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Introduction

In physics as in every day life, it is by gathering information about the systems that surrounds us
that an understanding of their behavior can be obtained. Looking at the ball, a goalkeeper can
predict the trajectory and catch it. But what if, by looking at the ball, we were actually fixing
its trajectory? Would you call that cheating?

For many years before quantum physics arise, it was strongly believed that objects were
Newtownian and had well determined properties such as a definite position and velocity, and
that the constituents of matter were well described by point-like particles. With the elaboration
of quantum physics a real revolution [Bitbol 97] occurred , and a complete reversal in the inter-
pretation of the world has been operated. The concept of object itself and the properties it holds
had to be redefined [Bitbol 99].

From its very beginning, quantum physics has been disturbing physicists, and even its found-
ing fathers were skeptical and in a sense overcome by their discovery. For most of them it was
only an intermediate description that should be further completed. In 1911, Einstein who had
himself introduced with M. Planck the quanta of energy to explain the black body radiation
was insisting on: "the provisional nature of this description (quanta) which does not seem to be
reconcilable with the experimentally verified consequences of the wave theory". But the the-
ory was in march, and in 1925 Schrödinger was already introducing his master equation and the
powerful description of a quantum system that is the wavefunction. Despite the many remaining
conceptual difficulties, the strength of the formalism, and its ability both to precisely calculate
experimental values ([Nez 93]) and to predict so many classically unexpected but observed be-
haviors made it an unavoidable theory of modern research.

Among the well known achievements of the theory, was the prediction in 1924 that below
a critical temperature, a macroscopic number of particles would accumulate in the ground state
of the system and form a Bose-Einstein condensate. Sixty years later the experimental achieve-
ment was realized at NIST and MIT [Anderson 95, Davis 95]. If quantum mechanics has experi-
enced such a progress, it is partially thanks to the development of a proper experimental system
of study: cold atoms. Since the advances of optical cooling in the 80’s that were rewarded
in 1997 by the Nobel Prize of Steven Chu, Claude Cohen-Tannoudji and William D. Phillips
[Cohen-Tannoudji 97], cold atom physics proved to be a very adapted system to experiment the
quantum predictions such as the superfluid- Mott insulator transition [Greiner 02, Jördens 08]
or the BEC-BCS crossover [Bourdel 04, Bartenstein 04, Greiner 03], which even extended the
success of the theory to interacting particles.

These many experimental achievements represent as many votes in favor of the quantum
theory but the theoretical concepts are still troublesome. At the very heart of the disturbance
is actually the measurement process itself. In 1925, Einstein, Podolsky and Rosen raised their
well known paradox [Einstein 35] that opened the way for the proposal of Bohm to complete
the theory by hidden variables [Bohm 52]. But this attempt failed [Bell 66] and the experimen-
tal proof [Aspect 82, Rowe 01, Fattal 04, Weihs 98] was brought that the theory was complete.
Nevertheless, it did not end the debate since if it proves that entangled states exist, it does not
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explain why such states are not observed for macroscopic objects. This point was raised by
E. Schrödinger in 1935 with his famous cat experiment, where he imagined a cat following
quantum rules that would be in a superposition of states dead and alive. A partial answer was
brought in 1981 with the theory of decoherence [Zurek 81]. This theory states that for each
interaction with the environment, some information is taken from the system and the coherence
of the superposition collapses. The numerous interactions of a macroscopic object with its en-
vironment make it quickly loose its coherence and it shortly becomes a statistical mixture. The
cat is either dead or alive but not in a superposition of states. Among the great achievements of
the theory of the decoherence was its ability to reconciliate the non-linearity of the projection
postulate with the linear evolution described by the Schrödinger equation. But some questions
on the measurement remain, and among them is the final state of the cat: dead or alive? Does it
depend on the observer, or is it dead in one realization of the world and alive in another? These
considerations on the measurement process itself, i.e. the extraction of information from the
system towards the environment, may fill the gap between the quantum world description and
our classical perception of it. In that perspective cold atoms offer the possibility to study macro-
scopic entangled state of a few million atoms in a very controllable and toy model environment.
Many questions have already been addressed in quantum optics to deeply understand the mea-
surement process [Brune 96, Haroche 08], and I believe that cold atoms present an alternative to
further study the measurement process and the decoherence of macroscopic non-classical states.

