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Abstra
tThis work fo
uses on the resear
h and development of e�
ient algorithms ofappli
ation of lo
al grammars (Gross, 1997), taking as referen
e those of the
urrently existent open-sour
e systems: Unitex's top-down parser (Paumieret al., 2009) and Outilex's Earley-like parser (Blan
 and Constant, 2006a).Lo
al grammars are a �nite-state based formalism for the representationof natural language grammars. Moreover, lo
al grammars are a model for the
onstru
tion of fully s
aled and a

urate des
riptions of the syntax of naturallanguages by means of systemati
 observation and methodi
al a

umulationof data. The adequa
y of lo
al grammars for this task has been provedby multiple works (Ro
he and S
habes, 1997; Català and Baptista, 2007;Martineau et al., 2007; Laporte et al., 2008a,b).Due to the ambiguous nature of natural languages, and the parti
ularproperties of lo
al grammars, 
lassi
 parsing algorithms su
h as LR (Knuth,1965), CYK's (Co
ke and S
hwartz, 1970; Younger, 1967; Kasami, 1965)and Tomita's (1987) are either not viable in the 
ontext of this work orrequire non-trivial adaptations. Top-down and Earley parsers are possiblealternatives, though they have an exponential worst-
ase 
ost for the 
ase oflo
al grammars.We have �rst 
on
eived an algorithm of appli
ation of lo
al grammarshaving a polynomial worst-
ase 
ost (Sastre, 2009). Furthermore, we have
on
eived other optimizations whi
h in
rease the e�
ien
y of the algorithmfor general 
ases, namely the e�
ient management of sets of elements andsequen
es. We have implemented our algorithm and those of the Unitexand Outilex systems with the same tools in order to test them under thesame 
onditions. Moreover, we have implemented di�erent versions of ea
halgorithm, using either our 
ustom set data stru
tures or those in
luded inGNU's implementation of the C++ Standard Template Library (STL).1 We1A detailed des
ription of the STL 
an be found in Josuttis (1999). GNU's implemen-iii



ivhave 
ompared the performan
e of the di�erent algorithms and algorithmversions in the 
ontext of an industrial natural language appli
ation providedby the enterprise Telefóni
a I+D: 2 extending the understanding 
apabilities ofa 
hatterbot that provides mobile servi
es, su
h as sending SMSs to mobilephones as well as games and other digital 
ontents (Sastre et al., 2009).Conversation with the 
hatterbot is held in Spanish by means of Mi
rosoft'sWindows Live Messenger.3 In spite of the limited domain and the simpli
ityof the applied grammars, exe
ution times of our parsing algorithm 
oupledwith our 
ustom implementation of sets were lower. Thanks to the improvedasymptoti
 
ost of our algorithm, exe
ution times for the 
ase of 
omplexand large 
overage grammars 
an be expe
ted to be 
onsiderably lower thanthose of the Unitex and Outilex algorithms.

tation of this library is being distributed along with GNU's Compiler Colle
tion: http://g

.gnu.org/2http://www.tid.es/en3http://www.msn.
om

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.tid.es/en
http://www.msn.com


RésuméNotre travail porte sur le développement d'algorithmes performants d'appli
a-tion de grammaires lo
ales (Gross, 1997), en prenant 
omme référen
e 
euxdes logi
iels libres existants: l'analyseur syntaxique des
endant d'Unitex (Pau-mier et al., 2009) et l'analyseur syntaxique à la Earley d'Outilex (Blan
 andConstant, 2006a).Les grammaires lo
ales sont un formalisme de représentation de la syntaxedes langues naturelles basé sur les automates �nis. Les grammaires lo
alessont un modèle de 
onstru
tion de des
riptions pré
ises et à grande é
helle dela syntaxe des langues naturelles par le biais de l'observation systématique etl'a

umulation méthodique de données. L'adéquation des grammaires lo
alespour 
ette tâ
he a été testé à l'o

asion de nombreux travaux (Ro
he andS
habes, 1997; Català and Baptista, 2007; Martineau et al., 2007; Laporteet al., 2008a,b).À 
ause de la nature ambiguë des langues naturelles et des propriétésdes grammaires lo
ales, les algorithmes 
lassiques d'analyse syntaxique telsque LR (Knuth, 1965), CYK (Co
ke and S
hwartz, 1970; Younger, 1967;Kasami, 1965) et Tomita (1987) ne peuvent pas être utilisés dans le 
ontextede 
e travail ou ont besoin d'adaptations non triviaux. Les analyseurs top-down et Earley sont des alternatives possibles ; 
ependant, ils ont des 
oûtsasymptotiques exponentiels pour le 
as des grammaires lo
ales.Nous avons d'abord 
onçu un algorithme d'appli
ation de grammaires lo-
ales ave
 un 
oût polynomial dans le pire des 
as (Sastre, 2009). Ensuite,nous avons 
onçu des stru
tures de donnés performantes pour la représen-tation d'ensembles d'éléments et de séquen
es. Elles ont permis d'améliorerla vitesse de notre algorithme dans le 
as général. Nous avons mis en ÷uvrenotre algorithme et 
eux des systèmes Unitex et Outilex ave
 les mêmes ou-tils a�n de les tester dans les mêmes 
onditions. En outre, nous avons mis en÷uvre di�érentes versions de 
haque algorithme en utilisant nos stru
turesv



vide données et algorithmes pour la représentation d'ensembles et 
eux fournispar la Standard Template Library (STL) de GNU.4 Nous avons 
omparé lesperforman
es des di�érents algorithmes et de leurs variantes dans le 
adred'un projet industriel proposé par l'entreprise Telefóni
a I+D : 5 augmenterla 
apa
ité de 
ompréhension d'un agent 
onversationnel qui fournit des ser-vi
es en ligne, voire l'envoi de SMS à des téléphones portables ainsi que desjeux et d'autres 
ontenus numériques (Sastre et al., 2009). Les 
onversationsave
 l'agent sont en espagnol et passent par Windows Live Messenger.6 Endépit du domaine limité et de la simpli
ité des grammaires appliquées, lestemps d'exé
ution de notre algorithme, 
ouplé ave
 nos stru
tures de donnéeset algorithmes pour la représentation d'ensembles, ont été plus 
ourts. Grâ
eau 
oût asymptotique amélioré, on peut s'attendre à des temps d'exé
utionsigni�
ativement inférieurs par rapport aux algorithmes utilisés dans les sys-tèmes Unitex et Outilex, pour le 
as des grammaires 
omplexes et à large
ouverture.

4Voire Josuttis (1999) pour une des
ription détaillée de la STL. La STL de GNU faitpartie de la GNU's Compiler Colle
tion: http://g

.gnu.org/5http://www.tid.es/en6http://www.msn.
om

http://gcc.gnu.org/
http://www.tid.es/en
http://www.msn.com


ResumenEste trabajo se 
entra en la investiga
ión y el desarrollo de algoritmos e�-
ientes de apli
a
ión de gramáti
as lo
ales (Gross, 1997), tomando 
omoreferen
ia aquellos que están siendo usados en sistemas open-sour
e, a sa-ber: el analizador sintá
ti
o top-down de Unitex (Paumier et al., 2009) y elanalizador sintá
ti
o à la Earley de Outilex (Blan
 and Constant, 2006a).Las gramáti
as lo
ales son un formalismo basado en autómatas �nitospara la representa
ión de la sintaxis de los lenguajes naturales. Las gramáti-
as lo
ales son un modelo de 
onstru

ión de des
rip
iones pre
isas y a granes
ala de la sintaxis de los lenguajes naturales mediante la observa
ión sis-temáti
a y la a
umula
ión metodológi
a de informa
ión. La idoneidad de lasgramáti
as lo
ales para esta tarea ha sido demostrada por múltiples traba-jos (Ro
he and S
habes, 1997; Català and Baptista, 2007; Martineau et al.,2007; Laporte et al., 2008a,b).Debido a la naturaleza ambigua de la lengua, y a las propiedades delas gramáti
as lo
ales, los analizadores sintá
ti
os 
lási
os tales 
omo LR(Knuth, 1965), el de CYK (Co
ke and S
hwartz, 1970; Younger, 1967; Kasami,1965) y el de Tomita (1987) no son viables en el 
ontexto de este trabajo orequiren adapta
iones no triviales. Los analizadores sintá
ti
os top-down yde Earley son posibles alternativas, aunque tienen un 
oste asintóti
o expo-nen
ial en el 
aso de las gramáti
as lo
ales.En primer lugar, hemos desarrollado un algoritmo de apli
a
ión de gra-máti
as lo
ales 
on un 
oste asintóti
o polinomial (Sastre, 2009). A 
onti-nua
ión, hemos desarrollado estru
turas de datos e�
ientes para la gestiónde 
onjuntos de elementos y de se
uen
ias. Estas estru
turas han permitidomejorar la e�
ien
ia de nuestro algoritmo en 
ondi
iones generales. Hemosimplementado di
ho algoritmo y los algoritmos de Unitex y Outilex 
on lasmismas herramientas 
on el �n de 
ompararlos bajo las mismas 
ondi
iones.Hemos implementado distintas versiones de 
ada algoritmo usando nuestrasvii



viiiestru
turas de datos de tipo 
onjunto y aquellas in
luidas en la implementa-
ión de GNU de la librería estándar de plantillas (Standard Template Libraryo STL).7 Hemos 
omparado el rendimiento de los distintos algoritmos y desus distintas versiones en el 
ontexto de una apli
a
ión industrial propuestapor la empresa Telefóni
a I+D: 8 aumentar la 
apa
idad de 
omprensión deun robot 
onversa
ional 
apaz de suministrar servi
ios en línea, tales 
omoel envío de SMS a teléfonos móviles así 
omo de juegos y de otros 
ontenidosdigitales (Sastre et al., 2009). La 
omuni
a
ión 
on el robot se realiza enespañol a través de Windows Live Messenger de Mi
rosoft.9 A pesar del do-minio restringido y de la simpli
idad de las gramáti
as apli
adas, los tiemposde eje
u
ión fueron menores para nuestro algoritmo y nuestras estru
turasde datos de tipo 
onjunto. Gra
ias al 
oste asintóti
o mejorado de nuestroalgoritmo, son de esperar tiempos de eje
u
ión signi�
ativamente inferioresa los de los algoritmos empleados por los sistemas Unitex y Outilex para el
aso de gramáti
as 
omplejas y de gran 
obertura.

7Una des
rip
ión detallada de la STL puede en
ontrarse en Josuttis, 1999. La imple-menta
ión de GNU de la STL está siendo distribuida junto 
on la 
ole

ión de 
ompiladoresde GNU: http://g

.gnu.org/8http://www.tid.es/en9http://www.msn.
om

http://gcc.gnu.org/
http://www.tid.es/en
http://www.msn.com


Prefa
eIn the last de
ades, our world's so
ieties have been shifting an importantpart of their resour
es towards the produ
tion, distribution and use of in-formation, earning the surname of Information So
ieties (Ma
hlup, 1962,but see Crawford, 1983). Moreover, information has be
ome a key fa
torin every aspe
t of our lives, from e
onomy and politi
s to 
ulture. A

ord-ingly, 
omputer s
ien
e and te
hnology has evolved in order to 
ope withthe in
reasing demand for the management of information: nowadays 
om-puters are no longer mere programmable 
al
ulators, as Charles Babbage�rst 
on
eived them in 1837,10 but are able to pro
ess multiple kinds of dataand present them in multiple formats. Pythagoras' 
laim `the whole thingis a number ' is being exempli�ed ea
h time a physi
al phenomenon is en-
oded into binary digits and pro
essed by 
omputers, from the so 
ommonJPEG images (ITU, 1992; ISO/IEC, 1994), MP3 tunes (ISO/IEC, 1993) andDivX R©videos11 to the parti
le 
ollisions that take pla
e at CERN's LargeHadron Collider (see Lefevre, 2009); upon these 
ollisions, data bursts of 700megabytes per se
ond are streamed towards an array of data servers for itsstorage and distribution to 
omputers around the world (Shiers, 2007), whi
hwill analyse this information �a total of 15 petabytes a year12� in order tolearn about the nature of matter and of the universe itself.Indeed, 
omputer s
ien
e and te
hnology has not only provided the toolsfor data pro
essing but also for its distribution around the world, startingwith the 
reation of the Internet (see Leiner et al., 2009). Apart from push-ing the boundaries of 
omputer networking (Newman et al., 2010), CERNhas also given rise to the most popular system for sharing information overthe Internet: the World Wide Web (Berners-Lee et al., 1992), also 
alled the10Visit http://www.fourmilab.
h/babbage/11Visit http://www.divx.
om121 petabyte = 106 gigabytes. ix

http://www.fourmilab.ch/babbage/
http://www.divx.com


xWWW. The WWW has provided a universal mean for a

essing and linkingrelated digital 
ontents over the Internet: anyone 
an write a text do
u-ment with information that he or she 
onsiders of interest, make it availablearound the world by means of a hyperlink and extend it with hyperlinks toother related information, mimi
king human's asso
iative memory. Indeed,
omputers have not only assisted us in the management of numeri
 data,but in the management of text do
uments. Combined with sear
h engines,the WWW has be
ome the paramount expression of exploitable 
olle
tiveknowledge, mostly as text do
uments written in some human language (ornatural language). The 15 petabytes of data produ
ed at CERN ea
h yearamounts to nothing in 
omparison with the 20 petabytes of data pro
essedby Google's 
lusters ea
h day (Dean and Ghemawat, 2008) in order to indexa fra
tion of the one trillion web pages that form the World Wide Web.13Thanks to the appearan
e of Internet broadband 
onne
tions, we ratherspend our time sear
hing for the information we need at a given momentthan on downloading it: addresses and s
hedules, produ
ts and servi
es,news on re
ent events along with 
omments from other people, solutions toa great variety of problems and a huge amount of digital 
ontent, startingwith s
ienti�
 produ
tions. Indeed, most of the more than 300 papers 
itedin this dissertation have been sear
hed and downloaded from the WWW,as for any other present s
ienti�
 produ
tion. A
tually, we 
an say that weare ��ooded� with information. E�
ient natural language pro
essing (NLP)tools for information extra
tion, �ltering and sorting are an obvious need.Moreover, ma
hine translation tools are ne
essary for the exploitation of textdo
uments written in languages that we do not master. Additionally, ma-
hine translation 
an help us to preserve the world's multi-linguisti
 
ulturewhi
h globalization is 
urrently threatening, starting with the dominan
e ofEnglish in s
ienti�
 literature (Enrique Hamel, 2007; Clavero, 2010). A

ord-ing to UNESCO, there are around 6,700 di�erent languages spoken aroundthe world of whi
h about half of them are in danger of disappearing beforethe 
entury ends (Moseley, 2010).But the appli
ation of NLP te
hnologies is not limited to web 
ontent:natural languages are our most 
ommon medium for the ex
hange and sup-port of information. Apart from ma
hine translators and the other men-tioned appli
ations, spell and grammar 
he
kers help us to write well-formed13Google's estimation as for 2008; visit http://googleblog.blogspot.
om/2008/07/we-knew-web-was-big.html

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html


xitexts, and 
onversational agents provide a more natural mean for human-ma
hine intera
tion. Yet users of these te
hnologies still 
omplain aboutridi
ulous translation errors, 
ommuni
ation deadlo
ks with automated 
all
enter agents and in
orre
t warnings of their grammar 
he
kers (Vetulaniand Uszkoreit, 2009, Pref., p. VI).Though babies usually start talking when they are two years old, thefa
t is that human language is very 
omplex. Indeed, humans have tworemarkable 
apabilities whi
h are very hard to me
hanize:
• the 
apability to reason, 
onverse and make rational de
isions in anenvironment of impre
ision, un
ertainty, in
ompleteness of information,partiality of truth and possibility, and
• the 
apability to perform a wide variety of physi
al and mental taskswithout any measurements and any 
omputations (Zadeh, 2009).Qualitative spatial reasoning is a good example making use of both 
apabil-ities (see Freksa, 1991); for instan
e, we are able to give dire
tions withoutknowing our environment's exa
t distribution and without using exa
t mea-sures of distan
e or dire
tion but qualitative ones (a little farther, to yourleft, et
.). As 
ould be expe
ted, natural languages are heavily in�uen
edby our way of thinking. An intriguing example is the fa
t that all knownlanguages draw heavily on spatial metaphors (Mar
us, 2004); for instan
e,we say a happy person is on top of the world while a sad person is down inthe dumps. But the most salient properties of natural languages �in 
on-trast with formal languages� are their ri
hness, ambiguity and irregularity.While su
h properties do not prevent us from learning them and 
ommuni
at-ing between us, the 
onstru
tion of formal des
riptions of natural languagesfor their automati
 treatment is no less than 
hallenging. Though doubthas been thrown on the suitability of the 
urrent 
omputational paradigmin order to a
hieve human-level ma
hine intelligen
e (Zadeh, 2009), multi-ple natural language models and te
hniques have been proposed.14 Generalhuman-level language understanding is far to be a
hieved yet, but more 
on-
rete and modest problems have been treated with more or less su

ess: thenowadays existent natural language appli
ations are the proof of this fa
t,14We brie�y des
ribe the most popular 
omputable language models in se
tion 1.3, andthe most popular parsing algorithms that may apply to our use 
ase in se
tion 1.4.



xiifrom Google's linguisti
-aware sear
hes to Google's ma
hine translator.15,16Most natural language te
hniques use statisti
al methods in order to au-tomati
ally build some language model by observation of large annotated
orpora.17 The purpose of su
h te
hniques range from part-of-spee
h tag-ging and disambiguation (Chur
h, 1988; S
hmid, 1994; Brill, 1995) to theautomated 
onstru
tion of lexi
ons (see Sun et al., 2008) and grammars (seeKlein and Manning, 2005). These te
hniques avoid the 
ost of manuallybuilding large linguisti
 databases, whi
h is very 
onvenient for the industrialse
tor. However, to whi
h extent 
an a 
omputer 
apture linguisti
 informa-tion without the assistan
e of human experts but rather just by sear
hing for
oin
iden
es? No magi
 
an extra
t an information from a data set whi
hdoes not 
ontain it, either expli
itly or not. In our 
ase, we humans do notlearn languages from examples alone but 
oupled with 
ontexts of use �asfor the 
ase of our mother tongues� or with language rules made expli
it�as for the additional languages we may have learnt from a tea
her and/ora textbook. While the use of statisti
s has given positive results, better qual-ity results 
an be obtained by using hand
rafted linguisti
 resour
es. Despitethis fa
t, defenders of the statisti
al approa
h have frequently 
riti
ized thehand
rafted approa
h as ine�
ient, subje
tive, tedious, time-
onsuming oreven boring. However, it appears that su
h 
riti
isms are rather foundedon personal preferen
es than on 
onvin
ing eviden
e: tedious, laborious andboring are an assesment of how mu
h fun resear
hers �nd in their work, whi
his rather a question of personal taste than a valid s
ienti�
 point (Laporte,2009). Many other resear
hers agree that the statisti
al approa
h will rea
hits limits soon, and that hand
rafted linguisti
 resour
es will be then ne
es-sary in order to over
ome su
h limits (Gross and Senellart, 1998; Abeillé andBla
he, 2000). The future will tell.
15Google's sear
h engine no longer sear
hes for an exa
t list of words, but also sear
hesfor the in�e
ted forms of the given words while tolerating spell errors.16Visit http://translate.google.
om17An annotated 
orpus is a ma
hine readable text extended with some linguisti
 meta-data; for instan
e, the Brown Corpus (Fran
is and Ku£era, 1982) and the Penn Treebank(Mar
us et al., 1993) are two large annotated 
orpora of English: both 
omprise mor-phosynta
ti
 annotations of words, while the latter also in
ludes synta
ti
 annotation ofsenten
es (hen
e the name of `Treebank').

http://translate.google.com
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Chapter 1Introdu
tionParsing natural-language text with lo
al grammars is one of the ways of lo-
ating meaningful sequen
es in texts. Lo
al grammars are language resour
esdes
ribing sets of meaningful sequen
es in a language (e.g.: named entities,measurement phrases, et
.). When 
ompared to statisti
al methods, the useof lo
al grammars provides more 
ontrol on the results. Current open-sour
esystems for parsing text with lo
al grammars, namely Unitex (Paumier et al.,2009) and Outilex (Blan
 and Constant, 2006a), make use of various algo-rithms depending on the features of the grammars. In this dissertation wepropose faster algorithms.1.1 Lo
al grammarsFormally, lo
al grammars (Gross, 1997) are re
ursive transition networks(RTNs, Woods, 1970) with output de�ned on an alphabet of lexi
al masks.Lexi
al masks are powerful linguisti
 operators whi
h ease the de�nition ofnatural language grammars: they allow for the representation of large setsof words by means of simple expressions spe
ifying a set of morphosynta
ti
and/or semanti
 properties to 
omply with (e.g.: human noun singular, su
has student, lover, �reman, et
.). Numerous studies have shown the adequa
yof automata for linguisti
 problems at all des
riptive levels, from morphologyand syntax to phoneti
 issues (Ro
he and S
habes, 1997; Català and Baptista,2007; Martineau et al., 2007; Laporte et al., 2008b,a). In parti
ular, thesuitability of lo
al grammars for the des
ription of multiple natural languagemi
rostru
tures has been attested by multiple works:3
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• named entities in Korean (Nam and Choi, 1997), Fren
h (Friburger,2002; Friburger and Maurel, 2002, 2004; Martineau et al., 2007), Arabi
(Mesfar, 2007; Traboulsi, 2009), et
.,
• nominal determiners in Fren
h (Gross, 2001; Silberztein, 2003a),
• expressions of measure and lo
ation adverbs in Fren
h (Constant, 2003b),
• date and duration adverbs in Korean (Jung, 2005),
• date adverbs in Greek (Voyatzi, 2006),
• measurement phrases in Fren
h (Constant, 2009),
• Fren
h determiners (Laporte, 2007),
• 
oordinated noun phrases in Serbo-Croatian (Nenadi¢, 2000),
• noun phrases and other 
lause elements in English (Mason, 2004),
• noun phrases with predi
ative head in Fren
h (Laporte et al., 2008
)),
• 
omplex predi
ates in English (Gross, 1999) and Portuguese (Ran
hhodet al., 2004),
• et
.1Lo
al grammars have also been used in pre-treatment stages fa
ilitating fur-ther parsing, su
h as
• 
hunking (Poibeau, 2006),
• super-
hunking (Blan
 et al., 2007),
• annotating 
ompound da-
onjun
tions in Bulgarian (Venkova, 2000),
• annotating Fren
h expletive pronouns (Danlos, 2005),
• et
.1An extensive list of works using or 
iting Unitex �therefore likely to be based on lo
algrammars� 
an be found at http://igm.univ-mlv.fr/~unitex/index.php?page=12

http://igm.univ-mlv.fr/~unitex/index.php?page=12


1.1. LOCAL GRAMMARS 5Lo
al grammars have also been used for parsing Fren
h simple senten
es,either belonging to a parti
ular domain (Fairon and Paumier, 2005) or not(Paumier, 2003). Finally, lo
al grammars have been extended with featurestru
tures and uni�
ation pro
esses in order to parse Fren
h 
omplex sen-ten
es (Blan
 and Constant, 2005; Blan
, 2006). The resulting formalism
an be seen as an alternative version of lexi
al-fun
tional grammars whererewrite rules are 
oded as �nite-state automata instead of 
ontext-free rules(Blan
, 2006, p. 140).Lo
al grammars for natural language parsing 
an be semi-automati
allybuilt from lexi
on-grammar tables (Ro
he, 1993; Constant, 2003a). A lexi
on-grammar table 
onstitutes a 
lass of predi
ative elements whi
h depends onthe similarity of the senten
e stru
tures in whi
h the predi
ative elementsmay appear (Le
lère, 2002). Following the lexi
on-grammar model of syntax(Gross, 1996), a large set of lexi
on-grammar tables for Fren
h has been 
on-stru
ted sin
e 1968. These tables 
onstitute a very ri
h linguisti
 resour
edes
ribing exhaustively the synta
ti
 and distributional properties of 72000predi
ative elements,2 in
luding
• verbs (Gross, 1975; Boons et al., 1976a,b, 1992),
• predi
ative nouns (Gross, 1989; Giry-S
hneider and Balibar-Mrabti,1993; Giry-S
hneider, 1978, 1987),
• idiomati
 expressions (Gross, 1982a, 1985, 1986b, 1988b,a, 1993; Giry-S
hneider, 1987), and
• adverbs (Gross, 1982b, 1986a; Molinier and Levrier, 2000).However, these tables were essentially the result of a linguisti
 approa
h withno intention to build a tool for 
omputational appli
ations (Le
lère, 2003).Though they have been su

essfully exploited for the automati
 treatment ofFren
h, to some extent (Paumier, 2003; Blan
, 2006), 
onverting them intosome exploitable format is a non-negligible task (see Hathout and Namer,1998; Gardent et al., 2005, 2006; Constant and Tolone, 2008; Sagot andTolone, 2009); indeed, large parts of the informations they 
ontain are neitherexpli
it nor represented in a uniform manner. As work on lexi
on-grammartables advan
es, we have 
ompared our algorithms of appli
ation of lo
al2A

essible through the HOOP interfa
e (Sastre, 2006b,a) at http://hoop.univ-mlv.fr/li
enseAgreement.html

http://hoop.univ-mlv.fr/licenseAgreement.html
http://hoop.univ-mlv.fr/licenseAgreement.html


6 CHAPTER 1. INTRODUCTIONgrammars with those of the Unitex and Outilex systems within a simpler use
ase we des
ribe below. We have not only a
hieved lower exe
ution times butalso a lower asymptoti
 
ost; therefore, even better results 
an be expe
tedfor the 
ase of larger and more 
omplex grammars su
h as the ones that 
ouldbe semi-automati
ally built from the Fren
h lexi
on-grammar tables.1.2 The MovistarBotIn 
ollaboration with the enterprise Telefóni
a I+D,3 we have built a human-ma
hine interfa
e based on short text messages and lo
al grammars (Sastreet al., 2009).4 This interfa
e makes use of the di�erent algorithms we presentin this dissertation (Sastre and For
ada, 2009; Sastre, 2009), and has servedas an evaluation framework. The interfa
e is aimed at extending the under-standing 
apabilities of a 
hatterbot based on AIML (Walla
e, 2004).5,6 Con-versation with the 
hatterbot is performed by means of short text messagessent through the Internet using one of the most popular instant messaging
lients: Mi
rosoft's Windows Live Messenger, 
ommonly known as MSN orMessenger.7As well as providing some general 
onversation, the 
hatterbot is aimed atproviding mobile servi
es (e.g.: sending SMSs), either requested in Spanish(e.g.: envía Feliz Navidad al móvil 555-555-555, whi
h means send Merry3Telefóni
a I+D is a resear
h and development enterprise and member of the Telefóni
agroup, leader of the tele
ommuni
ations market in Spain and Latin Ameri
a and whi
halso enjoys a signi�
ant footprint in Europe.4In parti
ular, we have used weighted RTNs with output5A 
hatterbot is a 
omputer program designed to simulate an intelligent 
onversationwith one or more human users.6AIML is a language for the spe
i�
ation of 
hatterbot 
onversation rules based onXML. These rules are mainly 
omposed of re
ognition patterns �less powerful than reg-ular expressions� 
oupled with an output whi
h may in
lude input fragments. Conver-sation 
ontexts may be de�ned so di�erent sets of rules 
an be applied depending on the
urrent 
ontext, allowing the 
hatterbot to follow the human into parti
ular domains of
onversation.7Communi
ation between MSN 
lients and Mi
rosoft's servers is performed by means ofthe Mi
rosoft Noti�
ation Proto
ol (MSNP). Currently, Mi
rosoft servers re
ognize onlyMSNP version 8 or higher, but Mi
rosoft published only the spe
i�
ations of version 2(Movva and Lai, 1999). However, the open-sour
e 
ommunity has been reversely engi-neering newer MSNP versions, and open-sour
e 
ompatible 
lients are 
urrently available(e.g.: Empathy, Kopete and Pidgin).



1.2. THE MOVISTARBOT 7Christmas to the 
ell phone 555-555-555 ) or by means of 
ommands (e.g.sms Feliz Navidad 555555555 ). The interfa
e we have built spe
i�
ally tar-gets senten
es requesting the servi
es the 
hatterbot 
an provide. We havebuilt a grammar for this spe
i�
 domain and implemented a natural lan-guage pro
essing engine making use of the di�erent algorithms presented inthis dissertation, in
luding those of the Unitex and Outilex systems in orderto 
ompare their performan
es. The engine has been pa
ked as a Tom
atservlet so that it 
an provide its servi
es through the Internet to severalusers 
on
urrently.8 Ea
h time a message is to be sent to the 
hatterbot,the message is �rst sent to the engine for prepro
essing. In 
ase the message
orresponds to a request of an available servi
e, the engine extra
ts the spe
-i�ed arguments (e.g.: the message to send and the target phone number) andtranslates the message into the 
orresponding 
ommand, extending the 
hat-terbot's understanding 
apabilities to a greater variety of natural languagesenten
es. If the message is not re
ognized as a servi
e request, it is returnedas is to the 
hatterbot with a spe
ial 
ode so that the general AIML 
on-versational rules are applied. Without the engine, the robot mainly sear
hesfor keywords (e.g.: sms) and shows the pre
ise syntax to be used in order tolaun
h the presupposed servi
e, obligating the user to retype any argumentsthat were already provided. In 
ase the arguments are partially provided, the
hatterbot is now able to ask only for the missing ones; for instan
e, uponsenten
e `quiero enviar un SMS al 555 555 555 ' (I want to send an SMS tothe 555 555 555) the 
hatterbot will only ask for the message to send.In order to 
ompare the performan
es of the di�erent algorithms, we havebuilt a 
orpus of 168 possible senten
es,9 most of them servi
e requests butalso other senten
es in order to 
ontrol over-re
ognition.10 Servi
e requestsare formed by a few 
ompounds that may permute; for instan
e `Envía el8Information on Tom
at 
an be found in the Apa
he Tom
at homepage http://tom
at.apa
he.org and in Brittain and Darwin (2007); information and tutorials onservlets 
an be found in http://java.sun.
om9The original 
orpus 
ontains 334 senten
es, though we have only taken into a

ountthe senten
es that are a

urately des
ribed by our grammars. Due to the time 
onstraintsof the MovistarBot proje
t, a

urate grammars for every servi
e the MovistarBot had tosupport 
ould not be built but simple keyword-mat
hing rules were used instead, whi
hare by far simpler than the grammar rules we 
an expe
t in a natural language parsinguse 
ase.10By over-re
ognition we mean to re
ognize senten
es that a
tually 
orrespond to aservi
e request plus others that do not, usually be
ause of small di�eren
es that are notmodelled in the grammar.

http://tomcat.apache.org
http://tomcat.apache.org
http://java.sun.com


8 CHAPTER 1. INTRODUCTIONmensaje hola al móvil 555-555-555 ' (send the message hello to the mobile555-555-555) 
ould also be written as `Envía al móvil 555-555-555 el men-saje hola' (send to the mobile 555-555-555 the message hello), where ea
h
ompound has a �nite variability (e.g. `al móvil 555-555-555', `al 555555555',et
.). The 
orpus 
onsiders every possible permutation, using di�erent 
om-pound variants in ea
h one instead of 
onsidering every possible 
ombination,thus the 
orpus is representative in spite of its size. We have aligned the 
or-pus with the answers the system should return and implemented a tool forverifying the answer returned by the system for every senten
e in the 
orpus.Exe
ution times have been measured under the same 
onditions for ea
h al-gorithm, namely the same linguisti
 resour
es and their 
orresponding datastru
tures.1.3 Popular 
omputable grammar formalisms1.3.1 Lexi
on grammarLexi
on grammar is a methodology for the empiri
al study of the syntax ofnatural languages 
reated by Gross (1996), starting with his book `Méthodesen syntaxe' (Gross, 1975). Lexi
on grammar is based on Harris's (1965)transformational theory of language; in this theory, the analysis of a senten
e
onsists in applying some series of transformations (hen
e the name) to one ormore elementary senten
es: for instan
e, senten
e `The ball was hit by Mary'is analysed as the result of transforming elementary senten
e `Mary hit theball' into passive form. Harris's aim was to 
onstitute linguisti
s as a produ
tof mathemati
al analysis of the data of language, taking elementary senten
esas obje
ts on whi
h operators 
ould be applied (Harris, 1968, 1991). Apartfrom Harris's theory, language models based on Harris's transformationaltheory of language are 
alled transformational grammars, and they in
ludelexi
on grammar.Lexi
on grammar 
onsiders that general grammar rules 
annot give a
-
urate linguisti
 des
riptions to the irregularities of natural languages; more-over, the presen
e of spe
i�
 words within the senten
es may 
ondition thesenten
e stru
tures (Gross, 1997). Though this idea was not original (seeHarris, 1951 or Chomsky, 1965), Gross was the �rst one to shift from su
htheoreti
al observation to the empiri
al des
ription of language, in
ludingits lexis (Laporte, 2005). As for Harris's theory, senten
es are 
lassi�ed in



1.3. POPULAR COMPUTABLE GRAMMAR FORMALISMS 9lexi
on grammar depending on their syntax, and ea
h 
lass is asso
iated toan elementary synta
ti
 stru
ture of senten
e. In order to take into a

ountthe language irregularities, tables of predi
ative elements for ea
h 
lass arebuilt; these tables are 
alled lexi
on-grammar tables (Le
lère, 2002). Ea
htable entry is 
ompleted with the data representing the synta
ti
 parti
u-larities of the 
orresponding predi
ative element w.r.t. the other ones in the
lass. Parametrized lo
al grammars 
an then be built in order to representthe elementary and non-elementary synta
ti
 stru
tures for ea
h table. Lo
algrammars for ea
h entry are automati
ally built by instantiating the param-eters of su
h parametrized grammars, for ea
h entry of the 
orrespondingtable. The 
ontrol exerted by the parameters ranges from the predi
ativeelement to appear in the senten
es to the prepositions that introdu
e thesenten
e arguments, or even the substru
tures of the parametrized grammarthat are to be kept or to be removed, depending on whether they apply ornot to the 
on
erned predi
ative element.1.3.2 Context-free grammarsContext-free grammars (CFGs, initially 
alled phrase stru
ture grammars)were �rst proposed by Chomsky (1956) as a des
ription method for naturallanguages. A similar idea was used shortly thereafter to des
ribe 
omputerlanguages: Fortran by Ba
kus (1959) and Algol by Naur et al. (1960). Theresulting Ba
kus-Naur form (BNF) 
an be seen as an alternate notation forCFGs. Chomsky rede�ned Harris's transformations as operations mappingsets of deep stru
tures (the syntax trees) to surfa
e stru
tures (the sequen
eof words that 
ompose the senten
es). CFGs mainly 
onsist in a set ofterminal symbols, a set of non-terminal symbols and a set of rewrite rules,where
• non-terminal symbols are labels of syntax tree stru
tures (e.g.: `NP'for noun phrase, `S' for senten
e, et
.),
• terminal symbols are the words of the language, and
• rewrite rules indi
ate possible repla
ements of non-terminal symbolswithin sequen
es of terminal and non-terminal symbols by other se-quen
es of terminal and non-terminal symbols; for instan
e, rewriterule `NP → DET NOUN' indi
ates that a noun phrase 
an be 
om-



10 CHAPTER 1. INTRODUCTIONposed by a determiner followed by a noun, and `DET → the' indi
atesthat `the' is a determiner.Analyzing a senten
e 
onsists in generating it by transforming sequen
e `S'(the non-terminal representing any senten
e) into the sequen
e of words thatform the senten
e by performing some series rewrites (or transformations).CFGs and any other grammar following this methodology, in
luding lo
algrammars, are said to be generative grammars.CFGs allow for a stru
tured representation of languages by means of lin-guisti
 blo
ks whi
h 
an be reused in the des
ription of other blo
ks (e.g.:one 
an de�ne what a noun phrase is, then de�ne a prepositional phrase asa preposition followed by a noun phrase). CFGs are said to be 
ontext freesin
e any rewrite rule for a given non-terminal symbol may apply indepen-dently of the 
ontext in whi
h that non-terminal symbol may appear, that is,non-terminal symbol de�nitions do not take into a

ount the non-terminal
ontext.ECFGs are CFGs where regular expressions 
an be used within the rightpart of rewrite rules in order to avoid repetition (but not for augmentingthe generative power of the grammar formalism). As for CFGs, there existsan alternate notation for ECFGs based on BNF: extended BNF or EBNF.EBNF is widely used for the des
ription of 
omputer languages and otherformal languages, su
h as XML DTDs (Albert et al., 1998). Indeed, the In-ternational Organization for Standardization has adopted an EBNF standard(ISO/IEC, 1996).CFGs, ECFGs, RTNs and pushdown automata (Oettinger, 1961; S
hützen-berger, 1963; Evey, 1963) are equivalent formalisms, but CFGs and ECFGsare based on a set of rewrite rules while RTNs and pushdown automata arebased on �nite-state automata. Finite-state automata allow for a more 
om-pa
t and e�
ient representation than rewrite rules (Woods, 1969, se
. 1.7.3,p. 40) and 
an be graphi
ally represented for better readability. More detailson CFGs and ECFGs are given in appendix B.1.3.3 Attribute grammarsAttribute grammars (AGs, Knuth, 1968) are CFGs extended with attributes.These attributes are given values as the grammar produ
tions are applied.The attributes are divided into two groups: synthesized attributes and in-herited attributes. The synthesized attributes are the result of the attribute



1.3. POPULAR COMPUTABLE GRAMMAR FORMALISMS 11evaluation rules, and may also use the values of the inherited attributes.The inherited attributes are passed down from parent to 
hildren nodes, orfrom elder brothers to younger brothers. In some approa
hes, synthesizedattributes are used to pass semanti
 information up the parse tree, whileinherited attributes help pass semanti
 information down and a
ross it; forinstan
e, language translation tools (e.g.: 
ompilers) may use attributes inorder to assign semanti
 values to synta
ti
 
onstru
tions. Additionally, it ispossible to validate semanti
 
he
ks that are not expli
itly imparted by thesyntax de�nition. AGs 
an also be seen as an extension of CFGs for out-put generation; see, for instan
e, syntax-dire
ted translation based on AGsin Aho et al. (1986, 
hap. 5, p. 279). As for CFGs, RTNs have also beenextended with attributes; the resulting �nite-state ma
hines have been 
alledaugmented transition networks (ATNs, Woods, 1969).1.3.4 Probabilisti
 
ontext-free grammarsCFGs generating ambiguous senten
es asso
iate several parse trees to thesame ambiguous senten
e, one per ea
h interpretation. In order to 
hooseone of the possible parse trees, rewrite rules 
an be asso
iated to weights ors
ores, hen
e asso
iating to ea
h parse tree an overall weight whi
h is the
ombination (e.g.: addition or multipli
ation) of the di�erent weights of thesu

essive rewrite rules that led to su
h parse tree. Su
h CFGs are 
alledweighted CFGs (WCFGs). A spe
ial 
ase of WCFGs, �rst proposed by Booth(1969), are probabilisti
 (or sto
hasti
) CFGs (PCFGs): in these grammars,weights are probabilities whi
h de�ne a distribution over the di�erent parsetrees the grammar represents; details on how this 
an be a

omplished 
anbe found in Booth and Thompson (1973). WCFGs and PCFGs 
an be seenas an extension of CFGs for the generation of a parti
ular kind of output(weights or probabilities), as for AGs. Probabilities 
an be 
omputed byobservation of large 
orpora as usually done in statisti
al approa
hes. As
ould be expe
ted, RTNs 
an be extended with weights and probabilities(see, for instan
e, Blan
 2006, se
. 3.3, p. 85). More information on PCFGs
an be found in Jurafsky and Martin (2008, 
hap. 12, p. 444).1.3.5 Lexi
al-fun
tional grammarsLexi
al-fun
tional grammars (LFGs, Kaplan and Bresnan, 1982) are basi
allyCFGs extended with feature stru
tures and uni�
ation pro
esses. LFGs are
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omposed by two fundamental levels of synta
ti
 representation: the 
on-stituent stru
ture (
-stru
ture) and the fun
tional stru
ture (f-stru
ture); 
-stru
tures have the form of CFGs, and f-stru
tures are sets of attribute/valuepairs (the 
alled feature stru
tures). Attributes may be features (e.g.: tense,gender, et
.) or fun
tions (e.g.: subje
t, obje
t, et
.). The name of the the-ory emphasizes an important di�eren
e between LFG and the Chomskyantradition from whi
h it evolved: many phenomena are thought to be morenaturally analysed in terms of grammati
al fun
tions as represented in thelexi
on or in f-stru
ture, rather than on the level of phrase stru
ture. An ex-ample is the alternation between a
tive and passive, whi
h rather than beingtreated as a transformation, is handled in the lexi
on. Grammati
al fun
tionsare not derived from phrase stru
ture 
on�gurations, but are represented atthe parallel level of fun
tional stru
ture.As stated before, lo
al grammars have also been extended with featurestru
tures and uni�
ation pro
esses for parsing Fren
h 
omplex senten
es(Blan
 and Constant, 2005; Blan
, 2006). Details on uni�
ation and how toextend CFGs with feature stru
tures and uni�
ation pro
esses 
an be foundin Jurafsky and Martin (2008, 
hap. 11, p. 391).1.3.6 Tree-adjoining grammarsTree-adjoining grammars (TAGs, Joshi et al., 1975) are somewhat similarto CFGs, but the elementary unit of rewriting is the tree rather than thesymbol: whereas CFGs have rules for rewriting symbols as strings of othersymbols, tree-adjoining grammars have rules for rewriting the nodes of treesas other trees. A TAG 
onsists of a number of elementary trees, whi
h 
an be
ombined with a substitution and an adjun
tion operation in order to obtainderived trees. Interior tree nodes are non-terminals, and frontier tree nodesmay either be terminals or non-terminals. Substitution repla
es a frontiernon-terminal by a tree having the same non-terminal as root. Adjun
tionis more 
omplex; summarizing, it 
onsists in inserting a tree within anothertree, either re
ursively or not. Be
ause of the formal properties of adjun
tion,the formalism is more powerful than CFGs, but only mildly so (Joshi, 1985).Lexi
alized TAGs (LTAGs, Abeille, 1988) are a variant of TAGs whereea
h elementary tree 
ontains at least one frontier node labelled with a termi-nal symbol. Thus ea
h elementary tree is asso
iated with at least one lexi
alelement. Finally, TAGs have also been extended with probabilities (S
habes,1992) and with feature-stru
tures and uni�
ation pro
esses (Vijay-Shanker



1.4. PARSING ALGORITHMS 13and Joshi, 1988; Vijay-Shanker, 1992).1.4 Parsing algorithms1.4.1 Top-downUsually, 
omputable language models are de�ned having in mind a parti
ularpro
edure for their appli
ation to language utteran
es; for the 
ase of CFGs,de�ning a top-down parser is quite straightforward: rewrite rules are appliedin order to su

essively transform the senten
e non-terminal into the sequen
eof words that form the senten
e to analyse. The RTN 
ase is analogous:starting from the initial state, outgoing arrows allowing to 
onsume the nextsenten
e word are followed until there are no words left. Due to the ambiguityof the language, or simply due to the grammar stru
ture itself, multiplerewrite sequen
es (or paths within the RTN) for a given senten
e may bepossible. Variants of the top-down parser 
an be de�ned depending on theorder in whi
h rewrite rules (or paths) are explored:
• the depth-�rst variant (re
ursive des
ent, see Aho et al., 1986, se
. 4.4,p. 181) explores one rewrite sequen
e (or path) at a time, 
oming ba
kto the last interse
tion when rea
hing a dead-end, and
• the breadth-�rst variant advan
es the exploration of every possiblerewrite sequen
e (or path) as input words are read.Top-down parsers may fall into an in�nite loop when applying left-re
ursivegrammars, and hen
e they do not support them. Both CFGs and RTNs
an be transformed into some equivalent non-left-re
ursive grammar, thoughsu
h transformations have some undesired side e�e
ts: the resulting parsetrees no longer 
orrespond to the original grammar and 
ontain arti�
ialnon-terminals whi
h obfus
ate them. Obviously, an alternative solution isto avoid left-re
ursive stru
tures when building the grammars. Top-downparsers are the simplest and easiest to implement, though they have an ex-ponential worst-
ase 
ost. We will present both depth-�rst and breadth-�rstvariants of top-down parsers in detail for the 
ase of �nite-state ma
hines,in
luding RTNs with and without output.



14 CHAPTER 1. INTRODUCTION1.4.2 Bottom-upThough CFGs (and RTNs) seem 
on
eived for being applied by means of top-down parsers, other pro
edures are possible; for instan
e, bottom-up parsingwith CFGs 
an be performed by reversely appling the rewrite rules to thesenten
e words in order to �undo� the rewrites, obtaining sequen
es that 
on-tain non-terminals whi
h are to be sear
hed in other rewrite rules to undo,and so on until obtaining the senten
e non-terminal (see Aho et al., 1986,se
. 4.5, p. 195). Usually, whether an algorithm is more e�
ient than an-other one depends on the senten
e to analyse and the grammar. Top-downparsers may blindly explore multiple rewrite rules until a
tually rea
hingsome �bottom-level� rewrite rules whi
h require for the presen
e of 
ertainsenten
e words; a greater proportion of rea
hable bottom-level rules not 
om-plying with the senten
e words will result in a greater per
entage of wasted
omputational time. One may think that a bottom-up parse 
ould solve thisproblem, sin
e it a
tually starts from the spe
i�
 senten
e words instead offrom a non-terminal symbol representing any senten
e. However, bottom-upparsers may also waste time by undoing rewrite rules that do not lead to thesenten
e non-terminal (see Jurafsky and Martin, 2008, se
. 10.1, p. 355 for a
omparative overview on top-down and bottom-up CFG parsers). Unfruitfulgrammar explorations may be redu
ed by using smarter algorithms, but one
annot expe
t to 
ompletely avoid them sin
e the whole grammar 
annot beapplied to the whole senten
e in a single operation: information units withinboth the grammar and the senten
e are to be su

essively examined, and sub-sets of the 
omputed partial parses may be
ome in
onsistent as additionaldata is taken into a

ount.1.4.3 LR-parsersLR-parsers (Knuth, 1965, but see Aho et al., 1986, se
. 4.7, p. 215) are avery e�
ient 
lass of top-down parsers, though they only support a subsetof CFGs. In the name, `L' stands for `left-to-right input s
anning' and `R'for `rightmost derivation'. LR-parsers are mainly based on a table of inputsymbols × grammar states → a
tion to perform, whi
h is to be 
onstru
tedfor ea
h grammar.11 Thanks to this table, the grammar 
an be e�
ientlyapplied by systemati
ally exe
uting the a
tion inside the 
ell indexed by the11Apart from the mentioned table, a table a
tion × state → state is also to be built;see Aho et al., 1986, se
. 4.7, p. 215 for more details.
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urrent state and input symbol. However, sin
e only a single a
tion 
anbe de�ned for a given symbol and state, grammars must be deterministi
and non-ambiguous, whi
h is not the 
ase of natural language grammars.Moreover, building an LR-table with a big alphabet will be ine�
ient or evenimpra
ti
al; this is the 
ase of lo
al grammars sin
e they are de�ned on thealphabet of the words of the language rather than on the alphabet of lettersand symbols.1.4.4 TomitaTomita's (1987) parser is an extended version of LR-parsers whi
h supportsnon-deterministi
 and/or ambiguous grammars: upon multiple a
tions, theparsing pro
ess is simply forked in order to exe
ute all of them. However,building LR-tables for lo
al grammars will still be ine�
ient or impra
ti
aldue to the alphabet sizes. E�
ient data stru
tures for the representation ofsparse tables 
ould be used, though we have not studied this possibility.1.4.5 CYKCYK (Co
ke and S
hwartz, 1970; Younger, 1967; Kasami, 1965) is one of the�rst parsers supporting natural languages �namely ambiguous grammars�and CFGs having a polynomial worst-
ase 
ost (n3). It is a bottom-up parserwhi
h makes use of dynami
 programming: the parsing problem is brokendown into simpler subproblems, and partial solutions are stored in order tobe later reused so that no subproblem is solved twi
e. As drawba
k, the CYKparser requires to �rst transform the grammar into Chomsky's normal form(Chomsky, 1959).12 Though this implies an additional operation to perform,one may only have to 
ompute it on
e as long as the grammar is not tobe modi�ed. However, the grammar size will be 
onsiderably in
reased, itsoriginal stru
ture modi�ed, and many arti�
ial non-terminal symbols will beintrodu
ed; as for the removal of left re
ursivity, the resulting parse treeswill di�er from those obtained from the original grammar, and arti�
ial non-terminals will obfus
ate them.12Alternative des
riptions of Chomsky's normal form 
an be found in Autebert et al.(1997, se
. 3.1), Hop
roft et al. (2000, se
. 7.1.5) and Sipser (2006, p. 106�109)



16 CHAPTER 1. INTRODUCTION1.4.6 EarleyEarley's (1970) CFG parser is another algorithm able to parse natural lan-guage grammars.13 It is a top-down breadth-�rst algorithm whi
h also makesuse of dynami
 programming, as for CYK. It has the same worst-
ase 
ostthan CYK, but does not require to transform the grammar, namely to putit in some normal form (as for CYK's), to determinize it (as for LR-parsers)or to remove left re
ursion (as for top-down parsers). Contrary to LR andTomita parsers, it 
an equally treat grammars de�ned on either small or bigalphabets. Thanks to its e�
ien
y and �exibility, Earley's parser has be
omea 
lassi
 natural language parsing algorithm; indeed, it has been adapted toseveral other grammar formalisms su
h as
• RTNs (Woods, 1969),
• attribute grammars (Correa, 1991),
• PCFGs (Stol
ke, 1995)
• grammars making use of feature stru
tures and uni�
ation pro
esses,in general, su
h as LFG (Shieber, 1985; see, for instan
e, Jurafsky andMartin, 2008, se
. 11.5, p. 423 for the CFG 
ase),
• tree adjoining grammars (S
habes and Joshi, 1988), and
• weighted RTNs extended with feature stru
tures and uni�
ation pro-
esses (Blan
, 2006).The algorithms we propose are mainly inspired in Earley's parser.1.5 Existing software based on lo
al grammars1.5.1 IntexIntex (Silberztein, 1993, 1994, 1998, 2004) was the �rst 
orpus pro
essingsystem based on lo
al grammars.14 Intex is 
omposed by a Windows graph-i
al interfa
e written in C++ and a set of 
ommand line programs written in13We brie�y des
ribe Earley's CFG parser in appendix C, p. 411; see �rst appendix B,p. 405, for a des
ription of the CFG notation.14Intex homepage: http://intex.univ-f
omte.fr

http://intex.univ-fcomte.fr


1.5. EXISTING SOFTWARE BASED ON LOCAL GRAMMARS 17C; the 
ommand line programs are either 
alled by the graphi
al interfa
e orthrough the 
ommand line in order to perform the di�erent treatments avail-able.15 Though Intex is mainly a Windows appli
ation, Intex 
an be run onMa
intosh platforms thanks to tools su
h as Virtual PC,16 and Unix/Linuxbinary versions of the 
ommand line programs are also provided with In-tex (Silberztein, 2004, se
. 17.1, p. 192). However, Intex is not open-sour
eand 
annot be freely downloaded ex
ept for a
ademi
 purposes, and a li-
ense number is to be requested by email ea
h time it is installed in a newhard drive;17 moreover, details on the implemented algorithm of appli
ationof lo
al grammars are not given in the do
umentation; hen
e, they remainobs
ure. In the a
ademi
 sense, Intex is a tool for the study of natural lan-guages but not for the study of parsing algorithms. Even in the former 
ase,the Intex author may refuse to provide li
ense numbers at will.181.5.2 NooJIntex development has been dis
ontinued in favor of its su

essor: NooJ(Silberztein, 2003b, 2005a, 2007).19 The author de
ided to reimplement thewhole system from the s
rat
h with a new set of programming tools fromMi
rosoft: the C# programming language, the .NET framework and theVisual Studio software development environment.20,21,22 Though there existalternative implementations of C# and .NET 
ompatible with non-Windowsplatforms, namely Mono and DotGNU,23,24 they do not fully support NooJyet (Silberztein, 2003b, p. 9). NooJ's author mentions two main reasons for
hoosing the new set of programming tools:25 the bene�ts of a 
omponent15A

ording to paragraph entitled �Chapitre 1� of http://mshe.univ-f
omte.fr/intex/Unitex.htm16A

ording to last paragraph of http://mshe.univ-f
omte.fr/intex/Unitex.htm17Intex will run in �demo mode� if a li
ense number is not provided.18A
tually, the author of this dissertation experien
ed this situation when trying toinstall Intex in several ma
hines in the 
ontext of a
ademi
 proje
t DRUID (Laforest andBadr, 2003).19NooJ homepage: http://www.nooj4nlp.net/pages/nooj.html20See, for instan
e, (Albahari and Albahari, 2010) for more information on C# program-ming language.21.NET homepage: http://www.mi
rosoft.
om/net22Visual Studio homepage: http://www.mi
rosoft.
om/visualstudio23Mono homepage: http://www.mono-proje
t.
om24DotGNU homepage: http://www.gnu.org/software/dotgnu25A

ording to http://www.nooj4nlp.net/pages/links.html

http://mshe.univ-fcomte.fr/intex/Unitex.htm
http://mshe.univ-fcomte.fr/intex/Unitex.htm
http://mshe.univ-fcomte.fr/intex/Unitex.htm
http://www.nooj4nlp.net/pages/nooj.html
http://www.microsoft.com/net
http://www.microsoft.com/visualstudio
http://www.mono-project.com
http://www.gnu.org/software/dotgnu
http://www.nooj4nlp.net/pages/links.html


18 CHAPTER 1. INTRODUCTIONprogramming methodology (in 
ontrast with ANSI C) and a free automati
memory management. While su
h features fa
ilitate software development,
ontrol is lost on 
ertain implementation details whi
h have an impa
t on thee�
ien
y of the parsing algorithms; for instan
e, the algorithms we proposein this dissertation use 
omplex data stru
tures whi
h are 
ertainly moreexpensive to delete on
e they are no longer needed. If we are to redu
e
onse
utive parsing times,26 deletion of data stru
tures 
annot be left to agarbage 
olle
tor but has to be optimized as well.1.5.3 UnitexUnitex (Paumier, 2003, 2006, 2008; Paumier et al., 2009) has been the �rstopen-sour
e alternative to Intex:27 it is distributed under the GNU LGPL li-
ense and the linguisti
 resour
es it in
ludes are distributed under the LPGL-LR li
ense.28 The advantages of open-sour
e development are multiple andhave been widely re
ognized (Raymond, 1999; Davis et al., 2000; Raymond,2001; Graham, 2001; Ambati and Kishore, 2004; For
ada, 2006; von Kroghand von Hippel, 2006; von Krogh and Spaeth, 2007; Paumier et al., 2009;S
a

hi, 2010), starting with the simple intention of letting others studyone's work in order to reuse or even to improve it. Unitex uses a top-downdepth-�rst algorithm of appli
ation of RTNs with string output, where out-put strings may 
ontain 
opies of input segments. In our 
ase, we have reusedthe Uni
ode library in
luded in Unitex but have reimplemented its parsingalgorithm in order to test the di�erent algorithms under the same 
onditions;Unitex linguisti
 programs are mainly implemented in ANSI C while we havepreferred to take advantage of the C++ obje
t oriented and generi
 program-ming as well as of the new fun
tionalities provided by the Standard TemplateLibrary.2926Re
all that we are to analyse senten
es requesting for online servi
es as they arere
eived through the Internet from multiple users.27Unitex homepage: http://igm.univ-mlv.fr/~unitex28The terms and 
onditions of the LGPL-LR and GNU's LGPL li
enses 
an be found athttp://igm.univ-mlv.fr/~unitex/lgpllr.html and http://www.gnu.org/li
enses/gpl.html, respe
tively.29See Josuttis (1999, 
hap. 2, p. 13) for a good introdu
tion on the new fun
tionalitiesadded to C++, in
luding the Standard Template Library.

http://igm.univ-mlv.fr/~unitex
http://igm.univ-mlv.fr/~unitex/lgpllr.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html


1.5. EXISTING SOFTWARE BASED ON LOCAL GRAMMARS 191.5.4 OutilexOutilex (Blan
 et al., 2006; Blan
 and Constant, 2006a; Blan
, 2006; Blan
and Constant, 2006b)30 is another open-sour
e platform for 
orpus pro
essing(LGPL li
ensed), based on RTNs with a more 
omplex output than Unitex'sRTNs: weights 
ombined with feature stru
tures built by means of uni�
ationpro
esses. Outilex uses an Earley-like parser equivalent to that presented inSastre and For
ada (2009). Though the original Earley parser has a poly-nomial worst-
ase 
ost (n3), extending it for output generation results in anexponential worst-
ase 
ost due to grammars generating an exponential num-ber of outputs w.r.t. the length of 
ertain inputs (Sastre and For
ada, 2009).Su
h 
ases o

ur in natural language grammars; for instan
e, if the grammaroutputs represent senten
e parses,31 the number of possible senten
e parsesin
reases exponentially w.r.t. the number of unresolved prepositional phraseatta
hments it 
ontains:
• in senten
e `the girl saw the monkey with the teles
ope', it is unknownwhether the girl used the teles
ope or the monkey was holding it (21interpretations),
• senten
e `the girl saw the monkey with the teles
ope in the garden', itis also unknown whether the monkey was in the garden or the a
tiontook pla
e in the garden (22 interpretations),
• in senten
e `the girl saw the monkey with the teles
ope in the gardenunder the tree', it is unknown as well whether the monkey was underthe tree or the a
tion took pla
e under the tree (23 interpretations),
• et
.32In the MovistarBot use 
ase, we have used string output 
ombined withweights: output strings are tags whi
h identify the requested servi
e andthe arguments provided (e.g.: to send an SMS to a given phone number),and weights are used in order to 
hoose one interpretation among those of30Outilex homepage: http://igm.univ-mlv.fr/~m
onstant/outilex31Outputs 
an be XML tags (Bray et al., 2008) that are inserted in 
ertain senten
elo
ations in order to identify and delimit the di�erent senten
e 
onstituents, extendingthe original senten
es with their parse trees.32Example borrowed from (Butt, 2002). More information on this problem, along witha solution based on statisti
s 
an be found in Ratnaparkhi (1998).

http://igm.univ-mlv.fr/~mconstant/outilex


20 CHAPTER 1. INTRODUCTIONambiguous senten
es (the one with the �highest s
ore�). The parsing algo-rithm we propose is able to 
ompute the highest-ranked output while keepingEarley's original worst-
ase 
ost.Though a
tive development on Outilex has been dis
ontinued, its sour
e
ode may be integrated into the Unitex system in the future.1.6 Other �nite-state software1.6.1 ApertiumApertium (Armentano-Oller et al., 2007; For
ada et al., 2009, 2010) is anopen-sour
e ma
hine translation platform whi
h is being distributed underthe GNU GPL li
ense.33,34 Apertium uses �nite-state transdu
ers for lexi
alpro
essing, hidden Markov models for part-of-spee
h tagging, and multi-stage�nite-state 
hunking for stru
tural transfer. Apertium was initially designedto treat pairs of 
losely related languages spoken in Spain and Portugal,but it is nowadays able to treat other less related language pairs su
h asSpanish and Fren
h. Many of the breadth-�rst and minizimation strategiesin Apertium have inspired this thesis.1.6.2 SisHiTraSisHiTra (sistema híbrido de tradu

ión or hybrid translation system, Navarroet al., 2004) is another ma
hine translation system making use of �nite-statete
hnology and statisti
al methods, as Apertium, but is restri
ted to Spanishand Catalan. It 
an be used online at http://sishitra.iti.upv.es/1.6.3 FSA UtilitiesFSA Utilities toolbox (van Noord, 1997) is a 
olle
tion of utilities to ma-nipulate �nite-state automata and �nite-state transdu
ers.35 Manipulationsin
lude determinization (both for �nite-state a

eptors and �nite-state trans-du
ers), minimization, 
omposition, 
omplementation, interse
tion, Kleene33The terms and 
onditions of GNU's GPL li
ense 
an be found at http://www.gnu.org/li
enses/gpl.html34Apertium homepage: http://www.apertium.org35FSA Utilities homepage: http://www.let.rug.nl/�vannoord/Fsa/

http://sishitra.iti.upv.es/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.apertium.org
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losure, et
. Furthermore, various visualization tools are available to browse�nite-state automata. The toolbox is implemented in SICStus Prolog and isbeing distributed under GNU's GPL li
ense.361.6.4 XFST & Vi-xfstXFST (Xerox �nite-state tool, Karttunen et al., 1997) is a non-free general-purpose utility for 
omputing with �nite-state networks. It enables the userto 
reate simple automata and transdu
ers from text and binary �les, regularexpressions and other networks by a variety of operations. The user 
andisplay, examine and modify the stru
ture and the 
ontent of the networks.Vi-xfst (O�azer and Y�lmaz, 2004a,b) is a front-end for XFST whi
h pro-vides a visual interfa
e and a development environment for the 
onstru
tionof �nite-state language pro
essing appli
ations. Complex regular expressions
an be built via drag-and-drop, treating simpler regular expressions as 
on-stru
tion blo
ks.More information on both tools 
an be found at the homepage of the`Finite-State Morphology' book (Beesley and Karttunen, 2003): http://www.fsmbook.
om1.6.5 AT&T FSM libraryTMThe AT&T FSM libraryTM (Mohri et al., 1998) is a set of general-purposesoftware tools available for Unix. It allows for building, 
ombining, optimiz-ing, and sear
hing weighted �nite-state a

eptors and transdu
ers.37 Theoriginal goal of the library was to provide algorithms and representationsfor phoneti
, lexi
al, and language-modeling 
omponents of large-vo
abularyspee
h re
ognition systems. The library is available under non-
ommer
ial(binary only) and 
ommer
ial li
enses from AT&T Labs.1.6.6 OpenFSTOpenFst (Allauzen et al., 2007) is a library for 
onstru
ting, 
ombining,optimizing, and sear
hing weighted �nite-state transdu
ers.38 OpenFst 
on-36SICStus Prolog homepage: http://www.si
s.se/si
stus/37AT&T FSM libraryTM homepage: http://www2.resear
h.att.
om/~fsmtools/fsm/38OpenFST homepage: http://www.openfst.org/twiki/bin/view/FST/WebHome

http://www.fsmbook.com
http://www.fsmbook.com
http://www.sics.se/sicstus/
http://www2.research.att.com/~fsmtools/fsm/
http://www2.research.att.com/~fsmtools/fsm/
http://www.openfst.org/twiki/bin/view/FST/WebHome


22 CHAPTER 1. INTRODUCTIONsists of a C++ template library with e�
ient WFST representations and over25 operations for 
onstru
ting, 
ombining, optimizing, and sear
hing them.OpenFst is an open sour
e proje
t and is being distributed under the Apa
heli
ense.391.6.7 HFSTThe Helsinki Finite-State Transdu
er software (HFST, Lindén et al., 2009) isintended for the implementation of morphologi
al analysers and other toolswhi
h are based on weighted and unweighted �nite-state transdu
er te
h-nology.40 HFST is 
ompatible with XFST, and is being distributed underGNU's LGPL li
ense.1.6.8 FomaFoma (Hulden, 2009) is a 
ompiler, programming language, and C library for
onstru
ting �nite-state automata and transdu
ers for various uses. It hasspe
i�
 support for many natural language pro
essing appli
ations su
h asprodu
ing morphologi
al analysers.41 Foma is 
ompatible with XFST, andis being distributed under GNU's GPL li
ense.1.7 Stru
ture of this workThe di�erent elements that we expose in this dissertation are heavily in-terrelated, whi
h makes di�
ult to des
ribe them in some sequen
e with-out referring to future material; for instan
e, the optimization of set datastru
tures for boosting the di�erent parsing algorithms strongly depends onthe parti
ular requirements of the di�erent parsing algorithms. Conversely,some implementation details of set data stru
tures must be taken into a
-
ount when 
onstru
ting the parsing algorithms. We have 
hosen to follow a�weak� bottom-up approa
h: obje
ts that are either 
omponents or simpler39The terms and 
onditions of the Apa
he li
ense 
an be found at http://www.apa
he.org/li
enses/LICENSE-2.040HFST homepage: http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/41Foma homepage: http://foma.sour
eforge.net

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
http://foma.sourceforge.net
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ases of other obje
ts are des
ribed �rst, but relevant properties of futureobje
ts are brie�y des
ribed in advan
e when needed.As we have seen, di�erent authors de�ne di�erent kinds of �nite-statema
hines depending on their needs, though the basi
 stru
tures remain un-
hanged:
• Unitex uses RTNs with string output,
• Outilex uses RTNs outputting weights and feature stru
tures, and
• we have used �in the MovistarBot use 
ase� RTNs outputting weightedtables asso
iating the identi�ers of the dete
ted servi
e and argumentsto the 
orresponding input intervals where they have been lo
ated; forinstan
e, the following output table is generated (among others) for the
ase of senten
e `envía hola al 555-555-555 ' (send hello to the 555-555-555): sms → (1, 1]message → (1, 2]phone → (3, 14]This table is a representation of the following senten
e bra
keting, as-suming that the �rst token position is 1 and that tokens are either wordsor digits: `envía<sms/> <message>hola</message> al <phone>555-555-555</phone>'.Additionally, di�erent kinds of �nite-state ma
hines are used depending onthe data to represent:
• tries and other a
y
li
 �nite-state automata in order to represent di
-tionaries and other sets of sequen
es,
• di�erent kinds of RTNs in order to represent grammars, and
• �ltered-popping RTNs (Sastre, 2009) �a new kind of ma
hine we alsopresent in this dissertation� in order to serve as a 
ompa
t represen-tation of the result of applying a RTN with output.Rather than being 
ompletely di�erent obje
ts, those ma
hines having more
omplex features 
an be seen as extended versions of simpler ones, and are



24 CHAPTER 1. INTRODUCTIONindeed easier to des
ribe by in
rementally re�ning the simplest 
ase. Be
auseof these reasons, we have 
hosen to build a hierar
hy of �nite-state ma
hinesfor any kind of input and output, along with the 
orresponding algorithmsof treatment. This hierar
hy has served as a theoreti
al basis for the im-plementation of a C++ library of �nite-state ma
hines and the 
orrespondinggeneri
 algorithms of appli
ation. The library has been adapted to the Mo-vistarBot use 
ase and is meant to be easily extended in order to 
onsiderRTNs with di�erent kinds of output, su
h as those of the Unitex and Out-ilex systems. As a �nal remark, obje
t oriented and generi
 programminghas not only allowed us to fa
tor out 
ommon parts of the sour
e 
ode butalso to ensure that di�erent performan
es are ex
lusively due to the di�erentstrategies followed by the di�erent parsing algorithms.This dissertation is mainly divided in 4 parts as we des
ribe below.1.7.1 Part I: PreliminariesPart I in
ludes this introdu
tion and the des
ription of some obje
ts that areused by our implementation of �nite-state ma
hines and their algorithms oftreatment, namely:
• Chapter 2 des
ribes e�
ient implementations of set and map datastru
tures. Most of the parsing algorithms we des
ribe in this dis-sertation make an intensive use of set and map data stru
tures, hen
ethe need for su
h e�
ient implementations.
• Chapter 3 des
ribes some implementation 
on
erns around 
hara
terrepresentation. The texts to analyse are basi
ally sequen
es of 
hara
-ters.
• Chapter 4 des
ribes the di
tionaries we have used in order to storemorphosynta
ti
 and semanti
 data for ea
h word of the language, aswell as some implementation details.
• Chapter 5 des
ribes tokens, the minimal input unit our ma
hines takeinto a

ount, and how 
hara
ter sequen
es are segmented into tokens.
• Chapter 6 des
ribes lexi
al masks and other predi
ates that we haveused as input labels of the lo
al grammar transitions in order to repre-sent sets of tokens, and to dete
t whether tokens are blank-separated or



1.7. STRUCTURE OF THIS WORK 25not. Token sets are usually de�ned as the di
tionary words 
omplyingwith a set of morphosynta
ti
 properties.1.7.2 Part II: Finite-state ma
hinesThis part des
ribes the hierar
hy of ma
hines we have de�ned. It 
omprisesde�nitions and properties of �nite-state ma
hines, algorithms of appli
ationand other algorithms that optimize the ma
hines and ensure the absen
e of�o�ending� ma
hine substru
tures (substru
tures that may lead to in�niteloops upon the appli
ation of the ma
hines). Moreover, we will show thatthose ma
hines having unavoidable o�ending stru
tures make no sense asnatural language grammars. Contrary to CYK's parser, these ma
hine op-timizations do not introdu
e arti�
ial non-terminal symbols. Ea
h 
hapter
orresponds to a type of �nite-state ma
hine, namely:
• Finite-state ma
hines or FSMs (
hapter 7), the base 
lass for everykind of �nite-state ma
hine. This 
lass does not really de�ne a spe
i�
ma
hine but gives de�nitions, properties and algorithms 
ommon to allthe ma
hines; in the 
ontext of obje
t oriented programming it wouldbe an abstra
t 
lass de�ning pure virtual methods.
• Finite-state automata or FSAs (
hapter 8), sequen
e a

eptors repre-senting regular languages. Deterministi
 and non-deterministi
 FSAs(DFAs & NFAs) are sub
ategories of this 
lass. In parti
ular, we haveused a
y
li
 DFAs for the representation of ele
troni
 di
tionaries.
• Tries (
hapter 9), a parti
ular 
ase of DFAs used here for the optimiza-tion of sequen
e 
opies and 
omparisons as well as for the representationof ele
troni
 di
tionaries 6.1.4 (apart from a
y
li
 DFAs).
• Finite-state transdu
ers with bla
kboard output or FSTBOs (
hap-ter 10), a generi
 extension of FSAs for the generation of any kind ofoutput. Bla
kboards are either simple or stru
tured data types, andoutput symbols are fun
tions on bla
kboards. Apart from generat-ing output, bla
kboards may also be used in order to further restri
tthe language re
ognized by the original FSA. In parti
ular, ma
hinesextended with feature stru
tures and uni�
ation reje
t input interpre-tations that involve the generation of in
onsistent feature stru
tures.
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• Finite-state transdu
ers with string output or FSTSOs (
hapter 11),letter transdu
ers des
ribed as a spe
ial 
ase of bla
kboard outputwhere bla
kboards are strings and fun
tions on bla
kboars append out-put symbols. String output may be used to enri
h texts with meta-information, for instan
e tags indi
ating the synta
ti
 stru
ture of thesenten
es, or simply marking input segments 
ontaining relevant infor-mation to be extra
ted.
• Re
ursive transition networks or RTNs (
hapter 12), re
ursive sequen
ea

eptors equivalent to CFGs and pushdown automata (Oettinger, 1961;S
hützenberger, 1963; Evey, 1963), hen
e having a greater generativepower than FSAs; as CFGs, RTNs allow for stru
tured de�nitions ofgrammars where subgrammars 
an be reused in the de�nition of higherlevel grammars by means of 
all transitions.
• Re
ursive transition networks with bla
kboard output or RTNBOs (
hap-ter 13), a kind of ma
hine 
ombining re
ursive 
alls and bla
kboardoutput.
• Re
ursive transition networks with string output or RTNSOs (
hap-ter 14), RTNBOs where bla
kboards are strings and fun
tions on bla
k-boards append output symbols (as for FSTSOs).
• Filtered-popping re
ursive transition networks or FPRTNs (
hapter 15),RTNs where returning from a 
all is only possible under 
ertain 
ondi-tions (return or `pop' transitions are �ltered, hen
e the name). We also
all FPRTNs �ltered-popping networks or FPNs, though we rather usehere a
ronym FPRTN sin
e a
ronym FPN is already in use for fuzzyPetri nets (see, for instan
e, Aziz et al., 2010). We use here FPRTNs asa 
ompa
t representation of the set of outputs generated by a RTNBOfor a given input string. We present in this 
hapter an algorithm that
omputes su
h FPRTN-
ompa
ted outputs in time n3, even for 
ases inwhi
h the number of outputs to generate in
reases exponentially w.r.t.the input length (an example of this situation with natural languagegrammars has been given in se
tion 1.5.4, p. 19).
• Reversed FPRTNs or RFPRTNs (se
tion 15.5, p. 306), these ma
hinesre
ognize the reverse of the languages a

epted by some FPRTN. Re-versing a FPRTN requires to �lter pushing transitions �the 
all initial-izers� instead of popping transitions. RFPRTNs may also be referred



1.7. STRUCTURE OF THIS WORK 27to as �ltered-pushing RTNs or �ltered-pushing networks, though weuse a
ronyms RFPN or RFPRTN in order to avoid ambiguity (bothwords `pushing' and `popping' start with the same letter).
• Output FPRTNs or O-FPRTNs (
hapter 16): the sub
lass of FPRTNsserving as a 
ompa
t representation of a set of outputs. We studyhere the properties of O-FPRTNs and set the bases for further post-pro
essings, mainly the e�
ient generation of the language of outputsrepresented by an O-FPRTN.A s
hema of this ma
hine hierar
hy is given in �gure ??.The last 3 
hapters of this part give the guidelines for 
onstru
ting ma-
hines with other kinds of output as parti
ular 
ases of bla
kboard output,namely:
• Finite-state ma
hines with 
omposite output or FSMCOs (
hapter 17):FSMs generating multiple outputs, either of di�erent types or not.FSMCOs equivalent to Turing ma
hines (Turing, 1936, but see Hop
roftet al., 2000, se
. 8.2, p. 319) 
an be seen as ma
hines with multiple out-put tapes.
• Weighted �nite-state ma
hines or WFSMs (
hapter 18): FSMs withbla
kboard output where bla
kboards are weights and fun
tions onbla
kboards may in
rease or de
rease them. This kind of output servesas a non-arbitrary me
hanism for the sele
tion of a unique output uponambiguous senten
es, whi
h is to be used by end-user appli
ations su
has 
hatterbots and ma
hine translators. In this 
hapter, we presentan algorithm able to generate only the top-ranked output representedby an O-FPRTN in time n3, even for 
ases in whi
h the O-FPRTNrepresents an exponential set of outputs.
• Uni�
ation �nite-state ma
hines or UFSMs (
hapter 19): a kind ofFSMs with bla
kboard output where bla
kboards are feature stru
turesand transitions may de�ne fun
tions that unify pairs of bla
kboards, asfor the 
ase of Outilex's lo
al grammars. Uni�
ation allows for a 
om-pa
t representation of grammati
al phenomena su
h as agreement andsub
ategorization. Uni�
ation introdu
es the possibility of generatingkilling bla
kboards, whi
h in this 
ase are in
onsistent feature stru
-tures; input sequen
es that involve to generate killing bla
kboards are
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ted. The e�
ient 
omputation of the non-killing top-rankedoutput is a more 
omplex problem that is left open here for a futurework.1.7.3 Part III: Results and 
on
lusionsThis is the 
on
luding part and 
omprises two 
hapters:
• 
hapter 20 presents an empiri
al 
omparison of the performan
es of thedi�erent algorithms of appli
ation of lo
al grammars in the 
ontext ofthe MovistarBot proje
t, and also 
ompares their performan
e dropswith an arti�
ial minimal grammar generating an exponential numberof outputs w.r.t. an input in
reasing in length, and
• 
hapter 21 summarizes our 
ontributions and gives a list of furtherimprovements that 
ould be applied to this work in the future.1.7.4 Part IV: Appendi
esFinally, in this part we brie�y des
ribe the basi
 algorithms �and the ob-je
ts on whi
h they operate� whi
h have inspired some of the algorithmspresented in this dissertation, namely
• appendix A summarizes the set of lexi
al masks and predi
ates we haveused as input labels of the lo
al grammar transitions,
• appendix B gives a brief overview of CFGs and presents the notationwe have followed for representing them,
• appendix C brie�y des
ribes the original Earley parser for CFGs, and
• appendix D brie�y des
ribes PERT networks and Kahn's algorithm for
omputing a possible topologi
al sort a PERT network,42Last but not least, an index of terms 
an be found at the end of thismanus
ript, right after the bibliography. This index in
ludes the di�erentabbreviations, algorithms, fun
tions, and variable identi�ers. A list of themost 
ommon abbreviations used throughout this dissertation has been givenin page xxiv.42PERT stands for `program evaluation and review te
hnique'.
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Chapter 2Sets and mapsMost of the parsing algorithms that we will present in this dissertation makean intensive use of data obje
ts representing sets, that is, 
olle
tions of uniqueelements: upon adding an element to a set stru
ture, the element must be�rst sear
hed within the stru
ture so that it is not added twi
e.1 Other moresophisti
ated parsing algorithms also make use of maps.2 However, set andmap representation and management is, in essen
e, the same problem sin
emaps 
an be regarded as sets of key/value pairs where keys are the onlydistin
tive trait between pairs: upon adding an element (k, v2) to a map thatalready 
ontains an element (k, v1), (k, v2) will not be added (nor repla
ethe former pair) sin
e it is 
onsidered to be already present within the datastru
ture.3 At �rst, we simply used the set and map implementation providedby GNU's implementation of the C++ Standard Template Library (STL).This implementation is expe
ted to be e�
ient in most 
ases. However,our experien
e has proved that other implementations perform better �1We do not intend here to give a mathemati
al de�nition of set but rather treat themas a 
ontainer 
lass of an obje
t oriented programming language, namely C++ 
oupledwith the Standard Template Library (see for instan
e Josuttis, 1999, se
. 5.2, p. 70).Introdu
tory material on set theory 
an be found in Devlin (1993, 
hap. 1).2Likewise, we treat here maps as a 
lass of asso
iative 
ontainer. To put them inmathemati
al terms, a map M is a binary relation between keys in K and values in Vsu
h that kM v and kM v′ i� v = v′, and we say M maps k to v or asso
iates key k withvalue v; in other words, M may either map a key to a single value or leave it unmapped,and no restri
tion applies on the amount of keys asso
iated with the same value.3Indeed, GNU's implementation of the STL uses the same data stru
tures for therepresentation of sets and maps, but the stored elements are keys in the former 
ase andkey/value pairs in the latter one. 31



32 CHAPTER 2. SETS AND MAPSdepending on the algorithm and the use of the stru
tures� and are evenmandatory if we are to implement faster parsing algorithms than the onesused in the Unitex and Outilex systems.Most of the algorithms we propose use a dynami
 programming approa
h(Bellman, 1957): the parsing problem is broken down into simpler subprob-lems, whi
h are to be solved only on
e. Some data stru
ture is used inorder to represent the subproblems along with their 
omputed solutions (thepartial parses). The algorithms build either sets or maps of su
h data stru
-tures in order to ensure that the same pair subproblem/solution is not addedtwi
e, hen
e avoiding the repeated 
omputation of any further subproblemsthat would follow the ones already solved. Sin
e natural language senten
es
an have multiple interpretations �and indeed they usually do� multipleparses are possible. On
e every subproblem is solved, the set of possibleparses is built by 
ombining the di�erent subproblem solutions, avoiding re-peated parses thanks to the use of a set data stru
ture. Last but not least,the algorithms perform sequential traversals of the sets and maps in order toexe
ute at least one of the following operations:
• sear
h and remove every useless partial parse due to senten
e misinter-pretations,4
• apply some post-pro
essing to ea
h element of the set of total parses,and
• delete the sets and maps on
e they are no longer needed, whi
h impliesto �rst remove every set or map element one by one.Whether more sophisti
ated algorithms will be faster than simpler ones willstrongly depend on the use of set and map implementations providing e�-
ient addition, removal and sequential traversal methods. We simultaneouslydis
uss these problems for both set and map stru
tures by presenting solu-tions to the e�
ient management of sets of key/value pairs (for the 
ase ofsets, assume that values are empty).The problem of e�
ient set management is ubiquitous. As 
ould be ex-pe
ted, the solutions that have been proposed are numerous. In this 
hapter4Note that, due to lo
al ambiguities, parsing algorithms may not realize of a senten
emisinterpretation until reading enough senten
e words; for instan
e, in senten
e `the manwhistling tunes pianos', one does not realize that `tunes' is the senten
e verb �rather thana part of the subje
t� until reading `pianos'.



2.1. ARRAYS 33we �rst introdu
e the problem of set management by presenting a trivial so-lution based on arrays (se
tion 2.1). We further re�ne this solution by meansof double-linked lists (se
tion 2.2) and, furthermore, with binary-sear
h trees(se
tion 2.3); many of the solutions proposed in the literature, in
luding theone of GNU's implementation of the STL, are based on some kind of binary-sear
h tree. In the se
tion, we des
ribe some GNU implementation 
hoi
esalong with some alternative algorithms and optimizations. In se
tion 2.4 weenumerate and summarize the advantages and drawba
ks of di�erent kindsof self-balan
ed binary-sear
h trees, a further re�ned kind of binary-sear
htrees. In se
tion 2.5 we fo
us on red-bla
k trees, the parti
ular kind of self-balan
ing trees 
hosen for GNU's implementation. In se
tion 2.6 we presentour solution: a hybrid stru
ture 
ombining a double-linked list with a red-bla
k tree. In se
tion 2.7 we brie�y des
ribe other stru
tures that 
ould beused instead of those based on red-bla
k trees; some of them �perhaps 
om-bined as well with a double-linked list� are worth to be 
onsidered in futureworks. In se
tion 2.8 we dis
uss how to e�
iently implement maps of keysto sets of values. Finally, we give in se
tion 2.9 the guidelines for adapt-ing the previously presented set and map stru
tures for the representationof multisets and multimaps; these guidelines are to be followed in order toreimplement every set and map stru
ture provided by the STL.2.1 ArraysIn spite of the simpli
ity of the 
on
ept of set, the e�
ient implementationof set data stru
tures is a rather 
omplex problem. Sets are to be stored ina 
omputer's memory, whi
h in turn is an array of bytes. As stated before,emulating a set with an array requires to �rst sear
h the array for elementshaving the same key than the ones to be added before a
tually adding them.While adding an element to an unordered sequen
e requires only a 
onstanttime (e.g.: to append it to the end of the sequen
e), sear
hing for an elementwith a spe
i�
 key requires an average time proportional to the array sizesin
e the element's key is to be 
ompared one by one with the ones of theelements previously added to the array. In order to redu
e this time, a totalorder is to be de�ned over the set of keys �say ki ≺ kj for every pair of keys
(ki, kj) su
h that i < j� and the array is to be kept sorted w.r.t. this order,at least until element sear
hes will no longer be required. A binary sear
h
an then be performed, whi
h has a logarithmi
 worst-
ase 
ost w.r.t. the



34 CHAPTER 2. SETS AND MAPSarray size instead of proportional.Algorithm 2.1 sorted_array_add adds a key/value pair (k, v) to a setrepresented as a sorted array a0 . . . an−1. It �rst performs a binary sear
hfor the position where to insert the element, then inserts it in that positionif it is not already o

upied by an element having k as key. The algorithmreturns a Boolean indi
ating whether the element was inserted or not. Thebinary sear
h is based on the one performed by algorithm B in Knuth (1998,p. 410). During the whole algorithm exe
ution, variables i and j representthe bounds of the sear
h interval, starting with [0, n), the range 
overing thewhole array. As long as the interval is not empty (i ≤ j), it �rst sets m to themiddle position of the interval. In 
ase the interval 
ontains an even amountof elements, the greater of the two middle positions is 
hosen. If the key ofthe element to sear
h is less than the one of the middle element, the sear
h
ontinues with interval [i,m), the inferior half of the 
urrent interval withoutthe middle element. If it is greater, it pro
eeds with [m+ 1, j), the superiorhalf of the 
urrent interval without the middle element. If it is neither less orgreater, the algorithm returns ((km, vm), false) without inserting the element,where (km, vm) is the element in A su
h that km = k. If the array does not
ontain an element having k as key, the interval will be su

essively dividedby 2 up to obtaining an empty interval [i, j) with both i and j pointing tothe element having the least key greater than k. In that 
ase, the element isinserted at position i and ((ki, vi), true) is returned. The insertion operation�rst requires to shift elements (ki, vi) . . . (kn−1, vn−1) one position to the rightin order to make room for the new element. Note that this algorithm doesnot require to de�ne operators = or ≻ (reverse total order operator) but only
≺, without loss of e�
ien
y. Indeed, STL sets and maps require to de�neonly one 
omparator operator. More information on binary sear
hes 
an befound in Knuth (1998, 
hap. 6.2.1).While the binary sear
h has a logarithmi
 worst-
ase 
ost (the sear
hspa
e is divided by 2 at ea
h unfruitful iteration), the insertion operationstill has a worst-
ase 
ost proportional to the array size due to the shiftingoperation. Moreover, if there is no free memory right after the last elementin order to allo
ate one more element, the whole array must be 
opied intoa big-enough free memory segment. If the maximum amount of elementsto be added is known before 
reating the set, enough free memory 
an bereserved in order to avoid this situation, but that will not be the 
ase for theparsing algorithms presented in this dissertation and, anyway, we would stillbe fa
ing the shifting problem. Deleting an element from the array will not
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Algorithm 2.1 sorted_array_add(A, (k, v))Input: A = (k0, v0) . . . (kn−1, vn−1), a sorted array of n key/value pairs

(k, v), the key/value pair to add to the arrayOutput: A after inserting (k, v) at a position i, if there is no kj = k in A,or A unmodi�ed if there is a km = k in Areturns ((ki, vi), true) in the former 
ase, and ((km, vm), false) inthe latter one1: i← 02: j ← n3: while i 6= j do4: m← i+ integer_division(i− j, 2)5: if k ≺ am then6: j = m7: else if am ≺ k then8: i = m+ 19: else10: b← false11: return ((km, vm), false)12: end if13: end while14: insert(A, i, (k, v))15: return ((ki, vi), true)
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ate the whole array, but the elements at greater positionsthan the deleted one will still have to be shifted left. The operations in whi
harrays ex
el are both the sequential and random a

ess of its elements (hen
ethe name of random a

ess memory or RAM).2.2 Double linked listsDouble-linked lists are data stru
tures having both e�
ient insertion andremoval methods as well as a sequential traversal method. List elements donot ne
essarily lie on 
onse
utive memory positions but in arbitrary ones.In order to enable both the forward and reverse traversal of the list, the liststru
ture 
ontains a pointer towards the �rst element and another towardsthe last one, and ea
h list element 
ontains a pointer towards its previousneighbour and another towards its next one. Both inserting and removingan element x 
onsists in redire
ting x's neighbouring pointers as well as theones of its neighbours, hen
e saving the hassle of shifting every element witha key greater than the one of x (see Cormen et al., 2001, 
hap. 10 for moredetails). However, dire
t a

ess to elements at random positions is no longerpossible sin
e they no longer lie at 
onse
utive memory positions. In orderto 
ompute the middle element between two elements ai and aj , the list mustbe walked from ai towards aj and from aj towards ai, element by element inboth dire
tions, until both walks rea
h the same element. Hen
e, adding anelement to a sorted list will still have an average 
ost proportional to the listsize.2.3 Binary sear
h treesBinary sear
h trees (BSTs) are a straightforward representation of every pos-sible binary sear
h that 
an be performed on a sorted sequen
e. Like double-linked lists, they also augment ea
h element data stru
ture with two pointers,though their stru
ture is not sequential but hierar
hi
al: tree data obje
ts
ontain a pointer towards the top element of the hierar
hy, the root of thetree, and the two pointers of ea
h element referen
e the root of their respe
-tive left and right subtrees. Subtree roots y and z of an element x are 
alledthe 
hildren of x and, 
onversely, x is 
alled the parent of both y and z. Weuse symbol ⊥ in order to represent the absen
e of element, namely
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• root(T ) =⊥ (T has no root),5
• left(y) =⊥ (y has no left 
hild) and
• right(z) =⊥ (z has no right 
hild).In pra
ti
e, the 
orresponding pointers are given a null value.In the ideal 
ase, the root of the tree is the middle element, its left andright subtrees 
ontain, respe
tively, the inferior and superior halves of the treeminus the root, the subtrees of the root's 
hildren 
ontain the quarters minusthe tree and subtree roots, and so on until rea
hing a bottom hierar
hy levelwhose elements are either missing or have no 
hildren (see �gure 2.1(a)).6In other words, the number of hierar
hy levels �the height of the tree� isminimal. Su
h trees are said to be balan
ed. Sear
hing for an element with akey k inside a BST 
onsists in traversing the tree downwards from the root,either stepping towards the left or right 
hild of ea
h element x if k is less orgreater than the key of x, or stopping at x if its key is equal to k. Addingan element to a BST will �nally have a logarithmi
 worst-
ase 
ost w.r.t.the tree size rather than proportional, provided that the tree is balan
ed.In return, the sequential a

ess to the tree elements is more 
omplex andexpensive than with arrays or double-linked lists. We will �rst study thesequential traversal sin
e it introdu
es some modi�
ations to be done on thetree stru
ture whi
h the other algorithms must maintain.2.3.1 Re
ursive traversalAlgorithm 2.2 bst_pro
ess_in_order performs an in-order walk of the treehaving x as root in order to perform some pro
essing to every element ofthe tree, in dire
t order. Note that, in a balan
ed tree, the element thatfollows another one that is pla
ed at the bottom hierar
hy level belongs to anupper hierar
hy level, and vi
e-versa (see �gure 2.1(a)). The algorithm �rstnavigates the tree all the way down from the root up to the tree's bottom-left 
orner in order to a

ess and pro
ess the �rst element, then dire
tlya

esses the se
ond one at an upper hierar
hy level by returning from onere
ursive 
all and pro
esses it, then navigates again towards the bottom of5Note that a tree without root is an empty tree.6We assume that every element is a

essed with the same frequen
y. Taking intoa

ount that a

ess frequen
ies di�er from element to element is a more 
omplex problemwhi
h is not relevant to our use 
ase.
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3(b)Figure 2.1: At the left, a balan
ed binary sear
h tree and, at the right, a binarysear
h tree having a sequential stru
ture.
Algorithm 2.2 bst_pro
ess_in_order(x)Require: x to be a BST elementEnsure: every element of the tree or subtree having x as root gets deleted1: if x 6=⊥ then2: bst_process_in_order(left(x))3: y ← right(x)4: process(x)5: bst_process_in_order(right(y))6: end if



2.3. BINARY SEARCH TREES 39the tree and so on up to rea
hing and pro
essing the last element at the tree'sbottom-right 
orner. In parti
ular, GNU's implementation of the STL usesthis algorithm for deleting every element of a set or map.2.3.2 Iterative traversalThe STL abstra
ts the a
tual stru
tures representing sets and maps, thusraw a

ess to the tree elements is not possible and therefore neither it is toperform a re
ursive traversal. On the 
ontrary, the STL provides a univer-sal me
hanism for traversing any kind of 
ontainer by means of iterators.7Su
h iterators are equivalent to pointers towards the 
ontainer elements.8Containers provide methods begin and end whi
h return, respe
tively, the it-erator towards the �rst and past-the-end elements of the 
ontainer. The latterelement lies after the last element �out of the 
ontainer� and its sole pur-pose is to serve as an end-of-sequen
e mark; therefore this element stores nokey/value pair. Forward iterators provide post- and pre-in
rement operatorswhi
h redire
t them towards the next or the previous element, respe
tively,following the total order implemented by the 
hosen fun
tion obje
t (e.g.:less<key_type>, see Josuttis, 1999, se
. 5.9, p. 114). Container elementsare 
ommonly a

essed in dire
t order by means of a loop in
rementing theiterator returned by the begin method up to equaling the one returned bythe end one. Reverse versions of these methods and iterators are providedfor reverse traversals. More information on STL iterators 
an be found inJosuttis (1999, 
haps. 7, p. 220).In order to e�
iently 
ompute either the next or the previous element ofanother one, the tree stru
ture is modi�ed as follows:
• ea
h tree element is extended with a third pointer towards its parent,
• the pointer to the root of the tree within the tree stru
ture is repla
edwith a pointer towards the past-the-end element,
• the parent, left and right pointers of the past-the-end element are di-re
ted towards the root, �rst and last elements of the tree, respe
tively,and7Ve
tors, deques and lists are other 
ontainers provided by the STL. More informationon STL 
ontainers 
an be found in Josuttis (1999, 
hap. 6, p. 129).8Indeed, iterators are usually implemented as pointers with 
ustom in
rement, de
re-ment and dereferen
e operators.
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• the parent pointer of the root element is dire
ted towards the past-the-end element.The �rst modi�
ation is needed in order to navigate the tree upwards. These
ond and third ones allow for dire
t a

ess to the past-the-end, root, �rstand last elements. The last one is needed for dealing with boundary 
ondi-tions (e.g.: 
omputing the element after the last one, whi
h results in thepast-the-end element).Algorithm 2.3 bst_next_elem is the one used by GNU's implementationof the STL in order to �nd the next element of a BST element x.9 Thealgorithm �rst veri�es whether x has a right 
hild or not; if it does, theelement at the bottom-left 
orner of x's right subtree is returned as x's nextelement. Note that this is true in any 
ase where x has a non-empty rightsubtree:
• if x is the root, or is the right 
hild of the root, or 
an be rea
hed fromthe root by always des
ending towards the right, elements in the rightsubtree of x are all those elements of the tree whose keys are greaterthan the one of x, and the element at the bottom-left 
orner of thissubtree is the one having the least key amongst all of them,
• if x is the left 
hild of an element p, elements in the right subtree of xare the ones whose keys are greater than the one of x but less than theone of p, the element at the bottom-left 
orner of this subtree being aswell the one having the least key amongst them, and
• �nally, if p is the left 
hild of an element y and x is the right 
hild of
p, or x 
an be rea
hed from p by always des
ending towards the right,the elements at the right subtree of x are those whose keys are greaterthan the one of x but less than the one of y, also being the one of thebottom-left element the least one amongst them.A simpli�ed version of the last 
ase applies when x has no right subtreeand is not the last element of the tree: sin
e there are no elements between xand y, y is the next element of x; in other words, the next element of x is the9The original GNU C++ 
ode 
orresponds to method _Rb_tree_in
rement in �letree.

 of the libstd
++-v3 library. This �le 
an be downloaded from http://g

.gnu.org/view
vs/trunk/libstd
%2B%2B-v3/sr
/tree.

