
HAL Id: tel-00587409
https://pastel.hal.science/tel-00587409

Submitted on 20 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The structure of orders in the pushdown hierarchy
Laurent Braud

To cite this version:
Laurent Braud. The structure of orders in the pushdown hierarchy. Modeling and Simulation. Uni-
versité Paris-Est, 2010. English. �NNT : 2010PEST1009�. �tel-00587409�

https://pastel.hal.science/tel-00587409
https://hal.archives-ouvertes.fr

THÈSE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS-EST

The structure of orders in the pushdown hierarchy
Les structures d’ordre dans la hiérarchie à pile

Spécialité informatique

École doctorale MSTIC

Soutenue publiquement par Laurent Braud

le 10 décembre 2010

JURY :

Zoltán Ésik, rapporteur,

Wolfgang Thomas, rapporteur,

Arnaud Carayol, examinateur,

Damian Niwiński, examinateur,

Dominique Perrin, examinateur,

Didier Caucal, directeur de thèse.

2

Contents

1 Introduction 7

1.1 (en français) . 7

1.2 (in English) . 13

2 Preliminaries 19

2.1 Notations and first structures . 19

2.1.1 Finite words . 19

2.1.2 Structures . 20

2.1.3 Graphs . 21

2.1.4 Deterministic trees . 22

2.2 Linear orderings . 22

2.2.1 Ordinals . 24

2.2.2 Scattered orderings and Hausdorff rank 26

2.2.3 Orders in a deterministic tree . 29

2.3 Logic . 30

2.3.1 First-order logic . 30

2.3.2 Monadic second-order logic . 31

2.3.3 Decidability . 31

2.4 Graph transformations . 33

2.4.1 Graph interpretations . 33

2.4.2 Graph expansions . 35

2.5 The pushdown hierarchy . 37

2.5.1 Definition . 37

2.5.2 Some properties . 38

3 Linear order construction 43

3.1 Ordinals in the pushdown hierarchy . 43

3.2 Powers of ζ . 45

3.3 n-regular presentation . 48

3.3.1 Prefix-recognizable graphs . 49

3.3.2 Configuration graphs of n-hopdas 49

3.3.3 Encoding ordinals . 50

3

4 CONTENTS

3.4 Covering graphs . 53

3.4.1 Fundamental sequence . 54

3.4.2 Covering graphs . 56

3.4.3 Other properties of covering graphs 60

3.4.4 Strictness of covering graphs in the hierarchy 62

3.4.5 The case of Gε0 . 65

4 The structure of tree frontiers 67

4.1 Tree-walking automaton . 67

4.2 From graphs to frontiers . 69

4.3 Ordinals . 73

4.4 Scattered linear orders . 78

4.4.1 Trees with scattered frontiers . 78

4.4.2 Permutation of subtrees . 79

4.4.3 Cantor-Bendixson rank of deterministic trees 81

4.4.4 Hausdorff rank of scattered orders in Graphn 86

4.5 Finite combs . 87

5 Schemes and morphic words 91

5.1 Recursion schemes . 92

5.1.1 Definition . 92

5.1.2 Schemes in the pushdown hierarchy 94

5.2 Morphic words . 97

5.2.1 Definition and properties . 97

5.2.2 Construction in the pushdown hierarchy 99

5.2.3 Words in Graph2 are morphic, direct proof 99

5.2.4 Words in Graph2 are morphic, by recursion schemes 102

5.3 Second order . 106

5.3.1 Second-order morphic words . 106

5.3.2 Second-order scheme ω-frontiers . 109

5.3.3 Liouville word . 117

List of notations 119

Index 121

Bibliography 123

List of Figures

1.1 Un graphe fini et une propriété de ce graphe. 7

1.2 L’arbre binaire complet. 8

1.3 A finite graph and one of its properties. 13

1.4 The complete binary tree. 14

2.1 Example of a graph : the ladder . 21

2.2 The graph representation of the ordinal ω + 2. 24

2.3 The ladder and its unfolding. 36

2.4 Treegraph of the complete binary tree. 36

2.5 The pushdown hierarchy. 38

2.6 Exemple of graph constructions in the hierarchy. 39

3.1 Finite graph G3 which unfolding has frontier ω3. 44

3.2 Folded graphs of trees of frontier ζ, η and ω(1 + η). 45

3.3 Folded regular graph of a tree of frontier ζω. 46

3.4 {0, 1}-treegraph of ω. 48

3.5 The operation inc(ωω). 52

3.6 Covering graph of ωω. 56

3.7 Exponentiation of the covering graph of ω. 62

4.1 Order in a finite tree t and “arranged” tree s(t). 72

4.2 Non-full tree of frontier ω having a branch with infinitely many 0’s. 74

4.3 A finite graph G, “spanning tree” T , completed tree T̄ , and unfolding. . . . 76

4.4 Orders in a tree. 84

5.1 Rules for S1, of frontier ωω. 95

5.2 General rules for Sn, of frontier ω ↑↑ (n+ 1). 95

5.3 Paperfolding sequence. 98

5.4 A graph which unfolding yields the morphic word abaab . . . a2
i

b 100

5.5 General shape of the folded graph. 101

5.6 Rules of a scheme which frontier is a morphic word. 105

5.7 Order-2 safe scheme which frontier is the Champernowne word. 107

5.8 Order-2 safe scheme which frontier is the Liouville word. 118

5

6 LIST OF FIGURES

Chapter 1

Introduction

1.1 (en français)

En logique mathématique, on distingue les objets mathématiques, ou structures, et leurs

propriétés, ou logique. Les structures à leur tour sont constituées d’éléments et de relations

entre ces éléments. Dans cette thèse, nous travaillerons uniquement sur ce que l’on appelle

des “graphes colorés dont les arcs sont étiquetés”, c’est-à-dire des structures dont les

relations sont d’arité au plus 2. De plus, ces structures seront dénombrables — on peut

numéroter chaque objet avec un entier — et de présentation finie — il existe une quantité

finie d’information permettant de représenter la structure de façon non ambigüe.

“Un chemin entre deux sommets blancs est en
pointillés ou passe par un sommet noir.”

Figure 1.1: Un graphe fini et une propriété de ce graphe.

La logique la plus simple est celle dite du premier ordre, car elle manipule simplement

les éléments proprement dits de la structure considérée. Elle permet d’exprimer des

propriétés du type “tout sommet colorié en noir a un voisin blanc” ou “s’il existe un

sommet blanc, alors il existe 3 arcs distincts en pointillés”. Elle est cependant restreinte

à des propriétés ponctuelles et ne dit rien sur la structure dans sa globalité. Une solution

est alors de considérer une logique plus forte, qui permet de manipuler directement des

ensembles d’éléments. C’est la logique du second ordre monadique, qui permet d’exprimer

des propriétés raisonnablement compliquées. Des exemples classiques sont “il y a un

chemin entre x et y” ou “le sous-arbre t est infini”. On la notera souvent par le sigle

MSO.

De façon générale, la logique du second ordre désigne l’ensemble des formules qui

parlent des relations entre les éléments. Mais elle a le défaut d’être paradoxalement trop

puissante; elle échappe ainsi aux outils usuels de l’informatique, selon la définition donnée

7

8 CHAPTER 1. INTRODUCTION

ci-après. C’est pourquoi on se restreint aux relations qui ne prennent qu’une variable : ce

sont bien les ensembles. Ceci explique l’adjectif monadique.

Notre problème n’est pas de connâıtre entièrement une structure donnée, mais de

savoir exprimer ses propriétés. Cette nuance autorise l’usage d’un automatisme. En effet,

la question qui se pose est alors la suivante.

Étant données une logique et une structure, existe-t-il un algorithme qui

prenne en entrée une formule close de cette logique et renvoie oui ou non

selon que la structure satisfait la formule ou non?

C’est la question de la décidabilité de du model-checking de la logique à laquelle ap-

partiennent les formules que l’on veut tester. Savoir construire un tel algorithme est un

défi majeur de l’informatique d’aujourd’hui, car cette question est naturellement liée à la

notion de vérification de programmes. En effet, savoir si un programme fait effectivement

ce que l’on veut — par exemple, savoir s’il termine — est expressible par une formule,

que doit vérifier la structure des configurations du programme.

Construction de structures

Par exemple, un résultat fondemental de Rabin [Rab69] indique que l’arbre binaire com-

plet, esquissé Figure 1.2, a une théorie monadique décidable. Plus généralement, pour

une logique donnée, peut-on espérer trouver une caractérisation de toutes les structures

qui jouissent de la même propriété? Probablement pas, mais cela n’empêche pas les sci-

entifiques de chercher à en décrire le plus possibles. En particulier, pour la logique du

second ordre monadique, l’intérêt de la communauté scientifique se porte sur la hiérarchie

à pile [Cau03], aussi appelée hiérarchie de Caucal.

Figure 1.2: L’arbre binaire complet.

Pour décrire historiquement cette hiérarchie, il nous faut remonter à [MS85], où les

auteurs s’intéressent aux graphes des configurations des automates à piles en partant d’une

configuration donnée. Il caractérisent exactement ces graphes par un critère géométrique :

si on fixe un sommet, et que l’on retire successivement ce sommet, puis les sommets à

distance 1, puis à distance 2 et ainsi de suite, on obtient une suite de graphes. Le résultat

fondamental est que l’ensemble de ces graphes est fini à isomorphisme près : la suite se

1.1. (EN FRANÇAIS) 9

répète. Cette propriété leur permet d’étendre le résultat de Rabin à tout une classe de

graphes. Ce résultat sera étendu dans [Cou90, Cou11] aux graphes HR-équationnels.

On a donc deux manières de décrire ces graphes, que l’on peut appeler définition

interne — en choisissant un ensemble pour les sommets, et les arcs comme des relations

entre ces sommets — ou externe — par les propriétés structurelles du graphe. Si l’on

préfère, ces deux approches considèrent que les objets importants sont respectivement les

sommets ou les arcs. Dans [Cau96], le même principe est appliqué pour définir une classe

plus large, celle des graphes préfixe-reconnaissables. Ceux-ci sont à la fois définis par

des relations de récriture préfixe entre des mots, et par des transformations de graphes à

partir d’un graphe fini.

Dans cette thèse, nous utiliserons le plus souvent la caractérisation externe, qui décrit

un graphe en donnant une série de transformations à partir d’un arbre fini; un graphe sera

donc par définition un ensemble d’arcs. Il y aura deux transformations fondamentales.

D’une part, le dépliage d’un graphe renvoie l’arbre des chemins dans ce graphe à partir

d’un sommet donné. D’autre part, l’interprétation monadique permet de “réorganiser” de

façon régulière la structure d’un graphe. Ces deux opérations préservent la décidabilité

de la logique monadique. En partant de la classe des graphes finis, puis en appliquant

un dépliage suivi d’une interprétation, on obtient la classe des préfixe-reconnaissables.

En itérant ce processus, on obtient une suite de classes de graphes distinctes : c’est la

hiérarchie à pile, décrite par Caucal [Cau03].

Ordinaux

Une autre famille de graphes ayant une logique MSO décidable est bien plus connue.

C’est la classe des ordinaux dénombrables, ou classe d’ordres totaux ayant la propriété

de bon ordre, c’est-à-dire que chaque sous-ensemble non vide doit avoir un plus petit

élément. Ils ont été introduits par Cantor [Can97] qui en formule les propriétés de base.

Ces objets sont fréquemment utilisés dans les mathématiques actuelles. Ils généralisent

l’arithmétique des nombres entiers, et surtout bénéficient des preuves par induction : si

on prouve qu’une propriété vraie pour tout β < α est vraie pour α, on a alors établi la

propriété de façon générale.

Büchi [Bü65, Büc73], en utilisant des automates, a prouvé la décidabilité de la logique

MSO pour les ordinaux dénombrables; il a été suivi par Shelah [She75] par une méthode

compositionnelle entièrement différente.

Il est donc naturel de chercher l’intersection de ces deux grandes familles. Cette thèse

prend donc sa racine dans la question suivante :

Quels sont exactement les ordinaux du niveau n de la hiérarchie à pile?

La question est d’autant plus importante que les exemples concrets de graphes dans la

hiérarchie sont nombreux au premier niveau, mais beaucoup moins par la suite. Depuis

[Mas74] et [KNU02], on sait que la hiérarchie est bien séparée en classes distinctes, mais

10 CHAPTER 1. INTRODUCTION

avoir une collection d’exemples aussi simples que les ordinaux établirait une forme de

“mesure de complexité” de la hiérarchie. Dans l’autre sens, la réponse permettrait de

mieux comprendre les ordinaux par l’étude des méchanismes nécessaires à leur construc-

tion

Dans le même ordre d’idée se pose la question plus générale des ordres linéaires, c’est-

à-dire des classes d’ordres totaux n’ayant pas la propriété de bon ordre, dont Z en est le

premier exemple. Evidemment, il existe des ordres linaires dénombrables dont la logique

MSO n’est pas décidable, même assez simples. On cherche donc un seul sens : un critère

nécessaire pour ces ordres. Pour commencer, il est naturel de chercher du côté des ordres

dispersés (scattered), c’est-à-dire ne contenant pas de sous-ordre isomorphe à Q. Cette

classe bien connue a été classifiée par Hausdorff [Hau08] qui donne une “mesure ordinale”

pour chaque ordre. Il existe donc un lien des ordres dispersés vers le cas plus simple et

plus connu des ordinaux.

Automates et ordres

L’intersection du domaine des structures liées à des automates et de celui des ordinaux

a fait nâıtre bien d’autres résultats. Au sens le plus large, d’anciens travaux de Church

[Chu38] et Kleene [Kle38] établissent quels sont les plus grands ordinaux récursifs, c’est-

à-dire qui peuvent être exprimés par une machine de Turing. Nous nous intéressons ici

à des modèles de calcul plus simples, plus proches du domaine des structures automa-

tiques, c’est-à-dire dont les relations sont définies par un transducteur fini, c’est-à-dire

un automate à deux entrées. Les résultats [Del04, KRS05] établissent que les ordinaux

automatiques sont plus petits que ωω, et que les ordinaux arbre-automatiques — où le

transducteur reconnâıt des relations sur les arbres — sont ceux plus petits que ωωω

. De

la même manière, de récents résultats [BÉ09, BÉ10] définissent les ordres linéaires et les

ordinaux aux premiers niveaux de la hiérarchie à pile : les ordinaux du deuxième niveau

sont plus petits que ωωω

, et les ordres dispersés ont un rang de Hausdorff plus petit que

ωω. C’est cette voie que cette thèse poursuivra.

Il est également naturel de considérer la notion d’ordre linéaire coloré, c’est-à-dire de

mots sur un alphabet fini, mais indexés par un ordre infini : par exemple, un nombre

réel entre 0 et 1 peut être vu comme un mot sur l’alphabet [0, 9] indexé par N, ou de

façon équivalente comme l’ordre ω coloré par l’alphabet [0, 9]. Les mots infinis acceptés

par automates de Büchi [Büc62] sont le premier exemple de tels ordres. Un tel automate

accepte un mot indexé par N s’il passe infiniment de fois dans un état final. Cette

définition a été adaptée dans [NP82] pour considérer les mots bi-infinis, c’est-à-dire indexés

par Z. Büchi [Bü65] décrit également le processus d’un automate acceptant des mots

indexés par des ordinaux, ce qui lui permet de montrer la décidabilité de la logique MSO.

Plus récemment, Bruyère et Carton [BC07, BC02, BC06a] ont considéré des automates

acceptant des mots indexés par des ordres dispersés, et obtiennent un théorème de Kleene.

1.1. (EN FRANÇAIS) 11

Arbres solutions de schémas récursifs

La notion de mot infini indexé par N mérite également qu’on la recherche dans la hiérarchie

à pile. Les premiers mots infinis que l’on rencontre sont les mots ultimement périodiques,

qui sont les plus simples des mots infinis. A l’étape suivante, on voit apparâıtre des

mots plus complexes, connus sous le nom de mots morphiques : ce sont les points fixes

d’application de morphismes. Si ∆ est une lettre, et que τ est un morphisme tel que τ(∆)

est un mot commençant par ∆, alors τ(τ(∆)) également, et ainsi de suite : on obtient

alors un mot infini. Ce sont là — à codage près — les mots morphiques.

Cette définition s’approche assez de la construction de termes de la hiérarchie à pile

par les schémas récursifs. Ces objets, introduits semble-t-il par Ianov [Ian60] au premier

niveau, puis par Nivat [Niv72], ont été amenés à l’ordre supérieur par Damm [Dam77,

Dam82]. On peut parler de grammaires de termes : considérons deux ensembles typés

dits terminaux et non-terminaux, et également l’ensemble des termes sur ces ensembles en

suivant le typage. Chaque non-terminal F a une règle de récriture prenant en compte les

arguments de F , de telle façon qu’un terme ayant pour tête ce non-terminal se récrit en un

terme. On répète alors l’opération sur un nouveau non-terminal. Même si l’opération est

infiniment répétée, de tels schémas peuvent avoir un arbre limite, point fixe de l’opération :

c’est une solution du schéma récursif. On a donc une manière simple de construire un

arbre infini avec des règles de récriture.

Ces schémas ont récemment été remis sur le devant de la scène, notamment grâce aux

travaux [KNU01, KNU02] sur la décidabilité de la logique MSO sous une contrainte dite de

sûreté, puis en retirant cette contrainte dans [AdMO05, Ong06, KNUW05]. En particulier,

les arbres sûrs sont exactement les arbres-termes de la hiérarchie. Pour en revenir aux

questions évoquées plus haut, il semble naturel de relier les schémas du premier ordre

avec les mots morphiques, et de vérifier que l’on obtient bien les seconds comme ordres

sous-tendus par les premiers. Se pose alors la question de la généralisation : comment

faire évoluer la notion de mot morphique pour coller à celle de schéma récursif d’ordre

supérieur?

Plan et contributions

Le chapitre 2 fixe les notations et les objets utilisés, en commençant par les notions

de graphe et d’arbre. Nous rappelons les définitions et premières propriétés des ordres

linéaires, ainsi que le cas particulier des ordinaux. Enfin, nous décrivons la hiérarchie à

pile par les transformations de graphes.

Dans le chapitre 3, nous illustrons la définition interne de la hiérarchie par la construc-

tion d’ordinaux et de puissances du type d’ordre de Z par des transformations de graphes.

Le résultat important est que les ordinaux plus petits qu’une tour exponentielle d’ω de

taille n+1 sont dans le n-ième niveau de hiérarchie; ceci inclut donc tous les ordinaux plus

petits que ε0, qui est le plus petit ordinal tel que ωε0 = ε0. Une définition interne due à

12 CHAPTER 1. INTRODUCTION

[Car05] est donnée, et est encore illustrée par les ordinaux. Enfin, nous nous interrogeons

sur une propriété essentielle des ordinaux : d’après Büchi [Bü65], la logique monadique ne

peut pas toujours distinguer deux ordinaux. Pour chaque ordinal plus petit que ε0, nous

exhibons alors une structure aussi expressive n’ayant pas cette contrainte. Les résultats

de ce chapitre apparaissent pour la plupart dans [Bra09].

Le chapitre 4 établit le résultat inverse : il prouve que la tour d’exponentielle de

taille n + 1 ne peut être dans le n-ième niveau de la hiérarchie. Pour ce faire, nous

commençons par établir l’égalité entre ordres comme graphe de la hiérarchie et structure

des feuilles, dans l’ordre lexicographique, des arbres de la hiérarchie. Ce résultat nous

permet de raisonner par récurrence sur le niveau de la hiérarchie. Nous obtenons un

résultat similaire sur le rang de Hausdorff des ordres dispersés, qui mesure une certaine

complexité de l’ordre. Enfin, les mêmes techniques aboutissent à un résultat sur la taille

des sous-arbre finis des peignes de la hiérarchie, c’est-à-dire des arbres ayant une unique

branche infinie, qui est la branche la plus à droite. Ce chapitre apparâıt en grande partie

dans [BC10].

Le dernier chapitre approche la hiérarchie pas le biais des schémas de récursion d’ordre

supérieur. Nous y considérons les feuilles des arbres solutions de ces schémas formant des

mots de type ω. Si l’on considère des arbres réguliers, il est simple de voir que ces

mots sont ultimement périodiques. Au niveau suivant, nous prouvons que l’on obtient

exactement les mots dits morphiques. Ce résultat est alors étendu au niveau supérieur et

définit une nouvelle classe de mots bénéficiant des propriétés des graphes de la hiérarchie.

Ces résultats font l’objet d’un article en cours de préparation [Bra].

1.2. (IN ENGLISH) 13

1.2 (in English)

Mathematical logic distinguishes mathematical objects, or structures, and their properties,

or logic. These structures are in turn made of elements and relations between these

elements. In this thesis, we will only work on “colored graphs with labeled arcs”, that

is structures where relations are of arity at most 2. Moreover, these structures will be

countable — the objects can be numbered — and of finite presentation — there is a finite

amount of data allowing an unambiguous representation of the structure.

“Each path between two white vertices is hashed or
goes through a black vertex.”

Figure 1.3: A finite graph and one of its properties.

The simplest logic is the so-called first-order logic, and it only quantifies the proper

elements of the given structure. We can express properties like “every black vertex has a

white neighbour” or “if there at least one white vertex, then there are at least 3 distinct

hashed arcs”. It is nonetheless limited : for instance, over graphs of bounded degree,

it is restricted to local properties, as testified by Gaifman’s locality theorem [Gai82]. A

solution is then to consider a stronger logic, which directly considers sets of elements. This

is called the monadic second-order (MSO) logic; it can express more complex properties,

like “there is a path between x and y”, or “the deterministic subtree t is infinite”.

More generally, second-order logic is a system where variables range over relations

between elements. But is has the paradoxal drawback of being too powerful; usual tools

(e.g. decision procedures) of computer science cannot reach this logic. This is why we

restrict ourselves to relations with only one variable : these are exactly sets. This explains

the adjective monadic.

Our problem is not to know entirely a given structure, but to know its properties.

This subtelty allows the use of an algorithm. The question is indeed the following.

For a given logic and structure, is there an algorithm taking a closed for-

mula of this logic and returns whether the formula is true in the structure or

not?

It is the question of decidability of the model-checking of the logic in a given structure.

Knowing how to build such an algorithm is a challenge of modern computer science, since

this question is naturally linked to program verification. Indeed, the required behaviour

of a program can be expressed by a formula, which should be checked by the structure of

configurations of the program.

14 CHAPTER 1. INTRODUCTION

Structure constructions

For instance, a fundamental result of Rabin [Rab69] states that the complete binary tree,

drawn in Figure 1.4, has a decidable monadic theory. More generally, for a given logic, can

we hope to find a characterisation of all structures enjoying the same property? Probably

not, but this does not forbid scientists to try and describe as much of these structures

as possible. For monadic second-order logic, the scientific community is interested in the

pushdown or Caucal hierarchy.

Figure 1.4: The complete binary tree.

The history of this hierarchy goes back to the result of Muller and Schupp [MS85],

where the authors study the configuration graphs of pushdown automata starting from a

given configuration. They characterize these graphs with a geometrical criterion. Given

a vertex, we remove this vertex, then the vertices a distance 1, then distance 2, and so

on. We get a sequence of graphs. The fundamental result is that the resulting set of

connected graphs is finite up to isomorphism : the sequence repeats itself. This property

extends the result of Rabin to a larger class of graphs, and is extended to HR-equational

graphs in [Cou90, Cou11].

We have therefore two ways to describe these graphs, which can be called inner def-

inition — by giving a set of vertices and constructing relations between vertices — and

outer definition — via structural properties of the graph. Said differently, this approach

considers that the main objects are respectively the vertices or the arcs. In [Cau96], the

same idea is applied to define the larger set of prefix-recognizable graphs. These graphs

also have a twofold definition : one by rewriting relations on words, and the second with

graph transformations from a finite graph.

In this thesis, we will most of the time use the external characterization. That is, a

graph will be described by a sequence of transformations from a finite tree. There will be

two main transformations. First, the unfolding of a graph from one of its vertices yields

the tree of the paths from this vertex. Second, the monadic interpretation “reorganizes”

the structure in a regular way. These two operations preserve the decidability of model-

checking for monadic second order logic. Starting from the set of finite graphs, and

applying an unfolding and an interpretation, we get the set of prefixe-recognizable graphs.

By iterating this process, we get a sequence of distinct classes of graphs : it is the

pushdown hierarchy, described by Caucal [Cau03].

1.2. (IN ENGLISH) 15

Ordinals

Another well-known class of graphs having a decidable MSO logic is the class of countable

ordinals, or total orders having the well-ordering property, i.e. where each nonempty

subset has a smaller element. They have been introduced by Cantor [Can97] who formu-

lated basic properties. For instance, they generalize the arithmetic of natural number,

and enjoy induction proofs : if a property true for all β < α is true for α, then it is true

for all ordinals.

With the use of automata, Büchi [Bü65, Büc73] proved the decidability of model-

checking of MSO logic for each countable ordinal; it was followed by Shelah, who proves

the same result by the very different compositional method.

It is therefore natural to study the intersection of these two large families. This thesis

takes its root in the following question :

What are exactly the ordinals found in the nth level of the pushdown

hierarchy?

The importance of this question relies on the fact that we have many known examples

of graphs in the hierarchy in the first levels, but very few in the next. Since [Mas74] and

[KNU02], we know that the hierarchy is separated into distinct classes. Nonetheless, a

collection of examples as simple as ordinals would establish a “complexity mesure” of the

hierarchy. In the other direction, we could have a better understanding of ordinals by

studying the mechanisms used in their construction.

The question of more general linear orders follows immediately. We consider the

classes of total orders not having the property of well-ordering, the first example being

〈Z, < 〉. Of course, many of those orders have an undecidable monadic theory, even when

restricting to countable orders. We look for one direction, i.e. a necessary criterion

for these orders. For a start, it is natural to look at scattered orders, i.e. not having

any suborder isomorphic to Q. This well-known class of orders has been classified by

Hausdorff [Hau08] where he gives an “ordinal measure” for countable scattered orders.

There is therefore a link between scattered orders and the easier case of ordinals.

Orders and automata

It is not the first time that the domain of structures linked to automata meets ordinals.

For the upper bounds, works of Church [Chu38] and Kleene [Kle38] state which are the

greatest recursive ordinals, i.e. which can be expressed by a Turing machine. We study

here simpler models of computation. For instance, this thesis is closer to works related to

automatic structures, which relations are defined by a finite tranducer, i.e. an automaton

with several entries. Results of [Del04, KRS05] state that automatic ordinals are smaller

that ωω, and that tree-automatic ordinals — where the tranducer works on trees instead of

words — are smaller that ωωω

. In the same way, recent results [BÉ09, BÉ10] characterize

16 CHAPTER 1. INTRODUCTION

orders of the first levels of the pushdown hierarchy : ordinals of the second level are

smaller than ωωω

, and scattered orders have a Hausdorff rank smaller than ωω. This

thesis follows this direction.

It would also be natural to consider the notion of colored linear order, that is words on

a finite alphabet, but indexed by an infinite order : for instance, a real number between

0 and 1 can be seen as a word on the alphabet [0, 9] indexed by N, or equivalently as the

order ω colored by the alphabet [0, 9]. Infinite words accepted by Büchi automata [Büc62]

are the first examples of these orders. Such an automaton accepts a word indexed by N if

it passes infinitely many time through a final state. This definition was adapted in [NP82]

to consider bi-infinite words, i.e. indexed by Z. Büchi [Bü65] also describes the process of

words indexed by ordinals, and shows decidability of MSO logic for each such structure.

Recently, Bruyère and Carton [BC07] considered automata accepting words indexed by

scattered orderings. They reached a stronger Kleene theorem, which was then extended

in [BC02, BC06a].

Solutions of recursion schemes

The notion of infinite words indexed by N is of central importance and deserves to be also

studied in the hierarchy. The first encountered infinite words are the ultimately periodic

words, which are the simplest ones. At the next level, more complex words appear : they

are known as morphic words, because they can be built as fixpoints of morphisms on

letters. If ∆ is a “starting” letter, and τ is such that τ(∆) begins with ∆, then τ(τ(∆))

also does, and so on. We get therefore an infinite word. Up to a final coding, this defines

the morphic words.

This definition is rather close of the construction of terms in the hierarchy by recursion

schemes. These objects were introduced by Ianov [Ian60], then Nivat [Niv72], and have

been brought to the higher order by Damm [Dam77, Dam82]. They can be called term

grammars. Let terminals and nonterminals be two typed sets; we can consider the set

of terms on these sets respecting the typing rules. Each nonterminal F has a rewriting

rule taking in consideration the arguments of F , in such a way that a subterm having

F as head symbol can be naturally rewritten in another subterm. The operation is then

repeated on another nonterminal. Even if this algorithm does not terminate, a recursion

scheme admits a limit (possibly infinite) tree : it is called the solution of the recursion

scheme. We have therefore a simple way to construct an infinite tree with rewriting rules.

These schemes were recently reconsidered by the works [KNU01, KNU02] on the de-

cidability of MSO logic under the constraint of safety, then removing this constraint in

[AdMO05, Ong06, KNUW05]. In particular, the safe trees are exactly the term-tress of

the hierarchy. To go back to the forementioned questions, it is natural to link the first-

order schemes with morphic words. We can check that we get the latter as orders hidden

in the former. The natural question is therefore : what happens in the next levels? How

can we extend the notion of morphic word to stick to the notion of recursion scheme?

1.2. (IN ENGLISH) 17

Outline and contributions

The first chapter sets notations and defines the objects used. We begin by the notions of

graph and tree, then linear orders and the particular case of ordinals. We then describe

the pushdown hierarchy through graph transformations.

Chapter 3 illustrates the internal definition by the construction of ordinals and powers

of Z with the help of graph transformations. The important result is that ordinals smaller

that a exponential tower of ω of size n + 1 are all in the nth level of the hierarchy; this

includes therefore all ordinals smaller than ε0, the smallest ordinal such that ωε0 = ε0.

An internal definition due to [Car05] is given and illustrated by ordinals again. Next we

try and avoid an essential property of ordinals : according to Büchi [Bü65], MSO logic

cannot distinguish two ordinals in general. For each ordinal smaller than ε0, we exhibit a

structure as expressive as the ordinal but which can be characterized by MSO logic. Most

of the results of this chapter appear in [Bra09].

Chapter 4 states the converse result : it shows that the n + 1-exponential tower of ω

cannot be in the nth level of the hierarchy. For this result, we start by stating the equality

between orders as graphs of the hierarchy and the structure of leaves in lexicographic

order of trees of the hierarchy. This result allows the application of induction on the

hierarchy. We get a similar result on the Hausdorff rank of scattered orders, measuring a

certain complexity of orders. The same techniques lead to a result on the size of subtrees

of combs of the hierarchy, i.e. trees having a unique infinite branch. A large part of this

chapter appears in [BC10].

The last chapter defines the hierarchy by higher-order recursion schemes. We consider

here the case where leaves of trees solution of these schemes form words of type ω. If we

consider regular trees, it is easy to see that these words are ultimately periodic. At the

next level, we show that we get exactly the morphic words. This result is then extended

to the next level and defines a new class of words enjoying the properties of graphs of the

hierarchy. These results are gathered in an article in preparation [Bra].

18 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces the notions used thoughout the thesis. It begins with simple

structures, namely words, graphs and trees. Then orders are detailed, in particular ordi-

nals and other scattered orderings. Then we look at the logics used to express properties.

This leads us to the logical graph transformations, which in turn defines the pushdown

hierarchy.

2.1 Notations and first structures

This thesis is about countable structure enjoying a finite presentation, i.e. described by

a finite quantity of information.

We make a frequent use of representation of graphs with arcs labeled by {0, 1}. To

lighten the pictures, arcs labeled by 1 are drawn with plain lines and arcs labeled by 0

with hashed lines. Exceptions as Figure 5.4 will be clearly labeled.

0

1

1

1

0

The powerset of a set S is noted P(S); the closed interval between a and b is noted

[a, b]; the index i of a sequence ~s is noted ~si, even in the case when i is an infinite ordinal.

2.1.1 Finite words

The set of words over a finite alphabet Σ is noted Σ∗. The length of u ∈ Σ∗ is noted |u|,

and the empty word is ε. We say that u is prefix of v, noted u ⊑ v, if there is w ∈ Σ∗

such that u · w = v. If w 6= ε, u is a strict prefix of v, noted u ⊏ v. On the contrary, if

u, v are incomparable by ⊑, we note u⊥v. In any case, the longest common prefix of two

words u, v is noted u ∧ v.

19

20 CHAPTER 2. PRELIMINARIES

When Σ is provided with an order <, the lexicographic order <lex on Σ∗ is defined by

u <lex v ⇐⇒

u ⊏ v, or

u = w · a · w′ and v = w · b · w′′

where w,w′, w′′ ∈ Σ∗, a < b.

The collection of regular languages over an alphabet Σ is defined recursively.

L := ∅ | {a} where a ∈ Σ | L · L | L ∪ L | L∗

2.1.2 Structures

The notion of structure can be seen as a formal logical framework to express mathematical

objects. The following definition will be seldom used as such, but it is the general definition

of the objects found in this thesis.

A signature is a finite set (Ri)i∈I of relation symbols, each symbol Ri having an arity

|Ri|. A structure on this signature is a pair (U, ν) where U is a set called universe and

the valuation ν is a mapping Ri 7→ P(U |Ri|) called the interpretation of the signature.

Commonly I = [1, k], and a structure is written 〈U, (R1, . . . , Rk) 〉 where the valuation is

implicit.

Given a universe U and a valuation ν, a binary relation ν(R) is said

reflexive if ∀x ∈ U, (x, x) ∈ ν(R);

symmetric if ∀x, y ∈ U, (x, y) ∈ ν(R) ⇒ (y, x) ∈ ν(R);

antisymmetric if ∀x, y ∈ U, (x, y) ∈ ν(R) ⇒ ¬(y, x) ∈ ν(R);

transitive if ∀x, y, z ∈ U, (x, y) ∈ ν(R) ∧ (y, z) ∈ ν(R) ⇒ (x, z) ∈ ν(R).

Two structures 〈U, ν 〉 and 〈U ′, ν ′ 〉 are isomorphic, noted 〈U, ν 〉 ≃ 〈U ′, ν ′ 〉, when

there is a bijection π between their signatures which preserves arity, and a bijection κ

between U and U ′ preserving valuation of corresponding relation symbols, i.e. for any

relation R, κ(ν(R)) = ν ′(π(R)).

A structure is countable if is isomorphic to a structure whose universe is a subset of

N. In this thesis, we only consider this kind of structures.

Example 2.1.1. A finite word of length k > 0 over an alphabet Σ is a structure of universe

[1, k] whose signature consists of one binary relation S (successor) and unary relations

(Ra)a∈Σ. The valuation maps S to all pairs (i, i+ 1) and each Ra to the set of indexes of

letter a; thus [1, k] =
⊎

a∈Σ ν(Ra). The same definition is used for ω-words.

Later on, we will equivalently consider words as structures with binary relation S∗,

i.e. the reflexive and transitive closure of S, with valuation on all pairs (i, j) such that

i < j. N

2.1. NOTATIONS AND FIRST STRUCTURES 21

b ab aab . . .

