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A B S T R A C T

The motivation of this work is filtering of elongated curvilinear objects in digital
images. Their narrowness presents difficulties for their detection. In addition, they are
prone to disconnections due to noise, image acquisition artefacts and occlusions by other
objects. This work is focused on thin objects detection and linkage. For these purposes,
a hybrid second-order derivative-based and morphological linear filtering method is
proposed within the framework of scale-space theory. The theory of spatially-variant
morphological filters is discussed and efficient algorithms are presented.

From the application point of view, our work is motivated by the diagnosis, treatment
planning and follow-up of vascular diseases. The first application is aimed at the
assessment of arteriovenous malformations (AVM) of cerebral vasculature. The small
size and the complexity of the vascular structures, coupled to noise, image acquisition
artefacts, and blood signal heterogeneity make the analysis of such data a challenging
task. This work is focused on cerebral angiographic image enhancement, segmentation
and vascular network analysis with the final purpose to further assist the study of
cerebral AVM.

The second medical application concerns the processing of low dose X-ray images
used in interventional radiology therapies observing insertion of guide-wires in the
vascular system of patients. Such procedures are used in aneurysm treatment, tumour
embolization and other clinical procedures. Due to low signal-to-noise ratio of such
data, guide-wire detection is needed for their visualization and reconstruction. Here,
we compare the performance of several line detection algorithms. The purpose of this
work is to select a few of the most promising line detection methods for this medical
application.

keywords: angiography, directional filtering, multi-scale filtering, vessel enhance-
ment, detection of thin objects, adaptive morphology.
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R É S U M É

Le but de ce travail est de filtrer les objets fins et curvilinéaires dans les images
numériques. Leur détection est en soit difficile du fait de leur finesse spatiale. De
plus, le bruit, les artefacts de l’acquisition et les occlusions induites par d’autres objets
introduisent des déconnexions. De ce fait, la reconnexion des objets fins est également
nécessaire. Dans ce but, une méthode hybride à base de dérivés secondes et de
filtrage linéaire morphologique est proposée dans le cadre de la théorie espace-échelle.
La théorie des filtres morphologiques spatialement variants et des algorithmes sont
présentés.

Du point de vue applicatif, notre travail est motivé par le diagnostic, la planification
du traitement et le suivi des maladies vasculaires. La première application étudie les
malformations artério-veineuses (MAV) dans le cerveau. L’analyse de telles données est
rendue difficile par la petite taille, la complexité des vaisseaux couplés à diverses sources
de bruit et à leur topologie, sans compter les artefacts d’acquisition et l’hétérogénéité
du signal sanguin. Ainsi, nous nous sommes intéressés à l’amélioration et la segmen-
tation des images angiographiques cérébrales dans le but d’aider à l’étude des MAVs
cérébrales.

La seconde application concerne le traitement des images X-ray à faible dose utilisées
en radiologie interventionnelle dans le cas d’insertion de guides dans les vaisseaux
de patients. De telles procédures sont utilisées dans les traitements des anévrysmes,
obstructions des tumeurs et d’autres procédures. Dû au faible ratio du signal-bruit, la
détection des guides est indispensable pour leurs visualisations et leurs reconstructions.
Dans ce travail, nous comparons la performance des algorithmes de filtrage d’objets
linéaires. Le but est de sélectionner les méthodes de détection les plus prometteuses
dans le cadre de cette application médicale.

mots-clefs : angiographie, filtrage directionnel, rehaussement de vaisseaux, filtrage
multi-échelle, détection d’objets fins, morphologie adaptative.
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1
I N T R O D U C T I O N

The line has in itself neither matter nor substance
and may rather be called an imaginary idea than a real object;

and this being its nature it occupies no space.

— Leonardo Da Vinci

The primary subject of this thesis is thin objects analysis applied to medical images. In
this chapter we introduce the basic problem of thin objects segmentation and motivate
its importance for many applications. We take into account modern medical imaging
modalities in a clinical setting. At the same time, as such modalities generate larger and
larger image data which gets harder to be examined, it becomes increasingly important
to develop efficient procedures to be able to analyse such data in a timely fashion.
This motivates the development of more efficient and robust image analysis methods,
tailored to the problems encountered in medical images. The motivation of this thesis
is directed towards the particular problem of detection and enhancement of thin objects
such as vessels or medical instruments inserted into them as catheter and guidewire.
However, the generality of the problem can lead to potential usefulness in other areas
of image analysis.

1.1 thin objects analysis

Greek philosopher and mathematician Euclid was the first one known to geometrically
define a curve (or a line) described as "that which has a length without width". This
definition illustrates the two most important features of a line: it is extended in some
direction and its width is small. It is generally difficult to detect such objects due to
these characteristics and even despite progress in resolution improvement, precision
and overall quality digital imaging.

Therefore, image processing of linear objects has two main challenges: 1) object
enhancement and noise removal for visual quality improvement, 2) segmentation and
classification for (semi-)automatic measurements.

However, to perform the first operation, object enhancement, one needs to find these
objects in the image. Detecting these objects can be more or less reduced to the image
processing operation called segmentation. Segmentation means, in general, partitioning
an image between semantically consistent areas into objects of interest on the one hand
and the rest, the background, on the other. There are numerous ways to achieve this,
however, no general purpose method exists, a fact that requires development of specific
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application-oriented tools. Therefore, in every application, the primary focus is the
definition of objects of interest and the search for their particular features.

1.2 medical image applications

The spectacular rise of medical imaging during the 20th century, mainly induced by
physics breakthroughs related to nuclear magnetic resonance and X-rays sources and
sensors, linked with the general availability of computers, has led to the development
of numerous advanced imaging modalities devoted to visualise vascular structures. The
analysis of such angiographic images is of great interest for various clinical applications.

Initially designed to generate 2D data, these imaging modalities progressively led
to the acquisition of 3D images, enabling clinicians to visualise volumes directly. Even
four-dimensional data (3D images changing over time, i.e. movies) can sometimes
be acquired. However, such an increase in size and dimensionality provides major
technical as well as cognitive challenges. How to store, transmit, visualize and find
relevant information are questions related to such data. In addition, the possibly
low signal-to-noise ratio and the potential presence of artefacts (such as generated by
tomographic reconstruction) make the analysis of such images a rather challenging task.
In order to assist radiologists and clinicians, it is therefore necessary to design software
tools enabling to extract as well as possible the relevant information from these kind of
data.

The highly-desired methods are those that can automatically detect diseases, lesions,
tumours and other bodily structures, and visualize them out of this large collection
of images. However, the bigger challenge here is to develop methods that can be
trusted. This is especially important in medical applications: we expect low false
detections rate and even fewer false negatives. Therefore, developing algorithms for
medical image analysis requires thorough validation studies to make the results usable
in practice. This process involves communication between at least two different worlds:
the patient-centered medical world, and the computer-centered technical world, which
itself consists of the applied mathematicians whose job is to discover new algorithmic
ways to analyse medical data, and the computer scientists who make these algorithms
work in practice. The symbioses of these worlds are a rare find and they require
significant efforts from all sides to join on a common objective.

The aim of this thesis is to develop image analysis techniques for the assessment of
medical imaging applications. In particular, the main application is aimed at segmenta-
tion of cerebral vasculature from 3D angiographic image data. The process starts with
the detection of the vascular structure and its enhancement. Then, the segmentation and
skeletonization procedures generate a computer model of the vessel network which can
be used in study of vascular diseases and their visualization. The motivation for this
work is to aid clinicians in image studies by providing enhanced, more precise data and
its visualization for medical decisions. This involves multi-disciplinary communication.
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So, our side goal of the work is to establish links and identify important and relevant
medical problems.

The second medical application concerns the treatment of low dose X-ray images used
in interventional radiology therapies observing insertion of catheter and guidewires
in the vascular system of patients. Guidewire detection assists in such applications as
visualization enhancement, guide-wire reconstruction and respiratory motion tracking.
To detect guide-wire from such “2D plus time” images, an essential initial step is
filtering prior higher level techniques. The quality of the guidewire enhancement
algorithm boosts the performance of the final application. In this work, we compare the
performance of several line enhancement algorithms for the application of guidewire
detection. The purpose of this work is to select a small number of the most promising
line detecting methods for further processing and use in medical applications.

Therefore, in this thesis, as a prior, we are interested in detection of thin objects from
noisy images for further image enhancement, segmentation and analysis of such objects,
e.g. connected in networks. Then, we are interested in applying these techniques in the
medical applications corresponding to 2D and 3D problems.

1.2.1 Cerebral arteriovenous malformations and their assessment

Interactions of blood happens at different scales, where large-scale flow is connected
to cellular and sub-cellular biology. On the largest scale, blood flows from the heart
through arteries to all other parts of the body. Then, arteries branch and become smaller
as they reach other tissues until their size decreases to capillaries, which are at cellular
scale. The capillary bed is where the exchange process of oxygen and nutrients on the
one hand, and waste on the other, actually happens. Then blood is collected through
the veins, vessels that bring blood back to the heart. Injured blood vessels in the heart,
can lead to chest pain and heart attacks; of the arteries of the neck and brain, to strokes.

An arteriovenous malformation (AVM) is a complex tangle of abnormal arteries and
veins that are connected directly without a capillary bed. This "knot" is called nidus (its
schematic illustration can be seen in Figure 2).

There is typically high blood flow through the nidus of the AVM, but it is unknown if
this flow is a cause or an effect of the abnormal vessels, or both. One hypothesis is that
high-pressure blood uses the path of least resistance. Another is that the AVM itself uses
blood vessels. In any case, the blood goes through the AVM and not through available
capillary beds. This redirection is called a shunt. With time, due to the shunting, the
AVM dilates. This dilation weakens veins making them susceptible to haemorrhage and
feeder arteries becoming susceptible to aneurysms. A haemorrhage in the brain is a
type of stroke where a blood vessel ruptures and bleeds into the brain. Each time blood
leaks into tissues, these are damaged. This results in loss of temporary or permanent
normal function. The amount of damage depends on how much blood was leaked.

AVM can also occur in other parts of the body: spleen, lung, kidney, spinal cord, liver,
intercostal space, iris, and spermatic cord.



4 introduction

Figure 1: 3D model of major vessels and bifurcations of the human arterial tree reconstructed
from a set of CT, DSA CT and MRA images. Colors represent different parts of the
model. Left: Aorta and adjacent arteries. Right top: Cranial arterial network. Right
bottom: Carotid artery (source: [GAM+

09]).

Figure 2: (a) Illustration of the normal arterial-capillary-venous relationship. (b) Drawing of
the failure of normal capillary genesis, a fistular connection between the developing
artery and vein occurs, which causes an arterial shunting of blood with arterialization
of the venous outflow (source: [MHMM09]). (c) Illustration of cerebral AVM.
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However, the relationships between a nidus and all aforementioned vessels are more
complex. The Arteriovenous Malformation (AVM) can be very simple, featuring a
single nidus of one feeder and at least one draining vein. Conversely, they can have
multiple compartments: several separated feeders and draining veins. The last notion is
referred to as hidden compartments – those that are invisible even on static angiography.
Hidden compartments can be detected with serial super-selective digital subtraction
angiography or serial high-resolution MR angiography [MHMM09]. Therefore, it can
be very difficult to effectively picture the 3D intra-cerebral vascular tree.

Moreover, unfortunately, conventional imaging techniques do not supply sufficient
information. Digital subtraction angiograms (DSA) provide some useful information,
especially when considering time information, but due to the projection overlap, it is
difficult to determine the location, connections and the vessel parent-child relationship.
Magnetic resonance three-dimensional images are noisy and still do not provide, at
present, sufficient connectivity information directly.

1.2.1.1 Angiography images

The first angiographic experiment dates back from 1896, only a few months after
Roentgen discovered X-rays. Vessel visualization examinations entered clinical practice
with the invention of Digital Subtraction Angiography (DSA) in the 1970s, which has
become and still remains the gold standard for vascular studies.

The main imaging techniques for vessel imaging are: 1) X-ray/digital subtraction
angiography (DSA); 2) magnetic resonance angiography (MRA) ; 3) computer tomogra-
phy angiography (CTA); 4) ultrasound angiography, and 5) angiography as a way of
fusing the different medical imaging modalities.

From the clinical point of view, digital subtraction angiography (DSA) is considered
the most reliable and accurate method for vascular imaging. However, in DSA, a
catheter is used to inject a radio-opaque contrast agent directly into the arteries. The
catheterization is an interventional procedure presenting the risk of severe complications.
Moreover, the contrast medium, typically containing iodine, can cause serious side
effects, such as allergy-like reactions or renal failure in some patients.

As an alternative, MRA and CT offer procedures that are safe for the patient, with
reasonably good spatial resolution, even if not currently matching that of DSA. On
one hand, the MR and CT techniques lack the ability to locate tiny vessels and the
morphological estimation of stenoses and aneurysms. On the other hand, DSA lacks
3D information, which is available with MR and CT techniques.

Here, we make use of MRA data and in the following we present MR principles of
work and its angiography techniques.

magnetic resonance angiography There exist three major techniques to per-
form angiography with MRI:

1. Time-of-Flight (TOF). This method uses the fact that, as blood circulates even
during the acquisition, its magnetization properties differ from the surrounding,
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non-moving tissue. For optimal conditions, the image plane has to be orientated
perpendicular to the main flow.

2. Phase Contrast (PC). This technique is based on the linear relationship between
the phase of moving spins and their velocity. The MR signal is directly related to
blood flow velocity.

3. Contrast-Enhanced (CE). Like in DSA, contrast agents have been developed to be
used in MRA. They are injected intravenously and reduce the relaxation time of
the surrounding blood, making vessels appear brighter on images. Often based
on Gadolinium, they stay in the vascular bed for only a short period of time
(minutes). It is important to note that, unlike DSA, MRA shows the effect of
the contrast agent on proton relaxation around contrast molecules, and does not
show the contrast agent itself. By timing the injection so that the contrast medium
reaches the vessels of interest during image acquisition, it is possible to achieve
exclusive arterial enhancement. The total volume of injected contrast medium is
called the bolus, and the synchronization of injection and scan time is called bolus
chase.

Flow-based techniques, like TOF-MRA and PC-MRA are of limited practical use. They
require long acquisition times, and the quality of images depend on the orientation of
vessels and blood flow patterns. In addition, the size of the Field-of-View is limited, and
many parameters have to be set in order to obtain optimal results. CE-MRA is therefore
the preferred technique in most vascular areas.

The quality of the created vascular model depends on several factors, including field
strength, pulse sequence supported by specialized hardware, segmentation and/or post
processing, level of expertise and attention to details of the operator. The field strength
is important and generally, the higher the field strength the higher spatial resolution
and/or signal to noise ratio. More vessels are discernible on 3T scans than on 1.5T
ones. Similarly, on 7T more vessels are visible than on 3T scans; moreover, some single
vascular spots on 3T are in fact two neighbouring vessels on 7T. However, the field
strength itself is not a sufficient factor to generate good models.

Compared to the size of the nidal vessels (typical diameter 0.1 mm) the in-plane
spatial resolution is of the order of 0.5 mm and thus not all vessels can be characterized.

In the case of MRI, the noise is typically modelled by a Ricean distribution, which, for
larger means, or equivalently high Signal-to-Noise Ratios (SNR), can be approximated
by a Gaussian.

The increased sensitivity, higher resolution, and additional contrast mechanism (e.g.,
by employing multiple coils) available at higher field strengths offer advantages when
acquiring MRA volumetric data. 3D TOF MRA is the dominant MR technique for
imaging the intracranial arterial vasculature.

The drawback of the MRA method for arterial shape reconstruction is its inability to
capture a volume where blood is stagnant, since the method is based on detecting a
moving fluid.
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Figure 3: A fluoroscopic C-arm machine that generates x-rays from one side and photographs
them on the other side.

MRI is a very elaborate technique. Many sources of defects in an image exist, for
instance due to the scanner hardware, the imaging sequence, and even the subject inside
the scanner. These defects are called artefacts. Some of them are relevant to our study.

The noise present in the MRI image is primarily due to thermal noises in the patient
[Now99]. Noise present in the raw, complex MR signal acquired in the Fourier domain
presents a Gaussian distribution, but the transformation to a magnitude image changes
the Gaussian distribution of the data to a Rician distribution [SDDVdL+

99]. Noise
mainly depends on: 1) voxel size 2) acquisition time 3) main magnetic field intensity.

In MR data, a voxel actually contains many protons and the signal is averaged over
the whole voxel volume. When a voxel contains more than one tissue type, the signal
contribution of this voxel is a mix of the signals from the different tissue types the
voxel contains. This is called Partial Volume Effect (PVE). It is a common property of
every imaging system. However, as it causes blurred boundaries and signal variations
within a volume, it is an important effect that has to be taken into account by the image
analysis process.

1.2.2 Coronary heart disease

Vascular heart diseases are the first causes of death in Europe. One of the main
reasons is stenosis, calcifications causing vessel erosion or dilation. The consequences
are usually serious especially in case of damaged coronaries, arteries that provide oxygen
to heart.

X-ray imaging makes it possible to diagnose and assist a treatment in such failures.
During the procedure, the clinician inserts one or more flexible narrow tubes called
catheter through small skin incisions in groin. These tubes are pushed through blood
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vessels into the vessels of the heart, neck or brain. While viewing an x-ray monitor, called
a fluoroscope, the doctor steers the catheter through the blood vessels. A fluoroscope
machine, also called a C-arm, is an arc shaped piece of equipment that generates x-rays
from one side and photographs them on the other side (Fig. 3).

Such procedures are used in aneurysm treatment, tumour embolization and other
clinical procedures.

1.2.2.1 Interventional images

For diagnostic purposes, the X-Ray imaging system uses relatively high radiation
resulting in well contrasted images. However, interventional exams are carried out
under limited radiation (5 to 10 times less than in diagnostic images), especially due to
the fact that the acquisition rate is typically between 7.5 and 30 images per second.

The critical importance is on accurate positioning of the guide wire and the catheter
with respect to the vasculature, taking into account patient motion and the low signal
to noise ratio of the images. The limited quality of the image is defined by the low dose
constraint in fluoroscopy in order to minimize the radiation exposure of the patient and
radiologist.

Because of the physics of X-Rays, the clinical images are transparent. There can be
seen the tissues of heart superimposed to the diaphragm, the lungs, the spine, the ribs,
and the interventional devices.

Apart from these transparency artefacts, there are some sources of noise in such
images. The first one is due to the physics of X-rays and the sensor characteristics,
leasing to a Poisson or Poisson+Gaussian noise model and which is spatially correlated
by the detector of these rays (flat panel) and is temporarily uncorrelated (from one image
to another).

Other sources of noise are electronic, deviation constant noise (white). Another type
of noise is called structure noise which corresponds to constant structures present in the
image but has no relation to the patient. Those are, e.g. defects of the detector that are
not well corrected.

1.3 outline

The rest of this thesis is organised as follows. In Chapter 2 we will present the
review of thin objects filtering and segmentation methods and their combinations.
The methods are organised by their mathematical models and extraction schemes. We
present the methods principal properties and characteristics. The review of the literature
on vascular network representation and analysis is presented in Chapter 3, where the
topological notions and utility are discussed, continuing into the user-friendly aspect of
their utility - visualization.

In the following Chapter 4, we will present our hybrid morpho-Hessian filter for thin-
object detection and filtering method based on the second-order directional Gaussian
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derivatives in the Hessian form. Further, we are making use of several probability
measures for the membership of pixels to thin objects.

For the enhancement and reconnection of tubular objects we are using the spatially
variant morphology, for which the theory and corresponding algorithms are thoroughly
formulated with the purpose of filtering an image differently at various positions. We
then propose an efficient algorithm for spatially-variant mathematical morphology
operations.

In Chapter 5, we combine these two filtering methods and perform their performance
evaluation with different parameters first on a 3D simulated data and then applied to
clinical angiographic data. The Hessian-based method is evaluated according to two
popular vesselness measures. According to the best filtering results, we perform further
vascular objects segmentation and skeleton extraction. The topological representation
of the vascular network is aimed to help in visualization and study of the cerebral
vasculature and AVM.

In the following Chapter 6, we compare the performance of several line enhancement
algorithms for the application of guidewire detection for very low signal-to-noise
ratio X-ray images. The purpose of this work is to select a small number of the most
promising 2D line detection methods for medical applications.

In this thesis, we propose a new hybrid filtering method based both on local intensities
and on local neighbourhood tubular model utilizing the local directions for thin objects
enhancement and reconnection with the spatially-variant morphological operations.
This filter being a novel combination of methods performs like a reconnecting diffusion
filter. We introduce a segmentation and vascular network analysis strategy with an
aim of aiding the clinicians in their angiography data studies. We also compare the
specialised thin objects detection methods from noisy images applied for guide-wire
segmentation.
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R E V I E W O F L I T E R AT U R E





2
T H I N O B J E C T S F I LT E R I N G A N D S E G M E N TAT I O N M E T H O D S

The human mind delights in finding pattern -—
so much so that we often mistake coincidence

or forced analogy for profound meaning.

— Stephen Jay Gould

Line-like objects are widely searched for in image analysis problems. In biomedical
images those are vessels, neurones, bones, muscles and skin fibres, cracks of tongue,
motion and structures of cells. Along with a multitude of other applications, such as
satellite images, print lines, road and material cracks, cosmic space and aerial images
features extraction. Our work is motivated by diagnosis, treatment planning and
follow-up of vascular diseases.

The interest can lie in a whole object representation (e. g.fibre surface reconstruction)
or in a certain characteristic of it (e.g. topology, size, curvature). Moreover, extraction
of linear objects and segments is an essential step for the segmentation of whole line
networks and/or parts of larger objects.

It is generally difficult to filter thin objects, even despite the progress in resolution
improvement, precision and overall quality of digital imaging. In order to improve
linear object, a detection of such features is appropriate. Even more so, due to the
inherent properties of these objects: i.e. thin, long and curvilinear, they are prone to
noise. Real-world and image reconstruction artefacts often imply disconnection along
the object.

Indeed, image processing of linear objects has two main dual challenges: (i) object
enhancement and noise removal for visual quality improvement, (ii) segmentation and
classification for (semi-)automated measurements. Both tasks are difficult due to the
specificity of the data. Questions on how to enhance thin vessels while simultaneously
not increase the level of noise too much, how to remove noise and not to lose useful
information are still relevant.

Most segmentation methods are designed for large and homogeneous regions. Here,
we define thin objects in image as semantically consistent objects that exhibit at least
one dimension much smaller than the others. We focus particularly on elongated thin
objects, locally curve- or line-like.

In this chapter, in the first section, a short review of filtering methods of such objects
is presented. In the following sections, more curvilinear objects filtering techniques are
reviewed as a part of or in connection with segmentation methods.
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2.1 thin objects filtering

The filtering techniques of curvilinear objects can be divided into two categories :
(i) those that eliminate noise while preserving objects, (ii) and others that enhance
curvilinear objects while avoiding noise amplification. In both cases, the prior detection
of such objects is implied. All of the curvilinear detection methods can be classified in
two types: bottom-up (local) and top-down (global). Commonly "bottom-up" methods
include preprocessing and segmentation in order to extract objects edges ([Can83]) and
centrelines (ridges as in Haralick [Har83]). The detection methods based on deformable
models or similar can be classified as "top-down" ones.

The "bottom-up" class of methods can in its turn be classified in two categories: (i)

those that utilize some filters to extract boundary or ridge of the vessels, followed by
further refinement (e. g.[Kol95, FNVV98, SNA+

97]); (ii) and those that employ tracking
strategy by some given or detected seeds in the vessels.

An other way to classify line-extraction approaches is based on how the image is
considered. The first approach detects lines on a pixel-by-pixel basis by only taking in
account the intensity of the image, e. g.:

1. Directional filter banks:

a) Oriented means

b) Oriented openings with segments as SE

c) Path openings

d) Gabor filters [BHdB94, CST98]

e) Quadrature filters [AK91, GK95]

f) Line operators [DT79]

g) Steerable filters [FA91, Per95]

h) Oriented beans

2. Skeleton and watershed-like approaches (geometrical ridges)

3. Orientation-scale-space [MCL+
07]

4. Edge detection [Can83]

5. Ridge detection [Lin96]

6. Some wavelets [UVDV09]

These methods are based on oriented filter banks and consist in finding the orientation
corresponding to the maximum response of a filter bank. Each filter is obtained from a
rotation of a basis filter. The accuracy and selectivity of these methods usually depend
on the number of filters, on the size of the computing support and on the kernel basis
filters [Per95, CST98].

The second approach for local line-detection considers the image as a function f(x, y)
and lines are detected as ridges and are opposites of valleys. Examples of those include:

1. Derivative-based methods:
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Figure 4: A thin, noisy brain blood vessel. There is no low-gradient zone in this object, discon-
nections are due to noise.

a) Gradient, Difference of Gaussians

b) Structure tensor [BG, Knu89, BBN04]

c) Orientation diffusion

d) Second-order derivatives (Hessian matrix)

2. Moments-based methods

3. Hierarchies (morphology)

4. Minimal paths

5. Other wavelets

6. Other squeletons

7. Curvelets, dual-tree wavelets (6 directions)

2.1.1 Review of thin objects filtering techniques

Indeed, classical filters in the literature assume locally isotropic objects, i.e. such that a
“large enough” window will still fit into them (this is the case for the median, averaging,
linear convolutions, morphological filters with standard structuring elements) [GW07,
Hei96]. Those that do not make this assumption still filter only in areas of low gradient
in a region of interest [PM90b, SB97, TM98]. Elongated objects may in fact present no
part with a suitable low gradient, due to both noise and object edges, as is readily
apparent in Figure 4.

For elongated objects, it is often assumed that one dimension is long, everywhere
tangent to the object. Filtering can be applied along this direction without necessar-
ily destroying the object entirely. Directional (matched) filters, Hough, and Radon
transforms can be used to detect straight lines and other features of known shape, but
curvilinear objects are much more difficult to trace.

Orkisz et al. [OBM+
97] used a kind of filter bank called "sticks", which can be seen

as a set of directional structuring elements. Similar approaches were also proposed
by [CJOJ99, KS96, CH95, DPD95a, DPD+

95b]. The last two combined the outputs of
directional operators without an explicit extraction of the vessel local orientation. The
main disadvantage of the methods in this category is that they can hardly detect vessels
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in a wide range due to the fixed scale analysis. Although they can be extended to
multiple scales by using sticks of variable length, the computation time would increase
significantly.

The proposed approach by [TKL+
09] incorporates the use of line-like directional

features present in an image, extracted by a directional filter bank, to obtain more
precise Hessian analysis in noisy environment and thus can correctly reveal small and
thin vessels.

Such filters have their analogues in the mathematical morphology field, they are
described in section 2.2.9.

Isotropic diffusion filtering removes noise as well as thin objects and hence is not
suited for vascular images. Several authors proposed anisotropic approaches where
local orientation of structures is first estimated and filtering is locally done along this
orientation in order to preserve small objects and not to blur boundaries of larger
structures. This approach implies a two-stage processing: (i) orientation estimation and
(ii) filtering.

Non-linear anisotropic filtering has also been applied to vessel enhancement [KMA97,
Kri02, OBM+

97]. In [KMA97], smoothing was carried out by anisotropic diffusion in
the direction of the least principal curvature. One of the methods proposed in [VDS+

92]
applied a morphological operation of crest detection, using directional (linear) tools,
and selected the direction giving the strongest response.

In the case of the linear scale-space framework, which should be suitable to this
problem, edge and ridge detection methods were proposed [BG, Lin98, DL01] utilising
the Hessian or the structure tensor [DIH02]. Anisotropic diffusion is often used for
this task [Per98, MVN06] using the tensorial information for diffusing only within the
object, while becoming isotropic outside the oriented objects.

Directional second derivatives can also be brought together in a Hessian matrix, so as
to exploit the matrix’s eigenvectors and eigenvalues . These methods are discussed in
detail in a further section. Similar geometrical considerations concerning the principal
curvatures led to the use of the Weingarten matrix eigenvalues. However, a common
problem of the methods based on derivatives is their sensitivity to noise.