?view=
o. The terms of useof this �le 
an be found in the own �le header.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
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estor of x in the tree hierar
hy su
h that x lies at the an
estor'sleft subtree rather than at the right one. The algorithm iteratively navigatesthe tree upwards as follows: y is initialized as the parent of x and, at ea
hiteration, x is set to y and y to its parent as long as x is a right 
hild of y.On
e the pro
ess stops, y will be the next element, as long as there is one.If x is the last element of the tree, the past-the-end element is to bereturned. An extra 
ondition 
ould be added before the loop that navigatesthe tree upwards so that the past-the-end element is returned if x is the left
hild of the past-the-end element. However, the past-the-end element 
annotbe a

essed from the iterators, sin
e they 
ontain only the pointer towardsa tree element but not towards the tree stru
ture: the past-the-end pointerof the tree stru
ture 
an only be a

essed by methods that take the wholetree stru
ture as argument rather than tree elements, su
h as methods beginand end. Algorithm TREE-SUCCESSOR in Cormen et al. (2001, p. 259)solves the problem as follows: the parent pointer of the root is null andthe upwards navigation is stopped on
e a null parent or the next elementof x is rea
hed. In this 
ase, the extra 
ondition (null parent) is pla
edwithin the loop performing the upwards navigation whi
h, in turn, wouldbe nested in the loop traversing the whole tree. Rather than evaluatingthe extra 
ondition a single time, it would be evaluated one or more timesfor ea
h element of the tree. GNU's implementation of the STL solves thisproblem by navigating the tree upwards in order to rea
h the past-the-endelement, if ne
essary, and by pla
ing the extra 
ondition after the loop. This
ondition veri�es whether y is the right 
hild of x. Sin
e x will be the left
hild of y, this will only be possible for the past-the-end and root elementssin
e those are the only ones that are the parents of ea
h other. If x isnot the last element of the tree, the next element of x will be rea
hed beforerea
hing the past-the-end element and, therefore, y will not be the right 
hildof its own left 
hild. Otherwise, two situations are possible depending on thepresen
e or absen
e of a last element other than the root. These situationsare illustrated in �gure 2.2 by means of a minimal tree for ea
h one, 
oupledwith an exe
ution tra
e under ea
h tree. The tra
es 
ontain the values of therelevant variables during the last exe
ution stages, namely:
• x, y and their right 
hildren right before the �rst iteration having xand y as the root and the past-the-end elements, respe
tively,
• the same variables right before the following iteration, if any, and
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• the variable whose value is to be returned at the end of exe
ution.As we 
an see, the value returned by the algorithm as the next of the lastelement is the past-the-end element, in both situations.Algorithm 2.3 bst_next_elem(T, x)Input: T , a binary sear
h tree

x, an element of TOutput: returns the next element of x, or past_the_end(T ) if x = last(T )1: if right(x) 6=⊥ then2: x← right(x)3: while left(x) 6=⊥ do4: x← left(x)5: end while6: return x7: end if8: y ← parent(x)9: while right(y) = x do10: x← y11: y ← parent(y)12: end while13: if right(x) 6= y then14: return y15: end if16: return xThe iterative traversal has a slight advantage and an important drawba
kw.r.t. the re
ursive traversal:
• the �rst element is dire
tly a

essed while the re
ursive traversal nav-igates the tree all the way down from the root up to the bottom-left
orner, but
• the tree is navigated both upwards and downwards in order to sear
hfor the next elements while the re
ursive traversal sta
ks the elementsat higher hierar
hy levels during the downwards traversal so that they
an simply be popped out when needed.Instead of using a past-the-end element as the root's parent, Wein (2005)proposes to use a before-the-begin element as the left 
hild of the �rst element
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p
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lStatus at �rst iteration with x = r
y = p y = p
x = r x = r

right(y) = right(p) = r = x right(y) = right(p) = l 6= x
right(x) = right(r) = l 6= yStatus at next iteration, if any

y = r
x = p

right(y) = right(r) =⊥6= x
right(x) = right(p) = r = y Returned value

x = p y = pFigure 2.2: The two boundary 
ases of algorithm 2.3 bst_next_elem and their
orresponding exe
ution tra
es on
e the root is �rst rea
hed up to the end ofexe
ution; p, r, and l stand for past-the-end, root and last, respe
tively.



44 CHAPTER 2. SETS AND MAPSas well as a past-the-end element as the right 
hild of the last one. Thismodi�
ation makes the boundary 
ases to behave exa
tly as the other ones;therefore, it is no longer required to navigate the tree up to the root's parentin order to retrieve the past-the-end element.2.3.3 Reverse iterative traversalAs the iterative traversal 
an be performed by su

essively sear
hing for thenext element of the 
urrent one, the reverse traversal 
an be done by su

es-sively sear
hing for the previous one. Sin
e BSTs are symmetri
, algorithmbst_previous_elem 
an be obtained by simply repla
ing right with left andvi
e-versa in algorithm 2.3. In order to study the new boundary 
ases, thesame repla
ement is to be done to �gure 2.2 as well as repla
ing the last ele-ment by the �rst one. There is only one 
ase that is not present in the normaltraversal and whi
h requires a spe
ial treatment: 
omputing the prede
essorof the past-the-end element. Let x be the element whose prede
essor elementis to be 
omputed, the algorithm veri�es whether x has a left 
hild or notand, if so, returns the element at the bottom-right 
orner of the left subtreeof x. The past-the-end element does have a left 
hild, but it is de�ned asthe �rst element of the tree. Hen
e, the algorithm would return either thiselement or its the rightmost des
endant, if any, instead of the last one. Inorder to deal with this situation, GNU's implementation of the STL simplyveri�es �rst whether x is the past-the-end element in order to return the lastelement or to pro
eed as usual. The modi�
ation proposed by Wein (2005)(�rst mentioned at the end of the previous se
tion) also deals with this par-ti
ular 
ase as for any other 
ase: sin
e the past-the-end element is the right
hild of the last element and has no 
hildren, its previous element is pre
iselythe last element, the 
losest an
estor su
h that the past-the-end element liesat its right subtree.2.3.4 Unrolled iterative traversalAlgorithm 2.4 bst_unrolled_next_elem is an optimized version of algorithm 2.3bst_next_elem in whi
h the trivial assignment x ← y of the last loop hasbeen removed by unrolling the loop. The loop 
ontent is doubled so that aniteration of the unrolled loop performs two iterations of the original one. In-stead of performing the trivial assignment, the roles of variables x and y areex
hanged during the �rst half of the loop, and ex
hanged ba
k during the
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ond one. Between the two halves, an extra stop 
ondition is inserted whi
hin
ludes the post-pro
essing to be done after the loop but with the ex
hangedroles of x and y. This kind of optimization is likely to be automati
ally doneby modern 
ompilers depending on the kind of optimization requested (e.g.:we use �ag -O3 with the g++ 
ompiler in order to obtain faster 
ode in spiteof the in
rease in size). One 
an manually 
ode unrolled loops in order toensure that this optimization is in
luded, but by relying on �ags one 
angenerate di�erent exe
utables with the same sour
e 
ode depending on the
hara
teristi
s and limitations of the targeted platform: while loop unrolling
an a

elerate the program exe
ution in a desktop 
omputer, the in
rease insize might not be an option for an embedded devi
e with limited resour
es.GNU's implementation of the STL does not manually 
ode this loop, thuswe have relied on the optimization 
apabilities of the g++ 
ompiler. We leavemanual loop unrolling for a future work. More information on the removalof trivial assignments 
an be found in Mont-Reynaud (1976), and other ex-amples of appli
ation of su
h te
hnique 
an be found in Bentley (1982, p.59). Apart from the removal of trivial assignments, other bene�ts as well asdrawba
ks of loop unrolling are dis
ussed in Dongarra and Hinds (1979) andSarkar (2001). The unrolled version of algorithm bst_previous_elem 
anbe obtained by following the same pro
edure, or by simply repla
ing rightwith left and vi
e-versa in algorithm 2.4 bst_unrolled_next_elem.2.3.5 Addition with Knuth's algorithmAlgorithm 2.5 bst_knuth_add adds a key/value pair (k, v) to a set ba
kedby a BST. This algorithm is a modi�ed version of the one given in Knuth(1998, 
hap. 6.2.2) whi
h also keeps tra
e of the root, �rst and last elementsof the tree. The algorithm �rst 
he
ks whether the tree has a root or not,storing the root in variable x. If not, it 
alls algorithm 2.7 bst_add_rootin order to add (k, v) as the tree's root, then returns pair (root(T ), true).Otherwise, it performs a binary sear
h in a similar fashion than algorithm 2.1sorted_array_add. The tree is navigated downwards from the root by usingtwo variables, x and y, storing the 
urrent tree element and the previousone, respe
tively. A third variable c stores the result of the last 
omparison
k ≺ key(x). The 
urrent element for the next iteration is either the leftor right 
hild of x depending on whether k is less or greater than x's key,respe
tively. The loop ends on
e rea
hing an x having k as key or an yla
king the 
hild that would be the next element. In the former 
ase, the
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Algorithm 2.4 bst_unrolled_next_elem(T, x)Input: T , a binary sear
h tree

x, an element of TOutput: returns the next element of x, or past_the_end(T ) if x = last(T )1: if right(x) 6=⊥ then2: x← right(x)3: while left(x) 6=⊥ do4: x = left(x)5: end while6: return x7: end if8: y ← parent(x)9: while right(y) = x do10: x← parent(y)11: if right(x) 6= y then12: if right(y) 6= x then13: return x14: end if15: return y16: end if17: y ← parent(x)18: end while19: if right(x) 6= y then20: return y21: end if22: return x



2.3. BINARY SEARCH TREES 47algorithm returns pair (x, false) from within the loop, and (k, v) is not addedto the tree. In the latter one, algorithm 2.6 bst_knuth_add_post is 
alledin order to perform the post-pro
essing after the loop. This post-pro
essing
alls either algorithm 2.8 bst_add_left or algorithm 2.9 bst_add_right inorder to 
reate the la
king 
hild of y with (k, v) as key/value pair. The valueof variable c determines whether the new element is to be a left or right 
hildsin
e y's key 
annot be equal to k at this point.Algorithms 2.7 bst_add_root, 2.8 bst_add_left and 2.9 bst_add_right�rst 
all algorithm 2.10 bst_
reate_elem in order to 
reate the new treeelement. This last subroutine simply initializes the key, value and pointer�elds to the passed values. On
e the element is 
reated, they update thepointers to the root, �rst and last elements of the tree, whenever ne
essary:
• a new element added as the tree's root be
omes the �rst and last ele-ment as well as the new tree's root,
• a new element added as the left 
hild of the �rst element be
omes thenew �rst element, and
• a new element added as the right 
hild of the last element be
omes thenew last element.Provided that the tree is balan
ed, algorithm 2.5 bst_knuth_add has alogarithmi
 worst-
ase 
ost w.r.t. the tree size. However, this algorithm doesnot ensure that the tree will still be balan
ed on
e a new element is added.Indeed, if the tree elements are added in either dire
t or reverse order thenthe resulting tree will resemble a double-linked list; for instan
e, the tree of�gure 2.1(b) 
an be built by adding elements 1, 2 and 3 to the empty treein that order. Therefore, the worst-
ase 
ost of adding an element to a BSTwill still be proportional to the tree size depending on the order in whi
h theelements are added.If one was to build a stati
 set or map in order to be just sear
hed ratherthan modi�ed �for instan
e, whenever using a di
tionary rather than build-ing it� a balan
ed tree might not be the best option. Depending on thefrequen
y in whi
h the di�erent keys are to be sear
hed, some tree elementsshould appear at upper hierar
hy levels rather than at lower ones (e.g.: thelanguage's most frequent words). An algorithm for the 
onstru
tion of su
htrees in time n2 is given in Knuth (1998, p. 436). For the 
ase of our pars-ing algorithms, sets and maps are built rather than just sear
hed, and key



48 CHAPTER 2. SETS AND MAPSAlgorithm 2.5 bst_knuth_add(T, (k, v))Input: T , a binary sear
h tree
(k, v), the key/value pair to add to the treeOutput: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former 
ase, and (z′, false) in the latter one1: if (x← root(T )) =⊥ then2: return (bst_add_root(T, (k, v), true)3: end if4: repeat5: y ← x6: if c← (k ≺ key(x)) then7: x← left(x)8: else if key(x) ≺ k then9: x← right(x)10: else return (x, false)11: end if12: until x =⊥13: return bst_knuth_add_post(T, (k, v), y, c)

Algorithm 2.6 bst_knuth_add_post(T, (k, v), y, c)Input: T , a binary sear
h tree
(k, v), the key/value pair to add to the tree
y, the parent of the new tree element
c, a Boolean equal to k ≺ key(y)Output: T after adding the new element holding (k, v)returns the added element1: if 
 then2: return (bst_add_left(T, (k, v), y), true)3: else return (bst_add_right(T, (k, v), y), true)4: end if



2.3. BINARY SEARCH TREES 49Algorithm 2.7 bst_add_root(T, (k, v))Input: T , an empty binary sear
h tree
(k, v), a key/value pairOutput: T after 
reating its root
z, the new tree's root holding (k, v)1: z ← bst_create_elem((k, v), past_the_end(T ),⊥,⊥)2: root(T )← first(T )← last(T )← z3: first(T )← z4: last(T )← zAlgorithm 2.8 bst_add_left(T, (k, v), y)Input: T , a binary sear
h tree

(k, v), a key/value pair
y, an element of TOutput: T after adding a new element z as left 
hild of y holding (k, v)
z, the new tree element1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← z3: if first(T ) = y then4: first(T )← z5: end ifAlgorithm 2.9 bst_add_right(T, (k, v), y)Input: T , a binary sear
h tree

(k, v), a key/value pair
y, an element of TOutput: T after adding a new element z as right 
hild of y holding (k, v)
z, the new tree element1: z ← bst_create_elem((k, v), y,⊥,⊥)2: right(y)← z3: if last(T ) = y then4: last(T )← z5: end if



50 CHAPTER 2. SETS AND MAPSAlgorithm 2.10 bst_
reate_elem((k, v), p, l, r)Input: (k, v), the key/value pair of the new tree element
p, the parent of the new tree element
l, the left 
hild of the new tree element
r, the right 
hild of the new tree elementOutput: z, the new tree element1: key(z)← k2: value(z)← v3: left(z)← l4: right(z)← rfrequen
ies are unknown; hen
e, we will 
onsider balan
ed trees as the ideal
ase.2.3.6 Addition with Cormen's algorithmAlgorithm 2.11 bst_
ormen_add is another algorithm for adding a key/valuepair (k, v) to a set ba
ked by a BST, based on algorithm TREE-INSERTdes
ribed in Cormen et al. (2001, p. 261). Cormen's algorithm is 
on
eivedfor adding an element whose key is new to the set; it is equal to Knuth'salgorithm (Knuth, 1998, 
hap. 6.2.2) without the se
ond test within thebinary sear
h loop. However, algorithm bst_
ormen_add does take intoa

ount that k may not be new to the set. Rather than omitting the equalitytest, it transfers it to the post-pro
essing after the loop, whi
h is performedby algorithm 2.12 bst_
ormen_add_post. This post-pro
essing is dividedinto two main 
ases depending on whether the key of the last tree elementstored in y is less than k or not. If it is less, we have the following sub
ases:

• k is less than any other key within the tree, thus the tree has alwaysbeen navigated towards the left from the root up to the bottom-left
orner. This 
ase is re
ognized by verifying whether y is the �rst ele-ment of the tree. In this 
ase, a new �rst element is added as left 
hildof y by means of algorithm 2.13 bst_add_�rst.
• k is less than y's key, but not less than any other key within the tree.If there is an element y′ having k as key, the tree will be navigateddownwards up to su
h element. Then, the right 
hild of y′ will be
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hosen and, sin
e every key within the right subtree of y′ will be greaterthan k, the tree will be navigated downwards up to the bottom byalways turning left. Hen
e, y′ is the lowest an
estor of y su
h that ylies on its right subtree rather than on its left one. Note that this
orresponds to the reverse of one of the 
ases for the 
omputationof the next element of another one. Hen
e, y′ 
an be retrieved bymeans of the 
ounterpart of algorithm 2.3 bst_next_elem, bst_pre-vious_elem (se
tion 2.3.3, p. 44). On
e retrieved, the equality test is�nally performed. If the keys are equal, the algorithm returns pair
(y′, false). If they are not, algorithm 2.14 bst_add_left_no_�rst is
alled in order to 
reate a new element z as left 
hild of y, and (z, true)is returned. bst_add_left_no_�rst is equal to bst_add_�rst withoutverifying whether the new element is the �rst one or not, sin
e that
orresponds to the previous 
ase.
• k is greater or equal than y's key. In this 
ase, the algorithm simplyperforms the equality test between k and y's key, and either adds ornot the new element as the right 
hild of y, depending on the result.Opposite to the previous 
ase, if a new element is added then it mustbe veri�ed whether it is to be
ome the new last element or not.This algorithm is the one used by GNU's implementation of the STL, withoutsome minor 
ode fa
toring in the post-pro
essing part that we have omittedin favor of a more readable 
ode.10Summarizing, this algorithm has one advantage and one drawba
k w.r.t.algorithm 2.5 bst_knuth_add :
• the equality test is performed after the binary sear
h loop a single timerather than one time per iteration, but
• when the key to add is already in the set, the algorithm does not stop atthe 
orresponding tree element y′ but navigates up to the tree bottom,then 
omes ba
k to y′ in order to perform the equality test.10The original C++ 
ode is splitted into methods _M_insert_unique and _M_insert_of �le stl_tree.h and the �rst part of method _Rb_tree_insert_and_rebalan
ein �le tree.

. Both �les belong to the libstd
++-v3 library and 
an be down-loaded from http://g

.gnu.org/view
vs/trunk/libstd
%2B%2B-v3/sr
/tree.

?view=
o and http://g

.gnu.org/view
vs/trunk/libstd
%2B%2B-v3/in
lude/bits/stl_tree.h?view=
o, respe
tively. The terms of use of these �les 
an be found in theirrespe
tive headers.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co


52 CHAPTER 2. SETS AND MAPSAlgorithm 2.11 bst_
ormen_add(T, (k, v))Input: T , a binary sear
h tree
(k, v), the key/value pair to add to the treeOutput: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former 
ase, and (z′, false) in the latter one1: if (x← root(T )) =⊥ then2: return (bst_add_root(T, (k, v), true)3: end if4: repeat5: y ← x6: if c← (k ≺ key(x)) then7: x← left(x)8: else x← right(x)9: end if10: until x =⊥11: return bst_cormen_add_post(T, (k, v), y, c)We expe
t bst_
ormen_add to be faster than bst_knuth_add, in general,sin
e

• the delayed 
onditional jump is one of the most expensive operationswithin the binary sear
h loop,
• the sear
h for y′ is to be done in less than half of the 
ases, on theaverage, and
• this extra sear
h will simply add an extra loop with a single 
onditionaljump rather than 3 (less/greater/no further 
hildren) with a logarith-mi
 
ost in the worst 
ase, provided that the tree is balan
ed. Indeed,the average 
ase will have an even smaller 
ost sin
e the worst 
asewill only take pla
e when navigating ba
kwards from the bottom-left
orner of the root's right subtree up to the root.2.3.7 Addition with Andersson's algorithmAndersson (1991) gives an algorithm for sear
hing for an element inside aBST, rather than for element addition. This algorithm is almost the same
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ormen_add_post(T, (k, v), y, c)Input: T , a binary sear
h tree
(k, v), the key/value pair to add to the tree
y, the parent of the new tree element
c, a Boolean equal to k ≺ key(y)Output: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former 
ase, and (z′, false) in the latter one1: if c then2: if y = first(T ) then3: return (bst_add_first((k, v), y), true)4: else5: y′ ← bst_previous_elem(y)6: if key(y′) ≺ k then7: return (bst_add_left_no_first((k, v), y), true)8: else return (y′, false)9: end if10: end if11: else if key(y) ≺ k then12: return bst_add_right((k, v), y)13: else return (y, false)14: end if

Algorithm 2.13 bst_add_�rst(T, (k, v), y)Input: T , a binary sear
h tree
(k, v), a key/value pair
y, an element of TOutput: T after adding (k, v) as left 
hild of y and �rst of T
z, the new tree element holding (k, v)1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← z3: first(T )← z



54 CHAPTER 2. SETS AND MAPSAlgorithm 2.14 bst_add_left_no_�rst(T, (k, v), y)Input: T , a binary sear
h tree
(k, v), a key/value pair
y, an element of TOutput: T after adding (k, v) as left 
hild of y but not �rst of T
z, the new tree element holding (k, v)1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← z

than algorithm 2.11 bst_
ormen_add : both of them perform a binary sear
hsimilar to the one performed by algorithm 2.5 bst_knuth_add, but omittingthe equality test until the sear
h loop is over. Apart from being a puresear
her, the di�eren
e 
onsists in the way in whi
h y′ is retrieved: whilealgorithm bst_
ormen_add walks the tree ba
k in order to retrieve the pre-vious element of y, Andersson's algorithm performs assignment y′ ← x insidethe binary sear
h loop ea
h time the key of x is found to be less than thesear
hed key, that is, it keeps tra
k of the last explored element whose keymight be equal to the sear
hed one. On
e the binary sear
h ends, the algo-rithm simply uses the value of the pre
omputed y′ instead of sear
hing for theprevious element of y. An addition version of Andersson's algorithm 
an beeasily built by performing these modi�
ations to algorithm bst_
ormen_add.Due to the di�eren
es between Knuth's and Andersson's algorithm, thedis
ussion given in Knuth (1998, p. 436) on the 
onstru
tion of optimal BSTs,taking into a

ount key frequen
ies, does not apply for the 
ase of Ander-sson's algorithm. Spuler (1993) dis
usses the optimal BST for Andersson'salgorithm, and gives an algorithm for the 
onstru
tion of su
h trees in time
n logn rather than n2. Due to the resemblan
e between Cormen's and Ander-sson's algorithms, this work is likely to apply as well to Cormen's algorithm.Sin
e we have already obtained faster parsing algorithms than those im-plemented in the Unitex and Outilex systems by using Knuth's and Cormen'saddition algorithms, we have not tested the 
orresponding Andersson's ad-dition algorithm; moreover, we present in se
tion 2.6 another possible opti-mization of the tree stru
ture whi
h makes unne
essary to 
ompute y′.



2.3. BINARY SEARCH TREES 552.3.8 Addition with unrolled loopsTrivial assignment y ← x in all the previous addition algorithms 
an beremoved by unrolling their binary sear
h loops, as shown for the 
ase ofalgorithm 2.3 bst_next_elem in se
tion 2.3.4 (p. 44).Spuler (1992) gives another version of Andersson's binary sear
h algo-rithm in whi
h the sear
h loop has been unrolled in order to remove thetrivial assignment y′ ← x. The pro
edure is similar to the one followed forthe 
onstru
tion of algorithm 2.4 bst_unrolled_next_elem, but with a smalldi�eren
e: a new loop is embedded inside the original one whi
h has the rolesof y′ and y ex
hanged, and a 
onditional jump redire
ts the exe
ution �owto the outer loop when the roles are ex
hanged ba
k.The addition version of Andersson's algorithm has two trivial assignmentsthat 
ould be removed: y ← x and y′ ← x. Rather than simply ex
hangingthe roles of two variables, multiple 
ombinations of ex
hanges between the 3roles (x, y and y′) are possible. This problem is quite more 
omplex, requiringa quite greater number of loop versions than simply two, as well as a more
omplex network of exe
ution �ow deviations between the di�erent loops. Asstated in the previous se
tion, we present in se
tion 2.6 another optimizationof the tree stru
ture whi
h no longer requires to 
ompute y′ and, therefore,to perform the se
ond trivial assignment y′ ← x.2.3.9 Addition with a 3-way 
omparatorAlgorithm 2.5 bst_knuth_add evaluates at ea
h iteration of its binary sear
hloop whether the sear
hed key is less, equal or greater than the key of the
urrent tree element. This operation is 
alled a 3-way 
omparison. Thisoperation is emulated by means of two appli
ations of the `less than' 
om-parator. However, some programming languages provide su
h operator (e.g.:Perl, Ruby, et
.). Let <=> represent su
h operator, a <=> b returns anegative value if a < b, 0 if a = b, and a value greater than 0 if a > b. TheSTL does not provide a generi
 version of this operator, but it is quite easyto implement. Moreover, if a and b are signed numbers, one 
an simply 
om-pute a− b. Anyway, we would still need to verify whether the result is eithernegative, positive, or null, in order to 
hoose between navigating the treeleft, right, or stopping the algorithm exe
ution. This operator be
omes ofinterest when keys are sequen
es of values to be lexi
ographi
ally 
ompared,rather than simple values.
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ompare both the use of the less and 3-way 
omparators, we�rst re
all how to extend the less 
omparator for being applied to sequen
es ofelements. Algorithm 2.15 array_
ompare_less returns a Boolean indi
atingwhether an array A is lexi
ographi
ally less than an array B. For the sakeof simpli
ity, the algorithm supposes that B is either shorter or has thesame number of elements than A. A previous 
onditional instru
tion wouldbe required in order to 
all the algorithm with B as the shorter array, ifne
essary. The algorithm emulates the 3-way 
omparison with two `less than'
omparisons, as for algorithm 2.5 bst_knuth_add. For ea
h bi in B, it veri�eswhether bi is greater, less, or equal to the 
orresponding ai. If it is greater,then the algorithm is to return true, if it is less then it is to return false, andif it is equal then the same pro
edure is to be performed on the next pair ofarray elements as long as B has elements left. If B runs out of elements, theneither both arrays are equal or A is greater than B, depending on whether
A has the same amount of elements than B or not. In either 
ase, A is notless than B, thus false is to be returned.Algorithm 2.15 array_
ompare_less(A,B)Input: A = a0 . . . am−1, an array of m elements

B = b0 . . . bn−1, an array of n elements su
h that n ≤ mOutput: returns a boolean indi
ating whether A is lexi
ographi
ally lessthan B1: i← 02: while i 6= n do3: if ai < bi then4: return true ⊲ A < B5: else if bi < ai then6: return false ⊲ A > B7: end if8: i← i+ 19: end while10: return false ⊲ A ≥ BLet us suppose that we are to use a `less than' operator with algorithm 2.5bst_knuth_add, and that we are to 
ompare two arrays A and B having a
ommon pre�x of length l. We �rst verify whether A is less than B or not,whi
h requires to perform 2l `less than' 
omparisons before rea
hing the pairof elements that di�er. If B is not a pre�x of A, a last 
omparison for the
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ase A is not less than B, we verify whether
B is less than A, whi
h doubles the amount of 
omparisons.Algorithm 2.16 array_
ompare_3w is the 
orresponding extension of the3-way 
omparator for sequen
es of signed numbers. At ea
h iteration, it onlyneeds to verify whether the 
urrent pair of elements are the ones that di�eror not. If so, the result of the subtra
tion is returned and, if not, the samepro
edure is repeated for the next pair of elements. On
e every element of
B has been 
ompared, A will be greater than B if it still has elements left,and equal if not. Subtra
tion m − n will return a number greater than 0 inthe former 
ase, and 0 in the latter one. Note that this algorithm performs asingle if/then instru
tion at ea
h iteration instead of two, thanks to the useof the subtra
tion in order to emulate the 3-way 
omparison. Assignment
c← ai−bi is not really performed sin
e c is supposed to be the own pro
essorregister in whi
h the subtra
tion result is returned, thus the result is notreally 
opied into a memory position. On
e the 3-way 
omparison is �nished,algorithm 2.5 bst_knuth_add still requires to verify whether A ≺ B, B ≺
A or A = B in order to either navigate the tree left, right or stop thealgorithm exe
ution. However, the 
ompiler is likely to embed the 
ode ofthe 3-way 
omparison algorithm within algorithm 2.5 bst_knuth_add ratherthan performing a 
all; in this 
ase, the if/then instru
tion of the 3-way
omparison algorithm will also serve as the equality test of algorithm 2.5bst_knuth_add (whether key(x) = key(y) or not), hen
e algorithm 2.5 bst-_knuth_add will only require to perform one additional if/then instru
tionafter the equality test in order to verify whether key(x) ≺ key(y) or key(y) ≺
key(x).Summarizing, we 
an expe
t a performan
e boost in Knuth's algorithmproportional to the average length of the 
ommon pre�xes of the 
omparedsequen
es. Sin
e both Cormen's and Andersson's algorithms perform theequality test a single time after the binary sear
h loop, they may only takeadvantage of the 3-way 
omparator a single time instead of on
e for ea
h loopiteration. We have implemented an equivalent version of the STL sets andmaps that use Knuth's algorithm, with and without the 3-way 
omparator,and 
ompared it with GNU's implementation, whi
h uses the modi�ed ver-sion of Cormen's algorithm presented in se
tion 2.3.6 (p. 50). Wein (2005)presents another implementation of the STL sets and maps using the 3-way
omparator; however, details on the algorithm used for either sear
hing oradding elements to the trees are not given.
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ompare_3w(A,B)Input: A = a0 . . . am−1, an array of m signed numbers
B = b0 . . . bn−1, an array of n signed numbers su
h that n ≤ mOutput: returns a number less than, equal to or greater than zero dependingon whether A is lexigraphi
ally less, equal or greater than B, respe
tively1: i← 02: while i 6= n− 1 do3: if (c← ai − bi) 6= 0 then4: return c ⊲ A 6= B5: end if6: i← i+ 17: end while8: return m− n ⊲ A ≥ B2.3.10 RemovalAs shown in se
tion 2.3.1, the removal of every element of a BST 
an beperformed by means of an in-order walk. In order to maintain the extrapointers added for the e�
ient iterative traversal of the tree (se
tion 2.3.2,p. 39), the root pointer is to be given a null value and the pointers to the�rst and last elements are to be redire
ted towards the past-the-end element,on
e the in-order walk is �nished. Apart from that, it will not be ne
essaryto verify whether the resulting tree respe
ts or not the well-formedness rulessin
e it it will be empty. Summarizing, we say a BST is well-formed if andonly if

• no tree element has more than two 
hildren,
• if the tree is not empty, only the root of the tree has no parent (or hasthe past-the-end as parent, in order to deal with the boundary 
ases ofalgorithm 2.3 bst_next_elem in se
tion 2.3.2),
• the keys of every element at the left subtree of an element x are all lessthan the key of x, and
• the keys of every element at the right subtree of an element x are allgreater than the key of x.It is only ne
essary to ensure that, after deleting ea
h element, the remainingones are still a

essible from the resulting tree stru
ture so that every element
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an be deleted. Sin
e the in-order walk deletes the tree from the bottom tothe top, this restri
tion is respe
ted, and the deletion of every element 
anbe e�
iently performed even if the tree elements have no pointers towardstheir parents. However, removing a single element from an arbitrary positionrequires some further pro
essing in order to obtain a well-formed BST. Let
z be the element to remove:
• if z has no 
hildren, it is only ne
essary to nullify the 
orresponding
hild pointer of z's parent,
• if z has a unique 
hild x, x is to take z's pla
e within the tree stru
ture,and
• if z has two 
hildren, a more 
omplex pro
essing is ne
essary sin
e z'sparent 
annot adopt both z's 
hildren as its own left or right 
hildren(one left and one right 
hildren are possible, but not two left or tworight 
hildren).The �rst 
ase is trivial. The se
ond one is solved as stated, sin
e:
• if x is a left 
hild of z, the keys of x and every element under x will beless than the key of z and, 
onsequently, less than the key of the parentof z, and
• the same reasoning applies if x is a right 
hild of z but with greaterkeys instead of lesser ones.For the third 
ase, it is ne
essary to sear
h for an alternative element yhaving at most one 
hild, so that it 
an be put in the pla
e of z within thetree stru
ture. This element 
an be, for instan
e, the next element of z: asstated in se
tion 2.3.2 (p. 39), the next element of an element z having a right
hild is the element at the bottom-left 
orner of z's right subtree. Obviously,this element y will have no left 
hild but may have a right 
hild x. Instead ofpopping z out of the tree stru
ture, we pop y out by following either the �rstor the se
ond 
ase depending on whether y has a right 
hild or not. On
ethis has been done, it will sure that y has no 
hildren, thus it will be possibleto transfer z's parent and 
hildren to y. Moreover, the key of y will be lessthan the keys within the right subtree of z, and greater than the keys withinthe left subtree of z. Alternatively, the previous element of z 
an also be putin the pla
e of z. On
e the tree stru
ture is rearranged, z 
an be deleted.
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tual algorithm 
an be found in Cormen et al. (2001, p. 262). Thisalgorithm has a slight di�eren
e w.r.t. the third 
ase of the previous expla-nation: instead of repla
ing element z by element y and then deleting z, zis given y's key and y is deleted instead. Note that, if keys are simple val-ues, it will be faster to 
opy a single key than several pointers. However,this optimization is not 
ompatible with the STL spe
i�
ation sin
e set andmap iterators must remain valid until the element they point to is deleted;summarizing, y 
annot be deleted instead of z sin
e iterators pointing at ywould no longer point to an existent element.GNU's implementation of the removal operation is based on Cormen'salgorithm but repla
ing z by y instead of simply 
opying y's key into z.Moreover, the �rst and last elements of the tree must be updated as follows:
• if z is the root and has no 
hildren, the past-the-end element is tobe
ome the new �rst and last element,
• if z is the root and has only a left or a right 
hild, this left or right 
hildis to be
ome either the new last or �rst element, respe
tively, and
• if z is not the root and has no left or right 
hild, the parent of z is tobe
ome the new �rst or last element if z is the �rst or last element,respe
tively.We will present in se
tion 2.6 a quite simpler removal method based onthe use of BSTs 
ombined with double-linked lists; therefore we will not godeeper into the details of GNU's implementation of the removal operation.112.4 Self-balan
ing binary sear
h treesThere exist several variations of BSTs whose addition and removal operationsperform some series of rotations on the tree elements so that the tree is alsokept more or less balan
ed; the most popular ones are: AVL trees (Adel'son-Vel'ski�� and Landis, 1962, named after their inventors), symmetri
 binary B-trees (Bayer, 1972, rebaptized as red-bla
k trees after Guibas and Sedgewi
k,11The a
tual GNU's C++ 
ode for element removal is a part of method_Rb_tree_rebalan
e_for_erase de�ned in �le tree.

 of the libstd
++-v3 library.This �le 
an be downloaded from http://g

.gnu.org/view
vs/trunk/libstd
%2B%2B-v3/sr
/tree.

?view=
o. The terms of use of this �le 
an be found in the own�le header.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co


2.4. SELF-BALANCING BINARY SEARCH TREES 611978), AA trees (Arne Andersson, 1993, named after their inventor) ands
apegoat trees (Galperin and Rivest, 1993). Ex
ept for the last one, all ofthem require extending the tree elements with some extra data in order tokeep tra
e of the tree balan
e status. Pointers to the parent elements arealso required in order to navigate the tree upwards, as well as to performthe element rotations. AVL trees extend their elements with the di�eren
ebetween the heights of their left and right subtrees, and rebalan
e the treeafter ea
h element addition or removal so that this di�eren
e is always keptbetween −1 and 1. This ensures that the tree will always be balan
ed;therefore AVL trees provide the best average sear
h times (assuming thatevery element within the tree is sear
hed with the same frequen
y). However,they also perform a greater number of tree restru
turings, whi
h may resultin worst overall exe
ution times. While adding elements to a BST in dire
t orreverse order results in sequential trees, adding them in random order tend toresult in balan
ed trees, thus relaxing the rebalan
e 
onstraints will a

eleratethe addition operation with slight or no penalization on the sear
h times aslong as elements are added in random sequen
es. Rather than ensuring aminimal tree height at all times, red-bla
k trees ensure that, for every treeelement x, the longest sequen
e of des
endants of x is at most twi
e as longas the shortest one. Rather than a more e�
ient alternative, AA trees area simpli�ed version of red-bla
k trees. Rather than having a �xed balan
efa
tor, s
apegoat trees allow for 
hoosing an unbalan
e toleran
e index α,ranging from sequential trees (α = 1) up to fully balan
ed trees (α = 0).Instead of having to add some extra information to ea
h tree element, only2 integer numbers are to be added to the whole tree stru
ture. In the 
aseof s
apegoat trees, the element that is not α-weight-balan
ed is sear
hedin order to perform the rebalan
e operation on this element. The elementis 
alled the s
apegoat, hen
e the name of the trees. S
apegoat trees withdi�erent unbalan
e toleran
e indexes might be an option to 
onsider for afuture work. We fo
us here on red-bla
k trees sin
e those are the ones used byGNU's implementation of sets and maps in the STL. AVL trees do not seema 
ompetitive option; indeed, Lynge (2004) has already tested them againstthe GNU's implementation, obtaining worst results for every operation.
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k treesAs stated in the previous se
tion, red-bla
k trees are self-balan
ing treeswhi
h allow for some unbalan
ing degree. This degree is determined by 3axioms that hold for every red-bla
k tree:
• every tree element is either red or bla
k (hen
e the name),
• if y is a 
hild of a red element x, then y's 
olor is bla
k, and
• for every sequen
e of elements from a given element towards any de-s
endant having an empty left or right subtree, the number of bla
kelements is the same.In the extreme 
ases, these axioms ensure that the shortest path from a givenelement x towards a des
endant having an empty left or right subtree willbe formed by a sequen
e of n red nodes, and the longest one by an alternatesequen
e of n red and n bla
k elements. Therefore, the length of the shortestpath 
annot be less than half of the length of the longest one, hen
e ensuringa �half� balan
e fa
tor.The red-bla
k tree of �gure 2.3(a) is a balan
ed BST equivalent to thatof �gure 2.1(a) whi
h 
an be obtained without performing any rebalan
e byexe
uting the following sequen
e of operations:
• add 4 to the empty tree,
• add 2 and 6 in any order, and
• add 1, 3 and 5 in any order.The red-bla
k tree of �gure 2.3(b) 
an be obtained by adding the same el-ements but in as
ending order; note that the resulting tree is a partiallybalan
ed tree whi
h respe
ts the 3 previously stated axioms.Sin
e red-bla
k trees are themselves BSTs, the former algorithms on BSTsalso apply to red-bla
k trees. However, after either adding or removing andelement, it is ne
essary to 
he
k whether the red-bla
k tree axioms are stillrespe
ted and, if not, the tree is to be restru
tured. A detailed explanationon how to perform these operations as well as the 
orresponding algorithmsis given in Cormen et al. (2001, 
hap. 13). For the 
ase of red-bla
k trees,Cormen et al. make use of a sentinel element: instead of using null pointersin order to represent a missing left or right 
hild, a spe
ial element 
alled the
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6(b)Figure 2.3: At the left, a balan
ed red-bla
k tree and, at the right, a partially-balan
ed red-bla
k tree.



64 CHAPTER 2. SETS AND MAPSsentinel is used in order to expli
itly represent the empty subtrees. Sin
ethe key of su
h element is of no use, elements having one or two emptysubtrees are all linked to the same sentinel element instead of having a dif-ferent sentinel for ea
h empty subtree. The sentinel allows for dealing withboundary 
ases as one would with normal ones, sin
e it is no longer requiredto verify whether the 
hild of an element exists or not before a

essing it.The tree stru
ture must be augmented with su
h an extra element, whi
hin fa
t 
an perfe
tly be the past-the-end element, and a pointer towards thesentinel must be stored inside the tree stru
ture so that the algorithms 
anverify whether an element's 
hild is the sentinel or not. However, the imple-mentation of the STL iterators 
on�i
ts with the use of sentinels: algorithmsoperating on iterators rather than on whole tree stru
tures do not have a

essto the sentinel's pointer sin
e iterators are implemented as pointers towardstree elements rather than tree stru
tures; therefore it is ne
essary to use a�xed value su
h as the null pointer in order to represent the empty subtrees.2.6 Double-linked red-bla
k treesAs stated at the beginning of this 
hapter, some of the parsing algorithms thatwe will present in this dissertation sear
h and remove every useless partialparse before starting to 
ombine them in order to build the set of parses.At a �rst implementation version, we �rst built a simpli�ed version of thesets of partial parses in the form of a single double-linked list, then threwaway the previous sets of partial parses and �nally performed the removalof useless partial parses from the list. Sin
e no more elements were to beadded to the set of partial parses, and this set stru
ture already ensuredthat every 
ontained partial parse was unique, the double-linked lists werepreferred due to their more e�
ient removal operation. Although appendingan element to a double-linked lists is a fast operation, this pro
edure wastedtime due to the dupli
ated 
onstru
tion and destru
tion of ea
h partial parse.In order to avoid this situation, we de
ided to perform all the treatment onthe original set stru
tures. The exe
ution times were lowered, but not asmu
h as expe
ted: the removal operation was not only restru
turing the treein order to respe
t the BST axioms, but it was also rebalan
ing the tree. Thisrebalan
ing was unne
essary sin
e the remaining operations to perform onthe trees involved only iterative traversals, but no sear
h for spe
i�
 elements.Finally, we 
onsidered an even more radi
al solution: we extended ea
h tree



2.6. DOUBLE-LINKED RED-BLACK TREES 65element with two pointers linking the element with its previous and nextelements (in the set order), obtaining a hybrid red-bla
k tree and double-linked list stru
ture, and then removed the useless elements by treating thestru
ture as a simple double-linked list, without 
aring whether the BSTaxioms were still respe
ted or not. The resulting stru
ture still allows forits traversal, both for building the set of total parses and, afterwards, for
ompletely deleting the set of partial parses.Mixing both red-bla
k tree and double-linked list stru
tures had alreadybeen proposed by Das et al. (2008), but for a di�erent purpose: a

eleratingthe appli
ations making an intensive use of set and map iterators. In fa
t, wehad not 
onsidered the possible speedup due to the faster a

ess to the nextand previous elements of another one; this speedup has not only improvedthe algorithms removing useless partial parses but every algorithm buildingsets or maps of partial parses.The added pointers towards the neighbours of ea
h tree element not onlyallow for a faster implementation of the sets and maps, but for several sim-pli�
ations of the di�erent algorithms, namely:
• algorithm 2.3 bst_next_elem is redu
ed to simply a

essing the pointertowards the next element and, 
onversely, the 
orresponding algorithmbst_previous_elem just requires to a

ess the pointer towards the pre-vious element,
• the implementation of the STL iterators no longer 
on�i
ts with theuse of a sentinel element, sin
e the retrieval of the previous or nextelement of another one no longer requires to navigate the tree down upto rea
hing the sentinel but to simply follow the pointer towards theprevious or the next element,
• rather than using the left and right pointers of the past-the-end elementin order to have dire
t a

ess to the �rst and last elements of the tree,its previous and next pointers are used as for any other element of thetree; hen
e, when adding or removing an element so that the �rst orlast elements are to be updated, no spe
ial operation is to be performedsin
e the new �rst or last element will be simply relinked with the past-the-end element, in the same manner that it would happen when addingor removing elements in the middle of the list,
• algorithm 2.11 bst_
ormen_add no longer requires to navigate the treeupwards in order to �nd the previous element of the last visited one for



66 CHAPTER 2. SETS AND MAPSperforming the equality test, sin
e the pointer to the previous element
an simply be followed,
• Andersson's algorithm no longer requires to keep tra
k of the last vis-ited element whose key may be equal to the sear
hed one, sin
e thepointer towards the previous element 
an also be followed as for theprevious 
ase; indeed, both algorithms bst_
ormen_add and the addi-tion version of Andersson's algorithm be
ome the same algorithm afterthis simpli�
ation,
• this simpli�ed version of Andersson's algorithm no longer performs twotrivial assignments but only one, thus unrolling its binary sear
h loopin order to remove the remaining trivial assignment is as easy as forthe other algorithms and, �nally,
• the removal of an element no longer requires to navigate the tree downin order to �nd the next element of the one to remove, but to followthe pointer towards the next element.We have implemented a set/map library equivalent to the one provided bythe GNU's STL implementation �in order to fa
ilitate their 
omparison�but using double-linked red-bla
k trees with algorithm 2.5 bst_knuth_addinstead of standard red-bla
k trees with algorithm 2.11 bst_
ormen_add.This alternate implementation has �nally allowed us to make 
ompetitivealgorithms out of the parsers we propose in this dissertation. We expe
t toimprove them further with algorithm 2.11 bst_
ormen_add in a future work.2.7 Other stru
turesWe brie�y present here other stru
tures for the implementation of sets andmaps other than BSTs or BSTs ensuring some balan
e fa
tor. Some of thesestru
tures may be worth to be tested in future implementations.2.7.1 TreapsTreaps (Seidel and Aragon, 1996, 
ontra
tion of tree and heap) are BSTswhi
h exploit the fa
t that randomly adding elements to a tree tends to re-sult in balan
ed trees, rather than for
efully ensuring some balan
e fa
tor.As elements are added to the treap, they are given a random priority. BST's



2.7. OTHER STRUCTURES 67addition and removal algorithms are modi�ed so that, on
e 
on
luded, thepriority of every element within the treap is greater than the one of its 
hil-dren. This results in exa
tly the same tree that would have been obtainedby adding the elements in their priority order. As for red-bla
k trees, adouble-linked version of this stru
ture might also perform well.2.7.2 Splay treesRather than trying to a

elerate the retrieval of arbitrary tree elements, splaytrees (Sleator and Tarjan, 1985) restru
ture the tree so that the most fre-quently a

essed elements are lo
ated at higher hierar
hy levels. All normaloperations on a BST are 
ombined with one basi
 operation 
alled splaying(hen
e the name): splaying the tree for a 
ertain element rearranges the treeso that the element is pla
ed at the root of the tree. Compared with theother self-balan
ing stru
tures, they have two main drawba
ks: they allowfor sequential trees, and sear
h operations are more expensive sin
e they in-volve restru
turing the tree in order to raise the most frequently sear
hedelements within the tree hierar
hy. Sin
e our parsing algorithms add newelements to the sets and maps rather than repeatedly a

essing some of thealready added ones, we do not 
onsider splay trees appropriate for our use
ase.2.7.3 2-3 trees2-3 trees are another kind of non-binary self-balan
ing sear
h tree: theyallow for elements having either zero, two or three 
hildren, hen
e the name.Elements having no 
hildren �also 
alled leaves�may have one or two keys.From the point of view of BSTs, leaves having two keys are equivalent to twoBST leaves whi
h lie atta
hed at the same hierar
hy level, where the key ofthe left element is less than the one of the right one. Elements having two
hildren are stru
tured in the same manner than the ones of BSTs: they havea single key whi
h must be greater than the key of their left 
hildren and lessthan the one of their right ones. Elements with 3 
hildren have two atta
hedkeys k and k′ rather than simply one. Let l, m and r be the keys of the left,middle and right 
hild, respe
tively, su
h elements must hold that
l < k ≤ m ≤ k′ < r. (2.1)
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h addition and removal, every 2-3 tree leaf lies at the tree's bottomhierar
hy level. This implies a �perfe
t� balan
e independently of the numberof elements within the tree, whi
h is possible thanks to the use of the di�erentkind of tree elements.12 2-3 trees were introdu
ed by Hop
roft in 1970, thoughnot published (Cormen et al., 2001, p. 300). A des
ription of 2-3 trees as wellas of its management algorithms 
an be found in Aho et al. (1974, se
. 5.4).2.7.4 2-3-4 trees2-3-4 trees, also 
alled 2-4 trees, are a slightly more 
omplex version of 2-3trees where elements having 4 
hildren and 3 keys are also possible. Indeed,2-4 and red-bla
k trees are isometri
 stru
tures as for 2-3 and AA trees.13Sin
e we have already tested red-bla
k trees and either 2-3, 2-4 and AAtrees are stru
tures analogous to red-bla
k trees, we rather 
onsider otheralternative stru
tures for a future work.2.7.5 B-treesB-trees (Bayer, 1972) are a generalization of 2-3 and 2-3-4 trees: leaves mayhave one, two or more keys, and non-leaves may have n > 0 keys k1 . . . kn, inwhi
h 
ase they have n + 1 
hildren x1 . . . xn + 1 su
h that
key(x1) < k1 < key(x2) < k2 < . . . < key(xn) < kn < key(xn+1). (2.2)Note that the tree height de
reases when using elements with a greater num-ber of 
hildren and keys. B-trees were 
on
eived for minimizing the numberof input/output a

esses to se
ondary storage devi
es (e.g.: hard disks) andhave been widely used in database systems. Extensive information on B-trees 
an be found in Cormen et al. (2001, 
hap. 18). B-trees have alreadybeen used in an implementation of STL sets and maps (Hansen and Hen-riksen, 2001); the performan
es obtained w.r.t. red-bla
k trees were betterfor sear
hes, similar for additions and 
onsiderably worse for removals. AB-tree version 
ombined with a double-linked list might perform better thandouble-linked red-bla
k trees, sin
e element removal would rather use thedouble-linked list stru
ture rather than the B-tree one.12Note that BSTs 
an only be perfe
tly balan
ed when having either 0 or 2n elements,with n ≥ 0.13Re
all that AA trees are a simpli�ed version of red-bla
k trees.



2.7. OTHER STRUCTURES 692.7.6 Hash tablesHash tables are an array-based alternative to sear
h trees. Let us supposethat the number of every possible key identifying the elements to store withinthe set is rather big in 
omparison with the number of elements that will beadded to the hash table. We allo
ate an array bigger than needed for storingall the elements to add, and use a hashing fun
tion in order to 
ompute thearray position where to add ea
h element. This fun
tion usually 
onsists insome short sequen
e of 
heap arithmeti
/bitwise operations on the element'skey. E�
ien
y highly depends on whether the hash fun
tion provides auniform distribution of the elements along the array in order to minimizeelement 
ollisions; su
h 
ollisions take pla
e ea
h time a new element toadd is given an already o

upied array position. In su
h 
ases, multiplete
hniques might be used in order to solve the 
ollision (e.g.: using a se
ondhashing fun
tion). This implies that, whenever retrieving a previously addedelement, it does not su�
e to 
ompute the element's position, but also toverify that both the sear
hed key and the one of the retrieved element mat
h.Of 
ourse, by using bigger arrays than ne
essary one 
an minimize the numberof 
ollisions, though more memory will be wasted. As drawba
k, elementswithin hash tables are not ne
essarily kept in order, whi
h prevents the useof further optimizations su
h as the one that we will present in se
tion 2.8.More information on hash tables, in
luding some histori
al ba
kground, 
anbe found in Knuth (1998, se
. 6.4).2.7.7 Skip listsSkip lists (Pugh, 1990) are sorted linked lists where ea
h element may notonly be linked to its next element but to other elements several positionsahead. These pointers allow for skipping some elements during the traversalof the list, hen
e the name. The number of ahead pointers for ea
h element toinsert is randomly 
hosen su
h that the number of elements having i pointersde
reases exponentially w.r.t. i. Sear
hes are performed in a similar mannerthan for BSTs, though starting from the �rst element instead of the �middle�one (the root of the tree): for ea
h visited element, a proper ahead pointeris followed so that the sear
h spa
e is redu
ed to the element subsequen
ebetween the last visited element and the next element to visit. The averagesear
h times are kept logarithmi
, as for BSTs, while the total number ofpointers in
reases proportionally to the list size. Opposite to double-linked



70 CHAPTER 2. SETS AND MAPSlists, no ba
kwards pointers are stored, so only forward traversal is possible.Sin
e they are already lists, there is no need to add extra pointers as donewith red-bla
k trees in order to 
ombine both linked-list and tree stru
tures.However, ba
kward pointers are used by some of the parsing algorithms,apart from being useful for the optimization of some of the BST algorithms;whether their use 
ould be avoided or adding su
h pointers to the skip listswould not result in an important loss of e�
ien
y will require a furtherstudy. Seidel and Aragon (1996) state that both skip lists and treaps havesimilar performan
es; therefore both of them are interesting 
andidates forthe optimization of our parsing algorithms.2.7.8 Con
urrent a

ess stru
turesPersonal 
omputer te
hnology has lately fo
used on in
reasing the numberof pro
essing 
ores �up to 6 
ores nowadays� atta
hed within a single 
hiprather than on augmenting their 
lo
k frequen
ies. A performan
e gain 
ouldbe a
hieved by 
on
urrently exe
uting the independent subtasks that 
om-pose our parsing algorithms, taking advantage of multiple 
ores. However,parallel algorithms are more 
omplex than their non-parallel 
ounterparts,whi
h we have not fully exploited yet. Moreover, it must be taken intoa

ount that the speedup fa
tor that 
an be a
hieved by means of parallel
omputing is less than the available number of pro
essors or pro
essing 
ores.Hen
e, parallel 
omputing will be
ome an interesting option on
e the remain-ing alternatives will not be able to yield greater speedup fa
tors. Be that asit may, a straightforward way of making parallel versions out of our parsingalgorithms 
ould 
onsist in 
on
urrently exploring several grammar rules inparallel, whenever multiple grammar rules apply to the same senten
e frag-ment.14 Sin
e the exploration of su
h rules results in the addition of partialparses to some series of sets and maps, the main problem would 
onsist in �g-uring out how to e�
iently integrate 
on
urrent set and map stru
tures intoour parsing algorithms. The list of works on 
on
urrent versions of the setand map stru
tures dis
ussed in this 
hapter is quite extensive; we 
on
ludethis se
tion with a small sele
tion among them: Larsen et al., 2001 (self-balan
ing BSTs in general), Bronson et al., 2010 (AVL trees), Paul et al.,1983 (2-3 trees), Bender et al., 2005 (B-trees), Hanke, 1999 (red-bla
k trees),Herlihy et al., 2006 (skip lists) and Triplett et al., 2010 (hash tables).14This is the usual situation due to the ambiguous nature of natural languages.



2.8. MAPS OF KEYS TO SETS 712.8 Maps of keys to setsLet us suppose that we are to implement a map M of keys in K to setsof keys in K ′. One 
ould simply use a BST stru
ture with key/value pairsin K × P(K ′), where elements in P(K ′) are also represented by other BSTstru
tures with keys in K ′. Let (k, S) be a key/value pair where S is a set ofkeys in K ′; if we are to add an element k′ to S, we are to perform a binarysear
h onM in order to retrieve S, then another one in S and �nally rebalan
e
S. If the map did not exist, we are to add a map k to a newly 
reated emptyset S and rebalan
e M and, �nally, add k′ to S. Moreover, in order to delete
M 's data stru
ture on
e it is no longer needed, we are to traverse M and,for ea
h pair (k, S) found, we are to traverse S as well in order to deletethe whole stru
ture. Indeed, the reverse pro
edure is performed in orderto build the map, though de
omposed into several element additions. It ispossible to avoid the overhead 
aused by the use of several BST stru
turesby using a single BST stru
ture representing a set in K ×K ′ rather than amap K → P(K ′). For instan
e, if we are to represent map

{aM {x, y}, bM {z, t}}, (2.3)we rather emulate su
h stru
ture by means of set
{(a, x), (a, y), (b, z), (b, t)}. (2.4)We rede�ne the key 
omparator in order to lexi
ographi
ally 
ompare pairsof keys in (K,K ′) as two-letter sequen
es having keys in K as �rst letter.In order to iterate over the elements of a set mapped by key k, we sear
hfor the �rst element with key k, then sequentially a

ess the next elementsuntil rea
hing the past-the-end element or an element with a key other than

k. In 
ontrast with the �rst solution, keys in K are repeated and someextra key 
omparisons are also to be performed. However, we have obtainedshorter exe
ution times in every parsing algorithm using maps of keys to setsimplemented as sets of key/value pairs.In general, we have found that minimizing the number of requests for freememory segments (dynami
 memory allo
ations) has given better results inspite of the added repetition: rather than 
reating STL 
ontainers of pointersto other dynami
ally allo
ated stru
tures, it is usually more e�
ient to letthe 
ontainer own its own elements.15 Note that memory allo
ations involve15By owning an element we mean to have the responsibility of allo
ating and deallo
ating



72 CHAPTER 2. SETS AND MAPSto sear
h for a big-enough memory segment, whi
h be
omes more and moreexpensive as memory gets fragmented, and both memory allo
ations anddeallo
ations involve to update the memory allo
ation table. A 
ontainerof pointers will require two memory allo
ations for ea
h 
ontained element:one for the own element's stru
ture and another for the pointer to add tothe 
ontainer. Containers of pointers are to be used whenever the elementstru
tures are to be shared among several 
ontainers; anyway, it is betterto let one 
ontainer have the ownership, and the others to take 
are only ofthe pointers but not of the pointed memory segments. Containers of Boost'sshared smart pointers have also been tested,16 obtaining quite worst results:su
h pointers involve to manage a 
ounter of pointers to the same elementso that the element is deallo
ated upon the deletion of the last remainingpointer.Why would anyone use 
ontainers of pointers rather than 
ontainers ofa
tual elements? The original STL 
ontainers use 
opy semanti
s, meaningthat whenever adding an element to a 
ontainer, a 
opy of su
h element isadded rather than granting the 
ontainer the ownership of the element toadd. Containers of 
omplex stru
tures may require to perform expensive
opies of elements that may just have been 
reated for being added to the
ontainer, thus being destroyed right after the 
opy is added to the 
ontainer.One 
ould use some spe
ial pointer 
ontainers that be
ome responsible forthe deallo
ation of the memory pointed by the added pointers (e.g.: Boost'spointer 
ontainers). However, this involves two memory allo
ations and deal-lo
ations for ea
h added element, as stated before. Another solution providedby the new C++ standard, C++0x,17 is the use of move semanti
s: instead of
opying the whole 
omplex stru
ture, only the main pointers governed bythe stru
ture are 
opied, and the original stru
ture is left in an �empty� statefor its deletion. For instan
e, an STL ve
tor is basi
ally a pointer to anarray plus an element 
ounter; rather than 
opying the whole array, onlythe memory o

upied by the element; properly de�ning ea
h element's ownership is vitalfor avoiding both segmentation fault errors as well as memory leaks: the former take pla
ewhenever following a pointer whose pointed memory has not been allo
ated �rst, andthe latter whenever the pointers used to a

ess some memory segment are deleted beforedeallo
ating the pointed memory.16Sear
h for shared_ptr at the homepage of the Boost C++ libraries: http://www.boost.org17Visit http://www2.resear
h.att.
om/ bs/C++0xFAQ.html for an overview of the newfeatures o�ered by C++0x.

http://www.boost.org
http://www.boost.org


2.9. MULTISETS AND MULTIMAPS 73the pointer and the 
ounter are 
opied and both of them are nulli�ed in theoriginal stru
ture. Anyway, we have not needed to use su
h 
omplex stru
-tures for the implementation of the algorithms presented in this dissertation,and we have preferred not to use the new C++0x features until its de�nitiveestablishment.18Another optimization to take into a

ount is the so 
alled RVO or returnvalue optimization: whenever assigning to a newly 
reated obje
t A theresult B of a fun
tion F , the 
ompiler is allowed to use B as A rather than
opying B into A and then deleting B. Moreover, if B is to be passed to afun
tion G as parameter C, the 
ompiler is allowed dire
tly use B as if it was
C. Indeed, the g++ 
ompiler a
tually performs these optimizations, ignoringany extra 
ode that might be in
luded within the 
opy 
onstru
tor apartfrom the own obje
t 
opying (e.g.: printf instru
tions). However, elementsare yet systemati
ally 
opied whenever added to STL 
ontainers, even whenthe added elements are temporal obje
ts. The use of move semanti
s is thestandard pro
edure to avoid su
h 
opies, performing shallow 
opies instead.2.9 Multisets and multimapsMultisets and multimaps are sets and maps that may 
ontain several elementshaving the same key. The same data stru
tures and algorithms presented herefor the representation and management of sets and maps 
an be used for the
ase of multisets and multimaps, but with a slight di�eren
e: the equalitytest in the addition algorithms is to be removed so that, whenever the key toadd is equal to some key k′ within the tree, it is treated as if it was greaterthan k′; this implies that
• adding a key/value pair (k, v) always results in in
reasing the tree sizeby one element,
• tree elements having the same key appear at 
onse
utive positions, fromthe sequential point of view, and
• whenever adding a key/value pair (k, v) su
h that k is already withinthe tree, the new element is added as the next element of the last onehaving k as key.18Up to now, support for the new C++0x features provided by the g++ 
ompiler is yet
onsidered experimental; visit http://g

.gnu.org/proje
ts/
xx0x.html for a list ofthe 
urrently supported features.

http://gcc.gnu.org/projects/cxx0x.html


74 CHAPTER 2. SETS AND MAPSWein (2005) gives an alternative implementation of the STL multisets andmultimaps, also based in red-bla
k trees, whi
h supports two additional op-erations: split and 
atenation; splitting a set S by a key k results in twodisjoint sets S1 and S2 su
h that S1 
ontains all the elements of S whose keysare less than k, and S2 
ontains all the other elements, and the 
atenation isthe inverse operation.



Chapter 3Chara
ter treatmentFrom the point of view of a 
omputer, a text is a sequen
e of binary digitsrepresenting a sequen
e of 
hara
ters, where the 
orresponden
e between dig-its and 
hara
ters is given by a 
hara
ter en
oding system. Text pro
essingwould be greatly simpli�ed if there would be a unique and universal 
hara
-ter en
oding system; though work on su
h a universal 
hara
ter en
oding isalready quite advan
ed (The Uni
ode Consortium, 2007), there exist manyother en
oding systems whi
h are not intended to be universal. Computerusers are usually unaware of the existen
e of 
hara
ter en
odings, sin
e thedefault 
hara
ter en
oding given by the operating system is transparentlyused. Problems arise when trying to open a text �le 
reated in a di�erent
omputer with a di�erent 
hara
ter en
oding system. For the 
ase of webpages, the re
ommendation is to in
lude some meta-information spe
ifyingthe employed 
hara
ter en
oding; however, this re
ommendation is not al-ways followed. In that 
ase, there is no 
hoi
e but to try di�erent 
hara
teren
odings until the 
hara
ters are properly rendered. If our 
hara
ter en
od-ing is not 
ompletely di�erent than the appropriate one, one may still be ableto re
ognize the language in whi
h the text was written and limit the sear
hto the 
hara
ter en
odings for that parti
ular language. Be as it may be, theautomati
 pro
essing of su
h texts will still be obstru
ted, if not prevented.Chara
ter en
odings are not only used for representing 
hara
ters insidetext �les, but also inside the 
omputer's memory as part of the data pro
essedby a 
omputer program. Depending on the language or languages to treat,and whether the en
oding is to be used for data storage or for text pro
essing,
ertain 
hara
ter en
odings will be more appropriate than others. In our
ase, Telefóni
a imposed a 
hara
ter en
oding system for data transmission75



76 CHAPTER 3. CHARACTER TREATMENTover the Internet, but we are to 
hoose a 
hara
ter en
oding system forboth storing and pro
essing linguisti
 data. We brie�y present here themost relevant, namely Uni
ode and those from whi
h it evolved, and someimplementation details surrounding our 
hoi
e.3.1 ASCIIThe Ameri
an Standard Code for Information Inter
hange (ASCII, Gornet al., 1963) is one of the �rst widely used 
hara
ter en
oding systems, andthe basis of many others; it is restri
ted to English and en
odes ea
h 
har-a
ter as a sequen
e of 7 bits plus one bit, either used for data transmission
ontrol (parity bit) or simply left unused. Apart from the upper
ase andlower
ase English letters, and some other symbols (e.g.: numbers, arithmeti
operators, pun
tuation symbols, et
.), ASCII in
ludes 32 
hara
ters that donot represent printable information but text formatting marks and/or a
-tions to be exe
uted by devi
es su
h as printers or s
reens; for instan
e, thebell 
hara
ter (number 7) was used for alerting operators of an in
omingmessage by means of an audible sound. Most of those 
hara
ters are nolonger used, but we still keep many of its text formatting marks, also 
alledblank or white 
hara
ters, namely: the white spa
e (number 32) for sepa-rating words, the horizontal tabulation (
ode 9) for separating 
olumns, andthe line feed (number 10) for marking the end-of-line. Some systems (e.g.:Windows platforms) pre
ede the line feed by a 
arriage return (number 13),and others (e.g. Unix and Linux platforms) use the line feed alone.1 Moredetails on ASCII, along with an evolving view of 
hara
ter en
oding systemsup to ASCII, 
an be found in Fis
her (2000).3.2 ISO-8859-xISO-8859-x is nowadays a family of 16 
hara
ter en
odings extending ASCII(x is a number between 1 and 16): the eighth bit is used in order to representadditional 
hara
ters not present in English; for instan
e, ISO-8859-1 en
odes1The 
arriage return is the me
hanism in a typewriter that pushes the 
ylinder onwhi
h the paper is held towards one side in order to start a new line; on a 
omputer textinterfa
e, the 
arriage return moves the 
ursor towards the beginning of the 
urrent line,and 
an be used without a line feed in order to rewrite the 
urrent line of text, for instan
efor 
reating some text-based animation su
h as a progress bar.



3.3. UNICODE 77additional 
hara
ters for Western European languages su
h Spanish (ñ, á),Fren
h (ç, è), German (ÿ, ö), et
. ISO-8859-1 (ISO/IEC, 1998), also 
alledLatin 1, was the default 
hara
ter en
oding for the web.3.3 Uni
odeWith the 
oming of globalization, Uni
ode (The Uni
ode Consortium, 2007)be
ame the new web 
hara
ter en
oding standard, though it still 
oexistswith many others. Uni
ode 
overs most of the existing writing systems,in
luding symbols of a great variety of domains su
h as mathemati
s (∑,
∞), e
onomy (¤, ¿), 
ulture (†, Y) and many others. Generi
ally, Uni
odemaps integers between 0 and 1,114,111 to 
hara
ters. Ea
h integer is 
alleda 
ode point, and 
ode points are grouped into 17 planes of 216 
ode pointsea
h one. Plane 0 is 
alled the basi
 multilingual plane or BMP: it 
omprises
hara
ters from most modern languages as well as a large number of spe
ial
hara
ters, in
luding ISO-8859-1 as the �rst 256 
ode points. Uni
ode is
onstantly growing: around 100,000 
hara
ters have already been mapped,having o

upied only the 10% of the available spa
e. Though intended to beuniversal, there is not a unique Uni
ode 
hara
ter en
oding form but several.They either use a �xed or variable amount of bytes in order to represent ea
h
ode point, where the minimum amount of bytes is 
alled a 
ode unit. Webrie�y des
ribe below the main Uni
ode 
hara
ter en
oding forms.3.3.1 UCS-2UCS-2 uses 2 bytes per 
ode unit, and ea
h 
ode unit 
orresponds to a 
odepoint. It en
odes only the basi
 multilingual plane. UCS-2 �les start with
ode point 0xFEFF, the so-
alled byte order mark or BOM. The �le endi-anness 
an be dedu
ed by verifying whether the BOM bytes are transposed(little endianness) or not (big endianness).22The terms big- and little-endian refer to two possible ways of laying out bytes inmemory or transmitting them through a serial 
onne
tion: starting from the most signi�-
ant byte (big-endian) or from the least one (little-endian). These terms were introdu
edby Cohen (1981), who borrowed them from the satyri
 novel `Gulliver's Travels' (Swift,1726); in the novel, Lilliputians are divided into two religious fa
tions: those who prefer
ra
king open their soft-boiled eggs from the little end, and those who prefer the big end(the Big-endian hereti
s).



78 CHAPTER 3. CHARACTER TREATMENT3.3.2 UTF-16UTF-16-LE & UTF-16-BE are 2 extension of UCS-2 also using 2 bytes per
ode unit, but either 1 or 2 
ode units per 
ode point. UTF-16-LE imposeslittle endianness, while UTF-16-BE imposes big endianness; hen
e, the BOMis optional, though re
ommended for ba
kwards 
ompatibility. Code pointsof the basi
 multilingual plane are serialized as for UCS-2. Unused UCS-2
ode units are used in pairs, forming the so-
alled surrogate pairs, in order torepresent 
hara
ters beyond plane 0. UCS-2 is usually mistaken for UTF-16sin
e they do not di�er as long as surrogates are not required, and UCS-2has been abandoned in favor of UTF-16.3.3.3 UTF-32UTF-32-LE & UTF-32-BE are the 32 bit versions of UTF-16-LE and UTF-16-BE. These are the only Uni
ode s
hemes representing every Uni
ode 
odepoint with a �xed amount of bytes, 4 to be exa
t. However, they usuallyimply a memory waste sin
e the basi
 multilingual plane is enough in most
ases. Fixed-length en
oding forms are useful for randomly a

essing single
hara
ters within strings, sin
e a simple addition an multipli
ation is enoughfor 
omputing their position. However, one 
an better use the UTF-16 en-
oding forms without loss of e�
ien
y as long as surrogates are not required.3.3.4 UTF-8UTF-8 is a variable-length 
hara
ter en
oding form, using 8 bits per 
odeunit and 1 to 4 
ode units per 
ode point. UTF-8 not only 
overs everyUni
ode 
ode point but is also the only Uni
ode s
heme fully 
ompatiblewith ASCII, sin
e ASCII 
hara
ters are represented with a single byte. Thisimplies that both en
odings will yield the same byte sequen
es as long asno 
hara
ters outside ASCII are used. The byte order mark is not neededhere sin
e 
ode units are one-byte long. For the 
ase of English and WesternEuropean languages, UTF-8 is preferred for data storage an transfer ratherthan for text pro
essing: 
ommon 
hara
ters take less spa
e but a

essing a
hara
ter within a string requires to sequentially 
ompute and add the lengthsof every pre
eding 
hara
ter (unless it is previously known that every string
hara
ter is 
oded with the same amount of bytes, su
h as the ones in theASCII subset). Indeed, UTF-8 is the 
urrent 
hara
ter en
oding standard



3.4. IMPLEMENTATION 79for the web. An important property of UTF-8 is that multi-byte 
ode pointsmay not 
ontain other 
ode points. Moreover, a null byte may also be usedfor terminating UTF-8 strings, su
h as in C and C++. Hen
e, UTF-8 stringsmay be treated as normal 1-byte 
har strings whenever 
omparing them forequality. Furthermore, if one is to build a set of UTF-8 strings with someimplementation requiring an arbitrary total order (e.g.: binary sear
h trees),a lexi
ographi
al per-byte order 
an be e�
iently applied. Linguisti
allysorting a set of strings is a more 
omplex problem: sin
e not every languagede�nes the same sorting rules, a universal 
hara
ter ordering is not possible.For instan
e, the letter after e in English (and ASCII) is f , but letter é ispla
ed between e and f in Spanish; to be exa
t, letters with and without a
utea

ents are 
onsidered equal, unless the a
ute a

ents are the only distin
tivetraits between two words (e.g.: ame and amé).3,4 Thus, ame 
omes beforeamé, but amé 
omes before amerizar (to land on the sea).
3.4 ImplementationUni
ode aims to fa
ilitate the ex
hange of text data by homogenizing 
har-a
ter representation; however, the presen
e of multiple Uni
ode en
odingforms has allowed for a heterogeneity of implementations between di�erentplatforms and programming languages. It is not surprising to �nd titles in theliterature su
h as �Uni
ode en
oding forms: A devil in disguise? � (Biswas,2003). Among the di�erent interoperability issues mentioned in the paper,we are mainly 
on
erned by the C++ standard dire
tives on Uni
ode support:a wide 
har type �as well as wide string and stream types� are to be usedin order to represent Uni
ode 
hara
ters longer than one byte, but ea
h C++
ompiler is free to assume a di�erent Uni
ode en
oding form. As a matter offa
t, the g++ 
ompiler on a Linux platform uses 4 bytes in order to represent3Indeed, a vowel with an a
ute a

ent is still the same vowel: the a
ute a

ent simplymarks the word's stressed syllable. That is not the tilde's 
ase: n and ñ are 
onsidereddi�erent letters and have a di�erent pronun
iation.4ame and amé are in�e
ted forms of verb amar or �to love�; opposite to 
onventionaldi
tionaries, ele
troni
 di
tionaries are not only to 
ontain the in�nitive forms but everyin�e
ted form.
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hars, while the MinGW port of g++ to Windows uses only 2 bytes.5 ,6If one is to write portable C++ 
ode using Uni
ode, third party libraries areto be used; the IBM ICU library is an open-sour
e example of portable Uni-
ode library, both available for C/C++ and Java.7 The Outilex system usesUTF-8 and the ICU library in order to represent and 
ompare strings. Inour 
ase, we have de
ided to reuse Unitex's Uni
ode libraries, both for 
om-patibility with the Unitex system as well as for fo
using on parsing ratherthan on 
hara
ter en
oding issues. These libraries mainly use UTF-16LE,both for string pro
essing as well as for textual data storage, and have beentested in di�erent platforms and 
omputer ar
hite
tures, in
luding little- andbig-endian's. Both grammar and di
tionary �les provided with the Unitexsystem are en
oded with UTF16-LE, though they 
an be easily re-en
oded ifne
essary, for instan
e by using the GNU i
onv tool.8 Sin
e we are mainlyto work on Spanish and other Western European languages, we simply ignorethe existen
e of surrogate pairs an treat every 
hara
ter as a single two-byte
ode unit.3.4.1 Ex
hanging 
hara
ters between Java and C++Another interoperability issue des
ribed in Biswas (2003) that 
on
erns usis the ex
hange of text data between Java and C++ programs: one of therequirements given by Telefóni
a for the use of our NLP engine was that itshould be a

essible through the Internet as a Java servlet inside a Tom
atservlet 
ontainer,9,10 and 
hara
ters should be re
eived and transmitted asUTF-8 streams. Servlets are Java programs that answer HTTP requests,usually by returning a dynami
ally built web page. In our 
ase, the servletre
eives UTF-8 streams 
orresponding to request senten
es, and returns aplain UTF-8 text 
ontaining the result returned by the NLP engine. Animmediate solution would have been to implement our NLP engine in Java,5g++ is one of the 
ompilers of the GNU Compiler Colle
tion (GCC). More information
an be found in the GCC homepage: http://g

.gnu.org/6More information on MinGW 
an be found in its o�
ial homepage: http//www.mingw.org7More information on the ICU library 
an be found in the ICU proje
t homepagehttp://site.i
u-proje
t.org/.8http://www.gnu.org/software/libi
onv/do
umentation/libi
onv/i
onv.1.html9More information and tutorials on servlets 
an be found in http://java.sun.
om10More information on Tom
at 
an be found in the Apa
he Tom
at homepage http://tom
at.apa
he.org and in Brittain and Darwin (2007)

http://gcc.gnu.org/
http//www.mingw.org
http//www.mingw.org
http://site.icu-project.org/
http://java.sun.com
http://tomcat.apache.org
http://tomcat.apache.org


3.4. IMPLEMENTATION 81sin
e Java provides a good Uni
ode support and it is easier not to mix dif-ferent programming languages; however, this would have had an impa
t inperforman
e, sin
e Java 
ode is to be exe
uted in a virtual ma
hine ratherthan 
ompiled into the native 
ode of the ma
hine where it is to be exe-
uted. Moreover, we are also interested in the pre
ise manner in whi
h ourobje
ts are deallo
ated from the 
omputer memory rather than on delegatingthis task to the Java garbage 
olle
tor: our parsing time measures in
ludethe deallo
ation 
osts, sin
e more 
omplex parsers use more 
omplex datastru
tures whi
h require more expensive deallo
ation methods. We haveprogrammed a small Java servlet whi
h simply interfa
es Telefóni
a's Mo-vistarBot with our C++ NLP engine. The servlet invokes the NLP enginethrough the Java Native Interfa
e (JNI),11 and performs the ne
essary 
har-a
ter en
oding translations from UTF-8 to UTF-16LE and vi
e-versa.3.4.2 Chara
ter normalizationFinally, a last requirement given by Telefóni
a was to ignore every dia
riti
mark, ex
ept for the tilde in ñ, as well as to make no distin
tion betweenupper
ase and lower
ase letters. Omission of the dia
riti
 marks is one of themost 
ommon orthographi
 mistakes in written Spanish. Moreover, dia
riti
marks are usually omitted for 
onvenien
e when 
ommuni
ating by means ofsort text messages: Spanish keyboards do not have separate keys for letterswith dia
riti
 marks (ex
ept for letter ñ) but an extra key must be pressed inorder to add the dia
riti
 mark. As usual, the same applies to upper
ase let-ters: two keys must be 
ombined in order to obtain the upper
ase version of aletter. Sin
e surrogate pairs are not needed for the representation of Spanish
hara
ters, we have built a look-up table mapping every single UTF-16LE
ode unit with its 
orresponding normalized version, that is, the 
orrespond-ing lower
ase letter without dia
riti
 marks or the same 
ode unit, if alreadynormalized.12 Rather than 
reating a normalized 
opy of ea
h user senten
e,we apply the look-up table on-the-�y during the grammar appli
ation, sin
euser senten
es are to be dis
arded on
e treated. Moreover, user senten
esare kept unmodi�ed so that original senten
e fragments 
an be returned ifne
essary; for instan
e, in �envía hola Pa
o al 555 � (send hello Pa
o to the11See Liang (1999) for a 
omprehensive book on JNI.12The 
orresponden
e between Uni
ode lower
ase and upper
ase letters, as well as let-ters with and without dia
riti
 marks, 
an be extra
ted from http://www.uni
ode.org/Publi
/UNIDATA/CaseFolding.txt

http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt


82 CHAPTER 3. CHARACTER TREATMENT555) the user is requesting to send the SMS �hola Pa
o� to phone number555. Normalized 
opies of grammar and di
tionary �les are 
onstru
ted sin
ethey are to be applied to ea
h user senten
e.



Chapter 4DELAF di
tionariesMonolingual lexi
ons (or vo
abularies) for language pro
essing are one of theways of automati
ally annotating words with formalized linguisti
 informa-tion. As 
ompared to statisti
 methods, the use of lexi
ons provides more
ontrol on the results. As 
ompared to other language pro
essing lexi
ons,those with the DELA format o�er 
onvenient fun
tionality for update thanksto an automati
 in�e
tion me
hanism.1DELAF di
tionaries (Silberztein, 1993) are a kind of ele
troni
 di
tionar-ies whose purpose is to provide a set of unambiguous identi�ers for ea
h useof ea
h simple word of a natural language, as well as to provide informationinherent to ea
h one. These properties impli
itly de�ne 
lasses of words (e.g.:verbs, nouns, adje
tives, et
.).2 Grammar development 
an be greatly sim-pli�ed by making referen
e to these 
lasses instead of expli
itly stating the
orresponding list of words (the exa
t me
hanism will be explained in 
hap-ter 6). Moreover, separating the information inherent to lexi
al units fromthe grammar rules results in a better stru
tured approa
h. DELAF di
tio-naries for several languages are freely distributed with the Unitex platformunder the LGPL-LR li
ense.3 We have adopted the DELAF formalism in or-der to keep the 
ompatibility with the Unitex system, and used the SpanishDELAF (Blan
o, 2000) freely distributed with Unitex for the MovistarBot1DELA stands for Di
tionnaires Életroniques du LADL or LADL's Ele
troni
 Di
tio-naries for in�e
ted forms, where LADL is the Laboratoire d'Automatique Do
umentaire etLinguistique.2`F' in DELAF stands for formes �é
hies or in�e
ted forms.3The terms and 
onditions of the LGPL-LR li
ense 
an be found in http://igm.univ-mlv.fr/~unitex/lgpllr.html 83
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84 CHAPTER 4. DELAF DICTIONARIESuse 
ase (se
tion 1.2, p. 6). In parti
ular, this di
tionary des
ribes more than775.000 lexi
al units.We �rst give a set of relevant de�nitions in se
tion 4.1, and then de-s
ribe the DELAF formalism in se
tion 4.2. Next, we present our DELAFimplementations in se
tion 4.3. We des
ribe the modi�
ations we have in-trodu
ed in the di
tionaries for adapting them to the MovistarBot use 
asein se
tion 4.4, and present the tools we have developed for automating somepro
esses on DELAF di
tionaries in se
tion 4.5. Finally, we mention otherele
troni
 di
tionaries in se
tion 4.6.4.1 De�nitionsDe�nition 1 (Use of a word). We 
all use of a word a 
ontext of utilizationof the word. Su
h 
ontexts vary depending on the di�erent meanings of theword.De�nition 2 (Surfa
e form). The surfa
e form of a word is the exa
t se-quen
e of 
hara
ters that form it.De�nition 3 (Semanti
 
lass). A word semanti
 
lass is a set of wordsde�ned by semanti
 
riteria whi
h uniquely apply to the properties inherentto ea
h word, for instan
e the set of `human' words (e.g.: student, friend,inhabitant, et
).De�nition 4 (Semanti
 feature). A word semanti
 feature is a word propertythat determines whether the word belongs to a semanti
 
lass or not, forinstan
e feature `human'.De�nition 5 (Part-of-spee
h). The part-of-spee
h of a word, also 
alled lex-i
al or word 
ategory, is the semanti
 feature that determines the synta
ti
role the word plays inside a senten
e (e.g.: verb, noun, adje
tive, et
.).De�nition 6 (In�e
ted form). A word's in�e
ted form is the parti
ular mod-i�
ation the word has undergone in order to express a parti
ular 
ase, gender,number, tense, person, mood and/or voi
e.De�nition 7 (In�e
tional feature). A word's in�e
tional feature is a parti
-ular 
hara
teristi
 expressed by an in�e
ted form.



4.1. DEFINITIONS 85The set of in�e
tional features of a given word depends on the languageand the word's part-of-spee
h; for instan
e, in Spanish, verb in�e
tion 
om-prises tense but not gender, adje
tive in�e
tion 
omprises gender but nottense, and prepositions have no in�e
tional features (they are invariant). Op-posite to Spanish, some Polish verb tenses also 
omprise gender (e.g.: `byª ',`byªa' and `byªo' 
orrespond to `he was', `she was' and `it was', respe
tively).De�nition 8 (Lemma). The lemma, 
anoni
al form or di
tionary form ofa word is the in�e
ted form of the word that is used in order to refer to thewhole set of possible in�e
ted forms.For instan
e, verb lemmas in English, Fren
h and Spanish are the in-�nitive forms, in Basque are the parti
iples and in Bulgarian and Latin arethe �rst person singular of the indi
ative present. Lemmas are also 
alledthe di
tionary forms sin
e 
onventional di
tionaries in
lude only su
h forms.For the 
ase of ele
troni
 di
tionaries, su
h as the DELAFs, every possiblein�e
ted form is to be in
luded.De�nition 9 (In�e
tional paradigm). The in�e
tional paradigm of a givenword is its set of every possible in�e
ted form.For instan
e, `
olor' and `
olors' form the in�e
tional paradigm of word`
olor', with `
olor' as the lemma, and `texture' and `textures' form the in-�e
tional paradigm of word `texture', with `texture' as the lemma.De�nition 10 (In�e
tional model). An in�e
tional model is a set of rulesor pro
edures 
ommon to a set of lemmas des
ribing how to 
onstru
t theirin�e
tional paradigms.For instan
e, the in�e
tional model of lemmas `
olor' and `texture' statesthat the singular form is the lemma and that the plural form is built byappending `s' to the lemma (`
olors' and `textures'). In Spanish, `
olor ' and`textura' do not share the same the same in�e
tional model: while the pluralof `textura' is built as in English (`texturas'), the plural of `
olor ' is built byappending `es' to the lemma (`
olores').De�nition 11 (In�e
tional 
lass). An in�e
tional 
lass is 
omposed by theset of lemmas sharing the same in�e
tional model.For instan
e, Spanish �rst-
onjugation regular verbs form an in�e
tional
lass. In�e
tional 
lasses 
ontaining a single lemma are also possible: forinstan
e, irregular verb `to go' in either English, Fren
h (aller) or Spanish(ir).



86 CHAPTER 4. DELAF DICTIONARIESDe�nition 12 (Lexi
al unit). A lexi
al unit is a surfa
e form 
oupled with alemma and a set of semanti
 and in�e
tional features whi
h unambiguouslyidentify a parti
ular use and in�e
ted form of the surfa
e form.De�nition 13 (Ambiguous word). We say a word is ambiguous i� its surfa
eform is shared among several lexi
al units, that is, the word has either multipleuses or meanings or 
orresponds to multiple in�e
ted forms.The main purpose of lexi
al units is to unambiguously identify the wordsof the language. The set of properties added to the surfa
e form depends onthe ones taken into a

ount by the di
tionary. We have de�ned here lexi
alunits given by DELAF di
tionaries, but other di
tionaries may give othersets of properties.4.2 Des
riptionDELAF di
tionaries are text �les listing a set of lexi
al units, arranged intolines. Opposite to 
onventional di
tionaries, DELAF di
tionaries do notin
lude word de�nitions but des
ribe every possible in�e
ted form of thewords. Di
tionary lines, or entries, look as follows:envía,enviar.V+Trans_msg:P3senvía,enviar.V+Trans_msg:Y2sEa
h entry is 
omposed by the following data:
• surfa
e form (`envía' = `he sends', present indi
ative, or `send, you',imperative) terminated by a 
omma,
• lemma (`enviar ' = `to send') terminated by a period,
• one or more semanti
 feature identi�ers separated by plus symbols,where the �rst semanti
 feature 
orresponds to the part-of-spee
h (V =verb, Trans_msg = synonyms of `to send' in the 
ontext of sending anSMS, for instan
e `to transmit') and the last identi�er is followed by a
olon, and
• a sequen
e of 
hara
ters identifying the in�e
ted form of the word (P3s
= present indi
ative, third person, singular; Y2s = imperative, se
ondperson, singular).



4.2. DESCRIPTION 87In order to avoid redundan
y, lexi
al units sharing all properties ex
ept theirin�e
tional features are 
ompressed into a single line: one or more sequen
esof in�e
tional features may be spe
i�ed, ea
h one separated from the previousone by a 
olon; for instan
e, the two given entries for surfa
e form envía arerather des
ribed in a single line as follows:envía,enviar.V+Trans_msg:P3s:Y2sAs well, the lemma is omitted when it is equal to the surfa
e form; forinstan
e, the entry for the in�nitive form of `envía' looks as follows (W =in�nitive):enviar,.V+Trans_msg:WBoth semanti
 and in�e
tional feature identi�ers are 
ase sensitive. Se-manti
 feature identi�ers are 
omposed by an upper
ase letter followed byzero, one or more letters, digits or unders
ores. In�e
tional feature identi�ersare 
omposed by a single upper
ase letter, lower
ase letter or digit (`P' means`present indi
ative tense', while `p' means `plural').Both parts-of-spee
h and in�e
tional features are more or less �xed forea
h parti
ular language; most 
ommon parts-of-spee
h 
onsidered in theSpanish DELAF, along with their identi�ers, are: verb (V), noun (N), pronoun(PRON), determiner (DET), adje
tive (ADJ), adverb (ADV), preposition (PREP),
onjun
tion (CONJ) and interje
tion (INTJ). The in�e
tional features, alongwith their identi�ers, are:
• indi
ative tenses: present (P), imperfe
t (I), preterit (J), future (F) and
onditional (C),
• subjun
tive tenses: present (S), imperfe
t with -ra ending (T), imperfe
twith -se ending (Q) and future (R),
• other verbal forms: in�nitive (W), gerund (G), past parti
iple (K) andimperative (Y),
• genders: mas
uline (m), feminine (f), neutral (n),
• persons: �rst (1), se
ond (2), third (3), and
• numbers: singular (s), plural (p).



88 CHAPTER 4. DELAF DICTIONARIES4.3 ImplementationThe main operation performed on DELAF di
tionaries 
onsists in sear
hingfor a parti
ular surfa
e form in order to retrieve the 
orresponding lexi
alunits. Hen
e, we implement these di
tionaries as maps of surfa
e forms tosets of lexi
al units. Some data stru
tures for the representation of mapswhere already presented in 
hapter 2. However, other data stru
tures aremore appropriate for mapping sequen
es rather than simple data.4.3.1 TriesIn a �rst implementation version, we reused a trie C++ 
lass we had alreadyprogrammed for optimizing the representation and management of sequen
es(this optimization, along with a formal de�nition of tries, will be given in
hapter 9). Brie�y, tries (Fredkin, 1960) are a kind of sear
h trees whereea
h trie element 
orresponds to a unique pre�x within the set of pre�xes ofthe represented set of sequen
es. This 
orresponden
e is as follows:
• the root represents the empty pre�x, and
• the 
hildren of an element representing a pre�x α represent pre�xes
ασ1, ασ2, et
., where σi is a letter that is unique for ea
h 
hild.Additionally, ea
h trie element is extended with a pointer towards the 
orre-sponding set of lexi
al units. In 
ase the trie element does not 
orrespond toa 
omplete word, the pointer is null.This implementation not only allows for sear
hing for surfa
e forms andtheir 
orresponding lexi
al units, but also for programmati
ally adding, re-moving and/or modifying DELAF entries, as well as for saving the 
hangesin DELAF text format. Tries allow for an e�
ient retrieval of the propertiesasso
iated to a given surfa
e form. However, DELAF text �les are large (e.g.:32.6 MB for the 
ase of the Spanish DELAF di
tionary), and loading theminto a trie data stru
ture takes a few se
onds. In the MovistarBot use 
ase(se
tion 1.2, 6), the di
tionary and grammar are loaded upon the re
eptionof the �rst user senten
e. On
e the senten
e analysis is �nished, these datastru
tures are kept in memory in order to be reused by later analyses. Hen
e,only the �rst analysis will be delayed due to data loading. However, whilemodifying and testing the system, we are required to reload the di
tionariesmany times, adding up those few se
onds ea
h time. Moreover, tries are not



4.3. IMPLEMENTATION 89the most 
ompa
t representation of ele
troni
 di
tionaries, though 
urrentaverage 
omputers have memory sizes in the order of gigabytes rather thanmegabytes.4.3.2 Minimal a
y
li
 automataDominique Revuz studied during its PhD thesis (Revuz, 1991) 
ompressionte
hniques for DELAF di
tionaries whi
h would allow to load entire DELAFdi
tionaries in a personal 
omputer's RAM, while keeping short sear
hingtimes. Note that average 
omputers of that moment had around 8 MB ofRAM, against the more than 30 MB of DELAF text �les. As result, he pro-posed to represent di
tionaries as minimal a
y
li
 automata and presentedan e�
ient algorithm for the minimization of these ma
hines (Revuz, 1992).While tries fa
tor out 
ommon pre�xes, minimal a
y
li
 automata also fa
-tor out 
ommon su�xes. Hen
e, states within the automata may not only
orrespond to a unique surfa
e form, su
h as within tries, but to multiplesurfa
e forms. If the automaton were to be fully minimized, sear
hing a sur-fa
e form within them may not only lead to their 
orresponding lexi
al units,but also to the lexi
al units 
orresponding to other surfa
e forms sharing anynon-empty su�x. In order to solve this situation, surfa
e forms mapped todi�erent sets of lexi
al units are regarded as having di�erent endings, hen
etheir su�xes will not be mixed together. Up to here, the resulting automataare not di�erent than tries. However, the surfa
e form is not stored withinthe lexi
al units, and the lemma is not fully stored: the lemma is repla
edby a 
ode indi
ating how to modify the ending of the surfa
e form in orderto obtain the lemma (e.g.: 
ode `2in' for surfa
e form `begun' indi
ates thatthe last two 
hara
ters should be repla
ed by `in', obtaining the lemma `be-gin'). As result, su�xes of surfa
e forms belonging to the same in�e
tional
lass, though having di�erent lemmas, may be fa
tored out; for instan
e,surfa
e forms `loves', `
omes' and `stores' are all mapped to the same lexi
alunit, 1.V:P3s, and their su�x `es' is fa
tored out. This te
hnique allowsfor a greater 
ompression ratio than with tries for the 
ase of in�e
tionallanguages, su
h as English, Fren
h, and spe
ially Spanish. However, theaddition and subtra
tion of di
tionary words is no longer straightforward.The Unitex platform provides a tool for the 
onversion of DELAF text�les into a 
ompressed format, based on these minimal a
y
li
 automata, anduses the 
ompressed format for retrieving the lexi
al units 
orresponding tothe surfa
e forms in the texts to analyze. This format is des
ribed in Paumier
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. 12.8, p. 262). Following this des
ription, we have programmeda C++ 
ompressed di
tionary 
lass whi
h is able to interpret this format asan automata for its appli
ation. The 
ompressed di
tionary �le is loadedas is, without requiring any reformatting as for the 
ase of the text format(e.g.: building a trie). As result, the time required for loading a 
ompresseddi
tionary is virtually imper
eptible. As drawba
k, this format does notsupport modi�
ations on the di
tionaries but only for the retrieval of lexi
alunits. Modi�
ations are to be done on the text DELAF, whi
h must be then
ompressed again for its use.The Unitex platform 
ontains a set of DELAF di
tionaries in 
ompressedformat for several languages�freely distributed under the LGPL-LR li
ense�and a tool for 
onverting DELAF text �les into 
ompressed ones.4 However,Unitex did not have a tool for reverting these di
tionaries ba
k to text for-mat, hen
e these di
tionaries 
ould not be modi�ed.5 Text di
tionaries wereto be either downloaded, if available, or requested to the Unitex author. Fol-lowing the routine for the serialization of a trie into a DELAF text �le, wealso implemented a routine for the serialization of minimal a
y
li
 automata,that is, reverting 
ompressed DELAFs ba
k to the text format. In our 
ase,we primarily developed su
h routine for verifying the 
orre
tness of our 
om-pressed di
tionary implementation: 
ompressing and de
ompressing ba
k atext di
tionary should not introdu
e any 
hanges.4.3.3 Alternative implementationsCiura and Deorowi
z (2001) give an alternative algorithm for the optimal
onstru
tion of minimal a
y
li
 �nite-state automata. Da
iuk et al. (2000)give algorithms for the management of minimal a
y
li
 �nite-state automataso that words 
an be added and subtra
ted dire
tly on this 
ompressed rep-resentation; Carras
o and For
ada (2002) extend these algorithms in orderto support minimal �nite-state automata with 
y
les. Da
iuk et al. (2005)implement dynami
 perfe
t hashing with �nite-state automata in order toallow for a full minimisation of the di
tionary, as well as to add new entriesto the 
ompressed di
tionary without having to de
ompress and 
ompress itagain. Hash tables have been brie�y dis
ussed in se
tion 2.7.6, p. 69. Dy-nami
 perfe
t hashing is a parti
ular kind of hashing whi
h ensures that every4The terms and 
onditions of the LGPL-LR li
ense 
an be found in http://www.gnu.org/li
enses/gpl.html5Unitex's Un
ompress tool is available sin
e version 2.1

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html


4.4. DELAF EXTENSIONS 91indexed element is given a unique index, and that updates 
an be performede�
iently. Moreover, minimal perfe
t hash fun
tions ensure that indexes are
onse
utive integer numbers (e.g.: ea
h word of a di
tionary 
onsidering nwords is mapped to a unique integer number between 0 and n− 1).4.4 DELAF extensionsAs stated before, parts-of-spee
h and in�e
tional features are more or less�xed, depending on the language. We say `more or less �xed' sin
e one maystill add new parts-of-spee
h and in�e
tional features in order to deal withspe
ial 
ases; for instan
e, one may 
onsider the 
ontra
ted form 'al' (tothe) as two lexi
al units, preposition 'a' (to) and determiner 'el' (the), or
onsider it as a single lexi
al unit with a spe
ial part-of-spee
h `preposition-determiner' (PREPDET in the Spanish DELAF). Be as it may be, lexi
al unitsmust be unique: the lemma 
oupled with the set of semanti
 features iden-tify the use of the surfa
e form, and together with the surfa
e form andin�e
tional features the lexi
al unit is uniquely identi�ed; for instan
e, thefollowing extra
t of the English DELAF di
tionary (Courtois, 2004) 
onsistsin four entries des
ribing four possible uses of word `lay', and a total of 14lexi
al units:lay,.Alay,.N:slay,.V:W:1Ps:2Ps:1Pp:2Pp:3Pplay,lie.V+I:1Is:2Is:3Is:1Ip:2Ip:3IpThe uses are:
• adje
tive (A) `lay': non-spe
ialist,
• noun (N) `lay': roman
e,
• verb (V) `lay', either in�nitive (W) or present tense (P) and, in the latter
ase, either in �rst (1) or se
ond (2) person, singular (s), or in �rst (1),se
ond (2) or third (3), plural (p): pla
e, put, prepare, et
.,
• intransitive (I) verb (V) `lie', simple past tense (I), any person, anynumber: to be or to stay at rest in a horizontal position.