. . .aaaaaa

Figure 2.1: Example of a graph : the ladder

2.1.3 Graphs

The graphs we consider are countable, directed and labeled. Let Σ be a finite set called

arc label set. A labeled graph G, or simply graph, is a subset of V × Σ × V where V is a

finite or countable set. An element (s, a, t) of V ×Σ×V is an arc of source s, target t and

label a, and is written s
a
−→
G
t or simply s

a
→ t if G can be understood from the context.

The notation s→ t means “s
a
→ t for some a”. Note that we do not consider graphs with

multiplicity : there can be only one arc labeled by a between s and t.

Let Γ be another finite set called color set . A colored graph (or labeled and colored

graph) is a subset of (V × Σ × V) ∪ (Γ × V). More commonly, a graph labeled by Σ

is called a Σ-graph, and a Σ-graph colored by Γ is called a Σ,Γ-graph. Note that an

equivalent definition would be to allow only one color in P(Γ) per vertex; we prefer the

more versatile definition which allows to add or remove colors.

The set of all vertices appearing in G is its support VG, i.e. having a color or being

linked to an arc. Hence, graphs are always considered up to mute vertices, i.e. not

appearing in G. This can be a matter of discussion for limit cases, especially when a

graph has only one vertex. Therefore we may always suppose that all vertices of the

support are colored with a “base color”.

A graph is deterministic if there are no arcs with the same label that share the same

source, i.e. for all a ∈ Σ, if s
a
→ t and s

a
→ t′ then t = t′. The in-degree (resp. out-degree)

of a vertex x is the cardinal of the set {y | y → x} (resp. {y | x→ y}).

Example 2.1.2. The graph shown in Figure 2.1 is known as the ladder. Its support is

VG = {aai, aib}i∈N and it is defined by

G = {ai
1
→ ai+1 | i > 0} ∪ {ai

0
→ ai−1b | i > 0} ∪ {aib

1
→ ai−1b | i > 0}. N

From a logical point of view, a (colored) graph G can be associated to a structure of

universe VG and of signature (Ra)a∈Σ ∪ (Rc)c∈Γ where Rb has arity 2 or 1 when b belongs

respectively to Σ or Γ. The valuation of this structure maps Ra 7→ {(x, y) | x
a
→ y ∈ G}

for a ∈ Σ and similarly Rc 7→ {x | (c, x) ∈ G} for c ∈ Γ. We will often confuse the

graph and its associated structure. Two graphs are isomorphic (still noted ≃) if the

22 CHAPTER 2. PRELIMINARIES

corresponding structures are.

A (colored) path in a colored graph G is a sequence ~p on G such that if ~pi = x
a
→ y or

~pi = (c, y) then ~pi+1 belongs to ({y} × Σ × VG ∪ Γ × {y}) ∩G. An uncolored path is such

a sequence only of arcs of G. A path is simple if the pi are pairwise distinct.

To consider only the “shape” of the graph, one can consider the delabeled graph where

all colors are removed and all arcs labels are replaced by the same label. An unlabeled

graph is a class of graphs isomorphic under the delabeling operation. When the arc

label set of a graph is labeled by a singleton, we sometimes confuse this graph and the

corresponding unlabeled graph.

2.1.4 Deterministic trees

A vertex r of a graph G is called a root when there is a path from r to any other vertex.

A graph G is a tree if it has a unique root r such that for any vertex in the graph there

exists a unique path from the root r to this vertex. The notions of Σ- and Σ,Γ-graph

yield the respective notions of Σ- and Σ,Γ-tree.

For deterministic trees, we may therefore consider a tree presentation of the graph as

follows. The root is associated to the empty word ε and for each arc u
a
→ v, we identify

v and u · a. Formally, a deterministic tree over an ordered alphabet Σ is a subset T of

Σ∗ closed by prefix. If u ⊏ v, we say that u is an ancestor of v or equivalently that v

is a descendant of u. Immediate ancestors and descendants are respectively called father

and son. Elements of T are called nodes and nodes without proper descendant are called

leaves.

Finally, a colored deterministic tree t is a mapping from a deterministic tree T to a

finite set of colors Γ. We note Dom(t) = T the domain of this mapping.

A deterministic tree is prefix of its leaves (or is a prefix tree) if it is equal to the

prefix-closure of its set of leaves. A deterministic tree is a binary tree when Σ = {0, 1}.

It is said to be full if every node has exactly 0 or |Σ| sons, and complete when every node

has |Σ| sons . See the complete (uncolored) binary tree in Figure 1.2.

A branch of t is a maximal subset B of Dom(t) such that if x ∈ B, then all ancestors

of x and at most one son of x are in B.

2.2 Linear orderings

Linear orderings are the main object of study throughout this thesis. The reason is that

they form easily understandable examples with simple properties and nonetheless an arbi-

trary complexity, for instance in the sense detailed in Section 2.2.2. For a comprehensive

introduction to linear orderings, see [Ros82, Roi90].

A linear ordering , total ordering or simply ordering, is a structure whose signature

consists in only one binary relation ≤ which is reflexive, antisymmetric and transitive.

2.2. LINEAR ORDERINGS 23

Nonetheless, when the universe is not a singleton, we will most of the time consider the

structure over the associated irreflexive relation <; this avoids numerous case distinctions.

The order type is an isomorphism class of orders. In our graph vocabulary, it is

equivalent to say that an order type is an unlabeled graph of linear orderings. Since we

work up to isomorphism, we will often confuse a given ordering with its order type.

The reverse operation ∗ is a mapping from an ordering 〈V,< 〉 to the ordering 〈V,<∗ 〉

where x <∗ y ⇐⇒ y < x. Notable order types include

• the finite orderings noted 0,1, . . . ,k, . . . ;

• the usual ordering of N, noted ω;

• the ordering of N in reverse order, ω∗;

• the usual ordering of Z, noted ζ;

• the usual ordering of Q, noted η;

• the usual ordering of R.

This thesis is dedicated to countable structures, so we will never consider the ordering

of R.

The subordering relation � is defined on order types by α � β iff there is an ordering

of type β which has a restriction of type α. This relation is extended to orderings when

the order types are similarly ordered. For instance we have ω � ζ � η, but neither ω � ω∗

nor ω∗ � ω. As we will see later, an order not having η as a suborder is called scattered.

An interval I of L is a restriction of L to a subset where if x, y are elements of I and

there is z in L such that x < z < y, then z is an element of I.

Let Γ be a finite set of colors. A colored ordering of an ordering 〈V,< 〉 is a mapping

V 7→ Γ. As hinted by the notations, a (resp. colored) ordering can be associated to a (resp.

colored) graph. Consequently, we deliberately confuse the objects and will indifferently

use the structural or graph notation.

An ω-word or (mono-)infinite word is a colored ordering of type ω.

There is an available arithmetics on linear orderings : more precisely we use addition

and multiplication. Formally, these noncommutative operations are defined as follows.

See also [Ros82].

〈U,<U 〉 + 〈V,<V 〉 = 〈U ⊎ V,<U,V 〉

where x <U,V y iff x, y ∈ U and x <U y

or x, y ∈ V and x <V y

or x ∈ U and y ∈ V.

〈U,<U 〉.〈V,<V 〉 = 〈V × U,<lex 〉.

where (u, v) <lex (u′, v′) iff u <U u
′

or u = u′ ∧ v <V v′.

24 CHAPTER 2. PRELIMINARIES

. . .

Figure 2.2: The graph representation of the ordinal ω + 2.

Graph representations of ordinals are hardly readable due to many arcs. The lighter notion of

covering graphs will be described in Section 3.4.

2.2.1 Ordinals

A particular kind of linear orderings are the well-orderings , which have the following

equivalent properties :

• each nonempty subset has a smallest element;

• there is no infinite strictly decreasing sequence.

An ordinal is the order type of some well-ordering. However, as noted in Section 2.1.3,

we often will identify the order type with the ordering; for instance, the sentence “the

ordinal α belongs to the class X” means actually “there is an ordering of order type α in

the class X”.

All ordinals are themselves well-ordered by the subordering relation. For any ordinal

α, the set of ordinals greater than α has a smallest element, which we call the successor

of α. The reverse operation, the predecessor, is not defined everywhere. The set where

predecessor is defined is naturally called the set of successors, or ordinals of the first kind

in old literature; its complementary is called the set of limit ordinals, or ordinals of the

second kind. The supremum sup(X) of a set X of ordinals is the smallest ordinal greater

than each ordinal in X.

The set-theoretical (or Von Neumann) approach defines each ordinal as the set of

smaller ordinals. For instance, 0 = ∅ and 1 = {∅}. We borrow this encoding to define the

canonical graph of α as the ordinal graph where vertices are exactly ordinals smaller than

α. The fact that we consider graphs up to mute vertices is not a problem, because the

equality relation is always implicit; in particular 1 6= 0, because there is one non-mute

vertex in 1.

Arithmetics

Arithmetic operations can be defined in two ways : either by transfinite iteration or by

giving an isomorphic structure. The very first operation available is the successor relation.

Then addition is the transfinite iteration of successor, multiplication is the iteration of

2.2. LINEAR ORDERINGS 25

addition, and exponentiation is the iteration of multiplication :

α + 0 = α,

α + (β + 1) = (α + β) + 1,

for limit λ, α + λ = sup
β<λ

(α + β).

α.0 = 0, α0 = 1,

α.(β + 1) = α.β + α, αβ+1 = αβ.α,

for limit λ, α.λ = sup
β<λ

α.β. αλ = sup
β<λ

αβ.

This definition of addition and multiplication matches the structural definition for

general linear orders given above. A similar direct definition is available for exponentiation

[Ros82, Exercise 3.45]. The reverse lexicographic order means ~s <rlex
~t iff ∃α such that

~sα < ~tα and for all δ > α, ~sδ = ~tδ.

Proposition 2.2.1. βα is isomorphic to the set of α-sequences of β where finitely many

elements are non-zero, ordered by reverse lexicographic order.

Proof. When α = 0, β0 = 1, and there is indeed only one empty sequence. When

α = γ+1, βα = βγ.β is the cartesian product β×βγ by lexicographic order, or equivalently

βγ × β in reverse lexicographic order. By induction βγ is the set of (finitely non-zero)

γ-sequences of β in reverse lexicographic order, which yields the result.

When α is a limit ordinal, let ~x be an α-sequence where finitely many elements are

non-zero. In particular, there is a smallest index γ such that ~xγ′ = 0 for all γ′ ≥ γ. Then

~x can be mapped to an ordinal smaller than ωγ. This mapping is an isomorphism from

(finitely non-zero) α-sequences to ωα.

When β = ω, the following definition is easier to use. This is the form we will adopt

later on.

Corollary 2.2.2. ωα is isomorphic to the set of finite decreasing sequences of α in lexi-

cographic order.

There is a similar form for some scattered orders; see Section 3.2.

We use the Knuth notation[Knu76] to express more complex operations. The operation

↑1 is the exponentiation.

α ↑n+1 0 = 1;

α ↑n+1 (β + 1) = α ↑n (α ↑n+1 β);

α ↑n+1 λ = sup
β<λ

α ↑n+1 β for limit λ.

In this thesis we use the case n = 2 and note ↑2=↑↑. It will mostly be used to express

ordinals of the form

ω ↑↑ k = ωω...w

︸ ︷︷ ︸

k

.

26 CHAPTER 2. PRELIMINARIES

Indeed, this thesis is restricted to ordinals smaller than ε0 = ω ↑↑ ω.

Remark 2.2.3. This notation is not the generalization of addition, multiplication and

exponentiation, because the iteration is done on the right side. If we chose to follow this

definition, the operation ↑↑′ succeding to exponentiation would rather be defined by

α ↑↑′ 0 = 1;

α ↑↑′ (β + 1) = (α ↑↑′ β)α;

α ↑↑′ λ = sup
β<λ

α ↑n+1 β for limit λ,

which would give ω ↑↑′ 2 = ωω, but ω ↑↑′ 3 = (ωω)ω = ωω.2 and ω ↑↑′ ω = ωωω

. �

This notation is closely related to the family of Veblen functions [Veb08]. Let ϕ0

be a continuous increasing function, i.e. an increasing function such that limn ϕ0(αn) =

ϕ0(limn αn). For α > 0, ϕα is the continuous increasing function enumerating common

fixed points of (ϕβ)β<α. In particular, the case ϕ0 : x 7→ ωx yields a family of functions

known as the Veblen hierarchy, and ϕ1(α) = ω ↑↑ α. These functions define in fact the

ε-numbers.

Cantor normal form

Cantor states a fundamental tool for ordinal analysis.

Theorem 2.2.4 ([Can97]). Let α be an ordinal. Then α can be uniquely written in the

form

ωγ1 .c1 + · · · + ωγk .ck

where γ1 > · · · > γk and k, c1, . . . , ck are natural numbers (i.e. finite ordinals).

We will call this form the reduced Cantor normal form (RCNF), denoted by α̂. We

call Cantor normal form (CNF) the following version

α = ωγ1 + · · · + ωγk

where γ1 ≥ · · · ≥ γk.

Since this thesis is restricted to ordinals smaller than ε0, we have also the additional

property α > γ1, which allows induction.

2.2.2 Scattered orderings and Hausdorff rank

A linear order is dense if for each x < y, there is a z such that x < z < y. There are only

five countable dense order types, depending on whether there is an upper and/or lower

bound. They are 1, η,1 + η, η + 1 and 1 + η + 1.

A linear order is scattered if it does not contain any infinite dense subordering. Or-

dinals are a particular case of scattered linear orders. However, scattered orders are not

2.2. LINEAR ORDERINGS 27

necessarily well-orderings; consider for instance ζ or ω + ω∗. For a detailed presentation,

we refer the reader to [Ros82].

The following result shows that all linear orders are combinations of these two kinds.

Theorem 2.2.5 (Hausdorff [Hau08]). Any linear ordering L is a dense sum of scattered

linear orderings; that is, there is a dense linear ordering D and a map h from D to

scattered orderings such that L =
∑

i∈D h(i).

In this section we focus on countable scattered orders. A more constructive charac-

terization is provided by Hausdorff Theorem which also gives a measure of the complexity

of such orders. From now on, we only consider countable scattered orders.

Theorem 2.2.6 (Hausdorff [Hau08]). A countable linear order is scattered if and only if

it belongs to
⋃

α Vα where

V0 = {0,1}

Vβ =

{
∑

i∈Z

Li | ∀i, Li ∈
⋃

α<β

Vα

}

The Hausdorff rank of a scattered order L, written r(L) (or sometimes V D(L) in the

literature), is the smallest α such that L belongs to Vα. For instance, we have r(ζ) =

r(ω) = 1 and r(ω + ω∗) = 2.

As the classes Vα are not closed under finite sum, we do not have in general that

r(A+ B) = max(r(A), r(B)). It is natural to consider Wα, the closure under finite sums

of Vα (i.e. L ∈ Wα iff L =
∑

i∈[1,m] Li for some L1, . . . , Lm ∈ Vα). The associated notion

of rank, called ∼-rank and written r̃(L), is the smallest ordinal α such that L ∈ Wα. This

definition can be found in [KRS05] under the denomination V D∗(L). As Vα ⊆ Wα ⊆ Vα+1,

we have r̃(L) ≤ r(L) ≤ r̃(L)+1. Along this thesis, we will mostly use this alternate version

of the Hausdorff rank.

For instance, the following proposition states that the ∼-rank of the ordinal ωα is α.

More generally if α is written
∑k

i=1 ω
αi in Cantor’s normal form then r̃(α) = α1.

Proposition 2.2.7. For any ordinal α, r̃(ωα) = r(ωα) = α.

Proof. To show that r̃(ωβ) = r(ωβ), we only need to show that if ωβ ∈ Wα then ωβ ∈ Vα.

Assume that for some β, ωβ belongs to Wα. By definition, ωβ = δ1 + . . . + δn with

δi ∈ Vα for all i ∈ [1, n]. There exists j ∈ [1, n] s.t. δj = ωβ. Otherwise, from the

definition of ωβ, we would have δj ≤ ωγi · ki for some γi < β and ki < ω. We would have

ωβ ≤ ωmaxi γi ·
∑

i ki < ωβ which brings the contradiction.

A straightforward transfinite induction on α shows that for all ordinal β, ωβ ∈ Vα if

and only if β ≤ α.

The following facts are useful properties on scattered orders.

28 CHAPTER 2. PRELIMINARIES

Proposition 2.2.8. Let (Li)i∈Z be a family of scattered orders and let α be an ordinal :

1. if Li � Lj then r̃(Li) ≤ r̃(Lj);

2. for all n ≥ 1, there exists j ∈ [1, n] s.t. r̃(
∑

i∈[1,n] Li) = r̃(Lj);

3. r̃(
∑

i∈Z Li) ≥ α iff either there exists i ∈ Z s.t. r̃(Li) ≥ α or for all α′ < α, there

exist infinitely many i s.t. r̃(Li) ≥ α′;

4. r̃(
∑

i∈Z Li) ≤ α iff for all i ∈ Z, r̃(Li) ≤ α and there are only finitely many i such

that r̃(Li) = α.

Remark 2.2.9. The two conditions of property 3 are not exclusive. Take for instance

L0 = (ωω)∗,

for k > 0, Lk = ωk

and L−k = 0.

Then r̃(L0) = r̃(
∑

Z Li) = ω, and r̃(ωk) = k. �

Remark 2.2.10. It is not difficult to see that we can “inverse Z”, i.e. that

r̃(
∑

i∈Z

Li) = r̃(
∑

i∈ω+ω∗

Li).

We may therefore replace Z by ω+ω∗ in the previous proposition. This fact will be used

in Proposition 4.4.7. �

Proof. Property 1. Let L and L′ be two scattered orders s.t. L � L′ . From [Ros82,

Lem. 5.14], r(L) ≤ r(L′). Assume that r̃(L) = α. This means that L is equal to the finite

sum
∑

i∈[1,n] Li where for all i ∈ [1, n], r(Li) ≤ α. As L′ � L, L′ is equal to a finite sum
∑

i∈[1,n] L
′
i where for all i ∈ [1, n], L′

i � Li. Hence for all i ∈ [1, n], r(Li) ≤ r(Li) ≤ α.

This shows that r̃(L) ≤ r(L) = α.

Property 2. This property can be seen as a particular case of [KRS05, 4.2]. More simply,

for i ∈ [1, n], r̃(Li) ≤ α by property 1. If r̃(Li) < α for all i, then
∑

[1,n] Li can be written

as a finite sum of (Hausdorff) orders strictly smaller than α and therefore r̃(
∑

[1,n] Li) < α.

Property 3. [⇒] Suppose there is an α′ < α such that r̃(Li) < α′ for all i. Then each Li

is a finite sum of orders of (Hausdorff) rank smaller than α′. This means L =
∑

i∈Z Li is

in Vα′ and therefore L has Hausdorff rank α′. This would mean r̃(L) ≤ α′ < α.

So for each α′ < α, {i | r̃(Li) ≥ α′} is nonempty. If it is always infinite, the proof is

done. Otherwise, there is α′ < α such that this set is finite. Let I be a finite interval

containing it. If we write

L =
∑

i<I

Li +
∑

i∈I

Li +
∑

i>I

Li,

2.2. LINEAR ORDERINGS 29

since for i /∈ I we have r̃(Li) < α′ then r̃(
∑

i<I Li) < α and r̃(
∑

i>I Li) < α by the above

paragraph. By property 2, this means r̃(
∑

i<I Li) = r̃(L), and by property 2 again, this

means there is a i ∈ I such that r̃(Li) = r̃(L) ≥ α.

[⇐] If there is i such that r̃(Li) ≥ α, then by property 1, r̃(L) ≥ r̃(Li) ≥ α. We suppose

only the second property is fulfilled. If α is limit, for each α′ < α there is a L′ � L such

that α′ ≤ r(L′). So α′ < r(L) for each α′ < α and α ≤ r(L). Since r(L) ≤ r̃(L) + 1 and

α is limit, r̃(L) ≥ α. If α = α′ + 1, there is infinitely many i such that r̃(Li) = α′. So

r̃(L) ≥ α′, and if actually r̃(L) = α′, there would only be finitely many such i by property

4, part [⇒]. So r̃(L) > α′ and r̃(L) ≥ α.

Property 4. [⇒] Property 1 ensures that r̃(Li) ≤ r̃(L) ≤ α. Suppose I = {i | r̃(Li) = α}

is infinite. Since
∑

I Li � L, by property 1, r̃(
∑

I Li) = α. This means
∑

I Li is a finite

sum of orders of (Hausdorff) rank smaller or equal to α. One of these orders M is such

that there is an infinite I ′ ⊆ I with
∑

I′ Li � M . By the definition of the Hausdorff

rank, we may write
∑

i∈I′ Li �
∑

j∈ZMi where r(Mj) < α for each j ∈ Z. Consider any

i which is not an extremum of I (i is neither the first nor the last element). Then there

is j−i and j+i such that Li �
∑j+i

j=j−i
Mi. So Li is a finite sum of orders of rank < α :

r̃(Li) ≤ maxj∈[j−i ,j+i] r(Mj) < α, which is a contradiction.

[⇐] If r̃(L) > α, since there is no i such that r̃(Li) > α, by property 3 part [⇒], there

would be infinitely many i such that r̃(L) = α, which is not the case. So r̃(L) ≤ α.

2.2.3 Orders in a deterministic tree

Whenever we talk about a deterministic tree, we always may assume that the alphabet

is ordered. Thus, the nodes are also ordered by the lexicographic ordering. The frontier

of a deterministic tree Fr(t) is the (colored) order of its leaves by lexicographic ordering.

We sometime say that a node u is to the left (or right) of a node v to say that u <lex v

(resp. v <lex u).

Other orders in deterministic trees that are worth of interest include

• the lexicographic order 〈Dom(t), <lex 〉 on the whole tree, not just on leaves.

• the Kleene-Brouwer ordering 〈Dom(t), <KB 〉 as seen in [Rog87], where

x <KB y ⇐⇒ y ⊏ x ∨ (x⊥y ∧ x <lex y).

The equivalence of these three orders with regard to Hausdorff rank will be established

in Proposition 4.4.8, and needs the powerful Proposition 4.4.3. For the time being, let us

satisfy with the following result.

Proposition 2.2.11. If t is a det. prefix tree which frontier is a well-ordering, then

Dom(t) is well-ordered by <lex.

30 CHAPTER 2. PRELIMINARIES

Proof. By contraposition, suppose there is an infinite strictly decreasing sequence of nodes

of t. In particular, there is an infinite strictly decreasing subsequence of strictly increasing

lengths. If x <lex y and |x| > |y|, then y 6⊑ x and for any y′, x′ such that y ⊑ y′, x ⊑ x′, we

have x′ <lex y
′. Since t is prefix, there is therefore an infinite strictly decreasing sequence

of leaves in t, so t cannot yield a well-ordering.

In contrast, as soon as t is an infinite tree, it has an infinite branch which has order

type ω∗ by <KB; so the Kleene-Brouwer ordering is not a well-ordering unless t is finite.

2.3 Logic

2.3.1 First-order logic

We fix a countable set V1 of first-order variables x, y, z, Let (Ri)i∈I be a signature.

Formulæ over this signature are of the form

ϕ := ⊤ | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | Ri(x1, . . . , x|Ri|)

where x1, . . . , x|Ri| ∈ V1. Here ⊤ is the “true” constant, ∧ is the logical conjonction, ¬

is the negation, ∃ is the existential quantifier. It is well-known that additional operators

can be encoded, namely the constant ⊥ (“false”), disjonction ∨, the implication ⇒ and

the universal quantifier ∀.

There is a priori no relation of equality between variables; however, it is often implicit

in first-order logic, and will reveal itself useless in monadic logic.

The set of free variables of ϕ is the set of variables appearing but not quantified in

ϕ. We note as usual ϕ(x1, . . . , xn) when the set of free variables of ϕ is {x1, . . . , xn}. A

formula without free variables is called a closed formula or statement. We note S |= ϕ

when the structure S satisfies a closed formula ϕ. More generally, for a given formula

ϕ(x1, . . . , xn), we note S |= ϕ[a1, . . . , an] when the structure S satisfies the formula ϕ

where the variable xi is interpreted as the element ai.

The first-order theory of a structure S is the set of closed formulæ satisfied by S.

It is said to have a decidable first-order theory when this set is recursive, as seen in

Section 2.3.3.

Example 2.3.1. The determinism on Σ-graphs can be checked with the following formula

when the equality relation is allowed.

∨

a∈Σ

∀x, y, z
(

(x
a
→ y ∧ x

a
→ z) ⇒ y = z

)

N

Example 2.3.2. The first-order logic can express the property that a given graph of label

2.3. LOGIC 31

set {<} is an order graph.

strict order :

{

∀x, y (¬(x
<
→ y ∧ y

<
→ x))

∀x, y, r ((x
<
→ y ∧ (y

<
→ r) ⇒ x

<
→ r)

total order : ∀x, y (x
<
→ y ∨ y

<
→ x ∨ x = y)

N

2.3.2 Monadic second-order logic

The monadic logic extends the first-order logic with new variables interpreted as sets, and

a new relation ∈ for membership. Let V2 be a new set of second-order variables, noted

with uppercase letters. A formula ϕ is defined by

ϕ := Ri(x1, . . . , x|Ri|) | x ∈ X | ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

where x, x1, . . . , x|Ri| ∈ V1 and X ∈ V2.

Empty set ∅, subset relation ⊆, union ∪, intersection ∩, complementation \ are all

naturally embedded in MSO-logic, as is second-order equality. By the means of a formula

expressing singletons,

singleton(X) := ∃x ∈ X (∀Y (x ∈ Y ⇒ X ⊆ Y)),

first-order equality is also naturally expressible, which solves the problem of having an

equality relation in the signature or not.

Example 2.3.3. Adding the following MSO-formula to Example 2.3.2 characterizes struc-

tures of signature {<} which are well-orderings.

well order : ∀X 6= ∅, ∃x(x ∈ X ∧ ∀y(y ∈ X ⇒ (x
<
→ y ∨ x = y))) N

The set of all monadic formulæ satisfied by a structure G is called the monadic theory

of G and is noted MTh(G).

2.3.3 Decidability

An important problem of logicians is to decide whether a formula is satisfied by a given

structure.

Question 2.3.4. “Model-Checking Decidability” : For a given structure, find an algorithm

taking as input a monadic formula and outputting whether the structure satisfies the

formula or not.

32 CHAPTER 2. PRELIMINARIES

On orders, the earlier result is by Büchi [Büc62]. He introduces the notion of (now

called) Büchi automaton, which is a finite-state automaton accepting an infinite sequence

iff there is a run which visits at least one of the final state infinitely often. He then

proves that each monadic second-order formula can be effectively converted into a Büchi

automaton.

Theorem 2.3.5 ([Büc73]). The monadic theory of ω is decidable.

Later on, the possibility of transfinite runs was added to the automata. Using The-

orem 3.4.2 explained in Section 3.4, we get the following theorem. These results are

summed up in [Büc73].

Theorem 2.3.6 ([Bü65]). The monadic theory of each countable ordinals is decidable.

Shelah [She75] (see also Gurevich [Gur85]) developped an “automata-free” method,

now called the compositional method. For a finite sequence k̄ of integers, it defines the

notion of k̄-type of a structure, which is expressive enough to say whether a given formula

is satisfied in the structure or not. The composition theorem states that it is possible to

compute the k̄-type of a sum with the types of the summands. With this tools, the two

results above are restated. A useful introduction to this method appears in [Tho97a], as

well as a comparison between Büchi’s and Shelah’s methods.

For other orders, the theory of η was proved to be decidable. By using Theorem 2.2.5,

it is possible to prove that the theory of all countable orders, i.e. the set of formulæ that

are true for any order, is decidable. Some results also appeared for uncountable structures.

Büchi proved that the theory of ω1, the first uncountable ordinal, in decidable, whereas

Shelah proved that the theory of the real order was not.

On other structures, the most famous case is the complete binary tree, already seen

in Figure 1.2. The proof employs automata on infinite trees.

Theorem 2.3.7 ([Rab69]). The monadic theory of the complete binary tree is decidable.

This theorem was generalized by the regular, then prefix-recognizable graphs, and

later by the whole pushdown hierarchy presented in Section 2.5. It may be defined by

operations, i.e. graph transformations preserving decidability of MSO logic; some of

them are shown in Section 2.4. For more on this subject, see for instance the recent

survey [BCL07].

In the other way around, a classical example of undecidable monadic theory is the

two-dimensional grid, which can be presented as the graph of support N× N and arcs

{(i, j)
a
→ (i+ 1, j), (i, j)

b
→ (i, j + 1) | i, j ∈ N}.

The grid is the configuration graph of an automaton with two unary pushdown stacks.

It has the same expressive power as a Turing machine; therefore properties like reachibility

are not decidable.

Proposition 2.3.8 ([See91]). The grid has an undecidable monadic theory.

2.4. GRAPH TRANSFORMATIONS 33

2.4 Graph transformations

This section presents some of the transformation we will use through this thesis. They are

here classified by increasing “impact” on the graph. The graph interpretations preserve

vertices, but change arcs; a particular case is the graph coloring, which also preserves

arcs. The graph expansions extend or completely change the set of vertices.

In regard of Section 2.3.3, it is important to note that all these transformations are

MSO-compatible, i.e. they preserve decidability of the monadic theory.

2.4.1 Graph interpretations

These operations re-arrange arcs between existent vertices without adding new vertices.

They are presented in decreasing strength. Later in Remark 4.1.4, the TWA-interpretation

will be mentioned.

The generic form of interpretation is defined by I = {ϕa}a∈Σ∪{ϕc}c∈Γ, where {ϕa}a∈Σ

is a set of (to be defined) binary formulæ and {ϕc}c∈Γ is a set of unary formulæ . The

interpretation of a graph G is then

I(G) = {x
a
→ y | G |= ϕa(x, y)} ∪ {(c, x) | G |= ϕc(x)}

An example of very strong interpretation is the set interpretation developped in [CL07].

In this case, each formula ϕa is a monadic formula with two second-order free variables.

This interpretation is not MSO-compatible, but if G has a decidable weak monadic logic,

then I(G) has a decidable first-order logic.

Monadic interpretation

A MSO-interpretation I is a finite set {ϕa}a∈Σ ∪{ϕc}c∈Γ of monadic second-order (MSO)

formulæ with two or one free individual variables. The interpretation of a graph G ⊆

V × Σ × V is the graph I(G) defined by

I(G) = {x
a
→ y | x, y ∈ V ∧G |= ϕa(x, y)}

∪{(c, x) | x ∈ V ∧G |= ϕc(x)}.

A MSO coloring is a particular case of interpretation where binary formulæ are in the

form ϕa(x, y) = x
a
→ y, i.e. an interpretation which do not change the labeling of the

graph.

Example 2.4.1. The frontier of a deterministic tree is a MSO-interpretation of this tree.

34 CHAPTER 2. PRELIMINARIES

On a binary tree (arc labels {0, 1}), let I = {ϕ<} ∪ {ϕc}c∈Γ.

ϕ<(x, y) := ¬∃x′(x→ x′) ∧ ¬∃y′ (y → y′)

∧∃z (z
0(0+1)∗

−−−−→ x ∧ z
1(0+1)∗

−−−−→ y)

and for any c, ϕc(x) := (c, x) ∧ ¬∃x′(x→ x′).

This example is easily extended to the case of any alphabet Σ. N

Inverse rational mapping

Another particular case of monadic interpretation is inverse rational mapping. For a given

alphabet Σ, we use the disjoint alphabet Σ̄ to read the arcs backwards. For a rational

language L over Σ ∪ Σ̄, the formula p
L
−→ q is defined inductively.

p
∅
−→ q iff p 6= p (or any false formula)

p
{ε}
−−→ p

p
{c}
−−→ p iff (c, p)

p
{a}
−−→ q iff p

a
→ q, for any a ∈ Σ

p
{ā}
−−→ q iff q

a
→ p, for any a ∈ Σ

p
L+L′

−−−→ q iff p
L
−→ q ∨ p

L′

−→ q

p
L.L′

−−→ q iff ∃r(p
L
−→ r ∧ r

L′

−→ q)

p
L⋆

−→ q iff ∀X(p ∈ X ∧ ClosedL(X) ⇒ q ∈ X)

where ClosedL(X) ≡ ∀x, y ∈ X((x ∈ X ∧ x
L
−→ y) ⇒ y ∈ X).

An inverse rational mapping is a monadic interpretation I = {ϕa} where each formula

is of the type ϕa(x, y) = x
h(a)
−−→ y or ϕa(x) = x

h(a)
−−→ x and h(a) is a rational language. In

this case I is also noted h−1.

Example 2.4.2. The formula

∃z (z
0(0+1)∗

−−−−→ x ∧ z
1(0+1)∗

−−−−→ y)

used in Example 2.4.1 can be translated into the more compact

x
(0̄+1̄)∗0̄1(0+1)∗

−−−−−−−−−→ y. N

As this example hints, it was shown that the inverse rational mapping is not a strong

constraint on deterministic trees.

2.4. GRAPH TRANSFORMATIONS 35

Proposition 2.4.3 ([Car06, Prop. 3.2.1]). For any Σ,Γ and monadic interpretation I,

there is a monadic coloring µ and a rational interpretation h−1 such that for all deter-

ministic Σ,Γ-tree t,

I(t) = h−1(µ(t)).

There are even more specific variants of inverse rational mapping. We will see in

Section 5.1.2 a version called deterministic rational mapping where the underlying au-

tomaton can only branch when looking at colors. It was designed to preserve determinism

of graphs.

An even more narrow case is when the language La is a finite language for each a.

This case is naturally called an inverse finite mapping.

2.4.2 Graph expansions

These transformations map a graph G towards a tree or tree-like structure based on G.

They are also the source of new vertices for structure of the hierarchy.

Monadic transduction

The MSO-transduction (see the survey [Cou94] for more details) aims at making monadic

interpretations more flexible by adding some vertices. Formally, when K is a finite alpha-

bet, a K-copying operation associates to G a (Σ ∪K)-labeled graph G′ :

VG′ = VG ∪ (VG ×K)

G′ = G ∪ {x
k
→ (x, k) | k ∈ K}.

A MSO-transduction T = (K, I) is a K-copying operation followed by an MSO interpre-

tation.

Unfolding

The unfolding of a graph from a given vertex is the tree of all paths in the graph from

this vertex.

Formally, the unfolding Unf(G, r) of a graph G from a vertex r ∈ VG is the tree T s.t.

for all a ∈ Σ, π
a
→ π′ ∈ T if and only if π and π′ are two paths in G starting from r and

π′ = π · (s
a
→ t). Moreover for any color c ∈ Γ, (c, π) ∈ T if and only if π is a path in G

starting with r and ending in t with (c, t) ∈ G.

When the graph has exactly one root, the shortcut Unf(G) is used to designate the

unfolding from this root. A classic example is the unfolding of the ladder (presented in

Figure 2.1), shown in Figure 2.3.

The MSO-compatibility of this operation is a particular case of the Muchnik theorem

(Th. 2.4.5 below).

Theorem 2.4.4 ([CW98]). Unfolding from a MSO-definable vertex is MSO-compatible.

36 CHAPTER 2. PRELIMINARIES

. . .

. . .r . . .

Figure 2.3: The ladder and its unfolding.

