N

N

The structure of orders in the pushdown hierarchy

Laurent Braud

» To cite this version:

Laurent Braud. The structure of orders in the pushdown hierarchy. Modeling and Simulation. Uni-
versité Paris-Est, 2010. English. NNT: 2010PEST1009 . tel-00587409

HAL Id: tel-00587409
https://pastel.hal.science/tel-00587409

Submitted on 20 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/tel-00587409
https://hal.archives-ouvertes.fr

UNIVERSITE
— PARIS- 25T

THESE

pour obtenir le grade de
DOCTEUR DE L’UNIVERSITE PARIS-EST

The structure of orders in the pushdown hierarchy
Les structures d’ordre dans la hiérarchie a pile

Spécialité informatique
Ecole doctorale MSTIC

Soutenue publiquement par Laurent Braud
le 10 décembre 2010

JURY :

Zoltan ESIK, rapporteur,
Wolfgang THOMAS, rapporteur,
Arnaud CARAYOL, examinateur,
Damian NIWINSKI, examinateur,
Dominique PERRIN, examinateur,
Didier CAUCAL, directeur de these.

Contents

(I__Introduction
(1.1 (en francais)|
(1.2 (in English)|

[2.3.1 First-order logic|o
[2.3.2 Monadic second-order logic|. L.
[2.3.3 Decidability]

[2.4 Graph transtormations| Lo

[2.4.1 Graph interpretations|. L.

[2.4.2 Graph expansions|.
[2.5 The pushdown hierarchy| L.

2.0.1 Definitionlo
[2.5.2 Some properties|.

BTG I onl
[3.1 Ordinals in the pushdown hierarchy|
[3.2 Powersof (|

[3.3 n-regular presentation|

[3.3.1 Prefix-recognizable graphs|,

[3.3.2 Configuration graphs of n-hopdas|
[3.3.3 Encoding ordinals|.o

4
[3.4 Covering graphs|.
[3.4.1 Fundamental sequence|
[3.4.2 Covering graphs|.
[3.4.3 Other properties of covering graphs|
[3.4.4 Strictness of covering graphs in the hierarchy|.
[3.4.5 Thecaseot G,o

[4__The structure of tree frontiers|

4.1 Tree-walking automaton|
[4.2 From graphs to frontiers|
M43 Ordinalso
4.4 Scattered linear orders| L.
Il.l.l lls:s:{ !&.llll fig:“!lls:ls:!l ll!!lll‘lg:l:il
442 Permutation of subtrees)
“4.4.3 Cantor-Bendixson rank of deterministic trees/.
{.4.4 Hausdorff rank of scattered orders in Graph,|.
|1|5i l ‘lll‘lls: g:g!llltz{il

b1 Recursion schemed L
H.1.1 Definitionlo
[>.1.2 Schemes in the pushdown hierarchy|

[>.2 Morphic words|
[5.2.1 Definition and properties|
[5.2.2 Construction in the pushdown hierarchy]
[>.2.3 Words in Graph, are morphic, direct proof|

[>.2.4 Words in Graph, are morphic, by recursion schemes|

[b.3 Second order]

Index]

(Bibliography|

CONTENTS

List of Figures

(1.1 ~Un graphe fini et une proprieté de ce graphe.|. 7
(1.2 L’arbre binaire complet.| L. 8
[1.3 A finite graph and one of its properties.|. 13
(1.4 The complete binary tree.| 14
[2.1 Example of a graph : the ladder| 21
[2.2 The graph representation of the ordinal w+2.|. 24
[2.3 'T'he ladder and its unfolding.| 36
[2.4 Treegraph of the complete binary tree.| 36
[2.5 'The pushdown hierarchy,|. 38
[2.6 Exemple of graph constructions in the hierarchy.|. 39
[3.1 Finite graph G5 which unfolding has frontier w>.|. 44
[3.2 Folded graphs of trees of frontier {, n and w(1+7n)| 45
[3.3 Folded regular graph of a tree of frontier ¢*.| 46
(3.4 {0,1}-treegraphof w.. 48
(3.5 The operation inc(w®).| 52
[3.6 Covering graph of w”.|o o 56
[3.7 Exponentiation of the covering graphof w.| 62
4.1 Order in a finite tree ¢ and “arranged” tree s(t).| 72
(4.2 Non-full tree of frontier w having a branch with infinitely many 0’s| 74
4.3 A finite graph G, “spanning tree” T, completed tree T, and unfolding.|. . . 76
44 Ordersinatreef. 84
[5.1 Rules for G4, of frontier w®.| Lo 95
[5.2 General rules for G,,, of frontier w Tt (n+ 1)) 95
[.3 Papertolding sequence.| 98
[5.4 A graph which unfolding vyields the morphic word abaab...a®b....| 100
[5.5 General shape of the folded graph.| 101
[5.6 Rules of a scheme which frontier is a morphic word.| 105
[5.7 Order-2 safe scheme which frontier is the Champernowne word.| 107
0.8 Order-2 safe scheme which frontier is the [jouville word) 118

LIST OF FIGURES

Chapter 1

Introduction

1.1 (en francgais)

En logique mathématique, on distingue les objets mathématiques, ou structures, et leurs
propriétés, ou logique. Les structures a leur tour sont constituées d’éléments et de relations
entre ces éléments. Dans cette these, nous travaillerons uniquement sur ce que l'on appelle
des “graphes colorés dont les arcs sont étiquetés”, c’est-a-dire des structures dont les
relations sont d’arité au plus 2. De plus, ces structures seront dénombrables — on peut
numéroter chaque objet avec un entier — et de présentation finie — il existe une quantité

finie d’information permettant de représenter la structure de facon non ambigiie.

|
|
/ \ “Un chemin entre deux sommets blancs est en
! . . ’ .
! K pointillés ou passe par un sommet noir.”
7
(2%
o

Figure 1.1: Un graphe fini et une propriété de ce graphe.

La logique la plus simple est celle dite du premier ordre, car elle manipule simplement
les éléments proprement dits de la structure considérée. Elle permet d’exprimer des
propriétés du type “tout sommet colorié en noir a un voisin blanc” ou “s’il existe un
sommet blanc, alors il existe 3 arcs distincts en pointillés”. Elle est cependant restreinte
a des propriétés ponctuelles et ne dit rien sur la structure dans sa globalité. Une solution
est alors de considérer une logique plus forte, qui permet de manipuler directement des
ensembles d’éléments. C’est la logique du second ordre monadique, qui permet d’exprimer
des propriétés raisonnablement compliquées. Des exemples classiques sont “il y a un
chemin entre z et y” ou “le sous-arbre ¢ est infini”. On la notera souvent par le sigle
MSO.

De facon générale, la logique du second ordre désigne ’ensemble des formules qui
parlent des relations entre les éléments. Mais elle a le défaut d’étre paradoxalement trop

puissante; elle échappe ainsi aux outils usuels de I'informatique, selon la définition donnée

7

8 CHAPTER 1. INTRODUCTION

ci-apres. C’est pourquoi on se restreint aux relations qui ne prennent qu’une variable : ce
sont bien les ensembles. Ceci explique 'adjectif monadique.

Notre probleme n’est pas de connaitre entierement une structure donnée, mais de
savoir exprimer ses propriétés. Cette nuance autorise 'usage d'un automatisme. En effet,

la question qui se pose est alors la suivante.

Etant données une logique et une structure, existe-t-il un algorithme qui
prenne en entrée une formule close de cette logique et renvoie OUI ou NON

selon que la structure satisfait la formule ou non?

C’est la question de la décidabilité de du model-checking de la logique a laquelle ap-
partiennent les formules que 'on veut tester. Savoir construire un tel algorithme est un
défi majeur de I'informatique d’aujourd’hui, car cette question est naturellement liée a la
notion de vérification de programmes. En effet, savoir si un programme fait effectivement
ce que l'on veut — par exemple, savoir s’il termine — est expressible par une formule,

que doit vérifier la structure des configurations du programme.

Construction de structures

Par exemple, un résultat fondemental de Rabin [Rab69] indique que 'arbre binaire com-
plet, esquissé Figure [1.2] a une théorie monadique décidable. Plus généralement, pour
une logique donnée, peut-on espérer trouver une caractérisation de toutes les structures
qui jouissent de la méme propriété? Probablement pas, mais cela n’empéche pas les sci-
entifiques de chercher a en décrire le plus possibles. En particulier, pour la logique du
second ordre monadique, l'intérét de la communauté scientifique se porte sur la hiérarchie

a pile [Cau03|, aussi appelée hiérarchie de Caucal.

/\
e
,
,
7
Kk
/ /
/ /
/ /
¥ ¥
° ° ° °

Figure 1.2: L’arbre binaire complet.

Pour décrire historiquement cette hiérarchie, il nous faut remonter a [MS85], ou les
auteurs s’'intéressent aux graphes des configurations des automates a piles en partant d’une
configuration donnée. Il caractérisent exactement ces graphes par un critere géométrique :
si on fixe un sommet, et que 'on retire successivement ce sommet, puis les sommets a
distance 1, puis a distance 2 et ainsi de suite, on obtient une suite de graphes. Le résultat

fondamental est que I'’ensemble de ces graphes est fini a isomorphisme pres : la suite se

1.1. (EN FRANCAIS) 9

répete. Cette propriété leur permet d’étendre le résultat de Rabin a tout une classe de
graphes. Ce résultat sera étendu dans [Cou90, [Coull] aux graphes HR-équationnels.

On a donc deux manieres de décrire ces graphes, que 'on peut appeler définition
interne — en choisissant un ensemble pour les sommets, et les arcs comme des relations
entre ces sommets — ou externe — par les propriétés structurelles du graphe. Si I'on
préfere, ces deux approches considerent que les objets importants sont respectivement les
sommets ou les arcs. Dans [Cau96], le méme principe est appliqué pour définir une classe
plus large, celle des graphes préfive-reconnaissables. Ceux-ci sont a la fois définis par
des relations de récriture préfixe entre des mots, et par des transformations de graphes a
partir d'un graphe fini.

Dans cette these, nous utiliserons le plus souvent la caractérisation externe, qui décrit
un graphe en donnant une série de transformations a partir d’'un arbre fini; un graphe sera
donc par définition un ensemble d’arcs. Il y aura deux transformations fondamentales.
D’une part, le dépliage d'un graphe renvoie ’arbre des chemins dans ce graphe a partir
d’un sommet donné. D’autre part, 'interprétation monadique permet de “réorganiser” de
fagon réguliere la structure d’'un graphe. Ces deux opérations préservent la décidabilité
de la logique monadique. En partant de la classe des graphes finis, puis en appliquant
un dépliage suivi d’'une interprétation, on obtient la classe des préfixe-reconnaissables.
En itérant ce processus, on obtient une suite de classes de graphes distinctes : c’est la

hiérarchie & pile, décrite par Caucal [Cau03].

Ordinaux

Une autre famille de graphes ayant une logique MSO décidable est bien plus connue.
C’est la classe des ordinaux dénombrables, ou classe d’ordres totaux ayant la propriété
de bon ordre, c’est-a-dire que chaque sous-ensemble non vide doit avoir un plus petit
élément. Ils ont été introduits par Cantor [Can97] qui en formule les propriétés de base.
Ces objets sont fréquemment utilisés dans les mathématiques actuelles. Ils généralisent
I’arithmétique des nombres entiers, et surtout bénéficient des preuves par induction : si
on prouve qu’une propriété vraie pour tout § < « est vraie pour «, on a alors établi la
propriété de facon générale.

Biichi [Bii65], Biic73|, en utilisant des automates, a prouvé la décidabilité de la logique
MSO pour les ordinaux dénombrables; il a été suivi par Shelah [She75] par une méthode
compositionnelle entierement différente.

Il est donc naturel de chercher l'intersection de ces deux grandes familles. Cette these

prend donc sa racine dans la question suivante :
Quels sont exactement les ordinaux du niveau n de la hiérarchie a pile?

La question est d’autant plus importante que les exemples concrets de graphes dans la
hiérarchie sont nombreux au premier niveau, mais beaucoup moins par la suite. Depuis

[Mas74] et [KNUO2], on sait que la hiérarchie est bien séparée en classes distinctes, mais

10 CHAPTER 1. INTRODUCTION

avoir une collection d’exemples aussi simples que les ordinaux établirait une forme de
“mesure de complexité” de la hiérarchie. Dans l'autre sens, la réponse permettrait de
mieux comprendre les ordinaux par ’étude des méchanismes nécessaires a leur construc-
tion

Dans le méme ordre d’idée se pose la question plus générale des ordres linéaires, c¢’est-
a-dire des classes d’ordres totaux n’ayant pas la propriété de bon ordre, dont Z en est le
premier exemple. Evidemment, il existe des ordres linaires dénombrables dont la logique
MSO n’est pas décidable, méme assez simples. On cherche donc un seul sens : un critere
nécessaire pour ces ordres. Pour commencer, il est naturel de chercher du coté des ordres
dispersés (scattered), c’est-a-dire ne contenant pas de sous-ordre isomorphe a Q. Cette
classe bien connue a été classifiée par Hausdorff [Hau08] qui donne une “mesure ordinale”
pour chaque ordre. Il existe donc un lien des ordres dispersés vers le cas plus simple et

plus connu des ordinaux.

Automates et ordres

L’intersection du domaine des structures liées a des automates et de celui des ordinaux
a fait naitre bien d’autres résultats. Au sens le plus large, d’anciens travaux de Church
[Chu3g| et Kleene [Kle3§| établissent quels sont les plus grands ordinaux récursifs, c’est-
a-dire qui peuvent étre exprimés par une machine de Turing. Nous nous intéressons ici
a des modeles de calcul plus simples, plus proches du domaine des structures automa-
tiques, c’est-a~-dire dont les relations sont définies par un transducteur fini, c¢’est-a-dire
un automate a deux entrées. Les résultats [Del04, [KRS05] établissent que les ordinaux
automatiques sont plus petits que w*, et que les ordinaux arbre-automatiques — ou le
transducteur reconnait des relations sur les arbres — sont ceux plus petits que w*”. De
la méme maniere, de récents résultats [BEO9, BEIO] définissent les ordres linéaires et les
ordinaux aux premiers niveaux de la hiérarchie a pile : les ordinaux du deuxieme niveau
sont plus petits que w*”, et les ordres dispersés ont un rang de Hausdorff plus petit que
w®. C’est cette voie que cette these poursuivra.

Il est également naturel de considérer la notion d’ordre linéaire coloré, c’est-a-dire de
mots sur un alphabet fini, mais indexés par un ordre infini : par exemple, un nombre
réel entre 0 et 1 peut étre vu comme un mot sur Ialphabet [0,9] indexé par N, ou de
fagon équivalente comme 'ordre w coloré par I'alphabet [0,9]. Les mots infinis acceptés
par automates de Biichi [Biic62] sont le premier exemple de tels ordres. Un tel automate
accepte un mot indexé par N g’il passe infiniment de fois dans un état final. Cette
définition a été adaptée dans [NP82] pour considérer les mots bi-infinis, ¢’est-a-dire indexés
par Z. Biichi [Bi65] décrit également le processus d’un automate acceptant des mots
indexés par des ordinaux, ce qui lui permet de montrer la décidabilité de la logique MSO.
Plus récemment, Bruyere et Carton [BCOT7, BC02, BC06a] ont considéré des automates

acceptant des mots indexés par des ordres dispersés, et obtiennent un théoreme de Kleene.

1.1. (EN FRANCAIS) 11

Arbres solutions de schémas récursifs

La notion de mot infini indexé par N mérite également qu’on la recherche dans la hiérarchie
a pile. Les premiers mots infinis que ’on rencontre sont les mots ultimement périodiques,
qui sont les plus simples des mots infinis. A 1’étape suivante, on voit apparaitre des
mots plus complexes, connus sous le nom de mots morphiques : ce sont les points fixes
d’application de morphismes. Si A est une lettre, et que 7 est un morphisme tel que 7(A)
est un mot commengant par A, alors 7(7(A)) également, et ainsi de suite : on obtient
alors un mot infini. Ce sont la — a codage pres — les mots morphiques.

Cette définition s’approche assez de la construction de termes de la hiérarchie a pile
par les schémas récursifs. Ces objets, introduits semble-t-il par lanov [Ian60] au premier
niveau, puis par Nivat [Niv72], ont été amenés a l'ordre supérieur par Damm [Dam77,
Dam8&2]. On peut parler de grammaires de termes : considérons deux ensembles typés
dits terminauz et non-terminauz, et également ’ensemble des termes sur ces ensembles en
suivant le typage. Chaque non-terminal F' a une regle de récriture prenant en compte les
arguments de F', de telle fagon qu’un terme ayant pour téte ce non-terminal se récrit en un
terme. On répete alors I'opération sur un nouveau non-terminal. Méme si I'opération est
infiniment répétée, de tels schémas peuvent avoir un arbre limite, point fixe de 'opération :
c’est une solution du schéma récursif. On a donc une maniere simple de construire un
arbre infini avec des regles de récriture.

Ces schémas ont récemment été remis sur le devant de la scéne, notamment grace aux
travaux [KNUOT], KNUQ2] sur la décidabilité de la logique MSO sous une contrainte dite de
stureté, puis en retirant cette contrainte dans [AdMOO05, [Ong06, [KNUWO5]. En particulier,
les arbres surs sont exactement les arbres-termes de la hiérarchie. Pour en revenir aux
questions évoquées plus haut, il semble naturel de relier les schémas du premier ordre
avec les mots morphiques, et de vérifier que 1'on obtient bien les seconds comme ordres
sous-tendus par les premiers. Se pose alors la question de la généralisation : comment
faire évoluer la notion de mot morphique pour coller a celle de schéma récursif d’ordre

supérieur?

Plan et contributions

Le chapitre [2] fixe les notations et les objets utilisés, en commencant par les notions
de graphe et d’arbre. Nous rappelons les définitions et premieres propriétés des ordres
linéaires, ainsi que le cas particulier des ordinaux. Enfin, nous décrivons la hiérarchie a
pile par les transformations de graphes.

Dans le chapitre 3] nous illustrons la définition interne de la hiérarchie par la construc-
tion d’ordinaux et de puissances du type d’ordre de Z par des transformations de graphes.
Le résultat important est que les ordinaux plus petits qu'une tour exponentielle d’w de
taille n+1 sont dans le n-ieme niveau de hiérarchie; ceci inclut donc tous les ordinaux plus

petits que g, qui est le plus petit ordinal tel que w®® = g3. Une définition interne due a

12 CHAPTER 1. INTRODUCTION

[Car05] est donnée, et est encore illustrée par les ordinaux. Enfin, nous nous interrogeons
sur une propriété essentielle des ordinaux : d’apres Biichi [Bii65], la logique monadique ne
peut pas toujours distinguer deux ordinaux. Pour chaque ordinal plus petit que g, nous
exhibons alors une structure aussi expressive n’ayant pas cette contrainte. Les résultats
de ce chapitre apparaissent pour la plupart dans [Bra09].

Le chapitre {4] établit le résultat inverse : il prouve que la tour d’exponentielle de
taille n + 1 ne peut étre dans le n-ieme niveau de la hiérarchie. Pour ce faire, nous
commencons par établir 1’égalité entre ordres comme graphe de la hiérarchie et structure
des feuilles, dans l'ordre lexicographique, des arbres de la hiérarchie. Ce résultat nous
permet de raisonner par récurrence sur le niveau de la hiérarchie. Nous obtenons un
résultat similaire sur le rang de Hausdorff des ordres dispersés, qui mesure une certaine
complexité de I'ordre. Enfin, les mémes techniques aboutissent a un résultat sur la taille
des sous-arbre finis des peignes de la hiérarchie, c’est-a-dire des arbres ayant une unique
branche infinie, qui est la branche la plus a droite. Ce chapitre apparait en grande partie
dans [BC10].

Le dernier chapitre approche la hiérarchie pas le biais des schémas de récursion d’ordre
supérieur. Nous y considérons les feuilles des arbres solutions de ces schémas formant des
mots de type w. Si 'on considere des arbres réguliers, il est simple de voir que ces
mots sont ultimement périodiques. Au niveau suivant, nous prouvons que l'on obtient
exactement les mots dits morphiques. Ce résultat est alors étendu au niveau supérieur et
définit une nouvelle classe de mots bénéficiant des propriétés des graphes de la hiérarchie.

Ces résultats font 'objet d’un article en cours de préparation [Bral.

1.2. (IN ENGLISH) 13
1.2 (in English)

Mathematical logic distinguishes mathematical objects, or structures, and their properties,
or logic. These structures are in turn made of elements and relations between these
elements. In this thesis, we will only work on “colored graphs with labeled arcs”, that
is structures where relations are of arity at most 2. Moreover, these structures will be
countable — the objects can be numbered — and of finite presentation — there is a finite

amount of data allowing an unambiguous representation of the structure.

|

|
/ \ “Each path between two white vertices is hashed or
\ 7 goes through a black vertex.”

7

v,

Figure 1.3: A finite graph and one of its properties.

The simplest logic is the so-called first-order logic, and it only quantifies the proper
elements of the given structure. We can express properties like “every black vertex has a
white neighbour” or “if there at least one white vertex, then there are at least 3 distinct
hashed arcs”. It is nonetheless limited : for instance, over graphs of bounded degree,
it is restricted to local properties, as testified by Gaifman’s locality theorem [Gai82]. A
solution is then to consider a stronger logic, which directly considers sets of elements. This
is called the monadic second-order (MSO) logic; it can express more complex properties,
like “there is a path between x and y”, or “the deterministic subtree t is infinite”.

More generally, second-order logic is a system where variables range over relations
between elements. But is has the paradoxal drawback of being too powerful; usual tools
(e.g. decision procedures) of computer science cannot reach this logic. This is why we
restrict ourselves to relations with only one variable : these are exactly sets. This explains
the adjective monadic.

Our problem is not to know entirely a given structure, but to know its properties.

This subtelty allows the use of an algorithm. The question is indeed the following.

For a given logic and structure, is there an algorithm taking a closed for-
mula of this logic and returns whether the formula is true in the structure or

not?

It is the question of decidability of the model-checking of the logic in a given structure.
Knowing how to build such an algorithm is a challenge of modern computer science, since
this question is naturally linked to program verification. Indeed, the required behaviour
of a program can be expressed by a formula, which should be checked by the structure of

configurations of the program.

14 CHAPTER 1. INTRODUCTION

Structure constructions

For instance, a fundamental result of Rabin [Rab69] states that the complete binary tree,
drawn in Figure[I.4] has a decidable monadic theory. More generally, for a given logic, can
we hope to find a characterisation of all structures enjoying the same property? Probably
not, but this does not forbid scientists to try and describe as much of these structures
as possible. For monadic second-order logic, the scientific community is interested in the

pushdown or Caucal hierarchy.

Figure 1.4: The complete binary tree.

The history of this hierarchy goes back to the result of Muller and Schupp [MS85],
where the authors study the configuration graphs of pushdown automata starting from a
given configuration. They characterize these graphs with a geometrical criterion. Given
a vertex, we remove this vertex, then the vertices a distance 1, then distance 2, and so
on. We get a sequence of graphs. The fundamental result is that the resulting set of
connected graphs is finite up to isomorphism : the sequence repeats itself. This property
extends the result of Rabin to a larger class of graphs, and is extended to HR-equational
graphs in [Cou90, [Coull].

We have therefore two ways to describe these graphs, which can be called inner def-
inition — by giving a set of vertices and constructing relations between vertices — and
outer definition — via structural properties of the graph. Said differently, this approach
considers that the main objects are respectively the vertices or the arcs. In [Cau96], the
same idea is applied to define the larger set of prefiz-recognizable graphs. These graphs
also have a twofold definition : one by rewriting relations on words, and the second with
graph transformations from a finite graph.

In this thesis, we will most of the time use the external characterization. That is, a
graph will be described by a sequence of transformations from a finite tree. There will be
two main transformations. First, the unfolding of a graph from one of its vertices yields
the tree of the paths from this vertex. Second, the monadic interpretation “reorganizes”
the structure in a regular way. These two operations preserve the decidability of model-
checking for monadic second order logic. Starting from the set of finite graphs, and
applying an unfolding and an interpretation, we get the set of prefixe-recognizable graphs.
By iterating this process, we get a sequence of distinct classes of graphs : it is the

pushdown hierarchy, described by Caucal [Cau03].

1.2. (IN ENGLISH) 15

Ordinals

Another well-known class of graphs having a decidable MSO logic is the class of countable
ordinals, or total orders having the well-ordering property, i.e. where each nonempty
subset has a smaller element. They have been introduced by Cantor [Can97] who formu-
lated basic properties. For instance, they generalize the arithmetic of natural number,
and enjoy induction proofs : if a property true for all 5 < « is true for «, then it is true
for all ordinals.

With the use of automata, Biichi [Bu65), Biic73] proved the decidability of model-
checking of MSO logic for each countable ordinal; it was followed by Shelah, who proves
the same result by the very different compositional method.

It is therefore natural to study the intersection of these two large families. This thesis

takes its root in the following question :

What are exactly the ordinals found in the n'" level of the pushdown

hierarchy?

The importance of this question relies on the fact that we have many known examples
of graphs in the hierarchy in the first levels, but very few in the next. Since [Mas74] and
[KNUOQ2], we know that the hierarchy is separated into distinct classes. Nonetheless, a
collection of examples as simple as ordinals would establish a “complexity mesure” of the
hierarchy. In the other direction, we could have a better understanding of ordinals by
studying the mechanisms used in their construction.

The question of more general linear orders follows immediately. We consider the
classes of total orders not having the property of well-ordering, the first example being
(Z,<). Of course, many of those orders have an undecidable monadic theory, even when
restricting to countable orders. We look for one direction, 7.e. a necessary criterion
for these orders. For a start, it is natural to look at scattered orders, i.e. not having
any suborder isomorphic to Q. This well-known class of orders has been classified by
Hausdorff [Hau08| where he gives an “ordinal measure” for countable scattered orders.

There is therefore a link between scattered orders and the easier case of ordinals.

Orders and automata

It is not the first time that the domain of structures linked to automata meets ordinals.
For the upper bounds, works of Church [Chu38] and Kleene [KIe38] state which are the
greatest recursive ordinals, i.e. which can be expressed by a Turing machine. We study
here simpler models of computation. For instance, this thesis is closer to works related to
automatic structures, which relations are defined by a finite tranducer, i.e. an automaton
with several entries. Results of [Del04, [KRS05] state that automatic ordinals are smaller
that w*, and that tree-automatic ordinals — where the tranducer works on trees instead of

words — are smaller that w*“. In the same way, recent results [BEQ9, BE10] characterize

16 CHAPTER 1. INTRODUCTION

orders of the first levels of the pushdown hierarchy : ordinals of the second level are
smaller than w*”, and scattered orders have a Hausdorff rank smaller than w®. This
thesis follows this direction.

It would also be natural to consider the notion of colored linear order, that is words on
a finite alphabet, but indexed by an infinite order : for instance, a real number between
0 and 1 can be seen as a word on the alphabet [0, 9] indexed by N, or equivalently as the
order w colored by the alphabet [0, 9]. Infinite words accepted by Biichi automata [Biic62]
are the first examples of these orders. Such an automaton accepts a word indexed by N if
it passes infinitely many time through a final state. This definition was adapted in [NP82]
to consider bi-infinite words, i.e. indexed by Z. Biichi [Bii65] also describes the process of
words indexed by ordinals, and shows decidability of MSO logic for each such structure.
Recently, Bruyere and Carton [BCOT] considered automata accepting words indexed by
scattered orderings. They reached a stronger Kleene theorem, which was then extended
in [BC0O2, BCO6a].

Solutions of recursion schemes

The notion of infinite words indexed by N is of central importance and deserves to be also
studied in the hierarchy. The first encountered infinite words are the ultimately periodic
words, which are the simplest ones. At the next level, more complex words appear : they
are known as morphic words, because they can be built as fixpoints of morphisms on
letters. If A is a “starting” letter, and 7 is such that 7(A) begins with A, then 7(7(A))
also does, and so on. We get therefore an infinite word. Up to a final coding, this defines
the morphic words.

This definition is rather close of the construction of terms in the hierarchy by recursion
schemes. These objects were introduced by Ianov [[an60], then Nivat [Niv72], and have
been brought to the higher order by Damm [Dam77, [Dam82|]. They can be called term
grammars. Let terminals and nonterminals be two typed sets; we can consider the set
of terms on these sets respecting the typing rules. Each nonterminal F' has a rewriting
rule taking in consideration the arguments of F', in such a way that a subterm having
I as head symbol can be naturally rewritten in another subterm. The operation is then
repeated on another nonterminal. Even if this algorithm does not terminate, a recursion
scheme admits a limit (possibly infinite) tree : it is called the solution of the recursion
scheme. We have therefore a simple way to construct an infinite tree with rewriting rules.

These schemes were recently reconsidered by the works [KNUOT, [KNUO2] on the de-
cidability of MSO logic under the constraint of safety, then removing this constraint in
[AAMOO05, [Ong06, KNUWO05]. In particular, the safe trees are exactly the term-tress of
the hierarchy. To go back to the forementioned questions, it is natural to link the first-
order schemes with morphic words. We can check that we get the latter as orders hidden
in the former. The natural question is therefore : what happens in the next levels? How

can we extend the notion of morphic word to stick to the notion of recursion scheme?

1.2. (IN ENGLISH) 17

Outline and contributions

The first chapter sets notations and defines the objects used. We begin by the notions of
graph and tree, then linear orders and the particular case of ordinals. We then describe
the pushdown hierarchy through graph transformations.

Chapter |3|illustrates the internal definition by the construction of ordinals and powers
of Z with the help of graph transformations. The important result is that ordinals smaller
that a exponential tower of w of size n + 1 are all in the n'® level of the hierarchy; this
includes therefore all ordinals smaller than ¢y, the smallest ordinal such that w® = &.
An internal definition due to [Car05] is given and illustrated by ordinals again. Next we
try and avoid an essential property of ordinals : according to Biichi [Bii65], MSO logic
cannot distinguish two ordinals in general. For each ordinal smaller than ¢y, we exhibit a
structure as expressive as the ordinal but which can be characterized by MSO logic. Most
of the results of this chapter appear in [Bra09].

Chapter [4] states the converse result : it shows that the n + 1-exponential tower of w
cannot be in the n'" level of the hierarchy. For this result, we start by stating the equality
between orders as graphs of the hierarchy and the structure of leaves in lexicographic
order of trees of the hierarchy. This result allows the application of induction on the
hierarchy. We get a similar result on the Hausdorff rank of scattered orders, measuring a
certain complexity of orders. The same techniques lead to a result on the size of subtrees
of combs of the hierarchy, i.e. trees having a unique infinite branch. A large part of this
chapter appears in [BCI0).

The last chapter defines the hierarchy by higher-order recursion schemes. We consider
here the case where leaves of trees solution of these schemes form words of type w. If we
consider regular trees, it is easy to see that these words are ultimately periodic. At the
next level, we show that we get exactly the morphic words. This result is then extended
to the next level and defines a new class of words enjoying the properties of graphs of the

hierarchy. These results are gathered in an article in preparation [Bral.

18

CHAPTER 1. INTRODUCTION

Chapter 2
Preliminaries

This chapter introduces the notions used thoughout the thesis. It begins with simple
structures, namely words, graphs and trees. Then orders are detailed, in particular ordi-
nals and other scattered orderings. Then we look at the logics used to express properties.
This leads us to the logical graph transformations, which in turn defines the pushdown

hierarchy.

2.1 Notations and first structures

This thesis is about countable structure enjoying a finite presentation, i.e. described by
a finite quantity of information.

We make a frequent use of representation of graphs with arcs labeled by {0,1}. To
lighten the pictures, arcs labeled by 1 are drawn with plain lines and arcs labeled by 0
with hashed lines. Exceptions as Figure [5.4] will be clearly labeled.

B

!
|
|
!
!
| 3
| s
!
¢
©)

’
s
’
Kk

The powerset of a set S is noted P(.S); the closed interval between a and b is noted

[a, b]; the index i of a sequence §is noted §;, even in the case when i is an infinite ordinal.