92 CHAPTER 4. DELAF DICTIONARIESWhether to write one or more entries for the same surfa
e form depends onthe level of granularity we want to a
hieve; if a parti
ular appli
ation requiresto distinguish among nt meanings of a single entry, it su�
es to 
reate thesemanti
 
lasses that identify ea
h meaning, and write a separate entry withdi�erent semanti
 
odes.In 
ontrast with the set of parts-of-spee
h, the set of semanti
 
lasses of aDELAF di
tionary is open: one is expe
ted to add the semanti
 
lasses thatease the de�nition of grammars for a parti
ular appli
ation; for instan
e, wehave added semanti
 
lasses for pronouns and determiners depending on thedistan
e of the referred obje
t:
• 
lose to the speaker (D1): este, esta, estos, estas, et
. (this, these),
• 
lose to the listener (D2): ese, esa, esos, esas, et
. (that, those), and
• far from both the speaker and the listener (D3): aquel, aquella, aquellos,aquellas, et
. (also translated as `that' and `those').We have also de�ned the 
lass of verbs for the transmission of messages,Trans_msg (enviar, mandar, transmitir, 
omuni
ar, et
). When des
ribingthe senten
es requesting to send an SMS, it is only ne
essary to spe
ify thissemanti
 
lass rather than the full verb list. Due to the amount of di�erentin�e
ted forms of verbs in Spanish, this semanti
 
lass 
ontains hundreds ofwords.It has to be noted that the �rst DELAF di
tionary was written for Fren
h(Courtois, 1990); writing DELAF di
tionaries for other languages may re-quire to adapt the DELAF formalism in order to 
over other lexi
al phe-nomena not present in Fren
h, su
h as en
liti
 pronouns in Spanish. Thesepronouns appear atta
hed to the end of verbs; for instan
e, `léemelo' is 
om-posed by verb `lee' (read) and pronouns `me' (to me) and `lo' (it). Wehave omitted every information 
on
erning en
liti
 pronouns and treated theSpanish DELAF as the Fren
h one sin
e the 
overage on en
liti
 pronounswas quite in
omplete. It has to be noted that en
liti
 pronouns are 
om-monly used in Spanish when formulating requests, for instan
e `muéstramelos juegos que tienes' (show me the games you have). Treatment of theseforms is dis
ussed in the next 
hapter.



4.5. DELAF TOOLS 934.5 DELAF toolsIn order to ease the analysis and extension of DELAF di
tionaries, as wellas for normalizing the di
tionary 
hara
ters, we have developed a set of 3DELAF tools we des
ribe below.4.5.1 AnalysisThe �rst tool extra
ts every di
tionary entry mat
hing at least one di
tionary-based lexi
al mask of a given set of masks. These lexi
al masks are predi
atesthat apply on the properties of the lexi
al units, and will be the obje
t of
hapter 6; for instan
e, lexi
al mask DET+D1:m 
an be used with this toolin order to extra
t any determiner with distan
e D1 and gender mas
uline.We have used the tool for verifying the di
tionary 
overage on subsets ofthe language; for instan
e, we extra
ted the list of determiners and foundthat the poeti
 forms were missing (`aqueste', `aquestos', aquese, et
). Con-versely, these tools 
an be used for verifying whether a lexi
al mask mat
hesthe expe
ted entries or not.4.5.2 ExtensionThe se
ond tool is a modi�ed version of the �rst one: instead of extra
tingthe entries, it alters the set of semanti
 features of the mat
hed entries. Wehave used this tool for adding new semanti
 
lasses to the Spanish DELAF.For instan
e, in order to add the semanti
 
lass `Trans_msg' we have �rstbuilt a set of lexi
al masks mat
hing every in�e
ted form of the verbs for thetransmission of messages (587 entries, the ones 
orresponding to verbs witha parti
ular lemma); then, we have used this tool for adding the semanti
feature `Trans_msg' to the mat
hed entries. Spe
ial attention must be paidhere sin
e an important amount of di
tionary entries 
ould be modi�ed bymistake. The �rst tool 
an be used here for verifying the lexi
al mask 
or-re
tness. In 
ase of mistake, this se
ond tool 
an be also used for revertingthe 
hanges, sin
e it allows for both removing and adding semanti
 features.4.5.3 NormalizationThe third tool normalizes the di
tionary 
hara
ters, as explained in se
-tion 3.4.2, p. 81. This tool also merges sets of di
tionary entries when their



94 CHAPTER 4. DELAF DICTIONARIESnormalization results in the same entry, ex
ept for their in�e
tional features;for instan
e, entries for `I love' and `he/she loved'amo,amar.V:P1samó,amar.V:J3s be
ome amo,amar.V:P1s:J3s,and so on for the same in�e
ted forms of every regular verb of the �rst
onjugation.4.6 Other ele
troni
 di
tionariesDELAS di
tionaries are similar to DELAF ones, but rather than expli
itlyspe
ifying ea
h in�e
ted form and their 
orresponding lists of in�e
tional fea-tures, only lemmas 
oupled with their semanti
 features are spe
i�ed, and the�rst semanti
 feature identi�es both the part-of-spee
h and the in�e
tional
lass the lemma belongs to (e.g.: N4 
orresponds to the fourth in�e
tional
lass of nouns).6 The DELAS format is 
on
eived for the 
onstru
tion andmaintenan
e of ele
troni
 di
tionaries, and the DELAF for their use by 
om-puter programs. Unitex is able to build the 
orresponding DELAF from aDELAS di
tionary and a formal des
ription of the di�erent in�e
tional mod-els. Probably, it will be more e�
ient to add new semanti
 
lasses withinthe DELAS di
tionary and then generate the 
orresponding DELAF thandire
tly modify the DELAF with the tool we have presented. However, open-sour
e Spanish DELAS di
tionaries are not available and, though possible,it will be more di�
ult to implement a tool for reversing the DELAF-to-DELAS transformation than implementing the tool we have proposed foraltering the DELAF di
tionaries dire
tly, whi
h has proved to be enough forour use 
ase.DELAC and DELACF di
tionaries are the equivalent to DELAS and DE-LAF di
tionaries but for 
ompound words.7 Currently, Unitex makes no dis-tin
tion between simple and 
ompound DELA formats, allowing to mix bothkind of forms in a single di
tionary. Referen
es to the DELAS and DELAFformalisms within the Unitex manual subsume the 
orresponding DELACand DELACF ones. In our 
ase, we have stri
tly supported the original DE-LAF format sin
e the Spanish DELAF 
ontains no 
ompound words and,6DELAS stands for (DELA de formes simples or simple forms)7Letter 'C' in DELAC and DELACF stands for `
omposées' or `
ompound'.



4.6. OTHER ELECTRONIC DICTIONARIES 95anyway, our use 
ase 
omprises only a few 
ompound forms whi
h we havesimply 
oded within the grammar rules (e.g.: `teléfono móvil ' or `mobilephone'). DELAF and DELAS des
riptions in
luding 
ompound words 
anbe found in Paumier (2008, 
hap. 3, p. 49).Though work on the Spanish DELA di
tionaries has 
ontinued, newerversions have been distributed only in binary format along with the Intexsystem (Silberztein, 2004), and under a restri
tive li
ense forbidding theirfree use by either private or publi
 organizations (without the author's 
on-sent). Currently, Intex development has been dis
ontinued in favor of NooJ(Silberztein, 2003b), an evolved version of Intex. This evolution has alsoa�e
ted the di�erent DELA di
tionary formats, whi
h are now all integratedwithin a single format (Silberztein, 2005b). Newer versions of the SpanishDELA are being distributed in NooJ's binary format and under the sameterms than with the Intex system.Apart from 
ompound words, there exist other linguisti
 obje
ts formedby multiple words and sus
eptible to be regarded as lexi
al units, su
h as
omplex terms and named entities. These linguisti
 obje
ts, along with
ompound words, are all referred under the term multi-word lexi
al unit(MWLU), and may present and important degree of �exibility broader thansimple in�e
tion (e.g.: birth date/date of birth, hereditary disease/geneti
disease, et
.). Rather than giving support to 
ompound words only, we mayrather 
onsider more general frameworks supporting any kind of multi-wordunits. Currently, there exist a multipli
ity of su
h frameworks (Savary, 2008);in parti
ular, Multi�ex is a formalism and a tool that 
opes with the �exi-bility and idiosyn
rasy of multi-word units (Savary, 2009). Unitex in
ludesa Multi�ex version (see Paumier, 2008, 
hap. 10, p. 193), whi
h is beingdistributed along with Unitex under GNU's LGPL li
ense.8Other Spanish di
tionaries are being freely distributed under GNU's GPLli
ense, along with the Apertium system.9 These di
tionaries follow the XMLformat des
ribed in For
ada et al. (2010, se
. 3.1.2, p. 20), and 
an be eas-ily reformatted in order to 
onvey the DELAF spe
i�
ation. Apart frommonolingual di
tionaries, Apertium in
ludes other kind of di
tionaries forthe automati
 translation between language pairs.8The terms and 
onditions of GNU's LGPL li
ense 
an be found in http://www.gnu.org/
opyleft/lesser.html9The terms and 
onditions of GNU's GPL li
ense 
an be found in http://www.gnu.org/li
enses/gpl.html

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html




Chapter 5TokenizationTokenization, or text segmentation, is the pro
ess by whi
h 
hara
ter se-quen
es are split into tokens or information units, whi
h must 
orrespond insome way with the words des
ribed in the lexi
on (the DELAF di
tionaries,in our 
ase). In natural language pro
essing (NLP), it makes more senseto 
onsider words and symbols as information units rather than 
hara
tersalone. Tokenization is the �rst stage of our NLP engine, and usually of anynatural language pro
essor. Sin
e we are rather interested in the optimizationof the algorithms of appli
ation of lo
al grammars, the tokenization pro
esswe have implemented is very simple, yet enough for our use 
ase. This pro-
ess is a simpli�ed version of the one followed by the Unitex (Paumier, 2008,se
. 2.5.4, p. 43) and Outilex (Blan
 and Constant, 2006b, se
. 6.1, p. 23)systems, with some parti
ular implementation features for better a

ommo-dating our use 
ase. We des
ribe the basi
 tokenization rules in 5.1, and itsimplementation in se
tion 5.2. We brie�y dis
uss the problem of lexi
al ambi-guity (as for de�nition 13, p. 86), and how we have treated it in se
tion 5.3.Furthermore, we shortly des
ribe in se
tion 5.3.2 the me
hanism followedby the Unitex and Outilex systems for the representation and resolution oflexi
al ambiguity.As stated before, this 
hapter does not intend to give a 
omprehensiveview on lexi
al pro
essing (indeed, tokenization is only a part of lexi
al pro-
essing). An alternative open-sour
e lexi
al pro
essor to the ones found inthe Unitex and Outilex systems 
an be found in the Apertium system (seeFor
ada et al., 2010, 
hap. 3, p. 17). Opposite to Unitex, Apertium in-
ludes a parti
ular treatment of Spanish en
liti
 pronouns; it must be notedthat, while the �rst treated languages by the Unitex system were Fren
h and97



98 CHAPTER 5. TOKENIZATIONEnglish, the �rst ones treated in Apertium were Spanish and several otherlanguages that are also spoken in Spain, su
h as Catalan. As well, whileUnitex's approa
h is rather 
onservative (upon unresolved ambiguity, everyinterpretation is presumably a

epted), Apertium's approa
h is rather sele
-tive: the most likely translation between pairs of languages is to be returnedinstead of the set of every possible translation; as result, Apertium in
ludesa part-of-spee
h tagger based on statisti
al data, whi
h is neither present inUnitex. It must be noted that, while Apertium's obje
tive is the automati
translation between pairs of languages, Unitex is a tool for language analysisand information extra
tion.Treatment of non-
atenative (e.g. Arabi
) and agglutinative languages(e.g. Basque, Korean, et
.) is more 
omplex and beyond the s
ope of thiswork. Up to now, Apertium's treatment of su
h languages is a known limita-tion (For
ada et al., 2009). As a parti
ular 
ase, Unitex in
ludes a tokenizeran a tagger for Korean texts (see Paumier, 2008, se
. 7.7, p. 174) whi
h were
on
eived and developed by Huh (2005).5.1 Des
riptionThe tokenization rules we have followed are similar to the ones of the Unitexand Outilex systems:
• we distinguish between word tokens and symbol tokens, where wordtokens are sequen
es of letter 
hara
ters, and symbol tokens are singlesymbol 
hara
ters;
• word tokens are separated from adja
ent word tokens by one or moreblank 
hara
ters,1
• symbol tokens may or may not be blank-separated from other tokens,and
• blanks are not tokens but token separators.Following these rules, multi-words su
h as `teóri
o-prá
ti
o' (theoreti
al/pra
-ti
al) are segmented into multiple tokens, and atta
hed words su
h as `en-víamelo' are segmented as single tokens (envía + me + lo = send + to/for1Blank 
hara
ters have been des
ribed in se
tion 3.1, p. 76



5.2. IMPLEMENTATION 99me + it). Hen
e, tokens 
orrespond to surfa
e forms of lexi
al units of simplewords only. Blank 
hara
ters are not 
onsidered tokens but token separators,and symbols are segmented as single tokens.5.2 ImplementationWe build a linked list of token stru
tures, where ea
h stru
ture is 
omposedby two pointers and an integer; the pointers delimit the token within theinput 
hara
ter sequen
e, an the integer identi�es the token type. As forIntex, Unitex and Outilex, we identify the following token types, based ontheir 
hara
ter types:
• symbol,
• digit symbol,
• pun
tuation symbol,
• neither digit or pun
tuation symbol (de�ned impli
itly),
• word,
• upper
ase word,
• lower
ase word,
• proper noun word (�rst letter upper
ase, the others lower
ase), and
• neither upper
ase, lower
ase or proper noun word (de�ned impli
itly).Note that some token types subsume others (e.g.: `symbol' subsumes all theother symbol types), while others are mutually ex
lusive (e.g.: `symbol' and`word'). Bitwise identi�ers allow for an e�
ient representation and 
ompar-ison of token type identi�ers: one bit 
odes whether the type is `symbol' or`word', and two other bits 
ode the `symbol' and `word' subtypes.During the tokenization pro
ess, we do not only 
he
k whether the 
har-a
ters are either letters, symbols or blanks, but also whether they are digit,pun
tuation or other kind of symbols, and whether they are upper
ase orlower
ase letters. The 
hara
ter type is determined by means of a look-uptable. This way, we e�
iently 
ompute the type of the next input token while



100 CHAPTER 5. TOKENIZATIONsear
hing for its rightmost 
hara
ter. Higher levels of treatment deal withthe token sequen
e rather than with raw 
hara
ters. Sin
e blanks are nottokens, blanks are impli
itly omitted while iterating over the token sequen
e;the presen
e of blanks between two tokens 
an yet be dete
ted by 
he
kingwhether the tokens share one bound or not.The Unitex and Outilex platforms perform some text normalization be-fore tokenizing it, whi
h in
ludes repla
ing blank sequen
es by single blanks.The tokenization result is written into a �le in some text format, then this �leis read by higher levels of treatment. This pro
edure is appropriate for thelinguisti
 study of texts, where di�erent grammars are to be applied to thesame text and partial results are to be examined. In our 
ase, the same gram-mar is to be 
on
urrently applied a single time to ea
h user senten
e as theyare re
eived, and only the �nal result is to be returned; hen
e, tokenizationand any text normalization is to be performed on the �y.Sin
e our NLP engine is to be invoked for the analysis of single senten
es(instant messaging 
ommuni
ation is senten
e-based), we do not implementany pro
edure for the segmentation of texts into senten
es. Intex, Unitexand Outilex insert senten
e delimiter tags by applying a RTN with output.Sin
e our NLP engine also supports su
h kind of RTNs, the same senten
esegmentation pro
edure 
ould be easily implemented, if required.More information on the parti
ular text prepro
essing, tokenization andsegmentation into senten
es 
arried out by Unitex 
an be found in Paumier(2008, se
. 2.5, p. 37), by Outilex in Blan
 and Constant (2006b, 
hap. 6,p. 23), and by Intex in Silberztein (2004, 
hap. 10, p. 97).5.3 Treating lexi
al ambiguityWhether the same token may have di�erent interpretations is trivially takeninto a

ount while applying the grammar: if the grammar requires the nexttoken to be a verb, and one of the token interpretations 
orresponds to a verb,the token is assumed to be a verb; moreover, multiple grammar rules to beapplied on the same token but having in
ompatible requirements will all befollowed as long as the token has at least the same amount of interpretations,ea
h one 
omplying with the requirements of one of the rules.Lexi
al ambiguity is rather treated at senten
e level than at token level:every possible senten
e interpretation is e�
iently 
omputed in some 
om-pressed format, fa
toring out 
ommon parts, then only the one derived from



5.3. TREATING LEXICAL AMBIGUITY 101the appli
ation of the most pre
ise grammar rules is de
ompressed and re-turned. The exa
t pro
edure is based on weighted RTNs and FPRTNs,and will be explained in 
hapter 18. This pro
edure is new to Intex, Uni-tex and Outilex systems: Intex and Unitex do not support weighted RTNs,and Outilex's algorithm of appli
ation of weighted RTNs has an exponentialworst-
ase 
ost rather than polynomial, as we have managed thanks to theuse of FPRTNs; moreover, Outilex does not provide a me
hanism for theautomati
 de�nition of grammar weights, though the one we have used isnot hard to implement.5.3.1 Multiple segmentationsMultiwords may give rise to multiple segmentations: for instan
e, `
inturónnegro' (bla
k belt) may 
orrespond to either two lexi
al units (a belt that isbla
k) or to a single one (a master degree in martial arts). Though Spanish isnot an agglutinative language, en
liti
 pronouns atta
hed to verbs are very
ommon. Su
h forms also give rise to multiple segmentation possibilities,though this is not very frequent: for instan
e, `dáte + lo' (date it) and `dá
+ te + lo' (give it to yourself), `
orreos' (post o�
e) and `
orre + os' (moveover [you all℄), `pésame' (
ondolen
es) and `pésa + me' (weight [the oranges℄for me), et
. More 
ommon 
ases appear when omitting dia
riti
 marks,su
h as `tomate' (tomato) and `tóma + te' (have yourself [a drink/someva
ation/et
.℄), and `leales' (plural of loyal) and `léa + les' (read them [theirrights℄). As in Fren
h, there exist a few 
ontra
ted words, but they are notambiguous: for instan
e, `al = a + el ' (to the, `au = à + le' in Fren
h)and `del = de + el ' (of the, `des = de + les' in Fren
h). Sin
e our use
ase 
omprises only a few multiwords, atta
hed words and 
ontra
tions, wehave simply 
oded them inside the grammar rules: multiwords are 
oded assequen
es of lexi
al units, and 
ontra
tions and atta
hed words are treatedas single lexi
al units.5.3.2 Text automata and ELAG grammarsIntex, Unitex and Outilex platforms perform a se
ond tokenization levelbased on the appli
ation of ele
troni
 di
tionaries. This pro
edure 
ouldalso be applied in our 
ase in order to build a stru
ture of lexi
al units ratherthan a simple token sequen
e. They build what they 
all a text automaton:an a
y
li
 FSA re
ognizing every possible sequen
e of interpretations of the
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envia,enviar.V:P3s:Y2s me,.PRON+od:me,.PRON+oi:me,.PRON+SE: este,.DET:mseste,.N:mseste,.PRON:mseste,estar.V:S1s:S3s:Y3sSMS,.N:msa:PREPel,.DET:mstelefono,.N:ms movil,.A:ms:fsmovil,.N:mstelefono movil,.N:ms 5 5 5Figure 5.1: Text automaton illustrating the lexi
al ambiguities of senten
e �en-víame este SMS al teléfono móvil 555 � (send [for me℄ this SMS to the mobile phone555), with dia
riti
 marks removed from both the senten
e and the di
tionary.token sequen
e, taking into a

ount multiple segmentation possibilities (see�gure 5.1 for an example). Though possible, atta
hed words are not frag-mented but unambiguous 
ontra
tions are (au be
omes a le), as part of atext-prepro
essing. As we stated before, these systems where �rst fo
used onthe treatment of Fren
h and English, whi
h are even less agglutinative thanSpanish.Unitex and Outilex systems 
an partially disambiguate the text automa-ton by the appli
ation of ELAG grammars (Elimination of Lexi
al Ambigui-ties by Grammars, Laporte and Mon
eaux, 2000). These grammars are to bebuilt manually by human experts rather than by some automated method,and mainly 
onsist in asso
iations of input fragments with possible taggings
enarios. Their appli
ation results in the removal of paths within the textautomaton that do not 
orrespond to any tagging s
enario; for instan
e, some
ommon words in both Fren
h and Spanish 
an be used both as determinersand as pronouns, and their use 
an be distinguished by their right 
ontexts:they are determiners when pre
eding nouns, and pronouns when pre
edingverbs (e.g.: in `la pintura, la ví', meaning `the painting, I saw it', the �rst`la' is a determiner and the se
ond one is a pronoun). Though the Apertiumsystem in
ludes a part-of-spee
h tagger, it also allows to use simple `forbid'rules for 2 part-of-spee
h sequen
es in order to improve the tagger results(For
ada et al., 2010, se
. 3.2.1, p. 56).



5.3. TREATING LEXICAL AMBIGUITY 103Unitex's implementation of text automata and ELAG grammars is de-s
ribed in Paumier (2008, se
. 7, p. 147), Outilex's implementation in Blan
(2006, se
. 2.7, p. 44) and Intex's implementation in Silberztein (2004, se
. 14.1,p. 153).





Chapter 6Predi
ates and lexi
al masksIf one would de�ne the ma
hines representing the grammar of a natural lan-guage on the alphabet of tokens of that language, grammar rules for spe
i�
token sequen
es should be de�ned instead of being able to de�ne generalrules a

epting tokens 
omplying with a set of lexi
al properties (e.g.: verbs,nouns, et
.). Instead, we de�ne an alphabet of predi
ates on the tokens sothat sets of tokens having 
ommon properties 
an be represented by meansof simple expressions. Spe
ifying 
on
rete tokens is still possible, allowingfor a wide range between general and parti
ular grammar rules. This ideawas already proposed by van Noord and Gerdemann (2001) for the 
ase of�nite-state ma
hines. We limit ourselves to des
ribe here the set of predi-
ates we have 
onsidered along with the 
odes used for representing them.These predi
ates are a subset of the ones supported by Unitex (Paumier,2008, se
. 4.3, p. 72), and their 
odes are based on Unitex's FST2 format(Paumier, 2008, se
. 12.3.2, p. 252). Some of them 
onstitute very powerfullinguisti
 operators, allowing for referen
ing word 
lasses depending on theproperties des
ribed in DELAF di
tionaries (e.g.: any word belonging to aset of semanti
 
lasses and having a set of in�e
tional features). A s
hemati
list of the predi
ates along with their 
odes 
an be found in appendix A(p. 403).6.1 Lexi
al masksDe�nition 14 (Lexi
al mask). A lexi
al mask is a predi
ate appli
able to thetokens of a natural language, de�ning a subset of zero, one or more tokens by105



106 CHAPTER 6. PREDICATES AND LEXICAL MASKSmeans of lexi
al 
riteria, that is, properties whi
h only depend on the tokensthemselves. We say a lexi
al mask mat
hes a token i� it is true for thattoken; otherwise, we say it does not mat
h the token.Noti
e that there are predi
ates that are not lexi
al masks; for instan
e,the ε-predi
ates that will be presented in se
tion 6.2 do not apply to tokensbut depend on the presen
e or absen
e of blanks between them, whi
h arenot 
onsidered tokens.6.1.1 Literal masksDe�nition 15 (Literal mask). A literal mask is a lexi
al mask mat
hing aunique token, where 
hara
ter 
ase may or may not be restri
ted.De�nition 16 (Lexi
alization level). The lexi
alization level of a grammaris a measure of dependen
e of grammar rules on spe
i�
 tokens.Usually, the lexi
alization level is expressed as a qualitative measure (e.g.:highly or strongly lexi
alized). In our 
ase, the lexi
alization level of a gram-mar depends on the proportion of literal masks w.r.t. other kind of predi
ates.Due to the irregularities of natural languages, natural language gram-mars 
annot be de�ned as a set of general rules (Gross, 1997). Indeed,syntax is usually 
onditioned upon the presen
e of parti
ular tokens (Harris,1951; Chomsky, 1965; Gross, 1996). Appli
ations requiring the re
ognitionof properly written senten
es, su
h as syntax validators and 
orre
tors, areto use highly lexi
alized grammars. The obje
tive of the grammars we have
onstru
ted for the MovistarBot use 
ase is to dete
t the servi
e the useris requesting for (e.g.: to send an SMS, to download a game, et
.), and todelimit the senten
e segments 
orresponding to servi
e arguments (e.g.: thetext of the SMS to send, the title of the game to download, et
.). Thesegrammars do not need to be stri
t and, indeed, we have tolerated some syn-tax errors in bene�t of grammar simpli
ity; for instan
e, we have de�ned agrammar `
atalog' whi
h re
ognizes several synonyms of 
atalog (e.g.: 
atál-ogo, lista, repertorio, et
.), where some of them are mas
uline and others arefeminine, and we state that su
h words 
ould be pre
eded by a determinerbut do not spe
ify the proper determiner's gender for ea
h 
ase (e.g.: wedo not only a

ept `el 
atálogo' and `la lista' but also `*la 
atálogo' and `*ellista'). However, we still require some level of lexi
alization sin
e, usually,keywords determine what the user is talking about or asking for (e.g.: SMS,



6.1. LEXICAL MASKS 107message, send). Moreover, 
ontexts of unrestri
ted arguments also requiresome lexi
alization level (e.g.: the text of the SMS to send, or the title of thegame to download). The only way to properly delimit su
h arguments is byelimination: on
e their left and right 
ontexts are re
ognized, the argumentis what is left; for instan
e, in `envía el mensaje llego en 5 min al 555 ' (sendthe message I arrive in 5 min to the 555), `envía el mensaje' indi
ates thata message is to be sent, and `al móvil 555 ' spe
i�es the destination phonenumber, thus `llego en 5 min' is the message 
ontent. Fine des
riptions ofsu
h 
ontexts are to be given so that they are not 
onsidered as part of theunrestri
ted arguments; in the last example, segment `el mensaje' is optional(one 
ould simply write `envía llego en 5 min al 555 ') and must not bere
ognized as part of the message to send.Literal word masksDe�nition 17 (Literal word mask). A literal word mask is a literal maskwhi
h mat
hes a unique word token and, in some 
ases, their 
ase variations.De�nition 18 (Case-sensitive word mask). A 
ase-sensitive word mask isa literal word mask stri
tly mat
hing the spe
i�ed word token, without 
asevariations. We represent them as a `�' symbol followed by the sequen
eof 
hara
ters that 
ompose the word (e.g.: mask `�WORD' mat
hes token`WORD' but not tokens `word' or `Word)'.De�nition 19 (Case-insensitive word mask). A 
ase-insensitive word maskis a literal word mask whi
h also a

epts 
ase variations, and we representthem as a `%' symbol followed by the sequen
e of either upper
ase or lower
ase
hara
ters that 
ompose the word (e.g.: mask `%wOrD' mat
hes both tokens`word' and `WORD').As a 
onvention, every predi
ate 
ode starts with either `% ' or `� '. Forthe 
ase of literal word masks, the use of one or other symbol determines
ase sensitivity, and for the other 
ases there is no di�eren
e.In most 
ases, the use of lower
ase or upper
ase letters does not alter themeaning but is just a matter of formatting; for instan
e, the MovistarBot
onsiders equivalent the senten
es `envía llego en 5 min al 555' and `ENVÍALLEGO EN 5 MIN AL 555'. Proper nouns and abbreviations are an ex
ep-tion; for instan
e, `RAM' is the random a

ess memory of a 
omputer, `Ram'is the 
onstellation or sign of Aries, and `ram' has several other meanings,su
h as the male of the sheep.
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e our use 
ase also requires the omission of dia
riti
 marks, our 
aseinsensitive word masks are also insensitive to dia
riti
 marks. As stated inse
tion 3.4.2 (p. 81), we use a look-up table in order to retrieve the normalizedversion of the token 
hara
ters as they are 
ompared to the 
ase-insensitiveword masks, and these masks are normalized only on
e and then applied toevery re
eived user senten
e.Literal symbol masksDe�nition 20 (Literal symbol mask). A literal symbol mask is a literalmask whi
h only mat
hes a spe
i�
 symbol token. We represent literal-symbolmasks as a symbol `%' or `�' followed by the symbol to mat
h (e.g.: `��'mat
hes token `�').6.1.2 Token maskDe�nition 21 (Token mask). We de�ne the token mask as the lexi
al maskmat
hing any token, and we represent it as `%<TOKEN>' or `�<TO-KEN>'.Note that the 
ode representing the token mask is 
omposed by upper
aseletters. As a general rule, lexi
al mask 
odes are 
ase sensitive, that is,%<TOKEN>' and %<token>' do not represent the same lexi
al mask.The purpose of the token mask is to mat
h unrestri
ted or unknowntokens and token sequen
es. We have used it for mat
hing unrestri
ted ar-guments, and it 
an also be used for the 
omplementary 
ase: the extra
tionof well-known arguments from unrestri
ted texts; for instan
e, Laforest andBadr (2003) use Intex-based automata for extra
ting very spe
i�
 data froma set of medi
al pres
riptions written in natural language, namely the ill-ness, drug, dose, dosage frequen
y and treatment duration (e.g.: in�uenzaA, Tami�u, 75 mg, twi
e daily, 5 days). This information is latter input intoa stru
tured database.11The author of this dissertation parti
ipated in the 
on
eption of the language of spe
-i�
ation of extra
tion rules used in Laforest and Badr (2003) and in the implementationof a translator of su
h rules to Intex automata.
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ter-
lass masksDe�nition 22 (Chara
ter-
lass mask). A 
hara
ter-
lass mask is a lexi
almask whi
h restri
ts only the type of the 
hara
ters that 
ompose the token.De�nition 23 (Word mask). We de�ne the word mask as the 
hara
ter-
lass mask that mat
hes any word token (e.g.: aB
), and we represent it as`%<MOT>' or `�<MOT>'.2De�nition 24 (Symbol mask). We de�ne the symbol mask as the 
hara
ter-
lass mask mat
hing any symbol token (e.g.: +), and we represent it as`%<!MOT>' or `�<!MOT>'.Note that the 
ode representing the symbol mask is the same than forthe word mask but inserting the ` !' symbol right after `<'. As a generalrule, by inserting the ` !' symbol we negate the lexi
al mask. However, fordi�erent 
lasses of lexi
al masks the negation is de�ned in a parti
ular way.Note that the negation of the token mask would mat
h no token, hen
e itmakes no sense to de�ne it: we simply do not de�ne grammar rules mat
hinggrammati
ally in
orre
t sequen
es.De�nition 25 (Digit mask). We de�ne the digit mask as the 
hara
ter-
lassmask that mat
hes any digit (e.g.: 7), and we represent it as `%<NB>' or`�<NB>',3 and its negation as the mask mat
hing any non-digit token (e.g.:aB
, +, ?, et
.), and we represent it as `%<!NB>' or `�<!NB>'.Note that digit masks do not mat
h numbers 
omposed by several digitsor 
ontaining a de
imal dot; ea
h digit is 
onsidered a token, as well as thede
imal dot, and ea
h appli
ation of a lexi
al mask mat
hes a single token.De�nition 26 (Pun
tuation-symbol mask). We de�ne the pun
tuation-sym-bol mask as the 
hara
ter-
lass mask mat
hing every pun
tuation symbol(e.g.: ?), and we represent it as `%<PNC>',4 and its negation as the maskmat
hing any non-pun
tuation-symbol token (e.g.: +), and we represent itas `%<!PNC>' or `�<!PNC>'.2From Fren
h `mot ', whi
h means `word'.3From Fren
h `nombre', whi
h means `number'4From Fren
h `pon
tuation', whi
h means `pun
tuation'.



110 CHAPTER 6. PREDICATES AND LEXICAL MASKSCase-dependent word masksDe�nition 27 (Case-dependent word mask). A 
ase-dependent word maskis a 
hara
ter-
lass mask whose restri
tions are uniquely based on the 
aseof the 
hara
ters that 
ompose the tokens.De�nition 28 (Negation of a 
ase-dependent word masks). We de�ne thenegation of a 
ase-dependent mask m as the mask mat
hing every word tokenthat m does not mat
h.Note that the negation of a 
ase-dependent word mask does not mat
hsymbol tokens.De�nition 29 (Upper
ase-word mask). We de�ne the upper
ase-word maskas the 
ase-dependent word mask mat
hing every word token whose letters areall upper
ase (e.g.: SMS), and we represent it as `%<MAJ>' or `�<MAJ>'and its negation as %<!MAJ>' or `�<!MAJ>'.5De�nition 30 (Lower
ase-word mask). We de�ne the lower
ase-word maskas the 
ase-dependent word mask mat
hing every word token whose lettersare all lower
ase (e.g.: message), and we represent it as `%<MIN>' or`�<MIN>' and its negation as %<!MIN>' or `�<!MIN>'.6De�nition 31 (Proper-noun mask). We de�ne the proper-noun mask as the
ase-dependent word mask mat
hing every word whose �rst letter is upper
aseand the others lower
ase (e.g.: Chomsky), and we represent it as `%<PRE>'or `�<PRE>' and its negation as %<!PRE>' or `�<!PRE>'.7As stated in se
tion 5.2 (p. 99), token types are 
omputed during thetokenization pro
ess. The evaluation of 
hara
ter 
lass masks is redu
ed toa bitwise 
omparison between the identi�ers of the required token type andthe next token type.6.1.4 Di
tionary-based masksWe have also added support for Unitex's di
tionary-based lexi
al masks,whi
h in turn are the same than the ones of the Intex system. These masks5From Fren
h `majus
ule', whi
h means `upper
ase'.6From Fren
h `minus
ule', whi
h means `lower
ase'.7From Fren
h `prénom', whi
h means `proper noun' or `�rst name'.



6.1. LEXICAL MASKS 111de�ne subsets of the words of a DELAF di
tionary �ex
ept the unknown-word mask, whi
h we de�ne below� usually depending on the properties
onsidered in the di
tionary.8De�nition 32 (Di
tionary-word mask). A di
tionary-word mask is a lexi-
al mask that mat
hes word tokens depending on 
riteria based on the data
ontained in a di
tionary.De�nition 33 (Known-word mask). We de�ne the known-word mask as thedi
tionary-word mask mat
hing every word that belongs to the di
tionary,and we represent it as `%<DIC>' or `�<DIC>'.9De�nition 34 (Unknown-word mask). We de�ne the unknown-word maskas the di
tionary-word mask mat
hing every word that does not belong to thedi
tionary, and we represent it as `%<!DIC>' or `�<!DIC>'.Note that the unknown-word mask does not mat
h symbol tokens. Thismask may be used for testing the di
tionary 
overage and for sear
hing fornew di
tionary-word 
andidates.De�nition 35 (Constrained di
tionary-word mask). A 
onstrained di
tio-nary-word mask is di
tionary-word mask mat
hing the subset of di
tionarywords holding a given set of properties, whi
h are to be spe
i�ed in the di
-tionary (e.g.: being a verb in present tense).De�nition 36 (Lemma mask). A lemma mask is a 
onstrained di
tionary-word mask mat
hing every di
tionary word having the spe
i�ed word as lemma,and we represent it as either `%<lemma>' or `�<lemma>', where ` lemma'is the lemma in lower
ase letters.As for the 
ase-insensitive masks, every grammar's lemmamask is normal-ized before applying the grammar in order to mat
h the normalized lemmaswithin the di
tionary. In general, any lemma spe
i�ed within any kind ofdi
tionary-word mask is normalized.De�nition 37 (Semanti
-feature mask). A semanti
-feature mask is a 
on-strained di
tionary-word mask mat
hing every di
tionary word belonging to aset of mandatory semanti
 
lasses and not belonging to a set of forbidden se-manti
 
lasses, and we represent them as ` [%�] <[+−]? Sem1 [+−]Sem28DELAF di
tionaries have been des
ribed in 
hapter 4, p. 83.9From Fren
h `di
tionnaire', whi
h means `di
tionary'.
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[+−] . . . [+−] Semn>', where [%@] stands for either symbol `%' or `�',`Sem1 . . .Semn` are a sequen
e of n ≥ 1 semanti
 
odes, ` [+−]' stands foreither a `+' or `−' symbol indi
ating whether the following semanti
 
oderefers to a mandatory or forbidden semanti
 
lass, respe
tively, and ` [+−]?'stands for an optional spe
i�
ation of this symbol, by default `+'; for in-stan
e, masks `<N+Hum>', `<−Hum+N>' and `<−N−Hum>' mat
h ev-ery human noun, every non-human noun and every non-noun non-humanword, respe
tively.De�nition 38 (Lemma and semanti
-feature mask). A lemma and semanti
-feature mask is a 
onstrained di
tionary-word mask both restri
ting the in-�e
tional and semanti
 
lasses of di
tionary words, and we represent them as` [%�]<lemma.<[+−]? Sem1 [+−] Sem2 [+−] . . . [+−] Semn>', that is, as forboth the lemma and semanti
-feature masks but �rst spe
ifying the lemma,then a dot, then the sequen
e of either mandatory or forbidden semanti

lasses.Note that `<hum>' denotes a lemma mask while `<Hum>' denotes asemanti
-feature mask. Note also that lexi
al units belong to a unique part-of-spee
h 
lass (part-of-spee
h 
lasses are disjoint), hen
e it only makes senseto either spe
ify a unique mandatory part-of-spee
h or one or more forbiddenparts-of-spee
h.De�nition 39 (Possible-in�e
tional-features mask). A possible-in�e
tion-al-features mask is a 
onstrained di
tionary-word mask mat
hing every di
-tionary word having all of the in�e
tional features represented by at least oneof the spe
i�ed sequen
es of in�e
tional 
odes; we represent the possible in-�e
tional features as a 
olon-separated list of sequen
es of in�e
tional 
odes(e.g.: `ms:mp' for mas
uline singular or mas
uline plural, whi
h would beequivalent to `m' sin
e every number is a

epted). Sin
e in�e
tion dependson the part-of-spee
h, masks restri
ting the in�e
ted form alone are not tobe de�ned but both restri
ting the part-of-spee
h and the in�e
ted form, andpossibly other semanti
 
lasses as well as the in�e
tion 
lass, and we repre-sent them as either the semanti
-features mask or the lemma and semanti
-features mask but inserting a 
olon after the semanti
-features spe
i�
ationfollowed by the list of possible in�e
tional-features list.For instan
e, mask `%<V+Trans_msg:Y2:Y3>' mat
hes 40 words that
an be used for ordering the MovistarBot (Y = imperative) to send an SMS



6.2. ε-PREDICATES 113(e.g.: envía, envíe, enviad, envíen, manda, mande, mandad, manden, et
).10.Mask `%<enviar.V+Trans_msg:Y2:Y3>' mat
hes the subset 
orrespondingto in�e
ted forms of verb `enviar '.De�nition 40 (Negation of 
onstrained di
tionary-word masks). The ne-gated form of a 
onstrained di
tionary-word mask mat
hes every di
tionaryword not mat
hed by the original mask; we negate a di
tionary mask byinserting symbol ` !' after symbol `<' (e.g.: `%<!V>' mat
hes any di
tionaryword that is not a verb).Note that the negation of a 
onstrained di
tionary-word mask does notmat
h unknown words.The implementation of su
h masks 
onsists in sear
hing the next inputtoken within the DELAF, either for verifying its presen
e or absen
e (
ase ofknown and unknown word masks) or for verifying the presen
e of a use of thetoken whose properties 
omply with a set of restri
tions (
ase of 
onstraineddi
tionary-word masks).6.2 ε-predi
atesDe�nition 41 (ε-predi
ate). An ε-predi
ate is a predi
ate that applies to thespa
e between two tokens.Some grammar rules are to be applied right before the next token to beanalysed. In other words, su
h rules apply on the emptiness between the lastanalysed token and the next one. This emptyness is usually represented bythe empty symbol, ε. Usually, su
h emptiness has no asso
iated propertieswhi
h 
ould be evaluated in order to de
ide whether the rules are to a

eptor reje
t it, hen
e the emptiness is always a

epted. In our 
ase, the spa
ebetween 
onse
utive word tokens must 
ontain at least one blank 
hara
ter,and the spa
e before and after symbol tokens may be either empty or 
ontainone or more blank 
hara
ters. In some ex
eptional 
ases, the presen
e orabsen
e of blank 
hara
ters is to be taken into a

ount; for instan
e, inFren
h, sequen
e `1,2' without blanks represents a real number, while `1, 2'with a blank is a sequen
e 
omposed by two numbers. In the MovistarBot10In Spanish, we address somebody using the third person instead of the se
ond one inorder to show respe
t, 
ourtesy or distan
e.
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ase (se
tion 1.2, p. 6), request senten
es may also follow a 
ommand-like syntax, that is, a word 
ommand followed by a blank-separated list ofarguments where arguments are not to 
ontain blanks in some 
ases; forinstan
e, one 
an request to send an SMS as follows:sms phone messagewhere at least one blank 
hara
ter must appear before and after phone, phoneis a sequen
e of digit symbols without blanks between them, and message isany sequen
e of tokens, either blank-separated or not. This situation leads tothe de�nition of di�erent kinds of ε-predi
ates depending on whether tokensare blank-separated or not.De�nition 42 (Blank-insensitive ε-predi
ate). We de�ne the blank-insensi-tive ε-predi
ate as the ε-predi
ate that always evaluates true, independentlyof the presen
e of absen
e of blanks between the last analysed token and thenext one, and we represent it with 
ode `%<E>' or `�<E>'.De�nition 43 (Blank-sensitive ε-predi
ates). Blank-sensitive ε-predi
atesare those who may or may not be true depending on the presen
e or absen
eof blanks between the last analysed token and the next one.De�nition 44 (Mandatory-blank ε-predi
ate). We de�ne the mandatory-blank ε-predi
ate as the blank-sensitive ε-predi
ate that evaluates true i� thenext token is blank-separated, and we represent it with 
ode `%\⊔' or `�\⊔',where `⊔' represents a white spa
e.De�nition 45 (Forbidden-blank ε-predi
ate). We de�ne the forbidden-blank
ε-predi
ate as the blank-sensitive ε-predi
ate that evaluates true i� the nexttoken is not blank-separated, and we represent it with 
ode `%#' or `�#'.As stated in se
tion 5.2 (p. 99), the evaluation of these predi
ates 
onsistsin verifying whether the pointer to the right bound of the last analysed tokenand the pointer to the left bound of the next input token are equal or not.These ε-predi
ates are usually enough for natural language pro
essing.If ne
essary, one may de�ne more �ne-grained ε-predi
ates whi
h would, forinstan
e, take into a

ount the amount and type of blank 
hara
ters betweentokens. For instan
e, programming languages usually mark the start andend of instru
tion blo
ks with start/end pairs of keywords (open/
losed 
urlybra
kets in C, C++ and Java, pairs if/�, do/done, 
ase/esa
 in Unix/Linuxshell s
ripts, et
), but in Python the start and end of a blo
k is given bythe length of instru
tion indentation (number of 
onse
utive blanks at thebeginning of the instru
tion line).
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atesA grammar's appli
ation usually 
onsists in keeping tra
e of a set of livegrammar rules (some representation of grammar rules that have being par-tially applied to an input segment, depending on the algorithm of appli
ationof the grammar); the grammar must de�ne an initial set of rules, whi
h isused for building the initial set of live rules, and for ea
h input token a newset is 
omputed depending on the previous set and the next input token.Ea
h live grammar rule imposes some restri
tions on the next input token,whi
h are expressed as lexi
al masks and ε-predi
ates in our 
ase. In orderto 
ompute the next set of live grammar rules, the set of next lexi
al masksby the 
urrent set of live rules must be sear
hed for the ones mat
hing thenext input token (in our 
ase, to sear
h for the transitions outgoing from the
urrent states and whose labels mat
h the next input token). In 
ase thegrammars were de�ned on an alphabet of letters rather than of predi
ates,the set of live grammar rules is to be sear
hed in order to �nd the ones whosenext letters are equal to the next input letter. The next-letter sets 
ould bestored in some binary-sear
h stru
ture, su
h as the ones presented in 
hap-ter 2, so that the ones equal to the next input letter 
ould be e�
iently found.However, it is not possible to de�ne a lexi
al mask ordering in order to guidea binary sear
h depending on the next input token and the result of the lastmask evaluation; for instan
e, let %<A> (is adje
tive), %<N> (is noun) and%<V> (is verb) be the 
urrent 
andidate predi
ates, and predi
ate %<N>be the �rst one to be evaluated, whether the next token is a noun word ornot does imply whether the same token may or may not be a verb or an ad-je
tive (e.g.: `love' 
an either be a noun or a verb, while `orange' 
an eitherbe a noun or an adje
tive); hen
e, all the 
andidate lexi
al masks must besystemati
ally evaluated. While a binary sear
h has a logarithmi
 
ost, thesystemati
 sear
h has a 
ost proportional to the number of lexi
al masks toevaluate. However, if su
h number is small, the e�
ien
y loss is insigni�
ant;this is the 
ase of the MovistarBot grammar, with an average of 2.3 outgoingtransitions per state.6.4 Assigning priorities to lexi
al masksDuring the �rst stages of a grammar's development, one may de�ne generalrules (in our 
ase, transitions labeled with lexi
al masks) in order to 
over a
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ases, and later add more spe
i�
 rules for well-known 
aseswhi
h may overlap with the general 
ases. Rule overlapping leads to multiplesenten
e interpretations. A good heuristi
 for 
hoosing a single one is theoverall spe
i�
ity level of the sequen
e of rules that led to ea
h interpretation(in our 
ase, the sequen
e of transitions whose lexi
al masks re
ognized theentire senten
e).We have shortened lexi
al masks depending on the 
ardinality of the setof tokens mat
hed by ea
h one, from the most general (the token mask) tothe most spe
i�
 (
ase insensitive masks), and assigned a default weight forea
h 
ase we have distinguished (see table 6.1). We have implemented a rou-tine that automati
ally assigns the 
orresponding weights to grammar rules(transitions of re
ursive transition networks with weight and string output)depending on the spe
i�
ity of their lexi
al masks. Rules that are not labeledwith lexi
al masks (ε-predi
ate rules) are given a zero weight by default. Weinterpret weights as s
ores: the highest the spe
i�
ity, the highest the s
ore.Note that mask %<TOKEN> is given a null s
ore: re
ognizing tokens with-out any restri
tions does not in
rease or de
rease the interpretation s
ore.The main a
hievement of this pro
edure has been to su

essfully dealwith ambiguous senten
es due to unrestri
ted arguments in the middle, su
hthe text of the message that is requested to be sent by senten
e `envía el SMSFeliz Navidad al móvil 555 ' (send the SMS Merry Christmas to the mobile555). One of the general grammar rules allows for simply writing `envía FelizNavidad' in order to ask for sending the SMS `Feliz Navidad', without eitherspe
ifying any phone number (the MovistarBot would then ask for it) or thefa
t that what we want to send is an SMS. Consequently, this rule re
ognizes`el SMS ' and `al móvil 555 ' as part of the message to send. However, thegeneral rule will use the token mask in order to re
ognize those senten
esegments, while the more spe
i�
 rule will use literal masks, whi
h are givenhigher s
ores. Other rule re
ognizes the 
ase in whi
h the user delimits thetext of the message by means of quotes, in whi
h 
ase the quotes are neitherinterpreted as part of the message sin
e they are also re
ognized by meansof literal masks.Grammar rules that are already given a weight are not tou
hed by theweight assignment pro
edure, hen
e it is possible to de�ne 
ustom weightsfor spe
i�
 grammar rules by hand. At a 
ertain time, Telefóni
a requested afast implementation of a grammar for the re
ognition of senten
es requestingto send an MMS, based on the mere dete
tion of keyword `MMS'. However,we had already de�ned other more spe
i�
 grammars that interpreted MMS



6.4. ASSIGNING PRIORITIES TO LEXICAL MASKS 117Mask Cardinality Weight%<TOKEN> ∞ 0%<!NB> ∞ but subset of %<TO-KEN> 1%<!PNC> ∞ but less than %<!NB> 2%<MOT> ∞ but subset of %<!NB>and %<!PNC> 3%<!DIC> ∞ but subset of %<MOT> 4%<!PRE> ∞ but subset of %<MOT>and less than %<!DIC> 5%<!MAJ> ∞ but less than %<!PRE> 6%<!MIN> ∞ but upper
ase is less fre-quent than lower
ase 7%<MIN> ∞ but subset of %<!MAJ>and less than %<!MIN> 8%<MAJ> ∞ but subset of %<!MIN>and upper
ase is less fre-quent than lower
ase 9%<PRE> ∞ but less than %<MAJ>and %<MIN> 10%<DIC> equal to the di
tionary size 11
onstrained di
tionary-word mask less than or equal to the di
-tionary size 11%<!MOT> equal to the 
ardinality ofthe set of symbol tokens,less than %<DIC> for nat-ural languages 12%<NB> 10 (de
imal system) 13
ase-insensitive word mask 2|w| for word w, though lessthan %<NB> in pra
ti
e 14literal symbol mask 1 among the set of symboltokens 15
ase-sensitive word mask 1 among the set of word to-kens, whi
h is greater thanthe set of symbol tokens 16Figure 6.1: Default weights assigned to lexi
al masks.
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e the MMS requests were misinter-preted in some 
ases (e.g.: `quiero enviar un MMS al 555 ' was re
ognized as`I want to send the SMS un MMS to the phone number 555'). This situationwas solved by assigning by hand to the MMS grammar a weight higher thanthose automati
ally assigned to the other grammars.
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Chapter 7Finite-state ma
hinesWe give in this se
tion the 
ommon de�nitions, properties and algorithms forevery ma
hine used along this dissertation. The de�nition of FSM is too gen-eral to be dire
tly applied as a ma
hine, but is intended to be further re�nedin order to brie�y de�ne the 
on
rete ma
hines in the subsequent 
hapters.This de�nition is very similar to the usual de�nition of non-deterministi
FSA (NFA) but leaving unde�ned the set of transition labels rather than be-ing equal to the set of input symbols Σ plus the empty symbol, and de�ningboth the input alphabet and the set of transition labels as either �nite orpotentially in�nite; the latter is required in order to 
onsider ma
hines whosetransition labels are taken from a potentially in�nite alphabet of words orpredi
ates on words, su
h as the set of lexi
al masks presented in 
hapter 6.1As stated in van Noord and Gerdemann (2001), predi
ate alphabets do notneed to be expli
itly de�ned �the rules for the 
onstru
tion of predi
ateexpressions are to be expli
itly de�ned instead� and, 
onsequently, su
halphabets do not need to be �nite. Moreover, van Noord and Gerdemann(2001, se
. 1.1, p. 2) expli
itly state that �robust synta
ti
 parsing requiresan in�nite alphabet�.De�nition 46 (Finite-state ma
hine). In general, �nite-state ma
hines (FSMs)are stru
tures 
omposed of, at least, the following 6 elements:
• Q = {q0, q1, . . . , q|Q|−1}, a �nite set of states (SS),1We assume that a word is any sequen
e of letters, though in pra
ti
e grammars are to
onsider only a �nite set of words sin
e grammars are to be �nite des
riptions of languagestru
tures (hen
e the expression `potentially in�nite').121
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• Σ = {σ0, σ1, . . . , σ|Σ|−1}, an either �nite or potentially in�nite inputalphabet,
• Ξ = {ξ0, ξ1, . . . , ξ|Ξ|−1}, an either �nite or potentially in�nite set oftransition labels,
• δ : Q × Ξ → P(Q) a �nite and partial transition fun
tion where P(·)represents the set of all subsets of a given set,
• QI ⊆ Q is the set of initial states and
• F ⊆ Q the set of �nal or a

eptan
e states.The parti
ular de�nition of the set of transition labels depends on the kind ofparti
ular ma
hine.De�nition 47 (Letter FSM). A letter FSM is a FSM whose alphabet isa �nite set of letters, words or symbols rather than predi
ates, and whosetransition labels are taken from su
h alphabet, ex
ept for the empty symbol.This de�nition 
orresponds to a generalization of the de�nition of lettertransdu
er given by Ro
he and S
habes (1997, p. 14).For the simplest in
arnation of FSM, letter FSAs, transitions labeled withan input symbol 
an be traversed by 
onsuming the next input symbol whenboth symbols are equal, and transitions labeled with the empty symbol 
an betraversed without input 
onsumption. We will present FSAs as a parti
ular
ase of this FSM de�nition in 
hapter 8 (p. 161).De�nition 48 (Lexi
al FSM). A lexi
al FSM is a FSM whose transitionlabels are lexi
al masks and ε-predi
ates with, possibly, other extensions.2.This de�nition is a generalization of the de�nitions of lexi
al automatonand de
orated lexi
al RTN given in Blan
 (2006, 
haps. 2 & 4, pp. 13 &112). Su
h RTNs are extended with uni�
ation pro
esses and their labelsare de
orated with equations on feature stru
tures.Most of the theory on FSMs we will present does not depend on the exa
tme
hanism for the evaluation of transition labels, but on whether transitionsare taken or not and, therefore, the same theory applies to both letter orlexi
al FSMs. For the sake of simpli
ity, we will present this theory for2Lexi
al masks and ε-predi
ates have been des
ribed in 
hapter 6, p. 105



7.1. TRANSITIONS 123the 
ase of letter FSMs, and dis
uss the di�eren
es w.r.t. the 
ase of lexi
alFSMs whenever they are not obvious. The grammars we have built for theMovistarBot use 
ase (se
. 1.2, p. 6) are a kind of lexi
al RTNs.De�nition 49 (Null element). In general, we expli
itly represent an illegal,invalid or unde�ned result of an operation as ⊥, the null element.For instan
e, given a state q of a FSM and a transition label ξ, we ex-pli
itly represent the la
k of transitions from q, with label ξ, as δ(q, ξ) =⊥.Noti
e that there is a di�eren
e between the null element and the neutral oridentity element: given a binary operator · and two operands a and b, if b isthe identity element of · then a · b = a, but if b is the null element then theresult is ⊥, that is, unde�ned.7.1 TransitionsDe�nition 50 (Transition). We represent a transition of a FSM as a triplet
(qs, ξ, qt) ∈ (Q × Ξ × Q) where qt ∈ δ(qs, ξ). We 
all qs and qt the sour
eand target states of the transition, respe
tively, and ξ the transition label.Transitions, also 
alled moves or jumps, represent the possibility of 
hangingthe state of the ma
hine from a sour
e state to a target state depending onthe predi
ate or 
ondition expressed by the ξ label and the 
urrent 
ontext ofexe
ution of the ma
hine, and to perform some other arbitrary a
tions whi
hwill further modify the 
urrent 
ontext of exe
ution.The 
ontext of exe
ution of a ma
hine is a generalization of the statein whi
h a ma
hine 
an be during its appli
ation; for instan
e, the 
ontextof exe
ution of an augmented transition network, or ATN (Woods, 1969),in
ludes a set of registers whi
h may be modi�ed by additional a
tions asso-
iated to transitions, and whose value may 
ondition the transition traversal.A formal de�nition of exe
ution 
ontext or exe
ution state will be given inse
tion 7.6.De�nition 51 (Consuming transition). A 
onsuming transition is a transi-tion 
onditioned upon the 
urrent input symbol and whi
h triggers the 
on-sumption of the symbol (to advan
e the input pointer up to the next symbol)whenever the transition is traversed.



124 CHAPTER 7. FINITE-STATE MACHINESDe�nition 52 (Pure 
onsuming transition). A pure 
onsuming transition isa 
onsuming transition not asso
iating any other 
ondition or a
tion to itstraversal than the sole 
onsumption of an input symbol.A non-pure 
onsume transition would be, for instan
e, a 
onsuming tran-sition that also generates output.De�nition 53 (ε-transition). An ε-transition is a transition whose predi
aterequires no symbol to be 
onsumed. We expli
itly represent the absen
e ofsymbol or empty symbol as ε.3Transitions whose predi
ates hold independently of the 
urrent 
ontexte�e
tively represent the possibility of being in several states at the same time.This is the 
ase of ε-transitions for several ma
hines, for instan
e FSAs, FSTsand RTNs. Other ma
hines may 
onsider other 
onditions to be taken intoa

ount whi
h prevent the transition from being traversed for some exe
ution
ontexts, even when no input symbol is required to be 
onsumed; for instan
e,
ε-transitions of ma
hines extended with uni�
ation may require to unify twofeature stru
tures, and the traversal of su
h transition will not be possible ifthe feature stru
tures to unify are in
ompatible. Uni�
ation ma
hines willbe the obje
t of 
hapter 19.De�nition 54 (Pure ε-transition). A pure ε-transition is an ε-transition notasso
iating any 
ondition or a
tion to its traversal.De�nition 55 (Outgoing and in
oming transitions). Given a transition
t = (qs, ξ, qt), we say that t is an outgoing transition from state qs andan in
oming transition into state qt.7.2 Graphi
al representationThe 
lassi
 representation of FSMs 
onsists in a set of labeled 
ir
les andlabeled arrows between the 
ir
les, the former representing states and thelatter transitions (see �gure 7.1(b)). Double-border 
ir
les represent a

ep-tan
e states (e.g.: state q8 of �gure 7.1(b)), and initial states are pointed toby an arrow 
oming from nowhere (e.g.: state q0 of �gure 7.1(b)).3Some authors use di�erent symbols in order to represent the empty symbol and theempty string; for instan
e, Ortiz-Rojas et al. (2005) represent the former as θ and thelatter as ε. We 
hoose here to make no distin
tion in order to alleviate the notation.



7.2. GRAPHICAL REPRESENTATION 125Intex, Unitex and Outilex use another kind of representation they 
allgraph, and whi
h was 
on
eived for fa
ilitating the manual 
onstru
tion andmaintenan
e of lo
al grammars.4 This is the representation we have used forthe 
onstru
tion of the MovistarBot grammars.5 Graphs basi
ally 
onsist ina set of linked boxes, where boxes 
orrespond to transitions and links 
or-respond to states. Ea
h box represents a set of transitions, one transitionper box line, whi
h is shared among every pair of states represented by anin
oming and an outgoing link (e.g.: box `<TOKEN>' of �gure 7.1(a) 
or-responds to the 4 `%<TOKEN>' transitions of �gure 7.1(b)). Start symbols`�' and `%' of lexi
al masks within boxes are not spe
i�ed: 
ase-sensitivemasks are to be quoted, and 
ase-insensitive masks are not. Moreover, a boxentry may 
ontain a sequen
e of lexi
al masks rather than a single one, inwhi
h 
ase represents an alternating sequen
e of transitions and states ratherthan a simple transition (e.g.: a box entry `"Feliz Navidad"' represents two
ase-sensitive masks whi
h are to be applied in that order). The dire
tion ofthe transitions represented by a box is given by a triangular arrowhead at-ta
hed to one side of the box. Graphs are meant to be read in the text sense,whi
h depends on the language (e.g.: left-to-right in English, right-to-left inArabi
, et
.), thus the arrowhead is always atta
hed to the same side of theboxes. Links between boxes do not 
arry state labels: state labels are notto be expli
itly de�ned sin
e they have no impa
t in the represented gram-mar. Graphs de�ne a unique initial state represented by a link 
onne
ted toa single box. To make the initial state more expli
it, an empty box (a boxhaving only the arrowhead) is inserted right after the link, though this is notne
essary; indeed, boxes having a single entry `<E>' (the blank-insensitive
ε-predi
ate) are drawn as a triangle alone. Links representing a

eptan
estates are those 
onne
ted to the 
ir
le with a square inside (see the right-most box of �gure 7.1(a)). Finally, graphs 
an be 
ommented as for the 
aseof sour
e 
ode (e.g.: see greyed text of �gure 7.1(a)); labels of unlinked boxesare treated as 
omments, and their frames are not drawn. More informationon Intex graphs 
an be found in Silberztein (2004, 
hap. 5�8), on Unitexgraphs in Paumier (2008, 
hap. 5�6), and on Outilex graphs in Blan
 andConstant (2006b, 
hap. 4).4In the 
ontext of mathemati
s, a graph is a set of elements (verti
es) 
oupled with aset of edges whi
h 
onne
t pairs of elements; though the graphs presented here are verysimilar to these graphs, they are not the same kind of obje
t.5Indeed, we have used the Unitex graph editor.



126 CHAPTER 7. FINITE-STATE MACHINES

(a)
q0 q1 q2

q3q4

q5 q6

q7

q8
%sms %\⊔ %<NB>%#%<NB>%<NB>%<NB> %\⊔%<TOKEN>

%<TOKEN>
%<TOKEN>%<TOKEN>(b)

q0 q1 q2,4 q3,5 q6,7 q{6,7},8
%sms %\⊔ %#%<NB> %\⊔ %<TOKEN>%<TOKEN>(
)Figure 7.1: (a) Unitex graph re
ognizing SMS 
ommand requests, (b) equivalentlexi
al FSM obtained by repla
ing boxes and links by trasitions and states, respe
-tively, and (
) equivalent pseudo-minimal lexi
al FSM. Comments in (a) appear ingreyed fonts and have been used here to make state labels expli
it and to indi
atewhat ea
h graph fragment is supposed to re
ognize. Pseudo-minimization will beexplained in se
tion 8.6.



7.3. SEQUENCES OF TRANSITIONS 1277.3 Sequen
es of transitionsDe�nition 56 (Conne
ted transitions). We say transition t is 
onne
ted totransition t′ i� the target state of t is the sour
e state of t′.De�nition 57 (Path or transition 
on
atenation). We de�ne a path withina FSM as the 
on
atenation of a sequen
e of n > 0 su

essively 
onne
tedtransitions
(qs0 , ξ0, qt0) . . . (qsn−1

, ξn−1, qtn−1
) su
h that qti = qsi+1

, for i = 0 . . . n−2.(7.1)and we represent it as
(qs0 , ξ0, qt0) · (qs1 , ξ1, qt1) · . . . · (qsn−1

, ξn−1, qtn−1
), (7.2)or simply as

(qs0 , ξ0, qt0)(qs1, ξ1, qt1) . . . (qsn−1
, ξn−1, qtn−1

), (7.3)or even simpler as
qs0

ξ0
−→ qs1

ξ1
−→ . . .

ξn−2
−−→ qsn−1

ξn−1
−−→ qtn−1

. (7.4)De�nition 58 (| · |). We de�ne | · | as the length or number of elements ofa sequen
e.We use | · | in order to represent the length of a path inside a FSM as wellas the length of a string.De�nition 59 (Start and end states of a path). The start state of a pathis the sour
e state of its �rst transition, and the end state of a path is thetarget state of its last transition.De�nition 60 (Conne
ted paths). We say path p is 
onne
ted to path p′ i�the end state of p is equal to the start state of p′.De�nition 61 (Con
atenation of paths). We de�ne the 
on
atenation ofa path p 
onne
ted to a path p′ as the path 
omposed by the sequen
e oftransitions of p followed by the sequen
e of transitions of p′, and we representit as p · p′ or simply as pp′.



128 CHAPTER 7. FINITE-STATE MACHINESDe�nition 62 (Cy
le). A 
y
le is a 
losed or self-
onne
ted path, that is, apath whose start and end states are the same. Cy
les are also 
alled loopsor 
losed paths.Sin
e 
y
les are to be des
ribed as transition sequen
es, one of the 
y
lestates is to start and end the sequen
e. Cy
les have no start or end statesin the sense of whether the sequen
e of transitions 
an be followed, either indire
t or reverse order, until there are no more transitions belonging to the
y
le, sin
e the �rst transition follows the last one. However, when regarding
y
le des
riptions as itineraries (a sequen
e of states and transitions to visitin the order spe
i�ed), the 
hoi
e of the start and end state is not arbitrary:traversing n times a 
y
le starting at a state q ends up at q and not at anyother state.De�nition 63 (Self-
on
atenation of a 
y
le). Given a 
y
le p and an integer
n ≥ 0, we de�ne pn as the result of 
on
atenating path p with itself n times.De�nition 64 (Empty path). Given any 
losed or un
losed path p, we de�ne
p0 as the empty path or zero-length path.De�nition 65 (Self-
on
atenation of the empty path). Given a path p, wede�ne the spe
ial 
ases of 
on
atenations of paths involving the empty pathas follows:

pp0 = p

p0p = pThe empty path is the neutral element of the 
on
atenation of paths.Corollary 1 (Con
atenation with the empty path). Con
atenating the emptypath to itself any number of times results in the empty path, that is,
p0p0 . . . p0 = p0 (7.5)De�nition 66 (Subpath). We say pb is a subpath of p i� there exist twopaths pa and pb su
h that papbpc = p.De�nition 67 (Consuming path). A 
onsuming path is a path having atleast one 
onsuming transition.De�nition 68 (Consuming 
y
le). A 
onsuming 
y
le is a 
losed 
onsumingpath.



7.4. STRUCTURES 129De�nition 69 (ε-path). An ε-path is a path whose transitions are all ε-transitions.De�nition 70 (ε-
y
le). An ε-
y
le is a 
losed ε-path.De�nition 71 (Rea
hable). We say that a state qt is rea
hable or derivablefrom a state qs i� there exists at least one path p whose start and end statesare qs and qt, respe
tively. We say qt is rea
hable or derivable from qs throughpath p.De�nition 72 (Dire
tly rea
hable). We say that a state qt is dire
tly rea
h-able from a state qs i� qt is rea
hable from qs through a path p su
h that
|p| = 1.We will �rst de�ne the fun
tion 
omputing sets of dire
tly-rea
hable statesfrom other states, and then de�ne the fun
tion 
omputing the set of rea
h-able states by one or more appli
ations of the former fun
tion, hen
e thedistin
tion between rea
hable and dire
tly rea
hable.De�nition 73 (ε-rea
hable). We say that a state qt is ε-rea
hable from astate qs i� it is rea
hable through an ε-path.De�nition 74 (Dire
tly ε-rea
hable). We say that a state qt is dire
tly ε-rea
hable from a state qs i� qt is dire
tly rea
hable from qs through an ε-path.7.4 Stru
turesDe�nition 75 (Empty ma
hine). We say a ma
hine is empty i� it 
ontainsno states.Corollary 2 (Transitions of empty ma
hines). Empty ma
hines have notransitions sin
e no transitions 
an be de�ned without sour
e and targetstates.De�nition 76 (A
y
li
 ma
hine). We say a ma
hine is a
y
li
 i� it 
ontainsno 
y
les.Tries are an example of a
y
li
 ma
hines. These ma
hines will be theobje
t of 
hapter 9.



130 CHAPTER 7. FINITE-STATE MACHINESDe�nition 77 (Linear ma
hine). We say a ma
hine is linear or has a linearstru
ture i� the ma
hine is a
y
li
, has at most one initial state and everystate has at most one outgoing transition.A sequen
e of symbols w 
an be represented by a linear FSA having aunique a

eptan
e state and a path 
onsuming w from the initial state up tothe a

eptan
e state.7.5 Substru
turesDe�nition 78 (Ma
hine substru
ture). Given a ma
hine with a set of states
Q and a partial transition fun
tion δ, (Q′, δ′) identi�es a ma
hine substru
-ture i� Q′ ⊆ Q and δ′ is a partial transition fun
tion su
h that every transi-tion de�ned by δ′ is also de�ned by δ and the sour
e and target state of everytransition in δ′ belongs to Q′.De�nition 79 (Disjoint ma
hine substru
tures). We say two ma
hine sub-stru
tures are disjoint i� they do not share any states and/or transitions.De�nition 80 (Properties of relations). A relation R on a set A is
• re�exive i� aR a, for all a in A,
• irre�exive i� ¬(aR a), for all a in A,
• antisymmetri
 i� aR b and bR a imply a = b, for all a, b in A, and
• transitive i� aR b and bR c imply aR c, for all a, b, c in A,De�nition 81 (Topologi
al sort). Let (Q′, δ′) be a ma
hine substru
tureand R a relation on Q′ su
h that qs R qt i� qt is rea
hable from qs; we saya sequen
e of states in Q′ is a topologi
al sort of (Q′, δ′) i� the following
onditions hold:
• R is irre�exive, antisymmetri
 and transitive,
• the sequen
e 
ontains every state in Q′, and
• the sequen
e is 
ompatible with R, that is, for every pair of states qi, qj ∈
Q′, if qi appears before qj within the sequen
e then either qi Rqj or qiand qj are not related.



7.5. SUBSTRUCTURES 131The problem of �nding a topologi
al sort for a graph was �rst studiedfor the 
ase of PERT networks (see appendix D, page 419). Sin
e verti
es ofa PERT network represent points in time and edges represent a
tivities be-tween two points in time, 
y
les of length 1 make no sense: a
tivities requirea positive amount of time in order to be performed. However, it makes sensethat every temporal point is rea
hable from itself by performing no a
tivity.The original de�nition of topologi
al sort requires R to be a (non-stri
t) par-tial order, that is, it must be re�exive rather than irre�exive; sin
e temporalpoints are 
onsidered to be rea
hable from themselves, R is also re�exive.The topologi
al sort is de�ned as a (non-stri
t) total order 
ompatible with
R, that is, an extension of R su
h that antisymmetry and transitivity is keptwhile relating every pair of verti
es of the network. Totality implies re�ex-ivity sin
e it also requires every vertex to be related to itself. Sin
e FSMsmay 
ontain 
y
les of length 1, we must distinguish between just being ata state and rea
hing it from itself, hen
e we do not 
onsider that a stateis rea
hable from itself unless it has a both outgoing and in
oming transi-tion. Consequently, our de�nition of topologi
al sort does neither require Ror the topologi
al sort to be re�exive and, indeed, it forbids it; in our 
ase,the topologi
al sort of a FSM represents a linear ordering of the states of ama
hine su
h that ea
h state 
an only be rea
hed from zero, one or more ofthe states pre
eding them in the topologi
al sort, but not from themselvesor from the states following them. This ordering will be used for optimiz-ing the appli
ation of ma
hines with bla
kboard output: we will see that itis possible to pro
ess ea
h transition a single time as long as we follow theordering given by a topologi
al sort.Lemma 1 (Existen
e of a topologi
al sort). At least one topologi
al sortexists for a given ma
hine substru
ture i� the substru
ture 
ontains no 
y
les.Proof. Let (Q′, δ′) be a ma
hine substru
ture, R be a relation on Q′ su
hthat qs R qt i� qt is rea
hable from qs, and

p = q0
ξ0
−→ q1

ξ1
−→ . . .

ξl−2
−−→ ql−1 (7.6)be a path within the substru
ture. If p is a 
y
le of length 1, then q0 = ql−1and q0 is rea
hable from itself, whi
h would not allow for R to be irre�exive.If p is a path of length greater than 1 having no 
y
li
 subpath, then thereis at least one state qi between q0 and ql−1 whi
h is not equal to q0 or ql−1.If p is itself a 
y
le, then both holds that qi is rea
hable from q0 and q0 is
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hable from qi, whi
h would not allow for R to be antisymmetri
. Everypath respe
ts transitivity, sin
e every state within a path is rea
hable fromall those pre
eding them. Hen
e, R 
an only be irre�exive, antisymmetri
and transitive i� the substru
ture 
ontains no 
y
les. The existen
e of Rimplies the existen
e of at least one sequential ordering of the states in Q′
ompatible with R.7.6 BehaviourWe give here the general de�nitions and equations that des
ribe the languagerepresented by a FSM.De�nition 82 (Exe
ution state). The exe
ution states (ESs) of a given al-gorithm of appli
ation of a ma
hine are stru
tures 
omposed by, at least, ama
hine state plus, possibly, other additional data whi
h depend on the algo-rithm. These ESs represent exe
ution 
ontexts or partial 
omputations thatare performed in some order up to obtaining the �nal result. If the algo-rithm does not require any additional information, ESs are simply states ofthe ma
hine rather than stru
tures.De�nition 83 (X). We de�neX as the set of all possible ESs of an algorithmof appli
ation of a ma
hine.For instan
e, ESs of an algorithm of appli
ation of FSTSOs may not onlyin
lude a rea
hed state q but also the partial output that has been generatedfrom an initial state up to rea
hing q. Algorithms of appli
ation of FSAsrequire no further information, so X = Q in those 
ases. Every ma
hine
an be redu
ed to a either �nite or in�nite-state automaton; for instan
e,we repla
e ea
h state q of a FSTSO by its exe
ution states (q, z), for everypartial output z that 
an be generated from an initial state up to rea
hing
q, and we 
opy ea
h transition in
oming to or outgoing from q but withoutthe output, and having the 
orresponding ESs as sour
e and target states.In other words, outputs are 
oded within the states of the ma
hine ratherthan within the transitions. Sin
e ESs having di�erent partial outputs willno longer be the same ES, independently of whether they share the samestate or not, the resulting ma
hine will have an in�nite number of states ifan in�nite number of partial outputs is possible; hen
e, this sort of ma
hine isnot to be generated for pra
ti
al NLP, but only the ne
essary �real� states of



7.6. BEHAVIOUR 133the ma
hine �its ESs� are to be produ
ed for ea
h input, and the algorithmexe
ution will �nish as long as the number of ESs to produ
e for ea
h input is�nite. We will give an exa
t de�nition of ES for ea
h algorithm and ma
hinein their 
orresponding se
tions.De�nition 84 (Multiple ES). A multiple ES is a set of exe
ution states(SES) 
omposed by every ES that an algorithm of exe
ution of a ma
hine
an generate for a given input sequen
e; sin
e ma
hines may de�ne severalpaths leading to di�erent ESs for the same input sequen
e, we 
onsider thatthe ma
hine is able to be taken to a multipli
ity of ESs at a given exe
utiontime. Throughout this dissertation, V and W will be used as SES identi�ers.For instan
e, pro
essing an ambiguous senten
e will lead to multiple ESsat some exe
ution time, one for ea
h possible senten
e interpretation 
onsid-ered in the grammar.De�nition 85 (Illegal ES). Illegal ESs are a spe
ial kind of ESs whi
h avoidthe traversal of any transition that ends at them.For instan
e, ma
hines extended with uni�
ation pro
esses de�ne as il-legal every ES 
ontaining the null feature stru
ture, that is, the result ofunifying two in
ompatible feature stru
tures; transitions that result in su
hillegal ESs 
annot be traversed.De�nition 86 (Realizable transition). We say a transition t within a FSMis realizable from a given legal (sour
e) ES xs i�, the ma
hine being in ES xs,the transition t 
an be traversed for some input symbol; in other words, t isan outgoing transition of the state asso
iated to the ES xs and the ma
hine istaken to a legal (target) ES xt from ES xs by traversing t, and 
onse
uently byexe
uting the a
tions asso
iated to t, if any (e.g.: 
onsuming the 
urrent inputsymbol). In general, we say a transition is either realizable or not dependingon the existen
e of some input sequen
e whi
h allows for produ
ing a legalES xs from where t 
an be realized.Following the former example, a transition requiring to unify two in
om-patible feature stru
tures is not realizable even if the transition 
onsumes the
urrent input symbol.De�nition 87 (Realization of pure ε-transitions). Given a legal ES xs = (qs,
a0 . . . an−1), where a0 . . . an−1 is the additional data produ
ed by the algorithm
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ation of the 
orresponding ma
hine, a pure ε-transition t = (qs, ξ, qt)is realizable by bringing the ma
hine to ES xt = (qt, a0 . . . an−1). Sin
e pure ε-transitions do not impose any restri
tion to their traversal, every ε-transitionis realizable, in general.Note that pure ε-transitions do not asso
iate any a
tion to their traversal,hen
e they do not modify the 
urrent 
ontext of exe
ution ex
ept for thema
hine state.De�nition 88 (Realization of pure 
onsuming transitions). Given a legalES xs = (qs, a0 . . . an−1), where a0 . . . an−1 is the additional data imposedby the algorithm of appli
ation of a ma
hine, a pure 
onsuming transition
t = (qs, ξ, qt) is realizable by 
onsuming the input symbol spe
i�ed in ξ andby bringing the ma
hine to ES xt = (qt, a0 . . . an−1). Sin
e pure 
onsumingtransitions do not impose any other restri
tion to their traversal than thepresen
e of some input symbol at the 
urrent input point, every pure 
on-suming transition is realizable, in general.As for the 
ase of pure ε-transitions, sin
e pure 
onsuming transitions donot asso
iate any a
tion to their traversal other than the 
onsumption of the
urrent input symbol, the additional data of the ES is not modi�ed.De�nition 89 (Realizable path). A path within a FSM is realizable from agiven legal ES xs i�, the ma
hine being in ES xs, every transition within thepath is 
onse
utively realizable.De�nition 90 (Exe
ution path). Given a realizable path

p = t0t1 . . . tn = q0
ξ0
−→ q1

ξ1
−→ q2

ξ2
−→ . . .

ξn−1
−−→ qn

ξn
−→ qn+1from an ES x0, we de�ne its exe
ution path from x0, X (p, x0), as

X (p, x0) = x0
ξ0
−→ x1

ξ1
−→ x2

ξ2
−→ . . .

ξn−1
−−→ xn

ξn
−→ xn+1where x1 is the ES the ma
hine is taken to by transition t0 from ES x0, x2 theES the ma
hine is taken to by transition t1 from ES x1, and so on. We also
all X (p, x0) the realization of path p from ES x0. If the ESs of a ma
hineare states in Q, there is no di�eren
e between paths and their realizations.
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hable ES). Given two legal ESs xt and xs, we say xtis rea
hable or derivable from xs i� there exists at least one realizable path
p whose exe
ution from ES xs brings the ma
hine to ES xt. We say xt isrea
hable or derivable from xs through path p.De�nition 92 (Deterministi
 ma
hine). A ma
hine is deterministi
 i� itholds the following properties:
• to have at most one initial state,
• not to have transitions that 
an be realized independently of the exe
u-tion 
ontext,6 and
• for every possible exe
ution 
ontext of the ma
hine there is at most onerealizable transition.7De�nition 93 (Equivalent ma
hines). In general, we say two ma
hines areequivalent i� for every possible input they yield the same output, no matterhow the ma
hines are stru
tured.Depending on the type of output generated by a 
lass of ma
hines, aparti
ular de�nition of equivalen
e will be given (
onsidering that a Booleanindi
ating whether an input sequen
e belongs to a language or not is alreadyan output).De�nition 94 (Minimal ma
hine). We say a ma
hine is minimal i� thereexists no other equivalent ma
hine having a smaller number of states.Ma
hines of di�erent types may be yet equivalent if they produ
e thesame kind of output; for instan
e, both FSAs and RTNs return a Booleanvalue. However, some ma
hine types may allow for more 
ompa
t stru
tures;for instan
e, FSAs allow for fa
toring out 
ommon pre�xes and su�xes ofthe represented sequen
es, while RTNs 
an also fa
tor out 
ommon in�xes.In general, when we speak about minimal ma
hines we are restri
ting thetype of the equivalent ma
hine to the one of the original ma
hine.6For instan
e, ε-transitions in FSAs. Re
all that, apart from the input, exe
ution
ontexts may 
omprise other data (e.g.: the output generated up to rea
hing a 
ertainES).7For instan
e, deterministi
 FSAs have no pair of transitions outgoing from the samesour
e state so that both are labeled with the same input symbol; otherwise both transi-tions might be realizable under the same exe
ution 
ontext, that is, being at the sour
estate of these transitions.



136 CHAPTER 7. FINITE-STATE MACHINESDe�nition 95 (Derivation rule). The set of derivation rules or derivationme
hanisms of a ma
hine des
ribe the ES dire
tly rea
hable from any givenES of the ma
hine. For the 
ase of FSMs, ea
h transition 
lass is asso
iatedto a derivation rule and ea
h transition represents a parti
ular 
ase of su
h arule for a parti
ular pair of sour
e and target states and transition 
ondition(expressed by the transition's label). The realization of a transition 
onsistsin applying the derivation rule 
orresponding to the transition type.For instan
e, de�nitions 87 and 88 des
ribe the derivation rules asso
iatedto pure ε-transitions and pure 
onsuming transitions, respe
tively.De�nition 96 (∆). We de�ne fun
tion
∆ : P(X)× Σ→ P(X) (7.7)as the extension of the 
onsuming 
ases of transition fun
tion δ to sour
e andtarget SESs instead of simple sour
e and target states of the ma
hine, that is,

∆(V, σ) is equal to the set of dire
tly rea
hable ESs from any ES of V throughtransitions that 
onsume the next input symbol σ. The exa
t behaviour offun
tion ∆ depends on the type of ma
hine and algorithm followed.De�nition 97 (D). Analogous to fun
tion ∆, we de�ne fun
tion
D : P(X)→ P(X) (7.8)as the extension of the non-
onsuming 
ases of transition fun
tion δ to sour
eand target SESs, that is, D(V ) is equal to the set of dire
tly ε-rea
hable ESsfrom any ES of V . Let A be a ma
hine with n ε-transition types,8 we de�ne

D as
D :

n
⋃

i=0

Di, (7.9)where Di(V ) represents a parti
ular derivation rule of D(V ) for a type of
ε-transition. The exa
t behaviour of ea
h Di fun
tion depends on the typeof ma
hine and algorithm followed. For the sake of simpli
ity, if i = 1 wedo not de�ne a D1 fun
tion but we de�ne D itself as the dire
t-derivationfun
tion on SESs.8for instan
e, RTNs have three di�erent kinds of ε-transitions: expli
it ε-transitions,push transitions and pop transitions; RTNs will be the obje
t of 
hapter 12.



7.6. BEHAVIOUR 137De�nition 98 (Simple dire
t-derivation fun
tion on SESs). A simple dire
t-derivation fun
tion on SESs is an extension of a parti
ular derivation 
aseof transition fun
tion δ to sour
e and target SESs, namely fun
tion ∆ andthe Di fun
tions 
omposing fun
tion D (or D for ma
hines with a uniquetype of ε-transition).In general, simple dire
t-derivation fun
tions on SESs are all de�ned byan expression of the form
F(V, σ) = {xt : d ∧ xs ∈ V }, (7.10)where V is the sour
e SES, σ is the 
urrent input symbol (for the 
ase of ∆)or is omitted (for the 
ase of Di fun
tions or fun
tion D), d is a predi
atethat depends on the followed derivation rule, and xt is the target ES derivedfrom sour
e ES xs if d holds. For instan
e, for the 
ase of FSAs, ∆(V, σ) isde�ned as follows:

∆(V, σ) = {qt : (qt ∈ δ(σ)) ∧ (qs ∈ V )}, (7.11)where qt and qs 
orrespond to xt and xs (for the 
ase of FSAs, ESs are simpleFSA states), and `qt ∈ δ(σ)' is the derivation predi
ate. In order to avoidrepetition, we will de�ne simple dire
t-derivation fun
tions on SESs for ea
halgorithm and ma
hine by spe
ifying xs, xt and d. This generalization willalso be used for studying some properties 
ommon to every simple dire
t-derivation fun
tion on SESs.De�nition 99 (i-re
ursive fun
tion appli
ation). Let F be a fun
tion of aset A into itself, that is, F : A → A, we de�ne F i, the i-re
ursive appli
ationof F , as
• the 
omposition of F with itself i− 1 times, for i > 1

• the fun
tion itself, for i = 1, and
• idA, the identity fun
tion of A, for i = 0.For instan
e, let f be a fun
tion of N into itself su
h that f(x) = x + 1,



138 CHAPTER 7. FINITE-STATE MACHINESthe following equations hold:
f 0(0) = id(0) = 0
f 1(0) = f(0) = 0 + 1 = 1
f 2(0) = f(f(0)) = 0 + 1 + 1 = 2
f 3(0) = f(f 2(0)) = 2 + 1 = 3...
fn(0) = f(fn−1(0)) = n− 1 + 1 = n

(7.12)
De�nition 100 (ε-
losure). We de�ne the ε-
losure of a SES V as the SES
ontaining V and every ε-rea
hable ES from any ES of V :

Cε : P(X)→ P(X)

Cε(V ) =

m
⋃

i=0

Di(V ), (7.13)that is, the ESs of V plus the ESs rea
hable from any ES of V through oneup to m ε-transitions, where m is the smallest k su
h that
k
⋃

i=0

Di(V ) =
k+1
⋃

i=0

Di(V ), (7.14)if su
h k exists, and unde�ned otherwise.Indeed, there are ma
hines having SESs for whi
h su
h k does not existand, hen
e, the ε-
losure is not 
omputable. For ea
h kind of ma
hine, wewill identify the substru
tures allowing for su
h SESs, if any, in order to avoidthem.De�nition 101 (Delayability of union). Given n subsets Vi of a set X and aunary fun
tion F : P(X)→ P(X), we say that the union of sets is delayablew.r.t. F i�
F(

⋃

i

Vi) =
⋃

i

F(Vi). (7.15)Sin
e the union of sets is asso
iative, if the previous equality holds for theunion of two sets then it holds for the union of two or more sets.Lemma 2 (FSM D-union). The union of sets is delayable w.r.t. fun
tion Dif it is delayable for ea
h Di fun
tion 
omposing D.
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tions D1 and D2 su
h that the unionof sets is delayable w.r.t. both of them, and let V and V ′ be two SESs, thenit holds that
D(V ∪ V ′) = D1(V ∪ V ′) ∪D2(V ∪ V ′) (7.16)

= D1(V ) ∪D1(V
′) ∪D2(V ) ∪D2(V

′) (7.17)
= D1(V ) ∪D2(V ) ∪D1(V

′) ∪D2(V
′) (7.18)

= D(V ) ∪D(V ′). (7.19)Theorem 1 (Union of dire
t-derivation fun
tions on SESs). The union ofsets is delayable w.r.t. dire
t-derivation fun
tions on SESs.Proof. Let F be a dire
t-derivation fun
tion on SESs, that is, a fun
tion ofthe form
F(V, σ) = {xt : d ∧ xs ∈ V }, (7.20)where d is the derivation predi
ate, the following equations hold:

F(V ∪ V ′) = {xt : d ∧ xs ∈ V ∪ V ′}

= {xt : d ∧ (xs ∈ V ∨ xs ∈ V ′)}

= {xt : d ∧ xs ∈ V ∨ d ∧ xs ∈ V ′}

= {xt : d ∧ xs ∈ V )} ∪ {xt : d ∧ xs ∈ V ′)}

= F(V ) ∪ F(V ′).Theorem 2 (D-union). Given lemma 2 and theorem 1, the union of sets isdelayable w.r.t. the D fun
tion, in general.Lemma 3 (ε-
losure-union). Given a FSM, if the union of sets is delayablew.r.t. its D fun
tion then it is delayable as well w.r.t. its ε-
losure fun
tion:
D(

⋃

i

Vi) =
⋃

i

D(Vi) =⇒ Cε(
⋃

i

Vi) =
⋃

i

Cε(Vi). (7.21)



140 CHAPTER 7. FINITE-STATE MACHINESProof. Let V and V ′ be two SESs, it holds that
Cε(V ∪ V ′) =

m
⋃

j=0

Dj(V ∪ V ′)

=

m
⋃

j=0

Dj(V ) ∪
m
⋃

j=0

Dj(V ′)

= Cε(V ) ∪ Cε(V
′),where m is the smallest k su
h that

k
⋃

i=0

Di(V ) =

k+1
⋃

i=0

Di(V ).Theorem 3 (ε-
losure-union). Given lemma 2 and lemma 3, the union ofsets is delayable w.r.t. the ε-
losure, in general.Lemma 4 (Iterative ε-
losure). Sin
e the union of sets is delayable w.r.t.the D fun
tion, the following is an equivalent de�nition of ε-
losure, basedon iterative 
omputation:
Cε(V0) = Vm with Vi+1 = Vi ∪D(Vi), i > 0, (7.22)and m is the smallest k su
h that Vk+1 = Vk.Proof. By 
omputing the di�erent Vi's we obtain:
V1 = V0 ∪D(V0) =

1
⋃

j=0

Dj(V0)

V2 = V0 ∪D(V0) ∪D(V0 ∪D(V0))

= V0 ∪D(V0) ∪D(V0) ∪D(D(V0))

= V ∪D(V0) ∪D(D(V0)) =
2
⋃

j=0

Dj(V0)...
Vi =

i
⋃

j=0

Dj(V0)
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losure.Lemma 5 (Finite ε-
losure). Given the iterative de�nition of ε-
losure oflemma 4, if there exists a natural number k ≥ 0 su
h that Vk = Vk+1 then
Vk = Vl, for l ≥ k, that is, on
e Vk is 
omputed, 
omputing further Vi's willnot add anything to the ε-
losure and, hen
e, the ε-
losure will be �nite.Proof. Let k be the smallest number su
h that Vk = Vk+1 = D(Vk), and l bea number greater than k, then

Vl = Vk ∪ D(Vk) ∪ D(D(Vk)) ∪ . . . ∪ Dl−k(Vk)
= Vk ∪ Vk ∪ D(Vk) ∪ . . . ∪ Di−k−1(Vk)...
= Vk ∪ Vk ∪ Vk ∪ . . . ∪ Vk

= Vkand therefore 
omputing further Vi's after Vk will not add anything to Cε(V0).De�nition 102 (∆∗). We re
ursively de�ne ∆∗, the extension of the transi-tion fun
tion over SESs ∆ for an input sequen
e w ∈ Σ∗, as follows:
∆∗ : P(X)× Σ∗ → P(X)

∆∗(V, ε) = Cε(V ) (7.23)
∆∗(V, wσ) = Cε(∆(∆∗(V, w), σ)) (7.24)This de�nition is analogous to that of δ̂ for NFAs (non-deterministi
FSAs) given in Hop
roft et al. (2000, se
. 2.3.3, p. 58), though ∆∗ is de-�ned on SES and δ̂ is de�ned on NFA states.De�nition 103 (Initial and a

eptan
e SESs). We 
all XI the initial SES ofa FSM and XF its a

eptan
e or �nal SES. ESs in XI or XF are stru
tures
ontaining a state in QI or F , respe
tively, plus any additional informationrequired to represent the initial or a

eptan
e ES depending on the type ofma
hine and algorithm followed. When no additional information is required,as in FSAs, XI = QI and XF = F .
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 exe
ution of a FSM). Let A be a FSM withan input alphabet Σ and a set of initial ESs XI , we say A is deterministi
�in terms of exe
ution� i� it holds that
|∆∗(XI , w)| ≤ 1, for all w ∈ Σ∗, (7.25)that is, A has a unique initial ES x0 and the number of rea
hable ESs from

x0 by 
onsuming any input sequen
e is at most one.De�nition 105 (Exe
ution ma
hine). Given a FSM A with Σ as input al-phabet, X as its ES domain, XI as initial SES and XF as a

eptan
e SES, wede�ne X (A), the exe
ution ma
hine of A, as an either �nite- or in�nite-statema
hine (depending on ea
h 
ase) having at least the following elements
• X as set of states, either �nite or in�nite,
• XI as set of initial states, �nite,
• XF as set of a

eptan
e states, either �nite or in�nite,
• Σ as input alphabet, either �nite (for letter ma
hines) or in�nite (forma
hines on an alphabet of words or predi
ates), and
• δ′ as partial transition fun
tion, either �nite or in�nite, su
h that� xt ∈ δ′(xs, σ) ⇐⇒ the exe
ution of A 
an dire
tly derive xt from

xs by 
onsuming σ,� xt ∈ δ′(xs, ε) ⇐⇒ the exe
ution of A 
an derive xt from xswithout input 
onsumption, and� possibly other transitions depending on the type of ma
hine andalgorithm of appli
ation.Exe
ution ma
hines 
an be seen as exe
ution tra
es of the algorithm of ap-pli
ation of the ma
hines for every possible input. The exa
t de�nition ofexe
ution ma
hine depends on the kind of ma
hine and exe
ution method.Note that for FSMs having an in�nite number of ESs (e.g.: FSTs repre-senting an in�nite number of translations), the number of transitions linkingthe states of their 
orresponding exe
ution ma
hines will also be in�nite. Asstated before, exe
ution ma
hines are not to be entirely 
omputed but onlythe ne
essary substru
tures for the appli
ation of FSMs to spe
i�
 input
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es. The 
on
ept of exe
ution ma
hine will be used for the 
ase ofma
hines with output generation in order to study the possibility of 
omput-ing the di�erent ESs in some spe
i�
 order that will a

elerate the ma
hineappli
ation: the order given by a topologi
al sort of the exe
ution ma
hinesubstru
tures produ
ed by derivation fun
tions on SESs. In parti
ular, wewill study the ne
essary 
onditions for the existen
e of su
h topologi
al sorts.De�nition 106 (F -substru
ture). Given a derivation fun
tion F on SES ofa ma
hine A, we de�ne the F(V )-substru
ture of X (A) as the substru
tureof X (A) 
omposed by every ES in V and every rea
hed ES and traversedtransition during the 
omputation of F(V ).De�nition 107 (L). We de�ne L(A), the language of a FSM A, as the set ofsequen
es w ∈ Σ∗ re
ognized by A, that is, the set of sequen
es whose whole
onsumption rea
hes at least one a

eptan
e ES from at least one initial ES:
L(A) = {w ∈ Σ∗ : ∆∗(XI , w) ∩XF 6= ∅}. (7.26)This formula is similar to that of Hop
roft et al. (2000, se
. 2.3.4, p. 59),though using fun
tion ∆∗ instead of δ̂, an initial SES XI instead of a singleinitial state q0, and an a

eptan
e SESs XF instead of a set of a

eptan
estates F .We say that a word w is a

epted or re
ognized by a FSM A i� w belongsto the language of A; otherwise we say that w is reje
ted or not re
ognizedby the FSM.De�nition 108 (LR(x)). Let x be an ES of a FSM, we de�ne LR(x), theright language of x, as
LR(x) = {w ∈ Σ∗ : ∆∗({x}, w) ∩XF 6= ∅}. (7.27)De�nition 109 (A

eptor ma
hine). We say that a ma
hine or an algorithmof appli
ation of a ma
hine is a pure a

eptor i� its sole purpose is to 
omputethe a

eptan
e/reje
tion of an input sequen
e.In de�nition 93 (p. 135) we introdu
ed the 
on
ept of equivalen
e betweenma
hines. On
e de�ned what a pure a

eptor ma
hine is, we 
an give a more
on
rete de�nition of equivalen
e between pure a

eptor ma
hines:De�nition 110 (Equivalent pure a

eptor ma
hines). We say two pure a
-
eptor ma
hines A and A′ are equivalent i� L(A) = L(A′).