There were several attempts to characterize the anisotropic properties of the vascular
images by non-linear combinations of outputs of directional filters. In [CH95], a set
of directional mean-filters was used. The difference between the strongest and the
weakest response was used as anisotropy measure. Indeed, the mean intensity along
a vessel should be larger than in perpendicular directions. Poli [PV97] proposed a
computationally efficient algorithm based on a set of linear filters, obtained as linear
combinations of properly shifted Gaussian kernels, sensitive to vessels of different
orientation and radius.
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2.2 detection and segmentation methods

One of the main image analysis tasks is segmentation or classification, which are both
taken to mean distinguishing regions of the image belonging to different objects. In
practice, this must be performed with only a few facts known about the objects present
in the image. To these aims, the importance of edge detection has been demonstrated
multiple times. Some of the theories insist on finding edges at an early stage on a
brightness representation of the image, while segmentation and other stages follow
afterwards. Others find discontinuities and a potential focus of attention as a bi-product
of the perceptual organization process which is based on a ridge detection [SVS92].

Indeed, there exist comparatively few segmentation strategies proposed that manage
without edge information. Those fall into two classes. In the first class, one of the
classical methods is based on region growing [HR78, HP74, HS85, Cle91, AB94]. These
methods are based on placement of several "seeds" defining different classes or objects
in the images and then "growing" them until a complete region is found. The growing
decisions are based on neighborhood intensities. This scheme has two drawbacks: it is
local and shape constraints can be difficult to incorporate.

The second class of segmentation strategies that work without edges are based on
computations that find discontinuities while preserving certain region properties such
as smoothness [Gem84, Ter86, PGL88]. These methods are scale dependent and in
fact in some cases depend on reliable edge detection. The first scale studies on the
discontinuity level [WT83, Koe84, PM90a] do not explicitly represent regions.

Moreover, it is a known fact that edges alone are not enough in order to distinguish
objects that are difficult to find.

Considering that two main line distinguishing features are width and orientation,
it is suitable to analyse these two characteristics to start off the segmentation of lines.
The early methods applied non-linear pixel operators by looking at neighbouring pixel
intensities in order to extract roads from aerial images [FTW81, RT71]. However, these
methods did not take into account the fact that objects can be represented at different
scales.

The segmentation of the vascular structures is a particularly challenging task. This
is due to its particular image acquisition modalities, three dimensional nature, and
presence of other tissues and quantity of image noise and artefacts in proportion to
vessel signal. Moreover, physical and anatomical properties of the tissue are highly
variable in size, appearance, geometry and topology, and even more so in pathological
cases like aneurysms, stenoses, calcifications and arteriovenous malformations.

More detailed reviews on vascular segmentation can be found in [LABFL09, QBD+
09,

KQ04, SLRL02a, SLRL02b].
Becoming more and more popular are combinations of several techniques, e.g. as a

pre-, post-filtering steps, in order to obtain the desired segmentation result. From an
image processing point of view, segmentation consists of partitioning an image into an
object, i.e., a structure of interest, and a background, i.e., the remainder of the image
volume.
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The segmentation of vascular structures from 3D images is an even more difficult
task. Here, the notion of segmentation is considered in a wide sense. In the context of
angiographic imaging, we consider that vessel segmentation embeds (i) methods that
detect either whole vessels (i.e., their lumen and/or walls) or their medial axes, and/or
(ii) methods that perform low-level processing or high-level knowledge extraction
(e.g., vein/artery discrimination [LUSO01, TS02, BSVN03] or vessel labelling [CFM01,
HEM+

99]).
We also consider some methods which could be classified as filtering ones, since their

purpose is to perform vessel enhancement, which consists mainly of denoising, but
also of vessel reconnection (for example in case of stenosis, or of signal loss [DLPB99,
PRB+

05a]).
As discussed above, the difficulty to perform vessel segmentation is due to the

sparseness of data, and the possible presence of irrelevant signal (other tissues, artefacts
or noise). The choice of a segmentation method is often linked to the type of considered
images, the vessel(s) to study and the clinical purpose. The next section discusses
different methodological segmentation strategies relevant to the problem at hand.

2.2.1 Surveys of vessel segmentation methods

Several surveys devoted to 3D vascular segmentation have been proposed during
the ten last years or so. The oldest ones [SLRL02b, KQ04] are now globally incomplete,
the reader may refer to the most recent ones [OVH08, LABFL09] for a more exhaustive
overview of the literature. The survey proposed in [SLRL02b] focuses on vessel seg-
mentation from MRA images, and divides them into skeleton methods (with an interest
in medial axes) and non-skeleton ones (that aim to segment whole vascular structures).
These two families are then refined, based on the involved image processing strategies.
Part I of this survey [SLRL02a] also describes MRA acquisition techniques.

An other classification is proposed in [KQ04] which deals more generally with vessel
segmentation from any kind of data independently of their dimension, or acquisition
technique. The review of image analysis for angiographic image of [OVH08] gives
a comprehensive, but non-exhaustive introduction on methods per clinical vascular
application. While one of the most recent survey [LABFL09] mainly refers to 3D
vessel segmentation from MRA and CTA, it divides its description into (i) the a
priori information which can be used for segmentation, (ii) the basic tools using this
information for detecting vessels, and (iii) the methodological frameworks involving
these tools, as well as a discussion on pre- and post-processing considerations.

In the next section, we introduce the segmentation methods divided into eight main
families corresponding to the main image processing strategies on which they rely:
region-growing, deformable models, model-based filtering, path finding, vessel tracking,
statistical approaches, differential analysis, and mathematical morphology.
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2.2.2 Region growing methods

Region-growing has been one of the first strategies considered for image segmen-
tation [Zuc76], and in particular medical/angiographic ones, dedicated to seeded
region-growing segmentation. Basically, region growing relies on two elements: one (or
several) seed(s) [AB94] assumed to belong to the structure of interest to be segmented,
and a propagation criterion, enabling to segment the object from the seed, by iterative
addition of adjacent voxels.

In the case of vessel segmentation, seeds are generally defined interactively inside
vessels. The possible definition of several seeds can straightforwardly lead to an
application of region-growing to vessel separation, and in particular, to vein/artery
discrimination. In such a case, a set of seeds is defined for arteries and veins, respectively.
A competitive region-growing is then performed, based on ad hoc propagation criteria
(e.g., a measure of grey-scale connectedness in [TS02]). Note that, by duality, region-
growing also provides solutions to segment vessels by skeletonisation. In such a case,
the growing process starts from a seed being a subset of the background (which can
then be automatically defined), and generally includes topological constraints in the
propagation criterion [DLPB99, PRB+

05b].
The seeds can be detected automatically, especially in the case where they constitute

the root of a vascular tree [NRS05]. The propagation criterion is commonly based on
intensity criteria, related to the high-intensity vascular signal.

However, more sophisticated properties can also be embedded in this segmentation
strategy. In particular, it has been proposed to consider a priori knowledge related to the
shape and size of the vessels to be segmented [NPR07], or to their topology [PRB+

05a].
The correctness of the orientation of the vessels during the segmentation process has
also been considered by proposing “wave propagation” strategies [ZJE+

95], which aim
to constrain the segmentation front to remain normal to the vessel axis. It may be
noticed that this kind of approaches has been further used for vessel tracking methods
(discussed hereafter in the section). The concept of wave propagation has also further
led to the development of methods related to both deformable models (level-sets) and
path-finding approaches, namely, fast-marching methods [MN04].

Region-growing methods rely on a simple algorithmic framework, which make their
development and use quite easy and induces a low (generally linear) computational cost.
In addition, they guarantee termination which is not systematically available for other
non-monotonic strategies. However, the connectivity hypothesis intrinsically associated
to this strategy constitutes a weakness, since the method may fail in segmenting vessels
in case of vascular signal loss (due to partial volume effect, or flowing artefacts, for
instance). A contrario, the use of a criterion being too permissive may lead to leakage
phenomena, and a final over-segmentation of vessels, requiring to anticipate this effect
[MSvdG+

07].
In this context, region-growing methods have often been preferentially devoted to

the segmentation of large and/or well-contrasted vessels (for which intensity and
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connectivity hypotheses are generally reliable). Otherwise, dual object and background
competitive region-growing has been largely used since proposed in [YR03].

A spatially adaptive propagation can bring advantages, such as topological coherence,
e.g., in order to detect bifurcations [LRSB03, MSvdG+

07]. Branches can be segmented
and reconnected easier by a local approximation of the vessel centerline, which can be
derived from the front centers [LRSB03], by skeletonization of the local binary mask
[MN04], or by path tracking [KQ03]. The last method is closely related to minimal path
methods [AT05].

Region-growing methods largely depend on the robustness of their features. To
handle potential under- and over-segmentation issues, adaptive parameters such as
inclusion thresholds are desirable [LRSB03, MN04, YR03]. Such adaptive schemes
rely on iterative, adaptive nature of the propagation process. In [LRSB03, ESS+

04]
parameters are adapted for each branch independently, where at the end of each vessel
the algorithm searches for possible vessels around to reconnect with intensities adapted
to the neighborhood. Even though adaptive criteria are normally studied heuristically,
they are simple and good examples of collaborations between the extraction schemes,
the features and the appearance models.

2.2.3 Derivatives-based methods

Vessels are generally bright structures among a dark background. If an image is
viewed as the discrete analogue of a function from R3 to R, vessels then appear as the
maxima of this function. Consequently, it may be possible to detect them by analysing
the differential properties of the image.

In order to deal with the discrete/continuous issue involved by this strategy, the
considered (discrete) image is convoluted with a series of Gaussian derivatives with
different standard deviations and in different directions, the obtained responses being
combined into a matrix.

In the case of first derivatives analysis, this matrix, which is the covariance matrix of
gradient vectors [BG, AAIW05], is called the structure tensor.

2.2.3.1 First-order derivatives

Except for vessel segmentation, the first derivatives have also been involved in diffusion
filtering, which consists in propagation of information in the orientations suggested by
these derivatives [MNIRT04].

The structure tensor matrix can be analysed with the purpose of analysis of the local
distribution of gradient vectors [Wei99]. Some works show the ability to extract more
than one principal direction [AAIW05, AW05a]. Therefore they can distinguish other
shapes than tubular, i.e., masses and surfaces.

With the first derivatives it is possible to obtain directional information which can be
used for a propagation of information and/or smoothing, diffusion filtering. An isotropic
smoothing has been performed with first derivatives as in [MNIRT04, SS06] within
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homogeneous regions in order to filter-out noise. This procedure can also blur-out
borders and small objects of objects if those are not detected well.

Anisotropic filtering can help preventing this by propagating the information along
the vessels, which again requires correct detection of the principal object direction
[DIH02]. Some works [BB08, VMA08] used the gradient vector field [VMA08] in a
diffusion scheme [XP98]. This scheme regularizes and anisotropically diffuses gradients
of the object boundaries, which is absent at the medial axes of the object. This has been
solved by integrating second-order derivatives discussed further. Vectorial gradient flux
was also used for anisotropic diffusion for thin object filtering and enhancement [Kri02].
Gradient oriented flux has been recently used in more complex segmentation schemes
as in deformable methods described in Section 2.2.5.

As discussed further, the first-order derivatives can be used in cross-sectional vessel
analysis [KMA+

00, WNV00, FPAB03, AGT08] as oriented features.

2.2.3.2 Second-order derivatives

An other popular approach in the detection of vascular patterns is the use of second-
order derivative information to characterize the local image geometry. Canny [Can83]
proposed to take the second-order derivatives of the Gaussian function as a filter and
detect lines at points where the convolution of the function with the lines gives a
maximum response.

The Hessian matrix is the most common tool to capture such information. Its
extension to multiple scales was proposed in [KGSD95]. In [MvdEV96] there has been
performed an evaluation of Gaussian derivative functions and models. Steger [Ste96,
Ste98] and Hladuvka [HG08] have proposed first functions for curvilinear structures
detection based on Hessian matrix eigenvalues.

An image can be convoluted with second-order Gaussian derivatives with their
reponses forming Hessian matrix. The main idea behind eigenvalue analysis of the
Hessian matrix is to extract one or more principal directions of the local structure of
the image. This gives the direction of the minimal curvature, the principal one in the
tubular structure and a high curvature in the vessel cross-section plane, which makes
the filter more efficient to the contrary with multiple orientations line filters.

Compared with the image gradient, whose response is independent of the shape
and local structures of boundaries, the Hessian matrix can capture the shape character-
istics of objects, such as tubes, planes, blob surfaces or noise. In particular, different
combinations of these eigenvalues were proposed to enhance points likely to belong to
vessels. Indeed, tubular structures should give rise to the associated eigenvector that
is tangential to the vessel axis and to the associated eigenvectors that lie within the
plane locally orthogonal to the vessel. Different combinations of these eigenvalues were
proposed to enhance points likely to belong to vessels. If appropriately designed and
applied at multiple scales, such combinations, often called vesselness function, should
give the strongest response at one particular scale corresponding to the plate-, blob-like
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and/or tubular objects [? FNVV98, KMA+
00] (see Figure 6(a) for an example of an

eigen-value elliptic space).
These methods can be performed in multi-scale frameworks in order to detect objects

of different sizes. It has to be noticed that the choice and number of the considered
scales is particularly important in such methods and are further discussed in the section.

Based on second-order derivative filters and their directional information, there is
a fair amount of works performing an anisotropic diffusion for thin objects enhance-
ment [Wei99, MVN06, NRTW07]. The amount and orientation of diffusion depend
on the local vessel likeliness. It is also shown that using vessel-enhancing diffusion as a
preprocessing step improves level-set based segmentation of the cerebral vasculature, in
particular segmentation of the smaller vessels of the vasculature. Recently, Descoteaux
[DACS06] reported a multi-scale bone enhancement measure by introducing a sheetness
measure from multi-scale eigenanalysis in the geometrical flow framework.

However, second-order based methods have some weaknesses, e.g. scale-space,
bifurcations detection and efficiency, that are discussed further. They have difficulties
especially when assuming one dominant direction, which does not necessarily exist in
branching points or other extreme cases like aneurysms and stenoses.

Even then, derivative-based methods provide efficient solutions for detecting vessels,
especially in a multi-scale framework, and have then often been considered for the
design of segmentation methods based on model filtering (presented in further sections)
or for the guidance of deformable models, for instance.

scale-space The second-order derivatives techniques commonly are implemented
in multi-scale frameworks to detect vessels of different sizes. Hessian matrices are
classically computed in a Gaussian linear scale-space, through convolutions with
Gaussian derivatives of different standard deviations [Lin94]. Scale selection is most
often performed by selecting the maximum response over multiple scales.

Due to the fact that size of vessels ranges a lot in different parts of the image. The
choice and number of scales is especially important to such groups of methods that
perform local filter matching: model-based and derivative-based methods. Too small
scales emphasize small details, while producing spurious responses to noise, tangent
objects and other features. Too large scales deform original objects at detection and lose
details.

On the other hand, it is computationally expensive to process along all possible
scales. For the derivative-based techniques, it has been proposed to use dynamic scale
selection [Lin93, Kol95, KGSD95, LCB+

97, SRV01, Xu04, SED+
04]. They permit not

only to detect the local width, but also to track objects whose width changes along the
structure.

The dynamic scale methods reduce filtering time by using smaller scale measurements
when appropriate. In [SED+

04] an enhanced efficiency was achieved via dynamically
adjusting the filter scale, although segment terminal points were identified by a human
operator.
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Moreover, scale is correlated to quantity of noise: at smaller ones, there is more of it.
This knowledge has been incorporated in [WBG06].

In time-of-flight MRA data intensity ridges inherently exist along the central axis
of small vessels, while large vessels may appear brighter near their edges because of
laminar flow. In contrast, in CT data, the intensity profile of a large vessel may be flat.
It has been said in [AB02] that use of a larger scale straightens the curves in a centreline
and increases the influence of neighbouring objects.

One more disadvantage due to the scale space appears for tangent objects. The
boundaries between tangent objects fade on higher scales. But they have a tendency to
get blurred for the smallest objects even on the lowest scales.

Another serious problems in the application of the linear Gaussian second derivative
filters of ridge detection is their response to other features, such as edges or sheets
in 3D. Already in early works, there has been suggested to use a nonlinear operator
that combines the responses of two edge-detectors on both sides of a ridge [Kol95].
[LCB+

97] used an edge-indicator to suppress the response to edges. [Lin98] proposed
to compute positions of ridges in terms of extrema of one operator and scales in terms
of extrema of another operator.

In [Maj04] they have used the parameter γ by Lindeberg [Lin93, Lin98] to give a
priority to ridges and not edges. Figure 27 illustrates that in the variable scale setting
the response to edges of a second order Gaussian derivative operator can be turned off
simply by a suitable choice of γ parameter. To better illustrate this point the shortest
ridges of the grass are not displayed in Fig. 27c. 27b displays all the detected ridges.
Moreover, although these ridges cross each other in the projection of Fig. 27, they in
fact occur at different scales.

Other way to treat edges is by integrating first-order derivatives responses, as in
[CC06, BP07], where it is suggested that first derivatives detect better thinner vessels
than second ones. So they apply those, then after the response analysis, for the candidate
vessels they perform a hysteresis thresholding and apply a tracking strategy in order to
get all the other small vessels.

bifurcations Another issue for derivatives-based methods are vessel bifurcations,
which, at some scales, do not show any principal direction, and at others, they can
induce high curvature values along more than one principle direction. This is especially
important in methods like tracking, directional filtering and centreline extraction. The
Hessian-based model filters tend to attenuate junctions since junctions are characterized
as blob-like structures. Junction suppression leads to the discontinuity of the vessel
network, which is of course undesirable.

The first geometric bifurcation model was first introduced by [Mur26] with relation-
ships between branching angles and vessel widths based on physiological optimality
conditions. Other precise models were proposed by [AS04, FVHØ04], which require a
pre-segmented centreline and surface mesh for their optimization.

More recent simpler models were introduced in works by Agam [AAIW05] with a
filter model which is based on the correlation matrix of the regularized gradient vectors
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(first-order derivatives). In the inertia moments space, Hernandez [HFS03] has defined
bifurcations as a contrario case of a vessel model .

On the other hand, although the image gradient is more general in handling structures
of different shapes, due to the presence of intensity inhomogeneity such as bias field or
overlapping objects, the intensity difference between vessels and background regions
are not consistent. The boundaries of the low contrast vessels do not give large gradient
responses for those vessel boundaries.

efficiency The multi-scale methods represent substantial computational costs,
which is due to the iterative convolution of each pixel of the image. In order to compute
eigenvalues of the Hessian matrix, the matrix itself represents four-times original image
in 2D and nine-times in 3D. However, considering that it is symmetric matrix, there
exists a relatively simple analytical solution to make the code much faster.

In [OO09], it has been proposed to avoid the computation of the eigenvalues for as
much as half of the voxels by checking the sign of the trace of the Hessian. But such
closed-form solutions are prone to numerical instabilities, so Orlowski [OO09] suggest
that the eigenvalues for the remaining voxels be computed either by use of an iterative
algorithm optimized for 3 × 3 symmetric real matrices, or by use of a hybrid algorithm
that switches from non-iterative to iterative solution when risks of numerical instability
occur, as suggested in [Kop08].

This problem is then solved by a trade-off between the quality of the filtering and
gain in efficiency.

2.2.4 Model-based filtering

In general, vessel models can be used as prior for the final segmentation. Here they
are described in the order of the increasing complexity. We start with intensity profiles
and simple geometric models useful.

2.2.4.1 Intensity models

Intensity models, which are among the simplest ones, strongly depend on the
considered imaging modality. They can integrate brightness, contrast and gradient
prior, but also imaging properties, like intensity ranges or intensity variation based on
location, or even noise distribution [AW05b] (see also the paragraph Statistical analysis,
for a discussion on noise modelling).

In [WR04] a cylindrical parametric intensity model is directly fit to the image intensi-
ties through an incremental process based on a Kalman filter for estimating the vessels
radii, while in [QBD+

09], local neighborhood intensities are considered in a spherical
polar coordinate system in order to capture the common properties for the different
types of vascular points.

A natural integration into this kind of models is background description [SMS+
07,

TdTF+
07]. See Fig. 5 for the illustration of the method.
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Figure 5: Volume rendering of MRA volume, from left to right: original image, ground truth,
entropy-based measure from [QBD+

09], Hessian-based measure. (Illustration is
from [TdTF+

07]).

While being simple, intensity models are highly dependent on the nature of images.
Therefore, they have to be tuned for all kinds of circumstances, like artefacts or other
image distortions, as well as to compensate for image variability.

2.2.4.2 Geometry models

The assumption that vessels are elongated thin objects, globally similar to tubes
has been used for the design of several geometric models, such as generalized cylinders,
superellipsoids or Gaussian lines [KMA+

00, TBD+
01, TdTF+

07, SHS04, FHP08]. Bar-like
profiles [KGSD95, BRT03, WR04, WGR09] account for the fact that bigger vessels are
flatter than perfect cylinders. The result is the maximum of the convolution of linear
filter with an image at multiple angles and it can distinguish between non- and tubular
objects.

Based on second-order derivatives, several models incorporating geometrical prop-
erties have been developed. In [FNVV98], an ideal cylinder is proposed in order to
enhance vessels within a measure called vesselness, while in [SNA+

97] a more general
model incorporates elliptical shapes, also enriched in [LD01] which also includes a
conus-like descriptor, which can be used to detect vessel stenosis (see Fig. 6).

The bifurcation issue has also been considered, for instance in [AS04] where a
bifurcation models is proposed and optimised based on vessel centerline information.
An alternative solution, described in [AW05b] is based on optimized probabilistic
models derived from eigenvalue analysis of the structure tensor.

Geometry models are powerful tools for describing vessels and aiding to their further
extraction within tracking schemes or by deformation. However, these methods, assume
image regularities that are present in high-quality images but not necessarily in noisier
ones, nor in pathological cases. Furthermore, they often require careful parameter
tuning, which may change from one data-set to the next. Probabilistic and/or statistical
approaches can contribute to decision-making whether pixel belongs or not to a vascular
structure.
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(a) (b)

Figure 6: Geomteric vessel models: (a) Hessian eigenvalues’ shape-space according to [LD01].
(b) Superellipsoid model by [TdTF+

07].(Illustrations are from according articles.)

2.2.5 Deformable models

Deformable models aim at fitting a geometric hypersurface (e.g., a 2D surface in a
3D image), by moving it and modifying its shape from an initial model, under the
guidance of several (generally antagonist) forces: external (“data-driven”) ones, related
to the image content, and internal (“model-driven”) ones, devoted to preserve correct
geometry properties (e.g., regularity). Such models have been intensively used in the
field of image analysis [STG98], especially due to their advantages: arbitrary shape
representation, topological adaptivity, sub-pixel precision, etc.

Among the most classical methods, snakes (often used in 2D in order to segment
vessel cross-sections), have been considered, e.g., in [MT97], or in [HFS03], where two
(1D and 2D) snakes are used for both segmentation and stenosis quantification.

Level-sets constitute another classical type of deformable models, and rely on an
Eulerian version of contour evolution with partial derivative equations. The contour
is integrated as the zero-level of a higher dimension function (level-set). In [LFG+

01],
an original level-set based scheme proposes to deform an initial boundary estimate
toward the vascular structures in the image using a codimension-two regularization
force, based on the vessel centerlines instead of the vessel surface (see Fig. 7 for an
illustration of the method).

In [YK05] a similar method called capillary active contours is introduced which adapts
the evolving surface into very thin branches of blood vessels and obtains more accurate
segmentation in comparison with [LFG+

01] (see Fig. 8).
An other level-set based method [MVvL+

06] proposes to estimates the background
and vessel intensity distributions based on the intensity histogram, to more efficiently
steer the level set onto the vessel boundaries.
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(a) (b)

Figure 7: Schema of segmentation with level-sets. (a) 2D case (left - evolving curve, right - curve
evolution with level sets). (b) Codimension-two curve evolving on tubular isolevel set

Γε of C. Right: the tangent to C at p (the normal plane), the external vector
→
d and its

projection onto the normal plane.(Illustration is from [LFG+
99]).

Figure 8: MRA segmentation results using: CURVES (left), capillary active contours
(right).(Illustration is from [YK05]).

Several efforts have been conducted to improve deformable models in the quite
specific case of elongated structures. In this context, [VS02] proposes to use flux
maximization as an alternative curvature-based regularization which make surface
normals evolve according to gradient vector field. The key idea was to evolve a curve
or a surface under constraints by incorporating not only the magnitude but also the
direction of an appropriate vector field. [DCS04] has used in the similar manner Hessian
values flow.

In [Law07], local variances are measured with first-order derivatives and are prop-
agated according to their strengths and directions with an optimally oriented flux
reporting more accurate and stable responses and higher robustness to disturbances
from adjacent structures in comparison with Hessian-based measures.

The major advantage of deformable models methods is that they are sensitive to weak
edges and robust to noisy structures. However, the intensity variation inside vascular
structures can generate significant intensity gradient with this undesired discontinuity
stopping the contour evolution at these regions. Due to this local minima, the initial
forces should be described with such precision that the final object borders are not far
from the initial ones. While the evolution of the deformation can be a costly process.
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But, by integrating vessel features and forces in powerful optimization schemes help
overcoming these problems.

2.2.6 Statistical approaches

Vessel segmentation based on statistical approaches generally relies on specific as-
sumptions related to the intensity distribution of the vascular/non-vascular signals
in MRA data (only very few statistical methods have been devoted to CTA, see, e.g.,
[FPW05], which proposes a particle-filtering strategy for coronary arteries segmenta-
tion), and especially physical models of blood flow. If the number and the nature
of these distributions is supposed to be known correctly, it is then possible to deter-
mine their respective parameters (and in particular the mean intensity characterising
the associated structures), via a standard Expectation-Maximisation (EM) technique
[DLR77].

In (TOF or PC) MRA, two or three distributions are generally considered, for the blood,
and the other anatomical structures and the background, respectively. They led, in par-
ticular to the definition of Gaussian-Gaussian-uniform [WRNB99] and normal-Rayleigh–
2×normal [SHFHM06] mixtures for TOF MRA, and Maxwell-Gaussian [CNSB01],
Maxwell–Gaussian-uniform [CNS02] mixtures for PC-MRA. In [CNS04], a hybrid
model, enables to choose between these two kinds of mixtures. Alternatively, to
these “constrained” mixture choices, it has been proposed in [EBFGH05] to consider a
linear combination of discrete Gaussians with alternate signs, involved in a modified
EM, which enables to adaptively deal with both laminar and turbulent (pathological)
blood flow [EBFG+

06].
In the primarily considered strategies, the determination of the vascular intensity led

to a straightforward segmentation by thresholding of the image (sometimes enriched
by a hierarchical analysis of the image by octree decomposition [WRNB99]). From
an algorithmic point of view, segmentation improvements were also performed in
considering of spatial information (i.e., statistical dependence) between neighbour
voxels, by integrating Markov random fields (MRF) [GHP+

95] in a post-classification
correction step [SHFHM06]. In other works, speed and phase information provided
by PC-MRA were fused and involved in a maximum a posteriori-MRF framework to
enhance vessel segmentation [CNS02, CNS04].

Statistical methods globally inherit from the strengths and weaknesses of the EM
algorithm. First, they generally require to establish hypotheses on the signal distribution.
Moreover, they involve several parameters, for instance, weight, mean and standard
deviation, of the distributions. The initialisation of the segmentation process then
requires a special attention. Indeed, the convergence may possibly depend on the
quality of the initial distribution settings (sometimes automatically determined based
on heuristic rules [WRNB99, CNS02]). As for any optimisation strategy, the termination
also requires to decide whether the process has correctly converged or not (which is
sometimes empirically determined, for instance by a maximal number of iterations



2.2 detection and segmentation methods 29

[WRNB99]). Finally, since the segmentation process is strongly based on photometric
properties (the results often consist of global or local thresholdings), higher-level
knowledge such as geometric assumptions are hardly considered, and require post-
processing steps based on a statistical framework [SHFHM06], or, more efficiently the
collaboration of alternative image processing techniques (see examples in Section 2.3).