2.1.1 Finite words

The set of words over a finite alphabet ¥ is noted ¥*. The length of u € ¥* is noted |ul,
and the empty word is €. We say that u is prefix of v, noted v C v, if there is w € ¥*
such that - w = v. If w # ¢, u is a strict prefix of v, noted v = v. On the contrary, if
u, v are incomparable by T, we note u_Lv. In any case, the longest common prefix of two

words u, v is noted u A v.

19

20 CHAPTER 2. PRELIMINARIES

When ¥ is provided with an order <, the lexicographic order <j,, on ¥* is defined by

uC v, or
U <jox UV > vu=w-a-wandv=w- b -w"

where w, w',w” € ¥*,a < b.
The collection of regular languages over an alphabet ¥ is defined recursively.

L:=0]|{a} whereae X |L-L|LUL]|L*

2.1.2 Structures

The notion of structure can be seen as a formal logical framework to express mathematical
objects. The following definition will be seldom used as such, but it is the general definition
of the objects found in this thesis.

A signature is a finite set (R;);er of relation symbols, each symbol R; having an arity
|R;|. A structure on this signature is a pair (U,v) where U is a set called universe and
the valuation v is a mapping R; + P(U!®!) called the interpretation of the signature.
Commonly I = [1, k], and a structure is written (U, (Ry,..., Ry)) where the valuation is
implicit.

Given a universe U and a valuation v, a binary relation v(R) is said

reflexive if Vo € U, (z,z) € v(R);
symmetric if Vo, y € U, (z,y) € v(R) = (y,z) € v(R);
antisymmetric if Vz,y € U, (z,y) € v(R) = =(y,z) € v(R);
transitive if Va,y, 2z € U, (x,y) € v(R) A (y,2) € v(R) = (z,2) € v(R).

Two structures (U,v) and (U’,v) are isomorphic, noted (U,v) ~ (U’ V'), when
there is a bijection m between their signatures which preserves arity, and a bijection
between U and U’ preserving valuation of corresponding relation symbols, i.e. for any
relation R, k(v(R)) = V'(m(R)).

A structure is countable if is isomorphic to a structure whose universe is a subset of

N. In this thesis, we only consider this kind of structures.

Example 2.1.1. A finite word of length k& > 0 over an alphabet ¥ is a structure of universe
[1, k] whose signature consists of one binary relation S (successor) and unary relations
(Rs)aex. The valuation maps S to all pairs (i,7+ 1) and each R, to the set of indexes of
letter a; thus [1,k] = 4

Later on, we will equivalently consider words as structures with binary relation S*,

wes V(Ra). The same definition is used for w-words.

i.e. the reflexive and transitive closure of S, with valuation on all pairs (7, 5) such that
i< . A

2.1. NOTATIONS AND FIRST STRUCTURES 21

aa aaa
!
!
|
|
!
l
A

I
I
I
I
I
}

\

ab aab

S

Figure 2.1: Example of a graph : the ladder

2.1.3 Graphs

The graphs we consider are countable, directed and labeled. Let ¥ be a finite set called
arc label set. A labeled graph G, or simply graph, is a subset of V' x ¥ x V where V is a
finite or countable set. An element (s, a,t) of V x ¥ x V is an arc of source s, target ¢ and

label a, and is written s % t or simply s — t if G' can be understood from the context.

The notation s — ¢ means “s — ¢ for some a”. Note that we do not consider graphs with
multiplicity : there can be only one arc labeled by a between s and ¢.

Let I' be another finite set called color set. A colored graph (or labeled and colored
graph) is a subset of (V x X x V) U (I' x V). More commonly, a graph labeled by X
is called a X-graph, and a X-graph colored by I' is called a >, I'-graph. Note that an
equivalent definition would be to allow only one color in P(I") per vertex; we prefer the
more versatile definition which allows to add or remove colors.

The set of all vertices appearing in G is its support Vg, i.e. having a color or being
linked to an arc. Hence, graphs are always considered up to mute vertices, i.e. not
appearing in (G. This can be a matter of discussion for limit cases, especially when a
graph has only one vertex. Therefore we may always suppose that all vertices of the
support are colored with a “base color”.

A graph is deterministic if there are no arcs with the same label that share the same
source, i.e. for alla € ¥, if s = t and s — ¢’ then ¢ = #'. The in-degree (resp. out-degree)
of a vertex z is the cardinal of the set {y | y — =} (resp. {y | x — y}).

Ezample 2.1.2. The graph shown in Figure is known as the ladder. Its support is
Vi = {aa’, a'b}icn and it is defined by

G={dSa"|i>0}u{d>ab|i>0}U{ab=>a"b|i>0} A

From a logical point of view, a (colored) graph G can be associated to a structure of
universe Vg and of signature (R,)sex U (R:)cer where Ry, has arity 2 or 1 when b belongs
respectively to ¥ or I'. The valuation of this structure maps R, +— {(z,y) |z = y € G}
for a € ¥ and similarly R. — {z | (¢,z) € G} for ¢ € I We will often confuse the

graph and its associated structure. Two graphs are isomorphic (still noted ~) if the

22 CHAPTER 2. PRELIMINARIES

corresponding structures are.

A (colored) path in a colored graph G is a sequence p on G such that if p; = z % y or
pi = (c,y) then p;4q belongs to ({y} x X x Vo UT x {y}) N G. An uncolored path is such
a sequence only of arcs of G. A path is simple if the p; are pairwise distinct.

To consider only the “shape” of the graph, one can consider the delabeled graph where
all colors are removed and all arcs labels are replaced by the same label. An unlabeled
graph is a class of graphs isomorphic under the delabeling operation. When the arc
label set of a graph is labeled by a singleton, we sometimes confuse this graph and the

corresponding unlabeled graph.

2.1.4 Deterministic trees

A vertex r of a graph G is called a root when there is a path from r to any other vertex.
A graph G is a tree if it has a unique root r such that for any vertex in the graph there
exists a unique path from the root r to this vertex. The notions of - and X, I'-graph
yield the respective notions of X- and X, I'-tree.

For deterministic trees, we may therefore consider a tree presentation of the graph as
follows. The root is associated to the empty word € and for each arc u — v, we identify
v and u - a. Formally, a deterministic tree over an ordered alphabet Y is a subset T of
3 closed by prefix. If u C v, we say that u is an ancestor of v or equivalently that v
is a descendant of u. Immediate ancestors and descendants are respectively called father
and son. Elements of T" are called nodes and nodes without proper descendant are called
leaves.

Finally, a colored deterministic tree t is a mapping from a deterministic tree T" to a
finite set of colors I'. We note Dom(¢) = T the domain of this mapping.

A deterministic tree is prefix of its leaves (or is a prefix tree) if it is equal to the
prefix-closure of its set of leaves. A deterministic tree is a binary tree when 3 = {0, 1}.
It is said to be full if every node has exactly 0 or |X| sons, and complete when every node
has || sons . See the complete (uncolored) binary tree in Figure [I.2]

A branch of t is a maximal subset B of Dom(t) such that if z € B, then all ancestors

of x and at most one son of x are in B.

2.2 Linear orderings

Linear orderings are the main object of study throughout this thesis. The reason is that
they form easily understandable examples with simple properties and nonetheless an arbi-
trary complexity, for instance in the sense detailed in Section [2.2.2] For a comprehensive
introduction to linear orderings, see [Ros82, [Roi90).

A linear ordering, total ordering or simply ordering, is a structure whose signature

consists in only one binary relation < which is reflexive, antisymmetric and transitive.

2.2. LINEAR ORDERINGS 23

Nonetheless, when the universe is not a singleton, we will most of the time consider the
structure over the associated irreflexive relation <; this avoids numerous case distinctions.
The order type is an isomorphism class of orders. In our graph vocabulary, it is
equivalent to say that an order type is an unlabeled graph of linear orderings. Since we
work up to isomorphism, we will often confuse a given ordering with its order type.
The reverse operation * is a mapping from an ordering (V, <) to the ordering (V, <*)
where x <* y <= y < x. Notable order types include

e the finite orderings noted 0,1,....k,...;

the usual ordering of N, noted w;

the ordering of N in reverse order, w*;

the usual ordering of Z, noted (;

the usual ordering of QQ, noted n;
e the usual ordering of R.

This thesis is dedicated to countable structures, so we will never consider the ordering
of R.

The subordering relation < is defined on order types by a < (iff there is an ordering
of type § which has a restriction of type a. This relation is extended to orderings when
the order types are similarly ordered. For instance we have w < { < n, but neither w < w*
nor w* = w. As we will see later, an order not having 7 as a suborder is called scattered.
An interval I of L is a restriction of L to a subset where if z,y are elements of I and
there is z in L such that z < z < y, then z is an element of I.

Let I" be a finite set of colors. A colored ordering of an ordering (V) <) is a mapping
V +— I'. As hinted by the notations, a (resp. colored) ordering can be associated to a (resp.
colored) graph. Consequently, we deliberately confuse the objects and will indifferently
use the structural or graph notation.

An w-word or (mono-)infinite word is a colored ordering of type w.

There is an available arithmetics on linear orderings : more precisely we use addition
and multiplication. Formally, these noncommutative operations are defined as follows.
See also |[Ros82].

(U, <p)+(V,<y) =(UWV,<pv)
where v <py y ifft z,yeUandz <py
or z,y €V andx <y vy
or reUandyelV.
(U, <p)(V,<y) =(V x U, <jex).
where (u,v) <jex (v/,0) iff w <y

or u=u ANv<y.

24 CHAPTER 2. PRELIMINARIES

Figure 2.2: The graph representation of the ordinal w + 2.
Graph representations of ordinals are hardly readable due to many arcs. The lighter notion of
covering graphs will be described in Section

2.2.1 Ordinals

A particular kind of linear orderings are the well-orderings, which have the following

equivalent properties :

e cach nonempty subset has a smallest element;

e there is no infinite strictly decreasing sequence.

An ordinal is the order type of some well-ordering. However, as noted in Section [2.1.3]
we often will identify the order type with the ordering; for instance, the sentence “the
ordinal o belongs to the class X” means actually “there is an ordering of order type « in
the class X7.

All ordinals are themselves well-ordered by the subordering relation. For any ordinal
«, the set of ordinals greater than « has a smallest element, which we call the successor
of a. The reverse operation, the predecessor, is not defined everywhere. The set where
predecessor is defined is naturally called the set of successors, or ordinals of the first kind
in old literature; its complementary is called the set of limit ordinals, or ordinals of the
second kind. The supremum sup(X) of a set X of ordinals is the smallest ordinal greater
than each ordinal in X.

The set-theoretical (or Von Neumann) approach defines each ordinal as the set of
smaller ordinals. For instance, 0 = () and 1 = {(}. We borrow this encoding to define the
canonical graph of a as the ordinal graph where vertices are exactly ordinals smaller than
a. The fact that we consider graphs up to mute vertices is not a problem, because the
equality relation is always implicit; in particular 1 # 0, because there is one non-mute

vertex in 1.

Arithmetics

Arithmetic operations can be defined in two ways : either by transfinite iteration or by
giving an isomorphic structure. The very first operation available is the successor relation.

Then addition is the transfinite iteration of successor, multiplication is the iteration of

2.2. LINEAR ORDERINGS 25

addition, and exponentiation is the iteration of multiplication :

a+0 = a,
at(B+1) = (a+p)+1,
for limit A, + A = sup(a+ f).

B<A
a0 = 0, o = 1,
a.(B+1) = af+a, o’ = afla,
for limit \,a.A = supa.S. o = supd’.
B<A B<A

This definition of addition and multiplication matches the structural definition for
general linear orders given above. A similar direct definition is available for exponentiation
[Ros82l, Exercise 3.45]. The reverse lexicographic order means § <jjex ¢ iff 3o such that
5, < t, and for all § > «, S5 = ts.

Proposition 2.2.1. 3¢ is isomorphic to the set of a-sequences of B where finitely many

elements are non-zero, ordered by reverse lexicographic order.

Proof. When o = 0, % = 1, and there is indeed only one empty sequence. When
a =~v+1, f* = 7.5 is the cartesian product 5 x 87 by lexicographic order, or equivalently
Y x [in reverse lexicographic order. By induction 87 is the set of (finitely non-zero)
~v-sequences of [in reverse lexicographic order, which yields the result.

When « is a limit ordinal, let & be an a-sequence where finitely many elements are
non-zero. In particular, there is a smallest index « such that z,, = 0 for all 4/ > ~. Then
Z can be mapped to an ordinal smaller than w?”. This mapping is an isomorphism from

finitely non-zero) a-sequences to w®.]
(y q

When g = w, the following definition is easier to use. This is the form we will adopt

later on.

Corollary 2.2.2. w® is isomorphic to the set of finite decreasing sequences of « in lexi-

cographic order.

There is a similar form for some scattered orders; see Section |3.2]
We use the Knuth notation|[Knu76] to express more complex operations. The operation

M is the exponentiation.

a o 1;
(G = atn (@t g

at™ XN = supa 1" B for limit .
B<A

In this thesis we use the case n = 2 and note 12=11. It will mostly be used to express

ordinals of the form
wMk=w" .
k

26 CHAPTER 2. PRELIMINARIES

Indeed, this thesis is restricted to ordinals smaller than ¢y = w 11 w.

Remark 2.2.3. 'This notation is not the generalization of addition, multiplication and
exponentiation, because the iteration is done on the right side. If we chose to follow this

definition, the operation 11" succeding to exponentiation would rather be defined by

a0 = L
(1) = (@t P
at™ X = supa " 5 for limit A,
B<A

which would give w 11’ 2 = w*, but w 11’ 3 = (w¥)¥ = w*? and w M w = W, |

This notation is closely related to the family of Veblen functions [Veb0§|. Let ¢
be a continuous increasing function, i.e. an increasing function such that lim, ¢o(a,) =
wo(lim, o). For o > 0, ¢, is the continuous increasing function enumerating common
fixed points of (¢g)s<q. In particular, the case ¢y : +— w” yields a family of functions
known as the Veblen hierarchy, and ¢;(a) = w 11 «. These functions define in fact the

e-numbers.

Cantor normal form
Cantor states a fundamental tool for ordinal analysis.

Theorem 2.2.4 ([Can97]). Let o be an ordinal. Then « can be uniquely written in the
form

whiep + -+ +whe
where y1 > -+ > Y and k,cy, ..., ¢, are natural numbers (i.e. finite ordinals).

We will call this form the reduced Cantor normal form (RCNF), denoted by &. We

call Cantor normal form (CNF) the following version
C(:w’Yl_i_,,,_'_w’Yk

where v1 > -+ > .
Since this thesis is restricted to ordinals smaller than ¢y, we have also the additional

property a > =1, which allows induction.

2.2.2 Scattered orderings and Hausdorff rank

A linear order is dense if for each = < y, there is a z such that x < z < y. There are only
five countable dense order types, depending on whether there is an upper and/or lower
bound. They are 1,7,1+n,n+1and 1 +7n+ 1.

A linear order is scattered if it does not contain any infinite dense subordering. Or-

dinals are a particular case of scattered linear orders. However, scattered orders are not

2.2. LINEAR ORDERINGS 27

necessarily well-orderings; consider for instance (or w + w*. For a detailed presentation,
we refer the reader to [Ros82].

The following result shows that all linear orders are combinations of these two kinds.

Theorem 2.2.5 (Hausdorff [HauO8|). Any linear ordering L is a dense sum of scattered
linear orderings; that is, there is a dense linear ordering D and a map h from D to
scattered orderings such that L =, h(i).

In this section we focus on countable scattered orders. A more constructive charac-
terization is provided by Hausdorff Theorem which also gives a measure of the complezity

of such orders. From now on, we only consider countable scattered orders.

Theorem 2.2.6 (Hausdorff [Hau08]). A countable linear order is scattered if and only if
it belongs to |, Vo where

Vo = {0,1}
Vs = {ZL,-|V7L,L,-€ Uva}
i€z a<f

The Hausdorff rank of a scattered order L, written r(L) (or sometimes V' D(L) in the
literature), is the smallest « such that L belongs to V,. For instance, we have r(¢) =
r(w)=1and r(w+ w*) = 2.

As the classes V, are not closed under finite sum, we do not have in general that
r(A+ B) = max(r(A),r(B)). It is natural to consider W,, the closure under finite sums
of Vo (te. LEWL ML =730,
of rank, called ~-rank and written 7(L), is the smallest ordinal a such that L € W,. This
definition can be found in [KRS05] under the denomination VD, (L). As 'V, C W, C V41,
we have 7(L) < r(L) < #(L)+1. Along this thesis, we will mostly use this alternate version
of the Hausdorff rank.

For instance, the following proposition states that the ~-rank of the ordinal w® is «.

| L; for some Ly, ..., L, € V,). The associated notion

More generally if a is written Y. w® in Cantor’s normal form then 7(a) = a;.
Proposition 2.2.7. For any ordinal o, 7(w®) = r(w®) = a.

Proof. To show that 7(w?) = r(w”), we only need to show that if w® € W, then w” € V,.
Assume that for some /3, w® belongs to W,. By definition, w® = 6 + ... + 6, with
6; € V, for all i € [1,n]. There exists j € [1,n] s.t. §; = w’. Otherwise, from the
definition of w?, we would have 0; <wY - k; for some ; < B and k; < w. We would have
wh < maxivi Yok < w? which brings the contradiction.

A straightforward transfinite induction on o shows that for all ordinal 3, w® € V, if
and only if § < a.]

The following facts are useful properties on scattered orders.

28 CHAPTER 2. PRELIMINARIES

Proposition 2.2.8. Let (L;);ez be a family of scattered orders and let o be an ordinal :

2. for alln > 1, there exists j € [1,n] s.t. 7(>_ L)) =7(Ly);

1€[1,n]
3. T(Diep Li) > a iff either there exists i € Z s.t. 7(L;) > « or for all &' < «, there

exist infinitely many i s.t. 7(L;) > o/;

4. T(Dsen Li) < aiff for alli € Z, 7(L;) < o and there are only finitely many i such
that 7(L;) = «.

Remark 2.2.9. The two conditions of property 3 are not exclusive. Take for instance

Ly = (w¥)%,
for k >0, L Wk
and L_, = 0.

Then 7(Lo) = 7(>_, Li) = w, and 7(w¥) = k. |

Remark 2.2.10. 1t is not difficult to see that we can “inverse Z”, i.e. that

f(z Li) = 7:(Z Li)'

i€EZ 1EWw+w*

We may therefore replace Z by w + w* in the previous proposition. This fact will be used

in Proposition [£.4.7 |

Proof. Property 1. Let L and L’ be two scattered orders s.t. L < L' . From [Ros82,
Lem. 5.14], r(L) < r(L'). Assume that (L) = a. This means that L is equal to the finite
sum ,;c(; , Li where for all ¢ € [1,n], r(L;) < . As L' 2 L, L' is equal to a finite sum
D icn Li where for all ¢ € [1,n], Lj 2 L;. Hence for all i € [1,n], r(L;) < r(L;) < a.
This shows that #(L) < r(L) = a.
Property 2. This property can be seen as a particular case of [KRS05| 4.2]. More simply,
for i € [1,n], #(L;) < a by property 1. If #(L;) < « for all 7, then 3, , L; can be written
as a finite sum of (Hausdorfl) orders strictly smaller than « and therefore 7(3_;, , Li) < a.
Property 3. [=] Suppose there is an o’ < « such that 7(L;) < o/ for all i. Then each L;
is a finite sum of orders of (Hausdorff) rank smaller than o/. This means L =)., L; is
in V,, and therefore L has Hausdorff rank o/. This would mean 7#(L) < o/ < a.

So for each o/ < a, {i | 7(L;) > o’} is nonempty. If it is always infinite, the proof is

done. Otherwise, there is o < « such that this set is finite. Let I be a finite interval

L= "Li+» Li+>» L,

i<l el i>1

containing it. If we write

2.2. LINEAR ORDERINGS 29

since for 7 ¢ I we have 7(L;) < o/ then 7(}_,_; L;) < o and 7(}_,.; L;) < a by the above
paragraph. By property 2, this means 7(}_,_; L;) = 7(L), and by property 2 again, this
means there is a i € I such that 7(L;) = 7(L) > a.
[«<] If there is ¢ such that 7(L;) > «, then by property 1, 7(L) > 7(L;) > . We suppose
only the second property is fulfilled. If « is limit, for each o/ < « there is a L' < L such
that o/ < r(L'). So o < r(L) for each o < o and v < r(L). Since r(L) < 7(L) + 1 and
a is limit, 7(L) > a. If a = o + 1, there is infinitely many ¢ such that 7(L;) = o/. So
7(L) > o/, and if actually 7(L) = o/, there would only be finitely many such ¢ by property
4, part [=]. So 7(L) > o and 7(L) > «a.
Property 4. [=] Property 1 ensures that 7(L;) < 7(L) < a. Suppose I = {i | 7(L;) = a}
is infinite. Since), L; < L, by property 1, #(>_; L;) = . This means), L; is a finite
sum of orders of (Hausdorff) rank smaller or equal to . One of these orders M is such
that there is an infinite I’ C I with), L; < M. By the definition of the Hausdorft
rank, we may write >, Li < >, M; where r(M;) < « for each j € Z. Consider any
i which is not an extremum of [(i is neither the first nor the last element). Then there
is j; and j;r such that L; < Zj’;_ M,;. So L, is a finite sum of orders of rank < « :
7(L;) < MAX ;- 4] r(M;) < o, which is a contradiction.
[<] If 7(L) > a, since there is no ¢ such that 7#(L;) > «, by property 3 part [=], there
a.

would be infinitely many 4 such that 7#(L) = a, which is not the case. So 7(L)]

2.2.3 Orders in a deterministic tree

Whenever we talk about a deterministic tree, we always may assume that the alphabet
is ordered. Thus, the nodes are also ordered by the lexicographic ordering. The frontier
of a deterministic tree Fr(t) is the (colored) order of its leaves by lexicographic ordering.
We sometime say that a node u is to the left (or right) of a node v to say that u <jex v
(resp. v <jex U).

Other orders in deterministic trees that are worth of interest include
e the lexicographic order (Dom(t), <j.x) on the whole tree, not just on leaves.
e the Kleene-Brouwer ordering (Dom(t), <xp) as seen in [Rog87], where

T<kpY <= yLzV(rlyAz <iexy).

The equivalence of these three orders with regard to Hausdorff rank will be established
in Proposition 4.4.8, and needs the powerful Proposition 4.4.3, For the time being, let us

satisfy with the following result.

Proposition 2.2.11. If t is a det. prefiz tree which frontier is a well-ordering, then
Dom(t) is well-ordered by <jex.

30 CHAPTER 2. PRELIMINARIES

Proof. By contraposition, suppose there is an infinite strictly decreasing sequence of nodes
of t. In particular, there is an infinite strictly decreasing subsequence of strictly increasing
lengths. If x <jox y and |z| > |y|, then y IZ x and for any ¢/, 2" such that y C ¢/, x C 2/, we
have ' <jx 3. Since t is prefix, there is therefore an infinite strictly decreasing sequence

of leaves in ¢, so ¢t cannot yield a well-ordering.]

In contrast, as soon as t is an infinite tree, it has an infinite branch which has order

type w* by <kg; so the Kleene-Brouwer ordering is not a well-ordering unless ¢ is finite.

2.3 Logic

2.3.1 First-order logic

We fix a countable set V; of first-order variables z,vy, z,.... Let (R;);c; be a signature.

Formulee over this signature are of the form
p:=TloAp|=p|3ze|Ri(z1,...,R,)

where x1,...,7r, € V1. Here T is the “true” constant, A is the logical conjonction, —
is the negation, 3 is the existential quantifier. It is well-known that additional operators
can be encoded, namely the constant L (“false”), disjonction V, the implication = and
the universal quantifier V.

There is a prior: no relation of equality between variables; however, it is often implicit
in first-order logic, and will reveal itself useless in monadic logic.

The set of free variables of ¢ is the set of variables appearing but not quantified in
. We note as usual ¢(z1,...,2,) when the set of free variables of ¢ is {z1,...,z,}. A
formula without free variables is called a closed formula or statement. We note S = ¢
when the structure S satisfies a closed formula ¢. More generally, for a given formula
o(x1,...,x,), we note S = @lay,...,a,] when the structure S satisfies the formula ¢
where the variable z; is interpreted as the element a;.

The first-order theory of a structure S is the set of closed formulee satisfied by S.

It is said to have a decidable first-order theory when this set is recursive, as seen in

Section 2.3.3

Example 2.3.1. The determinism on Y-graphs can be checked with the following formula

when the equality relation is allowed.

\/Vm,y,z((x&y/\x&z)iyzz) A
acX

Ezxample 2.53.2. The first-order logic can express the property that a given graph of label

2.3. LOGIC 31
set {<} is an order graph.

Vo, y (=(z Sy Ay S)
Ve, y,r (@ S ynlySr)=zSr) A
total order : ‘v’x,y(xsy\/ysm\/x:y)

strict order : {

2.3.2 Monadic second-order logic

The monadic logic extends the first-order logic with new variables interpreted as sets, and
a new relation € for membership. Let V, be a new set of second-order variables, noted

with uppercase letters. A formula ¢ is defined by
= Ri(z1,....7p)) [€ X [oA@|np|[Tzp|IX ¢

where x,z1,..., 7R, € V1 and X € V.
Empty set (), subset relation C, union U, intersection N, complementation \ are all
naturally embedded in MSO-logic, as is second-order equality. By the means of a formula

expressing singletons,
singleton(X) =3z e X (WY (z €Y = X CY)),
first-order equality is also naturally expressible, which solves the problem of having an

equality relation in the signature or not.

FExample 2.3.3. Adding the following MSO-formula to Example [2.3.2] characterizes struc-

tures of signature {<} which are well-orderings.

well order : VX £0, Jz(zre X AVylye X = (z SyVae=y))) A

The set of all monadic formulae satisfied by a structure G is called the monadic theory
of G and is noted MTh(G).

2.3.3 Decidability

An important problem of logicians is to decide whether a formula is satisfied by a given

structure.

Question 2.3.4. “Model-Checking Decidability” : For a given structure, find an algorithm
taking as input a monadic formula and outputting whether the structure satisfies the

formula or not.

32 CHAPTER 2. PRELIMINARIES

On orders, the earlier result is by Biichi [Biic62]. He introduces the notion of (now
called) Biichi automaton, which is a finite-state automaton accepting an infinite sequence
iff there is a run which visits at least one of the final state infinitely often. He then
proves that each monadic second-order formula can be effectively converted into a Biichi

automaton.
Theorem 2.3.5 ([Biic73|). The monadic theory of w is decidable.

Later on, the possibility of transfinite runs was added to the automata. Using The-
orem [3.4.2] explained in Section [3.4, we get the following theorem. These results are

summed up in [Biic73].
Theorem 2.3.6 (|[Bii65]). The monadic theory of each countable ordinals is decidable.
Shelah [She75] (see also Gurevich [Gur85]) developped an “automata-free” method,

now called the compositional method. For a finite sequence k of integers, it defines the
notion of k-type of a structure, which is expressive enough to say whether a given formula
is satisfied in the structure or not. The composition theorem states that it is possible to
compute the k-type of a sum with the types of the summands. With this tools, the two
results above are restated. A useful introduction to this method appears in [Tho97a], as
well as a comparison between Biichi’s and Shelah’s methods.

For other orders, the theory of 7 was proved to be decidable. By using Theorem [2.2.5]
it is possible to prove that the theory of all countable orders, i.e. the set of formulae that
are true for any order, is decidable. Some results also appeared for uncountable structures.
Biichi proved that the theory of wq, the first uncountable ordinal, in decidable, whereas
Shelah proved that the theory of the real order was not.

On other structures, the most famous case is the complete binary tree, already seen

in Figure [1.2 The proof employs automata on infinite trees.
Theorem 2.3.7 ([Rab69]). The monadic theory of the complete binary tree is decidable.

This theorem was generalized by the regular, then prefix-recognizable graphs, and
later by the whole pushdown hierarchy presented in Section 2.5 It may be defined by
operations, i.e. graph transformations preserving decidability of MSO logic; some of
them are shown in Section 2.4, For more on this subject, see for instance the recent
survey [BCLOT].

In the other way around, a classical example of undecidable monadic theory is the

two-dimensional grid, which can be presented as the graph of support N x N and arcs
.o a . . . N b
{(i,7) = (i+1,5),(,7) = (1,5 +1) | i,j € N}

The grid is the configuration graph of an automaton with two unary pushdown stacks.
It has the same expressive power as a Turing machine; therefore properties like reachibility

are not decidable.

Proposition 2.3.8 ([See91]). The grid has an undecidable monadic theory.

2.4. GRAPH TRANSFORMATIONS 33

2.4 Graph transformations

This section presents some of the transformation we will use through this thesis. They are
here classified by increasing “impact” on the graph. The graph interpretations preserve
vertices, but change arcs; a particular case is the graph coloring, which also preserves

arcs. The graph expansions extend or completely change the set of vertices.

In regard of Section [2.3.3] it is important to note that all these transformations are
MSO-compatible, i.e. they preserve decidability of the monadic theory.

2.4.1 Graph interpretations

These operations re-arrange arcs between existent vertices without adding new vertices.
They are presented in decreasing strength. Later in Remark[4.1.4] the TWA-interpretation
will be mentioned.

The generic form of interpretation is defined by Z = {@, }aes U{@c teer, where {©g }aes
is a set of (to be defined) binary formulee and {p.}eer is a set of unary formulee . The

interpretation of a graph G is then
I(G) ={z = y | G ga(z,9)} U{(c,2) | G | pe(2)}

An example of very strong interpretation is the set interpretation developped in [CLOT].
In this case, each formula ¢, is a monadic formula with two second-order free variables.
This interpretation is not MSO-compatible, but if G has a decidable weak monadic logic,
then Z(G) has a decidable first-order logic.

Monadic interpretation

A MSO-interpretation Z is a finite set {¢g faex U {@e}eer of monadic second-order (MSO)
formulee with two or one free individual variables. The interpretation of a graph G' C

V x ¥ x V is the graph I(G) defined by

[(G) = {zSy|e,yeVAGE puz,y)}
U{(c,z) |z € VNG E p.(z)}.

A MSO coloring is a particular case of interpretation where binary formulee are in the
form ,(x,y) = v % y, i.e. an interpretation which do not change the labeling of the
graph.

Example 2.4.1. The frontier of a deterministic tree is a MSO-interpretation of this tree.

34 CHAPTER 2. PRELIMINARIES

On a binary tree (arc labels {0,1}), let Z = {¢o~} U {pc}eer-

plr,y) = —F(e—=2) ATy (y =)
=F (ZMHU/\ZMMJ)
and for any c, oc(z) = (c,x) N3/ (x — 2').
This example is easily extended to the case of any alphabet . A

Inverse rational mapping

Another particular case of monadic interpretation is inverse rational mapping. For a given
alphabet ¥, we use the disjoint alphabet ¥ to read the arcs backwards. For a rational

language L over ¥ U X, the formula p L q is defined inductively.

p N g iff p#p (or any false formula)

p—p iff (¢p)

p—q iff pSgq foranyaed
p—q iff ¢3p, foranyacX

) L %

p—>q Mt p—=qgVp—q

p—q iff Elr(p£>7’/\rL—/>q)

p—q iff VX(pe XAClosed,(X)=qe€X)

where Closed(X)=Vr,ye X((x € X ANz £>y) =yeX).

An inverse rational mapping is a monadic interpretation Z = {p,} where each formula

is of the type p.(z,y) = M), yor g,(r) ==z MO, & and h(a) is a rational language. In

this case Z is also noted h~!.

Example 2.4.2. The formula

HZ(ZM)QS/\ZM)y)

used in Example can be translated into the more compact

- (0+1)*01(0+1) " N

As this example hints, it was shown that the inverse rational mapping is not a strong

constraint on deterministic trees.