144 CHAPTER 7. FINITE-STATE MACHINESDe�nition 111 (Interpretation). Given a word w and a ma
hine A, we saya path p within A is an interpretation of w i� X (p, xs) rea
hes an a

eptan
eES from an initial ES xs by 
onsuming w.De�nition 112 (Ambiguous word). We say a word w is ambiguous for agiven ma
hine A i� there exist several interpretations within A that 
onsume
w.De�nition 113 (Ambiguous ma
hine and language). Ma
hines re
ognizingat least one word through several interpretations are said to be ambiguous,and so are their a

epted languages.De�nition 114 (Useful state). We say a state is useful i� there exists atleast one interpretation traversing the state; otherwise we say it is useless.De�nition 115 (Useful transition). We say a transition is useful i� it is apart of at least one interpretation; otherwise we say it is useless.De�nition 116 (Useful path). We say a path is useful i� it is a subpath ofat least one interpretation; otherwise we say it is useless.De�nition 117 (Useful ma
hine substru
ture). We say a ma
hine substru
-ture (Q′, δ′) is useful i� it 
ontains at least one useful state. Conversely, wesay a ma
hine substru
ture is useless i� it 
ontains no useful states.Corollary 3 (Transitions of ma
hine subtru
tures and usefulness). A ma-
hine substru
ture that 
ontains useful transitions is also useful, sin
e the use-fulness of a transition implies the usefulness of its sour
e and target states,whi
h also belong to the ma
hine substru
ture. Conversely, ma
hine sub-stru
tures 
ontaining no useful states neither 
ontain useful transitions.One may be tempted to say that a ma
hine is useless i� it 
ontains nointerpretation. However, su
h ma
hines may have a purpose analogous tothat of ε (to represent the empty symbol or the empty string), ∅ (to representthe empty set), or 0 (to represent the null quantity).De�nition 118 (Trimmed FSM). We say a FSM is trimmed i� it 
ontainsno useless states or transitions.De�nition 119 (w-usefulness). We say a path, a transition or a state isuseful for a given input sequen
e w, or simply w-useful, i� there exists aninterpretation of w traversing su
h path, transition or state.



7.6. BEHAVIOUR 145De�nition 120 (Pruning). We 
all pruning the pro
ess of removing everyuseless substru
ture of a ma
hine.Corollary 4 (Result of pruning). The result of pruning a ma
hine is eitherthe empty ma
hine or a ma
hine without useless states or transitions.Some of the algorithms we will present in this dissertation require thegeneration of the language of a new kind of ma
hine we have 
alled �ltered-popping re
ursive transition network (FPRTN). We will �rst study the 
asesin whi
h su
h language is �nite, in order to guarantee that the exe
utionof su
h algorithms will �nish. FPRTNs 
an be seen as RTNs whose pop-ping transitions are not always realizable, and RTNs 
an be seen as FSAsextended with 
all, push and pop transitions. Apart from these transitions,the remaining transitions are the same and, hen
e, the 
orresponding sub-stru
tures will have the same behaviour. Though it may seem obvious whi
hkind of FSA and RTN substru
tures lead to in�nite languages, that is notthe 
ase for FPRTNs. We will present the FPRTN 
ase by extending thesimpler 
ases, starting here with the general 
ondition for any FSM.Theorem 4 (Cardinality of the interpretation set). The number of inter-pretations of a FSM without useful 
y
les is �nite; otherwise, the number ofinterpretations is in�nite i� the ma
hine allows for the realization of an in�-nite number of self-
on
atenations of at least one useful 
y
le, and an in�nitesubset of the realizable self-
on
atenations is useful.Proof. Let it be a FSM A either without 
y
les or with useless 
y
les; sin
efor any interpretation p the same state 
annot be traversed twi
e, every inter-pretation must be formed by a sequen
e of 
onne
ted transitions traversinga sequen
e of states without repetitions. The number of subsets of states ofa ma
hine is equal to
|P(Q)| = 2|Q|, (7.28)whi
h is �nite sin
e Q is �nite. For every subset of states Qi ⊆ Q, the numberof permutations without repetitions of the states in Qi is |Qi|!, giving a totalof

|P(Q)|
∑

i=0

|Qi|! (7.29)possible sequen
es of states without repetitions, whi
h is also a �nite numbersin
e Qi is �nite for i = 0 . . . |P(Q)|. Moreover, not every sequen
e of states
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hine without useful 
y
les sin
e two interpretationswithout 
y
les may allow for the existen
e of a third interpretation with 
y
les(e.g: interpretations with sequen
es of states q0q1 and q1q0 may allow for aninterpretation with state sequen
e q0q1q0). Finally, for ea
h sequen
e to bean interpretation, at least one realizable transition (qj , ξj, qj+1) must exist forea
h two 
onse
utive states qj and qj+1 within the sequen
e, ea
h additionalrealizable transition allowing for an additional interpretation. However, sin
ethe number of transitions is �nite, the total number of interpretations is also�nite.Otherwise, if A 
ontains a useful 
y
le pb for a given interpretation p =
papbpc, then A 
ontains the in�nite family of paths pi = pap

i
bpc for i ≥ 0; if anin�nite subset of this family is realizable, then the number of interpretationsof the ma
hine is in�nite i� pi is an interpretation for some in�nite set ofvalues of i, that is, an in�nite set of useful self-
on
atenations of a 
y
le isrequired for a ma
hine to have an in�nite set of interpretations.The proof's last paragraph may remind the reader of the pumping lemmafor regular expressions (see Hop
roft et al., 2000, se
. 4.1.1, p. 126 or Sipser,2006, se
. 1.4, p. 77) but from a more general perspe
tive: the pumpinglemma states that regular languages may not be 
omposed by an in�nitenumber of random sequen
es but, at most, by an in�nite number of wordsthat are built by the repeated self-
on
atenation of some �nite set of ran-dom subsequen
es, and our proof states that 
y
les within FSMs may allowfor an in�nite number of interpretations by 
onse
utively repeating the pro-
essing asso
iated to the 
y
les, whatever the pro
essing may 
onsist in.Indeed, some of the ma
hines we will present in this dissertation are equiv-alent to Turing ma
hines and, therefore, go beyond regular and 
ontext-freelanguages.Theorem 5 (Cardinality of the language). The language of a ma
hine isin�nite i� it 
ontains at least one useful 
onsuming 
y
le p and an in�niteset of self-
on
atenations of p is useful.7.7 Reverse FSMSome of the algorithms presented in this dissertation require to reverselytraverse a FSM, namely: a general minimization algorithm (se
. 8.6, p. 174),a FPRTN pruning algorithm (se
. 16.1, p. 325) and an algorithm extra
ting



7.7. REVERSE FSM 147the top-ranked output represented by a FPRTN (alg. 18.2, p. 346). As for the
ardinality of the language of FPRTNs, we will de�ne the 
anoni
al reverseof a FPRTN as the extension of simpler 
ases, starting here with the generalde�nition of reverse FSM.De�nition 121 (Reverse transition). Let t be a transition (qs, ξ, qt), we de-�ne tR, the reverse of t, as (qt, ξ, qs)De�nition 122 (Reverse sequen
e). Let A be a set of elements, a be anelement of A, α and β be two sequen
es of zero, one or more elements of Aand ε be the empty sequen
e, we de�ne αR, the reverse of α, as
αR =

{

ε, α = ε
aβR, α = βa

(7.30)De�nition 123 (Reverse path). We de�ne pR, the reverse of a path p, as theresult of reversing the sequen
e of transitions forming p and then repla
ingea
h transition by its reverse, that is,
p = t0t1 . . . tn i� pR = tRn . . . tR1 t

R
0 . (7.31)De�nition 124 (LR). Let L(A) = {w0, . . . , wn−1} be the language of a ma-
hine A, we de�ne LR(A), the reverse language of A, as {wR

0 , . . . , w
R
n−1},that is, reversed word wR

i ∈ LR(A) i� wi ∈ L(A), for i = 0 . . . n− 1.Corollary 5 (Cardinality of LR). Let A be a FSM, the 
ardinality of LR(A)is equal to the 
ardinality of L(A)De�nition 125 (Reverse ma
hine). We say a ma
hine B is a reverse of ama
hine A i� L(A) = LR(B).De�nition 126 (Canoni
al reverse ma
hine). Let A be a FSM, we de�ne AR,the 
anoni
al reverse of A, as the result of reversing ma
hine A by meansof a parti
ular pro
edure whi
h is to be de�ned for ea
h parti
ular kind ofma
hine.For all the ma
hines presented here, their 
anoni
al reverses are ma
hinesof the same kind, ex
ept for FPRTNs: as we will see in 
hapter 15, reversinga �ltered-popping re
ursive transition network results in a �ltered-pushingre
ursive transition network and vi
e-versa.
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ient 
omputation of the ε-
losureIn this se
tion we derive from the iterative de�nition of ε-
losure (lemma 4,p. 140) an equivalent and more e�
ient de�nition so that at ea
h iterationwe only 
onsider the ESs from where new ESs may be ε-derived, and reuseprevious 
omputations as far as possible. We will then give an algorithm forthe 
omputation of the ε-
losure of any kind of FSM, based on this de�nition.De�nition 127 (ε-expansion). We de�ne E(V ), the ε-expansion of a SES
V , as the set of dire
tly ε-rea
hable ESs from any ES of V that is not alreadypresent in V :

E : P(X)→ P(X)

E(V ) = D(V )− V (7.32)Lemma 6 (ε-expansion-based ε-
losure). Sin
e the union of sets is delayablew.r.t. the D fun
tion (theorem 2, p. 139), the following is an equivalent andmore e�
ient de�nition of ε-
losure, based on su

essive ε-expansions:
Cε(V0) = C ′

ε(V0, E(V0)) (7.33)where C ′
ε is an auxiliary fun
tion whi
h is re
ursively de�ned as follows:

C ′
ε : P(X)×P(X)→ P(X)

C ′
ε(Vi, Ei) =

{

Vi, Ei = ∅
C ′

ε(Vi ∪ Ei, D(Ei)− (Vi ∪ Ei)), Ei 6= ∅,
(7.34)being Vi the SES resulting from the i-re
ursive 
all to fun
tion C ′

ε and Ei the
ε-expansion of Vi.As we will see, Ei is eventually to be empty for the 
ase of �nite ε-
losures.Proof. Following the iterative de�nition of ε-
losure of lemma 4, we 
omputethe ε-
losure of a SES V0 by generating the su

essive Vi su
h that ea
hone 
ontains V0 plus the ε-rea
hable states through i ε-transitions, that is,we in
rement V0 with the rea
hable ESs through one ε-transition, two ε-transitions and so on. The new ESs appearing at a SES Vi+2 will 
ome fromthe ESs that were not formerly 
onsidered during the 
omputation of D(Vi);
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omputing the new ε-rea
hable ESs at Vi+2 from every state of
Vi+1, we only 
onsider the states Vi+1 − Vi, that is, the ε-expansion of Vi:

Vi+1 − Vi = (Vi ∪D(Vi))− Vi

= (Vi − Vi) ∪ (D(Vi)− Vi)

= D(Vi)− Vi

= E(Vi).Hen
e, we 
an reformulate the ε-
losure de�nition as
Cε(V0) = Vm su
h that Vi+1 = Vi ∪ E(Vi) (7.35)and m is the smallest k su
h that Vi+1 = Vi. If su
h k exists, then the ε-
losure is �nite (see lemma 5) and its 
omputation will �nish on
e the �rstempty ε-expansion is rea
hed:

Cε(V ) = Vk : Vk = Vk+1 ⇐⇒ Vk = Vk ∪D(Vk)

⇐⇒ D(Vk) ⊆ Vk

⇐⇒ D(Vk)− Vk = ∅

⇐⇒ E(Vk) = ∅As well, we do not require to 
ompute at ea
h iteration i the ε-expansionfrom the whole set Vi but from the previous ε-expansion: let Ei = E(Vi) for
i ≥ 0, it holds that

Ei+1 = E(Vi+1)

= D(Vi+1)− Vi+1

= D(Vi ∪ Ei)− Vi+1

= (D(Vi) ∪D(Ei))− Vi+1

= (D(Vi)− Vi+1) ∪ (D(Ei)− Vi+1)

= (D(Vi)− (Vi ∪D(Vi)) ∪ (D(Ei)− Vi+1)

= D(Ei)− Vi+1

= D(Ei)− (Vi ∪ Ei).Therefore, we 
an e�
iently 
ompute the ε-
losure of V by following theiterative pro
edure below:
V0 = V

Vi+1 = Vi ∪ Ei
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E0 = E(V0)

Ei+1 = D(Ei)− Vi+1until rea
hing an Ek = ∅; by developing the equations of lemma 6 we obtainthis pattern.Algorithm 7.1 fsm_eexpansion_e
losure is an implementation of the ε-
losure based on ε-expansions (lemma 6), whi
h uses algorithm 7.2 fsm_eex-pansion in order to 
ompute the su

essive ε-expansions. The implementa-tion of fun
tion D, whi
h is used for the 
omputation of the ε-expansion,depends on the type of ma
hine.Algorithm 7.1 fsm_eexpansion_e
losure(V ) ⊲ Cε(V ), lem. 6Input: V , the SES whose ε-
losure is to be 
omputedOutput: V after 
omputing its ε-
losure1: E = fsm_eexpansion(V )2: while E 6= ∅ do3: V ← V ∪ E4: E ← fsm_eexpansion(E)5: end whileAlgorithm 7.2 fsm_eexpansion(V ) ⊲ E(V ), def. 127Input: V , the SES whose ε-expansion is to be 
omputedOutput: E, the ε-expansion of V1: for ea
h xt ∈ D(V ) do2: if xt /∈ V then3: E ← E ∪ xt4: end if5: end forFinally, algorithm 7.3 fsm_interla
ed_e
losure is a more e�
ient pro
e-dure for the 
omputation of the ε-
losure, also based on ε-expansions. Insteadof 
omputing the whole ε-expansion at ea
h iteration and then adding it to
V , it adds new states to V as they are found and it keeps a queue E of unex-plored states that grows with ea
h new ES found and de
reases ea
h time one
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onstru
tion of the di�erent ε-expansions is inter-la
ed with the 
onstru
tion of the ε-
losure. Algorithm 7.4 add_enqueue_esis a small routine used for adding ε-derived ESs to the SES whose ε-
losureis to be 
omputed. This routine is further used in the algorithm 
omputingthe ∆ fun
tion of V (algorithm 7.6 fsm_re
ognize_symbol) in order to addESs rea
hed through the 
onsumption of an input symbol.Algorithm 7.3 fsm_interla
ed_e
losure(V,E) ⊲ Cε(V,E), lem. 6Input: V , the SES whose ε-
losure is to be 
omputed
E, the queue of unexplored ESs 
ontaining every ES in VOutput: V after 
omputing its ε-
losure
E after emptying it1: while E 6= ∅ do2: xs ← dequeue(E)3: for ea
h xt ∈ D(xs) do4: add_enqueue_es(V,E, xt)5: end for6: end whileAlgorithm 7.4 add_enqueue_es(V,E, xt)Input: V , the SES where the ES is added

E, the queue of unexplored ESs
xt, the target ES to add to VOutput: V after adding the ES
E after enqueuing the ES, if new1: if add(V, xt) then2: enqueue(E, xt)3: end ifNoti
e that the addition of xt to V by means of fun
tion add in algo-rithm 7.4 add_enqueue_es requires to 
he
k whether the ES already belongsto the SES or not so that the underlying data stru
ture does not representtwi
e the same element. Thus, we are to use set data stru
tures providinge�
ient sear
h operations, su
h as the ones presented in 
hapter 2. How-ever, if we 
an ensure that the same element is not going to be added twi
eduring the whole life of the set, and the order in whi
h the elements are to



152 CHAPTER 7. FINITE-STATE MACHINESbe retrieved is not important, it is preferable to use a data stru
ture thatsa
ri�
es dupli
ity 
he
king, element ordering and, 
onsequently, ordered el-ement retrieval but provides faster add and retrieval operations: for instan
equeues and sta
ks. That is the 
ase of the set of unexplored ESs E andoperation enqueue in the same algorithm: we want to add to E the elementsthat are new to V , so they are going to be new as well to E, and the orderin whi
h unexplored ESs in E are explored does not modify the algorithmresult. Fun
tion add is to return a Boolean indi
ating whether the elementhas been added or not to the set so that we 
an safely enqueue elements in
E. As well, algorithm 7.3 fsm_interla
ed_e
losure is not to initialize E withevery ES in V but E is to be built along with V by the algorithm 
omputing
∆(V ) (algorithm 7.6 fsm_re
ognize_symbol in the next se
tion), so that thelatter algorithm 
an also bene�t from the add-enqueue me
hanism.Algorithm 7.3 fsm_interla
ed_e
losure 
an be seen as a generalizationof the algorithm presented in van Noord (2000, se
. 3.2): while van Noord'salgorithm 
omputes the ε-
losure of a set of states of a FSA, our algorithm
omputes the ε-
losure of a SES of any kind of FSM. Side by side, the dif-feren
es between both algorithms are:
• van Noord's algorithm marks the states that have been explored, whileour algorithm expli
itly uses a queue E of unexplored ESs,
• van Noord's algorithm �rst unmarks every state of the set whose ε-
losure is to be added, while our algorithm expe
ts the initial E to bepassed as argument (it will be 
onstru
ted along with the set whose
ε-
losure is to be 
omputed),
• van Noord's algorithm adds to the ε-
losure every state qt su
h that
qt ∈ δ(qs, ε), with qs the unmarked states already in the ε-
losure, whilewe add the ESs xt su
h that xt ∈ D(xs), with xs the ESs in E.The equations given in this se
tion, along with the equations given in se
-tion 7.6 (p. 132) relative to the ε-
losure, verify the algorithm 
orre
tness forevery kind of ES and D fun
tion.7.9 Re
ognizing a stringBased on the previous de�nitions, algorithm 7.5 fsm_re
ognize_string isa generi
 breadth-�rst algorithm whi
h 
omputes the a

eptan
e/reje
tion



7.9. RECOGNIZING A STRING 153of a given word for a FSM (de�nition 46, p. 121). This algorithm usesalgorithms 7.3 fsm_interla
ed_e
losure and 7.6 fsm_re
ognize_symbol forthe 
omputation of the ε-
losure and the ∆ fun
tion of a SES, respe
tively.Two small routines are used in order to add an ES to a SES: algorithm 7.4,the same used for the 
omputation of the ε-
losure, and algorithm 7.7, aversion of the former algorithm whi
h un
onditionally adds the ES to theSES. The latter algorithm is to be used whenever it is sure the ES is new sowe 
an omit the 
onditional jump.Algorithm 7.5 fsm_re
ognize_string(σ1 . . . σl) ⊲ σ1 . . . σl ∈ L, def. (107)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indi
ating whether the input string belongs to L1: V ← ∅2: E ← ∅3: for ea
h xs ∈ XI do4: unconditionally_add_enqueue_es(V,E, xs)5: end for6: fsm_interlaced_eclosure(V,E)7: i← 08: while V 6= ∅ ∧ i < l do9: V ← fsm_recognize_symbol(V,E, σi+1)10: i← i+ 111: fsm_interlaced_eclosure(V,E)12: end while13: r ← false14: for ea
h q ∈ V do15: r ← r ∨ q ∈ XF16: end forThis algorithm is a generalization of the breadth-�rst translator algorithmfor RTNs presented in Sastre and For
ada (2007, 2009), whi
h in turn is basedon the algorithm presented in Garrido-Alenda et al. (2002) for the appli
ationof deterministi
 augmented letter transdu
ers. It iteratively 
omputes the ∆∗fun
tion: it �rst initializes V as the initial SES of the ma
hine and marksevery initial ES as unexplored for the ε-
losure 
omputation, then adds to
V its ε-
losure and afterwards performs a sequen
e of iterations so that forea
h one reinitializes V as the set of rea
hable ESs from the previous Vby 
onsuming the next input symbol and adds its ε-
losure. Ea
h time an
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Algorithm 7.6 fsm_re
ognize_symbol(V,E, σ) ⊲ ∆(V, σ), def. (96)Input: V , a SES

E, the empty queue of unexplored ESs
σ, the input symbol to re
ognizeOutput: W , the set of rea
hable ESs from V by 
onsuming σ
E after enqueuing the ESs of W1: W ← ∅2: for ea
h xt ∈ ∆(V, σ) do3: add_enqueue_es(W,E, xt)4: end for

Algorithm 7.7 un
onditionally_add_enqueue_es(V,E, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
xt, the target ES to add to VOutput: V after adding the ES
E after enqueuing the ES, if new1: add(V, xt)2: enqueue(E, xt)



7.9. RECOGNIZING A STRING 155ES is to be added, it veri�es if the ES is new and, if so, it marks it asunexplored for the 
omputation of the ε-
losure by enqueuing it into E, thequeue of unexplored ESs. The only ex
eption is when building the initialSES: sin
e every initial ES is unique, all of them are un
onditionally markedas unexplored. Iterations pro
eed until every symbol has been 
onsumedor an empty SES V is rea
hed. After the 
omputation of the ε-
losure, anempty queue is returned whi
h is re�lled again when 
onsuming the nextinput symbol. The algorithm a

epts the string if the last 
omputed V
ontains at least one a

eptan
e ES. It is not ne
essary to expli
itly 
he
kwhether the whole input has been 
onsumed or not: in 
ase an input symbol
annot be 
onsumed, the iterative pro
ess will be interrupted after building alast empty SES. Sin
e this algorithm only 
omputes a

eptability, it 
ould befurther optimized by having a spe
ial last iteration whi
h would immediatelyreturn true on
e the �rst a

eptan
e ES is found, avoiding the 
onstru
tionof the whole last SES. The algorithm only requires to store two SESs: theSESs of the 
urrent and the next iteration, the latter stored as a lo
al variableduring the evaluation of the expression
V ← fsm_recognize_symbol(V,E, σi+1)).Sin
e the algorithm performs a breadth-�rst exploration of the ma
hine,parallel explorations of the ma
hine will be joined together if they rea
h thesame ES, avoiding the repeated exploration of 
ommon paths as happenswith depth-�rst algorithms. Of 
ourse, if the ma
hine is determinized (de-terminization is des
ribed in the next se
tion) then there will be a uniquepath to be explored for every input string, thus there will not be parallelpaths to be joined; a simplest algorithm just seeking for the 
onse
utive ESsof the path exe
ution would be more e�
ient. However, not every ma
hine
an be determinized.In order to adapt these algorithms for any kind of FSM, we need to spe
ifythe following parti
ularities of the ma
hine:

• the initial SES XI and how to build it,
• the ∆ fun
tion or how to traverse a 
onsuming transition,
• the D fun
tion or how to traverse an ε-transition and
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• the a

eptan
e SES XF and how to evaluate if an ES x belongs to it.9It must be taken into a

ount that, sin
e the algorithm is based in the
omputation of the ε-
losure, the exe
ution of this algorithm might fall intoan in�nite loop for the 
ase of ma
hines allowing for in�nite ε-
losures; forea
h kind of ma
hine, we will study su
h 
ases in order to avoid them.7.9.1 From breadth-�rst to depth-�rstThe same ESs and derivation fun
tions used for the breadth-�rst appli
ationof a ma
hine 
an be used for its depth-�rst appli
ation; the di�eren
e lies inthe order in whi
h the di�erent ESs are 
omputed:
• An arbitrary initial ES x is 
hosen, then the �rst su

essively realizabletransitions, starting with the one outgoing from x, are followed until ei-ther an a

eptor ES is rea
hed after 
onsuming the whole input or untilrea
hing an ES from where no more su

essively realizable transitionsare found.� In the former 
ase, the input is to be a

epted.� In the latter 
ase, the traversed path is to be walked ba
k untilthe last rea
hed ES having some additional realizable outgoingtransition that has not been explored yet, and the same pro
ess isto be repeated from that ES and transition and remaining inputsu�x from that ES.
• If no interpretation starting at x is found, the pro
ess repeats for thenext unexplored initial ESs until either �nding an input interpretationor until no more unexplored initial ESs are left, in whi
h 
ase the inputsequen
e is to be reje
ted.As we 
an see, the depth-�rst exploration stops at the �rst interpretationfound while the breadth-�rst approa
h explores every realizable path startingat an initial ES by 
onsuming some input pre�x; the depth-�rst approa
hwill only explore all those paths for inputs that are to be reje
ted. However,the exploration of ea
h path is performed independently of the others, thus
ommon subpaths of paths that join at some point will be explored several9XF might be in�nite; however, the algorithm only requires to implement predi
ate

x ∈ XF rather than 
onstru
ting XF .



7.10. DETERMINIZATION 157times. In pra
ti
e, the depth-�rst a

eptor algorithm has been the fastestone. However, we are not only interested in re
ognition but in 
omputingevery possible translation of a given input sequen
e, in whi
h 
ase every inputinterpretation is to be explored. Depth-�rst translation will be dis
ussed inse
tion 10.6.1.Algorithm 7.8 fsm_depth_�rst_re
ognize_string is a possible implemen-tation of the depth-�rst appli
ation of a FSM. This algorithm simply initial-izes the explorations starting from ea
h initial ES by 
alling algorithm 7.9fsm_depth_�rst_re
ognize_suf�x. This latter algorithm re
ursively per-forms the sear
h for the �rst realizable path starting from a given ES xsand a

epting a given input su�x σi . . . σl, the �rst 
alls taking an initial ESand the whole input. If the su�x is empty and xs is an a

eptor ES, thealgorithm simply returns true. If the su�x is not empty, the algorithm 
allsitself for input su�x σi+1 . . . σl and for ea
h target ES rea
hable from xs by
onsuming σi, until �nding the �rst xs whose right language (de�nition 108,p. 143) in
ludes σi+1 . . . σl. If su
h ES is found, the algorithm returns true.Otherwise, the same pro
ess repeats for the ε-rea
hable ESs from xs and thesame input su�x σi . . . σl. If neither here su
h ES is found, the algorithm�nally returns false.Algorithm 7.8 fsm_depth_�rst_re
ognize_string(σ1 . . . σl) ⊲
σ1 . . . σl ∈ L, def. 107Input: σ1 . . . σl, an input string of length lOutput: a Boolean indi
ating whether the input string belongs to L1: for ea
h x ∈ XI do2: if fsm_depth_first_recognize_suffix(σ1 . . . σl, 1, x) then3: return true4: end if5: end for6: return false

7.10 DeterminizationIn general, determinizing a FSM 
onsists in �nding an equivalent (de�ni-tion 93, p. 135) but deterministi
 FSM (de�nition 92, p. 135). Determinizing
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Algorithm 7.9 fsm_depth_�rst_re
ognize_su�x(σ1 . . . σl, i, xs) ⊲
σi . . . σl ∈ LR(xs), def. 108Input: σ1 . . . σl, an input string of length l

i, the index of the �rst su�x symbol
xs, an ES with qs as rea
hed stateOutput: a Boolean indi
ating whether su�x σi . . . σl 
an be re
ognized from

xs or not1: if i > l ∧ xs ∈ XF then2: return true3: end if4: if i ≤ l then5: for ea
h xt ∈ ∆({xs}, σi) do6: if fsm_depth_first_recognize_suffix(σ1 . . . σl, i+ 1, xt) then7: return true8: end if9: end for10: end if11: for ea
h xt ∈ D({xs}) do12: if fsm_depth_first_translate_suffix(σ1 . . . σl, i, xt) then13: return true14: end if15: end for16: return false
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hine before its appli
ation redu
es the 
ost of appli
ation of the ma-
hine: instead of having to maintain a SES, only a single ES is to be 
omputedfor ea
h input symbol. However, the resulting ma
hine may be larger thanthe original one. De�ning a generi
 determinization algorithm for any kind ofFSM is not feasible sin
e the de�nition of equivalen
e depends on the purposeof the ma
hine, whi
h may di�er from ma
hine to ma
hine; for instan
e, se-quen
e a

eptors and sequen
e translators do not share the same de�nition ofequivalen
e (de�nitions 109 and 163, pp. 143 and 193, respe
tively). Even forma
hines having the same purpose, the same determinization algorithm mayinvolve to 
ompute an in�nite ma
hine. We will �rst study FSA's and thengive a generi
 algorithm that 
omputes an equivalent FSA for some a

eptorma
hine. The determinization issues for ea
h kind of ma
hine will be dis-
ussed in their respe
tive 
hapters. In parti
ular, a pseudo-determinizationalgorithm will be given for 
ases in whi
h �full� determinization is not possi-ble (e.g.: due to output generation, whi
h will be dis
ussed in se
tion 10.7).Apart from performing a partial determinization, this algorithm removes 
er-tain kinds of ε-moves and, hen
e, avoids the possibility of falling into in�niteloops due to ε-
y
les.7.11 MinimizationAs for determinization, minimizing a FSM 
onsists in �nding an equiva-lent but minimal FSM (de�nition 94, p. 135). On
e a ma
hine is deter-minized, minimizing it will not a

elerate the ma
hine appli
ation �the sizeof the SESs to 
ompute during the ma
hine appli
ation will not be furtherredu
ed� but may 
onsiderably redu
e the size of the ma
hine; hen
e, min-imization may redu
e both the time and amount of memory required to loadthe ma
hine. We will give in se
tion 8.6 (p.174) a minimization algorithmwhi
h 
an be seen as an extension of the determinization algorithm, basedon van de Sneps
heut's (1985) minimization algorithm. Sin
e grammars areto be minimized only on
e and then applied several times, we will ratherfo
us on the optimization of the algorithms of appli
ation of the ma
hinesrather than on the optimization of their determinization and minimizationalgorithms.





Chapter 8Finite-state automataFSAs are equivalent to regular expressions,1 that is, for any FSA there existsa regular expression representing the same (regular) language and vi
e-versa(Kleene, 1956). FSAs and regular expressions are or have been used for build-ing lexi
al analysers as well as for des
ribing sear
h patterns and token sets(Hop
roft et al., 2000, se
s. 2.4 & 3.3, pp. 68 & 108; Revuz, 1992; Da
iuket al., 2000; Carras
o and For
ada, 2002; Da
iuk et al., 2005); they notonly allow for des
ribing �nite sets of words, but also some in�nite sets of se-quen
es su
h as integer numbers and email addresses (see �gure 8.1). Regularexpressions are more 
onvenient for des
ribing simple patterns; the manual
onstru
tion of FSAs is usually more 
umbersome, either when using somegraphi
al interfa
e for drawing them, su
h as the ones in
luded in the Intex(Silberztein, 2004, 
hap. 5, p. 49) and Unitex (Paumier, 2008, se
. 5.2, p. 90)systems, or by des
ribing them in some text format, su
h as with Graphviz'sdot format (Gansner and North, 2000) or with the VauCanSon-G LATEXpa
kage (Lombardy and Sakarovit
h, 2002).2 Additionally, applying a FSA ismore straightforward than applying its equivalent regular expression, hen
eregular expressions are usually transformed into their equivalent FSAs fortheir appli
ation: FSAs are pro
edural while regular expressions are de
lar-ative.We present here letter FSAs as the simplest 
ase of FSM. We give thebasis for the de�nitions, properties and proofs of the ma
hines presented inthe following 
hapters. More extensive material on letter FSAs and regular1A des
ription of regular expressions 
an be found in Hop
roft et al. (2000, se
. 3,p. 83) or in Sipser (2006, se
. 1.3, p. 63).2Graphviz homepage: http://www.graphviz.org161
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q0 q1 q2 q3 q4 q5 q6

_A-Za-z0-9-\.
_A-Za-z0-9- � A-Za-z0-9\.

A-Za-z0-9 \. A-Za-z A-Za-z(b)Figure 8.1: (a) Unix regular expression (see Hop
roft et al., 2000, se
. 3.3, p. 108)and (b) FSA mat
hing any email address; additional transitions for the same sour
ean target states have been omitted, leaving a set of sta
ked labels, and labels ofthe form `X-Y' represent any 
hara
ter between X and Y, both in
luded.expressions 
an be found in Hop
roft et al. (2000, 
hap. 2�3) and Sipser(2006, 
hap. 1).De�nition 128 (FSA). A FSA (Q,Σ, δ, QI , F ) is a spe
ial type of FSM(de�nition 46, p. 121) whose set of labels Ξ takes its elements from Σ∪ {ε},where Σ is a �nite input alphabet and ε is the empty symbol.8.1 TransitionsDe�nition 129 (Consuming transition). Following de�nitions 51 and 52,transitions in Q×Σ×Q, that is, whi
h 
onsume and input symbol, are 
alledpure 
onsuming transitions or simply 
onsuming transitions.De�nition 130 (ε-transition). Following de�nitions 53 and 54, transitionsin Q × {ε} × Q, that is, whi
h do not 
onsume input, are 
alled pure ε-transitions or simply ε-transitions.8.2 BehaviourDe�nition 131 (Exe
ution state). The ESs of a FSA are states in Q.



8.2. BEHAVIOUR 163The realization of FSA transitions falls into the FSM general 
ategories ofpure 
onsuming transitions and pure ε-transitions (see de�nitions 87 and 88,pp. 133 and 134, respe
tively).De�nition 132 (∆). The ∆ fun
tion for FSAs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = qs,
• xt = qt, and
• d = qt ∈ δ(qs, σ).De�nition 133 (D). The D fun
tion for FSAs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = qs,
• xt = qt, and
• d = qt ∈ δ(qs, ε).Lemma 7 (Finite ε-
losure). Given the iterative de�nition of ε-
losure oflemma 4 (p. 140) adapted for FSAs, there exists a �nite number n ≤ |Q| sothat Vn = Vn+1. Therefore, the ε-
losure 
omputation 
an be redu
ed to a�nite union of sets

Cε(V0) = Vn su
h that Vi+1 = Vi ∪D(Vi), i = 0 . . . n, (8.1)following lemma 5 (p. 141).Proof. Let us suppose that Vi+1 6= Vi for all i ≥ 0, that is, there is no�nite number n so that Vn = Vn+1. Sin
e Vi+1 = Vi ∪ D(Vi), it holds that
Vi ⊂ Vi+1 and that Vi+1 − Vi 6= ∅; therefore |V0| − |V1| ≥ 1, |V0| − |V2| ≥
2, . . . , |V0| − |V∞| = ∞. However, sin
e FSAs have a �nite number of statesand Vi ⊆ Q for i ≥ 0, Vi must be also �nite for i > 0. Consequently, theremust be a �nite number n ≤ |Q| su
h that Vn = Vn+1, where Vn 
ontains atmost every state of Q.De�nition 134 (Initial and a

eptan
e SESs). The initial and a

eptan
eSESs of a FSA are its initial and a

eptan
e sets of states QI and F , respe
-tively.
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ution ma
hine). The exe
ution ma
hine of a FSA A isde�ned as for the generi
 exe
ution ma
hine (de�nition 105, p. 142) withoutany other kind of transitions than pure 
onsuming transitions and pure ε-transitions; sin
e ESs of a FSA are FSA states, the exe
ution ma
hine of Ais A itself.De�nition 136 (L). Following de�nition 107 (p. 143), we de�ne L(A), thelanguage a

epted by a FSA A, as
L(A) = {w ∈ Σ∗ : ∆∗(QI , w) ∩ F 6= ∅}. (8.2)Lemma 8 (Self-
on
atenation usefulness). If a 
y
le p inside a FSA is useful,then pn is also useful for n ≥ 0.Proof. Given an interpretation p = papbpc su
h that pb is a 
y
le, pi = pap

i
bpcfor i ≥ 0 is an in�nite family of interpretations sin
e pi is a path within theFSA (pa is 
onne
ted to pc and to pib for i > 0, and pib is 
onne
ted to pc for

i > 0), every FSA path is realizable and the start and end states of pi areinitial and �nal, respe
tively, as for path p.As for the 
ase of FSMs, this proof is related to the pumping lemma forregular expressions (see paragraph after proof of theorem 6, p. 164).Theorem 6 (Cardinality of the interpretation set). Given theorem 4 (p. 145)and the previous lemma, the number of interpretations within a FSA is in�-nite i� it 
ontains at least one useful 
y
le.Theorem 7 (Cardinality of the language). Given lemma 8 and theorem 5(p. 146), the language of a FSA is in�nite i� it 
ontains at least one useful
onsuming 
y
le.8.3 Reverse FSADe�nition 137 (Reverse FSA). Let A be a FSA (Q,Σ, δ, QI , F ), we de�ne
AR, the 
anoni
al reverse of A, as the FSA (Q,Σ, δ′, Q′

I , F
′) with

• qt ∈ δ′(qs, σ) i� qs ∈ δ(qt, σ)

• qt ∈ δ′(qs, ε) i� qs ∈ δ(qt, ε)

• Q′
I = F , and
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• F ′ = QI .Our de�nition of reverse FSA is similar to that in Hop
roft et al. (2000,se
. 4.2, p. 137); as main di�eren
e, Hop
roft et al. require to add an ad-ditional state to the reverse ma
hine that will serve as initial state. Addi-tionally, a set of ε-transitions outgoing from that state towards the a

eptorstates of the original ma
hine is to be added in order to simulate multipleinitial states. We do not need su
h additional state and transitions sin
e ourde�nition of FSA is symmetri
: we simply allow for multiple initial states aswell as for multiple a

eptor states, hen
e we only require to swap the setsof initial and a

eptor states of the original ma
hine.Lemma 9 (Reverse FSA). Let A be a FSA, AR is a reverse of A.Proof. If w = σ1σ2 . . . σl ∈ L(A) then there exists at least one �nite path

p = p0 (q1, σ1, q
′
1) p1 (q2, σ2, q

′
2) p2 . . . (ql, σl, q

′
l) pl (8.3)within A that is an interpretation of w, where

• qj and q′j are states in Q, for j = 1 . . . l,
• p0 is a �nite and non-empty ε-path having q1 as end state, or is theempty path and q1 is the start state of p,
• pl is a �nite and non-empty ε-path having q′1 as start state, or is theempty path and q′1 is the end state of p,
• pj is a �nite and non-empty ε-path having q′j and qj+1 as start andend states, respe
tively, or is the empty path and q′j = qj+1, for j =
1 . . . l − 1,
• the start state of p belongs to QI , and
• the end state of p belongs to F .Consequently, the �nite path

pR = pRl (q′l, σl, ql) . . . pR2 (q′2, σ2, q2) p
R
1 (q′1, σ1, q1) p

R
0 (8.4)belongs to AR, where
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• pRl is a �nite and non-empty ε-path having q′l as end state, or is theempty path and q′l is the start state of pR,
• pR0 is a �nite and non-empty ε-path having q1 as start state, or is theempty path and q1 is the end state of pR,
• pRj is a �nite and non-empty ε-path having qj+1 and q′j as start andend states, respe
tively, or is the empty path and qj+1 = q′j, for j =
1 . . . l − 1,
• the start state of pR belongs to Q′

I , and
• the end state of pR belongs to F ′.Therefore, pR is an interpretation of wR within AR and wR ∈ L(AR). If

w /∈ L(A) then there is no su
h path p within A, hen
e neither there is apath pR within AR and, 
onsequently, wR /∈ L(AR).8.4 Re
ognizing a stringThe base breadth-�rst and depth-�rst a

eptor algorithms 7.5 (p. 153) and 7.8(p. 157) for FSMs 
an be straightforwardly adapted for FSAs as explainedin se
tion 7.9 (p. 152).8.5 Determinization of a

eptors into FSAsWe present here a generi
 algorithm for the determinization of any kind ofa

eptor FSM whi
h tries to 
ompute an equivalent but deterministi
 FSA,whenever possible. This algorithm is a generalization of the FSA deter-minization des
ribed in Hop
roft et al. (2000, se
. 2.3.5, p. 60, FSAs without
ε-moves) or in Sipser (2006, p. 54, FSAs with or without ε-moves), and willbe the base of the determinization algorithms for all the ma
hines presentedin this dissertation.Determinization (into FSAs) and appli
ation of sequen
e a

eptors aresimilar problems, though determinization is more 
omplex. Computing anequivalent and deterministi
 FSA 
an be viewed as applying a ma
hine notjust for a single input but for every input sequen
e the ma
hine 
an 
onsume�leading to the exploration of every realizable path within the ma
hine�
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h set of rea
hable ESs by 
on-suming a given input the new ma
hine de�nes a unique state; that is, multipleESs for every possible input sequen
e the ma
hine 
an 
onsume are pre
om-puted and repla
ed by single FSA states. On
e the ma
hine is determinized,re
ognizing an input is redu
ed to sear
hing for a single target state for ea
hinput symbol to 
onsume rather than maintaining several parallel sear
hes.The 
omputation of the ε-
losure is no longer required sin
e ε-moves are re-moved during the determinization pro
ess. Appli
ation algorithms 
an behighly simpli�ed for the 
ase of deterministi
 ma
hines, though we still needthe original algorithms for the 
ase of non-determinizable ma
hines.Theorem 8 (Equivalent deterministi
 a

eptor). Given a non-deterministi
pure a

eptor A having
• Σ as its input alphabet,
• X as domain of its ESs,
• XI ∈ X as initial SES,
• XF ∈ X as a

eptor SES,
• ∆ : P(X) × Σ → P(X) as its 
onsuming transition fun
tion on SESsand
• Cε : P(X)→ P(X) as its ε-
losure transition fun
tion on SESs,3the following is a des
ription of an equivalent and deterministi
 �nite- orin�nite-state automata A′ = (Q′, Σ, δ′, Q′

I , F
′), depending on whether theexe
ution of A for any input sequen
e produ
es �nite or in�nite sets of ESsand transitions:

• Q′ ⊆ P(X),4
• V0 = Cε(XI),3Examples of ma
hines following this des
ription are letter FSAs in this 
hapter, letterRTNs in 
hapter 12 and letter FPRTNs in 
hapter 15.4As stated in Hop
roft et al. (2000, p. 61, 3rd prg.), not every multiple ES in P(X)may be rea
hable from {XI}, hen
e Q′ does not need to 
ontain every multiple ES in

P(X). Indeed, the determinization algorithm must dis
ard those unrea
hable states if itis to be used as part of the minimization algorithm à la van de Sneps
heut (1985).
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• Q′

I =

{

{V0} V0 6= ∅
∅ V0 = ∅

• if V0 6= ∅ then V0 ∈ Q′ (by de�nition of FSM, def. 46, p. 121),
• if Vs ∈ Q′ and Vt = Cε(∆(Vs, σ)) 6= ∅ then Vt ∈ Q′ and δ′(Vs, σ) = Vt,and
• F ′ = {Vf ∈ Q′ : Vf ∩XF 6= ∅}.Proof. Let A and A′ be two a

eptors as the ones des
ribed in the theoremand w = σ1 . . . σl be a sequen
e su
h that there exists at least one path within

A 
onsuming it. The appli
ation of A to this sequen
e yields the followingsequen
e of non-empty SESs:
V0 = Cε(XI) (8.5)
V1 = Cε(∆(V0, σ1)) (8.6)
V2 = Cε(∆(V1, σ2)) (8.7)... (8.8)
Vl = Cε(∆(Vl−1, σl)) (8.9)By 
onstru
tion, A′ 
ontains a path

p = V0
σ1−→ V1

σ2−→ V2 . . .
σ1−→ Vl. (8.10)If A a

epts w then Vl 
ontains at least one ES in XF and, therefore, Vl ∈ F ′.Sin
e V0 is the initial state of A′ and p is 
omposed only by pure 
onsumingtransitions, p is realizable and is an interpretation of w withinA′. If w /∈ L(A)then Vl 
ontains no a

eptan
e ES and, therefore, path p exists within A′ butis not an interpretation.Up to here, we have proved that w ∈ L(A) implies w ∈ L(A′) and thatfor every family of paths within A 
onsuming a sequen
e w there exists aunique path within A′ 
onsuming it. Let us suppose that A′ a

epts someadditional sequen
e not in A. If so, there must exist some interpretation ofsu
h sequen
e within A′. Sin
e paths are added to A′ by 
omputing the SESsrea
hable from V0, this interpretation must be equal to the 
on
atenation ofsome sequen
e of subpaths of some of the added paths that share one or moreSES. Let w and w′ be two sequen
es of the form

w = σ1 . . . σjσj+1 . . . σl and (8.11)
w′ = σ′

1 . . . σ
′
kσ

′
k+1 . . . σ

′
m. (8.12)
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es are a

epted by A, then they are also a

epted by A′ andthe appli
ation of A to these sequen
es generates the following sequen
e ofSESs:
V0 = Cε(XI) V ′

0 = Cε(XI)
V1 = Cε(∆(V0), σ1) V ′

1 = Cε(∆(V ′
0), σ

′
1)... ...

Vj = Cε(∆(Vj−1, σj)) V ′
k = Cε(∆(V ′

k−1, σ
′
k))

Vj+1 = Cε(∆(Vj , σj+1)) V ′
k+1 = Cε(∆(V ′

k , σ
′
k+1))... ...

Vl = Cε(∆(Vl−1, σl)) V ′
m = Cε(∆(V ′

m−1, σ
′
m)).

(8.13)
Let Vj = V ′

k , then the following sequen
es of SESs are also possible:
V0 = Cε(XI) V ′

0 = Cε(XI)
V1 = Cε(∆(V0), σ1) V ′

1 = Cε(∆(V ′
0), σ

′
1)... ...

Vj = Cε(∆(Vj−1, σj)) V ′
k = Cε(∆(V ′

k−1, σ
′
k))

V ′
k+1 = Cε(∆(Vj, σ

′
k+1)) Vj+1 = Cε(∆(V ′

k , σj+1))... ...
V ′
m = Cε(∆(V ′

m−1, σ
′
m)) Vl = Cε(∆(Vl−1, σl)).

(8.14)
Therefore, sequen
es

σ1 . . . σ
′
jσ

′
k+1 . . . σ

′
m and (8.15)

σ′
1 . . . σ

′
kσj+1 . . . σl (8.16)are also a

epted by both A and A′. The same reasoning 
an be extended forsequen
es whose interpretations are 
omposed by more than two fragmentsof subpaths of two or more interpretations.Sin
e the languages of A and A′ are equal, and every path within A
onsuming a sequen
e w is 
ondensed into a unique path within A′, A′ is adeterministi
 ma
hine equivalent to A.Following this des
ription, algorithm 8.1 fsm_determinize is a generi
determinization algorithm for a

eptor ma
hines. The algorithm 
an beadapted for any kind of a

eptor ma
hine by repla
ing X , XI , XF , ∆ and

Cε by their parti
ular de�nitions. The algorithm transforms some kind of
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eptor ma
hine A into a deterministi
 FSA A′ = (Q′,Σ, δ, QI , F ). It buildsthe di�erent multiple ESs of A and uses algorithm 8.3 fsm_
reate_state for
reating a single state in A′ for ea
h one, keeping a map ζm of multiple ESsto single FSA states. The initial steps of the algorithm perform the followingoperations:
• initialize A′ as the empty FSA,
• if XI is empty, return A′ as is or, otherwise, pro
eed,
• build Vt as the initial SES XI and Et as the 
orresponding queue for
ε-
losure 
omputation,
• extend Vt with its ε-
losure,
• 
reate the initial state rt of A′,
• map Vt to rt,
• initialize Vm, the set of every 
omputed SES, as {Vt}, and
• initialize Em, the queue of unexplored SES 
orresponding to Vt.The rest of the algorithm works in a similar fashion than algorithm 7.3 fsm-_interla
ed_e
losure: while there are SESs Vs to explore within Em, dequeuethe next one, 
ompute the rea
hable SESs Vt from Vs and add them to Vmand, if not already present, enqueue them into Em as well. Step by step, theloop iteration performs the following operations:
• dequeue the next unexplored Vs,
• retrieve rs, the state of A′ 
orresponding to Vs,
• 
all algorithm 8.2 fsm_re
ognize_every_symbol in order to build fun
-tions ζt and ζe, the former mapping symbols σ ∈ Σ to target SESs Vtsu
h that Vt = Cε(∆(Vs, σ)), and the latter mapping the input symbolsto the 
orresponding queues for ε-
losure 
omputation,5
• for ea
h input symbol that has been mapped to a non-empty SES Vt,5In pra
ti
e we implement a single map returning both the set and queue instead ofhaving to sear
h inside two separate maps for ea
h obje
t.
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orresponding queue,� extend Vt with its ε-
losure,� add the resulting Vt to Vm and, if not already present, enqueue Vtinto Em as well, 
reate the 
orresponding state rt ∈ A′ and map
Vt to rt,� otherwise, retrieve the state rt ∈ A′ 
orresponding to Vt and,� �nally, add transition (rs, σ, rt) to A′.The algorithm is not appli
able for 
ases in whi
h the number of ESs toexplored is in�nite. It is appli
able for any FSA sin
e FSA ESs are statesin Q, whi
h is a �nite set. The other 
ases are dis
ussed in their respe
tivese
tions.Determinization of lexi
al a

eptors is slightly more 
omplex: let t =

(qs, ξ, qt) and t′ = (qs, ξ
′, q′t) be two transitions of an a

eptor A su
h that

ξ 6= ξ′, for the 
ase of letter a

eptors the realization of t and t′ is ex
lusive(the input symbol is either ξ, ξ′ or none of them), while for the 
ase of lexi
ala

eptors this is not ne
essarily true; for instan
e, let
ξ = <V:1>, and (8.17)
ξ′ = <V:p>, (8.18)any verb in both �rst person and plural will mat
h both masks. Ea
h setof outgoing transitions from the same state must be repla
ed by a set ofequivalent transitions whose realizations are ex
lusive. For instan
e, let theformer transitions t and t′ be the only ones outgoing from qs and having theformer de�ned lexi
al masks ξ and ξ′, we �rst 
ompute their 
orrespondinginterse
tion and di�eren
es:
ξ ∧ ξ′ = <V:1p> (8.19)

ξ ∧ ¬ξ′ = <V:1s> (8.20)
¬ξ ∧ ξ′ = <V:2p:3p> (8.21)Then, we repla
e t and t′ by the following transitions:

(qs,<V:1p>, qt) (8.22)
(qs,<V:1p>, q′t) (8.23)
(qs,<V:1s>, qt) (8.24)
(qs,<V:2p:3p>, qt) (8.25)



172 CHAPTER 8. FINITE-STATE AUTOMATA
Algorithm 8.1 fsm_determinize(A) ⊲ theorem 8Input: A, an a

eptor having Σ as input alphabet, X as ES domain, XI asinitial SES, XF as a

eptor SES, ∆ as 
onsuming transition fun
tion onSESs and Cε as ε-
losure fun
tion on SES,Output: A′ = (Q′,Σ, δ′, Q′

I , F
′), a deterministi
 FSA equivalent to A1: initialize A′ as the empty FSA on alphabet Σ2: if XI 6= ∅ then3: Vt ← XI4: Et ← XI5: Vt ← fsm_interlaced_eclosure(Vt, Et)6: rt ← fsm_create_state(true, Vt ∩XF 6= ∅)7: ζm(Vt)← rt8: Vm ← {Vt}9: Em ← {Vt}10: while (Em 6= ∅) do11: Vs ← dequeue(Em)12: rs ← ζm(Vs)13: (ζt, ζe)← fsm_recognize_every_symbol(Vs)14: for ea
h σ : ζt(σ) /∈ {⊥, ∅} do15: Vt ← ζt(σ)16: Et ← ζe(σ)17: Vt ← fsm_interlaced_eclosure(Vt, Et)18: if add(Vm, Vt, ) then19: enqueue(Em, Vt)20: rt ← fsm_create_state(false, Vt ∩XF )21: ζm(Vt)← rt22: else23: rt ← ζm(Vt)24: end if25: δ′(rs, σ)← {rt}26: end for27: end while28: end if
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Algorithm 8.2 fsm_re
ognize_every_symbol(Vs)Input: Vs, a sour
e SESOutput: ζt : Σ → P(Q), a map of input symbols to target SESs su
h that

ζt(σ) = ∆(Vs, σ)
ζe, a map of input symbols to queues of ESs 
orresponding to theSESs of ζt for ε-
losure 
omputation1: ζt ← ∅2: ζe ← ∅3: for ea
h (xt, σ) : xt ∈ ∆(Vs, σ) do4: add_enqueue_es(ζt(σ), ζe(σ), xt)5: end for

Algorithm 8.3 fsm_
reate_state(is_initial, is_final)Input: is_initial, future value of predi
ate r ∈ Q′
I

is_final, future value of predi
ate r ∈ F ′Output: r, the new FSM state1: r ← new_state(Q′)2: add(Q′, r)3: if is_initial then4: add(Q′
I , r)5: end if6: if is_final then7: add(F ′, r)8: end if
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edure requires the lexi
al mask formalism to be 
losed under theinterse
tion and the di�eren
e, whi
h is not the 
ase of the lexi
al masksformalism of the Intex and Unitex systems or that of 
hapter 6: the di�er-en
e of two lexi
al masks may result in a subset of tokens that 
annot berepresented by any lexi
al mask of those formalisms. Blan
 (2006, se
. 2.5,p. 29) gives an alternate and 
losed de�nition of lexi
al masks, along with thealgorithms for the 
omputation of the interse
tion and the di�eren
e. As wewill explain in the next 
hapter (se
. 10.7, p. 199), we have 
hosen a simplerdeterminization method whi
h simply 
onsists in regarding any transitionlabel as a letter, in
luding ε-moves based on mandatory or forbidden blank
ε-predi
ates, hen
e the pro
edure applies to both letter and lexi
al ma
hines.As drawba
k, su
h determinization method may not (and usually will not)result in a �totally� deterministi
 ma
hine due to non-ex
lusive lexi
al masksof transitions outgoing from the same state. However, it must be taken intoa

ount that some ma
hines 
annot be �totally� determinized but, at least,this �partial� determinization will remove 
ertain kinds of ε-moves whi
h maylead to in�nite loops when applying the ma
hines. More information on de-terminization of lexi
al FSAs and FSAs with predi
ates, in general, 
an befound in Blan
 (2006, se
. 2.6, p. 37) and van Noord (2000, se
. 2, p. 5),respe
tively.8.6 MinimizationFollowing van de Sneps
heut (1985, se
. 3.1, p. 67), minimizing a FSA A
an be a
hieved by performing the following sequen
e of operations to A:reverse, determinize, reverse and determinize again. In pra
ti
e, ea
h statestru
ture stores its outgoing transitions as a map of input symbols to targetstates. The ma
hine is �rst to be reversed, repla
ing the maps of outgoingtransitions by maps of in
oming transitions and swapping the initial anda

eptan
e sets of states. The following determinize and reverse operations
an be 
ondensed into a single algorithm; it su�
es to perform the followingmodi�
ations to algorithm 8.1 fsm_determinize:
• swap both arguments of 
alls to fsm_
reate_state, that is, 
reate initialstates of A′ as a

eptor states and vi
e-versa, and
• repla
e δ′(rs, σ) ∈ {rt} by δ′(rt, σ) ∈ {rs}, that is, add the transitionsreversed.



8.6. MINIMIZATION 175Finally the unmodi�ed determinization algorithm is to be applied. Notethat just applying twi
e the determinize-reverse operation may not yield adeterministi
 FSA: the last determinization must be performed to the non-reversed ma
hine in order to make sure that the resulting ma
hine will have aunique initial state (otherwise, the resulting FSA will have a single a

eptan
estate but, possibly, several initial states). The same minimization algorithmapplies for the rest of the ma
hines but using the determinization algorithmproposed for ea
h one; therefore, no further details on minimization willbe ne
essary. We will not go into further details sin
e the main subje
tof this dissertation is the optimization of the algorithms of appli
ation oflo
al grammars rather than their minimization algorithms: we only requireto minimize a grammar one time before its appli
ation, while the algorithmsof appli
ation are to be exe
uted on
e for ea
h senten
e. We 
on
lude the
hapter with an example of minimization à la van de Sneps
heut of a lexi
alFSA (�gure 8.2).
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%sms %\⊔ %<NB>%#%<NB>%<NB>%<NB> %\⊔%<TOKEN>

%<TOKEN>
%<TOKEN>%<TOKEN>(a)

q0 q1 q2

q3q4

q5 q6

q7

q8
%sms %\⊔ %<NB>%#%<NB>%<NB>%<NB> %\⊔%<TOKEN>

%<TOKEN>
%<TOKEN>%<TOKEN>(b)

q0 q1 q2,4

q3

q5 q6,7 q8
%sms %\⊔%# %<NB>%<NB> %\⊔%<TOKEN>%<TOKEN>

(
)
q0 q1 q2,4 q3,5 q6,7 q{6,7},8

%sms %\⊔ %#%<NB> %\⊔ %<TOKEN>%<TOKEN>(d)Figure 8.2: Minimization à la van de Sneps
heut of a FSA re
ognizing SMS
ommand requests, regarding lexi
al masks and ε-predi
ates as letters; from topto bottom, (a) original FSA, (b) reversed FSA, (
) reversed-determinized-reversedFSA and (d) reversed-determinized-reversed-determinized FSA.



Chapter 9TriesRetrieval trees (Fredkin, 1960), or tries, are a spe
ial kind of FSAs whi
hhave been 
ommonly used for the representation of di
tionaries or �nite setsof words. This parti
ular appli
ation, along with alternative data stru
-tures, has been des
ribed in 
hapter 4. In this 
hapter, we will �rst givea formal de�nition of trie and then present a new appli
ation of this datastru
ture: the optimization of the algorithms of appli
ation of FSMs usingstring-like data.1 We have given a brief des
ription of this optimization inSastre and For
ada (2009, se
. 4.1). Experimental results for ea
h appli
ablealgorithm will be given in 
hapter 20; these results show speedups up to 30%.Greater speedups might be obtained by using ternary sear
h trees (Bentleyand Sedgewi
k, 1997) instead of tries, though des
ribing and implementingthis optimization by means of tries is more straightforward. We leave theadaptation of this material for the 
ase of ternary sear
h trees to a futurework.De�nition 138 (Trie). Given a �nite set of strings S ∈ Σ∗, we de�ne thetrie representing S as the FSA (Q, Σ, δ, qε, F ) su
h that
• Q 
ontains a state qα for ea
h pre�x α of ea
h string in S,
• δ(qα, σ) = qασ i� ασ is a pre�x of some string in S, and
• F = {qα ∈ Q : α ∈ S}.1By �string-like� we mean any data stru
ture 
onsisting of an empty sequen
e of ele-ments or a non-empty sequen
e of elements that 
an be built by appending elements tothe empty sequen
e. 177
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qε

qa qb qf qi qo qt
qag qat qby qfo qin qof qon qou qto
qago qfor qo� qout

a b f i o t

g t y o n f n u o

o r f t

Figure 9.1: Trie representing the set of words {`ago', `at', `by', `for', `in', `of',`o�', `on', `out', `to'}.For the sake of simpli
ity, we de�ne tries with a single initial state qε insteadof a set of initial states QI = {qε}, an with a transition fun
tion returningsingle states qασ instead of sets of states {qασ}.By 
onstru
tion, a trie a

epts only the strings in S, is trimmed (def-inition 118, p. 144), is deterministi
 (see de�nition 92, p. 135) and has no
y
les sin
e interpretations share only the subpaths 
onsuming their 
ommonpre�xes. (see �gure ??).9.1 Optimizing string pro
essing with triesMost of the algorithms of appli
ation of FSMs that we will present throughtthis dissertation build SESs whose ESs have one or more string-like 
ompo-nents, namely partial outputs and sta
ks of states. During the initializationstage of these algorithms, a �rst SES V0 is built 
ontaining the ESs in someset XI . The string-like 
omponents of these ESs are empty sequen
es in all
ases. Then, V0 is extended with its ε-
losure and a loop 
onsuming the inputsymbols starts: for ea
h input symbol, a new SES Vi+1 is derived from Viand extended with its ε-
losure. In all 
ases, let β be a string-like 
omponent



9.1. OPTIMIZING STRING PROCESSING WITH TRIES 179of an ES xt that is to be derived from an ES xs, β is built from the 
or-responding string-like 
omponent α of xs by either 
opying α, 
opying onlysome pre�x of α or 
opying a pre�x of α and then appending some su�x.On
e xt is built, it is to be added to a SES, whi
h implies to 
ompare β withthe 
orresponding string-like 
omponents of the ESs already in the SES inorder to avoid for dupli
ates, as explained in 
hapter 2. The 
ost of all theseoperations is proportional to the length of β.Sin
e there exists a bije
tive 
orresponden
e between trie states andstrings (a

eptor state qα a

epts string α and no other string), we 
an repre-sent string-like 
omponents α and β as pointers to states qα and qβ of a trie,respe
tively; string 
opies and 
omparisons will be then redu
ed to pointer
opies and 
omparisons, taking a 
onstant time (a single 
lo
k 
y
le in most
ases). In 
ase β is not a simple 
opy of α but some su�x is also to be addedto or removed from α, we simply follow the pointer towards qα and traverseor 
reate the trie path 
orresponding to that su�x in order to retrieve pointerto qβ , hen
e saving the 
ost of either 
opying the unmodi�ed pre�x of α ortraversing the trie path 
orresponding to that pre�x. Tries a

epting onlythe empty sequen
e are initially built for ea
h kind of string-like 
omponent,and new paths are added to the tries as new su�xes are to be appended tothe already a

epted sequen
es. Ea
h string-like 
omponent β is built froma previously built string-like 
omponent α as follows:1. if β = α then pointer to qα is simply 
opied,2. if β = ασ then transition t = (qα, σ, qβ) is followed in order to retrievethe pointer to qβ, previously adding t and qβ to the trie if not alreadypresent (see algorithm 9.1),Algorithm 9.1 
on
at_trie_string_and_symbol(qα, σ)Input: qα, the trie state 
orresponding to string α
σ, a trie input symbolOutput: qασ, the trie state 
orresponding to string ασ1: qασ ← δ(qα, σ)2: if qασ =⊥ then3: qασ ← fsm_create_state(false, true)4: δ(qα, σ)← qασ5: end if
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on
at_trie_string_and_string(qα, β)Input: qα, the trie state 
orresponding to string α
β = σ1 . . . σl, the string to 
on
atenate to qαOutput: qαβ, the trie state 
orresponding to string αβ1: qαβ ← qα2: i← 13: while i 6= l + 1 ∧ (qα ← δ(qαβ, σi)) 6=⊥ do4: qαβ ← qα5: i← i+ 16: end while7: while i 6= l + 1 do8: qα ← qαβ9: qαβ ← fsm_create_state(false, true)10: δ(qα, σi)← qαβ11: i← i+ 112: end while3. if β = ασ1 . . . σl then we explore the already present trie path

qα
σ1−→ qασ1

σ2−→ . . .
σj

−→ qασj
, (9.1)then 
onstru
t path

qασj

ασj+1

−−−→ qασj+1

ασj+2

−−−→ . . .
ασl−−→ qασl

(9.2)and �nally return pointer to qασ1...σl
(see algorithm 9.2), and4. if βσ = α then pointer to qβ is retrieved by reversely following transi-tion (qβ , σ, qα), operation that 
an be e�
iently performed if the datastru
ture representing qα stores a pointer to qβ.Obviously, the �rst and last 
ases have a 
onstant time. Appending asymbol σ to a string α represented by a trie state qα mainly requires a binarysear
h within the map of symbols to target states dire
tly rea
hable from qα.As seen in 
hapter 2, this sear
h has a logarithmi
 
ost w.r.t. the number ofoutgoing transitions from qα. Appending a string σ1 . . . σl requires to perform

j binary sear
hes, where j is the greatest natural number su
h that the trie
ontains a path 
orresponding to σ1 . . . σj , and then l− j additions of a stateand a transition to the trie, ea
h one having a 
onstant time.



9.2. EXTRACTING STRINGS FROM TRIES 181For the 
ase of di
tionary representation, a

eptan
e �ags of trie states areused for distinguishing between 
omplete words and mere pre�xes; however,this distin
tion is not needed for the optimization of string management bymeans of tries: the set of strings 
orresponding to the whole 
onsumption ofthe input will be given by the pointers to trie states within the ESs a

eptingthe whole input. Sin
e we have de�ned tries as FSAs, the 
on
atenationalgorithms always set these �ags to true, just to give some value. In pra
ti
e,we simply do not use any a

eptan
e �ags.9.2 Extra
ting strings from triesDepending on the algorithm of appli
ation of FSMs, some string-like 
om-ponents of the ESs a

epting the input are to be given as result, namelythe output sequen
es generated by algorithms of appli
ation of FSMs withletter output (to be seen in 
hapter 11). Other string-like 
omponents areonly required for the implementation of derivation me
hanisms, namely thesta
ks of return states 
onstru
ted by some algorithms of appli
ation of FSMswith re
ursive 
alls (to be seen in 
hapters 12�14). These 
omponents 
anbe simply thrown away along with their respe
tive tries on
e the algorithmexe
ution ends. In 
ase the sequen
es to return are to be represented asarrays instead of pointers to trie nodes, a further pro
essing is ne
essary inorder to generate the 
orresponding trie strings. Of 
ourse, if the stringsrepresented by every state of the trie were to be returned, it would be betterto use normal strings sin
e the beginning, but this will not be the 
ase: onlythose sequen
es 
orresponding to the 
onsumption of the whole input areto be returned. Rather than generating the language of the trie, the last
omputed SES is to be traversed in order to sear
h for the a

eptor ESs, andthe pointers within these ESs representing the strings to extra
t are to befollowed in order to explore only the relevant trie paths. Summarizing, usingtries for the representation of sequen
es will result in a performan
e gain aslong as the number of sequen
es to extra
t is small enough w.r.t. the numberof sequen
es represented by the trie.By de�nition, every trie state has a unique in
oming transition ex
ept for
qε, whi
h has none. Therefore, the symbols of a string α represented by apointer to a trie state qα 
an be retrieved in reverse order by following thepointer and then by reversely following ea
h in
oming transition up to state
qε (see �gure ??, p. 178). Retrieving α instead of αR is slightly more 
om-



182 CHAPTER 9. TRIESplex. Algorithm 9.3 re
ursive_retrieve_trie_string implements a possiblesolution based on re
ursivity. The algorithm takes a state qα and a 
ounterof traversed in
oming transitions i, having 0 as default value, and returns anarray a 
ontaining α and a natural number j equal to |α|. Counter i 
an alsobe seen as the index of this re
ursive 
all, starting with 0. As long as qσ 6= qε,the algorithm 
alls itself with the sour
e state of the transition in
oming to
qα and i+ 1 as 
ounter. During the 
all in whi
h qε is rea
hed, i is equal to
|α|. At this point, an array a of length i is initialized and returned, alongwith the value of i. The array is then �lled with the symbols of α in dire
torder, one symbol after ea
h return from a re
ursive 
all: let σ be the lastsymbol of the string represented by the state qα during re
ursive 
all withindex i, σ is to be assigned to a[j − i− 1], the `mirror' position of i within a.Summarizing, the algorithm traverses the path from qε up to qα in reverseorder in order to 
ompute the length of α, then initializes array a and �lls itin dire
t order by taking its steps ba
k.Algorithm 9.3 re
ursive_retrieve_trie_string(qα, i = 0)Input: qα, the trie state whose string α is to be retrieved

i, the string length 
ounter having 0 as default valueOutput: a, an array of input symbols storing α
j, the �nal string length1: if ∃(qβ, σ) : δ(qβ , σ) = qα then2: (a, j)← recursive_retrieve_trie_string(qβ , i+ 1)3: a[j − i− 1]← σ ⊲ �rst bu�er index is 04: else5: a← create_array(i)6: j ← i7: end ifFinally, a simpler solution 
ould be implemented if α's length 
ould beretrieved by simply following the pointer to qα; we extend the data stru
turerepresenting ea
h state qα within the trie with a �eld storing qα's depth, thatis, the length of the path starting at qε and ending at qα. Sin
e tries have onlypure 
onsuming transitions, qα's depth is equal to |α|. Upon the initializationof a trie, the depth of its initial state is set to zero. Algorithms 9.1 
on
at-_trie_string_and_symbol and 9.2 
on
at_trie_string_and_string are mod-i�ed so that, ea
h time a new state qβ is 
reated with an in
oming transition

δ(qα, σ), qβ's depth is set to qα's plus one. Constru
ting an array a 
ontaining
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an then be done with a single traversal, as illustrated in algo-rithm 9.4 retrieve_trie_string : array a is �rst initialized with a length equalto the depth of qα, and then a loop �lls the array from the last position upto the �rst one while reversely following ea
h in
oming transition.Algorithm 9.4 retrieve_trie_string(qα)Input: qα, the trie state whose string is to be retrievedOutput: a, an array storing α
j, the �nal string length1: a← create_array(depth(qα))2: for i = depth(qα)− 1 to 0 step −1 do ⊲ �rst bu�er index is 03: a[i]← σ : δ(qβ , σ) = qα4: qα ← qβ : δ(qβ, σ) = qα5: end for9.3 A not-so-e�
ient 
on
atenation 
aseAs we will see, some of the algorithms of appli
ation of FSMs generatingletter sequen
es require an additional 
on
atenation 
ase: appending a triestring β to another trie string α (e.g.: in �gure ??, p. 178, appending qtoto qin in order to obtain qinto). In this 
ase, knowing qβ 's depth will notavoid the hassle of traversing ba
kwards and then forward the path from qεto qβ: this path is to be appended to the path 
orresponding to α in dire
torder. Algorithm 9.5 
on
at_trie_strings performs this operation, based onalgorithm 9.3 re
ursive_retrieve_trie_string : it re
ursively 
alls itself withthe states before qβ up to rea
hing qε, then either explores or 
reates a pathanalogous to the path from qε up to qβ in dire
t order, starting from qα; afterreturning from ea
h re
ursive 
all, algorithm 9.1 
on
at_trie_string_and-_symbol is 
alled in order to either rea
h the next state or to 
reate it alongwith its in
oming transition, if not already present. In pra
ti
e, performan
ehas dropped for the 
ase of algorithms using this kind of 
on
atenation.
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Algorithm 9.5 
on
at_trie_strings(qα, qβ)Input: qα, the trie state 
orresponding to a string α
qβ, the trie state 
orresponding to a string βOutput: qαβ, the trie state 
orresponding to string αβ1: if ∃(qγ , σ) : δ(qγ, σ) = qβ then2: qαβ ← concat_trie_strings(qα, qγ)3: qαβ ← concat_trie_string_and_symbol(qαβ , σ)4: else qαβ ← qα5: end if



Chapter 10Finite-state transdu
ers withbla
kboard outputFSTBOs are a generalization of �nite-state transdu
ers where outputs maybe any kind of obje
ts (for instan
e, strings for the 
ase of letter transdu
ers)and transitions may perform any kind of transformation to a 
urrent output(transitions of letter transdu
ers may append a symbol to the 
urrent out-put). FSTBOs 
an be seen as augmented transition networks (Woods, 1969)without re
ursive 
alls where register sets �the bla
kboards� are not onlyused in order to implement more 
omplex transition fun
tions but are to begiven as output. We give here the general de�nitions for any kind of output,we present in the next 
hapter FSTs with string output as a parti
ular 
aseof bla
kboard output, and �nally give in 
hapters 17, 18 and 19 the generalguidelines for the de�nition of weighted, uni�
ation and 
omposite outputma
hines as other parti
ular 
ases of bla
kboard output. Referen
es to otherworks are given for ea
h parti
ular 
ase in their respe
tive se
tions.De�nition 139 (FSTBO). A FSTBO (Q,Σ,Γ, B, BK , δ, QI , F ) is a spe
ialtype of FSM (de�nition 46, p. 121) whose set of labels Ξ takes its elementsfrom the set of input/output pairs (Σ ∪ {ε})× (Γ ∪ {idB}), where
• Σ is a �nite input alphabet,
• ε is the empty input symbol,
• Γ : B → B is a �nite output alphabet of fun
tions γ on �nite bla
kboards
b ∈ B, 185
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• idB the identity fun
tion on bla
kboards, and
• b∅, is the empty bla
kboard,
• BK ⊆ (B − {b∅}) is a (possibly empty) set of illegal or killing bla
k-boards.Transitions that produ
e killing bla
kboards 
annot be traversed: during theexe
ution of an algorithm of appli
ation of a FSTBO, explorations of pathsrea
hing su
h bla
kboards are killed.10.1 TransitionsDe�nition 140 (Consuming transition). Following de�nition 51 (p. 123),transitions in Q × (Σ × (Γ ∪ idB)) × Q, that is, whi
h 
onsume an inputsymbol, are 
alled 
onsuming transitions.De�nition 141 (Generating transition). Transitions in Q × ((Σ ∪ {ε}) ×

Γ)×Q, that is, having a non-empty output, are 
alled generating transitions.De�nition 142 (Translating transition). Transitions in Q × (Σ × Γ) × Q,that is, both 
onsuming and generating, are 
alled translating or substitutingtransitions.De�nition 143 (Deleting transition). Transitions in Q × (Σ × {idB}) ×
Q, that is, 
onsuming transitions that do not generate, are 
alled deletingtransitions.De�nition 144 (ε-transition). Following de�nition 53 (p. 124), transitionsin Q× ({ε}× (Γ∪{idB}))×Q, that is, whi
h do not 
onsume input but mayor may not generate output, are 
alled ε-transitions.De�nition 145 (Inserting transition). Transitions in Q × ({ε} × Γ) × Q,that is, generating ε-transitions, are 
alled inserting transitions.De�nition 146 (ε2-transition). Transitions in Q × {(ε, idB)} × Q, that is,non-generating ε-transitions, are 
alled ε2-transitions.



10.2. GRAPHICAL REPRESENTATION 18710.2 Graphi
al representationFSTBO transition labels may in
lude an output as well as an input, as hasbeen seen in de�nition 139 (p. 185). In the 
lassi
 representation format, thetransition label is formed by an input/output pair of 
odes separated by a
olon (see �gure 10.1(b)). The representation of non-generating transitionsis not modi�ed, that is, the empty output is represented by the absen
e ofthe 
olon and output 
ode rather than by a 
olon followed by some 
oderepresenting an empty output.Unitex and Intex graphs may asso
iate a single output to ea
h box, rep-resenting them as text labels with bold fonts (by default) under the 
orre-sponding boxes (see �gure 10.1(a)). In 
ase a box 
ontains multiple inputlabels, the same output label is asso
iated to ea
h input label.10.3 Sequen
es of transitionsDe�nition 147 (Generating path). A generating path is a path 
ontainingat least one generating transition.De�nition 148 (Generating ε-path). A generating ε-path is a generatingpath without 
onsuming transitions.De�nition 149 (ε2-path). An ε2-path is a path whose transitions are all
ε2-transitions.De�nition 150 (Generating 
y
le). A generating 
y
le is a 
losed generatingpath.De�nition 151 (Generating ε-
y
le). A generating ε-
y
le is a 
losed gen-erating ε-path.De�nition 152 (ε2-
y
le). An ε2-
y
le is a 
losed ε2-path.10.4 BehaviourDue to bla
kboard management and the fa
t that it might be possible to ar-rive to a state q through di�erent paths that generate di�erent bla
kboards,ESs for FSTBOs are 
omposed by a state q ∈ Q plus the bla
kboard gener-ated from an initial ES up to the ES.
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(a)
q0 q1 q2 q3 q4,6

q5,7

q8q9q10,11

q{10,11},12 q13

%sms %<E> : <sms/> %\⊔ %<E> : <phone> %# %<NB>%<E> : </phone>%\⊔%<E> : <message>%<TOKEN>%<TOKEN><E> : %<TOKEN>(b)Figure 10.1: (a) Unitex graph marking SMS requests and delimiting theirphone and message arguments by inserting XML tags, and (b) equivalent pseudo-minimized lexi
al FSTSO. These obje
ts are extended versions of the ones in �g-ures 7.1(a) and 7.1(
) (p. 126) Pseudo-minimization is performed as explained inse
tion 8.6 (p. 174) 
ombined with the pseudo-determinization that will be de-s
ribed in se
tion 10.7.



10.4. BEHAVIOUR 189De�nition 153 (Exe
ution state). FSTBO ESs are pairs (q, b) ∈ (Q,B).De�nition 154 (Illegal SES). The illegal SES of a FSTBO (Q, Σ, Γ, B, BK ,
δ, QI , F ) is (Q× BK), that is, the set of all ES having a killing bla
kboard.De�nition 155 (∆). The∆ fun
tion for FSTBOs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, bs),
• xt = (qt, bt), and
• d = qt ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK .As we 
an see, the last 
ondition of predi
ate d, bt /∈ BK , prevents ∆(V, σ)from returning ESs with killing bla
kboards.De�nition 156 (D). TheD fun
tion for FSTBOs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, bs),
• xt = (qt, bt), and
• d = qt ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK .As for ∆(V, σ), the last 
ondition of predi
ate d prevents D(V ) fromreturning ESs with killing bla
kboards.Lemma 10 (In�nite ε-
losure). The ε-
losure of a FSTBO SESs V is in�niteif there exists an ES xs within V or ε-rea
hable from an ES of V su
h that
• there exists an ε-
y
le p passing through xs,
• starting from xs, for every traversal of 
y
le p output fun
tions alwaysreturn non-killing bla
kboards, and
• non-identity output fun
tions return a di�erent bla
kboard at ea
h 
y
letraversal.Proof. Let A be a FSTBO having a generating ε-
y
le
p = t0t1 . . . tn−1 = (q0, (ε, γ0), q1)(q1, (ε, γ1), q2) . . . (qn−1, (ε, γn), qn),where γj ∈ (Γ ∪ idB) and there is at least one γk ∈ Γ (non-identity outputfun
tion) for j, k = 0 . . . n− 1; let (q0, b0,0) ∈ V0 a non-illegal ES (b0,0 /∈ BK)su
h that
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• (qj, bi,j) is a rea
hable ES through path pit0 . . . tj − 1, for i ≥ 0 and
j = 0 . . . n− 1, and
• if γj 6= idB then bi,j = bi′,j i� i = i′, for i, i′ ≥ 0 and j = 0 . . . n − 1,that is, every output fun
tion other than the identity produ
e a newbla
kboard at ea
h traversal of the 
y
le.Following the development of the iterative ε-
losure of V0 (lemma 4,p. 140) adapted for FSTBOs (de�nition 156 of D fun
tion),

Cε(V0) = Vn su
h that Vi+1 = Vi ∪ {(qt, b
′) : qt ∈ δ(qs, (σ, γ))∧

(qs, b) ∈ V0 ∧ b′ = γ(b) ∧ b′ /∈ BK}, i = 0 . . . n, (10.1)where the last 
ondition b′ /∈ BK 
an be omitted sin
e we suppose that onlynon-killing bla
kboards are produ
ed,1 it holds that
(q0, b0,0) ∈ V0

(q1, b0,1) ∈ V1...
(qn−1, b0,n−1) ∈ Vn−1

(q0, b1,0) ∈ Vn

(q1, b1,1) ∈ Vn+1...
(qn−1, b1,n−1) ∈ V2n−1

(q0, b2,0) ∈ V2n...
(q0, bi,j) ∈ Vin+jSin
e p is a 
y
le, when traversing path pit0 . . . tk an ES (qk+1, bi,k+1) withthe same state qk+1 is produ
ed for ea
h i ≥ 0. However, sin
e fun
tion γkis a non-identity fun
tion always returning a di�erent bla
kboard, every ES

(qk+1, bi,k+1) is di�erent and therefore the ε-
losure is inde�nitely in
rementedwith at least one ES per 
y
le traversal. By de�nition, if an ES (q, b0,0) is
ε-rea
hable from an ES of V0, then there is a SES Vi that 
ontains the ES.Sin
e the ε-
losure of V0 
ontains the ε-
losure of Vk and the ε-
losure of Vkis in�nite, so it is the ε-
losure of V0.1if an ES is rea
hable, then it is legal and therefore has a non-killing bla
kboard



10.4. BEHAVIOUR 191Lemma 11 (Finite ε-
losure). Under 
onditions other than those expressedin the previous lemma, the ε-
losure of a FSTBO SES is �nite.Proof. Let A be a FSTBO and (q0, b0) an ES in V0; let p be any ε-path
(q0, (ε, γ0), q1), (q1(ε, γ1), q2) . . . (qn−1, (ε, γn−1), qn), (10.2)of A, by developing the iterative ε-
losure of V0 we obtain the ESs

(q0, b0) ∈ V0

(q1, γ1(γ0(b0))) ∈ V1...
(qn, γn−1(. . . (γ1(γ0(b0))) . . .) ∈ Vn...where one of these 
ases holds:

• After a �nite number of transitions have been traversed, a killing bla
k-board is produ
ed. Sin
e a �nite number of ESs have been derived upto this point and no more ESs 
an be derived on
e an illegal ES isrea
hed, the ε-
losure is �nite.
• If γj = idB for j = 0 . . . n − 1, then b0,0 = b0,1 = . . . b0,n−1 = b1,0 =
. . . = bi,j , that is, every ε-rea
hable ES from (q0, b0,0) has the samebla
kboard. Therefore, Cε(V0) is a �nite set sin
e it is a subset of
(Q×{b0,0}), whi
h is �nite. In this 
ase the proof is the same than for
FSAs (proof of lemma 7, p. 163), whi
h is based in the fa
t that theresult of the ε-
losure is a subset Q, whi
h is �nite.
• If γj ∈ (Γ ∪ {idB}) but qj = qk i� j = k, that is, there are no ε-
y
leshaving an ε-rea
hable ES from q0, the ε-
losure is also �nite if the ε-paths are �nite, whi
h is true sin
e FSTBOs have a �nite number oftransitions.
• Finally, if γj ∈ (Γ ∪ {idB}) and γj ∈ Γ i� qj 6= qk for j 6= k, that is,there are no generating ε-
y
les having an ε-rea
hable ES from q0, the
ε-
losure is also �nite sin
e it is the union of the se
ond and third 
ases,whi
h are also �nite: the path 
an be de
omposed into 
on
atenationsof ε2-paths, with 
y
les or not, and generating ε-paths without 
y
les,ea
h one adding a �nite SES to the ε-
losure.
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losure is always �nite for FSTBOs without generating
ε-
y
les.De�nition 157 (Initial and a

eptan
e SESs). Given the sets of initial anda

eptan
e states of a FSTBO, QI and F , its initial and a

eptan
e SESsare (QI × {b∅}) and (F × (B − BK)), respe
tively.De�nition 158 (Exe
ution ma
hine). The exe
ution ma
hine of a FSTBO
A is de�ned as for the generi
 exe
ution ma
hine (de�nition 105, p. 142)without any other kind of transitions than pure 
onsuming transitions andpure ε-transitions, thus its de�nition is equal to that of a FSA ex
ept forthe possibility of having an in�nite set of states, transitions and a

eptan
estates.Note that the exe
ution ma
hine of a FSTBO A does not require to de-�ne transitions with output fun
tions sin
e the resulting output bla
kboardsare 
oded inside the state labels; for instan
e, if A 
ontains a transition
(qs, (σ, γ), qt) su
h that qs is rea
hable from some initial state by generatingbla
kboard bs, then X (A) 
ontains a transition ((qs, bs), σ, (qt, γ(bs))).De�nition 159 (τ). We de�ne τ(A), the language of translations of a FSTBO
A, as the set of input/output pairs (w, b) ∈ (Σ∗ × (B − BK)) su
h that w isre
ognized and translated into bla
kboard b by A, that is, an a

eptan
e ES isrea
hed from an initial ES by 
onsuming w and generating bla
kboard b:

τ(A) = {(w, b) : (qf , b) ∈ ∆∗((QI × {b∅}), w) ∩ (F × B)}. (10.3)De�nition 160 (ω). We de�ne ω(A,w), the translations or language ofbla
kboards of a word w for a FSTBO A, as the set of bla
kboards (SB)
b ∈ (B − BK) su
h that (w, b) belongs to the translations of A:

ω(A,w) = {b : (w, b) ∈ τ(A)}. (10.4)De�nition 161 (τR). Let x be an ES of a FSM A, we de�ne τR(x), the righttranslations from x, as
τR(x) = {(w, b) : xf ∈ ∆∗({x}, w) ∩XF}. (10.5)



10.5. RECOGNIZED LANGUAGES 193De�nition 162 (ωR). Let x be an ES of a FSM A, we de�ne ωR(x, w), theright translations of w from x, as
ωR(x, w) = {b : (w, b) ∈ τR(x)}. (10.6)De�nition 163 (Translator ma
hine). We say that a ma
hine or an algo-rithm of appli
ation of a ma
hine is a translator i� its purpose is to imple-ment a map L → P(L′), that is, a map of words of a language L to sets ofwords of a language L′.In a larger sense, we 
ould say that even a

eptor ma
hines are alsotranslators: a

eptor ma
hines translate input sequen
es to Booleans (a

ep-tan
e or reje
tion). However, generating more 
omplex output than simpleBooleans introdu
es some additional 
omplexities that make worth the dis-tin
tion; for instan
e, the possibility of in�nite ε-
losures and, as we will seein se
tion 10.7, the impossibility of determinizing 
ertain ma
hines.In de�nition 93 (p. 135) we introdu
ed the 
on
ept of equivalen
e betweenma
hines, and then we formally explained the equivalen
e between pure a
-
eptor ma
hines (de�nition 110, p. 143). On
e de�ned what a translatorma
hine is, we 
an give the last de�nition of equivalen
e between ma
hines:De�nition 164 (Equivalent pure translator ma
hines). We say two puretranslator ma
hines A and A′ are equivalent i� τ(A) = τ(A′).Other ma
hines than FSAs and FSTBOs that we will present in thisdissertation will simply have other kinds of transitions, but will �nally beeither a

eptors de�ning a language or translators de�ning a map betweentwo languages.10.5 Re
ognized languagesFSTBOs may be designed to express additional restri
tions on the inputlanguage through the killing-bla
kboard me
hanism in order to go beyondregular languages. Indeed, for every Turing ma
hine there exists an equiv-alent FSTBO (in the a

eptor sense), as for augmented transition networks(Woods, 1969, se
. 1.7.9, p. 39). Following Hop
roft et al. (2000, p. 319), webrie�y de�ne Turing ma
hines as follows:De�nition 165 (Turing ma
hine). A Turing ma
hine is a stru
ture M =

(Q,Σ,Γ, δ, q0, g∅, F ) where
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• Q is a �nite set of states,
• Γ is a �nite tape alphabet,
• g∅ ∈ Γ is the blank symbol or default tape symbol,
• Σ ⊆ Γ− {g∅} is a �nite input alphabet,
• δ : Q × Γ → Q × Γ × {L,R} is a �nite transition fun
tion, where Land R represent a left or right shift, respe
tively,
• q0 ∈ Q is the unique initial state, and
• F ⊆ Q is the set of a

eptor states.ESs are triplets in (Q,Γ∗,N): a state, a tape and a head position. The uniqueES is (q0, σ1 . . . σn, 0) and the a

eptan
e SES is (F × Γ∗,N).Informally, a Turing ma
hine is a kind of FSM with a potentially in�nitetape and a bidire
tional read/write head. Initially, the input is to be 
on-tained in a segment of the tape and every other tape 
ell to 
ontain a spe
ialdefault symbol. Transitions 
an or 
annot be taken depending on the 
urrentstate as well as the tape symbol at the 
urrent head position. Traversing atransition involves to bring the ma
hine to the transition's target state, tooverwrite the tape symbol at the 
urrent head position and to shift the headposition either to the left or to the right. By potentially in�nite we meanthat the tape head 
an be shifted in both dire
tions any number of positions,though for a given ma
hine and input only a �nite number of shifts must bene
essary if we are to apply the ma
hine in pra
ti
e. Instead of storing anin�nite tape, whi
h would be impossible, we initially store a tape having thesame length as the input and, ea
h time a symbol is to be read beyond thelimits, the tape is �rst in
remented with an extra 
ell 
ontaining the defaultsymbol.Theorem 10 (FSTBO and Turing ma
hine equivalen
e). For every Turingma
hine there exists a FSTBO re
ognizing an equivalent language.We basi
ally use bla
kboards to represent the tape and 
urrent head po-sition, and output fun
tions to perform the 
orresponding modi�
ations onthe tape and the head position as well as to produ
e killing bla
kboardswhenever the symbol spe
i�ed in the transition does not 
orrespond to the



10.5. RECOGNIZED LANGUAGES 195tape symbol at the 
urrent head position. We de�ne an initial substru
-ture of the FSTBO for 
onsuming the whole input and loading it into thetape, and another substru
ture 
orresponding to the original Turing ma
hinestru
ture where its behaviour is emulated by ε-transitions that operate onthe bla
kboards.Proof. LetM = {Q,Γ, g∅,Σ, δ, q0, F} be a Turing ma
hine, we build a FSTBO
A = (Q′, Σ′, Γ′, B, BK , δ

′, QI , F
′) as follows:

• Σ′ = Σ ∪ {$}, the input alphabet of the original Turing ma
hine plusa spe
ial symbol marking the end of input (EOI), where every originalinput σ1σ2 . . . σl−1σl ∈ Σl is �rst to be repla
ed by σlσl−1 . . . σ2σ1$, thatis, the original input in reverse order followed by the EOI mark,
• Q′ = Q∪{q′0}, the Turing ma
hine original states plus a FSTBO initialstate needed for loading the input into the bla
kboard's tape,
• F ′ = F ,
• QI = {q

′
0}

• B = (Γ∗ × N), a tape and a head position,
• BK = {⊥}, the killing bla
kboard,
• Γ′ = {idB}∪{γ

′
r,w,s : (r, w, s) ∈ (Γ×Γ×{L,R}), the fun
tions operatingon bla
kboards, where� γ′

r,w,s(bs) returns ⊥ if r, the symbol to read, is not equal to thetape symbol at the head position in bs,� otherwise builds bt, the bla
kboard to return, by 
opying bs, thenoverwritting bt's tape symbol at the head position with w and,�nally, shifting bt's head position one 
ell to the left, if s = L, orto the right, if s = R,� 
ells 
ontaining g∅ are automati
ally appended to the tape whena

essing positions beyond the limits, and
• transitions are de�ned as follows:
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′
b,σ,L)), for ea
h σ ∈ Σ; these transitions load theinput in reverse order onto the tape up to the EOI mark, keepingthe ma
hine in the initial state q′0,� q0 ∈ δ′(q0, ($, γ
′
b,b,R)); this transition dete
ts the EOI mark, posi-tions the head on the last 
opied symbol and brings the ma
hineto the initial state of the Turing ma
hine to emulate, and� qt ∈ δ′(qs, (ε, γ
′
r,w,s)) i� (qt, r) ∈ δ(qs, w, s); traversing a FSTBOtransition is also 
onditioned by the 
urrent tape symbol by thekilling-bla
kboard me
hanism.

