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Abstract

This work focuses on the research and development of efficient algorithms of
application of local grammars (Gross, 1997), taking as reference those of the
currently existent open-source systems: Unitex’s top-down parser (Paumier
et al., 2009) and Outilex’s Earley-like parser (Blanc and Constant, 2006a).

Local grammars are a finite-state based formalism for the representation
of natural language grammars. Moreover, local grammars are a model for the
construction of fully scaled and accurate descriptions of the syntax of natural
languages by means of systematic observation and methodical accumulation
of data. The adequacy of local grammars for this task has been proved
by multiple works (Roche and Schabes, 1997; Catala and Baptista, 2007;
Martineau et al., 2007; Laporte et al., 2008a,b).

Due to the ambiguous nature of natural languages, and the particular
properties of local grammars, classic parsing algorithms such as LR (Knuth,
1965), CYK’s (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965)
and Tomita’s (1987) are either not viable in the context of this work or
require non-trivial adaptations. Top-down and Earley parsers are possible
alternatives, though they have an exponential worst-case cost for the case of
local grammars.

We have first conceived an algorithm of application of local grammars
having a polynomial worst-case cost (Sastre, 2009). Furthermore, we have
conceived other optimizations which increase the efficiency of the algorithm
for general cases, namely the efficient management of sets of elements and
sequences. We have implemented our algorithm and those of the Unitex
and Outilex systems with the same tools in order to test them under the
same conditions. Moreover, we have implemented different versions of each
algorithm, using either our custom set data structures or those included in
GNU’s implementation of the C++ Standard Template Library (STL).! We

LA detailed description of the STL can be found in Josuttis (1999). GNU’s implemen-
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have compared the performance of the different algorithms and algorithm
versions in the context of an industrial natural language application provided
by the enterprise Telefonica I+D: 2 extending the understanding capabilities of
a chatterbot that provides mobile services, such as sending SMSs to mobile
phones as well as games and other digital contents (Sastre et al., 2009).
Conversation with the chatterbot is held in Spanish by means of Microsoft’s
Windows Live Messenger.® In spite of the limited domain and the simplicity
of the applied grammars, execution times of our parsing algorithm coupled
with our custom implementation of sets were lower. Thanks to the improved
asymptotic cost of our algorithm, execution times for the case of complex
and large coverage grammars can be expected to be considerably lower than
those of the Unitex and Outilex algorithms.

tation of this library is being distributed along with GNU’s Compiler Collection: http://
gcc.gnu.org/

2http://www.tid.es/en

3http://www.msn.com


http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.tid.es/en
http://www.msn.com

Résumé

Notre travail porte sur le développement d’algorithmes performants d’applica-
tion de grammaires locales (Gross, 1997), en prenant comme référence ceux
des logiciels libres existants: 'analyseur syntaxique descendant d’Unitex (Pau-
mier et al., 2009) et I’analyseur syntaxique a la Earley d’Outilex (Blanc and
Constant, 2006a).

Les grammaires locales sont un formalisme de représentation de la syntaxe
des langues naturelles basé sur les automates finis. Les grammaires locales
sont un modele de construction de descriptions précises et a grande échelle de
la syntaxe des langues naturelles par le biais de 'observation systématique et
I’accumulation méthodique de données. L’adéquation des grammaires locales
pour cette tache a été testé a l'occasion de nombreux travaux (Roche and
Schabes, 1997; Catala and Baptista, 2007; Martineau et al., 2007; Laporte
et al., 2008a,b).

A cause de la nature ambigué des langues naturelles et des propriétés
des grammaires locales, les algorithmes classiques d’analyse syntaxique tels
que LR (Knuth, 1965), CYK (Cocke and Schwartz, 1970; Younger, 1967;
Kasami, 1965) et Tomita (1987) ne peuvent pas étre utilisés dans le contexte
de ce travail ou ont besoin d’adaptations non triviaux. Les analyseurs top-
down et Earley sont des alternatives possibles ; cependant, ils ont des cotits
asymptotiques exponentiels pour le cas des grammaires locales.

Nous avons d’abord cong¢u un algorithme d’application de grammaires lo-
cales avec un cott polynomial dans le pire des cas (Sastre, 2009). Ensuite,
nous avons concu des structures de donnés performantes pour la représen-
tation d’ensembles d’éléments et de séquences. Elles ont permis d’améliorer
la vitesse de notre algorithme dans le cas général. Nous avons mis en ceuvre
notre algorithme et ceux des systémes Unitex et Outilex avec les mémes ou-
tils afin de les tester dans les mémes conditions. En outre, nous avons mis en
ceuvre différentes versions de chaque algorithme en utilisant nos structures
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de données et algorithmes pour la représentation d’ensembles et ceux fournis
par la Standard Template Library (STL) de GNU.* Nous avons comparé les
performances des différents algorithmes et de leurs variantes dans le cadre
d’un projet industriel proposé par l'entreprise Telefonica I+D : ° augmenter
la capacité de compréhension d’un agent conversationnel qui fournit des ser-
vices en ligne, voire ’envoi de SMS a des téléphones portables ainsi que des
jeux et d’autres contenus numériques (Sastre et al., 2009). Les conversations
avec 'agent sont en espagnol et passent par Windows Live Messenger.® En
dépit du domaine limité et de la simplicité des grammaires appliquées, les
temps d’exécution de notre algorithme, couplé avec nos structures de données
et algorithmes pour la représentation d’ensembles, ont été plus courts. Grace
au colt asymptotique amélioré, on peut s’attendre a des temps d’exécution
significativement inférieurs par rapport aux algorithmes utilisés dans les sys-
temes Unitex et Outilex, pour le cas des grammaires complexes et a large
couverture.

*Voire Josuttis (1999) pour une description détaillée de la STL. La STL de GNU fait
partie de la GNU’s Compiler Collection: http://gcc.gnu.org/

Shttp://www.tid.es/en

Shttp://www.msn.com


http://gcc.gnu.org/
http://www.tid.es/en
http://www.msn.com

Resumen

Este trabajo se centra en la investigacion y el desarrollo de algoritmos efi-
cientes de aplicacion de gramaticas locales (Gross, 1997), tomando como
referencia aquellos que estan siendo usados en sistemas open-source, a sa-
ber: el analizador sintactico top-down de Unitex (Paumier et al., 2009) y el
analizador sintactico a la Farley de Outilex (Blanc and Constant, 2006a).

Las graméticas locales son un formalismo basado en automatas finitos
para la representacion de la sintaxis de los lenguajes naturales. Las gramati-
cas locales son un modelo de construcciéon de descripciones precisas y a gran
escala de la sintaxis de los lenguajes naturales mediante la observacion sis-
tematica y la acumulacion metodologica de informacion. La idoneidad de las
gramaticas locales para esta tarea ha sido demostrada por multiples traba-
jos (Roche and Schabes, 1997; Catala and Baptista, 2007; Martineau et al.,
2007; Laporte et al., 2008a,b).

Debido a la naturaleza ambigua de la lengua, y a las propiedades de
las gramaticas locales, los analizadores sintacticos clasicos tales como LR
(Knuth, 1965), el de CYK (Cocke and Schwartz, 1970; Younger, 1967; Kasami,
1965) y el de Tomita (1987) no son viables en el contexto de este trabajo o
requiren adaptaciones no triviales. Los analizadores sintacticos top-down y
de Earley son posibles alternativas, aunque tienen un coste asintotico expo-
nencial en el caso de las gramaticas locales.

En primer lugar, hemos desarrollado un algoritmo de aplicacion de gra-
maticas locales con un coste asintotico polinomial (Sastre, 2009). A conti-
nuacion, hemos desarrollado estructuras de datos eficientes para la gestion
de conjuntos de elementos y de secuencias. Estas estructuras han permitido
mejorar la eficiencia de nuestro algoritmo en condiciones generales. Hemos
implementado dicho algoritmo y los algoritmos de Unitex y Outilex con las
mismas herramientas con el fin de compararlos bajo las mismas condiciones.
Hemos implementado distintas versiones de cada algoritmo usando nuestras

Vil
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estructuras de datos de tipo conjunto y aquellas incluidas en la implementa-
cion de GNU de la libreria estandar de plantillas (Standard Template Library
o STL).” Hemos comparado el rendimiento de los distintos algoritmos y de
sus distintas versiones en el contexto de una aplicacion industrial propuesta
por la empresa Telefonica I+D: ® aumentar la capacidad de comprension de
un robot conversacional capaz de suministrar servicios en linea, tales como
el envio de SMS a teléfonos moviles asi como de juegos y de otros contenidos
digitales (Sastre et al., 2009). La comunicacién con el robot se realiza en
espaiiol a través de Windows Live Messenger de Microsoft.” A pesar del do-
minio restringido y de la simplicidad de las gramaticas aplicadas, los tiempos
de ejecucion fueron menores para nuestro algoritmo y nuestras estructuras
de datos de tipo conjunto. Gracias al coste asintotico mejorado de nuestro
algoritmo, son de esperar tiempos de ejecucion significativamente inferiores
a los de los algoritmos empleados por los sistemas Unitex y Outilex para el
caso de gramaticas complejas y de gran cobertura.

"Una descripcion detallada de la STL puede encontrarse en Josuttis, 1999. La imple-
mentaciéon de GNU de la STL est4 siendo distribuida junto con la coleccién de compiladores
de GNU: http://gcc.gnu.org/

8http://www.tid.es/en

http://www.msn.com
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Preface

In the last decades, our world’s societies have been shifting an important
part of their resources towards the production, distribution and use of in-
formation, earning the surname of Information Societies (Machlup, 1962,
but see Crawford, 1983). Moreover, information has become a key factor
in every aspect of our lives, from economy and politics to culture. Accord-
ingly, computer science and technology has evolved in order to cope with
the increasing demand for the management of information: nowadays com-
puters are no longer mere programmable calculators, as Charles Babbage
first conceived them in 1837,'° but are able to process multiple kinds of data
and present them in multiple formats. Pythagoras’ claim ‘the whole thing
1s a number’ is being exemplified each time a physical phenomenon is en-
coded into binary digits and processed by computers, from the so common
JPEG images (ITU, 1992; ISO/IEC, 1994), MP3 tunes (ISO/IEC, 1993) and
DivX®videos'! to the particle collisions that take place at CERN’s Large
Hadron Collider (see Lefevre, 2009); upon these collisions, data bursts of 700
megabytes per second are streamed towards an array of data servers for its
storage and distribution to computers around the world (Shiers, 2007), which
will analyse this information —a total of 15 petabytes a year'?— in order to
learn about the nature of matter and of the universe itself.

Indeed, computer science and technology has not only provided the tools
for data processing but also for its distribution around the world, starting
with the creation of the Internet (see Leiner et al., 2009). Apart from push-
ing the boundaries of computer networking (Newman et al., 2010), CERN
has also given rise to the most popular system for sharing information over
the Internet: the World Wide Web (Berners-Lee et al., 1992), also called the

10Visit http://www.fourmilab.ch/babbage/
UVisit http://www.divx.com
121 petabyte = 10° gigabytes.
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WWW. The WWW has provided a universal mean for accessing and linking
related digital contents over the Internet: anyone can write a text docu-
ment with information that he or she considers of interest, make it available
around the world by means of a hyperlink and extend it with hyperlinks to
other related information, mimicking human’s associative memory. Indeed,
computers have not only assisted us in the management of numeric data,
but in the management of text documents. Combined with search engines,
the WWW has become the paramount expression of exploitable collective
knowledge, mostly as text documents written in some human language (or
natural language). The 15 petabytes of data produced at CERN each year
amounts to nothing in comparison with the 20 petabytes of data processed
by Google’s clusters each day (Dean and Ghemawat, 2008) in order to index
a fraction of the one trillion web pages that form the World Wide Web.!3

Thanks to the appearance of Internet broadband connections, we rather
spend our time searching for the information we need at a given moment
than on downloading it: addresses and schedules, products and services,
news on recent events along with comments from other people, solutions to
a great variety of problems and a huge amount of digital content, starting
with scientific productions. Indeed, most of the more than 300 papers cited
in this dissertation have been searched and downloaded from the WWW,
as for any other present scientific production. Actually, we can say that we
are “flooded” with information. Efficient natural language processing (NLP)
tools for information extraction, filtering and sorting are an obvious need.
Moreover, machine translation tools are necessary for the exploitation of text
documents written in languages that we do not master. Additionally, ma-
chine translation can help us to preserve the world’s multi-linguistic culture
which globalization is currently threatening, starting with the dominance of
English in scientific literature (Enrique Hamel, 2007; Clavero, 2010). Accord-
ing to UNESCO, there are around 6,700 different languages spoken around
the world of which about half of them are in danger of disappearing before
the century ends (Moseley, 2010).

But the application of NLP technologies is not limited to web content:
natural languages are our most common medium for the exchange and sup-
port of information. Apart from machine translators and the other men-
tioned applications, spell and grammar checkers help us to write well-formed

13Google’s estimation as for 2008; visit http://googleblog.blogspot.com/2008/07/
we-knew-web-was-big.html
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texts, and conversational agents provide a more natural mean for human-
machine interaction. Yet users of these technologies still complain about
ridiculous translation errors, communication deadlocks with automated call
center agents and incorrect warnings of their grammar checkers (Vetulani
and Uszkoreit, 2009, Pref., p. VI).

Though babies usually start talking when they are two years old, the
fact is that human language is very complex. Indeed, humans have two
remarkable capabilities which are very hard to mechanize:

e the capability to reason, converse and make rational decisions in an
environment of imprecision, uncertainty, incompleteness of information,
partiality of truth and possibility, and

e the capability to perform a wide variety of physical and mental tasks
without any measurements and any computations (Zadeh, 2009).

Qualitative spatial reasoning is a good example making use of both capabil-
ities (see Freksa, 1991); for instance, we are able to give directions without
knowing our environment’s exact distribution and without using exact mea-
sures of distance or direction but qualitative ones (a little farther, to your
left, etc.). As could be expected, natural languages are heavily influenced
by our way of thinking. An intriguing example is the fact that all known
languages draw heavily on spatial metaphors (Marcus, 2004); for instance,
we say a happy person is on top of the world while a sad person is down in
the dumps. But the most salient properties of natural languages —in con-
trast with formal languages— are their richness, ambiguity and irregularity.
While such properties do not prevent us from learning them and communicat-
ing between us, the construction of formal descriptions of natural languages
for their automatic treatment is no less than challenging. Though doubt
has been thrown on the suitability of the current computational paradigm
in order to achieve human-level machine intelligence (Zadeh, 2009), multi-
ple natural language models and techniques have been proposed.!* General
human-level language understanding is far to be achieved yet, but more con-
crete and modest problems have been treated with more or less success: the
nowadays existent natural language applications are the proof of this fact,

14We briefly describe the most popular computable language models in section 1.3, and
the most popular parsing algorithms that may apply to our use case in section 1.4.
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from Google’s linguistic-aware searches to Google’s machine translator.':'6
Most natural language techniques use statistical methods in order to au-
tomatically build some language model by observation of large annotated
corpora.'” The purpose of such techniques range from part-of-speech tag-
ging and disambiguation (Church, 1988; Schmid, 1994; Brill, 1995) to the
automated construction of lexicons (see Sun et al., 2008) and grammars (see
Klein and Manning, 2005). These techniques avoid the cost of manually
building large linguistic databases, which is very convenient for the industrial
sector. However, to which extent can a computer capture linguistic informa-
tion without the assistance of human experts but rather just by searching for
coincidences? No magic can extract an information from a data set which
does not contain it, either explicitly or not. In our case, we humans do not
learn languages from examples alone but coupled with contexts of use —as
for the case of our mother tongues— or with language rules made explicit
—as for the additional languages we may have learnt from a teacher and/or
a textbook. While the use of statistics has given positive results, better qual-
ity results can be obtained by using handcrafted linguistic resources. Despite
this fact, defenders of the statistical approach have frequently criticized the
handcrafted approach as inefficient, subjective, tedious, time-consuming or
even boring. However, it appears that such criticisms are rather founded
on personal preferences than on convincing evidence: tedious, laborious and
boring are an assesment of how much fun researchers find in their work, which
is rather a question of personal taste than a valid scientific point (Laporte,
2009). Many other researchers agree that the statistical approach will reach
its limits soon, and that handcrafted linguistic resources will be then neces-

sary in order to overcome such limits (Gross and Senellart, 1998; Abeillé and
Blache, 2000). The future will tell.

15Google’s search engine no longer searches for an exact list of words, but also searches
for the inflected forms of the given words while tolerating spell errors.

16Visit http://translate.google.com

17An annotated corpus is a machine readable text extended with some linguistic meta-
data; for instance, the Brown Corpus (Francis and Kucera, 1982) and the Penn Treebank
(Marcus et al., 1993) are two large annotated corpora of English: both comprise mor-
phosyntactic annotations of words, while the latter also includes syntactic annotation of
sentences (hence the name of ‘Treebank’).


http://translate.google.com

Contents

I Preliminaries 1
1 Introduction 3
1.1 Local grammars . . . . . . . . .. ... 3
1.2 The MovistarBot . . . . . . . ... ... oo 6
1.3 Popular computable grammar formalisms . . . . . . ... ... 8
1.3.1 Lexicon grammar . . . . . . . . . . ... ... ... .. 8
1.3.2 Context-free grammars . . . . .. . .. ... ... ... 9
1.3.3 Attribute grammars . . . . ... ... ... ... ... 10
1.3.4 Probabilistic context-free grammars . . . . . . . . . .. 11
1.3.5 Lexical-functional grammars . . . . . . . .. ... ... 11
1.3.6 Tree-adjoining grammars . . . . . . . . .. .. ... .. 12

1.4 Parsing algorithms . . . . . . ... ... o000 13
1.41 Top-down . ... ... ... .. ... ... ..., 13
1.4.2 Bottom-up. . ... ... ... .. ... ... . ..., 14
1.43 LR-parsers. . . . . ... ... ... ... .. ...... 14
1.4.4 Tomita . . . . . . .. ... 15
1.45 CYK .. oo 15
1.4.6 Earley . . ... ... . o 16

1.5 Existing software based on local grammars . . . . . .. .. .. 16
1.5.1 Imtex . . . .. . . 16
1.52 NooJ . . . .. ... 17
1.5.3 Unitex . . .. . . ... . 18
1.5.4 Outilex. . . . ... oo 19

1.6  Other finite-state software . . . . . . .. ... ... ... ... 20
1.6.1 Apertium . . . .. ... 20
1.6.2 SisHiTra . . . . . ... ... 20
1.6.3 FSA Utilities . . . . ... ... . ... .. 20



Xiv

1.7

Sets
2.1
2.2
2.3

2.4
2.5
2.6
2.7

2.8

CONTENTS

1.64 XFST & Vi-xfst. . . ... ... ... ... ... .... 21
1.6.5 AT&T FSM library™ . . .. .. ... ... .. ... 21
1.6.6 OpenFST . . . . ... ... 21
1.6.7 HFEST . ... .. .. . . . . 22
1.6.8 Foma. .. ... ... . ... .. 22
Structure of thiswork . . . . . . . . .. ... ... ... ... 22
1.7.1 Part I: Preliminaries . . . . .. . ... ... ...... 24
1.7.2 Part II: Finite-state machines . . . . . . ... ... .. 25
1.7.3 Part III: Results and conclusions . . . . .. ... ... 28
1.7.4 Part IV: Appendices . . . .. ... ... ........ 28
and maps 31
Arrays . . . . L 33
Double linked lists . . . . . . . . . ... ... ... .. ... 36
Binary search trees . . . . . ... ... oo oo 36
2.3.1 Recursive traversal . . . . . . ... ... ... ... 37
2.3.2 Iterative traversal . . . . . . . .. ... ... ... ... 39
2.3.3 Reverse iterative traversal . . . . .. .. ... ... .. 44
2.3.4 Unrolled iterative traversal . . . . . . .. ... ... .. 44
2.3.5 Addition with Knuth’s algorithm . . . . ... ... .. 45
2.3.6 Addition with Cormen’s algorithm . . . ... ... .. 50
2.3.7 Addition with Andersson’s algorithm . . .. . ... .. 52
2.3.8 Addition with unrolled loops . . . . . . ... ... ... 55
2.3.9 Addition with a 3-way comparator . . . .. ... ... 55
2.3.10 Removal . . . . . . . . ... .. ... 58
Self-balancing binary search trees . . . . .. .. ... ... .. 60
Red-black trees . . . . . . . . .. ... ... 62
Double-linked red-black trees . . . . .. .. .. ... ... .. 64
Other structures . . . . . . . . . . . . . ... 66
271 Treaps . . . . . . . o 66
272 Splaytrees. . . . . . ... Lo 67
2.7.3 2-3trees . . . . . ..o 67
2,74 2-3-4trees . . . . ... 68
275 B-trees . . . . ... 68
276 Hashtables . . ... .. ... ... ........... 69
2777 Skiplists. . . .. ... 69
2.7.8 Concurrent access structures . . . . . .. ... ... .. 70

Maps of keys tosets . . . . . . . ... ... 71



CONTENTS XV

2.9 Multisets and multimaps . . . . . . ... ... L. 73
3 Character treatment 75
3.1 ASCIL . . . . . e 76
3.2 ISO-8859-x . . . . . . 76
3.3 Unicode . . . . .. .. .. 7
331 UCS-2 . ..o 7

332 UTF-16 . .. .. ... 78

3.33 UTF-32 . ... . .. 78

334 UTF-8 . . .. . 78

3.4 Implementation . . . . . ... ... ... oL 79
3.4.1 Exchanging characters between Java and C++ . . . . . 80

3.4.2 Character normalization . . . . . ... ... ...... 81

4 DELAF dictionaries 83
4.1 Definitions . . . . .. ..o 84
4.2 Description . . . .. .. Lo 86
4.3 Implementation . . . .. ... ... ... ... .. ... ..., 88
4.3.1 Tries . . . . . . 88

4.3.2 Minimal acyclic automata . . . . .. .. ... ... .. 89

4.3.3 Alternative implementations . . . . . .. .. ... ... 90

4.4 DELAF extensions . . . . ... ... ... ... ........ 91
4.5 DELAF tools . . . . . . . . . . ... . ... 93
451 Analysis . . . . ... .o 93

4.5.2 Extension . . .. ... ... ... ... 93

4.5.3 Normalization . . . . . ... ... ... ... ... .. 93

4.6  Other electronic dictionaries . . . . . .. . ... .. ... ... 94
5 Tokenization 97
5.1 Description . . . . . ... ... 98
5.2 Implementation . . . . . . ... ... 0 Lo 99
5.3 Treating lexical ambiguity . . . . . .. ... ... ... .. .. 100
5.3.1 Multiple segmentations . . . . . .. ... ... ... .. 101

5.3.2 Text automata and ELAG grammars . . . . .. .. .. 101

6 Predicates and lexical masks 105
6.1 Lexicalmasks . . .. ... ... ... . oL 105

6.1.1 Literal masks . . . . . . . . . .. . ... .. ... ... 106



xvi CONTENTS

6.1.2 Tokenmask . . . ... .. ... ... . ......... 108

6.1.3 Character-classmasks . . . . ... ... ... ..... 109

6.1.4 Dictionary-based masks . . . ... ... ... ... .. 110

6.2 e-predicates . . . . . ... Lo 113
6.3 Supporting predicates . . . . . . .. ..o 115
6.4 Assigning priorities to lexical masks . . . . .. ... ... ... 115

II Finite-state machines 119
7 Finite-state machines 121
7.1 Transitions. . . . . . . . ... 123
7.2 Graphical representation . . . ... ... ... ... ... 124
7.3 Sequences of transitions . . . ... ... ... 127
7.4 Structures . . . . . . ... e 129
7.5 Substructures . . .. .. ... ... . 130
7.6 Behaviour . . .. .. ... ... ... . 132
7.7 Reverse FSM . . . . . . . . .. ... ... 146
7.8 Efficient computation of the e-closure . . . . . . ... ... .. 148
7.9 Recognizing a string . . . . . ... ..o 152
7.9.1 From breadth-first to depth-first . . . . . .. ... ... 156

7.10 Determinization . . . . . . . . .. .. ... 157
7.11 Minimization . . . . . . .. . .. ... 159

8 Finite-state automata 161
8.1 Transitions. . . . . . . . . . . .. 162
8.2 Behaviour . . . .. . .. ... 162
83 Reverse FSA . . . . . . . . ... 164
8.4 Recognizing a string . . . . . ... ..o 166
8.5 Determinization of acceptors into FSAs . . . . . ... ... .. 166
8.6 Minimization . . . . . . ... ... 174

9 Tries 177
9.1 Optimizing string processing with tries . . . . . . . . ... .. 178
9.2 Extracting strings from tries . . . . . ... ..o 181

9.3 A not-so-efficient concatenation case . . . . . . . . . .. ... 183



CONTENTS

10 FSTs with blackboard output

10.1 Transitions. . . . . . ..
10.2 Graphical representation
10.3 Sequences of transitions
10.4 Behaviour . . . ... ..
10.5 Recognized languages . .
10.6 Translating a string . . .
10.6.1 From breadth-first
10.7 Determinization . . . . .
10.8 Minimization . . . . ..
10.9 Blackboard set processing

11 FSTs with string output
11.1 Transitions. . . . . . ..
11.2 Sequences of transitions
11.3 Behaviour . ... .. ..
11.4 Recognized languages . .
11.5 Translating a string . . .
11.6 Language generation . .

to depth-first . . . . ... ... ...

12 Recursive transition networks

12.1 Transitions. . . . . . ..
12.2 Graphical representation
12.3 Sequences of transitions

12.4 Substructures . . .. ..
12.5 Behaviour . . . ... ..
12.6 Reverse RTN . ... ..
12.7 Recognizing a string . .
12.8 Flattening . . . . .. ..
12.9 Determinization . . . . .
12.10Earley-like processing . .
12.11Earley acceptor algorithm

12.12Earley-like determinization . . . . . . . . . . ... ... ..

13 RTNs with blackboard output

13.1 Transitions. . . . . . ..
13.2 Graphical representation
13.3 Sequences of transitions

xvii

185
186
187
187
187
193
196
197
199
205
205

211
212
213
213
215
215
215

219
221
225
225
227
227
234
235
239
241
242
246
253



xviil CONTENTS

13.4 Behaviour . . . . . ... oo 260
13.5 Translating a string . . . . . . .. . ... ... L. 262
13.6 Flattening . . . . . . . . . . ... o 263
13.7 Determinization . . . . . . . .. ... 265
13.8 Blackboard set processing . . . . . ... ... ... 265
13.9 Earley-like processing . . . . . . . . ... 268
13.10Earley translator algorithm . . . . ... ... ... ... ... 272
13.11Earley-like blackboard set processing . . . . . . . .. .. ... 275
14 RTNs with string output 279
14.1 Transitions. . . . . . . . ... Lo 279
14.2 Sequences of transitions . . . . . .. .. ... 280
14.3 Behaviour . . . . . . ... oo 280
14.4 Translating a string . . . . . . .. .. .. ... ... 282
14.5 Language generation . . . . . . . . . ... . ... ... ..., 284
14.6 Earley-like processing . . . . . . . .. ... 286
14.7 Earley translator algorithm . . . . . .. ... ... ... ... 289
14.8 Earley-like language generation . . . . . .. .. ... .. ... 294
15 Filtered-popping RTNs 301
15.1 Transitions. . . . . . . . ..o 303
15.2 Graphical representation . . . . . .. .. ... ... 303
15.3 Sequences of transitions . . . .. .. ... L 303
15.4 Behaviour . . . . . ... .o o 303
15.5 Reverse FPRTN . . . . . . . . .. ... . ... 306
15.6 Translating a string into a FPRTN . . . .. .. .. ... ... 306
16 Output FPRTNs 319
16.1 Pruning . . . . . . . . . Lo 325
16.2 Language generation . . . . . . . . . .. .. ... ... ..., 327
16.3 Language generation through BSP. . . . .. .. ... ... .. 329
17 FSMs with composite output 339
18 Weighted finite-state machines 341
18.1 Weight assignment . . . . . . .. .. .. .. .. ... ... .. 345
18.2 Extracting the top blackboard of a WO-FPRTN . . . .. . .. 346

18.2.1 The algorithm . . . . . .. .. .. ... ... L. 350



CONTENTS Xix
19 Unification finite-state machines 357
19.1 Overview of unification . . . . . . . . .. ... ... ... ... 357
19.2 Unification machines . . . . . . . . ... .. ... ... 358
19.3 Advantages of unification . . . . . . . .. ... 359
19.4 Supporting unification . . . . . ... ..o 360
IIT Results & conclusions 363
20 Experimental results 365
20.1 Description . . . . . . . ..o 365
20.1.1 Algorithms . . . . ... ... .. oL 367
20.1.2 Algorithm variants . . . . . .. ... ... ... .... 369
20.1.3 Implementation details . . . . . . . ... .. ... ... 370
20.1.4 Experiment conditions . . . . .. .. ... ... ... 371
20.2 Interpretation . . . . . . .. .. ... 379
20.2.1 Overheads . . . . . . .. ... ... ... .. 381
20.2.2 Asymptotic costs . . . . ... Lo 382
20.2.3 Flattening . . . . . . ... ..o oo 383
20.2.4 Set and map implementations . . . . . ... ... ... 384
20.2.5 Trie-string optimization . . . . . . ... .. ... ... 385
20.2.6 Joint optimizations . . . . . . .. ... 385
21 Conclusion 387
21.1 Our contributions . . . . . . . . .. .. ... ... .. 388
21.1.1 Formal description of finite-state machines and their
algorithms of application . . . . . .. .. ... .. ... 388
21.1.2 Trie string management . . . . . . . .. ... .. ... 390
21.1.3 A first algorithm of application of local grammars based
on filtered-popping recursive transition networks . . . . 391
21.1.4 Implementation and application to the MovistarBot
project . . . . .. .. 392
21.1.5 Automatic assignment of weights to grammar transitions392
21.1.6 Grammar optimizations . . . . . ... ... .. .. .. 393
21.1.7 First experimental results . . . . ... ... ... ... 394
21.1.8 Double-linked red-black trees with aggressive element
removal for efficient set management . . . . .. .. .. 394
21.1.9 Blackboard set processing . . . . .. ... ... .. .. 395



XX CONTENTS

21.1.10 Computing the top-ranked output in time n3 . . . . . . 395

21.1.11 Final considerations . . . . . . ... . ... ... ... 395

21.2 Future work . . . . . . . ... 396
IV  Appendices 401
A Predicate hierarchy and codes 403
B Context-free grammars 405
C Earley’s parser 411
D Kahn’s topological sorter 419
References 423

Index 453



List of Figures

1.1

2.1
2.2
2.3

5.1

6.1

7.1

8.1
8.2

9.1

10.1
10.2
10.3

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Hierarchy of the finite-state machines. . . . . . . . . .. .. ..

Binary search trees . . . . . .. ... ... ... . ...
Boundary cases of algorithm bst next elem . . .. ... ...
Red-black trees . . . . . . . ... oo

Text automaton . . . . . .. ... ... ...
Lexical mask weights by specificity level . . . ... ... ...
SMS command graph & equivalent FSMs . . . . . . .. .. ..

Reg. expression & equivalent FSA accepting email addresses
Minimization ¢ la van de Snepscheut of a lexical FSA . . . . .

SMS command graph & equivalent FSTSO . . . ... ... ..
Equivalent string-to-string & subsequential transducers . . . .
Equivalent string-to-string & oo-subsequential transducers

CFG-ECFG-RTN comparison . . . . ... ... ... .....
Left-recursive CFG . . . . . .. . . ... ... ... ......
RTN equivalent to the previous Unitex graphs . . . . . . . ..
Unitex graphs . . . . . . . . ... oo
RTN with an infinite recursion degree . . . . . . . . .. .. ..
Non-deterministic RTN . . . . . .. .. ... ... ... ....
Exec. trace: breadth-first acceptor & non-deterministic RTN .
Left-recursion removal from CFG . . . . ... ... ... ...
Left-recursion removal from Unitex graphs . . . . . .. .. ..

xx1



xxii LIST OF FIGURES

12.10Exec. trace: Earley acceptor & RTN with deletable calls
12.11Exec. trace: Earley acceptor & left-recursive RTN . . . . . ..
12.12Exec. trace: Earley acceptor & non-deterministic RT'N

13.1 Unitex graphs with XML output tags . . . . . . . .. .. ...
13.2 RTNBO equivalent to the previous Unitex graphs . . . . . ..

14.1 Ambiguous RTNSO . . . . . ... ... ... ... . ....
14.2 Exec. trace: breadth-first translator & ambiguous RTNSO
14.3 Exec. trace: Earley translator & ambiguous RTNSO . . . . . .
14.4 Exec. trace: Earley translator & RTNSO with deletable calls
14.5 Exec. trace: Earley translator & ambiguous RTNSO . . . . . .

15.1 The need for FPRTNs . . . . . ... ... ... ... .....
15.2 Exec. trace: to FPRTN translator & ambiguous RTNSO

15.3 Exec. trace: to FPRTN translator & RTNSO with delet. calls
15.4 Exec. trace: to FPRTN translator & left-recursive RTNSO .

20.1 Performance graph for MovistarBot grammar . . . . . . . ..
20.2 Performance graph for MovistartBot flattened grammar . . .
20.3 Performance graph for exponential grammar . . . . . . . . ..

C.1 Earley parser’s mechanics . . . . . . ... ... ... .....
C.2 Exec. trace: Earley’s algorithm & exponential CFG . . . . . .
C.3 Exec. trace: Earley’s algorithm and left-recursive CFG

D.1 Exec. trace: Kahn’s topological sorter . . . . . . .. ... ...

. 251

252

. 254

259
259

284

. 285

293

. 297

298

302

. 317

321

. 322

375

. 378

380

413
417

. 418



xXxlil



XX1V

List of Abbreviations

BSP

BST
CFG
ECFG

ES
FPRTN
FSA
FSM
FSMCO
FST
FSTBO
FSTSO
iff

NLP
O-FPRTN
OS
RFPRTN
RTN
RTNBO
RTNSO
SB

SES

SOS

SS

UFSM
URTN
WFEFSM
WO-FPRTN
w.r.t.

WRTN

blackboard set processing
binary-search tree
context-free grammar

extended CFG

execution state

LIST OF FIGURES

filtered-popping recursive transition network

finite-state automata
finite-state machine

FSM with composite output
finite-state transducer

FST with blackboard output
FST with string output

if and only if

natural language processing
output FPRTN

output state

reverse FPRTN

recursive transition network
RTN with string output
RTN with blackboard output
set, of blackboards

set, of execution states

set of output states

set of states

unification FSM

unification RTN

weighted FSM

weighted output FPRTN
with respect to

weighted RTN









Part 1

Preliminaries






Chapter 1

Introduction

Parsing natural-language text with local grammars is one of the ways of lo-
cating meaningful sequences in texts. Local grammars are language resources
describing sets of meaningful sequences in a language (e.g.: named entities,
measurement phrases, etc.). When compared to statistical methods, the use
of local grammars provides more control on the results. Current open-source
systems for parsing text with local grammars, namely Unitex (Paumier et al.,
2009) and Outilex (Blanc and Constant, 2006a), make use of various algo-
rithms depending on the features of the grammars. In this dissertation we
propose faster algorithms.

1.1 Local grammars

Formally, local grammars (Gross, 1997) are recursive transition networks
(RTNs, Woods, 1970) with output defined on an alphabet of lexical masks.
Lexical masks are powerful linguistic operators which ease the definition of
natural language grammars: they allow for the representation of large sets
of words by means of simple expressions specifying a set of morphosyntactic
and/or semantic properties to comply with (e.g.: human noun singular, such
as student, lover, fireman, etc.). Numerous studies have shown the adequacy
of automata for linguistic problems at all descriptive levels, from morphology
and syntax to phonetic issues (Roche and Schabes, 1997; Catala and Baptista,
2007; Martineau et al., 2007; Laporte et al., 2008b,a). In particular, the
suitability of local grammars for the description of multiple natural language
microstructures has been attested by multiple works:
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e named entities in Korean (Nam and Choi, 1997), French (Friburger,
2002; Friburger and Maurel, 2002, 2004; Martineau et al., 2007), Arabic
(Mestar, 2007; Traboulsi, 2009), etc.,

e nominal determiners in French (Gross, 2001; Silberztein, 2003a),

e expressions of measure and location adverbs in French (Constant, 2003b),
e date and duration adverbs in Korean (Jung, 2005),

e date adverbs in Greek (Voyatzi, 2006),

e measurement phrases in French (Constant, 2009),

e French determiners (Laporte, 2007),

e coordinated noun phrases in Serbo-Croatian (Nenadi¢, 2000),

e noun phrases and other clause elements in English (Mason, 2004),

e noun phrases with predicative head in French (Laporte et al., 2008c¢)),

e complex predicates in English (Gross, 1999) and Portuguese (Ranchhod
et al., 2004),

o ete.!

Local grammars have also been used in pre-treatment stages facilitating fur-
ther parsing, such as

e chunking (Poibeau, 2006),

e super-chunking (Blanc et al., 2007),

e annotating compound da-conjunctions in Bulgarian (Venkova, 2000),
e annotating French expletive pronouns (Danlos, 2005),

e ctc.

L An extensive list of works using or citing Unitex —therefore likely to be based on local
grammars— can be found at http://igm.univ-mlv.fr/~unitex/index.php7page=12
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Local grammars have also been used for parsing French simple sentences,
either belonging to a particular domain (Fairon and Paumier, 2005) or not
(Paumier, 2003). Finally, local grammars have been extended with feature
structures and unification processes in order to parse French complex sen-
tences (Blanc and Constant, 2005; Blanc, 2006). The resulting formalism
can be seen as an alternative version of lexical-functional grammars where
rewrite rules are coded as finite-state automata instead of context-free rules
(Blanc, 2006, p. 140).

Local grammars for natural language parsing can be semi-automatically
built from lexicon-grammar tables (Roche, 1993; Constant, 2003a). A lexicon-
grammar table constitutes a class of predicative elements which depends on
the similarity of the sentence structures in which the predicative elements
may appear (Leclére, 2002). Following the lexicon-grammar model of syntax
(Gross, 1996), a large set of lexicon-grammar tables for French has been con-
structed since 1968. These tables constitute a very rich linguistic resource
describing exhaustively the syntactic and distributional properties of 72000
predicative elements,? including

e verbs (Gross, 1975; Boons et al., 1976a,b, 1992),

e predicative nouns (Gross, 1989; Giry-Schneider and Balibar-Mrabti,
1993; Giry-Schneider, 1978, 1987),

e idiomatic expressions (Gross, 1982a, 1985, 1986b, 1988b,a, 1993; Giry-
Schneider, 1987), and

e adverbs (Gross, 1982b, 1986a; Molinier and Levrier, 2000).

However, these tables were essentially the result of a linguistic approach with
no intention to build a tool for computational applications (Leclére, 2003).
Though they have been successfully exploited for the automatic treatment of
French, to some extent (Paumier, 2003; Blanc, 2006), converting them into
some exploitable format is a non-negligible task (see Hathout and Namer,
1998; Gardent et al., 2005, 2006; Constant and Tolone, 2008; Sagot and
Tolone, 2009); indeed, large parts of the informations they contain are neither
explicit nor represented in a uniform manner. As work on lexicon-grammar
tables advances, we have compared our algorithms of application of local

2 Accessible through the HOOP interface (Sastre, 2006b,a) at http://hoop.univ-mlv.
fr/licenseAgreement.html
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grammars with those of the Unitex and Outilex systems within a simpler use
case we describe below. We have not only achieved lower execution times but
also a lower asymptotic cost; therefore, even better results can be expected
for the case of larger and more complex grammars such as the ones that could
be semi-automatically built from the French lexicon-grammar tables.

1.2 The MovistarBot

In collaboration with the enterprise Telefonica I+D,® we have built a human-
machine interface based on short text messages and local grammars (Sastre
et al., 2009).* This interface makes use of the different algorithms we present
in this dissertation (Sastre and Forcada, 2009; Sastre, 2009), and has served
as an evaluation framework. The interface is aimed at extending the under-
standing capabilities of a chatterbot based on AIML (Wallace, 2004).%-% Con-
versation with the chatterbot is performed by means of short text messages
sent through the Internet using one of the most popular instant messaging
clients: Microsoft’s Windows Live Messenger, commonly known as MSN or
Messenger.”

As well as providing some general conversation, the chatterbot is aimed at
providing mobile services (e.g.: sending SMSs), either requested in Spanish
(e.g.: envia Feliz Navidad al mdvil 555-555-555, which means send Merry

3Telefénica I+D is a research and development enterprise and member of the Telefonica
group, leader of the telecommunications market in Spain and Latin America and which
also enjoys a significant footprint in Europe.

4In particular, we have used weighted RTNs with output

5A chatterbot is a computer program designed to simulate an intelligent conversation
with one or more human users.

6AIML is a language for the specification of chatterbot conversation rules based on
XML. These rules are mainly composed of recognition patterns —less powerful than reg-
ular expressions— coupled with an output which may include input fragments. Conver-
sation contexts may be defined so different sets of rules can be applied depending on the
current context, allowing the chatterbot to follow the human into particular domains of
conversation.

"Communication between MSN clients and Microsoft’s servers is performed by means of
the Microsoft Notification Protocol (MSNP). Currently, Microsoft servers recognize only
MSNP version 8 or higher, but Microsoft published only the specifications of version 2
(Movva and Lai, 1999). However, the open-source community has been reversely engi-
neering newer MSNP versions, and open-source compatible clients are currently available
(e.g.: Empathy, Kopete and Pidgin).
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Christmas to the cell phone 555-555-555) or by means of commands (e.g.
sms Feliz Navidad 555555555). The interface we have built specifically tar-
gets sentences requesting the services the chatterbot can provide. We have
built a grammar for this specific domain and implemented a natural lan-
guage processing engine making use of the different algorithms presented in
this dissertation, including those of the Unitex and Outilex systems in order
to compare their performances. The engine has been packed as a Tomcat
servlet so that it can provide its services through the Internet to several
users concurrently.® Each time a message is to be sent to the chatterbot,
the message is first sent to the engine for preprocessing. In case the message
corresponds to a request of an available service, the engine extracts the spec-
ified arguments (e.g.: the message to send and the target phone number) and
translates the message into the corresponding command, extending the chat-
terbot’s understanding capabilities to a greater variety of natural language
sentences. If the message is not recognized as a service request, it is returned
as is to the chatterbot with a special code so that the general AIML con-
versational rules are applied. Without the engine, the robot mainly searches
for keywords (e.g.: sms) and shows the precise syntax to be used in order to
launch the presupposed service, obligating the user to retype any arguments
that were already provided. In case the arguments are partially provided, the
chatterbot is now able to ask only for the missing ones; for instance, upon
sentence ‘quiero enviar un SMS al 555 555 5557 (I want to send an SMS to
the 555 555 555) the chatterbot will only ask for the message to send.

In order to compare the performances of the different algorithms, we have
built a corpus of 168 possible sentences,” most of them service requests but
also other sentences in order to control over-recognition.!® Service requests
are formed by a few compounds that may permute; for instance ‘Envia el

8Information on Tomcat can be found in the Apache Tomcat homepage http://
tomcat.apache.org and in Brittain and Darwin (2007); information and tutorials on
servlets can be found in http://java.sun.com

9The original corpus contains 334 sentences, though we have only taken into account
the sentences that are accurately described by our grammars. Due to the time constraints
of the MovistarBot project, accurate grammars for every service the MovistarBot had to
support could not be built but simple keyword-matching rules were used instead, which
are by far simpler than the grammar rules we can expect in a natural language parsing
use case.

0By over-recognition we mean to recognize sentences that actually correspond to a
service request plus others that do not, usually because of small differences that are not
modelled in the grammar.
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mensaje hola al movil 555-555-555" (send the message hello to the mobile
555-555-555) could also be written as ‘Envia al mdvil 555-555-555 el men-
saje hola’ (send to the mobile 555-555-555 the message hello), where each
compound has a finite variability (e.g. ‘al movil 555-555-555"; ‘al 5555555557,
etc.). The corpus considers every possible permutation, using different com-
pound variants in each one instead of considering every possible combination,
thus the corpus is representative in spite of its size. We have aligned the cor-
pus with the answers the system should return and implemented a tool for
verifying the answer returned by the system for every sentence in the corpus.
Execution times have been measured under the same conditions for each al-
gorithm, namely the same linguistic resources and their corresponding data
structures.

1.3 Popular computable grammar formalisms

1.3.1 Lexicon grammar

Lexicon grammar is a methodology for the empirical study of the syntax of
natural languages created by Gross (1996), starting with his book ‘Méthodes
en syntaze’ (Gross, 1975). Lexicon grammar is based on Harris’s (1965)
transformational theory of language; in this theory, the analysis of a sentence
consists in applying some series of transformations (hence the name) to one or
more elementary sentences: for instance, sentence ‘The ball was hit by Mary’
is analysed as the result of transforming elementary sentence ‘Mary hit the
ball” into passive form. Harris’s aim was to constitute linguistics as a product
of mathematical analysis of the data of language, taking elementary sentences
as objects on which operators could be applied (Harris, 1968, 1991). Apart
from Harris’s theory, language models based on Harris’s transformational
theory of language are called transformational grammars, and they include
lexicon grammar.

Lexicon grammar considers that general grammar rules cannot give ac-
curate linguistic descriptions to the irregularities of natural languages; more-
over, the presence of specific words within the sentences may condition the
sentence structures (Gross, 1997). Though this idea was not original (see
Harris, 1951 or Chomsky, 1965), Gross was the first one to shift from such
theoretical observation to the empirical description of language, including
its lexis (Laporte, 2005). As for Harris’s theory, sentences are classified in
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lexicon grammar depending on their syntax, and each class is associated to
an elementary syntactic structure of sentence. In order to take into account
the language irregularities, tables of predicative elements for each class are
built; these tables are called lexicon-grammar tables (Leclére, 2002). Each
table entry is completed with the data representing the syntactic particu-
larities of the corresponding predicative element w.r.t. the other ones in the
class. Parametrized local grammars can then be built in order to represent
the elementary and non-elementary syntactic structures for each table. Local
grammars for each entry are automatically built by instantiating the param-
eters of such parametrized grammars, for each entry of the corresponding
table. The control exerted by the parameters ranges from the predicative
element to appear in the sentences to the prepositions that introduce the
sentence arguments, or even the substructures of the parametrized grammar
that are to be kept or to be removed, depending on whether they apply or
not to the concerned predicative element.

1.3.2 Context-free grammars

Context-free grammars (CFGs, initially called phrase structure grammars)
were first proposed by Chomsky (1956) as a description method for natural
languages. A similar idea was used shortly thereafter to describe computer
languages: Fortran by Backus (1959) and Algol by Naur et al. (1960). The
resulting Backus-Naur form (BNF) can be seen as an alternate notation for
CFGs. Chomsky redefined Harris’s transformations as operations mapping
sets of deep structures (the syntax trees) to surface structures (the sequence
of words that compose the sentences). CFGs mainly consist in a set of
terminal symbols, a set of non-terminal symbols and a set of rewrite rules,
where

e non-terminal symbols are labels of syntax tree structures (e.g.: ‘NP’
for noun phrase, ‘S’ for sentence, etc.),

e terminal symbols are the words of the language, and

e rewrite rules indicate possible replacements of non-terminal symbols
within sequences of terminal and non-terminal symbols by other se-
quences of terminal and non-terminal symbols; for instance, rewrite
rule ‘NP — DET NOUN’ indicates that a noun phrase can be com-
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posed by a determiner followed by a noun, and ‘DET — the’ indicates
that ‘the’ is a determiner.

Analyzing a sentence consists in generating it by transforming sequence ‘S’
(the non-terminal representing any sentence) into the sequence of words that
form the sentence by performing some series rewrites (or transformations).
CFGs and any other grammar following this methodology, including local
grammars, are said to be generative grammars.

CFGs allow for a structured representation of languages by means of lin-
guistic blocks which can be reused in the description of other blocks (e.g.:
one can define what a noun phrase is, then define a prepositional phrase as
a preposition followed by a noun phrase). CFGs are said to be context free
since any rewrite rule for a given non-terminal symbol may apply indepen-
dently of the context in which that non-terminal symbol may appear, that is,
non-terminal symbol definitions do not take into account the non-terminal
context.

ECFGs are CFGs where regular expressions can be used within the right
part of rewrite rules in order to avoid repetition (but not for augmenting
the generative power of the grammar formalism). As for CFGs, there exists
an alternate notation for ECFGs based on BNF: extended BNF or EBNF.
EBNF is widely used for the description of computer languages and other
formal languages, such as XML DTDs (Albert et al., 1998). Indeed, the In-
ternational Organization for Standardization has adopted an EBNF standard
(ISO/IEC, 1996).

CFGs, ECFGs, RTNs and pushdown automata (Oettinger, 1961; Schiitzen-
berger, 1963; Evey, 1963) are equivalent formalisms, but CFGs and ECFGs
are based on a set of rewrite rules while RI'Ns and pushdown automata are
based on finite-state automata. Finite-state automata allow for a more com-
pact and efficient representation than rewrite rules (Woods, 1969, sec. 1.7.3,
p. 40) and can be graphically represented for better readability. More details
on CFGs and ECFGs are given in appendix B.

1.3.3 Attribute grammars

Attribute grammars (AGs, Knuth, 1968) are CFGs extended with attributes.
These attributes are given values as the grammar productions are applied.
The attributes are divided into two groups: synthesized attributes and in-
herited attributes. The synthesized attributes are the result of the attribute
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evaluation rules, and may also use the values of the inherited attributes.
The inherited attributes are passed down from parent to children nodes, or
from elder brothers to younger brothers. In some approaches, synthesized
attributes are used to pass semantic information up the parse tree, while
inherited attributes help pass semantic information down and across it; for
instance, language translation tools (e.g.: compilers) may use attributes in
order to assign semantic values to syntactic constructions. Additionally, it is
possible to validate semantic checks that are not explicitly imparted by the
syntax definition. AGs can also be seen as an extension of CFGs for out-
put generation; see, for instance, syntax-directed translation based on AGs
in Aho et al. (1986, chap. 5, p. 279). As for CFGs, RTNs have also been
extended with attributes; the resulting finite-state machines have been called
augmented transition networks (ATNs, Woods, 1969).

1.3.4 Probabilistic context-free grammars

CFGs generating ambiguous sentences associate several parse trees to the
same ambiguous sentence, one per each interpretation. In order to choose
one of the possible parse trees, rewrite rules can be associated to weights or
scores, hence associating to each parse tree an overall weight which is the
combination (e.g.: addition or multiplication) of the different weights of the
successive rewrite rules that led to such parse tree. Such CFGs are called
weighted CFGs (WCFGs). A special case of WCFGs, first proposed by Booth
(1969), are probabilistic (or stochastic) CFGs (PCFGs): in these grammars,
weights are probabilities which define a distribution over the different parse
trees the grammar represents; details on how this can be accomplished can
be found in Booth and Thompson (1973). WCFGs and PCFGs can be seen
as an extension of CFGs for the generation of a particular kind of output
(weights or probabilities), as for AGs. Probabilities can be computed by
observation of large corpora as usually done in statistical approaches. As
could be expected, RTNs can be extended with weights and probabilities
(see, for instance, Blanc 2006, sec. 3.3, p. 85). More information on PCFGs
can be found in Jurafsky and Martin (2008, chap. 12, p. 444).

1.3.5 Lexical-functional grammars

Lexical-functional grammars (LFGs, Kaplan and Bresnan, 1982) are basically
CFGs extended with feature structures and unification processes. LFGs are
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composed by two fundamental levels of syntactic representation: the con-
stituent structure (c-structure) and the functional structure (f-structure); c-
structures have the form of CFGs, and f-structures are sets of attribute/value
pairs (the called feature structures). Attributes may be features (e.g.: tense,
gender, etc.) or functions (e.g.: subject, object, etc.). The name of the the-
ory emphasizes an important difference between LFG and the Chomskyan
tradition from which it evolved: many phenomena are thought to be more
naturally analysed in terms of grammatical functions as represented in the
lexicon or in f-structure, rather than on the level of phrase structure. An ex-
ample is the alternation between active and passive, which rather than being
treated as a transformation, is handled in the lexicon. Grammatical functions
are not derived from phrase structure configurations, but are represented at
the parallel level of functional structure.

As stated before, local grammars have also been extended with feature
structures and unification processes for parsing French complex sentences
(Blanc and Constant, 2005; Blanc, 2006). Details on unification and how to
extend CFGs with feature structures and unification processes can be found
in Jurafsky and Martin (2008, chap. 11, p. 391).

1.3.6 Tree-adjoining grammars

Tree-adjoining grammars (TAGs, Joshi et al., 1975) are somewhat similar
to CFGs, but the elementary unit of rewriting is the tree rather than the
symbol: whereas CFGs have rules for rewriting symbols as strings of other
symbols, tree-adjoining grammars have rules for rewriting the nodes of trees
as other trees. A TAG consists of a number of elementary trees, which can be
combined with a substitution and an adjunction operation in order to obtain
derived trees. Interior tree nodes are non-terminals, and frontier tree nodes
may either be terminals or non-terminals. Substitution replaces a frontier
non-terminal by a tree having the same non-terminal as root. Adjunction
is more complex; summarizing, it consists in inserting a tree within another
tree, either recursively or not. Because of the formal properties of adjunction,
the formalism is more powerful than CFGs, but only mildly so (Joshi, 1985).

Lexicalized TAGs (LTAGs, Abeille, 1988) are a variant of TAGs where
each elementary tree contains at least one frontier node labelled with a termi-
nal symbol. Thus each elementary tree is associated with at least one lexical
element. Finally, TAGs have also been extended with probabilities (Schabes,
1992) and with feature-structures and unification processes (Vijay-Shanker
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and Joshi, 1988; Vijay-Shanker, 1992).

1.4 Parsing algorithms

1.4.1 Top-down

Usually, computable language models are defined having in mind a particular
procedure for their application to language utterances; for the case of CFGs,
defining a top-down parser is quite straightforward: rewrite rules are applied
in order to successively transform the sentence non-terminal into the sequence
of words that form the sentence to analyse. The RTN case is analogous:
starting from the initial state, outgoing arrows allowing to consume the next
sentence word are followed until there are no words left. Due to the ambiguity
of the language, or simply due to the grammar structure itself, multiple
rewrite sequences (or paths within the RTN) for a given sentence may be
possible. Variants of the top-down parser can be defined depending on the
order in which rewrite rules (or paths) are explored:

e the depth-first variant (recursive descent, see Aho et al., 1986, sec. 4.4,
p. 181) explores one rewrite sequence (or path) at a time, coming back
to the last intersection when reaching a dead-end, and

e the breadth-first variant advances the exploration of every possible
rewrite sequence (or path) as input words are read.

Top-down parsers may fall into an infinite loop when applying left-recursive
grammars, and hence they do not support them. Both CFGs and RTNs
can be transformed into some equivalent non-left-recursive grammar, though
such transformations have some undesired side effects: the resulting parse
trees no longer correspond to the original grammar and contain artificial
non-terminals which obfuscate them. Obviously, an alternative solution is
to avoid left-recursive structures when building the grammars. Top-down
parsers are the simplest and easiest to implement, though they have an ex-
ponential worst-case cost. We will present both depth-first and breadth-first
variants of top-down parsers in detail for the case of finite-state machines,
including RTNs with and without output.
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1.4.2 Bottom-up

Though CFGs (and RTNs) seem conceived for being applied by means of top-
down parsers, other procedures are possible; for instance, bottom-up parsing
with CFGs can be performed by reversely appling the rewrite rules to the
sentence words in order to “undo” the rewrites, obtaining sequences that con-
tain non-terminals which are to be searched in other rewrite rules to undo,
and so on until obtaining the sentence non-terminal (see Aho et al., 1986,
sec. 4.5, p. 195). Usually, whether an algorithm is more efficient than an-
other one depends on the sentence to analyse and the grammar. Top-down
parsers may blindly explore multiple rewrite rules until actually reaching
some “bottom-level” rewrite rules which require for the presence of certain
sentence words; a greater proportion of reachable bottom-level rules not com-
plying with the sentence words will result in a greater percentage of wasted
computational time. One may think that a bottom-up parse could solve this
problem, since it actually starts from the specific sentence words instead of
from a non-terminal symbol representing any sentence. However, bottom-up
parsers may also waste time by undoing rewrite rules that do not lead to the
sentence non-terminal (see Jurafsky and Martin, 2008, sec. 10.1, p. 355 for a
comparative overview on top-down and bottom-up CFG parsers). Unfruitful
grammar explorations may be reduced by using smarter algorithms, but one
cannot expect to completely avoid them since the whole grammar cannot be
applied to the whole sentence in a single operation: information units within
both the grammar and the sentence are to be successively examined, and sub-
sets of the computed partial parses may become inconsistent as additional
data is taken into account.

1.4.3 LR-parsers

LR-parsers (Knuth, 1965, but see Aho et al., 1986, sec. 4.7, p. 215) are a
very efficient class of top-down parsers, though they only support a subset
of CFGs. In the name, ‘L’ stands for ‘left-to-right input scanning’ and ‘R’
for ‘rightmost derivation’. LR-parsers are mainly based on a table of input
symbols x grammar states — action to perform, which is to be constructed
for each grammar.'! Thanks to this table, the grammar can be efficiently
applied by systematically executing the action inside the cell indexed by the

11 Apart from the mentioned table, a table action x state — state is also to be built;
see Aho et al., 1986, sec. 4.7, p. 215 for more details.
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current state and input symbol. However, since only a single action can
be defined for a given symbol and state, grammars must be deterministic
and non-ambiguous, which is not the case of natural language grammars.
Moreover, building an LR-table with a big alphabet will be ineficient or even
impractical; this is the case of local grammars since they are defined on the
alphabet of the words of the language rather than on the alphabet of letters
and symbols.

1.4.4 Tomita

Tomita’s (1987) parser is an extended version of LR-parsers which supports
non-deterministic and/or ambiguous grammars: upon multiple actions, the
parsing process is simply forked in order to execute all of them. However,
building LR-tables for local grammars will still be inefficient or impractical
due to the alphabet sizes. Efficient data structures for the representation of
sparse tables could be used, though we have not studied this possibility.

1.4.5 CYK

CYK (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965) is one of the
first parsers supporting natural languages —namely ambiguous grammars—
and CFGs having a polynomial worst-case cost (n?). It is a bottom-up parser
which makes use of dynamic programming: the parsing problem is broken
down into simpler subproblems, and partial solutions are stored in order to
be later reused so that no subproblem is solved twice. As drawback, the CYK
parser requires to first transform the grammar into Chomsky’s normal form
(Chomsky, 1959).1? Though this implies an additional operation to perform,
one may only have to compute it once as long as the grammar is not to
be modified. However, the grammar size will be considerably increased, its
original structure modified, and many artificial non-terminal symbols will be
introduced; as for the removal of left recursivity, the resulting parse trees
will differ from those obtained from the original grammar, and artificial non-
terminals will obfuscate them.

2 Alternative descriptions of Chomsky’s normal form can be found in Autebert et al.
(1997, sec. 3.1), Hopcroft et al. (2000, sec. 7.1.5) and Sipser (2006, p. 106-109)
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1.4.6 Earley

Earley’s (1970) CFG parser is another algorithm able to parse natural lan-
guage grammars.™® It is a top-down breadth-first algorithm which also makes
use of dynamic programming, as for CYK. It has the same worst-case cost
than CYK, but does not require to transform the grammar, namely to put
it in some normal form (as for CYK’s), to determinize it (as for LR-parsers)
or to remove left recursion (as for top-down parsers). Contrary to LR and
Tomita parsers, it can equally treat grammars defined on either small or big
alphabets. Thanks to its efficiency and flexibility, Earley’s parser has become
a classic natural language parsing algorithm; indeed, it has been adapted to
several other grammar formalisms such as

e RTNs (Woods, 1969),
e attribute grammars (Correa, 1991),
e PCFGs (Stolcke, 1995)

e grammars making use of feature structures and unification processes,
in general, such as LFG (Shieber, 1985; see, for instance, Jurafsky and
Martin, 2008, sec. 11.5, p. 423 for the CFG case),

e tree adjoining grammars (Schabes and Joshi, 1988), and

e weighted RTNs extended with feature structures and unification pro-
cesses (Blanc, 2006).

The algorithms we propose are mainly inspired in Earley’s parser.

1.5 Existing software based on local grammars

1.5.1 Intex

Intex (Silberztein, 1993, 1994, 1998, 2004) was the first corpus processing
system based on local grammars.'* Intex is composed by a Windows graph-
ical interface written in C++ and a set of command line programs written in

13We briefly describe Earley’s CFG parser in appendix C, p. 411; see first appendix B,
p. 405, for a description of the CFG notation.
ntex homepage: http://intex.univ-fcomte.fr
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C; the command line programs are either called by the graphical interface or
through the command line in order to perform the different treatments avail-
able.’® Though Intex is mainly a Windows application, Intex can be run on
Macintosh platforms thanks to tools such as Virtual PC,'® and Unix/Linux
binary versions of the command line programs are also provided with In-
tex (Silberztein, 2004, sec. 17.1, p. 192). However, Intex is not open-source
and cannot be freely downloaded except for academic purposes, and a li-
cense number is to be requested by email each time it is installed in a new
hard drive;'” moreover, details on the implemented algorithm of application
of local grammars are not given in the documentation; hence, they remain
obscure. In the academic sense, Intex is a tool for the study of natural lan-
guages but not for the study of parsing algorithms. Even in the former case,
the Intex author may refuse to provide license numbers at will.!®

1.5.2 NoodJ

Intex development has been discontinued in favor of its successor: Nool
(Silberztein, 2003b, 2005a, 2007).'* The author decided to reimplement the
whole system from the scratch with a new set of programming tools from
Microsoft: the C# programming language, the .NET framework and the
Visual Studio software development environment.?>:2%22 Though there exist
alternative implementations of C# and .NET compatible with non-Windows
platforms, namely Mono and DotGNU,?2* they do not fully support NooJ
yet (Silberztein, 2003b, p. 9). NooJ’s author mentions two main reasons for
choosing the new set of programming tools:?®> the benefits of a component

15 According to paragraph entitled “Chapitre 17 of http://mshe.univ-fcomte.fr/
intex/Unitex.htm

16 According to last paragraph of http://mshe.univ-fcomte.fr/intex/Unitex.htm

"Intex will run in “demo mode” if a license number is not provided.

18 Actually, the author of this dissertation experienced this situation when trying to
install Intex in several machines in the context of academic project DRUID (Laforest and
Badr, 2003).

19NooJ homepage: http://www.nooj4nlp.net/pages/nooj.html

20Gee, for instance, (Albahari and Albahari, 2010) for more information on C# program-
ming language.

2L NET homepage: http://www.microsoft.com/net

22Visual Studio homepage: http://www.microsoft.com/visualstudio

Z3Mono homepage: http://www.mono-project.com

24DotGNU homepage: http://www.gnu.org/software/dotgnu

25 According to http://www.nooj4nlp.net/pages/links.html
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programming methodology (in contrast with ANSI C) and a free automatic
memory management. While such features facilitate software development,
control is lost on certain implementation details which have an impact on the
efficiency of the parsing algorithms; for instance, the algorithms we propose
in this dissertation use complex data structures which are certainly more
expensive to delete once they are no longer needed. If we are to reduce
consecutive parsing times,?® deletion of data structures cannot be left to a
garbage collector but has to be optimized as well.

1.5.3 Unitex

Unitex (Paumier, 2003, 2006, 2008; Paumier et al., 2009) has been the first
open-source alternative to Intex:?" it is distributed under the GNU LGPL li-
cense and the linguistic resources it includes are distributed under the LPGL-
LR license.?® The advantages of open-source development are multiple and
have been widely recognized (Raymond, 1999; Davis et al., 2000; Raymond,
2001; Graham, 2001; Ambati and Kishore, 2004; Forcada, 2006; von Krogh
and von Hippel, 2006; von Krogh and Spaeth, 2007; Paumier et al., 2009;
Scacchi, 2010), starting with the simple intention of letting others study
one’s work in order to reuse or even to improve it. Unitex uses a top-down
depth-first algorithm of application of RTNs with string output, where out-
put strings may contain copies of input segments. In our case, we have reused
the Unicode library included in Unitex but have reimplemented its parsing
algorithm in order to test the different algorithms under the same conditions;
Unitex linguistic programs are mainly implemented in ANSI C while we have
preferred to take advantage of the C++ object oriented and generic program-
ming as well as of the new functionalities provided by the Standard Template
Library.?

26Recall that we are to analyse sentences requesting for onmline services as they are
received through the Internet from multiple users.

2TUnitex homepage: http://igm.univ-mlv.fr/~unitex

28The terms and conditions of the LGPL-LR and GNU’s LGPL licenses can be found at
http://igm.univ-mlv.fr/ unitex/1gpllr.html and http://www.gnu.org/licenses/
gpl.html, respectively.

Gee Josuttis (1999, chap. 2, p. 13) for a good introduction on the new functionalities
added to C++, including the Standard Template Library.
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1.5.4 Outilex

Outilex (Blanc et al., 2006; Blanc and Constant, 2006a; Blanc, 2006; Blanc
and Constant, 2006b)?° is another open-source platform for corpus processing
(LGPL licensed), based on RTNs with a more complex output than Unitex’s
RTNs: weights combined with feature structures built by means of unification
processes. Outilex uses an Earley-like parser equivalent to that presented in
Sastre and Forcada (2009). Though the original Earley parser has a poly-
nomial worst-case cost (n?), extending it for output generation results in an
exponential worst-case cost due to grammars generating an exponential num-
ber of outputs w.r.t. the length of certain inputs (Sastre and Forcada, 2009).
Such cases occur in natural language grammars; for instance, if the grammar
outputs represent sentence parses,®! the number of possible sentence parses
increases exponentially w.r.t. the number of unresolved prepositional phrase
attachments it contains:

e in sentence ‘the girl saw the monkey with the telescope’, it is unknown
whether the girl used the telescope or the monkey was holding it (2!
interpretations),

e sentence ‘the girl saw the monkey with the telescope in the garden’, it
is also unknown whether the monkey was in the garden or the action
took place in the garden (2% interpretations),

e in sentence ‘the girl saw the monkey with the telescope in the garden
under the tree’, it is unknown as well whether the monkey was under
the tree or the action took place under the tree (2° interpretations),

e ctc.??

In the MovistarBot use case, we have used string output combined with
weights: output strings are tags which identify the requested service and
the arguments provided (e.g.: to send an SMS to a given phone number),
and weights are used in order to choose one interpretation among those of

30Qutilex homepage: http://igm.univ-mlv.fr/ mconstant/outilex

31Outputs can be XML tags (Bray et al., 2008) that are inserted in certain sentence
locations in order to identify and delimit the different sentence constituents, extending
the original sentences with their parse trees.

32Example borrowed from (Butt, 2002). More information on this problem, along with
a solution based on statistics can be found in Ratnaparkhi (1998).
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ambiguous sentences (the one with the “highest score”). The parsing algo-
rithm we propose is able to compute the highest-ranked output while keeping
Earley’s original worst-case cost.

Though active development on Outilex has been discontinued, its source
code may be integrated into the Unitex system in the future.

1.6 Other finite-state software

1.6.1 Apertium

Apertium (Armentano-Oller et al., 2007; Forcada et al., 2009, 2010) is an
open-source machine translation platform which is being distributed under
the GNU GPL license.?*:3* Apertium uses finite-state transducers for lexical
processing, hidden Markov models for part-of-speech tagging, and multi-stage
finite-state chunking for structural transfer. Apertium was initially designed
to treat pairs of closely related languages spoken in Spain and Portugal,
but it is nowadays able to treat other less related language pairs such as
Spanish and French. Many of the breadth-first and minizimation strategies
in Apertium have inspired this thesis.

1.6.2 SisHiTra

SisHiTra (sistema hibrido de traduccion or hybrid translation system, Navarro
et al., 2004) is another machine translation system making use of finite-state
technology and statistical methods, as Apertium, but is restricted to Spanish
and Catalan. It can be used online at http://sishitra.iti.upv.es/

1.6.3 FSA Utilities

FSA Utilities toolbox (van Noord, 1997) is a collection of utilities to ma-
nipulate finite-state automata and finite-state transducers.*® Manipulations
include determinization (both for finite-state acceptors and finite-state trans-
ducers), minimization, composition, complementation, intersection, Kleene

33The terms and conditions of GNU’s GPL license can be found at http://www.gnu.
org/licenses/gpl.html

34 Apertium homepage: http://www.apertium.org

35FSA Utilities homepage: http://www.let.rug.nl/vannoord/Fsa/
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closure, etc. Furthermore, various visualization tools are available to browse
finite-state automata. The toolbox is implemented in SICStus Prolog and is
being distributed under GNU’s GPL license.?¢

1.6.4 XFST & Vi-xfst

XFST (Xerox finite-state tool, Karttunen et al., 1997) is a non-free general-
purpose utility for computing with finite-state networks. It enables the user
to create simple automata and transducers from text and binary files, regular
expressions and other networks by a variety of operations. The user can
display, examine and modify the structure and the content of the networks.

Vi-xfst (Oflazer and Yilmaz, 2004a,b) is a front-end for XFST which pro-
vides a visual interface and a development environment for the construction
of finite-state language processing applications. Complex regular expressions
can be built via drag-and-drop, treating simpler regular expressions as con-
struction blocks.

More information on both tools can be found at the homepage of the
‘Finite-State Morphology’ book (Beesley and Karttunen, 2003): http://
www.fsmbook.com

1.6.5 AT&T FSM library™

The AT&T FSM library™ (Mohri et al., 1998) is a set of general-purpose
software tools available for Unix. It allows for building, combining, optimiz-
ing, and searching weighted finite-state acceptors and transducers.>” The
original goal of the library was to provide algorithms and representations
for phonetic, lexical, and language-modeling components of large-vocabulary
speech recognition systems. The library is available under non-commercial
(binary only) and commercial licenses from AT&T Labs.

1.6.6 OpenFST

OpenFst (Allauzen et al., 2007) is a library for constructing, combining,
optimizing, and searching weighted finite-state transducers.*® OpenFst con-

36SICStus Prolog homepage: http://www.sics.se/sicstus/

STAT&T FSM library™ homepage: http://www2.research.att.com/ fsmtools/
fsm/

380penFST homepage: http://www.openfst.org/twiki/bin/view/FST/WebHome


http://www.fsmbook.com
http://www.fsmbook.com
http://www.sics.se/sicstus/
http://www2.research.att.com/~fsmtools/fsm/
http://www2.research.att.com/~fsmtools/fsm/
http://www.openfst.org/twiki/bin/view/FST/WebHome

22 CHAPTER 1. INTRODUCTION

sists of a C++ template library with efficient WEST representations and over
25 operations for constructing, combining, optimizing, and searching them.
OpenkFst is an open source project and is being distributed under the Apache
license.’

1.6.7 HFST

The Helsinki Finite-State Transducer software (HFST, Lindén et al., 2009) is
intended for the implementation of morphological analysers and other tools
which are based on weighted and unweighted finite-state transducer tech-
nology.*® HFST is compatible with XFST, and is being distributed under
GNU’s LGPL license.

1.6.8 Foma

Foma (Hulden, 2009) is a compiler, programming language, and C library for
constructing finite-state automata and transducers for various uses. It has
specific support for many natural language processing applications such as
producing morphological analysers.*! Foma is compatible with XFST, and
is being distributed under GNU’s GPL license.

1.7 Structure of this work

The different elements that we expose in this dissertation are heavily in-
terrelated, which makes difficult to describe them in some sequence with-
out referring to future material; for instance, the optimization of set data
structures for boosting the different parsing algorithms strongly depends on
the particular requirements of the different parsing algorithms. Conversely,
some implementation details of set data structures must be taken into ac-
count when constructing the parsing algorithms. We have chosen to follow a
“weak” bottom-up approach: objects that are either components or simpler

39The terms and conditions of the Apache license can be found at http://www.apache.
org/licenses/LICENSE-2.0

4OHFST homepage: http://www.ling.helsinki.fi/kieliteknologia/tutkimus/
hfst/

“1'Foma homepage: http://foma.sourceforge.net
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cases of other objects are described first, but relevant properties of future
objects are briefly described in advance when needed.

As we have seen, different authors define different kinds of finite-state
machines depending on their needs, though the basic structures remain un-
changed:

e Unitex uses RT'Ns with string output,
e Outilex uses RTNs outputting weights and feature structures, and

e we have used —in the MovistarBot use case— RTNs outputting weighted
tables associating the identifiers of the detected service and arguments
to the corresponding input intervals where they have been located; for
instance, the following output table is generated (among others) for the
case of sentence ‘envia hola al 555-555-555" (send hello to the 555-555-
555):

sms — (1,1]
message — (1,2]
phone — (3, 14]

This table is a representation of the following sentence bracketing, as-
suming that the first token position is 1 and that tokens are either words
or digits: ‘envia<sms/> <message>hola</message> al <phone>555-555-
555</phone>’.

Additionally, different kinds of finite-state machines are used depending on
the data to represent:

e tries and other acyclic finite-state automata in order to represent dic-
tionaries and other sets of sequences,

e different kinds of RTNs in order to represent grammars, and

e filtered-popping RTNs (Sastre, 2009) —a new kind of machine we also
present in this dissertation— in order to serve as a compact represen-
tation of the result of applying a RTN with output.

Rather than being completely different objects, those machines having more
complex features can be seen as extended versions of simpler ones, and are



24 CHAPTER 1. INTRODUCTION

indeed easier to describe by incrementally refining the simplest case. Because
of these reasons, we have chosen to build a hierarchy of finite-state machines
for any kind of input and output, along with the corresponding algorithms
of treatment. This hierarchy has served as a theoretical basis for the im-
plementation of a C++ library of finite-state machines and the corresponding
generic algorithms of application. The library has been adapted to the Mo-
vistarBot use case and is meant to be easily extended in order to consider
RTNs with different kinds of output, such as those of the Unitex and Out-
ilex systems. As a final remark, object oriented and generic programming
has not only allowed us to factor out common parts of the source code but
also to ensure that different performances are exclusively due to the different
strategies followed by the different parsing algorithms.
This dissertation is mainly divided in 4 parts as we describe below.

1.7.1 Part I: Preliminaries

Part I includes this introduction and the description of some objects that are
used by our implementation of finite-state machines and their algorithms of
treatment, namely:

e Chapter 2 describes efficient implementations of set and map data
structures. Most of the parsing algorithms we describe in this dis-
sertation make an intensive use of set and map data structures, hence
the need for such efficient implementations.

e Chapter 3 describes some implementation concerns around character
representation. The texts to analyse are basically sequences of charac-
ters.

e Chapter 4 describes the dictionaries we have used in order to store
morphosyntactic and semantic data for each word of the language, as
well as some implementation details.

e Chapter 5 describes tokens, the minimal input unit our machines take
into account, and how character sequences are segmented into tokens.

e Chapter 6 describes lexical masks and other predicates that we have
used as input labels of the local grammar transitions in order to repre-
sent sets of tokens, and to detect whether tokens are blank-separated or
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not. Token sets are usually defined as the dictionary words complying
with a set of morphosyntactic properties.

1.7.2 Part II: Finite-state machines

This part describes the hierarchy of machines we have defined. It comprises
definitions and properties of finite-state machines, algorithms of application
and other algorithms that optimize the machines and ensure the absence of
“offending” machine substructures (substructures that may lead to infinite
loops upon the application of the machines). Moreover, we will show that
those machines having unavoidable offending structures make no sense as
natural language grammars. Contrary to CYK’s parser, these machine op-
timizations do not introduce artificial non-terminal symbols. Each chapter
corresponds to a type of finite-state machine, namely:

e Finite-state machines or FSMs (chapter 7), the base class for every
kind of finite-state machine. This class does not really define a specific
machine but gives definitions, properties and algorithms common to all
the machines; in the context of object oriented programming it would
be an abstract class defining pure virtual methods.

e Finite-state automata or FSAs (chapter 8), sequence acceptors repre-
senting regular languages. Deterministic and non-deterministic FSAs
(DFAs & NFAs) are subcategories of this class. In particular, we have
used acyclic DFAs for the representation of electronic dictionaries.

e Tries (chapter 9), a particular case of DFAs used here for the optimiza-
tion of sequence copies and comparisons as well as for the representation
of electronic dictionaries 6.1.4 (apart from acyclic DFAs).

e Finite-state transducers with blackboard output or FSTBOs (chap-
ter 10), a generic extension of FSAs for the generation of any kind of
output. Blackboards are either simple or structured data types, and
output symbols are functions on blackboards. Apart from generat-
ing output, blackboards may also be used in order to further restrict
the language recognized by the original FSA. In particular, machines
extended with feature structures and unification reject input interpre-
tations that involve the generation of inconsistent feature structures.
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Finite-state transducers with string output or FSTSOs (chapter 11),
letter transducers described as a special case of blackboard output
where blackboards are strings and functions on blackboars append out-
put symbols. String output may be used to enrich texts with meta-
information, for instance tags indicating the syntactic structure of the
sentences, or simply marking input segments containing relevant infor-
mation to be extracted.

Recursive transition networks or RTNs (chapter 12), recursive sequence
acceptors equivalent to CFGs and pushdown automata (Oettinger, 1961;
Schiitzenberger, 1963; Evey, 1963), hence having a greater generative
power than FSAs; as CFGs, RTNs allow for structured definitions of
grammars where subgrammars can be reused in the definition of higher
level grammars by means of call transitions.

Recursive transition networks with blackboard output or RTNBOs (chap-
ter 13), a kind of machine combining recursive calls and blackboard
output.

Recursive transition networks with string output or RTNSOs (chap-
ter 14), RTNBOs where blackboards are strings and functions on black-
boards append output symbols (as for FSTSOs).

Filtered-popping recursive transition networks or FPRTNs (chapter 15),
RTNs where returning from a call is only possible under certain condi-
tions (return or ‘pop’ transitions are filtered, hence the name). We also
call FPRTNs filtered-popping networks or FPNs, though we rather use
here acronym FPRTN since acronym FPN is already in use for fuzzy
Petri nets (see, for instance, Aziz et al., 2010). We use here FPRTNs as
a compact representation of the set of outputs generated by a RTNBO
for a given input string. We present in this chapter an algorithm that
computes such FPRTN-compacted outputs in time n?, even for cases in
which the number of outputs to generate increases exponentially w.r.t.
the input length (an example of this situation with natural language
grammars has been given in section 1.5.4, p. 19).

Reversed FPRTNs or REPRTNs (section 15.5, p. 306), these machines
recognize the reverse of the languages accepted by some FPRTN. Re-
versing a FPRTN requires to filter pushing transitions —the call initial-
izers— instead of popping transitions. RFPRTNs may also be referred
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to as filtered-pushing RTNs or filtered-pushing networks, though we
use acronyms RFPN or RFPRTN in order to avoid ambiguity (both
words ‘pushing’ and ‘popping’ start with the same letter).

e Output FPRTNs or O-FPRTNSs (chapter 16): the subclass of FPRTNs
serving as a compact representation of a set of outputs. We study
here the properties of O-FPRTNs and set the bases for further post-
processings, mainly the efficient generation of the language of outputs
represented by an O-FPRTN.

A schema of this machine hierarchy is given in figure 77.

The last 3 chapters of this part give the guidelines for constructing ma-
chines with other kinds of output as particular cases of blackboard output,
namely:

e Finite-state machines with composite output or FSMCOs (chapter 17):
FSMs generating multiple outputs, either of different types or not.
FSMCOs equivalent to Turing machines (Turing, 1936, but see Hopcroft
et al., 2000, sec. 8.2, p. 319) can be seen as machines with multiple out-
put tapes.

e Weighted finite-state machines or WFSMs (chapter 18): FSMs with
blackboard output where blackboards are weights and functions on
blackboards may increase or decrease them. This kind of output serves
as a non-arbitrary mechanism for the selection of a unique output upon
ambiguous sentences, which is to be used by end-user applications such
as chatterbots and machine translators. In this chapter, we present
an algorithm able to generate only the top-ranked output represented
by an O-FPRTIN in time n?, even for cases in which the O-FPRTN
represents an exponential set of outputs.

e Unification finite-state machines or UFSMs (chapter 19): a kind of
FSMs with blackboard output where blackboards are feature structures
and transitions may define functions that unify pairs of blackboards, as
for the case of Outilex’s local grammars. Unification allows for a com-
pact representation of grammatical phenomena such as agreement and
subcategorization. Unification introduces the possibility of generating
killing blackboards, which in this case are inconsistent feature struc-
tures; input sequences that involve to generate killing blackboards are
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to be rejected. The efficient computation of the non-killing top-ranked
output is a more complex problem that is left open here for a future
work.

1.7.3 Part III: Results and conclusions
This is the concluding part and comprises two chapters:

e chapter 20 presents an empirical comparison of the performances of the
different algorithms of application of local grammars in the context of
the MovistarBot project, and also compares their performance drops
with an artificial minimal grammar generating an exponential number
of outputs w.r.t. an input increasing in length, and

e chapter 21 summarizes our contributions and gives a list of further
improvements that could be applied to this work in the future.

1.7.4 Part IV: Appendices

Finally, in this part we briefly describe the basic algorithms —and the ob-
jects on which they operate— which have inspired some of the algorithms
presented in this dissertation, namely

e appendix A summarizes the set of lexical masks and predicates we have
used as input labels of the local grammar transitions,

e appendix B gives a brief overview of CFGs and presents the notation
we have followed for representing them,

e appendix C briefly describes the original Earley parser for CFGs, and

e appendix D briefly describes PERT networks and Kahn’s algorithm for
computing a possible topological sort a PERT network,*?

Last but not least, an index of terms can be found at the end of this
manuscript, right after the bibliography. This index includes the different
abbreviations, algorithms, functions, and variable identifiers. A list of the
most common abbreviations used throughout this dissertation has been given
in page xxiv.