2.2.7 Minimal path techniques

Based on extremal intensity and connectedness criteria, the detection of a vessel
segment (or more precisely of its medial axis) can be expressed as the determination
of a minimal cost path in a weighted graph modeling voxels, their neighbourhood
relations and their intensity.

Vessel segmentation based on such strategies can rely on standard minimal path
finding techniques [Dij59] (i.e., on "global" minimisation strategies, while methods
categorised in the next Tracking section will rely on "local" (step by step) minimisation
strategies). This is, for instance, the case in [OBN03b].

Alternatively to classic path-finding methods, fast-marching strategies [Tsi95] have
been considered. These methods are both related to the level-sets methodology (see
the Deformable models paragraph) and minimal path-finding ones (they remain, in
particuler, consistent with the continuous formulation of the minimal-path research). By
opposition to fully discrete path-finding, they enable in particular to determine paths
with a sub-voxel accuracy [AW00].

The methods based on path-finding are globally well-fitted for the detection of vessel
medial axes, especially in the case of small vessels which justifies in particular their
frequent use in coronary detection. (For larger vessels, the optimal path may diverge
from the medial axis, leading to eccentric results, this issue then requiring a specific care
[LY07].) However, it has to be noticed that efforts have also been conducted to develop
segmentation methods enabling to extract both vessel axes and vessel walls [BC09, LY07],
which express the whole vascular volume segmentation as the minimisation of a path in
a space enriched with a supplementary “scale” dimension corresponding to the vessel
radius.

Despite attempts for segmenting whole vascular trees [YCS00], such methods gener-
ally remain devoted to the segmentation of vessel segments, thus requiring to interac-
tively provide at least an initial point, and also a final one [OBN03b, WFV+

02]. In this
case of use, they may be robust to noise, and signal decrease (or shirt signal loss) along
the vessel, especially in case of stenoses. These methods being based on monotonic
and/or finite algorithmic processes, their termination is garanteed, and their theoretical
algorithmic cost is generally low. Practically, the computational cost may however be
high, and in this context, the proposal of initial and final points can potentially enable
its reduction by computing paths from both points simultaneously [OBN03b].
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Figure 9: Tracking scheme from [BRT03]. (Illustration is from the corresponding publication.

2.2.8 Tracking

The basic idea of the tracking methods is in following the object of interest along its
principal direction. It starts from given seeds and direction and it is an iterative process
of further steps prediction and correction. Usually, vessel tracking is combined with
finding its centerline. A centerline can be estimated by looking at the 2D orthogonal
plane in the principal vessel direction. Both centerline and direction can be estimated
with geometrical and intensity model-based methods.

In [BRT03] tracking was based on geometrical moments for model fitting and local
directions for vessel tracking, as well as enhancing along the vessel. If one bifurcation
is detected, some seed points are extracted which are saved in a list to be further taken
as initial point of the tracking process. The tracking scheme is illustrated in Fig. 9.

Many tracking techniques follow one branch at a time, relying on manual reseeding
to extract a complete tree. To automatize bifurcation handling, some authors have
proposed to perform the segmentation of the lumen locally and rely on topological
knowledge.

In[AB02] segmentation of each vessel begins from a seed point tracking the image
intensity ridge representing the vessel skeleton in 3D based on Hessian values, using
dynamic scaling and automated calculation of vessel width at each skeleton point.
Since the method extracts only objects approximately circular in cross-section, it resists
inclusion of non-vessel objects. An advantage of the approach is that it is capable of
defining even very small vessels.

With geometric models the previous direction can be, in the simplest way, directly
reused in the next step [TdTF+

07]. Please see Fig. 10 for a schematic illustration.
Otherwise, directions can be filtered, like in [FDCR01, WNV00] a set of sliding

volumes is used to detect and follow branching vessels by automatical iterative tracking
of the vessel centreline modelled by second-order B-spline.

Often the next tracking point is corrected according to the best fitness of a sphere [COH05,
HHOPJ+06] or medialness [WNV00]. Algorithm by [COH05] applies local adaptive
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Figure 10: A sequence of superellipsoidal fits traversing vessel. (Illustration is from [TdTF+
07]).

threshold and tracks the branches detecting the bifurcations by analyzing the binary
connected components on the surface of the sphere.

Carrillo [CHHDSO07] has reused the sliding spherical volume along the vessels.
While this process is guided by the minimization of a new criterion consistently com-
bining intensity variances with the spatial inertia moments for corresponding clusters
in classification process. Not relying on contrasts assumptions (as clustering supposes
intra-class intensitities to be similar), a strong a priori on the vascular shape is introduced
via an adaptive geometrical model. This operation enhances cylindrical structures in
the image.

Correction can be performed with 2D active contours with an accurate segmentation
of the cross-section [LBRS07]. Cross-sectional recentering can be done with local
optimization of 3D models as in [TdTF+

07, WR08].
Kalman filtering was used as an other prediction and correction scheme in [WR04,

WR08], which is theoretically very efficient under Gaussianity and linearity assump-
tions.

The integration of models generally improves robustness. A problem that may occur
with such iterative approaches is that if the method proceeds in the wrong direction
at one point, there is no mechanism to correct for this. The robust termination criteria
should also be offered in order to achieve complete tree segmentation and not include
false positives.

Furthermore, these approaches often depend on many parameters and can become
complex due to the estimation of the next direction vector, making them more prone to
failure especially for strongly curved structures, non-tubular structures (e.g., bifurca-
tions), or vessels with pathological conditions.

One more way to further improve robustness is to use multi-hypotheses frameworks
such as stochastic particle filters in order to deal with non-linear, non-Gaussian processes
(see 2.2.6 for more details).

The fact that tracking, like some region-growing and deformable models, focuses on
the object of interest, accelerates the processing.
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2.2.9 Morphological methods

In broad terms, the morphological filters that are of interest for vessel filtering and
segmentation include openings, closings and thinnings. Openings filter out small bright
objects over a dark background while closings remove small dark objects over a light
background. They are dual of each other in the sense that a closing performs like an
opening if the contrast is inverted. We also need to know that some composition of
operators are interesting. Namely, a supremum of openings is still an opening, and an
infimum of closings is still a closing. Finally, thinnings are like openings, except they
are not increasing, meaning they don’t maintain order.

structuring element based approaches Filtering thin objects with morphol-
ogy can be achieved using appropriate structuring elements. Typically, thin structuring
elements include segments and paths, combined over families. To account for arbitrary
orientation, one can use families of oriented segments and compute a supremum of
openings or an infimum of closings. This is described in [ST01]. To account for noise or
disconnection, families of incomplete segments can be used instead, yielding so-called
rank-max openings, which are just as efficient and also described in the same reference.

Paths are elongated structuring elements, but that are not necessarily locally straight.
Even though the size of families of paths grow exponentially with their length, there
exists a recursive decomposition that makes the use of such families tractable [HBT05].
As with segments, it is useful to account for some discontinuities using so-called
incomplete paths. As with segments, there exists an efficient implementation [TA07]. In
fine, path and segment operations are comparable in speed.

In [ZK01], authors use segment-based operators and curvature evaluation for 2D
blood vessel segmentation. In [TTDP09a], the author shows that path and segment
morphological operators significantly outperform linear and steerable filters for the seg-
mentation of thin 2D structures, even in the presence of heavy noise. Segment-based 3D
morphological operators were used in [DJ09] with good performances. Paths operators
have been extended to 3D in [Hen10], and show to outperform all other morphological
filters for thin object segmentation in 3D, both for efficiency and performance.

connected component approaches Connected operators are also supremum
of openings or infimum of closings, but use families of structuring elements that are
so large that it makes little sense to present them in this way. Instead, the concept of
connectivity is used [Vin93a, SS93, SS95]. The simplest of those is the area opening or
closing. Informally, the area opening suppresses objects that are smaller in area than a
given size λ. It extends readily to arbitrary lattices, and corresponds to a supremum of
openings with a very large family of structuring elements: all the connected sets that
have an area smaller than λ. In the continuum this family is not countable, but in the
discrete case it is still very large. Fortunately it is not implemented in this way. A very
efficient way to implement this operator is via the component tree [SG00, MW02, NC06].
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Figure 11: Brain vessels segmentation based on grey-level hit-or-miss transform. Illustration is
from [NPR07].

Many operators exist, that were derived from the area opening, and are well suited to
thin objects filtering and segmentation.

For instance, in [WME+
07], connected operators were used to segment blood ves-

sels in the eye fundus and detect microaneurisms. In [WW01], a scale-independent
elongation criterion was introduced to find vascular structures.

Some useful connected operators are thinnings rather than openings, as they make it
possible to use more complex criteria for object selection, for instance using elongation
measures, that are not necessarily increasing. In [WRW07], various connected criteria
are uses for elongated object 3D volume rendering, including blood vessels.

hit-or-miss transforms Hit-or-miss transforms repeatedly use pairs of struc-
turing elements (SEs) to select objects of interest, rather than single SEs. In [NPR07,
BRB+

10], authors used such operators for 3D vessel segmentation, including brain and
heart vessels. See Fig. 11 for an example of a segmentation with hit-or-miss transform
according to [NPR07].

2.3 combinations of methods

Despite the huge amount of methodological contributions dedicated to 3D vessel
segmentation, proposed during the last twenty years, the results provided by such
segmentation methods generally remain perfectible.

The handling of under-segmentation (especially in the case of small vessels, whose
size is close to the image resolution, of signal decrease, or of partial volume effect)
and over-segmentation (especially in the case of neighbouring with other anatomical
structures, or of high intensity artefacts), the robustness to image degradations (low
signal-to-noise ratio), the ergonomy (automation, or easy interaction), the low computa-
tional cost, the guarantee of termination and convergence, accuracy of the result (for
instance, the ability to provide results at a higher resolution than the image one) are
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desirable properties for such methods. Unfortunately, none is generally exempt from
drawbacks, even in the frequent (and justified) case where the method is devoted to a
quite specific task, vascular structure, and/or image modality.

As nearly all the main strategies of image processing have been –not fully satisfactorily–
investigated to propose solutions to this issue, a reasonable trend during the last years
has consisted in designing hybrid segmentation methods obtained by crossing method-
ologies. An alternative way to overcome this issue is to inject more guiding knowledge
in the segmentation processes, which justifies –among other reasons– the generation
of anatomical vascular models, as discussed in Section 2.2.4. These strategies aim, in
particular, at taking advantage of (distinct and complementary) advantages of different
segmentation techniques.

A synthetic overview of such hybrid methods is proposed hereafter. A more detailed
example of such a method is then presented.

2.3.0.1 Principal strategies

Vessel segmentation hybrid methods present a range of possible new paths, through
which a number of discussed above challenges can be overcome.

derivatives-based In[CA04] multi-scale filtering based on the Hessian matrix is
used to effectively enhance vessel structures with various diameters. The level set
method is then applied to automatically segment vessels enhanced by the filtering
with a speed function derived from enhanced MRA images. The segmented vessel
surface is triangulated using 3D Delaunay triangulation and the resulting surface is
used as a parametric deformable model. Energy minimization is then performed within
a variational setting with a first-order internal energy; the external energy is derived
from 3-D image gradients.

Works by Bemmel and Descoteux [BSVN03, DCS08] use Frangi’s [FNVV98] vesselness
combined with the maximum geometric flow by Vassilevskiy [VS02].

In[GLM+
08] a level-set-based geometric regularization method is proposed which

has the ability to estimate the local orientation of the evolving front and utilize it as
shape induced information for anisotropic propagation. It is shown that preserving
anisotropic fronts can improve elongations of the extracted structures, while minimizing
the risk of leakage. For an evolving front using its shape-offset level-set representation,
a novel energy functional is defined.

Lesage [LABFL09] has integrated Flux formulated as the measure of inward gradient
flux through a local circular cross-section into a tracking strategy reducing false positive
responses in situations such as step-edges.

One more hybrid method is by Frangi [FNH+
99] used vessel filtering [FNVV98] with

two B-spline snakes to first detect the vessel axis (3D contour) and then the vessel wall
(3D surface).

In [LBRS07] there has been used a tracking strategy similar to [FDCR01] in combina-
tion with active contours while obtaining initial seeds with the Hessian matrix values
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Figure 12: Results of segmentation of vessels by[CA04]. (a) Reconstructed images for the
abdominal arteriography images. (b) Labeled result obtained by directly applying
the level set method. (c) MIP of enhanced vessel tree. (d) Interim and final results of
the evolution of the propagating surface. (e) The final corrected vessel surface. (f)
An enlarged view of part of the final vessel surface triangulated with 3-D Delaunay
triangulation. (g) The intersection contours of sagittal, coronal, and axial image
planes with the level-set segmented result (white) and the final result obtained after
the application of a geometric deformable model segmentation technique (gray).
(Illustration is from [CA04]).

as in [WNV00] tested on a rat’s heart micro-CT and resulting in a full heart vasculature
reconstruction. A limitation of this approach is that during tracking, the vessel axis
is modeled by a sequence of piecewise linear elements as opposed to a b-spline or
polynomial Hermite finite elements, which could offer continuity in gradient over the
whole segment.

In [FHP08] a multiple hypothesis tracking (MHT) framework for 3D vessel seg-
mentation was used with new Gaussian vessel profile and a statistically motivated
criterion for assessing the model fit. This makes it a deterministic alternative to the
recently published Bayesian particle filters [SMS+

07, FPW05]. Whereas the particle
filters stochastically sample their way forward, the MHT samples its way with system-
atic sweeps. Where the particle filter furnishes a probability distribution of possible
vessel paths, the MHT uses the tracking search tree. An advantage of the MHT over the
particle filter is its computational complexity. Significant gain in robustness is obtained
with the increase of the depth of the search tree.

Santamaria-Pang [SPCSK07] used the Hessian matrix together with Support Vector
Machines (learning method) in order to segment neurone dendrites managing to achieve
good result even for irregular shapes and image specificities.
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Figure 13: ROC curve for Frangi method and algorithm of [GAF+
09] (source: [GAF+

09]).

Blondel [BVMA04] has proposed a method to compute 3D tomographic reconstruc-
tions of coronary arteries moving under cardiac contraction. It is based on a vessel
detectors by Sato [SNA+

97] and Krissian [KMA+
00] where a binary mask of detected

vessels in 2D is created. Then, with the help of morphological operators the artificial
subtraction of the vessels is performed from the original image.

Manniesing [MVN06] combined a smooth vessel filter based on geometrical analysis
of the Hessian eigensystem with a non-linear anisotropic diffusion scheme. The amount
and orientation of diffusion depend on the local vessel-likeliness. Vessel enhancing
diffusion (Vessel Enhancing Diffusion (VED)) is show in a diameter study on phantom
data to have least affects on the accuracy of diameter measurements compared to some
other classical methods. It is shown to improve level-set based segmentation of the
smaller vessels.

In [GAF+
09] they use Support Vector Machines (Support-vector machine (SVM)) that

operate on the Hessian and quadrature eigenvalues for discriminating between filament
and non-filament voxels. They show that using fourth order steerable features allow
to detect filaments more accurately than second-order methods, notably to Frangi’s
vesselness model. See Fig. 13 for the result curves. Interestingly, despite expectations on
SVM learning performance, in the best accuracy positions (somewhere in the middle)
of these ROC curves – where the true positive values are around 80% – the named
methods perform similarly.

Multiscale morphology with Gabor wavelets (providing vessel size and direction)
filters were used in [SS07, SS08]. Taking advantage of the Gabor wavelet that is capable
of tuning to specific frequencies allowing estimation of the vessel dimension.

statistics-based Hernandez [HF07] proposed an automatic method for segmenta-
tion of cerebral vascular structures applied to the segmentation of cerebral aneurysm. It
uses a geometric deformable model that evolves minimizing an energy functional that
incorporates statistical region-based information estimated in a high-order multiscale
feature space with a non-parametric model.
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Gooya [GLM+
07] used region statistical measures and orientation information from

ramp-like edges, which are fused within an energy minimization scheme that is based
on a new interpretation of edge concept. A region driven abjection term simulates the
edge strength effect is directly obtained from this minimization strategy.

2.4 conclusion and discussion

The above-described methods present a wide range of choice for a particular problem
solving. The choice depends on the application and its constraints. For example, the
most important features to decide upon are: (1) if a method should be automated or
not; (2) if the efficiency is of high priority; (2) the precision and other supplementary
information availability.

On the other hand, most of the methods have the same weaknesses in automatically
distinguishing between vessel bifurcation and vessel fusion generated as an artefact in
the image, as well as in the ability to separate between adjacent structures. Another
weakness of current automated vascular reconstruction is in removing some features,
such as presence of the objects that are not supposed to be included in the simulation
or, otherwise, in dealing with incomplete data when a part of the vessel is not seen.

One of the ways to try to overcome limitations of some methods is by combining
different complementary methods. This has been shown a way to achieve the best
performance. The choice of each step depends on the computational constraints and on
requirements of the next step.

Another way for achieving better results in vascular image analysis is by adaptivity.
Tracking methods are good examples of such strategies. Their iterative nature permits to
exploit the image data while evolving the analysis process. However, such schemes has
also limitations in cases where they might be stopped by an obstacle without moving
any further.

From such a variety of methods for thin objects detections, filtering and segmentation,
we are interested in methods that can be automated, that are multi-scale, are able to
distinguish thin objects and other structures and detect their directions. Moreover, we
are interested in combining the scale-space methods that have an approach from local-
to-global with the purely local though well-defined but less exploited mathematical
morphology methods. Our proposition with such a method is described further.
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VA S C U L A R N E T W O R K A N A LY S I S A N D R E P R E S E N TAT I O N
M E T H O D S

...the object becomes virtual,
the image actual...

— Gilles Deleuze and Claire Parnet

For the screening and diagnostic of cerebral vascular diseases, as well as for planning
incisions to a lesion, there is a strong need for efficient visualization. However, display-
ing large 3D data on 2D screens is problematic. The display of such data can benefit
from the knowledge of quantitative shape features such as centrelines of vessels. These
can be obtained from a curvilinear skeleton representation. If connectivity and topology
are preserved, and if geometrical constraints such as smoothness and centering are
satisfied, these methods serve not only for visualization, but as well for analysis of the
topology, and estimations of length, width, orientation, curvature, and torsion.

3.1 introduction

The global external form of an object, or morphometry, can represent a robust quantifi-
cation of complex structures. However, such representation treats the initial structure as
one object, missing vessel-specific properties such as bifurcations, individual segments,
or parent–child relations. Various measures, such as of topology, geometrical changes in
diameter, length, branch point density or tortuousness are important in vessels disease
studies. The vessel centrelines can serve as a basis for its description, and especially
with a possibility of quantitative measures. Their main feature and advantage is that
they process data locally while preserving global properties.

Extraction of the vessel medial line is useful in several vascular applications: evalua-
tion of pathology severity and for measurements extraction such as lumen diameter, wall
thickness, etc. These applications require axes to be aligned with the local orientation
of the vessel.

In the following sections, the skeletonisation together with associated computational
methods are reviewed, decomposition schemes and other technical details will be
presented. In our work, we used only discrete skeletonisation schemes but we also
present several works on vessel skeletonisation in continuous space.

Furthermore, vascular tree extraction is a first step toward an automated search of
possible pathologies. It also helps physicians to pay attention at the vascular structures
rather than aspect, noise, etc and therefore makes such huge datasets analysis more
efficient. The vascular tree construction methods are presented in this chapter.

39
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Since they were first introduced, curve-skeletons have been useful in many areas,
e. g.image processing, visualization, animation, etc.

Efficient interaction between human observers and imaging systems is more important
today than when screen-film systems dominated. Advanced imaging technologies have
resulted in thousands of images per case that the radiologist must handle, which has
amounted in a significant increase in the time required to view a case. Surveys state
that clinicians work over-load has grown in comparison with the past [BHS+

06]. Image
reconstruction and analysis, computer-aided detection and diagnosis, multi- modality
comparison and integration, and a host of other software tools are needed to help
clinicians make sense of the image data and render the best diagnostic decision.

In the clinical context, up till now, for displaying large 3D data on 2D screens, two
major graphical approaches have been largely employed: maximum intensity projection
(MIP) or similar and surface rendering. Volume rendering even on specialized hardware
is very resource intensive. We also present in this chapter how the skeletons can aid
visualization of large vascular data.

3.2 short presentation of digital topology

When considering the discrete space Z3, each point p in this space is called a voxel
defined by its three coordinates (px, py, pz). A voxel can be considered as a cube
containing of 6 faces, 12 edges and 8 corners. Two voxels p and q ∈ Z3 are 6-adjacent
if they have a common face; 18-adjacent is they have a common face or edge, and
26-adjacent if they have a common edge, face or corner. The set of n-adjacent voxels
(n = {6, 18, 26}), can be accordingly called 6-, 18- or 26-neighbourhood of p, denoted by
Nn(p). The illustration of such neighbourhoods is presented in Figure 14.

Here, we use the definition of the following 3D neighbourhoods for a point x in
an arbitrarily small neighbourhood V : 6-neighbourhood: N6(x) = V11 (x) and N∗6(x) =

N6(x) \ {x}

26-neighbourhood: N26(x) = V∞1(x) andN∗26(x) = N26(x)\ {x} 18-neighbourhood: N18(x) =

V21 (x)∩ V1∞(x) and N∗18(x) = N18(x) \ {x}

An n-path is a sequence of voxels p1, ...pj with pi n-adjacent to pi+1. While the
adjancency is a symmetric and irreflexive relation. An n-connected component is then a
set of voxels such that any two such voxels are connectd by an n-path included in that
component.

A 3D binary digital image is then described as I = (Z3,m, n,O), where O ⊆ Z3

is the set of voxels representing the object, while Z3 \O denotes the background
voxels. The pair (m,n) specifies the object and background connectivity respectively.
Often, with the aim to avoid topological paradoxes of objects being both connected and
disconnected, different values must be chosen for m and n. Popular choices are (26, 6)
and (18, 6).

A cavity is a background space surrounded by the object. A tunnel is a hole in the
centre of torus.
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Figure 14: 3D neighborhoods: 6-connectivity, 18-connectivity and 26-connectivity (from left to
right).

Type A interior point
Type B isolated point C = 0

Type C border point C = 1

Type D curve point C = 2

Type E curves junction C > 2

Type F surface point C = 1

Type G surface - curve junction C > 2

Type H surface junction C = 1

Type I surfaces - curve junction C > 2

Table 1: Topological classification of 3D points according to the values of C.

3.2.1 Points classification in 3D

We use the same classification of 3D points as in [BM92]:

1. Each point is labeled with a topological type using the computation of two
connected components numbers in a small neighbourhood.

2. Because some points (junction points) are not detected with the twonumbers, a
less local approach is used for extracting them.

Let us consider an object X in the real space R3, let x ∈ X, and let V(X) be an
arbitrarily small neighbourhood of x. Let us consider the number CR3 which is the
number of connected components in X∩ (V(x) \ {x}) adjacent to x. These numbers may
be used as topological descriptors of x.

We use this following number of connected components: C = NCa[X ∩N∗26(x)] is
the number of 26-connected components of X∩N∗26(x) 26-adjacent to x. All points in
the 26-neighbourhood are 26-adjacent to x, therefore C is the number of 26-connected
components of X∩N∗26(x). It is not necessary to check the adjacency to x.

The we obtain a classification of each point of the object using this number C an in
Table 1. However, this classification depends only on the 26-neighbourhood of each
point and some junction points belonging to a set of junction points which is not of
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unit-width are not detected. Then we use the following proposition for curves according
to [BM92]:

we only need to count the number of neighbours of each curve point (type
D), if this number is greater than two, the point is a missed curves junction
point (type E).

This way, the connected component of the background is counted as a 18-neighbourhood
N∗18(x). Classification done with such a smaller neighbourhood ensures that we have
finer details of the object.

3.3 skeletonization

The skeleton is a concept aimed at reducing the quantity of information of an object
while retaining the same topological information as the object they were extracted from
(in 3D, same number of junction points, tunnels, cavities and connected components).
In the continuous framework, the ultimate skeleton of an n-dimensional object in an
n-dimensional space is at most an (n− 1)-dimensional object. Intuitively, in 2D, a
skeleton of a shape X is a curvilinear representation of X, having the same topology as
X. In 3D, the ultimate skeleton of an object will be at most a bi-dimensional object (no
volume, only surfaces, curves, and points).

This property is very interesting in object analysis, especially in large image data.
In general, the computer process of skeletonisation is in some ways similar to the
processing the human brain performs when seeing an object - decomposing it into
associated parts. In the mid/late 50s, it was realized that computers may be able to
recognize patterns, and that reducing a thick pattern in a curvilinear object was a good
strategy in reducing the amount of information needed to be processed by the machine.

Figure 15: Illustration of the concept of firefront. Fire propagates from the border of the object
toward its interior, in an isotropic manner. The point C is a quench point and is the
center of a maximal ball (source: [NT10a])

The skeletons were originally defined by Blum ([Blu62]) as the meeting point of the
flames of a grassfire (see Fig. 15). Imagine an object as if it were a prairie grass paddock;
if one sets on fire the contour of the object, then the meeting points of the firefronts
would constitute the skeleton of the object. In the continuous framework, this definition
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is equivalent to saying that the skeleton is the set of points which are centres of maximal
balls (balls included in the object, and not strictly included in any other ball) ([Cal65]).

Figure 16: Illustration of a maximal ball in the Euclidean case. The ball Bmax is maximal because
no other ball can contain it and simultaneously be included in the set. In contrast,
the ball B2 is not maximal (source: [NT10a])

In 1969, Hilditch gave four properties that a skeleton in a bidimensional space
should possess ([Hil69]). Adapted to the general case of n-dimensional skeletons,
these properties are that a skeleton should be : 1) homotopic to the original object,
2) thin (in an n-dimensional space, the skeleton of an object should be at most (n− 1)-
dimensional), 3) centered in the original object, and 4) skeletonising a skeleton should
not change anything . This last property is only valid when dealing with ultimate
skeletons.

In the continuous framework, the set of centres of maximal balls, called the medial
axis, hold these properties. An illustration of medial axis can be viewed in Figure 17.
In the discrete framework Zn, the discrete medial axis does not always hold two of
these properties: it is not always homotopic to the original object, and it is not always
thin. Shown on Fig. 18 is a counter-example. In Fig. 18(a) is a figure of a bear, which is
homotopic to a disk. However, as shown on Fig. 18(b), its discrete medial axis with a
4-connected unit ball is neither connected not thin. On Fig. 18(c), its ultimate skeleton
is not reduced to a single point, as it should be.

Here, we consider only the discrete skeletonization schemes, however, there are a few
works on continuous skeletonization methods, meaning work where the formulation
of the skeletonization process is purely continuous. In [DC01] centerline extraction
of segmented tubular objects is accomplished by evolving monotonic fronts, where
the cost function is a distance function from the edges of the binary object of interest.
Similarly, in [HF06] centerline extraction is proposed from monotonic front evolution,

Figure 17: Illustration of medial axes (source: [Blu67]).
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(a) (b) (c)

Figure 18: Discrete medial axis: (a) the silhouette of a bear; (b) its discrete medial axis, with the
4-connected neighborhood as unit ball; and (c) the ultimate erosion with the same
unit ball

where the centerline follows the maximal distance from the boundary of the binary
object. In recent work [BST05] the average outward flux is used through a Jordan curve.
In this case, the gradient vector field of the Euclidean distance to the boundary was
exploited to approximate the centerlines.

Many methods have been developed to perform skeletonisation of a discrete object,
an overview of these methods is proposed in the following sections. According to
[Pal08], discrete skeletons can be computed using four types of methods: Voronoi-
based transformations [BA92, NSK+

97], distance-based transformations [BNB99, TM01],
general-field methods [AC97, RT02] and thinning. Here, we focus only on thinning
methods.