10.6 Translating a stringBased on algorithm 7.5 fsm_re
ognize_string (p. 153) adapted for FSTBOs,algorithm 10.1 fstbo_translate_string 
omputes the set of possible transla-tions of a given input string. It uses algorithm 10.2 fstbo_translate_symbol,an adaptation of algorithm 7.6 fsm_re
ognize_symbol (p. 154) for FSTBOs,in order to 
ompute the ∆ fun
tion, and algorithm 10.3 fstbo_interla
ed_e-
losure, an adaptation of algorithm 7.3 fsm_interla
ed_e
losure (p. 151) forFSTBOs, in order to 
ompute the ε-
losure. Finally, algorithm 10.4 add_en-queue_esbo is used in the ∆ and ε-
losure algorithms instead of algorithm 7.4add_enqueue_es (p. 151) in order to add derived ESs with bla
kboard out-put;2 both algorithms perform the same operation but the former 
he
kswhether the bla
kboard is not a killing one before adding the ES. Whenbuilding the initial SES, the routine un
onditionally_add_enqueue_es seenin se
tion 7.9 (p. 152) is used instead of an equivalent routine for ESs withbla
kboard output sin
e, by de�nition, every initial ES has a non-killingbla
kboard: b∅.Apart from the adaptation of the algorithm for FSTBOs and the killingbla
kboard test, the main di�eren
e lies in the post-pro
essing of the last
omputed SES: rather than looking for the �rst a

eptan
e ES in order toa

ept the word, we extra
t every output asso
iated to any a

eptan
e ESin order to build the set of translations of the input word. Sin
e the SESs Vi
annot 
ontain ESs having a killing bla
kboard, it is only ne
essary to 
he
k2In add_enqueue_esbo, `esbo' stands for ES with bla
kboard output.
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epting or not. If no a

eptan
e ES is found thenan empty set of translations is returned. The domain of appli
ation of thetranslator algorithm must be redu
ed to FSTBOs not having generating ε-
y
les in order to ensure that the algorithm exe
ution will �nish. For the 
aseof NLP this is not an issue sin
e generating ε-
y
les would lead to in�nitesets of interpretations of natural language senten
es, whi
h makes no sense.Algorithm 10.1 fstbo_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl), def. 160Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for ea
h q ∈ QI do4: unconditionally_add_enqueue_es(V,E, (q, b∅))5: end for6: fstbo_interlaced_eclosure(V,E)7: i← 08: while V 6= ∅ ∧ i < l do9: V ← fstbo_recognize_symbol(V,E, σi+1)10: i← i+ 111: fstbo_interlaced_eclosure(V,E)12: end while13: T ← ∅14: for ea
h (q, b) ∈ V : q ∈ F do15: add(T, b)16: end forThe algorithm 
an be further improved by using the trie string man-agement shown in se
tion 9.1 (p. 178) for the representation of string-likestru
tures of output bla
kboards; FSTSOs are the simplest appli
able 
asesin
e their bla
kboards are strings (see se
tion 11.5, p. 215).10.6.1 From breadth-�rst to depth-�rstAlgorithm 10.5 fstbo_depth_�rst_translate_string (along with algorithm 10.6fstbo_depth_�rst_translate_suf�x ) is another algorithm 
omputing the trans-lations of an input sequen
e for a given FSTBO but performing a depth-�rsttraversal of the ma
hine instead of a breadth-�rst one. We simply modify



198 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTAlgorithm 10.2 fstbo_translate_symbol(V,E, σ) ⊲ ∆(V, σ), def. (155)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of rea
hable ESs from V by 
onsuming σ
E after enqueuing the ESs of W1: W ← ∅2: for ea
h (qs, bs) ∈ V do3: for ea
h (qt, γ) : qt ∈ δ(qs, (σ, γ)) do4: add_enqueue_esbo(W,E, (qt, γ(bt)))5: end for6: end forAlgorithm 10.3 fstbo_interla
ed_e
losure(V,E) ⊲ Cε(V )Input: V , the SES whose ε-
losure is to be 
omputed

E, the queue of unexplored ESs 
ontaining every ES in VOutput: V after 
omputing its ε-
losure
E after emptying it1: while E 6= ∅ do2: (qs, bs)← dequeue(E)3: for ea
h (qt, γ) : qt ∈ δ(qs, (ε, γ)) do4: add_enqueue_esbo(V,E, (qt, γ(bs)))5: end for6: end whileAlgorithm 10.4 add_enqueue_esbo(V,E, xt)Input: V , the SES where the ES is added

E, the queue of unexplored ESs
xt, the ES to add to VOutput: V after adding the ES, if legal
E after enqueuing the ES, if new and legal1: if blackboard(xt) /∈ BK then2: if add(V, xt) then3: enqueue(E, xt)4: end if5: end if
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 depth-�rst re
ognizer algorithms (se
tion 7.9.1, p. 156) so thatthey do not stop after rea
hing the �rst a

eptor ES by 
onsuming the wholeinput; instead, the algorithm is to 
ontinue until rea
hing all those a

eptorESs and to return a set of translations 
omposed by all of their 
orrespond-ing bla
kboards. Algorithms 7.8 fsm_depth_�rst_re
ognize_string and 7.9fsm_depth_�rst_re
ognize_suf�x are to be modi�ed as follows:
• a set of translations T is to be returned instead of a Boolean value,
• when dete
ting an a

eptor ES, its bla
kboard is to be added to Tinstead of returning true,
• 
alls to algorithm 10.6 fstbo_depth_�rst_translate_suf�x are to beperformed without evaluating the returned value and without returningany value, and
• the instru
tion returning false is to be removed (T is impli
itly returnedsin
e it is an input/output variable).Algorithm 10.5 fstbo_depth_�rst_translate_string(σ1 . . . σl) ⊲

ω(A, σ1 . . . σl), def. 160Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: for ea
h x ∈ XI do2: fstbo_depth_first_translate_suffix(σ1 . . . σl, 1, x, T )3: end for10.7 DeterminizationDeterministi
 transdu
ers are 
ommonly known as sequential transdu
ers;following Mohri (1997, se
 2.1), we de�ne sequential FSTBOs as follows:De�nition 166 (Sequential FSTBO). Let A be a FSTBO (Q, Σ, Γ, B, BK ,
δ, QI , F ), we say A is sequential i� it has deterministi
 input, that is, let A′be a FSA (Q, Σ, δ′, QI , F ) su
h that

qt ∈ δ′(qs, σ) ⇐⇒ qt ∈ δ(qs, (σ, γ)) and (10.7)
qt ∈ δ′(qs, ε) ⇐⇒ qt ∈ δ(qs, (ε, γ)), (10.8)



200 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTAlgorithm 10.6 fstbo_depth_�rst_translate_su�x(σ1 . . . σl, i, (qs, bs), T )
⊲ ωR(xs, σi . . . σl), def. 162Input: σ1 . . . σl, an input string of length l

i, the index of the �rst su�x symbol
bs, an ES with qs as rea
hed state
T , a set of translationsOutput: T after adding the right translations of σi . . . σl from xs1: if i > l ∧ (qs, bs) ∈ XF then2: add(T, bs)3: end if4: if i ≤ l then5: for ea
h xt ∈ ∆({(qs, bs)}, σi) do6: fstbo_depth_first_translate_suffix(σ1 . . . σl, i+ 1, xt, T )7: end for8: end if9: for ea
h xt ∈ D({xs}) do10: fstbo_depth_first_translate_suffix(σ1 . . . σl, i, xt)11: end for

A′ is deterministi
.In general, FSTBOs representing natural language grammars are not de-terminizable due to their ambiguity.Corollary 6. Let A and A′ be the ma
hines of the previous de�nition; then,
∀w ∈ Σ∗[|ω(A,w)| ≤ 1], (10.9)sin
e A′ is deterministi
 and, hen
e, it may 
ontain no more than one inter-pretation of w.Corollary 7. Let A be a non-sequential FSTBO, if |ω(A,w)| > 1 for someinput sequen
e w then there exists no sequential FSTBO equivalent to A.Note that a FSTBO A may have two di�erent interpretations for thesame input sequen
e w, yet asso
iate a single output to w; for instan
e, if

A maps input sequen
es to s
ores by adding some amount of points at ea
htransition, di�erent paths may generate the same s
ore by adding the samepoints in di�erent order.



10.7. DETERMINIZATION 201Sequential transdu
ers 
an be generalized by introdu
ing the possibilityof generating at most one additional output right after a

epting an inputsequen
e, where the output is given by a map of a

eptor states to additionaloutputs (S
hützenberger, 1977). Su
h transdu
ers are 
alled subsequential.Cho�rut (1977, 1978) 
hara
terized the 
lass of transdu
ers performing sub-sequential transdu
tions, hen
e being determinizable. Su
h 
hara
terizationimpli
itly de�nes an algorithm for the 
onstru
tion of an equivalent subse-quential transdu
er. This algorithm has been expli
itly given by several au-thors (Berstel, 1979; Mohri, 1996; Ro
he and S
habes, 1997). Mohri (1994a)extended the de�nition of subsequential transdu
ers to p-subsequential trans-du
ers, transdu
ers asso
iating up to p additional outputs to ea
h a

eptorstate, in order to allow for a `quasi-determinization' of FSTBOs representinga spe
ial 
lass of ambiguous languages.De�nition 167 (p-subsequential FSTBO). A p-subsequential FSTBO is astru
ture (Q, Σ, Γ, B, BK , δ, {qI}, F, ρ) where (Q, Σ, Γ, B, BK , δ, {qI},
F ) is a sequential FSTBO and

ρ : F → P(Γ) (10.10)is a fun
tion mapping a

eptor states to sets of up to p additional outputfun
tions.Corollary 8 (Mohri, 1994b, se
. 4). A p-subsequential FSTBO (Q, Σ, Γ, B,
BK , δ, QI , F, ρ) 
an be seen as a FSTBO (Q ∪ {q$}, Σ ∪ {$}, Γ, B, BK , δ

′,
QI , {q$}) where
• input symbol $ expli
itly represents the end of input,
• q$ is an additional state and the only a

eptor state, and
• δ′ de�nes the same transitions than δ plus an additional transition
(qf , ($, γ), q$), for ea
h (qf , γ) su
h that qf ∈ F and γ ∈ ρ(qf ).Though not deterministi
 in the stri
t sense, p-subsequential transdu
ers(with p > 1) 
an be applied to an input sequen
e as deterministi
 ma
hinesuntil rea
hing an a

eptor state: only a single ES must be 
omputed for ea
hinput symbol; on
e the whole input is 
onsumed, if an a

eptor ES is rea
hedthen the set of translations is built by 
ombining the output of the ES withthe outputs mapped to the a

eptor state of the ES.



202 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTDe�nition 168 (τ). We de�ne τ(A), the language of translations of a p-subsequential FSTBO A, as
τ(A) = {(w, b′) : (qf , b) ∈ ∆∗((QI × {b∅}), w) ∩ (F × B)∧

b′ = γ(b) ∧ b′ /∈ BK ∧ γ ∈ ρ(qf )}. (10.11)Algorithms for the 
onstru
tion of p-subsequential transdu
ers equivalentto string-to-string, string-to-weight and string-to-string-and-weight transdu
-ers,3 have also been given by Mohri (1996, 1997). These algorithms are simi-lar to the 
ommon determinization algorithm: they join together transitionssharing the same sour
e state and label, and then join as well the 
orrespond-ing target states. In order to join transitions 
onsuming the same input butperforming di�erent output transformations, the transformations are totallyor partially delayed to the subsequent transitions. If not totally delayed, thenon-delayed partial transformations must be equal so that the transitions 
anbe joined; for instan
e, let γ and γ′ be two output transformations append-ing strings αβ and αβ ′, respe
tively, only the generation of su�xes β and β ′is to be delayed. Target states are 
oupled with the 
orresponding delayedtransformations. When taking these 
ouples as sour
e states for joining their
orresponding outgoing transitions, the delayed transformations are addedto the transition output labels. Delayed transformations of a

eptor stateswill be the additional transformations to perform on
e the whole input hasbeen 
onsumed. Summarizing, no output transformation is generated un-til enough input symbols are observed in order to make sure that the righttransformation is performed.Figure 10.2 illustrates a string-to-string transdu
er along with its equiv-alent subsequential transdu
er.4 Output labels α simply indi
ate that string
α is to be appended to the 
urrent output. Under ea
h state of the sequen-tial transdu
er, the 
orresponding set of 
ouples state/delayed output havebeen in
luded. The initial state r0 
orresponds to 
ouple (q0, ε), that is, tohave rea
hed state q0 with no delayed output. Transitions (q0, (a, b), q1) and
(q0, (a, a), q2) are joined by delaying the generation of a and b. Rea
hing state
r1 is equivalent to have rea
hed state q1 with delayed output b or state q2 withdelayed output a. Transitions (q1, (b, b), q0), (q2, (a, a), q2) and (q2, (a, b), q0)3Transdu
ers implementing maps of strings to either strings, weights, or both string andweights, respe
tively, where weights represent s
ores or probabilities; weighted ma
hineswill be the obje
t of 
hapter 18.4Example extra
ted from (Mohri, 1996).
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q0 q1

q2

b : b c : c

a
: a

a
: b

a : b

b : b

a : a(a) r0 = {(q0, ε)} r1 = {(q1, b), (q2, a)}

r0 r1

$

b : b c : c

a

b : bb

a : a

$ : a

(b)Figure 10.2: (a) Non-deterministi
 string-to-string transdu
er and (b) equivalentsubsequential transdu
er; transitions 
onsuming $, the end-of-input, represent theadditional outputs to generate after a

epting the input.re
eive these delayed outputs, be
oming (q1, (b, bb), q0), (q2, (a, aa), q2) and
(q2, (a, ab), q0). Then, the two latter transitions are joined by delaying onlythe generation of the se
ond symbol, whi
h results in rea
hing exa
tly thesame set of 
ouples {(q1, b), (q2, a)}. The other transitions have unique in-puts, thus their outputs do not need to be delayed and hen
e rea
h the setof 
ouples {(q0, ε)}. A

eptor states of the sequential transdu
er are thosehaving at least one 
ouple (qf , α) with qf ∈ F , and the additional outputs togenerate are those delayed outputs α: nothing for r0 and a for r1.Figure 10.3 illustrates a string-to-string transdu
er along with its equiv-alent∞-subsequential transdu
er.5 Outputs of transitions (q0, (a, x), q0) and
(q0, (a, x), q0) are totally delayed at ea
h step, resulting in di�erent targetstates ri with 2i di�erent delayed outputs.An alternative to quasi-determinization is lazy or on-the-�y determiniza-tion (Mohri et al., 2002; Jussila et al., 2005), whi
h 
onsists in determinizingthe explored paths of the ma
hine during its appli
ation; supposing that agrammar is always applied to the same subset of input sequen
es, only the
orresponding paths will be determinized yet keeping a �nite ma
hine sin
ethe input sequen
es are �nite. When applying the ma
hine for the �rst time,the 
ost of determinizing the 
orresponding substru
tures will be added tothe 
ost of applying the ma
hine as if it was deterministi
. Su

essive appli-
ations will take advantage of the already determinized substru
tures, savingthe determinization 
ost. However, the ma
hine may grow in size ex
essively5Example extra
ted from (Blan
, 2006, p. 69).
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(b)Figure 10.3: (a) Non-deterministi
 string-to-string transdu
er and (b) equivalent
∞-subsequential transdu
er. Transitions 
onsuming $, the end-of-input, representthe additional outputs to generate after a

epting the input.on
e applied to a 
ertain amount of input sequen
es. Lazy determinizationis the solution adopted by the Outilex system (Blan
, 2006, se
. 2.8.4, p. 68).The solution we present here is the one used by the Unitex and Apertiumsystems (Garrido-Alenda et al., 2002), whi
h 
onsists in determinizing thema
hine's underlying FSA instead of the ma
hine itself.6De�nition 169 (Underlying FSA). Let A = (Q,Σ,Γ, B, BK , δ, QI , F ) bea FSTBO, we de�ne its underlying FSA as (Q, ((Σ ∪ {ε}) × (Γ ∪ {ε})) −
{(ε, ε)}, δ, QI, F ) with (ε, ε) as the empty symbol; in other words, FSTBOinput/output pairs be
ome FSA input symbols ex
ept for (ε, ε) whi
h be
omesthe empty symbol.This pro
ess may only perform a partial determinization of the FSTBO:let (qs, (σ, γ), qt) and (qs, (σ, γ

′), qt) be two transitions of a FSTBO, these tran-sitions will not be joined together sin
e (σ, γ) and (σ, γ′) will be interpretedas two di�erent input symbols. However, it is sure that, for every FSTBO,this pro
edure will end up with a �nite ma
hine sin
e FSA determinizationalways ends up with a deterministi
 FSA. One important advantage of FSA6This kind of determinization is performed in Unitex whenever 
ompiling a graph (seePaumier, 2008, se
. 6.2, p. 105), though this is not mentioned in the manual. In Garrido-Alenda et al. (2002), this determinization pro
edure is mentioned in the 
ontext of theinterNOSTRUM ma
hine translator; Apertium is another ma
hine translator that hasevolved from interNOSTRUM and whi
h has inherited this feature.



10.8. MINIMIZATION 205determinization is that ε-moves are removed, avoiding the need for ε-
losure
omputation during further FSA appli
ations. Determinizing a FSTBO asits underlying FSA will not remove every ε-move, sin
e generating transitionsare treated as 
onsuming transitions, but will at least remove every FSTBO
ε2-transition.10.8 MinimizationMohri (1994b) also de�ned an algorithm for the minimization of transdu
ersby 
onstru
ting equivalent p-subsequential transdu
ers. As for the 
ase of de-terminization, the same problem remains: for some transdu
ers, p is in�nite.Obviously, if we treat the FSTBO as its underlying FSA then minimizationà la van de Sneps
heut (se
tion 8.6, p. 174) 
an be normally performed.10.9 Bla
kboard set pro
essingThe set of explored paths during the re
ognition of an input sequen
e for aFSTBO without killing bla
kboards depends uniquely on the input symbolsto 
onsume and not on the generated bla
kboards. By de�ning killing bla
k-boards, the set of explored paths may be redu
ed but not extended. However,sin
e ESs 
ontain the bla
kboard generated up to rea
hing the FSTBO state
q, multiple ESs xi = (q, bi) are possible for the same FSTBO state q; more-over, a path p starting at q will allow for multiple exe
ution paths, ea
h onestarting at an xi. Therefore, algorithm 10.1 fstbo_translate_string (p. 197)may perform several explorations of p, while it is possible to explore p asingle time in order to build the set of bla
kboards (SBs) it generates. Weextend the FSA pro
essing for FSTBO bla
kboard set pro
essing (BSP) by
onstru
ting a fun
tion ζBi

for ea
h FSA SES Vi that maps FSA ESs �whi
h are in fa
t simple FSA states� to SBs, rather than storing generatedbla
kboards within ea
h ES.De�nition 170 (ZB). Given a FSTBO (Q,Σ,Γ, B, BK , δ, QI , F ), we de�ne
ZB as the set of every partial map ζB of FSA ESs in Q to SBs in P(B).De�nition 171 (BSP SES). We de�ne the equivalent BSP SES VB of aFSTBO SES V as a pair (V ′, ζB) where V ′ ⊆ Q is a FSA SES �a set ofFSA states� and ζB ∈ ZB is a fun
tion mapping states to SBs su
h that

VB = (V ′, ζB) : V
′ = {q : (q, b) ∈ V } ∧ ζB(q) = {b : (q, b) ∈ V }, (10.12)
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h is equivalent to say that
VB = (V ′, ζB) :

⋃

q∈V ′

{q} × ζB(q) = V. (10.13)In BSP, performing a derivation from a state qs due to a 
onsumingtransition δ(qs, (σ, γ)) → qt, or due to an ε-transition δ(qs, (ε, γ)) → qt, the
γ fun
tion is to be applied to every bla
kboard in ζB(qs).De�nition 172 (γ on SBs). Given a fun
tion γ on bla
kboards, we extendthe de�nition of γ for SBs as follows:

γ : P(B)→ P(B)

γ(Bs) = {bt : bs ∈ Bs ∧ bt = γ(bs) ∧ bt /∈ BK} (10.14)Note that the appli
ation of γ dis
ards killing bla
kboards; hen
e γ mayreturn an empty SB, in whi
h 
ase there is no ES to be derived.De�nition 173 (BSP ∆). We rede�ne the FSTBO ∆ fun
tion for BSP SESsas follows:
∆ : (P(Q)× ZB)× Σ→ (P(Q)× ZB),su
h that

∆((V, ζB), σ) = (V ′, ζ ′B) : V
′ = {qt : ζ

′
B(qt) 6= ∅}∧

ζ ′B(qt) =
⋃

γ:qt∈δ(qs,(σ,γ))∧qs∈V

γ(ζB(qs)) (10.15)The 
omputation of ∆ traverses every path of length 1 having a stateof Vi as sour
e state and 
onsuming σi+1 in order to build (Vi+1, ζBi+1
) from

(Vi, ζBi
). However, the 
omputation of the ε-
losure traverses every ε-pathof any length having any state of Vi as start state, whi
h allows for di�erentderivation paths to share subpaths. These ε-paths 
an be explored withoutrepeating the traversal of shared subpaths by following a topologi
al sort(de�nition 81, p. 130) of the 
orresponding ε-
losure-substru
ture (de�ni-tion 106, p. 143). However, only a
y
li
 substru
tures 
an be topologi
allysorted (lemma 1, p. 131). Let A be a FSTBO and A′ be the FSA equal to

A after removing its output alphabet and transition outputs, 
y
les in the
ε-
losure-substru
tures of X (A′) 
ome from 
y
les in A, whi
h 
an be of two
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y
les and non-generating ε-
y
les (ε2-
y
les); however,the former must be forbidden in order to avoid in�nite ε-
losures, and thelatter 
an be removed by determinizing A regarding it as its underlying FSA(de�nition 169, p. 204). Forbidding generating ε-
y
les does not redu
e the
apability of the formalism for the representation of natural language gram-mars, sin
e they allow for generating an in�nite output from a �nite input(e.g. an in�nite parse tree for a given senten
e), whi
h makes no sense.Theorem 11 (ε2-
y
le removal). For every FSTBO with ε2-
y
les there ex-ists an equivalent FSTBO without ε2-
y
les whi
h 
an be obtained by deter-minizing the underlying FSA (de�nition 169, p. 204).Theorem 12 (Existen
e of a topologi
al sort). Considering lemma 1 (p. 131)and theorem 11, for every FSTBO without generating ε-
y
les there exists atleast one equivalent FSTBO A su
h that, given A′ the FSA obtained from Aafter removing its output alphabet and transition outputs, there exists at leastone topologi
al sort for every ε-
losure-substru
ture (de�nition 106, p. 143)of X (A′).Re
all that the exe
ution ma
hine of a FSA is the FSA itself (de�ni-tion 135, p. 164); therefore, X (A′) = A′ sin
e A′ is a FSA.The de�nition of D for BSP is almost the same than the previous de�ni-nition of ∆ for BSP; for the 
ase of D, no input symbol is to be 
onsumed,
ε-transitions are 
onsidered instead of 
onsuming ones, and a BSP SES isderived from a single sour
e state and SB instead of from a BSP SES:De�nition 174 (BSP D). We rede�ne the FSTBO D fun
tion for BSP asfollows:

D : Q× B → (P(Q)× ZB)

D(qs, Bs) = (V ′, ζ ′B) : V
′ = {qt : ζ

′
B(qt) 6= ∅}∧

ζ ′B(qt) =
⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs), (10.16)that is, D(qs, Bs) returns a pair (V ′, ζ ′B) where ζ ′B is a fun
tion mapping ea
h
ε-rea
hable state qt from qs to the set of bla
kboardsFor the 
ase of BSP, we iteratively 
ompute the ε-
losure of a BSP SES
(V0, ζB0

) by 
omputing at ea
h iteration the ε-rea
hable states qt from a
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e state qi, and by in
reasing ζB(qt) with every bla
kboard gener-ated by ε-rea
hing qt. The state to be taken as qs for ea
h iteration is givenby a topologi
al sort of the 
orresponding Cε(V0)-substru
ture.De�nition 175 (BSP ε-
losure). Given a BSP SES (V0, ζB0
) of a FSTBO

A, A′ the FSA equal to A after removing its output alphabet and transitionoutputs, and x0, . . . , xn a topologi
al sort of the Cε(V0)-substru
ture of X (A),we rede�ne the ε-
losure for BSP as follows:
Cε(V0, ζB0

) = (Vn, ζBn
) : (V ′

i+1, ζ
′
Bi+1

) = D(xi, ζBi
(xi)) ∧ Vi+1 = Vi ∪ V ′

i+1∧

∀xt ∈ Vi+1[ζBi+1
(xt) = ζBi

(xt) ∪ ζ ′Bi+1
(xt)], i = 0 . . . n− 1. (10.17)Note that ESs xi and xt of A′ are in fa
t FSA states sin
e A′ is a FSA.In the equation,

• V ′
i+1 is the set of ε-rea
hable FSA states xt from xi,

• Vi+1 a

umulates every ε-rea
hed FSA state from V0 up to iteration
i+ 1 (the union of V0 with V ′

1 , V ′
2 , . . . , V ′

i+1),
• ζBi+1

maps ea
h state xt ∈ Vi+1 to the SB generated by ε-rea
hing xtfrom any state xs ∈ V0, where states xs have been rea
hed prior to the
omputation of the ε-
losure by generating SB ζB0
(xs), and

• ζ ′Bi+1
maps the states xt ∈ V ′

i+1) to the bla
kboards that have beengenerated by dire
tly ε-rea
hing xt from xi after having rea
hed xi bygenerating SBs ζBi
(xi).Theorem 13 (BSP ε-
losure equivalen
e). Let V be a non-BSP SES of aFSTBO A su
h that there exists a topologi
al sort of the Cε(V )-substru
tureof A, and let VB be a BSP SES of A, then the equivalen
e of V and VBimplies the equivalen
e of Cε(V ) and Cε(VB).Proof. Let V be a non-BSP SES of a FSTBO, VB = (V0, ζB0

) its equivalentBSP SES, (Q′, δ′) the Cε(V )-substru
ture and q0, . . . , qn a topologi
al sortof (Q′, δ′). By de�nition of ε-
losure-substru
ture, V 
ontains at least everystate in Q′ that is unrea
hable from any other state in Q′ through any pathwithin (Q′, δ′), and therefore so it does V0: if q is su
h an unrea
hable stateand it does not belong to V , then it 
annot be derived during the 
ompu-tation of the ε-
losure and therefore 
annot belong to Q′. By de�nition of
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al sort, q0 is su
h an unrea
hable state and therefore belongs to V0.
V1 
ontains every state in V0 plus every ε-rea
hable state from q0 by gen-erating at least one non-killing bla
kboard. If q1 is one of the unrea
hablestates then it belongs to V0 and therefore to V1 as well; otherwise q1 mustbe ε-rea
hable from q0 sin
e, by de�nition of topologi
al sort, it 
annot be
ε-rea
hed from any qi with i > 1. Following the same reasoning for Vi and
Vi+1 with i = 1 . . . n− 1, we dedu
e qi+1 ∈ Vi+1 and therefore Vn = Q′.Fun
tion ζB0

maps every state in V0 to a SB so that the equivalen
e iskept w.r.t. V . Sin
e q0 ∈ V0, it holds that {q0} × ζB0
(q0) = {(q0, b) ∈ V },that is, ζ0 is a 
omplete map for q0. If q1 is one of the unrea
hable states,

ζB0
(q1) 
ontains every bla
kboard that 
an be generated up to rea
hing q1,and therefore so it does ζB1

. Otherwise ζB0
may or may not be a 
ompletemap for q1, but it is sure that ζB1

is: by de�nition of topologi
al sort, every
ε-path rea
hing q1 from a state of V0 is 
ompletely traversed on
e every ε-derivation from q0 is 
omputed, and therefore every generated bla
kboardfor q1 has been added to ζB1

(q1). Following the same reasoning for Vi and
Vi+1 with i = 1 . . . n − 1, we dedu
e ζBi+1

is a 
omplete map for qi+1 with
i = 1 . . . n− 1, and therefore (Vn, ζBn

) is equivalent to Cε(V ).In se
tion 7.8 (p. 148) we gave an e�
ient de�nition of ε-
losure based on
ε-expansions; the main idea 
onsisted in using only the ESs in E = D(V )−Vas sour
e ESs in order to try to rea
h new ESs, sin
e the ESs in V had alreadybeen used as sour
e ESs and, hen
e, no new ESs would be derived from them.For the 
ase of BSP, D(qi, ζBi

) returns states and maps that are not alreadypresent in (Vi, ζBi
), hen
e there is no need for an ε-expansion-based de�nition.BSP requires to follow a topologi
al sort of the exe
ution ma
hine sub-stru
tures involved in the re
ognition of a string. The topologi
al sort 
anbe 
omputed as these substru
tures are explored, but it is ne
essary to know�rst whi
h substru
tures of the whole exe
ution ma
hine are going to be ex-plored. Exe
uting the ma
hine in order to �nd these substru
tures and thenexe
uting it again by means of BSP makes no sense. However, there are 
asesin whi
h it is sure that the whole exe
ution ma
hine will be explored, for in-stan
e when 
omputing the whole language of a trimmed ma
hine (withoutuseless states or transitions; a simple method for the generation of the lan-guage of a FSA will be given in the next 
hapter). One may 
ompute the setof outputs for a given ma
hine and input sequen
e as another kind of ma
hinere
ognizing this set, for instan
e a FSA for the 
ase of FSTBOs or an outputFPRTN for the 
ase of RTNBOs (see 
hapters 15 and 16). In parti
ular, the
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ase is of interest sin
e these output FPRTNs 
an be 
omputed inpolynomial time even when representing exponential languages. On
e thisma
hine is built, an output enumeration 
an be e�
iently 
onstru
ted by
omputing the represented language through BSP.



Chapter 11
Finite-state transdu
ers withstring output
We present in this se
tion FSTSOs as a spe
ial kind of FSTBO in whi
hbla
kboards are strings, output fun
tions append a symbol to the outputstring, and there are no killing bla
kboards. These FSTSOs 
orrespond tothe de�nition of letter transdu
er given, for instan
e, in Ro
he and S
habes(1997, p. 14). As we have seen in se
tion 10.7 (p. 199), other types of FSTs arepossible su
h as sequential transdu
ers (de�nition 166, p. 199), subsequentialtransdu
ers (S
hützenberger, 1977) and p-subsequential transdu
ers (de�ni-tion 167, p. 201), though all of them 
an be turned into an equivalent lettertransdu
er (
orollary 8, p. 201). Additionally, deterministi
 augmented let-ter transdu
ers (Garrido-Alenda and For
ada, 2002) are a more general typeof letter transdu
ers, due to the in
luded lookahead me
hanism for inputsegmentation. FSTSOs have multiple appli
ations (Mohri, 1997; Karttunen,2001) su
h as parsing (Silberztein, 1993), information extra
tion (Hsu andChang, 1999; Friburger and Maurel, 2002, 2004), phonology (Kaplan andKay, 1994; Karttunen, 1993), morphology (Karttunen et al., 1992; Kart-tunen, 1993), spelling 
orre
tion (O�azer, 1996), spee
h pro
essing (Mohriet al., 1996) and grammati
al inferen
e (On
ina et al., 1993; On
ina, 1998).We are mainly interested in parsing and information extra
tion by usingstring output for enri
hing texts with meta-information, for instan
e by in-serting XML (Bray et al., 2008) tags that expli
itly represent the synta
ti
211
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ture of the text senten
es or identify the information to be extra
ted.1XML tags 
an be e�
iently treated as output symbols instead of strings byrepresenting them as pointers to the states of a trie, as explained in 
hapter 9.De�nition 176 (FSTSO). A FSTSO (Q,Σ,Γ, δ, QI , F ) is a spe
ial type ofFSMs (de�nition 46, p. 121) whose set of labels Ξ is the set of input/outputpairs (Σ∪{ε})×(Γ∪{ε}), where Σ is a �nite input alphabet, Γ a �nite outputalphabet and ε the empty symbol. FSTSOs 
an be seen as FSAs augmentedwith string output or as a parti
ular type of FSTBO where
• fun
tions in Γ always perform the 
on
atenation of an output symbolto the 
urrent bla
kboard; for the sake of simpli�
ity, we 
onsider that
Γ 
ontains output symbols g rather than fun
tions on bla
kboards, andoutput labels g represent the 
on
atenation of a symbol g to the 
urrentbla
kboard,
• the identity fun
tion on bla
kboards idB 
on
atenates the empty symbol
ε to the 
urrent bla
kboard; we will therefore use ε instead of idB inorder to expli
itly state that a transition does not modify the 
urrentoutput,
• B = Γ∗, that is, bla
kboards are sequen
es of zero, one or more outputsymbols,
• BK = ∅, that is, there are no killing output strings, and
• b∅ = ε, that is, the empty bla
kboard is the empty string.11.1 TransitionsFSTSO transitions are a parti
ular 
ase of FSTBO transitions (se
tion 10.1,p. 186):
• 
onsuming transitions (de�nition 140, p. 186): Q× (Σ× (Γ∪{ε}))×Q,
• generating transitions (de�nition 141, p. 186): Q× ((Σ∪{ε})×Γ)×Q,1An example of grammar re
ognizing SMS 
ommand requests and delimiting phonenumber and message to send has been shown in �gure 10.1, p. 188
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• translating or substituting transitions (de�nition 142, p. 186): Q×(Σ×
Γ)×Q,
• deleting transitions (de�nition 143, p. 186): Q× (Σ× {ε})×Q,
• ε-transitions (de�nition 144, p. 186): Q× ({ε} × (Γ ∪ {ε}))×Q,
• inserting transitions (de�nition 145, p. 186): Q× ({ε} × Γ)×Q and
• ε2-transitions (de�nition 146, p. 186): Q× ({ε} × {ε})×Q.Substituting, deleting and inserting operations have been 
ommonly usedto give a measure of the di�eren
e between two strings: the edit distan
e,also 
alled the Levenshtein distan
e (Levenshtein, 1966); the edit distan
ebetween two strings is equal to the minimal number of symbol substitutions,deletions and insertions to be performed in order to transform one string intothe other. Edit distan
e is the basis of approximate string mat
hing. Anextensive dis
ussion on this subje
t 
an be found in Navarro (2001).11.2 Sequen
es of transitionsAs for FSTSO transitions, FSTSO paths are a parti
ular 
ase of FSTBOpaths. Every de�nition in se
tion 10.3 (p. 187) 
an be straightforwardlyadapted by repla
ing FSTBO transitions by their 
orresponding FSTSO tran-sitions, hen
e we will not give more details here.11.3 BehaviourDe�nition 177 (Exe
ution state). FSTSO exe
ution states are pairs (q, z) ∈

(Q,Γ∗).De�nition 178 (∆). The∆ fun
tion for FSTSOs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, zs),
• xt = (qt, zt), and
• d = qt ∈ δ(qs, (σ, g)) ∧ zt = zsg,



214 CHAPTER 11. FSTS WITH STRING OUTPUTwhere g ∈ Γ ∪ {ε}.De�nition 179 (D). The D fun
tion for FSTSOs is itself a simple dire
t-derivation fun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, zs),
• xt = (qt, zt), and
• d = qt ∈ δ(qs, (ε, g)) ∧ zt = zsg,where g ∈ Γ ∪ {ε}.Lemma 12 (Finite and in�nite ε-
losure). The ε-
losure of a FSTSO SESs

V is in�nite i� there exists an ES (q, z) within V or ε-rea
hable from an ESof V su
h that q is traversed by a generating ε-
y
le.Proof. Sin
e the FSTSO ε-
losure fun
tion is a parti
ular 
ase of the FSTBO
ε-
losure fun
tion, this proof is a parti
ular 
ase of proofs of lemmas 10(p. 189) and 11 (p. 191).Theorem 14. The ε-
losure is always �nite for FSTSOs without generating
ε-
y
les.Re
all that generating ε-
y
les allow for in�nite translations of �nite inputsequen
es, whi
h makes no sense for the 
ase of natural language grammars(e.g.: asso
iating an in�nite parse tree to a �nite senten
e).De�nition 180 (Initial and a

eptan
e SESs). Given the sets of initial anda

eptan
e states of a FSTSO, QI and F , its initial and a

eptan
e SESs are
(QI × {ε}) and (F × Γ∗), respe
tively.Note that, sin
e FSTSOs have no killing bla
kboards, there is no need torestri
t the outputs of a

eptor ESs.De�nition 181 (τ). We de�ne τ(A), the language of translations of a FSTSO
A, as the set of input/output sequen
e pairs (w, z) ∈ Σ∗ × Γ∗ su
h that w isre
ognized and translated into z by A, that is, the set of input/output sequen
epairs su
h that the whole 
onsumption of w rea
hes at least one a

eptan
eES from at least one initial ES through a path that generates z:

τ(A) = {(w, z) : (qf , z) ∈ ∆∗((QI × {ε}), w) ∩ (F × Γ∗)}. (11.1)



11.4. RECOGNIZED LANGUAGES 215De�nition 182 (ω). We de�ne ω(A,w), the translations of a word w for aFSTSO A, as the set of output sequen
es z ∈ Γ∗ su
h that (w, z) belongs tothe translations of A:
ω(A,w) = {z : (w, z) ∈ τ(A)}, (11.2)with τ(A) of the previous de�nition.11.4 Re
ognized languagesIn se
tion 10.5 (p. 193) we proved that the killing-bla
kboard me
hanism
ould be used in order to emulate Turing ma
hines. Sin
e FSTSOs de�neno killing bla
kboards, the same languages 
an be re
ognized by means ofFSTSOs than by means of FSAs.11.5 Translating a stringAlgorithms for string translation with FSTSOs, either by means of a breadth-�rst or a depth-�rst exploration, 
an be easily derived from the 
orrespondingFSTBO algorithms (algorithms 10.1 fstbo_translate_string and 10.5 fstbo-_depth_�rst_translate_string, pp. 197 and 199) by taking into a

ount thedi�eren
es between FSTSOs and FSTBOs listed in de�nition 176 (p. 212).These algorithms 
an be further improved by using the trie string manage-ment shown in se
tion 9.1 (p. 178) sin
e the involved 
on
atenations 
onsistin appending a symbol to a string, that is, one of the 
ases in whi
h triestring management is faster than normal string 
on
atenation.211.6 Language generationThe pro
edure for the generation of the language of a FSA des
ribed here ismeant to be extended in further 
hapters for other ma
hines, namely RTNs(
hapter 12) and output FPRTNs (
hapter 16). Output FPRTNs are a kindof �nite state ma
hines that e�
iently represent the set of outputs generatedby applying a RTNBO (a RTN with bla
kboard output). The language of2Provided that the number of �nal output strings to generate is small enough w.r.t.the number of partial output strings to 
ompute.
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h output FPRTNs is later to be generated in order to extra
t the e�e
tivelist of outputs. Moreover, this pro
edure will be the base for the extra
tionof the top-ranked output represented by a weighted output FPRTN (
hap-ter 18).The whole language represented by a FSA 
an be easily 
omputed bytransforming the FSA into a FSTSO as explained in the following theorem.Theorem 15 (Language generation). Let A = (Q,Σ, δ, QI , F ) be a FSA and
A′ = (Q′,Σ′,Γ, δ′, Q′

I , F
′) a FSTSO su
h that

• Q′ = Q, Q′
I = QI and F ′ = F ,

• Σ′ = ∅,
• Γ = Σ, and
• qt ∈ δ′(qs, (ε, σ)) i� qt ∈ δ(qs, σ),then it holds that

L(A) = ω(A
′, ε) (11.3)Proof. Let it be the FSA and FSTSO of the previous theorem, and an inputsequen
e w = σ1 . . . σl ∈ Σ∗. FSA A 
ontains a path of the form

p = p0(q0, σ1, q1)p1(q1, σ2, q2) . . . pl−1(ql−1, σl, ql), (11.4)where paths pi for i = 0 . . . l − 1 are ε-paths or empty paths, i� FSTSO A′
ontains a path of the form
p′ = p′0(q0, (ε, σ1), q1)p1(q1, (ε, σ2), q2) . . . pl−1(ql−1, (ε, σl), ql), (11.5)where paths p′i for i = 0 . . . l − 1 are ε2-paths or empty paths. Therefore, apath p within A 
onsumes w i� its equivalent path p′ within A′ translates

ε into w. Finally, p is an interpretation within A i� A′ is an interpretationwithin A′, and therefore A re
ognizes w i� A′ translates ε into w.Following this equivalen
e, any algorithm 
omputing the translations ofan input sequen
e for a FSTSO 
an be easily transformed into an algorithm
omputing the language of a FSA by 
onsidering every FSA transition asan ε-transition generating the original input, and 
omputing the translationsof ε instead of the translations of a given input sequen
e. Noti
e that re
-ognizing the empty string does not require to apply fun
tion ∆ and only
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losure on
e. Translator algorithms for language gen-eration 
an be redu
ed to the 
omputation of the ε-
losure of the initial SESplus the extra
tion of the outputs from the generated a

eptan
e ESs. Algo-rithm 11.1 fsa_language is su
h a simpli�ed adaptation of the breadth-�rstalgorithm 10.1 fstbo_translate_string adapted for string output.Algorithm 11.1 fsa_language(A) ⊲ L(A), eq. (136)Input: A = (Q,Σ, δ, QI , F ), a FSAOutput: L, the language of A1: V ← ∅2: E ← ∅3: for ea
h q ∈ QI do4: unconditionally_add_enqueue_es(V,E, (q, ε))5: end for6: while E 6= ∅ do7: (qs, w)← dequeue(E)8: for ea
h qt ∈ δ(qs, ε)) do9: add_enqueue_es(V,E, (qt, w))10: end for11: for ea
h (qt, σ) : qt ∈ δ(qs, σ)) do12: add_enqueue_es(V,E, (qt, wσ))13: end for14: end while15: L← ∅16: for ea
h (q, w) ∈ V : q ∈ F do17: add(L,w)18: end forThe domain of appli
ation of the resulting algorithm is derived from thedomain of appli
ation of the original algorithm: FSTSOs 
ontaining gener-ating ε-
y
les involved during the 
omputation of the ε-
losure are ex
ludedfrom the domain sin
e they lead to in�nite ε-
losures (see lemma 12, p. 214).Note that pruned FSAs leading to su
h FSTSOs by following the transfor-mation of theorem 15 (p. 216) are in fa
t FSAs with 
onsuming 
y
les, thatis, FSAs representing in�nite languages (see theorem 7, p. 164). As for theoriginal algorithm, this algorithm 
an also be improved with the trie stringmanagement shown in se
tion 9.1 (p. 178). BSP of FSTBOs (se
tion 10.9,p. 205) 
an also be applied here sin
e the substru
ture of the ma
hine to



218 CHAPTER 11. FSTS WITH STRING OUTPUTbe explored for language generation is known: the whole ma
hine, providedthat the ma
hine is trimmed (de�nition 118, p. 144).



Chapter 12Re
ursive transition networksRTNs (Woods, 1970) are �nite-state ma
hines equivalent to pushdown au-tomata (Oettinger, 1961; S
hützenberger, 1963; Evey, 1963; but see Hop
roftet al., 2000, 
hap. 6, p. 219) and CFGs (brie�y des
ribed in appendix B,page 405). A major advantage of RTNs over CFGs is the ability to merge
ommon parts of many CFG rules; 
onsequently, not only a greater e�-
ien
y of representation is a
hieved but more e�
ient algorithms of appli
a-tion sin
e separate pro
essing of 
ommon parts is also fa
tored out (Woods,1969, se
. 1.7.3, p. 40). As stated in appendix B, CFGs 
an be extended withregular expressions in order to also allow for a more 
ompa
t representation.However, the same advantages and disadvantages of FSAs over regular ex-pressions (
hapter 8, p. 161) take pla
e here for RTNs over extended CFGs(ECFGs): it is faster and less 
umbersome to manually write simple gram-mars as ECFGs with a text editor than as RTNs by means of some graphi
interfa
e (su
h as the ones of the Intex, Unitex and Outilex systems), but 
er-tain grammars 
an be more readable when graphi
ally represented as RTNsthan when represented as ECFGs with 
omplex regular expressions (see �g-ure 12.1).1 Indeed, the graphi
al representation of RTNs used in the Intex,Unitex and Outilex systems (the graphs des
ribed throught se
tions 7.2, 10.2and 12.2, pp. 124, 187 and 225, respe
tively) has been optimized in order togive a very intuitive view of natural language grammars.We present here RTNs as FSAs extended with a subroutine jump me
h-anism. This me
hanism allows for a better stru
turing of the grammar aswell as for reusing grammar fragments: subgrammars or grammar blo
ks are1Example extra
ted from (Paumier, 2004)219
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S → E |F E → acG G→ H |SdI
H → SdccH | f I → ccSdI | g F → bdJ
J → K | ccL K → ccSdK | g L→ SdccL | f(a) CFG

S → (ac((Sdcc)∗f + Sd(ccSd)∗g)) + (bd((ccSd)∗g + cc(Sdcc)∗f))(b) ECFG
S

S1 S2

S3 S4

S5

a

b

c

S
f

d

c
g(
) RTNFigure 12.1: Equivalent (a) CFG, (b) ECFG and (
) RTN.de�ned for lo
al stru
tures, and other subgrammars may be de�ned froma higher point of view by means of subroutine jumps to lower level sub-grammars (see �gure 12.3, p. 224, for a simple example of stru
tured RTN).Examples of lo
al stru
tures are Korean time adverbs (Jung, 2005), Fren
hlo
ation adverbs (Constant, 2003b), Fren
h measure expressions (Constant,2003b) and Greek frozen adverbs (Voyatzi, 2006). As for any pie
e of soft-ware, readability, reusability and well-stru
turing are 
ru
ial for the 
on-stru
tion and maintenan
e of large and 
omplex grammars, su
h as naturallanguage ones.2 We give a formal de�nition similar to the informal one givenby Woods (1970) but labelling 
all transitions with sets of states instead ofsingle states, whi
h fa
ilitates the de�nition of reverse RTNs. Woods (1969,se
. 3.3, p. 82) gives another de�nition of RTN whi
h is straightforwardlyderived from the de�nition of CFG, fa
ilitating the rede�nition of Earley's(1970) parser for the RTN 
ase.3 We derive in se
tion 12.10 an alternativede�nition of the Earley parser based on the FSA-like de�nition of RTNs andthe generi
 breadth-�rst algorithm of appli
ation of FSMs (se
. 7.9, p. 152).The appli
ation of a RTN may not only result in the a

eptan
e or thereje
tion of a senten
e but also in a des
ription of the senten
e stru
ture,2Extensive material on 
on
epts and prin
iples of software design 
an be found inPressman (2001, 
hap. 13, p. 335)3The Earley parser was originally 
on
eived for the appli
ation of CFGs; see appendix C(p. 411) for a brief des
ription and a dis
ussion on the original Earley parser.



12.1. TRANSITIONS 221represented as the path or paths that allow to re
ognize the senten
e. In this
ase, grammar and senten
e stru
tures are analogous. However, this preventsfrom possible restru
turings of the grammar that may boost the ma
hineappli
ation, su
h as the weak Greiba
h normal form for RTNs (Paumier,2004),4 sin
e di�erent grammar stru
tures yield di�erent senten
e stru
turesin spite of not altering the set of a

epted senten
es. We have 
hosen torepresent senten
e stru
tures as output XML tags bounding the senten
e
omponents instead of subgrammar labels (see �gure 13.2, p. 259). Hen
e,it is not required to expli
itly de�ne subgrammars nor subgrammar labels(analogous to CFG non-terminals); we 
all a subgrammar by spe
ifying its setof subinitial states. Let this set be Qc, ea
h subgrammar is impli
itly de�nedas the ma
hine substru
ture rea
hable from Qc, in
luding Qc and ex
ludingthe substru
tures of other 
alled subgrammars. We permit subgrammars toshare states and transitions in order to support grammar optimizations su
has the weak Greiba
h normal form. However, RTN subgrammars are intendedto be disjoint before applying su
h optimizations for the sake of modularity.Common parts of subgrammars 
ould be avoided by simply repli
ating su
hparts, but that would imply a loss of e�
ien
y.De�nition 183 (RTN). A RTN (Q,Σ, δ, QI , F ) is a FSA (Q,Σ, δ, QI , F )(de�nition 128, p. 162) extended with a subroutine jump me
hanism: its setof transition labels Ξ takes its elements from (Σ ∪ {ε}) ∪ P(Q), where
• labels of the form Σ ∪ {ε} have the same interpretation as in the 
aseof FSAs, and
• labels of the form P(Q) represent subroutine jumps or 
alls to state sets(de�nition 187 in the next se
tion).12.1 TransitionsDe�nition 184 (Consuming transition). Following de�nition 51 (p. 123),transitions in Q×Σ×Q, that is, whi
h 
onsume an input symbol, are 
alled
onsuming transitions.4This weak Greiba
h normal form is an adaptation of the ECFG Greiba
h normalform (Albert et al., 1998), whi
h in turn is an extension of the CFG Greiba
h normal form(Greiba
h, 1965; Ko
h and Blum, 1997).
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orrespond to terminal symbols within the body ofCFG produ
tion rules (e.g.: produ
tion `N → garden' of CFG of �gure 12.2and transition (qN0
,%garden, qN1

) of �gure 12.3).De�nition 185 (Expli
it ε-transition). Following de�nition 53 (p. 124),transitions in Q × {ε} × Q, that is, whi
h do not 
onsume input, are 
alledexpli
it ε-transitions.
ε-transitions 
orrespond to ε symbols within the body of CFG produ
tionrules.De�nition 186 (Impli
it ε-transition). Within the 
ontext of RTNs there aretwo kinds of impli
it ε-transitions, that is, transitions that are impli
itly de-�ned by the RTN and whi
h do not require to 
onsume input when traversed:push transitions (de�nition 189) and pop transitions (de�nition 190).De�nition 187 (Call transition). Call transitions are transitions of the form

(qs, Qc, qt) ∈ Q×P(Q)×Q and represent a subroutine jump to a set of states
Qc, that is, the re
ursive appli
ation of the whole RTN taking Qc as set ofinitial states before bringing the ma
hine to state qt. The exa
t behaviour of
all transitions is governed by the RTN impli
it ε-transitions.Call transitions 
orrespond to non-terminal symbols within the body ofCFG produ
tion rules (e.g.: non-terminal symbol `PP ' in produ
tion `VP →
VP PP ' of CFG of �gure 12.2 and transition (qVP1

, qPP0
, qVP3

) of �gure 12.3).De�nition 188 (Subinitial set of states). We say a subset of states Qc of ama
hine A is a subinitial set of states (SS) of A i� A 
ontains at least one
all to Qc.Subinitial SSs 
orrespond to CFG non-terminals expanding into one ormore right-hand sides; every rule left-hand side with the same non-terminalsymbol is 
ondensed into a single subinitial SS (e.g.: heads of produ
tions`VP → VP PP ' and `VP → V NP ' of CFG of �gure 12.2 and subinitial SS
{qVP0

} of �gure 12.3).De�nition 189 (Push transition). Push transitions are impli
it ε-transitionswhi
h take pla
e ea
h time a state having at least one outgoing 
all transitionis rea
hed: for ea
h 
all transition (qs, Qc, qr), and for ea
h state qc ∈ Qc,the ma
hine impli
itly de�nes a push transition (qs, qr�, qc) whi
h brings thema
hine from sour
e state qs to 
alled state qc, without input 
onsumption.Additionally, the transition pushes return state qr onto the sta
k, a
tion thatwe represent as qr�. Push transitions are subroutine jump initializers.
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VP → VP PP NP → DET N PP → PREP NP

VP → V NP NP → NP PP

N → monkey V → watch PREP → in
N → telescope PREP → with
N → garden DET → theFigure 12.2: A left-re
ursive CFG representing a toy grammar whi
h re
ognizessenten
e �Wat
h the monkey with the teles
ope in the garden�, among others, withnon-terminal VP as the grammar's start symbol; VP stands for verb phrase, NPfor noun phrase and PP for prepositional phrase.De�nition 190 (Pop transition). Pop transitions are impli
it ε-transitionswhi
h take pla
e ea
h time an a

eptan
e state qf ∈ F is rea
hed duringa subroutine jump: for ea
h pair of states (qf , qr) ∈ F × Q, the ma
hineimpli
itly de�nes a pop transition (qf , qr�, qr) whi
h pops state qr from thesta
k and brings the ma
hine to state qr, with qr as the state at the top ofthe sta
k.De�nition 191 (Realization of 
all transitions). A 
all transition (qs, Qc, qr),or simply a 
all to Qc, is realizable i� there exists at least one realizable path

p starting with one of the 
orresponding transitions pushing qr onto the sta
kand ending with a transition popping the previously pushed qr from the samesta
k position. If p exists then we say 
all to Qc is realizable through path p.De�nition 192 (Call 
ompletion). During the pro
ess of appli
ation of ama
hine with 
alls, we say a 
all is un
ompleted or unresolved when a pathhas been exe
uted up to realizing the 
orresponding push transitions, but notup to realizing any of the 
orresponding pop transitions; we 
all the pro
essof realizing a pop transition a 
all 
ompletion or resolution.De�nition 193 (ε-
all). We say a 
all to a subinitial SS Qc is an ε-
all, adeletable 
all or an ε-realizable 
all i� it is realizable through an ε-path (seede�nition 69, p. 129).These ε-
alls 
orrespond to deletable non-terminals within the bodies ofCFG produ
tion rules.
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%in%withFigure 12.3: Left-re
ursive RTN equivalent to CFG of �gure 12.2.
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with(g) PREPFigure 12.4: Unitex set of graphs equivalent to CFG of �gure 12.2.
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al representationUnitex and Intex graphs represent 
alls to subgraphs as subgraph identi�erswith shaded ba
kground (see �gure 12.4). We represent 
all transitions asdashed arrows labeled with the 
alled subinitial SS (see �gure 12.3).There are 
ases in whi
h it 
an be useful to expli
itly represent impli
ittransitions (push and pop transitions for the 
ase of RTNs), for instan
ewhen graphi
ally representing an exe
ution tra
e for the visualization of theexe
ution paths generated by an algorithm of appli
ation of a ma
hine (e.g.:the exe
ution tra
e in �gure 12.7, p. 238). ESs and transitions between ESsare represented as for states and transitions between states of a ma
hine,though labels of ESs may be stru
tures rather than single elements. Weusually mark useless ESs (those who do not derive any a

eptan
e ES) withtwo 
rossed lines. Push transitions are represented as dotted arrows, and poptransitions as thi
k arrows. Both types of transitions are labeled with thereturn state of the 
all they implement, that is, the pushed state for the 
aseof push transitions and the popped state for the 
ase of pop transitions. Forthe latter 
ase, sin
e the popped and target states are the same, the transitionlabel 
an be omitted. For the 
ase of algorithms that use other more 
omplexsubroutine jump me
hanisms than the one based on a sta
k, su
h as theEarley-like ones (the Earley RTN 
ase will be des
ribed in se
tion 12.10),push and pop transitions may be labeled with stru
tures more 
omplex thanthe return state (e.g.: exe
ution tra
e of �gure 12.7, p. 238).12.3 Sequen
es of transitionsDe�nition 194 (Expli
it path). An expli
it path is a path 
omposed by ex-pli
it transitions (de�nition 185, p. 222).Note that expli
it paths are not ne
essarily realizable sin
e 
all transitionsmay not be realizable.De�nition 195 (ε-path). Following de�nition 69 (p. 129), within the 
on-text of RTNs, an ε-path is a path that 
an be traversed without input 
on-sumption, that is, whose transitions are either impli
it ε-transitions, expli
it
ε-transitions or ε-
all transitions.De�nition 196 (Expli
it ε-path). An expli
it ε-path is both and ε-path andan expli
it path.
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y
le). Let p be a path having qs as start state, we say
p is a 
all 
y
le i� its last transition is a push transition having qs as targetstate and, during the whole 
y
le, the pushed state is never popped from thatposition of the sta
k.De�nition 198 (Call ε-
y
le). A 
all ε-
y
le is both an ε-path and a 
all
y
le.De�nition 199 (Re
ursive 
all). We say a 
all to a SS Qc within a RTN Ais re
ursive i� there exists at least one 
all 
y
le within A starting at a stateof Qc.RTN re
ursive 
alls 
orrespond to CFG produ
tions of the form `A →
αAβ'.De�nition 200 (Left-re
ursive 
all). We say a 
all to a SS Qc within a RTN
A is left-re
ursive i� there exists at least one 
all ε-
y
le within A startingat a state of Qc.RTN left-re
ursive 
alls 
orrespond to CFG produ
tions of the form `A→
Aα' (e.g.: produ
tion `VP → VP PP ' of CFG of �gure 12.2 and 
all transi-tion (qVP0

, qVP0
, qVP1

) of �gure 12.3).De�nition 201 (Right-re
ursive 
all). A 
all to a SS Qc is right-re
ursivei� it is realizable through a path (qs, qr�, qc)pp
′p′′, where p is a 
all 
y
le, p′is a path 
ompleting 
all to Qc and p′′ is an ε-path.RTN right-re
ursive 
alls 
orrespond to CFG produ
tions of the form

A→ αA.De�nition 202 (Deletable re
ursion). We say a path 
ompleting a 
all is adeletable re
ursion i� it implies the 
all to be both left- and right-re
ursive,that is, it is a path having the same form than the one of the previous de�-nition but p is not only a 
y
le but also an ε-
y
le.RTN deletable re
ursions 
orrespond to CFG produ
tions of the form
A → A; we 
all them deletable sin
e they do not 
ontribute anything tothe grammar des
ription: saying that the stru
ture of A is equal to its ownstru
ture does not 
larify what A 
an be made of.
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ursive ma
hine). We say a ma
hine is re
ursive i� it
ontains at least one re
ursive 
all, left-re
ursive i� it 
ontains at least oneleft-re
ursive 
all, and right-re
ursive if it 
ontains at least one right-re
ursive
all.De�nition 204 (Re
ursion degree). The re
ursion degree of a ma
hine with
all transitions is equal to the maximum number of useful self-
on
atenationsor 
onse
utive traversals of its 
all 
y
les.12.4 Substru
turesDe�nition 205 (Subma
hine). Let Qc be a set of initial states of a ma
hineor one of its subinitial SSs, we de�ne its Qc-subma
hine as the ma
hinesubstru
ture 
omposed by Qc and every state and transition of every expli
itpath starting at a state of Qc.A RTN subma
hine 
orresponds to a Unitex graph or to a subset ofprodu
tions of a CFG 
ontaining every produ
tion having a parti
ular non-terminal as head (e.g.: the set of produ
tions of CFG of �gure 12.2 startingwith VP , graph VP of �gure 12.4 and {qVP0
}-subma
hine of �gure 12.3).De�nition 206 (Axiom subma
hine). We de�ne the axiom subma
hine ofa ma
hine A as its Qc-subma
hine su
h that Qc is the set of initial statesof A. Let A represent a grammar, the axiom subma
hine 
orresponds to thegrammar's axiom or start symbol (see de�nition 288 in appendix B, p. 405).12.5 BehaviourDe�nition 207 (Exe
ution state). RTN ESs are pairs (q, π) ∈ (Q × Q∗)where π is a sta
k of return states, λ being the empty sta
k.The realization of RTN transitions falls into the FSM general 
ategoriesof pure 
onsuming transitions and pure ε-transitions (de�nitions 87 and 88,pp. 133 and 134, respe
tively) ex
ept for push, pop and 
all transitions.De�nition 208 (Push transition realization). A push transition (qs, qr�, qc)is realizable from ES (qs, π), for any sta
k π, and its realization brings thema
hine to ES (qt, πqr).



228 CHAPTER 12. RECURSIVE TRANSITION NETWORKSDe�nition 209 (Pop transition realization). A pop transition (qs, qr�, qc) isrealizable from ES (qs, π) i� π = π′qr and qs ∈ F , and its realization bringsthe ma
hine to ES (qr, π
′).Sin
e the realization of 
all transitions depends on the realization of pushand pop transitions, as well as on the paths transitively 
onne
ting pushtransitions to pop transitions, we rather dedu
e whether a 
all transition 
anor 
annot be realized rather than adding a separate de�nition.Lemma 13 (Call transition realization). A 
all transition (qs, Qc, qr) is real-izable from an ES (qs, π) by bringing the ma
hine to ES (qr, π), for any sta
k

π, i� there exists at least one expli
it path p starting at a state qc ∈ Qc andending at an a

eptor state su
h that p is 
omposed by
• either 
onsuming transitions or expli
it ε-transitions, or
• either 
onsuming transitions, expli
it ε-transitions or 
all transitionsrealizable from the ES rea
hed just before ea
h 
orresponding 
all,the se
ond 
ase requiring for ea
h 
all transition at least one �nite sequen
eof re
ursively realizable 
alls so that the last 
all of the sequen
e falls into the�rst 
ase.Proof. Let t = (qs, Qc, qr) be a 
all transition of a RTN A, and

p = (qs, qr�, qc)p
′(qs, qr�, qr)a path inside A with qc ∈ Qc. The push transition is realizable by pushing

qr onto the sta
k. If p′ is 
omposed only by 
onsuming transitions and/orexpli
it ε-transitions then it is also realizable. The pop transition is realizableby popping the previously pushed state qr sin
e p′ does not modify the sta
k.Let p′ be 
omposed by a unique 
all transition t′ su
h that t′ is realizablethrough a path
p′ = (q′s, q

′
r�, q

′
c)p

′′(q′s, q
′
r�, q

′
r).If p′′ is 
omposed only by 
onsuming transitions and expli
it ε-transitions,the realization of t′ falls into the �rst 
ase. The realization of t′ momentarilymodi�es the sta
k by pushing a return state but popping it again, thusthe same reasoning than for the �rst 
ase applies here for the realizationof t. If t′ is realizable through another 
all whi
h is 
ompletable throughanother 
all and so on re
ursively, t is realizable as long as the last 
all is
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ompletable through a path only 
omposed by 
onsuming transitions and/orexpli
it ε-transitions. Sin
e the realization of ea
h 
all leaves the sta
k asbefore the 
all, a path 
omposed by any sequen
e of 
alls is realizable as longas every 
all is individually realizable, the presen
e of 
onsuming transitionsand expli
it ε-transitions in between not modifying this fa
t sin
e they arealways realizable and do not modify the sta
k. Obviously, for any other 
ases
t is not realizable, either be
ause there is no path rea
hing an a

eptan
e statewhi
h would allow for the realization of the 
orresponding pop transition orbe
ause the path traverses a non-realizable 
all transition.De�nition 210 (∆). The ∆ fun
tion for RTNs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, π),
• xt = (qt, π), and
• d = qt ∈ δ(qs, σ).De�nition 211 (D). The D fun
tion for RTNs is 
omposed by 3 simpledire
t-derivation fun
tions on SESs (de�nition 98, p. 137), Dε with
• xs = (qs, π),
• xt = (qt, π), and
• d = qt ∈ δ(qs, ε),

Dpush with
• xs = (qs, π),
• xt = (qc, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,and Dpop with
• xs = (qf , πqr),
• xt = (qr, π), and
• d = qf ∈ F .
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losure). The ε-
losure of a RTN SES V is in�nite ifthere exists an ES (q, π) within V or ε-rea
hable from an ES of V su
h that
q has an outgoing left-re
ursive 
all transition.Re
ursive-des
ent parsers applying left-re
ursive CFGs may fall into in�-nite loops (Aho et al., 1986, se
. 2.4, p. 47). Sin
e RTNs and CFGs are equiv-alent, the same problem arises for the 
ase of the base top-down breadth-�rstand top-down depth-�rst a

eptors (algorithms 7.5 and 7.8, pp. 153 and 157)when adapted for the appli
ation of RTNs.Proof. The proof is analogous to the one for FSTBOs with generating ε-
y
les(proof of lemma 10, p. 189). Left-re
ursive 
alls behave as generating ε-
y
les:it is possible to traverse in�nite times and without 
onsuming input thesequen
e of states that form the 
y
le, but for ea
h 
y
le traversal the sta
kof return states will be in
remented with at least one new return state fromthe left-re
ursive 
all �as happened with the in
reasing output sequen
e;hen
e, ea
h su

essive traversal of the 
y
le will generate new ESs with largersta
ks.Lemma 15 (Finite ε-
losure). The ε-
losure of a RTN SES V is �nite i�there is no ES (q, π) within V or ε-rea
hable from V su
h that q has anoutgoing left-re
ursive 
all transition.Proof. As we have seen for FSAs, ε-paths having only expli
it ε-transitions donot yield in�nite SESs sin
e every ES derived through an expli
it ε-transition
(qs, ε, qt) from an ES (qs, π) is of the form (qt, π) ∈ (Q × {π}), whi
h is a�nite set. Even if the ε-path is a 
y
le, during the �rst path traversal everypossible ES will be added to the ε-
losure and further traversals will not addnew ESs. The 
ompletion of a non-left-re
ursive 
all through an ε-path doesnot produ
e an in�nite SES either. Let (q0, π) ∈ V0 be an ES from where we�nd a 
all transition (q0, Qc, qn) that is 
ompleted through an ε-path

(q0, qn�, q1), (q1, ε, q2) . . . (qn−2, ε, qn−1), (qn−1, qn�, qn), (12.1)that is, an ε-path whose �rst transition is a push transition initiating the 
all(q1 ∈ Qc), the last one is a pop transition that returns from the 
all, and themiddle transitions are expli
it ε-transitions; following the iterative ε-
losure
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(q0, π) ∈ V0

(q1, πqn) ∈ V1

(q2, πqn) ∈ V2...
(qn−1, πqn) ∈ Vn−1

(qn, π) ∈ Vn.As we 
an see, every ES produ
ed during the 
all belongs to the domain
(Q× πqn), whi
h is also �nite even if the ε-path that 
ompletes the 
all has
ε-
y
les. As well, if the ε-path 
ontains a �nite su

ession of 
alls that arealways 
ompleted by means of expli
it ε-paths, the total number of ESs isalso �nite sin
e ea
h 
all produ
es a �nite number of ESs. If any of these
alls 
an also be 
ompleted through a non-left-re
ursive sub
all whi
h is
ompleted through an expli
it ε-path and/or su

essive non-left-re
ursive
alls, the number of ESs is �nite as well sin
e the number of ESs given bythe sub
all is �nite. Any �nite number of sub
alls will produ
e as well a �nitenumber of ESs. Finally, non-left-re
ursive 
alls that 
annot be 
ompleted bymeans of an ε-path give also a �nite number of ESs, sin
e it is a sub
ase ofnon-left-re
ursive 
alls that 
an be 
ompleted through ε-paths (the ε-
losureexplores some part of the 
alls but not up to 
ompleting them).Theorem 16. Following lemmas 14 and 15, the ε-
losure is always �nite fornon-left-re
ursive RTNs.De�nition 212 (Initial and a

eptan
e SESs). Given the sets of initial anda

eptan
e states of a RTN, QI and F , its initial and a

eptan
e SESs are
(QI × {λ}) and (F × {λ}), respe
tively, with λ the empty sta
k.De�nition 213 (Exe
ution ma
hine). The exe
ution ma
hine of a RTN A isde�ned as for the generi
 exe
ution ma
hine (de�nition 105, p. 142) withoutany other kind of transitions than pure 
onsuming transitions and pure ε-transitions, thus its de�nition is equal to that of a FSA though possibly havingan in�nite set of states, transitions and a

eptan
e states.As for the FSTBO 
ase (de�nition 158, p. 192), the exe
ution ma
hine ofa RTN does not require to de�ne 
all, push or pop transitions sin
e they arerepla
ed by pure ε-transitions that point to states whi
h already in
lude theresulting sta
k after pushing or popping the 
orresponding return state.



232 CHAPTER 12. RECURSIVE TRANSITION NETWORKSDe�nition 214 (L). Following de�nition 107 (p. 143), we de�ne L(A), thelanguage a

epted by a RTN A, as
L(A) = {w ∈ Σ∗ : ∆∗((QI × {λ}), w) ∩ (F × {λ}) 6= ∅}. (12.2)Lemma 16 (In�nite re
ursion degree). The re
ursion degree of a RTN havingat least one useful 
all 
y
le is in�nite.Proof. Let A be a RTN 
ontaining the stru
ture of �gure 12.5 so that

p = pa (qs1, qr1�, qc1) pb (qs2, qr2�, qc1) pc (qf3 , qr2�, qr2) pd (qf2 , qr1�, qr1) peis a path within A, path pb (qs2 , qr2�, qc1) is a 
all 
y
le, and the realizationof p produ
es the sequen
e of ESs
(q0, λ) . . . (qs1 , π1)

(qc1, π1qr1) . . . (qs2 , π1qr1π2)

(qc1 , π1qr1π2qr2) . . . (qf3 , π1qr1π2qr2)

(qr2 , π1qr1π2) . . . (qf2 , π1qr1)

(qr1, π1) . . . (qf1 , λ).Path p is an interpretation within A sin
e (q0, λ) ∈ XI and (qf1 , λ) ∈ XF .By suppressing the 
all 
y
le we obtain path
p0 = pa (qs1 , qr1�, qc1) pc (qf3 , qr1�, qr1) pe,whose realization produ
es the sequen
e of ESs

(q0, λ) . . . (qs1 , π1)

(qc2, π1qr1) . . . (qf3 , π1qr1)

(qr1, π1) . . . (qf1 , λ).As for p, path p0 is an interpretation within A. By self-
on
atenating the
all 
y
le k ≥ 1 times we obtain the in�nite family of paths
pk = pa (qs1, qr1�, qc1) (pb (qs2, qr2�, qc1))

k pc (qf3 , qr2�, qr2)

(pd (qf2 , qr2�, qr2))
k−1 pd (qf2 , qr1�, qr1) pe
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q0 . . . qs1 qr1 . . . qf1

{. . . , qc1, . . .}

pa, pushes π1 pe, pops π1

qc1 . . . qs2 qr2 . . . qf2
. . .

qf3

{. . . , qc1, . . .}

pb, pushes π2 pd, pops π2

p
cFigure 12.5: RTN generi
 stru
ture 
ontaining in�nite interpretations due tore
ursive 
all to {. . . , qc1 , . . .}.The realization of these paths produ
e the following family of sequen
es ofESs. . .

(q0, λ) . . . (qs1, π1)

(qc1 , π1qr1) . . . (qs2, π1qr1π2)

(qc1, π1qr1π2qr2) . . . (qs2, π1qr1π2qr2π2)

(qc1 , π1qr1π2qr2π2qr2) . . . (qs2, π1qr1π2qr2π2qr2π2)...
(qc1 , π1qr1(π2qr2)

k−1) . . . (qs2, π1qr1(π2qr2)
k−1π2)

(qc1, π1qr1(π2qr2)
kπ2qr2) . . . (qf3 , π1qr1(π2qr2)

kπ2qr2)

(qr2 , π1qr1(π2qr2)
kπ2) . . . (qf2 , π1qr1(π2qr2)

k)

(qr2 , π1qr1(π2qr2)
k−1π2) . . . (qf2 , π1qr1(π2qr2)

k−1)...
(qr2 , π1qr1π2) . . . (qf2 , π1qr1)

(qr1 , π1) . . . (qf1 , λ),. . . and therefore paths pk 
onstitute an in�nite family of interpretationswithin A.
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ursion degrees). The re
ursion degree of a RTNis either zero or in�nite.In 
hapter 15 we will present other kind of RTNs �FPRTNs� having anot so obvious set of possible re
ursion degrees: zero, one or in�nite. Theproof for the 
ase of FPRTNs is an extension of the proof for the 
ase ofRTNs.Theorem 18 (Cardinality of the interpretation set). Given the previoustheorem and the theorems 4 (p. 145) and 6 (p. 164) on the 
ardinality ofthe interpretation set for FSMs and for FSAs, the number of interpretationsof a RTN is in�nite i� it 
ontains at least one useful non-
all 
y
le or itsre
ursion degree is not zero.Theorem 19 (Cardinality of the language). Given theorem 5 (p. 146), sin
eFSAs allow for the realization of any of its transitions, the language of aRTN is in�nite i� it 
ontains at least one useful 
onsuming 
y
le, whi
h inthis 
ase 
an be a 
all 
y
le as well.12.6 Reverse RTNDe�nition 215 (Reverse RTN). Let A be a RTN (Q,Σ, δ, QI , F ) with dis-joint subma
hines; we de�ne AR, the 
anoni
al reverse of A, as a RTN
(Q,Σ, δ′, Q′

I , F
′) su
h that

• Q′
I is the set of a

eptan
e states of A's axiom subma
hine,

• F ′ is the union of QI and every subinitial state of A,
• AR 
ontains a 
onsuming transition or expli
it ε-transition t i� A 
on-tains transition tR, and
• AR 
ontains a 
all transition (qs, Qc, qt) with Fc as the set of a

eptan
estates of its Qc-subma
hine i� A 
ontains a 
all transition (qt, Fc, qs)with Qc as the set of a

eptan
e states of its Fc-subma
hine.Push and pop transitions are impli
itly de�ned by the previous 
all transi-tions.Lemma 17 (Reverse RTN). Let A be a RTN with disjoint subma
hines, ARis a reverse of A.
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ase of words whi
h are re
ognized by means ofpaths 
ontaining FSA transitions, that is, without subroutine jumps, is thesame than for FSAs (proof of lemma 9, p. 165). Let t = (qs, Qc, qt) be a 
alltransition within A su
h that t is realizable through a path
(qs, qt�, qc)p(qf , qf�, qt)with qc ∈ Qc, and p does not 
ontain push, pop or 
all transitions; RTN AR
ontains a 
all (qt, Fc, qs) with Fc equal to the set of a

eptan
e states of the

Qc-subma
hine of A, and this 
all is realizable through a path
(qt, qs�, qf )p

R(qc, qs�, qs)that 
onsumes wR. No other words are re
ognized by a 
all to Fc due to thereversal of other subma
hine than the Qc-subma
hine sin
e subma
hines aredisjoint. Note that given two non-disjoint subma
hines of A for Qc and Q′
cwith Fc and F ′

c as sets of a

eptor states, reversed subma
hines Fc and F ′
c of

AR may rea
h states that are not rea
hable by the non-reversed subma
hinesof Qc and Q′
c. If p 
ontains a �nite re
ursion degree n of 
alls, the samereasoning is to be applied n re
ursive times. Finally, if A re
ognizes a word

w through a path p starting at a state qs ∈ QI and ending at a state qt ∈ F ,then AR re
ognizes wR through a path p′ starting at qt ∈ Q′
I and ending at

qs ∈ F ′. Consequently, LR(A) = L(AR) is true.As stated before, non-disjoint subma
hines 
an be made disjoint by repli-
ating their shared substru
tures, thus any RTN 
an be reversed as explainedabove. Anyway, we will not need to reverse any ma
hine with non-disjointsubma
hines sin
e the grammars we will treat are built as sets of disjointUnitex's graphs.12.7 Re
ognizing a stringThe base breadth-�rst and depth-�rst a

eptor algorithms 7.5 (p. 153) and 7.8(p. 157) 
an be adapted for RTNs as explained in se
tion 7.9 (p. 152), butex
luding left-re
ursive RTNs from their domain of appli
ation in order toavoid in�nite ε-
losures. The di�eren
e between RTNs and the simplestFSMs, FSAs, is the subroutine jump me
hanism, whi
h is implemented byadding a 
ouple of ε-moves (push and pop transitions) that operate on asta
k. The main modi�
ation to be done to the base breadth-�rst a

eptor
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omputation of the ε-
losure, whi
h we show in algorithm 12.1rtn_interla
ed_e
losure. The adaptation of the depth-�rst base a

eptor
an be straightforwardly performed by following the de�nition of D(V ) forRTNs.Algorithm 12.1 rtn_interla
ed_e
losure(V,E) ⊲ Cε(V )Input: V , the SES whose ε-
losure is to be 
omputed
E, the queue of unexplored ESs 
ontaining every ES in VOutput: V after 
omputing its ε-
losure
E after emptying it1: while E 6= ∅ do2: (qs, π)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS3: for ea
h qt ∈ δ(qs, ε) do4: add_enqueue_es(V,E, (qt, π))5: end for
⊲ PUSH-TRANSITIONS6: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do7: for ea
h qc ∈ Qc do8: add_enqueue_es(V,E, (qc, πqr))9: end for10: end for
⊲ POP TRANSITIONS11: if π = π′qr ∧ qs ∈ F then12: add_enqueue_es(V,E, (qr, π

′))13: end if14: end whileFigure 12.7 is a graphi
al representation of the exe
ution tra
e of thebreadth-�rst a

eptor algorithm adapted for RTNs, for RTN of �gure 12.6and input aabb. As we 
an see in the exe
ution tra
e, the number of 
on-
urrent explorations of the RTN doubles ea
h time an a is 
onsumed. Eventhough this number is redu
ed ea
h time a b is 
onsumed, the number ofgenerated ESs in
reases exponentially w.r.t. the length of input anbn.5 De-terminizing the RTN would have avoided this dupli
ation, keeping a linear5This is a minimal theoreti
al 
ase whose purpose is to illustrate the problem of theexponential output generation; an example of exponential output generation for the 
aseof natural language grammars has been given in se
tion 1.5.4, p. 19.
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q0

q1 q2

q3 q4

q5
a

a

{q0}

{q0}

b

b

εFigure 12.6: Non-deterministi
 RTN with two 
alls whose 
omputation 
an befa
tored out; solid transitions represent either 
onsuming transitions or expli
it
ε-transitions, and dashed transitions represent 
all transitions.relation between the number of ESs and the input length. However, deter-minization may be too 
omplex or even impossible, for instan
e for ma
hineson an alphabet of predi
ates rather than symbols or ma
hines with output(this has been dis
ussed in se
tions 8.5 and 10.7, pp. 166 and 199). As-suming that the leftmost transitions of ea
h ES within the tra
e are the�rst transitions of ea
h ES, the depth-�rst a

eptor will just generate theleftmost exe
ution path; therefore, its exe
ution 
ost will be linear for this
ase. Note that for other 
ases the algorithm may explore an exponentialnumber of paths 
onsuming some input pre�x before �nding the �rst inputinterpretation, hen
e its asymptoti
 
ost is yet exponential.Both a

eptor algorithms 
an be further improved by representing sta
ksas pointers to the states of a trie of RTN state sequen
es, as explained inse
tion 9.1 (p. 178).Left re
ursion allows for a natural way of modelling many natural lan-guage stru
tures (e.g.: see CFG in �gure 12.2, p. 223), but the algorithm wehave presented here is not able to pro
ess left-re
ursive RTNs. There existalgorithms that transform any left-re
ursive CFG into an equivalent non-left-re
ursive CFG; the 
lassi
 algorithm 
an be found in Aho et al. (1986, p. 176),and a more e�
ient algorithm in Moore (2000). Sin
e RTNs and CFGs areequivalent formalisms, left-re
ursion removal is also possible for RTNs (see�gures 12.8 and 12.9). In order to deal with left re
ursion, a RTN pro
essingsystem may simply forbid left-re
ursive RTNs �the solution adopted by theUnitex system� or implement some algorithm for the removal of left re
ur-sion. However, we may be interested not only in the re
ognition of a senten
ebut in determining the senten
e's stru
ture (identifying the senten
e's 
on-stituents and groupings), whi
h might be 
oded within the RTN as a pre
isesequen
e of 
all transitions. In this 
ase, if we transform the grammar in or-der to remove left re
ursion then we modify the sequen
e of subroutine 
alls
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Figure 12.7: Exe
ution tra
e of the RTN breadth-�rst a

eptor algorithm for the RTN of �gure 14.1 and input aabb.Solid, dotted and bold tra
e transitions 
orrespond, respe
tively, to the exploration of the RTN expli
it transitions,push transitions and pop transitions.
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ognizing the senten
es and therefore the resulting senten
e stru
ture. An-other possibility is to extend RTNs for output generation �the obje
t of thenext 
hapter� and to 
ode the senten
e stru
tures as output tags inserted inthe right pla
es, for instan
e XML tags bounding ea
h senten
e 
onstituent.In that 
ase, transforming the RTN stru
ture does not modify the resultingsenten
e stru
ture as long as both ma
hines are equivalent. This is analogousto the elimination of left re
ursion from syntax-dire
ted translation s
hemesdes
ribed in Aho et al. (1986, 
hap. 2, p. 25).6 In se
tion 12.10 we present amore e�
ient algorithm of appli
ation of RTNs whi
h is also able to pro
essleft-re
ursive RTNs, saving the hassle of left-re
ursion dete
tion and removal.12.8 FlatteningFlattening is a possible transformation to perform on a RTN in order to a
-
elerate its appli
ation. This operation is already implemented in the Unitexsystem (Paumier, 2008).De�nition 216 (Flattening). Flattening a RTN A 
onsists in repla
ing every
all transition t = (qs, Qc, qt) in A by an ex
lusive 
opy of A's Qc-subma
hine,as follows:
• remove t,
• for ea
h state q of the Qc-subma
hine, 
reate a new state r, and make
r an a

eptor state if so it is q,
• for ea
h transition (q′s, ξ, q

′
t) within the Qc-subma
hine, add transition

(r′s, ξ, r
′
t), with r′s and r′t the previously 
reated states 
orresponding tostates qs and qt,

• for ea
h state qc ∈ Qc, add transition (qs, ε, qc), and
• for ea
h a

eptan
e state qf of the Qc-subma
hine, add transition (qf , ε, qt).Call transitions of added 
opies of subma
hines are to be re
ursively repla
edas previously des
ribed.6Syntax-dire
ted translation s
hemes are CFGs extended with some kind of outputgeneration me
hanism that re
reates the synta
ti
 stru
ture of the senten
es they areapplied to.
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VP→ VP PP

=⇒

VP→ V NP VP′ VP′ → PP VP′

VP→ V NP VP→ V NP VP′ → PP

NP→ NP PP NP→ DET N NP′ VP′ → PP NP′

NP→ DET N NP→ DET N NP′ → PPFigure 12.8: Left-re
ursion of CFG of �gure 12.2 (p. 223) 
an be removed byrepla
ing the produ
tion rules at the left by those at the right; however, the gram-mar's stru
ture is modi�ed and new �arti�
ial� symbols VP′ and NP′ are added.
VP PP

V NP(a) Left-re
ursive VP DET N

NP PP(b) Left-re
ursive NP
V NP

VP_prime(
) Non-left-re
ursive VP (d) Non-left-re
ursive NP
PP

VP_prime(e) VP_prime (f) NP_primeFigure 12.9: Unitex graphs equivalent to those of �gure 12.8: graphs (a) and(b) 
orrespond to the produ
tions at the left, and graphs (
), (d), (e) and (f)
orrespond to the produ
tions at the right.