Another interesting feature of cold matter is the ability to measure the coherence of a su-
perposition by using the large de Broglie wavelength (∼ hundred nm) that atoms exhibit at low
temperature. The first demonstration of cold atomic trapping [Chu 85] triggered the analogy
between atomic physics and optics, and soon the wave nature of atoms was exploited to real-
ize Young slits experiment with atoms [Carnal 91]. In 1991, was first demonstrated the ability
to coherently separate the internal and external atomic states [Kasevich 91], paving the way
to cold atom interferometry technique. In the last 20 years, atomic interferometers have been
extensively applied in different geometries to realize precise measurement of time and inertial
constants [Riehle 91]. Pushed to their limits, devices such as clocks [Santarelli 99], gyrometers
[Gauguet 09] and magnetometers [Wasilewski 10] have reached the shot-noise classical limit.
For now, the sensitivity of these devices can be further pushed by increasing the number of parti-
cles. But as the recent progresses of gravitational wave detectors have shown [Goda 08], sooner
or later, the Standard Quantum Limit [Caves 80a] of cold atom interferometers will be reached,
and the use of quantum engineered states such as spin-squeezed states [Kitagawa 93] will be
unavoidable. The generation of spin-squeezed state involves a non-linear evolution of the state.
In that perspective, the non-linearity of particle interactions can be exploited , but up to now
it has only been able to entangle a few thousands particles [Esteve 08, Gross 10, Riedel 10].
A real alternative is actually the non-linearity associated to the renormalization of a state dur-
ing a Quantum Non-Demolition (QND) measurement [Caves 80b]. Using this method, atomic
spin-squeezed states have been recently achieved [Appel 09b, Schleier-Smith 10b] and already
allowed a sensitivity enhancement in atomic clocks [Louchet-Chauvet 10, Wineland 92] beyond
the projection noise limit. Up to now, only a small amount of squeezing has been obtained on
small samples, leaving room for improvement...

Context of the thesis The work presented in this manuscript has been led between march
2007 and january 2011 in the group: "Optique Atomique" of the Charles Fabry Laboratory. The
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experiment started in Orsay in 2006 and I joined it in march 2007 after it had moved to its new
location in Palaiseau. When we started, spin-squeezing in cold atomic samples had not yet been
achieved, and the international competition was strong. Our goal in this project named BIARO,
for Bose Einstein condensate for Atom Interferometry in a high finesse Optical Resonator, was
to construct an experiment suitable to push forward the performance of atom interferometers.

Two directions were guiding our work: the first
consisted in using new types of atomic source such
as Bose Einstein condensates in bouncing gravime-
ters [Impens 06], and the second was the creation
of measurement induced spin-squeezed ensembles
[Kuzmich 98]. For that purpose, we decided to imple-
ment a new type of folded high-finesse cavity doubly
resonant at 1560 nm and 780 nm, that would serve the
two purposes. Using 1560 nm light, we would be able
to trap atoms in the fundamental mode of the cavity
and eventually to reach the degeneracy regime by evap-
oration. On the other side, the enhanced coupling at
780 nm would benefit to the Quantum Non-Demolition
measurement process and allow a better extraction of
the information while minimizing the probe effect on
the sample. The construction of this experiment raised

many technical challenges with the implementation and operation of a complex folded cavity
geometry in an ultra-high vacuum environment.

Outline of the thesis

The first chapter will introduce the topics of atom interferometry using non classical states
of matter. After a brief overview of the first matter wave interferometers that were realized, we
will present the basics of cold atom interferometer and compare their present performance with
the one of classical apparatus that measure the same inertial constants. We will then review the
experiment that have been attempted to increase the sensitivity of atom interferometers using
non-classical states. Finally we will detail the two prior objectives of this experiment which
will allow us to justify for the design chosen.

In the second chapter, we describe the experimental apparatus that has been designed and
realized to manipulate cold atomic samples. The main blocks of the experiment are detailed.
The optical bench that generates the 780 nm frequencies used to trap, cool and manipulate the
atoms has been designed in a compact and versatile way. The vacuum block is composed of a
two dimensional magneto-optical trap (MOT) chamber and a science chamber in which the 3D
MOT is operated. Because of the unusually large size of the vacuum chamber, we developed, a
long range high aperture and diffraction limited optical system.

The third chapter is entirely dedicated to the high-finesse cavity that is at the heart of the
experiment. We first expose the reasons of our choice of geometry and present a few test
that were carried out before the geometry was decided. The chosen geometry is analyzed and
characterized in details including its geometrical and spectral features. In an optical cavity,
the mode profile can usually be calculated from the geometrical properties (length, radius of
curvature). In our case, the cavity is close to the instability regime were the modes are very
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sensitive to imperfections of the geometry. An in-situ nondemolition measurement of the optical
mode based on atomic tomography is presented as well as an estimation of the intracavity losses.
The locking procedure of the 1560 nm laser on the cavity and its performances that are of key
importance for the trapping of atoms are detailed.