Moreover, when working with computers, input objects and output skeletons are
digital objects, which means that they are made of voxels. In such case, decomposing a
skeleton into curves and surfaces is not a trivial problem, and we will have a look at
the various methods that were proposed to solve it.

Even though skeletons have the same topology as the objects they were computed
from, they do not always preserve their visual aspect. The following sections will be
about how it is possible to obtain skeletons preserving the visual aspect of an object,
and how it is possible to decompose them into basic parts (curves and surfaces).

3.3.1 Simple points in 2D and 3D

In the world of thinning, the “currency” is the simple point [Mor81]. Intuitively, a
point is simple if it can be removed from an object without changing its topology. In
the discrete framework, the topology of an object depends on its connectedness; for this
reason, when considering a k-connected object, we will talk about k-simple points. The
notion of simple point is central for homotopic thinning in the digital framework: a
skeleton is obtained by removing iteratively simple points from an object.

According to [LLS92b], in the 60s, simple points were characterized based on con-
nectedness: a point p is k-simple for an object X if the removal does not change the
number of k-connected components of X nor the number of k-connected components of
X (where k is the usual connectedness for X when k is chosen as connectedness for X)



3.3 skeletonization 45

[ABM65, Gol69]. But this definition complicates computational framework: indeed, in
order to test if a single point is simple, this definition requires scanning the whole object
in order to enumerate its connected components. Fortunately, local characterization
of deletable points in 2D began to appear in the mid 60s, based on crossing numbers
[Rut66, Hil69], connectivity numbers [YTF75] and simplicity [Ros70].

All these works established that, in order to decide whether a point is deletable or
not, it is only necessary to look at the configuration of the point’s neighbourhood (no
need to count the number of connected components of the whole object). Consequently,
in 2D, deciding if a point is simple can be performed in constant time.

Proposition 3.3.1 [Ros79] Let X ⊂ Z2, and p ∈ X. We denote by N(p) the set of 8-
neighbours of p.

If X∩N(p) has the same number of components (in the sense of X) as X∩ (N(p)∪ {p}), then
p is simple for X.

In 3D, the removal of a point may not only change the number of connected com-
ponents of the object, but may also change the number of tunnels of the object. As in
the 2D case, 3D simple points can be locally characterized [Mor81]. Further work on
3D simple points have established only connectivity of X and X is sufficient in order
to characterize 3D simple points [MB92, BM94, Ber96, aBCaCaDM94, SC94]. As in 2D,
deciding if a point is simple can be done in constant time in 3D. In order to do so,
Bertrand and Malandain introduce topological numbers T6 and T26:

Proposition 3.3.2 [BM94] Let X ⊆ Z3 and x ∈ X, let T26(x, X) be the number of 26-
connected components of (X∩N∗26(x)), and let T6(x, X) be the number of 6-connected compo-
nents of (X∩N∗18(x)).

In 26-connectivity, x is simple for X iff T26(x, X) = 1 and T6(x, X) = 1.
In 6-connectivity, x is simple for X iff T6(x, X) = 1 and T26(x, X) = 1

Studies of simple points in 4-dimensions have also been achieved, leading once
more to a local characterization of such points [Kon97, CB09]. Thanks to these works,
characterization of simple points up to 3D can be done once in constant time, and
linear-time algorithms exist for 4D. In dimensions strictly greater than 4, it is known that
local neighborhood may contain intractable configurations such as Bing’s house [Bin64],
and so simple points cannot be used [CB08, CB09].

3.3.1.1 Simple sets

In general, an object possesses more than one simple points. When a simple point
is removed from an object, three events can take place: non simple points can become
simple, simple points can become non simple, or nothing changes. Consequently,
removing two or more simple points simultaneously from an object may lead to
obtaining a set of non homotopic to the original object (a process commonly called
"breaking the topology"). Parallel thinning – removing simultaneously many simple
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points – is possible, but must be performed under certain conditions. In the following,
we will give an overview of the various breakthroughs performed in the theoretical
aspects of simple sets.

Given an object X ⊂ Rn, we say that D ⊂ X is k-simple for X if D consists only
of k-simple points of X and that there exists a discrete thinning process allowing to
transform X into X\D. In 2D, this definition is equivalent to saying that X and X\D

have the same connectedness (with regards to the connectivity of X) and X and X∪D
have the same connectedness (with regards to the connectivity of X).

minimal non-deletable sets Minimal non-deletable sets were introduced by
Ronse [Ron88b] in order to characterize under which conditions simple points could
not be removed simultaneously from a 2D object without changing the topology.

Minimal non-deletable sets define "forbidden features" that should not appear in a set
of pixels in order for it to be simple. Minimal non-deletable sets were designed in order
to prove that 2D parallel thinning algorithms were topology preserving (and, therefore,
valid) by testing only a small number of configurations of points. A computer-based
implementation of these tests was later proposed in [Hal92], a 3D implementation - in
[Kon93, Ma94, Kon95], and a 4D implementation was proposed in [GK03, KG04].

p-simple points In 1995, Bertrand introduced the P-simple points in order to
characterize in 3D simple points that could be removed simultaneously [Ber95b]. To
do so, given X ⊂ Z3 and x ∈ X, he sets the geodesic n-neighbourhood of order k of x inside
X (n being equal to 6 or 26) as the set Γkn(x, X) = ∪{Γn(y) ∩ Γ∗26(x) ∩ X|y ∈ Γk−1

n (x, X)},
with Γ1n(x, X) = Γ∗n(x)∩X.

Definition [Ber95a] Let X ∈ Z3, P ⊂ X, x ∈ P and n equals to 26 or 6. The point x is
Pn-simple if, for all S ⊂ (P\{x}), x is n-simple for X\S.

Let Sn(P) be the set of all Pn-simple points. A set D is Pn-simple if D ⊂ Sn(P).

Based on this definition, one can see that, given the definition of P-simple points, if a
set D is P-simple, then X and X\D are homotopic. The P-simple points allow to define
sets of points that can be removed at once from an object during homotopic thinning.
Let G6(x, X) = Γ26 (x, X) and G26(x, X) = Γ126(x, X), the next proposition allows to locally
characterize P-simple points:

Proposition 3.3.3 [Ber95a] Let X ⊂ Z3, P ⊂ X, x ∈ P, n be equal to 6 or 26 and n be equal
to 32−n.

x is Pn-simple iff


The number of n-connected components of Gn(x, X\P) is equal to 1, and

The number of n-connected components of Gn(x, X) is equal to 1, and

For all y ∈ Γ∗n(x)∩ P, Γ∗n(y)∩Gn(x, X\P) is not void, and

For all y ∈ Γ∗n(x)∩ P, Γ∗n(y)∩Gn(x, X) is not void

As with the minimal non-deletable sets, the P-simple points allow to check if existing
parallel 3D thinning algorithms work. Indeed, in [Ber95a], the author gives a method for
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checking, based on the P-simple points framework, the topological validity of thinning
algorithms. Moreover, P-simple points were widely used in order to propose new
parallel 3D thinning algorithms (an example of a new algorithm is given in [Ber95a]).

3.3.1.2 Critical kernels

The recent critical kernels, introduced in [Ber07], present a new framework for
performing parallel thinning in 2D, 3D and 4D [BC06, BC08]. Critical kernels were also
used to propose a new definition of simple points in 2D - 4D [CB09], and links between
this framework, P-simple points and minimal non-deletable sets were established in
[CB08]. Critical kernels were also used to prove that some thinning algorithms were
valid, while others were not correct [Cou06].

Although they have applications in the voxel framework, the critical kernels rely on
the cubical complex framework that will be presented in the remainder.

3.3.1.3 Simple pairs and non simple points

In order to conclude this overview of simple points, let us quickly talk of recent
developments showing that simple points are not the only interesting elements in
homotopic thinning. In 2D, it is always possible to reduce a set homotopic to a disk to a
single point by removal of simple points. In 3D and up this is no longer the case, as there
exists configurations that have no simple points but are still homotopic to a sphere (or
hypersphere in dimensions greater than 3). This means that skeletonization procedures
that proceed by removing simple points can get stuck on intractable configuration like
Bing’s house. It is therefore necessary to move beyond the notion of simple points.
Recent work from Passat et al. ([PCB08]) is based on critical kernels in order to exhibit a
new configuration called simple pairs. In such pair of points, none of the point is simple
but the pair itself is simple and can be removed without changing the topology of the
object.

Other works have shown that, in 3D, some points are not simple (relying on the
local characterization given previously) but can still be removed without changing the
topology of the input [BCP09, Mor81].

3.3.2 Thinning process

Homotopic thinning in the digital framework consists of removing simple points
from an object, until either no more simple point can be found, or a satisfactory subset
of voxels has been reached : this method will reduce a ring into a circle, or a ball into a
single point. An illustration of this process is displayed in Figure 19.

Two main strategies are possible for removing simple points: sequential removal and
parallel removal.
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Figure 19: The thinning process on an example 2D shape. Boundary points are marked “B”
at the beginning of each iteration and then removed if they are simple (source:
[CSM07]).

3.3.2.1 Sequential algorithms

Sequential removal of simple points can be achieved by detecting simple points in
an object, and removing them one after the other, until no more simple point can be
found. After removing a simple point, the new set of simple points of the object must
be computed. Such basic strategy does not guarantee the result to be centred in the
original object, and does not preserve the "visual characteristics" of the object during
thinning. It is important, when designing a sequential thinning algorithm, to decide
of a removal order of simple points, and of a strategy for preserving interesting visual
features of the object.

In order to obtain a centered skeleton, one must define a precise order of removal
for simple points. Usually, in order to get a centered skeleton, it is necessary to delete
simple points "layer by layer", from the outer layer to the inner one. Many strategies
have been proposed in 2D for deciding of a removal order (a very exhaustive survey
of thinning methods in 2D before 1992 can be found in [LLS92a]): for example, in the
80s, it was proposed to follow an object’s contour in order to find and remove simple
points "layer by layer" [Arc81, Pav80]. However, this thinning scheme (as many more)
can hardly be generalized to 3D and up.

A widely used strategy to obtain a centred skeleton with a thinning process consists
of computing a priority function on the object and removing the simple points of X
according to the value of this function [DP81]: at each step, the simple point that is
removed is the one with the lowest value. The euclidean distance map is widely used
as priority function in order to remove points "layer by layer" [Tal92, CCZ07, MFV98].

Distance transform (DT), first introduced by Blum [Blu67], has a vast application
in skeletonization. The DT-based thinning method was proposed by Rosenfeld et al.
[RP66]. Other works use discrete distances, such as the chamfer distance ([Pud98]), to
decide a removal order. An example of a distance transform is illustrated in figure 20.

One can use a thinning scheme based on a priority function, called inhibitor set, which
is a set of points of the input object which should be in the resulting skeleton. An
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Figure 20: Example of a distance transform (right) and its original image (left).

Algorithm 1: Basic Thinning(X, W, D, k)
Data: A k-connected shape X, a priority function D and a subset W ⊆ X
Result: A skeleton of X
while there exists a k-simple point in X\W do1

A = {y ∈ X\W|y is k-simple for X}2

B = {x ∈ A| for all y ∈ A,D(x) 6 D(y)}3

Let z ∈ B4

X = X\{z}5

return X6

inhibitor set allows to choose "anchor points" for the skeleton, and therefore preserves
the visual aspect of the original object in the skeleton.

Algorithm 1 shows the basic thinning scheme based on a priority function. The set W,
called inhibitor set, is a set of points of the input object which should be in the resulting
skeleton, and D is the priority function used to decide an order of points removal (here,
the lower priority means faster removal, so it is possible to use an euclidean distance
map as a priority function).

However, when performing a thinning guided by an euclidean distance map, the
points of the inhibitor set and the directions of thinning followed by the algorithm are
not always "compatible". In [Tal92], the authors use a thinning algorithm where the
slope of the priority function is used to dynamically add points to the constraint set. In
[CCZ07], the authors propose to merge the slope calculation into the priority function,
leading to a new priority function and a new thinning algorithm which works in 2D
and 3D.

3.3.2.2 Parallel algorithms

As previously explained in section 3.3.1.1, removing simple points simultaneously
from an object usually "breaks" the topology. However, as shown previously, various
theories have been elaborated in order to characterize sets of simple points which can be
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removed at the same time. It should be noticed that when performing parallel thinning,
priority functions are rarely used as points are naturally removed "layer by layer".

Rutovitz was the first to propose a (fully) parallel thinning algorithm in 1966 [Rut66].
However, it is well known that Rutovitz’s algorithm does not always preserve topology,
but there exist "patches" for correcting it ([Cou06]).

It is in 1981 that Pavlidis published the first fully parallel thinning algorithm ([Pav81]),
in 2D for 8-connected objects, that was later proved to preserve topology in [Cou06]. In
this algorithm, the author defines multiple pixels, corner pixels and contour pixels.

Given X ⊂ Z2 and x ∈ X, the point x is a contour point of X if it has an element of X
in its 4-neighbourhood.

According to Palágyi [Pal08], parallel thinning algorithms can be divided into three
categories. In the first group, directional thinning algorithms, the main loop is divided
into sub-iterations, and the thinning operator (the considered configurations of simple
points) is changed from one sub-iteration to another. In subfield-based thinning algorithms,
the points of the object are decomposed into subsets, and at at a given iteration of the
algorithm, only simple points in a given subset are studied. Finally, in fully parallel
thinning algorithms, no sub-iteration takes place: the same thinning operations (which
usually remove sets of simple points) are performed on the object at each iteration of
the main loop.

3.3.2.3 Preserving the visual aspect

In order to preserve the visual aspect of the initial shape in the skeleton and in
order to compensate for generation of unnecessary branches of thinning and distance
transform-based methods, that are sensitive to noise, three strategies can be adopted.

The first strategy consists of choosing, before the thinning process starts, an inhibitor
set whose points won’t be removed during skeletonisation. The set points will therefore
act as anchor points for the skeleton, and if these points are well chosen, the final
skeleton will have a satisfactory visual aspect. There are many different ways of
computing an inhibitor set, such as using a filtered medial axis [Pud98] or the discrete
bisector function [CCZ07].

The second strategy is to detect, during the thinning process, interesting points which
should be included in the skeleton. Once such points have been detected, they are
added to an inhibitor set. Although this strategy is mostly used with parallel thinning
algorithms, it has been also used in works using sequential thinning ([Tal92], [CCZ07]).

The last strategy consists of performing skeleton pruning once the thinning algorithm
is finished. This strategy is used after performing a thinning where some points were
retained during the skeletonisation (using one of the two previous strategies explained
before). Skeleton pruning takes place after a skeleton with too many points is obtained,
and consists of removing some points of the skeleton without changing its topology. In
[Vin91], the authors give multiple criteria for filtering a 2D skeleton, such as the size of
its elements (the curves composing the skeleton), or the quantity of information from
the original shape contained in each element (called area by the authors).
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Figure 21: A graph based on the skeleton.

3.3.2.4 From skeleton to graph

The ability to distinguish the different components of the curve-skeleton depends on
the ability to detect the junction points, i.e., the points where two or more curves meet.
From this decomposition, one can infer the corresponding part structure of the original
object.

Some thinning algorithms directly classify the skeleton points as junctions, either
during thinning or as a post-processing step [[BM92]].

From the geometric algorithm class, level-set methods directly identify the joints as
the centroids of level-sets. Joint locations depend on the function used to define the
level sets.

Here, a segment is a piece of vasculature connecting two vessel junctions, where
vessel endpoints were considered as junctions. This mapping of segments and junctions
can be represented by a mathematical graph.

A graph in this context is defined as a tuple (V, E), where V is a set of vertices and E
a set of pairs of vertices forming edges. In a directed graph, the two vertices of an edge
are ordered, the first vertex called the source, the second being the target. The degree
of a vertex is defined as the number of edges associated with that vertex. A vascular
network may now be represented as segment graph by associating each junction and
each vessel dead end with a vertex and each segment with an edge in the graph. In Fig.
21 an example of such a graph is illustrated.

3.4 vascular tree construction

A substantial body of work has been done in measuring and enumerating the topology
of vascular trees. The progress in precision and efficiency can be especially admired in
the coronary vessel analysis. Due to the amount and the form of data in these trees,
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techniques for quantifying structural anatomy and comprehension of physiological
processes are essential.

Among some of the methods that performed vascular tree reconstruction, we can
mention the work of Bullitt [BAL+

99] where the vascular trees are reconstructed in
the graph-based manner. The disadvantage of the method is the fact that each branch
should be initialised by user. If the user does not inspect the image data carefully, a
faint but important vessel may be missed. A more automated approach is preferable.

For tubular structures such as vessels, Krissian et al. [KMA+
99] applied multi-scale

analysis to raw intensity image to detect vessel structures of various sizes. They
proposed a “medialness” measure at a given point and scale based on the eigenvalues
and eigenvectors of the Hessian matrix of the image. An adaptive medialness measure
was proposed to be the mean of first order derivative information at the fitted circle.

[AJ01] has achieved interesting results with an interactive method for obtaining 3D
centerlines given 2D user inputs. The problem is solved as a constrained optimization
problem using a discrete graph with a shortest-path algorithm. But the price of
interactivity with 3D data is expensive.

An alternative strategy to track the branches would be a method, as in [COH05],
where vascular tree skeletons are detected the bifurcations by analyzing the binary
connected components on the surface of a sphere that moves along the vessels. The
method assumes that the vessels can locally be separated from the background by an
appropriate adaptive threshold.

Some approaches surpass the need to deal with segmentations and skeletonizations
for medial-line extraction, as in [YMS+

00, BB08] for curve skeleton extraction directly
from grey value images that. The approach of Bauer [BB08] is single-scale and its
efficiency is boosted by a Gradient Vector Flow (GVF) GPU implementation.

3.4.1 Vascular tree analysis

There are three main approaches for vascular network representation as a graph. In
the first, the minimal paths are searched between the root and the ends of the vessel
branches. This is often done with Dijkstra’s algorithm within skeletonization schemes,
such as topological thinning or distance transforms. The limitation of such methods
is discrete-voxel accuracy. In the second, top-down, approach, vessels are subsequently
tracked from the largest ones to the smallest, as in [FDCR01, NBB+

06].
And the third approach is to independently track detected vessel segments and then

organize them in a network, as in [AB02]. In comparison with the top-down approach,
this requires additional work on vessels identification and their segments reconnection.

Hierarchy (the ability to create a family of curve-skeletons of increased complexity)
is not achievable using thinning algorithms because when processing a voxel there
are only two choices: keep it, or remove it. A skeleton is obtained only after the last
iteration of the algorithm. For this purpose, a number of ordering methods have been
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Figure 22: Extraction of junctions and segments from binary image data. The original vascular
structure (left) is thinned to its centerline (center), voxels with one or more than 2

neighbors are marked in red as junction points. Segments are identified by following
the centerline voxels from one junction to the next one (right).

section suggests, imparts error associated with commuting subtrees
with the entire vascular tree. A method was designed to assess how
these errors affect results of the Strahler classification. For example,
Fig. 3 illustrates common artifacts seen in medical images of vascu-
lature (denoted with ‡). The gray marker infers a bifurcation where
incorrect ordering has no effect on the upstream ordering, as changing
the first-order vessel to a terminal zero-order vessel results in the same
upstream ordering. Consequently, the probability that vessels were
ordered incorrectly due to this terminal is zero. The dark markers,
however, infer bifurcations where not applying the iterative technique
entirely changes the ordering upstream as well as the calculated
statistics (i.e., changing these terminal vessels to zero order causes a
restructuring of the upstream ordering).

To assess these errors one might change terminal orders of the
vascular network and compute the effect. This process, however,
would be computationally intensive, especially for large-scale vascu-

lar trees. The framework developed provides a means for quantifying
the sensitivity of a vascular tree to likely perturbations of terminal
vessels, assuming the given ordering scheme is a close match to the
correct ordering.

We define !i ! [!I
i !S

i !D
i ]T to be a vector of probable outcomes for

a vessel segment Si, where the components are the probabilities of that
segment increasing (!I

i), remaining (!S
i ), or decreasing (!D

i ) an order.
The transference of probability through vessel segments (and conse-
quently the overall effect) is mediated by the series of bifurcations, or
operators, and Strahler ordering rules at each. These operators sum-
marize all possible outcomes given ! for the daughter segments and
modify the upstream segment probabilities accordingly. Operators,
denoted as ", have subscripts that label a specific branch point and the
superscript T referring to the matrix transpose (for complete details on
operators, refer to APPENDIX B).

When calculating the probability profile of the jth terminal vessel
segment Sj, with radius rj that is of order i, we define the upper (rmax)
bound by the same diameter defined criterion proposed by Jiang et al.6
(19) shown in Eq. 1, where ri and #i are the average radius and
standard deviation of order i vessels.

rmax $ "ri % ri#1,i$1 % %i#1,i & %i,i$1&/2 (1)

Note that the lower bound for order i$1 is set as the upper bound for
order i. Using a normal distribution to describe error in ordering
terminal vessels (with mean rj and standard deviation 'rrj, where 'r

is a constant), we have assumed that terminal probabilities can be
assigned by the area under the curve delineated by the bounds in Eq.
1 as seen in Fig. 4.

To calculate !i or the probability distribution of the ith network
segment (Si), the method requires the definition of a pathway ti.
Considering the subtree beneath Si, ti is an index of segments that
defines a single path down the ith subtree to a terminal vessel. For
example, if one such path from Si to a terminal was given to go
through segments S1, S2, and S3, ti ! [S1 S2 S3]. Choice for defining
ti is arbitrary but requires only movement downstream. A different
path for the same segment (Si) results in a modification of operators
(which are defined by a chosen branch or branch pair) but no

6 Jiang et al. (19) applied Eq. 1 to reduce the radii overlap between
successive orders and modify the process of assigning Strahler orders. It is
important to note that Eq. 1 is applied, in this study, in a different context.

Fig. 2. A: a section of renal vasculature point set. B: examining
a local section around pi from the point set. C: using ( to define
an outward and inward normal ' u. D: local cross section
divided into angle increments to define vascular boundaries.

Fig. 3. An example vascular tree using Strahler Ordering, where (†) indicate
examples of trifurcation ordering rules, and (‡) indicate junctions upstream of
vessel pruning.
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Figure 23: An illustration vascular tree using Strahler Ordering (left), where (†) indicate ex-
amples of trifurcation ordering rules, and (‡) indicate junctions upstream of vessel
pruning (source: [NBB+

06]).

proposed to analyse vascular data. The most common one is the Strahler Ordering
method proposed by Strahler [Str57] and Horsfield [Hor78].

Strahler ordering begins by labelling all terminal vessels (those that do not have
children). Following vessel segments upstream, a second-order segment is formed by
the joining of two first-order segments, a third-order segment by the joining of two
second-order segments, and so on. Illustration can be seen in Figure 23.

This scheme is totally based on the topology of the vascular structure. Strahler
ordering provides insight into vessel distribution of connectivity. Moreover, it can help
in understanding of certain vessel disease and visualization of the vascular data.

3.5 visualization

In clinical applications and for medial education, it is more essential to facilitate
viewing of anatomic and pathologic structures. Another need is to improve the 2D
data visualizaion in 3D information, so that there be a support connected and reliable
information between the two.
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Four volume visualization techniques have proven useful over the years for clin-
ical angiographic practice: Multi-Planar Reconstruction (MPR), Maximum Intensity
Projection (MIP), Surface Rendering (SR) and Volume Rendering (VR).

In Multi-Planar Reconstruction, from a 3D volume, 2D slices are shown on the screen.
These slices are the intersections of the volume by planes, either orthogonal to the
original acquisition frame, or oriented arbitrarily. In the latter case, interpolation of
the original data is needed to produce the greyscale values of the intersected pixels.
As MPR displays the original, possibly interpolated, grey-level values, it is always the
visualization method that is the reference in case of doubt. It is also possible to display
the intersection of the data volume with any surface: the technique is called Curved
Planar Reformation (CPR). It is particularly useful in the context of angiography, where
the intersecting surface can be chosen to include the centerline of the vessel of interest,
thus showing a cut of the vessel lumen along the vessel course. Pushed even further,
the technique can produce visual renderings of the lumen of a whole arterial tree in
one image [KWFG03].

Maximum Intensity Projection is the most common visualization technique aside from
MPR. It shows, in a given direction, the maximum gray- scale value along a ray that is
shot in that direction intercepting the volume. When the direction does not coincide
with the original volume frame, interpolation is needed to produce grayscale values
along the ray. MIP has the following advantages and drawbacks:

1. It looks like a conventional, X-Ray angiogram, therefore, it allows experienced
radiologists to interpret MIP images without additional training.

2. The distribution of graylevels in the MIP is close to the one observed from the
original volume.

3. The objects of interest can be overlapped by others.

4. It overestimates the vessel diameter [SPG96].

In surface rendering, first the objects of interest must be identified in the slice images
by segmentation, which is usually using a threshold, resulting in a binary volume. The
boundary of the binary volume is then first-order approximated by a set of polygons,
typically using the “marching cubes” method or one of its more topologically-correct
variants [LC87, DCB02] . For the perception of the three-dimensional structure it is
helpful if the viewpoint is dynamically moved.

Volume rendering does not require any preliminary segmentation step. Each voxel is
mapped via a transfer function to optical quantities such as color and opacity. Then a
ray is sent from each pixel in the image plane through the volume data. As it passes
the volume, each voxel it encounters may contribute to the pixel value, depending on
its intensity and depending on the opacity of all voxels closer to the image plane. In
the end, a pixel’s intensity integrates contributions from many voxels along the ray.
Volume rendering is an extension of the MIP idea, which can take into account edge
information by including a gradient weight in the transfer function for instance.

From an other side, in 3D it is not trivial to recognize the objects. They might seem
smaller, or might be occluded by other objects. In medical images, the last notion is
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highly prevalent, as most of the structures are surrounded by others, therefore, their
view can be occluded. Change (rotation, translation) of the point views and change of
the opacity of the objects’ surfaces can facilitate the task. However, the first strategy
might not satisfy the user, moreover it may distract him. And for the second parameter
(transparency), it is often not sufficient due to possible multiple occluding objects and
the very nature of transparency representing less of information, therefore being less
recognizable.

When it comes to the visualization of vascular structures, due to their narrowness,
limited spatial resolution of medical image data, these structures are represented with
only a few pixels per slice. Therefore, a straightforward surface mapping of vessels
in 3D leads to noisy visualizations. This makes the study of their topology very
complicated from such visual presentations. This is an important step in surgery or
treatment planning. One such example is the understanding of the risk of one of the
branches being cut or connected to an other. To assist in such tasks, more abstract
techniques are desirable. As such, skeletons are currently a useful tool [BAL+

99, PP03].
One of the early benefits of curve-skeletons was for virtual navigation, viewing its

centredness to generate collision-free paths through a scene or through an object. With a
scene composed of 3D objects, the skeleton of the background gives a free path through
the scene.

The centered, thin, homotopic to the original image skeleton, which is fitted inside
the vessel, can be used to assist visualization and study of vascular trees.

The example of such vessel visualization can be seen in Figure 24. According to
[PP03], this method for has been developed and refined in fruitful discussions with
radiologists and is a good comprise between precise and easy-to-interpret visualizations.

This method (as many other previously discussed in Chapter 2) is based on the
assumption that the cross-section of vascular structures is circular. This assumption,
of course, is a simplification. It is not appropriate when vascular diseases should be
diagnosed. As it is illustrated, vessels skeletons can be fitted more or less close to the
original data.

3.6 discussion

In this chapter, we presented the skeletonisation methods together with decomposi-
tion schemes, associated computational methods and other technical details.

We also showed how the vascular tree construction can help physicians to better
view and understand the vascular structure via the skeletons. And we presented the
nowadays clinical visualization methods.