12.9. DETERMINIZATION 241As we 
an see, �attening transforms the RTN into a FSA, thus allowingfor a full determinization of the RTN. However, this pro
ess is not appli
ableto RTNs with re
ursive 
alls sin
e the repla
ement of these 
alls by their
orresponding Qc-subma
hines would never end. However, the maximumnumber of re
ursive realizations of 
alls for a given set of input sequen
es is tobe �nite sin
e input sequen
es are to be �nite. The Unitex system allows forsetting up a maximum number of re
ursive repla
ements in order to perform,at least, a partial �attening of re
ursive RTNs; re
ursive 
alls beyond thislevel are not repla
ed, hen
e the resulting RTNs a

ept the same languages.It must be taken into a

ount that �attening a RTN with ambiguous andre
ursive 
alls in
reases its size exponentially w.r.t. the number of re
ursiverepla
ements to perform. The number of re
ursive repla
ements is to be setto the greatest number lower than or equal to the maximum expe
ted numberof re
ursive realizations of 
alls su
h that the resulting RTN is small enoughto be handled. The MovistarBot grammar is not re
ursive, hen
e every 
all
an be removed by �attening it, but the number of states and transitions isin
reased by a fa
tor of 4.1 and 10.1, respe
tively.12.9 DeterminizationWhen applied to RTNs, the generi
 determinization algorithm seen in se
-tion 8.5 (p. 166) not only performs a determinization but also a �attening;therefore, it 
an only be applied to non-re
ursive RTNs. However, we arealso interested in applying re
ursive RTNs; as for FSTBOs (se
tion 10.7,p. 199), we pseudo-determinize re
ursive RTNs by determinizing their un-derlying FSAs. If the RTN is to be also �attened, better results 
an beobtained by �attening �rst the RTN and then pseudo-determinizing it.De�nition 217 (Underlying FSA). Let A = (Q,Σ, δ, QI , F ) be a RTN, wede�ne its underlying FSA as (Q,Σ ∪ P(Q), δ, QI , F ), that is, RTN inputsymbols and RTN subinitial SSs be
ome FSA input symbols.Note that, sin
e 
all transitions are interpreted as 
onsuming transitions,determinizing a RTN's underlying FSA does not pseudo-determinize the
alled subma
hines. Algorithm 8.2 fsm_re
ognize_every_symbol (p. 173)needs to be modi�ed so that when σ is a subinitial SS Qc, algorithm 8.1fsm_determinize (p. 172) is exe
uted again on RTN A but taking Qc asinitial SS, if this has not already been done. In other words, the di�erent
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hines are to be separately pseudo-determinized, assuming that theyare disjoint. Algorithm 8.1 fsm_determinize is to take RTN A as a globalargument for ea
h exe
ution, and it is to take two new optional arguments:
• the SS Qc to be taken as initial SS, with QI as default value for the�rst exe
ution of the algorithm, and
• a global map ζI of subinitial SSs Qc ∈ P(Q) to subinitial states rc ∈ Q′,taking the empty map as default value.Note that, sin
e the RTN is being treated as its underlying FSA, ESs in thealgorithm are simple RTN states, namely: XI = QI , XF = F , xt ∈ Q and

Vs, Vt ∈ P(Q).In algorithm 8.1 fsm_determinize, state rt ∈ Q′ is 
reated before thewhile loop as the initial state of A′. In the RTN version, this is to be doneonly for the �rst algorithm exe
ution. Moreover, map ζI(Qc) = rt is to beadded for every exe
ution. The presen
e of this map is to be 
he
ked inalgorithm 8.2 fsm_re
ognize_every_symbol so that determinization of the
Qc-subma
hine is not started multiple times. Additionally, the 
reation of
all transitions of ma
hine A′ is to be given a spe
ial treatment: the originalalgorithm would 
reate a 
all transition (rs, Qc, rc), where Qc is some subini-tial SS of A, but transition (rs, ζI(Qc), rc) is to be 
reated instead, where
ζI(Qc) is the subinitial state of A′ 
orresponding to Qc. At this point, it issure that ζI(Qc) is already de�ned sin
e algorithm 8.2 fsm_re
ognize_every-_symbol has been previously 
alled, and this algorithm triggers the deter-minization of every Qc-subma
hine whi
h has not already been triggered, forevery 
all transition having as sour
e any of the states of A whi
h have been
ondensed into state rs of A′. Finally, an in�nite loop due to left-re
ursive
alls is not possible sin
e 
all transitions are treated as 
onsuming transitions:
omputing the subinitial state rc 
orresponding to a subinitial SS Qc impliesto 
ompute the ε-
losure of Qc, whi
h does not traverse 
all transitions.Furthermore, mapping ζI(Qc) = rc is immediately de�ned afterwards, whi
hprevents from initiating the determinization of the Qc-subma
hine more thanone time.12.10 Earley-like pro
essingFinite-state automata 
an give a more 
ompa
t representation of a set ofsequen
es by fa
toring out 
ommon pre�xes and su�xes of the a

epted
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es. RTNs 
an also fa
tor in�xes by de�ning one subautomaton forea
h repeated in�x, and by using transitions 
alling the set of initial statesof the 
orresponding subautomaton ea
h time the in�x is to be re
ognized.However, it is up to the parsing algorithm to dete
t that the same set ofinitial states is being 
alled from multiple points of the grammar for thesame input point so that the 
all is pro
essed only on
e; for instan
e, inRTN of �gure 12.6 (p. 237) both 
alls to {q0} 
ould be 
omputed only on
e(per re
ursion level). Inspired by Earley's (1970) CFG parser, we show herea modi�ed and more e�
ient version of the base a

eptor algorithm 7.5 forFSMs (p. 153) whi
h is able to pro
ess left-re
ursive RTNs (see �gure 12.11)without falling into an in�nite loop, and whi
h fa
tors out the 
omputationof in�x 
alls of parallel explorations of the RTN. Our algorithm di�ers fromthe Earley-like parser for RTNs given by Woods (1969) in that
• it is based on a FSA-like de�nition of RTNs rather than on a CFG-likeone,
• RTNs with ε-moves are supported, and
• 
alls are performed towards subinitial SSs instead of single states, whi
hfa
ilitates the de�nition of the 
anoni
al reverse RTN (or the reverseexploration of a RTN)We have already presented a version of this algorithm for RTNs with stringoutput in Sastre and For
ada (2007, 2009). A brief des
ription of the orig-inal Earley parser is given in appendix C (p. 411), and a brief 
omparativedis
ussion w.r.t. other parsing algorithms has been given in se
tion 1.4.6,p. 16.We mainly modify the subroutine jump me
hanism, whi
h is a part of the

ε-
losure 
omputation. We repla
e the use of a sta
k of return states by amore 
omplex representation of the ESs and a 
hart storing every 
omputedSESs V during ea
h iteration of the algorithm. When a 
all transition to aSS Qc is to be traversed, two kinds of ESs are generated: one paused and oneor more a
tive ESs:
• the paused ES represents a hypotheti
al return from the 
all that isnot to be resumed until the 
all is 
ompleted, and
• the a
tive ESs initialize the 
all from ea
h 
alled qc ∈ Qc and the 
urrentinput, if 
all to Qc has not already been initialized at this input point.
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h 
all is 
omputed only on
e for ea
h paused ES waiting for its 
omple-tion, and ea
h time the 
all is 
ompleted the 
orresponding paused ESs areresumed.De�nition 218 (Earley exe
ution state). ESs for Earley-like RTN pro
essingare quadruplets in (Q × (P(Q) ∪ {λ}) × P(Q) × N), where quadruplets ofthe form (qs, {λ}, Qh, i) are 
alled a
tive ESs and quadruplets of the form
(qr, Qc, Qh, i) are 
alled paused ESs. In the quadruplets,
• the �rst term, qs or qr, is the 
urrent state of the ES: the sour
e statefor a
tive ESs and the return-from-
all state for paused ESs,
• the se
ond term, Qc or λ, is the 
alled SS Qc whose 
ompletion thispaused ES is waiting for, or λ if this is an a
tive ES,
• Qh or hypothesis SS is the last 
alled SS whose asso
iated 
alls will be
ompleted on
e an a

eptan
e state is rea
hed, and
• i is the number of 
onsumed input symbols at the moment of initi-ating the last 
all to Qh, that is, when generating the last a
tive ES(qs, λ, Qs, i) from where this either a
tive or paused ES is derived.ESs of the original Earley parser (the 
hart items) in
lude a se
ond index

j su
h that σi+1 . . . σj is the input interval that has been 
onsumed sin
e theinitialization of the last 
all up to the ES, for an input sequen
e σ1 . . . σl.Sin
e ESs are grouped into SESs su
h that Vj 
ontains every generated ESafter 
onsuming j symbols, we retrieve j from the index of Vj rather thanexpli
itly representing it inside every ES.De�nition 219 (Earley ∆). The ∆ fun
tion for RTN Earley-like pro
essing,the equivalent to Earley's s
anner, is a simple dire
t-derivation fun
tion onSESs (de�nition 98, p. 137) with
• xs = (qs, λ, Qh, i),
• xt = (qt, λ, Qh, i), and
• d = qt ∈ δ(qs, σ).Noti
e that the ∆ fun
tion does not apply to paused ESs: there is nothingto do with paused ESs until the 
all they depend on is 
ompleted. Input
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onsumed from a
tive ESs, and paused ESs are towait for 
all 
ompletions. Noti
e as well that neither the hypothesis statenor the input position i are modi�ed: they remain the same until enteringinto or 
oming out from a 
all.De�nition 220 (Earley D). The D(Vk) fun
tion for RTN Earley-like pro-
essing is 
omposed by 3 simple dire
t-derivation fun
tions on SESs (de�ni-tion 98, p. 137):
• the expli
it ε-transition pro
essor, Dε(Vk) with� xs = (qs, λ, Qh, j),� xt = (qt, λ, Qh, j), and� d = qt ∈ δ(qs, ε),
• the equivalent to Earley's predi
tor, Dpush(Vk) with� xs = (qs, λ, Qh, j),� xt = (qc, λ, Qc, k) or xt = (qr, Qc, Qh, j), meaning that both targetESs are derived from xs if p holds, and� d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc, and
• the equivalent to Earley's 
ompleter, Dpop(Vk) with� xs = (qf , λ, Qh, j),� xt = (qr, λ, Q

′
h, i), and� d = qf ∈ F ∧ (qr, Qh, Q

′
h, i) ∈ Vj,whereDpop is retroa
tive, that is, if during the 
omputation ofDpush(Vk)a paused ES (qr, Qc, Qh, j) is added to Vk due to a 
all to a SS Qcthat has already been ε-
ompleted,7 its resumed ES (qr, λ, Qh, j) is to beretroa
tively added to Vk as well.Retroa
tive ε-
ompletion is dis
ussed in more detail in the next se
tion.7Completions within the same SES Vk are only possible if no input is 
onsumed duringthe whole 
all.
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eptan
e SESs). Given the sets ofinitial and a

eptan
e states of a RTN, QI and F , its initial and a

ep-tan
e SESs for Earley-like pro
essing are (QI × {λ} × {QI} × {0}), the ESsstarting a 
all to any initial state before 
onsuming any input symbol, and
(F × {λ} × {QI} × {0}), the ESs from where those initial 
alls would pop,respe
tively.De�nition 222 (Earley exe
ution ma
hine). The Earley exe
ution ma
hineof a RTN is a FPRTN. Its de�nition and the 
onstru
tion of the exe
utionsubstru
tures for a parti
ular input sequen
e will be des
ribed in 
hapter 15.For the Earley 
ase, it does not su�
e to repla
e 
all, push and pop tran-sitions by pure ε-transitions; 
onsider an ε-path having several 
onse
utiveand deletable 
alls to the same subinitial SS Qc (see RTN of �gure 12.10);during the 
omputation of an ε-
losure involving this path, 
all to Qc is 
om-puted only on
e and therefore a unique stru
ture resolving this 
all is builtin the exe
ution ma
hine: the exe
ution ma
hine still needs 
all transitionsin order to be able to return to the right state on
e the 
all is 
ompleted.Moreover, the 
all may be 
ompleted through di�erent paths that do notne
essarily 
onsume the same amount of input symbols, resulting in multi-ple return states 
orresponding to di�erent input points. FPRTNs performan additional test in order to forbid pop transitions that bring the ma
hineto return states 
orresponding to di�erent input points than those of thea

eptor states that pre
ede them. More details will be given in 
hapter 15.De�nition 223 (Earley L). Following de�nition 107 (p. 143), we de�ne
L(A) �the language of a RTN A� through Earley-like pro
essing as
L(A) = {w ∈ Σ∗ : ∆∗((QI × {λ} × {QI} × {0}), w)∩

(F × {λ} × {QI} × {0}) 6= ∅}. (12.3)12.11 Earley a

eptor algorithmAlgorithm 12.2 rtn_earley_re
ognize_string is a sequen
e a

eptor imple-menting predi
ate w ∈ L(A) through Earley-like pro
essing (de�nition 223,p. 246). It uses algorithm 12.3 rtn_earley_re
ognize_symbol for 
omput-ing the Earley-like ∆ fun
tion (de�nition 219), the equivalent to Earley'ss
anner, and algorithm 12.4 rtn_earley_interla
ed_e
losure for 
omputing



12.11. EARLEY ACCEPTOR ALGORITHM 247the Earley-like ε-
losure (generi
 FSM ε-
losure in de�nition 100, p. 138,using the Earley-like D fun
tion in de�nition 220, p. 245), whi
h in
ludesboth Earley's predi
tor (push transition pro
essor) and 
ompleter (pop tran-sition pro
essor). Moreover, it in
ludes an ε-transition pro
essor for expli
it
ε-transition support as well as an ε-
ompleter for handling deletable 
alls;both 
omponents are missing in the original Earley parser sin
e:
• it does not support CFGs with either dire
tly or indire
tly deletablenon-terminals, and
• the empty symbol is used only for the de�nition of dire
tly deletablenon-terminals (e.g.: A→ ε).8Noti
e that the main di�eren
e w.r.t. the FSM a

eptor, algorithm 7.5(p. 153), is the way in whi
h the ε-
losure is 
omputed. Finally, add_en-queue_es and un
onditionally_add_enqueue_es are the small routines seenin se
tions 7.8 (p. 148) and 7.9 (p. 152) for 
onditionally or un
onditionallyadding an ES to a SES.Following the predi
tor-
ompleter me
hanism, every 
all started at a SES

Vi to the same SS is 
omputed only on
e. Without the possibility of ε-
ompleting a 
all, 
alls started in Vi are 
ompleted during the 
omputationof Vi+1 or later, and therefore after every paused ES is added to Vi. Ea
htime the 
all is 
ompleted, every paused ES in Vi depending on the 
all issear
hed in order to be resumed. If 
alls 
an be ε-
ompleted then they 
an bestarted and 
ompleted during the 
omputation of the same SES; therefore,paused ESs depending on the 
all might be added to the SES after the 
all is
ompleted, and therefore remain paused. In order to avoid this, ε-
ompleted
alls must be marked in order to retroa
tively resume subsequent pausedESs. Algorithm rtn_earley_interla
ed_e
losure builds a set T 
ontaining the
alled subinitial SSs Qc that have been ε-
ompleted during the 
omputationof the ε-
losure of the SES Vk.9 The ε-
ompleter inside the 
ompleter adds
Qc to T for ea
h ES (qs, λ, Qc, i) that triggers the 
all 
ompletion in Vkwith i = k: sin
e at Vi we have 
onsumed i symbols and ES (qs, λ, Qc, i)indi
ates that the 
all started when i symbols where 
onsumed, the 
all isbeing 
ompleted without input 
onsumption. The ε-
ompleter inside the8A non-dire
tly deletable non-terminal B 
an still be indire
tly deletable: the grammarprodu
tions may allow for rewriting B as a dire
tly deletable non-terminal, whi
h in turn
an be rewritten as the empty symbol.9In pra
ti
e we add the pointer to the set obje
t representing Qc.
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tor immediately resumes every paused ES (qr, Qc, Qh, i) added to Vi sothat Qc ∈ T .A dis
ussion on extending Earley's CFG parser for supporting CFGs withdeletable non-terminals 
an be found in Ay
o
k and Horspool (2002), as wellas an example of exe
ution illustrating the problem. In the paper, a listof deletable non-terminals is to be previously built so that 
alls to su
hnon-terminals are immediately 
ompleted. In our 
ase, we have followed adi�erent approa
h sin
e the algorithm we give here is to be further extendedfor output generation, whi
h will require an e�
ient pro
edure for the 
om-putation of su
h outputs rather than simply 
ompleting the deletable 
allsprematurely. We give in �gure 12.10 an equivalent example to that given byAy
o
k and Horspool (2002) in order to illustrate the problem for the 
aseof RTNs and how we have solved it. An example implying a left-re
ursiveRTN equivalent to the one for CFGs in appendix C (p. 411) is shown in�gure 12.11. Fun
tions in the rightmost 
olumn of exe
ution tra
es �ex
eptfun
tion deletable(Qc)� represent the derivation me
hanism that has beenfollowed in order to produ
e the ES in the same line, where the argumentsare the index of the ESs from where this ES has been derived:
• re
ognize(i, σ): derived from ES i by taking a transition 
onsuminginput symbol σ,
• ε-transition(i): derived from ES i by taking an ε-transition,
• 
all(i) and pause(i): the a
tive and paused ESs, respe
tively, derivedfrom ES i by taking a 
all transition, and
• resume(i, j) and ε-resume(i, j): derived by resuming paused ES i dueto rea
hing ES j whi
h triggers the 
all 
ompletion, the former by the
ompleter and the latter by the ε-
ompleter (inside the predi
tor).Fun
tion deletable(Qc) a

ompanies fun
tion resume(i, j) and indi
ates that,upon resuming ES i, the ε-
ompleter (inside the 
ompleter) has dete
ted that
all to SS Qh is deletable. Noti
e that when deriving an ES that is alreadypresent in the 
orresponding SES, there is no line added to the tra
e andtherefore the derivation me
hanism for that ES does not appear in the tra
e;for instan
e, in �gure 12.11 a 
all is performed from the initial ES in 1 whi
hprodu
es the paused ES in 2 and an a
tive ES that is already present in 1.A graphi
al representation of the exe
ution tra
e of the Earley-like a
-
eptor algorithm for RTN of �gure 12.6 and input aabb �the same 
ase seen
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ognize_string(σ1 . . . σl) ⊲ σ1 . . . σl ∈ L,def. (223)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indi
ating whether the input string belongs to L1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for ea
h (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, (qc, λ, QI , 0))6: end for7: V ← rtn_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtn_earley_recognize_symbol(Vk, E, σk+1)11: k ← k + 112: rtn_earley_interlaced_eclosure(V l+1, E, k)13: end while14: r ← false15: for ea
h (qs, λ, QI , 0) ∈ Vk do16: r ← r ∨ qs ∈ F17: end forAlgorithm 12.3 rtn_earley_re
ognize_symbol(V,E, σ) ⊲ ∆(V, σ),def. (219)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to re
ognizeOutput: W , the set of rea
hable states from V by 
onsuming σOutput: E after enqueuing the ESs of W1: W ← ∅2: for ea
h (qs, λ, Qh, i) ∈ V do3: for ea
h qt ∈ δ(qs, σ) do4: add_enqueue_es(W,E, (qt, λ, Qh, i))5: end for6: end for
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ed_e
losure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the 
hart
E, the queue of unexplored ESs 
ontaining every ES in Vk

k, the index of the SES, Vk, whose ε-
losure is to be 
omputedOutput: V l+1 after adding to Vk its ε-
losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for ea
h qt ∈ δ(q, ε) do5: add_enqueue_es(Vk, E, (qt, λ, Qh, j))6: end for
⊲ PREDICTOR7: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, Qc, Qh, j)) then9: if Qc /∈ T then10: for ea
h qc ∈ Qc do11: add_enqueue_es(Vk, E, (qc, λ, Qc, k))12: end for

⊲ ε-COMPLETER13: else14: add_enqueue_es(Vk, E, (qr, λ, Qh, j))15: end if16: end if17: end for
⊲ COMPLETER18: if qs ∈ F then19: for ea
h (qr, Qh, Q

′
h, i) ∈ Vj do20: add_enqueue_es(Vk, E, (qr, λ, Q

′
h, i))

⊲ ε-COMPLETER21: if i = k then22: add(T,Qh)23: end if24: end for25: end if26: end while
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q0

q1

q2

q3

q4

q5

q6

q7

q8

{q5}

{q5}

{q5}

{q5}

a {q7}

ε

V0

1 : (q0, λ, {q0}, 0) initial ES
2 : (q1, {q5}, {q0}, 0) pause(1)
3 : (q5, λ, {q5}, 0) 
all(1)
4 : (q6, {q7}, {q5}, 0) pause(3)
5 : (q7, λ, {q7}, 0) 
all(3)
6 : (q8, λ, {q7}, 0) ε-transition(5)
7 : (q6, λ, {q5}, 0) resume(4, 6); deletable({q7})
8 : (q1, λ, {q0}, 0) resume(2, 7); deletable({q5})
9 : (q2, {q5}, {q0}, 0) pause(8); 
all already in 3
10 : (q2, λ, {q0}, 0) ε-resume(7, 9)
11 : (q3, {q5}, {q0}, 0) pause(10); 
all already in 3
12 : (q3, λ, {q0}, 0) ε-resume(7, 11)
13 : (q4, {q5}, {q0}, 0) pause(12); 
all already in 3
14 : (q4, λ, {q0}, 0) ε-resume(7, 13)

V1

15 : (q6, λ, {q5}, 0) re
ognize(3, a)
16 : (q1, λ, {q0}, 0) resume(2, 15)
17 : (q2, λ, {q0}, 0) resume(9, 15); resume(20, 27)
18 : (q3, λ, {q0}, 0) resume(11, 15); resume(22, 27)
19 : (q4, λ, {q0}, 0) resume(13, 15); resume(23, 27);a

eptan
e ES
20 : (q2, {q5}, {q0}, 0) pause(16)
21 : (q5, λ, {q5}, 1) 
all(16)
22 : (q3, {q5}, {q0}, 0) pause(17); 
all already in 21
23 : (q4, {q5}, {q0}, 0) pause(18); 
all already in 21
24 : (q6, {q7}, {q5}, 1) pause(21)
25 : (q7, λ, {q7}, 1) 
all(21)
26 : (q8, λ, {q7}, 1) ε-transition(25)
27 : (q6, λ, {q5}, 1) resume(24, 26); deletable({q7})Figure 12.10: RTN with deletable 
alls (left) and exe
ution tra
e of algo-rithm 12.2 rtn_earley_re
ognize_string for this RTN and input a (right); withoutthe ε-
ompleter, greyed ESs would be missing and the input reje
ted.



q0

q1

q2

{q0}

b

a

V0

1 : (q0, λ, {q0}, 0) initial ES

2 : (q1, {q0}, {q0}, 0) pause(1); 
all already in 1
V1

3 : (q2, λ, {q0}, 0) re
ognize(1, b)
4 : (q1, λ, {q0}, 0) resume(2, 3)

V2

5 : (q2, λ, {q0}, 0) re
ognize(4, a)
6 : (q1, λ, {q0}, 0) resume(2, 5)

V3

7 : (q2, λ, {q0}, 0) re
ognize(6, a)
8 : (q1, λ, {q0}, 0) resume(2, 7)...

Vl

2l + 1 : (q2, λ, {q0}, 0) re
ognize(2l, a); a

eptan
e ES

2l + 2 : (q1, λ, {q0}, 0) resume(2, 2l + 1)Figure 12.11: Left-re
ursive RTN re
ognizing the language ban and exe
ution tra
e of algorithm 12.2 rtn_earley-_re
ognize_string for this RTN and input bal.
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tion 12.7� is shown in �gure 12.12. Note that paused ESs are not rep-resented as states of the tra
e but as labels of the push and pop transitions;their purpose is to annotate the required information upon starting a 
allfor popping from it later. As for the base a

eptor algorithm for RTNs, thenumber of parallel explorations is dupli
ated ea
h time an a is 
onsumed,but when performing the parallel 
alls to {q0} the algorithm 
reates a uniqueexploration path for the 
all. On
e the 
all is 
ompleted, the two explorationpaths are joined after 
onsuming a b. The average number of parallel explo-rations is kept 
onstant w.r.t. the length of input anbn, thus the algorithmhas a linear exe
ution time for this RTN instead of exponential as for thebase a

eptor algorithm.Note that the exponential explosion is due to multiple nesting levels ofsubgrammar 
alls 
ombined with multiple interpretations within the 
alledsubgrammars: grammar of �gure 12.6 produ
es 2n di�erent outputs with n asthe number of nesting levels of 
all to {q0}. The amount of su
h nesting levelsthat take pla
e when parsing natural language senten
es 
annot be expe
tedto be very high, sin
e we �nd di�
ult to understand senten
es involvinga high number of ambiguous nesting levels and therefore we usually avoidto formulate su
h 
omplex senten
es. However, sin
e the speedup due tofa
toring out the 
omputation of subgrammar 
alls in
reases exponentiallyw.r.t. the number of nesting levels, and general natural language grammarsinvolve ambiguous 
alls to heavy-weighted subgrammars, the performan
egain 
an be expe
ted to be 
onsiderable even for low nesting levels.Sin
e RTNs and CFGs are equivalent and the presented Earley-like al-gorithm for RTNs is an almost straightforward adaptation of Earley's CFGparser, we 
an expe
t the same asymptoti
 
ost than that of the originalparser: polynomial (n3) in the worst 
ase, but linear for many natural lan-guage input senten
es and grammars. The algorithm 
annot be further op-timized using the trie string management seen in se
tion 9.1 (p. 178) sin
e itneither generates output nor relies on a sta
k of return states for re
ursive
all management.12.12 Earley-like determinizationEven though Earley-like pro
essing avoids falling into in�nite loops duringthe ε-
losure 
omputation, it does not prevent in�nite loops when it is appliedto the generi
 determinization algorithm (se
tion 8.5, p. 166): Earley-like ESs
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Figure 12.12: Exe
ution tra
e of the RTN Earley-like a

eptor �algorithm 12.2� for the RTN of �gure 12.6and input aabb. Thi
k dashed arrows link push transitions with their 
orresponding pop transitions. Paused ESsde
orate push and pop transitions.



12.12. EARLEY-LIKE DETERMINIZATION 255belong to sequen
es of SES V0 . . . Vl, where V0 
ontains the ESs before 
on-suming any input symbol, V1 after 
onsuming the �rst input symbol and soon, so even though two ESs belonging to two di�erent SES Vi and Vj mightbe equal, they are not regarded as the same ES (an Earley-like determiniza-tion algorithm would require to extend ESs with another �eld storing theindex of the SES they belong to). If the RTN 
an re
ognize input sequen
esof any length (it 
ontains 
y
les that 
an be 
onse
utively realized any num-ber of times for some �nite input), the determinization algorithm will tryto generate an unbounded number of ESs, in
reasing the index of the SESthey belong to ea
h time an input symbol is 
onsumed. This feature makesbreadth-�rst pro
essing a better 
hoi
e for RTN determinization. Anotherpossibility is to determinize only the paths 
onsuming the �rst n input sym-bols, though we have not studied it. A similar approa
h 
alled pre�x overlaytransdu
ers (POTs) is presented in Mars
hner (2007) for RTNs with output.The main idea is that the sear
h spa
e of a RTN representing a natural lan-guage grammar gets redu
ed as senten
e words are re
ognized, sin
e the �rstwords 
ondition the following ones; therefore, if we are to partially deter-minize a RTN at the expense of in
reasing its size, we 
an expe
t a greatersear
h spa
e redu
tion by fully determinizing the paths re
ognizing the �rst
n words than by �attening the �rst n re
ursive 
alls and then determinizingthe RTN's underlying FSA.





Chapter 13Re
ursive transition networkswith bla
kboard outputWe present here RTNBOs as a generalization of output generation with RTNsby 
ombining the de�nitions and properties of FSTBOs (
hapter 10) andRTNs (previous 
hapter). RTNBOs 
an be seen as an alternative de�nitionof augmented transition networks (Woods, 1969): both formalisms extendRTNs with registers that store information generated during their appli
a-tion, and both formalisms de�ne extra 
onditions to the traversal of transi-tions whi
h depend on the values stored in the registers. RTNs with stringoutput are presented in 
hapter 14 as a parti
ular 
ase of output generation.RTNs with 
omposite output, weighted RTNs and RTNs with uni�
ationpro
esses 
an be de�ned as spe
ial kinds of RTNBOs. The guidelines for ob-taining su
h de�nitions will be given in 
hapters 17, 18 and 19, respe
tively.De�nition 224 (RTNBO). A RTNBO (Q,Σ,Γ, B, BK , δ, QI , F ) is a FSTBO
(Q,Σ,Γ, B, BK , δ, QI , F ) (de�nition 139, p. 185) extended with a subroutinejump me
hanism, as for RTNs (de�nition 183, p. 221) w.r.t. FSAs (de�ni-tion 128, p. 162): the set of transition labels Ξ takes its elements from theset ((Σ ∪ {ε})× (Γ ∪ {idB})) ∪ P(Q), where
• labels in ((Σ ∪ {ε}) × Γ) ∪ P(Q) are the same than for the 
ase ofFSTBOs and,
• labels in P(Q) represent subroutine jumps or 
alls to state sets, as forthe 
ase of RTNs. 257



258 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.1 TransitionsIn the de�nition of RTNBO, transitions that 
onsume input and/or generateoutput are not allowed to modify the sta
k of return states and vi
e-versa.This way, transition de�nitions for the 
ase of FSTBOs and RTNs 
an bereused for the 
ase of RTNBOs. Transitions that either 
onsume input orgenerate output are inherited from the FSTBO 
ase, whi
h are
• 
onsuming transitions (de�nition 140, p. 186): Q×(Σ×(Γ∪{idB}))×Q,
• generating transitions (de�nition 141, p. 186): Q× ((Σ ∪ ε)× Γ)×Q,
• translating or substituting transitions (de�nition 142, p. 186): Q×(Σ×
Γ)×Q,
• deleting transitions (de�nition 143, p. 186): Q× (Σ× {idB})×Q and
• inserting transitions (de�nition 145, p. 186): Q× ({ε} × Γ)×Q.Transitions that modify the sta
k are inherited from the RTN 
ase, whi
hare
• 
all transitions (de�nition 187, p. 222): Q×P(Q)×Q,
• push transitions (de�nition 189, p. 222): Q×Q�×Q,
• pop transitions (de�nition 190, p. 223): Q×Q�×Q and
• impli
it ε-transitions (de�nition 186, p. 222): push or pop transitions.Finally, transitions that neither 
onsume input nor generate output nor mod-ify the sta
k have the same form than FSTBO ε2-transitions but fall into the
ategory of RTN expli
it ε-transitions (de�nition 185, p. 222):
• expli
it ε2-transitions (de�nition 146, p. 186): Q× ({ε} × {idB})×Q.De�nition 225 (ε2-
all). We say a 
all to a subinitial SS Qc is an ε2-
allor ε2-realizable 
all i� it is realizable through an ε2-path (see de�nition 149,p. 187).



13.2. GRAPHICAL REPRESENTATION 259
<NP>

DET N

</NP>NP PP(a) NP <N>

monkey

telescope

garden </N>(b) NFigure 13.1: Graphs of sub�gures 12.4(b) and 12.4(e) (p. 224) after insertingXML output tags for marking the senten
e 
ompounds they re
ognize.
qNP0

qNP1

qNP2

qNP3

qNP4
qNP5

%<E> : <NP> %<E> : </NP>{qDET0
}

{qNP0
}

{qN0
}

{qPP0
}

qN0
qN1

qN2
qN3

%<E> : <N> %monkey%garden%teles
ope %<E> : </N>Figure 13.2: RTNBO fragments equivalent to the graphs of �gure 13.1.13.2 Graphi
al representationThe graphi
al representation of RTNBOs is a 
ombination of the representa-tions of FSMs (se
tion 7.2, p. 124), FSTBOs (se
tion 10.2, p. 187) and RTNs(se
tion 12.2, p. 225), both for the 
lassi
al representation as for the Unitexand Intex graphs. Figures 13.1 and 13.2 show some fragments of the graphand RTN shown in se
tion 12.2 (p. 225) but extended with XML output tagsin order to mark the re
ognized senten
e 
ompounds.13.3 Sequen
es of transitionsDe�nitions given on the sequen
es of transitions of FSTBOs (se
tion 10.3,p. 187) and RTNs (se
tion 12.3, p. 225) also apply for the 
ase of RTNBOs.



260 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.4 BehaviourThe de�nitions in this se
tion 
orrespond to the appli
ation of RTNBOswithout Earley pro
essing (as for the non-Earley appli
ation of RTNs de-s
ribed in se
tion 12.5, p. 227). The Earley-like appli
ation of RTNBOs willbe des
ribed in se
tion 13.9.De�nition 226 (Exe
ution state). RTNBO ESs are triplets (q, b, π) ∈ (Q×
B ×Q∗) where b is an output bla
kboard, b∅ being the empty bla
kboard, and
π is a sta
k of return states, λ being the empty sta
k.De�nition 227 (Illegal SES). As for FSTBOs (de�nition 154, p. 189), theillegal SES of a RTNBO (Q, Σ, Γ, B, BK , δ, QI , F ) is (Q×BK ×Q∗), thatis, the set of all ES having a killing bla
kboard.De�nition 228 (∆). The∆ fun
tion for RTNBOs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, bs, π),
• xt = (qt, bt, π), and
• d = qs ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.The RTNBO ∆ fun
tion behaves as the FSTBO ∆ fun
tion (de�nition 155,p. 189): ESs are extended with a sta
k whi
h is in fa
t not modi�ed.De�nition 229 (D). The D fun
tion for RTNBOs is 
omposed by 3 simpledire
t-derivation fun
tions on SESs (de�nition 98, p. 137), Dε with
• xs = (qs, bs, π),
• xt = (qt, bt, π), and
• d = qs ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.

Dpush with
• xs = (qs, b, π),
• xt = (qc, b, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,
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• xs = (qf , b, πqr),
• xt = (qr, b, π), and
• d = qf ∈ F .As 
an be seen, Dε is de�ned as fun
tion D for FSTBOs (de�nition 156,p. 189) but extended with an sta
k of return states whi
h is left inta
t,and fun
tions Dpush and Dpop are de�ned as the ones for RTNs (see def-inition 211, p. 229) but extended with an output bla
kboard whi
h is notmodi�ed.Lemma 18 (In�nite ε-
losure). The ε-
losure of a RTNBO SES V is in�niteif there exists an ES (q, b, π) within V or ε-rea
hable from V su
h that q istraversed by a generating ε-
y
le holding the 
onditions expressed in lemma 10(p. 189) and/or q has an outgoing left-re
ursive 
all transition, as for RTNs(lemma 14, p. 230).Proof. The proof for the 
ase involving generating ε-
y
les 
an be obtainedby extending FSTBOs ESs of proof of lemma 10 (p. 189) with a sta
k ofreturn states π that does not 
hange. The 
ase involving left-re
ursive 
alls
an be obtained by extending RTN ESs of proof of lemma 14 (p. 230) witha non-killing output bla
kboard that does not 
hange. Sin
e both 
ases leadto in�nite ε-
losures, the 
ombination of both de�nes several ε-paths addingan in�nite SES to the ε-
losure, and therefore leading to in�nite ε-
losuresas well.Lemma 19 (Finite ε-
losure). Under 
onditions other than those expressedin the previous lemma, the ε-
losure of a RTNBO SES is �nite.Proof. This proof is also a mixture of the analogous proofs for FSTBOs (proofof lemma 11, p. 191) and RTNs (proof of lemma 15, p. 230). If we only
onsider paths that do not modify the sta
k of return states, by extendingthe proof for FSTBOs with sta
ks that do not 
hange we see that every ε-path not 
ontaining a generating ε-
y
le su
h as the des
ribed in the prooflead to �nite ε-
losures. If we only 
onsider paths that do modify the sta
kof return states or do not modify it but do not generate output, by extendingthe proof for RTNs with non-killing bla
kboards that do not 
hange we seethat every ε-path not 
ontaining left-re
ursive 
alls lead to �nite ε-
losures



262 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTas well. Finally, a path being 
omposed by the 
on
atenation of a �nitesequen
e of paths of both kinds will lead to the �nite union of the �nite SESfor ea
h individual path, thus also leading to a �nite ε-
losure.Theorem 20. The ε-
losure is �nite for non-left-re
ursive RTNBOs whi
hdo not 
ontain generating ε-
y
les su
h as the ones des
ribed in lemma 10(p. 189).As already mentioned, su
h generating ε-
y
les do not make sense innatural language grammars sin
e they allow for in�nite translations of �niteinput sequen
es (e.g.: �nite senten
es with in�nite parse trees). Therefore,forbidding su
h 
y
les does not limit the natural language grammars that 
anbe represented but ensures that the exe
ution of the algorithms of appli
ationof RTNBOs will end.De�nition 230 (Initial and a

eptan
e SESs). Given the sets of initial anda

eptan
e states of a RTNBO, QI and F , its initial and a

eptan
e SESsare (QI × {b∅} × {λ}) and (F ×B × {λ}), respe
tively.De�nition 231 (τ). We de�ne τ(A), the language of translations of a RTNBO
A, as the set of input/output pairs (w, b) ∈ (Σ∗×B) su
h that w is re
ognizedand translated into b by A, that is, the set of input/output pairs su
h that thewhole 
onsumption of w rea
hes at least one a

eptan
e ES from at least oneinitial ES through a path that generates b:
τ(A) = {(w, b) : (qf , b, π) ∈ ∆∗((QI×{b∅}×{λ}), w)∩(F×B×{λ})}. (13.1)De�nition 232 (ω). We de�ne ω(A,w), the translations of a word w for aRTNBO A, as the set of output sequen
es b ∈ B su
h that (w, b) belongs tothe translations of A:

ω(A,w) = {b : (w, b) ∈ τ(A)}, (13.2)with τ(A) of the previous de�nition.13.5 Translating a stringAlgorithm 13.1 rtnbo_translate_string performs a breadth-�rst appli
ationof a RTNBO to an input string in order to obtain its set of translations. It isan almost straightforward adaptation of the breadth-�rst FSTBO translator(algorithm 10.1, p. 197) but with the following di�eren
es:
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• the initial set of ESs has empty sta
ks of return states added to ea
hES,
• the use of the ∆ and ε-
losure fun
tions adapted for RTNBOs,
• in the last loop, we extra
t the output bla
kboards of the ESs of the last
Vi that have both an empty sta
k of return states and an a

eptan
estate.1Algorithm rtnbo_translate_symbol 
an be easily dedu
ed from algorithm 10.2fstbo_translate_symbol (p. 198) by extending ESs with a sta
k that does not
hange, and algorithm rtnbo_interla
ed_e
losure 
an be easily dedu
ed fromalgorithm 12.1 rtn_interla
ed_e
losure by extending ESs with an outputbla
kboard that
• might be modi�ed for the 
ase of expli
it ε-transitions, as for 
onsumingtransitions in algorithm 10.2 fstbo_translate_symbol, and
• is not modi�ed for the other 
ases (push and pop transitions).Algorithm 10.5 (p. 199), the depth-�rst translator algorithm for FSTBOs,
an yet be used for RTNBOs by simply repla
ing the implementation of the

∆ and D fun
tions for the 
ase of RTNBOs.As for the RTN breadth-�rst and depth-�rst a

eptor algorithms (se
-tion 12.7, p. 235), these algorithms 
an be further improved by representingthe sta
ks of return states as pointers to the nodes of a trie (see se
tion 9.1,p. 178). As for the 
ase of FSTBOs, bla
kboard �elds 
ontaining data se-quen
es may also be represented as pointers to trie nodes.13.6 FlatteningThere is no di�eren
e between �attening a RTNBO and �attening a RTN(se
tion 12.8, p. 239) sin
e this pro
ess applies only to 
all transitions, whi
hare de�ned as for RTNs, and subma
hines are to be 
opied as is, that is,without interpreting their 
ontent.1As for FSTBOs, it is not ne
essary to 
he
k whether the bla
kboards belong to BKor not sin
e, by de�nition, every ES in Vi is legal.
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Algorithm 13.1 rtnbo_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (13.2)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for ea
h qc ∈ QI do4: unconditionally_add_enqueue_es(V,E, (qc, b∅, λ))5: end for6: rtnbo_interlaced_eclosure(V,E)7: i← 08: while E 6= ∅ ∧ i < l do9: Vi ← rtnbo_translate_symbol(V,E, σi+1)10: i← i+ 111: rtnbo_interlaced_eclosure(V,E)12: end while13: T ← ∅14: for ea
h (q, b, λ) ∈ V : q ∈ F do15: add(T, b)16: end for



13.7. DETERMINIZATION 26513.7 DeterminizationThis se
tion is a 
ombination of the determinization se
tions for FSTBOs(se
tion 10.7, p. 199) and RTNs (se
tion 12.9, p. 241); we are interested indeterminizing the RTNBO regarding it as its underlying FSA.De�nition 233 (Underlying FSA). Let A = (Q,Σ,Γ, B, BK , δ, QI , F ) be aRTNBO, we de�ne its underlying FSA as (Q, (((Σ ∪ {ε}) × (Γ ∪ {ε})) −
{(ε, ε)}) ∪ P(Q), δ, QI , F ) with (ε, ε) as the empty symbol, that is, RTNBOinput/output pairs and RTNBO subinitial SSs be
ome FSA input symbolsex
ept for (ε, ε), whi
h be
omes the empty symbol.13.8 Bla
kboard set pro
essingWe present here bla
kboard set pro
essing (BSP) of RTNBOs as an extensionof the FSTBO 
ase (se
tion 10.9, p. 205). As for FSTBOs, we traverse theRTNBO as a RTN, and we dinami
ally build a map ζB asso
iating ea
hRTN ES with the set of bla
kboards (SB) that 
an be generated by rea
hingthe ES from an initial ES through any path. When deriving an ES xt froman ES xs we must make sure that ζB(xs) is 
ompletely built so that everybla
kboard to be generated by this derivation is added to ζB(xt). ESs derivedby 
onsuming i symbols are rea
hed before the ones derived by 
onsuming jsymbols, for 0 ≤ i < j, and therefore the ∆ fun
tion respe
ts this restri
tion.We only require to pay spe
ial attention to the way in whi
h the ε-
losureis 
omputed: ESs must be ε-derived by following a topologi
al sort of the
ε-
losure-substru
tures of A′′. The relation between the 
y
les in A and the
y
les in A′′ is not so straightforward as for the FSTBO 
ase due to thepresen
e of a sta
k inside RTN ESs.De�nition 234 (ZB). Given a RTNBO (Q,Σ,Γ, B, BK , δ, QI , F ), we de�ne
ZB as the set of every partial map ζB of RTN ESs Q×Q∗ to SBs in P(B).De�nition 235 (BSP SES). We de�ne the equivalent BSP SES VB of aRTNBO SES V as a pair (V ′, ζB) where V ′ ⊆ Q × Q∗ is a RTN SES and
ζB ∈ ZB is a fun
tion mapping states to SBs su
h that
VB = (V ′, ζB) : V

′ = {(q, π) : (q, b, π) ∈ V } ∧ ζB((q, π)) = {b : (q, b, π) ∈ V },(13.3)
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h is equivalent to say that
VB = (V ′, ζB) :

⋃

(q,π)∈V ′

{q} × ζB((q, π))× {π} = V. (13.4)The de�nition of γ on SBs does not 
hange w.r.t. the FSTBO 
ase (de�-nition 172, p. 206).De�nition 236 (BSP∆). We rede�ne the RTNBO ∆ fun
tion for bla
kboardset pro
essing as follows:
∆ : (P(Q×Q∗)× ZB)× Σ→ (P(Q×Q∗)× ZB),su
h that

∆((V, ζB), σ) = (V ′, ζ ′B) : V
′ = {x : ζ ′B(x) 6= ∅}∧

ζ ′B((qt, π)) =
⋃

γ:qt∈δ(qs,(σ,γ))∧(qs ,π)∈V

γ(ζB((qs, π))), (13.5)As for the FSTBO 
ase, the existen
e of a topologi
al sort for the 
ompu-tation of the ε-
losures depends on the possibility of removing the ε-
y
les ofthe RTNBO. As for FSTBOs, RTNBO ε-
y
les with generation are simplyforbidden in order to avoid in�nite ε-
losures. RTNBO ε2-
y
le removal isslightly di�erent from the FSTBO 
ase due to the presen
e of 
all transitions.Theorem 21 (ε2-
y
le removal). For every non-left-re
ursive RTNBO with
ε2-
y
les not involving deletable 
alls there exists an equivalent non-left-re-
ursive RTNBO without ε2-
y
les whi
h 
an be obtained by determinizing theRTNBO regarding it as its underlying FSA.Proof. RTNBO ε2-
y
les 
an be divided into two 
lasses: 
all ε2-
y
les andnon-
all ε2-
y
les. Call ε2-
y
les 
orrespond to left-re
ursive 
alls, whi
h areforbidden sin
e they lead to in�nite ε-
losures. Non-
all ε2-
y
les 
an bedivided again into two 
lasses: the ones that involve deletable 
alls and theones that do not. ε2-
y
les belonging to the former 
lass are forbidden, andthe ones belonging to the latter 
lass are the same than the ε2-
y
les found inthe FSTBO 
ase, and therefore 
an be removed by determinizing the RTNBOas its underlying FSA.
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y
les with deletable 
alls are not removed when determiniz-ing its underlying FSA: su
h ε2-
y
les are redu
ed to an ε2-
y
le 
omposedonly by deletable 
alls, where the subinitial SS of ea
h 
all is repla
ed by asingle state that is both subinitial and �nal. However, su
h 
y
les do not
ontribute anything to the grammar des
ription. We simply forbid theirpresen
e in order to support BSP.Theorem 22 (Existen
e of a topologi
al sort). Considering lemma 1 (p. 131)and the previous theorem, for every non-left-re
ursive RTNBO without ε-
y
les involving deletable 
alls and/or output generation there exists an equiv-alent RTNBO A su
h that, given A′ the RTN obtained from A after removingits output alphabet and transition outputs, there exists at least one topologi
alsort for every ε-
losure-substru
ture of X (A′).As for the FSTBO 
ase (de�nition 174, p. 207), we de�ne fun
tion D forBSP for a single sour
e RTN ES and its asso
iated SB instead of a RTN SESand a mapping of RTN ESs to SBs sin
e we iteratively 
ompute the ε-
losureES by ES, following a topologi
al sort.De�nition 237 (BSPD). We de�ne fun
tion D for RTNBO BSP as follows:
D : ((Q×Q∗)× ZB)→ (P(Q×Q∗)× ZB),su
h that

D(xs, Bs) = (V ′, ζ ′B) : V
′ = Vε ∪ Vpush ∪ Vpop∧

∀xt ∈ V ′[ζ ′B(xt) = ζBε
(xt) ∪ ζBpush

(xt) ∪ ζBpop
(xt)]∧

(Vε, ζBε
) = Dε(xs, Bs) ∧ (Vpush, ζBpush

) = Dpush(xs, Bs)∧

(Vpop, ζBpop
) = Dpop(xs, Bs) (13.6)

Dε((qs, π), Bs) = (V ′, ζ ′B) : V
′ = {x : ζ ′B(x) 6= ∅}∧

ζ ′B((qt, π)) =
⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs) (13.7)
Dpush((qs, π), Bs) = (V ′, ζ ′B) : V

′ = {(qc, πqt) : qt ∈ δ(qs, Qc)} ∧ qc ∈ Qc∧

∀x ∈ V ′[ζ ′B(x) = Bs] (13.8)
Dpop((qs, πqr), Bs) =

{

({(qr, π)}, ζ
′
B) : ζ

′
B(qr, π) = Bs qs ∈ F

(∅, ζ ′B) : ∀x[ζ
′
B(x) = ∅] qs /∈ F

(13.9)
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losure). The de�nition of BSP ε-
losure is the samethan for FSTBOs (de�nition 175, p. 208) but repla
ing FSTBOs by RTNBOs,FSAs by RTNs, FSA ESs by RTN ESs and the BSP D fun
tion for FSTBOsby the one for RTNBOs.The proof of equivalen
e between BSP and non-BSP ε-
losures for RTNBObreadth-�rst pro
essing is analogous to the one for the FSTBO 
ase (proofof theorem 13, p. 208).13.9 Earley-like pro
essingRTNBOs perform the re
ognition of an input sequen
e as RTNs do, but also
ompute its asso
iated output bla
kboards as result of applying to the emptybla
kboard b∅ the 
omposition of the sequen
e of output fun
tions found dur-ing the traversal of the RTNBO. Earley-like RTN pro
essing (se
tion 12.10,p. 242) fa
tors out the 
omputation of parallel 
alls to the same state bypausing every 
alling ES, then starting a new and single pro
essing for the
all and �nally resuming the paused ESs ea
h time the 
all is 
ompleted. Forthe 
ase of RTNBOs we fa
tor out as well the 
omputation of the outputbla
kboard of 
ommon 
alls. However, it is ne
essary to de�ne a bla
kboard
omposition operator so that, for ea
h 
all 
ompletion, the bla
kboards 
om-puted during the 
all 
an be 
ombined with the bla
kboards of the pausedESs to be resumed in order to pro
eed with the exploration of the RTNBO:De�nition 239 (Bla
kboard 
omposition operator). Given a RTNBO (Q,
Σ, Γ, B, BK , δ, QI , F ), its bla
kboard 
omposition operator ◦ is a binaryfun
tion on bla
kboards

◦ : B × B → Bsu
h that given two bla
kboards
b = (γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅) (13.10)and
b′ = (γ′

n ◦ γ
′
n−1 ◦ . . . ◦ γ

′
0)(b∅) (13.11)it holds that

b ◦ b′ = (γ′
n ◦ γ

′
n−1 ◦ . . . ◦ γ

′
0 ◦ γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅).

2 (13.12)2Re
all that the notation of fun
tion 
omposition reverses the fun
tion spe
i�
a-tion w.r.t. the order in whi
h they are applied, that is, (γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅) =
γm(γm−1(. . . (γ0(b∅)) . . .))



13.9. EARLEY-LIKE PROCESSING 269In other words, the bla
kboard 
omposition operator enables to separately
ompute partial results 
orresponding to 
onse
utive segments of the sequen
eof output fun
tions and then 
ombine those partial results as if the sequen
eof output fun
tions was applied sequentially to the empty bla
kboard. The
on
rete de�nition of the bla
kboard 
omposition operator depends on thekind of 
on
rete ma
hine.Lemma 20 (Asso
iative bla
kboard 
omposition operator). Let • be a binaryoperator on bla
kboards; if every output fun
tion of a RTNBO A is of the form
γbr(bl) = bl • br,3 and • is asso
iative, then • is the bla
kboard 
ompositionoperator of A.Proof. Let output fun
tions of a RTNBO B be de�ned as in the lemma, thenit holds that

γbr(b∅) = br and (13.13)
idB(bl) = bl,

4 (13.14)whi
h imply that
b∅ • br = br and (13.15)
bl • b∅ = bl, (13.16)that is, b∅ is the identity element w.r.t. •. Let bla
kboards b and b′ be de�nedas

b = (γbm ◦ γbm−1
◦ . . . ◦ γb0)(b∅) and (13.17)

b′ = (γb′n ◦ γb′n−1
◦ . . . ◦ γb′0)(b∅), (13.18)then it holds that

b = b∅ • b0 • . . . • bm−1 • bm = b0 • . . . • bm−1 • bm and (13.19)
b′ = b∅ • b0 • . . . • b

′
n−1 • b

′
n = b′0 • . . . • b

′
n−1 • b

′
n. (13.20)If • is asso
iative, then it holds that

b • b′ = b∅ • b0 • . . . • bm−1 • bm • b
′
0 • . . . • b

′
n−1 • b

′
n (13.21)

= (γb′n ◦ γb′n−1 ◦ . . . ◦ γb′0 ◦ γbm ◦ γbm−1
◦ . . . ◦ γb0)(b∅), (13.22)3Bla
kboards bl and br stand for left and right operands, respe
tively.4Re
all that b∅ stands for the empty bla
kboard and that idB stands for the identityfun
tion on bla
kboards.
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kboard 
omposition operator of A (de�nition 239).The previous lemma is applied to the de�nition of the bla
kboard 
ompo-sition operator for every parti
ular output 
ase treated in this dissertation,namely weights (the obje
t of 
hapter 18) and feature stru
tures built bymeans of uni�
ation pro
esses (the obje
t of 
hapter 19). RTNBOs whoseoutput bla
kboards do not allow for the de�nition of a bla
kboard 
omposi-tion operator 
an still be applied e�
iently if su
h bla
kboards are weightedand only the top-ranked bla
kboard is to be returned. More details will begiven in 
hapter 18.De�nition 240 (Earley exe
ution state). ESs for Earley-like RTNBO pro-
essing are ESs for Earley-like RTN pro
essing (de�nition 207, p. 227) aug-mented with a bla
kboard in B representing the output generated up to theES, in parti
ular stru
tures in (Q× B × (P(Q) ∪ {λ})×P(Q)× N).De�nition 241 (Earley∆). The ∆ fun
tion for RTNBO Earley-like pro
ess-ing, the equivalent to Earley's s
anner, is a simple dire
t-derivation fun
tionon SESs (de�nition 98, p. 137) with
• xs = (qs, bs, λ, Qh, i),
• xt = (qt, bt, λ, Qh, i), and
• d = qt ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.The RTNBO Earley-like ∆ fun
tion behaves as the RTN Earley-like ∆ fun
-tion (de�nition 219, p. 244) extended with bla
kboard pro
essing analogouslyto the way in whi
h the FSA ∆ fun
tion (de�nition 132, p. 163) is extendedwith bla
kboard output for FSTBO pro
essing (de�nition 155, p. 189).De�nition 242 (Earley D). The D(Vk) fun
tion for RTNBO Earley-likepro
essing is 
omposed by 3 simple dire
t-derivation fun
tions on SESs (def-inition 98, p. 137):
• the expli
it ε-transition pro
essor, Dε(Vk) with� xs = (qs, bs, λ, Qh, i),� xt = (qt, bt, λ, Qh, i), and� d = qt ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK ,
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• the equivalent to Earley's predi
tor, Dpush with� xs = (qs, bs, λ, Qh, j),� xt = (qc, b∅, λ, Qc, k) or xt = (qr, bs, Qc, Qh, j), meaning that bothtarget ESs are derived from xs if p holds, and� d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc, and
• the equivalent to Earley's 
ompleter, Dpop with� xs = (qf , bf , λ, Qh, j),� xt = (qr, br, λ, Q

′
h, i), and� d = qf ∈ F ∧ (qr, bs, Qh, Q

′
h, i) ∈ Vj ∧ br = bs ◦ bf ∧ br /∈ BK ,where ◦ is the bla
kboard 
omposition operator and Dpop is retroa
tive,as for RTN Earley-like pro
essing (de�nition 220, p. 245).De�nition 243 (Earley initial and a

eptan
e SESs). Given the sets of ini-tial and a

eptan
e states of a RTNBO, QI and F , its initial and a

eptan
eSESs for Earley-like pro
essing are (QI ×{b∅}× {λ}× {QI}× {0}), the ESsstarting a 
all to any initial state before 
onsuming any input symbol or gen-erating any output, and (F × B × {λ} × {QI} × {0}), the ESs from wherethose initial 
alls would pop, respe
tively.De�nition 244 (Earley τ). We de�ne τ(A) �the language of translationsof a RTNBO A� through Earley-like pro
essing as

τ(A) = {(w, b) : (qf , b, λ, QI , 0) ∈ ∆∗((QI ×{b∅}× {λ}× {QI}× {0}), w)∩

(F × B × {λ} × {QI} × {0})}. (13.23)De�nition 245 (Earley ω). We de�ne ω(A,w) �the translations of a word
w for a RTNBO A� through Earley-like pro
essing as

ω(A,w) = {b : (w, b) ∈ τ(A)}, (13.24)with τ(A) of the previous de�nition.



272 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.10 Earley translator algorithmAlgorithm 13.2 rtnbo_earley_translate_string is a sequen
e translator imple-menting the Earley-like version of ω(A,w) (de�nition 244, p. 271), whi
h wehave obtained by extending the 
orresponding Earley-like sequen
e a

eptoralgorithm for RTNs (algorithm 12.2, p. 249) with bla
kboard output. As forthe a

eptor algorithm, it uses algorithm 13.3 rtnbo_earley_translate_sym-bol for 
omputing the Earley-like ∆ fun
tion (de�nition 241, p. 270), andalgorithm 13.4 rtnbo_earley_interla
ed_e
losure for 
omputing the Earley-like ε-
losure (generi
 FSM ε-
losure in de�nition 100, p. 138, using theEarley-like D fun
tion in de�nition 242, p. 270). Finally, add_enqueue-_esbo and un
onditionally_add_enqueue_es are the small routines seen inse
tions 10.6 (p. 196) and 7.9 (p. 152) for 
onditionally or un
onditionallyadding an ES to a SES.The di�eren
es between the Earley-like a

eptor algorithm (algorithm 12.2)and the translator version (algorithm 13.2) are enumerated below:
• ESs are extended with a bla
kboard element, whi
h is b∅ for the initialESs, so when arriving to the same state through di�erent paths it ispossible to have several ESs due to di�erent bla
kboards,
• pro
essing a transition with output requires to apply a γ fun
tion tothe bla
kboard of the sour
e ES,
• as for FSTBOs, illegal ESs (
ontaining killing bla
kboards) are reje
ted,
• instead of a Boolean, the result of the algorithm is the set of bla
kboards(SB) 
ontaining every bla
kboard of every a

eptan
e ES in the last V ,
• given the set of paused ESs Wpush of a SES Vk having 
alled the sameSS Qc, and the set of ESs Wpop from where the 
all has been popped,the algorithm 
omputes the 
omposition of every pair of bla
kboardsof every pair of ESs in Wpush ×Wpop, whi
h raises its asymptoti
 
ostfrom polynomial to exponential, and
• the ε-
losure algorithm requires to build the list of not only the ε-
ompleted 
alls but their 
orresponding outputs as well, so the 
ompo-sition of bla
kboards 
an be performed when retroa
tively ε-
ompletinga 
all inside the predi
tor.



13.10. EARLEY TRANSLATOR ALGORITHM 273Algorithm 13.2 rtnbo_earley_translate_string(σ1 . . . σl) ω(A, σ1 . . . σl),eq. (13.24)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for ea
h (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, E, (qc, b∅, λ, QI , 0))6: end for7: V0 ← rtnbo_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtnbo_earley_translate_symbol(Vk, E, σk+1)11: k ← k + 112: rtnbo_earley_interlaced_eclosure(V l+1, E, k)13: end while14: T ← ∅15: for ea
h (qs, bs, λ, QI , 0) ∈ Vk : qs ∈ F do16: add(T, bs)17: end forAlgorithm 13.3 rtnbo_earley_translate_symbol(V,E, σ) ⊲ ∆(V, σ),def. (241)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of rea
hable ESs from V by 
onsuming σ
E after enqueuing the ESs of W1: W ← ∅2: for ea
h (qs, bs, λ, Qh, j) ∈ Vk do3: for ea
h (qt, γ) : qt ∈ δ(qs, (σ, γ)) do4: add_enqueue_esbo(W,E, (qt, γ(bs), λ, Qh, j))5: end for6: end for



274 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT
Algorithm 13.4 rtnbo_earley_interla
ed_e
losure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the 
hart

E, the queue of unexplored ESs 
ontaining every ES in Vk

k, the index of the SES whose ε-
losure is to be 
omputedOutput: V l+1 after adding to Vk its ε-
losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, bs, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for ea
h (qt, g) : qt ∈ δ(qs, (ε, g)) do5: add_enqueue_esbo(Vk, E, (qt, γ(bs), λ, Qh, j)6: end for
⊲ PREDICTOR7: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, bs, Qc, Qh, j)) then9: if ∄bc : (Qc, bc) ∈ T then10: for ea
h qc ∈ Qc do11: add_enqueue_esbo(Vk, E, (qc, b∅, λ, Qc, k))12: end for

⊲ ε-COMPLETER13: else14: for ea
h bc : (Qc, bc) ∈ T do15: add_enqueue_esbo(Vk, E, (qr, bs ◦ bc, λ, Qh, j)16: end for17: end if18: end if19: end for
⊲ COMPLETER20: if qs ∈ F then21: for ea
h (qr, bc, Qh, Q

′
h, i) ∈ Vj do22: add_enqueue_esbo(Vk, E, (qr, bs ◦ bc, λ, Q

′
h, i)



13.11. EARLEY-LIKE BLACKBOARD SET PROCESSING 275
⊲ ε-COMPLETER23: if i = k then24: add(T, (Qh, bs))25: end if26: end for27: end if28: end whileAs for the RTN Earley-like 
ase (se
tion 12.11, p. 246), the optimizationof sequen
e representation by means of tries (se
tion 9.1, p. 178) 
annot beapplied here to the management of sta
ks of states sin
e the Earley trans-lator algorithm for RTNBOs (algorithm 13.2) does not use su
h sta
ks. Itmight be appli
able to the representation of string-like outputs, though forEarley-like pro
essing this modi�
ation might de
rease e�
ien
y rather thanoptimizing the algorithm sin
e it falls into the not-so-e�
ient 
ase des
ribedin se
tion 9.3 (p. 183). A more detailed dis
ussion will be given in se
tion 14.7(p. 289) for the 
ase of RTNSOs.13.11 Earley-like bla
kboard set pro
essingAnalogous to breadth-�rst bla
kboard set pro
essing (BSP) of RTNBOs (se
-tion 13.8, p. 265), we present here Earley-like BSP of RTNBOs as an exten-sion of the FSTBO 
ase (se
tion 10.9, p. 205). The exe
ution ma
hines of the
orresponding ma
hines without output for both the FSTBO and RTNBObreadth-�rst 
ases (FSAs and RTNs, respe
tively) are FSAs. However, forthe 
ase of Earley-like RTN pro
essing the resulting exe
ution ma
hine is anoutput FPRTN, a sub
lass of FPRTNs that we will study in 
hapter 16.5De�ning a topologi
al sort for output FPRTN substru
tures and �nding thene
essary 
onditions for its existen
e is not so straightforward as for FSAsdue to the presen
e of 
all transitions and the parti
ular way in whi
h theyare 
onstru
ted. We just present here the equations for Earley-like BSP of5To be exa
t, the Earley-like exe
ution ma
hine of a RTN is an �input� FPRTN: ama
hine built as for output FPRTNs but taking as transition labels the inputs of the RTNinstead of the outputs of the original RTNBO. Moreover, output FPRTNs are built forre
ognizing only the translations generated by the RTNBO for a given input sequen
e,and the exe
ution ma
hine 
onsumes every input sequen
e the RTN 
an 
onsume. Moredetails will be given in 
hapter 16.
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h a topologi
al sort for the ε-
losuresubstru
tures of the 
orresponding output FPRTNs. An appli
ation of theseequations will be given in se
tion 16.3 (p. 329) for the generation of the lan-guage of an output FPRTN, along with a de�nition of topologi
al sort foroutput FPRTN substru
tures and the ne
essary 
onditions for its existen
e.De�nition 246 (ZB). Given a RTNBO (Q,Σ,Γ, B, BK , δ, QI , F ), we de�ne
ZB as the set of every partial map ζB of RTN Earley ESs (Q×B× (P(Q)∪
{λ})× P(Q)× N) to SBs in P(B).De�nition 247 (Earley bla
kboard set pro
essing). We de�ne the equivalentEarley BSP SES VB of a RTNBO Earley SES V as follows:

VB = (V ′, ζB) : V
′ = {(qs, λ, Qh, i) : (qs, b, λ, Qh, i) ∈ V } ∪ (13.25)
{(qs, Qc, Qh, i) : (qs, b, Qc, Qh, i) ∈ V } ∧ (13.26)

ζB(qs, λ, Qh, i) = {b : (qs, b, λ, Qh, i) ∈ V } ∧ (13.27)
ζB(qs, Qc, Qh, i) = {b : (qs, b, Qc, Qh, i) ∈ V }, (13.28)whi
h is equivalent to say that

VB = (V ′, ζB) : (
⋃

(qs,λ,Qh,i)∈V ′

{qs} × ζB(qs, λ, Qh, i)× {λ} × {Qh} × {i}) ∪

(
⋃

(qs,Qc,Qh,i)∈V ′

{qs} × ζB(qs, Qc, Qh, i)× {Qc} × {Qh} × {i}) = V. (13.29)The de�nition of γ on SBs (de�nition 172, p. 206) does not 
hange.De�nition 248 (Earley BSP ∆). We rede�ne the RTNBO ∆ fun
tion forEarley-like BSP as follows:
∆ : (P(Q×{λ}×P(Q)×N)×ZB)×Σ→ (P(Q×{λ}×P(Q)×N)×ZB),su
h that
∆((V, ζB), σ) = (V ′, ζ ′B) : V

′ = {(qt, λ, Qh, i+1) : ζ ′B(qt, λ, Qh, i+1) 6= ∅}∧

ζ ′B(qt, λ, Qh, i+ 1) =
⋃

γ:qt∈δ(qs,(σ,γ))∧(qs,λ,Qh,i)∈V

γ(ζB(qs, λ, Qh, i)) (13.30)
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tion for BSP Earley RTNBOpro
essing is de�ned as follows:
D : ((Q×Q∗)× ZB)→ (P(Q×Q∗)× ZB)

D((qs, λ, qh, j), Bs) = (V ′, ζ ′B) : V
′ = Vε ∪ Vpush ∪ Vpop∧

ζ ′B(qt, π) = ζBε
(qt, π) ∪ ζBpush

(qt, π) ∪ ζBpop
(qt, π)∧

(Vε, ζBε
) = Dε((qs, π), Bs) ∧ (Vpush, ζBpush

) = Dpush((qs, π), Bs)∧

(Vpop, ζBpop
) = Dpop((qs, π), Bs) (13.31)

Dε((qs, λ, qh, j), Bs) = (V ′, ζ ′B) : V
′ = {(qt, λ, qh, j) : ζ

′
B(qt, λ, qh, j) 6= ∅}∧

ζ ′B(qt, λ, qh, j) =
⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs) (13.32)
Dpush((qs, λ, qh, j), Bs) = (V ′, ζ ′B) : V

′ = {(qc, λ, qc, k), (qt, qc, qh, j) :

(qs, λ, qh, j) ∈ Vk ∧ qt ∈ δ(qs, qc)}∧

(ζ ′B(qc, λ, qc, k) = {b∅} ∧ ζ ′B(qt, qc, qh, j) = Bs) ⇐⇒

((qs, λ, qh, j) ∈ Vk ∧ qt ∈ δ(qs, qc)) (13.33)
Dpop((qs, λ, qh, j), Bs) =







(V ′, ζ ′) : V ′ = {(qr, λ, q
′
h, i) :

(qr, qh, q
′
h, i) ∈ Vj} ∧ ζ ′(qr, π) = Bs qs ∈ F

(∅, ζ ′) : ζ ′(qs, λ, qh, j) = ∅ qs /∈ F(13.34)De�nition 250 (BSP ε-
losure). The de�nition of BSP ε-
losure is the samethan for breadth-�rst BSP of RTNBOs (de�nition 238, p. 268) but repla
ingRTN ESs by RTN Earley ESs and the BSP breadth-�rst D fun
tion by the
orresponding Earley one.The proof of equivalen
e between Earley-like BSP and non-BSP ε-
losuresfor RTNBO Earley-like pro
essing is analogous to the one for the FSTBO
ase (proof of theorem 13, p. 208).





Chapter 14Re
ursive transition networkswith string outputWe present here RTNSOs as a spe
ial 
ase of RTNBOs in the same way wehave presented FSTSOs as a spe
ial 
ase of FSTBOs in 
hapter 11. We havepublished brief des
riptions of RTNSOs �as well as of the breadth-�rst andEarley-like algorithms of appli
ation of RTNSOs we des
ribe here� in Sastreand For
ada (2007, 2009).De�nition 251 (RTNSO). A RTNSO (Q,Σ,Γ, δ, QI , F ) is a spe
ial type ofFSM (de�nition 46, p. 121) with a sta
k, where the set of labels Ξ of thema
hine take its elements from ((Σ∪ {ε}× (Γ∪ {ε}))∪P(Q), Σ is an inputalphabet, Γ an output alphabet, ε the empty symbol and Q the �nite SS of theRTNSO. RTNSOs 
an be seen as a spe
ial 
ase of RTNBOs in the same wayFSTSOs are a spe
ial 
ase of FSTBOs (see de�nition 176, p. 212).14.1 TransitionsRTNSO transitions are a parti
ular 
ase of RTNBO transitions (se
tion 13.1,p. 258) as FSTSO transitions are a parti
ular 
ase of FSTBO transitions (seese
tion 11.1, p. 212). Possible RTNSO transition types are:
• 
onsuming transitions: Q× (Σ× (Γ ∪ {ε}))×Q,
• generating transitions: Q× ((Σ ∪ {ε})× Γ)×Q,
• translating or substituting transitions: Q× (Σ× Γ)×Q,279
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• deleting transitions: Q× (Σ× {ε})×Q,
• inserting transitions: Q× ({ε} × Γ)×Q,
• 
all transitions: Q× P(Q)×Q,
• push transitions: Q×Q�×Q,1
• pop transitions: Q×Q�×Q,2
• impli
it ε-transitions: push or pop transitions, and
• expli
it ε2-transitions: Q× ({ε} × {ε})×Q.14.2 Sequen
es of transitionsAnalogously, RTNSO paths are a parti
ular 
ase of RTNBO paths. Everyde�nition in se
tion 13.3 (p. 259) is inherited by repla
ing RTNBO transitionsby their 
orresponding RTNSO transitions.14.3 BehaviourDe�nition 252 (Exe
ution state). RTNSO ESs are triplets (q, z, π) ∈ (Q×

Γ∗ ×Q∗) where z is a sequen
e of output symbols, ε being the empty output,and π is a sta
k of return states, being λ the empty sta
k.De�nition 253 (∆). The∆ fun
tion for RTNBOs is a simple dire
t-derivationfun
tion on SESs (de�nition 98, p. 137) with
• xs = (qs, z, π),
• xt = (qt, zg, π), and
• d = qs ∈ δ(qs, (σ, g)),where g ∈ Γ∪{ε}. The RTNSO ∆ fun
tion behaves as the FSTSO ∆ fun
tionbut extending its pro
essing with sta
ks of return states that are in fa
t leftuntou
hed.1Re
all that qc� represents to push state qc onto the sta
k.2Re
all that qr� represents to pop state qr out of the sta
k.



14.3. BEHAVIOUR 281De�nition 254 (D). The D fun
tion for RTNSOs is 
omposed by 3 simpledire
t-derivation fun
tions on SESs (de�nition 98, p. 137), Dε with
• xs = (qs, z, π),
• xt = (qt, zg, π), and
• d = qs ∈ δ(qs, (ε, g)),where g ∈ Γ ∪ {ε}, Dpush with
• xs = (qs, z, π),
• xt = (qc, z, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,and Dpop with
• xs = (qf , z, πqr),
• xt = (qr, z, π), and
• d = qf ∈ F .Lemma 21 (In�nite ε-
losure). The ε-
losure of a RTNSO SES V is in�niteif there exists an ε-rea
hable ES (q, z, π) su
h that q has an outgoing left-re
ursive 
all transition and/or is traversed by a generating ε-
y
le.Proof. Sin
e the RTNSO ε-
losure fun
tion is a parti
ular 
ase of the RTNBO

ε-
losure fun
tion, this proof is a parti
ular 
ase of proof of lemma 18 (p. 261)for RTNBOs. The ESs derived during the 
omputation of the ε-
losure arenot expli
itly required to be legal sin
e RTNSOs do not de�ne killing bla
k-boards. Additionally, non-identity output fun
tions are neither expli
itlyrequired to always generate new bla
kboards sin
e, for the 
ase of stringoutput, this is always true: zg 6= z i� g 6= ε.Lemma 22 (Finite ε-
losure). For 
onditions other than those expressed inthe previous lemma, the ε-
losure of a RTNSO SES is �nite.Proof. Sin
e the RTNSO ε-
losure fun
tion is a parti
ular 
ase of the RTNBO
ε-
losure fun
tion, this proof is a parti
ular 
ase of proof of lemma 19 (p. 261)for RTNBOs.



282 CHAPTER 14. RTNS WITH STRING OUTPUTTheorem 23. The ε-
losure is always �nite for non-left-re
ursive RTNSOswithout generating ε-
y
les.De�nition 255 (Initial and a

eptan
e SESs). Given the sets of initial anda

eptan
e states of a RTNSO, QI and F , its initial and a

eptan
e SESsare (QI × {ε} × {λ}) and (F × Γ∗ × {λ}), respe
tively.De�nition 256 (τ). We de�ne τ(A), the language of translations of a RTNSO
A, as the set of input/output pairs (w, z) ∈ (Σ∗ × Γ∗) su
h that w is re
og-nized and translated into z by A, that is, the set of input/output pairs su
hthat the whole 
onsumption of w rea
hes at least one a

eptan
e ES from atleast one initial ES through a path that generates z:
τ(A) = {(w, z) : (qf , z, π) ∈ ∆∗((QI×{ε}×{λ}), w)∩(F×Γ

∗×{λ})}. (14.1)De�nition 257 (ω). We de�ne ω(A,w), the translations of a word w for aRTNSO A, as the set of output sequen
es z ∈ Γ∗ su
h that (w, z) belongs tothe translations of A:
ω(A,w) = {z : (w, z) ∈ τ(A)}, (14.2)with τ(A) of the previous de�nition.14.4 Translating a stringAlgorithm 14.1 rtnso_translate_string is a spe
ialization of algorithm 13.1rtnbo_translate_string (p. 264) for the 
omputation of the set of string trans-lations for a given RTNSO an input sequen
e. Algorithms for 
omputing the

∆ and ε-
losure fun
tions 
an be easily derived from their RTNBO 
ounter-parts (see se
tion 13.5, p. 262). Noti
e that, sin
e RTNSOs do not de�nekilling strings, routine add_enqueue_es (se
tion 7.8, p. 148) 
an be usedinstead of routine add_enqueue_esbo (se
tion 10.6, p. 196) in order to addderived ESs to the 
urrent SES: both routines perform the same operationbut the former one does not verify whether the derived ESs 
ontain killingbla
kboards or not.Figure 14.2 is a graphi
al representation of the exe
ution tra
e of algo-rithm 14.1 rtnso_translate_string, for RTNSO of �gure 14.1 and input aabb.This RTNSO 
annot be determinized as for the RTN 
ase in se
tion 12.7
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Algorithm 14.1 rtnso_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (14.2)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for ea
h qc ∈ QI do4: unconditionally_add_enqueue_es(V,E, (qc, ε, {λ}))5: end for6: rtnso_interlaced_eclosure(V,E)7: i← i+ 18: while Vi 6= ∅ ∧ i < l do9: V ← rtnso_translate_symbol(V,E, σi+1)10: i← i+ 111: rtnso_interlaced_eclosure(V,E)12: end while13: T ← ∅14: for ea
h (q, z, π) ∈ V do15: if q ∈ F ∧ π = λ then16: add(T, z)17: end if18: end for
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q0

q1 q2

q3 q4

q5

a : {

a : [

{q0}

{q0}

b :}

b :]

ε : ∗Figure 14.1: Example of ambiguous RTNSO 
orresponding to RTN of �gure 12.6(p. 237) extended with string output; labels of the form x : y represent an in-put/output pair (e.g.: a : { for transition (q0, (a, {), q1)) and dashed transitionsrepresent a 
all to the state spe
i�ed by the label (e.g.: transition (q1, q0, q2)).Input a 
an be interpreted as [ or { and b as ] or }.(p. 235) sin
e transitions labeled with the same input symbols de�ne di�er-ent outputs. As for the RTN 
ase, the number of parallel parses is doubledea
h time an a is 
onsumed, but is not redu
ed after 
onsuming ea
h b dueto the di�erent outputs of the ESs. The number of generated ESs is alsoexponential w.r.t. the length of input anbn, as for the RTN 
ase.The algorithm 
an be further improved with the trie string managementseen in se
tion 9.1 (p. 178), whi
h in this 
ase may be applied to both theoutput strings and the sta
k of return states.14.5 Language generationIn se
tion 11.6 (p. 215) we des
ribed how to adapt an FSTSO translatoralgorithm in order to obtain an algorithm for the generation of the languageof a FSA. We follow here an analogous pro
edure for the 
onstru
tion of analgorithm for the generation of the language a RTN, that is, by adapting aRTNSO translator algorithm.Theorem 24 (Language generation). Let A = (Q,Σ, δ, QI , F ) be a RTN and
A′ = (Q′,Σ′,Γ, δ′, Q′

I , F
′) a RTNSO su
h that

• Q′ = Q, Q′
I = QI , F ′ = F ,

• Σ′ = ∅,
• Γ = Σ,
• qt ∈ δ′(qs, (ε, γ)) i� qt ∈ δ(qs, σ), and
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Figure 14.2: Exe
ution tra
e of the RTNSO breadth-�rst translator algorithm 14.1 for the ambiguous RTNSO of�gure 14.1) and input aabb. Solid, dotted and bold tra
e transitions 
orrespond, respe
tively, to the exploration ofthe RTN expli
it transitions, push transitions and pop transitions.
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• qt ∈ δ′(qs, Qc) i� qt ∈ δ(qs, Qc),then it holds that

L(A) = ω(A′, ε) (14.3)Proof. The proof is analogous to the one for the FSA/FSTSO 
ase (proof oftheorem 15, p. 216). In this 
ase, paths pi and p′i for i = 0 . . . l − 1 may also
ontain push and pop transitions modifying a sta
k of return states. However,it still holds that p is an interpretation within A i� p′ is an interpretationwithin A′.Algorithm 14.2 rtn_language is an adaptation of the breadth-�rst trans-lator algorithm 14.1 for the 
omputation of the language of a RTN. As forthe FSA/FSTSO 
ase, the domain of appli
ation is given by the originalalgorithm, that is, the algorithm 
annot 
ompute the language of RTNs 
on-taining useful 
onsuming 
y
les and/or useful left-re
ursive 
alls. As for theoriginal algorithm, this algorithm 
an also be improved with the trie stringmanagement shown in se
tion 9.1 (p. 178).14.6 Earley-like pro
essingWe adapt here the RTNBO Earley-like pro
essing equations (se
tion 13.9,p. 268) for the RTNSO 
ase, that is, repla
ing bla
kboards with strings. Wemainly remove the killing bla
kboard me
hanism and de�ne the bla
kboard
omposition operator as the string 
on
atenation operator.De�nition 258 (String 
omposition operator). We de�ne the bla
kboard
omposition operator (de�nition 239, p. 268) for the 
ase of RTNSOs asthe string 
on
atenation operator sin
e it is a parti
ular 
ase of lemma 20(p. 269).De�nition 259 (Earley exe
ution state). ESs for Earley-like RTNSO pro-
essing are ESs for Earley-like RTNBO pro
essing (de�nition 226, p. 260)where the bla
kboards are strings in Γ∗, that is, stru
tures in (Q×Γ∗×(P(Q)∪
{λ})× P(Q)× N).De�nition 260 (Earley ∆). The ∆ fun
tion for RTNSO Earley-like pro
ess-ing, the equivalent to Earley's s
anner, is a simple dire
t-derivation fun
tionon SESs (de�nition 98, p. 137) with
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Algorithm 14.2 rtn_language(A) ⊲ L(A), eq. (12.2)Input: A = (Q,Σ, δ, QI , F ), a RTNOutput: L, the language of A1: V ← ∅2: E ← ∅3: for ea
h qc ∈ QI do4: unconditionally_add_enqueue_es(V,E, (qc, ε, {λ}))5: end for6: while E 6= ∅ do7: (qs, w, π)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS8: for ea
h qt ∈ δ(qs, ε) do9: add_enqueue_es(V,E, (qt, w, π))10: end for
⊲ CONSUMING TRANSITIONS11: for ea
h (qt, σ) : qt ∈ δ(qs, σ) do12: add_enqueue_es(V,E, (qt, wσ, π))13: end for

⊲ PUSH-TRANSITIONS14: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do15: for ea
h qc ∈ Qc do16: add_enqueue_es(V,E, (qc, w, πqr))17: end for18: end for
⊲ POP TRANSITIONS19: if π = π′qr ∧ qs ∈ F then20: add_enqueue_es(V,E, (qr, w, π

′))21: end if22: end while23: L← ∅24: for ea
h (q, w, λ) ∈ V : q ∈ F do25: add(L,w)26: end for
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• xs = (qs, z, λ, Qh, i),
• xt = (qt, zg, λ,Qh, i), and
• d = qt ∈ δ(qs, (σ, g)),where g ∈ (Γ ∪ {ε}).De�nition 261 (Earley D). The D(Vk) fun
tion for RTNSO Earley-likepro
essing is 
omposed by 3 simple dire
t-derivation fun
tions on SESs (def-inition 98, p. 137):
• the expli
it ε-transition pro
essor, Dε(Vk) with� xs = (qs, z, λ, Qh, i),� xt = (qt, zg, λ,Qh, i), and� d = qt ∈ δ(qs, (ε, g)),where g ∈ (Γ ∪ {ε}),
• the equivalent to Earley's predi
tor, Dpush with� xs = (qs, zs, λ, Qh, j),� xt = (qc, ε, λ, Qc, k) or xt = (qr, zs, Qc, Qh, j), meaning that bothtarget ESs are derived from xs if p holds, and� d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc, and
• the equivalent to Earley's 
ompleter, Dpop with� xs = (qf , zf , λ, Qh, j),� xt = (qr, zszf , λ, Q

′
h, i), and� d = qf ∈ F ∧ (qr, zs, Qh, Q

′
h, i) ∈ Vj,where Dpop is retroa
tive, as for the RTN 
ase de�nition 220 (p. 245).De�nition 262 (Earley initial and a

eptan
e SESs). Given the sets of ini-tial and a

eptan
e states of a RTNSO, QI and F , its initial and a

eptan
eSESs for Earley-like pro
essing are (QI × {ε} × {λ} × {QI} × {0}), the ESsstarting a 
all to any initial state before 
onsuming any input symbol andgenerating any output, and (F ×Γ∗×{λ}×{QI}×{0}), the ESs from wherethose initial 
alls would pop, respe
tively.



14.7. EARLEY TRANSLATOR ALGORITHM 289De�nition 263 (Earley τ). Following de�nition 244 (p. 271), we de�ne
τ(A), the language of translations of a RTNSO A through Earley-like pro-
essing, as
τ(A) = {(w, z) : (qf , z, λ, QI , 0) ∈ ∆∗((QI × {ε} × {λ} × {QI} × {0}), w)∩

(F × Γ∗ × {λ} × {QI} × {0}). (14.4)De�nition 264 (ω). We de�ne ω(A,w), the translations of a word w for aRTNSO A through Earley-like pro
essing, as
ω(A,w) = {z : (w, z) ∈ τ(A)}, (14.5)with τ(A) of the previous de�nition.14.7 Earley translator algorithmAlgorithm 14.3 rtnso_earley_translate_string is a sequen
e translator im-plementing the Earley-like ω(A,w) fun
tion (de�nition 263), whi
h we haveobtained by removing the killing bla
kboard me
hanism of the Earley-liketranslator for RTNBOs (algorithm 13.2, p. 273), and by repla
ing bla
k-board management by string management. Analogously to the RTNBOalgorithm, it uses algorithm 14.4 rtnso_earley_translate_symbol for 
om-puting the Earley-like ∆ fun
tion (de�nition 260) and algorithm 14.5 rtnso-_earley_interla
ed_e
losure for 
omputing the Earley-like ε-
losure (generi
FSM ε-
losure in de�nition 100, p. 138, using Earley-likeD fun
tion in de�ni-tion 261, p. 288). Finally, the routines add_enqueue_es and un
onditionally-_add_enqueue_es seen in se
tions 7.8 (p. 148) and 7.9 (p. 152), respe
tively,are used for 
onditionally or un
onditionally adding derived ESs to the 
ur-rent SES without 
he
king for illegal strings sin
e there are none de�ned. Wehave already presented the resulting algorithm in Sastre and For
ada (2007,2009).Figure 14.3 is a graphi
al representation of the exe
ution tra
e of theEarley-like translator algorithm adapted for RTNSOs, for RTNSO of �g-ure 14.1 and input aabb. As for the RTN 
ase (without output generation,se
tion 12.11, p. 246), the number of parallel explorations is dupli
ated ea
htime the ambiguous symbol a is to be translated but then the 
ommon 
allto SS {q0} is fa
tored out, redu
ing again the number of parallel explorationsto one. However, when 
ompleting a 
all to {q0} the two outputs generated



290 CHAPTER 14. RTNS WITH STRING OUTPUTAlgorithm 14.3 rtnso_earley_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (14.5)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for ea
h (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, E, (qc, ε, λ, QI , 0))6: end for7: rtnso_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtnso_earley_translate_symbol(Vk, E, σk+1)11: k ← k + 112: rtnso_earley_interlaced_eclosure(V l+1, E, k)13: end while14: T ← ∅15: for ea
h (qs, z, λ, QI , 0) ∈ Vk : qs ∈ F do16: add(T, z)17: end forAlgorithm 14.4 rtnso_earley_translate_symbol(V,E, σ) ⊲ ∆(V, σ),def. (260)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of rea
hable ESs from V by 
onsuming σ
E after enqueuing the ESs of W1: W ← ∅2: for ea
h (qs, z, λ, Qh, j) ∈ V do3: for ea
h (qt, g) : qt ∈ δ(qs, (σ, g)) do4: add_enqueue_es(W,E, (qt, zg, λ,Qh, j))5: end for6: end for
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Algorithm 14.5 rtnso_earley_interla
ed_e
losure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the 
hart

E, the queue of unexplored ESs 
ontaining every ES in Vk

k, the index of the SES, Vk, whose ε-
losure is to be 
omputedOutput: V l+1 after adding to Vk its ε-
losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, z, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for ea
h (qt, g) : qt ∈ δ(qs, (ε, g)) do5: add_enqueue_es(Vk, E, (qt, zg, λ,Qh, j))6: end for
⊲ PREDICTOR7: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, z, Qc, Qh, j)) then9: if ∄z′ : (Qc, z

′) ∈ T then10: for ea
h qc ∈ Qc do11: add_enqueue_es(Vk, E, (qc, ε, λ, Qc, k))12: end for
⊲ ε-COMPLETER13: else14: for ea
h z′ : (Qc, z

′) ∈ T do15: add_enqueue_es(Vk, E, (qr, zz
′, λ, Qh, j))16: end for17: end if18: end if19: end for

⊲ COMPLETER20: if qs ∈ F then21: for ea
h (qr, z
′, Qh, Q

′
h, i) ∈ Vj do22: add_enqueue_es(Vk, E, (qr, zz

′, λ, Q′
h, i))
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⊲ ε-COMPLETER23: if i = k then24: add(T, (Qh, z

′))25: end if26: end for27: end if28: end whileduring the 
all are 
ombined with the outputs generated before the 
all, re-sulting in an exponential explosion of ESs to 
ompute. The algorithm savesan exponential number of steps w.r.t. the breadth-�rst RTNSO algorithm inse
tion 14.4 (p. 282) by fa
toring out push transitions, but still su�ers froman exponential explosion of ESs to 
ompute upon popping; sin
e the numberof outputs in
reases exponentially w.r.t. the input length, it is inevitable toperform an exponential number of operations if one is to generate the e�e
-tive list of translations. In the next 
hapter we show how to delay as mu
has possible the exponential explosion by building the translation set as somekind of �nite-state ma
hine re
ognizing the language of translations but fa
-toring out the 
ommon output subsequen
es. Su
h exponential explosion ispossible in natural language grammars, for instan
e due to unresolved prepo-sitional phrase atta
hments. An example illustrating su
h situation has beengiven in se
tion 1.5.4 (p. 19).Online appli
ations su
h as the MovistarBot (se
tion 1.2, p. 6) are notne
essarily required to redu
e the average 
ost of analyzing user input sen-ten
es but to ensure that ea
h senten
e is pro
essed in a short time interval,sin
e users are not willing to wait more than a few se
onds for an answer.As well, we must guarantee that the server running the NLP software willnot be 
ollapsed due to a parti
ular user senten
e having a spe
ially highparsing 
ost. Sin
e nowadays 
omputers have at least two pro
essing units,another possible solution is to 
on
urrently exe
ute two di�erent parsing al-gorithms (e.g.: a top-down depth-�rst parser and an Earley-like parser) andto retrieve the result from the one that �nishes �rst, aborting the exe
utionof the other algorithm. This way we 
an obtain a �
ombined� algorithm thatboth minimizes the average and maximum exe
ution times.Figure 14.4 is another example of exe
ution of the Earley-like algorithmfor RTNSOs equivalent to the example of �gure 12.10 (p. 251) for RTNs.The transition 
onsuming a now also generates output symbol A, and the ε-
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Figure 14.3: Exe
ution tra
e of the RTNSO Earley-like translator algorithm 14.3 for the ambiguous RTNSO of�gure 14.1 and input aabb. Thi
k dashed arrows link push transitions with their 
orresponding pop transitions.Paused ESs de
orate push and pop transitions.



294 CHAPTER 14. RTNS WITH STRING OUTPUTtransition generates now output symbol E. The four possible interpretationsof a have a di�erent asso
iated output: AEEE, EAEE, EEAE and EEEA,respe
tively. As we 
an see, the tra
e for this example 
ontains more stepsthan its RTN equivalent due to the 
on
atenation of di�erent pairs of outputsupon 
all 
ompletions. As for the RTN 
ase, without the ε-
ompleter itwould have not been possible to derive the a

eptan
e ESs, and therefore thealgorithm would have returned an empty set of translations of a.Figure 14.5 is the example equivalent to that of �gure 12.11 (p. 252) butfor a simple left-re
ursive RTNSO �instead of a simple left-re
ursive RTN�that translates ban into BAn. In this 
ase, the tra
e is the same but addingthe in
reasing output to the ESs.Finally, optimizing the RTNSO Earley-like translator algorithm by meansof trie string management (se
tion 9.1, p. 178) is a spe
i�
 
ase of the RTNBOEarley-like 
ase (se
tion 13.10, p. 272): output strings may be representedas pointers to the nodes of a trie. As long as no 
alls are performed, thealgorithm behaves as the FSTSO translator algorithm (se
tion 11.5, p. 215):ea
h transition adds at most one symbol to the output string in 
ourse, thusit is only required to jump from the 
orresponding output string node toone of its su

essors, or just to stay in the same node. When performinga 
all, new explorations starting with the empty output string are 
reated,and also one symbol is appended at most during the 
all if no other 
allsor 
ompletions are performed. However, upon 
ompletion it is required toappend the strings produ
ed during the 
all to the strings produ
ed beforethe 
all. This 
orresponds to the not-so-e�
ient 
ase dis
ussed in se
tion 9.3(p. 183): sin
e string symbols 
an only be a

essed in reverse order, it isne
essary to reorder the whole string before adding it. The whole purposeof the optimization 
onsists in transforming ve
torial operations into s
alarones, but when 
on
atenating two strings of a trie we must perform twove
torial operations: to reorder the string to append and then to append it.For the 
ases in whi
h there are a few 
alls to perform, this problem will haveno meaningful impa
t, but neither will the fa
toring out of 
ommon 
alls.14.8 Earley-like language generationAlgorithm 14.6 rtn_earley_language is an adaptation of the Earley-like trans-lator algorithm 14.3 for the 
omputation of the language of a RTN, as seenwith the breadth-�rst algorithm in se
tion 14.5 (p. 284). Note that sin
e the



14.8. EARLEY-LIKE LANGUAGE GENERATION 295algorithm only translates the empty sequen
e, every input index generatedduring the algorithm appli
ation will be zero. Therefore, we 
an remove in-put indexes from ESs and 
onsider every input index equal to zero, that is,a unique SES V0 is 
omputed during the whole algorithm exe
ution. In theoriginal algorithm, the 
ompleter 
ompared the input index of the 
urrentES with the index of the 
urrent SES in order to either exe
ute or not the
ε-
ompleter, but in this 
ase we 
an skip this test sin
e every 
ompletion willbe in fa
t an ε-
ompletion. As for the original algorithm, this algorithm alsoapplies to left-re
ursive RTNs, and adding trie string management may ormay not a

elerate its exe
ution depending on the 
alls to pro
ess.



q0

q1

q2

q3

q4

q5

q6

q7

q8

{q5}

{q5}

{q5}

{q5}

a : A {q7}

ε : E

V0

1 : (q0, ε, λ, {q0}, 0) initial ES

2 : (q1, ε, {q5}, {q0}, 0) pause(1)
3 : (q5, ε, λ, {q5}, 0) 
all(1)
4 : (q6, ε, {q7}, {q5}, 0) pause(3)
5 : (q7, ε, λ, {q7}, 0) 
all(3)
6 : (q8, E, λ, {q7}, 0) generate(5, E)
7 : (q6, E, λ, {q5}, 0) resume(4, 6); deletable(q7, E)
8 : (q1, E, λ, {q0}, 0) resume(2, 7); deletable(q5, E)
9 : (q2, E, {q5}, {q0}, 0) pause(8); 
all already in 3
10 : (q2, EE, λ, {q0}, 0) ε-resume(7, 9)
11 : (q3, EE, {q5}, {q0}, 0) pause(10); 
all already in 3
12 : (q3, EEE, λ, {q0}, 0) ε-resume(7, 11)
13 : (q4, EEE, {q5}, {q0}, 0) pause(12); 
all already in 3
14 : (q4, EEEE, λ, {q0}, 0) ε-resume(7, 13)

V1

15 : (q6, A, λ, {q5}, 0) translate(3, a : A)
16 : (q1, A, λ, {q0}, 0) resume(2, 15)
17 : (q2, EA, λ, {q0}, 0) resume(9, 15)
18 : (q3, EEA, λ, {q0}, 0) resume(11, 15)
19 : (q4, EEEA, λ, {q0}, 0) resume(13, 15); a

eptan
e ES



20 : (q2, A, {q5}, {q0}, 0) pause(16)
21 : (q5, ε, λ, {q5}, 1) 
all(16)
22 : (q3, EA, {q5}, {q0}, 0) pause(17); 
all already in 21
23 : (q4, EEA, {q5}, {q0}, 0) pause(18); 
all already in 21
24 : (q6, ε, {q7}, {q5}, 1) pause(21)
25 : (q7, ε, λ, {q7}, 1) 
all(21)
26 : (q8, E, λ, {q7}, 1) generate(25, E)
27 : (q6, E, λ, {q5}, 1) resume(24, 26)
28 : (q2, AE, λ, {q0}, 0) resume(20, 27); deletable({q5}, E)
29 : (q3, EAE, λ, {q0}, 0) resume(22, 27); deletable({q5}, E)
30 : (q4, EEAE, λ, {q0}, 0) resume(23, 27); deletable({q5}, E); a

eptan
eES
31 : (q3, AE, {q5}, {q0}, 0) pause(28); 
all already in (21)
32 : (q3, AEE, λ, {q0}, 0) ε-resume(27, 31)
33 : (q4, EAE, {q5}, {q0}, 0) pause(30); 
all already in (21)
34 : (q4, EAEE, λ, {q0}, 0) ε-resume(27, 33); a

eptan
e ES
35 : (q4, AEE, {q5}, {q0}, 0) pause(32); 
all already in (21)
36 : (q4, AEEE, λ, {q0}, 0) ε-resume(27, 35); a

eptan
e ESFigure 14.4: RTN with deletable 
alls of �gure 12.10 extended with string output and exe
ution tra
e of algo-rithm 12.2 rtn_earley_re
ognize_string for this RTNSO and input a; without the ε-
ompleter, greyed ESs wouldbe missing and the input would be reje
ted.



q0

q1

q2

{q0}

b : B

a : A

V0

1 : (q0, ε, λ, {q0}, 0) initial ES

2 : (q1, ε, {q0}, {q0}, 0) pause(1); 
all already in 1
V1

3 : (q2, B, λ, {q0}, 0) translate(1, b : B)
4 : (q1, ε, λ, {q0}, 0) resume(2, 3)

V2

5 : (q2, BA, ε, λ, {q0}, 0) translate(4, a : A)
6 : (q1, BA, ε, λ, {q0}, 0) resume(2, 5)

V3

7 : (q2, BAA, λ, {q0}, 0) translate(6, BAA)
8 : (q1, BAA, λ, {q0}, 0) resume(2, 7)...

Vl

2l + 1 : (q2, BAl−1, λ, {q0}, 0) translate(2l, a : A); a

eptan
e ES

2l + 2 : (q1, BAl−1, λ, {q0}, 0) resume(2, 2l + 1)Figure 14.5: Left-re
ursive RTNSO translating ban into BAn and exe
ution tra
e of algorithm 14.3 rtnso_earley-_translate_string for this RTNSO and input bal.



14.8. EARLEY-LIKE LANGUAGE GENERATION 299Algorithm 14.6 rtn_earley_language(A) ⊲ L(A), eq. (12.3)Input: A = (Q,Σ, δ, QI , F ), a RTNOutput: L, the language of A1: V ← ∅2: E ← ∅3: for ea
h (qc ∈ QI) do4: unconditionally_add_enqueue_es(V,E, (qc, ε, λ, QI))5: end for6: T ← ∅7: while E 6= ∅ do8: (qs, w, λ,Qh)← dequeue(E)
⊲ EXPLICIT ε-TRANSITIONS9: for ea
h qt ∈ δ(qs, ε) do10: add_enqueue_es(Vk, E, (qt, w, λ,Qh)11: end for

⊲ CONSUMING TRANSITIONS12: for ea
h qt ∈ δ(qs, σ) do13: add_enqueue_es(Vk, E, (qt, wσ, λ,Qh)14: end for
⊲ PREDICTOR15: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do16: if add(V, (qr, w,Qc, Qh)) then17: if ∄w′ : (Qc, w

′) ∈ T then18: for ea
h qc ∈ Qc do19: add_enqueue_es(V,E, (qc, ε, λ, Qc))20: end for
⊲ ε-COMPLETER21: else22: for ea
h w′ : (Qc, w

′) ∈ T do23: add_enqueue_es(V,E, (qr, ww
′, λ, Qh)24: end for25: end if26: end if27: end for
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⊲ COMPLETER28: if qs ∈ F then29: for ea
h (qr, w

′, Qh, Q
′
h) ∈ V do30: add_enqueue_es(V,E, (qr, ww

′, λ, Q′
h)

⊲ ε-COMPLETER31: add(T, (Qh, w
′))32: end for33: end if34: end while35: L← ∅36: for ea
h (qs, w, λ,QI) ∈ V : qs ∈ F do37: add(L,w)38: end for



Chapter 15Filtered-popping re
ursivetransition networksIn the previous 
hapter we have shown the inevitable exponential explosionupon applying a RTNSO generating an exponential number of outputs w.r.t.an input in
reasing in length, even for an Earley-like algorithm of appli
ation.In order to avoid this explosion, we propose to represent the set of outputs assome kind of �nite-state ma
hine. This ma
hine should have the same stru
-ture than the tra
e of the Earley-like re
ognizer, so the algorithm buildingit would keep the asymptoti
 
ost of the Earley-like re
ognizer, O(n3). Thisma
hine 
annot be a FSA, sin
e it should have a subroutine jump me
ha-nism: the exponential explosion due to the 
ombination of outputs upon 
all
ompletions must be avoided by representing 
ommon output in�xes as sub-stru
tures of the ma
hine that are 
alled rather than expli
itly representedmultiple times. It neither 
an be a RTN sin
e, when exe
uting the algorithm,
ommon 
alls may be 
ompleted by 
onsuming input segments of di�erentlengths, but the 
ombination of the bla
kboards generated before, during andafter a 
all must 
orrespond to the translation of 
onse
utive input segments(see �gure 15.1). It is a �ltered-popping RTN or FPRTN, a new kind of�nite-state ma
hine we have de�ned as a RTN where states are asso
iated toinput indexes, and popping transitions 
annot be traversed unless both thesour
e and target states are asso
iated to the same input indexes. We havebrie�y presented both FPRTNs and the algorithm building them in Sastre(2009).On
e the FPRTN is built, one 
an 
ompute the e�e
tive list of outputs, ifne
essary, by generating the FPRTN language. Obviously, this operation will301
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a b cFigure 15.1: At the left, an ambiguous RTNSO, and at the right, a FPRTNre
ognizing the language of translations of abc for this RTNSO. Boxes 
ontainthe key of the state they are atta
hed to. FPRTN push and pop transitions areexpli
itly represented as dotted and thi
k arrows, respe
tively. Only pop transitions
orresponding to 
onne
ted input segments are allowed: pop transitions from r7 to
r5 and from r9 to r3 are forbidden sin
e the former skips the translation of c andthe latter translates c twi
e.still have an exponential 
ost, as the size of the output set is exponential,but the FPRTN 
an be pruned �rst in order to avoid the 
onstru
tion ofpartial bla
kboards that uniquely 
orrespond to misinterpretations of theinput. We will study in 
hapter 16 the sub
lass of FPRTNs built by thealgorithm presented here and give two e�
ient algorithms for generatingtheir languages. Moreover, we will give in 
hapter 18 an algorithm able toextra
t only the top-ranked bla
kboard of a weighted FPRTN, provided thatthe grammar is a RTNBO where bla
kboards in
lude weight output.De�nition 265 (FPRTN). A FPRTN (Q,K,Σ, δ, κ, QI , F ) is a spe
ial typeof FSMs (de�nition 46, p. 121) with a sta
k, a set of keys K and a κ : Q→ Kfun
tion that maps states to keys in K, whose set of labels Ξ take its elementsfrom (Σ ∪ {ε} ∪Q), where Σ is a �nite input alphabet, Q the �nite states ofthe FPRTN and ε the empty symbol. FPRTNs 
an be seen as an extensionof RTNs (de�nition 183) by asso
iating keys to states and by adding a �lterto the pop transitions so that they take pla
e only if the keys of the a

eptorand return states mat
h.