42PERT stands for ‘program evaluation and review technique’.
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Chapter 2

Sets and maps

Most of the parsing algorithms that we will present in this dissertation make
an intensive use of data objects representing sets, that is, collections of unique
elements: upon adding an element to a set structure, the element must be
first searched within the structure so that it is not added twice.! Other more
sophisticated parsing algorithms also make use of maps.? However, set and
map representation and management is, in essence, the same problem since
maps can be regarded as sets of key/value pairs where keys are the only
distinctive trait between pairs: upon adding an element (k, v9) to a map that
already contains an element (k,v;), (k,ve) will not be added (nor replace
the former pair) since it is considered to be already present within the data
structure.® At first, we simply used the set and map implementation provided
by GNU’s implementation of the C++ Standard Template Library (STL).
This implementation is expected to be efficient in most cases. However,
our experience has proved that other implementations perform better —

'We do not intend here to give a mathematical definition of set but rather treat them
as a container class of an object oriented programming language, namely C++ coupled
with the Standard Template Library (see for instance Josuttis, 1999, sec. 5.2, p. 70).
Introductory material on set theory can be found in Devlin (1993, chap. 1).

2Likewise, we treat here maps as a class of associative container. To put them in
mathematical terms, a map M is a binary relation between keys in K and values in V'
such that &k M v and k M v iff v = v/, and we say M maps k to v or associates key k with
value v; in other words, M may either map a key to a single value or leave it unmapped,
and no restriction applies on the amount of keys associated with the same value.

3Indeed, GNU’s implementation of the STL uses the same data structures for the
representation of sets and maps, but the stored elements are keys in the former case and
key/value pairs in the latter one.

31
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depending on the algorithm and the use of the structures— and are even
mandatory if we are to implement faster parsing algorithms than the ones
used in the Unitex and Outilex systems.

Most of the algorithms we propose use a dynamic programming approach
(Bellman, 1957): the parsing problem is broken down into simpler subprob-
lems, which are to be solved only once. Some data structure is used in
order to represent the subproblems along with their computed solutions (the
partial parses). The algorithms build either sets or maps of such data struc-
tures in order to ensure that the same pair subproblem /solution is not added
twice, hence avoiding the repeated computation of any further subproblems
that would follow the ones already solved. Since natural language sentences
can have multiple interpretations —and indeed they usually do— multiple
parses are possible. Once every subproblem is solved, the set of possible
parses is built by combining the different subproblem solutions, avoiding re-
peated parses thanks to the use of a set data structure. Last but not least,
the algorithms perform sequential traversals of the sets and maps in order to
execute at least one of the following operations:

e search and remove every useless partial parse due to sentence misinter-
pretations,*

e apply some post-processing to each element of the set of total parses,
and

e delete the sets and maps once they are no longer needed, which implies
to first remove every set or map element one by one.

Whether more sophisticated algorithms will be faster than simpler ones will
strongly depend on the use of set and map implementations providing effi-
cient addition, removal and sequential traversal methods. We simultaneously
discuss these problems for both set and map structures by presenting solu-
tions to the efficient management of sets of key/value pairs (for the case of
sets, assume that values are empty).

The problem of efficient set management is ubiquitous. As could be ex-
pected, the solutions that have been proposed are numerous. In this chapter

4Note that, due to local ambiguities, parsing algorithms may not realize of a sentence
misinterpretation until reading enough sentence words; for instance, in sentence ‘the man
whistling tunes pianos’, one does not realize that ‘tunes’ is the sentence verb —rather than
a part of the subject— until reading ‘pianos’.
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we first introduce the problem of set management by presenting a trivial so-
lution based on arrays (section 2.1). We further refine this solution by means
of double-linked lists (section 2.2) and, furthermore, with binary-search trees
(section 2.3); many of the solutions proposed in the literature, including the
one of GNU’s implementation of the STL, are based on some kind of binary-
search tree. In the section, we describe some GNU implementation choices
along with some alternative algorithms and optimizations. In section 2.4 we
enumerate and summarize the advantages and drawbacks of different kinds
of self-balanced binary-search trees, a further refined kind of binary-search
trees. In section 2.5 we focus on red-black trees, the particular kind of self-
balancing trees chosen for GNU’s implementation. In section 2.6 we present
our solution: a hybrid structure combining a double-linked list with a red-
black tree. In section 2.7 we briefly describe other structures that could be
used instead of those based on red-black trees; some of them —perhaps com-
bined as well with a double-linked list— are worth to be considered in future
works. In section 2.8 we discuss how to efficiently implement maps of keys
to sets of values. Finally, we give in section 2.9 the guidelines for adapt-
ing the previously presented set and map structures for the representation
of multisets and multimaps; these guidelines are to be followed in order to
reimplement every set and map structure provided by the STL.

2.1 Arrays

In spite of the simplicity of the concept of set, the efficient implementation
of set data structures is a rather complex problem. Sets are to be stored in
a computer’s memory, which in turn is an array of bytes. As stated before,
emulating a set with an array requires to first search the array for elements
having the same key than the ones to be added before actually adding them.
While adding an element to an unordered sequence requires only a constant
time (e.g.: to append it to the end of the sequence), searching for an element
with a specific key requires an average time proportional to the array size
since the element’s key is to be compared one by one with the ones of the
elements previously added to the array. In order to reduce this time, a total
order is to be defined over the set of keys —say k; < k; for every pair of keys
(ki, kj) such that ¢ < j— and the array is to be kept sorted w.r.t. this order,
at least until element searches will no longer be required. A binary search
can then be performed, which has a logarithmic worst-case cost w.r.t. the
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array size instead of proportional.

Algorithm 2.1 sorted array add adds a key/value pair (k,v) to a set
represented as a sorted array ag...a,_1. It first performs a binary search
for the position where to insert the element, then inserts it in that position
if it is not already occupied by an element having k£ as key. The algorithm
returns a Boolean indicating whether the element was inserted or not. The
binary search is based on the one performed by algorithm B in Knuth (1998,
p. 410). During the whole algorithm execution, variables i and j represent
the bounds of the search interval, starting with [0, n), the range covering the
whole array. As long as the interval is not empty (i < j), it first sets m to the
middle position of the interval. In case the interval contains an even amount
of elements, the greater of the two middle positions is chosen. If the key of
the element to search is less than the one of the middle element, the search
continues with interval [i, m), the inferior half of the current interval without
the middle element. If it is greater, it proceeds with [m + 1, 7), the superior
half of the current interval without the middle element. If it is neither less or
greater, the algorithm returns ((k,,, v.,), false) without inserting the element,
where (kp,,v,,) is the element in A such that k,, = k. If the array does not
contain an element having k as key, the interval will be successively divided
by 2 up to obtaining an empty interval [¢, j) with both ¢ and j pointing to
the element having the least key greater than k. In that case, the element is
inserted at position i and ((k;, v;), true) is returned. The insertion operation
first requires to shift elements (k;,v;) ... (k,—_1,v,—1) one position to the right
in order to make room for the new element. Note that this algorithm does
not require to define operators = or > (reverse total order operator) but only
=<, without loss of efficiency. Indeed, STL sets and maps require to define
only one comparator operator. More information on binary searches can be
found in Knuth (1998, chap. 6.2.1).

While the binary search has a logarithmic worst-case cost (the search
space is divided by 2 at each unfruitful iteration), the insertion operation
still has a worst-case cost proportional to the array size due to the shifting
operation. Moreover, if there is no free memory right after the last element
in order to allocate one more element, the whole array must be copied into
a big-enough free memory segment. If the maximum amount of elements
to be added is known before creating the set, enough free memory can be
reserved in order to avoid this situation, but that will not be the case for the
parsing algorithms presented in this dissertation and, anyway, we would still
be facing the shifting problem. Deleting an element from the array will not
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Algorithm 2.1 sorted array add(A, (k,v))

Input: A = (ko,vo)...(kn_1,vn_1), a sorted array of n key/value pairs
(k,v), the key/value pair to add to the array
Output: A after inserting (k,v) at a position 4, if there is no k; = k in A,
or A unmodified if there is a k,, =k in A
returns ((k;, v;), true) in the former case, and ((k,,,v,), false) in
the latter one

1: 2+ 0

2: j4n

3: while i # j do

4: m < i + integer _division(i — 7, 2)
5: if £ < a,, then

6: J=m

7 else if a,, < k then

8: 1=m+1

9: else
10: b <+ false
11: return ((k,,v,,), false)
12: end if

13: end while
14: insert(A, i, (k,v))
15: return ((k;, v;), true)
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require to reallocate the whole array, but the elements at greater positions
than the deleted one will still have to be shifted left. The operations in which
arrays excel are both the sequential and random access of its elements (hence
the name of random access memory or RAM).

2.2 Double linked lists

Double-linked lists are data structures having both efficient insertion and
removal methods as well as a sequential traversal method. List elements do
not necessarily lie on consecutive memory positions but in arbitrary ones.
In order to enable both the forward and reverse traversal of the list, the list
structure contains a pointer towards the first element and another towards
the last one, and each list element contains a pointer towards its previous
neighbour and another towards its next one. Both inserting and removing
an element x consists in redirecting x’s neighbouring pointers as well as the
ones of its neighbours, hence saving the hassle of shifting every element with
a key greater than the one of x (see Cormen et al., 2001, chap. 10 for more
details). However, direct access to elements at random positions is no longer
possible since they no longer lie at consecutive memory positions. In order
to compute the middle element between two elements a; and a;, the list must
be walked from a; towards a; and from a; towards a;, element by element in
both directions, until both walks reach the same element. Hence, adding an
element to a sorted list will still have an average cost proportional to the list
size.

2.3 Binary search trees

Binary search trees (BSTs) are a straightforward representation of every pos-
sible binary search that can be performed on a sorted sequence. Like double-
linked lists, they also augment each element data structure with two pointers,
though their structure is not sequential but hierarchical: tree data objects
contain a pointer towards the top element of the hierarchy, the root of the
tree, and the two pointers of each element reference the root of their respec-
tive left and right subtrees. Subtree roots y and z of an element x are called
the children of x and, conversely, x is called the parent of both y and z. We
use symbol L in order to represent the absence of element, namely
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e root(7) = L (T has no root),’
e left(y) = L (y has no left child) and
e right(z) =L (z has no right child).

In practice, the corresponding pointers are given a null value.

In the ideal case, the root of the tree is the middle element, its left and
right subtrees contain, respectively, the inferior and superior halves of the tree
minus the root, the subtrees of the root’s children contain the quarters minus
the tree and subtree roots, and so on until reaching a bottom hierarchy level
whose elements are either missing or have no children (see figure 2.1(a)).5
In other words, the number of hierarchy levels —the height of the tree— is
minimal. Such trees are said to be balanced. Searching for an element with a
key k inside a BST consists in traversing the tree downwards from the root,
either stepping towards the left or right child of each element z if k is less or
greater than the key of x, or stopping at x if its key is equal to k. Adding
an element to a BST will finally have a logarithmic worst-case cost w.r.t.
the tree size rather than proportional, provided that the tree is balanced.
In return, the sequential access to the tree elements is more complex and
expensive than with arrays or double-linked lists. We will first study the
sequential traversal since it introduces some modifications to be done on the
tree structure which the other algorithms must maintain.

2.3.1 Recursive traversal

Algorithm 2.2 bst _process_in_ order performs an in-order walk of the tree
having x as root in order to perform some processing to every element of
the tree, in direct order.  Note that, in a balanced tree, the element that
follows another one that is placed at the bottom hierarchy level belongs to an
upper hierarchy level, and vice-versa (see figure 2.1(a)). The algorithm first
navigates the tree all the way down from the root up to the tree’s bottom-
left corner in order to access and process the first element, then directly
accesses the second one at an upper hierarchy level by returning from one
recursive call and processes it, then navigates again towards the bottom of

>Note that a tree without root is an empty tree.

6We assume that every element is accessed with the same frequency. Taking into
account that access frequencies differ from element to element is a more complex problem
which is not relevant to our use case.
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(b)

Figure 2.1: At the left, a balanced binary search tree and, at the right, a binary
search tree having a sequential structure.

Algorithm 2.2 bst_process _in_order(z)

Require: = to be a BST element

Ensure: every element of the tree or subtree having x as root gets deleted
1: if x # 1 then
2: bst _process in_order(left(x))

3 y < right(x)

4: process(z)

5 bst _process in_order(right(y))

6: end if
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the tree and so on up to reaching and processing the last element at the tree’s
bottom-right corner. In particular, GNU’s implementation of the STL uses
this algorithm for deleting every element of a set or map.

2.3.2 Iterative traversal

The STL abstracts the actual structures representing sets and maps, thus
raw access to the tree elements is not possible and therefore neither it is to
perform a recursive traversal. On the contrary, the STL provides a univer-
sal mechanism for traversing any kind of container by means of iterators.”
Such iterators are equivalent to pointers towards the container elements.®
Containers provide methods begin and end which return, respectively, the it-
erator towards the first and past-the-end elements of the container. The latter
element lies after the last element —out of the container— and its sole pur-
pose is to serve as an end-of-sequence mark; therefore this element stores no
key /value pair. Forward iterators provide post- and pre-increment operators
which redirect them towards the next or the previous element, respectively,
following the total order implemented by the chosen function object (e.g.:
less<key_type>, see Josuttis, 1999, sec. 5.9, p. 114). Container elements
are commonly accessed in direct order by means of a loop incrementing the
iterator returned by the begin method up to equaling the one returned by
the end one. Reverse versions of these methods and iterators are provided
for reverse traversals. More information on STL iterators can be found in
Josuttis (1999, chaps. 7, p. 220).

In order to efficiently compute either the next or the previous element of
another one, the tree structure is modified as follows:

e cach tree element is extended with a third pointer towards its parent,

e the pointer to the root of the tree within the tree structure is replaced
with a pointer towards the past-the-end element,

e the parent, left and right pointers of the past-the-end element are di-
rected towards the root, first and last elements of the tree, respectively,
and

"Vectors, deques and lists are other containers provided by the STL. More information
on STL containers can be found in Josuttis (1999, chap. 6, p. 129).

8Indeed, iterators are usually implemented as pointers with custom increment, decre-
ment and dereference operators.
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e the parent pointer of the root element is directed towards the past-the-
end element.

The first modification is needed in order to navigate the tree upwards. The
second and third ones allow for direct access to the past-the-end, root, first
and last elements. The last one is needed for dealing with boundary condi-
tions (e.g.: computing the element after the last one, which results in the
past-the-end element).

Algorithm 2.3 bst_next elem is the one used by GNU’s implementation
of the STL in order to find the next element of a BST element z.° The
algorithm first verifies whether x has a right child or not; if it does, the
element at the bottom-left corner of x’s right subtree is returned as z’s next
element. Note that this is true in any case where x has a non-empty right
subtree:

e if x is the root, or is the right child of the root, or can be reached from
the root by always descending towards the right, elements in the right
subtree of = are all those elements of the tree whose keys are greater
than the one of x, and the element at the bottom-left corner of this
subtree is the one having the least key amongst all of them,

e if z is the left child of an element p, elements in the right subtree of x
are the ones whose keys are greater than the one of x but less than the
one of p, the element at the bottom-left corner of this subtree being as
well the one having the least key amongst them, and

e finally, if p is the left child of an element y and x is the right child of
p, or x can be reached from p by always descending towards the right,
the elements at the right subtree of x are those whose keys are greater
than the one of x but less than the one of y, also being the one of the
bottom-left element the least one amongst them.

A simplified version of the last case applies when x has no right subtree
and is not the last element of the tree: since there are no elements between x
and y, y is the next element of x; in other words, the next element of x is the

9The original GNU C++ code corresponds to method _Rb_tree_increment in file
tree.cc of the libstdc++-v3 library. This file can be downloaded from http://gcc.
gnu.org/viewcvs/trunk/libstdc%2B%,2B-v3/src/tree.cc?view=co. The terms of use
of this file can be found in the own file header.
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lowest ancestor of x in the tree hierarchy such that z lies at the ancestor’s
left subtree rather than at the right one. The algorithm iteratively navigates
the tree upwards as follows: y is initialized as the parent of x and, at each
iteration, z is set to y and y to its parent as long as x is a right child of y.
Once the process stops, y will be the next element, as long as there is one.

If x is the last element of the tree, the past-the-end element is to be
returned. An extra condition could be added before the loop that navigates
the tree upwards so that the past-the-end element is returned if x is the left
child of the past-the-end element. However, the past-the-end element cannot
be accessed from the iterators, since they contain only the pointer towards
a tree element but not towards the tree structure: the past-the-end pointer
of the tree structure can only be accessed by methods that take the whole
tree structure as argument rather than tree elements, such as methods begin
and end. Algorithm TREE-SUCCESSOR in Cormen et al. (2001, p. 259)
solves the problem as follows: the parent pointer of the root is null and
the upwards navigation is stopped once a null parent or the next element
of x is reached. In this case, the extra condition (null parent) is placed
within the loop performing the upwards navigation which, in turn, would
be nested in the loop traversing the whole tree. Rather than evaluating
the extra condition a single time, it would be evaluated one or more times
for each element of the tree. GNU’s implementation of the STL solves this
problem by navigating the tree upwards in order to reach the past-the-end
element, if necessary, and by placing the extra condition after the loop. This
condition verifies whether y is the right child of z. Since = will be the left
child of y, this will only be possible for the past-the-end and root elements
since those are the only ones that are the parents of each other. If z is
not the last element of the tree, the next element of x will be reached before
reaching the past-the-end element and, therefore, y will not be the right child
of its own left child. Otherwise, two situations are possible depending on the
presence or absence of a last element other than the root. These situations
are illustrated in figure 2.2 by means of a minimal tree for each one, coupled
with an execution trace under each tree. The traces contain the values of the
relevant variables during the last execution stages, namely:

e 1z, y and their right children right before the first iteration having x
and y as the root and the past-the-end elements, respectively,

e the same variables right before the following iteration, if any, and
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e the variable whose value is to be returned at the end of execution.

As we can see, the value returned by the algorithm as the next of the last
element is the past-the-end element, in both situations.

Algorithm 2.3 bst_next elem(7’, x)

Input: 7', a binary search tree
x, an element of T’
Output: returns the next element of x, or past the end(T) if x = last(T)
if right(z) # L then
x < right(z)
while left(z) # L do
x < left(z)
end while
return ¢
end if
y < parent(zr)
while right(y) = = do
Ty
y < parent(y)
: end while
. if right(z) # y then
return y
: end if
: return x

e e e e e

The iterative traversal has a slight advantage and an important drawback
w.r.t. the recursive traversal:

e the first element is directly accessed while the recursive traversal nav-
igates the tree all the way down from the root up to the bottom-left
corner, but

e the tree is navigated both upwards and downwards in order to search
for the next elements while the recursive traversal stacks the elements
at higher hierarchy levels during the downwards traversal so that they
can simply be popped out when needed.

Instead of using a past-the-end element as the root’s parent, Wein (2005)
proposes to use a before-the-begin element as the left child of the first element



2.3. BINARY SEARCH TREES 43

Status at first iteration with x = r

Yy="nr y=r
r=r r=r
right(y) = right(p) =r == right(y) = right(p) =

[
l

#+x
right(x) = right(r) #y
Status at next iteration, if any

y=r
r=Pp

right(y) = right(r) = L# z

right(z) = right(p) =r =y

Returned value
r=7p y=p

Figure 2.2: The two boundary cases of algorithm 2.3 bst next elem and their
corresponding execution traces once the root is first reached up to the end of
execution; p, 7, and [ stand for past-the-end, root and last, respectively.
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as well as a past-the-end element as the right child of the last one. This
modification makes the boundary cases to behave exactly as the other ones;
therefore, it is no longer required to navigate the tree up to the root’s parent
in order to retrieve the past-the-end element.

2.3.3 Reverse iterative traversal

As the iterative traversal can be performed by successively searching for the
next element of the current one, the reverse traversal can be done by succes-
sively searching for the previous one. Since BSTs are symmetric, algorithm
bst_previous_elem can be obtained by simply replacing right with left and
vice-versa in algorithm 2.3. In order to study the new boundary cases, the
same replacement is to be done to figure 2.2 as well as replacing the last ele-
ment by the first one. There is only one case that is not present in the normal
traversal and which requires a special treatment: computing the predecessor
of the past-the-end element. Let x be the element whose predecessor element
is to be computed, the algorithm verifies whether = has a left child or not
and, if so, returns the element at the bottom-right corner of the left subtree
of x. The past-the-end element does have a left child, but it is defined as
the first element of the tree. Hence, the algorithm would return either this
element or its the rightmost descendant, if any, instead of the last one. In
order to deal with this situation, GNU’s implementation of the STL simply
verifies first whether x is the past-the-end element in order to return the last
element or to proceed as usual. The modification proposed by Wein (2005)
(first mentioned at the end of the previous section) also deals with this par-
ticular case as for any other case: since the past-the-end element is the right
child of the last element and has no children, its previous element is precisely
the last element, the closest ancestor such that the past-the-end element lies
at its right subtree.

2.3.4 Unrolled iterative traversal

Algorithm 2.4 bst_unrolled_next _elem is an optimized version of algorithm 2.3
bst _next elem in which the trivial assignment z < y of the last loop has
been removed by unrolling the loop. The loop content is doubled so that an
iteration of the unrolled loop performs two iterations of the original one. In-
stead of performing the trivial assignment, the roles of variables x and y are
exchanged during the first half of the loop, and exchanged back during the
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second one. Between the two halves, an extra stop condition is inserted which
includes the post-processing to be done after the loop but with the exchanged
roles of x and y. This kind of optimization is likely to be automatically done
by modern compilers depending on the kind of optimization requested (e.g.:
we use flag -03 with the g++ compiler in order to obtain faster code in spite
of the increase in size). One can manually code unrolled loops in order to
ensure that this optimization is included, but by relying on flags one can
generate different executables with the same source code depending on the
characteristics and limitations of the targeted platform: while loop unrolling
can accelerate the program execution in a desktop computer, the increase in
size might not be an option for an embedded device with limited resources.
GNU’s implementation of the STL does not manually code this loop, thus
we have relied on the optimization capabilities of the g++ compiler. We leave
manual loop unrolling for a future work. More information on the removal
of trivial assignments can be found in Mont-Reynaud (1976), and other ex-
amples of application of such technique can be found in Bentley (1982, p.
59). Apart from the removal of trivial assignments, other benefits as well as
drawbacks of loop unrolling are discussed in Dongarra and Hinds (1979) and
Sarkar (2001).  The unrolled version of algorithm bst previous elem can
be obtained by following the same procedure, or by simply replacing right
with left and vice-versa in algorithm 2.4 bst_unrolled_next_elem.

2.3.5 Addition with Knuth’s algorithm

Algorithm 2.5 bst_knuth _add adds a key/value pair (k,v) to a set backed
by a BST. This algorithm is a modified version of the one given in Knuth
(1998, chap. 6.2.2) which also keeps trace of the root, first and last elements
of the tree. The algorithm first checks whether the tree has a root or not,
storing the root in variable z. If not, it calls algorithm 2.7 bst add root
in order to add (k,v) as the tree’s root, then returns pair (root(7'), true).
Otherwise, it performs a binary search in a similar fashion than algorithm 2.1
sorted_ array _add. The tree is navigated downwards from the root by using
two variables, z and y, storing the current tree element and the previous
one, respectively. A third variable ¢ stores the result of the last comparison
k < key(z). The current element for the next iteration is either the left
or right child of x depending on whether £ is less or greater than z’s key,
respectively. The loop ends once reaching an x having k£ as key or an y
lacking the child that would be the next element. In the former case, the
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Algorithm 2.4 bst_unrolled next elem(T’ )

Input: 7', a binary search tree
x, an element of T’
Output: returns the next element of z, or past the end(7) if x = last(T)

1: if right(z) # L then

2 x < right(z)

3 while left(x) # L do
4 x = left(x)

5: end while

6: return ¢

7. end if

8: y < parent(x)

9: while right(y) =z do
10: x < parent(y)

11: if right(z) # y then
12: if right(y) # = then
13: return x

14: end if

15: return y

16: end if

17: y < parent(z)
18: end while

19: if right(z) # y then
20: return y

21: end if

22: return x
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algorithm returns pair (z, false) from within the loop, and (k, v) is not added
to the tree. In the latter one, algorithm 2.6 bst knuth add_post is called
in order to perform the post-processing after the loop. This post-processing
calls either algorithm 2.8 bst add_left or algorithm 2.9 bst add_right in
order to create the lacking child of y with (k,v) as key/value pair. The value
of variable ¢ determines whether the new element is to be a left or right child
since y’s key cannot be equal to k at this point.

Algorithms 2.7 bst_add_root, 2.8 bst_add_left and 2.9 bst add_right
first call algorithm 2.10 bst create_elem in order to create the new tree
element. This last subroutine simply initializes the key, value and pointer
fields to the passed values. Once the element is created, they update the
pointers to the root, first and last elements of the tree, whenever necessary:

e a new element added as the tree’s root becomes the first and last ele-
ment as well as the new tree’s root,

e a new element added as the left child of the first element becomes the
new first element, and

e a new element added as the right child of the last element becomes the
new last element.

Provided that the tree is balanced, algorithm 2.5 bst knuth add has a
logarithmic worst-case cost w.r.t. the tree size. However, this algorithm does
not ensure that the tree will still be balanced once a new element is added.
Indeed, if the tree elements are added in either direct or reverse order then
the resulting tree will resemble a double-linked list; for instance, the tree of
figure 2.1(b) can be built by adding elements 1, 2 and 3 to the empty tree
in that order. Therefore, the worst-case cost of adding an element to a BST
will still be proportional to the tree size depending on the order in which the
elements are added.

If one was to build a static set or map in order to be just searched rather
than modified —for instance, whenever using a dictionary rather than build-
ing it— a balanced tree might not be the best option. Depending on the
frequency in which the different keys are to be searched, some tree elements
should appear at upper hierarchy levels rather than at lower ones (e.g.: the
language’s most frequent words). An algorithm for the construction of such
trees in time n? is given in Knuth (1998, p. 436). For the case of our pars-
ing algorithms, sets and maps are built rather than just searched, and key
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Algorithm 2.5 bst_knuth _add(7T, (k,v))

Input: 7', a binary search tree
(k,v), the key/value pair to add to the tree
Output: 7T after adding an element z with key(z) = k and value(z) = v, if
there is no element 2z’ in T having k as key, or 7" unmodified otherwise
returns (z, true) in the former case, and (2’, false) in the latter one
if (z < root(7T)) =L then
return (bst _add root(T, (k,v), true)
end if
repeat
Yy
if ¢ + (k < key(z)) then
x < left(z)
else if key(z) < k then
x < right(z)
else return (z, false)
end if
cuntil x = 1
: return bst_knuth add_post(T, (k,v),y, c)

— = =

Algorithm 2.6 bst knuth add post(T, (k,v),y,c)

Input: 7', a binary search tree
(k,v), the key/value pair to add to the tree
y, the parent of the new tree element
¢, a Boolean equal to k < key(y)
Output: 7T after adding the new element holding (k,v)
returns the added element
1: if ¢ then
2 return (bst _add left(T, (k,v),y), true)
3: else return (bst _add_right(7', (k,v),y), true)
4: end if
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Algorithm 2.7 bst _add_root(T, (k,v))

Input: 7', an empty binary search tree
(k,v), a key/value pair

Output: T after creating its root

z, the new tree’s root holding (k,v)
z < bst__create_elem((k,v), past_the end(7T), L, 1)
root(T") « first(T) < last(T) « z
first(T') < z
last(T) « z

Algorithm 2.8 bst _add left(T, (k,v),y)

Input: 7', a binary search tree
(k,v), a key/value pair
y, an element of T’
Output: 7T after adding a new element z as left child of y holding (k,v)
z, the new tree element
z < bst__create_elem((k,v),y, L, 1)
left(y) « =
if first(7T) = y then
first(7T') < =
end if

Algorithm 2.9 bst_add_right(7, (k,v),y)

Input: 7', a binary search tree
(k,v), a key/value pair
y, an element of T’
Output: 7T after adding a new element z as right child of y holding (&, v)
z, the new tree element
z < bst__create_elem((k,v),y, L, 1)
right(y) < z
if last(7') = y then
last(T) « z
end if
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Algorithm 2.10 bst_create elem((k,v),p,(,7)

Input: (k,v), the key/value pair of the new tree element
p, the parent of the new tree element
[, the left child of the new tree element
r, the right child of the new tree element

Output: z, the new tree element

: key(z) < k

value(z) < v
: left(z) —1
right(z) < r

L T

frequencies are unknown; hence, we will consider balanced trees as the ideal
case.

2.3.6 Addition with Cormen’s algorithm

Algorithm 2.11 bst_ cormen_ add is another algorithm for adding a key /value
pair (k,v) to a set backed by a BST, based on algorithm TREE-INSERT
described in Cormen et al. (2001, p. 261). Cormen’s algorithm is conceived
for adding an element whose key is new to the set; it is equal to Knuth’s
algorithm (Knuth, 1998, chap. 6.2.2) without the second test within the
binary search loop. However, algorithm bst cormen_add does take into
account that £ may not be new to the set. Rather than omitting the equality
test, it transfers it to the post-processing after the loop, which is performed
by algorithm 2.12 bst _cormen_add_post. This post-processing is divided
into two main cases depending on whether the key of the last tree element
stored in y is less than & or not. If it is less, we have the following subcases:

e k is less than any other key within the tree, thus the tree has always
been navigated towards the left from the root up to the bottom-left
corner. This case is recognized by verifying whether y is the first ele-
ment of the tree. In this case, a new first element is added as left child
of y by means of algorithm 2.13 bst add_ first.

e k is less than y’s key, but not less than any other key within the tree.
If there is an element y’ having k as key, the tree will be navigated
downwards up to such element. Then, the right child of y" will be



2.3. BINARY SEARCH TREES 51

chosen and, since every key within the right subtree of ¥’ will be greater
than k, the tree will be navigated downwards up to the bottom by
always turning left. Hence, 3 is the lowest ancestor of y such that y
lies on its right subtree rather than on its left one. Note that this
corresponds to the reverse of one of the cases for the computation
of the next element of another one. Hence, ¢ can be retrieved by
means of the counterpart of algorithm 2.3 bst next elem, bst_ pre-
vious_elem (section 2.3.3, p. 44). Once retrieved, the equality test is
finally performed. If the keys are equal, the algorithm returns pair
(v, false). If they are not, algorithm 2.14 bst_add_left _no_ first is
called in order to create a new element z as left child of y, and (z, true)
is returned. bst _add_left no_first is equal to bst_add_ first without
verifying whether the new element is the first one or not, since that
corresponds to the previous case.

e k is greater or equal than y’s key. In this case, the algorithm simply
performs the equality test between k and y’s key, and either adds or
not the new element as the right child of y, depending on the result.
Opposite to the previous case, if a new element is added then it must
be verified whether it is to become the new last element or not.

This algorithm is the one used by GNU’s implementation of the STL, without
some minor code factoring in the post-processing part that we have omitted
in favor of a more readable code.’

Summarizing, this algorithm has one advantage and one drawback w.r.t.
algorithm 2.5 bst_ knuth _add:

e the equality test is performed after the binary search loop a single time
rather than one time per iteration, but

e when the key to add is already in the set, the algorithm does not stop at
the corresponding tree element 3’ but navigates up to the tree bottom,
then comes back to 3 in order to perform the equality test.

10The original C++ code is splitted into methods _M_insert_unique and _M_insert_
of file stl_tree.h and the first part of method _Rb_tree_insert_and_rebalance
in file tree.cc. Both files belong to the libstdc++-v3 library and can be down-
loaded from http://gcc.gnu.org/viewcvs/trunk/libstdc%2B2B-v3/src/tree.cc?
view=co and http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/
stl_tree.h?view=co, respectively. The terms of use of these files can be found in their
respective headers.


http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co
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Algorithm 2.11 bst_cormen_add(T, (k,v))

Input: 7', a binary search tree

(k,v), the key/value pair to add to the tree

Output: 7T after adding an element z with key(z) = k and value(z) = v, if

—_ =
- O

there is no element 2’ in T having k as key, or 7" unmodified otherwise
returns (z, true) in the former case, and (2’, false) in the latter one
if (z < root(7)) =L then
return (bst _add root(T, (k,v), true)
end if
repeat
Yy
if ¢ + (k < key(z)) then
x < left(x)
else = « right(x)
end if
until z = |

: return bst _cormen _add_post(7T, (k,v),y, c)

We expect bst _cormen_add to be faster than bst knuth add, in general,
since

e the delayed conditional jump is one of the most expensive operations
within the binary search loop,

e the search for 3’ is to be done in less than half of the cases, on the
average, and

e this extra search will simply add an extra loop with a single conditional
jump rather than 3 (less/greater/no further children) with a logarith-
mic cost in the worst case, provided that the tree is balanced. Indeed,
the average case will have an even smaller cost since the worst case
will only take place when navigating backwards from the bottom-left
corner of the root’s right subtree up to the root.

2.3.7 Addition with Andersson’s algorithm

Andersson (1991) gives an algorithm for searching for an element inside a
BST, rather than for element addition. This algorithm is almost the same
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Algorithm 2.12 bst_cormen_add_post(7), (k,v),y,c)

Input: 7', a binary search tree
(k,v), the key/value pair to add to the tree
y, the parent of the new tree element
¢, a Boolean equal to k < key(y)
Output: T after adding an element z with key(z) = k and value(z) = v, if
there is no element 2’ in T having k as key, or 7" unmodified otherwise
returns (z, true) in the former case, and (2’, false) in the latter one
if c then
if y = first(7") then
return (bst _add_first((k,v),y), true)
else
y' < bst_previous elem(y)
if key(y') < k then
return (bst _add left no_first((k,v),y), true)
else return (y/, false)
end if
end if
11: else if key(y) < k then
12: return bst add right((k,v),y)
13: else return (y, false)
14: end if

H
e

Algorithm 2.13 bst _add_first(7', (k,v),y)

Input: 7', a binary search tree
(k,v), a key/value pair
y, an element of T’
Output: 7T after adding (k,v) as left child of y and first of T
z, the new tree element holding (k, v)
1: z < bst_create_elem((k,v),y, L, 1)
2: left(y) « 2
3: first(T") < 2
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Algorithm 2.14 bst _add _left no_first(7, (k,v),y)

Input: 7', a binary search tree
(k,v), a key/value pair
y, an element of T’
Output: T after adding (k, v) as left child of y but not first of T’
z, the new tree element holding (k,v)
1: z < bst_create_elem((k,v),y, L, 1)
2: left(y) < 2

than algorithm 2.11 bst _cormen_ add: both of them perform a binary search
similar to the one performed by algorithm 2.5 bst knuth add, but omitting
the equality test until the search loop is over. Apart from being a pure
searcher, the difference consists in the way in which 3’ is retrieved: while
algorithm bst _cormen_ add walks the tree back in order to retrieve the pre-
vious element of y, Andersson’s algorithm performs assignment 3’ < z inside
the binary search loop each time the key of z is found to be less than the
searched key, that is, it keeps track of the last explored element whose key
might be equal to the searched one. Once the binary search ends, the algo-
rithm simply uses the value of the precomputed 3’ instead of searching for the
previous element of y. An addition version of Andersson’s algorithm can be
easily built by performing these modifications to algorithm bst cormen_ add.

Due to the differences between Knuth’s and Andersson’s algorithm, the
discussion given in Knuth (1998, p. 436) on the construction of optimal BSTs,
taking into account key frequencies, does not apply for the case of Ander-
sson’s algorithm. Spuler (1993) discusses the optimal BST for Andersson’s
algorithm, and gives an algorithm for the construction of such trees in time
nlog n rather than n2. Due to the resemblance between Cormen’s and Ander-
sson’s algorithms, this work is likely to apply as well to Cormen’s algorithm.

Since we have already obtained faster parsing algorithms than those im-
plemented in the Unitex and Outilex systems by using Knuth’s and Cormen’s
addition algorithms, we have not tested the corresponding Andersson’s ad-
dition algorithm; moreover, we present in section 2.6 another possible opti-
mization of the tree structure which makes unnecessary to compute 1/'.
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2.3.8 Addition with unrolled loops

Trivial assignment y < x in all the previous addition algorithms can be
removed by unrolling their binary search loops, as shown for the case of
algorithm 2.3 bst next elem in section 2.3.4 (p. 44).

Spuler (1992) gives another version of Andersson’s binary search algo-
rithm in which the search loop has been unrolled in order to remove the
trivial assignment 3y’ <— x. The procedure is similar to the one followed for
the construction of algorithm 2.4 bst wunrolled_next elem, but with a small
difference: a new loop is embedded inside the original one which has the roles
of iy’ and y exchanged, and a conditional jump redirects the execution flow
to the outer loop when the roles are exchanged back.

The addition version of Andersson’s algorithm has two trivial assignments
that could be removed: y < = and y’ <— x. Rather than simply exchanging
the roles of two variables, multiple combinations of exchanges between the 3
roles (z, y and y') are possible. This problem is quite more complex, requiring
a quite greater number of loop versions than simply two, as well as a more
complex network of execution flow deviations between the different loops. As
stated in the previous section, we present in section 2.6 another optimization
of the tree structure which no longer requires to compute 3 and, therefore,
to perform the second trivial assignment 3y’ < x.

2.3.9 Addition with a 3-way comparator

Algorithm 2.5 bst_knuth_ add evaluates at each iteration of its binary search
loop whether the searched key is less, equal or greater than the key of the
current tree element. This operation is called a 3-way comparison. This
operation is emulated by means of two applications of the ‘less than’ com-
parator. However, some programming languages provide such operator (e.g.:
Perl, Ruby, etc.). Let <=> represent such operator, a <=> b returns a
negative value if a < b, 0 if a = b, and a value greater than 0 if a > b. The
STL does not provide a generic version of this operator, but it is quite easy
to implement. Moreover, if a and b are signed numbers, one can simply com-
pute a —b. Anyway, we would still need to verify whether the result is either
negative, positive, or null, in order to choose between navigating the tree
left, right, or stopping the algorithm execution. This operator becomes of
interest when keys are sequences of values to be lexicographically compared,
rather than simple values.
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In order to compare both the use of the less and 3-way comparators, we
first recall how to extend the less comparator for being applied to sequences of
elements. Algorithm 2.15 array compare_less returns a Boolean indicating
whether an array A is lexicographically less than an array B. For the sake
of simplicity, the algorithm supposes that B is either shorter or has the
same number of elements than A. A previous conditional instruction would
be required in order to call the algorithm with B as the shorter array, if
necessary. The algorithm emulates the 3-way comparison with two ‘less than’
comparisons, as for algorithm 2.5 bst knuth _add. For each b; in B, it verifies
whether b; is greater, less, or equal to the corresponding a;. If it is greater,
then the algorithm is to return true, if it is less then it is to return false, and
if it is equal then the same procedure is to be performed on the next pair of
array elements as long as B has elements left. If B runs out of elements, then
either both arrays are equal or A is greater than B, depending on whether
A has the same amount of elements than B or not. In either case, A is not
less than B, thus false is to be returned.

Algorithm 2.15 array compare less(A, B)

Input: A=uaqq...a,_1, an array of m elements
B =1by...b,_1, an array of n elements such that n <m
Output: returns a boolean indicating whether A is lexicographically less
than B

114+ 0
: while i # n do
if a; < b; then

return true >A<B
else if b; < q; then

return false >A>DB
end if
14—1+1
: end while
: return false >A>B

© R gk Wy

—
o

Let us suppose that we are to use a ‘less than’ operator with algorithm 2.5
bst_knuth_add, and that we are to compare two arrays A and B having a
common prefix of length [. We first verify whether A is less than B or not,
which requires to perform 2/ ‘less than’ comparisons before reaching the pair
of elements that differ. If B is not a prefix of A, a last comparison for the
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differing elements is needed. In case A is not less than B, we verify whether
B is less than A, which doubles the amount of comparisons.

Algorithm 2.16 array compare_ 3w is the corresponding extension of the
3-way comparator for sequences of signed numbers. At each iteration, it only
needs to verify whether the current pair of elements are the ones that differ
or not. If so, the result of the subtraction is returned and, if not, the same
procedure is repeated for the next pair of elements. Once every element of
B has been compared, A will be greater than B if it still has elements left,
and equal if not. Subtraction m — n will return a number greater than 0 in
the former case, and 0 in the latter one. Note that this algorithm performs a
single if/then instruction at each iteration instead of two, thanks to the use
of the subtraction in order to emulate the 3-way comparison. Assignment
¢ < a; —b; is not really performed since c is supposed to be the own processor
register in which the subtraction result is returned, thus the result is not
really copied into a memory position. Once the 3-way comparison is finished,
algorithm 2.5 bst_knuth_add still requires to verify whether A < B, B <
A or A = B in order to either navigate the tree left, right or stop the
algorithm execution. However, the compiler is likely to embed the code of
the 3-way comparison algorithm within algorithm 2.5 bst knuth add rather
than performing a call; in this case, the if/then instruction of the 3-way
comparison algorithm will also serve as the equality test of algorithm 2.5
bst_knuth_add (whether key(z) = key(y) or not), hence algorithm 2.5 bst-
__knuth__add will only require to perform one additional if/then instruction
after the equality test in order to verify whether key(z) < key(y) or key(y) <

key(x).

Summarizing, we can expect a performance boost in Knuth’s algorithm
proportional to the average length of the common prefixes of the compared
sequences. Since both Cormen’s and Andersson’s algorithms perform the
equality test a single time after the binary search loop, they may only take
advantage of the 3-way comparator a single time instead of once for each loop
iteration. We have implemented an equivalent version of the STL sets and
maps that use Knuth’s algorithm, with and without the 3-way comparator,
and compared it with GNU’s implementation, which uses the modified ver-
sion of Cormen’s algorithm presented in section 2.3.6 (p. 50). Wein (2005)
presents another implementation of the STL sets and maps using the 3-way
comparator; however, details on the algorithm used for either searching or
adding elements to the trees are not given.
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Algorithm 2.16 array compare 3w(A, B)

Input: A=aq...a,_1, an array of m signed numbers
B =1by...b,_1, an array of n signed numbers such that n < m

Output: returns a number less than, equal to or greater than zero depending
on whether A is lexigraphically less, equal or greater than B, respectively
140
while i #n — 1 do

if (¢ < a; — b;) # 0 then

return c > A#B

end if

11+ 1
end while
return m —n >A>B

2.3.10 Removal

As shown in section 2.3.1, the removal of every element of a BST can be
performed by means of an in-order walk. In order to maintain the extra
pointers added for the efficient iterative traversal of the tree (section 2.3.2,
p. 39), the root pointer is to be given a null value and the pointers to the
first and last elements are to be redirected towards the past-the-end element,
once the in-order walk is finished. Apart from that, it will not be necessary
to verify whether the resulting tree respects or not the well-formedness rules
since it it will be empty. Summarizing, we say a BST is well-formed if and
only if

e no tree element has more than two children,

e if the tree is not empty, only the root of the tree has no parent (or has
the past-the-end as parent, in order to deal with the boundary cases of
algorithm 2.3 bst_next elem in section 2.3.2),

e the keys of every element at the left subtree of an element x are all less
than the key of x, and

e the keys of every element at the right subtree of an element x are all
greater than the key of x.

It is only necessary to ensure that, after deleting each element, the remaining
ones are still accessible from the resulting tree structure so that every element



2.3. BINARY SEARCH TREES 29

can be deleted. Since the in-order walk deletes the tree from the bottom to
the top, this restriction is respected, and the deletion of every element can
be efficiently performed even if the tree elements have no pointers towards
their parents. However, removing a single element from an arbitrary position
requires some further processing in order to obtain a well-formed BST. Let
z be the element to remove:

e if 2z has no children, it is only necessary to nullify the corresponding
child pointer of z’s parent,

e if z has a unique child z, x is to take z’s place within the tree structure,
and

e if 2z has two children, a more complex processing is necessary since 2’s
parent cannot adopt both 2’s children as its own left or right children
(one left and one right children are possible, but not two left or two
right children).

The first case is trivial. The second one is solved as stated, since:

e if x is a left child of z, the keys of x and every element under x will be
less than the key of z and, consequently, less than the key of the parent
of z, and

e the same reasoning applies if x is a right child of z but with greater
keys instead of lesser ones.

For the third case, it is necessary to search for an alternative element y
having at most one child, so that it can be put in the place of z within the
tree structure. This element can be, for instance, the next element of z: as
stated in section 2.3.2 (p. 39), the next element of an element z having a right
child is the element at the bottom-left corner of 2’s right subtree. Obviously,
this element y will have no left child but may have a right child z. Instead of
popping z out of the tree structure, we pop y out by following either the first
or the second case depending on whether y has a right child or not. Once
this has been done, it will sure that y has no children, thus it will be possible
to transfer z’s parent and children to y. Moreover, the key of y will be less
than the keys within the right subtree of z, and greater than the keys within
the left subtree of z. Alternatively, the previous element of z can also be put
in the place of z. Once the tree structure is rearranged, z can be deleted.
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The actual algorithm can be found in Cormen et al. (2001, p. 262). This
algorithm has a slight difference w.r.t. the third case of the previous expla-
nation: instead of replacing element z by element y and then deleting z, z
is given y’s key and y is deleted instead. Note that, if keys are simple val-
ues, it will be faster to copy a single key than several pointers. However,
this optimization is not compatible with the STL specification since set and
map iterators must remain valid until the element they point to is deleted;
summarizing, y cannot be deleted instead of z since iterators pointing at y
would no longer point to an existent element.

GNU’s implementation of the removal operation is based on Cormen’s
algorithm but replacing z by y instead of simply copying y’s key into z.
Moreover, the first and last elements of the tree must be updated as follows:

e if z is the root and has no children, the past-the-end element is to
become the new first and last element,

e if 2 is the root and has only a left or a right child, this left or right child
is to become either the new last or first element, respectively, and

e if 2 is not the root and has no left or right child, the parent of z is to
become the new first or last element if z is the first or last element,
respectively.

We will present in section 2.6 a quite simpler removal method based on
the use of BSTs combined with double-linked lists; therefore we will not go
deeper into the details of GNU’s implementation of the removal operation.!!

2.4 Self-balancing binary search trees

There exist several variations of BSTs whose addition and removal operations
perform some series of rotations on the tree elements so that the tree is also
kept more or less balanced; the most popular ones are: AVL trees (Adel’son-
Vel’skil and Landis, 1962, named after their inventors), symmetric binary B-
trees (Bayer, 1972, rebaptized as red-black trees after Guibas and Sedgewick,

UThe actual GNU’s C++ code for element removal is a part of method
_Rb_tree_rebalance_for_erase defined in file tree.cc of the libstdc++-v3 library.
This file can be downloaded from http://gcc.gnu.org/viewcvs/trunk/libstdc%2B
%2B-v3/src/tree.cc?view=co. The terms of use of this file can be found in the own
file header.
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1978), AA trees (Arne Andersson, 1993, named after their inventor) and
scapegoat trees (Galperin and Rivest, 1993). Except for the last one, all of
them require extending the tree elements with some extra data in order to
keep trace of the tree balance status. Pointers to the parent elements are
also required in order to navigate the tree upwards, as well as to perform
the element rotations. AVL trees extend their elements with the difference
between the heights of their left and right subtrees, and rebalance the tree
after each element addition or removal so that this difference is always kept
between —1 and 1. This ensures that the tree will always be balanced;
therefore AVL trees provide the best average search times (assuming that
every element within the tree is searched with the same frequency). However,
they also perform a greater number of tree restructurings, which may result
in worst overall execution times. While adding elements to a BST in direct or
reverse order results in sequential trees, adding them in random order tend to
result in balanced trees, thus relaxing the rebalance constraints will accelerate
the addition operation with slight or no penalization on the search times as
long as elements are added in random sequences. Rather than ensuring a
minimal tree height at all times, red-black trees ensure that, for every tree
element x, the longest sequence of descendants of = is at most twice as long
as the shortest one. Rather than a more efficient alternative, AA trees are
a simplified version of red-black trees. Rather than having a fixed balance
factor, scapegoat trees allow for choosing an unbalance tolerance index «,
ranging from sequential trees (o = 1) up to fully balanced trees (o = 0).
Instead of having to add some extra information to each tree element, only
2 integer numbers are to be added to the whole tree structure. In the case
of scapegoat trees, the element that is not a-weight-balanced is searched
in order to perform the rebalance operation on this element. The element
is called the scapegoat, hence the name of the trees. Scapegoat trees with
different unbalance tolerance indexes might be an option to consider for a
future work. We focus here on red-black trees since those are the ones used by
GNU’s implementation of sets and maps in the STL. AVL trees do not seem
a competitive option; indeed, Lynge (2004) has already tested them against
the GNU’s implementation, obtaining worst results for every operation.
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2.5 Red-black trees

As stated in the previous section, red-black trees are self-balancing trees
which allow for some unbalancing degree. This degree is determined by 3
axioms that hold for every red-black tree:

e cvery tree element is either red or black (hence the name),
e if y is a child of a red element x, then y’s color is black, and

e for every sequence of elements from a given element towards any de-
scendant having an empty left or right subtree, the number of black
elements is the same.

In the extreme cases, these axioms ensure that the shortest path from a given
element = towards a descendant having an empty left or right subtree will
be formed by a sequence of n red nodes, and the longest one by an alternate
sequence of n red and n black elements. Therefore, the length of the shortest
path cannot be less than half of the length of the longest one, hence ensuring
a “half” balance factor.

The red-black tree of figure 2.3(a) is a balanced BST equivalent to that
of figure 2.1(a) which can be obtained without performing any rebalance by
executing the following sequence of operations:

e add 4 to the empty tree,
e add 2 and 6 in any order, and
e add 1, 3 and 5 in any order.

The red-black tree of figure 2.3(b) can be obtained by adding the same el-
ements but in ascending order; note that the resulting tree is a partially
balanced tree which respects the 3 previously stated axioms.

Since red-black trees are themselves BSTs, the former algorithms on BSTs
also apply to red-black trees. However, after either adding or removing and
element, it is necessary to check whether the red-black tree axioms are still
respected and, if not, the tree is to be restructured. A detailed explanation
on how to perform these operations as well as the corresponding algorithms
is given in Cormen et al. (2001, chap. 13). For the case of red-black trees,
Cormen et al. make use of a sentinel element: instead of using null pointers
in order to represent a missing left or right child, a special element called the
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Figure 2.3: At the left, a balanced red-black tree and, at the right, a partially-
balanced red-black tree.
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sentinel is used in order to explicitly represent the empty subtrees. Since
the key of such element is of no use, elements having one or two empty
subtrees are all linked to the same sentinel element instead of having a dif-
ferent sentinel for each empty subtree. The sentinel allows for dealing with
boundary cases as one would with normal ones, since it is no longer required
to verify whether the child of an element exists or not before accessing it.
The tree structure must be augmented with such an extra element, which
in fact can perfectly be the past-the-end element, and a pointer towards the
sentinel must be stored inside the tree structure so that the algorithms can
verify whether an element’s child is the sentinel or not. However, the imple-
mentation of the STL iterators conflicts with the use of sentinels: algorithms
operating on iterators rather than on whole tree structures do not have access
to the sentinel’s pointer since iterators are implemented as pointers towards
tree elements rather than tree structures; therefore it is necessary to use a
fixed value such as the null pointer in order to represent the empty subtrees.

2.6 Double-linked red-black trees

As stated at the beginning of this chapter, some of the parsing algorithms that
we will present in this dissertation search and remove every useless partial
parse before starting to combine them in order to build the set of parses.
At a first implementation version, we first built a simplified version of the
sets of partial parses in the form of a single double-linked list, then threw
away the previous sets of partial parses and finally performed the removal
of useless partial parses from the list. Since no more elements were to be
added to the set of partial parses, and this set structure already ensured
that every contained partial parse was unique, the double-linked lists were
preferred due to their more efficient removal operation. Although appending
an element to a double-linked lists is a fast operation, this procedure wasted
time due to the duplicated construction and destruction of each partial parse.
In order to avoid this situation, we decided to perform all the treatment on
the original set structures. The execution times were lowered, but not as
much as expected: the removal operation was not only restructuring the tree
in order to respect the BST axioms, but it was also rebalancing the tree. This
rebalancing was unnecessary since the remaining operations to perform on
the trees involved only iterative traversals, but no search for specific elements.
Finally, we considered an even more radical solution: we extended each tree
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element with two pointers linking the element with its previous and next
elements (in the set order), obtaining a hybrid red-black tree and double-
linked list structure, and then removed the useless elements by treating the
structure as a simple double-linked list, without caring whether the BST
axioms were still respected or not. The resulting structure still allows for
its traversal, both for building the set of total parses and, afterwards, for
completely deleting the set of partial parses.

Mixing both red-black tree and double-linked list structures had already
been proposed by Das et al. (2008), but for a different purpose: accelerating
the applications making an intensive use of set and map iterators. In fact, we
had not considered the possible speedup due to the faster access to the next
and previous elements of another one; this speedup has not only improved
the algorithms removing useless partial parses but every algorithm building
sets or maps of partial parses.

The added pointers towards the neighbours of each tree element not only
allow for a faster implementation of the sets and maps, but for several sim-
plifications of the different algorithms, namely:

e algorithm 2.3 bst next elem is reduced to simply accessing the pointer
towards the next element and, conversely, the corresponding algorithm
bst _previous_elem just requires to access the pointer towards the pre-
vious element,

e the implementation of the STL iterators no longer conflicts with the
use of a sentinel element, since the retrieval of the previous or next
element of another one no longer requires to navigate the tree down up
to reaching the sentinel but to simply follow the pointer towards the
previous or the next element,

e rather than using the left and right pointers of the past-the-end element
in order to have direct access to the first and last elements of the tree,
its previous and next pointers are used as for any other element of the
tree; hence, when adding or removing an element so that the first or
last elements are to be updated, no special operation is to be performed
since the new first or last element will be simply relinked with the past-
the-end element, in the same manner that it would happen when adding
or removing elements in the middle of the list,

e algorithm 2.11 bst_cormen_ add no longer requires to navigate the tree
upwards in order to find the previous element of the last visited one for
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performing the equality test, since the pointer to the previous element
can simply be followed,

e Andersson’s algorithm no longer requires to keep track of the last vis-
ited element whose key may be equal to the searched one, since the
pointer towards the previous element can also be followed as for the
previous case; indeed, both algorithms bst_ cormen_add and the addi-
tion version of Andersson’s algorithm become the same algorithm after
this simplification,

e this simplified version of Andersson’s algorithm no longer performs two
trivial assignments but only one, thus unrolling its binary search loop
in order to remove the remaining trivial assignment is as easy as for
the other algorithms and, finally,

e the removal of an element no longer requires to navigate the tree down
in order to find the next element of the one to remove, but to follow
the pointer towards the next element.

We have implemented a set/map library equivalent to the one provided by
the GNU’s STL implementation —in order to facilitate their comparison—
but using double-linked red-black trees with algorithm 2.5 bst knuth add
instead of standard red-black trees with algorithm 2.11 bst cormen_ add.
This alternate implementation has finally allowed us to make competitive
algorithms out of the parsers we propose in this dissertation. We expect to
improve them further with algorithm 2.11 bst_ cormen_ add in a future work.

2.7 Other structures

We briefly present here other structures for the implementation of sets and
maps other than BSTs or BSTs ensuring some balance factor. Some of these
structures may be worth to be tested in future implementations.

2.7.1 Treaps

Treaps (Seidel and Aragon, 1996, contraction of tree and heap) are BSTs
which exploit the fact that randomly adding elements to a tree tends to re-
sult in balanced trees, rather than forcefully ensuring some balance factor.
As elements are added to the treap, they are given a random priority. BST’s
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addition and removal algorithms are modified so that, once concluded, the
priority of every element within the treap is greater than the one of its chil-
dren. This results in exactly the same tree that would have been obtained
by adding the elements in their priority order. As for red-black trees, a
double-linked version of this structure might also perform well.

2.7.2 Splay trees

Rather than trying to accelerate the retrieval of arbitrary tree elements, splay
trees (Sleator and Tarjan, 1985) restructure the tree so that the most fre-
quently accessed elements are located at higher hierarchy levels. All normal
operations on a BST are combined with one basic operation called splaying
(hence the name): splaying the tree for a certain element rearranges the tree
so that the element is placed at the root of the tree. Compared with the
other self-balancing structures, they have two main drawbacks: they allow
for sequential trees, and search operations are more expensive since they in-
volve restructuring the tree in order to raise the most frequently searched
elements within the tree hierarchy. Since our parsing algorithms add new
elements to the sets and maps rather than repeatedly accessing some of the
already added ones, we do not consider splay trees appropriate for our use
case.

2.7.3 2-3 trees

2-3 trees are another kind of non-binary self-balancing search tree: they
allow for elements having either zero, two or three children, hence the name.
Elements having no children —also called leaves— may have one or two keys.
From the point of view of BSTs, leaves having two keys are equivalent to two
BST leaves which lie attached at the same hierarchy level, where the key of
the left element is less than the one of the right one. Elements having two
children are structured in the same manner than the ones of BSTs: they have
a single key which must be greater than the key of their left children and less
than the one of their right ones. Elements with 3 children have two attached
keys k and k' rather than simply one. Let [, m and r be the keys of the left,
middle and right child, respectively, such elements must hold that

l<k<m<k<nr (2.1)
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After each addition and removal, every 2-3 tree leaf lies at the tree’s bottom
hierarchy level. This implies a “perfect” balance independently of the number
of elements within the tree, which is possible thanks to the use of the different
kind of tree elements.'? 2-3 trees were introduced by Hopcroft in 1970, though
not published (Cormen et al., 2001, p. 300). A description of 2-3 trees as well
as of its management algorithms can be found in Aho et al. (1974, sec. 5.4).

2.7.4 2-3-4 trees

2-3-4 trees, also called 2-4 trees, are a slightly more complex version of 2-3
trees where elements having 4 children and 3 keys are also possible. Indeed,
2-4 and red-black trees are isometric structures as for 2-3 and AA trees.'
Since we have already tested red-black trees and either 2-3, 2-4 and AA
trees are structures analogous to red-black trees, we rather consider other
alternative structures for a future work.

2.7.5 B-trees

B-trees (Bayer, 1972) are a generalization of 2-3 and 2-3-4 trees: leaves may
have one, two or more keys, and non-leaves may have n > 0 keys k; ... k,, in
which case they have n + 1 children x; ...z, + 1 such that

key(z1) < k1 < key(x2) < ko < ... < key(z,) < k, < key(z,41). (2.2)

Note that the tree height decreases when using elements with a greater num-
ber of children and keys. B-trees were conceived for minimizing the number
of input/output accesses to secondary storage devices (e.g.: hard disks) and
have been widely used in database systems. Extensive information on B-
trees can be found in Cormen et al. (2001, chap. 18). B-trees have already
been used in an implementation of STL sets and maps (Hansen and Hen-
riksen, 2001); the performances obtained w.r.t. red-black trees were better
for searches, similar for additions and considerably worse for removals. A
B-tree version combined with a double-linked list might perform better than
double-linked red-black trees, since element removal would rather use the
double-linked list structure rather than the B-tree one.

12Note that BSTs can only be perfectly balanced when having either 0 or 2" elements,
with n > 0.
I3Recall that AA trees are a simplified version of red-black trees.
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2.7.6 Hash tables

Hash tables are an array-based alternative to search trees. Let us suppose
that the number of every possible key identifying the elements to store within
the set is rather big in comparison with the number of elements that will be
added to the hash table. We allocate an array bigger than needed for storing
all the elements to add, and use a hashing function in order to compute the
array position where to add each element. This function usually consists in
some short sequence of cheap arithmetic/bitwise operations on the element’s
key. Efficiency highly depends on whether the hash function provides a
uniform distribution of the elements along the array in order to minimize
element collisions; such collisions take place each time a new element to
add is given an already occupied array position. In such cases, multiple
techniques might be used in order to solve the collision (e.g.: using a second
hashing function). This implies that, whenever retrieving a previously added
element, it does not suffice to compute the element’s position, but also to
verify that both the searched key and the one of the retrieved element match.
Of course, by using bigger arrays than necessary one can minimize the number
of collisions, though more memory will be wasted. As drawback, elements
within hash tables are not necessarily kept in order, which prevents the use
of further optimizations such as the one that we will present in section 2.8.
More information on hash tables, including some historical background, can
be found in Knuth (1998, sec. 6.4).

2.7.7 Skip lists

Skip lists (Pugh, 1990) are sorted linked lists where each element may not
only be linked to its next element but to other elements several positions
ahead. These pointers allow for skipping some elements during the traversal
of the list, hence the name. The number of ahead pointers for each element to
insert is randomly chosen such that the number of elements having ¢ pointers
decreases exponentially w.r.t. 7. Searches are performed in a similar manner
than for BS'Ts, though starting from the first element instead of the “middle”
one (the root of the tree): for each visited element, a proper ahead pointer
is followed so that the search space is reduced to the element subsequence
between the last visited element and the next element to visit. The average
search times are kept logarithmic, as for BSTs, while the total number of
pointers increases proportionally to the list size. Opposite to double-linked
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lists, no backwards pointers are stored, so only forward traversal is possible.
Since they are already lists, there is no need to add extra pointers as done
with red-black trees in order to combine both linked-list and tree structures.
However, backward pointers are used by some of the parsing algorithms,
apart from being useful for the optimization of some of the BST algorithms;
whether their use could be avoided or adding such pointers to the skip lists
would not result in an important loss of efficiency will require a further
study. Seidel and Aragon (1996) state that both skip lists and treaps have
similar performances; therefore both of them are interesting candidates for
the optimization of our parsing algorithms.

2.7.8 Concurrent access structures

Personal computer technology has lately focused on increasing the number
of processing cores —up to 6 cores nowadays— attached within a single chip
rather than on augmenting their clock frequencies. A performance gain could
be achieved by concurrently executing the independent subtasks that com-
pose our parsing algorithms, taking advantage of multiple cores. However,
parallel algorithms are more complex than their non-parallel counterparts,
which we have not fully exploited yet. Moreover, it must be taken into
account that the speedup factor that can be achieved by means of parallel
computing is less than the available number of processors or processing cores.
Hence, parallel computing will become an interesting option once the remain-
ing alternatives will not be able to yield greater speedup factors. Be that as
it may, a straightforward way of making parallel versions out of our parsing
algorithms could consist in concurrently exploring several grammar rules in
parallel, whenever multiple grammar rules apply to the same sentence frag-
ment.'* Since the exploration of such rules results in the addition of partial
parses to some series of sets and maps, the main problem would consist in fig-
uring out how to efficiently integrate concurrent set and map structures into
our parsing algorithms. The list of works on concurrent versions of the set
and map structures discussed in this chapter is quite extensive; we conclude
this section with a small selection among them: Larsen et al., 2001 (self-
balancing BSTs in general), Bronson et al., 2010 (AVL trees), Paul et al.,
1983 (2-3 trees), Bender et al., 2005 (B-trees), Hanke, 1999 (red-black trees),
Herlihy et al., 2006 (skip lists) and Triplett et al., 2010 (hash tables).

14This is the usual situation due to the ambiguous nature of natural languages.
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2.8 Maps of keys to sets

Let us suppose that we are to implement a map M of keys in K to sets
of keys in K’. One could simply use a BST structure with key/value pairs
in K x P(K'), where elements in P(K’) are also represented by other BST
structures with keys in K’. Let (k,S) be a key/value pair where S is a set of
keys in K’; if we are to add an element k' to S, we are to perform a binary
search on M in order to retrieve .S, then another one in S and finally rebalance
S. If the map did not exist, we are to add a map k to a newly created empty
set S and rebalance M and, finally, add &’ to S. Moreover, in order to delete
M’s data structure once it is no longer needed, we are to traverse M and,
for each pair (k,S) found, we are to traverse S as well in order to delete
the whole structure. Indeed, the reverse procedure is performed in order
to build the map, though decomposed into several element additions. It is
possible to avoid the overhead caused by the use of several BST structures
by using a single BST structure representing a set in K x K’ rather than a
map K — P(K’). For instance, if we are to represent map

{a M {z,y},b M {=1}}, (2.3)
we rather emulate such structure by means of set

{(a,z),(a,y), (b,2), (b,1)}. (2.4)

We redefine the key comparator in order to lexicographically compare pairs
of keys in (K, K’) as two-letter sequences having keys in K as first letter.
In order to iterate over the elements of a set mapped by key k, we search
for the first element with key £, then sequentially access the next elements
until reaching the past-the-end element or an element with a key other than
k. In contrast with the first solution, keys in K are repeated and some
extra key comparisons are also to be performed. However, we have obtained
shorter execution times in every parsing algorithm using maps of keys to sets
implemented as sets of key/value pairs.

In general, we have found that minimizing the number of requests for free
memory segments (dynamic memory allocations) has given better results in
spite of the added repetition: rather than creating STL containers of pointers
to other dynamically allocated structures, it is usually more efficient to let
the container own its own elements.!®> Note that memory allocations involve

15By owning an element we mean to have the responsibility of allocating and deallocating
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to search for a big-enough memory segment, which becomes more and more
expensive as memory gets fragmented, and both memory allocations and
deallocations involve to update the memory allocation table. A container
of pointers will require two memory allocations for each contained element:
one for the own element’s structure and another for the pointer to add to
the container. Containers of pointers are to be used whenever the element
structures are to be shared among several containers; anyway, it is better
to let one container have the ownership, and the others to take care only of
the pointers but not of the pointed memory segments. Containers of Boost’s
shared smart pointers have also been tested,'® obtaining quite worst results:
such pointers involve to manage a counter of pointers to the same element
so that the element is deallocated upon the deletion of the last remaining
pointer.

Why would anyone use containers of pointers rather than containers of
actual elements? The original STL containers use copy semantics, meaning
that whenever adding an element to a container, a copy of such element is
added rather than granting the container the ownership of the element to
add. Containers of complex structures may require to perform expensive
copies of elements that may just have been created for being added to the
container, thus being destroyed right after the copy is added to the container.
One could use some special pointer containers that become responsible for
the deallocation of the memory pointed by the added pointers (e.g.: Boost’s
pointer containers). However, this involves two memory allocations and deal-
locations for each added element, as stated before. Another solution provided
by the new C++ standard, C++0x,'7 is the use of move semantics: instead of
copying the whole complex structure, only the main pointers governed by
the structure are copied, and the original structure is left in an “empty” state
for its deletion. For instance, an STL vector is basically a pointer to an
array plus an element counter; rather than copying the whole array, only

the memory occupied by the element; properly defining each element’s ownership is vital
for avoiding both segmentation fault errors as well as memory leaks: the former take place
whenever following a pointer whose pointed memory has not been allocated first, and
the latter whenever the pointers used to access some memory segment are deleted before
deallocating the pointed memory.

16Search for shared_ptr at the homepage of the Boost C++ libraries: http://www.
boost.org

17Visit http://www2.research.att.com/ bs/C++0xFAQ.html for an overview of the new
features offered by C++0x.
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the pointer and the counter are copied and both of them are nullified in the
original structure. Anyway, we have not needed to use such complex struc-
tures for the implementation of the algorithms presented in this dissertation,
and we have preferred not to use the new C++0x features until its definitive
establishment.!®

Another optimization to take into account is the so called RVO or return
value optimization: whenever assigning to a newly created object A the
result B of a function F', the compiler is allowed to use B as A rather than
copying B into A and then deleting B. Moreover, if B is to be passed to a
function G as parameter C', the compiler is allowed directly use B as if it was
C. Indeed, the g++ compiler actually performs these optimizations, ignoring
any extra code that might be included within the copy constructor apart
from the own object copying (e.g.: printf instructions). However, elements
are yet systematically copied whenever added to STL containers, even when
the added elements are temporal objects. The use of move semantics is the
standard procedure to avoid such copies, performing shallow copies instead.

2.9 Multisets and multimaps

Multisets and multimaps are sets and maps that may contain several elements
having the same key. The same data structures and algorithms presented here
for the representation and management of sets and maps can be used for the
case of multisets and multimaps, but with a slight difference: the equality
test in the addition algorithms is to be removed so that, whenever the key to
add is equal to some key &’ within the tree, it is treated as if it was greater
than &’; this implies that

e adding a key/value pair (k,v) always results in increasing the tree size
by one element,

e tree elements having the same key appear at consecutive positions, from
the sequential point of view, and

e whenever adding a key/value pair (k,v) such that k is already within
the tree, the new element is added as the next element of the last one
having k as key.

18Up to now, support for the new C++0x features provided by the g++ compiler is yet
considered experimental; visit http://gcc.gnu.org/projects/cxx0x.html for a list of
the currently supported features.


http://gcc.gnu.org/projects/cxx0x.html

74 CHAPTER 2. SETS AND MAPS

Wein (2005) gives an alternative implementation of the STL multisets and
multimaps, also based in red-black trees, which supports two additional op-
erations: split and catenation; splitting a set S by a key k results in two
disjoint sets S; and Ss such that S contains all the elements of S whose keys
are less than k, and Sy contains all the other elements, and the catenation is
the inverse operation.



Chapter 3

Character treatment

From the point of view of a computer, a text is a sequence of binary digits
representing a sequence of characters, where the correspondence between dig-
its and characters is given by a character encoding system. Text processing
would be greatly simplified if there would be a unique and universal charac-
ter encoding system; though work on such a universal character encoding is
already quite advanced (The Unicode Consortium, 2007), there exist many
other encoding systems which are not intended to be universal. Computer
users are usually unaware of the existence of character encodings, since the
default character encoding given by the operating system is transparently
used. Problems arise when trying to open a text file created in a different
computer with a different character encoding system. For the case of web
pages, the recommendation is to include some meta-information specifying
the employed character encoding; however, this recommendation is not al-
ways followed. In that case, there is no choice but to try different character
encodings until the characters are properly rendered. If our character encod-
ing is not completely different than the appropriate one, one may still be able
to recognize the language in which the text was written and limit the search
to the character encodings for that particular language. Be as it may be, the
automatic processing of such texts will still be obstructed, if not prevented.

Character encodings are not only used for representing characters inside
text files, but also inside the computer’s memory as part of the data processed
by a computer program. Depending on the language or languages to treat,
and whether the encoding is to be used for data storage or for text processing,
certain character encodings will be more appropriate than others. In our
case, Telefonica imposed a character encoding system for data transmission
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over the Internet, but we are to choose a character encoding system for
both storing and processing linguistic data. We briefly present here the
most relevant, namely Unicode and those from which it evolved, and some
implementation details surrounding our choice.

3.1 ASCII

The American Standard Code for Information Interchange (ASCII, Gorn
et al., 1963) is one of the first widely used character encoding systems, and
the basis of many others; it is restricted to English and encodes each char-
acter as a sequence of 7 bits plus one bit, either used for data transmission
control (parity bit) or simply left unused. Apart from the uppercase and
lowercase English letters, and some other symbols (e.g.: numbers, arithmetic
operators, punctuation symbols, etc.), ASCII includes 32 characters that do
not represent printable information but text formatting marks and/or ac-
tions to be executed by devices such as printers or screens; for instance, the
bell character (number 7) was used for alerting operators of an incoming
message by means of an audible sound. Most of those characters are no
longer used, but we still keep many of its text formatting marks, also called
blank or white characters, namely: the white space (number 32) for sepa-
rating words, the horizontal tabulation (code 9) for separating columns, and
the line feed (number 10) for marking the end-of-line. Some systems (e.g.:
Windows platforms) precede the line feed by a carriage return (number 13),
and others (e.g. Unix and Linux platforms) use the line feed alone.? More
details on ASCII, along with an evolving view of character encoding systems
up to ASCII, can be found in Fischer (2000).

3.2 ISO-8859-z

ISO-8859-z is nowadays a family of 16 character encodings extending ASCII
(x is a number between 1 and 16): the eighth bit is used in order to represent
additional characters not present in English; for instance, ISO-8859-1 encodes

!The carriage return is the mechanism in a typewriter that pushes the cylinder on
which the paper is held towards one side in order to start a new line; on a computer text
interface, the carriage return moves the cursor towards the beginning of the current line,
and can be used without a line feed in order to rewrite the current line of text, for instance
for creating some text-based animation such as a progress bar.
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additional characters for Western European languages such Spanish (n, &),
French (g, ¢), German (&, 6), etc. ISO-8859-1 (ISO/IEC, 1998), also called
Latin 1, was the default character encoding for the web.

3.3 Unicode

With the coming of globalization, Unicode (The Unicode Consortium, 2007)
became the new web character encoding standard, though it still coexists
with many others. Unicode covers most of the existing writing systems,
including symbols of a great variety of domains such as mathematics (>_,
o0), economy (€, £), culture (t, @) and many others. Generically, Unicode
maps integers between 0 and 1,114,111 to characters. Each integer is called
a code point, and code points are grouped into 17 planes of 2'¢ code points
each one. Plane 0 is called the basic multilingual plane or BMP: it comprises
characters from most modern languages as well as a large number of special
characters, including ISO-8859-1 as the first 256 code points. Unicode is
constantly growing: around 100,000 characters have already been mapped,
having occupied only the 10% of the available space. Though intended to be
universal, there is not a unique Unicode character encoding form but several.
They either use a fixed or variable amount of bytes in order to represent each
code point, where the minimum amount of bytes is called a code unit. We
briefly describe below the main Unicode character encoding forms.

3.3.1 UCS-2

UCS-2 uses 2 bytes per code unit, and each code unit corresponds to a code
point. It encodes only the basic multilingual plane. UCS-2 files start with
code point OxFEFF, the so-called byte order mark or BOM. The file endi-
anness can be deduced by verifying whether the BOM bytes are transposed
(little endianness) or not (big endianness).?

2The terms big- and little-endian refer to two possible ways of laying out bytes in
memory or transmitting them through a serial connection: starting from the most signifi-
cant byte (big-endian) or from the least one (little-endian). These terms were introduced
by Cohen (1981), who borrowed them from the satyric novel ‘Gulliver’s Travels’ (Swift,
1726); in the novel, Lilliputians are divided into two religious factions: those who prefer
cracking open their soft-boiled eggs from the little end, and those who prefer the big end
(the Big-endian heretics).
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3.3.2 UTF-16

UTF-16-LE & UTF-16-BE are 2 extension of UCS-2 also using 2 bytes per
code unit, but either 1 or 2 code units per code point. UTF-16-LE imposes
little endianness, while UTF-16-BE imposes big endianness; hence, the BOM
is optional, though recommended for backwards compatibility. Code points
of the basic multilingual plane are serialized as for UCS-2. Unused UCS-2
code units are used in pairs, forming the so-called surrogate pairs, in order to
represent characters beyond plane 0. UCS-2 is usually mistaken for UTF-16
since they do not differ as long as surrogates are not required, and UCS-2
has been abandoned in favor of UTF-16.

3.3.3 UTF-32

UTF-32-LE & UTF-32-BE are the 32 bit versions of UTF-16-LE and UTF-
16-BE. These are the only Unicode schemes representing every Unicode code
point with a fixed amount of bytes, 4 to be exact. However, they usually
imply a memory waste since the basic multilingual plane is enough in most
cases. Fixed-length encoding forms are useful for randomly accessing single
characters within strings, since a simple addition an multiplication is enough
for computing their position. However, one can better use the UTF-16 en-
coding forms without loss of efficiency as long as surrogates are not required.

3.3.4 UTEF-8

UTF-8 is a variable-length character encoding form, using 8 bits per code
unit and 1 to 4 code units per code point. UTF-8 not only covers every
Unicode code point but is also the only Unicode scheme fully compatible
with ASCII, since ASCII characters are represented with a single byte. This
implies that both encodings will yield the same byte sequences as long as
no characters outside ASCII are used. The byte order mark is not needed
here since code units are one-byte long. For the case of English and Western
European languages, UTF-8 is preferred for data storage an transfer rather
than for text processing: common characters take less space but accessing a
character within a string requires to sequentially compute and add the lengths
of every preceding character (unless it is previously known that every string
character is coded with the same amount of bytes, such as the ones in the
ASCII subset). Indeed, UTF-8 is the current character encoding standard
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for the web. An important property of UTF-8 is that multi-byte code points
may not contain other code points. Moreover, a null byte may also be used
for terminating UTF-8 strings, such as in C and C++. Hence, UTF-8 strings
may be treated as normal 1-byte char strings whenever comparing them for
equality. Furthermore, if one is to build a set of UTF-8 strings with some
implementation requiring an arbitrary total order (e.g.: binary search trees),
a lexicographical per-byte order can be efficiently applied. Linguistically
sorting a set of strings is a more complex problem: since not every language
defines the same sorting rules, a universal character ordering is not possible.
For instance, the letter after e in English (and ASCII) is f, but letter € is
placed between e and f in Spanish; to be exact, letters with and without acute
accents are considered equal, unless the acute accents are the only distinctive
traits between two words (e.g.: ame and amé).** Thus, ame comes before
amé, but amé comes before amerizar (to land on the sea).

3.4 Implementation

Unicode aims to facilitate the exchange of text data by homogenizing char-
acter representation; however, the presence of multiple Unicode encoding
forms has allowed for a heterogeneity of implementations between different
platforms and programming languages. It is not surprising to find titles in the
literature such as “Unicode encoding forms: A devil in disquise?” (Biswas,
2003). Among the different interoperability issues mentioned in the paper,
we are mainly concerned by the C++ standard directives on Unicode support:
a wide char type —as well as wide string and stream types— are to be used
in order to represent Unicode characters longer than one byte, but each C++
compiler is free to assume a different Unicode encoding form. As a matter of
fact, the g++ compiler on a Linux platform uses 4 bytes in order to represent

3Indeed, a vowel with an acute accent is still the same vowel: the acute accent simply
marks the word’s stressed syllable. That is not the tilde’s case: n and 7 are considered
different letters and have a different pronunciation.

4ame and amé are inflected forms of verb amar or “to love”; opposite to conventional
dictionaries, electronic dictionaries are not only to contain the infinitive forms but every
inflected form.
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wide chars, while the MinGW port of g+ to Windows uses only 2 bytes.?°
If one is to write portable C++ code using Unicode, third party libraries are
to be used; the IBM ICU library is an open-source example of portable Uni-
code library, both available for C/C++ and Java.” The Outilex system uses
UTF-8 and the ICU library in order to represent and compare strings. In
our case, we have decided to reuse Unitex’s Unicode libraries, both for com-
patibility with the Unitex system as well as for focusing on parsing rather
than on character encoding issues. These libraries mainly use UTF-16LE,
both for string processing as well as for textual data storage, and have been
tested in different platforms and computer architectures, including little- and
big-endian’s. Both grammar and dictionary files provided with the Unitex
system are encoded with UTF16-LE, though they can be easily re-encoded if
necessary, for instance by using the GNU iconv tool.® Since we are mainly
to work on Spanish and other Western European languages, we simply ignore
the existence of surrogate pairs an treat every character as a single two-byte
code unit.

3.4.1 Exchanging characters between Java and C++

Another interoperability issue described in Biswas (2003) that concerns us
is the exchange of text data between Java and C++ programs: one of the
requirements given by Telefonica for the use of our NLP engine was that it
should be accessible through the Internet as a Java servlet inside a Tomcat
servlet container,”' and characters should be received and transmitted as
UTF-8 streams. Servlets are Java programs that answer HTTP requests,
usually by returning a dynamically built web page. In our case, the servlet
receives UTF-8 streams corresponding to request sentences, and returns a
plain UTF-8 text containing the result returned by the NLP engine. An
immediate solution would have been to implement our NLP engine in Java,

g+t is one of the compilers of the GNU Compiler Collection (GCC). More information
can be found in the GCC homepage: http://gcc.gnu.org/

6More information on MinGW can be found in its official homepage: http//www.
mingw.org

"More information on the ICU library can be found in the ICU project homepage
http://site.icu-project.org/.

8http://www.gnu.org/software/libiconv/documentation /libiconv /iconv.1.html

9More information and tutorials on servlets can be found in http://java.sun.com

10More information on Tomcat can be found in the Apache Tomcat homepage http://
tomcat .apache.org and in Brittain and Darwin (2007)
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since Java provides a good Unicode support and it is easier not to mix dif-
ferent programming languages; however, this would have had an impact in
performance, since Java code is to be executed in a virtual machine rather
than compiled into the native code of the machine where it is to be exe-
cuted. Moreover, we are also interested in the precise manner in which our
objects are deallocated from the computer memory rather than on delegating
this task to the Java garbage collector: our parsing time measures include
the deallocation costs, since more complex parsers use more complex data
structures which require more expensive deallocation methods. We have
programmed a small Java servlet which simply interfaces Telefonica’s Mo-
vistarBot with our C++ NLP engine. The servlet invokes the NLP engine
through the Java Native Interface (JNI),!' and performs the necessary char-
acter encoding translations from UTF-8 to UTF-16LE and vice-versa.

3.4.2 Character normalization

Finally, a last requirement given by Telefonica was to ignore every diacritic
mark, except for the tilde in 7, as well as to make no distinction between
uppercase and lowercase letters. Omission of the diacritic marks is one of the
most common orthographic mistakes in written Spanish. Moreover, diacritic
marks are usually omitted for convenience when communicating by means of
sort text messages: Spanish keyboards do not have separate keys for letters
with diacritic marks (except for letter i) but an extra key must be pressed in
order to add the diacritic mark. As usual, the same applies to uppercase let-
ters: two keys must be combined in order to obtain the uppercase version of a
letter. Since surrogate pairs are not needed for the representation of Spanish
characters, we have built a look-up table mapping every single UTF-16LE
code unit with its corresponding normalized version, that is, the correspond-
ing lowercase letter without diacritic marks or the same code unit, if already
normalized.'? Rather than creating a normalized copy of each user sentence,
we apply the look-up table on-the-fly during the grammar application, since
user sentences are to be discarded once treated. Moreover, user sentences
are kept unmodified so that original sentence fragments can be returned if
necessary; for instance, in “envia hola Paco al 555”7 (send hello Paco to the

Gee Liang (1999) for a comprehensive book on JNI.

