
HAL Id: tel-00561176
https://pastel.hal.science/tel-00561176

Submitted on 31 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stimulated Raman Scattering in Semiconductor
Nanostructures

Felix Kroeger

To cite this version:
Felix Kroeger. Stimulated Raman Scattering in Semiconductor Nanostructures. Physics [physics].
Université Paris Sud - Paris XI, 2010. English. �NNT : �. �tel-00561176�

https://pastel.hal.science/tel-00561176
https://hal.archives-ouvertes.fr


UNIVERSITÉ PARIS XI
UFR SCIENTIFIQUE D’ORSAY

École Doctorale Ondes et Matière
Laboratoire Charles Fabry de l’Institut d’Optique

THÈSE

présentée pour obtenir le grade de

DOCTEUR EN SCIENCES
DE L’UNIVERSITÉ PARIS-SUD XI ORSAY

par

Felix Kroeger

le 21 décembre 2010

Stimulated Raman Scattering in

Semiconductor Nanostructures

Devant le jury :

M. Philippe Boucaud Président du jury
M. Mehdi Alouini Rapporteur
M. Alejandro Fainstein Rapporteur
Mme. Cornelia Denz
M. Nicolas Dubreuil Directeur de thèse





to Katharina

Acknowledgements and thanks

I would like to express my thanks to Gérald Roosen for offering me to join his
research group Manolia at the Laboratoire Charles Fabry de l’Institut d’Optique,
Campus Polytechnique, in Palaiseau near Paris, to work for my PhD thesis. Over
three years, he was my PhD supervisor, and he had great confidence in me and
pushed my work into the right direction.

And of course many thanks to Nicolas Dubreuil, my second and, finally, official PhD
supervisor, for all his support and the many fruitful and insightful discussions. He
shared all the moments of disappointment and of success with me and never stopped
encouraging me on my way. Certainly, I have met only very few researchers who
express their passion for their work as vividly as he does.

I also wish to thank Alejandro Fainstein and Mehdi Alouini for accepting to be the
rapporteurs (i.e., the official reviewers) of my PhD thesis. Reading and evaluating
a PhD thesis takes a good lot of time, and I very much appreciate their willingness
to do this. Also, thanks to Philippe Boucaud and Cornelia Denz for accepting to be
part of the jury.

Thanks to the whole Manolia working group for the friendly and cooperative at-
mosphere, which I enjoyed every day at the Institut d’Optique. They had a lot of
patience with my limited French speaking skills at the beginning, and they provided
something so important for professional success : an environment in which it is a
pleasure to work.

I also thank my family, in particular my parents, for all the support they gave me,
even though they haven’t seen me very often during the past years. And last but
certainly not least, so many thanks to Katharina, for having been, and still being,
such an important part of my life and for always thinking positive.





Contents

1 Introduction 1

2 Nonlinear optics in semiconductors 5

2.1 Key elements of nonlinear optics . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Basic concept of nonlinear optics . . . . . . . . . . . . . . . . 6
2.1.2 Nonlinear propagation equation . . . . . . . . . . . . . . . . . 7
2.1.3 Third-order nonlinear polarization . . . . . . . . . . . . . . . 8

2.2 Raman scattering and Raman amplification . . . . . . . . . . . . . . 9
2.2.1 Spontaneous Raman scattering . . . . . . . . . . . . . . . . . 9

Observation of Stokes and Anti-Stokes scattering . . . . . . . . . 9
Classical model of a Raman oscillator . . . . . . . . . . . . . . . . 10

2.2.2 Stimulated Raman scattering (SRS) . . . . . . . . . . . . . . 11
Classical description of stimulated Raman scattering . . . . . . . 12
Raman susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 13
Third-order nonlinear polarization of SRS . . . . . . . . . . . . . 15

2.2.3 Raman amplification . . . . . . . . . . . . . . . . . . . . . . . 17
Nonlinear propagation of the Stokes intensity . . . . . . . . . . . 17
Propagation equation for the pump intensity . . . . . . . . . . . . 19
Raman amplification of the Stokes wave . . . . . . . . . . . . . . 19
Raman phase shift of the Stokes wave . . . . . . . . . . . . . . . 20

2.3 Other nonlinear optical effects in semiconductors . . . . . . . . . . . 20
2.3.1 Kerr effect and cross-Kerr effect (Kerr, X-Kerr) . . . . . . . . 22

Kerr effect and nonlinear refractive index . . . . . . . . . . . . . . 22
Cross-Kerr effect (X-Kerr) . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Two-photon absorption (TPA, XTPA) . . . . . . . . . . . . . 24
2.3.3 Free carrier effects (FCA, FCR) . . . . . . . . . . . . . . . . . 25

Free carrier refraction (FCR) . . . . . . . . . . . . . . . . . . . . 26
Free carrier absorption (FCA) . . . . . . . . . . . . . . . . . . . . 27
Time dependence of free carrier effects . . . . . . . . . . . . . . . 27

2.4 Enhancement of nonlinear effects through light localization . . . . . 29
2.4.1 Local field factor and group refractive index . . . . . . . . . . 29

Enhancement of nonlinear effects due to light localization . . . . 30
Light localization due to reduced group velocity . . . . . . . . . . 31

2.4.2 Simple model of SRS in a semiconductor microcavity . . . . . 33
Raman amplification in a Fabry-Perot resonator . . . . . . . . . . 33
Comparison of singly and doubly resonant microcavities . . . . . 35

i



ii CONTENTS

3 Saturated Raman amplification in an SOI nanowire 39

3.1 Analytical model of SRS in a silicon nanowire . . . . . . . . . . . . . 42
3.1.1 Effective Raman gain with a polychromatic pump wave . . . 42
3.1.2 Evolution of the Stokes intensity in a silicon nanowire . . . . 44

Two photon absorption of the pump beam . . . . . . . . . . . . . 45
Raman amplification of the probe beam . . . . . . . . . . . . . . 45

3.1.3 Model of the Raman amplification experiments . . . . . . . . 46
Probe (Stokes) intensity as a function of the X parameter . . . . 47
Method for the determination of the X parameter . . . . . . . . . 48

3.2 SOI sample and experimental setup . . . . . . . . . . . . . . . . . . . 49
3.2.1 Silicon-on-insulator (SOI) nanowire sample . . . . . . . . . . 49

Considerations regarding the sample design . . . . . . . . . . . . 49
Silicon-on-insulator (SOI) sample used for the experiments . . . . 50

3.2.2 Synchronous hybrid picosecond light source . . . . . . . . . . 51
Picosecond optical parametric oscillator (OPO) . . . . . . . . . . 51
Synchronously modulated tunable diode laser . . . . . . . . . . . 52

3.2.3 Pump-probe setup and data acquisition . . . . . . . . . . . . 53
3.3 Linear characterization of the silicon nanowire . . . . . . . . . . . . . 54

3.3.1 Fabry-Perot transmission spectra of the nanowire . . . . . . . 54
3.3.2 Measurement of attenuation and local field factor . . . . . . . 56

Linear attenuation coefficient of the silicon nanowire . . . . . . . 58
Local field factor at the Stokes wavelength . . . . . . . . . . . . . 58

3.4 Nonlinear measurements of saturated Raman amplification . . . . . . 59
3.4.1 Pump and probe spectra behind the nanowire . . . . . . . . . 59

Measured output spectra of pump and probe beam . . . . . . . . 60
Local field factor at the pump wavelength . . . . . . . . . . . . . 61

3.4.2 Two photon absorption and Raman amplification . . . . . . . 62
Decreasing pump transmission due to TPA . . . . . . . . . . . . . 63
Raman-amplified and blueshifted probe beam . . . . . . . . . . . 65

3.4.3 Saturated Raman amplification due to SPM . . . . . . . . . . 67
Calculation of the effective Raman gain . . . . . . . . . . . . . . 68
Theoretical description of the pump-probe experiments . . . . . . 68

3.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 SRS in a doubly resonant GaAs microcavity 75

4.1 Doubly resonant planar microcavity . . . . . . . . . . . . . . . . . . 78
4.1.1 Considerations regarding the sample design . . . . . . . . . . 78
4.1.2 Optimal design of the semiconductor sample . . . . . . . . . . 81

4.2 Analytical model of the pump-probe experiments . . . . . . . . . . . 83
4.2.1 Pump and probe pulses and nonlinear effects . . . . . . . . . 83

Pump and probe picosecond pulses . . . . . . . . . . . . . . . . . 84
Stokes transmission of the semiconductor microcavity . . . . . . . 85
Gain and phase shift due to stimulated Raman scattering . . . . 85
Free charge carriers created by the pump pulses . . . . . . . . . . 87
Two photon absorption and absorption by free carriers . . . . . . 88
Refractive index change by free carriers and cross-Kerr effect . . . 88

4.2.2 Analytical model of the nonlinear transmission . . . . . . . . 89
Linear transmission as special case of nonlinear transmission . . . 90
Influence of nonlinear effects on the microcavity transmission . . 90

4.2.3 Simulations of the pump-probe experiments . . . . . . . . . . 94
4.3 Experimental setup and methods . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Two synchronous optical parametric generators . . . . . . . . 99



CONTENTS iii

Frequency-tripled Nd:YAG picosecond laser . . . . . . . . . . . . 99
Two independent parametric generators and amplifiers . . . . . . 100
Pump and probe wavelengths and spectra . . . . . . . . . . . . . 103

4.3.2 Preparation and superposition of pump and probe beam . . . 104
Transmission measurement with a stable light source . . . . . . . 105
Opto-mechanical setup of pump and probe beams . . . . . . . . . 105

4.3.3 Photodiode signals and sample transmission . . . . . . . . . . 108
Pulse integration at 10-Hz repetition rate . . . . . . . . . . . . . 108
Determination of the sample transmission . . . . . . . . . . . . . 109
Photodiodes with and without noise . . . . . . . . . . . . . . . . 110
Data acquisition and processing . . . . . . . . . . . . . . . . . . . 111

4.4 Linear characterization of the GaAs sample . . . . . . . . . . . . . . 111
4.4.1 Linear transmission spectroscopies of the sample . . . . . . . 112
4.4.2 Characteristics of the semiconductor microcavity . . . . . . . 113

Corrections to the finesse values . . . . . . . . . . . . . . . . . . . 113
Corrections to the maximum transmission values . . . . . . . . . 114
Experimentally determined microcavity characteristics . . . . . . 115

4.5 Nonlinear pump-probe measurements . . . . . . . . . . . . . . . . . . 115
4.5.1 Pump-probe measurements of the probe transmission . . . . . 115

Measurement of the transmission for different pump intensites . . 116
Intracavity pump intensity and transmitted pump intensity . . . 118
Measurement series for different pump wavelengths . . . . . . . . 119
Unexpected signature of SRS in the experimental results . . . . . 127

4.5.2 Modified electron relaxation dynamics due to SRS . . . . . . 129
Refractive index change for three different pump wavelengths . . 129
Slowing down of the electron relaxation through Raman phonons 132

4.5.3 Confirmation of the phonon-electron hypothesis . . . . . . . . 135
4.6 Experimental characterization of the Raman phonons . . . . . . . . . 139

4.6.1 Stokes scattering process . . . . . . . . . . . . . . . . . . . . . 140
4.6.2 Anti-Stokes scattering process . . . . . . . . . . . . . . . . . . 142
4.6.3 Experimental setup of the Anti-Stokes experiment . . . . . . 143

4.7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Summary 149

A Classical derivation of stimulated Raman scattering 151

B Transmission of a Fabry-Perot resonator with gain 155

References 159



iv CONTENTS



Chapter 1
Introduction

"If I have seen a little further, it is by standing on the shoulders of giants," remarked
Isaac Newton in 1676 in a letter to his rival Robert Hooke. This famous citation
applies even more to today’s research than it did to Newton when he carried out
his first optical experiments on the spectral analysis of sunlight. Since then, many
"giants" have joined those that Isaac Newton, one of the first researchers devoting
significant attention to the field of optics, could have had in mind. Two of these
giants are particularly important for the context of the present PhD thesis : nonlinear
optics and semiconductors nanostructures. One could indeed say that they are the
"shoulders" on which the findings of this PhD thesis are built.

At the beginning of the twentieth century, Heinrich Hertz discovered and studied
the nature of electromagnetic waves. His discovery and its successful application
by Guglielmo Marconi gave rise to modern communication technology, which was
an essential driver of the most important technological and societal developments
of the past century. While electromagnetic waves have for long times mainly been
used in the form of radio waves and microwaves, today, at the beginning of the
twenty-first century, it is light that plays a key role in the development of the future
communication and information technology. With all the progress in the domain of
optoelectronics during the past decades, it has become relatively easy to represent
and to transmit information in the form of optical signals (e.g., in optical fibers).
However, for the processing of the optical signals, they are usually converted to
electrical signals. This conversion limits the overall processing speed because current
data streams require switching rates above 50 GHz, where electronic compontents
start to reach their limits. Moreover, the conversion introduces coupling losses at
every optoelectronic interface (i.e., in every optoelectronic component), which is one
of the reasons why the switching devices usually show a high energy consumption.

In order to circumvent these limitations and to improve the energy efficiency of
communication technology, the next great challenge is to find ways to process these
signals with purely optical components, i.e., without the use of electronics. As it
turns out, the most promising physical effects that allow for such a purely optical
signal and information processing can be found in the domain of nonlinear optics,
as is discussed in more detail below (see section 2.1). To be of practical use for
the telecommunication industry, the optical functions that are realized by means of
nonlinear optics have to be integrated into highly compact devices, approximately
of the same small dimensions as current microelectronics or even smaller (i.e., on
a sub-micrometer scale). Therefore, both public and private sector researchers cur-
rently make great efforts and try to build on the enormous technological progress
and know-how regarding semiconductor nanostructures to make communication
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2 1 INTRODUCTION

components faster, smaller, and less energy consuming [1] through the use of nonlin-
ear optical effects. Moreover, in order to keep the production costs of these devices
comparable (and competitive) with the existing optoelectronic components, it is of
great interest to use existing fabrication technologies for their production. Therefore,
especially the material silicon (Si) and the CMOS technology, which are the basis of
all microelectronic devices, have gained great interest, giving rise to a new research
domain which has in recent years become widely known as silicon photonics.

Among the optical functions that have already been realized, there are, for example,
waveguiding [2], light emitting [3, 4], and optical filters [5]. Various studies and
successful demonstrations of modulation and switching have been reported [6], be it
through the thermo-optic effect [7, 8], by electro-optical modulation [9, 10, 11], or
by using an all-optical approach [4, 12]. High-speed modulation of wavelengths in
the telecom band has been achieved with an extremely low switching energy of only
a few 100 femtojoules [13]. Even an optical memory has been demonstrated [14].

Two of the most important and still challenging functions of optical information
processing are the amplification of optical signals, as well as the realization of an
integrated (laser) light source, which both require a sort of optical gain. Since silicon
is an indirect band-gap semiconductor, it is not possible to obtain a significant optical
gain by exploiting the electronic transitions of the material (as, for example, in
the case of GaAs). It has, however, been demonstrated that light amplification is
possible using silicon in the form of quantum dots dispersed in a silicon dioxide
matrix [15]. Broadband optical gain in silicon, which is useful to process larger
wavelength ranges (i.e., multiple WDM channels) at the same time, has been shown
through the optical process of phase-matched four-wave mixing in suitably designed
SOI channel waveguides [16].

Another approach is to use stimulated Raman scattering (SRS) as the key
element of purely silicon-based optical amplifiers and light sources [17, 18]. By means
of stimulated Raman scattering, it is possible to achieve an amplification of a weak
optical signal due to an efficient transfer of optical energy from a strong pump light
wave to the weak signal wave (see section 2.2). This amplification is a nonlinear
optical interaction between the two waves in a so-called Raman-active medium (e.g.,
silicon or gallium arsenide). In its simplest form, it can be expressed as an exponential
increase of the signal intensity IS by

IS(l) = IS(0) exp
{

γR IP l
}

, (1.1)

where the material-dependent coefficient γR is the so-called Raman gain, IP is the
intensity of the pump wave, and l is the propagation distance. Thus, in order to
obtain high amplifications, it is desirable to maximize the product in the argument
of the exponential function. In the perspective of highly compact telecommunica-
tion devices, the interaction lengths should be as short as possible, and the choice
of the material (determining the Raman gain) is mainly given by such criteria as
the maturity of the fabrication technology and the compatibility with other compo-
nents. Thus, the key to obtaining high Raman amplifications lies in achieving a local
enhancement of the pump intensity.

A fairly simple way to locally increase the pump intensitiy is to focus the light
with a lens on a small focal spot in the Raman-active nonlinear medium. However, a
significant increase of the intensity is only achieved within the Rayleigh length, which
is directly related to the desired diameter of the focal spot through the wavelength
and the refractive index of the material. A highly focused beam has inevitably a short
Rayleigh length, i.e., a short effective interaction length. This significantly limits the
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maximum attainable product of intensity and length occurring in the above equation.
A more sophisticated approach is to inject the pump beam into a highly confined sub-
lambda waveguide, i.e., into a waveguide whose cross section is small compared to the
wavelength of the light. These waveguides can have lengths of several millimeters
or even centimeters so that this solution circumvents the disadvantages of simple
focusing by confining the increased intensity of the light in the waveguide over its
full length. It should be noted that both of the above methods represent only a
transverse confinement of the light by reducing the effective area Aeff of the wave.

A far more effective localization of the light can be achieved by slowing down the
propagation of the light waves in the nonlinear medium so that the photons are
condensed in a smaller volume. This so-called slow light is expressed by a reduced
group velocity vg, which is characterized by the group refractive index ngr through
vg = c/ngr, where c is the vacuum speed of light. A very strong light localiza-
tion can be reached by the combination of sub-lambda waveguides and slow light,
which leads to the so-called slow-mode waveguides. These slow-mode waveguides
are nanostructures that are usually fabricated in semiconductor materials. They
can provide very small effective mode areas Aeff of below 1 µm2. Therefore, their
production requires a fabrication precision of only several nanometers, whereas the
waveguide lengths can be as long as several centimeters. Such fabrication precisions
have only become available in the past couple of years.

The highest group refractive indices (corresponding to the strongest slowing down
of the light) can be achieved in photonic crystal structures that are specifically
designed for this purpose. In photonic crystals, the guiding of the light is not achieved
by means of total internal reflection, but by the guiding effect of periodically arranged
scattering centers, such as regularly arranged holes in a semiconductor slab. Because
of their promising capabilities, photonic crystal waveguides are currently extensively
studied both experimentally and theoretically. One of the main challenges is to
obtain waveguides that show only little dispersion [19, 20, 21, 22]. Starting point
for a systematic investigation of the nonlinear optical effects in such semiconduc-
tor nanostructures were some works on the nonlinear characterization of photonic
band-gap structures [23, 24, 25, 26]. Very recently, several demonstrations of the
enhancement of optical nonlinearities in photonic crystal waveguides have been pub-
lished [27, 28, 29, 30].

Another way to localize the pump intensity in a small volume is to place the nonlinear
medium in a high-finesse optical cavity and to make the light waves resonant
in this cavity. As a result, a significant increase of the intensity can be achieved
inside the resonator (i.e., in the medium). In the context of the present work, this
approach leads to the study of stimulated Raman scattering in semiconductor
microcavities with very short resonator lengths, being of the order of only several
wavelengths. Multiple successful realizations of microcavities (or nanocavities) with
ultrahigh Q factors of the order of 105 to 106 have been reported [31, 32, 33, 34].

Of particular interest is the situation where both pump and Stokes beam are
resonant in the microcavity at the same time. In this case, instead of considering
the local increase of the pump intensity inside the nonlinear medium, one could
also interpret the influence of the microcavity as an effective prolongation of the
interaction length l in Eq. (1.1) because both waves, since they are both resonant
in the cavity, propagate many times back and forth in the nonlinear medium. It is
worth noting that, although stimulated Raman scattering (SRS) has already been
studied in doubly resonant spherical and toroid microcavities made of silica [35], an
enhancement of SRS in semiconductor nanostructures has never been experimentally
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studied before, although such a configuration seems to be one of the most promising
steps on the route towards an ultra-compact Raman microlaser.

The aim of the present PhD thesis is to study the influence of the light localiza-
tion on different nonlinear optical effects, especially stimulated Raman scattering, in
semiconductors nanostructures. It is essentially organized in three main chapters.

The first one (chapter 2) summarizes the most important aspects of nonlinear
optics that are needed to understand and interpret the results that are presented in
the remainder of this document. The main focus here lies on those nonlinear effects
that play a major role in semiconductors. Besides stimulated Raman scattering,
this includes the two photon absorption, the Kerr effect, and the free carrier effects
(absorption and refraction). The chapter also includes a formal description of the
effect of light localization, and it shows how the localization enhances the optical
nonlinearities through the so-called local field factor. It closes with the presentation
of a simple model that illustrates how the Raman amplification can be enhanced in
a doubly resonant microcavity.

In the next chapter (chapter 3), an experimental study of stimulated Raman
scattering in a silicon nanowaveguide (or nanowire) is presented. I have carried out
a number of nonlinear pump-probe measurements of the Raman amplification of a
narrow-band probe wave in a silicon-on-insulator (SOI) nanowire. The experimental
results show very clearly that, for higher pump powers, the Raman amplification
of the probe wave experiences a saturation, which corresponds to a decrease of the
effective Raman gain. An analytical model is developed that takes into account the
finite spectral width of picosecond pump pulses in order to describe the influence
of spectral broadening on the effective Raman gain. It is demonstrated that the
observed saturation is caused by the fact that the pump pulses undergo a self phase
modulation that is induced by the Kerr effect and free carrier refraction. With the
help of a linear characterization of the nanowire, the local field factor is determined
to have a value of 1.2, which corresponds to a low level of light localization. The
results of the pump-probe measurements, however, can also be applied to the case
of highly localized light, which has some major implications for the realization of
optical functions for the all-optical information processing. As a side effect of the
experiments, the Raman gain coefficient of silicon is determined.

Finally, the last of the three main chapters (chapter 4) presents an experimental
study of the enhancement of stimulated Raman scattering in a doubly resonant
GaAs microcavity. As in the previous case, an analytical model is developed, which
is then used to simulate the nonlinear pump-probe measurements that are presented
afterwards. Although the experiments, which are described in detail, agree with
the simulations in certain aspects, the time dependence of the data shows some
totally unexpected features. These observations can be explained by the assumption
that the relaxation dynamics of the electrons in the conduction band of GaAs is
profoundly modified by the presence of a coherent population of Raman phonons. A
hypothesis is formulated that describes how this interaction between electrons and
coherent phonons effectively influences the electron relaxation and how it could lead
to a prolongation of the phonon lifetime. A second set of pump-probe measurements
confirms this hypothesis, which has, to our knowledge, never been reported before
in the literature.

A summary at the end of this document restates the key results of the two
experimental parts and provides an exciting outlook on the next steps that have
to be made towards a more complete understanding of the interplay between the
different nonlinear effects and their dependence on the light localization.



Chapter 2
Basics of nonlinear optics in

semiconductor nanostructures

This chapter provides an overview of the basic concepts and the most important
equations of nonlinear optics in semiconductors. After a brief summary of the key
concepts of nonlinear optics, it describes the central effect of the present work, the
stimulated Raman scattering. Moreover, it introduces several other (third-order)
nonlinear optical effects that play a vital role in the experiments presented in the
following chapters. Finally, it describes the possible enhancement of the optical
nonlinearities due to light localization, which is also of central importance for the
present work.
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6 2 NONLINEAR OPTICS IN SEMICONDUCTORS

2.1 Key elements of nonlinear optics

In the following chapters, we study the optical response of semiconductor nanostruc-
tures (such as waveguides and microcavities) to strong light fields. This response
shows several so-called nonlinear effects. The basic theory that allows us to under-
stand the underlying physical processes is the theory of nonlinear optics, which
we define, for our purposes, as the interaction between light and matter in the pres-
ence of strong electromagnetic waves in the visible or near infrared spectral range.
This section 2.1 summarizes the key elements of nonlinear optics that we need for
the following sections.

2.1.1 Basic concept of nonlinear optics

The basic idea of nonlinear optics is the following. Consider a dielectric material,
composed of microscopic dipoles (atoms and electrons). One or several electromag-
netic waves (usually monochromatic waves, e.g. laser beams) are incident upon the
material, where they induce a polarization of the microscopic dipoles. The dipole
moment per unit volume, or polarization ~P , of the material depends on the electric
field strength ~E of the incident waves. In the case of conventional (i.e., linear) optics,
this relationship is linear

~P = ǫ0χ
(1) ~E ,

where ǫ0 is the permittivity of free space, and χ(1) is known as the linear susceptibility
tensor. Thus, the multiplication on the right-hand side of the above equation is
actually a matrix product. In nonlinear optics, the optical response can often be
described as a generalization of the above equation by expressing the polarization ~P
as a power series of the incident electric field strengths ~E,

~P = ǫ0

(
χ(1) ~E + χ(2) : ~E ~E + χ(3) ... ~E ~E ~E + . . .

)

= ǫ0χ
(1) ~E

︸ ︷︷ ︸
+ ǫ0 χ(2) : ~E ~E
︸ ︷︷ ︸

+ ǫ0 χ(3) ... ~E ~E ~E
︸ ︷︷ ︸

+ . . .

= ~P (1) + ~P (2) + ~P (3) + . . .

= ~PL + ~PNL (2.1)

where χ(2) and χ(3) are the second- and third-order nonlinear susceptibilities and

~PL = ~P (1) and ~PNL = ~P (2) + ~P (3) + . . .

denote the linear and the nonlinear optical response of the medium to the incident
electromagnetic waves. The nonlinear polarization ~PNL is the sum of the second-
order and the third-order polarizations (and all higher orders). The N -th-order
nonlinear susceptibilities are tensors of the order N + 1 and the vertical dots in
Eq. (2.1) symbolize tensor products with the electric field strengths.

It should be noted that the electric field strength occurs several times in these tensor
products. So, if there are multiple incident waves (monochromatic, plane electro-
magnetic waves) with different frequencies, wave vectors, and polarization directions,
these waves can be combined in different ways in the tensor products. Thus, depend-
ing on the number of incident waves, we find a variety of different nonlinear optical
effects, some of which will be described in more detail in the following sections.



2.1 Key elements of nonlinear optics 7

2.1.2 Nonlinear propagation equation

The polarization induced by the incident waves acts as a source term for the genera-
tion of another electromagnetic wave. Assuming an isotropic, homogeneous medium
with a frequency-dependent refractive index n = n(ω), we can derive a differential
equation that describes the relationship between the nonlinear polarization of the
material and the electric field of the generated wave. The complete derivation, from
Maxwell’s equations to the propagation equation, can be found in numerous standard
text books on nonlinear optics [36, 37]. Here, we simply present the key results.

In the Fourier domain (i.e., in the frequency space), the propagation of an elec-
tromagnetic wave (represented by the electric field strength ~E) that is driven by
the nonlinear polarization ~PNL (which acts as the source term) is described by the
differential equation

∇2 ~E(~r, ω) +
ω2n(ω)2

c2
~E(~r, ω) = − ω2

c2ǫ0

~PNL(~r, ω) , (2.2)

where c is the speed of light in free space. We assume that all waves propagate in
the z direction and that the incident waves and the solutions of the above differential
equation are monochromatic electromagnetic waves of the form

~E
~E(z, t) = A(z) ê ei(kz−ωt) + c.c. , (2.3)

A

ω, k, ê
where A is the amplitude of the electric field strength and where ω, k, and ê are
the angular frequency, the wave vector, and the polarization vector of the wave.1

We can then derive the so-called nonlinear propagation equation for the field
amplitudes, given by

�

�

�


∂A

∂z
=

iω

2n(ω)cǫ0

~PNL(ω) · ê e−ikz . (2.4)

The derivation of this important equation is essentially based on the so-called slowly
varying envelope approximation (SVEA). It is demonstrated with all the details in
the above-mentioned references. The nonlinear propagation equation (2.4) describes
the evolution of the amplitude A (i.e., the envelope) of the generated electromagnetic
wave during its propagation in the nonlinear optical material along the z direction.
As can be seen from the equation, the change of the amplitude is proportional to
the product of the imaginary unit i and the nonlinear polarization ~PNL(ω). The
latter is, in general, a complex vector that can be decomposed into its real part and
its imaginary part. The real part affects the phase of the generated electromagnetic
wave, while the imaginary part changes the amplitude of the wave. This conclusion
is very important for the understanding of the nonlinear effects that are presented
in sections 2.2 and 2.3.

In order to solve the nonlinear propagation equation, we have to insert an expression
for the nonlinear polarization ~PNL(ω), which depends on the particular nonlinear
effect under consideration.

1Remark: In scientific reports such as PhD theses, it is practically unavoidable to introduce a
large number of different symbols whose precise and sometimes subtle differences in meaning are
essential to the understanding of the text. The present work is no exception to this rule. Thus,
in order to reduce the possibly arising confusion between similar symbols (i.e., those that resemble
one another) and to minimize searching for frequently referenced equations, the first appearances
of the most important symbols are indicated in the margin of this document, thus facilitating the
reading and the browsing through the text. In certain cases, instead of the first appearance, it is
the most meaningful appearance that is shown in the margin.
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2.1.3 Third-order nonlinear polarization

In the present work, we mainly study nonlinear effects of the third order. Therefore,
the third-order nonlinear polarization ~P (3) is of particular importance here, as is
explained in more detail below. A formal and technical derivation [37] yields the
general form of the third-order nonlinear polarization2

�

�

�


~PNL(ω) = D(3) ǫ0 χ(3)(ω;ω1, ω2, ω3)

... ~E(ω1) ~E(ω2)~E(ω3) (2.5)

where the factor D(3) is the so-called third-order degeneracy factor, which can have
three possible values, depending on the number of (in)distinguishable incident electric
fields [37]:

D(3)
D(3) = 1 if all three fields are indistinguishable

= 3 if two fields are distinguishable
= 6 if all three fields are distinguishable .

Equation (2.5) also contains the so-called third-order nonlinear susceptibility
at the frequency ω

χ(3)
χ(3)(ω;ω1, ω2, ω3) ,

which is, as mentioned in section 2.1.1, a fourth-order tensor. The four arguments of
the third-order nonlinear susceptibility indicate that the sum of the three frequencies
behind the semicolon gives the frequency before the semicolon

ω = ω1 + ω2 + ω3 .

Therefore, it is actually not necessary to write the first argument explicitly (i.e.,
the one before the semicolon), but we use this notation because it is a widely used
convention. Equation (2.5) can also be expressed for one single component of the
nonlinear polarization as

PNL
i (ω) = D(3) ǫ0

∑

jkl

χ
(3)
ijkl(ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) .

The electric fields ~E(ω) are the Fourier amplitudes of the three incident electromag-
netic waves at the frequencies ω1, ω2, and ω3. They are implicitly defined by

~E(z, t) = ~E(ω) e−iωt + c.c. . (2.6)

and can be explicitly written as

~E(ω) = A ê eikz . (2.7)

In the next sections 2.2 and 2.3 we present several nonlinear optical effects and their
corresponding expressions of the nonlinear polarization ~PNL(ω). These expressions
are then used to solve the nonlinear propagation equation (2.4).

2Remark: As is common for scientific reports, the present PhD thesis contains numerous equa-
tions, calculations, and conclusions. To improve the readability of this document, the reader will find
important equations framed in oval boxes (i.e., boxes with rounded edges), while numerical results
as well as logical conclusions are framed in boxes with sharp edges (see the following chapters).
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2.2 Raman scattering and Raman amplification

The central effect that is studied in the present work is the so-called Raman scat-
tering. This section 2.2 therefore introduces the Raman scattering and explains
the fundamental physics behind it. The section comprises three subsection, covering
the spontaneous Raman scattering, the stimulated Raman scattering (SRS), and a
particular application of the SRS, the Raman amplification. In order to focus on the
physical understanding and not only on the equations, we approach these subjects
by simple classical models, which are then refined using more rigorous theoretical
approaches.

2.2.1 Spontaneous Raman scattering

Among the various interactions between light and matter is the so-called sponta-
neous Raman scattering, named after its discoverer, Chandrasekhra Venkata Ra-
man, who first experimentally demonstrated this "new type of secondary radiation"
in 1928 [38].

Observation of Stokes and Anti-Stokes scattering

Consider a liquid or a gas, composed of molecules, and an incident light wave at a
frequency ωL. The light is scattered by the molecules and is emitted isotropically in
all directions. A spectral analysis of the scattered light shows essentially the elastic
scattering of the incident light wave, i.e., a strong spectral line at the frequency ωL of
the incident light (Rayleigh scattering). However, there are also some other spectral
components whose intensities are usually several orders of magnitude weaker than
the Rayleigh peak. Some of these new spectral lines have frequencies lower than
the frequency of the incident light (the so-called Stokes lines), and some of them
have frequencies which are higher than the incident frequency (the so-called Anti-
Stokes lines). In other words, part of the scattered light loses some energy during the
scattering process (Stokes), the other part gains energy (Anti-Stokes). Figures 2.1(a)
and 2.1(b) illustrate a Raman scattering experiment and the resulting spectrum.
The frequency differences between the incident wave and the new spectral lines are
independent of the incident frequency ωL. They are characteristic of the material in
which the scattering occurs. The exact values of these frequency shifts depend on the
chemical composition and on the structure of the molecules (more precisely, on the
spectrum of rotational-vibrational eigenstates of the molecules, which itself depends
on the composition and on the geometry). The same effect is observed with solids.
In that case, the incident light does not interact with the vibrational eigenstates
of single molecules but with the whole crystal lattice of the solid. Therefore, the
crystal has to possess optical phonon branches, which allow for dipole interactions
with the incident electromagnetic wave. Since the present work presents a study of
semiconductor materials, we will in the following mainly consider solids rather than
molecules.

The process of Raman scattering can be explained with the energy diagram that
is depicted in Figure 2.1(c). Here, we consider only the simple case of one Stokes
wave and one Anti-Stokes wave. The Stokes wave is generated by the annihilation of
an incident photon at the frequency ωL and the creation of a photon at the Stokes
frequency ωS. At the same time, a phonon at the Raman frequency ΩR is created
so that after the interaction, the material is in an excited state. In terms of energy,
this scattering process can be expressed as ~ωS = ~ωL − ~ΩR. Conversely, the Anti-
Stokes wave corresponds to the simultaneous annihilation of an incident photon at



10 2 NONLINEAR OPTICS IN SEMICONDUCTORS

Fig. 2.1. Spontaneous Raman scattering. (a) An incident monochromatic light wave (e.g. laser beam) is scattered by
molecules or by the crystal lattice of a solid that possess a spectrum of rotational-vibrational eigenstates. The scattered
light is emitted isotropically. (b) In the spectrum, there are new components whose energies (i.e., frequencies) are higher
and lower than the energy of the incident light. The components with less energy than the incident wave are called
Stokes waves, whereas those with more energy are called Anti-Stokes waves. (c) They correspond to the transitions
between the vibrational eigenstates of the material. Real crystals have more complex Raman spectra with multiple
Raman resonances. In the spectrum of Si shown in (d), there are two peaks, the first of which is at a frequency of
15.6 THz [39].

ωL and a phonon with ΩR, leading to the creation of a photon at the Anti-Stokes
frequency ωAS. Energetically speaking, this is described by ~ωAS = ~ωL + ~ΩR. So,
the Anti-Stokes scattering is the de-excitation (decay) of a previously exited state of
the material. It should be noted that there is no electronic resonance of the material
involved in this process.

As is known from solid state physics, the higher the temperature of a crystal is, the
more excited phonon states of the crystal are populated. Therefore, the probability
of Anti-Stokes scattering compared to the probability of Stokes scattering is given by
the Boltzmann function exp{−(~ΩR)/(kBT )}. With the relationship ~ΩR ≫ kBT ,
which is valid at room temperature, the Raman scattering is dominated by the Stokes
waves. Because of the complex structure of molecules and crystals, there are usually
many possible transitions, each of which corresponds to a different phonon mode
with its own phonon energy. Figure 2.1(d) shows the first two Raman resonances
of silicon [39]. Since the Raman transitions usually correspond to mid-infrared or
far-infrared frequencies, the energies of the involved phonons are much smaller than
the energies of the interacting light waves

~ΩR ≪ ~ωL, ~ωS, ~ωAS ⇐⇒ ΩR ≪ ωL, ωS, ωAS ,

which is thus also valid for the involved frequencies, as the above equation shows.

Classical model of a Raman oscillator

A simple classical interpretation of the Raman scattering process can be given by
describing the modulation of the polarizability of a simple dipole (e.g., a diatomic
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molecule). Consider two atoms which are bound by a spring of length q0. The
displacement of this oscillator from its equilibrium position can be expressed as

q(t) = q̂ cos(ΩRt) (2.8)

where ΩR is the eigenfrequency (i.e., the Raman frequency) of the system. We
assume that the optical polarizability of the dipole (which is typically predominantly
electronic in origin) is not constant, but depends on the displacement q according to
the equation

α(q) = α0 +

(
∂α

∂q

)

0

q + . . . (2.9)

where α0 is the polarizability at equilibrium and (∂α/∂q)0 represents the first term
in a Taylor series expansion of the polarizability in terms of the displacement q.
Inserting Eq. (2.8) into Eq. (2.9) yields

α(t) = α0 +

(
∂α

∂q

)

0

q̂ cos(ΩRt) + . . . .

Consider a monochromatic electromagnetic wave, e.g. a laser beam at the frequency
ωL, that is incident upon the dipole. Thus, the dipole is excited by an oscillating
electric field

E(t) = Ê cos(ωLt)

which induces a dipole moment that is given by

p(t) = α(t)E(t) =

[
α0 +

(
∂α

∂q

)

0

q̂ cos(ΩRt)

]
Ê cos(ωLt) (2.10)

= α0Ê cos(ωLt) +

(
∂α

∂q

)

0

q̂Ê
1

2

(
cos
(
ΩRt − ωLt

)
+ cos

(
ΩRt + ωLt

))

= α0Ê cos(ωLt)

︸ ︷︷ ︸
incident wave

+
1

2

(
∂α

∂q

)

0

q̂Ê cos(ωSt)

︸ ︷︷ ︸
Stokes wave

+
1

2

∂α

∂q′
q̂′Ê cos(ωASt)

︸ ︷︷ ︸
Anti-Stokes wave

.

Thus, the dipole oscillates not only at the incident frequency ωL, but also at the
Stokes frequency ωS and the Anti-Stokes frequency ωAS, given by

ωS, ωAS

�

�

�


ωS = ωP − ΩR and

�

�

�


ωAS = ωP + ΩR , (2.11)

ΩR

which correspond to the Stokes and the Anti-Stokes waves with a vibrational eigen-
frequency ΩR. As this simple model shows, the Raman scattering has its origins in
the fluctuations of the polarizability of the material under study.

2.2.2 Stimulated Raman scattering (SRS)

We consider again the situation described in the previous section. But this time,
we suppose that there are two light waves incident upon the dipole (or solid, re-
spectively): a powerful laser beam with a given frequency ωP, the so-called pump
beam (or pump wave), and another beam at the Stokes frequency ωS, which we
call the Stokes beam (or Stokes wave). In other words, the situation is similar to
the spontaneous Raman scattering, except that both the initial laser beam and the
Stokes wave are incident upon the medium [40]. Unlike in the case of spontaneous
Raman scattering, here the Stokes wave is a laser beam and thus has a well-defined
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Fig. 2.2. Stimulated Raman
scattering (SRS). (a) In the case
of stimulated Raman scattering
there are two incident light waves
whose difference in frequency
corresponds exactly to the Ra-
man frequency: ωP − ωS = ΩR.
(b) Thus, the energy difference
between the two waves equals
the energetic difference between
two vibrational eigenstates of the
material.

propagation direction. In this situation, which is depicted in Fig. 2.2, the Stokes
scattering can be stimulated, and therefore this process is called the stimulated
Raman scattering (SRS).

Since SRS is the central subject of the present work, it is introduced in this section in
three steps. In a first subsection, we present a classical model of a simple stimulated
Raman oscillator, in order to describe the physical origin of the SRS. This leads
to the fundamental notion of the Raman susceptibility, whose key properties are
discussed in a second subsection. After these phenomenological considerations, we
derive in a third subsection a more systematic approach to describe the nonlinear
Raman polarization.

Classical description of stimulated Raman scattering

As in the case of the spontaneous Raman scattering, we can describe the stimu-
lated Raman scattering with a simple classical model [36]. This simple description
yields some valuable insight in the underlying processes and into the properties of
the central material constant describing the Raman scattering, the so-called Raman
susceptibility. The complete derivation of the classical model of SRS is presented in
appendix A. Here, we only summarize the most important points.

As in the case of spontaneous Raman scattering, we consider a two-atom molecule
with an vibrational eigen-frequency ΩR. The molecule can be described by the
equation of motion of a driven harmonic oscillator of the form

d2

dt2
q + 2Γ

d
dt

q + Ω2
R q =

F (t)

m
(2.12)

where q is the displacement of the oscillator from its equilibrium position, Γ is a
damping constant, m is the mass of the oscillator, and F (t) is a time-dependent
driving force. As is shown in the complete derivation in appendix A, the driving
force can be expressed in terms of the amplitudes and oscillatory parts of the two
incident electromagnetic waves. As a result, we obtain an expression for the time-
varying part at the beat frequency ωP − ωS, given by

F (t) =

(
∂α

∂q

)

0

[
AP A∗

S ei(Kz−Ωt) + c.c.
]

, (2.13)

where we have introduced the notation

K, Ω K = kP − kS and Ω = ωP − ωS . (2.14)
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By inserting Eq. (2.13) into the equation of motion (2.12), we obtain an oscillating
solution for the displacement of the molecule,

q = q(Ω) ei(Kz−Ωt) + c.c. , (2.15)

where the amplitude of the molecular vibration is given by

q(Ω) =
(1/m) (∂α/∂q)0
Ω2

R − Ω2 − 2iΩΓ
AP A∗

S . (2.16)

With Eqs. (2.15) and (2.16) we have found a solution to the equation of motion of
our model oscillator, i.e., a single molecule. In order to describe a medium such
as a gas or a liquid, we want to calculate the dipole moment per unit volume, or
polarization P , of the medium. With the particle density N , the polarization of the
material is given by

P (z, t) = N p(z, t) = N

[
α0 +

(
∂α

∂q

)

0

q(z, t)

]
E(z, t) .

By expanding all the parentheses in the above equation, we find an expression for
the nonlinear response of the material at the Stokes frequency ωS, given by

PNL
S (z, t) = PNL(ωS) e−iωSt + c.c. , (2.17)

where the complex amplitude of the nonlinear Stokes polarization can then be
written as �

�

�


PNL(ωS) = 6 ǫ0 χR(ωS) |AP|2 AS eikSz , (2.18)

and the so-called Raman susceptibility is defined as

χR(ωS)

�

�

�


χR(ωS) =

1

6ǫ0

(N/m) (∂α/∂q)20
Ω2

R − Ω2 + 2iΩΓ
=

Q0

Ω2
R − Ω2 + 2iΩΓ

. (2.19)

For the sake of convenience, we have summarized several material dependent quan-
tities as Q0 = (N/6m ǫ0) (∂α/∂q)20 ∈ R. The above expressions for the nonlinear
Stokes polarization and the Raman susceptibility are those that we need to know in
order to solve the nonlinear propagation equation (2.4). The ǫ0 in Eq. (2.18) has
been introduced to keep the result of our simple classical model consistent with the
meaning of the susceptibility as it has been introduced in section 2.1. The factor 6 is
the so-called degeneracy factor, which is properly introduced and explained below.

Raman susceptibility

The Raman susceptibility given by Eq. (2.19) is a material constant that describes
the stimulated Raman scattering. It should be noted that it is a complex num-
ber, which depends on the difference frequency, or beat frequency, between the two
incident waves Ω = ωP − ωS. If this difference frequency is exactly equal to the
vibrational eigenfrequency, Ω = ΩR, the susceptibility is purely negative imaginary,

χ̄Rχ̄R = χR(ωS = ωP − ΩR) =
Q0

2 iΩRΓ
= − i

Q0

2ΩRΓ
, (2.20)

and it thus represents an amplification of the Stokes wave during its propagation
along the z direction, as we shall see in section 2.2.3.
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If the frequencies of the incident electromagnetic waves are detuned from the Raman
frequency, Ω 6= ΩR, the Raman susceptibility has a non-vanishing real part so that
we can decompose it into its real part and its imaginary part as

χR(ωS) = χ′
R(ωS) + i χ′′

R(ωS) . (2.21)

As can be clearly seen from Eq. (2.18), the nonlinear Stokes polarization PNL(ωS)
is proportional to the Raman susceptibility, and it is consequently also a complex
quantity. Because of the proportionality, the imaginary part of the Raman suscep-
tibility affects the amplitude of the Stokes wave, whereas the real part introduces a
phase shift (see also discussion in section 2.1.2).

By multiplying the definition of the Raman susceptibility given by Eq. (2.19)
with the complex conjugate of its denominator, we find an explicit expression for the
decomposition of the Raman susceptibility, given by

χR(ωS) =
Q0

2Ω Γ

(
∆

1 + ∆2
− i

1 + ∆2

)
, (2.22)

where the parameter ∆ is defined as

∆ ∆ =
Ω2

R − Ω2

2Ω Γ
. (2.23)

Figure 2.3 shows the real and the imaginary part of the Raman susceptibility as a
function of the difference frequency Ω = ωP − ωS. As can be seen from the graph,
the imaginary part of the Raman susceptibility has a resonant lineshape. The center
of the resonance curve is at Ω = ΩR and its full width at half maximum (FWHM) is
given by δΩR.

Near the Raman resonance (i.e., for Ω = ωP − ωS ≈ ΩR) we define the detuning of
the pump wave from the Raman resonance for a given (and fixed) Stokes frequency
ωS as

∆ωP = Ω − ΩR = ωP − ωS − ΩR = ωP − (ωS + ΩR) , (2.24)

so that we can approximate the ∆ parameter as

∆ =
(ΩR − Ω)(ΩR + Ω)

2Ω Γ
≈ (ΩR − Ω) 2ΩR

2ΩRΓ
=

ΩR − Ω

Γ
= − ∆ωP

Γ
. (2.25)

Therefore, the Raman susceptibility can be approximated near the Raman resonance
as

χR(ωS) ≈ − Q0

2ΩR

(
∆ωP

∆ω2
P − Γ2

+ i
Γ

∆ω2
P − Γ2

)
. (2.26)

Fig. 2.3. Real part
χ′

R(ωS) and imaginary part
χ′′

R(ωS) of the Raman sus-
ceptibility as a function
of the difference frequency
Ω = ωP − ωS. As can be
seen from the curves, the
susceptibility shows a reso-
nance for ωS = ωP − ΩR
that has a full width at half
maximum of δΩR. At res-
onance it is purely negative
imaginary.
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As can be seen from this representation, the Raman resonance (i.e., the imaginary
part of χR) is approximately a Lorentzian function whose full width at half max-
imum (FWHM) is given by

δΩRδΩR = 2Γ .

Therefore, the ∆ parameter given by Eq. (2.25) simply corresponds to the normalized
detuning of the pump frequency from the Raman resonance (i.e., in units of the half
width at half maximum of the resonance given by Γ = δΩR/2). Hence, in the vicinity
of the Raman resonance we can express the dimensionless detuning parameter
as

∆ ≈ − ∆ωP

δΩR/2
= −2

∆ωP

δΩR
= −2

∆νP

δνR
, (2.27)

where we have inserted the relationship ω = 2πν between angular frequency ω and
frequency ν. Thus, the Raman linewidth can be given either in the frequency or in
the angular frequency domain, related by δνR = δΩR/2π.

Third-order nonlinear polarization of stimulated Raman scattering

The above two subsections have described the physical origin of stimulated Raman
scattering as well as the properties of the material constant describing this effect,
the Raman susceptibility. Here we present a more systematic approach that follows
the theoretical framework given in the introductory section 2.1. This systematic ap-
proach is also used in the next section 2.3 where we introduce several other nonlinear
effects.