Thinning algorithms can either directly produce a curve- skeleton (by using curve-
thinning templates) or further thin a surface skeleton to a 1D representation. Parallel
thinning algorithms, which remove all simple points at once, may not be able to achieve
1D skeletons due to homotopy constraints. An illustrative 2D example is the case of
a rectangle whose width is an even number of voxels: in the last step of the thinning
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Figure 24: Hybrid combination of the direct volume rendering of bone structures and sur-
face rendering of intra-hepatic structures (liver, vascular systems, tumours in the
right view). The bone structures serve as anatomical reference for the intra-hepatic
structures. (Source: [PP03]).

process, the middle section of the skeleton will be a curve of width 2. Although all
points of this curve are simple points, removing them would completely remove the
middle section. At this stage, no other simple points can be removed and the skeleton
is not 1D.

However, when it comes to precision of skeleton methods for clinical applications,
thinning and general field methods do not guarantee centering of the result. In the case
of directional thinning, this would depend on the order in which the different directions
are applied. In the case of general field methods, since they are taking into account a
larger surface area than the two closest points, centering is usually compromised. This
means that for the measurements, this has to be taken into account.

Methods using a distance field can better achieve centering because of the information
included in the distance field.

Moreover, resolution affects any centering measurement in the discrete domain. Using
the same example of a shape whose width is an even number of voxels, if this shape is
reduced to a 1D skeleton, at the grid resolution, the curve-skeleton must be one voxel
closer to one of the sides than to the other.

Another aspect of proving the usefulness of the vascular tree representation is in
the comprehension between the medical and technical specialists. As this demands a
great effort in profound studies of the unknown fields for both sides, and due to the
importance of each result, the research in this field takes longer to be proved. This in
itself is a motivation for further progress in this field.
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M O R P H O - H E S S I A N F I LT E R

... not to reproduce what we can already see,
but to make visible what we cannot.

— Paul Klee

In this chapter, we present our morpho-Hessian filter used for the enhancement of
curvilinear structures applied prior their segmentation, analysis and visualization.

Our primary goal is in detection of thin elongated objects and their directions. For
this, we have chosen to use second order directional Gaussian derivatives in their
Hessian form. Such methods provide us not only with the detection of thin objects
and their principal directions, but also with the possibility to do it on different scales.
Further, we are making use of several tubularity measures by Sato et al. [SNS+

98] and
Frangi et al. [FNVV98].

Then, we are interested in enhancement and reconnection of tubular objects. The
spatially variant mathematical morphology (SVMM) can be helpful in this case. The
theory of SVMM and its corresponding algorithms are formulated with the purpose of
filtering an image differently at various positions. In the case of elongated objects, we
wish to discover their local orientation and filter them locally along this direction, for
instance, with an oriented segment. We then expose a simple version of the theory of
SVMM together with an efficient algorithm of its operations.

In the following chapter, we combine these two filters and perform their performance
evaluation first on a 3D simulated data and on clinical data.

4.1 feature detection with gaussian derivatives

In order to detect one object or a pattern, one might start by detecting some features
of the image in order to locate the object of search. For this purpose, local operators
called feature detectors can be used. They are local operators that are applied to an image
in order to detect and label local responses as particularly informative. The design of
feature detectors is a fundamental problem in image analysis. The possible gain from a
good feature detector is to guide the visual system to a few positions in an image that
are not only labelled as particularly informative but that also are particularly useful in
the image interpretation.

One of the pioneering and famous techniques is by Canny [Can83], where he seeks
an optimal balance between localization of interesting features and noise responses.

One of the bigger challenges in image analysis is to construct operators that are
translation-, rotation- and scale-invariant. Translation invariance can be satisfied by any

59
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Figure 25: Left: the second-order derivative of a Gaussian kernel probes inside-outside contrast
of the rage (−σ, σ) (in this example σ = 1). Right: the second-order describes the
local principal directions of curvature. (source: [FNVV98]).

convolution kernel. Rotation invariance can be guaranteed either by rotation-invariant
kernels or when the preferred direction is fixed relative to the image. Scale invariance
can be satisfied by derivatives of Gaussian filter.

Linear combinations of derivative of Gaussian filter kernels are the basic feature
detectors within linear scale-space theory.

From the first to higher dimensions, derivatives may be computed along different
directions. To calculate these differential operators of the image I(x) in a well-posed
fashion, we use here service of linear scale-space theory [Koe84]. According to this
theory, differentiation is defined as a convolution with derivatives of Gaussians:

∂I(x, σ)

∂x
= σγI(x) ∗ ∂G(x, σ)

∂x
, (4.1)

where the N-dimensional Gaussian is defined as:

G(x, σ) =
1

(2πσ2)N\2
e

−
|x|2

2σ2 (4.2)

The second order derivative of Gaussian kernel at scale σ probes the contrast of the
regions inside and outside the kernel of size σ in one direction (as in Figure 25).

The Taylor expansion of a function in a neighbourhood of xo is

F(xo + δxo,σ) ≈ F(xo, σ) + δxTo∇xo,σ + δxToHxo,σδxo, (4.3)
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2D 3D Object’s profile

λ1 λ2 λ1 λ2 λ3

Big+ Big+ Big+ Big+ Big+ blob-like (dark)
Big- Big- Big- Big- Big- blob-like (bright)
Small Big+ Small Big+ Big+ tubular (dark)
Small Big- Small Big- Big- tubular (bright)

Small Small Big+ surface (dark)
Small Small Big- surface (bright)

Table 2: Possible eigenvalue responses and their signs after the eigenanalysis corresponding to
different shapes and color intensities.

where ∇ is the gradient vector (Fx, Fy, Fz)
T in 3D and H is the Hessian matrix:

H =

 Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

 . (4.4)

In 2D, the gradient vector is (Fx, Fy)
T and the Hessian matrix is:

H =

[
Fxx Fxy

Fxy Fyy

]
, (4.5)

Eigenvalue analysis can be performed on the Hessian matrix in order to extract one or
more principal directions of the local structure of the image. This gives the direction of
the minimal curvature, the principal one in the tubular structure and a high curvature
in the vessel cross-section plane.

Compared with the image gradient, whose response is independent of the shape and
local structures of boundaries, the Hessian matrix can capture the shape characteristics
of objects, such as tubes, planes, blob surfaces or noise.

By the principal value analysis, the Hessian matrix H can be decomposed into
three principal values, λ1, λ2 and λ3 ( |λ1| 6 |λ2| 6 |λ3| ) and e1, e2 and e3 are
their corresponding eigenvectors, respectively. When λ1 is close to zero and much
smaller than λ2 and λ3, the principal direction of the (bright) vessel is given by e1,
the eigenvector corresponding to λ1. Vectors e2 and e3 form a base for the orthogonal
plane.

Here, we are interested in detection of thin elongated objects and their directions. We
are considering bright objects on a darker background. Accordingly, we will ignore all
objects whose λ2 and λ3 are negative at the same time.

To summarize, in the Table 2 the relations of Hessian eigenvalues are shown for
different shapes and intensities for 2D and 3D images.
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All three eigenvalues are important in detecting tubular objects. Combinations of
those lead to expressions differentiating curvilinear from other profiles. In particular, if
appropriately designed and applied at multiple scales, such combinations, often called
vesselness function, should give the strongest response at one particular scale corre-
sponding to the plate-, blob-like and/or tubular objects [SNS+

98, FNVV98, KMA+
00].

Here, we are considering vesselness functions by Sato [SNS+
98] and Frangi et al.

[FNVV98].

4.1.1 Frangi’s vesselness function

For a 3D image I(x), x ∈ R3 observed at a scale σ, Frangi’s vesselness function is
formulated as follows:

ν(x, σ) =

 0 if λ2 > 0 or λ3 > 0,

(1− e
−R2A
2α2 ) · e−

R2B
2β2 · (1− e

−S2

2c2 ) otherwise,
(4.6)

with

RA =
|λ2|
|λ3|
,

RB =
|λ1|√
|λ2λ3|

,

S = ‖Hσ‖ =
√∑

j λ
2
j ,

(4.7)

in which RA differentiates between plate- and line-like objects, RB differentiates blob-
like ones, and S accounts for the intensity difference between objects and background.
Parameters α, β and c influence the sensitivity of the filter to the corresponding
measures.

For 2D images, Frangi’s vesselness can be expressed as:

ν(x, σ) =

 0 if λ2 > 0,

e−
R2B
2β2 · (1− e

−S2

2c2 ) otherwise,
(4.8)

and

RB =
|λ1|
|λ2|
,

S = ‖Hσ‖ =
√∑

j λ
2
j ,

(4.9)

The above expressions of vesselness are probability functions of line-likeliness of each
pixel. The parameter c depends on the intensity profile of the image and a quarter of
the maximum intensity of the tubular objects is recommended in [FNVV98].

Often, in order to obtain the final segmentation, the vesselness can be thresholded.
Such operation alone, however, does not provide satisfactory segmentation results.
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(a) (b) (c)

Figure 26: a) Original image of a tubular object. b) Second derivative detected object and its
pixel directions. c) Frangi’s vesselness function thresholded for a surface rendering.

As stated in the Equations 4.6,4.8, the filter can be applied at different scales, which
can provide a result in a larger range of line sizes. The vesselness function is normalized
by σ2 [Lin96] and the maximal vesselness is selected for each pixel x as its best response:

νmax(x) = max(ν(x, σ)) with σmin 6 σ 6 σmax

σmax(x) is, then, the scale at which the vesselness has the best response for a pixel,
which can be an estimate of an object’s width. However, the filter performance depends
on how well the scale is chosen, which will be discussed in the following.

In Figure 26 an illustration of the vesselness performance for a tubular disconnected
object and second order detected directions at each pixel of the object can be observed.
It is obvious, that the elongated object is detected together with its directions, but it is
not enhanced.

4.1.2 Sato’s vesselness

The filter defined by Sato et al. [SNS+
98] was used as follows:

S(x) =

 σ2 |λ3|
(
λ2
λ3

)ξ(
1+ λ1

|λ2|

)τ
, λ3 < λ2 < λ1 < 0

σ2 |λ3|
(
λ2
λ3

)ξ(
1− ρ λ1|λ2|

)τ
, λ3 < λ2 < 0 < λ1 <

‖λ2‖
ρ

(4.10)

where ξ > 0 influences cross-section asymmetry, τ > 0 controls the sensitivity to blob-
like structures, 0 < ρ 6 1 controls sensitivity to the tubular object curvature, and σ2

normalizes responses across scales.

4.1.3 Hysteresis thresholding

As it was proposed by Canny, an alternative method to a simple threshold, would be
an adaptive thresholding, or more precisely, a hysteresis thresholding. The main idea is
that some edges might not respond with the same strength as their neighbours due to
noise. Therefore, setting a second, lower threshold and making sure it is connected to
the stronger ones, might help to get a more complete segmentation.

More precisely, at any point x being part of the object and is above the threshold
Tmax, such a point is immediately a part of the segmented image. Moreover, all of its
connected component points are also in the output if they they are above the lower
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threshold Tmin. In this case, the probability of a false positive elongated object is
reduced as the high threshold can be rather big with no risk of under-segmentation.

4.1.4 Scale-space

As previously stated, the Gaussian derivatives are applied at some scale. Therefore,
the choice and number of scales is especially important for such derivative-based
methods. Too small scales emphasize small details, while producing spurious responses
to noise, tangent objects and other features. Too large scales deform original objects
at detection and lose details. On the other hand, it is computationally expensive to
process along all possible scales.

The problem of scale-selection cannot be solved by an invariance requirement. Invari-
ance “conserves” information under some specified transformations of the data. Scale
selection ignores information: in the sense that the particularly informative scales, or
positions and scales, of some operator response do not contain the same information
as the original data. Of course, the purpose of scale-selection is not in the first place
to ignore information, but rather to distinguish between relevant and irrelevant. This,
however, amounts to ignoring the irrelevant information and, therefore, scale-selection
cannot be derived from an invariance requirement.

The first work that dealt with positions and scales at the same time was proposed by
Lindeberg [Lin93]. And he has suggested such a heuristic principle:

In the absence of other evidence, a scale level at which some (possibly non-
linear) combination of normalized derivatives assumes a local maximum can
be treated as reflecting the characteristic length of a corresponding structure
in the data.

This idea has inspired works on multi-scale filtering with early popular approaches
used for vessel enhancement [KGSD95, LCB+

97, SAH+
98].

In 1998, Lindeberg proposed to use a parameter γ-normalized derivative operator:(δG(x, σ)

δx

)
γ−norm

= σ
γ
2
δG(x, σ)

δx
(4.11)

This operator ensures that the filter responses are comparable between different
scales.

In [Maj04] they have used the parameter γ by Lindeberg [Lin93, Lin98] to give a
priority to ridges and not edges. Figure 27 illlustrates that in the variable scale setting
the response to edges of a second order Gaussian derivative operator can be turned off
simply by a suitable choice of γ parameter. To better illustrate this point the shortest
ridges of the grass are not displayed in image 27c. 27b displays all the detected ridges.
Moreover, although these ridges cross each other in the projection of Fig. 27, they in
fact occur at different scales.



4.2 spatially-variant mathematical morphology operators 65

(a) (b) (c)

Figure 27: a) Original image. b) Second derivative scale-space ridges (center). c) Ridges depicted
by their boundaries (at scale of ridge). Ridges were computed for γ = 1.25 and scales
range from 1.5 to 16 in steps of 0.5. (Illustration is from [Maj04].)

4.2 spatially-variant mathematical morphology operators

Spatially-variant (SV) basic mathematical morphology operators, in this chapter,
are the four standard basic morphology operators: erosion, dilation, opening and
closing, using structuring elements (SE) that are not invariant by translation, i.e. that
differ according to the location of their origin. Such operators are useful because they
can reflect local content in actual images, which is seldom stationary except in some
statistical models. For instance, structuring elements may vary according to orientation
or perspective. Many well-known operators, such as some algebraic openings and
closings (e.g. area operators) are spatially-variant in nature, but do not derive from
spatially-variant erosions and dilations, rather from compositions of spatially invariant
openings and closings.

Spatially-variant mathematical morphology (SVMM) has been known for a long
time (it is mentioned in Serra’s 1982 book), and even recently has been the topic of a
few publications [CCS94, BCCS08, BS08], and was significantly mentioned in a special
session at ICIP 2009 on adaptive morphology [MV09].

Many researchers and practitioners wish to be able to use adaptive structuring
elements that vary according to the location in the image. Applications include adaptive
filtering [LDM07], segmentation taking advantage of perspective information [DD08]
or local orientation [TTDP09b, VMA08].

While using spatially-variant erosions and dilation may be relatively easy, the same
cannot be said of openings and closings using compositions of spatially variant erosions
and dilations. Indeed, the computation of adjunct operators for spatially-variant
erosions and dilations is not trivial.

There are still misconceptions about the concepts. Most publications do not mention
adjunctions at all (e.g. [BS08], by no means an isolated example). Some state that using
spatially variant but symmetric structuring elements is sufficient to ensure openings
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(a) (b) (c)

Figure 28: Image of disconnected vessel branches (a), result of a 3× 1 vertical spatially-invariant
closing result (b), and a 3× 1 spatially-variant closing (c).

and closings with adjunction properties, others suggest that using some SV SE families
can lead to adjunct operators with infinite extension. Very few publications mention
algorithms and even fewer efficient ones.

The purpose of this section is to introduce the notion of adjunction in the SVMM
case, to describe and justify an efficient algorithm first proposed by [LDM07], but not
justified enough before. We wish to justify the approach of [LDM07] thoroughly, and
argue that if a SV family of SE leads to computable erosions and dilations, then their
adjunct is also computable. Finally, we propose a simple and effective algorithm to
compute the adjuncts.

4.2.1 An illustrative example

Basic filters of the mathematical morphology framework are not suited for oriented
thin objects, as they do not take into account their directions. An example can be seen
in 28, where a disconnected vessel is illustrated. One of the ways to try to reconnect
the object could be using the closing morphological operation with a 3× 1 vertical line
segment. However, being translation-invariant, this does not give a desirable result
as the operation does not follow the principal object’s direction. In contrast, a 3× 1
spatially variant segment utilizing the local direction information is much more effective.
Here, we are interested in propagating and filtering the object along its main direction.

Let us illustrate an other simple example on the fact that SVMM can lead to filters
that are not equivalent to their translation-invariant counterparts.

Let us consider the case of the colour reconstruction in modern digital cameras. Most
use a so-called colour filter array (CFA) in front of a single luminance sensor, with the
result that only one of the colour components (either red, green or blue) is captured
in any single location. Most use a variant of the so-called Bayer array, illustrated in
Fig. 29. We notice that on this CFA, green is twice more common than red or blue. This
is meant to reflect the physiological fact that most humans are more sensitive to green
than either red or blue.

If we want to reconstruct a complete colour image, we need to interpolate the
missing components at every pixel location. If we do this in the classical way, using
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Figure 29: The Bayer colour filter array. In modern digital cameras, only one of the colour
component is captured at every pixel location.

(a) (b) (c) (d)

Figure 30: Colour interpolation using (a) pixel replication (b) detail of pixel replication ; or (c)
linear interpolation (d) detail of linear interpolation

pixel replication or linear interpolation, results are very poor in areas where the local
frequency is close to that of the grid, as illustrated on Fig. 30. Instead, we propose to
use a simple but more effective, spatially variant morphological filter, performed first
on the green channel. At each missing pixel location in the green channel, we detect
whether the local gradient is more likely to be horizontal or vertical.

Let (i, j) be the local 2D location, and G(i, j) the value in the green channel pixel
at location (i, j), then if G(i, j) needs to be interpolated, and |G(i− 1, j) −G(i+ 1, j)| >

|G(i, j− 1) −G(i, j+ 1)|, we say that the local gradient is horizontal, and vertical if not.
Then we define the following SVMM filter:

1. If G(i, j) is known (i.e. does not need to be interpolated), we perform an identity
operation (i.e. a closing by a 1× 1 structuring element).

2. If G(i, j) is unknown, and if the local gradient is vertical, we perform a horizontal
closing with a 3× 1 structuring element.

3. If the local gradient is horizontal, we perform a vertical closing with a 1× 3
structuring element.
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(a) (b)

(c) (d)

Figure 31: Colour interpolation using a SVMM closing. (a) Original image data ; (b) Bayer
sampling simulating a digital camera sensor ; (c) green channel interpolation using
an SVMM closing ; (d) full colour interpolation using and SVMM closing.

This operator behaves adaptively and interpolated the green pixel values in the
direction of the smallest gradient. This idea can be extended to the other two channels
as well. The results can be seen on an excerpt of the light-house picture (Fig. 30) in
Fig 31.

We see here that the results are much better than with the aforementioned methods.
This SVMM result could not easily be reproduced by standard translation-invariant
operators. Here the key idea is to use the local orientation to define a local structuring
element to use: either a single point if interpolation is not needed, or a vertical or
horizontal short segment to interpolate in the direction where intensities vary least, i.e.
where the local texture is the most constant.

The question now remains how to actually implement this spatially-variant closing.

4.2.2 Morphological operators and adjunctions

While the basic morphological erosions and dilation are interesting by themselves,
they are even more useful when combined to create openings and closings. However
not every dilation and erosion can combine to form an opening or a closing, only those
forming adjunctions do.

The notion of adjunction is central to morphology, as it encompasses the dual nature
of the theory. Morphological filters come in pairs: those that work on the foreground
and those that work on the background.
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4.2.2.1 Basic concepts

A good, recent introduction to mathematical morphology can be found in [NT10b],
especially chapters 1 and 2. We reuse some of their notations here. Since all of the
exposition in this section is classical, we show no proof, but we refer to fundamental
texts on this work, most notably [Ser82, Ser88, Mat75, Hei94].

We place ourselves in a space E equipped with a partial ordering 6 forming a
complete lattice, i.e. where every subset S of E has an infimum in E denoted

∧
S, and a

supremum in E denoted
∨
S.

For illustrative purposes, we will often consider the binary case, i.e. the case where E
is the Euclidean space of dimension n denoted Rn, where subsets are arbitrary parts
of Rn, and where the supremum coincide with the union and the infimum with the
intersection.

The notion of adjunction is central to modern morphology. It is defined in the
following way:

adjunction Let L and M be two complete lattice (equal or distinct). Two operators
δ : L→M and ε : M→ L form an adjunction (ε, δ) if and only if:

∀x ∈ L, ∀y ∈M, δ(x) 6 y⇐⇒ x 6 ε(y)

This concept is enough to introduce the basic operators of morphology:

erosions and dilations Here the operator δ commutes with the supremum operator
and is called a dilation, while ε commutes with the infimum and is called an erosion.

and also their compositions:

openings and closings If there exists two operators δ, ε that form an adjunction, then
the operator γ = δε is called an opening, and the operator ϕ = εδ is called a closing.

From these, we can deduce the following properties :

Proposition 4.2.1 (uniqueness) if (ε, δ1) and (ε, δ2) are adjunctions between L,M, then
δ1 = δ2. Similarly if (ε1, δ) and (ε2, δ) are adjunctions, then ε1 = ε2.

and the basic properties of the openings and closings:

Proposition 4.2.2 (Properties of openings and closings) ∀x ∈ L,
1. idempotence : γγ = γ and ϕϕ = ϕ

2. increasingness : if x 6 y, then γ(x) 6 γ(y) and ϕ(x) 6 ϕ(y)

3. extensivity: x 6 ϕ(x)

4. anti-extensivity: γ(x) 6 x.

While the above is extremely useful algebraically, it is also useful in practice because
the behaviour of morphological operators is well defined. It is therefore possible to
define new operators such as gradients or top-hats exploiting differences between these
operators.
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4.2.2.2 Translation-invariant operators using structuring elements

While it is possible to implement some algebraic morphological operators, most
often simple erosions and dilations are constructed from operations with structuring
elements. These are "special" sets whose shape, size and orientation are known in
advance. Most definitions of structuring element-based morphological operators use
the translation-invariant (TI) case.

binary case The binary case is illustrative, so we introduce it first. Let B be a
subset of E, i.e. an element of P(E). We denote the translate of B by p ∈ E is the set
Bp = {x+ p|x ∈ B}. Here p is a translation vector. The morphological dilation of a set
X ∈ P(E) by B is denote by δB(X) or X⊕B and is given by:

δB(X) = X⊕B =
⋃
b∈B

Xb

=
⋃
x∈X

Bx

= {x+ b|x ∈ X, b ∈ B}.

The resulting dilation is the union of the Bp such that p belongs to X: δB(X) =⋃
{Bp|p ∈ X}. As a consequence, the dilation of X by B ‘enlarges’ X, hence the name

of the transform. In the formula, X and B play symmetric roles. Note also that
when B is untranslated, (i.e. Bo), it is located somewhere relative to the origin of the
coordinate system. We usually associate this point with B itself and call it the origin of
the structuring element. When B is translated, so is its origin.

The morphological erosion of X by B is defined by:

εB(X) = X�B =
⋂
b∈B

X−b

= {p ∈ E|Bp ⊆ X}.

The erosion of X by B is the locus of the points p such that Bp is entirely included in
X. An erosion ‘shrinks’ sets, hence its name.

Note that in the binary case, the adjunction property reduces to:

∀X, Y, B ∈ P(Rn), X⊕B ⊆ Y ⇐⇒ X ⊆ Y 	B

In other words, the dilation of X is included in Y if and only if X is included in the
erosion of Y.

general translation-invariant case There are multiple ways to generalise
the binary case to arbitrary complete lattices L, but one simple way is to keep consider-
ing so-called “flat” structuring elements (in effect essentially binary sets), and switch
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the union and intersections above to the general supremum and infimum ones. This is
legitimate and can be easily interpreted in geometric terms, as documented for instance
in [NT10b], chapter 1.

We consider the case where L ≡M is a family of functions, or images, defined as a
mapping from the support D to the set of values V . Let ,.ε : L→ L be a dilation and an
erosion of f ∈ L given by:

δB(f) =
∨
p∈B

fp (4.12)

and the erosion:

εB(f) =
∧
p∈B

f−p (4.13)

Here p is a translation vector, fb denotes the translation of f by b computed as fb(x)
= f(x− b). B stands for the structuring element. In standard mathematical morphology,
B is translation invariant, defined as B ⊂ D.

Notice the −p in the erosion with respect to the dilation, meaning that in the erosion
case, the symmetric structuring element with respect to the origin is in fact used. We
may want to make this fact more apparent with the following equivalent definition for
the erosion:

εB(f) =
∧
p∈B̌

fp (4.14)

with B̌ = −B = {−p|p ∈ B}. Here B̌ is called the symmetric of B or more generally the
transpose of B. We will see that with a slightly more general definition of the transpose,
the above definition apply to the spatially-variant case.

compositions With the definitions given above, the morphological erosion and
dilation form an adjunction. In other words, we can now define the morphological
opening and closing.

In the binary case, the opening of set X by B is defined in this way:

γB(X) = X ◦B = (X�B)⊕B
=

⋃
{Bp|p ∈ E et Bp ⊆ X} .
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and the closing of X by B is defined by:

ϕB(X) = X •B = (X⊕B) �B. (4.15)

In the general case, the opening is simply γB = δBεB and the closing is ϕB = εBδB.

4.2.2.3 Spatially-variant operators

We now consider the relatively unusual spatially variant (SV) dilation and erosion.
In general, one can construct a simple spatially-variant (SV) morphological operator

by computing a max or min filter using a structuring element (SE) that is not the same
everywhere in the image. In the context of SVMM, B is often denoted as structuring
function and is defined as B : D→ P(D), P being the collection of all subsets of D. As
above, B(x) denotes the structuring element B originating at point x.

For instance, one can use parametrized disks or oriented segments, and vary respec-
tively the diameter or the orientation according to a scalar field. Erosions and dilations
with these SEs pose no problem by themselves. However, for filtering, openings and
closings are the more interesting operators, but adjunct respective dilations and erosions
are not trivially computed, as we shall see shortly.

In the general SV case, the transpose of a SE B, still noted B̌ is now defined by:

B̌(x) = {y | x ∈ B(y)}, (4.16)

where x and y are points, and B(y) is the spatially-variant structuring element orig-
inating at point y. In the translation-invariant (TI) case, we observe that the general
definition collapses to the one given above, i.e, B̌ = −B, the symmetric of B with respect
to the origin. However, for the SV case this is not true. We also note that the transpose
of the transpose of B is B itself, i.e. ˇ̌B = B.

As before, for the spatially-invariant case, we denote (δ, ε) an adjunct pair of operators,
with the same definitions as before:

δB(f) =
∨
p∈B

fp

εB(f) =
∧
p∈B̌

fp,

bearing in mind that the definition for B̌ is the one in eq. 4.16. With this, the opening
γB and the closing ϕB are defined in the usual way from the definition of the adjunction:

ϕB(f) = εB(δB(f)); γB(f) = δB(εB(f)). (4.17)
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Note that there also exists a complementary, SE-based SV erosion εB̌(f) = −δB̌(−f)

and its adjunct δB̌(f), and that in general εB and εB̌ differ.

4.2.2.4 Equivalence between morphological operators and oriented graphs

Here we consider the discrete case, modelled by a graph, as this is the practical case
that interests us most, and for which illustration is easiest.

A general, spatially-variant morphological dilation or erosion in the discrete case
is equivalent to a graph. More specifically, let (V,~Γ) be an oriented graph, with V
a set of vertices and ~Γ a set of oriented edges. Then at each vertex v, ~Γ(v) defines
a neighborhood relation, or equivalently, a structuring element with origin v. If we
compute the maximum of all the neighbours of v, then we are computing a dilation. If
we compute a minimum, then we are computing an erosion.

Conversely, given an arbitrary spatially-variant dilation δB(x) on a discrete set, with x
a vertex of the set, and family of structuring element B(x), then this B(x) defines all the
points directly connected from x to all the vertices of B(x) and thus an edge set ~ΓB(x).
The combination of the edge set x and vertex set ~ΓB defines an oriented graph.

4.2.2.5 Special case of the single-neighbour structuring element

In the following, we illustrate our operators in a restricted case for clarity, more
specifically the discrete case as above, where the structuring element consists only of a
single neighbour. In other word, the graph (V,~ΓB) is always such that every x ∈ V has a
single successor (or neighbour).

It is easy to go from this specific case to the general case by observing, for example
that a dilation with an arbitrary structuring element B(x) at vertex x is the supremum
of all the dilations with single-neighbour structuring elements composing B(x).