12The correspondence between Unicode lowercase and uppercase letters, as well as let-
ters with and without diacritic marks, can be extracted from http://www.unicode.org/
Public/UNIDATA/CaseFolding.txt
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555) the user is requesting to send the SMS “hola Paco” to phone number
555. Normalized copies of grammar and dictionary files are constructed since
they are to be applied to each user sentence.



Chapter 4

DELAF dictionaries

Monolingual lexicons (or vocabularies) for language processing are one of the
ways of automatically annotating words with formalized linguistic informa-
tion. As compared to statistic methods, the use of lexicons provides more
control on the results. As compared to other language processing lexicons,
those with the DELA format offer convenient functionality for update thanks
to an automatic inflection mechanism.*

DELAF dictionaries (Silberztein, 1993) are a kind of electronic dictionar-
ies whose purpose is to provide a set of unambiguous identifiers for each use
of each simple word of a natural language, as well as to provide information
inherent to each one. These properties implicitly define classes of words (e.g.:
verbs, nouns, adjectives, etc.).? Grammar development can be greatly sim-
plified by making reference to these classes instead of explicitly stating the
corresponding list of words (the exact mechanism will be explained in chap-
ter 6). Moreover, separating the information inherent to lexical units from
the grammar rules results in a better structured approach. DELAF dictio-
naries for several languages are freely distributed with the Unitex platform
under the LGPL-LR license.> We have adopted the DELAF formalism in or-
der to keep the compatibility with the Unitex system, and used the Spanish
DELAF (Blanco, 2000) freely distributed with Unitex for the MovistarBot

IDELA stands for Dictionnaires Eletroniques du LADL or LADL’s Electronic Dictio-
naries for inflected forms, where LADL is the Laboratoire d’Automatique Documentaire et
Linguistique.

2¢F” in DELAF stands for formes fléchies or inflected forms.

3The terms and conditions of the LGPL-LR license can be found in http://igm.
univ-mlv.fr/~“unitex/lgpllr.html
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use case (section 1.2, p. 6). In particular, this dictionary describes more than
775.000 lexical units.

We first give a set of relevant definitions in section 4.1, and then de-
scribe the DELAF formalism in section 4.2. Next, we present our DELAF
implementations in section 4.3. We describe the modifications we have in-
troduced in the dictionaries for adapting them to the MovistarBot use case
in section 4.4, and present the tools we have developed for automating some
processes on DELAF dictionaries in section 4.5. Finally, we mention other
electronic dictionaries in section 4.6.

4.1 Definitions

Definition 1 (Use of a word). We call use of a word a context of utilization
of the word. Such contexts vary depending on the different meanings of the
word.

Definition 2 (Surface form). The surface form of a word is the exact se-
quence of characters that form it.

Definition 3 (Semantic class). A word semantic class is a set of words
defined by semantic criteria which uniquely apply to the properties inherent
to each word, for instance the set of ‘human’ words (e.g.: student, friend,
inhabitant, etc).

Definition 4 (Semantic feature). A word semantic feature is a word property
that determines whether the word belongs to a semantic class or not, for
instance feature ‘human’.

Definition 5 (Part-of-speech). The part-of-speech of a word, also called lex-
tcal or word category, is the semantic feature that determines the syntactic
role the word plays inside a sentence (e.g.: verb, noun, adjective, etc.).

Definition 6 (Inflected form). A word’s inflected form is the particular mod-
ification the word has undergone in order to express a particular case, gender,
number, tense, person, mood and/or voice.

Definition 7 (Inflectional feature). A word’s inflectional feature is a partic-
ular characteristic expressed by an inflected form.
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The set of inflectional features of a given word depends on the language
and the word’s part-of-speech; for instance, in Spanish, verb inflection com-
prises tense but not gender, adjective inflection comprises gender but not
tense, and prepositions have no inflectional features (they are invariant). Op-
posite to Spanish, some Polish verb tenses also comprise gender (e.g.: ‘byt’,
‘byta’ and ‘byto’ correspond to ‘he was’, ‘she was’ and ‘it was’, respectively).

Definition 8 (Lemma). The lemma, canonical form or dictionary form of
a word is the inflected form of the word that is used in order to refer to the
whole set of possible inflected forms.

For instance, verb lemmas in English, French and Spanish are the in-
finitive forms, in Basque are the participles and in Bulgarian and Latin are
the first person singular of the indicative present. Lemmas are also called
the dictionary forms since conventional dictionaries include only such forms.
For the case of electronic dictionaries, such as the DELAFSs, every possible
inflected form is to be included.

Definition 9 (Inflectional paradigm). The inflectional paradigm of a given
word is its set of every possible inflected form.

For instance, ‘color’ and ‘colors’ form the inflectional paradigm of word
‘color’, with ‘color’ as the lemma, and ‘texture’ and ‘textures’ form the in-
flectional paradigm of word ‘texture’, with ‘texture’ as the lemma.

Definition 10 (Inflectional model). An inflectional model is a set of rules
or procedures common to a set of lemmas describing how to construct their
inflectional paradigms.

For instance, the inflectional model of lemmas ‘color’ and ‘texture’ states
that the singular form is the lemma and that the plural form is built by
appending ‘s’ to the lemma (‘colors’ and ‘textures’). In Spanish, ‘color’ and
‘textura’ do not share the same the same inflectional model: while the plural
of ‘textura’ is built as in English (‘texturas’), the plural of ‘color’ is built by
appending ‘es’ to the lemma (‘colores’).

Definition 11 (Inflectional class). An inflectional class is composed by the
set of lemmas sharing the same inflectional model.

For instance, Spanish first-conjugation regular verbs form an inflectional
class. Inflectional classes containing a single lemma are also possible: for
instance, irregular verb ‘to go’ in either English, French (aller) or Spanish

(ir).
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Definition 12 (Lexical unit). A lexical unit is a surface form coupled with a
lemma and a set of semantic and inflectional features which unambiguously
identify a particular use and inflected form of the surface form.

Definition 13 (Ambiguous word). We say a word is ambiguous iff its surface
form is shared among several lexical units, that is, the word has either multiple
uses or meanings or corresponds to multiple inflected forms.

The main purpose of lexical units is to unambiguously identify the words
of the language. The set of properties added to the surface form depends on
the ones taken into account by the dictionary. We have defined here lexical
units given by DELAF dictionaries, but other dictionaries may give other
sets of properties.

4.2 Description

DELAF dictionaries are text files listing a set of lexical units, arranged into
lines. Opposite to conventional dictionaries, DELAF dictionaries do not
include word definitions but describe every possible inflected form of the
words. Dictionary lines, or entries, look as follows:

envia,enviar.V+Trans_msg:P3s
envia,enviar.V+Trans_msg:Y2s

Each entry is composed by the following data:

e surface form (‘envia’ = ‘he sends’, present indicative, or ‘send, you’,
imperative) terminated by a comma,

e lemma (‘enviar’ = ‘to send’) terminated by a period,

e one or more semantic feature identifiers separated by plus symbols,
where the first semantic feature corresponds to the part-of-speech (V =
verb, Trans_msg = synonyms of ‘to send’ in the context of sending an
SMS, for instance ‘to transmit’) and the last identifier is followed by a
colon, and

e a sequence of characters identifying the inflected form of the word (P3s
= present indicative, third person, singular; Y2s = imperative, second
person, singular).
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In order to avoid redundancy, lexical units sharing all properties except their
inflectional features are compressed into a single line: one or more sequences
of inflectional features may be specified, each one separated from the previous
one by a colon; for instance, the two given entries for surface form envia are
rather described in a single line as follows:

envia,enviar.V+Trans_msg:P3s:Y2s

As well, the lemma is omitted when it is equal to the surface form; for
instance, the entry for the infinitive form of ‘envia’ looks as follows (W =
infinitive):

enviar, .V+Trans_msg:W

Both semantic and inflectional feature identifiers are case sensitive. Se-
mantic feature identifiers are composed by an uppercase letter followed by
zero, one or more letters, digits or underscores. Inflectional feature identifiers
are composed by a single uppercase letter, lowercase letter or digit (‘P’ means
‘present indicative tense’, while ‘p’ means ‘plural’).

Both parts-of-speech and inflectional features are more or less fixed for
each particular language; most common parts-of-speech considered in the
Spanish DELAF, along with their identifiers, are: verb (V), noun (N), pronoun
(PRON), determiner (DET), adjective (ADJ), adverb (ADV), preposition (PREP),
conjunction (CONJ) and interjection (INTJ). The inflectional features, along
with their identifiers, are:

e indicative tenses: present (P), imperfect (I), preterit (J), future (F) and
conditional (C),

e subjunctive tenses: present (8), imperfect with -ra ending (T), imperfect
with -se ending (Q) and future (R),

e other verbal forms: infinitive (W), gerund (G), past participle (K) and
imperative (Y),

e genders: masculine (m), feminine (£), neutral (n),
e persons: first (1), second (2), third (3), and

e numbers: singular (s), plural (p).
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4.3 Implementation

The main operation performed on DELAF dictionaries consists in searching
for a particular surface form in order to retrieve the corresponding lexical
units. Hence, we implement these dictionaries as maps of surface forms to
sets of lexical units. Some data structures for the representation of maps
where already presented in chapter 2. However, other data structures are
more appropriate for mapping sequences rather than simple data.

4.3.1 Tries

In a first implementation version, we reused a trie C++ class we had already
programmed for optimizing the representation and management of sequences
(this optimization, along with a formal definition of tries, will be given in
chapter 9). Briefly, tries (Fredkin, 1960) are a kind of search trees where
each trie element corresponds to a unique prefix within the set of prefixes of
the represented set of sequences. This correspondence is as follows:

e the root represents the empty prefix, and

e the children of an element representing a prefix a represent prefixes
ooy, aoy, ete., where o; is a letter that is unique for each child.

Additionally, each trie element is extended with a pointer towards the corre-
sponding set of lexical units. In case the trie element does not correspond to
a complete word, the pointer is null.

This implementation not only allows for searching for surface forms and
their corresponding lexical units, but also for programmatically adding, re-
moving and/or modifying DELAF entries, as well as for saving the changes
in DELAF text format. Tries allow for an efficient retrieval of the properties
associated to a given surface form. However, DELAF text files are large (e.g.:
32.6 MB for the case of the Spanish DELAF dictionary), and loading them
into a trie data structure takes a few seconds. In the MovistarBot use case
(section 1.2, 6), the dictionary and grammar are loaded upon the reception
of the first user sentence. Once the sentence analysis is finished, these data
structures are kept in memory in order to be reused by later analyses. Hence,
only the first analysis will be delayed due to data loading. However, while
modifying and testing the system, we are required to reload the dictionaries
many times, adding up those few seconds each time. Moreover, tries are not
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the most compact representation of electronic dictionaries, though current
average computers have memory sizes in the order of gigabytes rather than
megabytes.

4.3.2 Minimal acyclic automata

Dominique Revuz studied during its PhD thesis (Revuz, 1991) compression
techniques for DELAF dictionaries which would allow to load entire DELAF
dictionaries in a personal computer’s RAM, while keeping short searching
times. Note that average computers of that moment had around 8 MB of
RAM, against the more than 30 MB of DELAF text files. As result, he pro-
posed to represent dictionaries as minimal acyclic automata and presented
an efficient algorithm for the minimization of these machines (Revuz, 1992).
While tries factor out common prefixes, minimal acyclic automata also fac-
tor out common suffixes. Hence, states within the automata may not only
correspond to a unique surface form, such as within tries, but to multiple
surface forms. If the automaton were to be fully minimized, searching a sur-
face form within them may not only lead to their corresponding lexical units,
but also to the lexical units corresponding to other surface forms sharing any
non-empty suffix. In order to solve this situation, surface forms mapped to
different sets of lexical units are regarded as having different endings, hence
their suffixes will not be mixed together. Up to here, the resulting automata
are not different than tries. However, the surface form is not stored within
the lexical units, and the lemma is not fully stored: the lemma is replaced
by a code indicating how to modify the ending of the surface form in order
to obtain the lemma (e.g.: code ‘2in’ for surface form ‘begun’ indicates that
the last two characters should be replaced by ‘in’, obtaining the lemma ‘be-
gin’). As result, suffixes of surface forms belonging to the same inflectional
class, though having different lemmas, may be factored out; for instance,
surface forms ‘loves’, ‘comes’ and ‘stores’ are all mapped to the same lexical
unit, 1.V:P3s, and their suffix ‘es’ is factored out. This technique allows
for a greater compression ratio than with tries for the case of inflectional
languages, such as English, French, and specially Spanish. However, the
addition and subtraction of dictionary words is no longer straightforward.
The Unitex platform provides a tool for the conversion of DELAF text
files into a compressed format, based on these minimal acyclic automata, and
uses the compressed format for retrieving the lexical units corresponding to
the surface forms in the texts to analyze. This format is described in Paumier
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(2008, sec. 12.8, p. 262). Following this description, we have programmed
a C++ compressed dictionary class which is able to interpret this format as
an automata for its application. The compressed dictionary file is loaded
as is, without requiring any reformatting as for the case of the text format
(e.g.: building a trie). As result, the time required for loading a compressed
dictionary is virtually imperceptible. As drawback, this format does not
support modifications on the dictionaries but only for the retrieval of lexical
units. Modifications are to be done on the text DELAF, which must be then
compressed again for its use.

The Unitex platform contains a set of DELAF dictionaries in compressed
format for several languages —freely distributed under the LGPL-LR license—
and a tool for converting DELAF text files into compressed ones.? However,
Unitex did not have a tool for reverting these dictionaries back to text for-
mat, hence these dictionaries could not be modified.”> Text dictionaries were
to be either downloaded, if available, or requested to the Unitex author. Fol-
lowing the routine for the serialization of a trie into a DELAF text file, we
also implemented a routine for the serialization of minimal acyclic automata,
that is, reverting compressed DELAFs back to the text format. In our case,
we primarily developed such routine for verifying the correctness of our com-
pressed dictionary implementation: compressing and decompressing back a
text dictionary should not introduce any changes.

4.3.3 Alternative implementations

Ciura and Deorowicz (2001) give an alternative algorithm for the optimal
construction of minimal acyclic finite-state automata. Daciuk et al. (2000)
give algorithms for the management of minimal acyclic finite-state automata
so that words can be added and subtracted directly on this compressed rep-
resentation; Carrasco and Forcada (2002) extend these algorithms in order
to support minimal finite-state automata with cycles. Daciuk et al. (2005)
implement dynamic perfect hashing with finite-state automata in order to
allow for a full minimisation of the dictionary, as well as to add new entries
to the compressed dictionary without having to decompress and compress it
again. Hash tables have been briefly discussed in section 2.7.6, p. 69. Dy-
namic perfect hashing is a particular kind of hashing which ensures that every

4The terms and conditions of the LGPL-LR license can be found in http://www.gnu.
org/licenses/gpl.html
5Unitex’s Uncompress tool is available since version 2.1
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indexed element is given a unique index, and that updates can be performed
efficiently. Moreover, minimal perfect hash functions ensure that indexes are
consecutive integer numbers (e.g.: each word of a dictionary considering n
words is mapped to a unique integer number between 0 and n — 1).

4.4 DELAF extensions

As stated before, parts-of-speech and inflectional features are more or less
fixed, depending on the language. We say ‘more or less fixed’ since one may
still add new parts-of-speech and inflectional features in order to deal with
special cases; for instance, one may consider the contracted form ’al’ (to
the) as two lexical units, preposition 'a’ (to) and determiner 'el’ (the), or
consider it as a single lexical unit with a special part-of-speech ‘preposition-
determiner’ (PREPDET in the Spanish DELAF). Be as it may be, lexical units
must be unique: the lemma coupled with the set of semantic features iden-
tify the use of the surface form, and together with the surface form and
inflectional features the lexical unit is uniquely identified; for instance, the
following extract of the English DELAF dictionary (Courtois, 2004) consists
in four entries describing four possible uses of word ‘lay’, and a total of 14
lexical units:

lay, .A

lay, .N:s

lay, . V:W:1Ps:2Ps:1Pp:2Pp:3Pp
lay,lie.V+I:1Is:2Is:3Is:1Ip:2Ip:3Ip

The uses are:

adjective (A) ‘lay’: non-specialist,
e noun (N) ‘lay’: romance,

e verb (V) ‘lay’, either infinitive (W) or present tense (P) and, in the latter
case, either in first (1) or second (2) person, singular (s), or in first (1),
second (2) or third (3), plural (p): place, put, prepare, etc.,

e intransitive (I) verb (V) ‘lie’, simple past tense (I), any person, any
number: to be or to stay at rest in a horizontal position.
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Whether to write one or more entries for the same surface form depends on
the level of granularity we want to achieve; if a particular application requires
to distinguish among nt meanings of a single entry, it suffices to create the
semantic classes that identify each meaning, and write a separate entry with
different semantic codes.

In contrast with the set of parts-of-speech, the set of semantic classes of a
DELAF dictionary is open: one is expected to add the semantic classes that
ease the definition of grammars for a particular application; for instance, we
have added semantic classes for pronouns and determiners depending on the
distance of the referred object:

e close to the speaker (D1): este, esta, estos, estas, etc. (this, these),
e close to the listener (D2): ese, esa, esos, esas, etc. (that, those), and

e far from both the speaker and the listener (D3): aquel, aquella, aquellos,
aquellas, etc. (also translated as ‘that” and ‘those’).

We have also defined the class of verbs for the transmission of messages,
Trans_msg (enviar, mandar, transmitir, comunicar, etc). When describing
the sentences requesting to send an SMS, it is only necessary to specify this
semantic class rather than the full verb list. Due to the amount of different
inflected forms of verbs in Spanish, this semantic class contains hundreds of
words.

It has to be noted that the first DELAF dictionary was written for French
(Courtois, 1990); writing DELAF dictionaries for other languages may re-
quire to adapt the DELAF formalism in order to cover other lexical phe-
nomena not present in French, such as enclitic pronouns in Spanish. These
pronouns appear attached to the end of verbs; for instance, ‘léemelo’ is com-
posed by verb ‘lee’ (read) and pronouns ‘me’ (to me) and ‘lo’ (it). We
have omitted every information concerning enclitic pronouns and treated the
Spanish DELAF as the French one since the coverage on enclitic pronouns
was quite incomplete. It has to be noted that enclitic pronouns are com-
monly used in Spanish when formulating requests, for instance ‘muéstrame
los juegos que tienes’ (show me the games you have). Treatment of these
forms is discussed in the next chapter.
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4.5 DELAF tools

In order to ease the analysis and extension of DELAF dictionaries, as well
as for normalizing the dictionary characters, we have developed a set of 3
DELAF tools we describe below.

4.5.1 Analysis

The first tool extracts every dictionary entry matching at least one dictionary-
based lexical mask of a given set of masks. These lexical masks are predicates
that apply on the properties of the lexical units, and will be the object of
chapter 6; for instance, lexical mask DET+D1:m can be used with this tool
in order to extract any determiner with distance D1 and gender masculine.
We have used the tool for verifying the dictionary coverage on subsets of
the language; for instance, we extracted the list of determiners and found
that the poetic forms were missing (‘aqueste’, ‘aquestos’; aquese, etc). Con-
versely, these tools can be used for verifying whether a lexical mask matches
the expected entries or not.

4.5.2 Extension

The second tool is a modified version of the first one: instead of extracting
the entries, it alters the set of semantic features of the matched entries. We
have used this tool for adding new semantic classes to the Spanish DELAF.
For instance, in order to add the semantic class ‘Trans_msg’ we have first
built a set of lexical masks matching every inflected form of the verbs for the
transmission of messages (587 entries, the ones corresponding to verbs with
a particular lemma); then, we have used this tool for adding the semantic
feature ‘Trans_msg’ to the matched entries. Special attention must be paid
here since an important amount of dictionary entries could be modified by
mistake. The first tool can be used here for verifying the lexical mask cor-
rectness. In case of mistake, this second tool can be also used for reverting
the changes, since it allows for both removing and adding semantic features.

4.5.3 Normalization

The third tool normalizes the dictionary characters, as explained in sec-
tion 3.4.2, p. 81. This tool also merges sets of dictionary entries when their
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normalization results in the same entry, except for their inflectional features;
for instance, entries for ‘I love’ and ‘he/she loved’

amo,amar.V:Pls

, become amo,amar.V:P1s:J3s,
amd ,amar.V:J3s

and so on for the same inflected forms of every regular verb of the first
conjugation.

4.6 Other electronic dictionaries

DELAS dictionaries are similar to DELAF ones, but rather than explicitly
specifying each inflected form and their corresponding lists of inflectional fea-
tures, only lemmas coupled with their semantic features are specified, and the
first semantic feature identifies both the part-of-speech and the inflectional
class the lemma belongs to (e.g.: N4 corresponds to the fourth inflectional
class of nouns).® The DELAS format is conceived for the construction and
maintenance of electronic dictionaries, and the DELAF for their use by com-
puter programs. Unitex is able to build the corresponding DELAF from a
DELAS dictionary and a formal description of the different inflectional mod-
els. Probably, it will be more efficient to add new semantic classes within
the DELAS dictionary and then generate the corresponding DELAF than
directly modify the DELAF with the tool we have presented. However, open-
source Spanish DELAS dictionaries are not available and, though possible,
it will be more difficult to implement a tool for reversing the DELAF-to-
DELAS transformation than implementing the tool we have proposed for
altering the DELAF dictionaries directly, which has proved to be enough for
our use case.

DELAC and DELACEF dictionaries are the equivalent to DELAS and DE-
LAF dictionaries but for compound words.” Currently, Unitex makes no dis-
tinction between simple and compound DELA formats, allowing to mix both
kind of forms in a single dictionary. References to the DELAS and DELAF
formalisms within the Unitex manual subsume the corresponding DELAC
and DELACF ones. In our case, we have strictly supported the original DE-
LAF format since the Spanish DELAF contains no compound words and,

SDELAS stands for (DELA de formes simples or simple forms)
"Letter ’C’ in DELAC and DELACEF stands for ‘composées’ or ‘compound’.
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anyway, our use case comprises only a few compound forms which we have
simply coded within the grammar rules (e.g.: ‘teléfono mduvil’ or ‘mobile
phone’). DELAF and DELAS descriptions including compound words can
be found in Paumier (2008, chap. 3, p. 49).

Though work on the Spanish DELA dictionaries has continued, newer
versions have been distributed only in binary format along with the Intex
system (Silberztein, 2004), and under a restrictive license forbidding their
free use by either private or public organizations (without the author’s con-
sent). Currently, Intex development has been discontinued in favor of NooJ
(Silberztein, 2003b), an evolved version of Intex. This evolution has also
affected the different DELA dictionary formats, which are now all integrated
within a single format (Silberztein, 2005b). Newer versions of the Spanish
DELA are being distributed in NooJ’s binary format and under the same
terms than with the Intex system.

Apart from compound words, there exist other linguistic objects formed
by multiple words and susceptible to be regarded as lexical units, such as
complex terms and named entities. These linguistic objects, along with
compound words, are all referred under the term multi-word lexical unit
(MWLU), and may present and important degree of flexibility broader than
simple inflection (e.g.: birth date/date of birth, hereditary disease/genetic
disease, etc.). Rather than giving support to compound words only, we may
rather consider more general frameworks supporting any kind of multi-word
units. Currently, there exist a multiplicity of such frameworks (Savary, 2008);
in particular, Multiflex is a formalism and a tool that copes with the flexi-
bility and idiosyncrasy of multi-word units (Savary, 2009). Unitex includes
a Multiflex version (see Paumier, 2008, chap. 10, p. 193), which is being
distributed along with Unitex under GNU’s LGPL license.®

Other Spanish dictionaries are being freely distributed under GNU’s GPL
license, along with the Apertium system.’ These dictionaries follow the XML
format described in Forcada et al. (2010, sec. 3.1.2, p. 20), and can be eas-
ily reformatted in order to convey the DELAF specification. Apart from
monolingual dictionaries, Apertium includes other kind of dictionaries for
the automatic translation between language pairs.

8The terms and conditions of GNU’s LGPL license can be found in http://www.gnu.
org/copyleft/lesser.html

9The terms and conditions of GNU’s GPL license can be found in http://www.gnu.
org/licenses/gpl.html
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Chapter 5

Tokenization

Tokenization, or text segmentation, is the process by which character se-
quences are split into tokens or information units, which must correspond in
some way with the words described in the lexicon (the DELAF dictionaries,
in our case). In natural language processing (NLP), it makes more sense
to consider words and symbols as information units rather than characters
alone. Tokenization is the first stage of our NLP engine, and usually of any
natural language processor. Since we are rather interested in the optimization
of the algorithms of application of local grammars, the tokenization process
we have implemented is very simple, yet enough for our use case. This pro-
cess is a simplified version of the one followed by the Unitex (Paumier, 2008,
sec. 2.5.4, p. 43) and Outilex (Blanc and Constant, 2006b, sec. 6.1, p. 23)
systems, with some particular implementation features for better accommo-
dating our use case. We describe the basic tokenization rules in 5.1, and its
implementation in section 5.2. We briefly discuss the problem of lexical ambi-
guity (as for definition 13, p. 86), and how we have treated it in section 5.3.
Furthermore, we shortly describe in section 5.3.2 the mechanism followed
by the Unitex and Outilex systems for the representation and resolution of
lexical ambiguity.

As stated before, this chapter does not intend to give a comprehensive
view on lexical processing (indeed, tokenization is only a part of lexical pro-
cessing). An alternative open-source lexical processor to the ones found in
the Unitex and Outilex systems can be found in the Apertium system (see
Forcada et al., 2010, chap. 3, p. 17). Opposite to Unitex, Apertium in-
cludes a particular treatment of Spanish enclitic pronouns; it must be noted
that, while the first treated languages by the Unitex system were French and

97
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English, the first ones treated in Apertium were Spanish and several other
languages that are also spoken in Spain, such as Catalan. As well, while
Unitex’s approach is rather conservative (upon unresolved ambiguity, every
interpretation is presumably accepted), Apertium’s approach is rather selec-
tive: the most likely translation between pairs of languages is to be returned
instead of the set of every possible translation; as result, Apertium includes
a part-of-speech tagger based on statistical data, which is neither present in
Unitex. It must be noted that, while Apertium’s objective is the automatic
translation between pairs of languages, Unitex is a tool for language analysis
and information extraction.

Treatment of non-catenative (e.g. Arabic) and agglutinative languages
(e.g. Basque, Korean, etc.) is more complex and beyond the scope of this
work. Up to now, Apertium’s treatment of such languages is a known limita-
tion (Forcada et al., 2009). As a particular case, Unitex includes a tokenizer
an a tagger for Korean texts (see Paumier, 2008, sec. 7.7, p. 174) which were
conceived and developed by Huh (2005).

5.1 Description

The tokenization rules we have followed are similar to the ones of the Unitex
and Outilex systems:

e we distinguish between word tokens and symbol tokens, where word
tokens are sequences of letter characters, and symbol tokens are single
symbol characters;

e word tokens are separated from adjacent word tokens by one or more
blank characters,’

e symbol tokens may or may not be blank-separated from other tokens,
and

e blanks are not tokens but token separators.

Following these rules, multi-words such as ‘tedrico-prdctico’ (theoretical /prac-
tical) are segmented into multiple tokens, and attached words such as ‘en-
viamelo’ are segmented as single tokens (envia + me + lo = send -+ to/for

IBlank characters have been described in section 3.1, p. 76
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me + it). Hence, tokens correspond to surface forms of lexical units of simple
words only. Blank characters are not considered tokens but token separators,
and symbols are segmented as single tokens.

5.2 Implementation

We build a linked list of token structures, where each structure is composed
by two pointers and an integer; the pointers delimit the token within the
input character sequence, an the integer identifies the token type. As for
Intex, Unitex and Outilex, we identify the following token types, based on
their character types:

e symbol,

e digit symbol,

e punctuation symbol,

e neither digit or punctuation symbol (defined implicitly),

e word,

e uppercase word,

e lowercase word,

e proper noun word (first letter uppercase, the others lowercase), and

e neither uppercase, lowercase or proper noun word (defined implicitly).

Note that some token types subsume others (e.g.: ‘symbol” subsumes all the
other symbol types), while others are mutually exclusive (e.g.: ‘symbol” and
‘word’). Bitwise identifiers allow for an efficient representation and compar-
ison of token type identifiers: one bit codes whether the type is ‘symbol’ or
‘word’, and two other bits code the ‘symbol’” and ‘word’ subtypes.

During the tokenization process, we do not only check whether the char-
acters are either letters, symbols or blanks, but also whether they are digit,
punctuation or other kind of symbols, and whether they are uppercase or
lowercase letters. The character type is determined by means of a look-up
table. This way, we efficiently compute the type of the next input token while
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searching for its rightmost character. Higher levels of treatment deal with
the token sequence rather than with raw characters. Since blanks are not
tokens, blanks are implicitly omitted while iterating over the token sequence;
the presence of blanks between two tokens can yet be detected by checking
whether the tokens share one bound or not.

The Unitex and Outilex platforms perform some text normalization be-
fore tokenizing it, which includes replacing blank sequences by single blanks.
The tokenization result is written into a file in some text format, then this file
is read by higher levels of treatment. This procedure is appropriate for the
linguistic study of texts, where different grammars are to be applied to the
same text and partial results are to be examined. In our case, the same gram-
mar is to be concurrently applied a single time to each user sentence as they
are received, and only the final result is to be returned; hence, tokenization
and any text normalization is to be performed on the fly.

Since our NLP engine is to be invoked for the analysis of single sentences
(instant messaging communication is sentence-based), we do not implement
any procedure for the segmentation of texts into sentences. Intex, Unitex
and Outilex insert sentence delimiter tags by applying a RTN with output.
Since our NLP engine also supports such kind of RTNs, the same sentence
segmentation procedure could be easily implemented, if required.

More information on the particular text preprocessing, tokenization and
segmentation into sentences carried out by Unitex can be found in Paumier
(2008, sec. 2.5, p. 37), by Outilex in Blanc and Constant (2006b, chap. 6,
p. 23), and by Intex in Silberztein (2004, chap. 10, p. 97).

5.3 Treating lexical ambiguity

Whether the same token may have different interpretations is trivially taken
into account while applying the grammar: if the grammar requires the next
token to be a verb, and one of the token interpretations corresponds to a verb,
the token is assumed to be a verb; moreover, multiple grammar rules to be
applied on the same token but having incompatible requirements will all be
followed as long as the token has at least the same amount of interpretations,
each one complying with the requirements of one of the rules.

Lexical ambiguity is rather treated at sentence level than at token level:
every possible sentence interpretation is efficiently computed in some com-
pressed format, factoring out common parts, then only the one derived from
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the application of the most precise grammar rules is decompressed and re-
turned. The exact procedure is based on weighted RTNs and FPRTNs,
and will be explained in chapter 18. This procedure is new to Intex, Uni-
tex and Outilex systems: Intex and Unitex do not support weighted RTNs,
and Outilex’s algorithm of application of weighted RTNs has an exponential
worst-case cost rather than polynomial, as we have managed thanks to the
use of FPRTNs; moreover, Outilex does not provide a mechanism for the
automatic definition of grammar weights, though the one we have used is
not hard to implement.

5.3.1 Multiple segmentations

Multiwords may give rise to multiple segmentations: for instance, ‘cinturon
negro’ (black belt) may correspond to either two lexical units (a belt that is
black) or to a single one (a master degree in martial arts). Though Spanish is
not an agglutinative language, enclitic pronouns attached to verbs are very
common. Such forms also give rise to multiple segmentation possibilities,
though this is not very frequent: for instance, ‘ddte + lo’ (date it) and ‘dd
+ te + lo’ (give it to yourself), ‘correos’ (post office) and ‘corre + os’ (move
over [you all]), ‘pésame’ (condolences) and ‘pésa + me’ (weight [the oranges|
for me), etc. More common cases appear when omitting diacritic marks,
such as ‘tomate’ (tomato) and ‘toma + te’ (have yourself |a drink/some
vacation/etc.|), and ‘leales’ (plural of loyal) and ‘léa + les’ (read them [their
rights]). As in French, there exist a few contracted words, but they are not
ambiguous: for instance, ‘al = a + el’ (to the, ‘au = 4 + le’ in French)
and ‘del = de + el’ (of the, ‘des = de + les’ in French). Since our use
case comprises only a few multiwords, attached words and contractions, we
have simply coded them inside the grammar rules: multiwords are coded as
sequences of lexical units, and contractions and attached words are treated
as single lexical units.

5.3.2 Text automata and ELAG grammars

Intex, Unitex and Outilex platforms perform a second tokenization level
based on the application of electronic dictionaries. This procedure could
also be applied in our case in order to build a structure of lexical units rather
than a simple token sequence. They build what they call a text automaton:
an acyclic FSA recognizing every possible sequence of interpretations of the



102 CHAPTER 5. TOKENIZATION
este, .DET:ms
envia,enviar.V:P3s:Y2s me, . PRON*+od: este, .N:ms
me, .PRON+o1i:
este, .PRON:ms @
me , . PRON+SE v

este,estar.V:S1s:S3s7Y3s

a:PREP

SMS, .N:ms
el, .DET :ms

movil, .A:ms:fs
telefono, .N:ms

497)__movil, .N:ms
telefono movil, .N:ms

(@0)- 209>

Figure 5.1: Text automaton illustrating the lexical ambiguities of sentence “en-
viame este SMS al teléfono movil 5557 (send |for me| this SMS to the mobile phone
555), with diacritic marks removed from both the sentence and the dictionary.

token sequence, taking into account multiple segmentation possibilities (see
figure 5.1 for an example). Though possible, attached words are not frag-
mented but unambiguous contractions are (au becomes a le), as part of a
text-preprocessing. As we stated before, these systems where first focused on
the treatment of French and English, which are even less agglutinative than
Spanish.

Unitex and Outilex systems can partially disambiguate the text automa-
ton by the application of ELAG grammars (Elimination of Lexical Ambigui-
ties by Grammars, Laporte and Monceaux, 2000). These grammars are to be
built manually by human experts rather than by some automated method,
and mainly consist in associations of input fragments with possible tagging
scenarios. Their application results in the removal of paths within the text
automaton that do not correspond to any tagging scenario; for instance, some
common words in both French and Spanish can be used both as determiners
and as pronouns, and their use can be distinguished by their right contexts:
they are determiners when preceding nouns, and pronouns when preceding
verbs (e.g.: in ‘la pintura, la vi’, meaning ‘the painting, I saw it’, the first
‘la’ is a determiner and the second one is a pronoun). Though the Apertium
system includes a part-of-speech tagger, it also allows to use simple ‘forbid’
rules for 2 part-of-speech sequences in order to improve the tagger results
(Forcada et al., 2010, sec. 3.2.1, p. 56).
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Unitex’s implementation of text automata and ELAG grammars is de-
scribed in Paumier (2008, sec. 7, p. 147), Outilex’s implementation in Blanc
(2006, sec. 2.7, p. 44) and Intex’s implementation in Silberztein (2004, sec. 14.1,
p. 153).






Chapter 6

Predicates and lexical masks

If one would define the machines representing the grammar of a natural lan-
guage on the alphabet of tokens of that language, grammar rules for specific
token sequences should be defined instead of being able to define general
rules accepting tokens complying with a set of lexical properties (e.g.: verbs,
nouns, etc.). Instead, we define an alphabet of predicates on the tokens so
that sets of tokens having common properties can be represented by means
of simple expressions. Specifying concrete tokens is still possible, allowing
for a wide range between general and particular grammar rules. This idea
was already proposed by van Noord and Gerdemann (2001) for the case of
finite-state machines. We limit ourselves to describe here the set of predi-
cates we have considered along with the codes used for representing them.
These predicates are a subset of the ones supported by Unitex (Paumier,
2008, sec. 4.3, p. 72), and their codes are based on Unitex’s FST2 format
(Paumier, 2008, sec. 12.3.2, p. 252). Some of them constitute very powerful
linguistic operators, allowing for referencing word classes depending on the
properties described in DELAF dictionaries (e.g.: any word belonging to a
set of semantic classes and having a set of inflectional features). A schematic
list of the predicates along with their codes can be found in appendix A
(p. 403).

6.1 Lexical masks

Definition 14 (Lexical mask). A lexical mask is a predicate applicable to the
tokens of a natural language, defining a subset of zero, one or more tokens by
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means of lexical criteria, that is, properties which only depend on the tokens
themselves. We say a lexical mask matches a token iff it is true for that
token; otherwise, we say it does not match the token.

Notice that there are predicates that are not lexical masks; for instance,
the e-predicates that will be presented in section 6.2 do not apply to tokens
but depend on the presence or absence of blanks between them, which are
not considered tokens.

6.1.1 Literal masks

Definition 15 (Literal mask). A literal mask is a lexical mask matching a
unique token, where character case may or may not be restricted.

Definition 16 (Lexicalization level). The lexicalization level of a grammar
15 a measure of dependence of grammar rules on specific tokens.

Usually, the lexicalization level is expressed as a qualitative measure (e.g.:
highly or strongly lexicalized). In our case, the lexicalization level of a gram-
mar depends on the proportion of literal masks w.r.t. other kind of predicates.

Due to the irregularities of natural languages, natural language gram-
mars cannot be defined as a set of general rules (Gross, 1997). Indeed,
syntax is usually conditioned upon the presence of particular tokens (Harris,
1951; Chomsky, 1965; Gross, 1996). Applications requiring the recognition
of properly written sentences, such as syntax validators and correctors, are
to use highly lexicalized grammars. The objective of the grammars we have
constructed for the MovistarBot use case is to detect the service the user
is requesting for (e.g.: to send an SMS, to download a game, etc.), and to
delimit the sentence segments corresponding to service arguments (e.g.: the
text of the SMS to send, the title of the game to download, etc.). These
grammars do not need to be strict and, indeed, we have tolerated some syn-
tax errors in benefit of grammar simplicity; for instance, we have defined a
grammar ‘catalog’ which recognizes several synonyms of catalog (e.g.: catdl-
0go, lista, repertorio, etc.), where some of them are masculine and others are
feminine, and we state that such words could be preceded by a determiner
but do not specify the proper determiner’s gender for each case (e.g.: we
do not only accept ‘el catdlogo’ and ‘la lista’ but also ‘“*la catdlogo’ and ‘“*el
lista’). However, we still require some level of lexicalization since, usually,
keywords determine what the user is talking about or asking for (e.g.: SMS,
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message, send). Moreover, contexts of unrestricted arguments also require
some lexicalization level (e.g.: the text of the SMS to send, or the title of the
game to download). The only way to properly delimit such arguments is by
elimination: once their left and right contexts are recognized, the argument
is what is left; for instance, in ‘envia el mensagje llego en 5 min al 555 (send
the message I arrive in 5 min to the 555), ‘envia el mensaje’ indicates that
a message is to be sent, and ‘al movil 555’ specifies the destination phone
number, thus ‘llego en 5 min’ is the message content. Fine descriptions of
such contexts are to be given so that they are not considered as part of the
unrestricted arguments; in the last example, segment ‘el mensaje’ is optional
(one could simply write ‘envia llego en 5 min al 555°) and must not be
recognized as part of the message to send.

Literal word masks

Definition 17 (Literal word mask). A literal word mask is a literal mask
which matches a unique word token and, in some cases, their case variations.

Definition 18 (Case-sensitive word mask). A case-sensitive word mask is
a literal word mask strictly matching the specified word token, without case
variations. We represent them as a ‘Q° symbol followed by the sequence
of characters that compose the word (e.g.: mask ‘QWORD’ matches token
‘WORD’ but not tokens ‘word’ or ‘Word)’.

Definition 19 (Case-insensitive word mask). A case-insensitive word mask
1s a literal word mask which also accepts case variations, and we represent
them as a ‘%’ symbol followed by the sequence of either uppercase or lowercase
characters that compose the word (e.g.: mask ‘%wOrD’ matches both tokens
‘word” and “WORD”’).

As a convention, every predicate code starts with either ‘%’ or ‘@’. For
the case of literal word masks, the use of one or other symbol determines
case sensitivity, and for the other cases there is no difference.

In most cases, the use of lowercase or uppercase letters does not alter the
meaning but is just a matter of formatting; for instance, the MovistarBot
considers equivalent the sentences ‘envia llego en 5 min al 555" and ‘ENVIA
LLEGO EN 5 MIN AL 555’. Proper nouns and abbreviations are an excep-
tion; for instance, ‘RAM’ is the random access memory of a computer, ‘Ram’
is the constellation or sign of Aries, and ‘ram’ has several other meanings,
such as the male of the sheep.
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Since our use case also requires the omission of diacritic marks, our case
insensitive word masks are also insensitive to diacritic marks. As stated in
section 3.4.2 (p. 81), we use a look-up table in order to retrieve the normalized
version of the token characters as they are compared to the case-insensitive
word masks, and these masks are normalized only once and then applied to
every received user sentence.

Literal symbol masks

Definition 20 (Literal symbol mask). A literal symbol mask is a literal
mask which only matches a specific symbol token. We represent literal-symbol
masks as a symbol ‘%’ or ‘Q’ followed by the symbol to match (e.g.: ‘QQ@’
matches token ‘Q’).

6.1.2 Token mask

Definition 21 (Token mask). We define the token mask as the lexical mask
matching any token, and we represent it as ‘%<TOKEN>’ or ‘Q<TO-
KEN>’.

Note that the code representing the token mask is composed by uppercase
letters. As a general rule, lexical mask codes are case sensitive, that is,
%<TOKEN>" and %<token>" do not represent the same lexical mask.

The purpose of the token mask is to match unrestricted or unknown
tokens and token sequences. We have used it for matching unrestricted ar-
guments, and it can also be used for the complementary case: the extraction
of well-known arguments from unrestricted texts; for instance, Laforest and
Badr (2003) use Intex-based automata for extracting very specific data from
a set of medical prescriptions written in natural language, namely the ill-
ness, drug, dose, dosage frequency and treatment duration (e.g.: influenza
A, Tamiflu, 75 mg, twice daily, 5 days). This information is latter input into
a structured database.!

!The author of this dissertation participated in the conception of the language of spec-
ification of extraction rules used in Laforest and Badr (2003) and in the implementation
of a translator of such rules to Intex automata.
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6.1.3 Character-class masks

Definition 22 (Character-class mask). A character-class mask is a lexical
mask which restricts only the type of the characters that compose the token.

Definition 23 (Word mask). We define the word mask as the character-
class mask that matches any word token (e.g.: aBc), and we represent it as
‘%<MOT>" or ‘Q<MOT>".2

Definition 24 (Symbol mask). We define the symbol mask as the character-
class mask matching any symbol token (e.g.: +), and we represent it as
“%<MOT>" or ‘@Q<IMOT>".

Note that the code representing the symbol mask is the same than for
the word mask but inserting the ‘I’ symbol right after ‘<’. As a general
rule, by inserting the ‘!” symbol we negate the lexical mask. However, for
different classes of lexical masks the negation is defined in a particular way.
Note that the negation of the token mask would match no token, hence it
makes no sense to define it: we simply do not define grammar rules matching
grammatically incorrect sequences.

Definition 25 (Digit mask). We define the digit mask as the character-class
mask that matches any digit (e.g.: 7), and we represent it as ‘%<NB>" or
‘Q<NB>"? and its negation as the mask matching any non-digit token (e.g.:
aBe, +, ?, etc.), and we represent it as ‘Y%<!NB>" or ‘Q<INB>".

Note that digit masks do not match numbers composed by several digits
or containing a decimal dot; each digit is considered a token, as well as the
decimal dot, and each application of a lexical mask matches a single token.

Definition 26 (Punctuation-symbol mask). We define the punctuation-sym-
bol mask as the character-class mask matching every punctuation symbol
(e.g.: ?), and we represent it as ‘%<PNC=>"* and its negation as the mask
matching any non-punctuation-symbol token (e.g.: +), and we represent it
as ‘%<IPNC>" or ‘Q<!PNC>".

2From French ‘mot’, which means ‘word’.
3From French ‘nombre’, which means ‘number’
4From French ‘ponctuation’, which means ‘punctuation’.
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Case-dependent word masks

Definition 27 (Case-dependent word mask). A case-dependent word mask
15 a character-class mask whose restrictions are uniquely based on the case
of the characters that compose the tokens.

Definition 28 (Negation of a case-dependent word masks). We define the
negation of a case-dependent mask m as the mask matching every word token
that m does not match.

Note that the negation of a case-dependent word mask does not match
symbol tokens.

Definition 29 (Uppercase-word mask). We define the uppercase-word mask
as the case-dependent word mask matching every word token whose letters are
all uppercase (e.g.: SMS), and we represent it as ‘Y%<MAJ>" or ‘Q<MAJ>’
and its negation as %<!MAJ>’ or ‘Q<IMAJ>’5

Definition 30 (Lowercase-word mask). We define the lowercase-word mask
as the case-dependent word mask matching every word token whose letters

are all lowercase (e.g.: message), and we represent it as ‘%<MIN>" or
‘@<MIN>’ and its negation as %<!MIN>’ or ‘Q<IMIN>".6

Definition 31 (Proper-noun mask). We define the proper-noun mask as the
case-dependent word mask matching every word whose first letter is uppercase
and the others lowercase (e.g.: Chomsky), and we represent it as ‘%<PRE>"’
or ‘Q<PRE>’ and its negation as %<!PRE>" or ‘@Q<!PRE>".7

As stated in section 5.2 (p. 99), token types are computed during the
tokenization process. The evaluation of character class masks is reduced to
a bitwise comparison between the identifiers of the required token type and
the next token type.

6.1.4 Dictionary-based masks

We have also added support for Unitex’s dictionary-based lexical masks,
which in turn are the same than the ones of the Intex system. These masks

5From French ‘majuscule’, which means ‘uppercase’.
5From French ‘minuscule’, which means ‘lowercase’.
"From French ‘prénom’, which means ‘proper noun’ or ‘first name’.



6.1. LEXICAL MASKS 111

define subsets of the words of a DELAF dictionary —except the unknown-
word mask, which we define below— usually depending on the properties
considered in the dictionary.®

Definition 32 (Dictionary-word mask). A dictionary-word mask is a lexi-
cal mask that matches word tokens depending on criteria based on the data
contained in a dictionary.

Definition 33 (Known-word mask). We define the known-word mask as the
dictionary-word mask matching every word that belongs to the dictionary,
and we represent it as ‘%<DIC>’ or ‘Q<DIC> "

Definition 34 (Unknown-word mask). We define the unknown-word mask
as the dictionary-word mask matching every word that does not belong to the
dictionary, and we represent it as ‘%<!DIC>" or ‘Q<!DIC>".

Note that the unknown-word mask does not match symbol tokens. This
mask may be used for testing the dictionary coverage and for searching for
new dictionary-word candidates.

Definition 35 (Constrained dictionary-word mask). A constrained dictio-
nary-word mask s dictionary-word mask matching the subset of dictionary
words holding a given set of properties, which are to be specified in the dic-
tionary (e.g.: being a verb in present tense).

Definition 36 (Lemma mask). A lemma mask is a constrained dictionary-
word mask matching every dictionary word having the specified word as lemma,
and we represent it as either ‘%<lemma>’or ‘Q<lemma>’, where ‘lemma’
s the lemma in lowercase letters.

As for the case-insensitive masks, every grammar’s lemma mask is normal-
ized before applying the grammar in order to match the normalized lemmas
within the dictionary. In general, any lemma specified within any kind of
dictionary-word mask is normalized.

Definition 37 (Semantic-feature mask). A semantic-feature mask is a con-
strained dictionary-word mask matching every dictionary word belonging to a
set of mandatory semantic classes and not belonging to a set of forbidden se-
mantic classes, and we represent them as ‘[%Q@] <[+—]?7 Sem; [+—]Semsy

8DELATF dictionaries have been described in chapter 4, p. 83.
9From French ‘dictionnaire’, which means ‘dictionary’.
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[+—]...[+—] Sem,>", where [%Q] stands for either symbol ‘%’ or ‘Q’,
‘Sem; ...Sem,, ‘ are a sequence of n > 1 semantic codes, ‘[+—|" stands for
either a ‘+’ or ‘=7 symbol indicating whether the following semantic code
refers to a mandatory or forbidden semantic class, respectively, and ‘[+—]7’
stands for an optional specification of this symbol, by default ‘+’; for in-
stance, masks ‘<N+Hum>’, ‘“<—Hum+N>"and ‘<—N—Hum>"match ev-
ery human noun, every non-human noun and every non-noun non-human
word, respectively.

Definition 38 (Lemma and semantic-feature mask). A lemma and semantic-
feature mask is a constrained dictionary-word mask both restricting the in-
flectional and semantic classes of dictionary words, and we represent them as
‘(%Q@]<lemma.<[+—]? Sem; [+—] Semy [+—] ... [+—] Sem,, >, that is, as for
both the lemma and semantic-feature masks but first specifying the lemma,
then a dot, then the sequence of either mandatory or forbidden semantic
classes.

Note that ‘<hum>’ denotes a lemma mask while ‘Hum>’ denotes a
semantic-feature mask. Note also that lexical units belong to a unique part-
of-speech class (part-of-speech classes are disjoint), hence it only makes sense
to either specify a unique mandatory part-of-speech or one or more forbidden
parts-of-speech.

Definition 39 (Possible-inflectional-features mask). A possible-inflection-
al-features mask is a constrained dictionary-word mask matching every dic-
tionary word having all of the inflectional features represented by at least one
of the specified sequences of inflectional codes; we represent the possible in-
flectional features as a colon-separated list of sequences of inflectional codes
(e.g.: ‘ms:mp’ for masculine singular or masculine plural, which would be
equivalent to ‘m’ since every number is accepted). Since inflection depends
on the part-of-speech, masks restricting the inflected form alone are not to
be defined but both restricting the part-of-speech and the inflected form, and
possibly other semantic classes as well as the inflection class, and we repre-
sent them as either the semantic-features mask or the lemma and semantic-
features mask but inserting a colon after the semantic-features specification
followed by the list of possible inflectional-features list.

For instance, mask ‘%< V+Trans msg:Y2:Y3>" matches 40 words that
can be used for ordering the MovistarBot (Y = imperative) to send an SMS
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(e.g.: envia, envie, enviad, envien, manda, mande, mandad, manden, etc).'°.
Mask ‘% <enviar. V+Trans_msg: Y2:Y3>" matches the subset corresponding
to inflected forms of verb ‘enviar’.

Definition 40 (Negation of constrained dictionary-word masks). The ne-
gated form of a constrained dictionary-word mask matches every dictionary
word not matched by the original mask; we negate a dictionary mask by
inserting symbol ‘!” after symbol ‘<’ (e.g.: “%<!V>"matches any dictionary
word that is not a verb).

Note that the negation of a constrained dictionary-word mask does not
match unknown words.

The implementation of such masks consists in searching the next input
token within the DELAF, either for verifying its presence or absence (case of
known and unknown word masks) or for verifying the presence of a use of the
token whose properties comply with a set of restrictions (case of constrained
dictionary-word masks).

6.2 e-predicates

Definition 41 (e-predicate). An e-predicate is a predicate that applies to the
space between two tokens.

Some grammar rules are to be applied right before the next token to be
analysed. In other words, such rules apply on the emptiness between the last
analysed token and the next one. This emptyness is usually represented by
the empty symbol, €. Usually, such emptiness has no associated properties
which could be evaluated in order to decide whether the rules are to accept
or reject it, hence the emptiness is always accepted. In our case, the space
between consecutive word tokens must contain at least one blank character,
and the space before and after symbol tokens may be either empty or contain
one or more blank characters. In some exceptional cases, the presence or
absence of blank characters is to be taken into account; for instance, in
French, sequence ‘1,2” without blanks represents a real number, while ‘1,2’
with a blank is a sequence composed by two numbers. In the MovistarBot

10Tn Spanish, we address somebody using the third person instead of the second one in
order to show respect, courtesy or distance.
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use case (section 1.2, p. 6), request sentences may also follow a command-
like syntax, that is, a word command followed by a blank-separated list of
arguments where arguments are not to contain blanks in some cases; for
instance, one can request to send an SMS as follows:

sms phone message

where at least one blank character must appear before and after phone, phone
is a sequence of digit symbols without blanks between them, and message is
any sequence of tokens, either blank-separated or not. This situation leads to
the definition of different kinds of e-predicates depending on whether tokens
are blank-separated or not.

Definition 42 (Blank-insensitive e-predicate). We define the blank-insensi-
tive e-predicate as the e-predicate that always evaluates true, independently
of the presence of absence of blanks between the last analysed token and the
next one, and we represent it with code ‘“%o<E>"or ‘Q<E>".

Definition 43 (Blank-sensitive e-predicates). Blank-sensitive e-predicates
are those who may or may not be true depending on the presence or absence
of blanks between the last analysed token and the next one.

Definition 44 (Mandatory-blank e-predicate). We define the mandatory-
blank -predicate as the blank-sensitive e-predicate that evaluates true iff the
next token is blank-separated, and we represent it with code ‘%\U’ or ‘Q\LJ”,
where ‘L7 represents a white space.

Definition 45 (Forbidden-blank e-predicate). We define the forbidden-blank
e-predicate as the blank-sensitive e-predicate that evaluates true iff the next
token is not blank-separated, and we represent it with code ‘%#’ or ‘Q#".

As stated in section 5.2 (p. 99), the evaluation of these predicates consists
in verifying whether the pointer to the right bound of the last analysed token
and the pointer to the left bound of the next input token are equal or not.

These e-predicates are usually enough for natural language processing.
If necessary, one may define more fine-grained e-predicates which would, for
instance, take into account the amount and type of blank characters between
tokens. For instance, programming languages usually mark the start and
end of instruction blocks with start /end pairs of keywords (open/closed curly
brackets in C, C++ and Java, pairs if/fi, do/done, case/esac in Unix/Linux
shell scripts, etc), but in Python the start and end of a block is given by
the length of instruction indentation (number of consecutive blanks at the
beginning of the instruction line).
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6.3 Supporting predicates

A grammar’s application usually consists in keeping trace of a set of live
grammar rules (some representation of grammar rules that have being par-
tially applied to an input segment, depending on the algorithm of application
of the grammar); the grammar must define an initial set of rules, which is
used for building the initial set of live rules, and for each input token a new
set is computed depending on the previous set and the next input token.
Each live grammar rule imposes some restrictions on the next input token,
which are expressed as lexical masks and e-predicates in our case. In order
to compute the next set of live grammar rules, the set of next lexical masks
by the current set of live rules must be searched for the ones matching the
next input token (in our case, to search for the transitions outgoing from the
current states and whose labels match the next input token). In case the
grammars were defined on an alphabet of letters rather than of predicates,
the set of live grammar rules is to be searched in order to find the ones whose
next letters are equal to the next input letter. The next-letter sets could be
stored in some binary-search structure, such as the ones presented in chap-
ter 2, so that the ones equal to the next input letter could be efficiently found.
However, it is not possible to define a lexical mask ordering in order to guide
a binary search depending on the next input token and the result of the last
mask evaluation; for instance, let % <A > (is adjective), %<N> (is noun) and
%< V> (is verb) be the current candidate predicates, and predicate %<N>
be the first one to be evaluated, whether the next token is a noun word or
not does imply whether the same token may or may not be a verb or an ad-
jective (e.g.: ‘love’ can either be a noun or a verb, while ‘orange’ can either
be a noun or an adjective); hence, all the candidate lexical masks must be
systematically evaluated. While a binary search has a logarithmic cost, the
systematic search has a cost proportional to the number of lexical masks to
evaluate. However, if such number is small, the efficiency loss is insignificant;
this is the case of the MovistarBot grammar, with an average of 2.3 outgoing
transitions per state.

6.4 Assigning priorities to lexical masks

During the first stages of a grammar’s development, one may define general
rules (in our case, transitions labeled with lexical masks) in order to cover a
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great number of cases, and later add more specific rules for well-known cases
which may overlap with the general cases. Rule overlapping leads to multiple
sentence interpretations. A good heuristic for choosing a single one is the
overall specificity level of the sequence of rules that led to each interpretation
(in our case, the sequence of transitions whose lexical masks recognized the
entire sentence).

We have shortened lexical masks depending on the cardinality of the set
of tokens matched by each one, from the most general (the token mask) to
the most specific (case insensitive masks), and assigned a default weight for
each case we have distinguished (see table 6.1). We have implemented a rou-
tine that automatically assigns the corresponding weights to grammar rules
(transitions of recursive transition networks with weight and string output)
depending on the specificity of their lexical masks. Rules that are not labeled
with lexical masks (e-predicate rules) are given a zero weight by default. We
interpret weights as scores: the highest the specificity, the highest the score.
Note that mask %<TOKEN > is given a null score: recognizing tokens with-
out any restrictions does not increase or decrease the interpretation score.

The main achievement of this procedure has been to successfully deal
with ambiguous sentences due to unrestricted arguments in the middle, such
the text of the message that is requested to be sent by sentence ‘envia el SMS
Feliz Navidad al movil 555’ (send the SMS Merry Christmas to the mobile
555). One of the general grammar rules allows for simply writing ‘envia Feliz
Navidad’ in order to ask for sending the SMS ‘Feliz Navidad’, without either
specifying any phone number (the MovistarBot would then ask for it) or the
fact that what we want to send is an SMS. Consequently, this rule recognizes
‘el SMS’ and ‘al movil 555’ as part of the message to send. However, the
general rule will use the token mask in order to recognize those sentence
segments, while the more specific rule will use literal masks, which are given
higher scores. Other rule recognizes the case in which the user delimits the
text of the message by means of quotes, in which case the quotes are neither
interpreted as part of the message since they are also recognized by means
of literal masks.

Grammar rules that are already given a weight are not touched by the
weight assignment procedure, hence it is possible to define custom weights
for specific grammar rules by hand. At a certain time, Telefonica requested a
fast implementation of a grammar for the recognition of sentences requesting
to send an MMS, based on the mere detection of keyword ‘MMS’. However,
we had already defined other more specific grammars that interpreted MMS
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Mask Cardinality Weight
%<TOKEN > 00 0
%<INB> oo but subset of %<TO- |1
KEN>

%<'PNC> oo but less than %<INB> | 2

%<MOT> oo but subset of %<!NB> | 3
and %<!PNC>

%<!DIC> oo but subset of %<MOT> | 4

%<!'PRE> oo but subset of %<MOT> | 5
and less than %<!DIC>

%<MAJ> oo but less than %<!PRE> | 6

%<IMIN> oo but uppercase is less fre- | 7
quent than lowercase

%<MIN > oo but subset of %<!MAJ> | 8
and less than %<!MIN >

Y%<MAJ> oo but subset of %<!MIN> | 9
and uppercase is less fre-
quent than lowercase

%<PRE> oo but less than %<MAJ> | 10
and %<MIN>

%<DIC> equal to the dictionary size | 11

constrained dictionary-word mask | less than or equal to the dic- | 11
tionary size

%<!MOT> equal to the cardinality of | 12
the set of symbol tokens,
less than %<DIC> for nat-
ural languages

%<NB> 10 (decimal system) 13

case-insensitive word mask 2lvl for word w, though less | 14
than %<NB> in practice

literal symbol mask 1 among the set of symbol | 15
tokens

case-sensitive word mask 1 among the set of word to- | 16

kens, which is greater than
the set of symbol tokens

Figure 6.1: Default weights assigned to lexical masks.
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requests as other kind of requests, hence the MMS requests were misinter-
preted in some cases (e.g.: ‘quiero enviar un MMS al 555’ was recognized as
‘I want to send the SMS un MMS to the phone number 555’). This situation
was solved by assigning by hand to the MMS grammar a weight higher than
those automatically assigned to the other grammars.



Part 11

Finite-state machines
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Chapter 7

Finite-state machines

We give in this section the common definitions, properties and algorithms for
every machine used along this dissertation. The definition of FSM is too gen-
eral to be directly applied as a machine, but is intended to be further refined
in order to briefly define the concrete machines in the subsequent chapters.
This definition is very similar to the usual definition of non-deterministic
FSA (NFA) but leaving undefined the set of transition labels rather than be-
ing equal to the set of input symbols ¥ plus the empty symbol, and defining
both the input alphabet and the set of transition labels as either finite or
potentially infinite; the latter is required in order to consider machines whose
transition labels are taken from a potentially infinite alphabet of words or
predicates on words, such as the set of lexical masks presented in chapter 6.
As stated in van Noord and Gerdemann (2001), predicate alphabets do not
need to be explicitly defined —the rules for the construction of predicate
expressions are to be explicitly defined instead— and, consequently, such
alphabets do not need to be finite. Moreover, van Noord and Gerdemann
(2001, sec. 1.1, p. 2) explicitly state that “robust syntactic parsing requires
an infinite alphabet”.

Definition 46 (Finite-state machine). In general, finite-state machines (FSMs)
are structures composed of, at least, the following 6 elements:

o Q={q,q, --,qq|-1}, o finite set of states (SS),

We assume that a word is any sequence of letters, though in practice grammars are to
consider only a finite set of words since grammars are to be finite descriptions of language
structures (hence the expression ‘potentially infinite’).

121
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o X = {00,01,...,0x-1}, an either finite or potentially infinite input
alphabet,

o = = {&,&,....&z-1}, an either finite or potentially infinite set of
transition labels,

e §:Q xXZ — P(Q) a finite and partial transition function where P(-)

represents the set of all subsets of a given set,
e Q; C Q is the set of initial states and
o [ C () the set of final or acceptance states.

The particular definition of the set of transition labels depends on the kind of
particular machine.

Definition 47 (Letter FSM). A letter FSM is a FSM whose alphabet is
a finite set of letters, words or symbols rather than predicates, and whose
transition labels are taken from such alphabet, except for the empty symbol.

This definition corresponds to a generalization of the definition of letter
transducer given by Roche and Schabes (1997, p. 14).

For the simplest incarnation of FSM, letter FSAs, transitions labeled with
an input symbol can be traversed by consuming the next input symbol when
both symbols are equal, and transitions labeled with the empty symbol can be
traversed without input consumption. We will present FSAs as a particular
case of this FSM definition in chapter 8 (p. 161).

Definition 48 (Lexical FSM). A lezical FSM is a FSM whose transition
labels are lexical masks and e-predicates with, possibly, other extensions.?.

This definition is a generalization of the definitions of lexical automaton
and decorated lexical RTN given in Blanc (2006, chaps. 2 & 4, pp. 13 &
112). Such RTNs are extended with unification processes and their labels
are decorated with equations on feature structures.

Most of the theory on FSMs we will present does not depend on the exact
mechanism for the evaluation of transition labels, but on whether transitions
are taken or not and, therefore, the same theory applies to both letter or
lexical FSMs. For the sake of simplicity, we will present this theory for

2Lexical masks and e-predicates have been described in chapter 6, p. 105
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the case of letter FSMs, and discuss the differences w.r.t. the case of lexical
F'SMs whenever they are not obvious. The grammars we have built for the
MovistarBot use case (sec. 1.2, p. 6) are a kind of lexical RTNs.

Definition 49 (Null element). In general, we explicitly represent an illegal,
invalid or undefined result of an operation as L, the null element.

For instance, given a state ¢ of a FSM and a transition label &, we ex-
plicitly represent the lack of transitions from ¢, with label £, as (¢, &) = L.
Notice that there is a difference between the null element and the neutral or
identity element: given a binary operator - and two operands a and b, if b is
the identity element of - then a - b = a, but if b is the null element then the
result is 1, that is, undefined.

7.1 Transitions

Definition 50 (Transition). We represent a transition of a FSM as a triplet
(gs,&,q:) € (Q X 2 x Q) where ¢ € 0(qs,&). We call g5 and q; the source
and target states of the transition, respectively, and & the transition label.
Transitions, also called moves or jumps, represent the possibility of changing
the state of the machine from a source state to a target state depending on
the predicate or condition expressed by the & label and the current context of
execution of the machine, and to perform some other arbitrary actions which
will further modify the current context of execution.

The context of execution of a machine is a generalization of the state
in which a machine can be during its application; for instance, the context
of execution of an augmented transition network, or ATN (Woods, 1969),
includes a set of registers which may be modified by additional actions asso-
ciated to transitions, and whose value may condition the transition traversal.
A formal definition of execution context or ezecution state will be given in
section 7.6.

Definition 51 (Consuming transition). A consuming transition is a transi-
tion conditioned upon the current input symbol and which triggers the con-
sumption of the symbol (to advance the input pointer up to the next symbol)
whenever the transition s traversed.
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Definition 52 (Pure consuming transition). A pure consuming transition is
a consuming transition not associating any other condition or action to its
traversal than the sole consumption of an input symbol.

A non-pure consume transition would be, for instance, a consuming tran-
sition that also generates output.

Definition 53 (e-transition). An e-transition is a transition whose predicate
requires no symbol to be consumed. We explicitly represent the absence of
symbol or empty symbol as .

Transitions whose predicates hold independently of the current context
effectively represent the possibility of being in several states at the same time.
This is the case of e-transitions for several machines, for instance FSAs, FSTs
and RTNs. Other machines may consider other conditions to be taken into
account which prevent the transition from being traversed for some execution
contexts, even when no input symbol is required to be consumed; for instance,
e-transitions of machines extended with unification may require to unify two
feature structures, and the traversal of such transition will not be possible if
the feature structures to unify are incompatible. Unification machines will
be the object of chapter 19.

Definition 54 (Pure e-transition). A pure e-transition is an e-transition not
associating any condition or action to its traversal.

Definition 55 (Outgoing and incoming transitions). Given a transition
t = (g5,&,q), we say that t is an outgoing transition from state qs; and
an incoming transition into state q;.

7.2 Graphical representation

The classic representation of FSMs consists in a set of labeled circles and
labeled arrows between the circles, the former representing states and the
latter transitions (see figure 7.1(b)). Double-border circles represent accep-
tance states (e.g.: state gg of figure 7.1(b)), and initial states are pointed to
by an arrow coming from nowhere (e.g.: state gy of figure 7.1(b)).

3Some authors use different symbols in order to represent the empty symbol and the
empty string; for instance, Ortiz-Rojas et al. (2005) represent the former as 6 and the
latter as €. We choose here to make no distinction in order to alleviate the notation.
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Intex, Unitex and Outilex use another kind of representation they call
graph, and which was conceived for facilitating the manual construction and
maintenance of local grammars.* This is the representation we have used for
the construction of the MovistarBot grammars.® Graphs basically consist in
a set of linked boxes, where boxes correspond to transitions and links cor-
respond to states. Each box represents a set of transitions, one transition
per box line, which is shared among every pair of states represented by an
incoming and an outgoing link (e.g.: box ‘<TOKEN>’ of figure 7.1(a) cor-
responds to the 4 ‘%<TOKEN >’ transitions of figure 7.1(b)). Start symbols
‘Q” and ‘%’ of lexical masks within boxes are not specified: case-sensitive
masks are to be quoted, and case-insensitive masks are not. Moreover, a box
entry may contain a sequence of lexical masks rather than a single one, in
which case represents an alternating sequence of transitions and states rather
than a simple transition (e.g.: a box entry ‘"Feliz Navidad"’ represents two
case-sensitive masks which are to be applied in that order). The direction of
the transitions represented by a box is given by a triangular arrowhead at-
tached to one side of the box. Graphs are meant to be read in the text sense,
which depends on the language (e.g.: left-to-right in English, right-to-left in
Arabic, etc.), thus the arrowhead is always attached to the same side of the
boxes. Links between boxes do not carry state labels: state labels are not
to be explicitly defined since they have no impact in the represented gram-
mar. Graphs define a unique initial state represented by a link connected to
a single box. To make the initial state more explicit, an empty box (a box
having only the arrowhead) is inserted right after the link, though this is not
necessary; indeed, boxes having a single entry ‘<E>’ (the blank-insensitive
e-predicate) are drawn as a triangle alone. Links representing acceptance
states are those connected to the circle with a square inside (see the right-
most box of figure 7.1(a)). Finally, graphs can be commented as for the case
of source code (e.g.: see greyed text of figure 7.1(a)); labels of unlinked boxes
are treated as comments, and their frames are not drawn. More information
on Intex graphs can be found in Silberztein (2004, chap. 5-8), on Unitex
graphs in Paumier (2008, chap. 5-6), and on Outilex graphs in Blanc and
Constant (2006b, chap. 4).

“In the context of mathematics, a graph is a set of elements (vertices) coupled with a
set of edges which connect pairs of elements; though the graphs presented here are very
similar to these graphs, they are not the same kind of object.

5Indeed, we have used the Unitex graph editor.
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sms space phone number space message
without spaces
4y Q7
s | #
—Pp— sms—\ <NB> \ <TOKEN>)O
o 4 s s s ds

o %<TOKEN ™
%\ W<NB> % l_l
%sms @ 0\ @ 0 @ o\ %<TOKEN>@
(c) %-~TOKEN~

Figure 7.1: (a) Unitex graph recognizing SMS command requests, (b) equivalent
lexical FSM obtained by replacing boxes and links by trasitions and states, respec-
tively, and (c) equivalent pseudo-minimal lexical FSM. Comments in (a) appear in
greyed fonts and have been used here to make state labels explicit and to indicate
what each graph fragment is supposed to recognize. Pseudo-minimization will be
explained in section 8.6.
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7.3 Sequences of transitions

Definition 56 (Connected transitions). We say transition t is connected to
transition t' iff the target state of t is the source state of t'.

Definition 57 (Path or transition concatenation). We define a path within
a FSM as the concatenation of a sequence of n > 0 successively connected
transitions

(@s0:&0:@to) - - - (@snrsEn—15Gt,_,)  such that q, = qs,,,, fori=0...n—2.

(7.1)
and we represent it as
(G50 805 @ro) * (@15 €15Gn) -+ (Gsys En1y Gt s ) (7.2)
or simply as
(@s0» €05 @10 ) (@515 €15 Gty ) -+ - (@510 Enm1: Gty ) (7.3)
or even simpler as
so LN s, LN N s, LN Qt, ;- (7.4)

Definition 58 (| -|). We define | - | as the length or number of elements of
a sequence.

We use |- | in order to represent the length of a path inside a FSM as well
as the length of a string.

Definition 59 (Start and end states of a path). The start state of a path
s the source state of its first transition, and the end state of a path is the
target state of its last transition.

Definition 60 (Connected paths). We say path p is connected to path p' iff
the end state of p is equal to the start state of p'.

Definition 61 (Concatenation of paths). We define the concatenation of
a path p connected to a path p' as the path composed by the sequence of
transitions of p followed by the sequence of transitions of p', and we represent
it as p-p' or simply as pp'.
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Definition 62 (Cycle). A cycle is a closed or self-connected path, that is, a
path whose start and end states are the same. Cycles are also called loops
or closed paths.

Since cycles are to be described as transition sequences, one of the cycle
states is to start and end the sequence. Cycles have no start or end states
in the sense of whether the sequence of transitions can be followed, either in
direct or reverse order, until there are no more transitions belonging to the
cycle, since the first transition follows the last one. However, when regarding
cycle descriptions as itineraries (a sequence of states and transitions to visit
in the order specified), the choice of the start and end state is not arbitrary:
traversing n times a cycle starting at a state ¢ ends up at ¢ and not at any
other state.

Definition 63 (Self-concatenation of a cycle). Given a cycle p and an integer
n > 0, we define p™ as the result of concatenating path p with itself n times.

Definition 64 (Empty path). Given any closed or unclosed path p, we define
p° as the empty path or zero-length path.

Definition 65 (Self-concatenation of the empty path). Given a path p, we
define the special cases of concatenations of paths involving the empty path
as follows:

pp’ =p
P’p=p
The empty path 1s the neutral element of the concatenation of paths.

Corollary 1 (Concatenation with the empty path). Concatenating the empty
path to itself any number of times results in the empty path, that is,

PP’ pt=p° (7.5)

Definition 66 (Subpath). We say p, is a subpath of p iff there exist two
paths p, and py such that p,pyp. = p.

Definition 67 (Consuming path). A consuming path is a path having at
least one consuming transition.

Definition 68 (Consuming cycle). A consuming cycle is a closed consuming
path.
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Definition 69 (c-path). An ec-path is a path whose transitions are all e-
transitions.

Definition 70 (e-cycle). An e-cycle is a closed e-path.

Definition 71 (Reachable). We say that a state q; is reachable or derivable
from a state qs iff there exists at least one path p whose start and end states
are qs and q;, respectively. We say q; is reachable or derivable from qs through
path p.

Definition 72 (Directly reachable). We say that a state q; is directly reach-
able from a state qs iff q; is reachable from qs through a path p such that

Ip| = 1.

We will first define the function computing sets of directly-reachable states
from other states, and then define the function computing the set of reach-
able states by one or more applications of the former function, hence the
distinction between reachable and directly reachable.

Definition 73 (c-reachable). We say that a state q; is e-reachable from a
state qs iff it is reachable through an e-path.

Definition 74 (Directly e-reachable). We say that a state g, is directly e-
reachable from a state qs iff q; is directly reachable from qs through an e-path.

7.4 Structures

Definition 75 (Empty machine). We say a machine is empty iff it contains
no states.

Corollary 2 (Transitions of empty machines). Empty machines have no
transitions since no transitions can be defined without source and target
states.

Definition 76 (Acyclic machine). We say a machine is acyclic iff it contains
no cycles.

Tries are an example of acyclic machines. These machines will be the
object of chapter 9.
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Definition 77 (Linear machine). We say a machine is linear or has a linear
structure iff the machine is acyclic, has at most one initial state and every
state has at most one outgoing transition.

A sequence of symbols w can be represented by a linear FSA having a
unique acceptance state and a path consuming w from the initial state up to
the acceptance state.

7.5 Substructures

Definition 78 (Machine substructure). Given a machine with a set of states
Q and a partial transition function 6, (Q', ") identifies a machine substruc-
ture iff Q' C Q and 0’ is a partial transition function such that every transi-
tion defined by 0" is also defined by § and the source and target state of every
transition in &' belongs to @'.

Definition 79 (Disjoint machine substructures). We say two machine sub-
structures are disjoint iff they do not share any states and/or transitions.

Definition 80 (Properties of relations). A relation R on a set A is
e reflexive iff a Ra, for all a in A,
e irreflexive iff —(a Ra), for all a in A,
e antisymmetric iff a Rb and b Ra imply a = b, for all a,b in A, and
e transitive iff a Rb and b Rc imply a Rc, for all a,b,c in A,

Definition 81 (Topological sort). Let (Q',¢") be a machine substructure
and R a relation on Q' such that qs Rq; iff q; is reachable from qs; we say
a sequence of states in Q' is a topological sort of (Q',0") iff the following
conditions hold:

o R is irreflexive, antisymmetric and transitive,
e the sequence contains every state in @', and

o the sequence is compatible with R, that is, for every pair of states ¢;, q; €
Q', if ¢; appears before q; within the sequence then either ¢; Rq; or g
and q; are not related.
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The problem of finding a topological sort for a graph was first studied
for the case of PERT networks (see appendix D, page 419). Since vertices of
a PERT network represent points in time and edges represent activities be-
tween two points in time, cycles of length 1 make no sense: activities require
a positive amount of time in order to be performed. However, it makes sense
that every temporal point is reachable from itself by performing no activity.
The original definition of topological sort requires R to be a (non-strict) par-
tial order, that is, it must be reflexive rather than irreflexive; since temporal
points are considered to be reachable from themselves, R is also reflexive.
The topological sort is defined as a (non-strict) total order compatible with
R, that is, an extension of R such that antisymmetry and transitivity is kept
while relating every pair of vertices of the network. Totality implies reflex-
ivity since it also requires every vertex to be related to itself. Since FSMs
may contain cycles of length 1, we must distinguish between just being at
a state and reaching it from itself, hence we do not consider that a state
is reachable from itself unless it has a both outgoing and incoming transi-
tion. Consequently, our definition of topological sort does neither require R
or the topological sort to be reflexive and, indeed, it forbids it; in our case,
the topological sort of a FSM represents a linear ordering of the states of a
machine such that each state can only be reached from zero, one or more of
the states preceding them in the topological sort, but not from themselves
or from the states following them. This ordering will be used for optimiz-
ing the application of machines with blackboard output: we will see that it
is possible to process each transition a single time as long as we follow the
ordering given by a topological sort.

Lemma 1 (Existence of a topological sort). At least one topological sort
exists for a given machine substructure iff the substructure contains no cycles.

Proof. Let (Q)',0") be a machine substructure, R be a relation on @’ such
that ¢s R q, iff ¢, is reachable from ¢,, and
& 3 &i—

P=qo > q = .. gy (7.6)
be a path within the substructure. If p is a cycle of length 1, then ¢y = ¢;_1
and qq is reachable from itself, which would not allow for R to be irreflexive.
If p is a path of length greater than 1 having no cyclic subpath, then there

is at least one state ¢; between ¢y and ¢;_; which is not equal to gy or ¢;_;.
If p is itself a cycle, then both holds that ¢; is reachable from ¢y and ¢q is
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reachable from ¢;, which would not allow for R to be antisymmetric. Every
path respects transitivity, since every state within a path is reachable from
all those preceding them. Hence, R can only be irreflexive, antisymmetric
and transitive iff the substructure contains no cycles. The existence of R
implies the existence of at least one sequential ordering of the states in @’
compatible with R. O

7.6 Behaviour

We give here the general definitions and equations that describe the language
represented by a FSM.

Definition 82 (Execution state). The execution states (ESs) of a given al-
gorithm of application of a machine are structures composed by, at least, a
machine state plus, possibly, other additional data which depend on the algo-
rithm. These ESs represent execution contexts or partial computations that
are performed in some order up to obtaining the final result. If the algo-
rithm does not require any additional information, ESs are simply states of
the machine rather than structures.

Definition 83 (X). We define X as the set of all possible ESs of an algorithm
of application of a machine.

For instance, ESs of an algorithm of application of FSTSOs may not only
include a reached state ¢ but also the partial output that has been generated
from an initial state up to reaching q. Algorithms of application of FSAs
require no further information, so X = @ in those cases. Every machine
can be reduced to a either finite or infinite-state automaton; for instance,
we replace each state ¢ of a FSTSO by its execution states (g, z), for every
partial output z that can be generated from an initial state up to reaching
q, and we copy each transition incoming to or outgoing from g but without
the output, and having the corresponding ESs as source and target states.
In other words, outputs are coded within the states of the machine rather
than within the transitions. Since ESs having different partial outputs will
no longer be the same ES, independently of whether they share the same
state or not, the resulting machine will have an infinite number of states if
an infinite number of partial outputs is possible; hence, this sort of machine is
not to be generated for practical NLP, but only the necessary “real” states of
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the machine —its ESs— are to be produced for each input, and the algorithm
execution will finish as long as the number of ESs to produce for each input is
finite. We will give an exact definition of ES for each algorithm and machine
in their corresponding sections.

Definition 84 (Multiple ES). A multiple ES is a set of execution states
(SES) composed by every ES that an algorithm of execution of a machine
can generate for a given input sequence; since machines may define several
paths leading to different ESs for the same input sequence, we consider that
the machine is able to be taken to a multiplicity of ESs at a given execution
time. Throughout this dissertation, V and W will be used as SES identifiers.

For instance, processing an ambiguous sentence will lead to multiple ESs
at some execution time, one for each possible sentence interpretation consid-
ered in the grammar.

Definition 85 (Illegal ES). Illegal ESs are a special kind of ESs which avoid
the traversal of any transition that ends at them.

For instance, machines extended with unification processes define as il-
legal every ES containing the null feature structure, that is, the result of
unifying two incompatible feature structures; transitions that result in such
illegal ESs cannot be traversed.

Definition 86 (Realizable transition). We say a transition t within a FSM
is realizable from a given legal (source) ES x iff, the machine being in ES x4,
the transition t can be traversed for some input symbol; in other words, t is
an outgoing transition of the state associated to the ES x5 and the machine is
taken to a legal (target) ES x; from ES x4 by traversing t, and consecuently by
executing the actions associated to t, if any (e.g.: consuming the current input
symbol). In general, we say a transition is either realizable or not depending
on the existence of some input sequence which allows for producing a legal
ES x4 from where t can be realized.

Following the former example, a transition requiring to unify two incom-
patible feature structures is not realizable even if the transition consumes the
current input symbol.

Definition 87 (Realization of pure e-transitions). Given a legal ES x5 = (gs,
ag...an_1), where ag . ..a,_1 is the additional data produced by the algorithm
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of application of the corresponding machine, a pure e-transition t = (¢s, &, ¢)
is realizable by bringing the machine to ES xy = (qi, a0 . .. an_1). Since pure e-
transitions do not impose any restriction to their traversal, every e-transition
is realizable, in general.

Note that pure e-transitions do not associate any action to their traversal,
hence they do not modify the current context of execution except for the
machine state.

Definition 88 (Realization of pure consuming transitions). Given a legal
ES xy = (gs,a0...a,_1), where ag...a,_1 is the additional data imposed
by the algorithm of application of a machine, a pure consuming transition
t = (qs,&, q) is realizable by consuming the input symbol specified in & and
by bringing the machine to ES x; = (q, a0 . ..a,_1). Since pure consuming
transitions do not impose any other restriction to their traversal than the
presence of some input symbol at the current input point, every pure con-
suming transition is realizable, in general.

As for the case of pure e-transitions, since pure consuming transitions do
not associate any action to their traversal other than the consumption of the
current input symbol, the additional data of the ES is not modified.

Definition 89 (Realizable path). A path within a FSM is realizable from a
given legal ES x4 iff, the machine being in ES x4, every transition within the
path 1s consecutively realizable.

