Annexe 7 Synthèse des essais sur poutres

A1	Suivis dimensionnels de P1	537
A1.1	Suivis dimensionnels locaux	537
A1.2	Suivis dimensionnels globaux	537
A1.3	Suivis des flèches	538
A1.4	Fonctionnement structurel dans le cadre de la théorie des poutres	538
A2	Suivis dimensionnels de P2	539
A2.1	Suivis dimensionnels locaux par jauges	539
A2.2	Suivis dimensionnels locaux par extensomètre à cordes vibrantes	540
A2.3	Suivis dimensionnels globaux	541
A2.4	Suivis des flèches	542
A2.5	Fonctionnement structurel dans le cadre de la théorie des poutres	542
A3	Suivis dimensionnels de P3	544
A3.1	Suivis dimensionnels locaux	544
A3.2	Suivis dimensionnels globaux	545
A3.3	Suivis des flèches	545
A3.4	Fonctionnement structurel dans le cadre de la théorie des poutres	546
A4	Suivis dimensionnels de P4	547
A4.1	Suivis dimensionnels locaux	547
A4.2	Suivis dimensionnels globaux	548
A4.3	Suivis des flèches	548
A4.4	Fonctionnement structurel dans le cadre de la théorie des poutres	549
A5	Suivis dimensionnels de P5	550
A5.1	Suivis dimensionnels locaux	550
A5.2	Suivis dimensionnels globaux	551
A5.3	Suivis des flèches	551
A5.4	Fonctionnement structurel dans le cadre de la théorie des poutres	552
A6	Suivis dimensionnels de P6	553
A6.1	Suivis dimensionnels locaux	553
A6.2	Suivis dimensionnels globaux	554
A6.3	Suivis des flèches	554
A6.4	Fonctionnement structurel dans le cadre de la théorie des poutres	555
A7	Synthèse du suivi des flèches	556
A8	Synthèse du suivi massique global	557

A1 Suivis dimensionnels de P1

A1.1 Suivis dimensionnels locaux

A1.2 Suivis dimensionnels globaux

Temps (jours) Figure A7. 2 : suivi des déformations horizontales globales – poutre P1

A1.3 Suivis des flèches

Temps (jours)

A1.4 Fonctionnement structurel dans le cadre de la théorie des poutres

Tableau A7. 1 : profil de déformation horizontal moyen - poutre P1				
	Échéance (j)	Courbure χ	Déformation moyenne	

Echéance (j)	Courbure χ	Déformation moyenne
10	-2,29E-04	-0,0041%
50	-4,17E-04	0,0133%
100	-5,66E-04	0,0031%
150	-6,74E-04	0,0070%
200	-7,56E-04	0,0061%
250	-8,17E-04	-0,0233%
300	-9,23E-04	-0,0207%
350	-9,69E-04	-0,0372%
400	-1,03E-03	-0,0512%
435	-1,08E-03	-0,0582%

A2 Suivis dimensionnels de P2

A2.1 Suivis dimensionnels locaux par jauges

A2.2 Suivis dimensionnels locaux par extensomètre à cordes vibrantes

A2.3 Suivis dimensionnels globaux

A2.4 Suivis des flèches

Figure A7. 8 : suivi des flèches – poutre P2

Figure A7. 9 : profil de déformation horizontale moyen – poutre P2

Tableau A7. 2. prom de delor mation norizontal moyen – pour e 12				
Échéance (j)	Courbure χ	Déformation moyenne	Ecart quadratique	
10	-1,68E-04	0,0003%	0,0021%	
50	-2,42E-04	0,0011%	0,0047%	
100	-5,43E-04	0,0069%	0,0095%	
150	-1,19E-03	0,0212%	0,0139%	
200	-2,70E-03	0,0543%	0,0180%	
250	-7,10E-03	0,1414%	0,0338%	
295	-1,47E-02	0,2991%	0,0714%	

Tableau A7. 2 : profil de déformation horizontal moyen – poutre P2

Figure A7. 10 : intégration de la courbure moyenne – poutre P2

A3 Suivis dimensionnels de P3


```
Suivi P3 - Flèches
```

Figure A7. 13 : suivi des flèches – poutre P3

A3.4 Fonctionnement structurel dans le cadre de la théorie des poutres

Figure A7. 14 : profil de déformation horizontale moyen – poutre P3

Échéance (j)	Courbure χ	Déformation moyenne	Ecart quadratique
10	-2,10E-04	-0,0049%	0,0043%
50	-9,57E-04	-0,0031%	0,0084%
100	-2,00E-03	0,0119%	0,0095%
150	-3,61E-03	0,0330%	0,0143%
200	-4,91E-03	0,0694%	0,0211%
250	-4,67E-03	0,1229%	0,0332%
300	-2,18E-03	0,1934%	0,0394%
350	-3,18E-04	0,2399%	0,0344%
400	9,71E-04	0,2628%	0,0403%
435	2,21E-03	0,2726%	0,0383%

Tableau A7.3: profil de déformation horizontal moyen – poutre P3

A4 Suivis dimensionnels de P4

A4.1 Suivis dimensionnels locaux

A4.3 Suivis des flèches

Temps (jours)

Figure A7. 18 : suivi des flèches – poutre P4

A4.4 Fonctionnement structurel dans le cadre de la théorie des poutres

Figure A7. 19 : profil de déformation horizontale moyen – poutre P4

Échéance (j)	Courbure χ	Déformation moyenne	Ecart quadratique
10	-1,21E-04	-0,0006%	0,0028%
50	-2,54E-04	0,0060%	0,0044%
100	-7,53E-04	0,0139%	0,0078%
150	-9,34E-04	0,0307%	0,0215%
200	-1,51E-03	0,0400%	0,0293%
250	-1,36E-03	0,0539%	0,0305%
300	-1,78E-03	0,0742%	0,0329%
350	-5,09E-04	0,0742%	0,0466%
400	9,61E-05	0,1293%	0,0562%
435	5,25E-04	0,1614%	0,0735%

Figure A7. 20 : intégration de la courbure moyenne – poutre P4

A5 Suivis dimensionnels de P5

A5.1 Suivis dimensionnels locaux

Figure A7. 21 : suivis dimensionnels locaux – poutre P5

A5.3 Suivis des flèches

Figure A7. 23 : suivi des flèches – poutre P5

A5.4 Fonctionnement structurel dans le cadre de la théorie des poutres

Figure A7. 24 : profil de déformation horizontale moyen – poutre P5

I abicau 11/1 c	rabicau 117.5. prom de delor mation norizontar moyen pour er 5				
Échéance (j)	Courbure χ	Déformation moyenne	Ecart quadratique		
10	-1,91E-04	0,0058%	0,0079%		
25	-2,70E-04	0,0086%	0,0093%		
50	-1,25E-03	0,0141%	0,0133%		
75	-3,27E-03	0,0375%	0,0361%		
100	-8,44E-03	0,1071%	0,0906%		

Tableau A7. 5 : profil de déformation horizontal moyen – poutre P5

Figure A7. 25 : intégration de la courbure moyenne – poutre P5

A6 Suivis dimensionnels de P6

A6.1 Suivis dimensionnels locaux

A6.2 Suivis dimensionnels globaux

Suivi P6 - Flèches

A6.3 Suivis des flèches

Temps (jours) Figure A7. 28 : suivi des flèches – poutre P6

A6.4 Fonctionnement structurel dans le cadre de la théorie des poutres

Figure A7. 29 : profil de déformation horizontale moyen – poutre P6

Échéance (j)	Courbure χ	Déformation moyenne	Ecart quadratique
10	-2,62E-04	-0,0002%	0,0058%
50	-9,22E-04	0,0136%	0,0206%
100	-1,55E-03	0,0284%	0,0329%
150	-1,85E-03	0,0478%	0,0413%
200	-1,82E-03	0,0689%	0,0526%
250	-1,28E-03	0,0823%	0,0523%
300	-6,49E-04	0,0988%	0,0595%
350	4,05E-04	0,1015%	0,0402%
390	8,09E-04	0,1056%	0,0387%

Tableau A7. 6 : profil de déformation horizontal moyen – poutre P6

Figure A7. 30 : intégration de la courbure moyenne – poutre P6

A7 Synthèse du suivi des flèches

Temps (jours) Figure A7. 31 : suivi des flèches des poutres

Temps (jours) Figure A7. 32 : suivi des flèches des poutres (zoom)

