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�Petite pensé. En anglais, il existe le verbe "to rotate", en français son équivalent serait le

verbe rotationner, sa dé�nition serait e�ectuer ou faire e�ectuer une rotation. Cependant

le verbe "rotationner" n'existe pas dans la langue française. Et pourtant, il tourne.�

�The discrete geometry is to classical geometry what the language is to thought, i.e. an

imperfect means to represent the reality. It took centuries for the language to evolve in a

way almost capable to faithfully describe our though.

Today the discrete geometry tries to do the same thing with the continuous geometry.

The continuous geometry is a mathematical model that cannot be correctly or exactly

reproduced in the real world and in computer science. A simple example is the famous

number π. The theoretical mathematic model supposes an exact value of this number,

however, the representation of a circle on the ground with a rope or on a sheet of paper

by a compass can only give an approximated value of π, whatever the diameter of the

circle, the size of the rope or the precision of the compass. In computer science, for any

approximation of π used during computations, results will always be an approximation.

Today, one of the biggest challenge in computer science is to �nd new methods so that

computers can represent reality as faithfully as possible. Regarding geometry, we strongly

believe that these methods belong to the discrete geometry.�
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Cette thèse présente une étude sur les rotations dans les espaces discrets en 2 et 3

dimensions. Un espace discret est, par opposition à un espace continu, un espace borné

avec un nombre �ni de points. En informatique, les espaces continus n'existent pas ; en

e�et, même l'utilisation de nombres �ottants ne permet qu'une approximation grossière

du continu. Les données utilisées dans le cadre de l'informatique sont le plus souvent

entières. Par exemple, une image numérique n'est composée que de points à coordonnées

entières et, pour la couleur, à valeurs entières. De plus l'utilisation des nombres �ottants

pour approcher le continu pose des problèmes de précision. Pour ces raisons, nous avons

choisi durant cette thèse de nous concentrer sur les espaces discrets et de n'utiliser que

des entiers durant les calculs.

Dans le domaine de la vision par ordinateur, la rotation est une transformation requise

pour de nombreuses applications. Dans la plupart des applications, la rotation utilisée

est la rotation euclidienne discrétisée. Les résultats donnés par cette rotation dans les

espaces discrets ne sont pas bons car il y a une importante perte d'informations, la

qualité visuelle de l'image est dégradée et une partie des propriétés mathématiques de la

rotation continue est perdue. Par conséquent avec le développement de l'informatique,

le besoin de développer de nouvelles méthodes de rotations adaptées aux espaces discrets

s'est fait sentir.

Dans cette thèse, nous nous sommes donc concentrés sur le développement des rotations

dans les espaces discrets et sur leur compréhension. Nous nous sommes principalement

intéressés aux angles charnières qui représentent la discontinuité de la rotation dans les

espaces discrets. En e�et, dans ces espaces, e�ectuer deux rotations d'une image avec

deux angles très proches peut donner le même résultat. Cette particularité est capturée

par les angles charnières. L'utilisation de ces angles particuliers permet de décrire une

rotation qui donne les mêmes résultats que la rotation continue discrétisée sans avoir

recours aux calculs �ottants. Ces angles permettent aussi de décrire une rotation incré-

mentale qui décrit toutes les rotations possibles d'une image numérique donnée (chose

impossible dans le continu car il y a une in�nité de rotations possibles). L'utilisation des

angles charnières peut-être étendue dans les espaces discrets en trois dimensions. Pour

ce faire, on dé�nit les multi-grilles qui sont des plans de rotations qui contiennent trois

ensembles de droites parallèles. Ces droites représentent les discontinuités de la rotation

en 3D. Elles servent donc à dé�nir les angles charnières dans les plans de rotations. Les

multi-grilles permettent d'obtenir les mêmes résultats en 3D que ceux obtenus en 2D.

Cette thèse s'articule autour de cinq chapitres en plus de l'introduction aux probléma-

tiques des espaces discrets et des rotations dans ces espaces présentée dans le chapitre 1.

Le chapitre 2 présente un état de l'art des rotations discrètes, d'une présentation des



propriétés de ces rotations et des problèmes liés à l'absence de certaines de ces pro-

priétés. S'ensuit une étude sur les rotations dans des espaces discrets hexagonaux et

triangles. Le chapitre 3 introduit les angles charnières qui permettent de dé�nir une

rotation discrète dans le plan ainsi qu'une rotation incrémentale qui calcule l'ensemble

des rotations possible pour une image donnée. À la �n du chapitre, nous proposons une

nouvelle méthode pour estimer la rotation faite entre deux images numériques utilisant

les angles charnières. Les chapitres 4 et 5 étendent les résultats présentés dans le chapitre

3 aux rotations en 3D. Le chapitre 6 présente une étude des n-tuples pythagoriciens. Ils

représentent les triangles rectangles à longueur entière dans toutes les dimensions. Nous

montrons qu'ils sont denses sur la sphère unitaire et proposons une méthode approcher

n'importe quel vecteur par un n-tuples pythagoricien. Cette étude est nécessaire pour

obtenir les résultats des chapitres 4 et 5.

Mots clés

Rotation

Rotation discrète

Géométrie discrètes

Angle charnière

Multi-grille
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This thesis presents a study on rotations in 2- and 3-dimensional discrete spaces. By

opposition to the continuous space, a discrete space is a space with bounds and a �nite

number of points. In computer science, continuous spaces do not exist; indeed, the

�oating numbers used to simulate the continuous space only give a crude approximation

of the continuous space. Data used in the computer science �eld are mostly composed

of integers. For example, a digital image contains only discrete points with integer

coordinates and integer values that encode the color of the point. Moreover, using

�oating numbers to approach real numbers implies precision problems. For these reasons,

we decided, during this thesis, to work in discrete spaces and to use only integers for all

computations. In the computer vision �eld, the rotation is a transformation required for

many applications. Most of applications use the Euclidean rotation and then apply the

rounding function on the obtained results. The results obtained by using this rotation

in discrete spaces are not satisfactory since much information is lost, the visual quality

is a�ected and most of the properties of the continuous rotation are lost. Accordingly,

with the expansion of computer science, it is necessary to develop new rotation methods

adapted to discrete spaces.

In this thesis, we have chosen to study the rotations in discrete spaces and to improve

their understanding. We mainly studied hinge angles that represent the discontinuity

of the rotation in the discrete space. Indeed, in discrete space, it is possible to perform

two rotations of the same digital image with two angles that are slightly di�erent while

obtaining the same result. This particularity of the rotation in discrete space is formalized

by hinge angles. Using hinge angles allows us to describe a discrete rotation that gives the

same results than the discretized Euclidean rotation, although using only integers during

computations. These particular angles also allow the description of incremental rotation

that performs all possible rotations of a given digital image. Such an incremental rotation

is impossible in continuous space since there is an in�nity of continuous rotations. Using

hinge angles can also be extended to the rotations in 3-dimensional discrete spaces. The

extension requires multi-grids, which consist in rotation planes containing three sets of

parallel lines. These parallel lines represent the discontinuities of the rotation in 3D

discrete space. Thus they are useful to describe hinge angles in rotation planes. Multi-

grids allow us to obtain the same results in 3D discrete rotations as the results obtained

in 2D discrete rotations.

This thesis contains �ve chapters given after an introduction in Chapter 1 to the prob-

lematic of discrete spaces and rotations in discrete spaces. Chapter 2 gives a state of

the art about discrete rotations in the plane, shows the properties of Euclidean rota-

tions that are lost in discrete spaces and explains which problems arise with the lost of

properties. The end of this chapter is a study of rotations in the discrete spaces tiled

by triangles or hexagons. Chapter 3 introduces the hinge angles that allow the design



of a discrete rotation in the plane and an incremental discrete rotation that computes

all possible rotations for a given digital image. Then we propose a method to estimate,

for a pair of digital images, the rotation that transforms the �rst image into the second

one. The chapters 4 and 5 are the extension of the results presented in chapter 3 in the

3D discrete space. Chapter 6 presents a study on Pythagorean n-tuples. We show that

they are dense in any dimensions and we propose a method to �nd for any n-vector a

Pythagorean n-tuple that approximates this vector. This study is required to obtain the

result of Chapters 4 and 5.
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Hinge angle
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Chapter 1

Introduction

1.1 Introduction to the rotation problem in Z2

Rotation is a well known function learned at junior high school. For most of the people,

rotation has been a well de�ned function from R2 into R2 for centuries.

Recently, with the spread of computer sciences, more and more people are becoming

interested in the rotation as a function from Z2 into Z2, commonly denoted by discrete

rotation. Indeed, in computer science, the data acquired from digital cameras or other

methods are often digital data, i.e. containing only integers, and it is known that using

only integers during computations reduce the computation time and avoid approxima-

tions errors.

Nonetheless, performing rotations in Z2 is not obvious. Many problems arise mainly

due to the fact that π, which seems to be inseparable of the rotation function, is a

transcendental number.

For the last twenty years, some works have been done to understand the particularity of

rotations in the discrete space[2�5], to de�ne and design discrete rotation in 2D [6, 7] or

discrete rotation in 3D [8�10]. However, the discrete rotation problem is far to be solved.

The comprehension on discrete rotations is far to be the same as comprehension on

Euclidean rotation. The apparently obvious properties of the Euclidean rotation such as

bijectivity, transitivity are hard to keep in discrete spaces. Today, at our best knowledge,

there is no discrete rotation that have all the properties of the Euclidean rotation.

During my thesis, we try to improve the understanding of the discrete rotation. The

results obtained are more theoretical than practical. Our main results showed that it is

possible to perform rotations in 2D and in 3D using only integers computations, then

1
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obtaining exact results under some assumptions. We also showed that every rotations

performed with �oating number can be performed using the methods proposed in this

manuscript. However, even if these results are exact, the associated algorithms have a

hight time complexity.

The discrete rotation is a function coming from a new mathematical �eld denoted by

digital geometry. In the next sections of this introduction, we make a brief history of the

geometry and its evolutions that lead us to the digital geometry and then to the discrete

rotations. The following sections of this chapter are not required for the understanding

of this thesis and can be skipped, except the last one that gives a quick overview of the

content of this manuscript.

1.2 A quick history of geometry

Geometry, literally "Earth-Measuring" is a part of mathematics concerned with questions

of sizes, shapes, relative positions of �gures, and spaces properties. Geometry is one of

the oldest sciences. Initially a body of practical knowledge concerning lengths, areas,

and volumes, in the 3rd century before Christ geometry was put into an axiomatic form

by Euclid [11]. Euclidean geometry set a standard for many centuries to follow.

The introduction of coordinates by Descartes, during the 17th century, and the concur-

rent development of algebra, marked a new stage for geometry, since geometric �gures,

such as plane curves, could now be represented analytically, i.e., with functions and

equations. This played a key role in the emergence of calculus in the 17th century. The

subject of geometry was further enriched by the study of intrinsic structure of geometric

objects that originated with Euler and Gauss and led to the creation of topology and

di�erential geometry.

Since the discovery of non-Euclidean geometry in the 19th-century, the concept of space

has undergone a radical transformation. Contemporary geometry considers manifolds,

spaces that are considerably more abstract than the familiar Euclidean space. These

spaces may be endowed with additional structures, allowing speaking about lengths.

For �fty years, geometry has been required in a lot of applications in computer science

such as computer vision, computer graphics, medical image analysis, etc. However, in

computer science, the classical geometry is not suitable. First, in computer science, it

is only possible to represent exactly integers and rational numbers in memory, whereas

Euclidean geometry mainly uses real numbers. Secondly, data used in many application

are represented using only integer numbers. Therefore, using the �oating numbers, which

are the numbers that approximate real numbers in computer science, inherent to the
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classical geometry is not desirable. Consequently, a new �eld of geometry, the digital

geometry, have been introduced a few years ago in order to design a geometry using

integers and rational numbers only.

1.3 Digital geometry

In recent years, with the spread of the usage of images generated or processed by com-

puters, a new mathematical theory called digital geometry has emerged as a sub�eld

of the discrete geometry. This theory aims at studying objects called discrete objects

consisting of countable sets of discrete points, whereas Euclidean continuous objects gen-

erally consist of non-denumerable sets of points. Besides their names, discrete objects

have little in common with Euclidean geometric objects. Indeed, most elementary re-

sults of Euclidean geometry do not hold in discrete spaces: fundamental notions like

continuity does not hold (what does "continuous" mean in a discrete space ?), even the

basic de�nition of objects become complex (many de�nitions of a discrete circle that are

not equivalent exists). Digital geometry tries to address these problems by devising new

results speci�c to discrete spaces and objects, and transposing the familiar notions of

Euclidean geometry to discrete geometry.

Figure 1.1: Intersection between two circles and between their discretization. The
discrete circles have four pixels for the intersection while the continuous circles have only
one point of intersection. That shows one of the main di�erences between Euclidean

geometry and digital geometry.

Figure 1.1 gives a simple example of the di�erence between the Euclidean geometry and

the digital geometry. In Euclidean geometry, two circles have zero, one, two or an in�nity

of intersections (if they are merged). However, in digital geometry, two discrete circles

can have any number of common pixels (four common pixels on Figure 1.1) but not

an in�nity since the number of pixels in a discrete circle is necessarily �nite. Another

example can be two circles that have no intersection in the Euclidean space, but their

discretized versions have one or more common pixels.
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1.4 From digital geometry to discrete rotations

The rotation is a geometrical transformation that have probably been introduced by the

Greeks one or two centuries B.C. for studying astrology. The rotation is inseparable from

the Archimedes constant, better-known since the 17th or 18th century as π. Archimedes

was the �rst to rigorously study π by realizing that he can obtain a lower and a up-

per bound by inscribing circles in regular polygons and calculating the outer and inner

polygons respective perimeter [12].

Between Archimedes, about �ve centuries B.C. and the end of the 19 th century, many

mathematicians tried to give a good approximation of π or its exact value. The accuracy

of the estimation of π quickly increases with the development of mathematics. With the

introduction by Liouville of transcendental number in 1844[13] and the demonstration

by Lindemann in 1882 that π is one of these numbers [14], we know that π cannot be

exactly represented or computed.

The impact of the belonging of π to the transcendental numbers on digital geometry is

very important. Indeed, we know that each computation from Zn to Zn using π will

give an approximated result. More generally, π is not the only problem of the rotations

in discrete space. Particular angles exist that allow rotations to be performed without

using π denoted by Pythagorean angles[15]. Whereas, performing rotations using these

angles will imply di�erent problems that will be explained in Chapter 2. Some methods

have been developed in digital geometry in order to solve these problems and to perform

rotations in discrete space that keep some of the properties of the Euclidean rotations.

These rotations will be introduced in Chapter 2. However, the method that have been

proposed cannot solve all the problems of rotations in discrete space. Each one of them

have some properties but none have all the properties of Euclidean rotation. Therefore,

during my thesis, we tried to improve the understanding of rotations in discrete space.

In the next section, we give a quick overview of the content of this manuscript.

1.5 Structure of this manuscript

This manuscript is centered on six chapters. Chapter 1 is �nished, so it is useless to

introduce it.

Chapter 2 presents a survey on 2D discrete rotations. The rotations in the 2D discrete

space have been studied during the last 30 years. However many problems are remaining

in the application of rotations in the discrete space. Thus, in Chapter 2, we also introduce

and explain these problems. We also present a short study on the rotation in di�erent
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regular grid and show that using other regular grid can give better result than orthogonal

grid.

In the Euclidean space, for a given point and center of rotations, there is an in�nity of

di�erent rotations of the point around the given center. This is not true in a discrete

space as the number of di�erent rotations is �nite and depends on the distance between

the point and the center. Chapter 3 presents a discrete rotation using this property

of rotations in the discrete space and then gives a method that estimates the angle of

rotation from a given pair of digital images that represent the same object before and

after a rotation.

Chapter 4 presents a short survey on rotations in the 3D continuous space since, at

our best knowledge, there is not discrete 3D rotation. Rotations in the 3D space can

be done in many ways such as composing three 2D rotations or by rotating around an

arbitrary axis. In this chapter, we will present the extension of the rotation introduced

in Chapter 3 to the 3D discrete space using a rotation around an arbitrary axis.

Chapter 5 extends the second part of Chapter 3. It presents a discrete method to �nd

from a pair of 3D digital images the angle of rotation and the axis of rotation that

transforms the �rst digital image into the second digital image where the correspondence

of points between these two digital images are supposed to be known.

Chapter 6 presents a study on Pythagorean n-tuples that are the extension to dimension

n of the well-known Pythagorean triples. They can be represented in any dimension as

a vector. In this chapter, we will show that they are dense in every dimension, i.e. any

vector in any dimension can be approximated by an in�nity of Pythagorean n-tuples.

Since all computations on Pythagorean n-tuples can be done using only integers, they

are helpful for designing discrete rotation in any dimension.

We will conclude by some future works in Chapter 7. The �rst one will be to design a

discrete rotation valid in any dimension. As for angles, there is a �nite number of rotation

axis in the discrete space. However, there is no clear relation established between these

two points. Another future work will be to clarify this relation.

In appendix, we add a glossary that recalls the main concepts and de�nitions used and

introduced in this thesis but in a less formal way.



Chapter 2

Rotations in 2D discrete spaces

2.1 Introduction

In this chapter, we present a survey on the discrete rotations and the problems arising

while we apply rotations in a discrete space. For many applications, the rotation in the

discrete space is a required transformation for image computation in computer science

such as image matching, construction of mosaic images[16] but also in physics such as

celestial mechanics[7]. Typically, the input image is a discretized version of the original

analog signal and, therefore, stored as a byte image. A rotation is applied to process

the image; this process may result in intermediate �oating point numbers. However, the

�nal image displayed or analyzed is similar to the input image � stored as a byte image.

As an example, a 2D digital image is represented as a set of N ×N discrete points where

each discrete point p⃗ = (i, j),∈ {0, . . . , n}2 contains the color value. If we apply the

classic rotation matrix

(
cosα − sinα

sinα cosα

)
on this set of points, we obtain a set of points

that belongs toR2 instead of Z2. Therefore, the result of the rotation must be discretized

in order to obtain an output comparable to the input. During the discretization, some

problems occur such as points without pre-image or points with two pre-images.

Usually, in application of discrete rotations, we consider that the discrete plane is tiled

by squares, usually denoted by pixel. However, there exist other regular forms that tile

the plane such as triangles and hexagons. Performing rotation in the plane using these

two forms can give some interesting results.

In this section, we will present the classic de�nitions and properties expected for the

discrete rotation algorithms. The expected properties are the same than the Euclidean

rotation, however, we will also explain why it is di�cult to keep these properties in the

6
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discrete space. Then we will present a survey on the main existing rotation algorithms.

Finally, we propose a study on rotation in triangle and hexagonal grid.

2.2 De�nitions and Properties

It is generally admitted that a discrete rotation is a rotation algorithm that transforms

a set of discrete points into another set of discrete points. More formally:

De�nition 2.1. An algorithm is denoted by a discrete rotation algorithm if it performs

a rotation of a set of points from Z2 into Z2.

This de�nition allows discrete rotation algorithms to use �oating numbers1 during com-

putations. However, using �oating numbers during computations involves errors of ap-

proximation in the results. A simple example is the sum: sin2 α+cos2 α. In mathematics

this sum is always equal to 1 although with the use of �oating numbers, we can obtain

the result 1± ϵ, ϵ > 0. Therefore, we believed that De�nition 2.1 is not reliable enough.

Then we propose a more restrictive de�nition for the discrete rotation:

De�nition 2.2. An algorithm is denoted by a discrete rotation algorithm if it performs

a rotation of a set of points from Z2 into Z2 and uses only integers during computations.

A rotation algorithm using only rational numbers during computations is also a discrete

rotation algorithm since, as explained in introduction, rational numbers and integers are

equivalent. Hereafter, the notation discrete rotation will always refers to De�nition 2.2.

De�nition 2.2 does not ensure any property on discrete rotation algorithms. In the

next section, we will present some discrete rotation algorithms that do not have the

same properties than the Euclidean rotation. Hereafter, we will introduce the Euclidean

rotation adapted to discrete space: discretized Euclidean rotation, abbreviate DER and

explain the most common problems arising while applying DER and associate to each

of these problems a property that a discrete rotation algorithm should have. Note that

DER is not a discrete rotation regarding to De�nition 2.2 since it uses sine and cosine

functions.

The �rst problem denoted by double points is illustrated in Figure 2.1(a). During the

DER, is it possible that two points, which are 4-connected, have their images in the same

pixel. Then during the discretization of the rotation, these two points are discretized

in the same pixel. To give an idea of this problem, we must notice that the Euclidean

1Floating numbers are the representation in computer science of the real numbers. They have a
limited precision that implies an approximation of the real numbers.
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(a) (b)

(c) (d)

Figure 2.1: The four main problems of discrete rotation algorithms: (a) double point,
(b) blank point, (c) errors due to composition and (d) inverse rotation.

distance between two 4-connected pixels is 1 when the diagonal of a pixel is
√
2. Then

after a rotation and before the discretization, the centers of two 4-connected pixels can

belong to the same pixel. However, using the same idea, we can conclude that triple

points cannot exist.

The second problem denoted by blank points is illustrated in Figure 2.1(b). There is sets

of four points that form a 2 × 2 square, which is 4-connected, that after a rotation by

a given angle become 8-connected. We call the point within the 8-connected square a

blank point. This problem has the same origin than the problem of double points. After

the application of DER on an image and if we do not crop the rotated image, the number

of double points is the same as the number of blank points, however, this is not true on

an arbitrary set of points.

Few examples of these two problems are given in Figures 2.2 (a),(b),(c) and (d) rep-

resenting four rotations of a white image of size 450 × 450. The black point on the

resulting image (except the four black triangles on each corner ) are points that have no

pre-image. Figure 2.3 illustrates the percentage of points lost during the rotation of a

200× 200 picture for all angles between [0, π2 ]
2.

2A study on hinge angle in Chapter 3 shows that in discrete space for a �nite size, there is a �nite
number of possible rotations
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(a) (b)

(c) (d)

Figure 2.2: The DER rotation of a white image by the four angles (a)α = 15◦,
(b)α = 30◦, (c)α = sin−1 3

5 ≈ 36.87◦ and (d)α = 37◦
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Figure 2.3: Percent of point lost during the rotation of a 200 × 200 picture for all
angles between [0, π2 ].

Note that the black points resulting of the rotations by DER draw regular patterns on

the di�erent images on Figures 2.2 (a),(b),(c) and (d). A short study of these patterns

have been done in [4]. Figures 2.2 (c) shows that some particular angles do not create

any blank points. These particular angles are used to create a discrete rotation presented

Section 2.3.2.

These two problems show that a DER is not necessarily a bijective function since there
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are points resulting of a discrete rotation that have two pre-images and the inverse

rotation does not give the original image. To capture these two problems, we introduce

the following de�nition:

De�nition 2.3. A function F : E2 → E2 is bijective if for all elements e ∈ E2, there is

exactly one element e′ ∈ E2 such that F−1(e′) = e.

Another problem is arising during composition of discrete rotations. Let p⃗1 be a point

and α, θ be two angles. The point p⃗2 is the result of the application of DER on p⃗1 by

α and p⃗3 is the result of the application of DER on p⃗2 by θ. We cannot ensure that

the result of the application of DER on p⃗1 by α+ θ is p⃗3 as illustrated on Figure 2.1(c).

Another problem similar to the problem of composition of discrete rotations is the inverse

rotation as illustrated in Figure 2.1(d). Let p⃗2 be the result of the rotation by DER of

p⃗1 by an angle α. We cannot ensure that the result of the rotation by DER of p⃗2 by an

angle −α is p⃗1.

These two problems show that rotations perform in discrete space are not necessarily

transitive. Note that the inverse rotation is just a particular case of the transitivity

problem were θ = −α. To capture this problem, we introduce the following de�nition:

De�nition 2.4. A discrete rotation is transitive if for all angles α and γ and for all

points p⃗ the rotations of p⃗ by α then by γ give the same result than the rotation of p⃗ by

α+ γ.