Definition 90 (Execution path). Given a realizable path

P=toti  th =G0 > @1 22 2 o G 2 Qo

from an ES xq, we define its execution path from xqo, X(p,xq), as

X(p,xo):x0£—0>x15—1>x2£—2>...&—71>xn£—">xn+1

where x1 is the ES the machine s taken to by transition tg from ES xg, x4 the
ES the machine is taken to by transition t, from ES x1, and so on. We also
call X (p, o) the realization of path p from ES xq. If the ESs of a machine
are states in @, there is no difference between paths and their realizations.
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Definition 91 (Reachable ES). Given two legal ESs z; and x5, we say x;
s reachable or derivable from x, iff there exists at least one realizable path
p whose execution from ES xg brings the machine to ES xy. We say z; is
reachable or derivable from x4 through path p.

Definition 92 (Deterministic machine). A machine is deterministic iff it
holds the following properties:

e to have at most one initial state,

e not to have transitions that can be realized independently of the erecu-
tion context,’ and

o for every possible execution context of the machine there is at most one
realizable transition.”

Definition 93 (Equivalent machines). In general, we say two machines are
equivalent iff for every possible input they yield the same output, no matter
how the machines are structured.

Depending on the type of output generated by a class of machines, a
particular definition of equivalence will be given (considering that a Boolean
indicating whether an input sequence belongs to a language or not is already
an output).

Definition 94 (Minimal machine). We say a machine is minimal iff there
exists no other equivalent machine having a smaller number of states.

Machines of different types may be yet equivalent if they produce the
same kind of output; for instance, both FSAs and RTNs return a Boolean
value. However, some machine types may allow for more compact structures;
for instance, FSAs allow for factoring out common prefixes and suffixes of
the represented sequences, while RT'Ns can also factor out common infixes.
In general, when we speak about minimal machines we are restricting the
type of the equivalent machine to the one of the original machine.

6For instance, e-transitions in FSAs. Recall that, apart from the input, execution
contexts may comprise other data (e.g.: the output generated up to reaching a certain
ES).

"For instance, deterministic FSAs have no pair of transitions outgoing from the same
source state so that both are labeled with the same input symbol; otherwise both transi-
tions might be realizable under the same execution context, that is, being at the source
state of these transitions.
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Definition 95 (Derivation rule). The set of derivation rules or derivation
mechanisms of a machine describe the ES directly reachable from any given
ES of the machine. For the case of FSMs, each transition class is associated
to a deriwation rule and each transition represents a particular case of such a
rule for a particular pair of source and target states and transition condition
(expressed by the transition’s label). The realization of a transition consists
in applying the derivation rule corresponding to the transition type.

For instance, definitions 87 and 88 describe the derivation rules associated
to pure e-transitions and pure consuming transitions, respectively.

Definition 96 (A). We define function
A:P(X) x % - P(X) (7.7)

as the extension of the consuming cases of transition function 6 to source and
target SESs instead of simple source and target states of the machine, that is,
A(V,0) is equal to the set of directly reachable ESs from any ES of V' through
transitions that consume the next input symbol o. The exact behaviour of
function A depends on the type of machine and algorithm followed.

Definition 97 (D). Analogous to function A, we define function
D:P(X)—P(X) (7.8)

as the extension of the non-consuming cases of transition function ¢ to source
and target SESs, that is, D(V') is equal to the set of directly e-reachable ESs
from any ES of V. Let A be a machine with n e-transition types,® we define
D as

D: LnJ D;, (7.9)
i=0

where D;(V') represents a particular derivation rule of D(V') for a type of
e-transition. The exact behaviour of each D; function depends on the type
of machine and algorithm followed. For the sake of simplicity, if i = 1 we
do not define a Dy function but we define D itself as the direct-derivation
function on SESs.

8for instance, RTNs have three different kinds of e-transitions: explicit e-transitions,
push transitions and pop transitions; RTNs will be the object of chapter 12.
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Definition 98 (Simple direct-derivation function on SESs). A simple direct-
derivation function on SESs is an extension of a particular derivation case
of transition function & to source and target SESs, namely function A and
the D; functions composing function D (or D for machines with a unique
type of e-transition).

In general, simple direct-derivation functions on SESs are all defined by
an expression of the form

F(Vo)={zy:dNzs €V}, (7.10)

where V' is the source SES, o is the current input symbol (for the case of A)
or is omitted (for the case of D; functions or function D), d is a predicate
that depends on the followed derivation rule, and z; is the target ES derived
from source ES xz; if d holds. For instance, for the case of FSAs, A(V,0) is
defined as follows:

AV o) ={q:: (¢ € 0(0)) AN (gs € V) }, (7.11)

where ¢ and g, correspond to z; and z (for the case of FSAs, ESs are simple
FSA states), and ‘¢; € 6(0)’ is the derivation predicate. In order to avoid
repetition, we will define simple direct-derivation functions on SESs for each
algorithm and machine by specifying x,, x; and d. This generalization will
also be used for studying some properties common to every simple direct-
derivation function on SESs.

Definition 99 (i-recursive function application). Let F be a function of a
set A into itself, that is, F : A — A, we define F*, the i-recursive application
of F, as

e the composition of F with itself i — 1 times, for ¢ > 1
e the function itself, for i =1, and
e id 4, the identity function of A, for i = 0.

For instance, let f be a function of N into itself such that f(z) =z + 1,
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the following equations hold:

fo(0) = id(0) = 0

71(0) f0) = 041 =1

f2(0) = f(f(0)) = 04+1+1 = 2

0y = F(0) 3 (7.12)

- 241 —

f10) = fUH0) = n—-141 = n
Definition 100 (e-closure). We define the e-closure of a SES 'V as the SES
containing V' and every e-reachable ES from any ES of V':

C.:P(X)— P(X)

C.(V) = LmJDZ'(V), (7.13)

that 1s, the ESs of V' plus the ESs reachable from any ES of V' through one
up to m e-transitions, where m is the smallest k such that

k+1

U Di(V) = U Di(V), (7.14)

if such k exists, and undefined otherwise.

Indeed, there are machines having SESs for which such £ does not exist
and, hence, the e-closure is not computable. For each kind of machine, we
will identify the substructures allowing for such SESs, if any, in order to avoid
them.

Definition 101 (Delayability of union). Given n subsets V; of a set X and a
unary function F : P(X) — P(X), we say that the union of sets is delayable
w.r.t. F iff

f(U Vi) = Uﬂm (7.15)

Since the union of sets is associative, if the previous equality holds for the
unton of two sets then it holds for the union of two or more sets.

Lemma 2 (FSM D-union). The union of sets is delayable w.r.t. function D
if it is delayable for each D; function composing D.
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Proof. Let D be the union of two functions D; and D, such that the union
of sets is delayable w.r.t. both of them, and let V" and V' be two SESs, then
it holds that

D(VUV") = Di(VUV)UDy(VUV')
= Di(V)UD{(V")U Dy(V)U Dy(V")
= Di(V)UDy(V)UDy(V') U Dy(V')
= D(V)uD(V").

Theorem 1 (Union of direct-derivation functions on SESs). The union of
sets is delayable w.r.t. direct-derivation functions on SESSs.

Proof. Let F be a direct-derivation function on SESs, that is, a function of
the form

F(V,o)={x; :dNzxs €V}, (7.20)

where d is the derivation predicate, the following equations hold:

FVUV) = {x,:dNhNxs e VUV'}

= {z;:dN(xs €V Vz, eV}
{zy:dNzs e VVdNz, €V'}
{zy :dNzs e V)}U{z i dNhNas €V}
= F(V)UFV).

O

Theorem 2 (D-union). Given lemma 2 and theorem 1, the union of sets is
delayable w.r.t. the D function, in general.

Lemma 3 (e-closure-union). Given a FSM, if the union of sets is delayable
w.r.t. its D function then it is delayable as well w.r.t. its e-closure function:

D( W) UD ) = C( Uv =Jc.v. (7.21)
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Proof. Let V and V' be two SESs, it holds that

C.(VUV) =

where m is the smallest k& such that

k ' k+1 '
Uowv) =
=0 =0
O

Theorem 3 (e-closure-union). Given lemma 2 and lemma 3, the union of
sets is delayable w.r.t. the e-closure, in general.

Lemma 4 (Iterative e-closure). Since the union of sets is delayable w.r.t.
the D function, the following is an equivalent definition of e-closure, based
on iterative computation:

C.(Vo) =V, with Viyu =V,UD(V;), i>0, (7.22)
and m is the smallest k such that Vi 1 = Vj.

Proof. By computing the different V;’s we obtain:

Vi = VUD(Vp) = UDJVO

V; = WWuD(Vp)U D(VoUD(Vo))
= VoUD(Vo) U D(Vo) U D(D(V))

= VUD(V) UD(D(V)) = | D’(Vo)

J=0

Vi = U D (Vp)
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From the development of term V,,, we obtain the first definition of e-closure.
O

Lemma 5 (Finite e-closure). Given the iterative definition of e-closure of
lemma 4, if there exists a natural number k > 0 such that Vi = Vi1 then
Vie =V, forl > k, that is, once Vi, 1s computed, computing further V;’s will
not add anything to the e-closure and, hence, the e-closure will be finite.

Proof. Let k be the smallest number such that Vi, = Vi1 = D(V}), and [ be
a number greater than £, then

Vi = Vi U D(Vi) U D(D(W) U ... U DKV
= Vi U Vi U D(Vk) u ... u D""“‘l(Vk)
= Vi

and therefore computing further V;’s after Vj, will not add anything to C.(V}).
O

Definition 102 (A*). We recursively define A*, the extension of the transi-
tion function over SESs A for an input sequence w € ¥*, as follows:

A" P(X) x &F = P(X)

A*(Vie) = C(V) (7.23)
A*(Viwo) = Co(A(A*(V,w),0)) (7.24)

This definition is analogous to that of § for NFAs (non-deterministic
FSAs) given in Hopcroft et al. (2000, sec. 2.3.3, p. 58), though A* is de-
fined on SES and ¢ is defined on NFA states.

Definition 103 (Initial and acceptance SESs). We call X the initial SES of
a FSM and X its acceptance or final SES. ESs in X1 or X are structures
containing a state in Qr or F, respectively, plus any additional information
required to represent the initial or acceptance ES depending on the type of
machine and algorithm followed. When no additional information is required,

as in FSAs, X; = Qr and X = F.
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Definition 104 (Deterministic execution of a FSM). Let A be a FSM with
an input alphabet ¥ and a set of initial ESs Xy, we say A is deterministic
—in terms of execution— iff it holds that

|A*(Xp,w)| <1, forall we Y, (7.25)

that is, A has a unique initial ES xo and the number of reachable ESs from
xo by consuming any input sequence is at most one.

Definition 105 (Execution machine). Given a FSM A with ¥ as input al-
phabet, X as its ES domain, X1 as initial SES and X as acceptance SES, we
define X (A), the execution machine of A, as an either finite- or infinite-state
machine (depending on each case) having at least the following elements

o X as set of states, either finite or infinite,

X1 as set of initial states, finite,

Xr as set of acceptance states, either finite or infinite,

e X as input alphabet, either finite (for letter machines) or infinite (for
machines on an alphabet of words or predicates), and

0" as partial transition function, either finite or infinite, such that

— x; € §(x5,0) <= the execution of A can directly derive x; from
xs by consuming o,

— x; € 0'(x5,6) <= the execution of A can derive z; from xg
without input consumption, and

— possibly other transitions depending on the type of machine and
algorithm of application.

Execution machines can be seen as execution traces of the algorithm of ap-
plication of the machines for every possible input. The exact definition of
execution machine depends on the kind of machine and execution method.

Note that for FSMs having an infinite number of ESs (e.g.: FSTs repre-
senting an infinite number of translations), the number of transitions linking
the states of their corresponding execution machines will also be infinite. As
stated before, execution machines are not to be entirely computed but only
the necessary substructures for the application of FSMs to specific input
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sequences. The concept of execution machine will be used for the case of
machines with output generation in order to study the possibility of comput-
ing the different ESs in some specific order that will accelerate the machine
application: the order given by a topological sort of the execution machine
substructures produced by derivation functions on SESs. In particular, we
will study the necessary conditions for the existence of such topological sorts.

Definition 106 (F-substructure). Given a derivation function F on SES of
a machine A, we define the F(V)-substructure of X(A) as the substructure
of X(A) composed by every ES in V and every reached ES and traversed
transition during the computation of F (V).

Definition 107 (L). We define L(A), the language of a FSM A, as the set of
sequences w € X* recognized by A, that is, the set of sequences whose whole
consumption reaches at least one acceptance ES from at least one initial ES:

L(A) = {w e ¥ : A*(Xp,w) N Xp # 0} (7.26)

This formula is similar to that of Hopcroft et al. (2000, sec. 2.3.4, p. 59),
though using function A* instead of 5, an initial SES X7 instead of a single
initial state g, and an acceptance SESs X instead of a set of acceptance
states F'.

We say that a word w is accepted or recognized by a FSM A iff w belongs
to the language of A; otherwise we say that w is rejected or not recognized
by the FSM.

Definition 108 (Lg(z)). Let x be an ES of a FSM, we define Lg(x), the
right language of x, as

Lr(z) ={w e ¥*: A*({z},w) N Xp # 0}. (7.27)

Definition 109 (Acceptor machine). We say that a machine or an algorithm
of application of a machine is a pure acceptor iff its sole purpose is to compute
the acceptance/rejection of an input sequence.

In definition 93 (p. 135) we introduced the concept of equivalence between
machines. Once defined what a pure acceptor machine is, we can give a more
concrete definition of equivalence between pure acceptor machines:

Definition 110 (Equivalent pure acceptor machines). We say two pure ac-
ceptor machines A and A’ are equivalent iff L(A) = L(A’).
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Definition 111 (Interpretation). Given a word w and a machine A, we say
a path p within A is an interpretation of w iff X(p, xs) reaches an acceptance
ES from an initial ES x4 by consuming w.

Definition 112 (Ambiguous word). We say a word w is ambiguous for a
given machine A iff there exist several interpretations within A that consume
w.

Definition 113 (Ambiguous machine and language). Machines recognizing
at least one word through several interpretations are said to be ambiguous,
and so are their accepted languages.

Definition 114 (Useful state). We say a state is useful iff there exists at
least one interpretation traversing the state; otherwise we say it is useless.

Definition 115 (Useful transition). We say a transition is useful iff it is a
part of at least one interpretation; otherwise we say it is useless.

Definition 116 (Useful path). We say a path is useful iff it is a subpath of
at least one interpretation; otherwise we say it is useless.

Definition 117 (Useful machine substructure). We say a machine substruc-
ture (Q)',d") is useful iff it contains at least one useful state. Conversely, we
say a machine substructure is useless iff it contains no useful states.

Corollary 3 (Transitions of machine subtructures and usefulness). A ma-
chine substructure that contains useful transitions is also useful, since the use-
fulness of a transition implies the usefulness of its source and target states,
which also belong to the machine substructure. Conversely, machine sub-
structures containing no useful states neither contain useful transitions.

One may be tempted to say that a machine is useless iff it contains no
interpretation. However, such machines may have a purpose analogous to
that of £ (to represent the empty symbol or the empty string), () (to represent
the empty set), or 0 (to represent the null quantity).

Definition 118 (Trimmed FSM). We say a FSM is trimmed iff it contains
no useless states or transitions.

Definition 119 (w-usefulness). We say a path, a transition or a state is
useful for a given input sequence w, or simply w-useful, iff there exists an
interpretation of w traversing such path, transition or state.
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Definition 120 (Pruning). We call pruning the process of removing every
useless substructure of a machine.

Corollary 4 (Result of pruning). The result of pruning a machine is either
the empty machine or a machine without useless states or transitions.

Some of the algorithms we will present in this dissertation require the
generation of the language of a new kind of machine we have called filtered-
popping recursive transition network (FPRTN). We will first study the cases
in which such language is finite, in order to guarantee that the execution
of such algorithms will finish. FPRTNs can be seen as RTNs whose pop-
ping transitions are not always realizable, and RTNs can be seen as FSAs
extended with call, push and pop transitions. Apart from these transitions,
the remaining transitions are the same and, hence, the corresponding sub-
structures will have the same behaviour. Though it may seem obvious which
kind of FSA and RTN substructures lead to infinite languages, that is not
the case for FPRTNs. We will present the FPRTN case by extending the
simpler cases, starting here with the general condition for any FSM.

Theorem 4 (Cardinality of the interpretation set). The number of inter-
pretations of a FSM without useful cycles is finite; otherwise, the number of
interpretations is infinite iff the machine allows for the realization of an infi-
nite number of self-concatenations of at least one useful cycle, and an infinite
subset of the realizable self-concatenations is useful.

Proof. Let it be a FSM A either without cycles or with useless cycles; since
for any interpretation p the same state cannot be traversed twice, every inter-
pretation must be formed by a sequence of connected transitions traversing
a sequence of states without repetitions. The number of subsets of states of
a machine is equal to

P(Q)] =29, (7.28)

which is finite since () is finite. For every subset of states ); C @, the number
of permutations without repetitions of the states in Q; is |@;|!, giving a total
of

@)
> Q! (7.29)
=0

possible sequences of states without repetitions, which is also a finite number
since Q); is finite for i = 0...|P(Q)|. Moreover, not every sequence of states
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will be possible for a machine without useful cycles since two interpretations
without cycles may allow for the existence of a third interpretation with cycles
(e.g: interpretations with sequences of states ¢og; and ¢;qy may allow for an
interpretation with state sequence goqi1qo). Finally, for each sequence to be
an interpretation, at least one realizable transition (g;, ;, ¢j+1) must exist for
each two consecutive states ¢; and ¢;4; within the sequence, each additional
realizable transition allowing for an additional interpretation. However, since
the number of transitions is finite, the total number of interpretations is also
finite.

Otherwise, if A contains a useful cycle p, for a given interpretation p =
PaPbPe, then A contains the infinite family of paths p; = p,pip. for i > 0; if an
infinite subset of this family is realizable, then the number of interpretations
of the machine is infinite iff p; is an interpretation for some infinite set of
values of i, that is, an infinite set of useful self-concatenations of a cycle is
required for a machine to have an infinite set of interpretations. O

The proof’s last paragraph may remind the reader of the pumping lemma
for regular expressions (see Hopcroft et al., 2000, sec. 4.1.1, p. 126 or Sipser,
2006, sec. 1.4, p. 77) but from a more general perspective: the pumping
lemma states that regular languages may not be composed by an infinite
number of random sequences but, at most, by an infinite number of words
that are built by the repeated self-concatenation of some finite set of ran-
dom subsequences, and our proof states that cycles within FSMs may allow
for an infinite number of interpretations by consecutively repeating the pro-
cessing associated to the cycles, whatever the processing may consist in.
Indeed, some of the machines we will present in this dissertation are equiv-
alent to Turing machines and, therefore, go beyond regular and context-free
languages.

Theorem 5 (Cardinality of the language). The language of a machine is
infinite iff it contains at least one useful consuming cycle p and an infinite
set of self-concatenations of p is useful.

7.7 Reverse FSM

Some of the algorithms presented in this dissertation require to reversely
traverse a FSM, namely: a general minimization algorithm (sec. 8.6, p. 174),
a FPRTN pruning algorithm (sec. 16.1, p. 325) and an algorithm extracting
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the top-ranked output represented by a FPRTN (alg. 18.2, p. 346). As for the
cardinality of the language of FPRTNs, we will define the canonical reverse
of a FPRTN as the extension of simpler cases, starting here with the general
definition of reverse FSM.

Definition 121 (Reverse transition). Let t be a transition (qs,&, q), we de-
fine tf, the reverse of t, as (qi, &, qs)

Definition 122 (Reverse sequence). Let A be a set of elements, a be an
element of A, a and (B be two sequences of zero, one or more elements of A
and € be the empty sequence, we define o, the reverse of o, as

r_ | & a=c¢
! —{ aBR. o= fa (7.30)
Definition 123 (Reverse path). We define p®, the reverse of a path p, as the
result of reversing the sequence of transitions forming p and then replacing
each transition by its reverse, that is,

p=toty...t, iff pf =t tf (7.31)

Definition 124 (L%). Let L(A) = {wy,...,w,_1} be the language of a ma-
chine A, we define L(A), the reverse language of A, as {wf, ..., wk },
that is, reversed word wF € L®(A) iff w; € L(A), fori=0...n—1.

Corollary 5 (Cardinality of L®). Let A be a FSM, the cardinality of L%(A)
is equal to the cardinality of L(A)

Definition 125 (Reverse machine). We say a machine B is a reverse of a
machine A iff L(A) = L%(B).

Definition 126 (Canonical reverse machine). Let A be a FSM, we define A%,
the canonical reverse of A, as the result of reversing machine A by means
of a particular procedure which is to be defined for each particular kind of
machine.

For all the machines presented here, their canonical reverses are machines
of the same kind, except for FPRTNs: as we will see in chapter 15, reversing
a filtered-popping recursive transition network results in a filtered-pushing
recursive transition network and vice-versa.
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7.8 Efficient computation of the s-closure

In this section we derive from the iterative definition of e-closure (lemma 4,
p. 140) an equivalent and more efficient definition so that at each iteration
we only consider the ESs from where new ESs may be e-derived, and reuse
previous computations as far as possible. We will then give an algorithm for
the computation of the e-closure of any kind of FSM, based on this definition.

Definition 127 (c-expansion). We define E(V'), the e-expansion of a SES
V', as the set of directly e-reachable ESs from any ES of V' that is not already
present in V:

E:PX)— PX)
E(V)=D({V)-V (7.32)

Lemma 6 (c-expansion-based e-closure). Since the union of sets is delayable
w.r.t. the D function (theorem 2, p. 139), the following is an equivalent and
more efficient definition of e-closure, based on successive €-expansions:

C:(Vo) = CL(Vo, E(V5)) (7.33)
where C? is an auziliary function which is recursively defined as follows:
Cl:P(X)xP(X)—P(X)

Vi L=

B = Gwum o -vioey, i 0

being V; the SES resulting from the i-recursive call to function C. and E; the
e-expansion of V;.

As we will see, F; is eventually to be empty for the case of finite e-closures.

Proof. Following the iterative definition of e-closure of lemma 4, we compute
the e-closure of a SES V| by generating the successive V; such that each
one contains Vj plus the e-reachable states through ¢ e-transitions, that is,
we increment 1V, with the reachable ESs through one e-transition, two e-
transitions and so on. The new ESs appearing at a SES V; 5 will come from
the ESs that were not formerly considered during the computation of D(V});
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rather than computing the new e-reachable ESs at Vo from every state of
Vii1, we only consider the states V;; — V;, that is, the e-expansion of V;:

Vi —Vi = (V,UD(Vi) - Vi
— (V= V)Uu(D(V) - V)
— DV -V,
— E(V).

Hence, we can reformulate the e-closure definition as
C.(Vo) =V, such that V;; =V, UE(V;) (7.35)

and m is the smallest k£ such that V;,; = V;. If such k exists, then the e-
closure is finite (see lemma 5) and its computation will finish once the first
empty e-expansion is reached:

CE(V) = Vk : Vk = Vk+1 < Vk = Vk U D(Vk)
<~ D) CV
— DVi)—Vi=10
= EVi)=10
As well, we do not require to compute at each iteration 7 the e-expansion

from the whole set V; but from the previous e-expansion: let E; = E(V}) for
1 > 0, it holds that

Eiw = E(Viqa
= D(Viq1) = Vi
D(V,UE;) = Vi

(D(V)) U D(B})) = Vi
= (D(V) = Visa) U (D(EY) — Vi)

(D(V:) = (VU D(V) U (D(E}) ~ Vi)
= D(E;) ~ Vi
D(E) — (V;UE).
Therefore, we can efficiently compute the e-closure of V' by following the
iterative procedure below:

Vo=V
Vim = VIUE;
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where

Ey, = EW)
Eiy1 = D(E;) = Vi

until reaching an Ej;, = (); by developing the equations of lemma 6 we obtain
this pattern. O

Algorithm 7.1 fsm_ eezpansion_ eclosure is an implementation of the e-
closure based on e-expansions (lemma 6), which uses algorithm 7.2 fsm_ eex-
pansion in order to compute the successive e-expansions. The implementa-
tion of function D, which is used for the computation of the e-expansion,
depends on the type of machine.

Algorithm 7.1 fsm eexpansion eclosure(V) > C.(V), lem. 6

Input: V| the SES whose e-closure is to be computed
Output: V after computing its e-closure
1: F =fsm_eexpansion(V)
2: while E # () do
3: V«VUFE
4 E + fsm_eexpansion(E)
5: end while

Algorithm 7.2 fsm_ eexpansion(V) > E(V), def. 127

Input: V| the SES whose e-expansion is to be computed
Output: E, the e-expansion of V

1: for each z; € D(V) do

2: if x; ¢ V then

3: E+ FU Tt
4; end if
5: end for

Finally, algorithm 7.3 fsm_ interlaced eclosure is a more efficient proce-
dure for the computation of the e-closure, also based on e-expansions. Instead
of computing the whole e-expansion at each iteration and then adding it to
V, it adds new states to V' as they are found and it keeps a queue E of unex-
plored states that grows with each new ES found and decreases each time one
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of its ESs is explored; the construction of the different e-expansions is inter-
laced with the construction of the e-closure. Algorithm 7.4 add_ enqueue_ es
is a small routine used for adding e-derived ESs to the SES whose e-closure
is to be computed. This routine is further used in the algorithm computing
the A function of V' (algorithm 7.6 fsm_ recognize symbol) in order to add
ESs reached through the consumption of an input symbol.

Algorithm 7.3 fsm_interlaced _eclosure(V, F) > C.(V, E), lem. 6

Input: V, the SES whose e-closure is to be computed
E. the queue of unexplored ESs containing every ES in V
Output: V after computing its e-closure
E after emptying it

1: while £ # () do

2 zs < dequeue(E)
3 for each z; € D(z;) do
4: add _enqueue _es(V, E, xy)
5
6:

end for
end while

Algorithm 7.4 add _enqueue_es(V, E, x;)

Input: V, the SES where the ES is added
E. the queue of unexplored ESs
x¢, the target ES to add to V
Output: V after adding the ES
E after enqueuing the ES, if new
1: if add(V,z;) then
2: enqueue(F, x;)
3: end if

Notice that the addition of x; to V by means of function add in algo-
rithm 7.4 add_ enqueue_ es requires to check whether the ES already belongs
to the SES or not so that the underlying data structure does not represent
twice the same element. Thus, we are to use set data structures providing
efficient search operations, such as the ones presented in chapter 2. How-
ever, if we can ensure that the same element is not going to be added twice
during the whole life of the set, and the order in which the elements are to
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be retrieved is not important, it is preferable to use a data structure that
sacrifices duplicity checking, element ordering and, consequently, ordered el-
ement retrieval but provides faster add and retrieval operations: for instance
queues and stacks. That is the case of the set of unexplored ESs E and
operation enqueue in the same algorithm: we want to add to E the elements
that are new to V, so they are going to be new as well to E, and the order
in which unexplored ESs in E are explored does not modify the algorithm
result. Function add is to return a Boolean indicating whether the element
has been added or not to the set so that we can safely enqueue elements in
E. As well, algorithm 7.3 fsm__interlaced_ eclosure is not to initialize £ with
every ES in V but E is to be built along with V' by the algorithm computing
A(V) (algorithm 7.6 fsm_ recognize symbol in the next section), so that the
latter algorithm can also benefit from the add-enqueue mechanism.

Algorithm 7.3 fsm_ interlaced eclosure can be seen as a generalization
of the algorithm presented in van Noord (2000, sec. 3.2): while van Noord’s
algorithm computes the e-closure of a set of states of a FSA, our algorithm
computes the e-closure of a SES of any kind of FSM. Side by side, the dif-
ferences between both algorithms are:

e van Noord’s algorithm marks the states that have been explored, while
our algorithm explicitly uses a queue E of unexplored ESs,

e van Noord’s algorithm first unmarks every state of the set whose e-
closure is to be added, while our algorithm expects the initial £ to be
passed as argument (it will be constructed along with the set whose
e-closure is to be computed),

e van Noord’s algorithm adds to the e-closure every state ¢; such that
q € 0(gs, €), with gs the unmarked states already in the e-closure, while
we add the ESs z; such that x; € D(xy), with x, the ESs in E.

The equations given in this section, along with the equations given in sec-
tion 7.6 (p. 132) relative to the e-closure, verify the algorithm correctness for
every kind of ES and D function.

7.9 Recognizing a string

Based on the previous definitions, algorithm 7.5 fsm_ recognize_ string is
a generic breadth-first algorithm which computes the acceptance/rejection
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of a given word for a FSM (definition 46, p. 121). This algorithm uses
algorithms 7.3 fsm_ interlaced_eclosure and 7.6 fsm_ recognize symbol for
the computation of the e-closure and the A function of a SES, respectively.
Two small routines are used in order to add an ES to a SES: algorithm 7.4,
the same used for the computation of the e-closure, and algorithm 7.7, a
version of the former algorithm which unconditionally adds the ES to the
SES. The latter algorithm is to be used whenever it is sure the ES is new so
we can omit the conditional jump.

Algorithm 7.5 fsm recognize string(oy...0;) > oy...o0 € L, def. (107)

Input: oy ...0;, an input string of length [
Output: r, a Boolean indicating whether the input string belongs to L
V10
E+ 0
for each z, € X; do
unconditionally add _enqueue_es(V, E, x)
end for
fsm_interlaced eclosure(V, E)
1< 0
while V £ 0 Ai <l do
V « fsm_recognize symbol(V, E, 0;,1)
1 1+1
fsm_interlaced _eclosure(V, E)
: end while
. r < false
: for each ¢ € V do
r<—rVqgeXp
: end for

e e e e e

This algorithm is a generalization of the breadth-first translator algorithm
for RTNs presented in Sastre and Forcada (2007, 2009), which in turn is based
on the algorithm presented in Garrido-Alenda et al. (2002) for the application
of deterministic augmented letter transducers. It iteratively computes the A*
function: it first initializes V' as the initial SES of the machine and marks
every initial ES as unexplored for the e-closure computation, then adds to
V' its e-closure and afterwards performs a sequence of iterations so that for
each one reinitializes V' as the set of reachable ESs from the previous V
by consuming the next input symbol and adds its e-closure. Each time an
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Algorithm 7.6 fsm_recognize symbol(V, E, o) > A(V, o), def. (96)

Input: V, a SES
E, the empty queue of unexplored ESs
o, the input symbol to recognize
Output: W, the set of reachable ESs from V' by consuming o
E after enqueuing the ESs of W
1. W<«
2: for each z; € A(V,0) do
3: add_enqueue_es(W, E, x;)
4: end for

Algorithm 7.7 unconditionally add enqueue es(V, E, z;)

Input: V, the SES where the ES is added
E. the queue of unexplored ESs
x¢, the target ES to add to V
Output: V after adding the ES
E after enqueuing the ES, if new
1: add(V, zy)
2: enqueue(E, z;)
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ES is to be added, it verifies if the ES is new and, if so, it marks it as
unexplored for the computation of the e-closure by enqueuing it into E, the
queue of unexplored ESs. The only exception is when building the initial
SES: since every initial ES is unique, all of them are unconditionally marked
as unexplored. Iterations proceed until every symbol has been consumed
or an empty SES V' is reached. After the computation of the e-closure, an
empty queue is returned which is refilled again when consuming the next
input symbol. The algorithm accepts the string if the last computed V
contains at least one acceptance ES. It is not necessary to explicitly check
whether the whole input has been consumed or not: in case an input symbol
cannot be consumed, the iterative process will be interrupted after building a
last empty SES. Since this algorithm only computes acceptability, it could be
further optimized by having a special last iteration which would immediately
return true once the first acceptance ES is found, avoiding the construction
of the whole last SES. The algorithm only requires to store two SESs: the
SESs of the current and the next iteration, the latter stored as a local variable
during the evaluation of the expression

V < fsm_recognize symbol(V, E, 0;11)).

Since the algorithm performs a breadth-first exploration of the machine,
parallel explorations of the machine will be joined together if they reach the
same ES, avoiding the repeated exploration of common paths as happens
with depth-first algorithms. Of course, if the machine is determinized (de-
terminization is described in the next section) then there will be a unique
path to be explored for every input string, thus there will not be parallel
paths to be joined; a simplest algorithm just seeking for the consecutive ESs
of the path execution would be more efficient. However, not every machine
can be determinized.

In order to adapt these algorithms for any kind of FSM, we need to specify
the following particularities of the machine:

e the initial SES X; and how to build it,
e the A function or how to traverse a consuming transition,

e the D function or how to traverse an e-transition and
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e the acceptance SES Xr and how to evaluate if an ES x belongs to it.’

It must be taken into account that, since the algorithm is based in the
computation of the e-closure, the execution of this algorithm might fall into
an infinite loop for the case of machines allowing for infinite e-closures; for
each kind of machine, we will study such cases in order to avoid them.

7.9.1 From breadth-first to depth-first

The same ESs and derivation functions used for the breadth-first application
of a machine can be used for its depth-first application; the difference lies in
the order in which the different ESs are computed:

e An arbitrary initial ES x is chosen, then the first successively realizable
transitions, starting with the one outgoing from z, are followed until ei-
ther an acceptor ES is reached after consuming the whole input or until
reaching an ES from where no more successively realizable transitions
are found.

— In the former case, the input is to be accepted.

— In the latter case, the traversed path is to be walked back until
the last reached ES having some additional realizable outgoing
transition that has not been explored yet, and the same process is
to be repeated from that ES and transition and remaining input
suffix from that ES.

e If no interpretation starting at x is found, the process repeats for the
next unexplored initial ESs until either finding an input interpretation
or until no more unexplored initial ESs are left, in which case the input
sequence is to be rejected.

As we can see, the depth-first exploration stops at the first interpretation
found while the breadth-first approach explores every realizable path starting
at an initial ES by consuming some input prefix; the depth-first approach
will only explore all those paths for inputs that are to be rejected. However,
the exploration of each path is performed independently of the others, thus
common subpaths of paths that join at some point will be explored several

9XF might be infinite; however, the algorithm only requires to implement predicate
x € X rather than constructing Xp.
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times. In practice, the depth-first acceptor algorithm has been the fastest
one. However, we are not only interested in recognition but in computing
every possible translation of a given input sequence, in which case every input
interpretation is to be explored. Depth-first translation will be discussed in
section 10.6.1.

Algorithm 7.8 fsm_ depth_ first _recognize_string is a possible implemen-
tation of the depth-first application of a FSM. This algorithm simply initial-
izes the explorations starting from each initial ES by calling algorithm 7.9
fsm_ depth_ first _recognize suffiz. This latter algorithm recursively per-
forms the search for the first realizable path starting from a given ES =z,
and accepting a given input suffix o; . ..oy, the first calls taking an initial ES
and the whole input. If the suffix is empty and z, is an acceptor ES, the
algorithm simply returns true. If the suffix is not empty, the algorithm calls
itself for input suffix o;,;...0; and for each target ES reachable from z, by
consuming o;, until finding the first 25 whose right language (definition 108,
p. 143) includes ;41 ...0;. If such ES is found, the algorithm returns true.
Otherwise, the same process repeats for the e-reachable ESs from x, and the
same input suffix o;...0;. If neither here such ES is found, the algorithm
finally returns false.

Algorithm 7.8 fsm_depth first recognize string(o; ... o) >
o1...01 € L, def. 107

Input: oy ...0;, an input string of length [

Output: a Boolean indicating whether the input string belongs to L
1: for each z € X; do

2 if fsm depth_first recognize suffix(oy ...0y, 1, z) then
3: return true

4: end if
)
6

. end for
: return false

7.10 Determinization

In general, determinizing a FSM consists in finding an equivalent (defini-
tion 93, p. 135) but deterministic FSM (definition 92, p. 135). Determinizing
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Algorithm 7.9 fsm_depth first recognize suffix(oy ...0y,1, x5) >
0;...0, € Lp(xs), def. 108

Input: o0y ...0, an input string of length [
1, the index of the first suffix symbol
xs, an ES with ¢ as reached state
Output: a Boolean indicating whether suffix o; . . . 0; can be recognized from
T Or Not
1: if i > AN x, € XF then
2 return true
3: end if
4: if 1 <[ then
5: for each z; € A({z,},0;) do
6
7
8
9

if fsm depth_first recognize suffix(oy...0y,7+ 1, z;) then
return true
end if
: end for
10: end if
11: for each z; € D({zs}) do
12: if fsm_depth first translate suffix(oy ...0y,4,2;) then
13: return true
14: end if
15: end for
16: return false
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a machine before its application reduces the cost of application of the ma-
chine: instead of having to maintain a SES, only a single ES is to be computed
for each input symbol. However, the resulting machine may be larger than
the original one. Defining a generic determinization algorithm for any kind of
F'SM is not feasible since the definition of equivalence depends on the purpose
of the machine, which may differ from machine to machine; for instance, se-
quence acceptors and sequence translators do not share the same definition of
equivalence (definitions 109 and 163, pp. 143 and 193, respectively). Even for
machines having the same purpose, the same determinization algorithm may
involve to compute an infinite machine. We will first study FSA’s and then
give a generic algorithm that computes an equivalent FSA for some acceptor
machine. The determinization issues for each kind of machine will be dis-
cussed in their respective chapters. In particular, a pseudo-determinization
algorithm will be given for cases in which “full” determinization is not possi-
ble (e.g.: due to output generation, which will be discussed in section 10.7).
Apart from performing a partial determinization, this algorithm removes cer-
tain kinds of e-moves and, hence, avoids the possibility of falling into infinite
loops due to e-cycles.

7.11 Minimization

As for determinization, minimizing a FSM consists in finding an equiva-
lent but minimal FSM (definition 94, p. 135). Once a machine is deter-
minized, minimizing it will not accelerate the machine application —the size
of the SESs to compute during the machine application will not be further
reduced— but may considerably reduce the size of the machine; hence, min-
imization may reduce both the time and amount of memory required to load
the machine. We will give in section 8.6 (p.174) a minimization algorithm
which can be seen as an extension of the determinization algorithm, based
on van de Snepscheut’s (1985) minimization algorithm. Since grammars are
to be minimized only once and then applied several times, we will rather
focus on the optimization of the algorithms of application of the machines
rather than on the optimization of their determinization and minimization
algorithms.






Chapter 8

Finite-state automata

FSAs are equivalent to regular expressions,' that is, for any FSA there exists
a regular expression representing the same (regular) language and vice-versa
(Kleene, 1956). FSAs and regular expressions are or have been used for build-
ing lexical analysers as well as for describing search patterns and token sets
(Hopcroft et al., 2000, secs. 2.4 & 3.3, pp. 68 & 108; Revuz, 1992; Daciuk
et al., 2000; Carrasco and Forcada, 2002; Daciuk et al., 2005); they not
only allow for describing finite sets of words, but also some infinite sets of se-
quences such as integer numbers and email addresses (see figure 8.1). Regular
expressions are more convenient for describing simple patterns; the manual
construction of FSAs is usually more cumbersome, either when using some
graphical interface for drawing them, such as the ones included in the Intex
(Silberztein, 2004, chap. 5, p. 49) and Unitex (Paumier, 2008, sec. 5.2, p. 90)
systems, or by describing them in some text format, such as with Graphviz’s
dot format (Gansner and North, 2000) or with the VAUCANSON-G KTEX
package (Lombardy and Sakarovitch, 2002).? Additionally, applying a FSA is
more straightforward than applying its equivalent regular expression, hence
regular expressions are usually transformed into their equivalent FSAs for
their application: FSAs are procedural while regular expressions are declar-
ative.

We present here letter FSAs as the simplest case of FSM. We give the
basis for the definitions, properties and proofs of the machines presented in
the following chapters. More extensive material on letter FSAs and regular

LA description of regular expressions can be found in Hopcroft et al. (2000, sec. 3,
p. 83) or in Sipser (2006, sec. 1.3, p. 63).
2Graphviz homepage: http://www.graphviz.org
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[_A-Za-z0-9-]+(\.[_A-Za-z0-9-]1+)*0@
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Figure 8.1: (a) Unix regular expression (see Hopcroft et al., 2000, sec. 3.3, p. 108)
and (b) FSA matching any email address; additional transitions for the same source
an target states have been omitted, leaving a set of stacked labels, and labels of
the form ‘X-Y’ represent any character between X and Y, both included.

expressions can be found in Hopcroft et al. (2000, chap. 2-3) and Sipser
(2006, chap. 1).

Definition 128 (FSA). A FSA (Q,%,9,Qr, F) is a special type of FSM

(definition 46, p. 121) whose set of labels = takes its elements from ¥ U {e},
where Y is a finite input alphabet and € is the empty symbol.

8.1 Transitions

Definition 129 (Consuming transition). Following definitions 51 and 52,
transitions i QQ X X X @, that is, which consume and input symbol, are called
pure consuming transitions or simply consuming transitions.

Definition 130 (e-transition). Following definitions 53 and 54, transitions

in @ x {e} x Q, that is, which do not consume input, are called pure e-
transitions or simply e-transitions.

8.2 Behaviour

Definition 131 (Execution state). The ESs of a FSA are states in Q.
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The realization of FSA transitions falls into the FSM general categories of
pure consuming transitions and pure e-transitions (see definitions 87 and 88,
pp. 133 and 134, respectively).

Definition 132 (A). The A function for FSAs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® Ts =(s,

e 1, =q, and

e d=gq; €(gs,0).

Definition 133 (D). The D function for FSAs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® Ts = (s,
e 1, =q, and
e d=q € (g, ¢).

Lemma 7 (Finite e-closure). Given the iterative definition of e-closure of
lemma 4 (p. 140) adapted for FSAs, there exists a finite number n < |Q] so
that V,, = V1. Therefore, the e-closure computation can be reduced to a
finite union of sets

C.(Vo) =V, such that Vo, =V, UD(V;), i=0...n, (8.1)
following lemma 5 (p. 141).

Proof. Let us suppose that V; ;1 # V; for all ¢ > 0, that is, there is no
finite number n so that V,, = V,,44. Since V;4; = V; U D(V;), it holds that
V; C Vi1 and that Vi, — V; # 0; therefore [Vo| — [Vi| > 1, |Vo| — [Va] >
2,..., Vol = |Vo| = 00. However, since FSAs have a finite number of states
and V; C @ for ¢ > 0, V; must be also finite for ¢ > 0. Consequently, there
must be a finite number n < |@| such that V,, = V,, 41, where V, contains at
most every state of Q). O

Definition 134 (Initial and acceptance SESs). The initial and acceptance
SESs of a FSA are its initial and acceptance sets of states Qr and F', respec-
tively.
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Definition 135 (Execution machine). The ezecution machine of a FSA A is
defined as for the generic execution machine (definition 105, p. 142) without
any other kind of transitions than pure consuming transitions and pure £-
transitions; since ESs of a FSA are FSA states, the execution machine of A

is A itself.

Definition 136 (L). Following definition 107 (p. 143), we define L(A), the
language accepted by a FSA A, as

L(A) = {w e : A (Qr,w) N F £ 0}, (8.2)

Lemma 8 (Self-concatenation usefulness). If a cycle p inside a FSA is useful,
then p™ 1s also useful for n > 0.

Proof. Given an interpretation p = p,ppp. such that p, is a cycle, p; = p.pip.
for ¢ > 0 is an infinite family of interpretations since p; is a path within the
FSA (p, is connected to p. and to p; for i > 0, and p} is connected to p. for
i > 0), every FSA path is realizable and the start and end states of p' are
initial and final, respectively, as for path p. O

As for the case of FSMs, this proof is related to the pumping lemma for
regular expressions (see paragraph after proof of theorem 6, p. 164).

Theorem 6 (Cardinality of the interpretation set). Given theorem 4 (p. 145)
and the previous lemma, the number of interpretations within a FSA is infi-
nite iff it contains at least one useful cycle.

Theorem 7 (Cardinality of the language). Given lemma 8 and theorem 5
(p. 146), the language of a FSA is infinite iff it contains at least one useful
consuming cycle.

8.3 Reverse FSA

Definition 137 (Reverse FSA). Let A be a FSA (Q,%,9,Qr, F), we define
AR the canonical reverse of A, as the FSA (Q,%, 0, Q}, F') with

o ¢ €0(qs,0) iff ¢s € 0(qt,0)
® g € (qs ) iff gs € 6(q1,¢)
o ))=F, and
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e F'=0Qr.

Our definition of reverse FSA is similar to that in Hopcroft et al. (2000,
sec. 4.2, p. 137); as main difference, Hopcroft et al. require to add an ad-
ditional state to the reverse machine that will serve as initial state. Addi-
tionally, a set of e-transitions outgoing from that state towards the acceptor
states of the original machine is to be added in order to simulate multiple
initial states. We do not need such additional state and transitions since our
definition of FSA is symmetric: we simply allow for multiple initial states as
well as for multiple acceptor states, hence we only require to swap the sets
of initial and acceptor states of the original machine.

Lemma 9 (Reverse FSA). Let A be a FSA, A% is a reverse of A.

Proof. If w = 0109...0; € L(A) then there exists at least one finite path

p="po (q1,01,41) 1 (q2,02,45) P2 - (@, 00,4) i (8.3)
within A that is an interpretation of w, where
e ¢; and ¢ are states in @, for j =1...1,

e pg is a finite and non-empty e-path having ¢; as end state, or is the
empty path and ¢; is the start state of p,

e p; is a finite and non-empty e-path having ¢| as start state, or is the
empty path and ¢} is the end state of p,

e p; is a finite and non-empty e-path having q;- and g1 as start and
end states, respectively, or is the empty path and q;- = @41, for j =
1...1-1,

e the start state of p belongs to )7, and
e the end state of p belongs to F'.
Consequently, the finite path
P = (@, 0n4) - P3 (¢ 02,0) PT (1,01, @) Py (8-4)

belongs to A®, where
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e p? is a finite and non-empty e-path having ¢, as end state, or is the
empty path and ¢ is the start state of p&,

e pl is a finite and non-empty e-path having ¢, as start state, or is the
empty path and ¢ is the end state of p©,

° pf is a finite and non-empty e-path having ¢;1; and ¢} as start and
end states, respectively, or is the empty path and ¢;11 = q;-, for 7 =
1...0—-1,

e the start state of p belongs to Q’, and
e the end state of p® belongs to F.

Therefore, p? is an interpretation of wf within A® and wf € L(AR). If
w ¢ L(A) then there is no such path p within A, hence neither there is a
path p® within A% and, consequently, w?® ¢ L(AR). O

8.4 Recognizing a string

The base breadth-first and depth-first acceptor algorithms 7.5 (p. 153) and 7.8
(p. 157) for FSMs can be straightforwardly adapted for FSAs as explained
in section 7.9 (p. 152).

8.5 Determinization of acceptors into FSAs

We present here a generic algorithm for the determinization of any kind of
acceptor FSM which tries to compute an equivalent but deterministic FSA,
whenever possible. This algorithm is a generalization of the FSA deter-
minization described in Hopcroft et al. (2000, sec. 2.3.5, p. 60, FSAs without
e-moves) or in Sipser (2006, p. 54, FSAs with or without e-moves), and will
be the base of the determinization algorithms for all the machines presented
in this dissertation.

Determinization (into FSAs) and application of sequence acceptors are
similar problems, though determinization is more complex. Computing an
equivalent and deterministic FSA can be viewed as applying a machine not
just for a single input but for every input sequence the machine can consume
—leading to the exploration of every realizable path within the machine—
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and building an equivalent FSA so that for each set of reachable ESs by con-
suming a given input the new machine defines a unique state; that is, multiple
ESs for every possible input sequence the machine can consume are precom-
puted and replaced by single FSA states. Once the machine is determinized,
recognizing an input is reduced to searching for a single target state for each
input symbol to consume rather than maintaining several parallel searches.
The computation of the e-closure is no longer required since e-moves are re-
moved during the determinization process. Application algorithms can be
highly simplified for the case of deterministic machines, though we still need
the original algorithms for the case of non-determinizable machines.

Theorem 8 (Equivalent deterministic acceptor). Given a non-deterministic
pure acceptor A having

e X as its input alphabet,

e X as domain of its ESs,

X; € X as initial SES,

Xr € X as acceptor SES,

A:P(X) x X — P(X) as its consuming transition function on SESs
and

o C.:P(X)— P(X) as its e-closure transition function on SESs,?

the following is a description of an equivalent and deterministic finite- or
infinite-state automata A" = (Q', 3, &', Q), F'), depending on whether the
execution of A for any input sequence produces finite or infinite sets of ESs
and transitions:

o Q' CP(X)!
L4 ‘/0 - Ca(XI);

3Examples of machines following this description are letter FSAs in this chapter, letter
RTNs in chapter 12 and letter FPRTNs in chapter 15.

*As stated in Hopcroft et al. (2000, p. 61, 3rd prg.), not every multiple ES in P(X)
may be reachable from {X;}, hence Q' does not need to contain every multiple ES in
P(X). Indeed, the determinization algorithm must discard those unreachable states if it
is to be used as part of the minimization algorithm @ la van de Snepscheut (1985).
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,_ AV W #D
’Qf—{@o Vi = 0

o if Vo # 0 then Vo € Q' (by definition of FSM, def. 46, p. 121),

o if V., e @ andV, = C.(A(Vy,0)) # 0 then V; € Q' and §'(Vy,0) =V,
and

° F/:{VfEQ/IVfﬂXF#@}.

Proof. Let A and A’ be two acceptors as the ones described in the theorem
and w = o1 ...0; be a sequence such that there exists at least one path within
A consuming it. The application of A to this sequence yields the following
sequence of non-empty SESs:

Vo = Cu(X7) (8.5)
Vi = C(AVo,01)) (8.6)
Vo = C(A(V1,09)) (8.7)
: (8.8)
Vi = C(A(Vie1, 1)) (8.9)
By construction, A’ contains a path
p=Vo V1 2 V... BV (8.10)

If A accepts w then V} contains at least one ES in X and, therefore, V; € F".
Since Vj is the initial state of A’ and p is composed only by pure consuming
transitions, p is realizable and is an interpretation of w within A’. If w ¢ L(A)
then V; contains no acceptance ES and, therefore, path p exists within A’ but
is not an interpretation.

Up to here, we have proved that w € L(A) implies w € L(A’) and that
for every family of paths within A consuming a sequence w there exists a
unique path within A" consuming it. Let us suppose that A’ accepts some
additional sequence not in A. If so, there must exist some interpretation of
such sequence within A’. Since paths are added to A’ by computing the SESs
reachable from Vj, this interpretation must be equal to the concatenation of
some sequence of subpaths of some of the added paths that share one or more
SES. Let w and w’ be two sequences of the form

w = 01...0;0541...0; and (8.11)

r / , /
w = 0. OO Oy (8.12)
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If both sequences are accepted by A, then they are also accepted by A" and

the application of A to these sequences generates the following sequence of
SESs:

Vo = Cu(X)) Vo= C(x)
Vo= CA(V), o) Vo= A, )
V, = C(A(V1,0y)) Vo= CAWVL ) (813)
Vii = C(A(V;,0511)) Ve = CUAV,0hy))
Vi = CAW, @) V, = CA(V),,0))).

Let V; =V}, then the following sequences of SESs are also possible:

Vo = C.(Xy) Vo = C(Xp)

Vi = C(A(Vh),0m) Vi = CA(A(Vg),01)

Vi = C(A(Vj,0))) Vi = CA(AWVi o) (8.14)
Vine = C(A(V),0044)) Vier = Ce(AVY0541))

Vi = CAV1,00)) Vi = C(A(Viey, 01)).

Therefore, sequences

O1...050)...0,, and (8.15)
Ol 0RO .. O (8.16)

are also accepted by both A and A’. The same reasoning can be extended for
sequences whose interpretations are composed by more than two fragments
of subpaths of two or more interpretations.

Since the languages of A and A’ are equal, and every path within A
consuming a sequence w is condensed into a unique path within A", A’ is a
deterministic machine equivalent to A. O

Following this description, algorithm 8.1 fsm_ determinize is a generic
determinization algorithm for acceptor machines. The algorithm can be
adapted for any kind of acceptor machine by replacing X, X;, Xg, A and
C. by their particular definitions. The algorithm transforms some kind of
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acceptor machine A into a deterministic FSA A" = (Q', %, 0, Qy, F'). It builds
the different multiple ESs of A and uses algorithm 8.3 fsm_ create state for
creating a single state in A’ for each one, keeping a map (,, of multiple ESs
to single FSA states. The initial steps of the algorithm perform the following
operations:

e initialize A" as the empty FSA,
e if X; is empty, return A’ as is or, otherwise, proceed,

e build V; as the initial SES X; and E; as the corresponding queue for
e-closure computation,

e extend V; with its e-closure,

e create the initial state r; of A’,

e map V; to ry,

e initialize V,,, the set of every computed SES, as {V;}, and

e initialize F,,, the queue of unexplored SES corresponding to V.

The rest of the algorithm works in a similar fashion than algorithm 7.3 fsm-
_interlaced eclosure: while there are SESs V; to explore within £,,, dequeue
the next one, compute the reachable SESs V; from V; and add them to V,,
and, if not already present, enqueue them into £, as well. Step by step, the
loop iteration performs the following operations:

e dequeue the next unexplored Vi,
e retrieve r,, the state of A’ corresponding to Vi,

e call algorithm 8.2 fsm_ recognize_every symbol in order to build func-
tions (; and (., the former mapping symbols o € X to target SESs V;
such that V; = C.(A(V;, 0)), and the latter mapping the input symbols
to the corresponding queues for e-closure computation,’

e for each input symbol that has been mapped to a non-empty SES V;,

5In practice we implement a single map returning both the set and queue instead of
having to search inside two separate maps for each object.
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— retrieve V,
— retrieve its corresponding queue,
— extend V; with its e-closure,

— add the resulting V; to V,,, and, if not already present, enqueue V;
into E,, as well, create the corresponding state r, € A’ and map
‘/; to Tt,

— otherwise, retrieve the state r, € A’ corresponding to V; and,

— finally, add transition (rs,0,7;) to A’

The algorithm is not applicable for cases in which the number of ESs to
explored is infinite. It is applicable for any FSA since FSA ESs are states
in (), which is a finite set. The other cases are discussed in their respective
sections.

Determinization of lexical acceptors is slightly more complex: let t =
(g5, &, q¢) and t' = (¢s,&',q;) be two transitions of an acceptor A such that
£ #£ ¢, for the case of letter acceptors the realization of ¢ and ¢’ is exclusive
(the input symbol is either £, £ or none of them), while for the case of lexical
acceptors this is not necessarily true; for instance, let

& = <V:il>, and (8.17)
§ = <Vip>, (8.18)

any verb in both first person and plural will match both masks. Each set
of outgoing transitions from the same state must be replaced by a set of
equivalent transitions whose realizations are exclusive. For instance, let the
former transitions ¢ and ¢’ be the only ones outgoing from ¢, and having the
former defined lexical masks & and £, we first compute their corresponding
intersection and differences:

ENE = <V:ip> (8.19)
EN-E = <V:ils> (8.20)
—“ENE = <V:i2p:3p> (8.21)

Then, we replace ¢t and ¢’ by the following transitions:

(q87 <V:]-p>7 Qt)
(gs, <V:1p>,q;)
(gs, <V:ls> q)
(qs, <V:2p:3p>, q;)
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Algorithm 8.1 fsm determinize(A) > theorem 8

Input: A, an acceptor having ¥ as input alphabet, X as ES domain, X; as
initial SES, X as acceptor SES, A as consuming transition function on
SESs and C. as e-closure function on SES,

Output: A" = (Q',%,0,Q), F'), a deterministic FSA equivalent to A

1: initialize A" as the empty FSA on alphabet X
2: if X; # () then

3: ‘/t — X[

4: E, +— X;

5: Vi < fsm_interlaced eclosure(V;, E;)

6: r; < fsm__create_state(true, V; N Xp # ()
7 Cm(‘/;) — Ty

8: Vi {Vt}

9: E,, + {‘/;5}

10:  while (E,, # 0) do

11: Vi < dequeue(E,,)

12: Ts < (Vi)

13: ((t, Ce) « fsm__recognize every symbol(Vj)
14: for each o : (;(0) ¢ {L,0} do

15: Vi < (o)

16: E; <+ (.(0)

17: Vi + fsm__interlaced _eclosure(V;, E;)
18: if add(V,,, V;,) then

19: enqueue(E,,, V;)
20: r; < fsm_create_state(false, V, N Xr)
21: Cm(‘/;f) T
22: else
23: re < Cn(V3)
24: end if
25: 8 (rs,0) « {r}
26: end for
27: end while

28: end if
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Algorithm 8.2 fsm_recognize every symbol(V5)

Input: V;, a source SES
Output: ¢; : ¥ — P(Q), a map of input symbols to target SESs such that
Gt(o) = A(V;, 0)
(e, a map of input symbols to queues of ESs corresponding to the
SESs of (; for e-closure computation

1 G+ 0

2: (e )

3: for each (z;,0) : z; € A(Vy,0) do
4: add _enqueue es((i(0), ((0), x4)
5: end for

Algorithm 8.3 fsm_create state(is_initial,is_final)

Input: is_initial, future value of predicate r € @
is_final, future value of predicate r € F’
Output r, the new F'SM state
r < new_state(Q’)
add(@Q',r)
if is_initial then
add(Q7,7)
end if
if is_final then
add(F’,r)
end if
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This procedure requires the lexical mask formalism to be closed under the
intersection and the difference, which is not the case of the lexical masks
formalism of the Intex and Unitex systems or that of chapter 6: the differ-
ence of two lexical masks may result in a subset of tokens that cannot be
represented by any lexical mask of those formalisms. Blanc (2006, sec. 2.5,
p. 29) gives an alternate and closed definition of lexical masks, along with the
algorithms for the computation of the intersection and the difference. As we
will explain in the next chapter (sec. 10.7, p. 199), we have chosen a simpler
determinization method which simply consists in regarding any transition
label as a letter, including e-moves based on mandatory or forbidden blank
e-predicates, hence the procedure applies to both letter and lexical machines.
As drawback, such determinization method may not (and usually will not)
result in a “totally” deterministic machine due to non-exclusive lexical masks
of transitions outgoing from the same state. However, it must be taken into
account that some machines cannot be “totally” determinized but, at least,
this “partial” determinization will remove certain kinds of e-moves which may
lead to infinite loops when applying the machines. More information on de-
terminization of lexical FSAs and FSAs with predicates, in general, can be
found in Blanc (2006, sec. 2.6, p. 37) and van Noord (2000, sec. 2, p. 5),
respectively.

8.6 Minimization

Following van de Snepscheut (1985, sec. 3.1, p. 67), minimizing a FSA A
can be achieved by performing the following sequence of operations to A:
reverse, determinize, reverse and determinize again. In practice, each state
structure stores its outgoing transitions as a map of input symbols to target
states. The machine is first to be reversed, replacing the maps of outgoing
transitions by maps of incoming transitions and swapping the initial and
acceptance sets of states. The following determinize and reverse operations
can be condensed into a single algorithm; it suffices to perform the following
modifications to algorithm 8.1 fsm_ determinize:

e swap both arguments of calls to fsm_ create_ state, that is, create initial
states of A" as acceptor states and vice-versa, and

e replace &'(rs,0) € {ri} by §(r,0) € {rs}, that is, add the transitions
reversed.
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Finally the unmodified determinization algorithm is to be applied. Note
that just applying twice the determinize-reverse operation may not yield a
deterministic FSA: the last determinization must be performed to the non-
reversed machine in order to make sure that the resulting machine will have a
unique initial state (otherwise, the resulting FSA will have a single acceptance
state but, possibly, several initial states). The same minimization algorithm
applies for the rest of the machines but using the determinization algorithm
proposed for each one; therefore, no further details on minimization will
be necessary. We will not go into further details since the main subject
of this dissertation is the optimization of the algorithms of application of
local grammars rather than their minimization algorithms: we only require
to minimize a grammar one time before its application, while the algorithms
of application are to be executed once for each sentence. We conclude the
chapter with an example of minimization a [la van de Snepscheut of a lexical
FSA (figure 8.2).
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Figure 8.2: Minimization ¢ la van de Snepscheut of a FSA recognizing SMS
command requests, regarding lexical masks and e-predicates as letters; from top
to bottom, (a) original FSA, (b) reversed FSA, (c¢) reversed-determinized-reversed
FSA and (d) reversed-determinized-reversed-determinized FSA.



Chapter 9

Tries

Retrieval trees (Fredkin, 1960), or tries, are a special kind of FSAs which
have been commonly used for the representation of dictionaries or finite sets
of words. This particular application, along with alternative data struc-
tures, has been described in chapter 4. In this chapter, we will first give
a formal definition of trie and then present a new application of this data
structure: the optimization of the algorithms of application of FSMs using
string-like data.! We have given a brief description of this optimization in
Sastre and Forcada (2009, sec. 4.1). Experimental results for each applicable
algorithm will be given in chapter 20; these results show speedups up to 30%.
Greater speedups might be obtained by using ternary search trees (Bentley
and Sedgewick, 1997) instead of tries, though describing and implementing
this optimization by means of tries is more straightforward. We leave the
adaptation of this material for the case of ternary search trees to a future
work.

Definition 138 (Trie). Given a finite set of strings S € ¥*, we define the
trie representing S as the FSA (Q, %, 9, q., F) such that

e () contains a state q, for each prefiz o of each string in S,
® 0(4n,0) = Quo iff ao is a prefiz of some string in S, and

e F={¢g,.€Q:a€S}.

!By “string-like” we mean any data structure consisting of an empty sequence of ele-
ments or a non-empty sequence of elements that can be built by appending elements to
the empty sequence.

177
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Figure 9.1: Trie representing the set of words {‘ago’, ‘at’, ‘by’, ‘for’, ‘in’, ‘of’,
‘off”, ‘on’, ‘out’, ‘to’}.

For the sake of simplicity, we define tries with a single initial state q. instead
of a set of initial states Qr = {q.}, an with a transition function returning
single states qoo instead of sets of states {qoo }-

By construction, a trie accepts only the strings in S, is trimmed (def-
inition 118, p. 144), is deterministic (see definition 92, p. 135) and has no
cycles since interpretations share only the subpaths consuming their common
prefixes. (see figure 77).

9.1 Optimizing string processing with tries

Most of the algorithms of application of FSMs that we will present throught
this dissertation build SESs whose ESs have one or more string-like compo-
nents, namely partial outputs and stacks of states. During the initialization
stage of these algorithms, a first SES V; is built containing the ESs in some
set X;. The string-like components of these ESs are empty sequences in all
cases. Then, V) is extended with its e-closure and a loop consuming the input
symbols starts: for each input symbol, a new SES V., is derived from V;
and extended with its e-closure. In all cases, let 5 be a string-like component
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of an ES z; that is to be derived from an ES z,, § is built from the cor-
responding string-like component « of x4 by either copying «, copying only
some prefix of a or copying a prefix of a and then appending some suffix.
Once x; is built, it is to be added to a SES, which implies to compare § with
the corresponding string-like components of the ESs already in the SES in
order to avoid for duplicates, as explained in chapter 2. The cost of all these
operations is proportional to the length of 5.

Since there exists a bijective correspondence between trie states and
strings (acceptor state g, accepts string @ and no other string), we can repre-
sent string-like components o and 3 as pointers to states g, and gg of a trie,
respectively; string copies and comparisons will be then reduced to pointer
copies and comparisons, taking a constant time (a single clock cycle in most
cases). In case 3 is not a simple copy of o but some suffix is also to be added
to or removed from «, we simply follow the pointer towards ¢, and traverse
or create the trie path corresponding to that suffix in order to retrieve pointer
to gg, hence saving the cost of either copying the unmodified prefix of o or
traversing the trie path corresponding to that prefix. Tries accepting only
the empty sequence are initially built for each kind of string-like component,
and new paths are added to the tries as new suffixes are to be appended to
the already accepted sequences. Each string-like component [ is built from
a previously built string-like component « as follows:

1. if 8 = a then pointer to ¢, is simply copied,
2. if f§ = o then transition ¢ = (¢4, 0, ¢) is followed in order to retrieve

the pointer to gg, previously adding ¢ and gg to the trie if not already
present (see algorithm 9.1),

Algorithm 9.1 concat_trie_string and symbol(g,, o)

Input: gq,, the trie state corresponding to string «
o, a trie input symbol

Output: q,., the trie state corresponding to string ac
D Gao 5(q05? U)
if ¢, = 1 then

Joo < fsm_create state(false, true)

0(qas 0) < Gao
end if
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Algorithm 9.2 concat_trie string and _string(qq, 5)

Input: gq,, the trie state corresponding to string «
8 = oy ...0y, the string to concatenate to ¢,
Output: ¢.3, the trie state corresponding to string a3
I: qop < Qo
2: 141
3: while i #Z 1 + 1 A (¢a < 6(qap, 0:)) #L do
4: qap < Qo
5: 1141
6: end while
7: whilei #1[+ 1 do
8 Go < QOcB
9 qop < fsm_ create_state(false, true)
10: 0(qar 03) < qap
11: 14— 1+4+1
12: end while

3. if f = a0y ...0; then we explore the already present trie path

o
Qa U_l) qoc0'1 J_2> LR _J) Q(xo'j, (9].)
then construct path
Qo Qo
qaaj L) C_IanJrl ﬂ) s ﬂ) oo, (92)

and finally return pointer to ¢a,,.., (see algorithm 9.2), and

4. if fo = « then pointer to gs is retrieved by reversely following transi-
tion (g, 0, ¢o), operation that can be efficiently performed if the data
structure representing ¢, stores a pointer to ggs.

Obviously, the first and last cases have a constant time. Appending a
symbol o to a string « represented by a trie state g, mainly requires a binary
search within the map of symbols to target states directly reachable from g¢,.
As seen in chapter 2, this search has a logarithmic cost w.r.t. the number of
outgoing transitions from q,. Appending a string o; ... o; requires to perform
J binary searches, where j is the greatest natural number such that the trie
contains a path corresponding to oy ...0;, and then [ — j additions of a state
and a transition to the trie, each one having a constant time.
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For the case of dictionary representation, acceptance flags of trie states are
used for distinguishing between complete words and mere prefixes; however,
this distinction is not needed for the optimization of string management by
means of tries: the set of strings corresponding to the whole consumption of
the input will be given by the pointers to trie states within the ESs accepting
the whole input. Since we have defined tries as FSAs, the concatenation
algorithms always set these flags to true, just to give some value. In practice,
we simply do not use any acceptance flags.

9.2 Extracting strings from tries

Depending on the algorithm of application of FSMs, some string-like com-
ponents of the ESs accepting the input are to be given as result, namely
the output sequences generated by algorithms of application of FSMs with
letter output (to be seen in chapter 11). Other string-like components are
only required for the implementation of derivation mechanisms, namely the
stacks of return states constructed by some algorithms of application of FSMs
with recursive calls (to be seen in chapters 12-14). These components can
be simply thrown away along with their respective tries once the algorithm
execution ends. In case the sequences to return are to be represented as
arrays instead of pointers to trie nodes, a further processing is necessary in
order to generate the corresponding trie strings. Of course, if the strings
represented by every state of the trie were to be returned, it would be better
to use normal strings since the beginning, but this will not be the case: only
those sequences corresponding to the consumption of the whole input are
to be returned. Rather than generating the language of the trie, the last
computed SES is to be traversed in order to search for the acceptor ESs, and
the pointers within these ESs representing the strings to extract are to be
followed in order to explore only the relevant trie paths. Summarizing, using
tries for the representation of sequences will result in a performance gain as
long as the number of sequences to extract is small enough w.r.t. the number
of sequences represented by the trie.

By definition, every trie state has a unique incoming transition except for
q-, which has none. Therefore, the symbols of a string o represented by a
pointer to a trie state ¢, can be retrieved in reverse order by following the
pointer and then by reversely following each incoming transition up to state
q- (see figure 7?7, p. 178). Retrieving « instead of of is slightly more com-
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plex. Algorithm 9.3 recursive retrieve trie_ string implements a possible
solution based on recursivity. The algorithm takes a state ¢, and a counter
of traversed incoming transitions 7, having 0 as default value, and returns an
array a containing o and a natural number j equal to |«|. Counter ¢ can also
be seen as the index of this recursive call, starting with 0. As long as ¢, # ¢.,
the algorithm calls itself with the source state of the transition incoming to
Go and 7 + 1 as counter. During the call in which ¢. is reached, 7 is equal to
|a]. At this point, an array a of length ¢ is initialized and returned, along
with the value of 7. The array is then filled with the symbols of a in direct
order, one symbol after each return from a recursive call: let ¢ be the last
symbol of the string represented by the state g, during recursive call with
index i, o is to be assigned to a[j —i — 1], the ‘mirror’ position of ¢ within a.
Summarizing, the algorithm traverses the path from ¢. up to g, in reverse
order in order to compute the length of «, then initializes array a and fills it
in direct order by taking its steps back.

Algorithm 9.3 recursive retrieve trie string(q,,i = 0)

Input: q,, the trie state whose string « is to be retrieved
1, the string length counter having 0 as default value
Output: a, an array of input symbols storing «
J, the final string length
1: if 3(q¢s,0) : 6(gs,0) = ¢, then

2: (a,j) < recursive_retrieve_trie_string(gs,i+ 1)

3: alj —i—1]«o > first buffer index is 0
4: else

5: a < create_array/(i)

6: j1

7: end if

Finally, a simpler solution could be implemented if o’s length could be
retrieved by simply following the pointer to q,; we extend the data structure
representing each state g, within the trie with a field storing q,’s depth, that
is, the length of the path starting at ¢. and ending at g,. Since tries have only
pure consuming transitions, g,’s depth is equal to |«|. Upon the initialization
of a trie, the depth of its initial state is set to zero. Algorithms 9.1 concat-
_trie_string _and_ symbol and 9.2 concat _trie_string and_ string are mod-
ified so that, each time a new state ¢z is created with an incoming transition
0(¢a,0), q3’s depth is set to ¢, ’s plus one. Constructing an array a containing
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a string o can then be done with a single traversal, as illustrated in algo-
rithm 9.4 retrieve_ trie_ string: array a is first initialized with a length equal
to the depth of ¢, and then a loop fills the array from the last position up
to the first one while reversely following each incoming transition.

Algorithm 9.4 retrieve trie string(qq)

Input: q,, the trie state whose string is to be retrieved
Output: a, an array storing «
J, the final string length
a < create_array(depth(q,))
: for i = depth(g,) — 1 to 0 step —1 do > first buffer index is 0
CL[Z] —o: 5(Q570) = qa
Qo <= QB+ 5((]570) = Go
end for

BANE I i o

9.3 A not-so-efficient concatenation case

As we will see, some of the algorithms of application of FSMs generating
letter sequences require an additional concatenation case: appending a trie
string 5 to another trie string a (e.g.: in figure 7?7, p. 178, appending ¢,
to ¢ in order to obtain g,). In this case, knowing gg’s depth will not
avoid the hassle of traversing backwards and then forward the path from ¢,
to gg: this path is to be appended to the path corresponding to « in direct
order. Algorithm 9.5 concat_trie_ strings performs this operation, based on
algorithm 9.3 recursive_ retrieve_ trie_ string: it recursively calls itself with
the states before gz up to reaching ¢., then either explores or creates a path
analogous to the path from g. up to gg in direct order, starting from g, ; after
returning from each recursive call, algorithm 9.1 concat trie_string and-
__symbol is called in order to either reach the next state or to create it along
with its incoming transition, if not already present. In practice, performance
has dropped for the case of algorithms using this kind of concatenation.
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Algorithm 9.5 concat_ trie_strings(qa, q3)

Input: gq,, the trie state corresponding to a string «
gp, the trie state corresponding to a string

Output: ¢.3, the trie state corresponding to string a3
if 3(¢,,0) : 6(¢y,0) = qp then

Jop < concat_trie_ strings(qa, ¢,)

Jop < concat_trie_string and_symbol(gag, o)
else q.3 < qo
end if




Chapter 10

Finite-state transducers with
blackboard output

FSTBOs are a generalization of finite-state transducers where outputs may
be any kind of objects (for instance, strings for the case of letter transducers)
and transitions may perform any kind of transformation to a current output
(transitions of letter transducers may append a symbol to the current out-
put). FSTBOs can be seen as augmented transition networks (Woods, 1969)
without recursive calls where register sets —the blackboards— are not only
used in order to implement more complex transition functions but are to be
given as output. We give here the general definitions for any kind of output,
we present in the next chapter FSTs with string output as a particular case
of blackboard output, and finally give in chapters 17, 18 and 19 the general
guidelines for the definition of weighted, unification and composite output
machines as other particular cases of blackboard output. References to other
works are given for each particular case in their respective sections.

Definition 139 (FSTBO). A FSTBO (Q,%,1', B, Bk, 6,Qr, I') is a special
type of FSM (definition 46, p. 121) whose set of labels = takes its elements
from the set of input/output pairs (XU {e}) x (' U{idg}), where

Y 1s a finite input alphabet,

€ s the empty input symbol,

I': B — B s a finite output alphabet of functions v on finite blackboards
be B,

185
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e idp the identity function on blackboards, and
e by, is the empty blackboard,

e By C (B —{by}) is a (possibly empty) set of illegal or killing black-
boards.

Transitions that produce killing blackboards cannot be traversed: during the
execution of an algorithm of application of a FSTBO, explorations of paths
reaching such blackboards are killed.

10.1 Transitions

Definition 140 (Consuming transition). Following definition 51 (p. 123),
transitions in Q x (X x (I' Uidg)) x Q, that is, which consume an input
symbol, are called consuming transitions.

Definition 141 (Generating transition). Transitions in Q x (X U {e}) X
I') X Q, that is, having a non-empty output, are called generating transitions.

Definition 142 (Translating transition). Transitions in Q x (¥ x I') x @,
that s, both consuming and generating, are called translating or substituting
transitions.

Definition 143 (Deleting transition). Transitions in Q x (X x {idg}) X
Q, that 1s, consuming transitions that do not generate, are called deleting
transitions.

Definition 144 (e-transition). Following definition 53 (p. 124), transitions
in Qx ({e} x (TU{idp})) x Q, that is, which do not consume input but may
or may not generate output, are called c-transitions.

Definition 145 (Inserting transition). Transitions in Q x ({e} x T') x @,
that is, generating -transitions, are called inserting transitions.

Definition 146 (e’-transition). Transitions in Q x {(g,idg)} x Q, that is,
non-generating e-transitions, are called £2-transitions.
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10.2 Graphical representation

FSTBO transition labels may include an output as well as an input, as has
been seen in definition 139 (p. 185). In the classic representation format, the
transition label is formed by an input/output pair of codes separated by a
colon (see figure 10.1(b)). The representation of non-generating transitions
is not modified, that is, the empty output is represented by the absence of
the colon and output code rather than by a colon followed by some code
representing an empty output.

Unitex and Intex graphs may associate a single output to each box, rep-
resenting them as text labels with bold fonts (by default) under the corre-
sponding boxes (see figure 10.1(a)). In case a box contains multiple input
labels, the same output label is associated to each input label.

10.3 Sequences of transitions

Definition 147 (Generating path). A generating path is a path containing
at least one generating transition.

Definition 148 (Generating e-path). A generating e-path is a generating
path without consuming transitions.

Definition 149 (e2-path). An £*-path is a path whose transitions are all
e2-transitions.

Definition 150 (Generating cycle). A generating cycle is a closed generating
path.

Definition 151 (Generating e-cycle). A generating e-cycle is a closed gen-
erating €-path.

Definition 152 (g2-cycle). An e%-cycle is a closed £*-path.

10.4 Behaviour

Due to blackboard management and the fact that it might be possible to ar-
rive to a state ¢ through different paths that generate different blackboards,
ESs for FSTBOs are composed by a state ¢ € @ plus the blackboard gener-
ated from an initial ES up to the ES.
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Figure 10.1: (a) Unitex graph marking SMS requests and delimiting their
phone and message arguments by inserting XML tags, and (b) equivalent pseudo-
minimized lexical FSTSO. These objects are extended versions of the ones in fig-
ures 7.1(a) and 7.1(c) (p- 126) Pseudo-minimization is performed as explained in

section 8.6 (p. 174) combined with the pseudo-determinization that will be de-
scribed in section 10.7.
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Definition 153 (Execution state). FSTBO ESs are pairs (q,b) € (Q, B).

Definition 154 (Illegal SES). The illegal SES of a FSTBO (Q, %, T, B, By,
3, Qr, F) is (Q x Bg), that is, the set of all ES having a killing blackboard.

Definition 155 (A). The A function for FSTBOs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® Ty = (QSabs)r
o ;= (q,b), and

o d=q €9(qs, (0,7)) Nby = v(bs) Nb; ¢ Bk

As we can see, the last condition of predicate d, b, ¢ By, prevents A(V, o)
from returning ESs with killing blackboards.

Definition 156 (D). The D function for FSTBOs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® ITs= (QSabs)r
® I = (C]t>bt); and

o d:qt € 5((]5,(8,”)/)) /\bt :V(bs)/\bt ¢ BK'

As for A(V, o), the last condition of predicate d prevents D(V') from
returning ESs with killing blackboards.

Lemma 10 (Infinite e-closure). The e-closure of a FSTBO SESs V is infinite
if there exists an ES x, within V' or e-reachable from an ES of V' such that

e there exists an e-cycle p passing through x,

e starting from xs, for every traversal of cycle p output functions always
return non-killing blackboards, and

e non-identity output functions return a different blackboard at each cycle
traversal.

Proof. Let A be a FSTBO having a generating e-cycle

p= tot1...th—1 = (C]o, (Ea 70)7 Q1)(611, (Ea ’71)7 Q2) cee (Qn—la (E, ’Vn)a QTL)a

where 7; € (I' Uidp) and there is at least one vy, € I' (non-identity output
function) for j,k =0...n — 1; let (go,bo0) € Vo a non-illegal ES (byo ¢ Bk)
such that
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e (gj,bi;) is a reachable ES through path p't,...t; — 1, for i > 0 and
j=0...n—1, and

L If’yj §£ ldB then b@j = bi/J’ iff 1+ = ’i,, for ’i,i/ >0 andj =0...n— 1,
that is, every output function other than the identity produce a new
blackboard at each traversal of the cycle.

Following the development of the iterative e-closure of Vj (lemma 4,
p. 140) adapted for FSTBOs (definition 156 of D function),

C.(Vo) =V, such that Viyqy =V, U {(q, V) : ¢ € 0(gs, (0,7))A
(g, b) € Vo Al =~(b) AV & B}, i=0...n, (10.1)

where the last condition ¥’ ¢ By can be omitted since we suppose that only
non-killing blackboards are produced,® it holds that

(q0,b00) € Vo
((h’bo,l) c W

(¢n-1, bo,n—l) S VA
(q0,b10) € V,
(q1,011) € Vi

(qn—labl,n—l) S ‘/'2”_1
(g0, b20) € Von

(QO, bi,j) € Vingj

Since p is a cycle, when traversing path p'tg...t; an ES (gri1,bik41) with
the same state g1 is produced for each ¢+ > 0. However, since function ~;
is a non-identity function always returning a different blackboard, every ES
(Qk+1, bi g+1) is different and therefore the e-closure is indefinitely incremented
with at least one ES per cycle traversal. By definition, if an ES (g, bo) is
e-reachable from an ES of V{, then there is a SES V; that contains the ES.
Since the e-closure of Vj contains the e-closure of V;, and the e-closure of V},
is infinite, so it is the e-closure of Vj. O

lif an ES is reachable, then it is legal and therefore has a non-killing blackboard
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Lemma 11 (Finite e-closure). Under conditions other than those expressed
in the previous lemma, the e-closure of a FSTBO SES is finite.

Proof. Let A be a FSTBO and (qo, by) an ES in Vj; let p be any e-path

(90, (&:7%) 1), (q1(e;71)5G2) - - - (Gn—1, (&, Yn-1); Gn) (10.2)

of A, by developing the iterative e-closure of V;; we obtain the ESs

(q0,00) € Vo
(@1, (b)) € Vi

(@ Yn=1( - - (11 (0(bo))) -..) € Vq

where one of these cases holds:

e After a finite number of transitions have been traversed, a killing black-
board is produced. Since a finite number of ESs have been derived up
to this point and no more ESs can be derived once an illegal ES is
reached, the e-closure is finite.

o [f Y = ldB fOI"j =0...n— 1, then b070 = b071 = "'bO,n—l = b170 =
... = b;;, that is, every e-reachable ES from (go,bpo) has the same
blackboard. Therefore, C.(V4) is a finite set since it is a subset of
(Q x{boo}), which is finite. In this case the proof is the same than for
FSAs (proof of lemma 7, p. 163), which is based in the fact that the
result of the e-closure is a subset @), which is finite.

o If v; € (' U{idp}) but ¢; = ¢ iff j = k, that is, there are no e-cycles
having an e-reachable ES from ¢q, the e-closure is also finite if the e-
paths are finite, which is true since FSTBOs have a finite number of
transitions.

e Finally, if v; € (' U {idg}) and v; € T"iff ¢; # ¢ for j # k, that is,
there are no generating e-cycles having an e-reachable ES from ¢, the
e-closure is also finite since it is the union of the second and third cases,
which are also finite: the path can be decomposed into concatenations
of e2-paths, with cycles or not, and generating e-paths without cycles,
each one adding a finite SES to the e-closure.
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O

Theorem 9. The e-closure is always finite for FSTBOs without generating
e-cycles.

Definition 157 (Initial and acceptance SESs). Given the sets of initial and
acceptance states of a FSTBO, Qr and F, its initial and acceptance SESs
are (Qr x {by}) and (F x (B — Bg)), respectively.

Definition 158 (Execution machine). The execution machine of a FSTBO
A is defined as for the generic erecution machine (definition 105, p. 142)
without any other kind of transitions than pure consuming transitions and
pure e-transitions, thus its definition is equal to that of a FSA except for
the possibility of having an infinite set of states, transitions and acceptance
states.