. . .

.#

#

#

##

Figure 2.4: Treegraph of the complete binary tree.

It has to be noted that the root must be definable by a monadic formula. A counter-

example in [Car06, Rem. 3.3.5] shows that the result is false without this constraint. The

idea is that there is a forest of trees with decidable monadic theory where at least one

tree with undecidable theory is “hidden”.

Treegraph

This operation first appears in a weak form in [She75]. The standard form appears in

[Sem84] and is attributed to Muchnik, who never published it. The treegraph of a graph

G, noted Treegraph(G), is the set

{x
a
→ y} ⊆ V +

G × (ΣG ∪ {#}) × V +
G

where (x, y) ∈ V +
G are sequences of vertices of G, and either

• a ∈ ΣG, x = wp, y = wq where w ∈ V ∗
G and p

a
→ q ∈ G,

• or a = #, x = wp and y = wpp.

One can also see the treegraph as the fixpoint of the operation which, to each vertex

which is not starting point of an # arc, adds this arc leading to the location of this vertex

in a copy of G. The starting graph is called the root graph.

The following result is due to Muchnik, but the first complete proof only appears in

[Wal02].

2.5. THE PUSHDOWN HIERARCHY 37

Theorem 2.4.5 (Muchnik). The treegraph operation is MSO-compatible.

2.5 The pushdown hierarchy

The pushdown hierarchy — sometimes called the Caucal hierarchy — is a family of sets

of graphs having a decidable monadic theory. It covers actually two families : one noted

(Graphn)n≥0, and one only composed of trees, noted (Treen)n≥0. For all n ≥ 0, we have

Treen ⊆ Graphn, Treen ⊆ Treen+1, and Graphn ⊆ Graphn+1.

As stated in the introduction, the history of the pushdown hierarchy starts with the

result of Muller and Schupp [MS85] about a geometrical property on configuration graphs

of pushdown automata from a given configuration. The graph decomposition of a graph

G from a vertex r ∈ VG is the family of the connected components of the subgraphs

(Gr,n)n≥0. The nth decomposition Gr,n is the subgraph which support is the set of vertices

at distance at least n of r. The graph is said finitely decomposable if, for any vertex r,

the graph decomposition is finite up to isomorphism.

Example 2.5.1. If we decompose the complete binary tree from its root, the graph de-

composition is reduced to the singleton of the binary tree itself. More generally, if we

decompose this tree from a vertex of depth k, the cardinal of the graph decomposition is

k + 1. N

Theorem 2.5.2 ([MS85]). Configuration graphs of pushdown automata starting from a

given configuration are exactly finitely decomposable graphs of finite degree.

In particular, these graphs have a decidable monadic property. This work was extended

to HR-equational graphs by [Cou90], and then to prefix-recognizable graphs [Cau92,

Cau96].

In parallel, the notion of tree as infinite solution of a recursion scheme was brought

back under the lights thanks to a result of decidability of MSO-theory under a condition

of safety [KNU01, KNU02]. This approach will be detailed in Chapter 5. A similar result

appears in [CK02]. Then [Cau02] shows that these term-trees are the same, and that they

also are the unfoldings of prefix-recognizable graphs.

This results naturally lead to the full definition of the hierarchy in [Cau03] : trees are

unfolded by graphs, which are in turn inverse rational mappings of trees. It was then

showed in [CW03] that the inverse rational mappings can be replaced by general monadic

interpretations, and that the graphs of the hierarchy were ε-closures of configurations

graphs of higher-order pushdown automata.

2.5.1 Definition

We only define here the outer presentation, i.e. by graph transformations. An inner

definition by higher-order stack relations, introduced in [Car05], appears in Section 3.3.2.

Chapter 5 presents the recursion schemes approach.

38 CHAPTER 2. PRELIMINARIES

. . .

Graph2

unfolding

Tree2
(algebraic)

MSO-I

Graph1

(prefix-

recognizable)

unfolding

Tree1
(regular)

MSO-I

Graph0

(finite

graphs)

unfolding

Tree0
(finite trees)

MSO-I

Figure 2.5: The pushdown hierarchy.

The pushdown hierarchy can defined as follows :

• Tree0 is the set of finite trees,

• for n ≥ 0, Graphn is the set of monadic interpretations of Treen,

• for n ≥ 0, Treen+1 is the set of unfoldings of Graphn.

The lower levels of this two-fold hierarchy are illustrated in Figure 2.5; a practical

example of graph constructions can be seen in Figure 2.6.

A major consequence of the Theorem 2.4.4 is that the whole hierarchy enjoys a decid-

able monadic theory.

Theorem 2.5.3. For all n ≥ 0, the monadic theory of a graph in Graphn is decidable.

2.5.2 Some properties

By [CW03], deterministic trees are enough : a graph of Graphn is the inverse rational

mapping of a deterministic tree in Treen. The same paper also states that there is a

generator ∆n
2 , i.e. a deterministic graph such that each graph is the inverse rational

mapping of a rational marking of ∆n
2 . This generator is defined as follows :

• ∆1
2 is the complete binary tree;

2.5. THE PUSHDOWN HIERARCHY 39

###

###

baaba

I1

Unf

I2

Unf

I3

Figure 2.6: Exemple of graph constructions in the hierarchy.
These graphs belong successively to Tree0, Graph0, and so on up to Graph2. Graphs are al-
ways unfolded from their root, i.e. their uppermost leftmost vertex. The three interpretations
I0, I1, I2 are as follows :

leaf(p) = ¬∃r (p→ r)

I0 : ϕ0(p, q) = p
0
→ q

ϕ1(p, q) = p = q ∧ ¬leaf(p)

I1 : ψ0(p, q) = p
0+0̄1̄0
−−−−→ q

ψ1(p, q) = p
1+0̄1̄0
−−−−→ q

ψ#(p) = ¬leaf(p)

I2 : η1(p, q) = ∃r (p
1̄∗0̄
−−→ r

0∗
−→ q ∧ leaf(p) ∧ leaf(q) ∧ ¬(#, r))

∨(leaf(p) ∧ p
1̄∗0̄
−−→ q) ∧ (#, q))

∨(leaf(q) ∧ p
0∗
−→ q) ∧ (#, p))

ηa(p) = ∃q (η1(p, q)) ∧ leaf(p)
ηb(p) = ∃q (η1(p, q)) ∧ (#, p)

The final structure is actually the infinite (morphic) word abaabaaaab . . . , which we will see

again in Chapter 5.

40 CHAPTER 2. PRELIMINARIES

• ∆n+1
2 = Treegraph(∆n

2).

In this thesis, we will extensively use the following closure properties of Treen and

Graphn.

Proposition 2.5.4 ([CW03]). For all n,

• the deterministic trees of Treen are closed under MSO-coloring;

• Graphn is closed under MSO-transduction.

Deterministic trees of Treen is also closed by subtree. For any tree t and node u, the

subtree of root u is noted t/u.

Proposition 2.5.5. For all deterministic tree t ∈ Treen and for all u ∈ Dom(t), t/u also

belongs to Treen.

Proof. Let t′ be the tree obtained by coloring any node below u with a fresh color $. By

Prop. 2.5.4, t′ belongs to Treen. Let G ∈ Graphn and r ∈ VG such that t ≃ Unf(G, r).

Let r′ be the vertex of G corresponding to u and let I be the interpretation erasing all

the vertices which are not colored by $ and then removing $. Clearly t/u ≃ Unf(I(G), r′).

Hence t/u belongs to Treen.

Finally, we will make some use of the following selection properties on graphs and

trees. These properties are given for completeness sake.

Proposition 2.5.6. Let G ∈ Graphn be a deterministic tree, a MSO-formula ϕ(X) and a

fresh color $. If G |= ∃X,ϕ(X) then there exists U ⊆ VG s.t. G |= ϕ[U] and G ∪ {($, u) |

u ∈ U} also belongs to Graphn.

Proof. In [Car06, Theorem 5.3.1] it is shown that for all n ≥ 0, any graph in Graphn

can be MSO-interpreted in a unique graph written GStacksn. In [Fra05], it is shown that

GStacksn has the selection property. That is to say if GStacksn |= ∃X,ϕ(X) then there

exists ψ(x) such that G |= ϕ[U] where U = {u ∈ VG | G |= ψ[u]}. A proof of this fact is

also given in [Car06, Theorem 4.7.6.].

Let G ∈ Graphn and ϕ(X) be an MSO-formula s.t. G |= ∃X,ϕ(X). Let I be an

MSO-intrepretation such that G ≡ I(GStacksn). Let ϕ′(X) be an MSO-formula such

that for all set U of vertices of GStacksn, I(GStacksn) |= ϕ[U] iff GStacksn |= ϕ′[U]. In

particular GStacksn |= ∃X,ϕ′(X).

Let ψ(x) be the formula obtained using the selection property on GStacksn for ϕ′(X).

Consider the MSO-interpretation I ′ obtained by adding to the formulæ defining I a

formula ϕ$(x) = ψ(x). The graph I ′(GStacksn) ∈ Graphn satisfies the desidered proper-

ties.

Proposition 2.5.7. Let t ∈ Treen be a deterministic tree, a MSO-formula ϕ(X) and

a fresh color $. If t |= ∃X,ϕ(X) then there exists U ⊆ Dom(t) s.t. t |= ϕ[U] and

t ∪ {($, u) | u ∈ U} also belongs to Treen.

2.5. THE PUSHDOWN HIERARCHY 41

Proof. Let t be a deterministic tree in Treen and let ϕ(X) be an MSO-formula s.t. t |=

∃X,ϕ(X).

For all U ⊆ Dom(t), we write t[U] the deterministic tree colored by {0, 1} with the

same set of nodes as t and such that for all u ∈ t, t[U](u) = 1 iff u ∈ U . We extend

this definition to tuples of sets and to graphs. Let A = (Q, q0,∆,Ω) be a parity tree

automaton accepting the set of determinstic tree over Σ colored {0, 1} such that:

A accepts t[U] ⇔ t |= ϕ[U].

Let B be the automaton obtained by projecting the colors in A (i.e. the set of states

of A is Q× {0, 1} where Q is the set of states of A). To obtain our result, it is enougth

to show that we can color an accepting run for B on t and still remain in Treen. Indeed

to every accepting run of B correponds a set U ⊆ Dom(t) and an accepting run of A on

t[U].

For technical reason, we are going to color a strategy for the automaton B and not

directly an accepting run. A strategy Φ for B on t is a mapping form t to F where F is

the finite set of partial functions f from Q to ∆ such that for all q ∈ Q, f(q) (if defined)

is a transition starting from q. This strategy Φ is winning if that for all u ∈ Dom(t) s.t.

f = Φ(u) and for all q ∈ Dom(f), the run of B induced by Φ starting from u in state q

is accepting. Conversely, for all u ∈ t and all state q of B, if B admits an accepting run

from q starting from u on t. As F is a finite set, a strategy for B can be coded by a tuple

of sets.

Obviously if we show that t colored with any winning strategy for the automaton B

belongs to Treen. We have also shown that t colored by an accepting run (or colored by

a set U such that A |= t[U]) belongs to Treen.

The key property we are going to exploit is that we can restrict our attention to

so called regular winning strategies. A winning strategy is regular if for all u, v ∈ t, if

t/u ≡ t/v then Φ(u) = Φ(v). It follows from the positional determinacy of parity games

that any automaton admits a regular winning strategy [Car06, Lemma 1.4.6].

The interest of regular winning strategies becomes apparent when we recall that every

tree in t is obtained by unfolding a graph in Graphn. Let G be a graph in Graphn and

let r be a vertex in VG such that t ≡ Unf(G, r). By considering regular strategies, we can

assume that all points originating from the same vertex of G in the unfolding are assigned

the same value by the strategy. This allows us to color t with a regular winning strategy

”before unfolding”. It follows form [Car06, Proposition 1.4.9] that there exists a formula

ψ(X̄) such that for any tuple Ū of vertices of G, G |= ψ[U] iff Unf(G[U], r) correspond

to t colored with a winning strategy. By Prop. 2.5.6, there exists Ū such that G |= ψ[Ū]

and G[Ū] belongs to Graphn.

42 CHAPTER 2. PRELIMINARIES

Chapter 3

Linear order construction

This chapter locates some particular scattered orders in the pushdown hierarchy. It begins

with the construction of ordinals by graph transformations : the towers of ω of height n

are found in Graphn. The same method is then extended to powers of ζ. For ordinals,

we also give a higher-order n-regular presentation, i.e. relations on stacks of stacks.

In Chapter 5, we will see a third construction of ordinals by schemes. Therefore these

well-known structures offer a panorama of techniques that can be used in the hierarchy.

While using MSO logics on ordinals, an important result can be noticed. Büchi’s

Theorem 3.4.2 states that ordinals larger than ωω have a “redundant” MSO theory; for

instance, MTh(ωω) = MTh(ωωω

). In other words, a given ordinal cannot be recognized

by a MSO formula. The last section of this chapter studies the structure of the so-called

canonical fundamental sequences of an ordinal, which is very close to the structure of

the ordinal itself, but has the MSO-recognizability. These structures also belong to the

hierarchy for ordinals smaller than ε0.

3.1 Ordinals in the pushdown hierarchy

Finite ordinals are all in Graph0, which is the set of finite graphs. On the next level,

ordinals smaller than ωω are also easy to locate in the first level of the hierarchy. This

has been proven by [Hei80, BC01]. We restate this result.

Proposition 3.1.1. For any α < ωω, α ∈ Graph1.

Proof. Let Gk be the finite graph of vertices {ai | 0 ≤ i ≤ k}, as shown in Figure 3.1.

Gk = {ai
1
→ ai, ai

0
→ ai−1 | 0 < i ≤ k}

The leaves of unfolding of Gk by ak are of the form 1ck−101ck−2 . . . 01c00. Ordered by lex-

icographic ordering, this set is isomorphic to (ωk−1.ck−1+· · ·+c0)∀i<k,ci≥0, which is ωk. We

have seen in Example 2.4.1 that the frontier of a deterministic tree is a MSO-interpretation

of this tree, so ωk ∈ Graph1. For details on the sum closure, see Lemma 3.1.3.

43

44 CHAPTER 3. LINEAR ORDER CONSTRUCTION

εaa2a3

Figure 3.1: Finite graph G3 which unfolding has frontier ω3.

The natural question is whether greater ordinals belong to the hierarchy, and up to

which bound. In particular, [Cac06] asks whether ωω ∈ Graph2 or not. This section

partially answers this question by giving examples of ordinals; the other direction will be

seen in Chapter 4.

Theorem 3.1.2. If α < ω ↑↑ (n+ 1), then α ∈ Graphn.

Using the Cantor normal form of ordinals smaller than ε0, we only have to implement

addition and the operation α 7→ ωα. Here, we prove that ordinals of Graphn are closed

by addition, and that the ω-exponentiation only reaches the next level.

Lemma 3.1.3. If α, β ∈ Graphn, then α + β ∈ Graphn.

Proof. It suffice to prove that for any G1, G2 ∈ Graphn, x1 ∈ VG1
, x2 ∈ VG2

, if x is a new

vertex and #1,#2 new letters, the graph G = G1 ∪ G2 ∪ {x
#1
→ x1, x

#2
→ x2} is also in

Graphn. Indeed, if G1 = α and G2 = β, we can supply a monadic interpretation to get

the sum.

This is true for finite graphs. For n > 0, if G1 = I1(Unf(H1, r1)) and G2 =

I2(Unf(H2, r2)), then by induction we define H as above is in Graphn−1 : H = H1∪H2∪

{r
#1
→ r1, r

#2
→ r2}. Then Unf(H, r) ∈ Treen. It is easy to mark sets isomorphic to VG1

and VG2
and to restrict respectively I1 and I2 to these sets. We get the required G.

Lemma 3.1.4. If α ∈ Graphn then ωα ∈ Graphn+1.

Proof. By Corollary 2.2.2, the structure ωα is isomorphic to the finite decreasing sequences

of ordinals smaller than α. Let G = Treegraph(α). We are going to find an interpretation

I such that I(G) ≃ ωα. For an illustration, the Figure 3.7 page 62 shows the case of ω

in the simpler frame of covering graphs, which will be defined in Section 3.4.

G has exactly one root 0. Let M be the formula

M(x) := x = 0 ∨ 0
<#(<̄#)∗

−−−−−→ x.

By the definition of treegraph, for any x such that M(x) and x 6= 0, we have

0
<#
−−→ γ1γ1

<̄#
−−→ γ1γ2γ2

<̄#
−−→ . . .

<̄#
−−→ γ1 . . . γnγn = x.

We note ~sx the sequence (γ1, . . . , γn−1, γn) with α > γ1 ≥ · · · ≥ γn. Conversely, each

such sequence is associated to a x such thatM(x). We define now a monadic interpretation

I = {ϕ<} on these marked vertices so that ϕ<(x, y) iff ~sx <lex ~sy. Define

3.2. POWERS OF ζ 45

Figure 3.2: Folded graphs of trees of frontier ζ, η and ω(1 + η).

ϕ<(x, y) := M(x) ∧M(y) ∧ x = 0 ∨ x
(#̄<)∗(#<̄)+

−−−−−−−→ y.

The case x = 0 is easy, so we suppose that x 6= 0 and ϕ<(x, y). Then there is a z

such that x
(#̄<)∗

−−−→ z
(#<̄)∗

−−−→ y. Then there is k such that ~sx = (γ1, . . . , γk, . . . , γn) and

~sz = (γ1, . . . , γk−1, γ
′
k) with γk < γ′k. In the same way ~sy = (γ1, . . . , γk−1, γ

′
k, . . . , γ

′
n′), so

~sx <lex ~sy. The converse is also true.

As a direct consequence of Theorem 3.1.2, ordinals below ε0 can be expressed by

higher-order pushdown automata. This approach is explained in Section 3.3. In fact,

this result is useful to illustrate the techniques that may be used in the hierarchy. It is

therefore proved four times :

• directly by the above proof;

• by n-regular relations, in Section 3.3;

• by covering graphs, as an application of Propositions 3.4.4 and 3.4.13;

• by higher-order schemes, as an application of Example 5.1.2.

3.2 Powers of ζ

More complex orders can also be found in the pushdown hierarchy. In particular, trees of

frontier ζ or η (resp. order types of Z and Q), showed in Figure 3.2, are in Graph1.

In this chapter, we focus on a particular family of scattered orders : namely, the

successive ordinal powers of ζ. They are defined as follows.

ζ0 = 1

ζβ+1 = ζβ · ω∗ + ζβ + ζβ · ω

ζλ =

(
∑

α<λ

ζα.ω

)∗

+ 1 +
∑

α<λ

ζα.ω for λ limit.

Note that the last line alone is actually enough for a complete definition, for any

ordinal λ.

46 CHAPTER 3. LINEAR ORDER CONSTRUCTION

. . .

. . .

. . .

. . .

Figure 3.3: Folded regular graph of a tree of frontier ζω.

From [Ros82, Thm. 5.37], the Hausdorff-rank of ζα is α. Furthermore, ζα is complete

among the scattered orders of Hausdorff-rank α in the following sense: a scattered order

has Hausdorff-rank less than α if and only if it is a subordering of ζα.

The following proposition is an extension of Theorem 3.1.2.

Proposition 3.2.1. For all n > 0 and any ordinal α < ω ↑↑ n, ζα is in Graphn.

For instance, the graph of Figure 3.3 is regular and thus in Graph1. Its unfolding by

its root (the leftmost vertex) is in Graph2 and yields the order ζω.

To prove the result, we need to extend the definition of the treegraph operation to go

in more than one direction. A similar approach can also be found in [Pil04].

Definition. Let Σ,Γ be two alphabets. The Γ-treegraph of a Σ-graph G is the graph in

(VG ∪ Γ)∗ × Σ ∪ Γ × (VG ∪ Γ)∗ given by

G = {ux
b
→ uy | x

b
→ y ∈ G}

∪{ux
a
→ uxax | a ∈ Γ}

Note that the constraint Σ ∩ Γ = ∅ is not required, but this will be the case in our

application, and it is easy to see that it is not a restriction.

The main property of this treegraph version is that it does not add more complexity

than the standard treegraph, which is isomorphic to the case Γ = {#}.

Proposition 3.2.2. The Γ-treegraph of a graph in Graphn is in Graphn+1.

Proof. Suppose Σ ∩ Γ = ∅ up to final renaming. Let G ∈ Graphn. For each a ∈ Γ,

let T be the transduction adding an arc labeled by a from each vertex of G. Then the

Γ-treegraph of G is isomorphic to the interpretation of Treegraph(T (α)) where each path

labeled a#ā is changed into a.

Proof of Prop. 3.2.1. This proof is an adaptation of the construction for ordinals. By

Theorem 3.1.2, for any n > 0, any ordinal smaller than ω ↑↑ n is in Graphn−1. So it is

enough to prove that if α ∈ Graphn−1, then Zα is in Graphn.

3.2. POWERS OF ζ 47

In a way similar to Proposition 2.2.1, ζα is isomorphic to the set of α-sequences over

Z where a finite number is non-zero, and ordered by reverse lexicographic order — see

again [Ros82, 5.36]. For two α-sequences ~s,~t, we have ~s <rlex
~t iff ∃γ such that ~sγ < ~tγ

and ∀δ > γ, ~sδ = ~tδ.

Let α ∈ Graphn−1 such that α < ω ↑↑ n. Let G be the {0, 1}-treegraph of α; by

Proposition 3.2.2, G ∈ Graphn+1. G has still exactly one root r (a vertex co-accessible

from VG). Let M be a marking adding a special color on r and any x such that

r
(<+ε)(0++1+)(<̄(0++1+))∗

−−−−−−−−−−−−−−−−→
G

x.

Here x 6= r is of the form (γ0a0)
c1(γkak)ck where for all i ≥ 0, ci > 0, ai ∈ {0, 1} and

γi < γi−1. To each such x we associate the α-sequence ~s(x) where

~s(x)γi = −ci if ai = 0

~s(x)γi = ci if ai = 1

~s(x)γ = 0 if γ 6= γi for any i

The path is finite so a finite number of indexes are non-zero. Conversely, to each α-

sequence with a finite number of non-zero indexes is associated a unique vertex in VG.

We check that the relation x < y on marked vertices holds iff ~s(x) <rlex ~s(y) where

<rlex is the reverse-lexicographic order definable by a MSO-interpretation in G. The cases

x = 0 and y = 0 are handled separately. Otherwise let

x = (γ0a0)
c0(γkak)ckγk

y = (δ0b0)
d0(δhbj)

dhδh.

We have x < y iff there is a j such that ai = bi, γi = δi, ci = di for all i < j, and one

of the following is true. We note ↑= ((0̄ + 1̄)∗ <) and ↓= (<̄(0 + 1)∗). For an example,

see Figure 3.4.

Either γj < δj, bj = 1 =⇒ x
↑+1+↓∗
−−−−→ y

or δj < γj, aj = 0 =⇒ x
↑∗0̄+↓+
−−−−→ y

or γj = δj, j > 0 and

aj = bj = 0, cj > dj =⇒ x
↑∗0̄+↓∗
−−−−→ y

or aj = bj = 1, dj > cj =⇒ x
↑∗1+↓∗
−−−−→ y

or aj = 0, bj = 1 =⇒ x
↑∗0̄+1+↓∗
−−−−−→ y

or k < j ≤ h, bj = 1 =⇒ x
<̄1+↓∗
−−−−→ y

or h < j ≤ k, cj = 0 =⇒ x
↑∗0̄+>
−−−−→ y.

48 CHAPTER 3. LINEAR ORDER CONSTRUCTION

(. . .)

. . .

(. . .)

y

<

(. . .)

. . .

(. . .)

x

<

. . .

<

. . .

(. . .)

(. . .)
z

<. . . <

. . .<

. . .

. . .

0
<

Figure 3.4: {0, 1}-treegraph of ω.

White vertices are those used by the interpretation; bracketed dots represent subgraphs where

no vertex will be used. Here ~sx = (−1,−1, 0, . . .), ~sy = (0,−1, 0, . . .), ~sz = (0, 1, 0, . . .). We

check for instance that x
0̄<0̄1
−−−→ z, noted x

↑0̄1
−−→ z.

In the other direction,

x
↑∗1+↓∗
−−−−→ y =⇒ γj < δj, bj = 1

or γj = δj, aj = bj = 1, dj > cj

x
↑∗0̄+↓∗
−−−−→ y =⇒ δj < γj, aj = 0

or γj = δj, aj = bj = 0, cj > dj

x
↑∗0̄+1+↓∗
−−−−−→ y =⇒ γj = δj, aj = 0, bj = 1

x
<̄1+↓∗
−−−−→ y =⇒ k < j ≤ h, bj = 1

x
↑∗0̄+<
−−−−→ y =⇒ h < j ≤ k, cj = 0.

There is therefore a monadic interpretation I such that I(G) ≃ ζα. Since Graphn is

closed under MSO-interpretation, ζα ∈ Graphn.

3.3 n-regular presentation

The graphs on the first level of the hierarchy were originally defined with a prefix-reco-

gnizable presentation [Cau96]. Then this presentation was extended to any level with

the help of higher-order pushdown automata of level n [CW03], i.e. automata which use

nested stacks of stacks of depth n. Using these results, the construction by monadic

interpretations and unfolding can be translated into a pushdown automata description.

3.3. N -REGULAR PRESENTATION 49

Instead of doing so, we prefer the equivalent — and more fluent — notion of regularity

[Car05] on n-stacks. This notion offers a natural encoding of ordinals by their Cantor

normal form.

This section gives a presentation of prefix-recognizable graphs, and then of the more

general n-regular relations. We show then how to actually build ordinals with this latter

tool. As in Section 3.1, this latter operation is split in two parts : one for the α 7→ ωα

operation and the other for addition.

3.3.1 Prefix-recognizable graphs

A prefix-recognizable Σ-graph is up to isomorphism a graph of the form

{uw
a
→ vw | (U, a, V,W) ∈ ∆, u ∈ U, u′ ∈ V w ∈ W, a ∈ Σ}

where ∆ is a finite set of tuples (U, a, V,W) such that U, V and W are regular languages.

Theorem 3.3.1 ([Cau96, Theorem 3.3]). Prefix-recognizable graphs are up to isomor-

phism inverse rational mappings of the complete binary tree.

This means that Graph1 is (up to isomorphism) the set of prefix-recognizable graphs.

As a result, the same paper states that the monadic theory of prefix-recognizable graphs

is decidable.

3.3.2 Configuration graphs of n-hopdas

For a detailed presentation of these notions, see [Car05]. A 1-stack, or simply stack, over

a finite alphabet Γ is a word over Γ. To avoid later confusion, we forbid letters of N (see

below for the difference between popx and popn). The empty 1-stack is noted []1. For all

n > 1, a n-stack over Γ is a non-empty finite sequence of (n−1)-stacks over Γ. The empty

n-stack containing only the empty (n−1)-stack is noted []n. For all n, the set of n-stacks

is noted Stacksn (or Stacksn(Γ)) and the set of all stacks is Stacks = ∪n∈NStacksn.

The operations on a 1-stack [a1, . . . , am]1 are the usual push and pop. We add pop1

which can pop any letter.

pushx([a1, . . . , am]1) := [a1, . . . , am, x]1,

popx([a1, . . . , am = x]1) := [a1, . . . , am−1]1.

pop1([a1, . . . , am]1) := [a1, . . . , am−1]1.

For n > 1 and a n-stack [s1, . . . , sm]1, the extended operations are as follows. The

operation copyn replicates the top-most (n−1)-stack, and copyn is its symetric : it deletes

the top-most (n−1)-stack if it equals the penultimate. The popn operation simply removes

the top-most (n − 1)-stack. For k < n, the operation on k-stacks are simply propagated

50 CHAPTER 3. LINEAR ORDER CONSTRUCTION

in the top-most stack.

copyn([s1, . . . , sm]n) := [s1, . . . , sm, sm]n

copyn([s1, . . . , sm, sm]n) := [s1, . . . , sm]n

popn([s1, . . . , sm]n) := [s1, . . . , sm−1]n

copyk([s1, . . . , sm]n) := [s1, . . . , copyk(sm)]n for 1 < k < n

popk([s1, . . . , sm]n) := [s1, . . . , popk(sm)]n for 1 ≤ k < n

popx([s1, . . . , sm]n) := [s1, . . . , popx(sm)]n for x ∈ Γ

pushx([s1, . . . , sm]n) := [s1, . . . , pushx(sm)]n

Let also be an identity function id defined on Stack. The set of operations defined at

least one n-stack is denoted Opsn.

Instead of dealing with rough higher-order pushdown automata, one can use directly a

regularity on stacks. The set of operations forms a monoid with the composition operation.

Let Reg(Opsn) the closure of the finite subsets of this monoid under union, product and

iteration, i.e. the set of regular expressions on Opsn.

To each expression E ∈ Reg(Opsn) we associate the test operation testE = id|E([]n).

By an abuse of language test[]k = id|[]k . Let Testn be the set of tests. To each F ∈

Reg(Opsn ∪ Testn) we now associate

the set of stacks Sn(F) = F ([]n),

the set of relations R(F) = {(s, s′)|s′ ∈ F (s)}.

The set of stacks Sn(F) will be noted S(F) if n is clear. Given F and (Fa)a∈Σ in

Reg(Opsn ∪ Testn), the graph of support S(F) and with arcs s
a
→ s′ iff (s, s′) ∈ R(Fa) is

a configuration graph of a n-hopda. They describe precisely the graphs of the hierarchy.

Theorem 3.3.2 ([Car05]). The family of configuration graphs of n-hopdas is equal up to

isomorphism to Graphn.

3.3.3 Encoding ordinals

For each ordinal, we are going to define the expressions dom and inc which respec-

tively fix the domain of the structure and the order relation. We also will build an

expression dec to perform the symmetric of inc. In other words, we want the structure

〈S(dom(α)), R(dec(α)), R(inc(α))〉 to be isomorphic to the structure 〈α,>,<〉.

Small ordinals

For ω, we consider the set of all 1-stacks (i.e. integers). In this case, dom(ω) is obtained

by iterating pusha on the empty stack with a fixed letter a. The other operations are also

3.3. N -REGULAR PRESENTATION 51

straighforward.

dom(ω) := push∗a

inc(ω) := push+a

dec(ω) := pop+a

Since we only consider ordinals in Graphn for n > 1, our interest is focused on infinite

ordinals. However, since we are going to encode these ordinals through the Cantor normal

form, we have to define finite ordinals. For a finite ordinal k > 0, the domain is simply

the restriction of dom(ω) to 1-stacks of size bounded by k − 1.

To allow iteration and re-prove Theorem 3.1.2, we also need more than ω : we have

to encode all ordinals smaller than ωω with 1-stacks. This is done with more letters. Let

α = ωk1 .c1 + · · · + ω.ck−1 + ck. The stack alphabet is {a1, . . . , ak}. Stacks belong to

a subset of S(push∗a1 . . . push
∗
ak

) where if s = [adkk . . . ad11]1, then the sequence (di)i∈[0,k] is

smaller than (ki)i∈[0,k] in lexicographic order. Relations also respect this order. Increasing

a stack is done by popping all letters ai where i > j for a given j, then pushing one aj

and pushing anything. Decreasing a stack is done by popping all letters ai where i ≥ j

for a given j, then pushing only letters ai with i > j.

One step further : exponentiation

Let α be any ordinal smaller than ε0, and let n be the smallest value such that dom(α),

inc(α) and dec(α) are all in Reg(Opsn−1). Informally, each ordinal γ < ωα is either 0 or

may be written as γ = ωγ0 + · · · + ωγk with γi < α; so we code γ as a sequence of stacks

respectively coding γ0 . . . γk.

Let tail(α) := copyn.(id + dec(α)). This operation takes the last stack (representing

γk) and adds a stack coding an ordinal ≤ γk, so that the CNF constraint is respected.

For the relation <, inc either adds a decreasing sequence (by tail), or it first pops stacks,

then increases a given one before adding a tail.

dom(ωα) := dom(α).tail(α)∗

inc(ωα) := [pop∗n.inc(α) + tail(α)].tail(α)∗

dec(ωα) := pop∗n.[popn + dec(α).tail(α)∗]

See Figure 3.5 for an example of operators at work.

Proposition 3.3.3. If n > 0 and 〈S(dom(α)), R(dec(α)), R(inc(α)) 〉 ≃ 〈α,>,<〉 〉, then

the same properties are true for ωα.

Proof. Let n > 1, and there exist dom(α), inc(α), dec(α) operations in Reg(Opsn−1) such

that 〈S(dom(α)), R(dec(α)), R(inc(α))〉 is isomorphic to 〈α,>,<〉. It is not a restriction

to suppose that dec(α)(S(dom(α))) ⊆ S(dom(α)) : indeed, it suffices to concatenate the

operation testdom(α). For any γ < α, we note sγ the corresponding (n− 1)-stack.

Note that if k < n, all operations on k-stacks are valid on n-stacks. So if f ∈

52 CHAPTER 3. LINEAR ORDER CONSTRUCTION

a
a
a

a
a
a
a

a
a

a
a
a

a
a

a
pop2pusha copy2popa

pop2pushacopy2popa

Figure 3.5: The operation inc(ωω).

The stacks here represent ω3 + ω + 1, ω3 + ω2 and ω3 + ω2 + ω.

Reg(Opsk) and s, s′ are two k-stacks such that (s, s′) ∈ R(f) , and if p, p′ are the same

n-stack except for the top-most k-stack which is respectively s and s′, then (p, p′) ∈ R(f).

Let S = dom(ωα) and let p ∈ S be a finite sequence of (n − 1)-stacks, so p =

[sγ0 , . . . , sγk]. In the definition of dom(ωα), there is no popn operation, and by definition

sγ0 , . . . , sγk are all in S(dom(α)). By hypothesis on dec(α), we also have sγ0 ≥ · · · ≥ sγk .

As a consequence, the mapping

p = [sγ0 , . . . , sγk] 7→ λ = ωγ0 + · · · + ωγk

is well defined and is injective. In fact, it is a bijection between S and [1, ωα[; omitting 0

is not a problem for infinite ordinals. We therefore note pλ the n-stack associated to λ.

Now let 0 < λ < λ′ < α be two ordinals, with λ = ωγ0 + · · · + ωγk in CNF. Then

either λ′ = ωγ0 + · · · + ωγk + · · · + ωγk′ with k < k′,

or λ′ = ωγ0 + · · · + ωγi + · · · + ωγ′
i+1 + · · · + ωγk′ for some i < k,

with γi+1 < γ′i+1. For the first case, the use of tail(α) on pλ has already been discussed,

so (pλ, pλ′) ∈ R(tail(α)+). In the second case, pop
(k−i−1)
n (pλ) = [sγ0 , . . . , sγi+1

] and, by

induction,

([sγ0 , . . . , sγi+1
], [sγ0 , . . . , sγ′

i+1
]) ∈ R(inc(α)).

Again, the tail operation is used. The converse — if (pλ, pλ′) ∈ S2 ∩ R(inc(ωα)) then

λ < λ′ — is straightforward. So 〈S,R(inc(ωα))〉 is indeed isomorphic to 〈α,<〉.