Note that, the problems of double points and blank points are cumulative with the

problem of compositions. An example is given in Figure 2.4. These �gures represent the

four rotations of a white image of size 450 × 450 by an angle of α = 40◦. Figure 2.4(a)

is the result of the �rst rotation of the white image by α. Figure 2.4(b) is the result of

the rotation of Figure 2.4(a) by the same angle α. We use the same method to obtain

Figure 2.4(c) and Figure 2.4(d). After the last rotation, it remains approximately 50%

of the white points of the original image.

The last de�nition is not resulting from a problem of discrete rotation. In the �eld of

computer vision, data are often acquired from real objects and during the acquisition

process, they are discretized. Then the rotation done on an object between two dis-

cretizations is the continuous rotation, so we can assume that the result of this rotation

will be captured by DER. However, during the discretization of the object after the ro-

tation, we do not have any blank point. Therefore, an important property of a discrete

rotation is to obtain the same results as DER, at least for non double points and non

blank points. Then we propose the following de�nition
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(a) (b)

(c) (d)

Figure 2.4: During the composition of DER, the number of points lost due to double
point is cumulative. For an angle α = 40◦ we lost approximately 15% of points for (a),

28% for (b), 39% for (c) and 50% for (d).

De�nition 2.5. A discrete rotation is said to be DER-like if the set of points resulting

of the discrete rotation by an angle α includes the set of points resulting of DER by α

Figure 2.5 illustrates the DER-like problem. We say that a rotation is DER-like if the

object obtained using the red way is the same than the object obtained using the blue

way.

At our best knowledge there is no discrete rotation that is bijective, transitive and DER-

like for any angle. We strongly believe that is it not possible to design such a rotation.

Therefore, we propose the following conjecture:

Conjecture. 1. If the function R : Z → Z, is a discrete rotation, this function is not

bijective and transitive and DER-like for any angle.

In the next section, we present some discrete rotation algorithms. We will use the three

de�nitions presented above to characterize these discrete rotations.
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Figure 2.5: If a discrete rotation is DER-like, then the red way that discretize then
rotate will gives the same result than the blue way that rotate then discretize.

2.3 Survey on discrete rotations in the plane

In this section, we present some of the existing discrete rotation according to De�ni-

tion 2.2. The �rst rotation is the rotation by discrete circle, then we present the rotation

by Pythagorean line already addressed in previous section. We then present the shear

rotation that consist in the decomposition of the rotation into three sheer transforms.

Finally, we present the rotation by hinge angles which is the rotation that we mainly

studied in this thesis.

2.3.1 Rotation by discrete circle

We �rst present the rotation by discrete circles[2]. A discrete circle of radius r is the

set of n pixels p⃗1 = (p1x, p1y), p⃗2 = (p2x, p2y) . . . , p⃗n = (pnx, pny) such that (r − 1
2)

2 ≤
p2ix+p

2
iy < (r+ 1

2)
2, i = 1 . . . n3. Using this de�nition of discrete circles, we know that we

will obtain a tiling of the plane by discrete circles. In other words, we can ensure that

each pixel belongs to a discrete circle and to only one. The main idea of the rotation

by discrete circles is to move the pixel in each discrete circle of a number depending

on the rotation angle. This number is obtained using the following equation :⌊α×n360 ⌋
where α is the given rotation angle and n the number of pixels belonging to the discrete

circle. An example of the rotation by discrete circles is given in Figure 2.6. In his thesis,

Andres shows that the rotation by discrete circles is transitive and bijective. We can

easily be convinced of these two properties as we just displaced pixel in the circle during

3There are di�erent de�nitions of a discrete such as Bresenham circle[17], but this rotation requires
a de�nition of discrete circles that tile the plane.
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Figure 2.6: The rotation by circles by an angle of 45◦.

the rotation of a discrete circle. Therefore, there is no blank or double points. In other

words, this discrete rotation does not lose any pixel.

The application of DER and the rotation by discrete circles on the same set of points will

give di�erent results. This remark seems obvious since the rotation by discrete circles is

bijective. However, Figure 2.6, which gives an example of a rotation by discrete sphere

on an angle of 45◦, shows some shears in the resulting digital image. These shears do not

arise during a rotation by DER. Thus, we can conclude that according to De�nition 2.5,

the rotation by discrete circles is not DER-like.

2.3.2 Rotation by Pythagorean lines

Another discrete rotation is the rotation by Pythagorean lines. A line of slope i1
i2

that

veri�es i21 + i22 = λ2 is a Pythagorean line if i1, i2, λ ∈ Z. In [2], the author introduce

a rotation algorithm using the particular set of Pythagorean lines where λ = i2 + 1. In

[18], authors give the proof that the rotations induced by these set of Pythagorean lines

is bijective, transitive and DER-like. However, the rotation by Pythagorean lines has

restricted angles. The biggest angle is given by the Pythagorean triple (3, 4, 5), which is

approximately 36.87◦. All other angles given by a Pythagorean triple are smaller than

this one, they are given by (5, 12, 13) that is approximately 22.62◦, (7, 24, 25) that is

approximately 16.26◦, (9, 40, 41) that is approximately 12.68◦ and so on. There is about

50 di�erent angles greater than 1◦. The twelve biggest angles are illustrated in Figure 2.7.

Note that the results obtained by DER illustrated in Figure 2.3(c) are the same than

the results obtained by a rotation by the Pythagorean line associated to (3, 4, 5). It is

possible to compose rotations by Pythagorean lines in order to obtain any angle, but in

case of composition, the �nal result will not be consistent since the connectivity between

pixels will be lost during the composition4. In the �nal result, while using composition,

some shear e�ects will appear, which do not arise during a rotation by DER.

4Some results on connectivity are presented below in this section.
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Figure 2.7: The twelve biggest angles that can possibly be obtained by Pythagorean
lines

2.3.3 Shear rotation and quasi shear rotation

It is also possible to design a discrete rotation using three translations. Indeed, the

rotation matrix

(
cosα − sinα

sinα cosα

)
can be rewritten as the product of the three matrices

:

(
1 − tan α

2

0 1

)
,

(
1 0

sinα 1

)
,

(
1 − tan α

2

0 1

)
that are translation matrix. This method

called shear rotation is well studied in the continuous plane [19]. In [6], the author gives

a method, called quasi-shear rotation, to discretize these three matrices and then obtain

a discrete rotation, working in the discrete space, using three horizontal or vertical shear.

Obviously, the three translations are bijective, then we can conclude that the quasi-shear-

rotation is bijective. However, the translations are not transitive, indeed the composition

of rotations of angles θ and −θ does not necessarily gives the original image and the

composition of the two rotations of angles θ1 and θ2 does not necessarily gives the same

result as the rotation of angle θ1+θ2. Moreover, this rotation is not DER-like since some

shears will appear during the rotation. We can conclude that QSR is bijective, transitive

and non DER-like. An example of the quasi-shear rotation where the three translations

are decomposed is given in Figure 2.8.

2.3.4 Rotation by hinge angles

More recently, a new discrete rotation has been designed by Nouvel in [4] and improved

by us Chapter 3. This rotation is based on hinge angles and will be more developed in

the next sections. Roughly speaking, an angle is a hinge angle for a discrete point if the

result of this point's rotation by this angle belongs to the half-grid. In other words, if the
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Figure 2.8: The quasi-shear rotation and its two intermediate results.

angle of rotation is slightly greater than a hinge angle, the result of the rotation of the

associated point will be in a pixel p, if the angle of rotation is slightly lower than a hinge

angle the result of the rotation of the same point will be in a pixel that is 4-connected

with p. As far as we know, the discrete rotation by hinge angles is the only discrete

rotation DER-like for any angle, however, rotation by hinge angles is neither bijective

nor transitive.

In our purpose, we assume that discrete data are the result of the acquisition by a digital

camera of continuous objects. This supposition enforces the property that the discrete

rotation between two di�erent sets of discrete data gives the same result as DER. For

this reason, during my thesis, we have chosen to improve the rotation by hinge angles.

Therefore, in the next chapter, we will de�ne hinge angles and give their properties.

2.4 Rotation in other grids

All the rotations presented in Section 2.3 are based on the square grid. However, other

regular grids exist, in this section, we present a short study on rotations in the two other

kinds of regular grids that are triangles and hexagonal grids. In discrete geometry, the

square grid is the most commonly used, however, this grid is not the only regular grid

that tiles the plane. There are two other regular geometrical forms that tile the plane:

the triangle and the hexagonal.

In the �eld of discrete geometry, the square grid is almost the only grid used to per-

form transformations. During my thesis we exclusively used the square grid. However,

using other kind of grids can present interesting properties such as conservation of the

neighborhood, that helps to keep a visual consistency of the digital image, or loosing
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(a) (b)

Figure 2.9: A pixel and (a) its four 4-connected pixels, (b) its eight 8-connected pixels
in a square grid.

less points during rotations, that allows keeping more information on the transformed

digital image. Thus in this subsection, we present some experiments on rotations done

using these two other kinds of grids. Here we only consider the two other regular grids:

the triangles and hexagons, that tile the plane with an area of 1 and with regular edges.

First, we introduce some notions required to understand the studies done in this chapter,

then, we present the methodology used to perform our test and �nally, we present our

results on the rotation on triangle grid then on hexagonal grid.

2.4.1 Connectivity on the discrete grids

In this section, we present the notion of connectivity in discrete grids.

The notion of neighborhood in the continuous and in the discrete space is totally di�erent.

In the continuous space a neighborhood is the set of all the points whose distance from

a given point is shorter than a given value. This set contains an in�nity of points if

the given value is not null. However, this is not the case in the discrete space as the

neighborhood of a point only contains a �nite number of points if the given value is �nite.

Moreover, for any discrete point, we can always �nd at least one point so that there is

no other points between them. In discrete geometry, instead of talking of neighborhood

between two points, we use the connection between pixels/voxels. Usually, we say that

two pixels/voxels are m-connected. The variable m depends on the dimension of the

discrete space and the grid that we are considering. Considering the 2D discrete space

tile by squares, the variablem can take the values of 4 or 8 as illustrated in Figures 2.9(a)

and (b). Two pixels are 4-connected if they share an edge and they are 8-connected if they

share an edge or a vertex. If we consider the hexagonal grid, two pixels are 6-connected

or not connected as illustrated on Figure 2.10.

Regarding the 3D case, we only consider the orthogonal grid. In this case, the variable

m can take the values of 6, 18 or 26 as illustrated on Figures 2.11(a) (b) and (c). Two

voxels are 6-connected if they share a face, they are 18-connected if they share a face or
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Figure 2.10: A pixel and its six 6-connected pixels in a hexagonal grid

an edge and they are 26-connected if they share a face, an edge or a vertex. Note that

in 2D, there exist three shape of regular polygons that tile the plane. However, in 3D,

the only regular polygon that tile the space is the cube.

The notions of connectivity explained in this section is required for the study presented

hereafter.

2.4.2 Methodology

In this section, we analyze two aspects of the discrete rotations: the number of points

lost during rotations and the conservation of the neighborhood after rotations.

The �rst step to study the number of points lost during a rotation on a non square grid is

to establish a bijection between the square grid and the other regular grid. The aim is to

transform a digital image into a set of points belonging to the regular grid or to transform

a set of points of the regular grid into a digital image. Figures 2.12 and 2.13 illustrate

the bijections between the square, triangle and hexagonal grid. By using the bijection

between the two grids, we convert a digital image of size 1000 × 1000 containing white

points only into a set of 106 �oating points centered on a polygon of the regular grid.

Then we apply the standard matrix rotation

(
cosα − sinα

sinα cosα

)
on these set of points and

discretize them by using a function, which depends on the regular grid used, that returns

a point centered on a regular grid's polygon. We then apply the bijection function that

transforms the regular grid into a squared grid, count the number of remaining white

points and compare that number to the original white points number.

To study the conservation of the neighborhood after a rotation, we �rst generate a set of

points containing all the points of a square grid. Then, we generate a table that contains

for each points four or eight corresponding neighbors. The next step converts the set of

points into an-other regular grid, applies the rotation transformation on it and converts

the result into a square grid. Finally, from the obtained results, we generate a second

table similar to the �rst one and compare for each point how many neighbors from the

�rst table are remaining in the second table. Here we compare the 4-connectivity and
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(a) (b)

(c)

Figure 2.11: A voxel and (a) its six 6-connected voxels, (b) its eighteen 18-connected
voxels and (c) its twenty-six 26-connected voxels in a cubic grid.
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Figure 2.13: Conversion from a square grid into a hexagonal grid
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Figure 2.14: The percentage of points remaining after a rotation in a triangular grid.

the 8-connectivity after a rotation in every kind of regular grids because the comparison

of remaining connectivity between a 4/8-connected grid and a 6 connected grid is not

relevant.

2.4.3 Experimental result

Results on triangle grid

Figure 2.14 presents the results obtained on a rotation using the triangle grid. We

compare them with the results obtained in Figure 2.3. First, the rotation using triangle

grid always lose at least 13% of points after a rotation. This result is globally worse

than the results obtained on a square grid. However, for angles between 32◦ and 58◦,

the results are almost the same than the results obtained on a square grid.

Figures 2.15 (a) and (b) show the average conservation of neighborhood depending on

the rotation angle on a triangle grid and compare them with the result obtained on
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Figure 2.15: Comparison of the average conservation of neighborhood during a ro-
tation angle between the square grid and (a) 4-connectivity on a triangle grid, (b)
8-connectivity on a triangle grid,(c) 4-connectivity on a hexagonal grid and (d) 8-

connectivity on a hexagonal grid.

square grid. In the case of 4-connectivity, we can see that rotations on triangle grids

keep approximately 3 neighbors during rotation while rotations on square grid keep, in

the worst case, approximately 3.2 neighbors. The same results are observed in the case

of 8-connectivity with respectively 4.9 and 5 neighbors.

We can conclude that rotation on triangle grid has no interest regarding the number of

points lost or in the connectivity's preservation.

Results on Hexagonal grid

Figure 2.16 presents the results obtained on rotations using the hexagonal grid. We

compare them with the result obtained in Figure 2.3. First, Figure 2.16 seems to be the

contrary of Figure 2.14, this impression is probably due to the fact that the triangle grid

is the dual of the hexagonal grid.

We can see that the rotations on hexagonal grid rarely lose more than 9, 5% of points.

This result is really better than the results obtained on square grid since on the square

grid we lost more that 15% of points between 33◦ and 57◦. However, for angles lower than

20◦ or greater than 70◦, rotations on square grid give slightly better results regarding

the number of points lost.
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Figure 2.16: The percentage of points remaining after rotation in a hexagonal grid.

Figures 2.15 (c) and (d) show the average conservation of neighborhood depending on the

rotation angle on a hexagonal grid and compare them with the result obtained on square

grid. The conservation of neighborhood on the hexagonal grid is not symmetrical around

the angle 45◦. We do not have any convincing explanation for this lack of symmetry.

Around 53circ we can see that a low average neighborhood is immediately and suddenly

followed by a high average neighborhood. Since this event appears on Figures 2.15 (c)

and (d), we believe that it may be caused by a rounding problem during computation

around a particular angle.

We can see that the results obtained on neighborhood using hexagonal grid are globally

worse than the results on square grid. This is probably due to the fact that the hexagonal

grid counts only six neighbors instead of four or height. However, for the angle between

33◦ and 58◦ for the 4-connectivity and between 37◦ and 54◦ for the 8-connectivity, rota-

tions on hexagonal grid give slightly better results.

Finally, regarding the number of points lost during rotations, we see that rotations on

hexagonal grid globally give better results, than the two other regular grids. We also

see, that for 4 and 8-connectivity, results around the angle of 45◦ are better. Thus, we

can conclude that rotations on hexagonal grid globally give better results than rotations

on square grid.

Visual result

In this paragraph, we present the result of rotations for three kind of regular grids. They

illustrate the results given above that are theoretical results that cannot give a good

idea to the problems of double points and connectivity encountered. These pictures are
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Figure 2.17: Result of four rotations of the image (a) by an angle of 15◦ (b) using a
square grid, (c) using a hexagonal grid and (d) using a triangle grid.

the results of the composition of four rotations of a given angle for each regular grid.

Figure 2.17 shows that for an angle of 15◦, the rotation on square grid keep a little

bit more points than the rotation on hexagonal grid. The curve and line bone between

French lands and the sea seem to be better preserved by the rotation on square grid.

Figures 2.18 and 2.19 shows that rotations on hexagonal grid keep more points than

rotations on other grids. However, in both �gures, we see that the lines and the curves

are better preserved by rotation on square grid.

We can conclude that rotations on hexagonal grids are useful to keep more points during

rotations, however rotations on square grids are better for visual consistency.

2.5 Conclusion

In this Chapter, we have introduced the problematic of rotations in the discrete plane.

We have shown that existing discrete rotations cannot have all the properties of the
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Figure 2.18: Result of four rotations of the image (a) by an angle of 30◦ (b) using a
square grid, (c) using a hexagonal grid and (d) using a triangle grid.

continuous rotation, and according to Conjecture 1 we strongly believe that a discrete

rotation equivalent to Euclidean rotation cannot be designed. As explained in introduc-

tion, we want to develop tools for computer vision. Then we want to design a rotation

that is DER-like and discrete according to De�nition 2.2. In Chapter 3, we de�ne the

hinge angles and introduce a discrete rotation based on hinge angle and a method to

estimate for a pair of digital images the rotation that transforms the �rst image into the

second one.
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Figure 2.19: Result of four rotations of the image (a) by an angle of 45◦ (b) using a
square grid, (c) using a hexagonal grid and (d) using a triangle grid.



Chapter 3

2D rotations in a discrete space

using hinge angles

3.1 Introduction

Rotations in the discrete plane are required in many applications for image computation

such as image matching, construction of mosaic images [16]. At the moment, the most

popular method to estimate the rotation angle is to approximate the rotation matrix by

minimizing errors [16].

In the continuous plane, the Euclidean rotation is well-de�ned and possesses the property

of bijectivity. This implies that for two angles γ1, γ2 and a set of points A, if the Euclidean

rotation with angle γ1 applied to A gives the same result as the Euclidean rotation with

angle γ2 applied to A, then we have γ1 = γ2.

In the discrete plane, however, two points resulting of two di�erent Euclidean rotations

(with two di�erent angles) of the same grid point can be discretized in the same pixel,

i.e. discretized as the same grid point. For this reason, two di�erent angles can give the

same rotation result for a set A of grid points1. In other words, we can de�ne a set of

admissible rotation angles S so that any angle in S gives the same rotation result for

A. Note that S depends on A. The two most interesting angles in S are the lower and

the upper bounds. Indeed, with only these two angles we can deduce the other angles

in S. To identify the exact bounds, we should not involve any computation error. Thus,

we work with discrete geometry tools, which guarantee computation avoidance with real

numbers. Moreover, because we assume that our data are discretized from continuous

1Accordingly, DER is not bijective.

25
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images of an object, we enforce the property that the discrete rotation2 between two

di�erent sets of grid points gives the same result as DER.

Some works on discrete rotations already exist. The most widely used discrete rotation at

the beginning is the CORDIC algorithm [20]. The CORDIC algorithm uses a sequence

of fractions for an approximation of π. It multiplies/adds fractions in this sequence

to approximate values of sine and cosine. Thus multiple approximations lead to little

di�erences between results of DER and those of CORDIC. Note that CORDIC algorithm

is not a discrete rotation according to De�nition 2.2. As presented in Chapter 2, Andres

described in [2, 6] some discrete rotations such as the rotation by discrete circles, the

rotation by Pythagorean lines or the quasi-shear rotation. Computation executed during

these rotations are exact. However, we have shown in Chapter 2 that these rotation

algorithms do not give the same results as DER.

On the other hand, Nouvel and Rémila proposed in [21] another discrete rotation based

on hinge angles, which gives the same results as DER. It is known that a sequence of

hinge angles is a set of particular angles determined by a digital image in the sense

that any angle between two consecutive hinge angles gives the identical rotated digital

image. This means that hinge angles correspond to the discontinuity of DER. Nouvel

and Rémila showed that each hinge angle is represented by an integer triplet, so that any

discrete rotation of a digital image is realized only with integer calculation. Because their

algorithm gives the same rotation results as DER, we see that hinge angles represented

by integer triplets give su�cient information for executing any digital image rotation.

In this chapter, we introduce the hinge angles and give their properties. Then we present

a method to perform a discrete rotation using hinge angles. Finally, we propose a dis-

crete method to �nd the lower and upper bounds of admissible rotation angles. Our

method uses hinge angles because this algorithm is DER-like and because they allow

exact computations. The input data of our method is two sets of grid points where point

correspondences across the two sets are known. The output is two hinge angles that give

the lower and the upper bounds of the admissible rotation angles for the two sets.

3.2 Hinge angles

We consider grid points in Z2 as the centers of pixels and rotate them in such a way

that the rotation center has integer coordinates. Hinge angles are particular angles that

make some points in Z2 rotated to points at the frontier between adjacent pixels. In this

2A discrete rotation is a rotation designed for the discrete space. It transforms a set of grid points
into another set of grid points.
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section, we give the de�nition of hinge angles and their properties related to Pythagorean

angles.

3.2.1 De�nition of hinge angles

Let p⃗ = (x, y) be a point in R2. We say that p⃗ has a semi-integer coordinate if x+ 1
2 ∈ Z

or y+ 1
2 ∈ Z. The set of points each of which has a semi-integer coordinate is called the

half-grid and is denoted by H . Thus, H represents the set of points on the frontiers of

all pixels whose centroids are points in Z2.

De�nition 3.1. An angle α is called a hinge angle if at least one point in Z2 exists such

that its image by the Euclidean rotation with α belongs to H .

Because H can be seen as the discontinuity of the rounding function, hinge angles can

be regarded as the discontinuity of the discretized Euclidean rotation. In other words,

hinge angles determine a transit of a grid point from a pixel to its adjacent pixel during

the rotation.

The following theorem is important because it shows that we can represent every hinge

angle with three integers.

Theorem 3.2 ([21]). An angle α is a hinge angle for a grid point (P,Q) ∈ Z2 if and

only if there exists K ∈ Z such that

2Q cosα+ 2P sinα = 2K + 1. (3.1)

Geometrically, a hinge angle α is formed by two rays going through (P,Q) and a half-

grid point (K + 1
2 , λ) where the two rays share the origin as their endpoints as shown in

Figure 3.1 (left). This theorem indicates that all calculations related to hinge angles can

be done only with integers. Hereafter, α indicates a hinge angle.

We denote by α(P,Q,K) the hinge angle generated by an integer triplet (P,Q,K).

Setting λ =
√
P 2 +Q2 − (K + 1

2)
2, we easily derive the following equations from (3.1)

and Figure 3.1 (left),

cosα =
Pλ+Q(K + 1

2)

P 2 +Q2
, sinα =

P (K + 1
2)−Qλ

P 2 +Q2
. (3.2)
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Figure 3.1: A hinge angle α(P,Q,K) (left) and four symmetrical hinge angles (right).

Note that we have a case where a half-grid point is (λ,K + 1
2) instead of (K + 1

2 , λ). In

such a case, the above equations become

cosα =
Qλ+ P (K + 1

2)

P 2 +Q2
, sinα =

Pλ−Q(K + 1
2)

P 2 +Q2
. (3.3)

The symmetries on hinge angles are important because it allows us to restrict rotations

in the �rst quadrant of the circle such that α ∈ [0, π2 ].

Corollary 3.3. Each triplet (P,Q,K) corresponds to four symmetrical hinge angles

α+ πk
2 where k = 0, 1, 2, 3.

Figure 3.1 (right) gives an example of Corollary 3.3. To distinguish the case of (K+ 1
2 , λ)

from that of (λ,K + 1
2), we change the sign of K; we use α(P,Q,K) for the case of

(K+ 1
2 , λ), and α(P,Q,−K) for the case of (λ,K+ 1

2). Because the symmetries allow us

to restrict α to the range [0, π2 ], as mentioned above, we may assume that K is positive.

