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Méthodes numériques pour des problèmes dynamiques de contact et de ssuration Résumé : On s'intéresse à la résolution numérique de problèmes de contact et de ssuration en dynamique. Le problème de contact envisagé est le problème de Signorini avec ou sans frottement de Coulomb. Quant au problème de ssuration, il s'agit d'un modèle de zone cohésive avec trajet de ssuration pré-déni. Ces problèmes se caractérisent par la présence d'une condition aux limites non-régulière et se formulent comme des inéquations variationnelles d'évolution ou des inclusions diérentielles. Pour les résoudre numériquement, nous combinons, comme il est courant en dynamique des solides, une discrétisation en espace par éléments nis et des schémas d'intégration en temps (de types diérences nies). Pour le problème de contact, nous commençons par comparer les principales méthodes proposées dans la littérature. Nous étudions ensuite plus particulièrement la méthode dite de masse modiée récemment introduite par H. Khenous, P. Laborde et Y. Renard. Nous en proposons une variante semi-explicite. Par ailleurs, nous prouvons un résultat de convergence des solutions semi-discrètes en espace vers une solution continue dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique. Nous analysons également les formulations semi-discrètes en espace et totalement discrètes dans le cas d'un problème de Signorini avec frottement de Coulomb. Pour le problème de ssuration dynamique, la non-régularité de la condition aux limites rend impossible ou peu robuste l'utilisation de schémas totalement explicites. Nous proposons donc des schémas où cette condition aux limites est traitée de façon implicite. Enn, nous présentons et analysons des méthodes de lagrangien augmenté pour la résolution numérique du problème de ssuration en statique.

Mots-clés : dynamique des solides,

En tant qu'exploitant d'un parc de production électrique, EDF réalise de nombreuses études mécaniques, notamment pour garantir la sûreté et maîtriser la durée de vie de ses installations. Ces études ont naturellement recours à la simulation numérique, ce qui conduit EDF à mener une importante activité de recherche dans le domaine de la mécanique numérique. C'est dans ce contexte industriel que s'inscrit cette thèse.

On s'intéresse à la résolution numérique de deux problèmes. Le premier décrit les déformations d'un solide pouvant entrer en contact avec un obstacle rigide. Le second décrit la ssuration d'un solide le long d'une interface prédénie. Ces deux problèmes sont envisagés dans le cadre dynamique, c'est-à-dire que les eets d'inertie ne sont pas négligés. Mathématiquement, le phénomène de contact est représenté par une condition aux limites non-régulière sur la frontière du solide. Le phénomène de ssuration introduit une condition aux limites du même genre sur l'interface de ssuration. C'est cette proximité mathématique qui justie l'étude conjointe de ces deux problèmes. Puisque les modèles de contact et de ssuration que nous étudions sont représentés par des conditions aux limites, on peut les combiner avec diérentes lois de comportement du solide. Par souci de simplicité théorique, mais aussi parce que ces lois sont souvent utilisées en pratique, nous considérons des solides élastiques linéaires ou viscoélastiques linéaires. L'approche la plus courante pour résoudre un problème de dynamique des solides consiste à combiner une discrétisation spatiale par éléments nis et un schéma d'intégration en temps (de types diérences nies). L'application directe de cette approche au problème de contact donne de mauvais résultats : oscillations parasites, mauvais comportement énergétique. Diérentes méthodes numériques pour le contact en dynamique ont donc été proposées dans la littérature depuis une vingtaine d'années. Après avoir comparé les principales méthodes (Chapitre 2), nous étudions plus particulièrement la méthode dite de masse modiée récemment introduite par H. Khenous, P. Laborde et Y. Renard [START_REF] Khenous | Comparison of two approaches for the discretization of elastodynamic contact problems[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. Nous en proposons une variante semi-explicite (Section 2.7). Nous prouvons un résultat de convergence des solutions semi-discrétisées en espace vers une solution continue dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique (Chapitre 3). Nous analysons également les problèmes semi-discrétisés en espace et totalement discrétisés dans le cas d'un problème de Signorini avec frottement de Coulomb (Chapitre 4). Pour le problème de ssuration dynamique, qui est un phénomène rapide, il semble préférable d'utiliser des schémas en temps explicites, moins coûteux. Malheureusement, la non-régularité de la condition aux limites rend impossible ou peu robuste l'utilisation de schémas totalement explicites. Nous proposons donc des schémas où cette condition aux limites est traitée de façon implicite (Chapitre 5). Le Chapitre 6 complète les travaux sur la ssuration, hors du cadre dynamique. Nous y présentons et analysons des méthodes de Lagrangien augmenté pour la résolution numérique du problème de ssuration en statique.

Nous commençons cette introduction avec quelques exemples de problèmes industriels impliquant des phénomènes de ssuration et de contact (Section 1.1). Nous donnons ensuite une formulation mécanique détaillée des modèles étudiés dans cette thèse (Section 1.2). Nous précisons notamment en quoi les conditions aux limites introduites par ces modèles ne sont pas régulières . La Section 1.3 introduit quelques outils mathématiques adaptés à l'étude de ces modèles, à savoir les inéquations variationnelles (d'évolution) et les inclusions (diérentielles). Dans la Section 1.4, nous abordons la résolution numérique. Après avoir rappelé les méthodes numériques usuelles pour la dynamique des solides linéaires, nous mettons en évidence les difcultés que soulèvent la présence de contact ou d'une interface de ssuration. Un résumé des diérents travaux eectués au cours de cette thèse clôt cette introduction (Section 1.5).

Applications industrielles

Pour commencer, nous présentons deux exemples de problèmes industriels rencontrés par les ingénieurs d'EDF. Le premier concerne l'intégrité des cuves des réacteurs nucléaires et fait intervenir des phénomènes de ssuration dynamique. Le second concerne l'insertion des barres de commande dans un réacteur nucléaire et fait intervenir des phénomènes dynamiques de contact et de frottement.

Cuves des réacteurs nucléaires

EDF exploite actuellement 58 réacteurs nucléaires à eau pressurisée (REP) et souhaite prolonger leur durée d'exploitation. Cette démarche repose sur une meilleure analyse de la durée de vie des composants sensibles, notamment les cuves des réacteurs. La cuve d'un REP est une enveloppe étanche en acier d'environ 12m de hauteur et 20cm d'épaisseur. Elle contient le c÷ur du réacteur, les structures de supportage du c÷ur et les structures de guidage des barres de commande (voir Figure 1.1 à gauche). La cuve n'est pas remplaçable. En fonctionnement, elle est remplie d'eau pressurisée à 300°C. En cas d'accident de perte de refroidissement primaire, il est prévu d'y injecter une grande quantité d'eau froide. Il s'ensuit un choc thermomécanique dans les parois de la cuve, ce qui pourrait provoquer l'amorçage et la propagation dynamique d'une ssure. Pour garantir l'intégrité de la cuve, il est donc important de pouvoir simuler un tel phénomène.

Barres de commande dans un réacteur nucléaire

Les grappes de commandes sont constituées d'une vingtaine de crayons absorbeurs de neutrons. Elles peuvent s'insérer dans les assemblages combustible, qui disposent à cet eet d'emplacements creux occupés par des tubes guides (voir Figure 1.1 à droite). Les tubes guides font environ 4m. On utilise ces grappes de commande pour régler la puissance du réacteur (en les insérant plus ou moins profondément) ou pour arrêter en urgence le réacteur (en les lâchant complètement). Il est essentiel que l'insertion ou la chute des grappes de commande se fasse à la vitesse prévue. En particulier, la chute des barres de commande doit pouvoir se faire en moins de 2s. Les tubes guides n'étant pas parfaitement droits, l'insertion ou la chute des grappes de commande peuvent être ralenties par des phénomènes dynamiques de contact et de frottement. La simulation numérique de ces phénomènes permet de mieux comprendre l'inuence de la déformation du tube guide.

Modèles mécaniques

Les problèmes étudiés dans cette thèse combinent deux ingrédients : un modèle de dynamique des solides et une condition aux limites qui décrit le phénomène de contact ou de ssuration. Dans cette section, nous commençons par présenter les modèles de dynamique des solides utilisés, à savoir le modèle élastique linéaire et le modèle viscoélastique linéaire de type Kelvin-Voigt. Puis nous présentons les modèles de contact unilatéral et de frottement de Coulomb, ainsi que les modèles de zone cohésive. Nous précisons en quoi les conditions aux limites introduites par ces modèles ne sont pas régulières .

Elastodynamique et viscoélastodynamique linéaire

On se place dans le cadre des petits déplacements. On considère un solide occupant le domaine Ω ⊂ R d (d = 2 ou d = 3) durant un intervalle de temps [0, T ] (voir Figure 1.2). Le principe fondamental de la dynamique s'écrit :

ρü -div σ = f dans Ω × (0, T ), (1.1) 
où ρ désigne la densité de masse, u le déplacement, σ le champ de contrainte, f les forces volumiques extérieures et les points les dérivées temporelles. La frontière ∂Ω est divisée en deux parties disjointes Γ D et Γ N , où sont imposées, respectivement, des conditions de Dirichlet et de Neumann :

u = u D sur Γ D × (0, T ), σ • ν = f N sur Γ N × (0, T ), (1.2) 
où ν désigne la normale extérieure à ∂Ω, alors que u D et f N sont des données. On prescrit les conditions initiales suivantes :

u(0) = u 0 , u(0) = v 0 sur Ω. (1.3) 
Le tenseur des déformations linéarisées s'écrit :

= 1 2
(∇u + T ∇u).

(1.4)

On suppose que le solide a un comportement viscoélastique linéaire de type Kelvin-Voigt si bien que le tenseur des contraintes est relié au tenseur des déformations par l'expression :

σ = A : + B : ˙ , (1.5) 
où A est le tenseur d'élasticité et B est le tenseur de viscosité. Si le tenseur de viscosité est nul, on parle de matériau purement élastique. On peut dénir l'énergie totale du solide à l'instant t comme la somme de l'énergie cinétique et de l'énergie élastique :

E(t) = 1 2 Ω ρ| u(t)| 2 + 1
2 Ω (t) : A : (t).

(1.6)

Modèles mécaniques

Un matériau purement élastique et un matériau viscoélastique ont des comportements assez diérents. Dans un matériau purement élastique, l'énergie se conserve (en l'absence de forces extérieures) et il peut y avoir des ondes de choc, c'est-à-dire des discontinuités de vitesse et de contrainte. Au contraire, dans un matériau viscoélastique, il y a une dissipation de l'énergie et les chocs sont lissés.

Dans un matériau isotrope, le tenseur d'élasticité peut s'exprimer à l'aide de deux paramètres seulement : le module de Young E et le coecient de Poisson ν P . On dénit alors des vitesses caractéristiques associées aux ondes de compression (dilatational waves) et de cisaillement (shear waves),

c d = E(1 -ν P ) ρ(1 + ν P )(1 -2ν P ) , c s = E 2ρ(1 + ν P )
.

(1.7)

À titre d'exemple, dans un acier (E = 200 GPa, ν = 0.3, ρ = 8000 kg•m -3 ) les ondes de compression se propagent à environ 5 800 m•s -1 et les ondes de cisaillement à 3 100 m•s -1 . Remarque 1.1. L'équation (1.1) est l'équation générale de la dynamique des solides. Quand on néglige le terme d'inertie ρü dans cette équation, on parle de problème statique (lorsque les données et les lois de comportement sont indépendantes du temps) ou quasi-statique (lorsque celles-ci dépendent du temps).

Ω f Γ D Γ N

Contact unilatéral

Il existe une grande variété de problèmes de contact sur le plan géométrique : contact entre plusieurs corps, contact en grandes déformations, auto-contact, etc... De même il existe diérentes lois de contact : contact unilatéral, contact compliant, contact avec frottement, érosion, etc... Pour une présentation des diérents problèmes de contact, on renvoie par exemple à Kikuchi & Oden [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF] ou à Wriggers [START_REF] Wriggers | Computational Contact Mechanics[END_REF]. Dans cette thèse, nous considérons le problème dit de Signorini, qui décrit le contact unilatéral d'un solide déformable et d'un obstacle rigide dans le cadre des petits déplacements. Dans certains cas, nous ajoutons également du frottement de Coulomb. Le contact unilatéral prescrit les conditions suivantes : le solide ne peut pénétrer l'obstacle ; quand le corps n'est pas en contact avec l'obstacle, il ne subit aucune pression de la part de l'obstacle ; quand le corps est en contact avec l'obstacle, il subit une pression de la part de l'obstacle qui tend à le comprimer. Puisque l'on est dans le cadre des petits déplacements, il est raisonnable de xer a priori en chaque point de la frontière la direction selon laquelle peut avoir lieu le contact avec l'obstacle (on choisit généralement la normale à la frontière du solide). L'écart à l'obstacle est alors le déplacement du solide dans cette direction moins la distance initiale à l'obstacle selon cette direction. Cette condition linéarisée de contact unilatéral est appelée condition de Signorini. Pour une discussion plus détaillée, nous renvoyons à [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]. Le frottement de Coulomb prescrit les conditions suivantes :

il n'y a pas de glissement du solide le long de l'obstacle tant que la contrainte tangentielle est strictement inférieure à un certain seuil ; quand la contrainte tangentielle atteint ce seuil, il y a glissement dans la direction opposée à cette contrainte ; ce seuil dépend de la pression de contact. Les conditions de contact unilatéral et de frottement de Coulomb sont illustrées sur la Figure 1.3. 

u ν ≤ g, σ ν (u) ≤ 0, σ ν (u)(u ν -g) = 0
sur Γ c × (0, T ), (1.8) La condition de contact unilatéral (1.8) n'est pas une condition aux limites classique comme une condition de Dirichlet ou de Neumann. Elle s'écrit comme une alternative. Sur la partie de la frontière où il y a contact, elle est équivalente à une condition de Dirichlet, tandis que sur la partie où il n'y a pas contact, elle est équivalente à une condition de Neumann. Bien entendu, on ne connaît pas à l'avance la partie de la frontière où il y a contact. Dans son article fondateur sur l'étude mathématique du contact unilatéral [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno[END_REF], G. Fichera parle d'ailleurs de ambigue condizioni al contorno . On peut également formaliser la condition de contact unilatéral à l'aide d'une fonction multivaluée, c'est-à-dire une fonction qui associe à une variable un ensemble de valeurs (zéro, une ou plusieurs). En eet, quand l'écart à l'obstacle est négatif, il n'y a aucune contrainte admissible ; quand l'écart est nul, toutes les contraintes négatives sont admissibles ; quand l'écart est positif, seule une contrainte nulle est admissible. La contrainte est donc reliée à l'écart à l'obstacle par une fonction multivaluée. De la même manière, les conditions de frottement de Coulomb (1.9)-(1.10) s'écrivent comme une alternative ou à l'aide d'une fonction multivaluée. Remarque 1.2. On parle de contact unilatéral par opposition au contact bilatéral. Deux corps en contact bilatéral ne peuvent se séparer, ils peuvent seulement glisser l'un contre l'autre.

|σ τ (u)| ≤ µ|σ ν (u)| sur Γ c × (0, T ), (1.9) 
Remarque 1.3. Dans le modèle de frottement de Coulomb, le seuil de glissement dépend de la pression de contact. Il existe un modèle de frottement plus simple dans lequel le seuil de frottement est xé à l'avance, c'est le modèle de Tresca.

Modèles de zone cohésive

Les mécanismes physiques mis en jeu dans les phénomènes de ssuration (voir un essai de ssuration à la Figure 1.5) varient selon le type de matériau et le type de sollicitation. Dans tous les cas, il s'agit d'un phénomène complexe. Par exemple, lors de la ssuration dynamique d'un acier, on observe en pointe de ssure des micro-ssures, des phénomènes de plasticité, de l'échauement. En général, les modèles ne décrivent pas à ce niveau de détails les processus qui conduisent à la création de la ssure. Le phénomène de ssuration est réduit à une loi ou à un critère assez simple et est caractérisé par un ou deux paramètres. Parmi les grands familles de modèles, citons : les modèles à critère de propagation (Lawn [90], Bui [START_REF] Bui | Mécanique de la rupture fragile[END_REF]) les modèles de zone cohésive (Elices et al. [START_REF] Elices | The cohesive zone model: advantages, limitations and challenges[END_REF]), les modèles de type endommagement volumique (Mazars [96]), et les modèles variationnels (Bourdin, Francfort & Marigo [START_REF] Bourdin | The variational approach to fracture[END_REF]). Ici, nous considérons un modèle de ssuration reposant sur deux hypothèses. 1. La ssure ne peut apparaître que le long d'une surface connue à l'avance (interface de ssuration). 2. le processus de séparation le long de l'interface obéit à un modèle de zone cohésive. Le fait de dénir à l'avance la surface où le matériau peut ssurer peut apparaître comme une restriction importante du modèle. Néanmoins, cette hypothèse est raisonnable pour de nombreuses applications (petite propagation de ssure, ssure à l'interface entre deux matériaux). De plus, les modèle de ssuration s'aranchissant de cette hypothèse ne sont pas encore, à notre avis, susamment robustes, notamment pour des applications industrielles. Les modèles de zone cohésive sont utilisés pour une large gamme de matériaux (béton, acier, etc...) et de types de ssuration (rupture fragile, rupture ductile, fatigue, rupture dynamique). Un des intérêts de ces modèles est qu'ils peuvent être facilement enrichis avec d'autres phénomènes physiques (corrosion, contact et frottement après décohésion). De plus, ces modèles se combinent plutôt bien avec des méthodes d'éléments nis. Pour toutes ces raisons, ces modèles sont largement utilisés dans les codes de calcul. Les modèles de zone cohésive relient les contraintes mécaniques à l'interface au saut de déplacement à l'interface. Typiquement, un modèle de zone cohésive prescrit les conditions suivantes : le saut de déplacement normal à l'interface est positif ou nul ; la séparation intervient seulement après qu'un seuil critique a été atteint ; quand la séparation se produit, il reste des forces cohésives qui décroissent avec l'ouverture et nissent par s'annuler. Ces conditions sont illustrées sur la Figure 1.6. Les phénomènes de ssuration sont généralement irréversibles ; une fois qu'un matériau est ssuré, il ne se recolle pas ! On peut introduire cette irréversibilité en faisant dépendre la loi cohésive de l'ouverture maximale passée. Dans le cas dynamique, les simulations numériques avec des modèles dépendant uniquement de l'ouverture donnent des vitesses de propagation de la ssure bien supérieures à celles observées dans les expériences. Pour mieux rendre compte des expériences, on peut faire dépendre la loi cohésive de la vitesse d'ouverture comme cela est proposé par Zhou, Molinari & Shioya [START_REF] Zhou | A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials[END_REF]. Dans le Chapitre 5, nous considérons un modèle de zone cohésive qui dépend de l'ouverture, de l'ouverture maximale passée et de la vitesse d'ouverture. Dans le Chapitre 6, nous considérons un modèle qui dépend seulement de l'ouverture. Formulons maintenant précisément le problème de ssuration. On considère un solide viscoélastique occupant le domaine Ω ⊂ R d durant un intervalle de temps [0, T ] (Figure 1.7). La frontière ∂Ω est divisée en deux parties disjointes Γ D et Γ N . Des conditions de Dirichlet et de Neumann sont imposées sur Γ D et Γ N . On considère aussi une interface de ssuration Γ , qui est une surface régulière de dimension d -1 incluse dans Ω. Sur Γ on impose un modèle de zone cohésive. On peut xer une orientation et dénir un côté positif et un côté négatif. La trace d'un champ de déplacement v sur le côté positif est notée v + , celle sur le côté négatif est notée v -. On note ν le vecteur normal à Γ pointant vers le côté positif. Le saut à l'interface est déni comme [[v]] := v +v -. Le problème de ssuration consiste à chercher un champ de déplacement u vériant (1.1)-(1.5) et (1.12) où R Γ est l'opérateur multivalué qui donne la force cohésive. 1 Introduction

σ -• ν = -σ + • ν =: λ, (1.11) λ ∈ R Γ ([[u]]),
Γ D Γ N Ω - + Γ ν

Cadre mathématique

Pour étudier mathématiquement les problèmes de contact et de ssuration décrits précédemment, on dispose essentiellement de deux outils : les inclusions et les inéquations variationnelles. L'objet de cette partie est d'introduire ces deux concepts et de donner quelques résultats de la littérature sur l'existence et l'unicité pour les problèmes de contact et de ssuration.

Contact unilatéral

Nous commençons par étudier le problème de Signorini en élastostatique. On dénit V := {v ∈ H 1 (Ω) d ; v = 0 sur Γ D } l'espace des déplacements admissibles, et K := {v ∈ V ; v n ≥ g}, le sous-ensemble des déplacements vériant la condition de non-interpénétration avec l'obstacle. L'espace V est un espace de Hilbert et l'ensemble K est convexe. On dénit la forme bilinéaire et la forme linéaire suivantes,

a : V × V (v, w) -→ Ω (v) : A : (w), l : V v -→ Ω f • v + Γ N f N • v.
À ces formes bilinéaire et linéaire, on associe, grâce au théorème de Riesz, l'opérateur

A : V → V et le vecteur L ∈ V tels que (Av, w) = a(v, w) ∀(v, w) ∈ V × V, (L, v) = l(v), ∀v ∈ V,
où (•, •) désigne le produit scalaire de V . Pour décrire le contact, on introduit la fonctionnelle

I K (v) = 0 si v ∈ K, +∞ si v ∈ K.
Cette fonctionnelle n'est pas diérentiable. Cependant, elle est convexe et on peut donc dénir son sous-gradient 1 ∂I K : K → P(V ) déni comme

∂I K (v) := {g ∈ V ; 0 ≥ (g, w -v) ∀w ∈ K} .
(1.14) Quand v appartient à l'intérieur de K, ∂I K (v) est réduit au singleton {0}. Quand v appartient à la frontière de K, ∂I K (v) est le cône normal extérieur à K. Quand v n'appartient pas à K, ∂I K (v) n'est pas déni. Notons que l'opérateur ∂I K est monotone 2 .

1. Soit V un espace de Hilbert muni du produit scalaire (•, •). Soit J : V → R ∪ {+∞} une fonction convexe et D(J) := {v ∈ V ; J(v) < +∞} son domaine. On dénit le sous-gradient de J comme l'application multivaluée ∂J : D(J) → P(V ) telle que

∀v ∈ D(J), ∂J(v) := {γ ∈ V ; J(w) -J(v) ≥ (γ, w -v), ∀w ∈ D(J)} , (1.13) 
où P(V ) désigne l'ensemble des parties de V . 2. Soit V un espace de Hilbert muni du produit scalaire (•, •). Un opérateur multivalué P : D(P ) → P(V ) (D(P ) désigne le domaine de P ) est dit monotone si pour tout x1, x2 ∈ D(V ), (y1 -y2, x1 -x2) ≥ 0, ∀y1 ∈ P (x1), ∀y2 ∈ P (x2).

Cadre mathématique

On peut formuler le problème de Signorini statique comme une inclusion ou une inéquation variationnelle.

Problème 1.1 (Inclusion). Chercher u ∈ K tel que

Au -L + ∂I K (u) 0.
(1.15) Le membre de gauche est à comprendre comme l'ensemble ∂I K (u) translaté par le vecteur Au-L.

Problème 1.2 (Inéquation variationnelle). Chercher

u ∈ K tel que a(u, v -u) ≥ l(v -u), ∀v ∈ K.
(1.16) Ces deux formulations sont équivalentes. De plus, une solution de ces problèmes vérie au sens faible le problème de Signorini [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]. On peut montrer que ces problèmes admettent une et une seule solution en utilisant le théorème de Stampacchia (voir Brézis [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF]), qui est l'analogue du théorème de Lax-Milgram pour les inéquations, ou la théorie des opérateurs monotones (voir Brézis [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]). Il existe une troisième façon équivalente d'écrire le problème de Signorini, à savoir sous la forme d'une minimisation.

Problème 1.3 (Minimisation). Chercher u tel que

u = arg min v∈V 1 2 a(v, v) -l(v) + I K (v), (1.17) 
ou, ce qui est équivalent,

u = arg min v∈K 1 2 a(v, v) -l(v).
(1.18)

L'inclusion (1.15) et l'inéquation variationnelle (1.16) sont en eet les conditions d'optimalité des problèmes de minimisation (1.18) et (1.17). Avec cette nouvelle formulation, on obtient une autre façon de montrer l'existence et l'unicité d'une solution. Il s'agit en eet de la minimisation d'une fonctionnelle strictement convexe sur un ensemble convexe (voir Brézis [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF] ou Ekeland & Temam [START_REF] Ekeland | Convex analysis and variational problems[END_REF]).

Les inclusions et les inéquations se généralisent aux problèmes en temps. On parle alors d'inclusions diérentielles et d'inéquations d'évolution. On peut mettre sous cette forme le problème de Signorini élastodynamique. [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF], asservissement thermique [START_REF] Duvaut | Inequalities in mechanics and physics[END_REF], problème de Stefan [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF], pricing d'options américaines [START_REF] Jaillet | Variational inequalities and the pricing of american options[END_REF], etc... De manière générale, les systèmes gouvernés par des lois qui changent quand un seuil est atteint ou dépassé peuvent s'écrire ainsi.

Problème 1.4. Chercher

u tel que u(t) ∈ K pour tout t ∈ [0, T ] et ρü(t) + Au(t) -L(t) + ∂I(u(t)) 0, p.p. sur (0, T ), (1.19) avec u(0) = u 0 , u(0) = v 0 . Problème 1.5. Chercher u tel que u(t) ∈ K pour tout t ∈ [0, T ] et ρü(t), v + a(u(t), v -u(t)) ≥ l(t, v -u(t)), ∀v ∈ K, p.p. sur (0, T ), (1.20) avec u(0) = u 0 , u(0) = v 0 .

Résolution numérique

Nous abordons maintenant la résolution numérique des modèles de contact et de zone cohésive. Nous commençons par rappeler les méthodes numériques usuelles pour la dynamique des solides linéaires. Pour une présentation plus complète, on renvoie à Hughes [START_REF] Hughes | The nite element method[END_REF]. Puis nous mettons en évidence les dicultés que soulèvent la présence de contact ou d'une interface de ssuration.

Elastodynamique linéaire

Pour résoudre les problèmes de dynamique linéaire, on combine généralement une discrétisation par éléments nis et un schéma d'intégration en temps. Par simplicité, nous restreignons la discussion au cas de l'élastodynamique. Commençons par discrétiser le problème en espace. On obtient le système d'équations diérentielles ordinaires : (1.21) où M est la matrice de masse, K la matrice de rigidité, et L(t) le vecteur des forces extérieures. Le système diérentiel (1.21) est un système linéaire du second ordre. On peut le résoudre par des méthodes de diérences nies qu'on appelle schémas d'intégration en temps. Pour ce faire, l'intervalle de temps est subdivisé en pas de temps de longueur ∆t, pris constant pour simplier. On pose t n := n∆t. On note u n , un , ün , les approximations respectives de u(t n ), u(t n ), ü(t n ). Il existe de nombreuses méthodes pour résoudre les équations diérentielles. En élastodynamique, on utilise le plus souvent des méthodes linéaires à un pas. À chaque pas de temps, il faut donc trouver u n+1 , un+1 et ün+1 tels que

M ü(t) + Ku(t) = L(t), ∀t ∈ ]0, T [,
M ün+1 + Ku n+1 = L(t n+1 ),
(1.22)

u n+1 = αü n+1 + Ψ α (u n , un , ün ), (1.23) un+1 = β ün+1 + Ψ β ( un , ün ).
(1.24) Quand α = β = 0, on dit que le schéma est explicite. Autrement, on parle de schéma implicite. Dans un schéma implicite, à chaque pas de temps on doit résoudre un système linéaire. Dans un schéma explicite, si la matrice de masse standard est remplacée par une approximation diagonale (matrice condensée), le coût du système linéaire à résoudre devient négligeable. Un schéma explicite est donc beaucoup moins coûteux. On dit qu'un schéma est inconditionnellement stable s'il est stable pour n'importe quel pas de temps, aussi grand soit-il. Il n'existe pas de schéma linéaire explicite et inconditionnellement stable. Dans le cas de l'élastodynamique linéaire, la condition de stabilité des schémas explicites est de la forme ∆t ≤ Cc d ∆x, où ∆x est le diamètre du plus petit élément du maillage, c d une vitesse caractéristique (ici la vitesse des ondes de compression) et C est une constante numérique. Cette condition est appelée condition de Courant-Friedrichs-Lewy (condition CFL). Ainsi, les schémas explicites sont plutôt adaptés aux problèmes où le phénomène d'intérêt est rapide (et où le maillage ne contient pas d'éléments trop petits). Pour une analyse plus complète des schémas en temps pour l'élastodynamique (stabilité, ordre de convergence), on renvoie, entre autres, à Raviart & Thomas [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF].

L'élastodynamique décrit un phénomène vibratoire. Il est donc parfois pratique d'adopter un point de vue spectral. On introduit alors les modes propres et les fréquences propres associés à l'opérateur de l'élastodynamique (ou à sa discrétisation en espace). Les modes propres associés aux hautes fréquences du problème continu sont très mal approchés par le problème discrétisé en espace. Avec un point de vue spectral, on peut caractériser plus nement l'erreur commise par un schéma en temps [70, 9.1.3]. On dit qu'un schéma est dispersif quand il modie les fréquences propres par rapport à celles du problème semi-discrétisé en espace. On dit qu'il est dissipatif quand il introduit un amortissement articiel. Puisque les hautes fréquences sont mal représentées dans le problème discrétisé en espace, il est parfois intéressant d'avoir des schémas dissipatifs dans les hautes fréquences.

Le problème (1.21) n'est pas un système diérentiel quelconque dans la mesure où il jouit de plusieurs propriétés remarquables. En l'absence de force extérieure et de conditions de Dirichlet, il conserve une énergie, la quantité de mouvement, le moment angulaire ; de plus, son ot est symplectique. Il est souvent préférable de choisir des schémas qui possèdent de telles propriétés.

Cela assure notamment un meilleur comportement en temps long (voir Hairer, Lubich & Wanner [START_REF] Hairer | Geometric numerical integration[END_REF]).

Parmi les schémas en temps les plus utilisés en dynamique des solides, on trouve les schémas de Newmark, les schémas HHT, le schéma du point-milieu, le schéma des diérences centrées, les schémas de Chung-Hulbert, les schémas de Tchamwa-Wielgosz. Leurs caractéristiques principales sont résumées dans le Tableau 1.2. 

Contact unilatéral et frottement de Coulomb

Comme on vient de le voir dans la section 1.4.1, la semi-discrétisation en espace du problème de l'élastodynamique linéaire aboutit à un système d'équations diérentielles ordinaires. En présence de contact unilatéral, le situation se complique. Considérons par exemple l'impact d'une barre unidimensionnelle contre un sol rigide. La vitesse initiale de la barre est uniforme et notée v 0 . On ne tient pas compte de la gravité. Discrétisons la barre avec un unique élément ni linéaire (Figure 1.8). On obtient un système à 4 degrés de liberté (vitesse et position des points A et B). Jusqu'à l'impact, à l'instant t i , le mouvement du système est déterminé de manière unique. En particulier, v A = v B = v 0 . Après l'impact (instant t + i ), le point B peut s'immobiliser ou repartir avec n'importe quelle vitesse positive. Dans tous les cas, les conditions de Signorini auront été respectées. Pour sélectionner une solution, il faut introduire une loi supplémentaire, une loi qui donne la vitesse avec laquelle repart un point après un impact. Si l'on ne tient pas compte de cette loi d'impact et que l'on discrétise naïvement en temps le problème, on s'expose à quelques désagréments. Par exemple, si l'on considère les cas tests de l'impact d'une barre contre un obstacle rigide ou des rebonds de cette barre (ces cas tests seront amplement décrits au Chapitre 2), on observe des oscillations parasites durant les phases de contact (Figure 1.9 à gauche) et une mauvaise conservation de l'énergie (Figure 1.10 à gauche). Pour surmonter ces problèmes, de nombreuses solutions ont été proposées dans la littérature depuis une vingtaine d'années. La méthode de masse modiée apparaît comme l'une des méthodes les plus performantes pour les problèmes de contact unilatéral en dynamique. Introduite dans Khenous, Laborde & Renard [START_REF] Khenous | Comparison of two approaches for the discretization of elastodynamic contact problems[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF] pour les problèmes de contact sans frottement, elle repose sur une formulation semi-discrète en espace dans laquelle la matrice de masse a été modiée. Dans sa version la plus simple, les coecients de la matrice de masse associés aux déplacements (normaux) à la frontière de contact sont mis à zéro. Le problème semi-discrétisé en espace est équivalent à un système d'équations diérentielles ordinaires lipschitzien et est, par conséquent, bien posé [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. La variation d'énergie est égale au travail des forces extérieures ; les forces de contact ne travaillent pas [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. Le problème semi-discret peut ensuite être discrétisé en temps avec divers schémas d'intégration. La méthode élimine les oscillations parasites (Figure 1.9 à droite). De plus, avec un schéma convenable comme le schéma de Newmark (méthode du trapèze), un bon comportement énergétique et un bon comportement en temps long sont observés (Figure 1.10 à droite). Enn, soulignons que cette méthode ne nécessite ni étape de calcul supplémentaire ni paramètres supplémentaires. La méthode de masse modiée a depuis été appliquée à des problèmes de contact avec frottement (Hager, Hüeber & Wohlmuth [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF]). D'autres façons de construire la matrice de masse modiée ont également été proposées. Il est en eet intéressant, dans certaines situations, de construire des matrices de masse modiées qui conservent certains invariants de la matrice de masse standard, notamment la masse totale. Cela est fait en résolvant un problème d'optimisation sous contrainte dans [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF] et par des formules de quadrature dans [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF]. Avec cette matrice construite par quadrature et un schéma de Newmark, on obtient une convergence quadratique de la méthode pour l'élastodynamique linéaire sans contact (Hager & Wohlmuth [START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF]). Dans Renard [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF] et Hauret [START_REF] Hauret | Mixed interpretation and extensions of the Khenous-Laborde-Renard mass lumping approach for elastodynamics with contact[END_REF], la méthode de masse modiée est interprétée et généralisée comme une formulation mixte vitesse-déplacement. Cette généralisation permet notamment d'appliquer la méthode de masse modiée à un problème de membrane avec obstacle [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF].
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Modèles de zone cohésive

Dans les problèmes de ssuration dynamique, la vitesse de la pointe de ssure est en général élevée, du même ordre que la vitesse des ondes. Par conséquent, des petits pas de temps sont nécessaires pour capter précisément le phénomène de ssuration et il est naturel de vouloir utiliser des schémas en temps explicites. Le schéma explicite le plus courant en dynamique des solides, le schéma des diérences centrées, s'écrit Une première solution pour utiliser un schéma explicite consiste à régulariser le modèle de zone cohésive pour en faire une fonction classique. Malheureusement, une condition de noninterpénétration régularisée dégrade fortement la condition CFL du schéma des diérences centrées. De plus, échanger une branche verticale contre une branche quasi-verticale ne résout pas vraiment le problème des oscillations. Une seconde solution consiste à traiter la partie multivaluée du problème de façon implicite. Cette approche a déjà été utilisée pour le contact (Paoli & Schatzman [START_REF] Schatzman | Numerical approximation of a wave equation with unilateral constraints[END_REF][START_REF] Paoli | A numerical scheme for impact problems. I. The onedimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF]) et le frottement (Glowinski et al. [START_REF] Glowinski | The numerical simulation of friction constrained motions. I. One degree of freedom models[END_REF][START_REF] Glowinski | The numerical simulation of friction constrained motions. II. Multiple degrees of freedom models[END_REF]). C'est cette approche que nous retenons dans le cadre de cette thèse.

M u n+1 -2u n + u n-1 ∆t 2 + F int (u n ) = F ext (t n ), (1.25 
Remarque 1.5. La méthode de masse modiée permet d'utiliser naturellement une approche explicite avec les problèmes de contact (Section 2.7). Avec les modèles de zone cohésive, il n'est pas possible d'utiliser directement la méthode de masse modiée. En eet, les modèles de zone cohésive n'étant pas monotones, en l'absence de terme d'inertie, le problème est mal posé. De plus la méthode de masse modiée ne règle pas le problème des oscillations de part et d'autre des branches verticales des modèles de zone cohésive.

Résumé des travaux

Les travaux réalisés au cours de cette thèse s'organisent en deux parties. La première concerne les problèmes de contact. La seconde concerne les problèmes de ssuration.

Contact unilatéral et frottement de Coulomb

Dans cette thèse, nous comparons les principales méthodes numériques pour le contact en dynamique (Chapitre 2) et nous proposons une méthode de masse modiée avec un schéma en temps semi-explicite (Section 2.7). Enn, nous complétons l'analyse de la méthode de masse modiée dans deux directions. Nous prouvons un résultat de convergence vers le problème continu dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique (Chapitre 3) et, par ailleurs, nous analysons la méthode de masse modiée dans le cas d'un problème de Signorini avec frottement de Coulomb (Chapitre 4).

Comparaison des méthodes numériques pour le contact en dynamique [START_REF] Doyen | Time-integration schemes for the nite element dynamic Signorini problem[END_REF] La discrétisation du problème de Signorini implique essentiellement trois choix : (i) l'espace d'éléments nis ; (ii) la façon d'imposer la condition de contact ; (iii) le schéma en temps. Nous avons classé les diérentes discrétisations proposées dans la littérature en 4 groupes. Les trois premiers groupes correspondent à trois façons d'imposer la condition de contact : condition de contact exacte, pénalisation, condition de contact en vitesse. La quatrième approche repose sur une modication de la matrice de masse et peut être vue comme une modication dans l'approximation par éléments nis. À ces quatre approches correspondent quatre formulations semi-discrètes en espace, qui peuvent être ensuite discrétisées en temps avec diérents schémas. Nous sélectionnons des discrétisations représentatives de chaque classe et nous examinons leurs principales propriétés : présence d'oscillations parasites, comportement énergétique, et stabilité pour les schémas explicites. Pour illustrer ces propriétés, des simulations numériques sur deux cas tests avec solution analytique ont été réalisées. Le premier cas test, l'impact d'une barre élastique, est bien connu dans la littérature et met en évidence les éventuelles oscillations parasites. Le second, les rebonds d'une barre élastique avec multiples impacts, met en avant le comportement énergétique. Il s'agit, à notre connaissance, d'un nouveau cas test, pour lequel nous fournissons la solution analytique.