The dec operation is similar. In the first case, pop
(k′−k)
n (pλ′) = pλ with k′ − k ≥ 1. In

the second case, pop
(k′−i−1)
n (p′λ) = [sγ0 , . . . , sγ′

i+1
] and

([sγ0 , . . . , sγ′
i+1

], [sγ0 , . . . , sγi+1
]) ∈ R(dec(α)).

The converse is direct as well, and proves in the same time the last needed induction

property : dec(ωα)(S) ⊆ S. Note that this was not true with inc : inc(ωα)(S) 6⊆ S,

because we could lose the decreasing constraint of the CNF.

Finally 〈S,R(inc(ωα), R(dec(ωα))〉 is isomorphic to 〈α,<,>〉 and the induction prop-

3.4. COVERING GRAPHS 53

erties are fulfilled.

Completing with addition

To perform exponentation, dom(ωα) only uses the letters used by dom(α). For addition,

we add some markers.

Let α1, α2 < ε0 and let n be the smallest integer such that dom(α1), dom(α2) ∈ Ops∗n.

We add new letters α1, α2. We note testᾱi
for test(Opsn\{pushαi

})∗ , meaning in this context

“there is no αi in any stack”.

dom(α1 + α2) = pushα1
dom(α1) + pushα2

dom(α2)

inc(α1 + α2) = testᾱ2
(inc(α1) + dec(α1)popα1

testᾱ1
pushα2

dom(α2))

+testᾱ1
inc(α2)

dec(α1 + α2) = testᾱ1
(dec(α2) + dec(α2)popα2

testᾱ2
pushα1

dom(α1))

+testᾱ2
dec(α1)

Proposition 3.3.4. If n > 0 and 〈S(dom(αi)), R(dec(αi)), R(inc(αi)) 〉 ≃ 〈αi, >,<〉 〉 for

i ∈ {1, 2}, then the same is true for α1 + α2.

Proof. The α1 and α2 parts are respectively encoded by the new marker of the same name

at the beginning of each stack. The only way to remove a first letter α1 is to use pop1 or

popα1
, both of which are never used by inc(α1) or dec(α1). So the relations inc and dec

cannot accidentally remove this marker; the set dom(α1) is closed by inc(α1) and dec(α1).

To increase a stack, either this stack begins with α1 or α2 : this is checked by the

operation testpushαi
Ops∗n . In the case of α2, using inc(α2) is enough. For stacks in the α1

part, greater stacks are accessible by the inc(α1) operations and by taking all stacks in

the α2 part. To reach the latter, it is enough to pop everything including the α1 marker,

and start with pushα2
dom(α2). The dec operation works the same way.

Main result

To sum up, we have defined small ordinals in terms of configuration graphs of (standard)

pushdown automata. Then we showed how to perform exponentiation by increasing the

order, and addition at the same order. We get therefore the main result of this section.

Theorem 3.3.5. For any α < ω ↑↑ n + 1, α is isomorphic to the configuration graph of

a n-hopda.

By the equivalence of Theorem 3.3.2, this result is therefore a new proof of Theo-

rem 3.1.2.

3.4 Covering graphs

We have seen in Example 2.3.2 that it is possible to recognize the structure of an ordering

with the help of FO-logic, and well-ordering with MSO-logic in Example 2.3.3. But is

54 CHAPTER 3. LINEAR ORDER CONSTRUCTION

there a formula ϕα defining precisely the ordinal α, i.e. such that only the ordinal α

satisfies ϕα? For ordinals smaller than ωω, it is a simple exercise.

Proposition 3.4.1. For α < ωω, there is a MSO-formula ϕα such for any {<}-graph G,

G |= ϕα if and only if G ≃ α.

Proof. The conjunction of formulæ of Examples 2.3.2 and 2.3.3 checks the well-ordering

of the structure. We define the formulæ ϕk recognizing the k-limit vertices, i.e. limits of

(k − 1)-limit vertices.

ϕ0(x) := ⊤,

ϕk(x) := ∀y < x, ϕk−1(y) ⇒ ∃z (ϕk−1(z) ∧ y < z < x).

To recognize the ordinal ωk.ck + · · · + ω.c1 + c0, it is enough to find exactly ck vertices

satisfying ϕk, then ck−1 vertices greater than the previous ones and satisfying ϕk−1, and

so on.

This method is not powerful enough for higher ordinals, and in the general case the

property was proven false in [Bü65, Büc73]. To present this result we need an additional

definition. Any ordinal α has a unique representation

α = ωω.ν + ωk.ck + · · · + ω1.c1 + c0

The ordinal ωω.ν is called the ω-head of α, and ωk.ck + · · · + ω1.c1 + c0 is its ω-tail . The

monadic theory of α only depends on the latter and whether or not α < ωω.

Theorem 3.4.2 ([Büc73, Th. 4.9]). For any countable ordinals α and β, the following

statements are equivalent :

• MTh(α) = MTh(β)

• either α = β < ωω or else ωω ≤ α, β and α, β have the same ω-tail.

This result means informally that ordinals are not easily manipulable by MSO formulæ;

for instance, in general it is not possible to get a ordinal from a greater one by a monadic

interpretation. In this section, we by-pass this problem by considering a structure based

on the well-known notion of fundamental sequence. This structure is called the covering

graph of an ordinal. One of its important properties is its finite out-degree, which is

worked out to bring a specific monadic formula for each covering graph, thus allowing to

differentiate them.

3.4.1 Fundamental sequence

For any ordinal α, a subset S ⊆ α is cofinal in α if for any β ∈ α, there is β′ ∈ S such

that β ≤ β′. Such S has an ordinal order type. The cofinality of α is the minimal order

3.4. COVERING GRAPHS 55

type of a subset cofinal in α. The cofinality [Ros82] of any countable ordinal is ω. This

means that to each limit ordinal α we may associate an ω-sequence whose supremum is

α.

Definition. For α ≤ ε0, α = β + ωγ with β < α, γ < α and ωγ is the last term in the

CNF of α, the (canonical) fundamental sequence (α[n])n<ω is defined as follows :

α[n] =

{

β + ωγ′
.(n+ 1) if γ = γ′ + 1

β + ωγ[n] otherwise.

We note1 α′ ⋖ α whenever there is k such that α′ = α[k], or if α′ + 1 = α.

The adjective “canonical” will be implicit for the rest of this section.

Example 3.4.3. The fundamental sequence of ω is the sequence of strictly positive in-

tegers. The sequence of ωω is therefore (ω, ω2, ω3, . . .), whereas the sequence of ω2 is

(ω, ω.2, ω.3, . . .). Here is an example of successively related ordinals.

0 ⋖ 1 ⋖ ω ⋖ ω + 1 ⋖ ω.2 ⋖ ω2 ⋖ ωω . . . N

Taking the transitive closure of this relation gives back the original order, so there is

no information loss.

Proposition 3.4.4. The transitive closure of ⋖ is <.

Proof. Let 0 ≤ λ1 ≤ λ2 be two ordinals. We prove that λ1 ⋖
k λ2 for some finite k by

induction on λ2. If λ2 is a successor, consider λ′2 such that λ′2 + 1 = λ2, so λ′2 ⋖ λ2 and

λ1 ≤ λ′2. Otherwise, since the fundamental sequence of λ2 bounds all smaller ordinals,

there is a smallest n such that λ1 ≤ λ2[n] ⋖ λ2, so let λ′2 = λ2[n]. In both cases, by

induction λ1 ⋖
k′ λ′2 and thus λ1 ⋖

k′+1 λ2.

Moreover, the relation is crossing-free as described below, which is a helpful technical

tool.

Proposition 3.4.5. If α1 < λ1 < α2, α1 ⋖ α2 and λ1 ⋖ λ2, then λ2 ≤ α2.

To put it more simply, this is the forbidden case :

α2 λ2α1 λ1

Proof. We proceed by induction on α1 = β + ωγ, γ < α1. Note that α1 + 1 < α2.

According to the definition of ⋖, α1 is in the fundamental sequence of α2, which leaves

two distinct cases. We suppose λ1 + 1 < λ2, otherwise the lemma is trivially true.

1Unlike in [Bra09], we adopt the notation ⋖ instead of ≺, in order to avoid confusion with the suborder
relation � between linear orders.

56 CHAPTER 3. LINEAR ORDER CONSTRUCTION

. . .
ω3

...

. . .

. . .

...

. . .

. . .

...

. . .

. . .

...

3

2

1

0

ω ω2

ω2.2

ω.2

ω + 1

Figure 3.6: Covering graph of ωω.

Recall that β̂ denotes the RCNF of β. In the first case, α2 = β̂ + ωγ+1. Then, in

RCNF, λ1 = β̂ + ωγ.c1 + δ̂1, c1 > 0 and δ1 < ωγ. Now if δ1 = 0, then c1 > 1 and

λ2 = β̂ + ωγ+1 = α2. If δ1 6= 0, note that the only part that changes between an ordinal

and a member of its fundamental sequence is the last term in RCNF. So λ2 is written

β̂ + ωγ.c2 + δ̂2 in RCNF with δ2 < ωγ, and therefore λ2 < α2.

In the second case, α2 = β̂+ωγ′
with γ⋖γ′, γ+1 < γ′. In RCNF, λ1 = β̂+ωµ1 .c1 + δ̂1

with c1 > 0, δ1 < ωµ1 , γ ≤ µ1 < γ′ and at least one of the following is true : δ1 6= 0, or

γ < µ1, or c1 > 1. Again, we have to deal with several cases.

Either δ1 = 0 and γ = µ1; then c1 > 0 and λ2 = β̂ + ωγ+1 < α2.

Or δ1 = 0 and γ < µ1; then λ2 = β̂ + ωµ2 and µ1 ⋖ µ2; this is where the induction

property is applied to get µ2 ≤ γ′, and λ2 ≤ α2.

Finally, if δ1 6= 0, as before λ2 = β̂ + ωµ1 .c2 + δ̂2 < β̂ + ωγ+1 < α2.

3.4.2 Covering graphs

Definition. Let Gα = {λ1 ⋖ λ2 |λ1, λ2 < α} be the graph of successor and fundamental

sequence relation, or covering graph of the ordinal α.

For instance, a representation of Gωω is given in Figure 3.6.

We first remark the finite out-degree of the covering graphs.

Proposition 3.4.6. For any ω ↑↑ (n− 1) < α ≤ ω ↑↑ n and n > 0, the out-degree of Gα

is n.

Proof. The output degree of λ < α in Gα is the cardinal of {µ |λ⋖µ < ω ↑↑ n}. If n = 0,

λ = 0 and ω ↑↑ 0 = 1, so the set is empty. For n > 0, let λ = β + ωγ and λ ⋖ µ, then

either µ = λ + 1 or µ = β + ωγ′
with γ ⋖ γ′. Since γ′ < ω ↑↑ (n − 1), by induction

|{γ′ | γ ⋖ γ′ < ω ↑↑ (n− 1)}| ≤ n− 1, which leads to |{µ |λ⋖ µ < ω ↑↑ n}| ≤ n.

3.4. COVERING GRAPHS 57

For the lower bound, if n = 1, then α ∈ [2, ω], and 0 ⋖ 1 has degree 1. For n > 1, if

α > ω ↑↑ (n− 1) then

ω ↑↑ (n− 2) ⋖ ω ↑↑ (n− 2) + 1

⋖ ωω↑↑(n−3)+1

. . .

⋖ ω...ω+1

⋖ ω...ω
2

⋖ ω ↑↑ (n− 1).

For instance, let n = 3, α = ωω + 1 :

ω ⋖ ω + 1

⋖ ω2

⋖ ωω.

So ω ↑↑ (n− 2) has degree n in Gα.

In the following, we refine this property to get a characterisation of an ordinal covering

by the degree of its vertices. We define the degree word d(α) of a covering graph as follows.

Definition. Consider the greatest sequence σ of Gα starting from 0, i.e. σ0 = 0 and for

k ≥ 0, σk+1 is the greatest ordinal smaller that α such that σk⋖σk+1 if any. The previous

lemma ensures that {λ | σk ⋖ λ} is finite, so σk+1 exists. Such a sequence may be finite.

The degree word d(α) is a finite or infinite word over [0, n] when α ≤ ω ↑↑ n, and its

kth letter is the out-degree of σk in Gα. Note that d(0) = ε and d(1) = 0.

Example 3.4.7. Consider d(ωω). Its greatest sequence is (0, 1, ω, ω2, ω3, . . .), where all

have degree 2 in Gωω except the first; so d(ωω) = 12ω. Now consider d(ω3 + ω2) : the

sequence is now

0, 1, ω, ω2, ω3, ω3 + 1, ω3 + ω, ω3 + ω + 1, . . .

which loops into (. . . , ω3 + ω.k, ω3 + ω.k + 1, . . .) so d(ω3 + ω2) = 12221(21)ω. N

These examples hint that the degree word is regular.

Lemma 3.4.8. For any α ≤ ω ↑↑ n, if α is a successor ordinal then d(α) is a finite word

of [0, n]∗; otherwise d(α) is an ultimately periodic word of [1, n]ω.

Proof. Lemma 3.4.6 ensures that the degree word of α ≤ ω ↑↑ n is a word on the alphabet

[1, n]. Since the transitive closure of Gα is isomorphic to α, the greatest sequence σ of Gα

is unbounded, i.e. ∀λ < α, ∃n(σn ≥ λ). In particular, if α = λ + 1, there is n such that

σn = λ, and the sequence is finite. The last element has out-degree 0.

If α is a limit ordinal, each α[n] must be in σ. Indeed, let m be such that σm ≤ α[n] ≤

σm+1; if the inequalities are strict, since α[n]⋖α, by Proposition 3.4.5 we have σm+1 ≥ α

which is a contradiction. So one of σm or σm+1 must be α[n].

58 CHAPTER 3. LINEAR ORDER CONSTRUCTION

We want now to prove that the pattern between the (α[n])n<ω is always the same. Let

α = β + ωγ. As before, we have two cases. If γ = γ′ + 1, then α[n] = β + ωγ′
.(n + 1).

Given n, there is a path in the greatest sequence

α[n] ⋖ α[n] + δ1 ⋖ · · ·⋖ α[n] + δh ⋖ α[n+ 1]

with δi < ωγ for each i, and in fact δi+1 is the greatest such that δi ⋖ δi+1 and δi+1 ≤ ωγ.

This defines the (δi) sequence independently of n. If i is fixed and n varies, α[n] + δi ⋖

α[n] + x whenever δi < x and x ≤ ωγ, so the degree is still the same. The degree word is

therefore ultimately periodic.

In the second case, α[n] = β + ωγ[n] and γ[n] + 1 ≤ γ[n+ 1] < γ. So β + ωγ[n]+1 < α.

Since α[n] ⋖ β + ωγ[n]+1, then the following element of α[n] in the greatest sequence is

greater or equal to β + ωγ[n]+1 and is therefore of the form β + ωδ1 with γ[n] ⋖ δ1. In

general

α[n] = β + ωγ[n] ⋖ β + ωδ1 ⋖ · · ·⋖ β + ωδh ⋖ α[n+ 1]

are in the greatest sequence. Then γ[n], δ1, . . . , γ[n+ 1] are in the greatest sequence of γ

and their output degrees are respectively the same than those of ωγ[n], ωδ1 , . . . , ωγ[n+1] in

α, minus 1. By induction, if the sequence of γ is ultimately periodic, so is the sequence

of α.

The degree word is actually a morphism from ordinals to words over the alphabet

[0, n] by lexicographic order.

Lemma 3.4.9. If α < α′ ≤ ω ↑↑ n, then d(α) <lex d(α′).

Proof. For any β > 1, d(0) < d(1) < d(β). Suppose therefore n > 0. As before, note that

the greatest sequence is unbounded, and that σ0 = σ′
0 = 0. Thus if 0 < α < α′ and σ′ is

the greatest sequence of Gα′ , there is a smallest n > 0 such that σn 6= σ′
n, or σn doesn’t

exist whereas σ′
n does. In both cases, the output degree of σn−1 is less in Gα than in Gα′ ,

so d(α) <lex d(α′).

A ultimately periodic pattern can be captured by a monadic formula. This is the goal

of the the following lemma.

Lemma 3.4.10. For each finite or infinite word w over [0, n] and a given ordinal α, there

is a monadic formula ϕw such that Gα |= ϕw iff w = d(α).

Proof. The fact that the degree word is finite or ultimately periodic permits to use a finite

number of variables. We consider the ultimately periodic case, and d(α) = uvω.

To simplify the writing, we consider the following shortcuts :

• τ(p, q) if q is the greatest such that p⋖ q;

• ∂k(p) if the output degree of p is k;

3.4. COVERING GRAPHS 59

• root(X, p) and end(X, p) when p is co-accessible (resp. accessible) from each vertex

of X, with the entire path in X; root(p) looks for a root of the whole graph;

• inline(X) if the subgraph of support X is a finite or infinite path;

• sizek(X) when |X| = k.

All these notations stand for monadic formulæ . For instance, the inline(X) property is

true when there is a root in X and each vertex has output degree 1, and each except the

root has input degree 1.

Now we may write the formula ϕw. For this, we need two finite sets p1 . . . p|u| ∈ U for

the static part, q1 . . . q|v| ∈ V ′ for the beginning of the periodic part and an infinite set V

with V ′ ⊆ V .

ϕw := ∃p1, . . . , p|u|, V, q1, . . . , q|v| ∈ V :

root(p1) ∧

|u|−1
∧

i=1

τ(pi, pi+1) ∧ ∂ui
(pi)

 ∧ τ(p|u|, q1) ∧ ∂u|u|
(p|u|)

∧root(V, q1) ∧

|v|−1
∧

i=1

τ(qi, qi+1) ∧ ∂vi(qi)

 ∧ ∂v|v|(q|v|)

∧inline(V) ∧ ∀q ∈ V, ∃X ⊆ V, q′ ∈ X :

inline(X) ∧ size|v|+1(X) ∧ root(X, q) ∧ end(X, q′)

∧

(
∧

k≤n

∂k(q) ⇒ ∂k(q′)

)

We check that p1 is the general root 0, and q1 the root of V , which is an infinite path.

Formulæ τ and ∂k force the degree of the uv part. For the periodic part, each q ∈ V must

be the root of a finite path Xq ⊆ V of size |v| + 1, which end has the same degree that

q.

The combination of Lemmas 3.4.9 and 3.4.10 yields the following theorem.

Theorem 3.4.11. For any ordinals α 6= α′ smaller than ε0, MTh(Gα) 6= MTh(Gα′).

This result is the central point of this section, because it it opposed to the Theo-

rem 3.4.2 on ordinals : the family of covering graphs has the MSO-discernability property.

One must take care to the fact that here Gα and Gα′ are implicitely supposed to be cov-

ering graphs. Whether MTh(Gα) is unique among all {⋖}-graphs (up to isomorphism) is

open, and is conjectured false.

A whole set of properties could be tested on covering graphs. For instance, the MSO

selection property is known to fail for ordinals greater than ωω [RS08]. It would be

interesting to know if covering graphs can also raise this limit.

60 CHAPTER 3. LINEAR ORDER CONSTRUCTION

As a consequence of Theorem 3.4.11, there is no generic monadic interpretation from an

ordinal greater than ωω to its covering graph. Below this limit, there is an interpretation,

because it is possible to distinguish successive limit ordinals, as in Proposition 3.4.1.

3.4.3 Other properties of covering graphs

We study here other monadic properties of covering graphs and remark that they also

belong to the hierarchy. First of all, by Proposition 3.4.4, there is a monadic interpretation

I such that I(Gα) = α. In fact, we have much more : all ordinals smaller than α are

interpretable in Gα.

Proposition 3.4.12. For any α < β < ε0, there is a MSO interpretation I such that

Gα = I(Gβ).

Proof. Following the definition, we look for an interpretation I = {ψ⋖}. We use again the

fact that the degree word is unique and MSO-definable. Defining the greatest sequence of

Gα provides a MSO marking on Gβ, which bounds the set of vertices. More precisely, let

Ψw(p) be an expression similar to ϕw of Lemma 3.4.10 but where the part τ(pi, pi+1) ∧

δui
(pi) has been replaced by τui

(pi, pi+1) meaning “pi+1 is the uthi such that pi⋖ pi+1”; the

same goes for the qj and for τ(p|u|, q1)∧ δu|u|
(p|u|). Also add the condition that p is a part

of the sequence : (
∨

i p = pi) ∨ p ∈ V . Then Ψw(p) is a marking of the greatest sequence

associated to w. For a given α, I simply adds the condition of co-accessibility to a vertex

marked by Ψd(α).

ψ⋖(p, q) := p
⋖
→ q ∧ ∃r (Ψd(α)(r) ∧ q

⋖∗

→ r)

Then Gα = Gβ ∩ {p
⋖
→ q | ∃r (Ψd(α)(r) ∧ q

⋖∗

→ r)}.

We end this section by noting that covering graphs also are in the hierarchy.

Proposition 3.4.13. If α < ω ↑↑ (n+ 1), then Gα ∈ Graphn.

Proof. For any finite α, Gα is in fact a finite path labeled by ⋖ and is in Graph0. By

Lemma 3.4.14 below iterated n times, every ω...ω
k

is in Graphn when there are n times ω

and 1 < k < ω. Smaller ordinals are captured by a restriction as in Proposition 3.4.12.

We note p
a•
→ q for the longest possible path labeled by a, and p

S
→ q a shortcut for

the successor relation, i.e.

p
a•
→ q := p

a∗
→ q ∧ ¬∃r (q

a
→ r)

p
S
→ q := p

⋖
→ q ∧ ¬∃r(p

⋖
→ r ∧ r

⋖∗

→ q).

3.4. COVERING GRAPHS 61

Now let I = {ϕ⋖} and M(p) respectively be the interpretation and marking

p
⋖̄•#+#̄•S#+#̄⋖#
−−−−−−−−−−−−→ q

ϕ⋖(p, q) := M(p) ∧M(q) ∧ p
⋖̄•#
−−→ q ∨ p

#̄•S#
−−−→ q ∨ p

#̄⋖#
−−−→ q

M(p) := ∃r : root(r) ∧ r
⋖∗#(⋖̄∗#)∗

−−−−−−−→ p

The marking M(p) allows to start anywhere on the root graph, but as soon as a #-arc

has been followed, ⋖-arcs can only be followed backwards. We consider only goals of a

#-arc.

The ϕ⋖(p, q) formula states the relation on these vertices, leaving three choices : either

to follow ⋖-arcs as long as possible (in practice, until a copy of 0) and go down one #-arc;

or on the contrary, to follow # backwards as long as possible, then take the successor and

one #-arc; or just to follow one # backwards, one ⋖ and one #.

Lemma 3.4.14. Gωα = I(Treegraph(Gα)).

Proof. As stated in Corollary 2.2.2, ωα is isomorphic to the set of decreasing sequences of

ordinals smaller than α in lexicographic order. Let T = Treegraph(Gα); the 0 of the root

graph is still the only root, we call it r. Each p ∈ VT marked by M can be mapped into

a decreasing sequence. If r
⋖∗#(⋖̄∗#)∗

−−−−−−−→ p, then there is a finite sequence (pi)i≤k such that

r
⋖∗#
−−→ p0, pi

⋖̄∗#
−−→ pi+1 for i < k and pk = p, with the same properties as in the proof of

Theorem 3.1.2. Each p is thus mapped to an ordinal βp < ωα.

The interpretation ϕ⋖ provides the relation to make this bijection an isomorphism.

Let G = ϕ⋖ ◦ Treegraph(Gα). We distinguish the three cases of the definition of ⋖.

• If p
⋖̄•#
−−→ q, then q is mapped to (γ0, . . . , γk, 0). This is the successor case βp+1 = βq.

• If p
#̄•S#
−−−→ q, then let l be the smallest integer such that γl = γl+1 = · · · = γk.

Then q is mapped to (γ0, . . . , γl−1, γl + 1). This corresponds to the case βp =

β + ωγl .(k − l) ⋖ β + ωγl+1.

• If p
#̄⋖#
−−−→ q, then q 7→ (γ0, . . . , γk−1, γ) with γk ⋖ γ. The marking M ensures that q

is mapped to a decreasing sequence. This is the recursive case, where βp = β +ωγk ,

βp = β + ωγ′
k and γk ⋖ γ′k.

Example 3.4.15. Consider Gω, which is an infinite path. A representation of its treegraph

is given in Figure 3.7 (plain lines for ⋖, dotted lines for #). The white labeled vertices

are the ones marked by M and therefore they are the only ones kept by the interpretation

I. We are allowed to go anywhere on the root Gω structure, but as soon as we follow

we can only go backwards. This reflects the construction of an ordinal smaller than

ωα as a decreasing sequence of ordinals : the first one is any ordinal smaller than α, but

afterwards we only may decrease. N

Covering graphs therefore enjoy the properties of graphs of the hierarchy.

62 CHAPTER 3. LINEAR ORDER CONSTRUCTION

. . .

. . .

. . .

. . .

ω2 + 1

.

. . .

ω2 + ω

. . .

. . .

ω2

. . .

. . .

. . .

ω + 1

.

. . .
ω.2

. . .
ω

. . .

. . .

. . .

2

.

. . .

. . .1

0
⋖

#

Figure 3.7: Exponentiation of the covering graph of ω.
For illustrations of the three cases in the proof of Lemma 3.4.14, we have

ω2 ⋖̄•#
−−−→ ω2 + 1, ω2 + 1

#̄⋖#
−−−→ ω2 + ω, 2

#̄•⋖#
−−−−→ ω.

Corollary 3.4.16. For any α < ε0, the monadic theory of Gα is decidable.

3.4.4 Strictness of covering graphs in the hierarchy

We will prove in Theorem 4.3.8 that ordinals greater than or equal to ε0 do not belong

to the hierarchy. As a consequence, the same is true for the associated covering graphs.

We present here another version of this result. It is based on Theorem 4.5.3 which will

be seen in the next chapter. It is actually a pretext to use logical properties of covering

graphs, in which it is possible to interpret other separating graphs. In particular, for any

function f : N 7→ N, let Kf be the prefix tree defined by the following set of leaves :

Leaves(Kf) = {1i0f(i)}.

Let the exp(m,n, i) operation be defined by

exp(m, 0, i) = i

exp(m,n+ 1, i) = mexp(m,n,i),

Theorem 4.5.3 shows that Kexp(2,n,·) is not in Graphn. We use this fact for the following

result.

Proposition 3.4.17. If ω ↑↑ (n+ 1) ≤ α ≤ ε0, then Gα /∈ Graphn.

The proof is separated in several lemmas. Finding a monadic interpretation from Gα

to Kexp(2,n,·) is enough to prove Gα /∈ Graphn. But in fact, Proposition 3.4.12 already

states that if ω ↑↑ n+ 1 ≤ α ≤ ε0, then there is an interpretation from Gα to Gω↑↑ n+1; so

the interpretation from Gω↑↑ n+1 to Kexp(2,n,·) is enough. We build this interpretation.

First of all, let us select the ordinals which stand in the kth finite subtree. Let Ck
n be

the set of ordinals smaller than exp(ω, n, k) where each coefficient in RCNF is at most 1,

except for the top-most power :

3.4. COVERING GRAPHS 63

• [0, k − 1] ∈ Ck
0 for k > 0,

• 0 ∈ Ck
n,

• if γ0, . . . , γh are all distinct ordinals of Ck
n−1, then ωγ0 + · · · + ωγh ∈ Ck

n.

Example 3.4.18. For instance,

C2
1 = {0, 1, ω, ω + 1}

C3
1 = {0, 1, ω, ω + 1, ω2, ω2 + 1, ω2 + ω, ω2 + ω + 1}

C2
2 = {0, 1, ω, ω + 1, ωω, ωω + 1, ωω + ω, ωω + ω + 1,

ωω+1, ωω+1 + 1, ωω+1, + ω, ωω+1 + ω + 1,

ωω+1 + ωω, ωω+1 + ωω + 1, ωω+1 + ωω + ω, ωω+1 + ωω + ω + 1}.

N

The following lemma is only a matter of cardinality of powersets.

Lemma 3.4.19. The cardinality of the set Ck
n is exp(2, n, k).

We abusively note α + Ck
n for the set {α + γ | γ ∈ Ck

n}. The main difficulty of this

section is to define this set with MSO logic.

Lemma 3.4.20. There is a monadic formula ϕ(x, y) such that for all n > 0, ϕ(exp(ω, n, k), y)

is satisfied by x ∈ exp(ω, n, k) + Ck
n in the covering graph of an ordinal greater than

exp(ω, n, k).2.

Proof. For each ordinal α, we define a sequence Sα of ordinals. We note τ(α) the greatest

β such that α⋖ β.

• α ∈ Sα, α + 1 ∈ Sα,

• if λ ∈ Sα and α < λ⋖γ, then γ ∈ Sα unless ∃λ′ ≤ λ such that λ′ ∈ Sα and λ′⋖τ(γ).

There is a monadic formula ϕ(α, y) which is satisfied exactly by y ∈ Sα. The rest of

the proof aims at showing that the set Sexp(ω,n,k) is exp(ω, n, k)+Ck
n in the covering graph

of an ordinal greater than exp(ω, n, k).ω. As a starting point, note that if λ ∈ Sα, then

there is a path of vertices of Sα (labeled by ⋖) from α to λ.

Let α = exp(ω, n, k). First of all, τ(α.2) = α.ω and α ⋖ α.ω so α.2 /∈ Sα. By

Proposition 3.4.5, any path from α to an ordinal of [α.2, ωexp(ω,n−1,k)+1) goes through α.2,

which is not in Sα. Also, paths from α to ordinals of [α.ω, exp(ω, n, k + 1)) necessarily

go through α.ω which is not in Sα because α ⋖ α.ω, so Sα ∩ [α.2, exp(ω, n, k + 1)) = ∅.

Eventually the fundamental sequence of exp(ω, n, k+1) is (α, exp(ω, n−1, ω.2), exp(ω, n−

1, ω.3), . . .), all of which but α are not in Sα. To sum up, Sα cannot contain ordinals

greater or equal to α.2.

64 CHAPTER 3. LINEAR ORDER CONSTRUCTION

. . .α.ωα.2α

Let λ ∈ [α, α.2[, λ = β̂ + ωγ.c + η̂ in RCNF with c > 1 (recall that the notation β̂

is used to note the RCNF of β). By Lemma 3.4.5 again, any path from α to α + λ goes

through

λ′ = β̂ + ωγ

and λ′′ = β̂ + ωγ.c

α.2β + ωγ+1λλ′′λ′α

But then λ′ ⋖ β + ωγ+1 = τ(λ′′) when c > 1, so λ′′ /∈ Sα.

Recursively, we suppose that any path from exp(ω, n−1, k) to γ /∈ Ck
n−1 with exp(ω, n−

1, k) ≤ γ < exp(ω, n − 1, k).2 goes through γ′ and γ′′, with γ′ ⋖ τ(γ′′). Then if λ =

β̂ + ωγ + η̂, define

λ′ = β̂ + ωγ′

and λ′′ = β̂ + ωγ′′

which propagates the property to level n. All this proves that if λ = α + ωγ0 + · · · + ωγj

in CNF and λ ∈ Sα, then all γi are distinct and are in Ck
n−1. Therefore Sα ⊆ α + Ck

n.

For the other side, let λ ∈ α + Ck
n. If λ = α the case is done, otherwise

λ = α + ωγ0 + · · · + ωγh

with each γi ∈ Ck
n−1.

We have to prove that ∃λ′ ⋖ λ in α + Ck
n. By induction on n with α = 0, for

γh > 0, ∃γ′h ⋖ γh in Ck
n−1, so λ′ = α + ωγ0 + · · · + ωγ′

h answers to the request (since

the γi are decreasing, γ′h is still distinct from the γi,i < h). If γh = 0, then we take

λ′ = α + ωγ0 + · · · + ωγh−1 .

If not, now τ(λ) = α + ωγ0 + · · · + ωτ(γh). If λ′ ∈ Sα is such that λ′ ⋖ τ(λ), then

λ′ = α + ωγ0 + · · · + ωγh−1 + ωγ for some γ ∈ γh ∩ C
k
n−1, but then by induction we never

have γ ⋖ τ(γh), which is a contradiction.

Lemma 3.4.21. The greatest sequence of ω ↑↑ (n+ 1) is ultimately (exp(ω, n, k))k≥1.

Proof. This is a corollary of the proof of Lemma 3.4.8, since as in the previous proof

exp(ω, n, k) ⋖ exp(ω, n, k + 1).

We are now ready to prove the main result of this section.

Proof of Prop. 3.4.17. We concatenate the previous lemmas. Recall that Kexp(2,n,·) is the

prefix tree of leaves {1k0exp(2,n,k)}.

3.4. COVERING GRAPHS 65

We have seen in Prop. 3.4.12 that the greatest sequence of α in selectable in Gα.

Since we work in Gω↑↑ n+1, by Lemma 3.4.21 we can restrict ourselves to the sequence

(exp(ω, n, k))k≥1, which will be the “horizontal path” of Kexp(2,n,·). Let ϕ1(x, x
′) be the

formula satisfied if x, x′ are part of this sequence and x⋖ x′.

Let ϕ(x, y) be as defined by Lemma 3.4.20. Note that ϕ does not depend on k. If

x = exp(ω, n, k) for some k, then the set {y | ϕ(x, y)} has cardinal exp(2, n, k). Moreover,

this set is already ordered by ⋖∗, so we may find a formula ϕ0(y, y
′) restricted to set and

satisfied by (y, y′ such that y⋖∗ y′ and there is no z between y and y′. We have therefore

the “vertical path” hanging from exp(ω, n, k) and of length exp(2, n, k).

The interpretation In = {ϕ0, ϕ1} maps therefore Gω↑↑ n+1 into Kexp(2,n,·). In fact, for

any ω ↑↑ n+ 1 ≤ α < ε0, In maps Gα into Kexp(2,n,·).

3.4.5 The case of Gε0

The covering graph Gε0 can be defined without changing the definition of fundamental

sequence. It has unbounded degree, but has still the property of Proposition 3.4.12 : it can

give any smaller ordinal via monadic interpretation. This yields the following corollary of

Proposition 3.4.17.

Corollary 3.4.22. Gε0 does not belong to the pushdown hierarchy.

It would be interesting to know more about the logical properties of this graph. This

question is indeed tightly linked to the notion of a “limit operation” preserving decidability

of MSO-theory. Some first ideas appear in [Tho08].

Conjecture 3.4.23. MTh(Gε0) is decidable.

66 CHAPTER 3. LINEAR ORDER CONSTRUCTION

Chapter 4

The structure of tree frontiers

The first question one may ask after Theorem 3.1.2 is the converse : if any ordinal smaller

than ω ↑↑ n+ 1 can be constructed at level n, is this classification is strict or not? For a

start, can ωω be in Graph1? For this first question, it is shown in [Del04, KRS05] that ωω

cannot be a (word-)automatic ordinal, whereas structures in Graph1 are. On the other

hand, one can consider the orders composed by frontier of trees, as in [Tho86, Cou78]. At

the second level, [BÉ10] considers frontiers of algebraic trees to find out that such ordinals

are smaller than ωωω

. The same paper conjectures that frontiers of trees in the hierarchy

yield successive ω ↑↑ n.

In order to follow this presentation, we first need to reduce ourselves to frontiers.

Hence a first result of this chapter is that orders of Graphn are exactly frontiers of Treen.

