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Abstract

Autonomous navigation in unknown environments has been the focus of attention

in the mobile robotics community for the last three decades. When neither the loca-

tion of the robot nor a map of the region are known, localization and mapping are

two tasks that are highly inter-dependent and must be performed concurrently. This

problem, is known as Simultaneous Localization and Mapping (SLAM).

In order to gather accurate information about the environment, mobile robots are

equipped with a variety of sensors (e.g. laser, vision, sonar, odometer, GPS), that to-

gether form a perception system, that allows accurate localization and reconstruction

of reliable and consistent representations of the environment. Vision sensors give

mobile robots relatively cheap means of obtaining rich 3D information on their en-

vironment, but lack the depth information that laser range finders can provide. We

believe that a perception system composed of the odometry of the robot, an omnidi-

rectional camera and a 2D laser range finder provide enough information to solve the

SLAM problem robustly.

Nowadays, laser range finders have replaced sonars when possible because of its

superior efficacy in estimating distances accurately and their better signal to noise

ratio. Many techniques have been developed to make the most of this type of sensor

for solving the SLAM problem. Since a laser scan directly provides metric informa-

tion of the scene, the localization problem can be stated in terms of an odometry-

based method where the incremental displacement is found by computing the best

rigid transformation that matches two successive scans. To match two scans it is

necessary to link the individual measurements in one scan with the corresponding

measurements in the other scan.

It is a well known fact that geometrical structures such as lines or planes char-

acterize well a human-made environment. When using an omnidirectional camera,

vertical lines in the scene (e.g. walls, facades, doors, windows) project as quasi-radial

lines onto the image. A Hough transform was used to detect prominent lines from

a binary edge image. Since the camera and laser are calibrated, the image center

(i.e, where all radial lines intersect) is available and it is possible to project the laser

trace onto the omnidirectional image. Subsequently, at each intersection point be-

tween the laser trace and a radial line, a depth measurement can be determined

which then fully characterizes the vertical lines in the 3D scene. Furthermore, un-
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der the planarity assumption, the laser scan can be shifted along the vertical lines to

predict where a virtual laser trace –corresponding to the floor– should project in the

omnidirectional image. Due to calibration errors, the predicted trace does not exactly

match the real boundary of the floor observed in the image. In practice, the neighbor-

hood of the predicted trace is searched for the closest element of contour detected in

the image

In this context we propose an appearance-based approach to solve the SLAM prob-

lem and reconstruct a reliable 3D representation of the environment. This approach

relies on a tightly-coupled laser/omnidirectional sensor in order to tackle the draw-

backs of both sensors.

Firstly, a novel generic robot-centered representation that is well adapted to the

appearance-based SLAM is proposed. Central omnidirectional cameras can be mod-

eled using two consecutive projections: a spherical projection followed by a perspective

one. An omnidirectional image can thus be mapped onto a sphere by means of an in-

verse projection. Therefore, the augmented spherical view is constructed using the

depth information from the laser range finder and the floor plane, together with lines

extracted from the omnidirectional image. In other words, each pixel of the spherical

view is associated with a brightness function and is augmented with the depth of the

associated 3D point (when data is available).

Secondly, our appearance-based localization method minimizes a non-linear cost

function directly built from the augmented spherical view described before. The min-

imization uses a robust M-estimator in order to reject the outliers due to illumination

changes, moving objects or occlusions in the scene. However, iterative methods suffer

from convergence problems when initialized far from the solution. This is also true

for our method where an initialization sufficiently close to the solution is needed to

ensure rapid convergence and reduce computational cost. A Enhanced Polar Scan

Matching algorithm is used to obtain this initial guess of the position of the robot to

initialize the algorithm.
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Résumé

Depuis trois décennies, la navigation autonome en environnement inconnu est une

des thématiques principales de recherche de la communauté robotique mobile. Lorsque

ni la localisation du robot, ni la cartographie ne sont connues, ces deux taches devien-

nent extrêmement interdépendantes et doivent être accomplies simultanément. Ce

problème est connu sous le nom de SLAM (Simultaneous Localization And Mapping).

Pour obtenir des informations précises sur leur environnement, les robots mobiles

sont équipés d’un ensemble de capteurs (laser, vision, sonar, odomètre, GPS,...). Cette

combinaison de capteurs appelé système de perception leur permet d’effectuer une lo-

calisation précise et une reconstruction fiable et cohérente de leur environnement.

Les capteurs de visions permettent l’acquisition d’informations 3D riches à un coût

réduit, mais ils leurs manquent les informations de profondeur qu’un télémètre laser

apporte. Nous pensons qu’un système de perception composé de l’odométrie du robot,

d’une camera omnidirectionnelle et d’un télémètre laser 2D est suffisant pour ré-

soudre de manière robuste les problèmes de SLAM.

Désormais, les télémètres lasers ont remplacé lorsque c’était possible les sonars

car ils fournissent des mesures de distances plus précises et un meilleur rapport

signal/bruit. De nombreuses solutions ont été mises en place pour résoudre les prob-

lèmes de SLAM avec ce type de capteur. Puisque le balayage fournit directement les

données métriques de la scène, le problème de localisation peut être reformulé en

un problème d’odométrie où le déplacement est déterminé en estimant la meilleure

transformation rigide de mise en correspondance de 2 balayages successifs. La corre-

spondance entre deux balayages est nécessaire pour lier les mesures indépendantes

d’un balayage avec les mesures associés dans le balayage précédent.

Il est admis que les formes géométriques simples telles que les lignes ou les plans

permettent de bien représenter les environnements construits par l’homme. Sur une

caméra omnidirectionnelle, les lignes verticales de la scène (les murs, les façades, les

portes, le fenêtres,...) sont projetés en ligne quasi-radiale sur l’image. Une transfor-

mation de Hough est utilisée pour détecter les lignes principales à partir de l’image

binaire. Comme nous utilisons une caméra et un laser calibrés, le centre de l’image

(où toute les lignes radiales se croisent) est connu et il est possible de projeter les

données du laser sur l’image omnidirectionnelle. Dans une seconde phase, à chaque

intersection entre une coupe laser et une ligne radiale, une mesure de la profondeur
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peut être effectuée pour définir complètement la représentation des lignes dans la

scène 3D.

Si on fait l’hypothèse d’environnement planaires par morceaux, on peut effectuer

une translation des données du balayage laser le long des lignes verticales pour déter-

miner où les traces (virtuelles) du laser correspondant au sol doivent se projeter dans

l’image omnidirectionnelle. Cette prédiction de trace ne correspond pas tout à fait

aux limites réelles du sol à cause des erreurs de calibration. En pratique, on corrige

cette erreur par une recherche de l’élément de contours de l’image le plus proche de

l’estimation de trace laser.

Dans ce contexte, nous proposons une approche appearance-based pour résoudre

les problèmes de SLAM et effectuer une reconstruction 3D fiable de l’environnement.

Cette approche repose sur un couplage serré entre les capteurs laser et omnidirec-

tionnel qui permet de compenser leurs imprécisions.

D’une part, nous proposons une représentation originale et générique de l’espace

pour les robots bien adapté aux méthodes de type appearance-based pour le SLAM.

Le centre des caméras omnidirectionnelles peut être modélisé à partir de deux pro-

jections consécutives: une projection sphérique suivie d’une projection perspective.

L’image omnidirectionnelle peut ainsi être projeté (mise en correspondance) sur une

sphère grâce à une projection inverse. Ainsi, la vue augmenté sphérique est constru-

ite en utilisant les mesures de profondeur du télémètre laser et la position du sol, as-

socié aux lignes extraient de l’image omnidirectionnelle. En d’autres termes, chaque

pixel de la vue sphérique est associé à une fonction de luminosité et est augmenté en

utilisant la profondeur du point 3D associé (quand il est disponible).

D’autre part, notre méthode de localisation de type appearance-based minimise

une fonction de coût non-linéaire directement construite à partir de la vue sphérique

augmentée décrite précédemment. Cette minimisation utilise un M-estimateur ro-

buste permettant de rejeter les points aberrants à cause des changements d’illumination,

des objets mobiles ou des occlusions qui peuvent survenir dans la scène. Cependant

ces méthodes itératives souffrent de problèmes de convergence quand l’initialisation

est loin de la solution. Ce problème est aussi présent dans notre méthode où une

initialisation suffisamment proche de la solution est nécessaire pour s’assurer une

convergence rapide et pour réduire les coûts de calcul. Pour cela, on utilise un algo-

rithme de PSM amélioré pour prédire la position initiale du robot.
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Notations and Acronyms

General

M : matrix M

v : vector v

R : rotation matrix

t : translation vector

T : Euclidean transformation

M⊤ : the transpose of the matrix M

‖x‖ : L2 norm of x

F : a reference frame

x× y : cross product between x and y

[x]× : skew-symmetric matrix associated to x, [x]× y = x× y

M+ : pseudo-inverse of M, M+ = (M⊤M)−1M⊤

0m×n : a matrix with m lines and n columns with zero values

In : the identity matrix of size n× n

Projective geometry

X = (X,Y, Z) : a 3D point

X s = (Xs, Ys, Zs) : a point belonging to the unit sphere (‖X s‖=1)

p = (u, v) : coordinate of a point in the image

m = (x, y) : coordinate of a point on the normalised plane

Π : function that projects a 3D point to the image plane

K : camera projection matrix

ℏ : function projecting a 3D point to the normalized plane

for an omnidirectional sensor

L : 2D or 3D line

I : an image
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Acronyms

FOV : Field of View

SLAM : Simultaneous Localization and Mapping

CML : Concurrent Map-building and Localization

GPS : Global Positioning System

INS : Inertial Navigation System

GNSS : Global Navigation Satellite System

PL : Pseudolite

IMU : Inertial Measurement Unit

AVL : Absolute Visual Localization

VO : Visual Odometry

LSM : Laser Scan Matching

PSM : Polar Scan Matching

EPSM : Enhanced Polar Scan Matching

ToF : Time of Flight

SIFT : Scale-Invariant Feature Transform

RANSAC : RANdom SAmple Concensus

ICP : Iterative Closest Point

IMRP : Iterative Matching Range Point

SSD : Sum of Squared Differences

IDC : Iterative Dual Correspondence

EKF : Extended Kalman Filter

UKF : Unscented Kalman Filter

KF : Kalman Filter

EIF : Extended Information Filter

IF : Information Filter

JCT : Joint Compatibility Test

RJC : Randomized Joint Compatibility

UPM : Unified Projection Model

ESM : Efficient Second-order Minimization

D&C : Divide and Conquer

NNG : Nearest Neighbour Gating

PF : Particle Filters

EM : Expectation Maximization

DOF : Degree Of Freedom

viii



Contents

Acknowledgements i

Abstract iii

Résumé v

Notations and Acronyms vii

Contents ix

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Anis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Hannibal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Detailed plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 SLAM: State of the Art 11

2.1 A Survey of SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Problem Statement and Notations . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Probabilistic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Recursive Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Iterative Closest Point (ICP) . . . . . . . . . . . . . . . . . . . . . . 24

ix



CONTENTS

2.4.4 Sum of Squared Differeces (SSD) . . . . . . . . . . . . . . . . . . . 25

2.5 The Representations of the Environment . . . . . . . . . . . . . . . . . . 26

2.5.1 Metric Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Topological Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Hybrid Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Proprioceptive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Wheels Encoders (Odometry) . . . . . . . . . . . . . . . . . . . . . 31

2.7 Exteroceptive Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Laser Range Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.2 Vision Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Multi-sensor Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 2D Laser-Based SLAM 43

3.1 Laser Scan Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Polar Scan Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Scan Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Scan Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Translation and Orientation Estimation . . . . . . . . . . . . . . . 50

3.3 Local and global maps with SLAM . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results of Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Tightly-Coupled Sensors Fusion 61

4.1 Omnidirectional vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Central Catadioptric Models . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Quadric projection vs Sphere projection . . . . . . . . . . . . . . . 67

4.2.2 Unified Projection Model . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Inverse Unified Projection Model . . . . . . . . . . . . . . . . . . . 70

4.2.4 Calibration Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Omnidirectional Lines Parametrization . . . . . . . . . . . . . . . . . . . 72

4.4 Omnidirectional feature extraction . . . . . . . . . . . . . . . . . . . . . . 73

4.5 3D Vertical line extraction from omnidirectional images and laser scans 77

4.6 Floor detection from omnidirectional images and laser scans . . . . . . . 80

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Appearance-Based SLAM 83

5.1 A survey of Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Feature-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Direct Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Efficient Second Order Minimization (ESM) . . . . . . . . . . . . 87

x



CONTENTS

5.4 A novel generic robot-centered representation: Augmented Spherical

View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Efficient hybrid laser/vision appearance-based localization . . . . . . . . 90

5.5.1 Sphere-to-sphere mapping . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 Minimization of the cost function . . . . . . . . . . . . . . . . . . . 92

5.5.3 Initialization step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions and Perspectives 99

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix 103

A The Kalman filter 105

A.1 Discrete Kalman Filter (KF) . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . . . . . . . . 106

B Fundamentals of Probability Theory 109

B.1 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.1 Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.3 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.4 Marginalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1.5 Law of Total Probability . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1.6 Markov Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.2 Probability Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Fundamentals of 3D motion 113

C.1 Rigid body Motion: Definitions . . . . . . . . . . . . . . . . . . . . . . . . 113

C.1.1 Representing Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.1.2 Representing Pose and Structure . . . . . . . . . . . . . . . . . . . 114

C.2 Velocity of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2.1 Velocity Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2.2 Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D Robust Estimation 119

D.1 Robust M-Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E Publications of the Author 121

xi



CONTENTS

Bibliography 123

xii



List of Figures

1.1 Overview of our methodology. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Anis robot experimental testbed. . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Hannibal robot experimental testbed. . . . . . . . . . . . . . . . . . . . . 8

2.1 Notations for the SLAM problem [Mei (2007)] . . . . . . . . . . . . . . . . 15

2.2 Bearing-Only SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Kalman Filter Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 ICP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 ICP alignement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Metric map with lines as features . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Occupancy Grid Map of the robot surroundings . . . . . . . . . . . . . . . 29

2.8 Topological Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Differential drive system. 2.9(a) Hannibal. 2.9(b) Anis. . . . . . . . . . . 32

2.10 Kinematic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Triangulation principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Time of flight methods. 2.12(a) Impulse time of flight. 2.12(b) Phase

difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Laser range finders mounted on Anis and Hannibal respectively. 2.13(a)

Accurange 4000. 2.13(b) Sick LD-LRS1000. . . . . . . . . . . . . . . . . . 36

2.14 Laser scan in polar coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Basic Models. 2.15(a) Pinhole camera model, 2.15(b) Thin lens model. . 38

2.16 Fish-eye lens. 2.16(a) Fish-eye converter Nikon FC-E8. 2.16(b) Image

Fish-eye [Source: http://www.nikonweb.com/fisheye/] . . . . . . . . . . . 39

2.17 Construction of a Catadioptric System . . . . . . . . . . . . . . . . . . . . 40

2.18 Convex Mirrors 2.18(a) Hyperbolic Mirror. 2.18(b) Parabolic Mirror. . . . 41

3.1 Laser Scan Matching algorithm. 3.1(a) Reference (blue) and current

scan (red). 3.1(b) Scan matching algorithm iterations. 3.1(c) Current

scan aligned (green) to the reference scan. . . . . . . . . . . . . . . . . . . 45

3.2 Raw polar laser scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



LIST OF FIGURES

3.3 Scan Projection. 3.3(a) Projection of measured points taken at C to loca-

tion R. 3.3(b) Points projected to R shown in polar coordinates. [Source:

Diosi and Kleeman (2005)] . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Synthetic data: current scan (green) and reference scan (red) prior to

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Convergence sequence of a simulated room . . . . . . . . . . . . . . . . . 53

3.6 EPSM result: Matched current scan (green) and reference scan (red) . . 54

3.7 Real scans: current scan (green) and reference scan (red) prior to match-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Convergence sequence of real data scans . . . . . . . . . . . . . . . . . . . 55

3.9 EPSM result: Matched current scan (green) and reference scan (red) . . 55

3.10 Scan Matching with median filter . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Scan Matching with rejection of local artifacts algorithm . . . . . . . . . 57

3.12 Global map obtained by EPSM-SLAM algorithm . . . . . . . . . . . . . . 57

3.13 Global map of Borel building obtained using visual data [source: Joly

(2010)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.14 Global map obtained by SLAM together with the original and recom-

puted position of the robot at several key instants. . . . . . . . . . . . . . 58

4.1 Two examples of caustics: A caustic caused by the refraction of a ray on

the sphere and the bright light pattern inside the ring is the caustic for

this scenario. [source: Nvidia Gelato Image Gallery] . . . . . . . . . . . . 64

4.2 Catadioptric Sensors with a Single Viewpoint . . . . . . . . . . . . . . . . 65

4.3 Quadric projection vs sphere projection . . . . . . . . . . . . . . . . . . . 67

4.4 Unified Projection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Images used for the calibration of the camera . . . . . . . . . . . . . . . . 71

4.6 Association between a calibration grid and the sensors . . . . . . . . . . 72

4.7 Laser data projected on omnidirectional images after calibration . . . . 72

4.8 Projection of a 3D line in the image. . . . . . . . . . . . . . . . . . . . . . 73

4.9 Canny edge detector: 4.9(b) Performance in a corridor. 4.9(d) Perfor-

mance in the robotic hall. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10 Randomized Hough Transform and circle detection . . . . . . . . . . . . 76

4.11 Detection of vertical lines and the corresponding laser measurements. . 77

4.12 Extraction of 3D lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Environment with 3D lines . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Floor detection. 4.14(a) Line extraction and Laser re-projection shifted

at floor level. 4.14(b) Fire-extinguisher breaks the planarity hypothesis. 80

4.15 Floor Correction. 4.15(a) Corrected floor detection. 4.15(b) Blue trace:

Laser Scan shifted to the floor, yellow trace: Corrected floor detection . . 81

5.1 ESM visual tracking. A template is reliably be tracked even under illu-

mination changes. [source: Malis (2007)] . . . . . . . . . . . . . . . . . . . 87

xiv



LIST OF FIGURES

5.2 Augmented spherical view: at each pixel on the unit sphere is associ-

ated with a grey level intensity and the corresponding depth of the 3D

point. 5.2(a) Grey levels on the unit sphere. 5.2(b) Depth spherical image. 89

5.3 Sphere to Sphere mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 2D global maps obtained with the same laser data. 5.4(a) Map with

EPSM pose estimation. 5.4(b) Map with spherical pose estimation. . . . 94

5.5 Images used for pose estimation. 5.5(a) Reference spherical image. 5.5(b)

Current warped image. 5.5(c) Estimated rejection weights. 5.5(d) Final

error. 5.5(e) Weights Zoom. 5.5(f) Error zoom. . . . . . . . . . . . . . . . . 95

5.6 3D reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xv



LIST OF FIGURES

xvi



List of Tables

2.1 Sources of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Conic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Unified Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Calibration results for both mirrors . . . . . . . . . . . . . . . . . . . . . . 71

xvii



LIST OF TABLES

xviii



List of Algorithms

1 Segment Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Affine transformation for a translation (x, y) and a counterclockwise

rotation around the origin by an angle θ. . . . . . . . . . . . . . . . . . . . 51

3 Pseudocode of the procedure used to incrementally build a global map

from a sequence of laser range scans with odometry information. . . . . 52

xix



LIST OF ALGORITHMS

xx



"A man who moves moun-

tains starts by carrying away

small stones."

Confucio

1
Introduction

Just a few decades ago, when thinking about robots, C-3P0 and R2-D2 as well as

Assimov stories surely were the pictures that came to the mind of the common people.

Nowadays scientific reality, in the form of the well known mars rovers [Stone (1996)],

assembly line robotic arms or Honda showroom robots, is for sure inside those same

minds. It can be expected that, in the near future, robots will be as common to our

lives as personal computers are right now.

Researchers have been intensely focused on creating machines that are capable

of performing –in an autonomous way– tedious or dangerous tasks that used to be

done by humans. Indeed, since the first developments in the 60’s, mobile robots rep-

resent one of the major challenges for researchers: to design and create an integrated

robotic system able to move and act, safely and independently in an a priori unknown

dynamic environment of large dimension.

Mobile robots can be classified based on the environment in which they travel and

based on the device that they use to move. Based on the environment in which they

move there are the mobile robots oriented to human-made indoor environments and

the mobile robots oriented to unstructured outdoor environments. The last one can

include flying-oriented robots, space-oriented robots and underwater robots. Based

on the device they use to move we can find the legged robots, wheeled-based robots

and the ones with tracks.
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CHAPTER 1. INTRODUCTION

1.1 Motivations

A key issue in mobile robotics is to provide robots the ability to navigate in an au-

tonomous way in unknown environments based only on their perception. Thus, a

mobile robot must be equipped with a perception system capable of providing accu-

rate information of its current location and its surroundings, so that the robot is able

to reconstruct a reliable and consistent representation of the environment. There

are two interdependent tasks that any mobile robot has to solve: localization and

mapping. When neither the location of the robot nor the map are known, both tasks

must be performed concurrently. This problem, known as Simultaneous Localization

and Mapping (SLAM), has been largely studied since the seminal work of Smith and

Cheeseman (1986) and Smith et al. (1986), and is closely related to the development

of sensor technologies.

Understanding the environment from sensor readings is a fundamental task in

mobile robots. The sensors embedded on the mobile robot can be classified as pro-

prioceptive sensors and exteroceptive sensors. These sensors provide different and

complementary information about the environment, which is why nowadays, mobile

robots are equipped with several sensor systems to avoid the limitations when only

one sensor is used to reconstruct the environment. Information from different sensors

measuring the same feature, can be fused to obtain a more reliable estimate, reducing

the final uncertainty on the measurement. Sensor fusion can be done at different lev-

els: loose integration or tight integration. The term integration, can be defined as the

fusion of two separate entities, resulting in a new entity. In loose integration –also

called loose coupling– the state estimations provided by each independent sensor are

fusioned. On the other hand, tight integration –also called tight coupling– consist in

directly fuse the outputs (raw data) of each sensor. Loose and tight integration have

been widely studied for many years mostly using Inertial Navigation Systems (INS)

and Global Navigation Satellite Systems (GNSS) for efficient autonomous navigation

purposes. Greenspan (1996) in his work on INS/GPS describes the loose and tight

integration architectures.

It is well known that localization methods based only on proprioceptive sensors

give bad results due to modeling approximations (e.g., rolling without slippage,...)

which are not satisfied and dead reckoning drift. Various techniques to solve the

SLAM problem using laser range finders have been extensively studied. The infor-

mation provided by laser range finders can be used not only to obtain a more accurate

position estimate, but also to measure the distance to nearby objects. Localization

schemes based on laser scan matching involve computing the most likely alignment

between two sets of slightly displaced laser scans, requiring an initial estimate of

the pose that can be obtained from the robot odometry. While laser-based schemes

perform reasonably well in practice, the use of 2D laser alone limits SLAM to pla-

nar motion estimation and does not provide sufficiently rich information to reliably
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1.1. MOTIVATIONS

identify previously explored regions. Vision sensors are a natural alternative to laser

range finders because they provide richer perceptual information and enable 6 de-

grees of freedom motion estimation.

On the one hand, standard cameras only have a small field of view (typically

between 40◦ and 50◦) and are easily affected by occlusion. On the other hand, omni-

directional cameras provide full 360◦ field of view, which makes easier to recognize

previously observed places whatever the orientation of the robot is. Furthermore, in

order to avoid the limitations due to planar projections, images captured by these

cameras can be uniquely mapped to spherical images [Geyer and Daniilidis (2000)].