15.1. TRANSITIONS 30315.1 TransitionsFPRTN transition de�nitions are the same than the ones for RTNs (se
-tion 12.1, p. 221) ex
ept for popping transitions, whi
h we rede�ne below.De�nition 266 (Filtered-pop transition). Filtered-pop transitions (qf , qr�, qr)are impli
it ε-transitions whi
h take pla
e ea
h time an a

eptan
e state qfis rea
hed while exe
uting a 
all having qr as return state su
h that κ(qf ) =
κ(qr), that is, the keys of the a

eptan
e and return states mat
h. Whentraversing a �ltered-pop transition, the state qr at the top of the sta
k of re-turn states is popped out and the ma
hine is taken to the popped state qrwithout 
onsuming any input symbol.15.2 Graphi
al representationWe represent FPRTNs as RTNs with a box atta
hed to ea
h state, ea
h box
ontaining the key of the 
orresponding state (see �gure 15.1). Filtered-poptransitions are represented as RTN pop transitions.15.3 Sequen
es of transitionsFPRTN paths and 
y
les are de�ned as for RTNs (se
tion 12.3, p. 225).Re
ursive 
alls for the 
ase of RTNs lead to an in�nite set of interpretationswithin the ma
hine, sin
e realizable 
all 
y
les 
an be traversed an in�nitenumber of times. For the 
ase of FPRTNs, we will show in the next se
tionhow �ltered-pop transitions add additional restri
tions upon the number oftimes 
all 
y
les 
an be realized.15.4 BehaviourFPRTNs behave as RTNs ex
ept for the pop transitions. Therefore, the onlydi�eren
e is the way in whi
h the Dpop fun
tion is 
omputed.De�nition 267 (D). The D(V ) fun
tion for FPRTNs is de�ned as for RTNs(de�nition 211, p. 229) ex
ept for the predi
ate of its Dpop 
omponent, whi
his rede�ned as
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• d = qf ∈ F ∧ κ(qf ) = κ(qr),that is, by adding the key-mat
hing restri
tion.Lemma 23 (In�nite ε-
losure). The ε-
losure of a FPRTN SES V is in�niteif there exists an ES x = (q, π) within V or ε-rea
hable from an ES of V su
hthat there exists an ε-realizable 
all 
y
le whose start state is q.Proof. The proof is the same than for RTNs (proof of lemma 14, p. 230) buttaking into a

ount that pop transitions involved in rea
hing ES (q, π), andin ε-realizing the 
all 
y
le, require the keys of their sour
e and target statesto be equal.Lemma 24 (Finite ε-
losure). Under 
onditions other than those expressedin the previous lemma, the ε-
losure of a FPRTN SES is �nite.Proof. The proof is the same than for RTNs (proof of lemma 15, p. 230)but taking into a

ount that not only the possible realizable paths under thementioned 
onditions yield �nite SESs, but may be even shorter than thoseof the RTN 
ase due to non-realizable pop transitions.Corollary 9. The ε-
losure is always �nite for non-left-re
ursive FPRTNs.De�nition 268 (Initial and a

eptan
e SESs). The initial and a

eptan
eSESs of a FPRTN are de�ned as for RTNs (de�nition 212, p. 231).De�nition 269 (L). The language of a FPRTN is de�ned as for RTNs(de�nition 214, p. 232), though taking into a

ount that pop transitions are�ltered.Lemma 25 (In�nite re
ursion degree). The re
ursion degree of a FPRTNhaving at least one useful 
all 
y
le p su
h that p2 is also useful is in�nite.Proof. The proof is similar to the one for RTNs (proof of lemma 16, p. 232);let us suppose a FPRTN su
h as the RTN of �gure 12.5 (p. 233) where ea
hstate qk is asso
iated to a key kk, that is, κ(qk) = kk. In fa
t, the relevant keysto this proof are kf3 , kr2, kf2 and kr1 , the ones of the a

eptan
e and returnstates (ex
ept for qf1 , the �global� a

eptan
e state), sin
e they determinewhether the pop transitions are realizable or not. Let p be a path within theFPRTN su
h as the one de�ned in the proof for RTNs,

p = pa (qs1 , qr1�, qc1) pb (qs2 , qr2�, qc1) pc (qf3 , qr2�, qr2) pd (qf2 , qr1�, qr1) pe,



15.4. BEHAVIOUR 305where pb (qs2, qr2�, qc1) is a 
all 
y
le. First of all, if the 
y
le is useful thenit must be realizable as well as the pop transition removing the return statethat is pushed onto the sta
k during the realization of the 
all 
y
le. If poptransition (qf3 , qr2�, qr2) is realizable then kf3 = kr2 . For the 
y
le to beuseful, path p must be an interpretation and therefore realizable. As before,if pop transition (qf2 , qr1�, qr1) is realizable then kf2 = kr1. If the 
y
le 
anbe traversed twi
e and still be useful, then path
p2 = pa (qs1, qr1�, qc1) (pb (qs2, qr2�, qc1))

2 pc (qf3 , qr2�, qr2)

pd (qf2 , qr2�, qr2) pd (qf2 , qr1�, qr1) pemust also be an interpretation. Note that the se
ond traversal of the 
y
lerequires an additional realizable pop transition (qf2 , qr2�, qr2) in order to beuseful, whi
h either implies kf2 = kr2 or path pd to be empty: the latter
ase implies the former one sin
e qf2 would be equal to qr2 and thereforeboth states would be asso
iated to the same key. Obviously, if kf2 = kr2then it is not only possible to traverse twi
e the 
y
le but to traverse it anynumber of times, hen
e allowing for the existen
e of an in�nite number ofinterpretations. If this last equation does not hold then the 
y
le 
an stillbe useful but not its self-
on
atenations, that is, the 
y
le will allow for are
ursion degree equal to one, but not zero or in�nite.Theorem 25 (Possible re
ursion degrees). A

ording to the previous proof,the re
ursion degree of a FPRTN is either zero, one or in�nite.Theorem 26 (Cardinality of the interpretation set). Given the previous the-orem and the theorems on the 
ardinality of the interpretation set for FSMs(theorem 4, p. 145) and for FSAs (theorem 6, p. 164), the number of inter-pretations of a FPRTN is in�nite i� it 
ontains at least one useful 
y
le pholding one of the following 
onditions:
• p is uniquely 
omposed by 
onsuming transitions and/or ε-transitions,
• p 
ontains realizable push and pop transitions �keys of sour
e andtarget states of ea
h pop transition are equal� but the exe
ution of pmomentarily modi�es the sta
k, that's it, the sta
k before and after theexe
ution of p is the same, or
• p is a 
all 
y
le su
h that p2 is also useful.



306 CHAPTER 15. FILTERED-POPPING RTNSTheorem 27 (Cardinality of the language). Given theorem 5 (p. 146), sin
eFSAs allow for the realization of any of its transitions, the language of aFPRTN is in�nite i� it 
ontains at least one useful 
onsuming 
y
le p holdingone of the 
onditions of the previous theorem.15.5 Reverse FPRTNDe�nition 270 (RFPRTN). We de�ne �ltered-pushing re
ursive transitionnetworks or reverse FPRTNs (RFPRTNs) as FPRTNs where the �ltering isto be applied to push transitions instead of to popping ones.De�nition 271 (Reverse FPRTN). Let A be a FPRTN (Q, K, Σ, δ, κ, QI ,
F ) with disjoint subma
hines; we de�ne AR, the 
anoni
al reverse of A, as aRFPRTN (Q, K, Σ, δ′, κ, Q′

I , F
′) su
h that A′ = (Q, Σ, δ, QI , F ) is a RTNand A′R = (Q, Σ, δ′, Q′

I , F
′) is the 
anoni
al reverse of A′ (de�nition 215,p. 234).Proof. The proof is the same than for RTNs but with a slight di�eren
e in thereversal of 
all transitions and subma
hines; let p = (qs, qt�, qc)p

′(qf , qt�, qt)be a path within A 
ompleting a 
all, the keys of qf and qt must be equalso that the pop transition 
an be taken. If AR would be a FPRTN insteadof a RFPRTN, then pR = (qt, qs�, qf )p
′R(qc, qs�, qs) would be a path within

AR whi
h might not be realizable sin
e the keys of states qs and qc are notne
essarily equal, and therefore A might re
ognize a word w su
h that wR isnot re
ognized by AR. Moreover, the opposite 
ould also be true: the keys of
qc and qs 
ould be di�erent while the keys of qt and qf would be equal, thus
AR 
ould re
ognize a word wR while A would not re
ognize word w. Con-sequently, the mat
hing key restri
tion must be applied to push transitionsinstead of pop transitions in order to ensure that AR re
ognizes the reverselanguage of A and not any other language, and therefore the 
anoni
al re-verse of a FPRTN is a RFPRTN and not another FPRTN. Conversely, thereverse of a RFPRTN is a FPRTN and not another RFPRTN.15.6 Translating a string into a FPRTNAlgorithm 15.1 rtnbo_translate_string_to_fprtn is an equivalent versionof algorithm 13.2 rtnbo_earley_translate_string whi
h returns a FPRTN
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tive list of outputs.1 This algorithm has been derivedfrom the RTN Earley-like a

eptor algorithm 12.2 (p. 249) by adding therequired instru
tions for building the resulting FPRTN: a FPRTN state is
reated for ea
h a
tive ES generated during the algorithm exe
ution, and aFPRTN transition is added for ea
h explored RTNBO transition deriving ana
tive ES from another one, where RTNBO output labels be
ome FPRTN in-put ones. FPRTN state keys are the input indexes at the moment of 
reationof ea
h state. Algorithm 15.2 fprtn_
reate_state is used for the 
reation ofFPRTN states instead of algorithm 8.3 fsm_
reate_state (p. 173) in order toalso asso
iate the state to a key. From now on, we will 
all FPRTNs statesoutput states or OSs. The algorithm builds a fun
tion ζs mapping pairs
(k, (qs, λ, qh, j)) to OSs so that it is possible to retrieve the OS 
orrespondingto any of the previously generated ESs. Noti
e that a
tive ESs belongingto di�erent SES may be equal (e.g.: xs = x′

s = (qs, λ, Qh, k), with xs ∈ Vj,
x′
s ∈ Vk and 0 ≤ j < k ≤ l), hen
e we need to spe
ify here the index of theSES 
ontaining them in order to uniquely identify them;2 as stated in theparagraph after de�nition 218 (p. 244), the index of the SES 
ontaining anES is also a term of the ES, but we have omitted it in order not to repeatthis index for ea
h ES of a SES (we simply use the SES indexes). Noti
eas well that output labels are just 
opied as input labels of the resultingFPRTN: bla
kboard fun
tions are not interpreted here but just annotatedin order to be exe
uted in a further stage of treatment. The same algorithmis valid for RTNs with string output, weight output, uni�
ation pro
esses orany 
ombination of these output types; di�erent algorithms will be requiredfor the partial or total generation of the language re
ognized by the FPRTN,but not for the 
onstru
tion the FPRTN itself.The algorithm �rst allo
ates memory for storing the parsing 
hart: a ve
-tor of l+1 SESs. It builds two additional OSs, initial OS rs and the �global�a

eptan
e OS rf , where rs is asso
iated to index 0 and rf to index l, theinput length. Then it adds to V0 the initial SES XI for RTNs using the rou-tine un
onditionally_add_enqueue_link_es_os (algorithm 15.3) in order to1We only de�ne the FPRTN in algorithm 15.1 rtnbo_translate_string_to_fprtn andthen treat it in the other algorithms as a global variable in order to avoid repetition.2In pra
ti
e we do not build a map obje
t representing ζs but just add an extra �eldto a
tive ESs in order to store the pointer to the 
orresponding OS, so retrieving this OSdoes not involve a sear
h inside a map but just to follow the pointer. The only purposeof this �eld is to a

elerate the retrieval of OSs, so whenever 
omparing two a
tive ESs ofthe same SES for equality this �eld is not taken into a

ount.
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h ES. This routine extends routine un
onditionally_add_enqueue_es(algorithm 7.7) by un
onditionally 
reating an OS rc, as well as the spe
i-�ed ES xs, and by adding the 
orresponding map to ζs (the link betweenthe ES and the OS).3 Let Rc be the set of OSs (SOS) 
orresponding to XI ,the algorithm adds a 
all to Rc from rs to rf . This 
onstru
tion representsa 
all to the grammar's axiom, whi
h 
an only be realized by 
onsumingthe entire input: sin
e rf is asso
iated to index l, the input length, poptransitions to rf from states whose index is less than l �and 
onsequentlyasso
iated to ESs rea
hed before 
onsuming the whole input� will not berealizable. Afterwards, the same iterative pro
ess of the RTN Earley-likealgorithm is followed here in order to build the SESs V0 to Vl, but usingalgorithm 15.4 rtnbo_translate_symbol_to_fprtn and algorithm 15.6 rtnbo-_interla
ed_e
losure_to_fprtn instead of the equivalent RTN ones for theimplementation of the ∆ and ε-
losure fun
tions. Sin
e the number of realiz-able �ltered-pop transitions of the resulting FPRTN is �nite (the ones foundduring the algorithm exe
ution), we expli
itly de�ne them so that furtherFPRTN postpro
essing does not require to sear
h for them again. The lastloop of the Earley-like RTN a

eptor is modi�ed so that for ea
h a

eptorES in the last SES a �ltered-pop transition is added towards the �global�a

eptor OS, rf .Algorithm 15.4 rtnbo_translate_symbol_to_fprtn is an almost straight-forward adaptation of algorithm 12.3 rtn_earley_re
ognize_symbol (p. 249)for the 
onstru
tion of a FPRTN. For ea
h a
tive ES xs = (qs, λ, Qh, j) in
V (whi
h is in fa
t Vk, the last 
omputed SES), it �rst retrieves its asso-
iated OS rs. Then, for ea
h 
onsuming transition (qs, (σ, g), qt) it derivesES (qt, λ, Qh, j) and adds it to SES W (whi
h will be Vk+1, the next SES)using algorithm 15.5 add_enqueue_link_es_os, the extended version of rou-tine add_enqueue_es (algorithm 7.4). Besides adding an ES to a SES andenqueuing it for further pro
essing if the ES was not already present in theSES, it also 
reates its output state rt with key k + 1 and adds the 
orre-sponding map to the ζs fun
tion, or just returns the former 
reated OS ifthe ES was already present in the SES. Finally, algorithm 15.4 rtnbo_trans-late_symbol_to_fprtn adds the FPRTN transition (rs, g, rt) whi
h representsthe possible partial translation of input symbol σk+1 into g ∈ Γ∪{idB}, sin
estates rs and rt are asso
iated to input indexes k and k + 1, respe
tively.3As stated before, in pra
ti
e we only �ll the additional �eld of the a
tive ES with thepointer to the OS we have just 
reated.



15.6. TRANSLATING A STRING INTO A FPRTN 309Algorithm 15.1 rtnbo_translate_string_to_fprtn(σ1 . . . σl) ⊲
ω(A, σ1 . . . σl)Input: σ1 . . . σl, an input string of length lOutput: A′ = (Q′,N,Γ, δ′, κ, Q′

I , F
′), the FPRTN re
ognizing ω(A, σ1 . . . σl)1: allocate_memory_for_chart(V l+1)2: rs ← fprtn_create_state(true, false, 0)3: rf ← fprtn_create_state(false, true, l)4: V0 ← ∅5: E ← ∅6: Rc ← ∅7: for ea
h (qc ∈ QI) do8: rc ← unconditionally_add_enqueue_link_es_os(V0, E, 0, (qc, λ, QI ,

0))9: add(Rc, rc)10: end for11: δ′(rs, Rc)← {rf}12: rtnbo_interlaced_eclosure_to_fprtn(V l+1, E, 0)13: k ← 014: while Vk 6= ∅ ∧ k < l do15: Vk+1 ← rtnbo_translate_symbol_to_fprtn(Vk, E, k, σk+1)16: k ← k + 117: rtnbo_interlaced_eclosure_to_fprtn(V l+1, E, k)18: end while19: for ea
h xs ∈ Vk : xs = (qs, λ, QI , 0) ∧ qs ∈ F do20: add(δ′(ζs(k, xs), rf�), rf)21: end forAlgorithm 15.2 fprtn_
reate_state(is_initial, is_final, k)Input: is_initial, future value of predi
ate r ∈ Q′
I

is_final, future value of predi
ate r ∈ F ′

k, the state keyOutput: r, the new FPRTN state1: r ← fsm_create_state(is_initial, is_final)2: κ(r)← k
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Algorithm 15.3 un
onditionally_add_enqueue_link_es_os(V,E, k, xt)Input: V , the SES where the ES is added

E, the queue of unexplored ESs
k, the 
urrent input position
xt, the target ES to add to VOutput: V after adding the ES
E after enqueuing the ES, if new
rt, the target ES OS1: unconditionally_add_enqueue_es(V,E, xt))2: rt ← fprtn_create_state(false, state(xt) ∈ F, k)3: add(ζs(k, xt), rt)

Algorithm 15.4 rtnbo_translate_symbol_to_fprtn(V,E, k, σ) ⊲
∆(Vk, σk+1)Input: V , a SES

E, the empty queue of unexplored ESs
k, the index of V
σ, the input symbol to translateOutput: W , the set of rea
hable ESs from V by 
onsuming σ
E after enqueuing the ESs of W1: W ← ∅2: for ea
h (qs, λ, Qh, j) ∈ V do3: rs ← ζs(k, (qs, λ, Qh, j))4: for ea
h (qt, g) : qt ∈ δ(qs, (σ, g)) do5: rt ← add_enqueue_link_es_os(W,E, k + 1, (qt, λ, Qh, j))6: add(δ′(rs, g), rt)7: end for8: end for



15.6. TRANSLATING A STRING INTO A FPRTN 311Algorithm 15.5 add_enqueue_link_es_os(V,E, k, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
k, the 
urrent input position
xt, the target ES to add to VOutput: V after adding the ES
E after enqueuing the ES, if new
rt, the target ES OS1: if add(V, xt) then2: enqueue(E, xt)3: rt ← fprtn_create_state(false, state(xt) ∈ F, k)4: add(ζs(k, xt), rt)5: else6: rt ← ζs(k, xt)7: end ifAlgorithm 15.6 rtnbo_interla
ed_e
losure_to_fprtn is a slightly more
omplex adaptation of algorithm 12.4 rtn_earley_interla
ed_e
losure. Thederivation of a
tive ESs due to expli
it ε-transitions is analogous to thederivation through 
onsuming transitions; therefore, the extension is almostthe same. However, the extension of the predi
tor, 
ompleter and ε-
ompleterinvolves 
onsidering more ESs than the former 
ase, namely

• xs = (qs, λ, Qh, j) ∈ Vk, the 
urrent a
tive ES whose RTNBO state qshas been dete
ted to be �nal and hen
e triggering the 
ompletion ofparallel 
alls to Qh,
• xp = (qr, Qh, Q

′
h, i) ∈ Vj, a paused ES waiting for the 
ompletion of 
allto Qh,

• xr = (qr, λ, Q
′
h, i) ∈ Vk, the return a
tive ES result of resuming pausedES xp,

• x′
s ∈ Vj , the a
tive ES from where 
all to Qh was performed, resultingin paused ES xp, and

• Xc, the set of a
tive ESs initiating the exploration of 
all to Qh.



312 CHAPTER 15. FILTERED-POPPING RTNSNote that rea
hing ES xs may resume several paused ESs, ea
h one having anasso
iated return ES and one or more sour
e ESs of the 
all; therefore, rea
h-ing xs may trigger several 
all 
ompletions. Generating the 
orresponding
all stru
ture inside the FPRTN involves the following OSs:
• r′s = ζs(x

′
s), the sour
e OS of the 
all, asso
iated to ES x′

s,
• Rc = {rc : ζs(xc) = rc ∧ xc ∈ Xc}, the 
alled SOS,
• rr = ζs(xr), the return OS, and
• rs = ζs(xs), the a

eptan
e OS that triggers the 
all 
ompletion, if the�ltered-pop transition is to be expli
itly de�ned.In order to add the FPRTN 
all transition (r′s, Rc, rr) in the 
ompleter we are�rst required to retrieve the involved OSs and SOS. OS rr is 
reated or justretrieved, if the asso
iated return ES already existed, by routine add_en-queue_link_es_os inside the 
ompleter. OS r′s has been previously 
reatedby some derivation me
hanism of the algorithm, but its ES x′

s is a

essedduring the predi
tion of 
all to Qh in order to 
reate paused ES xp anda
tive ES xc. Inside the predi
tor, we build two additional maps so thatthe 
ompleter 
an retrieve these elements latter: ζ ′s mapping xp to r′s and ζImapping xp to Rc.4 The ε-
ompleter inside the 
ompleter does not need to bemodi�ed: it just marks 
all to Qh as deletable (adds Qh to T ) for the 
urrentSES Vk. The ε-
ompleter inside the predi
tor will just 
reate or retrievereturn OS rr in order to add the 
orresponding FPRTN 
all transition sin
ethe other needed elements are already 
reated or retrieved by the predi
tor.Filtered-pop transitions due to ε-
ompletions are expli
itly de�ned inside the
ompleter; therefore the ε-
ompleter is not required to de�ne them again.Noti
e that for all of the derivation me
hanisms it might be possible torea
h the same RTNBO state through di�erent paths generating di�erentoutput sequen
es. For the RTNBO Earley-like translator this implied gen-erating several ESs instead of only one: one for ea
h di�erent output sin
eoutputs are a part of the ESs. For the algorithm generating a FPRTN, out-puts are represented as FPRTN transitions rather than being stored inside4As was done for map ζs (footnote 2, p. 307), in pra
ti
e we do not implement two mapobje
ts representing ζ′
s
and ζI but extend paused ESs with two �elds storing the pointersto the 
orresponding OS and SOS. Those �elds are not either taken into a

ount when
omparing paused ESs for equality.



15.6. TRANSLATING A STRING INTO A FPRTN 313Algorithm 15.6 rtnbo_interla
ed_e
losure_to_fprtn(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the 
hart
E, the queue of unexplored ESs 
ontaining every ES in Vk

k, the index of the SES VkOutput: V l+1 after adding to Vk its ε-
losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, λ, Qh, j)← dequeue(E)4: rs ← ζs(k, (qs, λ, Qh, j))

⊲ EXPLICIT ε-TRANSITIONS5: for ea
h (qt, g) : qt ∈ δ(qs, (ε, g)) do6: rt ← add_enqueue_link_es_os(Vk, E, k, (qt, λ, Qh, j))7: add(δ′(rs, g), rt)8: end for
⊲ PREDICTOR9: for ea
h (qr, Qc) : qr ∈ δ(qs, Qc) do10: if add(Vk, (qr, Qc, Qh, j)) then11: ζ ′s(k, (qr, Qc, Qh, j))← {rs}12: Rc ← ζI(k,Qc)13: if Rc =⊥ then14: Rc ← ∅15: for ea
h qc ∈ Qc do16: rc ← add_enqueue_link_es_os(Vk, E, k, (qc, λ, Qc, k))17: enqueue(Rc, rc)18: end for19: ζI(k,Qc)← Rc

⊲ ε-COMPLETER20: else if ∃rf : (Qc, rf) ∈ T then21: rr ← add_enqueue_link_es_os(Vk, E, k, (qr, λ, Qh, j))22: add(δ′(rs, Rc), rr)23: for ea
h rf : (Qc, rf) ∈ T do24: add(δ′(rf , rr�), rr)25: end for26: end if



314 CHAPTER 15. FILTERED-POPPING RTNS27: else28: enqueue(ζ ′s(k, (qr, Qc, Qh, j)), rs)29: end if30: end for
⊲ COMPLETER31: if qs ∈ F then32: for ea
h (qr, Qh, Q

′
h, i) ∈ Vj do33: rr ← add_enqueue_link_es_os(Vk, E, k, (qr, λ, Q

′
h, i))34: R′

s ← ζ ′s(j, (qr, Qh, Q
′
h, i))35: Rc ← ζI(Qh)36: for ea
h r′s ∈ R′

s do37: add(δ′(r′s, Rc), rr)38: end for39: add(δ′(rs, rr�), rr)
⊲ ε-COMPLETER40: if i = k then41: add(T, (Qh, rs))42: end if43: end for44: end if45: end whilethe ESs. When deriving an ES by generating an output (or empty output),if the ES was not present it is generated as well as its asso
iated OS, andthe 
orresponding transition with the output label is added, but if the ESwas already present its OS is just retrieved and a new alternative transitionis added (again, if the transition was not already present).Figure 15.2 is an example of exe
ution of algorithm 15.1 rtnbo_translate-_string_to_fprtn for input aabb and the RTNSO of �gure 14.1 (p. 284).5On the left, we have drawn a 
opy of the RTNSO and, on the right, we haverepresented the tra
e of the RTN Earley-like a

eptor with its 
orrespondingoutput FPRTN. Noti
e that ea
h line 
ontains a RTN ES along with itsasso
iated FPRTN state, and that every transition within the tra
e has its
orresponding FPRTN transition with the same transition label but omitting5Bla
kboards are strings and output labels are just output symbols; as stated before,the algorithm is the same for any kind of output sin
e it does not interpret the outputsbut just annotates them.



15.6. TRANSLATING A STRING INTO A FPRTN 315the input symbol. The key of FPRTN state r0 is 0, whi
h represents the pointjust before the �rst input symbol σ1. Keys ks and kt of two FPRTN states
rs and rt asso
iated to two ESs xs and xt su
h that xt is dire
tly rea
hablefrom xs are equal i� the transitions that led to xt from xs did not involveinput 
onsumption; otherwise kt is equal to ks + 1. The �global� a

eptan
estate r1 is asso
iated to key 4 so that any interpretation within the FPRTNne
essarily 
orresponds to the whole 
onsumption of input aabb. Note thata single RTNBO 
all results in several FPRTN 
alls when the RTNBO 
all
an be 
ompleted by 
onsuming input segments of di�erent lengths, sin
eseveral return ESs belonging to di�erent SESs will be produ
ed; for instan
e,the �rst realization of 
all transition (q1, {q0}, q2) produ
es the FPRTN 
alltransitions (r4, {r6}, r8) and (r4, {r6}, r17), whi
h di�er only in the targetstate: OS r8, whose ES belongs to V1, and OS r17, whose ES belongs to V3.The �rst 
orresponding �ltered-pop transition, (r7, r8�, r8), is only realizableif the FPRTN 
all represents a translation of the empty input segment rightafter 
onsuming the �rst input symbol (κ(r6) = 1 ∧ κ(r7) = κ(r8) = 1), andthe se
ond one, (r13, r14�, r14), if the FPRTN 
all represents the translation ofthe se
ond and third input symbols (κ(r6) = 1 ∧ κ(r16) = κ(r17) = 3). Notealso that a RTNBO 
all transition results in a single FPRTN 
all transitionbut several �ltered-pop transitions when the 
all is realizable by rea
hingmultiple a

eptor states but always 
onsuming the same amount of inputsymbols.

Figure 15.3 is an example of exe
ution of algorithm 15.1 rtnbo_trans-late_string_to_fprtn, equivalent to the example of �gure 14.4 (p. 297) forthe RTNSO with deletable 
alls. In this example we 
an appre
iate how thedeletable 
all to SS {q5} is 
omputed only on
e for ea
h SES, and further
alls are pro
essed by the ε-
ompleter by just adding the 
orresponding 
alltransition. As we 
an see, deletable 
alls allow for exe
ution paths traversingthe same 
all su

essive times inside the same SES (e.g.: 
all to SOS {r3});even though the same ES is rea
hed several times, no 
all-
y
le is presentsin
e ea
h 
all is 
ompleted before starting the next one (the return stateis popped out before pushing it again); for instan
e, the following is anexe
ution path rea
hing state r3 four times, starting from state r0 and ending
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Figure 15.2: At the left, a 
opy of the ambiguous RTNSO of �gure 14.1 (p. 284) and, at the right, exe
ution tra
eof algorithm 15.1 rtnbo_translate_string_to_fprtn for this RTNSO and input aabb.



318 CHAPTER 15. FILTERED-POPPING RTNSat state r10:
(r0, r1�, r2)

(r2, r7�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r7�, r7)
(r7, r8�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r8�, r8)
(r8, r9�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r9�, r9)
(r9, r10�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r10�, r10)Transitions have been aligned so that every push transition to state r3 ispla
ed in the leftmost 
olumn and every �ltered-pop transition from 
all to

r3 is pla
ed in the rightmost 
olumn. This path 
orresponds to the traversalof the RTNSO from state q0 to state q4 by 
onsuming no input and generat-ing sequen
e EEEE. This path is not an interpretation of input a: a lasttransition (r10, r1�, r1) is missing whi
h is not realizable due to the di�erentasso
iated keys to states r10 and r1.Finally, �gure 15.4 is an example of exe
ution of algorithm 15.1 rtnbo-_translate_string_to_fprtn equivalent to the example of �gure 14.5 (p. 298)for the left-re
ursive RTNSO. Even if the resulting FPRTN 
ontains 
all 
y-
les, it 
ontains a unique and �nite interpretation due to �ltered-pop transi-tions:
(r0, r1�, r2)(r2, r2l�, r2) . . . (r2, r8�, r2)(r2, r6�, r2)(r2, r4�, r2)

(r2, B, r3)(r3, r4�, r4)
(r4, A, r5)(r5, r4�, r6)
(r6, A, r7)(r7, r4�, r8)...

(r2l, A, r2l+1)(r2l+1, r1�, r1)The �rst line 
ontains the sequen
e of push transitions initializing the axiom
all plus the l− 1 su

essive 
alls to r2; on
e the sta
k is �lled with the rightsequen
e of return states, transitions of the following lines 
onsume an inputsymbol an pop out the next return state.



Chapter 16Output FPRTNsWe study here the relevant parti
ularities of the FPRTNs 
onstru
ted byalgorithm 15.1 rtnbo_translate_string_to_fprtn (des
ribed in se
tion 15.6,p. 306), namely the 
ir
umstan
es that lead to FPRTNs that re
ognize in-�nite languages; su
h 
ir
umstan
es should be avoided in order to ensure�nite results. We give a pruning algorithm for su
h FPRTNs in se
tion 16.1,and two e�
ient language generator algorithms for FPRTNs representing �-nite languages in se
tions 16.2 and 16.3. We have brie�y presented both thepruning algorithm and an adapted version of the �rst language generatoralgorithm in Sastre et al. (2009), in the 
ontext of appli
ation of the Movis-tarBot proje
t. The pruning algorithm removes every useless substru
tureof the FPRTN (de�nition 120, p. 145), and 
onsequently saves the 
ost of
omputing useless partial bla
kboards. The �rst language generator is ableto avoid the exponential explosion in 
ases in whi
h the grammar representsa set of senten
es where the number of interpretations of ea
h senten
e islimited, even for senten
es having an exponential number of lo
al ambigu-ities (ambiguities that are solved after reading a 
ertain amount of input).The se
ond language generator is intended to be as e�
ient as possible forthe worst 
ase; furthermore, this se
ond algorithm will be the base for the
onstru
tion of another algorithm that de�nitively avoids the exponentialexplosion in 
ases in whi
h the grammar is a weighted ma
hine and only thetop ranked bla
kboard is needed (to be des
ribed in 
hapter 18). Note thatmany appli
ations require a single interpretation to be returned in spite ofambiguity, for instan
e automati
 translators and 
onversational agents su
has the MovistarBot.As stated before, paths within O-FPRTNs 
orrespond to the RTN Earley-319
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323like exe
ution paths of a RTNBO for a given �nite input sequen
e, theRTNBO being applied as a RTN but labeling the transitions of the resultingFPRTN with the RTNBO output labels. If we 
onsider the input segment asa linear FSA (see de�nition 77, p. 130), the FPRTN is a fa
tored represen-tation of the interse
tion of the languages represented by the input FSA andthe RTNBO, that is, a substru
ture of the exe
ution ma
hine of the RTNBO
onditioned upon the input FSA. Boullier and Sagot (2007) present a set of�lters to be applied to a CFG for a given input sequen
e in order to redu
ethe sear
h spa
e when applying the CFG, for instan
e the suppression of anygrammar rule 
onsuming an input symbol not present in the input sequen
e.From that point of view, our algorithm performs some kind of �ltering of thegrammar represented by the RTNBO so that only the paths 
onsuming somepre�x of the input remain. It is not a full �ltering sin
e not all these pathsmay be useful for the re
ognition of the entire input: we still need to prunethe resulting FPRTN in order to remove the useless substru
tures. We ap-ply the RTNBO rather than individually applying a �lter to ea
h transition,though the 
ost of individually applying one or more of the suggested �ltersplus the appli
ation of our algorithm might be less than the appli
ation ofthe algorithm without the previous �ltering of individual transitions. Theappli
ation of the �lters proposed by Boullier and Sagot (2007) is left to afuture work.De�nition 272 (Output FPRTN). We say a FPRTN A is an output FPRTN(O-FPRTN) i� there exists a RTNBO B and an input sequen
e w su
h that
B is the result of the exe
ution of algorithm 15.1 rtnbo_translate_string-_to_fprtn (p. 309) for B and w, and we 
all (B,w) a sour
e of A.De�nition 273 (Canoni
al sour
e of an output FPRTN). We say a sour
e
(B,w) of an O-FPRTN A is a 
anoni
al sour
e i� every path of B is exploredand every symbol of w is 
onsumed for the generation of A, independently ofwhether the language of the resulting FPRTN is empty or not.Note that all the examples of exe
ution given here are based on 
anoni
alsour
es in order to keep them small. In pra
ti
e, only a subset of the RTNBOwill be explored and the input sequen
e will not be ne
essarily re
ognized.Re
all that 
onsuming every input symbol is not a su�
ient 
ondition forthe generation of a FPRTN re
ognizing a non-empty language: at least onea

eptan
e ES is also to be rea
hed.



324 CHAPTER 16. OUTPUT FPRTNSLemma 26 (Output FPRTN 
y
les). Given a 
anoni
al sour
e (B,w) of anO-FPRTN A, a path p in A is a 
y
le i� there exists a path p′ in B holdingthe following properties:
• p′ is a subpath of some path p′′ realizable from an initial ES by 
onsum-ing some pre�x of w,
• p′ is an ε-
y
le, and
• during the traversal of p′′, the last 
alled SS and the number of inputsymbols 
onsumed when starting that 
all are the same either whenrea
hing the start or the end states of p′.Moreover, p is a 
onsuming 
y
le i� p′ is a generating path, and p is usefuli� p′ is w-useful (de�nition 119, p. 144).Proof. Obviously, the �rst 
ondition must hold sin
e paths are added to Aas some pre�x of w is 
onsumed by B. Let wawbwc = w, papbpc be a pathin B su
h that it is realizable from some RTN Earley-like initial ES xε of

B by 
onsuming w, where exe
ution path X (pa, xε) (de�nition 90, p. 134)rea
hes ES xa by 
onsuming wa, X (pb, xa) rea
hes ES xb by 
onsuming wb and
X (pc, xb) rea
hes ES xc by 
onsuming wc. Proving the remaining 
onditions
onsists in proving that they hold i� X (pb, xb) is a 
y
le, that is, xa = xband both xa and xb belong to the same SES. Let xa = (qs, Qc, Qh, i) and
xb = (q′s, Q

′
c, Q

′
h, j). Path pb is a 
y
le i� qs = q′s. Qc = Q′

c = λ sin
eonly a
tive ESs 
orrespond to FPRTN states. The third 
ondition holds i�
Qh = Q′

h and i = j. Finally, xa and xb belong to the same SES i� pb doesnot 
onsume input.The two additional propositions are obvious: sin
e FPRTN input symbolsare 
opies of RTNBO output symbols, p 
onsumes i� p′ generates and, by
onstru
tion, every interpretation of w in B produ
es an interpretation ofsome translation of w in A, thus relating the usefulness of p and p′.Lemma 27 (Possible re
ursion degrees). Given a sour
e (B,w) of an O-FPRTN A, the re
ursion degree of A is in�nite i� B 
ontains a w-usefuldeletable re
ursion (de�nition 202, p. 226); otherwise it is either 0 or 1.Proof. The key of this proof is that OS keys represent the number of inputsymbols 
onsumed during the traversal of the sour
e RTNBO up to the gen-eration of the OSs. For an O-FPRTN A to have an in�nite re
ursion degree,
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A must 
ontain a path p su
h as the one shown in proof of lemma 25 (p. 304),
p = pa (qs1, qr1�, qc1) pb (qs2 , qr2�, qc1) pc (qf3 , qr2�, qr2) pd (qf2 , qr1�, qr1) pe,where pb (qs2 , qr2�, qc1) is a 
all 
y
le and keys kf2 and kr2 are equal. For

(B,w) to be a sour
e of A, B must 
ontain a substru
ture that is exploredby 
onsuming some pre�x of w, generating A as is. As stated in the previousproof, a 
y
le in A implies a 
orresponding explored ε-
y
le in B and, sin
ethe 
y
le pb (qs2, qr2�, qc1) in A is a 
all 
y
le, the ε-
y
le in B must bea 
all ε-
y
le. Sin
e kf2 = kr2 and A 
ontains a path pd deriving OS qf2from OS qr2 , the 
orresponding path within B 
annot either 
onsume anyinput symbol; therefore, the path in B 
orresponding to p in A is a deletablere
ursion. Finally, path p in A must be useful, whi
h �by 
onstru
tion� isonly possible if the 
orresponding path in B is w-useful.Theorem 28 (Cardinality of the interpretation set). Given theorem 26 (p.305), the number of interpretations of an O-FPRTN with sour
e (B,w) isin�nite i� B 
ontains at least one w-useful ε-
y
le p holding at least one ofthe following 
onditions:
• every 
all initiated within p is 
ompleted as well within p, or
• there exists an ε-path p′ su
h that pp′ is a deletable re
ursion.Theorem 29 (Cardinality of the language). The language of an O-FPRTNwith sour
e (B,w) is in�nite i� B 
ontains at least one w-useful generating ε-
y
le holding at least one of the 
onditions mentioned in the previous theorem.We must expe
t a natural language grammar to asso
iate several interpre-tations to a natural language senten
e sin
e natural languages are ambiguous;however, asso
iating in�nite interpretations to a natural language senten
emakes no sense. Therefore, forbidding the presen
e of generating ε-
y
les inRTNBOs does not restri
t the natural languages that 
an be represented butensures that the language represented by the resulting O-FPRTNs will be�nite sin
e this restri
tion and the one of the previous theorem are mutuallyex
lusive.16.1 PruningLet A be an O-FPRTN obtained from a sour
e (B,w); by 
onstru
tion, everystate in A is rea
hable from the initial state of A though it may 
ontain



326 CHAPTER 16. OUTPUT FPRTNSuseless states and transitions. Before generating the language representedby A, we prune it so that we save the 
ost of pro
essing useless paths, and
onsequently the generation of useless bla
kboards. By 
onstru
tion, the lasttransition of every possible interpretation within A is an expli
itly de�ned�ltered-pop transition having the �global� a

eptor state rf as target. If Bdoes not re
ognize w but is only able to 
onsume some pre�x of w, A will haveno �ltered-pop transitions towards rf . Sin
e A 
ontains no interpretations,every state and transition is useless and is to be removed. Otherwise, we 
anreversely traverse every interpretation from state rf towards the initial stateand mark every rea
hed state, so that the remaining unmarked states will bethe ones to remove as well as every transition having any of these states aseither sour
e or target.Algorithm 16.1 output_fprtn_prune removes every useless state and tran-sition of a given O-FPRTN with expli
itly de�ned �ltered-pop transitions,following the pro
edure des
ribed above. In order to optimize the reversetraversal of the O-FPRTN, we store at ea
h state obje
t its set of in
om-ing transitions as well as its set of outgoing transitions. The algorithm �rst
he
ks for the existen
e of expli
itly de�ned �ltered-pop transitions in
omingto state rf and, if none found, 
alls pro
edure 
lear in order to perform anindis
riminate removal of states and transitions;1 otherwise, it pro
eeds witha sele
tive pruning. The algorithm builds a fun
tion ζ mapping states toBooleans whi
h returns whether a state has already been reversely rea
hedfrom rf or not, and initializes it with a false value for every state.2 The algo-rithm also keeps a queue E of reversely rea
hed but unexplored states, thatis, states whose in
oming transitions are still to be reversely traversed. Thesele
tive pruning starts by marking rf as rea
hed and enqueuing it into thequeue of states to be explored. Then, for ea
h enqueued state it dequeuesthe next one and reversely traverses one by one its in
oming 
onsumingtransitions, ε-transitions, 
all transitions and expli
itly de�ned �ltered-poptransitions. Note that through a pop transition we may reversely rea
h statesof a 
all up to its subinitial states, but no further. By reversely traversing
all transitions as well we skip the whole 
all traversal and dire
tly rea
h thestate before the 
all. Note that 
all transitions are added on
e it is provedthat they are realizable, ex
ept for the 
all transition pointing to rf ; how-1Note that, in pra
ti
e, the memory allo
ated for the O-FPRTN is to be freed sooneror later, so 
learing the O-FPRTN is not a waste of time.2In pra
ti
e, we just extend FPRTN state obje
ts with a Boolean �eld so that we donot have to sear
h in a map, assigning to it a false default value.
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all is not realizable then no �ltered-pop transitions will rea
h
rf and therefore the entire FPRTN will be deleted. For ea
h transition,routine enqueue_mark_unexplored_os (algorithm 16.2) is 
alled in order toadd the reversely rea
hed state to the queue and mark it as rea
hed, if itwas not previously rea
hed: sin
e the FPRTN may 
ontain 
y
les, the algo-rithm must perform this 
he
k before enqueuing the state in order not to fallinto an in�nite loop. Finally, a last loop iterates over every FPRTN stateand removes the unmarked ones as well as their 
orresponding transitions.Note that, sin
e we are storing in
oming as well as outgoing transitions, forea
h outgoing transition t stored in a state obje
t qs there is a 
orrespond-ing in
oming transition t′ in some state qt. In order to a

elerate transitionremoval, we also store in the transition data stru
tures the referen
e towardsthe 
orresponding reverse transition data stru
ture.16.2 Language generationThere are 
ases in whi
h we 
an expe
t the language of the resulting O-FPRTN to be small; for instan
e, when building a grammar for a parti
ulardomain of appli
ation one may try to represent only the interpretation ofea
h ambiguous senten
e that a human would assume in that 
ontext (e.g.:upon re
eiving a senten
e su
h as `envía al móvil 555-555-555 hola Pa
o',whi
h means `send to the mobile 555-555-555 hello Pa
o', the MovistarBotshould assume that the user is asking to send the SMS `hola Pa
o' to themobile phone `555555555' and not the SMS `al móvil 555-555-555 hola Pa
o'to an unspe
i�ed phone number). On
e pruned, the resulting O-FPRTN will
ontain a small number of paths (the possible interpretations), even for gram-mars representing an exponential number of lo
al ambiguities (ambiguitiesthat are solved after reading enough input symbols): the pruning operationwill e�
iently remove the O-FPRTN substru
tures 
orresponding to lo
almisinterpretations. An e�
ient language generator algorithm for su
h 
ases(low global ambiguity with high/low lo
al ambiguity) 
an be obtained bymodifying algorithm 14.2 rtn_language (p. 287), the breadth-�rst languagegenerator for RTNs, as follows:
• ESs 
ontain a bla
kboard instead of a string,
• expli
it ε-transitions and 
onsuming transitions are labeled with anoutput fun
tion on bla
kboards instead of the empty symbol or an
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Algorithm 16.1 output_fprtn_pruneInput: A = (Q′, K,Γ, δ′, κ, Q′

I , F
′), the output FPRTN to prune

rf , the �global� a

eptor state of AOutput: A after removing every useless state and transition1: if ∄rs : δ′(rs, rf�) = rf then2: clear(A)3: else4: for ea
h r ∈ Q′ do5: ζ(r)← false6: end for7: ζ(rf)← true8: E ← ∅9: enqueue(E, rf)10: while E 6= ∅ do11: rt ← dequeue(E)12: for ea
h (rs, γ) : rt ∈ δ′(rs, γ) do13: enqueue_mark_unexplored_os(E, ζ, rs)14: end for15: for ea
h rs : rt ∈ δ′(rs, ε) do16: enqueue_mark_unexplored_os(E, ζ, rs)17: end for18: for ea
h (rs, rc) : rt ∈ δ′(rs, rc) do19: enqueue_mark_unexplored_os(E, ζ, rs)20: end for21: for ea
h rs : rt ∈ δ′(rs, rt�) do22: enqueue_mark_unexplored_os(E, ζ, rs)23: end for24: end while25: for ea
h r ∈ Q′ : ¬ζ(r) do26: remove_state_and_associated_transitions(A, r)27: end for28: end if



16.3. LANGUAGE GENERATION THROUGH BSP 329Algorithm 16.2 enqueue_mark_unexplored_osInput: E, the queue of OSs to explore
ζ : Q′ → B, a Boolean fun
tion returning whether a state in Q′ haspre
edently been rea
hed or not
r, a re
ently rea
hed OSOutput: ζ , after setting r as rea
hed, if ne
essary
E, after enqueuing r, if ne
essary1: if ¬ζ(r) then2: ζ(r)← true3: enqueue(r)4: end ifinput symbol, and their traversal applies the output fun
tion to thebla
kboard of the sour
e ES instead of appending a symbol,

• the key-mat
hing 
ondition is to be added to the treatment of poppingtransitions, that is, popping from an state qs with a sta
k π to a state
qr requires κ(qs) = κ(qr) as well as π = π′qr and qs ∈ F , and
• when 
omputing the set of derived ESs from an ES x, derived ESs aremodi�ed 
opies of x ex
ept for the last derived ES, whi
h keeps theoriginal data stru
ture representing x.Note that, when the language to generate 
ontains a unique element, thisalgorithm builds a unique ES data stru
ture and simply modi�es its bla
k-board �eld ea
h time a transition is traversed, instead of building a new ESdata stru
ture 
ontaining a modi�ed 
opy of the sour
e bla
kboard. At a �rststage of development of the MovistarBot, this algorithm was used in 
onjun
-tion with a low global-ambiguity grammar and, upon ambiguous senten
es,interpretations were 
hosen randomly: we sele
ted the �rst one (whatever it
orresponded to) from the list of possible interpretations.16.3 Language generation through BSPWe apply here the equations for Earley-like BSP of RTNBOs for 
omputingthe language represented by an O-FPRTN. First of all, we give a de�nitionof topologi
al sort of the O-FPRTN, then study the ne
essary 
onditions for
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e, and �nally give an algorithm 
omputing the language of theO-FPRTN.De�nition 274 (Topologi
al sort of an O-FPRTN). Assuming that 
allswithin a RTNBO are to be explored only on
e, su
h as it is done by algo-rithm 15.1 rtnbo_translate_string_to_fprtn (309), we de�ne the topologi-
al sort of the resulting O-FPRTN as for FSMs (de�nition 81, p. 130) butrede�ning relation R as follows:
• expli
it ε-transitions, 
onsuming transitions, 
all transitions and real-izable �ltered-pop transitions from rs to rt imply rs R rt, and
• raRrb ∧ rb R rc implies raR rc.Let t = (rs, Rc, rt) be a 
all transition within an O-FPRTN that is realiz-able through a path p starting at a state rc ∈ Rc and having a last transitionof the form (rf , rt�, rt). If the O-FPRTN is to be traversed by following atopologi
al sort, it is obvious that rs and rf are to be explored before rt.Transitively, states in p before rf are also to 
ome before rt. However, itmakes no di�eren
e whether rs is explored before states in p or the 
onverse,sin
e the 
all to Rc is 
omputed as an independent appli
ation of the ma
hinebut taking Rc as set of initial states. Let t′ = (r′s, Rc, r

′
t) be a se
ond 
all tothe same SS Rc; depending on how t and t′ are pla
ed w.r.t. ea
h other, wedistinguish 3 feasible 
ases:

• Transitions t and t′ are parallel 
alls (e.g.: 
all transitions (r10, {r12},
r14) and (r11, {r12}, r15) in �gure 15.2, p. 317); in this 
ase, the fol-lowing relations would be de�ned in R:3� rs Rrt,� rc Rrf R rt,� r′s Rr′t and� rc Rrf R r′t.
• Transitions t and t′ are non-alternating sequential 
alls, that is, t 
omesbefore t′ but t′ does not 
ome before t (e.g.: 
all transitions (r12, {r16},
r13) and (r13, {r16}, r14) in �gure 15.3, p. 321); the 
orrespondingrelations de�ned in R are:3For the sake of simpli
ity, we have abused here the notation of R as done in inequalityexpressions su
h as 3 ≤ x ≤ y ≤ 9 (instead of 3 ≤ x ∧ x ≤ y ∧ y ≤ 9).



16.3. LANGUAGE GENERATION THROUGH BSP 331� rsR rtR r′sR r′t and� rcR rf RrtR r′t.
• Finally, transition t starts 
all to Rc, and the 
ompletion of the 
allinvolves to traverse transition t′ (
all toRc is re
ursive), but �ltered-poptransitions do not allow for repeated 
ompletions of t′ (e.g.: analogousto 
all transitions (r0, {r2}, r1) and (r2, {r2}, r4) in �gure 12.11, p. 252,but not ne
essarily requiring that t′ starts at r2 but some transitionslater). In this 
ase, an additional path 
ompleting 
all to Rc withoutfurther re
ursion is needed in order to stop the re
ursion introdu
ed bytransition t′ (e.g.: in the �gure of the previous example, path r2

B
−→ r3

r4�−→ r4, but not ne
essarily requiring that the path starts at the samestate than the path traversing t′). Let this path start at a state r′c andhave a last transition of the form (r′f , r
′
t�, r

′
t), the relations in R are:� rsR rt,� rcR r′sR r′tRrf R rt, and� r′cR r′f Rr′t.Transition t would initiate the exploration of 
all to Rc and, on
e traversedpath from rc to r′s, transition t′ would not initialize any 
all but just wait forthe exploration of path from r′c to r′f .Note that we have de�ned the topologi
al sort for entire O-FPRTNs andnot only for their ε-
losure-substru
tures. In the previous se
tions on BSPwe fo
used on topologi
ally sorting the ε-
losure-substru
tures sin
e a topo-logi
al sort for ∆-substru
tures was already given by the sequen
e of SESsthe di�erent ESs belonged to: 
onsuming transitions derive target ESs xtfrom sour
e ESs xs with xs ∈ Vi and xt ∈ Vi+1. We �rst explored the ∆-substru
ture of a SES Vi, then the ε-
losure-substru
ture derived from the

∆-substru
ture by following a topologi
al sort, then the ∆-substru
tures of
Vi+1 and so on. On
e the O-FPRTN is 
omputed, the key asso
iated toea
h state gives us the index of the SES the 
orresponding ES belonged to,but the information about whi
h states where produ
ed by the s
anner andwhi
h ones where produ
ed by the other algorithm 
omponents is lost. Sin
eit is ne
essary to explore the entire O-FPRTN in order to generate its lan-guage (provided that it has been previously pruned, and therefore 
ontainsno useless substru
tures), we explore it by following the previously de�ned
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al sort for entire O-FPRTNs, whi
h is not ne
essarily the samethan the one given by the sequen
e of SESs plus the topologi
al sort of the
ε-
losure-substru
tures.Theorem 30 (Existen
e of a topologi
al sort for output FPRTNs). Consid-ering lemma 1 (p. 131) and theorems 21 (p. 266) and 28, for every RTNBOnot having deletable re
ursions or ε-
y
les involving deletable 
alls and/oroutput generation there exists an equivalent RTNBO B su
h that there existsa topologi
al sort for the O-FPRTN generated with sour
e (B,w), for everyinput sequen
e w of B.Note that forbidding the presen
e of deletable re
ursions in a RTNBOdoes not restri
t the set of grammars that 
an be represented sin
e su
h pathsdo not 
ontribute anything to the grammar des
ription (they are equivalentto CFG rules of the form A → A). The same applies for ε-
y
les involv-ing deletable 
all 
ompletions. Finally, ε-
y
les with output generation areforbidden sin
e they lead to grammars representing senten
es with in�niteinterpretations, whi
h make no sense.Algorithm 16.3 output_fprtn_bsp_earley_language e�
iently 
omputesthe language represented by a pruned O-FPRTN, based on the RTN Earley-like language generator algorithm in se
tion 14.8 (p. 294), the RTNBO Earley-like BSP equations in se
tion 13.11, the topologi
al sort for O-FPRTNs andKahn's (1962) topologi
al sorter (a brief des
ription of Kahn's algorithm 
anbe found in appendix D, page 419). The algorithm 
omputes the translationsof the empty word, 
onsidering every transition of the O-FPRTN as a tran-sition re
ognizing the empty symbol and applying the asso
iated γ fun
tionto the 
urrent output bla
kboard; therefore the algorithm is redu
ed to the
omputation of the ε-
losure of a set of initial ESs. Moreover, it performs abla
kboard set pro
essing (BSP) of the O-FPRTN, that is, it traverses theentire O-FPRTN by following a topologi
al sort, 
omputing every bla
kboardthat 
an be generated by rea
hing ea
h parti
ular state q before 
omputingthe bla
kboards of every rea
hable state from q. The topologi
al sort is 
om-puted during the algorithm appli
ation as for Kahn's algorithm. Anotheralgorithm for 
omputing a topologi
al sort is des
ribed in Cormen et al.(2001, se
. 22.4). Opposite to Kahn's algorithm, this algorithm does notrequire to 
ompute �rst the list of unrea
hable nodes from any other one sothat the exploration of the graph is performed from these nodes by followingthe own topologi
al sort; however, these nodes are known before 
omputing



16.3. LANGUAGE GENERATION THROUGH BSP 333the language of the O-FPRTN, the initial state rI , and our language genera-tor algorithm requires to follow the topologi
al sort as for Kahn's algorithmin order to 
orre
tly 
ompute the language of bla
kboards.Rather than performing again an Earley-like pro
essing of the O-FPRTN,the algorithm takes advantage of the 
omputations already performed tobuild the O-FPRTN: the algorithm takes an additional input parameter ζ ′′swhi
h represents a fun
tion mapping ea
h pop transition to the set of sour
estates of the 
all transitions it 
ompletes.4 This requires the following mod-i�
ations in algorithm 15.6 rtnbo_interla
ed_e
losure_to_fprtn:
• right before the ε-
ompleter inside the 
ompleter, insert instru
tion�ζ ′′s ((rs, rr�, rr))← ζ ′′s ((rs, rr�, rr)) ∪R

′
s� in order to register the sour
estates of normally 
ompleted 
all transitions,

• in the ε-
ompleter of the 
ompleter, repla
e instru
tion �add(T,Qh)�by �add(T, Qh, rs)� in order not only to mark deletable 
alls but also tobuild the 
orresponding list of a

eptor states triggering ε-
ompletions,
• in the ε-
ompleter of the predi
tor, repla
e instru
tion �else if Qc ∈ Tthen� by �else if ∃rf : (Qc, rf) ∈ T then�, sin
e elements in T are nolonger elements Qc but pairs (Qc, rf), and insert inside this �else if �blo
k a blo
k �for ea
h rf : (Qc, rf) ∈ Tdo� with a unique instru
tion�add(ζ ′′s ((rf , rr�, rr)), rs)� in order to register the sour
e states of ε-
ompleted 
all transitions.Map ζ ′′s is to be de�ned as an output parameter of algorithm 15.1 rtnbo-_translate_string_to_fprtn and, as the other maps, it is treated as a globalvariable and impli
itly initialized as an empty map.The algorithm �rst 
reates two maps, ζn and ζB; the former maps ea
hstate to a 
ounter of unexplored in
oming transitions to the state, namely
onsuming transitions, expli
it ε-transitions, 
all transitions and pop tran-sitions but not push transitions. The latter map asso
iates ea
h state toan initially empty SB. Then it initializes 
all to rI by adding the emptybla
kboard to the SB of rI and by enqueuing rI . States are dequeued andpro
essed one by one, following a topologi
al sort, until the queue is empty.4In pra
ti
e, we extend pop-transition obje
ts with a �eld 
ontaining a referen
e to-wards the 
orresponding set and, when 
ompleting a 
all during the 
onstru
tion of theO-FPRTN, the set Q′′ is �lled with the sour
e states asso
iated to every resumed pausedES.
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h iteration, rs represents the dequeued state and Bs its SB. First ofall, Bs is in
remented with every bla
kboard 
omposition b′s ◦ bf su
h that
(b′s, bf) ∈ ζB(r

′
s)× ζB(rf), for every pair of states (rf , r′s) su
h that rs is thereturn state of a 
all transition having r′s as sour
e state and rf as a possiblea

eptor state 
ompleting it. Of 
ourse, if rs is not a return state of any
all then no bla
kboard is added to Bs. Then the outgoing transitions of rsare explored, namely 
onsuming transitions, expli
it ε-transitions, 
all tran-sitions and pop transitions. Let rt be the target state of these transitions; inevery 
ase the 
ounter ζn(rt) is de
remented, and rt is enqueued i� the newvalue of ζn(rt) is zero sin
e, in that 
ase, every bla
kboard to be added to

ζB(rt) should already have been added, ex
ept for the bla
kboards due to 
all
ompletions whi
h are added to rt right after dequeuing it. Ea
h parti
ular
ase performs the following additional operations:
• for ea
h 
onsuming transition (rs, γ, rt), bla
kboards γ(Bs) are addedto ζB(rt),
• for ea
h expli
it ε-transition(rs, idB, rt), bla
kboards Bs is added to
ζB(rt),
• for ea
h 
all transition (rs, Rc, rt), 
all to Rc is initiated if it has notbeen done yet (SBs of every rc ∈ Rc will be empty, thus it su�
es to
he
k only the �rst element) and not every transition in
oming to rt hasalready been explored:5 for ea
h state rcinRc the empty bla
kboard isadded to ζB(rc) and rc is enqueued if its 
ounter is zero,6 and
• no additional operation is performed for ea
h pop transition (rs, rt�, rt)sin
e 
omposed bla
kboards are added right after dequeuing ea
h state.7On
e every state in the O-FPRTN has been pro
essed, the SB of the last ex-plored state is returned, whi
h, by 
onstru
tion, 
orresponds to the �global�5Note that having explored every in
oming transition to rt implies that every poptransition 
ompleting 
all to Rc has also been explored and therefore 
all to Rc has alreadybeen initiated.6Note that subinitial states in Rc might be rea
hable from other subinitial states in Rc,so only the unrea
hable ones should be enqueued at this moment.7Note that rea
hing an a

eptor state that triggers a 
all 
ompletion does not ne
essarilyensure that every sour
e state of every other 
all whose 
ompletion it might also triggerhas already been visited, hen
e the algorithm does not 
ompute the 
omposed bla
kboardsfor a given state rs until rs is dequeued.
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eptor state of the O-FPRTN. Note that, as long as the O-FPRTN ispruned before the appli
ation of this algorithm, the �global� a

eptor stateis the only one from where no other state 
an be rea
hed. We have followeda non-destru
tive method for the 
omputation of a topologi
al sort of theO-FPRTN by means of asso
iating 
ounters to ea
h state. Kahn's algorithmremoves ea
h traversed edge, and enqueues a node on
e it has no in
omingedges. In 
ase there is nothing to be done with the O-FPRTN on
e its lan-guage is 
omputed, the destru
tive method would be preferred sin
e, anyway,the memory allo
ated by the O-FPRTN transitions is to be freed sooner orlater (as stated in footnote 1, p. 1).
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Algorithm 16.3 output_fprtn_bsp_earley_language(A)Input: A = (Q′, K,Γ, δ′, κ, {rI}, F

′), an output FPRTN
ζ ′′s , a fun
tion mapping ea
h pop transition to the set of sour
e statesof the 
all transitions that it 
ompletesOutput: L, the language of A1: E ← ∅2: for ea
h rt ∈ Q′ do3: ζn(rt)← |{(rs, γ, rt) : rt ∈ δ′(rs, γ)}|+

|{(rs, idB, rt) : rt ∈ δ′(rs, idB)}|+
|{(rs, Rc, rt) : rt ∈ δ′(rs, Rc)}|+
|{(rs, rt�, rt) : rt ∈ δ′(rs, rt�)}|4: ζB(rt)← ∅5: end for6: add(ζB(rI), b∅)7: enqueue(E, rI)8: while E 6= ∅ do9: rs ← dequeue(E)10: Bs ← ζB(rs)11: for ea
h rf : rs ∈ δ′(rf , rs�) do ⊲ BLACKBOARD COMPOSITION12: for ea
h r′s ∈ ζ ′′s ((rf , rs�, rs)) do13: for ea
h (b′s, bf ) ∈ ζB(r

′
s)× ζB(rf) do14: add(ζB(rs), b

′
s ◦ bf )15: end for16: end for17: end for18: for ea
h (rt, γ) : rt ∈ δ′(rs, γ) do ⊲ CONSUMING TRANSITIONS19: add(ζB(rt), γ(Bs))20: ζn(rt)← ζn(rt)− 121: if ζn(rt) = 0 then22: enqueue(E, rt)23: end if24: end for
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25: for ea
h rt ∈ δ′(rs, idB) do ⊲ EXPLICIT ε-TRANSITIONS26: add(ζB(rt), Bs)27: ζn(rt)← ζn(rt)− 128: if ζn(rt) = 0 then29: enqueue(E, rt)30: end if31: end for32: for ea
h (rt, Rc) : rt ∈ δ′(rs, Rc) do ⊲ PUSH TRANSITIONS33: ζn(rt)← ζn(rt)− 134: if ζn(rt) = 0 then35: enqueue(E, rt)36: else if ζB(first(Rc)) = ∅ then37: for ea
h rc ∈ Rc do38: add(ζB(rc), b∅)39: if ζn(rc) = 0 then40: enqueue(E, rc)41: end if42: end for43: end if44: end for45: for ea
h rt : rt ∈ δ′(rs, rt�) do ⊲ POP TRANSITIONS46: ζn(rt)← ζn(rt)− 147: if ζn(rt) = 0 then48: enqueue(E, rt)49: end if50: end for51: end while52: L← ζB(rs)





Chapter 17Finite-state ma
hines with
omposite outputWe present here FSMs with 
omposite output (FSMCO) as an extension ofFSMs with bla
kboard output for the generation of multiple outputs, eitherof the same kind or not. FSMCOs 
an be seen as ma
hines with multipleoutput tapes: bla
kboards are stru
tures having a �eld for ea
h output tape,and ea
h output tape is itself another kind of bla
kboard.De�nition 275 (FSMCO). In general, �nite-state ma
hines with 
ompositeoutput(FSMCOs) are a parti
ular 
ase of FSMs with bla
kboard output with
• B = (B0 × B1 × . . . × Bn), that is, bla
kboards b ∈ B are 
ompositebla
kboards (b0, b1, . . . , bn) ∈ (B0 × B1 × . . .×Bn),
• Γ = Γ0×Γ1× . . .×Γn, that is, fun
tions γ ∈ Γ are 
omposite fun
tions
γ(b) = (γ0(b0), γ1(b1), . . . , γn(bn)) that operate on 
omposite bla
kboards
b = (b0, b1, . . . , bn),
• BK = {(b0, b1, . . . , bn) : b0 ∈ BK0 ∨ b1 ∈ BK1 ∨ . . .∨ bn ∈ BKn}, that is,
omposite bla
kboards b ∈ BK are those who have at least one killingterm bi ∈ BKi, and
• b∅ = (b∅0, b∅1, . . . , b∅n), that is, the empty 
omposite bla
kboard is theone whose terms are all empty.
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Chapter 18Weighted �nite-state ma
hinesWe present here weighted ma
hines as a spe
ial 
ase of bla
kboard pro
ess-ing, analogously to the way in whi
h we have derived FSMs with stringoutput as a parti
ular 
ase of FSMs with bla
kboard output, namely FST-SOs (
hapter 11) from FSTBOs (
hapter 10) and RTNSOs (
hapter 14) fromRTNBOs (
hapter 13): bla
kboards are weights, we assume that there are nokilling weights, and fun
tions on bla
kboards may in
rement or de
rementsu
h weights. Weights represent the 
ost, s
ore or probability asso
iated tothe realization of a transition. We use here weight output in order to de�ne a
riterion to sele
t a preferred interpretation upon ambiguous senten
es: the
heapest, top-ranked or most likely one, depending on what the weights rep-resent. In the MovistarBot use 
ase (se
tion 1.2, 6), grammars are RTNs with
omposite output: s
ores and XML tags that either identify the requestedservi
e or delimit the arguments to be extra
ted; for instan
e, the expe
tedXML output for senten
e
• `envía Feliz Navidad al 555',whi
h means `send Merry Christmas to the 555', is
• `envía<sms/> <message>hola</message> al <phone>555</phone>'.This output is to be 
oupled with a sequen
e of s
ores to be added, su
hthat the resulting overall s
ore is greater than those of other possible XMLoutputs for other senten
e interpretations, su
h as
• `envía<sms/> <message>Feliz Navidad al 555</message>'.341



342 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESXML tags 
an be treated as string output, though we have implemented aslightly more 
omplex kind of bla
kboard and treatment on bla
kboards forthe sake of e�
ien
y (to be des
ribed in 
hapter 20). Mainly, we 
onsider inthis 
hapter that there are no killing bla
kboards whatsoever. The problemof killing bla
kboards will be dis
ussed in the next 
hapter.Weights are de�ned by following some heuristi
, thus the sele
ted in-terpretation is not guaranteed to be the expe
ted one. However, there areappli
ations whi
h require a single interpretation of ea
h parsed senten
e inspite of eventual mistakes, for instan
e ma
hine translators and 
onversa-tional agents. Sin
e humans are used to deal with impre
ise and/or inexa
tinformation, a human interested in the 
ontent of a text written in an un-known language will still �nd useful a partially 
orre
t ma
hine translation.Human translators 
an use ma
hine translators in order to partially autom-atize their work, having only to 
orre
t the output returned by the ma
hinetranslator instead of typing the whole translation from the s
rat
h. In 
asea 
hatterbot does not understand or misunderstands a request, the user maytry to express his request in a di�erent manner. Note that this kind of sit-uation also happens between humans, though are usually less frequent thanbetween humans and ma
hines. The 
onversations held with a 
hatterbotare usually logged and studied by the 
hatterbot's administrator in order toimprove the 
onversational rules for 
overing the possible de�
ien
ies. Aswell, ma
hine translator developers usually provide free online translationservi
es (e.g.: http://translate.google.
om) for gathering user transla-tion requests, whi
h are then studied for improving the translation rules.De�nition 276 (WFSM). In general, weighted �nite-state ma
hines (WF-SMs) are a parti
ular 
ase of FSMs with bla
kboard output so that
• given a partially-ordered group (G, •,≺), for instan
e (Z, +, ≤) or
(R+, ·,≤), fun
tions in Γ always perform the binary operation • on anelement of G and the 
urrent bla
kboard, whi
h is another element of
G; for the sake of simpli
ity, we 
onsider that Γ 
ontains elements in Grather than fun
tions on bla
kboards, and output labels g ∈ Γ representthe operation b • g where b is the 
urrent bla
kboard,
• the identity fun
tion on bla
kboards idB performs operation • with itsidentity element and the 
urrent bla
kboard, for instan
e 0 for (Z,+,≤)and 1 for (R+, ·,≤); we write the 
orresponding identity element instead

http://translate.google.com


343of fun
tion idB in order to represent that a transition does not modifythe 
urrent output,
• B = G,
• BK = ∅, that is, there are no killing bla
kboards, and
• b∅ is the identity element of operator •, for instan
e 0 for (Z,+,≤) and
1 for (R+, ·,≤).De�nition 277 (Weight of a path). Given a path or sequen
e of 
on
atenatedtransitions t0t1 . . . tn within a WFSM for an ordered group (G, •,≺) so that

wi is the weight of transition ti, the weight of the path is w0 • w1 • . . . • wn.In the MovistarBot use 
ase, weights represent s
ores rather than proba-bilities. Upon ambiguous senten
es, the top-ranked output is to be assumedas the right interpretation. We use partially-ordered group (Z, +, ≤) in orderto avoid �oating-point operations.Probabilisti
 ma
hines (PFSMs), also 
alled sto
hasti
 FSMs (SFSMs),are a spe
ial kind of weighted ma
hines, though our de�nition of weightedma
hine 
an easily be adapted for PFSMs as follows, based on the de�nitionof probabilisti
 automata given in Vidal et al. (2005a, se
. 2.2, p. 1015):De�nition 278 (PFSM). A probabilisti
 ma
hine (PFSM) is a weightedma
hine where
• (G, •,≺) is to be de�ned as ([0, 1], ·, ≤), that is, weights are probabilitiesrepresented by real numbers between 0 and 1,1
• QI is to be repla
ed by a fun
tion PI : Q → R+, whi
h represents theprobability of ea
h state to be an initial state,
• F is to be repla
ed by a fun
tion PF : Q → R+, whi
h represents theprobability of ea
h state to be an a

eptor state, and
• let P : (Q × Ξ × Q) → R+ be the fun
tion returning the probabilityasso
iated to ea
h transition, P is to respe
t the following 
onstraints1For e�
ien
y, probabilities may also be represented by rational numbers, that is, asthe quotient of two integer numbers.



344 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESso that the ma
hine represents a probability distribution over the set ofinterpretations (de�nition 111, p. 144) it 
ontains:
∑

q∈Q

PI(q) = 1, and (18.1)
PF (qs) +

∑

ξ∈Ξ,qt∈Q

P (qs, ξ, qt) = 1, ∀qs ∈ Q. (18.2)In 
ase the ma
hine is non-deterministi
, the probability of an input sequen
eis 
omputed as the sum of the probabilities of every interpretation re
ogniz-ing su
h sequen
e. In 
ase the ma
hine generates additional output (apartfrom probabilities), the probability of a translation (into other outputs thanthe probabilities) is 
omputed as the sum of the probabilities of every inter-pretation performing su
h translation.A more straightforward de�nition of probabilisti
 ma
hine w.r.t. the de�-nition of weighted ma
hine 
an be given by modifying the previous de�nitionas follows:
• instead of repla
ing the sets of states QI and F by fun
tions PI and
PF , two additional states qI and qF are to be added to Q,
• QI is to be de�ned as {qI},
• F is to be de�ned as {qF}, and
• for ea
h state q ∈ Q two additional transitions are to be added:� a transition from qI to q 
onsuming no input and generating prob-ability PI(q), and� a transition from q to qF 
onsuming no input and generating prob-ability PF (q).Examples of ma
hines representing probability distributions over a setof sequen
es are weighted automata (Mohri, 1997), probabilisti
 su�x trees(Ron et al., 1994), probabilisti
 �nite-state automata (Paz, 1971), sto
has-ti
 or probabilisti
 automata (Carras
o and On
ina, 1994), hidden Markovmodels (Rabiner, 1989) and n-grams (Ney, 1992). In the MovistarBot use
ase, we have used weighted RTNs rather than probabilisti
 RTNs. We will



18.1. WEIGHT ASSIGNMENT 345not give here more details on PFSMs, but a 
omplete survey 
an be foundin Vidal et al. (2005a,b).In se
tion 13.10 (p. 272) we presented an Earley-like algorithm of appli-
ation of RTNBOs. In order to use this algorithm for the 
ase of weightoutput, we de�ne the weight 
omposition operator as follows:De�nition 279 (Weight 
omposition operator). Let A be a weighted RTNhaving (G, •,≺) as partially ordered group; 
onsidering that operator • is as-so
iative (by de�nition of group), we de�ne the bla
kboard 
omposition opera-tor (de�nition 239, p. 268) of A as • sin
e it is a parti
ular 
ase of lemma 20(p. 269).De�nition 280 (Top path). Let p be a path within a WFSM A su
h that pre
ognizes a sequen
e α and has qs and qt as start and end states, respe
tively;we say p is a top path of A for (qs, α, qt) and ES xs i� the weight generatedby exe
uting p from xs is greater than or equal to the weight generated by theexe
ution from xs of any other path p′ deriving qt from qs. We simply saythat
• p is a top path of A for (α, qt) when qs is any initial state of A and xsany initial ES,
• p is a top path of A for α when p and p′ are interpretations of Are
ognizing α, and
• p is a top path of A, in general, when p and p′ are interpretations of Are
ognizing any input.18.1 Weight assignmentGiven two transitions outgoing from the same state of a FSM su
h that bothtransitions are realizable upon the same input and 
ontext of exe
ution,one may express the preferen
e of one transition over the other by assigningdi�erent weights to ea
h transition. In the MovistarBot use 
ase (se
tion 1.2,p. 6), we have manually built a set of grammars �more or less des
riptive�and automati
ally asso
iated weights to the grammar transitions so that themost des
riptive transitions �hen
e the most restri
tive or spe
i�
� arepreferred over those less des
riptive. In se
tion 6.4 (p. 115), we have studiedthe spe
i�
ity of the di�erent lexi
al masks, and proposed a weight to assign
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h transition depending on the lexi
al mask used as input label. Thispro
edure has allowed our NLP engine to deal with ambiguous senten
es, asdes
ribed in the se
tion.Other possibility is to use a part-of-spee
h tagger, either sto
hasti
(Chur
h, 1988) or rule based (Brill, 1992), in order to automati
ally asso-
iate weights to transitions during the appli
ation of the ma
hine for a giveninput. Part-of-spee
h taggers 
ompute the most likely part-of-spee
h of thewords of a senten
e. We may asso
iate higher s
ores to transitions requiringor, at least, not forbidding the part-of-spee
h 
hosen by the tagger.18.2 Extra
ting the top bla
kboard of aweighted-output FPRTNIn se
tion 15.6 we presented an algorithm able to 
ompute the set of trans-lations for a given RTNBO and input as an O-FPRTN in time n3 �in theworst 
ase� even for RTNBOs generating an exponential number of out-puts w.r.t. the input length. In 
hapter 16 we presented two pro
eduresfor the generation of the language of outputs represented by an O-FPRTN.Obviously, generating the language of outputs of an O-FPRTN representingan exponential number of outputs will have an exponential worst-
ase 
ost.However, end-user appli
ations su
h as ma
hine translators and 
hatterbots(namely the MovistarBot), require only a single output to be returned, letit be the most likely or the top-ranked one. We present here an algorithmthat is �nally able to generate only the top-ranked output represented by aweighted O-FPRTN (WO-FPRTN) in time n3. Re
all that O-FPRTNs arebuilt from a sour
e (B,w) (de�nition 272, p. 323), and that O-FPRTN inputlabels are simple 
opies of the output labels of their respe
tive sour
e RTN-BOs (se
tion 15.6, p. 306). Therefore, we de�ne WO-FPRTNs as follows:De�nition 281 (Weighted-output FPRTN). Let (B,w) be the sour
e of anoutput FPRTN A, we say A is a weighted-output FPRTN i� B is a RTNBOwith weight output, either as unique output or as one of the outputs of a
omposite output ma
hine (de�nition 275, p. 339). For the sake of generality,we de�ne WO-FPRTNs as both O-FPRTNs and WFSMs with
• (W, •,≺) as partially ordered group, that is, with W as set of weights,
• as operator on weights and ≺ as weight 
omparator, and
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• Γ×W as set of output labels, where Γ is a set of output fun
tions thatapply on the bla
kboard 
omponents other than the weight.Mainly, the pro
edure we present here is divided into two stages. The �rststage 
onsists in traversing the WO-FPRTN in order to �nd and annotatethe WO-FPRTN top path:De�nition 282 (Top path of a WO-FPRTN). Top paths of WO-FPRTNsare de�ned as top paths of WFSMs, though taking into a

ount that weightsof WO-FPRTN re
ognize the outputs instead of generating them: weights arethe se
ond term of the pairs that form their input labels.The top path is annotated by marking at ea
h state the in
oming transi-tion that allowed for rea
hing the state by generating the maximum weight.At a se
ond stage, the top path is reversely traversed in order to generatethe top bla
kboard:De�nition 283 (Top bla
kboard of a WO-FPRTN). Let A be a WO-FPRTNand b a bla
kboard in L(A), we say b is a top bla
kboard of A i� for everybla
kboard b′ in L(A) the weight 
omponent of b is greater or equal than theweight 
omponent of b′.Note that this forward-and-ba
ktra
k pro
edure is typi
ally followed byother dynami
 programming algorithms (Bellman, 1957), su
h as Wagner andFis
her's (1974) algorithm for the 
omputation of the edit distan
e betweentwo strings (Levenshtein, 1966).Sin
e the top bla
kboard is to be 
omputed by reversely traversing thetop path found, output fun
tions on bla
kboards 
annot be applied as is;instead, their 
onverse fun
tions are to be applied:De�nition 284 (Converse of a fun
tion on bla
kboards). Let γ1, γ2 . . . γnbe a sequen
e of fun
tions on bla
kboards, the 
onverse of γi, γ̆i, is anotherfun
tion on bla
kboards su
h that the following equation is satis�ed:

(γ̆1 ◦ γ̆2 ◦ . . . ◦ γ̆n)(b∅) = (γn ◦ . . . ◦ γ2 ◦ γ1)(b∅) (18.3)De�nition 285 (Converse of a binary operator). Let • be a binary operator,we de�ne the 
onverse of •, •̆, as another binary operator su
h that, for all
a, b, c,

a • b = c ⇐⇒ b •̆ a = c. (18.4)
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onverse). The 
onverse of the 
onverse of a binaryoperator is the operator itself, that is, ˘̆• = •.Lemma 28. Pair (G, •̆) is a monoid i� so it is (G, •) and, if so, both monoidsshare the same identity element.Proof. For (G, •) to be a monoid, the following two axioms must be satis�ed:
• operator • is asso
iative, and
• ∃e ∈ G su
h that e is the identity of •.The �rst axiom is satis�ed i�

a • (b • c) = (a • b) • c. (18.5)By de�nition of •̆, the following two equations hold:
a • (b • c) = (c •̆ b) •̆ a (18.6)
(a • b) • c = c •̆ (b •̆ a), (18.7)whi
h together with the former equation proof the asso
iative 
ondition of •̆:
(c •̆ b) •̆ a = c •̆ (b •̆ a). (18.8)For e to be the identity element of •, the following axioms must be satis�ed:

a • e = a (18.9)
e • a = a. (18.10)If so, the following equations hold by de�nition of •̆:
e•̆a = a (18.11)
a•̆e = a, (18.12)and therefore e is also the identity of •̆. Sin
e ˘̆• = •, the same reasoning 
anbe applied to prove that • is a monoid i� so it is ˘̆• and that, if so, both sharethe same identity element.Lemma 29 (Converse operator on bla
kboards). Let (B, •) be a monoid withan identity element b∅; if every output fun
tion is of the form γbr(bl) = bl •br,then γ̆br(bl) = bl •̆ br.
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e of fun
tions on bla
kboards su
h that
γbi(b) = b • bi. If n = 1 then it holds that
(γbn ◦ γbn−1

◦ . . . ◦ γb2 ◦ γb1)(b∅) = ((. . . ((b∅ • b1) • b2) • . . . • bn−1) • bn)

= b∅ • b1 • b2 • . . . • bn−1 • bn

= b1 • b2 • . . . • bn−1 • bn

= bn •̆ bn−1 •̆ . . . •̆ b2 •̆ b1

= b∅ •̆ bn •̆ bn−1 •̆ . . . •̆ b2 •̆ b1

= ((. . . ((b∅ •̆ bn) •̆ bn−1) •̆ . . . •̆ b2) •̆ b1)

= (γ̆b1 ◦ γ̆b2 ◦ . . . ◦ γ̆bn−1 ◦ γ̆bn)(b∅)Note that the asso
iative bla
kboard 
omposition operator des
ribed inlemma 20 (p. 269) forms, indeed, a monoid (B, •) with B as the set of bla
k-boards and b∅ as the identity element. Either for string, s
ore or probabilityoutput, su
h a monoid exists:
• the set of output strings with the string 
on
atenation and the emptystring as identity element,
• the set of integer numbers with the addition and 0 as the identityelement, and
• the set of real numbers with the multipli
ation and 1 as the identityelement.The 
ase of feature stru
ture output and uni�
ation pro
esses will be dis-
ussed in the next 
hapter.In 
ase a set of output fun
tions 
annot be 
onversed, the top path 
an bereversely traversed in order to annotate the 
orresponding outgoing transi-tions at ea
h state instead of the in
oming ones, then traverse the top path indire
t order in order to 
ompute the top bla
kboard with the original outputfun
tions. Another possibility is to apply the reverse of the RTNBO repre-senting the grammar to the reversed senten
e; the resulting WO-FPRTN willthen represent the reverse translations of the senten
e, allowing for using theoriginal output fun
tions during the reverse traversal of the top path insteadof their respe
tive 
onverse fun
tions.



350 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESWe have also studied the possibility of �rst traversing the whole WO-FPRTN in reverse order, that is, to 
ompute a top path of the 
anoni
alreverse of the WO-FPRTN (de�nition 270, p. 306), then reversely traversethat path in order to 
ompute the top bla
kboard using the original outputfun
tions on bla
kboards instead of their 
onverses. However, the traversalof the WO-FPRTN must follow a topologi
al sort of the whole ma
hine (de�-nition 274, p. 330); while we 
an ensure the existen
e of su
h topologi
al sortfor O-FPRTNs (theorem 30, p. 332), that is not the 
ase of their 
anoni
alreverses. A possible example is the 
anoni
al reverse of the O-FPRTN of�gure 15.3 (p. 321); it su�
es to apply the algorithm we des
ribe below tothat ma
hine in order to realize of this fa
t.18.2.1 The algorithmAlgorithm 18.1 woutput_fprtn_top_reverse_path is an almost straightfor-ward adaptation of algorithm 16.3 output_fprtn_bsp_earley_language(p. 336) for the e�
ient 
omputation of a top path of a WO-FPRTN. Insteadof 
omputing every possible bla
kboard that 
an be generated by rea
hingea
h state, it stores only the maximum generated weight up to rea
hing ea
hstate and, ea
h time a new maximum is found for a given state, it storesas well the reverse of the transition that rea
hed that state by generatingsu
h a maximum weight. The maximum weight is given by map ζw, and thereversed top transition by map ζt. The top path 
an be later traversed inreverse order by following the reversed top transition at ea
h state, startingfrom the �global� a

eptor state up to rea
hing the initial state.During the initialization phase, the algorithm sets the 
ounters of in
om-ing transitions for ea
h state rt, ζn(rt), as for algorithm 16.3 output_fprtn-_bsp_earley_language. However, instead of setting the sets of bla
kboards(SBs) of ea
h state to an empty set, the algorithm sets the maximum weightof ea
h state to the minimum possible weight (ζt(rt) ← wmin) so that the�rst 
omputed weight by rea
hing rt is set as the new maximum weight of rt.The top reversed transition of ea
h state rt, (ζt(rt)), is assumed to be ⊥ bydefault, though an implementation of this algorithm may require to expli
itlyassign a null value. States having an unde�ned top reversed transition willbe those initiating 
alls within the FPRTN, that is, those whose top reversedtransition is a reversed push transition.2 The algorithm sets the weight of2Re
all that while pop transitions are expli
itly de�ned in O-FPRTNs for 
onvenien
e,



18.2. EXTRACTING THE TOP BLACKBOARD OF A WO-FPRTN 351the initial state to wid, the weight identity element, instead of setting theSB of rI to the empty bla
kboard. A last initialization instru
tion enqueuesstate rI in order to start the WO-FPRTN exploration as for algorithm 16.3output_fprtn_bsp_earley_language.In spite of being optimized, algorithm 16.3 output_fprtn_bsp_earley-_language 
annot avoid an exponential 
ost due to the 
omputation of anexponential number of bla
kboards in the bla
kboard 
omposition blo
k: fora given pop transition (rf , rs�, rs), it adds to the SB of rs every bla
kboard
bs = b′s ◦ bf su
h that (b′s, bf ) ∈ B′

s × Bf , where Bf is the set of bla
kboardsof rf and B′
s is the set of every bla
kboard of every sour
e state of every 
alltransition 
ompleted by the pop transition. Instead, algorithm 18.1 woutput-_fprtn_top_reverse_path �rst retrieves r′smax

, the state having the maximumweight among all the sour
e states of 
all transitions 
ompleted by the poptransition, then 
omputes only the 
omposition of this maximum weight withthe maximum weight of rf . The treatment for ea
h transition in
oming to
rs is the same than for algorithm 16.3 output_fprtn_bsp_earley_language,though it 
omputes only the maximum weight and stores it along with thereverse of the 
orresponding transition whenever a new maximum is found.As for algorithm 16.3 output_fprtn_bsp_earley_language, algorithm 18.1woutput_fprtn_top_reverse_path uses 
ounters in order to 
he
k whetherevery in
oming transition of ea
h state has already been traversed or not; ifthe WO-FPRTN is not needed for any other treatment, transitions 
an besimply removed from the WO-FPRTN instead of keeping a set of 
ounterssin
e the memory allo
ating the transitions is to be freed sooner or later (asstated in footnote 1, p. 326).Finally, algorithm 18.3 woutput_fprtn_top_bla
kboard 
omputes a topbla
kboard of a WO-FPRTN A = (Q′, K, Γ×W, δ′, κ, {rI}, F

′). First of all,it 
alls algorithm 18.1 woutput_fprtn_top_reverse_path in order to build ζt,the map of states to top-reverse transitions, and to retrieve rF , the �global�a

eptor state of A. Afterwards, it traverses the reverse of the 
omputed toppath, from rF up to rI , by following at ea
h state the top reverse transitionde�ned by ζt. Apart from being reversed, the latter operation is similar tothe 
omputation of the language of a RTN (se
tion 14.5, p. 284) by means ofa breadth-�rst traversal of a RTNBO (se
tion 13.5, p. 262), though keepingpush transitions are not needed to: the reverse traversal of a push transition will simply
onsist in bringing the ma
hine to the state at the top of the sta
k and to pop that stateout.