3.2.2 Properties related to Pythagorean angle

Because hinge angles are strongly related to Pythagorean angles, certain properties of

Pythagorean angles are required to prove some properties of hinge angles. Thus, we �rst

give the de�nition of Pythagorean angles and their properties.

De�nition 3.4. An angle θ is called Pythagorean if and only if both its cosine and sine

belong to the set of rational numbers Q.

We can deduce from De�nition 3.4 that a Pythagorean angle θ is represented by an

integer triplet (a, b, c) such that

cos θ =
a

c
, sin θ =

b

c
. (3.4)
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In the following, θ indicates a Pythagorean angle. The lemma below for Pythagorean

angles is well known.

Lemma 3.5. Let (a, b, c) be an integer triplet generating a Pythagorean angle where

|c| = max{| a |, | b |, | c |}. If gcd(a, b, c) = 1, then c is odd.

If gcd(a, b, c) = i, then gcd(ai ,
b
i ,
c
i ) = 1 and the triplet of integers (ai ,

b
i ,
c
i ) generates the

same Pythagorean angle as (a, b, c).

Theorem 3.6. Let Eh be the set of hinge angles and Ep be the set of Pythagorean angles.

Then we have Eh
∩
Ep = ∅.

Proof. 1. Assume that there is an angle α such that α ∈ Eh and α ∈ Ep. Since α ∈ Ep,
we can �nd an integer triplet (a, b, c) generating α where gcd(a, b, c) = 1. By substitution

of (3.4) in (3.1), we obtain

2
Qa+ Pb

c
= 2K + 1, (3.5)

from which we derive 2Qa+Pbc ∈ Z. Because we know that c is odd according to

Lemma 3.5, we obtain Qa+Pb
c ∈ Z. This means that 2(Qa+Pb)

c is even, while 2K + 1

is always odd, which leads to a contradiction.

This theorem shows that it is not possible to rotate a point (i, j) ∈ Z2 to a point (x, y)

such as x = i+ 1
2 , y = j + 1

2 , if the angle of the rotation is a hinge angle.

The next theorem shows an interesting relation between hinge angles and Pythagorean

angles.

Theorem 3.7 ([4]). Let θ be a Pythagorean angle and α be a hinge angle. The angle

α′ = α+ θ is a hinge angle.

3.3 Rotation by hinge angles

As explained in Chapter 2, as our work is focused on the discrete space, the rotation

of a grid point by two di�erent angles can give the same result. Namely, two di�erent

angles give the same result after the rotation of a grid point followed by discretization.

Generally, there is a range of angles in which the same result is obtained. We thus

de�ne admissible rotation angles, abbreviated hereafter by ARA, to represent this range

of angles.

In this section, we propose a method for computing the lower bound αinf of ARA for a

given digital image from a given angle. Note that with minor modi�cations, this method

can also �nd the upper bound αsup of ARA. Thus applying any rotation to the given



Chapter 3 2D rotations in a discrete space using hinge angles 30

Algorithm 1 Function for the lower bound rotation angle for a point.

Require: A point p⃗(P,Q), a Pythagorean angle θ
Ensure: A hinge angle α(P,Q,K)
Kmax ← ⌊

√
P 2 +Q2 − 1⌋;

Kmin ← 0;
K ← ⌊Kmax+Kmin

2 ⌋;
while Kmax −Kmin ̸= 1 do
if α(P,Q,K) > θ then
Kmax = K;

else

Kmin = K;
end if

K = ⌊Kmax+Kmin

2 ⌋;
end while

return α(P,Q,K);

digital image with an angle between αinf and αsup gives the same result. We note that

both αinf and αsup are hinge angles.

Our input is a Euclidean angle. However, we can replace it by a Pythagorean angle as

there is a method with linear time complexity O(m) to approximate a given Euclidean

angle with a Pythagorean angle with a precision of 1
10m [15], where m is a �xed integer

that represents the quality of approximation. Below, we assume that a Pythagorean

angle is given as in [21].

Nouvel and Rémila presented a method for computing all possible hinge angles for a grid

point or a pixel in a digital image [21]. Their method can be used for �nding the hinge

angle that is the lower bound of the admissible rotation angles. Its time complexity is

O(n log(n)) where n is the number of all hinge angles for a given grid point. Note that

n depends on the coordinates of the grid point.

3.3.1 Computing the lower bound rotation angle for grid point

For each grid point p⃗ = (P,Q) ∈ Z2, there are less than n = ⌊
√
P 2 +Q2 + 1

2⌋ di�erent
hinge angles in each quadrant [21]. We can compare in magnitude any pair of hinge an-

gles. This means that we have a totally ordered set {α(P,Q,K1), α(P,Q,K2), ..., α(P,Q,Kn)}
of hinge angles in the ascending order where Ki ∈ Z. Given a Pythagorean angle θ, in

order to �nd the lower bound rotation angle α(P,Q,Ki) such that α(P,Q,Ki) < θ <

α(P,Q,Ki+1), we use a binary search. The binary search allows us to �nd α(P,Q,Ki)

in O(log(n)), providing that we can compare a hinge angle with a Pythagorean angle

in a constant time. The algorithm is described in Function 1. Note that thanks to

Theorem 3.9 a Pythagorean angle for the input can be replaced by a hinge angle.
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The following theorem shows that the comparison between a hinge angle and a Pythagorean

angle is executed in a constant time.

Theorem 3.8. Let α be a hinge angle and θ be a Pythagorean angle. We can check

whether α > θ in a constant time with integer calculation.

Proof. 2. Let α(P,Q,K) be a hinge angle in [0, π2 ] and θ(a, b, c) be a Pythagorean angle

in [0, π2 ]. From (3.2) and (3.4), we obtain

cosα− cos θ =
Q(K + 1

2) + Pλ

P 2 +Q2
− a

c
.

If θ is greater than α, cosα− cos θ > 0. Thus

cQ(2K + 1)− 2a(P 2 +Q2) > −2cPλ. (3.6)

Since we know that c, P, λ are positive, the right-hand side of (3.6) is always negative.

Thus, if the left-hand side of (3.6) is not negative, then θ > α. Otherwise, we take the

square of (3.6), so that we only have to check whether the following inequality holds:

[
cQ(2K + 1)− 2a(P 2 +Q2)

]2
< 4c2P 2λ2. (3.7)

Note that because λ =
√
P 2 +Q2 − (K + 1

2)
2, we see that 4λ2 in the right-hand side of

(3.7) contains only integer values. Therefore, we can verify (3.7) with integer calculation.

If it is true, θ > α; otherwise, α > θ. Note that because of Theorem 3.6, it is impossible

to obtain θ = α.

We claim that this comparison of a hinge angle and a Pythagorean angle is executed in a

constant time because even in the worst case, we only have to check two equations (3.6)

and (3.7).

We mention the importance of the rotation with angle π
2 and its multiplications. In fact,

if the angle of a rotation is equal to π
2 , π,

3π
2 , we just have to �ip x and/or y-coordinates

by changing their signs. It gives the justi�cation that we can restrict the input angle θ

to 0 < θ < π
2 .

3.3.2 Computing the lower bound rotation angle for a set of grid points

In this subsection, we present an algorithm for computing the lower bound rotation angle

from a given Pythagorean angle θ for a digital image consisting of m grid points A. The

output is a triplet of integers that represents the lower bound rotation angle for A. We

note that the lower bound rotation is a hinge angle.
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The algorithm computes all hinge angles for all points in A, and sorts them to keep

the largest one. More precisely, we �rst compute the lower bound rotation angle for

the �rst point of A, and store it as a reference. Then, we compute the lower bound

rotation angle for the second point in A and compare it with the reference to keep the

larger one. After repeating this procedure for all points in A, our algorithm returns the

lower bound rotation angle α such that α < θ. The time complexity of this algorithm

is O(m log(n)) because we call m times the binary search (Function 1) whose time com-

plexity is O(log(n)). Function 2 illustrates our algorithm. As shown in Theorem 3.9, the

comparison between two hinge angles is realized in a constant time, so that our algorithm

does not change the global complexity.

Theorem 3.9. Let α1, α2 be two hinge angles. We can check whether α1 > α2 in a

constant time and with integer calculation.

Proof. 3. Let α1(p, q, k) and α2(r, s, l) be two hinge angles in [0, π2 ]. From (3.3) we

obtain

cosα1 − cosα2 =
p(k + 1

2) + qλ1

p2 + q2
−
r(l + 1

2) + sλ2

r2 + s2
. (3.8)

If α2 is greater than α1, cosα1 − cosα2 > 0. Thus

(r2 + s2)p(2k + 1)− (p2 + q2)r(2l + 1) > 2(p2 + q2)sλ2 − 2(r2 + s2)qλ1. (3.9)

If the left-hand side of (3.9) is negative and the right-hand side of (3.9) is positive, then

α1 > α2. If the left-hand side of (3.9) is positive and the right-hand side of (3.9) is

negative, then α2 > α1. We can easily check the signs of the left-hand side and the

right-hand side of (3.9) with integer computation. Note that p, q, k, r, s, l are all positive,

and that (2(p2 + q2)sλ2)
2 and (2(r2 + s2)qλ1)

2 contain only integer values.

If the signs of the left-hand side and the right-hand side of (3.9) are the same, we �rst

compute the square of each side and then compare the values to identify which is the

greater. For simplicity, we assume that the signs of both sides of (3.9) are positive, and

let A = (r2 + s2)p(2k + 1), B = (p2 + q2)r(2l + 1), C = (r2 + s2)q and D = (p2 + q2)s.

Now (3.9) is rewritten by

A−B > 2Dλ2 − 2Cλ1. (3.10)

Then we take the square of equation (3.10) to obtain

(A−B)2 − 4(C2λ21 +D2λ22) > −8CDλ1λ2. (3.11)
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Algorithm 2 Function for �nding the lower bound rotation angle for a digital image.

Require: A set of points A, a Pythagorean angle θ
Ensure: A hinge angle α
α = Function 1 (�rst point p⃗1 of A, θ);
for all p⃗ ∈ A\{p⃗1} do
αtemps = Function 1 (p⃗, θ);
if α < αtemps then

α = αtemps;
end if

end for

return α;

If the sign of the left-hand side of (3.11) is positive, we can deduce that α2 > α1.

Otherwise, taking the square of each side gives us

[
(A−B)2 − 4(C2λ21 +D2λ22)

]2
< 64C2D2λ21λ

2
2. (3.12)

We note that we can easily verify whether (3.12) is satis�ed with integer computation

alone. If (3.12) is true, α1 < α2; otherwise α2 < α1. The same logic can be applied to

the case where the signs of both sides of (3.9) are negative.

This comparison of a pair of hinge angles is executed in a constant time because in the

worst case, we only have to check three equations (3.9), (3.11) and (3.12).

3.3.3 Digital image rotation by a lower bound rotation angle

This section uses the results obtained in Section 3.3 to present an algorithm for rotating

a set of points with a given lower bound rotation angle.

It is already proved in [21] that we can obtain the same result as the DER with respect

to the original rotation angle. Note that our input is a lower bound rotation angle and

the input of the algorithm presented in Function 1 is a Pythagorean angle. In spite of

this di�erence, we can apply the same algorithm thanks to Theorem 3.9, since we are

Algorithm 3 Discrete rotation algorithm by a lower bound rotation angle.

Require: A set of points A, a lower bound rotation angle α (hinge angle)
Ensure: A set of points A′

for all p⃗ ∈ A do

α1 = Function 1 (p⃗, α);
Move p⃗ to (K, ⌊λ + 1

2⌋) or (⌊λ + 1
2⌋,K), depending on the sign of K and store the

new point in A′;
end for

return A′;
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looking for K, which gives the arriving pixel (K, ⌊λ + 1
2⌋), for each pixel (P,Q). The

algorithm is presented in Function 3. It supposes that the center of rotation is the origin.

For each point, our algorithm calls the binary search (Function 1) to �nd the corre-

sponding hinge angle, which designates its new position. If we consider n as the biggest

coordinate of all points in A, we can assume that there are less than 4n2 points in A.

Thus we can conclude that the complexity of our algorithm is O(n2 log(n)). The �rst

advantage of our method is that it does not require any �oating number calculation. The

second advantage is that the exact rotation of the set of points is obtained with only an

integer triplet. We need neither matrices nor angles to realize the rotation.

3.4 Obtaining admissible rotation angles from two digital

images

Let us assume that a set of grid points in the �rst image and its corresponding set in

the second image are given: A = {p⃗1, p⃗2, ..., p⃗l} and B = {q⃗1, q⃗2, ..., q⃗l} are given where

p⃗i corresponds to q⃗i. Given A and B, we obtain a hinge angle pair {αinf , αsup}. This

pair of hinge angles is the lower and the upper bounds of the ARA. Therefore each γ

such that αinf ≤ γ < αsup is consistent with the point correspondences between A and

B. Hereafter, we assume that A is the original point set and B is the rotated point set

by angle γ. In this section, we show how to obtain the ARA from A and B.

3.4.1 Setting Rotation Centers

For any rotation, we need to set a rotation center. Without a loss of generality, we may

choose any grid point in a digital image for the rotation center. Indeed, if we apply two

rotations on the same image with the same angle but two distinct centers of rotation, the

di�erence between the two result is captured by a translation. Assuming that rotation

centers for A and B are p⃗1 and q⃗13 respectively, we de�ne two translation functions TA

and TB such that

TA(p⃗i) = p⃗i − p⃗1,

TB(q⃗i) = q⃗i − q⃗1,

for all p⃗i ∈ A, q⃗i ∈ B. We can regard the origin as the rotation centers after these

translations. Hereafter, we assume that these translations have already been applied in

order to obtain A = {p⃗1, p⃗2, ..., p⃗l} and B = {q⃗1, q⃗2, ..., q⃗l}.
3p⃗1 and q⃗1 can have di�erent coordinates since they are a pair of point in correspondence.
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Figure 3.2: The corners of H (q⃗), namely, four corners of a pixel around q⃗.

3.4.2 Computing lower and upper bounds of rotation angles from two

corresponding point pairs

In this subsection, we consider a special case of two corresponding point pairs.

We let A = {p⃗1, p⃗2} and B = {q⃗1, q⃗2} where p⃗i = (Pi, Qi) and q⃗i = (Ri, Si). We then

de�ne a circle C (p⃗2) going through p⃗2 whose center is p⃗1. Thus the radius of C (p⃗2) is

r = d(p⃗1, p⃗2) where d(p⃗1, p⃗2) is the Euclidean distance between p⃗1 and p⃗2.

Let us de�ne the half-grid H (q⃗2) around q⃗2:

H (q⃗2) = {(x, y) ∈H : S2 −
1

2
≤ y ≤ S2 +

1

2
if x = R2 ± 1

2 ,

R2 −
1

2
≤ x ≤ R2 +

1

2
if y = S2 ± 1

2}.

We set p⃗1 and q⃗1 to be the rotation centers. Then, we need to detect intersections

between C (p⃗2) and H (q⃗2) in order to �nd a hinge angle pair. We thus investigate which

corners of H (q⃗2) are inside of C (p⃗2).

Setting four corners of H (q⃗2) to be C1(q⃗2) = (R2 − 1
2 , S2 −

1
2), C2(q⃗2) = (R2 − 1

2 , S2 +
1
2), C3(q⃗2) = (R2+

1
2 , S2+

1
2), C4(q⃗2) = (R2+

1
2 , S2−

1
2) as shown in Figure 3.2, we de�ne

a binary function F :

F (Ci(q⃗2)) =

1 if Ci(q⃗2) is inside of C (p⃗2),

0 otherwise.

In order to obtain F (Ci(q⃗2)) with integer calculation, we compare each of ∥(2(R2 ±
1
2), 2(S2 ±

1
2))∥

2 with (2r)2. Note that we may assume that C (p⃗2) and H (q⃗2) always

intersect with each other. This is because no intersection between C (p⃗2) and H (q⃗2)

indicates that p⃗2 and q⃗2 are not corresponding.

The following lemmas are needed to prove Theorem 3.12 below.

Lemma 3.10. For a circle C (p⃗2) centered on p⃗1, any Ci(q⃗2) = (R2 ± 1
2 , S2 ±

1
2) cannot

be on C (p⃗2) for i ∈ {1, 2, 3, 4} where R2, S2 ∈ Z.
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Proof. 4. Let r be the radius of C (p⃗2). Because C (p⃗2) goes through p⃗2, r2 ∈ Z. Let

us assume that Ci(q⃗2) is on C (p⃗2). Thus the Euclidean distance between the origin and

Ci(q⃗2) is equal to r. This indicates that r2 = (R2 ± 1
2)

2 + (S2 ± 1
2)

2. However, this

contradicts the above fact that r2 ∈ Z.

Lemma 3.11. Let D be a line that belongs to H . If C (p⃗2) is a circle centered on p⃗1.

Then, the number of distinct intersections of C (p⃗2) and D is two or zero.

Proof. 5. Let p⃗2 = (P2, Q2) ∈ Z2 and the equation representing D be x = i+ 1
2 where

i ∈ Z. Letting (x1, y1) be the coordinates of the intersecting point of D and C (p⃗2). Then

we have x21 + y21 = P 2
2 +Q2

2,

x1 = i+ 1
2 .

From these equations, we obtain y21 = P 2
2 +Q2

2 − (i+ 1
2)

2. Because P 2
2 +Q2

2 − (i+ 1
2)

2

does not belong to Z, y1 cannot be equal to 0. Therefore there are two distinct solutions

for y1 if P 2
2 +Q2

2 − (i + 1
2)

2 > 0; no solution otherwise. Similar discussion can be done

for the case of y1 = j + 1
2 where j ∈ Z.

Theorem 3.12. If two points p⃗2 and q⃗2 are corresponding, the circle C (p⃗2) and the

half-grid H (q⃗2) always have two distinct intersections.

Proof. 6. In general, if a circle intersects with a square and the center of the circle is not

inside the square, we have 1, 2 or 4 intersections. Having just one intersection means that

the circle goes through one corner of the square or the circle is tangential to a half-grid.

Lemma 3.10 shows that the circle cannot go through one corner. Lemma 3.11 shows that

the circle cannot be tangential to any half-grid.

Let C be a circle centered on the origin and going through the point p⃗ = (px, py)
⊤ ∈ Z2.

We assume that there is a pixel with four intersections with C. If such a pixel exists, one of
its coordinates must be equal to zero and the intersections are symmetric regarding to the

x-axis or the y-axis (according to the null coordinate). We assume that p⃗′ = (0, p′y)
⊤ ∈ Z2

is the center of the pixel. Then the four points of intersection p⃗1, p⃗2, p⃗3, p⃗4 have the

coordinates p⃗1 = (δ1, p
′
y+ϵ1)

⊤, p⃗2 = (δ2, p
′
y+

1
2)

⊤, p⃗3 = (−δ2, p′y+ 1
2)

⊤, p⃗1 = (−δ1, p′y+ϵ1)⊤

where δ1, δ2, ϵ1 ∈ [0, 12 ]. Because these four points belong to C, we have

p2x + p2y = δ22 + (p′y +
1

2
)2. (3.13)

By de�nition, p2x, p
2
y, p

′2
y are integers, thus δ2 + 1

4 must be an integer that is impossible

since δ2 ∈ [0, 12 ]. We can deduce that p⃗2 and p⃗3 cannot exist.

Therefore we have only 2 intersections.
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(a) ΣF (Ci(q⃗2)) = 0 (b) ΣF (Ci(q⃗2)) = 1

(c) ΣF (Ci(q⃗2)) = 2 (d) ΣF (Ci(q⃗2)) = 2

Figure 3.3: Illustration of cases ΣF (Ci(q⃗2)) = 0,1,2 or 3.

From Theorem 3.12, we always have two distinct intersections between C (p⃗2) and H (q⃗2),

and we see that there are four cases corresponding to di�erent possibilities to have 0,1,2

or 3 corners inside of C (p⃗2), as illustrated in Figure 3.3.

Remark 3.13. The case represented in (a) in Figure 3.3 never happen unless two condi-

tions are satis�ed.

1. q⃗2 is on the x-axis or on the y-axis.

2. The radius r of C (p⃗2) is su�ciently close to a half-integer.

Supposing that q⃗2 is neither on the x-axis nor the y-axis, we see that neither R2 nor

S2 is zero. We assume that they are positive. In the �rst quadrant, the y-coordinate

(respectively the x-coordinate) of points in C (p⃗2) is strictly decreasing with respect to

x (respectively y). Thus it cannot intersect twice with a line parallel to the x-axis

(respectively the y-axis).

Supposing that q⃗2 is on the y-axis, we see that the distance between the origin and

C1(q⃗2) (respectively C3(q⃗2)) is greater (respectively smaller) than r. Thus we have r <√
(R2 − 1

2)
2 + (12)

2 (respectively r >
√

(R2 +
1
2)

2 + (12)
2 ). Letting ϵ = r − (R2 − 1

2)

(respectively ϵ = r − (R2 +
1
2)) where ϵ <

1
2 , we obtain ϵ(8r − 4ϵ) < 1 (in both cases).

We experimentally observe that as far as r ≤ 105, ϵ(8r − 4ϵ) < 1 never holds. On the

other hand, if r is su�ciently large enough to have 8r − 4ϵ ≈ 8r then we have ϵ < 1
8r ,

which means that r is su�ciently close to a half-integer. We can thus conclude that (2)

in Remark 3.13 is satis�ed only if r is su�ciently large. Note that a similar discussion

can be done when supposing that q⃗2 is on the x-axis.
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Table 3.1: Corners of H (q⃗2) inside of C (p⃗2) and ARA.

Value of Iq⃗2 αinf αsup

Iq⃗2 = 1 or Iq⃗2 = 14 α(P1, Q1, R2 − 1) α(P1, Q1, 1− S2)
Iq⃗2 = 2 or Iq⃗2 = 13 α(P1, Q1, R2 − 1) α(P1, Q1,−S2)
Iq⃗2 = 3 or Iq⃗2 = 12 α(P1, Q1, 1− S2) α(P1, Q1,−S2)
Iq⃗2 = 4 or Iq⃗2 = 11 α(P1, Q1, R2) α(P1, Q1,−S2)
Iq⃗2 = 6 or Iq⃗2 = 9 α(P1, Q1, R2 − 1) α(P1, Q1, R2)

Iq⃗2 = 7 or Iq⃗2 = 8 α(P1, Q1, R2) α(P1, Q1, 1− S2)
Iq⃗2 = 0 and R2 = 0 α(P1, Q1, 1− S2) α(P1, Q1, 1− S2)
Iq⃗2 = 0 and S2 = 0 α(P1, Q1, R2 − 1) α(P1, Q1, R2 − 1)

The main function of our algorithm for �nding the lower and the upper bounds of ad-

missible rotation angles, consists of three steps. The �rst step sets the rotation center at

p⃗1 and q⃗1, as described in Section 3.4.1. The second step computes the corners that are

in C (q⃗2) and then compute the index Iq⃗2 =
∑

i 2
i ×F (Ci(q⃗2)). Therefore we can easily

identify which corners are in C (p⃗2) from Iq⃗2 . The third step calls a function that returns

hinge angles corresponding to Iq⃗2 . There are fourteen possible values for Iq⃗2 from 0 till

15 except for 5 and 10. Note that geometrically Iq⃗2 can be neither 5 nor 10. The value

15 of Iq⃗2 implies an error such that all corners are inside of C (q⃗2). Since Iq⃗2 whose value

is 0 corresponds to the case ΣF (Ci(q⃗2)) = 0, we should verify whether H (q⃗2) really

intersects with C (p⃗2). Note that for the other values for Iq⃗2 , we can make a pair (d, e)

such that d + e = 15. The two indices of each pair design the same pair of lower and

upper bounds of ARA. Table 1 gives the corresponding lower and upper bound rotation

angles for each value of Iq⃗2 . Each step of this algorithm has the constant time complexity.

Thus the global complexity of this algorithm is also O(1).

3.4.3 Incremental computing lower and upper bounds of rotation an-

gles

In general, the corresponding point sets contain more than two points. Therefore, in

this section, we extend our algorithm in Section 3.4.2 to two sets of corresponding point

pairs, A and B, each of them having l points where l > 2.