Nevertheless, vision alone does not provide the depth information that a laser range

finder does, which is crucial for solving the localization problem.

For the foregoing reasons, we believe that a perception system composed of the

odometry of the robot, an omnidirectional camera and a 2D laser range finder provide

enough information to solve the SLAM problem robustly. We also believe that using

directly the data as it come out from the sensors have a lot of advantages, which is

why we choose a tight coupled approach for our experiments. In fact, complementary

information from cameras (panoramic or omnidirectional) with the depth information

acquired by a laser range finder have gained increasing attention in the last decade.

Clerentin et al. (2000) described a localization method using the combination of

a low-cost laser range finder and an omnidirectional vision system called SYCLOP.

However, this vision system is composed by a conic mirror and a CDD camera, there-

fore not satisfying the single viewpoint constraint. The low-cost laser range is limited

to 5-6 meters and in order to achieve a correct localization of the robot, a theoretical

map of the environment is given. In the work of Cobzas et al. (2003), the percep-

tion system is composed of a laser range finder and a CDD camera mounted in a

pan-tilt unit to rotate the camera in order to build a cylindrical or panoramic image

model. The proposed localization algorithm uses lines as features, which have to be

selected manually. Even more, an initial position and the height difference between

the model location and the robot have to be estimated at the beginning by manually

selecting corresponding feature points. On the other hand, Biber et al. (2004) are

more interested on bulding visually realistic maps using a perception system com-

pose by a laser scanner and a CDD camera with an omnidirectional lens attachment.

His method consist of manual, semi-automatic and automatic parts. Recording the

data and calibration is done manually by teleoperation, and extraction of the walls

is done semi-automatically with an user interface. The rest of the processing is fully

automatic.

In contrast to known methods, the schema proposed in this thesis is a fully auto-

matic process to be discussed in detail in the following section.

3



CHAPTER 1. INTRODUCTION

1.2 Scope of the Thesis

Goal and Methodology

Based on the discussion presented on the previous section, many methods for local-

ization and mapping have been proposed in the last decades. However, it is not an

easy task to correctly obtain a reliable estimation of the current location of the robot,

while at the same time, obtain an accurate enough map of the navigation area. Be-

sides, fully automated processes permitting a higher level 3D representation of the

environment are very rare. These two requirements have motivated our research in

the problems of localization and the automatic construction of a global map of the

navigation area of the robot.

The research work presented in this thesis focuses in wheeled-based mobile robots

that navigate in human-made indoor environments. More precisely, we are inter-

ested on a multi-sensor perception, localization and mapping. The perception system

for this work is constituted by odometry as proprioceptive sensor; an omnidirectional

camera and a 360◦ 2D laser range finder as exteroceptive sensors. The aim of this

thesis is to contribute towards gaining a better understanding of the conception and

use of hybrid sensors to solve the SLAM problem. It also proposes concrete solutions

for improving 2D laser-based SLAM and perceptually rich 3D textured map repre-

sentation.

In this context we face the simultaneous mobile robot localization and map build-

ing problem reconsidering the global approach proposed by Biber et al. (2004). The

major difference is that the process we describe is fully automated and does not re-

quire manual post-processing by an operator. The methodology used in this work is

shown in Figure 1.1.

It is important to remark some assumptions that are considered throughout this

thesis:

• It is assumed that the robot navigates on a horizontal, even surface, which is

referred to as the motion plane.

• It is assumed that the robot navigates in an static environment, which can be

accurately represented by a set of vertical planes perpendicular to the motion

plane. However, thanks to the robustness of our method, dynamic objects in the

scene can be detected and rejected as perturbations.

• It is assumed that the sensors –laser and omnidirectional camera– are correctly

calibrated.

• It is assumed that the distance between the sensors and the floor is approxi-

mately known (which requires the plane to be horizontal).
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Figure 1.1: Overview of our methodology.

Main Contributions

The main contributions of this thesis are:

1. The generalization of the Polar Scan Matching technique proposed by Diosi and

Kleeman (2005). Our implementation is parametrized so that it can deal with

lasers with arbitrary angular resolution and bearing range. In addition, in-

stead of just returning the pose estimate at the moment the algorithm stops,

our implementation keeps record of the estimate with the minimum error and

returns it as a result. This generalization will be called the Enhanced Polar

Scan Matching (EPSM).

2. The introduction of an original composite sensor approach that takes advantage

of the information given by an omnidirectional camera and a laser rangefinder

to efficiently solve the SLAM problem. We developed a procedure to extract ver-

tical lines from omnidirectional images, while at the same time estimating their

3D positions using laser information. This lines were used to build a 3D wired

representation of the environment. This approach was published in the IEEE

International Conference on Robotics and Automation (ICRA 2010) [Gallegos

and Rives (2010)]. An extended version is presented in chapter 3.

3. The improvement of the composite sensor mentioned above into a hybrid laser/vision

5



CHAPTER 1. INTRODUCTION

appearance-based approach in order to obtain a more reliable 3D odometry ro-

bust to illumination changes. Furthermore, a complete set of 3D points can

be easily mapped to reconstruct a dense and consistent representation of the

environment. This approach was published in the IEEE International Confer-

ence on Intelligent Robots and Systems (IROS 2010) [Gallegos et al. (2010)]. An

extended version is presented in chapter 4.

All approaches introduced in this work have been validated with two mobile plat-

forms for indoor environments: Anis and Hannibal. These two platforms are de-

scribed in more detail in the next section. The indoor environments used in this work

are part of our institute building. They include scenarios found in typical office-like

environments such as places that look the same (e.g. corridors) and people moving

around.

1.3 The Platforms

For the work reported here, two mobile platforms were used: Anis (see Figure 1.2)

and Hannibal (see figure 1.3) for office-like indoor environments. Both robots are

part of the experimental testbeds at AROBAS project in INRIA Sophia Antipolis.

The relevant characteristics of each platform are mentioned in the following.

1.3.1 Anis

Anis is the first robot platform that we used in our experiments. Anis is equipped with

three types of sensors: an AccuRange 4000 2D laser range finder, a catadioptric cam-

era and proximity sensors. Using Anis, sequences of odometry, laser and vision data

were taken. The laser with which Anis is equipped, is composed of a laser telemeter

with a rotating mirror that allows measurements of points on 360◦, except for an oc-

clusion cone of approximately 30◦ caused by the assembly of the mirror. The telemeter

computes distances using an intermediate technology between frequency modulation

and amplitude modulation. The range finder reaches a maximal frequency of 50Hz

and is capable of acquiring 2000 data points in 40ms, which is more than enough for

real-time applications. The perspective camera is a progressive-scan CCD camera

(Marlin F-131B) equipped with a telecentric lens and a parabolic mirror (S80 from

Remote Reality).

1.3.2 Hannibal

The most recent robot acquire by AROBAS project is Hannibal, from Neobotix mobile

platform (MP-S500). Hannibal is equipped with a Sick LD-LRS1000 laser, capable of

collecting full 360◦ data. The laser head can revolve with a variable frequency ranging

from 5Hz to 10Hz and the angular resolution can be adjusted up to 1.5◦ at multiples

of 0.125◦. To perform a 360◦ scan with a resolution of 0.25◦, for example, it is necessary

6



1.4. DETAILED PLAN

Figure 1.2: Anis robot experimental testbed.

to reduce the frequency of the rotor to 5Hz. This allow us to obtain 1,400 data points

per scan. The perspective camera is a progressive-scan CCD camera (Marlin F-131B)

equipped with a hyperbolic mirror HM-N15 from Accowle (Seiwapro) with a black

needle at the apex of the mirror to avoid internal reflections of the glass cylinder. In

Hannibal, odometry data arrives at a frequency of 50Hz, omnidirectional images at

15Hz and laser measurements at 5Hz. Since data from the different sensors that it

uses arrive at different frequencies, we implemented a function to synchronize the

data as it comes out from the robot.

Remark: Careful calibration of the laser and the camera is required for merging

image and laser data. We used the Matlab Omnidirectional Calibration Toolbox1 de-

veloped by Mei to estimate the intrinsic parameters of the camera and the parameters

of the hyperbolic/parabolic mirror [Mei and Rives (2006b)]. �

1.4 Detailed plan

This section outlines the structure of the thesis and summarizes the content of each

of the chapters.

1 http://www.robots.ox.ac.uk/~cmei/Toolbox.html
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CHAPTER 1. INTRODUCTION

Figure 1.3: Hannibal robot experimental testbed.

Chapter 2. SLAM: State of the Art. This chapter states the Simultaneous Lo-

calization and Mapping (SLAM) problem and presents a survey of the work

done during the last decades related to it. The most commonly used estima-

tion methods and map representations by the robotics community for SLAM

are also described. Since the SLAM problem is closely related to the develop-

ment of sensor technologies, a complete description of the sensors used in this

work is presented in the last sections.

Chapter 3. 2D Laser Based SLAM. In this chapter, the generalities of the Laser

Scan Matching (LSM) algorithm are presented. Then we focus on the Polar Scan

Matching (PSM) algorithm and the generalizations that we made in order to

improve it and make it robust enough to deal with lasers with arbitrary angular

resolution and bearing range. Then, we described how to build local maps using

the Enhanced Polar Scan Matching (EPSM). Finally, the SLAM framework to

reconstruct 2D global map from which it is possible to recover the pose of the

robot at each instant is introduced.

Chapter 4. Tightly Coupled Sensors Fusion. In this chapter, we introduce the

main aspects of omnidirectional vision. Different methods to acquire large field

of views will be described and we will explain the advantages of central cata-

dioptric sensors for robotics, as well as the models used. The second part of

the chapter will be consecrated to describe how to link images obtained by an

omnidirectional camera with a laser range finder in order to build a compos-

ite laser/omnidirectional sensor that will enhance both, localization and map

representation of the robot’s environment. The developed procedure to extract

vertical lines from omnidirectional images and to estimate their 3D positions

using information from the laser range finder will be explained. This lines will

allow to build a 3D wired representation of the environment.

Chapter 5. Appearance-Based SLAM. In this chapter, a brief introduction to vi-

8
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sual SLAM and the different approaches found in the computer vision com-

munity is given. The core part of this chapter is the introduction of a novel

and efficient hybrid laser/vision appeareance-based SLAM approach, in order

to provide the mobile robot with rich 3D information about the environment.

Our approach consists on initialize the tracking algorithm with the EPSM in

order to ensure rapid convergence and reduce computational cost.

Chapter 6. Conclusion and Future work. Based on a review of our results, we

present our general conclusions and propose potential avenues for further re-

search.
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“Tell me and I’ll forget.

Teach me and I may remem-

ber. Involve me and I’ll

learn.”

Chinese Proverb

2
SLAM: State of the Art

Overview

Simultaneous Localization and Mapping (SLAM) is a method that allows a mobile

robot placed in an unknown environment in an unknown location to build a map of

its surroundings while at the same time determining and keeping track of its current

location within the environment. Solving the SLAM problem provides the means to

make a mobile robot truly autonomous, which is the reason why the problem has

drawn a lot of attention from researchers during the last two decades.

In order to gather accurate information about the environment, mobile robots are

equipped with a variety of sensors (e.g. laser, vision, sonar, odometer, GPS), that

together form a perception system allowing accurate localization and reconstruction

of reliable and consistent representations of the environment.

In this chapter we stated the SLAM problem, its notation and some methods for

solving the SLAM problem. We review recent work on the subject, with a focus on

the kind of problems that we address in the remainder of this work. In particular,

we overview various ways of representing maps and the most typical kind of sensors

used in mobile robots, with an emphasis on the sensors used in this work.

Keywords: Simultaneous Localization and Mapping, Kalman Filter, Bundle Ad-

justment, Extended Kalman Filter, Particle Filter, metric and topological maps, data

fusion.
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Organization of the chapter

This chapter is organized as follows:

Section 2.1 presents a survey into the field of robotic localization and mapping with

a focus on indoor environments. The use of different sensors –namely ultrasonic,

laser, and vision sensors– used over the years for solving the SLAM problem, as

well as their advantages and disadvantages are discussed. It is shown that the

tendency to merge or fuse the information of two different sensors, (e.g. laser

and vision) helps to overcome the drawbacks of using only one sensor.

Section 2.2 states mathematically the general SLAM problem and the notation used

in the reminder of the thesis.

Sections 2.3 and 2.4 describe the two major formulations to solve the SLAM prob-

lem: The probabilistic approach and the optimization approach. A brief state of

the art of the most common methods used in the robotics community for each

one of the approaches is presented.

Section 2.5 aims to present a summary of the environment modeling techniques

to solve the mapping problem. The main representations of maps, which are

classified into three big categories, namely metric, topological and hybrid maps,

are described in detail.

Sections 2.6 and 2.7 explain the two different sensors embedded in our mobile robot:

the proprioceptive and exteroceptive sensors. It is shown that this sensors pro-

vide different and complementary information about the environment. Each

one of the sensors used in this thesis are classified and described in detail. Par-

ticularly for vision sensors, the principal camera models are described. It will

be explained how to acquire large fields of views, as well as the advantages that

it has in robotics applications.

Section 2.8 explains the choice of using a tight integration to fuse the data from a

laser range finder and an omnidirectional camera.

Section 2.9 gives the conclusion of the chapter.

2.1 A Survey of SLAM

Localization methods based only on proprioceptive sensors give bad results due to

modeling errors (rolling without slippage) and sensor drift (IMU’s). For these reasons,

map integrity cannot be sustained only using this type of sensors. Exteroceptive sen-

sors, e.g. laser range finders, omnidirectional cameras, ultrasonic sensors, provides

supplementary and valuable information. Thus, the use of multi-sensor platforms is

becoming the norm in contemporaneous mobile robot design.

12
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Ultrasonic sensors have been largely used mainly because of its low cost, opera-

tion simplicity and fast acquisition of the environment model. They are based on a

Time-of-Flight (ToF) principle using an ultrasonic wave. Considerable research effort

has been done to produce sonar maps for localization and navigation in indoor envi-

ronments. In Elfes (1987) range measurements from multiple points of view taken

from multiple sensors are integrated to build the sonar map. Wei et al. (1996) merges

ultrasonic and vision sensors in order to produce an occupancy grid representation of

the environment. Other authors like Nakamura et al. (1996), Chong and Kleeman

(1999), Kleeman (2001, 2003) and Tardós et al. (2002) have done interesting work

using sonar data.

However sonar readings are prone to several measuring errors due to various

phenomena (e.g., multiple reflections, wide radiation cone, low angular resolution).

Nowadays, laser range finders have replaced sonars when possible because of its su-

perior efficacy in estimating distances accurately and their better signal to noise ra-

tio. Many techniques have been developed to make the most of this type of sensor for

solving the SLAM problem. Since a laser scan directly provides metric information

of the scene, the localization problem can be stated in terms of an odometry-based

method where the incremental displacement is found by computing the best rigid

transformation that matches two successive scans. This is called the scan matching

algorithm, in which, to match two scans it is necessary to link the individual mea-

surements in one scan with the corresponding measurements in the other scan. This

association can be done either using an intermediate representation of the laser data

(e.g. a polygonal approximation as in Charbonnier and Strauss (1995)) or directly, by

exploiting the raw data [Nieto et al. (2007)].

SLAM based on scan matching is not new, early work on the alignment of range-

laser scans for localization and map building was done by Lu and Milios (1997a,b) and

more recently by Nieto et al. (2005, 2007). Most of them are based on the Iterative

Closest Point (ICP) algorithm developed by Besl and McKay (1992) for point to point

scan matching, and in the Cox’s pairwise scan matching algorithm proposed by Cox

(1991) that matches points to line segments. The ICP algorithm is probably the most

widely used matching algorithm and many extensions have been developed from it

(more details in chapter 3).

Despite all the work that has been done to improve techniques to use lasers to

solve the SLAM problem, the use of 2D lasers alone limits SLAM to planar motion

estimation and does not provide sufficiently rich information to reliably identify pre-

viously explored regions. Vision sensors are a natural alternative to 2D laser range

finders because they provide richer perceptual information and enable 6 degrees of

freedom motion estimation.

One of the first attempts to solve the SLAM problem using monocular vision was

the work by Broida et al. (1990). Since then faster computers and ways of selecting

sparse but distinct features have allowed new approaches to emerge. Davison (2003)
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proposes a real-time approach that attempts to minimize drift by detecting and map-

ping only long-term landmarks during the SLAM process. This approach, however, is

not appropriate for long displacements because of algorithmic complexity and grow-

ing uncertainty. Another interesting approach better suited for outdoor environments

and large displacements was proposed by Mouragnon et al. (2006).

More recently, many other researchers have pursued research on vision-based

SLAM with stereo and monocular approaches [Lemaire et al. (2007)], either relying

on feature-based representations [Miro et al. (2005)] or on direct approaches [Silveira

et al. (2007)]. Some vision-based solutions to the localization problem assume a piece-

wise planar scene and are based on a homography model as in Benhimane and Malis

(2004) or Mei et al. (2008). Others methods use a stereo approach involving a quadri-

focal warping function to close a nonlinear iterative estimation loop directly using

images, leading to robust and precise localization [Comport et al. (2007, 2010)].

However, cameras are used less often than range scanners in solving the SLAM

problem because extracting relevant information from images can be a computational

intensive task, less attractive for real-time applications. Additionally, standard cam-

eras only have a small field of view (typically between 40◦ and 50◦) and can be easily

affected by occlusion. It was shown in Davison et al. (2004) that a larger field of view

(e.g. using fish-eye lens) makes it easier to find and follow salient landmarks. In

contrast, using a catadioptric camera [Nayar (1997); Baker and Nayar (1998)] allow

us to obtain a full 360◦ view of the environment. Image acquisition with these om-

nidirectional cameras has many advantages: it can be done in real time, it is easier

to recognize previously observed places whatever the orientation of the robot is and

it is also less likely that the robot gets stuck when facing a wall or an obstacle. Fur-

thermore, in order to avoid the limitations due to planar projections, images captured

by these cameras can be uniquely mapped to spherical images [Geyer and Daniilidis

(2000)]. Thus, vision sensors provide dense and rich 3D information about the envi-

ronment. Nevertheless, vision alone does not provide the depth information that a

laser range finder does, which is crucial for solving the localization problem.

Many authors avoid the problems of monocular algorithms (i.e. scale factor, ini-

tialization, observability) by using multi-view constraints (see Hartley and Zisser-

man (2004) and references therein). Others try to complement, merge or fusion the

information of different sensors. Cobzas et al. (2003) and Clerentin et al. (2000) com-

plement visual information from an omnidirectional camera with depth information

acquired by a laser range finder. Fu et al. (2007) extract environmental features from

the monocular vision data and laser range finders in order to build metric maps, then

fusion them using Kalman Filter and grid map building simultaneously.
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2.2 Problem Statement and Notations

Referring to the notation proposed by Durrant-Whyte and Bailey (2006) and adapted

by Mei (2007), let us consider a mobile robot moving through an environment taking

relative observations of a number of unknown landmarks as shown in figure 2.1.

Thus the following notations can be defined:

Figure 2.1: Notations for the SLAM problem [Mei (2007)]

• a discrete time index t = 1, 2, ...,

• xt the true location of the robot at a time t,

• ut a control vector applied at time t− 1 to drive the robot from xt−1 to xt at time

t,

• mi the position of the ith feature or landmark,

• zt,i an observation or measure of the ith feature made in xt at time t,

• zt a generic observation of all the landmarks at time t.

The following sets can be defined as well:

• a history of past states: X0:t = {x0,x1, . . . ,xt} = {X0:t−1,xt}

• a history of control inputs: U0:t = {u1,u2, . . . ,ut} = {U0:t−1,ut}

15



CHAPTER 2. SLAM: STATE OF THE ART

• the set of all landmarks: m = {m1,m2, . . . ,mM}

• the history of the landmark observations: Z0:t = {z1, z2, . . . , zt} = {Z0:t−1, zt}

In order to solve the SLAM problem, we assume that:

• the landmarks are static,

• no prior information is available on the features m that constitute the map,

• the initial position or origin x0 is known,

• the control sequence U0:t is also known.

Hence, the problem is to build incrementally and simultaneously the map m and

the set of positions X0:t thanks to the observations or measures acquired by the robot.

To illustrate this, we can refer to the bearing-only SLAM problem, where the relative

angles between the robot and the landmarks are the only information available (see

figure 2.2). The parametrization of the vectors xt (robot state), ut (control input), zt

(sensing observations) will be then:

xt =
[
xt yt θt

]T

mi =
[
xi yi θi

]T

zt,i =
[
αt,i βt,i

]T

ut,i =
[
Vt ωt

]T

where Vt is the velocity vector expressed in the robot frame and ωt is angular velocity

at time t.

In the robotics community, there are two major formulations to the SLAM prob-

lem. The following sections will be devoted to state these two approaches: Proba-

bilistic Approach and Optimization Approach.

2.3 Probabilistic Approach

Since the seminal work of Smith and Cheeseman (1986) and Smith et al. (1986)

stochastic mapping has become the dominant approach to SLAM, because SLAM can

be formally best described in terms of probability, where the probability distribution1:

1For a brief review on fundamentals of probability theory see Appendix B
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Figure 2.2: Bearing-Only SLAM

P (xt,m|Z0:t,U0:t,x0) (2.1)

describes the joint posterior density of the vehicle state and landmarks knowing all

the observations and control inputs given to the robot. This probability distribution

need to be computed for all times t in order to solve the SLAM problem. Written in

this way it is also known as the full SLAM problem.

2.3.1 Recursive Formulation

In order to state a recursive solution to the SLAM problem some assumptions have

to be done. Considering a Markovian process, i.e., the present state xt depends only

in the immediately precedent state xt−1 and assuming that the pose is independent

of the observation and the map, we can write:

P (xt|xt−1,ut) = P (xt|xt−1,ut,X0:t−2,U0:t−1,m) (2.2)

Equation 2.2 is called the motion model. Under the above assumptions and applying

the Bayes’ rule the time update equation is defined as:

P (xt,m|Z0:t−1,U0:t,x0) =

∫
P (xt,xt−1,m|Z0:t−1,U0:t,x0)dxt−1

=

∫
P (xt|xt−1,m,Z0:t−1,U0:t,x0)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1

=

∫
P (xt|xt−1,ut)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1 (2.3)

In practice, it is reasonable to assume that the measurements are conditionally in-

dependent, that is, sensor noise is uncorrelated over time, which can be expressed
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as:

P (Z0:t|X0:t,m) = Πt
i=1P (zi|X0:t,m)

Applying Bayes’ rule to expand the joint distribution in terms of the state and then

in terms of the landmark observations gives the following two equalities:

P (xt,m, zt|Z0:t−1,U0:t,x0) = P (xt,m|Z0:t,U0:t,x0)P (zt|Z0:t−1,U0:t,x0)

P (xt,m, zt|Z0:t−1,U0:t,x0) = P (zt|xt,m)P (xt,m|Z0:t−1,U0:t,x0)

where P (zt|xt,m) is called the observation model. By combining these equations, we

obtain the measurement update equation as:

P (xt,m|Z0:t,U0:t,x0) =
P (zt|xt,m)P (xt,m|Z0:t−1,U0:t,x0)

P (zt|Z0:t−1,U0:t)
(2.4)

Finally, from equations 2.3 and 2.4, the recursive formulation to the SLAM problem,

P (xt,m|Z0:t,U0:t,x0) = ηP (zt|xt,m)

∫
P (xt|xt−1,ut)P (xt−1,m|Z0:t−1,U0:t−1,x0)dxt−1

with η a normalizing constant, is a function of the motion model and the observation

model.