The fourth chapter presents our experimental procedure and achievements towards the ob-
tainment of a quantum degenerate gas. We start this chapter by a few theoretical remarks on
Bose Einstein condensation to point out the relevant experimental parameters that have to be
optimized. In a second part, we present the characteristics of the dipole trap realized by the cav-
ity mode and demonstrate our ability to load and trap atoms in the crossing region of the cavity.
The perspectives raised in this chapter include the opportunity to use the transverse modes to
generate exotic potentials, and the possibility to engineer the differential light-shift.

The fifth chapter gives a theoretical presentation of the Quantum Non-Demolition measure-
ment that leads to spin squeezed systems. At first we introduce the Bloch sphere description of
two level systems and extend this approach to a many body situation. The effect of the atomic
shot noise in an interferometer is shown, as well as the potential gain in the use of spin-squeezed
states. The basics of QND measurements to realize spin-squeezed states are given and we show
that the dispersive measurement foreseen in our case has indeed a QND character. In a last
step, we introduce a wavefunction formalism based on the partial projection of the atomic state,
which we developed to dynamically follow the evolution of the state towards a highly squeezed
state. It relies on a precise description of the measurement apparatus and is applied in the cases
of a Mach-Zehnder interferometer and of an heterodyne detection. Interestingly, this method
proved adapted to the description of the formation of Schrödinger cats and of the entanglement
of separated clouds.

In the sixth chapter we present the frequency modulation technique that we developed to
realize the QND measurement. The low sensitivity to noise of frequency modulation spec-
troscopy is detailed and it is shown that the detector is a key element in the achievement of
high signal-to-noise ratio. Such a detection, that has been implemented in our set-up, has been
characterized and special care was taken to understand the effects such as spontaneous emission
and light-shift of the probe on the atomic sample. This detection tool was used in single pass
to follow non-destructively the internal state evolution of an atomic sample that undergoes an
interferometric sequence.

The last chapter is dedicated to the work that was realized during my stay in the group of
Pr. Kasevich in Stanford. During this time we discovered and set-up a Raman lasing process
between a Raman pump and a cavity mode. A key element that drove our attention is the very
high finesse of the cavity, that in principle should make possible the achievement of ∼100 mHz
linewidth. In this chapter we give the main characteristics of the lasing process including the
laser threshold, the gain bandwidth, laser linewidth, and an interesting feature that is an atomic
population dependence of the laser absolute frequency.
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Introduction to non-classical
interferometry

Contents
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This project of using non-classical states in atom interferometers emerged from a dual in-
terest of the SYRTE at Observatoire de Paris which measure physical constants such as time or
gravity with high precision using cold atoms interferometers and the groupe d’Optique Atom-
ique at Institut d’Optique that takes interest in the quantum properties of these cold atomic
clouds.

This naturally led the two groups to collaborate and to develop a new experimental appara-
tus that would enable as well to probe the physics of non-classical states predicted by quantum
mechanics as to make the proof of principle of their usefulness for the enhancement of the sen-
sitivity of atom interferometers. Therefore, the ambition of this project was to realize an atom
interferometric measurement that would scale with a sensitivity better than 1/

√
Nat that is the

Heisenberg limit of a classical source of Nat atoms.

In the following of this chapter, we will introduce the topics of atom interferometry and
the state of the art achieved in these systems. In a second part, we will detail the initiative
and the achievement that have been obtained in the world in the enhancement of the sensitivity
of atom interferometers by the use of non-classical states of matter. The physical interest and
the international context in which this experiment was led will be given and will explain the
technical and physical choice realized. This chapter does not have the pretension to teach the
reader on the precise physics of atom interferometers with non-classical states but merely to
introduce this topic that is at the heart of the experimental apparatus developed. A formalized
approach of the generation of non classical-states is given in chapter 5.
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1.1 Atom interferometric measurement
Very soon after the introduction of Matter Wavepacket by Schrodinger, experiments have been
performed to prove that atomic interferences could be observed in the same way than optical
interferences. In this prospect, the scattering of matter waves of electrons [Davisson 27] and
neutrons [Halban 36] on the periodic structure of crystals were observed in 1927. These scat-
tering processes that can be interpreted as the interference of multiple path, are completely
equivalent to the coherent scattering of a laser beam on a grating or to the scattering of X-Ray
on crystal structures [Von Laue 15]. After a few more years and an improved control of the ex-
perimental apparatus, this was the two wave interferences of electrons [Marton 52] (1952) and
neutrons [Maier-Leibnitz 62] (1962) that were achieved. In the same time, the well known tech-
nics of Ramsey interferometry [Ramsey 50] (1950) that coherently manipulates internal states
was introduced and is still used nowadays to perform the best measurement of time [Itano 82].