Méthode de masse modiée semi-explicite [START_REF] Doyen | Time-integration schemes for the nite element dynamic Signorini problem[END_REF][START_REF] Doyen | A semi-explicit modied mass method for dynamic contact problems[END_REF] Jusqu'à maintenant, la méthode de masse modiée a été utilisée avec des schémas implicites [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF][START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF]. Nous proposons une méthode de masse modiée semi-explicite pour les problèmes de contact sans frottement. Cette méthode s'obtient naturellement en discrétisant le problème semidiscret avec un schéma des diérences centrées. À chaque pas de temps, les déplacements des n÷uds de l'intérieur sont calculés d'une façon explicite, tandis que les déplacements des n÷uds de la frontière de contact sont calculés en résolvant un problème non-linéaire. Numériquement, nous observons la même condition de stabilité pour cette méthode que pour le schéma des diérences centrées sans contact. Nous observons également un très bon comportement énergétique.

Convergence des solutions semi-discrètes en espace vers une solution du problème continu [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF] Nous prouvons un résultat de convergence vers le problème continu dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique. Plus précisément, nous mon-trons la convergence, à une sous-suite près, des solutions semi-discrètes en espace vers une solution du problème continu. L'existence d'une solution au problème continu dans le cas d'un matériau purement élastique est toujours un problème ouvert, et la convergence des solutions semi-discrètes semble pour l'instant hors de portée. Dans le cas viscoélastique, l'existence d'une solution a été montrée en utilisant une méthode de pénalisation [41, 4.2.2] ; l'unicité est toujours un problème ouvert. Notre preuve de convergence s'appuie sur des arguments relativement classiques, à savoir estimations a priori sur les solutions semi-discrètes et arguments de compacité, mais la modication de la masse nécessite une attention particulière lors du passage à la limite. Les estimations a priori sur la vitesse fournies par le terme de viscosité jouent un rôle crucial dans la preuve, de sorte que celle-ci n'est plus valable quand la viscosité disparaît.

Analyse de la méthode de masse modiée pour le frottement de Coulomb [START_REF] Doyen | Analysis of the modied mass method for the dynamic Signorini problem with Coulomb friction[END_REF] Nous analysons la méthode de masse modiée dans le cas d'un problème de Signorini avec frottement de Coulomb. Nous prouvons que le problème semi-discrétisé en espace est équivalent à une inclusion diérentielle semi-continue supérieure avec condition de Lipschitz et est donc bien posé. De plus, nous montrons que la variation d'énergie du système semi-discrétisé en espace est égale au travail des forces extérieures et des forces de frottement. Pour la discrétisation en temps, nous considérons un schéma implicite. Chaque pas de temps nécessite alors la résolution d'un problème non-linéaire semblable à un problème de frottement en statique. Il est bien connu qu'un tel problème peut avoir plusieurs solutions. Ici, nous prouvons que, sous une certaine condition sur les paramètres de discrétisation de type CFL, le problème discrétisé en espace et en temps est bien posé. Pour une discrétisation en espace xée, nous prouvons également que les solutions discrètes en espace et en temps convergent vers la solution semi-discrétisée en espace lorsque le pas de temps tend vers zéro.

Modèles de zone cohésive

Schémas quasi-explicites pour les problèmes de ssuration dynamique Nous étudions des schémas en temps quasi-explicites pour des problèmes dynamiques de ssuration avec des modèles de zone cohésive. Ces schémas utilisent un schéma en temps des diérences centrées pour la partie élastodynamique. Dans un premier schéma, les forces à l'interface de ssuration sont imposés de façon totalement implicite. Dans un second schéma, seule la partie multivaluée est imposée de façon implicite. De plus, les forces à l'interface sont condensées. Ainsi, à chaque pas de temps, les déplacements des n÷uds de l'intérieur du domaine sont calculés de façon explicite, tandis que les déplacements de chaque n÷ud à l'interface sont calculés en résolvant un problème non-linéaire local. Cette approche permet de traiter de façon générale et robuste les diérents modèles de zone cohésive multivalués tout en conservant des coûts de calcul modérés.

Méthodes de Lagrangien augmenté pour les problèmes de ssuration statique [START_REF] Doyen | A three-eld augmented Lagrangian formulation of unilateral contact problems with cohesive forces[END_REF] Nous analysons des méthodes de Lagrangien augmenté pour le problème de ssuration statique. Nous commençons par l'analyse mathématique du problème continu. Celui-ci peut s'écrire comme la minimisation sous contrainte d'une énergie non-convexe. Nous reformulons le problème à l'aide d'un Lagrangien augmenté à trois champs : déplacement dans le volume, contrainte et déplacement sur la frontière cohésive. Nous discrétisons le problème avec des éléments nis mixtes. Pour pouvoir utiliser des méthodes de collocation, nous approchons le déplacement sur la frontière cohésive par des éléments nis discontinus. Nous obtenons pour ces approximations une estimation d'erreur en s'inspirant notamment des analyses faites pour le contact dans Hüeber & Wohlmuth [START_REF] Hüeber | An optimal a priori error estimate for nonlinear multibody contact problems[END_REF] et Hild & Laborde [START_REF] Hild | Quadratic nite element methods for unilateral contact problems[END_REF]. Par ailleurs, nous présentons et nous analysons deux méthodes itératives de résolution : une méthode de type Uzawa avec une approche de décomposition-coordination et une méthode de Newton. Finalement, des résultats numériques illustrent l'analyse théorique.

Introduction

The design of robust and ecient numerical methods for dynamic contact problems has motivated a large amount of work over the last two decades and remains a challenging issue. Here, we focus on the dynamic Signorini problem, which models the innitesimal deformations of a solid body that can come into contact with a rigid obstacle. This problem is the simplest dynamic contact problem, but also the rst step toward more complex situations, such as multibody problems, large deformation problems, contact with friction, etc... For an overview of the dierent contact problems, we refer to [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF][START_REF] Laursen | Computational contact and impact mechanics[END_REF][START_REF] Wriggers | Computational Contact Mechanics[END_REF].

In structural dynamics, the usual space-time discretization combines nite elements in space and a time-stepping scheme. In this framework, the discretization of the dynamic Signorini problem involves mainly three choices: (i) the nite element space; (ii) the enforcement of the contact condition; (iii) the time-stepping scheme. The combination of these three ingredients presents some diculties. For instance, it is well-known that the combination of an exact enforcement of the contact condition and an implicit Newmark scheme yields spurious oscillations as well as poor energy behavior, that is, sizeable deviations from the exact value. Moreover, the combination of an exact enforcement and an explicit scheme is not straightforward, whereas the use of a penalty contact condition tightens the stability condition of explicit schemes. Consequently, various alternative discretizations have been designed for the dynamic Signorini problem. The aim of this work is to classify the dierent discretizations and to illustrate numerically their main properties.

We classify the discretizations into four groups. The rst three groups correspond to dierent ways of enforcing the contact condition: exact enforcement [START_REF] Carpenter | Lagrange constraints for transcient nite element surface contact[END_REF][START_REF] Deuhard | A contact-stabilized Newmark method for dynamical contact problems[END_REF][START_REF] Kane | Finite element analysis of nonsmooth contact[END_REF][START_REF] Laursen | Improved implicit integrators for transient impact problemsgeometric admissibility within the conserving framework[END_REF][START_REF] Paoli | A numerical scheme for impact problems. I. The onedimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF][START_REF] Taylor | On a nite element method for dynamic contact/impact problems[END_REF][START_REF] Vola | Consistent time discretization for dynamical contact problems and complementarity techniques[END_REF], enforcement with penalty [2,[START_REF] Belytschko | Contact-impact by the pinball algorithm with penalty and lagrangian methods[END_REF][START_REF] Hauret | Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact[END_REF], and enforcement with contact condition in velocity [START_REF] Ayyad | A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects[END_REF][START_REF] Belytschko | Contact-impact by the pinball algorithm with penalty and lagrangian methods[END_REF][START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF]. The fourth approach is based on a modication of the mass matrix [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]; it can be seen as an alternative choice of the nite element space. These four classes yield dierent space semi-discrete problems which in turn can be discretized in time using various time-stepping schemes, either implicit or semi-explicit. We select representative discretizations within each class and examine their main properties: presence of spurious oscillations, energy behavior after multiple impacts, and stability in the case of explicit schemes. By energy conservation we mean that the variation of the energy is equal to the work of the external forces (the contact forces should not work). To illustrate these properties, numerical simulations on two 1D benchmarks have been performed. The rst benchmark, the impact of an elastic bar on a rigid surface, is well-known and allows to detect spurious oscillations. The second one, for which we derive the exact solution, deals with the bounces of an elastic bar and is geared toward assessing energy behavior, in so far as multiple impacts occur. It is to our knowledge a new benchmark. Additionally, some of the schemes are assessed on a 2D benchmark (without analytical solution) associated with the impact and multiple bounces of a disk on a rigid surface. Some of the presented Newmark-based schemes are also compared in 3D in [START_REF] Krause | Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme[END_REF]. The mathematical analysis of the dierent methods is beyond the scope of this article, but we mention, whenever they exist, the theoretical results (well-posedness of the discrete problems and convergence of the discrete solutions). Dynamic contact problems yield shock waves, and spurious oscillations appear near the shock in the numerical solutions, owing to the so-called Gibbs phenomenon (see, e.g., [START_REF] Grosu | Stability of semidiscrete formulations for elastodynamics at small time steps[END_REF] and references therein). These oscillations can be eliminated using dissipative schemes (or, equivalently, by ltering). This issue, being important but not specic to dynamic contact problems, is not further addressed here (see also Remark 2.4).

The material is organized as follows. We formulate the dynamic Signorini problem in the continuous setting (Section 2.1) and we introduce the main ingredients for its approximation (Sections 2.2 and 2.3). We present the two 1D benchmark problems with their analytical solutions (Section 3). We describe the four classes of discretizations together with numerical results in 1D: exact enforcement of the contact condition (Section 4), enforcement with penalty contact condition (Section 5), enforcement with contact condition in velocity (Section 6), and modication of the mass matrix (Section 7). Finally, we present numerical results on the 2D benchmark for selected schemes (Section 2.8) and draw some conclusions (Section 2.9).

The dynamic Signorini problem

Governing equations

We consider the innitesimal deformations of a body occupying a reference domain

Ω ⊂ R d (d ∈ {1, 2, 3}) during a time interval [0, T ].
The tensor of elasticity is denoted by A and the mass density is denoted by ρ. An external load f is applied to the body. Let u : (0,

T ) × Ω → R d , (u) : (0, T ) × Ω → R d,d and σ(u) : (0, T ) × Ω → R d,d
be the displacement eld, the linearized strain tensor and the stress tensor, respectively. Denoting time-derivatives by dots, the momentum conservation equation reads 

ρü -div σ = f, σ = A : , = 1 2 (∇u + T ∇u) in Ω × (0, T ). ( 2 
u n ≤ 0, σ n (u) ≤ 0, σ n (u)u n = 0 on Γ c × (0, T ). (2.2)
At the initial time, the displacement and velocity elds are prescribed. The above problem is an evolution partial dierential equation under unilateral constraints. Here, the equation is second-order in time and the constraint holds on the displacement; this is not the most favorable case. The existence and uniqueness of a solution has only been proven in 1D, when the contact boundary is reduced to a point [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Eck | Unilateral contact problems[END_REF]. In 1D, it has also been proven that the variation of energy is equal to the work of the external forces; the contact force does not work [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Eck | Unilateral contact problems[END_REF]. In higher dimension, the existence of a solution is proven in the case of a viscoelastic material [START_REF] Eck | Unilateral contact problems[END_REF], while existence and uniqueness is proven for the wave equation under certain assumptions.

Basic time-integration schemes in linear elastodynamics

In this section, we briey recall some basic facts about time-integration schemes in linear elastodynamics; most of this material can be found in [START_REF] Hughes | The nite element method[END_REF]. Firstly, we discretize the problem in space with a nite element method. To alleviate the notation, we still denote by u the space semi-discrete displacement. The number of degrees of freedom is denoted by N d . Let K, M , and F (t) be the stiness matrix, the mass matrix, and the column vector of the external forces, respectively. The space semi-discrete problem consists in seeking u : [0, T ] → R N d such that, for all t ∈ [0, T ],

M ü(t) + Ku(t) = F (t), (2.3) with the initial conditions u(0) = u 0 and u(0) = v 0 . For solving such a system of ordinary dierential equations (ODEs), linear one-step schemes are the most frequently used. For simplicity, the interval [0, T ] is divided into equal subintervals of length ∆t. We set t n = n∆t and denote by u n , un , and ün the approximations of u(t n ), u(t n ), and ü(t n ), respectively. We dene the convex combination n+ω := (1ω) n + ω n+1 , where stands for u, u, ü or t, and ω ∈ [0, 1]. We use a slightly dierent denition for the external load, namely F n+α := F (t n+α ); for instance, F n+ 1 2 = F (t n+ 1 2 ) generally diers from 1 2 (F n + F n+1 ). Moreover, at time t n , the energy of the system is E n := 1 2 T un M un + 1 2 T u n Ku n . Now we can formulate some of the most common time-stepping schemes in linear elastodynamics.

Discretization 2.2.1 (HHT-Newmark

) Seek u n+1 , un+1 , ün+1 ∈ R N d such that M ün+1 + Ku n+1+α = F n+1+α ,
(2.4)

u n+1 = u n + ∆t un + ∆t 2 2 ün+2β , (2.5 
)

un+1 = un + ∆t ün+γ , (2.6) 
where α, β, γ are real parameters. The choice α = 0 yields Newmark schemes while the choice α ∈ [-1/3, 0], β = 1/4(1α) 2 , and γ = 1/2α yields HHT schemes.

Discretization 2.2.2 (Midpoint) Seek u n+1 , un+1 , ün+

1 2 ∈ R N d such that M ün+ 1 2 + Ku n+ 1 2 = F n+ 1 2 ,
(2.7)

u n+1 = u n + ∆t un+ 1 2 ,
(2.8)

un+1 = un + ∆t ün+ 1 2 .
(2.9)

Discretization 2.2.3 (Central dierences) Seek u n+1 ∈ R N d such that M u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n .
(2.10)

HHT schemes are implicit, unconditionally stable, second-order accurate, and dissipative in the high frequencies. The amount of dissipation is controlled by the parameter α. Newmark schemes do not, in general, conserve the energy; such schemes instead conserve the quadratic form

E n β,γ := E n + ∆t 2 2 β -1 2 γ
T ün M ün since there holds [82]

E n+1 β,γ -E n β,γ = T 1 2 (F n+1 + F n ) + γ - 1 2 (F n+1 -F n ) (u n+1 -u n ) -γ - 1 2 T (u n+1 -u n )K(u n+1 -u n ) + β - 1 2 γ T (ü n+1 -ün )M (ü n+1 -ün ) .
The quadratic form E n β,γ coincides with the energy only if β = 1 2 γ. For β = 1 2 γ, we refer to E n β,γ as a shifted energy; the sign of the dierence between E n β,γ and E n only depends on the sign of (β -1 2 γ). The particular choice β = 1/4, γ = 1/2 yields an implicit, unconditionally stable, and second-order accurate scheme. It is energy-conserving in the sense that

E n+1 -E n = T F n+1 + F n 2 (u n+1 -u n ).
The midpoint scheme is implicit, unconditionally stable, and second-order accurate. It is energyconserving in the sense that

E n+1 -E n = T F n+ 1 2 (u n+1 -u n ).
The central dierence scheme is explicit (lumping the mass matrix avoids solving any linear system), conditionally stable and second-order accurate. Here it is written as a two-step linear scheme involving only the displacement but it can be formulated as a one-step scheme. Actually, it is a Newmark scheme with parameters β = 0, γ = 1/2; the velocity and acceleration are then

un = 1 2∆t (u n+1 -u n-1 ) and ün = 1 ∆t 2 (u n+1 -2u n + u n-1
). The central dierence scheme does not conserve the energy E n but the shifted energy E n 0, 1 2 in the sense that

E n+1 0, 1 2 -E n 0, 1 2 = T F n+1 + F n 2 (u n+1 -u n ).
There exist also explicit schemes with high-frequency dissipation, such as the Chung-Hulbert or Tchamwa-Wielgosz schemes (see [START_REF] Nsiampa | Comparative study of numerical explicit schemes for impact problems[END_REF] and references therein).

Enforcing the contact condition

The enforcement of a contact condition in a nite element setting has been widely studied in the case of the static Signorini problem [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]. We assume that the mesh is compatible with the partition of the boundary. Let N c be the number of nodes lying on the contact boundary. We dene the linear normal trace operator on Γ c , g : v -→ -v |Γ •n and the associated matrix G. Note that the dimension of G is N c × N d . We denote by {G i } 1≤i≤Nc the rows of the matrix G. Thus, G i u yields the value of the normal displacement at the ith node of the contact boundary. With an exact enforcement, the static Signorini problem consists in seeking a displacement u ∈ R N d and a contact pressure r ∈ R Nc such that Ku = F + T Gr, (2.11) Gu ≥ 0, r ≥ 0, T rGu = 0.

(2.12)

Here the problem is formulated as a complementarity problem. Other formalisms can be found in the literature, e.g., variational inequality, Lagrangian formulation, and formulation with subderivatives. If the matrix K is positive denite, problem (2.11)-(2.12) has a unique solution. For solving this problem, a large variety of methods has been developed [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF][START_REF] Wriggers | Computational Contact Mechanics[END_REF]: Uzawa algorithms, active set methods, semi-smooth Newton methods, Lemke algorithm, monotone multigrid method, etc... Penalty formulations are another classical way of dealing with constrained problems. We have to dene a penalty function R : R Nc → R Nc . For instance we can choose R (v) = 1 (v) -, where (v) -denotes the negative part of v. The penalized static Signorini problem consists now in seeking u ∈ R N d such that Ku = F + T GR (Gu).

(2.13) A third way of enforcing the contact condition, specic to the dynamic problem, is to replace the Signorini condition by an approximation involving the velocity instead of the displacement [START_REF] Eck | Unilateral contact problems[END_REF][START_REF] Moreau | Numerical aspects of the sweeping process[END_REF]. Assume that u n = 0 at a certain time t c . Then, on a short time interval afterwards, u n ≈ (t -t c ) un . This motivates the following contact condition in velocity, un ≤ 0, σ n (u) ≤ 0, σ n (u) un = 0, on Γ c .

(2.14)

It must be stressed that the above condition condition is applicable only during contact phases. This condition is not applicable during non-contact phases because a positive normal velocity is not allowed.

1D benchmark problems

To compare the dierent methods, we test them on two 1D problems. Both problems can be formulated in the same setting. We consider an elastic bar dropped against a rigid ground. The bar is dropped, undeformed, from a height h 0 , with an initial velocity -v 0 , under a gravity acceleration g 0 ≥ 0. The length of the bar is denoted by L, the Young modulus by E, and the density by ρ. Let c 0 := E ρ denote the wave speed. The reference domain is Ω = [0, L]. In this context, the governing equations presented in Section 2.2.1 for the continuous problem take the form

ρü -E ∂ 2 u ∂x 2 = -ρg 0 + r, in Ω × (0, T ), (2.15) 
u(0, t) ≥ 0, r(t) ≥ 0, r(t)u(0, t) = 0 on (0, T ), (2.16) ∂u ∂x

(L, t) = 0 on (0, T ), u(•, 0) = h 0 , u(•, 0) = -v 0 , (2.17) 
where u is the scalar-valued displacement of the bar and r the contact pressure equal to the normal stress -E ∂u ∂x at x = 0. Problem (2.15)-(2.17) has a unique solution and the variation of the energy is equal to the work of the gravity force [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF],

d dt 1 2 Ω ρ u2 + 1 2 Ω E ∂u ∂x 2 = Ω -ρg 0 u, ∀t ∈ [0, T ].
(2.18)

In the rst problem, v 0 > 0 and g 0 = 0 so that there is a single impact. This benchmark has been widely used in the literature (see, e.g., [START_REF] Wriggers | Computational Contact Mechanics[END_REF]). It enables us to examine the possible spurious oscillations triggered by the numerical schemes. In the second problem, v 0 = 0 and g 0 > 0, so that the bar can make several bounces. With a suitable choice of parameters, the motion of the bar is periodic in time and we can calculate the exact solution. It enables us to examine the time evolution of energy after multiple impacts. This benchmark is, to our knowledge, new.

Impact of an elastic bar

Let us describe the solution of the rst problem (Figure 2.1). Before the impact, the bar is undeformed and has a uniform velocity -v 0 . The bar reaches the ground at time t 1 := h 0 v 0 . After the impact, the bar stays in contact with the ground. A shock wave travels from the bottom of the bar to the top. Above the shock wave, the velocity is -v 0 ; below, the velocity is zero. Then, the shock wave travels from the top to the bottom. Above the shock wave, the velocity is v 0 ; below, the velocity is still zero. As soon as the wave reaches the bottom, the bar takes o, undeformed, with a uniform velocity v 0 . The speed of the shock wave is c 0 . Thus, the wave takes a time τ w := L c 0 to travel along the bar, and the bar takes o at time t 2 := t 1 + 2τ w . The 000000 000000 111111 111111 0000000 0000000 1111111 1111111 000000 000000 111111 111111 000000 000000 111111 111111 000000 000000 111111 111111 000000 000000 111111 111111

t = 0 t 1 -v 0 -v 0 v 0 t 2 v 0 -v 0 0 0 0 Fig. 2.1.
Impact of an elastic bar.

analytical solution can be easily expressed using travelling wave solutions. Dening the auxiliary function

H v (x, t) = -v min(x/c 0 , τ w -|t -τ w |), the exact solution is u(x, t) =      h 0 -v 0 t if t ≤ t 1 H v 0 (x, t -t 1 ) if t 1 < t ≤ t 2 v 0 (t -t 2 ) if t 2 < t
In particular, the displacement at the bottom of the bar and the contact pressure are:

u(0, t) =      h 0 -v 0 t if t ≤ t 1 0 if t 1 < t ≤ t 2 v 0 (t -t 2 ) if t 2 < t r(t) =      0 if t ≤ t 1 Ev 0 c 0 if t 1 < t ≤ t 2 0 if t 2 < t
These two quantities are represented in Figure 2 

Bounces of an elastic bar

In the second problem (Figure 2.3), the bar is dropped, undeformed, with a zero initial velocity. It takes a time τ f := 2h 0 g 0 to reach the ground. At the impact, at time t 1 := τ f , the bar is undeformed and has uniform velocity -v f , where v f := √ 2h 0 g 0 . After the impact, as in the previous benchmark, the bar stays in contact with the ground during a time 2τ w . During this contact phase, the response of the bar is the superposition of a shock wave due to velocity at the impact and a vibration due to the gravity as reected by the series S 1 and S 2 below. When the bar takes o, at time t 2 := t 1 + 2τ w , it has a uniform velocity v f but it is compressed (by symmetry, u(x, t 2 ) = ũ(x) := g 0 c 2 0 (x 2 -2Lx) is twice the static deformation with homogeneous Dirichlet and Neumann conditions at x = 0 and x = L respectively). Consequently, during the ight phase, the response of the bar is the superposition of a rigid parabolic motion (due to the gravity and the velocity) and a vibration (due to the initial deformation). If we choose τ f = pτ w for a positive integer p (for instance, τ f = 3τ w ), we can ensure that the bar reaches the ground with uniform velocity -v f and with displacement eld ũ. By doing so, the second impact occurs at time t 3 := t 2 + 2τ f = t 2 + 6τ w . When the bar takes o again, at time t 4 := t 3 +2τ w , it is undeformed and has a uniform velocity v f . The next ight phase is a rigid parabolic movement. Then, this sequence of two contact phases and two ight phases repeats periodically. To compute the analytical solution, we use a decomposition on the eigenmodes in addition to the 

t = 0 t 1 t 2 t 3 t 4 -v f v f v f -v f v 0 Fig. 2.3.
Bounces of an elastic bar.

travelling wave solutions. We set t 4k+1 = 3τ w + 16kτ w , t 4k+2 = t 4k+1 + 2τ w , t 4k+3 = t 4k+1 + 8τ w and t 4k+4 = t 4k+1 + 10τ w . We dene also the auxiliary functions

P (x, t) = h 0 -1 2 g 0 (t -τ f ) 2 , S 1 (x, t) = ∞ n=1 a n (1 -cos(c 0 ν n t))sin(ν n x), S 2 (x, t) = -2g 0 L 2 3c 2 0 + ∞ n=1 b n cos(c 0 λ n t)cos(λ n x),
where

a n = -2g 0 c 2 0 Lν 3 n , ν n = (n -1 2 ) π L , b n = 4g 0 c 2 0 λ 2 n , λ n = n π L .
The function S 1 corresponds to the vibration of a bar, clamped at its bottom, initially at rest, under a gravity g 0 . The function S 2 corresponds to the vibration of a bar, free at its two extremities, with the initial displacement ũ, a zero initial velocity and without external force. The computation of the series S 1 and S 2 is standard; see [START_REF] Courant | Methods of mathematical physics[END_REF] for instance. The exact solution is

u(x, t) =                P (x, t + τ f ) if t ≤ t 1 H v f (x, t -t 4k+1 ) + S 1 (x, t -t 4k+1 ) if t 4k+1 < t ≤ t 4k+2 P (x, t -t 4k+2 ) + S 2 (x, t -t 4k+2 ) if t 4k+2 < t ≤ t 4k+3 H v f (x, t 4k+4 -t) + S 1 (x, t 4k+4 -t) if t 4k+3 < t ≤ t 4k+4 P (x, t -t 4k+4 ) if t 4k+4 < t ≤ t 4(k+1)+1
The displacement at the bottom of the bar is represented in Figure 2.4 (with the parameters chosen in Section 2.3.3).

Numerical simulations

The parameters used in the numerical simulations are E = 900, ρ = 1, L = 10, h 0 = 5. In the rst benchmark, v 0 = 10, g 0 = 0; in the second benchmark, v 0 = 0, g 0 = 10. The bar is discretized with a uniform mesh size ∆x and linear nite elements are used. We dene ν c := c 0 ∆t ∆x the Courant number, which is the relevant ratio to link the mesh size and the time step. In particular, central dierence schemes with lumped mass matrix are stable in the linear case under the condition ν c ≤ 1. In what follows, we take ν c = 1.5 for unconditionally stable schemes and ν c = 0.75 (thereby halving the time step) for central dierence schemes. To describe the numerical results, we consider the following quantities: the displacement at the bottom node of the bar (denoted by u n 0 ), the stress at the bottom node of the bar (denoted by (Ku n ) 0 ), the contact pressure r n , and the energy E n -T F u n (the load vector being time-independent, we denote it by F ). Note that, because of the nite element discretization, the stress at the bottom node and the contact pressure are not equal.

Discretizations with exact enforcement of the contact condition

In this section we combine standard nite elements in space and an exact enforcement of the contact condition at each node of the contact boundary. This leads to the semi-discrete problem,

M ü(t) + Ku(t) = F (t) + T Gr(t), (2.19) Gu(t) ≥ 0, r(t) ≥ 0, T r(t)Gu(t) = 0.
(2.20) Problem (2.19)-(2.20) is a system of dierential equations under unilateral constraints. The same kind of formulation arises in rigid-body dynamics with impact [START_REF] Brogliato | Nonsmooth impact mechanics[END_REF][START_REF] Stewart | Rigid-body dynamics with friction and impact[END_REF], so the mathematical results and the numerical methods developed in this framework can in general be applied to our problem. Mathematically, problem (2.19)-(2.20) turns out to be delicate. Firstly, the functional framework is not obvious. Due to the unilateral constraints, the velocity can be discontinuous and there is in general no strong solution (i.e. twice dierentiable in time) to this problem. One possibility is to look for a weak solution such that the displacement u is continuous in time, the velocity u is a function with bounded variation in time, the acceleration ü and the contact pressure r are measures (they contain impulses). Secondly, this weak solution is in general not unique. Consider the simple example of a point mass impacting a rigid foundation. Before the impact, the motion of the point mass is uniquely determined. After the impact, an innity of velocities and trajectories are admissible. To recover uniqueness, an additional condition, specifying the velocity after an impact, is needed. Denoting by v -the normal velocity before the impact and by v + the normal velocity after the impact, an usual approach is to prescribe v + = -ev -, where e is a non-negative parameter. In the present space semi-discrete setting, it seems reasonable to take e = 0. Indeed, in the dynamic Signorini problem, the unilateral constraint holds on the boundary and the boundary does not bounce after an impact. We can now formulate the semi-discrete problem in a rigorous way.

Problem 2.1. Seek a displacement

u : [0, T ] → R N d and a contact pressure r : [0, T ] → R Nc such that M ü + Ku = F + T Gr, (2.21) Gu ≥ 0, r ≥ 0, T rGu = 0, (2.22) T r i (t)G i u(t + ) = 0 if G i u(t) = 0, (2.23) 
with the initial conditions u(0) = u 0 and u(0) = v 0 .

Equation (2.23) constitutes the impact law. Most of the mathematical terms in equations (2.21)-(2.23) must be understood in the sense of measures. In particular T rGu and T r i (t)G i u(t + ) should be dened with suitable duality products. For more details, we refer to [START_REF] Brogliato | Nonsmooth impact mechanics[END_REF][START_REF] Stewart | Rigid-body dynamics with friction and impact[END_REF].

Remark 2.1. The impact law (2.23) is a consequence of the discretization in space. Indeed, the continuous problem does not need an impact law to have a unique solution. This fact is proven in 1D [START_REF] Eck | Unilateral contact problems[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF]; in higher dimension, uniqueness is still an open problem, but the diculty does not seem to come from the absence of an impact law.

Remark 2.2. Another dierence to the continuous solution is that the semi-discrete solution does not conserve the energy since there is a loss of energy at each impact of a node. Actually, energy is conserved for e = 1, but this is not satisfactory since the contact is never established for a time interval of nonzero length.

Remark 2.3. The impact law is dierent from the concept of persistency condition sometimes encountered in the literature [2,[START_REF] Laursen | Computational contact and impact mechanics[END_REF][START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF][START_REF] Laursen | Improved implicit integrators for transient impact problemsgeometric admissibility within the conserving framework[END_REF]. The persistency condition is dened in the continuous setting and in the fully discrete setting. It requires that the contact force does not work. Note that in the continuous problem, the persistency condition seems to be a consequence of the Signorini condition (it is at least proven in 1D).

Implicit schemes

We consider rst dissipative schemes and then schemes dealing with the impact.

Dissipative schemes

To motivate the discussion, let us begin with an ill-founded discretization. We choose a Newmark scheme (trapezoidal rule) for the elastodynamics part and we enforce the contact condition (2.22) at a certain time, say t n+1 . We pay no attention to the impact law (2.23). This choice corresponds to Discretization 2.4.

1 with α = 0, β = 1/4, γ = 1/2. Discretization 2.4.1 (HHT-Newmark) Seek u n+1 , un+1 , ün+1 ∈ R N d , and r n+1 ∈ R Nc such that M ün+1 + Ku n+1+α = F n+1+α + T Gr n+1 , (2.24) Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0,
(2.25)

u n+1 = u n + ∆t un + ∆t 2 2 ün+2β , (2.26) 
un+1 = un + ∆t ün+γ .

(2.27)

At each time step, Problem (2.24)-(2.27) is equivalent to a linear complementarity problem and is well-posed. In contrast to the static case, the matrix K does not need to be positive denite for the problem to be well-posed (Dirichlet boundary conditions are not needed). When this scheme is tested on the rst benchmark, we observe large spurious oscillations on the contact pressure and small spurious oscillations on the displacement during the contact phase (Figure 2.5). On the second benchmark, we observe a poor displacement and a poor energy behavior (Figure 2.6). Let us try to explain what happens exactly. Suppose there is contact at the ith node of the contact boundary at time t n+1 (i.e. G i u n+1 = 0), then

G i un+1 = - γ β∆t G i u n + 1 - γ β G i un + ∆t 2β -γ 2β G i ün , (2.28) 
G i ün+1 = - 1 β∆t 2 G i u n - 1 β∆t G i un - 1 -2β 2β G i ün .
(2.29)

Thus, the impact law is not satised since we expect that after an impact,

G i un+1 = G i ün+1 = 0.
During a contact phase following an impact, the velocity and the acceleration oscillate. In the simple case of an impact without initial acceleration and initial velocity v i , the magnitude of the acceleration oscillations after the impact is v i ∆t . These oscillations trigger oscillations of magnitude

m i v i
∆t on the contact pressure, where m i is the mass associated with the node i (Figure 2.5). Moreover, the energy balance takes the form

E n+1 -E n = T r n+1 + r n 2 (Gu n+1 -Gu n ) + T F n+1 + F n 2 (u n+1 -u n ),
so that the contact force works when a node changes status. When a node comes into contact

(G i u n > 0, r n = 0, G i u n+1 = 0, r n+1 > 0), the work is negative; when a node is released (G i u n = 0, r n > 0, G i u n+1 > 0, r n+1 = 0
), the work is positive. As the contact pressure is polluted by large oscillations, this strongly perturbs the rest of the structure (Figure 2.6). The poor behavior of the Newmark scheme can be summarized as follows: large oscillations of the acceleration at the contact boundary ⇒ large oscillations of the contact pressure ⇒ perturbation of the whole structure. In themselves the oscillations of the acceleration at the contact boundary are not a problem. The oscillations of the contact pressure are more troublesome if a Lagrangian method is used for solving the linear complementarity problem at each time step (the Lagrange multiplier being equal to the contact pressure). Of course, the perturbation of the whole structure must be avoided. Several options can be considered to design better algorithms. The rst option consists in using dissipative schemes, such as HHT schemes (Discretization 2.4.1). The spurious oscillations are then damped (Figure 2.7), but at the expense of poor energy behavior (Figure 2.8). The selected value α = -0.2 achieves here a reasonable compromise between dissipation of spurious oscillations and energy. First-order schemes like θ-schemes, which are implicit, unconditionally stable, dissipative schemes, yield the same kind of results (Discretization 2.4.2). 

α = -0.2, β = 1/4(1 -α) 2 , γ = 1/2 -α. ∆x = 0.1, ∆t = 0.005, νc = 1.5.
α = -0.2, β = 1/4(1 -α) 2 , γ = 1/2 -α. ∆x = 0.1, ∆t = 0.005, νc = 1.5. Discretization 2.4.2 (θ-schemes [121]) Seek u n+1 , un+1 ∈ R N d , and r n+1 ∈ R Nc such that M ün+ 1 2 + Ku n+θ = F n+θ + T Gr n+1 ,
(2.30)

Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0, (2.31) 
u n+1 = u n + ∆t un+θ , (2.32) 
un+1 = un + ∆t ün+ 1 2 .
(2.33)

Remark 2.4. It is sometimes advocated in the literature that rst-order schemes must be preferred to second-order schemes for dynamic contact problems, due to the non-smoothness of the solution. We must distinguish two issues: the treatment of the contact condition and the treatment of the shock waves induced by the contact. As discussed previously, a proper treatment of the contact condition is not related to the order of the scheme. As for the shock waves, they require a scheme with dissipation and there exist second-order accurate schemes with dissipation, such as the HHT or Chung-Hulbert schemes. Note also that the amount of dissipation needed to treat the shock waves in the bulk is much smaller than that needed to dissipate the oscillations caused by the contact condition.

Schemes dealing with the impact

First we briey discuss a naive stabilized Newmark scheme where an extra-step is used to enforce the impact law (Discretization 2.4.3). Then, we consider two schemes with dissipative contact using a midpoint (Discretization 2.4.4) or a Newmark (Discretization 2.4.5) scheme. Finally, an improvement of these schemes based on the velocity-update method introduced in [89] can be considered; in the case of the Newmark scheme, this yields Discretization 2.4.6. An alternative approach to prevent the oscillations of the acceleration from transferring to the contact pressure consists in removing the mass at the contact boundary. This approach will be developed in Section 2.7.

To motivate the discussion, let us look for a scheme which satises the impact law or, more precisely, a scheme which enforces the acceleration to be zero during the contact phases.

No implicit Newmark scheme achieves this. An extra-step is needed to enforce the impact law (Discretization 2.4.3). Discretization 2.4.3 (naive stabilized Newmark)

1. Seek u n+1 ∈ R N d , un+1 ∈ R N d , ün+1 ∈ R N d , and r n+1 ∈ R Nc satisfying (2.24)-(2.27). 2. If G i u n ≥
0 and G i u n+1 = 0, then un+1 and ün+1 are modied so that G i un+1 = 0 and G i ün+1 = 0.

-0. As illustrated in Figure 2.9, the large spurious oscillations have disappeared. However, this stabilization takes eect only one step after the impact, which explains the peak in the contact pressure just after the impact. A possible remedy consists in nding a time discretization where the contact force does not work or is at least dissipative. For instance, the midpoint scheme with an enforcement of the contact condition at time t n+1 (Discretization 2.4.4) achieves the following energy balance,

E n+1 -E n = T r n+1 (Gu n+1 -Gu n ) + T F n+ 1 2 (u n+1 -u n ).
It is easy to check that the work of the contact force is always non-positive. As illustrated in Figure 2.10, the contact pressure still oscillates but the stress is practically free of oscillations.