Probabilistic Solutions to the SLAM Problem

There are many different methods to attack the probabilistic SLAM problem. Recur-

sive solutions, where the current pose of the robot is computed processing one data

item at a time, are the most used ones. In the literature, such algorithms are called

filters. The next part of this section will describe the Kalman Filter and the Particle

Filter for been the most popular ones in the robotics community. In the same way

some works are presented to illustrate the basic concepts.

2.3.2 Kalman Filter

In Kalman (1960) famous paper, a recursive solution to the discrete data linear filter-

ing was proposed, refined later by Kalman and Bucy (1961). It has opened new routes

for research and applications in mobile robot autonomous navigation. The simple and

robust nature of this recursive algorithm has made it particularly appealing to solve

the SLAM problem.

Kalman filter’s first approach (see figure 2.3) requires a linear model of the system

evolution over time, a linear relationship between the state and the measurements

and zero mean noise (White Gaussian Noise) to ensure optimality. If these conditions

are met, the Kalman filter provides the provably optimal method –in a least square

sense– for fusing data. An extension of the Kalman Filter to cope with non-linearity

is the so called Extended Kalman Filter (EKF) which simply linearizes all nonlinear

models so that the linear Kalman filter can be applied. It is not frequently mentioned
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Figure 2.3: Kalman Filter Cycle

in literature, but the Extended Kalman filter was implemented by Stanley Schmidt.

The former name of this filter was Kalman-Schmidt filter.

The Extended Kalman Filter, as a solution for the SLAM problem, was introduced

in the papers by Smith and Cheeseman (1986); Smith et al. (1986) and some of the

first implementations were done by Moutarlier and Chatila (1989, 1990) and Leonard

and Durrant-Whyte (1991). Indeed, EKF SLAM is perhaps the most used SLAM

algorithm in the literature.

Kalman Filters can be viewed as a variant of a Bayesian Filter, thus, the state xt

of the system at time t can be considered a random variable where the uncertainty

about this state is represented by a probability distribution as in equation 2.1. In

Appendix A, the equations of the discrete Kalman filter and the EKF are described

in detail.

Even though it is rare that the optimal conditions exist in real-life applications,

some assumptions can be relaxed, yielding a qualified optimal filter. The results in

practice are quite satisfactory; some positive results of the performance of the EKF

to solve the SLAM problem are depicted in [Dissanayake et al. (2001)]. They proved

three important convergency properties of the EKF solution to SLAM, namely that:

1. The determinant of any submatrix of the map covariance matrix decreases

monotonically as observations are successively made.

2. In the limit as the number of observations increases, the landmark estimates

become fully correlated.

3. In the limit, the covariance associated with any single landmark location es-

timate reaches a lower bound determined only by the initial covariance in the

vehicle location estimate at the time of the first sighting of the first landmark.

In other words, they show that the entire structure of the SLAM problem de-

pends mostly on maintaining complete knowledge of the cross correlation between

landmark estimates, and in fact, the EKF maintains a complete covariance matrix

and mean vector for all of the features, which is important for the data association

problem (recognizing when two observations belong to the same feature).

Nevertheless, there are also some important issues when using EKF for SLAM:

19



CHAPTER 2. SLAM: STATE OF THE ART

• The linearization used in the EKF leads to inconsistencies in the solution be-

cause there is no guarantee that the computed covariances will match the ac-

tual estimation errors, which is the true SLAM consistency issue. Convergence

and consistency of the filter have only been shown in the linear case. [Bailey

et al. (2006a,b)]

• A basic implementation of this filter is quadratic (O(n2) where n is the num-

ber of features) in time and memory usage, which means considerable com-

putational effort. The observation update equation requires an update of the

landmark poses and joint covariance. In addition, for each new landmark, the

correlation with all the values of the state vector must be saved. This limits

the application of EKF SLAM to small scale environments with a few hundred

features.

• Data association problem, which measurement observation correspond to which

landmark? This difficulty is also enhanced by the inconsistencies introduced by

the linearization and some processes in SLAM like loop closing are crippled.

Data association can be solved by Nearest Neighbor Gating (NNG) or by joint

compatibility test (JCT) as shown by Neira and Tardos (2001) or by tree search

as in Arras et al. (2002).

These problems have been thoroughly studied over the last decades, generating

different new versions of the EKF in order to improve its performance and the results.

Among the most popular variants we have the Unscented Kalman filter (UKF) which

avoids linearization via parametrization of means and covariances through selected

points to which the nonlinear transformation is applied [Julier and Uhlmann (1997)].

This method gives better results than the standard EKF but the problems due to

linearization remains. Unscented SLAM improved consistency properties as shown

by Martinez-Cantin and Castellanos (2005), but ignore the computational complexity

problem.

It is a well known fact that to enable real-time mapping of large environments,

the problem of computational complexity have to be taken into consideration. The

methods used to reduce computational complexity requires a re-formulation of the

time and observation update equations. Most of the authors exploit the sparsity in

the dependencies between the local robot position and distant landmarks to build

local maps. The ATLAS framework for large scale SLAM proposed by Bosse et al.

(2003), achieves real-time performance in large indoor structured environments but

does not compute the state estimate in a global reference frame. Leonard and Feder

(2000) propose the Decoupled Stochastic Mapping (DSM) which reduces the compu-

tational complexity by dividing the environment into multiple overlapping submap

regions (each one with its own stochastic map) achieving constant-time updates, but

the solution does not guarantee consistency. Later, Leonard and Newman (2003) pro-
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pose a consistent and constant-time SLAM approach which also ensures convergence,

but considers data association known, which is a major assumption.

Julier and Uhlmann (2001) and Bailey et al. (2006a) have studied and proved the

causes of the significant inconsistency of the EKF-SLAM formulation; they agreed

that inconsistency can be prevented if the jacobians for the process and observation

models are always linearized about the true state. It is important to remark that

actually, convergence and consistency have only been proved for the linear case.

Another difficult problem to solve in EKF-SLAM frameworks is the ambiguity in

data association. The problem is that a single incorrect data association can induce

considerable drift on the localization estimation and therefore divergence into the

map estimate. Tardós et al. (2002) propose a solution using Hough transform obtain-

ing remarkable results on sonar data. More recently, Paz et al. (2007) propose the

Divide and Conquer (D&C) SLAM algorithm which reduces the computational com-

plexity of the EKF-SLAM; furthermore, to limit the computational cost of data asso-

ciation they developed the Randomized Joint Compatibility (RJC) which is a variant

of the Joint Compatibility Test proposed earlier by Neira and Tardos (2001).

Other authors combine different data association techniques with EKF-SLAM to

reduce the ambiguity of local associations for large outdoor environments. Bosse and

Zlot (2008) use a robust iterative scan matching technique in order to build local

maps. On the other hand, Nebot et al. (2003) used particle filters combined with

EKF-SLAM to resolve the data association problem that is presented when returning

to a known location after a large exploration task. This problem is generally referred

as loop closing in the literature.

2.3.3 Particle Filter

As we have stated before, the Kalman Filter approach comes with a number of lim-

itations. An alternative approach is to obtain an approximate estimate of the pos-

terior Probability Density Function (PDF, see Appendix B.2) using samples. The

technique of drawing (randomly) state samples from the prior distribution and us-

ing these samples (in conjunction with state transition and observation information)

to approximate the posterior is known as particle filtering.

Particle Filters (PF), also known as Sequential Monte Carlo methods, are non-

parametric implementations of the Bayes’ filter and are frequently used to estimate

the state of a dynamic system. They were firstly introduced by Handschin and Mayne

(1969) and later a similar approach were presented in Akashi and Kumamoto (1977).

Since then, several PF algorithms started to appear in the literature under many

different names such as Sequential Importance Sampling (SIS) and Sequential Im-

portance Resampling (SIR) Filters [Rubin (1988)] which is the same as SIS, but with

a resampling step; Monte Carlo filters [Kitagawa (1996)]; condensation algorithm

[Isard and Blake (1996)]; Bootstrap filters [Gordon et al. (1993)]; Dynamic mixture

models [West (1993)]; survival of the fittest [Kanazawa et al. (1995)]; etc.
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The idea of particle filters with SLAM was presented by Montemerlo (2003) and

it is called Fast-SLAM. This algorithm uses Rao-Blackwellised particle filter [Doucet

et al. (2000)] to solve the SLAM problem efficiently. Using Fast-SLAM algorithm, the

posterior estimation will be over the robot’s pose and landmarks locations. Thus, if

we assume that a single measurement is obtained at a given time step (which does

not affect the generality of the approach) we can rewrite equation 2.1 as:

P (xt,m|Z0:t,U0:t,C0:t,x0) (2.5)

where C0:t correspond to the set of associations,

C0:t = {c1, c2, . . . , ct}

If the full trajectory (all the poses X0:t are known), we have a simple mapping

problem with conditionally independent landmarks and equation 2.5 can be written

as:

P (X0:t,m|Z0:t,U0:t,C0:t,x0) = P (m|Z0:t,U0:t,C0:t,x0)P (X0:t|Z0:t,U0:t,C0:t,x0)

The Fast-SLAM algorithm has been implemented successfully over thousands of

landmarks in contrast to EKF-SLAM that can only handle a few hundreds. Moreover,

FastSLAM achieves an O(M log(N)) complexity, with N the number of features and

M the number of particles. If the reader is interested, a detailed comparison between

EKF-SLAM and Fast-SLAM can be found in Calonder (2010).

Despite the many advantages offered by the FastSLAM algorithm in terms of com-

plexity, it also has disadvantages in terms of consistency. Bailey et al. (2006b) show

that FastSLAM can not ensure long-term consistency. The main problem is that the

particle filter is operating in the space of vehicle trajectories and not momentary

poses, which means a very high-dimensional space. Thus, the number of particles

needed are exponential in the length of the trajectory. If a smaller number of parti-

cles are used, the filter underestimates the total uncertainty and eventually becomes

inconsistent. Even so, this may still produce good maps but when large loops need to

be closed and full uncertainty is required the problems start.

2.4 Optimization Approach

An alternative to the probabilistic formulation for the SLAM problem consists to state

the problem in terms of optimization (minimization) of a cost function. The problem

is stated as a parametric estimation problem and it requires to define:

• A parametric model of the perception function z = h(x,m)

• A cost function d(h(x,m), zobs)
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• An efficient optimization method for finding (x̂, m̂) such that,

minx,m{d(h(x,m), zobs)}

Optimization approaches are simple and robust methods capable to work directly

on raw data, moreover, no feature extraction or matching steps are needed. However,

the downside is the need of an initialization sufficiently close to the true solution and

for the method to work, a model of the perception process also need to be available.

Optimization Solutions to the SLAM problem

Optimization methods require the entire data set, i.e., all the data is processed at the

same time. These methods are usually of batch type (generally maximum likelihood

approaches) like bundle adjustment and Expected Maximization (EM). The following

sections will describe more in detail the most important techniques used to solve

the SLAM problem with an optimization approach, namely bundle adjustment, EM,

Iterative Closest Point (PIC) and Sum of Squared Differences (SAD).

2.4.1 Bundle Adjustment

Bundle adjustment was originally developed in the field of photogrammetry during

fifties for the U.S. Air Force by Brown (1958, 1976). At the time, the main objec-

tive was mostly for aerial cartography but recently it has increasingly been used by

computer vision researchers because the bundle adjustment algorithm can be used to

handle different types of image features (points, lines, curves, surfaces etc), different

camera models and autocalibration parameter sets.

Bundle adjustment is an iterative (batch update) method in which one attempts

to fit a nonlinear model to the measured data assuming that the data association

have been made. Bundle adjustment can be seen as an optimal solution to the SLAM

problem if implemented in such a way that the discovered solution is the Maximum

Likelihood1 solution given all measurements over all time. In vision, data can be de-

fined as points projected in several views and matched by correlation, thus, bundle

adjustment would consist in minimizing the reprojection error to recover the cam-

era and point positions [Triggs et al. (1999)]. This error is expressed as the sum of

squares of a large number of nonlinear, real-valued functions. Therefore, the prob-

lem is typically tackled with nonlinear least-squares optimization algorithms like

Levenberg-Marquardt or the Gauss-Newton method.

Unfortunately bundle adjustment is an iterative process and cannot ensure con-

vergence to the optimal solution from an arbitrary starting point or for mapping large

and cycle environments. In a single coordinate frame, the farther the robot travels

from the origin, the larger position uncertainty becomes. Errors at loop closure can

1Reminder: Maximum Likelihood estimation wishes to estimate the model parameter(s) for which

the observed data are the most likely.
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therefore become arbitrarily large, which in turn makes it impossible to compute the

maximum likelihood solution in constant time. This is why bundle adjustment is

used only as a "local" optimization method or as the last step of any feature-based 3D

reconstruction algorithm.

More recently, interesting efforts by Ni et al. (2007) and Mouragnon et al. (2009)

were made to use bundle adjustment for large-scale reconstruction. Basically, they

decouple the original problem into several submaps that have their own local coordi-

nate systems and can be optimized in parallel.

2.4.2 Expectation Maximization

The Expectation Maximization (EM) algorithm is also an iterative (batch update)

method that computes the Maximum Likelihood estimate in the presence of missing

or hidden data. Its name was given in a classic paper by Dempster et al. (1977), in

which they also explained the process.

In the basic EM algorithm each iteration consist of two processes: The Expectation

Step (E-step) and the Maximization Step (M-step). In the E-step, the missing data

are estimated given the observed data and current estimate of the model parameters.

In the M-step, the likelihood function is maximized under the assumption that the

missing data are known. Convergence is assured since the algorithm is guaranteed

to increase the likelihood at each iteration.

Expectation Maximization is not designed for the SLAM framework since the data

sets are too large and it becomes impractical due to the requirement that the whole

data have to be available at each iteration of the algorithm. Nevertheless, EM can be

used as an alternative approach to solve the correspondence problem. Since building

the map with a known robot path is relatively simple, the algorithm separates the

estimation of the global posterior over the poses and the map by two optimization

steps: Firstly, the E-step calculates the posterior over the robot poses for a given

map. Secondly, the M-step calculates the most likely pose given the robot poses. The

algorithm has proved to give good results [Thrun et al. (1998a)], but as any other

nonlinear optimization method, the approach risk to fall in a local maxima and is

computationally expensive.

A modified version of EM was presented by Thrun et al. (2004), which is capable

of generating online maps, while the robot is in motion assuming the robot pose is

available. This approach retains the ability to revise past components based on future

data while simultaneously restricting the computation in ways that make it possible

to run the algorithm in real-time, regardless of the size of the map.

2.4.3 Iterative Closest Point (ICP)

The ICP algorithm is an iterative alignment algorithm, it has been widely used in

many robotics applications, namely, for localization and path planning, to reconstruct
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2D or 3D surfaces from scans and for mapping in different scenarios. The general

ICP algorithm was proposed by Besl and McKay (1992). His method was proved

to compute the closest point to a given point on various geometric representations

such as point sets, line segment sets (polylines), implicit curves, parametric curves,

triangle sets, implicit surfaces and parametric surfaces, which basically covered most

of the applications that would utilize a method to register shapes.

The idea of any pose estimation algorithm that uses ICP is depicted in figure

2.4. As input data, the ICP algorithm requires a set of entities defining the model

and a set of data measurements acquired by a sensor device. The first step is to

relate the sensor measurements to its corresponding model by a given correspondence

search criterion. The obtained correspondences are the input for the minimization

step used to compute the pose parameters. The minimization iteratively revises the

transformation (translation, rotation) needed to minimize the distance between pairs

of features until convergence.

Figure 2.4: ICP algorithm

The algorithm is conceptually simple and is commonly used in real-time. It is

important to remark that for the algorithm to converge, the starting position must be

"close enough" to the solution (see figure 2.5).

Figure 2.5: ICP alignement

Some variants to improve the ICP algorithm have been proposed, such as point

subsets (from one or both point sets), weighting the correspondences, data associa-

tion, rejecting certain (outlier) point pairs. These variants improve the performance

of the algorithm over speed, stability (local minima) and tolerance with respect to

noise and outliers. More details in chapter 3.

2.4.4 Sum of Squared Differeces (SSD)

Sum of squared differences (SSD) tracking can be traced back to the work by Lucas

and Kanade (1981) and later Shi and Tomasi (1994) with the KLT tracker. Basi-

cally, SSD measures the difference in intensity between a portion of the first image
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reprojected onto the second image. The minimization is based on the image gradi-

ent and can be 2D imaged-based (e.g., searching for the translation (tx, ty) that gives

the smallest reprojection error). It can also be 3D or model-based by reprojecting a

3D object and minimizing the difference in the image over the position (6 degrees of

freedom: rotation and translation).

The advantage of this approach is precision and speed. This is why these tech-

niques are particularly well adapted to robotic tasks such as motion estimation and

visual servoing. Compared to matching approaches, SSD tracking is generally faster

and more precise. The downside is the need for a strong overlap between the repro-

jected and the real object for the system to converge.

2.5 The Representations of the Environment

So far, we have presented some of the major problems and solutions to the SLAM

problem, but for the robot to move autonomously and safely, it is necessary to know

the environment where it moves.

In order to solve the SLAM problem, some form of the environment modeling is

required. This is called the mapping problem, in which, it is important to define what

we want to represent and how. This problem has been extensively studied in the

robotics community and many methods of constructing maps have been proposed. A

general survey on robotic mapping can be found in [Thrun (2002)]. The aim of this

section is to present some of them.

The main representations of maps are classified into three big categories:

• Metric: Metric maps represent geometric properties of the environment in an

Euclidean world.

• Topological: Topological maps are usually represented as graphs that describe

the connectivity between locations.

• Hybrids: Based in mixed methods with topological, metric and probabilistic

characteristics.

2.5.1 Metric Maps

In a metric map, the environment is represented by a set of objects, which positions

are associated to a metric space. This type of maps are often related to sensors that

can provide a measure of distance between the robot and the objects in the environ-

ment such as ultrasonic sensors or laser range finders.

One characteristic of metric maps is the use of information from exteroceptive

and proprioceptive sensors (see sections 2.6 and 2.7 for details about sensors). The

data provided by proprioceptive sensors is use to estimate the position of the robot

defining the metric space, while the data provided by exteroceptive sensors allow to
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Figure 2.6: Metric map with lines as features

detect objects in the environment and to estimate its relative position to the robot

using the metric model of the sensors. However, there are always problems related

to sensor inaccuracies and the metric model of the sensors is not always available or

easy to obtain, which is a weak point when using metric maps.

Metric maps have many advantages over topological maps. They can robustly

map large-scale environments, while topological maps have difficulties to construct

and maintain in large-scale environments if sensor information is ambiguous. This

permits to estimate accurately and continuously the position of the robot in the envi-

ronment. Moreover, this representation is not limited to the explored positions, but to

all the areas that the robot has been able to sense from the places that it has visited,

which allows a more complete map of the environment.

In the literature there are two main approaches to represent metric maps, one

based on the representation of geometric primitives (features) and the other based on

an occupancy grid representation.

Feature Maps

In metric feature maps (or landmark maps), the environment model is built from

the geometry of the elements that compose it. In general, the construction of these

maps follows three basic steps: first, the choice of the geometric primitives, which will

constitute the basic elements of the representation; secondly, the characterization of

these elements in the current observation; and finally the update of the global map

(under construction) by incorporating the elements of the current local observation.

Geometric features are often chosen according to the sensor and the environ-

ment that should be explored. Some of the geometric representations mostly used

for SLAM are:

• Points: Vision sensors mostly use points as geometric primitive, allowing to

easily characterize indoor or outdoor environments [Davison (2003)].

• Lines: There are mostly used to characterize indoor and structured environ-

ments. For robots with laser range finders it is a normal choice because they
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provide a relatively dense representation of these environments [Chatila and

Laumond (1985), Lu and Milios (1997a)].

• Planes: Generally used to represent complex structures as they provide a 3D

representation of the environment. Thrun et al. (2004) successfully generate a

3D map of an indoor environment from laser rangefinder and vision informa-

tion. The planes were extracted using a real-time variant of the expectation-

maximization algorithm.

Chong and Kleeman (1997) propose a feature-based mapping strategy where dis-

crete planar and corner elements gathered by a sonar sensor are merged incremen-

tally to form partial planes to produce a realistic representation of environment. In

Castellanos et al. (1998), geometric primitives like straight line, corner and half-plane

are extracted from laser range data and vertical segments (lines) are extracted from

the images provided by a camera. The vertical segments are mapped to the primi-

tives from the laser, allowing better accuracy in the calculation of parameters of the

primitives. Localization and mapping are then carried out by an extended Kalman

filter.

In general the maps generated with this approach may be more compact than

occupancy grid maps, especially if the environment is structured. Furthermore, if

the geometric primitives are chosen correctly the maps are more accurate and often

closer to the perception that people have of their environment. The principal problem

concerning feature maps is their suitability only to environments where the observed

objects can be represented by basic geometric feature models. This is not the case

for unstructured environments where the objects might appear as curves rather than

distinct point or lines. A alternative to construct feature maps of unstructured en-

vironments is to parameterize feature models that depict the observed objects well

enough to correctly extract the features.

Occupancy Grid

Occupancy (or evidence) grids developed by Moravec and Elfes (1985), represent the

space around the robot as a 2D [Elfes (1990)] or 3D [Moravec (1996)] grid of regu-

lar cells. Each cell is associated with a measure modeled by a probability function,

describing the potential presence of an object in the corresponding position. As orig-

inally proposed by Moravec and Elfes (1985), the occupancy is a binary variable (see

figure 2.7): Either the cell is occupied (black cells) or it is free (white cells). How-

ever, later some authors used a third variable with the "unknown" status as recently

shown in Carpin (2008).

The occupancy grid maps has gained great popularity because they are very ro-

bust, easy to implement and allows to use raw sensor information. They are partic-

ularly suitable for navigation, path planning, detection and obstacle avoidance and

tracking of objects. Sonars and laser, are the most used sensors to build occupancy
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Figure 2.7: Occupancy Grid Map of the robot surroundings

grid maps. Diosi et al. (2005) generate occupancy grid maps by fusing laser and sonar

measurements in a Kalman filter based SLAM framework. Later this maps are used

for localization.

The major disadvantage with occupancy grid maps is the trade-off between grid

resolution (granularity) and computational complexity. If we wish detailed maps, the

grid size need to be as small as possible, increasing the number of grid cells and

therefore, the computational complexity.

2.5.2 Topological Maps

Topological maps represent the environment without the use of any metric informa-

tion. They are generally represented as a graph with nodes (or vertices) and edges

which in turn are used to represent the topological properties of places as neighbor-

hood, inclusion, connectivity and order. The nodes characterize particular places, (i.e.,

the positions that the robot can reach) and the edges between nodes define the path-

ways that allow the robot to move from one place to another and to memorize how

to perform this displacement. The displacement between two non-adjacent places is

determined by a sequence of transitions between the intermediate nodes.

One of the advantages of using topological maps is that it is possible to use stan-

dard graph algorithms for high-level planning operations such as finding the shortest

path between non-adjacent nodes. For example, from fig 2.8, the shortest path to go

from a to g requires traveling through the sequence a-b-c-e-d-g.