A8 Synthèse du suivi massique global

Figure A7. 34 : suivi massique global des poutres après recalage du temps et des masses à l'instant de remouillage

Annexe 8 Détail des calculs de modélisation des poutres

A1 Calcul d'incertitude des modélisations hydriques	561
A1.1 Calcul d'incertitude du paramètre P du modèle	de comportement hydrique binaire des
poutres	
A1.2 Calcul d'incertitude du paramètre D du me	odèle de comportement hydrique de
gonflement libre pondéré par la cinétique d'imbibition globale	
A2 Modélisation RdM des poutres	
A2.1 Principe de modélisation	
A2.2 Cas d'une poutre non armée avec module d'You	ng considéré constant 566
A2.2.1 Résolution du système	
A2.2.2 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
binaire	
A2.2.3 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
de gonflement libre pondéré	
A2.3 Cas d'une poutre non armée avec variation du	module d'Young sous les effets d'une
réaction de gonflement interne	
A2.3.1 Résolution du système	
A2.3.2 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
binaire	
A2.3.3 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
de gonflement libre pondéré	
A2.4 Cas d'une poutre armée avec module d'Young c	onsidéré constant 574
A2.5 Cas d'une poutre armée avec variation du m	nodule d'Young sous les effets d'une
réaction de gonflement interne	
A2.5.1 Résolution du système	
A2.5.2 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
binaire	
A2.5.3 Incertitude sur les déformations et les flèche	es - modèle de comportement hydrique
de gonflement libre pondéré	

A1 Calcul d'incertitude des modélisations hydriques

Dans le Chapitre 5, on propose différentes modélisations afin de retranscrire les mouvements hydriques dans les structures. Cette section propose un calcul des incertitudes inhérentes aux différents calculs menés.

A1.1 Calcul d'incertitude du paramètre P du modèle de comportement hydrique binaire des poutres

L'expression du paramètre P du modèle de comportement hydrique binaire des poutres est donnée par la relation (1) :

$$P = \begin{pmatrix} \frac{\Delta M_{global}(t)}{S_{p}} - M_{v} \cdot \int_{ps} \left(\frac{\delta m}{m} \right)_{\gamma}(z, t) \cdot dz \\ M_{v} \cdot \left(\frac{\delta m}{m} \right)_{éprouvette}(\infty) \end{pmatrix} \cdot \frac{1 + \exp\left(-\frac{t - \tau_{1_{m}}}{\tau_{c_{m}}} \right)}{1 - \exp\left(-\frac{t}{\tau_{c_{m}}} \right)} \\ = \left(\frac{\operatorname{Pes\acute{e}e} - \operatorname{Gamma}}{M_{v} \cdot \left(\frac{\delta m}{m} \right)_{éprouvette}}(\infty) \right) \cdot \frac{1 + \exp\left(-\frac{t - \tau_{1_{m}}}{\tau_{c_{m}}} \right)}{1 - \exp\left(-\frac{t}{\tau_{c_{m}}} \right)} \\ = f\left(\operatorname{Pes\acute{e}e}, \operatorname{Gamma}, \left(\frac{\delta m}{m} \right)_{éprouvette}(\infty), \tau_{c_{m}}, \tau_{1_{m}} \right) \end{pmatrix}$$
(1)

Par conséquent, il vient :

$$dP = \frac{\partial P}{\partial Pes\acute{e}} \cdot dPes\acute{e} + \frac{\partial P}{\partial Gamma} \cdot dGamma + \frac{\partial P}{\partial \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}}(\infty)} \cdot d\left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(\infty) + \frac{\partial P}{\partial \tau_{c_m}} \cdot d\tau_{c_m} + \frac{\partial P}{\partial \tau_{l_m}} \cdot d\tau_{l_m}$$
(2)

En considérant les sources d'incertitude comme indépendantes, il vient (3).

$$u_{P} = \begin{bmatrix} \left(\frac{\partial P}{\partial Pes\acute{e}}\right)^{2} \cdot u_{Pes\acute{e}}^{2} + \left(\frac{\partial P}{\partial Gamma}\right)^{2} \cdot u_{Gamma}^{2} + \left(\frac{\partial P}{\partial \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(\infty)}\right)^{2} \cdot \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(\infty) \end{bmatrix}^{2} + \left(\frac{\delta m}{\partial \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(\infty)}\right)^{2} \cdot \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(\infty)$$
(3)
$$+ \left(\frac{\partial P}{\partial \tau_{c_{m}}}\right)^{2} \cdot \left(\frac{\partial P}{\partial \tau_{c_{m}}}\right)^{2} + \left(\frac{\partial P}{\partial \tau_{l_{m}}}\right)^{2} \cdot \left(\frac{\partial P}{\partial \tau_{l_{m}}}\right)^{2} + \left(\frac{\partial P}{\partial \tau_{l_{m}}}\right)^{2} + \left(\frac{\partial P}{\partial \tau_{l_{m}}}\right)^{2} \cdot \left(\frac{\partial P}{\partial \tau_{l_{m}}}\right)^{2} + \left(\frac{\partial P}{\partial \tau_{l_{m}$$

Le calcul des dérivées partielles donne les résultats suivants :

$$\frac{\partial P}{\partial Pes\acute{e}e} = \frac{1}{M_v \cdot \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}}(\infty)} \cdot \frac{1}{S(t)}$$
(4)

$$\frac{\partial P}{\partial Gamma} = -\frac{1}{M_v \cdot \left(\frac{\delta m}{m}\right)_{éprouvette}} (\infty) \cdot \frac{1}{S(t)}$$
(5)

$$\frac{\partial P}{\partial \left(\frac{\delta m}{m}\right)_{\text{éprouvette}}(\infty)} = -\frac{\frac{\Delta M_{\text{global}}(t)}{S_{\text{p}}} - M_{\text{v}} \cdot \int_{\text{ps}} \left(\frac{\delta m}{m}\right)_{\gamma}(z,t) \cdot dz}{M_{\text{v}} \cdot \left(\frac{\delta m}{m}\right)_{\text{éprouvette}}^{2}(\infty)} \cdot \frac{1}{S(t)}$$
(6)

$$\frac{\partial P}{\partial \tau_{c_m}} = \frac{\frac{\Delta M_{glob}(t)}{S_p} - M_v \cdot \int_{ps} \left(\frac{\delta m}{m}\right)_{\gamma} dz}{M_v \cdot \left(\frac{\delta m}{m}\right)_{éprouvette}} \cdot \frac{e^{\left(\frac{t + \tau_{l_m}}{\tau_{c_m}}\right)} \cdot t - e^{\left(\frac{t + \tau_{l_m}}{\tau_{c_m}}\right)} \cdot \tau_{l_m} + e^{\left(\frac{t}{\tau_{c_m}}\right)} \cdot t + e^{\left(\frac{\tau_{l_m}}{\tau_{c_m}}\right)} \cdot \tau_{l_m}}{\left(e^{\left(\frac{t}{\tau_{c_m}}\right)} - 1\right)^2 \cdot \tau_{c_m}^2}$$
(7)

$$\frac{\partial P}{\partial \tau_{1_m}} = \frac{\frac{\Delta M_{global}(t)}{S_p} - M_v \cdot \int_{ps} \left(\frac{\delta m}{m}\right)_{\gamma}(z, t) \cdot dz}{M_v \cdot \left(\frac{\delta m}{m}\right)_{éprouvette}}(\infty)} \cdot \frac{e^{\left(\frac{\tau_{1_m}}{\tau_{c_m}m}\right)}}{\left(e^{\left(\frac{t}{\tau_{c_m}m}\right)} - 1\right) \cdot \tau_{c_m}}}$$
(8)

Avec :

$$S(t) = \frac{1 - \exp\left(-\frac{t}{\tau_{c_m}}\right)}{1 + \exp\left(-\frac{t - \tau_{1_m}}{\tau_{c_m}}\right)}$$
(9)

Les valeurs d'incertitude des différents paramètres sont les suivantes :

$$\begin{aligned} u_{\text{Pesée}} &= 130 \text{ g} / \text{m}^2 \\ u_{\text{Gamma}} &= 530 \text{ g} / \text{m}^2 \\ u_{\left(\frac{\delta m}{m}\right)_{\text{éprouvette}}}(\infty)} &= \text{écart type déterminé par les essais de gonflement libre} \\ u_{\tau_{c-m}} &= u_{\tau_{1-m}} = 20 \text{ jours} \end{aligned}$$

Les incertitudes de pesée et de gammadensimétrie sont issues des essais de qualification de ces appareils. Les incertitudes sur les paramètres τ_{c_m} et τ_{l_m} ont été prises égales à 20 jours : devant le manque de données expérimentales permettant de confirmer notre hypothèse de cinétique de remontée du front d'imbibition, il a été choisi de réaliser une estimation sécuritaire de l'incertitude en choisissant cette valeur élevée. La valeur des incertitudes est donnée dans le Chapitre 4. Pour les poutres P1, P3, P4 et P6 dont les expansions restent modérées, l'incertitude est de l'ordre de 5 cm. En revanche, pour les poutres P2 et P5, elle est de l'ordre de 20 cm et caractérise les difficultés d'évaluation de la position du front d'imbibition pour des structures aussi réactives.