To simplify the notation, we denote by ARA(p⃗i, q⃗i) = (αi inf , αi sup) the pair of angles

that gives the lower and the upper bounds of admissible rotation angles for the pair of

points (p⃗i, q⃗i). Note that αi inf , αi sup are hinge angles. ARA(An, Bn) denotes the two

most restrictive angles for all points i such as i ≤ n. We recursively de�ne it by

ARA(An, Bn) = ARA(An−1, Bn−1)
∩
ARA(p⃗n, q⃗n).
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Figure 3.4: Running of the incremental algorithm.

A new algorithm handles all points incrementally. This algorithm is divided into two

parts. The �rst part is to initialize the algorithm by computing ARA(p⃗2, q⃗2). The second

part computes ARA(Ai, Bi) for i = l. Note that ARA(p⃗1, q⃗1) cannot be computed

because p⃗1 and q⃗1 are the centers of the rotation.

The time complexity of this algorithm is O(l). As explained in Section 3.4.2, the function

giving a pair of lower and upper bound rotation angles from a pair of points is realized

in a constant time O(1). Moreover, as explained in Section 3, we can compare two hinge

angles in a constant time O(1). Therefore, the computation of this algorithm for l points

takes the time complexity of l × (O(1) +O(1)) = O(l) as a whole.

Figure 3.4 gives an example of the incremental algorithm for two sets of three points.

Given input data of the algorithm as shown in Figure 3.4 (A), we �rst obtain the result

of the translation described in Section 3.4.1 as illustrated in (B). We then compare, for

each pair of points (p⃗i, q⃗i) with i ≥ 2, the distance of p⃗i from the origin with that of each

corner from H (q⃗i) to deduce the corresponding hinge angle as explained in Section 3.4.2.

Finally, we obtain (D) that shows the intersection of all ARA(p⃗i, q⃗i) obtained in (C).
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Figure 3.5: Randomly generated points and their corresponding rotated points.
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Figure 3.6: Result of our algorithm applied on the sets of points in Figure 3.5 .

3.5 Experimental Evaluation using Synthetic Data

We evaluated our algorithm using synthetic data and veri�ed the quality of obtained

admissible rotation angles. To test our algorithm, we need two sets of points. We

randomly generated the set F of 100 �oating points in a 200× 200 square. The �rst set

I is obtained by discretizing F . The second set I ′ is obtained by applying the DER with

angle θ = 50◦ to the �rst set I (Figure 3.5). We assumed that the point correspondences

across the two sets I and I ′ are known.

Figure 3.6 shows the hinge angles obtained by our algorithm. The green and the red
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curves give the lower and the upper bound rotation angles for each pair of point in

correspondence. We can see that lower bound rotation angles are always lower than θ

and that upper bound rotation angles are greater than θ. The blue and purple lines give

the lower and the upper bound rotation angles for points with the lower IDs than the

point of interest. As we can see, after only ten pairs of points, the range of admissible

rotation angles becomes less than 0.1◦ while the range is reduced to 0.02◦ after twenty

pairs of points. Then the precision increases slowly. This shows that the precisions of

admissible rotation angles acquired after twenty pairs of points are not signi�cant in this

particular case.

Figure 3.6 also indicates that most pairs of points give the admissible rotation angle

range smaller than 1◦ (for example, pair #39). Pair #34 and pair #66, however, give a

range greater than 4◦. In fact, the maximum range for a pair of points is directly related

to the distance between the center of rotation and the pair of points. We denote by d

the distance between the rotation center and the pair of points. Then, the maximum

di�erence between the lower and the upper bound rotation angles is sin−1
√
2
d . For the

pair #34, d =
√
173; thus the maximum range is approximately 6.1◦. For the pair #39,

d =
√
16505 and thus the maximum range is approximately 0.63◦. This is consistent

with our experimental result.

3.6 Discussion on practical application to digital images

In the previous section, we start with grid points in the discrete plane. In other words,

all coordinates of the points are integers. But in reality, points in the Euclidean space

are not represented by integers but real numbers. Thus we start here with the set of

�oating points to see how our algorithm works. Then we test our algorithm with real

data acquired by a digital camera.

3.6.1 Synthetic data

To test our algorithm using synthetic data more similar to real data, we applied the

Euclidean rotation with angle θ = 50◦ directly to the set F that is used in Section 3.5.

Then we discretized the rotated image to obtain the second set I ′′. To the two sets I

and I ′′, we applied our algorithm. We note that the set I comes from Section 3.5.

Figure 3.7 shows the hinge angles obtained. Because we started with the set of �oating

points, we observe some errors in bounding admissible rotation angles. In fact, we see

that some pairs of points, the pairs #64 and #73 for instance, do not contain θ.
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Figure 3.7: Result of our algorithm applied on a set of �oating points.

Figure 3.8 (left) explains how errors arise in rotating �oating points. Let assume that

the point q⃗1 is obtained after the Euclidean rotation of the �oating point p⃗1 with angle

γ. Let p⃗2 and q⃗2 denote the discretization of p⃗1 and q⃗1. If we apply our algorithm to

the pair of points {p⃗2, q⃗2}, we obtain ARA(p⃗2, q⃗2) = (αinf , αsup). In this case, γ does

not belong to the interval [αinf , αsup] (Figure 3.8 (right)). We see that this is caused

by discretization of the �oating points. We can give a bound for this error. In fact,

this bound directly depends on the distance between the rotation center and the pair of

points. If we denote by d this distance, the maximum error is equal to sin−1
√
2

2d . Note

that the pair of points {p⃗3, q⃗3} and the angle ρ bring the same problem.

To avoid this problem, we take the example of modifying our algorithm as follows. We

keep all the pairs of bound rotation angles determined by all pairs of points. After sorting

all lower and upper bound rotation angles into two lists Linf ,Lsup, we remove all hinge

angles αinf from Linf such that for ∃αsup ∈ Lsup, αinf > αsup. We also remove all hinge

angles αsup from Lsup such that for ∃αinf ∈ Linf , αsup < αinf .

With this procedure, we can guarantee that the lower bound hinge angle is smaller than

the rotation angle applied to the points and that the upper bound hinge angle is larger

than the rotation angle. The complexity O(n log n) is required in sorting the remaining

hinge angle pairs, which does not increase the computational cost of the algorithm as a

whole.

Another way to avoid the problem is to compute the smallest distance d of all the points

from the rotation center and then compute a Pythagorean angle θ satisfying θ > sin−1
√
2

2d .

We then add (subtract) θ to the upper (lower) bound rotation angle obtained by our

algorithm in Section 3.4. As a result we obtain the upper and the lower bound rotation

angles that de�ne the interval accurately including the true rotation angle. Thanks to
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Figure 3.8: Examples of errors for computing lower and upper bounds of rotation
angles introduced by rotation of �oating points.

Theorem 3.7, the addition of a Pythagorean angle does not change the nature of the

upper (lower) bound rotation angle.

Both methods return a valid ARA. It is preferable to use the second method when there

are a few pairs of points because it does not remove any hinge angles. The �rst method

is preferable when data contains many pairs of points in correspondence because the

obtained ARA is more restrictive than the ARA obtained by the second method.

3.6.2 Real data

We applied our algorithm to see its practical usefulness. We used a turntable that is

rotated with respect to the vertical axis with respect to a digital image plane. The

precision of rotations in control is 10−3 degrees.

We put a toy block on the turntable and then took its image using a standard digital

camera where the camera was �xed so that its optical axis is parallel with the rotation

axis (Figure 3.9(a)). Next we rotated the turntable with the angle of 44.99◦ and then

took another image of the toy block by the �xed camera (Figure 3.9(b)).

We manually selected �ve points in the �rst image and their corresponding points in the

second image. Then we applied our algorithm to the �ve pairs of corresponding points.

Our algorithm might return the empty result (Figure 3.9(c)). This is because no inter-

section between C (p⃗i) and H (q⃗i) was found for all i = 1, 2, . . . , 5.

In the case of real data, we cannot always guarantee to detect correct corresponding pairs

of points even manually. This indicates that a problem di�erent from the discretization

problem (see Section 3.6.1) arises4. Namely the maximum di�erence of distances from the

4We assume here that we are to �nd ARA from given correspondences.
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(a) (b)

(c) (d)

Figure 3.9: Result of our algorithm applied on real data.

rotation center between two points in correspondence can become greater than
√
2. This

is illustrated in Figure 3.10 where points p⃗ and q⃗ are in correspondence and ϵd = |dp⃗−dq⃗|
is greater than

√
2 where dp⃗, dq⃗ are respectively the distances from p⃗, q⃗ to the origin. We

see that no intersection exists between the circle C (p⃗) going through p⃗ and H (q⃗).

To avoid this problem on corresponding points, we can change the resolution of the

images. Namely, we degrade the image resolution until we �nd an intersection between

C (p⃗) and H (q⃗)5. Because of the change in image resolution, we cannot accept the

obtained hinge angles as they are. Instead, we add (subtract) a Pythagorean angle θ to

(from) the obtained upper (lower) hinge angle. Let assume that dp⃗ < dq⃗ and that H (q⃗)

is de�ned for the image whose resolution is degraded with 2−n from the original one.

Then we have to choose θ satisfying θ > n
√
2

2dp
. As mentioned in Section 3.6.1, thanks

to Theorem 3.7, the addition of a Pythagorean angle does not change the nature of the

upper (lower) bound rotation angle.

Figure 3.9 (d) shows the results obtained by the modi�cation above to the same data.

We can see that the real rotation angle (44.99◦) is included in the ARA obtained by our

algorithm with this modi�cation. Accordingly, we can conclude that our modi�cation is

e�ective.
5There are other criteria for �nding a reasonable image resolution. For example, Brimkov presents

criteria of faithfully digitization for continuous objects in [22].
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Figure 3.10: Problem of corresponding points with real data.

3.7 Conclusion

In this chapter, we have presented a new method to use rotation in discrete space.

Because rotations are mathematically de�ned for the continuous space, it is necessary to

develop new operational tools for such discrete rotations.

Our problem was from two digital images to �nd all possible rotation angles to rotate

the �rst image into the second. Namely, to �nd the admissible rotation angles between

two digital images. Since we need to have only exact computation without any approx-

imation, we decide to adopt hinge angles, which allow us rotations using only integer

computation. By using their properties, we have proposed a method for incrementally

computing the lower/upper bound rotation angles from a Pythagorean angle for a set of

discrete points. Based on this method, we have also proposed a linear algorithm for �nd-

ing from two digital images the lower and the upper bound rotation angles representing

the admissible rotation angles between them.

In addition, we have shown with experiments that our algorithm is e�cient with synthetic

data and gives consistent results. Then we also have done some experiments to real data.

Results given by our algorithm were not consistent because of the loss of correct point

correspondences in our input. We then explained why these problems appear and gave

necessary modi�cations to obtain consistent results. These modi�cations did not increase

the time complexity while keeping the integer computation.

The range size of ARA can be considered as the unreliability of the point correspondence.

In other words, larger the range of ARA between two points, less is the reliability of their

point correspondence. Therefore, it may be interesting if we can propose a new method

for evaluating "good" point correspondence from a given pair of digital images by using

our results.



Chapter 4 3D Rotations in discrete space using hinge angles 46

In this paper we always assume that rotations centers are on integer points. But with

real data it is not always the case. One of our future work will be to adapt the presented

method to such rotations. In this purpose, studies on digital discs whose centers are not

only on integer points [3, 23, 24] would help.



Chapter 4

3D Rotations in discrete space using

hinge angles

4.1 Introduction

Rotations in the 3D space are required in many applications for computer imagery,

such as image processing [10], computer vision [9, 25] and computer graphics [8]. A

rotation in the 3D Euclidean space can be in general represented in two di�erent typical

ways. One way is to represent a rotation as a combination of three particular rotations

around the three axes of the coordinate system [5]. The other way is to represent a

rotation by a rotation axis together with an angle around the axis [9, 25]. Even if the

representations of a rotation are di�erent, computed rotation results are the same as far

as the space is continuous. However, this is not the case for the discrete space. Namely,

depending on the rotation representation, the computed rotation result can change in

the discrete space [2]. As this is the case of 2D rotations, computing a 3D rotation once

in the discrete space brings displacement from in the continuous space; computing 3D

rotations many times causes di�culty in analyzing inherited displacements during the

computation. Accordingly, representing a 3D rotation by a rotation axis together with

an angle around the axis is more preferable in the 3D discrete space. Besides, it is known

that such axis-angle representation is useful for 3D rotation estimation from given image

sets, which is one of the important problems encountered in computer vision [9, 25].

This chapter presents a study of the rotation in the 3D discrete space. Since we admit

only integer computations, we assume that our rotation center is a grid point such as the

origin, and that a rotation axis has integer coordinates. In the 2D case, hinge angles are

known to be corresponding to the discontinuity caused by discretization of the rotation

in the continuous plane as explained in Chapter 3 and in [4, 26]. Intuitively, hinge

47
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angles determine a transfer of a grid point from a pixel to its adjacent pixel during

the rotation. In other words, two rotations with nearby angles transform the same

grid point to two adjacent pixels because discrete rotations around a given center are

locally continuous with regard to the angle. Hinge angles are their discontinuity angles.

Computing hinge angles using integers alone allows us to compute 2D discrete rotations

without any approximation errors, which designs the 2D discrete rotation. Extending

these to the 3D case, we design a 3D discrete rotation. In the 3D case, however, depending

on the rotational axis, we have a variety of transitions of a grid point across voxels. How

to capture these transitions systematically is a big issue.

In this chapter, we �rst de�ne hinge angles for 3D rotations so that they determine a

transit of a grid point from a voxel to its adjacent voxel. To compute the hinge angles for

3D rotations, we introduce a notion, called "multi-grids", that is given by the intersection

between a plane normal to the rotation axis and the half-grids that mark the boundary

between adjacent voxels. The rational multi-grids, which are a subset of multi-grids,

allow computations of hinge angles using only rational numbers. Using rational multi-

grids, we show that, as in 2D, it is possible to only use integer during computation and

to have an integer representation of hinge angles. Then, we give a method to sort all

the possible hinge angles in concern to design a 3D discrete rotation. We also propose a

method to obtain from a pair of 3D digital images in correspondence a set of 3D rotations,

each of them transforming the �rst digital image into the second one. Note that in a

discrete space, there are sets of rotations that give the same rotated image of a given

digital image. In this paper, we �x a rotation axis and look for all the possible rotation

angles from a given pair of 3D digital images. The set of all possible rotation angles

is called admissible rotation angles and its upper and lower bounds are represented by

hinge angles. This method is the extension of the method proposed in Chapter 3 for the

2D cases into 3D cases.

Di�erently from 2D discrete rotations [2, 4, 6], few attempts on 3D discrete rotations

have been reported [8, 10]. In particular, to our best knowledge, this is the �rst work on

3D discrete rotations using integer computations without digitization errors.

4.2 Hinge angles

Hinge angles for 2D rotations are de�ned to represent the discontinuities of rotations in

the discrete plane [4]. Hinge angles determine a transit of a grid point from a pixel to its

adjacent pixel during the rotation. To characterize those hinge angles, the 2D half-grid

plays an important role.
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Figure 4.1: All hinge angles in the �rst quadrant for the grid point p⃗ = (2, 1)⊤, such
that α1 ≈ −13.68◦, α2 ≈ 15.59◦, α3 ≈ 21.31◦, α4 ≈ 50.52◦. The hinge angle α5 is

obtained by symmetry such that α5 = π
2 − α1 ≈ 76.32◦

De�nition 4.1. The 2D half-grid is the set of lines in the plane, each of which is

represented by one of x = i+ 1
2 and y = i+ 1

2 where i ∈ Z.

In other words, the 2D half-grid represents the border between two adjacent pixels. From

the de�nition of the 2D half-grid, we de�ne the hinge angles in the plane.

De�nition 4.2. An angle α is called a hinge angle if at least one point in Z2 exists such

that its image by the Euclidean rotation with α around the origin is on the 2D half-grid.

Figure 4.1 illustrates all the hinge angles in the �rst quadrant for the grid point (2, 1)⊤.

Note that hinge angles in other quadrants are obtained by symmetry with respect to the

x-axis and/or y-axis from those in Figure 4.1.

To extend the de�nition of hinge angles into the 3D case, we �rst de�ne the half-grid in

the 3D space. Similarly to the 2D half-grid, the 3D half-grid de�nes the limit between

two adjacent voxels in the 3D discrete space.

De�nition 4.3. The 3D half-grid is the set of planes in the 3D space, each of which is

represented by one of x = i+ 1
2 , y = i+ 1

2 and z = i+ 1
2 where i ∈ Z.

Introducing the de�nition of the 3D half-grid allows the de�nition of hinge angles in

3D as a natural extension of hinge angles in 2D. As mentioned in the introduction, we

only consider here 3D rotations whose rotation axes have directional vectors with integer

coordinates and go through the origin. Hereafter, we call such an axis an integer-axis.

De�nition 4.4. An angle α is called a hinge angle if at least one point in Z3 exists

such that its image by the Euclidean rotation with α around an integer-axis is on the

half-grid.
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Similarly to the 2D case, for a grid point p⃗ in 3D, an angle α is a hinge angle if and only

if the discretized point of the rotation result of p⃗ with angle α+ ϵ becomes di�erent from

that with angle α− ϵ for any ϵ > 0.

Di�erently from the case of 2D rotations, we need not only a rotation angle but also

a rotation axis in order to specify a 3D rotation. This requires investigation of the

intersection between voxels and a plane determined by a given rotation axis because of a

variety of transitions of a grid point across voxels existing on the plane. To capture this

variety, we introduce the multi-grid in the next section, which allows us to study hinge

angles in the 3D rotation plane.

4.3 Multi-grids

In this section, we introduce a notion that is required to extend hinge angles from 2D

to 3D and thus required to perform discrete rotations in the 3D discrete space. As

explained in Section 4.2, hinge angles are strongly related to the half-grid both in 2D

and 3D. However, in the 3D cases, rotations of a point are always in its rotation plane

normal to the rotation axis and goes through the point. In fact, the 3D half-grid is not

well adapted to describe rotations for a grid point. We thus consider the intersection

between a rotation plane and the 3D half-grid, which is a planar grid consisting of three

sets of parallel lines, called a multi-grid instead of the half-grid.

In this section, we give a formal de�nition of multi-grids. Then we show how to obtain

the line equations of a multi-grid from a grid point and a rotation axis. Then, we restrict

multi-grids to the rational multi-grids that form a set of multi-grids useful to perform

discrete rotations in the 3D discrete space. Finally we present some useful properties of

rational multi-grids.

4.3.1 De�nition of multi-grids

When a rotation plane in 3D is given, the intersection between the plane and the half-

grid in the 3D space is obtained as illustrated in Figure 4.2(a). Figure 4.2(b) shows that

the intersection consists of three di�erent sets of parallel lines, except for cases where the

normal of the rotation plane is parallel to one of the axes, de�ning the coordinate system

of the 3D space. As such exceptional cases provide only two di�erent sets of parallel

lines, which are identical with those of the 2D half-grid, we do not take into account

those cases here. In other words, in such cases, 3D discrete rotations become identical

with 2D discrete rotations. We call the three di�erent sets of parallel lines a multi-grid,
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(a) (b)

Figure 4.2: The 3D half-grid cut by a plane (a), and its multi-grid (b).

Figure 4.3: Parallel lines of a set LA,p⃗
i and geometric interpretation of their parameters

which is used for characterizing hinge angles for 3D discrete rotations instead of the 2D

half-grid for 2D discrete rotations.

In a multi-grid, the interval between parallel lines having the same directional vector is

regular. Normalizing the interval allows us to represent each set of parallel lines having

the same normal vector (ai, bi)⊤ as

Li = {(x, y)⊤ ∈ R2|aix+ biy + ci + k = 0, a2i + b2i ̸= 0, k ∈ Z, ai, bi, ci ∈ R} (4.1)

where i = 1, 2, 3. The integer parameter k denotes the index number of each parallel

line. Figure 4.3 gives a geometrical explanation of the parameters of Li. For example, if

a point (x, y)⊤ is on one of the parallel lines of Li, (x− k
ai
, y)⊤ is on the k-th next line,

providing that ai ̸= 0. Now we can give a formal de�nition of a multi-grid.

De�nition 4.5. Let Li for i = 1, 2, 3 be each set of parallel lines induced from a given

rotation plane and the 3D half-grid. Then the multi-grid M is the union of Li: M =

∪3i=1Li.

Hereafter, we denote by LA,p⃗i the set of parallel lines de�ned by a rotation plane with

a normal vector A = (ax, ay, az)
⊤ going through point p⃗ = (px, py, pz)

⊤. By using the

same idea, we denote byMA,p⃗ the multi-grid de�ned as the union ofMA,p⃗ = ∪3i=1L
A,p⃗
i
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Figure 4.4: The �ve di�erent shapes of convexels, which are constructed as the inter-
sections between a rotation plane and voxels [1].

The multi-grid in the rotation plane forms various closed convex polygons surrounded

by lines, that we call convexels. Depending on the rotation plane, we have a variety of

shapes of convexels in this paper. The convexel in a multi-grid is the counterpart of the

squared pixel de�ned in the 2D half-grid. The shapes of convexels are investigated in [1]

under the context of the intersection of a voxel and a plane, and the number of vertices

of a convexel can be 3, 4, 5 or 6 as illustrated in Figure 4.4.

Remark 4.6. On anyMA,p⃗, the convexel containing p⃗ always has a symmetric shape, and

p⃗ is at the center of the convexel. Moreover, the convexel that contains p⃗ is necessarily

of the type (b),(d) or (e) according to Figure 4.4.

We remark that when the normal of the rotation plane is parallel with one of the axes

de�ning the coordinate system of the 3D space, the notion of convexels coincides with

the notion of pixels.

4.3.2 Multi-grid line equations

To simplify the derivation of line equations for each LA,p⃗i , we introduce a new base Bi

where lines in LA,p⃗i are parallel with the x-axis. In the following, we derive the equations

for LA,p⃗1 . Note that the same discussion can be applied to LA,p⃗2 and LA,p⃗3 .

Let A = (ax, ay, az)
⊤ and p⃗ = (px, py, pz)

⊤ in the standard orthonormal base B and

the plane P with normal vector A that goes through p⃗. Assuming lines in LA,p⃗1 come

from the intersection between P and the planes of the 3D half-grid that are parallel to

yz-plane, denoted by x = k where k ∈ Z, we obtain the directional vector v⃗1 of lines in

LA,p⃗1 as v⃗1 = A ∧ e⃗1 where e⃗1 = (1, 0, 0)⊤. We set v⃗2 = v⃗1∧A
∥A∥ , which is orthogonal to v⃗1.

Note that both v⃗1 and v⃗2 are orthogonal with respect to A.
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We introduce a new base B1 in such a way that v⃗1 and v⃗2 respectively become u⃗1 = (1, 0)⊤

and u⃗2 = (0, 1)⊤ in P. The transformation from B to B1 is realized by

PBB1 =

 0 az
a2y+a

2
z

−ay
a2y+a

2
z

−ψ ψaxay
a2y+a

2
z

ψaxaz
a2y+a

2
z

 , (4.2)

where ψ = 1√
a2x+a

2
y+a

2
z

. We remark that A is transformed to (0, 0)⊤ by PBB1 ; the rotation

center in P thus becomes the origin of B1.

We remark that if A is collinear with one of the axes de�ning the coordinate system

of the 3D space, PBBi degenerates: the rank of MBBi becomes 1. In such cases, 3D

rotations become identical with 2D rotations. However, in Section 4.3.1, we explained

that we do not consider the cases where the vector A is collinear with an axis de�ning

the coordinate system in concern, so that lines in LA,p⃗i are not orthogonal to those in

LA,p⃗j where i ̸= j. Thus, we do not take these particular cases in consideration.