Commonly, specific attributes can be associated to the nodes and edges depending

on the navigation task to perform [Kuipers and Byun (1991)]. For example, to localize

the robot, the nodes can be provided of geometrical characteristics or color. Likewise,

for navigation strategies, the nodes can be attributed with logical states, i.e., if a

node have been already visited or if it is new. As the edges provide the necessary

information to travel between nodes, they can be attributed with the sense of the

path to follow for an example.
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Figure 2.8: Topological Map

Topological maps do not require a metric model of the sensors in order to fusion

proprioceptive and exteroceptive data into an unified representation of the environ-

ment. However, an exhaustive exploration of the environment and very precise sen-

sors are needed to obtain a good representation of the environment. On the other

hand, the principal weakness of topological maps is to ensure reliable navigation

between places without the aid of some form of metric measure. Consequently, topo-

logical maps show good performance for small and static environments, but fails or

gives a false positive for dynamic or more complex and large environments.

These maps are widely used for pattern recognition for its compact and efficient

representation as an a priori reference. In Choset and Nagatani (2001), the topology

of the environment is encoded in a topological map called generalized Voronoi graph

(GVG), that also encodes some metric information about the robot’s environment. The

graph is constructed incrementally during the exploration of the environment and the

SLAM problem is reduced to a graph matching problem at a topological scale.

The work of Blanc et al. (2005), proposes a navigation framework in which the

robot performs paths that are stored as a set of ordered key images acquired by

a standard camera. These keys images compose a visual memory of the environ-

ment that are later structured as a graph, taking into consideration the environment

topology to build a topological map. Their work was later extended by Courbon et al.

(2007), to the entire class of central cameras (conventional and catadioptric cameras).

2.5.3 Hybrid Maps

The idea of integrating topological and metric representations was proposed by many

researchers as Kuipers (1978) and Chatila and Laumond (1985), because the qual-

ities between metric and topological maps are complementary. The famous frame-

work: first topological then metric, was first propose by Kuipers (1978) and later

implemented by Kuipers and Byun (1991). Since then it has been the framework

used by many researchers as Thrun et al. (1998b), Victorino et al. (2003a,b) and Vic-

torino and Rives (2004). Other idea was to connect local metric maps by means of a
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global topological map proposed by Tomatis et al. (2001).

Nieto et al. (2004) propose the Hybrid Metric Maps (HYMMs) framework which

is a mapping algorithm that combines feature maps with occupancy grid maps as a

solution for the dense SLAM problem obtaining interesting results for outdoor en-

vironments. Another interesting hybrid approach was proposed by Thrun (1998),

which combines grid-based and topological maps. On the one hand, grid-based maps

are learned using artificial neural networks and Bayes rule. On the other hand, topo-

logical maps are generated by partitioning the grid-based map into critical regions.

He proves practically the efficiency of his method.

In fact, to build a map the robot must posses sensors that enable it to perceive

the environment around it. The sensors more commonly used to accomplish this task

include cameras, laser range finders, sonars, radars, GPS, and infrared technology.

In the following sections a detailed description of the sensors used in this thesis is

presented.

2.6 Proprioceptive Sensors

Proprioceptive sensors provides information about the robot’s position/movement in

space. This information is also called idiothetic, and it is crucial for the navigation of

the robot. Idiothetic information may come from the measure of the rotation of the

wheels or the acceleration’s measure from an inertial measurement unit (IMU). An

integration process allows then, by collecting this information over time, to estimate

the relative position of two frames where the robot moved (dead reckoning). How-

ever, because of this integration process the quality of the information with this kind

of sensors degrades continuously over time (drift), which makes the position estima-

tion unreliable at long-term. Despite this limitation, idiothetic information has the

advantage that it does not depend at all on environmental conditions that strongly

disturb the perception of information.

In this thesis, only the wheels encoders are used as proprioceptive sensors. The

odometry provided by the robot will be used as an initialization of the SLAM process.

2.6.1 Wheels Encoders (Odometry)

The most used method for mobile robot positioning is odometry because it provides

good short-term accuracy, is inexpensive and allows very high sampling rates. The

robots used in this work are moved by a differential wheel configuration, using two

servo drives mounted in a common axis. Each wheel can independently being driven

either forward or backward. The speed difference between both wheels results in

a rotation of the vehicle about center of the axle. Hannibal has only one castor (see

figure 2.9(a)) and Anis has two castors (see figure 2.9(b)). The castors serve to support

the weight of the vehicle and under ideal conditions do not affect the kinematics of

the robot.
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(a) (b)

Figure 2.9: Differential drive system. 2.9(a) Hannibal. 2.9(b) Anis.

The position of the robot between two instants k and k + 1 (i.e. the kinematic

model) with the measurement of the displacement of the wheels (drk, dlk) between

those instants, can be described in cartesian coordinates as shown in figure 2.10.

Under the assumption that the frequency of acquisition of the encoder wheel is large

enough to observe small incremental movements of the robot and that the movement

takes place without slipping, then we can write:

xk+1 = xk + dk cos(θk +
∆θk

2
)

yk+1 = yk + dk sin(θk +
∆θk

2
) (2.6)

θk+1 = θk + ∆θk

where:

dk =
drk + dlk

2

∆θk =
drk − dlk

D

and D is the half distance between the wheels.

In practice, the model (equation 2.6) only gives an estimation of the position of

the robot because the assumptions are of limited validity and there are always mea-

surement noise. In order to determine the accuracy of the state estimation based

on encoder data, it is important to identify odometry errors. As mentioned earlier,

odometry is the integration of incremental motion information over time and, as any

other dead-reckoning method, errors will result in a drift of the estimation of the po-
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Figure 2.10: Kinematic model.

sition of the robot. Errors in odometry can be either systematic or non-systematic (see

table 2.1).

The defects in the mechanical design of a mobile robot are the principal cause of

systematic errors. Consequently, this errors are present in every integration step

and accumulates constantly. Nevertheless, this errors can be identified and cor-

rected. Borenstein and Feng (1996) propose a calibration technique called UMBmark

test, developed to calibrate the systematic errors of a mobile robot equipped with a

differential drive system. On the contrary, non-systematic errors may appear unex-

pectedly because of unpredictable features in the environment causing large position

errors. Non-systematic errors are not observable directly from odometry measure-

ments making them almost impossible to compensate without using others measures

in the localization process.

It is important to notice that, depending on the environment where the robot

moves, one of this sources of errors will be predominant. On most smooth indoor sur-

faces systematic errors contribute much more to odometry errors than non-systematic

errors. However, on rough surfaces with significant irregularities, non-systematic er-

rors are dominant.

2.7 Exteroceptive Sensors

Exteroceptive sensors acquire information about the environment. This information

is also called allothetic and basically allows a connection between the robot and its

environment. The exteroceptive sensors determine the measurements of objects rel-

ative to a robot’s reference frame and are classified according to their functionality

into three main types:
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Sources of error

Systematic

- unequal wheel diameter

- misalignment of the wheels

- finite encoder resolution

- finite encoder sampling rate

Non-Systematic

- travel over uneven floors

- travel over unexpected objects on the floor

- wheel-slippage due to: - slippery floors

- over-acceleration

- fast turning (skidding)

- external forces (external bodies)

- internal forces (castor wheels)

- non wheel contact with the floor

Table 2.1: Sources of errors

• Contact sensors: which are typically mechanical switches that send a signal

when physical contact is made.

• Range sensors: which are used to measure the distance to nearby objects, to

avoid obstacles or to recover the scale factor for monocular vision.

• Vision sensors: which are used to extract features of the environment or to

measure color and luminosity.

The exteroceptive sensors that we are interested in this thesis are range sensors

and vision sensors because of their complementary information. Thanks to this sen-

sors, the robot can choose perceptions that could be used as reference points. Unlike

proprioceptive sensors, these reference points are independent of the movement of

the robot, thus, do not generate cumulative errors and make them usable as long-

term references. In particularly, we are going to deal with laser range finders and

omnidirectional cameras.

2.7.1 Laser Range Finder

The laser range finder is an active sensor, i.e., it emits energy into the environment

and measures the properties of the environment based on the response. According

to Dudek and Jenkin (2000), based on the methodology used to measure the distance

traveled by the laser beam, laser range finders can be of two types:

• Triangulation: This technique is called triangulation because the emitted laser

and the reflected laser light form a triangle (see figure 2.11). Basically, the laser

beam projects onto the measurement object and the reflected light is collected by

a receiving device. The distance to the object can be calculated using geometric

relationships between the outgoing beam, the incoming ray and the position of
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Figure 2.11: Triangulation principle.

the receiver as:

d = f
b

x
(2.7)

where b is the distance between the emitter and the optical axis of the receiver,

f the focal length and x the position where the reflected light hits the receiver.

This configuration restricts the distance measurement capability to one single

point. In more sophisticated triangulation sensors a laser stripe, instead of a

single laser dot, is swept across the object to provide 3D shape information of

the object.

(a) (b)

Figure 2.12: Time of flight methods. 2.12(a) Impulse time of flight. 2.12(b) Phase

difference.

• Time-of-flight: This technique uses the time that the laser beam needs to reach

the target and return back to measure the distance to the object. For calcu-

lating this time different methods can be used. The most common principles

are the impulse time of flight method and the phase difference method. In the

impulse time of flight method (see figure 2.12(a)), the elapsed time t is directly

measured from the emission of a short impulse until receiving its reflection.

Since the speed of light c is known, the object distance can be calculated by:

d =
tc

2
(2.8)
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(a) (b)

Figure 2.13: Laser range finders mounted on Anis and Hannibal respectively. 2.13(a)

Accurange 4000. 2.13(b) Sick LD-LRS1000.

Clearly, the accuracy depends on how precisely the time t is measured. In the

second one, the phase based method (see figure 2.12(b)), the time t is calculated

by measuring the phase difference between an emitted modulation signal and

its reflection. Phase measurement is limited in accuracy by the frequency of

modulation and the ability to resolve the phase difference between the signals.

Remark: The laser only detects the distance of one point in its direction of view.

Thus, either rotating the laser itself or by using a rotation mirror system, the view

direction of the laser can be changed. �

The laser with which Anis is equipped (AccuRange 4000 figure 2.13(a)), is com-

posed of a laser telemeter with a rotating mirror that allows measurements of points

on 360◦, except for an occlusion cone of approximately 30◦ caused by the assembly

of the mirror. The telemeter computes distances using time of flight measurement

principles, combining an intermediate technology between frequency modulation and

amplitude modulation. A more detailed description of the system is explained in Vic-

torino (2002). The range finder reaches a maximal frequency of 50Hz and is capable

of acquiring 2000 data points in 40ms, which is more than enough for real time ap-

plications.

Hannibal is equipped with a Sick LD-LRS1000 laser (figure 2.13(b)), capable of

collecting full 360◦ data. The distance to an object is measured using the impulse

time of flight method. The laser head can revolve with a variable frequency ranging

from 5Hz to 10Hz and the angular resolution can be adjusted up to 1.5◦ at multiples
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Figure 2.14: Laser scan in polar coordinates.

of 0.125◦. The laser maximum range is approximately 250m under ideal conditions

(e.g. light surfaces). To perform a 360◦ scan with a resolution of 0.25◦, it is necessary

to reduce the frequency of the rotor to 5Hz, thus obtaining 1,400 data points per scan.

It is important to recall that the scanning range of a laser depends on the re-

flectance of the object and the transmission of the scanner. The better a surface

reflects the beam, the greater the scanning range is. The light reflected will vary

depending on the nature and texture of the reflecting surface as well as the angle

at which the light hits the surface. To mention some examples, light surfaces reflect

the laser beam better than dark surfaces. In rough surfaces, part of the energy is

lost due to shading. If the laser beam is incident perpendicularly to the surface the

beam is correctly reflected if not, scanning range loss is caused. Even though laser

range finders are know for their accuracy, they are unable to measure on transparent

objects such as glass. This is a limitation in indoor environments applications, where

the robot may pass nearby a window generating bad measurements.

The lasers measure their surroundings in two-dimensional polar coordinates. If

a measuring beam is incident on an object, the position is determined as a distance

and direction. The signal delivered from the laser range finder during a scan of the

environment have the following form:

S = ((r, φ0), ..., (r, φi), ..., (r, (φ2π)) (2.9)

where ri = r(φi) is the distance measured between the origin of the laser coordinate

system and the nearest object in the angular direction φi.

A representation of the output signal obtained by the laser after a horizontal scan-

ning of the environment is shown in figure 2.14. It is clear that random noise sources
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are present including the timer counting the time-of-flight, the acquisition speed or

the beam sweeping frequency. For robotics applications, it is common to pre-process

the data, e.g. applying filtering algorithms, in order to get rid of some of the outliers.

In this thesis, laser range finders are used as a source of information to correct

odometry errors, for cartography purposes, and to recover the third dimension of a

monocular vision sensor. Each problem will be discussed in the following chapters.

2.7.2 Vision Sensors

Vision sensors (i.e. cameras) are a rich source of perceptual information about the

environment of the robot. Alas, they require hard processing; e.g. extraction, char-

acterization, and interpretation of data from the captured images in order to identify

or describe objects in the given environment.

(a) (b)

Figure 2.15: Basic Models. 2.15(a) Pinhole camera model, 2.15(b) Thin lens model.

Basically, cameras are used to map 3D (world) points onto a 2D surface (image

plane). The pinhole camera was the first camera model. In a pinhole camera model

the light from a point travels along a single straight path through a pinhole onto

the image plane (see figure 2.15(a)). The object is imaged upside-down on the image

plane. More detailed information about the pinhole camera model can be found in

Faugeras (1993).

The pinhole camera have however, some limitations. If the aperture is to big, the

image is blurry; if it is too small, it requires long exposure or high intensity.

Nowadays, cameras use lens to focus light onto the image plane. Lens models can

be quite complex, been perhaps the thin lens model the simplest one. In the thin lens

model, rays of light emitted from a point travel along paths through the lens (see

figure 2.15(b)), converging at a single point behind the lens. As a result the aperture

can be bigger. In fact, a pinhole camera is an idealization of the thin lens as aperture

shrinks to zero. A common Gaussian form of the lens equation is:

1

i
+

1

o
=

1

f

where i is the image distance, o is the object distance and f the focal length.
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For our experiments we use a CCD camera, which means that the image plane

contains a charge-coupled device array for the image formation. CCDs are widely

used in professional, medical, and scientific applications where high-quality image

data is required. The images obtained with this camera are grey level images.

Standard cameras have limited field of view –typically between 50◦ and 60◦– which

makes them useless for some applications in computer vision; e.g. place recognition

or motion estimation can be easily affected by occlusion. Panoramic cameras on the

other hand, provide wide field of view in a single image and can solve some of these

issues. The wide-angle field of view gave more discriminate results and more robust-

ness to changes in the environment. This is why they are becoming more and more

popular in the robotics community.

(a) (b)

Figure 2.16: Fish-eye lens. 2.16(a) Fish-eye converter Nikon FC-E8. 2.16(b) Image

Fish-eye [Source: http://www.nikonweb.com/fisheye/]

Wide Angle views

There are three main techniques for increasing the field of view of a camera. The first

technique is based on the use of lenses to widen the field of view of a conventional

camera. However, lenses are mostly bulky, complex and expensive to design. An

example of this kind of system are the fish-eye lenses (see figure 2.16), which can

acquire up to 180◦ images.

The second technique –called blending or stitching– is based on the generation of

a panorama from a series of images of one or more conventional cameras. It is also

possible to reconstruct the panorama using a rotating camera around a given axis,

which is perpendicular to the optical axis. The main advantage of this technique is

that it is possible to obtain panoramic images with high resolution. Nevertheless, the

acquisition and the data association is computationally expensive and rarely real-

time.

The third technique employ lenses and convex mirrors. This systems are called

catadioptric, from dioptric relating to the refraction of light by lenses and catoptric
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relating to reflection of light using mirrors. Catadioptric systems are usually used to

provide a far wider field of view (360◦) than using lenses or mirrors alone. Therefore,

in this work, a catadioptric system is adopted so as to obtain an omnidirectional

image. The mirror is mounted on top of the camera lens (figure 2.17), thus providing

an omnidirectional view of the robot’s surroundings.

Camera

Convex Mirror

Figure 2.17: Construction of a Catadioptric System

There exist several types of mirrors designed to build omni-images: spherical mir-

rors, ellipsoidal mirrors, hyperbolical mirrors and parabolic mirrors are just some

examples (see chapter 4 for catadioptric projection models). In this thesis, two dif-

ferent mirrors were used to construct two different catadioptric systems. Firstly, a

progressive-scan CCD camera (Marlin F-131B) equipped with a telecentric lens and

a parabolic mirror S80 from Remote Reality (see figure 2.18(b)). The second system

uses the same CCD camera with a hyperbolic mirror HM-N15 from Accowle (Sei-

wapro) with a black needle at the apex of the mirror to avoid internal reflections of

the glass cylinder (see figure 2.18(a)).

2.8 Multi-sensor Perception

Understanding the environment from sensor readings is a fundamental task in mo-

bile robots. It is a well known fact that proprioceptive sensors and exteroceptive sen-

sors provide different and complementary information about the environment, which

is why nowadays, mobile robots are equipped with several sensor systems to avoid

the limitations when only one sensor is used to reconstruct the environment.

Information from different sensors measuring the same feature, can be fused to

obtain a more reliable estimate, reducing the final uncertainty on the measurement.

Sensor fusion can be done at different levels: loose integration or tight integration.

The term integration, can be defined as the fusion of two separate entities, resulting

in a new entity. In loose integration –also called loose coupling– the state estimations

provided by each independent sensor are fused. On the other hand, tight integration

–also called tight coupling– consist in directly fuse the outputs (raw data) of each

sensor. Loose and tight integration have been widely studied for many years mostly
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(a) (b)

Figure 2.18: Convex Mirrors 2.18(a) Hyperbolic Mirror. 2.18(b) Parabolic Mirror.

using Inertial Navigation Systems (INS) and Global Navigation Satellite Systems

(GNSS) for efficient autonomous navigation purposes. Greenspan (1996) in his work

on INS/GPS describes the loose and tight integration architectures.

More recently, researchers are using different sensors as Li et al. (2006), who per-

form a tight integration of a Global Positioning System (GPS), a Pseudolite (PL) and

an INS. Soloviev (2008) has developed a multi-sensor tight integrated solution that

combines the complementary features of the GPS, laser scanner feature-based navi-

gation, and INS for urban scenarios. The work of Mourikis et al. (2009) called VISI-

NAV describes a tight integration between the Absolute Visual Localization (AVL)

method based on persistent features, and a Visual Odometry (VO) method using op-

portunistic features with an Inertial Measurement Unit (IMU) for spacecraft land-

ing. Brevi et al. (2009) analyze both: loose and tight information coupling of a laser

range finder and a WIFI signal to coordinate a team of mobile robots. Clearly, the

choose of the sensors will depend on application and/or task to be performed by the

robot.

Using raw data as it comes out from the sensors have many advantages, that is

why we chose a tight integration to fuse the data from a laser range finder and an

omnidirectional camera.

2.9 Conclusion

We have presented throughout the chapter the general framework of the SLAM prob-

lem. We have shown the solutions provided in the literature to solve it, as well as the

importance of choosing a correct methodology depending on the information provided

by the sensors and the application or task to be performed by the mobile robot. It was

41



CHAPTER 2. SLAM: STATE OF THE ART

also explained the choice and the advantages of using a tight integration to fuse the

raw data from a laser range finder and an omnidirectional camera in order to solve

the SLAM problem. Our method will be explain in more detail in the next chapters.
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"It doesn’t matter how beau-

tiful your theory is, it doesn’t

matter how smart you are. If

it doesn’t agree with experi-

ment, it’s wrong."

Richard Feynman

3
2D Laser-Based SLAM

Overview

In mobile robots, the primary objective is to make the robot able to act in an au-

tonomous way in an unknown environment thanks to the sensors with which it is

equipped. Using laser scan matching is one possible way to help solving this prob-

lem.

The purpose of scan matching when used for robot localization is to find the rel-

ative distance and rotation between a reference position and the current position of

the robot by comparing one scan taken at the reference position and one scan taken at

the robot current position. It is assumed that the current position is known approx-

imately from, e.g. dead reckoning (odometry), which limits the search space of the

scan matching algorithm. The scan matching algorithm then translates and rotates

the actual scan to make the best overlap of the reference scan. The translation and

rotation is, if the match is done correctly, the relative distance and rotation between

the reference position and the current position. The relative distance and rotation are

then used to update the position of the robot. One important step before the match is

done, is the filtering of the scans, which smooths the scan points and remove outliers

to avoid mismatches.

The aim of this chapter is to describe the generalities of the Laser Scan Matching

algorithm, as well as the different approaches that there exist in the robotics com-

munity. Then we will focus on the Polar Scan Matching (PSM) algorithm and the

generalizations that were made in order to improve it and make it robust enough to

deal with lasers with arbitrary angular resolution and bearing range and in environ-
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ments that does not contain predefined structures or features.

Keywords: Laser scan matching, pose estimation, ICP, PSM, 2D SLAM.

Organization of this chapter:

This chapter is organized as follows:

Section 3.1 introduces the Laser Scan Matching algorithm as a technique to solve

the SLAM problem and gives a brief state of the art on the subject. It describe

the most common algorithms used for scan matching, namely the ICP and its

variants.

Section 3.2 describes a method for 2D laser scan matching called "Polar Scan Match-

ing". Each one of the phases that constitute the method are described in detail.

A generalization of the method, called Enhanced Polar Scan Matching is pro-

posed.

Section 3.3 explains how to build local maps using the Enhanced Polar Scan Match-

ing implementation described in section 3.2. It is also described how this local

maps are used in the localization and mapping process, while a 2D global map

is built thanks to the SLAM approach, from which it is possible to recover the

pose of the robot at each instant.

Section 3.4 show the results of our implementation of the EPSM in synthetic and

real data, and depicted the obtained 2D global maps in two different indoor

office-like environments.

Section 3.5 concludes the chapter.

3.1 Laser Scan Matching

Laser Scan Matching has been widely used for robot localization and mapping be-

cause of its simplicity. The goal of the laser scan matching algorithm is to find the

position and orientation (i.e., the pose) of a current scan with respect to a reference

scan by adjusting the pose of the current scan until the best overlap with the refer-

ence scan is achieved (see figure 3.1).

Several methods can be found in the literature for 2D and 3D scan matching.

These methods are often categorized based on their association rule such as feature

to feature or point to point matching. In the feature-based approach [Gutmann et al.

(2000); Ramos et al. (2007)], features such as line segments and corners are extracted

from laser scans and then matched against each other. More recently, Nieto et al.

(2008), propose a scan matching approach that allows the use of arbitrary shapes.

However, such approaches requires the identification of appropriate features in the
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(a)

(b)

(c)

Figure 3.1: Laser Scan Matching algorithm. 3.1(a) Reference (blue) and current scan

(red). 3.1(b) Scan matching algorithm iterations. 3.1(c) Current scan aligned (green) to

the reference scan.
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environment. On the other hand, point to point matching does not require the en-

vironment to be structured or contain any predefined features, which is why we will

focus our attention in this approach.