A1.2 Calcul d'incertitude du paramètre D du modèle de comportement hydrique de gonflement libre pondéré par la cinétique d'imbibition globale

L'expression du paramètre de D du modèle de comportement hydrique de gonflement libre pondéré par la cinétique d'imbibition globale de la poutre est donnée par :

$$D = \left(\frac{\Delta M_{global}(t)}{S_{p}} - M_{v} \cdot \int_{ps} \left(\frac{\delta m}{m} \right)_{\gamma}(z, t) \cdot dz}{M_{v} \cdot \left(\frac{\delta m}{m} \right)_{éprouvette}} - 0,07 \right) \cdot \frac{1}{\sqrt{t}}$$

$$= \left(\frac{\text{Pesée} - \text{Gamma}}{M_{v} \cdot \left(\frac{\delta m}{m} \right)_{éprouvette}} - 0,07 \right) \cdot \frac{1}{\sqrt{t}}$$

$$= f \left(\text{Pesée, Gamma,} \left(\frac{\delta m}{m} \right)_{éprouvette}} (t) \right)$$
(10)

En considérant les sources d'incertitude comme indépendantes, il vient :

$$u_{\rm D} = \sqrt{\left(\frac{\partial D}{\partial Pes\acute{e}e}\right)^2 \cdot u_{Pes\acute{e}e}^2 + \left(\frac{\partial D}{\partial Gamma}\right)^2 \cdot u_{Gamma}^2 + \left(\frac{\partial D}{\partial \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(t)}\right)^2 \cdot \frac{u_{C}}{\left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}(t)}$$
(11)

Le calcul des dérivées partielles donne les résultats suivants :

$$\frac{\partial D}{\partial Pes\acute{e}e} = \frac{1}{M_v \cdot \left(\frac{\delta m}{m}\right)_{\acute{e}prouvette}} (t)} \cdot \frac{1}{\sqrt{t}}$$
(12)

$$\frac{\partial D}{\partial Gamma} = -\frac{1}{M_v \cdot \left(\frac{\delta m}{m}\right)_{éprouvette}} \cdot \frac{1}{\sqrt{t}}$$
(13)

$$\frac{\partial D}{\partial \left(\frac{\delta m}{m}\right)_{\text{éprouvette}}}(t) = -\frac{\frac{\Delta M_{\text{global}}(t)}{S_{\text{p}}} - M_{\text{v}} \cdot \int_{\text{ps}} \left(\frac{\delta m}{m}\right)_{\gamma}(z, t) \cdot dz}{M_{\text{v}} \cdot \left(\frac{\delta m}{m}\right)_{\text{éprouvette}}^{2}(t)} \cdot \frac{1}{\sqrt{t}}$$
(14)

Tout comme pour le paramètre P, l'incertitude sur D est fonction des poutres considérées. Pour des poutres fortement armée, les incertitudes restent modérées et de l'ordre de 1 à 2.10⁻³ m.jour^{-1/2}. Pour les poutres non armées dont les déformations sont bien plus conséquentes, l'incertitude est de l'ordre de 5.10⁻³ m.jour^{-1/2} et caractérise les plus fortes variations hydriques dans ces structures.

A2 Modélisation RdM des poutres

A2.1 Principe de modélisation

Par convention, l'axe suivant la hauteur de la poutre (z) est orienté vers le haut et son origine est fixée au niveau de la face supérieure de la poutre. Par conséquent, les profondeurs considérées pour les structures sont négatives.

Principe de la modélisation RdM des poutres :

1. Détermination du profil de variation massique au cours du temps : évaluation du profil de séchage et de la hauteur de remontée du front d'imbibition (les dimensions sont exprimées en m).

$$\begin{split} \Delta M(t) &= M_{V} \cdot S \cdot \int_{0}^{h} \frac{\delta m}{m} dz \\ &= M_{V} \cdot S \cdot \left[\int_{0}^{d} \left(\frac{\delta m}{m} \right)_{s\acute{e}chage} (z,t) \cdot dz + \int_{h+P(t)}^{h} \left(\frac{\delta m}{m} \right)_{imbibition} (t) \cdot dz \right] \\ M_{V} &= masse volumique = donnée d'entrée \\ S &= 3 \cdot 0.25 = section transversale \\ &\left(\frac{\delta m}{m} \right)_{s\acute{e}chage} (z,t) = profil de séchage (gammadensimétrie) = donnée d'entrée \\ P(t) &= hauteur de remontée du front d'imbibition = donnée d'entrée \\ h &= -0.5 = hauteur de section \\ d &= profondeur de séchage \\ &\left(\frac{\delta m}{m} \right)_{imbibition} (t) = variation massique du matériau imbibé = donnée d'entrée \end{split}$$

 Détermination du profil de déformation imposée à partir du profil hydrique a. Partie séchante :

$$z \in [0; d]$$

$$\varepsilon_{imp}(z, t) = \frac{\varepsilon_{ret}(t)}{-0,01-d} \cdot (z-d)$$

$$\varepsilon_{ret}(t) = déformation de retrait à 0,01 m de profondeur établie à partir des
résultats d'essais sur éprouvettes de gonflement libre et des variations massiques
locales de la poutre établies par gammadensimétrie$$

b. Partie affectée par le front d'imbibition :

 $\begin{cases} z \in [h + P(t); h] \\ \varepsilon_{imp}(t) = \varepsilon_{imp_imbibition}(t) \\ \varepsilon_{imp_imbibition}(t) = déformation imposée dans la partie imbibée fonction$ $de la modélisation considérée \end{cases}$

c. Partie non affectée par les échanges hydriques :

$$\begin{aligned} z \in [d; h + P(t)] \\ \epsilon_{imp}(t) &= \epsilon_{imp_scell\acute{e}}(t) \\ \epsilon_{imp_scell\acute{e}}(t) &= d\acute{e} formation impos\acute{e} dans la partie non soumise à un échange hydrique fonction de la modélisation considérée \end{aligned}$$

3. Ecriture et résolution des équations d'équilibre des efforts intérieurs

$$\begin{cases} N = \int_{0}^{h} \sigma(z) \cdot b \cdot dz = 0 \\ M = \int_{0}^{h} \sigma(z) \cdot z \cdot b \cdot dz = 0 \\ b = \text{largeur de la poutre} \end{cases}$$
(15)

Pour résoudre le problème, on pose les deux hypothèses suivantes :

• Hypothèse de chemo-élasticité :

$$\sigma(z) = E \cdot \left(\epsilon(z) - \epsilon_{imp}(z) \right)$$
(16)

• Hypothèse de validité de la théorie des poutres (les sections droites restent planes) :

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{0} \cdot \mathbf{z} + \boldsymbol{\varepsilon}_{0} \tag{17}$$

A2.2 Cas d'une poutre non armée avec module d'Young considéré constant

A2.2.1 Résolution du système

La combinaison des relations (15), (16) et (17) aboutit au système (18) de deux équations à 2 inconnues :

$$\begin{cases} N = \int_{0}^{h} \sigma(z) \cdot b \cdot dz = 0\\ M = \int_{0}^{h} \sigma(z) \cdot z \cdot b \cdot dz = 0 \end{cases} \Leftrightarrow \begin{cases} \varepsilon_{0}^{'} \cdot \frac{h^{2}}{2} + \varepsilon_{0} \cdot h = \int_{0}^{h} \varepsilon_{imp}(z) \cdot dz = I_{n}\\ \varepsilon_{0}^{'} \cdot \frac{h^{3}}{3} + \varepsilon_{0} \cdot \frac{h^{2}}{2} = \int_{0}^{h} \varepsilon_{imp}(z) \cdot z \cdot dz = I_{m} \end{cases}$$
(18)