We can interpret the stimulated Raman scattering (SRS) as the interaction between
two input waves and two output waves through the nonlinear Raman susceptibility
of the material. In this sense, it is a four-wave interaction and can be theoretically
described as a third-order nonlinear optical effect. In the stimulated scattering pro-
cess, a Stokes wave with the frequency ωS is created by the interaction of three waves
at the frequencies ωP, −ωP, and ωS so that the sum of the three frequencies is

ωS = ωP − ωP + ωS .

All three interacting waves are distinguishable, and therefore the degeneracy factor
is

D(3) = 6 for SRS, (2.28)

which is the reason why we have introduced this factor 6 in our derivation of the
classical model in Eq. (2.19). As has been shown by Eq. (2.7), we can write the
non-oscillating parts (i.e., the Fourier amplitudes) of the electric fields as

~E(ωP) = AP êP eikPz and ~E(ωS) = AS êS eikSz . (2.29)

By inserting Eqs. (2.28) and (2.29) into the general form of the nonlinear polarization
given by Eq. (2.5), we obtain the third-order nonlinear polarization at the Stokes
frequency

~PNL(ωS)~PNL(ωS) = 6 ǫ0

(
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

)
|AP|2AS eikSz , (2.30)

which is similar to the result of our classical model given by Eq. (2.18), except
that instead of the Raman susceptibility, there is now a complicated tensor product
including the third-order nonlinear susceptibility and the polarization vectors of the
incident waves. It should be noted that, in general, this tensor product contains
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contributions from all possible third-order nonlinear optical effects that are induced
by the pump wave on the Stokes wave. The stimulated Raman scattering, whose
particularity is that it shows a resonance for ωP − ωS = ΩR, is only one of these
effects. The nonlinear polarization in Eq. (2.30) can therefore be decomposed into

~PNL(ωS) = ~PNL
R (ωS) + ~PNL

NR(ωS) , (2.31)

where the index "R" denotes the Raman contribution and "NR" stands for the non-
Raman components. The latter are described in detail in section 2.3. Here, we are
only interested in the Raman component of the third-order nonlinear polarization

~PNL
R (ωS) ~PNL

R (ωS) = 6 ǫ0

[
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

R

|AP|2AS eikSz . (2.32)

We insert the above expression (2.32) into the nonlinear propagation equation for
the Stokes wave, which is given by Eq. (2.4) as

∂AS

∂z
=

iωS

2nScǫ0

~PNL
R (ωS) · êS e−ikSz , (2.33)

where nS = n(ωS) is the index of refraction of the material at the frequency of the
Stokes wave, and obtain

∂AS

∂z
=

iωS

2nScǫ0

(
6 ǫ0

[
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

R

|AP|2AS eikSz

)
· êS e−ikSz

=
3iωS

nSc

([
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

R

· êS

)

︸ ︷︷ ︸
χ

(3)
R (ωS)

|AP|2AS . (2.34)

Here we have introduced the Raman susceptibility as

χ
(3)
R (ωS)

�

�

�


χ

(3)
R (ωS) =

([
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

R

· êS

)
∈ C . (2.35)

This tensorial definition of the Raman susceptibility can be considered as the general
and physically correct form of the expression that was given in the context of the
classical model of stimulated Raman scattering by Eq. (2.19). As already stated
above, the Raman susceptibility is a complex number (i.e., a scalar) that depends
on the properties of the nonlinear material under study and on the frequencies
of the incident electromagnetic waves.

It is worth noting here that the two exponential functions in the first line of
Eq. (2.34) cancel each other for all possible choices of kP and kS, no matter what
material is considered. Therefore, the phase matching condition

∆k = (kS − kS) ≡ 0 =⇒ ei ∆k z ≡ 1 (2.36)

is automatically fulfilled in the case of stimulated Raman scattering.

While the classical model presented above describes a simple two-atom molecule,
the general definition given here applies to the oscillations in a three-dimensional
multibody system with many degrees of freedom (e.g., a crystal), which therefore
strongly depend on the crystallographic structure of the material (e.g., on the sym-
metry class). Consequently, as can be seen from Eq. (2.35), this general form of
the Raman susceptibility χ

(3)
R (ωS) also depends on the polarization states of
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the pump and the probe waves with respect to the crystallographic orientation of
the material. Because of the high complexity of these multiple dependencies, it is
often desirable to separate the polarization-state dependence from the influence of
the frequencies and the material properties. Depending on the symmetry class of the
solid under study (here the semiconductor material), this separation is often possible
and can be expressed in the form

�

�

�


χ

(3)
R (ωS) = Σ χR(ωS) . (2.37)

The resonance-like behavior of the Raman scattering is thus included in the Raman
susceptibility χR(ωS) as given by Eq. (2.19), whereas the dependence on the polar-
ization states of the two incident beams is expressed by the coefficient Σ. The latter
is proportional to the spontaneous Raman scattering efficiency, and in the case of Si
and GaAs, it can be calculated by [41]

ΣΣ =
3∑

l=1

[
êP Rl êS

]2
, (2.38)

where the êP and êS are the polarization vectors of pump and Stokes wave (in the
crystallographic coordinate system) and the Rl matrices are defined by

R1 =




0 1 0
1 0 0
0 0 0


 R2 =




0 0 1
0 0 0
1 0 0


 R3 =




0 0 0
0 0 1
0 1 0


 . (2.39)

For a given choice of pump and Stokes polarization, the maximum attainable value
of the scattering efficiency is Σ = 1. For the two semiconductor materials that are
studied in the present work, i.e., silicon (Si) and galium arsenide (GaAs), we can
comfortably describe the stimulated Raman scattering with the above equations, as
is demonstrated in detail in the following chapters.

2.2.3 Raman amplification

In the process of stimulated Raman scattering, the pump wave transfers part of its
energy to the Stokes wave through the interaction with the nonlinear medium. As
a result, it is possible to amplify a weak Stokes beam by the pump beam, which is
called Raman amplification. In the following we derive an equation that describes
the amplification of the Stokes wave intensity via stimulated Raman scattering.

Using the definition of χ
(3)
R (ωS) given by Eq. (2.35), we can write Eq. (2.34) in a

shorter form, yielding the nonlinear propagation equation for the Stokes wave
�

�

�


∂AS

∂z
=

3iωS

nSc
χ

(3)
R (ωS) |AP|2AS . (2.40)

We assume in the following that the polarization directions remain unchanged so
that the above equation is valid for all times.

Nonlinear propagation of the Stokes intensity

The intensity of an electromagnetic wave with the frequency ω can be expressed as
a function of the field amplitude

Iω = 2n(ω) c ǫ0 |Aω|2 = 2n(ω) c ǫ0 AωA∗
ω , (2.41)
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where n(ω) is the frequency-dependent refractive index and the asterisk * denotes the
complex conjugate. We differentiate the above equation (2.41) with respect to the
propagation in the z direction and insert the nonlinear propagation equation (2.40)
for the Stokes wave. As a result, we obtain the nonlinear propagation equation for
the Stokes intensity IS, given by

d
dz

IS = 2nScǫ0
d
dz

(
ASA∗

S

)
= 2nScǫ0

[
A∗

S

d
dz

AS + AS
d
dz

A∗
S

]

=
3 i ωS

nSc
2nScǫ0 |AS|2|AP|2

[
χ

(3)
R (ωS) −

(
χ

(3)
R (ωS)

)∗ ]

︸ ︷︷ ︸

=
3 i ωS

nSc
2nScǫ0 |AS|2|AP|2 ×

[
2 i Im

(
χ

(3)
R (ωS)

) ]
. (2.42)

By using again the relationship between intensity and amplitude of an electromag-
netic wave, I = 2ncǫ0|A|2, we can rewrite the propagation equation as a function of
the pump and Stokes intensities instead of the field strengths, yielding

d
dz

IS = −
(

3ωS

nSnPc2ǫ0

)
Im
(
χ

(3)
R (ωS)

)
IP IS ,

where nP = n(ωP) is the index of refraction at the pump frequency, and IP is the
intensity of the pump wave. By introducing the so-called Raman gain of the
Stokes wave as

γR

�

�

�


γR = − 3ωS

nSnPc2ǫ0
Im
(
χ

(3)
R (ωS)

)
, (2.43)

we obtain the propagation equation for the Stokes intensity in the compact
form

IS, IP

�

�

�


d
dz

IS = γR IP IS . (2.44)

Since the Raman gain is a function of the imaginary part of the Raman susceptibility
χ

(3)
R (ωS), it also inherits from the susceptibility all the dependencies mentioned on

page 16. For the sake of simplicity, we assume in the following that the pump
wave and the Stokes waves have polarizations such that the scattering efficiency is
maximal, Σ = 1, so that we can henceforth use the identity

χ
(3)
R (ωS) = χR(ωS)

This allows us to express the imaginary part of the Raman susceptibility according
to Eq. (2.22) as

Im (χR(ωS)) =
−Q0

2Ω Γ

1

1 + ∆2
.

For a zero detuning (i.e., for ∆ = 0), the imaginary part takes its maximum value,
which we define as the so-called Raman gain coefficient

γ̄R

�

�

�


γ̄R = − 3ωS

nSnPc2ǫ0
Im (χ̄R) =

3ωS

nSnPc2ǫ0

Q0

2ΩR Γ
. (2.45)

Thus, near the Raman resonance we can describe the frequency dependence of
the Raman gain as

�

�

�


γR ≈ γ̄R

1

1 + ∆2
with

�

�

�


∆ ≈ ΩR − Ω

Γ
=

ΩR − ωP + ωS

δΩR/2
. (2.46)
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The equations (2.44), (2.45), and (2.46) provide a very convenient way to describe
the effect of Raman amplification. The intensities of the pump and the Stokes
beam are simply related through the Raman gain γR, which is characterized by
three parameters: the Raman gain coefficient γ̄R, the Raman frequency ΩR, and the
linewidth of the Raman resonance δΩR.

Propagation equation for the pump intensity

In order to find the propagation equation for the intensity of the pump wave, we
consider the stimulated Raman scattering as a scattering process between a pump
photon, a Stokes photon, and a Raman phonon, satisfying

~ωP = ~ωS + ~ΩR and ~kP = ~kS + ~KR ,

where KR is the quasi-wave vector that can be attributed to the phonon. If Ñ
denotes the number of photons per unit area per time, we can express the intensites
of the two electromagnetic waves at each position z as

IP = ~ ωP ÑP and IS = ~ ωS ÑS ,

which yields the following equations for the photon numbers per unit area per time

ÑP =
IP

~ ωP
and ÑS =

IS

~ ωS
.

In the elementary scattering process, one pump photon "decays" into one Stokes
photon and one Raman phonon. Thus, the photon numbers satisfy the differential
equation

d
dz

ÑP = − d
dz

ÑS ,

which yields directly the propagation equation for the pump intensity

�

�

�


d
dz

IP = − ωP

ωS
γR IS IP = − λS

λP
γR IS IP . (2.47)

The above equation is essentially the same result as for the Stokes wave, given by
Eq. (2.44), except that the right-hand side is multiplied by the ratio of the wave-
lengths (or frequencies) of the two waves and that it has a negative sign. The latter
means that the pump intensity decreases during the propagation because it transfers
its energy to the Stokes wave, whose intensity increases.

Raman amplification of the Stokes wave

In summary, the intensities of the Stokes wave and the pump wave are described by
the following set of coupled differential equations:

d
dz

IS = γR IP IS and
d
dz

IP = − λS

λP
γR IS IP .

In what follows, we assume that the intensity of the pump wave does not change
substantially during its propagation in the medium (non-depleted pump approx-
imation),

IP(z) ≈ const .
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In this case, we can easily integrate the propagation equation of the Stokes intensity
(2.44), and we obtain an expression for the intensity of the Stokes beam as a
function of the distance z, given by

�

�

�


IS(z) = IS(0) exp

{
γR IP z

}
, (2.48)

where IS(0) is the incident signal intensity at z = 0. Thus, the Stokes intensity
experiences an exponential amplification that depends on the Raman gain, the
intensity of the pump wave, and the length of the medium.

Raman phase shift of the Stokes wave

As mentioned above, the Raman scattering affects not only the intensity but also
the phase of the Stokes wave. We can calculate the Raman-induced phase shift by
using the nonlinear propagation equation for the Stokes wave, given by Eq. (2.40) as

∂AS

∂z
=

3iωS

nSc
χ

(3)
R (ωS) |AP|2AS . (2.49)

In the non-depleted pump approximation (i.e., |AP|2 ≈ const.), this equation can be
easily integrated, resulting in

AS(z) = AS(0) exp

{
i

3ωS

2nSnPc2ǫ0
χ

(3)
R (ωS) IP z

}
. (2.50)

We can express the accumulated phase shift after the propagation of the distance z
as

∆ϕR(z) =
1

2

3ωS

nSnPc2ǫ0
Re
(
χ

(3)
R (ωS)

)
IP z . (2.51)

Assuming again an optimal choice of the polarization states of pump and Stokes wave
(i.e., Σ = 1), the real part of the Raman susceptibility can be expressed according
to Eq. (2.22) as

Re
(
χR(ωS)

)
=

Q0

2Ω Γ

∆

1 + ∆2
, (2.52)

so that the frequency-dependent Raman-induced phase shift near the Raman
resonance is given by

∆ϕR

�

�

�


∆ϕR(z) =

γ̄R

2

∆

1 + ∆2
IP z with

�

�

�


∆ ≈ ΩR − ωP + ωS

δΩR/2
. (2.53)

As in the case of the Raman gain, the phase shift for a given choice of the pump
and Stokes polarizations is described by the three central parameters γ̄R, ΩR, and
δΩR, as well as by the pump intensity IP. It is worth noting here that the Raman
gain, which was derived in the context of the description of the Stokes intensity, also
serves to quantify the Raman-induced phase shift.

2.3 Other nonlinear optical effects occurring in semicon-
ductors (Kerr, TPA, FCA, FCR)

Besides the stimulated Raman scattering (SRS), there are also several other nonlinear
optical effects that can occur in semiconductor materials (such as Si and GaAs). Of
particular interest for the present work are the Kerr effect, the two-photon absorption
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(TPA), the free-carrier absorption (FCA), and the free-carrier refraction (FCR). Like
the Raman scattering, all of these effects can be derived from the general form of the
third-order nonlinear polarization that has been introduced in section 2.1.3. As in
the case of the stimulated Raman scattering (SRS), they can modify the amplitude
(absorptive or amplifying effect) and/or the phase (dispersive effect) of the waves.
In this section, we properly derive these effects and describe their influence on the
propagation of the pump and the Stokes wave. However, since they are not of central
importance for the present work, the introductions to these effects are much shorter
than the description of the Raman scattering in section 2.2.

Although the term "Stokes wave" does not have a specific meaning in the context of
the other nonlinear effects (it is only related to SRS), we consider in the following the
same two waves that have been discussed above (i.e., the pump and the Stokes wave)
in order to develop a complete description of the nonlinear processes that occur in
the experiments. As before, we assume that the pump wave is much stronger than
the Stokes wave,

IP ≫ IS .

We therefore suppose that all nonlinear optical effects are caused by the pump
wave, whereas the Stokes wave only experiences the effects (i.e., is affected by them).
Moreover, we consider a semiconductor material that is transparent at the pump and
Stokes wavelengths so that both waves can propagate without linear absorption in
the nonlinear medium.

Non-Raman nonlinear polarization affecting the Stokes wave

As has been explained in section 2.2.2, the pump-induced third-order nonlinear polar-
ization at the Stokes frequency can be decomposed into its Raman and non-Raman
components, as given by Eq. (2.31). While the Raman contribution has been ex-
tensively discussed in the previous section, we consider here the non-Raman (i.e.,
non-resonant) part, which can be written as

~PNL
NR(ωS) = 6 ǫ0

[
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

NR

|AP|2AS eikSz . (2.54)

By inserting the above expression into the nonlinear propagation equation, we obtain

∂AS

∂z
= i

3ωS

nSc

([
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

NR

· êS

)

︸ ︷︷ ︸
χ

(3)
NR(ωS) ∈ C

|AP|2AS , (2.55)

and we define the complex non-Raman third-order susceptibility at the Stokes
frequency as

χ
(3)
NR(ωS)

�

�

�


χ

(3)
NR(ωS) =

([
χ(3)(ωS;ωP,−ωP, ωS)

...êPêPêS

]

NR

· êS

)
∈ C . (2.56)

In the following sections, we examine the influence of this susceptibility on the prop-
agation of the Stokes wave.

Pump-induced nonlinear polarization affecting the pump wave

In addition, we may be interested in the pump-induced third-order nonlinear polar-
ization at the pump frequency itself,

~PNL(ωP) = 3 ǫ0

[
χ(3)(ωP;ωP,−ωP, ωP)

...êPêPêP

]
|AP|2AP eikPz , (2.57)
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which is similar to the nonlinear Stokes polarization given by Eq. (2.54), except that
the Stokes frequency has been replaced by the pump frequency. Because there are
only two distinguishable waves (i.e., ωP and −ωP), the degeneracy factor is 3 in this
case. Insertion into the nonlinear propagation equation yields

∂AP

∂z
= i

3ωP

2nPc

([
χ(3)(ωP;ωP,−ωP, ωP)

...êPêPêP

]
· êP

)

︸ ︷︷ ︸
χ(3)(ωP) ∈ C

|AP|2AP , (2.58)

where χ(3)(ωP) is the complex third-order susceptibility at the pump fre-
quency

χ(3)(ωP)

�

�

�


χ(3)(ωP) =

([
χ(3)(ωP;ωP,−ωP, ωP)

...êPêPêP

]
· êP

)
∈ C . (2.59)

We discuss in the following sections the effects of this susceptibility on the propaga-
tion of the pump wave.

Stokes-induced nonlinear polarizations

It should be noted that, in principle, we could also consider the nonlinear polariza-
tions at the Stokes and pump frequency that are induced by the Stokes wave, given
by

~PNL(ωS) = 3 ǫ0

[
χ(3)(ωS;ωS,−ωS, ωS)

...êSêSêS

]
|AS|2AS eikSz ,

~PNL(ωP) = 6 ǫ0

[
χ(3)(ωP;ωS,−ωS, ωP)

...êSêSêP

]
|AS|2AP eikPz .

However, since we assume the Stokes wave to be much weaker than the pump wave,
we henceforth ignore these contributions. Therefore, all of the nonlinear effects
presented in the following sections are caused by the pump wave alone and can be
derived from Eqs. (2.55) and (2.58).

2.3.1 Kerr effect and cross-Kerr effect (Kerr, X-Kerr)

The strong pump beam can induce a modification of the refractive index of the
material, which is known as the optical Kerr effect. Due to the optical Kerr effect,
the refractive index of the material changes for both the pump and the Stokes wave.
Therefore, we distinguish between the so-called cross-Kerr effect, where the pump
beam induces a change of the refractive index for the Stokes wave, and the self-Kerr
effect, or simply Kerr effect, which is a self-induced index change of the pump
beam.

Kerr effect and nonlinear refractive index

The Kerr effect can be described by the real part of the third-order susceptibility at
the pump frequency given by Eq. (2.59). We introduce the Kerr susceptibility as

χ
(3)
K (ωP)

�

�

�


χ

(3)
K (ωP) = Re

(
χ(3)(ωP)

)
. (2.60)

so that the nonlinear propagation equation becomes

∂AP

∂z
= i

3ωP

2nPc
χ

(3)
K (ωP) |AP|2AP = i

ωP

c

3χ
(3)
K (ωP)

4n2
P c ǫ0

IPAP ,
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where we have, again, used the relationship I = 2ncǫ0 |A|2. For the sake of conve-
nience, we define the nonlinear refractive index as

n2

�

�

�


n2 =

3χ
(3)
K (ωP)

4n2
P c ǫ0

, (2.61)

so that the nonlinear propagation equation becomes

∂AP

∂z
= i

2π

λP
n2 IPAP .

Since the right-hand side of this equation is purely imaginary, it describes a phase
shift of the pump wave. Assuming a non-depleted propagation of the pump beam
(i.e., IP(z) ≈ const.), we can easily integrate the propagation equation and obtain

AP(z) = AP(0) exp
{

i
2π

λP
n2 IP z

}
.

This corresponds to a pump-induced phase shift at the pump wavelength
after the propagation of the distance z, given by

∆ϕK

�

�

�


∆ϕK(z) =

2π

λP
n2 IP z . (2.62)

We can describe the Kerr effect by a phase shift given by Eq. (2.62), which is char-
acterized by the nonlinear refractive index n2 expressed by Eq. (2.61).

Cross-Kerr effect (X-Kerr)

The cross-Kerr effect is described by the real part of the non-Raman third-order
susceptibility at the Stokes frequency given by Eq. (2.56), and we define the cross-
Kerr susceptibility as

χ
(3)
XK(ωS)

�

�

�


χ

(3)
XK(ωS) = Re

(
χ

(3)
NR(ωS)

)
. (2.63)

By following the same approach as in the case of the Kerr effect, we define the
nonlinear cross-Kerr index as

n2X

�

�

�


n2X =

3χ
(3)
XK(ωS)

4nP nS c ǫ0
, (2.64)

and we find the pump-induced phase shift at the Stokes wavelength to be

∆ϕXK

�

�

�


∆ϕXK(z) =

2π

λS
2n2X IP z . (2.65)

If we ignore dispersion, we can approximate nS ≈ nP and χ
(3)
XK(ωS) ≈ χ

(3)
K (ωP). In

this case, a comparison between Eq. (2.65) and Eq. (2.62) shows that the influence
of the pump wave is twice as strong on the Stokes wave (factor 2 in the cross-Kerr
phase shift) as on the pump wave itself. The reason for this difference is the fact
that the degeneracy factor is 6 for the cross-Kerr effect and only 3 in the case of the
self-induced Kerr effect.
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2.3.2 Two-photon absorption (TPA, XTPA)

As shown above, the real part of the third-order nonlinear polarization given by
Eqs. (2.54) and (2.57) causes the Kerr effect and the cross-Kerr effect, which affect the
phase of the two waves. The imaginary part of the nonlinear polarization, however,
describes another nonlinear effect, which modifies the intensity of the light waves
during their propagation. It is, for reasons that become clear below, called the
two-photon absorption.

Like the Kerr effect, the two photon absorption is induced by the pump wave, and it
affects the pump wave itself as well as the Stokes wave. In order to derive propagation
equations for the intensities, we follow the same approach as presented for the Raman
amplification in section 2.2.3. This leads to

d
dz

IP = − 3ωP

2n2
Pc2ǫ0

χ
(3)
TPA(ωP) IP IP ,

d
dz

IS = − 3ωS

nSnPc2ǫ0
χ

(3)
XTPA(ωS) IP IS ,

where we have introduced the two photon absorption susceptibility as

χ
(3)
TPA(ωP)

�

�

�


χ

(3)
TPA(ωP) = Im

(
χ(3)(ωP)

)
∈ R , (2.66)

and the so-called cross-two photon absorption susceptibility as

χ
(3)
XTPA(ωS)

�

�

�


χ

(3)
XTPA(ωS) = Im

(
χ

(3)
NR(ωS)

)
∈ R . (2.67)

These nonlinear susceptibilities can then be used to define coefficients that describe
the two photon absorption, leading to the so-called two-photon absorption coef-
ficient

βTPA

�

�

�


βTPA =

3ωP

2n2
Pc2ǫ0

χ
(3)
TPA(ωP) , (2.68)

and the cross-two photon absorption coefficient

βXTPA

�

�

�


βXTPA =

3ωS

2nSnPc2ǫ0
χ

(3)
XTPA(ωS) . (2.69)

Thus, we obtain two equations describing the effect of two-photon absorption on
the pump intensity �

�

�


d
dz

IP = −βTPA I2
P (2.70)

and the cross-two photon absorption3 on the Stokes intensity
�

�

�


d
dz

IS = − 2βXTPA IPIS . (2.71)

3In the literature, the cross-two photon absorption (XTPA) is also referred to as the "non-
degenerate two photon absorption", whereas the TPA, in contrast to this, is called the "degenerate
two photon absorption" because both involved photons have the same energy.
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Again, by neglecting dispersion, we see that the pump-induced absorption of the
Stokes wave is stronger by a factor 2 than the absorption of the pump wave. As
in the case of the Kerr effect and the cross-Kerr effect, this difference is due to the
different degeneracy factors.

In the process of the two photon absorption in a semiconductor (or cross-two photon
absorption, respectively), a pair of photons is absorbed by the nonlinear medium,

Fig. 2.4. Illustration of the two photon absorption
(TPA) and the cross-two photon absorption (XTPA).
Electrons in the valence band (VB) of semiconductors
(here a direct band-gap semiconductor, e.g., GaAs) are
excited into the conduction band (CB).

which means that an electron is excited from the
valence band (VB) into the conduction band (CB).
In order for this process to happen, the sum of the
two photon energies has to be greater than the band
gap energy, while the energy of the photons individ-
ually is below the gap energy. This condition can be
expressed as

~ω1, ~ω2 < Eg < ~ω1 + ~ω2 ,

where the angular frequencies ω1 and ω2 can be ei-
ther one of the two involved frequencies (i.e., ωP or
ωS). When considering for example GaAs, which
is a direct band-gap semiconductor, and a pump
and a probe beam whose wavelengths are 920 nm
and 950 nm, respectively, we calculate the pump en-
ergy to be EP = 1.348 eV and a probe energy of
ES = 1.305 eV. Obviously, both of these energies
are smaller than the gap energy of Eg = 1.424 eV,
while 2EP as well as EP + ES are greater than Eg. Thus, the above-stated condi-
tion is fulfilled. The TPA and XTPA processes in such a situation are schematically
illustrated in Fig. 2.4.

It should be noted that the right hand side of Eq. (2.71), which describes the influence
of XTPA on the evolution of the Stokes intensity, is proportional to the product of
the pump intensity and the Stokes intensity. By comparison with Eq. (2.44), we
see that it has, therefore, to be taken into account in the same situations as the
stimulated Raman scattering. Because of the negative sign in Eq. (2.71), cross-two
photon absorption and Raman amplification are in this sense competing processes.

2.3.3 Free carrier effects (FCA, FCR)

As stated above, the two-photon absorption excites one electron from the valence
band to the conduction band, and it thus leads to the creation of an electron-hole
pair in the semiconductor material. Therefore, the two-photon absorption creates
free charge carriers, which also affect the propagation of the pump and the Stokes
wave, as is demonstrated in the following.

The evolution of the free carrier densitiy (i.e., the number of electrons and holes
per unit volume) NFC is described by the differential equation [42]

NFC

�

�

�


d
dt

NFC = − 1

τe
NFC + βTPA

I2
P

2~ωP
(2.72)

where τe is the lifetime of the free carriers (i.e., the recombination time of the electrons
in the conduction band and the holes in the valence band). The first term in the
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above equation describes the decay of the free carrier density due to recombination
processes, whereas the second term corresponds to the creation of an electron-hole
pair by the absorption of two photons of the energy ~ωP. In principle, we could
also consider the free carriers created by the cross-two photon absorption (XTPA),
described by βXTPAIPIS/~(ωS + ωP). However, since we assume that the pump
intensity is much higher than the Stokes intensity, we can reasonably ignore the
XTPA-generated free carriers compared to the TPA contribution.

The free carriers induce a modification of the linear susceptibility of the material [43].
This modification can be expressed as

χFC = 2n0

(
σn(ω)NFC + i

c

2ω
σa(ω)NFC

)
, (2.73)

where n0 represents the linear refractive index. The first term in the parentheses
represents a modification of the refractive index of the material, while the second
term describes a free-carrier induced absorption. The quantities σn and σa can be
expressed in terms of the effective masses and the mobilities of the electrons and the
holes as [44, 45]

σn = − q2

2ǫ0n0ω2

(
1

me
+

1

mh

)
E2

g

E2
g − (~ω)2

, (2.74)

σa =
q3

ǫ0cn0ω2

(
1

µem2
e

+
1

µhm2
h

)
E2

g

E2
g − (~ω)2

. (2.75)

Here Eg is the band gap energy of the semiconductor, q = 1.602 × 10−19 C is
the elementary charge, me and mh are the effective masses, and µe and µh the
mobilities of electrons and holes, respectively. Moreover, the assumption has been
made that the number of electrons is equal to the number of holes. Although the free
carriers modify the linear susceptibility (effect), they are created by a the two photon
absorption, which is a nonlinear process (cause). Therefore, we define a free-carrier
induced (nonlinear) polarization at the Stokes frequency ωS as

PNL
FC (ωS) = ǫ0 χFC AS eikSz . (2.76)

We insert the free-carrier susceptibility χFC given by Eq. (2.73) and obtain

PNL
FC (ωS) = 2n0ǫ0 σn NFC AS eikSz + 2n0ǫ0 i

c

2ω
σa NFC AS eikSz . (2.77)

The first term in the above equation represents the modification of the refractive
index of the material, or free carrier refraction (FCR), and the second term describes
the absorption by the free carriers, or free carrier absorption (FCA).

Free carrier refraction (FCR)

According to the previous equation (2.77), the nonlinear polarization of the free
carrier refraction is given by

PNL
FCR(ωS) = 2n0ǫ0 σn NFC AS eikSz . (2.78)

We insert this nonlinear polarization into the nonlinear propagation equation of the
Stokes wave, yielding

∂

∂z
AS = i

ωS

c
σn NFC AS .
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We can easily integrate this differential equation and obtain

AS(z) = AS(0) exp
{
i
ωS

c
σn NFC z

}
.

Using the relationship ω = 2πc/λ, the free carrier induced phase shift at the
Stokes wavelength after the propagation of the distance z is given by

∆ϕFC

�

�

�


∆ϕFC(z) =

2π

λS
σn NFC z . (2.79)

As can be seen from the above equation, the product of σn and the carrier density
NFC has the physical meaning of a refractive index. We can therefore define the free
carrier refractive index

nFC

�

�

�


nFC = σn NFC , (2.80)

which describes the modification of the index of refraction that is caused by the
presence of free charge carriers in the semiconductor material.

Free carrier absorption (FCA)

As can be seen from Eq. (2.77), the nonlinear polarization of the free carrier absoption
is given by

PNL
FCA(ωS) = 2n0ǫ0 i

c

2ω
σa NFC AS eikSz . (2.81)

We insert this expression into the nonlinear propagation equation of the Stokes wave
and obtain

∂

∂z
AS = − σa

2
NFC AS ,

which can be integrated and yields an equation describing the evolution of the am-
plitude of the Stokes wave as a function of the propagation along the z direction

AS(z) = AS(0) exp
{
−σa

2
NFC z

}
.

Using the relationship between the amplitude and the intensity of an electromagnetic
wave, I = 2ncǫ0|A|2, we obtain an equation describing the influence of the TPA-
induced free-carrier absorption on the Stokes intensity,

IS(z) = IS(0) exp
{
− σaNFC z

}
,

where the factor σaNFC in the exponent indicates how efficient the Stokes wave is
absorbed in the material. We can, therefore, define a free carrier absorption
coefficient

αFC

�

�

�


αFC = σa NFC (2.82)

for the intensity of an electromagnetic wave. The inverse of σaNFC thus represents a
characteristic length after which the incident intensity IS(0) decreases to 1/e ≈ 37 %
of its initial value. This characteristic length may serve as an indicator to see whether
the FCA has to be included in a mathematical model of the nonlinear effects or not
(see also chapter 4).

Time dependence of free carrier effects

An important particularity of the free carrier effects (i.e., FCR and FCA) compared
to the other nonlinear optical effects presented in this chapter is their time depen-
dence. For pulses with a duration of about 10 ps or more, the Kerr (and cross-Kerr)
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Fig. 2.5. Illustration of the time dependence (with the carrier life time τe) of free
carriers that are generated by a pulsed laser beam. The dotted line represents a
regular pulse train with a pulse duration τ and a repetition rate F = 1/T , where T
is the time between two consecutive pulses.

effect and the two photon
absorption (and cross-two
photon absorption) process
can be considered as instan-
taneous effects. This means
that they occur only as long
as the pump wave is present
in the nonlinear medium.
The free carrier effects, how-
ever, depend on the free car-
rier density in the semicon-
ductor, which is only in-
directly, through the two
photon absorption (TPA),
a function of the pump in-
tensity. Once the free car-
riers are created by TPA,
their evolution in time is de-

scribed by Eq. (2.72). The relaxation of the electrons, i.e., their recombination with
the holes in the valence band, is governed by the carrier lifetime τe.

It is therefore interesting to examine the influence of the free carrier effects in the
case of a pulsed pump beam. For this purpose, we consider Gaussian pump pulses
with a maximum transmission IP,0 and a duration τ̃P (full width at 1/e) of the form

IP(t) = IP,0 exp

{
− t2

(τ̃P/2)2

}
.

We then find the solution to the differential equation (2.72) to be4

NFC(t) = e−t/τe e(eτP/
√

8 τe)2
[
τ̃P

√
π

8

βTPA

2~ωP
I2
P,0

(
1 + erf

(√
2

t

τ̃P

− 1√
8

τ̃P

τe

))]
,

where erf() is the error function (i.e., the integral over the Gauss function). If the
pulse duration is much shorter than the free carrier lifetime (i.e., for τ̃P ≪ τe), the
time dependence of the free carrier density is essentially proportional to

NFC(t) ∝ e−t/τe
(
1 + erf

(√
2

t

τ̃P

))
, (2.83)

which describes the creation of the free carriers through the erf() function with a
simple exponential damping. We further assume that the pump pulses represent a
regular pulse train with the repetition rate F , which corresponds to a time T = 1/F
between two consecutive pulses. Figure 2.5 illustrates the typical time dependence
of the TPA-induced free carrier density NFC, where the dotted lines indicate time
dependence of the pump intensity (i.e., the pulse train).

It is common to characterize such a pulse train by the so-called duty cycle DC,
which is simply the ratioDC �

�

�


DC =

τ

T
= τ F . (2.84)

For experimental studies of nonlinear optical effects, it is often desirable to work
with short pulses whose duration is much shorter than the free carrier life time,

4determined by using the symbolic differential equation solver of the software Mathematica
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τ ≪ τe, because this provides the necessary high pump intensities without requiring
a transient description and modeling of the observed phenomena. However, in order
to avoid any cumulative free carrier effects from one pulse to the next, which would
bias the measurements, we require that the time between two consecutive pulses be
long compared to the free carrier life time, τe ≪ T = τ/DC. By combining these two
conditions, we find

τ ≪ τe ≪ T =
τ

DC =⇒ DC ≪ 1 ,

which means that the duty cycle of an appropriately configured pulsed pump laser
should be small. However, as the following considerations show, it should not be too
small either.

Besides the pulse duration and repetition rate, the duty cycle also relates the av-
erage power Pavg of a pulse train to the peak power Pmax of the individual pulses.
Supposing that the pulses have a Gaussian time dependence, we can calculate the
total optical energy of one pulse approximately by Epulse = Pmax τ , with the peak
power Pmax and the duration τ (full width at half maximum). Since the average
power Pavg corresponds to the pulse energy divided by the time between two pulses,
Pavg = Epulse/T , we find the relationship between peak power and the average power

Pavg =
τ

T
Pmax = τ F Pmax = DC Pmax . (2.85)

From an experimental point of view, this relationship can be very useful because it
indicates whether the experiment can work with average powers (which are relatively
easy to detect) or whether it is necessary to treat each pulse individually (which
makes the data acquisition and processing rather complex). As is explained in the
following chapters, both approaches are used for the experiments presented in this
work.

2.4 Enhancement of nonlinear effects through light local-
ization in semiconductor nanostructures

In the previous sections 2.1, 2.2, and 2.3, we have introduced and used the basic
equations of nonlinear optics, notably the nonlinear propagation equation (2.4) and
the nonlinear polarization given by Eq. (2.5). These equations describe the nonlinear
response of a material to strong incident light fields. We will see in the following
what we have to take into account if we want to use these equations to describe the
nonlinear optical effects in the case of highly localized light. This leads to the notion
of the local field factor, which is useful for the description of light localization in
waveguides, as well as to the so-called intensity magnification factor, which we will
use when describing the nonlinear effects in a microcavity.

2.4.1 Local field factor and group refractive index

On a microscopic level, the nonlinear optical effects are caused by the local (i.e.,
microscopic) nonlinear response of the elementary dipoles, atoms, moelcules etc. So
far, however, we have used the macroscopic electric fields ~E and the macroscopic
nonlinear polarization ~PNL to describe these phenomena. This approximation works
well in diluted media, where a single microscopic dipole experiences essentially the
macroscopic fields. In the case of dense media or highly localized light, however,
we have to distinguish between the external, macroscopic fields ~E and ~PNL and the
local, microscopic fields ~Eloc and ~PNL

loc [46].
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Enhancement of nonlinear effects due to light localization

We have demonstrated in section 2.1 that we can express the polarization ~P of a
medium (i.e., the dipole moment per unit volume) as a power series in the incident
electric field strengths, which can be written in the simple form

~P = ~PL + ~PNL where ~PNL = ~P (2) + ~P (3) + ... ,

as shown by Eq. (2.1). The nonlinear contributions are given by

~P (2) = ǫ0 D(2) χ(2)(ω;ω1, ω2) : ~E(ω1) ~E(ω2)

~P (3) = ǫ0 D(3) χ(3)(ω;ω1, ω2, ω3)
... ~E(ω1)~E(ω2) ~E(ω3) ,

so that the nonlinear polarization can be written in the simplified form

~PNL =

∞∑

n=2

~P (n) =

∞∑

n=2

ǫ0 D(n) χ(n) ~En . (2.86)

In the case of dense media or strong light localization, the local electric field is not
equal to the external electric field. We can, however, assume a linear relationship of
the form [47]

f ~Eloc(ω) = f(ω) ~E(ω) , (2.87)

where we have introduced the so-called local field factor f(ω), which relates the
microscopic to the macroscopic electric field.

It is important to note that the source term of the nonlinear propagation equa-
tion (2.2) (which describes the propagation of the electromagnetic wave that is gen-
erated through the nonlinear interaction in the medium) is given by the microscopic
(i.e., local) nonlinear polarization ~PNL

loc . It can be shown that the latter is related to
the macroscopic nonlinear polarization ~PNL through [36]

~PNL
loc (ω) = f(ω) ~PNL(ω) , (2.88)

where the local field factor f corresponds to the generated electromagnetic wave.
Based on the above equations, it can further be shown that the nonlinear suscepti-
bility has to be modified in order to fulfill the nonlinear propagation equation [36]. In
the present work, we are mainly interested in the third-order nonlinear susceptibility,
which becomes, thus, in the case of light localization [48]

�

�

�


χ(3)(ω;ω1, ω2, ω3) −→ f(ω)f(ω1)f(ω2)f(ω3)χ(3)(ω;ω1, ω2, ω3)

with the local field factors f(ωi) for the corresponding frequencies ωi. Thus, we
find that the n-th order contribution to the local nonlinear polarization contains a
product of n + 1 local field factors. If we insert the above expression in the case of
stimulated Raman scattering into the nonlinear propagation equation of the Stokes
wave, we obtain

∂AS

∂z
=

3iωS

nSc
f2
Pf2

S χ
(3)
R (ωS) |AP|2AS (2.89)

where fP and fS are the local field factors for the pump wave and for the Stokes
wave, respectively. By following the same steps as presented in the derivation of
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Effect Factor Order

SRS f2
Pf2

S 3
TPA f4

P 3
XTPA f2

Pf2
S 3

Kerr f4
P 3

Cross-Kerr f2
Pf2

S 3
FCR on pump f6

P 5
FCR on Stokes f4

Pf2
S 5

FCA on pump f6
P 5

FCA on Stokes f4
Pf2

S 5
Tab. 2.1. Enhancement factors and effec-
tive order of the nonlinear optical effects.

the Raman amplification and the Raman gain (see section 2.2.3),
this leads to an equation describing the Stokes amplification
in the case of light localization, given by

�

�

�


IS(L) = IS(0) exp

(
f2
Pf2

S γR IP l)
)

. (2.90)

Thus, depending on the values of the local field factors for
the pump and the Stokes wave, we can obtain a significantly
higher amplification of the Stokes wave during its propaga-
tion in the nonlinear medium because of the localization of
the light. By comparing the propagation equation without light
localization, given by Eq. (2.40), to Eq. (2.89), one can clearly
see that the two equations are identical except for the four f factors on the right
hand side of Eq. (2.89). Thus, the influence of the light localization is an enhance-
ment of the nonlinear effects that is completely described by the product of the
local field factors, which we call the enhancement factor. Tab. 2.1 summarizes the
enhancement factors of the nonlinear effects considered in the present work, as well
as their effective order. As the table shows, the enhancement factors of the free car-
rier effects (FCA, FCR) contain products of six local field factors (f factors). They
are, therefore, effectively fifth-order nonlinear effects.

Obviously, the description of the nonlinear optical effects without light localiza-
tion, as presented in section 2.2 and 2.3, can be obtained from the description with
light localization by setting all the local field factors to f = 1, as can be seen by
comparing Eq. (2.48) and (2.90).

Light localization due to reduced group velocity

After having seen what consequences the localization of light can have, we are inter-
ested in the relationship between the local field factor and the propagation of light
in a slow-mode waveguide. Experimentally, the intensities of the pump and Stokes
waves are only accessible outside the waveguide, while the nonlinear optical interac-
tion is governed by the internal intensities. Therefore, we need to relate the intensity
of an electromagnetic wave inside a slow mode waveguide to its intensity measured
outside the waveguide, as illustrated in Fig. 2.6. We consider a waveguide with an
effective mode area Aeff in which a light pulse with a pulse duration τ (FWHM) is
propagating along the z direction. The waveguide consists of two parts which are
characterized by different group velocities vgr,1 and vgr,2 of the pulse. The group
velocities are determined by the group refractive indices ngr,1 and ngr,2 through

vgr,1 =
c

ngr,1
and vgr,2 =

c

ngr,2
. (2.91)

In both parts, we consider a volume that corresponds to the effective mode area of
the waveguide multiplied by the length (∆z1 and ∆z2, respectively) of the pulse in
the respective part (FWHM). We can then easily express the energy density U in
each part as

U1 =
~ω N1

Aeff ∆z1
and U2 =

~ω N2

Aeff ∆z2
, (2.92)

where N1 and N2 is the number of photons in the respective part. For simplicity,
all photons are assumed to have the same energy ~ω. Within the pulse duration τ ,
all the photons in the above-described volumes move exactly the distances ∆z1 and
∆z2, which are given by

∆z1 = vgr,1 τ and ∆z2 = vgr,2 τ . (2.93)



32 2 NONLINEAR OPTICS IN SEMICONDUCTORS

Fig. 2.6. Illustration
of the intensity en-
hancement due to light
localization in a slow
mode waveguide. Source:
C. Monat [30].

With Eqs. (2.91), (2.92), and (2.93), we then find that the ratio of the maximum
intensities (which are proportional to the energy densities) in the two parts is given
by

I2

I1
=

U2

U1
=

N2/∆z2

N1/∆z1
=

N2

N1

vgr,1

vgr,2
=

N2

N1

ngr,2

ngr,1
.

We consider one single pulse that propagates through the first part and then enters
the second part, where we assume that there are no losses at the interface between
the two parts. This means that we require the total number of photons in the pulse
to be conserved, i.e., N1 = N2. Thus, the intensity ratio is simply

I2

I1
=

ngr,2

ngr,1
= S , (2.94)

where S is called the slow down factor [30], since it indicates by how much the pulse
propagation has been slowed down (in the case that ngr,2 > ngr,1). In other words,
the pulse is effectively compressed (or expanded) along its propagation direction,
and therefore its peak intensity increases (or decreases, respectively). Figure 2.6
illustrates this increase of the intensity in a photonic crystal waveguide [30].

We now compare the situation where the first part corresponds to a bulk medium
(e.g., a semiconductor) and the second part represents a waveguide that provides a
certain amount of light localization. According to Eq. (2.94), we obtain the intensity
ratio

Iguide

Ibulk
=

ngr

nbulk
,

where nbulk is the (normal) refractive index of the bulk material5. However, we can
also express the intensities as a function of the electric field strengths, including the
local field factor according to Eq. (2.87), yielding

Iguide

Ibulk
=

(f | ~E|)2

| ~E|2
= f2 | ~E|2

| ~E|2
= f2 ,

so that we find the relationship between the local field factor and the group refractive
index in semiconductor nanostructures (e.g., slow-mode waveguides)

�

�

�


f =

√
ngr

nbulk
. (2.95)

With this expression, we can experimentally determine the local field factor f of a
silicon waveguide (see chapter 3) by measuring its group refractive index ngr.

5In the case of a low-dispersion material, which we assume here, we can approximately identify
the bulk refractive index with the group refractive index, nbulk ≈ ngr.
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2.4.2 Simple model of SRS in a semiconductor microcavity

In this section we develop a simple analytical model that describes the effect of stim-
ulated Raman scattering in a semiconductor microcavity. Using this model, we then
present a comparison between different resonance configurations and demonstrate
that the Raman amplification of the Stokes wave can be significantly enhanced in a
doubly resonant microcavity.

Starting point of our considerations is a simple Fabry-Perot resonator consisting of
two mirrors M1 and M2 with an optical gain medium in between. We are interested
in an expression for the (intensity) transmission coefficient T of the resonator as a
function of the (intensity) gain coefficient G of the medium. The full derivation of
this expression is presented in appendix B, including several graphical illustrations
of the geometry, the involved electrical fields, and the resonance behavior of such a
Fabry-Perot resonator. Here, we only summarize the key results of this derivation.

The transmission and reflectivity coefficients (for the intensities of the electro-
magnetic waves) are denoted by T1, R1 (first mirror) and T2, R2 (second mirror).
Furthermore, we assume the mirrors to be loss-free, which means that T1 + R1 = 1
and T2 + R2 = 1. We can then express the transmission of a resonator contain-
ing a gain medium as a function of the intensity reflectivities as

�

�

�


T =

(1 − R1)(1 − R2) eGl

∣∣1 −
√

R1R2 eGl e2iϕFP
∣∣2 , (2.96)

where the propagation distance l is given by

l = L/ cos ϑ (2.97)

with L the distance between the two mirrors (i.e. the resonator length) and ϑ as the
angle of incidence of the light. As is demonstrated in appendix B, the Fabry-Perot
phase, which describes the resonance behavior of the transmission coefficient T , can
be expressed as �

�

�


ϕFP = n Lk cos ϑ =

2π n L cos ϑ

λ
, (2.98)

Raman amplification in a Fabry-Perot resonator

We now specify that the optical gain G is provided by stimulated Raman scattering.
In other words, we consider a resonator that contains a Raman-active medium, which
is in the present case a semiconductor material (e.g., Si or GaAs). Pump and Stokes
wave are assumed to be monochromatic CW laser beams injected in the cavity, and
we consider them as plane waves with a constant beam diameter. As shown in
section 2.2.3, the Stokes wave experiences an exponential Raman amplification so
that we can express the gain coefficient G according to Eq. (2.48) as

�

�

�


G = γR IP,c , (2.99)

where γR is the Raman gain and IP,c the intensity of the pump wave inside the
cavity (intracavity intensity). The pump beam itself, as it is the origin of the optical
gain, is not amplified. It can, however, be resonant in the cavity. In that case, the
intra-cavity pump intensity is higher than the intensity outside of the cavity. We
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Fig. 2.7. Intensity of an electromag-
netic wave in a Fabry-Perot resonator
(with gain). The graph illustrates the
relationship between the incident in-
tensity Ii, the reflected intensity Ir,
the forward and backward propagating
intra-cavity intensity If and Ib, and the
transmitted intensity It as a function of
the position z. The total intensity in-
side the cavity Ic is composed of the
forward and the backward propagating
parts.

consider the intra-cavity pump intensity IP,c as the sum of intensities of the forward
propagating and the backward propagating pump wave

IP,c = IP,f + IP,b , (2.100)

as illustrated in Fig. 2.7. Both the forward and the backward propagating contribu-
tion can be expressed in terms of the transmitted pump intensity IP,t in the form

IP,t = T2,P IP,f = (1 − R2,P) IP,f =⇒ IP,f =
1

1 − R2,P
IP,t

IP,b = R2,P IP,f = R2,P
1

1 − R2,P
IP,t =

R2,P

1 − R2,P
IP,t ,

where R1,P and R2,P are the reflectivities of the two mirrors for the pump wave,
i.e., at the pump wavelength. Using the above expressions, the intra-cavity pump
intensity is given by

IP,c =
1

1 − R2,P
IP,t +

R2,P

1 − R2,P
IP,t =

1 + R2,P

1 − R2,P
IP,t =

1 + R2,P

1 − R2,P
TP IP,i , (2.101)

where we have also introduced the overall transmission coefficient of the resonator
for the pump wave,

TP =
IP,t

IP,i
, (2.102)

with the incident pump intensity IP,i. For the transmission coefficient, we now use
Eq. (2.96), where we assume that the pump beam is at resonance, ϕFP = 0, and that
it experiences no gain, G ≡ 0 (the gain is experienced by the Stokes wave, not by
the pump wave), so that we obtain the pump transmission

TP =
IP,t

IP,i
=

(1 − R1,P)(1 − R2,P)
(
1 −

√
R1,PR2,P

)2 .