The Iterative Closest Point [ICP by Besl and McKay (1992)] algorithm is perhaps

the most widely used point to point scan matching method that works with range

sensors. ICP uses a nearest neighbor association rule to match points, and least

squares optimization to compute the best transformation between two scans. Two

enhanced methods based on ICP were proposed by Lu and Milios (1997b): the It-

erative Matching Range Point (IMRP) and the Iterative Dual Correspondence (IDC)

method. Although ICP and its extensions [Rusinkiewicz and Levoy (2001)] are fast

and in general produce good results, they are only guaranteed to converge towards

a local minimum and may not always find the correct transformation. Furthermore,

these algorithms suffer from computational complexity problems when dealing with

large-scale environments because the point to point association rule they use, result

in a O(n log(n)) complexity in the best case (where n is the number of points in a

scan).

To overpass these constraints, Diosi and Kleeman (2005) proposed the Polar Scan

Matching method which avoids searching for point associations by simply matching

points with the same bearing. Another approach using normal distributions has been

proposed by Biber and Straßer (2003) to represent laser scans in order to avoid cor-

respondences between primitives. Weiß and Puttkamer (1995) and Bosse and Zlot

(2008) used angular histograms to recover the rotation between two poses. Then both

histograms, which were calculated after finding the most common direction were used

to recover the translation.

The next section will focus on the Polar Scan Matching approach proposed by

Diosi and Kleeman (2005), while at the same time, our extensions to generalize their

algorithm –so it can deal with arbitrary angular resolution and bearing range– will

be described. In the first instance, our enhanced PSM implementation will be used to

build 2D local maps of the environment. These local maps will be used both, in the

localization and mapping process. Later, these maps will be used as a 2D laser-based

SLAM to reconstruct the 2D global map from which it is possible to recover the pose

of the robot at each instant.

3.2 Polar Scan Matching

Polar Scan Matching (PSM) is a point to point laser scan matching method that ex-

ploits the natural representation of laser scans in a polar coordinate system to cut

the complexity of the matching process. As other scan matching approaches, like

the Iterative Closest Point (ICP) method, the PSM method finds the pose of a laser

scan with respect to a reference scan by performing a gradient descent search for the

transformation that minimizes the square error between corresponding points.
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Figure 3.2: Raw polar laser scan.

In contrast to other matching methods, PSM avoids an expensive search for corre-

sponding points by matching points with the same bearing. The method assumes the

reference and current scans are given as sequences of range and bearing measure-

ments of the form {rri, φri}ni=1 and {rci, φci}ni=1, respectively, and requires an initial

estimate (xc, yc, θc) for the pose (position and orientation) of the current scan in the

reference scan coordinate frame.

The method may be best described by detailing each of its phases:

• Pre-processing

• Scan projection

• Translation and orientation estimation

Basically after pre-processing the scans, scan projection followed by a translation

estimation or orientation estimation are iterated.

3.2.1 Scan Pre-processing

Before the matching and in order to have a good couple of laser scans to be matched a

pre-processing of the scans is required. Figure 3.2 show the raw data provided by the

laser. It can be seen that laser raw data have a lot of noise and bad measurements

(outliers) due to several reasons, for example, a bad reflection of the laser beam on

metallic or dull surfaces. The pre-processing step helps to remove outliers to increase

the accuracy and robustness of scan matching.

The pre-processing is applied to the data in three basic steps:
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1. First we have the filtering step, which help us to remove some undesirable mea-

surements from the laser scan. It was shown in Gutmann (2000) that using the

median filter it was possible to replace outliers with suitable measurements.

The results obtained were quite satisfactory. However, in order to improve the

filtering step, instead of the median filter, the algorithm for rejection of local

artifacts proposed by Victorino (2002) was applied to remove the outliers from

the laser range measurements. With this algorithm, a sliding window of three

points is applied to the laser distance measurements. If the relative distance

between points is greater than a predefined threshold, either we are in the pres-

ence of an outlier or a new set of continuous points. It produces n point sets with

at least three close points. This algorithm attains much better results than the

median filter.

2. Secondly, the tagging step will help us in the segmentation step. In this step all

the points further than a threshold (MAX_RANGE) are tagged. This points will

not be used in the scan matching as they will be removed, like this we avoid

the problem of interpolating neighboring points of two different objects which

can be source of an error. The choice of this threshold is based on the maximum

range and angular resolution of the sensor.

3. Finally, after tagging long range measurements a segmentation algorithm is

applied. Then once having defined the segments, the interpolation between two

different objects can be avoided. The segmentation is done according to two

simple criteria:

• If two consecutive range readings points are no further than a threshold,

they belong to the same segment.

• If three consecutive range readings points lie approximately on the same

polar line, they are assigned to the same segment.

Segments consisting of a single point are discarded (most mixed pixels). To aid

the segmentation process, the maximum range is limited so that two consecu-

tive readings belonging to the same segment cannot be too far apart. Also, one

more step was added to the segmentation algorithm, which we called the seg-

ment filter (see algorithm 1). This step will remove all the segments smaller

than five points, so, only ”long” segments are kept.

After the pre-process step, we have now a new filtered laser scan to use in the

scan matching algorithm.

3.2.2 Scan Projection

There is an intermedium step before applying the scan matching algorithm called

scan projection. The aim is to find out how the current scan would look like if it
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Algorithm 1 Segment Filter

for each_segment do

if length(segment) < MIN−SEGMENT then

Remove(segment)

end if

end for

where taken from the reference position. This will help to calculate the error in the

estimation of the pose of the current scan.

The projection of the current scan into the reference scan coordinate frame is a

sequence of measurements (r′ci, φ
′
ci)

n
i=1 computed as follows:

r′ci =
√

(rci cos(θc + φci) + xc)2 + (rci sin(θc + φci) + yc)2 (3.1)

φ′ci = atan2(rci sin(θc + φci) + yc, rci cos(θc + φci) + xc) (3.2)

where atan2 is the four quadrant version of arctan, and (xc, yc, θc) is the pose (position

and orientation) of the current scan in the reference scan coordinate frame.

The association rule for this algorithm is to match bearings of points. However,

the bearings of the above sequence do not necessarily coincide with bearings where

the laser would have sampled a reading. A range measurement r
′′

ci is computed for

each sample bearing by linear interpolation among points belonging to a same seg-

ment. Points that would have been occluded are not taken into account, only the

smallest range measurement for a bearing is kept.

(a) (b)

Figure 3.3: Scan Projection. 3.3(a) Projection of measured points taken at C to location

R. 3.3(b) Points projected to R shown in polar coordinates. [Source: Diosi and Kleeman

(2005)]

As an illustration of the scan projection process, figure 3.3 show the current scan

taken at location C and the reference scan taken at position R. The range and bear-
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ings of the points from point R are calculated with equations 3.1 and 3.2 respectively.

Dashed vertical lines in figure 3.3(b), represent sampling bearings φri of the laser at

position R in figure 3.3(a).

3.2.3 Translation and Orientation Estimation

The method alternates between translation and orientation estimation. After making

a correction to the pose estimate, the projection phase is repeated with the corrected

estimate. The process stops when the magnitude of the last position and orientation

correction is smaller than a given threshold, hopefully indicating that a minimum

has been reached. Translation is estimated using a standard weighted least squares

method. A correction (∆xc,∆yc) to the position estimate is found by minimizing the

weighted sum of the square range residuals
∑n

i=1wi(rri − r′′ci)2 while leaving orienta-

tion unchanged. The weights are computed as recommended by Dudek and Jenkin

(2000),

wi =
c2

(rri − r′′ci)2 + c2
(3.3)

Orientation is estimated by computing the average range residual for 1◦ shifts of

the current scan in a ±20◦ window. The new orientation estimate is found by fitting a

parabola to the shift with the minimum average error and its left and right neighbors.

The implementation of the PSM method provided by Diosi is tailored to a laser

with 1◦ angular resolution and 180◦ bearing range. These assumptions are used

when transforming sample bearings from radians to indexes into arrays and back.

We generalized Diosi’s implementation to lift these assumptions. Our implementa-

tion is parametrized so that it can deal with lasers with arbitrary angular resolution

and bearing range. In addition, instead of just returning the pose estimate at the

moment the algorithm stops, our implementation keeps record of the estimate with

the minimum error and returns it as a result.

3.3 Local and global maps with SLAM

As stated before, 2D local maps of the environment are built using the enhanced PSM

implementation described in the previous section. Local maps will be used both, in

the localization process and for mapping the environment. Finally, these maps will

be used in SLAM to reconstruct a 2D global map from which it is possible to recover

the pose of the robot at each instant.

Let TL be the rigid transformation between the laser coordinate frame and the

robot coordinate frame. The global coordinate frame is fixed to be the coordinate

frame of the odometry data. Let (x, y, θ) be the current position of the laser scan

coordinate frame. The affine transformation matrix from the laser coordinate frame

to the global coordinate frame is given by the procedure shown in algorithm 2.
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Algorithm 2 Affine transformation for a translation (x, y) and a counterclockwise

rotation around the origin by an angle θ.

AFFINE-TRANSFORMATION(x, y, θ)

return




cos θ − sin θ 0 x

sin θ cos θ 0 y

0 0 1 0

0 0 0 1




The procedure shown in algorithm 3 is used to build the global map and recon-

struct the path of the robot from a sequence of laser range scans with associated

odometry data. We begin by taking the first scan in the sequence as the reference

scan SR. Initially, the map consists only of the points in the scan SR represented in

the global coordinate frame, but it will be incrementally enriched at each iteration of

the loop. At every moment, a transformation matrix T3, from the coordinate frame

of the laser in the reference scan frame to the global coordinate frame is kept. At

the beginning of each iteration the next scan in the sequence is taken to update the

current scan SC .

Then the odometry data is used to obtain an initial estimate for the pose of the

laser in the current scan with respect to the reference scan coordinate frame. This

estimate is feed to the PSM procedure described in the previous section, and get as a

result a new estimate of the pose. Using this new estimate, the T3 matrix is updated,

the points in the current scan are transformed into the global coordinate frame, and

added to the global map. The current scan becomes then the reference scan and the

whole process is repeated again.

Because the short-term odometry of the robot when traveling on a flat surface is

relatively accurate, in practice we do not need to use scan matching to compute the

pose of the robot in every scan. Instead, we only use scan matching to get a better

estimate of the pose of the robot when it has traveled a certain distance or rotated

a certain angle, or when a certain lapse of time has passed since the last time scan

matching was used.

Using the results obtained by the PSM algorithm, the odometry data of the whole

sequence can be recomputed. It suffices to multiply after each iteration matrix T3

by the transformation matrix T−1
L , which gives the transformation matrix from the

robot’s (not the laser) coordinate frame of the current scan to the global frame. The

pose (x, y, θ) can be readily extracted from this last matrix.
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Algorithm 3 Pseudocode of the procedure used to incrementally build a global map

from a sequence of laser range scans with odometry information.

GLOBAL-MAP(scan[N ])

1 SR ← scan[1]

2 T1 ← AFFINE-TRANSFORMATION(SR.x, SR.y, SR.θ)

3 T3 ← T1 × TL

4 Map← APPLY-TRANSFORMATION(T3, SR)

5 for i← 2 to N

6 SC ← scan[i]

7 T2 ← AFFINE-TRANSFORMATION(SC .x, SC .y, SC .θ)

8 T ← T−1
L × T−1

1 × T2 × TL

9 (x, y, θ)← (T(1,4), T(2,4), atan2(T(2,1), T(2,2)))

10 (x, y, θ)← PSM(SR, SC , x, y, θ)

11 T ′

3 ← AFFINE-TRANSFORMATION(x, y, θ)

12 T3 ← T3 × T ′

3

13 Map←Map ∪ APPLY-TRANSFORMATION(T3, SC)

14 SR ← SC

15 T1 ← T2

16 return Map

3.4 Results of Implementation

The enhanced PSM algorithm was first tested with synthetic data of a simulated

room which covers the whole room (360◦). Figure 3.4 show in red the reference scan

–in this case the simulated room– and in green the current scan prior to matching.

Both scans are identical, but the pose and orientation of the current scan was altered.

Figure 3.5 shows the convergence sequence –iterations– of the EPSM algorithm.

Finally, the result of the EPSM with synthetic data of the simulated room is shown

in figure 3.6, where the current matched scan is in green and the reference scan is in

red. It can be seen that the current scan converge accurately to the reference scan.

Later, our algorithm was tested with a pair of real scans taken after a small dis-

placement of our robot. In this particular experiment, we chose a pair of scans rel-

atively difficult to match, in order to evaluate the convergence criterion of the algo-

rithm. The reference and current scan prior to matching are shown in figure 3.7. It

can be seen from the convergence sequence in figure 3.8, that even though the scans

are quite different, they have some similarities that the algorithm uses to correctly

match the scans as shown in figure 3.9.

The first laser-based SLAM experiment used Anis robot in an indoor office-like

environment (Borel building). The sequence was obtained by manually command-

ing the robot to explore the ground floor in a closed loop in a corridor. The original

odometry is in red, and the estimated trajectory after scan matching is in green.
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Figure 3.4: Synthetic data: current scan (green) and reference scan (red) prior to

matching

Figure 3.5: Convergence sequence of a simulated room
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Figure 3.6: EPSM result: Matched current scan (green) and reference scan (red)

Figure 3.7: Real scans: current scan (green) and reference scan (red) prior to matching
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Figure 3.8: Convergence sequence of real data scans

Figure 3.9: EPSM result: Matched current scan (green) and reference scan (red)
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Figure 3.10: Scan Matching with median filter

In a first instance, the implementation used the median filter. The result is shown

in figure 3.10. It is important to notice that the median filter is not powerful enough

to eliminate many of the outliers, which causes wrong associations. As a result, the

map is not straight because of the considerable drift at the end.

A second experiment using the algorithm for rejection of local artifacts instead of

the median filter is shown in figure 3.11. Obviously, as expected, much more outliers

were removed and a better result was obtained. However, there is still a small drift

at the end of the sequence.

Finally, with the implementation of the proposed segment filter we obtained the

map shown in figure 3.12. The result is a straight map without drifts at the end of

the sequence. It is important to notice here, that even when we are not using any

algorithm to close the loop, the EPSM achieves good convergence.

As we stated before in chapter 1, the robots are capable of taking measurements

from different sensors, namely, odometry, laser scans and omnidirectional images.

In Joly (2010), this same sequence was used to perform visual-based SLAM using a

SAM algorithm. In order to compare and evaluate the validity of our results, we show

on figure 3.13 the results obtained with the same sequence using the odometry and

omnidirectional images.

The second experiment to evaluate our laser-based SLAM algorithm, uses our

more recent robot Hannibal. As stated before, the sequence was obtained by manually

commanding the robot to explore the ground floor. In this case, the environment is

not a corridor, but an indoor environment of the robotic hall (kahn building). The

robot performed always a sequence in a closed loop. Figure 3.14 shows the position of
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Figure 3.11: Scan Matching with rejection of local artifacts algorithm

Figure 3.12: Global map obtained by EPSM-SLAM algorithm
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Figure 3.13: Global map of Borel building obtained using visual data [source: Joly

(2010)]

Figure 3.14: Global map obtained by SLAM together with the original and recomputed

position of the robot at several key instants.
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the robot at several instants in the sequence as given by the original odometry data

(in red) and as computed by scan matching (in green) superimposed on the generated

global map.

As before, although we did not perform closed-loop detection or corrections of any

kind, the results are quite satisfactory. The recomputed odometry represents a big

improvement over the original odometry that even drifts out of the building.

The parameters used in scan matching during the experiment are in table 3.1:

Half Window 2

Segment Hop 20cm

Max Range 10m

PSM Window 80o

Min Segments 5

Max Iterations 50

Skip scans 30

Table 3.1: Parameters

3.5 Conclusion

We have proposed in this chapter a generalization of the Polar Scan Matching al-

gorithm in order to deal with lasers with arbitrary angular resolution and bearing

range. Our particular interest in this algorithm is due to its ability to work with

lasers measurements in its original form, i.e., as the data is delivered by the laser

rangefinder: the polar form. This will allow us later, to carry out a tightly coupled

sensor fusion between the measurements obtained from the laser rangefinder and an

omnidirectional camera, as will be shown in chapter 4.

In addition, our Enhanced PSM inherits the advantages of the original PSM such

as O(n) complexity pose estimation thanks to its matching bearing association rule.

Furthermore, as any other point to point matching approach, it does not require the

environment to be structured or contain any predefined features.

A map resulting from SLAM with EPSM has been compared to a map resulting

from SLAM using a SAM algorithm and vision information of the same sequence, in

order to compare and evaluate the validity of our results. This results encourage us

more to use the raw information of both sensors in a composite scheme as will be

detailed in the next chapter.
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"Teachers open the door. You

enter by yourself."

Chinese Proverb

4
Tightly-Coupled Sensors Fusion

Overview

The aim of this Chapter is twofold: firstly, it introduces the main aspects of omnidi-

rectional vision. It will be described the peculiarities of the modeling including the

use of spherical projection. Secondly, we will describe how to link images obtained

by an omnidirectional camera with a laser range finder in order to build a composite

laser/omnidirectional sensor that will enhance both, localization and map represen-

tation of the robot’s environment.

Keywords: Vision sensors, omnidirectional cameras, unified projection model, tightly

coupled fusion, floor segmentation.

Organization of this chapter:

This chapter is organized as follows:

Section 4.1 explores the world of omnidirectional vision through biology and hu-

man history. A brief state of the art on catadioptric cameras is given. The

classification proposed in the literature for the different catadioptric systems is

described.

Section 4.2 focuses on the advantages of central catadioptric sensors for robotics.

The entire class of catadioptric systems is described in detail. Then, the Unified

Projection model is presented in section 4.2.2.
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Section 4.3 and 4.4 explains the parametrization and low-level feature extraction

of "radial" lines in the omnidirectional image. The canny edge detector and the

Randomized Hough Transform are described, and some results of the proposed

procedure are given.

Section 4.5 describes the procedure developed to extract vertical lines from omni-

directional images (as stated in the previous section) and to estimate their 3D

positions using information from the laser range finder. It will be shown how

to build a 3D wired representation of the environment using a SLAM approach

based on the detected lines.

Section 4.6 considers that the laser scan can be shifted along the vertical lines and

could be used to predict where a virtual laser trace, corresponding to the floor,

should project onto the omnidirectional image. A procedure to correct the seg-

mentation of the floor with the laser trace is presented, which completed our

laser/omnidirectional sensor that enhance both, localization and map represen-

tation of the robot’s environment. Some results are discussed at the end of the

section.

Section 4.7 gives the conclusion of the chapter

4.1 Omnidirectional vision

It is just natural for animals and humans to use vision to perform accurately naviga-

tion tasks. The visual sense gives us timely knowledge of our spatial surroundings,

near and far, identifying all the objects in it to our consciousness. Without vision, to

simply move from one place to another becomes complicated and dangerous, so it is

equally natural to consider vision as a sensor for mobile robots. Visual sensing has

many desirable features, including passivity, high resolution, and long range.

The sense of vision in humans relies on both eyes to transform information re-

ceived as light into electrical pulses transmitted by neurons. How the brain processes

this information to construct an internal representation of the environment and how

we reason about our environment using this representation is the subject matter of

the fields of perception and cognition in biological sciences. In robotics, the field of

computer vision studies the task of constructing representations of the environment

from visual data, while artificial intelligence investigates reasoning and planning

based on these representations.

The area that encompasses the sight is called field of view or field of vision (FOV).

In the animal kingdom, the field of view is adapted to the type of animal and the

environment. Herbivores (rabbits, horses, cows, ...) have a large field of view (more

than 300◦) but a small binocular field (around 50◦). Carnivores or primates in con-

trast usually have smaller field of views with bigger binocular regions. In robotics, to

choose the FOV will depend on the application and the task to solve.
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As explained before, by placing a perspective camera in front of a convex mirror,

we can obtain 360◦ field of view of the environment. This system is called catadiop-

tric system. It was probably Rees (1970), the first catadioptric sensor patented in the

United States. He proposed a system combining a conventional camera with a hyper-

bolic mirror. Withal, it was not until 20 years after that researchers began to explore

the advantages of omnidirectional vision in applications for robotics and computer

vision.

One of the pioneers on catadioptric cameras was Yagi and Kawato (1990) who

combined for the first time a conventional camera with a conic mirror (COPIS) for

robotics applications. Also, Hong et al. (1991) made an omnidirectional vision sensor

using a spherical mirror. Unfortunately, these types of systems did not satisfy the sin-

gle viewpoint constraint. Later Yamazawa et al. (1993), combined a hyperbolic mirror

with a conventional camera to generate omnidirectional images that satisfy the sin-

gle viewpoint constraint. As explained by Yamazawa et al. (1993) and completed later

with a complete analysis of the geometric properties by Baker and Nayar (1999), a

single view point constraint (i.e. center of projection) is desirable for any catadioptric

system in order to generate geometrically correct perspective images. From a theoret-

ical point of view, it is easier to model and analyze systems that meet this condition.

However, this constraint imposes special conditions when designing the sensor, such

as a precise positioning of the components of the mirror and the camera.

Catadioptric systems can therefore, be classified on whether they have a single

center of projection or not. The non-central catadioptric sensors have, by definition,

more than one center of projection (several points of view) that forms a continuous

region. This region is called a caustic (Swaminathan et al. (2006)). Two classic exam-

ples of caustic are show in figure 4.1

The presence of several centers of projection –as for conic or spherical mirrors–

induces particular properties that are difficult to exploit, which is why the rest of this

thesis will focus on central catadioptric sensors.

4.2 Central Catadioptric Models

Central catadioptric sensors are the most used systems in omnidirectional vision.

They combine convex mirrors with conventional cameras to form the omnidirectional

images preserving the single viewpoint property. This means that all light rays that

enter the camera to form the image, passes through a single point (i.e. projection

center) and the corresponding reflected rays (after a telecentric lens for parabolic

mirrors) also pass through a single point (i.e. optical center).

The single viewpoint constraint is a desirable property because it allows the map-

ping of any part of the scene to a perspective plane without parallax, i.e., the gen-

eration of correct perspective images captured by catadioptric sensors. Even more

interesting, it allows a simplification of projections models and therefore a simplifica-
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Figure 4.1: Two examples of caustics: A caustic caused by the refraction of a ray on

the sphere and the bright light pattern inside the ring is the caustic for this scenario.

[source: Nvidia Gelato Image Gallery]

Parabola
√
x2 + y2 + z2 = 2p− z

Hyperbola
(z− d

2
)2

a2 − x2
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= 1

Ellipse
(z− d

2
)2

a2 + x2

b2
+ y2

b2
= 1

Plane z = d
2

Table 4.1: Conic Equations

tion of theoretical and practical treatments.

Baker and Nayar (1998) derived the entire class of catadioptric systems with a

single viewpoint which can be constructed using just a single conventional lens and

a single mirror. The four configurations that have this property are an orthographic

camera associated to a parabolic mirror or a perspective camera associated to a hy-

perbolic, elliptical or planar mirror. Figure 4.2 adapted by Mei (2007) from the work

of Barreto (2003) depicts these cases under the assumption of the pinhole camera

model:

1. Parabolic mirror coupled with orthographic projection: In this case, the single

viewpoint is the focus (F) of the parabola. The distance between the camera and

the mirror is not constrained. The single viewpoint constraint is verified when-

ever the camera is orthographic and the optical axis is aligned with the axis of

the paraboloid. An orthographic projection can be obtain using telecentric op-

tics [Watanabe and Nayar (1995)]. This system is somehow difficult to construct

since the telecentric lens must be as wide as the mirror, which is why this sys-

64



4.2. CENTRAL CATADIOPTRIC MODELS

Figure 4.2: Catadioptric Sensors with a Single Viewpoint

[Source: Mei (2007)]
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tems are very expensive. A ray of light incident with the focus of the parabola

is reflected by the mirror to a ray of light parallel to its axis. The equation of

the paraboloid is given in table 4.1. This system is often called paracatadioptric

camera.