2.4. GRAPH TRANSFORMATIONS 35

Proposition 2.4.3 ([Car06, Prop. 3.2.1]). For any X,T" and monadic interpretation Z,
there is a monadic coloring p and a rational interpretation h™' such that for all deter-

ministic 3, ['-tree t,

There are even more specific variants of inverse rational mapping. We will see in
Section [5.1.2] a version called deterministic rational mapping where the underlying au-
tomaton can only branch when looking at colors. It was designed to preserve determinism
of graphs.

An even more narrow case is when the language L, is a finite language for each a.

This case is naturally called an inverse finite mapping.

2.4.2 Graph expansions

These transformations map a graph G towards a tree or tree-like structure based on G.

They are also the source of new vertices for structure of the hierarchy.

Monadic transduction

The MSO-transduction (see the survey [Cou94| for more details) aims at making monadic
interpretations more flexible by adding some vertices. Formally, when K is a finite alpha-

bet, a K-copying operation associates to G' a (3 U K)-labeled graph G’ :

VG’ = VGU(VGXK)
G = Gu{z S (x,k) | ke K}

A MSO-transduction T = (K,Z) is a K-copying operation followed by an MSO interpre-

tation.

Unfolding

The unfolding of a graph from a given vertex is the tree of all paths in the graph from
this vertex.

Formally, the unfolding Unf(G,r) of a graph G from a vertex r € Vj is the tree T s.t.
forall a € ¥, 7 % ' € T if and only if 7 and 7’ are two paths in G starting from r and
7 =m- (s > t). Moreover for any color ¢ € I, (¢,7) € T if and only if 7 is a path in G
starting with r and ending in ¢ with (¢, t) € G.

When the graph has exactly one root, the shortcut Unf(G) is used to designate the
unfolding from this root. A classic example is the unfolding of the ladder (presented in

Figure 2.1)), shown in Figure 2.3

The MSO-compatibility of this operation is a particular case of the Muchnik theorem

(Th. below).
Theorem 2.4.4 ([CW98]). Unfolding from a MSO-definable vertex is MSO-compatible.

36 CHAPTER 2. PRELIMINARIES

®<——-
P
P

@ <———
Q@< ——
@@« @« ——

Figure 2.3: The ladder and its unfolding.

Figure 2.4: Treegraph of the complete binary tree.

It has to be noted that the root must be definable by a monadic formula. A counter-
example in [Car06, Rem. 3.3.5] shows that the result is false without this constraint. The
idea is that there is a forest of trees with decidable monadic theory where at least one

tree with undecidable theory is “hidden”.

Treegraph

This operation first appears in a weak form in [She75]. The standard form appears in
[Sem84] and is attributed to Muchnik, who never published it. The treegraph of a graph
G, noted Treegraph(G), is the set

{z =y} CVE x (ScU{#}) x Vg

where (z,y) € V7 are sequences of vertices of G, and either
e a€Yg, xv=wp,y=wqwhere w € V3 and p = q € G,
e or a = #, x = wp and y = wpp.

One can also see the treegraph as the fixpoint of the operation which, to each vertex
which is not starting point of an # arc, adds this arc leading to the location of this vertex
in a copy of GG. The starting graph is called the root graph.

The following result is due to Muchnik, but the first complete proof only appears in
[Wal02].

2.5, THE PUSHDOWN HIERARCHY 37

Theorem 2.4.5 (Muchnik). The treegraph operation is MSO-compatible.

2.5 The pushdown hierarchy

The pushdown hierarchy — sometimes called the Caucal hierarchy — is a family of sets
of graphs having a decidable monadic theory. It covers actually two families : one noted
(Graph,,),>0, and one only composed of trees, noted (Tree,),>o. For all n > 0, we have
Tree,, C Graph,,, Tree, C Tree,;, and Graph, C Graph,, ;.

As stated in the introduction, the history of the pushdown hierarchy starts with the
result of Muller and Schupp [MS85] about a geometrical property on configuration graphs
of pushdown automata from a given configuration. The graph decomposition of a graph
G from a vertex r € Vg is the family of the connected components of the subgraphs
(Grn)n>0- The n'™ decomposition Gy, is the subgraph which support is the set of vertices
at distance at least n of r. The graph is said finitely decomposable if, for any vertex r,

the graph decomposition is finite up to isomorphism.

Example 2.5.1. If we decompose the complete binary tree from its root, the graph de-
composition is reduced to the singleton of the binary tree itself. More generally, if we
decompose this tree from a vertex of depth k, the cardinal of the graph decomposition is
k+1. A

Theorem 2.5.2 ([MS85]). Configuration graphs of pushdown automata starting from a

given configuration are exactly finitely decomposable graphs of finite degree.

In particular, these graphs have a decidable monadic property. This work was extended
to HR-equational graphs by [Cou90], and then to prefix-recognizable graphs [Cau92,
Cau90].

In parallel, the notion of tree as infinite solution of a recursion scheme was brought
back under the lights thanks to a result of decidability of MSO-theory under a condition
of safety [KNUQI, KNU02]. This approach will be detailed in Chapter [l A similar result
appears in [CK02]. Then [Cau02] shows that these term-trees are the same, and that they
also are the unfoldings of prefix-recognizable graphs.

This results naturally lead to the full definition of the hierarchy in [Cau03] : trees are
unfolded by graphs, which are in turn inverse rational mappings of trees. It was then
showed in [CW03] that the inverse rational mappings can be replaced by general monadic
interpretations, and that the graphs of the hierarchy were e-closures of configurations

graphs of higher-order pushdown automata.

2.5.1 Definition

We only define here the outer presentation, i.e. by graph transformations. An inner
definition by higher-order stack relations, introduced in [Car(05], appears in Section [3.3.2]

Chapter [5| presents the recursion schemes approach.

38 CHAPTER 2. PRELIMINARIES

Treeq MSO-I
(finite trees)

Tree; MSO-I

(regular)

recognizable)

o
Tree, MSO-I
(algebraic)
30
\}‘\&O\

Figure 2.5: The pushdown hierarchy.

The pushdown hierarchy can defined as follows :

e Treey is the set of finite trees,

e for n > 0, Graph,, is the set of monadic interpretations of Tree,,
e for n > 0, Tree, ;1 is the set of unfoldings of Graph,,.

The lower levels of this two-fold hierarchy are illustrated in Figure [2.5; a practical

example of graph constructions can be seen in Figure [2.6
A major consequence of the Theorem is that the whole hierarchy enjoys a decid-

able monadic theory.

Theorem 2.5.3. For all n > 0, the monadic theory of a graph in Graph,, is decidable.

2.5.2 Some properties

By [CW03], deterministic trees are enough : a graph of Graph,, is the inverse rational
mapping of a deterministic tree in Tree,. The same paper also states that there is a
generator AL, i.e. a deterministic graph such that each graph is the inverse rational

mapping of a rational marking of AZ. This generator is defined as follows :

e Al is the complete binary tree;

2.5, THE PUSHDOWN HIERARCHY 39

H 7 Q
: :
S
#
| | * I2 | I T
1 1 1 —_— I I I
A R
=
#
*——o——e
| | | Is
) J i — 5 a b a a b
[] o —0————>0—0—>0
.A. J,\
‘f [] .‘LK.

Figure 2.6: Exemple of graph constructions in the hierarchy.
These graphs belong successively to Treey, Graphg, and so on up to Graphy. Graphs are al-
ways unfolded from their root, i.e. their uppermost leftmost vertex. The three interpretations
To,T1,I> are as follows :

leaf(p) = —-3r (p—r)
To: wolpg) = p>gq
e1(p,q) = p=qA-leaf(p)
T Yolpg) = p g
dilpg) = p—g
Yyu(p) = -leaf(p)
Iy : m(p,q) = 3r (p—>r —>queaf() Aleaf(q) A = (,7))

V(leaf(p) A p =2) A (#,9))

V(leaf(q) Ap = q) A (#.D))
Na(p) = 3(1 (m(p, q)) A leaf(p)
mP) = 3¢ (m(p,q)) N (#,p)

The final structure is actually the infinite (morphic) word abaabaaaab ..., which we will see
again in Chapter [5

40 CHAPTER 2. PRELIMINARIES

o AL = Treegraph(A3).

In this thesis, we will extensively use the following closure properties of Tree, and
Graph,,.

Proposition 2.5.4 ([CWO03]). For all n,

e the deterministic trees of Tree,, are closed under MSO-coloring;

e Graph,, is closed under MSO-transduction.

Deterministic trees of Tree,, is also closed by subtree. For any tree ¢t and node u, the

subtree of root u is noted % ,.

Proposition 2.5.5. For all deterministic tree t € Tree,, and for all w € Dom(t), t,, also

belongs to Tree,.

Proof. Let t' be the tree obtained by coloring any node below u with a fresh color $. By
Prop. [2.5.4] ¢’ belongs to Tree,. Let G € Graph, and r € Vg such that ¢ ~ Unf(G,).
Let r" be the vertex of G corresponding to u and let Z be the interpretation erasing all
the vertices which are not colored by $ and then removing $. Clearly ¢/, ~ Unf(Z(G),).
Hence ¢/, belongs to Tree,,. O

Finally, we will make some use of the following selection properties on graphs and

trees. These properties are given for completeness sake.

Proposition 2.5.6. Let G € Graph,, be a deterministic tree, a MSO-formula ¢(X) and a
fresh color $. If G |= 3X, o(X) then there exists U C Vi s.t. G = [U] and G U {($,u) |
u € U} also belongs to Graph,,.

Proof. In [Car06, Theorem 5.3.1] it is shown that for all n > 0, any graph in Graph,,
can be MSO-interpreted in a unique graph written GStacks,. In [Fra05], it is shown that
GStacks,, has the selection property. That is to say if GStacks, = 3X, p(X) then there
exists ¥ (x) such that G |= ¢[U] where U = {u € Vi | G = v¥[u]}. A proof of this fact is
also given in [Car06, Theorem 4.7.6.].

Let G € Graph,, and ¢(X) be an MSO-formula s.t. G | 3X,p(X). Let Z be an
MSO-intrepretation such that G = Z(GStacks,). Let ¢'(X) be an MSO-formula such
that for all set U of vertices of GStacks,, Z(GStacks,) = ¢[U] iff GStacks,, = ¢'[U]. In
particular GStacks, = 3X, ¢'(X).

Let 1(z) be the formula obtained using the selection property on GStacks,, for ¢'(X).
Consider the MSO-interpretation Z' obtained by adding to the formule defining Z a
formula pg(z) = ¢ (x). The graph Z'(GStacks,,) € Graph,, satisfies the desidered proper-
ties. [

Proposition 2.5.7. Let t € Tree, be a deterministic tree, a MSO-formula ¢(X) and
a fresh color $. If t = 3X,p(X) then there exists U C Dom(t) s.t. t = ¢[U] and
tU{($,u) | ue U} also belongs to Tree,,.

2.5, THE PUSHDOWN HIERARCHY 41

Proof. Let t be a deterministic tree in Tree,, and let ¢(X) be an MSO-formula s.t. ¢t =
3X, o(X).

For all U € Dom(t), we write ¢[U] the deterministic tree colored by {0,1} with the
same set of nodes as ¢ and such that for all u € ¢, t{U](u) = 1 iff u € U. We extend
this definition to tuples of sets and to graphs. Let A = (Q,qo, A,) be a parity tree

automaton accepting the set of determinstic tree over ¥ colored {0, 1} such that:
A accepts t{U] < t = ¢[U].

Let B be the automaton obtained by projecting the colors in A (i.e. the set of states
of Ais @ x {0,1} where @ is the set of states of A). To obtain our result, it is enougth
to show that we can color an accepting run for B on ¢ and still remain in Tree,. Indeed
to every accepting run of B correponds a set U C Dom(t) and an accepting run of 4 on
t{U].

For technical reason, we are going to color a strategy for the automaton B and not
directly an accepting run. A strategy ® for B on t is a mapping form ¢t to F where F is
the finite set of partial functions f from @ to A such that for all ¢ € @, f(q) (if defined)
is a transition starting from ¢. This strategy ® is winning if that for all u € Dom(¢) s.t.
f = ®(u) and for all ¢ € Dom(f), the run of B induced by ® starting from u in state ¢
is accepting. Conversely, for all © € ¢ and all state ¢q of B, if B admits an accepting run
from ¢ starting from u on t. As F is a finite set, a strategy for B can be coded by a tuple
of sets.

Obviously if we show that t colored with any winning strategy for the automaton B
belongs to Tree,. We have also shown that ¢ colored by an accepting run (or colored by
a set U such that A = t[U]) belongs to Tree,,.

The key property we are going to exploit is that we can restrict our attention to
so called regular winning strategies. A winning strategy is regular if for all u,v € t, if
t)w =ty then ®(u) = ®(v). It follows from the positional determinacy of parity games
that any automaton admits a regular winning strategy [Car(06, Lemma 1.4.6].

The interest of regular winning strategies becomes apparent when we recall that every
tree in t is obtained by unfolding a graph in Graph,. Let G be a graph in Graph, and
let r be a vertex in Vi such that ¢ = Unf(G, r). By considering regular strategies, we can
assume that all points originating from the same vertex of GG in the unfolding are assigned
the same value by the strategy. This allows us to color ¢ with a regular winning strategy
"before unfolding”. It follows form [Car06, Proposition 1.4.9] that there exists a formula
¥(X) such that for any tuple U of vertices of G, G |= ¢[U] iff Unf(G[U],r) correspond
to t colored with a winning strategy. By Prop. [2.5.6, there exists U such that G = [U]

and G[U] belongs to Graph,,. O

42

CHAPTER 2. PRELIMINARIES

Chapter 3

Linear order construction

This chapter locates some particular scattered orders in the pushdown hierarchy. It begins
with the construction of ordinals by graph transformations : the towers of w of height n
are found in Graph,. The same method is then extended to powers of (. For ordinals,
we also give a higher-order n-regular presentation, i.e. relations on stacks of stacks.
In Chapter [5 we will see a third construction of ordinals by schemes. Therefore these
well-known structures offer a panorama of techniques that can be used in the hierarchy.
While using MSO logics on ordinals, an important result can be noticed. Biichi’s
Theorem states that ordinals larger than w“ have a “redundant” MSO theory; for
instance, MTh(w*) = MTh(w“"). In other words, a given ordinal cannot be recognized
by a MSO formula. The last section of this chapter studies the structure of the so-called
canonical fundamental sequences of an ordinal, which is very close to the structure of
the ordinal itself, but has the MSO-recognizability. These structures also belong to the

hierarchy for ordinals smaller than &.

3.1 Ordinals in the pushdown hierarchy

Finite ordinals are all in Graph,, which is the set of finite graphs. On the next level,
ordinals smaller than w* are also easy to locate in the first level of the hierarchy. This
has been proven by [Hei80, BCOI]. We restate this result.

Proposition 3.1.1. For any o < w¥, a € Graph;.

Proof. Let Gy be the finite graph of vertices {a’ | 0 <4 < k}, as shown in Figure [3.1]
Gk:{ai#ai,aigai’1]0<i§k}

The leaves of unfolding of G, by a* are of the form 1%-101%-2 ... 01¢0. Ordered by lex-
icographic ordering, this set is isomorphic to (wk_l.ck_l +- - 4C0)vick.e; >0, Which is wk. We
have seen in Example that the frontier of a deterministic tree is a MSO-interpretation
of this tree, so w* € Graph,. For details on the sum closure, see Lemma m O

43

44 CHAPTER 3. LINEAR ORDER CONSTRUCTION

Figure 3.1: Finite graph G3 which unfolding has frontier w?.

The natural question is whether greater ordinals belong to the hierarchy, and up to
which bound. In particular, [Cac06] asks whether w” € Graph, or not. This section
partially answers this question by giving examples of ordinals; the other direction will be

seen in Chapter [
Theorem 3.1.2. [fa <w T (n+ 1), then a € Graph,,.

Using the Cantor normal form of ordinals smaller than ¢j, we only have to implement
addition and the operation o — w®. Here, we prove that ordinals of Graph, are closed

by addition, and that the w-exponentiation only reaches the next level.
Lemma 3.1.3. If a, B € Graph,,, then a + 8 € Graph,,.

Proof. It suffice to prove that for any G, G2 € Graph,,, x; € Vg, 22 € Vg,, if z is a new
vertex and #1, #2 new letters, the graph G = G; U Gy U {x ﬂ T1,T ﬂ X9} is also in
Graph,,. Indeed, if G; = a and G5 = 3, we can supply a monadic interpretation to get
the sum.

This is true for finite graphs. For n > 0, if G; = Zy(Unf(Hy,r1)) and Gy =
Zo(Unf(Ha,13)), then by induction we define H as above is in Graph,,_, : H = H;UHyU
{r " T, 7 ro}. Then Unf(H,r) € Tree,. It is easy to mark sets isomorphic to Vg,
and Vi, and to restrict respectively Z; and Z, to these sets. We get the required G. [

Lemma 3.1.4. If o € Graph,, then w® € Graph,,_ ;.

Proof. By Corollary[2.2.2] the structure w® is isomorphic to the finite decreasing sequences
of ordinals smaller than . Let G = Treegraph(«). We are going to find an interpretation
7 such that Z(G) ~ w®. For an illustration, the Figure page (62| shows the case of w
in the simpler frame of covering graphs, which will be defined in Section

G has exactly one root 0. Let M be the formula
M (z) =r=0vo
By the definition of treegraph, for any x such that M (z) and x # 0, we have

<# <# <#
Oi—VYl’Yl i—>’Y1’Y2’Y2 S —<——>71--~’Yn’7n=f€-

We note S, the sequence (71,...,Y—-1,7) with a > v, > -+ > ~,. Conversely, each
such sequence is associated to a x such that M (z). We define now a monadic interpretation

7 = {¢~} on these marked vertices so that ¢ (z,y) iff 5; <jex 5. Define

3.2. POWERS OF 45

Figure 3.2: Folded graphs of trees of frontier ¢, n and w(1 + 7).

N
pele,y) = M@) AM@y) Az =0ve TTED,

The case x = 0 is easy, so we suppose that z # 0 and ¢ (z,y). Then there is a z
(#<)* (#)"
such that x > 2

—

Sy = (M1, Vh—1,7) With v, < ;. In the same way 5, = (71, .., Yo—1, Vr - - - » Vopr)5 SO
53 <iex Sy. The converse is also true. H

> y. Then there is k such that 3, = (y1,...,%,...,7) and

As a direct consequence of Theorem [3.1.2] ordinals below ¢y can be expressed by
higher-order pushdown automata. This approach is explained in Section In fact,
this result is useful to illustrate the techniques that may be used in the hierarchy. It is

therefore proved four times :
e directly by the above proof;

e by n-regular relations, in Section [3.3}

e by covering graphs, as an application of Propositions [3.4.4] and [3.4.13}

e by higher-order schemes, as an application of Example [5.1.2]

3.2 Powers of (

More complex orders can also be found in the pushdown hierarchy. In particular, trees of
frontier ¢ or n (resp. order types of Z and Q), showed in Figure , are in Graph;.
In this chapter, we focus on a particular family of scattered orders : namely, the

successive ordinal powers of (. They are defined as follows.

¢ =1
¢o= (Z C“w) +1+) ¢*w for A limit.
a<A a<A

Note that the last line alone is actually enough for a complete definition, for any

ordinal \.

46 CHAPTER 3. LINEAR ORDER CONSTRUCTION

Figure 3.3: Folded regular graph of a tree of frontier (.

From [Ros82, Thm. 5.37|, the Hausdorff-rank of (* is . Furthermore, ¢ is complete
among the scattered orders of Hausdorff-rank « in the following sense: a scattered order
has Hausdorff-rank less than « if and only if it is a subordering of (.

The following proposition is an extension of Theorem [3.1.2]
Proposition 3.2.1. For alln > 0 and any ordinal o < w 1 n, (¢ is in Graph,,.

For instance, the graph of Figure is regular and thus in Graph;. Its unfolding by
its root (the leftmost vertex) is in Graph, and yields the order ¢“.
To prove the result, we need to extend the definition of the treegraph operation to go

in more than one direction. A similar approach can also be found in [Pil04].

Definition. Let X, I" be two alphabets. The I'-treegraph of a ¥-graph G is the graph in
(VeuID)* x XUl x (Vg UT)* given by

G = {urDuy|z>yeG)
U{uzr % urar | a € T}

Note that the constraint X N I" = () is not required, but this will be the case in our
application, and it is easy to see that it is not a restriction.
The main property of this treegraph version is that it does not add more complexity

than the standard treegraph, which is isomorphic to the case I' = {#}.
Proposition 3.2.2. The I'-treegraph of a graph in Graph,, is in Graph,, ;.

Proof. Suppose ¥ NT" = () up to final renaming. Let G € Graph,,. For each a € T,
let 7 be the transduction adding an arc labeled by a from each vertex of G. Then the
[-treegraph of G is isomorphic to the interpretation of Treegraph(7 («)) where each path
labeled a#a is changed into a. O]

Proof of Prop.|3.2.1. This proof is an adaptation of the construction for ordinals. By
Theorem for any n > 0, any ordinal smaller than w 11 n is in Graph,, ;. So it is
enough to prove that if a € Graph then Z“ is in Graph,,.

n—1»

3.2. POWERS OF ¢ 47

In a way similar to Proposition [2.2.1] ¢* is isomorphic to the set of a~sequences over
Z, where a finite number is non-zero, and ordered by reverse lexicographic order — see
again [Ros82, 5.36]. For two a-sequences 3,t, we have § <, t iff 3y such that 5, < t;
and Vo > v, §5 = .

Let a € Graph,,_; such that & < w 11 n. Let G be the {0, 1}-treegraph of a; by
Proposition G € Graph,, ;. G has still exactly one root r (a vertex co-accessible

from V). Let M be a marking adding a special color on 7 and any x such that

, (<+e)(0F+1H) (L (0F+11)*
G

7> X.

Here = # r is of the form (ypao)®..... (vkag) where for all i > 0, ¢; > 0, a; € {0,1} and

v < Yi—1. To each such x we associate the a-sequence §(x) where

!

V)

{

»

(x)y, = —¢ if a = 0
)

()y, = ¢ i a =1

Sx)y = 0 if vy # ~;foranyi

The path is finite so a finite number of indexes are non-zero. Conversely, to each a-

sequence with a finite number of non-zero indexes is associated a unique vertex in V.

We check that the relation # < y on marked vertices holds iff 5(z) <puex S(y) where
<iex 18 the reverse-lexicographic order definable by a MSO-interpretation in G. The cases

x =0 and y = 0 are handled separately. Otherwise let

—~
)
=]
S
(=)
~—
¥
S
—
=)
>
&
~—
¥
>
=9
>

We have x < y iff there is a j such that a; = b;,y; = 9;,¢; = d; for all i < j, and one
of the following is true. We note = ((0 + 1)* <) and |= (<(0 + 1)*). For an example,
see Figure 3.4

: T+1+¢*
Either Y < (5]', b]' =1 - I —Y
ROt
or 0; <75, a; =0 — T —Y
or v; =05, 7>0and
T*G+~l/*
a; =b;=0,¢; >d; — x—"y
*1+ *
or a;=>b;=1d;>c; = xgy
T*6+1+~L*
or a;=0,b;=1 _
. 21+ *
or k<j<h, b=1 — 2y
. *0t
or h<j<k, ¢ =0 - $T—>>?J

48 CHAPTER 3. LINEAR ORDER CONSTRUCTION

Figure 3.4: {0, 1}-treegraph of w.
White vertices are those used by the interpretation; bracketed dots represent subgraphs where
no vertex will be used. Here §, = (-1,-1,0,...), §, = (0,—1,0,...), 5, = (0,1,0,...). We

. 01
check for instance that 22 2=2% z, noted = T—> z.

In the other direction,

r— - ")/j<5j,bj—1
Or’széj,CLj:bj:Ldj>Cj
T*6+~L* -
r——y = 0; <7,a;=0
or’y]-:éj,aj:bj:(),cj>dj
URSES — 6,0, =0,b; =1
— Y = 7 =00 =00 =
Cts
x&y = k<j<hb=1

* 0+
:L‘TO—<>y — h<j<kc =0.
There is therefore a monadic interpretation Z such that Z(G) ~ ¢*. Since Graph,, is
closed under MSO-interpretation, ¢ € Graph,,. n

3.3 n-regular presentation

The graphs on the first level of the hierarchy were originally defined with a prefix-reco-
gnizable presentation [Cau96]. Then this presentation was extended to any level with
the help of higher-order pushdown automata of level n [CW03]|, i.e. automata which use
nested stacks of stacks of depth n. Using these results, the construction by monadic

interpretations and unfolding can be translated into a pushdown automata description.

3.3. N-REGULAR PRESENTATION 49

Instead of doing so, we prefer the equivalent — and more fluent — notion of regularity
[Car05] on n-stacks. This notion offers a natural encoding of ordinals by their Cantor
normal form.

This section gives a presentation of prefix-recognizable graphs, and then of the more
general n-regular relations. We show then how to actually build ordinals with this latter
tool. As in Section this latter operation is split in two parts : one for the a — w®

operation and the other for addition.

3.3.1 Prefix-recognizable graphs

A prefix-recognizable Y-graph is up to isomorphism a graph of the form
{uw S vw | (U,a,V,W) e AucUnu € Vwe W,a € X}
where A is a finite set of tuples (U, a, V, W) such that U,V and W are regular languages.

Theorem 3.3.1 ([Cau90, Theorem 3.3)). Prefiz-recognizable graphs are up to isomor-

phism inverse rational mappings of the complete binary tree.

This means that Graph; is (up to isomorphism) the set of prefix-recognizable graphs.
As a result, the same paper states that the monadic theory of prefix-recognizable graphs
is decidable.

3.3.2 Configuration graphs of n-hopdas

For a detailed presentation of these notions, see [Car05]. A 1-stack, or simply stack, over
a finite alphabet I' is a word over I'. To avoid later confusion, we forbid letters of N (see
below for the difference between pop, and pop,,). The empty 1-stack is noted [|;. For all
n > 1, a n-stack over I is a non-empty finite sequence of (n— 1)-stacks over I'. The empty
n-stack containing only the empty (n — 1)-stack is noted [],,. For all n, the set of n-stacks
is noted Stacks,, (or Stacks,(I')) and the set of all stacks is Stacks = UpenStacks,,.
The operations on a 1-stack [ay,...,ay|; are the usual push and pop. We add pop,

which can pop any letter.

push_([a1,...,an]1) = [ai,...,am,)1,
pop,([a1,...,am =2]1) = la1,...,am_1]1
popi([a1, .., aml1) = lai,...,a;m-1]1.

For n > 1 and a m-stack [sq,...,Su]1, the extended operations are as follows. The

operation copy,, replicates the top-most (n — 1)-stack, and copy,, is its symetric : it deletes
the top-most (n—1)-stack if it equals the penultimate. The pop,, operation simply removes

the top-most (n — 1)-stack. For k < n, the operation on k-stacks are simply propagated

50 CHAPTER 3. LINEAR ORDER CONSTRUCTION

in the top-most stack.

copy,,([s15- -+ Smln) [S1, -+« Smy Smln
copy,([S1, -+ Sms Smln) = [S1,--sSmln
popn([sl, S Smln) =[Sty Smotln
copy([s1, -+ 8mln) = [s1,---,c0pYp(Sm)]n forl <k <mn
popi([S1s -y Smln) = [S1,---sPOPL(Sm)]n for 1 <k <n
pop,([$1,-- s Smln) = [S1,---,pPOP,(Sm)]n forz €Tl
push_([s1,...,Smln) = [S1,...,push,(sm)]n

Let also be an identity function id defined on Stack. The set of operations defined at
least one n-stack is denoted Ops,,.

Instead of dealing with rough higher-order pushdown automata, one can use directly a
regularity on stacks. The set of operations forms a monoid with the composition operation.
Let Reg(Ops,) the closure of the finite subsets of this monoid under union, product and
iteration, i.e. the set of reqular expressions on Ops,.

To each expression £ € Reg(Ops,) we associate the test operation testy = id|g((,.)-
By an abuse of language test;), = id|),. Let T'est, be the set of tests. To each F' €

Reg(Ops,, U Test,) we now associate

the set of stacks S, (F) = F([]n),
the set of relations R(F) = {(s,5')|s' € F(s)}.

The set of stacks S,,(F) will be noted S(F) if n is clear. Given F and (F,)sex in
Reg(Ops, UTest,), the graph of support S(F) and with arcs s — s’ iff (s,s') € R(F,) is
a configuration graph of a n-hopda. They describe precisely the graphs of the hierarchy.

Theorem 3.3.2 ([Car05]). The family of configuration graphs of n-hopdas is equal up to

isomorphism to Graph,,.

3.3.3 Encoding ordinals

For each ordinal, we are going to define the expressions dom and inc which respec-
tively fix the domain of the structure and the order relation. We also will build an
expression dec to perform the symmetric of inc. In other words, we want the structure
(S(dom(a)), R(dec(c)), R(inc(«x))) to be isomorphic to the structure (o, >, <).

Small ordinals

For w, we consider the set of all 1-stacks (i.e. integers). In this case, dom(w) is obtained

by iterating push, on the empty stack with a fixed letter a. The other operations are also

3.3. N-REGULAR PRESENTATION ol

straighforward.
dom(w) := push}
inc(w) := push’
dec(w) := pop;

Since we only consider ordinals in Graph,, for n > 1, our interest is focused on infinite
ordinals. However, since we are going to encode these ordinals through the Cantor normal
form, we have to define finite ordinals. For a finite ordinal £ > 0, the domain is simply
the restriction of dom(w) to 1-stacks of size bounded by k — 1.

To allow iteration and re-prove Theorem [3.1.2] we also need more than w : we have
to encode all ordinals smaller than w“ with 1-stacks. This is done with more letters. Let
a = wh.e + - +wep 1 + . The stack alphabet is {ay,...,ax}. Stacks belong to
a subset of S(push;, ...push;) where if s = [a .. a1y, then the sequence (di)icon is
smaller than (k;);cjox in lexicographic order. Relations also respect this order. Increasing
a stack is done by popping all letters a; where 7 > j for a given j, then pushing one a;
and pushing anything. Decreasing a stack is done by popping all letters a; where ¢ > j
for a given j, then pushing only letters a; with ¢ > j.

One step further : exponentiation

Let « be any ordinal smaller than ey, and let n be the smallest value such that dom(«),
inc(cr) and dec(a) are all in Reg(Ops,—1). Informally, each ordinal v < w® is either 0 or
may be written as v = w? + - - - + W™ with v; < «a; so we code v as a sequence of stacks
respectively coding g . . . V.

Let tail(a) := copy,,.(id + dec(a)). This operation takes the last stack (representing
) and adds a stack coding an ordinal < 44, so that the CNF constraint is respected.
For the relation <, inc either adds a decreasing sequence (by tail), or it first pops stacks,

then increases a given one before adding a tail.

dom(w®) := dom(«).tail(a)*
inc(w®) = [popi.inc(a) + tail(a)].tail(a)*
dec(w®) := pop}.[pop, + dec(«).tail(a)*]

See Figure for an example of operators at work.

Proposition 3.3.3. Ifn > 0 and (S(dom(«)), R(dec(«)), R(inc(a))) ~ (o, >, <)), then

the same properties are true for w®.

Proof. Let n > 1, and there exist dom(«), inc(«), dec(a) operations in Reg(Ops,_1) such
that (S(dom(«)), R(dec(«)), R(inc(a))) is isomorphic to (o, >, <). It is not a restriction
to suppose that dec(a)(S(dom(a))) C S(dom(«)) : indeed, it suffices to concatenate the
operation test om(q). For any v < «, we note s, the corresponding (n — 1)-stack.

Note that if & < n, all operations on k-stacks are valid on n-stacks. So if f €

52 CHAPTER 3. LINEAR ORDER CONSTRUCTION
“ popopush, || “| |a|| copyspop, || %] |a

2 a 2 a
’ la] [] el Y e]

pop,push,copy,pop,

Figure 3.5: The operation inc(w®).
The stacks here represent w® + w + 1, w? + w? and w3 + w? + w.