The oscillations of the stress after the bar has taken o are due to vibrations. However, energy losses, even if they are not substantial, do have an impact on the solution (Figure 2.11). It can also be noticed that energy losses do not vanish as ∆t approaches zero, but this losses decrease with the mesh size.

Discretization 2.4.4 (Midpoint-implicit contact) Seek u n+1 , un+1 ∈ R N d , and

r n+1 ∈ R Nc such that M ün+ 1 2 + Ku n+ 1 2 = F n+ 1 2 + T Gr n+1 ,
(2.34)

Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0, (2.35) 
u n+1 = u n + ∆t un+ 1 2 ,
(2.36)

un+1 = un + ∆t ün+ 1 2 .
(2.37)

Another scheme with dissipative contact has been proposed in [START_REF] Kane | Finite element analysis of nonsmooth contact[END_REF]. The Newmark scheme with parameters β = 1/2 and γ = 1 and with an enforcement of the contact condition at time t n+1 yields the following energy balance

E n+1 -E n = T r n+1 (Gu n+1 -Gu n ) - 1 2 T (u n+1 -u n )K(u n+1 -u n ) + T F n+1 (u n+1 -u n ).
The work of the contact force is always non-positive, but there is a strong bulk dissipation. To remove this dissipation, one can, as proposed in [START_REF] Kane | Finite element analysis of nonsmooth contact[END_REF], discretize the acceleration coming from the contact forces with the dissipative parameters (β = 1/2 and γ = 1) and the acceleration coming from the elastic forces with a trapezoidal rule (β = 1/4 and γ = 1/2). This yields Discretization 2.4.5. With such a discretization, the energy balance is

E n+1 -E n = T r n+1 (Gu n+1 -Gu n ) + T F n+1 (u n+1 -u n ).
The numerical results are similar to those obtained with Discretization 2.4.4.

Discretization 2.4.5 (Newmark with dissipative contact [START_REF] Kane | Finite element analysis of nonsmooth contact[END_REF])

Seek u n+1 , un+1 , ün+1 int , ün+1 con ∈ R N d , and r n+1 ∈ R Nc such that M ün+1 + Ku n+1 = F n+1 + T Gr n+1 , (2.38) Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0, (2.39) 
u n+1 = u n + ∆t un + ∆t 2 2 ün+2β int + ∆t 2 2 ün+1 con , (2.40) 
un+1 = un + ∆tü n+γ int + ∆tü n+1 con , (2.41) 
where ün+1 = ün+1 int + ün+1 con and M ün+1 con = T Gr n+1 .

To compensate energy losses in schemes with dissipative contact, the so-called velocity-update method can be considered [START_REF] Laursen | Improved implicit integrators for transient impact problemsgeometric admissibility within the conserving framework[END_REF]. Applied to Discretization 2.4.4, this procedure does not improve signicantly the solution on our second benchmark. In [START_REF] Deuhard | A contact-stabilized Newmark method for dynamical contact problems[END_REF], the authors add to Discretization 2.4.5 a stabilization procedure (Discretization 2.4.6); see also [START_REF] Klapproth | Consistency results for the contact-stabilized Newmark method[END_REF] for further developments on this approach. Discretization 2.4.6 (stabilized Newmark [START_REF] Deuhard | A contact-stabilized Newmark method for dynamical contact problems[END_REF])

1. Seek u n+1 pred ∈ R N d and λ n+1 ∈ R Nc such that M u n+1 pred = M u n + ∆tM un , (2.42) 
Gu n+1 pred ≥ 0, λ n+1 ≥ 0, T λ n+1 Gu n+1 pred = 0.
(2.43) 

2. Seek u n+1 , un+1 , ün+1 int , ün+1 con ∈ R N d ,
u n+1 = u n+1 pred + ∆t 2 2 ün+2β int + ∆t 2 2 ün+1 con .
(2.44)

The additional step required by Discretization 2.4.6 is not expensive compared with the main step, especially if the mass matrix is lumped. With this scheme, the contact pressure is now almost free of oscillations (Figure 2.12). Although the impact law is not fullled, there holds that if

G i u n+1 = G i u n+1 pred = 0, then G i ün+2β int + G i ün+1 con = 0.
Energy losses still remain sizeable in the second benchmark (Figure 2.13).

Semi-explicit schemes

Now, we try to discretize the elastodynamics part of the problem with an explicit scheme, such as the central dierence scheme. It is not possible to enforce an explicit exact contact condition. Nevertheless, the contact condition can be enforced implicitly as in [START_REF] Paoli | A numerical scheme for impact problems. I. The onedimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF]. Discretization 2.4.7 (Central dierences-implicit contact [START_REF] Paoli | A numerical scheme for impact problems. I. The onedimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF]

) Seek u n+1 ∈ R N d and r n+1 ∈ R Nc such that M u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n + T Gr n+1 , (2.45 
)

Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0.
( With a lumped mass matrix, this scheme is equivalent to that proposed in [START_REF] Carpenter | Lagrange constraints for transcient nite element surface contact[END_REF] where the contact condition is enforced by a projection step in the following semi-explicit way (observe that the rst step is explicit):

1. Seek u n+1 ∈ R N d such that M u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n .
(2.47)

2. If G i u n+1 < 0, then u n+1 is modied so that G i u n+1 = 0.
It is easy to check that with Discretization 2.4.7, the acceleration at the contact boundary vanishes during a contact phase (after two steps). Indeed, if

G i u n+1 = G i u n = G i u n-1 = 0, then G i ün = G i u n+1 -2u n +u n-1 ∆t 2 = 0.
Consequently, there are (almost) no spurious oscillations (Figure 2.14). The shifted energy balance reads

E n+1 0, 1 2 -E n 0, 1 2 = T r n+2 + r n+1 2 (Gu n+1 -Gu n ) + T F n+1 + F n 2 (u n+1 -u n ).
Energy losses, although moderate, aect the quality of the solution after some impacts (Figure 2.15). In 1D, the convergence of the discrete solutions to the continuous solution, provided a stability condition is met (the same as in the linear case), has been established in [START_REF] Schatzman | Numerical approximation of a wave equation with unilateral constraints[END_REF]. The convergence of the discrete solutions to a semi-discrete solution has been proven in [START_REF] Paoli | A numerical scheme for impact problems. I. The onedimensional case[END_REF][START_REF] Paoli | A numerical scheme for impact problems. II. The multidimensional case[END_REF].

-0. 

Discretizations with penalty contact condition

In this part we combine standard nite elements in space and a penalty approximation of the contact condition (the penalty parameter is denoted by ). Then, the semi-discrete problem is a mere system of ODEs. (2.48) with the initial conditions u(0) = u 0 and u(0) = v 0 . Problem 2.2 being a system of ODEs with a Lipschitz continuous right-hand side, has one and only one solution, which is furthermore twice dierentiable in time.

Problem 2.2. Seek a displacement

u : [0, T ] → R N d such that, ∀t ∈ [0, T ], M ü(t) + Ku(t) = f (t) + T GR (Gu(t)),

Implicit schemes

To begin with, we discretize Problem 2.2 with an implicit Newmark scheme. Discretization 2.5.

1 (Newmark) Seek u n+1 , un+1 , ün+1 ∈ R N d , such that M ün+1 + Ku n+1 = F n+1 + T GR (Gu n+1 ),
(2.49)

u n+1 = u n + ∆t un + ∆t 2 2 ün+2β , (2.50 
)

un+1 = un + ∆tü n+γ .
(2.51)

We observe that the penalty formulation tends to reduce spurious oscillations (Figure 2.16). Nevertheless, the oscillations grow with 1/ (Figure 2.17). This is not surprising since the penalty contact condition tends to the exact contact condition when 1/ tends to innity. If the oscillations are too large, stabilization procedures can be used (see for instance the procedure described in [2]). With the addition of a penalty term, the Newmark scheme (trapezoidal rule) no longer conserves the energy. The energy losses are moderate but not so marginal (Figure 2.18); the energy behavior is poorer when 1/ grows. In [2,[START_REF] Hauret | Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact[END_REF], the authors proposed a discretization of the penalty term which enables to recover energy control by conserving an augmented energy (Discretization 2.5.2). It is based on a midpoint scheme. On our benchmark problems, it does not yield signicantly better results. 

M ün+

1 2 + Ku n+ 1 2 = F n+ 1 2 + T G R (Gu n+1 , Gu n ), (2.52) 
u n+1 = u n + ∆t un+ 1 2 ,
(2.53)

un+1 = un + ∆tü n+ 1 2 , (2.54) 
where

( R (Gu n+1 , Gu n )) i =      1 2 ((G i u n+1 ) -) 2 -((G i u n ) -) 2 G i u n+1 -G i u n if G i u n = G i u n+1 0 if G i u n = G i u n+1 ≥ 0 1 2 (Gu n+1 + Gu n ) if G i u n = G i u n+1 < 0 (2.55)
Dening the augmented energy

E n pen := E n + 1 2 ((Gu n ) -) 2 ,
there holds

E n+1 pen -E n pen = T F n+ 1 2 (u n+1 -u n ).
Since E n pen is an upper bound of E n , controlling E n pen allows one to control E n .

Explicit schemes

We can also use an explicit scheme for Problem 2.2.

Discretization 2.5.

3 (Central dierences) Seek u n+1 ∈ R N d such that M u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n + T GR (Gu n ).
(2.56)

The results are similar to those obtained with the implicit approach. Unfortunately, the penalty term stiens the system of ODEs, which limits the stability domain of the schemes. More precisely, it introduces a constraint on the time step of the form ∆t ≤ O( √ ρ ∆x c ), where ∆x c is the mesh size near the contact boundary [START_REF] Belytschko | Contact-impact by the pinball algorithm with penalty and lagrangian methods[END_REF].

Discretizations with contact condition in velocity

In this part, standard nite elements in space are combined with an approximation of the contact condition involving the velocity.

Problem 2.3. Seek a displacement u : [0, T ] → R N d and a contact pressure r : [0, T ] → R Nc such that, for almost every t ∈ [0, T ], M ü(t) + Ku(t) = f (t) + T Gr(t), (2.57) G u(t) ≥ 0, r(t) ≥ 0, T r(t)G u(t) = 0, (2.58)
with the initial conditions u(0) = u 0 and u(0) = v 0 .

With this contact condition in velocity, the semi-discrete problem is much simpler than (2. [START_REF] Bui | Mécanique de la rupture fragile[END_REF])-(2.20). Problem 2.3 is still a system of ODEs under unilateral constraints, but the constraint involves now the velocity instead of the displacement. The general theory developed in [START_REF] Brézis | Sur certains problèmes unilatéraux hyperboliques[END_REF][START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF] applies to Problem 2.3. The solution u is unique [START_REF] Brézis | Sur certains problèmes unilatéraux hyperboliques[END_REF]. Furthermore, u is continuous and u is dierentiable in time almost everywhere, so that the equations have a sense at almost every time. The time discretization has been extensively studied in [START_REF] Glowinski | Numerical analysis of variational inequalities[END_REF].

Unfortunately, the contact condition in velocity is not equivalent to the Signorini condition as discussed in Section 2.2.3. The strategy adopted is the following: if a node satises the noninterpenetration condition, then at the next iteration no constraint is enforced on this node; if a node breaks the non-interpenetration condition, then at the next iteration the contact condition in velocity will be applied to this node. This approach allows for slight interpenetration. At each time step, we dene the matrix G n whose rows G n i are

G n i = (0 . . . 0) if G i u n ≥ 0 G i if G i u n < 0 (2.59)
This approach based on a contact condition in velocity has also been widely used in rigid-body dynamics with impacts (see, e.g., [START_REF] Stewart | Rigid-body dynamics with friction and impact[END_REF]).

Implicit schemes

A midpoint scheme with contact condition in velocity has been proposed in [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF]; see also [START_REF] Khenous | Comparison of two approaches for the discretization of elastodynamic contact problems[END_REF] for the contact condition. Discretization 2.6.1 (Midpoint [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF]) Seek u n+1 , un+1 ∈ R N d , and

r n+1 ∈ R Nc such that M ün+ 1 2 + Ku n+ 1 2 = F n+ 1 2 + T G n r n+ 1 2 ,
(2.60)

G n un+ 1 2 ≥ 0, r n+ 1 2 ≥ 0, T r n+ 1 2 G n un+ 1 2 = 0, (2.61 
)

u n+1 = u n + ∆t un+ 1 2 ,
(2.62)

un+1 = un + ∆t ün+ 1 2 .
(2.63)

An interesting feature of this scheme is to be energy-conserving,

E n+1 -E n = T F n+ 1 2 (u n+1 -u n ).
The contact pressure does not perturb the structure despite its oscillations (Figure 2 

Semi-explicit schemes

A semi-explicit scheme with contact condition in velocity has been proposed in [START_REF] Belytschko | Contact-impact by the pinball algorithm with penalty and lagrangian methods[END_REF]. Discretization 2.6.2 (Central dierences [START_REF] Belytschko | Contact-impact by the pinball algorithm with penalty and lagrangian methods[END_REF]

) Seek u n+1 ∈ R N d and r n+1 ∈ R Nc such that M u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n + T G n r n+1 , (2.64) 
G n (u n+1 -u n ) ≥ 0, r n+1 ≥ 0, T r n+1 G n (u n+1 -u n ) = 0.
(2.65) Numerical simulations suggest that the stability condition of the central dierence scheme is not tightened by the contact condition. 

Discretizations with modied mass

In the previous three parts, we have considered various ways of enforcing the contact condition. Here we describe methods based on a modication of the mass matrix. Such methods are thus compatible with any enforcement of the contact condition. For brevity, we restrict ourselves to an exact enforcement of the contact condition. In the modied mass matrix, the entries associated with the normal displacements at the contact boundary are set to zero. The motivation for this modication is very simple: if the mass is removed, the inertial forces and the oscillations are eliminated. This approach has been introduced in [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. 

Set N * d := N d -N c .
For the sake of simplicity, suppose that the degrees of freedom associated with normal displacements at the contact boundary are numbered from N * d + 1 to N d . The modied mass matrix is dened as

M * = M * * 0 0 0 .
Many choices are possible to build the block M * * . In [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF], the authors devise various methods to preserve some features of the standard mass matrix (the total mass, the center of gravity, and the moments of inertia); see also [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF] for further results. We can also simply keep the corresponding block in the standard mass matrix (and this is what we will do in our numerical simulations below). The modied problem reads

M * ü(t) + Ku(t) = F (t) + T Gr(t),
(2.66)

Gu(t) ≥ 0, r(t) ≥ 0, T r(t)Gu(t) = 0.
(2.67)

If we set u(t) = u * (t) u c (t) , K = K * * K * c K c * K cc , F (t) = F * (t) F c (t)
, and G = (0 G c ), then equations (2.66) and (2.67) can be recast as

M * * ü * (t) + K * * u * (t) + K * c u c (t) = F * (t), (2.68) 
K c * u * (t) + K cc u c (t) = F c (t) + T G c r(t), (2.69) 
G c u c (t) ≥ 0, r(t) ≥ 0, T r(t)G c u c (t) = 0.
(2.70)

For given t and u * (t), there exists one and only one u c (t) satisfying (2.69) and (2.70). Denote by

Q : [0, T ] × R N * d → R Nc the nonlinear map such that u c (t) = Q(t, u * (t)). Problem 2.4. Seek a displacement u : [0, T ] → R N d such that, for all t ∈ [0, T ], M * * ü * (t) + K * * u * (t) + K * c Q(t, u * (t)) = F * (t), (2.71) 
u c (t) = Q(t, u * (t)), (2.72) 
with the initial conditions u(0) = u 0 and u(0) = v 0 .

The operator Q(t, •) is Lipschitz continuous at each time t, so that equation (2.71) is a Lipschitz system of ODEs. Therefore, it has a unique solution u * , twice dierentiable in time. Owing to (2.72), u c is dierentiable in time almost everywhere. The detailed mathematical analysis of the space semi-discrete modied mass formulation can be found in [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF][START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF]. A result of convergence of the space semi-discrete solutions to a continuous solution is proven for viscoelastic materials in [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF].

Remark 2.5. In contrast to the semi-discrete problem with standard mass matrix, the semidiscrete problem with modied mass matrix does not require an impact law and conserves a modied energy where the mass modication is accounted for in the kinetic energy [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF].

Implicit schemes

A HHT-Newmark scheme can be used for Problem 2.4.

Discretization 2.7.1 (HHT-Newmark [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF])

Seek u n+1 ∈ R N d , un+1 * ∈ R N d and ün+1 * ∈ R N d such that M * * ün+1 * + K * * u n+1+α * + K * c Q(t n+1+α , u n+1+α * ) = F n+1+α * , (2.73) 
u n+1+α c = Q(t n+1+α , u n+1+α * ), (2.74) 
u n+1 * = u n * + ∆t un * + ∆t 2 2 ün+2β * , (2.75) 
un+1 * = un * + ∆tü n+γ * .
(2.76)

The equations can be recast as a linear complementarity problem,

M * ün+1 + Ku n+1+α = F n+1+α + T Gr n+1 , (2.77 
)

Gu n+1 ≥ 0, r n+1 ≥ 0, T r n+1 Gu n+1 = 0, (2.78) 
u n+1 = u n + ∆t un + ∆t 2 2 ün+2β , (2.79) 
un+1 = un + ∆tü n+γ .

(2.80)

In spite of the modication of the mass matrix, the problem is well posed. In practice, we use this set of equations to compute the solution. As expected, the large oscillations have disappeared during the contact phase (Figure 2.23). The energy behavior is also very satisfactory (Figure 2.24), since there holds

E n+1 * -E n * = T r n+1 + r n 2 (Gu n+1 -Gu n ) + T F n+1 + F n 2 (u n+1 -u n ),
where the modied energy E n * has the same expression as E n , except that M is replaced by M * . The displacement after several impacts is quite satisfactory, although not as accurate as with Discretization 2.5.1 (Figure 2.24). 

Semi-explicit schemes

We can discretize Problem 2.4 with an explicit scheme, such as the central dierence scheme. This yields a semi-explicit scheme. Discretization 2.7.2 (Central dierences [START_REF] Doyen | A semi-explicit modied mass method for dynamic contact problems[END_REF]

) Seek u n+1 ∈ R N d such that M * * u n+1 * -2u n * + u n-1 * ∆t 2 + K * * u n * + K * c Q(t n , u n * ) = F n * ,
(2.81)

u n+1 c = Q(t n+1 , u n+1 *
).

(2.82)

In practice, the equations are solved as follows:

1. Seek u n+1 * ∈ R N d such that M * * u n+1 * -2u n * + u n-1 * ∆t 2 + K * * u n * + K * c u n c = F n * .
(2.83)

2. Seek u n+1 c ∈ R N * d and r n+1 ∈ R Nc such that K c * u n+1 * + K cc u n+1 c = F n+1 c + T G c r n+1 , (2.84) 
G c u n+1 c ≥ 0, r n+1 ≥ 0, T rG c u n+1 c = 0.
(2.85)

The rst step is explicit, and the mass matrix M * * can be lumped. The second step is a constrained problem on the variable u n+1 c only. Discretization 2.7.2 amounts to

M * u n+1 -2u n + u n-1 ∆t 2 + Ku n = F n + T Gr n , Gu n ≥ 0, r n ≥ 0, T r n Gu n = 0,
and yields the modied shifted energy balance

E n+1 0, 1 2 * -E n 0, 1 2 * = T r n+1 + r n 2 (Gu n+1 -Gu n ) + T F n+1 + F n 2 (u n+1 -u n ),
where E n 0, 1 2 * has the same expression than E n 0, 1 2 , except that M is replaced by M * . We observe numerically that the stability condition on the time step is the same as in the linear case. Compared with Discretizations 2.4.7 and 2.6.2, the semi-explicit modied mass method shows a better energy behavior and a better solution (Figure 2.25). Additional tests show that the amplitude of energy oscillations decreases at least linearly with ∆t at xed Courant number. Results on the rst benchmark are similar to those with the implicit scheme.

A 2D benchmark

We consider the bounces of an elastic disk against a rigid ground (Figure 2.26). The reference conguration is the undeformed disk touching the ground. The disk is dropped, undeformed, with a zero initial velocity, under a gravity acceleration g 0 , the displacement of its center being initially h 0 . The disk has radius R. The material is supposed to be linear elastic (plane strain) with a Young modulus E, a Poisson ratio ν, and a mass density ρ. The contact boundary Γ c is the lower half part of the disk boundary. We dene the contact condition using the normal vector to the ground. The parameters are E = 4000, ν = 0.2, ρ = 100, g 0 = 5, R = 1, h 0 = 0.1. The disk is meshed with triangles (100 edges on the boundary, 1804 triangles, 953 vertices, see Figure 2.26) and we use linear nite elements. The number of nodes lying on the contact boundary is 51. Simulations are performed using FreeFem++ [START_REF] Hecht | Freefem++[END_REF]. The Courant number is dened as ν c := c d ∆x ∆t where c d = 20 3 is the speed of dilatational waves and ∆x = 0.0628 the length of boundary edges. Results are presented for the implicit Discretizations 2.4.6, 2.6.1, and 2.7.1 (Figure 2.27) and for the semi-explicit Discretizations 2.4.7 and 2.7.2 (Figure 2.28). For the semi-explicit schemes, the observed stability condition is ν c ≤ 0.65. In all cases, the trajectory of the disk center is rather well captured, with some discrepancies appearing after ve bounces. The energy behaviors remain consistent with those observed in 1D. Note that the present choice of parameters is somewhat severe for energy behavior because of the relatively high impact velocity and low Young modulus. 

Conclusions

In this work, we have reviewed various time-integration schemes for the nite element dynamic Signorini problem. We have classied the schemes into four groups, the rst three depending on the way the contact condition is enforced while the fourth group corresponds to modifying the mass matrix at the contact boundary. We have assessed in detail the various schemes on two 1D benchmarks, both with analytical solution. The second benchmark is new and allows one to study the energy behavior within multiple impacts. Some selected schemes with favorable properties have been further compared on a 2D benchmark. All in all, we believe that the schemes with modied mass matrix, either implicit or semi-explicit, oer attractive properties, including ease of implementation, robustness, and relatively rm mathematical ground. The semi-explicit scheme with modied mass is new and stems from the combination of two existing ideas. We hope that the present results will stimulate further interest in the analysis and testing of these schemes.

Convergence of a modied mass method for the dynamic Signorini problem

This chapter has been published in Communications in Mathematical Sciences [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF].

Introduction

The dynamic Signorini problem models the innitesimal deformations of a solid body which can come into contact with a rigid obstacle. Many textbooks dealing with the mathematical theory of contact mechanics have appeared recently; see, e.g., [START_REF] Eck | Unilateral contact problems[END_REF][START_REF] Kravchuk | Variational and quasi-variational inequalities in mechanics[END_REF][START_REF] Sofonea | Analysis and approximation of contact problems with adhesion or damage[END_REF] and references therein. Usual space-time discretizations for this problem combine nite element space approximation and time-stepping schemes. In this framework, most methods exhibit spurious oscillations and/or poor behavior in long time. The modied mass method proposed by Khenous, Laborde and Renard in [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF] is a space semi-discrete formulation overcoming these two diculties: the mass term is modied (the mass associated with the nodes at the contact boundary is set to zero), and the contact condition is enforced by a variational inequality. Owing to the mass modication, inertial forces cannot trigger spurious oscillations at the boundary. Furthermore, the system conserves an energy, which ensures a good behavior in long time.

The purpose of the present work is to strengthen the mathematical foundations of the modied mass method. Our main result is the convergence, up to a subsequence, of the space semi-discrete solutions to a solution of the continuous dynamic Signorini problem in the case of a visco-elastic material. In the elastic case, that is, in the absence of viscosity, it is already known [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF] that the space semi-discrete problem is equivalent to a Lipschitz system of ordinary dierential equations (ODEs) and is, therefore, well-posed (such a result cannot be established when using a standard mass term). However, the existence of a continuous solution is still an open problem in the elastic case, and the convergence proof of the space semi-discrete solutions is still out of reach. Instead, in the visco-elastic case, the existence of a continuous solution has been proven using a penalty method [41, 4.2.2]; the uniqueness of the solution is still an open problem. Our convergence proof takes a fairly standard path, namely a priori estimates on the space semi-discrete solutions and compactness arguments, but the mass modication at the contact boundary requires special care when passing to the limit. In both cases (penalty method or nite-dimensional variational inequality), the a priori estimate on the velocity delivered by the viscosity term plays a crucial role in the proof; as such, the argument cannot be extended to the vanishing viscosity limit. Incidentally, the present convergence proof provides an alternate, albeit more complex, way to prove the existence of a continuous solution.

Continuous formulation

Consider the innitesimal deformations of a body occupying a reference domain

Ω ⊂ R d (d = 2 or d = 3) during a time interval [0, T ].
We use the following assumptions and notation. The boundary of the domain Ω is piecewise smooth, so that its outward normal, n, is well dened almost everywhere at the boundary. The material is linear visco-elastic (KelvinVoigt model). The tensors of elasticity and viscosity, denoted by A and B respectively, are symmetric positive denite and taken to be constant for simplicity. The mass density, denoted by ρ : Ω → R, is bounded by below by a constant ρ 0 > 0. An external load f is applied to the body. The boundary ∂Ω is partitioned into three disjoint open subsets Γ D , Γ N and Γ c (the measure of Γ D is positive). Homogeneous Dirichlet and Neumann conditions are prescribed on Γ D and Γ N , respectively. On

Γ c , a unilateral contact condition is imposed. Let u : (0, T ) × Ω → R d , (u) : (0, T ) × Ω → R d,d and σ(u) : (0, T ) × Ω → R d,d
be the displacement eld, the linearized strain tensor and the stress tensor, respectively. Let u n := u |∂Ω • n and σ nn := n • σ |∂Ω • n respectively denote the normal displacement and the normal stress on ∂Ω. At the initial time, the displacement and velocity elds are u 0 and v 0 . Denoting time-derivatives by dots, the strong formulation of the dynamic Signorini problem is

ρü -div σ = f, σ = A : + B : ˙ , = 1 2 (∇u + ∇u T ) in Ω × (0, T ), (3.1) 
u n ≤ 0, σ nn ≤ 0, σ nn u n = 0 on Γ c × (0, T ), (3.2) 
σ • n = 0 on Γ N × (0, T ), u = 0 on Γ D × (0, T ), (3.3) 
u(0) = u 0 , u(0) = v 0 in Ω. (3.4) Consider the functional spaces V = H 1 0 (Ω, Γ D ) d = {v ∈ H 1 (Ω) d ; v = 0 a.e. on Γ D } and M = L 2 (Ω) d , and the closed convex cone K = {v ∈ V ; v |∂Ω •n ≤ 0 a.e. on Γ c }.
The space M and its topological dual space are identied. Standard notation is used for spaces of time-dependent functions valued in a Banach space B, e.g., C k ([0, T ]; B) and so on; see [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF][START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF]. We assume the following regularity on the data:

f ∈ C 0 ([0, T ]; M ), ρ ∈ L ∞ (Ω), u 0 ∈ K and v 0 ∈ M .

Dene the following bilinear and linear forms

m : M × M (v, w) -→ Ω ρv • w, (3.5) a : V × V (v, w) -→ Ω (v) : A : (w), (3.6) b : V × V (v, w) -→ Ω (v) : B : (w), (3.7) l : [0, T ] × V (t, v) -→ Ω f (t) • v. (3.8)
Owing to Korn's rst inequality and the assumptions on A and B, the bilinear forms a and b are V -elliptic. We consider the following variational formulation of equations (3.1)-(3.4) (see [START_REF] Eck | Unilateral contact problems[END_REF] for its derivation).

Problem 3.1. Seek u ∈ L 2 (0, T ; K) ∩ H 1 (0, T ; V ) ∩ C 1 ([0, T ]; M ) such that for all v ∈ L 2 (0, T ; K) ∩ H 1 (0, T ; M ), T 0 -m( u, v -u) + a(u, v -u) + b( u, v -u) dt + m( u(T ), v(T ) -u(T ))- m(v 0 , v(0) -u 0 ) ≥ T 0 l(t, v -u)dt.
(3.9) Remark 3.1. Since the space H 1 (0, T ; M ) is continuously imbedded in C 0 ([0, T ]; M ), the quantities v(0) and v(T ) are well dened in (3.9).

Semi-discrete formulation

For the sake of simplicity, we assume that in 2D (resp., in 3D) the domain Ω is a polygon (resp., a polyhedron) and the contact boundary Γ c is a straight line (resp., a polygon). The outward normal to Γ c is then constant and is denoted by n c . We also suppose that Γ D ∩ Γ c = ∅. Let (T k ) k∈N be a quasi-uniform family of simplicial meshes over Ω (triangles in 2D and tetrahedra in 3D). The meshes are possibly unstructured, but supposed to be compatible with the partition of the boundary. The notation A B means that A ≤ cB with a constant c independent of k. The space V is approximated by the usual conforming space of linear nite elements, 

V k = {v k ∈ C 0 (Ω) d ; v k|T ∈ ( ¶ 1 ) d , ∀T ∈ T k , and v k = 0 on Γ D }. ( 3 
N * k the comple- mentary of N c k in N k . We set V * k = span({φ i,k e α } i∈N * k ,1≤α≤d ) and V c k = span({φ i,k e α } i∈N c k ,1≤α≤d ).
The space V k is clearly the direct sum of V * k and V c k so that any discrete function v k ∈ V k can be decomposed as

v k = v * k + v c k with v * k ∈ V * k , v c k ∈ V c k .
(3.11)

Let T c k be the set of elements such that at least one vertex belongs to Γ c , and let T * k be its complement in T k . We set

Ω c k = int ∪ T ∈T c k T and Ω * k = int ∪ T ∈T * k T (see Fig. 3.1). We observe that V * k is the subset of functions in V k that vanish on Γ c , while V c k is the subset of functions in V k that vanish in Ω * k . The constraint set K is approximated by the set K k := {v k ∈ V k ; v k • n c ≤ 0 on Γ c } = {v k ∈ V k ; v k (x i,k ) • n c ≤ 0, ∀i ∈ N c k }.
As mentioned in the introduction, the key idea is to remove the mass associated with the nodes at the contact boundary. We consider an approximate mass term m k such that

Ω * k Γ D Γ c Ω c k Γ * k Fig. 3.1.
Decomposition of the domain Ω; bullets (resp., circles) indicate nodes indexed by elements of the set

N * k (resp., N c k ). m k (φ i,k e α , w k ) = m k (w k , φ i,k e α ) = 0, ∀i ∈ N c k , ∀α ∈ {1, .., d}, ∀w k ∈ V k .
(3.12)

Many choices are possible to build the rest of the mass term. In [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF], the authors devise various methods to preserve some features of the standard mass term (the total mass, the center of gravity and the moments of inertia). Here we will focus for simplicity on the choice

m k : V k × V k (v k , w k ) -→ Ω * k ρv k • w k . (3.13) 
In the elastic case, owing to the property (3.12), the semi-discrete problem reduces to a system of ODEs. To keep this property in the visco-elastic case also, we also modify the viscosity term at the boundary by setting

b k : V k × V k (v k , w k ) -→ Ω * k (v k ) : B : (w k ). (3.14) 
It is also convenient to modify the external load term at the boundary as

l k : [0, T ] × V k (t, v k ) -→ Ω * k f (t) • v k . (3.15) 
The modication of the viscosity and external load terms is convenient from a theoretical viewpoint. In practice, it is probably not needed. Owing to the above denitions, there holds for all

v c k ∈ V c k and all w k ∈ V k , m k (v c k , w k ) = m k (w k , v c k ) = b k (v c k , w k ) = b k (w k , v c k ) = l k (t, v c k ) = 0.
(3.16)

The approximate initial values u 0 k and v 0 k are chosen such that u

0 k ∈ K k , v 0 k ∈ V k , and u 0 k → u 0 in V, v 0 k → v 0 in M. (3.17)
If the initial data are continuous, such values can be built by Lagrange interpolation. We now formulate the space semi-discrete problem and examine its properties.

Problem 3.2. Seek u k ∈ C 0 ([0, T ]; K k ) such that u * k ∈ C 2 ([0, T ]; V * k ) and for all v k ∈ K k and all t ∈ [0, T ], m k (ü * k , v k -u k ) + a(u k , v k -u k ) + b k ( u * k , v k -u k ) ≥ l k (t, v k -u k ), (3.18) 
with the initial conditions u *

k (0) = u 0 * k and u * k (0) = v 0 * k in Ω.
Proposition 3.1. (i) The variational inequality (3.18) is equivalent to

m k (ü * k , v * k ) + a(u * k + q k (u * k ), v * k ) + b k ( u * k , v * k ) = l k (t, v * k ), ∀v * k ∈ V * k , ∀t ∈ [0, T ], (3.19) 
u c k = q k (u * k ), ∀t ∈ [0, T ], (3.20) 
where

q k : V * k → V c k is a Lipschitz function. (ii) There exists a unique solution u k to Problem 3.2. Moreover, u k ∈ W 1,∞ (0, T ; V k ). (iii) The value of u k at the initial time is u k (0) = u 0 * k + q k (u 0 * k ) and u k (0) V u 0 k V . (iv) For all t 0 ∈ [0, T ],
the following energy balance holds,

E k (u k (t 0 )) -E k (u k (0)) = t 0 0 l k (t, u * k (t)) -b k ( u * k (t), u * k (t)) dt, (3.21) 
where

E k (v k ) = 1 2 (m k ( vk * , vk * ) + a(v k , v k )).
Proof. (i) The variational inequality (3.18) is clearly equivalent to the following system

m k (ü * k , v * k ) + a(u k , v * k ) + b k ( u * k , v * k ) = l k (t, v * k ), ∀v * k ∈ V * k , ∀t ∈ [0, T ], (3.22) 
a(u k , v c k -u c k ) ≥ 0, ∀v c k ∈ V c k ∩ K k , ∀t ∈ [0, T ].
(3.23)

Consider (3.23). If we x u * k ∈ V *
k , there exists a unique u c k satisfying the variational inequality (3.23) (indeed it is equivalent to the minimization of a strictly convex functional over a convex set). Denote 

q k : V * k → V c k to be the map such that for a given u * k ∈ V * k , u c k = q k (u * k ) is
k . Let v * k , w * k ∈ V * k . Set v c k = q k (v * k ) and w c k = q k (w * k ). Owing to (3.23), it follows that a(v c k -w c k , v c k -w c k ) ≤ a(v * k -w * k , w c k -v c k ).
The bilinear form a being continuous and elliptic, a straightforward calculation yields

v c k - w c k V v * k -w * k V , which proves that q k is Lipschitz continuous.
(ii) The system of ODEs (3.19) is globally Lipschitz. Owing to the CauchyLipschitz theorem, there exists a unique solution

u * k ∈ C 2 (0, T ; V * k ) satisfying the initial conditions of Problem 3.2. From (3.20), u k = u * k + u c k = u * k + q k (u * k ). Therefore, Problem (3.
2) has a unique solution u k ∈ C 0 (0, T ; K k ). Rademacher's theorem [START_REF] Evans | Measure theory and ne properties of functions[END_REF] states that in nite dimension a Lipschitz function is dierentiable almost everywhere; hence,

u k ∈ W 1,∞ (0, T ; V k ). (iii) The value of u k at the initial time is u k (0) = u 0 * k + q k (u 0 * k ). Since u 0 k ∈ K k , we can apply (3.23) with v c k = u 0c k , so that a(u k (0), u 0c k -u c k (0)) ≥ 0. Since u * k (0) = u 0 * k , a(u k (0), u 0 k -u k (0)) = a(u k (0), u 0c k -u c k (0)) ≥ 0. Hence, u k (0) V u 0 k V .
(iv) Without loss of generality, we assume that e 1 = n c . Recalling that the family

{φ i,k e α } i∈N c k ,1≤α≤d
is a basis of V c k , we decompose u c k on this basis yielding

u c k = i∈N c k d α=1 u α k,i φ k,i e α .
The normal and tangential components of u c k at the node indexed by i ∈ N c k are given by

N k,i u c k = u 1 k,i φ k,i n c and T k,i u c k = d α=2 u α k,i φ k,i e α , so that u c k = i∈N c k (T k,i u c k + N k,i u c k ). Owing to (3.23), a(u k , T k,i uc k ) = 0. Moreover, dene C 0 i := {t ∈ [0, T ]; u 1 k,i = 0} and C - i := {t ∈ [0, T ]; u 1 k,i < 0}.
The sets C 0 i and C - i are respectively closed and open, and they form a partition of [0, T ]. On 

int(C 0 i ), N k,i uc k = 0. Owing to (3.23), a(u k , N k,i uc k ) = 0 on C - i . Finally, a(u k , N k,i uc k ) = 0 on int(C 0 i ) ∪ C - i ,
m k (ü * k , u * k ) + a(u k , uk ) + b k ( u * k , u * k ) = l k (t, u * k ), a.e. on ]0, T [. (3.25) 
The energy balance (3.21) readily follows by integrating in time. The equality holds for all time since the energy is continuous in time.

Convergence of the semi-discrete solutions

This section is organized as follows. First we establish a priori estimates on the space semidiscrete solutions (Lemma 3.3). Owing to these estimates and using compactness arguments, we extract a weakly convergent subsequence (Lemma 3.4). Then we check that this weak limit is a solution of the continuous problem (Theorem 3.1). In the sequel, to alleviate the notation, we do not renumber subsequences.

We rst recall two useful results on time-dependent functional spaces; for their proof, see respectively [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF] and [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF]III.2]. For two Banach spaces B 1 and

B 2 , let W(B 1 , B 2 ) := {v : (0, T ) → B 1 ; v ∈ L 2 (0, T ; B 1 ), v ∈ L 2 (0, T ; B 2 )}, equipped with the norm v → v L 2 (0,T ;B 1 ) + v L 2 (0,T ;B 2 ) . Lemma 3.1 (Lions-Magenes). Let V 1 ⊂ V 2 be two Hilbert spaces. Assume that V 1 is contin- uously imbedded in V 2 . Then, W(V 1 , V 2 ) is continuously imbedded in C 0 ([0, T ]; [V 1 , V 2 ] 1 2
), where

[V 1 , V 2 ] 1 2
is the interpolation space of exponent 1 2 .