4.2.2.6 Adjunct of the spatially variant operators

In Figure 32, we consider the case of the dilation and its adjunct erosion. For
simplicity we consider only the case of the single-neighbour structuring element, as
we just described. Equivalently, the SE consists of a single pixel. The arrows in Fig. 32

indicate the SE, with the origin at the base of the arrow and the pixel SE at the point.
In Fig. 32(a) we have the SV dilation for three sample pixel locations. At location

(1) the value in the image is taken at the point of the arrow and set at the base in the
resulting image, and the same thing happens at locations (2) and (3). We only notice
that for the latter two pixels, the arrows point to the same pixel location (which is of
course allowed!).

Following the definition for B̌ necessary for the computation of εB, in Fig. 32(b), for
the computation of the erosion at location (1∗) we use the value at location (1). For the
computation of the erosion at location (2∗), we need to remember that both pixels at
location (2) and (3) pointed to (2∗), and so B̌(2∗) consists of the two pixels locations
{(2), (3)}.
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(a) (b)

Figure 32: (a) Standard single-neighbour dilation. (b) Standard adjunct erosion by considering
the transpose of the structuring element.

This is conceptually simple, but becomes quickly more complicated as the size of B
increases. Computing openings and closings with SV adjunct erosions and dilations
computed in the way described above requires the transpose to be redefined everywhere,
which can be computationally expensive requiring an exhaustive search or dedicated
data structures. This becomes prohibitive for large, nD data (n > 2). In the next section
we present a way to decrease the computation complexity.

4.2.2.7 Adjunct by conditional propagation

In the following, we describe the SV dilation δ and its adjunct erosion ε both using
spatially-variant SEs.

The transpose of B, denoted B̌, is defined in Eq. 4.16 and used in Eq. 4.17. In addition
to being computationally costly, it can, under some conditions, be of arbitrary extent
depending on the B family, which becomes problematic for forming filters based on
adjunctions of dilations and erosions in order to make a closing or an opening.

In the following we propose an implementation of the adjunct operator identical in
complexity to the normal one.

4.2.2.8 SV-closing implementation

The inf/sup-of-functions in Eqs. 4.17 and 4.17 are usually computed sequentially in
raster scan order according to this scheme:

[δB(f)](x) = max
b∈B(x)

f(x− b)

[εB(f)](x) = min
b∈B̌(x)

f(x− b) = min
y|x∈B(y)

f(x− y)

The dilation of Eq. 4.18 is computed in O(MN), where N = Card(D) , and M =

Card(B(x)). In the following erosion, from Eq. 4.18, given some x, the set {y | x ∈ B(y)}

is a priori unknown and is computed in O(N2) by exhaustive search. However, relaxing
the sequential order of computing, the adjunct erosion of Eq. 4.18 can be computed
more efficiently, as shown below.
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Figure 33: Adjunct in-place erosion. We define the operator ε? as follows: as we scan the image,
for instance in raster order, we propagate the values at the origin of the SE (the base
of the arrow) to their point (the point of the arrow) in a buffer image initialized to
the original image value. We compute the min operator in place as the propagation
is performed. In the text we prove ε? ≡ ε.

Theorem 4.2.3 (Conditional propagation for the adjunct erosion) The spatially-variant
dilation and the spatially-variant adjunct erosion can be computed at the same cost.

Proof Using Eq. 4.16 and Eq. 4.18 and permuting in the latter the roles of x and y, we
obtain:

[εB(f)](y) = min
x∈B(y)

f(y− x) (4.18)

This means that for computing eB(f) we only need B and not B̌.
In practical terms, assume εB(f), i.e. the output, originally set everywhere equal to

f. One can sequentially read the input f at each point x. Considering the structuring
element B(x) of origin x, for all elements y of B(x), we update the output value
[εB(f)](y) by taking the min operator between the current input value at x and the
current output value at y.

It is easy to show that both ways of computing the adjunct are equivalent. As we
scan the input image at x and update the value in the output image at y, we are indeed
computing a min operator between all the origins of B(x) such that B(x) intersects y.
So, once the whole image has been scanned, if B(x) intersects y, then x is in B̌(y) and
vice-versa.

This theorem is illustrated in Figure 33, where the adjunct structuring elements B̌ are
pointing at the selected pixel y for the efficient adjunct erosion.

This operation is performed with the minimal value updated everywhere along B̌ as it
spans the image.

This theorem leads to Algorithm 2 based on a conditional propagation of the value at
the origin of each B(x). In this algorithm, the for loop (lines 4-5) computes sequentially
for all x ∈ D, the dilation δB(f) implemented by definition of Eq. 4.18. Every δB(f) is
then stored in d (previously initialized (line 3)). Notice that there is no need to store
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Algorithm 2: Spatially-Variant Closing

Input: image f, structuring function B
Result: closing ϕB(f)

Data: d - scalar

ϕB(f)←∞ ; initialization1

forall x ∈ supp(f) do2

d← 0 ; initialization3

forall b ∈ B(x) do4

d← max(d, f(x−b)) ; —– dilation (δB(f)) —–5

forall b ∈ B(x) do6

ϕB(f(x−b))← min(ϕB(f(x−b)), d) ; —– erosion (εB(f)) —–7

Figure 34: Result of the spatially variant closing on the tubular object with the directions
provided by multi-scale second order derivatives.

the entire image δB(f). The erosion is implemented by a conditional propagation (lines
6-7).

The result ϕB(f) is available as soon as the raster scan of the input image ends (lines
2-7). The overall computational complexity is O(

∑
x∈DCard(B(x))). If B is of constant

size, this reduces to O(MN), where N = Card(D), and M = Card(B). The SV opening
can be computed analogously.

notes (1) In the illustrated algorithm the closing starts with the SE-based dilation,
but it would be possible to start with the complementary, adjunct dilation δB̌, followed

by the erosion εB̌. Note that in this case, due to the property ˇ̌B = B and using the
definition of the SV erosion given by Eq. 4.17, the latter erosion is a “normal”, SE-based
erosion and not implemented through the ε? definition. Note that the two operators
differ in general. (2) Forming an opening starting with the adjunct erosion requires
intermediary storage. (3) SE can be of any shape, not just a line segment.

In Fig. 34 the result of the spatially-variant closing can be observed on a tubular
object with the directions provided by multi-scale second order derivatives. It can be
stated that the object’s segments were not reconnected, which can be explained by the
fact that the dilation is performed on the pixels with a principal direction information.
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Figure 35: Vector field regularzation.

Therefore, a regularized direction field is necessary to perform reconnection. This is
described in the following section.

4.3 direction field regularization

As shown in Fig. 36, in order to propagate objects in the space with the spatially-
variant morphological closing (or, in fact, with many other filtering methods as well),
it is necessary to have a dense direction vector field. In our case, the directional
information is necessary only as far as the dilation can reach.

As can be noticed in Fig. 26, the directions obtained by second-order derivatives get
chaotic at the end of tubular object segments, which might cause problems in methods
that use them in further procedures. For this, a regularized directional vector field is
highly desirable. One could use the gradient vector flow [XP98] or an average square
gradient within a diffusion scheme for such purposes as in [VMA08]. While here, we
have come up with a regularizing procedure based on several simple morphological
operations.

At first, we perform the grey-scale morphological dilation on the direction field
guided by the thresholded vesselness result with a spatially-variant structuring element
of fixed size and line shape. By using the thresholded vesselness result, we make sure
that we use the tubular objects as markers for direction field propagation. After follows
the adjunct erosion – still only of the direction field guided by the segmented vesselness
result – operation as described in section 4.2.2.7. This ensures an idempotent result,
which guarantees that the resulting filter obeys all morphological rules. See Fig. 35

for a schematic representation of the operation. The resulting regularized field of the
tubular object and its spatially-variant closing after the field regularization can be seen
in Fig.36.

4.4 algorithm

In the end, the algorithm of the morpho-Hessian filter can be summarized as a
combination of three main operations: 1) derivative-based directions and tubular-objects
detection, 2) field regularization, and 3) spatially-variant closing.

At the first step, the Hessian matrix in its eigen form is produced for each voxel on
multiple scales of the image. The choice and number of scales is chosen in order to
detect thin objects with different radii. The vesselness value is calculated across these
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(a)

(b)

Figure 36: Regularized vector field of the tubular object and the resulting spatially-variant
closing.

scales according to Eq. 4.6, 4.8, where at the end the maximum response is chosen for
each voxel giving the principal direction obtained with the Hessian matrix.

In the second step of the filtering, the directional field propagation is performed as
described above.

In the following step, using a family B(e1(x)) of centred segments as structuring
elements oriented in the direction of e1, and of fixed length for the morphological
closing operation with the aim of vessel reconnection. The SE-based dilation is followed
by the adjunct erosion εB̌(δB) as in section 4.2.2.7.

4.5 conclusion and discussion

In this chapter, we have presented a non-linear, mixed Hessian-based and morpho-
logical method in order to enhance linear objects within the scale-space theory. The
proposed filter has all the properties of a morphological filter (opening or closing),
which ensures it can be used within a morphological processing pipeline with no side
effect. This morpho-Hessian filter performs like a reconnecting inverse diffusion filter
in some ways.

We have also presented a concise theory of spatially-variant morphology with the
main result being an efficient algorithm in O(MN) for spatially-variant openings and
closings, where N is the size of the image, and M (M� N) is the size of the structuring
element. While SVMM is not in itself novel, we believe that the presentation of the
algorithm in this thesis is simple and enlightening.

Overall, this approach may be seen as a productive combination of linear and non-
linear techniques. Future work includes studying alternatives to the Hessian tensor for
improved noise robustness and direction detection.

As proposed in [DD08], the size of the spatially-variant structuring elements could
be resized according to the eigenvalues of the Hessian matrix.

In addition, it is envisaged to use a variable and more flexible structuring element for
morphological directional operations, such as paths instead of segments.
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C E R E B R A L V E S S E L S S E G M E N TAT I O N A N D A N A LY S I S

Vascular network detection from angiographic data is an important task, justified by
various applications: pathology detection, treatment planning, and more. In this context,
3D MRA provides a detailed visualisation of vascular networks up to the resolution of
the generated images (i.e. 0.5mm).

However, the small size and the complexity of the vascular structures, coupled to
noise, acquisition artefacts, and blood signal heterogeneity (especially signal discontinu-
ity) make the analysis of such data a hard task, thus justifying intensive efforts devoted
to its segmentation.

Here, we especially focus on cerebral angiographic image filtering. Our final purpose
is in particular to segment vessels to further assist visualization of arteriovenous
malformations of cerebral vasculature. As a primary step, we aim at filtering vessels
while detecting the smaller ones and correctly reconnecting these to larger vessels. We
then segment the vascular structure and perform its skeletonization for further network
topology analysis and visualization assistance.

5.1 motivation

Blood interaction takes place at different scales, through which large-scale flow is
connected to cellular and sub-cellular biology. Blood vessels deviate and bifurcate while
connecting with each other into networks. In the brain, as in all organs, these networks
belong to two principal classes: arterial and venous. The arterial networks are the
dominant vascular structures consisting of three trees connected to the Circle of Willis:
the left and right carotids, and the basilar artery. From the Circle of Willis, the vessels
are formed in a number of sub-trees (their actual number may differ from one individual
to another). Around the inside of the skull, various venous trees are present, which are
connected to the arterial vessels through capillary beds.

As a rule, the cerebral vessels are complex, tortuous, vary widely in geometry,
morphology and topology even in normal cases, and even more so in pathological ones.
Blood flows in these trees in a directed fashion: in the arteries from the parent to the
child. An arterial subtree is, therefore, a smaller tree originating from and containing any
branch, its children and all of its children’s children to the end of descent. Conversely,
blood flows in venous trees in the opposite way, from child to parent.

In the case of the arterio-venous malformation (AVM), some arterial vessels are
directly connected to some venous ones and locally bypass the capillary beds. In
simple cases, there is one feeder and possibly more than one draining vein. In more
complex case, multiple compartments can be present, including several separated
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Figure 37: Slice of a MRA data of the head (left) and a close-up of the AVM.

feeders and draining veins. They can even form so-called hidden compartments that are
invisible on angiography compartments. Hidden compartments can only be detected
with serial super-selective digital subtraction angiography or serial high-resolution
MR angiography [MHMM09]. Generally, it is very difficult to mentally picture the 3D
intra-cerebral vascular tree.

Moreover, unfortunately, conventional imaging techniques do not supply sufficient
information. Digital subtraction angiograms (DSA) provide useful information, but due
to projection overlap, it is difficult to determine the location, connections and the vessel
parent-child relationship. Magnetic resonance 3D are useful for such information, but
images are noisy and still do not provide sufficient connectivity information directly,
due to lack of resolution.

Indeed, in clinical MRA data acquired using a standard 1.5T main field, the resolution
is so low that even in non-pathological cases some veins and arteries of the head
seem to be connected. This is an important problem in disease recognition. The
medical specialists can distinguish pathological and normal cases using their anatomical
expertise. In gadolinium-injection MR angiography, during the on-line visualization of
the imaging, in normal cases, arterial vessels are visualized first, and only then, as the
gadolinium injection passes together with the oxygen in the blood, the venous vessels
are visualised. However, in the presence of AVM, one or more veins may be visualised
before all the others. But as the process takes only fractions of a second in some cases, it
might go unnoticed by a clinician, and later this might even more difficult to recognise
among the huge vascular structure data. An example of the MRA image with the AVM

case can be seen in Fig. 37.
For neurosurgeons, it is critical to visualize correctly AVMs in 3D. The localization

of the subtree of the corresponding artery can help understanding the actual problem
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better. Specialised visualization procedures can help guiding tailored surgical and
endovascular treatments. Computer methods of such pathologies perform multi-scale
processing. In this application, we consider the macro-vascular network consisting of
large arteries, down to a diameter of 0.5 mm, which are patient-specific and can be
reconstructed from clinical imaging. An example of such networks is illustrated in
Figure 1.

To help with AVMs diagnosis and treatment, an ideal software suite should include
the following features:

1. To correctly represent all the cerebral vasculature.

2. To be able to show the original image and their projection views.

3. To show the selected and/or all vessels related to the AVM nidus.

4. To be able to label the arteries and veins,

5. To be able to accept interactive corrections for this, for instance :
– To be able to show children of any selected vessel branch.
– To be able to hide certain tree or subtree to improve visualization.
– etc

6. That is fast and integrable with the physicians acquisition sources, image and
patients database and other software suites.

This work is not aimed at providing such an ideal software package, but it is motivated
by the completion of some of its points in order to propose such a clinical tool in future.

The process starts with the detection of the vascular structure and its enhancement
with the morpho-Hessian filter. Then, with the segmentation and skeletonization
procedures, a computer model of the vessel trees is built which can be used in study
of vascular disease and their visualization. The main purpose of this work is to
aid clinicians in image studies by providing enhanced, more precise data and its
visualization for medical decisions. This involves multi-disciplinary communication.
So, a complementary goal of the work is to establish links and identify important and
relevant medical problems.

In the first section we describe these procedures. Then, their performance is evaluated
on synthetic vessel image while comparing them with other similar techniques. In the
following section, the same methods are applied to clinical angiographic data.

Although, the comparison of the methods by Sato and Frangi is not our final purpose
(as it has already been performed, i.e. [OBN03a]), we are evaluating their perfor-
mance according to their parameters and in combination with the spatially-variant
morphological filter.

5.2 vessel filtering

Our first stage is a detection and filtering step. We apply the morpho-Hessian filter
described in the chapter 4 together with the algorithm described in section 4.4. The
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main goal of this step is the retrieval of the smallest low-intensity vessels and their
reconnection.

As described before, this process is a non-linear three-dimensional spatial filtering
technique based on second-order partial derivatives of Gaussian and mathematical
morphology. The filter first distinguishes the vessel-like objects and their the local
orientation with the second order derivatives grouped in the Hessian matrix form. It
then performs a spatially-variant morphological closing (assuming bright vessels on a
dark background) according to these local directions.

5.3 vessel segmentation

Following the morpho-Hessian filter – which performs like a reconnecting inverse
diffusion filter in some ways – in order to segment the vascular structure we perform a
region growing method.

5.3.1 Seeded region growing

Seeded region growing (SRG) [AB94, MJ97, BT99] is a well-established method for the
segmentation of objects with implicit contours in grey-scale or colour images, based on
a set of markers.

SRG takes two images as input: a control image I and a seed image S. I can be virtually
anything but in this case we will take the example of a single discrete grey-level image,
on a nearest-neighbour connected grid (e.g. the 6-connected graph in the 3D cubic grid).
S contains a collection of labelled binary regions, Si ⊂ S, i ∈ 1, 2, 3, .... Regions with the
same label do not have to be connected.

Let U be the set of pixels unassigned to any region but connected to at least one
of them: U = x ∈ S, ∀i, x 6∈ Si, N(x)∩∪iSi 6= ∅, where N(x) is the immediate neighbor-
hood of x. At each step of the algorithm, all the points x ∈ U are examined in turn
and a distance δ(x, Sj) is computed between x and all the Sj it is neighboring to, i.e:
Sj, N(x)∩ Sj 6= ∅. The pixels y that possess the minimum distance are assigned to their
neighboring region, and the process is repeated until all the pixels are associated with a
region.

Typically, the distance δ can be defined as follows:

δ(x, Sj) =
∣∣I(x) −meany∈Sj (I(y))

∣∣ ,
where I(x) is the value in I at x. A simple measure for δ is preferred, as complex ones

like the Mahalanobis distance may require non-local updating rules.
Several algorithms exist to implement SRG. The original Adams-Bischof algorithm

(ABA) [AB94] uses a simple linked list of pixels ordered with respect to δ. Pixels
found around the boundary of each seed are inserted into the linked list at a position
dependent on δ. The priority of each pixel is never updated. Pixels are simply processed
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as they appear at the top of the list. Once processed, a pixel is simply removed from
the list.

The Mehnert-Jackway algorithm (MJA) [MJ97] is significantly more complicated. It
uses a main ordered queue of LIFOs to determine pixel priority and a secondary LIFO

queue for use during pixel labelling. All the pixels at the same level of priority are
processed at the same time. Pixels with the same priority are added to a growing
region in parallel. Pixels that are at the boundary of two regions with identical distance
with either (ties) are treated separately. Finally the pixels that are being labelled and
their unmarked or unlabelled neighbours have their priority recomputed, and they are
re-introduced in the queue if it turns out to be different from their original priority.
Thus pixels can be present more than once in the main ordered queue.

Finally, the Beare-Talbot algorithm [BT99] uses a series of separate stable ordered
queue structures (so-called splay-queues [ST85]) for each seeds, in order to update
pixel priority statistics as the regions grow, as well as to process ties fairly. The authors
show that their algorithm retains the speed of ABA with none of the side effect of MJA,
particularly on 3D images.

SRG bears some resemblance to the watershed algorithm, but does not require the
computation of a gradient, which on a noisy image is useful. It also takes into account
region statistics, which induces a degree of flexibility to the algorithm. SRG with the
BTA follows the mathematical description above, but does not segment the image into
regions with minimum distance from the statistics of the seeds. This latter problem is
NP-hard, whereas SRG is a greedy algorithm with O(N. log(N)) complexity, which N
the number of pixels in the image. However SRG is known to perform well in practice,
due to its region-competitive characteristics.

In our work, we used SRG with the Beare-Talbot algorithm, as it was shown to
perform best on 3D images.

5.4 vascular network analysis

Our vascular network analysis algorithm operates in two major steps: (1) thinning of
the binary input vasculature for centerline extraction using the efficient parallel algo-
rithm of [BC10]; (2) identification of junction points (vertices) and segment centerlines
(edges).

At the first step we construct a skeleton of the whole cerebral vasculature. Here
we use a "curvilinear" asymmetric 1D-isthmus-based skeleton as described in [BC10].
A “curvilinear” element may be characterized by the fact that, if we remove it, we
“break" (locally) the object. The voxels of such a 1D isthmus are characterized in cubical
complex space in order to be defined as 1D isthmus voxel. By using the asymmetric
algorithm, this method guarantees a minimal skeleton. See Fig. 38 for an example of
1D isthmus skeleton and an asymmetric 1D isthmus skeleton.

The skeleton is then decomposed into simple and end points, junctions and segments
(see 3.2.1). This way the complex vascular network is decomposed into individual
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Algorithm 5: AsymCrucialSet
Data : S ⊆G3, K ⊆ S
Result : S
R := K ∪ set of critical voxels for S;1

for each possible position of mask M2 (and any of its2

!/2 rotations) do
ifM2 matches and {A,B}∩R= /0 then3

R := R∪{A}4

for each possible position of mask M1 (and any of its5

!/2 rotations) do
ifM1 matches and {E,F,G,H}∩R= /0 then6

P := the first voxel within (E,F,G,H) which is7

in S; R := R∪{P}
for each possible position of mask M0 do8

ifM0 matches and {A,B,C,D,E,F,G,H}∩R= /09

then
P := the first voxel within (A,B,C,D,E,F,G,H)10

which is in S; R := R∪{P}
S := R;11

Algorithm 6: AMK3

Data : S ⊆G3, K ⊆G3

Result : S
repeat1

S := AsymCrucialSet(S,K);2

until stability ;3

Algorithm 7: ACK3

Data : S ⊆G3

Result : S
K := /0;1

repeat2

C := set of voxels of "1(S) which are non-simple;3

K := K ∪C;4

S := AsymCrucialSet(S,K);5

until stability ;6

REMARQUE: cette stratégie est la plus directe à mon
point de vue, mais ne garantit pas qu’il ne reste pas de point
simple (hors l’ensemble de contrainte). Ceci dit, sur les
quelques images que j’ai testées, c’est le cas. Ca ne me paraît
pas du tout évident que ce soit toujours le cas, même en choi-
sissant un ordre particulier. Si on veut vraiment avoir cette
propriété, le moyen le plus simple je crois est de partir d’un
noyau symétrique et d’enlever séquentiellement des points
simples qui sont dans les cliques cruciales, jusqu’à stabilité.
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Figure 38: An object and its symmetric (left) and asymmetric 1D isthmus skeleton (right) .

Figure 39: An object and its asymmetric 1D isthmus skeleton (left) and its graph based on the
skeleton (right) .

vessel segments suitable for topological and quantitative analysis. Here, a segment is a
piece of vasculature connecting two vessel junctions. This mapping of segments and
junctions can be represented by a mathematical graph.

However, due to their discrete nature, thinning algorithms do not produce smooth
curve-skeletons. Boundary irregularities propagate all the way to the curve-skeleton
during the thinning process. Although some algorithms may produce smoother curve-
skeletons than others, smoothing can be performed in a post-processing step, regardless
of the extraction algorithm used to compute the initial curve-skeleton. We have chosen
to convert the skeleton to a graph and later to perform a smoothing of this graph for
a better visual aspect. AN example of a skeleton produced with the asymmetric 1D
isthmus algorithm of an object and the graph-skeleton can be seen in Fig. 39.

For each segment neighbouring junction candidates were grouped into one junction
and stored as vertex of the segment graph. For each junction and each segment starting
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point, the segment centreline is followed voxel by voxel until the next junction is
reached. The segment along with the centreline is stored as new edge in the segment
graph. Spurious leaf segments shorter than a user-defined minimum segment length
are pruned, remaining segments are merged where appropriate.

In order to avoid topological holes (see section 3.2), which create cycles in the skeleton,
and prior to skeletonization, the segmented image is hole-closed using the algorithm
described in [ABP02].

In order to compensate for the occasional disconnected noise and spurious skeleton
branches, a certain number of simple points can be deleted [Tal92].

5.5 algorithm

In the end, the algorithm of the cerebral angiography image analysis can be summa-
rized as a combination of the following operations:

1. derivative-based directions and tubular-objects detection ;

2. field regularization ;

3. spatially-variant closing ;

4. seeded region growing segmentation ;

5. hole-closing ;

6. skeletonization with asymmetric 1D isthmus curvilinear method ;

7. 3D skeleton points classification ;

8. Vascular network graph construction ; and

9. Skeleton pruning.

5.6 methods evaluation

An important issue in medical image analysis is the validation of the proposed
methods, which for most algorithms is based on at least one of the following items:

1. Comparing the results with specialists’ expertise; the extracted centerlines are
evaluated either visually or by calculating distances between tracked and user-
indicated centerlines, which are considered as the ground truth.

2. Constructing physical phantoms with known characteristics, taking their image
and comparing the results of processed images with the known features; or

3. Using synthetic images.

While the first evaluation is desirable as expert opinion can carry a lot of weight, in
reality a lack of objective criteria as well as inter-observer variability are highly likely.
In addition, for 3D cerebral angiographic data, this represent a considerable amount of
work. To our knowledge, this has not yet been performed. The second method requires
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Figure 40: Rendering of the synthetic vessel-like object with the added Gaussian noise of κ = 10.

machining resources as well as access to a full imaging system to evaluate the method.
The inherent complexity and size constraints of cerebral vascular networks makes the
use of this validation strategies practically infeasible. The only remaining option is
to use 3D synthetic images of tubular structures that resemble the features of the real
vessels.

In this work, the results were validated at first on synthetic data and then the same
methods are applied on clinical data and discussed.

5.6.1 Evaluation on synthetic data

We used the synthetic dataset from [AB02], which is a 100× 100× 100 voxels, isotropic
dataset containing a tortuous, branching vessel-like object of varying radii (0.5 to 4

voxels), which does not simulate a specific anatomic structure. A rendering of the
surface of the object is shown in Fig. 40. The object’s cross-sectional intensities have
a parabolic profile ranging from 150 at the object’s edge to 200 at the object’s midline,
and the background intensity is 100, which makes it a typical profile of contrast MRA

and TOF MRA for small vessels.
Two different types of noise are present in this data. First, the discrete sampling

of the continuous object produces errors. Second, intensity noise added to the data,
namely: Gaussian noise with standard deviations of k equals 10, 20, 40, and 80. The
k = 20 data is representative of the noise level in MR and CT data. The k = 40 data more
closely resembles the noise magnitude of ultrasound data. The k = 80 data was chosen
to explore the methods’ performance on the worst case data which is hardly possibly in
clinical applications. Slices of these synthesized images with four levels of noise can be
seen in Fig. 41. Hereon, we refer to these synthesized images as phantoms.

Based on the noise-less phantom image and its centerline, Receiver Operating Charac-
teristics (ROC) curves [Met78] are computed to assess the detection performance of the
methods. The ROC curve plots the probability of true positive (TP) detections versus the
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Figure 41: Slices of phantom images with four levels of Gaussian noise (from left to right): 10,
20, 40, and 80.

probability of false positives (FP) against the ground truth as a function of the detection
threshold. Pixels above certain threshold along the ground truth count as detections;
others are false positives.

The ROC curve is constructed from false positives(FP) and true positives (TP) where
each value of the curve is associated with an accuracy computed in the following way:

ACC =
(TP+ TN)

TP+ TN+ FP+ FN
, (5.1)

Accuracy varies between values 0− 1.
All the methods were tested on the original phantom image and images with four

levels of noise. In the case where the resulting image is gray-scale, it is thresholded
from its minimum to maximum in small increment steps. In the case of binary result
(e.g., segmentation, skeletonization), the ROC curve will contain only one point.

5.6.1.1 Filtering results

As a filtering method we have used the morpho-Hessian filter. However, in this
section we compare only the performance of the vesselness measure by Frangi and
Sato associated with this filtering. The thresholded filtering results are compared to the
ground truth. We use both normal and hysteresis thresholding methods.

For experiments with Frangi’s vesselness, its parameters have been set to: α = β =

0.25 and γ = 5.
In general, the lower scales are more sensitive to noise, while bigger ones tend to

join tangent structures. Moreover, in [SWB+
00] it has been reported that the vesselness

response curve differs by not more than 3 percent between σ = 1 and σ = 2
√
2 using a

set of discrete values σi ∈ 1,
√
2, 2, 2

√
2. For our filtering method, in order to evaluate

the scale-space performance, we use four discrete scales between σ = 1 and σ = 4.
We also perform a multi-scale filtering between scales σ = [1− 4] with four natural
logarithmic incrementation steps.
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Figure 42: Comparison of average ROC accuracies for Frangi’s or Sato’s vesselness and their
respective hysterysis thresholding for original phantom image and with four levels
of Gaussian noise: 10, 20, 40, and 80.