Reg(Opsy) and s, s’ are two k-stacks such that (s,s’) € R(f) , and if p,p’ are the same
n-stack except for the top-most k-stack which is respectively s and s, then (p,p’) € R(f).

Let S = dom(w®) and let p € S be a finite sequence of (n — 1)-stacks, so p =
[Sygy - - -5 S,]. In the definition of dom(w®), there is no pop,, operation, and by definition
Sqgy -« -5 S+, are all in S(dom(a)). By hypothesis on dec(a), we also have s,, > -+ > s.,.

As a consequence, the mapping
p= [8707---75%] S A=W 4. W

is well defined and is injective. In fact, it is a bijection between S and [1,w®[; omitting 0
is not a problem for infinite ordinals. We therefore note p) the n-stack associated to A.
Now let 0 < A <) < a be two ordinals, with A = w? + -+ 4+ W in CNF. Then

either N = w4 oWl .00 4 WW with & < &/,

or N = w70+...+w7i_|_...+w71{+1_i_..._i_w'Yk’ forsomez'<k,

with 7,41 < 7i,,. For the first case, the use of tail(a) on py has already been discussed,
so (px,py) € R(tail(@)"). In the second case, poplt " (py) = [Snos - -+ Sy,04) and, by

induction,
([S505 - s Syssn)s [Svos -+ - S%H]) € R(inc(w)).

Again, the tail operation is used. The converse — if (py,py) € S? N R(inc(w?)) then
A < N — is straightforward. So (S, R(inc(w®))) is indeed isomorphic to {(a, <).

The dec operation is similar. In the first case, pop%k/_k) (px) =px with &' — k> 1. In

the second case, pop%kui*l)(p&) = [Sy9; -+, 8y,,] and

([8505 -+ -3 892, [S905 -+ s Syi41]) € R(dec(a)).

The converse is direct as well, and proves in the same time the last needed induction
property : dec(w®)(S) € S. Note that this was not true with inc : inc(w®)(S) € S,
because we could lose the decreasing constraint of the CNF.

Finally (S, R(inc(w®), R(dec(w®))) is isomorphic to («, <,>) and the induction prop-

3.4. COVERING GRAPHS 53
erties are fulfilled. O

Completing with addition

To perform exponentation, dom(w®) only uses the letters used by dom(«). For addition,
we add some markers.

Let aq, s < g9 and let n be the smallest integer such that dom(ay), dom(ay) € Ops:.
We add new letters oy, as. We note tests, for test(Ops,\{push, })*» meaning in this context

“there is no «; in any stack”.

dom(oy + a2) = push, dom(a;) + push,, dom(as)
inc(ay +) = testg,(inc(ay) + dec(ay)pop,, tests, push,, dom(as))
+tests, inc(az)
dec(a; + ap) = testg, (dec(az) + dec(az)pop,, tests,push, dom(ay))
+tests,dec(ay)

Proposition 3.3.4. Ifn > 0 and (S(dom(«;)), R(dec(c)), R(inc(ay))) =~ (a;, >, <)) for
i € {1,2}, then the same is true for a; + as.

Proof. The oy and ay parts are respectively encoded by the new marker of the same name
at the beginning of each stack. The only way to remove a first letter a; is to use pop, or
pop,,, both of which are never used by inc(a;) or dec(a;). So the relations inc and dec
cannot accidentally remove this marker; the set dom(«;) is closed by inc(ay) and dec(ay).

To increase a stack, either this stack begins with a; or as : this is checked by the
operation testpush,, Ops; - In the case of ap, using inc(aw) is enough. For stacks in the «a;
part, greater stacks are accessible by the inc(ay) operations and by taking all stacks in
the g part. To reach the latter, it is enough to pop everything including the oy marker,

and start with push,,dom(as). The dec operation works the same way. O

Main result

To sum up, we have defined small ordinals in terms of configuration graphs of (standard)
pushdown automata. Then we showed how to perform exponentiation by increasing the

order, and addition at the same order. We get therefore the main result of this section.

Theorem 3.3.5. For any a < w T n+ 1, a is isomorphic to the configuration graph of
a n-hopda.

By the equivalence of Theorem |3.3.2] this result is therefore a new proof of Theo-
rem [5.1.2]

3.4 Covering graphs

We have seen in Example that it is possible to recognize the structure of an ordering
with the help of FO-logic, and well-ordering with MSO-logic in Example [2.3.3] But is

o4 CHAPTER 3. LINEAR ORDER CONSTRUCTION

there a formula ¢, defining precisely the ordinal «, i.e. such that only the ordinal o

satisfies .7 For ordinals smaller than w®, it is a simple exercise.

Proposition 3.4.1. For o < w®, there is a MSO-formula ¢, such for any {<}-graph G,
G = ¢q if and only if G ~ «.

Proof. The conjunction of formulae of Examples [2.3.2f and [2.3.3| checks the well-ordering

of the structure. We define the formulae ¢, recognizing the k-limit vertices, i.e. limits of

(k — 1)-limit vertices.

wolz) == T,
or(r) = Yy <z,011(y) = 3z (pr-1(2) Ny < 2 <).

To recognize the ordinal w.c;, + -+ + w.c; + ¢, it is enough to find exactly ¢, vertices
satisfying ¢y, then c_; vertices greater than the previous ones and satisfying ¢p_1, and

SO on. O

This method is not powerful enough for higher ordinals, and in the general case the
property was proven false in [Bli65, [Blic73|]. To present this result we need an additional

definition. Any ordinal o has a unique representation
a=w’v+whe+ - +wha+a

The ordinal w®.v is called the w-head of o, and w*.c, + - - -+ w'.c; + ¢p is its w-tail. The

monadic theory of a only depends on the latter and whether or not a < w®.

Theorem 3.4.2 ([Biic73, Th. 4.9]). For any countable ordinals o and (3, the following

statements are equivalent :
e MTh(a) = MTh(p)
e cither a = [< w® or else w* < a, B and «, B have the same w-tail.

This result means informally that ordinals are not easily manipulable by MSO formule;
for instance, in general it is not possible to get a ordinal from a greater one by a monadic
interpretation. In this section, we by-pass this problem by considering a structure based
on the well-known notion of fundamental sequence. This structure is called the covering
graph of an ordinal. One of its important properties is its finite out-degree, which is
worked out to bring a specific monadic formula for each covering graph, thus allowing to

differentiate them.

3.4.1 Fundamental sequence

For any ordinal «, a subset S C « is cofinal in « if for any g € a, there is 5/ € S such

that § < f’. Such S has an ordinal order type. The cofinality of « is the minimal order

3.4. COVERING GRAPHS 55

type of a subset cofinal in a. The cofinality [Ros82] of any countable ordinal is w. This
means that to each limit ordinal @ we may associate an w-sequence whose supremum is

Q.

Definition. For a < ¢y, a« = f+ w” with § < a, v < a and w” is the last term in the

CNF of «, the (canonical) fundamental sequence (a[n])n<. is defined as follows :

[n] Bw (n+1) ify=7+1
aln] =
B+ wil otherwise.

We notd] o/ < a whenever there is k such that o/ = a[k], or if o/ + 1 = .
The adjective “canonical” will be implicit for the rest of this section.

Example 3.4.3. The fundamental sequence of w is the sequence of strictly positive in-
tegers. The sequence of w* is therefore (w,w? w?,...), whereas the sequence of w? is

(w,w.2,w.3,...). Here is an example of successively related ordinals.

l<l<w<wtl<w2<w?<w”... A

Taking the transitive closure of this relation gives back the original order, so there is

no information loss.
Proposition 3.4.4. The transitive closure of < is <.

Proof. Let 0 < A\; <)Xy be two ordinals. We prove that A\; <¥ A\, for some finite k& by
induction on Ay. If A9 is a successor, consider A, such that A, +1 = Ay, so A, < Ay and
A1 < A,. Otherwise, since the fundamental sequence of Ay bounds all smaller ordinals,
there is a smallest n such that Ay < Ag[n] < Ag, so let Ay = A3[n]. In both cases, by
induction A; <* X\, and thus A\, <¥*1). O

Moreover, the relation is crossing-free as described below, which is a helpful technical

tool.
Proposition 3.4.5. If a1 < A < an, a1 < ag and A1 <)Xo, then Ay < am.

To put it more simply, this is the forbidden case :

Y

(€3])\1 Qi)\2

Proof. We proceed by induction on oy = g 4+ w?, v < «a3. Note that ay + 1 < as.
According to the definition of <, 7 is in the fundamental sequence of as, which leaves

two distinct cases. We suppose A; + 1 < Ay, otherwise the lemma is trivially true.

1Unlike in [Bra09], we adopt the notation < instead of <, in order to avoid confusion with the suborder
relation < between linear orders.

26 CHAPTER 3. LINEAR ORDER CONSTRUCTION

Figure 3.6: Covering graph of w”.

Recall that 3 denotes the RCNF of 3. In the first case, as = 3 + w?*!. Then, in
RCNF, \; = B+ w?.cp + 51, c1 > 0 and 97 < w?. Now if §; = 0, then ¢ > 1 and
Aoy = B + W™ = ay. If §; # 0, note that the only part that changes between an ordinal
and a member of its fundamental sequence is the last term in RCNF. So Ay is written
B +w.cy + 52 in RCNF with 05 < w?, and therefore \y < as.

In the second case, as = B+w? with vy<v',v+1 <~'. In RCNF, \; = B4 wht.cp+6;
with ¢; > 0, 07 < w", v < pup <+ and at least one of the following is true : é; # 0, or
v < p1, or ¢q > 1. Again, we have to deal with several cases.

Either 6; = 0 and v = py; then ¢; > 0 and Ay = ﬂA + Wt < ay.

Or 6; = 0 and v < pq; then Ay = B—i— wH? and p; < pg; this is where the induction
property is applied to get us </, and Ay < as.

Finally, if 0; # 0, as before Ay = B + wHt.co + 52 < B + Wt < qs. O

3.4.2 Covering graphs

Definition. Let G, = {\ < Xa| A1, \a < a} be the graph of successor and fundamental

sequence relation, or covering graph of the ordinal a.

For instance, a representation of G . is given in Figure |3.6]

We first remark the finite out-degree of the covering graphs.

Proposition 3.4.6. For anyw 1T (n—1) < a <w ™M n and n > 0, the out-degree of G,

8 M.

Proof. The output degree of A < a in G, is the cardinal of {u | A< pu <w T n}. Iff n =0,
A =0and w10 =1, so the set is empty. For n > 0, let A = f + w” and A < pu, then
either = A+ 1 or p = B+ w? with v <+, Since 7/ < w11 (n — 1), by induction
Y |y <+ <wt (n—1)} <n—1, which leads to [{u| X < p < w ™M n} <n.

3.4. COVERING GRAPHS 57

For the lower bound, if n = 1, then a € [2,w], and 0 < 1 has degree 1. For n > 1, if
a>w?TT (n—1) then

wtn—-2) < wtt(n—-2)+1
< waT(n—Z’))-‘rl

A
&

For instance, let n =3, a =w¥ +1:

A
El\.’)

So w 11 (n — 2) has degree n in G,. O

In the following, we refine this property to get a characterisation of an ordinal covering

by the degree of its vertices. We define the degree word 0(«) of a covering graph as follows.

Definition. Consider the greatest sequence o of G, starting from 0, i.e. g9 = 0 and for
k > 0, o)1 is the greatest ordinal smaller that a such that o} <oy, if any. The previous
lemma ensures that {\| o, < A} is finite, so oy exists. Such a sequence may be finite.

The degree word 0(«) is a finite or infinite word over [0, n] when o < w 1 n, and its
k™ letter is the out-degree of oy in G,. Note that 9(0) = ¢ and (1) = 0.

Example 3.4.7. Consider d(w®). TIts greatest sequence is (0,1,w,w? w?, ...), where all
have degree 2 in G, except the first; so d(w®) = 12*. Now consider d(w® + w?): the
sequence is now

0,1,w,w’,w W+ 1, +ww+w+1,...
which loops into (...,w? +w.k,w® +w.k+1,...) s0 d(w® +w?) = 12221(21)~. A
These examples hint that the degree word is regular.

Lemma 3.4.8. For any o < w ™ n, if o is a successor ordinal then d(«) is a finite word

of [0,n]*; otherwise () is an ultimately periodic word of [1,n]*.

Proof. Lemma|3.4.6|ensures that the degree word of o < w 11 n is a word on the alphabet
[1,n]. Since the transitive closure of G, is isomorphic to «, the greatest sequence o of G,
is unbounded, i.e. VA < o, In(o, > A). In particular, if @« = A + 1, there is n such that
o, = A, and the sequence is finite. The last element has out-degree 0.

If v is a limit ordinal, each a[n| must be in o. Indeed, let m be such that o, < a[n] <
om+1; if the inequalities are strict, since a[n| < «, by Proposition we have 0,11 > «

which is a contradiction. So one of o, or ¢,,,1 must be a[n].

28 CHAPTER 3. LINEAR ORDER CONSTRUCTION

We want now to prove that the pattern between the (a[n]),<. is always the same. Let
a = B+ w’. As before, we have two cases. If y = 4 + 1, then a[n] = 8+ w”.(n + 1).

Given n, there is a path in the greatest sequence
an] <an]+0 <+ <an| + 0, < afn+1]

with §; < w? for each i, and in fact ;1 is the greatest such that §; < d;,1 and 6,11 < w?.
This defines the (;) sequence independently of n. If i is fixed and n varies, an| + J§; <
a[n] + x whenever §; < x and x < w7, so the degree is still the same. The degree word is
therefore ultimately periodic.

In the second case, an] = 8+ w'™ and y[n] +1 < y[n+1] <. So B+ wM+! < a.
Since a[n] < B + wM+1 then the following element of a[n] in the greatest sequence is

greater or equal to 8 + w’™*! and is therefore of the form 3 + w® with y[n] < 6,. In

general

an) =+ <+ < < B+ uwh <aln+ 1]
are in the greatest sequence. Then ~y[n],dq,...,7v[n + 1] are in the greatest sequence of ~y
and their output degrees are respectively the same than those of W™ w® ... w1 in

a, minus 1. By induction, if the sequence of ~ is ultimately periodic, so is the sequence
of a. O

The degree word is actually a morphism from ordinals to words over the alphabet

[0,n] by lexicographic order.
Lemma 3.4.9. If a < o/ <w ™ n, then d(a) <jex 0(a).

Proof. For any > 1,9(0) < (1) < 9(8). Suppose therefore n > 0. As before, note that

the greatest sequence is unbounded, and that oy = o, = 0. Thus if 0 < o < o’/ and ¢’ is

/
n’

the greatest sequence of G/, there is a smallest n > 0 such that o, # o/, or o, doesn’t
exist whereas o], does. In both cases, the output degree of 0,1 is less in G, than in G/,

50 0(@) <jex 0(a). O

A ultimately periodic pattern can be captured by a monadic formula. This is the goal

of the the following lemma.

Lemma 3.4.10. For each finite or infinite word w over [0,n| and a given ordinal o, there

is a monadic formula * such that G, = ¢" iff w = 0(a).

Proof. The fact that the degree word is finite or ultimately periodic permits to use a finite
number of variables. We consider the ultimately periodic case, and d(«) = uv®.

To simplify the writing, we consider the following shortcuts :
e 7(p,q) if ¢ is the greatest such that p < ¢;

e Ox(p) if the output degree of p is k;

3.4. COVERING GRAPHS 59

e root(X,p) and end(X, p) when p is co-accessible (resp. accessible) from each vertex

of X, with the entire path in X; root(p) looks for a root of the whole graph;
e inline(X) if the subgraph of support X is a finite or infinite path;
e sizey(X) when | X| = k.

All these notations stand for monadic formulee . For instance, the inline(X) property is
true when there is a root in X and each vertex has output degree 1, and each except the
root has input degree 1.

Now we may write the formula ¢*. For this, we need two finite sets p; ...pj, € U for
the static part, ¢ ...qp € V' for the beginning of the periodic part and an infinite set V'
with V! C V.

gpw = E|p1,...,p|u|,V,q1,...,Q|U| eV
ul—1

root(pr) A [\ 7(pipiss) Au (i) | AT(Dpp @1) A u (D)

i=1
[v]=1

Aroot(V, q1) A /\ 7(Gis Gi+1) A Ou (@) | A Ouyy (o)
i=1

Ainline(V)AVqe V,AX CV, ¢ € X :
inline(X) A sizejy4+1(X) Aroot(X, ¢) A end(X,¢')

A (/\ O(q) = 3k(q/)>

k<n

We check that p; is the general root 0, and ¢; the root of V', which is an infinite path.
Formulae 7 and 0, force the degree of the uv part. For the periodic part, each ¢ € V must
be the root of a finite path X, C V of size |v| + 1, which end has the same degree that
q. O]

The combination of Lemmas |3.4.9| and [3.4.10] yields the following theorem.

Theorem 3.4.11. For any ordinals o # o smaller than €y, MTh(G,) # MTh(G,).

This result is the central point of this section, because it it opposed to the Theo-
rem [3.4.2] on ordinals : the family of covering graphs has the MSO-discernability property.
One must take care to the fact that here G, and G, are implicitely supposed to be cov-
ering graphs. Whether MTh(G,) is unique among all {<}-graphs (up to isomorphism) is
open, and is conjectured false.

A whole set of properties could be tested on covering graphs. For instance, the MSO
selection property is known to fail for ordinals greater than w* [RSO§|. It would be

interesting to know if covering graphs can also raise this limit.

60 CHAPTER 3. LINEAR ORDER CONSTRUCTION

As a consequence of Theorem [3.4.11] there is no generic monadic interpretation from an
ordinal greater than w® to its covering graph. Below this limit, there is an interpretation,

because it is possible to distinguish successive limit ordinals, as in Proposition [3.4.1

3.4.3 Other properties of covering graphs

We study here other monadic properties of covering graphs and remark that they also
belong to the hierarchy. First of all, by Proposition|3.4.4], there is a monadic interpretation
7 such that Z(G,) = «. In fact, we have much more : all ordinals smaller than « are

interpretable in G,.

Proposition 3.4.12. For any o < [< gy, there is a MSO interpretation I such that
Go = I(gﬂ)'

Proof. Following the definition, we look for an interpretation Z = {1 }. We use again the
fact that the degree word is unique and MSO-definable. Defining the greatest sequence of
Gq provides a MSO marking on Gg, which bounds the set of vertices. More precisely, let
U(p) be an expression similar to ¢* of Lemma but where the part 7(p;, piv1) A
Sy, (p;) has been replaced by 7., (p;, piy1) meaning “p;, 1 is the ul® such that p; < p;,1”; the
same goes for the ¢; and for 7(py|, q1) Adu, (). Also add the condition that p is a part
of the sequence : (\/,p =p;) Vp € V. Then U"¥(p) is a marking of the greatest sequence
associated to w. For a given «, Z simply adds the condition of co-accessibility to a vertex
marked by W)
Va(p,q) = p > g AT (PO A g S)

Then G, = GsN{p = q|3r (\IJD(O‘)(T)/\qi;'r’)}. O
We end this section by noting that covering graphs also are in the hierarchy.

Proposition 3.4.13. If a < w1 (n+ 1), then G, € Graph,,.

Proof. For any finite «, G, is in fact a finite path labeled by < and is in Graph,. By

Wk . . .
Lemma |3.4.14] below iterated n times, every w is in Graph, when there are n times w

and 1 < k < w. Smaller ordinals are captured by a restriction as in Proposition|3.4.12, [

We note p LN q for the longest possible path labeled by a, and p 5 q a shortcut for

the successor relation, i.e.

p—q = pa—*>q/\ﬂ5|r(qi>r)
=q = piq/\—ﬂr(pir/\ri*)q).

3.4. COVERING GRAPHS 61

Now let Z = {¢.} and M(p) respectively be the interpretation and marking

A+ RSH A
p q

Z‘# #.S# #<#
p<(pq) == M(p)ANM(q)Ap—=qVp—"qVp—¢q
M(p) = 3r:root(r) Ar Mp

The marking M (p) allows to start anywhere on the root graph, but as soon as a #-arc
has been followed, <-arcs can only be followed backwards. We consider only goals of a
#-arc.

The ¢ (p, q) formula states the relation on these vertices, leaving three choices : either
to follow <-arcs as long as possible (in practice, until a copy of 0) and go down one #-arc;
or on the contrary, to follow # backwards as long as possible, then take the successor and

one #-arc; or just to follow one # backwards, one < and one #.
Lemma 3.4.14. G,. = Z(Treegraph(G,)).

Proof. As stated in Corollary [2.2.2] w® is isomorphic to the set of decreasing sequences of
ordinals smaller than « in lexicographic order. Let T' = Treegraph(G,); the 0 of the root
graph is still the only root, we call it r. Each p € V; marked by M can be mapped into

a decreasing sequence. If r M p, then there is a finite sequence (p;)i< such that

r = Do, Pi =, pir1 for i < k and p, = p, with the same properties as in the proof of
Theorem [3.1.2] Each p is thus mapped to an ordinal 8, < w®.
The interpretation . provides the relation to make this bijection an isomorphism.

Let G = p. o Treegraph(G,). We distinguish the three cases of the definition of <.

o Ifp = ¢, then ¢ is mapped to (7, . - ., V&, 0). This is the successor case 5,+1 = f3,.

o Ifp FOH, q, then let [be the smallest integer such that v, = v, = -+ = .
Then ¢ is mapped to (yo,...,%-1,% + 1). This corresponds to the case /5, =
B+wi(k—1)<pf+wrtt

o Ifp T, q, then ¢ = (70, ..,Vk—1,7) with 7, <. The marking M ensures that ¢
is mapped to a decreasing sequence. This is the recursive case, where 3, = 8+ w,
B, = B+ wh and 5, < 7.]

Example 3.4.15. Consider G, which is an infinite path. A representation of its treegraph
is given in Figure (plain lines for <, dotted lines for #). The white labeled vertices
are the ones marked by M and therefore they are the only ones kept by the interpretation
Z. We are allowed to go anywhere on the root G, structure, but as soon as we follow
we can only go backwards. This reflects the construction of an ordinal smaller than
w® as a decreasing sequence of ordinals : the first one is any ordinal smaller than «a;, but

afterwards we only may decrease. A

Covering graphs therefore enjoy the properties of graphs of the hierarchy.

62 CHAPTER 3. LINEAR ORDER CONSTRUCTION

09 « o
I N AN
1 \\\ \\\\
I N ~

| “
I N AN
J’ N, W N w?
| N ! N | N -+
I N I D I N
y AN Jw+1 N, w2 w41 AN
I \ I \ I \ I \ I \ I V2
I \ I \ | \ | \ | \ | W+ w
2 v \Z v \2 ¥ \2 v \2 v \2 v

Figure 3.7: Exponentiation of the covering graph of w.
For illustrations of the three cases in the proof of Lemma [3.4.14] we have

#

w2<—>w2+1, w2+1#;>w2—|—w, 2ﬂ>w.

Corollary 3.4.16. For any a < g, the monadic theory of G, is decidable.

3.4.4 Strictness of covering graphs in the hierarchy

We will prove in Theorem that ordinals greater than or equal to €y do not belong
to the hierarchy. As a consequence, the same is true for the associated covering graphs.
We present here another version of this result. It is based on Theorem which will
be seen in the next chapter. It is actually a pretext to use logical properties of covering
graphs, in which it is possible to interpret other separating graphs. In particular, for any
function f : N +— N, let K be the prefix tree defined by the following set of leaves :
Leaves(KC;) = {110/®}.
Let the exp(m,n,i) operation be defined by

exp(m,0,1) = i

eXP(m, n -+ 1, Z) = mexp(m,n,i)7

Theoremm shows that Kexp(2,n,) is not in Graph,,. We use this fact for the following

result.
Proposition 3.4.17. Ifw 11 (n +1) < a < &g, then G, ¢ Graph,,.

The proof is separated in several lemmas. Finding a monadic interpretation from G,
to Kexp(2,n,) is enough to prove G, ¢ Graph,. But in fact, Proposition already
states that if w 1 n +1 < a < g, then there is an interpretation from G, to Gyt n+1; S0
the interpretation from Gt ny1 10 Kexp(2n,) i enough. We build this interpretation.

First of all, let us select the ordinals which stand in the k' finite subtree. Let C* be
the set of ordinals smaller than exp(w, n, k) where each coefficient in RCNF is at most 1,

except for the top-most power :

3.4. COVERING GRAPHS 63
e [0,k —1] € C§ for k > 0,
e 0eCh

e if v,...,7, are all distinct ordinals of C* |, then w + ... 4+ w € C*.

Example 3.4.18. For instance,

C? = {0,1,w,w+1}

3 = {0,l,w,w+ 1,0 W+ 1,0 +ww +w+ 1}

C? = {0,l,w,w+ 1w w’+ 1,0 +ww’ +w+1,
WL ot L o o w4 1,

WO 4w ot 4w + 1w ¥ w T Y +w + 1

The following lemma is only a matter of cardinality of powersets.
Lemma 3.4.19. The cardinality of the set C* is exp(2,n, k).

We abusively note o + C¥ for the set {a + v | v € C*}. The main difficulty of this
section is to define this set with MSO logic.

Lemma 3.4.20. There is a monadic formula ¢(x,y) such that for alln > 0, p(exp(w, n, k), y)
is satisfied by x* € exp(w,n, k) + C* in the covering graph of an ordinal greater than
exp(w, n, k).2.

Proof. For each ordinal a, we define a sequence S, of ordinals. We note 7(«) the greatest
[such that o < 5.

e eSS, a+1es,,
o if \ €S, and @ < A<, then v € S, unless 3\ < A such that \' € S, and X <7(7).

There is a monadic formula ¢(c«, y) which is satisfied exactly by y € S,. The rest of
the proof aims at showing that the set Sexp(wn.k) is exp(w, n, k) + C* in the covering graph
of an ordinal greater than exp(w,n, k).w. As a starting point, note that if A\ € S, then
there is a path of vertices of S, (labeled by <) from « to A.

Let o = exp(w,n, k). First of all, 7(a.2) = aw and a < aw so a.2 ¢ S,. By
Proposition , any path from « to an ordinal of [a.2, w™P@n=LE+1) goes through .2,
which is not in S,. Also, paths from « to ordinals of [a.w,exp(w,n,k + 1)) necessarily
go through a.w which is not in S, because o < a.w, so S, N (.2, exp(w,n, k + 1)) = 0.
Eventually the fundamental sequence of exp(w, n, k+1) is (o, exp(w, n—1, w.2), exp(w, n—
1,w.3),...), all of which but « are not in S,. To sum up, S, cannot contain ordinals

greater or equal to a.2.

64 CHAPTER 3. LINEAR ORDER CONSTRUCTION

(0% o2 — W

Let A € [a, .2, A = B+ w’.c +# in RONF with ¢ > 1 (recall that the notation /3
is used to note the RCNF of). By Lemma again, any path from «a to a + A\ goes
through

N o= f+uw
and N = B+wlc
o N N A B+ wrtt .2

But then ' < 3+ w™ = 7(\") when ¢ > 1,50 X ¢ S,,.

Recursively, we suppose that any path from exp(w,n—1,k) toy ¢ C*_, with exp(w,n—
1,k) < v < exp(w,n — 1,k).2 goes through v and ~”, with v < 7(7”). Then if A =
B+uw + 7, define A

N = B+w
and N = B+w”
which propagates the property to level n. All this proves that if A = a + w” + -+ 4+ W%
in CNF and \ € S,,, then all v; are distinct and are in C*_,. Therefore S, C o + CF.
For the other side, let A € a + C*. If A = « the case is done, otherwise

)\:OZ—F(JJ’YO—I—--'—F(JJ’W’

with each v; € C*_,.

We have to prove that 3N < A in a + C*. By induction on n with a = 0, for
Y > 0, Iy, <, in CF | so N = a4+ w”® + - + w” answers to the request (since
the ~; are decreasing, ~, is still distinct from the v;,i < h). If 4, = 0, then we take
N=a+whl 4. w1,

If not, now 7(\) = a + w™ + --- + W™ If X € S, is such that X < 7()\), then
N =a+w? -+ +wh1 4w for some v € v, NC* |, but then by induction we never

have v < 7(7), which is a contradiction. O
Lemma 3.4.21. The greatest sequence of w 11 (n + 1) is ultimately (exp(w,n, k))g>1-

Proof. This is a corollary of the proof of Lemma [3.4.8 since as in the previous proof
exp(w, n, k) < exp(w,n, k +1).]

We are now ready to prove the main result of this section.

Proof of Prop.[3.4.17 We concatenate the previous lemmas. Recall that Kexp2,n,.) is the
prefix tree of leaves {1F0=PZnk)1

3.4. COVERING GRAPHS 65

We have seen in Prop. that the greatest sequence of « in selectable in G,.
Since we work in G4 11, by Lemma we can restrict ourselves to the sequence
(exp(w, n, k))r>1, which will be the “horizontal path” of Kexp(2n,). Let ¢1(z,2') be the
formula satisfied if =, 2" are part of this sequence and z < 2.

Let ¢(z,y) be as defined by Lemma . Note that ¢ does not depend on k. If
x = exp(w, n, k) for some k, then the set {y | ¢(x,y)} has cardinal exp(2, n, k). Moreover,
this set is already ordered by <*, so we may find a formula ¢o(y,y') restricted to set and
satisfied by (y, vy’ such that y <* ¢ and there is no z between y and y’. We have therefore
the “vertical path” hanging from exp(w,n, k) and of length exp(2,n, k).

The interpretation Z, = {¢o, ¢1} maps therefore Gt ni1 into Kexpian,- In fact, for
any w tn+1 < a < ey, Z, maps G, into Kegpzn,)- O

3.4.5 The case of G,

The covering graph G, can be defined without changing the definition of fundamental
sequence. It has unbounded degree, but has still the property of Proposition|3.4.12]: it can

give any smaller ordinal via monadic interpretation. This yields the following corollary of

Proposition [3.4.17]
Corollary 3.4.22. G, does not belong to the pushdown hierarchy.

It would be interesting to know more about the logical properties of this graph. This
question is indeed tightly linked to the notion of a “limit operation” preserving decidability
of MSO-theory. Some first ideas appear in [Tho0§].

Conjecture 3.4.23. MTh(G,,) is decidable.

66

CHAPTER 3. LINEAR ORDER CONSTRUCTION

Chapter 4
The structure of tree frontiers

The first question one may ask after Theorem is the converse : if any ordinal smaller
than w 71 n + 1 can be constructed at level n, is this classification is strict or not? For a
start, can w* be in Graph,? For this first question, it is shown in [Del04, [KRS05] that w*
cannot be a (word-)automatic ordinal, whereas structures in Graph; are. On the other
hand, one can consider the orders composed by frontier of trees, as in [Tho86, [Cou78]. At
the second level, [BE10] considers frontiers of algebraic trees to find out that such ordinals
are smaller than w*”. The same paper conjectures that frontiers of trees in the hierarchy
yield successive w 11 n.

In order to follow this presentation, we first need to reduce ourselves to frontiers.
Hence a first result of this chapter is that orders of Graph,, are exactly frontiers of Tree,.
By the result of [BEIO], ordinals of Graph, are smaller than w*”. In this chapter we
work out apply a recursive argument and get the expected generalization for every level,
in Theorem [4.3.8 In Section 4.4l we remark that the same result can be extended to
general scattered orders, measured by Hausdorff rank. In parallel we study the related
Cantor-Bendixson rank of these trees.

To obtain these results, Section presents a particular version of monadic interpre-

13

tation on deterministic trees, in the form of a automaton “walking” on the tree.

4.1 Tree-walking automaton

It is well-known that on deterministic trees MSO logic is captured by parity tree automata
[Rab69]. This equivalence can be used to characterize the binary relations defined by
MSO formulae on such trees using a finite state automaton running on the tree. The
tree-walking automata is not new [AUTI], but they have mostly been used on finite trees
[BCO8|, BCOGD; see [Boj08] for a survey. Here, we use these automata on infinite trees as

a “weak form” of monadic interpretations.