Lemma 3.2 (Aubin). Let B 1 ⊂ B ⊂ B 2 be three reexive Banach spaces. Assume that B 1 is

compactly imbedded in B and B is continuously imbedded in B 2 . Then, W(B 1 , B 2 ) is compactly imbedded in L 2 (0, T ; B).
Owing to the modications in the space semi-discrete formulation, a priori estimates are obtained only on restrictions of uk and ük to

Ω * k . Let Γ * k := int(∂Ω * k ∩ ∂Ω c k ) (see Fig. 3.1) and set W = H 1 0 (Ω, Γ D ∪ Γ c ) d . Dene the cut-o operators χ k : M → M such that χ k v = v on Ω * k , χ k v = 0 on Ω c k . (3.26) Of course, χ k v M = v |Ω * k M (Ω * k )
. Furthermore, for any node index i ∈ N c k , pick a node x i * ,k of the same element as x i,k and lying on Γ * k , and dene the operator

ξ k : V k → V k such that ξ k v k = v k on Ω * k , ∀i ∈ N c k , ξ k v k (x i,k ) = ξ k v k (x i * ,k ).
(3.27)

Using standard nite element techniques (details are skipped for brevity) yields

ξ k v k V v k|Ω * k V (Ω * k ) .
Lemma 3.3. Let (u k ) k∈N be the sequence of solutions to Problem 3.2. Then, the following estimates hold:

u k C 0 ([0,T ];V ) + ξ k u k H 1 (0,T ;V ) + χ k uk C 0 ([0,T ];M ) + χ k ük L 2 (0,T ;W ) 1.
(3.28)

Proof. (i) Let t 0 ∈ [0, T ].
The energy balance (3.21) implies

χ k uk (t 0 ) 2 M + u k (t 0 ) 2 V + t 0 0 uk|Ω * k (t) 2 V (Ω * k ) dt t 0 0 f (t) M uk|Ω * k (t) M (Ω * k ) dt + u k (0) 2 V + χ k uk (0) 2 M .
(3.29)

Since u 0 k → u 0 in V and v 0 k → v 0 in M , we obtain u 0 k V u 0 V and v 0 k M v 0 M . Hence, u k (0) V u 0 V and χ k uk (0) M v 0
M . Then, owing to (3.29) and using

• M (Ω * k ) • V (Ω * k )
together with Young's inequality yields

χ k uk (t 0 ) 2 M + u k (t 0 ) 2 V + t 0 0 uk|Ω * k (t) 2 V (Ω * k ) dt t 0 0 f (t) 2 M dt + u 0 2 V + v 0 2 M .
The rst three estimates in (3.28) are readily deduced from this inequality.

(ii) Let v ∈ S W := {v ∈ W ; v V = 1}.
The bilinear form m denes a scalar product on

V * k . Let π * k v be the m-orthogonal projection of v onto V * k .
The mesh family being quasi-uniform and using standard nite element techniques (see, e.g., [44, 1.6.3]) yields the following stability property:

π * k v V v V .
(3.30)

Owing to (3.19),

ρχ k ük (t), v W ,W = m(χ k ük (t), v) = m(χ k ük (t), π * k v) = m k (χ k ük (t), π * k v) = l k (t, π * k v) -a(u k , π * k v) -b k ( uk|Ω * k , π * k v).
Using the stability property (3.30), it is inferred that

ρχ k ük (t), v W ,W f (t) M π * k v M + u k V π * k v V + uk|Ω * k V (Ω * k ) π * k v V f (t) M + u k V + uk|Ω * k V (Ω * k ) .
Using the denition of the norm W and since ρ is uniformly bounded from below,

χ k ük (t) W = sup v∈S W | χ k ük (t), v W ,W | f (t) M + u k (t) V + uk|Ω * k (t) V (Ω * k ) .
Hence,

χ k ük L 2 (0,T ;W ) f L 2 (0,T ;M ) + u k L 2 (0,T ;V ) + uk|Ω * k L 2 (0,T ;V (Ω * k )) .
This proves the fourth estimate in (3.28).

Lemma 3.4. There exists

u ∈ L 2 (0, T ; K) ∩ H 1 (0, T ; V ) ∩ C 1 ([0, T ]; M ) such that, up to a sub- sequence, u k u weakly in L 2 (0, T ; V ), (3.31) 
χ k uk → u in L 2 (0, T ; M ), (3.32) 
u k (0) → u 0 in V, (3.33) 
χ k uk (0) → v 0 in M, (3.34) 
u k (T ) u(T ) weakly in V, (3.35) 
u k (T ) → u(T ) in M, (3.36) 
χ k uk (T ) u(T ) weakly in M.

(3.37)

Proof. (i) Closed bounded sets in reexive Banach spaces are weakly compact. Therefore, owing to estimates (3.28), there exists u ∈ L 2 (0, T ; V ), u 1 ∈ H 1 (0, T ; V ), v ∈ L 2 (0, T ; M ) and w ∈ L 2 (0, T ; W ) such that, up to a subsequence, (ii) Regularity of the limit u. We have just established that u ∈ H 1 (0, T ; V ) and ü ∈ L 2 (0, T ; W ). Hence, owing to Lemma 3.1, [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]). Furthermore, the set L 2 (0, T ; K) is convex and closed in L 2 (0, T ; V ). Therefore, L 2 (0, T ; K) is weakly closed. The sequence (u k ) k∈N being in L 2 (0, T ; K), the weak

u k u weakly in L 2 (0, T ; V ), (3.38) 
ξ k u k u 1 weakly in H 1 (0, T ; V ), (3.39) 
χ k uk v weakly in L 2 (0, T ; M ), (3.40) 
χ k ük w weakly in L 2 (0, T ; W ). ( 3 
u ∈ C 0 ([0, T ]; [V, W ] 1 2 ) = C 0 ([0, T ]; M ) (for the proof of the equal- ity [V, W ] 1 2 = M , see
limit u is also in L 2 (0, T ; K). Hence, u ∈ L 2 (0, T ; K) ∩ H 1 (0, T ; V ) ∩ C 1 ([0, T ]; M ).
(iii) Proof of (3.32). Let > 0. The functions χ k u and u only dier on a set whose measure tends to zero as k → +∞. Since both sequences are bounded in L 2 (0, T ; M ), it is inferred, up to a subsequence, that there exists k 0 ∈ N such that χ k 0 uu L 2 (0,T ;M ) ≤ /3. The same argument shows that k 0 can be chosen so that for all k ≥ k 0 , χ k 0 ukχ k uk L 2 (0,T ;M ) ≤ /3. The index k 0 now being xed, we dene

W (Ω * k 0 ) = H 1 0 (Ω * k 0 , Γ D ∪ Γ * k 0 ) d , V (Ω * k 0 ) = H 1 0 (Ω * k 0 , Γ D ) d and M (Ω * k 0 ) = L 2 (Ω * k 0 ) d ,
and proceeding as in the proof of Lemma 3.3 leads to the a priori estimate

uk|Ω * k 0 L 2 (0,T ;V (Ω * k 0 )) + ük|Ω * k 0 L 2 (0,T ;W (Ω * k 0 ) ) 1,
where the constant can depend on k 0 (but not on k). We then use Lemma 3.2 with

B 1 = V (Ω * k 0 ), B = M (Ω * k 0 ), and B 2 = W (Ω * k 0 )
, to infer that, up to a subsequence, there holds

uk|Ω * k 0 → v k 0 in L 2 (0, T ; M (Ω * k 0 )).
As previously, we prove that

v k 0 = u|Ω * k 0
. This implies that there is

k 1 ∈ N such that for all k ≥ k 1 , χ k 0 uk -χ k 0 u L 2 (0,T ;M ) ≤ /3.
Collecting the above bounds, it is inferred that for all k ≥ max(k 0 , k 1 ),

χ k uk -u L 2 (0,T ;M ) ≤ χ k uk -χ k 0 uk L 2 (0,T ;M ) + χ k 0 uk -χ k 0 u L 2 (0,T ;M ) + χ k 0 u -u L 2 (0,T ;M ) ≤ ,
which proves (3.32).

(iv) Proof of (3.33) and (3.34). Let > 0. Since u k (0) and u 0 k only dier on a set whose measure tends to zero as k → +∞ and since both sequences are bounded in V , the sequence (u k (0)-u 0 k ) k∈N converges to zero in V , whence (3.33) is deduced owing to (3.17). Moreover, (3.34) is a straightforward consequence of (3.17).

(v) Proof of (3.35), (3.36) and (3.37). Owing to estimate (3.28), there exists u T ∈ V , v T ∈ M such that, up to a subsequence,

u k (T ) u T weakly in V, (3.42) 
χ k uk (T ) v T weakly in M. (3.43) Since ξ k u k u weakly in H 1 (0, T ; V ), it is inferred that ξ k u k (T ) u(T )
weakly in V . The uniqueness of the limit in the sense of distributions implies that u T = u(T ) and v T = u(T ).

Since the imbedding

V → M is compact, u k (T ) → u(T ) in M .
Theorem 3.1. The limit u identied in Lemma 3.4 is a solution to Problem 3.1.

Proof. (i) Integrating by parts (3.18) yields for all

v k ∈ C 0 ([0, T ]; K k ) ∩ C 1 ([0, T ]; V k ), T 0 -m k ( uk , vk -uk ) + a(u k , v k -u k ) + b k ( uk , v k -u k ) dt + m k ( uk (T ), v k (T ) -u k (T )) -m k ( uk (0), v k (0) -u k (0)) ≥ T 0 l k (t, v k -u k )dt. (3.44) (ii) Let v ∈ L 2 (0, T ; K) ∩ H 1 (0, T ; M ) be a test function in Problem 3.1. We can generate a sequence (v k ) k∈N such that v k ∈ C 0 ([0, T ]; K k ) ∩ C 1 ([0, T ]; V k ) and v k → v in L 2 (0, T ; V ), vk → v in L 2 (0, T ; M ), v k (0) → v(0) in M, v k (T ) → v(T ) in M.
To this purpose, we rst consider an interpolation operator I k : V → V k preserving positivity on the boundary. Such an operator can be built by giving local mean-values to the nodal values (see, e.g., the operators described [START_REF] Nochetto | Positivity preserving nite element approximation[END_REF] which preserve positivity on the whole domain and not only on the boundary). Setting

w k = I k v yields w k ∈ L 2 (0, T ; K k ) ∩ H 1 (0, T ; V k ), w k → v in L 2 (0, T ; V ), ẇk → v in L 2 (0, T ; M ), w k (0) → v(0) in M , w k (T ) → v(T ) in M .
Finally, to obtain a sequence (v k ) k∈N that is smooth in time, the sequence (w k ) k∈N is regularized by convolution in time. This preserves positivity on the boundary as well as the convergence properties.

(iii) The last step is to pass to the limit in the inequality (3.44) with the sequence (v k ) k∈N dened above. The bilinear form a being V -elliptic, the function v → a(v, v) is convex and thus lower semi-continuous in V . Using (3.31) then yields

lim inf k→+∞ T 0 a(u k , u k )dt ≥ T 0 a(u, u)dt.
For the viscosity term, we observe that

T 0 b k ( uk , u k )dt =b k (u k (T ), u k (T )) -b k (u k (0), u k (0)) =b(u k (T ), u k (T )) + [b k (u k (T ), u k (T )) -b(u k (T ), u k (T ))] -b(u k (0), u k (0)) -[b k (u k (0), u k (0)) -b(u k (0), u k (0))].
Owing to a convexity argument and (3. 

lim inf k→+∞ T 0 b k ( uk , u k )dt ≥ b(u(T ), u(T )) -b(u(0), u(0)) = T 0 b( u, u)dt.
For the inertia term, using (3.32) yields The limits involving (v k ) k∈N are straightforward owing to the strong convergence properties of the sequence (v k ) k∈N . Collecting the above limits leads to the variational inequality (3.9).

Remark 3.2. The strong convergence of (χ k uk ) in L 2 (0, T ; M ), i.e., property (3.32), plays a key role in the proof. We restate that without the viscosity term, the velocity is not necessarily bounded in V , and the required compactness argument no longer holds.

Remark 3.3. If the solution to Problem 3.1 were proven to be unique, we could conclude that the whole sequence (u k ) k∈N converged to u.
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Analysis of the modied mass method for the dynamic Signorini problem with Coulomb friction

This chapter is submitted for publication [START_REF] Doyen | Analysis of the modied mass method for the dynamic Signorini problem with Coulomb friction[END_REF].

Introduction

The modied mass method is a new approach for solving computationally dynamic problems with unilateral contact. Introduced in [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF] for frictionless contact problems, it is based on a space semi-discrete formulation in which the mass matrix is modied (the entries of the mass matrix associated with the (normal) displacements at the contact boundary are set to zero). This modied semi-discrete problem can then be discretized with various time-integration schemes. The modied mass method eliminates the large spurious oscillations on the contact pressure, which can appear with a standard mass matrix, while ensuring an exact enforcement of the contact condition. Moreover, with a suitable scheme such as the Newmark scheme (trapezoidal rule), a tight energy conservation and a good behavior in long-time are observed. In addition, the method does not require extra steps or extra parameters and can easily be implemented. Since its introduction, the modied mass method has been developed in several directions: alternative ways of building the modied mass matrix [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF][START_REF] Hauret | Mixed interpretation and extensions of the Khenous-Laborde-Renard mass lumping approach for elastodynamics with contact[END_REF], use of semi-explicit time-integration schemes [START_REF] Doyen | A semi-explicit modied mass method for dynamic contact problems[END_REF][START_REF] Doyen | Time-integration schemes for the nite element dynamic Signorini problem[END_REF], application to contact with friction [START_REF] Khenous | Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique[END_REF][START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF], application to thin structures [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF]. For a comparison of the modied mass method with other popular methods, we refer to [START_REF] Khenous | Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique[END_REF][START_REF] Doyen | Time-integration schemes for the nite element dynamic Signorini problem[END_REF][START_REF] Krause | Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme[END_REF].

Up to date, no theoretical analysis has been carried out for the modied mass method in the frictional case. In the frictionless case with an elastic material, interesting results have been proven. The space semi-discrete problem is equivalent to a Lipschitz system of ordinary dierential equations and is, therefore, well-posed [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. The variation of energy is equal to the work of the external forces; the contact forces do not work [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. Convergence of the semi-discrete solutions to a continuous solution is proven for viscoelastic materials in [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF]. An error analysis of the modied mass matrix has been performed in [START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF] for linear elastodynamics without contact.

The aim of the present work is to analyze the modied mass method for the dynamic Signorini problem with Coulomb friction. Implementation and numerical simulations are extensively discussed in [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF][START_REF] Krause | Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme[END_REF]. We prove that the space semi-discrete problem is equivalent to an upper semi-continuous one-sided Lipschitz dierential inclusion [START_REF] Deimling | of de Gruyter Series in Nonlinear Analysis and Applications[END_REF][START_REF] Smirnov | Introduction to the theory of dierential inclusions[END_REF] and is, therefore, well-posed (Theorem 4.2). Furthermore, the variation of energy is equal to the work of the external forces and friction forces (Theorem 4.3). For the time discretization, we consider an implicit scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. It is wellknown that such a problem can have several solutions [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]. Here we prove that, under a certain condition on the discretization parameters of CFL-type, the fully discrete problem is well-posed (Theorem 4.4). For a xed discretization in space, we prove also that the fully discrete solutions converge to the space semi-discrete solution when the time step tends to zero (Theorem 4.5).

With a standard mass term, proving the existence of a semi-discrete solution to a dynamic contact problem is quite delicate. It is necessary to add an impact law and to work with BV and measures spaces [START_REF] Brogliato | Nonsmooth impact mechanics[END_REF][START_REF] Stewart | Rigid-body dynamics with friction and impact[END_REF]5]. The modication of the mass term greatly simplies the analysis. Indeed, the unilateral contact condition can be eliminated and replaced by a Lipschitz continuous term in the momentum equation [START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF]. Moreover, static and quasi-static Coulomb friction problems can have several solutions [START_REF] Hild | Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics[END_REF]. Uniqueness is only obtained for small friction coecients (see [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]Theorem 11.4] for the static case and [60, Theorem 7.2.1] for the quasi-static case). It is worthwhile to notice that in the dynamic case, uniqueness is recovered. Finally, we do not examine herein the convergence of the discrete solutions to a solution of the continuous problem. Nevertheless, it seems possible to extend the convergence result in [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF] to the case of a non-local Coulomb friction (the non-local Coulomb friction is a regularization of Coulomb friction [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF][START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF]). This paper is organized as follows. In Section 2, we formulate the continuous problem. Sections 3 and 4 are devoted to the space semi-discrete and fully discrete problems, respectively. In Section 5, we examine the convergence of the fully discrete solutions to the space semi-discrete solution. Conclusions are drawn in Section 4.6.

Continuous problem

We consider the innitesimal deformations of a body occupying a reference domain Ω ⊂ R d (d ∈ {2, 3}) during a time interval [0, T ]. Let ν be the outward unit normal to Ω. The elasticity tensor is denoted by A and the mass density by ρ. An external load f is applied to the body. Let u : (0, T ) × Ω → R d , (u) : (0, T ) × Ω → R d,d , and σ(u) : (0, T ) × Ω → R d,d be the displacement eld, the linearized strain tensor, and the stress tensor, respectively. Denoting time-derivatives by dots, the momentum conservation equation reads

ρü -div σ = f, σ = A : , = 1 2 (∇u + T ∇u) in Ω × (0, T ). (4.1)
The boundary ∂Ω is partitioned into three disjoint open subsets Γ D , Γ N , and Γ c . Dirichlet and Neumann conditions are prescribed on Γ D and Γ N , respectively,

u = u D on Γ D × (0, T ), σ • ν = f N on Γ N × (0, T ). (4.2)
In what follows, we assume

f ∈ W 1,∞ (0, T ; L 2 (Ω) d ) and f N ∈ W 1,∞ (0, T ; L 2 (Γ N ) d ).
We let u ν := u |∂Ω • ν and u τ := u |∂Ωu ν ν the normal and tangential displacements on ∂Ω, respectively. We also let σ ν (u) := ν • σ(u) |∂Ω • ν and σ τ (u) := σ(u) |∂Ω • νσ(u) ν ν be the normal and tangential stress on ∂Ω, respectively. Note that u ν and σ ν (u) are scalars while u τ and σ τ (u)

are vectors in R d . Let | • | denote the Euclidean norm in R m , m ≥ 1.
On Γ c , a unilateral contact condition, also called Signorini condition, and a Coulomb friction (see Fig. 4.1) are enforced

u ν ≤ g, σ ν (u) ≤ 0, σ ν (u)(u ν -g) = 0 on Γ c × (0, T ), (4.3 
)

|σ τ (u)| ≤ µ|σ ν (u)| on Γ c × (0, T ), (4.4) 
σ τ (u) = -µ|σ ν (u)| uτ | uτ | if uτ = 0 on Γ c × (0, T ), (4.5) 
where µ > 0 is the friction coecient (taken to be constant for simplicity) and g is the initial gap. At the initial time, the displacement and velocity elds are prescribed,

uτ σ τ (u) ν F σ n (u) -ν F σ n (u) Fig. 4.1. Coulomb condition (d = 2). u(0) = u 0 , u(0) = v 0 in Ω. (4.6)
The mathematical analysis of the above time-dependent problem entails substantial diculties [START_REF] Eck | Unilateral contact problems[END_REF]. The existence of a weak solution is only proven for a viscoelastic material and a non-local Coulomb friction law [START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF].

Space semi-discrete formulation

In this section, we formulate the space semi-discrete problem and prove existence and uniqueness of a solution. We also establish an energy balance. In the frictionless case, the semidiscrete problem is equivalent to a Lipschitz ordinary dierential equation, and existence and uniqueness are deduced from the Cauchy-Lipschitz theorem. With friction, the situation is more complicated. We choose to model the friction term as a set-valued map. The semi-discrete problem is then equivalent to a dierential inclusion, for which generalizations of the Cauchy-Lipschitz theorem are available [START_REF] Deimling | of de Gruyter Series in Nonlinear Analysis and Applications[END_REF][START_REF] Smirnov | Introduction to the theory of dierential inclusions[END_REF].

Preliminaries

To begin with, we introduce some notions needed for the formulation of our problem as a dierential inclusion.

Given a set E, we dene P(E) as the set of all subsets of E, and P * (E) := P(E) \ {∅}. A set-valued map is said to be closed convex if its images are closed convex sets. Various notions of continuity can be dened for set-valued maps. One of them is upper semi-continuity 1 . A set-valued map F is said to be upper semi-continuous at x if, for every open set V containing F (x), there exists a neighborhood U of x such that F (U ) ⊂ V . Consider, for instance, the following set-valued maps:

F 1 (x) = [-1, 1] if x = 0, {0} if x = 0,
and

F 2 (x) = {0} if x = 0, [-1, 1] if x = 0.
It is easy to verify that F 1 is upper semi-continuous for all x ∈ R, whereas F 2 is not upper semi-continuous at x = 0. Here is another example of set-valued-map, closely related to the Coulomb friction term,

F 3 (x, y) =      {-|x|} if y < 0, [-|x|, |x|] if y = 0, {|x|} if y > 0.
It is easy to verify that this map is upper semi-continuous for all (x, y) ∈ R 2 . Finally, we observe that upper semi-continuity applied to single-valued functions is equivalent to continuity. For more details on set-valued maps, we refer to [3]. The existence theorem for dierential inclusions we use does not provide continuously dierentiable solutions in time. The solutions are only absolutely continuous in time. For brevity, we do not dene this concept and refer to [START_REF] Rudin | Real and complex analysis[END_REF]. For our purpose, it suces to know that an absolutely continuous function y is continuous, dierentiable almost everywhere and is equal to the integral of its derivative:

y(t 0 ) = y(0) + t 0 0 ẏ(t)dt.
Lipschitz continuous functions are absolutely continuous. In what follows, we denote by AC([0, T ]; R m ), the space spanned by absolutely continuous functions from [0, T ] to R m . The set-valued maps which appear in our space semi-discrete problem are subgradients and for completeness, we dene this notion. Let J : R m → R ∪ {+∞} be a convex function and D(J) := {v ∈ R m ; J(v) < +∞} its domain. We dene the subgradient of J as the set-valued map ∂J :

D(J) → P * (R m ) such that ∀v ∈ D(J), ∂J(v) := {γ ∈ R m ; J(w) -J(v) ≥ (γ, w -v), ∀w ∈ D(J)} , (4.7)
where (•, •) denotes the canonical inner product on R m . It is easy to prove that the subgradient of a convex function is well-dened and is a closed convex set-valued map. For more details on subgradients, we refer to [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF][START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF]. We can now state the main result we use for asserting the well-posedness of a problem posed in the form of a dierential inclusion. Theorem 4.1. Let P : [0, T ] × R m → P * (R m ) be a closed convex set-valued map. Let x 0 ∈ R m and consider the following problem: Find x ∈ AC([0, T ]; R m ) such that ẋ(t) ∈ P (t, x(t)), (4.8) x(0) = x 0 .

(4.9) Assume that 1. the set-valued map P (t, •) is upper semi-continuous for almost all t ∈ [0, T ];

2. for any x ∈ R m , there exists a measurable function p(•, x) satisfying p(t, x) ∈ P (t, x) for almost all t ∈ [0, T ];

there exists a function

b ∈ L 1 (0, T ; R m ) such that |p(t, x)| ≤ b(t) for almost all t ∈ [0, T ].
Then, there exists a solution to (4.8)-(4.9). Furthermore, assume the following one-sided Lipschitz condition: there exists K ∈ R such that, for all t ∈ [0, T ], for all We recover Caratheodory's existence theorem for ordinary dierential equations [START_REF] Filippov | Dierential equations with discontinuous righthand sides[END_REF]. Furthermore, the one-sided Lipschitz condition means that P (t, •) is Lipschitz continuous for all t ∈ [0, T ] (uniformly).

x 1 , x 2 ∈ R m , (y 1 -y 2 , x 1 -x 2 ) ≤ K x 1 -x 2 2 ,
Remark 4.2. If P is a monotone operator, i.e., for all t ∈ [0, T ], for all

x 1 , x 2 ∈ R m , (y 1 -y 2 , x 1 -x 2 ) ≥ 0, ∀y 1 ∈ P (t, x 1 ), ∀y 2 ∈ P (t, x 2 ),
then -P satises the one-sided Lipschitz condition.

The discrete setting

For simplicity, we suppose that Ω is a polyhedron. Let T be a simplicial mesh of Ω (triangles in 2D and tetrahedra in 3D). Let {x i } i∈N and {φ i } i∈N be the nodes of the mesh and the associated scalar basis functions (continuous and piecewise ane), respectively. We denote by N D the set of indices where a Dirichlet condition is enforced, and we set Ñ := N \ N D . The space of admissible displacements is approximated by the space

V = {v ∈ C 0 (Ω) d ; v |T ∈ (P 1 ) d , ∀T ∈ T , and v(x i ) = 0, ∀i ∈ N D }.
The space V is spanned by {φ i e α } i∈ Ñ ,1≤α≤d , where {e α } 1≤α≤d is the canonical basis of R d . Denote by N c the set of indices of contact nodes (that is, the nodes located on Γ c which is xed a priori) and by N i := Ñ \ N c the set of indices of the remaining nodes (see Fig. 4.2). Let {ν i } i∈N c and {τ i,α } i∈N c ,1≤α≤d-1 be the contact normal vectors and tangential vectors, respectively. We set

V i = span({φ i e α } i∈N i ,1≤α≤d ), V c = span({φ i ν i } i∈N c ) and V f = span({φ i τ i,α } i∈N c ,1≤α≤d-1 ). Clearly, V = V i ⊕ V c ⊕ V f , so that any discrete function v ∈ V can be decomposed as v = v i + v c + v f with v i ∈ V i , v c ∈ V c , v f ∈ V f .
We also introduce the space V * := V i ⊕ V f , so that any discrete function v ∈ V can also be decomposed as

v = v * + v c with v * ∈ V * , v c ∈ V c . Let (•, •) denote the L 2 inner product on V . Let • denote the norm associated with (•, •).
Herein, we always work in nite dimension on a xed spatial mesh; the specic choice of the norm is therefore not critical. The present choice is made for simplicity. The standard mass term stems from the bilinear form

m : L 2 (Ω) d × L 2 (Ω) d (v, w) -→ Ω ρv • w ∈ R.
The key idea in the modied mass method is to remove the mass associated with the normal components at the contact nodes. We consider an approximate mass term associated with the bilinear form m * such that Many choices are possible to build the rest of the mass term. In [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Khenous | Mass redistribution method for nite element contact problems in elastodynamics[END_REF], the authors devise various methods to preserve some features of the standard mass term (the total mass, the center of gravity, and the moments of inertia); see also [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems[END_REF] for further results. Here, we focus for simplicity on the choice

m * (φ i ν i , w) = m * (w, φ i ν i ) = 0, ∀i ∈ N c , ∀w ∈ V.
m * : V × V (v, w) -→ m(v * , w * ) ∈ R.
We dene the associated operator M * : V * → V * such that,

(M * v * , w * ) = m * (v * , w * ) ∀(v * , w * ) ∈ V * × V * .
We dene the bilinear and linear forms

a : H 1 (Ω) d × H 1 (Ω) d (v, w) -→ Ω (v) : A : (w), l : [0, T ] × H 1 (Ω) d (t, v) -→ Ω f (t) • v + Γ N f N (t) • v.
We dene the linear operator A : V → V and the vector L(t) ∈ V such that for all v ∈ V and w ∈ V , and for all t ∈ [0, T ], (Av, w) = a(v, w), (L(t), w) = l(t, w).

We also need A c : V → V c and L c (t) ∈ V c such that for all v ∈ V and all w c ∈ V c , and for all

t ∈ [0, T ], (A c v, w c ) = a(v, w c ), (L c (t), w c ) = l(t, w c ),
and, similarly, A * : V → V * and L * (t) ∈ V * such that for all v ∈ V and all w * ∈ V * , and for all t ∈ [0, T ], (A * v, w * ) = a(v, w * ), (L * (t), w c ) = l(t, w * ).

We dene the constraint set

K := {v ∈ V ; v(x i ) • ν i ≤ g(x i ), ∀i ∈ N c },
and the unilateral contact term

I K : V c → R ∪ {+∞} such that I K (v c ) = 0 if v c ∈ K, +∞ if v c ∈ K.

The function

I K is non-dierentiable, but convex since K is convex. Therefore, it is possible to dene its subgradient ∂I K : V c ∩ K → P * (V c ), ∂I K (v c ) := {γ ∈ V c ; 0 ≥ (γ, w c -v c ) ∀w c ∈ V c ∩ K} .

Now, we dene the friction term

j : V × V f → R such that j(v, w f ) = Γ c µ|σ ν (v)||w f |. (4.12)
The function j is non-dierentiable with respect to its second argument, but convex, and its domain is V f . We can dene its subgradient with respect to its second argument such that for all z ∈ V , ∂ 2 j(z, •) :

V f → P * (V f ) with ∂ 2 j(z, v f ) := γ ∈ V f ; j(z, w f ) -j(z, v f ) ≥ (γ, w f -v f ) ∀w f ∈ V f . (4.13)

Formulation of the semi-discrete problem

We can now formulate the semi-discrete problem. Let u 0 * ∈ V * and v 0 * ∈ V * be suitable approximations of the initial displacement and velocity u 0 and v 0 , respectively. Problem 4.1. Seek u ∈ C 0 ([0, T ]; K) such that u * ∈ C 1 ([0, T ]; V * ), u * ∈ AC([0, T ]; V * ), and the following dierential inclusion holds true

M * ü * ∈ -Au -∂ 2 j(u, uf ) -∂I K (u c ) + L(t) a.e. in [0, T ], (4.14) 
with the initial conditions u * (0) = u 0 * and u * (0) = v 0 * in Ω.

Remark 4.3. The velocity u * is absolutely continuous. Therefore, it is dierentiable almost everywhere, and the acceleration ü * in (4.14) is well-dened. Moreover, u c ∈ K so that ∂I K (u c ) is well-dened.

To explicitate the link between the space semi-discrete Problem 4.1 and the continuous problem formulated in Section 2, we observe that (4.14) means that, for almost all t ∈ [0, T ], there exist λ c ∈ ∂I K (u c ) and λ f ∈ ∂ 2 j(u, uf ) such that

M * ü * + Au + λ c + λ f = L(t).
Therefore, the vectors λ c and λ f are discrete counterparts of the normal and tangential contact stresses. Furthermore, lumping the mass matrices, it is easy to verify that the denitions of ∂I K (u c ) and ∂ 2 j(u, uf ) imply that, for all i ∈ N c ,

u c (x i ) • ν i ≤ g(x i ), λ c (x i ) ≤ 0, λ c (x i )(u c (x i ) • ν i -g(x i )) = 0, (4.15) |λ f (x i )| ≤ µ|σ ν (u)(x i )|, (4.16) λ f (x i ) = -µ|σ ν (u)(x i )| uf (x i ) | uf (x i )| if uf (x i ) = 0.
(4.17)

Thus, we recover the discrete counterpart of the contact and friction conditions (4.3)-(4.5).

Main results

This section contains our main results concerning the space semi-discrete problem. We dene the map q : [0, T ] × V * → V c ∩ K such that for all t ∈ [0, T ] and for all v * ∈ V * , v c = q(t, v * ) ∈ V c ∩ K solves the following variational inequality

a(v c , w c -v c ) ≥ l(t, w c -v c ) -a(v * , w c -v c ) ∀w c ∈ V c ∩ K. (4.18)
This variational inequality is well-posed since it is equivalent to the minimization of a strictly convex functional over a convex set. We rst examine the properties of the map q. Lemma 4.1. For all v * ∈ V * , the map t → q(t, v * ) is Lipschitz continuous, and its Lipschitz constant is uniformly bounded in v * . For all t ∈ [0, T ], the map v * → q(t, v * ) is Lipschitz continuous, and its Lipschitz constant is uniformly bounded in t.

Proof. Let t 1 , t 2 ∈ [0, T ] and v * , w * ∈ V * . Set v c = q(t 1 , v * ) and w c = q(t 2 , w * ). Owing to (4.18),

a(v c -w c , v c -w c ) ≤ a(v * -w * , w c -v c ) + l(t 1 , v c -w c ) -l(t 2 , v c -w c ). (4.19) Since l(t, v c -w c ) = Ω f (t)•(v c -w c )+ Γ N f N (t)•(v c -w c ) and since since f ∈ W 1,∞ (0, T ; L 2 (Ω) d ) and f N ∈ W 1,∞ (0, T ; L 2 (Γ N ) d ), there exists a constant c l such that l(t 1 , v c -w c ) -l(t 2 , v c -w c ) ≤ c l |t 1 -t 2 | v c -w c .
Moreover, the bilinear form a being continuous (with constant c a ) and elliptic (with constant α) for the norm • , a straightforward calculation yields

α v c -w c ≤ c a v * -w * + c l |t 1 -t 2 |,
which proves the desired regularity for q.

We now reformulate the dierential inclusion (4.14) using the map q.

Lemma 4.2. The dierential inclusion (4.14) is equivalent to

M * ü * ∈ -A * (u * + q(t, u * )) -∂ 2 j(u * + q(t, u * ), uf ) + L * (t), a.e. in [0, T ], (4.20) 
u c = q(t, u * ), ∀t ∈ [0, T ], (4.21) 
Proof. Distinguishing components in V * and V c , the inclusion (4.14) is equivalently split into the following inclusions

M * ü * ∈ -A * u -∂ 2 j(u, uf ) + L * (t)
a.e. in [0, T ], (4.22) 

0 ∈ -A c u -∂I K (u c ) + L c (
a(u, v c -u c ) ≥ l(t, v c -u c ) ∀t ∈ [0, T ], ∀v c ∈ V c ∩ K, (4.24) 
or, equivalently,

a(u c , v c -u c ) ≥ l(t, v c -u c ) -a(u * , v c -u c ) ∀t ∈ [0, T ], ∀v c ∈ V c ∩ K. (4.25) 
Hence u c = q(t, u * ) so that the system (4.22)-(4.23) is equivalent to the system (4.20)-(4.21).

We can now state our main existence result for Problem 4.1.

Theorem 4.2. There exists a unique solution u to Problem 4.1. Furthermore, u c ∈ W 1,∞ (0, T ; V c ).

Proof. (i) To prove the existence of a solution, we rewrite the second-order dierential inclusion (4.14) as a rst-order dierential inclusion. We dene the single-valued map

S : [0, T ]×V * ×V * → V * × V * such that, for all t ∈ [0, T ], for all v * , w * ∈ V * , S(t, v * , w * ) = w * -A * (v * + q(t, v * )) + L * (t) ,
and the set-valued map P : [0, T ] × V * × V * → {0} × P * (V * ) such that

P (t, v * , w * ) = 0 -∂ 2 j(v * + q(t, v * ), w f ) .
We dene also the linear single-valued map D :

V * × V * → V * × V * such that D(v * , w * ) = v * M * w * .
Setting We equip the product space V * × V * with the product norm.

X(t) = u * (t) u * (t) ∈ V * × V * ,
(ii) The operator S is a single-valued map. Since q(t, •) is continuous and q(•, x) is Lipschitz continuous, the operator S satises the hypotheses of Theorem 4.1 (see Remark 4.1).

(iii) We now examine the operator P . This operator is a closed convex set-valued map (owing to the properties of the subgradients of convex functions). Since q(t, •) is continuous and ∂ 2 j(•, •) is upper semi-continuous (see the example given by (4.3.1)), the map P (t, •) is upper semi-continuous. Hence, Hypothesis 1 of Theorem 4.1 holds true. Since q(•, x) is Lipschitz continuous, Hypotheses 2 and 3 of this theorem are also satised. Next, we check the one-sided Lipschitz condition (4.10). Let (u 1 that u * ∈ AC([0, T ]; V * ) satisfying (4.20) with the initial conditions u * (0) = u 0 * and u * (0) = v 0 * . Owing to (4.21), u = u * + u c = u * + q(t, u * ). Therefore, Problem 4.1 has a unique solution and it is clear that u c = q(t, u * ) ∈ W 1,∞ (0, T ; V c ).

We conclude this section with the energy balance. Theorem 4.3. For all t 0 ∈ [0, T ], the following energy balance holds true: (4.27) where

E(u(t 0 )) -E(u(0)) = t 0 0 l(t, u(t)) -j(u(t), uf (t)) dt,
E(v) = 1 2 (m( v * , v * ) + a(v, v)).
Proof. We recast the dierential inclusion (4.20) as a variational inequality,

m(ü * , v * -u * ) + a(u, v * -u * ) + j(u, v f ) -j(u, uf ) ≥ l(t, v * -u * ) ∀v * ∈ V * , a.e. in [0, T ]. (4.28)
Taking v * = 0 and then v * = 2 u * in the above inequality, we obtain

m(ü * , u * ) + a(u, u * ) + j(u, uf ) = l(t, u * ) a.e. on [0, T ]. (4.29) 
Recalling that the family {φ i ν i } i∈N c is a basis of V c , we decompose u c on this basis yielding ui φ i ν i = 0 so that a(u, ui φ i ν i ) = 0 = l(t, ui φ i ν i ). On C - i , a(u, ui φ i ν i ) = l(t, ui φ i ν i ) owing to (4.23). Finally, a(u, ui 

u c = i∈N c u i φ i ν i . Dene C 0 i := {t ∈ [0, T ]; u i = 0} and C - i := {t ∈ [0, T ]; u i < 0}.
φ i ν i ) = l(t, ui φ i ν i ) on int(C 0 i ) ∪ C - i ,

Fully discrete formulation

In this section, we discretize the space semi-discrete problem with an implicit time scheme. We discretize the elastodynamics part with an implicit Newmark scheme (trapezoidal rule), while the unilateral contact and friction conditions are enforced in an implicit way. This choice of time discretization is very common. It is for instance employed in [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF]. At each time step, we have thus to solve a nonlinear problem similar to a static friction problem. It is well-known that such a problem may have several solutions. Here we prove that, under a certain condition on the discretization parameters of CFL-type, the fully discrete problem is well-posed. We also derive the energy balance of this time-integration scheme.