2. Hyperbolic mirror coupled with perspective projection: The design of this sys-

tems is very delicate. The pinhole camera have to be placed so as to have its

focus on one foci of the hyperboloid. Any light ray going through the inner fo-

cus is reflected in another ray passing through the outer focus, i.e., the central

point and the optic center coincide with both focus of the hyperboloid. Thus,

by the reflective properties of the hyperboloid, when the rays reflect on the hy-

perbolic mirror they target the second focus, on doing so, the second focus acts

as the single viewpoint. The corresponding hyperboloid equation is provided in

table 4.1, where d is the distance between foci, a = 1/2(
√
d2 + 4p2 − 2p) and

b =

√
p(
√
d2 + 4p2 − 2p)

3. Elliptic mirror coupled with perspective projection: Similar to the hyperbolic

case, the perspective camera must be positioned so that its optical center coin-

cides with one of the two foci of the ellipsoid and orientated towards the other

focus (the central point). Due to the fact that the perspective camera and the

reflective surface are inside the ellipsoid, the field of view is slightly increased

(less than half-sphere), which is why it is not used in practice. The correspond-

ing ellipsoid equation is shown in 4.1, where d is the distance between foci,

a = 1/2(
√
d2 + 4p2 + 2p) and b =

√
p(
√
d2 + 4p2 + 2p).

4. Planar mirror with perspective projection: A planar mirror also verifies the sin-

gle viewpoint constraint. However, this is a degenerate case that bring us back

to classical perspective vision, thus without any practical interest nor the pos-

sibility of increase the field of view. The effective projection center is behind the

mirror in the perpendicular line passing through the camera center. As shown

in figure 4.2 its distance to the camera center is twice the distance between the

planar mirror and the camera.

The degenerated systems proposed by Baker and Nayar (1998) are the spherical

mirror with perspective projection and the conical mirror with perspective projection.

As mentioned previously, this configurations does not satisfy the single viewpoint con-

straint. Nevertheless, it has been proved that under geometric optics image forma-

tion model, the single viewpoint of cone mirror is actually realizable (Lin and Bajcsy

(2001)). The interest on the conic system is due to the fact that cones are much more

cheaper to manufacture with higher resolution. The narrow field of view on the con-

trary, makes it less attractive for robotics applications. As for the spherical mirror, we

need to place the camera in the center of the sphere in order to obtain a single view-

point. The central projection point will then coincide with the optical center and the
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center of the sphere, thus only seeing the camera itself. On the other hand, besides

that spherical mirrors are less expensive, they are also easier to calibrate, which is

why they are mostly used to built non central catadioptric sensors.

Geyer and Daniilidis (2000) propose a unified model for every central catadioptric

system (figure 4.2) using the spherical perspective projection. In his thesis, he gave

a geometrical proof of the equivalence of the projection on a quadric surface and the

projection on the sphere. Later, a modified version was proposed by Barreto (2003).

We will present this unified model in section 4.2.2. In the following, we explain ge-

ometrically the equivalence between the projection on a quadric and the projection

on the sphere. This projections are well known, but presented here for the sake of

completeness.

4.2.1 Quadric projection vs Sphere projection

In figure 4.3, the left side describes the classic projection model of a 3D point in the

parabolic case. If the ray FP that cross the 3D point P and the focal point F intersects

the mirror in M1, it will be reflected parallel to the optical axis and will intersect the

image plane in Q.

On the other hand, the right side of the figure represents the same projection

using a sphere centered in F . The intersection of the ray FP and the circle is the

point M2. So, the 3D point P is first projected to M2 and then projected from the

North pole N to the image plane in the same point Q.

F Q

P

I

d

F Q

P

I

d

M2

NM1

Figure 4.3: Quadric projection vs sphere projection

The parabolic projections of a 3D point P to I, in both cases, are coincident in Q,

therefore equivalents. It is also possible to find an equivalence of this model for the

hyperbolic case by choosing an appropriate projection center on the axis between the

north pole N and F . Its position will depend on the shape of the mirror.

4.2.2 Unified Projection Model

In this section the Unified Projection Model (figure 4.4) proposed by Mei (2007) is

presented, which is an extension of the models of Geyer (2003) and Barreto (2003).
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ξ γ

Parabola 1 −2pf

Hyperbola df√
d2+4p2

−2pf√
d2+4p2

Ellipse df√
d2+4p2

2pf√
d2+4p2

Planar 0 -f

Perspective 0 f

d: distance between focal points

4p: latus rectum

Table 4.2: Unified Model Parameters

The projection of 3D points can be done by following the next steps:

1. The first step is the projection of the world points in the mirror frame Fm onto

the unit sphere,

(X )Fm
→ (X s)Fm

=
X

‖X‖ = (Xs, Ys, Zs)

2. Then, the points are changed to a new reference frame centered in Cp = (0, 0, ξ),

(X s)Fm
→(X s)Fp

= (Xs, Ys, Zs + ξ)

where the parameter ξ ∈ [0, 1] depends on the geometry of the mirror.

3. Then, the points are projected onto the normalized image plane πm,

m = (
Xs

Zs + ξ
,

Ys

Zs + ξ
, 1) = ℏ(X s)

4. Finally, the coordinates of the points in the image frame are given by,

p = Km =



γ1 γ1s u0

0 γ2 v0

0 0 1


m = k(m)

where K is the so called camera projection matrix with (γ1, γ2) the generalized

focal lengths, (u0, v0) the principal point and s the skew. The values for ξ and

γ (detailed in table 4.2) are related to the mirror parameters (the ideal case

γ1 = γ2).
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Figure 4.4: Unified Projection Model
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4.2.3 Inverse Unified Projection Model

In the above section we explain the steps of the direct unified projection model, i.e.,

how to project a 3D point in the image plane. If we consider a pixel p in the image

plane and we wish to know the coordinates of this point associated to the sphere

frame, we applied the inverse unified projection model. As the function ℏ is bijective

then,

ℏ
−1(m) =




ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
− ξ


 = X s (4.1)

The calculation of the point X s corresponding to a given point p is called lifting.

4.2.4 Calibration Issues

Despite the fact that omnidirectional cameras are a popular choice as visual sensors

for robotics because of its many advantages, their practical use require a calibration

phase which is not always evident and mostly can be time consuming. This is why

in the last years, calibrations techniques for omnidirectional sensors have been the

focus of attention of many researchers and now there are efficient methods to carry

out this task. Precise calibration is a crucial step as it will later have an impact over

the quality of the reconstruction and pose estimation.

The method that most of the researchers used is by projection of lines, in which,

only the lines in the scene detected on the image are used (no need of any other metric

information). Geyer and Daniilidis (1999) propose to use the detection of two sets of

parallel lines in the scene in order to recover the intrinsic parameters of a parabolic

catadioptric system. Barreto and Araujo (2005) studied the geometry of the central

catadioptric projection of lines and used for calibration. They showed that any central

catadioptric system can be fully calibrated from the image of a minimum of three

lines. Ying and Hu (2004), propose a variant of the method that uses projection of

lines and projections of spheres. They proved that the projection of spheres is more

robust and has higher accuracy for calibration than using projection of lines.

Another method is by knowing world coordinates. This method uses a calibra-

tion patterns or calibration grids with control points whose 3D world coordinates are

known [Vasseur and Mouaddib (2004), Scaramuzza et al. (2006)]. This methods are

popular because they are accurate and easy to use.

Particularly, in order to recover the intrinsic parameter of the camera we used

the method proposed by Mei and Rives (2006a, 2007) which relies on minimizing

the reprojection error of points of a planar grid of known dimension. This method

allows to accurately calibrate any catadioptric system without the need of knowing

the mirror parameters. Additionally, it is possible to recover the parameters of the
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(a) (b)

Figure 4.5: Images used for the calibration of the camera

mirror. Two examples of the omnidirectional images used in this calibration step are

shown in figure 4.5, where the calibration grid is visible. The results of the calibration

for both mirrors are shown in table 4.3.

Parabolic mirror Hyperbolic mirror

Focal Length (γ1) 255.9681 284.15152

Focal Length (γ2) 262.7848 284.85383

xi (ξ) 1 0.8711

Principal Point (u0) 505.6540 519.96492

Principal Point (v0) 393.6585 385.02783

Table 4.3: Calibration results for both mirrors

Calibration Laser and Catadioptric Camera

Once the laser and the camera has been calibrated separately, it is necessary to cal-

ibrate the laser range finder and the omnidirectional camera to find their extrinsic

parameters, in order to be able to combine the data of both sensors. In other words,

we need to find the rigid transformation from the camera coordinate system to the

laser coordinate system.

There have been some studies for the extrinsic calibration of a camera and a laser,

probably all based on the work of Zhang and Pless (2004) for standard perspective

cameras and lasers with invisible beam. The idea was to combine a plane with known

position (calibration grid) with the calculated distances obtained from the laser.

The work of Zhang and Pless was extended by Mei and Rives (2006b) to calibrate

central catadioptric cameras and lasers with visible and invisible beam. We used this

last approach in order to find the relative pose (rotation and translation) between the
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Figure 4.6: Association between a calibration grid and the sensors

(a) (b)

Figure 4.7: Laser data projected on omnidirectional images after calibration

sensors. Several omnidirectional images and laser scans were taking simultaneously

as shown in figure 4.6. It is important that the calibration grid is visible in the

images, and likewise, the laser beam crosses the calibration grid.

The results are shown in figure 4.7, where the laser points were reprojected into

the omnidirectional image using the projection model described in section 4.2.2. It

can be seen, that the results are quite accurate, which will be of vital importance for

merging image and laser data for our hybrid sensor. We will see in further sections

that in practice, calibration is not always perfect, and that even a small error in the

calibration step will cause wrong data association.

4.3 Omnidirectional Lines Parametrization

A 3D line projected in a monocular imaging device can be parameterized by the nor-

mal noted n (n ∈ S2) formed by the line and the center of projection (see figure 4.8).
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Figure 4.8: Projection of a 3D line in the image.

In the previous section, equation 4.1 relates a point on the normalized plane to

a projective ray through the mirror center and X s. Therefore, by multiplying by

ξ x2+y2+1

−ξ−
√

1+(1−ξ2)(x2+y2)
, the projective equality is obtained:





ℏ
−1(m) ∼




x

y

f(x, y)




f(x, y) = 1 + ξ x2+y2+1

−ξ−
√

1+(1−ξ2)(x2+y2)

(4.2)

This equation is valid for any central catadioptric device. When the camera is

calibrated the values for f(x, y) can be precalculated. The relation between m and p

is linear and not very costly to compute (in particular if r = 1 and s = 0 which is often

the case with modern cameras).

A point p on an omnidirectional line of parameter n verifies:

(n⊤)




x

y

f(x, y)


 = 0 (4.3)

This result will be useful for the extraction of the radial lines in the image, which

will be explained more in detail in the next section.

4.4 Omnidirectional feature extraction

This section aims, once the camera has been calibrated, to describe the omnidirec-

tional image processing used to make the most of the information provided by the

omnidirectional camera. This processing will be used later to correct (relocate) the
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pose estimation of the laser-based approach and to reconstruct a 3D map of the sur-

roundings of the robot. It is a well known fact that the efficiency and robustness of

SLAM procedure is directly influenced by the choice of the map representation type.

One way of modeling the environment structure is with geometric primitives, which

provide a concise environment description. As our work focuses on indoor environ-

ments, we will be interested in a "low-level" feature extraction of lines, which are

more like to characterize office-like indoor environments.

It has been proven [Geyer and Daniilidis (2002); Barreto (2003); Ying and Hu

(2004)] that in central catadioptric systems, lines in the scene –corresponding to ap-

proximately vertical features (e.g. walls, facades, doors, windows...)– are projected to

quasi radial lines in the image. Particularly, line images are circles in paracatadiop-

tric images and conics in the hyperbolic case. The camera-mirror system was set to

be perpendicular to the floor where the robot moves, which can guarantee that verti-

cal lines in the scene are approximately mapped to radial lines on the camera image

plane.

Before resuming our work, we shall define low-level features to be those basic

features that can be extracted automatically from an image without any shape infor-

mation (i.e., information about spatial relationships). It will allow us to work directly

with the grey level binary image (raw data) obtained with the omnidirectional cam-

era.

Canny edge detector

The first step of our low-level feature extraction of lines scheme is edge detection. This

step is performed using Canny edge detector, which is a first order differentiation

operator. Canny (1986) described in his paper, three performance criteria of his edge

detection algorithm, namely:

1. Good detection: This aims to reduce the response to noise (using optimal smooth-

ing). Canny was the first to demonstrate that Gaussian filtering is optimal for

edge detection.

2. Good localization: which means a small bias in edge position with respect to the

true edge. This was achieved with a non-maximum suppression process (which

is equivalent to peak detection). This results in thinning: thin lines of edge

points in the right place.

3. Only one response to a single edge: which means location of a single edge point

in response to a change of brightness.

Because of its performance criteria, Canny edge detection operator is suitable for

our purposes. It was applied to the grey level omnidirectional image to obtain a

binary edge image. Figure 4.9(b) show the performance of the Canny edge detector
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(a) (b)

(c) (d)

Figure 4.9: Canny edge detector: 4.9(b) Performance in a corridor. 4.9(d) Performance

in the robotic hall.

for an image taken in a corridor, while in figure 4.9(d), the image was taken at the

robotic hall. It is clear the accuracy of Canny edge detection performance.

Randomized Hough Transform for line extraction

The next step consist in applying the Randomized Hough Transform (RHT) –which is

a probabilistic variant of the classical Hough Transform– to the binary edge image in

order to extract lines in the omnidirectional image. The RHT has proved to overcome

with the drawbacks of the classical Hough Transform (HT), being an efficient alter-

native [Xu and Oja (1993)]. Furthermore, it has the advantages of fast speed, small

storage and high parameter resolution.

The idea of the RHT, is to avoid the voting procedure of the HT for detecting poten-

tial curves in the image by taking advantage of the fact that some curves can be fully

characterized by a certain numbers of points on the curve. For example, a straight

line can be determined by two points, an ellipse and a circle can be determined by
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(a) (b)

Figure 4.10: Randomized Hough Transform and circle detection

three points. the essence of the RHT process generally consists on the combination

of three steps: random sampling in the image space, the score accumulation in the

parameter space and converging mapping as the bridge between the two spaces.

Thus, the RHT estimate the n numbers of points on the curve by randomly extract-

ing n values. This random data selection is also common in the RANSAC approach.

Actually, RANSAC [Fischler and Bolles (1981)] use as well a combination of random

sampling and converging mapping. The main difference between RANSAC and RHT

is that RANSAC does not use score accumulation in the parameter space. Ransac is

rather, a guess and test method.

Duda and Hart (1972) introduce the (ρ, θ) polar parametrization to the HT, which

makes HT more efficient for line detection, moreover, they also demonstrated how a

circle can be detected with HT. Xu and Oja (1993) used and extended this parametriza-

tion to estimate the parameters of a line. Mei and Malis (2006) described a more effi-

cient parametrization for the omnidirectional lines, which can be obtained by directly

estimating the normal. Thus the line image joining two points m1 and m2 has for

normal n (ℏ−1(m) ∈ S2):

n = ℏ
−1(m1)× ℏ

−1(m2) (4.4)

This parametrization allows us to obtain a 2-dimensional buffer in (nx, ny) by impos-

ing nz ≥ 0.

In addition, since we are interested only in quasi-radial lines of the omnidirec-

tional image, the calibration of the camera is needed to recover the image center (i.e.,

where all radial lines intersect). The image center can be corrected using a circle

detection (also with Hough Transform). The image center will help us filter out the

lines detected by the RHT that do not lie on radial directions. The results for two

indoor environments, are shown in figure 4.10, where the radial lines are depicted in

green and the result of the circle detection is depicted in red.
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SCANS

Figure 4.11: Detection of vertical lines and the corresponding laser measurements.

4.5 3D Vertical line extraction from omnidirectional images

and laser scans

This section explains the procedure we developed to extract vertical lines from om-

nidirectional images and to estimate their 3D positions using information from the

laser range finder.

Firstly, we project the laser information on the omnidirectional image in order to

get an approximation of the depth information missing in the image. To achieve this,

the unified projection model defined in section 4.2.2 is applied.

The generalized camera projection matrix K is computed from the generalized

focal lengths (γ1, γ2) and the principal point (u0, v0):

K =



γ1 0 u0

0 γ2 v0

0 0 1




Using K, we can compute the normalized coordinates of a point p in the image

(represented in the camera coordinate frame) as m = [x, y, 1]T = K−1p. We then

compute X s = [Xs, Ys, Zs] as follows (see figure 4.4):

X s =




ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
− ξ




where ξ is the mirror parameter, which is equal to 1 for parabolic mirrors.

Then we extract the quasi-radial lines in the scene (as explained in the previous

section), corresponding to approximately vertical features (e.g. walls, facades, doors,
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Figure 4.12: Extraction of 3D lines

windows). As we set the camera-mirror system perpendicular to the floor where the

robot moves, we can guarantee that vertical lines are approximately mapped to radial

lines on the camera image plane.

As shown in figure 4.11, by overlapping in the omnidirectional image the laser

scan data and the radial lines we can find a laser range measurement corresponding

to each vertical line. This allows to recover the depth information missing. We detect

those laser measurements and save them in the original camera frame together with

its corresponding point in the image plane (which also corresponds to a point on a

vertical line).

Let Ms
0 = [Xs

0 , Y
s
0 , 0]T be a laser measurement lying on a vertical line expressed in

the camera coordinate frame, ∆ a 3D plane defined in the camera frame, and ms
i =

[xs
i , y

s
i , z

s
i ]

T , i = 1, 2 the end points of the vertical line where the laser measurement

lies expressed in the sphere (mirror) coordinate frame (see figure 4.12). These last

points are computed by inverting the projections of the unified model as in depicted

in section 4.2.3.

We reconstruct the 3D lines as follows. Let us be the director vector. For every
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Figure 4.13: Environment with 3D lines

Ms
i ∈ ∆, the vector

−−−−→
Ms

0M
s
i is collinear to us. Thus,

−−−−→
Ms

0M
s
i = λiu

s =⇒





Xi −Xs
0 = λiu

s
x

Yi − Y s
0 = λiu

s
y

Zi − Zs
0 = λiu

s
z

(4.5)

−−−→
OMs

i = µi
−−−→
Osmi =⇒





Xi = µix
s
i

Yi = µiy
s
i

Zi = µiz
s
i

(4.6)

Substituting (4.6) in (4.5) we get the following system of equations





µix
s
i −Xs

0 = λiu
s
x

µiy
s
i − Y s

0 = λiu
s
y

µiz
s
i − Zs

0 = λiu
s
z

(4.7)

If ∆ is a vertical plane in the sphere frame Rs, i.e. us = [0, 0, 1]T , then:





µix
s
i −Xs

0 = 0

µiy
s
i − Y s

0 = 0

µiz
s
i − Zs

0 = λi

(4.8)

Since [xs
i , y

s
i , z

s
i ]

T and [Xs
0 , Y

s
0 , 0]T are known, we can compute µi for each i. Then

we substitute in equation (4.6) to obtain the extreme points of the lines in ∆. Fi-

nally, we apply the homogeneous transformation to transform the coordinates of those

points to the global coordinate system and trace the 3D lines. The result is shown in

figure 4.13. We can observe that the vertical lines extracted are consistent with the

2D map.
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(a)

(b)

Figure 4.14: Floor detection. 4.14(a) Line extraction and Laser re-projection shifted at

floor level. 4.14(b) Fire-extinguisher breaks the planarity hypothesis.

4.6 Floor detection from omnidirectional images and laser

scans

As stated in the previous section, it is assumed that the distance between the laser

frame and the floor is approximately known (which requires the plane to be horizon-

tal). It is also assumed that the pose between the camera and laser frames is correctly

estimated. Under these hypotheses, the laser scan can be shifted along the vertical

lines and used to predict where a virtual laser trace, corresponding to the floor, should

project onto the omnidirectional image.

Due to calibration errors, the predicted trace does not exactly match the real

boundary of the floor observed in the image. In practice, the neighborhood of the

predicted trace is searched for the closest element of contour detected in the image.

This match is finally taken as the intersection between the floor plane and the walls

and will be integrated into a partial 3D model.

As an example of this procedure, figure 4.14(a) shows the predicted laser mea-

surements projected onto the floor in blue. From the zoomed image in figure 4.14(b)
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(a)

(b)

Figure 4.15: Floor Correction. 4.15(a) Corrected floor detection. 4.15(b) Blue trace:

Laser Scan shifted to the floor, yellow trace: Corrected floor detection

it can be seen that in certain cases the prediction may be wrong as in the case of the

fire-extinguisher which breaks the planarity hypothesis of the wall. Figure 4.15(a)

shows in white the result of applying the Canny edge detector to the entire image

and in yellow the detected edge points found by searching the neighborhood of the

laser floor plane, therefore giving a more accurate floor estimation. A better view of

this correction can be seen in Fig. 4.15(b) where overlapped traces are shown.

4.7 Conclusion

In this chapter we have presented an original composite sensor approach that takes

advantage of the information given by the omnidirectional camera and a laser range

finder. A tightly integration of the raw data of both sensors was used for sensor fu-

sion. We have proved to efficiently solve the Simultaneous Localization and mapping

problem for indoor environments, and that using lines is possible to build a 3D wired

representation of the environment. Furthermore, a simple but accurate procedure to

detect the floor in the image is developed, which completed our laser/omnidirectional
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sensor that enhance both, localization and map representation of the robot’s environ-

ment.

In our approach, the laser provides metric information of the environment that

helps to fix a scale factor (removing the difficulty of propagating the scale factor)

without the need to use multiple cameras. We have identified several advantages

of combining laser and visual sensors. Our experimental results are encouraging

and give us valuable insight into the possibilities offered by this composite sensor

approach.

The next chapter will concentrate on an extension of the EPSM algorithm to

exploit the information about vertical lines detected using omnidirectional images.

Thanks to the accurate segmentation of the ground (floor), it will be possible to ex-

tract planes on the image that would allow a dense (textured) 3D reconstruction by

warping the images onto the geometric model of the world. Finally, we believe the

general approach can be extended to solve the full six degrees of freedom (6DOF)

SLAM problem, which is an active field of research.
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"We are judged by what we

finish, not by what we start."

Johann Wolfang von Goethe

5
Appearance-Based SLAM

Overview

This chapter aims to give a brief introduction to visual SLAM and the different ap-

proaches found in the computer vision community. Basically, visual SLAM solve the

simultaneous localization and mapping problem using visual landmarks (i.e., inter-

est features), which are extracted and matched in successive images. The pose of the

robot and of the features in the world are determined based on their observed relative

movement. The images are used to map the position of the robot in the environment.

Furthermore, it provides an additional odometry source, which is useful to define the

location of the robot. Positions and orientations are relative to a reference frame, and

therefore the definition of a pose can be shown to be equivalent to rigid body motion.

A short overview of rigid body motion is given in Appendix C in order to state the

basic terminology used in the following.

The second part of this chapter will describe a novel and efficient hybrid laser/vision

appearance-based SLAM, in order to provide the mobile robot with rich 3D informa-

tion about the environment. By combining the information from an omnidirectional

camera and a laser range finder, reliable 3D positioning and an accurate 3D rep-

resentation of the environment is obtained subject to illumination changes even in

the presence of occluding and moving objects. A scan matching technique is used

to initialize the tracking algorithm in order to ensure rapid convergence and reduce

computational cost.