Note that the execution machine of a FSTBO A does not require to de-
fine transitions with output functions since the resulting output blackboards
are coded inside the state labels; for instance, if A contains a transition
(gs, (0,7), q) such that g, is reachable from some initial state by generating
blackboard b, then X' (A) contains a transition ((gs, bs), o, (¢, 7(bs)))-

Definition 159 (7). We define 7(A), the language of translations of a FSTBO
A, as the set of input/output pairs (w,b) € (X* x (B — Bg)) such that w is
recognized and translated into blackboard b by A, that is, an acceptance ES is
reached from an initial ES by consuming w and generating blackboard b:

7(A) = {(w,b) : (gr,b) € A™(Qr x {bp}), w) N (F x B)}. (10.3)

Definition 160 (w). We define w(A,w), the translations or language of
blackboards of a word w for a FSTBO A, as the set of blackboards (SB)
b € (B — Bg) such that (w,b) belongs to the translations of A:

w(A,w)={b: (w,b) € T(A)}. (10.4)

Definition 161 (7z). Let x be an ES of a FSM A, we define Tgr(x), the right
translations from x, as

Tr(z) = {(w,b) : zy € A*({z},w) N Xp}. (10.5)
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Definition 162 (wg). Let x be an ES of a FSM A, we define wg(x,w), the
right translations of w from x, as

wr(z,w) ={b: (w,b) € Tg(x)}. (10.6)

Definition 163 (Translator machine). We say that a machine or an algo-
rithm of application of a machine is a translator iff its purpose is to imple-
ment a map L — P(L'), that is, a map of words of a language L to sets of
words of a language L.

In a larger sense, we could say that even acceptor machines are also
translators: acceptor machines translate input sequences to Booleans (accep-
tance or rejection). However, generating more complex output than simple
Booleans introduces some additional complexities that make worth the dis-
tinction; for instance, the possibility of infinite e-closures and, as we will see
in section 10.7, the impossibility of determinizing certain machines.

In definition 93 (p. 135) we introduced the concept of equivalence between
machines, and then we formally explained the equivalence between pure ac-
ceptor machines (definition 110, p. 143). Once defined what a translator
machine is, we can give the last definition of equivalence between machines:

Definition 164 (Equivalent pure translator machines). We say two pure
translator machines A and A" are equivalent iff T(A) = 7(A").

Other machines than FSAs and FSTBOs that we will present in this
dissertation will simply have other kinds of transitions, but will finally be
either acceptors defining a language or translators defining a map between
two languages.

10.5 Recognized languages

FSTBOs may be designed to express additional restrictions on the input
language through the killing-blackboard mechanism in order to go beyond
regular languages. Indeed, for every Turing machine there exists an equiv-
alent FSTBO (in the acceptor sense), as for augmented transition networks
(Woods, 1969, sec. 1.7.9, p. 39). Following Hopcroft et al. (2000, p. 319), we
briefly define Turing machines as follows:

Definition 165 (Turing machine). A Turing machine is a structure M =
(Q> 27 Fa 57 4o, 90, F) ZUhGTB
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Q is a finite set of states,

I' is a finite tape alphabet,

go € I 1s the blank symbol or default tape symbol,

Y CTI' —{gn} is a finite input alphabet,

0:QxT = QxT x{L,R} is a finite transition function, where L
and R represent a left or right shift, respectively,

Qo € Q 1is the unique initial state, and
o I C (Q 1is the set of acceptor states.

ESs are triplets in (Q,I'*,N): a state, a tape and a head position. The unique
ES is (qo,01...0,,0) and the acceptance SES is (F x I'*,N).

Informally, a Turing machine is a kind of FSM with a potentially infinite
tape and a bidirectional read /write head. Initially, the input is to be con-
tained in a segment of the tape and every other tape cell to contain a special
default symbol. Transitions can or cannot be taken depending on the current
state as well as the tape symbol at the current head position. Traversing a
transition involves to bring the machine to the transition’s target state, to
overwrite the tape symbol at the current head position and to shift the head
position either to the left or to the right. By potentially infinite we mean
that the tape head can be shifted in both directions any number of positions,
though for a given machine and input only a finite number of shifts must be
necessary if we are to apply the machine in practice. Instead of storing an
infinite tape, which would be impossible, we initially store a tape having the
same length as the input and, each time a symbol is to be read beyond the
limits, the tape is first incremented with an extra cell containing the default
symbol.

Theorem 10 (FSTBO and Turing machine equivalence). For every Turing
machine there exists a FSTBO recognizing an equivalent language.

We basically use blackboards to represent the tape and current head po-
sition, and output functions to perform the corresponding modifications on
the tape and the head position as well as to produce killing blackboards
whenever the symbol specified in the transition does not correspond to the
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tape symbol at the current head position. We define an initial substruc-
ture of the FSTBO for consuming the whole input and loading it into the
tape, and another substructure corresponding to the original Turing machine
structure where its behaviour is emulated by e-transitions that operate on
the blackboards.

Proof. Let M ={Q,T, gy, %, 0, qo, F'} be a Turing machine, we build a FSTBO
A= (Q, Y, 1", B, Bk, ¢, Qr, F') as follows:

e ' = > U{S$}, the input alphabet of the original Turing machine plus
a special symbol marking the end of input (EOI), where every original
input o105 ...0;_10; € X is first to be replaced by o;0;_1 . .. 0901 $, that
is, the original input in reverse order followed by the EOI mark,

e () =QU{q}, the Turing machine original states plus a FSTBO initial
state needed for loading the input into the blackboard’s tape,

o ["=F,
e Qr={q}
e B = (I"" x N), a tape and a head position,

By = {1}, the killing blackboard,

I" = {idp}U{" s : (1w, 8) € (IxI'x{L, R}), the functions operating
on blackboards, where

~ Yy.w.s(bs) returns L if 7, the symbol to read, is not equal to the
tape symbol at the head position in by,

— otherwise builds b;, the blackboard to return, by copying by, then
overwritting b;’s tape symbol at the head position with w and,
finally, shifting b,’s head position one cell to the left, if s = L, or
to the right, if s = R,

— cells containing gy are automatically appended to the tape when
accessing positions beyond the limits, and

e transitions are defined as follows:
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— qy € (99, (0,7,0.1.)), for each o € X; these transitions load the
input in reverse order onto the tape up to the EOI mark, keeping
the machine in the initial state g,

— qo € 6'(qo, (8,744,5)); this transition detects the EOI mark, posi-
tions the head on the last copied symbol and brings the machine
to the initial state of the Turing machine to emulate, and

— @t € 6'(qs, (8, 0ps)) M (q1,7) € (gs,w, 5); traversing a FSTBO
transition is also conditioned by the current tape symbol by the
killing-blackboard mechanism.

10.6 Translating a string

Based on algorithm 7.5 fsm_ recognize string (p. 153) adapted for FSTBOs,
algorithm 10.1 fstbo translate string computes the set of possible transla-
tions of a given input string. It uses algorithm 10.2 fstbo_translate_ symbol,
an adaptation of algorithm 7.6 fsm_ recognize_ symbol (p. 154) for FSTBOs,
in order to compute the A function, and algorithm 10.3 fstbo_interlaced_ e-
closure, an adaptation of algorithm 7.3 fsm_ interlaced eclosure (p. 151) for
FSTBOs, in order to compute the e-closure. Finally, algorithm 10.4 add_en-
queue_ esbo is used in the A and e-closure algorithms instead of algorithm 7.4
add_enqueue_es (p. 151) in order to add derived ESs with blackboard out-
put;? both algorithms perform the same operation but the former checks
whether the blackboard is not a killing one before adding the ES. When
building the initial SES, the routine unconditionally add_ enqueue_ es seen
in section 7.9 (p. 152) is used instead of an equivalent routine for ESs with
blackboard output since, by definition, every initial ES has a non-killing
blackboard: by.

Apart from the adaptation of the algorithm for FSTBOs and the killing
blackboard test, the main difference lies in the post-processing of the last
computed SES: rather than looking for the first acceptance ES in order to
accept the word, we extract every output associated to any acceptance ES
in order to build the set of translations of the input word. Since the SESs V;
cannot contain ESs having a killing blackboard, it is only necessary to check

’In add_ enqueue_ esbo, ‘esbo’ stands for ES with blackboard output.
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whether their state ¢ is accepting or not. If no acceptance ES is found then
an empty set of translations is returned. The domain of application of the
translator algorithm must be reduced to FSTBOs not having generating e-
cycles in order to ensure that the algorithm execution will finish. For the case
of NLP this is not an issue since generating e-cycles would lead to infinite
sets of interpretations of natural language sentences, which makes no sense.

Algorithm 10.1 fstbo_ translate string(oy ...o0;) > w(A, 01 ...0;), def. 160

Input: oy ...0;, an input string of length [
Output: 7', the translations of oy ...0;

LV<+0

2. B+

3: for each ¢ € ); do

4: unconditionally add enqueue es(V, E, (¢, by))
5. end for

6: fstbo_interlaced _eclosure(V, F)

7.1+ 0

8: while V(O Ai<[do

9: V <« fstbo_recognize symbol(V, E, ;1)
10: 14— 1+1

11: fstbo_interlaced _eclosure(V, E)

12: end while

13: T < )

14: for each (¢,b) e V:q € F do

15: add(7,b)

16: end for

The algorithm can be further improved by using the trie string man-
agement shown in section 9.1 (p. 178) for the representation of string-like
structures of output blackboards; FSTSOs are the simplest applicable case
since their blackboards are strings (see section 11.5, p. 215).

10.6.1 From breadth-first to depth-first

Algorithm 10.5 fstbo depth_ first_translate string (along with algorithm 10.6
fstbo _depth_ first translate suffir) is another algorithm computing the trans-
lations of an input sequence for a given FSTBO but performing a depth-first
traversal of the machine instead of a breadth-first one. We simply modify
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Algorithm 10.2 fstbo translate symbol(V, E, o) > A(V, o), def. (155)

Input: V, a SES
E, the empty queue of unexplored ESs
o, the input symbol to translate
Output: W, the set of reachable ESs from V' by consuming o
E after enqueuing the ESs of W

1 W<+10
2: for each (¢s,bs) € V do
3: for each (¢;,7v) : ¢: € §(¢s,(0,7)) do
4: add_enqueue__esbo(W, E, (g, v(b;)))
5: end for
6: end for
Algorithm 10.3 fstbo_interlaced _eclosure(V, E) > C.(V)

Input: V, the SES whose e-closure is to be computed
E, the queue of unexplored ESs containing every ES in V'
Output: V after computing its e-closure
E after emptying it

1: while E # () do

2 (gs, bs) + dequeue(FE)

3 for each (q;,7) : ¢ € d(gs, (¢,7)) do

4: add__enqueue_esbo(V, E, (g:, v(bs)))
5 end for

6: end while

Algorithm 10.4 add _enqueue_esbo(V, E, x;)

Input: V, the SES where the ES is added
E, the queue of unexplored ESs
xy, the ES to add to V
Output: V after adding the ES, if legal
E after enqueuing the ES, if new and legal
1: if blackboard(z;) ¢ By then
2: if add(V, x;) then
3: enqueue(F, x;)
4: end if
5: end if
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the generic depth-first recognizer algorithms (section 7.9.1, p. 156) so that
they do not stop after reaching the first acceptor ES by consuming the whole
input; instead, the algorithm is to continue until reaching all those acceptor
ESs and to return a set of translations composed by all of their correspond-
ing blackboards. Algorithms 7.8 fsm_ depth_ first recognize string and 7.9
fsm_ depth_ first _recognize suffiz are to be modified as follows:

a set of translations T is to be returned instead of a Boolean value,

e when detecting an acceptor ES, its blackboard is to be added to T
instead of returning true,

e calls to algorithm 10.6 fstbo depth first translate_suffix are to be
performed without evaluating the returned value and without returning
any value, and

e the instruction returning false is to be removed (7" is implicitly returned
since it is an input/output variable).

Algorithm 10.5 fstbo depth first translate string(oy...o;) >
w(A,oy...00), def. 160

Input: o0y ...0;, an input string of length [

Output: 7', the translations of oy ...0;
1: for each z € X; do
2: fstbo depth first translate suffix(oy...0y,1,2,7T)
3: end for

10.7 Determinization

Deterministic transducers are commonly known as sequential transducers;
following Mohri (1997, sec 2.1), we define sequential FSTBOs as follows:

Definition 166 (Sequential FSTBO). Let A be a FSTBO (Q, X, I, B, B,
0, Qr, F), we say A is sequential iff it has deterministic input, that is, let A’
be a FSA (Q, 2, 0, Q, F) such that

¢ €96 (¢s,0) <= q €06(¢s,(0,7)) and (10.7)
@ €0'(¢s,8) <= @ €(gs, (¢,7)), (10.8)
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Algorithm 10.6 fstbo depth first translate suffix(oy ...0y,1, (gs, bs),T)
> wg(Ts,0;...07), def. 162

Input: o0y ...0, an input string of length [
1, the index of the first suffix symbol
bs, an ES with ¢, as reached state
T, a set of translations
Output: T after adding the right translations of o; . ..o; from x4

1: if i > I A (gs, bs) € X then

2 add(T,b,)

3: end if

4: if + <[ then

5: for each z; € A({(¢s,bs)},0;) do

6: fstbo depth first translate suffix(oq...0p,i+ 1,24, T)
7: end for

8: end if

9: for each z; € D({z,}) do

10: fstbo depth first translate suffix(oy ... 0y, 14, z;)
11: end for

A’ is deterministic.

In general, FSTBOs representing natural language grammars are not de-
terminizable due to their ambiguity.

Corollary 6. Let A and A’ be the machines of the previous definition; then,
Vw € ¥ |lw(A,w)| < 1], (10.9)

since A" is deterministic and, hence, it may contain no more than one inter-
pretation of w.

Corollary 7. Let A be a non-sequential FSTBO, if |w(A,w)| > 1 for some
input sequence w then there exists no sequential FSTBO equivalent to A.

Note that a FSTBO A may have two different interpretations for the
same input sequence w, yet associate a single output to w; for instance, if
A maps input sequences to scores by adding some amount of points at each
transition, different paths may generate the same score by adding the same
points in different order.
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Sequential transducers can be generalized by introducing the possibility
of generating at most one additional output right after accepting an input
sequence, where the output is given by a map of acceptor states to additional
outputs (Schiitzenberger, 1977). Such transducers are called subsequential.
Choffrut (1977, 1978) characterized the class of transducers performing sub-
sequential transductions, hence being determinizable. Such characterization
implicitly defines an algorithm for the construction of an equivalent subse-
quential transducer. This algorithm has been explicitly given by several au-
thors (Berstel, 1979; Mohri, 1996; Roche and Schabes, 1997). Mohri (1994a)
extended the definition of subsequential transducers to p-subsequential trans-
ducers, transducers associating up to p additional outputs to each acceptor
state, in order to allow for a ‘quasi-determinization’ of FSTBOs representing
a special class of ambiguous languages.

Definition 167 (p-subsequential FSTBO). A p-subsequential FSTBO is a
structure (Q, X, I', B, Bk, 6, {qr}, F, p) where (Q, X, I', B, Bk, 9, {qr},
F) is a sequential FSTBO and

p:F — P(I) (10.10)

1s a function mapping acceptor states to sets of up to p additional output
functions.

Corollary 8 (Mohri, 1994b, sec. 4). A p-subsequential FSTBO (Q, X, T, B,
Bk, 6, Qr, F, p) can be seen as a FSTBO (QU{q¢s}, XU {S$}, T, B, B, ¢,

Qr, {gs}) where
e input symbol § explicitly represents the end of input,
® (s 15 an additional state and the only acceptor state, and

e ¢ defines the same transitions than 6 plus an additional transition
(qf,(3,7),qs), for each (qs,7y) such that g € F and vy € p(qy).

Though not deterministic in the strict sense, p-subsequential transducers
(with p > 1) can be applied to an input sequence as deterministic machines
until reaching an acceptor state: only a single ES must be computed for each
input symbol; once the whole input is consumed, if an acceptor ES is reached
then the set of translations is built by combining the output of the ES with
the outputs mapped to the acceptor state of the ES.
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Definition 168 (7). We define 7(A), the language of translations of a p-
subsequential FSTBO A, as

7(A) = {(w, V) : (g5, b) € A*((Qr x {by}), w) N (F x B)A
V' =7(b) NV ¢ B Ay € plgp)}. (10.11)

Algorithms for the construction of p-subsequential transducers equivalent
to string-to-string, string-to-weight and string-to-string-and-weight transduc-
ers,® have also been given by Mohri (1996, 1997). These algorithms are simi-
lar to the common determinization algorithm: they join together transitions
sharing the same source state and label, and then join as well the correspond-
ing target states. In order to join transitions consuming the same input but
performing different output transformations, the transformations are totally
or partially delayed to the subsequent transitions. If not totally delayed, the
non-delayed partial transformations must be equal so that the transitions can
be joined; for instance, let v and 7’ be two output transformations append-
ing strings a8 and a3, respectively, only the generation of suffixes § and S’
is to be delayed. Target states are coupled with the corresponding delayed
transformations. When taking these couples as source states for joining their
corresponding outgoing transitions, the delayed transformations are added
to the transition output labels. Delayed transformations of acceptor states
will be the additional transformations to perform once the whole input has
been consumed. Summarizing, no output transformation is generated un-
til enough input symbols are observed in order to make sure that the right
transformation is performed.

Figure 10.2 illustrates a string-to-string transducer along with its equiv-
alent subsequential transducer.® Output labels o simply indicate that string
« is to be appended to the current output. Under each state of the sequen-
tial transducer, the corresponding set of couples state/delayed output have
been included. The initial state ry corresponds to couple (g, ), that is, to
have reached state ¢y with no delayed output. Transitions (qo, (a,b), ¢;) and
(qo, (a, a), q2) are joined by delaying the generation of @ and b. Reaching state
r1 is equivalent to have reached state ¢; with delayed output b or state g with
delayed output a. Transitions (g1, (b,0),q), (g2, (a,a),q2) and (g9, (a,b), qo)

3Transducers implementing maps of strings to either strings, weights, or both string and
weights, respectively, where weights represent scores or probabilities; weighted machines
will be the object of chapter 18.

‘Example extracted from (Mohri, 1996).
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ro=1{(q0,8)} 7 ={(q,b),(q2,0)}
(a) (b)

Figure 10.2: (a) Non-deterministic string-to-string transducer and (b) equivalent
subsequential transducer; transitions consuming $, the end-of-input, represent the
additional outputs to generate after accepting the input.

receive these delayed outputs, becoming (g1, (b, bb), qo), (g2, (a,aa),q2) and
(g2, (a,ab), qo). Then, the two latter transitions are joined by delaying only
the generation of the second symbol, which results in reaching exactly the
same set of couples {(q1,b), (¢2,a)}. The other transitions have unique in-
puts, thus their outputs do not need to be delayed and hence reach the set
of couples {(qo,€)}. Acceptor states of the sequential transducer are those
having at least one couple (¢r, &) with ¢; € F', and the additional outputs to
generate are those delayed outputs a: nothing for ry and a for ry.

Figure 10.3 illustrates a string-to-string transducer along with its equiv-
alent oco-subsequential transducer.” Outputs of transitions (qo, (a, ), qo) and
(qo, (a, ), qo) are totally delayed at each step, resulting in different target
states r; with 2¢ different delayed outputs.

An alternative to quasi-determinization is lazy or on-the-fly determiniza-
tion (Mohri et al., 2002; Jussila et al., 2005), which consists in determinizing
the explored paths of the machine during its application; supposing that a
grammar is always applied to the same subset of input sequences, only the
corresponding paths will be determinized yet keeping a finite machine since
the input sequences are finite. When applying the machine for the first time,
the cost of determinizing the corresponding substructures will be added to
the cost of applying the machine as if it was deterministic. Successive appli-
cations will take advantage of the already determinized substructures, saving
the determinization cost. However, the machine may grow in size excessively

SExample extracted from (Blanc, 2006, p. 69).
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), (qo, y),

{(QO, z
(90, 7y), (90, yy)}

Figure 10.3: (a) Non-deterministic string-to-string transducer and (b) equivalent
oo-subsequential transducer. Transitions consuming $, the end-of-input, represent
the additional outputs to generate after accepting the input.

once applied to a certain amount of input sequences. Lazy determinization
is the solution adopted by the Outilex system (Blanc, 2006, sec. 2.8.4, p. 68).

The solution we present here is the one used by the Unitex and Apertium
systems (Garrido-Alenda et al., 2002), which consists in determinizing the
machine’s underlying FSA instead of the machine itself.

Definition 169 (Underlying FSA). Let A = (Q,%,T', B, Bk, d,Qr, F) be
a FSTBO, we define its underlying FSA as (Q, (XU {e}) x (I'U {e})) —
{(g,8)},6,Qr, F) with (g,¢) as the empty symbol; in other words, FSTBO
input/output pairs become FSA input symbols except for (e, e) which becomes
the empty symbol.

This process may only perform a partial determinization of the FSTBO:
let (gs, (0,7), ¢) and (gs, (0,7'), ¢;) be two transitions of a FSTBO, these tran-
sitions will not be joined together since (o,~) and (o,+") will be interpreted
as two different input symbols. However, it is sure that, for every FSTBO,
this procedure will end up with a finite machine since FSA determinization
always ends up with a deterministic FSA. One important advantage of FSA

6This kind of determinization is performed in Unitex whenever compiling a graph (see
Paumier, 2008, sec. 6.2, p. 105), though this is not mentioned in the manual. In Garrido-
Alenda et al. (2002), this determinization procedure is mentioned in the context of the
interNOSTRUM machine translator; Apertium is another machine translator that has
evolved from interNOSTRUM and which has inherited this feature.
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determinization is that e-moves are removed, avoiding the need for e-closure
computation during further FSA applications. Determinizing a FSTBO as
its underlying FSA will not remove every e-move, since generating transitions
are treated as consuming transitions, but will at least remove every FSTBO
g2-transition.

10.8 Minimization

Mohri (1994b) also defined an algorithm for the minimization of transducers
by constructing equivalent p-subsequential transducers. As for the case of de-
terminization, the same problem remains: for some transducers, p is infinite.
Obviously, if we treat the FSTBO as its underlying FSA then minimization
a la van de Snepscheut (section 8.6, p. 174) can be normally performed.

10.9 Blackboard set processing

The set of explored paths during the recognition of an input sequence for a
FSTBO without killing blackboards depends uniquely on the input symbols
to consume and not on the generated blackboards. By defining killing black-
boards, the set of explored paths may be reduced but not extended. However,
since ESs contain the blackboard generated up to reaching the FSTBO state
q, multiple ESs x; = (¢, b;) are possible for the same FSTBO state ¢; more-
over, a path p starting at ¢ will allow for multiple execution paths, each one
starting at an z;. Therefore, algorithm 10.1 fstbo translate string (p. 197)
may perform several explorations of p, while it is possible to explore p a
single time in order to build the set of blackboards (SBs) it generates. We
extend the FSA processing for FSTBO blackboard set processing (BSP) by
constructing a function (p, for each FSA SES V, that maps FSA ESs —
which are in fact simple FSA states— to SBs, rather than storing generated
blackboards within each ES.

Definition 170 (Zp). Given a FSTBO (Q,%,1', B, Bk, 0,Qr, F), we define
Zp as the set of every partial map (g of FSA ESs in Q) to SBs in P(B).

Definition 171 (BSP SES). We define the equivalent BSP SES Vg of a
FSTBO SES 'V as a pair (V',(g) where V! C Q is a FSA SES —a set of
FSA states— and (p € Zp is a function mapping states to SBs such that

Ve = (V') : V' ={q:(q.0) e V} A C(g) ={b: (¢;b) €V},  (10.12)
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which is equivalent to say that

V= (V') | {a} x Cala) = V- (10.13)

qev’

In BSP, performing a derivation from a state ¢, due to a consuming
transition 0(gs, (0,7)) — ¢, or due to an e-transition 0(qs, (¢,7)) — ¢, the
7 function is to be applied to every blackboard in (g(gs).

Definition 172 (v on SBs). Given a function vy on blackboards, we extend
the definition of v for SBs as follows:

v:P(B) = P(B)
Y(Bs) = {b; : bs € Bs ANby = (bs) Nby ¢ Brc} (10.14)

Note that the application of v discards killing blackboards; hence v may
return an empty SB, in which case there is no ES to be derived.

Definition 173 (BSP A). We redefine the FSTBO A function for BSP SESs
as follows:

A (P(Q) x Zp) x X — (P(Q) x Zp),
such that

A((V,¢p),a) = (V') : V! = {ar : Clar) # 03N
Chla) = U 1(CB(gs))  (10.15)

7:q1€6(qs,(0,7))Ngs €V

The computation of A traverses every path of length 1 having a state
of V; as source state and consuming o;1; in order to build (V;11,(p,,,) from
(Vi,Cp,). However, the computation of the e-closure traverses every e-path
of any length having any state of V; as start state, which allows for different
derivation paths to share subpaths. These e-paths can be explored without
repeating the traversal of shared subpaths by following a topological sort
(definition 81, p. 130) of the corresponding e-closure-substructure (defini-
tion 106, p. 143). However, only acyclic substructures can be topologically
sorted (lemma 1, p. 131). Let A be a FSTBO and A’ be the FSA equal to
A after removing its output alphabet and transition outputs, cycles in the
e-closure-substructures of X'(A’) come from cycles in A, which can be of two
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forms: generating e-cycles and non-generating e-cycles (e%-cycles); however,
the former must be forbidden in order to avoid infinite e-closures, and the
latter can be removed by determinizing A regarding it as its underlying FSA
(definition 169, p. 204). Forbidding generating e-cycles does not reduce the
capability of the formalism for the representation of natural language gram-
mars, since they allow for generating an infinite output from a finite input
(e.g. an infinite parse tree for a given sentence), which makes no sense.

Theorem 11 (g2-cycle removal). For every FSTBO with £*-cycles there ex-
ists an equivalent FSTBO without €*-cycles which can be obtained by deter-
minizing the underlying FSA (definition 169, p. 204).

Theorem 12 (Existence of a topological sort). Considering lemma 1 (p. 131)
and theorem 11, for every FSTBO without generating e-cycles there exists at
least one equivalent FSTBO A such that, given A’ the FSA obtained from A
after remouving its output alphabet and transition outputs, there exists at least

one topological sort for every e-closure-substructure (definition 106, p. 143)
of X(A').

Recall that the execution machine of a FSA is the FSA itself (defini-
tion 135, p. 164); therefore, X(A") = A’ since A’ is a FSA.

The definition of D for BSP is almost the same than the previous defini-
nition of A for BSP; for the case of D, no input symbol is to be consumed,
e-transitions are considered instead of consuming ones, and a BSP SES is
derived from a single source state and SB instead of from a BSP SES:

Definition 174 (BSP D). We redefine the FSTBO D function for BSP as
follows:
D:QxB— (P(Q)x Zp)

D(qs, Bs) = (V' ¢p) : V' = {aq : (5la@r) # OIA
C,B(Qt) = U W(Bs)a (10'16)

7:qt€3(gs,(e,7))

that is, D(qs, Bs) returns a pair (V', () where (i is a function mapping each
e-reachable state q; from qs to the set of blackboards

For the case of BSP, we iteratively compute the e-closure of a BSP SES
(Vb,CB,) by computing at each iteration the e-reachable states ¢ from a
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unique source state g;, and by increasing (g(q;) with every blackboard gener-
ated by e-reaching ¢;. The state to be taken as ¢, for each iteration is given
by a topological sort of the corresponding C.(V;)-substructure.

Definition 175 (BSP e-closure). Given a BSP SES (Vy,(g,) of a FSTBO
A, A" the FSA equal to A after removing its output alphabet and transition
outputs, and xo, ..., x, a topological sort of the C.(Vy)-substructure of X (A),
we redefine the e-closure for BSP as follows:

CE(%) CBo) = (Vn> CBn) : (‘/;,-1-1a CIBiJrl) = D($Za CBl(xl)) A V;"f'l = ‘/; U V;/—l—l/\
th S ‘/7;+1[CBZ.+1 (I‘t) = CBi(,Tt) U C/Bi+1 (.Z’t)], 1=0...n—1. (1017)

Note that ESs z; and z; of A’ are in fact FSA states since A’ is a FSA.
In the equation,

e V| is the set of e-reachable FSA states z; from x;,

e V.1 accumulates every e-reached FSA state from V{ up to iteration
i+ 1 (the union of V4 with V{, V3, ..., V. }),

® (p,., maps each state r; € Vi1 to the SB generated by e-reaching x;
from any state x, € Vj, where states x, have been reached prior to the
computation of the e-closure by generating SB (p,(z), and

® (p,,, maps the states z; € V) to the blackboards that have been
generated by directly e-reaching x; from x; after having reached x; by
generating SBs (g, (z;).

Theorem 13 (BSP e-closure equivalence). Let V' be a non-BSP SES of a
FSTBO A such that there exists a topological sort of the C.(V')-substructure
of A, and let Vg be a BSP SES of A, then the equivalence of V and Vg
implies the equivalence of Co(V') and C.(Vp).

Proof. Let V' be a non-BSP SES of a FSTBO, Vi = (V, (p,) its equivalent
BSP SES, (@', ¢") the C.(V)-substructure and qo, ..., ¢, a topological sort
of (Q)',¢"). By definition of e-closure-substructure, V' contains at least every
state in @)’ that is unreachable from any other state in )’ through any path
within (@', 4"), and therefore so it does Vj: if ¢ is such an unreachable state
and it does not belong to V, then it cannot be derived during the compu-
tation of the e-closure and therefore cannot belong to . By definition of
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topological sort, qo is such an unreachable state and therefore belongs to V4.
V) contains every state in V[ plus every e-reachable state from ¢y by gen-
erating at least one non-killing blackboard. If ¢; is one of the unreachable
states then it belongs to Vy and therefore to V; as well; otherwise ¢; must
be e-reachable from ¢y since, by definition of topological sort, it cannot be
e-reached from any ¢; with ¢ > 1. Following the same reasoning for V; and
Vigp withi=1...n— 1, we deduce ¢;1 € V;41 and therefore V,, = Q'.
Function (p, maps every state in Vj to a SB so that the equivalence is
kept w.r.t. V. Since ¢y € Vj, it holds that {qo} X (5,(90) = {(q0,b) € V},
that is, (y is a complete map for qo. If ¢; is one of the unreachable states,
(B,(q1) contains every blackboard that can be generated up to reaching ¢,
and therefore so it does (p,. Otherwise (p, may or may not be a complete
map for ¢, but it is sure that (p, is: by definition of topological sort, every
e-path reaching ¢ from a state of Vj is completely traversed once every e-
derivation from ¢y is computed, and therefore every generated blackboard
for ¢; has been added to (p,(q1). Following the same reasoning for V; and
Vign with 4 = 1...n — 1, we deduce (p,,, is a complete map for g;1; with
i=1...n—1, and therefore (V,,,(p,) is equivalent to C.(V). O

In section 7.8 (p. 148) we gave an efficient definition of e-closure based on
e-expansions; the main idea consisted in using only the ESsin £ = D(V) -V
as source ESs in order to try to reach new ESs, since the ESs in V' had already
been used as source ESs and, hence, no new ESs would be derived from them.
For the case of BSP, D(qg;, (p,) returns states and maps that are not already
present in (V;, p,), hence there is no need for an e-expansion-based definition.

BSP requires to follow a topological sort of the execution machine sub-
structures involved in the recognition of a string. The topological sort can
be computed as these substructures are explored, but it is necessary to know
first which substructures of the whole execution machine are going to be ex-
plored. Executing the machine in order to find these substructures and then
executing it again by means of BSP makes no sense. However, there are cases
in which it is sure that the whole execution machine will be explored, for in-
stance when computing the whole language of a trimmed machine (without
useless states or transitions; a simple method for the generation of the lan-
guage of a FSA will be given in the next chapter). One may compute the set
of outputs for a given machine and input sequence as another kind of machine
recognizing this set, for instance a FSA for the case of FSTBOs or an output
FPRTN for the case of RTNBOs (see chapters 15 and 16). In particular, the
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former case is of interest since these output FPRTNs can be computed in
polynomial time even when representing exponential languages. Once this
machine is built, an output enumeration can be efficiently constructed by
computing the represented language through BSP.



Chapter 11

Finite-state transducers with
string output

We present in this section FSTSOs as a special kind of FSTBO in which
blackboards are strings, output functions append a symbol to the output
string, and there are no killing blackboards. These FSTSOs correspond to
the definition of letter transducer given, for instance, in Roche and Schabes
(1997, p. 14). As we have seen in section 10.7 (p. 199), other types of FSTs are
possible such as sequential transducers (definition 166, p. 199), subsequential
transducers (Schiitzenberger, 1977) and p-subsequential transducers (defini-
tion 167, p. 201), though all of them can be turned into an equivalent letter
transducer (corollary 8, p. 201). Additionally, deterministic augmented let-
ter transducers (Garrido-Alenda and Forcada, 2002) are a more general type
of letter transducers, due to the included lookahead mechanism for input
segmentation. FSTSOs have multiple applications (Mohri, 1997; Karttunen,
2001) such as parsing (Silberztein, 1993), information extraction (Hsu and
Chang, 1999; Friburger and Maurel, 2002, 2004), phonology (Kaplan and
Kay, 1994; Karttunen, 1993), morphology (Karttunen et al., 1992; Kart-
tunen, 1993), spelling correction (Oflazer, 1996), speech processing (Mohri
et al., 1996) and grammatical inference (Oncina et al., 1993; Oncina, 1998).
We are mainly interested in parsing and information extraction by using
string output for enriching texts with meta-information, for instance by in-
serting XML (Bray et al., 2008) tags that explicitly represent the syntactic
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structure of the text sentences or identify the information to be extracted.!
XML tags can be efficiently treated as output symbols instead of strings by
representing them as pointers to the states of a trie, as explained in chapter 9.

Definition 176 (FSTSO). A FSTSO (Q,%,1',6,Qy, F) is a special type of
FSMs (definition 46, p. 121) whose set of labels = is the set of input/output
pairs (XU{e}) x (I'U{e}), where ¥ is a finite input alphabet, I' a finite output
alphabet and € the empty symbol. FSTSOs can be seen as FSAs augmented
with string output or as a particular type of FSTBO where

o functions in I' always perform the concatenation of an output symbol
to the current blackboard; for the sake of simplificity, we consider that
I' contains output symbols g rather than functions on blackboards, and
output labels g represent the concatenation of a symbol g to the current
blackboard,

e the identity function on blackboards idg concatenates the empty symbol
e to the current blackboard; we will therefore use € instead of idg in
order to explicitly state that a transition does not modify the current
output,

e B =1, that is, blackboards are sequences of zero, one or more output
symbols,

o By =0, that s, there are no killing output strings, and
’ ’ g P gsS,

by = €, that 1s, the empty blackboard is the empty string.

11.1 Transitions

FSTSO transitions are a particular case of FSTBO transitions (section 10.1,
p. 186):

e consuming transitions (definition 140, p. 186): @ x (X x (I'U{e})) x Q,

e generating transitions (definition 141, p. 186): @ x ((XU{e}) xI') x Q,

LAn example of grammar recognizing SMS command requests and delimiting phone
number and message to send has been shown in figure 10.1, p. 188
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translating or substituting transitions (definition 142, p. 186): @ x (X X
) xQ,

deleting transitions (definition 143, p. 186): @ x (X x {e}) x @,

e-transitions (definition 144, p. 186): @ x ({e} x (U {e})) x Q,

inserting transitions (definition 145, p. 186): @ x ({e} xI') x @ and
e c’-transitions (definition 146, p. 186): @ x ({e} x {&}) x Q.

Substituting, deleting and inserting operations have been commonly used
to give a measure of the difference between two strings: the edit distance,
also called the Levenshtein distance (Levenshtein, 1966); the edit distance
between two strings is equal to the minimal number of symbol substitutions,
deletions and insertions to be performed in order to transform one string into
the other. Edit distance is the basis of approximate string matching. An
extensive discussion on this subject can be found in Navarro (2001).

11.2 Sequences of transitions

As for FSTSO transitions, FSTSO paths are a particular case of FSTBO
paths. Every definition in section 10.3 (p. 187) can be straightforwardly
adapted by replacing FSTBO transitions by their corresponding FSTSO tran-
sitions, hence we will not give more details here.

11.3 Behaviour

Definition 177 (Execution state). FSTSO execution states are pairs (q, z) €
(@ I™).

Definition 178 (A). The A function for FSTSOs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® s = (QS723>7

o v, = (qi, %), and

o d= g € 5(q8, (U,g)) Nz = 259,
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where g € I' U {e}.

Definition 179 (D). The D function for FSTSOs is itself a simple direct-
derivation function on SESs (definition 98, p. 137) with

® Ts = (QS723>7

o ;= (qi, %), and

o d=q €0(¢s (e,9)) N 2t = 259,
where g € T'U{e}.

Lemma 12 (Finite and infinite e-closure). The e-closure of a FSTSO SESs
V' is infinite iff there exists an ES (q, z) within V' or e-reachable from an ES
of V such that q is traversed by a generating e-cycle.

Proof. Since the FSTSO e-closure function is a particular case of the FSTBO
e-closure function, this proof is a particular case of proofs of lemmas 10
(p. 189) and 11 (p. 191). O

Theorem 14. The e-closure is always finite for FSTSOs without generating
e-cycles.

Recall that generating e-cycles allow for infinite translations of finite input
sequences, which makes no sense for the case of natural language grammars
(e.g.: associating an infinite parse tree to a finite sentence).

Definition 180 (Initial and acceptance SESs). Given the sets of initial and
acceptance states of a FSTSO, QQ; and F, its initial and acceptance SESs are
(Qr x {e}) and (F x I'"), respectively.

Note that, since FSTSOs have no killing blackboards, there is no need to
restrict the outputs of acceptor ESs.

Definition 181 (7). We define 7(A), the language of translations of a FSTSO
A, as the set of input/output sequence pairs (w,z) € X* X I'* such that w is
recognized and translated into z by A, that is, the set of input/output sequence
pairs such that the whole consumption of w reaches at least one acceptance
ES from at least one initial ES through a path that generates z:

7(A) = {(w, 2) : (g1, 2) € A™((Qr x {e}), w) N (F x T7)}. (11.1)
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Definition 182 (w). We define w(A,w), the translations of a word w for a
FSTSO A, as the set of output sequences z € I'* such that (w, z) belongs to
the translations of A:

w(A,w)={z: (w,2) € T(A4)}, (11.2)

with T(A) of the previous definition.

11.4 Recognized languages

In section 10.5 (p. 193) we proved that the killing-blackboard mechanism
could be used in order to emulate Turing machines. Since FSTSOs define
no killing blackboards, the same languages can be recognized by means of
FSTSOs than by means of FSAs.

11.5 Translating a string

Algorithms for string translation with FSTSOs, either by means of a breadth-
first or a depth-first exploration, can be easily derived from the corresponding
FSTBO algorithms (algorithms 10.1 fstbo translate_ string and 10.5 fstbo-
_depth_ first_translate string, pp. 197 and 199) by taking into account the
differences between FSTSOs and FSTBOs listed in definition 176 (p. 212).
These algorithms can be further improved by using the trie string manage-
ment shown in section 9.1 (p. 178) since the involved concatenations consist
in appending a symbol to a string, that is, one of the cases in which trie
string management is faster than normal string concatenation.?

11.6 Language generation

The procedure for the generation of the language of a FSA described here is
meant to be extended in further chapters for other machines, namely RTNs
(chapter 12) and output FPRTNs (chapter 16). Output FPRTNs are a kind
of finite state machines that efficiently represent the set of outputs generated
by applying a RTNBO (a RTN with blackboard output). The language of

2Provided that the number of final output strings to generate is small enough w.r.t.
the number of partial output strings to compute.
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such output FPRTNSs is later to be generated in order to extract the effective
list of outputs. Moreover, this procedure will be the base for the extraction
of the top-ranked output represented by a weighted output FPRTN (chap-
ter 18).

The whole language represented by a FSA can be easily computed by
transforming the FSA into a FSTSO as explained in the following theorem.

Theorem 15 (Language generation). Let A = (Q,%,0,Qy, F) be a FSA and
A =(Q,¥,T,0,Q) F') a FSTSO such that

e Q'=Q, Q=Q and F' =F,

o X =1,

o ['=23 and

® q €(qs (,0)) iff g € 0(qs,0),

then it holds that
L(A) = w(A’,a) (11.3)

Proof. Let it be the FSA and FSTSO of the previous theorem, and an input
sequence w = o0y ...0; € X*. FSA A contains a path of the form

b= po((Jo, 01, Q1)p1(Q17 02, Q2) .- -pl—l(QI—la oy, QI)u (11-4)

where paths p; for i = 0...1 — 1 are e-paths or empty paths, iff FSTSO A’
contains a path of the form

p = PE)(CIO, (e,01),q1)p1(qn, (6,02),G2) - . . p1—1(q=1, (€, 01), q1), (11-5)

where paths p) for i = 0...] — 1 are e2-paths or empty paths. Therefore, a
path p within A consumes w iff its equivalent path p’ within A’ translates
¢ into w. Finally, p is an interpretation within A iff A’ is an interpretation
within A’ and therefore A recognizes w iff A’ translates € into w. O

Following this equivalence, any algorithm computing the translations of
an input sequence for a FSTSO can be easily transformed into an algorithm
computing the language of a FSA by considering every FSA transition as
an e-transition generating the original input, and computing the translations
of ¢ instead of the translations of a given input sequence. Notice that rec-
ognizing the empty string does not require to apply function A and only
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requires to apply the e-closure once. Translator algorithms for language gen-
eration can be reduced to the computation of the e-closure of the initial SES
plus the extraction of the outputs from the generated acceptance ESs. Algo-
rithm 11.1 fsa_ language is such a simplified adaptation of the breadth-first
algorithm 10.1 fstbo translate string adapted for string output.

Algorithm 11.1 fsa language(A) > L(A), eq. (136)

Input: A=(Q,%,6,Q;, F), a FSA
Output: L, the language of A

LV

2: B+

3: for each ¢ € ()7 do

4: unconditionally add enqueue es(V, E, (q,¢))
5. end for

6: while F 7é () do

7 (gs, w) < dequeue(F)

8:  for each ¢ € 0(¢s,¢)) do

9: add_enqueue es(V, E, (q;,w))
10: end for

11: for each (¢;,0) : ¢; € 0(gs,0)) do
12: add_enqueue_es(V, E, (q;, wo))
13: end for

14: end while

15: L+ 0

16: for each (q,w) € V:q € F do

17: add(L, w)

18: end for

The domain of application of the resulting algorithm is derived from the
domain of application of the original algorithm: FSTSOs containing gener-
ating e-cycles involved during the computation of the e-closure are excluded
from the domain since they lead to infinite e-closures (see lemma 12, p. 214).
Note that pruned FSAs leading to such FSTSOs by following the transfor-
mation of theorem 15 (p. 216) are in fact FSAs with consuming cycles, that
is, FSAs representing infinite languages (see theorem 7, p. 164). As for the
original algorithm, this algorithm can also be improved with the trie string
management shown in section 9.1 (p. 178). BSP of FSTBOs (section 10.9,
p. 205) can also be applied here since the substructure of the machine to
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be explored for language generation is known: the whole machine, provided
that the machine is trimmed (definition 118, p. 144).



Chapter 12

Recursive transition networks

RTNs (Woods, 1970) are finite-state machines equivalent to pushdown au-
tomata (Oettinger, 1961; Schiitzenberger, 1963; Evey, 1963; but see Hopcroft
et al., 2000, chap. 6, p. 219) and CFGs (briefly described in appendix B,
page 405). A major advantage of RTNs over CFGs is the ability to merge
common parts of many CFG rules; consequently, not only a greater effi-
ciency of representation is achieved but more efficient algorithms of applica-
tion since separate processing of common parts is also factored out (Woods,
1969, sec. 1.7.3, p. 40). As stated in appendix B, CFGs can be extended with
regular expressions in order to also allow for a more compact representation.
However, the same advantages and disadvantages of FSAs over regular ex-
pressions (chapter 8, p. 161) take place here for RTNs over extended CFGs
(ECFGs): it is faster and less cumbersome to manually write simple gram-
mars as ECFGs with a text editor than as RTNs by means of some graphic
interface (such as the ones of the Intex, Unitex and Outilex systems), but cer-
tain grammars can be more readable when graphically represented as RTNs
than when represented as ECFGs with complex regular expressions (see fig-
ure 12.1).! Indeed, the graphical representation of RTNs used in the Intex,
Unitex and Outilex systems (the graphs described throught sections 7.2, 10.2
and 12.2, pp. 124, 187 and 225, respectively) has been optimized in order to
give a very intuitive view of natural language grammars.

We present here RTNs as FSAs extended with a subroutine jump mech-
anism. This mechanism allows for a better structuring of the grammar as
well as for reusing grammar fragments: subgrammars or grammar blocks are

!Example extracted from (Paumier, 2004)
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S—E|F E — acG G— H|SdI
H — SdecH | f I — ccSdl | g F —bdJ
J = K|ccL K — ccSdK | g L — SdccL | f
(a) CFG
S — (ac((Sdcc)* f + Sd(ceSd)*g)) + (bd((ceSd)* g + cc(Sdcee)* f))
(b) ECFG

)
——
- c
Sy
(¢) RTN

Figure 12.1: Equivalent (a) CFG, (b) ECFG and (c) RTN.

defined for local structures, and other subgrammars may be defined from
a higher point of view by means of subroutine jumps to lower level sub-
grammars (see figure 12.3, p. 224, for a simple example of structured RTN).
Examples of local structures are Korean time adverbs (Jung, 2005), French
location adverbs (Constant, 2003b), French measure expressions (Constant,
2003b) and Greek frozen adverbs (Voyatzi, 2006). As for any piece of soft-
ware, readability, reusability and well-structuring are crucial for the con-
struction and maintenance of large and complex grammars, such as natural
language ones.? We give a formal definition similar to the informal one given
by Woods (1970) but labelling call transitions with sets of states instead of
single states, which facilitates the definition of reverse RTNs. Woods (1969,
sec. 3.3, p. 82) gives another definition of RTN which is straightforwardly
derived from the definition of CFG, facilitating the redefinition of Earley’s
(1970) parser for the RTN case.> We derive in section 12.10 an alternative
definition of the Earley parser based on the FSA-like definition of RTNs and
the generic breadth-first algorithm of application of FSMs (sec. 7.9, p. 152).

The application of a RTN may not only result in the acceptance or the
rejection of a sentence but also in a description of the sentence structure,

2Extensive material on concepts and principles of software design can be found in
Pressman (2001, chap. 13, p. 335)

3The Earley parser was originally conceived for the application of CFGs; see appendix C
(p. 411) for a brief description and a discussion on the original Earley parser.
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represented as the path or paths that allow to recognize the sentence. In this
case, grammar and sentence structures are analogous. However, this prevents
from possible restructurings of the grammar that may boost the machine
application, such as the weak Greibach normal form for RTNs (Paumier,
2004),* since different grammar structures yield different sentence structures
in spite of not altering the set of accepted sentences. We have chosen to
represent sentence structures as output XML tags bounding the sentence
components instead of subgrammar labels (see figure 13.2, p. 259). Hence,
it is not required to explicitly define subgrammars nor subgrammar labels
(analogous to CFG non-terminals); we call a subgrammar by specifying its set
of subinitial states. Let this set be @)., each subgrammar is implicitly defined
as the machine substructure reachable from ()., including (). and excluding
the substructures of other called subgrammars. We permit subgrammars to
share states and transitions in order to support grammar optimizations such
as the weak Greibach normal form. However, RTN subgrammars are intended
to be disjoint before applying such optimizations for the sake of modularity.
Common parts of subgrammars could be avoided by simply replicating such
parts, but that would imply a loss of efficiency.

Definition 183 (RTN). A RTN (Q,%,6,Q;, F) is a FSA (Q,%,6,Q;, F)
(definition 128, p. 162) extended with a subroutine jump mechanism: its set
of transition labels = takes its elements from (X U{e}) UP(Q), where

e labels of the form X U {e} have the same interpretation as in the case
of FSAs, and

e labels of the form P(Q) represent subroutine jumps or calls to state sets
(definition 187 in the next section).

12.1 Transitions

Definition 184 (Consuming transition). Following definition 51 (p. 123),
transitions in () X X X @, that is, which consume an input symbol, are called
consuming transitions.

4This weak Greibach normal form is an adaptation of the ECFG Greibach normal
form (Albert et al., 1998), which in turn is an extension of the CFG Greibach normal form
(Greibach, 1965; Koch and Blum, 1997).
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Consuming transitions correspond to terminal symbols within the body of
CFG production rules (e.g.: production ‘N — garden’ of CFG of figure 12.2
and transition (qy,, %garden, gy, ) of figure 12.3).

Definition 185 (Explicit e-transition). Following definition 53 (p. 124),
transitions in Q x {e} x Q, that is, which do not consume input, are called
explicit e-transitions.

e-transitions correspond to € symbols within the body of CFG production
rules.

Definition 186 (Implicit e-transition). Within the context of RTNs there are
two kinds of implicit e-transitions, that is, transitions that are implicitly de-
fined by the RTN and which do not require to consume input when traversed:
push transitions (definition 189) and pop transitions (definition 190).

Definition 187 (Call transition). Call transitions are transitions of the form
(gs, Qe, 1) € QX P(Q) X Q and represent a subroutine jump to a set of states
Q., that is, the recursive application of the whole RTN taking Q. as set of
initial states before bringing the machine to state q;,. The exact behaviour of
call transitions is governed by the RTN implicit €-transitions.

Call transitions correspond to non-terminal symbols within the body of
CFG production rules (e.g.: non-terminal symbol ‘PP’ in production ‘ VP —
VP PP’ of CFG of figure 12.2 and transition (qvp,, gpp,, qve,) of figure 12.3).

Definition 188 (Subinitial set of states). We say a subset of states Q. of a
machine A is a subinitial set of states (SS) of A iff A contains at least one
call to Q..

Subinitial SSs correspond to CFG non-terminals expanding into one or
more right-hand sides; every rule left-hand side with the same non-terminal
symbol is condensed into a single subinitial SS (e.g.: heads of productions
‘VP — VP PP’ and ‘VP — V NP’ of CFG of figure 12.2 and subinitial SS
{qvp,} of figure 12.3).

Definition 189 (Push transition). Push transitions are implicit e-transitions
which take place each time a state having at least one outgoing call transition
is reached: for each call transition (qs, Qc, qr), and for each state q. € Q,
the machine implicitly defines a push transition (qs, g1, q.) which brings the
machine from source state qs to called state q., without input consumption.
Additionally, the transition pushes return state g, onto the stack, action that
we represent as q.l. Push transitions are subroutine jump initializers.
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VP — VP PP NP — DET N PP — PREP NP
VP — V NP NP — NP PP

N — monkey V — watch PREP — in

N — telescope PREP — with

N — garden DET — the

Figure 12.2: A left-recursive CFG representing a toy grammar which recognizes
sentence “Watch the monkey with the telescope in the garden”, among others, with
non-terminal VP as the grammar’s start symbol; VP stands for verb phrase, NP
for noun phrase and PP for prepositional phrase.

Definition 190 (Pop transition). Pop transitions are implicit e-transitions
which take place each time an acceptance state qrf € I is reached during
a subroutine jump: for each pair of states (qr,q.) € F x @, the machine
implicitly defines a pop transition (qr,q17,q,) which pops state g, from the
stack and brings the machine to state q,., with q,. as the state at the top of
the stack.

Definition 191 (Realization of call transitions). A call transition (qs, Q., q),
or simply a call to ., is realizable iff there exists at least one realizable path
p starting with one of the corresponding transitions pushing q, onto the stack
and ending with a transition popping the previously pushed q, from the same
stack position. If p exists then we say call to Q. is realizable through path p.

Definition 192 (Call completion). During the process of application of a
machine with calls, we say a call ws uncompleted or unresolved when a path
has been executed up to realizing the corresponding push transitions, but not
up to realizing any of the corresponding pop transitions; we call the process
of realizing a pop transition a call completion or resolution.

Definition 193 (e-call). We say a call to a subinitial SS Q. is an e-call, a
deletable call or an e-realizable call iff it is realizable through an e-path (see
definition 69, p. 129).

These e-calls correspond to deletable non-terminals within the bodies of
CFG production rules.
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{aven} fave) {arny)— aver) fave,) o)
;;; ‘{;N ;; r(q;

%monkey o
Yhthe
- qPrEP, )  \4PREP,

Jowith

Yotelescope o

Figure 12.3: Left-recursive RTN equivalent to CFG of figure 12.2.
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Figure 12.4: Unitex set of graphs equivalent to CFG of figure 12.2.
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12.2 Graphical representation

Unitex and Intex graphs represent calls to subgraphs as subgraph identifiers
with shaded background (see figure 12.4). We represent call transitions as
dashed arrows labeled with the called subinitial SS (see figure 12.3).

There are cases in which it can be useful to explicitly represent implicit
transitions (push and pop transitions for the case of RTNs), for instance
when graphically representing an execution trace for the visualization of the
execution paths generated by an algorithm of application of a machine (e.g.:
the execution trace in figure 12.7, p. 238). ESs and transitions between ESs
are represented as for states and transitions between states of a machine,
though labels of ESs may be structures rather than single elements. We
usually mark useless ESs (those who do not derive any acceptance ES) with
two crossed lines. Push transitions are represented as dotted arrows, and pop
transitions as thick arrows. Both types of transitions are labeled with the
return state of the call they implement, that is, the pushed state for the case
of push transitions and the popped state for the case of pop transitions. For
the latter case, since the popped and target states are the same, the transition
label can be omitted. For the case of algorithms that use other more complex
subroutine jump mechanisms than the one based on a stack, such as the
Earley-like ones (the Earley RTN case will be described in section 12.10),
push and pop transitions may be labeled with structures more complex than
the return state (e.g.: execution trace of figure 12.7, p. 238).

12.3 Sequences of transitions

Definition 194 (Explicit path). An explicit path is a path composed by ex-
plicit transitions (definition 185, p. 222).

Note that explicit paths are not necessarily realizable since call transitions
may not be realizable.

Definition 195 (e-path). Following definition 69 (p. 129), within the con-
text of RTNs, an e-path is a path that can be traversed without input con-
sumption, that is, whose transitions are either implicit e-transitions, explicit
e-transitions or e-call transitions.

Definition 196 (Explicit e-path). An explicit e-path is both and e-path and
an explicit path.
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Definition 197 (Call cycle). Let p be a path having qs as start state, we say
p s a call cycle iff its last transition is a push transition having qs as target
state and, during the whole cycle, the pushed state is never popped from that
position of the stack.

Definition 198 (Call e-cycle). A call e-cycle is both an e-path and a call
cycle.

Definition 199 (Recursive call). We say a call to a SS Q. within a RTN A
is recursive iff there exists at least one call cycle within A starting at a state

of Qe

RTN recursive calls correspond to CFG productions of the form ‘A —
aAp’.

Definition 200 (Left-recursive call). We say a call to a SS Q. within a RTN
A s left-recursive iff there exists at least one call e-cycle within A starting
at a state of Q..

RTN left-recursive calls correspond to CFG productions of the form ‘A —
Aca’ (e.g.: production ‘VP — VP PP’ of CFG of figure 12.2 and call transi-

tion (qvp,, qvp,, qvp,) of figure 12.3).

Definition 201 (Right-recursive call). A call to a SS Q. is right-recursive
!

iff it is realizable through a path (qs, ¢, q.)pp'p”, where p is a call cycle, p/
is a path completing call to Q. and p" is an e-path.

RTN right-recursive calls correspond to CFG productions of the form
A — aA.

Definition 202 (Deletable recursion). We say a path completing a call is a
deletable recursion iff it implies the call to be both left- and right-recursive,
that is, it is a path having the same form than the one of the previous defi-
nition but p is not only a cycle but also an -cycle.

RTN deletable recursions correspond to CFG productions of the form
A — A; we call them deletable since they do not contribute anything to
the grammar description: saying that the structure of A is equal to its own
structure does not clarify what A can be made of.
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Definition 203 (Recursive machine). We say a machine is recursive iff it
contains at least one recursive call, left-recursive iff it contains at least one
left-recursive call, and right-recursive if it contains at least one right-recursive
call.

Definition 204 (Recursion degree). The recursion degree of a machine with
call transitions is equal to the mazimum number of useful self-concatenations
or consecutive traversals of its call cycles.

12.4 Substructures

Definition 205 (Submachine). Let Q. be a set of initial states of a machine
or one of its subinitial SSs, we define its Q.-submachine as the machine
substructure composed by Q. and every state and transition of every explicit
path starting at a state of Q..

A RTN submachine corresponds to a Unitex graph or to a subset of
productions of a CFG containing every production having a particular non-
terminal as head (e.g.: the set of productions of CFG of figure 12.2 starting
with VP, graph VP of figure 12.4 and {qyp, }-submachine of figure 12.3).

Definition 206 (Axiom submachine). We define the axiom submachine of
a machine A as its Q.-submachine such that Q. is the set of initial states
of A. Let A represent a grammar, the axiom submachine corresponds to the
grammar’s axiom or start symbol (see definition 288 in appendiz B, p. 405).

12.5 Behaviour

Definition 207 (Execution state). RTN ESs are pairs (¢, 7) € (Q X Q")
where T s a stack of return states, A being the empty stack.

The realization of RTN transitions falls into the FSM general categories
of pure consuming transitions and pure e-transitions (definitions 87 and 88,
pp- 133 and 134, respectively) except for push, pop and call transitions.

Definition 208 (Push transition realization). A push transition (gs, g-l, q.)
is realizable from ES (qs,m), for any stack w, and its realization brings the
machine to ES (q;, 7q,).
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Definition 209 (Pop transition realization). A pop transition (gs, ¢.1,q.) is
realizable from ES (qs, ) iff # = 7'q, and qs € F, and its realization brings
the machine to ES (q,, 7).

Since the realization of call transitions depends on the realization of push
and pop transitions, as well as on the paths transitively connecting push
transitions to pop transitions, we rather deduce whether a call transition can
or cannot be realized rather than adding a separate definition.

Lemma 13 (Call transition realization). A call transition (gs, Q., ¢.) is real-
izable from an ES (qs, ) by bringing the machine to ES (q,, ), for any stack
7, iff there exists at least one explicit path p starting at a state q. € Q. and
ending at an acceptor state such that p s composed by

e cither consuming transitions or explicit e-transitions, or

e cither consuming transitions, explicit e-transitions or call transitions
realizable from the ES reached just before each corresponding call,

the second case requiring for each call transition at least one finite sequence
of recursively realizable calls so that the last call of the sequence falls into the
first case.

Proof. Let t = (¢s, Q¢ q-) be a call transition of a RTN A, and

= (s, &1, )0’ (g5, @1, Gr)

a path inside A with ¢. € ().. The push transition is realizable by pushing
¢, onto the stack. If p’ is composed only by consuming transitions and/or
explicit e-transitions then it is also realizable. The pop transition is realizable
by popping the previously pushed state ¢, since p’ does not modify the stack.
Let p’ be composed by a unique call transition ¢’ such that ¢’ is realizable
through a path

P = (a0 4t )" (¢ 41, 7).
If p” is composed only by consuming transitions and explicit e-transitions,
the realization of ¢’ falls into the first case. The realization of ¢ momentarily
modifies the stack by pushing a return state but popping it again, thus
the same reasoning than for the first case applies here for the realization
of t. If t' is realizable through another call which is completable through
another call and so on recursively, ¢ is realizable as long as the last call is
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completable through a path only composed by consuming transitions and/or
explicit e-transitions. Since the realization of each call leaves the stack as
before the call, a path composed by any sequence of calls is realizable as long
as every call is individually realizable, the presence of consuming transitions
and explicit e-transitions in between not modifying this fact since they are
always realizable and do not modify the stack. Obviously, for any other cases
t is not realizable, either because there is no path reaching an acceptance state
which would allow for the realization of the corresponding pop transition or
because the path traverses a non-realizable call transition. O

Definition 210 (A). The A function for RTNs is a simple direct-derivation
function on SESs (definition 98, p. 137) with

® s = (QSvﬂ-);
® I = (qtvﬂ-); and
e d=gq; €(gs,0).

Definition 211 (D). The D function for RTNs is composed by 3 simple
direct-derivation functions on SESs (definition 98, p. 137), D. with

oz, =(¢s,7),

o v, = (q, ), and

o d=q €0(qs5),
Dusn with

oz, =(¢s,7),

o vy = (¢, ™qs), and

o d=q € (qs; Qc) NGe € Qo
and Dyop, with

e I, = (qf,WQr);

e ;= (¢, ), and

° dI(]fEF.
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Lemma 14 (Infinite e-closure). The e-closure of a RTN SES 'V is infinite if
there exists an ES (q,m) within V' or e-reachable from an ES of V' such that
q has an outgoing left-recursive call transition.

Recursive-descent parsers applying left-recursive CFGs may fall into infi-
nite loops (Aho et al., 1986, sec. 2.4, p. 47). Since RTNs and CFGs are equiv-
alent, the same problem arises for the case of the base top-down breadth-first
and top-down depth-first acceptors (algorithms 7.5 and 7.8, pp. 153 and 157)
when adapted for the application of RTNs.

Proof. The proof is analogous to the one for FSTBOs with generating e-cycles
(proof of lemma 10, p. 189). Left-recursive calls behave as generating e-cycles:
it is possible to traverse infinite times and without consuming input the
sequence of states that form the cycle, but for each cycle traversal the stack
of return states will be incremented with at least one new return state from
the left-recursive call —as happened with the increasing output sequence;
hence, each successive traversal of the cycle will generate new ESs with larger
stacks. O

Lemma 15 (Finite e-closure). The e-closure of a RTN SES V is finite iff
there is no ES (q,m) within V or e-reachable from V such that q has an
outgoing left-recursive call transition.

Proof. As we have seen for FSAs, e-paths having only explicit e-transitions do
not yield infinite SESs since every ES derived through an explicit e-transition
(¢s,€,q) from an ES (gs,7) is of the form (g, 7) € (Q x {m}), which is a
finite set. Even if the e-path is a cycle, during the first path traversal every
possible ES will be added to the e-closure and further traversals will not add
new ESs. The completion of a non-left-recursive call through an e-path does
not produce an infinite SES either. Let (g, ) € Vi be an ES from where we
find a call transition (qo, @, ¢,) that is completed through an e-path

(q07 qnlfv ql)v ((Jh g, (J2) cee (%—27 €, qn—1)7 (qn—b anv qn)v (121)

that is, an e-path whose first transition is a push transition initiating the call
(q1 € Q.), the last one is a pop transition that returns from the call, and the
middle transitions are explicit e-transitions; following the iterative e-closure
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of Vy, it holds that

(q07 ﬂ-) € ‘/0
(q1a an) S Vi
(q2a an) € sz

(Qn—177TQn) € Vn—l
(Gn, ™) € V,.

As we can see, every ES produced during the call belongs to the domain
(Q X mqy,), which is also finite even if the e-path that completes the call has
e-cycles. As well, if the e-path contains a finite succession of calls that are
always completed by means of explicit e-paths, the total number of ESs is
also finite since each call produces a finite number of ESs. If any of these
calls can also be completed through a non-left-recursive subcall which is
completed through an explicit e-path and/or successive non-left-recursive
calls, the number of ESs is finite as well since the number of ESs given by
the subcall is finite. Any finite number of subcalls will produce as well a finite
number of ESs. Finally, non-left-recursive calls that cannot be completed by
means of an e-path give also a finite number of ESs, since it is a subcase of
non-left-recursive calls that can be completed through e-paths (the e-closure
explores some part of the calls but not up to completing them). O

Theorem 16. Following lemmas 14 and 15, the e-closure is always finite for
non-left-recursive RTNs.

Definition 212 (Initial and acceptance SESs). Given the sets of initial and
acceptance states of a RTN, Q; and F, its initial and acceptance SESs are
(Qr x {\}) and (F x {\}), respectively, with A the empty stack.

Definition 213 (Execution machine). The execution machine of a RTN A is
defined as for the generic execution machine (definition 105, p. 142) without
any other kind of transitions than pure consuming transitions and pure £-
transitions, thus its definition is equal to that of a FSA though possibly having
an infinite set of states, transitions and acceptance states.

As for the FSTBO case (definition 158, p. 192), the execution machine of
a RTN does not require to define call, push or pop transitions since they are
replaced by pure e-transitions that point to states which already include the
resulting stack after pushing or popping the corresponding return state.
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Definition 214 (L). Following definition 107 (p. 143), we define L(A), the
language accepted by a RTN A, as

L(A) = {w e o : A*((Qr x {\}),w) N (F x {A}) £ 0} (12.2)

Lemma 16 (Infinite recursion degree). The recursion degree of a RTN having
at least one useful call cycle is infinite.

Proof. Let A be a RT'N containing the structure of figure 12.5 so that

P = Da (@sys @it Ger) Do (@sas Qrods Gey) Pe (Qfs0 @oT Qo) Pa (Qfos G5 Gry) Pe

is a path within A, path p, (¢s,, Grpd, Ge,) is a call cycle, and the realization
of p produces the sequence of ESs

)

(@eys T1Gry)

(Ger> T1Gr, 21, )
)

)

(QTza T14r, T2
Path p is an interpretation within A since (go, A) € X and (gf,,\) € Xp.
By suppressing the call cycle we obtain path

Po = Pa (QS17QT1~L7QC1) De (qf37qT1T7qT1) De,

whose realization produces the sequence of ESs

(QOa )\) s (q81a 71—1)
(QCza ﬂ-qu’l) s (Qf3> 7T1Qr1)
(QT177T1> (qf17>‘)'

As for p, path py is an interpretation within A. By self-concatenating the
call cycle k£ > 1 times we obtain the infinite family of paths

Pk = Pa (q517 Grids q01) (pb (q82? Qrods q01))k Pc (Qf3> Gro T, (Jrz)
(Pa (@f2: @t @) " Pa (Qf2 @15 @) Pe
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H-.-,qcu-} ‘ ’

Da, pushes m; De, POPS T

Db, pushes my Dd, POPS T

Figure 12.5: RTN generic structure containing infinite interpretations due to
recursive call to {...,qc,,...}.

The realization of these paths produce the following family of sequences of
ESs...

(QO> A

) s, 1)
(qu » T1qrq )

)

)

(

(q52 , 1 qu 7T2)
(QSz » T14r, T2qr, 77-2)
(

Gsoy T14r T2y, T2, T2 )

(QC1 y T1Gr, 7241,

(QC1 » T14r; 24y, T2qr,

(QC1 ) ﬂ-lqu (7T2QT2) )
(%1 » T1qry (7T2QT2) 7T2QT2)
(qTQ , T QTl (7T2q7“2) 2)

)

(qTQ Y 7T1 qu (7T2q7‘2) 7T2

q827 1 QTl 7T2q7“2
qfss T1qr \T2qr,

( (
( (
(sz » TT1Grq (72%«2
( (

(QT277T1QT17T2> (quvﬂ-lqh)
(qr1>7rl) (Qf1a)\)>

..and therefore paths p, constitute an infinite family of interpretations
within A. ]
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Theorem 17 (Possible recursion degrees). The recursion degree of a RTN
15 either zero or infinite.

In chapter 15 we will present other kind of RI'Ns —FPRTNs— having a
not so obvious set of possible recursion degrees: zero, one or infinite. The

proof for the case of FPRTNs is an extension of the proof for the case of
RTNs.

Theorem 18 (Cardinality of the interpretation set). Given the previous
theorem and the theorems 4 (p. 145) and 6 (p. 164) on the cardinality of
the interpretation set for FSMs and for FSAs, the number of interpretations
of a RTN s infinite iff it contains at least one useful non-call cycle or its
recursion degree 1S not zero.

Theorem 19 (Cardinality of the language). Given theorem 5 (p. 146), since
FSAs allow for the realization of any of its transitions, the language of a
RTN s infinite iff it contains at least one useful consuming cycle, which in
this case can be a call cycle as well.

12.6 Reverse RTN

Definition 215 (Reverse RTN). Let A be a RTN (Q,%,0,Qr, F') with dis-
joint submachines; we define AR, the canonical reverse of A, as a RTN

(Q,%,8,Q,, F') such that
o () is the set of acceptance states of A’s axiom submachine,
e F' is the union of Qr and every subinitial state of A,

o AR contains a consuming transition or explicit e-transition t iff A con-
tains transition t, and

o AR contains a call transition (qs, Q., q;) with F, as the set of acceptance
states of its Q.-submachine iff A contains a call transition (q;, Fe, qs)
with Q. as the set of acceptance states of its F.-submachine.

Push and pop transitions are implicitly defined by the previous call transi-
tions.

Lemma 17 (Reverse RTN). Let A be a RTN with disjoint submachines, A%
s a reverse of A.
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Proof. The proof for the case of words which are recognized by means of
paths containing FSA transitions, that is, without subroutine jumps, is the
same than for FSAs (proof of lemma 9, p. 165). Let t = (g5, Qc, q;) be a call
transition within A such that ¢ is realizable through a path

(gs, aeds qe)p(ay, 451, ar)

with ¢. € Q., and p does not contain push, pop or call transitions; RTN A%
contains a call (q;, Fe, qs) with F, equal to the set of acceptance states of the
(@.~submachine of A, and this call is realizable through a path

(

(Qt> QSlw Qf)p de, qu? QS)

that consumes w’. No other words are recognized by a call to F, due to the
reversal of other submachine than the (Q.-submachine since submachines are
disjoint. Note that given two non-disjoint submachines of A for Q). and @,
with F,. and F) as sets of acceptor states, reversed submachines F, and F of
AF may reach states that are not reachable by the non-reversed submachines
of Q. and Q.. If p contains a finite recursion degree n of calls, the same
reasoning is to be applied n recursive times. Finally, if A recognizes a word
w through a path p starting at a state g, € (; and ending at a state ¢; € F,
then AT recognizes w’ through a path p’ starting at ¢ € Q; and ending at
qs € F'. Consequently, L*(A) = L(A") is true. O

As stated before, non-disjoint submachines can be made disjoint by repli-
cating their shared substructures, thus any RTN can be reversed as explained
above. Anyway, we will not need to reverse any machine with non-disjoint
submachines since the grammars we will treat are built as sets of disjoint
Unitex’s graphs.

12.7 Recognizing a string

The base breadth-first and depth-first acceptor algorithms 7.5 (p. 153) and 7.8
(p. 157) can be adapted for RTNs as explained in section 7.9 (p. 152), but
excluding left-recursive RT'Ns from their domain of application in order to
avoid infinite e-closures. The difference between RTNs and the simplest
FSMs, FSAs, is the subroutine jump mechanism, which is implemented by
adding a couple of e-moves (push and pop transitions) that operate on a
stack. The main modification to be done to the base breadth-first acceptor



236 CHAPTER 12. RECURSIVE TRANSITION NETWORKS

lies in the computation of the e-closure, which we show in algorithm 12.1
rtn_interlaced_ eclosure. The adaptation of the depth-first base acceptor
can be straightforwardly performed by following the definition of D(V') for
RTNs.

Algorithm 12.1 rtn_interlaced eclosure(V, E) > C(V)

Input: V, the SES whose e-closure is to be computed
E. the queue of unexplored ESs containing every ES in V
Output: V after computing its e-closure
E after emptying it
1: while £ # () do
2 (¢s, 7) + dequeue(F)

> EXPLICIT e-TRANSITIONS

3: for each ¢ € §(gs,¢) do
4: add _enqueue es(V, E, (g, ™))
5: end for
> PUSH-TRANSITIONS
6: for each (¢.,Q.) : ¢, € 0(gs, Q) do
7: for each ¢. € . do
8: add_enqueue_es(V, E, (q., 7q,))
9: end for

10: end for
> POP TRANSITIONS
11: if T =17'q, Nq, € F then
12: add _enqueue es(V, E, (g, 7))
13: end if
14: end while

Figure 12.7 is a graphical representation of the execution trace of the
breadth-first acceptor algorithm adapted for RTNs, for RTN of figure 12.6
and input aabb. As we can see in the execution trace, the number of con-
current explorations of the RTN doubles each time an a is consumed. Even
though this number is reduced each time a b is consumed, the number of
generated ESs increases exponentially w.r.t. the length of input a™b™.° De-
terminizing the RTN would have avoided this duplication, keeping a linear

5This is a minimal theoretical case whose purpose is to illustrate the problem of the
exponential output generation; an example of exponential output generation for the case
of natural language grammars has been given in section 1.5.4, p. 19.
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q0

Figure 12.6: Non-deterministic RTN with two calls whose computation can be
factored out; solid transitions represent either consuming transitions or explicit
e-transitions, and dashed transitions represent call transitions.

relation between the number of ESs and the input length. However, deter-
minization may be too complex or even impossible, for instance for machines
on an alphabet of predicates rather than symbols or machines with output
(this has been discussed in sections 8.5 and 10.7, pp. 166 and 199). As-
suming that the leftmost transitions of each ES within the trace are the
first transitions of each ES, the depth-first acceptor will just generate the
leftmost execution path; therefore, its execution cost will be linear for this
case. Note that for other cases the algorithm may explore an exponential
number of paths consuming some input prefix before finding the first input
interpretation, hence its asymptotic cost is yet exponential.

Both acceptor algorithms can be further improved by representing stacks
as pointers to the states of a trie of RTN state sequences, as explained in
section 9.1 (p. 178).

Left recursion allows for a natural way of modelling many natural lan-
guage structures (e.g.: see CFG in figure 12.2, p. 223), but the algorithm we
have presented here is not able to process left-recursive RTNs. There exist
algorithms that transform any left-recursive CFG into an equivalent non-left-
recursive CFG; the classic algorithm can be found in Aho et al. (1986, p. 176),
and a more efficient algorithm in Moore (2000). Since RTNs and CFGs are
equivalent formalisms, left-recursion removal is also possible for RTNs (see
figures 12.8 and 12.9). In order to deal with left recursion, a RTN processing
system may simply forbid left-recursive RTNs —the solution adopted by the
Unitex system— or implement some algorithm for the removal of left recur-
sion. However, we may be interested not only in the recognition of a sentence
but in determining the sentence’s structure (identifying the sentence’s con-
stituents and groupings), which might be coded within the RTN as a precise
sequence of call transitions. In this case, if we transform the grammar in or-
der to remove left recursion then we modify the sequence of subroutine calls
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recognizing the sentences and therefore the resulting sentence structure. An-
other possibility is to extend RTNs for output generation —the object of the
next chapter— and to code the sentence structures as output tags inserted in
the right places, for instance XML tags bounding each sentence constituent.
In that case, transforming the RTN structure does not modify the resulting
sentence structure as long as both machines are equivalent. This is analogous
to the elimination of left recursion from syntax-directed translation schemes
described in Aho et al. (1986, chap. 2, p. 25).% In section 12.10 we present a
more efficient algorithm of application of RT'Ns which is also able to process
left-recursive RTNs, saving the hassle of left-recursion detection and removal.

12.8 Flattening

Flattening is a possible transformation to perform on a RTN in order to ac-
celerate its application. This operation is already implemented in the Unitex
system (Paumier, 2008).

Definition 216 (Flattening). Flattening a RTN A consists in replacing every
call transition t = (qs, Qc, q¢) 1n A by an exclusive copy of A’s Q.-submachine,
as follows:

e remove t,

e for each state q of the Q.-submachine, create a new state v, and make
r an acceptor state if so it is q,

e for each transition (¢.,&, q;) within the Q.-submachine, add transition
(rl, &, ry), with v’ and 7} the previously created states corresponding to
states qs and qy,

e for each state q. € Q., add transition (gs, ¢, q.), and
e for each acceptance state g of the Q.-submachine, add transition (g, €, q)-

Call transitions of added copies of submachines are to be recursively replaced
as previously described.

6Syntax-directed translation schemes are CFGs extended with some kind of output
generation mechanism that recreates the syntactic structure of the sentences they are
applied to.
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VP — VP PP VP — V NP VP’ VP — PP VP’

VP — V NP VP — V NP VP’ — PP
N

NP — NP PP NP — DET N NP’ VP’ — PP NP/

NP — DET N NP — DET N NP’ — PP

Figure 12.8: Left-recursion of CFG of figure 12.2 (p. 223) can be removed by
replacing the production rules at the left by those at the right; however, the gram-
mar’s structure is modified and new “artificial” symbols VP’ and NP’ are added.
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Figure 12.9: Unitex graphs equivalent to those of figure 12.8: graphs (a) and
(b) correspond to the productions at the left, and graphs (c), (d), (e) and (f)
correspond to the productions at the right.
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As we can see, flattening transforms the RTN into a FSA, thus allowing
for a full determinization of the RTN. However, this process is not applicable
to RT'Ns with recursive calls since the replacement of these calls by their
corresponding ().-submachines would never end. However, the maximum
number of recursive realizations of calls for a given set of input sequences is to
be finite since input sequences are to be finite. The Unitex system allows for
setting up a maximum number of recursive replacements in order to perform,
at least, a partial flattening of recursive RTNs; recursive calls beyond this
level are not replaced, hence the resulting RTNs accept the same languages.
It must be taken into account that flattening a RTN with ambiguous and
recursive calls increases its size exponentially w.r.t. the number of recursive
replacements to perform. The number of recursive replacements is to be set
to the greatest number lower than or equal to the maximum expected number
of recursive realizations of calls such that the resulting RTN is small enough
to be handled. The MovistarBot grammar is not recursive, hence every call
can be removed by flattening it, but the number of states and transitions is
increased by a factor of 4.1 and 10.1, respectively.

12.9 Determinization

When applied to RTNs, the generic determinization algorithm seen in sec-
tion 8.5 (p. 166) not only performs a determinization but also a flattening;
therefore, it can only be applied to non-recursive RT'Ns. However, we are
also interested in applying recursive RTNs; as for FSTBOs (section 10.7,
p. 199), we pseudo-determinize recursive RTNs by determinizing their un-
derlying FSAs. If the RTN is to be also flattened, better results can be
obtained by flattening first the RTN and then pseudo-determinizing it.

Definition 217 (Underlying FSA). Let A = (Q,%,0,Q;, F') be a RTN, we
define its underlying FSA as (Q,% U P(Q),0,Qy, F), that is, RTN input
symbols and RTN subinitial SSs become FSA input symbols.

Note that, since call transitions are interpreted as consuming transitions,
determinizing a RTN’s underlying FSA does not pseudo-determinize the
called submachines. Algorithm 8.2 fsm_ recognize_every symbol (p. 173)
needs to be modified so that when o is a subinitial SS @, algorithm 8.1
fsm_ determinize (p. 172) is executed again on RTN A but taking Q. as
initial SS, if this has not already been done. In other words, the different
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submachines are to be separately pseudo-determinized, assuming that they
are disjoint. Algorithm 8.1 fsm_ determinize is to take RTN A as a global
argument for each execution, and it is to take two new optional arguments:

e the SS (). to be taken as initial SS, with @); as default value for the
first execution of the algorithm, and

e a global map (; of subinitial SSs (). € P(Q) to subinitial states r. € @',
taking the empty map as default value.

Note that, since the RTN is being treated as its underlying FSA, ESs in the
algorithm are simple RTN states, namely: X; = Q;, Xp = F, 1, € () and
Vi,V € P(Q).

In algorithm 8.1 fsm_ determinize, state r, € @' is created before the
while loop as the initial state of A’. In the RTN version, this is to be done
only for the first algorithm execution. Moreover, map (;(Q.) = r; is to be
added for every execution. The presence of this map is to be checked in
algorithm 8.2 fsm_ recognize every symbol so that determinization of the
(.-submachine is not started multiple times. Additionally, the creation of
call transitions of machine A’ is to be given a special treatment: the original
algorithm would create a call transition (rs, Q.,7.), where Q. is some subini-
tial SS of A, but transition (rs,(;(Q.),7.) is to be created instead, where
(1(Q.) is the subinitial state of A’ corresponding to Q.. At this point, it is
sure that (7(Q.) is already defined since algorithm 8.2 fsm_ recognize_ every-
_symbol has been previously called, and this algorithm triggers the deter-
minization of every ().-submachine which has not already been triggered, for
every call transition having as source any of the states of A which have been
condensed into state ry of A’. Finally, an infinite loop due to left-recursive
calls is not possible since call transitions are treated as consuming transitions:
computing the subinitial state r. corresponding to a subinitial SS @), implies
to compute the e-closure of ()., which does not traverse call transitions.
Furthermore, mapping (;(Q.) = . is immediately defined afterwards, which
prevents from initiating the determinization of the ).-submachine more than
one time.

12.10 Earley-like processing

Finite-state automata can give a more compact representation of a set of
sequences by factoring out common prefixes and suffixes of the accepted
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sequences. RTNs can also factor infixes by defining one subautomaton for
each repeated infix, and by using transitions calling the set of initial states
of the corresponding subautomaton each time the infix is to be recognized.
However, it is up to the parsing algorithm to detect that the same set of
initial states is being called from multiple points of the grammar for the
same input point so that the call is processed only once; for instance, in
RTN of figure 12.6 (p. 237) both calls to {go} could be computed only once
(per recursion level). Inspired by Earley’s (1970) CFG parser, we show here
a modified and more efficient version of the base acceptor algorithm 7.5 for
FSMs (p. 153) which is able to process left-recursive RTNs (see figure 12.11)
without falling into an infinite loop, and which factors out the computation
of infix calls of parallel explorations of the RTN. Our algorithm differs from
the Earley-like parser for RTNs given by Woods (1969) in that

e it is based on a FSA-like definition of RTNs rather than on a CFG-like
one,

e RTNs with e-moves are supported, and

e calls are performed towards subinitial SSs instead of single states, which
facilitates the definition of the canonical reverse RTN (or the reverse
exploration of a RTN)

We have already presented a version of this algorithm for RTNs with string
output in Sastre and Forcada (2007, 2009). A brief description of the orig-
inal Earley parser is given in appendix C (p. 411), and a brief comparative
discussion w.r.t. other parsing algorithms has been given in section 1.4.6,
p- 16.