For simplicity, the interval [0, T ] is divided into N equal subintervals of length ∆t. We set t n = n∆t and denote by u n , v n , and a n the approximations of u(t n ), u(t n ), and ü(t n ), respectively. We dene the convex combination n+α := (1α) n + α n+1 , where stands for u, v, a or t, and α ∈ [0, 1]. In this section, the notation A B means that A ≤ cB with a constant c independent of h and ∆t.

Let T c ⊂ T be the set of simplices such that at least one vertex is a contact node. We set Ω c = int ∪ T ∈T c T . Let T c ⊂ T be the set of simplices such that at least one vertex belongs to Ω c . We set Ω c = int ∪ T ∈T c T (see Fig. 4.2). We dene

h c = min T ∈T c diam(T ) and h c = min T ∈T c diam(T ),
where diam(T ) denotes the diameter of the simplex T . Observe that h c and h c are dened using a minimum.

Let us recall some classical discrete trace and inverse inequalities (see, e.g., [START_REF] Warburton | On the constants in hp-nite element trace inverse inequalities[END_REF] and [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]). For all

v c ∈ V c , v c L 2 (Γ c ) d ≤ 1 √ h c v c L 2 (Ω c ) d , (4.32 
)

|v c | H 1 (Ω c ) d = ∇v c L 2 (Ω c ) d×d ≤ 1 h c v c L 2 (Ω c ) d . (4.33) 
The same inequalities hold when Ω c is replaced by Ω c , and h c by h c . We dene the operator

q n : V * → V c , such that for all 0 ≤ n ≤ N , q n (v * ) = q(t n , v * ) ∀v * ∈ V * , (4.34)
where the map q is dened in Section 4.3.4.

Lemma 4.3. The function q n : V * → V c is Lipschitz continuous. More precisely,

|q n (v * ) -q n (w * )| H 1 (Ω c ) d |v * -w * | H 1 (Ω c ) d ∀v * , w * ∈ V * . (4.35) Proof. Let v * , w * ∈ V * . Set v c = q n (v * ) and w c = q n (w * ). Owing to (4.19), a(v c -w c , v c -w c ) ≤ a(v * -w * , w c -v c ).
Since v c and w c are zero outside

Ω c , a(v c -w c , v c -w c ) |v c -w c | 2 H 1 (Ω c ) d , and 
a(v * -w * , w c -v c ) = a((v * -w * )1 Ω c , w c -v c ) |v * -w * | H 1 (Ω c ) d |v c -w c | H 1 (Ω c ) d ,
whence the assertion.

We can now formulate the fully discrete problem. 

Problem 4.2. Seek u

n+1 ∈ V , v n+1 * ∈ V * , and a n+1 * ∈ V * such that M * a n+1 * ∈ -A * u n+1 -∂ 2 j(u n+1 , v n+1 f ) + L * (t n+1 ), (4.36) u n+1 c = q n+1 (u n+1 * ), (4.37) 
u n+1 * = u n * + ∆t v n * + ∆t 2 2 a n+ 1 2 * , ( 4 
a n+1 * = 4 ∆t 2 (u n+1 * + ε n * ).
Next, we dene the linear operator à * : V * → V * and the vector

Ln+1 ∈ V * such that, ∀v * ∈ V * , Ã * v * := A * v * + 1 4∆t 2 M * v * , Ln+1 := L * (t n+1 ) - 1 4∆t 2 M * ε n * .
Then, using (4.37), it is straightforward to turn (4.36) into

0 ∈ Ã * u n+1 * + ∂ 2 j u n+1 * + q n+1 (u n+1 * ), 2 ∆t (u n+1 f + δ n f ) -Ln+1 + A * q n+1 (u n+1 *
).

(4.40)

Observe that the last term on the right-hand side of (4.40) involves the operator A * (and not à * ) owing to (4.11) and the fact that (4.41)

q n+1 (u n+1 * ) ∈ V c .
Proof. Dene the map

Φ n : V * → V * such that for all v * ∈ V * , v * = Φ n (v * ) satises 0 ∈ Ã * v * + ∂ 2 j v, 2 ∆t (v f + δ n f ) -Ln+1 + A * vc , (4.42) 
where vc := q n+1 (v * ) and v := v * + vc , so that (4.40) amounts to seeking a xed-point for Φ n . Setting y * := 2 ∆t (v * + δ n * ), we rewrite the above inclusion as a variational inequality,

ã(v * , z * -y * ) + j(v, z f ) -j(v, y f ) ≥ l n+1 (z * -y * ) -a(v c , z * -y * ), ∀z * ∈ V * , (4.43) 
where we have set

ã(v * , w * ) := ( Ã * v * , w * ) and l n+1 (v * ) := (L(t n+1 ), v * ). Taking z * := 2 ∆t (w * +δ n * )
in (4.43), then dividing by 2 ∆t , we obtain for all w * ∈ V * ,

ã(v * , w * -v * ) + j(v, w f + δ n f ) -j(v, v f + δ n f ) ≥ l n+1 (w * -v * ) -a(v c , w * -v * ).
(4.44)

The variational inequality (4.44) has one and only one solution. Indeed, it is equivalent to the minimization of a strictly convex functional. The map Φ n is thus well-dened. Now we shall prove that Φ n is a contraction under the CFL condition (4.41). Let v * ∈ V * and ŵ * ∈ V * . Set v * := Φ n (v * ) and w * := Φ n ( ŵ * ). Using (4.44), a straightforward calculation yields

ã(v * -w * , v * -w * ) ≤ j(v, w f + δ n f ) -j( ŵ, w f + δ n f ) -j(v, v f + δ n f ) + j( ŵ, v f + δ n f ) -a(v c -ŵc , v * -w * ). (4.45)
Using the ellipticity of m and a,

ã(v * -w * , v * -w * ) 4 ∆t 2 v * -w * 2 L 2 (Ω) d + |v * -w * | 2 H 1 (Ω) d . (4.46)
Using a reverse triangle inequality,

j(v, w f + δ n f ) -j( ŵ, w f + δ n f ) -j(v, v f + δ n f ) + j( ŵ, v f + δ n f ) ≤ Γ c µ |σ ν (v) -σ ν ( ŵ)| |w f + δ n f | -|v f + δ n f | ≤ Γ c |µ||σ ν (v) -σ ν ( ŵ)||v f -w f | Γ c |σ ν (v) -σ ν ( ŵ)||v f -w f |.
Using the Cauchy-Schwarz inequality and the trace inequality (4.32),

j(v, w f + δ n f ) -j( ŵ, w f + δ n f ) -j(v, v f + δ n f ) + j( ŵ, v f + δ n f ) σ ν (v) -σ ν ( ŵ) L 2 (Γ c ) v f -w f L 2 (Γ c ) d 1 h c σ ν (v) -σ ν ( ŵ) L 2 (Ω c ) v * -w * L 2 (Ω c ) d 1 h c |v -ŵ| H 1 (Ω c ) d v * -w * L 2 (Ω c ) d . (4.47) 
Furthermore, using (4.35) and the inverse inequality (4.33),

|v -ŵ| H 1 (Ω c ) d = |v c -ŵc | H 1 (Ω c ) d + |v * -ŵ * | H 1 (Ω c ) d = |q n+1 (v * ) -q n+1 ( ŵ * )| H 1 (Ω c ) d + |v * -ŵ * | H 1 (Ω c ) d |v * -ŵ * | H 1 (Ω c ) d + |v * -ŵ * | H 1 (Ω c ) d |v * -ŵ * | H 1 (Ω c ) d 1 h c v * -ŵ * L 2 (Ω c ) d .
(4.48)

Collecting inequalities (4.47) and (4.48), and since

h c ≤ h c , j(v, w f + δ n f ) -j( ŵ, w f + δ n f ) -j(v, v f + δ n f ) + j( ŵ, v f + δ n f ) ≤ 1 h 2 c v * -ŵ * L 2 (Ω) d v * -w * L 2 (Ω c ) d .
Using the boundedness of a, Lemma 4.3, and the inverse inequality (4.33),

a(v c -ŵc , w * -v * ) 1 h 2 c ŵ * -v * L 2 (Ω) d v * -w * L 2 (Ω) d .
Collecting these dierent estimates,

Φ n (v * ) -Φ n ( ŵ * ) L 2 (Ω) d = v * -w * L 2 (Ω) d ∆t h c 2 v * -ŵ * L 2 (Ω) d .
Hence, if the ratio ∆t h c is suciently small, the mapping Φ n is a contraction. The Banach xedpoint theorem guarantees that the problem has a unique solution.

Remark 4.4. In the above proof, the inertial term is essential. By strengthening the coercivity of ã, it enables to prove that Φ n is a contraction (for a time step suciently small). In the static case, without the help of the inertial term, this xed-point proof works only for a certain range of physical parameters, for instance when the Young modulus is large compared with the friction coecient [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]Theorem 11.4].

To conclude this part, we formulate the energy balance. We dene the energy at time t n as

E n := 1 2 (Au n , u n ) + 1 2 (M * v n , v n ).
(4.49)

At each time t n , there exist

λ n c ∈ ∂I K (u n c ) and λ n f ∈ ∂ 2 j(u n , v n f ) such that M * a n * + Au n + λ n c + λ n f = L(t n ).
(4.50)

Proceeding as in [START_REF] Krenk | Energy conservation in Newmark based time integration algorithms[END_REF], it is readily shown that

E n+1 -E n = - 1 2 (λ n c + λ n+1 c , u n+1 -u n ) - 1 2 (λ n f + λ n+1 f , u n+1 -u n ) + 1 2 (L n + L n+1 , u n+1 -u n ).
(4.51)

Convergence of the fully discrete solutions

We x the space discretization and we build the approximate solutions ω ∆t : [0, T ] → V as follows:

ω ∆t (t) := u n + v n * (t -t n ) + 1 2 a n+ 1 2 * (t -t n ) 2 ∀t ∈ [t n , t n+1 ), (4.52 
)

ω ∆t (T ) := u N . (4.53)
It is readily veried that, by construction, ω ∆t ∈ C 0 ([0, T ]; V ) and ω ∆t * ∈ C 1 ([0, T ]; V * ). Furthermore, ω ∆t ∈ W 1,∞ (0, T ; V ). We are now going to prove the convergence of these approximate solutions to the semi-discrete solution u of Problem 4.1. In this section, the notation A B means that A ≤ cB with a constant c independent of ∆t, but which can depend on h. We assume without loss of generality that ∆t ≤ 1. (ii) Using the energy balance (4.51), it follows that

E n+1 -E n u n + u n+1 + L(t n ) + L(t n+1 ) u n+1 -u n .
Observing by (4.19) that q n+1 (u n

E n+1 -E n ∆t u n + u n+1 + L(t n ) + L(t n+1 ) v n * + ∆t 2 a n+ 1 2 * + L(t n+1 ) + L(t n ) . (4.56)
Thus, using the previous bound on a n * and a n+1 * , and since ∆t ≤ 1,

E n+1 -E n ∆t u n + u n+1 + L(t n ) + L(t n+1 ) v n * + u n + u n+1 + L(t n+1 ) + L(t n ) . ( 4 
.57) Now, using Young's inequality and the coercivity of the energy E n ,

E n+1 -E n ≤ C 1 ∆t E n+1 + C 2 ∆t E n + C 3 ∆t L(t n ) 2 + L(t n+1 ) 2 ,
where C 1 , C 2 , C 3 are three constants independent of ∆t. Next,

E n+1 -E n ≤ C 1 ∆t (E n+1 -E n ) + (C 1 + C 2 )∆t E n + C 3 ∆t L(t n ) 2 + L(t n+1 ) 2 , For ∆t ≤ 1/(2C 1 ), 1 2 (E n+1 -E n ) ≤ (C 1 + C 2 )∆t E n + C 3 ∆t L(t n ) 2 + L(t n+1 ) 2 ,
so that

E n+1 -E n ∆t E n + L(t n ) 2 + L(t n+1 ) 2 .
Finally, using a discrete Gronwall lemma,

E n E 0 + n j=0 ∆t L(t j ) 2 1.
Then, it is straightforward to obtain the estimates (4.54).

Theorem 4.5. The following convergence results hold true as ∆t → 0,

ω ∆t → u in C 0 ([0, T ]; V ), ω∆t * → u * in C 0 ([0, T ]; V * ), ω∆t * → ü * weakly * in L ∞ (0, T ; V * ), where u solves Problem 4.1.
Proof. (i) From the estimates (4.54), we deduce that

ω ∆t L ∞ (0,T ;V ) 1, ω∆t L ∞ (0,T ;V ) 1, ω∆t * L ∞ (0,T ;V * ) 1, ω∆t * L ∞ (0,T ;V * ) 1.
(ii) Using standard compactness arguments [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF], there exists ω ∈ C 0 (0, T ; V ) such that ω * ∈ C 0 (0, T ; V * ), ω * ∈ L ∞ (0, T ; V * ), and, up to a subsequence,

ω ∆t → ω in C 0 ([0, T ]; V ), ω∆t * → ω * in C 0 ([0, T ]; V * ), ω∆t * ω * weakly * in L ∞ (0, T ; V * ).
(iii) Next, we introduce the auxiliary (piecewise constant in time) approximate solutions

ω ∆t : [0, T ] → V and ζ ∆t * : [0, T ] → V * such that ζ ∆t * (t) := v n+1 * ∀t ∈ [t n , t n+1 ), ζ ∆t * (T ) := v N * , ω ∆t (t) := u n+1 ∀t ∈ [t n , t n+1 ), ω ∆t (T ) := u N .
By denition of the approximate solutions ω ∆t and ω ∆t , and using relation (4.38)

, ∀n ∈ {0, . . . , N }, ∀t ∈ [t n , t n+1 ), ω ∆t (t) -ω ∆t (t) ≤ u n+1 -u n + ∆t v n * + 1 2 ∆t 2 a n+ 1 2 * ≤ 2∆t v n * + ∆t 2 a n+ 1 2 *
.

Hence, using estimates (4.54),

ω ∆t (t) -ω ∆t (t)
∆t a.e. in [0, T ]. We deduce that ω ∆t → ω in L ∞ (0, T ; V ). In the same way, we prove that ζ ∆t * → ω * in L ∞ (0, T ; V * ). We dene an approximate external force vector,

L ∆t (t) := L(t n+1 ) ∀t ∈ [t n , t n+1 ), L ∆t (T ) := L(t N ). Since t → L(t) is Lipschitz continuous, L ∆t → L in L ∞ (0, T ; V ).
(iv) Owing to (4.36), the approximate solutions satisfy

M * ω∆t * ∈ -A * ω ∆t -∂ 2 j(ω ∆t , ζ ∆t f ) + L ∆t * (t) a.e. in [0, T ],
so that

m * (ω ∆t * , v * -ζ ∆t * ) + a(ω ∆t , v * -ζ ∆t * ) + j(ω ∆t , v f ) -j(ω ∆t , ζ ∆t f ) ≥ L ∆t , v * -ζ ∆t * ∀v * ∈ V * , a.e. in [0, T ].
Passing to the limit,

m * (ω * , v * -ω * ) + a(ω, v * -ω * ) + j(ω, v f ) -j(ω, ωf ) ≥ l(t, v * -ω * ) ∀v * ∈ V * , a.e. in [0, T ],
and hence

M * ω * ∈ -A * ω -∂ 2 j(ω, ωf ) + L * (t)
a.e. in [0, T ]. By uniqueness of the solution, we conclude that ω = u. This uniqueness also implies that the whole sequence (ω ∆t ) converges, not only a subsequence.

Conclusions

In this work, we have established three results on the numerical analysis of the modied mass method for dynamic Signorini problems with Coulomb friction: the well-posedness of the space semi-discrete problem, the well-posedness of the fully discrete problem under a CFL-type condition on the mesh size and the time step, and the convergence of the fully discrete solution to the space semi-discrete solution as the time step tends to zero. These results contribute to the theoretical foundations of a computationally attractive method for which various numerical results and implementation aspects are discussed in [START_REF] Hager | A stable energy-conserving approach for frictional contact problems based on quadrature formulas[END_REF][START_REF] Hager | Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements[END_REF][START_REF] Krause | Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme[END_REF]. Further work can examine the convergence of the space semi-discrete problem and deriving upper bounds on the approximation error.

Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models

Introduction

Cohesive zone models have been introduced in the late 50s [6,[START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF]. They can be applied to a large range of materials (concrete, steel, etc...) and fracture processes (brittle fracture, ductile fracture, fatigue, dynamic fracture) and they can be easily enriched with more complex physical behaviors (contact and friction after decohesion, corrosion, etc...). Moreover, cohesive zone models t quite well within the framework of nite elements. For all these reasons, they are now widely used in engineering simulations. A cohesive zone model describes the mechanical forces along the fracture interface it can be simply viewed as a boundary condition. The interface forces depend at least on the opening (displacement jump at the interface). In a typical cohesive zone model, the separation occurs at the interface only after a critical stress has been reached. When the separation has occurred, cohesive forces remain. These forces decrease when the opening increases and tend to vanish (softening behavior). Physically, the cohesive forces represent the weakening of the material in the fracture process zone ahead of the crack tip. Furthermore, real cracks cannot health in general. To take into account this irreversibility, one can introduce a history parameter, such as the maximal opening. For quasi-static fracture, cohesive zone models depending on opening and maximal opening are well established and in good agreement with experiments. In the dynamic case, numerical simulations with such cohesive zone models predict often crack speeds far higher than those observed in the experiments. For instance, for mode I fracture in brittle materials, numerical crack tip speeds are close to the Rayleigh wave speed, while experimental crack tip speeds nearly reach half of this value (see for instance [START_REF] Sharon | Energy dissipation in dynamic fracture[END_REF][START_REF] Ravi-Chandar | An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching[END_REF]). To remedy this, cohesive zone models depending on the opening rate have been designed [START_REF] Samudrala | Subsonic and intersonic mode ii crack propagation with a rate-dependent cohesive zone[END_REF][START_REF] Zhou | A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials[END_REF]. Such models are called rate-dependent. Since the crack tip speed is high, typically of the same order as the wave speeds, small time steps are needed to capture accurately the fracture phenomenon. Therefore, it seems natural to consider an explicit time-integration scheme. For cohesive zone models in which the interface forces are related to the opening by a classical function, the use of an explicit time-integration scheme is straightforward [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF]. However, in most cohesive zone models, the interface forces are not related to the opening by a classical function, but by a set-valued map. Indeed, most cohesive zone models feature perfect initial adhesion, contact or rigid unloading. There are two main diculties in using fully explicit schemes in such a context. Firstly, the interface forces are not dened for negative normal opening (see Figure 5.1, left). Secondly, the interface forces are discontinuous with respect to the opening (see Figure 5.1, right), and this can cause oscillations. A rst option consists in regularizing the set-valued map to turn it into a single-valued map. Unfortunately, the regularization of a non-interpenetration condition deteriorates substantially the stability condition of explicit schemes. Moreover, replacing a discontinuity by a very sti slope does not really improve the problem. Alternatively, some ad hoc procedures have also been developed to treat the set-valued parts of the interface forces: allowing the separation only after a failure criterion has been reached [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Pandol | Three dimensional cohesiveelement analysis and experiments of dynamic fracture in c300 steel[END_REF][START_REF] Falk | A critical evaluation of cohesive zone models of dynamic fractur[END_REF], a posteriori enforcement of the noninterpenetration condition [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Falk | A critical evaluation of cohesive zone models of dynamic fractur[END_REF], tolerance parameter on the tangential opening [START_REF] Falk | A critical evaluation of cohesive zone models of dynamic fractur[END_REF].

In the present work, we focus on dynamic fracture models where the material can only crack along a prescribed surface (fracture interface). In other words, the crack path is known in advance. This assumption may appear as a major limitation. However, fracture models predicting the crack path are not yet robust enough, especially for industrial applications. Moreover, for a large range of applications (interfacial crack, small propagation crack), postulating a priori the crack path is reasonable (see [START_REF] Lorentz | A mixed interface nite element for cohesive zone models[END_REF] for a further discussion). We assume that the bulk behavior is governed by linear elastodynamic equations and that the separation process at the interface fracture obeys a cohesive zone model. We consider an abstract cohesive zone model depending on the opening, the opening rate, and the maximal opening. This abstract model encompasses most of the usual cohesive zone models. Space semi-discretization is achieved using P 1 nite elements. We propose time-integration schemes that combine a central dierence scheme with a partially or fully implicit enforcement of the interface forces. The central dierence scheme is a standard scheme for elastodynamics [START_REF] Hughes | The nite element method[END_REF]. The implicit enforcement of the interface forces provides a general and robust way of treating the set-valued cohesive zone model. In order to keep a moderate computational cost, we use lumping techniques for the mass term and the interface forces. We thus obtain quasi-explicit methods: at each time step, the displacements of the nodes in the interior of the domain are computed in an explicit way, while the displacements of each node at the interface are computed by solving a small nonlinear problem (this can generally be achieved in an analytical way). First, we consider a fully implicit enforcement of the interface forces. However, staggering in time the force at the fracture interface can have a sizeable eect on the energy behavior and the accuracy of the time-integration scheme. Consequently, we propose a second time-integration scheme, in which we split the interface forces into a set-valued monotone part and a single-valued softening part. The former is treated in an implicit way, the latter in an explicit way. This improves the accuracy and the energy behavior. Note that some of the ad hoc procedures described above can be interpreted as an implicit enforcement of the set valued part of the cohesive zone model (failure criterion, a posteriori enforcement of the contact condition).

We begin by presenting the abstract cohesive zone model and examples which t into this framework (Section 5.2). We then formulate the continuous problem of dynamic fracture (Section 5.3). Sections 5.4 and 5.5 are devoted to the nite element discretization in space and to the time-integration schemes, respectively. We discuss the implementation of the schemes in Section 5.6. Finally, numerical simulations on 2D examples are presented in Section 5.7.

Cohesive zone model

We consider an abstract cohesive zone model. The forces at the fracture interface are described by a set-valued map which depends on the opening, the opening rate, and the maximal eective opening (we dene below what we call eective opening). The arguments of R are the maximal eective opening, the opening rate, and the opening, respectively. For each triplet (δ, z, p), the map R(δ, z, p) yields a set of vectors, which are the admissible interaction forces. The rst component of λ ∈ R(δ, z, p) is the normal force at the interface and the second and third ones are the tangential forces. For an opening p ∈ R 3 (resp. p ∈ R 2 ), the corresponding eective opening is dened as

δ(p) = (p 1 , |p 2 |, |p 3 |) (resp. δ(p) = (p 1 , |p 2 |)).
Since a cohesive zone model describes a softening behavior, the set-valued map R is not monotone with respect to the opening. However, we make the following reasonable assumption on R. This assumption is, in particular, useful to establish the well-posedeness of our rst timeintegration scheme (see Proposition 5.1).

Assumption 5.1. The operator R satises the following one-sided Lipschitz condition : there is a real number c s such that, for all δ ∈ R d , for all z ∈ R d , for all p 1 , p 2 ∈ R d ,

(λ 1 -λ 2 , p 1 -p 2 ) ≥ -c s |p 1 -p 2 | 2 , ∀λ 1 ∈ R(δ, z, p 1 ), ∀λ 2 ∈ R(δ, z, p 2 ).
(5.1)

This condition means that the slope of the softening part is bounded. Furthermore, in most models, the operator R(δ, z, •) is built as the dierential (in a generalized sense) of an energy. This operator being non-monotone, the associated cohesive energy is non-convex.

The present abstract model encompasses for instance the Camacho-Ortiz law [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] and the Talon-Curnier law [START_REF] Talon | A model of adhesion coupled to contact and friction[END_REF], but not the rectangular law (because of the innite slope of the softening part).

Examples

This section collects some examples of cohesive zone models tting the above framework. The rst two examples can be viewed as simplied variants of the Camacho-Ortiz law [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF].

A reversible triangular model with uncoupled normal and tangential forces

This model depends on the opening and prescribes uncoupled normal and tangential interface forces. It relies on two parameters: σ c , the maximal cohesive force, and d c , the critical ). An energy Ψ irr 1 : R + × R + → R and a dissipated energy Ψ irr 1 : R + → R can be associated with the irreversible model with linear unloading. One dene them as follows : A rate-dependent triangular model with only normal force [START_REF] Zhou | A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials[END_REF] This model depends on the normal opening p and the normal opening rate z, and prescribes only the normal interface force. It relies on three parameters: σ c , the maximal cohesive force, d c , the critical opening, and η, a viscosity parameter. It can be represented by the set-valued map 

Ψ irr 1 (δ, p) :=              σ c -δ 2 + p -p 2 2dc if 0 < δ < p ≤ d c σ c 1 -δ dc p 2 2δ if 0 < p ≤ δ ≤ d c 1 2 σ c d c if d c < p, δ = 0 0 if d c < δ, 0 ≤ p , Ψ irr 1 (δ) := 1 2 σ c δ if 0 ≤ δ ≤ d c 1 2 σ c d c if d c < δ .
R visc 1 : R × R → P(R d ) such that R visc 1 (z, p) :=            (-∞, σ c ] if p = 0 σ c 1 - p dc(1+ηz + ) if 0 < p < d c (1 + ηz + ) 0 if d c (1 + ηz + ) ≤ p

Link with Grith's model

It is possible to make a link between cohesive zone models and Grith's models. When cohesive forces act over a suciently short range, the stress elds near the crack tip are equivalent in both models. Furthermore, the material parameter used in Grith's model, the fracture toughness G c , is equal to the energy needed to completely open the crack in the cohesive zone model. A formal argument for this asymptotic analysis can be found in [START_REF] Willis | A comparison of the fracture criteria of grith and barenblatt[END_REF] and a rigorous proof for a simple model in [START_REF] Marigo | Initiation and propagation of fracture in the models of Grith and Barenblatt[END_REF]. The fracture toughness corresponding to the rate-independent triangular models (presented above) is

G c = 1 2 σ c d c .
In the rate-dependent triangular model, the fracture toughness increases with the opening rate.

Continuous problem

We now formulate the governing equations of the dynamic fracture problem.

Geometry

We consider a domain Ω ⊂ R d (d = 2 or d = 3) and we assume that the crack can only appear on a (d -1)-dimensional smooth surface Γ (see Figure 5.4). We call Γ the fracture interface. We set Ω := Ω \ Γ . We can x an orientation and dene two sides for Γ , a positive side and a negative side. The trace of u on the positive side is denoted by u + , the trace on the negative side is denoted by u -. We denote by ν the unit normal vector to Γ pointing to the positive side. We dene two tangential unit vectors τ 1 and τ 2 , so that (ν, τ 1 , τ 2 ) forms a local direct orthonormal basis. The displacement jump at the interface is dened as

[[u]] = u + -u -.
(5.2)

To dene the interface forces, we take into account the local orientation of the interface by introducing the rotation matrix Q transforming the canonical basis of R d into (ν, τ 1 , τ 2 ). 

Γ D Γ N Ω - + Γ ν

Governing equations

The material is supposed to be linear isotropic elastic with Young modulus E, Poisson ratio ν P , and mass density ρ. The elasticity tensor is denoted by A. An external load f is applied to the body. Let u : d , andσ(u) : Ω × (0, T ) → R d,d be the displacement eld, the linearized strain tensor, and the stress tensor, respectively. Denoting time-derivatives by dots, the momentum conservation equation reads

Ω × (0, T ) → R d , (u) : Ω × (0, T ) → R d,
ρü -div σ = f, σ = A : , = 1 2 
(∇u + T ∇u) in Ω × (0, T ).

(

The boundary ∂Ω of Ω is partitioned into two disjoint subsets Γ D and Γ N . Dirichlet and Neumann conditions are prescribed on Γ D and Γ N , respectively,

u = u D on Γ D × (0, T ), σ • ν = f N on Γ N × (0, T ). (5.4) 
On Γ , the cohesive law is enforced

σ(u -) • ν = -σ(u + ) • ν =: λ, λ ∈ T QR(δ, Q[[ u]], Q[[u]]).
(

The maximal eective opening δ is dened, for t > 0, as

δ(t) = sup s∈[0,t) δ(Q[[u(s)]]).
(

At the initial time, the displacement, the velocity, and the maximal eective opening are prescribed:

u(0) = u 0 , u(0) = v 0 , δ(0) = δ 0 .
(5.7) Equations ( 5.3)-(5.5) can be written in a variational form : seek u such that for all test function v,

Ω ρü • v + Ω (u) : A : (v) = Ω f (t) • v + Γ N f N (t) • v - Γ λ • [[v]], (5.8) 
where

λ ∈ T QR(δ, Q[[ u]], Q[[u]]).

Mathematical aspects

The mathematical analysis of Problem (5.3)-(5.7) is beyond the scope of the present work. However, let us mention some related results.

In the quasi-static case with a reversible cohesive zone model (with perfect adhesion or not), the existence is proven. The solution is in general not unique [START_REF] Doyen | A three-eld augmented Lagrangian formulation of unilateral contact problems with cohesive forces[END_REF].

In the quasi-static case with an irreversible cohesive zone model, the existence of a solution is proven in [START_REF] Maso | Quasi-static crack growth for a cohesive zone model with prescribed crack path[END_REF][START_REF] Cagnetti | A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path[END_REF].

In the dynamic case, it should be possible to prove, using compactness arguments, existence for a visco-elastic material and a reversible cohesive law with perfect adhesion, and even to prove existence and uniqueness for an elastic material and a regularized cohesive law.

Length and time scales

In order to capture accurately a phenomenon with numerical simulations, it is important to choose a time step and a mesh size which resolve its time and length scales. In a dynamic fracture problem, the relevant length scale is the length of the cohesive zone (part of the interface which is not completely cracked and where cohesive forces act). The relevant time scale is the crack tip speed divided by the cohesive zone length. For an isotropic linear elastic material and a triangular cohesive zone model, in the quasi-static setting, the estimated cohesive zone length is [START_REF] Rice | The mechanics of earthquake rupture[END_REF] 

l coh = 9π 32 E 1 -ν 2 P G c σ 2 c .
(5.9)

For an isotropic linear elastic material and a Grith model of fracture, a theoretical analysis predicts that the limiting crack tip speed for a mode I fracture is the Rayleigh wave speed [START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Broberg | Cracks and fracture[END_REF]. For mode II and mode III fractures, the limiting speeds are the dilatational wave speed and the shear wave speed, respectively [START_REF] Freund | Dynamic fracture mechanics[END_REF][START_REF] Broberg | Cracks and fracture[END_REF]. The dilatational and shear wave speeds are given by the following formulae:

c d = E(1 -ν P ) ρ(1 + ν P )(1 -2ν P ) , c s = E 2ρ(1 + ν P ) .
(5.10)

The Rayleigh wave speed can be estimated by the following expression [START_REF] Freund | Dynamic fracture mechanics[END_REF] c R ≈ c s 0.862 + 1.14ν P 1 + ν P .

(5.11)

Finite element discretization

In this section, we describe the space approximation of the dynamic fracture problem. Linear nite elements are used together with lumping of the mass term and the interface forces.

Finite element spaces

In 2D (resp. in 3D), we approximate the domain Ω by a polygon (resp. a polyhedron) Ω h and the interface Γ by a polygonal curve (resp. a polygon) Γ h . We mesh Ω h with triangles (resp. tetrahedra) conforming to the interface Γ h . Let T h denote the mesh over Ω h and let F h collect the faces located on Γ h . Let Ωh = Ω h \ Γ h . Let {x i } i∈N be the nodes of the mesh T h . We denote by N D the indices of nodes where a Dirichlet condition is enforced and by N c the indices of nodes lying on Γ h . We approximate the displacements with P 1 nite elements:

V h = {v h ∈ C 0 ( Ωh ) d ∩ L ∞ (Ω h ) d ; v h|T ∈ (P 1 ) d , ∀T ∈ T h , and v h (x i ) = 0, ∀i ∈ N D }.
Note that functions in V h can be discontinuous across Γ h . We consider the Lagrange nodes of V h and denote them by {ξ i } i∈N L . The Lagrange nodes are not exactly the mesh nodes {x i } i∈N because of the discontinuity at the interface. Specically, for each mesh node x i lying on Γ h , there are two Lagrange nodes ξ i + and ξ i -. For all i ∈ N c , for all v h ∈ V h , we set

v h (ξ i + ) := v + h (x i ), v h (ξ i -) := v - h (x i ).
(5.12)

The cohesive forces are also approximated by P 1 nite elements,

L h = {λ h ∈ C 0 (Γ h ) d ; λ h|F ∈ (P 1 ) d , ∀F ∈ F h }.
At each node x i lying on Γ h , we dene normal and tangential unit vectors (ν i , τ 1i , τ 2i ) forming a local direct orthonormal basis. Let Q i be the associated rotation matrix. We dene also the set-valued operator R i :

R i (•, •, •) = T Q i R(•, Q i •, Q i •).
(5.13)

Lumping of the mass term and the cohesive term

We lump the mass term and the cohesive forces term. Mass lumping is usual with explicit time-integration schemes. It yields an easy-to-invert mass matrix at each time step, while improving the CFL condition [START_REF] Hughes | The nite element method[END_REF]. A way of lumping the mass term is to evaluate it with an approximate quadrature whose Gauss points are the nodes of the nite element space. Of course, this quadrature must be of suciently high order to avoid deteriorating the global accuracy of the method. For P 1 nite elements, it is usual to use the following quadrature formula (in dimension

d) T f ≈ d+1 i=1 |T | d + 1 f (α i ), (5.14) 
where |T | is the measure of the simplex T and {α i } 1≤i≤d+1 its vertices. This quadrature is second-order accurate. The lumped mass term mh :

V h × V h → R is built with this quadrature by setting mh (v h , w h ) = i∈N L µ i v h (ξ i ) • w h (ξ i ), (5.15) 
where

µ i = T ∈T i ρ|T |/(d + 1), (5.16) 
T i being the set of elements for which ξ i is a vertex. The lumped cohesive term bh :

L h × V h → R is such that bh (λ h , w h ) = i∈N c β i λ h (x i ) • v - h (x i ) -v + h (x i ) , (5.17) 
where

β i = F ∈F i |F |/d, (5.18) 
F i being the set of faces for which x i is a vertex. Finally, the stiness term a h : V h × V h → R and the external force term l h : [0, T ] × V h → R are built in a standard way, namely

a h (v h , w h ) := Ωh (v h ) : A : (w h ), (5.19) 
l h (t, v h ) := Ωh f (t) • v h + Γ N f N (t) • v h , (5.20) 
up to quadratures. We dene the matrices Mh , K h , and Bh associated with the bilinear forms mh , a h , and bh , respectively. We also dene L h (t) to be the column vector associated with the linear form l h (t, •). For u h ∈ V h , we dene U h as the column vector whose components are the coordinates of u h in the nite element basis. We denote by N V the size of U h . We denote by U h,i the d-dimensional sub-vector associated with the Lagrange node ξ i . Similarly, for λ h ∈ L h , we dene Λ h as the column vector whose components are the coordinates of λ h in the nite element basis. We denote by N Λ the size of Λ h . We denote by Λ h,i the d-dimensional sub-vector associated with the node x i . Finally, we dene for all i ∈ N c ,

[[U h ]] i = U h,i + -U h,i -and {U h } i = U h,i + + U h,i - 2 . 
(5.21)

For each i ∈ N L , we denote respectively by Mh,i and K h,i the d × d sub-matrices of Mh and K h associated with the Lagrange node ξ i . For each i ∈ N c , we denote by Bh,i the d × d sub-matrix of Bh associated with the node x i . We dene the set-valued operator R h : R

N Λ × R N Λ × R N Λ → P(R N Λ ) such that for all ∆ h ∈ R N Λ , Z h ∈ R N Λ , P h ∈ R N Λ , Λ h ∈ R h (∆ h , Z h , P h ) ⇐⇒ Λ h,i ∈ R i (∆ h,i , Z h,i , P h,i ) ∀i ∈ N c .
(

The space semi-discrete problem takes the form

Mh Üh (t) + K h U h (t) = L h (t) + Bh Λ h (t), (5.23) 
Λ h (t) ∈ R h (∆ h (t), [[ Uh (t)]], [[U h (t)]]), (5.24) 
∆ h,i (t) = sup s∈[0,t) δ(Q i [[U h (s)]] i ), ∀i ∈ N c .
(5.25)

Remark 5.1. In the present work, we consider P 1 nite elements. Other types of nite elements can be used, provided an accurate lumping technique is available. For instance, this is the case for Q 1 elements (see [START_REF] Hughes | The nite element method[END_REF]). For P k and Q k elements with k ≥ 2, the lumping techniques are more subtle (see for instance [START_REF] Cohen | Higher order triangular nite elements with mass lumping for the wave equation[END_REF] and references therein).

Time-integration schemes

It remains now to discretize the problem in time. The time-integration schemes we propose are based on the central dierence scheme. To begin with, we recall the main properties of this scheme in the linear elastodynamic case. We then describe and analyze two schemes for the dynamic fracture problem.