Applying PBB1 to the plane x = k for k ∈ Z induces a line inMA,p⃗
1 whose equation is

ψ(a2y + a2z)y + k −A.p⃗ψ2ax = 0. (4.3)

Changing the roles between LA,p⃗1 and LA,p⃗2 (resp, LA,p⃗3 .) and between e⃗1 and e⃗2 =

(0, 1, 0)⊤ (resp, e⃗3 = (0, 0, 1)⊤.), we obtain the transformation matrices PBBi for i = 2, 3

such that

PBB2 =

 −az
a2y+a

2
z

0 ax
a2y+a

2
z

ψaxay
a2y+a

2
z
−ψ ψayaz

a2y+a
2
z

 , (4.4)

PBB3 =

 ay
a2y+a

2
z

−ax
a2y+a

2
z

0

ψaxaz
a2y+a

2
z

ψayaz
a2y+a

2
z
−ψ

 , (4.5)

and the line equations for LA,p⃗2 and LA,p⃗3 such that:

ψ(a2x + a2z)y + k −A.p⃗ψ2ay = 0, (4.6)

ψ(a2x + a2y)y + k −A.p⃗ψ2az = 0, (4.7)

where k ∈ Z.

We note that (4.3), (4.6) and (4.7) correspond to the equation of (4.1) for i = 1, 2, 3

respectively. All ai of (4.1) for i = 1, 2, 3 are null since each Bi is set such that the lines

of LA,p⃗i are parallel to the x-axis. We also remark that every bi of (4.1) depends only on

A, but not on p⃗. Indeed, ci is the only parameter depending on A and p⃗. This implies

that all the multi-grids generated from the same normal vector A with di�erent point
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Figure 4.5: Two multi-grids generated by a rotation axis but with two di�erent points
p⃗1, p⃗2 one of which is obtained by a translation of ±(p⃗1 − p⃗2) from the other.

p⃗ are similar; more precisely, they are obtained simply by translations as illustrated in

Figure 4.5.

4.3.3 Rational multi-grids

In Section 4.3.2, we obtained (4.3), (4.6) and (4.7) for the lines in the multi-gridMA,p⃗.

In general, parameters of these equations belong to R. In order to use only integers

during computation, we need these parameters to belong to Q.

If all elements of PBBi belong to Q, then all the parameters of (4.3),(4.6) and (4.7)

become rational as well. In order to obtain rational parameters in PBBi we set A to be

a Pythagorean vector; a vector v⃗ = (i1, i2 . . . , in)
⊤, i1, i2, . . . , in ∈ Z, is a Pythagorean

vector if ∥v⃗∥ = λ where λ ∈ Z. Note that a rotation axis whose directional vector is

such a Pythagorean vector is called a Pythagorean axis. This assumption ensures that

ψ becomes a rational value. We call a multi-grid de�ned from a Pythagorean axis a

rational multi-grid. Note also, that every axis can be approximated by a Pythagorean

axis. A study on Pythagorean axis is presented in Chapter 6.

The rational multi-grids presented in this section are a subset of the multi-grid. In

addition of the possibility to use only integers during the computations, rational multi-

grids also o�er some useful properties that are valid only for rational multi-grids.

4.3.4 Properties of rational multi-grids

In the case of multi-grids that are not rational, there is an in�nity of di�erent convexels.

However, for rational multi-grids, the number of convexels is �nite and depend only on

the coordinates of A that is the normal vector of rotation plane. Here, we consider any

grid point p⃗ forMA,p⃗. A prime Pythagorean axis is a Pythagorean axis A = (ax, ay, az)
⊤

such that gcd(ax, ay, az) = 1. We de�ne the arithmetical rest of a voxel v⃗ as follow:

R(v⃗) = axvx + ayvy + azvz + b. (4.8)
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Theorem 4.7. Let MA,p⃗ be a rational multi-grid associated to the prime Pythagorean

vector A = (ax, ay, az)
⊤. The number of di�erent convexels in MA,p⃗ for any p⃗ is either

|ax|+ |ay|+ |az| or |ax|+ |ay|+ |az|+ 1.

Proof. 7. Let P be a plane of equation axx+ ayy + azz + b = 0. We know [1] that the

voxel around the grid point v⃗ = (vx, vy, vz)
⊤ is intersected by P if and only if:

− |ax|+ |ay|+ |az|
2

≤ R(v⃗) ≤ |ax|+ |ay|+ |az|
2

. (4.9)

Since all values in (4.7) are integers , we can deduce that for each v⃗, R(v⃗) is an integer.

Thus, if |ax| + |ay| + |az| is even, we can conclude that there are |ax| + |ay| + |az| + 1

di�erent values for the arithmetical rest R(v⃗).

If |ax|+ |ay|+ |az| is odd then, (4.9) becomes

− |ax|+ |ay|+ |az|
2

< R(v⃗) < |ax|+ |ay|+ |az|
2

(4.10)

and the number of di�erent values admissible for R(v⃗) is ax + ay + az.

Note that, if A is a Pythagorean vector but not prime, the number of di�erent convexels

will be either |ax|+|ay |+|az |
gcd(ax,ay ,az)

or |ax|+|ay |+|az |
gcd(ax,ay ,az)

+ 1.

Such a repetition of convexels in MA,p⃗ is shown in the next theorem, which is easily

derived from [27] given in the context of discrete planar surfaces.

Theorem 4.8. Let MA,p⃗ be a rational multi-grid associated to the prime Pythagorean

vector A = (ax, ay, az)
⊤ and a grid point p⃗. There are three integers such that Ax =

L
ax
, Ay = L

ay
, Az = L

az
where L = lcm(ax, ay, az) such that for any grid point q⃗ =

(qx, qy, qz)
⊤, we have a quadruple of grid points {q⃗1 = q⃗, q⃗2 = (qx+Ax, qy−Ay, qz)⊤, q⃗3 =

(qx−Ax, qy, qz+Az)⊤, q⃗4 = (qx, qy+Ay, qz−Az)⊤} satisfying R(q⃗1) = R(q⃗2) = R(q⃗3) =
R(q⃗4).

This indicates that the triple of integers Ax, Ay, Az describes the frequency of the repeti-

tion of convexels in a rational multi-gridMA,p⃗. Let P be the support plane ofMA,p⃗. For

each grid point v⃗ = (vx, vy, vz) intersected by P, the grid point v⃗′ obtained by translation
of v by a linear combination of two vectors (Ax, Ay, 0)⊤ and (Ax, 0, Az)

⊤ has the same

formed convexel as that of v⃗ in P.

Another consequence of Theorem 4.8, illustrated in Figure 4.6, is the existence of triangles

that tile the multi-grid. Indeed, let q⃗1 = (qx, qy, qz) be a grid point and q⃗2 = (qx+Ax, qy+

Ay, qz), q⃗3 = (qx +Ax, qy, qz −Az) and q⃗4 = (qx + 2Ax, qy +Ay, qz −Az) be three points
resulting of a translation of q⃗. The two triangles of vertex {q⃗1, q⃗2, q⃗3} and {q⃗2, q⃗3, q⃗4}



Chapter 4 3D Rotations in discrete space using hinge angles 56

Figure 4.6: A quadruple of grid points {q⃗1 = q⃗, q⃗2 = (qx + Ax, qy + Ay, qz)
⊤, q⃗3 =

(qx+Ax, qy, qz−Az)
⊤, q⃗4 = (qx+2Ax, qy+Ay, qz−Az)

⊤} forms two types of triangles,
α and β tiled in a multigrid.

contain the same set of convexels and are mirror images. Note that triangles formed by

four triangles, three α and one β or one α and three β, also tile the plane and contain

all convexels. If Ax, Ay, Az are chosen to be prime, they describe the smallest triangle

that tilesMA,p⃗.

4.4 Hinge angles characterized by a multi-grid

The goal of this section is to show the relation between multi-grids and hinge angles, and

then to show how to obtain the unique representation of an integer quintuplet for a 3D

hinge angle, namely an injective map from hinge angles to quintuplets. In 2D, any hinge

angle can be uniquely represented by a triple of integers as shown in Section 3.2.1. In

order to ensure that the representation is unique, some properties on the multi-grid are

required. For 3D hinge angles, similar properties on multi-grid are required. Therefore,

we �rst show some properties on the 3D half-grid, then we represent 3D hinge angles

using �ve integers and then explain how to decode them to obtain their hinge angles.

In Section 4.2, we de�ne the 3D hinge angles in the framework of the 3D half-grid.

As manipulation of 3D hinge angles is more convenient in the framework of multi-grids

and rational multi-grids, we propose an alternative de�nition of 3D hinge angles in the

following

Proposition 4.9. Let p⃗ be a grid point and p⃗′ be the result of the rotation of p⃗ by an

angle α around an integer-axis. If α is a hinge angle, then p⃗′ is on the multi-grid.
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Figure 4.7: the two impossible cases of intersection between a circle centered on a
grid point and a rational multi-grid.

4.4.1 Hinge angles and rational multi-grids

In 2D, there is a property on hinge angles ensuring that the locus of rotation of a grid

point cannot contain the intersection of two lines belonging to the half-grid [4]. In this

section, we show that a similar property for 3D hinge angles in the rotation plane holds

if the rotation axis is an integer axis. In multi-grids, the locus of rotation of a grid point

in a rotation plane cannot contain the intersection of two or three lines of the multi-grid

as illustrated in Figure 4.7(a) or (b) presented as Lemma 4.10 in the following.

Lemma 4.10. Let MA,p⃗ be a multi-grid where A ∈ Z3 and p⃗ ∈ Z3. Then, the locus of

the rotation of p⃗ on the rotation plan P does not go through any vertex of the convexels

onMA,p⃗.

Proof. 8. The equation of the rotation plane P ofMA,p⃗ is axx+ ayy + azz −A.p⃗ = 0.

Let p⃗′ = (p′x, p
′
y, p

′
z)

⊤ be a point which belongs to the locus of the rotation of p⃗ in P.
Let us assume that p⃗′ is also a vertex of a convexel of MA,p⃗, so that it belongs to two

planes of the 3D half-grid. Thus we can set, without loss of generality, that p′x = kx +
1
2

and p′y = ky +
1
2 where kx, ky ∈ Z, and then p⃗′ = (kx +

1
2 , ky +

1
2 , p

′
z)

⊤.

The locus of the rotation of p⃗ is the intersection between P and the sphere S: x2 + y2 +

z2 − (p2x + p2y + p2z) = 0. Thus, by the assumption that p⃗′ belongs to P and S, we have

ax
(
kx +

1

2

)
+ ay

(
ky +

1

2

)
+ azp

′
z −A.p⃗ = 0, (4.11)(

kx +
1

2

)2
+
(
ky +

1

2

)2
+ p′2z − (p2x + p2y + p2z) = 0. (4.12)

From (4.11) we see that p′z must be a rational number, so that there is a pair of integers

λ1, λ2 such that p′z = λ1
λ2

and gcd(λ1, λ2) = 1. From (4.12) we see that p′2z + 1
2 must be
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an integer. Thus we have

p′2z =
λ21
λ22

= k +
1

2
, (4.13)

where k, λ1, λ2 ∈ Z. Since gcd(λ1, λ2) = 1 and 2λ21 = (2k + 1)λ22, λ2 must be even.

Setting λ2 = 2λ′2 where λ′2 ∈ Z, we then obtain 2λ21 = 4(2k + 1)λ′22 and deduce that λ1

must be also even, which contradicts the assumption that gcd(λ1, λ2) = 1. Therefore we

can conclude that there is not such a point p⃗′.

This lemma shows that two adjacent convexels, whose transition of p⃗ during its rotation

is done between them, always share a convexel edge. In other words, the rotation locus

of p⃗ passes through a sequence of voxels such that any successive voxels are connected

by their common face. Thus, Lemma 4.10 shows that cases (a) and (b) illustrated in

Figure 4.7 cannot happen in a rational multi-grid. Note that the above proof only needs

the assumption that A has integer coordinates.

Note that in 2D, there is also another property on hinge angles ensuring that the locus of

rotation of a grid point cannot intersect twice on the same line of the half-grid without

intersecting another line of the half-grid between the two intersections. In 3D, this

property does not hold with rational multi-grids. More details will be discussed in

Section 5.2.2.

4.4.2 Quintuplet integer representation of hinge angles

A hinge angle in a given rotation plane is represented by a quintuplet of integers (px, py, pz, i, k)

given by α(px, py, pz, i, k). The �rst three integers px, py, pz represent, in the 3D basis

B, the coordinates of p⃗. The fourth integer i indicates the index number for the set

LA,p⃗i , i = 1, 2, 3, where the hinge angle α is de�ned. The last integer k represents the in-

dex number of the line in LA,p⃗i . Therefore, a quintuplet of integers keeps the coordinates

of p⃗ and the information required for obtaining the coordinates of the arriving point q⃗

after the rotation of p⃗ by α.

From these �ve integers, we can obtain, in the basis Bi whose projection matrix PBBi is

given by (4.2), (4.4) and (4.5), the coordinates (Px, Py)⊤ and (Qx, Qy)
⊤ corresponding to

p⃗ and q⃗, as represented in Figure 4.8. The coordinates Px and Py, of p⃗ in Bi, are obtained

by applying PBBi to the coordinates of p⃗ in B. Note that Px and Py are rationals. The

coordinate Qy is obtained from one of (4.3), (4.6) and (4.7) depending on the values of i

and k. All the values in (4.3), (4.6) and (4.7) are rationals, and thus Qy is also rational.

Since q⃗ belongs to the locus of the rotation of p⃗, we have Q2
x +Q2

y = P 2
x + P 2

y . We then

notice that Qx is not a rational number. However, since Px, Py and Qy are rational, all

computations involving Qx can be done using only integer computations.
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Figure 4.8: A hinge angle α for a point p⃗ in a rational multi-grid.

In general, Qx can take two values which de�ne two points. To discriminate two di�erent

hinge angles corresponding to these two points by the integer quintuplets, we add the

positive sign to the fourth integer for the greater Qx and the negative sign for another

value of Qx. If Qx = 0, then the two points merge into one. This particular case where

the locus of the rotation of p⃗ is tangent with the k-th line ofMA,p⃗
i de�ne no hinge angle

since there is no transition of convexel. Hereafter, the representation of hinge angles by

integer quintuplets will be denoted by α(px, py, pz,±i, k)

Note that according to Lemma 4.10 we know that any hinge angle cannot rotate a grid

point to the intersection of more than one lines of a multi-grid. Therefore, we have the

following theorem:

Theorem 4.11. Let αp(px, py, pz, ip, kp) and αq(qx, qy, qz, iq, kq) be two hinge angles with

their integer quintuplet representations. αp = αq if and only if px = qx, py = qy, pz = qz,

ip = iq and kp = kq.

Theorem 4.11 is rephrased as: two di�erent integer quintuplets cannot represent the

same hinge angle.

We remark that in [4], hinge angles for 2D discrete rotations are represented with a

triple of integers that represents the 2D coordinates of the point and the index number

of the line that is intersected by the locus of the point's rotation. There is no integer

that decides whether the intersected line is parallel to the x-axis or the y-axis. To

di�erentiate both cases, the last integer of the triple is positive if the line is parallel to

x-axis or otherwise, it is negative.

4.5 3D discrete rotations around a Pythagorean axis

In this section, we develop a 3D discrete rotation based on hinge angles. This rotation is

the extension to the 3D space of the 2D discrete rotation given in Section 3.3. In order to

obtain the complexity of the algorithm described in this section, we need to enumerate all
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the hinge angles existing for an image to rotate. In the case of 2D hinge angles, the upper

bound of the number of di�erent hinge angles for an image is O(m3) wherem is the largest

side of the image [4, 26]; we will use a similar method for obtaining the upper bound of

hinge angles for a 3D image. Our algorithm, to be e�cient, needs to compare a pair of

hinge angles in constant time. Besides, in order to keep integer computations, we need

that the comparison is done using only integers. Note that the hinge angle comparison

in constant time is not trivial indeed due to our integer computation constraint. After

showing how to compare a pair of hinge angles in constant time with integer computation,

we will give the upper bound of the number of hinge angles for a 3D digital image and

then present a 3D discrete rotation algorithm for such a given image.

In Section 4.5 we assume that A is given to be a prime Pythagorean vector.

4.5.1 Comparing hinge angles with integer computations

From the integer representation of hinge angles we can obtain the sine and cosine of

a hinge angle α(px, py, pz, i, k) characterized in the base Bi by the points p⃗ that have

the coordinates (px, py, pz)⊤ in B and (Px, Py)
⊤ in Bi and q⃗ that have the coordinates

(Qx, Qy)
⊤ in Bi. Px, Py, Qx and Qy can be obtained from (px, py, pz, i, k) as explained

in Section 4.4.2. The following equations are then derived from Figure 4.8:

cosα =
PxQx + PyQy
P 2
x + P 2

y

, (4.14)

sinα =
PxQy − PyQx
P 2
x + P 2

y

, . (4.15)

We remark that if the multi-grid is a rational multi-grid, Px, Py, Qy and Q2
x are rational.

Thus it is possible to compare the sine and the cosine of two hinge angles using only

integer computations as follows.

Proposition 4.12. Let α1 and α2 be two hinge angles de�ned for A. Then it is possible

to decide if α1 > α2 using only integer computations.

Proof. 9. Let α1 = α(p1x, p1y, p1z, i1, k1) and α2 = α(p2x, p2y, p2z, i2, k2). Comparing

α1 and α2 is equivalent to comparing their sines and cosines which are given in (4.14) and

(4.15). First we compare the signs of both sine and cosine between α1 and α2. If the sines

and cosines of both angles have di�erent signs, then we can conclude whether α1 > α2

without other computation. Otherwise, without loss of generality, we can assume that

both α1 and α2 belong to [0, π2 ], so that cosαi ≥ 0 and sinαi ≥ 0 for both i = 1, 2. As

the method for comparing two sines is similar to the one for comparing two cosines, we

will only show the later one.
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If α1 is greater than α2, cosα2 − cosα1 > 0. Thus we have, from (4.14),

(P 2
1x + P 2

1y)(P2xQ2x + P2yQ2y) > (P 2
2x + P 2

2y)(P1xQ1x + P1yQ1y). (4.16)

For simplicity, let A1 = (P 2
1x + P 2

1y)P2xQ2x, B1 = (P 2
1x + P 2

1y)P2yQ2y, A2 = (P 2
2x +

P 2
2y)P1xQ1x and B2 = (P 2

2x + P 2
2y)P1yQ1y. Note that A2

1, B1, A
2
2, B2 ∈ Q. Now (4.16) is

rewritten as

A1 +B1 > A2 +B2. (4.17)

Squaring both sides of (4.17) since they are not negative, and moving rational values to

the left-hand side and the rest to the right-hand side, we obtain

A2
1 +B2

1 −A2
2 −B2

2 > 2A2B2 − 2A1B1. (4.18)

If the left-hand side and the right-hand side of (4.18) do not have the same sign, then we

can conclude whether α1 > α2 or α2 > α1. We can check the sign of both sides of (4.18)

with integer computations since the left-hand side contains only rational numbers and

the sign of the right side is the same as A2
2B

2
2 −A2

1B
2
1 which also contains only rational

numbers. If signs of both sides are the same, assuming that they are positives, we square

both sides of (4.18) to obtain

(A2
1 +B2

1 −A2
2 −B2

2)
2 − 4A2

1B
2
1 − 4A2

2B
2
2 > −8A1B1A2B2. (4.19)

If the sign of the left-hand side of (4.19) is positive, we can deduce that α2 > α1.

Otherwise, taking the square of each side gives us

[
(A2

1 +B2
1 −A2

2 −B2
2)

2 − 4A2
1B

2
1 − 4A2

2B
2
2

]2
< 64A2

1B
2
1A

2
2B

2
2 . (4.20)

We note that we can easily verify whether (4.20) is satis�ed with integer computation

alone. If (4.20) is true, α1 < α2; otherwise α2 < α1. The same logic can be applied to

the case where the signs of the both sides of (4.18) are negative.

Thanks to Proposition 4.10, a hinge angle cannot have two quintuplet integer represen-

tations. Thus we can conclude that the comparison of a pair of hinge angles α1, α2 is

always possible with integer computation if they have di�erent quintuplets.

Note that, if the comparison of two hinge angles is done using �oating numbers, only one

comparison is required. However, if we want to keep integer computations, then in the

worst case we have to check (4.18), (4.19) and (4.20). From Proposition 4.12, we now

have a guarantee of a constant number for each comparison. Then we conclude that the

comparison of a pair of hinge angles is done in constant time.
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The following proposition is required for our algorithm of 3D discrete rotation. In the

2D case, is it known that the comparison between a hinge angle and a Pythagorean angle

can also be done using only integers during its computation and in constant time. An

angle is a Pythagorean angle if its sine and cosine belong to Q [4]. In the 3D case, a

similar proposition will be still valid.

Note that the proof of Proposition 4.13 is similar to the proofs of Proposition 4.12 and

on comparison for a hinge angle and a Pythagorean angle in the plane presented in

Section 3.3.1.

Proposition 4.13. Let θ be a Pythagorean angle and α be a hinge angle de�ned for A.
Then it is possible to decide if α > θ in constant time with integer computations.

Proof. 10. Let α = α(px, py, pz, i, k) be an hinge angle and θ be a Pythagorean angle

associated to the Pythagorean triple (i1, i2, λ) such that cos θ = i1
λ and sin θ = i2

λ where

i1, i2, λ ∈ Z.

If α is greater than θ, cos θ − cosα > 0 thus we have from (4.14),

i1(P
2
x + P 2

y ) > λ(PxQx + PyQy). (4.21)

Using similar methods to those used for the proof of Proposition 4.12, we obtain the

equation:

(i1(P
2
x + P 2

y )− λPyQy)2 > λ2P 2
xQ

2
x. (4.22)

We note that we can easily verify whether (4.22) is satis�ed with integer computation

alone. If (4.22) is true, α < θ; otherwise θ < α.

4.5.2 Upper bound of the number of 3D hinge angles

In the 2D case, the upper bound of the number of hinge angles for a given image of size

m × m is known to be O(m3) [4]. This is obtained by computing the bound for the

furthest point from the origin in the image and multiplying this bound by the number

of points in the image. To compute the number of hinge angles in the 3D case, we will

use a similar method.

In the 3D case, we assume that an image of size m × m × m is given. The number

of hinge angles for a given point p⃗ depends on the distance between p⃗ and the axis of

rotation A. Therefore, we de�ne the distance function d(p⃗) that is the Euclidean distance
between A and p⃗. Then, the rotation of p⃗ around A intersects at most 3⌊d(p⃗)⌋ planes of
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Algorithm 4 Rotation of a 3D image around an integer-axis whose direction is A by a
Pythagorean angle θ.

Require: An image I, a vector A, a Pythagorean angle θ
Ensure: A rotated image I ′
1: for all points p⃗ in I do
2: Set T to be an empty list;
3: Compute the three generic equations (4.3), (4.6) and (4.7) for each MA,p⃗

i , i =
1, 2, 3;

4: for all lines inMA,p⃗
i , i = 1, 2, 3 do

5: Compute all hinge angles corresponding to p⃗ and the current line,
6: and add α(px, py, pz,±i, k) to the list T ;
7: end for

8: Sort all the hinge angles corresponding to p⃗ in T ;
9: Search in T the greatest hinge angle α which is smaller than θ;
10: Copy the voxel color from p⃗ in I to the rotated point q⃗ with α in I ′
11: end for

12: return I ′;

the half-grid and de�nes at most 6⌊d(p⃗)⌋ di�erent hinge angles. Because d(p⃗) ≤
√
3m,

the upper bound of the number of hinge angles for any point in the image is 6
√
3m.

Accordingly, we can conclude that the upper bound of the number of hinge angles for a

given image of size m×m×m is 6
√
3m4; thus O(m4).