La résolution du système aboutit aux relations données par (19) :

$$\begin{cases} \varepsilon_{0}^{'} = -\frac{12}{h^{3}} \cdot \left(\frac{h}{2} \cdot I_{n} - I_{m}\right) \\ \varepsilon_{0} = \frac{4}{h} \cdot I_{n} - \frac{6}{h^{2}} \cdot I_{m} \end{cases}$$
(19)

Le calcul des intégrales In et Im donne les résultats suivant :

$$\begin{cases} I_{n}(t) = \frac{\varepsilon_{ret}(t)}{-0,01-d} \cdot \left(-\frac{d^{2}}{2}\right) + \varepsilon_{imp_imbib}(t) \cdot \left(h - P(t)\right) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(P(t) - d\right) \\ I_{m}(t) = \frac{\varepsilon_{ret}(t)}{-0,01-d} \cdot \left(-\frac{d^{3}}{6}\right) + \varepsilon_{imp_imbib}(t) \cdot \left(\frac{h^{2}}{2} - \frac{P(t)^{2}}{2}\right) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(\frac{P(t)^{2}}{2} - \frac{d^{2}}{2}\right) \end{cases}$$
(20)

A2.2.2 Incertitude sur les déformations et les flèches – modèle de comportement hydrique binaire

Dans le cas du modèle de comportement hydrique binaire (cf. section A1.1), il est possible d'écrire :

$$P(t) = h + P \cdot S(t)$$
(21)

Dans ce cas, il vient :

$$\begin{cases} I_{n}(t) = \frac{\varepsilon_{ret}(t)}{-0.01 - d} \cdot \left(-\frac{d^{2}}{2}\right) - \varepsilon_{imp_imbib}(t) \cdot P \cdot S(t) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(h + P \cdot S(t) - d\right) \\ = f(\varepsilon_{ret}, \varepsilon_{imp_imbib}, \varepsilon_{imp_scell\acute{e}}, P, d) \\ I_{m}(t) = \frac{\varepsilon_{ret}(t)}{-0.01 - d} \cdot \left(-\frac{d^{3}}{6}\right) + \varepsilon_{imp_imbib}(t) \cdot \left(\frac{h^{2}}{2} - \frac{(h + P \cdot S(t))^{2}}{2}\right) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(\frac{(h + P \cdot S(t))^{2}}{2} - \frac{d^{2}}{2}\right) \end{cases}$$
(22)
$$= g(\varepsilon_{ret}, \varepsilon_{imp_imbib}, \varepsilon_{imp_scell\acute{e}}, P, d)$$

De par l'écriture du champ de déformation, les sources d'incertitudes de I_n et I_m sont également celles de ϵ . Par conséquent, en considérant les sources d'incertitude comme indépendantes, il vient :

$$u_{\varepsilon(z)} = \sqrt{\left(\frac{\partial\varepsilon(z)}{\partial\varepsilon_{imp_imbib}} \cdot u_{\varepsilon_{imp_imbib}}\right)^{2} + \left(\frac{\partial\varepsilon(z)}{\partial\varepsilon_{imp_scell\acute{e}}} \cdot u_{\varepsilon_{imp_scell\acute{e}}}\right)^{2} + \left(\frac{\partial\varepsilon(z)}{\partial\varepsilon_{ret}} \cdot u_{\varepsilon_{ret}}\right)^{2} + \left(\frac{\partial\varepsilon(z)}{\partial P} \cdot u_{p}\right)^{2} + \left(\frac{\partial\varepsilon(z)}{\partial d} \cdot u_{d}\right)^{2}}$$
(23)

En notant X_i chacune des sources d'incertitude, il vient :

$$\mathbf{u}_{\varepsilon(z)} = \sqrt{\left(\sum_{i=1}^{5} \frac{\partial \varepsilon(z)}{\partial X_{i}} \mathbf{u}_{X_{i}}\right)^{2}}$$
(24)

De par l'écriture du champ de déformation, on peut écrire :

$$\frac{\partial \varepsilon(z)}{\partial X_{i}} = \frac{\partial \varepsilon_{0}}{\partial X_{i}} \cdot z + \frac{\partial \varepsilon_{0}}{\partial X_{i}}$$
(25)

Enfin, en combinant les équations (19) et (25), on obtient :

$$\begin{cases} \frac{\partial \varepsilon_{0}}{\partial X_{i}} = -\frac{12}{h^{3}} \cdot \left(\frac{h}{2} \cdot \frac{\partial I_{n}}{\partial X_{i}} - \frac{\partial I_{m}}{\partial X_{i}} \right) \\ \frac{\partial \varepsilon_{0}}{\partial X_{i}} = \frac{4}{h} \cdot \frac{\partial I_{n}}{\partial X_{i}} - \frac{6}{h^{2}} \cdot \frac{\partial I_{m}}{\partial X_{i}} \end{cases}$$
(26)

Le calcul des dérivées partielles donne :

$\frac{\partial I_n}{\partial \varepsilon_{imp_imbib}} = -P \cdot S(t)$	$\frac{\partial I_{m}}{\partial \varepsilon_{imp_{imbib}}} = \frac{h^{2}}{2} - \frac{(h + P \cdot S(t))^{2}}{2}$
$\frac{\partial I_n}{\partial \varepsilon_{imp_scell\acutee}} = h + P \cdot S(t) - d$	$\frac{\partial I_{m}}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{\left(h + P \cdot S(t)\right)^{2}}{2} - \frac{d^{2}}{2}$
$\frac{\partial I_n}{\partial \varepsilon_{ret}} = \frac{1}{-0.01 - d} \cdot \left(-\frac{d^2}{2}\right)$	$\frac{\partial I_{m}}{\partial \varepsilon_{ret}} = \frac{1}{-0.01 - d} \cdot \left(-\frac{d^{3}}{6}\right)$
$\frac{\partial I_n}{\partial P} = \left(-\varepsilon_{imp_imbib} + \varepsilon_{imp_scell\acute{e}}\right) \cdot S(t)$	$\frac{\partial I_{m}}{\partial P} = \cdot \left(\varepsilon_{imp_scell\acute{e}} - \varepsilon_{imp_imbib} \right) \cdot \left(h + P \cdot S(t) \right) \cdot S(t)$
$\frac{\partial I_n}{\partial d} = \frac{100 \cdot d \cdot (50 \cdot d + 1)}{(100 \cdot d + 1)^2} \varepsilon_{ret} - \varepsilon_{imp_scell\acute{e}}$	$\frac{\partial I_{m}}{\partial d} = \frac{50 \cdot d^{2} \cdot (200 \cdot d + 3)}{3 \cdot (100 \cdot d + 1)^{2}} \varepsilon_{ret} - d \cdot \varepsilon_{imp_scell\acute{e}}$

A2.2.3 Incertitude sur les déformations et les flèches – modèle de comportement hydrique de gonflement libre pondéré

Dans le cas du modèle de comportement hydrique de gonflement libre pondéré par la cinétique d'imbibition globale de la poutre (cf. section A1.2), il est possible d'écrire :

$$P(t) = h + 0.07 + D \cdot \sqrt{t}$$
 (27)

Dans ce cas, il vient :

$$\begin{aligned} \int I_n(t) &= \frac{\varepsilon_{ret}(t)}{-0,01-d} \cdot \left(-\frac{d^2}{2}\right) - \varepsilon_{imp_imbib}(t) \cdot \left(0,07 + D \cdot \sqrt{t}\right) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(h + 0,07 + D \cdot \sqrt{t} - d\right) \\ &= f(\varepsilon_{ret}, \varepsilon_{imp_imbib}, \varepsilon_{imp_scell\acute{e}}, D, d) \\ I_m(t) &= \frac{\varepsilon_{ret}(t)}{-0,01-d} \cdot \left(-\frac{d^3}{6}\right) + \varepsilon_{imp_imbib}(t) \cdot \left(\frac{h^2}{2} - \frac{(h + 0,07 + D \cdot \sqrt{t})^2}{2}\right) + \varepsilon_{imp_scell\acute{e}}(t) \cdot \left(\frac{(h + 0,07 + D \cdot \sqrt{t})^2}{2} - \frac{d^2}{2}\right) \end{aligned}$$
(28)
$$&= g(\varepsilon_{ret}, \varepsilon_{imp_imbib}, \varepsilon_{imp_scell\acute{e}}, P, d) \end{aligned}$$