By inserting the above expression into Eq. (2.101), we find

IP,c =
(1 + R2,P)

(1 − R2,P)

(1 − R1,P)(1 − R2,P)

(1 −
√

R1,PR2,P)2
IP,i =

(1 − R1,P)(1 + R2,P)
(
1 −

√
R1,PR2,P

)2 IP,i

so that we can express the intra-cavity intensity of the pump wave by

�

�

�


IP,c = MP IP,i (2.103)
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with the so-called intensity magnification factor [49] for the pump wave

MP

�

�

�

�
MP =

(1 − R1,P)(1 + R2,P)
(
1 −

√
R1,PR2,P

)2 . (2.104)

This means that, although the pump beam itself does not experience any gain,
its intensity inside the cavity is increased by a factor MP if the pump wave is at
resonance. As an example, we obtain an almost 200-fold higher intra-cavity intensity,
compared to the incident intensity, for the reflectivity values R1,P = 0.99 and R2,P =
0.99. By inserting Eqs. (2.103) and (2.104) into Eq. (2.99) and by using the expression
(2.97) for the effective propagation distance, l = L/ cos ϑ, we obtain an expression
for the transmission of the Stokes wave at resonance, given by

�

�

�

�
TS =

(1 − R1,S)(1 − R2,S) eγRMPIP,iL/ cos ϑS

(
1 −

√
R1,SR2,S eγRMPIP,iL/ cos ϑS

)2 , (2.105)

where R1,S and R2,S are the reflectivities of the two mirrors for the Stokes wave, i.e.,
at the Stokes wavelength.

The above equation is the ratio of the output intensity IS,t to the input intensity IS,i

of a Fabry-Perot resonator containing a medium that provides Raman gain (IS,t =
TS IS,i). Therefore, it is actually not quite correct to refer to it as a transmission
coefficient. If greater than unity, it is actually rather an amplification coefficient that
describes by how much the Stokes wave is amplified during its propagation in the
gain medium, and we will in such cases refer to it as the "transmission enhancement
factor".

Comparison of singly and doubly resonant microcavities

The reflectivities of the two mirrors for the pump and the Stokes beam have a
strong influence on the Stokes "transmission" defined by Eq. (2.105). The Stokes
reflectivities can be found directly in the Airy-type transmission function, while the
pump reflectivities go into the intensity magnification factor. In the following, we
study several cases of different resonance situations (i.e., different choices of the
reflectivities for pump and Stokes wave) to see how efficient the Stokes beam can be
amplified in a Raman-active semiconductor microcavity.

For this purpose, we determine the so-called on-off gain Gon-off, which charac-
terizes the influence of the pump intensity on the achievable amplification. In the
context of this simple model, the on-off gain is defined as the ratio of the transmit-
ted Stokes intensity with an incident pump intensity IP,i ("on") to the transmitted
Stokes intensity without the pump beam ("off"),

Gon-offGon-off =
IS,t(IP,i)

IS,t(IP,i = 0)
=

TS(IP,i)

TS(IP,i = 0)
, (2.106)

where we have assumed that the incident Stokes intensity is constant. Further-
more, we assume that the Stokes wavelength is λS = 950 nm and that we are at

λS = 950 nm
ϑS = 0
n ≈ 3.5 (Si, GaAs)
L = 5λS/n (m = 10)
γR = 27 cm/GW

normal incidence, ϑS = 0. Since the two semiconductor materials studies
in the present work are Si and GaAs, we use a refractive index of n ≈ 3.5
(which is valid for both). The thickness is supposed to be L = 5λS/n. For
the Raman gain γR, we assume that the polarizations of pump and Stokes
wave are optimally chosen (i.e., Σ = 1) and use a numerical value of the
Raman gain of 27 cm/GW, which is a value arbitrarily chosen in the middle
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between the Raman gain coefficient of GaAs (50 cm/GW, see chapter 4 for details)
and Si (approximately 9 cm/GW, as we show in chapter 3).

Case 1: Not resonant at all. In this situation, we consider simply a semiconductor
slab that has a natural Fresnel reflectivity at the front side and that is anti-reflection
coated on the back side. Therefore, the reflectivities are given by

R1,S ≈ R1,P ≈ (n − 1)2

(n + 1)3
≈ 0.31 and R2,S = R2,P = 0 ,

yielding a pump intensity magnification factor of

MP =
(1 − 0.31)(1 + 0)
(
1 −

√
0.31 × 0

)2 = 0.69 ,

which is actually rather a reduction factor than a magnification factor because it is
smaller than unity. The Stokes transmission can then be expressed as a function of
the incident pump intensity as

TS(IP,i) =
(1 − 0.31)(1 − 0) e0.69 γRIP,iL/ cos 0

(
1 −

√
0.31 × 0 e0.69 γRIP,iL/ cos 0

)2 = 0.69 exp
{
0.69 γR IP,i L

}
,

which is a simple exponential amplification. Since we are interested in the influence
of the pump intensity, we compare the above expression to the Stokes transmission
without pump wave by calculating the on-off gain in the non-resonant case

�

�

�


Gon-off, NR = exp

{
0.69 γR IP,i L

}
.

Case 2: Pump resonant. In this situation, we assume for the Stokes wave a Fresnel
reflectivity at the front side and the anti-reflection coating on the back side. The
pump beam, however, is assumed to be resonant in the cavity so that the reflectivities
are

R1,S ≈ 0.31, R1,P = 0.99 and R2,S = 0, R2,P = 0.99 ,

which yields a pump intensity magnification factor of MP = 199, meaning an almost
two-hundred-fold increase of the pump intensity inside the cavity. According to
Eq. (2.106), this yields an on-off gain of

�

�

�


Gon-off, PR = exp

{
199 γR IP,i L

}
.

Case 3: Stokes resonant. This is the inverse situation of the previous case, i.e.,
the Stokes wave alone is resonant. Hence, the reflectivities are given by

R1,S = 0.99, R1,P ≈ 0.31 and R2,S = 0.99, R2,P = 0 ,

which yields again a pump intensity magnification factor of MP = 0.69, as in the
first case, and we obtain an on-off gain of

�

�

�


Gon-off, SR =

0.012 e0.69 γRIP,iL

(
1 − 0.99 e0.69 γRIP,iL

)2 .
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Fig. 2.8. On-off gain
Gon-off as a function of
the incident pump inten-
sity IP,i for four different
resonance situations.

(a) The three curves
correspond to the cases
of a bulk semiconductor
(no beam resonant),
the pump beam alone
resonant, and the Stokes
beam alone at resonance.

(b) The graph shows the
on-off gain Gon-off, DR
in the case of a doubly
resonant microcavity
(i.e., pump and Stokes
beam resonant at the
same time) compared to
the three other cases,
which are so close to each
other that they cannot
be separated from one
another.

Case 4: Double resonance. Both beams are resonant in the cavity with the
reflectivities

R1,S = 0.99, R1,P = 0.99 and R2,S = 0.99, R2,P = 0.99

so that the pump intensity magnification factor is again MP = 199, as in the second
case, resulting in an on-off gain of

�

�

�


Gon-off, DR =

0.012 e199 γRIP,iL

(
1 − 0.99 e199 γRIP,iL

)2 .

Figure 2.8 illustrates the dependence of the on-off gain Gon-off on the incident pump
intensity IP,i for all four cases. Compared to the last case (doubly resonant), the
three other curves are so close together that they cannot be distinguished from one
another. As can be seen from the graph, in a doubly resonant microcavity containing
a Raman gain medium, we can achieve a significant amplification of the Stokes
beam for pump intensities in the MW/cm2 range, which are easily attainable in ex-
periments. To our knowledge, this particular situation (i.e., Raman amplification in
a doubly resonant semiconductor microcavity) has never been experimentally studied
before. In chapter 4, we present an experimental study of such a situation in a GaAs
microcavity as well as some totally unexpected results.

In the simple model presented in this section, the amplification of the Stokes wave
increases with IP,i without any limit because we have made the approximation of
a non-depleted pump beam, which means effectively an infinite source of energy.
Moreover, no other nonlinear effects have been taken into account, especially not
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those that affect the phase of the waves (such as the Kerr effect and the free carrier
refraction). Therefore, although this simple model motivates very well the interest
in a study of Raman amplification in a doubly resonant semiconductor microcavity,
we need a better model in order to describe the physical processes occurring during
the propagation of the pump and the Stokes waves. In chapter 4, we present such
an improved model that is partially based on the above findings.

* * *



Chapter 3
Saturated Raman amplification in

a silicon-on-insulator nanowire

This chapter presents an experimental study of stimulated Raman scattering in a
silicon-on-insulator (SOI) nanowire. We demonstrate that the Raman amplification
of a narrow-band Stokes wave experiences a saturation effect for high pump intensities
because of self phase modulation of the pump beam. Moreover, an analytical model
is presented that describes the experimental results remarkably well. The model
furthermore provides an estimation of the Raman gain coefficient γ̄R of silicon.
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Silicon-on-insulator (SOI) is widely regarded as one of the most promising technolo-
gies for the realization of key functions for the optical processing of information [39].
What makes this technology platform particularly attractive is its compatibility with
existing CMOS fabrication technology in combination with the possibility to achieve
an extremely strong confinement of the light in waveguides whose cross sections are
as small as 0.1 to 0.2 µm2 [50]. This significantly reduces the optical powers that
are necessary to control the optical functions and thus allows for the design of highly
compact components with low command powers.

The first experimental demonstration of Raman amplification in silicon nanowave-
guides (or "nanowires") [51] has lead to the realization of the first Raman lasers in
silicon, both in the pulsed regime [52] as well as continuous wave [53, 54]. A large
number of studies have shown that the two main limitations are caused by two photon
absorption (TPA) and the absorption by the free carriers (FCA) which are generated
by TPA [55, 56, 57]. The influence of FCA can be reduced by working with pulses
whose repetition time (i.e., the time between two consecutive pulses) is very long
compared to the free carrier lifetime [58, 59, 60, 61]. Moreover, several studies have
been carried out on the reduction of the free carrier lifetime by ion implantation [62]
and by the integration of a reverse-biased p-i-n junction in the waveguide [63]. With
the latter method, the free carrier lifetime has been successfully reduced from the
order of nanoseconds to only several picoseconds.

However, in the perspective of high-speed optical information processing, it is
surprising to see that there are no publications studying how the performance of
optical functions, especially Raman amplification, is influenced by nonlinear phase
shifts. With the lifetime of optical phonons in silicon being of the order of 2 to
3 picoseconds, it should be possible to amplify optical pulses of several picoseconds in
duration through stimulated Raman scattering. However, such pulses are expected to
experience nonlinear phase shifts due to the Kerr effect and the free carrier refraction
(FCR). These variations of the phase induce a temporal deformation of the pulses
and, as a result, a spectral broadening (self phase modulation, SPM). When the
resulting spectral width of the pulse is of the same order of magnitude as the Raman
resonance, which is 105 GHz in silicon [39], we expect to observe a reduction of the
effective amplification. Although such a reduction of the Raman gain represents a key
issue concerning the realization of functional nanostructures (slow mode waveguides
or microcavities), where the spectral broadening due to the Kerr effect and FCR is
strongly enhanced, it has to our knowledge never been studied up to now.

Recent studies have demonstrated the enhancement of amplified spontaneous Ra-
man scattering [64, 65, 66] in silicon-based photonic crystal waveguides. As these
publications show, the enhancement of the Raman scattering is caused by a strong
reduction of the group velocity vgr. However, a reduced group velocity also leads to
a stronger self phase modulation (SPM), which effectively limits the enhancement of
the Raman amplification. Therefore, it is of crucial importance to study the inter-
play between these effects in the perspective of the realization of slow-mode photonic
crystal structures for Raman amplification.

In this chapter, I experimentally demonstrate the above-mentioned effect, i.e., a
saturation of the Raman amplification of a narrow-band Stokes wave in a silicon
nanowire (which is basically a ridge waveguide with a sub-lambda cross section).
I show that this saturation is caused by the self-phase modulation of the pump beam
due to the Kerr effect and the free carrier refraction. Furthermore, I demonstrate
that, because of the light localization, the influence of two photon absorption on the
pump wave is enhanced. Moreover, I present an analytical model of the propagation
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of the Stokes wave, which shows a very good agreement with the experimental results.
As a side effect, the model also yields a value of the bulk Raman gain coefficient γ̄R

of silicon, whose currently reported values in the literature are spread over a large
range between 4 and 70 cm/GW [67].

The present work illustrates the interest to take into account the interplay be-
tween the different nonlinear effects in the case of localized light (i.e., slow vgr). As
the results clearly show, it is not sufficient to simply slow down the light in order
to enhance the nonlinear effects (e.g., Raman amplification). It is also crucial to
study their interactions among each other. Although the experiments presented in
this chapter have been carried out with a nanowire in a weakly slow-light regime,
our results can also be applied to a situation with a strong light localization (i.e.,
in a strongly slow-light regime), which makes them very useful for applications in
photonic crystal structures.

The work presented in this chapter has been part of the ANR project MIRA-
MAN, which was a research collaboration between the Laboratoire Charles Fabry
de l’Institut d’Optique (LCFIO) in Palaiseau, notably the research groups MANO-
LIA and NAPHEL, the research laboratory SiNaPS of the Commissariat à l’Énergie
Atomique (CEA) in Grenoble, and the Laboratoire des Technologies de la Microélec-
tronique (LTM) of the CNRS in Grenoble. The aim of the project was to improve
the design of slow mode waveguides and microcavities in silicon-on-insulator (SOI),
as well as to study the nonlinear optical interactions in silicon-based waveguides
and slow mode structures. For the experimental study presented here, the group
NAPHEL has numerically simulated and optimized the design of an appropriate
sample that is based on the silicon-on-insulator (SOI) technology. The sample has
then been fabricated by the LTM. It is described in more detail in section 3.2.1.

The experimental nonlinear characterization of the silicon nanowire, which I have
carried out in the research group MANOLIA at the Laboratoire Charles Fabry de
l’Institut d’Optique (LCFIO), uses the so-called pump-probe technique. This means
that a strong laser beam (pump beam) is used to induce nonlinear optical effects in
the semiconductor sample, and the (nonlinear) response of the sample is measured
with a weak probe beam. For the study of the stimulated Raman scattering, the
probe beam corresponds to the Stokes wave. In order to obtain high pump
intensities, we work with almost Fourier-transform limited picosecond laser pulses
whose pulse duration is such that their spectral width corresponds to the linewidth
of the Raman resonance. To avoid any cumulative effects of free charge carriers, the
time between two consecutive pulses is chosen to be long compared to the free carrier
lifetime.

The chapter starts with the analytical model, which describes the Raman gain of
silicon in the picosecond domain (i.e., when using picosecond pulses as the pump
beam). After a detailed description of the experimental setup and the semiconductor
sample, a linear characterization of the latter is presented, including a determination
of the local field factor of the Stokes wave. Then, the chapter shows the nonlinear
pump-probe measurements and demonstrates the Raman gain saturation, which is
equivalent to a decrease of the effective Raman gain. By applying the analytical
model to the measurement data, we find an excellent agreement between experiment
and theory and determine the bulk Raman gain coefficient of silicon. The results of
this chapter have been subject of a publication in Applied Physics Letters [68].
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3.1 Analytical model of SRS in a silicon nanowire

Before presenting the experimental results of the pump-probe measurements, we
develop a model of Raman amplification in the case of Fourier-transform limited
picosecond pump pulses whose duration is significantly shorter than the duration
of the probe pulse (i.e., τP ≪ τS)1. In that case, the spectral width of the pump
pulses is larger than the width of the probe pulses (i.e., δωP ≫ δωS). Since we
assume furthermore that the spectral width of the pump pulses is larger than the
linewidth of the Raman resonance (i.e., δωP > δΩR), this effectively reduces the
Raman gain experienced by the probe beam, as is demonstrated in the following. In
order to describe this phenomenon mathematically, the theory of stimulated Raman
scattering that has been derived in section 2.2.1 must be slightly modified. Using
this modified theory of SRS, we derive an equation that describes the evolution of
the Stokes wave in a silicon nanowire. These results are then used to develop a model
of the pump-probe experiments that are presented in section 3.4.

3.1.1 Effective Raman gain with a polychromatic pump wave

In a first step, we are interested in the Raman gain experienced by the Stokes wave
in the case where the pump wave is polychromatic (in the sense that the pump wave
has a finite spectral linewidth of at least the same order of magnitude as the spectral
lineshape of the Raman resonance). The Stokes wave is assumed as monochromatic
(i.e., continuous wave or spectrally very fine). Thus, we express the Stokes wave as

~ES(z, t) = AS(z) êS eikSz e−iωSt + c.c.

and the polychromatic pump wave as

~EP(z, t) =
∑

ωP

AP(z, ωP) êP eikPz e−iωPt + c.c. ,

where the symbol
∑

represents the sum over all frequency components of the pump
spectrum. Both beams are assumed to propagate in the z direction (collinear propa-
gation). As in section 2.2.3, we assume that the pump beam is significantly stronger
than the probe beam and that the pump intensity is therefore approximately constant
(non-depleted pump approximation),

d
dz

AP ≈ 0 =⇒ AP(z, ωP) = AP(ωP) .

We write down the scalar propagation equation of the Stokes wave, which is given
by Eq. (2.33), yielding

∂AS

∂z
=

iωS

2nScǫ0
PNL

R (ωS) e−ikSz .

We express the nonlinear polarization at the Stokes frequency as the sum of all the
contributions from the different spectral components of the pump spectrum

PNL
R (ωS) = 6 ǫ0

∑

ωP

χ
(3)
R (ωS;ωP,−ωP, ωS)

IP

2nP c ǫ0
AS eikSz ,

where ωP − ωP + ωS = ωS is satisfied for all frequency components ωP. Alterna-
tively, we can also describe the spectrum of the pump wave by a continuous spectral

1In the experiments presented in section 3.4, the pump pulse duration is about τP = 15 ps, while
the probe pulses are about ten times longer, i.e., τS = 150 ps, which is in fact significantly longer.
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distribution function S(ω) instead of discrete frequencies. In this case, the nonlinear
polarization is given by the integral over the spectrum

PNL
R (ωS) = 6 ǫ0

∫ ∞

−∞
χ

(3)
R (ωS;ωP,−ωP, ωS)

IP,0 S(ωP)

2nP c ǫ0
AS eikSz dωP ,

where IP,0 is the total pump intensity of one pulse (over the whole spectrum), and
the spectral distribution function S(ωP) is normalized by

∫ ∞

−∞
S(ω) dω = 1 .

Following the derivation given in section 2.2.3, we obtain the propagation equation
for the Stokes intensity with a polychromatic pump wave

d
dz

IS = − 3ωS

nPnSc2ǫ0

∫ ∞

−∞
Im
(
χ

(3)
R (ωS;ωP,−ωP, ωS)

)
S(ωP) dωP IP,0 IS . (3.1)

By comparing this equation to the result for a monochromatic pump wave, given by
Eqs. (2.44) and (2.43),

d
dz

IS = γR IP IS with γR = − 3ωS

nSnPc2ǫ0
Im
(
χ

(3)
R (ωS;ωP,−ωP, ωS)

)
,

we can express Eq. (3.1) in the form

d
dz

IS =

[∫ ∞

−∞
γR(ωP − ωS)S(ωP) dωP

]

︸ ︷︷ ︸
γ̃R(ωS)

IP,0 IS ,

where we have defined the effective Raman gain with a polychromatic pump wave

�

�

�


γ̃R(ωS)γ̃R(ωS) =

∫ ∞

−∞
γR(ωP − ωS)S(ωP) dωP . (3.2)

The above equation (3.2) is the convolution integral between the frequency depen-
dence of the Raman gain and the spectrum of the pump wave. As shown in sec-
tion 2.2.3, the frequency dependence of the Raman gain is given by

γR(ωP − ωS) ≈ γ̄R
1

1 + ∆2
, (3.3)

where γ̄R is the material-dependent Raman gain coefficient, and the frequency de-
tuning parameter ∆ can be approximated as

∆ ≈ ΩR − ωP + ωS

δΩR/2
= 2

νR − νP + νS

δνR
(3.4)

with the Raman frequency νR and the full width at half maximum (FWHM) of
the Raman resonance δνR. In the present work, we study the zone center optical
phonon of silicon with a Raman frequency of νR = 15.6 THz and a linewidth of
δνR = 105 GHz [39, 69, 70, 71].
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3.1.2 Evolution of the Stokes intensity in a silicon nanowire

We now use the above findings to derive a model that describes the nonlinear prop-
agation of the pump and the Stokes wave in a silicon nanowire. The pump intensity
can be described by the propagation equation

d
dz

IP,0 = −β′ I2
P,0 − α′

PIP,0 , (3.5)

where the first term represents the auto-induced two photon absorption and the
second term is the linear attenuation in the waveguide.

The nanowire is a waveguide of very small dimensions compared to the pump
and Stokes wavelengths (which are in the range between 1.4 and 1.6 µm). The
propagation of the pump and Stokes waves in the waveguide is significantly slower
than in bulk silicon, which is expressed by the group refractive index ngr >
nbulk [72] and leads to the local field factor f of the waves in the waveguide.
Thus, for a correct description of the nonlinear propagation in the nanowire, we
have to take into account the effects of the light localization, which has not been
done in the previous studies of SRS in SOI waveguides. In the above equation, the
light localization is included in the coefficient β′ = f4

P βTPA with the two-photonα′
P, β ′

absorption coefficient βTPA and the local field factor fP of the pump wave. As has
been mentioned in section 2.4.1, even a relatively small local field factor fP can lead
to a significant enhancement of the two photon absorption because it is raised to the
fourth power. For example, a value of fP = 1.2 leads to a two-fold increase of the
two-photon absorption coefficient, β′ = f4

P βTPA ≈ 2βTPA.
Notice that the intrinsic linear attenuation coefficient α′

P of the waveguide im-
plicitly takes into account the effect of light localization. The evolution of the Stokes
intensity is described by

d
dz

IS =
(
γ′ − 2β′

X

)
IP,0(z) IS − α′

SIS , (3.6)

where the last term with α′
S represents the linear attenuation. As mentioned inα′

S
section 2.3.2, the stimulated Raman scattering and the cross-two photon absorption
compete with one another, as can be seen in the parentheses of the first term. The
stimulated Raman scattering (Raman amplification) is given by γ′ = f2

Pf2
S γ̃R(ωS)

with the local field factor of the Stokes wave fS and the effective Raman gain γ̃R(ωS)β ′
X, γ ′

as defined by Eq. (3.2). The term β′
X = f2

Pf2
S βXTPA represents the cross-two photon

absorption.

In the following, we solve the two coupled differential equations (3.5) and (3.6). In
our experiments, typical input pump intensities are on the order of a few gigawatts
per square centimeter, with 15 ps pulses and a repetition rate of 80 MHz. Therefore,
following the arguments provided by Yin et al. [43], the free carrier effects (FCA and
FCR) can reasonably be neglected, which allows us to find an analytical solution of
the above set of equations. Moreover, since we will not measure the phase of the
pump beam and the Stokes beam experimentally, we do not include the Kerr effect
and the dispersive Raman effect, which is described by the real part of the Raman
susceptibility, in the quantitative model presented here. However, as the experimen-
tal results in section 3.4 show, we observe a self-phase modulation (SPM) of the
pump pulses leading to a spectral broadening of the pump spectra. Although not
included quantitatively in the model of the beam propagation, the spectral broad-
ening clearly influences the effective Raman gain given by Eq. (3.2) through the
spectral distribution function S(ωP). This influence is discussed in more detail in
section 3.4.3.
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Two photon absorption of the pump beam

In order to solve the propagation equation (3.6) for the Stokes wave, we first have
to integrate Eq. (3.5) for the pump wave. The latter is independent of the Stokes
intensity and can be written as

dIP,0

IP,0 (β′ IP,0 − α′
P)

= − dz . (3.7)

The integrand on the left hand side of the above equation can be transformed to

1

IP,0 (β′ IP,0 − α′
P)

=
1

α′
P

(
1

IP,0
− β′

β′ IP,0 − α′
P

)

so that the integration of Eq. (3.7) yields

ln

(
IP,0(z)

IP,0(0)

)
− ln

(
β′ IP,0(z) + α′

P

β′ IP,0(0) + α′
P

)
= −α′

P z .

By defining the so-called effective length of the nanowire [73] as

Leff

�

�

�


Leff =

1 − e−α′

PL

α′
P

, (3.8)

we obtain an equation for the pump intensity at the exit of the nanowire (i.e., at
z = L),

IP,0(L) = IP,0(0)
e−α′

PL

(1 + β′ Leff IP,0(0))
. (3.9)

For simplicity, we summarize the factors in the denominator as the X parameter

XP

�

�

�


XP = β′ Leff IP,0(0) = f4

P βTPA Leff IP,0(0) , (3.10)

which is, for a given nanowire and its properties, essentially a measure of the initial
pump intensity IP,0(0). By inserting this definition into Eq. (3.9), we find an equation
of the evolution of the pump intensity in the nanowire,

�

�

�


IP,0(L) = IP,0(0)

e−α′

PL

(1 + XP)
, (3.11)

which describes the pump intensity at the position z = L as a function of the intensity
at z = 0, the linear attenuation coefficient α′

P, and the parameter XP.

Raman amplification of the probe beam

With the above solution for the pump intensity, we can solve the propagation equa-
tion of the Stokes wave. We insert Eqs. (3.10) and (3.11) into Eq. (3.6) and obtain

dIS

IS
= α′

P

(
γ′ − 2β′

X

)
IP,0

e−α′

Pz dz

α′
P + β′ IP,0(0) (1 − e−α′

Pz)
− α′

S dz . (3.12)

This equation can be integrated directly, yielding

ln

(
IS(z)

IS(0)

)
= α′

P

(
γ′ − 2β′

X

)
IP,0 J − α′

S z , (3.13)
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where the symbol J stands for

J =

∫ L

0

e−α′

Pz

α′
P + β′ IP,0(0) (1 − e−α′

Pz)
dz . (3.14)

The above integration has the solution

J =
1

α′
P β′ IP,0

ln
(
1 + β′ IP,0 Leff

)
=

1

α′
P β′ IP,0

ln
(
1 + XP

)
, (3.15)

so that Eq. (3.13) yields an equation describing the evolution of the Stokes in-
tensity in the nanowire,

�

�

�


ln

(
IS(L)

IS(0)

)
=

γ′
R − 2β′

X

β′ ln
(
1 + XP

)
− α′

SL . (3.16)

This means that we can plot the ratio IS(L)/IS(0) as a function of (1+XP) in a log-log
scale and, if the Raman gain γ′ and the two photon absorption coefficients β′, β′

X are
independent of the parameter XP (i.e., independent of the pump intensity IP,0(0)),
we shall obtain a straight line whose properties are illustrated in Fig. 3.1 (the linear
attenuation coefficient is assumed to be independent of XP and IP,0(0)). The slope
of the straight line is given by (γ′

R − 2β′
X) /β′, and its y-intercept is −α′

SL.
If we want to plot this graph based on the data of a experiment with a real

nanowire sample, we face the problem that it is usually very difficult or even impos-
sible to know the pump and Stokes intensities inside the waveguide. Therefore, it is
necessary to find a way to determine XP as a function of the injected pump power
PPin, as is described in the following.

Fig. 3.1. Illustration
of Eq. (3.16), showing
IS(L)/IS(0) as a function
of (1 + XP) in a log-
log scale. The param-
eter XP is proportional
to the initial pump in-
tensity IP(0). The slope
and the y-intercept of the
line yield some informa-
tion about the Raman
gain, the two-photon ab-
sorption coefficient, and
the linear attenuation in
the nanowire.

3.1.3 Model of the Raman amplification experiments

In a next step, we extend the above model to describe the pump-probe experiments
with a nanowire sample. This means that we take into account the injection of
the two beams into the nanowire and the extraction of the light at the exit of the
sample. Furthermore, we consider both pump and probe wave as pulsed laser beams
consisting of pulses with durations τP and τS, respectively, and a common repetition
rate F . The principle of the experimental setup is illustrated in Fig. 3.2. The incidentτP, τS, F
average power PPin of the pump beam is coupled into the nanowire (i.e., the sample)
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Fig. 3.2. Schematical
experimental setup of the
pump-probe experiments
showing the injection and
extraction of the pump
and the probe beam. L
lens. For details see text.

with a coupling efficiency κPin. Thus, according to Eq. (2.85), the peak intensity in
the waveguide is given by IP,0(0) = κPin PPin/Aeff τP F , where Aeff is the effective Aeff

mode area. A lens behind the exit of the waveguide collects the pump light with a
coupling efficiency κPout. Altogether, this can be described by the following set of
equations

κPin, κPout
IP,0(0)Aeff = κPin PPin/τP F (3.17a)

PPout/τP F = κPout IP,0(L)Aeff , (3.17b)

where L is the length of the nanowire waveguide. Similarly, the injected and extracted
power of the probe beam (which corresponds to the Stokes wave) is given by

κSin, κSout
IS(0)Aeff = κSin PSin/τS F (3.18a)

PSout/τS F = κSout IS(L)Aeff . (3.18b)

It should be noted that in this notation, all powers P are actually average pow-
ers, while the intensities I represent peak intensities. This notation makes sense
because the experimentally measurable quantities are average powers (we work with
a repetition rate of F = 80 MHz), whereas the physical nonlinear effects depend on
the peak intensities, not on average values.

Probe (Stokes) intensity as a function of the X parameter

With the above coupling efficiencies, we find

ln

(
IS(L)

IS(0)

)
= ln

(
PSout

PSin

)
− ln

(
κSin κSout

)
, (3.19)

which yields, by inserting Eq. (3.16), an equation describing the ratio of the output
power to the input power of the probe beam,

ln

(
PSout

PSin

)
=

γ′
R − 2β′

X

β′ ln
(
1 + XP

)
− α′

SL + ln
(
κSin κSout

)
. (3.20)

We summarize the last two terms as

− α′
SL + ln

(
κSin κSout

)
= ln

(
κSin κSout e−α′

SL
)

= ln
(
κS

)
, (3.21)

where we have introduced the total end-to-end loss of the probe beam as κS

�

�

�


κS = κSin κSout e−α′

SL . (3.22)
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Thus, Equation (3.20) can be written in the form
�

�

�


ln

(
PSout

PSin

)
=

γ′
R − 2β′

X

β′ ln
(
1 + XP

)
+ ln

(
κS

)
, (3.23)

where the parameter XP is a measure of the input pump power PPin according to

XP = β′ Leff IP,0(0) =
β′ Leff κPin

Aeff τP F
PPin . (3.24)

Like Eq. (3.16), we can plot Eq. (3.23) as a function of the parameter (XP + 1) in a
log-log graph, yielding a straight line whose slope is determined by the Raman gain
and the two photon absorption and whose y-intercept is given by the linear losses.

Method for the determination of the X parameter

In order to determine XP as a function of PPin, we insert the coupling efficiencies of
the pump beam, given by Eq. (3.17), into Eq. (3.11) and obtain

�

�

�


PPout =

κPinκPout e−α′

PL

1 + XP
PPin =

κP

1 + XP
PPin , (3.25)

where we have also introduced the total end-to-end loss of the pump beam asκP �

�

�


κP = κPinκPout e−α′

PL . (3.26)

We write Eq. (3.25) in the form

PPin

PPout
=

1

κP

(
1 + XP

)
=

1

κP
+

β′ Leff κPin

Aeff τP F κP
PPin , (3.27)

which corresponds to a straight line. Thus, by plotting the ratio of the input pump
power to the pump power measured behind the nanowire (both experimentally ac-
cessible) for different input powers, we shall see a linear dependence that can be
fitted by a function of the type y = a+ b x, as is schematically illustrated in Fig. 3.3.
As a result, we can calculate an experimentally determined value of the parameter
XP for each input pump power PPin according to

XP = κP
PPin

PPout
− 1 =

1

a

(
a + b PPin

)
− 1 =

b

a
PPin , (3.28)

where a and b are the resulting fit parameters. These values of XP can then be used
to plot and analyze the experimental data of the probe beam according to Eq. (3.23).

Fig. 3.3. Illustration of
Eq. (3.27). The ratio
PPin/PPout is plotted as
a function of the input
pump power PPin, yield-
ing a straight line. We can
use this linear dependence
to determine the value of
XP for each input pump
power PPin.
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3.2 SOI sample and experimental setup

In this section we present the silicon-on-insulator (SOI) sample that is used for the
experiments. Furthermore, this section describes the light source that delivers the
pump and probe pulses as well as the data acquisition and processing that is used
to obtain the experimental results presented in section 3.4. As is explained in more
detail in section 3.3, part of the experimental setup is also used for the determination
of the linear attenuation of the waveguide.

3.2.1 Silicon-on-insulator (SOI) nanowire sample

The sample that is used for the experiments has been specifically designed for this
research project. In this section, we present the preliminary considerations that
have lead to the actual design of the sample. Moreover, the fabricated sample that
is actually used for the experiments is described.

Considerations regarding the sample design

As has been shown in section 2.2.2, the Raman gain depends on the polarization
states of the pump and the Stokes wave with respect to the crystallographic axes of
the semiconductor material. This dependence is described by the scattering efficiency
Σ given by Eq. (2.38) as

Σ =

3∑

l=1

[
êP Rl êS

]2
, (3.29)

where the êP and êS are the polarization vectors of pump and Stokes wave and
the Rl matrices are defined by Eq. (2.39). We suppose in the following that the
nanowires are fabricated on an [001] surface of a silicon waver. Moreover, we assume
that the polarization vectors of pump and probe are purely transverse and that the
wave vectors of pump and probe are parallel (i.e., collinear propagation). This leads
to the following expressions for the propagation vector k̂ = k̂P = k̂S and the unit
vectors êTE and êTM, which correspond to the polarization directions of the TE mode
and the TM mode of the waveguides :

k̂ =




cos ̺
sin ̺

0


 êTE =




sin ̺
− cos ̺

0


 êTM =




0
0
1


 ,

where ̺ is the angle between the propagation direction k̂ and the crystallographic
direction [100]. The relationships between these vectors are illustrated in Fig. 3.4.

Fig. 3.4. Illustration of the relationship

between the vector k̂ (i.e., the propaga-
tion direction of pump and the probe
beam) and the polarization vectors of
the TE and the TM mode of the silicon
waveguide. The latter is assumed to be
parallel to an [001] surface.
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The above definitions satisfy the orthogonality conditions k̂ ·êTE = 0, k̂ ·êTM = 0, and
êTE · êTM = 0. Based on these definitions, we can calculate the scattering efficiency
Σ for four different cases.

• TM-TM : In this case, we consider both pump and Stokes wave as TM-
polarized, and we set êP = êTM and êS = êTM. By inserting this into Eq. (3.29),
we calculate the scattering efficiency Σ ≡ 0, which is independent of the angle
̺ of the propagation direction.

• TM-TE : In this case, we consider the probe wave as TE-polarized, which is
expressed by êP = êTM and êS = êTE. The resulting scattering efficiency is
Σ ≡ 1 , which is again independent of the angle ̺.

• TE-TM : This is the inverse of the previous case, expressed by êP = êTE and
êS = êTM, yielding a scattering efficiency of Σ ≡ 1. As in the previous two
cases, the result is independent of ̺.

• TE-TE : This last combination, given by êP = êTE and êS = êTE, yields a

scattering efficiency of Σ = sin2(2̺), which obviously depends on the propaga-

tion direction defined by ̺. Thus, for ̺ = π/4 = 45◦, we obtain the maximum

value of Σ = 1 , as in the previous two cases.

In conclusion, a propagation along the [110] direction (i.e., ̺ = 45◦) offers the most
flexible configuration. It enables us to excite the stimulated Raman scattering with
three different combinations of the polarization directions (TM-TE, TE-TM, and
TE-TE), and the scattering efficiency should be maximal (Σ = 1) in all three cases.
Moreover, by using a TE polarized pump beam, we are sure to obtain a maximal
scattering efficiency, no matter how the probe beam is polarized.

Silicon-on-insulator (SOI) sample used for the experiments

The sample that we use for the experiments has been fabricated by our collaboration
partner David Peyrade at the LTM in Grenoble [74]. On the sample, there are
several identical silicon ridge waveguides on top of a 2-µm thick oxide layer (i.e.,
SiO2), which in turn is deposited on a silicon substrate. All waveguides have a
width of 500 nm and a height of 340 nm, which are both small compared to the
wavelengths used (around 1.5 µm). This means that the effective mode area is only
about Aeff ≈ 0.17 µm2. The waveguides are 11 mm long, and the propagation

Fig. 3.5. Silicon-on-insulator (SOI) nanowire sample. SEM picture and schematic illustration
showing the guide on top of the SiO2 layer (insulator). The SOI sample provides several identical
ridge waveguides of this type, which are all oriented along the crystallographic [110] direction, i.e.,
parallel to a [001] surface. The dimensions in the illustration are not to scale.
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direction (i.e., the direction of the guides) is oriented along the [110] crystallographic
direction of silicon. Figure 3.5 shows a SEM photo and an illustration of the structure
of the SOI sample.

3.2.2 Synchronous hybrid picosecond light source

The pump and probe pulses are generated by a hybrid laser light source that is
composed of a picosecond optical parametric oscillator (OPO) and an intensity-
modulated tunable diode laser (telecom test laser). This section describes both
components as well as the method that is used to synchronize the pulses with respect
to each other, i.e., to control the time delay between the probe pulses and the pump
pulses.

Picosecond optical parametric oscillator (OPO) as pump beam

The picosecond OPO has been previously designed and built as a general-purpose
tunable light source for nonlinear characterization experiments [75]. It is synchro-
nously pumped by a commercial mode-locked Ti:Sapphire laser (Spectra Physics
TSUNAMI), which delivers Fourier-transform limited pulses of a duration of 10 pi-
coseconds (FWHM) at a wavelength of 725 nm with a spectral width of ∆λ =
0.06 nm, a repetition rate of F = 80 MHz, and maximum output power 1.7 W.

The OPO is designed as a ring cavity in a bow-tie geometry, as is illustrated in
Fig. 3.6. It consists of a pair of concave mirrors CM, each with a radius of curvature
of 25.9 cm, and a plane mirror PM. These elements have been chosen to be highly
reflective in the 1300-1600 nm range. The cavity is singly resonant at the signal
wavelength, for which the output coupler OC has a reflectivity of 80%. Due to the
relatively long pulse duration, the dispersion of the mirrors and the output coupler
can be considered negligible. The beam from the Ti:Sapphire laser is injected into
the cavity through a lens with a focal length of 15 cm. The active medium of the
OPO is a 20-mm long PPLN crystal, which is anti-reflection coated from 1300 to
1650 nm. The crystal period is 18 µm, and the temperature of the crystal can be
controlled for the fine tuning of the signal wavelength. Both the signal and the idler
wave are provided as output beams of the OPO with approximately equal power.
The average output power of the OPO is up to 500 mW (total power of signal and
idler), depending on the alignment of the mirrors and on the operating wavelengths.
We use an optical spectrum analyzer (ANDO AQ6317B) to measure the spectral
linewidth of the OPO as 0.25 nm. Because of the repetition rate of 80 MHz, the
OPO represents a quasi-continuous light source. Therefore, all power measurements
in the remainder of this chapter are average powers, which is consistent with the
model presented in section 3.1.3.

Fig. 3.6. Optical
parametric oscillator
(OPO) generating the
pump pulses for the
pump-probe experiments.
CM concave mirrors, L
lens, PM plane mirror,
OC output coupler,
PPLN periodically poled
lithium niobate crystal,
λP pump wavelength,
and λI idler wavelength.
The drawing is not to
scale.
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Synchronously modulated tunable diode laser as probe beam

The preparation of the probe beam has been developed specifically for the experi-
ments presented in this chapter. In order to use the beam for Raman amplification
measurements, we need a very high precision regarding the wavelength tuning. As
mentioned above, we consider the zone center optical phonon of silicon with a Ra-
man frequency of νR = 15.6 THz and a linewidth of ∆νR = 105 GHz [39]. Thus,
for a given pump wavelength λP, the probe wavelength has to be controlled with a
relative accuracy of 105 GHz/15.5 THz ≈ 10−2 = 1%.

Therefore, the probe beam is generated by a commercial tunable diode laser
(NetTest TUNICS-PRI) that emits a single-frequency continuous-wave laser beam
at a freely tunable wavelength in the range between 1530 and 1600 nm. Its fiber-
coupled output is connected to a polarization maintaining fiber and is then coupled
into a LiNbO3 intensity modulator from EOSPACE (see also illustration in Fig. 3.8).
The LiNbO3 modulator is driven by a synchronization signal (sync) coming from
the OPO output. For this purpose, we use the idler beam from the OPO that is
transmitted by a dichroic mirror behind the OPO output. The idler beam is then
injected into a single mode fiber that is connected to a fast photodetector of the
type PP10G from Nortel with a 12-GHz bandwidth. The electrical signal from this
photodetector is superimposed with a constant DC voltage of 4.4 V in a so-called
"bias T" (or "bias tee") from Picosecond Pulse Labs and then connected to the
RF input of the modulator. The optical output of the modulator (i.e., the 80-MHz
modulated diode laser signal) is extracted by a lens and serves as the probe beam
for the pump-probe experiments. To set the correct polarization, the probe beam
passes a half-wave plate and a Glan-Taylor polarizer.

In order to determine the pulse duration of the probe pulses, we use a fiber-coupled
fast photodetector of the type Agilent 83440C (20 GHz bandwidth) and a fast digital
oscilloscope of the type Tektronix CSA 8000, including a high-speed sampling module

Fig. 3.7. Typical time
dependence of the probe
pulses.

(a) Two probe pulses fol-
low each other with a de-
lay of 12.5 ns (correspond-
ing to the repetition rate
of the hybrid light source
of F = 80 MHz).

(b) The main peak has a
pulse duration (FWHM)
of 150 ps.
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with a 100-ps time resolution. The measured time dependence of the probe pulses is
shown in Fig. 3.7 with two different time resolutions. As can be seen from the upper
graph, the time difference between two consecutive probe pulses is 12.5 nm, which
is consistent with the synchronization with the pump pulses at the repetition rate
of 80 MHz. As the high-resolution measurement in the lower graph shows, the main
peak has a duration of about 150 ps. It is followed by a 850-ps long plateau that is
caused by a saturation of the photodetector, which leads to a longer relaxation time.
In the following, we consider only the main peak of the probe pulses.

In summary, the above-described hybrid picosecond light source provides two
synchronized pulsed laser beams. The wavelengths of the two beams can be
tuned independently; the pulse durations are 15 ps (pump) and 150 ps (probe).
The linewidth of the pump beam is about 0.25 nm, whereas the linewidth of the
probe beam is about 0.03 nm. The average power of the probe beam is 10 mW,
and the average output power of the OPO (pump beam) is several hundreds of
milliwatts.

3.2.3 Pump-probe setup and data acquisition

As is illustrated in Fig. 3.8, the light from the OPO is guided to an optical delay
line consisting of four mirrors. Two of these mirrors can be translated, in order to
increase or decrease the optical path for the pump beam. Given that the pump pulses
and the probe pulses have a fixed phase relation to each other, we can control the
temporal overlap between the pump and the probe pulses by adjusting the position
r of the movable mirrors.

After the delay line, the light is injected into a single mode fiber whose other
end is connected to the experimental pump-probe setup. The light is extracted from
the fiber and passes a combination of a half-wave plate and a Glan-Taylor polarizer.
The latter fixes the polarization state of the pump pulses, whereas the former can
be used to control the pump power (or intensity, respectively).

In a next step, the two beams have to be spatially superimposed for the pump-
probe experiments. This spatial superposition is achieved in free space through
a dichroic mirror. The pulses of both beams are then injected into the nanowire
sample using a microscope objective with a numerical aperture of 0.85. An identical
microscope objective is used to collect the transmitted light at the output of the
waveguide. The collected light is injected into a single-mode fiber that is connected
to an optical spectrum analyzer (OSA), which is an ANDO AQ6317B with a 0.01-
nm spectral resolution. By selecting the wavelength range of the OSA, we can
record spectra of the transmitted pump and probe beams. The input polarization
of the pump pulses is chosen to excite the TE modes of the waveguide, whereas
TM polarization is used for the probe pulses. We experimentally observed a slightly
better Raman amplification efficiency for this polarization configuration than for the
pump and probe beams being polarized along the TE-TE or TM-TE directions.

The dichroic mirror that is used for the superposition of the two beams does not
reflect all of the pump light. Therefore, we can use the weak transmitted part to
monitor the input pump power PPin during the experiments. The average power is
read manually with a calibrated power meter. The output spectra are recorded with
the optical spectrum analyzer and saved in data files for further data processing.
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Fig. 3.8. Experimental setup for the pump-probe experiments with the silicon nanowire. The synchronous hybrid
light source consists of an optical parametric oscillator (OPO) delivering the pump pulses and a cw tunable diode laser
(TUNICS), which is intensity-modulated by a LiNbO3 modulator to generate the probe pulses. M mirror, L lens, SMF
single mode fiber, PMF polarization maintaining fiber, FPD fast photo detector (fiber-coupled), HWP half wave plate,
GTP Glan-Taylor polarizer, DM dichroic mirror, MO microscope objective, PM calibrated power meter measuring the
input pump power PPin, OSA optical spectrum analyzer. The dimensions are not to scale. For more details see text.

3.3 Linear characterization of the silicon nanowire

Before presenting the experimental results of the nonlinear pump-probe experiments
in section 3.4, we characterize the linear optical properties of the silicon nanowire in
a preliminary experiment. As a result, we determine the linear attenuation coefficient
α′ and the local field factor fS at the Stokes wavelength.

3.3.1 Fabry-Perot transmission spectra of the nanowire

According to our collaboration partners who have designed and simulated the SOI
sample, the entry and the exit facet of the waveguide have reflectivities of about
30 %2. Thus, we can consider the silicon nanowire as a low-finesse Fabry-Perot
resonator whose mirrors are actually the two facets of the guide.

Thus, if we inject a weak monochromatic laser beam into the waveguide, we can
measure its linear transmission coefficient as a function of the wavelength of the
laser beam (linear transmission spectroscopy). As a result, we shall obtain a typical
Fabry-Perot fringe pattern that can be used to determine the absorption coefficient
in the waveguide. The transmission of a Fabry-Perot cavity containing a medium

2Calculation by Philippe Lalanne of the group NAPHEL at the LCFIO.
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with a non-zero linear attenuation can be described by3

�

�

�

�
T =

T1T2 e−α′L

∣∣1 −
√

R1R2 e−α′L e2iϕ
∣∣2 , (3.30)

where α′ is the linear attenuation (or absorption) coefficient, and where we have
assumed that the wave is injected and propagates at normal incidence to the facets
(i.e., the angle of incidence is ϑ = 0), which implies that l = L. By expanding the
square of the absolute value in the denominator, Eq. (3.30) can be written in the
form

T =
T1T2 e−α′L

1 + R1R2e−2α′L − 2
√

R1R2 e−α′L cos(2ϕ)
.