Definition. A non-deterministic tree-walking automaton or simply TWA working on de-

terministic trees over X colored by T' is a tuple A = (Q, qo, F, A) where @ is the finite

67

68 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

set of states, gy € @) is the initial state, F' is the set of final states and A is the set of

transitions. A transition is a tuple (p, ¢, ¢, a) with
e p € (is the current state,
e ¢ € I' is the color of the current node,
e ¢ € () is the next state,

e a € X U{e, 1} is the action to perform. Intuitively e corresponds to “staying in the
current node”, 1 to “going to the parent node” and d € ¥ corresponds to “going to
the d-son”.

A run of the automaton on a tree t is a sequence (qo, uo) - - - (Gn, U,) over @ x Dom(t) where
¢n € F and for all i < n, if u;41 = wa; with a; € ¥ U {e} then (p;, t(w;), piv1,a;) € A,
otherwise if u; € w;1% then (p;, t(w;), pis1,T) € A. We say that A accepts the pair of

nodes (ug, uy).

Remark 4.1.1. Note that the automaton is a priori not deterministic; [BCO6b] shows that
a TWA cannot generally be determinized, even when the tree is finite and the only run

considered is from the root to the root. []

We have restated in Proposition that a monadic interpretation on a deterministic
tree can be encoded in a rational inverse mapping up to monadic marking. But the actual
proof of this definition is even stronger, as it constraints the rational mapping to the
shortest path between two vertices. This leads to the following rephrasing of this result.
A run is said to be simple if the sequence forms a simple path, i.e. each node is visited

at most once.

Proposition 4.1.2 ([Car06, Prop. 3.2.1]). For any deterministic tree t and any MSO-
formula p(z,vy), there exists an MSO-coloring M adding colors and a TWA A such that
t = plu,v] if and only if A accepts (u,v) on M(t). In this case there exists a simple run

from u to v.

A TWA is therefore a “weak form” of a monadic interpretation. It means that up to a
recoloring, the binary formula can be restricted to the smaller connex set containing the

interpretations of the two free variables.

Remark 4.1.3. Conversely, for any simple TWA and coloring M, there is a MSO formula
¢ such that (u,v) is accepted in M(t) iff t = ¢[u,v] where ¢ only works on the simple
path between u and v. In particular, if ¢ is the smallest subtree containing u and v, then
t' = plu, vl.

This can be directly seen by encoding the automaton in a logical formula. The formula
defines two set U and V' which are paths respectively from u A v to u and from u A v to

v. Then each step of the automaton can be reproduced backward on U and forward on

4.2. FROM GRAPHS TO FRONTIERS 69

V. More formally, there have to be sets X, ... ; Xq,o Tepresenting states, with u € X,

and v € quF Xy For the U part, assuming we know that U is a path,

VerﬂXp\{u/\v},ElyEU:y%x/\\/ ye X, = \/ (c,x)
9€Q §(p.c)=(a:1)

and for the V' part,

VeeVNnX,\{v},JyeV: \/ x&y/\\/ ye X, = \/ (c,x)

a€EY qeQ 3(p,c)=(g,a)

Remark 4.1.4. The equivalence between a MSO formula and recognizability by TWA
allows us to define another kind of interpretation as in Section [2.4.1L The TWA-inter-
pretation on a deterministic X-tree is a tuple (M, (Ag)qeer) where each A, is a TWA on

deterministic X-trees. The result of this interpretation on a ¥-tree ¢ is the graph
{r 5 y|a€eT, A, accepts (x,y) in M(t)}.

It follows by Proposition that graphs of Graph,, are exactly TWA-interpretations of

deterministic trees of Tree,,. [|

4.2 From graphs to frontiers

In this section, we consider the linear orders defined by frontiers of deterministic trees, i.e.
the leaves of a deterministic tree under lexicographic ordering as defined in Section [2.1.4]
Example [2.4.1] shows that the frontier of a (colored) deterministic tree in ¢ can be defined
in ¢ using an MSO-interpretation. Hence the frontiers of the (resp. colored) deterministic
trees in Tree,, are (resp. colored) linear orders in Graph,,. This section proves that the
converse inclusion holds : any order of Graph,, can be seen as a frontier of a deterministic
tree in Tree,,. This is Theorem [4.2.6

As a starting point, it is not difficult to restrict to some kind of normalized trees.

Proposition 4.2.1. For any det. t, there is a full binary prefix tree t' with Fr(t) = Fr(t).

Moreover, if t € Tree,, then t' can be chosen in Tree,.

Proof. 1f the order is of type 1, a tree reduced to a root is enough. Suppose otherwise. The
first step is that we may only consider prefix trees by pruning. For the binary property, let
t be prefix on a ranked alphabet ¥ and let 7 : ¥ — {0, 1}* a prefix binary mapping. For
any I C X, let C7 be the finite tree of leaves {7(a) | a € I}. We replace each node x which

is not a leaf by Clgjzacpom(t)}, of r00t 75, so that r,, = r;.7(a) whenever xa € Dom(t).

70 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

The resulting tree is binary and has yields the same order. Finally, to get a full tree,
we contract every path 1(1 4 0)* (resp. 0(1 + 0)*)) without branching into 1-arcs (resp.
0-arcs).

To perform these operations within Tree,,, we work on the folded graph. The result is
obvious for finite trees, so we will suppose that n > 0. Let ¢t € Tree,,. We first use a MSO-
r € Vi such that u(t) =
Unf(G, 7). The restriction to marked vertices accessible from r is an MSO-interpretation.
is a MSO-transduction. Finally, the

marking p to mark the prefix closure of leaves. Let G € Graph

n—1»
Next, the operation substituting = with C{a|§|y,x%>y}
contraction of simple paths is again a MSO-interpretation. So all these operations give a

graph still in Graph which unfolding yields the same frontier than ¢. O]

n—1

Finite orders are not a problem for us, so we start with n > 1, a finite set of colors
[' together with colored linear order L : (D,<;) +~ I in Graph,. This order is the
MSO-interpretation Z of a deterministic tree ¢ in Tree,,. The following property recalls

that we can suppose that D is exactly Leaves(t).

Proposition 4.2.2. For any interpretation I and deterministic tree t € Tree,, there is
an interpretation ' and a det. binary prefic tree t' such that Z(t) ~ Z'(t') and vertices of
Z'(t') are exactly leaves of t'.

Proof. In a deterministic ¢, we mark each vertex x considered by Z. In the folded graph
G such that Unf(G,r) = t, a monadic transduction 7 adds a #-arc from these vertices
to a fresh vertex. It is then easy to adapt Z to pick leaves of Unf(7(G),r). By marking

leaves targets of #-arcs and using Proposition 4.2.1] we get the required result. O

Using Propositions [2.5.4] [£.1.2] and [£.2.2], we have that there exists a deterministic
prefix tree t € Tree,, colored by IV, a TWA A and a projection p : IV +— T such that D
is isomorphic to the set of leaves of ¢, for all u,v € D, u < v iff A accepts (u,v) with a
simple path and for all u € D, L(u) = u(t(u)).

The construction of this section rearranges the leaves of ¢ into a new deterministic tree

s(t) so that lexicographic order on s(t) matches <, on D. For any leaf u € D and for
v C u € D, we consider sequences ug >, u; >, ... >, up of leaves starting with uy = u
and such that for ¢ € [0, k— 1], u; Au;1; = v. Intuitively, the u; alternate from one subtree
of v to the other. Using a pumping argument on A, we can show that there exists ng > 0
such that for every leaf u € D and all node v C u, these sequences have a length less that

no. We may then define s(u,v) as the maximal length of such a sequence.

Lemma 4.2.3. There exists ng > 0 such that for any leaf x of t and for all y C z,
S(Qf, y) S no.

Proof. Suppose that s is unbounded : for all n, there is x and y = z such that there is
a decreasing sequence seq(z,y) = (o, Z1,...,&n,...), possibly infinite. For each z;;; in

this sequence, there is a simple run of A from x;,1 to x; containing (¢;,y), y being their

4.2. FROM GRAPHS TO FRONTIERS 71

largest common prefix. If n > 2|Q)|, there exist i < j such that ¢ = g;. This means

there are simple runs

(qo, T2i11)-;.(q2i, y)-vi- (¢}, 2;) and

(qo, T2j41)-u;j.(q2i, y) ~Uj-(Q;'> T5)

for some w;, v;, uj,v; € (Q x Dom(t))*. Then the sequence

(qo, T2i41) s (g2, y).vj.(q;-, T;)

is also a run from x9;1; to X9, SO T2;41 < x9;. This is contradictory with the fact that
the sequence is decreasing. [

To each node x, we associate the finite sequence 5(z) of length |z| of elements in [0, 1]
defined by s(z, o), ..., s(x, z|z-1), where for all k& € [0, |z| — 1], 2}, denotes the prefix of
x of length k.

For an illustration, consider the (uncolored) finite tree on left of Figure where
order on leaves is given along with the sequence s. For instance, the leaf number 3 has
maximal sequences (3,0),(3,2,1) and (3, 1), so 5(3) = (2,3, 2).

The next lemma shows a key property : §is a morphism from < to <je.
Lemma 4.2.4. For all z,y leaves of t, v <p y iff §(z) <iex 5(y) and §5(x) Z 5(y).

Proof. Let x < Ly and let z be the largest prefix of x and y, with x # z # y since x and

y are leaves. For each 2’ C z, there is decreasing sequence seq(x, 2') = (z, 21, ..., Ts(z,2)),
so there is a decreasing sequence (y, 1, ..., Ty .)) because the largest prefix of y and x;
is 2/ and o7 <p x <p y. Thus s(z, 2") < s(y, 2').

For z, the sequence seq(x,2) = (x,1,...,%44,z)) can be extended into a decreasing
sequence (Y, %, T1,...,%s(,z)), Which means s(x,2) < s(y,z) and 5(z) <ix 5(y) with
S(z) iZ S(y). The other direction is straightforward. O

Consider the tree s(t) over the finite alphabet [0,n0] obtained by taking the prefix-
closure of {5(u) | u leaf of t)}. The frontier of s(t) is isomorphic to (D, <r). To ensure
that colored frontier of s(¢) is isomorphic to L, we add the appropriate color to the leaves
of s(t). In practice, Dom(s(t)) := {y | 3z € Leaves(t) Ay C §(z)} and s(t)(z) = t(x) for a
leaf x. A surprising result is that this tree can be built in the same class than the original

tree.
Lemma 4.2.5. Ift € Tree,, then s(t) € Tree,.

Proof. Let G € Graph,,_; and r € Vg such that Unf(G,r) =t and G is accessible from
r. There is a MSO-interpretation Z replacing each arc labeled by a € {0,1} by ng + 1
arcs labeled by (i, a)o<i<n,. Let ¢’ = Unf(Z(G),r). In particular, for any i, ¢’ restricted to
((4,0) + (4,1))* is isomorphic to ¢ by the projection 7((i,a)) = a.

72 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Figure 4.1: Order in a finite tree ¢t and “arranged” tree s(t).

There is a MSO-formula 1 (z, z) satisfied by nodes x, z such that if s(7(x),7(z)) =i
then z.(i,a) C z for some a € ¥ and i < ng, where ng is defined in Lemma . Indeed,
by Remark [4.1.3] the pairs of leaves of t accepted by A are recognizable by a MSO-formula.
So the formula ¢ finds two sets X, X; which elements have prefix respectively z.(,0) and
z.(i,1), and x € X,. The formula states that for each y (except one) in one set there is
a ¢y’ in the other such that there is a simple run of A between y and 3’ up to projection
by 7. Eventually ¢ checks that | Xy U X;| = 4, and that there is no such sets with
| XoUXy| =i+ 1.

There is therefore a formula ¢(x) satisfied by nodes such that ¢ (z, z) is true for each
prefix z of x. Let t” be the tree restricted to the prefix closure of vertices satisfying ¢ (x) :
t" € Tree,,.

By Lemma [£.2.4] if ¢(x, z) and ¢(y, z), then either z and y have the same prefix z,
or s(7(z),7(2)) # s(t(y),7(2)); so if z.(i,a) € Dom(t"), then z.(i,1 — a) ¢ Dom(t").
This means projecting arcs labels on their first component does not change the tree up

to isomorphism. The resulting tree is s(t). O

It remains to bind the lemmas and Proposition to get the main result.

Theorem 4.2.6. Any colored linear order of Graph,, greater than 1 is the frontier of a
full prefix tree in Tree,,.

Proof. By Proposition f.1.2] for each linear order L in Graph,there is a det. binary tree
t € Tree,, an automaton A and a recoloring p such that u(A(t)) = L. By Proposi-
tion [£.2.2] A only works on leaves of t.

The Lemmas [4.2.4 and |4.2.5| prove that there is a tree s(t) on a ranked alphabet such
that p(Fr(s(t))) ~ L. By Proposition [2.5.4] the recoloring can be applied to s(¢) without
going out of Tree,. We can eventually apply Proposition to get a full binary prefix
tree. [

A particular case of this Theorem is the particular case of w-words. We will use this
result through Chapter [3]

4.3. ORDINALS 73

Corollary 4.2.7. An w-word of Graph,, is the frontier of a full prefix tree in Tree, with

exactly one infinite branch 1%.

4.3 Ordinals

In this section, we characterize the ordinals in the pushdown hierarchy. For more sim-
plicity, orders of this section and of the following are uncolored, but the same applies to
colored orders. In Section ordinals below w 11 (n + 1) were shown to be in Graph,,;
here, we show that they are the only possible ordinals of Graph,,.

By Theorem [4.2.6] we only need to consider the frontier of prefix full binary trees. It
is easy to see that frontier of a full binary prefix tree t is an ordinal if and only if ¢ does

not have an infinite branch with infinitely many 0’s. We call such trees well-ordered trees.

Proposition 4.3.1. A full prefiz binary tree has an ordinal frontier if and only if it is a

well-ordered tree.

Proof. Let t be a (full binary prefix) well-ordered tree and suppose there is a infinite
strictly decreasing sequence of leaves. Let t' be the restriction to prefixes of this sequence.
Now ¢’ is not full but its branches still have finitely many 0’s. If ¢ had two distinct infinite
branches, the infinitely many leaves supported by the largest would be larger than all the
ones on the smallest, and they would fill the sequence. So ¢’ has only one infinite branch,
which has finitely many 0.

From the leaves of ¢, we can select a (decreasing) subsequence with increasing largest
prefixes on the branch. Let uu’ be an element of this subsequence with largest prefix on
the branch u. For sufficiently large u, u has the maximum number of 0, so that the next
element of the subsequence has the form w1*v for some v. Since ¢ is deterministic, u’
begins with 0, so uu’ < u1*v, and the sequence does not decrease.

Conversely, take a tree where one branch has infinitely many 0’s. There is an infinite
sequence (u;); such that for each ¢, u;0 is in this branch; so u;1 is not. Since the tree is
prefix, there is a leaf v; such that w;1 C v;. Then the sequence (v;); is strictly decreasing.

O

A non-full tree can yield an ordinal and still have a branch with infinitely many 0’s,
as Figure shows. Nonetheless the Proposition [2.2.11] stands.

Let t is a well-ordered tree of Tree,. To characterize t, we are going to look for an order
a of the previous level of the hierarchy and show that ¢ is at most w®. The natural first
step is to consider the folded graph of ¢ in the previous level. For n > 1, let G € Graph,,_,
and r € Vg such that ¢ = Unf(G,r), and such that each vertex of Vi is accessible from
r. Now we would like to find a well-order in G. Since Section we know that it is
equivalent to find a tree; so we build a well-ordered “spanning tree” into G, and we show
that arcs which not in this tree cannot add too much complexity.

We start with this simple result.

74 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Figure 4.2: Non-full tree of frontier w having a branch with infinitely many 0’s.

Lemma 4.3.2. For each x € Vg, {(z) = min._{w | r % x} exists and r Dy 2 is a

simple path.

Proof. 1t is a direct consequence of Proposition [2.2.11] Indeed, the set of paths from r
. .. £(z) .

to x is a subset of Dom(t) and has therefore a minimum element ¢(zx). If r s not

a simple path, then there are ¢(z) = ujusug with nonempty us, uz and a vertex y € Vg

such that » 25 y 22 ¢ “% 2. We may suppose u; is such that |u;| is maximal and r 25 y

is a simple path. Since G is deterministic,
e cither uy begins with 0 and uz with 1, but then ujususus <iex ¢(z) is a path too;
e or the converse, but ujug <pex ().

¢ . .
So uy must be empty, and r ﬂ) x is a simple path. O

Let T be the subgraph of G defined by
T={xSylz>yAlly) =) a}
T is the tree of shortest paths from r, and therefore a “spanning tree” as required.

Lemma 4.3.3. T is a tree where each branch has finitely many 0, and T' € Graph,,_,.

Proof. For each x € Vg, if r % x and r % z, then min.,_ {w | » = p} > w; and

min., {w | r = 2} > ws, s0 w; = wy. Since G is deterministic, so is 7' and thus 7T is a
det. tree. Therefore T is a subtree of ¢t and its branches have finitely many 0.

There is an interpretation Z = {¢y, @1} building Z(G) = T'. Indeed, it is possible to
define subsets containing the smallest path from r to a given x, and to select the smallest

such subset by inclusion. Then arcs are selected to build a path. O]

Note that T' is not a well-ordered tree, because it is not necessarily a prefix tree. This
property will be fixed later on by “completing” the tree.

Since T is a tree, we may take its tree presentation, so that its vertex set is the set of
paths from the root, and thus » = . This is also the set of vertices of G.

The following lemma states a technical property on arcs of G which are not in 7.

4.3. ORDINALS 5

Lemma 4.3.4. For each v %y € G\ T,
o if v <jex Yy then x C y;
o ifa=0, then y <iex © and xLy.

Proof. For a € {0,1},ifz % ¢ € G\T, v <ix ¥ and z_Ly, then the path r =% y is smaller
than r % y, which is contradictory with the definition of T'.

Let 7 = y € G\T. If y C z, then there is a loop in G containing a 0, and thus a
branch with infinitely many 0 in ¢t. If C y, then 1 C y and therefore the path r =0 Y
is smaller than the path r % y. In conclusion, y <jx = and gLp. O]

As hinted above, we now tranform 7 to get a prefix tree. Let T be the tree such that
T is a subtree of T and whenever z % y, then za € T. It easy to see that T can be

transducted from G.
Lemma 4.3.5. T is a well-ordered tree of Graph,,.

Proof. Since Comp only add leaves to 7', each infinite branch of T is also in 7" so it may
have finitely many 0. Since G is a full binary graph (each vertex has arity 0 or 2), then
each vertex of T has also arity 0 or 2. The complete binary tree is not a subtree of T, so
each subtree of T has at least one leaf; T is prefix and therefore T is a well-ordered tree.

Since Graph,, is closed by transduction, T' € Graph,,.]

As a consequence, by Proposition |4.3.1] Fr(7T') is an ordinal.

Example 4.3.6. Figure is a example with a finite graph G and Fr(T) = 6. For each
leaf w of Unf(G,r), o(w) € (¢ +4*3+5)2*(0+ 1). So we have

Fr(Unf(G,7)) =w+w? + w=w? + w <’ A

The previous example leads to the central lemma of this section, which is the recursion

mechanism.

Lemma 4.3.7. Fr(t) < @),

Proof. Let a = Fr(T). Recall that Vg = Dom(T) € Dom(T), i.e. 7 = ¢ and r % w.
There is a natural isomorphism 7 from leaves of T to o. As described in Corollary
and used throughout in Chapter [3, we are going to build a injective morphism from the
leaves of t to the set of decreasing sequences of ordinals smaller than « in lexicographic
order.

Let w be a leaf of t. There is a path r — p in G where p is a leaf of G. Let (Pi)o<i<|wl
be the nodes of this path, i.e. r % pi where w; C w, |w;| =i for 0 < i < |w|. Let a;

76 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Figure 4.3: A finite graph G, “spanning tree” T, completed tree T, and unfolding.

be the letter such that w;;, = wj.a; and a),| = €. We build the following finite sequence

o(w) associated to w :

o(w_1) = € (by convention)
for 0 <i < |w| -1,
o(w;) = o(wi) if pi1 = pioai, e pp S pg €T
o(w) = o(wi_1),7(pra;) ifpSps ¢T
o(w) = o(Ww-1) T(Plw|)

We prove that o(w) is decreasing. Suppose o(w) has at least two elements. Let ¢ < j

be the indexes of two consecutive elements, i.e. o(w;) = o(w;_1) - 7(p;-a;) - 7(pj.a;). Then

pi % piy € G\ T. By Lemma [4.3.4) either p; >1ex pis1 o8 (97 <iex Pi1 and p; C pigs).
By construction, p;+1 & p; so p;.a; is in the subtree of T of root p;1. Several cases arise.

1. Either p; = pi11. Then a; = 1 and p;.1 is the largest leaf of the the subtree of T' of

100t Piy1, SO Pil Ziex pj-ay.

2. Or pix1 T p;. Then again a; = 1, and p; = pi411* for some k, because a cycle
in G cannot contain any 0. So p;.1 is the largest of the subtree of root p;;; and

Di-1 >1ex pj.a;.

4.3. ORDINALS 77
3. Or p; >iex pit1 and p;p1 Lp;, then p; > pj and p;.a; >1ex pj-a;.

4. Or p; T pit1. Then a; = 1. Since G is deterministic, p;.0 T pix1 T p;j. So
pzl >lex Pj-05-

These cases are summed up in the following figure. Arcs 1, 2 and 4 are necessarily labeled

by 1, whereas arc 3 may be labeled by 0 or 1.

To sum up, two successive elements 7(p;.a;), 7(p;.a;) of o(w) are such that p;.1 >jex
p;-a; and so 7(p;.a;) > 7(p;.a;). The sequence o(w) is decreasing.

Let w < v be two leaves of ¢ of largest common prefix u. Let i < |u| be the largest
such that (p;.a;) is in o(w) : then o(w;) = o(v;). Let ju,j, > |u| be the smallest such
that (pj,.a;,) € o(w) (resp. (pj;,.a;,) € o(v)). Then p;, .a;, = pit1.1, With v, T w.0
(resp. pj,-aj, = Dit1.Uy With w.u, C v.0) and uy < Uy, SO pj,-Aj, <iex Pj,-@j,- This shows
that o is a injective morphism.

We have thus proved that ¢ is an injective morphism from leaves of ¢ to decreasing

sequences of ordinals of o by lexicographic order. So Fr(t) < ™). O

From here, the main theorem is obtained by induction, since finite ordinals are in

Graph,,.
Theorem 4.3.8. Forn > 1 and any ordinal o, o € Graph,, if and only if « < w 11 (n+1).

This results give an alternative proof of the strictness of the pushdown hierarchy and
shows that ¢y does not belong to this hierarchy.

Another direct corollary concerns the interpretation of an ordinal into another. For
instance, for any a < w®, it is possible to find an interpretation Z such that o = Z(w).
As a corollary of the previous theorem, we cannot interpret moreﬂ. At any level, if
b < wTtn < a then a cannot be interpreted in B. Interestingly, the same property
applies to covering graphs. It could be interesting to examine precisely the orbit of a
given ordinal under monadic interpretations. Theorem hints that this orbit must
actually be very small, i.e. if a has w-head 3, then the orbit would be of the form

wU{B+ 0| <w?}; for covering graphs, the orbit is larger.

IThis result was already obtained in [BNR10] in an stronger form : it remains true even when w is
colored with arbitrary predicates.

78 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

4.4 Scattered linear orders

In Section 3.2 we have proved that any power by o < w 1 n of ¢ is actually in Graph,,. In
the other way around, we consider the scattered linear orders in the pushdown hierarchy.
Using the result of the previous section, we characterize the Hausdorff rank of scattered
orderings of the hierarchy : this is Theorem [4.4.12]

To reach this result, we begin with a general proposition on trees have a scattered
frontier. Then we notice that we may recursively switch subtrees of such a tree to obtain
an ordinal frontier. This does not change the mesure based on the number of infinite
branches in the tree, called Cantor-Bendixson rank of the tree. It is then sufficient to
prove that this CB-rank is tightly related to the Hausdorff rank, which allows us to
conclude.

4.4.1 Trees with scattered frontiers

The countable scattered orders are those which are frontiers of trees with only countably

many infinite branches also called tame trees. The following proposition is part of the
folklore.

Proposition 4.4.1. Lett be a deterministic prefix binary tree, the following propositions
are equivalent:

1. Fr(t) is a scattered linear order,
2. t has countably many infinite branches,

3. t does not contain any branching subset (i.e. a non-empty subset U C Dom(t) such
that for allw € U, u0{0,1}* NU # 0 and ul{0,1}* NU # ().

Proof. We will show that 1 =3 = 2= 1.

1 = 3. We prove this implication by contraposition. Assume that ¢ contains a branching
subset U. There exists a mapping f : U x {0,1} — U s.t. for all u € U and i € {0,1},
f(u,i) belongs to u-i-{0,1}*. Furthermore, as t is prefix, for each u there is a leaf v with
ulwv.

For any w € {0, 1}*, we define the nodes u,, and v,,. Let u. be any node of U. For any
Uy, We set Uy = f(f(u,0),0), up1 = f(u,1) and v, a leaf such that f(f(u,0),1) T vy.
Then vy, <jex U <= (WLW AW <jex w') V (0’ C w0) V (wl C w'). This order is dense
on {0,1}*, 50 (Vw)we{o,1}+} is a dense suborder of Fr(t).

e w\
P, 0) fla, 1)
« N
PO 0),0) F(f(10,0),1)
'

Uy

4.4. SCATTERED LINEAR ORDERS 79

2 = 1 In the proof of Thm. 7.7 of [KRS05], it is shown that if ¢ has countably many
branches then the Kleene-Brouwer ordering KB(#) is scattered (see Section 2.2.3). As
Fr(t) < KB(t), we can conclude.

3 = 2 Assume that ¢ has uncountably many infinite branches. Consider the set of U of

nodes of ¢ such that there are uncountably many infinite branches going through x0 and
through x1. We prove that if there are no point of U below some node u of ¢ then there
are only countably many infinite branches going through u. Indeed, suppose that u bears
infinitely many branches, we could construct a sequence of consecutive nodes (u;);en of
t starting with w such that for all ¢ € N, w;;; is a son of u; and its other son v;;; (if it
exists) has only countably many infinite branches going through it. The set of branches

going through u is equal to the following countable union:
e the unique branch going through the u;’s,
e the set of infinite branches going through the v}s for ¢ > 1.

A countable union of countable set is again countable. So if z € U, then x0(0+1)*NU # ()
and z1(0 + 1)*NU # 0, and U is a branching subset. O

Remark 4.4.2. The direction 2 = 3 is also easily shown by contraposition. Assume
that Dom(¢) contains a branching subset U. As U is branching, there exists a mapping
f:Ux{0,1} — U s.t. forall u € U and i € {0,1}, f(u,i) belongs to ui{0,1}*. Let xg
be an arbitrary element of xy. To any infinite sequence 6 = (4;);en € {0, 1}¥, we associate
the unique infinite branch of ¢ going through the z; where for all ¢ > 0, x;11 = f(x;, ;).
This defines an injection from {0,1}* into the set of infinite branches of t. Hence ¢ has

uncountably many infinite branches. |

4.4.2 Permutation of subtrees

We introduce here the notion of permutation of subtrees in a tree. Intuitively, we have
already seen the notion of unlabeled trees, i.e. the class of trees which have the same
image under label projection (up to isomorphism, as usual). Given a deterministic binary
tree t, what other deterministic binary trees are in the same class? And what of their

frontiers?

Definition. Given two deterministic trees t and ¢/, we write ¢t = t’ if there exists a bijection
from Dom(t) to Dom(t') preserving the ancestor relation (i.e. for all u,v € Dom(t), u C v
iff h(u) C h(v)).

This section is devoted to the following property of this relation.

Proposition 4.4.3. For any prefix tame full binary tree t, there exists a well-ordered tree

t' such t =t'. Furthermore, if t belongs to Tree, than t' can also be chosen in Tree,.

80 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Consider the following game G played by two players Branch and Spoiler by moving a
token on t. The two players play in turn starting with Branch. Branch moves the token
to a node anywhere below the current position. Spoiler can only move the token to a son
of the current position. Branch loses the game if the token reaches a leaf.

The game can easily be translated in an equivalent parity game. For a formal definition
of parity games and their properties, we refer the reader to [Tho97b]. It follows from
the positional determinacy of parity games [Zie98|] that either Branch and Spoiler as a

positional winning strategy for G.
Lemma 4.4.4. Branch wins the game if and only if t contains a branching subset.

Proof. [=] Assume that Branch has a positional winning strategy for G which is a partial
function ® : Dom(t) + Dom(¢). Consider the smallest set U C Dom(¢) such that
®(e) € U and for all w € U, ®(u0) and ®(ul) also belong to U. It is easy to check
that U is branching.

(<] If t contains a branching subset U, consider any partial function ® : Dom(¢) — Dom(¥)
such that ®(¢) € U and for all u € U, ®(u0) € u0{0,1}* N U and ®(ul) € ul{0,1}* NU.
We check that ® is a positional winning strategy for Branch on G. O

As t is tame (and hence does not contain any branching subset), Branch loses the
game. Hence Spoiler has a positional winning strategy. There exists a mapping ¢ :
Dom(t) — {0,1} such that in any game where Spoiler choses his moves according to ¢
(i.e. at node u, Spoiler pick the ¢(u)-son) is won by him.

Consider the tree t' obtained from ¢ by swapping the two sons of any node u such
that ¢(u) = 1. Formally consider the mapping A from Dom(t) to {0,1} defined for all
wi € Dom(t) with u € Dom(t) and i € {0,1} by :

h(e) = ¢
h(ui) = h(u)-(1—1) if (u) =1,
h(ui) = h(u)-i if &(u)=0.

It is easy to check that h(Dom(t)) is prefix closed and that for all u,v € Dom(t),
w C v iff h(u) C h(v). Let ¢’ be the tree such that Dom(¢') is equal to h(Dom(t)). As h
is injective, the mapping h a bijection from Dom(¢) to Dom(#') preserving the ancestor

relation. Hence t = ¢'.
Lemma 4.4.5. The tree t' is a well-ordered tree.

Proof. Assume by contradiction that there exists an infinite branch B in ¢’ containing
infinitely many 0’s. We are going to construct an infinite play m for G where Spoiler plays
according to ®. As the play is infinite, Spoiler loses this play which contradicts the fact

that @ is a winning strategy for him.

4.4. SCATTERED LINEAR ORDERS 81

Let ug,...,uy,... be the consecutive nodes of B. In particular ug = ¢ and for all
i > 0, there exists k; € {0,1} such that w;;; = u;k;. Let B’ be the corresponding infinite
branch in ¢ (i.e. B’ = h~'(B)) and let vg,...,v,,... be the consecutive nodes of B’

In the play 7, Branch plays so as to stay on B’. Initially this is satisfied as vy = . If
the token is at some v; and Branch has to play, Branch moves to some v; with j > ¢ such
that k; = 0. Such a j always exists as by assumption there infinitely many k; equal to 0.
By definition of h, we know that ®(v;) = v;11. As Spoiler plays according to ¢ he moves

to Vjt1-]

It remains to show that ¢’ can be chosen in Tree, if ¢ is in Tree,. A positional
winning strategy ® for Spoiler can be coded by two sets of vertices Uy and U; respectively
corresponding to set of nodes u s.t. ®(u) =0 and ®(u) = 1. Consider an MSO-formula
©(Xo, X1) such that ¢t = ¢[Uy, Up] if and only if Uy and U; encode a positional winning
strategy for ®. The formula ¢ simply states that there are no infinite branch B =
bi...by--- € {0,1}* such that for infinitely many k& > 0, b;...b, € U,,,,. As Branch
loses G, t = 3Xo, X1, p[Xo, X1].