By the result of [BÉ10], ordinals of Graph2 are smaller than ωωω

. In this chapter we

work out apply a recursive argument and get the expected generalization for every level,

in Theorem 4.3.8. In Section 4.4 we remark that the same result can be extended to

general scattered orders, measured by Hausdorff rank. In parallel we study the related

Cantor-Bendixson rank of these trees.

To obtain these results, Section 4.1 presents a particular version of monadic interpre-

tation on deterministic trees, in the form of a automaton “walking” on the tree.

4.1 Tree-walking automaton

It is well-known that on deterministic trees MSO logic is captured by parity tree automata

[Rab69]. This equivalence can be used to characterize the binary relations defined by

MSO formulæ on such trees using a finite state automaton running on the tree. The

tree-walking automata is not new [AU71], but they have mostly been used on finite trees

[BC08, BC06b]; see [Boj08] for a survey. Here, we use these automata on infinite trees as

a “weak form” of monadic interpretations.

Definition. A non-deterministic tree-walking automaton or simply TWA working on de-

terministic trees over Σ colored by Γ is a tuple A = (Q, q0, F,∆) where Q is the finite

67

68 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

set of states, q0 ∈ Q is the initial state, F is the set of final states and ∆ is the set of

transitions. A transition is a tuple (p, c, q, a) with

• p ∈ Q is the current state,

• c ∈ Γ is the color of the current node,

• q ∈ Q is the next state,

• a ∈ Σ ∪ {ε, ↑} is the action to perform. Intuitively ε corresponds to “staying in the

current node”, ↑ to “going to the parent node” and d ∈ Σ corresponds to “going to

the d-son”.

A run of the automaton on a tree t is a sequence (q0, u0) . . . (qn, un) over Q×Dom(t) where

qn ∈ F and for all i < n, if ui+1 = uiai with ai ∈ Σ ∪ {ε} then (pi, t(ui), pi+1, ai) ∈ ∆,

otherwise if ui ∈ ui+1Σ then (pi, t(ui), pi+1, ↑) ∈ ∆. We say that A accepts the pair of

nodes (u0, un).

Remark 4.1.1. Note that the automaton is a priori not deterministic; [BC06b] shows that

a TWA cannot generally be determinized, even when the tree is finite and the only run

considered is from the root to the root. �

We have restated in Proposition 2.4.3 that a monadic interpretation on a deterministic

tree can be encoded in a rational inverse mapping up to monadic marking. But the actual

proof of this definition is even stronger, as it constraints the rational mapping to the

shortest path between two vertices. This leads to the following rephrasing of this result.

A run is said to be simple if the sequence forms a simple path, i.e. each node is visited

at most once.

Proposition 4.1.2 ([Car06, Prop. 3.2.1]). For any deterministic tree t and any MSO-

formula ϕ(x, y), there exists an MSO-coloring M adding colors and a TWA A such that

t |= ϕ[u, v] if and only if A accepts (u, v) on M(t). In this case there exists a simple run

from u to v.

A TWA is therefore a “weak form” of a monadic interpretation. It means that up to a

recoloring, the binary formula can be restricted to the smaller connex set containing the

interpretations of the two free variables.

Remark 4.1.3. Conversely, for any simple TWA and coloring M, there is a MSO formula

ϕ such that (u, v) is accepted in M(t) iff t |= ϕ[u, v] where ϕ only works on the simple

path between u and v. In particular, if t′ is the smallest subtree containing u and v, then

t′ |= ϕ[u, v].

This can be directly seen by encoding the automaton in a logical formula. The formula

defines two set U and V which are paths respectively from u ∧ v to u and from u ∧ v to

v. Then each step of the automaton can be reproduced backward on U and forward on

4.2. FROM GRAPHS TO FRONTIERS 69

V . More formally, there have to be sets Xq0 , . . . , Xq|Q|
representing states, with u ∈ Xq0

and v ∈
⋃

q∈F Xq. For the U part, assuming we know that U is a path,

∀x ∈ U ∩Xp \ {u ∧ v}, ∃y ∈ U : y → x ∧
∨

q∈Q

y ∈ Xq ⇒
∨

δ(p,c)=(q,↑)

(c, x)

and for the V part,

∀x ∈ V ∩Xp \ {v}, ∃y ∈ V :
∨

a∈Σ

x
a
→ y ∧

∨

q∈Q

y ∈ Xq ⇒
∨

δ(p,c)=(q,a)

(c, x)

�

Remark 4.1.4. The equivalence between a MSO formula and recognizability by TWA

allows us to define another kind of interpretation as in Section 2.4.1. The TWA-inter-

pretation on a deterministic Σ-tree is a tuple (M, (Aa)a∈Γ) where each Aa is a TWA on

deterministic Σ-trees. The result of this interpretation on a Σ-tree t is the graph

{x
a
→ y | a ∈ Γ,Aa accepts (x, y) in M(t)}.

It follows by Proposition 4.1.2 that graphs of Graphn are exactly TWA-interpretations of

deterministic trees of Treen. �

4.2 From graphs to frontiers

In this section, we consider the linear orders defined by frontiers of deterministic trees, i.e.

the leaves of a deterministic tree under lexicographic ordering as defined in Section 2.1.4.

Example 2.4.1 shows that the frontier of a (colored) deterministic tree in t can be defined

in t using an MSO-interpretation. Hence the frontiers of the (resp. colored) deterministic

trees in Treen are (resp. colored) linear orders in Graphn. This section proves that the

converse inclusion holds : any order of Graphn can be seen as a frontier of a deterministic

tree in Treen. This is Theorem 4.2.6.

As a starting point, it is not difficult to restrict to some kind of normalized trees.

Proposition 4.2.1. For any det. t, there is a full binary prefix tree t′ with Fr(t) = Fr(t′).

Moreover, if t ∈ Treen, then t
′ can be chosen in Treen.

Proof. If the order is of type 1, a tree reduced to a root is enough. Suppose otherwise. The

first step is that we may only consider prefix trees by pruning. For the binary property, let

t be prefix on a ranked alphabet Σ and let τ : Σ → {0, 1}∗ a prefix binary mapping. For

any I ⊆ Σ, let CI be the finite tree of leaves {τ(a) | a ∈ I}. We replace each node x which

is not a leaf by C{a|xa∈Dom(t)}, of root rx, so that rxa = rx.τ(a) whenever xa ∈ Dom(t).

70 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

The resulting tree is binary and has yields the same order. Finally, to get a full tree,

we contract every path 1(1 + 0)∗ (resp. 0(1 + 0)∗)) without branching into 1-arcs (resp.

0-arcs).

To perform these operations within Treen, we work on the folded graph. The result is

obvious for finite trees, so we will suppose that n > 0. Let t ∈ Treen. We first use a MSO-

marking µ to mark the prefix closure of leaves. Let G ∈ Graphn−1, r ∈ VG such that µ(t) =

Unf(G, r). The restriction to marked vertices accessible from r is an MSO-interpretation.

Next, the operation substituting x with C
{a|∃y,x

a−→
G

y}
is a MSO-transduction. Finally, the

contraction of simple paths is again a MSO-interpretation. So all these operations give a

graph still in Graphn−1, which unfolding yields the same frontier than t.

Finite orders are not a problem for us, so we start with n ≥ 1, a finite set of colors

Γ together with colored linear order L : 〈D,<L 〉 7→ Γ in Graphn. This order is the

MSO-interpretation I of a deterministic tree t in Treen. The following property recalls

that we can suppose that D is exactly Leaves(t).

Proposition 4.2.2. For any interpretation I and deterministic tree t ∈ Treen, there is

an interpretation I ′ and a det. binary prefix tree t′ such that I(t) ≃ I ′(t′) and vertices of

I ′(t′) are exactly leaves of t′.

Proof. In a deterministic t, we mark each vertex x considered by I. In the folded graph

G such that Unf(G, r) = t, a monadic transduction T adds a #-arc from these vertices

to a fresh vertex. It is then easy to adapt I to pick leaves of Unf(T (G), r). By marking

leaves targets of #-arcs and using Proposition 4.2.1, we get the required result.

Using Propositions 2.5.4, 4.1.2 and 4.2.2, we have that there exists a deterministic

prefix tree t ∈ Treen colored by Γ′, a TWA A and a projection µ : Γ′ 7→ Γ such that D

is isomorphic to the set of leaves of t, for all u, v ∈ D, u <L v iff A accepts (u, v) with a

simple path and for all u ∈ D, L(u) = µ(t(u)).

The construction of this section rearranges the leaves of t into a new deterministic tree

s(t) so that lexicographic order on s(t) matches <L on D. For any leaf u ∈ D and for

v ⊏ u ∈ D, we consider sequences u0 >L u1 >L . . . >L uk of leaves starting with u0 = u

and such that for i ∈ [0, k−1], ui∧ui+1 = v. Intuitively, the ui alternate from one subtree

of v to the other. Using a pumping argument on A, we can show that there exists n0 ≥ 0

such that for every leaf u ∈ D and all node v ⊏ u, these sequences have a length less that

n0. We may then define s(u, v) as the maximal length of such a sequence.

Lemma 4.2.3. There exists n0 ≥ 0 such that for any leaf x of t and for all y ⊏ x,

s(x, y) ≤ n0.

Proof. Suppose that s is unbounded : for all n, there is x and y ⊏ x such that there is

a decreasing sequence seq(x, y) = (x0, x1, . . . , xn, . . .), possibly infinite. For each xi+1 in

this sequence, there is a simple run of A from xi+1 to xi containing (qi, y), y being their

4.2. FROM GRAPHS TO FRONTIERS 71

largest common prefix. If n > 2|Q|, there exist i < j such that q2i = q2j. This means

there are simple runs

(q0, x2i+1).ui.(q2i, y).vi.(q
′
i, x2i) and

(q0, x2j+1).uj.(q2i, y).vj.(q
′
j, x2j)

for some ui, vi, uj, vj ∈ (Q× Dom(t))∗. Then the sequence

(q0, x2i+1).ui.(q2i, y).vj.(q
′
j, x2j)

is also a run from x2i+1 to x2j, so x2i+1 < x2j. This is contradictory with the fact that

the sequence is decreasing.

To each node x, we associate the finite sequence ~s(x) of length |x| of elements in [0, n0]

defined by s(x, x0), . . . , s(x, x|x|−1), where for all k ∈ [0, |x| − 1], xk denotes the prefix of

x of length k.

For an illustration, consider the (uncolored) finite tree on left of Figure 4.1, where

order on leaves is given along with the sequence ~s. For instance, the leaf number 3 has

maximal sequences (3, 0), (3, 2, 1) and (3, 1), so ~s(3) = (2, 3, 2).

The next lemma shows a key property : ~s is a morphism from <L to <lex.

Lemma 4.2.4. For all x, y leaves of t, x <L y iff ~s(x) <lex ~s(y) and ~s(x) 6⊏ ~s(y).

Proof. Let x < Ly and let z be the largest prefix of x and y, with x 6= z 6= y since x and

y are leaves. For each z′ ⊏ z, there is decreasing sequence seq(x, z′) = (x, x1, . . . , xs(x,z′)),

so there is a decreasing sequence (y, x1, . . . , xs(x,z′)) because the largest prefix of y and x1

is z′ and x1 <L x <L y. Thus s(x, z′) ≤ s(y, z′).

For z, the sequence seq(x, z) = (x, x1, . . . , xs(x,z)) can be extended into a decreasing

sequence (y, x, x1, . . . , xs(x,z)), which means s(x, z) < s(y, z) and ~s(x) <lex ~s(y) with

~s(x) 6⊏ ~s(y). The other direction is straightforward.

Consider the tree s(t) over the finite alphabet [0, n0] obtained by taking the prefix-

closure of {~s(u) | u leaf of t)}. The frontier of s(t) is isomorphic to (D,<L). To ensure

that colored frontier of s(t) is isomorphic to L, we add the appropriate color to the leaves

of s(t). In practice, Dom(s(t)) := {y | ∃x ∈ Leaves(t)∧ y ⊑ ~s(x)} and s(t)(x) = t(x) for a

leaf x. A surprising result is that this tree can be built in the same class than the original

tree.

Lemma 4.2.5. If t ∈ Treen, then s(t) ∈ Treen.

Proof. Let G ∈ Graphn−1 and r ∈ VG such that Unf(G, r) = t and G is accessible from

r. There is a MSO-interpretation I replacing each arc labeled by a ∈ {0, 1} by n0 + 1

arcs labeled by (i, a)0≤i≤n0
. Let t′ = Unf(I(G), r). In particular, for any i, t′ restricted to

((i, 0) + (i, 1))∗ is isomorphic to t by the projection τ((i, a)) = a.

72 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

0
(1,1)

4
(3,2)

3
(2,3,2)

1
(2,1,1)

2
(2,2) 0

1

1

1
2

3

2

1 2 3

4

2

1
2

3

Figure 4.1: Order in a finite tree t and “arranged” tree s(t).

There is a MSO-formula ψ(x, z) satisfied by nodes x, z such that if s(τ(x), τ(z)) = i

then z.(i, a) ⊑ x for some a ∈ Σ and i < n0, where n0 is defined in Lemma 4.2.3. Indeed,

by Remark 4.1.3 the pairs of leaves of t accepted by A are recognizable by a MSO-formula.

So the formula ψ finds two sets X0, X1 which elements have prefix respectively z.(i, 0) and

z.(i, 1), and x ∈ Xa. The formula states that for each y (except one) in one set there is

a y′ in the other such that there is a simple run of A between y and y′ up to projection

by τ . Eventually ψ checks that |X0 ∪ X1| = i, and that there is no such sets with

|X0 ∪X1| = i+ 1.

There is therefore a formula ϕ(x) satisfied by nodes such that ψ(x, z) is true for each

prefix z of x. Let t′′ be the tree restricted to the prefix closure of vertices satisfying ψ(x) :

t′′ ∈ Treen.

By Lemma 4.2.4, if ψ(x, z) and ψ(y, z), then either x and y have the same prefix z,

or s(τ(x), τ(z)) 6= s(τ(y), τ(z)); so if z.(i, a) ∈ Dom(t′′), then z.(i, 1 − a) /∈ Dom(t′′).

This means projecting arcs labels on their first component does not change the tree up

to isomorphism. The resulting tree is s(t).

It remains to bind the lemmas and Proposition 4.2.1 to get the main result.

Theorem 4.2.6. Any colored linear order of Graphn greater than 1 is the frontier of a

full prefix tree in Treen.

Proof. By Proposition 4.1.2, for each linear order L in Graphnthere is a det. binary tree

t ∈ Treen, an automaton A and a recoloring µ such that µ(A(t)) = L. By Proposi-

tion 4.2.2, A only works on leaves of t.

The Lemmas 4.2.4 and 4.2.5 prove that there is a tree s(t) on a ranked alphabet such

that µ(Fr(s(t))) ≃ L. By Proposition 2.5.4, the recoloring can be applied to s(t) without

going out of Treen. We can eventually apply Proposition 4.2.1 to get a full binary prefix

tree.

A particular case of this Theorem is the particular case of ω-words. We will use this

result through Chapter 5.

4.3. ORDINALS 73

Corollary 4.2.7. An ω-word of Graphn is the frontier of a full prefix tree in Treen with

exactly one infinite branch 1ω.

4.3 Ordinals

In this section, we characterize the ordinals in the pushdown hierarchy. For more sim-

plicity, orders of this section and of the following are uncolored, but the same applies to

colored orders. In Section 3.1, ordinals below ω ↑↑ (n + 1) were shown to be in Graphn;

here, we show that they are the only possible ordinals of Graphn.

By Theorem 4.2.6, we only need to consider the frontier of prefix full binary trees. It

is easy to see that frontier of a full binary prefix tree t is an ordinal if and only if t does

not have an infinite branch with infinitely many 0’s. We call such trees well-ordered trees .

Proposition 4.3.1. A full prefix binary tree has an ordinal frontier if and only if it is a

well-ordered tree.

Proof. Let t be a (full binary prefix) well-ordered tree and suppose there is a infinite

strictly decreasing sequence of leaves. Let t′ be the restriction to prefixes of this sequence.

Now t′ is not full but its branches still have finitely many 0’s. If t′ had two distinct infinite

branches, the infinitely many leaves supported by the largest would be larger than all the

ones on the smallest, and they would fill the sequence. So t′ has only one infinite branch,

which has finitely many 0.

From the leaves of t′, we can select a (decreasing) subsequence with increasing largest

prefixes on the branch. Let uu′ be an element of this subsequence with largest prefix on

the branch u. For sufficiently large u, u has the maximum number of 0, so that the next

element of the subsequence has the form u1kv for some v. Since t is deterministic, u′

begins with 0, so uu′ <lex u1kv, and the sequence does not decrease.

Conversely, take a tree where one branch has infinitely many 0’s. There is an infinite

sequence (ui)i such that for each i, ui0 is in this branch; so ui1 is not. Since the tree is

prefix, there is a leaf vi such that ui1 ⊏ vi. Then the sequence (vi)i is strictly decreasing.

A non-full tree can yield an ordinal and still have a branch with infinitely many 0’s,

as Figure 4.2 shows. Nonetheless the Proposition 2.2.11 stands.

Let t is a well-ordered tree of Treen. To characterize t, we are going to look for an order

α of the previous level of the hierarchy and show that t is at most ωα. The natural first

step is to consider the folded graph of t in the previous level. For n ≥ 1, let G ∈ Graphn−1

and r ∈ VG such that t = Unf(G, r), and such that each vertex of VG is accessible from

r. Now we would like to find a well-order in G. Since Section 4.2, we know that it is

equivalent to find a tree; so we build a well-ordered “spanning tree” into G, and we show

that arcs which not in this tree cannot add too much complexity.

We start with this simple result.

74 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Figure 4.2: Non-full tree of frontier ω having a branch with infinitely many 0’s.

Lemma 4.3.2. For each x ∈ VG, ℓ(x) = min<lex
{w | r

w
−→
G

x} exists and r
ℓ(x)
−−→ x is a

simple path.

Proof. It is a direct consequence of Proposition 2.2.11. Indeed, the set of paths from r

to x is a subset of Dom(t) and has therefore a minimum element ℓ(x). If r
ℓ(x)
−−→
G

x is not

a simple path, then there are ℓ(x) = u1u2u3 with nonempty u2, u3 and a vertex y ∈ VG

such that r
u1−→ y

u2−→ y
u3−→ x. We may suppose u1 is such that |u1| is maximal and r

u1−→ y

is a simple path. Since G is deterministic,

• either u2 begins with 0 and u3 with 1, but then u1u2u2u3 <lex ℓ(x) is a path too;

• or the converse, but u1u3 <lex ℓ(x).

So u2 must be empty, and r
ℓ(x)
−−→ x is a simple path.

Let T be the subgraph of G defined by

T = {x
a
→ y | x

a
−→
G
y ∧ ℓ(y) = ℓ(x) · a}.

T is the tree of shortest paths from r, and therefore a “spanning tree” as required.

Lemma 4.3.3. T is a tree where each branch has finitely many 0, and T ∈ Graphn−1.

Proof. For each x ∈ VG, if r
w1−→
T

x and r
w2−→
T

x, then min<lex
{w | r

w
−→ p} ≥ w1 and

min<lex
{w | r

w
−→ x} ≥ w2, so w1 = w2. Since G is deterministic, so is T and thus T is a

det. tree. Therefore T is a subtree of t and its branches have finitely many 0.

There is an interpretation I = {ϕ0, ϕ1} building I(G) = T . Indeed, it is possible to

define subsets containing the smallest path from r to a given x, and to select the smallest

such subset by inclusion. Then arcs are selected to build a path.

Note that T is not a well-ordered tree, because it is not necessarily a prefix tree. This

property will be fixed later on by “completing” the tree.

Since T is a tree, we may take its tree presentation, so that its vertex set is the set of

paths from the root, and thus r = ε. This is also the set of vertices of G.

The following lemma states a technical property on arcs of G which are not in T .

4.3. ORDINALS 75

Lemma 4.3.4. For each x
a
→ y ∈ G \ T ,

• if x <lex y then x ⊏ y;

• if a = 0, then y <lex x and x⊥y.

Proof. For a ∈ {0, 1}, if x
a
→ q ∈ G\T , x <lex y and x⊥y, then the path r

xa
−→ y is smaller

than r
y
−→ y, which is contradictory with the definition of T .

Let x
0
→ y ∈ G \ T . If y ⊑ x, then there is a loop in G containing a 0, and thus a

branch with infinitely many 0 in t. If x ⊏ y, then x1 ⊑ y and therefore the path r
x0
−→ y

is smaller than the path r
y
−→ y. In conclusion, y <lex x and q⊥p.

As hinted above, we now tranform T to get a prefix tree. Let T̄ be the tree such that

T is a subtree of T̄ and whenever x
a
−→
G

y, then xa ∈ T̄ . It easy to see that T̄ can be

transducted from G.

Lemma 4.3.5. T̄ is a well-ordered tree of Graphn.

Proof. Since Comp only add leaves to T , each infinite branch of T̄ is also in T so it may

have finitely many 0. Since G is a full binary graph (each vertex has arity 0 or 2), then

each vertex of T̄ has also arity 0 or 2. The complete binary tree is not a subtree of T̄ , so

each subtree of T̄ has at least one leaf; T̄ is prefix and therefore T̄ is a well-ordered tree.

Since Graphn is closed by transduction, T̄ ∈ Graphn.

As a consequence, by Proposition 4.3.1, Fr(T̄) is an ordinal.

Example 4.3.6. Figure 4.3 is a example with a finite graph G and Fr(T̄) = 6. For each

leaf w of Unf(G, r), σ(w) ∈ (ε+ 4∗3 + 5)2∗(0 + 1). So we have

Fr(Unf(G, r)) = ω + ω2 + ω = ω2 + ω ≤ ω6. N

The previous example leads to the central lemma of this section, which is the recursion

mechanism.

Lemma 4.3.7. Fr(t) ≤ ωFr(T̄).

Proof. Let α = Fr(T̄). Recall that VG = Dom(T) ⊆ Dom(T̄), i.e. r = ε and r
w
−→
G

w.

There is a natural isomorphism τ from leaves of T̄ to α. As described in Corollary 2.2.2

and used throughout in Chapter 3, we are going to build a injective morphism from the

leaves of t to the set of decreasing sequences of ordinals smaller than α in lexicographic

order.

Let w be a leaf of t. There is a path r
w
−→ p in G where p is a leaf of G. Let (pi)0≤i≤|w|

be the nodes of this path, i.e. r
wi−→
G

pi where wi ⊑ w, |wi| = i for 0 ≤ i ≤ |w|. Let ai

76 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

rr

2 3 4

5

1

0

...

...

...

......

Figure 4.3: A finite graph G, “spanning tree” T , completed tree T̄ , and unfolding.

be the letter such that wi+1 = wi.ai and a|w| = ε. We build the following finite sequence

σ(w) associated to w :

σ(w−1) = ε (by convention)

for 0 ≤ i < |w| − 1,

σ(wi) = σ(wi−1) if pi+1 = pi.ai, i.e. pi
ai→ pi+1 ∈ T

σ(wi) = σ(wi−1), τ(pi.ai) if pi
ai→ pi+1 /∈ T

σ(w) = σ(w|w|−1), τ(p|w|)

We prove that σ(w) is decreasing. Suppose σ(w) has at least two elements. Let i < j

be the indexes of two consecutive elements, i.e. σ(wj) = σ(wi−1) · τ(pi.ai) · τ(pj.aj). Then

pi
ai→ pi+1 ∈ G \ T . By Lemma 4.3.4, either pi ≥lex pi+1 or (pi <lex pi+1 and pi ⊏ pi+1).

By construction, pi+1 ⊑ pj so pj.aj is in the subtree of T̄ of root pi+1. Several cases arise.

1. Either pi = pi+1. Then ai = 1 and pi.1 is the largest leaf of the the subtree of T̄ of

root pi+1, so pi.1 ≥lex pj.aj.

2. Or pi+1 ⊏ pi. Then again ai = 1, and pi = pi+11
k for some k, because a cycle

in G cannot contain any 0. So pi.1 is the largest of the subtree of root pi+1 and

pi.1 ≥lex pj.aj.

4.3. ORDINALS 77

3. Or pi >lex pi+1 and pi+1⊥pi, then pi >lex pj and pi.ai >lex pj.aj.

4. Or pi ⊏ pi+1. Then ai = 1. Since G is deterministic, pi.0 ⊏ pi+1 ⊏ pj. So

pi.1 >lex pj.aj.

These cases are summed up in the following figure. Arcs 1, 2 and 4 are necessarily labeled

by 1, whereas arc 3 may be labeled by 0 or 1.

pi 1

2

3

4

To sum up, two successive elements τ(pi.ai), τ(pj.aj) of σ(w) are such that pi.1 ≥lex

pj.aj and so τ(pi.ai) > τ(pj.aj). The sequence σ(w) is decreasing.

Let w < v be two leaves of t of largest common prefix u. Let i < |u| be the largest

such that (pi.ai) is in σ(w) : then σ(wi) = σ(vi). Let jw, jv ≥ |u| be the smallest such

that (pjw .ajw) ∈ σ(w) (resp. (pjv .ajv) ∈ σ(v)). Then pjw .ajw = pi+1.uw with u.uw ⊑ w.0

(resp. pjv .ajv = pi+1.uv with u.uv ⊑ v.0) and uw < uv, so pjw .ajw <lex pjv .ajv . This shows

that σ is a injective morphism.

We have thus proved that σ is an injective morphism from leaves of t to decreasing

sequences of ordinals of α by lexicographic order. So Fr(t) ≤ ωFr(T̄).

From here, the main theorem is obtained by induction, since finite ordinals are in

Graph0.

Theorem 4.3.8. For n ≥ 1 and any ordinal α, α ∈ Graphn if and only if α < ω ↑↑ (n+1).

This results give an alternative proof of the strictness of the pushdown hierarchy and

shows that ε0 does not belong to this hierarchy.

Another direct corollary concerns the interpretation of an ordinal into another. For

instance, for any α < ωω, it is possible to find an interpretation I such that α = I(ω).

As a corollary of the previous theorem, we cannot interpret more1. At any level, if

β < ω ↑↑ n ≤ α then α cannot be interpreted in β. Interestingly, the same property

applies to covering graphs. It could be interesting to examine precisely the orbit of a

given ordinal under monadic interpretations. Theorem 3.4.2 hints that this orbit must

actually be very small, i.e. if α has ω-head β, then the orbit would be of the form

ωω ∪ {β + δ | δ < ωω}; for covering graphs, the orbit is larger.

1This result was already obtained in [BNR+10] in an stronger form : it remains true even when ω is
colored with arbitrary predicates.

78 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

4.4 Scattered linear orders

In Section 3.2, we have proved that any power by α < ω ↑↑ n of ζ is actually in Graphn. In

the other way around, we consider the scattered linear orders in the pushdown hierarchy.

Using the result of the previous section, we characterize the Hausdorff rank of scattered

orderings of the hierarchy : this is Theorem 4.4.12.

To reach this result, we begin with a general proposition on trees have a scattered

frontier. Then we notice that we may recursively switch subtrees of such a tree to obtain

an ordinal frontier. This does not change the mesure based on the number of infinite

branches in the tree, called Cantor-Bendixson rank of the tree. It is then sufficient to

prove that this CB-rank is tightly related to the Hausdorff rank, which allows us to

conclude.

4.4.1 Trees with scattered frontiers

The countable scattered orders are those which are frontiers of trees with only countably

many infinite branches also called tame trees . The following proposition is part of the

folklore.

Proposition 4.4.1. Let t be a deterministic prefix binary tree, the following propositions

are equivalent:

1. Fr(t) is a scattered linear order,

2. t has countably many infinite branches,

3. t does not contain any branching subset (i.e. a non-empty subset U ⊆ Dom(t) such

that for all u ∈ U , u0{0, 1}∗ ∩ U 6= ∅ and u1{0, 1}∗ ∩ U 6= ∅).

Proof. We will show that 1 ⇒ 3 ⇒ 2 ⇒ 1.

1 ⇒ 3. We prove this implication by contraposition. Assume that t contains a branching

subset U . There exists a mapping f : U × {0, 1} 7→ U s.t. for all u ∈ U and i ∈ {0, 1},

f(u, i) belongs to u · i · {0, 1}∗. Furthermore, as t is prefix, for each u there is a leaf v with

u ⊏ v.

For any w ∈ {0, 1}∗, we define the nodes uw and vw. Let uε be any node of U . For any

uw, we set uw0 = f(f(u, 0), 0), uw1 = f(u, 1) and vw a leaf such that f(f(u, 0), 1) ⊏ vw.

Then vw <lex vw′ ⇐⇒ (w⊥w′ ∧ w <lex w
′) ∨ (w′ ⊑ w0) ∨ (w1 ⊑ w′). This order is dense

on {0, 1}∗, so (vw){w∈{0,1}∗} is a dense suborder of Fr(t).

vw

f(f(uw, 0), 0) f(f(uw, 0), 1)

f(uw, 0) f(uw, 1)

uw

4.4. SCATTERED LINEAR ORDERS 79

2 ⇒ 1 In the proof of Thm. 7.7 of [KRS05], it is shown that if t has countably many

branches then the Kleene-Brouwer ordering KB(t) is scattered (see Section 2.2.3). As

Fr(t) � KB(t), we can conclude.

3 ⇒ 2 Assume that t has uncountably many infinite branches. Consider the set of U of

nodes of t such that there are uncountably many infinite branches going through x0 and

through x1. We prove that if there are no point of U below some node u of t then there

are only countably many infinite branches going through u. Indeed, suppose that u bears

infinitely many branches, we could construct a sequence of consecutive nodes (ui)i∈N of

t starting with u such that for all i ∈ N, ui+1 is a son of ui and its other son vi+1 (if it

exists) has only countably many infinite branches going through it. The set of branches

going through u is equal to the following countable union:

• the unique branch going through the ui’s,

• the set of infinite branches going through the v′is for i ≥ 1.

A countable union of countable set is again countable. So if x ∈ U , then x0(0+1)∗∩U 6= ∅

and x1(0 + 1)∗ ∩ U 6= ∅, and U is a branching subset.

Remark 4.4.2. The direction 2 ⇒ 3 is also easily shown by contraposition. Assume

that Dom(t) contains a branching subset U . As U is branching, there exists a mapping

f : U × {0, 1} 7→ U s.t. for all u ∈ U and i ∈ {0, 1}, f(u, i) belongs to ui{0, 1}∗. Let x0

be an arbitrary element of x0. To any infinite sequence δ = (δi)i∈N ∈ {0, 1}ω, we associate

the unique infinite branch of t going through the xi where for all i ≥ 0, xi+1 = f(xi, δi).

This defines an injection from {0, 1}ω into the set of infinite branches of t. Hence t has

uncountably many infinite branches. �

4.4.2 Permutation of subtrees

We introduce here the notion of permutation of subtrees in a tree. Intuitively, we have

already seen the notion of unlabeled trees, i.e. the class of trees which have the same

image under label projection (up to isomorphism, as usual). Given a deterministic binary

tree t, what other deterministic binary trees are in the same class? And what of their

frontiers?

Definition. Given two deterministic trees t and t′, we write t ≡ t′ if there exists a bijection

from Dom(t) to Dom(t′) preserving the ancestor relation (i.e. for all u, v ∈ Dom(t), u ⊑ v

iff h(u) ⊑ h(v)).

This section is devoted to the following property of this relation.

Proposition 4.4.3. For any prefix tame full binary tree t, there exists a well-ordered tree

t′ such t ≡ t′. Furthermore, if t belongs to Treen than t′ can also be chosen in Treen.

80 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Consider the following game G played by two players Branch and Spoiler by moving a

token on t. The two players play in turn starting with Branch. Branch moves the token

to a node anywhere below the current position. Spoiler can only move the token to a son

of the current position. Branch loses the game if the token reaches a leaf.

The game can easily be translated in an equivalent parity game. For a formal definition

of parity games and their properties, we refer the reader to [Tho97b]. It follows from

the positional determinacy of parity games [Zie98] that either Branch and Spoiler as a

positional winning strategy for G.

Lemma 4.4.4. Branch wins the game if and only if t contains a branching subset.

Proof. [⇒] Assume that Branch has a positional winning strategy for G which is a partial

function Φ : Dom(t) 7→ Dom(t). Consider the smallest set U ⊆ Dom(t) such that

Φ(ε) ∈ U and for all u ∈ U , Φ(u0) and Φ(u1) also belong to U . It is easy to check

that U is branching.

[⇐] If t contains a branching subset U , consider any partial function Φ : Dom(t) 7→ Dom(t)

such that Φ(ε) ∈ U and for all u ∈ U , Φ(u0) ∈ u0{0, 1}∗ ∩ U and Φ(u1) ∈ u1{0, 1}∗ ∩ U .

We check that Φ is a positional winning strategy for Branch on G.

As t is tame (and hence does not contain any branching subset), Branch loses the

game. Hence Spoiler has a positional winning strategy. There exists a mapping ϕ :

Dom(t) 7→ {0, 1} such that in any game where Spoiler choses his moves according to ϕ

(i.e. at node u, Spoiler pick the ϕ(u)-son) is won by him.

Consider the tree t′ obtained from t by swapping the two sons of any node u such

that ϕ(u) = 1. Formally consider the mapping h from Dom(t) to {0, 1} defined for all

ui ∈ Dom(t) with u ∈ Dom(t) and i ∈ {0, 1} by :

h(ε) = ε

h(ui) = h(u) · (1 − i) if Φ(u) = 1,

h(ui) = h(u) · i if Φ(u) = 0.

It is easy to check that h(Dom(t)) is prefix closed and that for all u, v ∈ Dom(t),

u ⊑ v iff h(u) ⊑ h(v). Let t′ be the tree such that Dom(t′) is equal to h(Dom(t)). As h

is injective, the mapping h a bijection from Dom(t) to Dom(t′) preserving the ancestor

relation. Hence t ≡ t′.

Lemma 4.4.5. The tree t′ is a well-ordered tree.

Proof. Assume by contradiction that there exists an infinite branch B in t′ containing

infinitely many 0’s. We are going to construct an infinite play π for G where Spoiler plays

according to Φ. As the play is infinite, Spoiler loses this play which contradicts the fact

that Φ is a winning strategy for him.

4.4. SCATTERED LINEAR ORDERS 81

Let u0, . . . , un, . . . be the consecutive nodes of B. In particular u0 = ε and for all

i ≥ 0, there exists ki ∈ {0, 1} such that ui+1 = uiki. Let B′ be the corresponding infinite

branch in t (i.e. B′ = h−1(B)) and let v0, . . . , vn, . . . be the consecutive nodes of B′.

In the play π, Branch plays so as to stay on B′. Initially this is satisfied as v0 = ε. If

the token is at some vi and Branch has to play, Branch moves to some vj with j > i such

that kj = 0. Such a j always exists as by assumption there infinitely many kj equal to 0.

By definition of h, we know that Φ(vj) = vj+1. As Spoiler plays according to Φ he moves

to vj+1.