With the reflectivities of R1 = R2 = 30%, we find R1R2 ≪ 1. Therefore, we ignore
in the following the second term in the denominator, yielding

T ≈ T1T2 e−α′L

1 − 2
√

R1R2 e−α′L cos(2ϕ)
. (3.31)

This can be further simplified by assuming that the last term in the denominator is
small compared to 1, i.e.,

2
√

R1R2 e−α′L cos(2ϕ) ≪ 1 .

In that case, we can expand Eq. (3.31) in a power series and obtain

T ≈ T1T2 e−α′L
(
1 + 2

√
R1R2 e−α′L cos(2ϕ)

)
.

The transmission coefficient T is defined as the ratio between the transmitted and
the incident optical power,

T =
P (L)

P (0)
.

By using the coupling efficiencies κin and κout, which take into account the coupling
losses due to the injection and the extraction of the light,

P (0) = κin Pin and Pout = κout P (L) ,

we can describe the output power by the expression

Pout =
κout

κin
Pin T1T2 e−α′L

(
1 + 2

√
R1R2 e−α′L cos(2ϕ)

)
, (3.32)

where Pin is the incident power before the injection into the nanowire. The phase of
the cosine function is given by

2ϕ = 2π
λ

∆λM
+ ϕ0 ,

where ∆λM is the mode spacing between the resonator modes, i.e., the free spectral
range of the cavity given in the wavelength domain. Thus, the output power Pout

given by Eq. (3.32) is a function of the wavelength λ. It represents a cosine function
with an offset

P0 = (κout/κin)Pin T1T2 e−α′L ,

3See also appendix B, where we show a complete derivation of this equation in the case of an
optical gain G instead of an attenuation −α′, given by Eq. (B.5).
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which corresponds to the power that is transmitted after one single propagation
through the waveguide. By defining the modulation amplitude

�

�

�


m̃ = 2

√
R1R2 e−α′L , (3.33)

we can write Eq. (3.32) as
�

�

�


Pout = P0 + P0 m̃ cos

(
2π

λ

∆λM
+ ϕ0

)
. (3.34)

Since we know the mirror reflectivities R1 and R2, as well as the cavity length L, we
can use Eq. (3.33) to calculate the linear attenuation coefficient by determining the
modulation amplitude m̃. In order to do that, we use the Fourier transformation.

It is clear that the Fourier spectrum of Eq. (3.34) should contain two frequency
components : a DC component at ω = 0 and a component at the modulation
frequency ωM = 2π/∆λM, which corresponds to the Fabry-Perot oscillations (i.e., the
constructive and destructive interferences). By comparing the heights of these two
components, we can determine the modulation amplitude m̃ even without knowing
the power P0. In the following, we use this method on some experimental data in
order to determine the linear attenuation coefficient α′.

The mode spacing ∆λM is a measure for the group refractive index of the waveguide
according to �

�

�


ngr =

1

2L

λ2

∆λM
. (3.35)

Thus, by comparing the Fourier frequency ωM of the measured Fabry-Perot fringes
to the Fourier frequency ω′

M of a reference function given by Eq. (3.34) with a known
mode spacing ∆λ′

M, we can also determine the group refractive index of the silicon
nanowire at a given wavelength λ. From the group refractive index, we can then
derive the local field factor f at that wavelength.

3.3.2 Measurement of attenuation and local field factor

We use the experimental setup illustrated in Fig. 3.9 to measure the transmitted
power of the silicon nanowire as a function of the wavelength of the injected light
(linear transmission spectroscopy). The light source is a single-frequency cw diode
laser (ANDO AQ4320D), which can be freely tuned between 1540 and 1580 nm. The
fiber-coupled output of the laser is connected to a polarization maintaining fiber. At

Fig. 3.9. Experimental setup
for the linear characterization of
the silicon nanowire. The optical
spectrum analyzer (OSA) com-
mands the tunable diode laser
through the data link cable. This
allows for automatic transmis-
sion spectroscopies of the silicon
nanowire. L lens, MO micro-
scope objective, PMF polariza-
tion maintaining fiber, SMF sin-
gle mode fiber.
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Fig. 3.10. Fabry-Perot fringes of the silicon nanowire, i.e., output power as a function of the wavelength. Top: Full range
between 1540 and 1580 nm with a wavelength resolution of 0.002 nm. Bottom: Zoom between 1557.2 and 1558.4 nm.
The red traces represent the experimental data; the blue trace corresponds to a reference function whose parameters
yield the same modulation characteristics as the experimental data, except for the modulation frequency, which is slightly
different.

the other end of the fiber, the light is extracted with a lens (fiber collimator) and then
injected into the nanowire sample through a microscope objective (the one described
in section 3.2). We inject the beam in TM polarization. Behind the sample, the
light is collected by another microscope objective and injected into a single mode
fiber that is connected to an optical spectrum analyzer (OSA) of the type ANDO
AQ6317B (as in section 3.2). It it worth noting that the microscope objectives are
not anti-reflection coated. We can connect the OSA and the tunable diode laser
with a data link cable, which allows for automatic transmission measurements over
a user-defined wavelength range.

The experimental results, i.e., the measured linear transmission spectroscopy of the
nanowire, are shown in the top panel of Fig. 3.10 between 1540 and 1580 nm with
a wavelength resolution of 0.002 nm. The resolution is given by the minimum wave-
length step of the tunable diode laser. The Fabry-Perot fringes (i.e., the intensity
modulation) with the modulation frequency ωM becomes visible in the zoom that
is shown in the bottom panel. As can be seen from the graphs, the experimental
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Fig. 3.11. Fourier spec-
trum of the Fabry-Perot
fringes. The red trace
corresponds to the exper-
imental data, the blue
trace shows the spectrum
of the reference function.
The inset shows a zoom on
the two peaks at ωM and
ω′

M.

data do not exactly correspond to the theoretical function given by Eq. (3.34). They
obviously contain some low frequency impurities which cause a slow variation of the
envelope of the Fabry-Perot fringes. These impurities originate most probably from
the fact that the microscope objectives are neither anti-reflection coated nor adapted
to the wavelengths used. This might create some parasite reflections and also cause
the injection quality to vary as a function of the wavelength.

Linear attenuation coefficient of the silicon nanowire

We perform a Fast Fourier Transform of the experimental data and obtain the cor-
responding Fourier spectrum, which is shown in Fig. 3.11. By comparing the height
of the Fourier component at the frequency ωM to the height of the DC component,
we obtain the modulation amplitude of the Fabry-Perot fringes, which is

m̃ = 2 × 0.099 ≈ 0.20 . (3.36)

The factor 2 is necessary because the data in Fig. 3.11 show only the nonnegative half
of the of the FFT spectrum. Using Eq. (3.33) with the reflectivities R1 = R2 = 30 %
and the resonator length L = 1.1 cm, we obtain a linear attenuation coefficient of

α′ = 1.0 cm−1 ,

which is in good agreement with published values for silicon nanowires at wavelengths
around 1.5 µm [76]. We assume that the absorption coefficients for pump and probe
wave are equal (i.e., α′

P = α′
S) so that the above result yields the experimentally

determined linear attenuation coefficient for the pump and the probe beam

α′
P = α′

S = 1.0 cm−1 . (3.37)

Group refractive index and local field factor at the Stokes wavelength

Besides the linear attenuation coefficient, we can extract from the experimental data
the value of the group refractive index ngr at the Stokes wavelength (i.e., of the probe
beam). For this purpose we define a reference test function according to Eq. (3.34),
whose parameters P ′

0, m̃′, and ϕ′
0 are such that they produce Fabry-Perot fringes with

the same characteristics as the experimental data. The mode spacing ∆λ′
M is chosen

as 0.02 nm, which yields a modulation frequency ω′
M that is slightly different from



3.4 Nonlinear measurements of saturated Raman amplification 59

the one of the experimental data. The reference function and its Fourier spectrum
are shown as the blue traces in Fig. 3.10 and Fig. 3.11, respectively.

As can be clearly seen in Fig. 3.11, the peak of the reference function in the
Fourier spectrum is at a frequency of ω′

M = 0.1, corresponding to a mode spacing
of ∆λ′

M = 0.02 nm. The Fourier peak of the experimental data in Fig. 3.11 is at
ωM = 0.0930. Since the modulation frequency is given by ωM = 2π/∆λM, we can
calculate the corresponding mode spacing of the waveguide resonator as

∆λM =
0.1

0.093
0.02 nm = 0.0215 nm . (3.38)

Using this value of the mode spacing and a wavelength of λ = 1558 nm (which is
approximately the wavelength of the probe beam in section 3.4), we can calculate the
group refractive index of the silicon nanowire at the Stokes wavelength
according to Eq. (3.35), yielding

ngr(λS) = 5.13 , (3.39)

which is in good agreement with published values for the wavelengths used [72]. With
a bulk refractive index of silicon of nbulk = 3.48 at 1.55 µm [77], we use Eq. (2.95)
to calculate the local field factor of the Stokes wave to be

fS =

√
ngr

nbulk
= 1.21 . (3.40)

Since the tunable diode laser used for this linear transmission spectroscopy cannot
emit light at wavelengths below 1530 nm, it is not possible to use the above-presented
setup to determine the group refractive index and the local field factor at the pump
wavelength. However, it is reasonable to assume that the local field factors of the
pump and the probe beam are approximately equal fP ≈ fS because the variation
between the pump and probe group velocities is expected to be less than 2 % [57]. In
addition to that, we present in the following section a method to estimate the value
of fP using the transmitted nonlinear pump spectra.

3.4 Nonlinear pump-probe measurements of saturated
Raman amplification due to self phase modulation
of the pump beam

Using the SOI nanowire sample and the experimental setup described in section 3.2,
we have carried out a series of pump-probe experiments, whose results are presented
in this section.

3.4.1 Pump and probe spectra behind the nanowire

We have recorded the spectra of the pump and the probe beam after the passage
of the silicon nanowire for different input pump powers PPin, varying from 60 µW
to 120 mW (before the injection into the nanowire). The input pump wavelength
is set at λP = 1441.0 nm, whereas the input probe wavelength λS and time delay
have been adjusted such as to maximize the Raman amplification. This optimum
has been found for a probe wavelength λS = 1558.2 nm.
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Measured spectra of pump and probe beam behind the nanowire

The resulting pump spectra and the probe spectra are shown in Fig. 3.12 for 29
different input pump intensities PPin between 7 mW and 120 mW. Since the facets
of the waveguide are not anti-reflection coated (see section 3.3), the measured raw
spectra contain small Fabry-Perot fringes.

As can be seen from Fig. 3.12(a), the pump spectra are broadened due to self
phase modulation (SPM). This broadening obviously increases with increasing in-
put pump power PPin. It originates from the combination of the Kerr effect and
the TPA-induced free-carrier refraction (FCR). The intensity-dependent nonlinear
phase shift induced by the Kerr effect is instantaneous and broadens the spectrum
symmetrically, whereas the time-dependent buildup of the carrier density creates a
nonlinear phase contribution that shifts the spectrum towards shorter wavelengths
(blueshift) [78],[79].

In the probe spectra in Fig. 3.12(b), we can clearly see a narrow peak, which cor-
responds to the injected probe beam. This main peak appears to be identical in all
probe spectra. Apart from that, there is a second spectral component that shows up
on the left hand side (shorter wavelengths) of the main peak. It becomes stronger
and larger as the pump power increases. Moreover, it is blueshifted with respect to
the initial wavelength, and this blueshift also increases with the pump power.

This second component is a part of the injected probe pulse which is amplified by
stimulated Raman scattering. Given that the probe pulse duration (τS = 150 ps) is
significantly longer than the pump pulse duration (τP = 15 ps), we expect that only
the temporally overlapping part of the probe pulse is amplified by SRS. This means
that the Raman-amplified part of the probe light has effectively a pulse duration
of about 15 ps, which is shorter than the non-amplified probe light. Consequently,
the spectral component corresponding to the Raman-amplified probe light should be
spectrally broader than the non-amplified part, which is exactly what we observe.
Moreover, the cross-Kerr effect between the pump and the probe pulses induces a
spectral broadening. As is explained in section 2.3.1, the cross-Kerr contribution af-
fecting the probe wave is expected to be two times larger than the auto-induced Kerr
effect for the pump pulses. Moreover, like the pump pulses, the Raman-amplified
probe light experiences an FCR-induced phase shift towards shorter wavelengths,
exactly like the pump beam.

Considering the 15.6 THz Raman shift of the zone center optical phonon in silicon,
the maximum Raman gain for a pump wavelength of λP = 1441 nm should be
observed at

λS = (1/λP − νR/c)−1 = (1/λP − 15.6 THz/c)−1 = 1557.8 nm .

In a preliminary experiment, we have measured the amplified spontaneous Raman
spectrum for an input pump power of 100 mW without probe beam. The spontaneous
Raman spectrum showed a maximum at 1557.3 nm, which is slightly below the
theoretical value. In presence of the probe beam and for the same pump power,
the Raman amplification has been maximized adjusting the input probe wavelength
at 1558.2 nm, for which the blueshifted Raman-amplified part of the probe light is
centered at 1557.3 nm (see the top spectrum in Fig. 3.12(b)) [68].
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Fig. 3.12. Output spectra of the pump pulses (a) and the amplified probe pulses (b), measured
after the passage of the silicon nanowire for different input pump powers (varying from 7 mW to
120 mW). The probe spectra have been multiplied by a factor 20. In (c) and (d) the same spectra
are shown in a logarithmic vertical scale, for illustration purposes.

Group refractive index and local field factor at the pump wavelength

As an example, Figure 3.13 shows a zoom of the output pump spectrum for PPin =
120 mW. As can be seen from the graph, the measured spectrum shows some small
oscillations, which are caused by the fact that the entry facet and the exit facets
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Fig. 3.13. Zoom in
the output spectrum
of the pump beam for
PPin = 120 mW. The
graph clearly shows
some weak Fabry-Perot
oscillations, which are
caused by the fact that
the nanowire represents
a Fabry-Perot resonator
with weak mirrors at
both ends. The thick line
shows the smoothing of
the spectrum that is used
in section 3.4.3.
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of the nanowire are not anti-reflection coated. Hence, these oscillations are Fabry-
Perot fringes, which we can use to determine the local field factor fP at the pump
wavelength.

For this purpose, we apply the method that has already been presented in sec-
tion 3.3.2. Thus, we calculate numerically the fast Fourier transform (FFT) of the
measured spectrum shown in Fig. 3.13, which yields a peak at the modulation fre-
quency of the Fabry-Perot fringes at ωM = 0.108. We synthetize a sinusoidal ref-
erence function according to Eq. (3.34) with a mode spacing of ∆λ′

M = 0.02 nm.
Its Fourier spectrum has a sharp peak at a position of ω′

M = 0.1. By comparison
with this reference function, we can calculate the mode spacing of the Fabry-Perot
fringes to be ∆λM = 0.0185 nm. Using this value of the mode spacing and the pump
wavelength of λ = 1441.0 nm, we can calculate the group refractive index of the
silicon nanowire at the pump wavelength of

ngr(λP) = 5.10 . (3.41)

With a bulk refractive index of silicon of nbulk = 3.49 at 1.44 µm [77], we obtain a
local field factor of the pump wave of

fP =

√
ngr

nbulk
= 1.21 , (3.42)

which is equal to the local field factor of the probe wave, fP = fS. It should be
noted, however, that the spectra which have been examined here represent nonlinear
spectroscopies, as opposed to the linear measurements in section 3.3.2. Therefore,
several nonlinear effects (especially SPM, SRS, and FCR) can bias the measurements,
which makes the calculated value of the local field factor of the pump beam less
reliable than the one of probe beam. In any case, as has already been mentioned
above, it is sensible to assume that fP ≈ fS [57], and we will therefore use this
equality in the following.

3.4.2 Two photon absorption and Raman amplification

In a next step, we quantitatively analyze the above-presented experimental data.
According to the model presented in section 3.1.2, we expect mainly two nonlinear
optical effects influencing the spectra of the pump and the probe beam during the
propagation in the waveguide : two photon absorption (TPA) and stimulated Raman
scattering (SRS).
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Decreasing pump transmission due to two photon absorption

For each of the curves shown in Fig. 3.12(a), we integrate the total transmitted power
of the pump beam. For this purpose, we determine for each curve the zero level
corresponding to the background signal of the OSA. Then we perform a numerical
integration over the whole spectrum, yielding the transmitted pump power PPout. In
Fig. 3.14(a), PPout is plotted versus the input pump power PPin. As can be clearly
seen from the graph, the transmission of the silicon nanowire is nonlinear, with a
decreasing transmission coefficient PPout/PPin for higher input pump powers.

In order to check whether this is (only) due to two photon absorption, we plot
the data in a different way. As has been shown in section 3.1.3, the ratio of the
transmitted pump power to the input pump power PPin/PPout should be proportional
to the parameter XP = κPin β′ Leff PPin/Aeff τP F . This relationship is given by
Eq. (3.27) as

PPin

PPout
=

1

κP

(
1 + XP

)
=

1

κP
+

κPin f4
P βTPALeff

κP Aeff τP F
PPin , (3.43)

where we have inserted the relationship β′ = f4
PβTPA. Figure 3.14(b) shows the ratio

PPin/PPout as a function of the input pump power PPin for the experimental data.
The points show very well a linear dependence over the whole range of input pump
powers, which is exactly what we would expect.

Fig. 3.14. (a) Transmit-
ted pump power PPout as
a function of the input
pump power PPin. The
output power increases
nonlinearly.

(b) Ratio PPin/PPout as
a function of the input
pump power PPin. The
experimental data points
show very well the lin-
ear dependence that we
would expect according to
Eq. (3.27).
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We conclude that the pump beam experiences two photon absorption (if not the
slope would be zero) and that the pump beam is not depleted by the Raman
amplification (otherwise the curve should show a nonlinear increase).

Therefore, we can fit a linear function of the form y = a + b x to the data, yielding
the following values for the fit parameters :

a = 3847 ± 53 and b = (103 ± 0.9) mW−1 . (3.44)

With these results, we can calculate the value of the parameter XP for each input
pump power PPin according to Eq. (3.28), given by

�

�

�


XP =

b

a
PPin . (3.45)

These values are needed for the analysis of the probe spectra, as is demonstrated in
the next section. Moreover, the fit parameters a and b enable us to determine the
end-to-end loss of the pump beam as

κP = 1/a = 2.6 × 10−4 . (3.46)

Using the expression for the slope parameter

b =
κPin f4

P βTPALeff

κP Aeff τPF
,

we can also calculate the injection coupling efficiency of the pump beam as

κPin =
κP Aeff τPF

f4
P βTPALeff

b . (3.47)

By using the definition of the effective length Leff given by Eq. (3.8) and with the
values κP = 2.6 × 10−4, Aeff = 0.17µm2, τP = 15 ps, F = 80 MHz, fP = 1.21,
βTPA = 0.8 cm/GW [80], L = 1.1 cm, and α′

P = 1.0 cm−1, we obtain

κPin = 4.8% , (3.48)

which is a reasonable order of magnitude, given the very small lateral dimensions of
the nanowire. In a last step, we use Eq. (3.26) to calculate the extraction coupling
efficiency of the pump beam as

κPout =
κP

κPin e−α′

PL
= 1.6% , (3.49)

which is only 33 % of the coupling efficiency at the injection. Given that the extrac-
tion efficiency κPout accounts for the overall coupling from the nanowire sample to
the OSA, including the injection into the single mode fiber, the value of 1.6 % seems
to be reasonable.
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Fig. 3.15. Simulations of the graphs in Fig. 3.14 for a local field factor of fP = 1 (i.e., without light localization).

Having determined all the constituents of the slope parameter b, we can illustrate
the influence of the light localization by calculating the slope b̃ that corresponds to
a local field factor of fP = 1 (i.e., without localization)

b̃ =
κPin βTPALeff

κP Aeff τPF
=

b

f4
P

.

This allows us to simulate how the graphs in Fig. 3.14 would look like in the case of no
light localization. The results are shown in Fig. 3.15. Clearly, the light localization
significantly enhances the two photon absorption. For example, for an input pump
power PPin = 120 mW, the theoretical output pump power should be 12 µW, whereas
we have measured 7 µW, which is only about 60 % of the theoretical value (i.e., a
reduction by almost a factor 2).

Raman-amplified and blueshifted probe beam

In order to examine the effect of stimulated Raman scattering quantitatively, we are
interested in the total optical power of the Raman-amplified part of the transmitted
probe spectrum. Here, we utilize the observed blueshift by applying a low-pass filter
to the spectrum (i.e., a filter function) that cuts all spectral information above the
threshold wavelength λcut = 1558.11 nm. We thus isolate the Raman-amplified part
and ignore the main peak corresponding to the non-amplified part. We then carry
out a numerical integration as in the case of the pump spectra. Figure 3.16 illustrates
the filter function and the integration method.

Since we know the relationship between the parameter XP and the input pump
power PPin according to Eq. (3.45), we can now quantitatively analyze the calculated
output probe power, as has been explained in section 3.1.3. For this purpose, we use
Eq. (3.23), which can be expressed in the form

10 log

(
PSout

1 mW

)

︸ ︷︷ ︸
PSout in dBm

=
γ′
R − 2β′

X

β′
︸ ︷︷ ︸

C

10 log
(
1 + XP

)

︸ ︷︷ ︸
(1 + XP) in dB

+ 10 log
(
κS

)

︸ ︷︷ ︸
κS in dB

+ 10 log

(
PSin

1 mW

)

︸ ︷︷ ︸
PSin in dBm

, (3.50)
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Fig. 3.16. Schematical illustra-
tion of the integration method
used to determine the total
optical power of the Raman-
amplified part of the transmit-
ted probe spectrum. A low-
pass filter is applied to isolate
the blueshifted Raman-amplified
component, which is then numer-
ically integrated (shaded area).
This spectrum corresponds to
an input pump power PPin =
120 mW.
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and we plot the Raman-amplified transmitted probe power in dBm (i.e., compared
to the reference power of 1 mW) versus the parameter (1 + XP) in dB. The result
is depicted in Fig. 3.17. As the graph clearly shows, the first seven data points (i.e.,
for (1 + XP) ≤ 2.1 dB) can be described by a linear dependence, which is exactly
what we expect according to the above equation. However, the points above 2.1 dB
show clearly a nonlinear behavior such that

the Raman amplification of the probe beam saturates

for higher values of XP (i.e., for increasing input pump powers PPin). Assuming that
the end-to-end loss of the probe beam κS and the injected probe power PSin do not
depend on XP or PPin, respectively (which are reasonable assumptions), we conclude
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Fig. 3.17. Raman-amplified transmitted probe power in dBm as a function of (1+XP) in dB. The
straight line represents a linear fit through the first seven data points, corresponding to a constant
effective Raman gain eγR(ωS).
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that the reason of the nonlinearity is included in the slope coefficient

C =
γ′
R − 2β′

X

β′ =
f2
S

f2
P

γ̃R(ωS) − 2βXTPA

βTPA
. (3.51)

We can furthermore consider the two photon absorption coefficients βTPA and βXTPA,
as well as the local field factors fP and fS, as independent of the input pump power
(i.e., independent of the parameter XP). Therefore, it must be the effective Raman
gain γ̃R(ωS) that causes the nonlinearity. From the saturation of the Raman am-
plification we deduce that the effective Raman gain decreases with increasing input
pump power, which can be qualitatively understood by considering the SPM-induced
broadening of the pump spectrum : The higher the input pump power, the broader
the pump spectrum and, consequently, the smaller the overlap between the pump
spectrum and the spectral shape of the Raman gain at the probe wavelength (see
Eq. (3.2)).

We conclude that the probe beam is amplified by stimulated Raman scattering.
The measured Raman amplification of the probe beam saturates because of an
SPM-induced spectral broadening of the pump beam, which leads to a decrease
of the achievable Raman gain. This saturation effect of the Raman amplification
with picosecond pump pulses in silicon (SOI) nanowires has never been explicitly
reported or studied before.

For those points in Fig. 3.17 that show a linear dependence (i.e., the first seven data
points), the pump spectrum is not broadened by SPM, and thus the effective Raman
gain is constant, γ̃R(ωS) = const.. Therefore, we fit a linear function of the form
y = a′ + b′ x to these points, which is also shown in the graph. The fit yields a
y-intercept and a slope of

a′ = (−62.0 ± 0.5) dBm and b′ = 7.8 ± 0.4 . (3.52)

The y-intercept a′ is a measure for the coupling losses κS (in dB) and the input pump
power PSin (in dBm) in Eq. (3.50), whereas the slope b′ corresponds to the coefficient
C given by Eq. (3.51). With the values of the local field factors determined above,
fP = fS = 1.21, the ratio of the local field factors is fS/fP = 1. Moreover, in the
present case we can neglect the dispersion of the two photon absorption and assume
βXTPA ≈ βTPA [81]. Therefore, the coefficient C is approximately given by�

�

�


C ≈ γ̃R(ωS) − 2βTPA

βTPA
. (3.53)

By using a value of βTPA = (0.8 ± 0.12) cm/GW [80] and by inserting b′ = C, we
calculate an effective Raman gain for a non-broadened pump beam of

γ̃R(ωS) ≈ βTPA

(
b′ + 2

)
= 7.87 cm/GW . (3.54)

In the following, we determine the effective Raman gain for the points in Fig. 3.17
for which the amplification of the probe power saturates (i.e., for (1+XP) > 2.1 dB).

3.4.3 Saturated Raman amplification due to self phase modulation
of the pump beam

In order to describe the observed saturation of the Raman amplification quantita-
tively, we apply our model (see section 3.1) to the experimental data. As a result,
we also obtain a numerical value of the Raman gain coefficient γ̄R of silicon.
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Calculation of the effective Raman gain

According to Eqs. (3.2), (3.3), and (3.4), the effective Raman gain of a polychromatic
pump beam can be calculated by

γ̃R(ωS) = γ̄R

∫ ∞

−∞

S(ωP)

1 + ∆2
dωP with ∆ ≈ 2

∆νR

(
νR − c

λP
+

c

λS

)
, (3.55)

where we have inserted the relationship between frequency and wavelength, ν = c/λ,
with c as the speed of light. We now use the above expressions to calculate the
effective Raman gain for different input pump powers. We determine the power
spectral densities S(ωP) based on the measured pump spectra. For this purpose, all
pump spectra have to be normalized in order to satisfy the normalization condition

∫ ∞

−∞
S(ω) dω = 1 .

Therefore, a smoothing algorithm is applied to all the pump spectra in order to
eliminate the weak Fabry-Perot oscillations (for an illustration of the smoothing, see
Fig. 3.13), and each spectrum is then divided by the total transmitted pump power,
which is determined by numerically integrating the whole spectrum. For the Raman
resonance of the zone center optical phonon in silicon, we use a Raman shift (i.e.,
Raman frequency) of νR = 15.6 THz and a width of the Raman resonance (FWHM)
of ∆νR = 105 GHz [39].

The factor γ̄R before the integral in Eq. (3.55) is, in principle, an adjustable param-
eter. As is demonstrated below, the best agreement with the experimental data is
achieved with a value of the Raman gain coefficient of silicon of

γ̄R = 8.9
cm
GW

.

The top panel of Fig. 3.18 shows the result of the calculation, i.e., the dependence of
the convolution integral γ̃R(∆λR) on the detuning ∆λR = (1/λP − 1/λS − νR/c)−1

from the Raman resonance for different input pump powers PPin. As can be clearly
seen from the graph, exactly at Raman resonance (i.e., at the position ∆λR = 0), the
value of the effective Raman gain γ̃R(ωS) decreases with increasing pump power. This
is exactly what we expect in order to explain the nonlinear behavior in Fig. 3.17. To
illustrate this effect, we plot the calculated values of γ̃R(ωS) at the probe wavelength
(i.e., for ∆λR = 0) as a function of (1 + XP) in dB. The result is depicted in the
bottom panel of Fig. 3.18. It is clearly visible that the effective Raman gain decreases
with increasing (1 + XP) and, thus, with increasing input pump power PPin.

Theoretical description of the pump-probe experiments

We use the above findings to verify our model. For this purpose, we insert the
calculated values of γ̃R(ωS) into the formula for the slope coefficient C given by
Eq. (3.53) with a two photon absorption coefficient βTPA = 0.8 cm/GW (as be-
fore). By adding the offset a′ that we have determined with the linear fit, given by
Eq. (3.52), we can calculate the theoretical values of the Raman-amplified output
probe power according to

PSout

[
dBm

]
=

γ̃R(ωS) − 2βTPA

βTPA

(
1 + XP

)[
dB
]

+ a′ . (3.56)
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Fig. 3.18. Effective Raman gain eγR(ωS) experienced by the probe beam, calculated according to
Eq. (3.55). Top: eγR(ωS) as a function of the detuning ∆λR from the Raman resonance. Bottom:

eγR(ωS) as a function of (1+XP) in dB, which corresponds to PPin.

The results are plotted versus (1+XP) in dB in Fig. 3.19, along with the experimental
data. As is clearly visible in the graph, the values calculated with our model of the
SPM-broadened pump beam show an excellent agreement with the experimental
data. The graph also contains a straight line corresponding to the extrapolation of
the Raman amplification with a non-broadened pump beam (see fit in Fig. 3.17).
By comparing the straight line to the results of our model with the SPM-induced
broadening, one sees very clearly the saturation effect of the Raman amplification.
It it worth noting that this effect has never been properly described nor explicitly
studied in the previous publications on Raman amplification in silicon nanowires.

It is common to characterize amplifying effects or devices in terms of the so-called
"on-off gain" Gon-off, which has already been introduced in section 2.4.2. In the
present case, the on-off gain of the Raman amplification in the silicon nanowire is
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Fig. 3.19. Raman-amplified transmitted probe power in dBm as a function of the experimentally determined parameter
(1 + XP) in dB. The filled circles represent the experimental data (see also Fig. 3.17); the white squares show the values
that have been calculated with the model presented in section 3.1. The straight line corresponds to the extrapolation
of the Raman amplification with a non-broadened pump beam. The right axis shows the on-off gain Gon-off defined by
Eq. (3.57). The top axis shows the corresponding injected pump intensities at the beginning of the nanowire IP,0(0).

defined as the ratio of the output probe power in presence of the pump beam ("on")
to the output probe power without the pump beam ("off"). As is common, we express
the on-off gain here in dB so that we obtain

Gon-off = 10 log

(
PSout(PPin)

PSout(PPin = 0)

)
.

Using Eqs. (3.50) and (3.56), we find an expression for the on-off gain of Raman
amplification in the silicon nanowire, yielding

Gon-off =
γ̃R(ωS) − 2βTPA

βTPA

(
1 + XP

)[
dB
]

= PSout

[
dBm

]
− a′ , (3.57)

which is basically the same as the output probe power PSout in dBm, only shifted by
the constant offset a′. Figure 3.19 indicates the on-off gain Gon-off of the experimental
data and of the values calculated with our model on the right axis of the graph.
As can be seen from the data points, the silicon nanowire provides a maximum
amplification of about 27 dB, corresponding to a 500-fold increase of the probe power
due to the stimulated Raman scattering, which is a good performance compared to
previous studies [82]. Given that the silicon nanowire has a length of only 11 mm,
this is a quite remarkable result.

With Eqs. (3.17) and (3.45), we know the relationship between the parameter XP

and the injected pump intensity at the beginning of the nanowire IP,0(0). We can,
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therefore, also plot the output probe power PSout and the on-off gain Gon-off as a
function of the injected pump intensity IP,0(0), which is indicated on the top axis in
Fig. 3.19. As can be seen from the graph, the maximum amplification of 27 dB is
achieved for an intensity of about 2.8 GW/cm2.

It should be noted that the good agreement between the model and the experimental
data in Fig. 3.19 depends on our choice of the material-dependent Raman gain coef-
ficient of γ̄R = 8.9 cm/GW, as mentioned above. According to the expression of the
slope parameter C given by Eq. (3.53), a different value of γ̄R would have produced
a less good agreement. In addition to that, the calculated values of C also depend on
the numerical value of the two-photon absorption coefficient βTPA, which was chosen
as 0.8 cm/GW here [80]. However, the choice of these two parameters affects only
the vertical scaling of the curve. Thus, the general form of the nonlinear dependence
(i.e., the saturation effect) is caused by the decreasing overlap of the pump spectrum
and the Raman resonance in the convolution integral, which is very well predicted
by our (purely analytical) model.

3.5 Conclusion and outlook

In this chapter, I have experimentally demonstrated a saturation of the Raman
amplification in a silicon-on-insulator (SOI) nanowire in the picosecond regime.
The saturation of the amplification, which corresponds to a decrease of the effective
Raman gain γ̃R(ωS), is caused by the self-phase modulation (SPM) of the pump
pulses during their propagation in the nanowire. The self-phase modulation is in-
duced by the (optical) Kerr effect and by the free carrier refraction (FCR), which in
turn is caused by the two photon absorption of the pump photons.

An analytical model has been established which describes the evolution of the
pump and the Stokes intensities in the nanowire. Based on the measured output
spectra of the pump pulses, this model reproduces very well the saturation of the
on-off gain of the Raman amplification. Moreover, although the experiments have
been carried out with a 15-picosecond pulse duration, which corresponds to a slightly
transient regime for SRS, the model allows us to determine the steady-state Raman
gain coefficient of silicon. We obtain an excellent agreement between model and
experiment for a value of γ̄R = 8.9 cm/GW. Given that the previously published
values vary over a very large range between 4 and 70 cm/GW [67], this is an excellent
result, which confirms the correct order of magnitude.

The above results have been obtained by using a two photon absorption coefficient
of βTPA = 0.8 cm/GW [80]. It should be noted, however, that the measurement
method and data processing presented here yield only a result for the ratio of the
Raman gain to the TPA coefficient, as given by Eq. (3.53),

C ≈ γ̃R(ωS) − 2βTPA

βTPA
=

γ̃R(ωS)

βTPA
− 2 ,

so that the determination of the Raman gain, thus, depends on the TPA coefficient
βTPA. However, the latter has not only been used for the modeling of the saturated
Raman amplification, but also for the calculation of the coupling efficiency κPin of
the pump beam in Eq. (3.47). Therefore, we can also reverse the order of the logical
reasoning. This means that, if we could measure the coupling efficiency κPin inde-
pendently of the value of βTPA, we would then be able to determine the two photon
absorption coefficient by ourselves by using the above-presented data analysis (i.e.,
by using Eq. (3.47) in the reverse direction). Thus, besides the observed saturation
of the Raman amplification and the determination of the Raman gain coefficient γ̄R,
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which are the main results of the pump-probe experiments, the measurement and
data analysis method itself is another important and very useful result of this
chapter. A major advantage of this method is that it can also be applied to situa-
tions with a much stronger light localization and, therefore, with much slower group
velocities (e.g., in photonic crystal waveguides). Thus, we can determine the Raman
gain based on the knowledge of either the coupling efficiency κPin or the two photon
absorption coefficient βTPA.

Moreover, the present work provides insight in the enhancement of optical non-
linearities due to light localization, and it shows how the order of importance of
the different nonlinear effects changes with increasing light localization. As has been
shown above, the two photon absorption is significantly stronger in the nanowire than

Effect Factor Order

Kerr f4
P 3

Cross-Kerr f2
Pf2

S 3
FCR on pump f6

P 5
FCR on Stokes f4

Pf2
S 5

Tab. 3.1. Enhancement factors of the
nonlinear optical effects affecting the phase
of the pump and the Stokes wave, as well
as the effective order of the effects (see also
Tab. 2.1).

in bulk silicon because of the localization of the light, i.e., be-
cause of the reduced group velocity of the pump pulses in the
nanowire. This slow-down effect on the pump pulses is expressed
by the group refractive index ngr, which is related to the local
field factor fP. Similarly, we can qualitatively discuss the in-
fluence of the light localization on the other nonlinear optical
effects, especially those that cause the self phase modulation of
the pump pulses. In section 2.4.1, we have discussed the en-
hancement factors of the different nonlinear effects. Some of
these factors are summarized again in Tab. 3.1. We can see from

the composition of the enhancement factors that, depending on the (effective) order
of the different nonlinear effects and on the exact values of the involved local field
factors (here fP and fS), an effect that appears negligible in a bulk semiconductor
may become predominant in the case of high localization, due to a high enhancement
factor.

As Tab. 3.1 shows, the enhancement factors of the Kerr effect and the free carrier
refraction are at least of the same order of magnitude as the ones of TPA (f4

P) and
SRS (f2

Pf2
S), which have been taken into account by our analytical model. This means

that a stronger localization of the light (i.e., higher local field factors) would result
in an even stronger self phase modulation. Thus, although the light localization
does not affect the Raman on-off gain directly (as long as fS/fP ≈ 1, which is often
a reasonable assumption [57]), a high localization indirectly limits the maximum
attainable Raman amplification through the SPM-induced spectral broadening of
the pump beam (because the latter leads to a reduced effective Raman gain). It
is important to note that this is an intrinsic limitation concerning Raman
amplification, which originates in the dependence of the nonlinear effects on the
local field factors. This important result has major implications for the design of
slow-mode Raman devices because it conflicts with the ever-growing need for high
compactness and low command power of the optical signal processing components.

In order to gather a better understanding of the influence of the light localization on
the Raman amplification in silicon or SOI nanowires, the above-presented analytical
model should be extended by explicitly taking into account the phase of the pump and
probe waves during their propagation. Moreover, it would be necessary to include
the free carrier effects (free carrier refraction and free carrier absorption) in the
equations. Because of the increased complexity of such a model, the solutions have
to be found numerically, for example by using the so-called split-step Fourier method
(SSFM) [83]. In other words, the next steps towards a detailed understanding and
design of Raman-based devices in the field of silicon photonics consist in extensive
numerical simulations in order to fully describe the underlying physical processes.
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Such simulations have been outside of the scope of the present PhD thesis, but
they have been subject of the PhD thesis of Alexandre Baron (group Manolia of
the Laboratoire Charles Fabry de l’Institut d’Optique), who compares the results of
such simulations4 to an advanced analytical model that takes into account the SPM
broadening due to Kerr and FCR and its influence on the reduction of the Raman
gain [84].

* * *

4These numerical simulations have been part of a collaboration with Govind P. Agrawal.
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Chapter 4
Stimulated Raman scattering in a

doubly resonant GaAs microcavity

This chapter presents the experimental study of stimulated Raman scattering in a
doubly resonant planar GaAs microcavity. An analytical model is developed and
used to simulate the interplay between the different nonlinear optical effects and
their influence on the microcavity transmission. In the main part of this chapter, we
present a series of pump-probe experiments that show some totally unexpected re-
sults. A detailed analysis of the measurement data demonstrates that the relaxation
of the electrons in the conduction band of GaAs is significantly modified through the
interaction with a population of coherently excited Raman phonons.
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In the previous chapter, we have seen how a tight confinement of light waves in a
semiconductor ridge waveguide leads to a slowing down of light, which results in
a significant enhancement of several nonlinear optical effects (especially TPA and
SRS). Another situation that is favorable to the enhancement of the nonlinear in-
teractions consists in an optical microcavity in which the interacting waves coincide
with cavity resonances. Although optical cavities in the nonlinear regime have been
the subject of numerous studies, they currently regain interest because of the recent
technological progress in the fabrication technology of semiconductor nanostructures.
In particular, the use of photonic band-gap structures has proven to allow for the
realization of microcavities with extremely high Q factors in SOI (including SOI on
membrane), GaAs, and AlGaAs materials [31, 32, 33, 34, 85, 86, 87]. Low command
power optical switches have already been demonstrated in GaAs [88] and AlGaAs [89]
microcavities. Very recently, it has been demonstrated [90] that in ultrahigh-Q pho-
tonic crystal microcavities in GaAs, optical nonlinearities can already appear at a
microwatt-level.

The enhancement of spontaneous Raman scattering due to the confinement of
the incident and/or the scattered photons in a cavity has first been observed for
molecular vibrations in external cavities [91] and in micro-droplets [92]. In the latter
case, a doubly resonant situation has been obtained by adjusting the size of the
objects in such a way that the photons energies of two resonant whispering gallery
modes coincide with the energies of the incident and scattered photons.

More recently, stimulated Raman scattering (SRS) has been studied in ultra
high-Q spherical and toroid microcavities in silica [35]. As already mentioned in the
previous chapter, the optical gain provided by SRS has been successfully used to
demonstrate Raman lasers in silicon-on-insulator nanowaveguides [93, 94, 95]. The
lengths of the resonators in these works have been of the order of several centimeters.
In the perspective of applications in information and communication technology, an-
other approach consists in realizing doubly resonant microcavities with resonator
lengths in the micrometer range. Spontaneous Raman scattering in such planar
semiconductor microcavities has been subject of several studies [96, 97, 98]. More
recently, Wong and Yang have proposed a design of a microcavity for Raman
amplification and lasing that is based on photonic crystal structures [99, 100], and
Chercoury et al. have experimentally demonstrated the enhancement of the ampli-
fied spontaneous Raman scattering in a doubly resonant cavity, based on a photonic
crystal waveguide [101].

The central aim of the work presented in this chapter is not to develop a new design
of a microcavity or a photonic crystal waveguide, but rather to study a simple model
system to investigate the interplay between Raman scattering and the other nonlinear
optical effects in a situation where they are strongly enhanced by light localization.
For this purpose, we have chosen to use a geometry that has already been successfully
used for many experiments by our collaboration partner Bernard Jusserand, who
is a renowned expert in the study of enhanced spontaneous Raman scattering in 2D
semiconductor microcavities.

The experiments presented in this chapter were part of the research project DIRAC,
which has been publicly funded by the organization C’Nano Île-de-France. This
project was a collaboration between the research group MANOLIA of the Laboratoire
Charles Fabry de l’Institut d’Optique (LCFIO) in Palaiseau and the Institut des
Nanosciences de Paris (INSP) in Paris, notably Bernard Jusserand. The fabrication
of the semiconductor sample has been done in collaboration with the Laboratoire de
Photonique et de Nanostructures (LPN) in Marcoussis.
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As in the previous chapter, the measurement technique that I have used for the ex-
periments is the so-called pump-probe method. This means that a strong pump beam
is incident upon a semiconductor sample and excites several nonlinear optical effects
in the semiconductor material, whose response is then measured with a weak probe
beam. Here again, the probe beam corresponds to the Stokes wave. However,
unlike in the previous chapter, here the semiconductor sample is not a waveguide,
but it is a planar semiconductor microcavity, consisting of a thin GaAs layer en-
closed by two highly reflective AlGaAs/AlAs Bragg mirrors. The main advantage of
a planar cavity is that this is the simplest way to obtain a doubly resonant situation,
where pump and Stokes wave are resonant at the same time. The double resonance
can be achieved by injecting the pump and the probe (Stokes) beam at two different
angles of incidence. Because of its simplicity, the situation described here serves as a
model system for more complex configurations
such as doubly resonant microcavities etched
in ridge waveguides. It is worth noting that,
to our knowledge, this is the first experimental
investigation of stimulated Raman scattering
in a doubly resonant semiconductor microcav-
ity.

The chapter starts with a description of the
sample, followed by the presentation of an an-
alytical model describing the nonlinear optical effects that we expect to observe in
the pump-probe measurements. It explains in detail the experimental setup, includ-
ing the light source and the preparation of the pump beam and the probe beam, as
well as the different optical signals and the data acquisition and processing. An ex-
perimental linear characterization of the semiconductor sample is presented, yielding
the key characteristics of the GaAs microcavity.

Then, the experimental results of several series of nonlinear pump-probe mea-
surements are presented and compared to the predictions of the analytical model
introduced before. Although many of the key characteristics of the experimental
results are well described by the simulations, we observe several features which differ
very clearly from what we would expect according to the model. A detailed analysis
of the measurement results indicates that the dynamics of the free carriers in the
central semiconductor layer are modified due to Raman scattering. More precisely,
it is demonstrated that TPA-generated free carriers in the conduction band interact
with a population of coherent Raman phonons, which are created by the enhance-
ment of amplified spontaneous Raman scattering, and that this interaction leads to
a significant slowing down of the relaxation of the electrons towards the band edge.
Besides the modification of the relaxation dynamics of the free carriers, we expect
that the interaction between electrons and coherent phonons also causes a prolonga-
tion of the lifetime of the involved phonons (typical phonon lifetimes in bulk GaAs
are of the order of 3 to 7 picoseconds).

The observed modification of the electron dynamics is a consequence of the strong
light localization, which is caused by the microcavity. It illustrates the impact that
the localization effect can have on the interplay between the different optical nonlin-
earities.

These observations, especially the electron-phonon interaction and its influence on
the free carriers, is a totally unexpected result, which has, to our knowledge,
never been reported in previous studies. The results of this chapter are subject of a
publication that is currently in preparation.
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4.1 Doubly resonant planar microcavity

The sample that is used for the experiments has been designed and fabricated specif-
ically for the pump-probe measurements presented in this chapter. In order to de-
termine its optimal design, we have carried out numerical simulations, which are
presented in the following.

4.1.1 Considerations regarding the sample design

Basically, the sample is a simple planar resonator that consists of a thin semicon-
ductor layer which is enclosed by two planar Bragg mirrors. The most important
properties of the cavity are the thickness of the central semiconductor layer, the re-
flectivities of the two Bragg mirrors, and the choice of the semiconductor material.
With respect to the experiments, a certain number of criteria has to be taken into
account.

• The choice of the semiconductor material of the central layer and of the mir-
rors should be such that the fabricating technology is well-known and that it is
possible to produce high quality structures and Bragg mirrors with very high
reflectivities. For the present PhD thesis, the access to the fabrication technol-
ogy via collaboration partners has also been of crucial importance. Moreover,
the optical properties of the semiconductor material should be well known.
Hence, the choice of the material (as well as the doubly resonant cavity geom-
etry) is based on the experience of one of our collaboration partners (Bernard
Jusserand) so that GaAs has been chosen for the microcavity’s central layer
and the AlGaAs/AlAs material system for the surrounding Bragg mirrors.

• In principle, it is possible that the two Bragg mirrors have different reflectivities
(asymmetric resonator). This means that they have different numbers of layers.
Since the Raman interaction between the pump and the Stokes wave depends on
the pump intensity inside the microcavity, we want to minimize injection losses
caused by scattering at the interfaces between the Bragg layers. Therefore, the
number of layers of the front mirror Nfront should be lower than the number of
layers of the rear mirror Nrear.

• For the same reason, i.e., to maximize the intracavity pump intensity, the pump
beam should be TM-polarized because this minimizes the losses due to the re-
flection at the air-sample interface. This is of particular importance because we
work near Brewster’s angle. Since the Raman scattering efficiency of a mate-
rial depends, in general, on the polarizations of the pump and the Stokes wave,
this condition yields some other constraints concerning the crystallographic
orientation of the semiconductor sample, as is demonstrated below.

• For the pump-probe experiments, we suppose that the pump and the probe
beam consist of Gaussian pulses with a pulse duration of τ ≈ 12 ps (full width
at half maximum, FWHM). Since the time-bandwidth product of the pulse
duration τ and the linewidth δν (FWHM) of Gaussian pulses is τ δν = 0.44,
this corresponds to a linewidth of 0.11 nm. Therefore, the resonance curve of
the microcavity should also have a spectral width of at least 0.11 nm (or larger)
in order to maximize the coupling of the pulse into the cavity resonance.

• The band gap energy of GaAs is Egap ≈ 1.424 eV, which corresponds to a
wavelength of λgap ≈ 870 nm. In order to make sure that neither the pump
nor the probe beam experiences linear absorption in the sample, both wave-
lengths should be reasonably far from the band edge. We choose to work
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with a Stokes wavelength of λS ≈ 950 nm that is resonant in the micro-
cavity at normal incidence. With the Raman shift in GaAs at room tem-
perature of ν̄R = 292 cm−1 [102], this corresponds to a pump wavelength of
λP = (1/λS + ν̄R)−1 ≈ 924 nm, which is sufficiently far from the band edge so
that the sample is nearly transparent for both wavelengths.