For Sato’s vesselness, we have used the parameters α1 = 0.5 and α2 = 2. The same
scale parameters were used.

The vesselness results is a probability function with values from 0 to 1. It was
thresholded with all possible values within this range with a step size of 0.1. The
performance results of two vesselness measures and their two thresholds are calculated
on the ROC accuracies and averaged for each image. The plot of these results can be
seen in Fig. 42. We notice that Sato’s vesselness shows better results on all images.
Moreover, the hysteresis thresholding gives better results for both vesselness functions
while giving a higher improvement for Frangi’s vesselness.

We have tested Frangi’s vesselness both normalized by the largest eigenvalue and not
normalized. These segmentation results are obtained with simple thresholding. In Fig.
43, Frangi’s vesselness both normalized and not, as well as Sato’s measure are shown
for the image with Gaussian distribution 10. We can see that at the first scale, all the
methods respond to the noise as well as to the phantom. It should be noticed that for
the non-normalized vesselness response the bifurcation point is not well detected. It
is important to notice that the bifurcation seems to be poorly detected because of the
automatic threshold result chosen according to ROC curves, which is a compromise
between true positive rate and false positive rate. This means that this bifurcation is
detected well at some intensity value where there are many false positives.

At the second scale, the results are similar for normalized Frangi’s and Sato’s ves-
selness, while non-normalized Frangi is noisy and with the bifurcation is not well
marked.

However, at the third and following scales, Frangi’s non-normalized vesselness is the
only one that detects the bifurcation even though it responds clearly to the noise and,
as a result, the surface of the segmentation is more irregular. Therefore, for further tests
we proceed only using Frangi’s non-normalized vesselness response.

By using hysteresis thresholding for the three aforementioned vesselness measures,
we get rid of the noisy responses while increasing the accuracy. The results can be seen
in Figure 44
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Figure 43: From left to right: Morpho Hessian with Frangi’s normalized and non-normalized
vesselness or Sato’s measure on the phantom image with k = 10. 1st row: σ = 1. 2nd
row: σ = 2. 3rd row: σ = 3. 4th row: σ = 4. 5th row: σ = [1− 4].
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Figure 44: From left to right: Frangi’s and Sato’s vesselness on the phantom image with k = 10.
1st row: σ = 1. 2nd row: σ = 2. 3rd row: σ = 3. 4th row: σ = 4. 5th row: σ = [1− 4].
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Figure 45: Comparison of average ROC accuracies for Frangi’s or Sato’s vesselness according to
results at four discrete scales and one multi-scale (σ: 1, 2, 3, 4, and [1− 4]).

When looking at the plot of the same results in relation to the average of scales
(Fig. 45), more regular, almost increasing results are achieved by Sato’s vesselness
giving their maximal result with multi-scale σ = [1− 4]. Frangi’s vesselness performs
similarly to Sato’s on scales 1 and 2, while giving worse results at higher and multi-
scales. Again, for both measures it can be noticed that the hysteresis threshold improves
the results, especially at lower scales, which is due to the fact that at such scales there
are more spurious and false responses which can be eliminated by such thresholding.
However, here we can also observe the controversy between the accuracy numbers and
the vistual results: while Frangi’s vesselness detects an important part of the phantom -
bifurcation - it enlarges the object and by doing so it achieves lower accuracy values.

5.6.1.2 Segmentation results

The images are segmented with the seeded region growing (see section 5.3.1) algo-
rithm. Region growing is performed on the morpho-Hessian enhanced image in order
to test the morpho-Hessian filter and to obtain the image better reconstructed in spite
of heavy noise. For the morpho-Hessian filter, as structuring elements, we use a family
B(e1(x)) of centered segments oriented in the direction of e1 and of fixed length 11

voxels.
For the seeded region growing, the inside marker is obtained with the same thresh-

olded vesselness result that is used in the field propagation step (see section 4.3). The
outside marker is the inverse of the thresholded morpho-Hessian filter result. Threshold
is chosen according to the original image allowing for a slight over-segmentation, which
is augmented at the end by the fact that the morpho-Hessian filter increases intensities
of the vessels. In such a way, we are ensuring no useful information is lost. Due to the
result of the previous step, we have used the hysteresis thresholded results of the Sato’s
and Frangi’s vesselness.

In order to compare the performance of our morpho-Hessian filter, we also perform
region growing on the anisotropic diffusion enhanced image [MVN06]. The external
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Figure 46: Comparison of average ROC accuracies for segmentation results with region growing
on SV-enhanced and Frangi’s and Sato’s vesselness markers, anisotropic diffusion,
and original image. Comparison is performed on the original phantom image and
the phantom corrupted with four levels of Gaussian noise: 10, 20, 40, and 80.

marker is the inverse of the thresholded result of this filter. The internal marker is the
Sato’s vesselness thresholded result, the same as for the SV-closed region growing.

We also perform region growing on the original phantom images, the internal marker
as in the previous case. And the external marker is the inverse of the threshold of the
image.

So, we compare four different results of the region growing operation:

1. morpho-Hessian filtered based on Frangi’s vesselness hysteresis thresholded (in
the following referred to as “Frangi’s vesselness”).

2. Morpho-Hessian filtered based on Sato’s vesselness hysteresis thresholded (further
referred to as “Sato’s vesselness”).

3. Anisotropic diffusion filtered image.

4. Original image.

In Fig. 46 the average ROC accuracies can be seen for region growing segmentation
results with the four strategies described above. From this graph it can be noticed
that all the methods except vesselness performed perfectly for the original phantom
image. For the noise-corrupted images, with the levels 10 and 20 Frangi’s vesselness
with morpho-Hessian outperforms Sato’s vesselness, and it yields only slightly better
results on the higher-noised images. Moreover, it can be noticed that the region growing
results on all the images except Frangi’s vesselness with SV-closing look very similar.

The results of the region growing segmentation results of the morpho-Hessian
enhanced images based on Frangi’s best performance (σ = 2) on the original phantom
image and the Sato’s vesselness both mapped on the ground truth can be seen in
Fig. 47. The over-segmentation results can be seen (in orange), which, once again,
can be explained by the fact that Frangi’s vesselness slightly enlarges the object and
SV-closing according to its directions also slightly dilates the original image.

Average ROC accuracies of the segmentation results based on four different methods
in relation to scales σ = {1, 2, 3, 4, [1− 4]} can be seen in Fig. 48. There we can seen that
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(a) (b)

Figure 47: Region growing segmentation results on (a)original phantom data with Frangi’s and
(b) Sato’s vesselness (right) seeds (orange) mapped with the ground truth (white).

Figure 48: Comparison of average ROC accuracies of region growing segmentation results based
on four methods according to scales σ = {1, 2, 3, 4, [1− 4]}.

Frangi’s vesselness based result has better ROC accuracies than other methods up to
scale 3. It shows worse accuracies on the higher scale and multi-scale, which is again
questionnable observing its multi-scale result on the image with k = 10 as in Fig. 49.

5.6.1.3 Skeletons

The results of the region-growing segmentation with four strategies were skeletonised
according to the algorithm 5.4. According to these results, the skeleton of the morpho-
Hessian filtered image based on the region growing with Frangi’s vesselness markers
performed the best in three images except the original one and with noise k = 80 (see
Fig. 50). The worst performance for the original data can be explained by the fact that
in comparison with other methods, Frangi’s vesselness enlarges the object and might
give incorrect directions which influences the performance of the SV-closing.
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(a) (b) (c)

Figure 49: Region growing segmentation results (orange) superimposed with the ground-truth
image (white). (a): ground-truth. (b): morpho-Hessian enhanced. (c): anisotropic
diffusion enhanced.

Figure 50: Comparison of average ROC accuracies of skeletons results based on four methods
according to synthetic images.
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(a) (b) (c)

Figure 51: Skeletons of the image with noise k = 80 at σ = 2. (a): Simple skeleton. (b): Prunned
skeleton. (c): The two superimposed: white - (a), orange - (b).

Holes smaller than 3 pixels were filled. Simple points belonging to branches of length
smaller than 8 were deleted in order to avoid spurious responses. However, by doing
so, the length of each branch is also decreasing. In addition, if the junction point was
not well detected, it will be missing even more points. This operation might be useful
in practice, but it influences accuracy results (as can be seen in Fig. 51).

The comparison of skeletons in relation to scales can be seen in Fig. 52. From this
plot, we can see that all the methods have performed similarly at each scale. The
skeleton based on Frangi’s vesselness outperforms 2, 3 and [1− 4]. The morpho-Hessian
with vesselness outperforms the original image- and the anisotropic diffusion-based
skeletons.

Fig. 53 shows the results of the skeletons based on the morpho-Hessian with Frangi’s
vesselness and anisotropic diffusion (segmented with region growing) for all the noise-
added images with k = {10, 20, 40, 80} and at respective scales σ = {1, 2, 3, [1− 4]} (this
figure presents only few of the results). These images exhibit the fact that the two
strategies perform similarly at scales 1 and 2. However, at scale 3 and [1 − 4] the
morpho-Hessian detects more of an object even though with the pruning step some
pixels are deleted. In any case, the image with k = 80 is a very difficult case for which
the methods perform surprisingly well.
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Figure 52: Comparison of average ROC accuracies of skeletons results based on four methods
according to corresponding scales.

5.6.2 Angiography image data

Our angiography dataset was kindly provided by the neurologists and radiologists
of the Hospital of Colmar. Here, we used the gadolinium-injected magnetic resonance
image data with the following parameters:

Geometry parameters Field of view: 250× 200
Matrix: 320× 256
Voxel acquisition: 0, 78× 0, 78
Voxel reconstruction: 0, 49× 0, 49
Slices: 200 of 0,8 mm
Contrast parameters
TR: 4,3
TE: 1,5
Swap-angle: 30◦

Number of acquisitions: 1

5.6.2.1 Results

Here, we are interested in the enhancement of smaller vessels (in particular their
reconnection), then segmentation of the whole vascular network, and its skeletonisation
for further vascular network analysis. In particular, we are interested in developing an
aid to clinicians with the visualization and analysis of arterio-venous malformations.
Our particular interest with regards to reconnection is that disconnected networks do
not lend themselves well to topology analysis.

To illustrate the performance and its pros and cons on the real vascular data, we
apply the algorithm described in section 5.5 on an excerpt of the vascular structure of
the smallest visible size in our image data.
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Figure 53: 1st line: Phatom skeleton - ground-truth. 2nd line: skeletons of morpho-Hessian with
Frangi’s vesselness results. From left to right images with noise level κ = 10, 20, 40, 80

on scales σ = {1, 2, 3, [1− 4]}, respectively. 3rd line: skeletons of anisotropic diffusion
results, for the same images and at the same scales as on the previous line.
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For the vesselness measures we have used the same parameters as for the synthetic
images, except scales are σ = [0.5− 2], as the smallest vessel size in such images is 0.5
mm. The length of the structuring element is the same, And no pruning is used in the
skeletonization step.

The results for all the methods are illustrated in Fig. 54. The maximal intensity
projection (Figure 54a) and its surface-rendered image (Figure 54b) show that it is
densely disrupted by noise. In Fig. 54d we can see that the directions are regularized in
comparison with the initial Hessian detections (54c). However, we can notice that due
to noise, irregularity of the surface (due to the resolution) and the digitalization, the
directions are still not perfectly corresponding to the object surface rendering.

In Figure 54f, it can be observed that the vesselness diffusion filters out the noise
while smoothing the surface of vessels. However, doing so, it also removes the smaller
tubular objects. In contrast, morpho-Hessian filter (Fig. 54e) keeps the same rough
vessel surface as the original surface rendering, but it also preserves and reconnects the
smaller objects and eliminates the noise. In 54g (in blue) we can see the result obtained
with the seeded region growing of the morpho-Hessian enhanced image and in 54f
the result of the thresholded anisotropic diffusion. In comparison with the anisotropic
diffusion, we can observe that we have performed the reconnection of the object and
got rid of the noise. However, we have also thickened the vessels somewhat. While the
anisotropic diffusion preserved much of the noise, it also preserved the topology of the
object while noticeably smoothing the surface of the vessels.

When looking at the skeletonization results according to the original image (Fig. 54g),
we can see that we joined some small parts of the vessels, due to scale-space issues,
further filtering and segmentation. At the same time, the smaller branches were
produced as an effect of the irregular surface which can be pruned but with this step
we risk to lose some important details. The skeleton transformed into a graph can be
seen in Fig. 54h.

We have compared the vesselness measures of Frangi and Sato for the whole-head
image data. The result of the thresholding of the two can be seen in Fig. 55. Frangi’s
vesselness is less smooth than Sato’s and produces more responses to noise. Still,
we have selected it for further processing as we are interested in reconnecting all the
smallest parts and vesselness can serve effectively as a marker.

5.6.2.2 Arteriovenous malformations segmentation and visualization

As we are interesting in assisting the clinical doctors in the assessment of AVMs, here,
we apply the above procedures to the image with an example such malformation.

The example of AVM can be seen in Fig. 37, indicated by the arrow. However, even
though this image topologically has all the properties of an AVM, it is in reality in this
case a normal feature. The direct apparent connection between arteries and veins is
caused by noise and lack of resolution in the IRM data. We stress that we received
the dataset as a potential AVM with the feature identified by an arrow as in the figure.
Nevertheless, for simplicity, we refer further to this as AVM. In addition, this example
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 54: (a) Sample of an original MRA showing small disconnected vessels at the resolution
limit. (b) Surface rendering of the smallest disconnected vessels. (c) Surface rendering
of the original image (higher threshold than in (b)) and Hessian-based directions.
(d) Regularized vector field. (e) Geodesic reconstruction of the thresholded Frangi’s
vesselness into the morpho-Hessian filtered image. (f) Anisotropic diffusion result as
in [MVN06]. (g) Region growing result and its skeleton. (h) Surface rendering of the
original image and the skeleton of region growing.
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Figure 55: Frangi’s vesselness (yellow) and Sato’s with the same thresholds.

Figure 56: Whole head volume segmentation (on the left). Its skeleton with the AVM (yellow).

shows how difficult it is to distinguish pathological from non-pathological cases from
the clinical data.

We apply our algorithm as described in section 5.5 on the whole-head image data
with the AVM. The image is analysed on scales σ = [0.5− 4]. Its segmentation result
can be seen in Fig. 56 (on the left) with the skeletonization result (on the right in blue).

We have simulated the user-guided selection of AVM by choosing its connected
component of the thresholded vesselness image. The selected AVM can be seen in Fig.
56 together with the skeleton of the whole head.

As our aim is analysis of the AVM, we have performed the grey-level reconstruc-
tion [Vin93b] using the selected connected component of the AVM as marker, and the
result of the whole-volume segmentation as mask with finite number of iterations.
This has provided us with the bigger part of the AVM showing the connection to both
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identified veins and arteries. The result can be seen in Fig. 57 together with the maximal
intensity projections (MIP) of the image.

We have obtained the skeleton of this larger AVM (Fig. 57b). Simulating the procedure
of AVM analysis, we further enlarged the initial AVM to connect it to more vessels
(Fig. 57c) and constructing its skeleton (Fig. 57d). The skeleton helps with viewing the
connections between individual networks and understanding their topology. This was
demonstrated to us when we ran the same procedure by mistake on the other side of
the head and found the same structure, which should have been unsurprising, given
that on this dataset the structure is in fact normal.

To illustrate the usefulness of such visualization methods in clinical applications, we
demonstrate a real example of an AVM. An image of an operated AVM is demonstrated
in Fig. 58a. The darker zone (indicated by the green arrow) is the removed brain tissue
with the vascular structure. However, with time the pathology is persisting and arteries
and veins are still connected. Fig. 58b shows the AVM where it was operated. In Fig.
58c there are pointed with arrows the places of connection of the AVM to veins and
arteries.

5.7 conclusion and discussion

In this chapter, we have applied a combined morpho-Hessian filter for detecting,
enhancing and reconnecting blood vessels. We used the seeded region growing method
in order to segment the vascular structure. Then, we skeletonized this result with
the method by Couprie and Bertrand in order to obtain a 1D representation of the
vascular structure which can help in assessment of vascular disease, more particularly,
arterio-venous malformations.

Our algorithm acts on several levels of the image data: voxel- and neighbourhood-
based filtering - giving the precision of the detection, segmentation based on regions
information - semi-local representation of the image, and vascular tree - global topo-
logical and geometrical representation of the object. At the voxel level, only low-level
appearance hypotheses are exploited with the second order derivatives and morpholog-
ical closing operation. Assumptions of local tubularity are expressed naturally with the
vesselness function, while seeded region growing takes in consideration the intensity
information. The tree skeleton beholds bifurcations and centerline regularity.

The proposed algorithm was evaluated on synthetic image data representing a
vascular bifurcating object with different levels of noise and the real clinical angiography
data. The use of the morpho-Hessian filtering was compared via segmentation and
skeletonization results with anisotropic diffusion filter [MVN06] and initial image.
These evaluations have shown the capacity of the proposed approach to reconnect the
smaller parts of the vessel network with the larger ones while removing noise.

As previously said, most often, clinicians visualize 3D medical data slice by slice.
This, however, does not facilitate the task of understanding the connections of vessels,
which is sometimes very tortuous in 3D. The skeleton representation of vessels used in
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(a) (b)

(c) (d)

Figure 57: (a) MIP and the selected AVM. (b) AVM with its skeleton. (c) AVM with more vessel
connections and (d) their skeleltons.
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(a)

(b)

(c)

Figure 58: (a) MIP and the selected AVM. (b) AVM with its skeleton. (c) AVM with more vessel
connections and (d) their skeleltons.
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this work can help clinicians for vessel following from one slice to another, featuring
the best of two worlds: their usual 2D environment and 1D representation of vessels
presenting within themselves the topology information. By using the asymmetric 1D
isthmus algorithm, we have guaranteed a thin skeleton.

It has to be noticed that some parts of the approach could however be improved.
First, the filter is based on the directions computed from the Hessian matrix, therefore

it strongly relies on the quality of these computed directions. The direction computation
could actually be improved by also considering the first-order derivative of the image
(as in [BP07]) in addition to second derivatives.

Second, our scale-space approach tends to enlarge objects and to reconnect tangential
objects, which especially causes problems in the detection of the smallest objects. This
issue is difficult to address. Using only the smallest scales yields spurious responses
to noise and responds to edges at larger scales. Only using the larger scales is also
insufficient, as smaller objects are likely to disappear altogether. Using a maximal
responses selection from smaller to larger vessels is not satisfying, as it acts like a sum
of all the responses. A more elaborate analysis should be used, like γ-scale fitting, as
proposed by Lindeberg [Lin93]. Alternatively, measure based on both first and second
order derivatives can be used.

The commonly-observed issue of incorrect vesselness measures at bifurcation does
not cause us much problems as we perform direction field regularization and spatially-
variant filtering. However, it il less precise for smaller objects.

As far as the efficiency issue is concerned, a closed-form solutions of Hessian matrix
could be calculated instead of the complete ones, as in [OO09].

Another step forward in facilitating the visualization of vascular trees that was
envisioned in this work and left unfinished for the time being is the vascular tree
hierarchy calculation with such schemes as Strahler [Str57], as presented in section 3.4.1.

Such a hierarchy analysis can also help in handling scales with regard to the topology
of the vascular tree. By knowing the level of the tree, experts know approximately what
vessel size is considered.

Overall, our approach may be seen as a productive combination of linear and non-
linear techniques. We have shown that the proposed segmentation and skeletonization
procedures can significantly aid vascular network visualization and topology study.
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G U I D E W I R E D E T E C T I O N

Low dose X-ray images are used in interventional radiology therapies for observing
insertion of catheters and guidewires in the vascular system of patients. Guidewire
detection assists in such applications as interventional navigation, adaptive visualization
enhancement, guidewire reconstruction and respiratory motion tracking. To detect
guide-wire from such “2D plus time” images is an essential initial step prior to higher
level techniques. The quality of the guidewire enhancement algorithm boosts the
performance of the final application.

In this chapter, we compare the performance of several line enhancement algorithms
for the application of guidewire detection. The purpose of this work is to select a small
number of the most promising 2D line detection methods for medical applications.

6.1 guidewire detection methods

In X-ray images, guide-wires (GW) appear as thin, dark lines. Therefore, their
detection can be done with methods commonly used for thin objects detection (as
presented in chapter 2). The low contrast-to-noise ratio of such images is a common
property, as shown in Fig. 59. On this representative image, one can see tissues
of the heart superimposed to the diaphragm, the lungs, the spine, the ribs and the
interventional devices.

While there exist numerous papers on the subject of line detection in noisy images,
as discussed in chapter 2, there is relatively little literature devoted to the more specific
topic of guidewire tracking, which is rather unexpected given the clinical importance of
endovascular interventions.

In [BNM+
00] a tracking of the guide wire is performed with a spline, and then the

spline position is optimised numerically using Powell’s direction set method. The
optimization is designed to deform the spline so that it has the minimal length, remains
smooth, and matches the guidewire position in the image.

In a similar work, Slabaugh [SKUF07] derived analytic equations to evolve the control
points of a spline in order for the spline to match the image data.

Kunz [KS05] has applied watershed-line method to a steerable filtering result on
guide-wire and synthetic images showing improved SNR values after the filtering.

However, no quantitave evaluation of the guidewire detection has been performed
except a visual one in the aforementioned works.

This comparison of line-detection methods is similar to the work of Ayres [AR05]
where the steerable, line-kernel filter [FA91] and Gabor filters [Chu92] are compared.

105
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Figure 59: Example of a guidewire image (cropped and contrast-enhanced).

Bismuth [BVG09] has compared steerable filter, the Hessian based methods and rotated
line filters.

In this work we compare two morphological filters especially designed for thin objects
detection: rank-opening and path-opening filters, the steerable filter, the structure
tensor. These filters are described in the following sections, the Frangi’s vesselness filter
(described in section 4.1), and our morpho-Hessian filter (as presented in chapter 4).

6.1.1 Steerable filters

Steerable filters are a subgroup of derivative-based methods. One of the best per-
forming classes of such filters are Gaussian derivatives and their linear combinations
[FA91]. They are efficient means to compute filters that can be rotated with a small
computational cost.

These filters allow to calculate a filter response for an arbitrary orientation by linear
combination of the responses of a set of basis filters. The angular selectivity of the filters
is coupled to the number of basis filters, i.e. increased selectivity implies an increased
number of filters and accordingly increased computational effort. So far, the question
of how to reduce this effort e.g. by appropriate subsampling has not been addressed.
Moreover, little is known about how to combine filter responses in order to detect thin
straight or curved lines.

Steerable filters are comprise for applying a filter bank according to directions. This
is not only more efficient, but is also more precise as you do not need to sample the
orientations.
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Let f be a function of R2 to R defining impulse response of filter, Let fθ be th result
of the rotation of f by an angle θ. The filter f is said to be steerable [FA91] if fθ for any
θ and can be expressed as a linear combination of fθi with 0 < i < N:

fθ =
∑
i

ωi(θ).fθi (6.1)

As a result convolving with fθ for various θ can be speeded up. Moreover the value
of θ maximizing the response to ftheta can be derived analitically.

A large class of filters can be steered, 2D directional gaussian derivatives as well
as circular windows times a polynomial (in this case a separable steering basis can
be built). Freeman defined the conditions for a filter to be steerable and proposed
techniques to compute the basis filters and the coefficients. He also studied separable
basis for steerable filters. His work encompasses the computation of second derivatives
of Gaussian. The Hessian filter is a particular case of steerable filters.

Several teams designed and used steerable filters for elongated structure detection
[JU04]. Jacob [JU04] designed a family of oriented filters optimized according to Canny
like criteria for the detection of ridges. The steerable filter approach makes sense when
the number of basis filters is reasonable. However, when one attempts to increase the
SNR of the filter, one must make the filter as elongated as possible, at the cost of a higher
number of basis filters. Therefore the steerable approach can loose its efficiency when
one wants to design very elongated filters. It is still important to keep in mind that a
large class of steerable filters can be decomposed on separable basis that is favorable to
efficent implementation.

Among the steerable filters, we used the work of Jacob [JU04]. This implementation
is based on the optimization of a Canny-like criteria. We use the fourth-order Gaussian
derivatives with the parameters M = 4, µ = 1/4 and 8 separable filtres proposed
in [JU04] as a more anisotropic filter (in comparisson for instance with secon-order
derivatives) with the highest theoretical SNR. See an illustration of second-order and
fourth-order derivative filter detectors in Fig. 60.

6.1.2 Parametric opening

An opening and closing morphological operators were proposed to calculate local
orientation information for, respectively, bright and dark structures by Soille in 1998

[ST98].
Denoting by f a grey-scale image, γ the morphological opening, and Lα,λ is a line

segment defined along Bresenham lines of length λ and orientation α, the orientation
of a bright object at a give pixel x can be defined as:

Dirλ(f)(x) = {αi | γLαi,λ
(f)(x) > γLαj,λ

(f)(x), ∀αi 6= αj}. (6.2)



108 guidewire detection

Figure 60: Ridge detectors with second-order (left) and fourth-order (right) derivatives.

The bright-object directional signature at a given pixel can be obtained by plotting the
normalized opened values versus the orientation of the line segment. This signature
can then be used to detect crossing lines, flat zones, etc. Then, the following quantities
are defined for each point x of the input image f:

Maxλ(f)(x) = {γLαi,λ
(f)(x) | ∀αi 6= αj, γLαi,λ

(f)(x) > γLαj,λ
(f)(x)},

Minλ(f)(x) = {γLαi,λ
(f)(x) | ∀αi 6= αj, γLαi,λ

(f)(x) 6 γLαj,λ
(f)(x)},

Gdirλ(f)(x) = Maxλ(f)(x) −Minλ(f)(x).

Morphological openings and closings are sensitive to noisy pixels. They remove all
foreground pixels that cannot be covered by the structuring element. A less restrictive
operation can be performed by accepting partial fits, i.e., at least k pixels of the
structuring element that have to fit the foreground opening. It is equivalent to the
union of morphological openings by the structuring elements Bi which are obtained by
removing λ− k pixels to a given structuring element B containing λ pixels. A parametric
opening is an algebraic opening denoted as:

γB,k = ∨i{γBi ∪ {p1, . . . , pλ−k} = B}, (6.3)

where λ > k. B is a line segment of k pixels.

6.1.2.1 Rank-max opening

A fast implementation is possible as the parametric opening corresponds to a rank-
max opening [Ron88a, Hei96], which is a point-wise minimum between the original
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Figure 61: Illustration of noise sensitivity of the local orientation operator. The top image is the
original image. The bottom left image is obtained using the local orientation operator
with morphological openings. The bottom right image is obtained using a parametric
opening with a rank parameter of 20%, which makes it less noise-sensitive. (Source:
[Soi98].)

image f and the dilation by a structuring element B of its rank filtering rho with a mask
equal to B and a rank equal to k:

γB,k = f∧ δB,ρB,k (6.4)

When computing openings (or closings), the non-translation-invariant recursive
implementation of min/max filters can be combined so as to result in a TI implementa-
tion. An example of parametric openings with a rank parameter controlling the noise
sensitivity is illustrated in Figure 61.

A detailed discussion about rank-max filters and their relationships with other filters
can be found in [Soi02].

The choice of the k value in the rank morphological filters should be driven by
the amount of noise corrupting the local connectivity of the oriented image patterns.
The orientation resolution is constrained by the length of these patterns and can be
automatically determined from a multi-scale approach, the scale being defined by the
length L of the line segments.
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6.1.3 Path openings

Path openings and closings can isolate oriented and linear structures that are of length
at least Lmin and that are respectively brighter or darker than their local neighbourhood.
To perform this, these filters assign to each pixel the highest (lowest, respectively) grey
level where a path L is formed. Within mathematical morphology theory, this task is
based on the study of the connectivity of the pixels belonging to one one given path
[HBT05].