This approach complements the laser-based localization method described in chap-
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ter 3 and relies on the tightly coupled sensor developed in chapter 4.

Keywords: Visual SLAM, appearance-based SLAM, rigid body motion, hybrid sen-

sor, spherical warping, 3D dense reconstruction.

Organization of this chapter:

This chapter is organized as follows:

Section 5.1 gives a brief introduction to visual SLAM and explains the different

approaches found in the computer vision community.

Sections 5.2 and 5.3 describe the two major approaches for visual SLAM: feature-

based approach and direct approach. The advantages and limitations of both

methods are discussed.

Section 5.4 describes a novel generic robot-centered representation that is well adapted

to the appearance-based SLAM method. It explains how central omnidirectional

cameras can be modeled using two consecutive projections, i.e., a spherical pro-

jection followed by a perspective one.

Section 5.5 proposes an appearance-based localization method which minimizes a

nonlinear cost function directly built from the augmented spherical view de-

fined in section 5.4. It explains in detail how the sphere to sphere mapping is

performed and each step of the our appearance-based SLAM method.

Section 5.6 presents the results that validate our method with real data obtained

by the mobile robot in an indoor office-like environment.

Section 5.7 gives the conclusion of the chapter.

5.1 A survey of Visual SLAM

Estimating the motion of a camera while simultaneously reconstructing the environ-

ment in which it navigates is called Visual Slam [Davison (2003)]. In the computer

vision community is also called Structure From Motion [Faugeras (1993)]. Depending

on the information and the needed application, motion estimation can be classified

in different categories. In the case where the robot moves in a static environment

ego-motion estimation is used for self-localization and object avoidance, whilst deal-

ing with dynamic environments independent object motion estimation have to be per-

formed.

Most of the techniques for motion estimation follow three basic steps. First, dis-

tinctive image features are extracted by using adequate descriptors and operators

–such as SIFT or Harris detector– and then tracked (or matched) between successive

images. This solve the data association problem, however, the data association is
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never perfect and the outliers (aberrant measures) are usually rejected in a second

step using a robust technique like RANSAC for example. By doing this, a set of corre-

sponding points free from mismatches will allow to estimate a tensor containing the

camera displacement (e.g. the essential matrix, the trifocal tensor, etc.). Once the

camera displacement has been extracted from the tensor, it is possible to reconstruct

the structure of the scene up to a scale factor. Some techniques were proposed in the

literature by Torr and Zisserman (2000), Davison and Murray (2002) and Se et al.

(2005) among many others.

The techniques that reconstruct simultaneously the camera pose and the scene

structure can be classified in two main groups: feature-based methods and direct

approaches. In the following sections the advantages and limitations of both methods

are briefly discussed. As both techniques have their advantages and drawbacks, in

order to take advantage of each one, we developed a novel class of methods, called

hybrid approach.

5.2 Feature-Based Methods

Feature based methods rely on the reliable extraction and recognition of image fea-

tures –i.e. geometric primitives such as points, edges, line segments or contours–

from sensor data to perform the estimation. In this kind of methods the data associa-

tion problem is solved first, i.e., find the matching between correspondence pixels, for

which, it is separated from the computation of the nonlinear equation system.

For a standard scheme to visual SLAM, the process can be divided in 3 steps as

follows:

1. Data Extraction Consists on filtering the raw images to detect and extract a

sufficiently large set of features (e.g. points, lines, contours...), corresponding to

the geometric elements that characterized the observed scene. In the literature

there are a variety of feature detectors, most of them specialized in extracting

key points as in Harris and Stephens (1988) or edges as in Canny (1986). An

ideal detector should be capable to ideally extract the same features in all im-

ages, if they are visible. Unfortunately in practice, the ideal detector does not

exist, so two measures are commonly adopted to evaluate their performance:

accuracy and repeatability. Accuracy is achieved thanks to a pre-processing im-

age step like smoothing or image gradients. Repeatability is the capability of

extract the same features in both images which is extremely difficult to achieve.

It generally depends on a threshold to decide if the feature exist or not in the

image, and thanks to this, data association can be performed in the next step.

2. Data Association Consists on robustly matching the features between succes-

sive images (reference and current images), this could be a computationally

expensive task. Thus, feature matching algorithms are generally simplified by
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evaluating a similarity measure between some descriptors of each feature. Even

though, as feature descriptors are not invariant to all the parameters involved,

there will be several mismatches at the end of the matching process, which can

be eliminated a posteriori using geometric constraints within a robust estima-

tion technique, such as RANSAC [Fischler and Bolles (1981)] or M-estimators

[Huber (1981)].

3. Parameter Estimation Consists on seeking of the parameters that optimally and

robustly explain data association, given a model.

In other words, feature based methods minimize an error measure that is based

on distances between a few corresponding features. Many successful applications can

be found in the literature. See for some examples standard text books like Faugeras

(1993) and Hartley and Zisserman (2004).

5.3 Direct Approaches

Direct approaches are also called intensity-based, appearance-based, template-based,

or even texture-based in the computer vision community. In these approaches the

intensity value of the pixels is directly exploited to recover the related parameters

(Irani and Anandan (1999); Stein and Shashua (2000)). Which mean that in contrast

with feature-based approaches, there is no feature extraction step. This methods are

so popular because they simultaneously solve the data association and the param-

eter estimation problems, given the parametric model. Therefore, there are fewer

assumptions made about the environment and consequently the system will be more

portable and robust.

For a standard scheme on visual SLAM, these methods are usually formulated as

an optimization problem and the process can be divided in three iterative steps that

will be performed until convergence:

1. The transformation of the image, i.e., to warp the current image into the refer-

ence frame with current parameters. It is important to model an appropriate

warping function.

2. Compute the difference between the reference and the warped images. Then,

the computation of the similarity measure, i.e. the cost function (e.g. SSD).

3. The computation of an increment of the parameters that decreases the cost func-

tion and update the current parameters.

In other words, given an initial estimate of the related parameters, the optimal

parameters will be found by obtaining a data association according to a similarity

measure. It is important to remark that an initial estimate of the parameters suffi-

ciently close to the true ones is needed, which is clearly one of the main limitations
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(a) (b)

Figure 5.1: ESM visual tracking. A template is reliably be tracked even under illumi-

nation changes. [source: Malis (2007)]

of this kind of methods. Nevertheless, a dense mapping can be obtained without the

need of any post-processing step, since the entire image is exploited, which is one

of the major advantages of the direct approaches. Another strength concerns the si-

multaneous enforcement of structural constraints within the procedure, i.e., a priori

instead of a posteriori as in feature-based methods.

5.3.1 Efficient Second Order Minimization (ESM)

Efficient Second-order Minimization (ESM) technique proposed by Malis (2004) is

nowadays one of the most popular algorithms for visual tracking. It is classified as

direct method because it does not rely on extracting features and then find corre-

spondences based on certain feature matching criteria. It aims at finding an optimal

transformation between two subsequent images [Benhimane and Malis (2004)] or be-

tween parts of it, as the visual tracking of rigid and deformable surfaces presented in

Malis (2007).

To explain the ESM technique, let us consider the general least-squares mini-

mization problem:

F (x) =
1

2

n∑

i=1

(fi(x))2 =
1

2
‖f(x)‖2 (5.1)

The necessary condition to obtain a (local or global) minimum of the cost function

is that there exists a stationary point x̃ such that the derivative of the cost function

is zero, which means:

∇xF |x=ex = 0 (5.2)

where∇x is the gradient operator with respect to the parameter x. Generally, it is
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difficult to obtain a closed-form solution when equation (5.2) is nonlinear. ESM uses

a second-order Taylor series of f about x = 0 which gives:

f(x) = f(0) + J(0) x +
1

2
M(0,x)x + R(‖x‖3) (5.3)

where the last term R(‖x‖3) is a third-order Lagrange remainder and the matri-

ces J(0) and M(z,x) are defined as follows:

J(0) = ∇xf |x=0

M(z,x) = ∇xJ|x=zx

In the same way, the Taylor series of the Jacobian J about x = 0 can be written

as:

J(x) = J(0) + M(0,x) + R(‖x‖2) (5.4)

Plugging equation (5.4) into equation (5.3) we obtain:

f(x) = f(0) +
1

2
(J(0) + J(x)) x + R(‖x‖3) (5.5)

It is possible to keep the terms of this equation only to second-order as x̃ ≈ 0,

thus, a second order approximation of f in x̃ is:

f(x̃) ≈ f(0) +
1

2
(J(0) + J(x̃)) x̃ (5.6)

This is the basis of the ESM algorithm and under certain conditions J(x̃)x̃ can be

calculated without knowing the value of x̃.

Let J(x̃)x̃ = J′x̃, at the solution, f(x̃) = 0, so our second-order least-square mini-

mizer is the solution to:

x̃ = −
(

J(0) + J′

2

)+

f(0)

This result will be used in the following section with a small difference in order to

adapt it to our minimization problem.

5.4 A novel generic robot-centered representation: Augmented

Spherical View

In this section, a novel generic robot-centered representation is described that is well

adapted to the appearance-based SLAM method. Central omnidirectional cameras

can be modeled using two consecutive projections Geyer and Daniilidis (2000): a

spherical projection followed by a perspective one. An omnidirectional image can

thus be mapped onto a sphere by means of an inverse projection. A point P ∈ R
3 is

projected as a point q on the unit sphere S2 and the projection is given by q = P

‖P‖ .

The coordinates of q can be expressed using standard spherical coordinates. The

aim of this section is to show how this spherical representation can be constructed.
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SPHERICAL VIEW

(a) (b)

Figure 5.2: Augmented spherical view: at each pixel on the unit sphere is associated

with a grey level intensity and the corresponding depth of the 3D point. 5.2(a) Grey

levels on the unit sphere. 5.2(b) Depth spherical image.

Since the omnidirectional camera has been calibrated, the intrinsic parameters

are known and the omnidirectional image plane Ip(u, v) can be mapped onto the unit

sphere image I(φ, θ). This mapping is performed in four steps:

a) Sampling First, the unit sphere is sampled at a constant angle in a spherical

grid defined with the maximal radius of the omnidirectional image in φ and the laser

points in θ, to respect both laser sampling and omnidirectional sampling.

b) To image plane The spherical points q corresponding to couples (φ, θ) are mapped

onto the image plane using the "Unified Projection Model" defined in Mei (2007),

which is an extension of the models of Geyer and Daniilidis (2000) and Barreto

(2003).

c) Interpolation The spherical image is obtained by interpolating the omnidirec-

tional intensity image around the projected points as shown in figure 5.2(a).

d) Hybrid laser/image spherical view Finally, the augmented spherical view is

constructed using the depth information from the laser range finder and the floor

plane, together with lines extracted from the omnidirectional image. In order to have

a more dense estimation in the sphere, the laser trace is propagated down to the floor

and upwards (see chapter 4). The resulting spherical image is shown in figure 5.2(b).

In summary, the current augmented spherical view is denoted by S = {I,P } and

the reference spherical view by S
∗ = {I∗,P ∗}. A superscript ∗will be used throughout

the paper to designate the reference view variables. P is initialized from the laser

scan and the vertical 3D lines as shown in figure 5.3.
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Figure 5.3: Sphere to Sphere mapping

5.5 Efficient hybrid laser/vision appearance-based localiza-

tion

The main challenge of localization in the context of indoor environments is to ob-

tain reliable odometry robust to illumination changes in the presence of occluding

and moving objects. As expected for an odometry-based approach, the objective is to

compute the trajectory of the robot (i.e. the laser/vision sensor) along a sequence by

integrating elementary displacements estimated from the successive spherical views

registered during motion.

An appearance-based localization method is proposed which minimizes a non-

linear cost function directly built from the augmented spherical view defined above.

As mentioned in the previous section, each pixel q of the spherical view S is as-

sociated with a brightness function I(P ) and is augmented with the depth of the

associated 3D point (when data is available). In the following, the reference template

is denoted R∗ = {q∗
1, . . . ,q

∗
n}, which defines the subset of the reference spherical

view S
∗ where both the grey level and the depth values are available, where n is the

number of pixels .

5.5.1 Sphere-to-sphere mapping

Consider a 3D point P
∗ ∈ R

3 and its projection q∗ onto the unit sphere (see figure

5.3). Using homogeneous coordinates, the spherical parameterization (θ, φ, ρ), gives:

P
∗ =




ρ cos(θ) sin(φ)

ρ sin(θ) sin(φ)

ρ cos(φ)

1




(5.7)
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and

q∗ =
P

∗

‖P ∗‖ =




cos(θ) sin(φ)

sin(θ) sin(φ)

cos(φ)

1



. (5.8)

The motion of the sensor or objects within the scene induces a deformation of the

reference template. Denote T = (R, t) ∈ SE(3) the true current sensor pose rela-

tive to the reference sensor pose (homogeneous transformation matrix). The function

w(P ∗,T) which warps the current sphere onto the reference one is defined as

I
∗(P ∗) = I

(
w(P ∗,T)

)
, ∀P ∗ ∈R∗. (5.9)

In order to reduce computational time, the warping function is applied to the

reference template R∗ only.

The warping function w(P ∗,T) defines a one-to-one mapping q∗ ← qcur from the

current sphere to the reference sphere such that

qcur =
P

cur

‖P cur‖ =
TP

∗

‖TP ∗‖
. (5.10)

The current image I is then interpolated at points qcur to obtain the corresponding

intensities in spherical coordinates.

Considering that an initial estimation T̂ of current image pose fully represents the

pose of the current camera with respect to a reference sphere, the tracking problem

is reduced to estimating the incremental pose T(x) assuming ∃x̃ : T(x̃)T̂ = T. This

estimate is updated by a homogeneous transformation T̂ ← T(x)T̂. The unknown

parameters x ∈ R
6 are determined by the integral of a constant velocity twist1 that

produces the pose T in 6 degrees of freedom:

x =

∫ 1

0
(ω,υ)dt ∈ se(3). (5.11)

The pose and the twist are related via the exponential map2 by T = e[x]∧ , where

the operator [.]∧ is defined as

[x]∧ =

[
[ω]× υ

0 0

]
(5.12)

and where [.]× represents the skew symmetric matrix operator. Hence, the current

camera pose can be estimated by minimizing a nonlinear least squares cost function:

C(x) =
∑

P∗∈R∗

(
I

(
w
(
P

∗,T(x)T̂
))
− I

∗ (P ∗)
)2
. (5.13)

1see Appendix C, section C.2.1 for a description.
2see Appendix C, section C.2.2 for a description.
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5.5.2 Minimization of the cost function

The aim now is to minimize the difference in image intensity from the cost function

(5.13) in an accurate and robust manner. Since this is a nonlinear function of un-

known parameters, an iterative minimization procedure is used. The minimization

technique is quite similar to that used in Comport et al. (2007), so only the broad lines

of the method are outlined here. Rather than using a standard sum-of-squared dif-

ferences (SSD) technique based on an L2 norm, a robust M-estimator3 (Huber (1981))

is used in order to reject the outliers due to illumination changes, moving objects or

occlusions in the scene. The objective function therefore becomes:

O(x) = ρ

(
∑

P∗∈R∗

I

(
w
(
P

∗,T(x)T̂
))
− I

∗(P ∗)

)
, (5.14)

where ρ(u) is a robust weighting function (see Comport et al. (2007); Huber (1981)

for more details).

The robust objective function is minimized by ∇O(x)|x=x̃ = 0, where ∇ is the

gradient operator with respect to the unknown parameters of x from equation (5.11)

and it is assumed that there exists a stationary point x = x̃ which is the global

minimum within the convergence domain (which needs an initialization close to the

solution).

The Jacobian of the objective function (5.14) can be decomposed in three parts:

J(x)|x=x̃ = JI
∗JwJT. (5.15)

Here JI
∗ is the image gradient computed on the reference sphere with respect

to spherical coordinates (θ, φ) of dimension n × 2n, Jw is the derivative of spherical

projection in (5.8) of dimension 2n×3n, and JT depends on parametrization of x from

(5.11) and has dimension 3n×6 . The objective function (5.14) is iteratively minimized

by computing T̂← T(x)T̂ with the vector of unknown parameters x such that:

x = −λ(DJ)+D(I − I
∗), (5.16)

where (DJ)+ is the pseudo-inverse, D the diagonal matrix determinate from the

robust function ρ(u), and λ is a gain factor that ensures the exponential decay of the

error.

5.5.3 Initialization step

It is a well known fact that direct iterative methods suffer from convergence problems

when initialized far from the solution. This is also true for our method where an ini-

tialization sufficiently close to the solution is needed to ensure rapid convergence and

reduce computational cost. This initial guess is obtained from the laser data using

the 2D scan matching technique developed in chapter 3, which is accurate enough to

ensure fast convergence for the appearance-based method.

3see Appendix D, for an overview about the calculation.
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5.6 Implementation Results

The method is validated using a sequence of 3,262 images and laser scans which were

obtained by manually driving the robot in an indoor environment. The exploration

trajectory constitutes a closed loop of about 40 meters across the robotic hall.

Figure 5.4(a) shows the map and the pose estimated by scan matching (in green)

and the original odometry given by the robot encoders (in red). The shift that can be

observed in the 2D map at the end of the loop is caused by erroneous laser measure-

ments resulting in the failure of the scan matching process. Even in the presence

of these errors it can be seen that the spherical tracking succeeds. This can be seen

in figure 5.4(b) in blue. In this case the shift is corrected due to the complementary

between the laser and vision data leading to overall robustness and accuracy.

A representation of the images used for the pose estimation with the spheri-

cal tracking method is shown in figure 5.5. Observe visually that the final current

warped image 5.5(b) (i.e. after convergence) is correctly matched with respect to the

reference one in figure 5.5(a). Notice also that in figure 5.5(c), the moving pedes-

trian is rejected by the robust estimator function because his position in the current

warped image differs too much from the reference one. In addition, the algorithm is

capable of rejecting specular reflections on the ground and in the windows.

Under the assumption made in chapter 3 that the walls are vertical, from fig-

ure 5.5(d) it is clear that the error is negligible for walls, while non vertical textured

objects were not matched completely and were correctly rejected. As an example,

notice the slanted calibration checkerboard on the left bottom of the images that is

perfectly rejected in figure 5.5(e) and 5.5(f). Some parts of the static pedestrian on

the left are partially matched because these parts are untextured and do not generate

any matching errors, therefore estimation is not affected.

Figure 5.6 shows the 3D textured reconstruction with the correctly matched 3D

points obtained from the spherical tracking algorithm. Only the points that were

not rejected by the robust estimation were used (i.e. with weight equal to 1). This

leads to the rejection of moving pedestrians, that were plotted on the 2D maps in

figure 5.4 as well as non-planar/vertical textured objects. The resulting 3D model

was rendered in OpenGL and allows walk-through as well as bird eye views. An

available video1, will better illustrate the incremental generation of a 2D map with

both estimations of the robot trajectory, as well as the representations of the images

used for the pose estimation with the spherical tracking algorithm. A walk-through

the 3D reconstructed model is shown at the end of the video.

In summary, the fusion of information from laser scan matching and an appearance-

based method improves the robustness of localization and mapping. The robot tra-

jectory is correctly estimated and the drift is minimized. The obtained 3D textured

map represents the environment with a good level of precision as seen through the

1https://www-sop.inria.fr/arobas/videos/HybridLaserOmni_IROS10.mp4
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(a)

(b)

Figure 5.4: 2D global maps obtained with the same laser data. 5.4(a) Map with EPSM

pose estimation. 5.4(b) Map with spherical pose estimation.
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(a)

(b)

(c)

(d)

(e) (f)

Figure 5.5: Images used for pose estimation. 5.5(a) Reference spherical image. 5.5(b)

Current warped image. 5.5(c) Estimated rejection weights. 5.5(d) Final error. 5.5(e)

Weights Zoom. 5.5(f) Error zoom.
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Figure 5.6: 3D reconstruction.

visually satisfying 3D model.

5.7 Conclusion

Although the SLAM problem has been solved using many different approaches, some

important problems need to be addressed that are often directly linked to the sen-

sors used. Laser range finders cannot always help in evaluating the translation of a

robot moving in a straight line in a corridor leading to potential observability prob-

lems. Mapping in dynamic environments is also hard using laser data only due to 2D

measurements and slow acquisition rate. On the other hand, using exclusively visual

sensors introduces issues such as propagating correctly the scale factor.

The hybrid laser/vision appearance-based approach presented in this chapter has

proved to be very efficient in obtaining reliable 3D odometry subject to illumination

changes and in the presence of occluding and moving objects. A complete set of 3D

points can be easily mapped to reconstruct a dense and consistent representation of

the environment. As expected, the initialization of the tracking algorithm close to

the solution using scan matching ensures fast exponential decrease of the error and

avoids local minima.

It is important to remark, that in this approach, the data is obtained by two full
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360◦ field of view sensors: laser range finder and an omnidirectional camera. The

experimental results are encouraging and provide a valuable insight into the possi-

bilities offered by this hybrid approach.

97



CHAPTER 5. APPEARANCE-BASED SLAM

98



"One never notices what has

been done; one can only see

what remains to be done."

Marie Curie

6
Conclusions and Perspectives

This chapter summarizes the contributions of this work and proposes potential re-

search avenues that we have identified through our investigations.

6.1 Conclusions

We have presented the overall picture of the Simultaneous Localization and Mapping

problem throughout this thesis work. Contemporaneous research in this field has

mostly been focused in novel estimation and filtering methods of the SLAM problem

to map large-scale indoor or outdoor environments. Alas, the complexity of the en-

vironments subject to mapping has been limited by the sensors used. Our research

contributes to this field by proposing a novel tightly coupled composite laser/vision

sensor for indoor SLAM.

This composite sensor takes advantage of the native polar form of laser range

finder measurements and the raw vision data from omnidirectional cameras fusing

them within a tightly integration scheme. Vision sensors are a relatively cheap way

to obtain rich 3D information on the environment, but lack the information about

the depth that precise range-bearing measurements from rangefinders can provide.

Combined, they can provide efficient and robust (3DOF or 6DOF) motion estimation

for mobile robots.

The first part of our research, was devoted to make an large bibliography search

for the state of the art on the SLAM problem. This gave us the insights of the scheme

to follow to achieve our final objective. Then, we were interested in developing the

most of the information provided by the laser rangefinder. This is why, a chapter
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was dedicated to propose a 2D laser-based SLAM. To achieve this, we propose the

Enhanced Polar Scan Matching algorithm, which is a generalization of the original

Polar Scan Matching technique proposed by Diosi. The Enhanced Polar Scan Match-

ing algorithm, as any other scan matching algorithm, uses the odometry provided by

the wheel encoders of the mobile robot to obtain an initial estimate for the pose of the

robot.

As for the vision sensors, we started by analyzing the projection models associ-

ated to omnidirectional sensors. We showed how to parameterize omnidirectional

lines and proposed an efficient methodology to extract 3D vertical lines from omnidi-

rectional images and laser scans. Furthermore, we showed that, under the planarity

assumption, the laser scan can be shifted along the vertical lines to predict where a

virtual laser trace –corresponding to the floor– should project in the omnidirectional

image. Due to calibration errors that are always present in practice, the predicted

trace does not exactly match the real boundary of the floor. Thus, we also propose

a technique to correct the segmentation of the floor, where the neighborhood of the

predicted trace is searched for the closest element of contour detected in the image.