$\frac{\partial I_n}{\partial \epsilon_{imp_imbib}} = -(0,07 + D \cdot \sqrt{t})$	$\frac{\partial I_m}{\partial \varepsilon_{imp_imbib}} = -\frac{(0.07 + D \cdot \sqrt{t})(2h + 0.07 + D \cdot \sqrt{t})^2}{2}$
$\frac{\partial I_n}{\partial \epsilon_{imp_scell\acute{e}}} = h + 0,07 + D \cdot \sqrt{t} - d$	$\frac{\partial I_m}{\partial \varepsilon_{imp_scell\acute{e}}} = -\frac{\left(\left(D \cdot \sqrt{t}\right)^2 + 2D \cdot \sqrt{t} \cdot \left(h + 0.07\right) + h^2\right)}{2}$
$\frac{\partial I_n}{\partial \varepsilon_{ret}} = \frac{1}{-0.01 - d} \cdot \left(-\frac{d^2}{2}\right)$	$\frac{\partial I_{m}}{\partial \varepsilon_{ret}} = \frac{1}{-0.01 - d} \cdot \left(-\frac{d^{3}}{6}\right)$
$\frac{\partial I_n}{\partial D} = \left(-\epsilon_{imp_imbib} + \epsilon_{imp_scell\acute{e}}\right) \cdot \sqrt{t}$	$\frac{\partial I_{m}}{\partial D} = \cdot \left(\epsilon_{imp_scell\acute{e}} - \epsilon_{imp_imbib} \right) \cdot \left(h + 0.07 + D \cdot \sqrt{t} \right) \cdot \sqrt{t}$
$\frac{\partial I_n}{\partial d} = -\frac{5.10^{-5} \cdot \varepsilon_{ret}}{(d+0,01)^2} + \frac{\varepsilon_{ret}}{2} - \varepsilon_{imp_scell\acute{e}}$	$\frac{\partial I_{m}}{\partial d} = \frac{\varepsilon_{ret}}{600 \cdot (100d + 0,01)^{2}} - \frac{d \cdot (3 \cdot \varepsilon_{imp_imbib} - \varepsilon_{ret})}{3}$ $-\frac{\varepsilon_{ret}}{600}$

Le calcul des dérivées partielles donne :

A2.3 Cas d'une poutre non armée avec variation du module d'Young sous les effets d'une réaction de gonflement interne

A2.3.1 Résolution du système

En considérant le développement progressif d'une RGI, on assiste à une dégradation des performances mécaniques impliquant notamment une diminution du module d'Young au cours du temps. Ainsi, la simplification du système d'équation (15) aboutissant à l'équation (18) n'est plus possible.

On considère ici que seule la partie affectée par le front d'imbibition subit une diminution brutale du module. Ainsi, il vient :

$$E = E(z) = \begin{cases} E_b \text{ si } z \in [0; h + P(t)] \\ E_{red} \text{ si } z \in [h + P(t); h] \end{cases}$$

$$E_b = \text{module d' Young du béton sain}$$
(29)

 E_{red} = module d'Young dégradé suite au développement d'une RGI

En combinant les relations (15), (16), (17), et (29), il vient :

$$\begin{cases} a \cdot \dot{\epsilon_{0}} + b \cdot \dot{\epsilon_{0}} = I_{n} = \int_{0}^{h} E(z) \cdot \dot{\epsilon_{imp}}(z) \cdot dz \\ a' \cdot \dot{\epsilon_{0}} + b' \cdot \dot{\epsilon_{0}} = I_{m} = \int_{0}^{h} E(z) \cdot \dot{\epsilon_{imp}}(z) \cdot z \cdot dz \\ a = E_{b} \cdot \frac{(h + P(t))^{2}}{2} + E_{red} \cdot \left(\frac{h^{2}}{2} - \frac{(h + P(t))^{2}}{2}\right) \\ b = E_{b} \cdot (h + P(t)) + E_{red} \cdot (-P(t)) \\ a' = E_{b} \cdot \frac{(h + P(t))^{3}}{3} + E_{red} \cdot \left(\frac{h^{3}}{3} - \frac{(h + P(t))^{3}}{3}\right) \\ b' = E_{b} \cdot \frac{(h + P(t))^{2}}{2} + E_{red} \cdot \left(\frac{h^{2}}{2} - \frac{(h + P(t))^{2}}{2}\right) \end{cases}$$
(30)

La solution de ce système est donnée par :

$$\begin{cases} \varepsilon_{0}^{'} = \frac{b^{'} \cdot I_{n}^{'} - b \cdot I_{m}^{'}}{\Delta} \\ \varepsilon_{0} = \frac{a \cdot I_{m}^{'} - a^{'} \cdot I_{n}^{'}}{\Delta} \\ \Delta = a \cdot b^{'} - a^{'} \cdot b \end{cases}$$
(31)

Le calcul des termes correspondant aux déformations imposées donne :

$$\begin{cases} I_{n}^{'} = \frac{E_{b} \cdot \varepsilon_{ret}}{-0,01 - d} \cdot \left(-\frac{d^{2}}{2} \right) + E_{b} \cdot \varepsilon_{imp_scell\acute{e}} \cdot \left(h + P(t) - d \right) + E_{red} \cdot \varepsilon_{imp_imbib} \cdot \left(-P(t) \right) \\ I_{m}^{'} = \frac{E_{b} \cdot \varepsilon_{ret}}{-0,01 - d} \cdot \left(-\frac{d^{3}}{6} \right) + E_{b} \cdot \varepsilon_{imp_scell\acute{e}} \cdot \frac{\left(h + P(t) \right)^{2} - d^{2}}{2} + E_{red} \cdot \varepsilon_{imp_imbib} \cdot \frac{h^{2} - \left(h + P(t) \right)^{2}}{2} \end{cases}$$
(32)

A2.3.2 Incertitude sur les déformations et les flèches – modèle de comportement hydrique binaire

La prise en compte d'une variation du module d'Young du matériau affecté par la réaction de gonflement introduit une nouvelle source d'incertitude dans les calculs réalisés. Ainsi, l'écriture de l'incertitude sur les déformations s'écrit :

$$u_{\varepsilon(z)} = \sqrt{\left(\sum_{i=1}^{7} \frac{\partial \varepsilon(z)}{\partial X_{i}} u_{X_{i}}\right)^{2}}$$

$$X_{1} = P ; X_{2} = E_{b} ; X_{3} = E_{red} ; X_{4} = d$$

$$X_{5} = \varepsilon_{imp_imbib} ; X_{6} = \varepsilon_{imp_scell\acute{e}} ; X_{7} = \varepsilon_{ret}$$
(33)

Les termes a, a', b et b' faisant intervenir les grandeurs E_b et E_{red} , ils interviennent dans le calcul d'incertitude, contrairement au cas présenté en section A2.2. Ainsi, les dérivées partielles des termes ε_0 et ε_0 ' deviennent :

$$\begin{cases} \frac{\partial}{\partial X_{i}} \left(\varepsilon_{0}^{'} \right) = \frac{\partial}{\partial X_{i}} \left(\frac{b' \cdot I_{n}^{'} - b \cdot I_{m}^{'}}{\Delta} \right) \\ = -\frac{\frac{\partial}{\partial X_{i}} \cdot \Delta \cdot I_{m}^{'} - \frac{\partial b'}{\partial X_{i}} \cdot \Delta \cdot I_{n}^{'} - \frac{\partial \Delta}{\partial X_{i}} \cdot \left(b \cdot I_{m}^{'} - b' \cdot I_{n}^{'} \right) + \left(b \cdot \frac{\partial I_{m}^{'}}{\partial X_{i}} - b' \cdot \frac{\partial I_{n}^{'}}{\partial X_{i}} \right) \cdot \Delta}{\Delta^{2}} \\ \begin{cases} \frac{\partial}{\partial X_{i}} \left(\varepsilon_{0} \right) = \frac{\partial}{\partial X_{i}} \left(\frac{a \cdot I_{m}^{'} - a' \cdot I_{n}^{'}}{\Delta} \right) \\ = \frac{\frac{\partial a}{\partial X_{i}} \cdot \Delta \cdot I_{m}^{'} - \frac{\partial a'}{\partial X_{i}} \cdot \Delta \cdot I_{n}^{'} - \frac{\partial \Delta}{\partial X_{i}} \cdot \left(a \cdot I_{m}^{'} - a' \cdot I_{n}^{'} \right) + \left(a \cdot \frac{\partial I_{m}^{'}}{\partial X_{i}} - a' \cdot \frac{\partial I_{n}^{'}}{\partial X_{i}} \right) \cdot \Delta}{\Delta^{2}} \\ \frac{\partial \Delta}{\partial X_{i}} = \frac{\partial a}{\partial X_{i}} \cdot b' - \frac{\partial b}{\partial X_{i}} \cdot a' - \frac{\partial a'}{\partial X_{i}} \cdot b + \frac{\partial b'}{\partial X_{i}} \cdot a \end{cases}$$
(34)