4.5.3 3D discrete rotations induced by hinge angles

In this section, we explain how to design a discrete rotation of a 3D digital image using

hinge angles for a given Pythagorean axis of rotation. This method is the 3D extension

of the 2D discrete rotation described in Section 3.3.3. As input of such discrete rotation,

we have a digital image I of size m × m × m, a vector A, supposed to be a prime

Pythagorean vector, and an angle θ supposed to be Pythagorean. The assumption that

the rotation axis is a Pythagorean axis and the angle is a Pythagorean angle does not

restrict the �eld of possible rotations. Indeed, it is proved in [28] that the Pythagorean

vectors are dense on the 3D unit sphere and it is proved in [15] that any angle can be

approximated with a small di�erence ϵ > 0 by a Pythagorean angle. The output of our

algorithm is a rotated digital image I ′.

The rotation algorithm is described in Algorithm 4. For each point p⃗ = (px, py, pz)
⊤ in

the image I, the algorithm computes the corresponding multi-grid MA,p⃗ and searches

for each line k-th inMA,p⃗
i , i = 1, 2, 3, a pair of hinge angles α(px, py, pz,±i, k). Then we

stock and sort all hinge angles corresponding to p⃗ using Proposition 4.12. The algorithm

searches in the sorted list L the greatest hinge angle α which is smaller than θ using

Proposition 4.13. This operation can be done using only integer computations thanks
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to our assumption that our input angle θ is a Pythagorean angle. Finally the new point

after the rotation of p⃗ by α is generated in I ′.

The time complexity of this algorithm is O(m4 logm). The computation and the sorting

of all hinge angles for each point is done in O(m logm) operations because the compar-

ison between two hinge angles is done in constant time according to Proposition 4.12.

Searching the largest hinge angle α smaller than θ is done in O(logm) operations be-

cause the comparison between a hinge angle and a Pythagorean angle can be performed

in constant time according to Proposition 4.13. Therefore, the time complexity of this

algorithm is O(m4 logm) because we repeat m3 times the previous operations.

4.5.4 3D incremental discrete rotation

In this section, we present an incremental algorithm that performs a 3D discrete rotation.

In [4], the author describes a 2D incremental rotation that allows obtaining all possible

con�gurations of 2D discrete rotations for a given image. Similarly, 3D hinge angles on

rotation planes also allow us to design a 3D incremental discrete rotation. This algorithm

may help us to understand the con�gurations of 3D discrete rotations even thought we

do not see yet its practical uses.

For the incremental rotation algorithm, we consider the input data to be a digital image

I of size m×m×m and a given rotation axis.

The incremental algorithm consists in four main steps. The �rst step generates a table of

m×m×m pointers that refers to every voxel of I. Then, for each point in I it computes

and sorts all hinge angles associated to this point, and stores them into a list. The third

step merges the lists of all points into the �nal list and then sorts all the hinge angles in

the list. The �nal step browses in ascending order the list containing all the hinge angles

and displaces the voxel corresponding to the current hinge angle to its neighborhood.

Firstly, the algorithm initializes a table T of m×m×m pointers, such that each pointer

(i, j, k), where i, j, k ∈ [0,m], refers to the grid point (i, j, k). T is used to track the

voxel location during the incremental rotation. Then for each point p⃗ = (px, py, pz)
⊤ in

I, the algorithm computes and stores in the list Tp⃗ all hinge angles α(px, py, pz, i, k) for

i = 1, 2, 3 and k = −l,−l + 1, . . . , l − 1, l where l = ⌊
√
p2x + p2y + p2z⌋. Hinge angles are

stored using their integer representations. Then each list Tp⃗ is made in ascending order of

hinge angles. The second step merges all the lists Tp⃗ into a unique list. In order to avoid

the sorting of the �nal list T this operation should be done using the merge sort algorithm

[29]. The last step of the algorithm performs the incremental rotation. Reading every

hinge angle α(px, py, pz, i, k) in T , we displace the grid point referred by T (px, py, pz) to
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one of its 6-connected voxel according to i and k. The pointer in T (px, py, pz) is updated
to the new position so that the actual position of p⃗ will be known using T (px, py, pz).
We repeat this operation while hinge angles are remaining in T . When all the hinge

angles in T have been processed, every point has described its full rotation locus around

a given axis of rotation. Then all the possible con�gurations of rotations of I around

the rotation axis have been reached.

The time complexity for the �rst step is O(m4 logm) since there is m3 points to consider

and for each point, there are at most O(m) hinge angles. Thus the sorting of each list

is done in O(m logm). The second step requires the same time complexity than the

�rst step. Note that if the merging does not use the method presented in [29], the time

complexity remains the same, but it will practically increase the computation time. The

last step browses the list T that contains at most O(m4) hinge angles. Each displacement

is done in constant time and thus it requires O(m4) operations. We conclude that the

time complexity for the incremental rotation algorithm is O(m4 logm).

4.6 Conclusion

In this chapter, we extended the notion of hinge angles, introduced Chapter 3 to the

3D. Extension of hinge angles from the 2D to 3D space involves many problems because

most of the 2D hinge angles properties are not valid for 3D hinge angles. In order to

regard hinge angles in the 3D space similarly to the 2D ones, we introduced the notion

of a multi-grid that is the intersection of the 3D half-grid and a rotation plane. By

rede�ning the hinge angles on the rotation plane, which are the extension of hinge angles

for the rotation in 2D, we showed a subgroup of the multi-grids where all parameters

are rational, called rational multi-grids. This subgroup allows us to compare two hinge

angles on rotation planes in constant time by using integer computations. It also allows

us to design a 3D discrete rotation and a 3D incremental rotation.

The multi-grids introduced in this paper can be extended in any dimension to perform

discrete rotations. Roughly speaking, a rotation in nD requires ⌊n2 ⌋ angles and rotation

planes. However, rotations in nD are not well understood, for example, in Euclidean

space we do not know yet if a given nD rotation can be uniquely decomposed into ⌊n2 ⌋
planar rotations [30]. Therefore, the extension of the work presented in this paper to

nD discrete rotations requires a study of decomposition of nD discrete rotation into 2D

discrete rotation.



Chapter 5

Estimation of rotation between a

pair of 3D digital images

5.1 Introduction

This chapter is the extension to the 3D space of our algorithm to �nd the admissible

rotation angles for a pair of 2D digital images presented in Chapter 3. We present

a discrete method to �nd from a pair of 3D digital images admissible rotations that

transform the �rst digital image into the second digital image. We assume that the

points correspondence between these two 3D digital images are given.

The estimation of a rotation in 3D discrete space is done by estimating a rotation angle

and a rotation axis. It is also possible to estimate a 3D discrete rotation by estimating

three angles and the rotation center. However, as explained in Chapter 2 and Chapter 4,

it is preferable to avoid rotations composition.

Hereafter, we assume that the given data are two or n pairs of points in correspondence.

The points p1 = (p1x, p1y, p1z) and p2 = (p2x, p2y, p2z) are said to be in correspondence

if p1 in the �rst image corresponds to p2 in the second image.

In this chapter, we show how to deduce information on the rotation axis and the rotation

angle that transform the �rst image in the second image from n pairs of points in cor-

respondence. First, we give a method that approximates the rotation axis from n pairs

of grid points in correspondence. Secondly, we give a method to obtain the admissible

rotation angles knowing a pair of discrete points in correspondence and the rotation axis.
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5.2 Finding a 3D discrete rotation from a pair of digital

images

In this section, we present a method to �nd a discrete rotation between a pair of 3D digital

images that represents the same object from two di�erent points of view. Suppose that

we have a set of n grid points A = (⃗a1, a⃗2, . . . , a⃗n) in the �rst image and its corresponding

set B = (⃗b1, b⃗2, . . . , b⃗n) in the second image. Each pair of points (⃗ai, b⃗i) corresponds to

the same point of the object. We say that such a pair of grid point sets, A and B, are

in correspondence.

In 2D, �nding a discrete rotation between such a pair of A and B mainly consists in

identifying a set of angles that give the same rotated image as explained in Chapter 3.

In Euclidean space, such a rotation is unique. This is not the case in discrete space

where two slightly di�erent angles α1, α2 may transform A into B. Moreover, for such

pair α1, α2, each angle α3 such that α1 ≤ α3 ≤ α2 also rotate A into B. Then, we de�ne

the admissible rotation angle, abbreviated by ARA, that is the set of all angles that give

the same rotated digital image. It is bounded by the pair of hinge angles αinf and αsup.

In 3D, it is necessary to �nd not only a set of admissible rotation angles but also an

admissible rotation axis.

We note that we identify a set of admissible rotation angles but only one admissible

rotation axis. Indeed, if we consider two rotation axis, the two multi-grids associated to

these axes and a point will provide two distinct sets of hinge angles. Therefore, we set a

unique rotation axis.

5.2.1 Approximation of the rotation axis by a 3D Pythagorean vector

The determination of an admissible rotation axis from a pair of digital images in corre-

spondence requires two steps. The �rst step is to obtain a rotation axis that is consistent

with all pairs of points in correspondence. The second step is to approximate the axis

obtained through the �rst step by a Pythagorean axis in order to obtain rational multi-

grids.

5.2.1.1 First step

Given a pair of Euclidean points in correspondence, it is known that any rotation axis

such that the �rst point is transformed into the second one belongs to the bisection plane

of these two points. If we consider two pairs of Euclidean points in correspondence, their

rotation axis is the intersection between their two bisection planes. If we add a third pair
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of Euclidean points in correspondence, the intersection between the three bisection plane

still give the same rotation axis. However, if we consider three pairs of grid points in

correspondence instead of Euclidean points, the intersection between the three bisection

plane may not be unique. In other words, we may have three rotation axes because grid

points approximate Euclidean points. Therefore, in order to obtain a unique rotation

axis, we consider the rotation axis that is the average of the three obtained rotation axis.

Now, we consider voxels instead of Euclidean or grid points. For a given pair of voxels in

correspondence, the bisection plane is not unique. Indeed, each pair of Euclidean points

that belongs to the pair of voxels in correspondence de�ne a bisection plane. Therefore,

there is an in�nity of admissible bisection plane for a pair of voxels. Computing the

bounds of all the bisection planes for a pair of voxels in correspondence is a big issue. If

n pairs of voxels in correspondence are given, and to de�ne an admissible rotation axis

for the n pairs of voxels, we have to compute the intersections between all the obtained

bounds of admissible bisection planes. In 2D, a study on the intersection of the bound

of bisection for n pairs of pixels have been proposed [31] and can be extended to the 3D

discrete space. However, this work is not �nished yet. Therefore, in order to obtain a

rotation axis for n pairs of voxels, we consider the n pairs of grid points, which are the

centers of voxels, and compute for each pair the bisection plane. Then we compute ⌊n+1
2 ⌋

axes from the n obtained bisection planes. The rotation axis is the average of the ⌊n+1
2 ⌋

obtained axes. We strongly believe that this method gives a rotation axis that belongs

to the intersections between all the bounds of admissible bisection planes. However, we

do not have any formal proof yet.

5.2.1.2 Second step

In this section, we show a method to approximate the rotation axis obtained in the

previous section by a Pythagorean axis that is required to compute a rational multi-

grid. Based on [15], we can derive a naive method to approximate any 3D vector by

a 3D Pythagorean vector; its main idea is to construct two 2D Pythagorean vectors to

approximate a 3D Pythagorean vector. For this naive method, some simple de�nitions

are required. We call a Pythagorean triple a set of three integers (i1, i2, λ) such that

i21+ i
2
2 = λ2. Each Pythagorean triple is associated with the Pythagorean vector (i1, i2)⊤

and a Pythagorean angle θ such that cos θ = i1
λ . Pythagorean quadruples are the sets

of four integers (i1, i2, i3, λ) such that i21 + i22 + i23 = λ2. Each Pythagorean quadruple is

associated with the Pythagorean vector (i1, i2, i3)⊤.

The method presented by Anglin in [15] allows the approximation of any angle α with

a Pythagorean angle θ such that |α − θ| < ϵ for any ϵ > 0. It uses the theorem, given
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in [32], that for each Pythagorean triple (i1, i2, λ), there is a pair of integers (u, v) such

that v < u, i1 = 2uv, i2 = u2− v2 and λ = u2 + v2. Setting X = tan(α− ϵ) + sec(α− ϵ)
and Y = tan(α+ ϵ)+ sec(α+ ϵ), Anglin proved that for every pair of integers (u, v) such

that X < u
v < Y , the angle θ associated with the Pythagorean triple generated by (u, v)

approximates α in such that α− ϵ < θ < α+ ϵ.

Let r⃗ = (r1, r2, r3)
⊤ be a 3D real vector to be approximated by a Pythagorean vector

such that the angle between the two vectors is smaller than ϵ. Such a pair of vectors

is said ϵ-close. From r⃗, we de�ne two 2D vectors r⃗2, r⃗3 such that r⃗2 = (r1, r2)
⊤, r⃗3 =

(
√
r21 + r22, r3)

⊤. Each vector r⃗i = (xi, yi)
⊤ is associated with an angle αi satisfying

cosαi = xi
|r⃗i| . Using the algorithm presented in [15] for these two angles αi with a

precision ϵ, we obtain two Pythagorean angles associated with the two Pythagorean

triples (i2, j2, λ2), (i3, j3, λ3). Now, we consider the Pythagorean vectors associated with

the two Pythagorean triples. We remark that if (i2, j2, λ2) is a Pythagorean triple,

then (ki2, kj2, kλ2) is also a Pythagorean triple for any k ∈ Z∗. Note that, these two

Pythagorean triples are associated with the same Pythagorean angle. This remark allows

us to generate from the two Pythagorean triples, (i2, j2, λ2), (i3, j3, λ3), a Pythagorean

quadruple (ki2, kj2, lj3, lλ3) with two integers k, l such that k(i2+j2) = li3. The 3D vec-

tor r⃗′ associated with this Pythagorean quadruple (ki2, kj2, lj3, lλ3) is our approximation

result of r⃗.

In [15], the author introduced ϵ that corresponds to the maximum angle between the orig-

inal vector and the Pythagorean vector that approximates it. With the above method,

to construct a 3D Pythagorean vector that approximates a given vector by ϵ, we apply

the Anglin's method twice. An example of the method that approximates a 3D vector is

given in Figure 5.1. First we decompose the 3D vector r⃗ to approximate into the two 2D

vectors r⃗2 and r⃗3. r⃗2 and r⃗3 can be approximated by Anglin's method with a precision

of ϵ by two 2D Pythagorean vectors r⃗′2 and r⃗′3 that belong to the two 2D convex cones

illustrated in Figure 5.1 (a) and (b), respectively. We generate r⃗′ from r⃗′2 and r⃗
′
3, which

is the approximation of r⃗, so that it belongs to the 3D convex cone represented in Fig-

ure 5.1 (c) forming a square pyramid. The minimum circular cone including the square

pyramid has the solid angle 2
√
2ϵ. Therefore, we can deduce that to reach a precision of

ϵ′ while approximating a 3D vector, we need to give to Anglin's method a precision of

ϵ ≤ ϵ′√
2
.

The algorithm given in this section computes very quickly because, according to Anglin,

the computation of a Pythagorean triple is done in constant time. Accordingly, we can

give the approximation of any 3D vector in O(1) operations. However, we cannot give

any bounds on the size of integers that belongs to the �nal Pythagorean quadruple.
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(a) (b) (c)

Figure 5.1: Example of the approximation of a 3D vector using our method. (a) and
(b) represent the projections of r⃗ into r⃗2 and r⃗3 in 2D planes respectively. Each 2D
convex cone in (a) and (b) is the admissible approximation for r⃗2 and r⃗3 regarding to
ϵ. (c) represents the square pyramid constructed from the two 2D convex cones that

contains the sets of admissible approximation for r⃗.

5.2.2 Approximation of the rotation angle using rational multi-grids

After obtaining an admissible rotation axis, the next step is to obtain the admissible

rotation angles. For the 2D case, we have developed, in Section 3.4, a method to obtain

from n pairs of grid points the admissible rotation angles where n ≥ 1 in time complexity

O(n). This method is designed to work in the 2D half-grid. With minor modi�cations,

this method can also be applied on rational multi-grids and keeps the same complexity.

Firstly, we remind the de�nition of admissible rotation angles abbreviated by ARA and

introduced in Section 3.3. The ARA for the two sets of n points A = (⃗a1, a⃗2, . . . , a⃗n)

and B = (⃗b1, b⃗2, . . . , b⃗n) in correspondence is the set of angles de�ned by an upper and

a lower bounds such that any angle between them gives the same discrete rotation from

A to B. We denote by ARA(⃗ai, b⃗i) = (αinf
i , αsup

i ) the pair of hinge angles that gives the

lower and the upper bounds of ARA for the pair of points (⃗ai, b⃗i).

For a given pair of points (⃗ai, b⃗i) in correspondence, we �rst compute the rational multi-

gridMA,⃗ai . Then we search for the convexel c containing q⃗ and compute the two hinge

angles between c and the circle centered at the origin of the rational multi-grid and going

through a⃗i. These two intersections de�ne the ARA for this pair of points. We note that

each operation are done in constant time.

Generally, the given input contains n pairs of points instead of one pair of points. We

then incrementally compute the upper and lower bounds of the ARA for these n pairs of

points. We �rst compute the ARA corresponding to the two �rst pair of points (⃗a1, b⃗1)

and (⃗a2, b⃗2). We compare the two pairs of hinge angles (αinf1 , αsup1 ) and (αinf2 , αsup2 )

obtained and keep the two most restrictive ones so that we have the new pair of hinge
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Figure 5.2: In a rational multi-gridMA,p⃗ a convexels can have four intersections with
the locus of rotation of p⃗.

angles (max(αinf1 , αinf2 ),min(αsup1 αsup2 )). We incrementally repeat this operation for the

n− 2 remaining pairs of points and obtain ARA(A,B) = ∩iARA(⃗ai, b⃗i) for the n pairs

of points. Since the comparison of a pair of hinge angles is done in constant time, the

time complexity of the incremental algorithm is O(n).

In the above algorithm, we assumed that there are always two intersections between a

convexel and the locus of the rotation of p⃗. Practically, it may be possible that the locus

of rotation of p⃗ intersects twice a line of MA,p⃗ without intersecting any other line of

MA,p⃗ as illustrated in Figure 5.2. In other words, four intersections between a convexel

and the rotation locus may exist. We perform experiments in order to evaluate the

frequency of such a case. We randomly generate ten thousands Pythagorean axes and

for each axis we randomly generate ten thousands grid points. For each grid points p⃗, we

compute all intersections betweenMA,p⃗ and the locus of rotation of p⃗ and search if four

of these intersections belong to the same convexel. About 3% of generated points have

such particular convexels and the probability that a convexel intersected by the locus of

rotation of p⃗ have four intersections is 1
62500 . Since this particular case does not often

occur, we chose not to take it into consideration in our algorithm. Note that in 2D such

a case does not happen and the proof can be found in Chapter 3.

5.3 Conclusion

In this chapter, we have introduced a method to obtain the rotation angle and rotation

axis from a pair of digital images. This work is the extension of the work presented in

Section 3.4 of Chapter 3.

In Section 5.2, we introduce the admissible rotation axis that is the set of all possible

rotation axis for a pair of digital image. The shape of such a set is not yet studied,

however in [31] the authors studied in discrete plane the shape of admissible center of

rotation for n pairs of points. Thus, one of the future work will be to extend it in 3D

and then in nD.



Chapter 6

Study on Pythagorean n-tuples

6.1 Introduction

In Chapter 4, we introduced a method that performs discrete rotations in 3D using the

multi-grid. We explained that to be discrete, this method needs that the rotation axis

to be Pythagorean. But in order to approximate all possible 3D rotations it is necessary

that Pythagorean vectors, that are the direction vector of Pythagorean axis, are dense

in 3D.

The Pythagorean triples are the triple of integers (i1, i2, λ) such that i21 + i22 = λ2.

They are well known since Pythagoras, and many studies have been done such as stud-

ies on their repartition in the plane [33], how to generate them [34], how to approxi-

mate them [15] and the density of their representation [35]. The natural extension of

the Pythagorean triples is Pythagorean quadruples that are the quadruple of integers

(i1, i2, i3, λ) such that i21 + i22 + i23 = λ2. Some of the studies on Pythagorean triples

have been done for Pythagorean quadruples such as generation [36, 37]. The property

of density have been proved arithmetically in [28], here we propose a constructive proof

that Pythagorean vectors are dense in 3D.

In this chapter, we �rst introduce the Pythagorean triples and a sketch of the proof of

their density. Then we extend this result to Pythagorean quadruples and to Pythagorean

n-tuples. Finally we present a naive algorithm to approximate any sets of (n−1) integers
by a Pythagorean n-tuple.
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6.2 Pythagorean triples

In this section, we �rst de�ne the Pythagorean triples and recall some known properties.

Then we give the proof of the density of Pythagorean triples, which may originally be

proved by Pythagoras [35, 38]. This result will be used in the subsequent sections for

the proof of density of Pythagorean quadruples and n-tuples.

De�nition 6.1. A Pythagorean triple is an integer triple (i1, i2, λ) such that i21+i
2
2 = λ2.

We denote by P2 the set of Pythagorean triples such that P2 = {(i1, i2, λ) ∈ Z3| i21+ i22 =
λ2}. There are two geometrical representations for each element in P2 : the angle and

the vector.

The �rst representation of a Pythagorean triple (i1, i2, λ) can be done by the angle

between the line i1x− i2y = 0 and the abscissa axis (Figure 6.1).

De�nition 6.2. A Pythagorean angle associated with a Pythagorean triple (i1, i2 , λ)

of P2 is an angle θ such that sin θ = i2
λ and cos θ = i1

λ .

Remark 6.3. If a triple of integers (i1, i2, λ) belongs to P2, the triples (ki1, ki2, kλ) for
all k ∈ Z also belong to P2; they are associated with the same Pythagorean angle.

We denote by AP2 the set of Pythagorean angles. Roughly speaking, Pythagorean angles

are the representation of Pythagorean triples in R.

Before showing that AP2 is dense in R, we give the classic de�nition of density in R.

De�nition 6.4. [39] A set S is dense in R, if for any element e1 in R and for any ϵ ∈ R,
there is an element e2 ∈ S such that e1 < e2 < e1 + ϵ.

Regarding De�nition 6.4, we have the following theorem.

Theorem 6.5. The set of Pythagorean angles AP2 is dense in R.

Figure 6.1: Two representations of a Pythagorean triple (i1, i2, λ): Pythagorean angle
θ and Pythagorean vector v⃗ in the plane
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Figure 6.2: Construction of all Pythagorean triples of the form (i1, i2, i1 + 1)

One of simple proofs of Theorem 6.5 uses the two following lemmas.

Lemma 6.6. [40] The sum of any two Pythagorean angles is a Pythagorean angle.

In other words, AP2 is closed by addition. It is easy to admit this lemma, because the

sum of two angles consists of additions and multiplications of the sines and cosines of

the two given angles. Thus, the sine and cosine of the angle resulting from the addition

still belong to rational numbers.

Lemma 6.7. For any angle α ∈ [0, 2π], there is an angle θ ∈ [0, 2π] of AP2 such that

θ < α.

The proof of Lemma 6.7 is similar to a proof of the statement, known since Pythagoras,

that the number of Pythagorean triples is in�nity. The idea of this proof is illustrated

in Figure 6.2; each time we �nd a square of an integer on the third line, we can form

a Pythagorean triple with the two corresponding integers on the �rst line. Since the

third line contains all the odd number squares, we deduce that there is an in�nity of

Pythagorean triples of the form (i1, i2, i1+1). It is obvious that i1 > i2 and lim
i1→∞

i2
i1

= 0.

Therefore, when i1 →∞, the associated angle θ → 0. This induces Lemma 6.7.

The main idea to prove Theorem 6.5 is to show that for any angle α ∈ [0, 2π] and for

any ϵ > 0 there is a Pythagorean angle θ such that α < θ < α + ϵ. To obtain such θ,

we �rst �nd a Pythagorean angle θ′ such that θ′ < α and a Pythagorean angle γ such

that γ < ϵ, thanks to Lemma 6.7. From Lemma 6.6, we know that the angles resulting

from the sums θ′ + γ, θ′ + 2γ,. . . ,θ′ + nγ are Pythagorean angles as well. Therefore, we

conclude that there is an integer n such that θ = θ′ + nγ and α < θ < α+ ϵ.