To detect thin elongated object, the morphological approach consists of using narrow
structuring elements and applying them in all possible (or many) angles. Assuming
the object has a bright intensity compared to darker surroundings, the Supremum of all
openings obtained by this SE application the linear object is preserved and all other are
removed. When using a rather long structuring element, the disconnected (seemingly)
parts of an elongated object will be reconnected.

Let E be a discrete 2D image, a subset of Z2. We assume E has an adjancency relation
x→ y meaning that there is a directed edge going from x to y.

With this adjacency relation, the dilation can be defined as δ({x}) = {y ∈ E, x→ y}.
The L-tuple a = (a1, a2, . . . , aL) is called a δ-path of length L if ak1 ∈ δ({ak}) for

k = 1, 2, . . . , L− 1.
Given a path a ∈ E, σ(a) denotes the set of its elements, i.e. : σ(a1, a2, . . . , aL) =

{a1, a2, . . . , aL}.
The set of all δ-paths of length L is denoted by ΠL, and the set of δ-paths of length L

contained in a subset X of E is denoted by ΠL(X).
An opening operator αL(X) can be defined as the union of all δ-paths of length L

contained in X: αL(X) = ∪{σ(a), a ∈ ΠL(X)}

L can be considered as a structuring element size with a flexible (to some extent)
shape. The path opening αL is the Supremum of the morphological opening using these
paths of size L as structuring elements.

6.1.3.1 Grey-level image decomposition

The binary operator defined above can be extended for grey-level images by replacing
the union with a supremum. The linear-time recursive decomposition of the operator
αL has been proposed by Heijmans [HBT05].

By the threshold decomposition, the grey-scale image can be processed with binary
morphological operators.

Here, binary images are redefined as functions of the form b : E→ {false, true}. Then,
given a grey-scale image ginG, a threshold operator Tt : G→ B with threshold t, and a
binary opening γB : B→ B, there exists a grey-scale opening γG : G→ G such that for
all thresholds t, Tt ◦ γG = γB ◦ Tt, where ◦ is the composition operator.

This grey-scale opening may be constructed explicitly by "stacking" the results of the
binary opening applied to each threshold of the original image. This stacking assigns
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40 Efficient path openings and closings

Input Noisy top-hat

Area opening Path opening

Figure 3. Electron micrograph of glass fibres: to detect the small thin fibres in the bottom of
the image, a white top-hat is useful but noisy. When this top-hat image is filtered by an area
opening some compact noise remain while a path opening yields a better result.

openings by lines in the latter algorithm are all running in constant time irre-
spective of L, but for larger Lmore orientations need to be explored. Note also
that the presented algorithm for the supremum of opening by lines is not the
translation-invariant implementation, which would be slower still. The area
opening algorithm seems to converge to a constant-time algorithm with low
constant. The area parameter was simply L, although k × L with k small and
constant (e.g: 3) could have been chosen without significantly affecting the
result.
Memory demands for these algorithms are all low except the recursive path

opening implementation which requires an amount of memory proportional to
LN , with N the number of pixels in the image.
We observe that the area opening is the fastest algorithm, but that the pre-

sented path opening algorithm comes second and significantly faster than the
other two algorithms for most useful values of L.

Figure 62: Electron micrograph of glass fibres: to detect the small thin fibres in the bottom of
the image, a white top-hat is useful but noisy. When this top-hat image is filtered by
an area opening some compact noise remains while a path opening gives a better
result. (Source: [AT05].)

to ach pixel p the highest threshold t for which the binary opening γB ◦ Tt(g) remains
true.

For conciseness, as in [AT05], we describe only North-South paths. Then, for a binary
image b for each pixel p two values are stored: the length λ− [p] (not including p) fo the
longest path travelling from pixel p, and the length λ+ [p] of the longest path travelling
downward from pixel p. Then, the length of the longest path passing through pixel p
(b [p] = true) is λ[p] = λ− [p]+λ [p] + 1. If b [p] = false, then λ [p] = 0. More details on
the recursive compilation are described in [HBT05, AT05].

For grey-scale images, the path opening transforms for each threshold, the active
pixels whose maximal path length λ [p] has decreased store a point (t, λ [p]) in a linked
list. This list is a monotonically decreasing in t and monotonically decreasing in λ [p].
Once computed, it is possible to query this structure with any desired path length to
extract the associated grey-scale path opening.

This algorithm can be computed in O(NlogL). The average memory required is
O(NlogL).

An example of a path opening and, for comparison, an area opening is illustrated in
Fig.62

In order for path openings and closings to be useful in a context where features of
interest are arbitrarily oriented, paths openings and closing should be constructed in
the usual way through supremums and infimums (resp.), in the same way as with
straight-line structuring elements. However, in order to achieve acceptable levels of
isotropy with path operators, far fewer compositions are necessary.
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Paths openings with increasing L are also increasingly sensitive to noise, as long
paths are more likely to contain noisy pixels. In order to decrease the sensitivity to
noise, it is useful to allow a few pixels to be ignored along the structuring paths. For
this, the rank-max opening, described in 6.1.2.1, can be helpful. In practice, there does
not exist at present a way to efficiently compute the median over a family of paths, and
so a decomposition of paths openings like Eq. 6.4 hasn’t yet been proposed, however,
Appleton in [AT05] did propose so-called incomplete paths, which have the same effect.
However, efficiency and memory requirements are proportional to k, the number of
“ignored” pixels in the paths.

6.1.4 Structure tensor

Another popular feature detection tool in image processing is the structure tensor.
Traditional structure tensor 6.5 [FG87] is obtained by calculating the first order Gaussian
derivatives and in 2D can be expressed as ∇f = ((∂xGσ) ∗ f, (∂yGσ) ∗ f)T . By taking the
product U(x) = ∇f(x)∇f(x)T a 2× 2 matrix for each pixel with one positive eigenvalue
λ1(x) =‖ ∇f(x) ‖, with corresponding eigenvector ∇f(x)/ ‖ ∇f(x) ‖ and one zero
eigenvalue. The tensor field U is then convolved with an isotropic Gaussian kernel with
scale ρ, W = U ∗Gρ. The resulting tensor field containing richer information on edges
and junctions is defined as:

Gp ∗ (∇Uσ∇UTσ) = Gp ∗
(

(Uσ)x(Uσ)x (Uσ)x(Uσ)y

(Uσ)y(Uσ)x (Uσ)y(Uσ)y

)
(6.5)

The eigenvectors of this structural-analysis tensor at a position x show the two principal
directions of the gradient vectors in the neighbourhood of this point, and the eigenvalues
represent its deviation distribution in the gradient space. σ denotes the area of study
the distribution of intensity gradients.

By denoting eigenvalues with λ1 > λ2, the principal direction of the line-like structure
is indicated by the corresponding eigenvector e1. We evaluate line-likeliness as in
[BHdB94, DIH02]:

S(x, y) =
λ1 − λ2
λ1 + λ2

(6.6)

This measure function acts like a probability function, meaning that when S(x, y) ≈ 1,
the corresponding pixels belongs to a line-like structure. Conversely, its probability of
affiliation to such a structure decreases as S(x, y)→ 0.

As for the second order derivative vesselness functions, structure tensor as well can
be computed at multiple scales.

Smax(x, y) = max(S(x, y, σ)) with σmin 6 σ 6 σmax

The final segmentation can be obtained by simple or hysteresis thresholding as in
Section 4.1.3.
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6.2 guidewire detection results

For diagnostic purposes, for the X-Ray guide-wire images, the critical importance is
on accurate positioning of the guide wire and the catheter with respect to the vascular
network, patient motion and the low signal to noise ratio of the images. The limited
quality of the image is defined by the constraint of low dose used in fluoroscopy in
order to minimize the radiation exposure of the patient and radiologist.

Because of the physics of the X-Rays, the clinical images are transparent. In these im-
ages, due to the transparency effect, the tissues of heart superimposed to the diaphragm,
the lungs, the spine, the ribs and the interventional devices can be seen. Moreover,
the images are dominated by various sources of quantum noise. In the darker regions
of the image (where the signal is weak), the electronic noise is significant, which can
be assumed Gaussian. Everywhere else, the dominant source of noise is the X-Ray
photon shot noise, which is accurately modelled as a Poisson process. To simplify the
noise pattern, an image transform was applied called a variance stabilization transform
(similar to the Anscombe transform). After this step, the noise becomes Additive White
Gaussian, which is stationary.

Here, we have used clinical X-ray images of guidewires with a resolution of 1000×
1000 pixels. For the current study, we have chosen three images corresponding to three
levels of increasing difficulty (shown in the first line of Fig. 67) for illustration.

6.2.1 Evaluation framework

In order to evaluate the performance of the above-describes methods, ground truth
was provided by manual delineation by an independent human expert operator.

The ground truth for these images was segmented by the medical specialists and was
divided into two parts: 1) the main one and the easier to detect, and 2) the secondary
one, on the extremities of the guidewire, often present in the high-noise and contrast-
corrupted parts. The main part of the guidewire is the most important and is already
sufficiently difficult to segment, therefore we have chosen to concentrate on this section
for our evaluation.

Based on the ground truth of these images, Receiver Operating Characteristics (ROC)
curves [Met78] have been computed to assess the detection performance of the methods.
The ROC curve plots the probability of true positive (TP) detections versus the probability
of false positives (FP) against the ground truth as a function of the detection threshold.
Pixels above certain threshold along the ground truth count as detections; others are
false positives.

The ROC curve is constructed from false positive rate (FPR) and true positive rate (TPR)
where each value of the curve is accuracy as in equation 5.1.

However, due to the thinness of guide wires and presence of many other similar
objects, we have chosen to dilate the ground truth of the object and mask the non-
relevant part of the image for the preliminary evaluation of the methods. The ground
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Ground
truth

N

Masked

P

Figure 63: Ground truth (GT): dark green - provided GT, light green - dilated (diameter of the
balls structuring element is 7 pixels) GT used as a true positive here; blue - dilated
GT (size 20 pixels) used as a negative. The rest of the image is ignored.

truth was dilated with a near-isotropic polygonal structuring element of radius 10 in
order to create the new ground truth, pixels of the resultant image present in this zone
are marked as true positives. To create the mask, the ground truth is dilated with a
polygonal SE of radius 40, which means that resulting pixels being in this zone will be
considered as false positives, and pixels outside will be ignored. The schematic view of
the ground truth is shown in Fig. 63.

All the methods were tested on three images: Image 1, Image 2, Image 3.
The path opening and rank-opening filters have been tested with structuring elements

of length 17, 31 and 61. They have also been tested in their original formulation and
integrating the noise sensitivity value k that should compensate the amount of noise
corrupting the local connectivity of the oriented objects.

Both structure tensor and Frangi’s vesselness was tested at different fixed scales
σ = 1, 2, 3, 4 and the multi-scale filtering with σ ∈ [1− 4] showed the best performance.
Frangi’s vesselness sensitivity parameters were: α = 0.25, β = 0.25 and γ = 5.

We have also tested our morpho-Hessian filter with the same parameters as for
Frangi’s vesselness. However, as it is the enhancement filter, producing the image
similar to the original one only with the enhanced intensities at the elongated objects,
we had to apply another method in order to detect these objects. A natural choice was
to use Frangi’s vesselness detection scheme again with the same parameters.

The final results of these filters are grey-scale images with maximal values assigned
to the detected elongated objects. Therefore, the detection results were evaluated after
the thresholding of these results. In addition, the methods were tested with hysteresis
thresholding in order to improve the results by the neighbouring responses. The
threshold ranges are not the same from one method to another.
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Figure 64: Graph of results for three guidewire images.
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Figure 65: Graph of the best results obtained with rank-opening for three guidewire images.
(Points in red are the best results.)

6.2.2 Results

The selection of the best performing filters according to their accuracies as in Eq. 5.1
is shown in plot 64

1. According to this graph, the largest bar represents the best result
(max = 3), while the possible accuracy result for one image is between 0 and 1.

The best result with the ROC accuracy measure achieved with the rank-opening (SE
length is 31 pxls, width is 7 pxls, noise tolerance r = 10%) can be seen in Figure 65

for Image 1. The best segmentation results for each method and image are shown in
Figure 67.

In general, we can note that we have two types of challenges:

1. For each method its parameters are indicated, e.g. "Rank-opening SE = 317, r = 0.1" means that the
used structuring element is of length 31 and width 7 and r is the noise tolerance parameter.
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Figure 66: ROC curves of accuracies of hysteresis thresholded results of a) Frangi’s vesselness ,
b) Frangi’s vesselness on morpho-Hessian filtered image. (Points in red are the best
results.)

– ability to detect the linear structure on a flat noisy background
– ability to ignore shorter elongated structures, blobs and other noise.
The morphological path opening and rank filters were successful on both counts. We

can explain their success on these noisy images by their strongly elongated SE. Such long
filters and integration of the noise sensitivity parameter allow to significantly reduce
the influence of noise along the structures of interest and permitting the reconnection
of the guidewire parts.

For longer SE (e.g. 31, 61), the noise tolerance parameter for path opening was set
lower than for rank-opening for speed-up reasons.

Scale-space methods as vesselness and structure tensor cannot be tuned in the same
manner, as the choice of the scale depends on the width of the object and not the length
in order to measure the contrast across the object. Moreover, the image is blurred on this
scale, so that a too large scale would erase the important parts. However, the Frangi’s
vesselness performs well at detecting the object, but produces many false positives (see
its ROC curve in Fig. 66a) 2. However, those objects are also thin elongated structures.
Moreover, it detects objects with higher curvatures than path opening methods. These
properties can be of interest in other applications, where mostly all the objects with
high curvature are prevalent.

2. Plots in this figure have more points than in Fig. 65 due to the fact that the thresholding range for
vesselness is bigger and this is a hysteresis thresholding.
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Morpho-Hessian filter has not given good accuracy results (Fig. 66b), however, when
observing the ROC curve, it has improved the TP rate in comparison with Frangi’s
performance. But it has also added some false negatives, which can be explained
firstly by incorrectly detected objects directions (often orthogonal to the principal one),
which in itself is due to the highly noise-corrupted nature of the image. Then, the
morphological closing enlarged the object in width. Afterwards, by applying the second
vesselness filter for object’s detection even more smoothness was added to the image,
which increased the FPR.

Finally, in our implementation, the steerable filters do not give good results at all,
due to not very anisotropic filter and no additional blobness characteristic as in Frangi’s
vesselness.

On the tested images, hysteresis thresholding has improved only about 1− 2% for
morphological methods and steerable filter in comparison with simple thresholding.
Against the improvement of about 10− 20% for vesselness and structure tensor. This
can be explained by the fact that the morphological opening detected only the longest
elongated object, while other methods detected other present thin objects which are not
related to the GW.

6.3 conclusion and discussion

Through ROC curve accuracy detection assessment we demonstrated that the mor-
phological rank- and path-opening filters are the most suited for detecting low SNR
and low curvature devices. On the other hand, the second order Gaussian derivative
filters are more robust to strong curvature of the devices. While the structure tensor
and steerable filter approaches showed less interesting detection capabilities.

Moreover, morpho-Hessian filter presents a limitation of its own in that the artefacts
present in the original data are not suppressed. If these artefacts have an apparent
structure similar to a plane or line, they will be enhanced as well. This is the case
with transparency and motion artefacts, both of which create ghost artefacts. There,
this method is not well suited for the enhancement of such guidewire images as the
directions detected by the Hessian filter were disturbed by the presence of noise and
due to the inherently local nature of the Hessian filter. The results can be improved if
the directions are detected with some other filter, i.e. as described in section 6.1.2.

For steerable filters, beyond the simple idea of having an elongated filter to reach
high SNR, one can go further in the idea of combining responses of fast filters in a
local neighborhood. Ideally, one would like to be able to combine responses of filters to
re-inforce each other, for instance along all possible "admissible" curves and retain at
each pixel the most relevant one. Local minimal path, path opening and tensor voting
all tend to do this.

There is a wide scope for further work on this topic, as it has much applicability and
relevance. As real-time constraints are imposing that only efficient filters be tested, in
the future more complex filters should be of interest, in particular the local shortest
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Figure 67: 1st line: the original guide-wire images (cropped and contrast-enhanced) and their
corresponding best segmentation results. 2nd line: rank-opening, 3rd line: path
opening, 4th line: Frangi’s vesselness with hysteresis thresholding, 5th line: structure
tensor, 6th line: morpho-Hessian filter, and 7th line: steerable filter.
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Figure 67: 1st line: the original guide-wire images (cropped and contrast-enhanced) and their
corresponding best segmentation results. 2nd line: rank-opening, 3rd line: path
opening, 4th line: Frangi’s vesselness with hysteresis thresholding, 5th line: structure
tensor, 6th line: morpho-Hessian filter, and 7th line: steerable filter.
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paths of Vincent [Vin98]. Here, we were mainly interested in detection of one part of the
guidewire, but segmentation of the whole of it is another interesting and challenging
issue. We have performed experiments based on the morpho-Hessian enhancement
results together with the fast-marching method [Set99] and skeletonization, where
we managed to segment the whole image without much of the noise response. This
approach is planned to be extensively tested for an article in progress on our real-image
database containing of 25 images with 100 datasets temporal image sequences per
image and a database of synthetic images simulating the guidewire and noise.

6.4 acknowledgements

This work is a contribution for an article in progress together with the following
authors: Tankyevych O., Bismuth V., Talbot H., and Dokladal P. I would especially like
to thank Vincent Bismuth for the provided images, materials and steerable filter result
that were used in this thesis.



7
C O N C L U S I O N A N D P E R S P E C T I V E S

To emphasize only the beautiful
seems to me to be like a mathematical system

that only concerns itself with positive numbers.

— Paul Klee

7.1 contributions

In this thesis, we discussed the thin objects analysis challenges and their detection
methods. More particularly, applied for vascular image analysis medical applications
with the main purpose of aiding clinicians in image studies by providing enhanced,
more precise data and its visualization for medical decisions. This work has involved
multi-disciplinary communication, which helped us to establish stronger links and gain
better understanding of important and relevant medical problems.

A first contribution of this thesis is the review of the current methods for thin
objects analysis. We have discussed the methods of filtering and segmentation of such
objects categorised in mathematical frameworks. We have as well outlined some of the
new successful combined methods and suggested that the hybrid strategies are the
most promising ones. Such a study helped us in our further choice of methods for
implementation and tests.

In the following chapter (Chapter 4), we introduced the hybrid morpho-Hessian
method based on the second-order derivatives Gaussian filter and spatially-variant
morphological operations for detecting, enhancing and reconnecting such objects along
with a segmentation and skeletonization strategies.

In Chapter 5, we have then applied this method for the analysis of cerebral vasculature
and arterio-venous malformations from 3D magnetic resonance angiography imaging.

Our algorithm acts at several levels of the image data: voxel- and neighbourhood-
based filtering - giving the precision of the detection, segmentation based on regions
information - semi-local representation of the image, and vascular tree - global topo-
logical and geometrical representation of the object. At the voxel level, only low-level
appearance hypotheses are assumed and exploited with the second order derivatives
and morphological closing operation. Assumptions of local tubularity are expressed
naturally with the vesselness function, while seeded region growing takes in considera-
tion the intensity information. The tree skeleton contains and represents bifurcations
and centerline regularity.

121
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The proposed algorithm was evaluated on synthetic image data representing a vascu-
lar bifurcating object with different levels of noise, as well as real clinical angiography
data. We have also compared two vesselness functions performances: Sato’s and
Frangi’s. The use of the morpho-Hessian filtering was compared via segmentation
and skeletonization results with anisotropic diffusion filter [MVN06] and initial image.
These evaluations have shown the capacity of the proposed approach to reconnect the
smaller parts of the vessel network with the larger ones while removing the noise.

In addition, in Chapter 6, we performed thin-objects detection methods evaluation
for an application of guidewire detection from highly noised 2D X-ray interventional
images. We compared two morphological filters especially designed for thin objects
detection: rank-opening and path-opening filters, together with well-established, more
classical approaches: the steerable filter and the structure tensor. Through ROC curve
accuracy detection assessment we demonstrated that the morphological rank- and path-
opening filters are the most suited for detecting low SNR and low curvature devices. On
the other hand, the second order Gaussian derivative filters are more robust to strong
curvature of the devices. While the structure tensor and steerable filter approaches
showed less interesting detection capabilities.

While this work has not provided a complete software package, it has nevertheless
allowed us to propose performing and promising procedures for a future clinical tool.
Overall, this approach may be seen as a productive combination of linear and non-
linear techniques. We have shown that the proposed segmentation and skeletonization
procedures can aid vascular network visualization and topology study.

During this work, we made careful methodological choices in order to obtain efficient
and novel filtering and segmentation methods. As described in chapter 8, we have
implemented or used the tools with the consideration of its reusability and efficiency.
We have developed a specialised testing environment and made extensive tests on the
synthetic and clinical data to obtain better knowledge on the performance of the used
methods according to quantitative and qualitative evaluations.

7.2 perspectives

In the respective discussions of each chapter, we discussed various theoretical and
practical possibilities for the improvement of our approaches.

First, for the morpho-Hessian filter. As it is based on the directions computed from
the Hessian matrix, its performance strongly relies on the quality of the computed
directions. The direction computation could actually be improved by also considering
the first-order derivative of the image (as in [BP07]). More recent simpler models were
introduced in works by Agam [AAIW05] with a filter model which is based on the
correlation matrix of the regularized gradient vectors (first-order derivatives).

Then, the scale-space approach. We have observed that it tends to enlarge objects and
to reconnect tangential objects, which especially causes problems in the detection of the
smallest objects. This issue is difficult to address by using only the smallest scales, as
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Fig. 6. Model-based vessel visualizations with different settings for the smoothing of the vessel
diameter. The vessel diameter is color-coded. In the left image, no smoothing is applied which
results in obvious discontinuities in the periphery. These discontinuities are due to the limited
spatial resolution of the underlying data.

such a system selects an object in a list via its name and the system should provide
feedback emphasizing this object. Another obvious reason for the need of 3d emphasis
techniques is due to the integration of 2d and 3d views (recall Sect. 4). After an object
is selected in a 2d view it should be highlighted in the 3d view to support the connec-
tion between the two visualizations.
The emphasis of objects in 3d visualizations is difficult by its very nature. From the
current viewing position objects might be too small to be recognizable or they might
be occluded by other objects. In medical visualizations these problems are prevalent:
objects are often concave, are at least partly occluded by others. Therefore simple em-
phasis techniques such as the use of a special colour for highlighted objects or blinking
do not work well. Emphasis techniques therefore should ensure the visibility of the in-
volved objects (see [18]). In principle, two strategies are possible to achieve visibility:

! the camera position might be changed to make the desired object visible or

! visualization parameters of occluding objects might be adapted to allow to
look through them.

The first strategy, in general, cannot be recommended. A radical change of the camera
position, not initiated by the user, is often not comfortable because the user has to
interpret this change and perhaps dislikes the chosen perspective. Unnatural viewing
directions may result. The change of visualization parameters, the second strategy, can
be implemented by using transparency: occluding objects are rendered semitranspa-
rently to reveal objects behind. This is a viable approach, however showing apparent
drawbacks. If several objects are in front of the object to be emphasized all occluding
objects must be strongly transparent with the result that they are almost unrecog-
nizable (see Fig. 7). As an alternative, fast silhouette generation algorithms might be
used to enhance the visualization of the transparently rendered objects. For the sake of
brevity, emphasis techniques could only be touched here. There is a variety of empha-
sis techniques suitable for medical visualization, including those based on the shadow
generation for selected objects (see [15] for a review on such techniques).

Figure 68: Model-based vessel visualizations with different settings for the smoothing of the
vessel. The vessel diameter is color-coded. In the left image, no smoothing is applied
which results in obvious discontinuities in the periphery, which are due to the limited
spatial resolution of the underlying data (source: [PP03]).

this gives spurious responses to noise and responds to edges of larger scales. Using
only the larger scales is also insufficient, as we will likely lose smaller objects. Maximal
responses selection from smaller to larger vessels is not satisfying either, as it acts like a
sum of all the responses. A more elaborate analysis should be used, like γ-scale fitting,
as proposed by Lindeberg [Lin93], or perhaps measure both based on first and second
order derivatives.

For the efficiency issue, the closed-form solutions of Hessian matrix could be calcu-
lated instead of the complete ones, as in [OO09].

When it comes to segmentation, many other techniques discussed in Chapter 2 could
be tested. One of the ways that interests us for future research is a user-guided segmen-
tation, for instance using tracking. This is especially interesting as the unavailability of
manual intervention can also introduce computational error.

The methods based on the assumption that the cross-section of vascular structures is
circular are, of course, too simplified. Moreover, they are not appropriate in vascular
diseases diagnosis. However, for many therapy planning tasks it is crucial to understand
the spatial relation between pathological structures and adjacent vascular structures.
So, it is desirable to be able to choose the visulization fitting the real image data
or being more idealized, as it is illustrated in Figure 68. This kind of fitting could
also compensate for the irregular surface resuts that our morpho-Hessian shows in
comparison with the diffusion filter.

Another step forward can be in facilitating the visualization of vascular trees that was
envisioned in this work and unaccomplished at the time of writing, is the vascular tree
hierarchy calculation with such schemes as Strahler [Str57], as presented in section 3.4.1.

Such a hierarchy analysis can also help in the handling of scales with regard to
the topology of the vascular tree. By knowing the level of the tree, experts know
approximately what size is expected.

To exploit the skeleton information better, we can extract measurements such as
vessel diameter, length, density, torutosity, etc. that could be useful for example in
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evaluation of pathology severity. Generally, automated vessel size measurements are
preferred over visual interpretation because of the inter- and intra-observer variability.

Another way to consider computer-aided analysis of 3D angiographic images is to
provide to the human experts a base of high-level anatomical knowledge which can
possibly be involved in more specific analysis procedures such as vessel labeling. Such
knowledge can in particular be embedded in vascular atlases which are devoted to model
qualitative and/or quantitative information related to vessels.

The digital image working environment in the clinical context becomes more complex.
As physical and psychological problems such as carpal-tunnel syndrome, visual and
physical fatigue become more prevalent, imaging systems need to be evaluated not only
with respect to diagnostic accuracy, but also toward the totality of perceptual, cognitive,
and environmental factors that contribute to the diagnostic decision-making process
[KJ08].

For the guide-wire detection application, there is a wide scope for further work on
this topic, as it has much applicability and relevance. As real-time constraints are
imposing that only efficient filters be tested, in the future more complex filters should
be of interest, in particular the local shortest paths of Vincent [Vin98]. Our approach is
planned to be extensively tested for an article in progress on our real-image database
containing of 25 images with 100 datasets temporal image sequences per image and a
database of synthetic images simulating the guidewire and noise.
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D E V E L O P M E N T A N D T E S T E N V I R O N M E N T

During this thesis work there have been used many university libraries, public and
commercial tools.

The derivative-based and morphological parts of the morpho-Hessian filter were
written with the ITK library based on the available implementations of filters of Frangi’s
and Sato’s multi-scale filters. Also, the code of the anisotropic diffusion filter [EIBA07]
was used within this library.

The regularization of the direction field, the region growing, the structure tensor were
written by Hugues Talbot within the library Voir.

The skeletonization procedures and numerous other morphological and arithmetic
image analysis functions were performed with the library Pink (author - Michel Cou-
prie). Other skeletonization procedures based on cubical complexes were used with the
library of John Chaussard.

The test environment is written with the Bash code with the generous and thorough
help of Hugues Talbot.

The results of steerable filters were obtained by Vincent Bismuth.
The automatic performance evaluation of the method is written with R language also

with help of Hugues Talbot.
The specialised visualization modules for Avizo, Amira were kindly provided by

Erwan and Nicolas Combaret.
Other free and commercial programs used for the development and visualization

programs are:

1. Avizo, Amira

2. Image J, FiJi

3. ITK Snap [YPCH+
06]
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