Le calcul des dérivées partielles donne les résultats suivants :

$\begin{cases} \frac{\partial b}{\partial P} = (E_b - E_{red}) \cdot S(t) \\ \frac{\partial b}{\partial E_b} = h + P \cdot S(t) \\ \frac{\partial b}{\partial E_{red}} = -P \cdot S(t) \\ \frac{\partial b}{\partial d} = \frac{\partial b}{\partial \varepsilon_{imp_imbib}} = \frac{\partial b}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{\partial b}{\partial \varepsilon_{ret}} = 0 \end{cases} $	$\frac{\partial \dot{b}'}{\partial P} = \left(E_{b} - E_{red}\right) \cdot S(t) \cdot \left(h + P \cdot S(t)\right)$ $\frac{\partial \dot{b}'}{\partial E_{b}} = \frac{\left(h + P \cdot S(t)\right)^{2}}{2}$ $\frac{\partial \dot{b}'}{\partial E_{red}} = -\frac{P \cdot S(t)}{2} \cdot \left(2 \cdot h + P \cdot S(t)\right)$ $\frac{\partial \dot{b}'}{\partial e} = \frac{\partial \dot{b}'}{\partial \varepsilon_{imp_imbib}} = \frac{\partial \dot{b}'}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{\partial \dot{b}'}{\partial \varepsilon_{ret}} = 0$		
$2(d + 0.01) + PS(t) + S_{1} = 0.01 + Q_{2}^{2} + (2 + S_{1}) = 0.01 + Q_{2}^{2}$	$) + 2d \cdot (h - 0.01) \cdot s_1 + 0.02h \cdot s_2 +$		
$\frac{\partial l_n}{\partial r} = 2 (u + 0, or) + b(t) + b$) + 2u (n 0,01) c _{imp_scellé} + 0,02n c _{imp_scellé}		
dE $2 \cdot (d + 0, 0)$	1)		
$\frac{\partial I_{n}}{\partial P} = \left(E_{b} \cdot \varepsilon_{imp_scell\acute{e}} - E_{red} \cdot \varepsilon_{imp_imbib} \right) \cdot S(t)$	$\frac{\partial I'_{n}}{\partial E} = -\varepsilon_{imp_imbib} \cdot P \cdot S(t)$		
$\frac{\partial I'_{n}}{\partial d} = \frac{-5.10^{-5} \cdot E_{b} \cdot \varepsilon_{ret}}{(d+0,01)^{2}} - E_{b} \cdot \varepsilon_{imp_scell\acute{e}} + \frac{E_{b} \cdot \varepsilon_{ret}}{2}$	$\frac{\partial I_{n}}{\partial \varepsilon_{imp_imbib}} = -E_{red} \cdot P \cdot S(t)$		
$\frac{\partial I_{n}}{\partial \varepsilon_{imp_scell\acute{e}}} = E_{b} \cdot (h + P \cdot S(t) - d)$	$\frac{\partial I_{n}}{\partial \varepsilon_{\text{ret}}} = \frac{E_{b} \cdot d^{2}}{2 \cdot (d + 0,01)}$		
$\frac{\partial I_{m}}{\partial E} = \frac{\varepsilon_{imp_scell\acute{e}}}{d+0.01} \cdot \left(PS(t) \left(PS(t) \left(\frac{d}{2} + 0.005 \right) + dh + 0.01 \cdot h \right) - d \cdot h \right) - d \cdot h$	$\cdot \left(\frac{\mathrm{d}^2}{2} + 0,005 \cdot \mathrm{d} - \frac{\mathrm{h}^2}{2}\right) + 0,005 \cdot \mathrm{h}^2\right) + \frac{\mathrm{d}^3 \cdot \varepsilon_{\mathrm{ret}}}{6(\mathrm{d} + 0,01)}$		
$\frac{\partial I_{m}}{\partial P} = \left(E_{b} \cdot \varepsilon_{imp_scell\acute{e}} - E_{red} \cdot \varepsilon_{imp_imbib} \right) \cdot \left(h + P \cdot S(t) \right) \cdot S(t)$	$\frac{\partial I_{m}}{\partial E} = -\frac{\varepsilon_{imp_imbib} \cdot P \cdot S(t) \cdot (2 \cdot h + P \cdot S(t))}{2}$		
$\frac{\partial \dot{I}_{m}}{\partial d} = \frac{E_{b} \cdot \varepsilon_{ret}}{600(100d+1)^{2}} - \frac{d \cdot E_{b} \left(3\varepsilon_{imp_scell\acute{e}} - \varepsilon_{ret}\right)}{3} + \frac{E_{b} \cdot \varepsilon_{ret}}{600}$	$\frac{\partial I'_{m}}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{E_{b} \cdot \left(\left(h + P \cdot S(t) \right)^{2} - d^{2} \right)}{2}$		
$\frac{\partial I'}{\partial I} = -\frac{E_{red} \cdot P \cdot S(t) \cdot (2 \cdot h + P \cdot S(t))}{E_{red} \cdot P \cdot S(t) \cdot (2 \cdot h + P \cdot S(t))}$	$\partial I'_n = E_b \cdot d^3$		
$\partial \varepsilon_{imp}$ imbib 2	$\partial \varepsilon_{\text{ret}} = 6 \cdot (d + 0,01)$		

A2.3.3 Incertitude sur les déformations et les flèches – modèle de comportement hydrique de gonflement libre pondéré

Le calcul d'incertitude est mené de la même manière qu'en section A2.3.2. Les expressions des dérivées partielles sont données ci-après :

∂I_n	$\frac{2 \cdot (d+0,01) \cdot D\sqrt{t} \cdot \varepsilon_{imp_sc} + 2h \cdot \varepsilon_{imp_sc} \cdot (d+0,01) + d^2 \left(2 \cdot \varepsilon_{imp_sc} - \varepsilon_{ret}\right) + (0,12d+0,0014) \cdot \varepsilon_{imp_sc}}{\epsilon_{imp_sc} + 2h \cdot \varepsilon_{imp_sc} - \varepsilon_{ret}}$
∂E b	$2 \cdot (d + 0,01)$

$\frac{\partial I_{n}}{\partial D} = \left(E_{b} \cdot \varepsilon_{imp_scell\acute{e}} - E_{red} \cdot \varepsilon_{imp_imbib} \right) \cdot \sqrt{t}$	$\frac{\partial I_{n}}{\partial E} = -\varepsilon_{imp_imbib} \cdot \left(0,07 + D \cdot \sqrt{t}\right)$ red
$\frac{\partial I'_{n}}{\partial d} = \frac{-5.10^{-5} \cdot E_{b} \cdot \varepsilon_{ret}}{(d+0,01)^{2}} - E_{b} \cdot \varepsilon_{imp_scell\acute{e}} + \frac{E_{b} \cdot \varepsilon_{ret}}{2}$	$\frac{\partial I'_n}{\partial \varepsilon_{imp_imbib}} = -E_{red} \cdot \left(0,07 + D \cdot \sqrt{t}\right)$
$\frac{\partial I_{n}}{\partial \varepsilon_{\text{imp_scellé}}} = E_{b} \cdot (h + 0.07 + D \cdot \sqrt{t} - d)$	$\frac{\partial I_{n}}{\partial \varepsilon_{\text{ret}}} = \frac{E_{b} \cdot d^{2}}{2 \cdot (d + 0.01)}$