It remains to show that t′ can be chosen in Treen if t is in Treen. A positional

winning strategy Φ for Spoiler can be coded by two sets of vertices U0 and U1 respectively

corresponding to set of nodes u s.t. Φ(u) = 0 and Φ(u) = 1. Consider an MSO-formula

ϕ(X0, X1) such that t |= ϕ[U0, U1] if and only if U0 and U1 encode a positional winning

strategy for Φ. The formula ϕ simply states that there are no infinite branch B =

b1 . . . bn · · · ∈ {0, 1}ω such that for infinitely many k ≥ 0, b1 . . . bk ∈ Ubk+1
. As Branch

loses G, t |= ∃X0, X1, ϕ[X0, X1].

From Prop. 2.5.7, it follows that there exists a tree t̄ ∈ Treen colored with two sets

U0 and U1 coding a positional winning strategy for Spoiler. Let c0 and c1 the colors

corresponding respectively to U0 and U1. The swapping to obtain t′ can be obtained by

applying an MSO-interpretation to the graph in Graphn−1 whose unfolding is t̄. More

formally, let G be a graph in Graphn and let r ∈ VG s.t. t̄ = Unf(G, r). Consider the

MSO-interpretation I which relabels the arcs labeled by 0 (resp. 1) by 1 (resp. 0) if

their source is colored by c1, erases the colors c0 and c1 and otherwise leave the graph

untouched. It is easy to check that t′ ≃ Unf(I(G), r) which concludes the proof.

4.4.3 Cantor-Bendixson rank of deterministic trees

The Cantor-Bendixson rank of a tree is an ordinal assessing the branching complexity of

a tree. We use a definition taken from [KRS05].

Definition. For X ⊆ Dom(t), we write ∂(X) the set of nodes x ∈ X with at least two

infinite branches from x in X. It is easy to see that if X is prefix closed then so is ∂(X).

Hence the operation can be iterated as follows :

∂0(X) = X

∂α+1(X) = ∂(∂α(X))

∂λ(X) =
⋂

α<λ

∂α(X) for limit λ.

The Cantor-Bendixson rank (CB-rank) of t, noted rCB(t), is the least ordinal α such that

∂α(Dom(t)) = ∂α+1(Dom(t)).

82 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Remark 4.4.6. This is an adaptation [Kec94, Exercice 6.17] of the standard notion of

Cantor-Bendixson rank of an arbitrary topological space X. The Cantor-Bendixson

derivative DX is the set of accumulation points, i.e. DX = {x ∈ X | x ∈ X \ {x}}.

As [KRS05, Rem. 7.2] points out, it is equivalent to the above definition if we take X as

the set of infinite paths in the tree. �

From [KRS05], t is tame if and only if there exists α s.t. ∂α = ∅. On the opposite,

a tree with uncountably many branches is such that any node of ∂rCB(t)(t) belongs to a

branching subset.

For tame trees t, we adopt a slightly modified version of the CB-rank, written r̃CB(t),

which is the smallest ordinal α such that ∂α(t) is finite. The difference between r̃CB and

rCB is at most one as r̃CB(t) ≤ rCB(t) ≤ r̃CB(t) + 1.

The CB-rank of tame trees and the Hausdorff rank of their frontier are tightly linked.

Proposition 4.4.7. For every prefix and tame binary tree t,

r̃CB(t) = r̃(Fr(t)) if r̃CB(t) < ω,

r̃CB(t) = r̃(Fr(t)) + 1 otherwise.

Proof. Let t be a prefix tame binary tree t. As the construction of Fact 4.2.1 does not

change neither the CB-rank nor the frontier of the tree, we can assume w.l.o.g. that t is

also full.

For every prefix tame full binary tree t, we write WF(t) the smallest ordinal α such

that there exists a well-ordered tree t′ with t ≡ t′ and Fr(t′) = α. Proposition 4.4.3

garantees the existence of at least one such t′.

We are going to show by transfinite induction on WF(t) that for every a prefix tame

full binary tree t that r̃CB(t) = r̃(Fr(t)) + δ with δ = 0 if r̃CB(t) < ω and δ = 1 otherwise.

This is obvious for finite trees.

Assume that the property holds for all α < β for some β. Let t be a prefix tame full

binary tree with WF(t) = β. Let t′ be a full well-ordered tree such that Fr(t) = β and

t ≡ t′.

We distinguish two cases depending on whether 1ω is an infinite branch in t′.

1ω is not an infinite branch in t′. Let m ≥ 0 be the maximal integer such that 1m belongs

to t′. For all i ∈ [0,m−1], let t′i be the subtree of t′ rooted at 1i0 et let t′m be the tree root

in 1m consisting on only one node. As t′ is full, Fr(t′) =
∑

[0,m−1] Fr(t
′
1) + 1. In particular

for all i ∈ [0,m− 1], Fr(t′i) < Fr(t′) = β.

By definition of ≡, there exists a word w = w1 . . . wm ∈ {0, 1}m which the branch in

t corresponding to to the branch 1m in t′. Formally, for all i ∈ [0,m], a tree ti such that

ti ≡ t′i and t is the prefix closure of
⋃

i∈[0,m−1]w1 · · ·wi · (1 − wi+1) · ti. Hence r̃(Fr(t)) =

max{r̃(Fr(ti)) | i ∈ [0,m]} by Proposition 2.2.8 and r̃CB(t) = max{r̃CB(ti) | i ∈ [0,m]}

because the subtree permutation commutes with r̃CB.

For all i ∈ [0,m], WF(ti) < β, but by Proposition 2.2.8 again, there is an imax such

4.4. SCATTERED LINEAR ORDERS 83

that r̃(timax
) = r̃(β). So we have by induction hypothesis that r̃CB(timax

) = r̃(Fr(timax
))+δ.

This shows that r̃CB(t) = r̃(Fr(t)) + δ.

1ω is an infinite branch in t′. For all i ≥ 0, let t′i be the subtree of t′ rooted at 1i0. The

frontier of t′ is equal to
∑

i≥0 Fr(t
′
i). As t′ is full, Fr(t′i) 6= 0 for all i ≥ 0. Hence for all

i ≥ 0, Fr(t′i) < Fr(t′) = β.

By definition of ≡, there exists an infinite branch w = w1 . . . wm . . . ∈ {0, 1}ω and

for all i ≥ 0, a tree ti such that ti ≡ t′i and t =
⋃

i≥0w1 · · ·wi · (1 − wi+1) · ti. Hence

r̃(Fr(t)) =
∑

i∈W Fr(ti) where W designates the order N ordered by

i ≺ j iff w1 . . . wi.(1 − wi) <lex w1 . . . wj.(1 − wj).

In particular, W has order type

ω + k for some k < ω iff w is ultimately 1ω

k + ω∗ for some k < ω iff w is ultimately 0ω

ω + ω∗ otherwise.

Assume that the type of W is ω + ω∗; the proof is only simpler for other types. By

Remark 2.2.10, I = {i | r̃(Fr(ti)) = β} is finite.

• If β = α + 1, note that β < ω ⇐⇒ α < ω. By induction, for j /∈ I, ∂α+δ(tj) is

finite. If I 6= ∅, ∂β+δ(t) is reduced to the tree bearing the ∂β+δ(ti) for i ∈ I, which

are finite. If I is empty, ∂α+δ(t) has exactly one infinite branch. So r̃CB(t) = β + δ.

• Otherwise, β is limit and β ≥ ω. If I is empty, for α < β there always infinitely

many j /∈ I such that α ≤ r̃CB(tj) < β. So ∂α(t) always contains the infinite branch

w. Otherwise, for i ∈ I, by induction ∂β(ti) is infinite. So ∂β(t) has always at least

one infinite branch. For all i ∈ I, ∂β+1(ti) is finite and so is ∂β+1(t).

As an unrelated note, we may use the same proof technique to prove the equivalence

between different orders on a prefix tame tree.

Proposition 4.4.8. For every full binary prefix tame tree t,

r̃(Fr(t)) = r̃(KB(t)) = r̃(〈Dom(t), <lex 〉).

Proof. We note Lex(t) = 〈Dom(t), <lex 〉. Let again WF(t) be the smallest ordinal α such

that there exists a well-ordered tree t′ with t ≡ t′ and Fr(t′) = α. We prove the result by

induction on WF(t). If WF(t) = 1, since the tree is prefix, it is reduced to a single node

and then Fr(t) = KB(t) = Lex(t) = 1.

In the general case, it depends again whether t′ has an infinite branch 1ω or not. The

ti and t′i trees are defined in the same way that in the previous proof; since t′i ≡ ti and

Fr(t′i) < Fr(t), we may apply the induction hypothesis

r̃(Fr(ti)) = r̃(KB(ti)) = r̃(〈Dom(ti), <lex 〉).

84 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

t1

t2

t3

t4 . . .

Figure 4.4: Orders in a tree.

Fr(t) = Fr(t2) + Fr(t4) + · · ·+ Fr(t3) + Fr(t1),
KB(t) = KB(t2) + KB(t4) + · · ·+ 1 + KB(t3) + 2+KB(t1) + 1,

Lex(t) = 2+ Lex(t2) + 2+ Lex(t4) + · · ·+ Lex(t3) + Lex(t1).

When 1ω is not an infinite branch in t′, it is the successor case. Then Fr(t) =
∑k

i=1 Fr(ti), whereas KB(t) and Lex(t) have the same form

KB(t) =
∑k

i=1(KB(ti) + ci)

Lex(t) =
∑k

i=1(c
′
i + Lex(ti))

where ci, c
′
i are integers. We may then apply Proposition 2.2.8 as before to get the result.

The limit case is when 1ω is an infinite branch in t′. Now Fr(t) =
∑

i∈W Fr(ti) where

W has order type ω + ω∗, ω + k or k + ω∗. Then we have the same

KB(t) =
∑

i∈W (KB(ti) + ci)

Lex(t) =
∑

i∈W (ci + Lex(ti))

as illustrated in Figure 4.4. The Proposition 2.2.8 along with Remark 2.2.10 leads to the

main result.

Obviously, the property fails for the actual Hausdorff rank, since a full prefix tree of

frontier ω has a KB-order ω + ω∗, which has Hausdorff rank 2 but ∼-rank 1.

It would be interesting to capture all the orders on a tame tree which share the ∼-rank.

It may be conjectured that all orders MSO-definable on Dom(t) have the same ∼-rank;

however this does not include Fr(t), which concerns only leaves. This raises the more

general conjecture.

Conjecture 4.4.9. Let t be a tame tree. All orders definable by a monadic formula such

that any vertex is prefix of a vertex selected by the formula have the same ∼-rank.

Remark 4.4.10. The proof of Theorem 7.7 in [KRS05] states that r̃CB(t) = r̃(KB(t)),

which seems to contradict Proposition 4.4.7. In fact this is true for finite r̃CB, which is

4.4. SCATTERED LINEAR ORDERS 85

enough to prove the said Theorem, but false for further ordinals. Consider the following

counterexample. We define the family (tα)α≤ω of prefix trees by the following set of leaves.

Leaves(t1) = 1∗0

Leaves(t2) = 1∗0 · Leaves(t1)

. . .

Leaves(ti) = 1∗0 · Leaves(ti−1)

. . .

Leaves(tω) =
⋃

i∈N 1i0 · Leaves(ti)

We prove that r̃CB(tω) = r̃(KB(tω)) + 1.

For each i > 1, KB(ti+1) = KB(ti).ω + ω∗. In particular since KB(t1) = ω + ω∗, for

i > 1, by induction KB(ti) = ω + ζ.ωi−1 + ω∗.

KB(tω) =

(
∑

i≥0

KB(ti)

)

+ ω∗ = ω + ζ.ωω + ω∗

By another induction, it is easy to see that r̃CB(ti) = i. For each j ∈ N and i > j,

∂j(ti) is infinite. So in ∂j(tω) there is infinitely many infinite branches. In particular the

branch 1ω is in each ∂j(tω) and therefore in ∂ω(tω). To sum up,

KB(t) r̃(KB(t)) r̃CB(t)

t1 ω + ω∗ 1 1

t2 ω + ζ.ω + ω∗ 2 2

t3 ω + ζ.ω2 + ω∗ 3 3

. . .

t3 ω + ζ.ωi−1 + ω∗ i i

. . .

tω ω + ζ.ωω + ω∗ ω ω + 1

�

Proposition 4.4.11. For any two prefix binary tame trees t and t′, if t ≡ t′ then r̃CB(t) =

r̃CB(t′) and r̃(Fr(t)) = r̃(Fr(t′)).

Proof. Let t and t′ be two tame binary trees s.t. t ≡ t′. Let h be a bijection from

Dom(t) to Dom(t′) which preserves the prefix relation. As h commutes with d, we have

∂α(Dom(t′)) = h(∂α(Dom(t))) for every ordinal α so r̃CB(t′) = r̃CB(t). Prop. 4.4.7 implies

that r̃(Fr(t)) = r̃(Fr(t′)).

As the definition of the CB-rank does not use the relative order between the sons of a

node, it follows that two prefix deterministic trees having the same underlying unordered

tree have frontiers of the same ∼-rank.

86 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

4.4.4 Hausdorff rank of scattered orders in Graphn

By using invariance of r̃ over ≡, we get the main result of this section.

Theorem 4.4.12. For all n ≥ 0, every scattered linear order in Graphn has an Hausdorff

rank strictly less than ω ↑↑ n.

Proof. Let L be a scattered linear order in Graphn. By Theorem 4.2.6 and Proposi-

tion 4.4.1, there exists a binary prefix tame tree t ∈ Treen such that L ≃ Fr(t). By

Prop. 4.4.3 there exists a well-ordered tree t′ ∈ Treen such that t ≡ t′.

By Prop. 4.4.11, we have that r̃(Fr(t)) = r̃(Fr(t′)). As t′ is a well-ordered tree in

Treen, its frontier is an ordinal in Graphn. Hence by Theorem 4.3.8, Fr(t′) < ω ↑↑ n + 1

and hence r̃(Fr(t′)) < ω ↑↑ n.

Remark 4.4.13. Obviously the converse to this theorem is not true; there are uncountably

many scattered orders of Hausdorff rank less than ω ↑↑ n but there are only countably

many linear orderings in Graphn.

In practical terms, consider a non-recursive sequence (ai)i∈N in {1,2}ω. The scattered

order

a0 + ζ + a1 + ζ + a2 + . . .

has Hausdorff rank 2. But as the sequence of ai can be reconstructed by an MSO-formula,

it has an undecidable MSO-theory, so it does not belong to the pushdown hierarchy. �

By Proposition 4.4.7, the upper-bound of Theorem 4.4.12 directly translates the CB-

rank of prefix binary tame trees in Treen. This leads to the following upper bound for all

deterministic trees in Treen.

Theorem 4.4.14. For every deterministic tree t ∈ Treen, rCB(t) ≤ ω ↑↑ n.

Proof. Let t be a deterministic tree in Treen. We can assume w.l.o.g. that t is binary.

Consider the tree t′ obtained by adding a leaf to every node which is its left-most son.

Clearly t′ is prefix, belongs to Treen and rCB(t) = rCB(t′). The construction of Prop. 4.2.1

gives a prefix binary tree t′′ ∈ Treen with the same CB-rank.

As the result is already established for tame trees, we can also assume that t is not

tame. Note that for every deterministic non-tame tree t,

rCB(t) ≤ λ = sup{rCB(t/u) | u ∈ Dom(t) and t/u tame}.

Indeed, dλ(t) has no tame subtrees. If t has no tame subtrees then d(t) = t. Hence

d(t) ≤ λ.

By Proposition 2.5.5 any subtree of t ∈ Treen is also in Treen. By Proposition 4.4.7

and Theorem 4.4.12 we have, for all u ∈ Dom(t) such that t/u is tame, rCB(t/u) < ω ↑↑ n.

Hence rCB(t/u) ≤ ω ↑↑ n.

The inequality is conjectured to be strict.

4.5. FINITE COMBS 87

4.5 Finite combs

As foretold in Section 3.4.4, known examples of graphs separating the hierarchy include

the prefix tree Kf of well-chosen functions f : N 7→ N, defined by Leaves(Kf) = {1i0f(i)}.

In particular, let the exp(m,n, i) operation be defined by

exp(m, 0, i) = i

exp(m,n+ 1, i) = mexp(m,n,i),

then the tree Kexp(2,3n,·) was shown in [Blu08] not to belong to Graphn, using properties

on the size of stacks of n-order-pushdown automata. It was then conjectured that already

Kexp(2,n,·) /∈ Graphn.

This section proves this result. More generally, we consider some comb-shaped graphs

of the hierarchy, i.e. acyclic graphs with only one simple infinite path. We state a result

of the maximal size of each subgraph not intersecting this path. The proof of this result

is very related to the methods employed in Section 4.3.

Recall that a comb is a deterministic tree t over a ordered finite alphabet with a

greatest label 1 such that the only infinite branch is 1ω. In the hierarchy, an equivalent

definition specializes this label. A #-comb is a comb on Σ ∪ {#} with a greatest label

/∈ Σ such that each arc is labeled by # iff this arc is in the infinite branch of ω. The

subtree of domain #iΣ∗∩Dom(t) is noted ti. We alter slightly this definition to get more

general graphs.

Definition. Let Σ be an alphabet and # /∈ Σ another letter. A #-comb-graph over Σ is a

deterministic graph G of labels Σ ∪ {#} with a root r and the following properties. Let

Vi = {x | r
#iΣ∗

−−−→ x} and Gi the subgraph of support Vi :

• the subset of arcs labeled by # form an infinite path from r;

• for all i, Gi is an acyclic graph;

• the only arc between Vi and Vj 6=i can be #.

The goal of this section is to get a upper bound for each |Vi| when G is a comb-graph

of the hierarchy. This is the Theorem 4.5.3.

We first remark that comb-graphs of Graphn cannot be larger than combs of Treen.

Lemma 4.5.1. If G ∈ Graphn is a #-comb-graph, there is a comb t ∈ Treen such that

for all i, there is a j ≤ i such that |Vi| ≤ |Dom(tj)|.

Proof. Let G be a #-comb-graph of support V . Since each Gi is a finite deterministic

acyclic graph, there is a MSO-definable order < on Vi — for instance, lexicographic order.

This order can be extended to V with x < y iff x ∈ Gi, y ∈ Gj and i < j∨ (i = j∧x < y).

So there is an interpretation from G to the ω-word w =
∏

i≥0(ab
|Vi|) : each x ∈ Vi is

colored in a when it is the smallest of Vi, and b otherwise.

88 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

By Corollary 4.2.7, there is a full binary prefix tree t in Treen (on the alphabet {0, 1})

with only one infinite branch 1ω such that Fr(t) ≃ w.

For instance, t could be the following tree (the color ca is defined later on) :

a b

. . .

a b

ca

b b

abab

caca

We may call ti the subtree of root 1i0, if any. The problem is that a subword ab|Vi|

may be “scattered” in several tj1 , tj2 , To get the required result, we are going to

merge these subtrees.

We color each node 1i with ca if a ∈ Fr(ti). In particular, ε is colored. Let H ∈

Graphn−1 and s ∈ VH be such that Unf(H, s) is this marked tree. Let I(H) be the graph

where there is a &-arc x
&
→ y when

r
1∗
−→
H

x
1+
−→
H

y, (ca, x), (ca, y) ∈ H,

and for all x
1+
−→ z

1+
−→ y, (ca, z) /∈ H.

In Unf(I(H), s), we remove the subtrees with root &iu such that

1. there is no a-leaf &iv with v ≤lex u,

2. or there are at least one a-leaf &i1v such that 1v <lex u or v ∈ u0∗.

We note ti the subtree of domain &i(0 + 1)∗. Condition 1 checks that each such subtree

begins with an a. Condition 2 looks for the first a-leaf in &i1(0+1)∗ and removes subtrees

of root greater or equal in lexicographic order. We note t′ this new tree. Following our

previous example, t′ is shown below.

. . .

a b

&

b b

aba

&

b

a b

&

In short, t′ is a &-comb having the same frontier than t, and such that for each i,

Fr(t′i) begins with the letter a. So each ab|Gi| is contained in some Fr(t′j), which shows

the result.

If n ≥ 1, for any t ∈ Treen there is a graph H in Graphn−1 and s ∈ VH such that

t = Unf(H, s). As usual, we suppose that s is a root of H.

4.5. FINITE COMBS 89

Lemma 4.5.2. Let t ∈ Treen be a #-comb and t = Unf(H, s). Let S = {x
#
−→
H
y}.

• Either S is finite, and then the sequence (ti)i≥0 is ultimately periodic;

• or S is an infinite path from s.

Proof. Recall that t and H are deterministic. Since there is a infinite path labeled by #

in t, there is a infinite or ultimately periodic path labeled by # in H, starting from s.

In particular, for n = 1, H is a finite graph, so the set S is necessarily finite, and the

sequence (|Dom(ti)|)i≥0 is bounded. By Lemma 4.5.1, so are the (|Vi|)i≥0.

For further levels, the following result states that the bound is n-exponential in the

length of the comb. For a finite tree t, let depth(t) be the maximal path size in t.

Theorem 4.5.3. For n > 0, let t be a #-comb of Treen+1 and G a #-comb-graph of

Graphn+1. There is a constant C such that for all i,

depth(ti) ≤ exp(2, n− 1, C(i+ 1)),

|Vi| ≤ exp(2, n, C(i+ 1)).

Proof. Let t be a #-comb over Σ, and H and s as in Lemma 4.5.2. By Lemma 4.5.1,

the result on G is a direct consequence of the result on t. Indeed, since ti is a finite

deterministic Σ-tree, then |Dom(ti)| ≤ |Σ|depth(ti). So there is a constant C ′ such that

|Dom(ti)| ≤ exp(2, n, C ′(i+ 1)).

First note that deterministic structures of Tree1 and Graph1 are regular. Following

notations in [MS85] and Section 2.5, they have therefore finitely many end-isomorphisms,

which means that for any #-comb t in Tree1, the sequence (|Dom(ti)|)i≥0 is bounded. A

similar result applies to #-comb-graphs.

In H, for i ≥ 0, let si be the vertex such that s
#i

−→
H

si. By Lemma 4.5.2, if {si}i≥0

is finite, the result is trivial. Suppose otherwise. We call the #-level ℓ#(x) of a vertex

x ∈ VH the least i such that si
Σ∗

−→ x. Let VHi
= {x | ℓ#(x) = i} and Hi be the associated

subgraph.

The transformation I removing Σ-arcs between any VHi
and VHj 6=i

is a monadic inter-

pretation. Moreover, we now that there is exactly one infinite branch in t, so there cannot

be any infinite branch in any Unf(Hi, si), which means each Hi is finite and acyclic. So

I(H) is a #-comb-graph of Graphn−1. A path in ti is smaller than
∑

j≤i |VHj
|.

• If n=2, then |VHi
| is bounded by some C, so

depth(ti) ≤
∑

i≤ℓ#(x)

|VHj
| ≤ C.i.

• Otherwise, by induction |VHj
| ≤ exp(2, n− 1, C(i+ 1)) and

depth(ti) ≤
∑

i≤ℓ#(x)

|VHj
| ≤ exp(2, n− 1, C(ℓ#(x) + 2)).

90 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Chapter 5

Schemes and morphic words

In the previous chapter, we left aside the question of the coloring of orders. The first

class of colored infinite graphs that comes to the mind are the infinite words, or orders

of type ω. Even for such simple objects, we do not know precisely which of them inhabit

the pushdown hierarchy. The aim of this chapter is to open the way to a characterization

of infinite words of the hierarchy. At the first level, they are well-known.

Proposition 5.0.4. The ω-words of Graph1 are the ultimately periodic words.

Proof. For any colored ω-order, it is easy to see that the corresponding colored infinite

path is also in Graph1. This a regular graph, and has therefore finitely end-isomorphisms

(see Section 2.5) starting from the root. It follows that there are two isomorphic end-

decompositions at step n and m so the structure is ultimately periodic with period |m−

n|.

We turn our attention on the next levels, namely Graph2 and Graph3. A direct

consequence of [Cau02, Prop. 3.2] is that infinite words well-known as morphic words

belong to Graph2. For the other direction, by Corollary 5.1.6 we only need to consider the

frontier of trees solutions of order-1 schemes whose frontier is of order type ω. Moreover, by

Proposition 4.2.1, such a tree can be chosen binary, prefix and full. This tree has therefore

exactly one infinite branch, which is 1ω. As mentioned in the introduction, deterministic

trees of Tree2 can be described by the notion of recursion schemes. We may therefore plug

the constrained shape of our trees into this setting to get the characterization of words.

For a slightly more powerful result, we notice that if the frontier of a deterministic tree

has an initial segment of type ω, then this segment can be interpreted by an MSO-formula.

If we are in the pushdown hierarchy, we can therefore find a correspond comb. For any

deterministic tree, we call ω-frontier this initial segment when it exists.

Proposition 5.0.5. For any safe scheme admitting a ω-frontier w, there is a safe scheme

of the same order generating a comb with frontier w.

Proof. If a deterministic tree in the pushdown hierachy has an ω-frontier w, then this

order can be selected by a monadic interpretation. Indeed, consider the set of leaves by

91

92 CHAPTER 5. SCHEMES AND MORPHIC WORDS

lexicographic order. Once the smallest leaf x0 in lexicographic order has been found, the

initial segment X0 of underlying type ω is the smallest such that for all x ∈ X0 and

X ⊆ X0 with x, x0 ∈ X, x has an immediate predecessor in X.

So w is a word of the same level of the hierarchy. By Theorem 4.2.6, there is therefore

a comb in the class of trees of the same level were each node has degree 0 and 2, with

frontier w. This means that there is a safe scheme generating this comb.

If words of Graph2 are morphic words, extending the method to the next level would

hopefully bring a natural extension. Since morphic words are well-known, this is not the

first attempt for such a generalisation. Already [CT02] proposes more general predicates

in the framework of decidable monadic theory. Some more recent propositions tweak an

automatic presentation of morphic words, for instance allow the automaton to be infinite

[lG06] or generalize the underlying order [Bár08]. Another direction is more pushdown-

automaton related [FS06, Mar07] and relates to the HDT0L definition of morphic words

(see [AS03] for details).

This rest of this chapter is organized as follows. We first present recursion schemes and

their relationship with the hierarchy. Then, we define morphic words and that frontiers

of type ω of order-1 recursion schemes are exactly morphic words. Then we extend this

proof to so-called hyperalgebraic trees, i.e. trees of Tree3. We first introduce the notion of

order-2 morphic words, and prove that they correspond exactly to ω-frontiers of order-2

recursion schemes. We therefore obtain a characterization of the ω-words of Graph3.

5.1 Recursion schemes

We first give a definition of recursion schemes, then recall why schemes with the safety

constraint are term trees of the hierarchy.

5.1.1 Definition

We borrow the definitions from [KNU02]. The notion of recursion scheme, or term gram-

mar , gives a direct presentation of infinite tree by successive rewriting of terms.

Types and terms

First of all, these terms are constrained by their type; the first definition therefore concerns

these objects. The set of types T is built from a unique basic type o and the binary

operator →.

τ := o | τ1 → τ2

The operator → is associative to the right. The order or level ℓ(τ) of a type is defined

by ℓ(o) = 0 and ℓ(τ1 → τ2) = max(1 + ℓ(τ1), ℓ(τ2)). A type τ1 → . . . → τn → o is

5.1. RECURSION SCHEMES 93

homogeneous if ℓ(τ1) ≥ · · · ≥ ℓ(τn). The type o → . . . → o → o with n + 1 times o is

written on → o.

A typed alphabet is a set Γ of symbols with types in T . We note f : τ when f ∈ Γ is

of type τ . By notation, ℓ(f) = ℓ(τ), and the order of the alphabet is ℓ(Γ) = maxf∈Γ ℓ(f).

The set of applicative terms AT(Γ) is defined by Γ ⊆ AT(Γ) and if f : τ1 → τ2 and

x : τ1, then (fx) : τ2 ∈ AT(Γ). We say then that x an operand of f . By mirroring type

association, applicative terms are associative to the left : fxy = (fx)y. A term is an

applicative term of type o; the set of terms is noted T(Γ). The arity ρ of a term is 0, and

ρ(f) = ρ(fx)+1 otherwise. An applicative subterm is an occurence of some t = fx1 . . . xn

where n is maximum for this occurence; it is a subterm if n = ρ(f).

Example 5.1.1. Let Σ = {a, b, g, f} with ρ(a) = ρ(b) = 0, ρ(g) = 1 and ρ(f) = 2. Then

f(a) is an applicative term of arity 1, and f(g(a), b) is a term, thus of arity 0. N

Recursion schemes

We are now ready to define the base rules of recursion schemes. Let X be a typed

alphabet of variables. We note t[x := t′] with x : τ ∈ X the term where each occurence

of the variable x is replaced by a applicative term t′ : τ . A recursion scheme is a tuple

S = (Σ, N, S, E) where Σ is a finite typed 1-order alphabet of (lowercase) terminals , N is

a finite typed alphabet of (uppercase) nonterminals , S : o ∈ N is the starting nonterminal

and E is a set of productions in bijection with N , of the form

Fx1 . . . xρ(F) ⇒ wF

where F : τ1 → . . . → τρ(F) → o ∈ N ; for all i, xi : τi ∈ X and wF is a term in

T(Σ ∪ N ∪ {x1, . . . , xρ(F)}). The order of the scheme is ℓ(S) = ℓ(N). The set of all

n-order schemes is noted Sn.

To each scheme S is associated a rewriting relation =⇒
S

⊆ T(Σ∪X∪N)2. Informally, a

subterm which head is a nonterminal F is replaced by its related term wF where variables

are in turn replaced by the actual arguments of F . In practice,

• Ft1 . . . tρ(F) =⇒
S

wF [∀i, xi := ti] if there is a production Fx1 . . . xρ(F) ⇒ wF in E

with xi : τi and ti : τi for all i.

• t =⇒
S

t′, then (st) =⇒
S

(st′) and (ts) =⇒
S

(t′s) whenever the applicative terms exist.

Limit trees

The definition of schemes yet only produces finite terms. To reach infinity, we need the

notion of limit tree. This limit in turn demands to build a converging family of trees. The

approximation t⊥ of a term t on Σ ∪X ∪N is the term on Σ ∪ {⊥} where nonterminals

have been pruned, that is

94 CHAPTER 5. SCHEMES AND MORPHIC WORDS

• if t = ft1 . . . tρ(f) with f ∈ Σ ∪X, t⊥ = ft⊥1 . . . t
⊥
ρ(f),

• if t = Ft1 . . . tρ(F) with F ∈ N , then t⊥ = ⊥.

Let π be a projection from terms on Σ∪{⊥}∪X to (finite) trees, where each subterm

fx1 . . . xρ(f) is mapped to a subtree δ with root r, arcs r
i
→ π(xi), and color δ(r) = f . An

approximation partial ordering can be defined on trees by δ′ ⊑ δ if Dom(δ′) ⊆ Dom(δ)

and, for each w ∈ Dom(δ′), δ′(w) = δ(w) or δ′(w) = ⊥. Successive approximations are

ordered by this ordering : for two terms t1 =⇒
S

t2, we have π(t⊥1) ⊑ π(t⊥2). The scheme is

a confluent grammar, so each term t on Σ ∪N ∪X generates a unique tree

JtK = sup{π(s⊥) | t =⇒
S

s}.

For any scheme S = (Σ, N, S, E), we note JSK = JSK the limit tree of the scheme.

Example 5.1.2. Theorem 3.1.2 and Corollary 5.1.6 state that any ordinal smaller than

ω ↑↑ n + 2 is the frontier of a n-order scheme. We show schemes corresponding to the

successive towers of ω.

A tree yielding ω is simply given by the 0-order scheme

S0 = ({f, a}, {S0}, S0, {S0 ⇒ f(a, S0)}).

At the next level, a tree yielding ωω is given by S1 = ({f, a}, {S1, F1, G1}, S1, E1) where

E1 is shown in Figure 5.1. Informally, the nonterminal F adds complexity whereas G prop-

agates it. Recursively, a tree yielding ω ↑↑ n is Sn = ({f, a}, {Sn, Fn, G1, . . . , Gn}, Sn, En)

with En defined in Figure 5.2.

Here the types used are

τ1 = o,

for n > 1, τn = τn−1 → . . .→ τ1 → o

and for all n > 0, xn : τn and Fn, Gn : τn+1. N

5.1.2 Schemes in the pushdown hierarchy

A scheme is safe if for any production rule Fx1 . . . xn ⇒ wF , and for any applicative

subterm t of wF , there is no occurence of some xi in t with ℓ(xi) < ℓ(t). The set of

order-n safe schemes is noted Ssafe
n . Note that for n < 2, safety is not a restriction. The

safety has been previously called the derived types property [Dam82].

Example 5.1.3. From [KNU02], the scheme with production rule

S ⇒ F (g, a, b)

F (ϕ, x, y) ⇒ f(F (F (ϕ, x), y, h(y)), f(ϕ(y), x))

5.1. RECURSION SCHEMES 95

S1 =⇒ F1

a

F1

x

=⇒ f

x F1

G1

x

G1

x

=⇒ f

x G1

x

JS1K = f

a f

f

a f

a . . .

f

f

f

a f

a . . .

f

f

a f

a . . .

. . .

. . .

Figure 5.1: Rules for S1, of frontier ω
ω.

Sn =⇒ Fn

Gn−1 . . . G1 a

Fn

xn . . . x1

=⇒ f

xn

xn−1 . . . x1

Fn

Gn

xn

xn−1 . . . x1

Gn

xn . . . x1

=⇒ f

xn

xn−1 . . . x1

Gn

xn xn

xn−1

xn−2 . . . x1

Figure 5.2: General rules for Sn, of frontier ω ↑↑ (n+ 1).

96 CHAPTER 5. SCHEMES AND MORPHIC WORDS

is unsafe, because there is a subterm F (ϕ, x) such that ℓ(x) < ℓ(F (ϕ, x)). It is conjectured

that this scheme produces a tree which cannot be produced by any safe scheme. N

The question whether safe schemes produce the same trees than unsafe schemes has

been recently solved by the negative using a language defined by Urzyczyn. For more

details, see [Par10] and [AdMO05, Prop. 7.13].

Definition. A term tree is a deterministic tree t colored by an alphabet Σ and labeled by

[1, k] where k is the maximum out-degree, and the following constraints :

• if u · i ∈ Dom(t), then i = 1 or u · (i− 1) ∈ Dom(t);

• all nodes with the same color f have the same out-degree.

The relationship between schemes and the pushdown hierarchy is that trees generated

by safe schemes of order n are exactly term trees on the level n+ 1 of the hierarchy. This

is an application of [Cau02, Theorem 3.5].

Proposition 5.1.4. Limit trees of safe schemes of order n are term trees of Treen+1 up

to isomorphism.

Proof. Let h be a rational mapping as defined in Section 2.4.1 with the following con-

straints. Suppose that such that for each a, h(a) is recognized by a finite deterministic

automaton (S, i, T, η) where

• each final state (in T) is terminal, i.e. has no output arcs;

• for all q ∈ S, each set P = {q | q
c
→ p∧ c ∈ Γ} is such that if q ∈ P and q → p then

p /∈ P ;

• it is strongly deterministic on arc labels : if q
c
→ p, q

d
→ p′ and a ∈ Σ, then c = d.

In other words, the disjonctions are made on colors.

Such a mapping is called deterministic rational mapping. The set of all these mappings

is called DRat.