• The last requirement concerns the thickness of the central layer, i.e. the length
L of the microcavity. On the one hand, it is desirable to have long interaction
length of the two beams, which would be an argument for a long cavity, i.e., a
thick GaAs layer. On the other hand, it follows from the resonance condition
that the longer the cavity is, the smaller is the mode spacing of the resonances,
i.e., the denser are the resonances in the frequency or wavelength domain. We
want to be sure that pump and probe beam "see" only the same longitudinal
mode (resonance order). Therefore, the free spectral range of the resonator
modes should be greater than the Raman shift, which is approximately the
difference between pump and probe frequency. This requirement favors a thin
GaAs layer. Moreover, since pump and probe beam are injected with different
angles of incidence, it is important to have enough spatial overlap of the dif-
ferent round-trips of both waves in the resonator. This is also an argument for
a short resonator length. In the wavelength range used (i.e., around 1 µm), a
good compromise is a cavity length of 5λS/nS, where nS ≈ 3.5 (GaAs). This
corresponds to the tenth resonance order, i.e., m = 10 (for more explanations
see appendix B).

As has been mentioned above, we want to work in a doubly resonant situation, where
both beams, Stokes and pump, are resonant in the microcavity at the same time.
This can be achieved by injecting the two beams at different angles of incidence.
In the present case, we work with the probe beam (i.e., the Stokes wave) with a
wavelength λS ≈ 950 nm at normal incidence (ϑS = 0◦). According to Eqs. (B.11)
and (B.12), which are derived in appendix B, the so-called Fabry-Perot phase of the
microcavity at the tenth-order resonance can be expressed as

2π n L

λ
cos(ϑ) = ϕFP = m π = 10π .

This equation enables us to calculate for each wavelength the corresponding angle
of incidence for which this wavelength is resonant in the microcavity. For a pump
wavelength of λP ≈ 924 nm, we obtain an internal angle of incidence ϑP ≈ 13.4◦,
which corresponds to an external angle of incidence ϑ′

P = arcsin(nP sin(ϑP)) ≈ 54.4◦,
where we have assumed nP ≈ nS ≈ 3.5.

Since pump and Stokes beam are not parallel to each other (as opposed to the
situation presented in chapter 3), the propagation vectors kP and kS of the pump
and Stokes beam define a plane of incidence. The directions corresponding to the
TE and the TM polarization are thus given relative to this plane of incidence. As
has been shown in section 2.2.2, the Raman gain depends on the polarization states
of the pump and the Stokes wave with respect to the crystallographic axes of the
semiconductor material. This dependence is described by the scattering efficiency Σ
given by Eq. (2.38) as

Σ =

3∑

l=1

[
êP Rl êS

]2
,

where the êP and êS are the polarization vectors of pump and Stokes wave and the
Rl matrices are defined by Eq. (2.39). We suppose in the following that the planar
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microcavity is fabricated perpendicular to a [001] surface of a GaAs waver. In other
words, we suppose that a beam which is at normal incidence upon the microcavity
propagates in the [001] direction. Moreover, we assume that the polarization vectors
of pump and Stokes are purely transverse. This leads to the following general form
of the propagation vector k̂ and the polarization vectors êTE and êTM :

k̂ =




sin ϑ sin ̺
sin ϑ cos ̺

cos ϑ


 êTE =




cos ̺
− sin ̺

0


 êTM =




cos ϑ sin ̺
cos ϑ cos ̺
− sinϑ


 ,

where ϑ is the angle of incidence, and ̺ is the angle between the TE polarization
vector êTE and the crystallographic direction [100]. The relationships between these
vectors are illustrated in Fig. 4.1. The above definitions satisfy the orthogonality
conditions k̂ · êTE = 0, k̂ · êTM = 0, and êTE · êTM = 0. The angle ̺ is a degree of free-
dom representing the orientation of the semiconductor lattice (crystalline structure)
with respect to the propagation direction of two beams (pump and Stokes). We first
consider the case where ̺ = 45◦. As in section 3.2.1 in the previous chapter, we can
calculate the scattering efficiency Σ for four different cases, where we suppose that
the Stokes beam is always at normal incidence, i.e., ϑS = 0.

• TE-TE : We assume that both beams are TE polarized. Then, the polariza-
tion vector of both beams is given by êP = êS =

(
1/
√

2, −1/
√

2, 0
)
, yielding

a scattering efficiency of Σ ≡ 1 , which is independent of the angle of inci-
dence ϑP.

• TE-TM : The pump polarization is still TE (as in the previous case), given by
êP =

(
1/
√

2, −1/
√

2, 0
)
, but the Stokes beam is TM polarized, which means

that the Stokes polarization vector is êS =
(
1/
√

2, 1/
√

2, 0
)
. The result is a

vanishing scattering efficiency Σ ≡ 0 for all possible angles of incidence ϑP of
the pump beam.

• TM-TE : This is the inverse of the previous configuration. The polarization
vector of the pump beam is given by êP =

(
cos ϑP/

√
2, cos ϑP/

√
2, − sinϑP

)
,

while the Stokes beam is TE polarized, i.e., êS =
(
1/
√

2, −1/
√

2, 0
)
. We

obtain the scattering efficiency Σ = sin2 ϑP.

Fig. 4.1. Illustration of the relation-

ship between the propagation vector k̂
of the pump or the Stokes beam and
the unit vectors êTE and êTM, which
represent the TE and the TM po-
larization of the beams with respect
to the plane of incidence. The an-
gle ϑ is the angle of incidence of the
beam. The direction [001] corresponds
to normal incidence in the microcav-
ity (i.e., as the Stokes beam, ϑS = 0).
The angle ̺ determines the orientation
of the semiconductor sample (i.e., its
crystallographic axes) with respect to
the plane of incidence. It is defined as
the angle between the TE polarization
vector êTE and the [100] direction. We
assume that k̂, êTE, and êTM are per-
pendicular to one another.
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• TM-TM : In this case, we consider both beams as TM polarized. The resulting
scattering efficiency is Σ ≡ 1 , independently of ϑP, as in the first case.

As can be clearly seen from these results, the TE-TM combination does not show any
stimulated Raman scattering at all, and TM-TE is the only combination that depends
on the angle of incidence of the pump beam. For ϑP = 13.4◦, as we have calculated
above, the scattering efficiency is only about 5 %. This is very small compared to the
TE-TE and the TM-TM configurations, which both have the maximum efficiency of
Σ = 1. As has been explained above (see the list of requirements regarding the sample
design), it is reasonable to use a TM polarized pump beam. Thus, in conclusion, the
TM-TM combination is the preferred choice of the polarization states for a sample
orientation given by ̺ = 45◦.

The above calculations can also be carried out for other sample orientations, such
as ̺ = 0◦ and ̺ = 90◦. For both of these cases, we have calculated the scattering
efficiency Σ for all of the four different combinations of the polarizations. In either
case, the results are again Σ ≡ 0, Σ ≡ 1, or Σ = sin2 ϑP, as in the detailed discussion
of the ̺ = 45◦ configuration, but for different polarization settings. For practical
reasons, we consider in the remainder of this chapter only the configuration where
the GaAs sample is aligned according to ̺ = 45◦ because the real sample used for
the experiments has a mark indicating the crystallographic direction [110].

4.1.2 Optimal design of the semiconductor sample

Taking the above-mentioned considerations and criteria into account, we have de-
termined the final design of the sample by simulating its linear optical properties.
For these simulations, we use a transfer-matrix method that has been previously de-
veloped in our group for the modeling of four-wave mixing in planar semiconductor
nanostructures [103]. The method describes each layer (GaAs, AlGaAs, or AlAs) by
its refractive index n, which depends on the polarization and on the wavelength of
the light. All layers in the Bragg mirrors have a thickness of λ/(4n). Each interface
between the layers is described by an estimated scattering loss. The whole sample
is then simulated by numerically calculating the forward and backward propagating
electric fields in each layer, which is done by extensive matrix multiplications. This
method also provides the wavelength dependence of the transmission and reflectivity
coefficients of the microcavity as a whole, as well as the intracavity intensity.

In order to find the optimal design of the sample with respect to the above-described
criteria, we have carried out many different simulations by varying the number of
layers Nfront and Nrear of both mirrors, the polarization states of the incident waves,
and the composition of the AlxGa1−xAs layers. As a result of this optimization, the
front mirror consists of 15 pairs of Al0.2Ga0.8As/AlAs layers and the rear mirror of
25 pairs of such layers. Also, we have verified that the maximum intracavity pump
intensity is achieved with a TM polarized pump beam. As has been demonstrated
above, we therefore work with TM polarization for both beams. Figure 4.2 shows
the epitaxial structure (i.e., the sequence of the different layers) of the final optimal
sample design.

By performing similar simulations for varying external angles of incidence ϑ′, we find
out that the external angle of incidence corresponding to a resonance wavelength of
λ = 924 nm (pump wavelength) is actually ϑ′

P ≈ 58◦ instead of the estimated
54.4◦. In Fig. 4.3, we present the simulated transmission and reflection spectra of the
optimal sample design at two different (external) angles of incidence, corresponding
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Fig. 4.2. Epitaxial structure of the opti-
mal sample design showing the different layers
and their thicknesses. The front Bragg mirror
(BM) consists of 15 pairs of AlGaAs/AlAs lay-
ers, the rear Bragg mirror is composed of 25
pairs of layers. The thickness of each Bragg
layer is e = λ/(4n) with a wavelength of
λ = 950 nm. The central GaAs layer is 5λ/n
thick. The direction of the crystallographic
[001] direction of the GaAs layer is indicated
by the little arrow.

to the pump beam (ϑ′ = 58◦) and the Stokes beam (normal
incidence, ϑ′ = 0◦). The graph clearly shows the two reso-
nance peaks at the probe wavelength λS = 950 nm and at
the pump wavelength λP = 924 nm. A detailed analysis of
these spectra enables us to determine the resonance wave-
length λ0, the maximum transmission coefficient Tmax, and
the linewidth δλ of the resonance (FWHM) for each external
angle of incidence. Since we work at the tenth-order reso-
nance (i.e., m = 10), we can also calculate the finesse F of
the resonances according to

F =
λ0

10 δλ
.

Moreover, knowing the finesse F and the maximum trans-
mission Tmax, we can also calculate the reflectivities of the
front mirror R1 and of the rear mirror R2 individually. As
is demonstrated in appendix B, the maximum transmission
Tmax and the finesse F can be expressed as

Tmax =
(1 − R1) (1 − R2)(

1 −
√

R1R2

)2 (4.1a)

F =
π 4
√

R1R2

1 −
√

R1R2
(4.1b)

where we have inserted G ≡ 0 (i.e., we consider the linear case
without gain or loss in the medium) as well as T1 + R1 = 1
and T2 + R2 = 1 (i.e., both mirrors are assumed to be
loss-free). As can be clearly seen, Eq. (4.1) is a system of
two equations for two variables : R1 and R2. The second
equation (4.1b) depends exclusively on the product R1R2 so
that we can define the geometric mean

R =
√

R1R2

and find the solution

R =

(
− π

2F +

√
π2

4F2
+ 1

)2

,

Fig. 4.3. Results of the simulations of the microcavity. Simulated spectrum of the optimal design, showing the
transmission and reflectivity coefficients as a function of the wavelength at two different external angles of incidence :
ϑ′

P = 58◦ (corresponding to the pump beam) and ϑ′

S = 0◦ (corresponding to the Stokes beam).
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which depends only on the finesse F . By using R1 = R2/R2, the first equation (4.1a)
leads to a quadratic equation in R2, which has the solution

R2 =
1 + R2 − Tmax(1 − R)2

2
+

√
(1 + R2 − Tmax(1 − R)2)2 − 4R2

4
.

The solution for R1 is then easily obtained by using again

R1 =
R2

R2

With the above equations, we can easily calculate the reflectivities of both Bragg
mirrors for the pump and the Stokes beam. The following table summarizes all the
results of the simulations :

ϑ′ λ0/nm Tmax δλ/nm F R1 R2

Stokes 0◦ 950.0 0.60 0.14 680 0.9925 0.9983
Pump 58◦ 924.0 0.44 0.31 298 0.9817 0.9974

As these numbers clearly show, the optimal microcavity design fulfills all of the
key requirements that we have mentioned in section 4.1.1, especially the resonance
linewidths δλ and the asymmetric reflectivities of the front and the rear mirror.

For the nonlinear pump-probe experiments that are presented in section 4.5, we use
a semiconductor sample that corresponds to the above-described optimal sample
design. It has been fabricated by our collaboration partners at the Laboratoire de
Photonique et de Nanostructures (LPN) using a molecular epitaxy on a GaAs wafer.
In section 4.4, we present an experimental linear characterization of the sample.

4.2 Analytical model of the pump-probe experiments with
the GaAs microcavity

Before showing the experimental results, we develop in this section an analytical
model of the nonlinear propagation of the Stokes wave in the GaAs microcavity.
The purpose of the model is to provide a theoretical description of the pump-probe
experiments, which is then used to simulate the measurements. The simulations
yield valuable insights in how the measurements have to be carried out in order to
provide the most meaningful results.

It should be noted that the model does not take into account any transient effects.
As will be shown in section 4.5, the main results of the pump-probe experiments are
related to the refractive effect due to free carriers at long delays (∆t ≫ 0), for which
a transient model is not necessary. For this reason, however, the model developed
here does not provide an exact description of the effects for time delays around zero
(∆t ≈ 0). The latter would require a numerical solution of the coupled equations in
the transient regime.

4.2.1 Pump and probe pulses and nonlinear effects

The central quantity of interest of the model is the Stokes transmission TS of the
microcavity. In section 2.4.2, we have presented a very simple model of SRS in a
semiconductor microcavity, where we have assumed that pump and Stokes are con-
tinuous waves. Here, we have to take into account that the pump and the Stokes
(i.e., the probe) beam come from a pulsed light source. Therefore, we first describe
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the pump and probe pulses, then we reuse and extend the simple model from sec-
tion 2.4.2, and finally we find a mathematical description of the nonlinear response of
the semiconductor material, which depends on the pump wavelength, on the pump
intensity, and on the time delay between the probe and the pump pulses.

Pump and probe picosecond pulses

Both pump and probe pulses are assumed to be Gaussian pulses. The time depen-
dence of the probe intensity can therefore be expressed as

IS(t) = IS,0 exp

{
− t2

(τ̃S/2)2

}
,

where IS,0 is the peak probe intensity, and τ̃S is the pulse duration (full width at 1/e)
of the pulses. The latter is related to the full width at half maximum τS through
τS = τ̃S

√
ln 2 so that we can express the time dependence of the probe intensity as

IS(t) = IS,0 exp

{
− t2

(τS/2
√

ln 2)2

}
= IS,0 exp

{
− 4 ln(2)

t2

τ2
S

}
, (4.2)

where the pulse duration τS is the full width at half maximum (FWHM). Pump and
probe pulses do not arrive at the same time at the semiconductor sample. The delay
of the probe pulse with respect to the pump pulse is given by ∆t. It is negative in
the case that the probe pulse arrives before the pump pulses, and vice versa. In its
own time frame t′, the pump pulses are described by

IP(t′) = IP,0 exp

{
− 4 ln(2)

t′ 2

τ2
P

}
,

where IP,0 is the peak pump intensity and τP is the pulse duration (FWHM) of the
pulses. Thus, in the time frame t of the probe pulses, the above expression becomes

IP(t′) = IP(t + ∆t) = IP,0 exp

{
− 4 ln(2)

(t + ∆t)2

τ2
P

}
. (4.3)

In the following calculations, we use Eqs. (4.2) and (4.3) with pulse durations of τS =
τP = 12 ps. Figure 4.4 illustrates the time dependence of the pulses. We furthermore
assume that the repetition rate of the pump and probe pulses is F = 10 Hz, which
corresponds to a time between two consecutive pulses of T = 100 ms. The delay
∆t is one of the independent parameters of the model, as will become clear in the
following.

Fig. 4.4. Illustration of the time
dependence of the pump and
probe intenstiy. The curve shows
a gaussian pulse whose pulse du-
ration (FWHM) is τ = 12 ps.
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Stokes transmission of the semiconductor microcavity

We consider a planar GaAs microcavity that corresponds to the optimal design de-
termined in section 4.1. The cavity length (i.e., the thickness of the central layer)
is assumed to be L = 5 × 950 nm/3.5 ≈ 1357 nm. Hence, the probe beam, which
is incident upon the microcavity at normal incidence (ϑP = 0◦), is exactly at the
tenth-order resonance if it has the so-called optimal probe wavelength λ∗

Sλ∗
S = 950 nm.

As will be demonstrated below, it can be sensible to use probe wavelengths λS that
are slightly off resonance, i.e., λS 6= λ∗

S. In that case, we define the probe wavelength
detuning as the difference between the probe wavelength used and the optimal probe
wavelength,

∆λS∆λS = λS − λ∗
S .

In the description of the simple model in section 2.4.2 we have derived an expression
for the intensity transmission coefficient of a microcavity containing a gain medium.
By introducing a nonlinear phase shift ∆ϕNL into Eq. (2.96), we can express the
Stokes transmission of the microcavity as

TS =
(1 − R1,S)(1 − R2,S) eGL

∣∣1 −
√

R1,SR2,S eGL e2i(ϕFP+∆ϕNL)
∣∣2 , (4.4)

where the so-called Fabry-Perot phase ϕFP is the phase of the Stokes wave after a
single passage of the resonator. Near the resonance, i.e., for a small detuning ∆λS

from the resonance wavelength, we can approximate the Fabry-Perot phase as

ϕFP ≈ − 2π nS L cos ϑS

λ2
S

∆λS = − 2π nS L

λ2
S

∆λS , (4.5)

as is demonstrated in Eq. (B.15) in appendix B. Here, we have also inserted ϑS = 0.
All the nonlinear optical effects which have been described in sections 2.2 and 2.3
modify either the intensity or the phase of the Stokes wave (or both) during its
propagation in the microcavity. This is taken into account by the gain coefficient G
and the nonlinear phase shift ∆ϕNL in Eq. (4.4), as is explained in more detail in
the following sections.

Gain and phase shift due to stimulated Raman scattering

The influence of stimulated Raman scattering is described by the Raman suscepti-
bility. As has been shown in section 2.2.3, the stimulated Raman scattering affects
the intensity as well as the phase of the probe (Stokes) beam. The effect of SRS on
the intensity is described by the gain coefficient GR, which can be expressed as

GR = γR MP IP(t′) = γ̄R
1

1 + ∆2
MP IP(t + ∆t) , (4.6)

where γ̄R is the Raman gain coefficient of the material, MP is the intensity magnifi-
cation factor introduced in section 2.4.2, and IP is the incident pump intensity (i.e.,
the intensity of the pump beam). The parameter ∆t describes the delay between
pump and probe pulses. As can be clearly seen from the above equation, the stim-
ulated Raman scattering only occurs when pump and probe pulse have a significant
temporal overlap (i.e., for ∆t ≈ 0), which is consistent with our physical understand-
ing of the Raman scattering as an instantaneous1 process. The magnification factor

1We can calculate the characteristic time scale of Raman scattering from the linewidth of the
Raman resonance by using the uncertainty relationship ∆E∆t ≈ ~. With ∆E = hc δν̄R and a
Raman linewidth of δν̄R = 3 cm−1 for GaAs [102], we obtain the characteristic time of about 2 ps,
which can be interpreted as the lifetime of the phonons in the semiconductor lattice, and which is
significantly shorter than the duration of the pump and probe pulses.
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describes the enhancement of the pump intensity inside the cavity at resonance. As
can be seen from Eq. (2.104), it is a function of the reflectivities R1,P and R2,P of the
two Bragg mirrors for the pump wave. Using the results of the simulations presented
in section 4.1 (i.e., R1,P = 0.9817 and R2,P = 0.9974), we calculate

MP =
(1 − 0.9738) (1 + 0.9946)
(
1 −

√
0.9738 × 0.9946

)2 = 333 ,

which means a more than 300-fold increase of the pump intensity in the microcavity.
According to Eq. (2.53), the Raman-induced phase shift of the probe wave after one
passage of the microcavity (i.e., at z = L) is given by

∆ϕR(L) =
γ̄R

2

∆

1 + ∆2
MP IP(t + ∆t)L . (4.7)

Equations (4.6) and (4.7) both depend on the detuning parameter ∆, which has
already been discussed in section 2.2.2. This parameter describes the detuning of the
pump frequency ωP from the optimal pump frequency ω∗

P, which corresponds exactly
to the Raman resonance. For a given probe (Stokes) frequency ωS, the optimal
pump frequency can be calculated according to ω∗

P = ωS + ΩR, where ΩR is the
Raman frequency. In the vicinity of the Raman resonance, i.e., for pump frequencies
close to the optimal pump frequency (ωP ≈ ω∗

P = ωS + ΩR), we approximate the
frequency-dependent (or wavelength-dependent, respectively) parameter ∆ in terms
of the detuning ∆ωP = ωP − (ωS + ΩR). Based on the expression presented in
Eq. (2.27), we obtain

∆ ≈ − 2
∆ωP

δΩR
= − 2

∆νP

δνR
≈ − 2

c δν̄R

c

λ2
P

∆λP = − 2

δν̄R λ2
P

∆λP , (4.8)

where we have used the relationship ν = c ν̄ between the frequency and the wave
number of a light wave, as well as the relationship ∆ν ≈ (c/λ2)∆λ. The pump
wavelength detuning ∆λP represents the detuning of the pump wavelength from
Raman resonance,

∆λP ∆λP = λP − λ∗
P ,

where the optimal pump wavelength λ∗
P can be calculated for a given probe (Stokes)

wavelength λS according to

λ∗
P

ω∗
P = ωS + ΩR ⇐⇒ λ∗

P =

(
1

λS
+ ν̄R

)−1

.

Here, we have again used the relationship ω = 2π ν = 2π c ν̄ = 2π c/λ between
angular frequency, frequency, wavenumber, and wavelength.

In the above paragraphs, we have presented the definitions of λ∗
S, ∆λS, λ∗

P, and ∆λP,
which are related to two different sorts of resonances : the Fabry-Perot resonance
in the microcavity and the Raman resonance of the semiconductor material. For
the understanding of the modeling (and of the experiments in section 4.5), these
definitions should not be confused with one another.

The starting point of the model is a microcavity of a thickness L whose tenth-
order resonance corresponds to the so-called optimal probe wavelength λ∗

S. The probe
beam has a wavelength λS which can be equal to λ∗

S (i.e., exactly at resonance in
the microcavity), but it in general, it can also be slightly off resonance. In the latter
case, the wavelength detuning of the probe beam from the microcavity resonance is
denoted by ∆λS. Based on the actual wavelength λS of the probe beam, we can
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calculate the pump wavelength that corresponds exactly to the Raman resonance,
which is called the optimal pump wavelength λ∗

P. The wavelength of the pump beam
λP can be equal to this optimal pump wavelength (i.e., exactly at Raman resonance).
However, the pump wavelength λP can also be slightly off Raman resonance for the
given probe wavelength. In that case, the detuning of the pump wavelength from the
Raman resonance (not to be confused with the microcavity resonance) is denoted by
∆λP. It should be noted that the pump beam can always be made resonant in the
microcavity by changing the angle of incidence of the pump beam accordingly. This
is the key advantage of a planar microcavity.

For GaAs at room temperature, we use a Raman gain coefficient2 γ̄R = 50 ×
10−11 m/W, a Raman shift given by the wave number ν̄R = 292 cm−1, and a Raman
linewidth (FWHM) of δν̄R = 3 cm−1 [102].

Free charge carriers created by the pump pulses

Having defined the pulse shape of the pump beam in Eq. (4.3), we can describe
the time dependence of the free carrier density NFC. For this purpose, we use the
differential equation (2.72) describing the number of free carriers per unit volume.
The lifetime τe of the free carriers in GaAs is in the nanosecond range [45], which
is much longer than the pulse duration (τe ≫ τP) and much shorter than the time
between two pulses (τe ≪ T ). For our model, we can approximate the carrier lifetime
as infinitely long, τe → ∞ , so that we can easily integrate Eq. (2.72), yielding

NFC(t) =
βTPA

2~ωP

∫ t

−∞

(
MP IP(t′)

)2 dt′ .

By inserting the explicit form of the pump pulse given by Eq. (4.3), we obtain the
time dependence of the free carrier density in the time frame of the probe pulses

NFC(t + ∆t) =
βTPA

4π~c

λP τP

4
√

ln 2

√
π

2

[
1 + erf

(√
8 ln 2

t + ∆t

τP

)]
M2

P I2
P,0 . (4.9)

For GaAs we use a value of βTPA = 23 cm/GW2 [105]. Figure 4.5 illustrates the time
dependence of the free carrier density in the context of the present model for different
pump intensities IP,0. By inserting the limit t → ∞ , we calculate the number of free
carriers generated during one pump pulse with a wavelength of λP = 924 nm and, for
example, a peak pump intensity of IP,0 = 10 MW/cm2 to be N total

FC = 4.6×1024 m−3.

2This value has been extrapolated from the spontaneous Raman scattering efficiency reported
in [104] and using [41] for the calculation of γ̄R.
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Fig. 4.5. Illustration of the
time dependence of the free car-
rier density NFC according to
Eq. (4.9) for different pump in-
tensities IP,0. The dotted line
represents the Gaussian pump
pulse.
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Two photon absorption and absorption by free carriers

The free charge carriers are created by the self-induced two photon absorption (TPA)
of the pump wave. The probe wave, however, is affected by the cross-two photon
absorption (XTPA), as described by Eq. (2.71),

d
dz

IS = − 2βXTPA IPIS .

Under the assumption of a non-depleted pump beam, this equation can be easily
integrated, yielding

IS = IS,0 e−2 βXTPA IP z .

In analogy to Eq. (4.6) for the Raman gain, we can thus describe the cross-two
photon absorption by a negative gain coefficient,

GXTPA = − 2βXTPA IP(t′) ≈ − 2βTPA IP(t + ∆t) , (4.10)

where we have ignored dispersion, i.e., we have set βXTPA ≈ βTPA (see also sec-
tion 2.3.2).

In a very similar way, we can express the free carrier absorption (FCA) by a negative
gain coefficient as

GFCA = −αFC = −σa NFC ,

where the free carrier absorption coefficient αFC has already been introduced in
Eq. (2.82). As has been explained in section 2.3.3, the inverse of αFC is a

me = 0.0632m0

mh = 0.5m0

µe = 6500 × 10−4 m2V−1s−1

µh = 400 × 10−4 m2V−1s−1

Eg = 1.42 eV = 2.72 × 10−19 J

Tab. 4.1. Effective masses and mobili-
ties of electrons and holes in GaAs [45].

measure of the penetration depth of the material. The factor σa

can be calculated with Eq. (2.75). For the effective masses and
mobilities of electrons and holes in GaAs, we use the values shown
in Tab. 4.1, where m0 is the electron mass m0 = 9.11 × 10−31 kg.
With these values, we obtain σa ≈ 4.3 × 10−22 m2. Knowing that
the number of free carriers generated by one pump pulse is of
the order of 1024 m−3 (e.g., 4.6 × 1024 m−3 for a pump intensity
IP,0 = 10 MW/cm2), the penetration depth is of the order of a

millimeter. This is very long compared to the resonator length of L ≈ 1.3 µm so
that we can henceforth ignore the free carrier absorption (FCA) in this model, i.e.,
GFCA ≈ 0.

Refractive index change by free carriers and cross-Kerr effect

In section 2.3.3, we have introduced the phase shift of the Stokes wave that is induced
by the free carriers in the semiconductor material. Since the carriers are created by
the pump pulse, whereas here, we consider the phase shift of the Stokes (i.e., the
probe) wave, we have to take into account the delay ∆t between the probe and the
pump pulse. Thus, we can calculate Stokes phase shift after one passage of the
microcavity (z = L) with Eq. (2.79) as

∆ϕFC(L) =
2π

λS
σnNFC(t + ∆t)L . (4.11)

The coefficient σn can be calculated with Eq. (2.74). Using again the values listed
in Tab. 4.1, we find σn ≈ −1.35 × 10−26 m3.

According to Eq. (2.65) in section 2.3.1, the Stokes phase shift that is caused by the
cross-Kerr effect is described by the nonlinear refractive index n2K. For simplicity,
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we ignore dispersion and approximate the value of n2X by the nonlinear refractive
index of the normal Kerr effect n2. We obtain the cross-Kerr phase shift after one
passage of the microcavity,

∆ϕXK(L) ≈ 2π

λS
2n2 IP(t + ∆t)L . (4.12)

As before, the time delay between pump and probe beam has been taken into account.
Although we have not found a published value of the nonlinear refractive index n2 for
GaAs for the wavelengths used here (i.e., between 920 and 950 nm), we can estimate
a reasonable value by using the results of a fairly complex analytical model [106] with
an experimental reference value of n2 ≈ −3×10−17 m2/W at 1064 nm [107]. Without
presenting the whole calculation here, we obtain a value of n2 ≈ −4× 10−17 m2/W.

4.2.2 Analytical model of the nonlinear transmission

Before presenting the results of the model, we summarize briefly the key findings
of the previous section. The model that we present here describes the nonlinear
transmission of the microcavity at the Stokes (probe) wavelength, which is given by

TS =
(1 − R1,S)(1 − R2,S) eGL

∣∣1 −
√

R1,SR2,S eGL e2i(ϕFP+∆ϕNL)
∣∣2 .

The Fabry-Perot phase ϕFP is given by Eq. (4.5) as a function of the detuning from
the microcavity resonance ∆λS as

ϕFP ≈ − 2π n L

λ2
S

∆λS .

The total nonlinear phase shift ∆ϕNL at the Stokes wavelength is caused by the
Raman effect, the cross-Kerr effect, and the free carriers. It can be expressed as the
sum ∆ϕR + ∆ϕXK + ∆ϕFC, yielding

∆ϕNL =

(
γ̄R

2

∆

1 + ∆2
L +

2π

λS
2n2 L

)
IP(t + ∆t) +

(
2π

λS
σnL

)
NFC(t + ∆t) ,

where the ∆ parameter is proportional to the pump wavelength detuning ∆λP ac-
cording to Eq. (4.8), which is

∆ ≈ − 2

δν̄Rλ2
P

∆λP .

The pump intensity IP and the free carrier density NFC are given by Eqs. (4.3)
and (4.9). As mentioned above, the gain G is essentially composed of the Raman
gain GR given by Eq. (4.6) and the negative XTPA contribution GXTPA described
by Eq. (4.10),

G ≈ (γR − 2βTPA) IP(t + ∆t) =

(
γ̄R

1

1 + ∆2
− 2βTPA

)
IP(t + ∆t) , (4.13)

whereas we can neglect the influence of the free carrier absorption (FCA) here. As
has been explained in detail in the previous section, it is important to distinguish
between the detuning from the microcavity resonance ∆λS, which determines the
starting point of the probe wavelength, and the detuning ∆λP from the Raman
resonance, which indicates by how much the pump wavelength is detuned from the
optimum pump wavelength λ∗

P.
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The above set of equations represents an analytical nonlinear model of the probe
transmission (i.e., Stokes transmission) TS of the microcavity, including stimulated
Raman scattering (SRS), the cross Kerr effect (X-Kerr), cross-two photon absorption
(XTPA), and free carrier refraction (FCR). The free carrier absorption (FCA) is not
taken into account for reasons that have been discussed above. The model depends
on several independent parameters, which are the probe wavelength detuning ∆λS,
the pump wavelength detuning ∆λP, the pump intensity IP,0, and the probe-pump
delay ∆t. We therefore express the nonlinear probe transmission as

TS = TS

(
∆λS,∆λP, IP,0,∆t

)
.

It is worth noting here that only the stimulated Raman scattering depends on the
parameter ∆ and thus on the pump wavelength λP. For all other nonlinear effects,
the exact value of the pump wavelength does not play a crucial role (as long as it is
approximately in the range between 900 and 950 nm).

Linear transmission as special case of nonlinear transmission

From this general, nonlinear model, we can easily derive the linear case, where we do
not take into account the nonlinear effects, by setting IP,0 = 0. In that case, there
is no pump beam at all (IP ≡ 0), and therefore the free carrier density vanishes,
too (NFC ≡ 0). Consequently, the gain G and the nonlinear phase shift ∆ϕNL are
both zero, and the resulting linear probe transmission is only a function of the probe
wavelength detuning ∆λS, yielding an Airy function (see appendix B) given by

TS = TS

(
∆λS

)
=

(1 − R1,S)(1 − R2,S)∣∣∣1 −
√

R1,SR2,S e−2i (2πnL/λ2

S)∆λS

∣∣∣
2 . (4.14)

In Fig. 4.6 we show the resulting linear transmission spectrum of the microcavity
according to Eq. (4.14). This transmission curve indicates the linear transmission TS

of the microcavity for the probe beam as a function of the probe wavelength detuning
∆λS (or the probe wavelength λS, respectively).

Influence of nonlinear effects on the microcavity transmission

In the following, we discuss the different components of the nonlinear model, i.e., we
show how all the different nonlinear optical effects affect the probe transmission TS.
In order to do that, we divide the nonlinear effects into two groups, which have

Fig. 4.6. Simulated linear
transmission spectrum of the
GaAs microcavity according to
the analytical model of the probe
(i.e., Stokes) beam propagation.
The curve correponds to an Airy
function, as given by Eq. (4.14).
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already been mentioned above : the effects affecting the intensity of the probe wave
and the effects changing its phase.

In the fist group, we consider the cross-two photon absorption (XTPA) and the
stimulated Raman scattering (SRS). The influence of these two effects on the probe
transmission is obvious. The XTPA is an absorptive effect and thus reduces the probe
transmission, while the SRS is basically an amplifying process which can therefore
lead to an enhanced transmission (as mentioned in section 2.4.2, the "transmission"
can even be greater than unity in this case).

The second group, i.e., the effects modifying the phase of the probe beam, is com-
posed of the cross Kerr effect (X-Kerr), the free carrier refraction (FCR), and again
the stimulated Raman scattering (SRS) through the real part of the Raman suscep-
tibility. As opposed to the first group, their influence on the probe transmission is
indirect. These effects induce a phase shift ∆ϕNL, which is then translated into a
modification of the transmission by "walking" up or down on the linear resonance
curve (Airy function) shown in Fig. 4.6. To illustrate this translation process, we
consider the Airy curve as a function of the phase ϕFP (instead of the wavelength
detuning as in Eq. (4.14)),

TS

(
ϕFP

)
=

(1 − R1,S)(1 − R2,S)
∣∣1 −

√
R1,SR2,S e2i ϕFP

∣∣2 =
Tmax

1 + 4
π2 F2 sin2(ϕFP)

, (4.15)

which is derived and discussed in detail in appendix B and which is plotted in Fig. 4.7.
The finesse F is the ratio between the free spectral range ∆νFSR of the microcavity
and the full width at half maximum δν1/2 of the resonance curve in the frequency
domain. The free spectral range corresponds to a phase shift ϕFP = π, which is the
periodicity of the Airy function. Therefore, we can define the phase δϕ1/2 corre-
sponding to the full width at half maximum (FWHM) of the resonance curve in the
phase domain according to

δϕ1/2F =
∆νFSR

δν1/2
=

π

δϕ1/2
⇐⇒ δϕ1/2 =

π

F . (4.16)

The physical meaning of δϕ1/2 is illustrated in Fig. 4.7. We suppose that the initial
phase of the electromagnetic wave in the microcavity is such that the transmission
is exactly half the maximum transmission, i.e., Tmax/2, as is illustrated by point A.
By shifting the phase of the wave towards the right, we move up on the transmission
curve, and the transmission thereby increases. For a phase shift of δϕ1/2/2, we reach

Fig. 4.7. Normalized simulated
linear transmission spectrum of
the GaAs microcavity as a func-
tion of the phase ϕFP accord-
ing to Eq. (4.15). Basically,
the graph shows the same curve
as Fig. 4.6. Only the ordinate
is normalized to the maximum
transmission Tmax, and the ab-
scissa is given as a phase instead
of a wavelength. For more expla-
nations see text.
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the maximum Tmax of the transmission curve in point B. By moving further to the
right, the transmission becomes again Tmax/2 in point C, which corresponds exactly
to a total phase shift of δϕ1/2.

Besides the meaning as the linewidth (FWHM) of the resonance, there is another
useful interpretation of δϕ1/2. If we start our considerations at point B, then a phase
shift of δϕ1/2 leads to point D, which causes a significant drop in the microcavity
transmission. To quantify this drop, we insert δϕ1/2 into Eq. (4.15). Since the
finesse F is usually much greater than π, we can approximate the sine function by
its argument, sin(π/F) ≈ π/F , so that the resulting transmission in point D is only
one fifth (i.e., 20 %) of the maximum transmission,

TS(δϕ1/2) ≈ Tmax

1 + 4
π2F2 π2

F2

=
Tmax

1 + 4
=

1

5
Tmax .

In both of the above-described interpretations, δϕ1/2 represents a characteristic quan-
tity for the given resonance curve, i.e., for the given microcavity with its reflectivities
of the two mirrors. Therefore, we use δϕ1/2 in the following considerations as a ref-
erence, i.e., as a sort of unit of phase shifts.

We are now interested in the contributions of the different nonlinear effects to the
total nonlinear phase shift ∆ϕNL that we have included in our model. As has been
shown in section 4.2.1, the phase shifts induced by the cross Kerr effect (X-Kerr),
the free carrier refraction (FCR), and the stimulated Raman scattering (SRS) are
given by Eqs. (4.12), (4.11), and (4.7), respectively. Essentially, all three phase
shifts are a function of the time delay ∆t and of the pump intensity IP,0 (either
directly or indirectly through the free carrier density NFC). The SRS-induced phase
shift depends additionally on the pump wavelength detuning ∆λP. In Fig. 4.8, we
illustrate the time dependence of the three phase shifts according to the above-
mentioned equations for a pump intensity IP,0 = 2 MW/cm2. As stated above, the
phase shifts are given in units of δϕ1/2.

For the sake of convenience, we will omit the "X" in "X-Kerr" and "XTPA" in
the remainder of this chapter because we only consider the probe beam here, and
thus it is clear that only the non-degenerate effects XTPA and X-Kerr (as opposed
to the self-induced effects TPA and Kerr) are of interest for the discussion.

As can be clearly seen from the graphs in Fig. 4.8, the (cross) Kerr effect and the
stimulated Raman scattering are instantaneous effects. That means that they occur
only as long as the pump pulse is present in the microcavity, i.e., around ∆t = 0 in
the center of the graphs. The free carrier refraction, however, is a long-term effect
that depends on the free carrier lifetime in the microcavity, as has already been
discussed in section 2.3.3. It is thus fairly easy to identify the contribution of the
free carriers, simply by looking at the long-term behavior.

While the Kerr and FCR phase shifts are purely negative (which is caused by the
material properties of GaAs), the SRS-induced phase shift can be positive or negative,
as the three graphs on the right hand side of Fig. 4.8 show. The three graphs corre-
spond to three different pump wavelengths : exactly at Raman resonance (∆λP = 0),
slightly off Raman resonance towards longer wavelengths (∆λP = +0.12 nm), and
slightly off Raman resonance towards shorter wavelengths (∆λP = −0.12 nm). The
latter two cases, i.e., ∆λP = ±0.12 nm, have been chosen for illustration purposes
because they show the strongest positive and negative phase shift, respectively. As
can be seen from the real part of the Raman susceptibility (cf. Fig. 2.3), beyond this
maximum, i.e., for a higher detuning |∆λP| > 0.12 nm, the phase shift becomes less
strong.
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Fig. 4.8. Calculated time dependence of the phase shifts induced by different nonlinear optical effects (Kerr, FCR, SRS)
in units of δϕ1/2. The phase shifts have been calculated with Eqs. (4.12), (4.11), and (4.7), respectively, for a pump
intensity IP,0 = 2 MW/cm2. The three graphs on the right hand side correspond to three different pump wavelength
detunings ∆λP, where ∆λP = ±0.12 nm show the strongest positive and negative phase shift.

A comparison between the different graphs clearly shows that the FCR phase
shift is by far the strongest one, followed by the Kerr-induced phase shift, which
is the second strongest one. The lower left-hand graph in Fig. 4.8 illustrates the
combination of these two effects. Compared to this, the phase shift due to SRS is very
weak and appears only as a small perturbation. All the curves in Fig. 4.8 have been
calculated for a moderate pump intensity of 2 MW/cm2. Since the FCR contribution
depends on the free carrier density, which in turn is a function of the square of the
pump intensity (while Kerr and SRS are only linear in IP), the discrepancy between
the relative strengths of the different contributions is even more pronounced for
higher pump intensities.

The phase shifts in Fig. 4.8 are given in units of δϕ1/2. Thus, we can see the
influence of the different nonlinear effects on the microcavity transmission directly
from the graphs. Supposing that the initial state of the resonator is point B (in
Fig. 4.7), the negative phase shift caused by the Kerr effect leads to a decrease of
the transmission as we move down on the resonance curve to the left. For a pump
intensity of IP,0 = 2 MW/cm2, the maximum Kerr shift (i.e., at ∆t = 0) causes the
transmission to drop to about 20 % of its maximum value because ∆ϕXK ≈ −δϕ1/2,
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as is indicated by the upper left graph in Fig. 4.8. The FCR-induced phase shift for
the same pump intensity is five times stronger so that we move even further to the
left on the resonance curve in Fig. 4.7 to almost zero transmission. As mentioned
above, the SRS contribution is almost negligible compared to the other two effects.

If, as opposed to the above considerations, the initial state of the microcavity is
given by point C (in Fig. 4.7), the negative phase shifts induced by the Kerr effect
and the free carriers cause the transmission first to rise up to the maximum and then
to roll over the maximum to smaller values. Here again, the FCR contribution is
much stronger (∆ϕFC ≈ − 5 δϕ1/2) and leads to an almost zero transmision.

In both of the above cases, the Kerr phase shift returns to ∆ϕXK = 0 after
the pump pulse has passed the microcavity, whereas the FCR-induced phase shift
persists over the much longer free carrier lifetime.

4.2.3 Simulations of the pump-probe experiments

In the previous section, we have analyzed the different mathematical components of
our model and their influence on the intensity and the phase of the probe (Stokes)
wave in the semiconductor microcavity. We have also determined the resulting con-
sequences for the probe transmission TS. Based on these considerations, we now
show some simulations of the pump-probe experiments presented in section 4.5.

Figures 4.9 and 4.10 on pages 96 and 97 show the results of the simulations. Each
figure contains ten graphs which show the influence of the different nonlinear optical
effects on the probe transmission TS. The graphs on the left-hand side of both
figures show all the nonlinear effects (i.e., TPA, Kerr, FCR, and SRS) separately, for
illustration purposes, whereas the graphs on the right-hand side represent various
combinations of these four effects. As we have shown in section 4.2.2, our model of
the probe transmission TS has four independent parameters,

TS = TS

(
∆λS,∆λP, IP,0,∆t

)
,

whose influence on the transmission can be seen in the graphs. Each graph in Figs. 4.9
and 4.10 shows TS versus the time delay ∆t for several pump intensities IP,0 between
0 and 2 MW/cm2 (as multiple traces per graph). Regarding the probe wavelength
detuning ∆λS, we consider two different situations, which have already been dis-
cussed in the previous section : a probe wavelength that is exactly at resonance in
the microcavity (∆λS = 0, point B in Fig. 4.7) and a situation where the probe beam
is halfway off resonance (∆λS = −0.07 nm, point C in Fig. 4.7). It should be noted
here that according to Eq. (4.5), the Fabry-Perot phase ϕFP has the opposite sign
of the probe wavelength detuning ∆λS. The influence of stimulated Raman scatter-
ing is shown for two different pump wavelength detunings : one exactly at Raman
resonance (∆λP = 0) and one far off the Raman resonance (∆λP = +2.4 nm).

When considering only one nonlinear effect at a time, i.e., the five graphs on the
left-hand side of each figure, we find that the time dependence of the probe trans-
mission TS in these graphs corresponds exactly to the discussion in the previous
section. In other words, we clearly see the expected influence of the nonlinear effects
on the intensity and on the phase of the probe (Stokes) wave in the microcavity.

As the top left graphs illustrate, TPA reduces the transmission by attenuating
the probe intensity directly inside the microcavity (we consider the non-degenerate
TPA, or cross-TPA, here). The Kerr effect and the FCR both induce a phase shift
of the probe wave in the microcavity, which is translated by the resonance curve
(Airy function) into a variation of the probe transmission, as has been demonstrated
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in the previous section. In Fig. 4.9, where the probe beam is initially exactly at
resonance (i.e., TS = Tmax), both effects force the transmission to decrease. However,
in Fig. 4.10, where the starting point is halfway off the microcavity resonance (i.e.,
TS = Tmax/2), the transmission first rises to the maximum, in the vicinity of ∆t ≈ 0,
and then decreases by moving down on the Airy curve. In either case, it is clearly
visible that the Kerr phase shift returns very fast to the initial state, whereas the
FCR induced phase shift keeps the transmission low in the long-term.

The fourth graph on the left-hand side of both figures shows clearly that the
microcavity transmission is not influenced by SRS if the pump wavelength is far
off the Raman resonance (i.e., TS(∆t) ≈ const.). This means that for ∆λP ≫ 0 or
∆λP ≪ 0, SRS can be ignored. However, as can be seen from bottom left graphs, the
transmission can be significantly enhanced (i.e., amplified) if the pump wavelength
is exactly at Raman resonance (i.e., if ∆λP = 0). In that case (see Fig. 4.9), our
model predicts a more than 120-fold amplification (by considering only SRS and no
other nonlinear effect). For sure, this theoretical result would not be obtained in an
experiment because the analytical model presented here does not take into account
the depletion of the pump beam (due to the energy transfer to the probe beam), nor
does it include any transient phenomena occurring during the nonlinear interaction
(such as a chirp of the pump pulse etc.).

The upper three graphs on the right-hand side of each figure illustrate the combina-
tions TPA with Kerr, TPA with FCR, and FCR with Kerr. These graphs serve only
as an illustration of the combined influence of two effects at the same time.

The main interest of the analytical model that we have developed in this sec-
tion is to simulate the pump-probe experiments presented in section 4.5. For this
purpose, we have to take into account all three effects (i.e., TPA, Kerr, and FCR)
and additionally SRS. The bottom right graph in both figures shows a case that
corresponds to the pump-probe experiments where the pump wavelength is exactly
at Raman resonance (i.e., ∆λP = 0). The fourth graph (on the right-hand side)
shows the combination of TPA, FCR, and Kerr, which is practically the same as
the combination of all four effects (i.e., TPA, FCR, Kerr, and SRS) in the case that
the pump wavelength is far off the Raman resonance (i.e., ∆λP ≫ 0 or ∆λP ≪ 0).
Thus, the lower two graphs on the right-hand side of each figure are the ones that ef-
fectively simulate the pump-probe experiments without and with stimulated Raman
scattering (SRS).

By analyzing the bottom right graph in both figures (i.e., all four effects at the same
time) in more detail, we do not see the strong amplification that we would expect
from SRS alone (see bottom left graph) although the pump beam is exactly at Raman
resonance. We first consider the case of Fig. 4.9, where the initial probe wavelength
is exactly at resonance. For delays slightly below ∆t = 0 (i.e., when the pump pulse
enters the microcavity), the refractive nonlinear effects (Kerr, FCR) start moving the
position of the resonance curve (in terms of frequency or wavelength, respectively) so
that pump and probe are not at resonance in the microcavity any more. As a result,
the enhancement of the electric fields (and intensities) of the pump and the Stokes
wave drop significantly, and thus, there is only a very weak influence of SRS. This is
the reason why, by comparing the fourth and the fifth graph on the right-hand side of
Fig. 4.9, we hardly see any difference between the situations without and with SRS.
From an experimental point of view, this fact makes it difficult to demonstrate the
presence of SRS in the measurement results because the signature of SRS is likely to
be of the same order of magnitude as the measurement uncertainty.