We mainly modify the subroutine jump mechanism, which is a part of the
e-closure computation. We replace the use of a stack of return states by a
more complex representation of the ESs and a chart storing every computed
SESs V' during each iteration of the algorithm. When a call transition to a
SS Q. is to be traversed, two kinds of ESs are generated: one paused and one
or more active ESs:

e the paused ES represents a hypothetical return from the call that is
not to be resumed until the call is completed, and

e the active ESs initialize the call from each called ¢q. € (). and the current
input, if call to (). has not already been initialized at this input point.
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Each call is computed only once for each paused ES waiting for its comple-
tion, and each time the call is completed the corresponding paused ESs are
resumed.

Definition 218 (Earley execution state). ESs for Earley-like RTN processing
are quadruplets in (Q x (P(Q) U {A}) x P(Q) x N), where quadruplets of
the form (qs, {\}, Qn,i) are called active ESs and quadruplets of the form
(qr, Qc, Qn, 1) are called paused ESs. In the quadruplets,

e the first term, qs or q., is the current state of the ES: the source state
for active ESs and the return-from-call state for paused ESs,

e the second term, Q). or A\, is the called SS Q). whose completion this
paused ES is waiting for, or X\ if this is an active ES,

e (), or hypothesis SS is the last called SS whose associated calls will be
completed once an acceptance state is reached, and

e i is the number of consumed input symbols at the moment of initi-
ating the last call to Qp, that is, when generating the last active ES
(qs, A\, Qs, 1) from where this either active or paused ES is derived.

ESs of the original Earley parser (the chart items) include a second index
J such that o;41 ...0; is the input interval that has been consumed since the
initialization of the last call up to the ES, for an input sequence o ...o0;.
Since ESs are grouped into SESs such that V; contains every generated ES
after consuming j symbols, we retrieve j from the index of V; rather than
explicitly representing it inside every ES.

Definition 219 (Earley A). The A function for RTN FEarley-like processing,
the equivalent to Farley’s scanner, is a simple direct-derivation function on
SESs (definition 98, p. 137) with

® IUs = (QSaAaQMi);
® Ty = (qt> )\a Qh>i)7 and
o d=¢q €6(qs,0).

Notice that the A function does not apply to paused ESs: there is nothing
to do with paused ESs until the call they depend on is completed. Input
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symbols are only to be consumed from active ESs, and paused ESs are to
wait for call completions. Notice as well that neither the hypothesis state
nor the input position ¢ are modified: they remain the same until entering
into or coming out from a call.

Definition 220 (Earley D). The D(V}) function for RTN Earley-like pro-
cessing is composed by 3 simple direct-derivation functions on SESs (defini-
tion 98, p. 137):

e the explicit e-transition processor, D.(V}) with

- Ts = (QSa)\>Qhaj)7
- It = (qtu)‘thmj); and
—d= q: € 5(%75);

o the equivalent to Earley’s predictor, Dpush(Vi) with

- Ts = (qsa)‘thaj);

= @ = (¢es Ay Qs k) o 3 = (g1, Qe, Qn, ), meaning that both target
ESs are derived from x5 if p holds, and

—d=¢q, €0(¢s, Qc) N € Qe, and

e the equivalent to Earley’s completer, Dpop(Vi) with

- X5 = (Qf7>\7 th.j)7

- Ty = (qr’a )\>Q;Lai)7 and

—d= qf € FA (qerth;wi) € ‘/j7
where Doy, is retroactive, that is, if during the computation of Dpush (Vi)
a paused ES (qr,Qc, Qn,J) is added to Vi due to a call to a SS Q.

that has already been e-completed,” its resumed ES (q., X\, Qn, J) is to be
retroactively added to Vi as well.

Retroactive e-completion is discussed in more detail in the next section.

"Completions within the same SES V;, are only possible if no input is consumed during
the whole call.
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Definition 221 (Earley initial and acceptance SESs). Given the sets of
initial and acceptance states of a RTN, Qr and F, its initial and accep-
tance SESs for Earley-like processing are (Qr X {\} x {Q;} x {0}), the ESs
starting a call to any wnitial state before consuming any input symbol, and
(F x {\} x {Qr} x {0}), the ESs from where those initial calls would pop,
respectively.

Definition 222 (Earley execution machine). The Earley execution machine
of a RTN is a FPRTN. Its definition and the construction of the execution
substructures for a particular input sequence will be described in chapter 15.

For the Earley case, it does not suffice to replace call, push and pop tran-
sitions by pure e-transitions; consider an e-path having several consecutive
and deletable calls to the same subinitial SS Q. (see RTN of figure 12.10);
during the computation of an e-closure involving this path, call to Q). is com-
puted only once and therefore a unique structure resolving this call is built
in the execution machine: the execution machine still needs call transitions
in order to be able to return to the right state once the call is completed.
Moreover, the call may be completed through different paths that do not
necessarily consume the same amount of input symbols, resulting in multi-
ple return states corresponding to different input points. FPRTNs perform
an additional test in order to forbid pop transitions that bring the machine
to return states corresponding to different input points than those of the
acceptor states that precede them. More details will be given in chapter 15.

Definition 223 (Earley L). Following definition 107 (p. 143), we define
L(A) —the language of a RTN A— through Earley-like processing as

L(A) ={w e X" : A*((Qr x {\} x {Qr} x {0}),w)N
(F < {\} x {Qr} x {0}) #0}. (12.3)

12.11 Earley acceptor algorithm

Algorithm 12.2 rtn_ earley recognize string is a sequence acceptor imple-
menting predicate w € L(A) through Earley-like processing (definition 223,
p. 246). It uses algorithm 12.3 rtn_earley recognize symbol for comput-
ing the Earley-like A function (definition 219), the equivalent to Earley’s
scanner, and algorithm 12.4 rtn_ earley interlaced_ eclosure for computing
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the Earley-like e-closure (generic FSM e-closure in definition 100, p. 138,
using the Earley-like D function in definition 220, p. 245), which includes
both Earley’s predictor (push transition processor) and completer (pop tran-
sition processor). Moreover, it includes an e-transition processor for explicit
e-transition support as well as an e-completer for handling deletable calls;
both components are missing in the original Earley parser since:

e it does not support CFGs with either directly or indirectly deletable
non-terminals, and

e the empty symbol is used only for the definition of directly deletable
non-terminals (e.g.: A — ¢).®

Notice that the main difference w.r.t. the FSM acceptor, algorithm 7.5
(p. 153), is the way in which the e-closure is computed. Finally, add en-
queue__es and unconditionally add_enqueue es are the small routines seen
in sections 7.8 (p. 148) and 7.9 (p. 152) for conditionally or unconditionally
adding an ES to a SES.

Following the predictor-completer mechanism, every call started at a SES
V; to the same SS is computed only once. Without the possibility of e-
completing a call, calls started in V; are completed during the computation
of V11 or later, and therefore after every paused ES is added to V;. Each
time the call is completed, every paused ES in V; depending on the call is
searched in order to be resumed. If calls can be e-completed then they can be
started and completed during the computation of the same SES; therefore,
paused ESs depending on the call might be added to the SES after the call is
completed, and therefore remain paused. In order to avoid this, e-completed
calls must be marked in order to retroactively resume subsequent paused
ESs. Algorithm rtn_ earley interlaced eclosure builds a set T' containing the
called subinitial SSs (). that have been e-completed during the computation
of the e-closure of the SES V;.° The e-completer inside the completer adds
Q. to T for each ES (g5, \,Q.,7) that triggers the call completion in V}
with i = k: since at V; we have consumed i symbols and ES (gs, A, Q., 7)
indicates that the call started when ¢ symbols where consumed, the call is
being completed without input consumption. The e-completer inside the

8 A non-directly deletable non-terminal B can still be indirectly deletable: the grammar
productions may allow for rewriting B as a directly deletable non-terminal, which in turn
can be rewritten as the empty symbol.

9n practice we add the pointer to the set object representing Q..
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predictor immediately resumes every paused ES (g,, Q., Qp,?) added to V; so
that Q. € T.

A discussion on extending Earley’s CFG parser for supporting CFGs with
deletable non-terminals can be found in Aycock and Horspool (2002), as well
as an example of execution illustrating the problem. In the paper, a list
of deletable non-terminals is to be previously built so that calls to such
non-terminals are immediately completed. In our case, we have followed a
different approach since the algorithm we give here is to be further extended
for output generation, which will require an efficient procedure for the com-
putation of such outputs rather than simply completing the deletable calls
prematurely. We give in figure 12.10 an equivalent example to that given by
Aycock and Horspool (2002) in order to illustrate the problem for the case
of RTNs and how we have solved it. An example implying a left-recursive
RTN equivalent to the one for CFGs in appendix C (p. 411) is shown in
figure 12.11. Functions in the rightmost column of execution traces —except
function deletable(Q.)— represent the derivation mechanism that has been
followed in order to produce the ES in the same line, where the arguments
are the index of the ESs from where this ES has been derived:

e recognize(i,o): derived from ES i by taking a transition consuming
input symbol o,

e c-transition(i): derived from ES i by taking an e-transition,

e call(i) and pause(i): the active and paused ESs, respectively, derived
from ES 7 by taking a call transition, and

e resume(i, j) and e-resume(i, j): derived by resuming paused ES i due
to reaching ES 7 which triggers the call completion, the former by the
completer and the latter by the e-completer (inside the predictor).

Function deletable(Q).) accompanies function resume(i, j) and indicates that,
upon resuming ES i, the e-completer (inside the completer) has detected that
call to SS @, is deletable. Notice that when deriving an ES that is already
present in the corresponding SES, there is no line added to the trace and
therefore the derivation mechanism for that ES does not appear in the trace;
for instance, in figure 12.11 a call is performed from the initial ES in 1 which
produces the paused ES in 2 and an active ES that is already present in 1.
A graphical representation of the execution trace of the Earley-like ac-
ceptor algorithm for RTN of figure 12.6 and input aabb —the same case seen
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Algorithm 12.2 rtn_earley recognize string(oy ...o;) >oy...o €L,
def. (223)

Input: oy ...0;, an input string of length [
Output: r, a Boolean indicating whether the input string belongs to L

1: allocate_memory for chart(V!*1)
2 Vo0
3: B+ 10
4: for each (¢. € Q) do
5: unconditionally add enqueue es(Vj, (ge, A, @1,0))
6: end for
7: V «rtn_earley _interlaced _eclosure(V!*!, E.0)
8 k<« 0
9: while V, #0 Ak <1 do
10: Viy1 < rtn_earley recognize symbol(Vy, E, 0p11)
11: k< k+1
12: rtn_earley interlaced eclosure(V!*!, E, k)
13: end while
14: r < false
15: for each (gs,\,Q;,0) € Vi do
16: r<—rvVvg €F
17: end for
Algorithm 12.3 rtn_earley recognize symbol(V, E, o) > A(V, o),
def. (219)

Input: V, a SES
E, the empty queue of unexplored ESs
o, the input symbol to recognize
Output: W, the set of reachable states from V' by consuming o
Output: F after enqueuing the ESs of W
W+ 0
. for each (¢;, A\, Qn,i) € V do
for each ¢, € (¢, 0) do
add_enqueue es(W, E, (q;, A\, Qn, 1))
end for
end for

AN S
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Algorithm 12.4 rtn_earley interlaced eclosure(V'!™ E k) > Co(Vi)

Input: V'*!, the chart
E, the queue of unexplored ESs containing every ES in Vj
k, the index of the SES, V}, whose e-closure is to be computed
Output: V*! after adding to V, its e-closure
E after emptying it
1: T+ 0
2: while E # () do
3: (gs, A\, Qn, j) < dequeue(E)

> EXPLICIT e-TRANSITIONS
4: for each ¢, € §(q,¢) do
5: add _enqueue_es(Vi, E, (g1, A\, Qn, J))
: end for
> PREDICTOR

7: for each (¢.,Q.) : ¢- € 6(¢s, Q.) do

8: if add(Vi, (g, Qc, @n. 7)) then
9: if Qc ¢ T then
10: for each ¢. € Q. do
11: add_enqueue_es(Vy, E, (ge, A, Qc, k))
12: end for
> e-COMPLETER
13: else
14: add_enqueue_es(V, E, (¢, A\, Qn, 7))
15: end if
16: end if

17: end for
> COMPLETER
18: if ¢, € F then

19: for each (¢, Qn, @}, 1) € V; do
20: add_enqueue es(Vi, E, (g, A\, Q},,1))
> e-COMPLETER
21: if : =k then
22: add(T, Q)
23: end if
24: end for

25: end if
26: end while
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Vo
1: (g0, M\ {q},0) initial ES
20 (q1,{¢5},{q0},0) pause(1)
3: (g5, {g5},0) call(1)
(%) 4: (g6:{qr},{gs},0) pause(3)
{gs) 5: (g7, \{¢7},0) call(3)
6: (gs,\{¢},0) e-transition(5)
7: (g6, {g5},0) resume(4, 6); deletable({q;})
i{q5} 8: (g1, {q},0) resume(2, 7); deletable({¢s})
9: (g, {q5} {q0},0) pause(8); call already in 3
{gs} | 10: (g2, A {q0},0) e-resume(7, 9)
11: (g3,{g5},{q0},0) pause(10); call already in 3
g5} 12: (g3,2 {q},0) e-resume(7, 11)
13: (q4,{q5},{q0},0) pause(12); call already in 3
14: (q4,2{q},0) e-resume(7, 13)
Vi
15: (g6, A {g5},0) recognize(3, a)
@ 16: (q1,M {q},0) resume(2, 15)
al {g:} |17 (g2, M {a},0) resume(9, 15); resume(20, 27)
18: (g3, {q0},0) resume(11, 15); resume(22, 27)
19: (g, M\ {q},0) resume(13, 15); resume(23, 27);
acceptance ES
20 (g2, {gs5}:{q0},0) pause(16)
(a7) 21: (g5, A {gs}, 1) call(16)
€ 22: (g3,{q5}.{q},0) pause(17); call already in 21
23: (qs,{q5},{q},0) pause(18); call already in 21
24 (g6,{q7},{q5},1) pause(21)
25: (g7, A {ar}, 1) call(21)
26 (gs, N\ {qr}, 1) e-transition(25)
27 (gs, Mg}, 1) resume(24, 26); deletable({¢7})

Figure 12.10:

251

RTN with deletable calls (left) and execution trace of algo-

rithm 12.2 rtn_ earley recognize_ string for this RTN and input a (right); without
the e-completer, greyed ESs would be missing and the input rejected.
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(QOv )‘7 {QO}v O)
(CI17 {QO}v {QO}v 0)

initial ES
pause(1); call already in 1

Vi

(q2, A\, {q0},0)
(91, A, {q},0)

recognize(1, b)
resume(2, 3)

Vs

(q2, A\, {q0},0)
(91, A, {%},0)

recognize(4, a)
resume(2, 5)

Vs

(Q27 )\7 {QO}v 0)
(91,2 {9}, 0)

recognize(6, a)
resume(2,7)

Vi

20+ 1:
20+ 2

recognize(2l, a); acceptance ES
resume(2, 20 + 1)

Figure 12.11: Left-recursive RI'N recognizing the language ba™ and execution trace of algorithm 12.2 rtn_ earley-

_recognize_ string for this RTN and input ba'.
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in section 12.7— is shown in figure 12.12. Note that paused ESs are not rep-
resented as states of the trace but as labels of the push and pop transitions;
their purpose is to annotate the required information upon starting a call
for popping from it later. As for the base acceptor algorithm for RTNs, the
number of parallel explorations is duplicated each time an a is consumed,
but when performing the parallel calls to {go} the algorithm creates a unique
exploration path for the call. Once the call is completed, the two exploration
paths are joined after consuming a b. The average number of parallel explo-
rations is kept constant w.r.t. the length of input a™b", thus the algorithm
has a linear execution time for this RTN instead of exponential as for the
base acceptor algorithm.

Note that the exponential explosion is due to multiple nesting levels of
subgrammar calls combined with multiple interpretations within the called
subgrammars: grammar of figure 12.6 produces 2" different outputs with n as
the number of nesting levels of call to {¢y}. The amount of such nesting levels
that take place when parsing natural language sentences cannot be expected
to be very high, since we find difficult to understand sentences involving
a high number of ambiguous nesting levels and therefore we usually avoid
to formulate such complex sentences. However, since the speedup due to
factoring out the computation of subgrammar calls increases exponentially
w.r.t. the number of nesting levels, and general natural language grammars
involve ambiguous calls to heavy-weighted subgrammars, the performance
gain can be expected to be considerable even for low nesting levels.

Since RTNs and CFGs are equivalent and the presented Earley-like al-
gorithm for RTNs is an almost straightforward adaptation of Earley’s CFG
parser, we can expect the same asymptotic cost than that of the original
parser: polynomial (n?) in the worst case, but linear for many natural lan-
guage input sentences and grammars. The algorithm cannot be further op-
timized using the trie string management seen in section 9.1 (p. 178) since it
neither generates output nor relies on a stack of return states for recursive
call management.

12.12 Earley-like determinization

Even though Earley-like processing avoids falling into infinite loops during
the e-closure computation, it does not prevent infinite loops when it is applied
to the generic determinization algorithm (section 8.5, p. 166): Earley-like ESs
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Figure 12.12: Execution trace of the RT'N Earley-like acceptor —algorithm 12.2— for the RTN of figure 12.6
and input aabb. Thick dashed arrows link push transitions with their corresponding pop transitions. Paused ESs
decorate push and pop transitions.
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belong to sequences of SES Vj ...V, where V[ contains the ESs before con-
suming any input symbol, V; after consuming the first input symbol and so
on, so even though two ESs belonging to two different SES V; and V; might
be equal, they are not regarded as the same ES (an Earley-like determiniza-
tion algorithm would require to extend ESs with another field storing the
index of the SES they belong to). If the RTN can recognize input sequences
of any length (it contains cycles that can be consecutively realized any num-
ber of times for some finite input), the determinization algorithm will try
to generate an unbounded number of ESs, increasing the index of the SES
they belong to each time an input symbol is consumed. This feature makes
breadth-first processing a better choice for RTN determinization. Another
possibility is to determinize only the paths consuming the first n input sym-
bols, though we have not studied it. A similar approach called prefiz overlay
transducers (POTs) is presented in Marschner (2007) for RTNs with output.
The main idea is that the search space of a RTN representing a natural lan-
guage grammar gets reduced as sentence words are recognized, since the first
words condition the following ones; therefore, if we are to partially deter-
minize a RTN at the expense of increasing its size, we can expect a greater
search space reduction by fully determinizing the paths recognizing the first
n words than by flattening the first n recursive calls and then determinizing
the RTN’s underlying FSA.






Chapter 13

Recursive transition networks
with blackboard output

We present here RI'NBOs as a generalization of output generation with RT'Ns
by combining the definitions and properties of FSTBOs (chapter 10) and
RTNs (previous chapter). RTNBOs can be seen as an alternative definition
of augmented transition networks (Woods, 1969): both formalisms extend
RTNs with registers that store information generated during their applica-
tion, and both formalisms define extra conditions to the traversal of transi-
tions which depend on the values stored in the registers. RTNs with string
output are presented in chapter 14 as a particular case of output generation.
RTNs with composite output, weighted RTNs and RTNs with unification
processes can be defined as special kinds of RTNBOs. The guidelines for ob-
taining such definitions will be given in chapters 17, 18 and 19, respectively.

Definition 224 (RINBO). A RTNBO (Q, 3,1, B, B, 8,Q1, F) is a FSTBO
(Q, %, T, B, Bk, 6,Qy, F) (definition 139, p. 185) extended with a subroutine
jump mechanism, as for RTNs (definition 183, p. 221) w.r.t. FSAs (defini-
tion 128, p. 162): the set of transition labels = takes its elements from the
set (X U{e}) x (T'U{idg})) UP(Q), where

o labels in (XU {e}) x I') UP(Q) are the same than for the case of
FSTBOs and,

e labels in P(Q) represent subroutine jumps or calls to state sets, as for
the case of RTNs.

257
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13.1 Transitions

In the definition of RTNBO, transitions that consume input and/or generate
output are not allowed to modify the stack of return states and vice-versa.
This way, transition definitions for the case of FSTBOs and RTNs can be
reused for the case of RTNBOs. Transitions that either consume input or
generate output are inherited from the FSTBO case, which are

e consuming transitions (definition 140, p. 186): @ x (X x (I'u{idg}))xQ,
e generating transitions (definition 141, p. 186): @ x (X Ue) xI') x Q,

e translating or substituting transitions (definition 142, p. 186): @ x (X x
) xQ,

e deleting transitions (definition 143, p. 186): @ x (X x {idg}) x @ and
e inserting transitions (definition 145, p. 186): @ x ({e} xI') x Q.

Transitions that modify the stack are inherited from the RTN case, which
are

e call transitions (definition 187, p. 222): @ x P(Q) x Q,

e push transitions (definition 189, p. 222): @ x QI x @,

e pop transitions (definition 190, p. 223): @ x Q1 x @ and

e implicit e-transitions (definition 186, p. 222): push or pop transitions.
Finally, transitions that neither consume input nor generate output nor mod-
ify the stack have the same form than FSTBO &2-transitions but fall into the
category of RTN explicit e-transitions (definition 185, p. 222):

e explicit e2-transitions (definition 146, p. 186): Q x ({e} x {idg}) x Q.

Definition 225 (g2-call). We say a call to a subinitial SS Q. is an €*-call
or e2-realizable call iff it is realizable through an €*-path (see definition 149,
p. 187).
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monkey
— telescope [l

<N> |garden </N>
(b) N

Figure 13.1: Graphs of subfigures 12.4(b) and 12.4(e) (p. 224) after inserting
XML output tags for marking the sentence compounds they recognize.

%monkey
: E>:</N
@%<E>.<N>wy%<> </ >@
%telescope

Figure 13.2: RTNBO fragments equivalent to the graphs of figure 13.1.

13.2 Graphical representation

The graphical representation of RTNBOs is a combination of the representa-
tions of FSMs (section 7.2, p. 124), FSTBOs (section 10.2, p. 187) and RTNs
(section 12.2, p. 225), both for the classical representation as for the Unitex
and Intex graphs. Figures 13.1 and 13.2 show some fragments of the graph
and RTN shown in section 12.2 (p. 225) but extended with XML output tags
in order to mark the recognized sentence compounds.

13.3 Sequences of transitions

Definitions given on the sequences of transitions of FSTBOs (section 10.3,
p. 187) and RTNs (section 12.3, p. 225) also apply for the case of RTNBOs.
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13.4 Behaviour

The definitions in this section correspond to the application of RTNBOs
without Earley processing (as for the non-Earley application of RTNs de-
scribed in section 12.5, p. 227). The Earley-like application of RTNBOs will
be described in section 13.9.

Definition 226 (Execution state). RTNBO ESs are triplets (q,b,7) € (Q X
B x Q*) where b is an output blackboard, by being the empty blackboard, and
m 1$ a stack of return states, A being the empty stack.

Definition 227 (Illegal SES). As for FSTBOs (definition 154, p. 189), the
illegal SES of a RTNBO (Q, X, I, B, Bk, 0, Qr, F) is (Q X Bx x Q*), that
is, the set of all ES having a killing blackboard.

Definition 228 (A). The A function for RTNBOs is a simple direct-derivation
function on SESs (definition 98, p. 157) with

® s = (QS7bS77T);
® I = (qtabtaﬂ-)7 a’nd
o d=qs €5(qs (0,7)) Nby = y(bs) N by & Bre.

The RTNBO A function behaves as the FSTBO A function (definition 155,
p. 189): ESs are extended with a stack which is in fact not modified.

Definition 229 (D). The D function for RTNBOs is composed by 3 simple
direct-derivation functions on SESs (definition 98, p. 137), D. with

® 7, = (¢s,bs, ),

o ;= (q, b, ), and

o d=q, €4(¢s (,7) Nbr =(bs) N by ¢ Bi.
Dyusn with

o r, = (g5, b,m),

® 7, = (qe,b,7q), and

° d:qt S 5((]87@6) /\QC € Qw
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and Dyop with
o s = (¢5,0,7qy),
e ;= (qr,b,7), and
o d=gqsecl.

As can be seen, D. is defined as function D for FSTBOs (definition 156,
p. 189) but extended with an stack of return states which is left intact,
and functions Dy and Dyop are defined as the ones for RTNs (see def-
inition 211, p. 229) but extended with an output blackboard which is not
modified.

Lemma 18 (Infinite e-closure). The e-closure of @ RTNBO SES 'V is infinite
if there exists an ES (q,b,7) within V' or e-reachable from V such that q is
traversed by a generating e-cycle holding the conditions expressed in lemma 10
(p. 189) and/or q has an outgoing left-recursive call transition, as for RTNs
(lemma 14, p. 230).

Proof. The proof for the case involving generating e-cycles can be obtained
by extending FSTBOs ESs of proof of lemma 10 (p. 189) with a stack of
return states m that does not change. The case involving left-recursive calls
can be obtained by extending RTN ESs of proof of lemma 14 (p. 230) with
a non-killing output blackboard that does not change. Since both cases lead
to infinite e-closures, the combination of both defines several e-paths adding
an infinite SES to the e-closure, and therefore leading to infinite e-closures
as well. 0J

Lemma 19 (Finite e-closure). Under conditions other than those expressed
in the previous lemma, the e-closure of a RTNBO SES is finite.

Proof. This proof is also a mixture of the analogous proofs for FSTBOs (proof
of lemma 11, p. 191) and RTNs (proof of lemma 15, p. 230). If we only
consider paths that do not modify the stack of return states, by extending
the proof for FSTBOs with stacks that do not change we see that every e-
path not containing a generating e-cycle such as the described in the proof
lead to finite e-closures. If we only consider paths that do modify the stack
of return states or do not modify it but do not generate output, by extending
the proof for RTNs with non-killing blackboards that do not change we see
that every e-path not containing left-recursive calls lead to finite e-closures
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as well. Finally, a path being composed by the concatenation of a finite
sequence of paths of both kinds will lead to the finite union of the finite SES
for each individual path, thus also leading to a finite e-closure. O

Theorem 20. The e-closure is finite for non-left-recursive RTNBQOs which
do not contain generating e-cycles such as the ones described in lemma 10

(p. 189).

As already mentioned, such generating e-cycles do not make sense in
natural language grammars since they allow for infinite translations of finite
input sequences (e.g.: finite sentences with infinite parse trees). Therefore,
forbidding such cycles does not limit the natural language grammars that can
be represented but ensures that the execution of the algorithms of application
of RTNBOs will end.

Definition 230 (Initial and acceptance SESs). Given the sets of initial and
acceptance states of a RTNBO, Q; and F, its initial and acceptance SESs
are (Qp x {bg} x {\}) and (F x B x {A}), respectively.

Definition 231 (7). We define 7(A), the language of translations of a RTNBO
A, as the set of input/output pairs (w,b) € (X* X B) such that w is recognized
and translated into b by A, that is, the set of input/output pairs such that the
whole consumption of w reaches at least one acceptance ES from at least one
initial ES through a path that generates b:

7(A) = {(w,b) : (qr, b, m) € AT((Qrx{bg} x{A}), w)N(F'xBx{A})}. (13.1)

Definition 232 (w). We define w(A,w), the translations of a word w for a
RTNBO A, as the set of output sequences b € B such that (w,b) belongs to
the translations of A:

w(A,w)={b: (w,b) € 7(A)}, (13.2)

with T(A) of the previous definition.

13.5 Translating a string

Algorithm 13.1 rtnbo_ translate string performs a breadth-first application
of a RTNBO to an input string in order to obtain its set of translations. It is
an almost straightforward adaptation of the breadth-first FSTBO translator
(algorithm 10.1, p. 197) but with the following differences:



13.6. FLATTENING 263

e the initial set of ESs has empty stacks of return states added to each
ES,

e the use of the A and e-closure functions adapted for RI'NBOs,

e in the last loop, we extract the output blackboards of the ESs of the last
V; that have both an empty stack of return states and an acceptance
state.!

Algorithm rtnbo_ translate_ symbol can be easily deduced from algorithm 10.2
fstbo_translate_ symbol (p. 198) by extending ESs with a stack that does not
change, and algorithm rtnbo_interlaced eclosure can be easily deduced from

algorithm 12.1 rtn_interlaced_ eclosure by extending ESs with an output
blackboard that

e might be modified for the case of explicit e-transitions, as for consuming
transitions in algorithm 10.2 fstbo translate_symbol, and

e is not modified for the other cases (push and pop transitions).

Algorithm 10.5 (p. 199), the depth-first translator algorithm for FSTBOs,
can yet be used for RTNBOs by simply replacing the implementation of the
A and D functions for the case of RI'NBOs.

As for the RTN breadth-first and depth-first acceptor algorithms (sec-
tion 12.7, p. 235), these algorithms can be further improved by representing
the stacks of return states as pointers to the nodes of a trie (see section 9.1,
p. 178). As for the case of FSTBOs, blackboard fields containing data se-
quences may also be represented as pointers to trie nodes.

13.6 Flattening

There is no difference between flattening a RI'NBO and flattening a RTN
(section 12.8, p. 239) since this process applies only to call transitions, which
are defined as for RTNs, and submachines are to be copied as is, that is,
without interpreting their content.

LAs for FSTBOs, it is not necessary to check whether the blackboards belong to By
or not since, by definition, every ES in V; is legal.
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Algorithm 13.1 rtnbo_ translate string(o; ... o)) >w(A o1...00),
eq. (13.2)

Input: o0y ...0, an input string of length [
Output: T, the translations of o1...0;

e e e

V10

E+ 0

for each ¢. € ); do
unconditionally add enqueue es(V, E, (q., by, \))

end for

rtnbo_interlaced _eclosure(V, F)

10

while £ # () Ai <l do
V; < rtnbo_ translate symbol(V, E, o;41)
11+ 1
rtnbo_interlaced _eclosure(V, F)

: end while

:T%@
. for each (¢,b,\) € V:qg€ F do

— =
IS

add (T, b)

. end for
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13.7 Determinization

This section is a combination of the determinization sections for FSTBOs
(section 10.7, p. 199) and RTNs (section 12.9, p. 241); we are interested in
determinizing the RTNBO regarding it as its underlying FSA.

Definition 233 (Underlying FSA). Let A = (Q, X, 1", B, Bk, 6,Q1, F) be a
RTNBO, we define its underlying FSA as (Q, (((X U {e}) x (['U{e})) —
{(e,)}) UP(Q),d,Qr, F) with (,¢) as the empty symbol, that is, RTNBO
input/output pairs and RTNBO subinitial SSs become FSA input symbols
except for (e,¢), which becomes the empty symbol.

13.8 Blackboard set processing

We present here blackboard set processing (BSP) of RTNBOs as an extension
of the FSTBO case (section 10.9, p. 205). As for FSTBOs, we traverse the
RTNBO as a RTN, and we dinamically build a map (p associating each
RTN ES with the set of blackboards (SB) that can be generated by reaching
the ES from an initial ES through any path. When deriving an ES z; from
an ES z, we must make sure that (g(z,) is completely built so that every
blackboard to be generated by this derivation is added to (p(x;). ESs derived
by consuming ¢ symbols are reached before the ones derived by consuming j
symbols, for 0 < 7 < j, and therefore the A function respects this restriction.
We only require to pay special attention to the way in which the e-closure
is computed: ESs must be e-derived by following a topological sort of the
e-closure-substructures of A”. The relation between the cycles in A and the
cycles in A” is not so straightforward as for the FSTBO case due to the
presence of a stack inside RTN ESs.

Definition 234 (Zg). Given a« RTNBO (Q,%X,1', B, Bk, §,Q1, F), we define
Zp as the set of every partial map (g of RTN ESs Q x Q* to SBs in P(B).

Definition 235 (BSP SES). We define the equivalent BSP SES Vi of a
RTNBO SESV as a pair (V',(g) where V' C Q x Q* is a RTN SES and
(B € Zp 1s a function mapping states to SBs such that

VB = (V/aCB) : V, = {(qaﬂ-) : (Q>ba ﬂ-) € V} A CB((qaﬂ-)) = {b : (qa b> 7T) € V}’
(13.3)
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which is equivalent to say that

Ve=(V',¢s): | {a} x Gsllg,m) x {7} = V. (13.4)

(g,m)eVv’

The definition of v on SBs does not change w.r.t. the FSTBO case (defi-
nition 172, p. 206).

Definition 236 (BSP A). We redefine the RTNBO A function for blackboard
set processing as follows:

A (P(Qx Q) x Zp) x L — (P(Q x Q%) x Zg),

such that

A((V,¢p),a) = (V',¢p) : V! = {w: (p(x) # BIA
C((ae ) = U Y(¢s((gs; 7)), (13.5)

7:qt€5(gs,(0,7))A\(gs,m)EV

As for the FSTBO case, the existence of a topological sort for the compu-
tation of the e-closures depends on the possibility of removing the e-cycles of
the RTNBO. As for FSTBOs, RTNBO e-cycles with generation are simply
forbidden in order to avoid infinite e-closures. RTNBO e2-cycle removal is
slightly different from the FSTBO case due to the presence of call transitions.

Theorem 21 (g2-cycle removal). For every non-left-recursive RTNBO with
e2-cycles not involving deletable calls there ewists an equivalent non-left-re-
cursive RTNBO without £2-cycles which can be obtained by determinizing the
RTNBO regarding it as its underlying FSA.

Proof. RTNBO ¢e%-cycles can be divided into two classes: call e2-cycles and
non-call e2-cycles. Call e2-cycles correspond to left-recursive calls, which are
forbidden since they lead to infinite e-closures. Non-call e2-cycles can be
divided again into two classes: the ones that involve deletable calls and the
ones that do not. £2-cycles belonging to the former class are forbidden, and
the ones belonging to the latter class are the same than the e2-cycles found in
the FSTBO case, and therefore can be removed by determinizing the RTNBO
as its underlying FSA. O
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RTNBO &2-cycles with deletable calls are not removed when determiniz-
ing its underlying FSA: such e2-cycles are reduced to an ?-cycle composed
only by deletable calls, where the subinitial SS of each call is replaced by a
single state that is both subinitial and final. However, such cycles do not
contribute anything to the grammar description. We simply forbid their
presence in order to support BSP.

Theorem 22 (Existence of a topological sort). Considering lemma 1 (p. 131)
and the previous theorem, for every non-left-recursive RTNBO without e-
cycles involving deletable calls and/or output generation there exists an equiv-
alent RTNBO A such that, given A’ the RTN obtained from A after removing
its output alphabet and transition outputs, there exists at least one topological
sort for every e-closure-substructure of X (A’).

As for the FSTBO case (definition 174, p. 207), we define function D for
BSP for a single source RT'N ES and its associated SB instead of a RTN SES
and a mapping of RTN ESs to SBs since we iteratively compute the e-closure
ES by ES, following a topological sort.

Definition 237 (BSP D). We define function D for RTNBO BSP as follows:
D:((Qx Q%) x Zp) = (P(Q x Q) X Zp),
such that
D(Iw Bs) = (V/> C,B) . V, = Vv& U V})ush U ‘/pop/\
Va, € V'[(p(2e) = (. (21) U (B, (T1) U (Blop (T0)]A
(Ve C8.) = De(ws, Bs) A (Voushs CBpusn) = Dypush (@5, Bs)A
(Voops CBpop) = Dpop (s, Bs)  (13.6)

Dc((gs,m), Bs) = (V', () : V! = { = C(w) # O}
Gllam) = |J (B (13.7)

7:qt€5(s,(£,7))
Dpush((QSa 71—)7 BS) = (V/’ </B) : V/ = {(QCa 71-%) ey € 5((157 Qc)} A qc € Qc/\
Vz € V'[(h(z) = By (13.8)

(. m).C5) : Colam) = By g€ F
Do B ={ (T S0 P EE 099
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Definition 238 (BSP e-closure). The definition of BSP e-closure is the same
than for FSTBOs (definition 175, p. 208) but replacing FSTBOs by RTNBOs,
FSAs by RTNs, FSA ESs by RTN ESs and the BSP D function for FSTBOs
by the one for RT'NBOs.

The proof of equivalence between BSP and non-BSP e-closures for RTNBO
breadth-first processing is analogous to the one for the FSTBO case (proof
of theorem 13, p. 208).

13.9 Earley-like processing

RTNBOs perform the recognition of an input sequence as RT'Ns do, but also
compute its associated output blackboards as result of applying to the empty
blackboard by the composition of the sequence of output functions found dur-
ing the traversal of the RTNBO. Earley-like RTN processing (section 12.10,
p. 242) factors out the computation of parallel calls to the same state by
pausing every calling ES, then starting a new and single processing for the
call and finally resuming the paused ESs each time the call is completed. For
the case of RTNBOs we factor out as well the computation of the output
blackboard of common calls. However, it is necessary to define a blackboard
composition operator so that, for each call completion, the blackboards com-
puted during the call can be combined with the blackboards of the paused
ESs to be resumed in order to proceed with the exploration of the RTNBO:

Definition 239 (Blackboard composition operator). Given a RTNBO (Q,
Y, I, B, Bk, 0, Qr, F), its blackboard composition operator o is a binary
function on blackboards

o:BxB—B
such that given two blackboards
b= (Ym ©Ym-19-..0%)(bp) (13.10)
and
b= (1 oY1 07%)(bo) (13.11)
it holds that
bob = (7,079, 10 0% 0 Ym O Ym-19-..9%)(bp).> (13.12)

2Recall that the notation of function composition reverses the function specifica-
tion w.r.t. the order in which they are applied, that is, (Ym © Ym-1 0 ... 0 7)(bg) =

Y (Ym-1(- -+ (v0(bg)) - - -))
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In other words, the blackboard composition operator enables to separately
compute partial results corresponding to consecutive segments of the sequence
of output functions and then combine those partial results as if the sequence
of output functions was applied sequentially to the empty blackboard. The
concrete definition of the blackboard composition operator depends on the
kind of concrete machine.

Lemma 20 (Associative blackboard composition operator). Let e be a binary
operator on blackboards; if every output function of a RTNBO A is of the form
Y, (b)) = b @ b, and e is associative, then e is the blackboard composition
operator of A.

Proof. Let output functions of a RTNBO B be defined as in the lemma, then
it holds that

Y, (bp) = b, and (13.13)

idp(b) = by,* (13.14)
which imply that

bpeb. = b, and (13.15)

beby = b, (13.16)

that is, by is the identity element w.r.t. o. Let blackboards b and b’ be defined
as

b =" (Yom © Vo1 ©---°)(by) and (13.17)
V' = (w om0 0v)(b), (13.18)

then it holds that
b = bpebye...0b,, b, =bye...eb, ;eb, and (13.19)
V = byebye...eb el =bye...eb  eb . (13.20)
If e is associative, then it holds that
bell = byebye...0b, 10b,ebje.. el  eb (13.21)
= (Y, ©Yn-10...0 Vet © Vo © Yoy O -+ - © Yoo ) (bg), (13.22)

3Blackboards b; and b, stand for left and right operands, respectively.
4Recall that by stands for the empty blackboard and that idp stands for the identity
function on blackboards.
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and therefore o is the blackboard composition operator of A (definition 239).
O

The previous lemma is applied to the definition of the blackboard compo-
sition operator for every particular output case treated in this dissertation,
namely weights (the object of chapter 18) and feature structures built by
means of unification processes (the object of chapter 19). RTNBOs whose
output blackboards do not allow for the definition of a blackboard composi-
tion operator can still be applied efficiently if such blackboards are weighted
and only the top-ranked blackboard is to be returned. More details will be
given in chapter 18.

Definition 240 (Earley execution state). ESs for Earley-like RTNBO pro-
cessing are ESs for Earley-like RTN processing (definition 207, p. 227) aug-

mented with a blackboard in B representing the output generated up to the
ES, in particular structures in (Q X B x (P(Q)U{\}) x P(Q) x N).

Definition 241 (Earley A). The A function for RTNBO Earley-like process-
ing, the equivalent to Earley’s scanner, is a simple direct-derivation function
on SESs (definition 98, p. 137) with

® s = (q87bsv>\7 thi);
® I = (qtvbta )‘7Qh7i>7 and
o d=q €9(qs, (0,7)) Nby = v(bs) Nby ¢ Brg.

The RTNBO Earley-like A function behaves as the RTN Earley-like A func-
tion (definition 219, p. 244) extended with blackboard processing analogously
to the way in which the FSA A function (definition 132, p. 163) is extended
with blackboard output for FSTBO processing (definition 155, p. 189).

Definition 242 (Earley D). The D(V}) function for RTNBO Earley-like
processing is composed by 3 simple direct-derivation functions on SESs (def-
inition 98, p. 187):

e the explicit e-transition processor, D (V) with
- Ts = (C_Is, bsa )\7 Qha Z);

— T = (qt,bt,)\,Qh,’i), and
—d=q € 0(qs,(g,7)) Nby = v(bs) N by ¢ By,
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o the equivalent to Earley’s predictor, Dpysn with

- Ts = (qsabsa)\7Qhaj)7

— 2t = (Qey by, A, Qe, k) or 2 = (¢, bs, Qc, Qn, J), meaning that both
target ESs are derived from xs if p holds, and

—d= qr € 5(qS7QC) Nge € Qc; and

o the equivalent to Earley’s completer, Do, with

- Ts = (Qf>bf>)\thaj);
- Xy = (qrubM)\u Q;uz)7 cmd
— d:queF/\(qr,bs,Qh,Q;wi) E‘/j/\br:bsObf/\br¢BK,

where o is the blackboard composition operator and D,y is retroactive,
as for RTN Earley-like processing (definition 220, p. 245).

Definition 243 (Earley initial and acceptance SESs). Given the sets of ini-
tial and acceptance states of a RTNBO, Q; and F, its initial and acceptance
SESs for Earley-like processing are (Qr X {bp} x {\} x {Q} x {0}), the ESs
starting a call to any initial state before consuming any input symbol or gen-
erating any output, and (F' x B x {\} x {Qr} x {0}), the ESs from where
those initial calls would pop, respectively.

Definition 244 (Earley 7). We define 7(A) —the language of translations
of a RTNBO A— through Farley-like processing as

T(A) = {(w,b) : (qr,b; A, Qr,0) € A*((Qr x {bp} x {A\} x {Qr} x {0}), w)N
(Fx Bx {\}x{Q} x {0})}. (13.23)

Definition 245 (Earley w). We define w(A,w) —the translations of a word
w for a RTNBO A— through Earley-like processing as

w(A,w)={b: (w,b) € T(A)}, (13.24)

with T(A) of the previous definition.
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13.10 Earley translator algorithm

Algorithm 13.2 rtnbo_ earley translate string is a sequence translator imple-
menting the Earley-like version of w(A,w) (definition 244, p. 271), which we
have obtained by extending the corresponding Earley-like sequence acceptor
algorithm for RTNs (algorithm 12.2, p. 249) with blackboard output. As for
the acceptor algorithm, it uses algorithm 13.3 rtnbo_ earley translate_ sym-
bol for computing the Earley-like A function (definition 241, p. 270), and
algorithm 13.4 rtnbo_earley interlaced eclosure for computing the Earley-
like e-closure (generic FSM e-closure in definition 100, p. 138, using the
Earley-like D function in definition 242, p. 270). Finally, add enqueue-
__esbo and unconditionally add_enqueue_ es are the small routines seen in
sections 10.6 (p. 196) and 7.9 (p. 152) for conditionally or unconditionally
adding an ES to a SES.
The differences between the Earley-like acceptor algorithm (algorithm 12.2)

and the translator version (algorithm 13.2) are enumerated below:

e ESs are extended with a blackboard element, which is by for the initial
ESs, so when arriving to the same state through different paths it is
possible to have several ESs due to different blackboards,

e processing a transition with output requires to apply a v function to
the blackboard of the source ES,

e as for FSTBOs, illegal ESs (containing killing blackboards) are rejected,

e instead of a Boolean, the result of the algorithm is the set of blackboards
(SB) containing every blackboard of every acceptance ES in the last V|

e given the set of paused ESs W, of a SES Vj, having called the same
SS @, and the set of ESs W, from where the call has been popped,
the algorithm computes the composition of every pair of blackboards
of every pair of ESs in Wyusn X Wyop, which raises its asymptotic cost
from polynomial to exponential, and

e the c-closure algorithm requires to build the list of not only the e-
completed calls but their corresponding outputs as well, so the compo-
sition of blackboards can be performed when retroactively e-completing
a call inside the predictor.
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Algorithm 13.2 rtnbo_earley translate string(oy

eq. (13.24)

. .O'l) W(A,Ul .- ~Ul)7

Input: oy ...0;, an input string of length [
Output: T the translations of oy ... 0y

e e e e e T

. allocate_memory _for chart(V”l)
Vo« 0

E<+0

for each (¢. € Q) do

unconditionally add enqueue es(Vy, E, (q., bp, A, Qr,0))

end for
Vi + rtnbo_earley _interlaced _eclosure(V!*1 E. 0)
k<0
while V, Z0 Ak <[ do
Viy1 < rtnbo_earley translate symbol(Vi, E, 0%11)
k+—Fk+1
rtnbo_earley interlaced _eclosure(V!*!, B, k)

: end while
AR @
. for each (gs,bs, A\, Q7,0) € Vi 1 qs € F do

add(T, b,)

. end for

Algorithm 13.3 rtnbo_earley translate _symbol(V, E, o)
def. (241)

> A(V.0),

Input: V, a SES

E, the empty queue of unexplored ESs
o, the input symbol to translate

Output: W, the set of reachable ESs from V' by consuming o

AN S

E after enqueuing the ESs of W
W+ 0
. for each (gs, bs, A\, Qp,J) € Vi do
for each (¢;,7) : ¢: € d(¢s, (0,7)) do
add _enqueue esbo(W, E. (q;,v(bs), A\, Qn, 7))
end for
end for
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Algorithm 13.4 rtnbo_earley interlaced eclosure(V*Y E k) > C.(Vi)

Input: V! the chart
E, the queue of unexplored ESs containing every ES in Vj
k, the index of the SES whose e-closure is to be computed
Output: V!*! after adding to V}, its e-closure
E after emptying it
1: T+ 0
2: while F # () do
3: (qs, bs, A, Qp, J) < dequeue(F)

> EXPLICIT e-TRANSITIONS
: for each (¢, 9) : q; € 0(gs, (g,9)) do
5: add_enqueue esbo(Vy, E, (g, v(bs), A, Qn, 7)
: end for
> PREDICTOR

7 for each (¢.,Q.) : ¢, € 0(gs, Q) do

8: if add(V4, (g, bs, Q¢, Qn, j)) then
9: if Ab. : (Q.,b.) € T then
10: for each ¢. € . do
11: add_enqueue__esbo(Vi, E, (qe, by, A, Qc, k))
12: end for
> e-COMPLETER
13: else
14: for each b, : (Q.,b.) € T do
15: add_enqueue__esbo(Vy, E, (gr,bs 0 bey A, Qp, )
16: end for
17: end if
18: end if

19: end for
> COMPLETER
20: if ¢, € F then
21: for each (¢, b., Qn, @}, 1) € V; do
22: add_enqueue_esbo(Vy, E, (¢, bs 0 b, A, @), 1)
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> e-COMPLETER

23: if i =k then

24: add(T, (Qn, bs))
25: end if

26: end for

27: end if
28: end while

As for the RTN Earley-like case (section 12.11, p. 246), the optimization
of sequence representation by means of tries (section 9.1, p. 178) cannot be
applied here to the management of stacks of states since the Earley trans-
lator algorithm for RTNBOs (algorithm 13.2) does not use such stacks. It
might be applicable to the representation of string-like outputs, though for
Earley-like processing this modification might decrease efficiency rather than
optimizing the algorithm since it falls into the not-so-efficient case described
in section 9.3 (p. 183). A more detailed discussion will be given in section 14.7
(p. 289) for the case of RTNSOs.

13.11 Earley-like blackboard set processing

Analogous to breadth-first blackboard set processing (BSP) of RTNBOs (sec-
tion 13.8, p. 265), we present here Earley-like BSP of RTNBOs as an exten-
sion of the FSTBO case (section 10.9, p. 205). The execution machines of the
corresponding machines without output for both the FSTBO and RTNBO
breadth-first cases (FSAs and RTNs, respectively) are FSAs. However, for
the case of Earley-like RTN processing the resulting execution machine is an
output FPRTN, a subclass of FPRTNs that we will study in chapter 16.5
Defining a topological sort for output FPRTN substructures and finding the
necessary conditions for its existence is not so straightforward as for FSAs
due to the presence of call transitions and the particular way in which they
are constructed. We just present here the equations for Earley-like BSP of

5To be exact, the Earley-like execution machine of a RTN is an “input” FPRTN: a
machine built as for output FPRTNs but taking as transition labels the inputs of the RTN
instead of the outputs of the original RTNBO. Moreover, output FPRTNs are built for
recognizing only the translations generated by the RTNBO for a given input sequence,
and the execution machine consumes every input sequence the RTN can consume. More
details will be given in chapter 16.
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RTNBOs, supposing that there exists such a topological sort for the e-closure
substructures of the corresponding output FPRTNs. An application of these
equations will be given in section 16.3 (p. 329) for the generation of the lan-
guage of an output FPRTN, along with a definition of topological sort for
output FPRTN substructures and the necessary conditions for its existence.

Definition 246 (Zg). Given a RTNBO (Q,%,1', B, Bk, §,Qr, F), we define
Zp as the set of every partial map (g of RTN Earley ESs (Q x B X (P(Q)U
{A\}) x P(Q) x N) to SBs in P(B).

Definition 247 (Earley blackboard set processing). We define the equivalent
Earley BSP SES Vg of a RTNBO FEarley SES'V as follows:

Ve = (V' Cs): V' = {(¢s; A, Qns 1) : (g5, 0, A, Qnyi) € VU (13.25)
{(gs, Qc, Qn, 1) = (g5, b, Qc, Qn, i) € VI A (13.26)

CB(qs; A, Qny 1) = {b: (gs,0, A, Qn,i) € VEA - (13.27)

CB(qs; Qe, Qny 1) = {b: (qs,0,Qc, Qn, 1) € V'Y, (13.28)

which is equivalent to say that

Ve=(V¢): (U e} % Calas A Qi) x {A} x {@n} x {i}) U

(a5, Qn,H)EV’

(U ) x a5 Qe Qn i) x {Qc) x {Qu} x {i}) = V. (13.29)

(QSmeQh’i)eV,
The definition of 4 on SBs (definition 172, p. 206) does not change.

Definition 248 (Earley BSP A). We redefine the RTNBO A function for
Earley-like BSP as follows:

A (P(Qx{A} xP(Q)xN) x Zp) x ¥ — (P(Q x {\} x P(Q) x N) x Zp),
such that

A((Vi¢s),0) = (V',C5) s V! = {(a1s A Quyi+1) : Gl A, Qnai 1) # O}A
Colan N, Qni+1) = U Y(CB(gs A, Qny 1)) (13.30)

7:qt€8(gs,(0,7))A (g5, A Qn i) EV
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Definition 249 (Earley BSP D). The D function for BSP Earley RTNBO
processing s defined as follows:

D:((QxQ")x Zg) = (P(Q x Q") x Zp)

D((¢s, Ay qn, 5), Bs) = (V', () : V! = Ve U Viusia U Viop\
Ca(q, ™) = CB. (0, ) U B, (@6, ) U CByop (1, TN
(VZ,¢8.) = D((gs,7), Bs) A (Voush CBpuen) = Dpush (@5, ), Bs)A
(Vpop>CBpop) = DpOp((QSaW)>Bs) (13-31)

D((gss A ans 3), Bs) = (V', () = VI = {(a6: Ay an, 5) = Ca(ae: Ay an, 5) # 03N
Colan Nand) = | (B (13.32)

v:qt€8(gs,(e,7))

Dipusn((@s; Ay @y 3), Bs) = (V', () : VI = {(4e, Ay @y ), (15 4y Gns J)
(s, A\ any J) € Vi N ae € 0(gs, ge) JA
(CB(ges Ay ge, k) = {bo} A Cp(@s Ges gn, J) = Bs) =
(g5, X, qn, ) € Ve Ay € 6(gs,4c))  (13.33)

V', ¢ V= {(ar A g 9) -
DPOP((qS7 >‘7qh7.j>7BS> = (QT’ththa ) € V} A C (QT>7T) = Bs QS S F
(®>C/)<(q87)\qh’ ):® qng
(13.34)

Definition 250 (BSP e-closure). The definition of BSP e-closure is the same
than for breadth-first BSP of RTNBOs (definition 238, p. 268) but replacing
RTN ESs by RTN Earley ESs and the BSP breadth-first D function by the
corresponding Farley one.

The proof of equivalence between Earley-like BSP and non-BSP e-closures
for RTNBO Earley-like processing is analogous to the one for the FSTBO
case (proof of theorem 13, p. 208).






Chapter 14

Recursive transition networks
with string output

We present here RITNSOs as a special case of RI'NBOs in the same way we
have presented FSTSOs as a special case of FSTBOs in chapter 11. We have
published brief descriptions of RTNSOs —as well as of the breadth-first and
Earley-like algorithms of application of RTNSOs we describe here— in Sastre
and Forcada (2007, 2009).

Definition 251 (RTNSO). A RTNSO (Q,%,1',0,Qr, F) is a special type of
FSM (definition 46, p. 121) with a stack, where the set of labels = of the
machine take its elements from (XU {e} x (I'U{e})) UP(Q), X is an input
alphabet, ' an output alphabet, ¢ the empty symbol and Q) the finite SS of the
RTNSO. RTNSOs can be seen as a special case of RTNBOs in the same way
FSTSOs are a special case of FSTBOs (see definition 176, p. 212).

14.1 Transitions

RTNSO transitions are a particular case of RTNBO transitions (section 13.1,
p. 258) as FSTSO transitions are a particular case of FSTBO transitions (see
section 11.1, p. 212). Possible RTNSO transition types are:

e consuming transitions: @ x (X x (I'U{e})) x @,
e generating transitions: @ x (XU {e}) xI') x @,

e translating or substituting transitions: Q) x (X x I') x @,

279
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e deleting transitions: @ x (X x {e}) x @,

e inserting transitions: @ x ({e} xI') x @,

e call transitions: Q x P(Q) x Q,

e push transitions: Q x QL x Q,!

e pop transitions: Q x Q1 x Q,?

e implicit e-transitions: push or pop transitions, and

e explicit e2-transitions: Q x ({e} x {e}) x Q.

14.2 Sequences of transitions

Analogously, RTNSO paths are a particular case of RTNBO paths. Every
definition in section 13.3 (p. 259) is inherited by replacing RTNBO transitions
by their corresponding RTNSO transitions.

14.3 Behaviour

Definition 252 (Execution state). RTNSO ESs are triplets (q,z,m) € (Q X
'™ x Q*) where z is a sequence of output symbols, € being the empty output,
and T s a stack of return states, being A the empty stack.

Definition 253 (A). The A function for RTNBOs is a simple direct-derivation
function on SESs (definition 98, p. 157) with

[ ] xs - (qS7Z?7T)7
o 1, = (q,29,7), and
[ dZQS 65(q5,(0>9));

where g € 'U{e}. The RTNSO A function behaves as the FSTSO A function
but extending its processing with stacks of return states that are in fact left
untouched.

!Recall that q.| represents to push state g. onto the stack.
2Recall that ¢,T represents to pop state ¢, out of the stack.
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Definition 254 (D). The D function for RTNSOs is composed by 3 simple
direct-derivation functions on SESs (definition 98, p. 137), D. with

® IUs = (qsazaﬂ-)f

o v, = (q,29,m), and

o d= qs € 6(QS7 (579));
where g € I' U {e}, Dpush with

® s = (qsazaﬂ-)f

® Ty = (QCa Z>7th)7 and

o d=q € 6(¢;,Qc) N € Qe

and Dyop with
o zs = (qr,2,7q),
o v, = (qr,2,7), and
e d=gqreF.

Lemma 21 (Infinite e-closure). The e-closure of a RTINSO SES 'V is infinite
if there exists an e-reachable ES (q,z,m) such that q has an outgoing left-
recursive call transition and/or is traversed by a generating e-cycle.

Proof. Since the RTNSO e-closure function is a particular case of the RTNBO
e-closure function, this proof is a particular case of proof of lemma 18 (p. 261)
for RTNBOs. The ESs derived during the computation of the e-closure are
not explicitly required to be legal since RTNSOs do not define killing black-
boards. Additionally, non-identity output functions are neither explicitly
required to always generate new blackboards since, for the case of string
output, this is always true: zg # z iff g # €. O

Lemma 22 (Finite e-closure). For conditions other than those expressed in
the previous lemma, the e-closure of a RTNSO SES s finite.

Proof. Since the RTNSO e-closure function is a particular case of the RTNBO
e-closure function, this proof is a particular case of proof of lemma 19 (p. 261)
for RTNBOs. ]
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Theorem 23. The e-closure is always finite for non-left-recursive RTNSOs
without generating c-cycles.

Definition 255 (Initial and acceptance SESs). Given the sets of initial and
acceptance states of a RTNSO, Qr and F, its initial and acceptance SESs
are (Q x {e} x {A}) and (F x I'* x {\}), respectively.

Definition 256 (7). We define 7(A), the language of translations of a RTNSO
A, as the set of input/output pairs (w,z) € (X* x I'*) such that w is recog-
nized and translated into z by A, that is, the set of input/output pairs such
that the whole consumption of w reaches at least one acceptance ES from at
least one initial ES through a path that generates z:

T(A) = {(w, 2) : (gf,2,7) € A" ((Qrx{e} x{A}),w)N(FxT*x{A})}. (14.1)

Definition 257 (w). We define w(A,w), the translations of a word w for a
RTNSO A, as the set of output sequences z € T'* such that (w, z) belongs to
the translations of A:

w(A,w)={z:(w,z) € T(A)}, (14.2)

with T(A) of the previous definition.

14.4 Translating a string

Algorithm 14.1 rtnso_ translate_string is a specialization of algorithm 13.1
rtnbo_translate string (p. 264) for the computation of the set of string trans-
lations for a given RTNSO an input sequence. Algorithms for computing the
A and e-closure functions can be easily derived from their RTNBO counter-
parts (see section 13.5, p. 262). Notice that, since RTNSOs do not define
killing strings, routine add_enqueue_es (section 7.8, p. 148) can be used
instead of routine add _enqueue esbo (section 10.6, p. 196) in order to add
derived ESs to the current SES: both routines perform the same operation
but the former one does not verify whether the derived ESs contain killing
blackboards or not.

Figure 14.2 is a graphical representation of the execution trace of algo-
rithm 14.1 rtnso_ translate_ string, for RTINSO of figure 14.1 and input aabb.
This RTNSO cannot be determinized as for the RTN case in section 12.7
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Algorithm 14.1 rtnso_translate string(oy ... o) >w(A, o1...00),
eq. (14.2)

Input: oy ...0;, an input string of length [
Output: 7', the translations of oy ...0;

._.
<

==
= W N

V10
E«+ 0
for each ¢. € ); do
unconditionally add enqueue_es(V, E, (g, €, {\}))
end for
rtnso_interlaced eclosure(V, E)
1 1+1
while V; #0 ANi <l do
V <« rtnso_ translate symbol(V, E, 0;41)
11+ 1
rtnso_interlaced eclosure(V, E)
: end while
T+
. for each (¢,z,7) € V do

._.
ot

._.
@

— =
% 7

if g€ FAm= ) then
add(T, z)
end if

. end for
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Figure 14.1: Example of ambiguous RTNSO corresponding to RTN of figure 12.6
(p. 237) extended with string output; labels of the form z : y represent an in-
put/output pair (e.g.: a : { for transition (qo,(a,{),q1)) and dashed transitions
represent a call to the state specified by the label (e.g.: transition (q¢1,qo,¢q2)).
Input a can be interpreted as [ or { and b as | or }.

(p. 235) since transitions labeled with the same input symbols define differ-
ent outputs. As for the RTN case, the number of parallel parses is doubled
each time an a is consumed, but is not reduced after consuming each b due
to the different outputs of the ESs. The number of generated ESs is also
exponential w.r.t. the length of input a™b", as for the RTN case.

The algorithm can be further improved with the trie string management
seen in section 9.1 (p. 178), which in this case may be applied to both the
output strings and the stack of return states.

14.5 Language generation

In section 11.6 (p. 215) we described how to adapt an FSTSO translator
algorithm in order to obtain an algorithm for the generation of the language
of a FSA. We follow here an analogous procedure for the construction of an
algorithm for the generation of the language a RTN, that is, by adapting a
RTNSO translator algorithm.

Theorem 24 (Language generation). Let A = (Q,%,6,Qy, F') be a RTN and
A =(Q,X,T,8,Q, F') a RTNSO such that

o Q/:Q;Q,[:QI7F/:F;
o X =1,
o ['=13,

qt € 5/(QSa (5,7)) Zﬁ qt € 5(Q8?U)7 and
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Figure 14.2: Execution trace of the RTNSO breadth-first translator algorithm 14.1 for the ambiguous RTNSO of
figure 14.1) and input aabb. Solid, dotted and bold trace transitions correspond, respectively, to the exploration of
the RTN explicit transitions, push transitions and pop transitions.
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® G € 5l(Qsa QC) Zﬁ qt € 5((]87@6)7

then it holds that
L(A) = w(A’, £) (14.3)

Proof. The proof is analogous to the one for the FSA/FSTSO case (proof of
theorem 15, p. 216). In this case, paths p; and p} for i = 0...[l — 1 may also
contain push and pop transitions modifying a stack of return states. However,

it still holds that p is an interpretation within A iff p’ is an interpretation
within A’. O

Algorithm 14.2 rtn_ language is an adaptation of the breadth-first trans-
lator algorithm 14.1 for the computation of the language of a RTN. As for
the FSA/FSTSO case, the domain of application is given by the original
algorithm, that is, the algorithm cannot compute the language of RTNs con-
taining useful consuming cycles and/or useful left-recursive calls. As for the
original algorithm, this algorithm can also be improved with the trie string
management shown in section 9.1 (p. 178).

14.6 Earley-like processing

We adapt here the RTNBO Earley-like processing equations (section 13.9,
p. 268) for the RTNSO case, that is, replacing blackboards with strings. We
mainly remove the killing blackboard mechanism and define the blackboard
composition operator as the string concatenation operator.

Definition 258 (String composition operator). We define the blackboard
composition operator (definition 239, p. 268) for the case of RTNSOs as
the string concatenation operator since it is a particular case of lemma 20

(p. 269).

Definition 259 (Earley execution state). ESs for Earley-like RTNSO pro-
cessing are ESs for Earley-like RTNBO processing (definition 226, p. 260)
where the blackboards are strings in T'*, that is, structures in (QxIT*x (P(Q)U

{A}) x P(Q) x N).

Definition 260 (Earley A). The A function for RTNSO Farley-like process-
ing, the equivalent to Earley’s scanner, is a simple direct-derivation function
on SESs (definition 98, p. 137) with
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Algorithm 14.2 rtn_language(A) > L(A), eq. (12.2)

Input: A= (Q,%,4,Qr, F), a RIN

Output: L, the language of A

V10

E+ 0

for each ¢. € ); do
unconditionally add enqueue_es(V, E, (g, €, {\}))

end for

while £ # () do
(¢s, w, m) < dequeue(E)

> EXPLICIT e-TRANSITIONS

*®

for each ¢, € §(gs,¢) do
9: add _enqueue es(V, E, (g, w,))
10: end for

> CONSUMING TRANSITIONS

11: for each (¢;,0) : ¢; € 0(gs,0) do
12: add_enqueue es(V, F, (¢, wo,))
13: end for

> PUSH-TRANSITIONS

14: for each (¢.,Q.) : q- € 6(¢qs, Q.) do

15: for each ¢. € ). do
16: add _enqueue es(V, E, (q., w, 7q,))
17: end for

18: end for

> POP TRANSITIONS

19: if m=17'q, \q, € F then

20: add _enqueue es(V, E, (g, w, 7))
21: end if

22: end while

23: L < )

24: for each (¢, w,\) €V :q€ F do

25: add(L,w)

26: end for
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e T, — (qS,Z, A,Qh/é);

® Ty = (qtvzgv >\7 Qh’i)’ cmd

o d=q €(qs,(0,9)),
where g € (I'U {e}).

Definition 261 (Earley D). The D(Vy) function for RTNSO Earley-like
processing is composed by 3 simple direct-derivation functions on SESs (def-
inition 98, p. 137):

e the explicit e-transition processor, D (V) with

— T = (gs, 2, A, @, 1),

— x = (@, 29, \, Qn, 1), and

— d=q €0(gs, (¢, 9)),
where g € (I'U{e}),

o the equivalent to Earley’s predictor, Dpysn with

- Ts = (q87 Zsy >\7 Qh7j);

— Ty = ((Jc>5>)\an> k) or Iy = (qT’azsaQCthaj)7 meaning that both
target ESs are derived from x4 if p holds, and

— d =gy €6(qs,Qc) N e € Qc, and

o the equivalent to Earley’s completer, Do, with

- Ts = (Qfazf>)\th>j)7
- Xy = (QTustfu)‘vQ;wi); and
—d= qr € VWA (q7“7ZS7Qh7Q;L?i) € V}';

where Dyp is retroactive, as for the RTN case definition 220 (p. 245).

Definition 262 (Earley initial and acceptance SESs). Given the sets of ini-
tial and acceptance states of a RTNSO, Qr and F', its initial and acceptance
SESs for Earley-like processing are (Qp x {e} x {\} x {Q} x {0}), the ESs
starting a call to any initial state before consuming any input symbol and
generating any output, and (F' x I'* x {\} x{Qr} x{0}), the ESs from where
those initial calls would pop, respectively.
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Definition 263 (Earley 7). Following definition 244 (p. 271), we define
7(A), the language of translations of a RTNSO A through Earley-like pro-
cessing, as

T(A) ={(w,2) : (g7, 2, A, Q1,0) € A*((Qr x {e} x {A} x {Q} x {0}),w)N
(F x D" x {\} x {Q;} x {0}). (14.4)

Definition 264 (w). We define w(A,w), the translations of a word w for a
RTNSO A through Earley-like processing, as

w(A,w)={z:(w,z) e T(A)}, (14.5)

with T(A) of the previous definition.

14.7 Earley translator algorithm

Algorithm 14.3 rtnso_earley translate string is a sequence translator im-
plementing the Earley-like w(A, w) function (definition 263), which we have
obtained by removing the killing blackboard mechanism of the Earley-like
translator for RTNBOs (algorithm 13.2, p. 273), and by replacing black-
board management by string management. Analogously to the RTNBO
algorithm, it uses algorithm 14.4 rtnso_earley translate symbol for com-
puting the Earley-like A function (definition 260) and algorithm 14.5 rtnso-
_earley interlaced_ eclosure for computing the Earley-like e-closure (generic
F'SM e-closure in definition 100, p. 138, using Earley-like D function in defini-
tion 261, p. 288). Finally, the routines add _enqueue_ es and unconditionally-
_add_enqueue_ es seen in sections 7.8 (p. 148) and 7.9 (p. 152), respectively,
are used for conditionally or unconditionally adding derived ESs to the cur-
rent SES without checking for illegal strings since there are none defined. We
have already presented the resulting algorithm in Sastre and Forcada (2007,
2009).

Figure 14.3 is a graphical representation of the execution trace of the
Earley-like translator algorithm adapted for RTNSOs, for RTNSO of fig-
ure 14.1 and input aabb. As for the RTN case (without output generation,
section 12.11, p. 246), the number of parallel explorations is duplicated each
time the ambiguous symbol a is to be translated but then the common call
to SS {qo} is factored out, reducing again the number of parallel explorations
to one. However, when completing a call to {gy} the two outputs generated
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Algorithm 14.3 rtnso_earley translate string(oy...0y) > w(A,01...0),
eq. (14.5)

Input: o0y ...0, an input string of length [

Output: T the translations of oy ... 0y

1: allocate_memory _for chart(V”l)
2: Vo0
3: B+ 10
4: for each (¢. € Qy) do
5: unconditionally add enqueue es(Vp, F, (¢c, €, A, @1, 0))
6: end for
7: rtnso_earley interlaced eclosure(V!*1, E.0)
8 k<0
9: while V, Z0 Ak <l do
10: Viy1 < rtnso_earley translate symbol(Vy, E, 0441)
11: k< k+1
12: rtnso_earley _interlaced _eclosure(V!*!, E. k)
13: end while
14: T« 0
15: for each (gs,2,\,Q,0) € Vi1 qs € F do
16: add(T, z)
17: end for
Algorithm 14.4 rtnso earley translate symbol(V, E, o) > A(V,0),
def. (260)

Input: V, a SES
E, the empty queue of unexplored ESs
o, the input symbol to translate
Output: W, the set of reachable ESs from V' by consuming o
E after enqueuing the ESs of W
: W+
: for each (¢, 2, A\, @Qn,j) €V do
for each (qt,g) 1 qr € 0(¢s, (0,9)) do
add_enqueue es(W, E, (q;, 29, A\, Qn, j))
end for
end for

A S ol oy
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Algorithm 14.5 rtnso_earley _interlaced _eclosure(VI*L, E k) > C.(V,)

Input: V't the chart
E, the queue of unexplored ESs containing every ES in Vj
k, the index of the SES, V}, whose e-closure is to be computed
Output: V*! after adding to Vj, its e-closure
E after emptying it
1T+ 0
2: while F # () do
3: (qs, 2, A\, Qn, J) < dequeue(F)

> EXPLICIT e-TRANSITIONS
for each (¢, 9) : ¢: € 6(gs, (¢,9)) do

5: add_enqueue_es(Vi, E, (¢, 29, X\, Qn, 7))
6: end for
> PREDICTOR

7: for each (¢.,Q.) : q- € 6(¢qs, Q.) do
8: if add(V4, (¢,, 2, Q¢, Qn, j)) then
9: if 72/ : (Q.,7') € T then
10: for each ¢. € ). do
11: add_enqueue_es(Vi, E, (ge, £, A\, Qc, k))
12: end for

> e-COMPLETER
13: else
14 for each 2’ : (Q.,2') € T do
15: add_enqueue_es(Vi, E, (gr, 22", X\, Qn, 7))
16: end for
17: end if
18: end if

19: end for
> COMPLETER
20: if ¢, € F then
21: for each (g, 2, Qp,Q),,7) € V; do
22: add_enqueue_es(Vi, E, (g, 22", X, @}, 1))
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> e-COMPLETER

23: if : =k then

24: add(T, (Qn, "))
25: end if

26: end for

27: end if
28: end while

during the call are combined with the outputs generated before the call, re-
sulting in an exponential explosion of ESs to compute. The algorithm saves
an exponential number of steps w.r.t. the breadth-first RI'NSO algorithm in
section 14.4 (p. 282) by factoring out push transitions, but still suffers from
an exponential explosion of ESs to compute upon popping; since the number
of outputs increases exponentially w.r.t. the input length, it is inevitable to
perform an exponential number of operations if one is to generate the effec-
tive list of translations. In the next chapter we show how to delay as much
as possible the exponential explosion by building the translation set as some
kind of finite-state machine recognizing the language of translations but fac-
toring out the common output subsequences. Such exponential explosion is
possible in natural language grammars, for instance due to unresolved prepo-
sitional phrase attachments. An example illustrating such situation has been
given in section 1.5.4 (p. 19).

Online applications such as the MovistarBot (section 1.2, p. 6) are not
necessarily required to reduce the average cost of analyzing user input sen-
tences but to ensure that each sentence is processed in a short time interval,
since users are not willing to wait more than a few seconds for an answer.
As well, we must guarantee that the server running the NLP software will
not be collapsed due to a particular user sentence having a specially high
parsing cost. Since nowadays computers have at least two processing units,
another possible solution is to concurrently execute two different parsing al-
gorithms (e.g.: a top-down depth-first parser and an Earley-like parser) and
to retrieve the result from the one that finishes first, aborting the execution
of the other algorithm. This way we can obtain a “combined” algorithm that
both minimizes the average and maximum execution times.

Figure 14.4 is another example of execution of the Earley-like algorithm
for RTNSOs equivalent to the example of figure 12.10 (p. 251) for RTN.
The transition consuming a now also generates output symbol A, and the e-
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Figure 14.3: Execution trace of the RINSO Earley-like translator algorithm 14.3 for the ambiguous RTNSO of
figure 14.1 and input aabb. Thick dashed arrows link push transitions with their corresponding pop transitions.
Paused ESs decorate push and pop transitions.



294 CHAPTER 14. RTNS WITH STRING OUTPUT

transition generates now output symbol E. The four possible interpretations
of a have a different associated output: AFEFFE, FAEE, EEFAE and EEFEA,
respectively. As we can see, the trace for this example contains more steps
than its RT'N equivalent due to the concatenation of different pairs of outputs
upon call completions. As for the RTN case, without the e-completer it
would have not been possible to derive the acceptance ESs, and therefore the
algorithm would have returned an empty set of translations of a.

Figure 14.5 is the example equivalent to that of figure 12.11 (p. 252) but
for a simple left-recursive RTNSO —instead of a simple left-recursive RTN—
that translates ba™ into BA". In this case, the trace is the same but adding
the increasing output to the ESs.

Finally, optimizing the RTNSO Earley-like translator algorithm by means
of trie string management (section 9.1, p. 178) is a specific case of the RTNBO
Earley-like case (section 13.10, p. 272): output strings may be represented
as pointers to the nodes of a trie. As long as no calls are performed, the
algorithm behaves as the FSTSO translator algorithm (section 11.5, p. 215):
each transition adds at most one symbol to the output string in course, thus
it is only required to jump from the corresponding output string node to
one of its successors, or just to stay in the same node. When performing
a call, new explorations starting with the empty output string are created,
and also one symbol is appended at most during the call if no other calls
or completions are performed. However, upon completion it is required to
append the strings produced during the call to the strings produced before
the call. This corresponds to the not-so-efficient case discussed in section 9.3
(p. 183): since string symbols can only be accessed in reverse order, it is
necessary to reorder the whole string before adding it. The whole purpose
of the optimization consists in transforming vectorial operations into scalar
ones, but when concatenating two strings of a trie we must perform two
vectorial operations: to reorder the string to append and then to append it.
For the cases in which there are a few calls to perform, this problem will have
no meaningful impact, but neither will the factoring out of common calls.

14.8 Earley-like language generation

Algorithm 14.6 rtn_ earley language is an adaptation of the Earley-like trans-
lator algorithm 14.3 for the computation of the language of a RTN, as seen
with the breadth-first algorithm in section 14.5 (p. 284). Note that since the
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algorithm only translates the empty sequence, every input index generated
during the algorithm application will be zero. Therefore, we can remove in-
put indexes from ESs and consider every input index equal to zero, that is,
a unique SES Vj is computed during the whole algorithm execution. In the
original algorithm, the completer compared the input index of the current
ES with the index of the current SES in order to either execute or not the
e-completer, but in this case we can skip this test since every completion will
be in fact an e-completion. As for the original algorithm, this algorithm also
applies to left-recursive RT'Ns, and adding trie string management may or
may not accelerate its execution depending on the calls to process.
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L: (qo.€; A {q0},0) initial ES

2: (q1,6,{a}: {0}, 0) pause(1)

3: (g5,6,2,{¢5},0) call(1)

4: (gs,6,{ar},{a5},0) pause(3)

5: (gr.e, 2 {qr},0) call(3)

6: (gs, E, N\ {qr},0) generate(5, )

7 (g6 B, A {g5},0) resume(4, 6); deletable(qr, F)
8: (@, E, A {q},0) resume(2, 7); deletable(gs, F)
9: (g2, E,{a5}. {0}, 0) pause(8); call already in 3
10: (g2, EE, X\, {q},0) e-resume(7,9)
11: (g5, EE, {¢5},{q},0) pause(10); call already in 3
12: (g3, EEE, X\, {q},0) e-resume(7,11)
13: (g, EEE,{q5},{q},0) pause(12); call already in 3
14: (q4, EEEE, )\, {q},0) e-resume(7,13)

Vi

15+ (g, A, A, {5}, 0) translate(3,a : A)
16: (g1, 4,2, {q},0) resume(2, 15)
17: (g2, EA, A\ {q0},0) resume(9, 15)
18: (g3, EEA, X\, {q0},0) resume(11, 15)
19: (q, EEEA, N {q},0) resume(13,15); acceptance ES




20: (g2, A, {g5},{20},0) pause(16)

21: (gs5,6, M {gs}, 1) call(16)

22: (g3, EA {¢5},{9},0)  pause(17); call already in 21

23: (@, EEA {g5},{q0},0) pause(18); call already in 21

24 (gs,€,{a7},{a5}, 1) pause(21)

25: (qr.e, A\ {ar}, 1) call(21)

26: (g8, £, A\ {ar} 1) generate(25, F)

27 (g6, B, {g5},1) resume(24, 26)

281 (g2, AE, N\, {q},0) resume(20, 27); deletable({¢s}, F)
29 : (g3, EAE, X\ {q0},0) resume(22, 27); deletable({¢s}, F)
30: (qu, EEAE, N\, {q},0) resume(23,27); deletable({gs}, E); acceptance

ES

31: (g3, AF,{q5},{q0},0)  pause(28); call already in (21)
32: (g3, AEE, X, {q},0) e-resume(27, 31)

33: (@, FAE, {Q5} {q0},0) pause(30); call already in (21)
34 : (q4,EAEE A {q},0)  e-resume(27,33); acceptance ES
35: (q,AFEE, {qs} {q},0) pause(32); call already in (21)
36: (g, AEEE, X\, {q},0) e-resume(27,35); acceptance ES

Figure 14.4: RTN with deletable calls of figure 12.10 extended with string output and execution trace of algo-
rithm 12.2 rtn_earley recognize string for this RTNSO and input a; without the e-completer, greyed ESs would
be missing and the input would be rejected.
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<QO7 & )‘7 {QO}v O)
(¢1,€,{90}, {90} 0)

initial ES
pause(1); call already in 1

Vi

(Q27 B, A, {QO}v 0)
<QI7 g, A, {QO}u 0)

translate(1,b : B)
resume(2, 3)

Vs

(q27 BA7 g, )\7 {q0}7 O)
(qh BA7 g, )\7 {q0}7 O)

translate(4,a : A)
resume(2, 5)

Vs

(q27 BAA7 )\7 {QO}> 0)
(qh BAA7 )\7 {QO}7 0)

translate(6, BAA)
resume(2, 7)

Vi

204+ 1:
204+ 2

(q27 BAl_17 )\7 {qO}v 0)
(q17 BAl_17 )\7 {qO}v 0)

translate(2l,a : A); acceptance ES
resume(2, 20 + 1)

Figure 14.5: Left-recursive RTNSO translating ba™ into BA™ and execution trace of algorithm 14.3 rtnso_ earley-

_translate_ string for this RTNSO and input ba'.
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Algorithm 14.6 rtn_earley language(A) > L(A), eq. (12.3)

Input: A= (Q,%,0,Q;, F), a RTN

Output: L, the language of A

V0

E«+ 0

for each (¢. € Q);) do
unconditionally add _enqueue_es(V, E, (q., &, A\, Q1))

end for

T+ 0

while £ # () do
(gs, w, A\, Qp) < dequeue(E)

> EXPLICIT e-TRANSITIONS

9: for each ¢ € §(¢s,¢) do
10: add _enqueue es(Vi, F, (g, w, \, Qp)
11: end for

> CONSUMING TRANSITIONS

12: for each ¢ € §(¢s,0) do
13: add_enqueue es(Vi, B, (q, wo, \, Qp)
14: end for

> PREDICTOR

15: for each (¢.,Q.) : ¢- € 6(gs,Q.) do

> e-COMPLETER

16: if add(V, (¢, w, Q., Q1)) then

17: if fw’: (Q.,w') € T then

18: for each ¢. € ). do

19: add_enqueue es(V, E, (qe, e, \, Q.))
20: end for

21: else

22: for each w': (Q.,w’) € T do

23: add_enqueue_es(V, E, (¢, ww', X\, Qp)
24: end for

25: end if

26: end if

27: end for
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> COMPLETER
28: if ¢, € F then

29: for each (¢.,w’, @y, @},) € V do
30: add__enqueue_es(V, E, (g., ww', X\, Q})
> e-COMPLETER
31: add(T, (Qp, "))
32: end for
33: end if
34: end while
35 L+ ()

36: for each (¢s,w,\, Q) € V :¢qs € F do
37: add(L, w)
38: end for




Chapter 15

Filtered-popping recursive
transition networks

In the previous chapter we have shown the inevitable exponential explosion
upon applying a RTNSO generating an exponential number of outputs w.r.t.
an input increasing in length, even for an Earley-like algorithm of application.
In order to avoid this explosion, we propose to represent the set of outputs as
some kind of finite-state machine. This machine should have the same struc-
ture than the trace of the Earley-like recognizer, so the algorithm building
it would keep the asymptotic cost of the Earley-like recognizer, O(n?). This
machine cannot be a FSA, since it should have a subroutine jump mecha-
nism: the exponential explosion due to the combination of outputs upon call
completions must be avoided by representing common output infixes as sub-
structures of the machine that are called rather than explicitly represented
multiple times. It neither can be a RTN since, when executing the algorithm,
common calls may be completed by consuming input segments of different
lengths, but the combination of the blackboards generated before, during and
after a call must correspond to the translation of consecutive input segments
(see figure 15.1). It is a filtered-popping RTN or FPRTN, a new kind of
finite-state machine we have defined as a RTN where states are associated to
input indexes, and popping transitions cannot be traversed unless both the
source and target states are associated to the same input indexes. We have
briefly presented both FPRTNs and the algorithm building them in Sastre
(2009).