Theorem 5.1.5 ([Cau02]). For n > 0, JSsafe
n+1K = Unf ◦ DRat−1(JSsafe

n K).

At the first level, the recoloring of JS0K are regular trees. To get Prop. 5.1.4, it it

enough to show that deterministic trees of Treen+1 are the image of Treen under the

mapping Unf ◦ DRat−1, and more precisely that each deterministic graph of Graphn is

h−1(t) for some deterministic t ∈ Treen and h ∈ DRat.

Let G ∈ Graphn. By Prop. 4.1.2, there is a deterministic tree t ∈ Treen of color set

Γ, a family of simple TWA {Aa}a∈Σ and a recoloring µ such that G = µ(A(t)). We build

5.2. MORPHIC WORDS 97

h ∈ DRat such that G = h−1(t). For a ∈ Σ, let Aa = (Q, q0, µF , δ) be the automaton

recognizing h(a) and let A = (S, i, T, η).

S = Q ∪ (Q× P(Γ))

i = q0

T = (q, c) such that q ∈ µF (c)

η(q, c) = (q, c) for each q ∈ Q, c ∈ P(Γ)

∀a ∈ Σ, η((q, c), ā) = p for each δ(q, c) = (p, ↑)

η((q, c), a) = p for each δ(q, c) = (p, a)

Each final state is terminal, since δ(q, c) = ∅ if q ∈ µF (c). Each P(Γ)-transition

is either a final state or followed by a Σ-transition. The determinism condition is also

fulfilled : if η((q, c), a) = (p, 0) and η((q, c), b) = (p, 0), then (p, a), (p, b) ∈ δ(q, c), and

since Aa is deterministic, a = b.

For recoloring, we simply set h(c) = µ(c) for each c ∈ P(Γ).

It is easy to tranform any deterministic tree into a term tree with the same frontier.

This remark allows the following corollary of Theorem 4.2.6.

Corollary 5.1.6. A linear order colored by Γ is in Graphn if and only if it is the colored

frontier of some tree limit of a safe recursion scheme of order (n− 1) with one terminal

f of arity 2 and terminal of arity 0 for each c ∈ Γ.

5.2 Morphic words

Morphic words are well-known ω-words. They can be seen as a generalisation of automatic

sequences, but we prefer to skip this latter definition and give the direct presentation. For

a complete introduction, see [AS03].

In this section, after the preliminaries we present a construction of the morphic words

in the hierarchy. Then we prove that morphic words are the only possible words of Graph2

by looking at leaves of trees produced by recursion schemes.

5.2.1 Definition and properties

Let Σ be an alphabet. A morphism on Σ∗ w.r.t. concatenation is a mapping τ such that

τ(ab) = τ(a)τ(b). Now let τ : Σ 7→ Σ∗ a morphism. Suppose there is a letter ∆ ∈ Σ such

that the first letter of τ(∆) is ∆. In this case the following sequence admits a limit :

τ(∆) = ∆ · u

τ 2(∆) = ∆ · u · τ(u)

. . .

τω(∆) = ∆ · u · τ(u) · τ 2(u) · . . .

98 CHAPTER 5. SCHEMES AND MORPHIC WORDS

1 1 1

0

Figure 5.3: Paperfolding sequence.

When the corners are set to right angles like in this drawing, the resulting pattern is known as

the dragon curve fractal.

Let σ : Σ 7→ Γ be another morphism. The set of morphic words are the words in the

form σ(τω(∆))).

Example 5.2.1. The regular paperfolding sequence (see [AS03, Ex. 5.1.6]), or dragon curve

sequence, is obtained by folding iteratively a piece of paper in the same direction. By

unfolding the paper and looking at the direction of the corners, we get a word on two

letters. For n foldings, we get the nth word of the following sequence; see Figure 5.3.

1

110

1101100

110110011100100

. . .

The limit word is a morphic sequence over the alphabet {0, 1}2. Define

τ(00) = 1000 τ(10) = 1100

τ(01) = 1001 τ(11) = 1101

Then τω(11) is the paperfolding sequence. N

We can chose σ to have a specific form. A coding is a morphism σ such that for all a,

|σ(a)| = 1.

Theorem 5.2.2 ([AS03]). If f, g are two morphisms such that g(fω(a)) exists, then there

is a letter ∆, a non-erasing morphism τ such that τ(∆) begins with ∆, and a coding σ

such that g(fω(a)) = σ(τω(∆)).

We are particularly interested by the logical properties of morphic words. The follow-

ing result was obtained in [CT02] for even larger sets of ω-words.

Theorem 5.2.3 ([CT02]). The monadic theory of a morphic word is decidable.

5.2. MORPHIC WORDS 99

As with uncolored ordinals, this result naturally rises the question : which morphic

words are in the hierarchy? The following sections answers that they are in fact exactly

words of Graph2.

5.2.2 Construction in the pushdown hierarchy

The goal of this section is to prove that words of Graph2 are exactly the morphic words.

We begin with the easy direction. It is proved in [Cau02] that morphic words are terms of

Tree3. If it is not ultimately periodic, such a tree must be unfolded from itself, so morphic

words are in Graph2.

Theorem 5.2.4. Any morphic word is in Graph2.

Proof. We reproduce here a proof by Caucal. Any morphic word can be chosen of the

form σ(τω(∆)) with τ be a morphism on an alphabet Σ with τ(∆) ∈ ∆Σ∗, and σ a coding

Σ 7→ Γ.

Let n = maxa∈Σ(|τ(a)|) + 1. We build the following regular graph of support N∪ (N×

Σ) ∪ Γ, label set [1, n] and colors Γ.

G = {k
n
→ k + 1} ∪ {k

i
→ (k, τ(∆)i) | k > 0, i > 1}

∪{(k, x)
i
→ (k − 1, τ(x)i) | k > 1, x ∈ Σ, i > 0}

∪{(1, x)
1
→ σ(x) | x ∈ Σ} ∪ {0

1
→ (0,∆), (0,∆)

1
→ σ(∆)}

∪{(y, y) | y ∈ Γ}

G is a regular graph, so G ∈ Graph1. Let t = Unf(G, 0). By induction, for k > 0, each

subtree of root nki yields the finite word σ(τ k−1(τ(∆)i)). The leaves of t in lexicographic

order form the required morphic word. There is therefore a monadic interpretation build-

ing the word from t.

Example 5.2.5. For instance, the word abaabaaaab . . . is obtained by

τ(∆) = ∆baa σ(∆) = a

τ(a) = aa σ(a) = a

τ(b) = b σ(b) = b

So Σ = {∆, a, b}, Γ = {a, b}, n = 5. Figure 5.4 shows the part of G accessible from 0.

The circled vertices are colored respectively by a and b. N

This result implies of course Theorem 5.2.3.

5.2.3 Words in Graph2 are morphic, direct proof

The converse of Theorem 5.2.4 can be obtained by using methods similar to those used

in Chapter 4. We follow here this direction. But it is limited to the first level of the

100 CHAPTER 5. SCHEMES AND MORPHIC WORDS

a

b

0,∆
1

1, a
1

1, b
1

2, a
1

2

2, b
1

. . .1

2
. . .

1

. . .2

23

1

5
1

23

1

5
0

1

5

Figure 5.4: A graph which unfolding yields the morphic word abaab . . . a2
i
b

hierarchy, so the rest of this chapter will be devoted to an alternative and extensible

proof using recursion schemes.

Theorem 5.2.6. ω-words of Graph2 are morphic words.

To prove this result, we show that a tree having a frontier of type ω is unfolded from

a graph having the shape of the graph of Example 5.2.5.

Let w be an ω-word on Γ of Graph2. According to Theorem 4.2.6, we consider a

prefix full Σ,Γ-tree of Tree2 which has frontier w. Let tw be this tree. One more step

backwards, let G ∈ Graph1 and r ∈ VG be such that t = Unf(G, r). We may suppose that

G is accessible from r. There is only one infinite path from r in G.

Moreover, since G is a deterministic graph, we know by [CK01] that G is in fact a

regular graph1. We actually ignore this property to reach the result, and we prefer to

follow the hierarchy backwards one more time : G is it interpreted from a tree t ∈ Tree1.

Lemma 5.2.7. There is a MSO-interpretation I and a deterministic regular tree t ∈ Tree1

such that G = I(t) and t has only one infinite branch.

Proof. Instead of a MSO-interpretation we know that we may chose a TWA-interpretation

A = {Aa}a∈Σ as described in Remark 4.1.4. There is a regular tree t in Tree1 such that G

is A(t) up to a color projection. As usual, we may suppose that t is the prefix closure of

VG. Let (ri)i≥0 be the infinite path from r, and tr the restriction of t to the prefix closure

of {ri}i≥0. Suppose there are two infinite branches in tr, with greatest common node z.

Then there are infinitely many runs ri
a
−→
G
ri+1 of Aa for some a ∈ Σ, where ri and ri+1

have prefixes in different branches. The set of possible states on z being finite, this means

that there are ri
a
−→
G
ri+1 and rj

a
−→
G
rj+1 with i 6= j and thus ri

a
−→
G
rj+1, which cannot be

since G is deterministic. So tr has only one infinite branch B.

As in Section 4.5, we may note Vi the subset of VG such that any path from r to this

subset goes through ri, but not necessarily through ri+1. Each Vi is a finite set.

1Given a deterministic prefix-recognizable relation (U → V)W , we have necessarily that |V | = 1 and
that a word in U ·W must be uniquely decomposable. This satisfies exactly the property 3 of [CK01,
Theorem 4.6].

5.2. MORPHIC WORDS 101

U V0 V1 V2

. . .y
x0w′ x1w′

x1w x2w

Figure 5.5: General shape of the folded graph.

Suppose there is another infinite branch B′ and let b = B ∧ B′. Since the tree is

deterministic and the Vi are finite, there are infinitely many i ∈ N such that ri is supported

by B and some vertex zi in Vi is supported by B′. Since there is a path from ri to zi, we

can consider the precise pair (xi, yi such that ri −→
G
xi

a
−→
G
yi −→

G
zi and |xi ∧ B| > |b| and

|yi ∧ B
′| > |b|. Since t is deterministic and the pairs (xi, yi) are pairwise distinct, for all

N there is a i > 0 and a ∈ Σ such that there are infinitely many xi
a
−→
G
yi and

|xi ∧ B| − |b| > N

|yi ∧ B
′| − |b| > N.

By applying the same argument than above, we see that there are i 6= j such that there

is also a run of Aa from xi to yj, which contradicts the determinism of G.

So t is a regular tree with one infinite branch. This means that it is periodic in the

sense that there are two words u, v with sufficiently large u such that if t(uw) = c for

some w, then t(uvkw) = c for all k ≥ 0. Indeed, if dMS is the graph decomposition in the

sense of [MS85] (see Section 2.5), then there are nu, nv such that d
(nu+nv)
MS (t) = d

(nu)
MS (t).

We may then chose u to be the prefix of size nu of the branch and v the following factor

of size nv.

For any w such that v 6⊑ w, we note this vertex xkw = uvkw. For a given k, there

are only finitely many such vertices. Let Vk = VG ∩ {xkw | w ∈ Σ∗} for k > 0 and

U = VG \
⋃

k≥0 Vk. These sets are all finite. We also note GU the subgraph of support U ,

V≤k = U ∪
⋃

i≤k Vi and G≤k the subgraph of support V≤k. The following technical lemma

is illustrated in Figure 5.5.

Lemma 5.2.8. There is a choice of u, v such that if k ≥ 1 and xkw
a
−→
G
y, then

• either y ∈ U then xk+1
w

a
−→
G
y,

• or y ∈ Vk−1 ∪ Vk ∪ Vk+1 so y = xk
′

w′ and xk+1
w

a
−→
G
xk

′+1
w′ .

102 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Proof. Suppose y ∈ VG \ U and note y = xk
′

w′ . There is a run of Aa from xkw to xk
′

w′ . This

run goes by xk
′

w′ ∧ B which is of the form xk
′

z with z ⊑ v. By the regularity of the tree,

there is also a run from xk+1
w to xk

′+1
w′ .

Consider the set of h ∈ N such that the run of Aa from xkw to xk
′

w′ goes by xhz . If |k′−k|

is not bounded, then this set is larger than the set of states of Aa; so there are h 6= h′

such that Aa has the same state on xh
′

z and xhz . Suppose w.l.o.g. that k′ ≤ h′ < h ≤ k.

Then there is a run of Aa from xk+h−h′

w to xk
′

w′ , but also from xk+h−h′

w to xk
′+h−h′

w′ . This

contradicts the determinism of G. So |k′ − k| is bounded by a constant depending on Aa,

and there is therefore a choice of v such that whenever xkw → xk
′

w′ then k′ ∈ [k − 1, k + 1].

Suppose now that y ∈ U and k is large. We use again the regularity of t on a sufficiently

long run of Aa : there is a pw,y such that for all i ≥ 0 x
k+ipw,y
w

a
−→
G
y. By considering the

least common multiple of all the pw,y, we can adjust v so that xk+1
w

a
−→
G
y and allow k to

be simply greater than 1.

The graph G being deterministic, the second part of this lemma can also be read

backwards up to a good choice of v : if xk+1
w

a
−→
G
xk

′+1
w′ , then xkw

a
−→
G
xk

′

w′ .

Let P be the sequence of vertices of the infinite path in G starting from r. Let x1p1 be

the first vertex of P in V1. By the previous lemma, x2p1 also belongs to P . Up to a good

choice of u, v, the subsequence (x1p1 , . . . , x
2
p1

) is all in VG \V≤0. Let S1 be this subsequence

without the last x2p1 .

Let Gxk
w

be the graph restricted to (VG \ P) ∪ {xkw}. For any xkw ∈ Vk, we note

Fr(xkw) = Fr(Unf(Gxk
w
, xkw)), i.e. the finite frontier obtained without following the infinite

path. This notion can be expressed recursively. Formally, let X = {xw | x0w ∈ V0} be a

new alphabet. By the previous lemma and the fact that G≤k is an acyclic graph, there is

a word sw over Γ ∪X such that for all k ≥ 1,

Fr(xkw) = sw[xw′ := Fr(xk−1
w′)].

This allows the definition of the morphic word. The alphabet is X ∪ Γ, and τ and σ

are idempotent on Γ.

τ(∆) = ∆.
∏

x∈S

x

σ(∆) = Fr(Unf(G≤0, r))

for any w, τ(xw) = sw

σ(xw) = Fr(x1w)

5.2.4 Words in Graph2 are morphic, by recursion schemes

We prove again Theorem 5.2.6, i.e. that words of Graph2 are necessarily morphic words,

this time using recursion schemes. A first attempt of this proof appears in [Lav05].

5.2. MORPHIC WORDS 103

By Corollary 5.1.6, it is enough to prove that the frontiers of prefix binary combs

generated by order-1 schemes are morphic words. At this order, safety is not a constraint.

In order to prove the result, a given scheme will undergo a series of transformations

through the following lemmas. Eventually, we show that it is enough to consider specific

simple schemes with only 2 nonterminals.

Let S = (Σ, N, S, E) ∈ S1 be a scheme. We begin by cleaning the scheme of non-

productive nonterminals, where non-terminal F is productive if JFx1 . . . xρ(F)K 6= ⊥. It

is obvious that for any S ∈ S1 generating an infinite tree, there is S
′ ∈ S1 with only

productive nonterminals, and generating the same tree.

A nonterminal F ∈ N is infinite if it generates an infinite tree, i.e. for x1, . . . , xρ(F) ∈

X, the tree JFx1 . . . xρ(F)K is infinite.

Lemma 5.2.9. For any S ∈ S1 generating an infinite tree, there is S
′ ∈ S1 with only

infinite nonterminals, and generating the same tree.

Proof. Let S = (Σ, N, S, E) ∈ S1 with only productive nonterminals producing an infinite

tree, so S is infinite. Let F ∈ N be a finite nonterminal and n = ρ(F). There is a finite

term w on Σ ∪ X such that Fx1 . . . xn =⇒
S

∗ w and JFx1 . . . xnK = w. For each other

nonterminal F ′, if there is an occurrence of F in wF ′ , then in particular there is an

occurence of Ft1 . . . tn without any F in any ti, for 1 ≤ i ≤ n. Replacing Ft1 . . . tn by

w[xi := ti] is done by rewriting. Eventually, we can replace all occurrences of F in wF ′ .

The resulting scheme generates the same tree. Since N is finite, the whole process

may be repeated for each finite nonterminal.

The operand index i of a nonterminal F is useful if xi appears in JFx1 . . . xρ(F)K. A

useful nonterminal has only useful arguments.

Lemma 5.2.10. For any scheme in S1 generating an infinite tree, there is a scheme in

S1 with infinite and useful nonterminals generating the same tree.

Proof. Let S = (Σ, N, S, E) ∈ S1 generating a comb with only infinite nonterminals. Let

F be such a nonterminal. If F is inaccessible from S (i.e. for any S =⇒
S

w, F does not

appear in w), we safely remove this nonterminal.

Suppose that i is a useless argument of F , then xi cannot appear in π(w), where w is

any rewriting of a tree containing xi only in an occurrence of Fx1 . . . xρ(F). We simply erase

this argument. Formally, let ♦ be a new letter, S′ = (Σ∪{♦}, {F ′}∪N\{F}, S, E ′) be the

same scheme where ρ(F ′) = n − 1 and F ′ has production rule F ′x1 . . . xi−1xi+1 . . . xn ⇒

wF [xi := ♦], and all occurrences of Ft1 . . . tn in each production rule are replaced by

F ′t1 . . . ti−1ti+1 . . . tn. In the limit tree, this transformation can only change some subtrees

into leaves labeled by ♦. But if it did, this means that there was a rewriting S =⇒
S′

w such

that ♦ appears in π(w). By the definition of F ′, this is contradictory with the lemma

that i is a useless argument of F . So the resulting tree is the same. This operation only

remove arguments, so iteration is finite.

104 CHAPTER 5. SCHEMES AND MORPHIC WORDS

A scheme S = (Σ, N, S, E) ∈ S1 is called simple recursive if N = {S, F}, and E =

{S ⇒ wS, Fx1 . . . xρ(F) ⇒ wF} where S cannot appear in wS, wF and F appears exactly

once in both.

Lemma 5.2.11. For any scheme in S1 generating a comb, there is a simple recursive

scheme in S1 with only infinite and useful nonterminals generating the same comb.

Proof. Let S = (Σ, N, S, E) ∈ S1 and S ⇒ wS ∈ E. If N = {S}, the recursive form is

easy to get : due to the fact that there is only one infinite branch in the limit tree and since

S is infinite, there is exactly one occurence of S in wS. Otherwise, since nonterminals are

infinite, if there is two nonterminals without nonterminal ancestors in wS, there would

be two infinite paths in JSK. So there only one such nonterminal subterm Ft1 . . . tρ(F),

which is infinite and useful. There is a w such that

• Fx1 . . . xρ(F) =⇒
S

∗ w,

• there is a nonterminal in w,

• and there is an occurence of each xi to the left of this nonterminal.

In particular, Ft1 . . . tρ(F) =⇒
S

∗ w[xi := ti]. This means there is no nonterminal in any ti,

or there would be two nonterminal without nonterminal ancestors in wS. This means that

in fact there is exactly one nonterminal in wS. We reach the same conclusion for the right

side of each production rule. This means there is only one wi such that S =⇒
S

i wi and that

wi contains exactly one nonterminal Fi. Since there are finitely many nonterminals, the

sequence (Fi)i>0 is ultimately periodic and the simple recursive form is easy to obtain.

We are now ready to focus on the proper result, i.e. Theorem 5.2.6.

Proof. Let S = (Σ, {S, F}, S, E) be a simple recursive scheme of S1, n = ρ(f) with

production rules S ⇒ wS, Fx1 . . . xn ⇒ wF . Let Σ0 be the subset of Σ of type o. Up

to renaming, suppose that ⊥ /∈ Σ. Let Fs1 . . . sn and Ft1 . . . tn be the subterms starting

with F respectively in wS and wF . Each si is a term on Σ and each ti is a term on Σ∪X.

Let uS, uF be finite words on Σ0 ∪X such that Fr(π(w⊥
S)) = uS⊥, Fr(π(w⊥

F)) = uF⊥.

We set Σ0 ∪ {∆, x1, . . . , xn} as the alphabet of the morphic word and τ, σ two mor-

phisms on this alphabet. Letters from {∆, x1, . . . , xn} are temporary and are erased by

σ.
τ(∆) = ∆ · uF

σ(∆) = uS

for 1 ≤ k ≤ n, τ(xk) = Fr(π(tk))

σ(xk) = Fr(π(sk))

for any a ∈ Σ0, τ(a) = a

σ(a) = a

5.2. MORPHIC WORDS 105

S =⇒
F

a

F

x
=⇒

f

x
f

b
F

f
x x

JSK =
f

a
f

b
f

f
a a

f
b . . .

Figure 5.6: Rules of a scheme which frontier is a morphic word.

We show that the morphic word σ(τω(∆)) is indeed Fr(S). The scheme is simple recursive,

which means that for each i, there is a unique term wi such that Fx1 . . . xn =⇒
S

i wi.

Fr(π(w⊥
0)) = ⊥

Fr(π(w⊥
1)) = uF · ⊥

Fr(π(w⊥
2)) = uF · uF [∀k ≤ n, xk := Fr(π(tk))] · ⊥

for i > 2,Fr(π(w⊥
i)) = uF · Fr(π(wi−1))[∀k ≤ n, xk := Fr(π(tk))] · ⊥

So for each i, τ (i)(∆).⊥ = ∆.Fr(π(w⊥
i)). Moreover, replacing variables by terminal terms

can permuted with approximation :

Fr(π(wi[∀k ≤ n, xk := sk]⊥)) = Fr(π(w⊥
i))[∀k ≤ n, xk := Fr(π(sk)]

so the frontier of the (i+ 1)th iteration of S is

uS · Fr(wi)[∀k ≤ n, xk := Fr(π(sk))] = σ(τ (i)(∆)) · ⊥.

At the limit, since τω(∆) is infinite, it is exactly Fr(JSK).

Example 5.2.12. Consider the scheme ({f, a, b}, {F, S}, S, E) where E is given in Fig-

ure 5.6. The frontier of its limit tree is the morphic word abaab . . . a2
i

b . . . already seen

in Example 5.2.5. This scheme is simple recursive and uS = ε, uF = xb. We may hence

deduce the following τ and σ.

τ(∆) = ∆xb τ(x) = xx τ(a) = σ(a) = a

σ(∆) = ε σ(x) = a τ(b) = σ(b) = b

N

106 CHAPTER 5. SCHEMES AND MORPHIC WORDS

5.3 Second order

It is tempting to try and improve the method used in Section 5.2.4 in order to define an

extension of the morphic words which would match exactly the words of any level of the

hierarchy. In reality, higher-order schemes are not easily manipulated; in the rest of this

chapter, we will only consider Graph3. For instance, we would like to express words like

the Champernowne word described below, or the Liouville word of Section 5.3.3. These

two examples both express some increase of complexity compared to morphic words,

respectively in terms of subword complexity and growth.

The Champernowne word [Cha33] (or constant) is the concatenation of numbers start-

ing from 0 in some k-ary notation. Respectively in decimal and binary, it is

0123456789101112131415 . . .

0110111001011101111000 . . .

For any base, these words belong to Graph3. To prove this fact, it is enough to find a

second-order safe scheme yielding it. We present the binary case; other bases are similar.

The scheme is S = ({f, 0, 1}, {S, F,G}, S, E) where E is presented in Figure 5.7.

Even if there is more than two nonterminals here, this presentation is very similar to

the form of schemes corresponding to (order-1) morphic words : there is one starting non-

terminal S and only one “recursive” nonterminal F . We define formally this linearization

form for order-2 schemes in Subsection 5.3.2.

5.3.1 Second-order morphic words

We introduce the notion of a second-order morphic word, or 2-morphic word . Its definition

mimics the notion of schemes : instead of letters, we use functions with operands.

Let ρmax ≥ 0 and Σ =
⊎ρmax

i=0 Σi where Σi is a set of function symbols of arity i. The

symbols of Σ0 are called letters, and there must be at least one letter. On the opposite,

Σ \ Σ0 is noted Σ>0.

A term word θ is defined by

θ := ε | a ∈ Σ0 | f(θ, . . . , θ
︸ ︷︷ ︸

i

), f ∈ Σi | θ · θ.

The set of term words on Σ is noted TW(Σ). We use the standard notation f(z̄) for

an arbitrary long f(z1, . . . , zn). Let V be a new set of letters called variables. We note

Σi(z̄) the set {f(z̄) | f ∈ Σi, z̄ ∈ V i} and Σ(z̄) =
⊎ρmax

i=0 Σi(z̄).

5.3. SECOND ORDER 107

S =⇒ f

0 f

1 F

f

1

G

ϕ x

=⇒ f

ϕ

f

x 0

ϕ

f

x 1

F

ϕ

=⇒ f

f

ϕ

0

ϕ

1

F

G

ϕ

S : o f : o → o → o
F : (o → o) → o 0 : o
G : (o → o) → o → o 1 : o

S =⇒
S

2
f

0 f

1 f

f

f

1 0

f

1 1

F

G

f

1

=⇒
S

3
f

0 f

1 f

f

f

1 0

f

1 1

f

f

f

f

1 f

0 0

f

1 f

0 1

f

f

1 f

1 0

f

1 f

1 1

F

G

G

f

1

Figure 5.7: Order-2 safe scheme which frontier is the Champernowne word.

108 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Let τ, σ be two morphisms on Σ(z̄)∗ w.r.t. concatenation.

for a ∈ Σ0,

τ(a) ∈ TW(Σ)

σ(a) ∈ TW(Σ0)

for f ∈ Σ>0 and z1, . . . , zn ∈ V ,

τ(f(z1, . . . , zn)) ∈ TW(Σ ∪ V)

σ(f(z1, . . . , zn)) ∈ TW(Σ0 ∪ V)

This definition is extended on term words by

for f ∈ Σ>0 and t1, . . . , tn ∈ TW(Σ),

τ(f(t1, . . . , tn)) = τ(f(z1, . . . , zn))[∀i, zi := τ(ti)]

σ(f(t1, . . . , tn)) = σ(f(z1, . . . , zn))[∀i, zi := σ(ti)]

A 2-morphic-word is any word of the form σ(τω(∆)), where ∆ is a letter in Σ such

that τ(∆) ∈ ∆ · TW(Σ).

Example 5.3.1. The Champernowne word has a 2-morphic word presentation. Here

Σ0 = {0, 1} and Σ1 = {g}.

τ(∆) = ∆g(0)g(1)

τ(g(z)) = g(z0)g(z1)

σ(∆) = 01

σ(g(z)) = 1z

Implicitly, τ(1) = σ(1) = 1 and τ(0) = σ(0) = 0. The first steps of rewriting are shown.

τ(∆) = ∆ g(0) g(1)

τ (2)(∆) = ∆ g(0) g(1) g(00) g(01) g(10) g(11)

σ(τ (2)(∆)) = 01 10 11 100 101 110 111

N

Example 5.3.2. Just like the word abaab . . . a2
n

b . . . was shown to be morphic, it is possible

to build the 2-morphic word abaaaab . . . a2
2n

b Letters a and b are copied by τ and σ.

τ(∆) = ∆r(a)b

τ(r(z)) = r(r(z))

σ(∆) = ε

σ(r(z)) = zz

It easy to prove that τ (n)(r(a)) = r(2
n)(a) and finally σ(τ (n)(r(a))) = a2

2n

. N

If ρmax = 0, all symbols are letters and we land back on the classic definition of

morphic words. The converse is even more noteworthy : in our examples, the letters are

5.3. SECOND ORDER 109

simply copied and symbols which are actually used are of non-zero arity, except for ∆.

This hints the following proposition, which seems to be anecdotic but reveals itself useful

in Section 5.3.2.

Proposition 5.3.3. For a 2-morphic word w, there is τ, σ,Σ,∆ such that

• w = σ(τω(∆)),

• ∆ appears only as the first letter of τ(∆),

• for any other letter a ∈ Σ0, τ(a) = a.

Proof. Let τ, σ,Σ,∆ such that w = σ(τω(∆)). If τ(∆) = ∆.u, let ∆′ be a new letter such

that τ(∆′) = ∆′.u and σ(∆′) = σ(∆). This answers the constraint on ∆.

For any other letter, it is possible to add “fake operands”. Formally, for any letter a,

take a fresh symbol a1 of arity 1 such that τ(a1(z)) = τ(a), σ(a1(z)) = σ(a). Then set

τ ′(a) = a, and for each other symbol b, set

τ ′(b(z̄)) = τ(b(z̄))[a := a1(ε)].

Then w = σ(τ ′ω(∆′)).

5.3.2 Second-order scheme ω-frontiers

We adapt the method of Section 5.2.4 to prove that frontiers of combs generated by

order-2 schemes are exactly the 2-morphic words. The main problem is to perform the

transformation leading to a “linearized” scheme, where there are only two infinite non-

terminals. Once this transformation is done, we may read the values of σ and τ as in the

case of 1-order schemes.

A nice property of this method is that is does not use the safety constraint, even

though 2-morphic words can be encoded as frontier of safe schemes. This means the

ω-frontiers of schemes does not depend on safety.

The previous remark about productive nonterminals is still straighforward. For any

S ∈ S2 generating an infinite tree, there is S
′ ∈ S2 with only productive nonterminals,

and generating the same tree. From now on, we suppose every nonterminal is productive.

The second step, deleting useless operands, is more delicate. In this case, simply deleting

operands will not work, because it would lead to type mismatches — see below for an

example. The solution kept here is to duplicate nonterminals when needed.

Lemma 5.3.4. For any scheme in S2 generating a tree, there is a scheme in S2 with only

useful nonterminals generating the same tree.

Proof. Let S = (Σ, N, S, E) ∈ S2 generating an infinite tree. Let F be a nonterminal. If

F is inaccessible from S (i.e. for any S =⇒
S

∗ w, F does not appear in w), we may safely

remove it.

110 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Let n = ρ(F) and F : τ1 → . . . → τn → o. Suppose that i is a useless operand of F ,

then xi cannot appear in w, where w is any rewriting of a tree containing xi only in an

occurrence of Fx1 . . . xρ(F). As in the S1 case, we can erase this operand, but at the cost

of duplication of other nonterminals.

Formally, let ♦ : τi be a new letter, and F ′ : τ1 → . . . τi−1 → τi+1 → . . . → τn → o a

new nonterminal of the same type than F without the i-operand. Let wF ′ = wF [xi := ♦].

There are two disjoint cases depending on the order of xi.

• If ℓ(xi) = 1, this case is similar to the first order. Since the scheme has order 2,

each app. subterm of root F has an order at most 1; this means that this app.

subterm appears as Ft1 . . . tk with k ≥ i. So each occurence of F can be replaced

by F ′ where this i-operand is deleted.

• If ℓ(xi) = 0, then there may be occurences of F without its i-operand in production

rules of other nonterminals. In this case the app. subterm is an argument of another

nonterminal H. For each nonterminal H : (oh1 → o) → . . .→ o, and each sequence

s ∈ [0, h1]
ρ(H), define the duplicate Hs. Let (xi)1≤x≤ρ(H) be a family of variables

where

– if si = 0, then xi : ohi → o;

– otherwise, xi : ohi−1 → o.

Then let Hsx1 . . . xρ(H) ⇒ wHs
be a copy of wH where types are adjusted accordingly.

Formally, if si 6= 0, then each occurrence of xi is modified. If its app. subterm has

at least si operands, the si-operand is erased. Otherwise, it has order 1, so it is the

j-operand of an app. subterm of root K, which is changed into the correct duplicate

Ks′ where s′j = si − ρ(xj).

Each time F appears without its i-operand, it has order 1 and must appear as

operand of some nonterminal H. So we can change F into F ′ and H into the

appropriate Hs.

Example 5.3.5. For instance, let

F : o → o ϕ : o → o

G : o → o x : o

H : (o → o) → o → o f : o → o → o

Suppose the rewriting rule for H is

H

ϕ x

⇒ f

ϕ

x

H

F H

G x

5.3. SECOND ORDER 111

Suppose that the argument of F is revealed useless and has to be deleted. Since G does

not change, this implies a duplication of the nonterminal H. Note that in the rule for H1,

the type of ϕ′ is now o.

H(1,0)

ϕ′ x

⇒ f

ϕ′ H(1,0)

F H(0,0)

G x

H(0,0)

ϕ x

⇒ f

ϕ

x

H(1,0)

F H(0,0)

G x

N

As before, in the limit tree, this transformation can only change some subtrees into

leaves labeled by ♦. But if it did, this means that there was a rewriting S =⇒
S′

∗ w such

that ♦ appears in w. By the definition of F ′, this is contradictory with the fact that i is

a useless argument of F . So the resulting tree is the same.

We iterate this process for all useless operands of all nonterminals. The number of

possible different duplicates of nonterminals is finite, so the whole process is also finite.

Among other differences between S2 and S1, nonterminals generating finite trees can-

not be avoided. Indeed, an applicative subterm which is not a term cannot be rewritten.

To overcome this fact, it is enough to make a clear distinction between nonterminals

generating finite or infinite trees.

A nonterminal G with production rule Gx1 . . . xρ(G) ⇒ wG is called semiterminal if wG

does not contain any nonterminal or does contain only other semiterminals. As before, a

nonterminal F is called infinite if JFx1 . . . xρ(F)K is an infinite tree. “Infinite nonterminal”

is shortened in ∞-nonterminal.

The following property shows that these two categories (semi- and ∞-nonterminal)

are actually a partition of nonterminals. Later on, we will focus only on ∞-nonterminals

to build 2-morphic words.

A subterm is called head applicative subterm whenever its root is nonterminal and it

has no other nonterminal above. Since the schemes of this section have order 2, any head

applicative subterm has order 0.

Lemma 5.3.6. Let S = (Σ, N, S, E) be a scheme without nonproductive or useless non-

terminals. A term on Σ ∪ N produces an infinite tree if and only if it contains a non-

semiterminal.

Proof. Let F be a non-semiterminal of arity n. Since F is productive, there is a w such that

Fx1 . . . xn =⇒
S

∗ w and the root of w is a terminal. Also, by definition, w contains at least

one non-semiterminal nonterminal. Since the scheme has order 2, any head applicative

subterm has order 0, so there is a head subterm. Since each nonterminal is useful, there

is a sequence of rewriting bringing a head non-semiterminal. This nonterminal has all its

operands and can be rewritten. By iterating the process, we build an infinite tree.

112 CHAPTER 5. SCHEMES AND MORPHIC WORDS

We prove now the opposite direction : a term only composed of terminals and semiter-

minals cannot be infinitely rewritten. We note sN the set of semiterminals. By definition,

the graph over sN where F → G iff G is in wF is a acyclic graph. We can provide a

(topological) ordering on semiterminals so that F → G ⇐⇒ F > G. This ordering can

be extended on Σ ∪ sN with Σ < sN . Then we translate it to T(sN ∪ Σ) as follows.

For any app. subterm t, let root(t) be its root. We introduce the notion of lvl-1-

branches of a nonterminal subterm t : a lvl-1-branch is a multiset {root(t)}∪ b where b is

a lvl-1-branch of an app. subterm ti of level 1. We call lvl1(t) the multiset of lvl-1-branches

of t.