$$\frac{\partial I_{m}}{\partial E_{b}} = \frac{1}{6 \cdot (d+0,01)} \cdot \left(\frac{3(D\sqrt{t})^{2}(d+0,01) \cdot \varepsilon_{imp_sc} + 6D\sqrt{t} \cdot (h+0,07) \cdot (d+0,01) \cdot \varepsilon_{imp_sc} + 3h^{2}(d+0,01) \cdot \varepsilon_{imp_sc}}{+ 0,42h \cdot (d+0,01) \cdot \varepsilon_{imp_sc} - d^{3}(3 \cdot \varepsilon_{imp_sc} - \varepsilon_{ret}) - 0,03d^{2} \cdot \varepsilon_{imp_sc}} - 0,03d^{2} \cdot \varepsilon_{imp_sc} + 0,0147d \cdot \varepsilon_{imp_sc} + 1,47.10^{-4} \cdot \varepsilon_{imp_sc}} \right)$$

$$\frac{\partial I_{m}}{\partial D} = \left(E_{b} \varepsilon_{imp_sc} - E_{red} \varepsilon_{imp_imbib} \right) \cdot \left(h+0,07 + D\sqrt{t} \right) \sqrt{t} \qquad \frac{\partial I_{m}}{\partial E_{red}} = -\frac{\varepsilon_{imp_imb}(0,07 + D\sqrt{t})(2 \cdot h+0,07 + D\sqrt{t})}{2} \right)$$

$$\frac{\partial I_{m}}{\partial d} = \frac{E_{b} \cdot \varepsilon_{ret}}{600(100d+1)^{2}} - \frac{d \cdot E_{b}(3\varepsilon_{imp_scelle} - \varepsilon_{ret})}{3} - \frac{E_{b} \cdot \varepsilon_{ret}}{600} - \frac{E_{b} \cdot \varepsilon_{ret}}{600} = \frac{2i_{m}}{2} - \frac{\varepsilon_{imp_scelle}}{2} - \frac{\varepsilon_{imp_scelle}}{2} - \frac{\varepsilon_{imp_scelle}}{2} - \frac{\varepsilon_{imp_scelle}}{2} - \frac{\varepsilon_{imp_scelle}}{2} - \frac{\varepsilon_{id} \cdot (d+0,01)}{2} - \frac{\varepsilon_{id} \cdot (d+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (2 \cdot h+0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t}) \cdot (0,07 + D\sqrt{t})}{2} - \frac{\varepsilon_{id} \cdot (0,07 + D\sqrt{t})$$

$$\begin{cases} \frac{\partial a}{\partial D} = \left(E_{b} - E_{red}\right) \cdot \sqrt{t} \cdot \left(h + 0.07 + D \cdot \sqrt{t}\right) \\\\ \frac{\partial a}{\partial E_{b}} = \frac{E_{red} \cdot \left(0.07 + D \cdot \sqrt{t}\right) \cdot \left(2h + 0.07 + D \cdot \sqrt{t}\right)}{2 \cdot E_{b}} \\\\ \frac{\partial a}{\partial E_{red}} = -\frac{\left(0.07 + D\sqrt{t}\right) \cdot \left(2h + 0.07 + D\sqrt{t}\right)}{2} \\\\ \frac{\partial a}{\partial E_{red}} = \frac{\partial a}{\partial \varepsilon_{imp_imbib}} = \frac{\partial a}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{\partial a}{\partial \varepsilon_{ret}} = 0 \end{cases}$$

Г

$$\begin{cases} \frac{\partial \dot{a}'}{\partial D} = \left(E_{b} - E_{red}\right) \cdot \sqrt{t} \cdot \left(h + 0.07 + D \cdot \sqrt{t}\right)^{2} \\ \frac{\partial \dot{a}'}{\partial E_{b}} = \frac{E_{red}\left(7 + 100D \cdot \sqrt{t}\right) \left(\frac{\left(100D\sqrt{t}\right)^{2} + 3 \cdot (100h)^{2}}{+ 2100h + 49 + 200D\sqrt{t}\left(150h + 7\right)}\right)} \\ \frac{\partial \dot{a}'}{\partial E_{b}} = \frac{\left(100D\sqrt{t} + 7\right) \left(\frac{\left(100D\sqrt{t}\right)^{2} + 200D\sqrt{t} \cdot (150h + 7)}{+ 3 \cdot (100h)^{2} + 2100h + 49}\right)} \\ \frac{\partial \dot{a}'}{\partial E_{red}} = -\frac{\left(100D\sqrt{t} + 7\right) \left(\frac{\left(100D\sqrt{t}\right)^{2} + 200D\sqrt{t} \cdot (150h + 7)}{+ 3 \cdot (100h)^{2} + 2100h + 49}\right)} \\ \frac{\partial \dot{a}'}{\partial d} = \frac{\partial \dot{a}'}{\partial \varepsilon_{imp_imbib}} = \frac{\partial \dot{a}'}{\partial \varepsilon_{imp_scell\acute{e}}} = \frac{\partial \dot{a}'}{\partial \varepsilon_{ret}} = 0 \end{cases}$$

Т

A2.4 Cas d'une poutre armée avec module d'Young considéré constant

Dans le cas d'une poutre armée, l'écriture des équations d'équilibre fait intervenir les efforts repris par les armatures :

$$\begin{split} N &= \int_{0}^{h} \sigma(z) \cdot b \cdot dz + A \cdot \sigma_{st} + A \cdot \sigma_{sc} = 0 \\ M &= \int_{0}^{h} \sigma(z) \cdot z \cdot b \cdot dz + |e| \cdot A \cdot \sigma_{st} + |e'| \cdot A \cdot \sigma_{sc} = 0 \\ A &= \text{section des aciers longitudinaux supérieurs} \\ A &= \text{section des aciers longitudinaux inférieurs} \\ \sigma_{st} &= \text{contrainte dans les aciers longitudinaux supérieurs} \\ \sigma_{sc} &= \text{contrainte dans les aciers longitudinaux inférieurs} \\ e &= \text{position des aciers longitudinaux supérieurs} \\ e' &= \text{position des aciers longitudinaux supérieurs} \end{split}$$

Afin de résoudre ce système, on pose les deux hypothèses complémentaires suivantes :

• Comportement élastique des aciers :

$$\sigma_{\rm s} = E_{\rm s} \cdot \varepsilon_{\rm s} \tag{36}$$

• Adhérence parfaite acier-béton

$$\begin{cases} \sigma_{st} = E_{s} \cdot \left(\hat{\epsilon_{0}} \cdot e + \epsilon_{0} \right) \\ \sigma_{sc} = E_{s} \cdot \left(\hat{\epsilon_{0}} \cdot e^{i} + \epsilon_{0} \right) \end{cases}$$
(37)

Le système régissant le fonctionnement d'une poutre armée s'écrit alors :

$$\begin{cases} a \cdot \varepsilon_{0}^{'} + b \cdot \varepsilon_{0} = I_{n} = \int_{0}^{h} \varepsilon_{imp}(z) \cdot dz \\ a^{'} \cdot \varepsilon_{0}^{'} + b^{'} \cdot \varepsilon_{0} = I_{m} = \int_{0}^{h} \varepsilon_{imp}(z) \cdot z \cdot dz \\ a = \frac{h^{2}}{2} + \frac{n}{b} \cdot \left(e \cdot A + e^{'} \cdot A^{'}\right) \\ b = h + \frac{n}{b} \cdot \left(A + A^{'}\right) \\ a^{'} = \frac{h^{3}}{3} + \frac{n}{b} \left(\left|e\right| \cdot e \cdot A + \left|e^{'}\right| \cdot e^{'} \cdot A^{'}\right) \\ b^{'} = \frac{h^{2}}{2} + \frac{n}{b} \cdot \left(\left|e\right| \cdot A + \left|e^{'}\right| \cdot A^{'}\right) \\ n = \text{coefficient d'équivalence acier - béton} \end{cases}$$
(38)

En considérant qu'il n'y a pas d'incertitude sur les données relatives aux aciers, les déformations imposées (i.e. les termes I_n et I_m) sont identiques. Par conséquent, les incertitudes se calculent de la même manière qu'en section A2.2.2 et A2.2.3.