In Fig. 4.10, we compensate the Kerr- and FCR-induced displacement of the res-
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Fig. 4.9. Simulations of the pump-probe experiments for ∆λS = 0. Time dependence of the probe transmission TS of
the semiconductor microcavity for pump intensities IP,0 between 0.3 and 1.9 MW/cm2 (indicated by the different colors
of the traces). The graphs show the influence of the different nonlinear optical effects and their combinations. It should
be noted that the vertical scale of the bottom left graph (SRS, ∆λP = 0) is different from the other graphs (up to 130).
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Fig. 4.10. Simulations of the pump-probe experiments for ∆λS = −0.07 nm. Time dependence of the probe transmis-
sion TS of the semiconductor microcavity for pump intensities IP,0 between 0.3 and 1.9 MW/cm2 (indicated by the differ-
ent colors of the traces). The graphs show the influence of the different nonlinear optical effects and their combinations.
The dotted frame indicates the two graphs that correspond to the pump-probe experiments presented in section 4.5.
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onance curve by setting the initial probe wavelength already half-way off resonance.
For delays of ∆t ≈ 0, the center of the resonance curve is then moved towards the
wavelength of the probe beam, and this leads to a visible increase of the transmission
of the microcavity. Therefore, when comparing the fourth and the fifth graph on the
right-hand side of Fig. 4.10 (where the initial probe transmission is only half the
maximum transmission, i.e., TS ≈ Tmax/2), there is a clear difference in the simu-
lated time dependences without and with SRS. Although this increase does not really
correspond to an net amplification of the probe beam (because even the maximum
value is not significantly higher than the maximum Tmax of the linear transmission),
the influence of SRS is clearly visible in the simulations and should, therefore, also
be measurable in the experiments.

Thus, we conclude that is reasonable to carry out the pump-probe measurements
with an initial probe wavelength detuning ∆λS which is halfway off the resonance
towards shorter wavelengths (i.e., point C in Fig. 4.7).

As all the graphs clearly show, the long-term behavior of the microcavity trans-
mission is exclusively determined by the free carrier density because all the
other nonlinear effects taken into account by our model are considered as instan-
taneous. The pump intensities IP,0 that have been used for the simulations vary
between 0.3 and 1.9 MW/cm2 (see the different traces in each graph). This range
has been chosen because it illustrates very well the dependence of the probe trans-
mission on the pump intensity. In all the graphs including FCR, one can clearly see
the superposition of the two or three traces corresponding to the highest intensities.
This means that for even higher intensities, the shape of the traces would not change
significantly and that the transmission drops to values below 1%. We can, therefore,
consider these traces as a sort of asymptotic limit indicating the final state of the
microcavity.

As we will see in the following sections, the above-presented model and the simula-
tions do not perfectly describe the pump-probe measurements that have been carried
out with the real sample. Given the simplicity of the model, in particular the fact
that it does not take into account such important things as self phase modulation
etc., this is not surprising. However, the simulations yield some valuable insights that
are essential for the practical realization of the experiments and for the interpretation
and general understanding of the the results.

• Based on the discussion of the simulations, we know how to set the initial
wavelengths λS and λP of both beams in order to compensate for the Kerr-
and FCR-induce nonlinear phase shift and, thus, to see a measurable signature
of stimulated Raman scattering (SRS) in the measurement data.

• Although stimulated Raman scattering can, in general, lead to a net ampli-
fication of the Stokes (probe) beam, the simulations clearly show that the
above-mentioned signature of SRS consists only in a (clearly) visible increase
of the transmission of the microcavity, which does not significantly exceed the
maximum linear transmission Tmax.

• The simulations provide a good overview of the general time dependence of the
probe transmission TS, describing the key features of the transmission curves,
such as the behavior for delays around ∆t = 0, as well as the asymptotic
long-time behavior that is determined by the free carriers.

With these findings, we learn very much about how we should design and carry out
the experiments and what, approximately, we are expected to observe.
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4.3 Experimental setup and methods

In this section we describe the experimental setup that is used for the pump-probe
measurements. We start with a description of the picosecond light source that gen-
erates the pump and the probe pulses. Furthermore, the whole experimental setup
is explained, i.e., how the two beams are prepared for the experiment, how they are
injected in the sample, and what kind of signals are detected. The section closes by
describing how the raw data are acquired, digitized, and processed in order to yield
the transmission of the sample for the pump and the probe beam.

4.3.1 Two synchronous optical parametric generators

The light source that is used for the pump-probe experiments has been designed by
Robert Frey, a senior researcher in our group (MANOLIA), and it was improved
by former PhD students for previous research projects. It consists of a modified
commercial Nd:YAG picosecond laser, a frequency doubling and tripling stage, two
lines of optical parametric generators (one for the pump and one for the probe beam),
and an additional amplifier stage for the pump beam.

Since it is a self-made light source (i.e., no commercial turn-key system), I have
spent a significant amount of time on several modifications of the source and on the
correct alignment all the mechanical and optical components. Also, it has required
very much practice and a lot of time to conduct the experiments that are presented
in the following sections.

Frequency-tripled Nd:YAG picosecond laser

The first element in the chain of the pulse generation is a commercial picosecond
laser of the type PY61C-10, manufactured by the company Continuum. The laser
has been modified for previous research projects in order to provide two output
beams instead of only one. In total, the modified laser is composed of three stages :
an oscillator, a preamplifier, and an amplifier. It provides two pulsed output beams :
the so-called signal beam and the so-called amplifier beam. Both beams have a
diameter of about 6 mm. They consist of pulses of a duration of about 12 ps at a
wavelength of 1064 nm, and the pulse energies of both beams are about 8 to 13 mJ.
The pulses are generated with a repetition rate of 10 Hz. The laser also provides
an electric signal that is used to synchronize the data acquisition and processing
etc. (sync signal).

Both output beams of the laser are converted to 355 nm by frequency tripling.
The conversion comprises three steps : spatial filtering, frequency doubling, and fre-
quency tripling. For the spatial filtering, we cannot use the lens-and-pinhole method
since the pulse energy of both beams is too high. Focussing would ionize the air
and/or damage the pinhole. Therefore, we use the central part of the far field of the
beams. Thus, both beams propagate over 30 meters in free space by being reflected
several times by a set of mirrors, as depicted in Fig. 4.11. In order to compensate
for mechanical instabilities or drifts, the pointing of the beams is controlled with
two quadrant photodiodes (QPD). An electronic servo system reads out the position
information from the quadrant photodiodes and controls two pairs of step motors
which are connected to two mirror mounts (one for each beam).

Both beams are then guided through a combination of two nonlinear crystals for
the frequency conversion. The crystals can be rotated to adjust the optimal phase
matching angle. In a first step, the 1064 nm pulses are partly converted to 532 nm
by second harmonic generation in a KDP crystal. In a second step, the remainder of
the light at 1064 nm and the light at 532 nm are combined in a second KDP crystal
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Fig. 4.11. Spatial filtering and frequency tripling of the pulsed laser beams that are generated
by the modified Nd:YAG laser. Both the signal beam (S) and the amplifier beam (A) are guided
over several mirrors (M) and thereby propagate more than 30 meters in free space before passing
two KDP crystals. In the first KDP crystal, the 1064-nm infrared pulses are converted to 532 nm,
and in the second crystal this green light and the remainder of the infrared light are converted
to 355 nm by sum frequency generation (SFG). The pointing of both beams is monitored by two
quadrant photodiodes (QPD) and stabilized by step motor actuators in two of the mirror mounts.
The signal beam is used to pump the two optical parametric generators, while the amplifier beam
pumps the optical parametric amplifier stage.

to generate pulses at 355 nm by sum frequency generation. The overall efficiency of
this two-step approach, using two second-order nonlinear effects, is higher than using
direct third harmonic generation, which would be a third-order nonlinear effect. So,
after the passage of the two crystals, both the signal beam and the amplifier beam
are converted to 355 nm [108].

Two independent parametric generators and amplifiers

The signal beam is divided into two equally powerful parts by a 50:50 beam splitter in
order to generate two independent beams (signals) whose wavelengths can be tuned
continuously over a large range from the ultraviolet to the infrared. One of the two
parts is henceforth called the pump beam, the other one is referred to as the probe
beam. The wavelength tuning is achieved by two independent optical parametric
generators. Their design, which is identical for both beams, has been developed
by Huang [109]. It uses a sequence of two second-order nonlinear optical effects :
optical parametric fluorescence (OPF) and optical parametric amplification (OPA).

In each of the two optical parametric generators, the pulses at 355 nm are guided
through two nonlinear barium beta-borate crystals (β-BaB2O2, BBO). In the first
BBO crystal, they induce optical parametric fluorescence. Due to this effect,
the ultraviolet input beam interacts with the crystal in a nonlinear way so that a
photon at 355 nm spontaneously "decays" into two new photons which have to fulfill
the conservation of energy,

~ω1 = ~ω2 + ~ω3 ⇐⇒ ω1 = ω2 + ω3 ⇐⇒ 1

λ1
=

1

λ2
+

1

λ3
. (4.17)

Due to the birefringence of the crystal, there is for each combination of wavelengths
λ2 and λ3 (or frequencies ω2 and ω3, respectively) a combination of propagation
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Fig. 4.12. (a) Optical para-
metric fluorescence (OPF). A
strong electromagnetic wave
at the frequency ω1 is incident
upon a nonlinear crystal (e.g.,
BBO) and its photons "decay"
spontaneously into pairs of
photons at the frequencies ω2

and ω3. Because of the phase
matching condition between
the three interacting light
waves, a rainbow-like cone of
light is generated behind the
crystal.

(b) Optical parametric
amplification (OPA). Besides
the strong electromagnetic
wave at the frequency ω1, a
weak wave at ω2 is incident
upon a nonlinear crystal. Due
to the nonlinear interaction
of the waves with the crystal,
the weak wave is amplified
and the complementary wave
at ω3 is created.

directions that leads to an efficient generation of the new waves. These propagation
directions are given by the so-called phase matching condition

~~k1 = ~~k2 + ~~k3 ⇐⇒ ~k1 = ~k2 + ~k3 , (4.18)

which corresponds to the conservation of momentum of the three interacting waves.
As a result, a cone of light appears behind the first BBO crystal. In its center, the
phase matching condition is fulfilled for all three wave vectors being parallel. By
rotating the crystal, one can alter the constraints imposed by the phase matching
condition and, thus, freely choose this combination of wavelengths (λ2, λ3) which
propagate in the same direction as the input wave at λ1. Figure 4.12(a) illustrates
the principle of the optical parametric fluorescence and the generation of the phase
matching cone.

In the second BBO crystal, the selected waves at λ2 and λ3 interact again with
the remainder of the ultraviolet wave at λ1. The second crystal is rotated by the
same angle with respect to the propagation direction as the first crystal, but in
the inverse direction. As a result, both wavelengths are amplified by the so-called
optical parametric amplification, as is illustrated in Fig. 4.12(b). Thus, after the
passage of the two BBO crystals, the initial ultraviolet beam at 355 nm is converted
into two waves with two wavelengths λ2 and λ3 which can be freely chosen within a
large spectral range by rotating the two BBO crystals.

The ultraviolet beam is, however, not entirely depleted. The remaining ultraviolet
light at 355 nm is separated from the other two waves by a dichroic mirror. It is sent
back by another mirror in order to pass again the two BBO crystals in the opposite
direction. The other two waves at λ2 and λ3 are guided onto a diffraction grating
at grazing incidence. Figure 4.13 illustrates the course of the different beams. The
first order of diffraction of one of the waves, say λ2, is reflected back onto the grating
by a movable mirror. This reflected light is again diffracted on the grating. Due to
the symmetry of the diffraction process, part of this diffracted light propagates back
through the two BBO crystals. The result of this so-called Littman setup [110] is a
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Fig. 4.13. Optical parametric generators and optical parametric amplifier. The so-called signal
beam (S) from the frequency-tripled Nd:YAG laser is guided over two mirrors (M). It is split into
two parts by a dichroic 50:50 beamsplitter (DBS). The two parts are then converted by two optical
parametric generators (OPG) into the pump beam and the probe beam. Each of the two OPGs is
composed of two BBO crystals, a dichroic mirror (DM), a grating (G) and two mirrors (M). After
the OPGs, pump and probe beam pass a colored glass filter (F) in order to block the unwanted
wavelengths. Both beams are then injected into single mode fibers (SMF) for spatial filtering. The
pump beam is further amplified in another BBO crystal which is pumped by the so-called amplifier
beam (A) from the frequency-tripled Nd:YAG laser. Behind this amplifier stage for the pump
beam, another colored glass filter (F) and a dichroic mirror (DM) block the UV pump light of the
amplifier beam and the complementary wave so that only the desired pump wavelength λP passes.
For detailed explanations see the text.

high-resolution spectral filtering.
The distances between all the optical components of the Littman setup are such

that the ultraviolet beam at 355 nm and the spectrally filtered beam (λ2) are again
spatially and temporally superimposed in the BBO crystals. (It should be noted
that we work with picosecond pulses which have a physical length of only several
millimeters.) During the second passage of the crystals, the spectrally filtered wave
at λ2 is strongly amplified by optical parametric amplification. As a side effect,
the complementary wave at λ3, given by 1/λ3 = 1/λ1 − 1/λ2, is recreated and also
amplified by optical parametric amplification. Since we only need one of the two
wavelengths for the experiments, we use a colored glass filter to block the unwanted
one. In the present case, we actually block the wave at λ2 that is generated by the
Littman system (somewhere in the yellow spectral range) and use the complementary
wave at λ3 in the near infrared (between 900 nm and 950 nm).

After this spectral filtering, both beams (pump and probe) are spatially filtered
in order to obtain a good beam profile. Therefore, each beam generated by the opti-
cal parametric generators is injected with a microscope objective into a single-mode
fiber which is about 10 centimeters long and which is appropriately chosen for the
wavelength used. After the passage through the fiber, another microscope objec-
tive extracts the beam. The pump beam is then again amplified in another optical
parametric amplifier. For this purpose, the amplifier beam (i.e., the second beam
provided by the laser and the frequency doubling and tripling stage) is superimposed



4.3 Experimental setup and methods 103

with the pump beam in a third BBO crystal. Here again, the complementary wave-
length is recreated, as in the case of the optical parametric generators. Therefore, a
dichroic mirror and a colored glass filter are put behind the crystal in order to iso-
late the wavelength of interest. As a result, the pump pulses have a pulse energy of
about 20 to 30 µJ at a well-defined, freely choosable wavelength λP. The wavelength
of the probe beam can also be freely tuned and is henceforth called λS (because it
corresponds to the Stokes beam in the process of the stimulated Raman scattering).
The pulse energy of the probe beam is too weak to be measured (certainly in the
sub-microjoule range).

In total, the sequence of the Nd:YAG laser, the spatial filtering and frequency
tripling, the two optical parametric generators, and the optical parametric ampli-
fier for the pump beam provides an appropriate light source for the pump-probe
experiments. It delivers two output beams of almost Fourier-transform limited gaus-
sian pulses. One of the beams (pump) is significantly stronger than the other (probe).
Both beams are wavelength-tunable over a wide spectral range from about 400 nm
to more than 2.5 µm. In the present case we work in the near infrared spectral range.
The pulse duration is about 12 ps at a repetition rate of 10 Hz. Since both beams
are initially generated by the same Nd:YAG pump laser, their pulses have a fixed
time delay with respect to one another, which allows us to use them for pump-probe
measurements.

However, it is important to note that, despite the fact that both beams originate
from the same pump laser, there is no correlation between the intensities of the two
beams. This is due to the fact that little variations of the beam positions in the
frequency doubling and tripling stages can lead to strong variations in the output
intensities of the beams after the optical parametric generators. The fluctuations of
the final pump and probe intensities can be even higher because of varying coupling
efficiencies into the single mode fibers. These variations have to be taken into account
in the transmission measurements that are presented below.

Pump and probe wavelengths and spectra

In order to measure the wavelengths of the two beams, we use a monochromator
from Jobin Yvon. A CCD line camera is mounted at the exit of the monochromator.
The line camera is connected to a computer (PC) and triggered by the sync signal of
the laser. The data from the camera are read by a data acquisition program which
has been developed by other PhD students and researchers for previous research
projects in the programming language Pascal. This program has been modified in
order to be useful for the experiments presented here. As a result, we can save
complete spectra with a resolution of 0.026 nm. Furthermore, we can record time
series of the barycenter wavelength of the central peak. In order to measure the
pump wavelength λP and the probe wavelength λS, we record a series of at least 600
barycenter wavelengths (corresponding to one minute of recording at a repetition
rate of 10 Hz) and determine its average value and standard deviation.

It should be noted that the spectral range which can be covered by the CCD line
camera without rotation of the diffraction grating in the monochromator is about
14 nm. Since the pump and the probe wavelengths are separated by approximately
25 nm (921 nm and 946 nm, respectively) we have to rotate the grating manually
in order to switch from a pump wavelength measurement to a probe wavelength
measurement, and vice versa.

In order to guide the pump beam into the monochromator, we utilize the fact
that the dichroic mirror that is introduced behind the pump beam amplifier (i.e.,
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Fig. 4.14. Spectra of
the pump beam (a) and
the probe beam (b). The
markers represent the ex-
perimental data that have
been measured with the
monochromator and the
data acqusition program.
The blue lines are gaus-
sian functions that are fit-
ted to the data. From
the spectra, we deter-
mine linewidth (FWHM)
of the pump beam δλP =
0.22 nm and the linewidth
(FWHM) of the probe
beam δλS = 0.18 nm.

behind the third BBO crystal) provides a weak reflection of the pump beam because
its reflectivity at the pump wavelength is not exactly zero. This reflection is guided
over several mirrors into the monochromator. An advantage of this setup is that it
allows us to monitor the pump wavelength in real-time (i.e., during the experiments).

We can also guide the probe beam into the monochromator. For this purpose,
we use a little mirror on a flip mount, which can be introduced into the probe
beam. The light is guided over several mirrors, including another flip mirror, into
the monochromator. It is not possible to monitor the probe wavelength in real time
during the experiments.

Figure 4.14 shows two typical spectra of the pump and the probe beam along with
Gaussian fits. From the fits, we determine linewidth (FWHM) of the pump beam
δλP = 0.22 nm and the linewidth (FWHM) of the probe beam δλS = 0.18 nm. For all
the experiments presented in this chapter, the measurement uncertainty (standard
deviation) of the wavelength measurements is ∆λ = 0.06 nm for both beams. It is
worth noting that this corresponds approximately to one third of the linewidth of
the microcavity resonance.

4.3.2 Preparation and superposition of pump and probe beam

The aim of the experiments is to measure the probe transmission TS of the sample
as a function of several parameters, such as the probe wavelength λS, the pump
wavelength λP, the pump intensity IP, and the time delay between the pump and the
probe pulses ∆t. Other parameters of these measurements are the angle of incidence
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of the probe beam, which is at normal incidence for all experiments (i.e., ϑS ≡ 0), the
angle of incidence of the pump beam ϑP, which can be adjusted to make the pump
beam resonant in the cavity, and the probe beam intensity IS, whose exact value does
not matter here. As explained in section 4.3.1, the pump and the probe intensities
and wavelenghts show intrinsic random variations that are not correlated with one
another. This has implications for the determination of the probe transmission (and
also the pump transmission), as is explained in the following.

Transmission measurement with a stable light source

In the case of a light source with a stable output power (i.e., all pulses contain the
same pulse energy), the simplest method to determine the transmission of the sample
would be to mount a photo detector behind the sample holder and to measure the
average light power (i.e., average pulse energy) for two different configurations : with
and without the sample. The ratio of the two measured values yields the intensity
transmission T of the sample, as given by

T =

〈
Îwith

〉
〈
Îw/o

〉 =

〈
P̂with

〉
〈
P̂w/o

〉 =

〈
Ewith

〉
〈
Ew/o

〉 . (4.19)

Here, the angle brackets
〈
. . .
〉

denote the time average value, "w/o" stands for
"without" the sample, and the relationship between the peak intensity Î, the peak
power P̂ , and the pulse energy E,

Î =
P̂

π (d/2)2
=

E/τ

π (d/2)2
, (4.20)

of a Gaussian pulse with a beam diameter d and pulse duration τ (FWHM) has been
used. However, because of the intrinsic variations of the pump and probe intensities,
this method does not work in the present case because the incident intensity is not
the same from one pulse to the next. Therefore, we have to measure the incident as
well as the transmitted intensity (or pulse energy, respectively) for each single pulse
individually, as is explained in more detail below.

Opto-mechanical setup of pump and probe beams

For the pump-probe experiments, the pulses of the pump beam and the probe beam
have to be superimposed spatially as well as temporally in the sample (i.e., in the
semiconductor microcavity). Moreover, we have to prepare the two beams in such a
way that they have the correct polarization states, maximum intensities, and angles
of incidence. The whole experimental setup, including the beam preparation, the
beam superposition, and the different detectors, has been specifically designed and
built for the experiments presented in this chapter. It is illustrated in Fig. 4.15. A
considerable amount of time has been spent on its construction and testing as well as
on the development of the data acquisition and processing programs (in LabVIEW
from National Instruments and IGOR Pro from Wavemetrics).

The pump beam from the optical parametric generator and amplifier is guided over
several mirrors and then passes an afocal lens system (telescope) to reduce the beam
diameter. The beam is then guided through a half wave plate and a Glan-Taylor
polarizer. For all the experiments, the polarizer is oriented in such a way that the
output beam is polarized horizontally (i.e., TM-polarized). By rotating the half-
wave plate, we can control the optical power of the pump beam. After passing the
polarizer, the beam is weakly focused by a convex lens with a focal length of 50 cm.
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In the focal point of the lens, the sample holder is placed, in which the semiconductor
microcavity can be fixed. On the sample, the pump beam has a diameter of about
1 mm. The sample holder itself is fixed on a 50 cm long mechanical rail (Newport
MicroContrôle X25) that is mounted on a rotation stage. The rail is used to guide
the probe beam onto the sample, as is explained below. Therefore, the sample holder
is positioned in such a way that the sample (when it is fixed in the holder) is exactly
on the vertical rotational axis of the rotation stage, and it is oriented at a right angle
to the rail. Hence, the angle between the rail and the pump beam is equal to the
external angle of incidence ϑ′

P of the pump beam, which can therefore be read on
the scale of the rotation stage.

A plane glass plate is placed between the 50-cm lens and the sample holder.
It is slightly tilted with respect to the propagation direction of the pump beam
and provides a weak reflection that is focused on a photodiode. The signal of this
photodiode, which is referred to as photodiode 1 (PD1), serves as a measure of the
incident pump intensity. Behind the sample holder the pump beam is focused on
another photodiode, called photodiode 2 (PD2). The signal of this photodiode is a
measure of the transmitted pump intensity. See Fig. 4.15 for a graphical illustration.

The probe beam coming from the optical parametric generator passes a movable
retroreflector that serves as a delay line. By changing the position of the retroreflec-
tor, we can control the time delay ∆t between the probe and the pump pulses. A
displacement r of the retroreflector corresponds to an increase (or decrease) of the
delay of

∆t = 2r/c , (4.21)

where c is the speed of light in air. This yields, for example, a time shift of 20 ps for
a displacement of 3 mm.

The probe beam is then injected by a fiber collimator into a polarization main-
taining fiber. The fiber has a length of about 1 meter. At the other end of the fiber,
the light is extracted with another fiber collimator. This collimator is fixed on the
above-mentioned mechanical rail that is mounted on the rotation stage. In order to
adjust the polarization of the beam correctly, we use a half wave plate before the
fiber entry and a Glan-Taylor polarizer behind the fiber exit. A convex lens with a
focal length of 12 cm is mounted behind the polarizer and focuses the probe beam
on the sample. The distance between the lens and the sample is equal to the focal
length (i.e., 12 cm) and the polarization of the probe beam is horizontal (i.e., the
probe beam is TM-polarized). In the focal point, the probe beam has a diameter of
about 40 µm.

The mechanical setup is very carefully aligned so that the focused probe beam and
the weakly focused pump beam are superimposed on the sample, which is positioned
on the rotational axis of the rotation stage. This means that the probe beam is always
at normal incidence. The angle of incidence of the pump beam can be chosen by
turning the mechanical rail, while both beams remain superimposed on the sample.

In order to obtain a measurement of the probe beam intensity that is incident
upon the sample, a thin plane glass plate is mounted behind the Glan-Taylor po-
larizer. It is slightly rotated with respect to the beam, in order to provide a weak
reflection, which is then focused on a photodiode. The signal that is measured with
this photodiode, which is referred to as photodiode 3 (PD3), is a reference of the
incident probe intensity. Behind the sample (or the sample holder), another lens is
mounted and focuses the transmitted light on another photodiode, which is referred
to as photodiode 4 (PD4). This photodiode yields a measure of the transmitted probe
intensity. In order to minimize any scattered light on this photodiode, especially the
scattering of the strong pump beam, an iris diaphragm is mounted between the sam-
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Fig. 4.15. Beam preparation and experimental setup. Both the pump (P) and the probe (S) beam
come from the optical parametric generators shown in Fig. 4.13. As explained in section 4.3.1,
a monochromator is used to measure the wavelengths and to record spectra of both beams. The
beam preparation stage prepares both beams for the pump-probe experiments by setting the correct
polarization (TM, i.e., horizontal for both beams), maximum intensity, and time delay. See text
for a more detailed explanation. M mirror, DM dichroic mirror, FM mirror on flip mount, RR
retroreflector, L lens, GTP Glan-Taylor polarizer, HWP half wave plate, FC fiber collimator, PMF
polarization-maintaining fiber, PP plane glass plate, ID iris diaphragm, SH sample holder (in which
the semiconductor sample can be fixed), PD1, PD2, PD3, PD4 photodiodes. All optical and
mechanical components inside of the dotted line are fixed on a mechanical rail (X25), which can
be turned in order to adjust the angle of incidence ϑ′

P of the pump beam. The four photodiodes
measure the incident and the transmitted intensities of both beams.

ple and the collecting lens. The diaphragm can be closed and aligned in such a way
that only the probe beam passes and any scattered light is blocked, except for the
light that is scattered exactly in the direction of the probe beam, which is only a
very small fraction.

Since all four photodiodes are silicon-based, they are, in principle, also sensitive
to visible light from the laboratory environment (i.e., parasites). Therefore, they are
all protected with colored glass filters which are fixed directly on the photodiodes
and which do not transmit light of the visible spectral range. Moreover, we install
cardboard and rubber tubes between the aluminum housings of the photodiodes and
the lenses that focus the light on the detectors. The lenses are partly covered with
black insulating tape so that light passes only in the center of the lenses. As a result
of all these measures, which are not explicitly shown in Fig. 4.15 for the sake of
clarity, we successfully reduce parasite signals on the photodiodes to a minimum.
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The above-described experimental setup, consisting of the parametric light
source, the beam preparation, and the beam superposition, allows for setting
the wavelengths λP and λS of the pump and the probe beam, the angle of in-
cidence of the pump beam ϑ′

P, and the time delay ∆t between the the pulses.
The angle of incidence of the probe beam is fixed at ϑS = 0, and both beams are
TM-polarized. The intensities IP and IS of both beams are subject to intrinsic
variations that have to be taken into account in the data processing.

4.3.3 Photodiode signals and sample transmission

In the above description of the experimental setup there are four different photodi-
odes that we want to use to measure the incident and transmitted intensities of the
pump and the probe beam. However, it is not possible to use the time average of the
four photodiode signals because the repetition rate of the light source is 10 Hertz,
and thus the average signal is null. Therefore, we use a so-called boxcar integrator
from Stanford Research Systems in order to determine the total optical energy that
is deposited in a photodiode by one pulse.

Pulse integration at 10-Hz repetition rate

For this purpose, the boxcar integrator reads the signals from the photodiodes and
integrates these signals over a pre-defined time period. The starting point of the
integration is triggered by the sync signal that is generated by the Nd:YAG laser.
Besides the length of the integration window (i.e., the duration), we can also control
the offsets of the photodiode signals as well as the measurement sensitivity. Fig-
ure 4.16 shows an example of a photodiode signal and the integration window as
a function of time. We use a boxcar integrator with four channels (one for each
photodiode), which therefore issues four signals between -10 V and +10 V, called
PD1, PD2, PD3, and PD4. These boxcar signals correspond to the integrals of
the photodiode signals and thus to the pulse energies measured by the photodiodes.
They can be read out from the boxcar integrator between two sync signals (i.e., dur-
ing 100 ms, which is the time between two pulses at a repetition rate of 10 Hz). In
the following, these four boxcar signals are the ones that we use for the further data
processing.

Fig. 4.16. Example of a box-
car integration. The red line is a
typical signal of the photodiode 2
as a function of time. The blue
line corresponds to the integra-
tion window of the boxcar inte-
grator. The resulting boxcar sig-
nal PD2 is the integral of the red
signal from the rising edge of the
blue signal until the falling edge
of the blue signal.
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Determination of the sample transmission

The idea behind the above-described experimental setup is to measure for every
pair of pump and probe pulses (i.e., for every pulse of the initial Nd:YAG laser)
the incident and the transmitted intensities of both beams, yielding the four voltage
values PD1, PD2, PD3, and PD4. In the following, we briefly describe the method
we use to determine the transmission of the sample for one of the two beams, say,
the probe beam. It works in the same way for the pump beam.

The signal PD3 is a measure for the incident probe intensity, the signal PD4
corresponds to the transmitted probe intensity. Suppose that we perform many
measurements of these two values with varying incident intensities (because of the
intrinsic variations). If there is no sample in the sample holder, the transmitted light
is proportional to the incident light, and thus the ratio of PD4 to PD3 should be
always the same. This means that we can plot the PD4 data versus the corresponding
PD3 data and obtain a straight line through the origin. The slope of the line can
be determined by fitting a linear function to the data. If the offset settings of the
boxcar integrator are not correctly adjusted, the points are still on a straight line,
which does, however, not pass through the origin. In any case, we are interested in
the slope M4,3 of the line.

We carry out the same measurement again, but this time with a sample in the
sample holder. The plot of PD4 versus PD3 gives again a straight line whose slope is
determined by a linear fit to the data. Figure 4.17 shows an example of such a graph.
By comparing the slopes of the two measurements, i.e., with the sample (M4,3,with)
and without the sample (M4,3,w/o), we calculate the intensity transmission of the
sample for the probe beam by forming the ratio

TS =
M4,3,with

M4,3,w/o

. (4.22)

With this method we calibrate, so to speak, the slope of the sample by the slope
of air (i.e., no sample), which yields the transmission coefficient of the sample. As
mentioned above, we apply the same procedure to determine the transmission of
the sample for the pump beam, yielding

TP =
M2,1,with

M2,1,w/o
, (4.23)

where M2,1,with and M2,1,w/o are the slopes of the straight lines in the PD2 versus
PD1 plots with and without the sample, respectively. This means that the mea-
surement of the transmission of the sample (for both beams) actually consists in a
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Fig. 4.17. Determination of
the transmission of the sam-
ple for the probe beam. The
markers represent the experimen-
tal data without and with sam-
ple in the sample holder, as
well as a measurement of the
noise level of the detection sys-
tem. The red lines are the corre-
sponding linear fits, yielding the
slopes M4,3,with and M4,3,w/o.

These data have been measured
with the avalanche photodiodes
of the type Hamamatsu C5460
(see page 110 for more details).
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measurement of the slopes of the PD2 vs.PD1 and PD4 vs.PD3 graphs. If we carry
out a measurement series (i.e., a series of measurements with different delays) we
measure these slopes and then calibrate all the slopes with one reference measure-
ment. The reference measurement is done without the sample, and it is therefore
independent of the delay or the wavelength etc. It can be performed before or after
all the measurements of the series (usually before).

In the present work, we use the above-described method to measure the transmission
of a microcavity. It should be noted that in the vicinity of the resonance of the cavity,
the transmission is highly wavelength sensitive. Therefore, a little spectral jitter (i.e.,
an intrinsic random variation of the wavelength) can translate into a large spread of
the transmitted intensities (PD2, PD4). This means that the points in the PD2-
PD1 and PD4-PD3 graphs are no longer on a well-defined straight line, but they
rather form a cone that opens towards the upper right-hand corner. In this case, a
linear fit to the data still provides a good estimate of the transmission, as shown by
the blue points (with sample) in Fig. 4.17. However, close to the resonance maximum,
such a fit systematically underestimates the transmission. An example and a more
detailed discussion of this case is given in section 4.4.2.

Photodiodes with and without noise

For all the experimental results presented in the remainder of this chapter, the pho-
todiodes PD1 and PD2 are silicon p-i-n photodiodes of the type S1721 from Hama-
matsu. They are mounted in small aluminum housings that can be positioned with
manual micrometer actuators. A standard lab power supply is used to apply an op-
erating voltage of 30 V to the photodiodes. It is sensible to use two photodiodes of
the same type because two different photodiodes (with different rise times and decay
times) could have different influences on the integration in the boxcar integrator,
which could lead to a nonlinear PD2-PD1 dependence and therefore to a poorly
defined slope M2,1. The same argument holds, of course, also for the photodiodes
3 and 4 of the probe beam. Therefore, for all the experiments presented here those
are also of identical type. We have the choice between silicon p-i-n photodiodes of
the type S1721 from Hamamatsu (as PD1 and PD2) and silicon-based avalanche
photodiode modules of the type C5460, also from Hamamatsu. The former ones are
used with a standard lab power supply, as the photodiodes 1 and 2. The avalanche
photodiodes come with an electronic circuit and an integrated pre-amplifier and are
much more sensitive than the normal photodiodes. Because of the high sensitivity,
they have to be protected from external electromagnetic influences. Therefore, the
avalanche photodiodes are mounted in copper housings in which two lead batteries
of the type NP2-12 from Yuasa are installed as a power supply. The batteries can be
charged overnight with a lead battery charger. Fully charged, they provide enough
electricity for about three days of experiments.

Since the signal of the photodiode 3 is only a weak reflection of the weak probe
beam, it is clearly the weakest of all four photodiode signals. Therefore, when we
use the normal Si photodiodes for PD3 and PD4, the boxcar signal PD3 shows
significant noise, which is of the same order of magnitude as the signal itself.

Depending on the choice of the photodiodes for the signals PD3 and PD4, the
experimental setup and the data processing change slightly. The normal Si photodi-
odes are mounted in small and light aluminum housings that are fixed directly on the
mechanical rail on the rotation stage and therefore do not need to be realigned after
turning the rail. The avalanche photodiodes in their bigger copper housings, includ-
ing the lead batteries, are too heavy for the rail and are therefore mounted separately
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Fig. 4.18. Modified ex-
perimental setup using the
avalanche photodiodes for the
signals PD3 and PD4. See text
for a more detailed explana-
tion. M mirror, L lens, FC fiber
collimator, GTP Glan-Taylor
polarizer, PMF polarization-
maintaining fiber, PP plane
glass plate, ID iris diaphragm,
SH sample holder (in which
the semiconductor sample can
be fixed), PD1, PD2, PD3,
PD4 photodiodes. The compo-
nents inside the dotted line are
fixed on the mechanical rail.

on x-y-z translation stages on the optical table. Several mirrors are used to guide the
weak reflection from the glass plate and the transmitted light on the photodiodes, as
is depicted in Fig. 4.18. These mirrors have to be realigned after each change of the
angle of incidence of the pump beam (i.e., after turing the rail). Because of several
alignment aids, such as pinholes at fixed positions, this realignment is achieved with
a high precision and a good reproducibility.

Data acquisition and processing

The four signals issued by the boxcar integrator are recorded with a data acquisition
card from National Instruments that is installed in a computer (PC). For this pur-
pose, I have developed a LabVIEW program which digitizes the four voltage values
at a repetition rate of 10 Hz (triggered by the sync signal from the Nd:YAG laser).
The program stores the values in several arrays and creates the PD2 vs.PD1 and
PD4 vs.PD3 graphs. Therefore, it allows for a real-time monitoring of the rela-
tionships between these signals. The contents of the arrays can be saved on the
hard disk as data files (i.e., tab-separated text files), which can then be read and
further processed with some data analysis software, in our case mainly IGOR Pro
from Wavemetrics.

The further data processing consists of the determination of the slopes of the
linear fits to the PD2-PD1 and PD4-PD3 graphs as well as the calibration with
the reference measurement without sample, as described above. When we use the
avalanche photodiodes for PD3 and PD4, the noise is reasonably weak compared
to the signals (cf. Fig. 4.17) so that we can adjust the offsets of the PD3 and
PD4 signals correctly and force the linear fit through the origin. The advantage of
this method is that we need only approximately 50 measurement points to obtain a
well-defined slope. However, when we use the normal silicon photodiodes, the noise
is too strong to define the offsets (and therefore the origin) of the PD4-PD3 graph
correctly. In this case, it is not sensible to force the fit through the origin. Therefore,
we acquire more data points (about 600 to 800) in order to have sufficiently good
statistics to determine the slope with the linear fit.

4.4 Linear characterization of the GaAs sample

The first result we present here is a linear transmission spectroscopy of the sample,
i.e., a measurement of the transmission of the sample as a function of the wavelength.
More precisely, we present two linear spectroscopies : one with the probe beam at
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normal incidence and one with the pump beam at an external angle of incidence of
ϑ′

P = 57◦. In order to avoid any nonlinear effects, these linear measurements have
been carried out at weak intensities. The choice of angles corresponds approximately
to the configuration used for the nonlinear pump-probe experiments presented in
section 4.5. Besides the resulting transmission spectra, this section illustrates the
above-described method of the determination of the sample transmission.

4.4.1 Linear transmission spectroscopies of the sample

The principle of the measurement is simple : one of the two beams is incident upon
the sample, and the other one is blocked. The pump beam is attenuated by turning
the half-wave plate that is mounted before the Glan-Taylor prism. A reference mea-
surement without the sample yields the reference slope of the PD2-PD1 plot (and
PD4-PD3 plot, respectively), which is needed for the calibration. After fixing the
sample in the sample holder, the wavelength is set to different values in the vicinity
of the expected resonance wavelength. The wavelength tuning is achieved with the
respective optical parametric generator by turning the mirror behind the Littman
grating and the BBO crystals (see the description of the light source in section 4.3.1).
For each wavelength, we determine the slope of PD2-PD1 graph (when we use the
pump beam) or of the PD4-PD3 graph (when we use the probe beam). This slope
is then divided by the corresponding reference slope, yielding the transmission of
the sample at that wavelength. The resulting transmission curves for the pump and
the probe beam are shown in Fig. 4.19. As explained above, the uncertainty of the
wavelength measurement is 0.06 nm (for each wavelength).

Fig. 4.19. Linear spec-
troscopy of the sample
(a) at an external an-
gle of incidence of ϑ′ =
57◦, measured with the
pump beam, and (b) at
ϑ′ = 0◦ (normal inci-
dence), measured with the
probe beam. The solid
line in each graph repre-
sents a fit of an Airy func-
tion to the experimental
data.
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Each graph also shows the fit of an Airy function, as given by Eq. (B.9) in appendix B,

T (λ) =
Tmax

1 + 4
π2 F2 sin2

(
10π λ0

λ

) (4.24)

to the data, where we have inserted the Fabry-Perot phase ϕFP = nkL cos ϑ =
10π λ0/λ (see Eq. (B.11) in the appendix) with the resonator length L = 5λ0/n.
The fit provides the resonance wavelength λ0, the maximum transmission Tmax,fit,
and the finesse Ffit. With λ0 and Ffit, we can calculate the linewidth (full width at
half maximum) of the resonance according to

δλfit =
λ0

10Ffit
. (4.25)

The following table summarizes the resulting values, which have been obtained with
the pump beam at an external angle of incidence ϑ′

P = 57◦ (corresponding to an
internal angle of incidence of ϑP ≈ 14◦) and with the probe beam at ϑ′

S = ϑS = 0◦ :

Beam ϑ′ λ0/nm Tmax,fit Ffit δλfit/nm
Probe 0◦ 946.56 0.30 253 0.37
Pump 57◦ 921.20 0.33 128 0.72

It is important to note, however, that these results represent a characterization
of the whole sample, and not only semiconductor microcavity that is under study
here. Moreover, the results are possibly biased by systematic imperfections of our
measurement method, as is explained in more detail in the following section.

4.4.2 Characteristics of the semiconductor microcavity

In order to obtain the key characteristics of the semiconductor microcavity alone,
the above results have to be further processed. As we show in the following, this
means that several corrections have to be applied to the finesse values as well as to
the maximum transmissions.

Corrections to the finesse values

The measured resonance curves do not correspond to pure Airy functions. The-
oretically, they represent convolution integrals of the microcavity resonance (Airy
function) with the spectral shapes of the pump and the probe beam (Gaussian func-
tions). Since the linewidth of the microcavity resonance and the linewidths of the
pump and probe beam are of the same order of magnitude, the finesse values Ffit

determined by the fit do not correspond to the real finesse F of the microcavity.
In order to obtain the latter, it would actually be necessary to perform a deconvo-
lution of the measured spectra. This is, however, rather complicated and not very
meaningful, given the little number of measurement points.

As a reasonable approximation, we can estimate the real linewidth of the mi-
crocavity resonance by considering the latter as a Gaussian function (instead of the
mathematically correct Airy function). As is well known, the convolution of two
Gaussian functions yields another Gaussian function, and the linewidth of the re-
sulting function is described by

δν2
total = δν2

1 + δν2
2 ,

where δν1 and δν2 are the linewidths of the two convolved functions. Using the rela-
tionship δν = (c/λ2) δλ , we can thus calculate the real linewidth of the microcavity
resonance in the wavelength domain by

δλMC =
√

δλ2
fit − δλ2

P/S ,
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where we have assumed that all involved wavelengths are of the same order of mag-
nitude and where δλP/S corresponds to the spectral linewidth of the pump beam
or the probe beam, respectively. As shown in section 4.3.1, the pump linewidth is
δλP = 0.22 nm, and the probe linewidth is δλS = 0.18 nm. Using again Eq. (4.25), we
can also calculate the real finesse of the microcavity according to F = λ0/(10 δλMC).
The resulting calculated values are presented below.

Corrections to the maximum transmission values

It is also important to note that the maximum transmission Tmax,fit provided by the
fit does not correspond to the maximum transmission of the microcavity. This is
for two reasons : The first reason is that our measurement method systematically
underestimates the transmission in the vicinity of the resonance maximum, as has
already been mentioned in section 4.3.3. In order to illustrate this behavior, we show
in Fig. 4.20 the PD2-PD1 graph for λ ≈ 921.20 nm (i.e., at the resonance maximum),
measured with the pump beam. As can be seen from the graph, there are many points
for which the ratio PD2/PD1 is higher than the slope of the linear fit. This can
be explained by the intrinsic spectral jitter, i.e., by the intrinsic variations of the
wavelength of the pulses. These variations, which have already been explained in
the description of the parametric light source in section 4.3.1, are of the same order of
magnitude as the resonance linewidth. Thus, only for those pulses whose wavelength
is exactly 921.20 nm, the microcavity shows its maximum transmission. These pulses
are visible in the graph as the points with the highest PD2/PD1 ratio, indicated by
the thin black line in Fig. 4.20. For all other pulses (for which λ 6= 921.20 nm), the
ratio PD2/PD1 and therefore also the transmission is lower. Hence, the maximum
transmission has to be determined with the extreme points (maximum of the ratio
PD2/PD1) instead of the linear fit through all data points. By dividing the slope
of the thin black line by the slope of the reference measurement (without sample),
we obtain the real maximum transmission at an angle of incidence of ϑ′ = 57◦ of
T ∗

max = 40 %.
A similar analysis of the measurement at normal incidence (measured with the

probe beam) shows that the real maximum transmission in this case is T ∗
max = 30 %,

which is actually equal to the value provided by the fit of the Airy function.

The second correction that we have to take into account is the fact that the exper-
imentally determined values of the transmission correspond to the transmission of
the whole sample, including the GaAs microcavity (with the two Bragg mirrors) and
also the 500-µm thick GaAs substrate. Thus, in order to obtain the transmission of

Fig. 4.20. Plot of the boxcar
integrated signal PD2 ver-
sus PD1 (measured with the
pump beam) at the resonance
maximum (i.e., for λ ≈ λ0).
As is clearly visible, there are
many points for which the ra-
tio PD2/PD1 is higher than
the slope of the linear fit
through all the points. The
thin black line indicates the
maximum transmission of the
sample.
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the microcavity alone, the propagation of the light in the substrate and the reflection
at the optical interface between the substrate and the air have to be considered. This
leads to the following expression for the maximum transmission of the sample

T ∗
max = Tmax exp(−α Lsub)

(
1 − (n − 1)2

(n + 1)2

)
,

where Tmax stands for the maximum transmission of the microcavity, α is the linear
absorption coefficient of GaAs, Lsub is the thickness of the substrate layer, and n is
the refractive index of GaAs. With Lsub = 500 µm, α ≈ 2 cm−1 [45] and n ≈ 3.5
(for wavelengths around 1 µm), we determine the maximum transmission of the
microcavity according to

Tmax = T ∗
max/0.63 . (4.26)

Experimentally determined microcavity characteristics

Based on the corrections to the finesse and maximum transmission values, we can
also determine the reflectivities R1 and R2 of the two Bragg mirrors for the pump
and the probe beam. For this purpose, we follow the calculation that has already
been presented in section 4.1.2.

Taking all the above-described corrections into account, the linear transmission mea-
surements provide the key characteristics of the semiconductor microcavity, which
are summarized in the following table :

ϑ′ λ0/nm T ∗
max Tmax F δλ/nm R1 R2

0◦ 946.56 0.30 0.44 300 0.32 R1,S = 0.9818 R2,S = 0.9973
57◦ 921.20 0.40 0.63 139 0.66 R1,P = 0.9643 R2,P = 0.9911

As these numbers show, the sample that we use for the experiments does not exactly
correspond to the design that we have determined with the numerical simulations
presented in section 4.1. This might be due to imprecisions in the fabrication. We
clearly see, however, that the initial requirements regarding the sample (cf. sec-
tion 4.1.1) are still satisfied. Since the focus of the present work is essentially on the
experiments and not on the simulations, we use in the following the experimentally
determined values rather than the theoretical ones.

4.5 Nonlinear pump-probe measurements

Using the GaAs/AlGaAs/AlAs sample described in section 4.1 and the experimental
setup presented in section 4.3, I have carried out several series of nonlinear pump-
probe experiments. As is demonstrated in the following, these measurements show
some totally unexpected results, which yield some insight in the interaction between
electrons in the conduction band and the coherently excited phonons generated by
amplified spontaneous Raman scattering.

4.5.1 Pump-probe measurements of the probe transmission

As has been extensively discussed in section 4.2, the key quantity of interest in
the experiments is the transmission of the sample TS for the probe beam, which
is essentially a function of the probe wavelength λS, the pump wavelength λP, the
pump intensity IP, and the probe-pump delay ∆t. The transmission is determined
with the method that has been described in section 4.3.3, i.e., by measuring the slope
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M4,3 with and without the sample in the sample holder. In the remainder of this
chapter, we will refer to a measurement as the determination of the transmission for
one single set of parameters (λS, λP,∆t) for different pump intensites IP,0. It should
be noted here that we work with almost Fourier-transform limited Gaussian pump
(and probe) pulses. Therefore, for the experiments (as for the analytical model),
the pump intensity is fully characterized by its peak value IP,0 (and by the pulse
duration, which is constant for all measurements).

Measurement of the transmission for different pump intensites

As explained in section 4.3.1, we cannot avoid the intrinsic variations of the intensity,
and therefore they are always present in the measurements. In order to extract
the intensity information from the measurement data, we have to process the raw
data correspondingly, as is described in the following. Since we want to study the
influence of the pump intensity on the nonlinear effects, we are mainly interested in
the intracavity pump intensity. Therefore, we use the signal of photodiode 2 (i.e., the
transmitted pump power) as a reference information because the intracavity intensity
and the transmitted intensity are always related to one another by a fixed ratio, as
has been shown by Eq. (2.101). Hence, for each pair of pump and probe pulses that
is injected into the microcavity (i.e., for each pulse of the Nd:YAG laser), we record
a data set consisting of the four boxcar signals PD1, PD2, PD3, and PD4, and we
analyze in particular the signal PD2. In the experiments presented here, the latter
varies intrinsically between 0 V and 1.3 V.