The second representation of a Pythagorean triple is a vector as illustrated in Figure 6.1.

De�nition 6.8. A 2D Pythagorean vector is a vector v⃗ = (i1, i2)
⊤ associated with the

element (i1, i2, λ) of P2.

Note that the Euclidean norm of a Pythagorean vector is always an integer. We denote

by VP2 the set of 2D Pythagorean vectors.

To each Pythagorean triple, we have its corresponding Pythagorean angle and Pythagorean

vector respectively. Thus, intuitively, we know that VP2 is dense because AP2 is dense.
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Figure 6.3: A convex cone in the plane de�ned by the pair of vector v⃗1, v⃗2

To de�ne the density of a set of such vectors, we need the notion of convex cone, which

is de�ned in [41]. A 2D convex cone in the plane is represented by a pair of linearly

independent 2D vectors v⃗1, v⃗2 bounding of the cone as illustrated in Figure 6.3. Then

a vector v⃗ belongs to the 2D convex cone if there is a pair of scalars s1, s2 ∈ R∗
+
1 such

that v⃗ = s1v⃗1 + s2v⃗2. Similarly an nD convex cone in the nD space is represented by a

set of n linearly independent nD vectors v⃗1, v⃗2, . . . , v⃗n bounding the cone as illustrated

for the 3D case in Figure 6.5.

The following de�nition introduces the notion of density for a set of vectors in any

dimensions. This de�nition is needed to prove that Pythagorean triples and Pythagorean

n-tuples are dense.

De�nition 6.9. Let U be a set of nD vectors in Rn. We say that U is dense in Rn if

and only if for the nD convex cone C de�ned by any set of n linearly independent vectors

v⃗1, v⃗2, . . . , v⃗n ∈ R⃗n, there is a vector u⃗ ∈ U that belongs to C.

In other words, U is dense if for any set of n vectors v⃗1, v⃗2, . . . , v⃗n ∈ V , there exists a

vector u⃗ ∈ U and s1, s2, . . . , sn ∈ R∗
+ such that u⃗ = s1v⃗1 + s2v⃗2 + · · · + snv⃗n. With

De�nition 6.9, it is possible to show that VP2 is dense in R2; however, this proof is

omitted since it is similar to the proof of Theorem 6.5.

Theorem 6.10. The set of 2D Pythagorean vectors VP2 is dense in R2.

6.3 Pythagorean quadruples

In Section 6.1, we explained that Pythagorean quadruples can be considered as 3D

rational unit vectors. 3D unit vectors appear in many applications in computer vision

and computer graphics. Here, we highlight Pythagorean quadruple. For the practical

use, those vectors associated with Pythagorean quadruples must be dense on the unit

1
R

∗
+ is equivalent to ]0,+∞[.
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Figure 6.4: Geometrical representations of a Pythagorean quadruple (i1, i2, i3, λ) by
the Pythagorean vector (i1, i2, i3)

⊤ and the pair of angles (θ, ψ).

sphere. In this section, we give a constructive proof that they are dense in R3 using

Theorem 6.10.

De�nition 6.11. A Pythagorean quadruple is an integer quadruple (i1, i2, i3, λ) such

that i21 + i22 + i23 = λ2.

We de�ne the set containing all Pythagorean quadruples such that P3 = {(i1, i2, i3, λ)
∈ Z4| i21 + i22 + i23 = λ2}. Similarly to the case of Pythagorean triples, we present two

geometrical representations for each element of P3.

Pythagorean quadruples can be represented by angles, similarly to Pythagorean triples.

Each Pythagorean quadruple can be associated with a pair of angles (θ, ψ) where cos θ =
i1√
i21+i

2
2

, sin θ = i2√
i21+i

2
2

and cosψ =

√
i21+i

2
2

λ , sinψ = i3
λ . Note that, with a Pythagorean

triple, we can ensure that the values of the sine and cosine generated by the associated

Pythagorean angle belong toQ, and this is not the case with any Pythagorean quadruple

because in most cases
√
i21 + i22 does not belong to Z.

We can also represent a Pythagorean quadruple (i1, i2, i3, λ) by a vector v⃗ = (i1, i2, i3)
⊤

in the 3D space as seen in Figure 6.4.

De�nition 6.12. A 3D Pythagorean vector is a vector v⃗ = (i1, i2, i3)
⊤ associated with

the element (i1, i2, i3, λ) of P3.

As well as 2D Pythagorean vectors, each 3D Pythagorean vector has an integer Euclidean

norm. We denote by VP3 the set of 3D Pythagorean vectors. Generally speaking, such

geometrical representation for Pythagorean n-tuples is done in (n− 1)D space.

Similarly to Pythagorean triples with their 2D geometric representation, the question of

density for the representation of Pythagorean quadruples arises. In 2D the proof of the

density was made by using Pythagorean angles. However, in 3D, as explained above, the

representation by angles is not convenient because it uses irrational numbers. Therefore,
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Figure 6.5: A 3D convex cone generated by three vectors v⃗1, v⃗2, v⃗3 in the space

(a) (b)

Figure 6.6: (a) The 3D convex cone C3 de�ned by v⃗1, v⃗2, v⃗3 and their projected vectors
v⃗′1, v⃗

′
2, v⃗

′
3 on the OXY plane, and (b) the 2D convex cone C2 de�ned by {v⃗′1, v⃗′2}.

we will prove the density of 3D Pythagorean vectors. The de�nition of density used here

is the one given in De�nition 6.9.

Theorem 6.13. The set of 3D Pythagorean vectors VP3 is dense in R3.

Proof. 11. To prove Theorem 6.13, it is su�cient to show that for every set of three

vectors, we can construct a Pythagorean vector belonging to the 3D convex cone de�ned

by the three vectors.

Let v⃗1, v⃗2, v⃗3 be three linearly independent 3D vectors. We denote by C3 the 3D convex

cone de�ned by position vectors v⃗1, v⃗2, v⃗3. We also denote by v⃗′1, v⃗
′
2, v⃗

′
3 the projections of

v⃗1, v⃗2, v⃗3 in the OXY plane (Figure 6.6(a)).

Because v⃗1, v⃗2, v⃗3 are linearly independents, at least one of these three pairs {v⃗′1, v⃗′2}, {v⃗′1, v⃗′3}, {v⃗′2, v⃗′3}
is linearly independent in the plane OXY . Let us assume that the pair of vectors {v⃗′1, v⃗′2}
is linearly independent. Thus {v⃗′1, v⃗′2} de�nes in the OXY plane a 2D convex cone,

which we denote by C2 as shown in Figure 6.6(b). Thanks to Theorem 6.10, there is a

2D Pythagorean vector u⃗′ that belongs to C2 (Figure 6.6(b)). u⃗′ is associated with the

Pythagorean triple (i1, i2, λu⃗). We set the vector u⃗ = (i1, i2, 0)
⊤.

Let P be a plane de�ned by the two vectors u⃗ and (0, 0, 1)⊤ and the point (0, 0, 0)⊤

(Figure 6.7(a)). By construction, P intersects C3. This intersection is a 2D convex
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(a) (b)

Figure 6.7: (a) The plane P de�ned by OZ and u⃗, and (b) the vector w⃗ that belongs
to C′2.

cone C′2 that belongs to P (Figure 6.7(b)). Thanks to Theorem 6.10 again, there is a

2D Pythagorean vector w⃗′ that belongs to C′2 (Figure 6.7(b)); w⃗′ is associated with the

Pythagorean triple (j1, j2, λj).

As said in Remark 6.3, if we multiply all integers of a Pythagorean triple by k ∈ Z,
the obtained triple is still a Pythagorean triple. This enables us to design from two

Pythagorean triples a Pythagorean quadruple as follows.

Let a, b ∈ Z∗ such that aλu⃗ = bj1. Then we obtain the Pythagorean quadruple

(ai1, ai2, bj2, bλw⃗). By construction, it is obvious that the vector w⃗ = (ai1, ai2, bj2)
⊤,

associated with the Pythagorean quadruple (ai1, ai2, bj2, bλw⃗), belongs to the 3D convex

cone C3.

6.4 Approximation of a given 3D vector by a Pythagorean

3D vector

In this section we explain how to approximate a given vector by a Pythagorean vector.

Because we proved in Section 6.3 that 3D Pythagorean vectors are dense, we know

that we �nd a Pythagorean vector as close as possible to the given vector considering

the distance d between the two vectors u⃗ = (ux, uy, uz)
⊤, v⃗ = (vx, vy, vz)

⊤ as follow

d(v⃗, u⃗) =
√

( ux∥u⃗∥ −
vx
∥v⃗∥)

2 + (
uy
∥u⃗∥ −

vy
∥v⃗∥)

2 + ( uz∥u⃗∥ −
vz
∥v⃗∥)

2. Two vectors are said to be v⃗, u⃗

are ϵ-close if d(v⃗, u⃗) < ϵ.
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In this section, we �rst explain how to generate all Pythagorean quadruple, then we give

two methods to approximate a given vector by an ϵ-close Pythagorean vector. Finally,

we show some experiment on approximation using both methods.

6.4.1 Generation of Pythagorean quadruples

In this section we explain how to obtain all Pythagorean quadruples using twelve matri-

ces. This method is the extension to the Pythagorean quadruples of the method used for

Pythagorean triples and presented in many papers [34, 36, 40]. Here we will �rst describe

the method used to generate Pythagorean triples, then we will extend it to Pythagorean

quadruple and show what problems appear during the generation of the tree.

Note that in this section we only consider Pythagorean triples (respectively Pythagorean

quadruples) of the form < i1, i2, λ > (respectively < i1, i2, i3, λ >) where 0 < i1 ≤
i2 ≤ λ (respectively 0 ≤ i1 ≤ i2 ≤ i3 ≤ λ). This assumption does not restrict the

Pythagorean triples (respectively quadruples) generated, since all other Pythagorean

triples (quadruples) can be obtained by switching two values or multiplying some values

by −1.

It is generally admitted that the smallest Pythagorean triple is < 3, 4, 5 >. We say

that the Pythagorean triple < i11, i12, λ1 > is smaller than the Pythagorean triple <

i21, i22, λ2 > if λ1 < λ2 or if λ1 = λ2 and i12 < i22. With this order, we can also consider

the triple < 0, 1, 1 > as the smallest Pythagorean triple, but this Pythagorean triple is

degenerated since it contains a 0.

The method to generate the tree that contains all Pythagorean triples uses the three

following matrices:

M1 =


1 2 2

2 1 2

2 2 3

 ,M2 =


−1 2 2

−2 1 2

−2 2 3

 ,M3 =


1 −2 2

2 −1 2

2 −2 3

 . (6.1)

Applying these three matrices to the �rst Pythagorean triple < 3, 4, 5 > will give the

second level of the tree, then applying these three matrices to the three children of <

3, 4, 5 > will give nine children that are the third level of the tree. Iterating this operation

will give us all possible prime Pythagorean triples, the three �rst levels of the Pythagorean

tree are given in example in Figure 6.8. Note that in [4] a di�erent Pythagorean tree is

presented, in his tree the author sorts the Pythagorean triple according to their angles.
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Figure 6.8: The three �rst level of the Pythagorean tree.

An important property of the construction is that there is a proof that each Pythagorean

triple in the tree is a prime Pythagorean triple and each Pythagorean triple appears only

in the tree.

Note that there is also a fourth matrix:

M4 =


−1 −2 2

−2 −1 2

−2 −2 3

 (6.2)

that gives the father of a Pythagorean triple in the tree.

We expect that there is a Pythagorean tree for Pythagorean quadruples that has the

same properties than the tree of a Pythagorean triple, however, we will see that this is

not the case.

Now we consider Pythagorean quadruples. The naive adaptation of the above method

to obtain the Pythagorean quadruple tree is to add a dimension to matrices 6.1 and

to apply it on all quadruples (i1, i2, i3, λ), (i2, i1, i3, λ) and (i3, i2, i1, λ) to obtain all

sons. As the smallest Pythagorean quadruple, there are two candidates < 0, 0, 1, 1 >

and < 1, 2, 2, 3 >. The Pythagorean quadruple < 0, 0, 1, 1 > can be considered as

degenerated, thus the naive solution is to consider the smallest Pythagorean quadruple as

< 1, 2, 2, 3 >. However, in the Pythagorean triples case, applying the three matrices 6.1

to < 0, 1, 1 > always gives < 3, 4, 5 >, in the Pythagorean quadruple case, application of

Matrix 6.3 on < 0, 0, 1, 1 > will give two di�erent Pythagorean quadruples: < 1, 2, 2, 3 >

and < 0, 3, 4, 5 >. Even if < 0, 3, 4, 5 > is degenerated, some of its sons are not, thus we

have to consider it to create the Pythagorean quadruple tree.

The extension of Matrix 6.1 to the 4D gives us the following matrix:

M1 =


1 0 0 0

0 1 2 2

0 2 1 2

0 2 2 3

 ,M2 =


1 0 0 0

0 −1 2 2

0 −2 1 2

0 −2 2 3

 ,M3 =


1 0 0 0

0 1 −2 2

0 2 −1 2

0 2 −2 3

 . (6.3)
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In the Pythagorean triples case, we just have to apply each of these matrices once to ob-

tain all possible sons. However, to obtain all sons of a Pythagorean triple, it is necessary

to apply Matrix 6.3 and then to switch i1 and i2 and apply again Matrix 6.3. We repeat

this operation switching i1 and i3. The switch operation is needed because Matrix 6.3

does not modify the �rst value of the Pythagorean quadruple. Therefore the switching

operation allows us to obtain nine sons.

When we generate the Pythagorean quadruples tree using the naive method, some

problems arise. As explained before, we should consider < 0, 0, 1, 1 > as the small-

est Pythagorean quadruple even if its a degenerated one. However, considering this

quadruple as the root of the tree will remove the guarantee that each Pythagorean

quadruple only appears in the tree. Applying the Matrix 6.3 on this quadruple will

only give two di�erent sons, that will lead to repetitions. Pythagorean quadruple of

the form < i1, i2, i2, λ > like < 1, 2, 2, 3 > and < 4, 4, 7, 9 > are also problematic since

they have many repetitions in their sons. The solution may be to remove all repeti-

tions after generating the sons of a Pythagorean quadruple. However, this does not

solve the problem since some Pythagorean quadruples can be generated by two distinct

Pythagorean quadruples. For example, the two Pythagorean quadruples < 2, 3, 6, 7 >

and < 1, 4, 8, 9 > generate the Pythagorean quadruple < 3, 4, 12, 13 > when we apply

M3. One other problem of the naive method is that it does not generate all possible

Pythagorean quadruples. There is an in�nity of Pythagorean quadruples that cannot be

reached using this method. The solution of this problem is to use the fourth matrix

M4 =


1 0 0 0

0 −1 −2 2

0 −2 −1 2

0 −2 −2 3

 , (6.4)

that is the extension of the matrix that gives the father for a Pythagorean triple. An

example of a Pythagorean quadruple that requires M4 to be reached is illustrated

on Figure 6.9. The Pythagorean quadruple < 23, 24, 24, 41 > is reached using M4

on Pythagorean quadruples < 10, 10, 23, 27 > or < 11, 12, 24, 29 >. Using M4 on

< 23, 24, 24, 41 > will give < 10, 10, 23, 27 > or < 11, 12, 24, 29 >, then we deduce

that the fathers of < 23, 24, 24, 41 > are < 10, 10, 23, 27 > or < 11, 12, 24, 29 > and that

we cannot reach it using matrixM1,M2,M3.

Even if for most Pythagorean quadruples, M4 gives the father of the Pythagorean

quadruple as illustrated on Figure 6.10, there is an in�nity of Pythagorean quadru-

ple that are their own grandfather. In other words, there is an in�nity of Pythagorean

quadruples such that the application of M4 gives another Pythagorean quadruple and
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Figure 6.9: The Pythagorean quadruple < 23, 24, 24, 41 > can only be reached using
Matrix 6.4.

Figure 6.10: In most cases,M4 gives the father of a Pythagorean quadruple.

Figure 6.11: There exists an in�nity of Pythagorean quadruples that have themselves
as grandfather.

the application ofM4 on the obtained Pythagorean quadruple will give the original one

as illustrated on Figure 6.11.

From all these problems, we can derive a new method of generation of the Pythagorean

tree that removes all repetitions. We set the root as < 0, 0, 1, 1 > and use the four

matricesM1,M2,M3,M4. The �rst level of the tree contains only the two Pythagorean

quadruples: < 0, 3, 4, 5 > and < 1, 2, 2, 3 >. To obtain the next level, we proceed as

follow. For each Pythagorean quadruple of the last level, we compute the twelve sons

that correspond to the three applications of the four matrices. For each son that results

on the application of M4 we check if it is the same as its grandfather, if so we remove

it. For the other sons, we remove all the repetitions.

6.4.2 Approximation methods

In this section, we present two methods to approximate a given vector v⃗ = (vx, vy, vz)
⊤ by

an ϵ-close Pythagorean vector. In few words, the �rst method constructs the Pythagorean

tree level by level and checks in each level if there is a Pythagorean vector that is ϵ-

close to the given vector. The second one selects for each level, the three Pythagorean
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quadruples that are the closest one to the given vector and compute only their sons.

Roughly speaking, the �rst method is a force brute algorithm. The second one cuts the

Pythagorean tree. We know that the �rst one will give us a result since Pythagorean

vectors are dense and it tries all possible Pythagorean quadruple until it �nds an ϵ-close

Pythagorean vector. For the second one, we still do not have any proof of its convergence.

The �rst approximation method starts from the Pythagorean quadruple < 0, 0, 1, 1 >

and its two sons < 0, 3, 4, 5 > and < 1, 2, 2, 3 >. For this three Pythagorean quadruples,

we compute the distance between v⃗ and these three Pythagorean vectors. If none of

them is ϵ-close, we compute the sons of < 0, 3, 4, 5 > and < 1, 2, 2, 3 > as explained

in Section 6.4.1 and for each sons, we compute the distance between them and v⃗. If

none of them is ϵ-close, we iterate the operation until we �nd a matching vector. Since

Pythagorean vectors are dense, we know that this algorithm will end in a �nite time,

however, we cannot give any upper bound of the number of level to compute, then we

cannot give any upper bound of the computation time. The problem of this method is

the number of Pythagorean quadruple to compute and to compare with v⃗. As explained

in Section 6.4.1, most of the Pythagorean quadruples have nine sons, thus the number

of Pythagorean quadruples for a Pythagorean tree with n levels can be approximated by
n∑
i=1

9i considering that < 0, 3, 4, 5 > and < 1, 2, 2, 3 > are the level 0 of the tree. Thus

reaching the 10th level of the tree requires about 3 billions comparisons.

The second approximation method cuts the Pythagorean tree. The �rst step is the same

as the �rst method. After computing the �rst level of the Pythagorean tree, we compute

the distance between v⃗ and all computed sons and check if one of the son is ϵ-close to v⃗.

If not, we sort the sons regarding their distance to v⃗ and search a convex cone formed

by three of the sons. Because there are many convex cones, we consider the one that

minimize the sum of the distances between the three sons and v⃗. To decide if the convex

cone formed by three vectors contains v⃗, we compute the three planes formed by two of

these three vectors and the origin and check if v⃗ and the vector that does not belong

to the plane belongs to the same half-space. The next step is to compute the sons of

the three vectors that form the convex cone and compute the distance between v⃗ and

them. If none of them is ϵ-close to ⊑, we compute a new convex cone and iterate the

last operation until we found and ϵ-close Pythagorean vector. For each iteration we

compute a maximum of 36 Pythagorean quadruples (12 for each vector of the convex

cone), then the number of Pythagorean quadruples computed may be seriously reduced in

comparison with the �rst method. However, unlike the �rst method, we cannot ensure

that this method will �nish since we do not have any proof on the repartition of the

Pythagorean quadruple depending on the father.

The next section presents some experiments of the two methods presented here.
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6.4.3 Experiments

In this section, we present some experiment on the two methods presented in Sec-

tion 6.4.2. In order to evaluate our method, we generate for both methods n vectors

to approximate. For the �rst method, we de�ne a depth d and compute the correspond-

ing Pythagorean tree. Then, for each vector to approximate, we compute the distance

between this vector and all Pythagorean vectors in the tree and keep the lowest distance.

Then we compute the average distance for all generated vectors. For the second method,

we de�ne a maximum depth d, and compute incrementally the d convex cones. We keep

the closest Pythagorean vector computed.
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Figure 6.12: (a) Distance between 1000 vectors and their approximated Pythagorean
vector for a Pythagorean tree of depth 4 (a), of depth 5 (b), of depth 6 (c), of depth 7

(d) and of depth 8 (e)
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For the �rst method, we set d = 4, 5, 6, 7, 8 and generated 1000 vectors to approximate.

These experiments are illustrated in Figure 6.12(a-e). The computation time depends on

the depth d of the Pythagorean three. When d = 8, it takes almost one hour to �nd the

1000 closest Pythagorean vectors or around three seconds by vector to approximate, but

when d = 4, it takes around half a second to �nd the 1000 closest Pythagorean vectors

or 0.5ms for each Pythagorean vector. The evolution of computation time between two

levels of the tree have a factor 9. As we can see, the average distance between the

original vector and its approximation decreases between depth 4 and depth 8 from 0.034

to 0.0077. However, the maximum distance is still high in both cases, around 0.15 when

d = 4 and 0.073 when d = 8. Analyzing the results shows that all the vectors with a

bad approximation have two small coordinates and one a lot greater. The �ve vectors

with the worst approximation for d = 8 are < 1628, 1706, 30389 >,< 179, 214, 3539 >,<

358, 437, 7611 >,< 547, 668, 11872 >,< 1057, 1106, 21398 > for error between 0.07 and

0.075.

For the second method, we set d = 10, 20, 50, 100, 200, 300 and use the same 1000 vectors

to approximate than the �rst method. These experiments are illustrated in Figure 6.13(a-

f). For all the experiments, computations are fast, approximately 5ms when d = 10

to 0.15s when d = 300 for each Pythagorean vector. The computation time is linear

regarding to the depth of the tree. The average distance between the original vector and

its approximation evolves from 0.046 when d = 10 to 0.042 when d = 300. These average

distances are not really improved between d = 10 and d = 300. The average distance

obtained by the second method is always worse than the average distance obtained by

the �rst method for all depth of the tree. However, even if the average distance is bad,

many vectors are well approximated. The analysis of the result shows that many vectors

that are not correctly approximated by the �rst method when d = 4, 5 obtain a better

approximation using the second method for d = 10.

The second method cannot be used without the �rst one since many Pythagorean vectors

are not well approximated. However, it is interesting to use the second method in parallel

of the �rst one when d is high since the �rst method has a high computation time and

the second method can give a good result.



Chapter 6 Study on Pythagorean n-tuples 87

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

Py
th

ag
or

ea
n 

ve
ct

or
 a

pp
ro

xi
m

at
in

g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 10

Distance
Average distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

sm
ar

t r
es

ea
rc

h 
ap

pr
ox

im
at

in
g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 20

Distance
Average distance

(a) (b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

Py
th

ag
or

ea
n 

ve
ct

or
 a

pp
ro

xi
m

at
in

g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 50

Distance
Average distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

Py
th

ag
or

ea
n 

ve
ct

or
 a

pp
ro

xi
m

at
in

g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 100

Distance
Average distance

(c) (d)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

Py
th

ag
or

ea
n 

ve
ct

or
 a

pp
ro

xi
m

at
in

g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 200

Distance
Average distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e 
be

tw
ee

n 
th

e 
or

gi
na

l v
ec

to
r 

an
d 

th
e 

Py
th

ag
or

ea
n 

ve
ct

or
 a

pp
ro

xi
m

at
in

g

IDs of pair of points

Approximation of vectors by Pythagorean vectors, using the smart research of deeph 300

Distance
Average distance

(e) (f)

Figure 6.13: Distance between 1000 vectors and their approximated Pythagorean
vector for a partial Pythagorean tree of depth 10 (a), of depth 20 (b), of depth 50 (c),

of depth 100 (d), of depth 200 (e) and of depth 300 (f)
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The second method leads to an interesting observation on the repartition on Pythagorean

quadruples. Even when we know the father, we cannot predict the direction of the sons.