Afterwards, the segmented floor will be the intersection between the floor plane and

the walls and will be integrated into a partial 3D model. This completed our tightly

coupled laser/omnidirectional sensor that enhance both, localization and map repre-

sentation of the robot’s environment.

The last part of this research was dedicated to present a background on visual

SLAM and to propose a novel and efficient laser/omnidirectional appearance-based

SLAM relying on our tightly coupled sensor described above. This technique, is

based on a novel generic robot-centered representation that is well adapted to the

appearance-based SLAM method and will provide the mobile robot with rich 3D in-

formation about the environment. Furthermore, reliable 3D positioning and a simple

but accurate representation of the environment is obtained robust to illumination

changes even in the presence of occluding and moving objects. The Enhanced Polar

Scan Matching technique proposed above, is used to initialize the tracking algorithm

in order to ensure rapid convergence and reduce computational cost.

6.2 Perspectives

In perspective, we have considered several research directions that could be pursued

to improve the results obtained so far.

In this thesis work, we are not using any algorithm to close the loop and we did

not explore the problem of identifying previously observed places. Extending our

algorithm with loop closure detection will allow to detect previously visited locations

an will improve the accuracy mapping and the precision in the estimation of the pose

of the robot. Being able to detect previously visited places is of great importance to

solve the problem of global localization and to recover the robot from kidnapping, a
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situation occurring when the robot is displaced by something out of its control (e.g.,

taking an elevator or being transported from one location to another). Therefore,

solving the loop closure problem will not only improve the SLAM performance, but

will as well enable new capabilities to the robot.

Likewise, a learning step can be added to the image registration step, in which

some key images will be saved, in order to allow a better and safety navigation of the

robot if it returns to previously observed scenes. It will also allow more accuracy in

the building the map process.

Calibration was not a priority when we decided to carry out this thesis work.

However, it is an important step if we want to achieve robust results. Thus, being a

little more ambitious, it is well known fact that the projective properties of panoramic

sensors are strongly related to the intrinsic parameters. Thus, visual tracking could

also provide a very suitable way of calibrating the sensor, and should be considered

for future work in order to build a fully autonomous robotic system.

As for the appearance-based SLAM algorithm, we have considered to improve it

by including the extension of the formalism to deal with non-planar scenes. In this

case, the problem will be to formalize the optimization problem so that the estimation

can be decoupled into two separate minimization steps:

1. pose estimation,

2. depth refinement

Another direction will be to fuse the initialization, through EPSM scan matching,

into the non-linear estimation scheme. Furthermore, the dense map could also be

improved by fusing the set of the detected 3D points into a global dense map, for

example by tracking planes instead of points. This will give a more accurate and

precise view of the environment.

The experiments for this thesis work were entirely perform in indoor environ-

ments, i.e., we did not work in dynamic environments. However, a laser/vision sensor

could without any doubt help in re-identifying previously observed dynamic features.

One possible way to do this is using semantic perception, which is an strategy for

graphically representing concepts and which remains an active research field for mo-

bile robots. The performance of mobile robots and the quality of the map can be

significantly improved by incorporating semantic information. Related work have

studied the use of 2D or 3D laser alone for semantic mapping and very few use im-

ages. Future plans include using our hybrid sensor to recognize, identify and classify

objects in order to build a semantic and more accurate 3D representation of dynamic

environments (ex. using Point Cloud Library (PCL)).

Last but not least, one interesting application for our work could be to use our 3D

tracking algorithm and the retrieved pose for Augmented Reality (AR). Augmented

reality offers a vision of the real world that is enhanced by superimposing informa-

tion computed in the virtual world. Therefore, AR supplements reality, rather than
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completely replacing it as virtual reality does (i.e. completely synthetic data). Azuma

(1997) explains that a defining notion for AR, is the requirement of being interactive.

This mean that is necessary to have both a 3D relationship of virtual objects, as seen

by the user, an the incrustation of these objects in real-time into the real world.

The concept of AR depends on the application for which it will be used, having

each one specific requirements. In the medical domain applications include visual-

ization of 3D ultrasound images, MRI and CT scan visualization [Soler et al. (2004)].

For military purposes such as the battlefield augmented reality software for urban

environments proposed by Julier et al. (1999). A detailed survey on AR applications

can be found in Azuma (1997).

As AR is related to the alignment of virtual objects in the scene with real objects

in such a way that they are visually acceptable. This requires recovery of the pose

between the environment and the camera. Future work will also focus on combining

AR with our 3D pose estimation tracker.
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A
The Kalman filter

A.1 Discrete Kalman Filter (KF)

The discrete Kalman filter addresses the problem of trying to estimate the state x of

a discrete time-controlled process determined by the following equations:

xt = Axt−1 + But + wt−1

with a measurement z with Gaussian noise v that can be written:

zt = Hxt + vt

• wt represents the process noise, w ∼ N(0,Q).

• vt represents the measurement noise, v ∼ N(0,R).

Prediction and time update equations

The state at the time of the next measurement can be predicted:

xt+1/t = Axt/t + But

The state prediction covariance:

Pt+1/t = APt/tA
⊤ + Qt
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Measurement update equations

The innovation weighted by the filter gain, plus the predicted state, form the updated

state estimate:

xt+1/t+1 = xt+1/t + Wt+1vt+1

The updated state covariance is:

Pt+1/t+1 = Pt+1/t −Wt+1St+1W
⊤
t+1

where:

• the innovation v is defined as the difference between the predicted and actual

next measurement:

vt+1 = zt+1 −Hxt+1/t

• the Kalman gain W is defined as:

Wt+1 = Pt+1/tH
⊤
t+1/tS

−1
t+1

• the innovation covariance S is defined by:

St+1 = Ht+1/tPt+1/tH
⊤
t+1/t + Rt+1

with R as the measurement noise covariance.

A.2 Extended Kalman Filter (EKF)

The state transition and measurement equations are often nonlinear. The Extended

Kalman Filter (EKF) is an extension of the Kalman filter to cope with these non-

linearities. The related mathematical simplifications come however at a price: the

distributions are not correctly modeled and the linearization will lead to inconsisten-

cies. In practice however, the results obtained are often satisfactory.

Prediction and time update equations

xt+1/t = f(xt/t,ut)

Pt+1/t = (∇xf)t/tPt/t(∇xf)⊤t/t + Qt

where:

• f is the state update equation.

• xt/t is the state estimate at time t based on the information at time t.

• xt+1/t is the state estimate at time t + 1 based on the time update model (i.e.

without integrating the measurement information).

• P correspond to the covariance matrices.

• Q is the process noise covariance.
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Measurement update equations

xt+1/t+1 = xt+1/t + Wt+1vt+1

Pt+1/t+1 = Pt+1/t −Wt+1St+1W
⊤
t+1

The measurement update equations add the information from the new measurements

to correct the estimate from the model. v is called the innovation and corresponds to

the amount of unpredicted information obtained from the new measurement. W is

the Kalman gain and expresses how much trust we can have in the measurement.

vt+1 = zt+1 − h(xt+1/t)

Wt+1 = Pt+1/t(∇xh)
⊤
t+1/tS

−1
t+1

St+1 = (∇xh)t+1/tPt+1/t(∇xh)
⊤
t+1/t + Rt+1

R is the measurement noise covariance.
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B
Fundamentals of Probability Theory

B.1 Probability Theory

B.1.1 Product Rule

The following equation is called the product rule

P (x, y) = P (x|y)P (y)

= P (y|x)P (x)

B.1.2 Independence

If x and y are independent, we have

P (x, y) = P (x)P (y)

B.1.3 Bayes’ Rule

The Bayes’ rule is given by

P (x|y) =
P (y|x)P (x)

P (y)

The denominator is a normalizing constant that ensures that the posterior of the

left hand side adds up to 1 over all possible values. Thus, we often write
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P (x|y) = ηP (y|x)P (x)

In case the background knowledge e is given, Bayes’ rule turns into

P (x|y, e) =
P (y|x, e)P (x|e)

P (y|e)

B.1.4 Marginalization

The marginalization rule is the following equation

P (x) =

∫

y
P (x, y)dy

In the discrete case, the integral turns into a sum

P (x) =
∑

y

P (x, y)

B.1.5 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be

derived using the product rule

P (x) =

∫

y
P (x|y)P (y)dy

and the corresponding sum for the discrete case

P (x) =
∑

y

P (x|y)P (y)

B.1.6 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact that a

variable xt depends only on its direct predecessor state xt − 1 and not on xt′ with

t′ < t− 1

P (xt|x1:t−1) = P (xt|xt−1)

B.2 Probability Density Functions

The probabilistic approach to estimation is based on the concept of the probability

density function (PDF) which is used to define the uncertainty distribution of a set

of random variables. In other words, a PDF P (x) expresses, for a particular random

vector x, the likelihood that the true state of x lies within a particular region of
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the state-space X. For the purposes of this thesis it is sufficient to understand the

following PDF properties.

• A PDF P (x) represents a functional mapping P : x→ R for all x ∈ X.

• A PDF P (x) is non-negative for all values of random vector x,

P (x) ≥ 0, ∀x ∈ X

• The area (or volume) under a PDF is one,

∫ ∞

−∞
P (x)dx = 1

If there exist two random vectors x and y where the value of x is to some degree

dependent on the value of y, then there exists a conditional PDF P (x|y). The con-

ditional PDF P (x|y) may be understood as the probability or likelihood of x given a

fixed value of y. If x and y are independent then P (x|y) = P (x).
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C
Fundamentals of 3D motion

Even though the concepts presented in this appendix, are well founded concepts, we

present them here for sake of completeness and to state the basic terminology used

throughout the thesis.

The representation of the pose (position and orientation) and the structure of rigid

objects and their kinematics forms the basis for the study of Visual SLAM. The ter-

minology and notation required to represent coordinate transformations and the ve-

locity of a rigid object moving through the three-dimensional world (3D euclidean

space), will be defined first.

C.1 Rigid body Motion: Definitions

We consider the 3D space as being Cartesian, i.e., a three-dimensional Euclidean

space E
3. The position of a point P ∈ E

3 of the rigid body, is defined to be relative to

an inertial cartesian coordinate frame. Thus, with the set of three orthonormal axes

that represent the reference frame, the position of a 3D point can be written using

three coordinates as:

P = (X,Y, Z) ∈ R
3 (C.1)

Similarly, the motion trajectory of a point can be represented as a parameterized

curve as:

P(t) = (X(t), Y (t), Z(t)) ∈ R
3 (C.2)
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A rigid body transformation is defined as follows:

Definition 1 Special Euclidean Transformation

A mapping m : R
3 → R

3 satisfies the following properties:

1. Lenght is preserved: ‖m(P1)−m(P2)‖ = ‖P1 −P2‖ for all points P1,P2 ∈ R
3

2. The cross product is preserved: m∗(v × w) = m∗(v) × m∗(w) for all vectors

v,w ∈ R
3, where vectors transform according to m∗(v) = m(P1)−m(P2)

The set of all such transformations is denoted as the special Euclidean group SE(3)

C.1.1 Representing Rotations

If the coordinate frame is chosen to be right handed, then det(R) = +1, and the

properties of a rotation matrix are such that its columns are mutually orthonormal,

i.e., RR⊤ = R⊤R = I. The special orthogonal subgroup of dimension 3, also called

rotation group, is defined as:

SO(3) = {R ∈ R
3×3 | RR⊤ = I,det(R) = +1}

If we consider rotations parameterized by α, β, γ around the Euler angles, each ele-

mentary rotation is defined by the following matrices:

Rx(α) =




1 0 0

0 cos(α) sin(α)

0 − sin(α) cos(α)


 , Ry(β) =




cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)


 , Rz(γ) =




cos(γ) sin(γ) 0

− sin(γ) cos(γ) 0

0 0 1




and the matrix describing the overall rotation being composed of the product of these

elementary matrices R = RxRyRz:

R =




cos(β) cos(γ) − cos(β) sin(γ) sin(β)

sin(α) sin(β) cos(γ) + cos(α) sin(γ) − sin(α) sin(β) sin(γ) + cos(α) cos(γ)− sin(α) cos(β)

− cos(α) sin(β) cos(γ) + sin(α) sin(γ) cos(α) sin(β) sin(γ) + sin(α) cos(γ) cos(α) cos(β)




Remark: The order of multiplication of elementary rotation matrices is not commu-

tative �

C.1.2 Representing Pose and Structure

A rigid transformation m : R
3 → R

3 is composed of rotational and translational

motions.
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The minimal representation of a rigid transformation is parameterized as a six

parameter pose vector, composed of translation and rotation parameters as:

arb = (atb,
a Ωb)

where r represents the pose (position and orientation) between a reference frame a

and another frame b, been atb = (atb,x,
a tb,y,

a tb,z) the vector of translation parame-

ters between frames a and b along the axes x, y, z and aΩb = (aΩa
b,x,Ωb,y,

a Ωb,z) the

rotational parameters between frame a and b around the axes x, y, z.

The motion of a rigid body can be represented with elements of the special eu-

clidean group SE(3):

SE(3) = {m = (R, t) | R ∈ SO(3), t ∈ R
3} (C.3)

The homogeneous representation of m is obtained in matrix form as:

aMb =

[
aRb

atb

03 1

]
(C.4)

This set of homogeneous transformations belongs to the 6-dimensional Lie Group

of rigid body motions in SE(3). In addition, the pose between frame a and frame c can

be expressed as a composition of homogeneous transformation matrices as :

aMc = aMb
bMc (C.5)

where bMa = aMb
−1 and the inverse transformation is:

aMb
−1 =

[
aR⊤

b −aR⊤
b

atb

03 1

]

C.2 Velocity of a Rigid Body

A rigid body velocity is defined as a 6-dimensional twist vector v = (υ,ω) where

υ = (υx, υy, υz) is the linear component of the velocity vector and ω = (ωx, ωy, ωz) the

angular velocity. A twist vector is the tangent vector to an element m(t) of SE(3).

Let us consider a point P with coordinates in a spatial reference frame a and

another reference frame b. The homogeneous relation between a single point in two

different reference frames can be written as:

aP̄(t) =a Mb(t)
bP̄ (C.6)

where the bar on P̄ = (X,Y, Z, 1) is an homogeneous point. The velocity of the

point with respect to frame a∗, where ∗ refers to an instantaneous reference frame, is

obtained by deriving the motion of its coordinates with respect to time:

a∗Ṗ(t) =
d

dt
aP(t) (C.7)
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By deriving equation C.6 with respect to time, the velocity of the point in frame a∗

gives:

a∗ ˙̄P = a∗Ṁb
bP̄

where the homogeneous velocity of a point is a∗ ˙̄P = (υx, υy, υz, 1). The velocity

of the point with respect to the spatial reference frame a can then be related to its

coordinates in the instantaneous spatial reference frame a∗P by using composition

C.5:

a∗ ˙̄P = a∗Ṁb
aM−1

b
aP̄ = a∗Ṁb

bMa
aP̄ (C.8)

The 4 × 4 velocity mapping in equation C.8 is called a twist and is then easily

obtained by using equation C.4 as:

a∗Ṁb
aM−1

b =

[
a∗Ṙb

a∗ ṫb

03 1

][
aR⊤

b−aR⊤
b

atb

03 1

]
=

[
a∗Ṙb

aR⊤
b−a∗Ṙb

aR⊤
b

atb + a∗ ṫb

03 1

]
(C.9)

where a∗ ṫb is the translational velocity of a point in frame a∗ with respect to a

point in frame b.

C.2.1 Velocity Twist

The 4×4 twist matrix from equation C.9 is shown to be related to a minimal 6 param-

eter vector by defining the angular component a∗ωa ∈ R
3 and the linear component

a∗υa ∈ R
3 of the velocity of a point in the body frame b passing through instantaneous

spatial frame a as:

a∗va =

[
a∗υa

[a∗ωa]×

]
=

[
−a∗Ṙb

aR⊤
b

atb + a∗ ṫb

a∗Ṙb
aR⊤

b

]

Therefore, there exists an operator, based on the skew-symmetric operator [.]× for

rotations, which transforms a full twist matrix to its minimal vector form defined as:

[v]∧ =

[
[ω]× υ

0 0

]
(C.10)

The space velocity twists can be written as a 4× 4 homogeneous twist matrix [v]∧

as:

se(3) = {[v]∧ ∈ R
4×4|[ω]× ∈ so(3),v ∈ R

3} ⊂ R
4×4

where se(3) is the Lie Algebra of the Lie Group SE(3) and so(3) is the Lie Algebra

of the Lie Group SO(3).
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C.2.2 Exponential Map

The relationship between the velocity of a moving body and its pose is called the

exponential map, which transforms, exponentially, the velocity vector v to its corre-

sponding pose r.

If G is a matrix Lie group with Lie algebra g, then the exponential mapping for G

is the map:

exp : g→ G

From equation C.3, the generators of the translation (A1, ...,A3) and rotation

(A4, ...,A6) of the Lie algebra se(3) can be obtained by differentiation, thus:

A1 =

[
0 bx

0 0

]
,A2 =

[
0 by

0 0

]
,A3 =

[
0 bz

0 0

]
, (C.11)

A4 =

[
[bx]× 0

0 0

]
,A5 =

[
[by]× 0

0 0

]
,A6 =

[
[bz]× 0

0 0

]

Using Rodrigues’ formula, it is possible to obtain an explicit formulation of the

exponential map.

Theorem 1 Let A(x) ∈ se(3), with v = (x1, x2, x3) (translational component) and

ω = (x4, x5, x6) (rotational component) :





eA =


 e[ω]

×

“
(I−e[ω]× )[ω]

×
+ωω⊤

”
v

‖ω‖2

0 1


 if ‖ω‖ 6= 0

eA =

[
I v

0 1

]
otherwise
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D
Robust Estimation

As explained in chapter 5 section 5.5.2 a robust M-estimation technique was used to

reject outliers not corresponding to the definition of the objective function. Robust

techniques are mostly used where a highly redundant set of measurements – as is

the case of a set of dense correspondences– are involved. In general, outliers occurred

because of illumination changes, occlusions, matching error or simply noise in the

image.

In this appendix we give the calculation of weights for each image feature.

D.1 Robust M-Estimator

The weights ωi which represent the different elements of the D matrix and reflect the

confidence of each feature, are usually given by Huber (1981) as:

ωi =
ψ(δi/σ)

δi/σ
(D.1)

where

ψ(δi/σ) = ∂ρ
(δi/σ)

∂r
(D.2)

where ψ() is the M-estimate, also called the influence function, and δi is the normal-

ized residual given by:

δi = ∆i −Med(∆) (D.3)

where Med(∆) corresponds to the median value taken across all the residues and

where σ is a scale that corresponds to a robust estimate of the standard deviation of
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the inlier data. This is a critical value that can impact heavily on the efficiency of

the method. For traditional M-estimators, scale is treated as a tuning constant which

can be chosen manually. Alternatively, a robust statistic can be used to compute it.

Particularly, we used the median absolute deviation (MAD), which is a robust statistic

that allows to reject up to 50% of outliers. The MAD is given by:

σ̂ =
1

Φ−1(0.75)
Medi(σ −Medj(σj)) (D.4)

no indent where Φ() is the cumulative normal distribution function and 1
Φ−1(0.75)

=

1.48 represents one standard deviation of the normal distribution, and is used to make

the MAD consistent with the normal distribution. It is important to remark that the

MAD is a very good tradeoff between outliers rejection efficiency and computation

efficiency.

The introduction of the weighting matrix D into the minimization scheme (equa-

tion 5.16 in section 5.5.2) is achieved via an iteratively re-weighted least-squares

implementation.
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Développement d’un Capteur Composite Vision/Laser à Couplage Serré pour
le SLAM d’Intérieur

Résumé : Depuis trois décennies, la navigation autonome en environnement inconnu est une des

thématiques principales de recherche de la communauté robotique mobile. En l’absence de connais-

sance sur l’environnement, il est nécessaire de réaliser simultanément les tâches de localisation et de

cartographie qui sont extrêmement interdépendantes. Ce problème est connu sous le nom de SLAM
(Simultaneous Localization And Mapping).

Pour obtenir des informations précises sur leur environnement, les robots mobiles sont équipés

d’un ensemble de capteurs appelé système de perception qui leur permet d’effectuer une localisation

précise et une reconstruction fiable et cohérente de leur environnement. Nous pensons qu’un système

de perception composé de l’odométrie du robot, d’une camera omnidirectionnelle et d’un télémètre

laser 2D est suffisant pour résoudre de manière robuste les problèmes de SLAM.

Dans ce contexte, nous proposons une approche appearance-based pour résoudre les problèmes

de SLAM et effectuer une reconstruction 3D fiable de l’environnement. Cette approche repose sur un

couplage serré entre les capteurs laser et omnidirectionnel permettant d’exploiter au mieux les com-

plémentarités des deux types de capteurs. Une représentation originale et générique robot-centrée

est proposée. Une vue augmentée sphérique est construite en projetant dans l’image omnidirectio-

nelle les mesures de profondeur du télémètre laser et une estimation de la position du sol. Notre

méthode de localisation de type appearance-based minimise une fonction de coût non-linéaire direc-

tement construite à partir de la vue sphérique augmenté décrite précédemment. Cependant comme

dans toutes les méthodes récursives d’optimisation, des problèmes de convergence peuvent survenir

quand l’initialisation est loin de la solution. Ce problème est aussi présent dans notre méthode où

une initialisation suffisamment proche de la solution est nécessaire pour s’assurer une convergence

rapide et pour réduire les couts de calcul. Pour cela, on utilise un algorithme de PSM amélioré pour

construire une prédection du déplacement du robot.

Mots clés : SLAM, Localisation, Cartographie, Optimisation, Odometrie Visuelle, Laser, Vision Om-

nidirectionelle.

Development of a Tightly-Coupled Composite Vision/Laser Sensor for Indoor
SLAM

Abstract: Autonomous navigation in unknown environments has been the focus of attention in the

mobile robotics community for the last three decades. When neither the location of the robot nor a map

of the region are known, localization and mapping are two tasks that are highly inter-dependent and

must be performed concurrently. This problem, is known as Simultaneous Localization and Mapping

(SLAM).

In order to gather accurate information about the environment, mobile robots are equipped with a

variety of sensors that together form a perception system that allows accurate localization and recon-

struction of reliable and consistent representations of the environment. We believe that a perception

system composed of the odometry of the robot, an omnidirectional camera and a 2D laser range finder

provide enough information to solve the SLAM problem robustly.

In this context we propose an appearance-based approach to solve the SLAM problem and re-

construct a reliable 3D representation of the environment. This approach relies on a tightly-coupled

laser/omnidirectional sensor in order to take profit of the complementarity of each sensor modality. A

novel generic robot-centered representation that is well adapted to the appearance-based SLAM is

proposed. This augmented spherical view is constructed using the depth information from the laser

range finder and the floor plane, together with lines extracted from the omnidirectional image. The

appearance-based localization method minimizes a non-linear cost function directly built from the aug-

mented spherical view. However, recursive optimization methods suffer from convergence problems

when initialized far from the solution. This is also true for our method where an initialization sufficiently

close to the solution is needed to ensure rapid convergence and reduce computational cost. A En-

hanced Polar Scan Matching algorithm is used to obtain this initial guess of the position of the robot to

initialize the algorithm.

Keywords: SLAM, Localization, Mapping, Optimization, Visual Odometry, Laser, Omnidirectional

Vision.
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