Central dierences

For simplicity, the interval [0, T ] is divided into equal subintervals of length ∆t. We set t n = n∆t and denote by U n h the approximation of U h at time t n . For the central dierence scheme, the discrete velocity and the discrete acceleration are dened respectively as

U n h := U n+1 h -U n-1 h 2∆t and Ü n h := U n+1 h -2U n h + U n-1 h ∆t 2 .
(

At each time step of the central dierence scheme, one seeks U n+1 h such that

1 ∆t 2 Mh (U n+1 h -2U n h + U n-1 h ) + K h U n h = L h (t n ).
(5.27)

The central dierence scheme exhibits a stability condition (CFL condition) of the form

c d ∆t ≤ O(h min ), (5.28) 
where h min is the size of the smallest mesh element. An admissible value of the constant in the CFL condition can be specied in 1D and for structured meshes in higher dimension. We dene the elastic energy, the kinetic energy, and the total energy of the discrete system at time t n respectively as

E n el := 1 2 (K h U n h , U n h ) , E n kin := 1 2 Mh U n h , U n h , E n := E n el + E n kin .
(5.29)

In linear elastodynamics, the central dierence scheme does not preserve the energy. Nevertheless, the scheme preserves the following quadratic form, referred to as a shifted energy,

E n := E n - ∆t 2 8 Mh Ü n h , Ü n h .
(5.30)

In particular, the following shifted energy balance holds true :

E n+1 -E n = 1 2 (L h (t n+1 ) + L h (t n ), U n+1 h -U n h ).
(5.31)

Scheme A (fully implicit interface forces)

We combine a central dierence scheme with an implicit enforcement of the interface forces. More precisely, the interface forces are implicit in the opening, while they are explicit in the opening rate and in the maximal eective opening.

Scheme A.Seek

U n+1 h ∈ R N V and Λ n+1 h ∈ R N Λ such that 1 ∆t 2 Mh (U n+1 h -2U n h + U n-1 h ) + K h U n h = L h (t n ) + Bh Λ n+1 h , (5.32) 
Λ n+1 h ∈ R h (∆ n h , Z n h , [[U n+1 h ]]), (5.33) 
where, for all i ∈ N c ,

Z n h,i = [[U n h ]] i -[[U n-1 h ]] i ∆t , ∆ n h,i = max(∆ n-1 h,i , δ(Q i [[U n h ]] i )).
(5.34)

A way of implementing this scheme will be described in Section 5.6.1. We now prove that, at each time step, the problem is well-posed under a mild restriction on the time step. Proposition 5.1 (Well-posedness). Problem (5.32)-(5.34) has a unique solution under the

conditions µ i + ∆t 2 > 2c s β i and µ i - ∆t 2 > 2c s β i , ∀i ∈ N c , (5.35) 
where the coecients µ i and β i are dened by (5.16) and (5.18). For a quasi-uniform mesh, the above condition can be rewritten as

∆t 2 h c < C, (5.36) 
where h c is the mesh size at the interface and C a constant independent of the mesh size.

Proof. The relations (5.32)-(5.33) can be recast as an inclusion : seek

U n+1 h ∈ R N V such that 1 ∆t 2 Mh U n+1 h -Bh R n h (U n+1 h ) F n h (5.37)
where

F n h := (1/∆t 2 ) Mh (2U n h -U n-1 h ) -K h U n h + L h (t n ) and R n h (U n+1 h ) := R h (∆ n h , Z n h , [[U n+1 h ]]).
We are now going to prove that the set-valued operator involved in this inclusion is strongly monotone for ∆t small enough.

Let U h ∈ R N V and let V h ∈ R N V . Let Λ h ∈ R n h (U h ) and Θ h ∈ R n h (V h ). We observe that -( Bh Λ h -Bh Θ h , U h -V h ) = i∈N c β i (B h,i Λ h,i -B h,i Θ h,i , [[U h ]] i -[[V h ]] i ).
Using the one-sided Lipschitz condition (5.1) and the properties of the rotation matrices

Q i , -( Bh Λ h -Bh Θ h , U h -V h ) ≥ - i∈N c β i c s |[[U h ]] i -[[V h ]] i | 2 , ≥ - i∈N c 2β i c s (|U h,i + -V h,i + | 2 + |U h,i --V h,i -| 2 ).
(5.38)

By denition of the mass matrix,

( Mh U h -Mh V h , U h -V h ) ≥ i∈N L µ i |U h,i -V h,i | 2 .
(5.39)

Collecting inequalities (5.38) and (5.39) yields

1 ∆t 2 ( Mh U h -Mh V h , U h -V h ) -( Bh Λ h -Bh Θ h , U h -V h ) ≥ i∈N L µ i ∆t 2 |U h,i -V h,i | 2 - i∈N c 2β i c s (|U h,i + -V hi + | 2 + |U h,i --V h,i -| 2 ). (5.40) 
Therefore, a sucient condition for the set-valued operator to be strongly monotone is given by (5.35). For a quasi-uniform mesh, we can rewrite the condition as (5.36).

It is straightforward to derive the energy balance for Scheme A.

Proposition 5.2 (Energy balance).

E n+1 -E n = 1 2 Bh Λ n+2 h + Bh Λ n+1 h , U n+1 h -U n h + 1 2 L h (t n+1 ) + L h (t n ), U n+1 h -U n h . (5.41) 
With this scheme, the work of the interface forces can be positive or negative. As a consequence, we cannot prove the same CFL condition as in the linear elastodynamic case, although we do observe numerically the same CFL condition (see Section 5.7.1). Perhaps, more importantly, it tourns out (see again Section 5.7.1) that decentering in time the interface forces can have an unfavorable impact on the energy behavior and the accuracy of the time-integration scheme. To remedy this, we propose another time-integration scheme in the next section.

Scheme B (implicit set-valued part)

The key idea is to split the interface forces into a set-valued monotone part and a singlevalued softening part. The former is treated in an implicit way, the latter in an explicit way.

Assumption 5.2. There exist

P : R d × R d × R d → P(R d ) and χ : R d × R d × R d → R d such that R = P + χ.
(5.42) Moreover, the operator P is monotone with respect to the opening: for all (5.43) and the function χ is Lipschitz continuous with respect to the opening : there exists

δ ∈ R d , z ∈ R d , p 1 ∈ R d , p 2 ∈ R d , (λ 1 -λ 2 , p 1 -p 2 ) ≥ 0, ∀λ 1 ∈ P (δ, z, p 1 ), ∀λ 2 ∈ P (δ, z, p 2 ),
c s ∈ R + such that for all δ ∈ R d , z ∈ R d , p 1 ∈ R d , p 2 ∈ R d , |χ(δ, z, p 1 ) -χ(δ, z, p 2 )| ≤ c s |p 1 -p 2 |.
(5.44) Of course, the decomposition (5.42) of R is not unique. In Figures 5.5, 5.7, and 5.6, we present examples of the decomposition (5.42) for the cohesive zone models presented in Section 5.2.2. Similarly to (5.13), we dene the set-valued operator P i and the single-valued function χ i as

P i (•, •, •) = T Q i P (•, Q i •, Q i •), χ i (•, •, •) = T Q i χ(•, Q i •, Q i •).
( 

Scheme B. Seek

U n+1 h ∈ R N V and Λ n+1 h ∈ R N Λ such that 1 ∆t 2 Mh (U n+1 h -2U n h + U n-1 h ) + K h U n h = L h (t n ) + Bh Λ n+1 h + Bh Θ n h , (5.46) 
Λ n+1 h ∈ P h (∆ n h , Z n h , [[U n+1 h ]]).
(5.47)

where, for all

i ∈ N c , Θ n h,i = χ i (∆ n h,i , Z n h,i , [[U n h ]] i ), ∀i ∈ N c , (5.48) 
while Z n h and ∆ n h are dened by (5.34). Proof. As in the proof of Proposition 5.3, we recast the problem as a dierential inclusion with a strongly monotone operator. Since the operator P is monotone, contrary to the operator R, there is no condition on the time step to prove the strong monotonicity.

It is straightforward to derive the energy balance for Scheme B.

Proposition 5.4 (Energy balance).

E n+1 -E n = 1 2 Bh Λ n+2 h + Bh Λ n+1 h , U n+1 h -U n h + 1 2 Bh Θ n+1 h + Bh Θ n h , U n+1 h -U n h + 1 2 L h (t n+1 ) + L h (t n ), U n+1 h -U n h .
(5.49)

Numerical implementation

This section briey describes the main steps to implement Schemes A and B.

Scheme A

Step 1 : Computation of the interior components of U n+1 h (explicit step). Owing to the lumping of the mass matrix, the components of U n+1 h corresponding to the interior nodes and the components corresponding to the interface nodes can be computed independently. We begin by seeking U n+1 h such that

1 ∆t 2 Mh (U n+1 h -2U n h + U n-1 h ) + KU n h = L h (t n ).
(5.50) This is the standard step in the central dierence scheme. Since the mass matrix is lumped, it only requires a matrix-vector multiplication and vector additions. After this step, the interface components of U n+1 h are not correct, they will be corrected in the next step. Note that this step uses the standard data structures.

Step 2 : Computation of the interface components of U n+1 h (implicit step). Owing to the lumping of the cohesive forces, the computation of the interface displacements can performed independantly at each node. For each i ∈ N c , we seek U n+1 h,i + and U n+1 h,i -such that

1 ∆t 2 M h,i + U n+1 h,i + + F n h,i + = Bh,i Λ n+1 h,i , (5.51) 
1 ∆t 2 M h,i -U n+1 h,i -+ F n h,i + = -Bh,i Λ n+1 h,i , (5.52) 
Λ n+1 h,i ∈ R n i ([[U ]] n+1 h,i ), (5.53) 
where

R n i (•) = R i (∆ n h,i , Z n h,i , •) and F n h := (1/∆t 2 ) Mh (2U n h -U n-1 h ) -K h U n h + L h (t n ). Problem (5.51)-(5.53) amounts to seeking [[U n+1 h ]] i and {U n+1 h } i such that 1 ∆t 2 [[U n+1 h ]] i + M -1 h,i + F n h,i + -M -1 h,i -F n h,i -∈ (M -1 h,i + + M -1 h,i -) Bh,i R n i ([[U n+1 h ]] i ),
(5.54)

1 ∆t 2 M h,i + M h,i -{U n+1 h } i + 1 2 (M h,i + F n h,i -+ M h,i -F n h,i + ) = 0.
(

The inclusion can generally be solved in an analytical way. For instance, for the normal component of an irreversible triangular model, we have to solve, at each node, a scalar inclusion of the form:

seek x ∈ R such that - a ∆t 2 x + b ∈ R 1 (x), (5.56) 
where a and b are given real numbers. Since R 1 is non-monotone, this problem may have in general several solutions (Figure 5.8, left). However, for a time step satisfying the condition (5.35), the solution is unique (Figure 5.8, right).

Step with the explicit formulae (5.34).

Scheme B

Step 1 : Computation of the interior components of U n+1 h (explicit step). We begin by seeking 

U n+1 h such that -a 1 ∆t 2 x + b R 1 (x) -a 1 ∆t 2 x + b R 1 (x)
1 ∆t 2 Mh (U n+1 h -2U n h + U n-1 h ) + KU n h = L h (t n ) + Bh Θ n h .
(5.57)

Step 2 : Computation of the interface components of U n+1 h (implicit step). For each i ∈ N c , we have to seek U n+1 h,i + and U n+1 h,i -such that

1 ∆t 2 M h,i + U n+1 h,i + + F n h,i + = Bh,i Λ n+1 h,i , (5.58) 
1 ∆t 2 M h,i -U n+1 h,i -+ F n h,i + = -Bh,i Λ n+1 h,i , (5.59) 
Λ n+1 h,i ∈ P n i ([[U h ]] i ).
(5.60)

where

P n i (•) = P i (∆ n h,i , Z n h,i , •) and F n h := (1/∆t 2 ) Mh (2U n h -U n-1 h ) -K h U n h + L h (t n ) + Bh Θ n h . Problem (5.58)-(5.60) amounts to seeking [[U n+1 h ]] i and {U n+1 h } i such that 1 ∆t 2 [[U n+1 h ]] i + M -1 h,i + F n h,i + -M -1 h,i -F n h,i -∈ (M -1 h,i + + M -1 h,i -) Bh,i P n i ([[U n+1 h ]] i ), (5.61) 
1 ∆t 2 M h,i + M h,i -{U n+1 h } i + 1 2 (M h,i + F n h,i -+ M h,i -F n h,i + ) = 0.
(

The inclusion can generally be solved in an analytical way. For instance, for the normal component of an irreversible triangular model (decomposed as in Figure 5.5), we have to solve, at each node, a scalar inclusion of the form:

seek x ∈ R such that - a ∆t 2 x + b ∈ P 1 (x), (5.63) 
where a and b are given real numbers. Since P 1 is monotone, there is a unique solution to this problem (Figure 5.9).

Step 3 : Update of ∆ n+1 

Numerical simulations

We perform numerical simulations on 2D examples with the purpose to illustrate the eectiveness of the quasi-explicit time-integration schemes and to investigate their properties (stability condition on the time step, accuracy). For the rst problem, we test the quasi-explicit time-integration schemes A and B, and a fully explicit scheme with a regularized cohesive zone model. For the other problems, we only test Scheme B, which appears as the most ecient scheme on the rst problem. All the simulations have been performed using FreeFem++ [START_REF] Hecht | Freefem++[END_REF].

Mode I fracture

We consider a mode I fracture problem (Figure 5.10). The domain is the rectangle Ω = (0, L x ) × (-L y , L y ). The fracture interface is the line Γ = (0, L x ) × {0}. The cohesive zone model is a reversible triangular model with fracture toughness G c and critical stress σ c . A constant displacement load is prescribed at the bottom and top edges (u y = u D at the top edge and u y = -u D at the bottom edge, with u D = L y ). At the initial time, a precrack of length L pre is inserted at mid-height on the left edge. Unless otherwise specied, the parameters are L x =100 mm, L y = 10 mm, L pre = 10 mm, = 0.003, T = 14 µs, E = 200 GPa, ν P = 0, ρ = 7800 kg•m -3 , σ c = 1.2 GPa, and G c = 16 000 N•m -1 . The material parameters are representative of those of a steel (except the Poisson ratio which is taken to be zero). The wave speeds associated with the above parameters are c d = 5064 m•s -1 , c s = 3581 m•s -1 , and c R = 3086 m•s -1 . The estimated cohesive zone length and the critical opening are l coh = 1.963 mm and d c = 0.0267 mm. Owing to symmetry, numerical simulations are performed only on the upper half part of the domain. This half-domain is uniformly meshed with half-square triangles. We denote by n mesh the number of elements on the large edge of the domain and by ∆x the length of the elements on this edge. The time step is then determined by xing a value for the Courant number dened as ν

C := c d √ 2 ∆t
∆x . We are interested in the following quantities: crack length, crack tip speed, energy. We denote by l cr (t) the length of the crack at time t and by v cr (t 1 , t 2 ) the average crack tip speed between times t 1 and t 2 . To localize the crack tip, we consider that the interface is cracked when the opening exceeds 0.1d c . We denote by E el (t), E kin (t), E coh (t), and E tot (t), the elastic energy, the kinetic energy, the cohesive energy, and the total energy at time t, respectively. The cohesive energy is dened as follows:

E coh (t) := i∈N c β i Ψ 1 ([[U h (t)]] i,1 ), (5.64) 
where The total energy is dened as the sum of the elastic energy, the kinetic energy and the cohesive energy. In the continuous problem, the total energy is expected to be constant (although there is no rigorous proof of this fact). In the dierent simulations, we observe the following qualitative behavior: the precrack opens, and there is a stress concentration around the precrack tip; as soon as this stress reaches the cohesive critical stress, the crack starts growing; the crack tip speed quickly reaches a limit value (lower than the Rayleigh wave speed). This behavior is illustrated in Figure 5.11 (crack tip advance and energy evolution) and Figures 5. We investigate the properties of the quasi-explicit time-integration schemes A and B, and a fully explicit scheme with a regularized cohesive zone model (the penalty parameter for the regularization of the non-interpenetration condition is denoted by p c ). First of all, we examine the stability condition. We observe numerically that Schemes A and B exhibit the same CFL condition as the central dierence scheme on the problem without cohesive zone, namely ν C 1. On the contrary, a fully explicit treatment of a regularized cohesive zone model deteriorates the CFL condition (Table 5.1). Now we compare the accuracy of the dierent schemes. We choose a mesh size equivalent or ner than the estimated cohesive length. With ν C = 1, we observe that Scheme A is not very accurate (Table 5.2). In particular, the energy balance is quite poor. By taking a smaller Courant number, the results are improved. In contrast to Scheme A, Scheme B yields accurate results with ν C = 1 (Table 5.3). The results of the fully explicit scheme with regularized cohesive zone model are relatively accurate (Table 5.4). However, in addition to a more restrictive stability condition than Scheme B, this scheme does not enforce a perfect adhesion on the sound part of the interface (Figure 5.14). decreases with the fracture toughness. If the load displacement is too small or the fracture toughness too large, the crack does not propagate. We observe that, with about 4-8 elements in the cohesive zone, the crack tip speed is accurate to about 1% (Table 5.6).

We still consider the same mode I fracture problem except that the cohesive zone model is now a triangular rate-dependent cohesive zone model with only normal force (the viscosity parameter is denoted by η). The notation and the parameters are the same. As expected, the introduction of a viscosity parameter slows down the crack tip (Figure 5.15 right, and Table 5.7). We observe a certain variation in the crack tip speed for η = 0.01 and η = 0.02. Indeed, in these cases, the crack tip speed is so low that the mechanical waves generated by the crack growth and reected on the boundary perturb the crack tip advance. Note that the total energy is not preserved in this problem since the rate-dependent cohesive zone model is dissipative. The rate dependence of the cohesive zone model introduces a new time scale in the problem, linked to the opening rate. This time scale is smaller than the time scale linked to the crack tip speed and requires therefore smaller time steps to be resolved (compare Table 5.8 with Table 5.3). For instance, we observe small oscillations on the crack tip advance when a too coarse discretization is used (Figure 5.15, left).

Mode II fracture

In this section, we consider an example of mode II fracture (Figure 5.16). The domain is the rectangle Ω = (0, L x ) × (-L y , L y ). The fracture interface is the line Γ = (0, L x ) × {0}. The cohesive zone model is a reversible uncoupled triangular model with a fracture toughness G c n mesh νC l coh /∆x lcr(T ) vcr(T /2, T ) E el (T ) E kin (T ) E coh (T ) E(T ) [START_REF] Nsiampa | Comparative study of numerical explicit schemes for impact problems[END_REF] and a critical stress σ c . A constant shear force is prescribed at the sides of the interface (f s e x is enforced at the top side and -f s e x at the bottom side, with f s = σ c /2). At the interface, the normal opening is enforced to zero, so that the fracture is in pure mode II. At the initial time, a precrack of length L pre is inserted at mid-height on the left edge. Owing to antisymmetry, numerical simulations are performed only on the upper half part of the domain. This half-domain is uniformly meshed with half-square triangles. The parameters and the notation are the same as in the previous problems. We just change the denition of the cohesive energy:

E coh (t) := i∈N c β i Ψ 2 ([[U h (t)]] i,2 ).
(5.65)

The sum of the kinetic energy, the elastic energy and the cohesive energy is expected to be equal to the work of the shear force (denoted by W ext ). This simulation of mode II fracture exhibits the same kind of behavior as the simulation of mode I fracture. The precrack opens by sliding and there is a stress concentration around the precrack tip; as soon as this stress reaches the cohesive critical stress, the crack starts growing; the crack tip speed reaches quickly a limit value, slightly lower than the dilatational wave speed. This behavior is illustrated in Figure 5.17 (crack tip advance and energy evolution) and Figures 5. [START_REF] Brogliato | Nonsmooth impact mechanics[END_REF] The observed stability condition is ν C 0.98. With a mesh resolving the estimated cohesive zone length and ν C = 0.98, the numerical results obtained with Scheme B are very accurate (Table 5.9). 

Mode I fracture with contact

This last problem involves mode I fracture and contact (Figure 5.20). The domain is the rectangle Ω = (0, L x ) × (-L y , L y ). The fracture interface is the line Γ = (0, L x ) × {0}. There is a precrack of length L pre at mid-height on the left edge. The cohesive zone model is an irreversible triangular model with linear unloading. A constant displacement load is prescribed at the upper left edge and lower left edge (u y = u d at the upper edge and u y = -u d at the lower edge, with u d = L y ). The initial state corresponds to the static equilibrium with Neumann condition on the precrack and Dirichlet condition on the rest of Γ (Figure 5. 22, top). Owing to symmetry, numerical simulations are performed only on the upper half part of the domain. We use en unstructured triangular mesh. The parameters are the same as in the previous problems except the precrack length (L pre = 40 mm), the displacement load ( = 0.09), and the time of simulation (T = 100 µs). The notation are also essentially the same. We change the denition of the cohesive energy and dene a dissipated cohesive energy :

Γ 2L y Γ D 1 Γ D 2 L x u y (0, y) = u D u y (0, y) = -u D L pre
E coh (t) := i∈N c β i Ψ irr 1 (∆(t) h,i,1 , [[U h (t)]] i,1 ),
(5.66)

Ẽcoh (t) := i∈N c β i Ψ irr 1 (∆(t) h,i ,1 ). 
(5.67)

The total energy is dened as the sum of the elastic energy, the kinetic energy, the cohesive energy and the dissipated cohesive energy. In the continuous problem, the total energy is expected to be constant.

For this problem, we observe the following behavior. At the initial time, there is a stress concentration around the precrack tip so the crack starts immediately growing (not uniformly). After a while, the crack stops growing and contact phenomena occur near the crack tip. This behavior is illustrated in Figure 5.21 (crack tip advance and energy evolution) and Figure 5.22 (deformation and stress elds at time T /2).

The observed stability condition is ν C 0.8. With a mesh resolving the estimated cohesive zone length and ν C = 0.8, the numerical results obtained with Scheme B are again very accurate (Table 5.10). A three-eld augmented Lagrangian formulation of unilateral contact problems with cohesive forces

This chapter has been published in ESAIM: Mathematical Modelling and Numerical Analysis [START_REF] Doyen | A three-eld augmented Lagrangian formulation of unilateral contact problems with cohesive forces[END_REF].

Introduction

The purpose of this work is to analyze augmented Lagrangian methods for solving static unilateral contact problems with cohesive forces. Problems of this kind arise in fracture mechanics, such as crack initiation and growth in brittle and ductile materials as well as delamination of composite materials [START_REF] Frémond | Contact with adhesion[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. Unilateral contact problems without cohesive forces have been widely studied from both theoretical and numerical standpoints; see, for instance, [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and nite element methods[END_REF]. They can be formulated as the minimization of a convex functional or, equivalently, as a monotone variational inequality. The presence of cohesive forces in addition to the unilateral contact makes the functional to be minimized possibly nonconvex or, equivalently, the operator in the variational inequality possibly non-monotone. This complicates substantially the problem.

Consider a prototypical unilateral contact problem with cohesive forces, as illustrated in Fig. 6 On Γ , we impose a unilateral contact condition with cohesive forces. The cohesive forces depend on the displacement on Γ . The present model belongs to the class of so-called cohesive zone models; see, e.g., [START_REF] Frémond | Contact with adhesion[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. For the sake of simplicity, we restrict ourselves to the case where the cohesive forces are normal and depend only on the normal displacement. Let n be the outward normal to Ω and let v Γ := -v| Γ • n and σ Γ := n • σ| Γ • n respectively denote the normal displacement and the normal stress on Γ . Then, (i) v Γ cannot be negative; (ii) if v Γ is zero, σ Γ must be lower than a yield σ c ; and (iii) if v Γ is positive, σ Γ obeys the cohesive law σ Γ = t(v Γ ). Hence, the cohesive law is a function t : R + → R, and we dene a cohesive energy ψ : R + → R such that ψ = t and, say, ψ(0) = 0. For later convenience, we extend the domain of ψ to R by setting for s ≥ 0, ψ(-s) = -ψ(s). There is a large variety of cohesive laws. Their common feature is a softening behavior: when the displacement increases, the cohesive force decreases. Consequently, the boundary condition is non-monotone and the cohesive energy is nonconvex. Typical functions t and ψ are represented on the left part of Fig. 6.2. The boundary condition is represented on the right part of Fig. 6.2. Let V and H be function spaces on Ω and Γ , respectively, dened in Section 2 below. Consider the functionals

W : V v -→ W (v) := 1 2 Ω σ(v) : (v) - Ω f • v - ∂Ω N g • v ∈ R, (6.1) 
Ψ : H q -→ Ψ (q) := Γ ψ (q) ∈ R, (6.2) 
and the linear operator

B : V v -→ Bv := v| Γ • n ∈ H. (6.3) 
The unilateral contact problem with cohesive forces can be expressed in the abstract variational form

min v∈V W (v) + Ψ (Bv)
subject to Bv ∈ H + (6.4)

where H + := {q ∈ H; q ≥ 0}.

Problem (6.4) is a constrained minimization problem. For solving numerically such a problem, the main techniques are penalty methods, feasible direction methods, linear programming methods, and Lagrangian methods. These techniques are thoroughly discussed in [START_REF] Bertsekas | Nonlinear Programming[END_REF]. The main drawbacks of the rst three methods can be summarized in this way: penalty methods generally yield ill-conditioned problems, feasible direction methods are often expensive due to the projection step, and linear programming methods are limited to linear constraints and quadratic objective functions. In contrast, Lagrangian methods are based on a reformulation of the constrained minimization problem. The new problem consists in seeking a saddle-point (or a stationary point) of a Lagrangian. This can be achieved eciently by Uzawa algorithms or Newton methods. Uzawa algorithms generally feature good global convergence properties (in the sense that they do not need an initialization value close to the optimum), but their speed of convergence is only linear. Newton methods feature a quadratic speed of convergence, but this is achieved only locally (that is, if the initialization is close to the optimum). Furthermore, augmenting the Lagrangian oers some additional advantages. Whenever the objective function is actually convex, this augmentation improves the performance of the algorithms. In the nonconvex case, the ordinary Lagrangian formulation is not necessarily well-posed and the augmentation enables to recover well-posedness. More details on augmented Lagrangian methods can be found in [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF][START_REF] Bertsekas | Nonlinear Programming[END_REF].

In the present work, we analyze two augmented Lagrangian methods for the problem of unilateral contact with cohesive forces: a decomposition-coordination method and a nonsmooth Newton's method. These two methods are based on the same three-eld augmented Lagrangian formulation. The decomposition-coordination method has been proposed by Fortin and Glowinski [START_REF] Fortin | Augmented Lagrangian methods[END_REF] as a general method for solving nonlinear problems. The idea is to solve separately the linear and nonlinear parts of the problem at each iteration. This method can be seen as an Uzawa-like algorithm. It is closely related to the so-called Latin method [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF] and also to splitting operator methods. Such methods have been applied to various unilateral contact problems, as for instance in [START_REF] Champaney | Modular analysis of assemblages of threedimensional structures with unilateral contact conditions[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF]. In the case of a convex functional split into two convex parts, the convergence of the algorithm has been proved in [START_REF] Fortin | Augmented Lagrangian methods[END_REF]. Furthermore, Newton's method is a standard method for solving nonlinear systems of equations and, as such, can be used to nd a stationary point of the augmented Lagrangian. In the case of unilateral constraints, the resulting system is only piecewise continuously dierentiable and Newton's method can be extended to this class of nonsmooth systems [START_REF] Qi | A nonsmooth version of Newton's method[END_REF]. Newton's method for unilateral contact problems has been used for instance in [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF][START_REF] Kunisch | Generalized Newton methods for the 2D-Signorini contact problem with friction in function space[END_REF]. In particular, it has been applied to the problem of unilateral contact with cohesive forces in [START_REF] Lorentz | A mixed interface nite element for cohesive zone models[END_REF]. This paper is organized as follows. In Section 6.2, we specify the mathematical structure of the original constrained minimization problem (6.4) and investigate its well-posedness. In particular, we establish an existence result where the lack of convexity is compensated by a compactness argument. In Section 6.3, we introduce the three-eld augmented Lagrangian formulation and study its well-posedness, namely the existence of a local saddle-point of the augmented Lagrangian. This result is well-known in the convex case [START_REF] Ekeland | Convex analysis and variational problems[END_REF]. In the nonconvex case, a result is available only in a nite-dimensional setting [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF]. Here, we extend this latter approach to the (innite-dimensional) problem of unilateral contact with cohesive forces, assuming the surjectivity of the operator B dened by (6.3) and using a compactness argument in the (closure of the) cone of feasible directions. Sections 6.2 and 6.3 are set in a general framework encompassing the particular case of unilateral contact problems with cohesive forces. In Section 6.4, we analyze mixed nite element approximations of the augmented Lagrangian formulation of unilateral contact problems with cohesive forces. Since a nonlinear problem needs to be solved for the normal displacement on Γ , it is convenient to use a collocation method. In the same way, numerical integration can be employed to build the Jacobian matrix in Newton's method. A key point is the use of discontinuous nite element spaces leading to a collocation method, while ensuring an inf-sup condition which is the discrete counterpart of the surjectivity of the operator B. The resulting mixed nite element approximation is nonconforming. Numerous works have been devoted to the error analysis of mixed formulations for unilateral contact problems, especially for two-eld formulations (bulk displacement-displacement on Γ or bulk displacement-normal stress on Γ ). To our knowledge, the only work dealing with the three-eld augmented Lagrangian formulation is [START_REF] Chen | On the augmented Lagrangian approach to Signorini elastic contact problem[END_REF] in a conforming and consistent case. Here, we prove a priori error estimates in the present nonconforming setting for various nite element spaces under the simplifying assumption that the cohesive forces are mild enough. In Section 6.5, we describe the algorithms. We prove the convergence of the decomposition-coordination method in the particular case of a convex functional split into a convex part and a nonconvex part. Finally, numerical simulations illustrating the theoretical results are presented in Section 6.6.

Well-posedness of the continuous problem

The main result of this section is the existence of a minimizer for problem (6.4). The lack of convexity is compensated by a compactness argument. We also specify a sucient condition for uniqueness based on α-convexity and give some hints on the regularity of the solution.

We make the following assumptions on the mathematical structure of problem (6.4). (H1) V and H are Hilbert spaces and B ∈ L(V, H) (the continuity constant is denoted by c B ); (H2) W is α-convex on V (the α-convexity constant is denoted by α W ); (H3) H + is a nonempty closed convex subset of H; (H4) There is a Hilbert space M ≡ M with scalar product (•, •) M such that H → M with compact imbedding (the continuity constant of the imbedding is denoted by c M ) and Ψ : M → R is bounded and continuous; (H5) W and Ψ are continuously dierentiable on V and M respectively, and Ψ is Lipschitz continuous on M (the Lipschitz constant of Ψ is denoted by k Ψ ). Let V + := {v ∈ V ; Bv ∈ H + }, observe that V + is a closed convex subset of V , and dene the functional Proof. Assumption (H1) holds by construction. Assumption (H2) is a direct consequence of Korn's rst inequality [25]. Assumption (H3) is readily veried. Concerning assumptions (H4) and (H5), we rst observe that, by construction, H 1 2 00 (Γ, ∂Γ 0 ) is compactly imbedded in L2 (Γ ). Furthermore, to prove the regularity of Ψ , we use a basic result of nonlinear analysis [START_REF] Denkowski | An introduction to nonlinear analysis: applications[END_REF]; see Lemma 6.1 below. Using this lemma with φ = ψ, p = 2, and q = 1 along with the boundedness of ψ to verify condition (6.10), we infer that S ψ is continuous from L 2 (Γ ) into L 1 (Γ ). Since for all q ∈ L 2 (Γ ), Ψ (q) = (S ψ (q), 1) M , the operator Ψ is continuous on M . Moreover, since for all q, r ∈ L 2 (Γ ),

J : V v -→ J(v) := W (v) + Ψ (Bv) ∈ R.
Ψ (q + r) -Ψ (q) -(S ψ (q), r) M = Γ 1 0 (ψ (q(x) + tr(x)) -ψ (q(x)))dt r(x)dx ≤ 1 2 k ψ Γ |r(x)| 2 dx,
owing to the Lipschitz continuity of ψ , Ψ is dierentiable on M with (Ψ (q), r) M = (S ψ (q), r) M . Using Lemma 6.1 with φ = ψ and p = q = 2 along with the Lipschitz continuity of ψ readily shows that Ψ is Lipschitz continuous on M with Lipschitz constant k ψ . Finally, the dierentiability of W is obvious. Lemma 6.1. Let φ : R → R be a continuous function. Consider a measurable function q : Γ ⊂ R n → R. The superposition operator (or Nemitsky operator) S φ maps q to φ • q. If q and r are measurable functions that coincide almost everywhere on Γ , then S φ (q) and S φ (r) are measurable functions that coincide almost everywhere on Γ . Moreover, if φ satises the growth condition,

∃a, b ∈ R, ∀x ∈ R, |φ(x)| ≤ a + b|x| p/q , (6.10) 
then the superposition operator maps L p (Γ ) into L q (Γ ) and is strongly continuous (p, q ∈ [1; +∞[).

Remark 6.2. The α-convexity condition (6.8) can be interpreted in terms of the problem parameters. The constant α W is proportional to the Young modulus of the material. The constant k ψ is larger when the cohesive forces decrease fast. By a scaling argument, it can be seen that c M c B decreases to zero with the (d -1)-dimensional measure |Γ |. Thus, condition (6.8) is more likely to be met when the Young modulus is large, the cohesive force decreases slowly, or |Γ | is small.

A detailed study of the regularity of the solution to the minimization problem (6.4) is beyond the scope of the present work. However, let us mention some results in particular cases. For a unilateral contact problem without cohesive forces under body forces in L 2 (Ω) d , the displacement is in H 2 loc (Ω ∪ Γ ) d [START_REF] Kinderlehrer | Remarks about Signorini's problem in linear elasticity[END_REF]. Furthermore, for a scalar elliptic problem in 2D with unilateral contact and homogeneous Dirichlet condition, the regularity of the solution has been studied near the junction between these boundary conditions [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF]. Under body forces in L 2 (Ω) and for a smooth junction, the solution is in H solution is in H 2 (Ω) if ω ≤ π/2, and in H 1+ π 2ω (Ω) otherwise. With a suciently smooth cohesive law, it seems reasonable to expect at least the same kind of regularity. Furthermore, cohesive zone models have been designed to avoid unphysical innite stresses at the crack tip. Yet, the question whether an appropriate choice of cohesive interface and law can lead to more regular solutions is still mathematically open.

A three-eld augmented Lagrangian formulation

We introduce a new unknown q representing the normal displacement on Γ . The decomposed problem is

   min (v,q)∈V ×H + W (v) + Ψ (q)
subject to Bv = q (6.11)

The decomposed problem (6.11), which is obviously equivalent to the initial minimization problem (6.4), is a minimization problem under a linear equality constraint. We treat this constraint by an augmented Lagrangian method. Introduce the space Y := V ×H (equipped with its natural norm) and the convex set (6.12)

K := V × H + . Dene J 0 : Y y := (v, q) -→ J 0 (y) := W (v) + Ψ (q) ∈ R, B : Y y := (v, q) -→ By := Bv -q ∈ H,
The augmented Lagrangian associated with the decomposed problem is

L r : Y × H (y, λ) -→ L r (y, λ) := J 0 (y) + λ, By H ,H + r 2 By 2 M ∈ R, (6.13) 
where r is an arbitrary non-negative constant. For y ∈ Y , set J r (y) := J 0 (y) + r 2 By 2 M .

(6.14)

A couple (x, θ) ∈ K × H is said to be a local saddle-point of the augmented Lagrangian if it satises ∀λ ∈ H , L r (x, λ) ≤ L r (x, θ) ≤ L r (y, θ), ∀y ∈ U, (6.15) 
where U ⊂ K is a neighborhood of x. The introduction of the augmented Lagrangian is motivated by the following proposition whose proof is straightforward. Proposition 6.3. If (x, θ) ∈ K × H is a local saddle-point of the augmented Lagrangian, then

x is a local minimizer of the decomposed problem (6.11).

The converse of this statement is more dicult to establish. We rst prove, under the key assumption that B is surjective from V to H, that if x ∈ K ∩ ker B is a local minimizer of J 0 , there is (a unique) θ ∈ H such that (x, θ) is a stationary point of the augmented Lagrangian L r . Then, we prove, under an additional assumption, that such a stationary point is a local saddle-point of L r . A couple (x, θ) ∈ K × H is said to be a stationary point of L r if it satises

∂ y L r (x, θ), y -x Y ,Y ≡ J r (x), y -x Y ,Y + θ, B(y -x) H ,H ≥ 0, ∀y ∈ K, (6.16 
)

∂ λ L r (x, θ), λ H,H ≡ λ, Bx H ,H = 0, ∀λ ∈ H .
(6.17)

Observe that being a stationary point of the augmented Lagrangian is a property independent of r since (6.17) implies Bx = 0 so that J r (x) = J 0 (x). Notice also that (6.16) can be rewritten for x := (u, p) as Proof. Let x ∈ K ∩ ker B be a local minimizer of the decomposed problem. Then, Bx = 0 and (6.17) obviously holds. Let us now prove (6.16). For all r ≥ 0, x minimizes J r over K ∩ ker B and hence it satises

W (u), v V ,V + θ, Bv H ,H = 0, ∀v ∈ V, (6.18) 
(ψ (p), q -p) M -θ, q -p H ,H ≥ 0, ∀q ∈ H + . ( 6 
J r (x), y -x Y ,Y ≥ 0, ∀y ∈ K ∩ ker B.
For all v ∈ ker B, y := x + (v, 0) belongs to K ∩ ker B so that J r (x), (v, 0) Y ,Y = 0. Since B is surjective, (ker B) ⊥ = im B * by the closed range theorem. As a consequence, there exists θ ∈ H such that J r (x), (v, 0) Y ,Y + θ, Bv H ,H = 0, ∀v ∈ V.