In 1991, the first proof of principle of a coherent transfer of momenta [Kasevich 91] to a
cold atomic cloud opened a new way to the measurement of inertial constants with a high pre-
cision. Previous measurement of the acceleration of gravity g had for example already been
realized with a jet of neutron [Colella 75], but the possibility to perform these same interfero-
metric experiments with a cold atomic cloud that has no initial velocity allowed to lengthen the
interrogation time with the inertial field and to increase then the measurement sensitivity.

1.1.1 The concept
The physics of cold atoms inertial sensors usually involve two wave interferences and can be
understood by analogy with their optical equivalent which are the Mach Zehnder and Michel-
son interferometers. Similarly to optics, different point of views can be adopted to understand
these interferometers. Indeed, one can consider either a particle description in which the state
of a single atom after the first beam splitter is in a coherent superposition of the two outputs
1/
√

2(|O1�+ |O2�) or a wave description in which a single wave of amplitude A0 is splitted in
two coherent waves of amplitudes A0/

√
2. The combination of these two descriptions is well

known as the wave/particles duality. In atomic interferometers, the rôle of light and matter are
exchanged with respect to optical interferometers. For optical systems, the light is manipulated
by material objects such as mirrors and beam splitters while in atomic systems, the cloud of
cold atoms is coherently controlled by laser beams as schematized in figure 1.1. For atom inter-
ferometer, the detection is even optical.

In practice, two types of atomic interferometers can be distinguished : the atomic clocks
which can be essentially seen as interferometers realized by a coherent manipulation of the in-
ternal atomic state and the inertial sensors such as gravimeters or gyrometers which involve a
coherent manipulation of the external degree of freedom. As previously mentioned, the coherent
manipulation of the external degree of freedom of cold atoms has been a crucial breakthrough
for atomic interferometers [Riehle 91, Keith 91] and was first realized a coherent two photon
excitation [Kasevich 91] known as stimulated Raman transition. The transfer of momenta is
essential for inertial sensors. It allows to separate in space and time the trajectories of the two
arms of the interferometer and then to generate an interaction with the inertial field that is differ-
ent for each arm. This differential effect is measured by the interference of the two trajectories.

In the case of an atomic clock, the interferometer usually realized is a Ramsey-Bordé
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(a) Mach Zehnder interferometer as used in optics to
measure the path length difference.

Atoms 

Laser beams 

Optical 
detection 

(b) Atomic interferometer with momentum trans-
fered by the two counter-propagation laser
beams.

Figure 1.1: Analogy between optical and atomic interferometer
The atom interferometers can be understood in comparison with their optical analogues with

reversed rôle for light and matter. In atomic interferometers, the matter (Atoms) is manipulated
by laser beams. The atoms being massive particles and therefore not constrained to travel at

light speed, they can probe inertial forces with long interaction times and are then very
sensitive to inertial fields.

interferometer that consists of two beam splitting pulses. These pulses create a superposi-
tion of the internal state with a momentum transfer only linked to the microwave wavevector
�kMW � �koptical. The interference pattern is ruled by the phase accumulated ∆ϕclock by the
atoms in the rotating frame of the microwave source that turns at ω and that generates the beam
splitting pulses, i.e.

∆ϕclock = (ω0 − ω)T (1.1)

, where ω0 is the angular frequency of the atomic transition addressed and T is the interrogation
time of the interferometer. By reading the interferometer output, one obtains a measurement of
the atomic transition that is used as a frequency standard.

In the case of a gravimeter, it was shown in 1989 [Bordé 89] that, due to the external inertial
field, the phase accumulated in a π/2− π − π/2 interferometer could be expressed by:

∆ϕgravitation = keffgT 2 (1.2)

, where keff is the wavevector associated with the momentum transfer of the beam splitter and
T the time between two pulses. This effect of the gravitational inertial field can be either
interpreted as the action of the Hamiltonian Hg = mgr along the trajectories [Bordé 89] or in
the free falling frame of reference, by the phase imprinted by the laser pulses [Antoine 03].

1.1.2 State of the Art
The achievement of atomic interferometers should be first compared to the classical analogous
that realize the same measurement. If we focus for example on the case of gravimeters, different
apparatus that rely on classical physics have been developed. For comparison with the following
apparatus, the sensitivity obtained at Syrte - Observatoire de Paris for their absolute atomic
fountain gravimeter is 1.4× 10−8 g.Hz−1/2.

One of the first precision measurement of gravity has been realized in 1855 [Kater 18] using
a pendulum of tunable length. The oscillation period depending on the length of the pendulum
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and on g, and using two different length, the value of g could be obtained with an accuracy of
10−5g.

Other mechanical devices such as Lacoste-Romberg gravimeter relying on the use of zero
effective length spring were developed [LaCoste 67, Riccardi 02] and allowed to reach sensi-
tivity down to 10−10 g.Hz−1/2. