈β〉 ∃(α = β→ β)M, which leads us to the recursive
equation β = β→ β.
We call external recursion the second way, which is hereafter exemplified:

∃β1.∃β2. { `1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ;
`2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

The above piece of code is a pair whose components have been abstracted away and the witnesses
are mutually dependent. If we remove the type abstractions we get the recursive equation system
β1 = β2 → β2 and β2 = β1 → β1.
Notice that recursive types never arise when using System F’s unpack. Consider the following

piece of code, where C1 and C2 denote contexts:

να.C2[let x = C1[open 〈α〉M1] inM2]

If we consider this program as an unpack, then the contexts C1 and C2 are empty. Consequently, α
cannot occur free in C1 or C2. By splitting unpack, however, this restriction has been waived.

2.2.3 About coercibility

Coercibility Γ ` · ∼ · is nothing more than a congruence, that is parametrized by a set of axioms, i.e.
by the equations ∀(α = τ) present in the context Γ .
To illustrate this fact, we can encode coercibility judgments into functions at the term-level, that

use primitive constructs for folding and unfolding equations: assume we have two constructs
foldα M and unfoldα Mwith the corresponding typing rules

Γ `M : τ ∀(α = τ) ∈ Γ
Γ ` foldα M : α

Γ `M : α ∀(α = τ) ∈ Γ
Γ ` unfoldα M : τ

14

2.3 A definition for Core F.

and the reduction rules
foldα (unfoldα M) M
unfoldα (foldα M) M

Then, one can reify a proof of Γ `τ1 ∼τ2 into a pair of functions that are βη-equivalent to the identity,
and of respective type τ1 → τ2 and τ2 → τ1.
For instance, Coerce-Refl is encoded as the pair (λ(x : τ) x, λ(x : τ) x), while Coerce-Sym swaps

the two encodings, and Coerce-Trans composes them. The rule Coerce-Eq is translated as the pair
(λ(x : α) unfoldα x, λ(x : τ) foldα x). Then, the congruence rules are constructed by extensionality.
We provide the encodings as the rules Coerce-Arrow and Coerce-Exists as examples.

Assume that (c1, c ′1) (resp. (c2, c ′2)) is the translation of Γ ` τ1 ∼ τ ′1 (resp. of Γ ` τ2 ∼ τ ′2). Then
the encoding of Γ ` τ1 → τ2 ∼ τ ′1 → τ ′2 is the pair (λ(f : τ1 → τ2) λ(x : τ

′
1) c2 (f (c ′1 x)), λ(f : τ

′
1 →

τ ′2) λ(x : τ1) c
′
2 (f (c1 x))).

Now assume that (c, c ′) is the translation of Γ, ∀α ` τ ∼ τ ′. Then the encoding of Γ ` ∃α.τ ∼ ∃α.τ ′
is the pair (λ(x : ∃α.τ) ∃α. c (open 〈α〉 x), λ(x : ∃α.τ ′) ∃α. c ′ (open 〈α〉 x)).

The other rules of coercibility can be translated as easily. This translation confirms that coercibility
is not a difficult notion at all, and that it is a degenerate form of subtyping.

2.3 A definition for Core F.

We now present the core of our system, which prevents the appearance of recursive types in a
simple manner. We present its semantics and show that its expressive power corresponds exactly to
the one of System F. The translation used for this purpose brings interesting insight on the gain of
modularity that F.achieves.

2.3.1 A more restrictive zipping

The zipping we defined in Figure 2.2 on page 13 is too liberal in the sense that the introduction of
abstract types does not follow the scope of term variables, but this can be enforced again. Hence,
we define a special zipping, written �q , specialized for the let rule, that requires that, if Γ1 �q Γ2 is
defined and if ∃α appears in Γ2, then ∀αmust not appear in Γ1, while, if ∃α appears in Γ1, then ∀α
should also appear in Γ2, as before. Zipping for the other rules . is symmetric and requires that if
∃α appears on one side, then ∀αmust not be present on the other side. This restriction permits to
reproduce the usage of type variables in System F, while keeping the flexibility of our constructs.

Figure 2.4 on the next page presents the full definition for the zipping operators. They are defined
as three-place relations, with the notations · . · = · and · �q · = ·, respectively. We use the = sign,
to highlight the fact that their third arguments must be understood as outputs, while the others
should by interpreted as inputs. Notice, however, that the zipping relations are not functional: for
example, if α 6= β, then ∃α . ∃β = ∃α,∃β holds, as well as ∃α . ∃β = ∃β,∃α. This is not a problem,
since Lemma 2.4.12 on page 25 shows that the positions of existential bindings in environments are
irrelevant for the different judgments.
We review the main properties of the zipping operators.

Lemma 2.3.1 (Properties of symmetric zipping). The following assertions hold:

• Symmetry: if Γ1 . Γ2 = Γ , then Γ2 . Γ1 = Γ ;

• Associativity: if Γ1 . Γ2 = Γ12 and Γ12 . Γ3 = Γ123, then there exists Γ23 such that Γ2 . Γ3 = Γ23
and Γ1 . Γ23 = Γ123;

• Reflexivity in the pure case: if Γ pure, then Γ . Γ = Γ ;

• If Γ1 pure, and Γ1 . Γ2 = Γ , then Γ1 . Γ2 = Γ2;

15

Chapter 2 Open existential types

ε . ε = ε
Γ1, x : τ . Γ2, x : τ = (Γ1 . Γ2), x : τ if x /∈ dom Γ1, Γ2
Γ1, ∀α . Γ2, ∀α = (Γ1 . Γ2), ∀α if α /∈ dom Γ1, Γ2

Γ1, ∀(α = τ) . Γ2, ∀(α = τ) = (Γ1 . Γ2), ∀(α = τ) if α /∈ dom Γ1, Γ2
Γ1, ∃α . Γ2 = (Γ1 . Γ2), ∃α if α /∈ dom Γ1, Γ2

Γ1 . Γ2, ∃α = (Γ1 . Γ2), ∃α if α /∈ dom Γ1, Γ2

ε �q ε = ε
Γ1, x : τ �q Γ2, x : τ = (Γ1 �q Γ2), x : τ if x /∈ dom Γ1, Γ2
Γ1, ∀α �q Γ2, ∀α = (Γ1 �q Γ2), ∀α if α /∈ dom Γ1, Γ2

Γ1, ∀(α = τ) �q Γ2, ∀(α = τ) = (Γ1 �q Γ2), ∀(α = τ) if α /∈ dom Γ1, Γ2
Γ1, ∃α �q Γ2 = (Γ1 �q Γ2), ∃α if α /∈ dom Γ1, Γ2

Γ1 �q Γ2, ∃α = (Γ1 �q Γ2), ∃α if α /∈ dom Γ1, Γ2
Γ1, ∃α �q Γ2, ∀α = (Γ1 �q Γ2), ∃α if α /∈ dom Γ1, Γ2

Figure 2.4: Zipping: definition.

• Distributivity: if Γ1 pure and Γ2 . Γ3 = Γ23 and Γ1 . Γ23 = Γ123, then there exists Γ13 and Γ12 such
that Γ1 . Γ2 = Γ12 and Γ1 . Γ3 = Γ13 and Γ12 . Γ13 = Γ123;

• If Γ1 . Γ2 = Γ , then Γ1 �q Γ2 = Γ .

Lemma 2.3.2 (Properties of asymmetric zip). The following assertions hold:

• Symmetry: if dom∃ Γ1 ∩ dom∀ Γ2 = ∅ and Γ1 �q Γ2 = Γ , then Γ2 �q Γ1 = Γ ;

• Associativity: if Γ1 �q Γ2 = Γ12 and Γ12 �q Γ3 = Γ123, then there exists Γ23 such that Γ2 �q Γ3 = Γ23
and Γ1 �q Γ23 = Γ123;

• Reflexivity in the pure case: if Γ pure, then Γ �q Γ = Γ ;

• If Γ1 pure, and Γ1 �q Γ2 = Γ , then Γ1 �q Γ2 = Γ2;

• If Γ2 pure, and Γ1 �q Γ2 = Γ , then Γ1 �q Γ2 = Γ1;

• Distributivity over the symmetric zip: if Γ1 pure and Γ2 . Γ3 = Γ23 and Γ1 �q Γ23 = Γ123, then there
exists Γ12 and Γ13 such that Γ1 . Γ2 = Γ12 and Γ1 . Γ3 = Γ13 and Γ12 �q Γ13 = Γ123;

• Pseudo-distributivity: if Γ1 pure and Γ2 �q Γ3 = Γ23 and Γ1 �q Γ23 = Γ123, then there exists Γ ′1, Γ12
and Γ13 such that Γ1 . Γ2 = Γ12 and Γ ′1 . Γ3 = Γ13 and Γ12 �q Γ13 = Γ123 and Γ ′1 w∀ Γ1.

The relation w∀ is defined on Figure 2.6 on the next page: the intuition is that Γ1 w∀ Γ2 holds if
Γ1 contains more universal bindings than Γ2. The property of pseudo-distributivity is used to show
that the typing judgment is stable under asymmetric zipping, which is required to prove subject
reduction: universal weakening is necessary to handle the case of the Let rule.

2.3.2 Syntax

The language F. is based on the explicitly typed version of System F with records and is extended
with constructs of Section 2.2.1 on page 8. Types and terms are described in Figure 2.5 on the next
page.

16

2.3 A definition for Core F.

τ ::= α | τ→ τ | {(`i : τi)
i∈1..n} (Types)

| ∀α.τ | ∃α.τ

M ::= x | λ(x : τ)M | MM (Terms)
| let x =M inM | Λα.M | Mτ

| {(`i =Mi)
i∈1..n} | M.`

| ∃α.M | Σ 〈β〉 (α = τ)M | (M : τ)
| open 〈α〉M | να.M

v ::= λ(x : τ)M | Λα.M (Values)
| {(`i = vi)

i∈1..n} | ∃β.Σ 〈β〉 (α = τ) v
| (v : τ) if v is not a coercion

w ::= v | Σ 〈β〉 (α = τ)w (Results)

Figure 2.5: Syntax: types, terms, values, and results.

εw∀ ε
Γ w∀ Γ ′ x /∈ dom Γ
Γ, x : τw∀ Γ ′, x : τ

Γ w∀ Γ ′ α /∈ dom Γ
Γ, ∀αw∀ Γ ′, ∀α

Γ w∀ Γ ′ α /∈ dom Γ
Γ, ∃αw∀ Γ ′, ∃α

Γ w∀ Γ ′ α /∈ dom Γ
Γ, ∀(α = τ)w∀ Γ ′, ∀(α = τ)

Γ w∀ Γ ′ α /∈ dom Γ
Γ, ∀αw∀ Γ ′

Figure 2.6: Universally-weakened environment.

Wf-Var
Γ ` ok

α ∈ dom∃ Γ ∪ dom∀ Γ ∪ dom' Γ
Γ ` α :: ?

Wf-Arrow
Γ ` τ1 :: ? Γ ` τ2 :: ?

Γ ` τ1 → τ2 :: ?

Wf-RecordEmpty
Γ ` ok
Γ ` {} :: ?

Wf-Record
Γ ` τ :: ? ∀i ∈ 1..n, ` 6= `i

Γ ` {(`i : τi)
i∈1..n} :: ?

Γ ` {(`i : τi)
i∈1..n} :: ?

Wf-Forall
Γ, ∀α ` τ :: ?
Γ ` ∀α.τ :: ?

Wf-Exists
Γ, ∀α ` τ :: ?
Γ ` ∃α.τ :: ?

Figure 2.7: Wellformedness of types.

Ok-Empty

ε ` ok

Ok-Var
Γ ` τ :: ?
x /∈ dom Γ
Γ, x : τ ` ok

Ok-Exists
Γ ` ok

α /∈ dom Γ
Γ, ∃α ` ok

Ok-Forall
Γ ` ok

α /∈ dom Γ
Γ, ∀α ` ok

Ok-Eq
Γ ` τ :: ?
α /∈ dom Γ

Γ, ∀(α = τ) ` ok

Figure 2.8: Wellformedness of environments.

17

Chapter 2 Open existential types

Var
Γ ` ok Γ pure
Γ ` x : Γ(x)

Lam
Γ, x : τ1 `M : τ2 Γ pure
Γ ` λ(x : τ1)M : τ1 → τ2

App
Γ1 . Γ2 = Γ

Γ1 `M1 : τ2 → τ Γ2 `M2 : τ2

Γ `M1 M2 : τ

Let
Γ1 �q Γ2 = Γ

Γ1 `M1 : τ1 Γ2, x : τ1 `M2 : τ2

Γ ` let x =M1 inM2 : τ2

Gen
Γ, ∀α `M : τ Γ pure
Γ ` Λα.M : ∀α.τ

Inst
Γ `M : ∀α.τ ′ Γ ` τ :: ?

Γ `Mτ : τ ′[α← τ]

Empty
Γ ` ok Γ pure

Γ ` {} : {}

Record
Γ1 . Γ2 = Γ `0 /∈ (`i)

i∈1..n Γ1 `M0 : τ0
Γ2 ` {(`i =Mi)

i∈1..n} : {(`i : τi)
i∈1..n}

Γ ` {(`i =Mi)
i∈0..n} : {(`i : τi)

i∈0..n}

Proj
1 6 k 6 n

Γ `M : {(`i : τi)
i∈1..n}

Γ `M.`k : τk

Exists
Γ, ∃α `M : τ

Γ ` ∃α.M : ∃α.τ

Coerce
Γ `M : τ ′ Γ ` τ ′ ∼ τ

Γ ` (M : τ) : τ

Sigma
Γ, Γ ′, ∀(α = τ) `M : τ β /∈ dom Γ, Γ ′

Γ, ∃β, Γ ′ ` Σ 〈β〉 (α = τ ′)M : τ[α← β]

Open
Γ `M : ∃α.τ α /∈ dom Γ, Γ ′

Γ, ∃α, Γ ′ ` open 〈α〉M : τ

Nu
Γ, ∃α `M : τ α /∈ ftv(τ)

Γ ` να.M : τ

Figure 2.9: Typing rules of the core system.

Coerce-Refl
Γ ` τ :: ?
Γ ` τ ∼ τ

Coerce-Sym
Γ ` τ2 ∼ τ1
Γ ` τ1 ∼ τ2

Coerce-Trans
Γ ` τ1 ∼ τ2 Γ ` τ2 ∼ τ3

Γ ` τ1 ∼ τ3

Coerce-Eq
Γ ` ok ∀(α = τ) ∈ Γ

Γ ` α ∼ τ

Coerce-Arrow
Γ ` τ1 ∼ τ ′1 Γ ` τ2 ∼ τ ′2
Γ ` τ1 → τ2 ∼ τ

′
1 → τ ′2

Coerce-Record
(Γ ` τi ∼ τ ′i)i∈1..n injective (i 7→ `i)

i∈1..n

Γ ` {(`i : τi)i∈1..n} ∼ {(`i : τ
′
i)
i∈1..n}

Coerce-Forall
Γ, ∀α ` τ ∼ τ ′

Γ ` ∀α.τ ∼ ∀α.τ ′

Coerce-Exists
Γ, ∀α ` τ ∼ τ ′

Γ ` ∃α.τ ∼ ∃α.τ ′

Figure 2.10: Coercible types.

18

2.3 A definition for Core F.

As open existentials do not introduce new forms of types, types of F.are type variables, arrow
types, record types, universal types, and existential types. The notation (`i : τi)

i∈1..n stands for a
sequence of n pairs, each composed of a label and a type. Type wellformedness is defined as usual,
i.e. as in Figure 2.23 on page 45 without the rule for recursive types: environments contain all type
variables used in types.

Terms of F. are variables, functions (whose arguments are explicitly typed), applications, let-
bindings, type generalizations and applications, introductions and projections of records, and
the five constructs for open existentials described above: existential introductions, open witness
definitions, coercions, openings, and restrictions. Record fields are pairs ` =M of a label name `
and a termM. The label name is used to access the field externally, as usual with records.

Wewrite ftv(τ) (respectively ftv(M)) to denote the set of free type variables of a type τ (respectively
a termM).

2.3.3 Typing rules

Typing rules for open existentials have already been presented in Section 2.2.1 on page 8. The
remaining typing rules (Figure 2.9 on the facing page) are as in System Fwith two small differences:
first, as mentioned above, typing rules with several typing judgments as premises use zipping
instead of equality to relate their typing environments. This is the case of rules App, Let, and Record.
Second, typing rules must also ensure that values can be substituted without breaking linearity,
which is the case when the typing environment does not contain existential items, i.e. when the
environment is pure. This condition appears as an additional premise of typing rules of expressions
that are also values (namely, rules Var, Lam, Gen, and Empty). Purity will be used and explained in
more details in Section 2.3.4.
Because rule Open makes the environment decrease (if it is read bottom-up), the property of

weakening is not provable in its whole generality: one can only weaken a judgment by a non-linear
item that does not depend on linear items. This is sufficient for the proof of soundness. A primitive
weakening rule will be added when considering extensions of core F. (Section 2.6.1 on page 36).

Notice also that the rule Let cannot be derived from Lam and App because of the purity condition
that rule Lam requires.

Our typing rules ensure that environments and types are wellformed. Wellformedness judgments
for types and environments are defined in Figure 2.7 and Figure 2.7 on page 17. The judgments
enforce that the free variables of types are included in the domains of environments, and that
environments contain distinct variables, and that every type expression that occurs in an environment
is wellformed.

2.3.4 Reduction semantics

The language F. is equipped with a small-step call-by-value reduction semantics. We begin with
important remarks about substitutability, then define and explain values, and finally describe the
reduction steps.

Substitution and purity

Some terms cannot be safely substituted, since substitution could violate the linear treatment of
openings and open witness definitions. It turns out that pure terms, i.e. terms that are typable in a
pure environment, behave well with respect to substitution:

Lemma 2.3.3 (Substitution lemma). Assume that Γ `M : τ and Γ ′, x : τ, Γ ′′ `M ′ : τ ′ hold, where Γ is
pure and Γ �q Γ ′ is well defined. Then (Γ �q Γ ′), Γ ′′ `M ′[x←M] : τ ′ also holds.

19

Chapter 2 Open existential types

let x = Σ 〈β〉 (α = int) (1 : α) in {`1 = x ; `2 = (λ(y : β)y) x}
−→ Σ 〈β〉 (α = int)

let x = (1 : α) in {`1 = x ; `2 = (λ(y : α)y) x}
−→ Σ 〈β〉 (α = int) {`1 = (1 : α) ; `2 = (λ(y : α)y) (1 : α)}
−→ Σ 〈β〉 (α = int) {`1 = (1 : α) ; `2 = (1 : α)}

Figure 2.11: Example of extrusion.

Therefore, values are substitutable if we restrict them to pure terms. But conversely, every
irreducible term is not necessarily a pure term.

Results and values

Results are well-behaved irreducible terms. Results include values. In System F (as in many other
languages) results actually coincide with values. However, this need not be the case. In F., results
also include terms such as Σ 〈β〉 (α = τ) λ(x : α) x, which are well-behaved and cannot be further
reduced, but are not values, as they are not pure and thus not substitutable.

Therefore we have to distinguish results, which are irreducible terms, from values, which are pure
results.
More precisely, values are defined in Figure 2.5 on page 17. They are either variables, functions,

generalizations, records of values, existential values, or coerced values. Note that nested coercions
are not values—they must be further reduced. Note also that no evaluation takes place under λs or
Λs. Finally, results are values preceded by a (possibly empty) sequence of Σs.

The purity premises in some of the typing rules ensure that values are pure, hence, by Lemma 2.3.3
on the previous page, substitutable.

Lemma 2.3.4 (Purity of values). If Γ ` v : τ holds, then Γ is pure.

Extrusions

Values are substitutable, but some results are not values: for instance, a value that is prefixed by
a non-empty sequence of Σs is a result, but not a value. How can we handle these results, when
they ought to be substituted, without breaking linearity? Our solution is to extrude the Σs just
enough to expose and perform the next reduction step. Notice that we could also have chosen to
aggressively extrude Σs, and even extrude νs as much as possible, but then, it would have meant
that we removed abstraction from the beginning, before computation is performed. Our solution, in
constrast, reveals witnesses only when it is necessary (abstraction is kept as long as possible), and
keeps local abstract types local (since νs are not extruded at all).
For example, consider the reduction steps in Figure 2.11. The initial expression is a let-binding

of the form let x = w in M where w is the result form Σ 〈β〉 (α = int) (1 : α). Hence, the next
expected reduction step is the substitution ofw for x inM. However, since x occurs twice inM, this
would duplicate the (open witness) definition appearing in w, thus breaking the linear use of β.
The solution is to first extrude the Σ binding outside of the let-binding, so that the expression bound
to x becomes the substitutable value form (1 : α). However, by enlarging the scope of Σ, we have
putM in its scope, in which the external name β occurs. Therefore, we replace it with the internal
one in the enlarged scope. Then, we may perform let-reduction safely and further reduce the redex
that has been created.
In this particular example, it is not unsafe to duplicate the open witness definition, since the

duplicated occurences of Σ would remain consistent: they would all define the same witness. Dupli-

20

2.3 A definition for Core F.

cating Σs, however, does not respect the linear discipline we intend to impose. Leveraging linearity
is discussed in Section 2.8.1 on page 52.

In order to maintain linearity, the reduction semantics will be set so that Σs can always be extruded
out of redex forms. Note that the separation of witness definitions from coercions (i.e. splitting
pack) is essential here: if the two constructs were bound together, coercions should be necessarily
extruded too, which would be hard to achieve in a local manner. Here, only the witness definitions
are extruded, while the coercions simply stay where they are.

Openings also introduce linear items into the environment and thus preclude substitution. Note
however that they are neither part of values nor of results, because they can be eliminated: by
reduction, an opening open 〈β〉M will eventually lead to an “open-exists” pattern open 〈β〉 ∃α.M ′.
This combination just performs a transfer of an existential resource from the inner name α to the
outer one β, as demonstrated by the following derivation:

Open
Exists

Γ, ∃α ` M : τ

Γ ` ∃α.M : ∃α.τ
Γ, ∃β ` open 〈β〉 ∃α.M : τ[α← β]

Therefore, the pattern open 〈β〉 ∃α.M can simply be eliminated into a renaming from the internal
to the external nameM[α← β]. This way, reduction makes the bottom-left cycle of Figure 2.1 on
page 13 vanish.

Reduction

The semantics of F.is given by a call-by-value reduction strategy, described by a small-step reduction
relation, that does not rely on types (it is compatible with type erasure). We fix a left-to-right
evaluation order so that the semantics is deterministic, although we could have left the order
unspecified. By contrast, having a call-by-value strategy and a weak-reduction is essential: the call-
by-value strategy ensures that the linear discipline is preserved. The problem of strong reduction is
discussed in Section 2.8.1 on page 52.
The notationM1 −→M2 denotes that the termM1 reduces to the termM2 in some evaluation

context. Evaluation contexts are described in Figure 2.12 on the following page. Note that, as opposed
to RTG [Dre07a], evaluation also takes place under existential bindings. A one-step reduction is the
application of a reduction rule in some evaluation context. The reduction relation is the transitive
closure of the one-step reduction relation. Reduction steps are sorted into three groups.
Rules of the main group describe the contraction of redexes. The let-reduction, the β-reduction,

the reduction of type applications, and the record projection are as usual. The next rule of this
group is the reduction of the “open-exists” pattern explained above. Notice that type substitution
is a partial function on terms, because syntax is not stable under type substitution: for instance,
(open 〈β〉M)[β← τ] is undefined: by contrast, renaming is a total function. The type system ensures
that type substitution is only performed when it is well-defined (see Lemma 2.4.9 and Lemma 2.4.10
on page 25). The last rule of this group is responsible for the erasure of restricted open witness
definitions: it replaces the type variable of a witness with the witness itself: the same substitution
occurs in System Fwhile unpacking an existential package.
The second group of rules implements the extrusion of Σs through every other construct: more

precisely, extrusion proceeds through any evaluation context. Rules Sigma-Exists and Sigma-Nu
have an extra condition to forbid extrusion of Σs whose witnesses depend on a variable that is bound
by the context. Rule Sigma-Sigma substitutes the definition of the outer one to delete dependencies:
this allows to swap two Σs, even if one syntactically depends on the other.

Finally, the third group of reduction rules keeps track of coercions during reduction, as exemplified
by rule Coerce-App. Notice that nested coercions are merged, the outer one taking priority (Rule
Coerce-Coerce), which makes the top-most cycle of Figure 2.1 on page 13 vanish.

21

Chapter 2 Open existential types

let x = v inM −→M[x← v] Redex-Let
(λ(x : τ)M) v −→ let x = v inM Redex-App

(Λα.M) τ −→M[α← τ] Redex-Inst
{(`i = vi)

i∈1..n}.`k −→ vk if 1 6 k 6 n Redex-Proj
open 〈β〉 ∃α.w −→ w[α← β] Redex-Open

νβ.Σ 〈β〉 (α = τ)w −→ w[α← τ] if β /∈ ftv(τ) ∪ ftv(w) Redex-Nu

let x = Σ 〈β〉 (α = τ)w inM −→ Σ 〈β〉 (α = τ)
let x = w inM[β← α] if α /∈ ftv(M)

Sigma-Let

(Σ 〈β〉 (α = τ)w1) w2 −→ Σ 〈β〉 (α = τ) (w1 w2[β← α]) if α /∈ ftv(w2) Sigma-App1
w1 (Σ 〈β〉 (α = τ)w2) −→ Σ 〈β〉 (α = τ) (w1[β← α] w2) if α /∈ ftv(w1) Sigma-App2
(Σ 〈β〉 (α = τ)w) τ ′ −→ Σ 〈β〉 (α = τ) (wτ ′[β← α]) if α /∈ ftv(τ ′) Sigma-Inst
(Σ 〈β〉 (α = τ)w).` −→ Σ 〈β〉 (α = τ) (w.`) Sigma-Proj

{(`i = wi)
i∈1..n ;

` = Σ 〈β〉 (α = τ)w ;
(` ′j = w

′
j)
j∈1..m}

−→ Σ 〈β〉 (α = τ) {(`i = wi[β← α])i∈1..n ;
` = w ;
(` ′j = w

′
j[β← α])j∈1..m}

Sigma-Record

if α /∈ (ftv(wi))i∈1..n ∪ (ftv(w ′j))
j∈1..m

open 〈γ〉 (Σ 〈β〉 (α = τ)w) −→ Σ 〈β〉 (α = τ) (open 〈γ〉w) if γ /∈ {α,β} Sigma-Open
∃γ.Σ 〈β〉 (α = τ)w −→ Σ 〈β〉 (α = τ) ∃γ.w if γ /∈ {α,β} ∪ ftv(τ) Sigma-Exists
νγ.Σ 〈β〉 (α = τ)w −→ Σ 〈β〉 (α = τ)νγ.w if γ /∈ {α,β} ∪ ftv(τ) Sigma-Nu

(Σ 〈β〉 (α = τ)w : τ ′) −→ Σ 〈β〉 (α = τ) (w : τ ′[β← α]) if α /∈ ftv(τ ′) Sigma-Coerce
Σ 〈β1〉 (α1 = τ1)
Σ 〈β2〉 (α2 = τ2)w

−→ Σ 〈β2〉 (α2 = τ2[α1← τ1])
Σ 〈β1〉 (α1 = τ1[β2← α2])w

Sigma-Sigma

((λ(x : τ0)M) : τ1 → τ2) v −→ ((λ(x : τ0)M) (v : τ0) : τ2) Coerce-App
(u : ∀α.τ ′) τ −→ (uτ : τ ′[α← τ]) Coerce-Inst

(u : {(`i : τi)
i∈1..n}).`k −→ (u.`k : τk) if 1 6 k 6 n Coerce-Proj

open 〈α〉 (u : ∃α.τ) −→ (open 〈α〉 u : τ) Coerce-Open
((u : τ) : τ ′) −→ (u : τ ′) Coerce-Coerce

E ::= [·] | E M | w E | let x = E inM | Eτ

| {(`i = wi)
i∈1..k ; `k+1 = E ; (`i =Mi)

i∈k+2..n} | E.`
| ∃α.E | Σ 〈β〉 (α = τ)E | (E : τ) | open 〈α〉 E | να.E

Context
M −→M ′

E[M] −→ E[M ′]

Figure 2.12: Reduction rules.

22

2.4 Soundness

Remark that only Σs are extruded: every local introduction of resources by a ν stays local and
is eventually eliminated. Coercions are not extruded either. Notice that the rule Sigma-Sigma can
be applied infinitely many times: this might lead to stuttering. This is taken into account in the
statement of progress (Proposition 2.4.24 on page 28), so that its proof does not take advantage of
stuttering.

2.4 Soundness

We show the soundness of the type system in a syntactic manner, based on the subject reduction and
progress lemmas. Moreover, since the reduction can trivially loop, due to the successive application
of Sigma-Sigma, we will show an enhanced version of the progress lemma. The soundness proof
was implemented and verified in the Coq proof assistant for a large subset of Core F.. Details on the
mechanized proof can be found in Section 2.4.6 on page 28.

2.4.1 Basic syntactic lemmas

Every context, term or types appearing in any judgment is wellformed:

Lemma 2.4.1 (Regularity). The following assertions hold:

• If Γ ` ok and x : τ ∈ Γ or ∀(α = τ) ∈ Γ , then Γ ` τ :: ?;

• If Γ ` τ :: ?, then Γ ` ok;

• If Γ ` τ ∼ τ ′, then Γ ` τ :: ? and Γ ` τ ′ :: ?;

• If Γ `M : τ, then Γ ` τ :: ?.

For any typing judgment, every free variable has been introduced in the context.

Lemma 2.4.2 (Free variables). The following assertions hold:

• If Γ ` τ :: ?, then ftv(τ) ⊆ dom Γ \ domvar Γ ;

• If Γ `M : τ, then ftv(M) ⊆ dom Γ \ domvar Γ and fv(M) ⊆ domvar Γ .

Every judgment is stable under renamings for a sufficiently fresh variable:

Lemma 2.4.3 (Stability under renaming of term variables). Assume y /∈ dom Γ1, Γ2. Then, the following
assertions hold:

• If Γ1, x : τ, Γ2 ` ok, then Γ1, y : τ, Γ2 ` ok;

• If Γ1, x : τ, Γ2 ` τ ′ :: ?, then Γ1, y : τ, Γ2 ` τ ′ :: ?;

• If Γ1, x : τ, Γ2 ` τ ′ ∼ τ ′′, then Γ1, y : τ, Γ2 ` τ ′ ∼ τ ′′;

• If Γ1, x : τ, Γ2 `M ′ : τ ′, then Γ1, y : τ, Γ2 `M ′[x← y] : τ ′.

Lemma 2.4.4 (Stability under renaming of type variables). Assume β /∈ dom Γ1, Γ2. Then, the following
assertions hold:

• If Γ1, ∀α, Γ2 ` ok, then Γ1, ∀β, Γ2[α← β] ` ok;

• If Γ1, ∀α, Γ2 ` τ ′ :: ?, then Γ1, ∀β, Γ2[α← β] ` τ ′[α← β] :: ?;

• If Γ1, ∀α, Γ2 ` τ ′ ∼ τ ′′, then Γ1, ∀β, Γ2[α← β] ` τ ′[α← β] ∼ τ ′′[α← β];

23

Chapter 2 Open existential types

• If Γ1, ∀α, Γ2 `M ′ : τ ′, then Γ1, ∀β, Γ2[α← β] `M ′[α← β] : τ ′[α← β];

• If Γ1, ∃α, Γ2 ` ok, then Γ1, ∃β, Γ2[α← β] ` ok;

• If Γ1, ∃α, Γ2 ` τ ′ :: ?, then Γ1, ∃β, Γ2[α← β] ` τ ′[α← β] :: ?;

• If Γ1, ∃α, Γ2 ` τ ′ ∼ τ ′′, then Γ1, ∃β, Γ2[α← β] ` τ ′[α← β] ∼ τ ′′[α← β];

• If Γ1, ∃α, Γ2 `M ′ : τ ′, then Γ1, ∃β, Γ2[α← β] `M ′[α← β] : τ ′[α← β];

• If Γ1, ∀(α = τ), Γ2 ` ok, then Γ1, ∀(β = τ), Γ2[α← β] ` ok;

• If Γ1, ∀(α = τ), Γ2 ` τ ′ :: ?, then Γ1, ∀(β = τ), Γ2[α← β] ` τ ′[α← β] :: ?;

• If Γ1, ∀(α = τ), Γ2 ` τ ′ ∼ τ ′′, then Γ1, ∀(β = τ), Γ2[α← β] ` τ ′[α← β] ∼ τ ′′[α← β];

• If Γ1, ∀(α = τ), Γ2 `M ′ : τ ′, then Γ1, ∀(β = τ), Γ2[α← β] `M ′[α← β] : τ ′[α← β].

The set of free variables decreases with reduction. Reduction is stable under substitution of terms
and renaming of type variables.

Lemma 2.4.5. Assume thatM −→?M ′. Then, the following assertions hold:

• fv(M ′) ⊆ fv(M) and ftv(M ′) ⊆ ftv(M);

• M[x←N] −→?M ′[x←N];

• If β /∈ ftv(M), thenM[α← β] −→?M ′[α← β].

The freshness condition on the last item is necessary, because reduction is guarded by conditions
on type variables, as in Redex-Nu and Sigma-Open for instance. To prove the last item, the first item
(the set of free variables decreases with reduction) is required, so that the induction in the transitive
case goes through.

2.4.2 Main syntactic lemmas

In this section, we review the main lemmas about the typing judgment, that are used in the proof
of the soundness properties. An interesting property with respect to weakening is the absence of
existential dependency: nothing in the environment can depend on existential bindings.

Lemma 2.4.6 (Absence of existential dependency). If Γ `M : τ and x : τ ′ ∈ Γ or ∀(α = τ ′) ∈ Γ , then
ftv(τ ′) ∩ dom∃ Γ = ∅.

The lemma is valid thanks to the rules Open and Sigma: they indeed remove an existential binding
∃β, when read bottom-up, and because the smaller environment must be wellformed, βmust not
appear in any ot its bindings.

The weakening lemma follows. Notice that it is restricted, as it was already mentioned, to weak-
ening with contexts that do not depend on existential bindings. This lemma needs a strengthened
version so that induction goes through, but we omit it here.

Lemma 2.4.7 (Weakening). Assume Γ, Γ ′ ` ok. The following assertions hold:

• If Γ ` τ :: ?, then Γ, Γ ′ ` τ :: ?;

• If Γ ` τ ∼ τ ′, then Γ, Γ ′ ` τ ∼ τ ′;

• If Γ `M : τ and ftv(Γ ′) ∩ dom∃ Γ = ∅, then Γ, Γ ′ `M : τ.

24

2.4 Soundness

It is necessary to prove the universalweakening, because of the pseudo-distributivity of the zipping
operator (Lemma 2.3.2 on page 16). Note that it is not a direct consequence of the previousweakening
lemma: indeed, Lemma 2.4.7 allows to add several bindings at a single place of the environment,
while universal weakening permits to add universal bindings anywhere in the environment.

Lemma 2.4.8 (Universal weakening). Assume Γ ′ w∀ Γ . The following assertions hold:

• If Γ ` τ :: ?, then Γ ′ ` τ :: ?;

• If Γ ` τ ∼ τ ′, then Γ ′ ` τ ∼ τ ′;

• If Γ `M : τ, then Γ ′ `M : τ.

The instantiation lemmas follow. The first one ensures that one can replace a universal binding
by a well-formed equation: in systems with subtyping, this is analogous to narrowing. The second
lemma permits to unfold an equation everywhere. The usual instantiation lemma results from the
combination of the two.

Lemma 2.4.9 (Instantiation by equation). Assume that Γ ` τ :: ? and Γ, ∀α, Γ ′ `M : τ ′ hold and that no
free type variable of τ is existentially bound in Γ . Then Γ, ∀(α = τ), Γ ′ `M : τ ′ holds.

Lemma 2.4.10 (Instantiation by substitution). Assume that Γ, ∀(α = τ), Γ ′`M :τ ′ holds. ThenM[α←τ]
is well-defined and Γ, Γ ′[α← τ] `M[α← τ] : τ ′[α← τ] holds.

The substitution lemma states that substitution is allowed for pure terms, that are wellformed in
an environment for which zipping is well defined.

Lemma 2.4.11 (Substitution). Assume that Γ1 `M1 : τ1 and Γ ′1, x : τ1, Γ2 `M2 : τ2 and Γ3 = Γ1 �q Γ ′1.
Then Γ3, Γ2 `M2[x←M1] : τ2 holds.

Proof. By induction on the typing derivation forM2, with the use of Lemma 2.4.7 on the facing
page, Lemma 2.3.2 on page 16 and Lemma 2.4.8.

Theweakening, substitution and instantiation lemmas are usually sufficient to prove type preserva-
tion, but not in F., because extrusions induce swapping of bindings in environments. The following
lemma contains the extra results required by the extrusion rules.

Lemma 2.4.12 (Swappings in environments). The following assertions hold:

• If Γ1, Γ2, ∀α, Γ3 `M : τ, then Γ1, ∀α, Γ2, Γ3 `M : τ;

• If Γ1, Γ2, ∃α, Γ3 `M : τ, then Γ1, ∃α, Γ2, Γ3 `M : τ;

• If Γ1, ∀α, Γ2, Γ3 `M : τ and α /∈ ftv(Γ2), then Γ1, Γ2, ∀α, Γ3 `M : τ;

• If Γ1, ∃α, Γ2, Γ3 `M : τ and α /∈ ftv(Γ2), then Γ1, Γ2, ∃α, Γ3 `M : τ;

• If Γ1, ∀(α1 = τ1), ∀(α2 = τ2), Γ2 `M : τ, then Γ1, ∀(α2 = τ2[α1← τ1]), ∀(α1 = τ1), Γ2 `M : τ.

2.4.3 Properties of coercibility

The reduction rules that deal with coercions require results on the coercibility relation.

Lemma 2.4.13 (Basic properties of coercibility). The following assertions hold:

Reflexivity: if Γ ` τ :: ?, then Γ ` τ ∼ τ;

Unfolding of an equation: if Γ ` τ :: ? and ∀(α = τ ′) ∈ Γ , then Γ ` τ ∼ τ[α← τ ′];

25

Chapter 2 Open existential types

∀α ∈ Γ ∨ ∃α ∈ Γ Γ ` ok
Γ ` αV α

∀(α = τ) ∈ Γ Γ ` τV τ ′

Γ ` αV τ ′
Γ ` τ1 V τ ′1 Γ ` τ2 V τ ′2

Γ ` τ1 → τ2 V τ ′1 → τ ′2

for every i ∈ 1..n, Γ ` τi V τ ′i

Γ ` {(`i : τi)
i∈1..n}V {(`i : τ

′
i)
i∈1..n}

Γ, ∀α ` τV τ ′

Γ ` ∀α.τV ∀α.τ ′
Γ, ∀α ` τV τ ′

Γ ` ∃α.τV ∃α.τ ′

Figure 2.13: Type normalization.

Stability under equivalent assumptions: Γ1, ∀(α = τ1), Γ2`τ∼τ ′ and Γ1`τ1∼τ ′1, then Γ1, ∀(α = τ ′1), Γ2`
τ ∼ τ ′.

Inversion and consistency lemmas, defined hereafter (see Lemma 2.4.19 and Lemma 2.4.20), cannot
be directly proved by induction on the judgment of type equality, due to the rule of transitivity. To
proceed, we first define an algorithmic version of coercibility, which is syntax directed, hence easy
to analyze, and prove it equivalent with the declarative version.

Definition 2.4.1 (Type normalization, algorithmic coercibility). Type normalization, denoted by
Γ ` τV τ ′ is defined in Figure 2.13. Algorithmic coercibility, denoted by Γ ` τ1 WV τ2, holds iff
there exists τ ′ such that Γ ` τ1 V τ ′ and Γ ` τ2 V τ ′.

Type normalization enjoys the following properties: it is a function that is total on well defined
inputs. It is moreover idempotent, and also correct with respect to coercibility.

Lemma 2.4.14 (Determinacy of normalization). If Γ ` τV τ1 and Γ ` τV τ2, then τ1 = τ2;

Lemma 2.4.15 (Idempotency of normalization). If Γ ` τV τ1 and Γ ` τ1 V τ2, then τ1 = τ2.

Lemma 2.4.16 (Productivity of normalization). If Γ ` τ : ?, then there exists τ ′ such that Γ ` τV τ ′.

Lemma 2.4.17 (Correctness of normalization). If Γ ` τV τ ′, then Γ ` τ ∼ τ ′.

Lemma 2.4.18 (Adequacy of algorithmic coercibility). Γ ` τ1 WV τ2 holds iff Γ ` τ1 ∼ τ2 holds.

Proof. The direct sense is proved using Lemma 2.4.17. The converse is proved by induction on the
equivalence judgment, using Lemma 2.4.16 for the case of reflexivity and Lemma 2.4.15 for the case
of transitivity.

We can finally proceed with the inversion lemmas on coercibility.

Lemma 2.4.19 (Inversion of coercibility). The following assertions hold:

• If Γ ` τ1 → τ2 ∼ τ
′
1 → τ ′2, then Γ ` τ1 ∼ τ ′1 and Γ ` τ2 ∼ τ ′2.

• If Γ ` {(`i : τi)i∈1..n} ∼ (` ′j : τ
′
j)
j∈1..m, then n = m and for every i ∈ 1..n, `i = ` ′i and Γ ` τi ∼ τ ′i;

• If Γ ` ∀α.τ ∼ ∀α.τ ′, then Γ, ∀α ` τ ∼ τ ′;

• If Γ ` ∃α.τ ∼ ∃α.τ ′, then Γ, ∀α ` τ ∼ τ ′.

Proof. Using Lemma 2.4.18 and inversion of the normalization judgment.

We now prove that coercibility is consistent, i.e. cannot equate distinct type constructors.

Lemma 2.4.20 (Consistency of coerciblity). The following assertions do not hold:

26

2.4 Soundness

• Γ ` τ1 → τ2 ∼ {(`i : τ
′
i)
i∈1..n};

• Γ ` τ1 → τ2 ∼ ∀α.τ;

• Γ ` τ1 → τ2 ∼ ∃α.τ;

• Γ ` {(`i : τi)i∈1..n} ∼ ∀α.τ;

• Γ ` {(`i : τi)i∈1..n} ∼ ∃α.τ;

• Γ ` ∀α.τ ∼ ∃β.τ ′.

Proof. Using Lemma 2.4.18 on the facing page and inversion of the normalization judgment.

2.4.4 Properties of results and ε-reductions

In this section, we introduce ε-reductions, that characterize equivalent results, and permit a more
precise statement of the progress lemma, that takes stuttering into account.

Definition 2.4.2 (ε-reductions). We writeM ε−→ M ′ when the reduction uses only Sigma-Sigma
and Context. Conversely, we writeM /ε−→M ′ when the reduction uses any rule but Sigma-Sigma.
As usual, we use the notations ε−→+ and /ε−→+ (respectively ε−→? and /ε−→?) for their transitive
(respectively reflexive transitive) closures.

We now state that only ε-reduction can be applied to results, and that it transforms results into
results.

Lemma 2.4.21. The following assertions hold:

• If w is a result, then it cannot be /ε-reduced.

• If w is a result and w ε−→M ′, thenM ′ is also a result.

The next lemma is necessary to prove our strengthened progress lemma: it states that the Σs in
front of a well formed result can be reorganized at will using ε-reductions. In particular, on can put
any selected one in front of all the other ones.

Lemma 2.4.22. If Γ ` w : τ holds and ∃β ∈ Γ , then there exists α, τ ′ and w ′ such that w ε−→? Σ 〈β〉 (α =
τ ′)w ′ and β /∈ ftv(τ ′).

Proof. By induction on the typing judgment. Many cases are impossible because w is a result. It
cannot be a value since it would contradict Lemma 2.3.4 on page 20. If w starts with a Σ, then either
it is the right one (i.e. applied to β). Otherwise, we use induction hypothesis and then swap the two
first Σs.

2.4.5 Type soundness

We now proceed with the type soundness results. The proof of subject reduction proceeds by
induction on the reduction relation. It heavily relies on the lemmas of Section 2.4.2 on page 24 and
on Lemma 2.4.19 on the preceding page.

Proposition 2.4.23 (Subject reduction). If Γ `M : τ andM −→M ′, then Γ `M ′ : τ.

Progress states that every well-typed term is either a result (and then cannot /ε-reduce thanks to
Lemma 2.4.21), or it really reduces, i.e. a /ε-reduction is possible, provided it is preceded by a finite,
possibly empty, sequence of ε-reductions: this means that one can progress without stuttering using
ε-reductions only. Progress is proved by induction on the typing derivation. It heavily relies on
Lemma 2.4.22 and on Lemma 2.4.20 on the facing page.

27

Chapter 2 Open existential types

Proposition 2.4.24 (Progress). If Γ `M : τ and Γ does not contain value variable bindings, then either M
is a result, or there existsM ′ andM ′′ such thatM ε−→?M ′

/ε−→M ′′.

The side condition that Γ does not contain any value variable is as usual. However, we cannot
require themore restrictive hypothesis that Γ be empty, since evaluation takes place under the binders
ν and ∃. Moreover, this allows to consider the reduction of open programs, i.e. programs with free
type variables. This is the case of programs with abstract types, which come from unrestricted
openings or open witness definitions. This closely corresponds to ML programs composed of
modules with abstract types.

2.4.6 A mechanized proof of soundness

We developed a mechanized proof of soundness1 (Proposition 2.4.23 on the previous page and
Proposition 2.4.24) of a variant of F.with The Coq proof assistant [Coq]. The difference with the
version we described in this section is twofold:

• we considered pairs instead of records;

• there is only one zipping operator, that is the definition of the asymmetric zipping (Figure 2.4
on page 16), from which the fifth rule, that zips an existential on the left-hand side with
nothing on the right-hand side is removed. In other words, its definition boils down to the
following:

ε �q ε = ε
Γ1, x : τ �q Γ2, x : τ = (Γ1 �q Γ2), x : τ if x /∈ dom Γ1, Γ2
Γ1, ∀α �q Γ2, ∀α = (Γ1 �q Γ2), ∀α if α /∈ dom Γ1, Γ2

Γ1, ∀(α = τ) �q Γ2, ∀(α = τ) = (Γ1 �q Γ2), ∀(α = τ) if α /∈ dom Γ1, Γ2
Γ1 �q Γ2, ∃α = (Γ1 �q Γ2), ∃α if α /∈ dom Γ1, Γ2

Γ1, ∃α �q Γ2, ∀α = (Γ1 �q Γ2), ∃α if α /∈ dom Γ1, Γ2

We made these changes for the sake of simplicity. It should not be hard to adapt the proof scripts
to the definitions presented in the current manuscript. This slight change on zipping renders the
system less symmetric, and consequently a bit less regular, since each typing rule with multiple
premises uses the asymmetric version of zipping, whereas only the rule Let used the asymmetric
version in the original definition. As a consequence, abstract type variables are automatically
distributed to the right: they are available for use without the need use let-bindings. We think that
the two systems are essentially equivalent, up to the introduction of intermediate let-bindings.

We chose to use the locally-nameless technique to represent terms with binders, and the cofinite
quantification technique to express properties on such terms [ACP+08], with the great help of the
Ott [SNO+10] and LNgen [AW] tools. Table 2.1 on the facing page reads the statistics of the Coq
development. We first developed a soundness proof for System F in about one week, and then it
took about one month to extend it to Core F.. The current development needs about 45 minutes to
compile2: compilation time could surely be reduced, but the proof scripts were not produced with
speed in mind. By contrast, the typechecking of the compiled Coq proof terms only needs less than
3 minutes.

While the above tools helped us a lot in most cases, it is worth noting that the current support for
binders that they provided was too limited for our application: cofinite quantification does not, as
implied, render renaming lemmas unnecessary, but also the support for extrusion or swapping of
binders was completely absent, which forced us to prove low level lemmas, i.e. lemmas that involve
1The source files can be downloaded at the following URL: http://gallium.inria.fr/~montagu/proofs/FzipCore/
2On a machine running Linux 2.6.32, equipped with an Intel R© CoreTM2 at 2.4GHz CPU, and 4Gb of RAM.

28

http://gallium.inria.fr/~montagu/proofs/FzipCore/

2.5 Adequacy with System F

Specifications Proofs
3,000 1,450 Automatically generated
2,600 8,600 Manually produced
5,600 10,050 Total

Table 2.1: Statistics of the Coq soundness proof for F. (lines of code).

bxc , x

bλ(x : τ)Mc , λ(x)M

bMM ′c , bMc bM ′c
bΛα.Mc , λ(x) bMc if x /∈ fv(M)

bMτc , bMc (λ(x) x)
b{(`i =Mi)

i∈1..n}c , {(`i = bMic)i∈1..n}

blet x =M inM ′c
bunpackM as 〈α, x〉 inM ′c

}
, let x = bMc in bM ′c

bM.`c , bMc.`
bνα.Mc
b∃α.Mc

bΣ 〈β〉 (α = τ)Mc
bopen 〈α〉Mc
b(M : τ)c

pack 〈τ,M〉 as ∃α.τ ′

, bMc

Figure 2.14: Type erasure.

De Bruijn indices, that is, on the internal representation of binders. We think that, as the implemen-
tation of atoms in the UPenn library is hidden to the user, so should be the representation of binders.
Efforts should be put in this direction. Besides, the cofinite quantification style drastically blurred
the judgments that involved extrusion or swapping of binders, so that we were only convinced
that our encoding was correct, once we proved that our judgments entailed some others, that were
expressed in a more natural way.
A more detailed report of the encountered issues can be found in [Mon10].

2.4.7 Type erasure semantics

Type erasure is defined in Figure 2.14. Remark that the erasure of a generalization is a λ-abstraction,
because in the semantics we gave for F. in Figure 2.12 on page 22, no reduction happens under
generalizations.
Just as for System F, F.also enjoys a type erasure semantics, which is shown by the following

simulation result:

Proposition 2.4.25 (Simulation with the untyped λ-calculus). The following assertions hold:

• IfM −→M ′, then bMc = bM ′c or bMc −→ bM ′c;

• If bMc −→ N and Γ `M : τ, then there exists N ′ such thatM −→+N ′ and bN ′c = N.

The erasure of a term is defined in Figure 2.14. It is a standard erasure function, that blocks
evaluation under Λs.

2.5 Adequacy with System F

In this section, we show the strong connection that exists between System F and Core F.: the latter
is a conservative extension of the former, and allows more compositional programs to be written.
We exhibit two encodings from and into System F, and show that they preserve types and meanings

29

Chapter 2 Open existential types

JxKF , x

Jλ(x : τ)MKF , λ(x : τ) JMKF
JMM ′KF , JMKF JM ′KF

Jlet x =M inM ′KF , let x = JMKF in JM ′KF
JΛα.MKF , Λα. JMKF
JMτKF , JMKF τq

{(`i =Mi)
i∈1..n}

y
F , {(`i = JMiKF)

i∈1..n}

JM.`KF , JMKF .`
JunpackM as 〈α, x〉 inM ′KF , να. let x = open 〈α〉 JMKF in JM ′KF if α /∈ ftv(M)

Jpack 〈τ,M〉 as ∃α.τ ′KF , ∃α.Σ 〈α〉 (α = τ) (JMKF : τ ′) if α /∈ ftv(τ) ∪ ftv(M)

Figure 2.15: Encoding from F to F..

JxKΓF. , (Γ(x), x)

Jλ(x : τ)MKΓF. , (τ→ τ ′, λ(x : τ)M ′) if JMKΓ,x:τF. = (τ ′,M ′)

JM1 M2K
Γ
F. , (τ ′1,M

′
1 M

′
2) if JM1K

Γ
F. = (τ ′2 → τ ′1,M

′
1) and JM2K

Γ
F. = (τ ′2,M

′
2)

Jlet x =M1 inM2K
Γ
F. , (τ ′2, let x =M

′
1 inM ′2) if JM1K

Γ
F. = (τ ′1,M

′
1) and JM2K

Γ,x:τ′1
F. = (τ ′2,M

′
2)

JΛα.MKΓF. , (∀α.τ ′, Λα.M ′) if JMKΓF. = (τ ′,M ′)

JMτKΓF. , (τ ′[α← τ],M ′ τ) if JMKΓF. = (∀α.τ ′,M ′)q
{(`i =Mi)

i∈1..n}
yΓ

F. , ({(`i : τ
′
i)
i∈1..n}, {(`i =M

′
i)
i∈1..n}) if JMiK

Γ
F. = (τ ′i,M

′
i)

JM.`kK
Γ
F. , (τ ′k,M

′.`k) if JMKΓF. = ({(`i : τ
′
i)
i∈1..n},M ′) and k ∈ 1..n

Jνα.MKΓF. , (τ ′, να.M ′) if JMKΓF. = (τ ′,M ′)

Jopen 〈α〉MKΓF. , (τ ′, open 〈α〉M ′) if JMKΓF. = (∃α.τ ′,M ′)
J(M : τ)KΓF. , (τ, (M ′ : τ)) if JMKΓF. = (τ ′,M ′)

JΣ 〈β〉 (α = τ)MKΓF. , (τ ′[α← β], Σ 〈β〉 (α = τ) (M ′[α← τ] : τ ′)) if JMKΓF. = (τ ′,M ′)

J∃α.MKΓF. , (∃α.τ ′, να. let x =M ′ in pack 〈α, x〉 as ∃α.τ ′) if JMKΓF. = (τ ′,M ′)

Figure 2.16: Encoding from F. to F, stage 1: recovering packs.

of programs. These translations witness the static and dynamic correspondence between the two
languages and highlight the gain of modularity that is brought by Core F..

2.5.1 From F to F.

As mentioned in Section 2.2.1 on page 8, the encoding of pack and unpack is unsurprisingly straight-
forward. It preserves typing and abstraction as well as semantics: the encoding keeps the underlying
untyped skeleton unchanged.

Lemma 2.5.1 (Translation preserves types). If Γ `F M : τ, then Γ ` JMKF : τ.

Lemma 2.5.2 (Translation preserves semantics). bJMKFc = bMc.

2.5.2 From F. to F

Conversely, it is also possible to globally reorganize every closed term of F. so that it uses (the
encodings of) pack and unpack. We sketch out this transformation that consists in three stages:

30

2.5 Adequacy with System F

Cα ::= open 〈α〉M | Σ 〈α〉 (β = τ) (M : τ ′) | Cα M | M Cα | Cα τ | νβ.Cα
| Cα.` | open 〈β〉 Cα | Σ 〈β〉 (γ = τ) (Cα : τ ′) | (Cα : τ)
| {(`i =Mi)

i∈I ; ` = Cα ; (`j =Mj)
j∈J} | let x =M in Cα | let x = Cα inM

| pack 〈τ,Cα〉 as ∃β.τ ′ | unpack Cα as 〈β, x〉 inM | unpackM as 〈β, x〉 in Cα

where β, γ 6= α

να. open 〈α〉M _ unpackM as 〈α, x〉 in x
να.Σ 〈α〉 (β = τ) (M : τ ′) _ unpack pack 〈τ,M〉 as

∃β.τ ′ as 〈α, x〉 in x
if α /∈ ftv(τ) ∪ ftv(τ ′) ∪ ftv(M)

and β /∈ ftv(M)
να. (Cα M) _ (να.Cα)M if α /∈ ftv(M)
να. (M Cα) _ M (να.Cα) if α /∈ ftv(M)
να. (Cα τ) _ να. let x = Cα in x τ
να.νβ.M _ νβ.να.M if α 6= β
να.Cα.` _ να. let x = Cα in x.` if α 6= β

να. open 〈β〉 Cα _ open 〈β〉 να.Cα if α 6= β
να.Σ 〈β〉 (γ = τ) (Cα : τ ′) _ Σ 〈β〉 (γ = τ) (να.Cα : τ ′) if α /∈ {β, γ} ∪ ftv(τ) ∪ ftv(τ ′)

να. (Cα : τ) _ να. let x = Cα in (x : τ)
να. {(`i =Mi)

i∈1..n ;
` =Cα ;

(` ′j =M
′
j)
j∈1..m}

_ {(`i =Mi)
i∈1..n ;

` =να.Cα ;
(` ′j =M

′
j)
j∈1..m}

if α /∈ ftv(Mi)
i∈1..n ∪ ftv(M ′j)

j∈1..m

να. (let x =M in Cα) _ let x =M in να.Cα if α /∈ ftv(M)
να. pack 〈τ,Cα〉 as ∃β.τ ′ _ να. let x = Cα in pack 〈τ, x〉 as ∃β.τ ′

να. unpack Cα as 〈β, x〉 inM _ να. let y = Cα in unpack y as 〈β, x〉 inM if y fresh
να. unpackM as 〈β, x〉 in Cα _ unpackM as 〈β, x〉 in να.Cα if α /∈ {β} ∪ ftv(M)

Figure continues on page ??.

Figure 2.17: Encoding from F. to F, stage 2: recovering unpack s (congruence rules are omitted).

31

Chapter 2 Open existential types

να. let x = open 〈α〉M inM ′ _ unpackM as 〈α, x〉 inM ′
να. let x =
Σ 〈α〉 (β = τ) (M : τ ′) inM ′

_ unpack pack 〈τ,M〉 as
∃β.τ ′ as 〈α, x〉 inM ′

if α /∈ ftv(τ) ∪ ftv(τ ′) ∪ ftv(M)

να. let x = Cα M inM ′ _ να. let y = Cα in let x = y M inM ′ if y is fresh
να. let x =M Cα inM ′ _ να. let y = Cα in let x =M y inM ′ if y is fresh
να. let x = Cα τ inM ′ _ να. let y = Cα in let x = y τ inM ′ if y is fresh

να. let x = νβ.Cα inM ′ _ νβ.να. let x = Cα inM ′ if β /∈ {α} ∪ ftv(M ′)
να. let x = Cα.` inM ′ _ να. let y = Cα in let x = y.` inM ′ if y is fresh

να. let x = open 〈β〉 Cα inM ′ _ να. let y = Cα in
let x = open 〈β〉 y inM ′

if y is fresh, α 6= β

να. let x =
Σ 〈γ〉 (β = τ) (Cα : τ ′) inM ′

_ να. let y = Cα in
let x = Σ 〈γ〉 (β = τ) (y : τ ′) inM ′

if y is fresh, β /∈ {α} ∪ ftv(Cα)

να. let x = (Cα : τ) inM ′ _ να. let y = Cα in let x = (y : τ) inM ′ if y is fresh
να. let x = {(`i =Mi)

i∈1..n ;
` = Cα ; (` ′j =M

′
j)
j∈1..m} inM ′

_ να. let y = Cα in let x =
{(`i =Mi)

i∈1..n ; ` = y ; (` ′j =M
′
j)
j∈1..m} inM ′

if (yi)i∈1..n, y are fresh

να. let x = let y =M in Cα inM ′ _ να. let y =M in let x = Cα inM ′ if y /∈ fv(M ′)
να. let x = let y = Cα inM inM ′ _ να. let y = Cα in let x =M inM ′ if y /∈ fv(M ′)

να. let x =
pack 〈τ,Cα〉 as ∃β.τ ′ inM ′

_ να. let y = Cα in
let x = pack 〈τ, y〉 as ∃β.τ ′ inM ′

if y is fresh

να. let x =
unpack Cα as 〈β, y〉 inM inM ′

_ να. unpack Cα as 〈β, y〉 in
let x =M inM ′

if y /∈ fv(M ′), β /∈ ftv(M ′)

να. let x =
unpackM as 〈β, y〉 in Cα inM ′

_ unpackM as 〈β, y〉 in
να. let x = Cα inM ′

if y /∈ fv(M ′), β /∈ ftv(M ′)

Figure 2.17: Encoding from F. to F, stage 2 (continued).

Prelude First, we apply the transformation J·KΓF., defined in Figure 2.16 on page 30, that recovers the
pack constructs from the existential closure constructs;

Main part Then, we extrude opens and Σs using let-bindings and intrude νs to recover the unpack
constructs, by completely applying for every ν the rewriting rules defined in Figure 2.17 on
the previous page;

Postlude Finally, we remove all coercions, since they become unnecessary.

All stages but the second one are compositional. We now review the different steps in more details.
Notice that we use an extended syntax of terms: to the syntax of F. terms, we add the constructs
pack and unpack of System F.

First stage: prelude

The first stage of the translation is defined in Figure 2.16 on page 30. It can be seen as a normalization
pass: it computes the current type, inserts coercions at the current type under Σs and unfolds witness
definitions within their scopes, and finally replaces uses of the ∃-construct with uses of pack. The
main ingredients of this stage are visible in the last two lines of Figure 2.16.

Remark that the environment in the translation only contain value variable bindings, since other
sorts of bindings are not needed.

It could also have been possible to define this stage as a type-directed translation, but this definition
does not require the terms to be welltyped.
This transformation enjoys the following properties:

32

2.5 Adequacy with System F

Lemma 2.5.3 (Weakening). If JMKΓF. = (τ,M ′), then for every Γ ′ such that ∀x ∈ dom Γ, Γ ′(x) = Γ(x),
we have JMKΓ

′

F. = (τ,M ′).

Lemma 2.5.4 (Productivity). If Γ `M : τ, then there exists τ ′ andM ′ such that JMKΓF. = (τ ′,M ′).

Lemma 2.5.5 (Preservation of types). If Γ `M : τ and JMKΓF. = (τ ′,M ′), then τ = τ ′ and Γ `M ′ : τ ′.

Definition 2.5.1 (let-reduction of erased terms). let-reduction of erased terms, denoted by let−→, is
the closure of the rule let x =M1 inM2 −→M2[x←M1] under any context.

Lemma 2.5.6 (Preservation of semantics). If JMKΓF. = (τ ′,M ′), then bM ′c let−→? bMc.

Second stage: main transformation

The second stage of the translation is defined in Figure 2.17 on page 31. It is defined in a small-step
manner, as a set of rewrite rules. Each rewriting step tends to move closer together a ν and its
corresponding open or Σ, i.e. the site of introduction of an existential type variable and the site of its
use. This will eventually lead to the replacement of those constructs with unpack.

Definition 2.5.2. We say that a rewrite rule is rooted at α if its left-hand side is of the form να.Cα.

The rewrite rules are intended to be used to eliminate each ν one after the other. For each of them,
the rewrite rules intrude the νwhen possible, or introduce an extra let otherwise, and eventually
insert an unpack. The rewrite rules rely on the definition of Cα, which is a grammar of contexts, that
locate the use of the variable α. It is worth noting that if Γ `M : τ and ∃α ∈ Γ , then there exists a
unique Cα such thatM = Cα: this is due to the linear condition on the use of ∃α, that is enforced by
the typing judgment.
For a given α, the rewriting rules rooted at α always terminate, since they decrease the distance

between the introduction and the elimination of α. More formally, the depth of the type variable α
decreases.

Definition 2.5.3 (Depth). The depth of the existential type variable α in the context Cα, denoted by
depthα Cα, is defined as follows:

depthα open 〈α〉M
depthα Σ 〈α〉 (β = τ)M

}
, 0

depthα let x = Cα inM , 1 + depthα Cα

depthα Cα τ
depthα νβ.Cα

depthα Cα.`
depthα open 〈β〉 Cα

depthα Σ 〈β〉 (γ = τ)M
depthα(Cα : τ)

,

depthα{(`i =Mi)
i∈1..n ;

` = Cα ; (` ′j =M
′
j)
j∈1..n}

depthα let x =M in Cα

depthα pack 〈τ,Cα〉 as ∃β.τ ′
depthα unpackM as 〈β, x〉 in Cα

depthα unpack Cα as 〈β, x〉 inM

, 2 + depthα Cα

when α 6= β

Notation. In the following, we writeM[N] if the term N occurs as a subterm ofM.

For a given root α, the rewriting relation terminates:

Lemma 2.5.7 (Termination). If να.Cα1 _M[να.Cα2] using a rule rooted at α, then the depth of α strictly
decreases, that is depthα Cα2 < depthα Cα1 holds. Hence the rewrite rules rooted at a given type variable
terminate.

The next lemma is useful to complete the transformation: if applied to an innermost root α, then
the number of νs strictly decreases, once the rules rooted at α have all been applied.

33

Chapter 2 Open existential types

Lemma 2.5.8. If να.Cα1 _M[να.Cα2] using a rule rooted at α, and if Cα1 is ν-free, then so is Cα2 .

The transformation is well defined on wellformed terms that are not ν-free.

Lemma 2.5.9 (Progress). If Γ ` N[να.M] : τ, thenM is of the form Cα and there exists a rule rooted at α
that rewrites να.M. Moreover, this rule is unique.

The transformation is type preserving.

Lemma 2.5.10 (Preservation of types). If Γ `M : τ andM_M ′, then Γ `M ′ : τ.

Then, the next two lemmas show that the transformation eventually eliminates the restrictions.

Lemma 2.5.11 (Productivity). If Γ ` N[να.M] : τ, then there existsM ′,M1,M2, and x such that:

• να.M_+M ′[unpackM1 as 〈α, x〉 inM2] using only rules that are rooted at α;

• ifM is ν-free, then so areM ′,M1 andM2.

Proof. By induction on depthαM, using Lemma 2.5.9 and Lemma 2.5.10.

Lemma 2.5.12 (Correctness). If Γ `M : τ, then there existsM ′ such thatM_?M ′ andM ′ is ν-free.

Proof. By applying Lemma 2.5.11 following an innermost strategy, so that the number of νs strictly
decreases.

It has been already shown that the translation preserves types; it is also semantics-preserving.

Definition 2.5.4. let−→ is the smallest reduction relation on pure λ-terms that is closed under any
context and so that let x =M1 inM2

let−→M2[x←M1] holds.

Lemma 2.5.13 (Preservation of semantics). IfM_M ′, then bM ′c let−→? bMc.

Notice that we did not take care of keeping the same evaluation order between a source term and
its image, but this is achievable. For instance, consider the following rule, taken from Figure 2.17 on
page 31:

να. let x = {(`i =Mi)
i∈1..n ;

` = Cα ; (` ′j =M
′
j)
j∈1..m} inM ′

_ να. let y = Cα in let x =
{(`i =Mi)

i∈1..n ; ` = y ; (` ′j =M
′
j)
j∈1..m} inM ′

On the left hand side,M will be evaluated after the subtermsM1, . . . ,Mn, whereas on the right
hand sideM will be evaluated before the subtermsM1, . . . ,Mn. But we could replace the previous
rewriting rule with the following one:

να. let x = {(`i =Mi)
i∈1..n ;

` = Cα ; (` ′j =M
′
j)
j∈1..m} inM ′

_ let x1 =M1 in · · · let xn =Mn in
να. let y = Cα in let x =

{(`i = xi)
i∈1..n ; ` = y ; (` ′j =M

′
j)
j∈1..m} inM ′

if x1, . . . , xn are fresh, α /∈ ftv(M1) ∪ · · · ∪ ftv(Mn)

This would restore the evaluation order, at the cost of a more verbose rule.

34

2.5 Adequacy with System F

Third stage: postlude

The last stage of the translation is again a normalization step: it consists in removing the coercions.
Let us write (M)◦ to denote the erasure of coercions fromM. This is made possible thanks to the
following lemmas.

Lemma 2.5.14. If Γ ` M : τ holds and Γ is equation-free (i.e. dom' Γ = ∅) andM is Σ-free, then every
context occurring in the derivation of Γ `M : τ is also equation-free.

Lemma 2.5.15. If Γ ` τ1 ∼ τ2 and Γ is equation-free, then τ1 = τ2.

Since we only translate well-typed terms that are closed with respect to type variables, they
are also typable in an equation-free and pure environment. Moreover, after the second stage
of transformation, terms are Σ-free, since they are ν-free and ∃-free and well-typed in a pure
environment. As a consequence, the coercions that occur within those terms can only be instances
of the identity, that is of the syntactic equality, and can consequently been eliminated.
The third stage enjoys the following properties.

Lemma 2.5.16 (Preservation of types). If Γ `M : τ where Γ pure and Γ is equation-free andM is ν-free
and ∃-free, then Γ ` (M)◦ : τ.

Lemma 2.5.17 (Preservation of semantics). b(M)◦c = bMc.

Properties of the whole transformation

Combining the properties of each stage, we can finally prove that terms of F. can be translated to F:

Proposition 2.5.18 (Translation to System F). If Γ `M : τ and Γ pure and Γ is equation-free, then there
exists N such that Γ `F N : τ and bNc let−→? bMc.

Corollary 2.5.19. Every closed well-typed term of F.can be translated to a closed well-typed term of System
F that has the same type and the same behavior.

This result highlights the increase of modularity brought by F.over System F: the translation
reorganizes the term by introducing intermediate let-bindings, so that it fits in System F. In other
words, F.allows for organizing the code more freely than F does.

One could wonder whether the translation also preserves a certain notion of abstraction, or more
informally: are the witnesses kept hidden by the translation? It is not obvious how to formally state the
intended property, and we did not investigate on this question. One can however argue in favor of
the preservation of abstraction:

• the inserted coercions (Figure 2.16 on page 30) are always there to keep the type unchanged:
they restore the type that held before the substitution of the witness;

• the Σs, which delimit the scopes of type equations, are never extruded;

• the inserted let-bindings use fresh variables: as a consequence, the pieces of term that are
extruded with a let-binding are only visible to the subterms they are extracted from.

A formal investigation of abstraction in F.and of its translation for System F could certainly be
done with the use of bisimulation techniques [Mit86, Mit91, SP04], of logical relations [CH07], or of
colored brackets [Pes08, GMZ00, LPSW03].

35

Chapter 2 Open existential types

2.5.3 The logical facet

By erasing the terms from the typing rules, we can consider the logic underlying core F.: not only the
expressible formulas are exactly those of second-order arithmetic, but also we can deduce from the
translations above that the valid formulas are identical. In particular, F. ’s logic is consistent. Moreover,
since the reduction steps are increased by the translation and since the untyped skeletons of System
F terms are terminating, the untyped skeleton of every closed program of F. is also terminating. In
addition, the fact that the untyped skeleton of the image let-reduces to the untyped skeleton of the
source essentially tells us that the two pieces of program compute the same things and in the same
way: the translation to System F just performs a reorganization of the type derivation.
Hence, the correspondence with System F is twofold: it holds on the static as well as on the

dynamic viewpoint, which connects F.with System F in a very tight manner.
The gain of modularity brought by core F. in terms of programming can be read back in terms

of proofs: it allows greater flexibility in assembling partial proofs (i.e. with abstract types), where
environments are zipped when combining proof-terms.
One can wonder what is the logical status of the new typing rules that we introduced in F.:

• rule Coerce has the form of an explicit subtyping rule with an empty computational content,
which is corroborated by Section 2.2.3 on page 14;

• rule Exists is the right introduction rule for the existential quantifier, whereas rule Open is its
elimination rule, which is corroborated by the fact that open 〈β〉 ∃α.w is a redex;

• rule Sigma is also an introduction rule, whereas rule Nu is its elimination rule, which is again
corroborated by the fact that νβ.Σ 〈β〉 (α = τ)w is a redex.

2.6 Extensions of F.

In this section we consider several extensions for F., namely: the addition of a weakening rule,
more liberal type equations, handling of the double vision problem, support of recursive types, and
support of recursive values. For each of them, the soundness properties (Proposition 2.4.23 and
Proposition 2.4.24 on page 28) of F.extend, and are sketched in Section 2.6.6 on page 43.

2.6.1 Weakening

The weakening property (Lemma 2.4.7 on page 24) is restricted to bindings that do not depend on
existential items. While this is sufficient to prove subject reduction, is also has consequences on the
expressiveness of F. itself.

The following example is not accepted, but this is not due to the lack of weakening: the asymmetric
zipping is responsible, and a solution is given in Section 2.6.2 to allow more liberal type equations.

let f = λ(x : β) x in
Σ 〈β〉 (α = int) (1 : α)

The existential variable is indeed not present in the context that types the function f, because zipping
distributes a universal variable only to the right. However, β is required to be in the environment to
type f, since it is a free type variable of f.
The next example is however a relevant instance of the lack of weakening:

νβ.Σ 〈δ〉 (γ = β)
let x = Σ 〈β〉 (α = int) (1 : α) in
(x : γ)

36

2.6 Extensions of F.

The above piece of code is not accepted, because to type the definition of x, the Σ requires that β
is not present in the environment to type (1 : α), whereas the equation ∀(γ = β) is already in the
environment. As a consequence, the above example is rejected. Another way to explain this behavior
is that one must respect the order of definitions of witnesses: one tries to define δ and γ using β,
that is not yet defined. The following piece of code, is, however, accepted: the only difference is that
the Σ, that previously encompassed the whole term, has been intruded.

νβ. let x = Σ 〈β〉 (α = int) (1 : α) in
Σ 〈δ〉 (γ = β) (x : γ)

We think the former example was rejected for a bad reason, that is, because of a technical artifact,
and that might seem difficult to apprehend for a non specialist of F..

To resolve this awkwardness of the system, it suffices to add a weakening rule to the system, that
allows to remove elements from the environment to type a given term, as long as the removed items
are pure. The weakening judgment is defined in Figure 2.21 on page 44, and is used in the rule
Weaken in Figure 2.20 on page 44. This way, one can remove the extra equation ∀(γ = β) before
typing Σ 〈β〉 (α = int) (1 : α). Notice that it also permits to type the same piece of code, where x has
been inlined.
The examples we gave proceed to a renaming of an abstract type, that is: they transform a

derivation of Γ, ∃β`M : τ into a derivation of Γ, ∃δ`M ′ : τ[β← δ]where δ is fresh. This technique is
described in a more general form that we call relocation in Section 4.2.2 on page 119, and is heavily
used, in the translation of Section 4.3.2 on page 122, in Chapter 4.

2.6.2 More liberal equations

Core F. imposes a simple but inconveniently strong restriction to force type equations to be acyclic.
In this section we present a more general technique to control recursive types, by enriching the

structure of typing environments in a natural way: we no longer consider them as sequences, i.e.
totally ordered sets, but as partially ordered sets, where the order relation expresses dependencies
between bindings and is required to be acyclic, which means that no binding can (transitively)
depend on itself. Failure to satisfy this condition prevents the zipping of two environments (the
zipped environment is undefined).
More specifically, a typing environment Γ is a dag represented as a pair (E,≺) of a finite set

of bindings E and an acyclic (or anti-reflexive) transitive relation ≺ on domE, i.e. there exists no
binding b such that domb ≺ domb. We sometimes write b ≺ b ′ instead of domb ≺ domb ′. If
b ≺ b ′, we say that b depends on b ′.

Definition 2.6.1. We consider that two environments (E1,≺1) and (E2,≺2) are equal when the sets
E1 and E2 are (extensionally) equal and the relations ≺1 and ≺2 are equivalent.

Note. We take care that all the definitions and properties involving environments are closed under
the equality on environments.
We use the following notation for composing and decomposing typing environments so that

typing rules look familiar:

Notation. Wewrite Γ1, (b�D), Γ2 to denote an environment that contains the bindings of Γ1]b] Γ2,
when no binding in Γ1 depends on b, and b does not depend on bindings of Γ2, and D is the set of
bindings b depends on. In particular, when Γ2 is empty, b is minimal for the dependency relation.

In the rest of the document, we will only consider cases, where dependencies hold with respect
to type variables only: we do not make bindings depend on other value variable bindings. However,
value variables can depend on type variables, as in rule Let.

37

Chapter 2 Open existential types

∅ . ∅ , ∅
(b ∪ E1) . (b ∪ E2) , b ∪ (E1 . E2) if domb /∈ domE1 ∪ domE2

and b 6= ∃β
({∃α} ∪ E1) . ({∀α} ∪ E2) , {∃α} ∪ (E1 . E2) if α /∈ domE1 ∪ domE2

({∀α} ∪ E1) . ({∃α} ∪ E2) , {∃α} ∪ (E1 . E2) if α /∈ domE1 ∪ domE2

(b ∪ E1) . E2 , b ∪ (E1 . E2) if domb /∈ domE1 ∪ domE2

E1 . (b ∪ E2) , b ∪ (E1 . E2) if domb /∈ domE1 ∪ domE2

Figure 2.18: Zipping of sets of bindings

Definition 2.6.2 (Zipping). Let Γ1 and Γ2 be two typing environments of the form (E1,≺1) and
(E2,≺2). Let ≺ be the transitive closure (≺1 ∪ ≺2)

+. If ≺ is acyclic, the zipping of Γ1 and Γ2, written
Γ1 . Γ2, is (E1 . E2,≺), where E1 . E2 is defined in Figure 2.18. The zipping of Γ1 and Γ2 is undefined
if ≺ is not acyclic or if E1 . E2 is undefined.
The last two items of Figure 2.18 perform an implicit weakening on each environment. This has

the effect of refining the detection of cycles, and will be illustrated below.
Lemma 2.6.1. The zipping operator enjoys the following properties:

Associativity: Γ1 . (Γ2 . Γ3) is defined iff (Γ1 . Γ2) . Γ3 is defined, and in this case, the two environments
are equal;

Commutativity: Γ1 . Γ2 is defined iff Γ2 . Γ1 is defined, and in this case, the two environments are equal;

Distributivity: if Γ1 pure, then Γ1 . (Γ2 . Γ3) is defined iff (Γ1 . Γ2) . (Γ1 . Γ3) is defined, and in this case,
the two environments are equal.

Observe that the zipping properties are much more regular in this setting than they were in Core
F. (see Lemma 2.3.1 and Lemma 2.3.2 on page 16).

Wellformedness of environments is defined in Figure 2.22 on page 45: it ensures that every value
variable binding x : τ and equational binding ∀(α = τ) depends at least on the free type variables
of τ: dependencies contain syntactic dependencies. Note that dependencies are allowed to be coarser
than the syntactic ones. Wellformed environments are acyclic by construction.

The setting of environments viewed as sets equipped with a dependency relation permits to use
dependencies in typing rules: rules Sigma, Open and Let introduce new dependencies to keep track
of cycles.

Sigma
Γ, (∀(α = τ ′) �D ′) `M : τ D ′ ⊆ D

Γ, (∃β �D) ` Σ 〈β〉 (α = τ ′)M : τ[β← α]

Unsurprisingly, rule Sigma specifies that the external name β has at least all dependencies of the
internal name α, among which lay the (dependencies of the) free type variables of the witness τ, as
enforced by the rule Ok-Eq. This prevents the example of external recursion seen in Section 2.2.2 on
page 14, which we recall below, to be welltyped:

{ `1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ;
`2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

The dependency β1 ≺ β2 is required to type the first component, since the witness depends on β2,
as β2 is a free type variable of the witness β2 → β2. Symmetrically, β2 ≺ β1 is also required to type
the second component. Consequently, the zipping is forbidden because of the obvious cycle.

38

2.6 Extensions of F.

As opposed to the case of rule Sigma, the witness is unknown in the open construct. Hence, the
condition placed on rule Open is stronger: the abstract type variable (possibly) depends on every
type variable present in the context, excluding type definitions since these are only indirections:
it is unnecessary to track dependencies on internal names since they are always included in the
dependencies of the external names, as described by rule Sigma. Conversely, taking dependencies on
internal names into account would be too coarse and impede subject reduction, since a consequence
of extrusions is the expansion of the scope of internal names.

Open
Γ `M : ∃α.τ dom∀ Γ ∪ dom∃ Γ ⊆ D

Γ, (∃α �D) ` open 〈α〉M : τ

The previous example would again be rejected if the Σs were replaced with “open-exists” patterns,
that is: the following example is rejected.

{ `1 = open 〈β1〉 ∃γ1.Σ 〈γ1〉 (α1 = β2 → β2)M1 ;
`2 = open 〈β2〉 ∃γ2.Σ 〈γ2〉 (α2 = β1 → β1)M2 }

Here is an example that is well-typed, thanks to the accuracy of dependencies of Σ:

{ `1 = Σ 〈β1〉 (α1 = int)M1 ;
`2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

For simplicity, let us assume thatM1 andM2 are closed terms, that can be typed in the empty
environment. Since the witness of the first branch does not depend on β2, the term Σ 〈β1〉 (α1 =
int)M1 can be typed in the environment containing only ∃β1. There can possibly be ∀β2 in the
environment, but β1 does not depend on β2. The term Σ〈β2〉(α2 = β1 → β1)M2 can be typed in the
environment containing ∀β1 and ∃β2, with β2 depending on β1. The zipping of the environments
of the two branches is allowed, since there is no cycle involving β1 and β2.

Rewriting this piece of codewith “open-exists” patterns is againwell-typed, in spite of the stronger
condition on rule Open, thanks to the implicit weakening in zipping: we can type the first branch
without using ∀β2 in the environment. Therefore, the condition β1 ≺ β2 is not required by rule
Open in the first branch and no cycle is detected.

Finally, rule Let highlights variables that are used, hence possibly hidden in an existential value,
in the first branch of the let and used in an opening in the second branch: these variables belong to
dom∀ Γ1 ∩ dom∃ Γ2.

Let
Γ1 `M1 : τ1 Γ2, (x : τ1 �D) `M2 : τ2 dom∀ Γ1 ∩ dom∃ Γ2 ⊆ D

Γ1 . Γ2 ` let x =M1 inM2 : τ2

Therefore, the value variable x that is bound in the letmust depend on the variables in dom∀ Γ1 ∩
dom∃ Γ2. These are indeed responsible for the cycle in the example of internal recursion seen in
Section 2.2.2 on page 14 and reproduced below:

let x = ∃(α = β→ β)M in open 〈β〉 x

The binding ∀β is required in the typing environment of the bound expression ∃(α = β→ β)M,
whereas the binding ∃β appears in the typing environment for the body open 〈β〉 x. Thus, the
constraint x ≺ β is required in the typing environment of open 〈β〉 x, which fails, as rule Open
requests that ∃βmust be minimal in the dependency relation. Notice that, thanks to weakening, the

39

Chapter 2 Open existential types

next piece of program would be accepted, as long as x does not occur free inM ′:

let x = ∃(α = β→ β)M in {`1 = open 〈β〉M ′ ; `2 = x}

Here, the record {`1 = open 〈β〉M ′ ; `2 = x} is typed in an environment that contains the bindings
∃β and x : τ, and that mentions x ≺ β. But open 〈β〉M ′ can be typed in an environment that contains
∃β but does not contain x. Moreover, x can be typed in an environment containing ∀β and x : τ.
Thus, the zipping of the two environments of the two components of the record is allowed, so the
whole term is accepted.

2.6.3 Double vision

Defining an expression that manipulates an abstract type before its witness has been given is
sometimes desirable, as it brings more freedom in the code structure. It may also become necessary
when building recursive values. Currently, the following term is considered as ill-typed:

∃β. let f = λ(x : β) x in Σ 〈β〉 (α = int) {`1 = (1 : α) ; `2 = f}

This is because rule Sigma (page 11) does not let the external name β be visible in its premise, hence
f is not allowed to occur under the Σ. It is easy to correct this by leaving a ∀β in the premise instead
of ∃β (see the rule below). However, the following piece of code would still be rejected:

∃β. let f = λ(x : β) x in Σ 〈β〉 (α = int) f (1 : α)

After the existential resource β is introduced, it defines f as the identity on β and then uses f in
the context of the open witness definition Σ 〈β〉 (α = int) . However, we do not know that α and β
denote the same witness: the application f (1 : α) is ill-typed.

This is called the double vision problem: it characterizes the inability to maintain a link between the
internal and external view of a given type. This problem is well-known in the study of recursive
modules, but as we can see it already happens in the absence of recursion. To solve this problem, it
suffices to carry the missing information in the context (for clarity, dependencies are omitted):

Sigma
Γ, ∀β, Γ ′, ∀(α / β = τ ′) `M : τ

Γ, ∃β, Γ ′ ` Σ 〈β〉 (α = τ ′)M : τ[α← β]

The typing environment is enriched with a new kind of equation ∀(α / β = τ ′), which says that
the witness τ ′ is denoted by the internal name α, and, in addition, that the external name β can be
viewed internally as α. This is realized through the use of the similarity relation defined under a
context Γ and written / that satisfies all the equalities between internal and external names that are
present in the context Γ . It is used through rule Sim.

Sim
Γ `M : τ ′ Γ ` τ / τ ′

Γ `M : τ

One may wonder why we decided to use both an external and an internal name: they indeed denote
the same object. In RTG, a single type reference is used along with two scopes and only one of
them contains a type definition. We give two reasons for handling two names and an equation
relating them: first, it corresponds to practice in recursive modules, where a single type component
is reached through two different paths, which leads to the double vision problem. Second, the use of
two names makes programs more maintainable in the sense that it is more respectful to the notion

40

2.6 Extensions of F.

of interface: whatever the choice of internal name, the external name can remain fixed. Thus, one
can apply an internal renaming without changing the external type.

2.6.4 Recursive types

Extended non-recursive type definitions in Section 2.6.2 and Section 2.6.3 led to a finer type checking
but did not require a change in the semantics. By contrast, permitting recursive type definitions has
the reverse effect: typing is nearly unchanged, but semantics must be adapted.
We extend the type algebra with a fixpoint and specify with the use of the symbol ≈ instead

of = when a type equation is allowed to contribute to a cycle. Type wellformedness (Figure 2.23
on page 45) forbids the body of a recursive type to be a type variable. This syntactic requirement
ensures the contractiveness of recursive types. Contractiveness is required to keep the equational
theory on recursive types sound.

' ::= = | ≈
τ ::= . . . | µα.τ
M ::= . . . | Σ 〈β〉 (α ≈ τ)M
w ::= . . . | Σ 〈β〉 (α ≈ τ)w

We also change the type coercibility relation to cope with recursive types: we coinductively define
the relation (see Figure 2.24 on page 45), so that it is symmetric and transitive, and includes the
usual unfolding rules for recursive types (Coerce-Fix-Left and Coerce-Fix-Right). The unfolding
rules are guarded so that they can only be used on a recursive type whose body is not a variable.
The rules for unfolding equations (Coerce-Eq-Left and Coerce-Eq-Right) follow the same style, as
well as the rules that equate internal and external names (Coerce-Sim-Left and Coerce-Sim-Right).
Every rule is defined so that it is productive.
The typing rule Sigma is also changed (Figure 2.20 on page 44): the dependencies are tracked

only for a non-recursive witness definition. As a consequence, any cycle of dependencies can pass
through a given recursive witness definition.
Then, we add the following rules to the reduction relation:

Σ 〈β〉 (α ' τ)Σ 〈β ′〉 (α ′ ' τ ′)w −→ Σ 〈β ′〉 (α ′ ' τ ′[α← β])Σ 〈β〉 (α ' τ)w

∇β ′.Σ 〈β ′〉 (α ′ ≈ τ ′) (Σ 〈βi〉 (αi ' τi))i∈I v
−→ ∇β ′.Σ 〈β ′〉 (α ′ = close(α ′ / β ′ ≈ τ ′, (αi / βi ' τi)i∈I)) (Σ 〈βi〉 (αi ' τi))i∈I v
where ∇ stands for ν or ∃

When two Σs have to be exchanged, it is no longer possible to substitute the first witness into the
second one for wellformedness reasons. Instead, we replace the first internal name with the external
one during swapping, as described by the first reduction rule. The second rule specifies that a
closed or restricted, potentially recursive type definition can be resolved into a non-recursive one,
that involves a recursive witness. To do this, the close operator, that is defined in Figure 2.19 on the
next page, gathers the list of the other witnesses and ties the recursive knot. Thanks to co-induction,
the provable equalities are unchanged by the closure.
The reduction below exemplifies the closure operation:

νβ1.Σ 〈β1〉 (α1 ≈ α1 × β2)Σ 〈β2〉 (α2 ≈ α1 × α2) v
−→ νβ1.Σ 〈β1〉 (α1 = τ)Σ 〈β2〉 (α2 ≈ α1 × α2) v by fixpoint closure
−→ νβ1.Σ 〈β2〉 (α2 ≈ τ× α2)Σ 〈β1〉 (α1 = τ) v by exchange of Σs
−→ Σ 〈β2〉 (α2 ≈ τ× α2)νβ1.Σ 〈β1〉 (α1 = τ) v by Sigma-Nu
−→ Σ 〈β2〉 (α2 ≈ τ× α2) v[α1← τ] by Nu-Sigma

41

Chapter 2 Open existential types

close(α / β = τ) , τ

close(α / β ≈ τ) , µα.τ
close((αi / βi 'i τi)i∈I , α ′ / β ′ = τ ′) , close((αi / βi 'i τi[β ′← τ ′[βj← αj]])

i∈I)

close((αi / βi 'i τi)i∈I , α ′ / β ′ ≈ τ ′) , close((αi / βi 'i τi[β ′← µα ′.τ ′[βj← αj]])
i∈I)

Figure 2.19: Closing mutually recursive type equations.

where τ = close(α1 / β1 ≈ α1 × β2, α2 / β2 ≈ α1 × α2) = µα1.(α1 × µα2.(α1 × α2)).
The term we consider contains two mutually recursive type definitions, and the external name β1

of the first one is restricted. The close operator computes the closed witness τ, which becomes the
new, recursive witness of β1, defined by a non-recursive equation. Then, the innermost Σ can be
extruded, and the restricted equation is eventually eliminated.

By definition, this semantics ensures that only equations that are marked as potentially recursive
may actually create recursive types during reduction. Type soundness ensures that this is sufficient
to reduce well-typed programs, i.e. that recursive types are never needed in other configurations.
Hence, although abstract types can be used in a flexible manner, the risk of inadvertently using
recursive types via type abstraction can be tracked by the type system and finely tuned by the user.
It is also interesting that mutually recursive equations are explicitly resolved during reduction,

and moreover in a standard way.

2.6.5 Recursive values

In this section, we extend F.with recursive values of the form µ(x : τ) v, which are necessary to
model recursive modules. Although it is possible to use the well-known backpatching semantics for
fixpoints [Dre07a, Dre04, Bou04], we prefer a storeless, unrolling-based semantics, so as to avoid
the need for references.
Our unrolling semantics lies between the backpatching semantics, which computes recursive

values at their creation and fails if they are ill-founded, and the lazy semantics, which unfolds
recursive values only at their use. As the former, we evaluate recursive definitions at their creation,
by letting evaluation proceed under fixpoints, but without unrolling them. Instead, fixpoints are
unrolled on demand when they need to be destructed, as with the lazy semantics. (As with the lazy
semantics, ill-founded recursion may thus loop at its use instead of its creation.) The two aspects of
our semantics are captured by the form of evaluation contexts and the following reduction rules:

E ::= . . . | µ(x : τ)E
µ(x : τ)Σ 〈β〉 (α ' τ ′)w −→ Σ 〈β〉 (α ' τ ′)µ(x : τ)w when α /∈ ftv(τ)
R[µ(x : τ) v] −→ R[let x = µ(x : τ) v in v]

where R is a blocked redex-form, that is, an application [·] v, an instantiation [·] τ, a projection [·].`,
or an opening open 〈α〉 [·]. Remark that let x = µ(y : τ) v in M is not a blocked term, because the
reduction rule for let has no other restriction on its left subterm than being a value. The redex
νβ.Σ 〈β〉 (α = τ)µ(x : τ ′) v is not blocked either, for the same reason. These definitions allow
evaluation to proceed under fixpoints until one gets a result, then extrusion can proceed through
fixpoints to obtain a recursive value, which will be expanded on demand, when obstructed by a
redex-form.
In order to enable unrolling, one must ensure that reducing under fixpoints and extruding Σs

always give rise to a value, because impure results cannot be substituted. For this purpose, we restrict
the body of fixpoints to be extended results, denoted by s, which are either results or themselves

42

2.6 Extensions of F.

records, let-bindings, or projections of extended results. The reason of this restriction is to be able
to extract the sources of linearity from the body of fixpoints, so that they can be unfolded without
breaking the linearity invariant.

M ::= . . . | µ(x : τ) s (Terms)
v ::= . . . | µ(x : τ) v | p (Values)
p ::= x | p.` (Paths)
s ::= w | let x = s in s | {(`i = si)

i} | s.` (Extended results)

Values are extendedwith both fixpoints of values and paths, i.e. projections built from variables. The
reason for adding paths to the class of values is to allow a lazy semantics of fixpoints in a settingwhere
recursion is not guarded: this allows for instance the term µ(x : {`1 : τ ; `2 : τ}{`1 = x.`2 ; `2 = x.`1})
to be considered as a value, that will be unfolded once, if it is projected. Note that we disallow
applications that are not guarded by λs or Λs, because otherwise we could write terms like let f =
λ(x : ∃α.τ) ∃α. open 〈α〉 x in µ(x : ∃α.τ) f x, which reduces to µ(x : ∃α.τ) ∃α. open 〈α〉 x and does not
respect the simple syntactic criteria on bodies of fixpoints. This restriction permits to avoid the
strongly related problems of reducing arbitrary terms containing free term variables and of defining
strong values, i.e. values that contain redexes that are blocked by the presence of variables. Such
values appear when one considers strong reduction, i.e. reducing under λs and Λs. The problem of
strong reduction is discussed in Section 2.8.1 on page 52.
Adding term-level recursion to F. is not an issue: indeed, this is a direct consequence of the

modularity of the constructs for open existential types. The only requirement is to permit the
evaluation under fixpoints just enough to get a pure term: extrusion of Σs throught fixpoints is
essential. A benefit of our approach is that it permits to keep a standard style of presentation: it
uses evaluation contexts, and avoids using references to model recursion, as in the backpatching
semantics for fixpoints.

2.6.6 Soundness of the extensions

We now review the main lemmas on which the soundness proof of the extended type system is
built. The structure of the proof is the same as for the type soudness of Core F. (Section 2.4.5). We
first define a new refinement on domain of contexts: dom/ Γ = {β | ∀(α / β ' τ) ∈ Γ }.

Lemmas about regularity

The next lemma permits better inductive reasoning on judgments that involve environments.

Lemma 2.6.2. AssumeR is a transitive anti-reflexive relation over a finite set E. Then there exists a relation
R̂ that is compatible with R, transitive, anti-reflexive, and total.

Proof. By induction on the cardinality of E, using the fact that there exists a minimal element for R
(but it is generally not necessarily the least one).

For instance, when reasoning about environment wellformedness, instead of proceeding by
induction on the judgment itself, which imposes an arbitrary ordering on bindings, one can reason
on any ordering of the binders that is compatible with de dependency relation of the environment.
The next two lemmas ensure that wellformed environment are acyclic, and that zipping is com-

patible with wellformedness.

Lemma 2.6.3. The following assertions hold:

• If Γ ` ok then Γ is acyclic;

• If Γ ` τ :: ? then Γ is acyclic.

43

Chapter 2 Open existential types

Var
Γ pure Γ ` ok
Γ ` x : Γ(x)

Lam
Γ pure

Γ, (x : τ1 �D) `M : τ2

Γ ` λ(x : τ1)M : τ1 → τ2

App
Γ1 `M1 : τ2 → τ Γ2 `M2 : τ2

Γ1 . Γ2 `M1 M2 : τ

Let
dom∀ Γ1 ∩ dom∃ Γ2 ⊆ D

Γ1 `M1 : τ1 Γ2, (x : τ1 �D) `M2 : τ2

Γ1 . Γ2 ` let x =M1 inM2 : τ2

Gen
Γ pure

Γ, (∀α �D) `M : τ

Γ ` Λα.M : ∀α.τ

Inst
Γ `M : ∀α.τ ′ Γ ` τ :: ?

Γ `Mτ : τ ′[α← τ]

Empty
Γ pure Γ ` ok

Γ ` {} : {}

Record
(Γi `Mi : τi)

i∈1..n injective (i 7→ `i)
i∈1..n

Γ1 . · · · . Γn ` {(`i =Mi)
i∈1..n} : {(`i : τi)

i∈1..n}

Proj
Γ `M : {(`i : τi)

i∈1..n} 1 6 k 6 n
Γ `M.`k : τk

Exists
Γ, (∃α �D) `M : τ

Γ ` ∃α.M : ∃α.τ

Coerce
Γ `M : τ ′ Γ ` τ ′ ∼ τ

Γ ` (M : τ) : τ

Sigma
D ′ \ {β} ⊆ D, if ' is =

Γ, (∀β �D), Γ ′, (∀(α / β ' τ ′) �D ′) `M : τ

Γ, (∃β �D), Γ ′ ` Σ 〈β〉 (α ' τ ′)M : τ[α← β]

Open
Γ `M : ∃α.τ dom∀ Γ ∪ dom∃ Γ ⊆ D

Γ, (∃α �D) ` open 〈α〉M : τ

Nu
Γ, (∃α �D) `M : τ α /∈ ftv(τ)

Γ ` να.M : τ

Weaken
Γ `M : τ Γ ′ w Γ

Γ ′ `M : τ

Sim
Γ `M : τ ′ Γ ` τ / τ ′

Γ `M : τ

Fix
Γ, (x : τ �D) ` s : τ
Γ ` µ(x : τ) s : τ

Figure 2.20: Typing rules of the extended system.

Entail-Refl
Γ ` ok
Γ w Γ

Entail-Trans
Γ1 w Γ2 Γ2 w Γ3

Γ1 w Γ3

Entail-Binding
Γ, (b �D) ` ok b 6= ∃α

Γ, (b �D)w Γ

Figure 2.21: Weaker environments.

44

2.6 Extensions of F.

Ok-Var
ftv(τ) ⊆ D ⊆ dom Γ
Γ ` τ :: ? x /∈ dom Γ
Γ, (x : τ �D) ` ok

Ok-Exists
D ⊆ dom Γ

Γ ` ok α /∈ dom Γ
Γ, (∃α �D) ` ok

Ok-Eq
ftv(τ) ⊆ D ⊆ dom Γ ∀β ∈ Γ

Γ ` τ :: ? α /∈ dom Γ β /∈ dom/ Γ

Γ, (∀(α / β = τ) �D] {β}) ` ok

Ok-Forall
D ⊆ dom Γ

Γ ` ok α /∈ dom Γ
Γ, (∀α �D) ` ok

Ok-EqRec
ftv(µα.τ) ⊆ D ⊆ dom Γ ∀β ∈ Γ

Γ ` µα.τ :: ? α /∈ dom Γ β /∈ dom/ Γ

Γ, (∀(α / β ≈ τ) �D ∪ {β}) ` ok

Ok-Empty

ε ` ok

Figure 2.22: Wellformed environments.

Wf-Var
Γ ` ok α ∈ dom Γ

Γ ` α :: ?

Wf-Arrow
Γ ` τ1 :: ? Γ ` τ2 :: ?

Γ ` τ1 → τ2 :: ?

Wf-Record
injective (i 7→ `i)

i∈1..n

(Γ ` τi :: ?)i∈1..n

Γ ` {(`i : τi)
i∈1..n} :: ?

Wf-Empty
Γ ` ok
Γ ` {} :: ?

Wf-Forall
Γ, (∀α �D) ` τ :: ?
Γ ` ∀α.τ :: ?

Wf-Exists
Γ, (∃α �D) ` τ :: ?
Γ ` ∃α.τ :: ?

Wf-Mu
τ is not a variable
Γ, (∀α �D) ` τ :: ?
Γ ` µα.τ :: ?

Figure 2.23: Wellformed types.

Coerce-Refl
Γ ` τ :: ?
Γ ` τ ∼ τ

Coerce-Eq-Left
Γ ` τ ∼ τ ′

∀(α / β ' τ) ∈ Γ
Γ ` α ∼ τ ′

Coerce-Eq-Right
Γ ` τ ∼ τ ′

∀(α / β ' τ ′) ∈ Γ
Γ ` τ ∼ α

Coerce-Sim-Left
Γ ` α ∼ τ

∀(α / β ' τ ′) ∈ Γ
Γ ` β ∼ τ

Coerce-Sim-Right
Γ ` τ ∼ α

∀(α / β ' τ ′) ∈ Γ
Γ ` τ ∼ β

Coerce-Fix-Left
τ is not a variable
Γ ` τ[α← µα.τ] ∼ τ ′

Γ ` µα.τ ∼ τ ′

Coerce-Fix-Right
τ is not a variable
Γ ` τ ′ ∼ τ[α← µα.τ]

Γ ` τ ′ ∼ µα.τ

Coerce-Arrow
Γ ` τ1 ∼ τ ′1 Γ ` τ2 ∼ τ ′2
Γ ` τ1 → τ2 ∼ τ

′
1 → τ ′2

Coerce-Record
(Γ ` τi ∼ τ ′i)i∈1..n injective (i 7→ `i)

i∈1..n

Γ ` {(`i : τi)i∈1..n} ∼ {(`i : τ
′
i)
i∈1..n}

Coerce-Forall
Γ, (∀α �D) ` τ ∼ τ ′

Γ ` ∀α.τ ∼ ∀α.τ ′

Coerce-Exists
Γ, (∃α �D) ` τ ∼ τ ′

Γ ` ∃α.τ ∼ ∃α.τ ′

Figure 2.24: Coercible types (co-inductive definition).

45

Chapter 2 Open existential types

Sim-Refl
Γ ` ok

α ∈ dom Γ
Γ ` α / α

Sim-Eq
Γ ` ok

∀(α / β = τ) ∈ Γ
Γ ` α / β

Sim-Empty
Γ ` ok
Γ ` {} / {}

(Rules for symmetry, transitivity and congruence are omitted.)

Figure 2.25: Similar types.

Proof. The proof proceeds by mutual induction on the judgments. The key argument is the fact that
only bindings that are minimal for the dependency are added to the environment.

Lemma 2.6.4. Assume that Γ2 ` ok and Γ1 . Γ2 is well defined. The following assertions hold:

• If Γ1 ` ok, then Γ1 . Γ2 ` ok;

• If Γ1 ` τ :: ?, then Γ1 . Γ2 ` τ :: ?.

Proof. By mutual induction on the judgments. Without loss of generality, thanks to Lemma 2.6.2 on
page 43, we can assume that the wellformedness proofs for environments Γ1 and Γ2 are done in an
order that is compatible with the dependencies of Γ1 . Γ2.

The other lemmas ensure that the parameters of every judgment are all wellformed.

Lemma 2.6.5. Assume Γ1 ` τ1 :: ? and ftv(τ1) ⊆ D and α /∈ dom/ Γ . The following assertions hold:

• If Γ1, (∀α �D), Γ2 ` ok, then Γ1, Γ ′2[α← τ1] ` ok;

• If Γ1, (∀α �D), Γ2 ` τ2 :: ?, then Γ1, Γ ′2[α← τ] ` τ2[α← τ1] :: ?.

Proof. By mutual induction.

Lemma 2.6.6. If Γ ` µα.τ :: ?, then Γ ` τ[α← µα.τ] :: ?.

Proof. By inversion of the type wellformedness judgment, then using lemma Lemma 2.6.5.

Lemma 2.6.7. If Γ ` τ[α← µα.τ] :: ?, then Γ ` µα.τ :: ?.

Proof. By induction on τ and inversion of the typing judgment.

Lemma 2.6.8. If Γ ` τ1 / τ2, then Γ ` τ1 :: ? and Γ ` τ2 :: ?.

Proof. By induction on the similarity judgment.

Lemma 2.6.9. If Γ ` τ1 ∼ τ2, then Γ ` τ1 :: ? and Γ ` τ2 :: ?.

Proof. By coinduction on the equivalence judgment, using Lemma 2.6.6 and Lemma 2.6.7.

Lemma 2.6.10. If Γ1 w Γ2, then Γ1 ` ok and Γ2 ` ok.

Proof. By induction on the weakening judgment.

Lemma 2.6.11. If Γ `M : τ, then Γ ` τ :: ?.

Proof. By induction on the typing judgment, using other lemmas about regularity (Lemma 2.6.4,
Lemma 2.6.9, Lemma 2.6.8 and Lemma 2.6.10).

46

2.6 Extensions of F.

Lemmas about substitution

This section gathers lemmas necessary to prove the soundness of substitution of terms.

Lemma 2.6.12. The following assertions hold:

• If Γ1, (x : τ �D), Γ2 ` ok, then Γ1, Γ2 ` ok;

• If Γ1, (x : τ �D), Γ2 ` τ ′ :: ?, then Γ1, Γ2 ` τ :: ?.

Lemma 2.6.13. If Γ1, (x : τ �D), Γ2 ` τ1 ∼ τ2, then Γ1, Γ2 ` τ1 ∼ τ2.

Lemma 2.6.14. If Γ1, (x : τ �D), Γ2 ` τ1 / τ2, then Γ1, Γ2 ` τ1 / τ2.

Lemma 2.6.15. If Γ1, (x : τ � D), Γ2 `M2 : τ2 and Γ ′1 `M1 : τ1 and Γ ′1 pure and Γ1 . Γ ′1 is well defined
and dom Γ ′1 ∩ dom Γ2 = ∅, then (Γ1 . Γ ′1), Γ2 `M2[x←M1] : τ2.

Lemmas about instantiation

This section gathers lemmas necessary to prove the soundness of substitution of types.

Lemma 2.6.16. If Γ1, (∀α � D), Γ2 ` τ ∼ τ ′ and Γ1 ` τ1 :: ? and ftv(τ1) ⊆ D and α /∈ dom/ Γ2, then
Γ1, Γ2[α← τ1] ` τ[α← τ1] ∼ τ

′[α← τ1].

Lemma 2.6.17. If Γ1, (∀α � D), Γ2 ` τ / τ ′ and Γ1 ` τ1 :: ? and ftv(τ1) ⊆ D and α /∈ dom/ Γ2, then
Γ1, Γ2[α← τ1] ` τ[α← τ1] / τ

′[α← τ1].

Lemma 2.6.18. If Γ1, (∀α � D), Γ2 ` M : τ and Γ1 ` τ1 :: ? and ftv(τ1) ⊆ D and α /∈ dom/ Γ2, then
Γ1, Γ2[α← τ1] `M[α← τ1] : τ[α← τ1].

Lemmas about swapping of equations

This section gathers lemmas necessary to prove the soundness of swapping of witness definitions.
They state that for every judgment, swapping two witness definitions in the environment is valid.

Lemma 2.6.19. The following assertions hold:

• If Γ1, (∀(α1 / β1 ' τ1) �D1), (∀(α2 / β2 ' τ2) �D2), Γ2 ` ok holds, then
Γ1, (∀(α2 / β2 ' τ2[α1← β1]) �D2 \ {α1}), (∀(α1 / β1 ' τ1) �D1), Γ2 ` ok holds;

• If Γ1, (∀(α1 / β1 ' τ1) �D1), (∀(α2 / β2 ' τ2) �D2), Γ2 ` τ :: ? holds, then
Γ1, (∀(α2 / β2 ' τ2[α1← β1]) �D2 \ {α1}), (∀(α1 / β1 ' τ1) �D1), Γ2 ` τ :: ? holds.

Lemma 2.6.20. If Γ1, (∀(α1 / β1 ' τ1) �D1), (∀(α2 / β2 ' τ2) �D2), Γ2 ` τ ∼ τ ′ holds, then
Γ1, (∀(α2 / β2 ' τ2[α1← β1]) �D2 \ {α1}), (∀(α1 / β1 ' τ1) �D1), Γ2 ` τ ∼ τ ′ holds.

Lemma 2.6.21. If Γ1, (∀(α1 / β1 ' τ1) �D1), (∀(α2 / β2 ' τ2) �D2), Γ2 ` τ / τ ′ holds, then
Γ1, (∀(α2 / β2 ' τ2[α1← β1]) �D2 \ {α1}), (∀(α1 / β1 ' τ1) �D1), Γ2 ` τ / τ ′ holds.

Lemma 2.6.22. If Γ1, (∀(α1 / β1 ' τ1) �D1), (∀(α2 / β2 ' τ2) �D2), Γ2 `M : τ holds, then
Γ1, (∀(α2 / β2 ' τ2[α1← β1]) �D2 \ {α1}), (∀(α1 / β1 ' τ1) �D1), Γ2 `M : τ holds.

47

Chapter 2 Open existential types

Lemmas about fixpoint closure

The next lemmas cope with the soundness of fixpoint closure. The first two lemmas deal with the
replacement of a witness in the environment with an equivalent type.

Lemma 2.6.23. If Γ1, (∀(α / β = τ) �D), Γ2 ` τ ∼ τ ′ and Γ1 ` τ ′ :: ?, then the following assertions hold:

• Γ1, (∀(α / β = τ ′) �D), Γ2 ` ok;

• if Γ1, (∀(α / β = τ) �D), Γ2 ` τ0 :: ?, then Γ1, (∀(α / β = τ ′) �D), Γ2 ` τ0 :: ? holds;

• if Γ1, (∀(α / β = τ) �D), Γ2 ` τ0 / τ ′0, then Γ1, (∀(α / β = τ ′) �D), Γ2 ` τ0 / τ ′0 holds;

• if Γ1, (∀(α / β = τ) �D), Γ2 ` τ0 ∼ τ ′0, then Γ1, (∀(α / β = τ ′) �D), Γ2 ` τ0 ∼ τ ′0 holds;

• if Γ1, (∀(α / β = τ) �D), Γ2 `M : τ0, then Γ1, (∀(α / β = τ ′) �D), Γ2 ` τ : τ0 holds.

Lemma 2.6.24. If Γ1, (∀(α / β ≈ τ) �D), Γ2 ` τ ∼ τ ′ and Γ1, (∀(α / β ≈ τ) �D) ` τ ′ :: ? and τ ′ is not a
variable, then the following assertions hold:

• Γ1, (∀(α / β ≈ τ ′) �D), Γ2 ` ok;

• if Γ1, (∀(α / β ≈ τ) �D), Γ2 ` τ0 :: ?, then Γ1, (∀(α / β ≈ τ ′) �D), Γ2 ` τ0 :: ? holds;

• if Γ1, (∀(α / β ≈ τ) �D), Γ2 ` τ0 / τ ′0, then Γ1, (∀(α / β ≈ τ ′) �D), Γ2 ` τ0 / τ ′0 holds;

• if Γ1, (∀(α / β ≈ τ) �D), Γ2 ` τ0 ∼ τ ′0, then Γ1, (∀(α / β ≈ τ ′) �D), Γ2 ` τ0 ∼ τ ′0 holds;

• if Γ1, (∀(α / β ≈ τ) �D), Γ2 `M : τ0, then Γ1, (∀(α / β ≈ τ ′) �D), Γ2 ` τ : τ0 holds.

Lemma 2.6.25. Assume Γ ` ok and ∀(α / β ≈ τ) ∈ Γ . Then Γ ` α ∼ µα.τ[β← α] holds.

Lemma 2.6.26. Let Γ ′ = Γ, (∀(αi / βi ' τi))i∈1..n and τc = close((∀(αi / βi ' τi))i∈1..n). If Γ ′ ` ok,
then Γ ′ ` τ1 ∼ τc and Γ ` τc :: ? holds.

Soundness

The proof of soundness consists in subject reduction and progress. Their proof are based on the
previous lemmas, and follow the same structure as the ones of Core F. (Section 2.4.5 on page 27).

Proposition 2.6.27 (Subject reduction). If Γ `M : τ andM −→M ′, then Γ `M ′ : τ.

The statement of progress had to be extended to cope with our semantics of fixpoints of terms.
We did not try to prove a more refined version of progress, that uses /ε-reductions, as done in
Section 2.4.5.

Proposition 2.6.28 (Progress). Assume Γ `M : τ. The following assertions hold:

• If Γ contains no value variable binding, then eitherM is reducible, or it is a result;

• IfM is an extended result, then either it is reducible, or it is a result.

48

2.7 Related work

2.7 Related work

As already mentioned in Section 2.1, Mitchell and Plotkin [MP88] draw a parallel between the
practice of programming with abstract types, and the use of existential types. While their paper
gives a type-theoretic interpretation of the notion of abstract type, the difference in the programming
style that is induced by existential types is sufficiently relevant to suggest that programming with
existential types is less convenient than using abstract types as known in programming languages.
Cardelli and Leroy [CL90] explore the link between existential types and a calculus equipped

with the dot notation, that is closer to the programming practice: essentially, the witness of a value x
of existential type ∃α.τ is reached under the name x.Fst and the opened term under x.snd, which
has type τ[α← x.Fst]. Translations from and to existential types are described: it appears that their
calculus with dot notation performs implicit unpack-ings. It also looks like that the scope limitation
for abstract types is still present in their calculus, because their types are not expressive enough to
express dependencies.

The (revised) Definition of Standard ML [MTHM97] defines the static semantics of modules using
semantic objects, that more or less correspond to syntactic signatures without internal dependencies.
The static semantics gathers every type component: for instance, even the type components of a local
module definition are kept in the resulting semantic object, thus solving the avoidance problem. The
dynamic semantics is defined via an interpretation into compound objects, which somehow represent
structures containing evaluated components, but, again, without internal dependencies.
Russo [Rus03] justifies the meaninglessness of dependent types for modules, by giving them

System F types, which, by definition, are not dependent types. He first considers a stateful static
semantics, that gathers the generated (abstract) type components, in the spirit of the Definition of
Standard ML [MTHM97]. He then defines stateless typing rules, which track the generated type
variables by keeping them as existential quantification. A proof of equivalence between the two
systems is given. Dynamic semantics remains the one given in the Definition. One can think of his
existential quantification, that is kept in front of types, as a kind of automatic extrusion of existential
quantification, and as a means to express generativity. Note that it is done in an implicit way, while
F.requires explicit manipulation of existentials. More recently, Rossberg, Russo andDreyer [RRD10]
gave a translation from a ML-like module language into System F, that is, a denotational semantics
of ML in terms of the syntax of System F, and produced a formal proof of soundness, that was
verified in the Coq proof assistant. Another translation is sketched in Section 4.3.2 in Chapter 4,
where a detailed comparison with the former translation is given.

In the context of run-time type inspection, Rossberg [Ros03] introduces λN, a version of System
F with a construct to define abstract types and a mechanism of directed coercions. His abstract
types can be automatically extruded to allow sharper type analysis, and are thus close to our Σ
binder. His coercions resemble ours, though ours are symmetric, because they never cross the
abstraction barrier. Although the two systems seem kindred in spirit, they are subtly different,
because they have been designed for quite different purposes: in particular, λN is only partially
related to traditional existential types, since parametricity is purposely violated.

Dreyer [Dre07a] defines RTG, a language to handle abstract types, and that is suitable to encode
recursive modules and mixins, as demonstrated in [Dre07b, DR08], with some modifications to the
original RTG language. In spite of strong similarities, some deep technical differences remain between
RTG and F.. The treatment of the linear resources differs significantly: RTG’s semantics employs a
type store to model static but imperative type reference updates, whereas we just use extrusions of
Σ binders. These two approaches might be related by seeing our extrusion as a local treatment of his
type store, as has already been proposed for value references [WF94]. Dreyer uses assignment in a
global store to guarantee the uniqueness of writing: this exposes the evaluation order in the typing
rules of RTG and makes them asymmetrical, moving away from a logical specification, whereas we
zip contexts to enforce sound openings and maintain a close correspondence with logic. Intuitively,
we think of existential values as generating a fresh type when opened, while he considers them as

49

Chapter 2 Open existential types

functions in “destination passing style” (Dps): an existential value is interpreted as a function that
expects a non-initialized (i.e. writable) type reference, and that will internally assign it to the value
of the witness; the type reference is then considered initialized, hence cannot be overwritten, and is
exposed without its definition to the rest of the program to keep its definition abstract. In a nutshell,
Dreyer gives an imperative, stateful interpretation to its constructs, whereas we just use notions of
scope to achieve roughly the same behavior. Notice that his stateful interpretation naturally gives rise
to a stateful dynamic semantics, that is to a semantics that threads a global type store, whereas our
scope-based semantics keeps the abstract types as local as possible, and avoids the use of a global
store. In more recent work [DR08], Dreyer takes a similar approach to ours for the type system, i.e.
he bases it on linearity, that has the advantage of making the type system more independent from
the dynamic semantics.

In spite of these technical differences, the two systems have similar constructs: the “new” primitive
is similar to our ν binder; the “set α := τ inM” is related to the Σ 〈α〉 (α = τ)M construct. Note the
use of a single type name here (as mentioned in Section 2.6.3 on page 40). The two systems differ a
little more in other constructs. In RTG, the creation of an impure function of type τ1

α↓−→ τ2, whose
body defines a witness for a type variable α, is always prefixed by the Dps construct, namely the
generalization by a writable type variable Λα ↑ K.M. The former is useful to write typical examples
of recursive modules and allows for their separate compilation. However, this construct taken alone
would have to be treated linearly, which would require the introduction of linearity in types, and
would raise type wellformedness issues with respect to type substitution. Hence, the two constructs
are combined into a single form. It is said that a term with type ∃α ↓ K.τ can be understood as
a Dps function of type ∀α ↑ K.() α↓−→ τ. In other words, an existential value is a term where the
assignment for the witness is frozen. This implies, however, that the body of a Dps function, hence
the body of an existential term, is not evaluated in RTG. One could argue that it would suffice to
predefine the body with a let-binding, so that it is evaluated, but this is not always feasible since the
body can depend itself on the type variable α. By contrast, F.disallows the definition of impure
functions, but the existential introduction ∃α.M corresponds to RTG’s type variable generalization
Λα ↑ K.M taken alone. However, evaluation does take place under existential quantifiers in F.. To
enable this eager evaluation, we crucially rely on our local management of existential resources and
their elimination.
In the context of dynamic linking, Abadi, Gonthier and Werner [AGW04] give a computational

meaning to Hilbert’s ε operator (the choice operator) in their System E: the type εα.τ represents
a witness α for which τ holds, if such a witness exists (the type variable α is bound in τ). It is
introduced with the construct 〈e : τ ′ with α = τ〉, with the following typing rule:

Γ ` e : τ ′[α← τ]

Γ ` 〈e : τ ′ with α = τ〉 : τ ′[α← εα.τ ′]

The ε operator has no elimination construct. They explain that τ ′[α← εα.τ ′] may be viewed as
the open interface type for the interface τ ′, and that ∃α.τ ′ may be viewed as the closed one. The
ε operator must be restricted to keep the type system sound: they cannot be arbitrarily nested.
Then, they define a linking operation e ′ o 〈e : τ ′ with α = τ〉, that replaces every implementation
of τ ′[α← εα.τ ′] that occur in the term e ′ with the given implementation 〈e : τ ′ with α = τ〉. Even
if the witnesses are different, the linking operator remains safe. The reduction relation contains
call-by-value β-reduction and the following reduction rule

C[〈e : τ ′ with α = τ〉] −→ (C o 〈e : τ ′ with α = τ〉)[e]

where the linking operator is extended to evaluation contexts. They authors prove that the system
is type-safe, even if types are not preserved.

50

2.8 Conclusion and future work

The introduction construct for the ε operator 〈e : τ ′ with α = τ〉 is similar to the term Σ 〈β〉 (α =
τ) (e : τ ′) in F.: they both hide occurrences of τ in the type of e. The main difference is that we use
a name β, whereas they use the type εα.τ ′ to refer to the type of the witness. As a consequence,
the type of the witness is linked with the interface: the interface occurs in the type of the witness.
Hence, the introduction construct for ε cannot be easily split, as what is done in F.. We think
this is the reason why types are not preserved by reduction: reduction needs to locally reveal the
implementation, but this is globally done in System E. Indeed, the linking reduction step removes
the introduction construct in the current hole of the evaluation context.
Another great difference between System E and F. is the absence of any linearity constraint in

System E: the linking reduction step replaces every implementation of an interface in the evaluation
context with the one that is currently available. This operation ensures that the uses of the interfaces
remain consistent. The implementation is dynamically picked in System E, whereas it is statically
chosen in F.: the linearity constraint is there to ensure that only one implementation is used. On the
one hand, it suggests that F. is less expressive than a system that is equipped with the ε operator.
On the other hand, the authors explain that the choice operator interacts with polymorphism in
surprising ways.

The authors discuss the expressive power brought by the choice operator to System F: it permits
to derive a proof for ∃α.((∃α.τ)→ τ), which is impossible in System F. The ε operator essentially
brings nothing else. Interestingly, in F., the term ∃α. λ(x : ∃α.τ) open 〈α〉 x is ill-typed because of the
linearity constraint on the bodies of λ-abstractions: without this condition, it would have the type we
are interested in, that is ∃α.((∃α.τ)→ τ). Our intuition is the following: in F.one cannot statically
find a witness for the existential (which is necessary to create an existential package), because the
witness will be dynamically given once the function is applied to the argument. Since System E

relies on a sort of dynamic notion of witness, the creation of the package can be achieved.
We think that it is possible to change the semantics of F. to mimic the linking operation of System

E: with this modified semantics, we could remove the linearity constraint that is used in F.’s type
system. If we succeed, we would obtain a system that contains System F and in which the formula
∃α. λ(x : ∃α.τ) open 〈α〉 x is derivable: a system as powerful as second-order logic equipped with
choice, but without the ε quantifier in types. This path of research probably constitutes an interesting
direction for future work.
Flatt and Felleisen [FF98b] introduced constraints within signatures to track dependencies,

whereas we used constraints only in environments.

2.8 Conclusion and future work

This chapter focused on the definition for a better explicit language for handling existential types:
the language F., whose essential ingredient is a form of linearity. We showed that System F can be
greatly improved in this way, by defining other constructs for existential types, that allow unpacked
existential packages to live in an open scope. This bringsmore flexibility in the definition of programs
that use existential types, and we argue that is allows a programming style that is close to the style
of ML modules. We equipped F. with a small step reduction semantics, that makes heavy use
of the extrusion of one construct, in order to cope with linearity. We proved that F. is sound, as
it enjoys the subject reduction and progress properties. A formal proof of soundness on a slight
variation was developed in the Coq proof assistant. We also demonstrated that a tight connexion
exists between F.and System F, that holds on the static and dynamic levels. Extensions that allow
more programming features were also considered. Still, F.has some limitations, that we would like
to discuss, and from which we suggest some leads to guide future work.

51

Chapter 2 Open existential types

2.8.1 Limitations of F.

A purity restriction holds for bodies of functions and of generalizations, whereas it is not the case on
the constructs of RTG, for instance. We already saw in Section 2.7 that it was possible in RTG thanks
to the aggregation of two distinct constructs, namely existential closure and function over an impure
body. Having the latter alone would require it to be treated in a linear way, that is: one would
then need linear types to keep the system sound. While it would certainly give the system a more
regular flavor, it would also certainly make it unreasonably complex. This would have unfortunate
consequences for the theoretician, for the implementer, and for the user too. Hence, this might not
be a good direction to explore.

Another limitation of Core F.has already been foreseen in Section 2.6.4: we imposed a syntactic
restriction on the bodies of fixpoints at the level of terms, so that it is possible, by reducing them,
to extract every source of linearity out of the fixpoint, before unfolding it. Indeed, when reducing
under value binders, such as in the bodies of fixpoints or of functions, the constructs of open
existential types create new irreducible terms, that are not pure: for instance, the term open 〈α〉 x
is one of these, and cannot safely be duplicated. This suggests that Core F. is, in some sense,
incomplete, since strong reduction is not fully possible. This is however important to notice that is
is already the case when one equips System Fwith primitive constructs for existential types: the
term unpack x as 〈α, y〉 in 1 cannot be simplified down to 1, because the unpack cannot be reduced
when no pack is given to it. The situation in Core F. seems more obviously annoying: in the term
let y = open 〈α〉 x in 1, it seems very natural to reduce the let, so that we get 1, but it is not permitted.

We think that the two limitations we just highlighted are instances of a more general problem: we
used linearity to avoid inconsistencies in witness definitions, and it lead us to introduce extrusion
to respect the linearity conditions, i.e. to forbid some duplications or erasures. But was it our
primary intention? Is not linearity just a trick not to reveal the real problem, that is consistent sharing?
Linearity is indeed an indirect way to talk about sharing: it only copes with non-duplication. The
above situations make us learn that there are situations where duplication is desired, but one would
like to be assured at the same time, that all duplicated subterms come from the same common
source: in our case, if there are two occurrences open 〈α〉M1 and open 〈α〉M2, thenM1 andM2
should have a common ancestor with respect to reduction. It is clearer now that linearity was just
an easy way to ensure this condition: there cannot be such two distinct occurrences, as this would
contradict linearity.
The problem is now how to statically ensure that sharing is consistent. This is an interesting

question: we are not aware of any type system that treats this topic, but we can distinguish several
ways to explore it. First, considering λ-terms as dags instead of trees could do the trick, but would
also raise the question of how to type term-dags, and it would also model a different reduction
relation, since all the shared occurrences of a subterm should be reduced altogether in the same
manner. Another lead would be to use a convertibility test in the typing rules to test for the
consistency of openings, but it is not clear how to do design such a system. Finally, since sharing in
the λ-calculus has been heavily studied, maybe some ideas from previous work on this topic, such
as Lévy’s labeling [Lé78], can be reused in a static type system.

2.8.2 Future work

Getting rid of linearity to consider properties that are more directly bound to sharing was described
in the previous section and looks like an uncertain but challenging, long-term path of research.
Among future work remains the study of representation independence properties for Core F.,

and for the translations of Section 2.5. The differences with how this problem is treated in System F
would probably highlight more particularities of F.. The use of a proof assistant to conduct this
study would probably be of valuable help.

The integration of more features, taken from real world programming languages, belongs to the

52

2.8 Conclusion and future work

plan: an extension of Core F.with subtyping, higher order types and singleton kinds is considered
in Chapter 4, and helps to write more compact programs with F.. Adding value references should
also be considered, and would probably raise some interesting problems, since the global store for
locations of references seems to create a tension with our local treatment of abstract types: a change
in the semantics would probably be required. We foresee two possibilities: either treat abstract
types in a more global manner, i.e. extrude not only the Σs but also the νs, or, dually, handle stores
for value references in a more local manner.
Extending the system with primitive sum types should not be a problem: one could already

encode them using functions, but primitive sum types could be more expressive, since they would
not inherit the purity restriction of functions. A possibility is to share the same environment to
typecheck the branches of a case distinction, instead of zipping them: the same technique is used in
linear logic, that distinguishes mutiplicative and additive connectors.
Of course, some form of type inference will eventually be needed in a surface language based

on F.. An easy solution is to stratify the type system, just for the purpose of type inference. We could
infer ML-like types for the base level and require explicit type information for the module level,
as it is currently the case in ML. Another more ambitious direction is to use a form of partial type
inference with first-class polymorphism: several techniques can be envisaged (such as bidirectional
type inference, implicit arguments. . .) and it is not clear what direction would be the more powerful
and easy to use and understand. The experience gained from the implementation and the practice
of implicit arguments in Coq, Agda or Scala might be pertinent.

53

« Tous les chemins mènent à soi. »

(Jacques Lanzmann)

Chapter 3

Type definitions and singleton kinds

A particularity of theMLmodule system is the existence of type components in structures and in
signatures, and especially concrete, or transparent type components, that is, type components that
are given a definition. The first impact of this feature is the ability to factorize type expressions
using type definitions. Since type components can be exported across module boundaries, type
definitions are available not only within their scopes, but can also be shared betweenmodules, and
even between the argument of a functor and its body.

Type components were initially modeled by attaching an equation to each concrete type definition,
whereas opaque type components had no such equation. More recently, singleton kinds were
used to provide a uniform treatment of type components: whether transparent or abstract, type
components are uniformly specified by a kind. What distinguishes the two sorts of type components
is the accuracy of their kinds. Singleton types and singleton kinds can indeed be used to model
definitions in languages for proof assistants and to model type definitions in module systems as
in ML. Singletons induce a powerful notion of equivalence. Basically, the kind S(τ) represents the
equivalence class of the type τ. Then, if a type τ ′ is proved to have a kind S(τ), it means that τ ′ is
equivalent to τ.

Systems with singletons have already been extensively studied. Aspinall [Asp95] first introduced
them. Courant [Cou03] explored away to express the equivalence relation as the reflexive symmetric
transitive closure of a reduction relation: this way, he stayed close to the spirit of the Calculus of
Constructions, but kept an intentional setting. Stone and Harper [SH06] defined a normalization
algorithm and a procedure to check equivalence in a systemwith singleton kinds with extensionality.
They proved them correct and complete with respect to their judgmental version of equivalence.
Their proof of completeness is rather complex, and based on a logical relation. They implemented
their system as a component of the TILT compiler [PCHS01]. Crary showed that the conceptual
complexity induced by the singleton kinds system is in fact pretty low [Cra07]: one can eliminate
singleton kinds by using η-expansion, then equivalence boils down to β-equivalence. Section 3.4
and Section 3.5 are based on this idea, and improve on it. More recently, in the purpose of the
mechanization of Standard ML [LCH07], Crary used canonical forms and hereditary substitutions to
prove with Twelf [HHP87] the decidability of type equivalence with singleton kinds. Indeed, Stone
and Harper’s proof could not be expressed in Twelf, so a workaround was needed to complete the
formalization of Standard ML.
The reading of the original paper on singletons [SH06] is strongly recommended to better un-

derstand this chapter. The current chapter begins with a quick introduction to the Harper-Stone’s
system of singleton kinds (Section 3.1): this introductory reading recalls some ideas of Harper-
Stone’s article and is required to understand the rest of the chapter. Then, we expose in details our
motivation and what we achieve in this chapter: it is purposely pushed back to Section 3.2, to make
the explanation easier. Then, we illustrate our technique with a simple test case in Section 3.4: the
simply typed λ-calculus with pairs, equipped with extensional equivalence. We extend our results
to the system with singleton kinds in Section 3.5.

55

Chapter 3 Type definitions and singleton kinds

3.1 Singleton kinds: Harper-Stone system

This section contains a brief description of the singleton kind system developed by Stone and Harper.
The reader is invited to read [SH06] for further details. The original system describes a language of
terms that are classified by types. Since we intend to use this language as a language of types, we
will deliberately describe the Stone and Harper system, by shifting it to a language of types that are
described by kinds. This shift of vocabulary is already present in System Fω: the types of Fω are
actually terms of the simply typed λ-calculus.

In the rest of the chapter, the judgments of the Harper-Stone system are indexed by the letters HS.

3.1.1 Harper-Stone’s system: definitions

The syntax of kinds and types is defined as follows:

Definition 3.1.1 (Kinds and types).

κ ::= ? | Π(α : κ) κ | Σ(α : κ) κ | S(τ)
τ ::= α | λ(α :: κ) τ | τ τ | (τ, τ) | τ.1 | τ.2

Kinds are either the base kind ?, or dependent arrow kinds, or dependent pair kinds, or singleton
kinds.

Notation. If α /∈ ftv(κ2), we write κ1×κ2 (respectively κ1 → κ2) instead of Σ(α : κ1) κ2 (respectively
Π(α : κ1) κ2).

Kind wellformedness only permits us to consider singletons of types that have a base kind (rule
WfKindSingle in Figure 3.1 on the next page). The types are the usual terms of a λ-calculus with
pairs. The rules of the typing relation (Figure 3.3 on page 58) are the usual ones of a dependently
typed λ-calculus, to which four rules have been added:

• Sub is a subkinding rule, whose judgment is described hereafter;

• Refl states that any wellformed type τ of a base kind also has the singleton kind of itself, that
is the kind S(τ). This rule is often called the singleton introduction rule;

• ExtPi states that any type that has an arrow kind can also be given the kind of its η-expansion;

• ExtSigma is similar to the previous rule, but for pair kinds.

The last three rules are somewhat unusual in a type system. ExtPi and ExtSigma ensure that the
system is stable under η-expansions, which is false in their absence, as noticed by Stone and Harper.
We think they are necessary because of the restriction of singletons at the base kind. Extending
them to higher kinds is done in their paper, and explained in Definition 3.1.2 on page 60.

The subkinding judgment is defined in Figure 3.2 on the facing page. It is, as usual, contravariant
on the domains of functions, and covariant on their co-domains, and on components of pairs. It is
otherwise generated by three rules:

• SubStar ensures that the base kind is a subkind of itself;

• SubForget allows one to forget a definition: any wellformed singleton kind is a subkind of the
base kind;

• SubSingle allows to replace a type inside a singleton kind with an equivalent one.

56

3.1 Singleton kinds: Harper-Stone system

WfEnvEmpty

ε `HS ok

WfEnvCons
Γ `HS κ ok α /∈ dom Γ

Γ, α :: κ `HS ok

WfKindStar
Γ `HS ok
Γ `HS ? ok

WfKindSingle
Γ `HS τ :: ?

Γ `HS S(τ) ok

WfKindPi
Γ, α :: κ1 `HS κ2 ok
Γ `HS Π(α : κ1) κ2 ok

WfKindSigma
Γ, α :: κ1 `HS κ2 ok
Γ `HS Σ(α : κ1) κ2 ok

Figure 3.1: Wellformed environments and wellformed kinds.

SubForget
Γ `HS τ :: ?

Γ `HS S(τ)6 ?

SubSingle
Γ `HS τ1 ≡ τ2 :: ?
Γ `HS S(τ1)6 S(τ2)

SubStar
Γ `HS ok
Γ `HS ?6 ?

SubPi
Γ `HS Π(α : κ1) κ2 ok

Γ `HS κ
′
1 6 κ1 Γ, α :: κ ′1 `HS κ2 6 κ

′
2

Γ `HS Π(α : κ1) κ2 6 Π(α : κ ′1) κ
′
2

SubSigma
Γ `HS Σ(α : κ ′1) κ

′
2 ok

Γ `HS κ1 6 κ
′
1 Γ, α :: κ1 `HS κ2 6 κ

′
2

Γ `HS Σ(α : κ1) κ2 6 Σ(α : κ ′1) κ
′
2

EqStar
Γ `HS ok
Γ `HS ?≡ ?

EqSingle
Γ `HS τ1 ≡ τ2 :: ?
Γ `HS S(τ1)≡ S(τ2)

EqPi
Γ `HS κ1 ≡ κ ′1 Γ, α :: κ1 `HS κ2 ≡ κ ′2
Γ `HS Π(α : κ1) κ2 ≡ Π(α : κ ′1) κ

′
2

EqSigma
Γ `HS κ1 ≡ κ ′1 Γ, α :: κ1 `HS κ2 ≡ κ ′2
Γ `HS Σ(α : κ1) κ2 ≡ Σ(α : κ ′1) κ

′
2

Figure 3.2: Subkinding and kind equivalence.

57

Chapter 3 Type definitions and singleton kinds

Var
Γ `HS ok α :: κ ∈ Γ

Γ `HS α :: κ

Lam
Γ, α :: κ1 `HS τ :: κ2

Γ `HS λ(α :: κ1) τ :: Π(α : κ1) κ2

App
Γ `HS τ1 :: Π(α : κ2) κ1

Γ `HS τ2 :: κ2

Γ `HS τ1 τ2 :: κ1[α← τ2]

Pair
Γ `HS Σ(α : κ1) κ2 ok Γ `HS τ1 :: κ1

Γ `HS τ2 :: κ2[α← τ1]

Γ `HS (τ1, τ2) :: Σ(α : κ1) κ2

ProjL
Γ `HS τ :: Σ(α : κ1) κ2

Γ `HS τ.1 :: κ1

ProjR
Γ `HS τ :: Σ(α : κ1) κ2

Γ `HS τ.2 :: κ2[α← τ.1]

Refl
Γ `HS τ :: ?

Γ `HS τ :: S(τ)

ExtPi
Γ, α :: κ1 `HS τ α :: κ2

Γ `HS τ :: Π(α : κ1) κ
′
2 Γ `HS Π(α : κ1) κ

′
2 ok

Γ `HS τ :: Π(α : κ1) κ2

ExtSigma
Γ `HS Σ(α : κ1) κ2 ok

Γ `HS τ.1 :: κ1 Γ `HS τ.2 :: κ2[α← τ.1]
Γ `HS τ :: Σ(α : κ1) κ2

Sub
Γ `HS τ :: κ1 Γ `HS κ1 6 κ2

Γ `HS τ :: κ2

Figure 3.3: Wellformed types.

The kind equivalence judgment is identical to subkinding, from which the SubForget rule has been
removed, so as to make it symmetric.

The main judgment is the type equivalence judgment (Figure 3.4 on the next page). The majority
of the rules are standard rules to close the judgment under reflexivity, symmetry, transitivity and
congruence. We describe the remaining ones:

• EqExtSingle specifies that having a singleton kind S(τ2)means being equivalent to τ2. This
rule is often called the singleton elimination rule;

• EqExtPi closes the equivalence under extensionality at arrow kinds;

• EqExtSigma closes the equivalence under extensionality at pair kinds;

• EqSub closes the equivalence relation under subkinding.

3.1.2 Examples

It is not obvious, at first glance, what these definitions allow or not. We recall some examples taken
from [SH06], or inspired from the same article. Under the hypothesis that β has kind S(α) (i.e. that
β is equivalent to α), the pair (α,β) is equivalent to its flipped version:

α : ?, β : S(α) ` (α,β)≡ (β,α) :: ?× ?

The next examples are about partial definitions, that is, functions or pairs, that are partially
specified to be equivalent to something else. For instance, under the hypothesis that f is a function
that always returns the value α, then f is equivalent to a constant function that returns α:

α : ?, f : Π(β : ?) S(α) ` f≡ λ(β :: ?)α :: ?→ ?

58

3.1 Singleton kinds: Harper-Stone system

EqRefl
Γ `HS τ :: κ

Γ `HS τ≡ τ :: κ

EqSym
Γ `HS τ2 ≡ τ1 :: κ
Γ `HS τ1 ≡ τ2 :: κ

EqTrans
Γ `HS τ1 ≡ τ2 :: κ Γ `HS τ2 ≡ τ3 :: κ

Γ `HS τ1 ≡ τ3 :: κ

EqLam
Γ `HS κ1 ≡ κ2 Γ, α :: κ1 `HS τ1 ≡ τ2 :: κ ′

Γ `HS λ(α :: κ1) τ1 ≡ λ(α :: κ2) τ2 :: Π(α : κ1) κ
′

EqApp
Γ `HS τ1 ≡ τ ′1 :: Π(α : κ2) κ1

Γ `HS τ2 ≡ τ ′2 :: κ2

Γ `HS τ1 τ2 ≡ τ ′1 τ ′2 :: κ1[α← τ2]

EqProjL
Γ `HS τ1 ≡ τ2 :: Σ(α : κ1) κ2

Γ `HS τ1.1≡ τ2.1 :: κ1

EqProjR
Γ `HS τ1 ≡ τ2 :: Σ(α : κ1) κ2

Γ `HS τ1.2≡ τ2.2 :: κ2[α← τ1.1]

EqPair
Γ `HS Σ(α : κ1) κ2 ok Γ `HS τ1 ≡ τ ′1 :: κ1

Γ `HS τ2 ≡ τ ′2 :: κ2[α← τ1]

Γ `HS (τ1, τ2)≡ (τ ′1, τ
′
2) :: Σ(α : κ1) κ2

EqExtPi
Γ, α :: κ1 `HS τ1 α≡ τ2 α :: κ2

Γ `HS τ1 :: Π(α : κ1) κ3 Γ `HS τ2 :: Π(α : κ1) κ4

Γ `HS τ1 ≡ τ2 :: Π(α : κ1) κ2

EqExtSigma
Γ `HS Σ(α : κ1) κ2 ok Γ `HS τ1.1≡ τ2.1 :: κ1

Γ `HS τ1.2≡ τ2.2 :: κ2[α← τ1.1]
Γ `HS τ1 ≡ τ2 :: Σ(α : κ1) κ2

EqExtSingle
Γ `HS τ1 :: S(τ2)

Γ `HS τ1 ≡ τ2 :: S(τ2)

EqSub
Γ `HS τ1 ≡ τ2 :: κ1 Γ `HS κ1 6 κ2

Γ `HS τ1 ≡ τ2 :: κ2

Figure 3.4: Type equivalence.

59

Chapter 3 Type definitions and singleton kinds

Under the hypothesis that f is a function that expects α as argument, f is equivalent to a function
that expects α and returns the result of f:

α : ?, f : S(α)→ ? ` f≡ λ(β :: S(α)) f α :: ?→ ?

Under the assumption that y is a pair whose second component is equal to x, then the second
projection of y is indeed equal to x:

α : ?, β : ?× S(α) ` β.2≡ α :: ?

Under the hypothesis that α is a pair whose second component is equal to the first one, then one
can prove that its two projections are equivalent, but also that α is equivalent to the pair that is
composed of twice the first projection of α:

α : Σ(β : ?) S(β) ` α.1≡ α.2 :: ?
α : Σ(β : ?) S(β) ` α≡ (α.1, α.1) :: ?× ?

It is rather obvious that the equivalence judgment is sensitive to the context, since it contains
the hypotheses about equivalence that are available for reasoning. It is however less clear that
equivalence is also sensitive to the kind at which it is considered. For instance, one cannot prove
that the identity is equivalent to a constant function, and the following does not hold:

α : ? ` λ(β :: ?)β≡ λ(β :: ?)α :: ?→ ?

However, if the same judgment is considered at a kind that forces the functions to expect α as
argument, then the same two functions become equivalent:

α : ? ` λ(β :: ?)β≡ λ(β :: ?)α :: S(α)→ ?

One can parametrize the same example to showhow embedded singleton kinds impact the judgment:

α : ?, f : (S(α)→ ?)→ ? ` f λ(β :: ?)β≡ f λ(β :: ?)α :: ?

holds, while
α : ?, f : (?→ ?)→ ? ` f λ(β :: ?)β≡ f λ(β :: ?)α :: ?

does not hold.
A difficulty with the Harper-Stone system is that all judgments aremutually defined, whichmakes

meta-theoretic proofs difficult. As we showed above, another challenge is that type equivalence is
sensitive to the context and to the kind at which it is consiedered: this makes equivalence a subtle
relation that is hard to decide.

3.1.3 Harper-Stone’s system: properties

The rule WfKindSingle only accepts to build singletons of types that have the base kind. It is
possible to define singletons at higher kinds, also called labeled singletons: the kind Sκ(τ) is the
singleton of the type τ at kind κ. Labeled singletons are defined as follows:

Definition 3.1.2 (Labeled singletons).

S?(τ) , S(τ)

SS(τ′)(τ) , S(τ ′)

SΠ(α:κ1)κ2(τ) , Π(α : κ1) Sκ2(τ α)

SΣ(α:κ1)κ2(τ) , Sκ1(τ.1)× Sκ2[α←τ.1](τ.2)

60

3.1 Singleton kinds: Harper-Stone system

The definition follows a scheme that is close to extensionality, but at the level of kinds. It is
important to notice that labeled singletons do not always make sense: for instance, SΣ(β:κ1)κ2(λ(α ::
?)α) is not a wellformed kind, because λ(α :: ?)α cannot have the kind Σ(β : κ1) κ2. Similarly,
SS(τ1)(τ2) only makes sense when τ1 and τ2 are two equivalent types. As a consequence, a labeled
singleton kind Sκ(τ) will be built only when τ has the kind κ.
We now review essential properties of the Harper-Stone singleton system. We do not present

them in an order that is compatible with the dependencies of their proofs. Complete proofs can be
found in [SH06].

The two propositions deal with validity of the relations, that is to say: every wellformed judgment
involves wellformed arguments.

Proposition 3.1.1 (Environment validity). If Γ ` κ ok or Γ ` τ :: κ or Γ ` κ1 6 κ2 or Γ ` κ1 ≡ κ2 or
Γ ` τ1 ≡ τ2 :: κ holds, then there is a subderivation with conclusion Γ ` ok.

Proposition 3.1.2 (Validity). The following assertions hold:

• If Γ ` τ :: κ, then Γ ` κ ok;

• If Γ ` κ1 6 κ2 or Γ ` κ1 ≡ κ2, then Γ ` κ1 ok and Γ ` κ2 ok;

• If Γ ` τ1 ≡ τ2 :: κ, then Γ ` κ ok and Γ ` τ1 :: κ and Γ ` τ2 :: κ.

The next propositions deal with properties on subkinding and kind equivalence: they state that
subkinding is a pre-order and kind equivalence an equivalence relation, and that kind equivalence
constitutes the diagonal of subkinding.

Proposition 3.1.3 (Reflexivity of subkinding and kind equivalence). If Γ ` κ ok, then Γ ` κ6 κ and
Γ ` κ≡ κ.

Proposition 3.1.4 (Antisymmetry of subkinding). If Γ ` κ1 6 κ2 and Γ ` κ2 6 κ1, then Γ ` κ1 ≡ κ2.

Proposition 3.1.5 (Symmetry and transitivity of kind equivalence). The following assertions hold:

• If Γ ` κ1 ≡ κ2, then Γ ` κ2 ≡ κ1;

• If Γ ` κ1 ≡ κ2 and Γ ` κ2 ≡ κ3, then Γ ` κ1 ≡ κ3.

Proposition 3.1.6 (Inclusion of kind equivalence in subkinding). If Γ ` κ1 ≡ κ2, then Γ ` κ1 6 κ2.

Proposition 3.1.7 (Transitivity of subkinding). If Γ ` κ1 6 κ2 and Γ ` κ2 6 κ3, then Γ ` κ1 6 κ3.

The following proposition gathers some admissible rules.

Proposition 3.1.8 (Admissible rules). The following rules are admissible:

Forget’
Γ ` τ :: κ

Γ ` Sκ(τ)6 κ

SubSingle’
Γ ` τ1 ≡ τ2 :: κ1 Γ ` κ1 6 κ2

Γ ` Sκ1(τ1)6 Sκ2(τ2)

Refl’
Γ ` τ :: κ

Γ ` τ :: Sκ(τ)

Beta
Γ, α :: κ2 ` τ1 :: κ1 Γ ` τ2 :: κ2

Γ ` (λ(α :: κ2) τ1) τ2 ≡ τ1[α← τ2] :: κ1[α← τ2]

Pi
Γ ` τ1 :: κ1 Γ ` τ2 :: κ2

Γ ` (τ1, τ2).i≡ τi :: κi

EtaPi
Γ ` τ :: Π(α : κ1) κ2

Γ ` τ≡ λ(α :: κ1) τ α :: Π(α : κ1) κ2

EtaSigma
Γ ` τ :: Σ(α : κ1) κ2

Γ ` τ≡ (τ.1, τ.2) :: Σ(α : κ1) κ2

61

Chapter 3 Type definitions and singleton kinds

NatKindVar

Γ . α ↑ Γ(α)

NatKindProjL
Γ . p ↑ Σ(α : κ1) κ2

Γ . p.1 ↑ κ1

NatKindProjR
Γ . p ↑ Σ(α : κ1) κ2

Γ . p.2 ↑ κ2[α← p.1]

NatKindApp
Γ . p ↑ Π(α : κ1) κ2

Γ . p τ ↑ κ2[α← τ]

Figure 3.5: Natural kind.

Rule Forget’ generalizes rule Forget to labeled singletons, whereas rule SubSingle’ generalizes
rule SubSingle (cf. Figure 3.2 on page 57). The rule Refl’ extends rule Refl to higher kinds as well (cf.
Figure 3.3 on page 58). The rules Beta and Pi state the admissibility of β-equivalence for functions
and pairs; the rules ExtPi and ExtSigma cope with η-equivalence for functions and pairs.
The next proposition is the usual substitution lemma on judgments.

Proposition 3.1.9. Assume Γ ` τ :: κ. The following assertions hold:

• If Γ, α :: κ, Γ ′ ` ok, then Γ, Γ ′[α← τ] ` ok;

• If Γ, α :: κ, Γ ′ ` κ ′ ok, then Γ, Γ ′[α← τ] ` κ ′[α← τ] ok;

• If Γ, α :: κ, Γ ′ ` κ1 ≡ κ2, then Γ, Γ ′[α← τ] ` κ1[α← τ]≡ κ2[α← τ];

• If Γ, α :: κ, Γ ′ ` κ1 6 κ2, then Γ, Γ ′[α← τ] ` κ1[α← τ]6 κ2[α← τ];

• If Γ, α :: κ, Γ ′ ` τ ′ :: κ ′, then Γ, Γ ′[α← τ] ` τ ′[α← τ] :: κ ′[α← τ];

• If Γ, α :: κ, Γ ′ ` τ1 ≡ τ2 :: κ ′, then Γ, Γ ′[α← τ] ` τ1[α← τ]≡ τ2[α← τ] :: κ ′[α← τ];

The next proposition states that singletons can indeed be interpreted as definitions: type equiva-
lence and kind equivalence contains the unfolding of singleton kinds.

Proposition 3.1.10. The following assertions hold:

• If Γ ` τ :: κ and Γ, α :: κ ` τ ′ :: κ ′, then Γ, α :: Sκ(τ) ` τ ′ ≡ τ ′[α← τ] :: κ ′;

• If Γ ` τ :: κ and Γ, α :: κ ` κ ′ ok, then Γ, α :: Sκ(τ) ` κ ′ ≡ κ ′[α← τ].

Corollary 3.1.11. If Γ ` τ :: κ and Γ, α :: κ` κ ′ ok, then Γ ` Π(α : Sκ(τ)) κ
′≡Π(α : Sκ(τ)) κ

′[α← τ] and
Γ ` Σ(α : Sκ(τ)) κ

′ ≡ Σ(α : Sκ(τ)) κ
′[α← τ].

3.1.4 Harper-Stone normalization algorithm and decidability result

Stone and Harper [SH06] give an algorithm to decide the wellformedness of types, that is based on
the minimal kind property, and on an algorithm to decide type equivalence. The key component
of the latter is a normalization procedure, that is proved sound and complete with respect to
the specification of the system. Although the soundness property is rather easy to prove, the
completeness result requires an involved proof, that is based on a logical relation. In Section 3.5, we
reuse the logical relation-based technique to prove a completeness property. In the current section,
we briefly recall the normalization algorithm.

One can sum it up as follows: the algorithm consists in two stages. First, the algorithm is kind-
directed, and performs head η-expansions. This is done by the type normalization judgment in
Figure 3.8 on the facing page. Once a base kind has been reached, types are reduced (Figure 3.6
and Figure 3.7 on the next page) following the normal strategy (i.e. the leftmost innermost strategy)
by performing β-reduction on function applications and projected pairs, as well as the unfolding of
definitions: this is done by replacing a type τ with another type τ ′ when τ has the natural kind S(τ ′).

62

3.1 Singleton kinds: Harper-Stone system

HdRedBeta

Γ . E[(λ(α :: κ) τ) u] E[τ[α← u]]

HdRedPi
i ∈ {1, 2}

Γ . E[(τ1, τ2).i] E[τi]

HdRedUnfold
Γ . p ↑ S(u)
Γ . E[p] E[u]

Figure 3.6: Head reduction.

HdNormTrans
Γ . τ τ ′ Γ . τ ′ ⇓ τ ′′

Γ . τ ⇓ τ ′′

HdNormRefl
there is no τ ′ such that Γ . τ τ ′

Γ . τ ⇓ τ

Figure 3.7: Head normalization.

TypeNormStar
Γ . τ ⇓ τ ′

Γ . τ ′ −→ τ ′′ ↑ ?
Γ . τ :: ? =⇒ τ ′′

TypeNormSingle
Γ . τ ⇓ τ ′

Γ . τ ′ −→ τ ′′ ↑ ?
Γ . τ :: S(τ0) =⇒ τ ′′

TypeNormPi
Γ . κ1 =⇒ κ ′1

Γ, α :: κ1 . τ α :: κ2 =⇒ τ ′

Γ . τ :: Π(α : κ1) κ2 =⇒ λ(α :: κ ′1) τ
′

TypeNormSigma
Γ . τ.1 :: κ1 =⇒ τ ′1

Γ . τ.2 :: κ2[α← τ.1] =⇒ τ ′2

Γ . τ :: Σ(α : κ1) κ2 =⇒ (τ ′1, τ
′
2)

Figure 3.8: Type normalization.

PathNormVar

Γ . α −→ α ↑ Γ(α)

PathNormApp
Γ . p −→ p ′ ↑ Π(α : κ1) κ2

Γ . τ :: κ1 =⇒ τ ′

Γ . p τ −→ p ′ τ ′ ↑ κ2[α← τ]

PathNormProjL
Γ . p −→ p ′ ↑ Σ(α : κ1) κ2

Γ . p.1 −→ p ′.1 ↑ κ1

PathNormProjR
Γ . p −→ p ′ ↑ Σ(α : κ1) κ2

Γ . p.2 −→ p ′.2 ↑ κ2[α← p.1]

Figure 3.9: Path normalization.

KindNormStar

Γ . ? =⇒ ?

KindNormSingle
Γ . τ :: ? =⇒ τ ′

Γ . S(τ) =⇒ S(τ ′)

KindNormPi
Γ . κ1 =⇒ κ ′1

Γ, α :: κ1 . κ2 =⇒ κ ′2

Γ . Π(α : κ1) κ2 =⇒ Π(α : κ ′1) κ
′
2

KindNormSigma
Γ . κ1 =⇒ κ ′1

Γ, α :: κ1 . κ2 =⇒ κ ′2

Γ . Σ(α : κ1) κ2 =⇒ Σ(α : κ ′1) κ
′
2

Figure 3.10: Kind normalization.

63

Chapter 3 Type definitions and singleton kinds

Natural kinds are defined in Figure 3.5 on page 62, and consists of kinding a path pwithout making
use of the Refl, ExtPi, ExtSigma or of the Sub rule. A path p is defined as follows as the closure of
type variables under application and projection.

E ::= [·] | E τ | E.i p ::= E[α]

Note that abstractions and pairs are not included in paths.
The singleton kinds system enjoys the minimal kind property, i.e. for any wellformed type,

there exists a kind for this type that is lesser than any other one. Minimal kinds are discussed in
Section 3.5.9 and defined in Figure 3.12 on page 99.

Natural kinds are very close to minimal kinds: Harper and Stone show that if a wellformed type τ
has the natural kind κ, then its minimal kind is equivalent to Sκ(τ). Once types are reduced to paths,
then one proceeds with path normalization (Figure 3.9 on the preceding page), that normalizes the
types of the right parts of path applications. Since normalization of types is kind directed, path
normalization maintains the natural kind of the current path while it is being normalized.
The normalization procedure of types is recursively defined with the normalization of kinds

(Figure 3.10 on the previous page), that only consists in a closure of type normalization under
contexts of kinds: normalization of kinds lifts type normalization within singletons to kinds.

Stone andHarper prove that his algorithm is sound and complete with respect to type equivalence:

Theorem 3.1.12 (Stone-Harper: adequacy of normalization). Assume Γ ` τ1 :: κ and Γ ` τ2 :: κ. Then
Γ ` τ1 ≡ τ2 :: κ holds iff there exists τ ′ such that Γ . τ1 :: κ =⇒ τ ′ and Γ . τ2 :: κ =⇒ τ ′ holds.

They also define a more efficient algorithm that decides type equivalence without fully normaliz-
ing the types that are tested for equivalence.

3.2 Goals of this chapter

In this chapter, we define an alternate way to test types for equivalence, by defining a reduction rela-
tion that is non-deterministic, confluent and strongly normalizing, and that combines η-expansion
and β-reduction. We prove it sound and complete with respect to the Stone-Harper definition.
Our technique inherits from Crary’s elimination of singleton kinds[Cra07]: he interprets the

unfolding of definitions as the η-expansion of a type at the singleton kind. Expansions at other kinds
permit to access deep definitions, such as singletons nested in pairs or in arguments of functions.
This way, by η-expanding the free type variables of types and performing a head η-expansion, he
shows that it suffices then to test types for β-convertibility only. This is to put together with Goguen
[Gog05b, Gog05a], who also shows, for different type theories, that β-convertibility is enough to
compare for η-convertibility, provided enough η-expansions have been performed.
The originality of our technique relies in combining β-reduction and η-expansion, while main-

taining strong normalization and keeping usual evaluation contexts. When studying systems with
βη-equivalence, Kesner and Di Cosmo [CK93], managed to define a strongly normalizing reduction
for simply typed λ-calculus with pairs, sums, recursion and terminal object, but they had to restrict
the evaluation contexts to succeed, so that their reduction relation is no longer defined as the
closure under congruence of head reduction. By contrast, we proceed by inserting explicits marks
of expansion, called expansors, at every occurrence of variables; then expansion of the expansors,
which mimics usual kind-directed η-expansion, can be interleaved with β-reduction, and is allowed
in any context. We prove that the resulting notion of convertibility coincides with Stone-Harper’s
definition.
Our characterization of type equivalence generalizes both Crary’s method for deciding type

equivalence by singletons erasure, and the normalization algorithm of [SH06]. Interestingly, our
approach permits to interleave β-reduction with η-expansions, and is not restricted to follow the

64

3.3 Preliminary results: some composition properties for rewriting systems

normal order: since it is based on a simple, confluent calculus, more reduction strategies can be
considered, and existing techniques for efficient reduction of λ-terms can possibly be reused. A
difference remains: we add expansors at every occurrence of variables, not only at free occurrences.
The rest of the chapter is organized as follows: Section 3.3 introduces preliminary combination

properties on confluence and normalization. Section 3.4 expounds our method of explicit expansors
on the easier subcase of the simply typed λ-calculus. It is then extended to singleton kinds in
Section 3.5, before the exposition of our concluding remarks in Section 3.7 on page 105.

3.3 Preliminary results: some composition properties for rewriting systems

In this section, we recall results on combination of confluence and normalization for binary relations,
that are used in Section 3.4 and Section 3.5. We verified these intermediate results in the Coq system.
The proof script is available at http://gallium.inria.fr/~montagu/proofs/Rel/. None of the
results that are presented in this section are new.

Definition 3.3.1 (Terminating element). Let R be a binary relation over a set E. Then an element
x ∈ E is said terminating with R if for any y such that x R y holds, then y is terminating with R.

Definition 3.3.2 (Termination). A binary relation R on a set E terminates if every element x ∈ E is
terminating with R. In this case, we also say that R is terminating, or strongly normalizing.

Definition 3.3.3 (Normal form). We say that x is a normal form for R (or a R-normal form) if there
is no y such that x R y. If z R x and x is a R-normal form, we may use the notation z R↓ x.

Definition 3.3.4 (Preservation of normal forms). We say that R1 preserves R2-normal forms when
for every x that is a R2-normal form, and every y such that x R1 y, then y is a R2-normal form.

The notion of terminating element with a relation (respectively, of a terminating relation) is
deliberately chosen to be the flipped version of the well known definition of accessibility of an
element through a relation (respectively, of a well founded relation). We choose to use the flipped
versions, because they directly apply to reduction relations, which are oriented from left to right.
In the rest of this section, we will use arrows to represent binary relations over a fixed set E. Let
→+ denote the transitive closure of the relation→, and→? denote its reflexive transitive closure,
and→? denote its reflexive closure. Let↔ denote the reflexive symmetric transitive closure of the
relation→. Let→a ∪ →b denote the union of the relations→a and→b.

Definition 3.3.5 (Commutation of relations). Two relations→a and→b commute if the following
diagram holds:

x ya

yb z

a

b

a

b

Or, formally, for every x, ya and yb, if x→a ya and x→b yb, then there exists z such that ya →b z
and yb →a z.

Lemma 3.3.1. If→a commutes with→b, then→?
a commutes with→?

b.

Definition 3.3.6 (Diamond). A relation has the diamond property if it commutes with itself.

Definition 3.3.7 (Confluence). A relation→ is said confluent if→? has the diamond property.

65

http://gallium.inria.fr/~montagu/proofs/Rel/

Chapter 3 Type definitions and singleton kinds

Lemma 3.3.2. A confluent relation has unique normal forms.

Lemma 3.3.3. If a relation has the diamond property, then it is confluent.

Definition 3.3.8 (Weak confluence). A relation is said weakly confluent if the following diagram
holds:

x y1

y2 z
?

?

Or, formally, for every x, y1 and y2, if x→ y1 and x→ y2, then there exists z such that y1 →? z and
y2 →? z.

The following lemma is often used to prove the commutation of two relations.

Lemma 3.3.4 (Commutation condition). If the following diagram holds

x y1

y2 z

a

b

?

a

?b

then→?
a commutes with→?

b.

Lemma 3.3.5 (Newman). If a terminating relation is weakly confluent, then it is confluent.

Lemma 3.3.6 (Hindley-Rosen [Bar84]). Assume that→a and→b have the diamond property. Then, if
→a commutes with→b, then→a ∪ →b is confluent.

Definition 3.3.9 (Commutation with normal forms). We say that→a commutes with→b-normal
forms when the following diagram holds:

x y1

y2 z

a

b ↓ ? b ↓ ?

+

a

Lemma 3.3.7 (Hindley-Rosen, variant). Assume that→a and→b are confluent. Then, if→a commutes
with→b, then→a ∪ →b is confluent.

Lemma 3.3.8 (Akama [Aka93]). Let→a and→b be two confluent and terminating relations. Then if→a
commutes with→b-normal forms, then→a ∪ →b is also a confluent and terminating relation.

We introduce a diagram, introduced by Di Cosmo, Piperno and Geser [Cos96]. The diagram and
the related properties are prefixed with the prefix DPG.

Definition 3.3.10 (DPG-commutation). We say that a relation→a DPG-commutes with→b if the
following diagram holds:

66

3.4 Warm-up: the simply-typed case

x ya

yb z

a

b

a

+

b ?

Or, formally, for every x, ya and yb, if x→a ya and x→b yb, then there exists z such that ya →?
b z

and yb →+
a z.

Under a condition on termination, the DPG diagram directly permits to prove the commutation
of two relations:

Lemma 3.3.9 (DPG-commutation condition). Assume that→a is a terminating relation. If→a DPG-
commutes with→b, then→?

a commutes with→?
b.

It has been demonstrated [Cos96] that the above lemma is useful in many cases, since it applies to
a large spectrum of relations, where Lemma 3.3.4 cannot be applied.
The DPG diagram also permits to show commutation with normal forms:

Lemma 3.3.10 (Condition for commutationwith normal forms). Assume that→a DPG-commutes with
→b and that→a is a terminating relation. If→b has unique normal forms and if→a preserves→b-normal
forms, then→a commutes with→b normal forms.

The two previous lemmas permit to prove the enhanced versions of Hindley-Rosen’s and Akama’s
lemmas.

Lemma 3.3.11 (DPG-Hindley-Rosen). Assume that →a and →b are two confluent relations. If →a
DPG-commutes with→b, and if→a is terminating, then→a ∪ →b is confluent.

Lemma 3.3.12 (DPG-Akama). Let→a and→b be two confluent and terminating relations. If→a DPG-
commutes with→b, and if→a preserves→b-normal forms, then→a ∪ →b is also a confluent and termi-
nating relation.

The use of the DPG commutation with a condition on termination is a special case of the general
technique of Van Oostrom’s decreasing diagrams [vO08], which we were not aware of at the begin-
ning of this study. We do not know whether they have been mechanically verified: we think that
it would provide a very valuable and powerful toolbox. The above lemmas are sufficient for us to
prove the confluence and normalization results we want in the rest of the chapter.

3.4 Warm-up: the simply-typed case

This section presents our technique of explicit expansions in the case of the simply typed λ-calculus.
It is meant to ease the understanding of the technique, since it has easy proofs, whereas the case of
the full system with singleton kinds is more involved. We first recall a definition of the simply typed
λ-calculus with βη-equality, and a new construct, called expansor, that specifies where η-expansion
steps can be performed. We also introduce a reduction semantics for this extended language and
show it enjoys confluence and strong normalization. We then show that, up to the insertion of
enough expansors, βη-equality is characterized by the reflexive, symmetric, transitive closure of
our reduction relation. Lemma 3.4.22 on page 73 constitutes an essential result for completeness.

67

Chapter 3 Type definitions and singleton kinds

3.4.1 Definitions

The syntax of the simply typed λ-calculus with pairs is recalled below. Notice that we operate the
same shift as before: we talk about types and kinds, instead of terms and types, but this is, again,
only a cosmetic detail, which should not bother the reader.
Definition 3.4.1 (Kinds and types).

κ ::= ? | κ→ κ | κ× κ
τ ::= α | λ(α :: κ) τ | τ τ | (τ, τ) | τ.i | ηκ

The syntax of kinds and types are as usual for the simply typed λ-calculus, except the fact that we
add a family of constants ηκ, that are indexed by kinds. We call the constant ηκ the expansor at kind
κ. The intuition is that, when applied to a type τ (of kind κ), it will reduce to the η-expansion of τ at
the kind κ.

The binding structure of terms and their free type variables are the usual one: notice that fv(ηκ) ,
∅, which is consistent with the presentation of expansors as constants. Substitution is also defined
the usual way, and, unsurprisingly, ηκ[α← τ] , ηκ holds.

We recall the typing rules for the simply typed λ-calculus. The typing environments are composed
of distinct bindings, and the typing judgment for the simply typed λ-calculus has been extended
with a typing rule for expansors: ηκ have kind κ→ κ.
Definition 3.4.2 (Wellformed environments).

WfEnvEmpty

ε `ST ok

WfEnvVar
Γ `ST ok α /∈ dom Γ

Γ, α :: κ `ST ok

Definition 3.4.3 (Wellformed types).

Var
α :: κ ∈ Γ Γ `ST ok

Γ `ST α :: κ

Const
Γ `ST ok

Γ `ST ηκ :: κ→ κ

Lam
Γ, α :: κ1 `ST τ :: κ2

Γ `ST λ(α :: κ1) τ :: κ1 → κ2

App
Γ `ST τ1 :: κ2 → κ1
Γ `ST τ2 :: κ2

Γ `ST τ1 τ2 :: κ1

Pair
Γ `ST τ1 :: κ1
Γ `ST τ2 :: κ2

Γ `ST (τ1, τ2) :: κ1 × κ2

Proj
Γ `ST τ :: κ1 × κ2

Γ `ST τ.i :: κi

Evaluation contexts are all contexts with one hole: they do not restrict reduction.
Definition 3.4.4 (Evaluation contexts).

C ::= [·] | λ(α :: κ)C | τ C | C τ | (C, τ) | (τ,C) | C.i

The reduction relation is defined as follows.
Definition 3.4.5 (Reduction).

(λ(α :: κ) τ1) τ2
β−→ τ1[α← τ2]

(τ1, τ2).i
π−→ τi

η?
η?−→ λ(α :: ?)α

ηκ1→κ2

η→−→ λ(f :: κ1 → κ2) λ(α :: κ1)ηκ2 (f (ηκ1 α))

ηκ1×κ2

η×−→ λ(p :: κ1 × κ2) ((ηκ1 (p.1)) , ηκ2 (p.2))
ifM −→ M ′, then C[M] −→ C[M ′]

68

3.4 Warm-up: the simply-typed case

EqBeta
Γ `ST (λ(α :: κ) τ1) τ2 :: κ

′

Γ `βπη (λ(α :: κ) τ1) τ2 ≡ τ1[α← τ2]

EqPi
Γ `ST (τ1, τ2).i :: κ ′ i ∈ {1, 2}

Γ `βπη (τ1, τ2).i≡ τi

EqEtaArrow
Γ `ST τ :: κ→ κ ′ α /∈ dom Γ

Γ `βπη τ≡ λ(α :: κ) τ α

EqEtaProd
Γ `ST τ :: κ1 × κ2

Γ `βπη τ≡ (τ.1, τ.2)

EqVar
α :: κ ∈ Γ Γ `ST ok

Γ `βπη α≡ α

EqExpansor
Γ `ST ok

Γ `βπη ηκ ≡ ηκ

EqLam
Γ, α :: κ `βπη τ1 ≡ τ2

Γ `βπη λ(α :: κ) τ1 ≡ λ(α :: κ) τ2

EqApp
Γ `βπη τ1 ≡ τ ′1 Γ `βπη τ2 ≡ τ ′2

Γ `βπη τ1 τ2 ≡ τ1 τ2

EqPair
Γ `βπη τ1 ≡ τ ′1 Γ `βπη τ2 ≡ τ ′2

Γ `βπη (τ1, τ2)≡ (τ ′1, τ
′
2)

EqProj
Γ `βπη τ≡ τ ′

Γ `βπη τ.i≡ τ ′.i

EqSym
Γ `βπη τ ′ ≡ τ
Γ `βπη τ≡ τ ′

EqTrans
Γ `βπη τ≡ τ ′ Γ `βπη τ ′ ≡ τ ′′

Γ `βπη τ≡ τ ′′

Figure 3.11: βπη-equality.

We define a small-step reduction relation as the closure of head reduction under evaluation
contexts. Head reduction is composed of the contraction of redexes for applications and pairs,
to which we add the reduction of expansors: the reduction of ηκ is directed by the kind κ, and
produces a function that η-expands its argument at the kind κ. Expanding at the base kind does
nothing, so η? reduces to the identity. Expanding τ at an arrow kind ηκ1→κ2 produces a function
that returns a function whose body is the expansion of the application of the first argument applied
to the expansion of the second argument. Similarly, ηκ1×κ2 reduces to a function that returns the
pair of the expansions of its projections. Head reduction is then closed under evaluation contexts.
Note that we might drop the label on the reduction arrow in the rest of the chapter. Conversely,
we might add a label on the arrow when reducing in an arbitrary context, to indicate which head
reduction rule has been used.

Definition 3.4.6 (η•-reduction). We define η•-reduction as the subset of reduction that deals with
expansors, that is, as the relation η?−→ ∪ η×−→ ∪ η→−→ that is closed under contexts.

In Figure 3.11, we define βπη-equality as the closure under congruence, symmetry and transitivity
of the β and η rules on functions and pairs, restricted to wellformed types. In this definition, we
consider the expansors as constants. For instance, it is false that `βπηη? ≡ λ(α :: ?)α.

We can erase expansors by replacing them with the identity, as defined below. Erasure permits to
trivially inject the language into the simply typed λ-calculus.

69

Chapter 3 Type definitions and singleton kinds

Definition 3.4.7 (Erasure of expansors).

bαc , α

bηκc , λ(α :: κ)α

b(λ(α :: κ) τ)c , λ(α :: κ) bτc
b(τ1 τ2)c , bτ1c bτ2c
b(τ1, τ2)c , (bτ1c, bτ2c)
b(τ.i)c , bτc.i

We define a way to insert expansors: dτeΓ replaces every variable α (free or bound) by their
expanded versions ηκ α, where κ is the kind that is assigned to α by the current environment Γ .

Definition 3.4.8 (Insertion of expansors).

dαeΓ ,

{
ηΓ(α) α if α ∈ dom Γ
α otherwise

dηκeΓ , ηκ
dλ(α :: κ) τeΓ , λ(α :: κ) dτeΓ,α::κ
dτ1 τ2eΓ , dτ1eΓ dτ2eΓ
d(τ1, τ2)eΓ , (dτ1eΓ , dτ2eΓ)
dτ.ieΓ , dτeΓ .i

3.4.2 Subject reduction

Theorem 3.4.1 (Subject reduction). If Γ `ST τ :: κ and τ
βπη•−→ τ ′, then Γ `ST τ

′ :: κ.

Proof. Subject reduction for βπ is a well-known result. The case of η• is immediate.

The erasure and insertion of expansors preserve wellformedness.

Lemma 3.4.2. Γ `ST τ :: κ holds iff Γ `ST bτc :: κ holds.

Lemma 3.4.3. Γ `ST τ :: κ holds iff Γ `ST dτeΓ :: κ holds.

3.4.3 Confluence and strong normalization

In this section, we establish the confluence and strong normalization properties of our reduction
relation in a modular way, using the results that have been introduced in Section 3.3 on page 65.
It is already a well-known result that βπ-reduction is confluent.

Theorem 3.4.4. βπ−→ is confluent.

We can also prove by induction the diamond property for η•-reduction.

Lemma 3.4.5. η•−→ has the diamond property.

It follows from Lemma 3.3.3 on page 66 that η•-reduction is a confluent relation.

Proposition 3.4.6. η•−→ is confluent.

We recall the strong normalization property for the simply typed λ-calculus. See for instance
[GTL89] for a detailed proof.

Theorem 3.4.7. βπ−→ is strongly normalizing on wellformed types.

70

3.4 Warm-up: the simply-typed case

We can easily establish that η•-reduction is also strongly normalizing, by considering the multiset
of the kinds of the expansors as a measure: η•-reduction rules either discard the expansors, or
replace them with expansors at a strictly (structurally) smaller kind.

Proposition 3.4.8. η•−→ is strongly normalizing.

Since we have established the normalization and confluence properties separately for βπ and
for η•, we now get down to their combination into the full reduction relation. Firstly, η•-reduction
commutes with substitution as follows:

Lemma 3.4.9. The following assertions hold:

• If τ1
η•−→ τ ′1 then τ1[α← τ2]

η•−→ τ ′1[α← τ2].

• If τ2
η•−→ τ ′2 then τ1[α← τ2]

η•−→? τ1[α← τ ′2].

This result on substitution and η•-reduction permits to prove a commutation property for the
two sub-relations.

Lemma 3.4.10. The following commutation diagram holds:

τ τ1

τ2 τ3

η•

βπ

η•

?

βπ

Lemma 3.4.11. βπ−→ DPG-commutes with η•−→.

Proof. Consequence of Lemma 3.4.10.

Finally, we can prove that the whole relation is confluent on wellformed types.

Theorem 3.4.12 (Confluence). The relation βπη•−→ is confluent on wellformed types.

Proof. By Lemma 3.3.11 on page 67, using Theorem 3.4.4, Proposition 3.4.6 and Theorem 3.4.1.

We now focus on the normalization property for the reduction relation.

Lemma 3.4.13. The relation βπ−→ preserves η•−→-normal forms.

As a consequence, the whole reduction is strongly normalizing on wellformed types.

Theorem 3.4.14 (Strong normalization). The reduction relation βπη•−→ is strongly normalizing on well-
formed types.

Proof. Consequence of Lemma 3.3.12 on page 67, using Theorem 3.4.7, and Proposition 3.4.8, and
Lemma 3.4.13, and Theorem 3.4.1.

We have established that our reduction relation is confluent and strongly normalizing on well-
formed types. The diagrams from Section 3.3 on page 65 greatly simplified the proof. It is certainly
possible that it is confluent for arbitrary types, for instance using the technique of parallel reductions
[Tak95], but it is not clear how to prove confluence in a modular way.

71

Chapter 3 Type definitions and singleton kinds

3.4.4 Adequacy

In this section, we show that βπη-equality reduces to βπη•-equality up to the insertion of expansors.
It provides a simple way to test for βπη-equality. We begin with properties of expansors: first,
expansors are idempotent.

Lemma 3.4.15 (Idempotency of expansors). For all kind κ and type τ, ηκ (ηκ τ)
βπη•←→ ηκ τ holds.

Proof. By induction on κ:

• κ = ?:
η? (η? τ)

η?−→ (λ(α :: ?)α) (η? τ)
β−→ η? τ

• κ = κ1 → κ2:

ηκ1→κ2 (ηκ1→κ2 τ)
η→−→ (λ(f :: κ1 → κ2) λ(α :: κ1)ηκ2 (f (ηκ1 α))) (ηκ1→κ2 τ)
β−→ λ(α :: κ1)ηκ2 ((ηκ1→κ2 τ) (ηκ1 α))
η→−→ λ(α :: κ1)ηκ2 (((λ(f :: κ1 → κ2) λ(β :: κ1)ηκ2 (f (ηκ1 β))) τ) (ηκ1 α))
β−→ λ(α :: κ1)ηκ2 ((λ(β :: κ1)ηκ2 (τ (ηκ1 β))) (ηκ1 α))
β−→ λ(α :: κ1)ηκ2 (ηκ2 (τ (ηκ1 (ηκ1 α))))
βπη•←→ λ(α :: κ1)ηκ2 (ηκ2 (τ (ηκ1 α))) by induction hypothesis
βπη•←→ λ(α :: κ1)ηκ2 (τ (ηκ1 α)) by induction hypothesis
βπη•←→ ηκ1→κ2 τ

• κ = κ1 × κ2:

ηκ1×κ2 (ηκ1×κ2 τ)
η×−→ ηκ1×κ2 ((λ(p :: κ1 × κ2) (ηκ1 (p.1), ηκ2 (p.2))) τ)
β−→ ηκ1×κ2 (ηκ1 (τ.1), ηκ2 (τ.2))
η×−→ (λ(p :: κ1 × κ2) (ηκ1 (p.1), ηκ2 (p.2))) (ηκ1 (τ.1), ηκ2 (τ.2))
β−→ (ηκ1 ((ηκ1 (τ.1), ηκ2 (τ.2)).1), ηκ2 ((ηκ1 (τ.1), ηκ2 (τ.2)).2))
π−→ (ηκ1 (ηκ1 (τ.1)), ηκ2 ((ηκ1 (τ.1), ηκ2 (τ.2)).2))
π−→ (ηκ1 (ηκ1 (τ.1)), ηκ2 (ηκ2 (τ.2)))
βπη•←→ (ηκ1 (τ.1), ηκ2 (ηκ2 (τ.2))) by induction hypothesis
βπη•←→ (ηκ1 (τ.1), ηκ2 (τ.2)) by induction hypothesis
βπη•←→ ηκ1×κ2 τ

We then show that expanding an expansor adds no information.

Lemma 3.4.16 (Expansion of expansors). For every kind κ, ηκ
βπη•←→ ηκ→κ ηκ.

Proof. We first notice that ηκ→κ ηκ
βπη•←→ λ(α :: κ)ηκ α thanks to Lemma 3.4.15. It suffices to show

that λ(α :: κ)ηκ α
βπη•←→ ηκ. We proceed by case analysis on κ. Each case is easily solved by a few

rewrite steps.

72

3.4 Warm-up: the simply-typed case

• κ = ?:
λ(α :: ?)η? α

βπη•←→ λ(α :: ?)α
βπη•←→ η?

• κ = κ1 → κ2:

λ(α :: κ1 → κ2)ηκ1→κ2 α
βπη•←→ λ(α :: κ1 → κ2) λ(β :: κ1)ηκ2 (α (ηκ1 β))

βπη•←→ ηκ1→κ2

• κ = κ1 × κ2:

λ(α :: κ1 × κ2)ηκ1×κ2 α
βπη•←→ λ(α :: κ1 × κ2) (ηκ1 α.1, ηκ2 α.2) βπη•←→ ηκ1×κ2

We go on with properties of erasure and insertion of expansors. First, these operations are stable
under renamings.

Lemma 3.4.17. For all Γ , Γ ′, α, β, κ, τ, if α /∈ dom Γ ′ and β /∈ dom Γ, Γ ′ then dτeΓ,α::κ,Γ ′ [α← β] =
dτ[α← β]eΓ,β::κ,Γ ′ .

Then, the operations are idempotent, and commute with substitution as follows.

Lemma 3.4.18. The following assertions hold:

• bbτcc = bτc;

• ddτeΓ eΓ βπη•←→ dτeΓ ;

• bτ1[α← τ2]c = bτ1c[α← bτ2c];

• If α /∈ dom Γ ′, then dτ1eΓ,α::κ,Γ
′
[α← dτ2eΓ,Γ

′
] = dτ1[α← ηκ τ2]eΓ,Γ

′ ;

• If α /∈ dom Γ, Γ ′, then dτ1eΓ,Γ
′
[α← dτ2eΓ,Γ

′
] = dτ1[α← τ2]eΓ,Γ

′ .

The items that deal with idempotency are consequences of Lemma 3.4.15. We notice that insertion
of expansors does not always commute with substitution: it only commutes when the variable to be
substituted is not in the environment; otherwise, an expansor is inserted at every substitution site.

From Lemma 3.4.15, one can also show that adding expansors at variables that will be expanded
has no effect.

Lemma 3.4.19. Assume α /∈ dom Γ ′. Then dτeΓ,α::κ,Γ ′ βπη•←→ dτ[α← ηκ α]eΓ,α::κ,Γ
′ holds.

We now prove that convertibility is sound with respect to βπη-equality.

Lemma 3.4.20. If Γ `ST τ1 :: κ and τ1
βπη•−→ τ2 then Γ `βπη bτ1c ≡ bτ2c.

Proof. The result for the cases β and π is easily proved using Lemma 3.4.18 and contraction rules.
In the case of η•, it follows directly from extensional rules.

Proposition 3.4.21 (Soundness). If Γ `ST τ1 :: κ, Γ `ST τ2 :: κ and τ1
βπη•←→ τ2 then Γ `βπη bτ1c ≡ bτ2c.

Proof. By induction on convertibility, using Lemma 3.4.20 and Theorem 3.4.1.

We now focus on a completeness result for our convertibility relation. We first prove that adding
an expansor in front of a full insertion of expansors is superfluous on wellformed types. This lemma
is the central lemma for the completeness result.

Lemma 3.4.22. For every κ, τ, Γ , if Γ `ST τ :: κ holds, then dτeΓ
βπη•←→ ηκ dτeΓ holds.

73

Chapter 3 Type definitions and singleton kinds

Proof. By induction on the typing judgment:

• Var case:

dαeΓ = ηκ α
βπη•←→ ηκ (ηκ α) by Lemma 3.4.15
= ηκ dαeΓ

• Const case:

dηκ0eΓ = ηκ0
βπη•←→ ηκ0→κ0 ηκ0 by Lemma 3.4.16
= ηκ0→κ0 dηκ0eΓ

• Lam case:

dλ(α :: κ) τeΓ = λ(α :: κ) dτeΓ,α::κ
βπη•←→ λ(α :: κ)ηκ′ dτeΓ,α::κ by induction hypothesis
= λ(β :: κ)ηκ′ dτeΓ,α::κ[α← β] by α-equivalence

for β /∈ {α} ∪ dom Γ ∪ fv(τ)
= λ(β :: κ)ηκ′ dτ[α← β]eΓ,β::κ by Lemma 3.4.17
βπη•←→ λ(β :: κ)ηκ′ dτ[α← ηκ β]eΓ,β::κ by Lemma 3.4.19
βπη•←→ λ(β :: κ)ηκ′ dτeΓ,β::κ,α::κ[α← dβeΓ,β::κ] by Lemma 3.4.18
= λ(β :: κ)ηκ′ dτeΓ,β::κ,α::κ[α← ηκ β]
β←→ λ(β :: κ)ηκ′ ((λ(α :: κ) dτeΓ,β::κ,α::κ) (ηκ β))
= λ(β :: κ)ηκ′ (dλ(α :: κ) τeΓ,β::κ (ηκ β))
βπη•←→ ηκ→κ′ dλ(α :: κ) τeΓ

• App case:

dτ1 τ2eΓ = dτ1eΓ dτ2eΓ
βπη•←→ (ηκ2→κ1 dτ1eΓ) (ηκ2 dτ2eΓ) by induction hypothesis
η•←→ (λ(α :: κ2)ηκ1 (dτ1eΓ (ηκ2 α))) dτ2eΓ with α /∈ fv(τ1)
β←→ ηκ1 (dτ1eΓ (ηκ2 dτ2eΓ))

βπη•←→ ηκ1 (dτ1eΓ dτ2eΓ) by induction hypothesis
= ηκ1 dτ1 τ2eΓ

• Pair case:

d(τ1, τ2)eΓ = (dτ1eΓ , dτ2eΓ)
βπη•←→ (ηκ1 dτ1eΓ , ηκ2 dτ2eΓ) by induction hypothesis
π←→ (ηκ1 ((dτ1eΓ , dτ2eΓ).1), ηκ2 ((dτ1eΓ , dτ2eΓ).2))
β←→ (λ(p :: κ1 × κ2) (ηκ1 (p.1), ηκ2 (p.2))) (dτ1eΓ , dτ2eΓ)
η•←→ ηκ1×κ2 (dτ1eΓ , dτ2eΓ)
= ηκ1×κ2 d(τ1, τ2)eΓ

74

3.4 Warm-up: the simply-typed case

• Proj case:

dτ.ieΓ = dτeΓ .i
βπη•←→ (ηκ1×κ2 dτeΓ).i by induction hypothesis
η•←→ ((λ(p :: κ1 × κ2) (ηκ1 (p.1), ηκ2 (p.2))) dτeΓ).i
β←→ (ηκ1 (dτeΓ .1), ηκ2 (dτeΓ .2)).i
π←→ ηκi (dτeΓ .i)
= ηκi dτ.ieΓ

It follows from the previous lemma that a wellformed type where expansors are fully inserted is
convertible with its η-expansion.

Lemma 3.4.23. For every κ, τ, Γ , such that Γ `ST τ :: κ, the following assertions hold:

• if κ = κ1 → κ2: dτeΓ
βπη•←→ λ(α :: κ1) dτeΓ α, provided α /∈ fv(τ);

• if κ = κ1 × κ2: dτeΓ
βπη•←→ (dτeΓ .1, dτeΓ .2).

Proof. By induction on κ, using Lemma 3.4.22.

Proposition 3.4.24 (Completeness). If Γ ` τ1 ≡ τ2 holds, then dτ1eΓ
βπη•←→ dτ2eΓ holds.

Proof. By induction on the equality judgment. The η-rules are solved using Lemma 3.4.23; the π-rule
is straightforward; the β-rule is solved by Lemma 3.4.22 and Lemma 3.4.18; other rules are solved
by induction.

Theorem 3.4.25 (Adequacy). For every Γ , κ, τ and τ ′, such that τ and τ ′ are expansor-free, Γ `βπη τ≡ τ ′

holds iff dτeΓ βπη•←→ dτ ′eΓ and Γ `ST τ :: κ and Γ `ST τ
′ :: κ hold.

Proof. By Proposition 3.4.21 and Proposition 3.4.24, using the fact that bτc = τ when τ is expansor-
free.

As already mentioned, the essential part of the proof is Lemma 3.4.22. Although it is not visible
in the simply typed λ-calculus, this lemma works thanks to the fact that kinds are unique. We will
see in the next section, that this lemma generalizes if one considers the minimal kind of the type
under consideration.
We announced in Section 3.2 on page 64 that our characterization of equivalence differs from

Crary’s because we expand every type variable, while he only expands free type variables. We guess
that, when prefixed by a head expansion, the two are equivalent.

Conjecture 3.4.1. If Γ ` τ :: κ, then dτeΓ βπη•←→ ηκ τ{Γ }, where {Γ } is the composition of the substitutions
[α← ηΓ(α) α] for every α ∈ dom Γ .

However, a proof by induction does not go through: we get stuck in the case of applications,
because an extra expansor appears on the argument of the application. We think that the proof could
be done with the use of a logical relation. In the case of the system with singleton kinds, indeed,
we had the same problem, and it vanished when considering a logical relation (Definition 3.5.15
on page 85) based on the one that Stone and Harper use to prove completeness of their algorithm
[SH06].

75

Chapter 3 Type definitions and singleton kinds

3.5 Small-step extensional equivalence for singleton types

In this section, we extend the technique from Section 3.4 to the Stone and Harper singleton kind
system: we extend their system with explicit expansors, then define a reduction relation, prove
its soundness with respect to the kind system and its confluence and strong normalization, and,
finally, show the adequacy between convertibility up to this reduction relation and their specification
for type equivalence. Normalization will use the same technique of combination of commutation
diagrams. The strong normalization property for the β-reduction part of the semantics is based on
a translation into the simply typed λ-calculus, that preserves reduction steps and wellformedness.
The completeness result of convertibility with respect to type equivalence is the hardest part of this
document: it reuses the logical relation used in [SH06].

3.5.1 Definition

We extend the grammar of types with the expansors ηκ that are, again, indexed by their kind.

Definition 3.5.1 (Kinds and types).

κ ::= ? | Π(α : κ) κ | Σ(α : κ) κ | S(τ)
τ ::= α | λ(α :: κ) τ | τ τ | (τ, τ) | τ.i | ηκ

We define the sub-grammar of normal forms for types and kinds. Unsurprisingly, it relies on the
definition of paths.

Definition 3.5.2 (Normal forms).

τn ::= p | λ(α :: κn) τn | (τn, τn) (Normal types)
p ::= α | p τn | p.i (Paths)
κn ::= ? | S(τn) | Π(α : κn) κn | Σ(α : κn) κn (Normal kinds)

We recall the definition of free variables and of capture-avoiding substitution, because of the
mutual recursion between types and kinds. It is important to notice that the two functions recurse
on the indexes of expansors.

Definition 3.5.3 (Free variables).

fv(α) , {α}

fv(ηκ) , fv(κ)
fv(λ(α :: κ) τ) , fv(κ) ∪ (fv(τ) \ {α})

fv(τ1 τ2) , fv(τ1) ∪ fv(τ2)
fv((τ1, τ2)) , fv(τ1) ∪ fv(τ2)

fv(τ.i) , fv(τ)

fv(?) , {}

fv(S(τ)) , fv(τ)
fv(Π(α : κ1) κ2) , fv(κ1) ∪ (fv(κ2) \ {α})

fv(Σ(α : κ1) κ2) , fv(κ1) ∪ (fv(κ2) \ {α})

76

3.5 Small-step extensional equivalence for singleton types

Definition 3.5.4 (Substitution).

β[α← τ] ,

{
τ if α = β

β otherwise
ηκ[α← τ] , ηκ[α←τ]

(λ(β :: κ) τ1)[α← τ] , λ(β :: κ[α← τ]) τ1[α← τ] if α 6= β and β /∈ fv(τ)
(τ1 τ2)[α← τ] , τ1[α← τ] τ2[α← τ]

(τ1, τ2)[α← τ] , (τ1[α← τ], τ2[α← τ])

(τ1.i)[α← τ] , τ1[α← τ].i

?[α← τ] , ?

S(τ1)[α← τ] , S(τ1[α← τ])

(Π(β : κ1) κ2)[α← τ] , Π(β : κ1[α← τ]) κ2[α← τ] if α 6= β and β /∈ fv(τ)
(Σ(β : κ1) κ2)[α← τ] , Σ(β : κ1[α← τ]) κ2[α← τ] if α 6= β and β /∈ fv(τ)

As in [SH06], our proofs use the following definition of size of kinds. Notice that it does not
recurse under singletons. Therefore, the size of a kind is invariant under substitution for any type.

Definition 3.5.5 (Size of a kind).

size(?) , 1
size(S(τ)) , 2

size(Π(α : κ1) κ2) , 1 + size(κ1) + size(κ2)

size(Σ(α : κ1) κ2) , 1 + size(κ1) + size(κ2)

The fact that size S(τ) > size ? is used in the definition of the logical relation (Definition 3.5.15 on
page 85, Section 3.5.7) on which our completeness lemma is based.

Lemma 3.5.1. For every κ, α and τ, size κ[α← τ] = size κ.

The reduction contexts are not restricted: in particular, reduction is allowed inside kinds, because
they can contain types in singletons; reduction also happens inside the indexes of expansors.

Definition 3.5.6 (Contexts).

C ::= [·] | ηK | λ(α ::K) τ | λ(α :: κ)C
| τ C | C τ | (C, τ) | (τ,C) | C.i

K ::= Π(α : K) κ | Π(α : κ)K | Σ(α : K) κ | Σ(α : κ)K | S(C)

As in Section 3.4, the reduction relation is composed of the usual reduction of application and
projection redexes on the one hand, and of the reductions of expansors on the other hand.

77

Chapter 3 Type definitions and singleton kinds

Definition 3.5.7 (Reduction).

(λ(α :: κ) τ1) τ2
β−→ τ1[α← τ2]

(τ1, τ2).i
π−→ τi

η?
η?−→ λ(α :: ?)α

ηS(τ1)
ηS−→ λ(α :: ?) τ1 if α /∈ fv(τ1)

ηΠ(α:κ1)κ2

ηΠ−→ λ(f :: Π(α : κ1) κ2) λ(α :: κ1)ηκ2[α←ηκ1 α] (f (ηκ1 α))

if f, α /∈ fv(Π(α : κ1) κ2), f 6= α
ηΣ(α:κ1)κ2

ηΣ−→ λ(p :: Σ(α : κ1) κ2) ((ηκ1 p.1) , ηκ2[α←ηκ1 p.1] p.2)

if p, α /∈ fv(Σ(α : κ1) κ2), p 6= α
τ −→ τ ′

C[τ] −→ C[τ ′]

τ −→ τ ′

K[τ] −→ K[τ ′]

As in Section 3.4.1 on page 68, we may omit the label on the reduction arrow. Remark that, since
arrow and pair kinds are dependent, more expansors are inserted than in the case of the simply
typed λ-calculus: in particular, expansors are inserted in the kinds that index expansors. As before,
we define the sub-relation η• that only deals with the reduction of expansors.

Definition 3.5.8 (η•-reduction). We define η•-reduction as the subset of reduction that deals with
expansors, or, in other words, as the relation η•−→ , η?−→ ∪ ηΣ−→ ∪ ηS−→ ∪ ηΠ−→ that is closed under
contexts.

Insertion of expansors generalizes the one of Section 3.4. The main differences are that it re-
curses on the indexes of expansors, and that we also have to insert expansors in the kinds of the
environments.

Definition 3.5.9 (Insertion of expansors).

dεe , ε

dΓ, α :: κe , dΓe, α :: dκedΓe

d?eΓ , ?

dS(τ)eΓ , S(dτeΓ)
dΠ(α : κ1) κ2eΓ , Π(α : dκ1eΓ) dκ2eΓ,α::dκ1eΓ

dΣ(α : κ1) κ2eΓ , Σ(α : dκ1eΓ) dκ2eΓ,α::dκ1eΓ

dαeΓ ,

{
ηΓ(α) α if α ∈ dom Γ
α otherwise

dηκeΓ , ηdκeΓ

dλ(α :: κ) τeΓ , λ(α :: dκeΓ) dτeΓ,α::dκeΓ

dτ1 τ2eΓ , dτ1eΓ dτ2eΓ
d(τ1, τ2)eΓ , (dτ1eΓ , dτ2eΓ)
dτ.ieΓ , dτeΓ .i

As in the case of the simply typed λ-calculus, we define erasure of expansors.

Definition 3.5.10 (Erasure of expansors). The erasure of expansors b·c is the homomorphism gener-
ated by bαc = α and bηκc = λ(α :: bκc)α. The full definition is given below:

bαc , α

bηκc , λ(α : bκc)α
bλ(α : κ) τc , λ(α : bκc) bτc
bτ1 τ2c , bτ1c bτ2c
b(τ1, τ2)c , (bτ1c, bτ2c)
bτ.`c , bτc.`

b?c , ?

bS(τ)c , S(bτc)
bΠ(α : κ) τc , Π(α : bκc) bτc
bΣ(α : κ) τc , Σ(α : bκc) bτc

The original system of Stone and Harper does not contain expansors. We could have extended it,
but then it would have been necessary to redo its full metatheory. Instead, we define the judgments

78

3.5 Small-step extensional equivalence for singleton types

of our system with respect to Stone-Harper’s judgments up to erasure of expansors.

Definition 3.5.11. The wellformedness judgments of the system with expansors are defined as
follows:

• Γ ` ok holds iff bΓc `HS ok holds;

• Γ ` κ ok holds iff bΓc `HS bκc ok holds;

• Γ ` τ :: κ holds iff bΓc `HS bτc :: bκc holds;

• Γ ` κ1 6 κ2 holds iff bΓc `HS bκ1c6 bκ2c holds;

• Γ ` κ1 ≡ κ2 holds iff bΓc `HS bκ1c ≡ bκ2c holds;

• Γ ` τ1 ≡ τ2 :: κ holds iff bΓc `HS bτ1c ≡ bτ2c :: bκc holds.

By construction, the definition ensures that the insertion of expansors or their erasure preserves
wellformedness and equivalence. Moreover, when restricted to expansor-free expressions, the
definition coincides with Stone and Harper’s. According to this definition, Γ ` ηκ :: κ→ κ holds as
long as Γ ` κ ok holds. Furthermore, Γ ` ηκ ≡ λ(α :: κ)α :: κ→ κ is also true. Consequently, it is also
true that Γ ` ηκ τ≡ τ :: κ, as long as Γ ` τ :: κ.

Lemma 3.5.2. The following assertions hold:

• If Γ ` τ :: κ, then Γ ` τ≡ dτedΓe :: κ;

• If Γ ` κ ok, then Γ ` κ≡ dκedΓe.

Proof. By mutual induction on the wellformedness judgments of the Harper-Stone system, using
the equivalence between an expansor and the identity.

3.5.2 Translation into the simply typed λ-calculus

To prove the strong normalization property of βπ−→ on wellformed types and kinds, we first define
a translation into the simply typed λ-calculus with pairs and unit, from which we can transfer
the strong normalization property. This is a common technique. To succeed, the translation must
preserve wellformedness, but also must enjoy a forward simulation result: every reduction step
in the source should translate into one or more reduction steps in the target. In particular, the
transformation translates kinds into terms, so that any kind annotation on the argument of functions
can be inserted in the target: this way, reductions in the kinds are preserved by the translation.

79

Chapter 3 Type definitions and singleton kinds

Definition 3.5.12 (Translation into the simply-typed λ-calculus with pairs and unit).

|?| , (?, ())

|S(τ)| , (?, |τ|)

|Π(α : κ1) κ2| , (κ ′1 → κ ′2, (λ(β :: κ ′1) λ(α :: κ ′1) τ2) τ1)
where β fresh, |κ1| = (κ ′1, τ1) and |κ2| = (κ ′2, τ2)

|Σ(α : κ1) κ2| , (κ ′1 × κ ′2, (λ(α :: κ ′1) (α, τ2)) τ1) where |κ1| = (κ ′1, τ1) and |κ2| = (κ ′2, τ2)

|α| , α

|ηκ| , |λ(α :: κ)α|

|λ(α :: κ) τ| , (λ(β :: κ1) λ(α :: κ1) |τ|) τ1 where β fresh and |κ| = (κ1, τ1)

|τ1 τ2| , |τ1| |τ2|

|(τ1, τ2)| , (|τ1| , |τ2|)

|τ.i| , |τ| .i

|ε| , ε

|Γ, α :: κ| , |Γ | , α :: κ1 where |κ| = (κ1, τ1)

Proposition 3.5.3 (Invariants of the translation). The following assertions hold:

• If Γ ` κ1 6 κ2 and |κi| = (κ ′i, τi), then κ ′1 = κ ′2;

• If Γ ` κ ok and |κ| = (κ ′, τ), then |Γ | `ST τ :: κ
′;

• If Γ ` τ :: κ and |κ| = (κ ′, τ ′), then |Γ | `ST |τ| :: κ ′;

• If τ βπ−→ τ ′ then |τ|
βπ−→+ |τ ′|

• If κ βπ−→ κ ′ and |κ| = (κ1, τ1) and |κ ′| = (κ ′1, τ
′
1) then τ1

βπ−→+ τ ′1 and κ1 = κ ′1.

Proof. The first item is proved by induction on the subkinding judgment. The next two items are
proved by mutual induction on the wellformedness judgments. The last two items are proved by
mutual induction on the reduction relation.

The above proposition states the preservation of types and the desired simulation property
between a source and its image through the translation.

3.5.3 Subject reduction

Proposition 3.5.4 (Subject reduction). The following assertions hold:

• If Γ ` τ :: κ and τ βπ−→ τ ′, then Γ ` τ ′ :: κ;

• If Γ ` τ :: κ and τ η•−→ τ ′, then Γ ` τ ′ :: κ;

• If Γ ` τ :: κ and τ βπη•−→ τ ′, then Γ ` τ ′ :: κ.

Proof. The assertions hold for the following reasons:

• The first item follows from the admissibility of β and π in the singleton kinds calculus (Propo-
sition 3.1.8).

• The second item follows from the admissibility of β and η in the singleton kinds calculus
(Proposition 3.1.8) and from the fact that the expansion constants are, by definition, equivalent
to the identity.

80

3.5 Small-step extensional equivalence for singleton types

• The third item is the combination of the two previous ones.

3.5.4 Confluence and strong normalization

As usual, βπ−→ commute with substitution as follows.

Lemma 3.5.5. The following assertions hold:

• If τ1
βπ−→ τ ′1, then τ1[α← τ2]

βπ−→ τ ′1[α← τ2];

• If κ1
βπ−→ κ ′1, then κ1[α← τ2]

βπ−→ κ ′1[α← τ2];

• If τ2
βπ−→ τ ′2, then τ1[α← τ2]

βπ−→? τ1[α← τ ′2];

• If τ2
βπ−→ τ ′2, then κ1[α← τ2]

βπ−→? κ1[α← τ ′2].

The relation η•−→ enjoys the same properties.

Lemma 3.5.6. The following assertions hold:

• If τ1
η•−→ τ ′1, then τ1[α← τ2]

η•−→ τ ′1[α← τ2];

• If κ1
η•−→ κ ′1, then κ1[α← τ2]

η•−→ κ ′1[α← τ2];

• If τ2
η•−→ τ ′2, then τ1[α← τ2]

η•−→? τ1[α← τ ′2];

• If τ2
η•−→ τ ′2, then κ1[α← τ2]

η•−→? κ1[α← τ ′2].

The relation η•↓−→ enjoys the following properties.

Lemma 3.5.7. The following assertions hold:

• If τ1
η•↓−→ τ ′1 and τ2

η•↓−→ τ ′2, then τ1[α← τ2]
η•↓−→ τ ′1[α← τ ′2];

• If κ1
η•↓−→ κ ′1 and τ2

η•↓−→ τ ′2, then κ1[α← τ2]
η•↓−→ κ ′1[α← τ ′2].

We first establish strong normalization and confluence for βπ−→.

Proposition 3.5.8. βπ−→ is strongly normalizing on wellformed types and kinds.

Proof. From well-known strong normalization of simply typed λ-calculus and Proposition 3.5.3 and
Proposition 3.5.4.

Proposition 3.5.9. βπ−→ is weakly confluent.

Proof. By case analysis, using Lemma 3.5.5.

Proposition 3.5.10. βπ−→ is confluent on wellformed types and kinds.

Proof. Follows from Proposition 3.5.8, Proposition 3.5.9 and Newman’s Lemma 3.3.5 on page 66.

Now, we prove strong normalization and confluence for the relation η•−→.

Proposition 3.5.11. η•−→ is strongly normalizing.

81

Chapter 3 Type definitions and singleton kinds

Proof. This is proved using the multiset order of size of kinds of expansors, that is well-founded,
making use of Lemma 3.5.1 on page 77.

Proposition 3.5.12. η•−→ is weakly confluent.

Proof. By case analysis, using Lemma 3.5.6.

Proposition 3.5.13. η•−→ is confluent.

Proof. Follows from Proposition 3.5.12, Proposition 3.5.11 on the previous page and Newman’s
Lemma 3.3.5 on page 66.

In the same way as in Section 3.4.3 on page 70, we establish confluence and strong normalization
for the full reduction relation, considered on wellformed types and kinds.

Lemma 3.5.14. The relation βπ−→ DPG-commutes with η•−→.

Proof. By induction on βπ−→ and case analysis on η•−→, using Lemma 3.5.6 on the preceding page.

Theorem 3.5.15 (Confluence). βπη•−→ is confluent on wellformed types and kinds.

Proof. By Lemma 3.3.11 on page 67, using Lemma 3.5.14, Proposition 3.5.10, Proposition 3.5.13,
Proposition 3.5.8 and Proposition 3.5.4.

Lemma 3.5.16. βπ−→ preserves η•−→-normal forms.

Proof. By induction on βπ−→ and using lemma 3.5.7 on the preceding page.

Theorem 3.5.17 (Strong normalization). βπη•−→ is strongly normalizing on wellformed types and kinds.

Proof. By Lemma 3.3.12 on page 67, using Lemma 3.5.14, Proposition 3.5.8, Proposition 3.5.11 and
Lemma 3.5.16.

3.5.5 Properties of expansors

Lemma 3.5.18. For all Γ , Γ ′, α, β, κ, κ ′, τ, if α,β /∈ dom Γ, dom Γ ′ then:

• dτeΓ,α::κ′,Γ ′ [α← β] = dτ[α← β]eΓ,β::κ′,Γ ′[α←β]

• dκeΓ,α::κ′,Γ ′ [α← β] = dκ[α← β]eΓ,β::κ′,Γ ′[α←β]

Proof. By mutual induction on τ and κ.

As shown for the simply typed λ-calculus, expansors are idempotent in the singleton kind calculus.

Lemma 3.5.19 (Idempotency of expansors). For all τ and κ, we have ηκ (ηκ τ)
βπη•←→ ηκ τ.

Proof. By induction on the size of κ, using Lemma 3.5.1 on page 77.

• κ = ?: immediate.

• κ = S(τ ′): immediate.

82

3.5 Small-step extensional equivalence for singleton types

• κ = Π(α : κ1) κ2:

ηΠ(α:κ1)κ2 (ηΠ(α:κ1)κ2 τ)
βπη•←→ λ(α :: κ1)ηκ2[α←ηκ1 α] (ηΠ(α:κ1)κ2 τ (ηκ1 α))
βπη•←→ λ(α :: κ1)ηκ2[α←ηκ1 α] ((λ(α :: κ1)ηκ2[α←ηκ1 α] (τ (ηκ1 α))) (ηκ1 α))
βπη•←→ λ(α :: κ1)ηκ2[α←ηκ1 α] (ηκ2[α←ηκ1 (ηκ1 α)]

(τ (ηκ1 (ηκ1 α))))
βπη•←→ λ(α :: κ1)ηκ2[α←ηκ1 α] (ηκ2[α←ηκ1 α] (τ (ηκ1 α))) (1)
βπη•←→ λ(α :: κ1)ηκ2[α←ηκ1 α] (τ (ηκ1 α)) (2)
βπη•←→ ηΠ(α:κ1)κ2 τ

since, by induction hypothesis:
(1) ηκ1 (ηκ1 α)

βπη•←→ ηκ1 α and
(2) ηκ2[α←ηκ1 α] (ηκ2[α←ηκ1 α] (τ (ηκ1 α)))

βπη•←→ ηκ2[α←ηκ1 α] (τ (ηκ1 α)).

• κ = Σ(α : κ1) κ2:

ηΣ(α:κ1)κ2 (ηΣ(α:κ1)κ2 τ)
βπη•←→ ηΣ(α:κ1)κ2 (ηκ1 (τ.1), ηκ2[α←ηκ1 (τ.1)] (τ.2))
βπη•←→ (ηκ1 (ηκ1 (τ.1)), ηκ2[α←ηκ1 (ηκ1 (τ.1))] (ηκ2[α←ηκ1 (τ.1)] (τ.2)))
βπη•←→ (ηκ1 τ.1, ηκ2[α←ηκ1 τ.1] (ηκ2[α←ηκ1 (τ.1)] (τ.2))) (1)
βπη•←→ (ηκ1 τ.1, ηκ2[α←ηκ1 (τ.1)] (τ.2)) (2)
βπη•←→ ηΣ(α:κ1)κ2 τ

since, by induction hypothesis:
(1) ηκ1 (ηκ1 (τ.1)) βπη•←→ ηκ1 (τ.1) and

(2) ηκ2[α←ηκ1 (τ.1)] (ηκ2[α←ηκ1 (τ.1)] (τ.2))
βπη•←→ (ηκ2[α←ηκ1 (τ.1)] (τ.2))

Lemma 3.5.20. Assume α /∈ fv(Γ) ∪ dom Γ ′ ∪ fv(κ). The following assertions hold:

• dτeΓ,α::κ′,dΓ ′e βπη•←→ dτeΓ,α::κ′,dΓ ′e[α← ηκ′ α];

• dκeΓ,α::κ′ βπη•←→ dκeΓ,α::κ′ [α← ηκ′ α].

Proof. By mutual induction, using Lemma 3.5.19.

As in Section 3.4, erasure is idempotent and commutes with substitution.

Lemma 3.5.21. The following assertions hold:

• bbτcc = bτc and bbκcc = bκc;

• bτ1[α← τ2]c = bτ1c[α← bτ2c] and bκ[α← τ2]c = bκc[α← bτ2c].

Similarly to Section 3.4, insertion of expansors enjoys the following results about its commutation
with substitution.

Lemma 3.5.22. If dom Γ ′ ∩ (fv(κ2)∪ fv(τ2)∪ dom Γ ∪ fv(Γ)∪ {α}) = ∅ and α /∈ dom Γ ∪ fv(Γ), then the
following assertions hold:

• dτ1eΓ,α::κ2,Γ
′
[α← dτ2eΓ,Γ

′
] = dτ1[α← ηκ2 τ2]eΓ,Γ

′[α←dτ2eΓ,Γ
′
]

83

Chapter 3 Type definitions and singleton kinds

• dκ1eΓ,α::κ2,Γ
′
[α← dτ2eΓ,Γ

′
] = dκ1[α← ηκ2 τ2]eΓ,Γ

′[α←dτ2eΓ,Γ
′
]

• dτ1eΓ,Γ
′
[α← dτ2eΓ,Γ

′
] = dτ1[α← τ2]eΓ,Γ

′[α←dτ2eΓ,Γ
′
]

• dκ1eΓ,Γ
′
[α← dτ2eΓ,Γ

′
] = dκ1[α← τ2]eΓ,Γ

′[α←dτ2eΓ,Γ
′
]

3.5.6 Soundness of convertibility

The soundness property of convertibility with respect to the equivalence judgments is heavily based
on the results of Proposition 3.1.8 on page 61.

Lemma 3.5.23. The following assertions hold:

• If Γ ` τ1 :: κ and τ1
βπη•−→ τ2, then Γ ` τ1 ≡ τ2 :: κ holds;

• If Γ ` κ1 ok and κ1
βπη•−→ κ2, then Γ ` κ1 ≡ κ2 holds.

Proof. By induction on the reduction relation, using Lemma 3.5.21. The case of β and π are handled
by the admissibility of β and π (see Proposition 3.1.8 on page 61). The case of η• is handled by the
admissibility of η (see Proposition 3.1.8) and the fact that Γ ` ηκ≡ λ(α : κ)α :: κ→ κ. The correctness
of contextual closure of the reduction follows from the contextual rules for the equivalence.

The above lemma on reduction generalizes to convertibility as follows.

Proposition 3.5.24. The following assertions hold:

• If Γ ` τ1 :: κ and Γ ` τ2 :: κ and τ1
βπη•←→ τ2, then Γ ` τ1 ≡ τ2 :: κ holds;

• If Γ ` κ1 ok and Γ ` κ2 ok and κ1
βπη•←→ κ2, then Γ ` κ1 ≡ κ2 holds.

Proof. By induction on convertibility, using Lemma 3.5.23 and Proposition 3.5.4.

We can finally state the soundness theorem. It differs from Proposition 3.5.24 in the sense that
it inserts expansors in the types and kinds under consideration, so that it is the converse of the
completeness theorem (Theorem 3.5.40 on page 98). Inserting expansors is not important for
equivalence.

Theorem 3.5.25 (Soundness). The following assertions hold:

• If Γ ` τ1 :: κ and Γ ` τ2 :: κ and dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe, then Γ ` τ1 ≡ τ2 :: κ;

• If Γ ` κ1 ok and Γ ` κ2 ok and dκ1edΓe
βπη•←→ dκ2edΓe, then Γ ` κ1 ≡ κ2;

Proof. By Lemma 3.5.2 on page 79 and Proposition 3.5.24.

Because the Stone-Harper judgments coincide with ours when they are restricted to expansor-free
types and kinds, we can restate the theorem as follows.

Theorem 3.5.26 (Soundness). The following assertions hold:

• If Γ `HS τ1 :: κ and Γ ` τ2 :: κ and dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe, then Γ `HS τ1 ≡ τ2 :: κ;

• If Γ `HS κ1 ok and Γ `HS κ2 ok and dκ1edΓe
βπη•←→ dκ2edΓe, then Γ `HS κ1 ≡ κ2;

84

3.5 Small-step extensional equivalence for singleton types

3.5.7 Completeness of convertibility

The completeness theorem is stated as follows, for the case of types:

If Γ `HS τ1 ≡ τ2 :: κ holds, then dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe.

It reduces equivalence to a convertibility test between two types after expansors have been inserted.
A direct proof by mutual induction on the wellformedness, subkinding and equivalence judgments
does not go through.

For instance, in the case of the rule EqApp, we have as hypotheses that Γ `HS τ1 ≡ τ ′1 ::Π(α : κ2) κ1

and Γ `HS τ2≡ τ ′2 :: κ2. By induction hypotheses, one gets dηΠ(α:κ2)κ1 τ1edΓe
βπη•←→ dηΠ(α:κ2)κ1 τ

′
1edΓe

and dηκ2 τ2edΓe
βπη•←→ dηκ2 τ

′
2edΓe. From this, one can show

dηκ1[α←ηκ2 τ2] (τ1 (ηκ2 τ2))edΓe
βπη•←→ dηκ1[α←ηκ2 τ2] (τ

′
1 (ηκ2 τ

′
2))edΓe

whereas one would like to show the same statement, without the expansors ηκ2 :

dηκ1[α←τ2] (τ1 τ2)e
dΓe βπη•←→ dηκ1[α←τ2] (τ

′
1 τ
′
2)edΓe

As a consequence, the direct proof gets stuck. Stone and Harper encountered a similar difficulty
when trying to prove completeness for their normalization algorithm, because normalization of
application is not defined using the normalized parts of an application. In our case, however, this
is true, but as we just showed, the external expansion is problematic. After several unsuccessful
attempts to generalize the completeness property, we eventually used the same technique as Stone
and Harper, based an a Kripke logical relation. We describe it now.

Notation. In the following, G (respectively T, K, and S) denotes non empty sets of environments
(respectively types, kinds, and mappings from variables to sets of types).

Notation. We reuse the same notations as in [SH06] to describe operations on finite sets and pattern
matching on them.

K[α← T] , {κ[α← τ] | κ ∈ K, τ ∈ T}

T1 T2 , {τ1 τ2 | τ1 ∈ T1, τ2 ∈ T2}

T.i , {τ.i | τ ∈ T}

ηK , {ηκ | κ ∈ K}

S(T) , {S(τ) | τ ∈ T}

Π(α : K1)K2 , {Π(α : κ1) κ2 | κ1 ∈ K1, κ2 ∈ K2}

Σ(α : K1)K2 , {Σ(α : κ1) κ2 | κ1 ∈ K1, κ2 ∈ K2}

S(T) , {σ(τ) | σ ∈ S, τ ∈ T}

S(K) , {σ(κ) | σ ∈ S, κ ∈ K}

S;α 7→ T , {σ;α 7→ τ | σ ∈ S, τ ∈ T}

Definition 3.5.13 (Inclusion of environments). We say that Γ is included in Γ ′, denoted by Γ ⊆ Γ ′ iff
for every x ∈ dom Γ , then x ∈ dom Γ ′ and Γ(x) = Γ ′(x) and (dom Γ ′ \ dom Γ) ∩ fv(Γ) = ∅.

Definition 3.5.14 (Later environment set). We say that G ′ is later than G, denoted by G ′ w G, if for
all Γ ′ ∈ G ′, there exists Γ ∈ G such that Γ ⊆ Γ ′.

Definition 3.5.15 (Logical relation). The logical relations on types and kinds are defined as follows:

• G |= K holds if:

85

Chapter 3 Type definitions and singleton kinds

– K = {?}

– or, K = S(U) and G |= U :: {?} holds;
– or, K = Π(α : K1)K2 and G |= K1 and for every G ′ w G, if G ′ |= T1 :: K1, then G ′ |=
K2[α← T1];

– or, K = Σ(α : K1)K2 and G |= K1 and for every G ′ w G, if G ′ |= T1 :: K1, then G ′ |=
K2[α← T1];

• G |= T :: K holds if G |= K holds and:

– K = {?} and for every Γ ∈ G and τ1, τ2 ∈ T, dτ1edΓe
βπη•←→ dτ2edΓe;

– or, K = S(U) and G |= T ∪ U :: {?}

– or, K = Π(α : K1)K2 and for every G ′ w G, if G ′ |= T1 :: K1, then G ′ |= T T1 :: K2[α← T1];
– or, K = Σ(α : K1)K2 and G |= T.1 :: K1 and G |= T.2 :: K2[α← T.1].

The logical relation is meant to be understood as a relation between subsets of pseudo-equivalence
classes.

The logical relation on kinds relates sets of kinds in some sets of environments, which is denoted
by G |= K. The base kind ? is related to itself only. Singleton kinds relate types that are already
related at kind ?. The case of arrow and pair kinds is usual for logical relations: the left parts must be
related, while the right parts must be related up to any substitution with types that are themselves
related in any later environment.
The logical relation on types relates sets of types to sets of kinds in some sets of environments.

Types are related at the base kind if they are all pairwise convertible up to insertion of annotations.
This is the only place where our definition differs from [SH06]: they required that there exists a
common normal form, i.e. a unique output of the normalization procedure, for any type and any
environment in the given sets. Types are related at singleton kinds when they are also related at
kind ? to the types from the singletons. This is reminiscent of the fact that a type τ has kind S(u) iff
τ and u are equivalent. The cases for arrow and pair kinds are usual: they use an extensional style.
More specifically, types are related at arrow types, if their applications to any argument that are
related in any later environment are themselves related. Similarly, types are related at pair kinds if
their first projections (and resp. their second projections) are related.

Definition 3.5.16 (Logically valid set of substitution). G |= S : Γ holds if for all α ∈ dom Γ , G |=
S(α) :: S(Γ(α)).

We follow the same proof strategy as Stone and Harper: we use the logical relation as an inter-
mediate invariant, that is strong enough to prove the completeness property. More precisely, we
proceed in two stages:

• first, we show (Proposition 3.5.35 on page 91) that the logical relation entails the desired
property on convertibility: if G |= T :: K, then for every Γ ∈ G, every τ1, τ2 ∈ T and every
κ ∈ K, dηκ τ1edΓe

βπη•←→ dηκ τ2edΓe holds (and similarly for kinds);

• Then, we show (Proposition 3.5.39 on page 98) that the logical relation is a consequence of the
judgments: if Γ `HS τ1 ≡ τ2 :: κ, then {Γ } |= {τ1, τ2} :: {κ} holds (and similar results for the other
judgments).

The following lemma is necessary to allow a later induction reasoning on the sizes of kinds in the
logical relation.

Lemma 3.5.27 (Uniqueness of sizes of kinds). The following assertions hold:

86

3.5 Small-step extensional equivalence for singleton types

• If G |= K, then for every κ1, κ2 ∈ K, size κ1 = size κ2;

• If G |= T :: K, then for every κ1, κ2 ∈ K, size κ1 = size κ2;

In this case, we write sizeK to denote the size of any element of K, since K is by definition non-empty.

Proof. By induction on the definition of the logical relation.

We need to show that convertibility up to insertion enjoys a weakening property, which needs a
intermediate lemma on the insertion function.

Lemma 3.5.28. Assume Γ ⊆ Γ ′. Let σ be the substitution of domain dom Γ ′ \ dom Γ such that for every
α ∈ dom Γ ′ \ dom Γ , σ(α) , ηΓ ′(α) α. Then for every type τ and kind κ, dτeΓ ′ = dτeΓσ and dκeΓ ′ =
dκeΓσ.

Proof. By mutual structural induction on types and kinds.

Lemma 3.5.29. Assume Γ ⊆ Γ ′. The following assertions hold:

• if dτ1eΓ
βπη•←→ dτ2eΓ , then dτ1eΓ

′ βπη•←→ dτ2eΓ
′ holds;

• if dκ1eΓ
βπη•←→ dκ2eΓ , then dκ1eΓ

′ βπη•←→ dκ2eΓ
′ holds.

Proof. Follows from Lemma 3.5.28 and stability of convertibility under substitution.

The next lemma states that the logical relation is monotone, i.e. it is preserved by taking later
environments.

Lemma 3.5.30 (Monotonicity). The following assertions hold:

• If G |= K and G ′ w G, then G ′ |= K;

• If G |= T :: K and G ′ w G, then G ′ |= T :: K;

Proof. By induction on the sizes of sets of kinds. The base cases follow from Lemma 3.5.29.

The next lemmas show that the sets in the relation are subsets of pseudo-equivalence classes. We
begin by showing that the relation is stable by taking non-empty subsets and by taking overlapping
unions.

Lemma 3.5.31. The following assertions hold:

(a) If G |= K and K ′ ⊆ K, then G |= K ′;

(b) If G |= K and G |= K ′ and K ∩K ′ 6= ∅ then G |= K ∪K ′;

(c) If G |= T :: K and K ′ ⊆ K and T ′ ⊆ T, then G |= T ′ :: K ′;

(d) If G |= T :: K and G |= K ′ and K ∩K ′ 6= ∅ then G |= T :: K ∪K ′;

(e) If G |= T :: K and G |= T ′ :: K and T ∩ T ′ 6= ∅ then G |= T ∪ T ′ :: K.

Proof. By induction on the size of sets of kinds (everywhere but on the base case, the proof is
identical to the one of [SH06]):

• K = {?}:
(a) Since ∅ (K ′ ⊆ {?}, we have K ′ = {?}. Then G |= K ′ holds by assumption.

87

Chapter 3 Type definitions and singleton kinds

(b) Since {?} ∩K ′ 6= ∅, we have {?} ⊆ K ′ and then {?} ∪K ′ = K ′. Then G |= {?} ∪K ′ holds by
assumption.

(c) Since ∅ (K ′ ⊆ {?}, we have K ′ = {?}. By definition of the logical relation, for all Γ ∈ G

and τ1, τ2 ∈ T, dτ1edΓe
βπη•←→ dτ2edΓe holds. Since T ′ ⊆ T, it is also true for all τ1, τ2 ∈ T ′.

Hence G |= T ′ :: K ′.
(d) Since {?} ∩ K ′ 6= ∅, we have {?} ⊆ K ′. By case analysis on G |= K ′, we necessary have

K ′ = {?}. Hence K ∪K ′ = {?}. Then G |= T :: K ∪K ′ holds by assumption.
(e) Let Γ ∈ G and τ1, τ2 ∈ T ∪ T ′. There are four cases:

– τ1 ∈ T and τ2 ∈ T: then dτ1edΓe
βπη•←→ dτ2edΓe holds from G |= T :: {?}.

– τ1 ∈ T and τ2 ∈ T ′: let τ3 ∈ T ∩ T ′. We have dτ1edΓe
βπη•←→ dτ3edΓe because of G |=

T :: {?}. Similarly, we have dτ3edΓe
βπη•←→ dτ3edΓe because of G |= T ′ :: {?}. Then

dτ1edΓe
βπη•←→ dτ3edΓe holds by transitivity.

– τ1 ∈ T ′ and τ2 ∈ T: similar to the previous case.

– τ1 ∈ T ′ and τ2 ∈ T ′: then dτ1edΓe
βπη•←→ dτ2edΓe holds from G |= T ′ :: {?}.

Then dτ1edΓe
βπη•←→ dτ2edΓe holds. As a consequence, we have G |= T ∪ T ′ :: K.

• K = S(U):
(a) We have G |= U :: {?}. Since K ′ ⊆ S(U), K ′ = S(U ′) where U ′ ⊆ U. Then by induction

hypothesis (c) we have G |= U ′ :: {?}. Then G |= S(U ′), and so G |= K ′ holds.
(b) We have G |= U :: {?}. Since S(U) ∩ K ′ 6= ∅, K ′ = S(U ′) where U ∩ U ′ 6= ∅. Then, by

definition of the logical relation, G |= U ′ :: {?} holds. Then by induction hypothesis (e) we
get G |= U ∪ U ′ :: {?}. Then G |= S(U ∪ U ′) holds, and so G |= K ∪K ′ holds.

(c) We have G |= U :: {?} and G |= T ∪ U :: {?}. Since K ′ ⊆ S(U), K ′ = S(U ′) where U ′ ⊆ U.
Then T ′ ∪ U ′ ⊆ T ∪ U. Then by induction hypothesis (c) we have G |= U ′ :: {?} and
G |= T ′ ∪ U ′ :: {?}. Then by definition of the logical relation, we have G |= S(U ′) and
G |= T ′ :: S(U ′) and so G |= T ′ :: K ′.

(d) We have G |= U :: {?} and G |= T ∪ U :: {?}. Since S(U) ∩ K ′ 6= ∅, K ′ = S(U ′) where
U ∩ U ′ 6= ∅. Then by definition of the logical relation we have G |= U ′ :: ?. Then by
induction hypothesis (e) we get G |= U ∪ U ′ :: {?}, hence Γ |= S(U ∪ U ′) holds. Then, since
(T ∪U)∩U ′ 6= ∅, we obtain from induction hypothesis (e) that G |= T ∪U∪U ′ :: {?} holds.
Hence G |= T :: S(U ∪ U ′), and so G |= T :: K ∪K ′.

(e) We have G |= T ∪ U :: {?} and G |= T ′ ∪ U :: {?}. Since T ∩ T ′ 6= ∅, (T ∪ U) ∩ (T ′ ∪ U) 6= ∅
also holds. Then, by induction hypothesis (e) we get G |= (T ∪ U) ∩ (T ′ ∪ U) :: {?}, and
then G |= T ∪ T ′ :: S(U) holds.

• K = Π(α : K1)K2:
(a) Since K ′ ⊆ Π(α : K1)K2, K ′ = Π(α : K ′1)K

′
2 where K ′1 ⊆ K1 and K ′2 ⊆ K2. By

induction hypothesis (a) we get G |= K ′1. Now let G ′ w G and assume G ′ |= T :: K ′1.
Then, by Lemma 3.5.30 on the preceding page and induction hypothesis (d) we have
G ′ |= T :: K1. By definition of the logical relation, we then have G ′ |= K2[α← T]. Since
K ′2[α← T] ⊆ K2[α← T], we get by induction hypothesis (a) G ′ |= K ′2[α← T]. Then
G |= Π(α : K ′1)K

′
2 holds.

(b) Since K ′ ∩ Π(α : K1)K2 6= ∅, K ′ = Π(α : K ′1)K
′
2 where K ′1 ∩K1 6= ∅ and K ′2 ∩K2 6= ∅.

Then, by induction hypothesis (b), G |= K1 ∪ K ′1 holds. Now let G ′ w G and assume

88

3.5 Small-step extensional equivalence for singleton types

G ′ |= T :: K1 ∪K ′1. By Lemma 3.5.30 on page 87 and induction hypothesis (c) we have
G ′ |= T :: K1 and G ′ |= T :: K ′1. Hence G ′ |= K2[α← T] and G ′ |= K ′2[α← T] hold by
definition of the logical relation. And sinceK2[α←T]∩K ′2[α←T] 6= ∅, we get by induction
hypothesis (b) G ′ |= (K2 ∪K ′2)[α← T]. Hence G |= Π(α : K1)K2 ∪ Π(α : K ′1)K

′
2 holds.

(c) Since K ′ ⊆ Π(α : K1)K2, K ′ = Π(α : K ′1)K
′
2 where K ′1 ⊆ K1 and K ′2 ⊆ K2. As shown

in (a) we have G |= Π(α : K ′1)K
′
2. Let G ′ w G and assume G ′ |= T1 :: K ′1. Then by

Lemma 3.5.30 on page 87 and induction hypothesis (d) we have G ′ |= T1 :: K1. Then,
by definition of the logical relation, G ′ |= T T1 :: K2[α← T1] holds. Then, by induction
hypothesis (c), G ′ |= T ′ T1 :: K ′2[α← T1] holds. Hence G |= T ′ :: Π(α : K ′1)K

′
2, and so

G |= T ′ :: K ′ holds.
(d) Since K ′ ∩ Π(α : K1)K2 6= ∅, K ′ = Π(α : K ′1)K

′
2 where K ′1 ∩K1 6= ∅ and K ′2 ∩K2 6= ∅.

As shown in (b) we have G |= Π(α : K1)K2 ∪ Π(α : K ′1)K
′
2. Let G ′ w G and assume

G ′ |= T1 :: K1 ∪K ′1. By induction hypothesis (c), G ′ |= T1 :: K1 and G ′ |= T1 :: K ′1 hold.
Then, by definition of the logical relation, G ′ |= T T1 :: K2[α←T1] holds. G ′ |= K ′2[α←T1]
also holds by Lemma 3.5.30 on page 87 and the definition of the logical relation. Then, by
induction hypothesis (d), we have G ′ |= T T1 :: (K2 ∪K ′2)[α← T1]. Hence G |= T :: Π(α :
K1)K2 ∪ Π(α : K ′1)K

′
2, and so G |= T :: K ∪K ′ holds.

(e) Let G ′ w G and assume G ′ |= T1 :: K1. Then by definition of the logical relation, G ′ |=
T T1 :: K2[α← K1] and G ′ |= T ′ T1 :: K2[α← K1]. Then, since T T1 ∩ T ′ T1 6= ∅, by
induction hypothesis (e) we get G ′ |= T T1 ∪ T ′ T1 :: K2[α←K1]. Hence, by definition of
the logical relation, G |= T ∪ T ′ :: K2 holds.

• K = Σ(α : K1)K2:
(a) The proof is identical to the item (a) for case K = Π(α : K1)K2.
(b) The proof is identical to the item (b) for case K = Π(α : K1)K2.
(c) We have G |= Σ(α : K1)K2 and G |= T.1 :: K1 and G |= T.2 :: K2[α ← T.1]. Since

K ′ ⊆ Σ(α : K1)K2, K ′ = Σ(α : K ′1)K
′
2 where K ′1 ⊆ K1 and K ′2 ⊆ K2. Then, since

T ′.1 ⊆ T.1 we get by induction hypothesis (c) G |= T ′.1 :: K ′1. Also, since T ′.1 ⊆ T.1 and
K ′2[α← T ′.1] ⊆ K2[α← T.1] we get by induction hypothesis (c) G |= T ′.2 :: K ′2[α← T ′.1].
Hence, by definition of the logical relation, G |= T ′ :: Σ(α : K ′1)K

′
2 holds, and so G |= T ′ ::

K ′ holds.
(d) Since K ′ ∩ Σ(α : K1)K2 6= ∅, K ′ = Σ(α : K ′1)K

′
2 where K ′1 ∩K1 6= ∅ and K ′2 ∩K2 6= ∅.

As shown in (b) we have G |= Σ(α : K1)K2 ∪ Σ(α : K ′1)K
′
2. Since G |= T.1 :: K1

holds by definition, we get by induction hypothesis (d) G |= T.1 :: K1 ∪K ′1. And since
G |= T.2 :: K2[α← T.1] holds by definition, we get by induction hypothesis (d) G |=
T.2 :: (K2 ∪ K ′2)[α← τ.1]. Hence, by definition of the logical relation, Γ |= T :: Σ(α :
K1)K2 ∪ Σ(α : K ′1)K

′
2 holds, and so Γ |= T :: K ∪K ′ holds.

(e) We have G |= T.1 :: K1 and G |= T ′.1 :: K1, hence by induction hypothesis (e) we get
G |= T.1 ∪ T ′.1 :: K1. Then, by definition of the logical relation, G |= K2[α← (T ∪ T ′).1]
holds. Then, because we have G |= T.2 :: K2[α←T.1], we get G |= T.2 :: K2[α← (T∪T ′).1]
by induction hypothesis (d). Similarly, G |= T ′.2 :: K2[α← (T ∪ T ′).1] holds. Then, by
induction hypothesis (e) we get G |= (T ∪ T ′).2 :: K2[α← (T ∪ T ′).1]. Hence, by definition
of the logical relation, we have G |= T ∪ T ′ :: Σ(α : K1)K2.

A direct consequence of the last lemma is that the logical relation is stable by taking super-sets.

Lemma 3.5.32. If G |= T :: K and G |= K ′ and K ⊆ K ′ then G |= T :: K ′.

Proof. Using Lemma 3.5.31 on page 87, item(d).

89

Chapter 3 Type definitions and singleton kinds

The next lemmas shows that the relation involving a set of types T can be extended by a set of
types T ′ such that T and T ′ are pointwise related with respect to convertibility up to insertion of
expansors (that is, with respect to the relation used for the base case of the logical relation).

Lemma 3.5.33. Assume G |= T :: K and for all Γ ∈ G and τ ′ ∈ T ′, there exists τ ∈ T such that dτ ′edΓe βπη•←→
dτedΓe (we say that T ′ is convertible with T in G). Then G |= T ∪ T ′ :: K.

Proof. By induction on the size of sets of kinds:

• κ = {?}: Let τ1, τ2 ∈ T ∪ T ′ and Γ ∈ G. There are four cases:

– τ1 ∈ T and τ2 ∈ T: then, since Γ |= T :: {?}, dτ1edΓe
βπη•←→ dτ2edΓe holds by assumption.

– τ1 ∈ T ′ and τ2 ∈ T: there exists τ3 ∈ T such that dτ1edΓe
βπη•←→ dτ3edΓe. Moreover,

dτ2edΓe
βπη•←→ dτ3edΓe holds by assumption. We conclude by symmetry and transitivity of

the convertibility relation.
– τ1 ∈ T and τ2 ∈ T ′: similar to the previous case.

– τ1 ∈ T ′ and τ2 ∈ T ′: there exists τ3, τ4 ∈ T such that dτ1edΓe
βπη•←→ dτ3edΓe and

dτ2edΓe
βπη•←→ dτ4edΓe. Moreover, dτ3edΓe

βπη•←→ dτ4edΓe holds by assumption. We con-
clude by symmetry and transitivity.

• κ = S(U): we have G |= S(U) and G |= T :: S(U) with G |= T ∪ U :: {?}. Then T ′ is convertible
with T∪U in G. Hence, by induction hypothesis, G |= T ′∪T∪U :: {?}. Hence G |= T ′∪T :: S(U).

• κ = Π(α : K1)K2: we have G |= Π(α : K1)K2. Let G ′ w G and T1 such that G ′ |= T1 :: K1.
Then G ′ |= T T1 :: K2[α← T1] holds by definition. Then, T ′ T1 is convertible with T T1 in G,
hence also in G ′. By induction hypothesis, G ′ |= (T ′ T1) ∪ (T T1) :: K2[α← T1]. Finally, since
(T ′ T1) ∪ (T T1) = (T ′ ∪ T) T1, we get G |= T ′ ∪ T :: Π(K1 : α)K2 by definition of the logical
relation.

• κ = Σ(α : K1)K2: we have G |= Σ(α : K1)K2 and G |= T.1 :: K1 and G |= T.2 :: K2[α← T.1].
Then, since T ′.1 is convertible with T.1 in G, we have by induction hypothesis G |= (T ′ ∪ T).1 ::
K1. Hence, by definition of the logical relation, G |= K2[α← T ′.1 ∪ T.1] holds. Also, since T ′.2
is convertible with T.2 in G, we have by induction hypothesis G |= (T ′ ∪ T).2 :: K2[α← T.1].
Since K2[α← T.1] ⊆ K2[α← T ′.1 ∪ T.1], we conclude by Lemma 3.5.32 on the previous page
that G |= (T ′ ∪ T).2 :: K2[α← (T ′ ∪ T).1]. Hence G |= T :: Σ(α : K1)K2.

The following lemma is specific to our proof: it is absent from [SH06]. It states that the logical
relation is stable under head expansion.

Lemma 3.5.34. If G |= T :: K, then G |= T ∪ ηK T :: K.

Proof. By induction on the sizes of the sets of kinds:

• K = {?}: immediate, since dη? τedΓe
βπη•←→ dτedΓe.

• K = S(U): By definition, we get Γ |= T∪U :: {?}, whichmeans that: for all ΓinG and τ1, τ2inT∪U,

dτ1edΓe
βπη•←→ dτ2edΓe holds. Let us call (H) this result. We want to prove that G |= T ∪ ηS(U) T ::

S(U) holds. By definition, it suffices to prove that G |= T ∪ ηS(U) T ∪ U :: {?} holds. Hence, by
definition again, it suffices to prove that for every Γ in G and every τ1, τ2 ∈ T ∪ ηS(U) T ∪ U,
we have dτ1edΓe

βπη•←→ dτ2edΓe. There are four cases:
1. τ1 ∈ T ∪ U and τ2 ∈ T ∪ U: this is proved by (H).

90

3.5 Small-step extensional equivalence for singleton types

2. τ1 ∈ T ∪ U and τ2 ∈ ηS(U) T: then τ2 = ηS(u′2) τ
′
2 for some u ′2 ∈ U and τ ′2 ∈ T. Since

dηS(u′2) τ
′
2edΓe

βπη•←→ du ′2edΓe, we conclude by (H) and transitivity.
3. τ1 ∈ ηS(U) T and τ2 ∈ T ∪ U: this is symmetric to the previous case.
4. τ1 ∈ ηS(U) T and τ2 ∈ ηS(U) T: then τ1 = ηS(u′1) τ

′
1 for some u ′1 ∈ U and τ ′1 ∈ T and

τ2 = ηS(u′2) τ
′
2 for some u ′2 ∈ U and τ ′2 ∈ T. Then dS(u ′1) τ ′1edΓe

βπη•←→ du ′1edΓe and
dS(u ′2) τ ′2edΓe

βπη•←→ du ′2edΓe hold. We also get from (H) that du ′1edΓe
βπη•←→ du ′2edΓe. We

conclude by transitivity.

• K = Π(α : K1)K2: let Γ ′ w Γ andT1 such thatG ′ |= T1 :: K1. By induction hypothesis, G ′ |= T1∪
ηK1 T1 :: K1. HenceG ′ |= T (T1∪ηK1 T1) :: K2[α←T1∪ηK1 T1]. Hence by induction hypothesis,
G ′ |= (T (T1 ∪ ηK1 T1)) ∪ (ηK2[α←T1∪ηK1 T1] T (T1 ∪ ηK1 T1)) :: K2[α← T1 ∪ ηK1 T1]. Hence
by Lemma 3.5.31 on page 87(c), we get G ′ |= T T1 ∪ ηK2[α←ηK1 T1] T (ηK1 T1) :: K2[α← T1].
Then, since T T1 ∪ (ηΠ(α:K1)K2 T) T1 is convertible with T T1 ∪ ηK2[α←ηK1 T1] T (ηK1 T1) in
G ′, by applying Lemma 3.5.33 on the preceding page, we get G ′ |= T T1 ∪ (ηΠ(α:K1)K2 T) T1 ::
K2[α← T1], hence G ′ |= (T ∪ ηΠ(α:K1)K2 T) T1 :: K2[α← T1]. Hence, by the definition of the
logical relation, G ′ |= T ∪ ηΠ(α:K1)K2 T :: Π(α : K1)K2.

• K = Σ(α : K1)K2: by induction hypothesis, G |= T.1 ∪ ηK1 T.1 :: K1 holds. Since T.1 ∪
(ηΣ(α:K1)K2 τ).1 is convertible with T.1 ∪ ηK1 T.1 in G, by Lemma 3.5.33 on the facing
page we get G |= (T ∪ ηΣ(α:K1)K2 T).1 :: K1. Hence, by definition of the logical rela-
tion, G |= K2[α← (T ∪ ηΣ(α:K1)K2 T).1]. Then, by Lemma 3.5.32 on page 89, we get G |=
T.2 :: K2[α ← (T ∪ ηΣ(α:K1)K2 T).1]. Then, by induction hypothesis, we have G |= T.2 ∪
ηK2[α←(T∪ηΣ(α:K1)K2 T).1] T.2 :: K2[α← (T ∪ ηΣ(α:K1)K2 T).1]. Then by Lemma 3.5.31 on
page 87(c), G |= T.2 ∪ ηK2[α←(ηΣ(α:K1)K2 T).1] T.2 :: K2[α← (T ∪ ηΣ(α:K1)K2 T).1]. And since
T.2 ∪ (ηΣ(α:K1)K2 T).2 is convertible with T.2 ∪ ηK2[α←(ηΣ(α:K1)K2 T).1] T.2 in G, we have by
Lemma 3.5.33 on the preceding page G |= (T∪ηΣ(α:K1)K2 T).2 :: K2[α← (T∪ηΣ(α:K1)K2 T).1].
Hence, by definition of the logical relation, G |= T ∪ ηΣ(α:K1)K2 T :: Σ(α : K1)K2.

We can eventually show that the logical relation entails our desired property on convertibility,
that is: types (resp. kinds) in the relation are convertible up to insertion of expansors, preceded by
head expansion.

Proposition 3.5.35. The following assertions hold:

(a) If G |= K, then for all Γ ∈ G and κ1, κ2 ∈ K, dκ1edΓe
βπη•←→ dκ2edΓe;

(b) If G |= T :: K, then for all Γ ∈ G and κ ∈ K and τ1, τ2 ∈ T, dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe.

(c) If G |= K and if there is a set T such that for all Γ ∈ G and τ1, τ2 ∈ T, there exists κ ∈ K such that
dηκ τ1edΓe

βπη•←→ dτ2edΓe, then G |= T :: K.

Proof. By induction on the size of sets of kinds:

• K = {?}:

(a) d?edΓe βπη•←→ d?edΓe holds by reflexivity.

(b) Immediate, since dη? τedΓe
βπη•←→ dτedΓe.

(c) Immediate, since dη? τedΓe
βπη•←→ dτedΓe.

• K = S(U):

91

Chapter 3 Type definitions and singleton kinds

(a) By induction hypothesis (b), for all Γ ∈ G and u1, u2 ∈ U, dη? u1edΓe
βπη•←→ dη? u2edΓe,

hence dS(u1)edΓe
βπη•←→ dS(u2)edΓe.

(b) dηS(u) τ1edΓe
βπη•←→ dηS(u) τ2edΓe holds by reflexivity.

(c) Let τ1, τ2 ∈ T ∪ U. There are four cases:

– τ1 ∈ T and τ2 ∈ T: By assumption, we have for all Γ ∈ G and τ ′1, τ ′1 ∈ T, there exists
S(u ′) ∈ S(U) such that dηS(τ′1) Γe

dΓe βπη•←→ dτ ′2edΓe. As a consequence, by instantiating
a first on τ1 and τ1, and a second time on τ2 and τ2, we know that there exists u1, u2 ∈
U such that dηS(u1) τ1edΓe

βπη•←→ dτ1edΓe and dηS(u2) τ2edΓe
βπη•←→ dτ2edΓe. And by

induction hypothesis (b), dη? u1edΓe
βπη•←→ dη? u2edΓe, hence dτ1edΓe

βπη•←→ dτ2edΓe.

– τ1 ∈ T and τ2 ∈ U: there exists u1 ∈ U such that dηS(u1) τ1edΓe
βπη•←→ dτ1edΓe. And

by induction hypothesis (b), dη? u1edΓe
βπη•←→ dη? τ2edΓe, hence dτ1edΓe

βπη•←→ dτ2edΓe.

– τ1 ∈ U and τ2 ∈ T: similar to the previous case.

– τ1 ∈ U and τ2 ∈ U: by induction hypothesis (b), dη? τ1edΓe
βπη•←→ dη? τ2edΓe.

Hence G |= T ∪ U :: ?, hence G |= T :: S(U).

• K = Π(α : K1)K2:

(a) Let Π(α : κ1) κ2, Π(α : κ ′1) κ
′
2 ∈ Π(α : K1)K2 and Γ ∈ G. By induction hypothesis

(a), dκ1edΓe
βπη•←→ dκ ′1edΓe. Then let G ′ = G, α :: K1. G ′ w G holds. Then, for all Γ ′ ∈ G,

dηΓ ′(α) αedΓ
′e βπη•←→ dαedΓ ′e holds by Lemma 3.5.19 on page 82. Hence G ′ |= {α} :: K1 by

induction hypothesis (c). Then G ′ |= K2[α←{α}] by definition of the logical relation. Then
dκ2edΓ,α::κ1e βπη•←→ dκ ′2edΓ,α::κ1e by induction hypothesis (a). Finally, dΠ(α : κ1) κ2edΓe

βπη•←→
dΠ(α : κ ′1) κ

′
2edΓe.

(b) Let G ′ = G, α ::K1. G ′ w G holds. Then, for all Γ ′ ∈ G, dηΓ ′(α) αedΓ
′e βπη•←→ dαedΓ ′e holds by

Lemma 3.5.19 on page 82. Hence G ′ |= {α} :: K1 by induction hypothesis (c). Then G ′ |=
T {α} :: K2[α← {α}] by definition of the logical relation. Let τ, τ ′ ∈ T and Π(α : κ1) κ2 ∈
Π(α : K1)K2 and Γ ∈ G. By induction hypothesis (b), we have dηκ2 (τ α)edΓ,α::κ1e βπη•←→
dηκ2 (τ ′ α)edΓ,α::κ1e. Hence dηΠ(α:κ1)κ2 τedΓe

βπη•←→ λ(α ::dκ1edΓe) dηκ2 (τ α)edΓ,α::κ1e βπη•←→
λ(α :: dκ1edΓe) dηκ2 (τ ′ α)edΓ,α::κ1e βπη•←→ dηΠ(α:κ1)κ2 τ

′edΓe.

(c) Let G ′ w G and T1 such that G ′ |= T1 :: K1. Let Γ ′ ∈ G ′ and (τ τ1), (τ
′ τ ′1) ∈ T T1. By

assumption, there exists Π(α : κ1) κ2 ∈ Π(α : K1)K2 such that dηΠ(α:κ1)κ2 τedΓ
′e βπη•←→

dτedΓ ′e holds. Similarly, there exists a kind Π(α : κ ′1) κ
′
2 ∈ Π(α : K1)K2 such that

dηΠ(α:κ′1)κ
′
2
τedΓ ′e βπη•←→ dτ ′edΓ ′e holds. By induction hypothesis (a) we get dκ1edΓ

′e βπη•←→
dκ ′1edΓ

′e. Moreover dηκ1 τ1edΓ
′e βπη•←→ dηκ1 τ

′
1edΓ

′e by induction hypothesis (b). Moreover,
G ′ |= T1 ∪ ηK1 T1 :: K1 holds by Lemma 3.5.34 on page 90. Hence by Lemma 3.5.30 on
page 87 and the definition of the logical relation, G ′ |= K2[α← T1 ∪ ηK1 T1] holds, hence
we get dκ2[α← ηκ1 τ1]edΓ

′e βπη•←→ dκ ′2[α← ηκ′1 τ
′
1]edΓ

′e and dκ2[α← ηκ1 τ1]edΓ
′e βπη•←→

92

3.5 Small-step extensional equivalence for singleton types

dκ2[α← τ1]edΓ
′e by induction hypothesis (a). Then:

dτ ′ τ ′1edΓ
′e βπη•←→ dηΠ(α:κ′1)κ

′
2
τ τ ′1edΓ

′e

βπη•←→ dηκ′2[α←ηκ′1 τ′1] (τ (ηκ
′
1
τ ′1))edΓ

′e

βπη•←→ dηκ2[α←ηκ1 τ1] (τ (ηκ
′
1
τ ′1))edΓ

′e

βπη•←→ dηκ2[α←ηκ1 τ1] (τ (ηκ1 τ1))edΓ
′e

βπη•←→ dηκ2[α←ηκ1 τ1] (ηκ2[α←ηκ1 τ1] (τ (ηκ1 τ1)))edΓ
′e

βπη•←→ dηκ2[α←ηκ1 τ1] (ηΠ(α:κ1)κ2 τ τ1)edΓ
′e

βπη•←→ dηκ2[α←ηκ1 τ1] (τ τ1)e
dΓ ′e

βπη•←→ dηκ2[α←τ1] (τ τ1)edΓ
′e

We just proved that for all Γ ′ ∈ G ′ and for all τ, τ ′ ∈ T T1, there exists κ ∈ K2[α← T1]

such that dηκ τedΓ
′e βπη•←→ dτ ′edΓ ′e. Then by induction hypothesis (c), we get G ′ |= T T1 ::

K2[α← T1]. Hence G |= T :: Π(α : K1)K2 by definition of the logical relation.

• K = Σ(α : K1)K2:

(a) Let Σ(α : κ1) κ2, Σ(α : κ ′1) κ
′
2 ∈ Σ(α : K1)K2 and Γ ∈ G. By induction hypothesis (a),

dκ1edΓe
βπη•←→ dκ ′1edΓe. Then let G ′ = G, α :: K1. G ′ w G holds. Then, for all Γ ′ ∈ G,

dηΓ ′(α) αedΓ
′e βπη•←→ dαedΓ ′e holds by Lemma 3.5.19 on page 82. Hence G ′ |= {α} :: K1 by

induction hypothesis (c). Then G ′ |= K2[α←{α}] by definition of the logical relation. Then
dκ2edΓ,α::κ1e βπη•←→ dκ ′2edΓ,α::κ1e by induction hypothesis (a). Finally, dΣ(α : κ1) κ2edΓe

βπη•←→
dΣ(α : κ ′1) κ

′
2edΓe.

(b) Let Γ ∈ G, τ,M ′ ∈ T and Σ(α : κ1) κ2 ∈ Σ(α : K1)K2. By induction hypothesis (b) we
get dηκ1 τ.1edΓe

βπη•←→ dηκ1 τ
′.1edΓe. Moreover, G |= T.1 ∪K1 T.1 :: K1 by Lemma 3.5.34

on page 90, then G |= K2[α← T.1 ∪ K1 T.1] by definition of the logical relation, and
then G |= T.2 :: K2[α← T.1 ∪K1 T.1] by Lemma 3.5.32 on page 89. Hence by induction
hypothesis (b) we get dηκ2[α←ηκ1 τ′.1] τ.2e

dΓe βπη•←→ dηκ2[α←ηκ1 τ′.1] τ
′.2edΓe. Induction

hypothesis (a) also gives dκ2[α← ηκ1 τ.1]edΓe
βπη•←→ dκ2[α← ηκ1 τ

′.1]edΓe. Then:

dηΣ(α:κ1)κ2 τedΓe
βπη•←→ (dηκ1 τ.1edΓe, dηκ2[α←ηκ1 τ.1] τ.2e

dΓe)
βπη•←→ (dηκ1 τ

′.1edΓe, dηκ2[α←ηκ1 τ.1] τ.2e
dΓe)

βπη•←→ (dηκ1 τ
′.1edΓe, dηκ2[α←ηκ1 τ′.1] τ.2e

dΓe)
βπη•←→ (dηκ1 τ

′.1edΓe, dηκ2[α←ηκ1 τ′.1] τ
′.2edΓe)

βπη•←→ dηΣ(α:κ1)κ2 τ
′edΓe

(c) Let Γ ∈ G and τ.1, τ ′.1 ∈ T.1. There exists Σ(α : κ1) κ2 ∈ Σ(α : K1)K2 such that
dηΣ(α:κ1)κ2 τedΓe

βπη•←→ dτ ′edΓe holds. Then dτ ′.1edΓe βπη•←→ d(ηΣ(α:κ1)κ2 τ).1edΓe
βπη•←→

dηκ1 τ.1edΓe holds. Hence, by induction hypothesis (c), G |= T.1 :: K1 holds. As a
consequence of Lemma 3.5.34 on page 90, G |= T.1 ∪ ηK1 T.1 :: K1 also holds, hence by
definition of the logical relation, G |= K2[α←T.1∪ηK1 T.1] holds. Let Γ ∈ G and τ.2, τ ′.2 ∈
T.2. There exists Σ(α : κ1) κ2 ∈ Σ(α : K1)K2 such that dηΣ(α:κ1)κ2 τedΓe

βπη•←→ dτ ′edΓe.
Then by induction hypothesis (a), we get dκ2[α← τ.1]edΓe

βπη•←→ dκ2[α←ηκ1 τ.1]edΓe Then

93

Chapter 3 Type definitions and singleton kinds

dτ ′.2edΓe βπη•←→ d(ηΣ(α:κ1)κ2 τ).2edΓe
βπη•←→ dηκ2[α←ηκ1 τ.1] τ.2e

dΓe βπη•←→ dηκ2[α←τ.1] τ.2edΓe.
Hence by induction hypothesis (c) we get G |= T.2 :: K2[α← T.1]. Finally, by definition of
the logical relation, G |= T :: Σ(α : K1)K2.

The next lemma permits to consider a valid extension of a set of substitution, under suitable
conditions. This will be necessary to prove Lemma 3.5.37 in the case of functions.

Lemma 3.5.36 (Valid substitution extension). If G |= S : Γ , and Γ, α :: κ `HS ok and G |= T :: S(κ) and
α /∈ domS, then G |= S;α 7→ T : Γ, α :: κ.

Proof. We have α /∈ dom Γ ∪ fv(Γ) ∪ fv(κ). Let β ∈ dom Γ, α :: κ. There are two cases:

• α 6= β: then β ∈ dom Γ , (S, α 7→ T)(β) = S(β) and (S;α 7→ T)((Γ, α :: κ)(β)) = (S;α 7→
κ)(Γ(β)) = S(Γ(β)). Hence G |= S(β) :: S(Γ(β)) holds by assumption.

• α = β: then (S, α 7→ T)(α) = T and (S;α 7→ T)((Γ, α ::κ)(α)) = (S;α 7→ T)(κ) = S(κ). Hence
G |= S(α) :: S(Γ(α)) holds by assumption.

Then for all β ∈ dom Γ, α :: κ, we have G |= S(β) :: S(Γ(β)).

Now comes the fundamental completeness lemma, that relates the wellformedness judgments
with the logical relation.

Lemma 3.5.37 (Fundamental completeness lemma). The following assertions hold:

1. if Γ `HS κ ok then G |= S : Γ implies G |= S(κ);

2. if Γ `HS κ≡ κ ′ then G |= S : Γ implies G |= S(κ) ∪S(κ ′);

3. if Γ `HS κ6 κ ′ then G |= S : Γ implies:
• G |= S(κ);
• G |= S(κ ′);
• if G |= T :: S(κ), then G |= T :: S(κ ′);

4. if Γ `HS τ :: κ then G |= S : Γ implies G |= S(τ) :: S(κ);

5. if Γ `HS τ≡ τ ′ :: κ then G |= S : Γ implies G |= S(τ) ∪S(τ ′) :: S(κ);

Proof. By induction on the height of the judgments (the proof is the same as Stone-Harper’s, except
for cases Lam and EqLam, which use Lemma 3.5.34 on page 90):

Kind wellformedness judgment:

• WfKindStar: κ = ?. Hence S(κ) = {?} and G |= {?} holds by definition of the logical relation.

• WfKindSingle: κ = S(τ). By induction hypothesis (4), G |= S(τ) :: {?} holds. Hence G |=
S(S(τ)) by definition of the logical relation. Since S(S(τ)) = S(S(τ)), G |= S(S(τ)) holds.

• WfKindPi: κ = Π(α : κ1) κ2. We have Γ, α::κ1`HSκ2 ok, therefore there is a strict sub-derivation
Γ `HS κ1 ok. Hence, by induction hypothesis (1) we have G |= S(κ1). Now let G ′ w G and
assume G ′ |= T1 :: S(κ1). LetS ′ = S, α 7→ T1. By Lemma 3.5.30 on page 87 and Lemma 3.5.36,
G ′ |= S ′ : Γ, α :: κ1 holds. Then, by induction hypothesis (1), we get G ′ |= S ′(κ2). Since
α /∈ fv(S), S ′(κ2) = S(κ2)[α← T1]. Hence G ′ |= S(κ2)[α← T1]. Therefore, by definition of
the logical relation, G |= S(Π(α : κ1) κ2) holds.

• WfKindSigma: similar to the previous case.

94

3.5 Small-step extensional equivalence for singleton types

Kind equivalence judgment:

• EqStar: κ = κ ′ = ?. Since G |= {?} holds by definition of the logical relation, G |= S(κ1)∪S(κ2)
holds.

• EqSingle: κ = S(τ) and κ ′ = S(τ ′). By induction hypothesis (5), G |= S(τ) ∪S(τ ′) :: {?} holds.
Hence G |= S(S(τ)) ∪S(S(τ ′)) holds.

• EqPi: κ = Π(α : κ1) κ2 and κ ′ = Π(α : κ ′1) κ
′
2. By induction hypothesis (2), G |= S(κ1) ∪S(κ ′1)

holds. Now let G ′ w G and assume G ′ |= T1 :: S(κ1) ∪ S(κ ′1). Let S ′ = S, α 7→ T1. By
Lemma 3.5.30 on page 87 and Lemma 3.5.36 on the facing page, G ′ |= S ′ : Γ, α :: κ1 holds.
Then, by induction hypothesis (2), we get G ′ |= S ′(κ2) ∪S ′(κ ′2). Since α /∈ fv(S), S ′(κ2) =
S(κ2)[α←T1] andS ′(κ ′2) = S(κ ′2)[α←T1]. Hence G ′ |= (S(κ2)∪S ′(κ ′2))[α←T1]. Therefore,
by definition of the logical relation, G |= S(Π(α : κ1) κ2) ∪S(Π(α : κ ′1) κ

′
2) holds.

• EqSigma: similar to the previous case.

Subkinding judgment:

• SubForget: κ = S(τ) and κ ′ = ?.
– G |= S(?) always hold by definition.
– Same proof as above.
– Same proof as above.

• SubStar: κ = κ ′ = ?.
– G |= S(?) always hold by definition.
– Same proof as above.
– Same proof as above.

• SubSingle: κ = S(τ) and κ ′ = S(τ ′).
– By induction hypothesis (5), G |= S(τ) ∪S(τ ′) :: {?} holds. Hence by Lemma 3.5.31 on
page 87(c), G |= S(τ) :: {?} holds. Hence G |= S(S(τ)) holds.

– Same proof as above.
– Same proof as above.

• SubPi: κ = Π(α : κ1) κ2 and κ ′ = Π(α : κ ′1) κ
′
2 with Γ `HS κ

′
1 6 κ1 and Γ, α :: κ ′1 `HS κ2 6 κ ′2 and

Γ `HS Π(α : κ1) κ2 ok.
– By induction hypothesis (1) we get G |= S(Π(α : κ1) κ2).
– By induction hypothesis (3), we get G |= S(κ ′1). Let Γ ′ w Γ and assume G ′ |= T1 :: S(κ ′1).
Let S ′ = S, α 7→ T1. By Lemma 3.5.30 on page 87 and Lemma 3.5.36 on the preceding
page, we have G ′ |= S ′ : Γ, α :: κ ′1. Then by induction hypothesis (3) we get G ′ |= S ′(κ ′2),
hence G ′ |= S(κ ′2)[α← T1] since α /∈ fv(S). Hence G |= S(Π(α : κ ′1) κ

′
2).

– Assume G |= τ :: S(Π(α : κ1) κ2). Let Γ ′ w Γ and assume G ′ |= T1 :: S(κ ′1). Then by
induction hypothesis (3), G ′ |= T1 :: S(κ1). Then, by definition of the logical relation,
G ′ |= T T1 :: S(κ2)[α← T1]. Let S ′ = S, α 7→ T1. We have S(κ2)[α← T1] = S ′(κ2) and
G ′ |= S ′ : Γ, α :: κ ′1 by Lemma 3.5.30 on page 87 and Lemma 3.5.36 on the preceding
page. Therefore, by induction hypothesis (3), we have G ′ |= T T1 :: S(κ ′2)[α← T1]. As a
consequence, G |= T :: S(Π(α : κ1) κ2) holds.

95

Chapter 3 Type definitions and singleton kinds

• SubSigma: κ = Σ(α : κ1) κ2 and κ ′ = Σ(α : κ ′1) κ
′
2 with Γ `HS κ1 6 κ ′1 and Γ, α :: κ1 `HS κ2 6 κ ′2

and Γ `HS Σ(α : κ ′1) κ
′
2 ok.

– By induction hypothesis (3), we get G |= S(κ1). Let Γ ′ w Γ and assume G ′ |= T1 :: S(κ1).
Let S ′ = S, α 7→ T1. By lemmas Lemma 3.5.30 on page 87 and Lemma 3.5.36 on page 94
we have G ′ |= S ′ : Γ, α :: κ1. Then by induction hypothesis (3) we get G ′ |= S ′(κ2), hence
G ′ |= S(κ2)[α← T1] since α /∈ fv(S). Hence G |= S(Σ(α : κ1) κ2).

– By induction hypothesis (1) we get G |= S(Σ(α : κ ′1) κ
′
2).

– Assume G |= T :: S(Σ(α : κ1) κ2). By definition of the logical relation, we have G |= T.1 ::
S(κ1). Then, by inductive hypothesis (3), G |= T.1 :: S(κ ′1) holds. Let S ′ = S, α 7→ T.1
we haveS(κ2)[α←T.1] = S ′(κ2) and G ′ |= S ′ : Γ, α ::κ1 by Lemma 3.5.30 on page 87 and
Lemma 3.5.36 on page 94. Hence G |= T.2 :: S ′(κ2) by definition of the logical relation.
Then by induction hypothesis (3)we getG |= T.2 :: S ′(κ ′2), and soG |= T.2 :: S(κ ′2)[α←T.1]
holds. Therefore we have G |= T :: S(Σ(α : κ1) κ2).

Type wellformedness judgment:

• Var: τ = α and κ = Γ(α). G |= S(α) :: S(κ) holds by assumption.

• Lam: τ = λ(α :: κ1) τ
′ and κ = Π(α : κ1) κ2. There is a strict sub-derivation Γ `HS κ1 ok, hence

by induction hypothesis (1), G |= S(κ1). Let G ′ w G and assume G ′ |= T1 :: S(κ1). Then by
Lemma 3.5.34 on page 90 we get G ′ |= T1 ∪ηS(κ1) T1 :: S(κ1). LetS ′ = S, α 7→ T1 ∪ηS(κ1) T1.
By Lemma 3.5.30 on page 87 and Lemma 3.5.36 on page 94 we have G ′ |= S ′ : Γ, α ::κ1. Then, by
induction hypothesis (4), we get G ′ |= S ′(τ ′) :: S ′(κ2), that is G ′ |= S(τ ′)[α←T1∪ηS(κ1) T1] ::
S(κ2)[α← T1 ∪ ηS(κ1) T1] since α /∈ fv(S). Then by Lemma 3.5.31 on page 87(c), we have
G ′ |= S(τ ′)[α← ηS(κ1) T1] :: S(κ2)[α← T1]. Then (λ(α :: S(κ1))S(τ ′)) T1 is convertible with
S(τ ′)[α←ηS(κ1) T1] in G ′, hence by Lemma 3.5.33 on page 90 and Lemma 3.5.31 on page 87(c),
we have G ′ |= S(λ(α ::κ1) τ

′) T1 :: S(κ2)[α←T1]. Hence G ′ |= S(λ(α ::κ1) τ
′) :: S(Π(α : κ1) κ2)

holds.

• App: τ = τ1 τ2 and κ = Π(α : κ2) κ1. By induction hypothesis (4) we have G |= S(τ1) :: S(Π(α :
κ2) κ1) and G |= S(τ2) :: S(κ2). Then, by definition of the logical relation, G |= S(τ1) S(τ2) ::
S(κ1)[α←S(τ2)] holds, hence G |= S(τ1 τ2) :: S(κ1[α← τ2]) by Lemma 3.5.31 on page 87(c).

• Pair: τ = (τ1, τ2) and κ = Σ(α : κ1) κ2. By induction hypothesis (4), G |= S(τ1) :: S(κ1) and
G |= S(τ2) :: S(κ2[α← τ1]). And by induction hypothesis (1), G |= S(Σ(α : κ1) κ2). Then,
because (S(τ1, τ2)).1 is convertible with S(T1) in G, we get by Lemma 3.5.33 on page 90 G |=
(S(τ1, τ2)).1∪S(τ1) :: S(κ1) holds. Similarly, G |= (S(τ1, τ2)).2∪S(τ2) :: S(κ2[α←τ1]) holds.
Then, by definition of the logical relation, G |= S(κ2)[α← (S(τ1, τ2)).1∪S(τ1)] holds. Hence,
by Lemma 3.5.32 on page 89, G |= (S(τ1, τ2)).2 ∪ S(τ2) :: S(κ2)[α← (S(τ1, τ2)).1 ∪ S(τ1)]
holds. Then by applying Lemma 3.5.31 on page 87(c), we have G |= (S(τ1, τ2)).1 :: S(κ1)
and G |= (S(τ1, τ2)).2 :: S(κ2)[α← (S(τ1, τ2)).1]. Then, by definition of the logical relation,
G |= S((τ1, τ2)) :: S(Σ(α : κ1) κ2) holds.

• ProjL: τ = τ ′.1 and κ = κ1. By induction hypothesis (4), we get G |= S(τ ′) :: S(Σ(α : κ1) κ2).
Then by definition of the logical relation, G |= S(τ ′.1) :: S(κ1) holds.

• ProjR: τ = τ ′.2 and κ = κ2[α← τ.1]. By induction hypothesis (4), we get G |= S(τ ′) :: S(Σ(α :
κ1) κ2). Then by definition of the logical relation, G |= S(τ ′.2) :: S(κ2)[α← S(τ).1] holds.
Then by Lemma 3.5.31 on page 87(c), we have G |= S(τ ′.2) :: S(κ2[α← τ.1]).

• Refl: κ = S(τ). By induction hypothesis (4), G |= S(τ) :: {?} holds, hence G |= S(τ)∪S(τ) :: {?},
hence G |= S(τ) :: S(S(τ)) by definition of the logical relation.

96

3.5 Small-step extensional equivalence for singleton types

• ExtPi: κ = Π(α : κ1) κ2. There is a sub-derivation Γ `HS κ1 ok, hence by induction hypothesis
(1), G |= S(κ1) holds. Let G ′ w G and assume G ′ |= T1 :: S(κ1). Let S ′ = S, α 7→ T1. By
Lemma 3.5.31 on page 87(c) and Lemma 3.5.36 on page 94 we get G ′ |= S ′ : Γ, α :: κ1. Then by
induction hypothesis (4) we get G ′ |= S ′(τ α) :: S ′(κ2). Hence G ′ |= S(τ) T1 :: S(κ2)[α← T1]
since α /∈ fv(τ) ∪ fv(S). Hence G ′ |= S(κ2)[α← T1] holds and then G |= S(Π(α : κ1) κ2). And
finally G |= S(τ) :: S(Π(α : κ1) κ2) holds by definition of the logical relation.

• ExtSigma: κ = Σ(α : κ1) κ2. By induction hypothesis (1), we have G |= S(Σ(α : κ1) κ2). By
induction hypothesis (4) we have G |= S(τ).1 :: S(κ1) and G |= S(τ).2 :: S(κ2[α← τ.1]). Then
by definition of the logical relation, we have G |= S(κ2)[α←S(τ).1]. Then, by Lemma 3.5.32 on
page 89 we have G |= S(τ).2 :: S(κ2)[α←S(τ).1]. Hence by definition of the logical relation,
G |= S(τ) :: S(Σ(α : κ1) κ2) holds.

• Sub: κ = κ2. By induction hypothesis (4) we get G |= S(τ) :: S(κ1), and then G |= S(τ) :: S(κ2)
holds by induction hypothesis (3).

Type equivalence judgment:

• EqRefl: Follows from induction hypothesis (4).

• EqSym: Follows from induction hypothesis (5).

• EqTrans: Follows from induction hypothesis (5), from Lemma 3.5.31 on page 87.

• EqLam: Similar to the proof for case Lam.

• EqApp: Similar to the proof for case App.

• EqPair: Similar to the proof for case Pair.

• EqProjL: Similar to the proof for case ProjL.

• EqProjR: Similar to the proof for case ProjR.

• EqExtSingle: κ = S(τ ′). By induction hypothesis (4) we have G |= S(τ) :: S(S(τ ′)). Hence by
definition of the logical relation, G |= S(τ) ∪S(τ ′) :: {?} holds. Then, since S(τ) ∪S(τ ′) =
S(τ) ∪S(τ ′) ∪S(τ ′), G |= S(τ) ∪S(τ ′) :: S(S(τ ′)) holds.

• EqExtPi: Similar to the proof for case ExtPi.

• EqExtSigma: Similar to the proof for case ExtSigma.

• EqSub: Follows from induction hypotheses (e) and (c).

The following lemma is used for the initialization of the logical relation: bindings of wellformed
environment are logically related.

Lemma 3.5.38 (Initialization). If Γ `HS ok, then for-all α ∈ dom Γ , {Γ } |= {α} :: {Γ(α)} holds. In other
words, {Γ } |= {id} : Γ , where id is the identity substitution.

Proof. By induction on Γ :

• Γ = ε: there is nothing to prove.

97

Chapter 3 Type definitions and singleton kinds

• Γ = Γ ′, α :: κ: then we have Γ ′ `HS ok and Γ ′ `HS κ ok and α /∈ dom Γ ′. Then by induction
hypothesis, {Γ ′} |= {id} : Γ ′ holds. Hence by Lemma 3.5.30 on page 87, we get {Γ ′, α :: κ} |=
{id} : Γ ′. Then, since Γ ′ `HS κ ok, by Lemma 3.5.37 on page 94 we get {Γ ′, α :: κ} |= {κ}. Then,
since dηκ αedΓ

′,α::κe βπη•←→ dαedΓ ′,α::κe by Lemma 3.5.19 on page 82, the Proposition 3.5.35
on page 91(c) entails {Γ ′, α :: κ} |= {α} :: {κ}. Then, by Lemma 3.5.36 on page 94 we get
{Γ ′, α :: κ} |= id : Γ ′, α :: κ.

We can now establish that equivalent kinds (resp. types) are logically related.

Proposition 3.5.39. The following assertions hold:

• If Γ `HS κ1 ≡ κ2, then {Γ } |= {κ1, κ2};

• If Γ `HS τ1 ≡ τ2 :: κ, then {Γ } |= {τ1, τ2} :: {κ}.

Proof. Follows from Lemma 3.5.37 on page 94 and Lemma 3.5.38 on the previous page.

We can eventually conclude with the completeness theorem.

Theorem 3.5.40 (Completeness). The following assertions hold:

• If Γ `HS κ1 ≡ κ2, then dκ1edΓe
βπη•←→ dκ2edΓe;

• If Γ `HS τ1 ≡ τ2 :: κ, then dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe.

Proof. Follows from Proposition 3.5.39 and Proposition 3.5.35 on page 91.

3.5.8 Adequacy

The final adequacy theorem ensures that equivalence on wellformed kinds (resp. types) is equivalent
to convertibility up to insertion of expansors.

Theorem 3.5.41 (Adequacy). The following assertions hold:

• Γ `HS κ1 ≡ κ2 holds iff Γ `HS κ1 ok and Γ `HS κ2 ok and dκ1edΓe
βπη•←→ dκ2edΓe hold.

• Γ `HS τ1 ≡ τ2 :: κ holds iff Γ `HS τ1 :: κ and Γ `HS τ2 :: κ and dηκ τ1edΓe
βπη•←→ dηκ τ2edΓe hold.

Proof. Follows fromTheorem 3.5.25 on page 84, Theorem 3.5.40, and Proposition 3.1.2 on page 61.

Thanks to confluence and strong normalization (Theorem 3.5.15 and Theorem 3.5.17 on page 82),
this theorem gives a family of algorithms to decide equivalence, defined by the possible strategies
to implement normalization or convertibility.
In [Cra07], Crary gives a method to eliminate singleton kinds: in a nutshell, he shows that it

suffices to replace every free type variable with its η-expansion, then erase the singletons in the
type annotations on the arguments of functions, and eventually test for β-equality. Aside from the
erasure of singletons inside annotation, this is similar to our method: indeed, complete η•-reduction
corresponds to η-expansion. The difference relies in the insertion of expansors: we insert expansors
at every type variable, whenever they are free or bound. We can define a weak insertion of expansors,
that would perform insertion at free occurrences of variables only, as follows:

98

3.5 Small-step extensional equivalence for singleton types

MinVar

Γ `HS α SΓ(α)(α)

MinLam
Γ, α :: κ1 `HS τ κ2

Γ `HS κ1 ok α /∈ dom Γ
Γ `HS λ(α :: κ1) τ Π(α : κ1) κ2

MinApp
Γ `HS τ1 Π(α : κ ′2) κ1

Γ `HS τ2 κ2 Γ `HS κ2 6 κ
′
2

Γ `HS τ1 τ2 κ1[α← τ2]

MinPair
Γ `HS τ1 κ1 Γ `HS τ2 κ2

Γ `HS (τ1, τ2) κ1 × κ2

MinProj
Γ `HS τ κ1 × κ2

Γ `HS τ.i κi

Figure 3.12: Minimal kinds.

Definition 3.5.17 (Weak insertion of expansors).

{ε} , ε

{Γ, α :: κ} , {Γ }, α :: {κ}{Γ}

{?}Γ , ?

{S(τ)}Γ , S({τ}Γ)

{Π(α : κ1) κ2}
Γ , Π(α : {κ1}

Γ) {κ2}
Γ

{Σ(α : κ1) κ2}
Γ , Σ(α : {κ1}

Γ) {κ2}
Γ

{α}Γ ,

{
ηΓ(α) α if α ∈ dom Γ
α otherwise

{ηκ}
Γ , η{κ}Γ

{λ(α :: κ) τ}Γ , λ(α :: {κ}Γ) {τ}Γ

{τ1 τ2}
Γ , {τ1}

Γ {τ2}
Γ

{(τ1, τ2)}
Γ , ({τ1}

Γ , {τ2}
Γ)

{τ.i}Γ , {τ}Γ .i

The only difference with insertion (Definition 3.5.9 on page 78) is that the environment is not
extended when the insertion function traverses a binder. Therefore, bound variables are left un-
changed by weak insertion. Weak insertion has the interesting property that it commutes with
substitution, whereas our insertion has a different notion of commutation (Lemma 3.5.22 on page 83).
Interestingly, we have checked that the completeness proof continues to work if one uses weak
insertion to characterize type equivalence; however, strong insertion is still required for the char-
acterization of kind equivalence. We show in Section 3.5.9 that our insertion has other interesting
properties, that weak insertion does not enjoy.

We think that our approach ismore regular, because it uses the same procedure for types and kinds,
and also more flexible, because the commutation between βπ and η• permits to freely interleave
reduction of redexes and expansions of expansors. This permits, for instance, to delay the unfolding
of definitions. However, we insert more expansors, i.e. we possibly perform more η-expansions,
than Crary’s characterization does. This could possibly render more costly an algorithm based on
our method.

3.5.9 Insertions of expansors and minimal kinds

In Figure 3.12, we recall the definition of the minimal kind, from [SH06]. Minimal kinds are defined
in a similar way to the elimination of subtyping and of strengthening in module systems: variables
are given their most precise kind, that is the singleton kind of themselves at the kind given by the
environment. Other constructions use their natural rules: the Lam rule for functions, the Pair rule
for pairs, etc. In the case of applications, we also check that the argument has a lesser kind than
the one expected by the left part of the application. Stone and Harper show that this judgment
effectively defines minimal kinds:

Lemma 3.5.42 (Soundness of minimal kinds). If Γ `HS ok and Γ `HS τ κ, then Γ `HS τ :: κ holds.

99

Chapter 3 Type definitions and singleton kinds

Lemma 3.5.43 (Completeness of minimal kinds). If Γ `HS τ κ and Γ `HS τ ::κ
′, then Γ `HS κ6Sκ′(τ)

holds.

Combined with the fact that Γ `HS Sκ′(τ)6 κ ′ (Proposition 3.1.8 on page 61), it shows that the
kind κ is indeed minimal.

We can show a lemma that is analogous to Lemma 3.4.22 on page 73: when inserting expansors in
a type, adding an additional expansor at itsminimal kind is superfluous. In other words, normalizing
a type up to expansion is the same as normalizing it at its minimal kind.
To prove this result, we first need a preliminary lemma that deals with expansors at a singleton

kind: they have the interesting property that they always give the same result, that is, the expansion
of the singleton itself.

Lemma 3.5.44. For any environment Γ , types τ and τ ′, and kind κ, the assertion dηSκ(τ′) τedΓe
βπη•←→

dηκ τ ′edΓe holds.

Proof. By induction on the size of κ:

• κ = ?: immediate, since S?(τ ′) = S(τ ′).

• κ = S(τ ′′): immediate, since SS(τ′′)(τ ′) = S(τ ′′).

• κ = Π(α : κ1) κ2:

dηSΠ(α:κ1)κ2(τ
′) τedΓe

= dηΠ(α:κ1)Sκ2(τ
′ α) τedΓe

= ηΠ(α:dκ1edΓe) dSκ2(τ′ α)e
dΓ,α::κ1e dτedΓe

βπη•←→ λ(α :: dκ1edΓe)ηdSκ2(τ′ α)edΓ,α::κ1e (dτedΓe (ηdκ1edΓe α))
βπη•←→ λ(α :: dκ1edΓe)ηdκ2edΓ,α::κ1e (dτ ′edΓe (ηdκ1edΓe α)) by induction hypothesis
βπη•←→ ηΠ(α:dκ1edΓe) dκ2edΓ,α::κ1e dτ ′edΓe
= dηΠ(α:κ1)κ2 τ

′edΓe

• κ = Σ(α : κ1) κ2:

dηSΣ(α:κ1)κ2(τ
′) τedΓe

= dηΣ(α:Sκ1(τ′.1))Sκ2(τ′.2) τe
dΓe

= η
Σ(α:dSκ1(τ′.1)edΓe) dSκ2(τ′.2)e

dΓ,α::Sκ1 (τ′.1)e dτedΓe
βπη•←→ (ηdSκ1(τ′.1)edΓe dτe

dΓe.1, ηdSκ2(τ′.2)edΓ,α::Sκ1 (τ′.1)e[α←dηSκ1 (τ′.1) τ.1edΓe]
dτedΓe.2)

= (ηdSκ1(τ′.1)edΓe dτe
dΓe.1, ηdSκ2(τ′.2)edΓe[α←dηSκ1 (τ′.1) (ηSκ1 (τ′.1) τ.1)edΓe] dτe

dΓe.2)
βπη•←→ (ηdSκ1(τ′.1)edΓe dτe

dΓe.1, ηdSκ2(τ′.2)edΓe[α←dηSκ1 (τ′.1) τ.1edΓe] dτe
dΓe.2) by Lemma 3.5.19

βπη•←→ (ηdκ1edΓe dτ
′edΓe.1, ηdSκ2(τ′.2)edΓe[α←ηdκ1edΓe dτ′edΓe.1]

dτedΓe.2) by induction
= (ηdκ1edΓe dτ

′edΓe.1, ηdSκ2[α←ηκ1 τ
′.1](τ

′.2)edΓe dτedΓe.2)
βπη•←→ (ηdκ1edΓe dτ

′edΓe.1, ηdκ2[α←ηκ1 τ.′1]edΓe
dτed′eΓ .2) by induction

= (ηdκ1edΓe dτ
′edΓe.1, ηdκ2edΓ,α::κ1e[α←dτ′edΓe.1] dτ ′edΓe.2)

βπη•←→ (ηdκ1edΓe dτ
′edΓe.1, ηdκ2edΓ,α::κ1e[α←ηdκ1edΓe dτ

′edΓe.1] dτ ′edΓe.2)
βπη•←→ ηΣ(α:dκ1edΓe) dκ2edΓ,α::κ1e dτ ′edΓe
= dηΣ(α:κ1)κ2 τ

′edΓe

100

3.5 Small-step extensional equivalence for singleton types

We now prove the result on minimal kind and convertibility.

Lemma 3.5.45. If Γ `HS ok and Γ `HS τ κ, then dηκ τedΓe
βπη•←→ dτedΓe.

Proof. By induction on τ:

• τ = α:

dηSΓ(α)(α) αedΓe
βπη•←→ dηΓ(α) αedΓe by Lemma 3.5.44
= ηdκedΓ1e (ηdκedΓ1e α) where Γ = Γ1, α :: κ, Γ2
βπη•←→ ηdκedΓ1e α by Lemma 3.5.19
= dαedΓe

• τ = λ(α :: κ1) τ2:We have Γ, α::κ1`HSτ2 κ2 and by induction hypothesis, dηκ2 τ2edΓ,α::κ1e βπη•←→
dτ2edΓ,α::κ1e (1). Then:

dηΠ(α:κ1)κ2 (λ(α :: κ1) τ2)edΓe
= ηΠ(α:dκ1edΓe) dκ2edΓ,α::κ1e (λ(α :: dκ1edΓe) dτ2edΓ,α::κ1e)
βπη•←→ λ(α :: dκ1edΓe)ηdκ2edΓ,α::κ1e ((λ(α :: dκ1edΓe) dτ2edΓ,α::κ1e) (ηdκ1edΓe α))
βπη•←→ λ(α :: dκ1edΓe)ηdκ2edΓ,α::κ1e dτ2edΓ,α::κ1e[α← ηdκ1edΓe α]
βπη•←→ λ(α :: dκ1edΓe)ηdκ2edΓ,α::κ1e dτ2edΓ,α::κ1e by Lemma 3.5.20
βπη•←→ λ(α :: dκ1edΓe) dτ2edΓ,α::κ1e by (1)
= dλ(α :: κ1) τ2edΓe

• τ = τ1 τ2: Then, κ is of the form κ1[α← τ2] (1) such that Γ `HS τ1 Π(α : κ ′2) κ1. Moreover,
by induction hypothesis, dηΠ(α:κ′2)κ1 τ1edΓe

βπη•←→ dτ1edΓe (2). Moreover, since Γ `HS τ2 :: κ
′
2, by

Lemma 3.5.42 and rule Sub, it holds that Γ `HS τ2≡ (λ(β :κ ′2)β) τ2 ::κ
′
2, and hence Γ `HS τ1 τ2≡

τ1 ((λ(β : κ ′2)β) τ2) :: κ1[α← τ2] holds by EqApp. Then, thanks to adequacy (Theorem 3.5.41
on page 98), we have dηκ1[α←τ2] (τ1 τ2)edΓe

βπη•←→ dηκ1[α←τ2] (τ1 ((λ(β : κ ′2)β) τ2))edΓe (3).
Furthermore, it is true that Γ `HS κ1[α← τ2] ≡ κ1[α← (λ(β : κ ′2)β) τ2], hence by adequacy,
dκ1[α← τ2]eΓ

βπη•←→ dκ1[α← (λ(β : κ ′2)β) τ2]eΓ (4) holds. Hence,

dτ1 τ2edΓe
= dτ1edΓe dτ2edΓe
βπη•←→ (dηΠ(α:κ′2)κ1 τ1edΓe) dτ2edΓe by (2)
βπη•←→ (η

Π(α:dκ′2edΓe) dκ1edΓ,α::κ′2e dτ1e
dΓe) dτ2edΓe

βπη•←→ ηdκ1edΓ,α::κ′2e[α←dηκ′2 τ2e
dΓe]

(dτ1edΓe (ηdκ′2edΓe dτ2e
dΓe))

βπη•←→ ηdκ1edΓ,α::κ′2e[α←dτ2edΓe]
(dτ1edΓe (ηdκ′2edΓe dτ2e

dΓe)) by Lemma 3.5.19
= ηdκ1[α←ηκ′2 τ2]e

dΓe (dτ1edΓe (ηdκ′2edΓe dτ2e
dΓe)) by Lemma 3.5.22

βπη•←→ ηdκ1[α←τ2]edΓe (dτ1e
dΓe (ηdκ′2edΓe dτ2e

dΓe)) by Lemma 3.5.22 and (4)
βπη•←→ ηdκ1[α←τ2]edΓe (dτ1e

dΓe dτ2edΓe) by (3)
= dηκ (τ1 τ2)edΓe

• τ = (τ1, τ2): We have Γ `HS τi κi with dηκi τiedΓe
βπη•←→ dτiedΓe (1) by induction hypothesis.

101

Chapter 3 Type definitions and singleton kinds

NatVar

Γ `HS α ↑ Γ(α)

NatLam
Γ, α :: κ1 `HS τ ↑ κ2

Γ `HS κ1 ok α /∈ dom Γ
Γ `HS λ(α :: κ1) τ ↑ Π(α : κ1) κ2

NatApp
Γ `HS τ1 ↑ Π(α : κ ′2) κ1

Γ `HS τ2 ↑ κ2 Γ `HS Sκ2(τ2)6 κ
′
2

Γ `HS τ1 τ2 ↑ κ1[α← τ2]

NatPair
Γ `HS τ1 ↑ κ1 Γ `HS τ2 ↑ κ2

Γ `HS (τ1, τ2) ↑ κ1 × κ2

NatProj
Γ `HS τ ↑ κ1 × κ2

Γ `HS τ.i ↑ κi

Figure 3.13: Natural kinds.

Then:

dηκ1×κ2 (τ1, τ2)edΓe
βπη•←→ (ηdκ1edΓe dτ1e

dΓe, ηdκ2edΓe dτ2e
dΓe)

βπη•←→ (dτ1edΓe, dτ2edΓe) by (1)

• τ = τ1.i:We have Γ`HSτ1 κ1×κ2 and dηκ1×κ2 τ1edΓe
βπη•←→ dτ1edΓe (1) by induction hypothesis.

Then:

dηκi τ1.iedΓe
= ηdκiedΓe dτ1e

dΓe.i
βπη•←→ (ηdκ1edΓe dτ1e

dΓe.1, ηdκ2edΓe dτ1e
dΓe.2).i

βπη•←→ (ηdκ1×κ2edΓe dτ1e
dΓe).i

βπη•←→ dτ1edΓe.i by (1)
= dτ1.iedΓe

Stone and Harper define natural kinds for paths (Figure 3.5 on page 62), but we can extend the
definition to any type as in Figure 3.13.

There are two differences with the definition of minimal kinds: in the case of variables, one only
takes the kind given by the context, without taking its singleton; for the case of applications, the
condition on subkinding is slightly changed, by taking the singleton of the argument τ2 at its natural
kind κ2, instead of κ2 directly. We can show that natural kinds are valid kinds:

Lemma 3.5.46 (Soundness of natural kind). If Γ `HS ok and Γ `HS τ ↑ κ, then Γ `HS τ :: κ.

Proof. By induction on the natural kind judgment.

Following [SH06], one can show the following relation between natural and minimal kinds:

Lemma 3.5.47. Assume a type τ and an environment Γ such that Γ `HS ok holds. Then, there exists a
natural kind κn for τ (i.e. such that Γ `HS τ ↑ κn holds) iff there exists a minimal kind κm for τ (i.e. such
that Γ `HS τ κm holds). Moreover, Γ `HS κm ≡ Sκn(τ) holds.

Proof. We show each implication separately, by induction on judgment in hypothesis.

This property has an interesting consequence with respect to convertibility:

Lemma 3.5.48. Assume that Γ `HS ok, Γ `HS τ↑κn, and that Γ `HS τ κm hold. Then the following holds:
dηκn τeΓ

βπη•←→ dηκm τeΓ
βπη•←→ dτeΓ .

102

3.5 Small-step extensional equivalence for singleton types

Proof. Weprove the two parts of convertibility separately. The first part holds thanks to Lemma 3.5.47
on the facing page, Theorem 3.5.41 on page 98, and Lemma 3.5.44 on page 100. The second part is
directly proved by Lemma 3.5.45 on page 101.

This last property is interesting for at least two reasons: first, it shows that minimal and natural
kinds are so tightly related notions that convertibility up to insertion cannot distinguish them.
Second, it gives an absolute notion of normal form. Stone-Harper’s normalization algorithm requires
a kind relative to which the types under consideration are normalized. Indeed, the normal forms
depend on this kind. We show that it is possible to define normal forms independently of any
particular kind, and that the definition obtained is equivalent to choosing either the natural kind or
the minimal kind: there is no difference.

3.5.10 A second reading of Stone-Harper’s normalization algorithm

Our characterization permits to re-explore the normalization algorithm of from Stone and Harper.
We will reuse the definition from Section 3.1.4 on page 62. We can indeed show that every step of
the algorithm preserves convertibility up to insertion of expansors. We can show that the following
invariants hold for the algorithm:

Lemma 3.5.49 (Invariants of the normalization algorithm). The following assertions hold:

Natural kind: If Γ `HS p :: κ and Γ . p ↑ κ, then dpedΓe
βπη•←→ dηκ pedΓe holds;

Head reduction: If Γ `HS τ :: ? and Γ . τ τ ′, then dτeΓ βπη•←→ dτ ′eΓ holds;

Head normalization: If Γ `HS τ :: ? and Γ . τ ⇓ τ ′, then dτeΓ βπη•←→ dτ ′eΓ holds;

Type normalization: If Γ `HS τ :: κ and Γ . τ :: κ =⇒ τ ′, then dηκ τedΓe
βπη•←→ dηκ τ ′edΓe holds;

Path normalization: If Γ `HS p :: κ and Γ . τ −→ τ ′ ↑ κ, then dτeΓ βπη•←→ dτ ′eΓ βπη•←→ dηκ τeΓ holds;

Kind normalization: If Γ `HS κ ok and Γ . κ =⇒ κ ′, then dκeΓ ←→ dκ ′eΓ holds.

We assume that head reduction and head normalization are performed on types that have a base
kind: this is because these two parts of the algorithm always consider such types.
The proof relies on the adequacy theorem (Theorem 3.5.41 on page 98) in several places. This is

because we insert expansors at some places where the algorithm does not perform η-expansions:
it happens every time a substitution is performed by the algorithm. This is the case, for instance,
for the invariant on natural kinds. Remark that the proof of Lemma 3.5.45 on page 101 needs the
adequacy property as well, and the two proofs are mostly identical.
This is also the case of head reduction, where β-reduction up to insertion of expansors adds an

expansor on the argument: β-reduction is translated to d(λ(α :κ) τ) uedΓe β−→ dτedΓe[α←dηκ uedΓe].
However, we know from the adequacy theorem and from Lemma 3.5.22 on page 83 that if Γ `HS

E[(λ(α : κ) τ) u]≡ E[τ[α← u]] :: ?, then d(λ(α : κ) τ) uedΓe βπη•←→ dτedΓe[α← duedΓe] holds.
Since ourmethod possibly performsmore η-expansions than the original normalization algorithm,

our characterization might require more computation. This should be balanced with the flexibility
that is brought by our method: the original algorithm maintains the current natural kinds, and
threads this kind of information throughout the computation, from one computation to the next.
Since some parts of the algorithm demand a kind to further proceed, it does not seem obvious
to relax this constraint on the normalization strategy. By contrast, we define reduction without
relying on kinds, but rather by internalizing the environment by inserting expansors. As shown
by Lemma 3.5.48 on the facing page, this is equivalent to maintaining the natural (or the minimal)

103

Chapter 3 Type definitions and singleton kinds

kind. As a consequence, we do not need to keep the natural kind up to date, and, combined with
confluence and strong normalization of the reduction relation, it offers a greater flexibility in the
choice of the normalization strategy.
We think that the flexibility brought by our method is not only easy to understand, because it

uses well-known operations, but can also lead to more efficient algorithms to decide equivalence or
normalize types.

3.6 Related work

This chapter is heavily based on Stone and Harpers’s system of singleton kinds [SH06], and compar-
isons have been made throughout the sections. In a nutshell, we developed an alternate manner to
decide type and kind equivalence in their system. Our method is based on a confluent and strongly
normalizing reduction relation that combines β-reduction and η-expansion, whereas, in the original
system, equivalence is decided through the use of an algorithm. As it uses a small-step reduction
relation, our method is rather simple to understand, and its properties offer more flexibility to
implementers. We believe it could lead to more efficient procedures, by reusing the experience
gained by developers of proof checkers for dependent type systems: designing efficient algorithmic
tests for convertibility is known to be a subtle art, where clever heuristics play an important role.

Crary [Cra07] developed a sound and complete way to eliminate singleton kinds, that is a transfor-
mation that erases singleton annotations, and reduces equivalence to β-equivalence. The more sub-
stantial part of the transformation on types consists in replacing free variables by their η-expansion,
and performing a head η-expansion. During this operation, η-expansion is kind-directed, and
expanding a type τ at the singleton kind S(τ ′) replaces τ with τ ′: in other words, η-expansion
at singleton kinds is analogous to unfolding type definitions. Expansions at other kinds permits
to access deep occurrences of singletons, and, consequently, allows to unfold definitions that are
not directly available. Our method differs in two points with Crary’s: first, our expansions can be
considered as lazy expansions, since they are defined in a small-step manner, and can be interleaved
with other reduction steps. Second, we expand every variables, even bound occurrences.

In the study of dependent type systems, Goguen [Gog05b, Gog05a] showed that βη-equality
can be reduced to β-equality, as long as enough η-expansions have been performed: basically, to
check for βη-equality, it suffices to η-expand every subterm, and then check for β-equality. As a
comparison, we only expand variables instead of every subterm. He sketches an application to a
system with singletons, but without subtyping, which, we think, constitutes the main source of
difficulty.
Courant [Cou03] defined a small-step reduction relation for a system with singleton kinds, that

he proved confluent and strongly normalizing. The corresponding notion of equivalence, however,
was intentional. The reduction relation is based on a procedure that is very close to the notion of
natural kinds. Interestingly, Courant also inserts marks (τ : κ) to remember natural kinds, that are
close to ηκ τ in our setting. He also noticed that his marks commute with substitution by keeping
marks in substituted variables: this is exactly what happens in our setting.

More recently, Crary [Cra09] defined a normalization procedure based on hereditary substitutions,
that is: substitutions that preserve η-long β-normal forms. Although his algorithm looks more
involved than Stone and Harper’s original system, the proof of completeness is simpler: it does not
require the use of complex methods, such as logical relations. He specified and proved his system
in Twelf [PS02], and it is now part of the mechanized definition of ML [LCH07]. The original logical
relation could not be expressed in Twelf, due to the limitation of Twelf’s logic. It is worth remarking
that the technique of hereditary substitutions does not lead to an efficient algorithm for testing
convertibility, since normal forms have to be computed.

104

3.7 Future work

3.7 Future work

We initiated our study of singleton kinds with the intention to extend them to richer types and kinds.
More specifically, we wanted to consider a system with records of types classified by dependent
record kinds, and width subkinding. Such a system is presented in Chapter 4. Becoming acquainted
with the basic system of singleton kinds and its metatheory turned out to be a substantial task that
lead to the unanticipated, new results reported in this chapter.
The next step of the plan is to take the characterization of equivalence as a definition for equiv-

alence, and study the obtained system, compare the level of difficulty of its metatheory with the
original one, and consider an extension with records. As an immediate benefit, it would simplify
the cyclic dependencies between judgments and give a presentation of the system that is closer to
dependent type theories, where the conversion rule on types is defined in terms of the reduction
relation. The study of the system with the modified definition of equivalence has begun, but its
status is too immature to deserve a detailed description.

Modern programming languages offer the possibility to use recursive types whose metatheory is
subtle and has been extensively studied. For instance, Stone and Schoonmaker [SS] describe several
equational theories with recursive types, some of them including βη-equality. To our knowledge,
the interaction between recursive types and singleton kinds has never been studied, although this
combination would certainly lead to a clean, powerful and useful type system for designers and
implementers of programming languages.
As shorter term goal, we would also like to formalize our development in a proof assistant. The

proof of completeness looks like the most challenging part. As already mentioned, we already
proved in Coq the Section 3.3 on page 65, that contains the results dealing with the combination of
confluence and normalization from commutation diagrams. Another, more practical project, would
be to draw a performance-wise comparison between Stone-Harper’s original convertibility test, and
a well chosen strategy that implements our method.

105

« Je vis de bonne soupe, et non de beau langage. »

(Molière — Les Femmes savantes)

Chapter 4

A tentative design

In this chapter, we describe the language F.ω
S6 (read F-zip-full), that combines several features so as

to serve as a kernel language for modules that is relatively succinct — in particular more succinct
than Fω. It extends System Fω in three directions:

• it uses open existential types, whose constructs help to get rid of the block structure of programs
that use existential types, and render the definition of existential packages less verbose (see
Chapter 2 on page 7);

• it features width and depth subtyping on records as well as on records of types: this way,
the user does neither need to manually build and insert coercions to apply a function to an
argument, or to instantiate a polymorphic function;

• it incorporates the flexibility of singleton kinds, which model type definitions in programs,
along with a powerful notion of equivalence on types.

Consequently, this unique combination of features leverages the use of System F. This choice of
features was not made by chance: they all are already present in the ML module language. Indeed,
we already advocated that type abstraction in modules are modeled by the constructs of F.; the
signature inclusion found in ML allows for forgetting value components and type components,
as featured by subtyping and subkinding respectively; and finally, type components and type
definitions in ML are explained by singleton kinds, as demonstrated in [SH06]. We will see that this
combination of features supports programming in a style that is very close to ML modules, but also
that F.ω

S6 still lacks some features to provide full parity with ML modules. Unfortunately, it also
imports a recurring issue from ML: the avoidance problem (Section 4.1.4 on page 115).

In the next sections, we define the language F.ω
S6 , then we give some examples and draw compar-

isons with both System Fω and theML module language.

4.1 Definitions

In this section, we provide a definition for F.ω
S6 : it results from the integration of F.with width

subtyping on records and the singleton kind system, which is itself extended to support dependent
record kinds (also known as telescopes [Con03]) andwidth subkinding on records of types. Although
the definitions have been carefully designed, no proof on the metatheory of F.ω

S6 has been done
yet. We think it would be an interesting challenge to formalize F.ω

S6 and its meta-theory in a proof
assistant, especially if one aspires to do so in a modular way. The section ends with the statement of
some conjectures about the metatheory of F.ω

S6 , namely about natural properties on singletons and
type equivalence, and about type safety of the language.

107

Chapter 4 A tentative design

4.1.1 Terms

The syntax of terms is the same as in F., except that both generalization and the constructions for
existential types carry the kind at which type variables are introduced. In System F.of Chapter 2,
type variables wre restricted to range over the base kind, hence the kind was left implicit.

Definition 4.1.1 (Syntax of terms).

M ::= x | λ(x : τ)M | MM | let x =M inM
| Λ(α :: κ)M | Mτ

| {(`i =Mi)
i∈1..n} | M.`

| ∃(α :: κ)M | open 〈α〉M
| ν(α :: κ)M | Σ 〈β〉 (α = τ)M | (M : τ)

The typing rules of F.ω
S6 are given in Figure 4.1 on the facing page. They are similar to the ones of

Core F. (Section 2.3 on page 15), augmented with a weakening rule and a subtyping rule. Another
minor difference lies in the fact that F.ω

S6 features higher order functions on types à la Fω, while F.

only has the types of System F. We will see in Section 4.2 and in Section 4.3.2 that the rule Weaken
is necessary to allow some operations, such as renamings or relocations of existential type variables.
We alreadymade a similar remark in Section 2.6.1 on page 36. Notice also that we have to distinguish
between two different notions of coercion: an explicit coercion (· : τ) can be inserted between two
coercible types on the one hand, and an implicit coercion can be used between two types in a subtyping
relation, on the other hand. Coercibility is different from type equivalence (defined as the diagonal
of subtyping): type equivalence only propagates equalities that are carried by singleton kinds,
while coercibility is larger, because it also propagates equalities provided by equations. Notice that
coercibility is already present in F. (see Section 4.1.3 on page 112), but that type equivalence in F. is
restricted to syntactic equality.

4.1.2 Types and kinds

Definition 4.1.2 (Syntax of types and kinds).

τ ::= α | τ1 → τ2 | {(`i : τi)
i∈1..n} | ∀(α :: κ)τ | ∃(α :: κ)τ

| λ(α :: κ) τ | τ τ | 〈(`i = τi)i∈1..n〉 | τ.`
κ ::= ? | S(τ) | Π(α :: κ1) κ2 | 〈(`i as αi :: κi)i∈1..n〉

The types of F.ω
S6 are those of Fω extended with record types and records of types. Their kinds

are the same as in the singleton kind system [SH06], extended with dependent records kinds, that
classify records of types. We use the usual binding for dependent records: for instance, in the kind
〈`1 as α1 :: κ1 ; `2 as α2 :: κ2 ; `3 as α3 :: κ3〉, α1 binds in κ2 and κ3, while α2 binds in κ3.
In the rest of the chapter, the metavariables R denotes sequences of type fields (`i : τi)

i∈I, ρ
denotes sequences of kind fields (`i as αi :: τi)

i∈I, and r will denote sequences of term fields
(`i as xi =Mi)

i∈I.
Our judgments for types and kinds differ from [SH06] as follows:

• We allow more types at the base kind, namely: arrows, universal and existential types, and
record types. This extension is visible:

– in the wellformedness judgments in Figure 4.2 on page 111 through the rules WfType-
BaseArrow, WfTypeBaseEmpty, WfTypeBaseRecord, WfTypeForall and WfTypeExists;

– in the type equivalence judgment in Figure 4.6 on page 113 through the rules EqBaseAr-
row, EqBaseRecordSwap, EqBaseRecord, EqForall and EqExists;

108

4.1 Definitions

Var
Γ ` ok x : τ ∈ Γ

Γ ` x : τ

Lam
Γ, x : τ1 `M : τ2 Γ pure
Γ ` λ(x : τ1)M : τ1 → τ2

App
Γ1 . Γ2 = Γ

Γ1 `M1 : τ2 → τ1 Γ2 `M2 : τ2

Γ `M1 M2 : τ1

Let
Γ1 . Γ2 = Γ Γ1 `M1 : τ1

Γ2, x : τ1 `M2 : τ2

Γ ` let x =M1 inM2 : τ2

Proj
j ∈ 1..n

Γ `M : {(`i : τi)
i∈1..n}

Γ `M.`j : τj

Empty
Γ ` ok Γ pure

Γ ` {} : {}

Record
`1 /∈ {`i, i ∈ 2..n}

Γ1 . Γ2 = Γ Γ1 `M1 : τ1
Γ2 ` {(`i =Mi)

i∈2..n} : {(`i : τi)
i∈2..n}

Γ ` {(`i =Mi)
i∈1..n} : {(`i : τi)

i∈1..n}

Gen
Γ, ∀α :: κ `M : τ Γ pure
Γ ` Λ(α :: κ)M : ∀(α :: κ)τ

Inst
Γ ` τ : κ

Γ `M : ∀(α :: κ)τ ′

Γ `Mτ : τ ′[α← τ]

Exists
Γ, ∃α :: κ `M : τ

Γ ` ∃(α :: κ)M : ∃(α :: κ)τ

Open
α /∈ dom Γ, Γ ′

Γ, Γ ′ `M : ∃(α :: κ)τ

Γ, ∃α :: κ, Γ ′ ` open 〈α〉M : τ

Nu
α /∈ ftv(τ)

Γ, ∃α :: κ `M : τ

Γ ` ν(α :: κ)M : τ

Sigma
β /∈ dom Γ, Γ ′

Γ, Γ ′, ∀(α = τ :: κ) `M : τ ′

Γ, ∃β :: κ, Γ ′ ` Σ 〈β〉 (α = τ)M : τ ′

Coerce
Γ `M : τ ′ Γ ` τ ∼ τ ′ :: ?

Γ ` (M : τ) : τ

Sub
Γ `M : τ ′ Γ ` τ ′ 6 τ

Γ `M : τ

Weaken
Γ `M : τ Γ ′ w Γ

Γ ′ `M : τ

Figure 4.1: Typing rules of F.ω
S6 .

109

Chapter 4 A tentative design

• We use records of types with dependent record kinds, instead of pairs of types. This is visible
– in the wellformedness judgment in Figure 4.3 on page 112 and in Figure 4.2 on the next
page through the rules WfKindEmpty, WfKindRecord WfTypeEmpty, WfTypeRecord,
WfTypeProj and WfTypeExtRecord;

– in the subkinding judgment in Figure 4.4 on page 112, which is discussed hereafter;
– in the kind equivalence judgment in Figure 4.5 on page 112, that we directly defined as
the diagonal case of subkinding;

– in the type equivalence judgment in Figure 4.6 on page 113 through the rules EqEmpty,
EqRecord, EqProj and EqExtRecord.

From dependent pairs to dependent records

The generalization from dependent pair kinds to dependent record kinds would have been only a
cosmetic change, if we had not extended the subkinding relation on record kinds. The addition of
fields dropping and fields exchange had unexpected consequences on the definition of the system.
Indeed, in a first attempt, we added the following two subkinding rules, that respectively implement
dropping of a field and swapping of two fields, and then closed the relation by congruence and
transitivity:

KindSubDrop
Γ ` 〈`1 :: κ1 ; ρ〉 ok
Γ ` 〈`1 :: κ1 ; ρ〉6 〈ρ〉

KindSubSwap
Γ ` 〈`1 as α1 :: κ1 ; `2 as α2 :: κ2 ; ρ〉 ok α1 /∈ ftv(κ2) α2 /∈ ftv(κ1)

Γ ` 〈`1 as α1 :: κ1 ; `2 as α2 :: κ2 ; ρ〉6 〈`2 as α2 :: κ2 ; `1 as α1 :: κ1 ; ρ〉

Unfortunately, this definition does not capture the intention we had: the two kinds 〈`1 as α1 ::
? ; `2 :: S(α1)〉 and 〈`2 as α2 :: ? ; `1 :: S(α2)〉 are not comparable in the subkinding relation, while
they represent the same piece of information: the projections on the two fields `1 and `2 are identical
up to equivalence. Indeed, the rule KindSubSwap can never be applied, because the dependency
between the two fields cannot be broken. The only way to break this dependency would be to use
a name for the whole kind in order to compare the two projections: in other words, one would
like to use extensionality. Extensionality and subkinding indeed are very closely related: subtyping
can generally be encoded as rekinding functions that are βη-equivalent to the identity function.
Since extensional rules can already be used in the type wellformedness judgment, and because
subkinding is usually semantically characterized by an inclusion of semantics, it naturally comes to
mind to use the KindSubExt rule to close the relation under congruence:

KindSubExt
Γ, ∀α :: κ1 ` α :: κ2 Γ ` κ2 ok

Γ ` κ1 6 κ2

It reads that κ1 is a subkind of κ2 if every type of kind κ1 also has kind κ2. The kind wellformedness
condition on κ2 ensures that α is not free in κ2. Then, the extensional rule for records alone is
responsible for width subkinding and exchange of fields:

WfTypeExtRecord
Γ ` τ :: 〈(`i as α ′i :: κ ′i)i∈1..n〉 I ⊆ 1..n

Γ ` 〈(`i as αi :: κi)i∈I〉 ok ∀i ∈ I, Γ ` τ.`i :: κi[α1← τ.`1] · · · [αi−1← τ.`i−1]

Γ ` τ :: 〈(`i as αi :: κi)i∈I〉

110

4.1 Definitions

WfTypeVar
Γ ` ok Γ(α) = κ

Γ ` α :: κ

WfTypeBaseArrow
Γ ` τ1 :: ?
Γ ` τ2 :: ?

Γ ` τ1 → τ2 :: ?

WfTypeBaseEmpty
Γ ` ok
Γ ` {} :: ?

WfTypeBaseRecord
Γ ` τ1 :: ? ` /∈ {`i, i ∈ I}
ρ = (`i : τi)

i∈I Γ ` {ρ} :: ?

Γ ` {` : τ ; ρ} :: ?

WfTypeForall
Γ, ∀α :: κ ` τ :: ?
Γ ` ∀(α :: κ)τ :: ?

WfTypeExists
Γ, ∀α :: κ ` τ :: ?
Γ ` ∃(α :: κ)τ :: ?

WfTypeLam
Γ, ∀α :: κ1 ` τ :: κ2

Γ ` λ(α :: κ1) τ :: Π(α :: κ1) κ2

WfTypeApp
Γ ` τ1 :: Π(α :: κ2) κ1

Γ ` τ2 :: κ2

Γ ` τ1 τ2 :: κ1[α← τ2]

WfTypeExtPi
Γ, ∀α :: κ1 ` τ α :: κ2
Γ ` τ :: Π(α :: κ ′1) κ

′
2

Γ ` τ :: Π(α :: κ1) κ2

WfTypeEmpty
Γ ` ok
Γ ` 〈〉 :: 〈〉

WfTypeRecord
Γ ` 〈` as α :: κ ; ρ〉 ok Γ ` τ :: κ
Γ ` 〈(`i = κi)i∈I〉 :: 〈ρ〉[α← τ]

Γ ` 〈` = τ ; (`i = κi)
i∈I〉 :: 〈` as α :: κ ; ρ〉

WfTypeProj
j ∈ 1..n

Γ ` τ :: 〈(`i as αi :: κi)i∈1..n〉
Γ ` τ.`j :: κj[α1← τ.`1] · · · [αj−1← τ.`j−1]

WfTypeExtRecord
Γ ` τ :: {(`i as α ′i :: κ ′i)i∈1..n} I ⊆ 1..n

Γ ` 〈(`i as αi :: κi)i∈I〉 ok
∀i ∈ I, Γ ` τ.`i :: κi[α1← τ.`1] · · · [αi−1← τ.`i−1]

Γ ` τ :: 〈(`i as αi :: κi)i∈I〉

WfTypeExtSingle
Γ ` τ :: ?
Γ ` τ :: S(τ)

WfTypeSub
Γ ` τ :: κ ′ Γ ` κ ′ 6 κ

Γ ` τ :: κ

Figure 4.2: Wellformed types.

Notice that we do not require to project the record on all its fields, but only on some fields: this is
necessary to implement dropping of fields. It obviously implements the possibility to drop some
fields, as long as their dependency can be eliminated.
Let us now see how this solves the problem of swapping two dependent fields as above: to

prove `〈`1 as α1 :: ? ; `2 :: S(α1)〉 6 〈`2 as α2 :: ? ; `1 :: S(α2)〉 it suffices to prove that ∀α ::
〈`1 as α1 :: ? ; `2 as :: S(α1)〉 ` α :: 〈`2 as α2 :: ? ; `1 :: S(α2)〉 holds, thanks to KindSubExt. Then by
applying WfTypeExtRecord, it suffices to prove ∀α :: 〈`1 as α1 :: ? ; `2 as :: S(α1)〉 ` α.`2 :: ? and
∀α :: 〈`1 as α1 :: ? ; `2 as :: S(α1)〉 ` α.`1 :: S(α.`1) hold. The first judgment is easily proved by using
the rules WfTypeVar, WfTypeProj and WfTypeSub. The second one is proved using WfTypeVar,
WfTypeProj and WfTypeExtSingle.

The rule EqExtRecord is the counterpart of WfTypeExtRecord for type equivalence: it has been
changed in a similar way.

Remarks about the empty record kind

One can notice that the empty record kind 〈〉 is a singleton kind, in the sense that it only contains
one equivalence class of types: the equivalence class of the empty record type 〈〉. Indeed, assume
a type τ such that Γ ` τ :: 〈〉. Then, since Γ ` 〈〉 :: 〈〉, we get Γ ` τ ≡ 〈〉 :: 〈〉 by EqExtRecord. More
generally, whenever two types have a record kind, they are equivalent at the empty record kind
thanks to the rules WfTypeSub and EqExtRecord.

111

Chapter 4 A tentative design

WfKindStar
Γ ` ok
Γ ` ? ok

WfKindSingle
Γ ` τ :: ?
Γ ` S(τ) ok

WfKindPi
Γ, ∀α :: κ1 ` κ2 ok
Γ ` Π(α :: κ1) κ2 ok

WfKindEmpty
Γ ` ok
Γ ` 〈〉 ok

WfKindRecord
` /∈ {`i, i ∈ I} ρ = (`i as αi :: κi)i∈I Γ, ∀α :: κ ` 〈ρ〉 ok

Γ ` 〈` as α :: κ ; ρ〉 ok

Figure 4.3: Wellformed kinds.

KindSubForget
Γ ` τ :: ?

Γ ` S(τ)6 ?

KindSubSingle
Γ ` τ1 ≡ τ2 :: ?
Γ ` S(τ1)6 S(τ2)

KindSubExt
Γ, ∀α :: κ1 ` α :: κ2 Γ ` κ2 ok

Γ ` κ1 6 κ2

Figure 4.4: Subkinding.

Singletons at higher kinds

As in [SH06], singleton kinds are restricted to be at the base kind (see rule WfKindSingle). In the
same manner as in [SH06], we can extend singletons to higher kinds as follows:

Definition 4.1.3 (Higher-kinded singletons).

S?(τ) , S(τ)

SS(u)(τ) , S(τ)

SΠ(α::κ1)κ2(τ) , Π(α :: κ1) Sκ2(τ α)

S〈(`i as αi::κi)i∈1..n〉(τ) , 〈(`i :: Sκi(τ.`i)[α1← τ.`1] · · · [αi−1← τ.`i−1])
i∈1..n〉

This definition can be understood as extensionality at the level of kinds.

4.1.3 Coercibility

Two types are coercible when they are equivalent in the sense of the singleton kinds system and up
to the equations present in the context. The coercibility judgment is indexed by kinds to inherit the
full power of type equivalence, which is also indexed by kinds. In the typing rules of Figure 4.1
on page 109, however, coercibility is only used between types at the base kind, i.e. the types that
classify terms, as coercibility can only be used through the term-level construct of coercion (· : τ).
One can understand equations as explicit singletons, and, conversely, singletons can be seen as

implicit equations: they both carry a piece of information that connects a type variable to a type, but
the way they can be used and their purpose are different. On the one hand, singleton kinds are

KindEq
Γ ` κ1 6 κ2 Γ ` κ2 6 κ1

Γ ` κ1 ≡ κ2

Figure 4.5: Equivalent kinds.

112

4.1 Definitions

EqRefl
Γ ` τ :: κ

Γ ` τ≡ τ :: κ

EqSym
Γ ` τ2 ≡ τ1 :: κ
Γ ` τ1 ≡ τ2 :: κ

EqTrans
Γ ` τ1 ≡ τ2 :: κ Γ ` τ2 ≡ τ3 :: κ

Γ ` τ1 ≡ τ3 :: κ

EqBaseArrow
Γ ` τ1 ≡ τ ′1 :: ? Γ ` τ2 ≡ τ ′2 :: ?

Γ ` τ1 → τ2 ≡ τ ′1 → τ ′2 :: ?

EqBaseRecordSwap
Γ ` {`1 : τ1 ; `2 : τ2 ; R} :: ?

Γ ` {`1 : τ1 ; `2 : τ2 ; R}≡ {`2 : τ2 ; `1 : τ1 ; R} :: ?

EqBaseEmpty
Γ ` ok

Γ ` {}≡ {} :: ?

EqBaseRecord
` /∈ {`i, i ∈ I} ∪ {` ′j, j ∈ J} Γ ` τ≡ τ ′ :: ?

R = (`i : τi)
i∈1..n R ′ = (` ′i : τ

′
i)
i∈1..n′ Γ ` {R}≡ {R ′} :: ?

Γ ` {` : τ ; R}≡ {` : τ ′ ; R ′} :: ?

EqForall
Γ ` κ1 ≡ κ2 :: ? Γ, ∀α :: κ1 ` τ1 ≡ τ2 :: ?

Γ ` ∀(α :: κ1)τ1 ≡ ∀(α :: κ2)τ2 :: ?

EqExists
Γ ` κ1 ≡ κ2 :: ? Γ, ∀α :: κ1 ` τ1 ≡ τ2 :: ?

Γ ` ∃(α :: κ1)τ1 ≡ ∃(α :: κ2)τ2 :: ?

EqLam
Γ ` κ1 ≡ κ2 Γ, α : κ1 ` τ1 ≡ τ2 :: κ ′

Γ ` λ(α :: κ1) τ1 ≡ λ(α :: κ2) τ2 :: Π(α : κ1) κ
′

EqApp
Γ ` τ1 ≡ τ ′1 :: Π(α : κ2) κ1

Γ ` τ2 ≡ τ ′2 :: κ2

Γ ` τ1 τ2 ≡ τ ′1 τ ′2 :: κ1[α← τ2]

EqProj
Γ ` τ1 ≡ τ2 :: 〈(`i as αi :: κi)i∈1..n〉 j ∈ 1..n

Γ ` τ1.`j ≡ τ2.`j :: κj[α1← τ1.`1] · · · [αj−1← τ1.`j−1]

EqEmpty
Γ ` ok

Γ ` 〈〉 ≡ 〈〉 :: 〈〉

EqRecord
Γ ` 〈(`i as αi :: κi)i∈1..n〉 ok

∀i ∈ 1..n, Γ ` τi ≡ τ ′i :: κi[α1← τ1] · · · [αi−1← τi−1]

Γ ` 〈(`i = τi)i∈1..n〉 ≡ 〈(`i = τ ′i)i∈1..n〉 :: 〈(`i as αi :: κi)i∈1..n〉

EqExtPi
Γ, α : κ1 ` τ1 α≡ τ2 α :: κ2

Γ ` τ1 :: Π(α :: κ1) κ3 Γ ` τ2 :: Π(α :: κ1) κ4

Γ ` τ1 ≡ τ2 :: Π(α : κ1) κ2

EqExtRecord
Γ ` 〈(`i as αi :: κi)i∈I〉 ok I ⊆ 1..n

Γ ` τ1 :: 〈(`i as α ′i :: κ ′i)i∈1..n〉 Γ ` τ2 :: 〈(`i as α ′′i :: κ ′′i)
i∈1..n〉

∀i ∈ I, Γ ` τ1.`i ≡ τ2.`i :: κi[α1← τ1] · · · [αi−1← τi−1]

Γ ` τ1 ≡ τ2 :: 〈(`i as αi :: κi)i∈I〉

EqExtSingle
Γ ` τ1 :: S(τ2)

Γ ` τ1 ≡ τ2 :: S(τ2)

EqSub
Γ ` τ1 ≡ τ2 :: κ1 Γ ` κ1 6 κ2

Γ ` τ1 ≡ τ2 :: κ2

Figure 4.6: Type equivalence.

113

Chapter 4 A tentative design

CoerceEq
Γ ` τ1 ≡ τ2 :: κ
Γ ` τ1 ∼ τ2 :: κ

CoerceUnfold
Γ ` ok ∀(α = τ :: κ) ∈ Γ

Γ ` α ∼ τ :: κ

CoerceSym
Γ ` τ2 ∼ τ1 :: κ
Γ ` τ1 ∼ τ2 :: κ

CoerceTrans
Γ ` τ1 ∼ τ2 :: κ Γ ` τ2 ∼ τ3 :: κ

Γ ` τ1 ∼ τ3 :: κ

CoerceBaseArrow
Γ ` τ1 ∼ τ ′1 :: ? Γ ` τ2 ∼ τ ′2 :: ?
Γ ` τ1 → τ2 ∼ τ

′
1 → τ ′2 :: ?

CoerceBaseEmpty
Γ ` ok

Γ ` {} ∼ {} :: ?

CoerceBaseRecord
Γ ` τ1 ∼ τ ′1 :: ? `1 /∈ {`i, i ∈ I}

R = (`i : τi)
i∈I R ′ = (`i : τ

′
i)
i∈I Γ ` {R} ∼ {R ′} :: ?

Γ ` {`1 : τ1 ; R} ∼ {`1 : τ ′1 ; R ′} :: ?

CoerceBaseForall
Γ ` κ ∼ κ ′ Γ, ∀α :: κ ` τ ∼ τ ′ :: ?
Γ ` ∀(α :: κ)τ ∼ ∀(α :: κ ′)τ ′ :: ?

CoerceBaseExists
Γ ` κ ∼ κ ′ Γ, ∀α :: κ ` τ ∼ τ ′ :: ?
Γ ` ∃(α :: κ)τ ∼ ∃(α :: κ ′)τ ′ :: ?

CoerceLam
Γ ` κ ∼ κ ′ Γ, ∀α :: κ ` τ ∼ τ ′ :: κ0

Γ ` λ(α :: κ) τ ∼ λ(α :: κ ′) τ ′ :: Π(α : κ) κ0

CoerceApp
Γ ` τ1 ∼ τ ′1 :: Π(α : κ2) κ1 Γ ` τ2 ∼ τ ′2 :: κ2

Γ ` τ1 τ2 ∼ τ ′1 τ ′2 :: κ1[α← τ2]

CoerceEmpty
Γ ` ok

Γ ` 〈〉 ∼ 〈〉 :: 〈〉

CoerceRecord
Γ ` τ1 ∼ τ ′1 :: κ1 `1 /∈ {`i, i ∈ 2..n} Γ ` 〈`1 as α :: κ1 ; ρ〉 ok

Γ ` 〈(`i = τi)i∈2..n〉 ∼ 〈(`i = τ ′i)i∈2..n〉 :: 〈ρ〉[α← τ1]

Γ ` 〈`1 = τ1 ; (`i = τi)
i∈2..n〉 ∼ 〈`1 = τ ′1 ; (`i = τ

′
i)
i∈2..n〉 :: 〈`1 as α :: κ1 ; ρ〉

CoerceProj
Γ ` τ ∼ τ ′ :: 〈` as α :: κ ; ρ〉

Γ ` τ.` ∼ τ ′.` :: κ

CoerceKind
Γ ` τ ∼ τ ′ :: κ1 Γ ` κ1 ∼ κ2

Γ ` τ ∼ τ ′ :: κ2

Figure 4.7: Coercible types.

used to model definitions at the type level, hence these definitions must be freely usable once they are
introduced in the context. On the other hand, equations are used to define witnesses for existential
types: coercions are used to specify when witnesses must be hidden (see Chapter 2).
Coercibility is defined in Figure 4.7 and Figure 4.8 on the next page: rules CoerceEq and Co-

erceUnfold include equivalence and, respectively, unfolding of equations. The other rules are
responsible for the transitive, symmetric and contextual closure of the relation.

4.1.4 A powerful notion of subtyping

We define subtyping on types living at the base kind, which correspond to types of terms, in
Figure 4.9 on page 116. It is designed to remain as faithful as possible to the judgment of module
subtyping, up to Russo’s interpretation [Rus03, RRD10], that is:

• subtyping must include the unfolding of type definitions: this is treated by importing the
equality judgment on types, that is based on singleton kinds (rule SubEq). This ensures, for
instance, that Γ ` α6 τ and Γ ` τ6 α, provided that Γ ` α :: S(τ);

• subtyping must allow the dropping of value and module fields, as well as their permutation;

114

4.1 Definitions

KindCoerceEq
Γ ` κ1 ≡ κ2

Γ ` κ1 ∼ κ2

KindCoerceSym
Γ ` κ2 ∼ κ1

Γ ` κ1 ∼ κ2

KindCoerceTrans
Γ ` κ1 ∼ κ2 Γ ` κ2 ∼ κ3

Γ ` κ1 ∼ κ3

KindCoerceSingle
Γ ` τ ∼ τ ′

Γ ` S(τ) ∼ S(τ ′)

KindCoercePi
Γ ` κ1 ∼ κ

′
1 Γ, ∀α :: κ1 ` κ2 ∼ κ

′
2

Γ ` Π(α :: κ1) κ2 ∼ Π(α :: κ ′1) κ
′
2

KindCoerceEmpty
Γ ` ok
Γ ` 〈〉 ∼ 〈〉

KindCoerceRecord
Γ ` κ ∼ κ ′ ` /∈ {`i, i ∈ I}

ρ = (`i as αi :: κi)i∈I ρ ′ = (`i as αi :: κ ′i)
i∈I Γ, ∀α :: κ ` 〈ρ〉 ∼ 〈ρ ′〉

Γ ` 〈` as α :: κ ; ρ〉 ∼ 〈` as α :: κ ; ρ ′〉

Figure 4.8: Coercible kinds.

this is implemented by the rules SubDrop and SubSwap;

• subtyping must also permit dropping type and module type fields, as well as permuting
them, when possible: this is implemented by importing the subkinding judgment on the
bounds of existential and universal types (rules SubExists and SubForall). For example,
Γ ` ∃(α :: 〈`1 as α1 :: κ1 ; `2 :: κ2〉)τ6 ∃(α :: 〈`1 :: κ1〉)τ holds when α.`2 does not appear in τ;

• subtyping must allow a concrete type definition to subsume an opaque one: this is again done
by using the subkinding judgment on bounds of existential and universal types. For instance,
Γ ` ∃(α :: S(τ ′))τ6 ∃(α :: ?)τ holds, when the two types are wellformed;

• subtyping must be covariant on signatures of structures: that is why it is covariant on record
types as well as on the bounds and bodies of existential types (rules SubRecord and SubExists).
It was used in the previous examples;

• subtyping must be contravariant on the domain of functors, and covariant on their range:
that is why subtyping is contravariant on the bounds and domains of universal types and
arrow types, while it is covariant on their bodies (rules SubForall and SubArrow). This way,
Γ ` ∀(α :: 〈`1 :: ?〉)τ 6 ∀(α :: 〈`1 as α1 :: S(τ1) ; `2 :: κ2〉)τ holds, when the two types are
wellformed.

As described by the syntax of F.ω
S6 and by its typing rules, type instantiation as well as generaliza-

tion remain explicit. It is also the case of constructs for open existential types. Notice however, that
Γ ` ∀(α :: ?)τ 6 ∀(α :: S(τ ′))τ whenever Γ ` τ ′ :: ? and Γ ` ∀(α :: ?)τ :: ? hold. Hence, instantiation
within the bound of universals happens implicitly, but the universal quantifier has to be removed
in an explicit manner. This is similar to the case of module type subtyping in module systems:
functor (X : sig type t end)S is a subtype of functor (X : sig type t = τ end)S, but a functor of the
latter module type has to be explicitly instantiated, even if it can only accept one argument, up to
equivalence. In some sense, instantiation is implicit, but destruction of quantifiers is explicit.

The avoidance problem

MLmodule systems suffer from the avoidance problem, a characteristic of the subtyping relation on
signatures, which can be stated as follows: « there is generally no principal way to avoid a given
type variable ». The avoidance problem is problematic when defining a typechecking algorithm,
and it is one of the reasons for the use of paths in the ML module system. Notice that it is not a

115

Chapter 4 A tentative design

SubEq
Γ ` τ1 ≡ τ2 :: ?
Γ ` τ1 6 τ2

SubDrop
Γ ` {` : τ ; R} :: ?
Γ ` {` : τ ; R}6 {R}

SubSwap
Γ ` {`1 : τ1 ; `2 : τ2 ; R} :: ?

Γ ` {`1 : τ1 ; `2 : τ2 ; R}6 {`2 : τ2 ; `1 : τ1 ; R}

SubForall
Γ ` κ2 6 κ1 Γ ` ∀(α :: κ1)τ1 :: ?

Γ, ∀α :: κ2 ` τ1 6 τ2
Γ ` ∀(α :: κ1)τ1 6 ∀(α :: κ2)τ2

SubExists
Γ ` κ1 6 κ2 Γ ` ∃(α :: κ2)τ2 :: ?

Γ, ∀α :: κ1 ` τ1 6 τ2
Γ ` ∃(α :: κ1)τ1 6 ∃(α :: κ2)τ2

SubRecord
` /∈ domR ∪ domR ′

Γ ` τ6 τ ′ Γ ` {R}6 {R ′}

Γ ` {` : τ ; R}6 {` : τ ′ ; R ′}

SubArrow
Γ ` τ ′1 6 τ1 Γ ` τ2 6 τ ′2
Γ ` τ1 → τ2 6 τ

′
1 → τ ′2

SubTrans
Γ ` τ1 6 τ2 Γ ` τ2 6 τ3

Γ ` τ1 6 τ3

Figure 4.9: Subtyping rules.

problem that is specific toML: Ghelli and Pierce [GP92] were also confronted with the avoidance
problem when adding existential types to F6.

The problem in F.ω
S6 is the same as inML. It is present in F.ω

S6 because of the use of the subkinding
judgment on the bounds of existential and universal types, which itself suffers from the avoidance
problem. A possible “cure” would be to allow subtyping only at coercion sites, application sites and
instantiation sites, and allow the free use of type equivalence only: this modification would have
the impact of turning the judgmental specification into a more algorithmic definition, that would be
very close to the implementation of a typechecker.

The classical example for the avoidance problem, given by [HP05, DCH03], does not work in our
setting, because we are not restricted to pairs of types: we can commute two fields of records of types.

Example (Classical instance of the avoidance problem). One considers κ = 〈`1 :: S?→?(λ(β ::
?)α) ; `2 :: S(α)〉, i.e. a record of types with two concrete fields, in a context where α :: ?. The first
field is equal to λ(β ::?)α, while the second one equals α. Now consider κ ′τ = 〈`1 as α1 :: ?→ ? ; `2 ::
S?(α1 τ)〉 for any τ of kind ?. The fact is that κ is a subkind of κ ′τ for any well-formed τ of kind ?, and
there is no kind that is strictly between κ and κ ′τ and avoids the variable α if one disallows swapping
of fields. Moreover, κ ′τ1 and κ

′
τ2

are not comparable as long as τ1 and τ2 are not equivalent types.
Hence one can build an infinity of supertypes that are pairwise incomparable and all minimal.
As a consequence, if exchanging fields is forbidden, we have found an instance of the avoidance
problem. But in the present case, one can also consider κ ′′ = 〈`2 as α2 :: ? ; `1 :: S?→?(λ(β :: ?)α2)〉,
that precisely strictly lies between κ and κ ′τ for every well-formed τ of kind ?, and that avoids the
variable α. This kind just expresses the fact that the result of the field `1 is always equivalent to the
field `2. As a consequence, the above example is not an instance of the avoidance problem in F.ω

S6 .

We now give another example, that, we believe, is a correct instance of the avoidance problem in
the context of F.ω

S6 :

Example (Avoidance problem). One considers κ = 〈`1 :: S?→?(λ(β :: ?)α) ; `2 :: S(?→?)→?(λ(γ :: ?→
?)α)〉 in a context where α has the kind ?, i.e. a record of types with two concrete fields that define
two constant functions, that always yield α as result. Consider now κ ′τ = 〈`1 as α1 :: ? → ? ; `2 ::
S(?→?)→?(λ(γ :: ?→ ?) (α1 τ))〉. For any well-formed type τ of kind ?, κ is a subkind of κ ′τ and, as in
the previous example, κ ′τ1 and κ ′τ2 are incomparable as long as τ1 and τ2 are not equivalent types.
We think that there does not exist a kind that strictly lies between κ and all κ ′τ and avoids α, because

116

4.1 Definitions

WfEnvEmpty

ε ` ok

WfEnvVar
Γ ` τ :: ? x /∈ dom Γ

Γ, x : τ ` ok

WfEnvForall
Γ ` κ ok α /∈ dom Γ

Γ, ∀α :: κ ` ok

WfEnvExists
Γ ` κ ok α /∈ dom Γ

Γ, ∃α :: κ ` ok

WfEnvEq
Γ ` τ :: κ α /∈ dom Γ
Γ, ∀(α = τ :: κ) ` ok

Figure 4.10: Wellformed environments.

EnvWeakRefl
Γ ` ok
Γ w Γ

EnvWeakWeaken
Γ1, Γ2 ` ok

Γ1, b, Γ2 ` ok b 6= ∃α :: κ

Γ1, b, Γ2 w Γ1, Γ2

EnvWeakTrans
Γ1 w Γ2 Γ2 w Γ3

Γ1 w Γ3

Figure 4.11: Environment weakening.

there is no way to express the fact that the two components `1 and `2 are functions that yield the
same result.

It is important to understand that the avoidance problem has no impact on the metatheory of
the system of types and kinds as well as on the kind checking problem: no rule requires a type
variable to be avoided at this level. It nevertheless has consequences at the level of terms to perform
type checking, since it breaks the minimal-type property: there is indeed one rule that requires a
type variable to be avoided, that is the rule Nu. Note that with usual existential types too, the rule
Unpack has the same particularity.

4.1.5 Environments

Environment wellformedness is defined in Figure 4.10 as the pointwise extension of type well-
formedness, and, as usual, ensures that the bindings are unique, i.e. no variable can appear more
than once.
Purity of environments is defined as in Chapter 2 on page 7: Γ pure holds when it contains no

existential bindings.
Weakening of environments is defined in Figure 4.11: essentially, Γ2 is weaker than Γ1, written

Γ2 w Γ1, if it is wellformed and contains more pure bindings than Γ1. Remember that weakening
cannot be proved in general: in Chapter 2 on page 7, we could only prove weakening with bindings
that do not depend on existential bindings. This judgment permits weakening even when the
binding that is considered depends on an existential binding. We will see in Section 4.2 on page 119
and in Section 4.3.2 on page 122 that it is useful in practice, namely to perform relocations, which is
an operation that is very often used in our translation from ML to F.ω

S6 .
Zipping is defined in Figure 4.12 on the next page: it extends the definition used in Core F.

(Section 2.3 on page 15) with kinded bindings. As in Core F., zipping is not symmetric, due to the
last line of the figure.

117

Chapter 4 A tentative design

ε . ε = ε
Γ1, x : τ . Γ2, x : τ = (Γ1 . Γ2), x : τ if x /∈ dom Γ1, Γ2

Γ1, ∀α :: κ . Γ2, ∀α :: κ = (Γ1 . Γ2), ∀α :: κ if α /∈ dom Γ1, Γ2
Γ1, ∀(α = τ :: κ) . Γ2, ∀(α = τ :: κ) = (Γ1 . Γ2), ∀(α = τ :: κ) if α /∈ dom Γ1, Γ2

Γ1, ∃α :: κ . Γ2 = (Γ1 . Γ2), ∃α :: κ if α /∈ dom Γ1, Γ2
Γ1 . Γ2, ∃α :: κ = (Γ1 . Γ2), ∃α :: κ if α /∈ dom Γ1, Γ2

Γ1, ∃α :: κ . Γ2, ∀α :: κ = (Γ1 . Γ2), ∃α :: κ if α /∈ dom Γ1, Γ2

Figure 4.12: Zipping environments.

4.1.6 Dynamic semantics

The dynamic semantics is exactly the same as the one of Core F. (Figure 2.12 on page 22), with the
extended syntax, i.e. kind annotations for type variables. We do not repeat its definition in this
chapter.

4.1.7 Conjectures

Although we have not proved any result about F.ω
S6 , we conjecture that higher-kinded singletons

faithfully encode singletons at higher kinds, as it is the case in [SH06]. More specifically, we
conjecture the following properties:

Conjecture 4.1.1 (Properties of higher kinded singletons).

Singleton introduction: if Γ ` τ :: κ, then Γ ` τ :: Sκ(τ) holds;

Singleton elimination: if Γ ` τ :: Sκ(τ ′) and Γ ` τ ′ :: κ, then Γ ` τ≡ τ ′ :: Sκ(τ ′) holds;

Singleton forgetting: if Γ ` τ :: κ then Γ ` Sκ(τ)6 κ holds;

Compatibility with equivalence: if Γ ` τ≡ τ ′ :: κ and Γ ` κ≡ κ ′, then Γ ` Sκ(τ)≡ Sκ′(τ
′) holds;

Compatibility with subkinding: if Γ ` τ :: κ1 and Γ ` κ1 6 κ2, then Γ ` Sκ1(τ)6 Sκ2(τ) holds.

We also conjecture that the minimal kind algorithm can be extended to F.ω
S6 in a straightforward

way and proved correct and complete. We guess the same can be done for the normalization
algorithm, although it is likely that extending the completeness proof would be difficult, since it is
already the hardest part of [SH06] and of Chapter 3.

Conjecture 4.1.2 (Consistency of equivalence). Type equality is consistent, in the sense that it cannot
equate two distinct constructors.

Notice, however, that two records of types of different arity can be equivalent, as exemplified on
page ??.

Based on Conjecture 4.1.2, we also surmise that the coercibility is consistent:

Conjecture 4.1.3. Type coercibility is consistent, in the sense that it cannot equate two distinct constructors.

Under these assumptions, the proof of soundness for Core F.should be easily extended, since the
only major difference is on the language of types. The presence of subtyping is another difference,
but we guess it should not raise difficult problems.

Conjecture 4.1.4. F.ω
S6 enjoys the subject reduction and progress properties.

We have not explored any of the above conjectures yet.

118

4.2 Examples and remarks

4.2 Examples and remarks

In this section, we give several examples of uses of F.ω
S6 , along with their corresponding instances in

ML: we focus on local type definitions, and relocations of type components.

4.2.1 Local definitions

Previous work on singleton kinds encode local type definitions as follows:

def α :: κ = τ in M , (λ(α :: Sκ(τ))M) τ

AsM is parametrized by a singleton kind,M can exploits the fact that α equals τ at the kind κ.
Then, the same type τ is given as argument to restore the type ofM.

While perfect valid, the module equivalent of this encoding is unnatural: to provide the definition
type t = τ to the moduleM, one could also use the same trick, that is, write:

(functor (X : sig type t = τ end)open 〈X〉 < definition ofM >) (struct type t = τ end)

But this might seem a bit artificial or convoluted. Instead, one generally prefers to write something
like

type t = τ < definition ofM >

but then the type component t is exported. Bearing in mind Russo’s interpretation, this corresponds
to an existential package, which we would write as follows, if the pack construct permitted to bind a
variable to a definition:

unpack (pack 〈α = τ,M〉 as ∃(α :: Sκ(τ))τ
′) as 〈α, x〉 in x

The existential package is immediately destructed to restore the original type ofM. Notice that the
non-escaping condition can always be satisfied, since α can always be replaced by its definition by
equivalence.
In F.ω

S6 , a natural way to express local definitions is:

def α :: κ = τ in M , ν(α :: Sκ(τ))Σ 〈α〉 (α = τ)M

That is, we create an open existential type, which is immediately restricted. Notice that, as opposed
to the other solutions we described, the structure of the type ofM is kept unchanged: what varies is
the typing context only. The first solution we gave would also work in F.ω

S6 , but its use would be too
restrictive because of the purity condition on the body of generalized terms (rule Gen in Figure 4.1).

4.2.2 Renaming or relocation of existential items

Assume that a termM exports two type components β1 and β2 of kinds κ1 and κ2, respectively,
that is,M has type τ in an environment that contains the bindings ∃β1 :: κ1 and ∃β2 :: κ2. One may
want to expose these two type components in a different way to the rest of the program, without
changingM itself: for instance one would like to present them as a pair of types. This can be done
as follows in F.ω

S6 :
ν(β1 :: κ1)ν(β2 :: κ2)
Σ 〈β〉 (β = 〈`1 = β1 ; `2 = β2〉)
(M : τ[β1← β.`1][β2← β.`2])

119

Chapter 4 A tentative design

Basically, one defines β as the pair of β1 and β2, then applies a coercion to use β instead of the
other two type components, and, eventually, hides β1 and β2 by requiring them to be local. It is
important to notice that this example would not be welltyped without the Weaken rule: indeed,
the Σ we introduce inserts an equation in the typing context, which depends on β1 and β2, that
has to be removed by weakening to allow the use of open or Σ on β1 or β2 in the definition ofM.
This technique of relocation is heavily used in our translation from ML to F.ω

S6 in Section 4.3.2 on
page 122. We already introduced it in Section 2.6.1 on page 36, though in a more limited setting.

We now describe the counterpart of the above example in ML. Assume that the module A has for
signature sig type t1 type t2 D endwhere t1 and t2 are type components (concrete or abstract), andD
is the rest of the signature. The goal is to relocate the two type components of A into a submodule C.
One proceeds as follows:

module A ′ : sig
module C = struct

type t1 type t2
end
D[t1← C.t1][t2← C.t2]

end = struct
module C = struct

type t1 = A.t1 type t2 = A.t2
end
include A

end

This piece of code defines one submodule C that redefines the two type components to relocate.
Then, a signature ascription makes manifest the use of this submodule in the signature, and hides
the type components t1 and t2 and the definitions of C.t1 and C.t2 at the same time. The parallel
with the piece of code from F.ω

S6 is obvious; however a substantial difference remains: since terms
and types are interleaved in ML, while they are strongly separated in F.ω

S6 , type components must
be repeated in ML in the definition of A ′ and in the signature ascription, whereas it is only done
once in the piece of code from F.ω

S6 .

4.2.3 Phase-split style

Programming in F.ω
S6 imposes a phase-split style, that is to say, type components and value compo-

nents are separated. For instance, the module expression

moduleM = struct
type t = bool let a = true
module N = struct

type u = int let b = 12
end

end

would be represented in F.ω
S6 by the term

Σ 〈β〉 (α = 〈t = bool ; N = 〈u = int〉〉 :: 〈t :: S(bool) ; 〈N :: 〈u :: S(int)〉〉〉)
{a = true ; N = {b = 12}}

This term defines a transparent static part β of kind 〈t :: S(bool) ; 〈N :: 〈u :: S(int)〉〉〉 on the one
hand, and a dynamic part {a = true ; N = {b = 12}}. One also has to give the witness of the static
part, which is 〈t = bool ; N = 〈u = int〉〉. The structure of the initial structure is split in two parts:

120

4.3 Comparisons

Fω F.ω

FωS F.ω
S

Fω6 F.ω
6

Fω6S F.ω
6S

ML

Tran
slati

on o
f

Sect
ion

4.3.2

F-
ing

tra
ns
lat
ion

[R
RD

10
]

RM
C
tra
ns
lat
ion

[D
re
07
b]

Elimination of open
existentials [MR09]

El
im

in
at
io
n
of

si
ng

le
to
ns

[C
ra
07
]

Elimination
of

subtyp
ing

Figure 4.13: Extending System Fω in three directions, and translating back to System F.

the record of type components and the record of value components. The structure of the static part
is repeated twice to specify both the witness of the open existential and its kind.
The signatures have to be split in a similar manner.

4.3 Comparisons

In this section, we compare the drawbacks and benefits of F.ω
S6 with respect to System Fω and

then to the ML module system. We will base our comparisons on characteristics of the different
translations that are drawn as double arrows in Figure 4.13. For this purpose, a new translation
from ML to F.ω

S6 is sketched in Section 4.3.2 on the next page.

4.3.1 F.ω
S6 vs. System Fω

F.ω
S6 is a conservative extension of Fω, and this extension spreads in three directions, that correspond

to the dimensions of the cube of Figure 4.13:

• F.ω
S6 features the open existential types of F., that allow more freedom in the structure of the

program when using existential types, as shown by the elimination of open existential types
in Section 2.5.2 on page 30;

• The language of types used by Fω is the simply-typed λ-calculus equipped with extensional
equality, whereas F.ω

S6 uses the simply typed λ-calculus with singleton kinds, which permits
to model type definitions, and hence enables more compact code to be written, by factoring

121

Chapter 4 A tentative design

the definition of types: Crary [Cra07] eliminates singleton kinds by replacing type variables
by their η-expansions at their natural kind, where expanding at a singleton kind corresponds
to unfolding the definition represented by the singleton. This is also the approach we took in
Chapter 3, but in a more incremental and demand-driven style;

• F.ω
S6 also adds subtyping to Fω by means of width subtyping on records and also on bounds

of existential and universal types: there is width subkinding on records of types and singleton
kinds can be forgotten. Moreover, subtyping and subkinding are closed under the equivalence
induced by the singleton kinds system. This frees the programmer from manually inserting
coercions, that would normally be inserted by a translation that eliminates subtyping.

System Fω and F.ω
S6 share some design aspects: management of universal types (generalization

and instantiation) and of existential types (package creation and opening) remain explicit in both
languages. It is fundamental to notice that F.ω

S6 gathers the conveniences brought by open existential
types, singleton kinds and subtyping, which render it more convenient to program with and less
verbose than Fω.

4.3.2 F.ω
S6 vs. ML

The previous section, which gave a comparison between System Fω and F.ω
S6 , showed the width of

the gap that separates them in terms of concision and structure of programs. The interpretation of
ML into Fω [RRD10] also highlighted the superiority of ML modules over Fω in terms of concision.
In this section, we draw a comparison between ML and F.ω

S6 by sketching and studying a translation
from ML to F.ω

S6 . We will see that the two languages differ only on a few points, which raises the
possibility of directly programming with F.ω

S6 .

Sketch of a translation from ML to F.ω
S6

Our translation is heavily based on F-ing [RRD10] and borrows ideas from [DCH03, LCH07, Dre07a,
Sto05]. As in F-ing [RRD10], it is parametrized by the base language. It improves on F-ing in the
following ways:

• it makes use of singleton kinds to prevent unfolding type definitions;

• it makes use of open existential types to keep the structure of the generated code as close as
possible to the structure of the original one. The same property was achieved by the translation
into RTG [Dre07a];

• thanks to singleton kinds, type components are treated in a uniform manner, regardless
whether they are transparent or opaque, as suggested in [Sto05];

• it makes use of records of types to enforce the invariant that each module has exactly one type
component: this enables the phase separated style at every level of the program (see Section 4.2.3
on page 120);

• the translation benefits from our subtyping relation and avoids the insertion of function
coercions that witness occurrences of subtyping.

The source languages for modules, signatures, structure declarations and signature declarations
is given in Figure 4.14 on the next page. The kinds k used in this module language are a subset
of the kinds κ of F.ω

S6 that were previously defined in Section 4.1.2 on page 108. In the translation
judgments, the metavariable R denotes fields of record types, ρ denotes fields of record kinds and r

122

4.3 Comparisons

A ::= X (Modules)
| functor (X : S)A | AA
| struct B end | A.X
| (A : S)

B ::= ε (Structure bindings)
| type X :: k = u ; B
| val X = e ; B
| module X = A ; B
| module type X = S ; B
| include A ; B

k ::= ? | κ→ κ (Kinds)

S ::= X (Signatures)
| functor (X : S)S
| A.X
| sig D end | S with type X :: k = u

D ::= ε (Signature bindings)
| type X :: k = u ; D | type X :: k ; D
| val X : u ; D
| module X : S ; D
| module type X = S ; D
| include S ; D

Figure 4.14: Syntax of an idealizedMLmodule language.

denotes fields of records, as previously introduced. We also introduce a class of contexts b, defined
as follows:

b ::= [·] | let x =M in b | Σ 〈β〉 (α = τ)b

These contexts are used to build records with internal binding. Since they are not primitive in F.ω
S6 ,

we encode them using let-bindings. For instance, theML structure

struct
let a = 1
let b = a+ 42

end

will be expressed as the term

let xa = 1 in let xb = xa + 42 in {`a = xa ; `b = xb}

that is equal to b[{`a = xa ; `b = xb}] where b is the context let xa = 1 in let xb = xa + 42 in [·]. In fact,
the translation builds the context and the record separately, and assemble them, once they are both
constructed.
We also make use of two operators on fields, that is, on association lists, that help to construct

records:

Disjoint union: m1 ⊗m2 is list concatenation, under the condition that m1 and m2 have disjoint
domains. Otherwise, it fails.

Right-leaning union: m1 4 m2 is list concatenation with shadowing, that is bindings in m2 are
preferred over those inm1. Ifm \ L denotes the association listm where the bindings that
occur in the list L have been removed, then the equation m1 4m2 = (m1 \ domm2) ⊗m2
holds.

The translation from modules to F.ω
S6 is composed of six judgments, that we describe one after the

other.

123

Chapter 4 A tentative design

Translation of terms of the base language

The judgment Γ ` e Z=⇒M : τ reads « in the environment Γ , the term e translates toM of type τ ».
The translation is parametric with respect to this judgment. We assume that the translation of terms
of the base language produces welltyped terms, i.e.: if Γ ` ok and Γ ` e Z=⇒M : τ, then Γ `M : τ
holds.

Translation of types of the base language

The judgment Γ ` u Z=⇒ τ :: κ reads « in the environment Γ , the type u translates to τ of kind κ ».
The translation is parametric with respect to this judgment. Similarly, we assume that the translation
of types of the base language produces wellkinded types, i.e.: if Γ ` ok and Γ ` u Z=⇒ τ :: κ, then
Γ ` τ :: κ holds.

Translation of modules (Figure 4.15 on the next page)

The judgment Γ ` A Z=⇒ α :: κ .M : τ reads « in the environment Γ , the module A translates to its
static part α (i.e. its type components), of kind κ and its dynamic partM (i.e. its value components)
of type τ ». The following invariant about wellformedness should be kept in mind when reading
the rules: if Γ ` ok and Γ ` A Z=⇒ α :: κ .M : τ then Γ, ∃α :: κ `M : τ holds. A detailed description
of each rule follows.

Rule ModVar To translate a module variable X, one looks up in the environment its static part αX
of kind κ and its dynamic part xX of type τ. One produces a term that has αX as static part
and xX as dynamic part, that is Σ 〈β〉 (β = αX) xX, where β has kind Sκ(αX), so that β is
equivalent to αX. The singleton kind used here is reminiscent of Lillibridges’s selfification
[Lil97] or Leroy’s [Ler96] strengthening.

Rule ModLam A functor translates to a polymorphic function returning a term of an existential
type. Hence, we close the static part of the body into an existential, and then parametrize it by
the static part and the dynamic part of the argument. Since a functor does not export type
components, its static part is empty, i.e. it has the empty record kind.

Rule ModApp To translate a module application A1 A2, one has to instantiate the left sideM1 of
the application with the static part and then with the dynamic part of the right sideM2 of
the application. But in ML, an application only exports the type components of the result
of the functor that is applied. Consequently, we hide (i.e. restrict) the static parts ofM1 and
M2 and open the result of the application to release its static part in the environment. One
checks that the functor is given an argument that has a lesser type than the expected one,
so that the application is welltyped. One also checks that one can find a result type for the
instantiated functor that does not depend on the static parts whose scopes are restricted.
Notice that this last check as well as the two scope restrictions can fail: however, in the case of
MLmodules, applications are restricted to paths (a condition that we do not enforce), so that
the static parts always have singleton kinds and, consequently, the three checks cannot fail.
In ML, the signatures of paths are always transparent, since their type components have been
strengthened when typing the variables at the root of the paths.

Rule ModStruct To translate a structure struct B end, one translates its bindings B. This gives a list
of static parts, a list of declarations b and a list of record fields r that have the types described
by R. One builds the records resulting from inserting the record {r} into the context b. Then,
one relocates the static parts into a single, compound, static part.

Rule ModProj Amodule projection simply translates to a projection whose static part is relocated.
One checks that the relocation is possible, that is to say, one requires a type for the projection

124

4.3 Comparisons

ModVar
αX :: κ, xX : τ ∈ Γ β is fresh

Γ ` X Z=⇒ β :: Sκ(αX) . Σ 〈β〉 (β = αX) xX : τ

ModLam
Γ ` S Z=⇒ ∃(αX :: κ ′)τ ′ Γ, αX :: κ ′, xX : τ ′ ` A Z=⇒ β :: κ .M : τ αX, xX, γ] dom Γ

Γ ` functor (X : S)A Z=⇒
γ :: 〈〉 . Σ 〈γ〉 (γ = 〈〉)Λ(αX :: κ ′)λ(xX : τ ′) ∃(β :: κ)M : ∀(αX :: κ ′)(τ ′ → ∃(β :: κ)τ)

ModApp
Γ ` A1 Z=⇒ β1 :: κ ′1 .M1 : ∀(β2 :: κ2)(τ1 → ∃(β :: κ)τ)

Γ ` A2 Z=⇒ β2 :: κ ′2 .M2 : τ2 Γ ` ∃(β2 :: κ ′2)τ2 6 ∃(β2 :: κ2)τ1
Γ, β2 :: κ2 ` ∃(β :: κ)τ≡ ∃(β :: κ ′)τ ′ Γ ` ∃(β :: κ ′)τ ′ :: ? γ, β2] dom Γ
Γ ` A1 A2 Z=⇒ β :: κ ′ . open 〈β〉 (ν(β1 :: κ ′1)ν(β2 :: κ ′2)M1 β2 M2) : τ

′

ModStruct
Γ ` B Z=⇒

[
(`i as αi :: κi)i∈1..n] . [b | r] : [R] τ ′ = {R[α1← β.`1] · · · [αn← β.`n]}

b ′ = ν(α1 :: κ1) . . .ν(αn :: κn)Σ 〈β〉 (β = 〈(`i = αi)i∈1..n〉) (b[{r}] : τ ′)
Γ ` struct B end Z=⇒ β :: 〈(`i as αi :: κi)i∈1..n〉 . b ′ : τ ′

ModProj
Γ ` A Z=⇒ β :: κ .M : {(`i : τi)

i∈1..n} j ∈ 1..n `j = `X
κ = 〈(`i as αi :: κi)i∈1..n〉 Γ ` κj[α1← β.`1] · · · [αj−1← `j−1]≡ κ ′j

Γ, ∃β :: κ, ∀(γ = β.`j :: κ ′j) ` τj ∼ τ ′j :: ? Γ ` ∃(γ :: κ ′j)τ
′
j :: ? β, γ] dom Γ

Γ ` A.X Z=⇒ γ :: κ ′j . ν(β :: κ)Σ 〈γ〉 (γ = β.`j) (M.`j : τ ′j) : τ
′
j

ModSeal
Γ ` A Z=⇒ β :: κ .M : τ Γ ` S Z=⇒ ∃(β :: κ ′)τ ′ Γ ` ∃(β :: κ)τ6 ∃(β :: κ ′)τ ′

Γ ` (A : S) Z=⇒ β :: κ ′ . open 〈β〉 (∃(β :: κ)M : ∃(β :: κ ′)τ ′) : τ ′

Figure 4.15: Translation of module expressions.

that avoids the type components of the projected module, but this can fail. As in the case of
applications, if projections are restricted to paths in ML, then the relocation cannot fail.

Rule ModSeal To translate a signature ascription, one closes the type components of the module,
then promotes it to the type required by the signature by the means of subtyping, and finally
opens it again to release the modified static part to the environment. We enforce the subtyping
condition through the insertion of a coercion. We could also have applied the identity function
at the type described by the signature. Notice that we do not need to insert a function that
deeply retypes the term, since this is implemented by the subtyping relation.

Translation of structure components (Figure 4.16 on page 127)

The judgment Γ ` B Z=⇒ [ρ] . [b | r] : [R] reads « in the environment Γ , the structure bindings B
translate to the record fields r preceded by the bindings b, and the static parts have kinds that are
described by the bindings ρ, and the dynamic parts have types that are described by the bindings
R ». The use of the binding context b is imposed by the fact that the records of F.ω

S6 do not have
internal bindings, as opposed to structures in ML. To better understand the rules, the following

125

Chapter 4 A tentative design

invariant should be kept in mind: if Γ ` ok and Γ ` B Z=⇒ [ρ] . [b | r] : [R] hold and if ∃ρ denotes
∃α1 :: κ1, . . . , ∃αn :: κn, where ρ = `1 as α1 :: κ1, . . . , `n as αn :: κn, then Γ, ∃ρ ` b[{r}] : {R} holds and
the `is are pairwise distinct. A detailed description of each rule follows.

Rule StructEmpty An empty list of bindings translates to an empty list of record fields in an empty
environment. Its static and dynamic parts are both empty.

Rule StructType To translate a binding type X :: k = u ; B beginning with a transparent type
declaration, one translates the rest of the binding B in an extended environment that contains
the type definition, that is where the type component has a singleton kind. Since a type
definition only changes the static part of the module, the resulting dynamic part is the one of
the rest B, while the static part is the one of B augmented with the new type definition. As
a consequence, the binding context is extended with a part that exports the corresponding
static part, that is, with a Σ. Notice that in the kind of static part, the type component is nested,
but not in the binding context: this is because relocation of components will happen once the
structure bindings are put inside a struct . . . end.