Since J r (x) = J 0 (x), θ does not depend on r. Now let y := (v, q) ∈ K and let w ∈ V be such that Bw = q. Then,

J r (x), y -x Y ,Y + θ, B(y -x) H ,H = J r (x), y -x Y ,Y + θ, B(v -w) H ,H = J r (x), (w, q) -x Y ,Y ≥ 0,
since (w, q) is by construction in K ∩ ker B. Hence, (6.16) also holds. Finally, the relation J r (x), (v, 0) Y ,Y + θ, Bv H ,H = 0 for all v ∈ V and the surjectivity of B from V to H imply that θ is unique.

Remark 6.3. In the context of unilateral contact problems, the Lagrange multiplier θ can be interpreted as the normal stress on Γ , namely θ = σ(u) Γ where x := (u, u Γ ). This results from the relation (6.16).

Remark 6.4. A more general existence result for mixed linear variational inequalities can be found in [START_REF] Slimane | Mixed formulations for a class of variational inequalities[END_REF].

We now examine whether a stationary point of the augmented Lagrangian is a local saddlepoint. The cone of feasible directions at the point x := (u, p) ∈ K can be dened as (V ×C + (x))∩ ker B where

C + (x) := {d ∈ H; ∃α > 0, p + αd ∈ H + }.
(6.20) Proposition 6.5. Assume that W and Ψ are of class C 2 . Let (x, θ) ∈ K×H be a stationary point of the augmented Lagrangian. Assume that (x, θ) satises the following second-order condition (indices on brackets are dropped for second-order derivatives)

J 0 (x), (d, d) > 0, ∀d ∈ (V × C + (x)) ∩ ker B \ {0}. (6.21) 
Then, there exists r 0 ≥ 0 such that (x, θ) is a local saddle-point of the augmented Lagrangian L r 0 . Furthermore, for all r ≥ r 0 , (x, θ) is a local saddle-point of the augmented Lagrangian L r .

Proof. The left inequality in (6.15) is obvious for all r ≥ 0. If the right inequality holds for r 0 ≥ 0, then it holds also for r ≥ r 0 . Now we shall prove by contradiction that there exist r 0 ≥ 0 and a neighborhood U of x such that L r (x, θ) ≤ L r (y, θ), ∀y ∈ U, ∀r ≥ r 0 . Suppose there exists a sequence of positive reals (r k ) k∈N tending to innity and a sequence (x k ) k∈N of elements of K tending to x such that 

L r k (x k , θ) ≤ L r k (x, θ). ( 6 
) := -1 k (x k -x)
where k := x kx Y . Since this sequence is bounded in Y , there exists a subsequence, still denoted by (e k ) k∈N , weakly converging to e := (e v , e q ) in Y . To obtain a contradiction, we shall now prove that e ∈ (V × C + (x)) ∩ ker B and that J 0 (x), (e, e) ≤ 0. A second-order Taylor expansion of L 0 (•, θ) at x in the Y -norm yields 

L 0 (x k , θ) = L 0 (x, θ) + ∂ y L 0 (x, θ), x k -x Y ,Y + 1 2 J 0 (x), (x k -x, x k -x) + o( 2 k ). Since x k = x + k e + k (e k -e), L 0 (x k , θ) = L 0 (x, θ) + ∂ y L 0 (x, θ), x k -x Y ,Y + α 2 k J 0 (x)
α 2 k J 0 (x), (e k -e, e) + α 2 k 2 J 0 (x), (e, e) + α 2 k 2 J 0 (x), (e k -e, e k -e) + r k 2 2 k Be k 2 M + o( 2 k ) ≤ 0.
(6.24) Since the sequence (e k ) k∈N converges weakly to e in Y , J 0 (x), (e k -e, e) tends to 0. By convexity

W (x), (e v k -e v , e v
ke v ) ≥ 0 and by compactness, e q k tends to e q in M so that Ψ (x), (e q ke q , e q ke q ) tends to 0. Hence, lim inf k J 0 (x), (e ke, e ke) ≥ 0. By compactness, the sequence ( Be k ) k∈N converges strongly to Be in M . Dividing (6.24) by 2 k r k and passing to the limit, we obtain Be 2 M ≤ 0 and thus e ∈ ker B. Moreover, since

x k = x + k e k , it is clear that for all k ≥ 0, e q k ∈ C + (x). Observing that C + (x) is convex, it is inferred that e q ∈ C + (x).
Hence, e ∈ (V × C + (x)) ∩ ker B; furthermore, by construction, e = 0. Finally, dividing (6.24) by 2 k , dropping the positive terms, and passing to the limit leads to J 0 (x), (e, e) ≤ 0.

Approximation by mixed nite elements

In this section, we discretize the augmented Lagrangian formulation of unilateral contact problems with cohesive forces by a Galerkin method with nite element spaces. The augmented Lagrangian formulation is a three-eld formulation: the bulk displacement, the normal displacement on Γ , and the Lagrange multiplier (which can be interpreted as the normal stress on Γ ). The two key ideas in the design of the mixed nite element approximation are the following. Firstly, we want to solve the nonlinear part of the problem concerning the normal displacement on Γ by a collocation method. This leads to the use of discontinuous nite element spaces spanned by nodal basis functions for approximating this quantity. Secondly, a surjectivity condition in the form of a discrete inf-sup condition must be satised, linking the discrete spaces for the bulk displacement and the Lagrange multiplier. In the sequel, we refer to a 3D/2D setting when Ω is 3D and Γ is 2D, and to a 2D/1D setting when Ω is 2D and Γ is 1D. Moreover, A B means the inequality A ≤ cB with a positive constant c independent of the mesh-size. Henceforth, the minimal regularity requirement for ψ is that ψ is Lipschitz continuous.

The discrete setting

Let {T h } h>0 be a shape-regular family of ane meshes covering exactly Ω, where the parameter h stands for the maximum size of the elements in T h . Without loss of generality, we assume h ≤ 1. Let F h collect the mesh faces located on Γ . To alleviate technicalities, the mesh family {F h } h>0 is assumed to be quasi-uniform on Γ , but this assumption can be relaxed. Let V h , M h , and Λ h respectively denote the nite element approximation spaces for the bulk displacement, the normal displacement on Γ , and the Lagrange multiplier. Henceforth, we assume that

V h ⊂ V,
and

Λ h ⊂ M h ⊂ M. (6.25)
Thus, the approximation is conforming for the bulk displacement and the Lagrange multiplier, but not for the normal displacement on Γ since in general M h ⊂ H. In fact, motivated by the use of a collocation method, we will choose M h as a discontinuous nite element space spanned by nodal basis functions; see Remark 6.6 below for further insight. Let Π Λ h denote the L 2 -orthogonal projection from M onto Λ h and dene the operator

B h : V v -→ B h v := Π Λ h Bv ∈ Λ h . (6.26)
The choice for the spaces V h and Λ h is linked by the following discrete inf-sup condition .27) This means that the restriction of the operator B h to V h is surjective onto Λ h . Henceforth, we assume that this condition holds.

∃β h > 0, ∀λ h ∈ Λ h , β h h 1/2 λ h M ≤ sup v h ∈V h (B h v h , λ h ) M v h V . ( 6 
Remark 6.5. The scaling factor h 1/2 has been introduced since the natural norm for λ h is the

H -1 2 -norm.
Consider the following nite element spaces

P k c (T h ) = {v h ∈ C 0 (Ω); ∀T ∈ T h , v h | T ∈ P k }, (6.28) 
P k d (F h ) = {q h ∈ L 2 (Γ ); ∀F ∈ F h , q h | F ∈ P k }, P k c (F h ) = P k d (F h ) ∩ C 0 (Γ ), (6.29) 
where for an integer k, P k denotes the space of polynomials with total degree ≤ k. We are interested in analyzing the following situations

M h = P 0 d (F h ), Λ h = M h , V h ⊃ P 1 c (T h ) d , (6.30 
)

M h = P 1 d (F h ), Λ h = M h , V h ⊃ P 2 c (T h ) d , (6.31 
)

M h = P 1 d (F h ), Λ h = P 1 c (F h ), V h = P 2 c (T h ) d .
(6.32)

In (6.30) and (6.31), the most robust choice is to take for V h , respectively, the continuous rstorder and second-order nite element spaces augmented with suitable face bubbles on Γ , leading to an inf-sup constant β h in (6.27) independent of h in both 2D/1D and 3D/2D settings; see [START_REF] Bathe | Stability of nite element mixed interpolations for contact problems[END_REF][START_REF] Hauret | A discontinuous stabilized mortar method for general 3d elastic problems[END_REF]. In 2D/1D whenever at least one of the endpoints of Γ is free, it is also possible to take (6.31); then, the discrete inf-sup condition (6.27) still holds, but the constant β h is of order h. The choice (6.32) has been introduced in [START_REF] Lorentz | A mixed interface nite element for cohesive zone models[END_REF] and diers from the two previous choices in the fact that Λ h = M h . The idea is to avoid the use of face bubbles on Γ by simply taking V h = P 2 c (T h ) d , to ensure a robust discrete inf-sup condition (with β h independent of h) by restricting Λ h to P 1 c (F h ), and to keep M h as a discontinuous nite element space to be able to use a collocation method.

V h = P 1 c (T h ) d in (6.30) or V h = P 2 c (T h ) d in
In all cases resulting from (6.30)(6.32), there holds M h = P k d (F h ) with k ∈ {0, 1}, and it is readily veried that there is a family of nodes (ξ F i ) 1≤i≤nq,F ∈F h such that the associated shape functions form a basis of M h (in 2D/1D, n q = k + 1 and the usual Gauss nodes are used; in 3D/2D, if k = 0, n q = 1 and the barycenter of each F ∈ F h is used, while if k = 1, n q = 3 and the midpoints of the three edges of each F ∈ F h are used); there are positive weights (ω F i ) 1≤i≤nq,F ∈F h such that for all q h , r h ∈ M h ,

(q h , r h ) M = F ∈F h nq i=1 ω F i q h (ξ F i )r h (ξ F i ). (6.33) 
In other words, on all F ∈ F h , the quadrature with nodes (ξ F i ) 1≤i≤nq and weights

(ω F i ) 1≤i≤nq is at least of degree 2k.
For further use, it is convenient to dene the bilinear form (6.34) where C 0 (F h ) denotes the space of functions whose restriction to every F ∈ F h is continuous.

C 0 (F h ) × C 0 (F h ) (q h , r h ) -→ (q h , r h ) M h := F ∈F h nq i=1 ω F i q h (ξ F i )r h (ξ F i ) ∈ R,

The discrete augmented Lagrangian formulation

Set

Y h = V h × M h and K h = V h × M + h where M + h := {q h ∈ M h ; ∀F ∈ F h , ∀1 ≤ i ≤ n q , q h (ξ F i ) ≥ 0}. (6.35) 
Observe that M + h ⊂ M + if k = 0 (that is, functions in M + h are indeed non-negative), whereas this is no longer the case if k = 1, thereby introducing an additional source of nonconformity in the approximation. Let

Bh : Y h y h := (v h , q h ) -→ Bh y h := Π Λ h (Bv h -q h ) ∈ Λ h . (6.

36)

Whenever Λ h = M h , we will also need the operator

B h : Y h y h := (v h , q h ) -→ B h y h := Π M h Bv h -q h ∈ M h , (6.37) 
where Π M h denotes the L 2 -orthogonal projection from M onto M h . We dene the discrete augmented Lagrangian as

L r,h : Y h × Λ h (y h , λ h ) -→ L r,h (y h , λ h ) := J 0,h (y h ) + (λ h , Bh y h ) M + r 2 B h y h 2 M ∈ R, (6.38)
where r is a non-negative parameter. Here, for y

h := (v h , q h ) ∈ Y h , J 0,h (y h ) := W (v h ) + (ψ(q h ), 1) M h , (6.39) 
that is, the energy associated with the cohesive forces is evaluated using a quadrature, and it is convenient to set

J r,h (y h ) := J 0,h (y h ) + r 2 B h y h 2 M . (6.40) 
Observe that the penalty term in (6.38) and in (6.40) is stronger than the usual penalty term associated with the constraint Bh y h = 0 in Λ h ; indeed, owing to the fact that Λ h ⊂ M h , there holds

∀y h ∈ Y h , Bh y h M ≤ B h y h M .
(6.41)

The discrete decomposed problem takes the following form min y h ∈K h ∩ker Bh J r,h (y h ).

(6.42) Proposition 6.6. There exists a solution to the discrete decomposed problem (6.42).

Proof. The functional J r,h is coercive and continuous, and the set K h ∩ ker Bh is nonempty and closed. In nite dimension, this suces for the existence of a global minimizer.

We now investigate sucient conditions for the functional J r,h to be α-convex over K h ∩ ker Bh (and thus the solution of (6.42) to be unique). Since we are working in a nonconforming framework (M h ⊂ M , but M h ⊂ H), it is convenient to equip Y h ⊂ Z := V × M with the natural norm of Z and to formulate duality products using Z. We rst treat the simpler case

Λ h = M h . Proposition 6.7. Assume α W -k ψ c 2 M c 2 B > 0 and Λ h = M h .
Then, the functional J r,h is αconvex on K h ∩ ker Bh , namely there is α > 0 such that for all r ≥ 0,

∀y h , z h ∈ K h ∩ ker Bh , J r,h (y h ) -J r,h (z h ), y h -z h Z ,Z ≥ α y h -z h 2 Z . (6.43) 
Proof. Let y h , z h ∈ K h ∩ ker Bh with y h := (v h , q h ) and z h := (w h , r h ). Set A = J r,h (y h ) -J r,h (z h ), y h -z h Z ,Z . Since Λ h = M h , the penalty term in (6.40) vanishes for y h , z h ∈ ker Bh . As a result,

A = W (v h ) -W (w h ), v h -w h V ,V + (ψ (q h ) -ψ (r h ), q h -r h ) M h ≥ α W v h -w h 2 V -k ψ F ∈F h nq i=1 ω F i (q h (ξ F i ) -r h (ξ F i )) 2 ,
where we have used the α-convexity of W , the Lipschitz continuity of ψ , and the fact that the weights ω F i are positive. Moreover, since the quadrature is at least of degree 2k, since Π Λ h B(v h - w h ) = q h -r h by assumption, and owing to the conformity of V h , it is inferred that

W (u h ), v h V ,V + (θ h , Bv h ) M + r(Π M h Bu h -p h , Bv h ) M = 0, ∀v h ∈ V h , (6.44) 
(ψ (p h ), q h -p h ) M h -(θ h , q h -p h ) M -r(Bu h -p h , q h -p h ) M ≥ 0, ∀q h ∈ M + h , (6.45) 
(λ h , Bu h -p h ) M = 0, ∀λ h ∈ Λ h . (6.46) 
By proceeding as in the continuous case (and using additional simplications due to the nitedimensional setting), the following equivalence result is readily veried. Proposition 6.9. 

If (x h , θ h ) is a local saddle-point of L r,h on K h × Λ h , then x h ∈ K h ∩
J 0,h (x h ), (d h , d h ) > 0, ∀d h ∈ (V h × C +,h (x h )) ∩ ker Bh \ {0}, (6.47) 
where

C +,h (x h ) = {d h ∈ M h ; ∃α > 0, p h + αd h ∈ M + h }, then (x h , θ h
) is a local saddle-point of the augmented Lagrangian on K h × Λ h for r large enough. Remark 6.6. In the decomposition-coordination method or when assembling the Jacobian matrix in Newton's method (see Section 6.5), the variational inequality (6.45) has to be solved with xed u h and θ h . This amounts to a nonlinear problem of size the dimension of M h , namely of size n q × N Γ where n q is dened above and where N Γ stands for the cardinal number of the set F h .

The key point is that since the underlying quadrature is at least of degree 2k, (6.45) is equivalent to (6.48) and using the nodal basis of M h , this leads to n q × N Γ uncoupled one-dimensional nonlinear problems. Note that (6.48) amounts to the minimization problem

(ψ (p h ), q h -p h ) M h -(θ h , q h -p h ) M h -r(Bu h -p h , q h -p h ) M h ≥ 0, ∀q h ∈ M + h ,
min q h ∈M + h (ψ h (q h ), 1) M h -(θ h , q h ) M + r 2 B h (y h , q h ) 2 M . (6.49) 
It is readily veried that for r ≥ k ψ , the above functional is convex so that the minimization problem (6.49) has a unique solution.

Error analysis

This section is devoted to the error analysis for the three choices (6.30)(6.32) of discrete spaces V h , M h , and Λ h . Their analysis is of increasing complexity. In (6.30) and (6.31), Λ h = M h , while M + h ⊂ M + in (6.30), but M + h ⊂ M + in (6.31); nally, in (6.32), Λ h = M h and M + h ⊂ M + . In all cases, the goal is to obtain error estimates with (quasi)optimal convergence rates in the mesh-size h under the assumption that the exact solution is unique and smooth enough. We assume for the sake of simplicity that the functional J r,h is α-convex on K h ∩ ker Bh so that the discrete solution is also unique. Sucient conditions for α-convexity and uniqueness are given by Propositions 6.7 and 6.8 above. In the sequel, (x, θ) with x := (u, p) denotes the exact solution and (x h , θ h ) with x h := (u h , p h ) denotes the approximate solution. Henceforth, we assume that θ ∈ M . Then, using the density of H + in M + , (6.19) yields (ψ (p)θ, qp) M ≥ 0 for all q ∈ M + , whence it is classically deduced that ψ (p)θ ∈ M + and that supp(ψ (p)θ) ∩ supp(p) has zero measure.

We introduce an additional regularity assumption regarding the topology of the subset of Γ where the unilateral constraint p ≥ 0 is actually active, namely, letting Γ 0 (p) := {x ∈ Γ ; p(x) = 0}, and Γ + (p) := Γ \ Γ 0 (p), (6.50) we assume that the set Γ0 (p) ∩ Γ + (p) is in 2D/1D, a nite union of points; in 3D/2D, a nite union of Lipschitz curves. Under this assumption, henceforth referred to as A[p], a sharper error estimate can be obtained by using the modied Lagrange interpolate introduced by Hüeber and Wohlmuth [START_REF] Hüeber | An optimal a priori error estimate for nonlinear multibody contact problems[END_REF] in the piecewise ane case or its piecewise quadratic extension in 2D/1D introduced in Lemma 6.4 below.

Since we are working in a nonconforming framework (M h ⊂ H and possibly M + h ⊂ M + ) and recalling that we have set Z := V × M , it is convenient to redene the operator B as Z y := (v, q) → Bvq ∈ M and to extend the domain of the functional J r to Z. Moreover, taking advantage that for the exact solution θ ∈ M , the augmented Lagrangian is now redened as 

An abstract error estimate

The proof of the following key abstract error estimate is postponed to Appendix 6.7. Observe that the error (xx h ) is measured in the • Z -norm, that is the H 1 (Ω) d -norm for the bulk displacement and the L 2 (Γ )-norm for the normal displacement on Γ , while the error (θ -θ h ) on the Lagrange multiplier is measured in the L 2 (Γ )-norm scaled by the factor h 1/2 . Lemma 6.2. For all y h := (v h , q h ) ∈ K h ∩ ker B h and for all q ∈ M + , letting η unil (q) := (ψ (p)θ, qp h ) M , (6.52) η unil (q h ) := (ψ (p)θ, q hp) M , (6.53) η quad (q h ) := sup

r h ∈M h , r h M =1 |(ψ (q h ), r h ) M -(ψ (q h ), r h ) M h |, (6.54) 
there holds

xx h 2 Z

xy h 2 Z + η unil (q h ) + η quad (q h ) 2 + η unil (q) + h s θ -Π Λ h θ 2 M , (6.55)

β h h 1/2 θ -θ h M h 1/2 θ -Π Λ h θ M + x -x h Z , (6.56) 
where s = 1 if Λ h = M h and s = 0 otherwise. Remark 6.7. η unil (q) measures the nonconformity error resulting from M + h ⊂ M + ; indeed, if p h ∈ M + , taking q = p h yields η unil (q) = 0. η quad (q h ) measures the quadrature error when evaluating the cohesive energy. Finally, xy h Z + η unil (q h ) measures the interpolation error while accounting for the unilateral constraint.

The case M h = P 0 d (F h ), Λ h = M h , and V h ⊃ P 1 c (T h ) d Theorem 6.2. Let M h = P 0 d (F h ), Λ h = M h , and V h ⊃ P 1 c (T h ) d . Assume u ∈ H 3/2+ν (Ω) with 0 < ν ≤ 1 2 , so that p ∈ H 1+ν (Γ ) and θ ∈ H ν (Γ ). Then, in the above framework, there holds

xx h Z + β h h 1/2 θθ h M h 1/2+ν . (6.57)

Proof. We apply Lemma 6.2 in the setting Λ h = M h and B h = Bh . Since M + h ⊂ M + because M h = P 0 d (F h ), we can take q = p h to obtain η unil (q) = 0. Moreover, it is readily veried that for piecewise constant functions, η quad (q h ) = 0. It remains to select y h := (v h , q h ) ∈ K h ∩ ker Bh to estimate η unil (q h ) and xy h Z . Let I 1 HW be the piecewise ane interpolation operator introduced by Hüeber and Wohlmuth; see [START_REF] Hüeber | An optimal a priori error estimate for nonlinear multibody contact problems[END_REF] and also the left panel of Fig. 6.3. Recall that I 1 HW p ≥ 0 on Γ and that supp(I 1 HW p) ⊂ supp(p). In particular, since supp(ψ (p)θ) ∩ supp(p) has zero measure, it is inferred that (ψ (p)θ, I 1 HW p) M = 0. Hence, setting q h := Π M h I 1 HW p, it is clear that q h ∈ M + h since M h = P 0 d (F h ). Moreover, observing that q h and I 1 HW p have the same support yields η unil (q h ) = 0.

Now, let I 1

Lag be the usual piecewise ane Lagrange interpolation operator (the same notation is used for interpolating vector-valued functions in Ω and scalar-valued functions on Γ ). Dene

v h ∈ P 1 c (T h ) d from I 1
Lag u by just modifying the normal component of the nodal values located on Γ so that Bv h = I 1 HW p on Γ . Then, by construction, y h := (v h , q h ) ∈ K h ∩ ker Bh . In addition, since u ∈ H 3/2+ν (Ω), standard interpolation properties (see, e.g., [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]) lead to u -I 1 Lag u V h 1/2+ν , and using an inverse inequality, the triangle inequality, standard approximation properties of

I 1
Lag , and the fact that p ∈ H 1+ν (Γ ) yields

I 1 Lag u -v h V h -1/2 I 1 Lag p -I 1 HW p M ≤ h -1/2 (h 1+ν + p -I 1 HW p M ).
Assumption A[p] is now used to infer that p -I 1 HW p M h 1+ν ; see [START_REF] Hüeber | An optimal a priori error estimate for nonlinear multibody contact problems[END_REF]. Collecting the above estimates yields uv h V h 1/2+ν and since

p -q h M ≤ p -Π M h p M + Π M h (p -I 1 HW p) M ≤ p -Π M h p M + p -I 1 HW p M h,
and recalling that ν ≤ 1 2 , it is inferred that

xy h Z h 1/2+ν .

Finally, since θ ∈ H ν (Γ ), θ -Π Λ h θ M h ν , whence the conclusion is straightforward.

Remark 6.8. Without assumption A[p], η unil (q h ) can be estimated by taking q h = Π M h I 1 Lag p. Since ψ is Lipschitz continuous and ν ≤ 1 2 , ζ := ψ (p)θ ∈ H ν (Γ ). Hence,

η unil (q h ) ≤ ζ - Π M h ζ M p -Π M h I 1 Lag p M h ν p -Π M h I 1 Lag p M
h 1+ν , so that the upper bound in (6.57) becomes h 1/2+ν/2 . 2 , so that p ∈ H 3/2+ν (Γ ) and θ ∈ H 1/2+ν (Γ ). Then, in the above framework, there holds in 3D/2D,

xx h Z + β h h 1/2 θθ h M h 3/4+ν/2 .

(6.58)

Moreover, in 2D/1D, if ψ is of class C n 2 with ψ Lipschitz continuous,

x -x h Z + β h h 1/2 θ -θ h M h 1+ν . (6.59) 
Proof. Again, we apply Lemma 6.2 in the setting Λ h = M h and B h = Bh . Consider rst η unil (q). Take q = Π 0 p h , where Π 0 denotes the M -orthogonal projection onto P 0 d (F h ), and observe that q ∈ M + . Letting ζ := ψ (p)θ, this yields

η unil (q) = (ζ, Π 0 p h -p h ) M = (ζ -Π 0 ζ, Π 0 p h -p h ) M = (ζ -Π 0 ζ, Π 0 p h -Π 0 p + Π 0 p -p + p -p h ) M ζ -Π 0 ζ M (h 1/2 p -p h H + Π 0 p -p M ),
where the H-stability of Π 0 has been used owing to the quasi-uniformity of the mesh on Γ and since

ζ -Π 0 ζ H h 1/2 ζ -Π 0 ζ M . Moreover, p -p h H = Bu -Π Λ h Bu h H ≤ Bu -Π Λ h Bu H + Π Λ h (Bu -Bu h ) H Bu -Π Λ h Bu H + Bu -Bu h H h 1+ν + u -u h V .
Since ψ is Lipschitz continuous and ν ≤ 1 2 , classical properties of superposition operators [94] yield ζ ∈ H 1/2+ν (Γ ), so that ζ -Π 0 ζ M h 1/2+ν . Moreover, Π 0 pp M h since p ∈ H 1 (Γ ). Hence, η unil (q) h 1+ν uu h V + h 3/2+ν . Consider now η quad (q h ) for q h ∈ M h . Since the quadrature is at least of degree two, letting I 1 ξ be the (discontinuous) interpolation operator at the Gauss nodes, there holds η quad (q h ) ≤ ψ (q h ) -I 1 ξ (ψ (q h )) M .

Since ψ is Lipschitz continuous, ψ (q h ) is in H 1 (F h ), the usual broken Sobolev space on the mesh F h , and there holds ψ (q h ) H 1 (F h ) q h H 1 (F h ) . Hence, η quad (q h ) h q h H 1 (F h ) .

Consider now η unil (q h ) and xy h Z . In 3D/2D, we set v h = I 2 Lag u, the piecewise quadratic Lagrange interpolate of u, and q h = Π M h I 2 Lag p. Then, q h ∈ M + h ; see Lemma 6.3 below. Moreover, η unil (q h ) pq h M h 3/2+ν , and xy h Z h 1+ν . Finally, θ -Π Λ h θ M h 1/2+ν . Collecting the above estimates yields (6.58). In 2D/1D, we consider the piecewise quadratic extension, I 2 HW , of the HüeberWohlmuth interpolation operator; see Lemma 6.4 below. Then, we set q h = Π M h I 2 HW p and v h is obtained from I 2 Lag u by just modifying the normal component of the nodal values located on Γ so that Bv h = I 2 HW p. Then, proceeding as in the proof of Theorem 6.2 yields η unil (q h ) = 0, and xy h Z h 1+ν . Furthermore, owing to the assumption on ψ and observing that (ψ (q h )) = ψ (q h )q h , it is readily seen using inverse inequalities and the fact that q h is piecewise ane that ψ (q h ) H 3/2 (F h ) h -1/2 q h 2 H 1 (F h ) . Hence,

η quad (q h ) h 3/2 q h 2 H 1 (F h ) .
Finally, still using assumption A[p], the above estimate on η unil (q) can be sharpened using the fact that (see [START_REF] Hild | Quadratic nite element methods for unilateral contact problems[END_REF]Theorem 4.4]) (ζ -Π 0 ζ, Π 0 pp) M h 2+2ν yielding η unil (q) h 1+ν uu h V + h 2+2ν .

Collecting the above estimates yields (6.59).

Lemma 6.3. Let F be a triangle, let u ∈ P 2 (F ), and assume that u is non-negative at the six interpolation nodes of I 2 Lag in F . Let Π 1 u be the L 2 -orthogonal projection of u onto P 1 (F ). Let (ξ F i ) 1≤i≤3 be the midpoints of the three edges of F . Then, for all 1 ≤ i ≤ 3, Π 1 u(ξ F i ) ≥ 0.

Proof. Let (φ F i ) 1≤i≤3 be the (CrouzeixRaviart) basis functions associated with the nodes

(ξ F i ) 1≤i≤3 .
Observe that for all 1 ≤ i ≤ 3,

1 3 Π 1 u(ξ F i ) = 1 |F | F uφ F i .
Moreover, using the classical 7-point quadrature of degree 3 yields so that F uφ F 1 is a linear combination of non-negative terms. The same holds for i ∈ {2, 3}.

xx h Z + β h h 1/2 θθ h M h 3/4+ν/2 . (6.60)

Moreover, in 2D/1D, if ψ is of class C n 2 with ψ Lipschitz continuous,

xx h Z + β h h 1/2 θθ h M h 1+ν .

(6.61)

Proof. We apply Lemma 6.2 in the setting Λ h = M h . We proceed as above, except for the interpolation error on the Lagrange multiplier for which there holds θ -Π Λ h θ M h 1+ν since θ ∈ H 1+ν (Γ ).

Algorithms

In this section, we present two iterative algorithms for solving the discrete problem (6.44) (6.46), namely a decomposed version of a classical Uzawa algorithm and a nonsmooth Newton's method.

A decomposed Uzawa algorithm

The rst algorithm we propose is a decomposed version of a classical iterative Uzawa algorithm. Each iteration of the decomposed algorithm consists of the following steps:

u n+1 h ← arg min v h ∈V h L r,h (v h , p n h ; θ n h ), (6.62) 
p n+1 h ← arg min q h ∈M + h L r,h (u n+1 h , q h ; θ n h ), (6.63)

θ n+1 h ← θ n h + ρΠ Λ h (Π M h B h u n+1 h -p n+1 h ), (6.64) 
where ρ is an arbitrary positive parameter. Instead of minimizing directly the Lagrangian with respect to the couple (u n h , p n h ), the Lagrangian is minimized with respect to u n h and then with respect to p n h . This is the dierence with the classical Uzawa algorithm. Step (6.62) amounts to the solution of a linear system. Moreover, at each iteration, only the right-hand side changes. Hence, this step can be eciently solved once a factorization method has been initially performed (LU factorization for instance). Step (6.63) is solved by the collocation method described in Section 4.1. Finally, Step (6.64) is straightforward if Λ h = M h since it can be performed elementwise. Otherwise, it requires a projection onto Λ h by inverting a global mass matrix. Remark 6.10. This algorithm corresponds to ALG2 in [START_REF] Fortin | Augmented Lagrangian methods[END_REF], where a slightly dierent version called ALG3, equivalent to the LATIN method [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF], is also proposed.

We now prove a global convergence result for the decomposed Uzawa algorithm in the case where Λ h = M h and under the convexity condition (6.8). Recall that this condition implies the α-convexity of the discrete functional J r,h and thus the uniqueness of the discrete solution (u h , p h , θ h ). The following proposition yields sucient conditions on the parameters r and ρ for global convergence. Its proof is postponed to Appendix 6.8. Proposition 6.10. Assume Λ h = M h and the convexity condition α W -2k ψ c 2 M c 2 B > 0. If the parameters r and ρ are such that r ≥ ρ ≥ 4k ψ , (6.65) Algorithm (6.62)(6.64) is well-dened and converges to the discrete solution (u h , p h , θ h ) for any initialization.

Remark 6.11. When the functional is nonconvex, a convergence result exists for the classical Uzawa algorithm [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF]. We did not try to extend it to the decomposed version described here.

A nonsmooth Newton's method

Let (u h , p h , θ h ) solve (6.44)(6.46). Given u h and θ h , the variational inequality (6.45) is equivalent to the minimization problem (6.49). Recall that for r ≥ k ψ , this problem has a unique solution. Hence, p h can be expressed as a function of u h and θ h in the form p h := π(u h , θ h ). Equations (6.44) and (6.46) can then be recast as a nonlinear system of equations W (u h ), v h V ,V + (θ h , v h ) M + r(Bu hπ(u h , θ h ), Bv h ) M = 0, ∀v h ∈ V h , (6.66)

(λ h , Bu h -π(u h , θ h )) M = 0, ∀λ h ∈ Λ h , (6.67) 
or in a compact form with z h := (u h , θ h ),

F (z h ) = 0, (6.68) 
where F maps V h × Λ h onto V h × Λ h . Equation (6.68) can be solved using a Newton's method. However, the function F is continuous but non-dierentiable owing to the unilateral constraint.

F is locally Lipschitz continuous though, so that, according to Rademacher's theorem, it is dierentiable almost everywhere. Denote by D F ⊂ V h × Λ h the set where F is dierentiable. For the points where F is non-dierentiable, we introduce the generalized Jacobian as dened in [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF],

∂F (z) = co lim z i →z, z i ∈D F ∇F (z i ) , (6.69) 
where co stands for the convex hull of a set. The nonsmooth Newton's method consists of the step

z n+1 h ← z n h -G -1 n F (z n h ), (6.70) 
where G n ∈ ∂F (z n h ).

Proposition 6.11. Let (u h , θ h ) solve (6.68). Assume that all G ∈ ∂F (u h , θ h ) are nonsingular.

Then, if r ≥ k ψ , Newton's method (6.70) is well-dened and converges to (u h , θ h ) for any initialization suciently close to (u h , θ h ).

Proof. The function F is said to be semi-smooth at a point z ∈ V h × Λ h if F is locally Lipschitz at z and lim G∈∂F (z+td),d→e,t→0 +

Gd exists for all e ∈ V h × Λ h . (6.71) We can verify that F is semi-smooth on V h × Λ h and conclude using a convergence result [START_REF] Qi | A nonsmooth version of Newton's method[END_REF] on Newton's method for semi-smooth functions. Remark 6.13. Numerical results with Newton's method and the choice V h = P 2 c (T h ), M h = P 1 d (F h ), and Λ h = P 1 c (F h ) are presented in [START_REF] Lorentz | A mixed interface nite element for cohesive zone models[END_REF], where optimal convergence rates are reported.

6.7 Proof of Lemma 6.2

Proof. Let y h := (v h , q h ) ∈ K h ∩ker B h . Since ker B h ⊂ ker Bh (because Λ h ⊂ M h ), y h ∈ ker Bh . As a result, it is inferred from (6.44)(6.46) that 0 ≤ J r,h (x h ), y hx h Z ,Z + (θ h , Bh (y hx h )) M = J r,h (x h ), y hx h Z ,Z .

Set δ h = x hy h := (δ v h , δ p h ) and observe that δ h ∈ ker Bh . Then, since y h ∈ ker B h , J r,h (x h ) -J r,h (y h ), δ h Z ,Z ≤ -J r,h (y h ), δ h Z ,Z = -J 0,h (y h ), δ h Z ,Z = -J 0 (y h ), δ h Z ,Z + J 0 (y h ) -J 0,h (y h ), δ h Z ,Z = -J 0 (x), δ h Z ,Z + J 0 (x) -J 0 (y h ), δ h Z ,Z + J 0 (y h ) -J 0,h (y h ), δ h Z ,Z = -J 0 (x), δ h Z ,Z + J 0 (x) -J 0 (y h ), δ h Z ,Z + (ψ (q h ), δ q h ) M -(ψ (q h ), δ q h ) M h -J 0 (x), δ h Z ,Z + ( xy h Z + η quad (q h )) δ h Z , using the Lipschitz-continuity of J 0 and the denition (6.54). Focusing on the rst term in the right-hand side, we observe that for all y := (v, q) ∈ K, -J 0 (x), δ h Z ,Z = -J 0 (x), yy h Z ,Z + -J 0 (x), x hy Z ,Z = -J 0 (x), yy h Z ,Z + (θ, B(x hy)) M -∂ y L 0 (x, θ), x hy Z ,Z = -J 0 (x), yx Z ,Z + -J 0 (x), xy h Z ,Z + (θ, B(x hy)) M -∂ y L 0 (x, θ), x hy Z ,Z ≤ (θ, B(x hx)) M + -J 0 (x), xy h Z ,Z -∂ y L 0 (x, θ), x hy Z ,Z = (θ, B(x hy h )) M -∂ y L 0 (x, θ), xy h Z ,Z -∂ y L 0 (x, θ), x hy Z ,Z , where we have used the fact that -J 0 (x), yx Z ,Z ≤ (θ, B(yx)) M since (x, θ) is the exact solution and y ∈ K. Furthermore, using the denitions (6.52) and (6.53) and the fact that V h ⊂ V , it is readily seen that ∂ y L 0 (x, θ), y hx Z ,Z = (ψ (p)θ, q hp) M = η unil (q h ), and ∂ y L 0 (x, θ), yx h Z ,Z = (ψ (p)θ, qp h ) M = η unil (q), so that -J 0 (x), δ h Z ,Z ≤ (θ, B(x hy h )) M + η unil (q h ) + η unil (q). Since H + is dense in M + , the above estimate can be extended by continuity to q ∈ M + . Furthermore, observing that (x hy h ) ∈ ker Bh , there holds -J 0 (x), δ h Z ,Z ≤ (θ -Π Λ h θ, B(x hy h )) M + η unil (q h ) + η unil (q) ≤ θ -Π Λ h θ M B(x hy h ) M + η unil (q h ) + η unil (q).

Moreover, if Λ

h = M h , B(x h -y h ) M = (I -Π Λ h )B(u h -v h ) M h 1/2 B(u h -v h ) H h 1/2 u h -v h V , while B(x h -y h ) M x h -y h Z if Λ h = M h .
Thus, in all cases, B(x h -y h ) M h s/2 x h -y h Z with s = 1 if Λ h = M h and s = 0 if Λ h = M h , and this yields -J 0 (x), δ h Z ,Z h s/2 θ -Π Λ h θ M x hy h Z + η unil (q h ) + η unil (q).