Once the FPRTN is built, one can compute the effective list of outputs, if
necessary, by generating the FPRTN language. Obviously, this operation will

301
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Figure 15.1: At the left, an ambiguous RTNSO, and at the right, a FPRTN
recognizing the language of translations of abc for this RTNSO. Boxes contain
the key of the state they are attached to. FPRTN push and pop transitions are
explicitly represented as dotted and thick arrows, respectively. Only pop transitions
corresponding to connected input segments are allowed: pop transitions from r7 to
r5 and from 79 to rs are forbidden since the former skips the translation of ¢ and
the latter translates c twice.

still have an exponential cost, as the size of the output set is exponential,
but the FPRTN can be pruned first in order to avoid the construction of
partial blackboards that uniquely correspond to misinterpretations of the
input. We will study in chapter 16 the subclass of FPRTNs built by the
algorithm presented here and give two efficient algorithms for generating
their languages. Moreover, we will give in chapter 18 an algorithm able to
extract only the top-ranked blackboard of a weighted FPRTN, provided that
the grammar is a RTNBO where blackboards include weight output.

Definition 265 (FPRTN). A FPRTN (Q, K,X,0,k,Qy, F') is a special type
of FSMs (definition 46, p. 121) with a stack, a set of keys K and a k : Q — K
function that maps states to keys in K, whose set of labels = take its elements
from (XU {e}UQ), where 3 is a finite input alphabet, Q the finite states of
the FPRTN and € the empty symbol. FPRTNs can be seen as an extension
of RTNs (definition 183) by associating keys to states and by adding a filter
to the pop transitions so that they take place only if the keys of the acceptor
and return states match.
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15.1 Transitions

FPRTN transition definitions are the same than the ones for RTNs (sec-
tion 12.1, p. 221) except for popping transitions, which we redefine below.

Definition 266 (Filtered-pop transition). Filtered-pop transitions (¢, g1, qr)
are implicit e-transitions which take place each time an acceptance state qy
is reached while executing a call having q, as return state such that k(qr) =
k(q.), that is, the keys of the acceptance and return states match. When
traversing a filtered-pop transition, the state q. at the top of the stack of re-
turn states is popped out and the machine is taken to the popped state g,
without consuming any input symbol.

15.2 Graphical representation

We represent FPRTNs as RT'Ns with a box attached to each state, each box
containing the key of the corresponding state (see figure 15.1). Filtered-pop
transitions are represented as RT'N pop transitions.

15.3 Sequences of transitions

FPRTN paths and cycles are defined as for RTNs (section 12.3, p. 225).
Recursive calls for the case of RT'Ns lead to an infinite set of interpretations
within the machine, since realizable call cycles can be traversed an infinite
number of times. For the case of FPRTNs, we will show in the next section
how filtered-pop transitions add additional restrictions upon the number of
times call cycles can be realized.

15.4 Behaviour

FPRTNs behave as RT'Ns except for the pop transitions. Therefore, the only
difference is the way in which the D, function is computed.

Definition 267 (D). The D(V) function for FPRTNs is defined as for RTNs
(definition 211, p. 229) except for the predicate of its Dyop component, which
s redefined as
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o d=qy € FNrlqy) = rlar),
that s, by adding the key-matching restriction.

Lemma 23 (Infinite e-closure). The e-closure of a FPRTN SES 'V is infinite
if there exists an ES x = (q, m) within V' or e-reachable from an ES of V' such
that there exists an e-realizable call cycle whose start state is q.

Proof. The proof is the same than for RTNs (proof of lemma 14, p. 230) but
taking into account that pop transitions involved in reaching ES (¢, 7), and
in e-realizing the call cycle, require the keys of their source and target states
to be equal. O

Lemma 24 (Finite e-closure). Under conditions other than those expressed
in the previous lemma, the e-closure of a FPRTN SES 1is finite.

Proof. The proof is the same than for RTNs (proof of lemma 15, p. 230)
but taking into account that not only the possible realizable paths under the
mentioned conditions yield finite SESs, but may be even shorter than those
of the RTN case due to non-realizable pop transitions. O

Corollary 9. The e-closure is always finite for non-left-recursive FPRTNs.

Definition 268 (Initial and acceptance SESs). The initial and acceptance
SESs of a FPRTN are defined as for RTNs (definition 212, p. 231).

Definition 269 (L). The language of a FPRTN is defined as for RTNs
(definition 214, p. 232), though taking into account that pop transitions are
filtered.

Lemma 25 (Infinite recursion degree). The recursion degree of a FPRTN
having at least one useful call cycle p such that p* is also useful is infinite.

Proof. The proof is similar to the one for RTNs (proof of lemma 16, p. 232);
let us suppose a FPRTN such as the RTN of figure 12.5 (p. 233) where each
state gy is associated to a key kg, that is, k(qx) = k. In fact, the relevant keys
to this proof are ky¢,, k,,, ks, and k,,, the ones of the acceptance and return
states (except for gy, the “global” acceptance state), since they determine
whether the pop transitions are realizable or not. Let p be a path within the

FPRTN such as the one defined in the proof for RTNs,

P = Da (QSU (Jr1l> (]51) Db (QSza QT2~L> q01) De (Qf3a QTzTa QTz) DPd (sza qT1Ta C_Irl) De,
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where py (Qsy, Gy, @ey ) 1s a call cycle. First of all, if the cycle is useful then
it must be realizable as well as the pop transition removing the return state
that is pushed onto the stack during the realization of the call cycle. If pop
transition (g, gr,T, ¢r,) is realizable then kp = k,,. For the cycle to be
useful, path p must be an interpretation and therefore realizable. As before,
if pop transition (qy,,gr, T, ¢ ) is realizable then ks, = k,,. If the cycle can
be traversed twice and still be useful, then path

P2 = Pa (QS17QT1~L7QC1> (pb (QS27QT2¢7QC1>>2 De (Qf37QT2T7QT2>
DPd (qf27qT2T7qT2> Pd (quvquTvqn) DPe

must also be an interpretation. Note that the second traversal of the cycle
requires an additional realizable pop transition (qy,, ¢,,1,¢r,) in order to be
useful, which either implies ks, = k,, or path p; to be empty: the latter
case implies the former one since g, would be equal to ¢., and therefore
both states would be associated to the same key. Obviously, if ks, = k;,
then it is not only possible to traverse twice the cycle but to traverse it any
number of times, hence allowing for the existence of an infinite number of
interpretations. If this last equation does not hold then the cycle can still
be useful but not its self-concatenations, that is, the cycle will allow for a
recursion degree equal to one, but not zero or infinite. O

Theorem 25 (Possible recursion degrees). According to the previous proof,
the recursion degree of a FPRTN is either zero, one or infinite.

Theorem 26 (Cardinality of the interpretation set). Given the previous the-
orem and the theorems on the cardinality of the interpretation set for FSMs
(theorem 4, p. 145) and for FSAs (theorem 6, p. 164), the number of inter-
pretations of a FPRTN 1is infinite iff it contains at least one useful cycle p
holding one of the following conditions:

e p is uniquely composed by consuming transitions and/or e-transitions,

e p contains realizable push and pop transitions —keys of source and
target states of each pop transition are equal— but the execution of p
momentarily modifies the stack, that’s it, the stack before and after the
execution of p is the same, or

e pis a call cycle such that p* is also useful.
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Theorem 27 (Cardinality of the language). Given theorem 5 (p. 146), since
FSAs allow for the realization of any of its transitions, the language of a
FPRTN is infinite iff it contains at least one useful consuming cycle p holding
one of the conditions of the previous theorem.

15.5 Reverse FPRTN

Definition 270 (RFPRTN). We define filtered-pushing recursive transition
networks or reverse FPRTNs (RFPRTNs) as FPRTNs where the filtering is
to be applied to push transitions instead of to popping ones.

Definition 271 (Reverse FPRTN). Let A be a FPRTN (Q, K, X, 0, k, Qy,
F) with disjoint submachines; we define AR, the canonical reverse of A, as a
RFPRTN (Q, K, X, ¢, k, @y, F') such that A" = (Q, X, 9, Qr, F') is a RTN
and A" = (Q, X, &', Q), F') is the canonical reverse of A’ (definition 215,
p. 234).

Proof. The proofis the same than for RTNs but with a slight difference in the
reversal of call transitions and submachines; let p = (¢s, @i, ¢.)p' (a7, @1, Gr)
be a path within A completing a call, the keys of ¢; and ¢ must be equal
so that the pop transition can be taken. If A® would be a FPRTN instead
of a RFPRTN, then p® = (q, qs!, q7)p"®(qe, gs1, ¢s) would be a path within
A which might not be realizable since the keys of states ¢, and ¢. are not
necessarily equal, and therefore A might recognize a word w such that w® is
not recognized by Af. Moreover, the opposite could also be true: the keys of
¢. and gy could be different while the keys of ¢; and ¢y would be equal, thus
AP could recognize a word w’ while A would not recognize word w. Con-
sequently, the matching key restriction must be applied to push transitions
instead of pop transitions in order to ensure that A recognizes the reverse
language of A and not any other language, and therefore the canonical re-
verse of a FPRTN is a RFPRTN and not another FPRTN. Conversely, the
reverse of a RFPRTN is a FPRTN and not another REFPRTN. O

15.6 Translating a string into a FPRTN

Algorithm 15.1 rtnbo_translate string to_fprtn is an equivalent version
of algorithm 13.2 rtnbo_earley translate string which returns a FPRTN
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rather than the effective list of outputs.! This algorithm has been derived
from the RTN Earley-like acceptor algorithm 12.2 (p. 249) by adding the
required instructions for building the resulting FPRTN: a FPRTN state is
created for each active ES generated during the algorithm execution, and a
FPRTN transition is added for each explored RTNBO transition deriving an
active ES from another one, where RTNBO output labels become FPRTN in-
put ones. FPRTN state keys are the input indexes at the moment of creation
of each state. Algorithm 15.2 fprtn_ create_state is used for the creation of
FPRTN states instead of algorithm 8.3 fsm_ create_state (p. 173) in order to
also associate the state to a key. From now on, we will call FPRTNs states
output states or OSs. The algorithm builds a function (; mapping pairs
(k, (s, A\, qn, 7)) to OSs so that it is possible to retrieve the OS corresponding
to any of the previously generated ESs. Notice that active ESs belonging
to different SES may be equal (e.g.: s = 2, = (g5, A\, Qn, k), with z, € V},
2l € Viyand 0 < j < k <), hence we need to specify here the index of the
SES containing them in order to uniquely identify them;? as stated in the
paragraph after definition 218 (p. 244), the index of the SES containing an
ES is also a term of the ES, but we have omitted it in order not to repeat
this index for each ES of a SES (we simply use the SES indexes). Notice
as well that output labels are just copied as input labels of the resulting
FPRTN: blackboard functions are not interpreted here but just annotated
in order to be executed in a further stage of treatment. The same algorithm
is valid for RTNs with string output, weight output, unification processes or
any combination of these output types; different algorithms will be required
for the partial or total generation of the language recognized by the FPRTN,
but not for the construction the FPRTN itself.

The algorithm first allocates memory for storing the parsing chart: a vec-
tor of [+ 1 SESs. It builds two additional OSs, initial OS r, and the “global”
acceptance OS 7y, where 7, is associated to index 0 and 7y to index [, the
input length. Then it adds to V[ the initial SES X; for RTNs using the rou-
tine unconditionally add_enqueue_link es os (algorithm 15.3) in order to

'We only define the FPRTN in algorithm 15.1 rtnbo_ translate string to_ fprtn and
then treat it in the other algorithms as a global variable in order to avoid repetition.

2In practice we do not build a map object representing (s but just add an extra field
to active ESs in order to store the pointer to the corresponding OS, so retrieving this OS
does not involve a search inside a map but just to follow the pointer. The only purpose
of this field is to accelerate the retrieval of OSs, so whenever comparing two active ESs of
the same SES for equality this field is not taken into account.
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add each ES. This routine extends routine unconditionally add_ enqueue_ es
(algorithm 7.7) by unconditionally creating an OS 7., as well as the speci-
fied ES z, and by adding the corresponding map to (s (the link between
the ES and the OS).? Let R, be the set of OSs (SOS) corresponding to X7,
the algorithm adds a call to R. from 7, to ry. This construction represents
a call to the grammar’s axiom, which can only be realized by consuming
the entire input: since 7y is associated to index [, the input length, pop
transitions to r¢ from states whose index is less than / —and consequently
associated to ESs reached before consuming the whole input— will not be
realizable. Afterwards, the same iterative process of the RTN Earley-like
algorithm is followed here in order to build the SESs V, to V;, but using
algorithm 15.4 rtnbo_ translate_ symbol_to_fprtn and algorithm 15.6 rtnbo-
_interlaced _eclosure_to_fpritn instead of the equivalent RTN ones for the
implementation of the A and e-closure functions. Since the number of realiz-
able filtered-pop transitions of the resulting FPRTN is finite (the ones found
during the algorithm execution), we explicitly define them so that further
FPRTN postprocessing does not require to search for them again. The last
loop of the Earley-like RTN acceptor is modified so that for each acceptor
ES in the last SES a filtered-pop transition is added towards the “global”
acceptor OS, ry.

Algorithm 15.4 rtnbo_translate symbol to fprtn is an almost straight-
forward adaptation of algorithm 12.3 rtn_ earley recognize symbol (p. 249)
for the construction of a FPRTN. For each active ES x, = (g5, A, Qp, j) in
V' (which is in fact Vj, the last computed SES), it first retrieves its asso-
ciated OS 75. Then, for each consuming transition (gs, (0, 9),q;) it derives
ES (g, A\, Qn, j) and adds it to SES W (which will be Vj, the next SES)
using algorithm 15.5 add _enqueue link _es os, the extended version of rou-
tine add_ enqueue_es (algorithm 7.4). Besides adding an ES to a SES and
enqueuing it for further processing if the ES was not already present in the
SES, it also creates its output state r; with key k£ + 1 and adds the corre-
sponding map to the (; function, or just returns the former created OS if
the ES was already present in the SES. Finally, algorithm 15.4 rétnbo_ trans-
late_symbol_to_ fprtn adds the FPRTN transition (s, g, ;) which represents
the possible partial translation of input symbol o4 into g € TU{idg}, since
states rs and r; are associated to input indexes k and k + 1, respectively.

3 As stated before, in practice we only fill the additional field of the active ES with the
pointer to the OS we have just created.
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Algorithm 15.1 rtnbo_translate string to_fprtn(oy...oy) >
w(A,o1...0)

Input: oy ...0;, an input string of length [
Output: A’ = (Q',N,I",0", k, @}, F'), the FPRTN recognizing w(A, oy ...0;)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

allocate_memory for chart(V!*1)
rs < fprtn_ create state(true, false, 0)
ry < fprtn_ create_state(false, true, [)
Vo0
E <« 0
R.«+ 0
for each (¢. € ;) do

r. < unconditionally add enqueue link es os(Vp, E, 0, (¢, A, Qr,
0))

add(R.,r.)
end for

o'(rs, Re) <= {rs}

rtnbo_interlaced _eclosure to_fprtn(V* E,0)

kE<+0

while V, Z0 Ak <[ do
Vis1 < rtnbo_translate_symbol _to fprtn(Vy, E, k, ox11)
kE<—k+1
rtnbo_interlaced _eclosure to_fprtn(V*H B k)

end while

for each 2, € Vi, : z, = (¢s, N, Q1,0) A gs € F do
add(d'(Cs(k, @s),rs1),77)

end for

Algorithm 15.2 fprtn_create state(is_initial,is_final, k)

Input: is_initial, future value of predicate r € Q)

is_final, future value of predicate r € F’
k, the state key

Output: r, the new FPRTN state
1. r < fsm_ create state(is_initial,is_final)
2: kK(r) <k
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Algorithm 15.3 unconditionally add enqueue link es os(V, E, k,x;)

Input: V, the SES where the ES is added
E the queue of unexplored ESs
k, the current input position
x¢, the target ES to add to V
Output: V after adding the ES
E after enqueuing the ES, if new
r, the target ES OS
1: unconditionally add enqueue es(V, E, x;))
2: ry + fprtn_ create state(false, state(x;) € F, k)
3: add((s(k, x¢), 1)

Algorithm 15.4 rtnbo_translate symbol to fprtn(V, E k, o) >
A(Vk, Uk-i—l)

Input: V, a SES
E, the empty queue of unexplored ESs
k, the index of V
o, the input symbol to translate
Output: W, the set of reachable ESs from V' by consuming o
E after enqueuing the ESs of W
1. W<«
2: for each (g5, \,@Q,j) € V do
3 rs < Cs(k> (QSa)\thaj))
4 for each (¢, 9) : ¢ € 4(gs, (0,9)) do
5: r; < add _enqueue link es os(W, E k+ 1, (g, A\, @n,J))
6: add(d'(rs, g), 1)
7
8:

end for
end for
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Algorithm 15.5 add _enqueue link es os(V, E, k, x;)

Input: V, the SES where the ES is added
E the queue of unexplored ESs
k, the current input position
x, the target ES to add to V/
Output: V after adding the ES
E after enqueuing the ES, if new
r, the target ES OS
1: if add(V,z;) then
2 enqueue(F, x;)
3 r; < fprtn__create state(false, state(x;) € F, k)
4: add((s(k, xy), )
5}
6
7

. else
Tt <— Cs(]f, .fll't)
end if

Algorithm 15.6 rtnbo_interlaced eclosure to_fprtn is a slightly more
complex adaptation of algorithm 12.4 rtn_ earley interlaced_ eclosure. The
derivation of active ESs due to explicit e-transitions is analogous to the
derivation through consuming transitions; therefore, the extension is almost
the same. However, the extension of the predictor, completer and e-completer
involves considering more ESs than the former case, namely

o vy = (g5, \,Qn,j) € Vi, the current active ES whose RTNBO state ¢
has been detected to be final and hence triggering the completion of
parallel calls to Qy,

o v, = (qr,Qn Q1) €V}, a paused ES waiting for the completion of call
to Qh)

o z, = (¢, \, @), 1) € Vi, the return active ES result of resuming paused
ES z,,

o . €V, the active ES from where call to @), was performed, resulting
in paused ES z,, and

e X, the set of active ESs initiating the exploration of call to Q.
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Note that reaching ES x; may resume several paused ESs, each one having an
associated return ES and one or more source ESs of the call; therefore, reach-
ing x, may trigger several call completions. Generating the corresponding
call structure inside the FPRTN involves the following OSs:

o 1l = (,(x)), the source OS of the call, associated to ES x’,,
o R.={r.:((z.) =r.Nx. € X.}, the called SOS,
e . = (s(x,), the return OS, and

o 7, = (s(xs), the acceptance OS that triggers the call completion, if the
filtered-pop transition is to be explicitly defined.

In order to add the FPRTN call transition (!, R., ;) in the completer we are
first required to retrieve the involved OSs and SOS. OS 7, is created or just
retrieved, if the associated return ES already existed, by routine add en-
queue_link _es os inside the completer. OS 7, has been previously created
by some derivation mechanism of the algorithm, but its ES z/ is accessed
during the prediction of call to @), in order to create paused ES z, and
active ES z.. Inside the predictor, we build two additional maps so that
the completer can retrieve these elements latter: ¢! mapping x, to . and (;
mapping z, to R..* The e-completer inside the completer does not need to be
modified: it just marks call to @), as deletable (adds @y, to T') for the current
SES Vi. The e-completer inside the predictor will just create or retrieve
return OS 7, in order to add the corresponding FPRTN call transition since
the other needed elements are already created or retrieved by the predictor.
Filtered-pop transitions due to e-completions are explicitly defined inside the
completer; therefore the e-completer is not required to define them again.
Notice that for all of the derivation mechanisms it might be possible to
reach the same RTNBO state through different paths generating different
output sequences. For the RTNBO Earley-like translator this implied gen-
erating several ESs instead of only one: one for each different output since
outputs are a part of the ESs. For the algorithm generating a FPRTN, out-
puts are represented as FPRTN transitions rather than being stored inside

*As was done for map ¢, (footnote 2, p. 307), in practice we do not implement two map
objects representing ¢’ and (; but extend paused ESs with two fields storing the pointers
to the corresponding OS and SOS. Those fields are not either taken into account when
comparing paused ESs for equality.
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Algorithm 15.6 rtnbo_interlaced eclosure to_fprtn(V!*™L E, k) > C.(V})

Input: V'*!, the chart
E, the queue of unexplored ESs containing every ES in Vj
k, the index of the SES V
Output: V*! after adding to V;, its e-closure
E after emptying it
1T+ 0
2: while E # () do
3: (s, A\, Qn, j) < dequeue(F)
4: rs < Cs(ka (QS7>\7 Qha,]>>

> EXPLICIT e-TRANSITIONS
for each (¢, 9) : ¢ € 0(gs, (g,9)) do
r; < add _enqueue link es os(Vi, E, k, (¢, X\, Qn, 7))
add(dl(rsa g)a Tt)
end for

> PREDICTOR
9: for each (¢.,Q.) : ¢- € 6(gs,Q.) do

10: if add(Vy, (¢, Qc, @n, 7)) then
11: C;(ka (QM Qw Qha])) — {Ts}
12: Rc — Cf(k> Qc)
13: if R. =1 then
14: R.+ 0
15: for each ¢. € Q. do
16: re < add_enqueue_link es os(Vi, B, k, (ge, A, Qc, k))
17: enqueue(R,, r.)
18: end for
19: Cr(k, Q) + R,
> e-COMPLETER
20: else if 3r; : (Q.,7¢) € T then
21: r. < add_enqueue_ link es os(Vi, E, k, (g, A\, Qn, j))
22: add(0'(rs, Re), 1)
23: for each r;: (Q.,rf) € T do
24: add(d'(rg, 1), rr)
25: end for

26: end if
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27: else
28: enqueue(CL(k, (¢, Qc, Qn, 7)), 7s)
29: end if

30: end for
> COMPLETER

31: if ¢, € I then

32: for each (qT’) Qh> Q;wz) € ‘/J do
33: r, <—add_enqueue_link _es_os(Vi, E, k, (¢, A\, @}, 7))
34: Rg A g;(jv (QTthaQ;wi))
35: Rc — g[(Qh)
36: for each . € R. do
37: add(¢'(rl, Re), ry)
38: end for
39: add (o' (rs,r1), 1)
> e-COMPLETER
40: if i = k then
41: add(T, (in Ts))
42: end if
43: end for

44: end if
45: end while

the ESs. When deriving an ES by generating an output (or empty output),
if the ES was not present it is generated as well as its associated OS, and
the corresponding transition with the output label is added, but if the ES
was already present its OS is just retrieved and a new alternative transition
is added (again, if the transition was not already present).

Figure 15.2 is an example of execution of algorithm 15.1 rtnbo_ translate-
_string_to_fprtn for input aabb and the RTNSO of figure 14.1 (p. 284).°
On the left, we have drawn a copy of the RTNSO and, on the right, we have
represented the trace of the RI'N Earley-like acceptor with its corresponding
output FPRTN. Notice that each line contains a RTN ES along with its
associated FPRTN state, and that every transition within the trace has its
corresponding FPRTN transition with the same transition label but omitting

5Blackboards are strings and output labels are just output symbols; as stated before,
the algorithm is the same for any kind of output since it does not interpret the outputs
but just annotates them.
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the input symbol. The key of FPRTN state rq is 0, which represents the point
just before the first input symbol oy. Keys ks and k; of two FPRTN states
rs and r; associated to two ESs x, and x; such that x; is directly reachable
from z, are equal iff the transitions that led to x; from z, did not involve
input consumption; otherwise k; is equal to ks + 1. The “global” acceptance
state r; is associated to key 4 so that any interpretation within the FPRTN
necessarily corresponds to the whole consumption of input aabb. Note that
a single RTNBO call results in several FPRTN calls when the RTNBO call
can be completed by consuming input segments of different lengths, since
several return ESs belonging to different SESs will be produced; for instance,
the first realization of call transition (q1, {qo}, ¢2) produces the FPRTN call
transitions (ry,{r6},7s) and (ry,{re},m17), which differ only in the target
state: OS rg, whose ES belongs to Vi, and OS ry7, whose ES belongs to V3.
The first corresponding filtered-pop transition, (r7,rgt, rs), is only realizable
if the FPRTN call represents a translation of the empty input segment right
after consuming the first input symbol (k(rg) = 1 A k(r7) = k(rg) = 1), and
the second one, (r13, 7147, 714), if the FPRTN call represents the translation of
the second and third input symbols (k(rg) = 1 A k(r16) = k(r17) = 3). Note
also that a RTNBO call transition results in a single FPRTN call transition
but several filtered-pop transitions when the call is realizable by reaching
multiple acceptor states but always consuming the same amount of input
symbols.

Figure 15.3 is an example of execution of algorithm 15.1 rtnbo_trans-
late_string to_ fprtn, equivalent to the example of figure 14.4 (p. 297) for
the RTNSO with deletable calls. In this example we can appreciate how the
deletable call to SS {gs} is computed only once for each SES, and further
calls are processed by the e-completer by just adding the corresponding call
transition. As we can see, deletable calls allow for execution paths traversing
the same call successive times inside the same SES (e.g.: call to SOS {rs});
even though the same ES is reached several times, no call-cycle is present
since each call is completed before starting the next one (the return state
is popped out before pushing it again); for instance, the following is an
execution path reaching state r3 four times, starting from state 7y and ending
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Figure 15.2: At the left, a copy of the ambiguous RTNSO of figure 14.1 (p. 284) and, at the right, execution trace
of algorithm 15.1 rtnbo_ translate string to fprtn for this RTNSO and input aabb.
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at state rqq:

(ro, 711, 72)
(ro,rel,rs)  (r3,rel,ra) (ra, Eirs) (rs,7et,76) (76, 771, 77)
(re,rgd,rs)  (r3,rel,ra) (ra, Eirs) (rs,76t,76) (76,781, 78)
(rs,rol,r3)  (r3,rel,ra) (ra, E,rs) (rs,761,76) (v, 9T, T9)
(ro,r10d,73) (r3,76d,74) (14, E,75) (rs5,76T,76) (76,7107, 710)

Transitions have been aligned so that every push transition to state rs is
placed in the leftmost column and every filtered-pop transition from call to
r3 is placed in the rightmost column. This path corresponds to the traversal
of the RTNSO from state gy to state g, by consuming no input and generat-
ing sequence FFEE. This path is not an interpretation of input a: a last
transition (79,717, 71) is missing which is not realizable due to the different
associated keys to states r19 and ry.

Finally, figure 15.4 is an example of execution of algorithm 15.1 rtnbo-
_translate_string to_ fpritn equivalent to the example of figure 14.5 (p. 298)
for the left-recursive RI'NSO. Even if the resulting FPRTN contains call cy-
cles, it contains a unique and finite interpretation due to filtered-pop transi-
tions:

(’l"o, Tl»L, 7“2)(7’2, ’f’gll, 7“2) . (7’2, Tgl,, 7’2)(’/"2, ’I“Gl,, 7’2)(’/"2, 7’4l,, 7’2)
(7’2, B, 7“3)(7“3, 4T, 7’4)
(T4, A, 7’5)(7’5, 7’4T, T6>
(re, A, 17) (17,747, 78)

(rar, A, ror1) (T241, 711, 71)

The first line contains the sequence of push transitions initializing the axiom
call plus the [ — 1 successive calls to r9; once the stack is filled with the right
sequence of return states, transitions of the following lines consume an input
symbol an pop out the next return state.



Chapter 16

Output FPRTNs

We study here the relevant particularities of the FPRTNs constructed by
algorithm 15.1 rtnbo_translate_ string to_ fprtn (described in section 15.6,
p. 306), namely the circumstances that lead to FPRTNs that recognize in-
finite languages; such circumstances should be avoided in order to ensure
finite results. We give a pruning algorithm for such FPRTNs in section 16.1,
and two efficient language generator algorithms for FPRTNs representing fi-
nite languages in sections 16.2 and 16.3. We have briefly presented both the
pruning algorithm and an adapted version of the first language generator
algorithm in Sastre et al. (2009), in the context of application of the Movis-
tarBot project. The pruning algorithm removes every useless substructure
of the FPRTN (definition 120, p. 145), and consequently saves the cost of
computing useless partial blackboards. The first language generator is able
to avoid the exponential explosion in cases in which the grammar represents
a set of sentences where the number of interpretations of each sentence is
limited, even for sentences having an exponential number of local ambigu-
ities (ambiguities that are solved after reading a certain amount of input).
The second language generator is intended to be as efficient as possible for
the worst case; furthermore, this second algorithm will be the base for the
construction of another algorithm that definitively avoids the exponential
explosion in cases in which the grammar is a weighted machine and only the
top ranked blackboard is needed (to be described in chapter 18). Note that
many applications require a single interpretation to be returned in spite of
ambiguity, for instance automatic translators and conversational agents such
as the MovistarBot.

As stated before, paths within O-FPRTNs correspond to the RTN Earley-
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like execution paths of a RTNBO for a given finite input sequence, the
RTNBO being applied as a RT'N but labeling the transitions of the resulting
FPRTN with the RI'NBO output labels. If we consider the input segment as
a linear FSA (see definition 77, p. 130), the FPRTN is a factored represen-
tation of the intersection of the languages represented by the input FSA and
the RTNBO, that is, a substructure of the execution machine of the RTNBO
conditioned upon the input FSA. Boullier and Sagot (2007) present a set of
filters to be applied to a CFG for a given input sequence in order to reduce
the search space when applying the CFG, for instance the suppression of any
grammar rule consuming an input symbol not present in the input sequence.
From that point of view, our algorithm performs some kind of filtering of the
grammar represented by the RTNBO so that only the paths consuming some
prefix of the input remain. It is not a full filtering since not all these paths
may be useful for the recognition of the entire input: we still need to prune
the resulting FPRTN in order to remove the useless substructures. We ap-
ply the RTNBO rather than individually applying a filter to each transition,
though the cost of individually applying one or more of the suggested filters
plus the application of our algorithm might be less than the application of
the algorithm without the previous filtering of individual transitions. The
application of the filters proposed by Boullier and Sagot (2007) is left to a
future work.

Definition 272 (Output FPRTN). We say a FPRTN A is an output FPRTN
(O-FPRTN) iff there exists a RTNBO B and an input sequence w such that
B s the result of the execution of algorithm 15.1 rtnbo_translate string-
_to_fprtn (p. 309) for B and w, and we call (B,w) a source of A.

Definition 273 (Canonical source of an output FPRTN). We say a source
(B,w) of an O-FPRTN A is a canonical source iff every path of B is explored
and every symbol of w is consumed for the generation of A, independently of
whether the language of the resulting FPRTN is empty or not.

Note that all the examples of execution given here are based on canonical
sources in order to keep them small. In practice, only a subset of the RTNBO
will be explored and the input sequence will not be necessarily recognized.
Recall that consuming every input symbol is not a sufficient condition for
the generation of a FPRTN recognizing a non-empty language: at least one
acceptance ES is also to be reached.
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Lemma 26 (Output FPRTN cycles). Given a canonical source (B, w) of an
O-FPRTN A, a path p in A is a cycle iff there exists a path p’ in B holding
the following properties:

e ' is a subpath of some path p” realizable from an initial ES by consum-
ing some prefiz of w,

e ' is an e-cycle, and

e during the traversal of p”, the last called SS and the number of input
symbols consumed when starting that call are the same either when
reaching the start or the end states of p'.

Moreover, p is a consuming cycle iff p' is a generating path, and p is useful
iff p'is w-useful (definition 119, p. 144).

Proof. Obviously, the first condition must hold since paths are added to A
as some prefix of w is consumed by B. Let w,wyw. = w, p.ppp. be a path
in B such that it is realizable from some RTN Earley-like initial ES x. of
B by consuming w, where execution path X (p,,z.) (definition 90, p. 134)
reaches ES x, by consuming w,, X (py, x,) reaches ES x;, by consuming wj, and
X (pe, xp) reaches ES z, by consuming w.. Proving the remaining conditions
consists in proving that they hold iff X(py,z3) is a cycle, that is, z, =
and both x, and xz;, belong to the same SES. Let z, = (¢s, Q¢, Qn, ) and
r = (¢}, Q.,Q},7). Path p, is a cycle iff g5 = ¢,. Q. = Q. = X since
only active ESs correspond to FPRTN states. The third condition holds iff
Qn = @), and i = j. Finally, z, and z} belong to the same SES iff p, does
not consume input.

The two additional propositions are obvious: since FPRTN input symbols
are copies of RTNBO output symbols, p consumes iff p’ generates and, by
construction, every interpretation of w in B produces an interpretation of
some translation of w in A, thus relating the usefulness of p and p'. O

Lemma 27 (Possible recursion degrees). Given a source (B,w) of an O-
FPRTN A, the recursion degree of A s infinite iff B contains a w-useful
deletable recursion (definition 202, p. 226); otherwise it is either 0 or 1.

Proof. The key of this proof is that OS keys represent the number of input
symbols consumed during the traversal of the source RTNBO up to the gen-
eration of the OSs. For an O-FPRTN A to have an infinite recursion degree,
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A must contain a path p such as the one shown in proof of lemma 25 (p. 304),

P = Da (q517 Grids qCI) Do (q52a Gryd s q01) Pe (Qf3> Gro T, QTz) Pa (sza qr, T, qm) De,

where py (Gs,, Gro!, qcy) 1s a call cycle and keys kg, and k,, are equal. For
(B,w) to be a source of A, B must contain a substructure that is explored
by consuming some prefix of w, generating A as is. As stated in the previous
proof, a cycle in A implies a corresponding explored e-cycle in B and, since
the cycle py (gsy, Gryds Ge,) in A is a call cycle, the e-cycle in B must be
a call e-cycle. Since kj, = k,, and A contains a path py deriving OS gy,
from OS ¢,,, the corresponding path within B cannot either consume any
input symbol; therefore, the path in B corresponding to p in A is a deletable
recursion. Finally, path p in A must be useful, which —by construction— is
only possible if the corresponding path in B is w-useful. O

Theorem 28 (Cardinality of the interpretation set). Given theorem 26 (p.
305), the number of interpretations of an O-FPRTN with source (B, w) is
infinite iff B contains at least one w-useful e-cycle p holding at least one of
the following conditions:

o cvery call initiated within p is completed as well within p, or

e there exists an e-path p' such that pp' is a deletable recursion.

Theorem 29 (Cardinality of the language). The language of an O-FPRTN
with source (B, w) is infinite iff B contains at least one w-useful generating e-
cycle holding at least one of the conditions mentioned in the previous theorem.

We must expect a natural language grammar to associate several interpre-
tations to a natural language sentence since natural languages are ambiguous;
however, associating infinite interpretations to a natural language sentence
makes no sense. Therefore, forbidding the presence of generating e-cycles in
RTNBOs does not restrict the natural languages that can be represented but
ensures that the language represented by the resulting O-FPRTNs will be
finite since this restriction and the one of the previous theorem are mutually
exclusive.

16.1 Pruning

Let A be an O-FPRTN obtained from a source (B, w); by construction, every
state in A is reachable from the initial state of A though it may contain
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useless states and transitions. Before generating the language represented
by A, we prune it so that we save the cost of processing useless paths, and
consequently the generation of useless blackboards. By construction, the last
transition of every possible interpretation within A is an explicitly defined
filtered-pop transition having the “global” acceptor state r; as target. If B
does not recognize w but is only able to consume some prefix of w, A will have
no filtered-pop transitions towards ry. Since A contains no interpretations,
every state and transition is useless and is to be removed. Otherwise, we can
reversely traverse every interpretation from state ry towards the initial state
and mark every reached state, so that the remaining unmarked states will be
the ones to remove as well as every transition having any of these states as
either source or target.

Algorithm 16.1 output_ fprtn_ prune removes every useless state and tran-
sition of a given O-FPRTN with explicitly defined filtered-pop transitions,
following the procedure described above. In order to optimize the reverse
traversal of the O-FPRTN, we store at each state object its set of incom-
ing transitions as well as its set of outgoing transitions. The algorithm first
checks for the existence of explicitly defined filtered-pop transitions incoming
to state ry and, if none found, calls procedure clear in order to perform an
indiscriminate removal of states and transitions;' otherwise, it proceeds with
a selective pruning. The algorithm builds a function ¢ mapping states to
Booleans which returns whether a state has already been reversely reached
from 7 or not, and initializes it with a false value for every state.” The algo-
rithm also keeps a queue E of reversely reached but unexplored states, that
is, states whose incoming transitions are still to be reversely traversed. The
selective pruning starts by marking r; as reached and enqueuing it into the
queue of states to be explored. Then, for each enqueued state it dequeues
the next one and reversely traverses one by omne its incoming consuming
transitions, e-transitions, call transitions and explicitly defined filtered-pop
transitions. Note that through a pop transition we may reversely reach states
of a call up to its subinitial states, but no further. By reversely traversing
call transitions as well we skip the whole call traversal and directly reach the
state before the call. Note that call transitions are added once it is proved
that they are realizable, except for the call transition pointing to r¢; how-

!Note that, in practice, the memory allocated for the O-FPRTIN is to be freed sooner
or later, so clearing the O-FPRTN is not a waste of time.

2In practice, we just extend FPRTN state objects with a Boolean field so that we do
not have to search in a map, assigning to it a false default value.
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ever, if this call is not realizable then no filtered-pop transitions will reach
ry and therefore the entire FPRTN will be deleted. For each transition,
routine enqueue_mark _unexplored_os (algorithm 16.2) is called in order to
add the reversely reached state to the queue and mark it as reached, if it
was not previously reached: since the FPRTN may contain cycles, the algo-
rithm must perform this check before enqueuing the state in order not to fall
into an infinite loop. Finally, a last loop iterates over every FPRTN state
and removes the unmarked ones as well as their corresponding transitions.
Note that, since we are storing incoming as well as outgoing transitions, for
each outgoing transition ¢ stored in a state object ¢s there is a correspond-
ing incoming transition ¢’ in some state ¢;. In order to accelerate transition
removal, we also store in the transition data structures the reference towards
the corresponding reverse transition data structure.

16.2 Language generation

There are cases in which we can expect the language of the resulting O-
FPRTN to be small; for instance, when building a grammar for a particular
domain of application one may try to represent only the interpretation of
each ambiguous sentence that a human would assume in that context (e.g.:
upon receiving a sentence such as ‘envia al movil 555-555-555 hola Paco’,
which means ‘send to the mobile 555-555-555 hello Paco’, the MovistarBot
should assume that the user is asking to send the SMS ‘hola Paco’ to the
mobile phone ‘555555555” and not the SMS ‘al movil 555-555-555 hola Paco’
to an unspecified phone number). Once pruned, the resulting O-FPRTN will
contain a small number of paths (the possible interpretations), even for gram-
mars representing an exponential number of local ambiguities (ambiguities
that are solved after reading enough input symbols): the pruning operation
will efficiently remove the O-FPRTN substructures corresponding to local
misinterpretations. An efficient language generator algorithm for such cases
(low global ambiguity with high/low local ambiguity) can be obtained by
modifying algorithm 14.2 rtn_language (p. 287), the breadth-first language
generator for RTNs, as follows:

e ESs contain a blackboard instead of a string,

e explicit e-transitions and consuming transitions are labeled with an
output function on blackboards instead of the empty symbol or an
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Algorithm 16.1 output fprtn prune

Input: A= (Q,K,I',§, K, Q}, F'), the output FPRTN to prune
s, the “global” acceptor state of A
Output: A after removing every useless state and transition

1: if fry 2 8'(ry,741) = r; then

2: clear(A)

3: else

4: for each r € Q' do

5: ((r) « false

6: end for

7: C(ry) + true

8: E« 10

9: enqueue(E, ry)

10  while £ # 0 do

11: ry < dequeue(E)

12: for each (rs,7v) : 7 € §'(rs,7) do

13: enqueue _mark unexplored os(FE,(,ry)
14: end for

15: for each r, : r, € §'(rs,¢) do

16: enqueue_mark unexplored os(FE,(,ry)
17: end for

18: for each (rg,r.) : 1, € §'(rs,7.) do

19: enqueue__mark unexplored os(FE,(,ry)
20: end for
21: for each r : r, € §'(rg,11) do
22: enqueue _mark unexplored os(FE,(,ry)
23: end for
24: end while
25: for each r € Q' : =((r) do
26: remove state and _associated transitions(A, r)

27: end for
28: end if
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Algorithm 16.2 enqueue mark unexplored os

Input: E, the queue of OSs to explore
( : Q" — B, a Boolean function returning whether a state in ' has
precedently been reached or not
r, a recently reached OS
Output: (, after setting r as reached, if necessary
E, after enqueuing r, if necessary
if =((r) then
C(r) < true
enqueue(r)
end if

input symbol, and their traversal applies the output function to the
blackboard of the source ES instead of appending a symbol,

e the key-matching condition is to be added to the treatment of popping
transitions, that is, popping from an state gs with a stack 7 to a state
qr requires k(qs) = k(q,) as well as T = 7'q, and ¢s; € F, and

e when computing the set of derived ESs from an ES x, derived ESs are
modified copies of x except for the last derived ES, which keeps the
original data structure representing x.

Note that, when the language to generate contains a unique element, this
algorithm builds a unique ES data structure and simply modifies its black-
board field each time a transition is traversed, instead of building a new ES
data structure containing a modified copy of the source blackboard. At a first
stage of development of the MovistarBot, this algorithm was used in conjunc-
tion with a low global-ambiguity grammar and, upon ambiguous sentences,
interpretations were chosen randomly: we selected the first one (whatever it
corresponded to) from the list of possible interpretations.

16.3 Language generation through BSP
We apply here the equations for Earley-like BSP of RTNBOs for computing

the language represented by an O-FPRTN. First of all, we give a definition
of topological sort of the O-FPRTN, then study the necessary conditions for
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its existence, and finally give an algorithm computing the language of the
O-FPRTN.

Definition 274 (Topological sort of an O-FPRTN). Assuming that calls
within a RTNBO are to be explored only once, such as it is done by algo-
rithm 15.1 rtnbo_ translate string to fprtn (309), we define the topologi-
cal sort of the resulting O-FPRTN as for FSMs (definition 81, p. 130) but
redefining relation R as follows:

e cuplicit e-transitions, consuming transitions, call transitions and real-
izable filtered-pop transitions from rg to ry imply rs Rry, and

o 1o, Rry ANry Rr. implies r, Rr..

Let t = (rs, R., ;) be a call transition within an O-FPRTN that is realiz-
able through a path p starting at a state r. € R. and having a last transition
of the form (7,71, 7). If the O-FPRTN is to be traversed by following a
topological sort, it is obvious that 7, and r; are to be explored before ry.
Transitively, states in p before ry are also to come before r,. However, it
makes no difference whether r, is explored before states in p or the converse,
since the call to R, is computed as an independent application of the machine
but taking R, as set of initial states. Let t' = (1%, R.,r;) be a second call to
the same SS R.; depending on how ¢ and t' are placed w.r.t. each other, we
distinguish 3 feasible cases:

e Transitions ¢ and t' are parallel calls (e.g.: call transitions (r,0, {r2},
r14) and (ri1, {r12}, r15) in figure 15.2, p. 317); in this case, the fol-
lowing relations would be defined in R:?

— rs Ry,
— 1. Rry Ry,
— 7L Rr; and
—r.Rry Ry
e Transitions ¢t and ¢’ are non-alternating sequential calls, that is, ¢t comes
before ¢’ but ¢’ does not come before ¢ (e.g.: call transitions (12, {r16},

r13) and (r3, {r16}, m4) in figure 15.3, p. 321); the corresponding
relations defined in R are:

3For the sake of simplicity, we have abused here the notation of R as done in inequality
expressions such as 3 < ax <y <9 (instead of 3<xAx <yAy<9).
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— rsRry Rrl Rr} and
—r.RryRry Rry.

e Finally, transition ¢ starts call to R., and the completion of the call
involves to traverse transition ¢’ (call to R, is recursive), but filtered-pop
transitions do not allow for repeated completions of ¢’ (e.g.: analogous
to call transitions (rg, {ro}, r1) and (2, {2}, 74) in figure 12.11, p. 252,
but not necessarily requiring that ¢’ starts at r, but some transitions
later). In this case, an additional path completing call to R, without
further recursion is needed in order to stop the recursion introduced by

transition ¢’ (e.g.: in the figure of the previous example, path ro B, r3

o, r4, but not necessarily requiring that the path starts at the same
state than the path traversing t'). Let this path start at a state 77, and
have a last transition of the form (r%, r;t, 7;), the relations in R are:

— s Ry,
—r.Rr.RryRry Ry, and
- réRr}er{.

Transition ¢ would initiate the exploration of call to R. and, once traversed
path from r. to 7/, transition ¢ would not initialize any call but just wait for
the exploration of path from 7, to r’.

Note that we have defined the topological sort for entire O-FPRTNs and
not only for their e-closure-substructures. In the previous sections on BSP
we focused on topologically sorting the e-closure-substructures since a topo-
logical sort for A-substructures was already given by the sequence of SESs
the different ESs belonged to: consuming transitions derive target ESs x;
from source ESs z, with =, € V; and x; € V; ;. We first explored the A-
substructure of a SES V;, then the e-closure-substructure derived from the
A-substructure by following a topological sort, then the A-substructures of
Vii1 and so on. Once the O-FPRTN is computed, the key associated to
each state gives us the index of the SES the corresponding ES belonged to,
but the information about which states where produced by the scanner and
which ones where produced by the other algorithm components is lost. Since
it is necessary to explore the entire O-FPRTN in order to generate its lan-
guage (provided that it has been previously pruned, and therefore contains
no useless substructures), we explore it by following the previously defined
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topological sort for entire O-FPRTNs, which is not necessarily the same
than the one given by the sequence of SESs plus the topological sort of the
e-closure-substructures.

Theorem 30 (Existence of a topological sort for output FPRTNs). Consid-
ering lemma 1 (p. 131) and theorems 21 (p. 266) and 28, for every RTNBO
not having deletable recursions or e-cycles involving deletable calls and/or
output generation there exists an equivalent RTNBO B such that there exists
a topological sort for the O-FPRTN generated with source (B, w), for every
input sequence w of B.

Note that forbidding the presence of deletable recursions in a RTNBO
does not restrict the set of grammars that can be represented since such paths
do not contribute anything to the grammar description (they are equivalent
to CFG rules of the form A — A). The same applies for e-cycles involv-
ing deletable call completions. Finally, e-cycles with output generation are
forbidden since they lead to grammars representing sentences with infinite
interpretations, which make no sense.

Algorithm 16.3 output_fprtn_bsp _earley language efficiently computes
the language represented by a pruned O-FPRTN, based on the RTN Earley-
like language generator algorithm in section 14.8 (p. 294), the RTNBO Earley-
like BSP equations in section 13.11, the topological sort for O-FPRTNs and
Kahn’s (1962) topological sorter (a brief description of Kahn'’s algorithm can
be found in appendix D, page 419). The algorithm computes the translations
of the empty word, considering every transition of the O-FPRTN as a tran-
sition recognizing the empty symbol and applying the associated v function
to the current output blackboard; therefore the algorithm is reduced to the
computation of the e-closure of a set of initial ESs. Moreover, it performs a
blackboard set processing (BSP) of the O-FPRTN, that is, it traverses the
entire O-FPRTN by following a topological sort, computing every blackboard
that can be generated by reaching each particular state ¢ before computing
the blackboards of every reachable state from ¢. The topological sort is com-
puted during the algorithm application as for Kahn’s algorithm. Another
algorithm for computing a topological sort is described in Cormen et al.
(2001, sec. 22.4). Opposite to Kahn’s algorithm, this algorithm does not
require to compute first the list of unreachable nodes from any other one so
that the exploration of the graph is performed from these nodes by following
the own topological sort; however, these nodes are known before computing
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the language of the O-FPRTN, the initial state r;, and our language genera-
tor algorithm requires to follow the topological sort as for Kahn’s algorithm
in order to correctly compute the language of blackboards.

Rather than performing again an Earley-like processing of the O-FPRTN,
the algorithm takes advantage of the computations already performed to
build the O-FPRTN: the algorithm takes an additional input parameter ¢”
which represents a function mapping each pop transition to the set of source
states of the call transitions it completes.? This requires the following mod-
ifications in algorithm 15.6 rtnbo_interlaced_eclosure to_ fprin:

e right before the e-completer inside the completer, insert instruction
“CU((rsymetyre)) <= C/((rsy ety 7m)) U R in order to register the source
states of normally completed call transitions,

e in the e-completer of the completer, replace instruction “add(7’, Q)"
by “add(T, Qp, r5)” in order not only to mark deletable calls but also to
build the corresponding list of acceptor states triggering e-completions,

e in the e-completer of the predictor, replace instruction “else if Q). € T
then” by “else if 3r; : (Q.,7f) € T then”, since elements in 7" are no
longer elements Q). but pairs (Q.,7), and insert inside this “else if”
block a block “for each ¢ : (Q.,7s) € T'do” with a unique instruction
“add(¢/((rg,m41,7)),75)” in order to register the source states of e-
completed call transitions.

Map ¢ is to be defined as an output parameter of algorithm 15.1 rtnbo-
_translate_string to_ fprtn and, as the other maps, it is treated as a global
variable and implicitly initialized as an empty map.

The algorithm first creates two maps, ¢, and (g; the former maps each
state to a counter of unexplored incoming transitions to the state, namely
consuming transitions, explicit e-transitions, call transitions and pop tran-
sitions but not push transitions. The latter map associates each state to
an initially empty SB. Then it initializes call to r; by adding the empty
blackboard to the SB of r; and by enqueuing r;. States are dequeued and
processed one by one, following a topological sort, until the queue is empty.

4In practice, we extend pop-transition objects with a field containing a reference to-
wards the corresponding set and, when completing a call during the construction of the
O-FPRTN, the set Q" is filled with the source states associated to every resumed paused
ES.
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At each iteration, rg represents the dequeued state and B, its SB. First of
all, B, is incremented with every blackboard composition b o b; such that
(b.,bs) € Cp(rl) x Cp(ry), for every pair of states (rs,r.) such that r, is the
return state of a call transition having 7/ as source state and r; as a possible
acceptor state completing it. Of course, if r; is not a return state of any
call then no blackboard is added to Bs. Then the outgoing transitions of r;
are explored, namely consuming transitions, explicit e-transitions, call tran-
sitions and pop transitions. Let r; be the target state of these transitions; in
every case the counter (,(r;) is decremented, and r; is enqueued iff the new
value of (,(r;) is zero since, in that case, every blackboard to be added to
(p(r¢) should already have been added, except for the blackboards due to call
completions which are added to r; right after dequeuing it. Each particular
case performs the following additional operations:

e for each consuming transition (7, -y, ), blackboards v(Bs) are added
to CB(Tt)a

e for each explicit e-transition(rs,idg, ), blackboards By is added to

gB(Tt);

e for each call transition (rg, R.,r;), call to R, is initiated if it has not
been done yet (SBs of every r. € R, will be empty, thus it suffices to
check only the first element) and not every transition incoming to r; has
already been explored:® for each state r.inR, the empty blackboard is
added to (p(r.) and r. is enqueued if its counter is zero,® and

e no additional operation is performed for each pop transition (rg, i1, ;)
since composed blackboards are added right after dequeuing each state.”

Once every state in the O-FPRTN has been processed, the SB of the last ex-
plored state is returned, which, by construction, corresponds to the “global”

SNote that having explored every incoming transition to r; implies that every pop
transition completing call to R, has also been explored and therefore call to R, has already
been initiated.

6Note that subinitial states in R, might be reachable from other subinitial states in R.,
so only the unreachable ones should be enqueued at this moment.

"Note that reaching an acceptor state that triggers a call completion does not necessarily
ensure that every source state of every other call whose completion it might also trigger
has already been visited, hence the algorithm does not compute the composed blackboards
for a given state rs until r, is dequeued.
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acceptor state of the O-FPRTN. Note that, as long as the O-FPRTN is
pruned before the application of this algorithm, the “global” acceptor state
is the only one from where no other state can be reached. We have followed
a non-destructive method for the computation of a topological sort of the
O-FPRTN by means of associating counters to each state. Kahn’s algorithm
removes each traversed edge, and enqueues a node once it has no incoming
edges. In case there is nothing to be done with the O-FPRTN once its lan-
guage is computed, the destructive method would be preferred since, anyway,
the memory allocated by the O-FPRTN transitions is to be freed sooner or
later (as stated in footnote 1, p. 1).
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Algorithm 16.3 output_ fprtn_bsp earley language(A)

Input: A= (Q,K,T',§,k,{r;}, F'), an output FPRTN
' a function mapping each pop transition to the set of source states
of the call transitions that it completes
Output: L, the language of A
1: B« 0
2: for each r; € Q' do
3 Galre) « [{(rs,y,me) s € 8'(rs, v) A+
{(rs,idg,re) s 1y € 8'(rs,1dp) |+
H{(rs, Reyme) i1 € 8 (15, Re) A+
H{(rs,met, ) : 1 € 0 (g, 1)}
Ca(ry) <0
end for
add(Ca(r1), by)
enqueue(E, rr)
while £ # () do
rs < dequeue(F)
10: Bs « (p(rs)
11: for each 7y : r, € §'(rf,rs1) do > BLACKBOARD COMPOSITION

12: for each 1 € (/((ry,rst, 7)) do

13: for each (V,bs) € (p(r.) x (p(ry) do
14: add(Cp(rs), b, o by)

15: end for

16: end for

17: end for
18: for each (r;,vy) :r, € §'(rs,7) do > CONSUMING TRANSITIONS

19: add(Cp(r:), v(Bs))

20: Ca(ry) <= Cu(ry) — 1
21: if ¢, (r¢) =0 then
22: enqueue(FE, ;)
23: end if

24: end for
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25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
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for each r, € §'(r,,idg) do > EXPLICIT e-TRANSITIONS
add(CB(rt)a Bs)
Calre) <= Gulre) — 1
if ¢, (r¢) = 0 then
enqueue(F, ;)
end if
end for
for each (ry, R.) : r, € §'(rs, R.) do > PUSH TRANSITIONS
Calre) = Gulre) — 1
if (,(r;) = 0 then
enqueue(F, ;)
else if (p(first(R.)) = 0 then
for each r. € R. do
add(Ca(re), bp)
if ¢,(r.) = 0 then
enqueue(F, r.)
end if
end for
end if
end for
for each r; : 1, € §'(rs,71) do > POP TRANSITIONS
Ga(re) = Galre) — 1
if ¢, (r¢) = 0 then
enqueue(FE, ;)
end if
end for

51: end while
52: L < Cp(rs)







Chapter 17

Finite-state machines with
composite output

We present here FSMs with composite output (FSMCO) as an extension of
F'SMs with blackboard output for the generation of multiple outputs, either
of the same kind or not. FSMCOs can be seen as machines with multiple
output tapes: blackboards are structures having a field for each output tape,
and each output tape is itself another kind of blackboard.

Definition 275 (FSMCO). In general, finite-state machines with composite
output(FSMCOs) are a particular case of FSMs with blackboard output with

e B = (ByXx By X...x B,), that is, blackboards b € B are composite
blackboards (b, by,...,b,) € (By X By X ... X By),

o '=TyxI'yx...xT,, that is, functions v € I' are composite functions
v(b) = (Y0(bo),Y1(b1), - - -, Yu(bn)) that operate on composite blackboards
b= (bg,b1,...,bn),

o By = {(bo,bl,...,bn) :byp € BkoVby € By V...Vb, € BKn}; that 18,
composite blackboards b € By are those who have at least one killing
term b; € By, and

o by = (bgo,bo1,---,bon), that is, the empty composite blackboard is the
one whose terms are all empty.
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Chapter 18

Weighted finite-state machines

We present here weighted machines as a special case of blackboard process-
ing, analogously to the way in which we have derived FSMs with string
output as a particular case of FSMs with blackboard output, namely FST-
SOs (chapter 11) from FSTBOs (chapter 10) and RTNSOs (chapter 14) from
RTNBOs (chapter 13): blackboards are weights, we assume that there are no
killing weights, and functions on blackboards may increment or decrement
such weights. Weights represent the cost, score or probability associated to
the realization of a transition. We use here weight output in order to define a
criterion to select a preferred interpretation upon ambiguous sentences: the
cheapest, top-ranked or most likely one, depending on what the weights rep-
resent. In the MovistarBot use case (section 1.2, 6), grammars are RT'Ns with
composite output: scores and XML tags that either identify the requested
service or delimit the arguments to be extracted; for instance, the expected
XML output for sentence

e ‘envia Feliz Navidad al 5557,
which means ‘send Merry Christmas to the 555, is
e ‘envia<sms/> <message>hola</message> al <phone>555</phone>’.

This output is to be coupled with a sequence of scores to be added, such
that the resulting overall score is greater than those of other possible XML
outputs for other sentence interpretations, such as

e ‘envia<sms/> <message>Feliz Navidad al 555</message>’.

341
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XML tags can be treated as string output, though we have implemented a
slightly more complex kind of blackboard and treatment on blackboards for
the sake of efficiency (to be described in chapter 20). Mainly, we consider in
this chapter that there are no killing blackboards whatsoever. The problem
of killing blackboards will be discussed in the next chapter.

Weights are defined by following some heuristic, thus the selected in-
terpretation is not guaranteed to be the expected one. However, there are
applications which require a single interpretation of each parsed sentence in
spite of eventual mistakes, for instance machine translators and conversa-
tional agents. Since humans are used to deal with imprecise and/or inexact
information, a human interested in the content of a text written in an un-
known language will still find useful a partially correct machine translation.
Human translators can use machine translators in order to partially autom-
atize their work, having only to correct the output returned by the machine
translator instead of typing the whole translation from the scratch. In case
a chatterbot does not understand or misunderstands a request, the user may
try to express his request in a different manner. Note that this kind of sit-
uation also happens between humans, though are usually less frequent than
between humans and machines. The conversations held with a chatterbot
are usually logged and studied by the chatterbot’s administrator in order to
improve the conversational rules for covering the possible deficiencies. As
well, machine translator developers usually provide free online translation
services (e.g.: http://translate.google.com) for gathering user transla-
tion requests, which are then studied for improving the translation rules.

Definition 276 (WFSM). In general, weighted finite-state machines (WF-
SMs) are a particular case of FSMs with blackboard output so that

e given a partially-ordered group (G, e, <), for instance (Z, +, <) or
(R, -, <), functions in T always perform the binary operation e on an
element of G and the current blackboard, which is another element of
G; for the sake of simplicity, we consider that I' contains elements in G
rather than functions on blackboards, and output labels g € T" represent
the operation b e g where b is the current blackboard,

e the identity function on blackboards idg performs operation e with its
identity element and the current blackboard, for instance 0 for (Z,+, <)
and 1 for (RT, -, <); we write the corresponding identity element instead
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of function idg in order to represent that a transition does not modify
the current output,

e B=G,
e B =, that is, there are no killing blackboards, and

e by is the identity element of operator e, for instance 0 for (Z,+,<) and
1 for (R, <).

Definition 277 (Weight of a path). Given a path or sequence of concatenated
transitions toty .. .t, within a WFSM for an ordered group (G,e,<) so that
w; s the weight of transition t;, the weight of the path is woe wi e ... e w,.

In the MovistarBot use case, weights represent scores rather than proba-
bilities. Upon ambiguous sentences, the top-ranked output is to be assumed
as the right interpretation. We use partially-ordered group (Z, +, <) in order
to avoid floating-point operations.

Probabilistic machines (PFSMs), also called stochastic FSMs (SFSMs),
are a special kind of weighted machines, though our definition of weighted
machine can easily be adapted for PFSMs as follows, based on the definition
of probabilistic automata given in Vidal et al. (2005a, sec. 2.2, p. 1015):

Definition 278 (PFSM). A probabilistic machine (PFSM) is a weighted
machine where

o (G,e, <) isto be defined as ([0, 1], -, <), that is, weights are probabilities
represented by real numbers between 0 and 1,

e () is to be replaced by a function P;: QQ — R, which represents the
probability of each state to be an initial state,

e [ is to be replaced by a function Pp : QQ — RT, which represents the
probability of each state to be an acceptor state, and

o et P: (Q XZx Q) — RT be the function returning the probability
associated to each transition, P is to respect the following constraints

IFor efficiency, probabilities may also be represented by rational numbers, that is, as
the quotient of two integer numbers.
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so that the machine represents a probability distribution over the set of
interpretations (definition 111, p. 144) it contains:

Y Pi(g) = 1, and (18.1)

q€Q
Pr(g)+ Y. Plgné&a) = 1, Vg, €Q. (18.2)

£€E7qt GQ

In case the machine is non-deterministic, the probability of an input sequence
15 computed as the sum of the probabilities of every interpretation recogniz-
ing such sequence. In case the machine generates additional output (apart
from probabilities), the probability of a translation (into other outputs than
the probabilities) is computed as the sum of the probabilities of every inter-
pretation performing such translation.

A more straightforward definition of probabilistic machine w.r.t. the defi-
nition of weighted machine can be given by modifying the previous definition
as follows:

e instead of replacing the sets of states (J; and F' by functions P; and
Pr, two additional states g; and ¢ are to be added to @,

e (); is to be defined as {q;},
e [ is to be defined as {¢r}, and
e for each state ¢ € () two additional transitions are to be added:

— a transition from ¢; to ¢ consuming no input and generating prob-
ability Pr(q), and

— a transition from ¢ to qr consuming no input and generating prob-
ability Pr(q).

Examples of machines representing probability distributions over a set
of sequences are weighted automata (Mohri, 1997), probabilistic suffix trees
(Ron et al., 1994), probabilistic finite-state automata (Paz, 1971), stochas-
tic or probabilistic automata (Carrasco and Oncina, 1994), hidden Markov
models (Rabiner, 1989) and n-grams (Ney, 1992). In the MovistarBot use
case, we have used weighted RTNs rather than probabilistic RT'Ns. We will
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not give here more details on PFSMs, but a complete survey can be found
in Vidal et al. (2005a,b).

In section 13.10 (p. 272) we presented an Earley-like algorithm of appli-
cation of RTNBOs. In order to use this algorithm for the case of weight
output, we define the weight composition operator as follows:

Definition 279 (Weight composition operator). Let A be a weighted RTN
having (G, e, <) as partially ordered group; considering that operator e is as-
sociative (by definition of group), we define the blackboard composition opera-
tor (definition 259, p. 268) of A as e since it is a particular case of lemma 20

(p. 269).

Definition 280 (Top path). Let p be a path within a WFSM A such that p
recognizes a sequence o and has qs and q; as start and end states, respectively;
we say p is a top path of A for (¢s,a,q) and ES x, iff the weight generated
by executing p from xg is greater than or equal to the weight generated by the
execution from x, of any other path p' deriving q; from qs. We simply say
that

e p is a top path of A for (o, q) when qs is any initial state of A and x4
any initial ES,

e p is a top path of A for o when p and p' are interpretations of A
recognizing o, and

e p is a top path of A, in general, when p and p' are interpretations of A
recognizing any input.

18.1 Weight assignment

Given two transitions outgoing from the same state of a FSM such that both
transitions are realizable upon the same input and context of execution,
one may express the preference of one transition over the other by assigning
different weights to each transition. In the MovistarBot use case (section 1.2,
p. 6), we have manually built a set of grammars —more or less descriptive—
and automatically associated weights to the grammar transitions so that the
most descriptive transitions —hence the most restrictive or specific— are
preferred over those less descriptive. In section 6.4 (p. 115), we have studied
the specificity of the different lexical masks, and proposed a weight to assign
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to each transition depending on the lexical mask used as input label. This
procedure has allowed our NLP engine to deal with ambiguous sentences, as
described in the section.

Other possibility is to use a part-of-speech tagger, either stochastic
(Church, 1988) or rule based (Brill, 1992), in order to automatically asso-
ciate weights to transitions during the application of the machine for a given
input. Part-of-speech taggers compute the most likely part-of-speech of the
words of a sentence. We may associate higher scores to transitions requiring
or, at least, not forbidding the part-of-speech chosen by the tagger.

18.2 Extracting the top blackboard of a
weighted-output FPRTN

In section 15.6 we presented an algorithm able to compute the set of trans-
lations for a given RTNBO and input as an O-FPRTN in time n® —in the
worst case— even for RITNBOs generating an exponential number of out-
puts w.r.t. the input length. In chapter 16 we presented two procedures
for the generation of the language of outputs represented by an O-FPRTN.
Obviously, generating the language of outputs of an O-FPRTN representing
an exponential number of outputs will have an exponential worst-case cost.
However, end-user applications such as machine translators and chatterbots
(namely the MovistarBot), require only a single output to be returned, let
it be the most likely or the top-ranked one. We present here an algorithm
that is finally able to generate only the top-ranked output represented by a
weighted O-FPRTN (WO-FPRTN) in time n®. Recall that O-FPRTNs are
built from a source (B, w) (definition 272, p. 323), and that O-FPRTN input
labels are simple copies of the output labels of their respective source RTN-
BOs (section 15.6, p. 306). Therefore, we define WO-FPRTNs as follows:

Definition 281 (Weighted-output FPRTN). Let (B, w) be the source of an
output FPRTN A, we say A is a weighted-output FPRTN iff B is a RTNBO
with weight output, either as unique output or as one of the outputs of a

composite output machine (definition 275, p. 339). For the sake of generality,
we define WO-FPRTNs as both O-FPRTNs and WFSMs with

o (W, e, <) as partially ordered group, that is, with W as set of weights,
e as operator on weights and < as weight comparator, and
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o ['x W as set of output labels, where I' is a set of output functions that
apply on the blackboard components other than the weight.

Mainly, the procedure we present here is divided into two stages. The first
stage consists in traversing the WO-FPRTN in order to find and annotate
the WO-FPRTN top path:

Definition 282 (Top path of a WO-FPRTN). Top paths of WO-FPRTNs
are defined as top paths of WFSMs, though taking into account that weights
of WO-FPRTN recognize the outputs instead of generating them: weights are
the second term of the pairs that form their input labels.

The top path is annotated by marking at each state the incoming transi-
tion that allowed for reaching the state by generating the maximum weight.
At a second stage, the top path is reversely traversed in order to generate
the top blackboard:

Definition 283 (Top blackboard of a WO-FPRTN). Let A be a WO-FPRTN
and b a blackboard in L(A), we say b is a top blackboard of A iff for every
blackboard b’ in L(A) the weight component of b is greater or equal than the
weight component of b'.

Note that this forward-and-backtrack procedure is typically followed by
other dynamic programming algorithms (Bellman, 1957), such as Wagner and
Fischer’s (1974) algorithm for the computation of the edit distance between
two strings (Levenshtein, 1966).

Since the top blackboard is to be computed by reversely traversing the
top path found, output functions on blackboards cannot be applied as is;
instead, their converse functions are to be applied:

Definition 284 (Converse of a function on blackboards). Let v1, 2 ... Y,
be a sequence of functions on blackboards, the converse of ~;, Vi, is another
function on blackboards such that the following equation is satisfied:

(Tro¥20...0%)(bp) = (Yno...0v20v1)(bp) (18.3)

Definition 285 (Converse of a binary operator). Let e be a binary operator,
we define the converse of e, e, as another binary operator such that, for all
a,b,c,

aeb=c < bea=c. (18.4)
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Corollary 10 (Double converse). The converse of the converse of a binary
operator is the operator itself, that is, ® = e.

Lemma 28. Pair (G, ®) is a monoid iff so it is (G, e) and, if so, both monoids
share the same identity element.

Proof. For (G, e) to be a monoid, the following two axioms must be satisfied:
e operator e is associative, and
e Je € GG such that e is the identity of e.
The first axiom is satisfied iff
ae(bec)=(aeb)ec. (18.5)
By definition of e, the following two equations hold:

ae(bec) = (ceb)ea (18.6)
(aeb)ec = ce(bea), (18.7)

which together with the former equation proof the associative condition of e:
(ceb)ea=ce(bea). (18.8)
For e to be the identity element of e, the following axioms must be satisfied:

aee = a (18.9)
cea = a. (18.10)

If so, the following equations hold by definition of e:

céa = a (18.11)
ase = a, (18.12)

and therefore e is also the identity of . Since .= e, the same reasoning can
be applied to prove that e is a monoid iff so it is @ and that, if so, both share
the same identity element. O

Lemma 29 (Converse operator on blackboards). Let (B, ) be a monoid with
an identity element by; if every output function is of the form ~,.(b)) = by eb,,
then '?br-(bl) = bl ® br.
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Proof. Let vy, , 7, - - - 75, be asequence of functions on blackboards such that
Yo, (b) = b e b;. If n =1 then it holds that

(o0 0% 009, 090 (b)) = (- ((byebr)eby)e... by 1) eby)
= byebiebye...0b, 10,
= biebye.. . 0h, ;0b,
— b eb, % ... 8byeb
= byeb,eb, 10 ... ebyeb
= ((...((bp®b,)®b,_1)® ... 8by) ®by)
(Y61 © Vop © - © Vb1 0V, ) (bp)

0

Note that the associative blackboard composition operator described in
lemma 20 (p. 269) forms, indeed, a monoid (B, e) with B as the set of black-
boards and by as the identity element. Either for string, score or probability
output, such a monoid exists:

e the set of output strings with the string concatenation and the empty
string as identity element,

e the set of integer numbers with the addition and 0 as the identity
element, and

e the set of real numbers with the multiplication and 1 as the identity
element.

The case of feature structure output and unification processes will be dis-
cussed in the next chapter.

In case a set of output functions cannot be conversed, the top path can be
reversely traversed in order to annotate the corresponding outgoing transi-
tions at each state instead of the incoming ones, then traverse the top path in
direct order in order to compute the top blackboard with the original output
functions. Another possibility is to apply the reverse of the RTNBO repre-
senting the grammar to the reversed sentence; the resulting WO-FPRTN will
then represent the reverse translations of the sentence, allowing for using the
original output functions during the reverse traversal of the top path instead
of their respective converse functions.
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We have also studied the possibility of first traversing the whole WO-
FPRTN in reverse order, that is, to compute a top path of the canonical
reverse of the WO-FPRTN (definition 270, p. 306), then reversely traverse
that path in order to compute the top blackboard using the original output
functions on blackboards instead of their converses. However, the traversal
of the WO-FPRTN must follow a topological sort of the whole machine (defi-
nition 274, p. 330); while we can ensure the existence of such topological sort
for O-FPRTNs (theorem 30, p. 332), that is not the case of their canonical
reverses. A possible example is the canonical reverse of the O-FPRTN of
figure 15.3 (p. 321); it suffices to apply the algorithm we describe below to
that machine in order to realize of this fact.

18.2.1 The algorithm

Algorithm 18.1 woutput_fprtn_top_reverse_ path is an almost straightfor-
ward adaptation of algorithm 16.3 output fpritn_ bsp earley language
(p. 336) for the efficient computation of a top path of a WO-FPRTN. Instead
of computing every possible blackboard that can be generated by reaching
each state, it stores only the maximum generated weight up to reaching each
state and, each time a new maximum is found for a given state, it stores
as well the reverse of the transition that reached that state by generating
such a maximum weight. The maximum weight is given by map (,,, and the
reversed top transition by map (;. The top path can be later traversed in
reverse order by following the reversed top transition at each state, starting
from the “global” acceptor state up to reaching the initial state.

During the initialization phase, the algorithm sets the counters of incom-
ing transitions for each state r, (,(r;), as for algorithm 16.3 output fprtn-
_bsp_earley language. However, instead of setting the sets of blackboards
(SBs) of each state to an empty set, the algorithm sets the maximum weight
of each state to the minimum possible weight ((;(r;) = Wpin) so that the
first computed weight by reaching r; is set as the new maximum weight of r;.
The top reversed transition of each state r;, ((;(r¢)), is assumed to be L by
default, though an implementation of this algorithm may require to explicitly
assign a null value. States having an undefined top reversed transition will
be those initiating calls within the FPRTN, that is, those whose top reversed
transition is a reversed push transition.? The algorithm sets the weight of

2Recall that while pop transitions are explicitly defined in O-FPRTNs for convenience,
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the initial state to wiq, the weight identity element, instead of setting the
SB of r; to the empty blackboard. A last initialization instruction enqueues
state 77 in order to start the WO-FPRTN exploration as for algorithm 16.3
output_ fprtn_ bsp__earley language.

In spite of being optimized, algorithm 16.3 output fprin_bsp_earley-
_language cannot avoid an exponential cost due to the computation of an
exponential number of blackboards in the blackboard composition block: for
a given pop transition (ry,7,1,7), it adds to the SB of r, every blackboard
bs = b, o by such that (b),br) € B, x By, where By is the set of blackboards
of ry and B! is the set of every blackboard of every source state of every call
transition completed by the pop transition. Instead, algorithm 18.1 woutput-
_fprtn_top_reverse_ path first retrieves r, . the state having the maximum
weight among all the source states of call transitions completed by the pop
transition, then computes only the composition of this maximum weight with
the maximum weight of 7;. The treatment for each transition incoming to
rs is the same than for algorithm 16.3 output fprtn_bsp_earley language,
though it computes only the maximum weight and stores it along with the
reverse of the corresponding transition whenever a new maximum is found.
As for algorithm 16.3 output_fprtn_bsp earley language, algorithm 18.1
woutput_fprtn_top reverse_ path uses counters in order to check whether
every incoming transition of each state has already been traversed or not; if
the WO-FPRTN is not needed for any other treatment, transitions can be
simply removed from the WO-FPRTN instead of keeping a set of counters
since the memory allocating the transitions is to be freed sooner or later (as
stated in footnote 1, p. 326).

Finally, algorithm 18.3 woutput fprtn_top_blackboard computes a top
blackboard of a WO-FPRTN A = (@', K, I'x W, &, k,{r;}, F"). First of all,
it calls algorithm 18.1 woutput_fprtn_top_reverse path in order to build (;,
the map of states to top-reverse transitions, and to retrieve rg, the “global”
acceptor state of A. Afterwards, it traverses the reverse of the computed top
path, from r up to r;, by following at each state the top reverse transition
defined by (;. Apart from being reversed, the latter operation is similar to
the computation of the language of a RTN (section 14.5, p. 284) by means of
a breadth-first traversal of a RTNBO (section 13.5, p. 262), though keeping

push transitions are not needed to: the reverse traversal of a push transition will simply
consist in bringing the machine to the state at the top of the stack and to pop that state
out.
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a single top ES (7, by, ) at each iteration instead of a SES containing every
possible ES. The initial top ES is set to (rg, by, A). Then, the sequence of
top ESs that compose the top reverse path is iteratively computed. Let the
current top ES be z; = (14, b, 7), the next top ES x4 is computed as follows,
depending on the type of the next top reversed transition:

e reverse pop transition: since acceptance states of AT are those not
having a top reverse transition, x; = (7, by, 7’) with 7 = 7'r,. iff {, = L,

e reverse filtered-push transition: z; = (ry, by, 7rg) iff ((ry) = (ry, {rs}, 7s),
knowing that a unique top state r; is called such that (¢, r¢l,75) is an
allowed top filtered-push transition of A% since (rs, r;T, ;) is an allowed
top filtered-pop transition of A,

e reverse e-transition: x; = (rg, by, ry) iff ((ry) = (1, (idp, w), 7s), and

e reverse consuming transition: x; = (ry,¥(b,), 7) iff = (14,7, 7s), ap-
plying ¥ to b; instead of « so that the resulting blackboard belongs to
L(A) instead of L(A%).
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Algorithm 18.1 woutput fprtn_top reverse path(A,(”)

Input: A= (Q,K,I' x W, k,{r}, F'), a weighted-output FPRTN
' a function mapping each pop transition to the set of source states
of the call transitions that it completes
Output: (,, a map of states to top weights
(;, a map of states to top reverse transitions
rs, the last visited state = the “global” acceptor state of A
1. B+ 0
2: for each r; € (' do
3 Ga(re) < [{(rs, (v, w),re) 270 € 6 (s, (7, w0)) }H+
H{(rs, (idg, wiq),¢) : 7 € 8 (14, (idp, wia)) }H+
H(rs, Reyme) i1 € 8 (rs, Re) M+
H{(rs,mt, 1)t € 8 (rs, 1)}

4: Cu(Tt) = Winin

5. end for

6: Cuw(rr) ¢ Winit

7: enqueue(E, ry)

8: while F % 0 do

9: rs < dequeue(E)

10: W < Cu(Ts)

11: for each r; : 0'(ry,751) do > BLACKBOARD COMP.
12: ry <= first(C)((ry, ms1,75)))

13: for each 7, € ! ((rs,rst,75)) — {first(C/((rs,7s1,75)))} do
14: if Cu(ri,.. ) < Cuw(rs) then

15: AR

16: end if

17: end for

s we Gl e Culry)

19: if w, < w then
20: Wg < W
21 G (o {rgh )
22: end if

23: end for
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24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
59:
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for each (74, (y,w)) : rp € 0'(rs, (7, w)) do > CONSUMING TRANS.

Wy 4— Wy ® W
if (,(r¢) < w; then
Cw(rt) Wy
Ct(rt) < (Ttv (77 w)? TS)
end if
Cu(re) = Galre) — 1
if (,(r;) = 0 then
enqueue(F, ;)
end if
end for
for each r; € §/(r, (idp, wiq)) do
if (,(r¢) < w,s then
Cw(rt) < Ws
Ct(rt) < (Ttv (id37 wid>7 TS)
end if
Calre) <= Culre) — 1
if (,(r;) = 0 then
enqueue(F, ;)
end if
end for

for each (ry, R.) : r, € §'(rs, R.) do

Cn('r't) — Cn(rt) -1
if (,(r;) = 0 then
enqueue(F, ;)

else if ¢, (first(R.)) = Wy, then

for each r. € R. do
Cw(rc) < Winit
enqueue(F, r.)
end for
end if
end for

> e-TRANSITIONS

> PUSH TRANSITIONS
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56: for each ry : 1, € §'(rs,71) do > POP TRANSITIONS
57 Cn(rt) — Cn(rt) -1

58: if ¢,(r;) =0 then

59: enqueue(F, ;)

60: end if

61: end for

62: end while

Algorithm 18.2 top_state((,, Q")

Input: (,, the map of states to top weights
Q", a set of states
Output: 7.y, the state in Q" mapped to the maximum weight

1: Tax < first(Q")

2: for each r € Q" — {first(Q")} do
3 if u(rmax) < Gu(r) then

4: Tmax < T

5: end if

6: end for

Algorithm 18.3 woutput fprtn_top blackboard(A, ()
Input: A= (Q,K,I' x W, k,{r}, F'), a weighted-output FPRTN
' a function mapping each pop transition to the set of source states
of the call transitions that it completes

Output: b;, a top blackboard of A

1: ((,rr) «+ woutput fprtn_top reverse path(A,¢”, ()

2: (Tt, by, 71‘) — (TF, by, )\)

3: while r; # r; do

4 if G(r;) =L then let 7 = 7'r, > REVERSE POP TRANS.
5: (r, by, ) — (1, by, ')

6: elseif ((r)=(r,{r;},7;) then > REVERSE PUSH TRANS.
7: (14, by, ) <= (rp, by, 775)

8: else if (;(r;) = (ry, (idp, wiq),7s) then > REVERSE e-TRANS.
9: (re, by, m) — (1, by, )

10: else let (;(r¢) = (4, (7, w),r5) > REVERSE CONSUMING TRANS.
11: (Ttabtaﬂ) — (Tsafi/(bt)aﬂ-)

12: end if
13: end while







Chapter 19

Unification finite-state machines

We briefly present here machines comprising unification processes as a special
case of blackboard output, analogously to the way in which we have presented
weighted machines in the previous chapter. Unification is the only kind of
blackboard processing presented in this dissertation that makes use of killing
blackboards. Since our definitions and algorithms of application of machines
with blackboard output take into account this possibility, adapting the al-
gorithms for the case of unification machines is straightforward except for
the last and most efficient algorithm we have presented in this dissertation:
algorithm 18.3 woutput_fprtn_top_blackboard. We briefly describe unifica-
tion in section 19.1, unification machines in section 19.2, the advantages of
unification in section 19.3, and how to adapt the algorithms of application
of machines with blackboard output in order to support unification in sec-
tion 19.4.

19.1 Overview of unification

Unification allows for a compact representation of long-distance relationships
and dependencies, that is, relationships and dependencies between input ele-
ments that are separated by an arbitrary amount of input rather than being
consecutive; for instance, the number agreement between the subject and the
verb of a sentence. Algorithms of application of grammar formalisms com-
prising unification make use of feature structures in order to store linguistic
data as it is observed during the analysis of the sentences. Such feature struc-
tures are structures of attribute/value pairs (e.g.: number/singular, func-
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tion/subject, etc.), where values can be other feature structures. Addition-
ally, feature structures may comprise values that are shared among different
attributes, forming complex structures analogous to directed acyclic graphs
(examples can be found in Jurafsky and Martin, 2008, chap. 11, p. 391).
Unification is a monotonic operation: the unification of two feature struc-
tures results in another feature structure containing every attribute/value
pair of both the feature structures to unify. Whenever unifying two feature
structures both containing a given attribute, 3 situations are possible:

e only one of the feature structures defines a value for the attribute (the
value in the other feature structure is not set), in which case the re-
sulting feature structure will contain such attribute/value pair without
duplicating the attribute,

e both feature structures define the same value for the attribute, in which
case the resulting feature will contain the attribute paired with the
defined value, or

e the feature structures define different values for the attribute, in which
case the feature structures cannot be unified due to an inconsistency.

Whenever inconsistencies appear, killing blackboards are to be generated in
order to invalidate the analysis that led to them; for instance, a possible
attribute name could be ‘number agreement’, whose value is to be taken
from both the subject and the verb of the sentence to analyse. When either
the subject or the verb is read, the feature structure of the current analysis is
unified with another one that includes a ‘number agreement’ attribute taking
as value the number of the sentence constituent read. In other words, a set of
registers is used in order to remember the number of either the subject or the
verb so that it can be compared when reading the other sentence constituent.
More information on feature structures, unification, and how to imple-
ment them can be found in Jurafsky and Martin (2008, chap. 11, p. 391).