From Prop. 2.5.7] it follows that there exists a tree ¢ € Tree, colored with two sets
Uy and U; coding a positional winning strategy for Spoiler. Let ¢y and c¢; the colors
corresponding respectively to Uy and U;. The swapping to obtain ¢ can be obtained by
applying an MSO-interpretation to the graph in Graph, ; whose unfolding is . More
formally, let G be a graph in Graph,, and let r € Vg s.t. ¢ = Unf(G,r). Consider the
MSO-interpretation Z which relabels the arcs labeled by 0 (resp. 1) by 1 (resp. 0) if
their source is colored by ¢y, erases the colors ¢y and ¢; and otherwise leave the graph
untouched. It is easy to check that ¢’ ~ Unf(Z(G),r) which concludes the proof.

4.4.3 Cantor-Bendixson rank of deterministic trees

The Cantor-Bendixson rank of a tree is an ordinal assessing the branching complezity of
a tree. We use a definition taken from [KRS05].

Definition. For X C Dom(t), we write 9(X) the set of nodes z € X with at least two
infinite branches from z in X. It is easy to see that if X is prefix closed then so is 9(X).

Hence the operation can be iterated as follows :

X)) = X
X) = B0 (X))
oMNX) = ﬂ 0%(X) for limit A.

a<<\

The Cantor-Bendixson rank (CB-rank) of ¢, noted rgg(t), is the least ordinal o such that
0%(Dom(t)) = 9T (Dom(t)).

82 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Remark 4.4.6. This is an adaptation [Kec94, Exercice 6.17] of the standard notion of
Cantor-Bendixson rank of an arbitrary topological space X. The Cantor-Bendixson
derivative DX is the set of accumulation points, i.e. DX = {z € X | z € X\ {z}}.
As [KRS05, Rem. 7.2] points out, it is equivalent to the above definition if we take X as
the set of infinite paths in the tree. |

From [KRS05], ¢ is tame if and only if there exists a s.t. 9 = (). On the opposite,
a tree with uncountably many branches is such that any node of 97cs® () belongs to a
branching subset.

For tame trees ¢, we adopt a slightly modified version of the CB-rank, written 7cg(t),
which is the smallest ordinal « such that 0*(¢) is finite. The difference between 7cp and
rop is at most one as Tcp(t) < reg(t) < rep(t) + 1.

The CB-rank of tame trees and the Hausdorff rank of their frontier are tightly linked.

Proposition 4.4.7. For every prefix and tame binary tree t,

fop(t) = 7(Fr(t)) if Fop(t) < w,
feg(t) = 7(Fr(t))+1 otherwise.

Proof. Let t be a prefix tame binary tree t. As the construction of Fact does not
change neither the CB-rank nor the frontier of the tree, we can assume w.l.o.g. that ¢ is
also full.

For every prefix tame full binary tree ¢, we write WF(¢) the smallest ordinal a such
that there exists a well-ordered tree ¢ with ¢ = ' and Fr(f) = a. Proposition [4.4.3]
garantees the existence of at least one such ¢'.

We are going to show by transfinite induction on WF(¢) that for every a prefix tame
full binary tree t that Fop(t) = 7(Fr(t)) + 0 with 0 = 0 if Fep(f) < w and § = 1 otherwise.
This is obvious for finite trees.

Assume that the property holds for all o < g for some 3. Let t be a prefix tame full
binary tree with WF(t) = 5. Let ¢’ be a full well-ordered tree such that Fr(¢) = and
t=t.

We distinguish two cases depending on whether 1¢ is an infinite branch in #'.

1“ is not an infinite branch in ¢. Let m > 0 be the maximal integer such that 1™ belongs
to . For all i € [0, m — 1], let ¢; be the subtree of ¢’ rooted at 1°0 et let ¢/, be the tree root
in 1™ consisting on only one node. As ¢’ is full, Fr(¢') = Z[om—l} Fr(t}) + 1. In particular
for all i € [0,m — 1], Fr(t)) < Fr(t') = 5.

By definition of =, there exists a word w = w; ... w,, € {0,1}™ which the branch in

t corresponding to to the branch 1™ in t'. Formally, for all i € [0,m], a tree t; such that
t; = t; and ¢ is the prefix closure of (J,c(g,, 1y w1+ w; - (1 — wis1) - £;. Hence #(Fr(1)) =
max{7(Fr(¢;)) | ¢ € [0,m]} by Proposition and 7op(t) = max{7cp(t;) | i € [0,m]}
because the subtree permutation commutes with 7cgp.

For all ¢ € [0,m], WF(¢;) < 3, but by Proposition again, there is an iy, such

4.4. SCATTERED LINEAR ORDERS 33

that 7(¢;,..) = 7(5). So we have by induction hypothesis that 7cg(t;,..) = 7(Fr(t;,..))+0.
This shows that 7cg(t) = 7(Fr(t)) + 6.

1¢ is an infinite branch in #'. For all i > 0, let ¢; be the subtree of ¢ rooted at 1°0. The
frontier of t' is equal to Y .., Fr(t;). Ast'is full, Fr(¢;) # 0 for all i > 0. Hence for all
i>0, Fr(t) < Fr(t) = 5.

By definition of =, there exists an infinite branch w = w; ... w,, ... € {0,1}* and

for all ¢ > 0, a tree t; such that t; = ¢; and ¢t = Uizo wy - w; - (1 —wiyq) - t;. Hence
F(Fr(t)) = > o Fr(t;) where W designates the order N ordered by

1< j iff wq .. U}z(l — w,) Jex W1 - . w](l — wj).
In particular, W has order type

w+ k for some k < w iff w is ultimately 1v
k + w* for some k < w iff w is ultimately 0“

w+ w* otherwise.

Assume that the type of W is w + w*; the proof is only simpler for other types. By
Remark [2.2.10) I = {i | 7(Fr(¢;)) = S} is finite.

e If 3 =a+1, note that 3 < w <= «a < w. By induction, for j ¢ I, 9°M(t;) is

finite. If T # (), 9°9(¢) is reduced to the tree bearing the 9°9(t;) for i € I, which

are finite. If I is empty, 9°*%(¢) has exactly one infinite branch. So Fcp(t) = 3 + 4.

e Otherwise, [is limit and 8 > w. If [is empty, for a < g there always infinitely
many j ¢ I such that o < 7cp(t;) < . So 0%(t) always contains the infinite branch
w. Otherwise, for i € I, by induction 9°(t;) is infinite. So 9°(¢) has always at least
one infinite branch. For all i € I, 9°T1(t;) is finite and so is 9°*1(t). H

As an unrelated note, we may use the same proof technique to prove the equivalence

between different orders on a prefix tame tree.

Proposition 4.4.8. For every full binary prefix tame tree t,
7(Fr(t)) = 7(KB(t)) = 7({ Dom(t), <jex))-

Proof. We note Lex(t) = (Dom(t), <jex). Let again WF(¢) be the smallest ordinal « such
that there exists a well-ordered tree ¢’ with ¢t = ¢’ and Fr(t') = a. We prove the result by
induction on WEF(¢). If WF(¢) = 1, since the tree is prefix, it is reduced to a single node
and then Fr(t) = KB(t) = Lex(t) = 1.

In the general case, it depends again whether ¢ has an infinite branch 1¢ or not. The
t; and t; trees are defined in the same way that in the previous proof; since t; = ¢; and
Fr(t!) < Fr(t), we may apply the induction hypothesis

r(Fr(t;)) = 7(KB(t;)) = 7({ Dom(t;), <jex))-

84 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

Figure 4.4: Orders in a tree.

Fr(t) = Fr(ts) + Fr(ty) + -+ Fr(ts) + Fr(t1),
KB(t) = KB(ts) + KB(ts) +---+ 1+ KB(t3) + 2 + KB(t1) + 1,
Lex(t) = 2+ Lex(t2) + 2+ Lex(t4) + --- + Lex(t3) + Lex(t1).

When 1¢ is not an infinite branch in t, it is the successor case. Then Fr(t) =
SO Fr(t;), whereas KB(t) and Lex(t) have the same form

KB(t) = Y0 (KB(t:) +c;)
Lex(t) S (¢ + Lex(ty))

where ¢;, ¢, are integers. We may then apply Proposition as before to get the result.
The limit case is when 1¢ is an infinite branch in ¢'. Now Fr(t) = Y. ,,, Fr(t;) where
W has order type w + w*, w+ k or k 4+ w*. Then we have the same

KB(t) = Y cw(KB(t) +c)
Lex(t) = > ,cw(c + Lex(t;))

as illustrated in Figure 4.4, The Proposition [2.2.8 along with Remark [2.2.10] leads to the

main result. O

Obviously, the property fails for the actual Hausdorff rank, since a full prefix tree of
frontier w has a KB-order w + w*, which has Hausdorff rank 2 but ~-rank 1.

It would be interesting to capture all the orders on a tame tree which share the ~-rank.
It may be conjectured that all orders MSO-definable on Dom(¢) have the same ~-rank;
however this does not include Fr(t), which concerns only leaves. This raises the more

general conjecture.

Conjecture 4.4.9. Let t be a tame tree. All orders definable by a monadic formula such

that any vertex is prefix of a vertex selected by the formula have the same ~-rank.

Remark 4.4.10. The proof of Theorem 7.7 in [KRS05| states that 7cg(t) = 7(KB(t)),
which seems to contradict Proposition 4.4.7. In fact this is true for finite 7cg, which is

4.4. SCATTERED LINEAR ORDERS 85

enough to prove the said Theorem, but false for further ordinals. Consider the following

counterexample. We define the family (¢,)a<w. Of prefix trees by the following set of leaves.

Leaves(t;) = 1%0
Leaves(t;) = 1*0 - Leaves(t;)

Leaves(t;) = 1*0- Leaves(t;_1)

Leaves(t,) = ;e 1'0 - Leaves(t;)

We prove that 7op(t,) = 7(KB(t,)) + 1.
For each i > 1, KB(#;41) = KB(t;).w + w*. In particular since KB(#;) = w + w*, for
i > 1, by induction KB(t;) = w + (.w' + w*.

KB(t,) = (Z KB(ti)) +w =w+Cw” +w
i>0

By another induction, it is easy to see that 7cp(f;) = ¢. For each j € N and i > j,
&7 (t;) is infinite. So in &’(t,,) there is infinitely many infinite branches. In particular the
branch 1¢ is in each &’(t,) and therefore in 9% (t,). To sum up,

KB(t) 7(KB(t)) 7cp(t)
ty w+ w* 1 1
ty | w+(w+w* 2 2
ts | w4+ Cw? +w* 3 3
ts |w+ Cw+w* i i
to | W+ w4+ w* w w+1

Proposition 4.4.11. For any two prefiz binary tame treest and t', if t = t' then 7op(t) =
Top(t’) and 7(Fr(t)) = #(Fr(t')).

Proof. Let t and t' be two tame binary trees s.t. ¢t = t’. Let h be a bijection from
Dom(t) to Dom(#') which preserves the prefix relation. As h commutes with d, we have
0%(Dom(t")) = h(0*(Dom(t))) for every ordinal « so 7cp(t') = 7cp(t). Prop. implies
that 7(Fr(t)) = 7(Fr(t)). O

As the definition of the CB-rank does not use the relative order between the sons of a
node, it follows that two prefix deterministic trees having the same underlying unordered
tree have frontiers of the same ~-rank.

86 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

4.4.4 Hausdorff rank of scattered orders in Graph,
By using invariance of 7 over =, we get the main result of this section.

Theorem 4.4.12. For alln > 0, every scattered linear order in Graph,, has an Hausdorff

rank strictly less than w 1 n.

Proof. Let L be a scattered linear order in Graph,. By Theorem [£.2.6] and Proposi-
tion , there exists a binary prefix tame tree t € Tree, such that L ~ Fr(¢). By
Prop. there exists a well-ordered tree t' € Tree, such that t = t'.

By Prop. we have that 7(Fr(t)) = 7(Fr(t')). As t’ is a well-ordered tree in
Tree,, its frontier is an ordinal in Graph,,. Hence by Theorem [4.3.8) Fr(¥) <w 1t n+ 1
and hence 7(Fr(t')) < w 11 n. O

Remark 4.4.13. Obviously the converse to this theorem is not true; there are uncountably
many scattered orders of Hausdorff rank less than w 11 n but there are only countably
many linear orderings in Graph,,.
In practical terms, consider a non-recursive sequence (a;);en in {1, 2}*. The scattered
order
ap+(¢+ar+¢C+as+ ...

has Hausdorff rank 2. But as the sequence of a; can be reconstructed by an MSO-formula,

it has an undecidable MSO-theory, so it does not belong to the pushdown hierarchy. W
By Proposition 4.4.7, the upper-bound of Theorem [4.4.12 directly translates the CB-

rank of prefix binary tame trees in Tree,,. This leads to the following upper bound for all

deterministic trees in Tree,,.
Theorem 4.4.14. For every deterministic tree t € Tree,, rcp(t) < w 11 n.

Proof. Let t be a deterministic tree in Tree,. We can assume w.l.o.g. that ¢ is binary.
Consider the tree ¢’ obtained by adding a leaf to every node which is its left-most son.
Clearly t' is prefix, belongs to Tree,, and r¢p(t) = reg(t’). The construction of Prop.
gives a prefix binary tree t” € Tree,, with the same CB-rank.
As the result is already established for tame trees, we can also assume that ¢ is not

tame. Note that for every deterministic non-tame tree ¢,
ree(t) < A =sup{rcg(t/) | v € Dom(t) and ¢/, tame}.

Indeed, d*(t) has no tame subtrees. If ¢ has no tame subtrees then d(t) = ¢. Hence
d(t) < A.

By Proposition any subtree of ¢ € Tree, is also in Tree,. By Proposition
and Theorem we have, for all u € Dom(t) such that ¢/, is tame, rcp(t/,) < w 171 n.
Hence rcp(t/u) < w 11 n. O

The inequality is conjectured to be strict.

4.5. FINITE COMBS 87

4.5 Finite combs

As foretold in Section [3.4.4] known examples of graphs separating the hierarchy include
the prefix tree Ky of well-chosen functions f : N+ N, defined by Leaves(K;) = {1°0/®}.
In particular, let the exp(m,n, i) operation be defined by

exp(m,0,i) = 1
exp(m,n +1,i) = moPmmni

then the tree Kexp(2,3n,) Was shown in [BIuO8] not to belong to Graph,,, using properties
on the size of stacks of n-order-pushdown automata. It was then conjectured that already
]CEXP(an) ¢ Graphn.

This section proves this result. More generally, we consider some comb-shaped graphs
of the hierarchy, i.e. acyclic graphs with only one simple infinite path. We state a result
of the maximal size of each subgraph not intersecting this path. The proof of this result
is very related to the methods employed in Section

Recall that a comb is a deterministic tree ¢ over a ordered finite alphabet with a
greatest label 1 such that the only infinite branch is 1¥. In the hierarchy, an equivalent
definition specializes this label. A #-comb is a comb on ¥ U {#} with a greatest label
¢ ¥ such that each arc is labeled by # iff this arc is in the infinite branch of w. The
subtree of domain #°~* N Dom(t) is noted ¢;. We alter slightly this definition to get more
general graphs.

Definition. Let 3 be an alphabet and # ¢ X another letter. A #-comb-graph over X is a
deterministic graph G of labels ¥ U {#} with a root r and the following properties. Let
Vi=A{z|r AN x} and G; the subgraph of support V; :

e the subset of arcs labeled by # form an infinite path from r;
e for all i, G; is an acyclic graph;

e the only arc between V; and Vj; can be #.

The goal of this section is to get a upper bound for each |V;| when G is a comb-graph
of the hierarchy. This is the Theorem [4.5.3
We first remark that comb-graphs of Graph,, cannot be larger than combs of Tree,,.

Lemma 4.5.1. If G € Graph,, is a #-comb-graph, there is a comb t € Tree,, such that
for all i, there is a j < such that |V;| < |Dom(t;)|.

Proof. Let G be a #-comb-graph of support V. Since each G; is a finite deterministic
acyclic graph, there is a MSO-definable order < on V; — for instance, lexicographic order.
This order can be extended to V with x < yiff z € G,y € Gy and i < jV (i =jAz < y).
So there is an interpretation from G to the w-word w = Hizo(ab‘v"') : each x € Vj is

colored in a when it is the smallest of V;, and b otherwise.

88 CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

By Corollary [4.2.7], there is a full binary prefix tree ¢ in Tree,, (on the alphabet {0,1})
with only one infinite branch 1 such that Fr(t) ~ w.
For instance, ¢ could be the following tree (the color ¢, is defined later on) :

Ca Ca Cq
| | | | o

We may call ¢; the subtree of root 1°0, if any. The problem is that a subword ablV:!
may be “scattered” in several t;,, t;,, To get the required result, we are going to

merge these subtrees.

We color each node 1% with ¢, if @ € Fr(t;). In particular, ¢ is colored. Let H €
Graph,,_; and s € Vg be such that Unf(H, s) is this marked tree. Let Z(H) be the graph
where there is a &-arc z y when

1* 1+
7’7{—)1‘?% (caax)7(caay)€H7

and for all z 2 2 15 Y, (ca,2) ¢ H.

In Unf(Z(H), s), we remove the subtrees with root &'u such that
1. there is no a-leaf &'v with v <je u,
2. or there are at least one a-leaf &‘1v such that 1v <jex u or v € u0*.

We note t; the subtree of domain &*(0 + 1)*. Condition 1 checks that each such subtree
begins with an a. Condition 2 looks for the first a-leaf in &*1(0+1)* and removes subtrees
of root greater or equal in lexicographic order. We note ¢’ this new tree. Following our

previous example, ¢’ is shown below.

In short, t’ is a &-comb having the same frontier than ¢, and such that for each i,
Fr () begins with the letter a. So each abl“! is contained in some Fr(t}), which shows
the result. O

If n > 1, for any t € Tree, there is a graph H in Graph, ; and s € Vg such that
t = Unf(H,s). As usual, we suppose that s is a root of H.

4.5. FINITE COMBS 89

Lemma 4.5.2. Let t € Tree,, be a #-comb and t = Unf(H,s). Let S = {z % y}.

e Fither S is finite, and then the sequence (t;);>o is ultimately periodic;

e or S is an infinite path from s.

Proof. Recall that t and H are deterministic. Since there is a infinite path labeled by #
in ¢, there is a infinite or ultimately periodic path labeled by # in H, starting from s. [

In particular, for n = 1, H is a finite graph, so the set S is necessarily finite, and the
sequence (|Dom(t;)|)i>0 is bounded. By Lemma |4.5.1} so are the (|Vi])i>o.
For further levels, the following result states that the bound is n-exponential in the

length of the comb. For a finite tree t, let depth(¢) be the maximal path size in t.

Theorem 4.5.3. For n > 0, let t be a #-comb of Tree, 1 and G a #-comb-graph of
Graph,, ;. There is a constant C' such that for all 1,

depth(t;) < exp(2,n—1,C(+ 1)),
Vi| < exp(2,n,C(i+1)).

Proof. Let t be a #-comb over ¥, and H and s as in Lemma 4.5.2l By Lemma [4.5.1]
the result on G is a direct consequence of the result on ¢. Indeed, since t; is a finite
deterministic Y-tree, then |[Dom(t;)| < |S[4Pth(t) So there is a constant C’ such that
|Dom(t;)| < exp(2,n,C"(i+ 1)).

First note that deterministic structures of Tree; and Graph, are regular. Following
notations in [MS85] and Section , they have therefore finitely many end-isomorphisms,
which means that for any #-comb ¢ in Tree;, the sequence (|Dom(%;)|);>o is bounded. A
similar result applies to #-comb-graphs.

In H, for i > 0, let s; be the vertex such that s % s;. By Lemma [4.5.2} if {s;}i>0

is finite, the result is trivial. Suppose otherwise. We call the #-level ¢#(z) of a vertex
x € Vi the least i such that s; —» z. Let Vi, = {x | (#(x) =i} and H; be the associated
subgraph.

The transformation Z removing 3-arcs between any Vg, and Vg, is a monadic inter-
pretation. Moreover, we now that there is exactly one infinite branch in ¢, so there cannot
be any infinite branch in any Unf(H;, s;), which means each H; is finite and acyclic. So
Z(H) is a #f-comb-graph of Graph,,_;. A path in ¢; is smaller than >, _; [Vp,|.

o If n=2, then |V},| is bounded by some C, so

depth(t;) < Y |Vi,| < Ci.

1<t#(z)
e Otherwise, by induction |V, | < exp(2,n —1,C(i + 1)) and

depth(t;) < Z Vi, | < exp(2,n — 1,C((*(z) + 2)).

i<l (x)

90

CHAPTER 4. THE STRUCTURE OF TREE FRONTIERS

[]

Chapter 5

Schemes and morphic words

In the previous chapter, we left aside the question of the coloring of orders. The first
class of colored infinite graphs that comes to the mind are the infinite words, or orders
of type w. Even for such simple objects, we do not know precisely which of them inhabit
the pushdown hierarchy. The aim of this chapter is to open the way to a characterization

of infinite words of the hierarchy. At the first level, they are well-known.
Proposition 5.0.4. The w-words of Graph, are the ultimately periodic words.

Proof. For any colored w-order, it is easy to see that the corresponding colored infinite
path is also in Graph;. This a regular graph, and has therefore finitely end-isomorphisms
(see Section starting from the root. It follows that there are two isomorphic end-
decompositions at step n and m so the structure is ultimately periodic with period |m —
n|. O

We turn our attention on the next levels, namely Graph, and Graphs;. A direct
consequence of [Cau02, Prop. 3.2] is that infinite words well-known as morphic words
belong to Graph,. For the other direction, by Corollary we only need to consider the
frontier of trees solutions of order-1 schemes whose frontier is of order type w. Moreover, by
Proposition [4.2.1] such a tree can be chosen binary, prefix and full. This tree has therefore
exactly one infinite branch, which is 1“. As mentioned in the introduction, deterministic
trees of Trees can be described by the notion of recursion schemes. We may therefore plug
the constrained shape of our trees into this setting to get the characterization of words.

For a slightly more powerful result, we notice that if the frontier of a deterministic tree
has an initial segment of type w, then this segment can be interpreted by an MSO-formula.
If we are in the pushdown hierarchy, we can therefore find a correspond comb. For any

deterministic tree, we call w-frontier this initial segment when it exists.

Proposition 5.0.5. For any safe scheme admitting a w-frontier w, there is a safe scheme

of the same order generating a comb with frontier w.

Proof. If a deterministic tree in the pushdown hierachy has an w-frontier w, then this

order can be selected by a monadic interpretation. Indeed, consider the set of leaves by

91

92 CHAPTER 5. SCHEMES AND MORPHIC WORDS

lexicographic order. Once the smallest leaf x(in lexicographic order has been found, the
initial segment X, of underlying type w is the smallest such that for all z € X, and
X C Xy with z, 29 € X, x has an immediate predecessor in X.

So w is a word of the same level of the hierarchy. By Theorem [4.2.6] there is therefore
a comb in the class of trees of the same level were each node has degree 0 and 2, with

frontier w. This means that there is a safe scheme generating this comb. O

If words of Graph, are morphic words, extending the method to the next level would
hopefully bring a natural extension. Since morphic words are well-known, this is not the
first attempt for such a generalisation. Already [CT02] proposes more general predicates
in the framework of decidable monadic theory. Some more recent propositions tweak an
automatic presentation of morphic words, for instance allow the automaton to be infinite
[IGO6] or generalize the underlying order [Bar08]. Another direction is more pushdown-
automaton related [FS06, Mar07] and relates to the HDTOL definition of morphic words
(see [ASO3] for details).

This rest of this chapter is organized as follows. We first present recursion schemes and
their relationship with the hierarchy. Then, we define morphic words and that frontiers
of type w of order-1 recursion schemes are exactly morphic words. Then we extend this
proof to so-called hyperalgebraic trees, i.e. trees of Trees. We first introduce the notion of
order-2 morphic words, and prove that they correspond exactly to w-frontiers of order-2

recursion schemes. We therefore obtain a characterization of the w-words of Graphs.

5.1 Recursion schemes

We first give a definition of recursion schemes, then recall why schemes with the safety

constraint are term trees of the hierarchy.

5.1.1 Definition

We borrow the definitions from [KNUO02]. The notion of recursion scheme, or term gram-

mar, gives a direct presentation of infinite tree by successive rewriting of terms.

Types and terms

First of all, these terms are constrained by their type; the first definition therefore concerns
these objects. The set of types T is built from a unique basic type o and the binary
operator —.

T:=0|T — T

The operator — is associative to the right. The order or level {(7) of a type is defined
by ¢(o) = 0 and ¢(ry — 7») = max(l + ¢(71),l(m2)). Atypen — ... > 7, — 0 is

5.1. RECURSION SCHEMES 93

homogeneous if ¢(1y) > -+ > {(7,). The type 0 — ... = 0 — o with n + 1 times o is
written o" — o.

A typed alphabet is a set I' of symbols with types in 7. We note f : 7 when f € I is
of type 7. By notation, ¢(f) = ¢(7), and the order of the alphabet is ¢(I') = maxep £(f).
The set of applicative terms AT(') is defined by I' C AT(I') and if f : 4 — 7 and
x : 7, then (fz) : o, € AT(I'). We say then that x an operand of f. By mirroring type
association, applicative terms are associative to the left : fzy = (fx)y. A term is an
applicative term of type o; the set of terms is noted T(I"). The arity p of a term is 0, and
p(f) = p(fx)+1 otherwise. An applicative subterm is an occurence of some t = fxy ...z,

where n is maximum for this occurence; it is a subterm if n = p(f).

Example 5.1.1. Let ¥ = {a,b, g, f} with p(a) = p(b) = 0, p(g) = 1 and p(f) = 2. Then
f(a) is an applicative term of arity 1, and f(g(a),b) is a term, thus of arity 0. A

Recursion schemes

We are now ready to define the base rules of recursion schemes. Let X be a typed
alphabet of variables. We note t[z := t'| with z : 7 € X the term where each occurence
of the variable x is replaced by a applicative term ¢’ : 7. A recursion scheme is a tuple
S = (X, N, S, E) where ¥ is a finite typed 1-order alphabet of (lowercase) terminals, N is
a finite typed alphabet of (uppercase) nonterminals, S : o € N is the starting nonterminal

and E is a set of productions in bijection with N, of the form
FZL’l...Ip(F) = Wr

where F' : 71 — ... = 7,;) — 0 € N; forall 4, z; : 7, € X and wp is a term in
T(XUNUA{z1,...,2m}). The order of the scheme is /(&) = ((N). The set of all
n-order schemes is noted S,,.

To each scheme & is associated a rewriting relation :6> C T(XUXUN)2. Informally, a
subterm which head is a nonterminal F' is replaced by its related term wp where variables

are in turn replaced by the actual arguments of F. In practice,

o [ty ...tym :6> wp[Vi, z; = t;] if there is a production Fax; ...z, = wp in £

with z; : 7; and ¢t; : 7; for all 7.

ot = t', then (st) = (st') and (ts) = (t's) whenever the applicative terms exist.

Limit trees

The definition of schemes yet only produces finite terms. To reach infinity, we need the
notion of limit tree. This limit in turn demands to build a converging family of trees. The
approzimation t+ of a term ¢ on X U X U N is the term on X U { L} where nonterminals

have been pruned, that is

94 CHAPTER 5. SCHEMES AND MORPHIC WORDS

o ift = ft1.. .ty with f € DUX, t- = fti ...t}
o if t = Ity ...ty with F' € N, then tt= 1.

Let 7 be a projection from terms on X U{ L} UX to (finite) trees, where each subterm
fai... 2, is mapped to a subtree 6 with root r, arcs r N 7(x;), and color 6(r) = f. An
approximation partial ordering can be defined on trees by ¢ C ¢ if Dom(é") € Dom(0)
and, for each w € Dom(d’), §'(w) = d(w) or ¢'(w) = L. Successive approximations are
ordered by this ordering : for two terms t; = ty, we have 7(t{) C w(ty). The scheme is

a confluent grammar, so each term ¢ on > U N U X generates a unique tree
[1] = sup{r(s) | ¢ => s}

For any scheme & = (X, N, S, E), we note [S] = [S] the limit tree of the scheme.
Ezxample 5.1.2. Theorem and Corollary state that any ordinal smaller than

w 11T n + 2 is the frontier of a n-order scheme. We show schemes corresponding to the
successive towers of w.

A tree yielding w is simply given by the 0-order scheme

& = ({f,a},{So}, S0, {So = f(a,5)}).

At the next level, a tree yielding w” is given by &, = ({f, a}, {S1, F1,G1}, S1, E1) where
E is shown in Figure[5.1] Informally, the nonterminal F' adds complexity whereas G prop-
agates it. Recursively, a tree yielding w ™ nis &,, = ({f,a}, {Sn, Fn,G1,...,Gn}, Sn, Ey)
with E,, defined in Figure [5.2

Here the types used are

T = O,

forn>1, 7, Tpel —> ...—>T1 — O

and for all n > 0, x, : 7, and F,,, G}, : Tpa1. A

5.1.2 Schemes in the pushdown hierarchy

A scheme is safe if for any production rule Fz;...x, = wp, and for any applicative
subterm ¢ of wp, there is no occurence of some z; in ¢ with ¢(x;) < £(t). The set of
order-n safe schemes is noted S Note that for n < 2, safety is not a restriction. The

safety has been previously called the derived types property [Dam82].

Ezample 5.1.8. From [KNUQ2], the scheme with production rule

S = F(g,a,b)
F(p,z,y) = f(F(F(p,7),y,hy)), [(py),z))

5.1. RECURSION SCHEMES 95

S = B R = f G = f
| | / N\ | / \
a x r B x r Gy

\
G ;
i
[S:] = f
\
d f
f/ \f
/ \f f/ T~
a
a/ \ f/ \f
\ /
a/ f f\ \
ANWAY
a// .\..

Figure 5.1: Rules for &1, of frontier w®.

Sn = F, E, — f
\
anl"' C}(I xn/"'\xl In/ \Fn
/N N
Tp—1 -+ X1 n In—1 -+ T1
oo
G — f
/ \ //\ \
Tp—-1-++ 1 Tp Tp Tp-2--- 1
$J—1

Figure 5.2: General rules for &,,, of frontier w 11 (n + 1).

96 CHAPTER 5. SCHEMES AND MORPHIC WORDS

is unsafe, because there is a subterm F'(p, z) such that ¢(z) < ¢(F(p,x)). It is conjectured

that this scheme produces a tree which cannot be produced by any safe scheme. A

The question whether safe schemes produce the same trees than unsafe schemes has

been recently solved by the negative using a language defined by Urzyczyn. For more
details, see [Parl(] and [AdMOO5], Prop. 7.13].

Definition. A term tree is a deterministic tree ¢ colored by an alphabet > and labeled by

[1, k] where k is the maximum out-degree, and the following constraints :
e if u-i€ Dom(t), theni=1oru-(i—1) € Dom(t);

e all nodes with the same color f have the same out-degree.

The relationship between schemes and the pushdown hierarchy is that trees generated
by safe schemes of order n are exactly term trees on the level n + 1 of the hierarchy. This

is an application of [Cau02, Theorem 3.5].

Proposition 5.1.4. Limit trees of safe schemes of order n are term trees of Tree,.1 up

to isomorphism.

Proof. Let h be a rational mapping as defined in Section with the following con-
straints. Suppose that such that for each a, h(a) is recognized by a finite deterministic

automaton (.S,4,7T,n) where
e cach final state (in 7") is terminal, i.e. has no output arcs;

e forall g € S, eachset P={q|q > pAccT}issuchthatif ¢ € P and ¢ — p then
p &P

e it is strongly deterministic on arc labels : if ¢ = p, q a4 p and a € X, then ¢ = d.

In other words, the disjonctions are made on colors.

Such a mapping is called deterministic rational mapping. The set of all these mappings
is called DRat.

Theorem 5.1.5 ([Cau02]). Forn > 0, [S:¢] = Unfo DRat™" ([S5*]).

At the first level, the recoloring of [Sy] are regular trees. To get Prop. it it
enough to show that deterministic trees of Tree, ., are the image of Tree, under the
mapping Unf o DRat™!, and more precisely that each deterministic graph of Graph, is
h=1(t) for some deterministic ¢ € Tree, and h € DRat.