Then the study of the repartition of the Pythagorean quadruples on the unit sphere will

be di�cult. Therefore, from this observation, we can design a third method. The third

method is almost the same than the second one; the main di�erence is that instead of

keeping the three Pythagorean vectors that form a convex cone around the vector to

approximate, we select three vectors randomly among the sons computed from the three

previous vectors.

For the third method, we set d = 10, 20, 50, 100, 200, 300 and use the same 1000 vectors to

approximate than the �rst method. These experiments are illustrated in Figure 6.14(a-

f) . The computation times to approximate each vector are almost the same than the

computation times obtained with the second method. However, the results are a lot

better when d gets high. The obtained result when d = 300 is really close to the result

obtained by the �rst method when d = 6 since the maximum distance between the

vector to approximate and its approximated Pythagorean vector is lower than 0.1 and

the average distance is 0.015 for the third method and 0.014 for the �rst method.

The third method gives a good result; however, this is a theoretical method since the

integers which form the Pythagorean quadruples when d = 300 are huge (≈ 1040) and

need a special library to be coded in all languages.

From our experiments, we can conclude that the only practical method is the �rst one.

6.5 Pythagorean n-tuples

In this section, we �rst present Pythagorean n-tuples and their representation in n − 1

dimensions. Then, we extend Theorem 6.13 to any dimensions. The following de�nition

is the extension of De�nitions 6.1 and 6.11.

De�nition 6.14. A Pythagorean n-tuple is an integer n-tuple (i1, i2, . . . , in−1, λ), such

that i21 + i22 + · · ·+ i2n−1 = λ2.

In order to simplify the reading, hereafter, n denotes the dimension of their represen-

tation, instead of the numbers of integers of the n-tuples. In other words, we will use

notations nD Pythagorean vectors and Pythagorean (n+ 1)-tuples.

Similarly to the cases of n = 2, 3 in Sections 6.2 and 6.3, we de�ne Pn = {(i1, i2, . . . ,
in, λ) ∈ Zn+1| i21 + i22 + · · ·+ i2n = λ2} which is the set of Pythagorean (n+ 1)-tuples.

We represent each element of Pn by an nD Pythagorean vector de�ned as follows.
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Figure 6.14: Distance between 1000 vectors and their approximated Pythagorean
vector for a random Pythagorean tree of depth 10 (a), of depth 20 (b), of depth 50 (c),

of depth 100 (d), of depth 200 (e) and of depth 300 (f)
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De�nition 6.15. An nD Pythagorean vector is a vector v⃗ = (i1, i2, . . . , in)
⊤ associated

with the element (i1, i2, . . . , in, λ) of Pn.

The Euclidean norm of an nD Pythagorean vector is an integer. We denote by VPn the

set of nD Pythagorean vectors and we are going to prove the density of this set. The

following theorem is the generalization of Theorems 6.10 and 6.13.

Theorem 6.16. The set of nD Pythagorean vectors VPn is dense in Rn.

Since we already proved the case of n = 2, 3 in Theorems 6.10 and 6.13, we give the proof

for n ≥ 4 using the induction. The proof for n ≥ 4 is similar to the proof for n = 3. The

main idea is to construct an nD Pythagorean vector in a given nD convex cone.

Proof. 12. First we assume that the set VPn−1 is dense in Rn−1.

Let v⃗1, v⃗2, . . . , v⃗n be n linearly independent nD vectors. We denote by Cn the nD convex

cone de�ned by position vectors v⃗1, v⃗2, . . . , v⃗n.

Let v⃗′1, v⃗
′
2, . . . , v⃗

′
n be the projections of v⃗1, v⃗2, . . . , v⃗n on the hyper-plane H orthogonal

to the n-th axis, respectively. Because v⃗1, v⃗2, . . . , v⃗n are linearly independent in nD,

there is j ∈ {1, . . . , n} such that v⃗′1, v⃗
′
2, . . . , v⃗

′
j−1, v⃗

′
j+1, . . . , v⃗

′
n are linearly independent

in H. Thus, in H, the set of vectors v⃗′1, v⃗
′
2, . . . , v⃗

′
j−1, v⃗

′
j+1, . . . , v⃗

′
n de�nes an (n − 1)D

convex cone, which we denote by Cn−1. Because the set VPn−1 is dense in (n − 1)D,

there is an (n − 1)D Pythagorean vector u⃗′ that belongs to Cn−1 such that u⃗′ is associ-

ated with the Pythagorean n-tuple (i1, i2, . . . , in−1, λu⃗). We denote by u⃗ the nD vector

(i1, i2, . . . , in−1, 0)
⊤.

Let P be a 2D plane de�ned by the two directional nD vectors: (0, . . . , 0, 1)⊤ and u⃗ and

the point (0, . . . , 0)⊤. By the construction, P intersects Cn. This intersection is a 2D

convex cone, which we denote by C2 that belongs to P. Thanks to Theorem 6.10, there is

a 2D Pythagorean vector associated with a Pythagorean triple (j1, j2, λw⃗) that belongs

to C2.

As said in Remark 6.3, if we multiply all values of a Pythagorean triple by k ∈ Z,
the obtained triple is still a Pythagorean triple. Note that Remark 6.3 is still valid

for Pythagorean k-tuples even for k ≥ 3. Therefore, it is possible to design from a

Pythagorean triple and a Pythagorean n-tuple a Pythagorean (n + 1)-tuple as follows.

Let a, b ∈ Z∗ such that aλu⃗ = bj1. Then we obtain the Pythagorean (n + 1)-tuple

(ai1, ai2, . . . , ain−1, bj2, bλw⃗). By construction the vector u⃗ = (ai1, ai2, . . . , ain−1, bj2)
⊤,

associated with the Pythagorean (n + 1)-tuple (ai1, ai2, . . . , ain−1, bj2, bλw⃗), belongs to

the nD convex cone Cn.
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6.6 Approximation of an nD vector by an nD Pythagorean

vector

In this section, we explain how to approximate a given nD vector by an nD Pythagorean

vector. Our method is based on the algorithm proposed by Anglin in [15] that allows us

to approximate any angle α with a precision ϵ by a Pythagorean triple and its associated

angle θ. It uses the theorem, given in [32], that for each Pythagorean triple (i1, i2, λ),

there is a pair of integers (u, v) such that v < u, i1 = 2uv, i2 = u2− v2 and λ = u2 + v2.

Setting X = tan(α− ϵ)+ sec(α− ϵ) and Y = tan(α+ ϵ)+ sec(α+ ϵ), Anglin proved that

for every pair of integers (u, v) such that X < u
v < Y , the angle θ associated with the

Pythagorean triple generated by (u, v) approximates α such that α− ϵ < θ < α+ ϵ.

Based on [15], we can derive a naive method to approximate any nD vector by an nD

Pythagorean vector; its main idea, which is similar to the previous proof of density, is to

construct m 2D Pythagorean vectors to approximate an nD Pythagorean vector.

Let v⃗ = (r1, r2, . . . , rn)
⊤ be an nD real vector to be approximated by a Pythagorean

vector that is ϵ close 2. From v⃗, we de�ne (n − 1) 2D vectors v⃗2, v⃗3, . . . , v⃗n such

that v⃗2 = (r1, r2)
⊤, v⃗3 = (

√
r21 + r22, r3)

⊤, . . . , v⃗n = (
√
r21 + r22 + · · ·+ r2n−1, rn)

⊤. Each

vector v⃗i = (xi, yi)
⊤ is associated with an angle αi satisfying cosαi = xi

|v⃗i| . Using

the algorithm presented in [15] for each of the (n − 1) angles αi with a precision

ϵ, we obtain (n − 1) Pythagorean angles associated with the (n − 1) Pythagorean

triples (i2, j2, λ2), (i3, j3, λ3), . . . , (in, jn, λn). Now, we consider the Pythagorean vec-

tors associated with the n Pythagorean triples. Remark 6.3 allows us to generate

from the two �rst Pythagorean triples (i2, j2, λ2), (i3, j3, λ3), a Pythagorean quadruple

(k1i2, k1j2, l1j3 , l1λ3) with two integers k1, l1 such that k1(i2+j2) = l1i3. Similarly, from

this Pythagorean quadruple and the third Pythagorean triple (i4, j4, λ4), we can gener-

ate the Pythagorean quintuple (k1k2i2, k1k2j2, l1k2j3, l2j4, l2λ4) with two integers k2, l2

such that k2(k1i2 + k1j2 + l1j3) = l2i4. We repeat this combination operation between

a Pythagorean (i + 2)-tuple and a Pythagorean triple by adding a pair of integers ki

and li until obtaining a Pythagorean (n+ 1)-tuple. The nD vector associated with this

Pythagorean (n+ 1)-tuple is our approximation result of v⃗.

In [15], the author introduced ϵ that corresponds to the maximum angle between the orig-

inal vector and the Pythagorean vector that approximates it. With the above method,

to construct an nD Pythagorean vector that approximates a given vector by ϵ, we apply

(n − 1) times Anglin's method. An example of the method that approximates a 3D

vector is given in Figure 5.1. First we decompose the 3D vector v⃗ to approximate into

the two 2D vectors v⃗2 and v⃗3. v⃗2 and v⃗3 can be approximated by Anglin's method with
2Two vectors are ϵ close if the angle between them is smaller than ϵ.
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a precision of ϵ by two 2D Pythagorean vectors v⃗′2 and v⃗′3 that belong to the two 2D

convex cone illustrated in Figure 5.1 (a) and (b) respectively. Thanks to Remark 6.3, we

generate v⃗′ from v⃗′2 and v⃗
′
3, which is the approximation of v⃗, such that it belongs to the

3D convex cone represented in Figure 5.1 (c) forming a square pyramid. The minimum

circular cone including the square pyramid has the solid angle 2
√
2ϵ. Therefore, we can

deduce that to reach a precision of ϵ′ while approximating a 3D vector, we need to give

to Anglin's method a precision of ϵ ≤ ϵ′√
2
. In general, to reach a precision of ϵ′ while

approximating an nD vector, it is necessary to give to Anglin's method a precision of

ϵ ≤ ϵ′√
n
for each 2D vector to approximate.

The algorithm given in this section is fast because, according to Anglin, the computation

of a Pythagorean triple is done in constant time. Accordingly, we can give the approx-

imation of any nD vector in O(n) operations. However, we cannot give any bounds on

the size of integers that belong to the �nal Pythagorean (n+ 1)-tuple.

6.7 Conclusion

In this chapter, we introduce the Pythagorean n-tuple that are required for hinge angles

in 3D. We gave a constructive proof of the density on 3D Pythagorean vector and then

on nD Pythagorean vectors. This proof is required to show that for any given vector, we

can construct a Pythagorean vector that approximates the given vector.

The algorithm presented in Section 6.6 does not give an upper bound for the size of

integers composing the Pythagorean n-tuple. A future work is to give an upper bound.

For reaching this goal, we have two directions. One is to use a method that computes

all primitive Pythagorean n-tuples using a tree structure [36]. The other is to study the

repartition of nD Pythagorean vectors in the n dimensional space.
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Conclusion

As explained in the introduction, the main goal of this thesis was to improve the un-

derstanding of the rotations in the 2D and 3D discrete space and to develop new tools

to compute discrete rotations using only integers. To conclude this manuscript, we re-

sume the main result obtained during my thesis and introduce some future works and

developments.

7.1 Discrete rotation in 2D

During my thesis, we studied the particularity of the 2D rotations in discrete space. In

Chapter 2, we present a survey on 2D discrete rotations and the problems that arise

during computations. We show that each existing discrete rotation solves some of the

problems presented, but not all. We also present a study on rotations in the two other

regular grids: triangle and hexagonal grid. We show that the rotations in hexagonal

grid give better results than rotation in orthogonal grid regarding points lost and con-

nectivity. However, even if the results obtained are better, the properties of bijectivity

and transitivity are lost and the rotation is not discrete regarding our de�nition. Then

one of the future work will be to develop a new discrete rotation based on hexagonal

grid that improves the results on points lost and connectivity presented in Chapter 2. A

possible method to obtain such results is to mix the results obtained with a rotation on

hexagonal and orthogonal grids. Another possible method is to adapt the rotation by

circle to the hexagonal grid.

Another property, which is not discussed in this manuscript, is the conservation of topol-

ogy. To sum up, topology is the mathematical study of the properties that are preserved

through deformations, twisting, and stretching of objects. A co�ee cup and a donuts are
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topologically equivalent since they both have one hole but they are not equivalent to a

glass that has no hole. Obviously, Euclidean rotation keeps the topology of an object

and discrete rotation does not keep it since it is required to keep connectivity and to

not create holes while losing points. Another future work will be to design a discrete

rotation that ensures that the topology of object is kept during discrete rotations.

In Chapter 3, we studied hinge angles and their applications to discrete rotations. Hinge

angles represent the discontinuities of the rotations on discrete space. They allow the

design of a discrete rotation having the same results than the discretized Euclidean

rotation that is the Euclidean rotation applied on a discrete space. The 2D discrete

rotation using hinge angles is neither bijective or transitive. A future work is to try to

give these two properties to this rotation. A method based on multi-scale can give such

results. A promising idea is to divide the pixel into many little pixels with di�erent

weight. The discretization will be done regarding the number of each little pixel in the

normal pixel and their respective weight.

7.2 Discrete rotation in 3D

As we explained in the �rst section of Chapter 4, discrete rotations in 3D are not as well

studied as discrete rotations in 2D. There was at our best knowledge, no rotation that

is discrete under our de�nition. Then, in Chapter 4, we have designed a 3D discrete

rotation based on hinge angles. For this rotation, we have extended the hinge angles in

3D, de�ned the multi-grids that are the intersection between the rotation plane and the

3D half-grid and present a study on Pythagorean quadruple. This discrete rotation gave

the same results than the discretization of a 3D continuous rotation around a given axis.

From this discrete rotation, we have extended the research of a rotation done between

a pair of digital images in correspondence presented in Chapter 3 to the 3D discrete

space. The extension done in Chapter 5 searches for an admissible axis of rotation

and �x it in order to obtain admissible rotation angle regarding to this axis. However,

another approach is to obtain all admissible rotation axis and to obtain rotation angles

regarding to the rotation axis. To obtain such results, we have to compute the bound of

all admissible rotation axis for the given n pairs of points in correspondence. In 2D, such

bounds have been computed for an admissible center of rotation [31]. The extension of

this work to 3D is required to obtain the bound of the admissible rotation axis.

As explain in above section, a future work will be to design a discrete rotation that

keep the topology. Such a rotation is also required for 3D space. However, in 3D a new

artifact called tunnel, appear in 3D objects. Thus the simple extension of a 2D discrete

rotation that keep topology to 3D may not keep topology in 3D.
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In 2D we have presented a short study on rotation in di�erent regular grids. In 3D,

according to the Russian mathematician Fyodorov, the only regular polygon that tile

the plane is the cube. However, some other semi-regulars polygons tile the plan such

as truncated octahedron or rhombic dodecahedron. The shape of these two polygons is

closer to the shape of a sphere than the shape of the cube. Therefore, study the rotation

in 3D space tiled by one of these polygons may give interesting result.

Another future work will be to design a 3D rotation that extends the rotation by discrete

circles presented in Chapter 2. The rotation by discrete spheres will be a bijective 3D

discrete rotation. A study is required to determine which de�nition of discrete spheres

will give the best results. This de�nition requires at least to tile the 3D discrete space.

7.3 Discrete rotation in nD

Commonly, the rotation is required in 2D or in 3D. However, for some particular �elds,

rotations in higher dimension can be required such as color image analysis where 4D

rotations are needed or global visibility where 5D or 6D rotation are needed[42] 1. In

2D, the rotations are computed in a unique plane. In 3D, to each rotation is associated

a unique rotation axis and a unique plane, denoted by rotation plane in this thesis, to

compute the rotation. It is important to notice that in 2D and 3D, two given rotations

with di�erent parameters (angle of rotation and/or axis of rotation) will give di�erent

result. When the dimension is higher than three, this is not necessarily true. Indeed,

when the dimension n is higher than three, the number of angles required to perform a

rotation is ⌊n2 ⌋. Moreover, to perform a rotation in dimension n, we need to compute ⌊n2 ⌋
rotation planes that are associated to the ⌊n2 ⌋ angles. Two di�erent sets of rotation planes
and angles can de�ne the same rotation. Another remark, which is strongly related to

the previous one, is that in n dimensions, a rotation with a unique angle will leave (n−2)
stationary dimensions. Then in a planar rotation we have a 0D stationary dimension, in

other word a point, in 3D we have a stationary axis, in 4D we have a stationary plane

and so on.

In nD some continuous method to perform rotation are known such as method using

Cli�ord algebra. At our best knowledge, there exists no method to perform discrete

rotation in nD. The hinge angles and multi-grids presented in this thesis can be extended

to perform rotation in any dimension. However, some problems appear. Firstly, as

explain above, a rotation in nD must be decomposed in ⌊n2 ⌋ planar rotation. In 3D, we

know that this decomposition in unique, in nD the question is open. Another problem

is the uniqueness of representation of hinge angle by n-tuple of integers. In 2D and 3D,

1Reference are required.
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we have the proof that these representations are unique, but by carefully reading the

proof, we see that for dimension higher than four, the uniqueness disappear. The work

presented in [31] that must be extended to �nd admissible rotation axis in 3D must also

be extended in nD to �nd the set of ⌊n2 ⌋ admissible plane of rotation or at least one

set if the decomposition is not unique. We can conclude that the description of discrete

rotation methods in nD will requires lot of work.
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Appendix

This last chapter is a recall of all de�nitions used in this manuscript. Here the de�nitions

are not formal, just intuitive. It may help the reader to have a better understanding of

the notions or �nd a de�nition that he forgot.

4-connected: Imagine that you are the tower on a chess-board and that you are

wounded and can only move of one case. The four cases that you can reach are 4-

connected with the one you stand on.

6-connected: Imagine one dice with six faces. Now glue six dices to the six faces of the

�rst one. These six dices are 6-connected with the one in the middle.

8-connected: Imagine that you are the queen on a chess board and that you are

wounded and can only move of one case. The height cases that you can reach are

8-connected with the one you stand on. In other words, kings are wounded queens.

18-connected: Imagine a Rubik's cube. Now, we remove the six corner of the cube,

the ones with three colored stickers on each. The eighteen remaining little cubes that

you can see are the 18-connected cubes of the hidden one (that does not really exists if

you dismantle it).

26-connected: Imagine a Rubik's cube. The twenty-six little cubes that you can see

are the 26-connected cubes of the hidden one (that does not really exists if you dismantle

it).

Admissible rotation angles: Abbreviated as ARA, the admissible rotation angles are

the set of all angles which give the same result by rotation ...

Convex cone: Imagine a square based pyramid. If you remove the base and put a

powerful lamp, the light will describe an in�nite square pyramid which can be seen as a

convex cone.
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Convex hull: Imagine a land containing a �nite number of trees. You attach a rope to

the most eastern tree, surround all the trees with the rope and attach again the rope to

the same tree. The rope is the convex hull of the trees.

Convexel: Take a cube, slice it one time. The new surface obtained is a convexel. This

surface will contain 3, 4, 5 or 6 edges depending on how you sliced the cube.

Degenerated Pythagorean n-tuple: If a Pythagorean n-tuple contains m zero, then

the (n −m)-tuple which is the Pythagorean n-tuple without the zero is a Pythagorean

(n−m)-tuple.

Discrete geometry: It is a sub�eld of mathematics. Simply put, Discrete geometry is

the part of mathematics considering only �nite set. Instead of considering an in�nity of

numbers, we just select some of these numbers such as all the integers smaller than one

billion and try to �nd the geometrical properties of this set.

Discrete grid: Can be seen as a computer screen. On a continuous plane, there is

always an in�nity of points between two points. On a discrete grid, there is a �nite

number of points between two points. If you consider two neighbor pixels on a computer

screen, there is no pixel between them. This di�erence implies one of the main issue in

computer science.

Discrete point: A point in any dimension with integer coordinates. On a computer

screen, it can be considered as a pixel.

Floating numbers: In computer science, they are an approximation of the real num-

bers. In math, there are di�erent sets of numbers, the two most used sets are natural

numbers and real numbers. In computer science, it is possible to represent natural num-

bers but, since most of the real number have an in�nity of digit after the point, they

cannot be exactly represented in the memory of a computer. Thus, we use the �oating

numbers instead. The di�erence between a real number and its �oating approximation

necessarily implies errors during computations.

Grandfather (tree): In computer science, a tree look like a family-tree. The notion of

grandfather is exactly the same.

Half-grid: In any dimension, the half-grids are the union of all hyper-plans of equations

x = i + 1
2 where x represents one of the dimensions and i ∈ Z. The half-grid, is the

border between the hypercube of dimension n which tiles the space. On a paper, the

half-grid can be compared to the line on a graph paper.

Multi-grid: In any dimension, the multi-grids are the intersection between the half-grid

and a given plane.
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Pixel: Pixels can be seen in the discrete space as points in the continuous space. On a

chess board, the pixel will be a black or white square, since a piece belongs to only one

case, no matter where it is. On a computer screen, pixels are the smallest points on the

screen.

Points in correspondence: Two points from two di�erent digital images (in any di-

mension) are said to be in correspondence if they represent the same things in both

digital images. For two digital images of the Ei�el tower, the two pixels which represent

the top of the tower in both images are said to be in correspondence.

Prime: A set S = (i1, i2, . . . , in) is prime if gcd(i1, i2, . . . , in) = 1. In other words, a set

of element is prime, if there is no element that divide each element of the set.

Pythagorean angles: An angle is Pythagorean if its sine and its cosine are ratio-

nal. Each Pythagorean angle is associated to a Pythagorean triple. They are useful to

compute rotations using only integers.

Pythagorean n-tuples: Read �rst Pythagorean triples. Instead of a right triangle in

the plane, we imagine a right triangle in the (n−1)D space. We then add n−3 integers to
the triple to obtain a n-tuples of integers i1, i2, . . . , in−1, λ such that i21+ i

2
2+ · · ·+ i2n−1 =

λ2.

Pythagorean quadruples: Read �rst Pythagorean triples. Instead of a right triangle

in the plane, we imagine a right triangle in the 3D space. We then add one integer to

the triple to obtain a quadruple of integers i1, i2, i3, λ such that i21 + i22 + i23 = λ2.

Pythagorean triples: Firstly, we have to remember our old mathematic classes with

Pythagoras of Samos[35]. Hypotenuse and so on ... So if the three sides of a right triangle

(Pythagorean triangle) have integer norms, then the three norms form a Pythagorean

triple. In other words, each triple of integers i1, i2, λ such that i21 + i22 = λ2 is a

Pythagorean triple.

Pythagorean vectors: Consider a Pythagorean triple, the associated Pythagorean

vector is the vector with the coordinates (i1, i2)⊤ and with the norm λ.

Rational computation: Equivalent to integer computation since a rational number

can be seen as a pair of integers.

Tree: It is a structure mostly used in computer science in order to represents data. Like

a real tree, it has a root and many branches denoted by nodes. A node belongs to only

one branch but one branch can have many nodes.

Topology: It's the study of the spatial properties of objects under continuous deforma-

tions. Roughly speaking, if we consider an object done with modeling clay, we can scratch



Appendix 100

it, extend it without modifying its topology. However if we cut it, create a hole, etc the

topology is modi�ed. A donut and a co�ee cup are topologically equivalent since they

both have only one hole. According to [43], topology is a useless branch of mathematics

and computer science.

Voxel: Read �rst Pixel. Remember the Lego toys. Consider an object made only by

using smallest colored cubes. Each cube in the object can be seen as a voxel. They are

the smallest and indivisible parts of the object (except if you introduce a three year old

child, but we do not consider bugs in this manuscript).
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