19.2 Unification machines

We define unification machines as follows:

Definition 286 (UFSM). In general, unification finite-state machines (UF-
SMs) are a particular case of FSMs with blackboard output so that
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functions in T always perform the unification operation U of a fea-
ture structure with the current blackboard, which is a feature structure
as well; for simplicity, we consider that I contains feature structures
rather than functions on blackboards, and output labels g € T represent
the operation bl g where b is the current blackboard,

e the identity function on blackboards idg unifies the empty feature struc-
ture, [ ], and the current blackboard,

e B is the set of feature structures,

o Bx ={Ll}, where L represents the inconsistent feature structure, that
18, the unification of two incompatible structures of features, and

o by =[], that is, the empty feature structure.

As for input labels of lexical FSMs (definition 48, p. 122), feature structures
in I' may rather be expressions —called unification equations— which de-
scribe feature structures whose values may be taken from the properties of
the read input (e.g.: a feature structure with a ‘number agreement’ attribute
taking its value from the ‘number’ property of the last read token).

An example of unification machines are local grammars extended with fea-
ture structures and unification processes (Blanc and Constant, 2005; Blanc,
2006); these machines are equivalent to lexical-functional grammars (Kaplan
and Bresnan, 1982): they use RTNs instead of CFGs, which are equivalent
grammar formalisms, coupled with feature structures and unification. Such
local grammars have been used for parsing complex sentences.

19.3 Advantages of unification

Without unification, finite-state machines such as FSAs and RTNs require
a separate machine substructure for each possible valid combination of pairs
‘attribute/value’; for instance, assuming that the number and gender of two
sentence constituents must agree, and that there are only two possible val-
ues for these attributes, four machine substructures are required in order to
represent the consistent combinations: both constituents are masculine and
singular, both are masculine and plural, both are feminine and singular, or
both are feminine and plural. Note that such machine substructures require
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also to represent the sentence constituents that may appear between the
constituents that must agree. When manually constructing a grammar, this
implies to copy by hand such substructures in order to define each possible
combination. Moreover, as the number of co-occurrent attributes increases,
the number of consistent combinations may increase exponentially. Depend-
ing on the grammars to define, unification can avoid an important amount
of redundancy while avoiding an exponential growth of the grammar.

Unification can also ease the representation of sentence constituents that
may appear in an arbitrary order; for instance, in the MovistarBot use case
(section 1.2, p. 6), request sentences are composed by some structure identi-
fying the service requested along with other structures containing the service
arguments, where the order in which they appear may not necessarily be
fixed: sentences ‘envia Feliz Navidad al 555-555-555" (send Merry Christ-
mass to the 555-555-555) and ‘envia al 555-555-555 Feliz Navidad’ (‘send to
the 555-555-555 Merry Christmass’) are equivalent. Note that, while there
are only 2 possibilities with 2 arguments that may permute, the number of
combinations increases exponentially w.r.t. the number of freely-permutable
arguments.

19.4 Supporting unification

As for weight output (previous chapter), the adaptation of the Earley-like
algorithm of application of RTNBOs 13.10 (p. 272) for feature structure
output and unification processes requires only to define the feature structure
composition operator:

Definition 287 (Feature structure composition operator). We define the
blackboard composition operator (definition 239, p. 268) for the case of uni-
fication RTNs as U since it is a particular case of lemma 20 (p. 269).

Almost every algorithm of application of machines with blackboard out-
put we have presented in this dissertation takes into account the possibility of
generating killing blackboards, hence do not require any further modification
in order to support unification. The exception is the algorithm computing the
top blackboard of a WO-FPRTN (algorithm 18.3 woutput fprtn_top black-
board, p. 355). Until now, we have considered the following approaches in
order to extend this algorithm with unification processes:



19.4. SUPPORTING UNIFICATION 361

e ensuring that the grammar does not associate the highest score to an
inconsistent interpretation for every possible input sentence, that is,
ensuring that top-ranked blackboards are not killing blackboards by
construction of the grammar, and

e extending the algorithm so that further top-ranked blackboards (the
second in the raking, the third, etc.) are efficiently computed in case
killing blackboards are encountered.

Note that, in case the grammar defines an exponential number of top-ranked
killing blackboards, the algorithm will no longer have a polynomial worst-
case cost but an exponential one. A combined possibility would be to ensure
that the grammar does not define such an exponential number of top-ranked
killing blackboards, that is, to ensure that the non-killing top-ranked black-
board is one of the k top-ranked ones for some constant k. A last resource
would be to define a procedure for the removal of conflicting unification
equations, replacing them by the equivalent sequences of machine substruc-
tures for each possible combination. However, the same side-effect than that
of RTN flattening (section 12.8, p. 239) can be expected: an exponential
growth of the grammar. Due to the complexity of the problem, we leave it
open to a future work.
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Chapter 20

Experimental results

In this chapter we present the results of the experiments we have conducted in
order to empirically compare the performances of the different algorithms we
have presented. We first give in section 20.1 an overview of the treatment we
have performed, recall the different algorithms and algorithm optimizations
we have tested, and describe the implementation details and the actual ex-
periment conditions. Finally, we discuss in section 20.2 the observed results,
namely the speedup factors for each algorithm and algorithm optimization
relative to the simplest algorithm, the algorithm overheads, and the asymp-
totic cost of the different algorithms.

20.1 Description

Figures 20.1 and 20.2 (pgs. 373-378) compare the performance of each variant
of each algorithm of application of RI'Ns —with and without output— for
two versions of the MovistarBot grammar: in both cases the grammar has
been pseudo-determinized (section 13.7, pg. 265) but in the latter case it
has first been flattened (section 13.6, pg. 263). Since the grammar contains
no recursive calls, the flattened version is not an approximation but a FST
equivalent to the original RTN. We have applied the MovistarBot grammar
to a test corpus mainly composed by sentences requesting for mobile services.
Other sentences have been added in order to control over-recognition (they
are to be rejected). The grammar is a RTN with string and weight output
(chapters 14 and 18, respectively):

e output string symbols are XML tags which either identify the requested
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service or delimit the arguments to extract (see figure 10.1(a), pg. 188),
and

e weights are used for choosing a single interpretation (the one with the
maximum score) for the case of ambiguous sentences.

Translator algorithms compute maps of XML tags to input segments (the
input position at the moment of generating the corresponding opening and
closing XML tags, starting with 1 as the first input token). Additionally,
each map is associated to an overall weight. The map with the highest
overall weight is to be transformed into a command and then passed to the
MovistarBot. This transformation is trivial and has simply been hard-coded
as a C++ function; for instance, the following set of mappings of XML tags to
left-open input intervals is generated for sentence ‘envia hola al 555°, among
others:

sms — (1,1] (20.1)
message — (1,2] (20.2)
phone — (3,4] (20.3)

The presence of the first mapping implies that the user is asking to send an
SMS, and the others define the input segments to be used as message and
phone arguments, respectively. For this map, command sms 555 hola is to
be generated. Note that the input interval of the first mapping is empty: only
XML tags corresponding to arguments to be outputted need to be mapped
to a non-empty input interval. XML tags identifying the requested service
require only to be present in the map.

Translator algorithms compute the set of outputs for each possible inter-
pretation of the input sentence, either as an explicit list of outputs (a list of
maps in this case) or as some kind of machine factoring out common parts:
a filtered-popping recursive transition network (FPRTN, chapter 15) having
pairs XML tag/weight as transition labels. They then translate the top-
ranked output into the corresponding MovistarBot command. Additionally,
FPRTN-based algorithms also prune the generated FPRTN (section 16.1,
pg. 325) before generating either the whole set of outputs or the top-ranked
output only, depending on the algorithm. Acceptor algorithms —algorithms
computing only whether the sentence corresponds to a service request or
not, without generating any translation— ignore grammar’s output labels
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and compute only whether the sentence is a request for a supported online
service or not.

Figure 20.3 illustrates the performance drop of the best performing vari-
ant of each algorithm, for input a"0" with n = 0...15 and grammar of
figure 14.1 (p. 284). In this case, the grammar has weight and string output;
the treatment is similar to the MovistarBot cases though sets of weighted
strings are to be generated instead of sets of weighted maps, and the top-
ranked string is to be returned as is, that is, without being transformed into
some command.

Recall that grammar of figure 14.1 is a minimal theoretical grammar
whose purpose is to produce an exponential number of outputs w.r.t. the
input length; exponential production happens in natural language grammars
due to ambiguity that increases exponentially with additional nesting levels of
subgrammar calls. Though such nesting levels in natural language grammars
are not usually high, significant speedups can be perceived even for low nest-
ing levels due to the exponential nature of the problem: in spite of the small
size of grammar of figure 14.1 (6 states and 7 transitions), non-exponential
algorithms already perform better than their exponential counterparts for
nesting levels greater than 3; lower nesting levels will be required for general
natural language grammars, which can easily reach millions of states and
transitions.

20.1.1 Algorithms

In the figures, the following short codes and background colors have been
used in order to identify each algorithm:

e depth-first -o: depth-first acceptor, section 12.7 (pg. 235)

depth-first : depth-first translator, section 13.5 (pg. 262)

breadth-first -0 : breadth-first acceptor, section 12.7 (pg. 235)

o |breadth=first : breadth-first translator, section 13.5 (pg. 262)

earley -o: Earley acceptor, section 12.11 (pg. 246)

° -: Earley translator, section 13.10 (pg. 272)
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e to-fprtn: to FPRTN translator (prunes the FPRTN but does not

generate its language), section 15.6 (pg. 306)

° : to FPRTN translator and FPRTN breadth-first expan-
sion (as ‘to-fprtn’ but also generating the language of the FPRTN by

means of a breadth-first traversal), sections 15.6 (pg. 306) and 16.2
(pg. 327),

to-fprtn-zpps : to FPRTN & ¢” map translator (as ‘to-fprtn’ but also
building a map ¢” and performing some variable initializations required
by algorithm ‘to-fprtn-bse’), sections 15.6 (pg. 306) and 16.3 (pg. 329),

: to FPRTN translator and blackboard set expansion
(as ‘to-fprtn-zpps’ but also expanding the FPRTN by means of black-
board set processing instead of a breadth-first traversal), sections 15.6
(pg. 306) and 16.3 (pg. 329),

to-fprtn-top : to FPRTN translator and top-blackboard initialization
(as ‘to-fprtn-zpps’ but performing the initializations required by algo-
rithm ‘to-fprtn-tbe’ instead of ‘to-fprtn-bse’), sections 15.6 (pg. 306)
and 16.2 (pg. 327),

: to FPRTN translator and top-blackboard extractor
(as ‘to-fprtn-top’ but also extracting the top-ranked blackboard by a
method similar to blackboard set processing), sections 15.6 (pg. 306)
and 16.2 (pg. 327).

Note that algorithms with faded colors do not perform the whole chain of
treatment, either because they are simple acceptors or because omit some
final stages of treatment. We have included them in order to observe the
performance drop due to output generation, and to observe the cost of each
separate stage of treatment, namely:

e ‘carley -0’ = cost of computing the Earley acceptor sets of execution

states,

‘to-fprtn’ minus ‘earley -0’ = cost of adding transitions with output la-
bels to the Earley acceptor execution states in order to build an output
FPRTN, plus later prunning the FPRTN,
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e ‘to-fprtn-zpps’ minus ‘to-fprtn’ = cost of building ¢/ map and per-
forming some variable initializations for output generation by means of
blackboard set processing,

e ‘to-fprtn-top’ minus ‘to-fprtn’ = cost of building ¢/ map and performing
some variable initializations for the generation of the top-blackboard,

e ‘to-fprtn-bse’ minus ‘to-fprtn-zpps’ = cost of generating every output
accepted by the FPRTN by means of blackboard set processing and
then choose the top-ranked one, and

e ‘to-fprtn-tbe’ minus ‘to-fprtn-top’ = cost of generating only the top-
ranked output within the FPRTN.

For instance, we can see that the cost of computing map (! and performing
the subsequent variable initializations is negligible. Additionally, algorithms
implementing partial treatments establish a performance limit for algorithms
performing additional stages (e.g.: ‘to-fprtn’ cannot be faster than ‘earley -o’
since it performs the same treatment stages plus some additional ones). In
general, it is no use implementing a FPRTN based algorithm in order to sur-
pass an algorithm X if ‘to-fprtn’ performs worst than X; the implementation
of ‘to-fprtn’ is to be first improved until obtaining a meaningful performance
margin w.r.t. the algorithm to surpass.

20.1.2 Algorithm variants

In the figures, parameters other than ‘-0’ identify “minor” algorithm opti-
mizations (the algorithm variants), namely

e +t: optimize sequence management by means of tries (chapter 9); ap-
plicable to algorithms whose execution states include a stack of return
states (namely ‘depth-first’, ‘breadth-first’ and the breadth-first expan-
sion of ‘fprtn-bfe’) and/or include a sequential partial output (in the
case exposed here, outputs are not sequences but descriptions of the
mobile service the sentence is asking for),

e -eXXX: set/map implementation for the management of sets/maps of
execution states (excluding ‘depth-first’ since it does not build sets or
maps of execution states but single execution states), and
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e -bXXX: set/map implementation for the management of sets/maps of
blackboards (the output structures).

The different set/map implementations are

e std: the one provided by GNU’s implementation of the C++ Standard
Template Library, that is, red-black trees (section 2.5, pg. 62) with
Cormen’s addition algorithm (section 2.3.6, pg. 50),

e Irb: our custom implementation based on double-linked red-black trees
(section 2.6, pg. 64) with Knuth’s addition algorithm (section 2.3.5,
pg. 45), and

e Irb-3w: as the previous one but using a 3-way comparator (section 2.3.9,
pg. 55).

Fully-colored rows highlight the fastest variant of each algorithm.

20.1.3 Implementation details

Every algorithm has been programmed in C++ (Stroustrup, 2000), using the
Standard Template Library (see for instance Josuttis, 1999) and some Boost
libraries (http://www.boost.org). We have taken advantage of generic pro-
gramming in order to reuse the source code of each algorithm for every pos-
sible variant —sequence, set and map types have been declared as template
types. Apart from factoring out the source code, this ensures that the per-
formance difference between the different variants of the same algorithm is
exclusively due to the different implementation of sequences (with or without
trie optimization), sets and maps. Input and output types have also been
declared as template types so that other kind of grammars can be supported
in the future (e.g.: with other character codification schemes such as UTF-
8, with other kind of lexical masks, with unification processes, etc.). Every
algorithm variant has been compiled into a single executable, weighting 5.9
MB, with version 4.3.2 of GNU’s g++ compiler. The codes described in the
two previous sections are used as parameters in order to choose the algorithm
variant to execute.


http://www.boost.org
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20.1.4 Experiment conditions

Each algorithm has been applied to the whole corpus several consecutive
times in order to obtain meaningful measures: a minimum amount of sec-
onds is spent per algorithm, the number of consecutive applications being
counted. Each measure has been taken several times; graph bars of fig-
ures 20.1 and 20.2 represent means and error bars represent the minimum
and maximum measures. Errors are less than 1% of the observed measure,
hence we can consider negligible the error of the speedup factors we will give
(below £0.001). In figure 20.3, only thick curves representing the means
have been drawn; except for n = 0, the regions between the maximum and
minimum curves for each algorithm are thinner enough to be covered by the
corresponding mean curves. These regions are slightly wider for n = 0, and
a few times wider for algorithm ‘depth-first -o’. Anyway, the purpose of this
graphic is to compare the performance drops against an exponential grammar
rather than giving absolute measures.

The measures not only include the cost of computing the result, but also
the cost of freeing the allocated memory; hence, the overhead added by some
optimizations and algorithms due to the use of more complex data structures,
such as tries and FPRTNS, is fully taken into account. We have used GNU’s
mcheck library and mtrace tool in order to ensure that every single byte of
dynamically allocated memory is properly freed.!

The tests were run on a Ubuntu platform version 8.10 (Intrepid Ibex), 64
bits. The hardware specifications are:

e CPU: Intel® Core*™2 Duo E8500, 3.16 GHz, 6 MB L2 cache, 64 KB
L1 cache

e RAM: 8 GBs, DIMM DDR Synchronous 1066 MHz (0.9 ns)

Each test consumed no more than 18 MB of RAM for the case of the Movis-
tarBot grammar and corpus, and less than the RAM size for the exponential
case (more than 8 GBs are needed for some algorithms with exponential
worst-case costs and n > 20). The pseudo-determinized version of the Mo-
vistarBot grammar has 1359 states and 3141 transitions, and the flattened
and pseudo-determinized version has 5504 states and 31702 transitions. The

'http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#
Allocation-Debugging
2 As listed by command 1shw.


http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging
http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging
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corpus contains 168 sentences, with an average of 10.1 tokens per sentence
and 4.1 characters per token. Each sentence has an average of 6.9 interpre-
tations for both versions of the MovistarBot grammar.
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Parsed sentences per second

o o o o o 9o o
- 2 £ %2 8 8 8 8 g
| 1 depth-first -0 -+t 17234 >>
2 depth-first -o 14485 >
| 3 earley -0 -elrb 4071 >>
4 earley -0 -elrb-3w 3999
5 earley -0 -estd 3403
6 to-fprtn-zpps -elrb 2673
7 to-fprtn-top -elrb 2667
8 to-fprtn-top -elrb-3w 2660
9 to-fprtn-zpps -elrb-3w 2650
11 to-fprtn -elrb-3w
13 to-fprtn-tbe -elrb -bstd
14 to-fprtn-tbe -elrb-3w -bstd
15 to-fprtn-tbe -elrb-3w -blrb-3w
16 to-fprtn-tbe -elrb-3w -blrb
17 to-fprtn-tbe -elrb -blrb-3w
18 breadth-first -0 +t -elrb 2330

breadth-first -0 +t -elrb-3w

-elrb -blrb-3w

to-fprtn-bse

22 to-fprtn -estd

23 to-fprtn-bse -elrb-3w -blrb-3w
24 to-fprtn-bse -elrb-3w -blrb
25 to-fprtn-bse -elrb -blrb
26 to-fprtn-bse -elrb -bstd
27 to-fprtn-tbe -estd -blrb-3w
28 to-fprtn-top -estd

-estd

to-fprtn-zpps

earley
32 to-fprtn-tbe -estd -blrb
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500

1000
1500
2000
2500
3000
3500
4000

33 breadth-first -0 +t -estd

to-fprtn-bfe +t -elrb -bstd
36 to-fprtn-tbe -estd -bstd
37 earley -estd -bstd
38 to-fprtn-bse -estd -blrb-3w
39 to-fprtn-bse -estd -blrb
40 to-fprtn-bse -estd -bstd

41 to-fprtn-bfe +t -elrb-3w -blrb-3w
42 to-fprtn-bfe +t -elrb -blrb-3w
43 to-fprtn-bfe +t -elrb -blrb
44 to-fprtn-bfe +t -elrb-3w -blrb

45 breadth-first -0 -elrb-3w

46 breadth-first -0 -elrb

47 to-fprtn-bfe -elrb-3w -bstd
48 to-fprtn-bfe +t -estd -bstd
49 to-fprtn-bfe -elrb -bstd
50 to-fprtn-bfe -elrb -blrb-3w
51 to-fprtn-bfe -elrb-3w -blrb-3w
52 earley -elrb -blrb
53 to-fprtn-bfe -estd -bstd
54 to-fprtn-bfe +t -estd -blrb
55 to-fprtn-bfe -elrb -blrb
56 earley -elrb-3w -blrb
57 to-fprtn-bfe -elrb-3w -blrb
58 earley -elrb -blrb-3w
59 to-fprtn-bfe +t -estd -blrb-3w
60 breadth-first -0 -estd

61 depth-first +t -bstd
62 earley -elrb-3w -blrb-3w
63 earley -estd -blrb-3w
64 earley -estd -blrb
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65 to-fprtn-bfe -estd -blrb-3w
66 to-fprtn-bfe -estd -blrb
67 depth-first -bstd 122
68 depth-first +t -blrb 1044
69 depth-first +t -blrb-3w 1043
70 depth-first -blrb 919
71 depth-first -blrb-3w 909
73 breadth-first +t -elrb-3w -bstd
74 breadth-first +t -estd -bstd
75 breadth-first -elrb-3w -bstd
76 breadth-first -elrb -bstd
77 breadth-first +t -elrb-3w -blrb-3w
78 breadth-first +t -elrb -blrb-3w
79 breadth-first +t -elrb -blrb
80 breadth-first +t -elrb-3w -blrb
81 breadth-first -estd -bstd
82 breadth-first +t -estd -blrb-3w
83 breadth-first +t -estd -blrb
84 breadth-first -elrb-3w -blrb-3w
85 breadth-first -elrb-3w -blrb
86 breadth-first -elrb -blrb-3w
87 breadth-first -elrb -blrb
88 breadth-first -estd -blrb-3w
89 breadth-first -estd -blrb

Figure 20.1: Performance comparison of each algorithm variant for the Movis-
tarBot corpus and flattened and pseudo-determinized grammar; fully colored rows
correspond to the fastest variants, and only intense color rows correspond to al-
gorithms that perform the whole chain of treatment (rows 12-89 except those of
algorithm ‘breadth-first -0’).
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63 breadth-first +t -elrb-3w -bstd
depth-first -blrb

66 breadth-first +t -estd -bstd

67 earley -elrb-3w -bstd
68 earley -estd -bstd
69 breadth-first -elrb-3w -bstd
70 breadth-first -elrb -bstd
71 breadth-first -estd -bstd

72 breadth-first +t -elrb -blrb
73 breadth-first +t -elrb-3w -blrb
74 breadth-first +t -elrb -blrb-3w
75 breadth-first +t -elrb-3w -blrb-3w
76 breadth-first +t -estd -blrb-3w

77 earley -elrb-3w -blrb
78 earley -elrb -blrb
79 earley -elrb -blrb-3w
80 breadth-first +t -estd -blrb
81 earley -elrb-3w -blrb-3w
82 earley -estd -blrb-3w
83 earley -estd -blrb
84 breadth-first -elrb-3w -blrb
85 breadth-first -elrb -blrb-3w
86 breadth-first -elrb -blrb
87 breadth-first -elrb-3w -blrb-3w
88 breadth-first -estd -blrb-3w
89 breadth-first -estd -blrb

Figure 20.2: Performance comparison of each algorithm variant for the Movis-
tarBot corpus and flattened and pseudo-determinized grammar; fully colored rows
correspond to the fastest variants, and only intense color rows correspond to algo-
rithms that perform the whole chain of treatment (rows 18-89 except 34 & 38).
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20.2 Interpretation

For the case of the non-flattened grammar, our fastest translator (12 to-fprtn-
tbe -elrb -blrb) is 2.12 times faster than the plain depth-first translator (67
depth-first -bstd), the one used by Unitex,* while the plain Earley translator
(37 earley -estd -bstd), the one used by Outilex,* is 1.64 times faster. For
the case of the flattened grammar, our fastest translator is 1.45 times faster
(position 18) than the plain depth-first translator (position 58), while the
plain Earley (position 68) is 1.39 times slower. The speedup factors w.r.t.
the plain depth-first algorithm, for each one of the fastest translator variants,
are

e non-flattened: 2.12 (‘to-fprtn-tbe’), 1.74 (‘to-fprtn-bse’), 1.64 (‘earley’),
1.54 (‘to-fprtn-bfe’), 1.15 (‘depth-first’) and 0.68 (‘breadth-first’)

e flattened: 1.45 (‘to-fprtn-tbe’), 1.42 (‘to-fprtn-bfe’), 1.16 (‘depth-first’),
1.15 (‘to-fprtn-bse’), 0.76 (‘breadth-first’) and 0.72 (‘earley’)

Even for the optimized versions of the Earley and depth-first translators,
translator ‘to-fprtn-tbe’ is the fastest one in both cases, and ‘breadth-first’
is the worst one.

The performance drop for each stage of treatment of the fastests FPRTN-
based translators, for the non-flattened and flattened grammars, and taking
the fastest Earley acceptor (3 & 5 ‘earley -0’) as reference, is:

e 35% & 37% for adding output transitions to the Earley trace (10 & 12
‘to-fprtn’),

e 35% & 37% (negligible) for additionally building map ¢ and perform-
ing the variable initializations required for either extracting the top-
ranked blackboard (7 & 14 ‘to-fprtn-top -elrb’) or every blackboard by
means of blackboard set processing (6 & 15 ‘to-fprtn-zpps’) and, finally

3Unitex implements some optimizations to accelereate the evaluation of lexical masks
which have not been taken into account here (see Paumier, 2003, Vol. 1, sec. 2.1.2.2,
p- 120), though the same optimizations would apply for any algorithm.

* Additionally, Outilex’s algorithm performs an on-the-fly determinization of the gram-
mar which we have not taken into account (see Blanc, 2006, sec. 2.8.4, pg. 68); this oper-
ation accelerates further grammar applications reusing determinized substructures during
previous grammar applications at the expense of increasing the grammar size.
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Figure 20.3: Performance comparison of the fastest algorithm variants —excluding ‘to-fprtn-zpps’ and ‘to-fprtn-
top’ since they perform as ‘to-fprtn’— for grammar of figure 14.1 and input a™b”; ‘fprtn-tbe’ is the only algorithm
performing the whole chain of treatment and whose performance does not drop exponentially w.r.t. n, but linearly.
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37% & 38% for additionally extracting the top-ranked blackboard (12
& 18 ‘to-fprtn-tbe’), or

48% & 51% for additionally extracting every blackboard by means of
blackboard set processing (20 & 49 ‘to-fprtn-bse’), or

54% & 40% for additionally extracting every blackboard by means of
a breadth-first traversal (34 & 24 ‘to-fprtn-bfe’),

while the performance drop of the straightforward adaptation of the Earley
acceptor for output generation is

e 51% & 70% (30 & 65 ‘earley’).

As we can see, we have managed to extend the original Earley acceptor for
the generation of the top-ranked output with a performance drop of 37%—
38% (for the MovistarBot grammar) instead of 51%-70%. We can expect
a performance drop of up to 48%-51% for an algorithm extracting the m
top-ranked blackboards.

The performance drops of the other translator algorithms due to output
generation (fastest translators against their respective fastest acceptors) are:

e 79% & 70% for breadth-first traversal (72 & 62 ‘breadth-first’ vs 18 &
3 ‘breadth-first -0’) and

e 92% & 95% for depth-first traversal (61 & 48 ‘depth-first’ vs 1 & 1
‘depth-first -0”).

As we can see, the breadth-first algorithm is not only less efficient than the
FPRTN-based ones, but the performance drop due to output generation is
also higher. Obviously, the performance drop of the depth-first translator is
the highest since its acceptor-only version stops once the first interpretation
is found, instead of searching for every possible interpretation as for the other
algorithms.

20.2.1 Overheads

Obviously, more complex algorithms have a greater overhead than simpler
ones. Relative overheads between the different algorithms can be observed
in figure 20.3 as the different performances for n = 0:*> the algorithms are

5The lower the performance, the greater the overhead.
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just requested to traverse a single e-transition in order to either accept or to
translate the empty string into sequence ‘*’, but more complex algorithms
perform additional operations that are amortized for higher values of n. If
we compare either translator or acceptor algorithms only, we can see that:

e FPRTN-based algorithms have the greatest overheads, as could be ex-
pected due to the construction of an intermediate representation of the
set of outputs (the output FPRTN),

e depth-first algorithms have the lowest overheads, as could be expected
from the most straightforward algorithms, and

e Farley and breadth-first algorithms have similar intermediate over-
heads.

Among the FPRTN-based algorithms, ‘fprtn-bse’, 'fprtn-tbe’ and ‘fprtn-bfe’
have similar overheads; obviously, the difference between these 3 algorithms
and algorithm ‘to-fprtn’ is quite greater since ‘to-fprtn’ skips the generation
of the outputs accepted by the FPRTN. Finally, Earley algorithms have
a slightly higher overhead than breadth-first ones due to the use of more
complex ESs (5-tuples instead of triplets for the case of the translators, and
quadruplets instead of pairs for the case of the acceptors).

20.2.2 Asymptotic costs

The applied grammar for the case of figure 20.3 generates an exponential
number of outputs w.r.t. the input length (]a™0"]). Obviously, every algo-
rithm generating the list of every possible output will have an exponential
cost w.r.t. the input length, namely any variants of ‘to-fprtn-bse’, ‘to-fprtn-
bfe’, ‘earley’, ‘depth-first’ and ‘breadth-first’. Algorithm ‘breadth-first -o’
computes acceptance only, yet it generates an exponential number of ESs
w.r.t. the input length and, therefore, has an exponential cost. Algorithm
‘depth-first -0’ generates the same kind of ESs than ‘breadth-first -o’, but
explores only a single potential interpretation at each given moment instead
of all of them. Since the first explored path is already found to be an inter-
pretation, it avoids to explore the remaining paths; since the length of this
path is linear w.r.t. the input length, the algorithm cost is linear for this
case, though for other cases an exponential number of ESs might have to
be explored before finding the first interpretation. Algorithm ‘earley’ com-
putes every ES but following another format which allows for factoring out
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common call substructures, which results in a linear number of ESs w.r.t.
the input length. Algorithm ‘to-fprtn’ increments this structure with output
transitions, resulting in an output FPRTN accepting every possible output,
yet keeping the linear time. Algorithm ‘to-fprtn-tbe’ traverses the FPRTN
in order to extract only the top-ranked output; this operation is also per-
formed in linear time thanks to an adaptation of Kahn’s topological sort
algorithm for the computation of the top-ranked path within the FPRTN.
Blackboard-set expansion is an improvement over the breadth-first traversal
of the FPRTN, also based on Kahn's topological sort, obtaining similar re-
sults to the Earley translator for complex enough grammars and inputs: for
the case of the exponential grammar, n must be equal to or greater than 6,
but lower recursion degrees will be enough for grammars having bigger call
substructures whose treatment can be factored out; note that the exponential
grammar has only 6 states an 7 transitions, while the MovistarBot grammar
has 1359 states and 3141 transitions. Indeed, better results are expected for
general domain grammars with millions of states and transitions (recall that
the MovistarBot grammar mainly represents sentences requesting for some
mobile service).

Since ‘to-fprtn-tbe’ is an adaptation of ‘to-fprtn-bse’ for extracting only
the top-ranked output, we can expect that an efficient implementation of an
algorithm generating the m top-ranked blackboards will have a cost between
‘to-fprtn-tbe’ and ‘earley’, depending on m. This would allow for a compro-
mise between performance and the maximum number of outputs to generate,
for applications taking advantage of multiple outputs upon ambiguity.

20.2.3 Flattening

Flattening the grammar increases performance by a factor between 1.43 and
5.05; Earley algorithms are the less affected (1.43-2.5) and breadth-first and
depth-first algorithms are the most affected (3.25-5.05): the efficient treat-
ment of call transitions compensates, to some extent, the lack for this gram-
mar optimization. FPRTN-based algorithms with breadth-first expansion
are slightly less affected than the breadth-first translators (3.02-3.94 against
3.65-4.05), since pruning the FPRTN reduces the number of ESs to explore.
Finally, algorithms based on FPRTNs and blackboard set processing are
slightly more affected than Earley-based ones (2.11-2.84 against 1.43-2.5).
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20.2.4 Set and map implementations

The use of double-linked red-black trees instead of the standard red-black
trees for the implementation of set and map structures accelerates the it-
erative traversal of the sets —operation required by all the algorithms but
‘depth-first -o'— and allows for selectively removing elements from the struc-
tures without having to rebalance the corresponding trees —operation re-
quired by the FPRTN-based algorithms only. However, we have used a
Knuth-like algorithm (section 2.3.5, pg. 45) instead of a Cormen-like (sec-
tion 2.3.6, pg. 50) in order to add elements to the trees, the former algorithm
requiring additional element comparisons. The Knuth-like algorithm can
take advantage of a 3-way comparator (section 2.3.9, pg. 55) in order to
reduce the number of comparisons when set elements are sequences: com-
paring two sequences « and S having a maximum common prefix of length n
will require n applications of the 3-way comparator and either n or 2n com-
parisons with a ‘less-than’ operator (n if @ <  and 2n otherwise, since in
the latter case comparison 5 < « will also be performed). In the presented
cases, the number of avoided comparisons by using the 3-way comparator
does not seem to compensate the additional number of comparisons due to
the use of Knuth’s algorithm, hence it would be better to simply use Cor-
men’s algorithm, which cannot be improved with a 3-way comparator (we
leave this improvement to a future work). For the case of output generation,
we have experienced no improvement or even a slow-down when applying
either the flattened or the non-flattened version of the MovistarBot gram-
mar (0.7-1.01). For the case of sets of execution states and the non-flattened
grammar, we have obtained the same positive results either using or not the
3-way comparator: speedup factors between 1.02 and 1.37, mostly affecting
either the FPRTN-based ones not performing a breadth-first exploration of
the FPRTN (1.16-1.37) or the non-FPRTN based algorithms not generating
output at all (1.15-1.23). For the other algorithms, speedup factors stay
between 1.02 and 1.17, the FPRTN-based one being the most affected. For
the case of the flattened grammar, speedup factors are quite reduced in ev-
ery case, staying between 1.02 and 1.12; flattening the grammar results in
an important reduction of the impact of this optimization —probably due
to a reduction in the size of the computed sets of execution states— though
this will not be possible for natural language grammars not focused in a so
specific domain such as the sentences requesting for mobile services.
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20.2.5 Trie-string optimization

For the MovistarBot use case, outputs are not sequences; hence, the opti-
mization of string management based on tries can only be applied to algo-
rithms using stacks of states, namely the ones performing a breadth-first
or depth-first exploration of either the grammar or the generated output
FPRTN. The speedup depends on the number of generated stacks and their
lengths. Depth-first and breadth-first algorithms generate as many stacks
as ESs, and the FPRTN-based algorithm generates at least as much stacks
as remaining states within the FPRTN after pruning it, and more if the
FPRTN contains shared call substructures. The stack lengths depend on
the number of successive unresolved calls. Since the flattened grammar has
no calls, the stack lengths are always zero, though it is still more expensive
to manage an empty array than a pointer to the root of a trie. Speedup
factors for the non-flattened and flattened grammars are 1.16-1.43 and 1.13~
1.37 (breadth-first), 1.14-1.19 and 1.11-1.21 (depth-first) and 1.11-1.19 and
1-1.02 (FPRTN-based combined with a breadth-first exploration).

20.2.6 Joint optimizations

Some algorithms can benefit from both the use of more efficient set and map
implementations and the trie-based optimization. In those cases, maximum
speedups for the flattened and non-flattened versions of the MovistarBot
grammar are:

o ‘to-fprtn-bse +t -elrb -bstd’: 1.3 and 1.12, while ‘+t’ alone yields 1.19
and 1.02 and ‘-elrb’ alone yields 1.17 and 1.12,

e ‘breadth-first +t -elrb -bstd’: 1.4 and 1.26, while ‘+t’ alone yields 1.31
and 1.21 and ‘-elrb’ alone yields 1.08 and 1.06, and

e ‘breadth-first -o +t -elrb’: 1.64 and 1.45, while ‘+t’ alone yields 1.43
and 1.36 and ‘-elrb’ alone yields 1.23 and 1.1.

In these cases, the trie-based optimization is more significant than the op-
timization based on double-linked red-black trees with Knuth’s algorithm.
We recall that both optimizations can be further improved: the former by
using ternary search trees instead of tries and the latter by using Cormen’s
algorithm instead of Knuth’s. Note that modified versions of FPRTN-based
algorithms based on blackboard set processing have been considered whole
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new algorithms instead of simple optimizations, and that multiple implemen-
tation choices offered by the own programming language have been omitted.
The fact is, the greater the number and complexity of the components con-
stituting an algorithm, the greater the chance to find or to have missed some
applicable optimization. Hence, not only our algorithms based on FPRTNs
and blackboard set processing perform better than the others, but their im-
plementation is more likely to be improved than the one of the other al-
gorithms. It must also be taken into account that further optimizing an
algorithm solving a complex problem, such as natural language parsing, is
analogous to tightening a screw: as we approach the optimal solution —
whatever it is— achieving another quarter of turn requires a considerable
effort, and the screw has already been turned several times in 50 years of
research in natural language parsing.



Chapter 21

Conclusion

This work has focused on the optimization of the algorithms of application of
local grammars (Gross, 1997), taking as reference those of the Unitex (Pau-
mier et al., 2009; Paumier, 2008) and Outilex (Blanc and Constant, 2006b,a)
systems: a top-down depth-first algorithm (Aho et al., 1986, sec. 4.4, p. 181)
and an Earley-like algorithm (Blanc, 2006, sec. 3.5, p. 89), respectively. Local
grammars are recursive transition networks with output defined on an alpha-
bet of predicates called lexical masks. These masks are powerful linguistic
operators which ease the construction of natural language grammars: simple
expressions can be used in order to represent potentially large sets of words
(or tokens, chapter 5) complying with a set of constraints on their seman-
tic and/or morphosyntactic properties, which are described in an electronic
dictionary (chapter 4).

The adequacy of local grammars for the description of natural language
phenomena has already been proved (Roche and Schabes, 1997; Catala and
Baptista, 2007; Martineau et al., 2007; Laporte et al., 2008b,a). As can
be expected from a formalism for the representation of natural language
grammars, the application of local grammars requires flexible algorithms,
such as those based on top-down (Aho et al., 1986, sec. 4.4, p. 181) and
Earley (Earley, 1970) parsers.! Other not-so-flexible parsers such as LR
(Knuth, 1965), CYK’s (Cocke and Schwartz, 1970; Younger, 1967; Kasami,
1965), and Tomita’s (Tomita, 1987) are not viable or not so straightforward,
either because

e they require the grammars to be deterministic and non-ambiguous,

LA brief description of the original Earley parser is given in appendix C.
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e they require to transform the grammar into some normal form, or

e they require to build a table whose size depends on the size of the input
alphabet, which for the case of local grammars can be too large: the
potentially infinite set of words and symbols of the language.

21.1  Our contributions

As stated in Boullier (2003), it seems difficult to find a technique that would
improve the throughput of context-free parsers due to the huge amount of re-
search that has already been performed by the parsing community. The same
applies for the case of recursive transition networks due to their equivalence
with context-free grammars. Surpassing both the top-down depth-first and
Earley-like algorithms has required to conceive a whole new algorithm and
several other optimizations; we have followed an iterative approach, refining
the previous solutions until achieving lower execution times.

21.1.1 Formal description of finite-state machines and
their algorithms of application

We have started by formally describing the different machines and algorithms
of application in order to study their properties, strengths and weaknesses.
It must be noted that Unitex’s and Outilex’s local grammars are not exactly
of the same kind: Outilex introduced new kinds of output generation to local
grammars, such as weights (Blanc, 2006, sec. 3.3, p. 85) and feature structures
built by means of unification processes (Blanc, 2006, sec. 4.3, p. 118). We
have built a general mathematical framework for the formal description of
any kind of finite-state machine (briefly summarized in section. 1.7.2, p. 25),
including machines on an alphabet of lexical masks instead of input symbols
(chapter 6); this framework not only copes with the different kind of machines
treated by both the Unitex and Outilex systems, but can be used as a base
for future extensions. Within this framework, we have first given a general
description of finite-state machine (chapter 7), then refined this description
for the case of finite-state automata (chapter 8), tries (chapter 9), finite-state
transducers (chapters 10 and 11), recursive transition networks with and
without output (chapters 12-14) and filtered-popping recursive transition
networks (chapters 15 and 16), a new kind of machine; describing first the
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simpler automata types is an easier and better-structured approach, allowing
for factoring out properties and proofs common to the different machine

types:

e finite-state transducers (FSTs) can be obtained by extending finite-
state automata (FSAs) with output generation,

e recursive transition networks (RTNs) can be obtained by extending
FSAs with a subroutine jump mechanism, which corresponds to the
implementation of the evaluation of the equivalent non-terminal sym-
bols of the context-free grammar,?

e recursive transition networks with output (RTNOs) can be obtained by
combining the two previous extensions, and

e filtered-popping recursive transition networks (FPRTNs) can be ob-
tained by extending RTNs with additional restrictions upon the termi-
nation of subroutine jumps.

Based on these formalisms, we have first defined top-down breadth-first al-
gorithms of application; once the equations describing the behaviour of the
different machines are given, defining these algorithms is straightforward.
Moreover, these algorithms can be easily modified in order to obtain both
the top-down depth-first and Earley algorithms, serving as a common base
for their formal definition and comparison:

e Top-down depth-first algorithms produce the same steps of execution
(or execution states) than the corresponding top-down breadth-first al-
gorithms, but in a different order (following a depth-first exploration of
the machine instead of breadth-first). Top-down depth-first algorithms
are simpler, requiring to store a single execution state at a time instead
of having to manage the sets of every possible execution state for each
input prefix, which is more time consuming. In turn, further additions
of the same execution state to the sets of execution states are skipped,
avoiding having to compute twice every execution that would follow
them.

e Earley-like algorithms perform a breadth-first exploration of the gram-
mar, also building sets of execution states, but use a more complex

2We have given a short description of context-free grammars in appendix B.
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representation and management of the execution states. As benefits,
they support left-recursive grammars and are able to factor out the
computation of subroutine jumps from alternative analyses of the same
input prefixes.

As their main weakness, all these algorithms have an exponential worst-case
cost, even the Earley-like algorithm in spite of the polynomial worst-case cost
(n3) of the original Earley parser (Sastre and Forcada, 2007, 2009): if the
number of outputs to generate increases exponentially w.r.t. the input length,
computing the list of outputs for a given input sequence cannot have a worst-
case cost below exponential. Such cases occur in natural language grammars:
for instance, let the outputs represent tags to be inserted between the sen-
tence constituents in order to build every possible parse tree of the given
natural language sentences; the number of trees to generate increases expo-
nentially w.r.t. the number of unresolved prepositional phrase attachments
within the sentences (Ratnaparkhi, 1998). As for context-free grammars, the
size of the corresponding RTNs does not need to be increased exponentially
in order to represent such natural language structures, since their represen-
tation is factored out by means of subroutine jumps. The original Earley
acceptor keeps an analogous factored representation of the execution state
structures (the execution traces), which is lost when extending the execution
states with partial outputs: the concurrent analyses that where meant to
be joined together during and after the computation of a subroutine jump
are now joined during the subroutine jump only, since the combination of
the different partial outputs computed before the jump with those computed
during the jump result in different execution states after the jump; at least,
the internal computation of subroutine jumps is factored out, to some extent.

21.1.2 Trie string management

As a first optimization, we have improved the incremental construction of
sequences —namely partial outputs and stacks of return states— by storing
them in tries and representing them as pointers to the nodes of the trie
corresponding to the end of the sequences (chapter 9); sequence copies and
comparisons are then reduced to single operations on pointers, and appending
or removing suffixes —the typical involved operations— can be efficiently
done on the tries since the pointers give direct access to the end-of-sequence
nodes. Trie string management, as we have called this optimization, produces
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a significant increase in performance for the case of the breadth-first and
depth-first parsers, but has a negative impact on the Earley-like algorithms;
these algorithms do not use stacks of return states, and factoring out the
computation of partial outputs of common subroutine jumps requires an
additional operation on the tries which is not so efficient: appending a whole
trie branch to another existent trie branch.

21.1.3 A first algorithm of application of local gram-
mars based on filtered-popping recursive transi-
tion networks

As a first milestone, we have conceived filtered-popping recursive transition
networks (FPRTNs), a new kind of finite-state machine for the compact rep-
resentation of the sets of outputs (or translations) for a given input sequence
and RTNO, and an algorithm computing such FPRTNs in time n? in the
worst case (Sastre, 2009). FPRTNs are analogous to the shared parse forests
(Lang, 1991) that result from the application of a CFG with the original Ear-
ley parser, though instead of being custom data structures they are a kind
of RTN; therefore, theory and algorithms on graphs, finite-state automata
and recursive transition networks can be reused or extended for the case of
FPRTNSs.

Once a FPRTN is computed, we prune it in order to remove every useless
path due to grammar paths accepting some input prefix but not leading to a
whole input translation. Due to the ambiguity of the language, this simplifies
the FPRTN considerably. The FPRTN can then be graphically represented
as a kind of finite-state automaton for its visualization.? In order to cope with
applications requiring a list of translations rather than a FPRTN, we have
conceived a first algorithm for the generation of the language of FPRTNs,
based on a breadth-first traversal (section 16.2, p. 327). Obviously, the expo-
nential worst-case cost cannot be avoided if the language of the FPRTN is to
be generated, but pruning first the FPRTN avoids the construction of useless
partial translations. As for the breadth-first algorithms, we have optimized
this algorithm by means of trie string management.

3Indeed, we have developed a tool for the generation of a Graphviz dot file (Gansner
and North, 2000) in order to visualize the resulting FPRTNs, for debugging purposes;
more information on Graphviz can be found in http://www.graphviz.org
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21.1.4 Implementation and application to the Movistar-
Bot project

The given formal descriptions have served as the base for the implementa-
tion of the different machine structures and their algorithms of application
in an object-oriented programming language: C++ (Stroustrup, 2000), us-
ing the Standard Template Library (see, for instance, Josuttis, 1999) and
some Boost libraries (http://www.boost.org). We have further adapted
these implementations for their exploitation in an industrial natural lan-
guage application provided by the enterprise Telefonica I+D:* the translation
of sentences in Spanish requesting for mobile services (e.g.: sending SMSs,
downloading games to our mobile phone, subscribing to alert services, etc.)
into commands that the MovistarBot —an AIML chatterbot (Wallace, 2004)
accessible through Microsoft’s Windows Live Messenger— can easily under-
stand (Sastre et al., 2009).> As part of the project, we have built the corre-
sponding local grammars for the translation of such request sentences, and
built a test corpus in order to verify the grammar coverage and control over-
recognition. As benefits, this project has allowed us to test the robustness
of our implementations and to compare the different algorithm performances
in a final natural language application.

21.1.5 Automatic assignment of weights to grammar
transitions

As many other final applications, the MovistarBot takes as input a unique
possible translation of each user sentence. Upon ambiguity, it is up to our
NLP engine to choose the right interpretation. We have extended the gram-
mar with weight output and implemented a procedure for the automatic
assignment of weights to each grammar transition, depending on the speci-
ficity of the lexical masks labeling each transition: transitions with more
restrictive lexical masks are to be preferred since they result in finer sentence
descriptions (section 6.4, p. 115). However, the whole set of translations is
still to be computed since an interpretation may start with a fine description
but then become coarser than the others. Once every interpretation is com-

4Telefonica I+D is a research and development enterprise and member of the Telefénica
group, leader of the telecommunications market in Spain and Latin America and which
also enjoys a significant footprint in Europe.

5AIML stands for Artificial Intelligence Mark-up Language.
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puted, the top-ranked one is chosen. Thanks to this technique, we have been
able to properly treat ambiguous sentences requesting for mobile services.

21.1.6 Grammar optimizations

We have measured the performance of the algorithms when applying both
a flattened and a non-flattened version of the MovistarBot grammar to the
whole corpus of request sentences.® Note that, in general, natural language
grammars cannot be flattened due to recursivity, though a partial flattening
is still possible (recursive calls can be recursively inlined a finite number of
times, leaving the call transitions as is within the last inlining). However,
this operation increases the grammar size exponentially w.r.t. the amount of
call nesting levels to flatten; hence, it may not be viable for large coverage
gramiars.

Both grammar versions have been pseudo-minimized before their ap-
plication. We have described this process in section 7.11, p. 159, based
on the minimization algorithm given in van de Snepscheut (1985, sec. 3.1,
p. 67). This process is mainly based on pseudo-determinization, which in
turn consists in determinizing the machine regarding it as a FSA over an
input alphabet of RTNO transition labels (input/output pairs and calls).
Note that full determinization is not generally possible for the case of ma-
chines with output or with recursive calls. We have used both the flattening
and pseudo-minimization programs included in Unitex —flattening and then
pseudo-minimizing the grammar, or only pseudo-minimizing it— rather than
reimplemented the corresponding algorithms. Outilex proposes an on-the-fly
determinization of the involved grammar substructures during each particu-
lar application; however, this will not accelerate the algorithms of application
except for repeated applications of the same grammar substructures, since
determinization is performed while applying the grammars. We have rather
chosen to keep Unitex’s approach, which is more general (applicable to any
machine), simpler and better-structured (determinization and grammar ap-
plication are two separated processes).

6Flattening consists in replacing call transitions (the subroutine jumps) by the whole
called machine substructures; this is analogous to function inlining in, for instance, C and
C++ programming languages. This procedure has been described in sections 12.8 and 13.6,
pp- 239 and 263.
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21.1.7 First experimental results

While the Earley-like algorithm had the best performance for the non-flattened
grammar, it had the worst one for the flattened grammar.” Our FPRTN-
based algorithm was the best for the flattened grammar, but came second
for the non-flattened grammar. The breadth-first algorithm performed badly
in both cases: managing sets of execution states instead of single states, as
for the depth-first algorithm, is expensive; the Earley-like algorithm amor-
tizes the added complexity when there are calls whose computations can be
factored out and, additionally, the FPRTN-based algorithm also amortizes
the added complexity by avoiding the generation of useless partial outputs.
However, the added complexity of building the FPRTN and then generating
its language is not compensated enough w.r.t. the Earley algorithm, for the
non-flattened case.

21.1.8 Double-linked red-black trees with aggressive el-
ement removal for efficient set management

GNU’s implementation of the Standard Template Library (and many other
implementations) use red-black trees for the representation of sets. One of the
main drawbacks of this implementation is that, when pruning the FPRTN,
the removal of each FPRTN state implies a tree rebalance. We have avoided
this rebalancing by using an alternative set representation: double-linked
red-black trees (chapter 2); moreover, this structure allows for an aggressive
element removal: the tree structure is no longer maintained, but only the
double links at each tree node. The non-aggressive use of double-linked red-
black trees was proposed by Das et al. (2008) for optimizing the iterative
traversals of sets. Indeed, the use of double-linked red-black trees has not
only accelerated the FPRTN-based algorithm but every algorithm building
sets of execution states, that is, every algorithm but depth-first. Asresult, the
speedup factor of the FPRTN-based algorithm w.r.t. the depth first algorithm
is even greater, but the Earley-like algorithm has also been improved: the
Earley-like algorithm still performs better than the FPRTN-based algorithm
for the case of the non-flattened grammar, but not as much as before.

"See the previous chapter for the exact performance figures.
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21.1.9 Blackboard set processing

As a second milestone, we have conceived an efficient method for the gener-
ation of the language of a FPRTN we have called blackboard set processing
(sections 10.9, 13.8 and 16.3, pp. 205, 265 and 329). This method avoids to
compute twice the same partial output by following a topological sort of the
FPRTN. Additionally, some partial results computed during the construc-
tion of the FPRTN can be reused here. The new FPRTN-based algorithm
finally performs better than the Earley-like algorithm for the non-flattened
grammar, but slightly worse than the depth-first algorithm for the flattened
grammar: the additional cost of computing a topological sort of the FPRTN
is not sufficiently amortized in this case.

21.1.10 Computing the top-ranked output in time n*
As a third and final milestone, we have extended blackboard set processing for
generating the top-ranked output represented by the FPRTN (section 18.2).
The topological sort is used here for generating only the greatest possible
weight and for marking the corresponding FPRTN path. This path is then
traversed for generating only the top-ranked output. The exponential worst-
case cost is finally avoided, reducing it to that of the original Earley parser
(n3). This algorithm is, finally, the best performing for both the flattened
and non-flattened versions of the MovistarBot grammar.

21.1.11 Final considerations

It is possible to define more complex algorithms which become aware of sit-
uations in which certain computations can be either factored out or avoided.
However, noticing such situations does not come without an added cost,
which is not amortized if the grammar does not contain structures allow-
ing for them to happen. However, such situations do happen with natural
language grammars due to their ambiguity and complexity. For the Movis-
tarBot grammar, which applies to a very restricted domain of the language,
our FPRTN-based algorithm already performs better than both the top-
down depth-first and the Earley-like algorithms, either for a flattened or a
non-flattened version of the grammar. Moreover, this algorithm is the only
one having a polynomial worst-case cost instead of exponential. Hence, we
expect the performance difference between our algorithm and the others to
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be considerably greater for the case of grammars covering a wider spectrum
of natural language structures.

21.2 Future work

First of all, we are willing to test our FPRTN-based algorithms with complex
and large coverage grammars, such as those that can be semi-automatically
built from lexicon-grammar tables for the analysis of simple sentences (Pau-
mier, 2003, sec. 1.3, p. 28). Blanc (2006, sec. 4.5.1, p. 143) follows a sim-
ilar procedure for the semi-automatic construction of grammars describing
complex sentences. However, this procedure will first require extending our
algorithm in order to support unification grammars; due to the possibility
of generating incompatible feature structures, such extension is not trivial.
Apart from unification, other interesting extensions that would allow for an
easier and more structured definition of linguistic data are:

e Input sentences represented by means of text automata (acyclic FSAs)
instead of sequential inputs (section 5.3.2, p. 101). Apart from lexi-
cal ambiguity, text automata represent the possible segmentations of
sentences. Up to now, we have coded multi-words and attached words
(verbs followed by enclitic pronouns) inside the grammars, hence lexical
and syntactic representation layers are not completely separated. This
extension has already been done for the Earley translator for RTNs
with output by Blanc (2006, sec. 3.5.1, p. 90).

e To modify our algorithms in order to efficiently locate within a text
every sequence that is accepted by a RTN with output, and to compute
their respective translations,® as done by the Unitex (Paumier, 2008,
sec. 6.8, p. 137) and Outilex systems (Blanc, 2006, sec. 3.5.1, p. 90).
As a workaround, one can define a grammar that first consumes any
number of tokens, then calls the grammar representing the sequences
to locate, then consumes again any number of tokens.

e To add support for multiwords, for instance as done by Multiflex (Savary,
2009).

8In French, application glissante d’une RTN.
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e To add support for attached words (e.g.: enclitic pronouns in Spanish),
for instance as done by the Apertium system (see Forcada et al., 2010,
chap. 3, p. 17).

Other extensions that would have a considerable impact on the recognition
rate of the MovistarBot, and of any chatterbot in general, are:

e Recognizing common abbreviations that are used in conversations based
on short text messages (see, for instance, Fairon et al., 2006 and Fairon
and Sébastien, 2007).

e Error tolerance, either by using approximate string matching (Lev-
enshtein, 1966; Damerau, 1964; Bentley and Sedgewick, 1997; Baeza-
Yates and Navarro, 1998; Mihov and Schulz, 2004) or by relaxing the
unification constraints (Fouvry, 2003). In both cases, weights can be
used in order to penalize sentence interpretations that assume one or
more mistakes.

Finally, possible optimizations that are worth considering for a more efficient
application and management of the grammars and the dictionaries are:

e To use alternative data structures to the one proposed by Revuz (1991)
that allow for a greater compression rate and, most of all, that allow
for modifying dictionary entries directly on the compressed format of
the dictionary (Ciura and Deorowicz, 2001; Daciuk et al., 2000, 2005;
Carrasco and Forcada, 2002); with Revuz’s (1991) approach it is nec-
essary to compress the entire dictionary again in order to take into
account any modification, independently of the number of entries that
have been changed.

e Use Cormen’s/Andersson’s addition algorithms (sections 2.3.6 and 2.3.7,
pp. 50 and 52) instead of Knuth’s (section 2.3.5, p. 45) in order to add
elements to set data structures represented by a double-linked red-black
tree (section 2.6, p. 64). The former algorithms perform, on the aver-
age, a lesser amount of comparisons; hence, they can be expected to be
faster.

e To unroll the loops of Cormen’s/Andersson’s addition algorithm (sec-
tion 2.3.8, p. 55) and the algorithm for the iterative traversal of sets
(section 2.3.4, p. 44) in order to avoid trivial assignments.



398 CHAPTER 21. CONCLUSION

e To test efficient structures for the management of sets of elements other
than double-linked red-black trees, such as scapegoat trees (Galperin
and Rivest, 1993), double-linked B-trees (section 2.7.5, p. 68), treaps
(Seidel and Aragon, 1996) and skip lists (Pugh, 1990).

e To implement an efficient set and map library allowing for concurrent
accesses (section 2.7.8, p. 70); such library would allow for a trivial ex-
tension of the breadth-first, Earley-like and FPRTN-based algorithms
for taking advantage of multi-core processors by exploring multiple
transitions concurrently. Currently, there exist multiple proposals of
parallel versions of well-known parsers such as:

— LR (Hendrickson, 1995),

— CYK’s (Grishman and Chitrao, 1988; Hill and Wayne, 1991; Janssen
et al., 1992),

— Tomita’s (Numazaki and Tanaka, 1990), and

— Earley’s (Janssen et al., 1992; Bruschi and Pighizzini, 1994; Sand-
strom, 2004)

e To use ternary search trees (Bentley and Sedgewick, 1997) instead of
tries in order to optimize the incremental construction of strings (trie
string management, chapter 9). We can expect an increase in perfor-
mance since ternary search trees require less dynamic memory alloca-
tions and deallocations: while data structures representing trie nodes
contain a map of letters to other trie nodes,” the data structures rep-

resenting the nodes of a ternary search tree contain a structure having
3 fields.

e To filter the grammar before its application according to the sentence
to analyse (Boullier and Sagot, 2007).

e To replace the grammar substructure allowing for the recognition of
the n first input symbols by a deterministic transducer (a prefix overlay
transducer: Marschner, 2007).

e To transform the grammar into Paumier’s (2004) weak Greibach normal
form before its pseudo-determinization; handcrafted grammars usually

9Recall that maps are to be represented by other dynamic structures such as red-black
trees.
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contain subgrammars whose purpose is to group other subgrammars:
they simply offer a choice between multiple subgrammars, forcing the
parser to explore multiple calls that may not be able to consume even
the next input symbol. The weak Greibach normal form ensures that
at least one input symbol is consumed before initiating any call, hence
avoiding a completely blind initialization of such sets of subgrammar
calls.

e As an alternative to the previous optimization, one can allow to explic-
itly mark subgrammars that are to be “inlined”, as for function inlining
in C++. A pre-treatment procedure would replace every call to the
marked subgrammars by the own subgrammars. A similar feature is
implemented in the Outilex system, although it is not mentioned in the
manual (Blanc and Constant, 2006b): individual calls are marked for
inlining rather subgrammars.

e To extend the Earley parser with lookahead, as proposed by Leiss
(1990), in order to reduce the amount of calls that are explored but
do not lead to any interpretation of the input. The weak Greibach
normal form may no longer be required once this optimization is im-
plemented.

e To accelerate the Earley parser by means of a guide that “foresees”
the grammar rules that will allow for recognizing the whole input sen-
tence (Boullier, 2003). The guide is to have a 100% recall, but not a
100% precision. This guide is to be used in Earley’s predictor, avoiding
initiating useless subgrammar calls. For instance, the previous opti-
mization can be seen as a kind of guide, though others can be defined:
for the case of CFGs, take only into account productions that either
rewrite a non-terminal as a sequence of non-terminals or as a sequence
of terminals and non-terminals where the non-terminals appear in the
remaining input sequence and in the same order.

e To precompute Earley-like e-closure execution states as LR states (McLean
and Horspool, 1996).

e Following (Aycock and Horspool, 2001), to precompute the translations
produced during the resolution of deletable calls without consuming
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input in order to prematurely complete such calls inside Earley’s pre-
dictor. Apart from accelerating the computation of the e-closure, this
optimization eliminates the need for an e-completer.
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Appendix A

Predicate hierarchy and codes

We summarize here the set of lexical masks and predicates —along with their
syntax— described in chapter 6.

e Lexical masks

— token: [},@]<TOKEN>
— Literal masks

* Literal word mask
- Case sensitive word masks: Q@word
- Case insensitive word masks: %word
 Literal symbol masks: [},@]symbol
— Character class masks
« word: [40]<MOT>
* digit: [%@]<NB>
* punctuation symbol: [},@]<PNC>
x Case-dependent word masks
- uppercase: [/h0]<MAJ>
- lowercase: [%@]<MIN>
- proper noun: [%@]<PRE>
« Negated character class masks: [%Q]<!...>

— Dictionary-based masks

% known word: [%@]<DIC>
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* Constrained dictionary word masks
- lemma mask: [/4@|<canonical_form>
- semantic-features mask:
[hQ]<[+—]7Sem [+—]. .. [+—]Sem,>
- lemma and semantic-features mask:
[h0]<canonical_form.[+—|?Sem [+—]...[+—]|Sem,>

- semantic and possible-inflectional-features mask:
[%©]<[+—]7Sem1 [+—] c. [+—]Seml ZflCll .. .flCln: ce.t
flcp. - -flc,,>

- lemma, semantic and possible-inflectional-features mask:
[h@]<canonical_form.[+—|?Sem [+—]...[+—|Sem;:

* Negated dictionary masks: [4@]<!...>
e c-predicates

— blank-insensitive e-predicate: [/,Q]<E>
— Blank-sensitive e-predicate

* mandatory-blank e-predicate: [%@]\L
* forbidden-blank e-predicate: [%0Q]#



Appendix B

Context-free grammars

Context-free grammars (CFGs) are mathematical objects for grammar rep-
resentation, useful for parsing both formal (Aho et al., 1986; Hopcroft et al.,
2000; Briiggemann-Klein and Wood, 2003) and natural languages (Jurafsky
and Martin, 2008; Paumier, 2003; Roche, 1999; Roche and Schabes, 1997;
Silberztein, 1994). We give here the notation used in appendix C for the
description of the Earley parser, which was originally conceived for CFGs.
More extensive material on CFGs can be found in Autebert et al. (1997),
Hopcroft et al. (2000, chap. 5, p. 169), Sipser (2006, chap. 2, p. 100) and
Jurafsky and Martin (2008, chap. 9, p. 319).

Definition 288 (Context-free grammar). A context-free grammar is a struc-
ture G = (N, T, P, S) where

e N is a finite alphabet of non-terminal symbols,

e T is a finite alphabet of terminal symbols,

TNN =10,

P: N — (NUT)*, with € as the empty sequence of terminals and/or
non-terminals, 1s a finite production application, and

S € N is the start non-terminal of the grammar, also called the gram-
mar’s axiom or start symbol,

Production rules —also called rewrite rules, or simply productions or rules—
are expressions of the form A — «; non-terminal A is called the left-side of
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the rule or rule’s head, and o € (NUT)* is called the right-side of the rule or
rule’s body. Productions describe the possible compositions of non-terminal
symbols as a sequence of terminal and/or non-terminal symbols.

Definition 289 (Production direct derivation). Consider two sequences «
and [ in (N UT)* such that o = ayAas, with oy and as in (N UT)* and
A € N; we say [ is directly derivable from « iff there exists a production of
the form A — v and B = a1yae, and we represent it as o = [3.

Definition 290 (Production derivation). Consider two sequences a and 3
in (NUT)*; we say B is derivable from o iff one of the following conditions
holds:

1. a=j, or
2. a=f3, or

3. there exists a finite sequence of terminals and/or non-terminals f; . . . B,
such that

e o= [, and
o B;= [iiq, fori=1...n—1, and

e b= p.

In order words, we say (8 is derivable from o iff there exists a possibly empty
finite sequence of production applications rewriting o as 8, and we represent

it as o = B. Additionally, we represent as o = B the possibility of deriving (3
from « by applying one or more rewrite rules, that is, when either the second
or the third previous conditions apply but not the first one.

Definition 291 (Deletable non-terminal). We say a non-terminal A is deletable
iff A = g, that is, either there exists a production of the form A — ¢ or a
production of the form B = ¢ with A = B.

Definition 292 (Language of a CFG). The language represented by a CFG
G, L(G), is the set of terminal sequences derivable from the grammar’s azx-
om:

L@)={weT :53w} (B.1)
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CFGs allow for structured language definitions. Terminals correspond to
the words or symbols of the language and non-terminals to sentence compo-
nents. Non-terminal definitions are reused in the definition of “higher-level”
non-terminals up to the grammar’s axiom, which is defined as any complete
language sentence. Non-terminals may have several alternative definitions
depending on the variability of the sentence component they represent (e.g.:
a non-terminal DET representing any determiner would have an alternative
definition per determiner). The set of productions below. ..

DET — the
N

N
NP

garden
house
DET N

L 14

...define determiners as word “the”, nouns as either word “garden” or word
“house”, and noun phrases (NP) as a determiner (DET) followed by a noun
(N). If this set of productions would define a complete grammar with (NP) as
the grammar’s axiom, the possible language sentences would be “the garden”
and “the house”.

CFGs have a greater generative power than regular expressions. A classic
example of language that can be represented with a CFG but not with a
regular expression is a”b". This language can be represented by means of the
following CFG productions:

S — €
S — aSh

A concrete sequence of the language would derived as follows:
S = aSb = aaSbb = aaaSbbb...a"Sb" ...a"b". (B.2)

As we can see, CFGs allow for a synchonous generation of the left and right
contexts of non-terminals. In other words, CFGs can implement a counter
of rewrites on the immediate left context of a non-terminal, which can be
consulted during the generation of the immediate right context of the same
non-terminal. However, no counters can be implemented with regular ex-
pressions: a*b* represents any sequence a"b" but also any sequence a"b™
with n # m. At most, a regular expression of the form

¢|ablaabblaaabbb| . . . |a*b* (B.3)
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could represent the language a"b™ for n = 0...k, but not for n beyond k
(see pumping lemma for regular expressions in either Hopcroft et al., 2000,
sec. 4.1.1, p. 126 or Sipser, 2006, sec. 1.4, p. 77).

There are more powerful formalisms than CFGs, for instance Turing ma-
chines. A classic example of language that cannot be represented with a
CFG is a"b"c™: CFG counters are limited to the immediate left and right
contexts of each non-terminal, so it is not possible to access a counter at a
greater distance (see pumping lemma for context-free languages in Sipser,
2006, sec. 2.3, p. 123). Turing machines (Turing, 1936) are a formal model
of computers as we know them nowadays. These machines are able to access
information related to any previously processed input symbol. We briefly
describe Turing machines in section 10.5, p. 193; more extensive descriptions
can be found in Hopcroft et al. (2000, chap. 8, p. 307) and Sipser (2006,
chap. 3, p. 137).

Definition 293 (Extended context-free grammar). Ezrtended context-free
grammars (ECFG) are CFGs where the production bodies may also contain
regular expressions.

ECFGs do not have a greater generative power than CFGs but provide

a more compact way of representing a set of productions. For instance, the
following CFG

PREP — fin (B.4)
PREP — with (B.5)
PP — PREP NP (B.6)
PPS — ¢ (B.7)
PPS — PP PPS (B.8)
NP — DET N PPS (B.9)

defines a noun phrase (NP) as a determiner (DET) followed by a noun ()
followed by zero, one or more prepositional phrases (PPS), where a prepo-
sitional phrase (PP) is a preposition (PREP) followed by a noun phrase.
The Kleene star can be used for representing any sequence of prepositional
phrases and therefore removing the need for defining non-terminal PPS. As
well, the two productions defining prepositions could be joined together with
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the disjunction operator. This equivalent ECFG would be

PREP — in | with (B.10)
PP — PREP NP (B.11)
NP — DET N PP (B.12)

Other formalisms equivalent to CFGs are pushdown automata (Oettinger,
1961; Schiitzenberger, 1963; Evey, 1963),! automata with recursive calls (Gal-
lier et al., 2003), syntactic diagrams (see for instance Jensen and Wirth, 1974,
chap. 0, p. 3) and RTNs (Woods, 1970).2

LAn extensive description of pushdown automata, including the proof of equivalence
w.r.t. CFGs, can be found in Hopcroft et al. (2000, chap. 6, p. 219); shorter descriptions
can be found in Sipser (2006, sec. 2.2, p. 109) and Autebert et al. (1997, chap. 5, p. 29)

2We describe RTNs in chapter 12, p. 219.






Appendix C

Earley’s parser

We briefly describe here the Earley parser (Earley, 1970), an efficient al-
gorithm of application of CFGs (see appendix B) without deletable non-
terminals for natural language parsing.! This description is inspired by the
one given in Leiss (1990). A more extensive discussion can be found in Ju-
rafsky and Martin (2008, chap. 10).

Definition 294 (Dotted rule). Ezecution states (ESs) are dotted rules A —
Qg ® ag, [i, j], where oy is the prefiz of the rule’s body that has already been
explored, o the unexplored remaining part and [i,j] a closed interval cor-
responding to the input segment that has been derived from oy (see top of
fig. ??). We say a dotted rule is complete iff the dot is at the end of the
rule’s body; otherwise we say it is incomplete. Given a terminal or non-
terminal symbol o right after the dot of a dotted rule x4, we say x, expects
symbol o or o is the symbol expected by rule .

Definition 295 (Dotted rule derivation). Farley’s parser is based on three
dotted rule derivation mechanisms (see middle of fig. 77):

e scanner: from A — «aj e aww, [i,]] derives A — aja e aw, i, 7 + 1] iff
a = aji1, that is, if the expected symbol is terminal a, it scans the input
for a and in case of match it shifts the dot right after a and increments
the right bound of the input interval one unit,

e predictor: from A — «;  Baw, [i,j] derives B — o0, ][], j| for every
rule B — [3, that is, if the expected symbol is a non-terminal B, it

!Though deletable non-terminals are not supported, the idea on how to adapt the
algorithm is given in Earley (1970)
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expands B by creating the corresponding dotted rules with an empty
input interval starting and finishing where the interval of the original
dotted rule finishes,

e completer: from B — (e, [, k| derives A — a1 B e g, [i, k] for every
dotted rule A — a1 @ Baw, [i,j], that is, whenever a dotted rule having
a head non-terminal B is complete, reduces B by shifting one position
to the right the dot of every dotted rule expecting B and whose input
interval finishes where the one of the complete rule starts; the resulting
input interval s the concatenation of both intervals.

Definition 296 (Initial and acceptance SESs). Given a CFG grammar G =
(N ,T ,P,S), its initial and acceptance Earley SESs are {S" — 5,[0,0]}
and {S" — Se,[0,1], respectively, where S’ is a non-terminal not in V,, (see
bottom of fig. 7).

By creating this grammar “super-axiom” symbol, S’, Earley’s algorithm
naturally explores every axiom rule S — « during the first iteration; once the
algorithm execution finishes, successful parses can be identified by tracking
back the derivations that have yielded the dotted rule having the super-axiom
as head.?

Algorithm C.1 ¢fg_earley parser is the original Earley’s parser for CFGs
without deletable non-terminals. The algorithm creates a parsing chart or
sequence of [+ 1 SESs Vj ...V, for a given input sentence a; ...a; of [ words
and a CFG grammar G; the grammar is treated as a global variable where
terminal symbols are parts-of-speech which are to be compared with the ones
of the input words. The algorithm starts by adding to Vj the super-axiom
dotted rule S’ — Se,[0,0] and marking it as unexplored. Then, for each
iteration kK = 0...[ it explores the dotted rules in Vj, applying for each one
the derivation mechanism corresponding to the rule: if the dotted rule expects
a terminal symbol, scanner (algorithm C.3 ¢fg_earley scanner), if it expects
a non-terminal, predictor (algorithm C.2 c¢fg earley predictor), and if the
rule is complete, completer (algorithm C.4 cfg earley completer). Iterations
follow as long as they start with a non-empty Vj, which otherwise would mean
that it was not possible to derive terminal a; from the super-axiom dotted
rule, or until every possible derivation has been computed for the whole input.

2Supposing that the sentence has at least one word and that the whole sentence has
been consumed.
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Dotted rule:

41,42, ai,
0 1 2 l
A
Scanner: = Qaq ® (O
\ a
i j 7 J+1
A
B
B
Predictor: o1 ¢ B Oy — 15} , vV A
B
i J J
A A

Figure C.1: Graphical representation of Earley’s algorithm; from top to bottom,
a dotted rule A — 1 e oo aligned with an input a; ...a;, the three dotted rule
derivation mechanisms and the input string recognition condition.
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The predictor derivation mechanism fills V; with every dotted rule derived
from the super-axiom rule by expanding the expected non-terminals; every
dotted rule expecting a terminal is processed by the scanner mechanism and,
in case of match with input a;, the corresponding dotted rules are added to
V1. The completer mechanism cannot be activated during the construction
of Vy, since the algorithm does not handle grammars with deletable calls:
every completion must involve a complete dotted rule in the current Vj and
one or more dotted rules in preceding SESs V; expecting the head terminal
of the complete rule, that is, every complete rule must derive at least one
input symbol. Iterations for V} follow until the computation of V; or until an
empty Vj is derived, which would mean input a; did not match any expected
terminal. V; will contain every dotted rule derivable from the super-axiom
dotted rule and able to derive the whole input sentence. The sentence is
recognized if V; contains the complete super-axiom dotted rule S” — Se, [0, ].
By tracking back the derivation paths of this dotted rule we can retrieve the
derivation trees of every possible interpretation of the sentence.

We end this appendix with a couple of examples of execution: figure 7?7
illustrates how the Earley parser factors out the exploration of a grammar
subtree among two dotted rules, keeping the number of dotted rules per
SES constant, and figure 7?7 illustrates how left-recursive CFGs are handled
without falling into an infinite loop.
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Algorithm C.1 cfg earley parser(oy...o;)

Input: oy ...0;, an input string of length [

Output: r, a Boolean indicating whether the input string belongs to L
1: allocate_memory for chart(V!*!)

2: Vo« 0

3: B+ 0

4: unconditionally add enqueue es(Vg, E, (5" — ¢5,[0,0]))
5 k<< 0
6:
7
8

9

E +
while £ £ 0Nk <1 do
Vigr < 0
repeat
10: xs < dequeue(F)
11: if incomplete(z,) then
12: if terminal symbol after dot(z,) then
13: cfg earley scanner(Vy, Vii1, B, xy)
14: else
15: cfg earley predictor(Vy, B, x5)
16: end if
17: else
18: cfg earley completer(V* B 1)
19: end if

20: until £ =0
21: k+—k+1
22: swap(FE, E')
23: end while

Algorithm C.2 cfg_earley predictor(V, E, zy)

Input: V, the current SES or parsing chart element
E, the current queue of unexplored ESs
zs = (A — a; @ Bay, [i, j]), an ESs or dotted rule
Output: V, after expanding non-terminal B
Output: F, after enqueuing the new derived ESs
1: for each (B — ) € G do
2: add _enqueue es(V, E, (B — o3,[7,7]))
3: end for




416 APPENDIX C. EARLEY’S PARSER

Algorithm C.3 cfg_earley scanner(V, W, E' a1, x)

Input: V, the current SES or parsing chart element
Input: W, the next SES
Input: E’, the next queue of unexplored ESs
Input: o, the input symbol to scan
Input: z, = (A — a3 e aay, |1, j]), an ESs or dotted rule
Output: W, after scanning input for terminal o’
Output: F’, after enqueuing the new derived ESs
1: if part — of — speech(a;;1) = a then
2: add _enqueue es(W, E' (A — aqa e as, [i,j+ 1]))
3: end if

Algorithm C.4 cfg_earley completer(V*! E. z,)

Input: V'*!, the parsing chart
E, the current queue of unexplored ESs
s = (B — Pe),[j, k], an ES or dotted rule
Output: V!, after expanding non-terminal B
E. after enqueuing the new derived ESs
1: for each (A — a; @ Bay, [i,j]) € V; do
2: add _enqueue es(Vy, E, (A — a;B e ay, [i, k]))
3: end for
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Vo
1 S —eS [0,0] initial super-axiom
2 S —eaSb [0,0] predictor(l,p;)
3 S —eaSc [0,0] predictor(1,ps)
4 S —ex [0,0] predictor(1,ps3)
Vi
5 S—aeSb [0,1] scanner(2,a)
6 S—aeSc [0,1] scanner(3,a)
7 S —eaSb [1,0] predictor(5,p)
8 S —eaSc [1,0] predictor(5,ps)
9 S—ex [1,0] predictor(5, p3)
Va
_ 10 S—aeSb [1,2] scanner(7,a)
by g - agb 11 S—aeSc [1,2] scanner(8,a)
Py oo = ae 12 S —eaSh [2,2] predictor(10,p;)
ps i S = S 13 S —eaSc [2,2] predictor(10,ps)
14 S —ex [2,2] predictor(10, p3)
Vs
15 S — e [2,3] scanner(14,x)
16 S—aSeb [1,3] completer(15,11)
17 S —aSec [1,3] completer(15,11)
Vi
18 S — aSbe  [1,4] scanner(16,b)
19 S—aSeb [0,4] completer(18,5)
20 S —aSec [0,4 completer(18,6)
Vs
21 S —aSbe [0,5] scanner(19,b)
22 5" — Se [0,5] completer(21,1)

Figure C.2: At the left, a simple left-recursive CFG recognizing the language
a™z(b|c)™ and, at the right, execution trace of Earley’s parser for this CFG and
input aaxbb. Notice that, for this example, a top-down parser would exponentially
increase the cardinality of the generated SES whilst Earley’s parser manages to
keep it constant thanks to the factoring out of the exploration of common grammar
subtrees: prediction of symbol S is shared for both productions p; and ps.
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Vo
1 S"— oS ]0,0] initial super-axiom
2 S — eSa  [0,0] predictor(1,p;)
3 S — eb [0,0] predictor(1,ps)
Vi
4 S — be [0,1] scanner(3,b)
5 S"— Se  [0,1] completer(4,1)
6 S — Sea [0,1] completer(4,2)
Va
7 S — Sae  [0,2] scanner(6,a)
p1 § — Sa 8 S"— Se  [0,2] completer(7,1)
p2 S = b 9 S — Sea [0,2] completer(7,2)
Vs
10 S — Sae  [0,3] scanner(9,a)
11 S"— Se  [0,3] completer(10,1)
12 S — Sea [0,3] completer(10,2)
Vi
3l+1 S — Sae [0,I] scanner(3l,a)
3l+2 S — Se  [0,]] completer(3l+1,1)
3l+3 S—Sea [0,l] completer(3l+1,2)

Figure C.3: At the left, a simple left-recursive CFG recognizing the language ba"
and, at the right, execution trace of Earley’s parser for this CFG and input ba'~'.
Notice that, where a top-down parser would enter into an infinite loop due to the
left recursion, Earley’s parser expands symbol S only once but reduces it several
times.
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Kahn’s topological sorter

We briefly describe here Kahn’s algorithm (Kahn, 1962) for topologically
sorting a PERT network (PERT, 1958a,b).!

Definition 297 (Directed graph). A directed graph G is an ordered pair
(V, A) where V is a set of vertices or nodes and A C V x V is a set of
ordered pairs of nodes, also called arcs, directed edges or arrows.

Definition 298 (PERT network). A PERT network is a directed or undi-
rected graph where nodes represent points in time and edges (n,n’) represent
tasks that should take place between temporal points n and n', that is, during
interval [n,n'].

Considering the directed case, a PERT network is a graphical representa-
tion of a set of temporal restrictions over the order in which a set of tasks can
be performed; for instance, supposing that graph of figure D.1 represents a
PERT network, task of arc (3, 6) is to follow task of arc (0,3). A topological
sort of the network is a total order of the graph nodes respecting the tempo-
ral constraints, that is, expressing a possible sequence of execution of every
task within the network. Note that such a topological sort is only possible
for acyclic graphs.

Algorithm D.1 kahn_ topological _sort gets as input a directed graph
(G, A) and a queue E of graph nodes initially filled with every node hav-
ing no incoming arcs, and initializes topological sort ¢ as an empty sequence
of nodes. Then it dequeues and processes each node in E until there are no
more nodes left, traversing the graph by following a possible topological sort.

LPERT stands for ‘program evaluation and review technique’.
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Note that any of the nodes initially present in the queue could be the first
node of the topological sort. For each dequeued node n, it removes from A
every arc of the form (n,m),? and enqueues m iff it has no more incoming
arcs.® If the graph contains no cycles then every arc should have been re-
moved after emptying the queue. If so, the algorithm returns the computed
topological sort; otherwise returns L in order to indicate that there exists no
topological sort for graph G.

Figure D.1 shows an example of directed graph along with the corre-
sponding execution trace of Kahn’s algorithm.

Algorithm D.1 kahn_topological sort(G)

Input: G = (V, A), a directed graph
E, a queue of nodes initially filled with every node of G without
incoming arcs
Output: ¢, a topological sort of G
1: t4¢
2: while E # () do
3: n < dequeue(FE)

4: t<1in

5: for each m : (n,m) € A do
6: A+~ A—{(n,m)}

7: if #n/ : (n/,m) € A then
8: enqueue(F, m)

9: end if

10: end for

11: end while

12: if A # () then
13: t 1

14: end if

2Tasks starting at n are executed.
3Tasks before m are finished, thus tasks starting at m are now available.



n kE t action
1 0,1,2 ¢ initialize
0 1,2 0 n < dequeue(E), t + tn
0 1,2 0 A+ A-{(0,3)}
0 1,2 0 A A—{(0,4)}
1 2 0,1 n + dequeue(E), t < tn
1 2,3 01 A+ A—{(1,3)}, enqueue(E, 3)
0 0 9 2 3 0,1,2 n < dequeue(E), t + tn
2 3,4 01,2 A<+ A—-{(2,4)}, enqueue(E£,4)
(3),/14) 2 3,4 01,2 A A-{(2,5)}
‘ 3 4 0,1,2,3 n + dequeue(FE), t < tn
e @ a 3 45 0,1,2,3 A+ A—{(3,5)}, enqueue(E,5)
3 4,5 01,23 A A—1{(3,6)}
3 4,5,7 0,1,2,3 A<+ A—{(3,7)}, enqueue(E,7)
4 5,7 0,1,2,3,4 n < dequeue(FE), t + tn
4 5,76 0,1,2,3,4 A+ A—{(4,6)}, enqueue(6)
5 7,6 0,1,2,3,4,5 n + dequeue(FE), t < tn
7 6 0,1,2,3,4,5,7 n < dequeue(E), t + tn
6 ¢ 0,1,2,3,4,5,7,6 n < dequeue(E), t < tn

Figure D.1: Acyclic directed graph and execution trace of Kahn’s algorithm for this graph.
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