Let G € Graph,,. By Prop. [£.1.2] there is a deterministic tree ¢ € Tree,, of color set
I', a family of simple TWA {A,}.cx and a recoloring p such that G = u(A(t)). We build

5.2. MORPHIC WORDS 97

h € DRat such that G = h7'(t). For a € X, let A, = (Q, qo, ptr,9) be the automaton
recognizing h(a) and let A = (5,4,T, 7).

S = QU(@xPI))
l do
T (q,c¢) such that ¢ € pup(c)
n(q, c) (q,¢) for each ¢ € Q,c € P(I)
Ya € %, n((qg,c),a) = p for each 0(q,c) = (p, 1)
n((¢.¢),a) = p for each (g, c) = (p,a)

Each final state is terminal, since 6(¢q,c) = 0 if ¢ € pp(c). Each P(T')-transition
is either a final state or followed by a Y-transition. The determinism condition is also
fulfilled : if n((q,c),a) = (p,0) and n((q,c),b) = (p,0), then (p,a),(p,b) € d(q,c), and
since A, is deterministic, a = b.

For recoloring, we simply set h(c) = u(c) for each ¢ € P(I). O

It is easy to tranform any deterministic tree into a term tree with the same frontier.
This remark allows the following corollary of Theorem [4.2.6]

Corollary 5.1.6. A linear order colored by I" is in Graph,, if and only if it is the colored
frontier of some tree limit of a safe recursion scheme of order (n — 1) with one terminal

f of arity 2 and terminal of arity O for each ¢ € T.

5.2 Morphic words

Morphic words are well-known w-words. They can be seen as a generalisation of automatic
sequences, but we prefer to skip this latter definition and give the direct presentation. For
a complete introduction, see [AS03].

In this section, after the preliminaries we present a construction of the morphic words
in the hierarchy. Then we prove that morphic words are the only possible words of Graph,

by looking at leaves of trees produced by recursion schemes.

5.2.1 Definition and properties

Let X be an alphabet. A morphism on ¥* w.r.t. concatenation is a mapping 7 such that
7(ab) = 7(a)7(b). Now let 7 : 3+ ¥* a morphism. Suppose there is a letter A € ¥ such

that the first letter of 7(A) is A. In this case the following sequence admits a limit :

T(A) = A-u
2(A) = A-u-7(u)

™(A) = A-u-7(u)-73(u) - ...

98 CHAPTER 5. SCHEMES AND MORPHIC WORDS

e

Figure 5.3: Paperfolding sequence.
When the corners are set to right angles like in this drawing, the resulting pattern is known as
the dragon curve fractal.

Let 0 : ¥ — IT' be another morphism. The set of morphic words are the words in the
form o(7¥(A))).

Example 5.2.1. The regular paperfolding sequence (see [AS03, Ex. 5.1.6]), or dragon curve
sequence, is obtained by folding iteratively a piece of paper in the same direction. By
unfolding the paper and looking at the direction of the corners, we get a word on two

letters. For n foldings, we get the n'® word of the following sequence; see Figure .

1

110

1101100
110110011100100

The limit word is a morphic sequence over the alphabet {0,1}?. Define

7(00) = 1000 7(10) = 1100
7(01) = 1001 r(11) = 1101
Then 7¢(11) is the paperfolding sequence. A

We can chose o to have a specific form. A coding is a morphism o such that for all a,
lo(a)] = 1.

Theorem 5.2.2 (J[AS03]). If f, g are two morphisms such that g(f“(a)) exists, then there
is a letter A, a non-erasing morphism T such that T(A) begins with A, and a coding o
such that g(f*(a)) = o(1¥(AQ)).

We are particularly interested by the logical properties of morphic words. The follow-

ing result was obtained in [CT02] for even larger sets of w-words.

Theorem 5.2.3 (|[CT02]). The monadic theory of a morphic word is decidable.

5.2. MORPHIC WORDS 99

As with uncolored ordinals, this result naturally rises the question : which morphic
words are in the hierarchy? The following sections answers that they are in fact exactly
words of Graph,.

5.2.2 Construction in the pushdown hierarchy

The goal of this section is to prove that words of Graph, are exactly the morphic words.
We begin with the easy direction. It is proved in [Cau02] that morphic words are terms of
Trees. If it is not ultimately periodic, such a tree must be unfolded from itself, so morphic

words are in Graphs,.
Theorem 5.2.4. Any morphic word is in Graph,,.

Proof. We reproduce here a proof by Caucal. Any morphic word can be chosen of the
form o (7 (A)) with 7 be a morphism on an alphabet ¥ with 7(A) € AY*, and ¢ a coding
YT

Let n = maxyex(|7(a)|) + 1. We build the following regular graph of support NU (N x
Y)UT, label set [1,n] and colors T'.

G = {5 k+1}U{kS (k7(A)) | k>0,i>1}
U{(k,z) 5 (k—1,7(2);) | k> 1,2 € %,i > 0}
U{(1,2) 5 o(z) |z € B} U{0 5 (0,A),(0,A) 5 o(A)}
Uy y) |y €T}
G is a regular graph, so G € Graph,. Let t = Unf(G, 0). By induction, for k£ > 0, each
subtree of root n*i yields the finite word o(7**(7(A);)). The leaves of ¢ in lexicographic

order form the required morphic word. There is therefore a monadic interpretation build-

ing the word from ¢.]

Example 5.2.5. For instance, the word abaabaaaab. .. is obtained by

T(A) = Abaa c(A) = a
7(a) = aa ola) = a
T(b) = b o) = b

So ¥ = {A,a,b}, I' = {a,b}, n = 5. Figure shows the part of G accessible from 0.

The circled vertices are colored respectively by a and b. A

This result implies of course Theorem [5.2.3

5.2.3 Words in Graph, are morphic, direct proof

The converse of Theorem [5.2.4] can be obtained by using methods similar to those used
in Chapter 4 We follow here this direction. But it is limited to the first level of the

100 CHAPTER 5. SCHEMES AND MORPHIC WORDS

0 5 1 5 2 5
1]
. 0,A 3@2 3@2
— § i
a 1,a 2,a
@ ! Vsl
@ 1 b 2,h

Figure 5.4: A graph which unfolding yields the morphic word abaab . . a%'b. ...

hierarchy, so the rest of this chapter will be devoted to an alternative and extensible

proof using recursion schemes.
Theorem 5.2.6. w-words of Graph, are morphic words.

To prove this result, we show that a tree having a frontier of type w is unfolded from
a graph having the shape of the graph of Example [5.2.5

Let w be an w-word on I' of Graph,. According to Theorem [4.2.6, we consider a
prefix full 3, I'-tree of Tree; which has frontier w. Let t,, be this tree. One more step
backwards, let G € Graph, and r € Vi be such that t = Unf(G,r). We may suppose that
G is accessible from r. There is only one infinite path from r in G.

Moreover, since G is a deterministic graph, we know by [CKOI1] that G is in fact a
regular graphﬂ. We actually ignore this property to reach the result, and we prefer to

follow the hierarchy backwards one more time : G is it interpreted from a tree t € Tree;.

Lemma 5.2.7. There is a MSO-interpretation T and a deterministic reqular tree t € Treey
such that G = Z(t) and t has only one infinite branch.

Proof. Instead of a MSO-interpretation we know that we may chose a TWA-interpretation
A = {A,}4es as described in Remark [1.1.4] There is a regular tree ¢ in Tree; such that G
is A(t) up to a color projection. As usual, we may suppose that ¢ is the prefix closure of
V. Let (1;)i>0 be the infinite path from 7, and ¢, the restriction of ¢ to the prefix closure
of {r;}i>0. Suppose there are two infinite branches in ¢,, with greatest common node z.
Then there are infinitely many runs r; %) riv1 of A, for some a € ¥, where r; and ;14
have prefixes in different branches. The set of possible states on z being finite, this means
that there are r; % Tit1 and 7 % rj+1 with ¢ # 7 and thus r; %) rj+1, which cannot be
since GG is deterministic. So ¢, has only one infinite branch B.

As in Section 4.5 we may note V; the subset of Vi such that any path from r to this

subset goes through r;, but not necessarily through r;, ;. Each V; is a finite set.

!Given a deterministic prefix-recognizable relation (U — V)W, we have necessarily that [V| = 1 and
that a word in U - W must be uniquely decomposable. This satisfies exactly the property 3 of [CKOIl
Theorem 4.6].

5.2. MORPHIC WORDS 101

U Vo Vi Vs

Figure 5.5: General shape of the folded graph.

Suppose there is another infinite branch B’ and let b = B A B’. Since the tree is
deterministic and the V; are finite, there are infinitely many ¢ € N such that r; is supported
by B and some vertex z; in V; is supported by B’. Since there is a path from r; to z;, we
can consider the precise pair (x;,y; such that r; ? Z; %) Yi ? z; and |z; A B| > |b| and
ly; A B'| > |b]. Since t is deterministic and the pairs (x;,y;) are pairwise distinct, for all

N there is a 7 > 0 and a € ¥ such that there are infinitely many z; % y; and

lz; AB|—|b| > N
i AB'|—|b| > N.

By applying the same argument than above, we see that there are i # j such that there

is also a run of A, from z; to y;, which contradicts the determinism of G. O

So t is a regular tree with one infinite branch. This means that it is periodic in the
sense that there are two words u,v with sufficiently large u such that if ¢t(uw) = ¢ for
some w, then t(uv*w) = ¢ for all k > 0. Indeed, if djss is the graph decomposition in the
sense of [MS85] (see Section , then there are n,,n, such that dg}?n“)(t) = dg\’}lg)(t).
We may then chose u to be the prefix of size n, of the branch and v the following factor
of size n,,.

k = wvkw. For a given k, there

For any w such that v [Z w, we note this vertex x
are only finitely many such vertices. Let Vi = Vg N {zk | w € ¥*} for k¥ > 0 and
U = Ve \ Uiso V- These sets are all finite. We also note Gy the subgraph of support U,
Ve, =UU UZS x Vi and G« the subgraph of support V<. The following technical lemma

is illustrated in Figure [5.5

Lemma 5.2.8. There is a choice of u,v such that if k > 1 and x* %) y, then

o cither y € U then x%™! % Y,

! /
e orye Ve UV UV sSoy = xfu, and zk % fo,H.

102 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Proof. Suppose y € Vg \ U and note y = :17 . There is a run of A, from z* to 93 . This

run goes by ¥, A B which is of the form x’;

k+1 K41

with z £ v. By the regularity of the tree,
there is also a run from ;" to x;

Consider the set of h € N such that the run of A, from z¥ to ¥, goes by /. If |k’ — k|
is not bounded, then this set is larger than the set of states of A,; so there are h # h’
such that A, has the same state on 2" "and z". Suppose w.lo.g. that k¥ < h' < h < k.
Then there is a run of A, from z*"~" to z¥, but also from 2%+"="" to :zck =R Thig
contradicts the determinism of G. So |k’ — k| is bounded by a constant depending on A4,,
and there is therefore a choice of v such that whenever z¥ — 2*, then &' € [k — 1,k +1].

Suppose now that y € U and k is large. We use again the regularity of ¢ on a sufficiently

long run of A, : there is a p,,, such that for all ¢ > 0 ey % y. By considering the

least common multiple of all the p,,,, we can adjust v so that gkt %) y and allow k to

be simply greater than 1. O]

The graph G being deterministic, the second part of this lemma can also be read
backwards up to a good choice of v : if 2% % xg,ﬂ, then zf % .

Let P be the sequence of vertices of the infinite path in G starting from r. Let :Bllj1 be
the first vertex of P in Vj. By the previous lemma, x2 also belongs to P. Up to a good
choice of u, v, the subsequence (z} Ty, ,ccp)is all in Vg \ V<g. Let S* be this subsequence
without the last xm

Let G,x be the graph restricted to (Vi \ P) U {zk}. For any 2% € Vi, we note
Fr(z}) = Fr(Unf(G,x, 2%)), i.e. the finite frontier obtained without following the infinite
path. This notion can be expressed recursively. Formally, let X = {z,, | 2% € Vi} be a
new alphabet. By the previous lemma and the fact that G« is an acyclic graph, there is
a word s,, over I' U X such that for all £ > 1,

This allows the definition of the morphic word. The alphabet is X UT', and 7 and o

are idempotent on I'.

T(A) = A. Hx

zeSs
c(A) = Fr(Unf(G,1))

for any w, 7(xy) = Sy

5.2.4 Words in Graph, are morphic, by recursion schemes

We prove again Theorem i.e. that words of Graph, are necessarily morphic words,

this time using recursion schemes. A first attempt of this proof appears in [Lav05].

5.2. MORPHIC WORDS 103

By Corollary it is enough to prove that the frontiers of prefix binary combs
generated by order-1 schemes are morphic words. At this order, safety is not a constraint.
In order to prove the result, a given scheme will undergo a series of transformations
through the following lemmas. Eventually, we show that it is enough to consider specific
simple schemes with only 2 nonterminals.

Let & = (X,N,S,E) € S be a scheme. We begin by cleaning the scheme of non-
productive nonterminals, where non-terminal F' is productive if [Fay ...z, # L. It
is obvious that for any & € &; generating an infinite tree, there is &’ € & with only
productive nonterminals, and generating the same tree.

A nonterminal F' € N is infinite if it generates an infinite tree, i.e. for xy,...,x) €

X, the tree [Fzy... 2] is infinite.

Lemma 5.2.9. For any & € S; generating an infinite tree, there is &' € Sy with only

infinite nonterminals, and generating the same tree.

Proof. Let 6 = (X, N, S, E) € §; with only productive nonterminals producing an infinite
tree, so S is infinite. Let F' € N be a finite nonterminal and n = p(F'). There is a finite
term w on ¥ U X such that F'z,...z, :6>* w and [Fz...z,] = w. For each other
nonterminal F’, if there is an occurrence of F in wpgs, then in particular there is an
occurence of F't;...t, without any F in any t;, for 1 < ¢ < n. Replacing F't;...t, by
wlx; :=t;] is done by rewriting. Eventually, we can replace all occurrences of F' in wg.
The resulting scheme generates the same tree. Since NN is finite, the whole process

may be repeated for each finite nonterminal.]

The operand index ¢ of a nonterminal F' is useful if x; appears in [Fxy...2,m]. A

useful nonterminal has only useful arguments.

Lemma 5.2.10. For any scheme in S; generating an infinite tree, there is a scheme in

S1 with infinite and useful nonterminals generating the same tree.

Proof. Let & = (3, N, S, E) € §; generating a comb with only infinite nonterminals. Let
F be such a nonterminal. If F' is inaccessible from S (i.e. for any S = w, F' does not
appear in w), we safely remove this nonterminal.

Suppose that i is a useless argument of F', then x; cannot appear in 7(w), where w is
any rewriting of a tree containing z; only in an occurrence of Fz; ...z). We simply erase
this argument. Formally, let <) be a new letter, &' = (XU{{}, {F'JUN\{F'}, S, E’) be the
same scheme where p(F’) = n — 1 and F’ has production rule F'zy ...z, 1Ty ... Ty =
wrlr; := <], and all occurrences of Ft;...t, in each production rule are replaced by
F'ty...t;_1tii1...1,. In the limit tree, this transformation can only change some subtrees
into leaves labeled by <>. But if it did, this means that there was a rewriting S ? w such
that ¢ appears in m(w). By the definition of F’, this is contradictory with the lemma
that 7 is a useless argument of F. So the resulting tree is the same. This operation only

remove arguments, so iteration is finite. O]

104 CHAPTER 5. SCHEMES AND MORPHIC WORDS

A scheme & = (X, N, S, E) € §; is called simple recursive if N = {S,F}, and E =
{S = ws, Fay... 2 = wp} where S cannot appear in wg, wp and F' appears exactly

once in both.

Lemma 5.2.11. For any scheme in Sy generating a comb, there is a simple recursive

scheme in 81 with only infinite and useful nonterminals generating the same comb.

Proof. Let @ = (X,N,S,E) € §; and S = wg € E. If N = {S}, the recursive form is
easy to get : due to the fact that there is only one infinite branch in the limit tree and since
S is infinite, there is exactly one occurence of S in wg. Otherwise, since nonterminals are
infinite, if there is two nonterminals without nonterminal ancestors in wg, there would
be two infinite paths in [&]. So there only one such nonterminal subterm Ft;...¢,r),

which is infinite and useful. There is a w such that
o Fxy...xypF) :G>* w,
e there is a nonterminal in w,
e and there is an occurence of each x; to the left of this nonterminal.

In particular, Ft, ...t :6>* wlx; :=t;]. This means there is no nonterminal in any ¢;,
or there would be two nonterminal without nonterminal ancestors in wg. This means that
in fact there is exactly one nonterminal in wg. We reach the same conclusion for the right
side of each production rule. This means there is only one w; such that S :6>’ w; and that
w; contains exactly one nonterminal F;. Since there are finitely many nonterminals, the

sequence (F});~o is ultimately periodic and the simple recursive form is easy to obtain. [
We are now ready to focus on the proper result, i.e. Theorem [5.2.6|

Proof. Let & = (X,{S,F},S,E) be a simple recursive scheme of S;, n = p(f) with
production rules S = wg, Fxi...x, = wr. Let Xy be the subset of X of type o. Up
to renaming, suppose that L ¢ ¥. Let Fsy...s, and Ft;...t, be the subterms starting
with F' respectively in wg and wg. Each s; is a term on X and each ¢; is a term on X U X.
Let ug, ur be finite words on ¥y U X such that Fr(r(ws)) = us L, Fr(n(wg)) = upL.
We set 3o U{A,xq,...,2,} as the alphabet of the morphic word and 7,0 two mor-
phisms on this alphabet. Letters from {A,xq,...,2,} are temporary and are erased by

g.

A/j\
>

for 1 <k<n, 7(xg

for any a € £y, 7(a
(

5.2. MORPHIC WORDS 105

F F .
s = | | =/]
a X x / F
\
b /f\
x x
f\f
[[S]]: (l/ \f\
b/ f
f\b
a a

Figure 5.6: Rules of a scheme which frontier is a morphic word.

We show that the morphic word o(7¥(A)) is indeed Fr(&). The scheme is simple recursive,

which means that for each 7, there is a unique term w; such that Fx; ...z, :6>’ w;.

Fr(n(wy)) = L

Fr(r(wi)) = up-L

Fr(r(wy)) = ur-up[Vk <n,zy:=Fr(n(t))] - L
(m(w;"))

= up-Fr(m(w;—1))[Vk < n,xp :=Fr(n(ty))] - L

So for each i, 7 (A).L = A.Fr(r(w;")). Moreover, replacing variables by terminal terms

can permuted with approximation :
Fr(m(w;[Vk < n,z), := s3]7)) = Fr(n(w;"))[Vk < n, 2, := Fr(n(s;)]
so the frontier of the (i 4+ 1) iteration of S is
ug - Fr(w;)[Vk < n, x; .= Fr(n(s;))] = o(rO(A)) - L.

At the limit, since 7¥(A) is infinite, it is exactly Fr([&]). O

Ezample 5.2.12. Consider the scheme ({f,a,b},{F,S},S,E) where E is given in Fig-
ure . The frontier of its limit tree is the morphic word abaab...a?b... already seen
in Example [5.2.5] This scheme is simple recursive and ug = ¢, up = xb. We may hence

deduce the following 7 and o.

T(A) = Axb T(x) = xx 7(a) =0(a) =a
o(A) = ¢ o(z) = a 7(b) =0c(b) =0

106 CHAPTER 5. SCHEMES AND MORPHIC WORDS

5.3 Second order

It is tempting to try and improve the method used in Section in order to define an
extension of the morphic words which would match exactly the words of any level of the
hierarchy. In reality, higher-order schemes are not easily manipulated; in the rest of this
chapter, we will only consider Graph,. For instance, we would like to express words like
the Champernowne word described below, or the Liouville word of Section [5.3.3] These
two examples both express some increase of complexity compared to morphic words,

respectively in terms of subword complexity and growth.

The Champernowne word [Cha33] (or constant) is the concatenation of numbers start-

ing from 0 in some k-ary notation. Respectively in decimal and binary, it is

0123456789101112131415.. ..
0110111001011101111000. ..

For any base, these words belong to Graph;. To prove this fact, it is enough to find a
second-order safe scheme yielding it. We present the binary case; other bases are similar.
The scheme is & = ({f,0,1},{S, F, G}, S, E) where E is presented in Figure [5.7

Even if there is more than two nonterminals here, this presentation is very similar to
the form of schemes corresponding to (order-1) morphic words : there is one starting non-
terminal S and only one “recursive” nonterminal F'. We define formally this linearization

form for order-2 schemes in Subsection [5.3.2]

5.3.1 Second-order morphic words

We introduce the notion of a second-order morphic word, or 2-morphic word. Its definition

mimics the notion of schemes : instead of letters, we use functions with operands.

Let ppaz > 0 and X = tl-)f;“g" >; where ¥; is a set of function symbols of arity 7. The
symbols of ¥ are called letters, and there must be at least one letter. On the opposite,
¥\ X is noted Y.

A term word 0 is defined by

O:=clacSy|fO,....0),fc%|0-0.
W—/
The set of term words on 3 is noted TW(X). We use the standard notation f(z) for

an arbitrary long f(z1,...,2,). Let V be a new set of letters called variables. We note
¥;(2) the set {f(2) | f € i, 2 € V'} and X(2) = W75 2,(2).

5.3. SECOND ORDER 107

s = f G — f F = f
/ N\ / N\ /N | / N\
0 ¥ z ¥ ¥ ¥ f F
/ N\ | | /N
1 f ®
| /N /N | |
f T x 1 ¥
|
1
S : o f 0—>0—0
F : (0—>0)—o0 0 o
G : (0—>0)—0—0 1 o
s = f < /
RV ° /N
0o f 0 f

/ N\
1 f I

/NN \
L f1f1f1f
A A AN A
00011011

¥ Ja
VAN \ /N

/f\ /f\ C\; /f\ /f\ /f< \F

1 01 1 f 1 01 1f f G

| / N\ / \ |

1 ff G

/N |

{

1

Figure 5.7: Order-2 safe scheme which frontier is the Champernowne word.

108 CHAPTER 5. SCHEMES AND MORPHIC WORDS
Let 7,0 be two morphisms on ¥(Z)* w.r.t. concatenation.

for a € Y,
ra) € TW(Y)
ola) € TW(X)
for f € Yoo and zq,...,2, €V,
T(f(z1,...,2,)) € TWEUY)
o(f(z1,...,2) € TW(X,UV)

This definition is extended on term words by

for f € Yoo and t4,...,t, € TW(X),
T(f(t1, .. tn) = 7(f(z1,. .., 20)[Vi, 2 := 7(8)]
o(f(tr,.. . tn) = o(f(z1,.-,20) Vi, 2z := 0(t;)]

Y

t
t

A 2-morphic-word is any word of the form o(7¥(A)), where A is a letter in ¥ such
that 7(A) € A - TW(D).

Ezxample 5.3.1. The Champernowne word has a 2-morphic word presentation. Here
20 = {0,]_} and 21 = {g}

T(A) = Ag(0)g(1)
7(9(2)) = g(20)g(z1)
o(A) = 01
o(g(z) = 1z

Implicitly, 7(1) = o(1) = 1 and 7(0) = 0(0) = 0. The first steps of rewriting are shown.

T(A) = A g(0) ¢(1)
@A) = A g(0) g(1) g(00) g(01) ¢(10) g(11)
o(r®(A) = 01 10 11 100 101 110 111

A

Example 5.3.2. Just like the word abaab . .. a*"b ... was shown to be morphic, it is possible

to build the 2-morphic word abaaaab . .. a®'b.... Letters a and b are copied by 7 and o.
T(A) = Ar(a)b
7(r(2)) = r(r(2))
o(A) = ¢
o(r(z)) = zz
It easy to prove that 7™ (r(a)) = r@(a) and finally o(7((r(a))) = o . A

If prae = 0, all symbols are letters and we land back on the classic definition of

morphic words. The converse is even more noteworthy : in our examples, the letters are

5.3. SECOND ORDER 109

simply copied and symbols which are actually used are of non-zero arity, except for A.

This hints the following proposition, which seems to be anecdotic but reveals itself useful

in Section [5.3.2]

Proposition 5.3.3. For a 2-morphic word w, there is 7,0,%, A such that
o w=o0(1T(A)),
e A appears only as the first letter of T(A),

e for any other letter a € ¥y, 7(a) = a.

Proof. Let 1,0,%, A such that w = o(7%(A)). If 7(A) = A.u, let A’ be a new letter such
that 7(A") = A’.u and 0(A’) = o(A). This answers the constraint on A.

For any other letter, it is possible to add “fake operands”. Formally, for any letter a,
take a fresh symbol a; of arity 1 such that 7(ai(2)) = 7(a), o(a1(z)) = o(a). Then set

7'(a) = a, and for each other symbol b, set

Then w = o (7 (A")). O

5.3.2 Second-order scheme w-frontiers

We adapt the method of Section to prove that frontiers of combs generated by
order-2 schemes are exactly the 2-morphic words. The main problem is to perform the
transformation leading to a “linearized” scheme, where there are only two infinite non-
terminals. Once this transformation is done, we may read the values of o and 7 as in the
case of 1-order schemes.

A nice property of this method is that is does not use the safety constraint, even
though 2-morphic words can be encoded as frontier of safe schemes. This means the
w-frontiers of schemes does not depend on safety.

The previous remark about productive nonterminals is still straighforward. For any
G € S, generating an infinite tree, there is &’ € Sy with only productive nonterminals,
and generating the same tree. From now on, we suppose every nonterminal is productive.
The second step, deleting useless operands, is more delicate. In this case, simply deleting
operands will not work, because it would lead to type mismatches — see below for an

example. The solution kept here is to duplicate nonterminals when needed.

Lemma 5.3.4. For any scheme in Sy generating a tree, there is a scheme in Sy with only

useful nonterminals generating the same tree.

Proof. Let & = (X, N, S, E) € S; generating an infinite tree. Let F' be a nonterminal. If
F is inaccessible from S (i.e. for any S :6>* w, F' does not appear in w), we may safely

remove it.

110 CHAPTER 5. SCHEMES AND MORPHIC WORDS

Let n =p(F)and F : 74 — ... = 7, — 0. Suppose that i is a useless operand of F,
then z; cannot appear in w, where w is any rewriting of a tree containing z; only in an
occurrence of F'xy...x,r). As in the S case, we can erase this operand, but at the cost
of duplication of other nonterminals.

Formally, let $: 7; be a new letter, and F' : 7y — ... 751 > Tj41 — ... > T, > 0a
new nonterminal of the same type than F' without the i-operand. Let wp = wr|z; := .

There are two disjoint cases depending on the order of x;.

o If /(x;) = 1, this case is similar to the first order. Since the scheme has order 2,
each app. subterm of root F' has an order at most 1; this means that this app.
subterm appears as F'ty...t, with kK > i. So each occurence of F' can be replaced

by F’ where this i-operand is deleted.

o If /(z;) = 0, then there may be occurences of F' without its i-operand in production
rules of other nonterminals. In this case the app. subterm is an argument of another
nonterminal H. For each nonterminal H : (o — o) — ... — o, and each sequence
s € [0, hy]?H)] define the duplicate H,. Let (73)1<a<p(r) be a family of variables

where

— if s; = 0, then z; : 0" — o;

hi—

— otherwise, z; : o"~! — o.

Then let Hyxy ... 2,5 = wa, be a copy of wy where types are adjusted accordingly.
Formally, if s; # 0, then each occurrence of z; is modified. If its app. subterm has
at least s; operands, the s;-operand is erased. Otherwise, it has order 1, so it is the
j-operand of an app. subterm of root K, which is changed into the correct duplicate

K where s = s; — p(z;).

Each time F' appears without its i-operand, it has order 1 and must appear as
operand of some nonterminal H. So we can change F' into F’ and H into the

appropriate H,.

Example 5.3.5. For instance, let

F: o—o Y : 0o—o
G : o—o T : 0
H : (0—~0)—o0—o0 f : o—s0—o0

Suppose the rewriting rule for H is

H = f
/ N\ / N\

5.3. SECOND ORDER 111

Suppose that the argument of F' is revealed useless and has to be deleted. Since G does
not change, this implies a duplication of the nonterminal H. Note that in the rule for Hy,

the type of ¢ is now o.

Haoy = f Hoo = f
/ / N\ / /N
¢’ \w ¢ Hayp) @ \33 v Hap)
/ N\ /N
F Hopo x F Hqop
/ / \
G = G =

A

As before, in the limit tree, this transformation can only change some subtrees into
leaves labeled by <. But if it did, this means that there was a rewriting S ?* w such
that { appears in w. By the definition of F”, this is contradictory with the fact that 7 is
a useless argument of F'. So the resulting tree is the same.

We iterate this process for all useless operands of all nonterminals. The number of

possible different duplicates of nonterminals is finite, so the whole process is also finite. [J

Among other differences between S, and &p, nonterminals generating finite trees can-
not be avoided. Indeed, an applicative subterm which is not a term cannot be rewritten.
To overcome this fact, it is enough to make a clear distinction between nonterminals
generating finite or infinite trees.

A nonterminal G with production rule Gz, ... x,q) = we is called semiterminal if we
does not contain any nonterminal or does contain only other semiterminals. As before, a
nonterminal F' is called infinite if [Fxy ...z,] is an infinite tree. “Infinite nonterminal”
is shortened in co-nonterminal.

The following property shows that these two categories (semi- and oco-nonterminal)
are actually a partition of nonterminals. Later on, we will focus only on co-nonterminals
to build 2-morphic words.

A subterm is called head applicative subterm whenever its root is nonterminal and it
has no other nonterminal above. Since the schemes of this section have order 2, any head

applicative subterm has order 0.

Lemma 5.3.6. Let & = (3, N, S, E) be a scheme without nonproductive or useless non-
terminals. A term on XU N produces an infinite tree if and only if it contains a non-

semiterminal.

Proof. Let F be a non-semiterminal of arity n. Since F'is productive, there is a w such that
Fxy.. .2, :6>* w and the root of w is a terminal. Also, by definition, w contains at least
one non-semiterminal nonterminal. Since the scheme has order 2, any head applicative
subterm has order 0, so there is a head subterm. Since each nonterminal is useful, there
is a sequence of rewriting bringing a head non-semiterminal. This nonterminal has all its

operands and can be rewritten. By iterating the process, we build an infinite tree.

112 CHAPTER 5. SCHEMES AND MORPHIC WORDS

We prove now the opposite direction : a term only composed of terminals and semiter-
minals cannot be infinitely rewritten. We note sN the set of semiterminals. By definition,
the graph over sN where F' — G iff G is in wp is a acyclic graph. We can provide a
(topological) ordering on semiterminals so that F' — G <= F > (. This ordering can
be extended on ¥ U sN with ¥ < sN. Then we translate it to T(sN U X) as follows.

For any app. subterm ¢, let root(t) be its root. We introduce the notion of lvl-1-
branches of a nonterminal subterm ¢ : a lvl-1-branch is a multiset {root(t)} Ub where b is
a lvl-1-branch of an app. subterm ¢; of level 1. We call Ivl*(¢) the multiset of Ivl-1-branches
of t.

For a term ¢, for any branch b of ¢ we call val(b) the multiset of Ivl'(¢') for any app.
subterm intersecting this branch. Finally, we call B(t) the multiset of val(b) for each
branch of t. The values of app. subterms can be totally ordered by multiset ordering.
Then {B(t) |t € T(sN UX)} is therefore totally ordered by multiset ordering.

We have now to prove that (1) if ¢ = t', then B(t) > B(t'); (2) the order on
{B(t) | t € T(sNU2)} is a well-ordering. The latter property comes from the well-
known fact that the multiset operation preserves well-ordering. Yet B(t) is just a chained
encapsulation of 4 multisets on a finite ordering.