The key idea of the data processing is that we define a certain number of bins,
corresponding to different sub-ranges of the PD2 signals, in which all the measure-
ment data are sorted. In the present case, there are 10 bins, which are simply
called "bin00" to "bin09", where bin00 covers the range 0 V ≤ PD2 < 0.13 V,
bin01 contains all the values 0.13 V ≤ PD2 < 0.26 V, and so on. Technically these
bins are realized in the programming language LabVIEW by defining ten different
arrays in which the data are stored. Since each data set consists of four values
(PD1 to PD4), each array is actually a two-dimensional array with (so to say) 4
columns and up to 1200 rows. So, when a data set is read from the data acquisi-
tion card (National Instruments), the program looks at the PD2 signal (for example
PD2 = 1.1 V), determines in which sub-range this value falls (for PD2 = 1.1 V,
this would be the range from 1.040 to 1.170 V), and then appends this data set to
the corresponding array (here the array bin08). By using this method, we finally
obtain ten (two-dimensional) arrays, which each contain up to 1200 data sets of four
values. When the measurement is finished, we apply the transmission determination
method described in section 4.3.3, yielding the probe transmission TS for the given
set of parameters (λS, λP,∆t) and for the ten different pump intensity ranges IP,0.
As a result, we have the full information

TS = TS

(
λS, λP, IP,0,∆t

)
,

which depends on the same set of parameters as the analytical model presented in
section 4.2. To illustrate the data processing, we show in Fig. 4.21 the raw data of
PD4 vs.PD3 for all ten bins (i.e., pump intensity ranges) for ∆t ≈ 200 ps. The red
lines in the graphs show the linear fit through the data points. Since these measure-
ments have been made with the avalanche photodiodes (Hamamatsu C5460), which
have a low noise level, the fits are forced through the origin (although the lines in
the graphs are not drawn through the origin). Besides the measurement data, the
graphs also contain two dashed lines, which are identical for all bins (i.e., in all
graphs). The upper dashed line illustrates the theoretical maximum transmission.
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Fig. 4.21. Illustration of the PD4-PD3 raw data of one measurement, i.e. for one set of the parameters (λS, λP, ∆t)
for ∆t ≈ 200 ps. Each graph shows the data points corresponding to one bin, which represents a certain pump intensity
IP,0. The red lines show the linear fits (which are forced through the origin) that yield the M4,3 slopes. The upper
dashed lines correspond to the maximum transmission T ∗

max, and the lower dashed lines illustrate the initial state.
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Fig. 4.22. Illustration of the
probe transmission TS as a func-
tion of the bin number for the
measurement whose raw data are
shown in Fig. 4.21 (i.e. for ∆t ≈
200 ps).
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Its slope is calculated with Eq. (4.22), i.e. by multiplying the maximum probe trans-
mission T ∗

max = 30 % with the reference slope. The lower dashed line corresponds
to the initial situation without pump beam, which is calculated by multiplying the
reference slope with the linear transmission at the probe wavelength TS(λS).

The graphs do not only illustrate how the probe transmission is determined, they
also give an impression of the influence of the spectral jitter of the probe wavelength.
As can be clearly seen, the data points are not aligned on well-defined straight lines,
but they form cones or clouds of points. This is caused by the intrinsic variation of
the probe wavelength, as has been explained in section 4.3.3 (see page 110).

By dividing all the slopes of the linear fits (red lines) by the reference slope
M4,3 without sample, we obtain the absolute values of the probe transmission TS

for each bin, which are shown in Fig. 4.22. We clearly see from the graph that the
probe transmission first increases and then decreases with the bin number, where
the latter is assumed to be proportional to the intracavity pump intensity. The
maximum is somewhere between bin02 and bin03, and the transmission does not
change much between bin07 and bin09, indicating an asymptotic behavior for the
highest bin numbers. Since these data correspond only to one single measurement
(i.e., one single set of λS, λP, and ∆t), it is not very meaningful to enter into a
detailed discussion of these results at this point. We will, however, present such a
detailed analysis including the discussion of possible physical origins of the increase
and decrease of the transmission, when investigating the time dependence of the ten
different transmission values TS (corresponding to the ten bins), as is presented below.

Intracavity pump intensity and transmitted pump intensity

As mentioned above, we assume that the transmitted pump intensity is a measure
of the intracavity pump intensity because the two are always proportional to one
another. However, this assumption is only true as long as the propagation of the
pump beam in the microcavity is not significantly modified by the nonlinear effects.
Thus, to apply the above-described binning method, we have to make sure that our
measurements are not biased by a nonlinearity in the pump transmission. Therefore,
for each measurement, we also determine the pump transmission TP according to the
method described in section 4.3.3 (i.e., by measuring the slope M2,1 with and without
the sample). Figure 4.23 shows the raw data of the boxcar signals PD2 vs.PD1 for
the same measurement whose PD4-PD3 data are shown in Fig. 4.21. The colors of
the bins are the same. As can be seen from the graph, the data points form a sort of
cone whose upper limit is very well defined. For the lower and middle bin numbers,
the limit is described by a straight line that corresponds to the maximum pump
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Fig. 4.23. Example of a PD2-PD1 graph illustrating the binning of the measurement data. The
black line illustrates the maximum transmission of the pump beam of T ∗

max ≈ 40 %, and the thick
black marker in the upper right-hand corner represents the pump transmission TP for the highest
intracavity pump intensity (bin09).

transmission T ∗
max = 40 % of the sample, illustrated by the black straight line in the

graph. Only for the highest bins, the pump transmission shows a slightly nonlinear
behavior (i.e., a deviation from the straight line), which is due to the self-induced
nonlinear effects of the pump beam, such as the two photon absorption (TPA) and
the Kerr effect.

It should be noted here that these effects are only half as strong for the pump
beam as for the probe beam because of the different degeneracy factors (see also the
introduction of these effects in section 2.3). Since the pump-probe experiments aim
at measuring the nonlinear effects induced by the pump beam on the probe beam,
we have to use sufficiently high pump intensities. Consequently, it is practically
impossible to avoid such self-induced nonlinearities completely. We only have to be
sure that they are not too strong. Therefore, we determine the slope of the straight
line in Fig. 4.23, yielding 0.52. The ratio PD2/PD1 of the extreme point representing
bin09 (indicated by the black marker in the graph) has the value 0.48. By comparing
these two, we find that even for the highest pump intensites (bin09), the deviation
from the linear PD2-PD1 relationship is only about 7 %, which is reasonably small.
For all the experiments presented in the following, it has been verified that the pump
intensities show a quasi-linear behavior (i.e., the possibly occurring nonlinearity is
only negligible small, as demonstrated above).

Measurement series for different pump wavelengths

By keeping the combination of the two wavelengths λS and λP constant while varying
the probe-pump delay ∆t (by moving the optical delay stage), we obtain a measure-
ment series. Thus, a measurement series consists of many measurements of TS for
different delays ∆t and, by using the above-described binning method, for different
pump intensities IP,0, which are represented by the different bins. As a result, we
obtain the time dependence of the probe transmission, which we can then compare
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to the results of the simulations in section 4.2.3 (see Figs. 4.9 and 4.10). Thus, for
the experiments, there are two parameters that have to be chosen appropriately :
the probe wavelength λS and the pump wavelength λP.

As the simulations of the experiments in section 4.2.3 have clearly shown, it is
reasonable to choose an initial probe wavelength λS which is slightly detuned from the
exact resonance wavelength λ∗

S towards shorter wavelengths. According to the linear
characterization of the sample presented in section 4.4, the ideal probe wavelength
is λ∗

S = 946.56 nm. Thus, we choose λS = 946.33 nm, for which the resulting linear
transmission is about half of the maximum transmission.

Regarding the pump wavelength λP, we are essentially interested in the difference
between the two situations with and without stimulated Raman scattering (SRS).
By referring again to the simulations presented in section 4.2.3, this means that it

λP,1 = 918.89 nm ≪ λ∗
P

λP,2 = 920.78 nm < λ∗
P

λP,3 = 920.87 nm ≈ λ∗
P

λP,4 = 920.99 nm > λ∗
P

λP,5 = 922.71 nm ≫ λ∗
P

Tab. 4.2. Pump wavelengths used
for the nonlinear pump-probe ex-
periments.

would be sufficient, in principle, to carry out two measurement series :
one exactly at Raman resonance and one far off Raman resonance.
However, in order to be sure not to "miss" the signature of SRS,
we choose three pump wavelengths in the vicinity of the theoretical
ideal pump wavelength λ∗

P, which is given by λ∗
P = (1/λS + ν̄R)−1 =

920.88 nm. Moreover, we want to see if there is any difference between
the situation where the pump beam is far off the Raman resonance
towards longer wavelengths and the situation where it is far detuned

towards shorter wavelengths. So, in total, this leads to five measurement series for
five different pump wavelengths λP, which are listed in Tab. 4.2. The results of these
five measurement series are shown in Figs. 4.24 and 4.25 on the next two pages.

All the measurement series are carried out according to the same experimental
procedure, which is described in the following. First, the pump wavelength is set
to the desired value with the parametric light source (optical parametric generator
and amplifier), while it is measured with the monochromator. Then, the sample
is removed from the sample holder, and the data acquisition program is started to
measure the two reference slopes M2,1 and M4,3 without the sample. Third, the
sample is fixed in the sample holder, and the data acquisition program is used to
provide a real time view of the PD2-PD1 graph (as shown in Fig. 4.23). The power
of the pump beam is reduced by turning the half-wave plate of the beam preparation
stage, and the angle of incidence ϑ′

P of the pump beam is adjusted in such a way
that the PD2-PD1 shows a well-defined linear upper limit whose slope corresponds
to the maximum transmission of T ∗

max = 40 %. Finally, the half-wave plate is rotated
back into its initial position in order to attain sufficiently high pump intensities for
the pump-probe measurements, and the optimal spatial overlap of the pump and the
probe beam on the sample are verified with a CCD camera that is placed at a fixed
and reproducible reference position. Before the first measurement series, this optimal
overlap has been determined for a pump wavelength λP far off Raman resonance at
a long delay ∆t by minimizing the probe transmission as much as possible (which is
what we expect according to the simulations).

Then the measurement series starts by setting the position r of the retroreflector
to different values between 0 and 40 mm (the absolute value of r does not matter
here). For each value of r, we carry out a measurement as described above. This
means that the data acquisition program reads continuously the PD1, PD2, PD3,
and PD4 signals from the boxcar integrator with a repetition rate of 10 Hz and
performs the binning of the data sets according to the method described above.
While the data acquisition is running, we monitor the filling of the different bins,
i.e., we check that all bins contain enough data points to be able to perform a linear
fit that yields a meaningful slope M4,3. As a preliminary test has shown, a minimum
of 50 data points per bin provides good enough statistics for a reasonable fit (when
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Fig. 4.24. Pump-probe measurement series for λS = 946.33 nm. Time dependence of the probe transmission TS of the
semiconductor microcavity for different pump intensities IP,0, represented by the different bins (bin00 ... bin09) as the
colored traces. For an estimation and discussion of the measurement uncertainties (error bars), see text.
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Fig. 4.25. Pump-probe measurement series for λS = 946.33 nm. Time dependence of the probe transmission TS of the
semiconductor microcavity for different pump intensities IP,0, represented by the different bins (bin00 ... bin09) as the
colored traces. For an estimation and discussion of the measurement uncertainties (error bars), see text.

using the avalanche photodiodes of the type Hamamatsu C5460). Moreover, we also
check for each measurement the PD2-PD1 graph in real time and verify that the
pump beam does not show a significant nonlinear behavior, as has been discussed
above. As a result, each measurement yields the ten different probe transmissions
TS (one for each bin) for the given value of r. After the completion of the first
measurement series, the position r of the delay stage is calibrated (i.e., the zero
position is determined) based on the observed time dependence of TS. As a result,
we find that the different values of r correspond to probe-pump delays ∆t between
-58 and +208 ps. It should be noted that this choice of the position ∆t = 0 is only
an estimation. However, the relative time scale (i.e., the scale of time differences) is
simply given by the speed of light according to ∆t = r/c and, therefore, very precise.

All the five graphs in Figs. 4.24 and 4.25 (i.e., all the five time dependencies of TS)
show a similar behavior. For negative probe-pump delays ∆t (for which the probe
pulse arrives before the pump pulse), the probe transmission TS is constant at the
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initial value of about 15 %, which is physically logical for causality reasons. The
little differences between the curves of the different bins for these delays cannot be
explained by any nonlinear optical effect because the pump pulse arrives after the
probe pulse. Except for the first graph (λP = 918.89 nm), it seems that the curves
corresponding to the higher bin numbers are systematically lower than the curves
of the lower bin numbers. One reason for these differences might be the fact that
the initial probe wavelength λS corresponds to a position half-way off the resonance
curve of the microcavity. Thus, the intrinsic wavelength variations are translated
into a large spread of the data points in the PD4-PD3 graph (which yields the slope
M4,3 and thus also the transmission TS), and this translation is highly sensitive to
possibly asymmetric distributions of the randomly varying wavelength values around
the measured probe wavelength λS. Since the ten bins are usually not filled with
the same number of data sets (i.e., the PD4-PD3 graphs of the different bins do
usually not contain the same number of data points), the determination of the slopes
M4,3 is based on different statistics for the different bins. In general, the bins with
the lower bin numbers (i.e., weak pump intensities) contain systematically less data
points than the bins with higher bin numbers (i.e., high pump intensities), which
is due to technical reasons (the intrinsic intensity variations of the pump pulses are
not uniformly distributed). This might explain the apparently systematic differences
between the different bins.

Around ∆t = 0 (i.e., where the pump and probe pulses have their maximum
temporal overlap), the transmission rises to a maximum. The height of the maxi-
mum as well as the further behavior for higher delays ∆t depend on the bin number
(i.e., on the pump intensity). For the lower bin numbers, the transmission rises rel-
atively slowly and reaches a stable optimum value, whereas for middle and high bin
numbers, the transmission passes the maximum and then decreases. For the upper
bin numbers, it even drops to values which are lower than the initial transmission of
about 15 %. In all five graphs, the curves corresponding to the highest bin numbers
group together so that we can reasonably conclude that for even higher pump inten-
sities, the time dependence of the probe transmission TS would not be significantly
different from the curve of bin09 (burgundy / dark red curve).

Because of the method that is used to determine the transmission values (see also sec-
tion 4.3.3), the measurement uncertainty of the probe transmission TS is, in general,
a function of the value of TS itself. It basically depends on how much the spectral
jitter (i.e., the randomly varying wavelength) of the probe beam leads to a spread
of the transmission values. For delays ∆t ≪ 0, the probe wavelength is on the wing
of the resonance curve of the microcavity, and thus the latter is highly sensitive on
wavelength variations. Hence, we estimate the uncertainty of the transmission in this
∆t range to be between 2% and 3% (absolute values in terms of the transmission).
However, for very low values of TS (i.e., mainly for long delays ∆t ≫ 0 and high bin
numbers), the transmission should be rather insensitive to wavelength variations so
that here, we can estimate the uncertainty to be of the order of 1% (absolute value).

Essentially, the five graphs correspond to two different situations that we have already
studied with the simulations presented in section 4.2.3 : with SRS (i.e., λP is at Ra-
man resonance) and without SRS (i.e., λP is off Raman resonance). The simulations
of these two situations are indicated by a dotted frame in the lower right corner of
Fig. 4.10 and shown again in Fig. 4.26 (for the sake of convenience). The experimen-
tal results shown in the first and fifth graph in Figs. 4.24 and 4.25 show the situation
far off Raman resonance (λP,1 = 918.89 nm ≪ λ∗

P and λP,5 = 922.71 nm ≫ λ∗
P,

where λ∗
P = 920.88 nm). The second, third, and fourth graph are close or equal to
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Fig. 4.26. Simulations of the
pump-probe experiments for an ini-
tial probe wavelength half-way off
resonance. Time dependence of the
probe transmission TS of the semi-
conductor microcavity for pump
intensities IP,0 between 0.3 and
1.9 MW/cm2 (indicated by the dif-
ferent colors of the traces). The
top graph shows the situation with-

out SRS (i.e., far off Raman reso-
nance), whereas the bottom graph
illustrates the case with SRS (i.e.,
at Raman resonance). These two
graphs are also shown in Fig. 4.10.
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the situation at Raman resonance (λP,2 = 920.78 nm < λ∗
P, λP,3 = 920.87 nm ≈ λ∗

P,
and λP,4 = 920.99 nm > λ∗

P).
By comparing the experimental results to the simulations, we find that the mea-

surements correspond approximately to the predictions of the simulations. However,
there are several important differences that have to be discussed in more detail.
Because of these differences, it is not possible to fit the theoretical curves of the
analytical model (see section 4.2) to the experimental data, although the model
takes into account all nonlinear effects that we expect to observe in the experiments.
Therefore, in the following, we compare the simulations and the measurements by
looking only at the essential properties of the curves. For this purpose, we present
in Fig. 4.27 a zoom of the five graphs of Figs. 4.24 and 4.25 between ∆t = −30 ps
and ∆t = 70 ps, which makes the comparison easier.

Starting our analysis with the situation at Raman resonance, i.e., the graphs for λP,2,
λP,3, and λP,4, we find that all three graphs are very similar (except for the fact that
the two graphs slightly detuned from the ideal pump wavelength have a lower time
resolution, which is due to practical reasons). However, none of these graphs shows
exactly the behavior that has been predicted by the simulations (see bottom graph in
Fig. 4.26). First, we do not observe that the probe transmission of all bins reaches its
maximum value for probe-pump delays ∆t ≈ 0, as the simulations have shown. This
means that we do actually not find the signature of stimulated Raman scattering
(i.e., an increase of the probe transmission) as it is described by the analytical model.
Second, we see that the transmission of the highest bins does not drop as much in the
measurement data as in the simulations. Although we clearly observe an asymptotic
behavior of the curves as a function of the pump intensity (i.e., bin number), the
measured minimum transmission is between 2 and 3 % instead of almost zero, as the
simulation graph shows. This observation will in the following be the key element of
our analysis of the experimental data. A third observation is that the Kerr/TPA dip
is not as pronounced in the measurement results as it is in the simulations. To find
an explanation for these differences between theory and experiment, it is insightful
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Fig. 4.27. Zoom of the experimental results of the pump-probe measurement series presented in
Figs. 4.24 and 4.25 (i.e., for λS = 946.33 nm). Time dependence of the probe transmission TS of the
semiconductor microcavity for different pump intensities IP,0, represented by the different bins as
the colored traces. The five graphs correspond to the different pump wavelengths λP (see Tab. 4.2).
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to look in more detail at the other two graphs.

When comparing the experimental results for λP,1 (i.e., far off Raman resonance
towards shorter wavelengths), which are shown in the first graph in Fig. 4.27, to
the corresponding simulation (see top graph in Fig. 4.26), we make slightly differ-
ent observations. Around ∆t = 0, the simulations predict a weak increase of the
probe transmission by only several percent, corresponding to approximately a fifth
of the initial transmission. This is exactly what we see in the experimental re-
sults. Moreover, the simulations have shown that for some of the lower bins, the
transmission continues to increase for long delays. This can also be seen from the
experimentally determined curves. The purple curve (bin02), for example, rises to
an optimum transmission of 26 %, which is very close to the theoretical maximum
value of T ∗

max = 30 % (it should be kept in mind here that our measurement method
always underestimates the microcavity transmission near the maximum, as has been
explained in section 4.4.2), and it stays at this optimum value for delays ∆t ≫ 0, ex-
actly as predicted by the model. The most important observation, however, is that
the asymptotic minimum transmission reached by the experimental curves of the
highest bins is about 4 %, which is clearly higher than in the three graphs discussed
above. Finally, one could mention that it is again difficult to identify the Kerr/TPA
dip in the experimental data, as in the previous case.

The measurement results for λP,5 (i.e., far off Raman resonance towards longer wave-
lengths), which are depicted in the fifth graph in Fig. 4.27, show an interesting be-
havior. In principle, one would expect that this graph should be similar to one for
λP,1 (i.e., far off Raman resonance towards shorter wavelengths). However, as op-
posed to these expectations, we observe that the asymptotic minimum transmission
of the highest bins is less than 2 %. Since we can assume a measurement uncertainty
of about 1% here (see discussion on page 123), this value is in agreement with the
simulations (which have predicted values of less than 1%). The fact that we do not
see any curve here that rises to transmission values of more than 25 % might be
caused by the binning steps (i.e., maybe we would see such a curve if we had chosen
the binning intervals slightly differently). As opposed to the other four graphs, we
can identify the Kerr/TPA dip on the dark blue and light blue curves (bin03 and
bin04).

To summarize the above findings, we can state that in many aspects, the experi-
mental results of the pump-probe measurements are approximately well described
by the analytical model presented in section 4.2. However, we clearly find sev-
eral major differences between the theoretical and experimental behaviors of the
time dependencies of the probe transmission TS. First, we do not see the sig-
nature of an amplification through stimulated Raman scattering (SRS) that is
predicted by the simulations around ∆t = 0. Second, and most importantly,
the asymptotic value of the transmission for the highest bins depends on the
pump wavelength λP. Third, the asymptotic values of the probe transmission
measured for λP,1 and λP,5 (i.e., far below and far above Raman resonance) are
clearly different from one another.

It is important to note here that, although we do not see the SRS signature that we
expect according to the model, the five different graphs show a clear dependence on
λP. Given that TPA, the Kerr effect, and the free carrier effects (FCA, FCR) are
not sensitive to the pump wavelength, we can further conclude that this dependence
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must be caused by SRS. In other words, we actually observe an unexpected signature
of SRS, which we study in more detail in the following.

So far, we have discussed all the experimental results in terms of the bin number,
which serves as a measure for the pump intensity IP,0. In order to determine the exact
relationship between the bin numbers and IP,0, several calibration measurements
have been carried out. For these measurements, a highly sensitive optical energy
meter (with a sensitivity of several µJ) has been placed at the position of the sample
holder in the experimental setup, and the measured values have been compared
with the reference boxcar signal PD1. By combining these measurements with an
experimental determination of the pump beam diameter, we find that the highest
bin number (i.e., bin09) corresponds to a pump intensity of several MW/cm2. It
has not been possible to determine this relationship with a higher precision because
of two reasons. First, the energies of the pump pulses have been very close to the
measurement sensitivity of the energy meter. And second, the comparisons between
the value from the energy meter and the reference boxcar signal have been done "by
naked eye", thus with a high intrinsic uncertainty.

Another (and maybe better) calibration of the bin numbers is provided by the
experimental results themselves. Since we clearly see that the general behavior of
the experimental TS-∆t curves, especially the asymptotic state for the highest bin
numbers, is also predicted by the simulations, we can conclude that the pump inten-
sity ranges in the simulations and in the experiments are approximately the same.
Supposing that we can trust the nonlinear coeffients (βTPA, n2, σn, σa), we see ap-
proximately a good agreement between the model and the measurements. Thus, we
assume that bin09 corresponds to a pump intensity of IP,0 ≈ 2 MW/cm2.

Unexpected signature of SRS in the experimental results

As a closer look at the experimental data shows, the stimulated Raman scattering
has a very subtle influence on the time dependence of the probe transmission. More
precisely, it affects the speed with which the transmission TS passes the maximum and
approaches the asymptotic state. To illustrate this influence, we show in Fig. 4.28 the
probe transmission TS as a function of the bin number (which represents the pump
intensity) for all five pump wavelengths λP used in the pump-probe experiments
at a delay of ∆t ≈ 8 ps. As can be very clearly seen from the graph, the curves
show a significantly different behavior. The red trace (λP,5) passes very quickly the
maximum and reaches the asymptotic state in bin05. The three traces that are
(approximately) at Raman resonance (λP,1, λP,2, and λP,3) also pass the maximum
in a very similar way as the red curve, but this happens for higher pump intensities.
Moreover, the transmission does not drop as strongly as for the red trace. In the case
far off Raman resonance towards shorter wavelengths (λP,1), shown as the blue trace,
the probe transmission needs even higher pump intensities to pass the maximum,
and the curve does not decrease as much as in the other cases. In summary, we see
three different behaviors : the one of the red trace (λP ≪ λ∗

P), the one of the three
traces approximately at Raman resonance (λP ≈ λ∗

P), and the one of the blue trace
(λP ≫ λ∗

P). Therefore, we will focus in the following on these three situations, which
are represented by λP,1 (red), λP,3 (green), and λP,5 (blue).

As mentioned above, the differences between the curves have to be related to SRS
because they depend on the pump wavelength. However, without knowing exactly
how SRS influences the transmission of the microcavity, the question arises why the
red trace and the blue trace do not show a similar behavior (they are both far off
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Fig. 4.28. Illustration of an un-

expected signature of SRS in the
experimental data. The graph
shows the probe transmission TS

as a function of the bin number
(corresponding to the pump in-
tensity) for ∆t ≈ 8 ps for all
five pump wavelengths λP (see
Tab. 4.2).
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Raman resonance and, thus, expected to undergo the same physical effects). The key
to the understanding of these differences is the fact that the resonance wavelength
of a Fabry-Perot resonator depends on the angle of incidence. As is demonstrated in
appendix B, by increasing the angle of incidence ϑ of an electromagnetic wave (we
only consider plane waves here), the resonance wavelength becomes shorter. This
fact has some important implications for the present situation.

Considering that the pump beam is very strong, one has to take into account
the effect of the spontaneous Raman scattering in the central GaAs layer of the
semiconductor sample. In a situation where the Stokes photons (generated through
spontaneous Raman scattering) are coupled into a resonant mode of the microcavity,
they should be amplified through SRS. It is important to note that the Stokes wave,
which is resonant in the microcavity, can interact nonlinearly with the pump wave
through stimulated Raman scattering (SRS) without the presence of the probe beam.
Thus, in this particular case, the probe beam does not take part in the Raman
scattering process and only serves as a probe (in the literal sense of the word) to
measure the transmission of the semiconductor sample. Therefore, the wavelength of
the Stokes photons generated through amplified spontaneous Raman scattering
might differ from the wavelength of the probe beam (as opposed to the general
assumption that these two are equal). However, the Stokes wave can only be resonant
in the microcavity if its wavelength is shorter or equal to the ideal probe wavelength
λ∗

S because the latter is the longest possible resonance wavelength for the given
resonator length (assuming that the resonance order m is conserved).

For the pump wavelength λP,5, the corresponding Stokes wavelength would be
λS = (1/λP − ν̄R)−1 = 948.26 nm. Since this wavelength can under no circum-
stances be resonant in the microcavity, we cannot observe any enhancement of the
amplification of the spontaneous Raman scattering. The Stokes wavelength for λP,3

(and also λP,2 and λP,4) is around λS ≈ 946.32 nm, which can be resonant at al-
most normal incidence. Therefore, in that case, there can be a nonlinear interaction
between pump and Stokes in the form of SRS. Finally, for λP,1, we calculate the
Stokes wavelength to be λS = 944.23 nm. Contrary to the situation for λP,5, we
can expect an enhancement of the amplified spontaneous Raman scattering because
the corresponding Stokes wave coincides with a resonance of the cavity (which has
a non-zero angle of incidence). In that case, we expect an increase of the number of
Raman phonons with an energy ~ΩR that are generated in the central layer of the
microcavity.
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We conclude that the difference between the asymptotic states in the TS-∆t
measurements for λP,1 and λP,5 (i.e., far off Raman resonance) is related to the
enhancement of the amplification of the Stokes photons generated by sponta-
neous Raman scattering in the central GaAs layer of the semiconductor sample.

With this important result, we still have to address the question how SRS influences
the microcavity transmission. For this purpose, we must have a closer look at the key
mechanisms that influence the transmission TS. These are, as has been extensively
discussed in section 4.2, absorption/amplification on the one hand and, on the other
hand, the nonlinear phase shift. In all the measurement data, we do not observe
any amplification, and we have demonstrated in the simulations (and also seen in
the measurements) that the nonlinear phase shift induced by SRS is negligibly small.
Hence, this question cannot be fully explained with our analytical model. However,
as the discussion of the different nonlinear effects and their influence on the probe
transmission in section 4.2.2 has shown, the impact of the phase shifts on TS is higher
than the one of the two photon absorption. Since a phase shift can also be considered
as an effective modification ∆n of the refractive index of the microcavity (i.e., of the
central GaAs layer), we have to look for other physical effects that influence the
refractive index of the semiconductor microcavity. Therefore, we have to determine
by how much the refractive index changes.

4.5.2 Modified electron relaxation dynamics due to SRS

To determine the refractive index change ∆n from the measurement data, we would
have to isolate the absorptive effects from the refractive effects. In principle, how-
ever, this is not possible because we have only measured the transmission TS of
the microcavity, which is affected by both sorts of effects simultaneously. Since we
have previously shown that the absorption effect of the free carriers (FCA) can be
neglected (see section 4.2.1), we can reasonably assume the variation of the trans-
mission at long delays (∆t ≫ 0) is only due to the variation of the refractive index
induced by the free carriers (FCR). Although for short delays ∆t > 0, the probe
transmission is biased by two photon absorption (TPA), we can still compare the
different measurement series to each other in order to discuss the relative differences
(instead of the absolute behavior). This is possible because TPA is independent of
the pump wavelength λP. For this comparison, we apply the following method.

Refractive index change for three different pump wavelengths

Considering the red, the green, and the blue trace in Fig. 4.28, we see that all of
them start at bin00 with approximately the same transmission TS ≈ 15 %. This
transmission corresponds to the initial state of the microcavity, which is given by
the probe wavelength detuning ∆λS = −0.13 nm (λS = 946.33 nm). Since all the
curves rise to the maximum and then fall to lower transmissions, we can translate
the TS values into the refractive index change ∆n by comparing the behavior of the
traces to the resonance curve of the microcavity, as is illustrated in Fig. 4.29. This
translation actually happens in two steps : first, we have to determine the phase ϕ
(i.e., the horizontal position in the graph) to a given value of TS (vertical axis), and
second, we calculate the corresponding modification ∆n based on the phase ϕ.

The resonance curve in Fig. 4.29 is described by an Airy function of the form

TS

(
ϕ
)

=
Tmax

1 + 4
π2 F2 sin2(ϕ)

,
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Fig. 4.29. Illustration of the
method that is used to de-
termine the nonlinear refrac-
tive index change based on the
transmission measurements pre-
sented in Figs. 4.24 and 4.25.

which we have already used in the discussion of the analytical model (see Eq. (4.15) in
section 4.2.2). Since we want to determine the phase ϕ based on the transmission TS,
we rewrite this equation in the form

sin(ϕ) = ±
√

π2

4F2

(
Tmax

TS
− 1

)
.

Since the Airy function has a periodicity of π (because of the sin2 function in the
denominator), we can restrict our considerations to the ϕ range around the tenth-
order resonance. Therefore, we decompose the phase into

ϕ = ϕ̄ + ϕ̃ with ϕ̄ = 10π , (4.27)

where ϕ̃ is the variation of the phase around the center of the tenth-order resonance.
Because of the periodicity of the sine function, we obtain sin(ϕ) = sin(10π + ϕ̃) =
sin(ϕ̃), and since we assume ϕ̃ to be small, we can calculate the phase by

ϕ̃ ≈ sin(ϕ̃) = sin(ϕ) = ±
√

π2

4F2

(
Tmax

TS
− 1

)
(4.28)

As this expression and the shape of the resonance curve in Fig. 4.29 show, there is
an ambiguity regarding the sign of the phase. In other words, the above equation
does not tell us on which side of the resonance we are. In order to overcome this
problem, we have to utilize the fact that we know the initial state of the microcavity,
as is explained in more detail below.

In general (see appendix B), the phase ϕ can also be expressed by Eq. (B.11) as

ϕ =
2π nS L cos(ϑS)

λS
= 10π

nS λ∗
S

n∗
S λS

, (4.29)

where we have inserted the angle of incidence of the probe beam ϑS = 0 and the
length of the microcavity L = 5λ∗

S/n∗
S. It should be noted that the refractive index

nS is considered variable here (it is exactly this variation of nS that we want to
determine), while n∗

S denotes the bulk refractive index of GaAs at the ideal probe
wavelength λ∗

S. By introducing the refractive index change ∆nS through nS = n∗
S +

∆nS and by using the relationship λS = λ∗
S + ∆λS, the fraction on the right hand

side of the above expression can be transformed to

nS λ∗
S

n∗
S λS

=
(n∗

S + ∆nS)λ∗
S

n∗
S (λ∗

S + ∆λS)
=

n∗
S + ∆nS

n∗
S

λ∗
S

λ∗
S + ∆λS

=
1 + ∆nS/n

∗
S

1 + ∆λS/λ∗
S

, (4.30)
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which depends on the relative refractive index change ∆nS/n
∗
S and the relative probe

wavelength detuning ∆λS/λ
∗
S. We assume both of these quantities to be small com-

pared to unity so that this expression can be expanded into a power series around
the point (∆nS = 0, ∆λS = 0), yielding the first-order approximation

1 + ∆nS/n
∗
S

1 + ∆λS/λ
∗
S

≈ 1 +
∆nS

n∗
S

− ∆λS

λ∗
S

. (4.31)

By inserting Eqs. (4.29), (4.30), and (4.31) into Eq. (4.27), we obtain an expression
for the phase detuning ϕ̃ from resonance, given by

ϕ̃ = ϕ − ϕ̄ = 10π

(
nS λ∗

S

n∗
S λS

− 1

)
= 10π

(
∆nS

n∗
S

− ∆λS

λ∗
S

)
. (4.32)

In the initial state of the microcavity (i.e., for ∆t → −∞ or for bin00, respectively),
the refractive index change is assumed to be ∆nS = 0. Moreover, we know that
the probe wavelength detuning in the present case is negative (∆λS = −0.13 nm).
Thus, by inserting this into the above equation, we find that in the initial state,
the phase detuning is positive, ϕ̃ > 0. In the graphs where we plot TS vs. ∆t (see
Fig. 4.27) and TS vs. the bin number (see Fig. 4.28), we observe that the traces
pass the maximum of the transmission. Thus, the phase detuning ϕ̃ decreases and
reaches the center position of the resonance curve at ϕ̃ = 0 (see Fig 4.29). After
the maximum, the phase detuning becomes negative and decreases further until it
reaches the asymptotic value.

As a result of these considerations, we have found an additional piece of informa-
tion that we can use to solve the ambiguity of Eq. 4.28. Thus, starting with bin00, we
can calculate for each delay ∆t the phase detunings ϕ̃ for each bin by following the
traces that are illustrated in Fig. 4.28. Before the maximum, we know that ϕ̃ must
be positive, and after the maximum, it has to be negative. Therefore, we distinguish
between the two possible versions of Eq. (4.28) as follows

before maximum : ϕ̃ ≈ +

√
π2

4F2

(
Tmax

TS
− 1

)
(4.33a)

after maximum : ϕ̃ ≈ −
√

π2

4F2

(
Tmax

TS
− 1

)
. (4.33b)

In some cases, for example in case of the red trace in Fig. 4.28, we cannot precisely
determine if the highest TS value of a trace is before or after the maximum. This
introduces an uncertainty for ϕ̃ values around the maximum. Moreover, as is illus-
trated in Fig. 4.29, the method only works properly if the transmission always rises
up to the highest possible value T ∗

max ≈ 30 %, which is not the case in our mea-
surement data because of the two photon absorption (TPA). Therefore, around the
zero delay ∆t ≈ 0, the calculated phase detunings ϕ̃ are strongly biased. However,
since TPA, as well as the Kerr effect and the free carrier effects, do not depend on
the pump wavelength λP, the above-described method still allows for a comparison
between the three situations given by λP,1, λP,3, and λP,5 to determine the relative
differences (as mentioned above).

Having calculated all the values of the phase detuning ϕ̃, we can then easily determine
the corresponding modification of the refractive index by using again Eq. (4.32),
yielding

∆nS = n∗
S

(
ϕ̃

10π
+

∆λS

λ∗
S

)
. (4.34)
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This has been done by programming several data processing functions that have
been used to extract these information from the measurement data. The results are
shown in Fig. 4.30 as a function of the probe-pump delay ∆t for the different bins
(the traces for bin00 are not shown because they are constant at ∼ 15 %, which
is due to the data processing method). As mentioned above, for delays around
∆t = 0, the values are biased by TPA and, therefore, they are not very meaningful
for the analysis. However, by comparing the three graphs for delays ∆t > 0, we
clearly see that the modification of the refractive index occurs significantly faster in
the bottom graph (λP,5), where there cannot be any Stokes wave resonant in the
microcavity, than in the other two graphs. Moreover, by looking at the behavior
for long delays ∆t ≫ 0, we see that the amplitude of the refractive index change is
clearly higher in the bottom graph than in the top graph (λP,1), while the graph in the
middle (λP,3) shows an intermediary behavior between the two others. These results
confirm the observation that the presence of a (spontaneously generated) resonant
Stokes wave has an influence on the behavior of the microcavity. More precisely,
the results indicate that if there is a Stokes wave resonant in the microcavity, the
refractive index changes significantly slower than in the case where there cannot be
any resonant Stokes wave, and the maximum modification of the refractive index for
long delays is weaker.

In conclusion, we have developed a method to extract from the measurement data
the modification ∆nS of the refractive index of the GaAs microcavity experienced
by the probe beam. Although this method does not provide the physically cor-
rect values of the refractive index change around ∆t = 0 (because we cannot
remove the influence of the two photon absorption from the measurement data),
a comparison between the time dependencies of ∆nS for the three different sit-
uations given by λP,1, λP,3, and λP,5 shows major differences. As a result, we
find that the presence of a resonant Stokes wave in the microcavity slows down
the dynamics with which the modification of the refractive index occurs, and it
reduces the maximum refractive index change for long delays. In this sense, the
presence of the Stokes wave effectively reduces the influence of the free carrier
refraction (FCR).

This result raises the question how the Stokes wave modifies the dynamics of the
refractive index change. In order to answer this question, it is necessary to include
the semiconductor material itself (i.e., GaAs) into our considerations, as is explained
in the following.

Slowing down of the electron relaxation through Raman phonons

The refractive index nS that is experienced by the probe wave is essentially modified
by the Kerr effect and the free carrier refraction. At long delays, ∆t ≫ 0, we can
ignore the Kerr effect because we consider it as an instantaneous effect that only
occurs around ∆t = 0. Thus, the long-term behavior of the refractive index is
determined by the free carrier density in the central GaAs layer of the microcavity.

Since GaAs is a polar material, the free carriers (we restrict our considerations
here to the electrons in the conduction band) interact with the Stokes photons
through the vibrations of the crystal lattice, i.e., the phonons. As becomes clear
in the following, this interaction is strongly influenced by a coherent population of
Raman phonons that is created by amplified spontaneous Raman scattering.
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Fig. 4.30. Time dependence of the refractive index change that is caused by the nonlinear effects.
The three graphs show the modification ∆n of the refractive index as a function of the probe-pump
delay ∆t for the three different pump wavelengths λP,1, λP,3, and λP,5. The refractive index change
has been determined with the method described in the text. Thus, it is only meaningful for ∆t > 0.
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In our considerations so far, we have assumed that all free carriers, i.e., all electrons
that are excited by TPA into the conduction band, contribute to the effect of the
free carrier refraction (FCR), i.e., to the FCR-induced phase shift. Since the energies
of the pump and the probe photons are not very far from the band gap energy (see
discussion in section 4.1), the (cross-)two photon absorption excites the electrons to
high energy levels in the conduction band, where they form a so-called hot electron
plasma. The hot electrons then undergo a relaxation in the band structure until they
reach the band edge, where they contribute to the FCR-induced modification of the
refractive index ∆nS. It is important to note that this relaxation usually occurs
to a great extent through the creation/excitation of phonons in the semiconductor
lattice,which happens on sub-picosecond time scales (i.e., faster than the light pulses
used in the experiments).

For each Stokes photon that is created in the microcavity by spontaneous Raman
scattering, there is also a Raman phonon with the frequency ΩR (i.e., with the
energy ~ΩR) and a quasi-wave vector ~KR (defined by the phase matchning condition
for Raman scattering) generated in the central GaAs layer. Moreover, since these
phonons are created through the interaction between the pump photons (which are
coupled into a well-defined mode of the microcavity given by ωP and ~kP) and the
Stokes photons (which are also coupled into a microcavity mode given by ωS and ~kS),
these phonons can thus be considered as coherent because they are generated in phase
with the pump and Stokes photons and coupled into a mode defined by ΩR = ωP−ωS

and ~KR = ~kP −~kS. Moreover, the Raman scattering process is excited by the pump
photons, which are wave packets (pulses) whose linewidth (and duration) is of the
same order of magnitude as the linewidth of the Raman resonance (corresponding
to the lifetime of the LO phonons in GaAs). Hence, we can expect the presence of
a very high density of coherent phonons in the central semiconductor layer of the
microcavity. This Raman phonon population can interact with the population of hot
electrons in the conduction band during their relaxation process, as is discussed in
the following.

Consider an electron which is excited by TPA to a high energy level En in the
conduction band. It starts its relaxation by the generation of a phonon, thereby
falling down to the energy level En−1. From there, the electron falls to the level
En−2 through the excitation of another phonon. In the "normal" case, where the
electrons interact with an ensemble of incoherent phonons that are distributed over
a wide range of different modes, this continues until the electron reaches the band
edge of the conduction band. However, in the present case, where we assume the
presence of a coherent Raman phonon population in a single, well-defined mode, this
relaxation of the hot electrons can be significantly modified.

We suppose that the high density of coherent phonons influences the evolution
of the electron-phonon system. We imagine that in the presence of such a high
coherent phonon density, it is possible that the interaction between electrons and
phonons totally perturbs the way it reaches its thermodynamic equilibrium. This
perturbation is reached through successive exchanges of energy between the electrons
and the phonons. More precisely, the relaxation of the electrons can continuously re-
excite/re-create the Raman phonons, which then can be re-absorbed by the electrons,
which, in turn, can then again decay under the creation of a Raman phonon, and so
on. As a result, the electrons and phonons undergo a cyclic re-creation/re-excitation
process that considerably slows down the thermalization of the hot electrons towards
the band edge. At the same time, the cyclic re-excitation causes the lifetime of the
Raman phonons in the well-defined mode to be be much longer than the typical
lifetimes of LO phonons in GaAs (i.e., without the high coherent phonon density).
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We make the hypothesis that the differences in the dynamics of the refractive in-
dex change can be explained with a simple model of the electron relaxation in the
conduction band of the central GaAs layer of the microcavity. The presence of
a highly populated Raman phonon mode that is coherently excited through en-
hanced amplified spontaneous Raman scattering in the microcavity can lead to a
re-exitation of the electrons to higher energy levels. Although these re-excitations
do not completely prevent the electrons from reaching the band edge of the con-
duction band, where they contribute to the free carrier refraction (FCR), they
can significantly slow down the relaxation of the hot electron plasma. This
interaction between electrons and coherent phonons might explain why the mea-
surement series for λP,1 and λP,3 show effectively a weaker influence of the FCR,
while the data for λP,5 correspond rather well to the predictions of the analytical
model presented in section 4.2.

4.5.3 Confirmation of the phonon-electron hypothesis

Apart from the experiments presented in section 4.5.1, where the photodiodes 3
and 4 were highly sensitive avalanche photodiodes (Hamamasu C5460) with a low
noise level, I have also carried out several nonlinear pump-probe measurement series
with a preliminary version of the experimental setup, which uses the standard silicon
photodiodes (Hamamasu S1721) as the photodiodes 3 and 4, as has been described in
section 4.3.3 (see page 110). Because of the poor signal-to-noise ratio of the standard
photodiodes, we cannot force the linear fits in the PD4-PD3 graphs through the
origin. Therefore, it has been necessary to acquire much more data points, leading
to minimum of about 300 data sets per bin (i.e., per PD4-PD3 graph). Moreover,
as a result of the high noise level, the determination of the slopes M4,3 do never
yield values close to zero. Thus, especially for the highest pump intensities (i.e., bin
numbers), the probe transmission TS is systematically overestimated, i.e., it never
falls to values below ∼ 10 % although the corresponding PD4-PD3 graphs clearly
indicate that many of the data points would yield an almost zero slope.

In this preliminary version of the experimental setup, the four BBO crystals in
the two optical parametric generators are different from the ones used for the ex-
periments presented in section 4.5.1. They are older and provide a poorer efficiency
for the generation of the pump and the probe beam, probably because of less good
surface coatings and the less developed crystal growth technologies at the time when
they were fabricated. As a result, they require a much better stability of the Nd:YAG
pump laser and the frequency doubling and tripling stages, which makes the experi-
ments more sensitive on external factors such as the air conditioning in the laboratory
etc. Thus, in terms of experimental practicability, these old BBO crystals impose
some unnecessary constraints, which is the reason why they have been replaced by
new and more efficient crystals. However, the spectra of the pump and the probe
beam generated with the old crystals seemed to be slightly better (i.e., closer to a
Gaussian profile), and they were more reproducible from one pulse to the next, which
can be expressed by standard deviations of the wavelength measurements (with the
monochromator) of about 0.04 nm (instead of 0.06 nm with the new crystals).

Four different measurement series of TS as a function of the probe-pump delay ∆t
have been carried out for four different pump wavelengths λP. As in case of the above-
presented measurements, the probe wavelength is set to λS = 946.33 nn, and three
of the four pump wavelengths have been chosen exactly at the Raman resonance,
λP = 920.88 nm, and slightly off Raman resonance to both sides, i.e., λP = 920.73 nm
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and λP = 921.03 nm. The fourth pump wavelength, which is λP = 922.65 nm,
corresponds to the case where there cannot be any Stokes wave resonant in the
microcavity. The resulting time dependencies of the probe transmission TS for the
four different measurement series are depicted in Fig. 4.31.

The bottom graph, which corresponds to the pump wavelength λP,5 in sec-
tion 4.5.1, looks fairly similar to the respective graphs in Figs. 4.25 and 4.27 and,
thus, also to the simulation results. The curves for the strongest intensities are
grouped together at low transmission and remain unchanged for higher delays ∆t.
However, as can be clearly seen, the two graphs slightly off Raman resonance do not
show this superposition of the high-intensity curves. It seems that in these two cases,
the modification of the refractive index of the semiconductor (GaAs) is less efficient,
even for high pump intensities. The graph where the pump wavelength is exactly at
Raman resonance shows a completely different behavior. Obviously, the curves of all
bins rise up to the maximum transmission, but no curve shows a significant drop of
the transmission TS. So, according to the model of the electron relaxation presented
in section 4.5.2, the measurement series presented here indicate an extremely slow
relaxation of the hot electrons to the band edge.

To illustrate the differences between the four different measurement series (i.e.,
pump wavelengths), we can rearrange the measurement data and show one graph
per bin (instead of one graph per pump wavelength), where each graph contains the
curves for all four wavelengths, as depicted in Fig. 4.32. Here, it becomes even clearer
how the Raman scattering affects the refractive index change of the microcavity. The
top graph shows the time dependence of the probe transmission TS for a moderate
pump intensity (bin04). As can be seen from the graph, all four traces, including the
red trace (for which there cannot be any Stokes wave resonant in the microcavity),
rise to the maximum and stay there, also for long delays ∆t. However, when looking
at the three other graphs, which correspond to the three highest pump intensities (i.e.,
bins), we see very clearly how the red trace shows the expected behavior (i.e., drops
to low transmission values), whereas the two traces slightly off Raman resonance (i.e.,
the light blue trace and the yellow trace) do not drop as much as the red trace. Their
minimum transmission depends on the bin number (i.e., on the pump intensity),
and in bin09, they reach almost the same low level as the measurement series far
off Raman resonance. As already mentioned above, since all the curves remain on
the same transmission value even for long probe-pump delays ∆t, the reason for
the observed behavior must be related to the free carrier refraction (FCR). Since
the FCR is apparently less strong than our simulations would predict, we confirm
with these measurements that there is some other physical effect which reduces the
number of free carriers that participate in the modification of the refractive index.
This effect is even stronger in the situation exactly at Raman resonance, represented
by the green trace, which stays a the maximum transmission for all delays ∆t > 0.
Here, the FCR is so weak that even for the highest pump intensities, the microcavity
does not "roll over" the maximum of the resonance curve.