352 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESa single top ES (rt, bt, π) at ea
h iteration instead of a SES 
ontaining everypossible ES. The initial top ES is set to (rF , b∅, λ). Then, the sequen
e oftop ESs that 
ompose the top reverse path is iteratively 
omputed. Let the
urrent top ES be xt = (rt, bt, π), the next top ES xs is 
omputed as follows,depending on the type of the next top reversed transition:
• reverse pop transition: sin
e a

eptan
e states of AR are those nothaving a top reverse transition, xt = (rr, bt, π

′) with π = π′rr i� ζt =⊥,
• reverse �ltered-push transition: xt = (rf , bt, πrs) i� ζ(rt) = (rt, {rf}, rs),knowing that a unique top state rf is 
alled su
h that (rt, rf�, rs) is anallowed top �ltered-push transition of AR sin
e (rs, rf�, rt) is an allowedtop �ltered-pop transition of A,
• reverse ε-transition: xt = (rs, bt, rt) i� ζt(rt) = (rt, (idB, w), rs), and
• reverse 
onsuming transition: xt = (rt, γ̆(bt), π) i� ζt = (rt, γ, rs), ap-plying γ̆ to bt instead of γ so that the resulting bla
kboard belongs to
L(A) instead of L(AR).
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Algorithm 18.1 woutput_fprtn_top_reverse_path(A, ζ ′′s )Input: A = (Q′, K,Γ×W, δ′, κ, {rI}, F

′), a weighted-output FPRTN
ζ ′′s , a fun
tion mapping ea
h pop transition to the set of sour
e statesof the 
all transitions that it 
ompletesOutput: ζw, a map of states to top weights
ζt, a map of states to top reverse transitions
rs, the last visited state = the �global� a

eptor state of A1: E ← ∅2: for ea
h rt ∈ Q′ do3: ζn(rt)← |{(rs, (γ, w), rt) : rt ∈ δ′(rs, (γ, w))}|+

|{(rs, (idB, wid), rt) : rt ∈ δ′(rs, (idB, wid))}|+
|{(rs, Rc, rt) : rt ∈ δ′(rs, Rc)}|+
|{(rs, rt�, rt) : rt ∈ δ′(rs, rt�)}|4: ζw(rt)← wmin5: end for6: ζw(rI)← winit7: enqueue(E, rI)8: while E 6= ∅ do9: rs ← dequeue(E)10: ws ← ζw(rs)11: for ea
h rf : δ′(rf , rs�) do ⊲ BLACKBOARD COMP.12: r′smax
← first(ζ ′′s ((rf , rs�, rs)))13: for ea
h r′s ∈ ζ ′′s ((rf , rs�, rs))− {first(ζ

′′
s ((rf , rs�, rs)))} do14: if ζw(r′smax

) ≺ ζw(r
′
s) then15: r′smax

← r′s16: end if17: end for18: w ← ζw(r
′
smax

) • ζw(rf )19: if ws ≺ w then20: ws ← w21: ζt ← (rt, {rf}, r
′
smax

)22: end if23: end for
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24: for ea
h (rt, (γ, w)) : rt ∈ δ′(rs, (γ, w)) do ⊲ CONSUMING TRANS.25: wt ← ws • w26: if ζw(rt) ≺ wt then27: ζw(rt)← wt28: ζt(rt)← (rt, (γ, w), rs)29: end if30: ζn(rt)← ζn(rt)− 131: if ζn(rt) = 0 then32: enqueue(E, rt)33: end if34: end for35: for ea
h rt ∈ δ′(rs, (idB, wid)) do ⊲ ε-TRANSITIONS36: if ζw(rt) ≺ ws then37: ζw(rt)← ws38: ζt(rt)← (rt, (idB, wid), rs)39: end if40: ζn(rt)← ζn(rt)− 141: if ζn(rt) = 0 then42: enqueue(E, rt)43: end if44: end for45: for ea
h (rt, Rc) : rt ∈ δ′(rs, Rc) do ⊲ PUSH TRANSITIONS46: ζn(rt)← ζn(rt)− 147: if ζn(rt) = 0 then48: enqueue(E, rt)49: else if ζw(first(Rc)) = wmin then50: for ea
h rc ∈ Rc do51: ζw(rc)← winit52: enqueue(E, rc)53: end for54: end if55: end for
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h rt : rt ∈ δ′(rs, rt�) do ⊲ POP TRANSITIONS57: ζn(rt)← ζn(rt)− 158: if ζn(rt) = 0 then59: enqueue(E, rt)60: end if61: end for62: end whileAlgorithm 18.2 top_state(ζw, Q′′)Input: ζw, the map of states to top weights
Q′′, a set of statesOutput: rmax, the state in Q′′ mapped to the maximum weight1: rmax ← first(Q′′)2: for ea
h r ∈ Q′′ − {first(Q′′)} do3: if ζw(rmax) ≺ ζw(r) then4: rmax ← r5: end if6: end forAlgorithm 18.3 woutput_fprtn_top_bla
kboard(A, ζ ′′s )Input: A = (Q′, K,Γ×W, δ′, κ, {rI}, F

′), a weighted-output FPRTN
ζ ′′s , a fun
tion mapping ea
h pop transition to the set of sour
e statesof the 
all transitions that it 
ompletesOutput: bt, a top bla
kboard of A1: (ζt, rF )← woutput_fprtn_top_reverse_path(A, ζ ′′s , ζc)2: (rt, bt, π)← (rF , b∅, λ)3: while rt 6= rI do4: if ζt(rt) =⊥ then let π = π′rr ⊲ REVERSE POP TRANS.5: (rt, bt, π)← (rr, bt, π

′)6: else if ζt(rt) = (rt, {rf}, rs) then ⊲ REVERSE PUSH TRANS.7: (rt, bt, π)← (rf , bt, πrs)8: else if ζt(rt) = (rt, (idB, wid), rs) then ⊲ REVERSE ε-TRANS.9: (rt, bt, π)← (rs, bt, π)10: else let ζt(rt) = (rt, (γ, w), rs) ⊲ REVERSE CONSUMING TRANS.11: (rt, bt, π)← (rs, γ̆(bt), π)12: end if13: end while





Chapter 19Uni�
ation �nite-state ma
hinesWe brie�y present here ma
hines 
omprising uni�
ation pro
esses as a spe
ial
ase of bla
kboard output, analogously to the way in whi
h we have presentedweighted ma
hines in the previous 
hapter. Uni�
ation is the only kind ofbla
kboard pro
essing presented in this dissertation that makes use of killingbla
kboards. Sin
e our de�nitions and algorithms of appli
ation of ma
hineswith bla
kboard output take into a

ount this possibility, adapting the al-gorithms for the 
ase of uni�
ation ma
hines is straightforward ex
ept forthe last and most e�
ient algorithm we have presented in this dissertation:algorithm 18.3 woutput_fprtn_top_bla
kboard. We brie�y des
ribe uni�
a-tion in se
tion 19.1, uni�
ation ma
hines in se
tion 19.2, the advantages ofuni�
ation in se
tion 19.3, and how to adapt the algorithms of appli
ationof ma
hines with bla
kboard output in order to support uni�
ation in se
-tion 19.4.19.1 Overview of uni�
ationUni�
ation allows for a 
ompa
t representation of long-distan
e relationshipsand dependen
ies, that is, relationships and dependen
ies between input ele-ments that are separated by an arbitrary amount of input rather than being
onse
utive; for instan
e, the number agreement between the subje
t and theverb of a senten
e. Algorithms of appli
ation of grammar formalisms 
om-prising uni�
ation make use of feature stru
tures in order to store linguisti
data as it is observed during the analysis of the senten
es. Su
h feature stru
-tures are stru
tures of attribute/value pairs (e.g.: number/singular, fun
-357
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t, et
.), where values 
an be other feature stru
tures. Addition-ally, feature stru
tures may 
omprise values that are shared among di�erentattributes, forming 
omplex stru
tures analogous to dire
ted a
y
li
 graphs(examples 
an be found in Jurafsky and Martin, 2008, 
hap. 11, p. 391).Uni�
ation is a monotoni
 operation: the uni�
ation of two feature stru
-tures results in another feature stru
ture 
ontaining every attribute/valuepair of both the feature stru
tures to unify. Whenever unifying two featurestru
tures both 
ontaining a given attribute, 3 situations are possible:
• only one of the feature stru
tures de�nes a value for the attribute (thevalue in the other feature stru
ture is not set), in whi
h 
ase the re-sulting feature stru
ture will 
ontain su
h attribute/value pair withoutdupli
ating the attribute,
• both feature stru
tures de�ne the same value for the attribute, in whi
h
ase the resulting feature will 
ontain the attribute paired with thede�ned value, or
• the feature stru
tures de�ne di�erent values for the attribute, in whi
h
ase the feature stru
tures 
annot be uni�ed due to an in
onsisten
y.Whenever in
onsisten
ies appear, killing bla
kboards are to be generated inorder to invalidate the analysis that led to them; for instan
e, a possibleattribute name 
ould be `number agreement', whose value is to be takenfrom both the subje
t and the verb of the senten
e to analyse. When eitherthe subje
t or the verb is read, the feature stru
ture of the 
urrent analysis isuni�ed with another one that in
ludes a `number agreement' attribute takingas value the number of the senten
e 
onstituent read. In other words, a set ofregisters is used in order to remember the number of either the subje
t or theverb so that it 
an be 
ompared when reading the other senten
e 
onstituent.More information on feature stru
tures, uni�
ation, and how to imple-ment them 
an be found in Jurafsky and Martin (2008, 
hap. 11, p. 391).19.2 Uni�
ation ma
hinesWe de�ne uni�
ation ma
hines as follows:De�nition 286 (UFSM). In general, uni�
ation �nite-state ma
hines (UF-SMs) are a parti
ular 
ase of FSMs with bla
kboard output so that
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• fun
tions in Γ always perform the uni�
ation operation ⊔ of a fea-ture stru
ture with the 
urrent bla
kboard, whi
h is a feature stru
tureas well; for simpli
ity, we 
onsider that Γ 
ontains feature stru
turesrather than fun
tions on bla
kboards, and output labels g ∈ Γ representthe operation b ⊔ g where b is the 
urrent bla
kboard,
• the identity fun
tion on bla
kboards idB uni�es the empty feature stru
-ture, [ ], and the 
urrent bla
kboard,
• B is the set of feature stru
tures,
• BK = {⊥}, where ⊥ represents the in
onsistent feature stru
ture, thatis, the uni�
ation of two in
ompatible stru
tures of features, and
• b∅ = [ ], that is, the empty feature stru
ture.As for input labels of lexi
al FSMs (de�nition 48, p. 122), feature stru
turesin Γ may rather be expressions �
alled uni�
ation equations� whi
h de-s
ribe feature stru
tures whose values may be taken from the properties ofthe read input (e.g.: a feature stru
ture with a `number agreement' attributetaking its value from the `number' property of the last read token).An example of uni�
ation ma
hines are lo
al grammars extended with fea-ture stru
tures and uni�
ation pro
esses (Blan
 and Constant, 2005; Blan
,2006); these ma
hines are equivalent to lexi
al-fun
tional grammars (Kaplanand Bresnan, 1982): they use RTNs instead of CFGs, whi
h are equivalentgrammar formalisms, 
oupled with feature stru
tures and uni�
ation. Su
hlo
al grammars have been used for parsing 
omplex senten
es.19.3 Advantages of uni�
ationWithout uni�
ation, �nite-state ma
hines su
h as FSAs and RTNs requirea separate ma
hine substru
ture for ea
h possible valid 
ombination of pairs`attribute/value'; for instan
e, assuming that the number and gender of twosenten
e 
onstituents must agree, and that there are only two possible val-ues for these attributes, four ma
hine substru
tures are required in order torepresent the 
onsistent 
ombinations: both 
onstituents are mas
uline andsingular, both are mas
uline and plural, both are feminine and singular, orboth are feminine and plural. Note that su
h ma
hine substru
tures require
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e 
onstituents that may appear between the
onstituents that must agree. When manually 
onstru
ting a grammar, thisimplies to 
opy by hand su
h substru
tures in order to de�ne ea
h possible
ombination. Moreover, as the number of 
o-o

urrent attributes in
reases,the number of 
onsistent 
ombinations may in
rease exponentially. Depend-ing on the grammars to de�ne, uni�
ation 
an avoid an important amountof redundan
y while avoiding an exponential growth of the grammar.Uni�
ation 
an also ease the representation of senten
e 
onstituents thatmay appear in an arbitrary order; for instan
e, in the MovistarBot use 
ase(se
tion 1.2, p. 6), request senten
es are 
omposed by some stru
ture identi-fying the servi
e requested along with other stru
tures 
ontaining the servi
earguments, where the order in whi
h they appear may not ne
essarily be�xed: senten
es `envía Feliz Navidad al 555-555-555' (send Merry Christ-mass to the 555-555-555) and `envía al 555-555-555 Feliz Navidad' (`send tothe 555-555-555 Merry Christmass') are equivalent. Note that, while thereare only 2 possibilities with 2 arguments that may permute, the number of
ombinations in
reases exponentially w.r.t. the number of freely-permutablearguments.19.4 Supporting uni�
ationAs for weight output (previous 
hapter), the adaptation of the Earley-likealgorithm of appli
ation of RTNBOs 13.10 (p. 272) for feature stru
tureoutput and uni�
ation pro
esses requires only to de�ne the feature stru
ture
omposition operator:De�nition 287 (Feature stru
ture 
omposition operator). We de�ne thebla
kboard 
omposition operator (de�nition 239, p. 268) for the 
ase of uni-�
ation RTNs as ⊔ sin
e it is a parti
ular 
ase of lemma 20 (p. 269).Almost every algorithm of appli
ation of ma
hines with bla
kboard out-put we have presented in this dissertation takes into a

ount the possibility ofgenerating killing bla
kboards, hen
e do not require any further modi�
ationin order to support uni�
ation. The ex
eption is the algorithm 
omputing thetop bla
kboard of a WO-FPRTN (algorithm 18.3 woutput_fprtn_top_bla
k-board, p. 355). Until now, we have 
onsidered the following approa
hes inorder to extend this algorithm with uni�
ation pro
esses:
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• ensuring that the grammar does not asso
iate the highest s
ore to anin
onsistent interpretation for every possible input senten
e, that is,ensuring that top-ranked bla
kboards are not killing bla
kboards by
onstru
tion of the grammar, and
• extending the algorithm so that further top-ranked bla
kboards (these
ond in the raking, the third, et
.) are e�
iently 
omputed in 
asekilling bla
kboards are en
ountered.Note that, in 
ase the grammar de�nes an exponential number of top-rankedkilling bla
kboards, the algorithm will no longer have a polynomial worst-
ase 
ost but an exponential one. A 
ombined possibility would be to ensurethat the grammar does not de�ne su
h an exponential number of top-rankedkilling bla
kboards, that is, to ensure that the non-killing top-ranked bla
k-board is one of the k top-ranked ones for some 
onstant k. A last resour
ewould be to de�ne a pro
edure for the removal of 
on�i
ting uni�
ationequations, repla
ing them by the equivalent sequen
es of ma
hine substru
-tures for ea
h possible 
ombination. However, the same side-e�e
t than thatof RTN �attening (se
tion 12.8, p. 239) 
an be expe
ted: an exponentialgrowth of the grammar. Due to the 
omplexity of the problem, we leave itopen to a future work.
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Chapter 20Experimental resultsIn this 
hapter we present the results of the experiments we have 
ondu
ted inorder to empiri
ally 
ompare the performan
es of the di�erent algorithms wehave presented. We �rst give in se
tion 20.1 an overview of the treatment wehave performed, re
all the di�erent algorithms and algorithm optimizationswe have tested, and des
ribe the implementation details and the a
tual ex-periment 
onditions. Finally, we dis
uss in se
tion 20.2 the observed results,namely the speedup fa
tors for ea
h algorithm and algorithm optimizationrelative to the simplest algorithm, the algorithm overheads, and the asymp-toti
 
ost of the di�erent algorithms.20.1 Des
riptionFigures 20.1 and 20.2 (pgs. 373�378) 
ompare the performan
e of ea
h variantof ea
h algorithm of appli
ation of RTNs �with and without output� fortwo versions of the MovistarBot grammar: in both 
ases the grammar hasbeen pseudo-determinized (se
tion 13.7, pg. 265) but in the latter 
ase ithas �rst been �attened (se
tion 13.6, pg. 263). Sin
e the grammar 
ontainsno re
ursive 
alls, the �attened version is not an approximation but a FSTequivalent to the original RTN. We have applied the MovistarBot grammarto a test 
orpus mainly 
omposed by senten
es requesting for mobile servi
es.Other senten
es have been added in order to 
ontrol over-re
ognition (theyare to be reje
ted). The grammar is a RTN with string and weight output(
hapters 14 and 18, respe
tively):
• output string symbols are XML tags whi
h either identify the requested365
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e or delimit the arguments to extra
t (see �gure 10.1(a), pg. 188),and
• weights are used for 
hoosing a single interpretation (the one with themaximum s
ore) for the 
ase of ambiguous senten
es.Translator algorithms 
ompute maps of XML tags to input segments (theinput position at the moment of generating the 
orresponding opening and
losing XML tags, starting with 1 as the �rst input token). Additionally,ea
h map is asso
iated to an overall weight. The map with the highestoverall weight is to be transformed into a 
ommand and then passed to theMovistarBot. This transformation is trivial and has simply been hard-
odedas a C++ fun
tion; for instan
e, the following set of mappings of XML tags toleft-open input intervals is generated for senten
e `envía hola al 555 ', amongothers: sms → (1, 1] (20.1)message → (1, 2] (20.2)phone → (3, 4] (20.3)The presen
e of the �rst mapping implies that the user is asking to send anSMS, and the others de�ne the input segments to be used as message andphone arguments, respe
tively. For this map, 
ommand sms 555 hola is tobe generated. Note that the input interval of the �rst mapping is empty: onlyXML tags 
orresponding to arguments to be outputted need to be mappedto a non-empty input interval. XML tags identifying the requested servi
erequire only to be present in the map.Translator algorithms 
ompute the set of outputs for ea
h possible inter-pretation of the input senten
e, either as an expli
it list of outputs (a list ofmaps in this 
ase) or as some kind of ma
hine fa
toring out 
ommon parts:a �ltered-popping re
ursive transition network (FPRTN, 
hapter 15) havingpairs XML tag/weight as transition labels. They then translate the top-ranked output into the 
orresponding MovistarBot 
ommand. Additionally,FPRTN-based algorithms also prune the generated FPRTN (se
tion 16.1,pg. 325) before generating either the whole set of outputs or the top-rankedoutput only, depending on the algorithm. A

eptor algorithms �algorithms
omputing only whether the senten
e 
orresponds to a servi
e request ornot, without generating any translation� ignore grammar's output labels
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ompute only whether the senten
e is a request for a supported onlineservi
e or not.Figure 20.3 illustrates the performan
e drop of the best performing vari-ant of ea
h algorithm, for input anbn with n = 0 . . . 15 and grammar of�gure 14.1 (p. 284). In this 
ase, the grammar has weight and string output;the treatment is similar to the MovistarBot 
ases though sets of weightedstrings are to be generated instead of sets of weighted maps, and the top-ranked string is to be returned as is, that is, without being transformed intosome 
ommand.Re
all that grammar of �gure 14.1 is a minimal theoreti
al grammarwhose purpose is to produ
e an exponential number of outputs w.r.t. theinput length; exponential produ
tion happens in natural language grammarsdue to ambiguity that in
reases exponentially with additional nesting levels ofsubgrammar 
alls. Though su
h nesting levels in natural language grammarsare not usually high, signi�
ant speedups 
an be per
eived even for low nest-ing levels due to the exponential nature of the problem: in spite of the smallsize of grammar of �gure 14.1 (6 states and 7 transitions), non-exponentialalgorithms already perform better than their exponential 
ounterparts fornesting levels greater than 3; lower nesting levels will be required for generalnatural language grammars, whi
h 
an easily rea
h millions of states andtransitions.20.1.1 AlgorithmsIn the �gures, the following short 
odes and ba
kground 
olors have beenused in order to identify ea
h algorithm:
• depth-�rst -o : depth-�rst a

eptor, se
tion 12.7 (pg. 235)
• depth-�rst : depth-�rst translator, se
tion 13.5 (pg. 262)
• breadth-�rst -o : breadth-�rst a

eptor, se
tion 12.7 (pg. 235)
• breadth-�rst : breadth-�rst translator, se
tion 13.5 (pg. 262)
• earley -o : Earley a

eptor, se
tion 12.11 (pg. 246)
• earley : Earley translator, se
tion 13.10 (pg. 272)
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• to-fprtn : to FPRTN translator (prunes the FPRTN but does notgenerate its language), se
tion 15.6 (pg. 306)
• to-fprtn-bfe : to FPRTN translator and FPRTN breadth-�rst expan-sion (as `to-fprtn' but also generating the language of the FPRTN bymeans of a breadth-�rst traversal), se
tions 15.6 (pg. 306) and 16.2(pg. 327),
• to-fprtn-zpps : to FPRTN & ζ ′′s map translator (as `to-fprtn' but alsobuilding a map ζ ′′s and performing some variable initializations requiredby algorithm `to-fprtn-bse'), se
tions 15.6 (pg. 306) and 16.3 (pg. 329),
• to-fprtn-bse : to FPRTN translator and bla
kboard set expansion(as `to-fprtn-zpps' but also expanding the FPRTN by means of bla
k-board set pro
essing instead of a breadth-�rst traversal), se
tions 15.6(pg. 306) and 16.3 (pg. 329),
• to-fprtn-top : to FPRTN translator and top-bla
kboard initialization(as `to-fprtn-zpps' but performing the initializations required by algo-rithm `to-fprtn-tbe' instead of `to-fprtn-bse'), se
tions 15.6 (pg. 306)and 16.2 (pg. 327),
• to-fprtn-tbe : to FPRTN translator and top-bla
kboard extra
tor(as `to-fprtn-top' but also extra
ting the top-ranked bla
kboard by amethod similar to bla
kboard set pro
essing), se
tions 15.6 (pg. 306)and 16.2 (pg. 327).Note that algorithms with faded 
olors do not perform the whole 
hain oftreatment, either be
ause they are simple a

eptors or be
ause omit some�nal stages of treatment. We have in
luded them in order to observe theperforman
e drop due to output generation, and to observe the 
ost of ea
hseparate stage of treatment, namely:
• `earley -o' = 
ost of 
omputing the Earley a

eptor sets of exe
utionstates,
• `to-fprtn' minus `earley -o' = 
ost of adding transitions with output la-bels to the Earley a

eptor exe
ution states in order to build an outputFPRTN, plus later prunning the FPRTN,
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• `to-fprtn-zpps' minus `to-fprtn' = 
ost of building ζ ′′s map and per-forming some variable initializations for output generation by means ofbla
kboard set pro
essing,
• `to-fprtn-top' minus `to-fprtn'= 
ost of building ζ ′′s map and performingsome variable initializations for the generation of the top-bla
kboard,
• `to-fprtn-bse' minus `to-fprtn-zpps' = 
ost of generating every outputa

epted by the FPRTN by means of bla
kboard set pro
essing andthen 
hoose the top-ranked one, and
• `to-fprtn-tbe' minus `to-fprtn-top' = 
ost of generating only the top-ranked output within the FPRTN.For instan
e, we 
an see that the 
ost of 
omputing map ζ ′′s and performingthe subsequent variable initializations is negligible. Additionally, algorithmsimplementing partial treatments establish a performan
e limit for algorithmsperforming additional stages (e.g.: `to-fprtn' 
annot be faster than `earley -o'sin
e it performs the same treatment stages plus some additional ones). Ingeneral, it is no use implementing a FPRTN based algorithm in order to sur-pass an algorithmX if `to-fprtn' performs worst than X ; the implementationof `to-fprtn' is to be �rst improved until obtaining a meaningful performan
emargin w.r.t. the algorithm to surpass.20.1.2 Algorithm variantsIn the �gures, parameters other than `-o' identify �minor� algorithm opti-mizations (the algorithm variants), namely
• +t: optimize sequen
e management by means of tries (
hapter 9); ap-pli
able to algorithms whose exe
ution states in
lude a sta
k of returnstates (namely `depth-�rst', `breadth-�rst' and the breadth-�rst expan-sion of `fprtn-bfe') and/or in
lude a sequential partial output (in the
ase exposed here, outputs are not sequen
es but des
riptions of themobile servi
e the senten
e is asking for),
• -eXXX: set/map implementation for the management of sets/maps ofexe
ution states (ex
luding `depth-�rst' sin
e it does not build sets ormaps of exe
ution states but single exe
ution states), and
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• -bXXX: set/map implementation for the management of sets/maps ofbla
kboards (the output stru
tures).The di�erent set/map implementations are
• std: the one provided by GNU's implementation of the C++ StandardTemplate Library, that is, red-bla
k trees (se
tion 2.5, pg. 62) withCormen's addition algorithm (se
tion 2.3.6, pg. 50),
• lrb: our 
ustom implementation based on double-linked red-bla
k trees(se
tion 2.6, pg. 64) with Knuth's addition algorithm (se
tion 2.3.5,pg. 45), and
• lrb-3w: as the previous one but using a 3-way 
omparator (se
tion 2.3.9,pg. 55).Fully-
olored rows highlight the fastest variant of ea
h algorithm.20.1.3 Implementation detailsEvery algorithm has been programmed in C++ (Stroustrup, 2000), using theStandard Template Library (see for instan
e Josuttis, 1999) and some Boostlibraries (http://www.boost.org). We have taken advantage of generi
 pro-gramming in order to reuse the sour
e 
ode of ea
h algorithm for every pos-sible variant �sequen
e, set and map types have been de
lared as templatetypes. Apart from fa
toring out the sour
e 
ode, this ensures that the per-forman
e di�eren
e between the di�erent variants of the same algorithm isex
lusively due to the di�erent implementation of sequen
es (with or withouttrie optimization), sets and maps. Input and output types have also beende
lared as template types so that other kind of grammars 
an be supportedin the future (e.g.: with other 
hara
ter 
odi�
ation s
hemes su
h as UTF-8, with other kind of lexi
al masks, with uni�
ation pro
esses, et
.). Everyalgorithm variant has been 
ompiled into a single exe
utable, weighting 5.9MB, with version 4.3.2 of GNU's g++ 
ompiler. The 
odes des
ribed in thetwo previous se
tions are used as parameters in order to 
hoose the algorithmvariant to exe
ute.

http://www.boost.org
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onditionsEa
h algorithm has been applied to the whole 
orpus several 
onse
utivetimes in order to obtain meaningful measures: a minimum amount of se
-onds is spent per algorithm, the number of 
onse
utive appli
ations being
ounted. Ea
h measure has been taken several times; graph bars of �g-ures 20.1 and 20.2 represent means and error bars represent the minimumand maximum measures. Errors are less than 1% of the observed measure,hen
e we 
an 
onsider negligible the error of the speedup fa
tors we will give(below ±0.001). In �gure 20.3, only thi
k 
urves representing the meanshave been drawn; ex
ept for n = 0, the regions between the maximum andminimum 
urves for ea
h algorithm are thinner enough to be 
overed by the
orresponding mean 
urves. These regions are slightly wider for n = 0, anda few times wider for algorithm `depth-�rst -o'. Anyway, the purpose of thisgraphi
 is to 
ompare the performan
e drops against an exponential grammarrather than giving absolute measures.The measures not only in
lude the 
ost of 
omputing the result, but alsothe 
ost of freeing the allo
ated memory; hen
e, the overhead added by someoptimizations and algorithms due to the use of more 
omplex data stru
tures,su
h as tries and FPRTNs, is fully taken into a

ount. We have used GNU'sm
he
k library and mtra
e tool in order to ensure that every single byte ofdynami
ally allo
ated memory is properly freed.1The tests were run on a Ubuntu platform version 8.10 (Intrepid Ibex), 64bits. The hardware spe
i�
ations are:2
• CPU: Intel R© CoreTM2 Duo E8500, 3.16 GHz, 6 MB L2 
a
he, 64 KBL1 
a
he
• RAM: 8 GBs, DIMM DDR Syn
hronous 1066 MHz (0.9 ns)Ea
h test 
onsumed no more than 18 MB of RAM for the 
ase of the Movis-tarBot grammar and 
orpus, and less than the RAM size for the exponential
ase (more than 8 GBs are needed for some algorithms with exponentialworst-
ase 
osts and n ≥ 20). The pseudo-determinized version of the Mo-vistarBot grammar has 1359 states and 3141 transitions, and the �attenedand pseudo-determinized version has 5504 states and 31702 transitions. The1http://www.gnu.org/s/lib
/manual/html_node/Allo
ation-Debugging.html#Allo
ation-Debugging2As listed by 
ommand lshw.

http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging
http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging
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orpus 
ontains 168 senten
es, with an average of 10.1 tokens per senten
eand 4.1 
hara
ters per token. Ea
h senten
e has an average of 6.9 interpre-tations for both versions of the MovistarBot grammar.
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Figure 20.1: Performan
e 
omparison of ea
h algorithm variant for the Movis-tarBot 
orpus and �attened and pseudo-determinized grammar; fully 
olored rows
orrespond to the fastest variants, and only intense 
olor rows 
orrespond to al-gorithms that perform the whole 
hain of treatment (rows 12�89 ex
ept those ofalgorithm `breadth-�rst -o').
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Figure 20.2: Performan
e 
omparison of ea
h algorithm variant for the Movis-tarBot 
orpus and �attened and pseudo-determinized grammar; fully 
olored rows
orrespond to the fastest variants, and only intense 
olor rows 
orrespond to algo-rithms that perform the whole 
hain of treatment (rows 18�89 ex
ept 34 & 38).



20.2. INTERPRETATION 37920.2 InterpretationFor the 
ase of the non-�attened grammar, our fastest translator (12 to-fprtn-tbe -elrb -blrb) is 2.12 times faster than the plain depth-�rst translator (67depth-�rst -bstd), the one used by Unitex,3 while the plain Earley translator(37 earley -estd -bstd), the one used by Outilex,4 is 1.64 times faster. Forthe 
ase of the �attened grammar, our fastest translator is 1.45 times faster(position 18) than the plain depth-�rst translator (position 58), while theplain Earley (position 68) is 1.39 times slower. The speedup fa
tors w.r.t.the plain depth-�rst algorithm, for ea
h one of the fastest translator variants,are
• non-�attened: 2.12 (`to-fprtn-tbe'), 1.74 (`to-fprtn-bse'), 1.64 (`earley'),
1.54 (`to-fprtn-bfe'), 1.15 (`depth-�rst') and 0.68 (`breadth-�rst')
• �attened: 1.45 (`to-fprtn-tbe'), 1.42 (`to-fprtn-bfe'), 1.16 (`depth-�rst'),
1.15 (`to-fprtn-bse'), 0.76 (`breadth-�rst') and 0.72 (`earley')Even for the optimized versions of the Earley and depth-�rst translators,translator `to-fprtn-tbe' is the fastest one in both 
ases, and `breadth-�rst'is the worst one.The performan
e drop for ea
h stage of treatment of the fastests FPRTN-based translators, for the non-�attened and �attened grammars, and takingthe fastest Earley a

eptor (3 & 5 `earley -o') as referen
e, is:
• 35% & 37% for adding output transitions to the Earley tra
e (10 & 12`to-fprtn'),
• 35% & 37% (negligible) for additionally building map ζ ′′s and perform-ing the variable initializations required for either extra
ting the top-ranked bla
kboard (7 & 14 `to-fprtn-top -elrb') or every bla
kboard bymeans of bla
kboard set pro
essing (6 & 15 `to-fprtn-zpps') and, �nally3Unitex implements some optimizations to a

elereate the evaluation of lexi
al maskswhi
h have not been taken into a

ount here (see Paumier, 2003, Vol. 1, se
. 2.1.2.2,p. 120), though the same optimizations would apply for any algorithm.4Additionally, Outilex's algorithm performs an on-the-�y determinization of the gram-mar whi
h we have not taken into a

ount (see Blan
, 2006, se
. 2.8.4, pg. 68); this oper-ation a

elerates further grammar appli
ations reusing determinized substru
tures duringprevious grammar appli
ations at the expense of in
reasing the grammar size.
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e 
omparison of the fastest algorithm variants �ex
luding `to-fprtn-zpps' and `to-fprtn-top' sin
e they perform as `to-fprtn'� for grammar of �gure 14.1 and input anbn; `fprtn-tbe' is the only algorithmperforming the whole 
hain of treatment and whose performan
e does not drop exponentially w.r.t. n, but linearly.
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• 37% & 38% for additionally extra
ting the top-ranked bla
kboard (12& 18 `to-fprtn-tbe'), or
• 48% & 51% for additionally extra
ting every bla
kboard by means ofbla
kboard set pro
essing (20 & 49 `to-fprtn-bse'), or
• 54% & 40% for additionally extra
ting every bla
kboard by means ofa breadth-�rst traversal (34 & 24 `to-fprtn-bfe'),while the performan
e drop of the straightforward adaptation of the Earleya

eptor for output generation is
• 51% & 70% (30 & 65 `earley').As we 
an see, we have managed to extend the original Earley a

eptor forthe generation of the top-ranked output with a performan
e drop of 37%�

38% (for the MovistarBot grammar) instead of 51%�70%. We 
an expe
ta performan
e drop of up to 48%�51% for an algorithm extra
ting the mtop-ranked bla
kboards.The performan
e drops of the other translator algorithms due to outputgeneration (fastest translators against their respe
tive fastest a

eptors) are:
• 79% & 70% for breadth-�rst traversal (72 & 62 `breadth-�rst' vs 18 &3 `breadth-�rst -o') and
• 92% & 95% for depth-�rst traversal (61 & 48 `depth-�rst' vs 1 & 1`depth-�rst -o').As we 
an see, the breadth-�rst algorithm is not only less e�
ient than theFPRTN-based ones, but the performan
e drop due to output generation isalso higher. Obviously, the performan
e drop of the depth-�rst translator isthe highest sin
e its a

eptor-only version stops on
e the �rst interpretationis found, instead of sear
hing for every possible interpretation as for the otheralgorithms.20.2.1 OverheadsObviously, more 
omplex algorithms have a greater overhead than simplerones. Relative overheads between the di�erent algorithms 
an be observedin �gure 20.3 as the di�erent performan
es for n = 0:5 the algorithms are5The lower the performan
e, the greater the overhead.



382 CHAPTER 20. EXPERIMENTAL RESULTSjust requested to traverse a single ε-transition in order to either a

ept or totranslate the empty string into sequen
e `*', but more 
omplex algorithmsperform additional operations that are amortized for higher values of n. Ifwe 
ompare either translator or a

eptor algorithms only, we 
an see that:
• FPRTN-based algorithms have the greatest overheads, as 
ould be ex-pe
ted due to the 
onstru
tion of an intermediate representation of theset of outputs (the output FPRTN),
• depth-�rst algorithms have the lowest overheads, as 
ould be expe
tedfrom the most straightforward algorithms, and
• Earley and breadth-�rst algorithms have similar intermediate over-heads.Among the FPRTN-based algorithms, `fprtn-bse', 'fprtn-tbe' and `fprtn-bfe'have similar overheads; obviously, the di�eren
e between these 3 algorithmsand algorithm `to-fprtn' is quite greater sin
e `to-fprtn' skips the generationof the outputs a

epted by the FPRTN. Finally, Earley algorithms havea slightly higher overhead than breadth-�rst ones due to the use of more
omplex ESs (5-tuples instead of triplets for the 
ase of the translators, andquadruplets instead of pairs for the 
ase of the a

eptors).20.2.2 Asymptoti
 
ostsThe applied grammar for the 
ase of �gure 20.3 generates an exponentialnumber of outputs w.r.t. the input length (|anbn|). Obviously, every algo-rithm generating the list of every possible output will have an exponential
ost w.r.t. the input length, namely any variants of `to-fprtn-bse', `to-fprtn-bfe', `earley', `depth-�rst' and `breadth-�rst'. Algorithm `breadth-�rst -o'
omputes a

eptan
e only, yet it generates an exponential number of ESsw.r.t. the input length and, therefore, has an exponential 
ost. Algorithm`depth-�rst -o' generates the same kind of ESs than `breadth-�rst -o', butexplores only a single potential interpretation at ea
h given moment insteadof all of them. Sin
e the �rst explored path is already found to be an inter-pretation, it avoids to explore the remaining paths; sin
e the length of thispath is linear w.r.t. the input length, the algorithm 
ost is linear for this
ase, though for other 
ases an exponential number of ESs might have tobe explored before �nding the �rst interpretation. Algorithm `earley' 
om-putes every ES but following another format whi
h allows for fa
toring out
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ommon 
all substru
tures, whi
h results in a linear number of ESs w.r.t.the input length. Algorithm `to-fprtn' in
rements this stru
ture with outputtransitions, resulting in an output FPRTN a

epting every possible output,yet keeping the linear time. Algorithm `to-fprtn-tbe' traverses the FPRTNin order to extra
t only the top-ranked output; this operation is also per-formed in linear time thanks to an adaptation of Kahn's topologi
al sortalgorithm for the 
omputation of the top-ranked path within the FPRTN.Bla
kboard-set expansion is an improvement over the breadth-�rst traversalof the FPRTN, also based on Kahn's topologi
al sort, obtaining similar re-sults to the Earley translator for 
omplex enough grammars and inputs: forthe 
ase of the exponential grammar, n must be equal to or greater than 6,but lower re
ursion degrees will be enough for grammars having bigger 
allsubstru
tures whose treatment 
an be fa
tored out; note that the exponentialgrammar has only 6 states an 7 transitions, while the MovistarBot grammarhas 1359 states and 3141 transitions. Indeed, better results are expe
ted forgeneral domain grammars with millions of states and transitions (re
all thatthe MovistarBot grammar mainly represents senten
es requesting for somemobile servi
e).Sin
e `to-fprtn-tbe' is an adaptation of `to-fprtn-bse' for extra
ting onlythe top-ranked output, we 
an expe
t that an e�
ient implementation of analgorithm generating the m top-ranked bla
kboards will have a 
ost between`to-fprtn-tbe' and `earley', depending on m. This would allow for a 
ompro-mise between performan
e and the maximum number of outputs to generate,for appli
ations taking advantage of multiple outputs upon ambiguity.20.2.3 FlatteningFlattening the grammar in
reases performan
e by a fa
tor between 1.43 and5.05; Earley algorithms are the less a�e
ted (1.43�2.5) and breadth-�rst anddepth-�rst algorithms are the most a�e
ted (3.25�5.05): the e�
ient treat-ment of 
all transitions 
ompensates, to some extent, the la
k for this gram-mar optimization. FPRTN-based algorithms with breadth-�rst expansionare slightly less a�e
ted than the breadth-�rst translators (3.02�3.94 against
3.65�4.05), sin
e pruning the FPRTN redu
es the number of ESs to explore.Finally, algorithms based on FPRTNs and bla
kboard set pro
essing areslightly more a�e
ted than Earley-based ones (2.11�2.84 against 1.43�2.5).



384 CHAPTER 20. EXPERIMENTAL RESULTS20.2.4 Set and map implementationsThe use of double-linked red-bla
k trees instead of the standard red-bla
ktrees for the implementation of set and map stru
tures a

elerates the it-erative traversal of the sets �operation required by all the algorithms but`depth-�rst -o'� and allows for sele
tively removing elements from the stru
-tures without having to rebalan
e the 
orresponding trees �operation re-quired by the FPRTN-based algorithms only. However, we have used aKnuth-like algorithm (se
tion 2.3.5, pg. 45) instead of a Cormen-like (se
-tion 2.3.6, pg. 50) in order to add elements to the trees, the former algorithmrequiring additional element 
omparisons. The Knuth-like algorithm 
antake advantage of a 3-way 
omparator (se
tion 2.3.9, pg. 55) in order toredu
e the number of 
omparisons when set elements are sequen
es: 
om-paring two sequen
es α and β having a maximum 
ommon pre�x of length nwill require n appli
ations of the 3-way 
omparator and either n or 2n 
om-parisons with a `less-than' operator (n if α < β and 2n otherwise, sin
e inthe latter 
ase 
omparison β < α will also be performed). In the presented
ases, the number of avoided 
omparisons by using the 3-way 
omparatordoes not seem to 
ompensate the additional number of 
omparisons due tothe use of Knuth's algorithm, hen
e it would be better to simply use Cor-men's algorithm, whi
h 
annot be improved with a 3-way 
omparator (weleave this improvement to a future work). For the 
ase of output generation,we have experien
ed no improvement or even a slow-down when applyingeither the �attened or the non-�attened version of the MovistarBot gram-mar (0.7�1.01). For the 
ase of sets of exe
ution states and the non-�attenedgrammar, we have obtained the same positive results either using or not the3-way 
omparator: speedup fa
tors between 1.02 and 1.37, mostly a�e
tingeither the FPRTN-based ones not performing a breadth-�rst exploration ofthe FPRTN (1.16�1.37) or the non-FPRTN based algorithms not generatingoutput at all (1.15�1.23). For the other algorithms, speedup fa
tors staybetween 1.02 and 1.17, the FPRTN-based one being the most a�e
ted. Forthe 
ase of the �attened grammar, speedup fa
tors are quite redu
ed in ev-ery 
ase, staying between 1.02 and 1.12; �attening the grammar results inan important redu
tion of the impa
t of this optimization �probably dueto a redu
tion in the size of the 
omputed sets of exe
ution states� thoughthis will not be possible for natural language grammars not fo
used in a sospe
i�
 domain su
h as the senten
es requesting for mobile servi
es.



20.2. INTERPRETATION 38520.2.5 Trie-string optimizationFor the MovistarBot use 
ase, outputs are not sequen
es; hen
e, the opti-mization of string management based on tries 
an only be applied to algo-rithms using sta
ks of states, namely the ones performing a breadth-�rstor depth-�rst exploration of either the grammar or the generated outputFPRTN. The speedup depends on the number of generated sta
ks and theirlengths. Depth-�rst and breadth-�rst algorithms generate as many sta
ksas ESs, and the FPRTN-based algorithm generates at least as mu
h sta
ksas remaining states within the FPRTN after pruning it, and more if theFPRTN 
ontains shared 
all substru
tures. The sta
k lengths depend onthe number of su

essive unresolved 
alls. Sin
e the �attened grammar hasno 
alls, the sta
k lengths are always zero, though it is still more expensiveto manage an empty array than a pointer to the root of a trie. Speedupfa
tors for the non-�attened and �attened grammars are 1.16�1.43 and 1.13�
1.37 (breadth-�rst), 1.14�1.19 and 1.11�1.21 (depth-�rst) and 1.11�1.19 and
1�1.02 (FPRTN-based 
ombined with a breadth-�rst exploration).20.2.6 Joint optimizationsSome algorithms 
an bene�t from both the use of more e�
ient set and mapimplementations and the trie-based optimization. In those 
ases, maximumspeedups for the �attened and non-�attened versions of the MovistarBotgrammar are:
• `to-fprtn-bse +t -elrb -bstd': 1.3 and 1.12, while `+t' alone yields 1.19and 1.02 and `-elrb' alone yields 1.17 and 1.12,
• `breadth-�rst +t -elrb -bstd': 1.4 and 1.26, while `+t' alone yields 1.31and 1.21 and `-elrb' alone yields 1.08 and 1.06, and
• `breadth-�rst -o +t -elrb': 1.64 and 1.45, while `+t' alone yields 1.43and 1.36 and `-elrb' alone yields 1.23 and 1.1.In these 
ases, the trie-based optimization is more signi�
ant than the op-timization based on double-linked red-bla
k trees with Knuth's algorithm.We re
all that both optimizations 
an be further improved: the former byusing ternary sear
h trees instead of tries and the latter by using Cormen'salgorithm instead of Knuth's. Note that modi�ed versions of FPRTN-basedalgorithms based on bla
kboard set pro
essing have been 
onsidered whole



386 CHAPTER 20. EXPERIMENTAL RESULTSnew algorithms instead of simple optimizations, and that multiple implemen-tation 
hoi
es o�ered by the own programming language have been omitted.The fa
t is, the greater the number and 
omplexity of the 
omponents 
on-stituting an algorithm, the greater the 
han
e to �nd or to have missed someappli
able optimization. Hen
e, not only our algorithms based on FPRTNsand bla
kboard set pro
essing perform better than the others, but their im-plementation is more likely to be improved than the one of the other al-gorithms. It must also be taken into a

ount that further optimizing analgorithm solving a 
omplex problem, su
h as natural language parsing, isanalogous to tightening a s
rew: as we approa
h the optimal solution �whatever it is� a
hieving another quarter of turn requires a 
onsiderablee�ort, and the s
rew has already been turned several times in 50 years ofresear
h in natural language parsing.



Chapter 21Con
lusionThis work has fo
used on the optimization of the algorithms of appli
ation oflo
al grammars (Gross, 1997), taking as referen
e those of the Unitex (Pau-mier et al., 2009; Paumier, 2008) and Outilex (Blan
 and Constant, 2006b,a)systems: a top-down depth-�rst algorithm (Aho et al., 1986, se
. 4.4, p. 181)and an Earley-like algorithm (Blan
, 2006, se
. 3.5, p. 89), respe
tively. Lo
algrammars are re
ursive transition networks with output de�ned on an alpha-bet of predi
ates 
alled lexi
al masks. These masks are powerful linguisti
operators whi
h ease the 
onstru
tion of natural language grammars: simpleexpressions 
an be used in order to represent potentially large sets of words(or tokens, 
hapter 5) 
omplying with a set of 
onstraints on their seman-ti
 and/or morphosynta
ti
 properties, whi
h are des
ribed in an ele
troni
di
tionary (
hapter 4).The adequa
y of lo
al grammars for the des
ription of natural languagephenomena has already been proved (Ro
he and S
habes, 1997; Català andBaptista, 2007; Martineau et al., 2007; Laporte et al., 2008b,a). As 
anbe expe
ted from a formalism for the representation of natural languagegrammars, the appli
ation of lo
al grammars requires �exible algorithms,su
h as those based on top-down (Aho et al., 1986, se
. 4.4, p. 181) andEarley (Earley, 1970) parsers.1 Other not-so-�exible parsers su
h as LR(Knuth, 1965), CYK's (Co
ke and S
hwartz, 1970; Younger, 1967; Kasami,1965), and Tomita's (Tomita, 1987) are not viable or not so straightforward,either be
ause
• they require the grammars to be deterministi
 and non-ambiguous,1A brief des
ription of the original Earley parser is given in appendix C.387
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• they require to transform the grammar into some normal form, or
• they require to build a table whose size depends on the size of the inputalphabet, whi
h for the 
ase of lo
al grammars 
an be too large: thepotentially in�nite set of words and symbols of the language.21.1 Our 
ontributionsAs stated in Boullier (2003), it seems di�
ult to �nd a te
hnique that wouldimprove the throughput of 
ontext-free parsers due to the huge amount of re-sear
h that has already been performed by the parsing 
ommunity. The sameapplies for the 
ase of re
ursive transition networks due to their equivalen
ewith 
ontext-free grammars. Surpassing both the top-down depth-�rst andEarley-like algorithms has required to 
on
eive a whole new algorithm andseveral other optimizations; we have followed an iterative approa
h, re�ningthe previous solutions until a
hieving lower exe
ution times.21.1.1 Formal des
ription of �nite-state ma
hines andtheir algorithms of appli
ationWe have started by formally des
ribing the di�erent ma
hines and algorithmsof appli
ation in order to study their properties, strengths and weaknesses.It must be noted that Unitex's and Outilex's lo
al grammars are not exa
tlyof the same kind: Outilex introdu
ed new kinds of output generation to lo
algrammars, su
h as weights (Blan
, 2006, se
. 3.3, p. 85) and feature stru
turesbuilt by means of uni�
ation pro
esses (Blan
, 2006, se
. 4.3, p. 118). Wehave built a general mathemati
al framework for the formal des
ription ofany kind of �nite-state ma
hine (brie�y summarized in se
tion. 1.7.2, p. 25),in
luding ma
hines on an alphabet of lexi
al masks instead of input symbols(
hapter 6); this framework not only 
opes with the di�erent kind of ma
hinestreated by both the Unitex and Outilex systems, but 
an be used as a basefor future extensions. Within this framework, we have �rst given a generaldes
ription of �nite-state ma
hine (
hapter 7), then re�ned this des
riptionfor the 
ase of �nite-state automata (
hapter 8), tries (
hapter 9), �nite-statetransdu
ers (
hapters 10 and 11), re
ursive transition networks with andwithout output (
hapters 12�14) and �ltered-popping re
ursive transitionnetworks (
hapters 15 and 16), a new kind of ma
hine; des
ribing �rst the



21.1. OUR CONTRIBUTIONS 389simpler automata types is an easier and better-stru
tured approa
h, allowingfor fa
toring out properties and proofs 
ommon to the di�erent ma
hinetypes:
• �nite-state transdu
ers (FSTs) 
an be obtained by extending �nite-state automata (FSAs) with output generation,
• re
ursive transition networks (RTNs) 
an be obtained by extendingFSAs with a subroutine jump me
hanism, whi
h 
orresponds to theimplementation of the evaluation of the equivalent non-terminal sym-bols of the 
ontext-free grammar,2
• re
ursive transition networks with output (RTNOs) 
an be obtained by
ombining the two previous extensions, and
• �ltered-popping re
ursive transition networks (FPRTNs) 
an be ob-tained by extending RTNs with additional restri
tions upon the termi-nation of subroutine jumps.Based on these formalisms, we have �rst de�ned top-down breadth-�rst al-gorithms of appli
ation; on
e the equations des
ribing the behaviour of thedi�erent ma
hines are given, de�ning these algorithms is straightforward.Moreover, these algorithms 
an be easily modi�ed in order to obtain boththe top-down depth-�rst and Earley algorithms, serving as a 
ommon basefor their formal de�nition and 
omparison:
• Top-down depth-�rst algorithms produ
e the same steps of exe
ution(or exe
ution states) than the 
orresponding top-down breadth-�rst al-gorithms, but in a di�erent order (following a depth-�rst exploration ofthe ma
hine instead of breadth-�rst). Top-down depth-�rst algorithmsare simpler, requiring to store a single exe
ution state at a time insteadof having to manage the sets of every possible exe
ution state for ea
hinput pre�x, whi
h is more time 
onsuming. In turn, further additionsof the same exe
ution state to the sets of exe
ution states are skipped,avoiding having to 
ompute twi
e every exe
ution that would followthem.
• Earley-like algorithms perform a breadth-�rst exploration of the gram-mar, also building sets of exe
ution states, but use a more 
omplex2We have given a short des
ription of 
ontext-free grammars in appendix B.
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ution states. As bene�ts,they support left-re
ursive grammars and are able to fa
tor out the
omputation of subroutine jumps from alternative analyses of the sameinput pre�xes.As their main weakness, all these algorithms have an exponential worst-
ase
ost, even the Earley-like algorithm in spite of the polynomial worst-
ase 
ost(n3) of the original Earley parser (Sastre and For
ada, 2007, 2009): if thenumber of outputs to generate in
reases exponentially w.r.t. the input length,
omputing the list of outputs for a given input sequen
e 
annot have a worst-
ase 
ost below exponential. Su
h 
ases o

ur in natural language grammars:for instan
e, let the outputs represent tags to be inserted between the sen-ten
e 
onstituents in order to build every possible parse tree of the givennatural language senten
es; the number of trees to generate in
reases expo-nentially w.r.t. the number of unresolved prepositional phrase atta
hmentswithin the senten
es (Ratnaparkhi, 1998). As for 
ontext-free grammars, thesize of the 
orresponding RTNs does not need to be in
reased exponentiallyin order to represent su
h natural language stru
tures, sin
e their represen-tation is fa
tored out by means of subroutine jumps. The original Earleya

eptor keeps an analogous fa
tored representation of the exe
ution statestru
tures (the exe
ution tra
es), whi
h is lost when extending the exe
utionstates with partial outputs: the 
on
urrent analyses that where meant tobe joined together during and after the 
omputation of a subroutine jumpare now joined during the subroutine jump only, sin
e the 
ombination ofthe di�erent partial outputs 
omputed before the jump with those 
omputedduring the jump result in di�erent exe
ution states after the jump; at least,the internal 
omputation of subroutine jumps is fa
tored out, to some extent.21.1.2 Trie string managementAs a �rst optimization, we have improved the in
remental 
onstru
tion ofsequen
es �namely partial outputs and sta
ks of return states� by storingthem in tries and representing them as pointers to the nodes of the trie
orresponding to the end of the sequen
es (
hapter 9); sequen
e 
opies and
omparisons are then redu
ed to single operations on pointers, and appendingor removing su�xes �the typi
al involved operations� 
an be e�
ientlydone on the tries sin
e the pointers give dire
t a

ess to the end-of-sequen
enodes. Trie string management, as we have 
alled this optimization, produ
es
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ant in
rease in performan
e for the 
ase of the breadth-�rst anddepth-�rst parsers, but has a negative impa
t on the Earley-like algorithms;these algorithms do not use sta
ks of return states, and fa
toring out the
omputation of partial outputs of 
ommon subroutine jumps requires anadditional operation on the tries whi
h is not so e�
ient: appending a wholetrie bran
h to another existent trie bran
h.21.1.3 A �rst algorithm of appli
ation of lo
al gram-mars based on �ltered-popping re
ursive transi-tion networksAs a �rst milestone, we have 
on
eived �ltered-popping re
ursive transitionnetworks (FPRTNs), a new kind of �nite-state ma
hine for the 
ompa
t rep-resentation of the sets of outputs (or translations) for a given input sequen
eand RTNO, and an algorithm 
omputing su
h FPRTNs in time n3 in theworst 
ase (Sastre, 2009). FPRTNs are analogous to the shared parse forests(Lang, 1991) that result from the appli
ation of a CFG with the original Ear-ley parser, though instead of being 
ustom data stru
tures they are a kindof RTN; therefore, theory and algorithms on graphs, �nite-state automataand re
ursive transition networks 
an be reused or extended for the 
ase ofFPRTNs.On
e a FPRTN is 
omputed, we prune it in order to remove every uselesspath due to grammar paths a

epting some input pre�x but not leading to awhole input translation. Due to the ambiguity of the language, this simpli�esthe FPRTN 
onsiderably. The FPRTN 
an then be graphi
ally representedas a kind of �nite-state automaton for its visualization.3 In order to 
ope withappli
ations requiring a list of translations rather than a FPRTN, we have
on
eived a �rst algorithm for the generation of the language of FPRTNs,based on a breadth-�rst traversal (se
tion 16.2, p. 327). Obviously, the expo-nential worst-
ase 
ost 
annot be avoided if the language of the FPRTN is tobe generated, but pruning �rst the FPRTN avoids the 
onstru
tion of uselesspartial translations. As for the breadth-�rst algorithms, we have optimizedthis algorithm by means of trie string management.3Indeed, we have developed a tool for the generation of a Graphviz dot �le (Gansnerand North, 2000) in order to visualize the resulting FPRTNs, for debugging purposes;more information on Graphviz 
an be found in http://www.graphviz.org

http://www.graphviz.org


392 CHAPTER 21. CONCLUSION21.1.4 Implementation and appli
ation to the Movistar-Bot proje
tThe given formal des
riptions have served as the base for the implementa-tion of the di�erent ma
hine stru
tures and their algorithms of appli
ationin an obje
t-oriented programming language: C++ (Stroustrup, 2000), us-ing the Standard Template Library (see, for instan
e, Josuttis, 1999) andsome Boost libraries (http://www.boost.org). We have further adaptedthese implementations for their exploitation in an industrial natural lan-guage appli
ation provided by the enterprise Telefóni
a I+D:4 the translationof senten
es in Spanish requesting for mobile servi
es (e.g.: sending SMSs,downloading games to our mobile phone, subs
ribing to alert servi
es, et
.)into 
ommands that the MovistarBot �an AIML 
hatterbot (Walla
e, 2004)a

essible through Mi
rosoft's Windows Live Messenger� 
an easily under-stand (Sastre et al., 2009).5 As part of the proje
t, we have built the 
orre-sponding lo
al grammars for the translation of su
h request senten
es, andbuilt a test 
orpus in order to verify the grammar 
overage and 
ontrol over-re
ognition. As bene�ts, this proje
t has allowed us to test the robustnessof our implementations and to 
ompare the di�erent algorithm performan
esin a �nal natural language appli
ation.21.1.5 Automati
 assignment of weights to grammartransitionsAs many other �nal appli
ations, the MovistarBot takes as input a uniquepossible translation of ea
h user senten
e. Upon ambiguity, it is up to ourNLP engine to 
hoose the right interpretation. We have extended the gram-mar with weight output and implemented a pro
edure for the automati
assignment of weights to ea
h grammar transition, depending on the spe
i-�
ity of the lexi
al masks labeling ea
h transition: transitions with morerestri
tive lexi
al masks are to be preferred sin
e they result in �ner senten
edes
riptions (se
tion 6.4, p. 115). However, the whole set of translations isstill to be 
omputed sin
e an interpretation may start with a �ne des
riptionbut then be
ome 
oarser than the others. On
e every interpretation is 
om-4Telefóni
a I+D is a resear
h and development enterprise and member of the Telefóni
agroup, leader of the tele
ommuni
ations market in Spain and Latin Ameri
a and whi
halso enjoys a signi�
ant footprint in Europe.5AIML stands for Arti�
ial Intelligen
e Mark-up Language.

http://www.boost.org
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hosen. Thanks to this te
hnique, we have beenable to properly treat ambiguous senten
es requesting for mobile servi
es.21.1.6 Grammar optimizationsWe have measured the performan
e of the algorithms when applying botha �attened and a non-�attened version of the MovistarBot grammar to thewhole 
orpus of request senten
es.6 Note that, in general, natural languagegrammars 
annot be �attened due to re
ursivity, though a partial �atteningis still possible (re
ursive 
alls 
an be re
ursively inlined a �nite number oftimes, leaving the 
all transitions as is within the last inlining). However,this operation in
reases the grammar size exponentially w.r.t. the amount of
all nesting levels to �atten; hen
e, it may not be viable for large 
overagegrammars.Both grammar versions have been pseudo-minimized before their ap-pli
ation. We have des
ribed this pro
ess in se
tion 7.11, p. 159, basedon the minimization algorithm given in van de Sneps
heut (1985, se
. 3.1,p. 67). This pro
ess is mainly based on pseudo-determinization, whi
h inturn 
onsists in determinizing the ma
hine regarding it as a FSA over aninput alphabet of RTNO transition labels (input/output pairs and 
alls).Note that full determinization is not generally possible for the 
ase of ma-
hines with output or with re
ursive 
alls. We have used both the �atteningand pseudo-minimization programs in
luded in Unitex ��attening and thenpseudo-minimizing the grammar, or only pseudo-minimizing it� rather thanreimplemented the 
orresponding algorithms. Outilex proposes an on-the-�ydeterminization of the involved grammar substru
tures during ea
h parti
u-lar appli
ation; however, this will not a

elerate the algorithms of appli
ationex
ept for repeated appli
ations of the same grammar substru
tures, sin
edeterminization is performed while applying the grammars. We have rather
hosen to keep Unitex's approa
h, whi
h is more general (appli
able to anyma
hine), simpler and better-stru
tured (determinization and grammar ap-pli
ation are two separated pro
esses).6Flattening 
onsists in repla
ing 
all transitions (the subroutine jumps) by the whole
alled ma
hine substru
tures; this is analogous to fun
tion inlining in, for instan
e, C andC++ programming languages. This pro
edure has been des
ribed in se
tions 12.8 and 13.6,pp. 239 and 263.



394 CHAPTER 21. CONCLUSION21.1.7 First experimental resultsWhile the Earley-like algorithm had the best performan
e for the non-�attenedgrammar, it had the worst one for the �attened grammar.7 Our FPRTN-based algorithm was the best for the �attened grammar, but 
ame se
ondfor the non-�attened grammar. The breadth-�rst algorithm performed badlyin both 
ases: managing sets of exe
ution states instead of single states, asfor the depth-�rst algorithm, is expensive; the Earley-like algorithm amor-tizes the added 
omplexity when there are 
alls whose 
omputations 
an befa
tored out and, additionally, the FPRTN-based algorithm also amortizesthe added 
omplexity by avoiding the generation of useless partial outputs.However, the added 
omplexity of building the FPRTN and then generatingits language is not 
ompensated enough w.r.t. the Earley algorithm, for thenon-�attened 
ase.21.1.8 Double-linked red-bla
k trees with aggressive el-ement removal for e�
ient set managementGNU's implementation of the Standard Template Library (and many otherimplementations) use red-bla
k trees for the representation of sets. One of themain drawba
ks of this implementation is that, when pruning the FPRTN,the removal of ea
h FPRTN state implies a tree rebalan
e. We have avoidedthis rebalan
ing by using an alternative set representation: double-linkedred-bla
k trees (
hapter 2); moreover, this stru
ture allows for an aggressiveelement removal: the tree stru
ture is no longer maintained, but only thedouble links at ea
h tree node. The non-aggressive use of double-linked red-bla
k trees was proposed by Das et al. (2008) for optimizing the iterativetraversals of sets. Indeed, the use of double-linked red-bla
k trees has notonly a

elerated the FPRTN-based algorithm but every algorithm buildingsets of exe
ution states, that is, every algorithm but depth-�rst. As result, thespeedup fa
tor of the FPRTN-based algorithmw.r.t. the depth �rst algorithmis even greater, but the Earley-like algorithm has also been improved: theEarley-like algorithm still performs better than the FPRTN-based algorithmfor the 
ase of the non-�attened grammar, but not as mu
h as before.7See the previous 
hapter for the exa
t performan
e �gures.



21.1. OUR CONTRIBUTIONS 39521.1.9 Bla
kboard set pro
essingAs a se
ond milestone, we have 
on
eived an e�
ient method for the gener-ation of the language of a FPRTN we have 
alled bla
kboard set pro
essing(se
tions 10.9, 13.8 and 16.3, pp. 205, 265 and 329). This method avoids to
ompute twi
e the same partial output by following a topologi
al sort of theFPRTN. Additionally, some partial results 
omputed during the 
onstru
-tion of the FPRTN 
an be reused here. The new FPRTN-based algorithm�nally performs better than the Earley-like algorithm for the non-�attenedgrammar, but slightly worse than the depth-�rst algorithm for the �attenedgrammar: the additional 
ost of 
omputing a topologi
al sort of the FPRTNis not su�
iently amortized in this 
ase.21.1.10 Computing the top-ranked output in time n3As a third and �nal milestone, we have extended bla
kboard set pro
essing forgenerating the top-ranked output represented by the FPRTN (se
tion 18.2).The topologi
al sort is used here for generating only the greatest possibleweight and for marking the 
orresponding FPRTN path. This path is thentraversed for generating only the top-ranked output. The exponential worst-
ase 
ost is �nally avoided, redu
ing it to that of the original Earley parser(n3). This algorithm is, �nally, the best performing for both the �attenedand non-�attened versions of the MovistarBot grammar.21.1.11 Final 
onsiderationsIt is possible to de�ne more 
omplex algorithms whi
h be
ome aware of sit-uations in whi
h 
ertain 
omputations 
an be either fa
tored out or avoided.However, noti
ing su
h situations does not 
ome without an added 
ost,whi
h is not amortized if the grammar does not 
ontain stru
tures allow-ing for them to happen. However, su
h situations do happen with naturallanguage grammars due to their ambiguity and 
omplexity. For the Movis-tarBot grammar, whi
h applies to a very restri
ted domain of the language,our FPRTN-based algorithm already performs better than both the top-down depth-�rst and the Earley-like algorithms, either for a �attened or anon-�attened version of the grammar. Moreover, this algorithm is the onlyone having a polynomial worst-
ase 
ost instead of exponential. Hen
e, weexpe
t the performan
e di�eren
e between our algorithm and the others to
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onsiderably greater for the 
ase of grammars 
overing a wider spe
trumof natural language stru
tures.21.2 Future workFirst of all, we are willing to test our FPRTN-based algorithms with 
omplexand large 
overage grammars, su
h as those that 
an be semi-automati
allybuilt from lexi
on-grammar tables for the analysis of simple senten
es (Pau-mier, 2003, se
. 1.3, p. 28). Blan
 (2006, se
. 4.5.1, p. 143) follows a sim-ilar pro
edure for the semi-automati
 
onstru
tion of grammars des
ribing
omplex senten
es. However, this pro
edure will �rst require extending ouralgorithm in order to support uni�
ation grammars; due to the possibilityof generating in
ompatible feature stru
tures, su
h extension is not trivial.Apart from uni�
ation, other interesting extensions that would allow for aneasier and more stru
tured de�nition of linguisti
 data are:
• Input senten
es represented by means of text automata (a
y
li
 FSAs)instead of sequential inputs (se
tion 5.3.2, p. 101). Apart from lexi-
al ambiguity, text automata represent the possible segmentations ofsenten
es. Up to now, we have 
oded multi-words and atta
hed words(verbs followed by en
liti
 pronouns) inside the grammars, hen
e lexi
aland synta
ti
 representation layers are not 
ompletely separated. Thisextension has already been done for the Earley translator for RTNswith output by Blan
 (2006, se
. 3.5.1, p. 90).
• To modify our algorithms in order to e�
iently lo
ate within a textevery sequen
e that is a

epted by a RTN with output, and to 
omputetheir respe
tive translations,8 as done by the Unitex (Paumier, 2008,se
. 6.8, p. 137) and Outilex systems (Blan
, 2006, se
. 3.5.1, p. 90).As a workaround, one 
an de�ne a grammar that �rst 
onsumes anynumber of tokens, then 
alls the grammar representing the sequen
esto lo
ate, then 
onsumes again any number of tokens.
• To add support for multiwords, for instan
e as done by Multi�ex (Savary,2009).8In Fren
h, appli
ation glissante d'une RTN.
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• To add support for atta
hed words (e.g.: en
liti
 pronouns in Spanish),for instan
e as done by the Apertium system (see For
ada et al., 2010,
hap. 3, p. 17).Other extensions that would have a 
onsiderable impa
t on the re
ognitionrate of the MovistarBot, and of any 
hatterbot in general, are:
• Re
ognizing 
ommon abbreviations that are used in 
onversations basedon short text messages (see, for instan
e, Fairon et al., 2006 and Faironand Sébastien, 2007).
• Error toleran
e, either by using approximate string mat
hing (Lev-enshtein, 1966; Damerau, 1964; Bentley and Sedgewi
k, 1997; Baeza-Yates and Navarro, 1998; Mihov and S
hulz, 2004) or by relaxing theuni�
ation 
onstraints (Fouvry, 2003). In both 
ases, weights 
an beused in order to penalize senten
e interpretations that assume one ormore mistakes.Finally, possible optimizations that are worth 
onsidering for a more e�
ientappli
ation and management of the grammars and the di
tionaries are:
• To use alternative data stru
tures to the one proposed by Revuz (1991)that allow for a greater 
ompression rate and, most of all, that allowfor modifying di
tionary entries dire
tly on the 
ompressed format ofthe di
tionary (Ciura and Deorowi
z, 2001; Da
iuk et al., 2000, 2005;Carras
o and For
ada, 2002); with Revuz's (1991) approa
h it is ne
-essary to 
ompress the entire di
tionary again in order to take intoa

ount any modi�
ation, independently of the number of entries thathave been 
hanged.
• Use Cormen's/Andersson's addition algorithms (se
tions 2.3.6 and 2.3.7,pp. 50 and 52) instead of Knuth's (se
tion 2.3.5, p. 45) in order to addelements to set data stru
tures represented by a double-linked red-bla
ktree (se
tion 2.6, p. 64). The former algorithms perform, on the aver-age, a lesser amount of 
omparisons; hen
e, they 
an be expe
ted to befaster.
• To unroll the loops of Cormen's/Andersson's addition algorithm (se
-tion 2.3.8, p. 55) and the algorithm for the iterative traversal of sets(se
tion 2.3.4, p. 44) in order to avoid trivial assignments.
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• To test e�
ient stru
tures for the management of sets of elements otherthan double-linked red-bla
k trees, su
h as s
apegoat trees (Galperinand Rivest, 1993), double-linked B-trees (se
tion 2.7.5, p. 68), treaps(Seidel and Aragon, 1996) and skip lists (Pugh, 1990).
• To implement an e�
ient set and map library allowing for 
on
urrenta

esses (se
tion 2.7.8, p. 70); su
h library would allow for a trivial ex-tension of the breadth-�rst, Earley-like and FPRTN-based algorithmsfor taking advantage of multi-
ore pro
essors by exploring multipletransitions 
on
urrently. Currently, there exist multiple proposals ofparallel versions of well-known parsers su
h as:� LR (Hendri
kson, 1995),� CYK's (Grishman and Chitrao, 1988; Hill andWayne, 1991; Janssenet al., 1992),� Tomita's (Numazaki and Tanaka, 1990), and� Earley's (Janssen et al., 1992; Brus
hi and Pighizzini, 1994; Sand-strom, 2004)
• To use ternary sear
h trees (Bentley and Sedgewi
k, 1997) instead oftries in order to optimize the in
remental 
onstru
tion of strings (triestring management, 
hapter 9). We 
an expe
t an in
rease in perfor-man
e sin
e ternary sear
h trees require less dynami
 memory allo
a-tions and deallo
ations: while data stru
tures representing trie nodes
ontain a map of letters to other trie nodes,9 the data stru
tures rep-resenting the nodes of a ternary sear
h tree 
ontain a stru
ture having3 �elds.
• To �lter the grammar before its appli
ation a

ording to the senten
eto analyse (Boullier and Sagot, 2007).
• To repla
e the grammar substru
ture allowing for the re
ognition ofthe n �rst input symbols by a deterministi
 transdu
er (a pre�x overlaytransdu
er: Mars
hner, 2007).
• To transform the grammar into Paumier's (2004) weak Greiba
h normalform before its pseudo-determinization; hand
rafted grammars usually9Re
all that maps are to be represented by other dynami
 stru
tures su
h as red-bla
ktrees.
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ontain subgrammars whose purpose is to group other subgrammars:they simply o�er a 
hoi
e between multiple subgrammars, for
ing theparser to explore multiple 
alls that may not be able to 
onsume eventhe next input symbol. The weak Greiba
h normal form ensures thatat least one input symbol is 
onsumed before initiating any 
all, hen
eavoiding a 
ompletely blind initialization of su
h sets of subgrammar
alls.
• As an alternative to the previous optimization, one 
an allow to expli
-itly mark subgrammars that are to be �inlined�, as for fun
tion inliningin C++. A pre-treatment pro
edure would repla
e every 
all to themarked subgrammars by the own subgrammars. A similar feature isimplemented in the Outilex system, although it is not mentioned in themanual (Blan
 and Constant, 2006b): individual 
alls are marked forinlining rather subgrammars.
• To extend the Earley parser with lookahead, as proposed by Leiss(1990), in order to redu
e the amount of 
alls that are explored butdo not lead to any interpretation of the input. The weak Greiba
hnormal form may no longer be required on
e this optimization is im-plemented.
• To a

elerate the Earley parser by means of a guide that �foresees�the grammar rules that will allow for re
ognizing the whole input sen-ten
e (Boullier, 2003). The guide is to have a 100% re
all, but not a100% pre
ision. This guide is to be used in Earley's predi
tor, avoidinginitiating useless subgrammar 
alls. For instan
e, the previous opti-mization 
an be seen as a kind of guide, though others 
an be de�ned:for the 
ase of CFGs, take only into a

ount produ
tions that eitherrewrite a non-terminal as a sequen
e of non-terminals or as a sequen
eof terminals and non-terminals where the non-terminals appear in theremaining input sequen
e and in the same order.
• To pre
ompute Earley-like ε-
losure exe
ution states as LR states (M
Leanand Horspool, 1996).
• Following (Ay
o
k and Horspool, 2001), to pre
ompute the translationsprodu
ed during the resolution of deletable 
alls without 
onsuming
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omplete su
h 
alls inside Earley's pre-di
tor. Apart from a

elerating the 
omputation of the ε-
losure, thisoptimization eliminates the need for an ε-
ompleter.
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Appendix APredi
ate hierar
hy and 
odesWe summarize here the set of lexi
al masks and predi
ates �along with theirsyntax� des
ribed in 
hapter 6.
• Lexi
al masks� token: [%�]<TOKEN>� Literal masks

∗ Literal word mask
· Case sensitive word masks: �word
· Case insensitive word masks: %word

∗ Literal symbol masks: [%�]symbol� Chara
ter 
lass masks
∗ word: [%�]<MOT>
∗ digit: [%�]<NB>
∗ pun
tuation symbol: [%�]<PNC>
∗ Case-dependent word masks
· upper
ase: [%�]<MAJ>
· lower
ase: [%�]<MIN>
· proper noun: [%�]<PRE>

∗ Negated 
hara
ter 
lass masks: [%�]<!...>� Di
tionary-based masks
∗ known word: [%�]<DIC>403
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∗ Constrained di
tionary word masks
· lemma mask: [%�]<
anoni
al_form>
· semanti
-features mask:
[%�]<[+−]?Sem1[+−] . . . [+−]Semn>
· lemma and semanti
-features mask:
[%�]<
anoni
al_form.[+−]?Sem1 [+−] . . . [+−]Semn>
· semanti
 and possible-in�e
tional-features mask:
[%�]<[+−]?Sem1[+−] . . . [+−]Seml:fl
11...fl
1n:...:fl
m1...fl
mn>
· lemma, semanti
 and possible-in�e
tional-features mask:
[%�]<
anoni
al_form.[+−]?Sem1 [+−] . . . [+−]Seml:fl
11...fl
1n:...:fl
m1...fl
mn>

∗ Negated di
tionary masks: [%�]<!...>
• ε-predi
ates� blank-insensitive ε-predi
ate: [%�]<E>� Blank-sensitive ε-predi
ate

∗ mandatory-blank ε-predi
ate: [%�]\⊔
∗ forbidden-blank ε-predi
ate: [%�]#



Appendix BContext-free grammarsContext-free grammars (CFGs) are mathemati
al obje
ts for grammar rep-resentation, useful for parsing both formal (Aho et al., 1986; Hop
roft et al.,2000; Brüggemann-Klein and Wood, 2003) and natural languages (Jurafskyand Martin, 2008; Paumier, 2003; Ro
he, 1999; Ro
he and S
habes, 1997;Silberztein, 1994). We give here the notation used in appendix C for thedes
ription of the Earley parser, whi
h was originally 
on
eived for CFGs.More extensive material on CFGs 
an be found in Autebert et al. (1997),Hop
roft et al. (2000, 
hap. 5, p. 169), Sipser (2006, 
hap. 2, p. 100) andJurafsky and Martin (2008, 
hap. 9, p. 319).De�nition 288 (Context-free grammar). A 
ontext-free grammar is a stru
-ture G = (N, T, P, S) where
• N is a �nite alphabet of non-terminal symbols,
• T is a �nite alphabet of terminal symbols,
• T ∩N = ∅,
• P : N → (N ∪ T )∗, with ε as the empty sequen
e of terminals and/ornon-terminals, is a �nite produ
tion appli
ation, and
• S ∈ N is the start non-terminal of the grammar, also 
alled the gram-mar's axiom or start symbol,Produ
tion rules �also 
alled rewrite rules, or simply produ
tions or rules�are expressions of the form A→ α; non-terminal A is 
alled the left-side of405



406 APPENDIX B. CONTEXT-FREE GRAMMARSthe rule or rule's head, and α ∈ (N∪T )∗ is 
alled the right-side of the rule orrule's body. Produ
tions des
ribe the possible 
ompositions of non-terminalsymbols as a sequen
e of terminal and/or non-terminal symbols.De�nition 289 (Produ
tion dire
t derivation). Consider two sequen
es αand β in (N ∪ T )∗ su
h that α = α1Aα2, with α1 and α2 in (N ∪ T )∗ and
A ∈ N ; we say β is dire
tly derivable from α i� there exists a produ
tion ofthe form A→ γ and β = α1γα2, and we represent it as α⇒ β.De�nition 290 (Produ
tion derivation). Consider two sequen
es α and βin (N ∪ T )∗; we say β is derivable from α i� one of the following 
onditionsholds:1. α = β, or2. α⇒ β, or3. there exists a �nite sequen
e of terminals and/or non-terminals β1 . . . βnsu
h that

• α⇒ β1, and
• βi ⇒ βi+1, for i = 1 . . . n− 1, and
• βn ⇒ β.In order words, we say β is derivable from α i� there exists a possibly empty�nite sequen
e of produ
tion appli
ations rewriting α as β, and we representit as α ∗
⇒ β. Additionally, we represent as α +

⇒ β the possibility of deriving βfrom α by applying one or more rewrite rules, that is, when either the se
ondor the third previous 
onditions apply but not the �rst one.De�nition 291 (Deletable non-terminal). We say a non-terminal A is deletablei� A
+
⇒ ε, that is, either there exists a produ
tion of the form A → ε or aprodu
tion of the form B ⇒ ε with A

+
⇒ B.De�nition 292 (Language of a CFG). The language represented by a CFG

G, L(G), is the set of terminal sequen
es derivable from the grammar's ax-iom:
L(G) = {w ∈ T ∗ : S

+
⇒ w} (B.1)



407CFGs allow for stru
tured language de�nitions. Terminals 
orrespond tothe words or symbols of the language and non-terminals to senten
e 
ompo-nents. Non-terminal de�nitions are reused in the de�nition of �higher-level�non-terminals up to the grammar's axiom, whi
h is de�ned as any 
ompletelanguage senten
e. Non-terminals may have several alternative de�nitionsdepending on the variability of the senten
e 
omponent they represent (e.g.:a non-terminal DET representing any determiner would have an alternativede�nition per determiner). The set of produ
tions below. . .
DET → the

N → garden
N → house

NP → DET N. . . de�ne determiners as word �the�, nouns as either word �garden� or word�house�, and noun phrases (NP) as a determiner (DET ) followed by a noun(N ). If this set of produ
tions would de�ne a 
omplete grammar with (NP) asthe grammar's axiom, the possible language senten
es would be �the garden�and �the house�.CFGs have a greater generative power than regular expressions. A 
lassi
example of language that 
an be represented with a CFG but not with aregular expression is anbn. This language 
an be represented by means of thefollowing CFG produ
tions:
S → ε

S → aSbA 
on
rete sequen
e of the language would derived as follows:
S ⇒ aSb⇒ aaSbb⇒ aaaSbbb . . . anSbn . . . anbn. (B.2)As we 
an see, CFGs allow for a syn
honous generation of the left and right
ontexts of non-terminals. In other words, CFGs 
an implement a 
ounterof rewrites on the immediate left 
ontext of a non-terminal, whi
h 
an be
onsulted during the generation of the immediate right 
ontext of the samenon-terminal. However, no 
ounters 
an be implemented with regular ex-pressions: a∗b∗ represents any sequen
e anbn but also any sequen
e anbmwith n 6= m. At most, a regular expression of the form

ε|ab|aabb|aaabbb| . . . |akbk (B.3)
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ould represent the language anbn for n = 0 . . . k, but not for n beyond k(see pumping lemma for regular expressions in either Hop
roft et al., 2000,se
. 4.1.1, p. 126 or Sipser, 2006, se
. 1.4, p. 77).There are more powerful formalisms than CFGs, for instan
e Turing ma-
hines. A 
lassi
 example of language that 
annot be represented with aCFG is anbncn: CFG 
ounters are limited to the immediate left and right
ontexts of ea
h non-terminal, so it is not possible to a

ess a 
ounter at agreater distan
e (see pumping lemma for 
ontext-free languages in Sipser,2006, se
. 2.3, p. 123). Turing ma
hines (Turing, 1936) are a formal modelof 
omputers as we know them nowadays. These ma
hines are able to a

essinformation related to any previously pro
essed input symbol. We brie�ydes
ribe Turing ma
hines in se
tion 10.5, p. 193; more extensive des
riptions
an be found in Hop
roft et al. (2000, 
hap. 8, p. 307) and Sipser (2006,
hap. 3, p. 137).De�nition 293 (Extended 
ontext-free grammar). Extended 
ontext-freegrammars (ECFG) are CFGs where the produ
tion bodies may also 
ontainregular expressions.ECFGs do not have a greater generative power than CFGs but providea more 
ompa
t way of representing a set of produ
tions. For instan
e, thefollowing CFG
PREP → in (B.4)
PREP → with (B.5)

PP → PREP NP (B.6)
PPS → ε (B.7)
PPS → PP PPS (B.8)
NP → DET N PPS (B.9)de�nes a noun phrase (NP) as a determiner (DET ) followed by a noun (N )followed by zero, one or more prepositional phrases (PPS ), where a prepo-sitional phrase (PP) is a preposition (PREP) followed by a noun phrase.The Kleene star 
an be used for representing any sequen
e of prepositionalphrases and therefore removing the need for de�ning non-terminal PPS . Aswell, the two produ
tions de�ning prepositions 
ould be joined together with



409the disjun
tion operator. This equivalent ECFG would be
PREP → in | with (B.10)

PP → PREP NP (B.11)
NP → DET N PP

∗ (B.12)Other formalisms equivalent to CFGs are pushdown automata (Oettinger,1961; S
hützenberger, 1963; Evey, 1963),1 automata with re
ursive 
alls (Gal-lier et al., 2003), synta
ti
 diagrams (see for instan
e Jensen and Wirth, 1974,
hap. 0, p. 3) and RTNs (Woods, 1970).2

1An extensive des
ription of pushdown automata, in
luding the proof of equivalen
ew.r.t. CFGs, 
an be found in Hop
roft et al. (2000, 
hap. 6, p. 219); shorter des
riptions
an be found in Sipser (2006, se
. 2.2, p. 109) and Autebert et al. (1997, 
hap. 5, p. 29)2We des
ribe RTNs in 
hapter 12, p. 219.





Appendix CEarley's parserWe brie�y des
ribe here the Earley parser (Earley, 1970), an e�
ient al-gorithm of appli
ation of CFGs (see appendix B) without deletable non-terminals for natural language parsing.1 This des
ription is inspired by theone given in Leiss (1990). A more extensive dis
ussion 
an be found in Ju-rafsky and Martin (2008, 
hap. 10).De�nition 294 (Dotted rule). Exe
ution states (ESs) are dotted rules A→
α1 • α2, [i, j], where α1 is the pre�x of the rule's body that has already beenexplored, α2 the unexplored remaining part and [i, j] a 
losed interval 
or-responding to the input segment that has been derived from α1 (see top of�g. ??). We say a dotted rule is 
omplete i� the dot is at the end of therule's body; otherwise we say it is in
omplete. Given a terminal or non-terminal symbol σ right after the dot of a dotted rule xs, we say xs expe
tssymbol σ or σ is the symbol expe
ted by rule xs.De�nition 295 (Dotted rule derivation). Earley's parser is based on threedotted rule derivation me
hanisms (see middle of �g. ??):
• s
anner: from A → α1 • aα2, [i, j] derives A → α1a • α2, [i, j + 1] i�
a = aj+1, that is, if the expe
ted symbol is terminal a, it s
ans the inputfor a and in 
ase of mat
h it shifts the dot right after a and in
rementsthe right bound of the input interval one unit,
• predi
tor: from A → α1 • Bα2, [i, j] derives B → •β, [j, j] for everyrule B → β, that is, if the expe
ted symbol is a non-terminal B, it1Though deletable non-terminals are not supported, the idea on how to adapt thealgorithm is given in Earley (1970) 411



412 APPENDIX C. EARLEY'S PARSERexpands B by 
reating the 
orresponding dotted rules with an emptyinput interval starting and �nishing where the interval of the originaldotted rule �nishes,
• 
ompleter: from B → β•, [j, k] derives A → α1B • α2, [i, k] for everydotted rule A→ α1 • Bα2, [i, j], that is, whenever a dotted rule havinga head non-terminal B is 
omplete, redu
es B by shifting one positionto the right the dot of every dotted rule expe
ting B and whose inputinterval �nishes where the one of the 
omplete rule starts; the resultinginput interval is the 
on
atenation of both intervals.De�nition 296 (Initial and a

eptan
e SESs). Given a CFG grammar G =

(N , T , P , S), its initial and a

eptan
e Earley SESs are {S ′ → •S, [0, 0]}and {S ′ → S•, [0, l], respe
tively, where S ′ is a non-terminal not in Vn (seebottom of �g. ??).By 
reating this grammar �super-axiom� symbol, S ′, Earley's algorithmnaturally explores every axiom rule S → α during the �rst iteration; on
e thealgorithm exe
ution �nishes, su

essful parses 
an be identi�ed by tra
kingba
k the derivations that have yielded the dotted rule having the super-axiomas head.2Algorithm C.1 
fg_earley_parser is the original Earley's parser for CFGswithout deletable non-terminals. The algorithm 
reates a parsing 
hart orsequen
e of l+ 1 SESs V0 . . . Vl for a given input senten
e a1 . . . al of l wordsand a CFG grammar G; the grammar is treated as a global variable whereterminal symbols are parts-of-spee
h whi
h are to be 
ompared with the onesof the input words. The algorithm starts by adding to V0 the super-axiomdotted rule S ′ → S•, [0, 0] and marking it as unexplored. Then, for ea
hiteration k = 0 . . . l it explores the dotted rules in Vk, applying for ea
h onethe derivation me
hanism 
orresponding to the rule: if the dotted rule expe
tsa terminal symbol, s
anner (algorithm C.3 
fg_earley_s
anner), if it expe
tsa non-terminal, predi
tor (algorithm C.2 
fg_earley_predi
tor), and if therule is 
omplete, 
ompleter (algorithmC.4 
fg_earley_
ompleter). Iterationsfollow as long as they start with a non-empty Vk, whi
h otherwise would meanthat it was not possible to derive terminal ak from the super-axiom dottedrule, or until every possible derivation has been 
omputed for the whole input.2Supposing that the senten
e has at least one word and that the whole senten
e hasbeen 
onsumed.
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Dotted rule:

a1 a2 . . . ai . . . aj . . . al

α1 • α2

A

0 1 2 i j l

S
anner: α1 • a

aj+1

α2

A

‖

i j

=⇒

a

α1 • α2

A

i j+1

Predi
tor: α1 • B α2

A

i j

=⇒ β•

B

j

, ∀
β

B

Completer: β •

B

j k

=⇒ α1 B • α2

A

i k

, ∀ α1 • B α2

A

i j

a0 . . . al ∈ L(G) ⇐⇒ S•

S ′

0

=⇒
∗

S •

S ′

0 lFigure C.1: Graphi
al representation of Earley's algorithm; from top to bottom,a dotted rule A → α1 • α2 aligned with an input a1 . . . al, the three dotted rulederivation me
hanisms and the input string re
ognition 
ondition.



414 APPENDIX C. EARLEY'S PARSERThe predi
tor derivation me
hanism �lls V0 with every dotted rule derivedfrom the super-axiom rule by expanding the expe
ted non-terminals; everydotted rule expe
ting a terminal is pro
essed by the s
anner me
hanism and,in 
ase of mat
h with input a1, the 
orresponding dotted rules are added to
V1. The 
ompleter me
hanism 
annot be a
tivated during the 
onstru
tionof V0, sin
e the algorithm does not handle grammars with deletable 
alls:every 
ompletion must involve a 
omplete dotted rule in the 
urrent Vk andone or more dotted rules in pre
eding SESs Vi expe
ting the head terminalof the 
omplete rule, that is, every 
omplete rule must derive at least oneinput symbol. Iterations for Vk follow until the 
omputation of Vl or until anempty Vk is derived, whi
h would mean input ak did not mat
h any expe
tedterminal. Vl will 
ontain every dotted rule derivable from the super-axiomdotted rule and able to derive the whole input senten
e. The senten
e isre
ognized if Vl 
ontains the 
omplete super-axiom dotted rule S ′ → S•, [0, l].By tra
king ba
k the derivation paths of this dotted rule we 
an retrieve thederivation trees of every possible interpretation of the senten
e.We end this appendix with a 
ouple of examples of exe
ution: �gure ??illustrates how the Earley parser fa
tors out the exploration of a grammarsubtree among two dotted rules, keeping the number of dotted rules perSES 
onstant, and �gure ?? illustrates how left-re
ursive CFGs are handledwithout falling into an in�nite loop.



415Algorithm C.1 
fg_earley_parser(σ1 . . . σl)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indi
ating whether the input string belongs to L1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: unconditionally_add_enqueue_es(V0, E, (S ′ → •S, [0, 0]))5: k ← 06: E ′ ← ∅7: while E 6= ∅ ∧ k < l do8: Vk+1 ← ∅9: repeat10: xs ← dequeue(E)11: if incomplete(xs) then12: if terminal_symbol_after_dot(xs) then13: cfg_earley_scanner(Vk, Vk+1, E
′, xs)14: else15: cfg_earley_predictor(Vk, E, xs)16: end if17: else18: cfg_earley_completer(V l+1, E, xs)19: end if20: until E = ∅21: k ← k + 122: swap(E,E ′)23: end whileAlgorithm C.2 
fg_earley_predi
tor(V,E, xs)Input: V , the 
urrent SES or parsing 
hart element

E, the 
urrent queue of unexplored ESs
xs = (A→ α1 •Bα2, [i, j]), an ESs or dotted ruleOutput: V , after expanding non-terminal BOutput: E, after enqueuing the new derived ESs1: for ea
h (B → β) ∈ G do2: add_enqueue_es(V,E, (B → •β, [j, j]))3: end for
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Algorithm C.3 
fg_earley_s
anner(V,W,E ′, aj+1, xs)Input: V , the 
urrent SES or parsing 
hart elementInput: W , the next SESInput: E ′, the next queue of unexplored ESsInput: σ, the input symbol to s
anInput: xs = (A→ α1 • aα2, [i, j]), an ESs or dotted ruleOutput: W , after s
anning input for terminal σ′Output: E ′, after enqueuing the new derived ESs1: if part− of − speech(aj+1) = a then2: add_enqueue_es(W,E ′, (A→ α1a • α2, [i, j + 1]))3: end if
Algorithm C.4 
fg_earley_
ompleter(V l+1, E, xs)Input: V l+1, the parsing 
hart

E, the 
urrent queue of unexplored ESs
xs = (B → β•), [j, k], an ES or dotted ruleOutput: V l+1, after expanding non-terminal B
E, after enqueuing the new derived ESs1: for ea
h (A→ α1 •Bα2, [i, j]) ∈ Vj do2: add_enqueue_es(Vk, E, (A→ α1B • α2, [i, k]))3: end for



417

p1 : S → aSb
p2 : S → aSc
p3 : S → Sx

V0

1 S ′ → •S [0, 0] initial super-axiom
2 S → •aSb [0, 0] predi
tor(1, p1)
3 S → •aSc [0, 0] predi
tor(1, p2)
4 S → •x [0, 0] predi
tor(1, p3)

V1

5 S → a • Sb [0, 1] s
anner(2, a)
6 S → a • Sc [0, 1] s
anner(3, a)
7 S → •aSb [1, 0] predi
tor(5, p1)
8 S → •aSc [1, 0] predi
tor(5, p2)
9 S → •x [1, 0] predi
tor(5, p3)

V2

10 S → a • Sb [1, 2] s
anner(7, a)
11 S → a • Sc [1, 2] s
anner(8, a)
12 S → •aSb [2, 2] predi
tor(10, p1)
13 S → •aSc [2, 2] predi
tor(10, p2)
14 S → •x [2, 2] predi
tor(10, p3)

V3

15 S → x• [2, 3] s
anner(14, x)
16 S → aS • b [1, 3] 
ompleter(15, 11)
17 S → aS • c [1, 3] 
ompleter(15, 11)

V4

18 S → aSb• [1, 4] s
anner(16, b)
19 S → aS • b [0, 4] 
ompleter(18, 5)
20 S → aS • c [0, 4] 
ompleter(18, 6)

V5

21 S → aSb• [0, 5] s
anner(19, b)
22 S ′ → S• [0, 5] 
ompleter(21, 1)Figure C.2: At the left, a simple left-re
ursive CFG re
ognizing the language

anx(b|c)n and, at the right, exe
ution tra
e of Earley's parser for this CFG andinput aaxbb. Noti
e that, for this example, a top-down parser would exponentiallyin
rease the 
ardinality of the generated SES whilst Earley's parser manages tokeep it 
onstant thanks to the fa
toring out of the exploration of 
ommon grammarsubtrees: predi
tion of symbol S is shared for both produ
tions p1 and p2.
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p1 : S → Sa
p2 : S → b

V0

1 S ′ → •S [0, 0] initial super-axiom
2 S → •Sa [0, 0] predi
tor(1, p1)
3 S → •b [0, 0] predi
tor(1, p2)

V1

4 S → b• [0, 1] s
anner(3, b)
5 S ′ → S• [0, 1] 
ompleter(4, 1)
6 S → S • a [0, 1] 
ompleter(4, 2)

V2

7 S → Sa• [0, 2] s
anner(6, a)
8 S ′ → S• [0, 2] 
ompleter(7, 1)
9 S → S • a [0, 2] 
ompleter(7, 2)

V3

10 S → Sa• [0, 3] s
anner(9, a)
11 S ′ → S• [0, 3] 
ompleter(10, 1)
12 S → S • a [0, 3] 
ompleter(10, 2)...

Vl

3l + 1 S → Sa• [0, l] s
anner(3l, a)
3l + 2 S ′ → S• [0, l] 
ompleter(3l + 1, 1)
3l + 3 S → S • a [0, l] 
ompleter(3l + 1, 2)Figure C.3: At the left, a simple left-re
ursive CFG re
ognizing the language banand, at the right, exe
ution tra
e of Earley's parser for this CFG and input bal−1.Noti
e that, where a top-down parser would enter into an in�nite loop due to theleft re
ursion, Earley's parser expands symbol S only on
e but redu
es it severaltimes.



Appendix DKahn's topologi
al sorterWe brie�y des
ribe here Kahn's algorithm (Kahn, 1962) for topologi
allysorting a PERT network (PERT, 1958a,b).1De�nition 297 (Dire
ted graph). A dire
ted graph G is an ordered pair
(V,A) where V is a set of verti
es or nodes and A ⊆ V × V is a set ofordered pairs of nodes, also 
alled ar
s, dire
ted edges or arrows.De�nition 298 (PERT network). A PERT network is a dire
ted or undi-re
ted graph where nodes represent points in time and edges (n, n′) representtasks that should take pla
e between temporal points n and n′, that is, duringinterval [n, n′].Considering the dire
ted 
ase, a PERT network is a graphi
al representa-tion of a set of temporal restri
tions over the order in whi
h a set of tasks 
anbe performed; for instan
e, supposing that graph of �gure D.1 represents aPERT network, task of ar
 (3, 6) is to follow task of ar
 (0, 3). A topologi
alsort of the network is a total order of the graph nodes respe
ting the tempo-ral 
onstraints, that is, expressing a possible sequen
e of exe
ution of everytask within the network. Note that su
h a topologi
al sort is only possiblefor a
y
li
 graphs.Algorithm D.1 kahn_topologi
al_sort gets as input a dire
ted graph
(G,A) and a queue E of graph nodes initially �lled with every node hav-ing no in
oming ar
s, and initializes topologi
al sort t as an empty sequen
eof nodes. Then it dequeues and pro
esses ea
h node in E until there are nomore nodes left, traversing the graph by following a possible topologi
al sort.1PERT stands for `program evaluation and review te
hnique'.419



420 APPENDIX D. KAHN'S TOPOLOGICAL SORTERNote that any of the nodes initially present in the queue 
ould be the �rstnode of the topologi
al sort. For ea
h dequeued node n, it removes from Aevery ar
 of the form (n,m),2 and enqueues m i� it has no more in
omingar
s.3 If the graph 
ontains no 
y
les then every ar
 should have been re-moved after emptying the queue. If so, the algorithm returns the 
omputedtopologi
al sort; otherwise returns ⊥ in order to indi
ate that there exists notopologi
al sort for graph G.Figure D.1 shows an example of dire
ted graph along with the 
orre-sponding exe
ution tra
e of Kahn's algorithm.Algorithm D.1 kahn_topologi
al_sort(G)Input: G = (V,A), a dire
ted graph
E, a queue of nodes initially �lled with every node of G withoutin
oming ar
sOutput: t, a topologi
al sort of G1: t← ε2: while E 6= ∅ do3: n← dequeue(E)4: t← tn5: for ea
h m : (n,m) ∈ A do6: A← A− {(n,m)}7: if ∄n′ : (n′, m) ∈ A then8: enqueue(E,m)9: end if10: end for11: end while12: if A 6= ∅ then13: t←⊥14: end if

2Tasks starting at n are exe
uted.3Tasks before m are �nished, thus tasks starting at m are now available.



0 1 2

3 4

5 6 7

n E t a
tion

⊥ 0, 1, 2 ε initialize

0 1, 2 0 n← dequeue(E), t← tn
0 1, 2 0 A← A− {(0, 3)}
0 1, 2 0 A← A− {(0, 4)}
1 2 0, 1 n← dequeue(E), t← tn
1 2, 3 0, 1 A← A− {(1, 3)}, enqueue(E, 3)
2 3 0, 1, 2 n← dequeue(E), t← tn
2 3, 4 0, 1, 2 A← A− {(2, 4)}, enqueue(E, 4)
2 3, 4 0, 1, 2 A← A− {(2, 5)}
3 4 0, 1, 2, 3 n← dequeue(E), t← tn
3 4, 5 0, 1, 2, 3 A← A− {(3, 5)}, enqueue(E, 5)
3 4, 5 0, 1, 2, 3 A← A− {(3, 6)}
3 4, 5, 7 0, 1, 2, 3 A← A− {(3, 7)}, enqueue(E, 7)
4 5, 7 0, 1, 2, 3, 4 n← dequeue(E), t← tn
4 5, 7, 6 0, 1, 2, 3, 4 A← A− {(4, 6)}, enqueue(6)
5 7, 6 0, 1, 2, 3, 4, 5 n← dequeue(E), t← tn
7 6 0, 1, 2, 3, 4, 5, 7 n← dequeue(E), t← tn
6 ε 0, 1, 2, 3, 4, 5, 7, 6 n← dequeue(E), t← tnFigure D.1: A
y
li
 dire
ted graph and exe
ution tra
e of Kahn's algorithm for this graph.
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