It remains to prove (1). Let tp = Fty...1, :6> w = wglz; := t;] be the rewritten
term in ¢ with n = p(F'). Let b be a branch of ¢. If b does not intersect w, then val(b)
already exists in B(t). Otherwise, b goes through w. By simply looking at wg, we can
say that there is h such that

b=w-wvy-root(t;,) vy ----100t(t;) vp - Cp

where u is the part above the rewritten subterm, (vy)rep,n) are (possibly empty) segments
of branches in wp without variables, and ¢;, is a (possibly empty) branch of t;, .

For any nonterminal G in a branch b, recall that we note tg the associated subterm.

val(b) = {wval(tg) | tg intersects u
or tg intersects v, k < h
or tg =1t 51...5k <h,l <p(t;)

or t¢ intersects ¢;, }

Let b; be a branch in ¢ going through t; , of the form w - F' - ¢. This branch exists

ih
and val(b;) € B(t). We prove that val(b) < val(b;), which implies the required result
B(t) > B(t').

To this extent, we study the four cases above in order.

1. If tg intersects u, since trp and w are both of order 0, the rewriting does not affect
Wl (tg).

2. By definition, any nonterminal appearing in wp is smaller than F. If t5 has its

5.3. SECOND ORDER 113

root in a vy, a lvl-1-branch of ¢4 is composed of at most one t;, and nonterminals
smaller than F. So it is smaller (for multiset ordering) than the corresponding
branch number i in tp. So Ivl'(tg) < Iv1'(tp).

3. When t¢ is an applied ¢;,, since £(t;,) = 1, any lvl-1-branch can be extended in a
Ivl-1-branch of ¢tg. So Ivl'(tg) < W1 (tp).

4. As in the case of u, for any subterm tg of a t;, 1V11<tc) is unchanged.

To summarize, between b; and b, for all ¢ of the beginning (in) or end (in ¢;,), vl'(tg)
is copied. Moreover Ivl'(tr) disappears, and new values than may appear are necessarily
smaller than Iv1'(tz). So val(b;) > val(b). O

The definition of simple recursive still holds for order-2 schemes. A scheme & =
(3,N, S, FE) € S, is called simple recursive if it has no nonproductive or useless arguments,
and there are only two co-nonterminals S, F', and {S = wg, Fx1...2,r) = wp} € E

where S cannot appear in wg, wr and F' can appear at most once.

Lemma 5.3.7. For any scheme in Sy generating a comb, there is a simple recursive

scheme in Sy with only useful nonterminals generating the same comb.

Proof. Let G = (3, N, S, E) € S; be a useful scheme producing a comb and let S = wg €
E. If there is no co-nonterminal in wg, then [&] = [wg] is finite by Lemma [5.3.6] So
there is an occurence of an oo-nonterminal in wg. Since all nonterminals are useful, we
can suppose that there is an occurence of a head subterm with oco-nonterminal root F,
modulo some rewriting. There is only one such head subterm in a given rewriting of .5,
otherwise the limit tree would have two infinite branches. Let n = p(F') and F't; .. .t, be
this subterm.

In order to get a contradiction, suppose that there is an oo-nonterminal G in ¢; for
some i. We note t; as a copy of t; where an app. subterm tg of root G is replaced
by a variable x (of the same type). Since operands are always useful, there is a term
w such that Fty...t;...t, :6>* w where x occurs outside of any nonterminal (even
semiterminals). Moreover, since F' is infinite, there exists an oo-nonterminal H in w. In
particular, F't;...t, :6>* wlx = tg].

If x : o, we fall on the same case than in S;; there would be more than one infinite
branch. So the only possibility is that ¢(t¢) = ¢(x) = 1 and there is an occurence of x in
w containing an occurence of H. Namely, x occurs in w in the form (zu; ... u,u)) with
H € wy, for some k. For this to happen, we must have £(¢;) > 0 so that ¢; can feed x.

By applying the exact same process to G, we find that ¢(uy) > 0 so £(x) > 1, which
is impossible because then all app. subterms have order at most 1 in a order-2 scheme.
So there cannot be any oo-nonterminal in any ¢;. As in the order-1 case, the sequence
of oco-nonterminals encountered by rewriting S is ultimately periodic. We may therefore

select S and another co-nonterminal to get the required form.]

114 CHAPTER 5. SCHEMES AND MORPHIC WORDS

We are ready to prove the main result.
Theorem 5.3.8. The following sets of w-words are equal :
1. the w-words of the third level of the pushdown hierarchy,
2. the w-frontiers of safe order-2 schemes,
3. the frontiers of combs generated by order-2 schemes,
4. the 2-morphic words.

Proof. The equality 1 = 2 comes from Theorem [.2.6], and 2 C 3 comes from Proposi-
tion . It is therefore enough to prove that (a) frontiers of combs generated by arbitrary
schemes are 2-morphic words, (b) 2-morphic words are w-frontiers of safe schemes. For
(b) it is easier to prove that 2-morphic words are frontiers of safe combs.
(a) Let & be a simple recursive scheme producing a comb, and let S, F' be the two oo-
nonterminals, with production rule S = wg, Fxi...xz,r) = wp. For each variable
7; : 0" — 0, we define the symbol z; € X,,. Let t7,tf" be the i-operands of F respectively
in wg and wp. They are in AT(sN U X), and have type o” — o. By Lemma , when
fed with appropriate variables, [t z] and [tf'z] are finite trees.

We simply set o(z;(2)) = Fr([t7z]). For 7 we have to take other variables in con-
sideration, but we will flatten the terminals. Define the mapping £ from T(X U 2) to

TW(E) :
e if ¢ is a leaf, £(t) =
o if t = fti...t, where f is a terminal, {(t) = pf)f(tr);
o if t = xty ... 1, where x is a variable, {(t) = x(£(t1), ..., {(tp@)))-

We set 7(z;(2)) = £(£) where £ is the normal form of 7%, i.e. such that ¢z :6>* ts
which cannot be rewritten.

The starting letter A is naturally associated to the part “outside of F”. Formally, we
can suppose as before that the app. subterm of root F' in wg is in fact a head subterm
(in wr as well). So if we replace this subterm by L in order to approximate, we get w
and w} with only terminals and semiterminals. We set o(A) - L = Fr([ws]). For 7, we
set £(L) = ¢ and we have then 7(A) = A - £(}) where @}, is the normal form of w.

By construction, if S =* s, only by rewriting F, then

Fr([si]) = Fr([ws]) - Fr([wpla; == t7]]) - Fr(wp [r; = t]7]. . [z =]]])

5.3. SECOND ORDER 115

(b) Let w be a 2-morphic word defined by 7,0 on ¥. We chose a presentation given by
Proposition [5.3.3]in order to obtain a safe scheme.

Mirroring the previous case, we set a nonterminal /' which operands in the production
rule are the symbols of non-zero arity. Formally, the set of variables is exactly X<o;
they have all type order 1 and same arity (for a symbol a € 3, we have the variable
a: 0" — o). The set of terminals is ¥y U {f} where f: 0 — 0 — o.

Let a € 3, such that 7(a(z)) = 6 € TW(X U z). Suppose a is fixed as the i-operand
of F. We define the mapping p: TW(Z U Z) — AT(Xq U {f} UZ2) as a “converse of £”. It
uses a set of semiterminals which types are as follows; the types of app. subterms of the

1-operand of F' are always 0" — o.

(concatenation) Cc" : (0" —0)— (0" —>0)—0"—>o0
(projection) P : o"—o
(symbol of non-zero arity) G% : (0”® — o) — (0" = 0)’® = o" = o
(symbol of arity 0) Gy : o"—o

o if 0 =6, -0y, then pu(0) = C™(u(6y), 1(h2)) where
C(‘ﬁh $2; 2) = f(gOlf, (1022)

e if § = z;, then pu(0) = P with P*(2) = z;.

o if =0(6,...,0;) with b € Xy, then u(0) = Gy (b, u(01), ..., 1(0,p))) with
GQ(Q/J; P1y-- -y Sop(b)a 2) = 2/}(90127 ct @p(b)z)

o if § = b € 5, then u(0) = G with G(2) = b.

Let 6o be the term word such that 7(A) = A - 60x. Let t, be the normal form of
pw(Oa)(as ... ayp)), i.e. aterm on ¥ U {f} such that {(t;) = 0. The rule for F is

Fay...appy = f(t-, F(u(m(ar)), ..., (7(anr))))).

In the same way, the starting nonterminal S has the rule
o If 0(A) = ¢, then
S = F(ulo(ar)), ..., plolayr))))
e otherwise,
S = [(to, F(p(o(ar)), .., (o (apr))))
where ¢, is a term on ¥y U {f} such that Fr(t,) = o(A).

Let & be this defined scheme. Note that & is not presented in a cleaned version :

most semiterminals have useless arguments. This is not a requirement in this direction.

116 CHAPTER 5. SCHEMES AND MORPHIC WORDS

The important property is that it is safe : indeed, app. subterms of type o — o are all
in wgr below F', and their sons have the same type.

It is easy to see that for a € X<, if 1(#)(2) is the normal form of u(8)(z),

&(
E(A

Q
—~
Q
—~
N
N~—
~—
—~
I
S~—
|
Q
Q
I\

By applying the method of part (a), we check that the frontier of the limit tree of & is
indeed o(7(A)). O

The above properties may sound natural, but they do not work out-of-the-box on
further levels. First, at order 3 there are variables of order 2, so head nonterminal app.
subterms are not necessarily terms. Consequently, a terminal term can contain nontermi-
nals : the notion of co-nonterminal has to be redefined. Moreover, many proofs rely on
the fact that the level of an app. subterm has order at most 1.

An immediate question about this result is whether we can transform an arbitrary
scheme of w-frontier w into a comb which frontier is w. Obviously the properties of the
hierarchy developped in the previous sections are not available, so the question is open.

This result yields immediate properties on 2-morphic words.
Corollary 5.3.9. Let w be a 2-morphic word on 3.
1. MTh(w) is decidable.
2. For any MSO-transduction T, if T (w) is an w-word, then it is a 2-morphic word.

3. Let a € ¥y and let a,, the index of the i™ occurence of a. There is a C > 0 such
that for sufficiently large n, a, — an_1 = (9(220'”)'

Property 3 is the expected extension of [CT02, Prop. 14]; compare to the lower bound
in Example [5.3.2]

Proof. Properties 1 and 2 are straightforward properties of graphs in the hierarchy. Prop-
erty 3 is a corollary of Theorem : there is a monadic interpretation transforming the
w-word into a comb where the infinite branch is composed of all vertices marked by a in

order. The i-subtree is the rest of intermediate vertices. O

Remark 5.3.10. The subword complexity of an w-word w is the function which maps
n on the number of factors of length n in w. For morphic words, this complexity is in
O(n?); see [AS03, Section 10.4] for more details. For 2-morphic words the complexity is
maximal because of the Champernowne word. This was also noted for k-lexicographic
words [Bar0§]. []

Remark 5.3.11. The morphism 7 can be seen itself as a 1-order scheme. In this sense,

it reminds of the transformation in [KNUOI] using the operator @. The similarities end

5.3. SECOND ORDER 117

here; whereas the role of @ was to study structural properties of the limit tree, the role of
7 is simply to reproduce the mechanism of F' and depends on the fact that there is only

one recursive nonterminal. |

5.3.3 Liouville word

The Liouville word or constant is another example of infinite words more complex than

morphic words. The constant is

> 107* = 0.1100010000000000000000010.. ..

k>0

We only consider digits after the dot. It is the frontier of the limit tree of the safe order-2
scheme ({f,0,1},{S, F,G, H}, S, E) where E is described in Figure [5.§

The associated 2-morphic word is defined by the the following morphisms on ¥ =
{0,1,A,g,n} where g,n have arity 1. As before, 0 and 1 are dumb letters : 7(1) =
(1) =1and 7(0) = 0(0) = 0.

T(A) = An(g(0))g(1) o(A) = 11
7(g(2)) = n(g(0))g(0)g(2) o(g(z)) = 0z
T(n(z)) = =zn(z) o(n(z)) = =

Informally, the goal is to obtain at step k£ an additionnal number of letters equal to
(k+2)!—(k+ 1) = (k+1)(k+ 1)!. The symbols n, g are such that

cor®n(2)| = k
cor®(g(2)] = (k+1)!

So oo 7™ (n(g(2))g(z)) is a word of length k.(k + 1)! + (k +1)! = (k +1)(k + 1)!. This is

clearer when considering one iteration.

T3A) = A n(g(0) ¢(1) 7(9(0)) n(7(9(0))) n(g(0)) ¢(0) ¢(1)
A n(g(0)) g(1) n(g(0))g(0)g(0) n(n(g(0))g(0)g(0)) n(g(0)) ¢(0) g(1)
o(r@(A) = 11 00 01 00 00 00 00 00 00 00 00 o1

118 CHAPTER 5. SCHEMES AND MORPHIC WORDS

S = f = f
A /\ f/ AN
/ N\ /N / \
1 F (0 ¥ H G
/ N\ | /N
H 9 ¢ 1H ¢4
/ N\ | /N
0 0 ¥ STS‘O
00
G = f H = f
7\ /N /1IN / N\
Y x Y x vy Y ®
! :
F : (0—~0)—(0—0)—o0 f : o—s0—=o0
G : (0—>0)—0—0 g,0,0 1 0o—o0
H : (0—~0)—>0—0—0 x,y,0,1 o
s =’
s /f\
1 f
/ N\
L f
/ \
f F
/ N\ /TN
| /f\ /H\ C\;
fo g H g 9
/ \ I/ N\ |
0 1 H H

[\
0 90900900

Figure 5.8: Order-2 safe scheme which frontier is the Liouville word.

List of notations

P(S)

-

=

& DA =
|Z—ﬂ—\/@\|—|[—|§5 P

MTh(G)

0,1,....k

w,¢,n
L*

A

wttn

€o

el

PRELIMINARIES

powerset of S............. ...,
closed interval bounded by a and b
set of finite words on X
lexicographic order
(strict) prefix relation
“not prefix” symmetric relation
reverse arc label
logical structure..............

satisfaction of a formula

isomorphism relation

monadic theory of the structure G

ORDERS

finite order types.............
order types of N, Z, Q

reverse ordering of L

suborder relation.............
exponential tower of w’s of height n

smallest ordinal such that ¢y = w®°

alternative version of the Hausdorff rank....................

TREES

frontier.................
Kleene-Brouwer ordering

isomorphism up to subtree permutation

Cantor-Bendixson derivative

alternative version of the Cantor-Bendixson rank

tree of the function f
COVERING GRAPHS

element of the fundamental sequence of av...................

covering graph relation
covering graph of av...........

degree word

120 CHAPTER 5. SCHEMES AND MORPHIC WORDS

RECURSION SCHEMES

O DaASE LY Pe. o

O type OTder. ...

AT(X), T(X) set of (applicative) terms over,

P ALY 93]

Fxy...xzyp) = wp productionrule.......................oo
:6> rewriting relation......... .. .

t+ term approximation 03]

[t] limit tree of the term ¢o.oeeeee . 94

Index

w-tail, deterministic,
deterministic tree,

ancestor, [22]

approximation, [93] finite presentation,

arc, 27] FO,

arithmetics, frontier,

on ordinals, w-frontier,
arity, 20} 03] full tree,

fundamental sequence,
binary tree,

branch, graph,

Biichi automaton, Graph,,,
Cantor normal form, Hausdorff rank,
Champernowne word, homogeneous,

closed formula,

CNF, see Cantor normal form infinite nonterminal,

coding, interval,
cofinality, inverse rational mapping,
color set, Knuth notation,
colored

deterministic tree, label,

graph, length,

ordering, linear ordering,
comb, Liouville word,

#-comb,

4_comb-graph, morphic word,
complete tree, 2-morphic word,
configuration graph of a n-hopda, morphism, [07]
crossing-free, MSO,

MSO-coloring,

degree, MSO-compatible, [33]
delabeled graph, MSO-interpretation,
dense, MSO-transduction,
descendant, MSO-transduction,

121

122 INDEX

nonterminal, tree presentation, 22]
oo-nonterminal, Tree,, 38

tree-walking automaton, see TWA [67]
treegraph,
I-treegraph, [40]
TWA, [B7]
typed alphabet,

operand,
order (schemes),

order type,
ordinal,

path, types, [92]
owerset, .
Ereﬁx |T_9| unfolding,

unlabeled graph,

refix tree, 22
prenx useful nonterminal,

production,

productive nonterminal, well-ordered trees,
pushdown hierarchy, well-ordering,
ord
RCNF, see Cantor normal form W
. . w-word,
recursion, see recursion .
finite,

recursion scheme,
reverse ordering,

rewriting relation,

root, [22]

safety, [04]
scattered,
semiterminal,
signature, [20]
simple,
structure, 20|
subordering,
subterm,
applicative,
head,

successor, [24]

support, [21]

tame, [7§]
term, 03]
applicative, 93]
grammar, see recursion scheme
tree, [06]
word,
terminal,

Bibliography

[AdMO05] Klaus Aehlig, Jolie de Miranda, and Luke Ong. Safety is not a restriction at

[AS03]

[AUTL]

[B4r0g]

[BCO1]

[BCO2]

[BCO6a)

[BCOGD]

[BCO7]

[BCOS]

[BC10]

level 2 for string languages. In V. Sassone, editor, Proc. of FoSSaCS, volume
3441 of Lecture Notes in Computer Science, pages 490-504. Springer, 2005.

Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences. Cambridge
University Press, 2003.

Alfred Aho and Jeffrey Ullman. Translations on a context-free grammar.
Information and Control, 19(5):439-475, 1971.

Vince Barany. A hierarchy of automatic w-words having a decidable MSO
theory. Informatique Théorique et Applications, 42(3):417-450, 2008.

Stephen Bloom and Christian Choffrut. Long words: the theory of concate-
nation and omega-power. Theoretical Computer Science, 259(1-2):533-548,
2001.

Véronique Bruyere and Olivier Carton. Hierarchy among automata on linear
orderings. In Proc. of IFIP, pages 107-118. Kluwer, B.V., 2002.

Alexis Bes and Olivier Carton. A Kleene theorem for languages of words in-
dexed by linear orderings. International Journal of Foundations of Computer
Science, 17(3):519-542, 2006.

Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata cannot
be determinized. Theoretical Computer Science, 350(2-3):164-173, 2006.

Véronique Bruyere and Olivier Carton. Automata on linear orderings. Jour-
nal of Computer and System Sciences, 73(1):1-24, 2007.

Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not
recognize all regular languages. SIAM Journal of Computing, 38(2):658-701,
2008.

Laurent Braud and Arnaud Carayol. Linear orders in the pushdown hierarchy.
In Proc. of ICALP, 2010.

123

124

[BCLO7]

[BEOY]

[BE10]

[Blu0g]

[BNR*10]

[Boj0s]

[Bra09]

[Biic62]

[Biic73]

[Bii65]

[Cac06]

[Can97]

BIBLIOGRAPHY

Achim Blumensath, Thomas Colcombet, and Christof Loding. Logical theo-
ries and compatible operations. Logics and Games, 2:75-109, 2007.

Stephen Bloom and Zoltan Esik. Scattered algebraic linear orderings. In
Proc. of FICS, pages 25-30, 2009.

Stephen Bloom and Zoltan Esik. Algebraic ordinals. Fundamenta Informat-
icae, 99(4):383-407, 2010.

Achim Blumensath. On the structure of graphs in the Caucal hierarchy.
Theoretical Computer Science, 400:19-45, 2008.

Mikolaj Bojanczyk, Damian Niwinski, Alexander Rabinovich, Adam
Radziwonczyk-Syta, and Michal Skrzypczak. On the Borel complexity of
MSO definable sets of branches. Fundamenta Informaticae, 98(4):337-349,
2010.

Mikolaj Bojanczyk. Tree-walking automata. In C. Martin-Vide, F. Otto, and
H. Fernau, editors, Proc. of LATA, volume 5196 of Lecture Notes in Computer
Science, pages 1-2. Springer, 2008.

Laurent Braud. Order-2 morphic words and recursion schemes. In prepara-

tion.

Laurent Braud. Covering of ordinals. In Proc. of FSTTCS, pages 97-108,
2009.

Richard Biichi. On a decision method in the restricted second-order arith-
metic. Logic, Methodology and Philosophy of science : Proc. Intern. Congr.,
pages 1-11, 1962.

Richard Biichi. The monadic theory of all countable ordinals. Lecture Notes
i Mathematics, 328:1x-217, 1973.

Richard Biichi. Decision methods in the theory of ordinals. Bulletin of the
AMS, 71:767-770, 1965.

Thierry Cachat. Tree automata make ordinal theory easy. In S. Arun-Kumar
and N. Garg, editors, Proc. of FSTTCS, volume 4337 of Lecture Notes in
Computer Science, pages 285-296. Springer, 2006.

Georg Cantor. Beitriage zur begriindung der transfiniten mengenlehre. Math-
ematische Annalen, 46/49:481-512/207-246, 1895/1897. Two-parts article.
Translated in french by F. Marotte : Sur les fondements de la théorie des

ensembles tranfinis, 1989.

BIBLIOGRAPHY 125

[Car05]

[Car06]

[Cau92]

[Cau96]

[Cau02]

[Cau03]

[Cha33]

[Chu3g|

[CKO1]

[CKO02]

[CLOT]

[CouT8]

[Cou90]

[Cou94]

Arnaud Carayol. Regular sets of higher-order pushdown stacks. In Proc. of
MFCS, volume 3618 of Lecture Notes in Computer Science, pages 168-179,
2005.

Arnaud Carayol. Automates infinis, logiques et langages. PhD thesis, Uni-
versité de Rennes 1, 2006.

Didier Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61-86, 1992.

Didier Caucal. On infinite transition graphs having a decidable monadic the-
ory. In Proc. of ICALP, volume 1099 of Lecture Notes in Computer Science,
pages 194-205, 1996.

Didier Caucal. On infinite terms having a decidable monadic theory. In Proc.
of MFCS, volume 2420 of Lecture Notes in Computer Science, pages 165—-176.
Springer, 2002.

Didier Caucal. On infinite transition graphs having a decidable monadic
theory. Theoretical Computer Science, 290(1):79-115, 2003.

David Champernowne. The construction of decimals normal in the scale of
ten. Journal of London Mathematical Society, 8:254-260, 1933.

Alonzo Church. The constructive second number class. Bulletin of the AMS,
44:224-232, 1938.

Didier Caucal and Teodor Knapik. An internal presentation of regular graphs
by prefix-recognizable graphs. Theoretical Computer Science, 34(4):299-336,
2001.

Bruno Courcelle and Teodor Knapik. The evaluation of first-order substi-
tution is monadic second-order compatible. Theoretical Computer Science,
281(1-2):177-206, 2002.

Thomas Colcombet and Christof Loding. Transforming structures by set

interpretations. Logical Methods in Computer Science, 3-2(4), 2007.

Bruno Courcelle. Frontiers of infinite trees. Informatique Théorique et Ap-
plications, 12(4), 1978.

Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In
Handbook of TCS, Volume B: Formal Models and Semantics, pages 193—-242.
MIT Press, 1990.

Bruno Courcelle. Monadic second-order definable graph transductions: A
survey. Theoretical Computer Science, 126(1):53-75, 1994.

126

[Coull]

[CT02]

[CW9S]

[CW03]

[Dam77]

[Dam82]

[Del04]

[Fra05]

[FS06]

[Gai82)]

[Gur85]

[Hau08]

[Hei80]

BIBLIOGRAPHY

Bruno Courcelle. Graph structure and monadic second-order logic. Cambridge

University Press, 2011. to appear.

Olivier Carton and Wolfgang Thomas. The monadic theory of morphic infi-
nite words and generalizations. Information and Computation, 176(1):51-65,
2002.

Bruno Courcelle and Igor Walukiewicz. Monadic second-order logic, graph
coverings and unfoldings of transition systems. Ann. Pure Appl. Logic,
92(1):35-62, 1998.

Arnaud Carayol and Stefan Wohrle. The Caucal hierarchy of infinite graphs
in terms of logic and higher-order pushdown automata. In Proc. of FSTTCS,
volume 2914 of Lecture Notes in Computer Science, pages 112-123. Springer,
2003.

Werner Damm. Languages defined by higher type program schemes. In
A. Salomaa and M. Steinby, editors, Proc. of ICALP, volume 52 of Lecture
Notes in Computer Science, pages 164—179. Springer, 1977.

Werner Damm. The I0- and Ol-hierarchies. Theoretical Computer Science,
20:95-207, 1982.

Christian Delhommé. Automaticité des ordinaux et des graphes homogenes.
C. R. Acad. Sci. Paris, Ser. 1 339:5-10, 2004.

Séverine Fratani. Automates a piles de piles... de piles. PhD thesis, Université
Bordeaux I, 2005.

Séverine Fratani and Géraud Sénizergues. Iterated pushdown automata and
sequences of rational numbers. Annals of Pure and Applied Logic, 141(3):363—
411, 2006.

Haim Gaifman. On local and non-local properties. In J. Stern, editor, Pro-
ceedings of the Herbrand Symposium, volume 107 of Studies in Logic and the
Foundations of Mathematics, pages 105 — 135. Elsevier, 1982.

Yuri Gurevich. Monadic second-order theories. Model-Theoretic Logic, pages
479-506, 1985.

Felix Hausdorff. Grundziige einer theorie der geordnete mengen. Math. Ann.,
65:435-505, 1908.

Stephan Heilbrunner. An algorithm for the solution of fixed-point equations
for infinite words. Informatique Théorique et Applications, 14(2):131-141,
1980.

BIBLIOGRAPHY 127

[Tan60]

[Kec94]

[Kle38]

[Knu76]

[KNUO1]

[KNUO2]

[KNUWOS5]

[KRS05]

[Lav05]

1GO6]

[Mar07]

[Mas74]

[MS85]

[Niv72]

INP82]

Iu Tanov. The logical schemes of algorithms. English translation in Problems
of Cybernetics, 1:82-140, 1960.

Alexander S. Kechris. Classical Descriptive Set Theory. Springer-Verlag,
1994.

Stephen Kleene. On notation for ordinal numbers. Journal of Symbolic Logic,
3(4):150-155, 1938.

Donald Knuth. Coping with finiteness. Science, 194(4271):1235-1242, 1976.

Teodor Knapik, Damian Niwinski, and Pawet Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In Proc. of TLCA, pages 253-267, 2001.

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order push-
down trees are easy. In Proc. of FoSSaCS, Lecture Notes in Computer Science,
pages 205222, 2002.

Teodor Knapik, Damian Niwinski, Pawel Urzyczyn, and Igor Walukiewicz.
Unsafe grammars and panic automata. In L. Caires, G. Italiano, L.. Monteiro,
C. Palamidessi, and M. Yung, editors, Proc. of ICALP, volume 3580 of Lecture
Notes in Computer Science, pages 1450-1461. Springer, 2005.

Bakhadyr Khoussainov, Sacha Rubin, and Frank Stephan. Automatic linear
orders and trees. ACM Trans. Comput. Log., 6(4):675-700, 2005.

Thomas Lavergne. Prédicats algébriques d’entiers. Master thesis, Université
de Rennes, 2005.

Marion le Gonidec. Sur la complexité des mots ¢*°-automatiques. PhD thesis,
Université de la Méditerranée, 2006.

Nathalie Marin. Suites de mots et automates. Master thesis, Université de
Bordeaux 1, 2007.

A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl., 15:1170-1174, 1974.

David Muller and Paul Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37(1):51-75, 1985.

Maurice Nivat. Langages algébriques sur le magma libre et sémantique des
schémas de programme. In Proc. of ICALP, pages 293-308, 1972.

Maurice Nivat and Dominique Perrin. Ensembles reconnaissables de mots
biinfinis. In Proc. of STOC, pages 47-59. ACM, 1982.

128

[Ong06]

[Par10]

[Pil04]

[Rab69]

[Rog87]

[Roi90]

[Ros82]

[RSO8]

[See91]

[Sem84]

[SheT75]

[ThoS6]

[Tho97a)]

[Tho97b]

[Tho08]

BIBLIOGRAPHY

Luke Ong. On model-checking trees generated by higher-order recursion
schemes. In Proc. of LICS, pages 81-90. IEEE Computer Society, 2006.

Pawetl Parys. Collapse operation increases expressive power of deterministic
higher order pushdown automata. Accepted at ICALP, 2010.

Julien Pillot. Produits de graphes infinis et logique monadique. Master’s
thesis, IRISA — ENST Bretagne, 2004.

Michael Rabin. Decidability of second-order theories and automata on infinite
trees. Transaction of the AMS, 141:1-35, 1969.

Hartley Rogers. Theory of recursive functions and effective computability.

MIT Press, Cambridge, MA, USA, 1987.

Judith Roitman. Introduction to Modern Set Theory. John Wiley and Sons,
1990.

Joseph G. Rosenstein. Linear orderings. Academic Press Inc., 1982.

Alexander Rabinovich and Amit Shomrat. Selection in the monadic theory
of a countable ordinal. Journal of Symbolic Logics, 73(3):783-816, 2008.

Detlef Seese. The structure of the models of decidable monadic theories of
graphs. Annals of pure and applied logic, 53(2):169-195, 1991.

Alexei Semenov. Decidability of monadic theories. In M. Chytil and
V. Koubek, editors, Proc. of MFCS, volume 176 of Lecture Notes in Computer
Science, pages 162—175. Springer, 1984.

Saharon Shelah. The monadic theory of order. Annals of Mathematics,
102(3):379-419, 1975.

Wolfgang Thomas. On frontiers of regular trees. Informatique Théorique et
Applications, 20(4):371-381, 1986.

Wolfgang Thomas. FEhrenfeucht games, the composition method, and the
monadic theory of ordinal words. In J. Mycielski, G. Rozenberg, and A. Sa-
lomaa, editors, Structures in Logic and Computer Science, volume 1261 of

Lecture Notes in Computer Science, pages 118-143. Springer, 1997.

Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Language Theory, volume III, pages 389-455. Springer-Verlag, 1997.

Wolfgang Thomas. Model transformations in decidability proofs for monadic
theories. In M. Kaminski and S. Martini, editors, Proc. of CSL, volume 5213
of Lecture Notes in Computer Science, pages 23-31. Springer, 2008.

BIBLIOGRAPHY 129

[Veb08] Oswald Veblen. Continuous increasing functions of finite and transfinite or-
dinals. Transactions of the American Mathematical Society, 9(3):280-292,
1908.

[Wal02] Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theo-

retical Computer Science, 275(1-2):311-346, 2002.

[Zie98] Wiestaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200:135-183,
1998.

	Introduction
	(en français)
	(in English)

	Preliminaries
	Notations and first structures
	Finite words
	Structures
	Graphs
	Deterministic trees

	Linear orderings
	Ordinals
	Scattered orderings and Hausdorff rank
	Orders in a deterministic tree

	Logic
	First-order logic
	Monadic second-order logic
	Decidability

	Graph transformations
	Graph interpretations
	Graph expansions

	The pushdown hierarchy
	Definition
	Some properties

	Linear order construction
	Ordinals in the pushdown hierarchy
	Powers of Z
	n-regular presentation
	Prefix-recognizable graphs
	Configuration graphs of n-hopdas
	Encoding ordinals

	Covering graphs
	Fundamental sequence
	Covering graphs
	Other properties of covering graphs
	Strictness of covering graphs in the hierarchy
	The case of Ge0

	The structure of tree frontiers
	Tree-walking automaton
	From graphs to frontiers
	Ordinals
	Scattered linear orders
	Trees with scattered frontiers
	Permutation of subtrees
	Cantor-Bendixson rank of deterministic trees
	Hausdorff rank of scattered orders in Graphn

	Finite combs

	Schemes and morphic words
	Recursion schemes
	Definition
	Schemes in the pushdown hierarchy

	Morphic words
	Definition and properties
	Construction in the pushdown hierarchy
	Morphic words in Graph 2, direct proof
	Morphic words in Graph 2, by recursion schemes

	Second order
	Second-order morphic words
	Second-order scheme omega-frontiers
	Liouville word

	List of notations
	Index
	Bibliography