Collecting the above estimates and using (6.43) together with a Young inequality, it is inferred that

x h -y h 2 Z
xy h 2 Z + η unil (q h ) + η quad (q h ) 2 + η unil (q) + h s θ -

Π Λ h θ 2 M ,
whence the bound on xx h Z follows using a triangle inequality. Finally, to derive the bound on h 1/2 θθ h M , observe that for v h ∈ V h and since V h ⊂ V ,

(θ h -Π Λ h θ, B h v h ) M = (θ h -Π Λ h θ, Bv h ) M = (θ h -θ, Bv h ) M + (θ -Π Λ h θ, Bv h ) M = W (u) -W (u h ), v h V ,V + r( B h (u -u h ), Bv h ) M + (θ -Π Λ h θ, Bv h -Π Λ h Bv h ) M x -x h Z v h V + θ -Π Λ h θ M Bv h -Π Λ h Bv h M ( x -x h Z + h 1/2 θ -Π Λ h θ M ) v h V ,
whence the desired estimate results from the discrete inf-sup condition and a triangle inequality.

6.8 Proof of Proposition 6.10

Proof. The couple (u h , p h ) ∈ V h × M + h is such that

W (u h ), v h V ,V + (θ h , Bv h ) M + r(Bu h -p h , Bv h ) M = 0, ∀v h ∈ V h , (6.75) 
(ψ (p h ), q hp h ) M h -(θ h , q hp h ) Mr(Bu hp h , q hp h ) M ≥ 0, ∀q h ∈ M + h , (6.76)

θ h = θ h + ρ (Π M h Bu h -p h ) .
(6.77)

The couple 

(u n h , p n h ) ∈ V h × M + h is such that W (u n h ), v h V ,V + (θ n-1 h , Bv h ) M + r(Bu n h -p n-1 h , Bv h ) M = 0, ∀v h ∈ V h , (6.78) 
(ψ (p n h ), q h -p n h ) M h -(θ n-1 h , q h -p n h ) M -r(Bu n h -p n h , q h -p n h ) M ≥ 0, ∀q h ∈ M + h , (6.79) 
θ n h = θ n-1 h + ρ (Π M h Bu n h -p n h ) . ( 6 
where the linearity of W has been used. Similarly, using (6.76) with q h = p n h and (6.79) with q h = p h and subtracting leads to (6.89)

By assumption, α > 0, 2βr > 0, and 2β -2r + ρ = ρ -4k ψ ≥ 0. Hence, the sequence ( n ) n∈N , which is clearly nonnegative, is decreasing; thus it converges. As a consequence, the right-hand side of (6.89) converges to zero, implying that the sequences (u n h ) n∈N and (p n h ) n∈N converge to u h and p h respectively. Finally, the sequence (θ n h ) n∈N is bounded. According to the BolzanoWeierstrass theorem, there exists a converging subsequence. By uniqueness of the discrete solution (u h , p h , θ h ), the whole sequence (θ n h ) n∈N converges to θ h . tion, le branchement d'une ssure ou la multi-ssuration. Il est certes possible d'insérer une zone cohésive entre tous les éléments du maillage. Mais cette approche s'avère très sensible au maillage (voir les exemples de simulations dans [START_REF] Tijssens | Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces[END_REF]). De plus, on se sait pas bien quel modèle continu on tente d'approcher en insérant une zone cohésive entre tous les éléments du maillage. L'approche variationnelle proposée par G. Francfort et J.-J. Marigo est, à notre avis, une meilleure approche pour prédire le trajet, le branchement ou la multi-ssuration. Cette approche a été initialement développée pour des problèmes quasi-statiques. Des travaux récents proposent une extension au cas dynamique (Bourdin, Larsen & Richardson [START_REF] Bourdin | A time-discrete model for dynamic fracture based on crack regularization[END_REF] Larsen [START_REF] Larsen | Models for dynamic fracture based on grith's criterion[END_REF], Larsen, Ortner & Süli [START_REF] Larsen | Existence of solutions to a regularized model of dynamic fracture[END_REF]). Les premiers résultats numériques sont prometteurs. Il serait intéressant d'explorer cette voie, tant sur le plan de la modélisation (modèles intégrant une viscosité) que de l'analyse mathématique ou de la résolution numérique (choix des schémas d'intégration en temps notamment).
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Figure 1 . 1 .

 11 Figure 1.1. Cuve d'un réacteur à eau pressurisée (gauche). Assemblage combustible avec sa grappe de commande (droite). Source : CEA.

Figure 1 . 2 .

 12 Figure 1.2. Dynamique linéaire des solides. Domaine Ω.

Figure 1 . 3 .

 13 Figure 1.3. Contact unilatéral et frottement de Coulomb.

Figure 1 . 4 .

 14 Figure 1.4. Problème de Signorini. Domaine Ω.

Figure 1 . 5 .

 15 Figure 1.5. Essai de ssuration. L'éprouvette d'acier est équipée d'une jauge électrique pour mesurer l'avancée de la ssure (la ssure coupe les diérents ls de la jauge au cours de son avancée). Dans cet essai, la ssure s'est initiée à partir de l'entaille (située à droite) et s'est rapidement divisée en deux branches. Source : EDF.

Figure 1 . 6 .

 16 Figure 1.6. Un modèle de zone cohésive.

Figure 1 . 7 .

 17 Figure 1.7. Problème de ssuration. Domaine Ω.

Figure 1 . 8 .

 18 Figure 1.8. Impact d'une barre élastique.

Figure 1 . 10 .

 110 Figure 1.10. Simulation numérique des rebonds d'une barre élastique. Evolution de l'énergie. Schéma de Newmark avec masse standard (gauche) et avec masse modiée (droite). Avec la masse standard, la situation se dégrade considérablement après plusieurs rebonds.

Fig. 2 . 4 .

 24 Fig. 2.4. Bounces of an elastic bar. Displacement at the bottom of the bar.

Fig. 2 . 5 .

 25 Fig. 2.5. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.4.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 6 .

 26 Fig. 2.6. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.4.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 7 .

 27 Fig. 2.7. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.4.1 with α = -0.2, β = 1/4(1 -α) 2 , γ = 1/2 -α. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 8 .

 28 Fig. 2.8. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.4.1 with α = -0.2, β = 1/4(1 -α) 2 , γ = 1/2 -α. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 9 .

 29 Fig. 2.9. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.4.3 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 10 .

 210 Fig. 2.10. Impact of an elastic bar. Contact pressure r n (left) and stress (Ku n )0 (right). Discretization 2.4.4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 11 .

 211 Fig. 2.11. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.4.4. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 12 .

 212 Fig. 2.12. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 . 13 .

 213 Fig. 2.13. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.4.6 with β = 1/4 and γ = 1/2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.14. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.4.7 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Fig. 2 .

 2 Fig. 2.15. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.4.7 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Fig. 2 .Fig. 2 .

 22 Fig. 2.16. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure T GR (Gu n ) (right). Discretization 2.5.1 with α = 0, β = 1/4, γ = 1/2, = 10 -4 . ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.18. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.5.1 with α = 0, β = 1/4 and γ = 1/2, = 10 -4 . ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.19. Impact of an elastic bar. Displacement u n 0 (left) and stress (right). Discretization 2.6.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.20. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.6.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.22. Bounces of an elastic bar. Displacement u n 0 (left) and energy E n -T F u n (right). Discretization 2.6.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Fig. 2 .

 2 Fig. 2.23. Impact of an elastic bar. Displacement u n 0 and contact pressure r n . Discretization 2.7.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.24. Bounces of an elastic bar. Displacement u n 0 (left) and modied energy E n * -T F u n (right). Discretization 2.7.1 with α = 0, β = 1/4 and γ = 1/2. ∆x = 0.1, ∆t = 0.005, νc = 1.5.

Fig. 2 .

 2 Fig. 2.25. Bounces of an elastic bar. Displacement u n 0 (left) and modied energy E n * -T F u n (right). Discretization 2.7.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

Fig. 2 .

 2 Fig. 2.26. Bounces of an elastic disk. Reference conguration (left), mesh (middle), and deformed conguration after the rst impact (right).

Fig. 2 .

 2 Fig. 2.27. Bounces of an elastic disk. Displacement of its center (left) and energy or modied energy (right). Discretizations 2.4.6, 2.6.1, and 2.7.1. ∆t = 0.01, νc = 1.06.

  the unique solution of (3.23). The system (3.22)-(3.23) is then equivalent to the system (3.19)-(3.20). Now we study the regularity of q

  and hence almost everywhere (since an open set in R is a countable union of open intervals, so that its boundary has zero measure). Hence, a(u k , uc k ) = 0, a.e. on ]0, T [. (3.24) Setting v * k = u * k in (3.22) and using (3.24), we obtain

. 41 )

 41 Let φ ∈ D(Ω×]0, T [). Since φ has compact support, beyond a certain index k, there holds u k , φ = ξ k u k , φ . Therefore, (u k ) k∈N and (ξ k u k ) k∈N have the same limit in D (Ω×]0, T [); hence, u = u 1 . The same argument yields that (χ k uk ) k∈N and ( uk ) k∈N have the same limit in D (Ω×]0, T [). Continuity of the dierentiation in D (Ω×]0, T [) yields uk → u in D (Ω×]0, T [), and thus v = u. The equality w = ü is obtained similarly. Moreover, it is clear that ξ k uk u weakly in L 2 (0, T ; V ).

  [START_REF] Doyen | Convergence of a space semi-discrete modied mass method for the dynamic Signorini problem[END_REF], lim inf b(u k (T ), u k (T )) ≥ b(u(T ), u(T )), and, owing to the strong convergence (3.33), lim b(u k (0), u k (0)) = b(u 0 , u 0 ). The two other terms tend to zero since (u k (0)) k∈N and (u k (T )) k∈N are bounded in V . Hence,

  k uk , χ k uk )dt = T 0 m( u, u)dt. Moreover, (3.36) and (3.37) imply that lim k→+∞ m k ( uk (T ), u k (T )) = m( u(T ), u(T )), while (3.33) and (3.34) yield lim k→+∞ m k ( uk (0), u k (0)) = m(v 0 , u 0 ).

Fig. 4 . 2 .

 42 Fig. 4.2. Decomposition of the domain Ω; bullets (resp., circles) indicate nodes indexed by elements of the set N i (resp., N c ). The open sets Ω c and Ω c are dened in Section 3.

The sets C 0 i

 0 and C - i are respectively closed and open, and they form a partition of [0, T ]. On int(C 0 i ),

  and hence almost everywhere (since an open set in R is a countable union of open intervals, so that its boundary has zero measure). Hence, a(u, uc ) = l(t, uc ) a.e. on [0, T ]. (4.30) Using (4.30), we obtain m(ü * , u * ) + a(u, u) + j(u, uf ) = l(t, u) a.e. on [0, T ].(4.31)Since u is absolutely continuous in time, by integrating in time (4.31), we obtain (4.27).

Theorem 4 . 4 .

 44 Problem 4.2 has a unique solution under the CFL-type condition ∆t h c 1.

Lemma 4 . 4 .

 44 Let (u n , v n , a n ) solve, for all n ∈ {0, . . . , N }, Problem 4.2. Then, for ∆t small enough

(4. 54 )

 54 Proof. (i) Let n ∈ {0, . . . , N }. From (4.50) we deduceA c u n + λ n c = L c (t n ),and then, λ n c u n + L(t n ) . Owing to the inequality (4.16), we obtain λ n f u n . Hence, owing to the equilibrium equation (4.50), a n * u n + L(t n ) .

5. 2 . 1

 21 Abstract model Let (•, •) denote the usual scalar product in R n (n ≥ 1) and let |•| denote the corresponding Euclidean norm. Let P(R n ) denote the set of all subsets of R n . In a d-dimensional problem (d = 2 or d = 3), the cohesive zone model is characterized by a set-valued map R : R d ×R d ×R d → P(R d ).

Fig. 5 . 1 .

 51 Fig. 5.1. Triangular model with uncoupled normal and tangential forces. Normal force (left). Tangential force (right).

Fig. 5 . 2 .

 52 Fig. 5.2. An irreversible triangular model with only normal force. Linear unloading (left). Rigid unloading (right).

,Fig. 5 . 3 .

 53 Fig. 5.3. A rate-dependent triangular model with only normal force ( dc := dc(1 + ηz + )).

Fig. 5 . 4 .

 54 Fig. 5.4. Geometric setup.

Fig. 5 .

 5 Fig. 5.5. A decomposition of R1. P1 (left) and χ1 (right).

Proposition 5 . 3 (

 53 Well-posedness). Problem (5.46)-(5.48) has a unique solution.

2 Fig. 5 . 6 .Fig. 5 .P irr 1 (left) and χ irr 1 (

 256511 Fig. 5.6. A decomposition of R2. P2 (left) and χ2 (right).

Fig. 5 . 8 .

 58 Fig. 5.8. Computation of the interface components for Scheme A.

h

  and Z n+1 h by computing Z n+1 h and ∆ n+1 h with the explicit formulae (5.48).

Fig. 5 . 9 .

 59 Fig. 5.9. Computation of the interface components for Scheme B.

2 Fig. 5 .

 25 Fig. 5.10. Mode I fracture. Geometric setup.

12

 12 

  and 5.13 (deformation and stress elds at time T ).

Fig. 5 .

 5 Fig. 5.11. Mode I fracture. Crack tip advance (left) and energy evolution (right). Scheme B (n mesh = 800, νC = 1).

Fig. 5 .

 5 Fig. 5.12. Mode I fracture. Deformed conguration (enlarged 50 times) and stresses σxx (top), σyy (middle), and σyy (bottom) at time T . Scheme B (n mesh = 800, νC = 1).

Fig. 5 .

 5 Fig. 5.13. Mode I fracture. Deformed conguration (enlarged 50 times) and stress σyy around the crack tip at time T . Scheme B (n mesh = 800, νC = 1).

FinallyFig. 5 .

 5 Fig. 5.14. Normal opening around the crack tip at time T . Quasi-explicit scheme B and fully explicit schemes with regularized cohesive zone model (n mesh = 200).

Fig. 5 .

 5 Fig. 5.16. Mode II fracture. Geometric setup.

  and 5.19 (deformation and stress elds at time T ).

Fig. 5 .

 5 Fig. 5.17. Mode II fracture. Crack tip advance (left) and energy evolution (right). Scheme B (n mesh = 800, νC = 0.98).

Fig. 5 .

 5 Fig. 5.18. Mode II fracture. Deformed conguration (enlarged 20 times) and and stresses σxx (top), σyy (middle), and σyy (bottom) at time T . Scheme B (n mesh = 800, νC = 0.98).

n

  mesh νC l coh /∆x lcr(T ) vcr(T /2, T ) E el (T ) E kin (T ) E coh (T ) Etot(T ) -Wext(T ) 100 0.98

Fig. 5 .

 5 Fig. 5.19. Mode II fracture. Deformed conguration (enlarged 20 times) and stress σxx around the crack tip at time T . Scheme B (n mesh = 800, νC = 0.98).

Fig. 5 .

 5 Fig. 5.20. Mode I fracture with contact. Geometric setup.

Fig. 5 .

 5 Fig. 5.21. Mode I fracture with contact. Crack tip advance (left) and energy evolution (right). Scheme B (n mesh = 800, νC = 0.8).

Fig. 5 .

 5 Fig. 5.22. Mode I fracture with contact. Deformed conguration (enlarged 5 times) and stress σxx at initial time (top) and time T /2 (bottom). Scheme B (n mesh = 800, νC = 0.8).

. 1 .

 1 The domain Ω ⊂ R d (d = 2 or d = 3) represents a deformable body. The material is assumed to be linear isotropic elastic, with Lamé coecients λ and µ. Let u : Ω → R d be the displacement eld. The linearized strain tensor and stress tensor, (u) :Ω → R d,d and σ(u) : Ω → R d,d , are respectively dened as (u) = 1 2 ∇u + ∇u T and σ(u) = λ tr (u)I + 2µ (u).An external load f is applied to the body. The boundary ∂Ω is partitioned into three disjoint open subsets ∂Ω D , ∂Ω N , and Γ (the measure of ∂Ω D is supposed to be positive). An homogeneous Dirichlet condition and a Neumann condition are prescribed on ∂Ω D and ∂Ω N , respectively. The normal load on ∂Ω N is denoted by g.

Fig. 6 . 1 .

 61 Fig. 6.1. Example of unilateral contact problem with cohesive forces.

Fig. 6 . 2 .

 62 Fig. 6.2. Example of cohesive law.

( 6 . 5 )

 65 Problem (6.4) can be rewritten asmin v∈V + J(v).

( 6 . 6 )

 66 Proposition 6.2. Assumptions (H1)-(H3) hold. If ψ is continuous and bounded on R, Assumption (H4) holds. If ψ is Lipschitz continuous on R with Lipschitz constant k ψ , Assumption (H5) holds with k Ψ = k ψ .

  so that (6.11) amounts to min y∈K∩ker B J 0 (y).

L

  r : Z × M (y, λ) -→ L r (y, λ) := J r (y) + (λ, By) M ∈ R.

Fig. 6 . 3 .

 63 Fig. 6.3. Principle of the HüeberWohlmuth interpolate; left: piecewise ane case; right: piecewise quadratic case.

3 )

 3 u(σ F 1 )),where γ F denotes the barycenter of F and σ F i is the vertex of F opposite the edge containingξ F i . Furthermore, since u ∈ P 2 (F ), u(γ F ) = 1 3 (u(σ F 1 ) + u(σ F 2 ) + u(σ F 3 )) + 4 9 (u(ξ F 1 ) + u(ξ F 2 ) + u(ξ F 3 )),

h u -u h H 1 p

 1 -p h L 2 θ -θ h L 2 2.83 6.42e-2 -2.95e-2 -1.04e-2 -1.54 2.49e-2 1.55 1.51e-2 1.09 5.93e-3 0.92 0.80 1.02e-2 1.36 7.60e-3 1.04 1.17e-3 2.46 0.40 4.98e-3 1.04 3.80e-3 1.01 2.50e-4 2.25 0.21 2.33e-3 1.13 1.90e-3 1.04 5.35e-5 2.31

2 M

 2 (ψ (p n h )ψ (p h ), p n hp h ) M h -( θn-1 h , pn h ) M + r pn h r(p n h , B ūn h ) M ≤ 0.

(6. 82 ) 2 M c 2 B

 8222 Adding (6.81) and (6.82) and setting α := α W -2k ψ c and β := r -2k ψ yields
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  Par souci de simplicité, nous sommes restés assez vagues sur le cadre fonctionnel des formulations(1.19) et(1.20), notamment sur la régularité de l'accélération. Ces problèmes ont été posés dès les années 1960, mais l'existence et l'unicité d'une solution restent des problèmes ouverts (sauf dans le cas d'un domaine 1D). En ajoutant un terme de viscosité de type Kelvin-Voigt, on peut montrer l'existence d'une solution, mais pas l'unicité. On trouvera une revue des résultats d'existence sur les problèmes de contact en dynamique dans Eck, Jaru²ek & Krbec[START_REF] Eck | Unilateral contact problems[END_REF].1.3.2 Autres modèlesLe frottement de Coulomb et les modèles de zone cohésive se formulent également avec des inclusions ou des inéquations. Notons que l'opérateur qui décrit le frottement de Coulomb n'est pas monotone et ne dérive pas d'une énergie. L'opérateur qui décrit la zone cohésive n'est pas non plus monotone. Beaucoup de modèles de zone cohésive dérivent d'une énergie, mais cette énergie n'est jamais convexe. On peut résumer les caractéristiques mathématiques des diérents modèles dans le Tableau 1.1.

	Modèle contact unilatéral frottement de Tresca frottement de Coulomb zone cohésive
	Energie	convexe	convexe	pas d'énergie associée non-convexe
	Opérateur	monotone	monotone	non-monotone	non-monotone

Tableau 1.1. Caractéristiques mathématiques des modèles Remarque 1.4. De nombreux problèmes issus de la mécanique, de la physique ou de la nance peuvent s'écrire mathématiquement comme des inéquations variationnelles ou des inclusions : plasticité

  Figure 1.9. Simulation numérique de l'impact d'une barre élastique. Pression de contact. Schéma de Newmark avec masse standard (gauche) et avec masse modiée (droite).

		2000										500								
												400								
		1500																		
	pression de contact	500 1000									pression de contact	100 200 300								
		0										0								
								masse standard solution exacte			-100						masse modifiee solution exacte	
		-500																		
		0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
						temps									temps			

  .1)The boundary ∂Ω is partitioned into three disjoint open subsets Γ D , Γ N and Γ c . Dirichlet and Neumann conditions are prescribed on Γ D and Γ N , respectively, u = u D on Γ D × (0, T ) and σ • n = f N on Γ N × (0, T ), where n denotes the outward unit normal to Ω. We set u n := u |∂Ω • n and σ n := n • σ |∂Ω • n, the normal displacement and the normal stress on ∂Ω, respectively. On Γ c , a unilateral contact condition, also called Signorini condition, is imposed,

  .2 (with the parameters chosen in Section 2.3.3).

		0.4										500								
		0.3										400								
	displacement	0 0.1 0.2									contact pressure	100 200 300								
												0								
		-0.1																		
								exact solution			-100						exact solution	
		-0.2																		
		0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
						time										time				
	Fig. 2.2. Impact of an elastic bar. Displacement at the bottom of the bar (left) and contact pressure (right).

  .46) 

		0.4										500								
		0.3										400								
	displacement	0 0.1 0.2									contact pressure	100 200 300								
												0								
		-0.1																		
						ex./stabilized Newmark exact solution			-100				ex./stabilized Newmark exact solution	
		-0.2																		
		0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
						time										time				

  The results are similar to those obtained with Discretization 2.4.7 (Figures 2.21 and 2.22).

		0.4										500								
		0.3										400								
	displacement	0 0.1 0.2									contact pressure	100 200 300								
												0								
		-0.1																		
						vel./central differences exact solution			-100				vel./central differences exact solution	
		-0.2																		
		0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3
						time										time				

Fig. 2.21. Impact of an elastic bar. Displacement u n 0 (left) and contact pressure r n (right). Discretization 2.6.2 (lumped mass matrix). ∆x = 0.1, ∆t = 0.0025, νc = 0.75.

  .10) Let {x i,k } i∈N k be the nodes of the mesh not lying on Γ D and {φ i,k } i∈N k the associated scalar basis functions. Let {e α } 1≤α≤d be the canonical basis of R d . The space V k is spanned by {φ i,k e α } i∈N k ,1≤α≤d . Denote by N c k the set of indices of nodes lying on Γ c , and by

  the dierential inclusion (4.20) can be recast as

D Ẋ(t) ∈ S(t, X(t)) + P (t, X(t)).

Table 5 .

 5 1. Mode I fracture. Observed stability condition for a fully explicit scheme with regularized cohesive zone model (n mesh = 200).

Table 5 .

 5 [START_REF] Ayyad | A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects[END_REF]. Mode I fracture. Numerical results. Fully explicit scheme with regularized cohesive zone model (n mesh = 200).

Table 5 .

 5 Fig. 5.15. Mode I fracture with a rate-dependent cohesive zone model. Crack tip advance for a ne and a coarse discretization (left). Crack tip advance for dierent viscosity parameters (right). 7. Mode I fracture with a rate-dependent cohesive zone model. Numerical results for dierent viscosity parameters (Scheme B, n mesh = 400, νC = 1).

		30								40						
		28														
		26								35						
	crack advance (mm)	16 18 20 22 24							crack advance (mm)	20 25 30						
		10 12 14					nmesh=100 nmesh=400		10 15					η=0 η=0.005 η=0.01 η=0.02
		0	2	4	6	8	10	12	14	0	2	4	6	8	10	12	14
					time (µs)								time (µs)			
					η		lcr(T ) vcr(T /2, T ) E el (T ) E kin (T ) E coh (T ) E(T )			
					0 0.03877	2556	1231 116.7	457.2 1805			
					0.005 0.0345	2083	1289 83.43	384.6 1757			
					0.01 0.02926	1453	1379 74.61	299.7 1754			
					0.02 0.0244	953	1471 60.24	220		1751			

Table 5 .

 5 8. Mode I fracture with a rate-dependent cohesive zone model. Numerical results. Scheme B.

	1 1.963 0.02936	1502	1377 103.9	305.1 1786
	200 1 3.927 0.02951	1485	1374	84.6	304.6 1763
	400 1 7.854 0.02926	1453	1379 74.61	299.7 1754
	800 1 15.71 0.0291	1434	1382 70.64	296.3 1749

Table 5 .

 5 9. Mode II fracture. Numerical results. Scheme B.

Table 5 .

 5 [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF]. Mode I fracture with contact. Numerical results. Scheme B.

	100 0.8 1.963 0.05364 199.9	11	1.66	208.7	421.3
	200 0.8 3.93 0.05257 202	13.7	2.073	194.8	412.5
	400 0.8 7.86 0.05197 204.6 10.82	1.988	185.8	403.2
	800 0.8 15.71 0.0519 205.1 10.67	1.86	184.9	402.5

n mesh νC l coh /∆x lcr(T ) E el (T ) E kin (T ) E coh (T ) Ẽcoh (T ) Etot(T )

  .19) Proposition 6.4. Let x ∈ K ∩ ker B be a local minimizer of the decomposed problem (6.11). If B is surjective from V to H, there exists a unique θ ∈ H such that (x, θ) is a stationary point of the augmented Lagrangian.

  .22) Consider the sequence (e k ) k∈N such that e

k := (e v k , e q k

  ker Bh is a local minimizer of the discrete decomposed problem (6.42). Conversely, let x h ∈ K h ∩ ker Bh be a local minimizer of the discrete decomposed problem (6.42). Then, there exists a unique θ h ∈ Λ h such that (x h , θ h ) is a stationary point of L r,h on K h ×Λ h . Moreover, if the following second-order condition holds,

Table 6 .

 6 [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF]. Errors and convergence rates withV h = P 1 c (T h ) d and M h = Λ h = P 0 d (F h ). h u -u h H 1 p -p h L 2 θ -θ h L 2 2.83 4.12e-3 -3.53e-3 -2.94e-4 -1.54 8.60e-4 2.57 8.87e-4 2.26 1.10e-5 5.38 0.80 1.90e-4 2.29 2.22e-4 2.10 2.95e-6 2.00 0.40 5.31e-5 1.86 5.59e-5 2.01 7.52e-7 1.99 0.21 1.60e-5 1.80 1.48e-5 1.99 1.93e-7 2.03

Table 6 .

 6 2. Errors and convergence rates withV h = P 2 c (T h ) d and M h = Λ h = P 1 d (F h ). ρ/r r = k ψ r = 2k ψ r = 10k ψ r = 20k ψ r = 100k ψ

	0.5	∞	13	12	9	5
	1.0	∞	32	7	6	3
	1.5	∞	∞	11	7	5
	2.0	∞	∞	∞	∞	∞

Table 6 .

 6 3. Number of iterations in the decomposed Uzawa algorithm for various couples (r, ρ).

  .80) u h . Applying (6.75) and (6.78) to v h = ūn

	Set θn subtracting yields	h and
	W (ū n h ), ūn	

h := θ n hθ h , pn h := p n hp h ,

and ūn

h := u n h h V ,V + ( θn-1 h , B ūn h ) M + r B ūn h 2 Mr(p n-1 h , B ūn h ) M = 0,

  Adding (6.79) written at iteration n -1 with q h = p n h and (6.79) written at iteration n with M . (6.84) Owing to (6.77) and (6.80) at iteration (n -1),

	r(p n h -pn-1			(6.86)
	This equation can be reorganized as
		r(B ūn		
						2
						h	M
				+ r(p n h -pn-1 h , B ūn h ) M ≥ α ūn h 2 V + β B ūn h -pn h	2 M + r(p n h -pn-1 h , B ūn h ) M .	(6.83)
	q h = p n-1 h	and since pn	h	= p n h -p n-1 h	and so on, yields
	-( θn-2 h	-θn-1 h , pn h -pn-1 h ) M ≥ (ψ (p n h ) -ψ (p n-1 h ), p n h -p n-1 h ) + r pn h -pn-1 h -r(p n h -pn-1 h , B ūn h ) M h -B ūn-1 ≥ (r -k ψ ) pn h -pn-1 h 2 M -r(p n h -pn-1	2 M
					θn-1	h	,	(6.85)
	whence, owing to (6.84),		

-( θn-1 h , B ūn hpn h ) M ≥ W (ū n h ), ūn h V ,V + (ψ (p n h )ψ (p h ), p n hp h ) M h + r B ūn hpn h 2 M + r(p n hpn-1 h , B ūn h ) M ≥ α W ūn h 2 Vk ψ pn h 2 M + r B ūn hpn h 2 M + r(p n hpn-1 h , B ūn h ) M ≥ α W ūn h 2 V -2k ψ B ūn h 2 M -2k ψ B ūn hpn h 2 M + r B ūn hpn hpn-1 h , B ūn h -B ūn-1 h ) h = θn-2 h + ρ Π M h B ūn-1 h pn-1 h , B ūn h -B ūn-1 h ) M ≥ β pn hpn-1 h 2 Mρ(B ūn-1 h pn-1 h , pn hpn-1 h ) M . h , pn hpn-1 h ) M ≥ β pn hpn-1 M + ρ(rρ) B ūn hpn h 2

M so that (6.88) can be rewritten as

n-1 -n ≥ 2ρα ūn h 2 V + ρ(2βr) B ūn hpn h 2 M + ρ(2β -2r + ρ) pn hpn-1 h 2 M .

Time-integration schemes for the nite element dynamic Signorini problem

Analysis of the modied mass method for the dynamic Signorini problem with Coulomb friction

This notion of upper semi-continuity is distinct from the upper semi-continuity for single-valued functions.

Quasi-explicit time-integration schemes for dynamic fracture with set-valued cohesive zone models

A three-eld augmented Lagrangian formulation of unilateral contact problems with cohesive forces

(Ω). For an angular junction (of internal angle ω), the

Part I

Unilateral contact opening. It can be represented by a set-valued map R : R d → P(R d ) whose components are independent. The normal component R 1 : R → P(R) is such that

For simplicity, in the denition of cohesive zone models, a singleton {x} is simply denoted by x. The tangential components R 2 : R → P(R) and R 3 : R → P(R) are such that

This model is represented in Figure 5.1. It is easy to check that this model satises Assumption 1 with c s = σ c /d c . Moreover, energies Ψ 1 : R + → R, Ψ 2 : R → R, and Ψ 3 : R → R can be associated with this model, namely

and

An irreversible triangular model with only normal force

This model depends on the normal opening p and maximal normal opening δ and prescribes only the normal force. Moreover, it is irreversible with a linear unloading. As the previous model, it involves two parameters: σ c , the maximal cohesive force, and d c , the critical opening. It can be represented by the set-valued map R irr 1 : R × R → P(R) such that

Theorem 6.1. Assume (H1)-(H4). Then, there exists a solution to problem (6.4).

Proof. Let (v n ) n∈N be a minimizing sequence of J in V + . Since the functional J is coercive (W is α-convex and Ψ is bounded), the sequence (v n ) n∈N is bounded in V . Hence, we can extract a subsequence, still denoted by (v n ) n∈N , which converges weakly to v ∞ in V . The limit v ∞ belongs to V + since a strongly closed convex set is weakly closed. Moreover, owing to the continuity of B from V to H and the compactness of the imbedding H → M , the sequence (Bv n ) n∈N strongly converges to Bv ∞ in M . Using the continuity of Ψ on M , we conclude that

Furthermore, since the functional W is convex and continuous on

Proposition 6.1. Assume (H1)-(H5). Then, J is dierentiable on V so that a solution u to (6.4)

then J is α-convex on V and the solution to (6.4) is unique.

Proof. The rst statement is evident. Concerning the second one, observe that for all

which proves the α-convexity of J under the condition (6.8), and hence the uniqueness of the solution.

Remark 6.1. Relation (6.7) links problem (6.4) to the theory of variational inequalities. When J is convex, the operator J is monotone. In the general case, the proof of Theorem 6.1 shows that J is pseudo-monotone.

We now verify that the unilateral contact problem with cohesive forces dened in the introduction ts the above abstract framework. Recalling the denitions (6.1)-( 6.3) of W , Ψ , and B, we also set

where ∂Γ 0 := ∂Ω D ∩ Γ (see Fig. 6.1). The space

that are zero in a certain sense on ∂Γ 0 . It can be built by interpolation between L 2 (Γ ) and H 1 0 (Γ, ∂Γ 0 ); see [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF] for more details. Furthermore, H + := {q ∈ H; q ≥ 0 a.e. in Γ } and observe that with the above notation, Ψ (q) = (ψ(q), 1) M . (6.9) Finally, for further use, we set M + = {q ∈ M ; q ≥ 0 a.e. in Γ }. Lemma 6.4. Assume Ω ⊂ R 2 . Then, there exists an interpolation operator I 2 HW : H 1 (Γ ) → P 2 c (F h ) such that (i) if q ≥ 0, then I 2 HW q(ξ F i ) ≥ 0 for all 1 ≤ i ≤ n q and for all F ∈ F h ;

(ii) supp(I 2 HW q) ⊂ supp(q);

(iii

Proof. Consider rst the usual, piecewise quadratic Lagrange interpolate of q, say I 2 Lag q. Since Ω ⊂ R 2 , each F ∈ F h is a segment and the restriction of I 2 Lag q to F can be specied by its values at the endpoints and the midpoint of F . Two modications need to be implemented. Firstly, as for I 1 HW , if for F ∈ F h , F ∩ {x ∈ Γ ; q(x) = 0} has nonzero measure, the three nodal values of I 2 HW q are set to zero on F . This suces to guarantee Property (ii). However, contrary to the construction of I 1 HW , this does not suce to guarantee Property (i). To this purpose a further modication is needed. Let F ∈ F h and assume that I 2 Lag q is negative at one quadrature node (it cannot take negative values at the two quadrature nodes since it takes non-negative values at the interval endpoints and midpoint and can have only one minimizer). Then, instead of interpolating at the midpoint, we interpolate at this quadrature node; see the right panel of Fig. 6.3. To verify that the resulting quadratic interpolate is still non-negative at the other quadrature node, consider the reference interval

and b(t) = 4t(1t) so that the usual quadratic Lagrange interpolate of a non-negative function q takes the form

with non-negative coecients α = q(0), β = q(1), and γ = q( 1 2 ). If this interpolate is negative at, say, ξ + , this yields 1

3 (αβ) ≤ 0, so that α ≥ β. Now, the Lagrange interpolate using the two endpoints and the node ξ + takes the form

with δ = q(ξ + ) and evaluating this expression at ξ -yields δ + 1 √ 3 (αβ) ≥ 0. This proves Property (i). Finally, Property (iii) is established as in [START_REF] Hüeber | An optimal a priori error estimate for nonlinear multibody contact problems[END_REF] using Assumption A[p] and the fact that a possible interpolation at a quadrature node and not at a midpoint does not alter the asymptotic accuracy of the quadratic Lagrange interpolate. Remark 6.9. Similar error estimates have been obtained for quadratic approximations of twoeld formulations of unilateral contact problems in [START_REF] Hild | Quadratic nite element methods for unilateral contact problems[END_REF]. Estimate (6.58) is suboptimal and does not use assumption A[p]. Instead, estimate (6.59) is optimal and relies, in particular, on this latter assumption. Without this assumption, estimate (6.58) holds in 2D/1D; the only modication of the above proof in 3D/2D is in the choice of q h ∈ M + h to estimate η unil (q h ), where the Lagrange interpolation can be performed at a quadrature node instead of at the edge midpoint, similarly to the proof of Lemma 6.4. This remark also applies to the conclusions of Theorem 6.4 below.

The case

2 , so that p ∈ H 3/2+ν (Γ ), and also assume θ ∈ H 1+ν (Γ ). Then, in the above framework, there holds in 3D/2D, Remark 6.12. Newton's method is a local method. To globalize it, a line-search technique with the augmented Lagrangian as merit function can be used.

Numerical results

To investigate numerically the proposed methodology, we build a 2D benchmark problem with analytical solution. Let

Consider the cohesive law

Let n ≥ 2 and let L 0 ∈ R be such that 0 < L 0 < L x . Introducing the functions

the bulk displacement in the analytical solution is set to u(x, y) := -ys (x) s(x) + yφ(x) . (6.74) This solution is built to satisfy the boundary condition of unilateral contact with cohesive forces on Γ . The normal displacement on Γ is given by the function s, and the contact zone corresponds to the interval [L 0 , L x ]. To complete the specication of the test case, it remains to choose suitable external load and boundary conditions on ∂Ω \ (Γ ∪ ∂Ω D ) according to (6.74). We can readily verify that u ∈ H n-1 (Ω). We also observe that u Γ does not exceed d c so that the regularity of t at d c does not limit the regularity of u.

First, we study the convergence rates for two choices of nite element spaces, namely

(referred to as P 2 /P 1 case). The simulations are performed with the decomposed Uzawa algorithm. The Young modulus and the Poisson ratio are E = 2 • 10 5 and ν = 0.2. Further parameters are L x = 20, L y = 6, L 0 = 10, σ c = 0.001, and d c = 0.1. Observe that the Young modulus is very large so that the continuous and discrete functionals are expected to be convex. The analytical solution is chosen to be in H 3 (Ω) (n = 4). The results are summarized in Tables 6.1 and 6.2. Optimal convergence rates are observed in both cases. In the P 1 /P 0 case, this result matches the estimate of Theorem 6.2. In the P 2 /P 1 case, the numerical result improves on the estimate of Theorem 6.3 which is suboptimal. Moreover, in both cases, the Lagrange multiplier super-converges although in the present setting for V h , the discrete inf-sup condition is not robust with respect to mesh-size.

We now address the convergence of the decomposed Uzawa algorithm. We consider that convergence is reached when the dierence between the exact solution and the approximate solution is below a given tolerance. The simulations are performed with V h = P 1 c (T h ) and M h = Λ h = P 0 d (F h ). The numbers of iterations to reach convergence for various couples of parameters (r, ρ) are collected in Table 6.3. The two criteria r ≥ ρ and r > 2k ψ derived in Proposition 6.10 appear to be rather sharp.