The experimental results that have been obtained with a preliminary version of
the experimental setup, using other detectors and a slightly different light source
than in case of the previously presented measurements, confirm the hypothesis of
the modified electron relaxation that we have developed in section 4.5.2. These
experiments show much more clearly the difference between the case at Raman
resonance and off Raman resonance and even illustrate very well the transi-
tion between these two situations when the pump wavelength is only slightly off
Raman resonance.
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Fig. 4.31. Pump-probe measurement series for λS = 946.33 nm with the preliminary experimental
setup. Time dependence of the probe transmission TS of the semiconductor microcavity for different
pump intensities IP,0, represented by the different bins (bin00 ... bin09) as the colored traces.
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Fig. 4.32. Pump-probe measurement series for λS = 946.33 nm with the preliminary experimental
setup. Time dependence of the probe transmission TS of the semiconductor microcavity for different
pump wavelengths λP as the colored traces. Rearrangement of the data already shown in Fig. 4.31.
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By comparing the experimental results shown in section 4.5.1 to the measurement
series presented here, the question arises why we do not observe the same behavior
in both cases. More precisely, given that all the parameters taken into account by
our analytical model are equal in the two cases, it is unclear why we do not see such
a clear difference between the situation at and off Raman resonance when using the
technically better experimental setup (i.e., in section 4.5.1). Although there is no
simple answer to this question, we can see three possible reasons that might explain
some differences in the results.

First, it should be noted that the experimental setup illustrated in Fig. 4.15 is only
a schematic representation indicating in which order all the optical and mechanical
components have been arranged. Although this illustration applies to both versions
of the experimental setup (i.e., the setup for the measurements in section 4.5.1 and
the one for the experiments shown here), the beam preparation and superposition
of the final version have been completely rebuild in order to integrate the avalanche
photodiodes etc. Also, in order to optimize several practical aspects of the experi-
mental procedure, the setup has become more complex in the final version, including
some alignment aids and check points to monitor the pump intensity as well as the
coupling into the polarization maintaing fiber etc. While great attention has been
paid to make sure that the two setups provide comparable results, it cannot be said
with certainty that all the important parameters are exactly identical. So, it is, in
principle, possible that a tiny detail of the experimental setup is different in the two
versions, and that this detail causes the differences in the results.

Second, as mentioned above, the spectra of the pump and probe beam were more
stable in the preliminary version of the setup. This might explain why we see a
clear difference between the three series around the Raman resonance (i.e., slightly
off Raman resonance towards shorter wavelengths, exactly at Raman resonance, and
slightly off resonance to the other side) with the preliminary setup, while in case of
the final version, the larger spread of the pump wavelengths blurs these differences
and makes all three measurements look rather similar.

Third, it is possible that in the experiments presented in section 4.5.1, we have
simply used a pump beam whose intensity is too strong, so that the resolution of
the binning is not fine enough to exhibit the clear differences that we see in the
measurements presented here. Since in the latter case, the pump intensity has not
been properly calibrated, we cannot precisely check if this hypothesis is true or not.
By looking at the graph far off resonance (i.e., the bottom graph in Fig. 4.32), we
see that only three traces group together at low transmission, while in the respec-
tive graph of the measurements with the avalanche photodiodes (i.e., the bottom
graph in Fig. 4.31), there are at least four traces. This might be an indicator for a
slightly different maximum intensity (corresponding to bin09), but we can assume
the difference to be small.

So, despite the above reasons that could explain some of the differences we ob-
serve, the question why we do not see the behavior of the green trace (in Fig. 4.32)
in the results presented in section 4.5.1 remains open at this point and might be the
subject of further studies.

4.6 Experimental characterization of the Raman phonons

In the previous sections, we have presented a hypothesis about the interaction be-
tween the hot electron plasma and the Raman phonons in the central GaAs layer of
the microcavity. The key element of this hypothesis is the existence of a strongly
excited phonon mode. The coherent population of Raman phonons in this phonon
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mode is created through amplified spontaneous Raman scattering, and it is, thus,
independent of the presence of the probe beam in the microcavity.

Although this hypothesis seems to explain the experimental observations very
well, the pump-probe measurements of the sample transmission TS can only be con-
sidered as an indirect proof of the hypothesis. Therefore, it is desirable to find a way
to prove the existence of this highly populated Raman phonon mode directly. For
this purpose, we have developed a new experiment that uses a different geometry.
In the following, we describe the idea of this new experiment.

As a starting point of our considerations, we assume that there is a highly ex-
cited population of Raman phonons with the energy ~ΩR. The phonons are cre-
ated through spontaneous Raman scattering by a strong pump wave of an angular
frequency ωP, which also generates a Stokes wave with an angular frequency ωS at
normal incidence in the microcavity. We now consider another monochromatic elec-
tromagnetic wave (laser beam) with an angular frequency ωL that is incident upon
the sample. Since the phonon mode is assumed to be highly populated, this wave
can interact with the phonons in another spontaneous Raman scattering process by
creating an Anti-Stokes wave with the angular frequency ωAS. In summary, this leads
to a cascade of two scattering processes, which is illustrated in the energy diagram
that is shown in Fig. 4.33. Its energy balance can be expressed in the form

ωP = ωS + ΩR and ωL + ΩR = ωAS .

4.6.1 Stokes scattering process

In the first Raman scattering process (Stokes scattering), the conservation of energy
and the conservation of the (quasi)-momentum of the interacting electromagnetic
waves and the phonon mode can be expressed in the form

1

λP
=

1

λS
+ ν̄R (4.35a)

~kP = ~kS + ~KR , (4.35b)

where ν̄R = 292 cm−1 is the Raman shift of GaAs at room temperature and ~KR

is the quasi wave vector of the phonon mode. As in the experiments presented in
the previous sections, we assume that the pump beam is incident upon the sample
in the x-z plane and the Stokes wave is at normal incidence (i.e., parallel to the z
direction). In a component-wise notation, this is described by

~kP =




kP sin ϑP

0
kP cos ϑP


 ~kS =




0
0
kS


 ~KR =




KR,x

KR,y

KR,z


 , (4.36)

Fig. 4.33. Energy diagram illustrating the
spontaneous Anti-Stokes scattering of an in-
cident light wave of an angular frequency ωL

with a highly populated phonon mode with
a Raman frequency ΩR. The latter is pop-
ulated by spontaneous Raman scattering of
an incident pump wave with an angular fre-
quency ωP. The Stokes wave of the initial
spontaneous Raman scattering has an angu-
lar frequency ωS.
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where ϑP is the angle of incidence of the pump beam. By inserting this into
Eq. (4.35b), we obtain

KR,x = kP sinϑP (4.37a)

KR,y = 0 (4.37b)

KR,z = kP cos ϑP − kS . (4.37c)

The wave vectors of both pump and Stokes wave are supposed to be resonant in the
microcavity, which imposes two further constraints on the wave vectors, given by

~kP · ẑ L = m π , (4.38a)
~kS · ẑ L = m π , (4.38b)

where ẑ = (0, 0, 1) is the unit vector in z direction, m is the order of resonance (here
m = 10), and L = 5λS/nS is the resonator length (i.e., the thickness of the central
GaAs layer). By inserting the component-wise notation of ~kP given in Eq. (4.36)
into Eq. (4.38a), we obtain




kP sinϑP

0
kP cos ϑP


 ·




0
0
1


 L = LkP cos ϑP = m π = kS L , (4.39)

where, in the last step, Eq. (4.38b) has been used. The above equation means that

kS = kP cos ϑP , (4.40)

which we insert into Eq. (4.37c), yielding the result

KR,z = 0 . (4.41)

Thus, according to Eqs. (4.37b) and (4.41), the quasi-wave vector ~KR of the Raman
phonons is parallel to the central GaAs layer of the microcavity, i.e., ~KR = (KR, 0, 0)
with KR = kP sin ϑP. Moreover, by inserting kP = 2π nP/λP and kS = 2π nS/λS into
Eq. (4.40) and by assuming that nP ≈ nS, we find the relationship

λP = λS cos ϑP =⇒ ϑP = arccos

(
λP

λS

)
. (4.42)

As a result of all the above considerations, we have fully determined all relevant
parameters of the first spontaneous Raman scattering process. In the order of their
determination, these are

λS given by Eq. (4.38b)

λP given by Eq. (4.35a)

ϑP given by Eq. (4.42)

KR,x given by Eq. (4.37a)

KR,y given by Eq. (4.37b)

KR,z given by Eq. (4.41) .

With the above equations, the phonon mode of the Raman phonons is fully defined
in terms of the experimentally accessible parameters λP, λS, and ϑP.
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4.6.2 Anti-Stokes scattering process

With the information about ΩR = 2π ν̄R and ~KR, we now consider the second (Anti-
Stokes) Raman scattering process. The conservation of energy and the conservation
of the (quasi)-momentum in the Anti-Stokes scattering process can be expressed in
the form

1

λL
+ ν̄R =

1

λAS
(4.43a)

~kL + ~KR = ~kAS . (4.43b)

As in the previous case, both waves should be resonant in the microcavity, which is
expressed by

~kL · ẑ L = ~kAS · ẑ L = kS L , (4.44)

where the last step simply reuses the resonance condition of the Stokes wave at
normal incidence given by Eq. (4.38b). By inserting kL = 2π nP/λL and kAS =
2π nAS/λAS into the above equation and by assuming nL ≈ nAS ≈ nS, we obtain

1

λL
cos ϑL =

1

λAS
cos ϑAS =

1

λS
. (4.45)

For the following considerations, we use ϑL as an independent parameter. Thus,
according to Eq. (4.45), the wavelength λL of the second laser beam is given by

λL = λS cos ϑL (4.46)

Then, the wavelength of the Anti-Stokes wave that is generated through spontaneous
Raman scattering is given by Eq. (4.43a) as

λAS =

(
1

λL
+ ν̄R

)−1

. (4.47)

By using again Eq. (4.45), we determine the angle ϑAS as

ϑAS = arccos

(
λAS

λS

)
(4.48)

To summarize the above considerations, all experimentally accessible parameters of
the Anti-Stokes scattering process depend on the angle ϑL. These are

λL given by Eq. (4.46)

λAS given by Eq. (4.47)

ϑAS given by Eq. (4.48) .

In principle, the laser beam with the wave vector ~kL is not restricted to the x-z
plane. Therefore, we can express it in spherical coordinates ~kL = (kL, ϑL, ϕL) with,
in general, a non-zero angle ϕL. Consequently, this also applies to the wave vector of
the Anti-Stokes wave, which can thus be expressed as ~kAS = (kAS, ϑAS, ϕAS). Both
wave vectors are related through the Raman phonon mode according to Eq. (4.43b),
as is graphically illustrated Fig. 4.34.

In order to find explicit expressions for the two angles ϕL and ϕAS, we consider
the projections of Eq. (4.43b) to the x axis and the y axis, which yields

kAS sin ϑAS cos ϕAS = kL sin ϑL cos ϕL + KR,x (4.49a)

kAS sin ϑAS sin ϕAS = kL sin ϑL sin ϕL + 0 . (4.49b)
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Fig. 4.34. Illustration of the ge-
ometric relationships between the
wave vectors of the laser beam ~kL,
the Anti-Stokes wave ~kAS, and the
Raman phonons ~KR. The latter are
generated through amplified spon-
taneous Raman scattering of the
pump wave. The graph also shows
the spherical coordinates (ϑL, ϕL)
and (ϑAS, ϕAS) of the involved wave
vectors.

This is a system of two equations with two variables (ϕL and ϕAS). By inserting the
expressions for the wave vectors kL and kAS, we find the solutions

ϕL = ± arccos

[
1

2

λP sin ϑL

λL sin ϑP

((
λL sin ϑAS

λAS sin ϑL

)2

−
(

λL sinϑP

λP sin ϑL

)2

− 1

)]
(4.50)

ϕAS = arcsin

[
λAS sin ϑL

λL sin ϑAS
sin ϕL

]
, (4.51)

which depend only on the previously determined wavelengths λP, λL, λAS and on
the angles ϑP, ϑL, ϑAS.

In the above derivations, we have considered ϑL as an independent parameter that
determines all the other experimentally relevant parameters. For a given value of ϑL,
we can calculate λL and ϕL (laser beam) and λAS, ϑAS, and ϕAS (Anti-Stokes wave)
according to Eqs. (4.46), (4.47), (4.48), (4.50), and (4.51). From an experimental
point of view, it is more interesting to consider the external angles of incidence (or
propagation) ϑ′

L and ϑ′
AS instead of the internal angles ϑL and ϑAS. The external

angles can be easily calculated with the help of Snell’s law. Figure 4.35 shows
the dependencies of all the above-mentioned parameters on the external angle of
incidence ϑ′

L.

4.6.3 Experimental setup of the Anti-Stokes experiment

As the above two sections have shown, we should be able to demonstrate experi-
mentally the existence of a highly populated Raman phonon mode in the central
GaAs layer of the microcavity through a second Raman scattering process. The
idea behind this is the following: if there is such a strong population of coherent
Raman phonons, this should significantly increase the probability of the Anti-Stokes
scattering process. In other words, there should be a strong difference in the Anti-
Stokes scattering efficiency between the two cases with and without the strong Raman
phonon population.

In order to measure the intensity of the Anti-Stokes wave, I have designed a real
experimental setup that uses the freely tunable picosecond light source which has
been described in detail in section 4.3.1. The pump beam of the light source is
used in exactly the same manner as in the pump-probe experiments presented in
section 4.5 (this part of the experimental setup is identical to the previous pump-
probe measurements). The pump beam is incident upon the sample at an angle of
incidence ϑP. If the angle of incidence allows for a Stokes wave that is resonant in
the microcavity, we assume that the Raman scattering process generates the highly
populated Raman phonon mode in the central GaAs layer.
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Fig. 4.35. Calculated dependencies of the experimental parameters of the Anti-Stokes scattering experiment on the
external angle of incidence ϑ′

L of the laser beam that is used to demonstrate the existence of the strongly excited Raman
phonon mode in the central GaAs layer of the microcavity.

The other beam of the picosecond light source (i.e., the so-called "probe" beam)
is now used as the laser beam that initiates the Anti-Stokes scattering. It should
be noted that here, the probe beam is used in a completely different way compared
to the pump-probe measurements in section 4.5, where it was used with the aim to
induce stimulated Raman scattering (i.e., where it was chosen to be almost identical
to the Stokes wave). Since the intensity of the Anti-Stokes wave is expected to
be very weak compared to the pump beam, it is, from an experimental point of
view, desirable to separate the Anti-Stokes beam geometrically from the x-z plane.
Therefore, I have chosen an angle ϑL = 30◦ for the experimental setup. As has
been shown in section 4.6.2, this choice of ϑL determines all the other experimental
parameters. The resulting values are also shown as the thick markers in Fig. 4.35.

According to these results, I have built a complete experimental setup, including the
preparation of pump and probe beam, the positioning of the required photodiodes to
measure the intensities of the pump, Stokes, probe, and Anti-Stokes beams, as well
as a sophisticated method to measure and set the angles ϑL, ϑAS, ϕL, and ϕAS. By
varying the time delay ∆t between the probe pules and the pump pulses, it should
be possible to show the existence of the strong Raman phonon population, as well
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as its prolonged lifetime. Both these results would strengthen the interpretation of
the pump-probe measurements presented in section 4.5.

However, because of time constraints, I have not had the time to practically carry
out the measurements to verify (or falsify) the hypothesis of the highly populated
Raman phonon mode. This will hopefully be done by future PhD students in the
group Manolia at the Laboratoire Charles Fabry de l’Institut d’Optique.

4.7 Conclusion and outlook

The main objective of the work presented in this chapter has been to study the
interplay between several nonlinear optical effects—in particular stimulated Raman
scattering (SRS), (cross-)two photon absorption (TPA), the (cross-)Kerr effect, and
the free carrier refraction (FCR)—under the influence of strong light localization in a
semiconductor material. For this purpose, I have developed an analytical model that
describes the influence of these effects (with a focus on SRS) on the transmission of
a semiconductor microcavity. Moreover, I have built a highly complex experimental
setup for pump-probe measurements working with a 10-Hz repetition rate in order
to track each pair of pump and probe pulses individually. The determination of
the microcavity transmission TS for the probe beam (and TP for the pump beam)
has been done by using two pairs of photodiodes, measuring the incident and the
transmitted optical power of both beams. In order to extract the transmission values
from the raw data, I have further developed a data processing method that traces the
relationship between the transmitted power and the incident power and calibrates,
so to speak, this relationship with a reference measurement without the microcavity.

I have carried out several series of nonlinear pump-probe measurements of the trans-
mission of a planar GaAs microcavity for different pump wavelengths. Conversely to
the predictions of several simulations that I have calculated with the help of the ana-
lytical model, these measurements do not show the expected signature of stimulated
Raman scattering, which corresponds to a clearly visible increase of the sample trans-
mission for probe-pump delays around ∆t = 0. As the key result of the experiments,
I have presented a very promising hypothesis that explains the observed behavior
with a perturbation of the electron relaxation dynamics in the conduction band of
the semiconductor, which is due to a cyclic re-excitation process between the TPA-
generated hot electron plasma and a highly populated, well-defined phonon mode
of the polar semiconductor crystal lattice (GaAs). As a side effect of this coherent
electron-phonon interaction, the lifetime of the Raman phonons might be signifi-
cantly prolonged. This hypothesis has been confirmed by a number of preliminary
measurement series that even demonstrate the gradual onset of the modification of
the electron relaxation for increasing pump intensity and that also show very clearly
a wavelength dependence corresponding to the shape of the Raman resonance. It is
worth noting here that this unexpected observation has not been the initial purpose
of the experiments, but it opens the route towards a whole new and exciting field of
physics, which clearly needs further experimental and theoretical investigation.

The results of the pump-probe experiments have shown that, even when setting the
initial pump wavelength λP in such a way that we compensate for the nonlinear
phase shift induced by the Kerr effect and FCR, we do not observe the signature of
stimulated Raman scattering (SRS) that we would expect according to the analytical
model. One possible explanation for this is the fact that SRS depends critically on the
exact value of the pump frequency ωP (more precisely on the difference Ω between
the pump and the probe frequency), as mentioned in section 4.2.2. It should be
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noted that in the whole discussion of the simulation results and the experiments,
we have only considered the intensity and the phase of the probe (Stokes) wave in
the microcavity. However, to understand the absence of the SRS signature, we also
have to take into account the instantaneous frequencies ωS and ωP of the probe and
the pump wave. The instantaneous frequency ω is, in general, given by the time
derivative of the instantaneous phase ϕ, which is composed of the Fabry-Perot phase
ϕFP and the time-dependent nonlinear phase shift ∆ϕNL, so that we obtain

ω(t) =
d
dt

(
ϕFP + ∆ϕNL(t)

)
=

d
dt

(
ϕFP

)
+

d
dt

(
∆ϕNL(t)

)
=

d
dt

(
∆ϕNL(t)

)
.

The nonlinear phase shift ∆ϕNL is essentially caused by the Kerr phase shift and
the free carrier phase shift, where the former is proportional to the pump inten-
sity (Gaussian time dependence), and the latter is given by the free carrier density
(which rises steeply but decreases very slowly). Without going into the numbers, it
is clear from the above equation that both of these effects modify the instantaneous
frequency. They do, however, not only change the frequeny ωS of the probe beam,
but also the pump frequency ωP. As we have demonstrated in Eqs. (2.62) and (2.65)
in section 2.3.1, the auto-induced Kerr phase shift for the pump wave is only half
as strong as the cross-Kerr phase shift for the probe wave. This means that for
delays around ∆t = 0, the instantaneous frequencies of pump and probe wave are
affected differently, and thus, they are not at Raman resonance (i.e., ωP −ωS 6= ΩR)
although the initial pump wavelength detuning ∆λP might be such that it perfectly
compensates the Kerr- and FCR-induced nonlinear phase shift. This is the reason
why we do not observe the strong enhancement of the probe transmission TS in the
experiments. One might argue that it should be possible to compensate for this effect
by a good choice of the initial pump wavelength. That is true, but since the Kerr
and FCR-induced nonlinear phase shifts depend also on the intensity, this intentional
detuning from the Raman resonance is also intensity dependent, which makes it ef-
fectively impossible to find a combination of wavelenghts λS and λP for which we
can be sure to observe a strong Raman signature.

In order to see exactly how the intensity, the phase, and also the instantaneous
frequency of the pump and the probe wave evolve in time (especially for delays
around ∆t = 0) and how their time dependence affects the different nonlinear effects,
it would be necessary to develop a transient model of the nonlinear interactions
in the semiconductor microcavity. Since such a model could not any longer be
solved analytically, it would require to perform numerical simulations. Although
this has been beyond the scope of the present work, Wong et al. have published
such numerical simulations [100] for which they assume a fixed value of γR and a
spectral shape of the Raman resonance that is independent of the pump spectrum.
However, as I have demonstrated in chapter 3, the self phase modulation of the pump
wave strongly modifies the lineshape of the Raman gain and, thus, also the effective
Raman gain experienced by the probe beam. Therefore, this modification and its
detrimental effect on the effective Raman gain should be taken into account by future
simulations of the transient behavior of the microcavity transmission.

It should be noted that the gain coefficient used for the simulations in section 4.2.3
is expressed as

G ≈ (γR − 2βTPA) IP(t + ∆t) ,

where (γR − 2βTPA) is given by the material-dependent parameters γR and βTPA.
Using the values γR = 50 cm/GW and βTPA = 23 cm/GW for gallium arsenide
(GaAs) at Raman resonance (i.e., for ∆ = 0, which means γR = γ̄R), we ob-
tain G ≈ 4 cm/GW. As we have seen in chapter 3, the two-photon absorption
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coefficient βTPA of silicon (Si) is only of the order of 1 cm/GW. Therefore, it
would be possible to achieve higher effective gains by choosing other materials, such
as silicon (Si), for which we have determined in the previous chapter a value of
G = (γR − 2βTPA) ≈ 6.3 cm/GW (see Eqn. (3.54)). Thus, in order to realize a
doubly resonant semiconductor microcavity with the only objective of enhancing
the effect of stimulated Raman scattering (or Raman amplification, respectively), it
would be more appropriate to use Si than to take GaAs.

Actually, this becomes even more true when we look again at our estimation of
the Raman gain coefficient of GaAs. The only data that can be found in the lit-
erature come from an indirect determination of the Raman gain that is based on a
measurement of the of Stokes wave generated by amplified spontaneous Raman scat-
tering in a photonic crystal waveguide in GaAs [111], yielding a value of 6.9 cm/GW
for a Stokes wavelength of 1300 nm. Since the wavelengths used for the experiments
are between 900 and 950 nm, it is necessary to extrapolate the Raman gain coeffi-
cient for these wavelengths by taking into account the frequency dependence of γ̄R,
leading to a value of about 10 cm/GW. Obviously, this value is much smaller than
our estimation of 50 cm/GW that we have used throughout this chapter, and by sub-
tracting 2βTPA, we obtain an effective gain for the Stokes wave of G ≈ −36 cm/GW,
which corresponds to a strong absorption (instead of an amplification). So, another
reason why we have not observed an increase of the probe transmission TS in the
experiments may be the fact that we have largely overestimated the Raman gain
coefficient γ̄R of GaAs.

Nevertheless, as the pump-probe measurements presented in this chapter show,
this does not mean that a GaAs-based sample is not a good candidate for the study
of the coupling between the electrons and the coherent phonons. It is, however, nec-
essary to take into account the coupling constant of the electron-phonon interaction.

The experiments presented in this chapter have essentially been motivated by an
interest in the interplay between different effects from the field of optics. However,
the above-presented interpretation of the experimental results leads into the domain
of solid state physics. A more detailed explanation and modeling of the relaxation
processes and their influence on the refractive index require extensive knowledge of
the electron dynamics in semiconductors, which is beyond the scope of the present
PhD thesis. In a collaboration with Christos Flytzanis from the Laboratoire Pierre
Aigrain de l’École Normale Supérieure de Paris, we have started to work on a more
sophisticated model of the relaxation process, based on a random-walk with a trap
(i.e., a preferred transition). Although this new model is still work in progress, it
could be worthwhile to improve and include it in future studies and PhD theses on
this exciting subject.

* * *
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Chapter 5
Summary

The present PhD thesis addresses the central question how the localization of light
affects certain optical nonlinearities in semiconductors. The focus has been on the
effect of stimulated Raman scattering (SRS), which is a promising method for purely
optical amplification and lasing in semiconductor materials.

For this purpose, several pump-probe experiments have been carried out to study ex-
perimentally two different types of light localization. In these experiments, a strong
light beam (pump) excites the nonlinear optical effects in a suitably fabricated semi-
conductor sample, whose response to this excitation is then measured with another,
weaker, light beam (probe).

The first type of light localization is the reduction of the group velocity of light pulses
in a slow-mode nanowaveguide in silicon or, more precisely, in silicon-on-insulator
(SOI). As has been shown in chapter 3, the Raman amplification that is experienced
by a narrow-band probe beam undergoes a saturation effect for increasing pump
intensities. This saturation of the Raman amplification corresponds to a steady
decrease of the effective Raman gain for increasing pump intensities, which is caused
by the fact that the pump wave experiences a spectral broadening that is induced by
the Kerr effect and the free carrier refraction (FCR). It is important to note that the
strength of the stimulated Raman scattering (SRS) and the other nonlinear effects,
such as TPA, the Kerr effect and the free carrier effects, is enhanced because of the
localization of the light in the nanowveguide.

An analytical model has been developed to describe the effective Raman gain for
picosecond pump pulses, and it shows an excellent agreement with the experimental
results and, further, allows for a determination of the Raman gain coefficient of sil-
icon. The analytical model, however, does not address the question how strong the
pump wave is broadened, i.e., it does not describe the origin of the self phase mod-
ulation. Moreover, it does not describe how certain transient phenomena (such as a
chirp) affect the nonlinear effects. Thus, in order to obtain a better understanding
of these aspects and find answers to these questions, it is necessary to extend the
proposed model and carry out numerical simulations, which has been started in our
working group in the context of another PhD thesis (Alexandre Baron).

Althougth the experiments have studied a situation with only a weak localiza-
tion, the obtained results are also applicable to much higher levels of localization
(e.g., slow-mode waveguides, photonic crystal structures). This makes the present
study very useful to develop highly integrated all-optical functions in silicon or SOI.
However, one of the key results of the present study is the observation that the light
localization induces an intrinsic limitation of the attainable Raman gain because it
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affects not only SRS, but also the other nonlinear effects, and in case of FCR (fifth-
order effect), this enhancement is even stronger than for SRS (third-order effect).

The second light localization type is the enhancement of the intensities of the involved
light waves (pulses) in a semiconductor microcavity. In chapter 4, an experimental
pump-probe study of this localization type is presented. As opposed to the case of a
nanowaveguide (chapter 3), the light localization in a microcavity is generally very
sensitive to variations of the phase of the light waves inside the resonator because
of the resonance condition. Therefore, in order to estimate the influence of the
different nonlinear optical effects, including those effects that affect the phase of
the probe wave, an analytical model has been developed and applied to the case
of a planar GaAs microcavity whose resonator is only five wavelengths long. The
simulation results have clearly shown that the transmission of the cavity, and thus the
intracavity intensity, of the probe pulses is strongly influenced by the two photon
absorption and, more importantly, by a nonlinear phase shift that is induced by
the Kerr effect and the free carrier refraction. Thus, although the latter effects do
not directly affect the intensity of the probe wave, they have a high impact on the
localization of the probe light in the microcavity. This impact is determined by the
pump intensity and by the delay between probe and pump pulses.

Several series of pump-probe experiments have been carried out to measure the
transmission of a real GaAs microcavity sample. Although the experimental results
have not shown the expected signature of stimulated Raman scattering (SRS), which
could be explained with an overestimation of the Raman gain coefficient of GaAs,
a detailed analysis of the time dependence of the transmission (especially the long-
term behavior) indicates that the electron relaxation dynamics in the GaAs layer of
the microcavity is strongly influenced by amplified spontaneous Raman scattering. A
hypothesis is presented that describes how a coherently excited population of Raman
phonons interacts with the electrons in the conduction band through the polar crystal
lattice of the GaAs semiconductor material. A new experiment has been developed
to measure this highly populated phonon mode independently of the Stokes wave
that is created in the microcavity through the Raman scattering.

These exciting results open the route to a totally unknown effect in the field of
semiconductor physics, whose systematic modeling and experimental investigation
have, unfortunately, been beyond the scope of the present PhD thesis. They may,
however, lead the way for numerous interesting future studies and PhD theses. The
next step towards a Raman microlaser would be to use doubly resonant microcavi-
ties in silicon (e.g., in ridge waveguides like the one presented in chapter 3). Such
experiments would require an extremely high fabrication precision because it means
that two waves (pulses) must be resonant in the mircocavity at the same time, while
frequencies of the two waves have a difference of 15.6 THz with an absolute accuracy
of 105 GHz (Raman linewidth). This corresponds to a relative accuracy of about
1%, which still represents a challenge for the fabrication.

Interestingly, with the interaction between electrons and phonons and its highly
wavelength-sensitive influence on the transmission of the microcavity, it might be
possible to design an (ultra-)fast Raman switch that uses the pump wavelength
(instead of the pump intensity) to trigger the transition from open to closed.

In summary, the present PhD thesis can certainly be considered as a valuable con-
tribution to the state-of-the-art knowledge in the fields of silicon photonics and all-
optical information processing, two research domains that will, most probably, in
the future become the "shoulders" on which the coming scientific challenges and
technological developments are standing.



Appendix A
Classical derivation of stimulated

Raman scattering

In this appendix, we present a classical derivation of the nonlinear polarization of
stimulated Raman scattering (SRS). It includes all the steps from a simple harmonic
oscillator model of a microscopic dipole to the final expression of the nonlinear po-
larization.

The result of this derivation illustrates very well the resonance nature of the Raman
scattering, which is of vital importance for the interpretation of the experiments pre-
sented in chapter 3 because it is a key element of the model developed in section 3.1.

Classical harmonic oscillator with electromagnetic driver

As in the case of the spontaneous Raman scattering (see section 2.2.1), we can
describe the stimulated Raman scattering with a simple classical model [36]. This
description yields some valuable insight in the underlying processes and into the
properties of the material constant describing the Raman scattering, the so-called
Raman susceptibility.

We consider a microscopic dipole with an vibrational eigen-frequency ΩR. The dipole
can be described by the equation of motion of a driven harmonic oscillator of the
form

d2

dt2
q + 2Γ

d
dt

q + Ω2
R q =

F (t)

m
(A.1)

where q is the displacement of the oscillator from its equilibrium position, Γ is a
damping constant, m is the mass of the oscillator, and F (t) is a time-dependent
driving force. The latter (i.e. the driving force) corresponds to the electromagnetic
waves that are incident upon the dipole. It can be expressed as the gradient of the
energy W that is necessary to set the oscillator in motion,

F (t) =
dW (t)

dq
. (A.2)

This energy W , in turn, is given by

W (t) =
1

2
〈p(z, t) · E(z, t)〉 , (A.3)

where the angle brackets denote the time average of the scalar product of dipole
moment and electric field strength. According to Eq. (2.10), we can express the
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dipole moment of the dipole as

p(z, t) = α(q) ~E(z, t) (A.4)

so that the energy W of the dipole oscillation becomes

W (t) =
1

2
〈α(q)E(z, t) · E(z, t)〉 =

1

2

〈
α(q)E2(z, t)

〉
. (A.5)

The polarizability α(q) can be written as a Taylor series expansion according to
Eq. (2.9) as

α(q) = α0 +

(
∂α

∂q

)

0

q + . . . . (A.6)

We insert Eqs. (A.5) and (A.6) into Eq. (A.2) and obtain an expression for the
driving force of the harmonic oscillator (i.e., the dipole), given by

F (t) =
dW (t)

dq
=

1

2

(
d
dq

〈
α(q)E2(z, t)

〉)

=
1

2

(
d
dq

[
α0 +

(
∂α

∂q

)

0

q

]) 〈
E2(z, t)

〉

=
1

2

(
∂α

∂q

)

0

〈
E2(z, t)

〉
. (A.7)

Consider two incident laser beams with frequencies ωP and ωS. They can be described
by their electric field strengths

EP(z, t) = AP ei(kPz−ωPt) + A∗
P e−i(kPz−ωPt) = EP + E-P (A.8a)

ES(z, t) = AP ei(kPz−ωPt) + A∗
S e−i(kSz−ωSt) = ES + E-S (A.8b)

where we have introduced the notation EP = AP ei(kPz−ωPt). Thus, the electric field
can be expressed as the superposition of the two incident waves,

E(z, t) = EP(z, t) + ES(z, t) , (A.9)

so that the square of the electric field in Eq. (A.7) becomes

E2(z, t) =
(
EP(z, t) + ES(z, t)

)2
=
(
EP + E-P + ES + E-S

)2

= EPEP + EPE-P + 2EPES + 2EPE-S + ESES + ESE-S + c.c. .

We are interested in the time-varying part at the beat frequency ωP − ωS, which is
given by the underlined terms in the above equation. Thus, according to Eq. (A.7),
the driving force is given by

F (t) =

(
∂α

∂q

)

0

[
AP A∗

S ei((kP−kS)z−(ωP−ωS)t) + c.c.
]

. (A.10)

By introducing the notation

K = kP − kS and Ω = ωP − ωS , (A.11)

we can simplify Eq. (A.10), yielding

F (t) =

(
∂α

∂q

)

0

[
AP A∗

S ei(Kz−Ωt) + c.c.
]

. (A.12)
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We insert Eq. (A.12) into the equation of motion (A.1) and obtain

d2

dt2
q + 2Γ

d
dt

q + Ω2
R q =

1

m

(
∂α

∂q

)

0

[
AP A∗

S ei(Kz−Ωt) + c.c.
]

. (A.13)

This is the equation of motion of a harmonic oscillator with a harmonic driver. As is
well known from classical mechanics, the solutions to such a system are also harmonic
functions with the same frequency as the driver. Therefore, we make the following
ansatz for the displacement q of the oscillator (i.e., the dipole) :

q = q(Ω) ei(Kz−Ωt) + c.c. . (A.14)

By inserting Eq. (A.14) into Eq. (A.13), we obtain

−Ω2 q(Ω) − 2iΩΓ q(Ω) + Ω2
R q(Ω) =

1

m

(
∂α

∂q

)

0

AP A∗
S (A.15)

and, thus, we find that the amplitude of the dipole vibration is given by

q(Ω) =
(1/m) (∂α/∂q)0
Ω2

R − Ω2 − 2iΩΓ
AP A∗

S . (A.16)

With Eqs. (A.14) and (A.16) we have found a solution to the equation of motion of
our model oscillator, i.e., a single microscopic dipole.

Nonlinear polarization of stimulated Raman scattering

In order to describe a macroscopic medium such as a solid (e.g., a semiconductor
crystal), we want to calculate the dipole moment per unit volume, or polarization P ,
of the medium. With the density N of dipoles, the polarization of the material is
given by

P (z, t) = N p(z, t) = N α(z, t)E(z, t)

= N

[
α0 +

(
∂α

∂q

)

0

q(z, t)

]
E(z, t)

= N

[
α0 +

(
∂α

∂q

)

0

(
q(Ω) ei(Kz−Ωt) + c.c.

)]

×
[
AP ei(kPz−ωPt) + AS ei(kSz−ωSt) + c.c.

]
(A.17)

where we have used Eqs. (A.4),(A.6), (A.10), and (A.14). This result can be physi-
cally interpreted as follows. The first factor (in square brackets) is the polarizability
of the medium at the difference frequency Ω = ωP − ωS. Therefore, it represents the
response of the material to an applied light field, which is given by the second factor
(the second pair of square brackets). Both factors together create a macroscopic
diplole moment P , which is the source of another electromagnetic wave. Since we
want to derive an expression for the stimulated Raman scattering (SRS), we are only
interested in the Stokes components, i.e., in the frequency components that are os-
cillating at a frequency ωS. By expanding all the parentheses in Eq. (A.17), we find
two Stokes terms. The first one corresponds to the linear response of the material
to the incident Stokes wave, given by

PL
S (z, t) = N α0 AS ei(kSz−ωSt) + c.c. . (A.18)
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The second Stokes term is the nonlinear response of the material, where the oscil-
lating exponential functions of the polarizability and the electric field interact with
one another. We obtain

PNL
S (z, t) = N

(
∂α

∂q

)

0

q∗(Ω) e−i((kP−kS)z−(ωP−ωS)t)AP ei(kPz−ωPt) + c.c.

= N

(
∂α

∂q

)

0

q∗(Ω)AP ei(kSz−ωSt) + c.c. , (A.19)

which can also be expressed as

PNL
S (z, t) = PNL(ωS) e−iωSt + c.c. (A.20)

with a complex amplitude given by

PNL(ωS) = N

(
∂α

∂q

)

0

q∗(Ω)AP eikSz . (A.21)

By inserting the expression (A.16) for q(Ω) into the above equation, we obtain

PNL(ωS) =
(N/m) (∂α/∂q)20
Ω2

R − Ω2 + 2iΩΓ
|AP|2 AS eikSz . (A.22)

We now define the so-called Raman susceptibility as
�

�

�


χR(ωS) =

1

6ǫ0

(N/m) (∂α/∂q)20
Ω2

R − Ω2 + 2iΩΓ
=

Q0

Ω2
R − Ω2 + 2iΩΓ

, (A.23)

where we have introduced Q0 = (N/6m ǫ0) (∂α/∂q)20 ∈ R for the sake of convenience.
Thus, the complex amplitude of the nonlinear Stokes polarization can then be
written as �

�

�


PNL(ωS) = 6 ǫ0 χR(ωS) |AP|2 AS eikSz . (A.24)

The ǫ0 in Eq. (A.24) has been introduced to keep the result of our simple classi-
cal model consistent with the physical meaning of a susceptibility as it has been
introduced in section 2.1. The factor 6 is the so-called degeneracy factor, which is
properly introduced and explained in section 2.1.3.

Equations (A.23) and (A.24) are the classical expressions describing the nonlinear
polarization of stimulated Raman scattering (SRS). These expressions are needed to
solve the nonlinear propagation equation (2.4). As mentioned in the introduction to
this appendix, the classical derivation presented here shows very well the frequency
dependence of the Raman susceptibility given by Eq. (A.23), which corresponds to
a typical resonance function. For more details and a graphical illustration of the
resonance curve, see section 2.2.2.



Appendix B
Transmission of a Fabry-Perot

resonator with optical gain

In this appendix, we derive an equation describing the intensity transmission coeffi-
cient T of a Fabry-Perot resonator containing a gain medium (e.g., a Raman-active
nonlinear material). The resulting formula can be considered as the general form
of the widely known Airy function, describing the resonance behavior of an optical
resonator.

Consider a Fabry-Perot resonator consisting of two planar mirrors with reflectivities
r1 and r2 for the electric field strength E. The medium between the two mirrors has
a refractive index n and provides an optical gain g for the electric field strength. A
plane monochromatic electromagnetic wave

~E = A exp
{

i~k · ~r − iωt
}

+ c.c. (B.1)

is injected under an angle ϑ’ into the resonator, where it propagates under an angle
ϑ back and forth many times. The situation is illustrated in Figure B.1. The wave
enters the resonator at point A, propagates to point B, is reflected to point C, where
it is again reflected to point D, and so on and so forth. During the propagation,
the wave experiences a phase shift and, because of the gain, a change of the field
amplitude. Hence, after the propagation from point A to point B, the wave has the
form

~E −→ ~E′ = ~E egl eiϕ , (B.2)

Fig. B.1. Propagation of an electromag-
netic wave in a Fabry-Perot resonator con-
taining a gain medium. The amplitude re-
flectivities of the mirrors are r1 and r2. The
wave enters the resonator at point A, prop-
agates to point B, is reflected to point C,
where it is again reflected to point D, and so
on and so forth. During the propagation the
wave experiences a phase shift and, because
of the gain, a change of the field amplitude.
The z axis indicates the propagation direc-
tion inside the resonator.
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where l is the effective path length,

l = L/ cos ϑ , (B.3)

and L is the distance between the two mirrors, i.e., the resonator length.

We consider the electric field strength of an incident electromagnetic wave ~Ei. De-
pending on the reflectivity r1 of the first mirror, the incident field is partially reflected,
~Er = r1

~Ei. Inside the resonator, we consider a forward propagating wave ~Ef and a
backward propagating wave ~Eb. The field strength that leaves the resonator through
the second mirror is ~Et. For the rest of this derivation we assume that the mirrors
have no losses. Figure B.2 shows the different electric fields as a function of the
position z along the propagation direction of the wave. We find an expression for
the forward propagating electric field at z = 0, given by

~Ef(0) = t1 ~Ei − r1
~Eb(0)

= t1 ~Ei − r1e
gleiϕ ~Eb(l)

= t1 ~Ei + r1r2e
gleiϕ ~Ef(l)

= t1 ~Ei + r1r2e
gleiϕegleiϕ ~Ef(0)

= t1 ~Ei + r1r2e
2gle2iϕ ~Ef(0) ,

where the minus sign in the first and the second line is convention [49]. The above
equation yields a relationship between the forward propagating electric field and the
incident electric field,

t1 ~Ei =
(
1 − r1r2 e2gle2iϕ

)
~Ef(0) =⇒ ~Ef(0) =

t1
(1 − r1r2 e2gle2iϕ)

~Ei ,

so that the transmitted electric field can be expressed as

~Et = t2 ~Ef(l) = t2 egleiϕ ~Ef(0) =
t1t2 egleiϕ

(1 − r1r2 e2gle2iϕ)
~Ei .

Thus, by using the relationship between the intensity and the electric field strength
of an electromagnetic wave, I = 2ncǫ0| ~E|2, we can express the intensity transmission
of the resonator as

T =
It

Ii
=

| ~Et|2

| ~Ei|2
=

t21t
2
2 e2gl |e2iϕ|2

|1 − r1r2 e2gl e2iϕ|2
=

T1T2 eGl

∣∣1 −
√

R1

√
R2 eGl e2iϕ

∣∣2 , (B.4)

where we have introduced the intensity gain coefficient G = 2g (as opposed to the
amplitude gain coefficient g) as well as the transmission and reflectivity coefficients

Fig. B.2. Self-consistency conditions
of the electric fields in a Fabry-Perot
resonator (with gain). The graph illus-
trates the relationship between the inci-
dent electric field ~Ei, the reflected field
~Er, the forward and backward prop-
agating intra-cavity fields ~Ef and ~Eb,

and the transmitted electric field ~Et as
a function of the propagation along z.
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T1 = t21, T2 = t22, R1 = r2
1, and R2 = r2

2 for the intensity of the electromagnetic
wave. The mirrors are assumed to be loss-free, which means that T1 + R1 = 1 and
T2 + R2 = 1. We can thus express the transmission of a resonator containing
a gain medium as a function of the intensity reflectivities as

�

�

�


T =

(1 − R1)(1 − R2) eGl

∣∣1 −
√

R1R2 eGl e2iϕ
∣∣2 . (B.5)

In the special case of a zero gain G = 0, we obtain

T =
(1 − R1)(1 − R2)∣∣1 −

√
R1R2 e2iϕ

∣∣2 . (B.6)

The denominator of the above equation can also be expressed as

∣∣1 −
√

R1R2 e2iϕ
∣∣2 = 1 + R1R2 − 2

√
R1R2 cos(2ϕ)

=
(
1 − 2

√
R1R2

)2 (
1 +

4

π
F2 sin2(ϕ)

)
, (B.7)

where we have introduced the so-called finesse F of the resonator as

F
�

�

�


F =

π 4
√

R1R2

1 −
√

R1R2
. (B.8)

Thus, we can write Eq. (B.6) in the form of the so-called Airy function as
�

�

�


T =

(1 − R1)(1 − R2)(
1 − 2

√
R1R2

)2 (
1 + 4

πF2 sin2(ϕ)
) =

Tmax

1 + 4
πF2 sin2(ϕ)

, (B.9)

which is characterized by the finesse F and the maximum transmission Tmax

Tmax

�

�

�


Tmax =

(1 − R1)(1 − R2)(
1 − 2

√
R1R2

)2 . (B.10)

In order to be resonant in the cavity, the electric fields at the points B and D in
Fig. B.1 have to interfere constructively. As a geometrical derivation shows, the
phase difference between the points B and D is given by

δ = 2n Lk cos ϑ .

This is the phase difference after one round trip in the resonator, which corresponds
to 2ϕ. Therefore, we can express the phase of the electromagnetic wave after half a
round trip, which is called the Fabry-Perot phase, as

ϕFP

�

�

�


ϕFP =

δ

2
= n Lk cos ϑ =

2π n L cos ϑ

λ
. (B.11)

At resonance, the electromagnetic wave has to satisfy the resonance condition

δ = 2π m =⇒ ϕFP = π m with m ∈ N , (B.12)

mwhere m is called the order of the resonance. Hence, for a given order m, cavity
length L, and refractive index n, the above equations (B.11) and (B.12) yield a
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Fig. B.3. Resonant modes of
a Fabry-Perot resonator in the
frequency domain. The graph
shows the first ten resonances.
(i.e., the resonance orders m = 1
to m = 10). The resonances are
characterized by the maximum
transmission Tmax and the spec-
tral linewidth δν1/2. They are
separated by the so-called free
spectral range ∆νFP.

relationship between the angle of incidence ϑ and the resonance wavelength λ =
2π/k, which is given by

λ =
2nL

m
cos ϑ . (B.13)

Since the cosine function is bounded (cos ϕ ≤ 1), there is for a given resonance order
m a longest possible resonance wavelength, which corresponds to normal incidence
(ϑ = 0). All other resonant wavelengths are shorter.1 Their angle of incidence is
given by ϑ = arccos(mλ/2nL).

As can be seen from Eq. (B.9), the Airy function has a periodicity of π, which is
given by the periodicity of the sin2 function. Figure B.3 illustrates the Airy function
and its periodicity as a function of the frequency ν = c/λ. It also shows the key char-
acteristics of the Fabry-Perot resonances, which are their linewidth δν1/2 (FWHM),
the maximum transmission Tmax, and the free spectral range ∆νFP. The latter
corresponds to the difference between two adjacent resonance frequencies. Without
further proof, we state here that the ratio of the free spectral range and the linewidth
is given by the finesse F , �

�

�


F =

∆νFP

δν1/2
, (B.14)

which is therefore a measure of the "sharpness" of the resonance peaks.

Since the Airy function (which describes the transmission of the resonator), is pe-
riodic in π, it is often useful to approximate the Fabry-Perot phase ϕFP near the
resonances by a Taylor series, yielding

ϕFP ≈ − 2πnL

λ2
∆λ , (B.15)

where ∆λ is the (small) wavelength detuning from the resonance wavelength given
by Eq. (B.13). It should be noted that this expression is negative for a positive
detuning ∆λ, and vice versa.

1Remark: This result might contradict our intuitive expectation, since, because of the geometry,
each individual beam in the resonator travels along an elongated path l = L/ cos ϑ. Therefore
one could be tempted to conclude that the resonance wavelength also increases with the angle of
incidence. However, exactly the opposite occurs : Higher angles ϑ correspond to shorter resonance
wavelengths λ. This property of the Fabry-Perot resonator can be used to make two beams with
different wavelengths simultaneously resonant in the cavity by injecting them with two different
angles of incidence. In chapter 4, we use this important result to obtain a doubly resonant
cavity, in which the Stokes wave is at normal incidence whereas the pump wave propagates with
an angle of incidence ϑ 6= 0.
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