Rule StructVal To translate a binding val X = e ; B beginningwith a value declaration, one translates
the rest of the binding B in an extended environment that makes the value component visible.
Since a value declaration only changes the dynamic part of the module, the resulting static
part is the one of the rest B, while the dynamic part is the one of B augmented with the new
value definition. As a consequence, the binding context is extended with a let that defines the
value component.

Rule StructMod To translate a binding module X = A ; B beginning with a module declaration, one
translates the module A and then the binding B in an environment that is extended with the
static and dynamic parts of A. As module components have an impact both on static parts and
on dynamic parts, both are extended with a nested version of the corresponding parts of the
module A.

Rule StructModType To translate a binding module type X = S ; B beginning with a module type
declaration, one translates the module type S and then the binding B in an environment that
is extended with the definition of S, that is, with a variable of a singleton kind. As for type
components, the module type declaration extends the static part only.

Rule StructInclude To translate a binding include A ; B beginning with the inclusion of a module
expression, one proceeds as in the case of a module declaration, except that no nesting is
performed.

Translation of module types (Figure 4.17 on page 128)

Module types always translate to existential types. The judgment Γ ` S Z=⇒ ∃(α :: κ)τ reads « in the
environment Γ , the signature S translates to the type ∃(α :: κ)τ ». The variable α of kind κ is its static
part, and τ is its dynamic part. Keeping the following invariant in mind will help reading the rules:
if Γ ` ok and Γ ` S Z=⇒ ∃(α :: κ)τ, then Γ ` τ :: κ holds. A detailed description of each rule follows.

Rule SigVar To translate a signature variable, one looks up in the environment for the corresponding
type variable, that should contain a definition for a signature, that is, a variable that has for
kind the singleton of an existential type. The translated signature is this very definition.

Rule SigProj To translate a projection A.X, one checks that the projection leads to a signature, and
that this signature can be used, i.e. does not depend on internal abstract type components. The
latter condition is always met, when one restrictsA to be a path. More precisely, one translates

126

4.3 Comparisons

StructEmpty

Γ ` ε Z=⇒ [ε] . [[·] | ε] : [ε]

StructType
Γ ` u Z=⇒ τ :: k Γ, αX :: Sk(τ) ` B Z=⇒ [ρ] . [b | r] : [R] αX] dom Γ

Γ ` type X :: k = u ; B Z=⇒ [`X as αX :: Sk(τ)⊗ ρ] . [Σ 〈αX〉 (αX = τ)b | r] : [R]

StructVal
Γ ` e Z=⇒M : τ Γ, xX : τ ` B Z=⇒ [ρ] . [b | r] : [R] xX] dom Γ
Γ ` val X = e ; B Z=⇒ [ρ] . [let xX =M in b | `X = xX 4 r] : [`X : τ4 R]

StructMod
Γ ` A Z=⇒ αX :: κ .M : τ Γ, αX :: κ, xX : τ ` B Z=⇒ [ρ] . [b | r] : [R] αX, xX] dom Γ
Γ ` module X = A ; B Z=⇒ [`X as αX :: κ⊗ ρ] . [let xX =M in b | `X = xX 4 r] : [`X : τ4 R]

StructModType
Γ ` S Z=⇒ ∃(α :: κ)τ Γ, αX :: S(∃(α :: κ)τ) ` B Z=⇒ [ρ] . [b | r] : [R] αX] dom Γ

Γ ` module type X = S ; B Z=⇒ [`X as αX :: S(∃(α :: κ)τ)⊗ ρ] . [Σ 〈αX〉 (αX = ∃(α :: κ)τ)b | r] : [R]

StructInclude
Γ ` A Z=⇒ α :: 〈ρ ′〉 .M : {R ′} ρ ′ = (`i as αi :: κi)i∈1..n R ′ = (` ′j : τj)

j∈1..m

Γ, α1 :: κ1, . . . , αn :: κn, x1 : τ1, . . . , xm : τm ` B Z=⇒ [ρ] . [b | r] : [R] α1, . . . , αn] dom Γ
Γ ` include A ; B Z=⇒ [ρ ′ ⊗ ρ] .

[
let x =M in b | (` ′j = x.`

′
j)
j∈1..m 4 r

]
: [R ′ 4 R]

Figure 4.16: Translation of structure bindings.

127

Chapter 4 A tentative design

SigVar
αX :: S(∃(α :: κ)τ) ∈ Γ
Γ ` X Z=⇒ ∃(α :: κ)τ

SigProj
Γ ` A Z=⇒ α :: κ .M : τ Γ ` κ≡ 〈`X as γ :: S(∃(β :: κ ′)τ ′) ; ρ〉

Γ ` A.X Z=⇒ ∃(β :: κ ′)τ ′

SigSig
Γ ` D Z=⇒ τ

Γ ` sig D end Z=⇒ τ

SigFunctor
Γ ` S Z=⇒ ∃(αX :: κ)τ Γ, αX :: κ ` S ′ Z=⇒ τ ′ αX] dom Γ

Γ ` functor (X : S)S ′ Z=⇒ ∃(β :: 〈〉)∀(αX :: κ)τ→ τ ′

SigWith
Γ ` S Z=⇒ ∃(α :: κ)τ Γ ` u Z=⇒ τ ′ :: k ′

Γ ` Sk′(τ
′)6 κ ′X Γ ` κ≡ 〈`X as β :: κ ′X ; ρ〉

Γ ` Swith type X :: k ′ = u Z=⇒ ∃(α :: 〈`X as β :: Sκ′X(τ
′) ; ρ〉)τ

Figure 4.17: Translation of signatures.

A, and examines its static part to extract the field `X. It should be bound to the definition of a
signature, that is to the singleton of an existential type.

Rule SigSig The translation of a signature is the translation of its components.

Rule SigFunctor To translate a functor type, one translates its domain, and then its codomainwith the
extra knowledge of the static part of the domain to produce the type of a polymorphic function.
Moreover, since a functor has an empty static part, we enclose this type in an existential
whose bound has the empty record kind. Functors with a non-empty static part appear when
considering applicative functors: the static parts is then composed of type functions. Applicative
functors are beyond the scope of this work.

Rule SigWith To translate a constrained module type, one translates the unconstrained module type,
then tries to isolate the field to be constrained, and returns the existential type, where the
bound has been constrained.

Translation of signature components (Figure 4.18 on the facing page)

The judgment Γ ` D Z=⇒ ∃(α :: κ)τ reads « in the environment Γ , the signature bindings D translate
to the type ∃(α :: κ)τ ». The variable α of kind κ is its static part, and τ is its dynamic part. The
rules should be read with the following invariant in mind: if Γ ` ok and Γ ` D Z=⇒ ∃(α :: κ)τ, then
Γ ` τ :: κ holds. We review each rule. They are similar to the rules for the translation of structure
bindings (Figure 4.16 on the previous page).

Rule SigEmpty The empty signature binding as an empty static part and an empty dynamic part.

Rule SigVal A signature binding beginning with a value specification only extends the dynamic
part of the rest of the signature.

Rule SigTypeManifest A signature beginning with a transparent type definition extends the static
part only, but a relocation happens in the dynamic part to cope with the nesting of the type
component. Note that the static part is extended with a singleton kind to store the type
definition.

Rule SigTypeAbstract This case is similar to the previous one: the only difference is that no singleton
is used, since there is no definition.

128

4.3 Comparisons

SigEmpty

Γ ` ε Z=⇒ ∃(α :: 〈〉){}

SigVal
Γ ` u Z=⇒ τ :: κ Γ ` D Z=⇒ ∃(α :: κ){R}

Γ ` val X : u ; D Z=⇒ ∃(α :: κ){`X : τ⊗ R}

SigTypeManifest
Γ ` u Z=⇒ τ :: k Γ, αX :: Sk(t) ` D Z=⇒ ∃(α :: 〈ρ〉)τ ′ αX] dom Γ
Γ ` type X :: k = u ; D Z=⇒ ∃(α :: 〈`X as αX :: Sk(τ)⊗ ρ〉)τ ′[αX← α.`X]

SigTypeAbstract
Γ, αX :: k ` D Z=⇒ ∃(α :: 〈ρ〉)τ ′ αX] dom Γ

Γ ` type X :: k ; D Z=⇒ ∃(α :: 〈`X as αX :: k⊗ ρ〉)τ ′[αX← α.`X]

SigMod
Γ ` S Z=⇒ ∃(αX :: κ)τ Γ, αX :: κ ` D Z=⇒ ∃(α :: 〈ρ〉){R} αX] dom Γ
Γ ` module X : S ; D Z=⇒ ∃(α :: 〈`X as αX :: κ⊗ ρ〉){`X : τ⊗ R}[αX← α.`X]

SigModType
Γ ` S Z=⇒ ∃(α :: κ)τ Γ, αX :: S(∃(α :: κ)τ) ` D Z=⇒ ∃(α :: 〈ρ〉)τ ′ αX] dom Γ
Γ ` module type X = S ; D Z=⇒ ∃(α :: 〈`X as αX :: S(∃(α :: c))⊗ ρ〉)τ ′[αX← α.`X]

SigInclude
Γ ` S Z=⇒ ∃(α :: 〈(`i as αi :: κi)i∈1..n〉){(` ′j : τj)j∈1..m}

Γ, α1 :: κ1, . . . , αn :: κn ` D Z=⇒ ∃(α :: 〈ρ〉){R}
R ′ = R[α1← α.` ′1] · · · [αn← α.` ′n] α1, . . . , αn] dom Γ

Γ ` include S ; D Z=⇒ ∃(α :: 〈(`i as αi :: κi)i∈1..n ⊗ ρ〉){(` ′j : τj)j∈1..m ⊗ R ′}

Figure 4.18: Translation of signature bindings.

Rule SigMod A signature binding that begins with a module specification extends both the static
and the dynamic part. As in other cases, relocation is performed, because of nesting.

Rule SigModType This case is similar to the one of SigTypeManifest: the static part is extended with
a singleton, relocation is performed on the dynamic part.

Rule SigInclude A signature binding that starts with the inclusion of a signature translates to a type,
where the static parts of the signature and of the rest of the bindings are merged together, and
so are their dynamic parts.

Expected properties

As for the metatheory of F.ω
S6 , no proof has been done about the translation. We expect the following

invariants on the translation judgments:

Conjecture 4.3.1. The image of the translation is in F.ω
S6 . That is, under the hypotheses:

• if Γ ` ok and Γ ` e Z=⇒M : τ, then Γ `M : τ holds;

• and if Γ ` ok and Γ ` u Z=⇒ τ :: κ, then Γ ` τ :: κ holds,

then the following assertions hold:

129

Chapter 4 A tentative design

• if Γ ` ok and Γ ` A Z=⇒ α :: κ .M : τ then Γ, ∃α :: κ `M : τ holds;

• if Γ ` ok and Γ ` B Z=⇒ [ρ] . [b | r] : [R] and ∃ρ denotes ∃α1 :: κ1, . . . , ∃αn :: κn, where ρ =
`1 as α1 :: κ1, . . . , `n as αn :: κn, then Γ, ∃ρ ` b[{r}] : {R} holds and the `is are pairwise distinct;

• if Γ ` ok and Γ ` S Z=⇒ ∃(α :: κ)τ, then Γ ` ∃(α :: κ)τ:: holds;

• if Γ ` ok and Γ ` D Z=⇒ ∃(α :: κ)τ, then Γ ` ∃(α :: κ)τ:: holds.

This conjecture gathers the invariants we gave before the explanation of each group of translation
rules.

Using the translation to draw the comparison

One reason to define a translation frommodules to F.ω
S6 was getmore objective arguments to compare

the ML module system with F.ω
S6 . The main difference between the two is that F.ω

S6 imposes a style
where the phases are split, that is, where type components (resp. module types components) and
value components (resp. module components) are not defined together, but separately, in the contrary
toML. We analyze this difference at the level of module types and then at the level of modules, with
the help of our translation.

Comparison at the type-level

Module types are translated into existential types, whose bound is the static part, and whose body
is the dynamic one of the signature. The difference of style is important: a signature is dislocated
into two parts. Defining signatures in F.ω

S6 is also more verbose when dealing with module type
definitions, because they are unfolded by the translation. Notice that it would have been possible to
be less verbose by exploiting type functions: for instance, instead of encoding a signature S as a
type of the form ∃(α :: κ)τ, we could have chosen to use a type of the form λ(α :: κ) τ. This would
have saved duplication of the dynamic part τ of the signature S, by applying it at the sites where S
is used, but this would not have permitted to prevent the repetition of the static part κ. Another
cause of verbosity is the lack of extensibility of record types and of record kinds, which forces to
copy the included signatures (see rule SigInclude).

Comparison at the term-level

To draw the comparison at the level of terms, we analyze themain cases of the translation of modules.

Definition of functors Functors are translated into polymorphic functions that return an existential
type. Parametrization of the functor in F.ω

S6 is as verbose as in ML, but the phase-separated
style splits the signature into two parts, hence the parametrization is also split into two parts:
parametrizing first by the static part, then by the dynamic one. The open existential in the
body has to be closed: this requires to write the kind of the static part of the body, which can
be expensive. Hence, definition of functors is more verbose in F.ω

S6 because of the existential
closure of the body only.

Functor applications Since the translation turns functors into polymorphic functions, they have to be
explicitly instantiated, then applied and finally opened, while just one application is necessary
in ML. This is a tiny difference, thanks to the invariant we imposed, that every module has a
single open existential type, i.e. a single access path to type components, as transparently done
in ML: this invariant has for consequence that instantiations of functors are very cheap in terms
of code size, since the static part of the module to apply, that is used to instantiate the functor,
is accessible through a type variable only. Notice that subkinding plays a crucial role here: it

130

4.3 Comparisons

permits to directly give the static part as argument, whereas inserting a rekinding function
would have been necessary without subkinding. Opening the result of the application is also
very cheap. The main difference is the need to insert scope restrictions on the static parts of
the two members of an application, to enforce our invariant on static parts: they can be costly
because one has to give the kinds of the static parts that need to be restricted. We conclude
that functor application is as verbose in ML as in F.ω

S6 , excepted for the kinds of the needed
scope restrictions.

Definition of structures The translation of a structure is verbose due to the relocation that is performed,
because, once again, of the kinds of the restrictions, but also because of the type of the structure
that has to be repeated. Due to our invariant on static parts, the creation of structures in F.ω

S6
is more verbose than in ML.

Definition of structure bindings The translation of signature bindings does not preserve the structure of
programs: one separately constructs a binding context and the record of values. This is due to
the fact that the records of F.ω

S6 do not have internal bindings as found in ML structures. The
verbosity is also increased compared toML for the case of module inclusions: this is due to the
fact that records of F.ω

S6 are not extensible (no include or with notation). Adding these features
to F.ω

S6 ’s records would certainly allow to maintain the structure of the code and recover the
same concision.

Module projections The translation of module projections involves a relocation of the static part, and
is consequently verbose, since one has to give the kind of the static part of the module being
projected, as well as the resulting type.

Signature ascription The translation of a signature ascription is more verbose than in ML due to the
kind that must be repeated to close the static part of the module on which the signature is
applied.

Almost all of the rules preserve the structure of theML code apart from the structure bindings:
by “structure” we mean the untyped skeleton, obtained by type erasure. We think this is of crucial
importance, because it means that up to explicit constructs for types, one can program in F.ω

S6 as in
ML: your program does not have to be radically restructured, but just annotated, to fit in F.ω

S6 . It
also suggests that the translation we sketched just decorates your program, which is similar in effect
to what type inference does. This characteristic is made possible by the use of open existential types
and the use of subtyping.

The translation tells us that F.ω
S6 is more verbose than ML: this is due to the explicit management

of existential types, and to the fact that module type definitions are unfolded by the translation. The
first cause of verbosity might be leveraged by some techniques of inference, but it is still unclear
how to proceed or what would be their real benefit. The question of the unfolding of signatures may
be solved by two means: first, by encoding definition of signatures to types of the form λ(α :: κ) τ
instead of ∃(α :: κ)τ, as already mentioned. This would avoid the duplications of the static parts
represented by τ. A primitive notion of definitions of kinds could then be employed to share kind
expressions.

131

Chapter 4 A tentative design

TermPack
Γ ` A Z=⇒ α :: κ .M : τ Γ ` S Z=⇒ ∃(α :: κ ′)τ ′ Γ ` ∃(α :: κ)τ6 ∃(α :: κ ′)τ ′

Γ ` pack A : S Z=⇒ (∃(α :: κ)M : ∃(α :: κ ′)τ ′) : ?

ModUnpack
Γ ` e Z=⇒M : ∃(α :: κ)τ Γ ` S Z=⇒ ∃(α :: κ ′)τ ′ Γ ` ∃(α :: κ)τ≡ ∃(α :: κ ′)τ ′ :: ?

Γ ` unpack e : S Z=⇒ α :: κ . open 〈α〉M : τ

TypePack
Γ ` S Z=⇒ ∃(α :: κ)τ

Γ ` pack S Z=⇒ ∃(α :: κ)τ :: ?

Figure 4.19: Translation of first-class modules.

Extending the translation to support first-class modules

In this section, we show that our translation extends to first-class modules à la Russo: we extend the
different classes of syntax as in [RRD10].

e ::= . . . | pack A : S (Terms)
A ::= . . . | unpack e : S (Modules)
u ::= . . . | pack S (Types)

Terms of the base language are extended with the construct pack A : S that injects a module A of
module type S into the class of terms. The class of modules is extended with the inverse construction
unpack e : S that expects a packaged module and releases it as a module of signature S. Packed
modules have a type of the form pack S.
A term pack A : S actually really packs the open existential that constitutes the translation of A.

Since the signature S can be greater than the signature of A, a coercion is added to promote the
translation to the right type.
A module unpack e : S simply translates to the opening of the translation. The signature S is

checked to be compatible with the one of the packaged module e.
A packaged type pack S is just translated into the translation of S.
Hence, extending the translation to support first-class modules is straightforward, and further-

more, the constructions are translated into similar constructs: packing corresponds to closing an
existential, and unpacking corresponds to opening an existential.

Other translations to Fω-like languages

Other translations from module calculi to languages of the same family as System Fω have already
been studied. The more recent and also the closest to our work is the “F-ing modules” translation
[RRD10]. Indeed, our translation uses the same structure as the F-ing translation. There are twomain
differences between our translation and the one of F-ing: first, we use open existential types, whereas
usual existential types are used in F-ing. The difference in the translation is that the unpack/re-pack
pattern is employed, whereaswemake use of the pattern that consists in closing/opening existentials
when dealing with functors, but otherwise we use open witness definitions: the two patterns avoid
the need to move some pieces of code. They are used at different places in the translations. Second,
we take advantage of singleton kinds to prevent duplicating type definitions and also to enforce the
invariant that the static part of a module can be accessed via a single entry point, that is an existential
variable.

132

4.4 Conclusion and future work

Shan [cS06] gives a translation of the unifying framework on modules from [DCH03] into Fω. It
supports the encoding of generative and applicative functors.
Dreyer [Dre07b] encodes a module system supporting recursive modules called RMC into his

calculus RTG, that is close in spirit to F. (see Section 2.7 on page 49).
Shao [Sha99] also encodes module calculi into Fω and uses different intermediate languages to

succeed.

4.4 Conclusion and future work

In this chapter, we defined the language F.ω
S6 , that is built upon the work of the two previous

chapters: it merges the open existential types approach, and the singleton kinds calculus, and goes
one step further, by integrating the type equivalence provided by the singleton kinds with width
extensions of record types and record kinds into a powerful notion of subtyping.
No proof has currently been done on F.ω

S6 , and we do not expect them to be easy. Among the
difficulties, we identified the one of extending the kind equivalence relation from dependent pairs
to dependent record kinds, which does not seem to be a trivial task, although it has been rarely
considered as such in the previous works on modules. Works on dependently typed records or
telescopes in type theory would certainly help.

We quickly compared our language to Fω, that it extends in three orthogonal directions, namely
open existential types, singleton kinds, and subtyping. Then, we drew a more thorough comparison
with an idealized ML module system by defining an encoding into F.ω

S6 . Our language brings
System Fω much closer to ML, in the sense that our encoding mostly preserves the structure of the
program. To fully preserve it, it lacks better constructs to extend records and to handle dependent
records. F.ω

S6 must also be improved to reduce its verbosity: it has been acknowledged that some
type information still has to be duplicated, such as in the encoding of module type definitions, or
the inclusion of signatures, or the repetition of kinds for the explicit management of existential
types. A system of definitions of kinds should avoid the duplication due to definitions of signatures,
while adding extensible records of types to the type algebra of F.ω

S6 should solve the problem related
to the inclusion of signatures. Concerning the verbosity entailed by the explicit use of constructs
for existential types, one first approach would be to infer the kinds for restrictions and closure of
existentials: this would surely lighten the use of these constructs, and, at first glance, this appears
to be feasible. Another, more involved approach, would be to infer most uses of these constructs:
this is related to the open problem of type inference for existential types, which has not received
much attention yet, but is known to be a difficult problem. Maybe the open existential constructs
will stimulate further work in this direction.

Still, we think that F.ω
S6 makes a great step towards a language for modular programming à la

ML that is close, or at least based on, System F. As already discussed, it must be enhanced in some
ways. A prototype implementation is in development, that will be used to experiment F.ω

S6 on more
concrete cases and, more importantly, to bring positive and negative arguments to the debate on the
viability of programming in a phase-split style.

To make F.ω
S6 resemble a full blown programming language, adding recursive types is a necessity,

at least to model ML concrete datatypes. The interaction between recursive types and singleton
kinds is still unknown. Recursion at the term level is also a must have, and is already discussed in
Section 2.6.5 on page 42.

133

Chapter 5

Conclusion

The original problematics that guided our study of modules was born from the widespread remark
that modules are certainly the more subtle and complex part of the ML language. The primary goal
was to understand its subtleties and try to isolate the core features of modules as well as the sources
of complexity.

Context

Modules are originally presented as a language where types and terms are interleaved, but that still
maintains a phase separation: module types look as if they are dependent types, but it is mostly a
syntactic artifact. The dependent style is preferred for convenience reasons and elegance, and most
current implementations rely on this presentation.
Russo, however, showed in [Rus99, Rus03] that modules could be given non dependent types:

the types of System Fω are sufficient, or, in other words, universal and existential quantification is
enough. It gave rise to the Moscow ML implementation [RRS00], that internally relies on Russo’s
interpretation. It has been indeed, very recently, mechanically verified [RRD10] that modules could
be encoded in System Fω. This work also shows that programming with System Fω is, by far,
less convenient than using modules. Conversely, I do not think that modules are adapted to write
programs in the style of Fω.

In any case, System Fω gives a much simpler framework than the original module systems, and it
has already been exploited in some lines of research [LCH07, Dre07a, DR08]. This is also the path
we followed, and it led us to ask the question of what features System Fω lacked, compared toML
modules. The answer consists in three items: first, the constructs for existential types in System
Fω lack flexibility; second, there is no support for type definitions in System Fω; and in the third
place, a layer of type inference is missing in Fω. We think that these three points constitute the
core features of MLmodules. The latter point was not treated in this thesis, whereas the first two
ones constituted the topics of Chapter 2 and of Chapter 3, respectively. Chapter 4 focused on the
integration of the two preceding chapters.

Our work on modules

In Chapter 2, we proposed F. (F-zip): a language close to System F, equipped with new constructs to
handle existential types. They make possible to unpack existential packages in an open scope, hence
the name of open existential types. This essential feature permits to write programs using existential
types in a style that is close to the use of abstract types in modules. Moreover, we showed that F.

is very tightly related to F: encodings in both directions exist, that establish a static and dynamic
correspondence between the two languages. We formalized in the Coq proof assistant the type
soundness property of a large subset of F., and we described several extensions that would be useful
to broaden the expressiveness of F. to the one of a full-blown language.

135

Chapter 5 Conclusion

In Chapter 3, we considered the singleton kind system from [SH06]. We believe it is the tool
of choice to model type definitions [Sto05], and singletons have already been used in the TILT
compiler [PCHS01] and in the mechanized definition of Standard ML [LCH07], for instance. It
provides a powerful notion of extensional equivalence on types. Its metatheory, however, remains
involved. Stone and Harper described a normalization algorithm and a procedure to decide type
equivalence, and proved them sound and complete, with the use of a logical relation. We gave
another characterization, inspired by Crary’s work on the elimination of singletons [Cra07]: by
interpreting the unfolding of definition as an η-expansion step, we managed to define a small-
step reduction relation, that mixes η-expansion with β-reduction, and that is both confluent and
strongly normalizing on wellformed inputs. The key idea was to make explicit the positions where
η-expansion is permitted. This way, we could define a notion of equivalence based on reduction, that
is both sound and complete with respect to the original definition of equivalence of the singleton
kinds system. Our completeness proof used the same technique of logical relations, thus our proof
is not simpler than the one of Stone and Harper. We believe, however, that our approach is more
flexible and lead to more efficient algorithms for deciding type equivalence. We hope that it can
ease the understanding of the singleton kind system and, consequently, may take these techniques
accessible to a wider audience.
The Chapter 4 was dedicated to the integration of the features from the two previous chapters

into a single language: F.ω
S6 (F-zip-full) was defined as an extension of System Fω that promotes

it to a level of flexibility that is very close to the one of ML modules. The main differences that
remain between F.ω

S6 and a module system are, first, the lack of type inference for universal and
existential constructs, and, second, the fact that F.ω

S6 imposes a style where phases are split: type
components and value components live in different worlds, that cannot be mixed, whereas we
naturally interleave types and terms in ML structures and signatures. We think that the resulting
system is a first promising step: it shows that it is possible to bring System Fω very close to modules.
Still, we think that we lack practical experience: the phase-split style has often been criticized, but,
to our knowledge, no attempt has been made to provide tools or constructs that would help writing
programs in a such phase-split manner. We do not give an answer to the practicality or difficulty
of the phase-split style, but we think that, based on F.ω

S6 , one could more properly compare the
phase-split style with the style of modules.

Usual problems in modules

One can now more easily identify the sources of difficulty in the metatheory of modules:

Generativity of abstract types is confined to the F. subset: generativity corresponds to a notion of
unique identifier for abstract types, and this is handled in F. through the use of linearity for
abstract types.

Strengthening (or selfification) is restricted to the type level, in the singleton kind system, that is well
understood.

Type equivalence is inherited from the type equivalence in the singleton kind system of Stone and
Harper and is also well understood. In the case of the extensionwith records of types equipped
with width subkinding (Chapter 4), because it has not been studied yet, deciding equivalence
may remain a difficulty.

The avoidance problem We did not mention the avoidance problem until Chapter 4, when we added
subtyping to the system. The avoidance problem is an obstacle to designing complete typecheck-
ers (completeness typically relies on the existence of minimal types). This is still a difficulty
for the implementer and it might cause issues for the user as well.

136

Generative and applicative functors constitute a pervasive notion in the literature on modules. In our
study, we considered generative functors only. In Russo’s interpretation, applicative functors
differ from generative ones by the location of the existential quantifier in the type to specify
where opening must happen, and the kind order of the quantified type variable to express
dependencies. So we think that applicative functors are not an issue, and can already be
handled by F.ω

S6 . Extending the translation of Section 4.3.2 to support applicative functors,
however, needs to be done, and belongs to future work.

Future work

Improvements, extensions and other goals have already been given in details in each chapter. We
review the main objectives that we would like to reach from the work we presented.
Practice and experiments on real world examples are crucial. A prototype for F.ω

S6 is currently
being developed, and we hope that the experience we would gain by using it, will confirm or
invalidate our design choices. The form of type inference, especially, should be chosen and tuned
with respect to these experiments.

Formalizing a greater portion of our work also belongs to the plan: it is not only a personal
challenge, but it also brings benefits, when one tries to develop extensions of systems. Mechanization
of properties would certainly also test and improve current techniques related to binding issues in
proof assistants, for instance.

Adding dependent records to the singleton kinds system to extend its metatheory is planned, and
looks pretty challenging. Relying on a machine-checked development should be a valuable help.
Handling recursive types, especially in combination with the singleton kinds system, is also

considered as one of the main directions of research.

137

Colophon

This document was created using LATEX2ε using the scrbook class, from the KOMA-Script bundle.
The TEX Gyre Pagella font was used for the text typesetting, and the Euler font for maths.

Bibliography

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, , and
Stephanie Weirich. Engineering formal metatheory. In Proceedings of the 35th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
3–15. ACM, 2008.

[AGW04] Martin Abadi, Georges Gonthier, and Benjamin Werner. Choice in dynamic linking. In
In FOSSACS’04 - Foundations of Software Science and Computation Structures 2004, Lecture
Notes in Computer Science, pages 12–26. Springer, 2004.

[Aka93] Yohji Akama. On Mints’ reduction for ccc-calculus. In TLCA ’93: Proceedings of the
International Conference on Typed Lambda Calculi and Applications, pages 1–12, London,
UK, 1993. Springer-Verlag.

[Asp95] David Aspinall. Subtyping with singleton types. In In Eighth International Workshop on
Computer Science Logic, pages 1–15. Springer-Verlag, 1995.

[AW] Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless
representations. draft.

[AZ98] D. Ancona and E. Zucca. A theory of mixin modules: Basic and derived operators.
Mathematical Structures in Computer Science, 8(4):401–446, août 1998.

[Bar84] H. P. Barendregt. The Lambda-Calculus: its Syntax and Semantics, volume 103 of Studies in
logic and the foundations of mathematics. Elsevier, Amsterdam, The Nederlands, revised
edition edition, 1984.

[Bou04] Gérard Boudol. The recursive record semantics of objects revisited. J. Funct. Program.,
14:263–315, May 2004.

[CC96] Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction system for the
lambda-calculus with surjective pairing and terminal object. Journal of Functional Pro-
gramming, 6(2):299–327, 1996.

[CH07] Karl Crary and Robert Harper. Syntactic logical relations for polymorphic and recursive
types. Computation, Meaning and Logic, 2007. Articles adedicated to Gordon Plotkin.

[CK93] Roberto Di Cosmo and Delia Kesner. A confluent reduction for the extensional typed
lambda-calculus with pairs, sums, recursion and terminal object. In Andrzej Lingas,
editor, Intern. Conf. on Automata, Languages and Programming (ICALP), volume 700 of
Lecture Notes in Computer Science, pages 645–656. Springer-Verlag, July 1993.

[CL90] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. In M. Broy and
C. B. Jones, editors, Proceedings IFIP TC2 working conference on programming concepts and
methods, pages 479–504. North-Holland, 1990.

[Con03] Robert L. Constable. Recent results in type theory and their relationship toAutomath. In
F. Kamareddine, editor, Thirty Five Years of Automating Mathematics, pages 1–11. Kluwer
Academic Publishers, 2003.

141

http://www.cis.upenn.edu/~baydemir/papers/engineering-formal-metatheory.pdf
http://www.lix.polytechnique.fr/~werner/publis/choice.pdf
http://www.springerlink.com/content/m339j3pt14g8624n/fulltext.pdf
http://www.cis.upenn.edu/~baydemir/papers/lngen.pdf
http://www.cis.upenn.edu/~baydemir/papers/lngen.pdf
ftp://ftp.disi.unige.it/pub/person/AnconaD/MSCS98.ps.gz
http://portal.acm.org/citation.cfm?id=985917.985918
http://journals.cambridge.org/action/displayAbstract?aid=1350128
http://journals.cambridge.org/action/displayAbstract?aid=1350128
http://www.cs.cmu.edu/~crary/papers/2007/relns.pdf
http://www.cs.cmu.edu/~crary/papers/2007/relns.pdf
http://www.pps.jussieu.fr/~kesner/papers/icalp93.ps.gz
http://www.pps.jussieu.fr/~kesner/papers/icalp93.ps.gz
http://gallium.inria.fr/~xleroy/publi/abstract-types-dot-notation.pdf
http://www.cs.cornell.edu/Info/Projects/NuPRL/documents/constable/recent.pdf

Bibliography

[Coq] Reference manual of the Coq proof assistant, version 8.2 edition.

[Cos96] Roberto Di Cosmo. On the power of simple diagrams. In RTA ’96: Proceedings of the 7th
International Conference on Rewriting Techniques and Applications, pages 200–214, London,
UK, 1996. Springer-Verlag.

[Cou97] Judicaël Courant. An applicative module calculus. In Theory and Practice of Software
Development 97, Lecture Notes in Computer Science, pages 622–636, Lille, France, April
1997. Springer-Verlag.

[Cou98] Judicaël Courant. Un calcul de modules pour les systèmes de types purs. Thèse de doctorat,
Ecole Normale Supérieure de Lyon, 1998.

[Cou03] Judicaël Courant. Strong normalization with singleton types. Electronic Notes in Theo-
retical Computer Science, 70(1):53 – 71, 2003. ITRS ’02, Intersection Types and Related
Systems (FLoC Satellite Event).

[Cra07] Karl Crary. Sound and complete elimination of singleton kinds. ACM Trans. Comput.
Logic, 8(2):8, 2007.

[Cra09] Karl Crary. A syntactic account of singleton types via hereditary substitution. In 2009
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, 2009.

[cS06] Chung chieh Shan. Higher-order modules in System F-omega and Haskell. Draft, May
2006.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Comput. Surv., 17(4):471–523, 1985.

[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order mod-
ules. InProceedings of ACMSIGPLANSymposium onPrinciples of Programming Languages,
pages 236–249, 2003.

[DCK93] R. Di Cosmo and D. Kesner. Simulating expansions without expansions. 0 RR-1911,
INRIA, 05 1993. Projet FORMEL.

[DR08] Derek Dreyer and Andreas Rossberg. Mixin’ up the ML module system. In ICFP ’08:
Proceeding of the 13th ACM SIGPLAN international conference on Functional programming,
pages 307–320, Victoria, BC, Canada, 2008. ACM.

[Dre04] Derek Dreyer. A type system for well-founded recursion. In Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’04, pages
293–305, New York, NY, USA, 2004. ACM.

[Dre05a] DerekDreyer. Recursive type generativity. InProceedings of ACMSIGPLAN International
Conference on Functional Programming, pages 41–53, 2005.

[Dre05b] Derek Dreyer. Understanding and Evolving the ML Module System. PhD thesis, Carnegie
Mellon University, May 2005.

[Dre07a] Derek Dreyer. Recursive type generativity. Journal of Functional Programming, pages
433–471, 2007.

[Dre07b] Derek Dreyer. A type system for recursive modules. In Proceedings of ACM SIGPLAN
International Conference on Functional Programming, pages 289–302, 2007.

142

http://coq.inria.fr/refman/
http://www.dicosmo.org/Articles/POD.ps
http://www.springerlink.com/content/d957107m18j44184/
http://www.sciencedirect.com/science/article/B75H1-4DDWJKG-8N/2/1144fa5118adea8ac948cc17c0b7d217
http://www.cs.cmu.edu/~crary/papers/2005/singelim.pdf
http://www.cs.cmu.edu/~crary/papers/2009/synsing.pdf
http://www.cs.rutgers.edu/~ccshan/xlate/xlate.pdf
http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf
http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf
http://hal.inria.fr/inria-00074762/PDF/RR-1911.pdf
http://www.mpi-sws.org/~dreyer/papers/mixml/main-short.pdf
http://doi.acm.org/10.1145/964001.964026
http://www.mpi-sws.org/~dreyer/papers/dps/main.pdf
http://www.mpi-sws.org/~dreyer/thesis/main.pdf
http://www.mpi-sws.org/~dreyer/papers/dps/jfp.pdf
http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf

Bibliography

[Fel87] Matthias Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis, Indiana
University, 1987.

[FF98a] Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming with
units and mixins. In 1998 ACM SIGPLAN International Conference on Functional Pro-
gramming, 1998.

[FF98b] Matthew Flatt and Matthias Felleisen. Units: Cool modules for hot languages. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 236–248, 1998.

[FG10] Alain Frisch and Jacques Garrigue. First-class modules and composable signatures in
Objective Caml 3.12. Extended abstract, ML Workshop, Baltimore, Maryland, 2010.

[GMZ00] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstraction. ACM
Trans. Program. Lang. Syst., 22(6):1037–1080, 2000.

[Gog05a] Healfdene Goguen. Justifying algorithms forβη-conversion. In FoSSaCS, pages 410–424,
2005.

[Gog05b] Healfdene Goguen. A syntactic approach to η-equality in type theory. SIGPLAN Not.,
40(1):75–84, 2005.

[Gov05] Paul Govereau. Type generativity in higher-order module systems. Technical report,
Harvard University, 2005.

[GP92] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing, 1992.
Circulated in manuscript form. Full version in Theoretical Computer Science, 193(1–2):75–
96, February 1998.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge University
Press, New York, NY, USA, 1989.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Symposium on Logic in Computer Science, pages 194–204. IEEE Computer Society Press,
June 1987.

[HL94] RobertHarper andMark Lillibridge. A type-theoretic approach to higher-ordermodules
with sharing. In Proceedings of ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 123–137, New York, NY, USA, 1994. ACM.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In Proceedings of ACM SIGPLAN Symposium on Principles of Program-
ming Languages, pages 341–354, San Francisco, CA, January 1990.

[HP98] Martin Hofmann and Benjamin C. Pierce. Type destructors. In Didier Rémy, editor,
Informal proceedings of the Fourth International Workshop on Foundations of Object-Oriented
Languages (FOOL), January 1998.

[HP05] Robert Harper and Benjamin C. Pierce. Design considerations for ML-style module sys-
tems. In Benjamin C. Pierce, editor,Advanced Topics in Types and Programming Languages,
chapter 8, pages 293–345. The MIT Press, 2005.

[HS00] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In
Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction:
Essays in Honor of Robin Milner. MIT Press, 2000.

143

http://www.ccs.neu.edu/scheme/pubs/icfp98-ff.pdf
http://www.ccs.neu.edu/scheme/pubs/icfp98-ff.pdf
http://www.ccs.neu.edu/scheme/pubs/pldi98-ff.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/ml2010.pdf
http://www.math.nagoya-u.ac.jp/~garrigue/papers/ml2010.pdf
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3441&spage=410
http://www.eecs.harvard.edu/~govereau/modules/generativity.pdf
http://www.monad.me.uk/stable/prot.pdf
http://www.cs.cmu.edu/~rwh/papers/sharing/popl94.pdf
http://www.cs.cmu.edu/~rwh/papers/sharing/popl94.pdf
http://theory.stanford.edu/~jcm/papers/harper-mm-90.pdf
http://theory.stanford.edu/~jcm/papers/harper-mm-90.pdf
http://www.cis.upenn.edu/~bcpierce/papers/td.ps
http://www.cs.cmu.edu/~rwh/papers/ttisml/ttisml.pdf

Bibliography

[JG95] C. Barry Jay and Neil Ghani. The virtues of η-expansion. Journal of Functional Program-
ming, 5:135–154, 1995.

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Infor-
mation and Computation, 205(4):419–473, 2007.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of
Standard ML. SIGPLAN Not., 42(1):173–184, 2007.

[LDG+10] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system release 3.12. INRIA, June 2010.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of
ACMSIGPLANSymposium onPrinciples of Programming Languages, pages 109–122. ACM
Press, 1994.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages, pages
142–153. ACM Press, 1995.

[Ler96] Xavier Leroy. A syntactic theory of type generativity and sharing. Journal of Functional
Programming, 6(5):667–698, 1996.

[Ler00] Xavier Leroy. A modular module system. Journal of Functional Programming, 10(3):269–
303, 2000.

[Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, May 1997.

[LPSW03] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global abstraction-
safe marshalling with hash types. SIGPLAN Not., 38(9):87–98, 2003.

[Lé78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. Thèse d’état,
Université Paris 7, 1978.

[Mac84] DavidMacQueen. Modules for StandardML. InACMSymposium on LISP and functional
programming, pages 198–207, New York, NY, USA, 1984. ACM.

[Mac86] David B. MacQueen. Using dependent types to express modular structure. In Pro-
ceedings of ACM SIGPLAN Symposium on Principles of Programming Languages, pages
277–286, New York, NY, USA, 1986. ACM.

[Mit86] John C. Mitchell. Representation independence and data abstraction. In POPL ’86:
Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 263–276, New York, NY, USA, 1986. ACM.

[Mit91] John C. Mitchell. On the equivalence of data representations. Artificial intelligence and
mathematical theory of computation: papers in honor of JohnMcCarthy, pages 305–329, 1991.

[Mon10] Benoît Montagu. Experience report: Mechanizing core F-zip using the locally nameless
approach. Presented at the 5th ACM SIGPLANWorkshop on Mechanizing Metatheory,
Baltimore, September 2010.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM
Trans. Program. Lang. Syst., 10(3):470–502, 1988.

144

http://journals.cambridge.org/action/displayAbstract?aid=1322980
http://www.pps.jussieu.fr/~kesner/papers/llxr-long.ps
http://www.cs.cmu.edu/~dklee/papers/tslf-popl.pdf
http://www.cs.cmu.edu/~dklee/papers/tslf-popl.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
http://gallium.inria.fr/~xleroy/publi/manifest-types-popl.pdf
http://gallium.inria.fr/~xleroy/publi/applicative-functors.pdf
http://gallium.inria.fr/~xleroy/publi/syntactic-generativity.pdf
http://gallium.inria.fr/~xleroy/publi/modular-modules-jfp.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-122.ps
http://moscova.inria.fr/~leifer/articles/leifer-globas-tr-inria.ps.gz
http://moscova.inria.fr/~leifer/articles/leifer-globas-tr-inria.ps.gz
http://www-2.cs.cmu.edu/~rwh/courses/modules/papers/macqueen84/paper.pdf
http://www-2.cs.cmu.edu/~crary/819-f09/MacQueen86.pdf
http://gallium.inria.fr/~montagu/publications/2010/montagu_WMM2010.pdf
http://gallium.inria.fr/~montagu/publications/2010/montagu_WMM2010.pdf
http://theory.stanford.edu/~jcm/papers/mitch-plotkin-88.pdf

Bibliography

[MR09] Benoît Montagu and Didier Rémy. Modeling abstract types in modules with open exis-
tential types. In Proceedings of ACM SIGPLAN Symposium on Principles of Programming
Languages. ACM, January 2009.

[MR10] Benoît Montagu and Didier Rémy. Types abstraits et types existentiels ouverts. In
Éric Cariou, Laurence Duchien, and Yves Ledru, editors, Actes des deuxièmes journées
nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel,
pages 147–148, Université de Pau, Mars 2010.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, May 1997.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal
theory of objects with dependent types. In Proceedings of European Conference on Object-
Oriented Programming, pages 201–224, 2003.

[PCHS01] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT
internal language. Technical Report CMU-CS-00-180, Carnegie Mellon School of Com-
puter Science, 2001.

[Pes08] Gilles Peskine. Types abstraits dans les systèmes répartis. PhD thesis, Université de Paris
7, Paris, France, june 2008.

[PS02] Frank Pfenning and Carsten Schuermann. Twelf User’s Guide, 2002. Version 1.4.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In Information
Processing 83, pages 513–523. Elsevier Science, 1983.

[Ros03] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In Proceed-
ings of ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, pages 241–252, Uppsala, Sweden, September 2003.

[RRD10] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. In 2010 ACM
SIGPLANWorkshop on Types in Language Design and Implementation (TLDI2010), January
2010.

[RRS00] Sergei Romanenko, Claudio Russo, and Peter Sestoft. MoscowML Owner’s Manual, June
2000.

[Rus98] Claudio V. Russo. Types for Modules. PhD thesis, Edinburgh University, Edinburgh,
Scotland, March 1998.

[Rus99] Claudio V. Russo. Non-dependent types for standard ML modules. In Proceedings of
ACM SIGPLAN International Conference on Principles and Practice of Declarative Program-
ming, pages 80–97. Springer-Verlag, September 1999.

[Rus01] Claudio V. Russo. Recursive structures for StandardML. In Proceedings of the 2001 ACM
SIGPLAN International Conference on Functional Programming, pages 50–61. ACM Press,
September 2001.

[Rus03] Claudio V. Russo. Types for modules. Electronic Notes in Theoretical Computer Science,
60, January 2003.

[SCPD07] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with
type equality coercions. In ACM SIGPLAN Workshop on Types in Language Design and
Implementation, pages 53–66. ACM Press, 2007.

145

http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://lamp.epfl.ch/~odersky/papers/ecoop03.pdf
http://lamp.epfl.ch/~odersky/papers/ecoop03.pdf
http://moscova.inria.fr/~peskine/research/texts/these/peskine-these.pdf
http://www.cs.cmu.edu/~twelf/guide-1-4/twelf.pdf
http://www.mpi-sws.org/~rossberg/papers/Rossberg%20-%20Generativity%20and%20Dynamic%20Opacity%20for%20Abstract%20Types.pdf
http://research.microsoft.com/~crusso/papers/fingmodules.pdf
http://www.itu.dk/~sestoft/mosml/manual.pdf
http://hdl.handle.net/1842/385
http://www.research.microsoft.com/~crusso/papers/ppdp99.pdf
http://www.research.microsoft.com/~crusso/papers/icfp01.pdf
http://research.microsoft.com/~crusso/papers/entcs.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/fc-tldi.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/fc-tldi.pdf

Bibliography

[SH00] Christopher A. Stone and Robert Harper. Deciding type equivalence in a language with
singleton kinds. In POPL ’00: Proceedings of the 27th ACMSIGPLAN-SIGACT symposium
on Principles of programming languages, pages 214–227, New York, NY, USA, 2000. ACM.

[SH06] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types.
ACM Trans. Comput. Logic, 7(4):676–722, 2006.

[Sha98] Zhong Shao. Typed cross-module compilation. In ICFP ’98: Proceedings of the third ACM
SIGPLAN international conference on Functional programming, pages 141–152, New York,
NY, USA, 1998. ACM.

[Sha99] Zhong Shao. Transparent modules with fully syntatic signatures. In ICFP ’99: Pro-
ceedings of the fourth ACM SIGPLAN international conference on Functional programming,
pages 220–232, New York, NY, USA, 1999. ACM.

[SML] Standard ML of New Jersey User’s Guide.

[SNO+10] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge,
Susmit Sarkar, and Rok Strnivsa. Ott: Effective tool support for the working semanticist.
JFP, 20(1):71–122, 2010.

[SP04] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In POPL ’04:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 161–172, New York, NY, USA, 2004. ACM.

[SS] Christopher A. Stone and Andrew P. Schoonmaker. Equational theories with recursive
types. Under consideration for publication in Journal Functional Programming.

[Sto00] Christopher A. Stone. Singleton Types and Singleton Kinds. PhD thesis, Carnegie Mellon
University, 2000.

[Sto05] Christopher A. Stone. Type definitions. In Benjamin C. Pierce, editor, Advanced Topics
in Types and Programming Languages, chapter 9, pages 347–385. The MIT Press, 2005.

[Tak95] Masako Takahashi. Parallel reductions in λ-calculus. Information and Computation,
118(1):120–127, 1995.

[vO08] Vincent van Oostrom. Confluence by decreasing diagrams, converted. In Proceedings of
the 19th RTA (RTA 2008), volume 5117 of LNCS, pages 306–320, Hagenberg, July 2008.
Springer.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

[WV00] J. B. Wells and René Vestergaard. Equational reasoning for linking with first-class prim-
itive modules. In ESOP ’00: Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 412–428, London, UK, 2000. Springer-Verlag.

146

http://www.cs.hmc.edu/~stone/papers/tocl-final.pdf
http://www.cs.hmc.edu/~stone/papers/tocl-final.pdf
http://www.cs.hmc.edu/~stone/papers/tocl-final.pdf
http://flint.cs.yale.edu/flint/publications/tcc.pdf
http://flint.cs.yale.edu/flint/publications/fullsig-tr.pdf
http://www.smlnj.org/
http://www.cl.cam.ac.uk/~pes20/ott/ott-jfp.pdf
http://www.cs.hmc.edu/~stone/papers/recfull.pdf
http://www.cs.hmc.edu/~stone/papers/recfull.pdf
http://www.cs.hmc.edu/~stone/papers/thesis.ps.gz
http://dx.doi.org/10.1006/inco.1995.1057
http://www.phil.uu.nl/~oostrom/publication/pdf/ddconvertedFV.pdf
http://www.ccs.neu.edu/scheme/pubs/ic94-wf.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells+Vestergaard:Equational-Reasoning-for-Linking-with-First-Class-Primitive-Modules:ESOP-2000.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/Wells+Vestergaard:Equational-Reasoning-for-Linking-with-First-Class-Primitive-Modules:ESOP-2000.ps.gz

	Introduction
	A short overview of ML modules
	Russo's interpretation of modules
	Problematics and outline
	Published work

	Open existential types
	Existential types in System F
	A core calculus with open existential types
	More atomic constructs for existential types
	The appearance of recursive types
	About coercibility

	A definition for Core Fzip
	A more restrictive zipping
	Syntax
	Typing rules
	Reduction semantics

	Soundness
	Basic syntactic lemmas
	Main syntactic lemmas
	Properties of coercibility
	Properties of results and -reductions
	Type soundness
	A mechanized proof of soundness
	Type erasure semantics

	Adequacy with System F
	From F to Fzip
	From Fzip to F
	The logical facet

	Extensions of Fzip
	Weakening
	More liberal equations
	Double vision
	Recursive types
	Recursive values
	Soundness of the extensions

	Related work
	Conclusion and future work
	Limitations of Fzip
	Future work

	Type definitions and singleton kinds
	Singleton kinds: Harper-Stone system
	Harper-Stone's system: definitions
	Examples
	Harper-Stone's system: properties
	Harper-Stone normalization algorithm and decidability result

	Goals of this chapter
	Preliminary results: some composition properties for rewriting systems
	Warm-up: the simply-typed case
	Definitions
	Subject reduction
	Confluence and strong normalization
	Adequacy

	Small-step extensional equivalence for singleton types
	Definition
	Translation into the simply typed lambda-calculus
	Subject reduction
	Confluence and strong normalization
	Properties of expansors
	Soundness of convertibility
	Completeness of convertibility
	Adequacy
	Insertions of expansors and minimal kinds
	A second reading of Stone-Harper's normalization algorithm

	Related work
	Future work

	A tentative design
	Definitions
	Terms
	Types and kinds
	Coercibility
	A powerful notion of subtyping
	Environments
	Dynamic semantics
	Conjectures

	Examples and remarks
	Local definitions
	Renaming or relocation of existential items
	Phase-split style

	Comparisons
	Full Fzip vs. System F
	Full Fzip vs. ML

	Conclusion and future work

	Conclusion