A2.5 Cas d'une poutre armée avec variation du module d'Young sous les effets d'une réaction de gonflement interne

A2.5.1 Résolution du système

On considère une variation du module d'Young sur la hauteur de la poutre telle qu'elle est définie par la relation (29).

Dans ce cas, l'écriture du système devient :

$$\begin{cases} a \cdot \varepsilon_{0}^{'} + b \cdot \varepsilon_{0} = \frac{I_{n}^{'}}{E_{b}} = \frac{1}{E_{b}} \cdot \int_{0}^{h} E(z) \cdot \varepsilon_{imp}(z) \cdot dz \\ a^{'} \cdot \varepsilon_{0}^{'} + b^{'} \cdot \varepsilon_{0} = \frac{I_{m}^{'}}{E_{b}} = \frac{1}{E_{b}} \cdot \int_{0}^{h} E(z) \cdot \varepsilon_{imp}(z) \cdot z \cdot dz \\ a = \frac{(h + P(t))^{2}}{2} + \frac{E_{red}}{E_{b}} \cdot \left(\frac{h^{2}}{2} - \frac{(h + P(t))^{2}}{2}\right) + \frac{A}{b} \cdot n \cdot e + \frac{A}{b} \cdot n^{'} \cdot e^{'} \\ b = (h + P(t)) + \frac{E_{red}}{E_{b}} \cdot (-P(t)) + \frac{n}{b} \cdot A + \frac{n^{'}}{b} \cdot A^{'} \\ a^{'} = \frac{(h + P(t))^{3}}{3} + \frac{E_{red}}{E_{b}} \cdot \left(\frac{h^{3}}{3} - \frac{(h + P(t))^{3}}{3}\right) + \frac{|e|}{b} \cdot A \cdot n \cdot e + \frac{|e^{'}|}{b} \cdot A \cdot n^{'} \cdot e^{'} \\ b^{'} = \frac{(h + P(t))^{2}}{2} + \frac{E_{red}}{E_{b}} \cdot \left(\frac{h^{2}}{2} - \frac{(h + P(t))^{2}}{2}\right) + \frac{|e|}{b} \cdot A \cdot n + \frac{|e^{'}|}{b} \cdot A \cdot n^{'} \\ n = \text{coefficient d' équivalence acier - béton sain} \\ n^{'} = \text{coefficient d'équivalence acier - béton dégradé \end{cases}$$

A2.5.2 Incertitude sur les déformations et les flèches – modèle de comportement hydrique binaire

Comme en section A2.3.2, on considère que les incertitudes proviennent des paramètres P, d, E_b, E_{red}, ϵ_{imp_imbib} , $\epsilon_{imp_scellé}$ et ϵ_{ret} . Le calcul des incertitudes se fait suivant une méthode identique à celle présentée dans cette section. Les déformations imposées aux structures étant identiques, les dérivées partielles des termes I_n' et I_m' sont identiques. Les dérivées partielles des coefficients du système régissant les variations de ϵ_0 et ϵ_0 ' sont données ci-après :

$$\begin{cases} \frac{\partial a}{\partial P} = \frac{\left(E_{b} - E_{red}\right) \cdot S(t) \cdot \left(h + P \cdot S(t)\right)}{E_{b}} \\ \frac{\partial a}{\partial E_{b}} = \frac{\left(h + P \cdot S(t)\right)^{2}}{2 \cdot E_{b}} - \frac{A}{b \cdot E_{b}} \cdot n \cdot e \\ \frac{\partial a}{\partial E_{red}} = -\frac{P \cdot S(t)}{2 \cdot E_{b}} \cdot \left(2 \cdot h + P \cdot S(t)\right) \\ -\frac{A'}{b \cdot E_{red}} \cdot n' \cdot e' \\ \frac{\partial a}{\partial E_{red}} = \frac{\partial a}{\partial e_{imp_inbib}} = \frac{\partial a}{\partial e_{imp_scelle}} = \frac{\partial a}{\partial e_{ret}} = 0 \end{cases} \begin{cases} \frac{\partial a}{\partial e} = \frac{A'}{\partial e} \frac{A'}{b \cdot E_{red}} \cdot n' \cdot e' \cdot |e'| \\ \frac{\partial a}{\partial e} = \frac{\partial a}{\partial e} \frac{A'}{inp_inbib} = \frac{\partial a}{\partial e_{imp_scelle}} = \frac{\partial a}{\partial e_{ret}} = 0 \end{cases} \end{cases} \begin{cases} \frac{\partial a}{\partial e} = \frac{(E_{b} - E_{red}) \cdot S(t) \cdot (h + P \cdot S(t))^{2}}{3 \cdot E_{b}} - \frac{A}{b \cdot E_{b}} \cdot n \\ \frac{\partial a}{\partial e} = \frac{\partial a}{\partial e} \frac{A}{inp_inbib} = \frac{\partial a}{\partial e_{imp_scelle}} = \frac{\partial a}{\partial e} = 0 \end{cases} \end{cases}$$

A2.5.3 Incertitude sur les déformations et les flèches – modèle de comportement hydrique de gonflement libre pondéré

Les sollicitations sont inchangées par rapport au cas de la section A2.3.3. Les dérivées partielles utiles au calcul des incertitudes suivant la méthode de la section A2.5.2 sont données ci-après :

$$\begin{cases} \frac{\partial a}{\partial D} = \frac{\left(E_{b} - E_{red}\right) \cdot \sqrt{t} \cdot \left(h + 0.07 + D \cdot \sqrt{t}\right)}{E_{b}} \\ \frac{\partial a}{\partial D} = \frac{\left(0.07 + D \cdot \sqrt{t}\right) \cdot \left(2h + 0.07 + D \cdot \sqrt{t}\right)}{2 \cdot E_{b}^{2}} \\ = \frac{A}{b \cdot E_{b}} \cdot n \cdot e \\ \frac{\partial a}{\partial E_{red}} = -\frac{\left(0.07 + D \cdot \sqrt{t}\right) \cdot \left(2h + 0.07 + D \cdot \sqrt{t}\right)}{2 \cdot E_{b}} \\ = \frac{A}{b \cdot E_{red}} \cdot n \cdot e \\ \frac{\partial a}{\partial E_{red}} = -\frac{\left(0.07 + D \cdot \sqrt{t}\right) \cdot \left(2h + 0.07 + D \cdot \sqrt{t}\right)}{2 \cdot E_{b}} \\ = \frac{A}{b \cdot E_{red}} \cdot n \cdot e \cdot e^{t} \\ \frac{\partial a}{\partial E_{red}} = -\frac{A}{b \cdot E_{red}} \cdot n \cdot e^{t} \\ \frac{\partial a}{\partial E_{red}} = \frac{\partial a}{\partial e_{imp_inbib}} = \frac{\partial a}{\partial e_{imp_scelle}} = \frac{\partial a}{\partial e_{ret}} = 0 \\ \begin{cases} \frac{\partial a}{\partial E}}{\partial E} = \frac{\left(E_{b} - E_{red}\right) \cdot \sqrt{t}}{E_{b}} \\ \frac{\partial a}{\partial E} = \frac{E_{red} \cdot \left(0.07 + D \cdot \sqrt{t}\right)}{E_{b}} \\ \frac{\partial a}{\partial E} = \frac{\partial a}{\partial e_{imp_inbib}} = \frac{\partial a}{\partial e_{ret}} \\ \frac{\partial a}{\partial E} = \frac{\partial a}{\partial e_{imp_inbib}} = \frac{\partial a}{\partial e_{ret}} \\ \frac{\partial a}{\partial E} = \frac{E_{red} \cdot \left(0.07 + D \cdot \sqrt{t}\right)}{E_{b}} \\ \frac{\partial a}{\partial E} = \frac{E_{red} \cdot \left(0.07 + D \cdot \sqrt{t}\right)}{E_{b}} \\ \frac{\partial a}{\partial E} = \frac{\partial a}{\partial e_{imp_inbib}} = \frac{\partial a}{\partial e_{ret}} \\ \frac{\partial a}{\partial E} = \frac{\partial a}{\partial e_{imp_inbib}} \\ \frac{\partial a}{\partial E} = \frac{E_{red} \cdot \left(0.07 + D \cdot \sqrt{t}\right)}{E_{b}} \\ \frac{\partial a}{\partial E} = \frac{\partial a}{\partial e_{imp_inbib}} \\ \frac{\partial a}{\partial e} \\ \frac{\partial a}{\partial e$$