For a term t, for any branch b of t we call val(b) the multiset of lvl1(t′) for any app.

subterm intersecting this branch. Finally, we call B(t) the multiset of val(b) for each

branch of t. The values of app. subterms can be totally ordered by multiset ordering.

Then {B(t) | t ∈ T (sN ∪ Σ)} is therefore totally ordered by multiset ordering.

We have now to prove that (1) if t =⇒
S

t′, then B(t) > B(t′); (2) the order on

{B(t) | t ∈ T (sN ∪ Σ)} is a well-ordering. The latter property comes from the well-

known fact that the multiset operation preserves well-ordering. Yet B(t) is just a chained

encapsulation of 4 multisets on a finite ordering.

It remains to prove (1). Let tF = Ft1 . . . tn =⇒
S

w = wF [xi := ti] be the rewritten

term in t with n = ρ(F). Let b be a branch of t′. If b does not intersect w, then val(b)

already exists in B(t). Otherwise, b goes through w. By simply looking at wF , we can

say that there is h such that

b = u · v1 · root(ti1) · v2 · · · · · root(tih−1
) · vh · cih

where u is the part above the rewritten subterm, (vk)k∈[1,h] are (possibly empty) segments

of branches in wF without variables, and cih is a (possibly empty) branch of tih .

For any nonterminal G in a branch b, recall that we note tG the associated subterm.

val(b) = {val(tG) | tG intersects u

or tG intersects vk, k ≤ h

or tG = tiks1 . . . sl, k < h, l ≤ ρ(tik)

or tG intersects cih}

Let bi be a branch in t going through tih , of the form u · F · c. This branch exists

and val(bi) ∈ B(t). We prove that val(b) < val(bi), which implies the required result

B(t) > B(t′).

To this extent, we study the four cases above in order.

1. If tG intersects u, since tF and w are both of order 0, the rewriting does not affect

lvl1(tG).

2. By definition, any nonterminal appearing in wF is smaller than F . If tG has its

5.3. SECOND ORDER 113

root in a vk, a lvl-1-branch of tG is composed of at most one ti, and nonterminals

smaller than F . So it is smaller (for multiset ordering) than the corresponding

branch number i in tF . So lvl1(tG) < lvl1(tF).

3. When tG is an applied tjk , since ℓ(tjk) = 1, any lvl-1-branch can be extended in a

lvl-1-branch of tF . So lvl1(tG) < lvl1(tF).

4. As in the case of u, for any subterm tG of a ti, lvl1(tG) is unchanged.

To summarize, between bi and b, for all tG of the beginning (in u) or end (in cih), lvl1(tG)

is copied. Moreover lvl1(tF) disappears, and new values than may appear are necessarily

smaller than lvl1(tF). So val(bi) > val(b).

The definition of simple recursive still holds for order-2 schemes. A scheme S =

(Σ, N, S, E) ∈ S2 is called simple recursive if it has no nonproductive or useless arguments,

and there are only two ∞-nonterminals S, F , and {S ⇒ wS, Fx1 . . . xρ(F) ⇒ wF} ∈ E

where S cannot appear in wS, wF and F can appear at most once.

Lemma 5.3.7. For any scheme in S2 generating a comb, there is a simple recursive

scheme in S2 with only useful nonterminals generating the same comb.

Proof. Let S = (Σ, N, S, E) ∈ S2 be a useful scheme producing a comb and let S ⇒ wS ∈

E. If there is no ∞-nonterminal in wS, then JSK = JwSK is finite by Lemma 5.3.6. So

there is an occurence of an ∞-nonterminal in wS. Since all nonterminals are useful, we

can suppose that there is an occurence of a head subterm with ∞-nonterminal root F ,

modulo some rewriting. There is only one such head subterm in a given rewriting of S,

otherwise the limit tree would have two infinite branches. Let n = ρ(F) and Ft1 . . . tn be

this subterm.

In order to get a contradiction, suppose that there is an ∞-nonterminal G in ti for

some i. We note t̃i as a copy of ti where an app. subterm tG of root G is replaced

by a variable x (of the same type). Since operands are always useful, there is a term

w such that Ft1 . . . t̃i . . . tn =⇒
S

∗ w where x occurs outside of any nonterminal (even

semiterminals). Moreover, since F is infinite, there exists an ∞-nonterminal H in w. In

particular, Ft1 . . . tn =⇒
S

∗ w[x := tG].

If x : o, we fall on the same case than in S1; there would be more than one infinite

branch. So the only possibility is that ℓ(tG) = ℓ(x) = 1 and there is an occurence of x in

w containing an occurence of H. Namely, x occurs in w in the form (xu1 . . . uρ(x)) with

H ∈ uk for some k. For this to happen, we must have ℓ(ti) > 0 so that ti can feed x.

By applying the exact same process to G, we find that ℓ(uk) > 0 so ℓ(x) > 1, which

is impossible because then all app. subterms have order at most 1 in a order-2 scheme.

So there cannot be any ∞-nonterminal in any ti. As in the order-1 case, the sequence

of ∞-nonterminals encountered by rewriting S is ultimately periodic. We may therefore

select S and another ∞-nonterminal to get the required form.

114 CHAPTER 5. SCHEMES AND MORPHIC WORDS

We are ready to prove the main result.

Theorem 5.3.8. The following sets of ω-words are equal :

1. the ω-words of the third level of the pushdown hierarchy,

2. the ω-frontiers of safe order-2 schemes,

3. the frontiers of combs generated by order-2 schemes,

4. the 2-morphic words.

Proof. The equality 1 = 2 comes from Theorem 4.2.6, and 2 ⊆ 3 comes from Proposi-

tion 5.0.5. It is therefore enough to prove that (a) frontiers of combs generated by arbitrary

schemes are 2-morphic words, (b) 2-morphic words are ω-frontiers of safe schemes. For

(b) it is easier to prove that 2-morphic words are frontiers of safe combs.

(a) Let S be a simple recursive scheme producing a comb, and let S, F be the two ∞-

nonterminals, with production rule S ⇒ wS, Fx1 . . . xρ(F) ⇒ wF . For each variable

xi : on → o, we define the symbol xi ∈ Σn. Let tSi , t
F
i be the i-operands of F respectively

in wS and wF . They are in AT(sN ∪ Σ), and have type on → o. By Lemma 5.3.6, when

fed with appropriate variables, JtSi z̄K and JtFi z̄K are finite trees.

We simply set σ(xi(z̄)) = Fr(JtSi z̄K). For τ we have to take other variables in con-

sideration, but we will flatten the terminals. Define the mapping ξ from T(Σ ∪ z̄) to

TW(Σ) :

• if t is a leaf, ξ(t) = t;

• if t = ft1 . . . tρ(f) where f is a terminal, ξ(t) =
∏ρ(f)

k=1 ξ(tk);

• if t = xt1 . . . tρ(x) where x is a variable, ξ(t) = x(ξ(t1), . . . , ξ(tρ(x))).

We set τ(xi(z̄)) = ξ(t̂Si) where t̂Si is the normal form of tSi z̄, i.e. such that tSi z̄ =⇒
S

∗ t̂Si
which cannot be rewritten.

The starting letter ∆ is naturally associated to the part “outside of F”. Formally, we

can suppose as before that the app. subterm of root F in wS is in fact a head subterm

(in wF as well). So if we replace this subterm by ⊥ in order to approximate, we get w′
S

and w′
F with only terminals and semiterminals. We set σ(∆) · ⊥ = Fr(Jw′

SK). For τ , we

set ξ(⊥) = ε and we have then τ(∆) = ∆ · ξ(ŵ′
F) where ŵ′

F is the normal form of w′
F .

By construction, if S ⇒k sk only by rewriting F , then

Fr(Js⊥k K) = Fr(Jw′
SK) · Fr(Jw′

F [xi := tSi]K) · · ·Fr(Jw′
F [xi := tFi] . . .
︸ ︷︷ ︸

k−1

[xi := tSi]K)

= σ(∆) · σ(ξ(ŵ′
F)) · · · σ(ξ(ŵ′

F [xi(z̄) := τ(xi(z̄))]))

= σ(τ (k)(∆)).

5.3. SECOND ORDER 115

(b) Let w be a 2-morphic word defined by τ, σ on Σ. We chose a presentation given by

Proposition 5.3.3 in order to obtain a safe scheme.

Mirroring the previous case, we set a nonterminal F which operands in the production

rule are the symbols of non-zero arity. Formally, the set of variables is exactly Σ>0;

they have all type order 1 and same arity (for a symbol a ∈ Σn, we have the variable

a : on → o). The set of terminals is Σ0 ∪ {f} where f : o → o → o.

Let a ∈ Σn such that τ(a(z̄)) = θ ∈ TW(Σ ∪ z̄). Suppose a is fixed as the i-operand

of F . We define the mapping µ : TW(Σ ∪ z̄) 7→ AT(Σ0 ∪ {f} ∪ z̄) as a “converse of ξ”. It

uses a set of semiterminals which types are as follows; the types of app. subterms of the

i-operand of F are always on → o.

(concatenation) Cn : (on → o) → (on → o) → on → o

(projection) P n
i : on → o

(symbol of non-zero arity) Gn
b : (oρ(b) → o) → (on → o)ρ(b) → on → o

(symbol of arity 0) Gn
b : on → o

• if θ = θ1 · θ2, then µ(θ) = Cn(µ(θ1), µ(θ2)) where

C(ϕ1, ϕ2, z̄) ⇒ f(ϕ1z̄, ϕ2z̄).

• if θ = zi, then µ(θ) = P n
i with P n

i (z̄) ⇒ zi.

• if θ = b(θ1, . . . , θi) with b ∈ Σ>0, then µ(θ) = Gn
b (b, µ(θ1), . . . , µ(θρ(b))) with

Gn
b (ψ, ϕ1, . . . , ϕρ(b), z̄) ⇒ ψ(ϕ1z̄, . . . , ϕρ(b)z̄).

• if θ = b ∈ Σ0, then µ(θ) = Gn
b with Gn

b (z̄) ⇒ b.

Let θ∆ be the term word such that τ(∆) = ∆ · θ∆. Let tτ be the normal form of

µ(θ∆)(a1 . . . aρ(F)), i.e. a term on Σ ∪ {f} such that ξ(tτ) = θ∆. The rule for F is

Fa1 . . . aρ(F) ⇒ f(tτ , F (µ(τ(a1)), . . . , µ(τ(aρ(F))))).

In the same way, the starting nonterminal S has the rule

• If σ(∆) = ε, then

S ⇒ F (µ(σ(a1)), . . . , µ(σ(aρ(F))))

• otherwise,

S ⇒ f(tσ, F (µ(σ(a1)), . . . , µ(σ(aρ(F)))))

where tσ is a term on Σ0 ∪ {f} such that Fr(tσ) = σ(∆).

Let S be this defined scheme. Note that S is not presented in a cleaned version :

most semiterminals have useless arguments. This is not a requirement in this direction.

116 CHAPTER 5. SCHEMES AND MORPHIC WORDS

The important property is that it is safe : indeed, app. subterms of type ok → o are all

in wF below F , and their sons have the same type.

It is easy to see that for a ∈ Σ>0, if µ̂(θ)(z̄) is the normal form of µ(θ)(z̄),

ξ(µ̂(τ(a(z̄)))(z̄)) = τ(a(z̄)),

ξ(µ̂(σ(a(z̄)))(z̄)) = σ(a(z̄)).

By applying the method of part (a), we check that the frontier of the limit tree of S is

indeed σ(τ(∆)).

The above properties may sound natural, but they do not work out-of-the-box on

further levels. First, at order 3 there are variables of order 2, so head nonterminal app.

subterms are not necessarily terms. Consequently, a terminal term can contain nontermi-

nals : the notion of ∞-nonterminal has to be redefined. Moreover, many proofs rely on

the fact that the level of an app. subterm has order at most 1.

An immediate question about this result is whether we can transform an arbitrary

scheme of ω-frontier w into a comb which frontier is w. Obviously the properties of the

hierarchy developped in the previous sections are not available, so the question is open.

This result yields immediate properties on 2-morphic words.

Corollary 5.3.9. Let w be a 2-morphic word on Σ.

1. MTh(w) is decidable.

2. For any MSO-transduction T , if T (w) is an ω-word, then it is a 2-morphic word.

3. Let a ∈ Σ0 and let an the index of the ith occurence of a. There is a C > 0 such

that for sufficiently large n, an − an−1 = O(22C.n

).

Property 3 is the expected extension of [CT02, Prop. 14]; compare to the lower bound

in Example 5.3.2.

Proof. Properties 1 and 2 are straightforward properties of graphs in the hierarchy. Prop-

erty 3 is a corollary of Theorem 4.5.3 : there is a monadic interpretation transforming the

ω-word into a comb where the infinite branch is composed of all vertices marked by a in

order. The i-subtree is the rest of intermediate vertices.

Remark 5.3.10. The subword complexity of an ω-word w is the function which maps

n on the number of factors of length n in w. For morphic words, this complexity is in

O(n2); see [AS03, Section 10.4] for more details. For 2-morphic words the complexity is

maximal because of the Champernowne word. This was also noted for k-lexicographic

words [Bár08]. �

Remark 5.3.11. The morphism τ can be seen itself as a 1-order scheme. In this sense,

it reminds of the transformation in [KNU01] using the operator @. The similarities end

5.3. SECOND ORDER 117

here; whereas the role of @ was to study structural properties of the limit tree, the role of

τ is simply to reproduce the mechanism of F and depends on the fact that there is only

one recursive nonterminal. �

5.3.3 Liouville word

The Liouville word or constant is another example of infinite words more complex than

morphic words. The constant is

∑

k>0

10−k! = 0.1100010000000000000000010

We only consider digits after the dot. It is the frontier of the limit tree of the safe order-2

scheme ({f, 0, 1}, {S, F,G,H}, S, E) where E is described in Figure 5.8.

The associated 2-morphic word is defined by the the following morphisms on Σ =

{0, 1,∆, g, n} where g, n have arity 1. As before, 0 and 1 are dumb letters : τ(1) =

σ(1) = 1 and τ(0) = σ(0) = 0.

τ(∆) = ∆n(g(0))g(1) σ(∆) = 11

τ(g(z)) = n(g(0))g(0)g(z) σ(g(z)) = 0z

τ(n(z)) = zn(z) σ(n(z)) = z

Informally, the goal is to obtain at step k an additionnal number of letters equal to

(k + 2)! − (k + 1)! = (k + 1)(k + 1)!. The symbols n, g are such that

|σ ◦ τ (k)(n(z))| = k

|σ ◦ τ (k)(g(z))| = (k + 1)!

So σ ◦ τ (k)(n(g(z))g(z)) is a word of length k.(k+ 1)! + (k+ 1)! = (k+ 1)(k+ 1)!. This is

clearer when considering one iteration.

τ (2)(∆) = ∆ n(g(0)) g(1) τ(g(0)) n(τ(g(0))) n(g(0)) g(0) g(1)

= ∆ n(g(0)) g(1) n(g(0))g(0)g(0) n(n(g(0))g(0)g(0)) n(g(0)) g(0) g(1)

σ(τ (2)(∆)) = 11 00 01 00 00 00 00 00 00 00 00 01

118 CHAPTER 5. SCHEMES AND MORPHIC WORDS

S =⇒ f

1 f

1 F

H

g 0

g

F

ϕ ψ

=⇒ f

f

ψ

ϕ

0

ϕ

1

F

H

H

ϕ ϕ

0

ψ

ϕ

0

G

ψ

G

ψ x

=⇒ f

ψ

x

x

H

ϕ y x

=⇒ f

y ϕ

x

F : (o → o) → (o → o) → o f : o → o → o
G : (o → o) → o → o g, ϕ, ψ : o → o
H : (o → o) → o → o → o x, y, 0, 1 : o

S =⇒
S

3
f

1 f

1 f

f

g

f

0 g

0

f

0 g

1

F

H

H

H

g 0

H

g 0 0

g

H

g 0 0

G

g

Figure 5.8: Order-2 safe scheme which frontier is the Liouville word.

List of notations

Preliminaries

P(S) powerset of S .19

[a, b] closed interval bounded by a and b . 19

Σ∗ set of finite words on Σ . 19

<lex lexicographic order . 19

⊏,⊑ (strict) prefix relation . 19

⊥ “not prefix” symmetric relation . 19

ā reverse arc label . 34

〈U, (R1, . . . , Rk) 〉 logical structure . 20

|= satisfaction of a formula . 30

≃ isomorphism relation . 20

MTh(G) monadic theory of the structure G . 31

Orders

0,1, . . . ,k finite order types . 23

ω, ζ, η order types of N,Z,Q .23

L∗ reverse ordering of L . 23

� suborder relation . 23

ω ↑↑ n exponential tower of ω’s of height n .25

ε0 smallest ordinal such that ε0 = ωε0 . 26

r̃ alternative version of the Hausdorff rank . 27

Trees

Fr frontier . 29

KB Kleene-Brouwer ordering . 29

≡ isomorphism up to subtree permutation. .79

∂ Cantor-Bendixson derivative . 81

r̃CB alternative version of the Cantor-Bendixson rank 82

Kf tree of the function f . 62

Covering graphs

α[n] element of the fundamental sequence of α55

⋖ covering graph relation . 55

Gα covering graph of α . 56

d degree word . 57

119

120 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Recursion schemes

o base type . 92

ℓ type order . 93

AT(Σ),T(Σ) set of (applicative) terms over Σ . 93

ρ arity . 93

Fx1 . . . xρ(F) ⇒ wF production rule . 93

=⇒
S

rewriting relation . 93

t⊥ term approximation . 93

JtK limit tree of the term t . 94

Index

ω-tail, 54

ancestor, 22

approximation, 93

arc, 21

arithmetics, 23

on ordinals, 24

arity, 20, 93

binary tree, 22

branch, 22

Büchi automaton, 32

Cantor normal form, 26

Champernowne word, 106

closed formula, 30

CNF, see Cantor normal form 26

coding, 98

cofinality, 54

color set, 21

colored

deterministic tree, 22

graph, 21

ordering, 23

comb, 87

#-comb, 87

#-comb-graph, 87

complete tree, 22

configuration graph of a n-hopda, 50

crossing-free, 55

degree, 21

delabeled graph, 22

dense, 26

descendant, 22

deterministic, 21

deterministic tree, 22

finite presentation, 19

FO, 30

frontier, 29

ω-frontier, 91

full tree, 22

fundamental sequence, 55

graph, 21

Graphn, 38

Hausdorff rank, 27

homogeneous, 92

infinite nonterminal, 103

interval, 23

inverse rational mapping, 34

Knuth notation, 25

label, 21

length, 19

linear ordering, 22

Liouville word, 117

morphic word, 98

2-morphic word, 106

morphism, 97

MSO, 31

MSO-coloring, 33

MSO-compatible, 33

MSO-interpretation, 33

MSO-transduction, 35

MSO-transduction, 35

121

122 INDEX

nonterminal, 93

∞-nonterminal, 111

operand, 93

order (schemes), 92

order type, 23

ordinal, 24

path, 22

powerset, 19

prefix, 19

prefix tree, 22

production, 93

productive nonterminal, 103

pushdown hierarchy, 37

RCNF, see Cantor normal form 26

recursion, see recursion

recursion scheme, 92

reverse ordering, 23

rewriting relation, 93

root, 22

safety, 94

scattered, 26

semiterminal, 111

signature, 20

simple, 22

structure, 20

subordering, 23

subterm, 93

applicative, 93

head, 111

successor, 24

support, 21

tame, 78

term, 93

applicative, 93

grammar, see recursion scheme 92

tree, 96

word, 106

terminal, 93

tree presentation, 22

Treen, 38

tree-walking automaton, see TWA 67

treegraph, 36

Γ-treegraph, 46

TWA, 67

typed alphabet, 93

types, 92

unfolding, 35

unlabeled graph, 22

useful nonterminal, 103

well-ordered trees, 73

well-ordering, 24

word

ω-word, 23

finite, 19

Bibliography

[AdMO05] Klaus Aehlig, Jolie de Miranda, and Luke Ong. Safety is not a restriction at

level 2 for string languages. In V. Sassone, editor, Proc. of FoSSaCS, volume

3441 of Lecture Notes in Computer Science, pages 490–504. Springer, 2005.

[AS03] Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences. Cambridge

University Press, 2003.

[AU71] Alfred Aho and Jeffrey Ullman. Translations on a context-free grammar.

Information and Control, 19(5):439–475, 1971.

[Bár08] Vince Bárány. A hierarchy of automatic ω-words having a decidable MSO

theory. Informatique Théorique et Applications, 42(3):417–450, 2008.

[BC01] Stephen Bloom and Christian Choffrut. Long words: the theory of concate-

nation and omega-power. Theoretical Computer Science, 259(1-2):533–548,

2001.

[BC02] Véronique Bruyère and Olivier Carton. Hierarchy among automata on linear

orderings. In Proc. of IFIP, pages 107–118. Kluwer, B.V., 2002.

[BC06a] Alexis Bès and Olivier Carton. A Kleene theorem for languages of words in-

dexed by linear orderings. International Journal of Foundations of Computer

Science, 17(3):519–542, 2006.

[BC06b] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata cannot

be determinized. Theoretical Computer Science, 350(2-3):164–173, 2006.

[BC07] Véronique Bruyère and Olivier Carton. Automata on linear orderings. Jour-

nal of Computer and System Sciences, 73(1):1–24, 2007.

[BC08] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not

recognize all regular languages. SIAM Journal of Computing, 38(2):658–701,

2008.

[BC10] Laurent Braud and Arnaud Carayol. Linear orders in the pushdown hierarchy.

In Proc. of ICALP, 2010.

123

124 BIBLIOGRAPHY

[BCL07] Achim Blumensath, Thomas Colcombet, and Christof Löding. Logical theo-

ries and compatible operations. Logics and Games, 2:75–109, 2007.

[BÉ09] Stephen Bloom and Zoltán Ésik. Scattered algebraic linear orderings. In

Proc. of FICS, pages 25–30, 2009.

[BÉ10] Stephen Bloom and Zoltán Ésik. Algebraic ordinals. Fundamenta Informat-

icae, 99(4):383–407, 2010.

[Blu08] Achim Blumensath. On the structure of graphs in the Caucal hierarchy.

Theoretical Computer Science, 400:19–45, 2008.

[BNR+10] Mikolaj Bojanczyk, Damian Niwiński, Alexander Rabinovich, Adam

Radziwonczyk-Syta, and Michal Skrzypczak. On the Borel complexity of

MSO definable sets of branches. Fundamenta Informaticae, 98(4):337–349,

2010.

[Boj08] Mikolaj Bojanczyk. Tree-walking automata. In C. Mart́ın-Vide, F. Otto, and

H. Fernau, editors, Proc. of LATA, volume 5196 of Lecture Notes in Computer

Science, pages 1–2. Springer, 2008.

[Bra] Laurent Braud. Order-2 morphic words and recursion schemes. In prepara-

tion.

[Bra09] Laurent Braud. Covering of ordinals. In Proc. of FSTTCS, pages 97–108,

2009.

[Büc62] Richard Büchi. On a decision method in the restricted second-order arith-

metic. Logic, Methodology and Philosophy of science : Proc. Intern. Congr.,

pages 1–11, 1962.

[Büc73] Richard Büchi. The monadic theory of all countable ordinals. Lecture Notes

in Mathematics, 328:1x–217, 1973.

[Bü65] Richard Büchi. Decision methods in the theory of ordinals. Bulletin of the

AMS, 71:767–770, 1965.

[Cac06] Thierry Cachat. Tree automata make ordinal theory easy. In S. Arun-Kumar

and N. Garg, editors, Proc. of FSTTCS, volume 4337 of Lecture Notes in

Computer Science, pages 285–296. Springer, 2006.

[Can97] Georg Cantor. Beiträge zur begründung der transfiniten mengenlehre. Math-

ematische Annalen, 46/49:481–512/207–246, 1895/1897. Two-parts article.

Translated in french by F. Marotte : Sur les fondements de la théorie des

ensembles tranfinis, 1989.

BIBLIOGRAPHY 125

[Car05] Arnaud Carayol. Regular sets of higher-order pushdown stacks. In Proc. of

MFCS, volume 3618 of Lecture Notes in Computer Science, pages 168–179,

2005.

[Car06] Arnaud Carayol. Automates infinis, logiques et langages. PhD thesis, Uni-

versité de Rennes 1, 2006.

[Cau92] Didier Caucal. On the regular structure of prefix rewriting. Theoretical

Computer Science, 106(1):61–86, 1992.

[Cau96] Didier Caucal. On infinite transition graphs having a decidable monadic the-

ory. In Proc. of ICALP, volume 1099 of Lecture Notes in Computer Science,

pages 194–205, 1996.

[Cau02] Didier Caucal. On infinite terms having a decidable monadic theory. In Proc.

of MFCS, volume 2420 of Lecture Notes in Computer Science, pages 165–176.

Springer, 2002.

[Cau03] Didier Caucal. On infinite transition graphs having a decidable monadic

theory. Theoretical Computer Science, 290(1):79–115, 2003.

[Cha33] David Champernowne. The construction of decimals normal in the scale of

ten. Journal of London Mathematical Society, 8:254–260, 1933.

[Chu38] Alonzo Church. The constructive second number class. Bulletin of the AMS,

44:224–232, 1938.

[CK01] Didier Caucal and Teodor Knapik. An internal presentation of regular graphs

by prefix-recognizable graphs. Theoretical Computer Science, 34(4):299–336,

2001.

[CK02] Bruno Courcelle and Teodor Knapik. The evaluation of first-order substi-

tution is monadic second-order compatible. Theoretical Computer Science,

281(1-2):177–206, 2002.

[CL07] Thomas Colcombet and Christof Löding. Transforming structures by set

interpretations. Logical Methods in Computer Science, 3-2(4), 2007.

[Cou78] Bruno Courcelle. Frontiers of infinite trees. Informatique Théorique et Ap-

plications, 12(4), 1978.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In

Handbook of TCS, Volume B: Formal Models and Semantics, pages 193–242.

MIT Press, 1990.

[Cou94] Bruno Courcelle. Monadic second-order definable graph transductions: A

survey. Theoretical Computer Science, 126(1):53–75, 1994.

126 BIBLIOGRAPHY

[Cou11] Bruno Courcelle. Graph structure and monadic second-order logic. Cambridge

University Press, 2011. to appear.

[CT02] Olivier Carton and Wolfgang Thomas. The monadic theory of morphic infi-

nite words and generalizations. Information and Computation, 176(1):51–65,

2002.

[CW98] Bruno Courcelle and Igor Walukiewicz. Monadic second-order logic, graph

coverings and unfoldings of transition systems. Ann. Pure Appl. Logic,

92(1):35–62, 1998.

[CW03] Arnaud Carayol and Stefan Wöhrle. The Caucal hierarchy of infinite graphs

in terms of logic and higher-order pushdown automata. In Proc. of FSTTCS,

volume 2914 of Lecture Notes in Computer Science, pages 112–123. Springer,

2003.

[Dam77] Werner Damm. Languages defined by higher type program schemes. In

A. Salomaa and M. Steinby, editors, Proc. of ICALP, volume 52 of Lecture

Notes in Computer Science, pages 164–179. Springer, 1977.

[Dam82] Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science,

20:95–207, 1982.

[Del04] Christian Delhommé. Automaticité des ordinaux et des graphes homogènes.

C. R. Acad. Sci. Paris, Ser. I 339:5–10, 2004.

[Fra05] Séverine Fratani. Automates à piles de piles... de piles. PhD thesis, Université

Bordeaux I, 2005.

[FS06] Séverine Fratani and Géraud Sénizergues. Iterated pushdown automata and

sequences of rational numbers. Annals of Pure and Applied Logic, 141(3):363–

411, 2006.

[Gai82] Haim Gaifman. On local and non-local properties. In J. Stern, editor, Pro-

ceedings of the Herbrand Symposium, volume 107 of Studies in Logic and the

Foundations of Mathematics, pages 105 – 135. Elsevier, 1982.

[Gur85] Yuri Gurevich. Monadic second-order theories. Model-Theoretic Logic, pages

479–506, 1985.

[Hau08] Felix Hausdorff. Grundzüge einer theorie der geordnete mengen. Math. Ann.,

65:435–505, 1908.

[Hei80] Stephan Heilbrunner. An algorithm for the solution of fixed-point equations

for infinite words. Informatique Théorique et Applications, 14(2):131–141,

1980.

BIBLIOGRAPHY 127

[Ian60] Iu Ianov. The logical schemes of algorithms. English translation in Problems

of Cybernetics, 1:82–140, 1960.

[Kec94] Alexander S. Kechris. Classical Descriptive Set Theory. Springer-Verlag,

1994.

[Kle38] Stephen Kleene. On notation for ordinal numbers. Journal of Symbolic Logic,

3(4):150–155, 1938.

[Knu76] Donald Knuth. Coping with finiteness. Science, 194(4271):1235–1242, 1976.

[KNU01] Teodor Knapik, Damian Niwiński, and Pawe l Urzyczyn. Deciding monadic

theories of hyperalgebraic trees. In Proc. of TLCA, pages 253–267, 2001.

[KNU02] Teodor Knapik, Damian Niwiński, and Pawe l Urzyczyn. Higher-order push-

down trees are easy. In Proc. of FoSSaCS, Lecture Notes in Computer Science,

pages 205–222, 2002.

[KNUW05] Teodor Knapik, Damian Niwinski, Pawel Urzyczyn, and Igor Walukiewicz.

Unsafe grammars and panic automata. In L. Caires, G. Italiano, L. Monteiro,

C. Palamidessi, and M. Yung, editors, Proc. of ICALP, volume 3580 of Lecture

Notes in Computer Science, pages 1450–1461. Springer, 2005.

[KRS05] Bakhadyr Khoussainov, Sacha Rubin, and Frank Stephan. Automatic linear

orders and trees. ACM Trans. Comput. Log., 6(4):675–700, 2005.

[Lav05] Thomas Lavergne. Prédicats algébriques d’entiers. Master thesis, Université

de Rennes, 2005.

[lG06] Marion le Gonidec. Sur la complexité des mots q∞-automatiques. PhD thesis,

Université de la Méditerranée, 2006.

[Mar07] Nathalie Marin. Suites de mots et automates. Master thesis, Université de

Bordeaux 1, 2007.

[Mas74] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet

Math. Dokl., 15:1170–1174, 1974.

[MS85] David Muller and Paul Schupp. The theory of ends, pushdown automata,

and second-order logic. Theoretical Computer Science, 37(1):51–75, 1985.

[Niv72] Maurice Nivat. Langages algébriques sur le magma libre et sémantique des

schémas de programme. In Proc. of ICALP, pages 293–308, 1972.

[NP82] Maurice Nivat and Dominique Perrin. Ensembles reconnaissables de mots

biinfinis. In Proc. of STOC, pages 47–59. ACM, 1982.

128 BIBLIOGRAPHY

[Ong06] Luke Ong. On model-checking trees generated by higher-order recursion

schemes. In Proc. of LICS, pages 81–90. IEEE Computer Society, 2006.

[Par10] Pawe l Parys. Collapse operation increases expressive power of deterministic

higher order pushdown automata. Accepted at ICALP, 2010.

[Pil04] Julien Pillot. Produits de graphes infinis et logique monadique. Master’s

thesis, IRISA — ENST Bretagne, 2004.

[Rab69] Michael Rabin. Decidability of second-order theories and automata on infinite

trees. Transaction of the AMS, 141:1–35, 1969.

[Rog87] Hartley Rogers. Theory of recursive functions and effective computability.

MIT Press, Cambridge, MA, USA, 1987.

[Roi90] Judith Roitman. Introduction to Modern Set Theory. John Wiley and Sons,

1990.

[Ros82] Joseph G. Rosenstein. Linear orderings. Academic Press Inc., 1982.

[RS08] Alexander Rabinovich and Amit Shomrat. Selection in the monadic theory

of a countable ordinal. Journal of Symbolic Logics, 73(3):783–816, 2008.

[See91] Detlef Seese. The structure of the models of decidable monadic theories of

graphs. Annals of pure and applied logic, 53(2):169–195, 1991.

[Sem84] Alexei Semenov. Decidability of monadic theories. In M. Chytil and

V. Koubek, editors, Proc. of MFCS, volume 176 of Lecture Notes in Computer

Science, pages 162–175. Springer, 1984.

[She75] Saharon Shelah. The monadic theory of order. Annals of Mathematics,

102(3):379–419, 1975.

[Tho86] Wolfgang Thomas. On frontiers of regular trees. Informatique Théorique et

Applications, 20(4):371–381, 1986.

[Tho97a] Wolfgang Thomas. Ehrenfeucht games, the composition method, and the

monadic theory of ordinal words. In J. Mycielski, G. Rozenberg, and A. Sa-

lomaa, editors, Structures in Logic and Computer Science, volume 1261 of

Lecture Notes in Computer Science, pages 118–143. Springer, 1997.

[Tho97b] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal

Language Theory, volume III, pages 389–455. Springer-Verlag, 1997.

[Tho08] Wolfgang Thomas. Model transformations in decidability proofs for monadic

theories. In M. Kaminski and S. Martini, editors, Proc. of CSL, volume 5213

of Lecture Notes in Computer Science, pages 23–31. Springer, 2008.

BIBLIOGRAPHY 129

[Veb08] Oswald Veblen. Continuous increasing functions of finite and transfinite or-

dinals. Transactions of the American Mathematical Society, 9(3):280–292,

1908.

[Wal02] Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theo-

retical Computer Science, 275(1-2):311–346, 2002.

[Zie98] Wies law Zielonka. Infinite games on finitely coloured graphs with applications

to automata on infinite trees. Theoretical Computer Science, 200:135–183,

1998.

	Introduction
	(en français)
	(in English)

	Preliminaries
	Notations and first structures
	Finite words
	Structures
	Graphs
	Deterministic trees

	Linear orderings
	Ordinals
	Scattered orderings and Hausdorff rank
	Orders in a deterministic tree

	Logic
	First-order logic
	Monadic second-order logic
	Decidability

	Graph transformations
	Graph interpretations
	Graph expansions

	The pushdown hierarchy
	Definition
	Some properties

	Linear order construction
	Ordinals in the pushdown hierarchy
	Powers of Z
	n-regular presentation
	Prefix-recognizable graphs
	Configuration graphs of n-hopdas
	Encoding ordinals

	Covering graphs
	Fundamental sequence
	Covering graphs
	Other properties of covering graphs
	Strictness of covering graphs in the hierarchy
	The case of Ge0

	The structure of tree frontiers
	Tree-walking automaton
	From graphs to frontiers
	Ordinals
	Scattered linear orders
	Trees with scattered frontiers
	Permutation of subtrees
	Cantor-Bendixson rank of deterministic trees
	Hausdorff rank of scattered orders in Graphn

	Finite combs

	Schemes and morphic words
	Recursion schemes
	Definition
	Schemes in the pushdown hierarchy

	Morphic words
	Definition and properties
	Construction in the pushdown hierarchy
	Morphic words in Graph 2, direct proof
	Morphic words in Graph 2, by recursion schemes

	Second order
	Second-order morphic words
	Second-order scheme omega-frontiers
	Liouville word

	List of notations
	Index
	Bibliography

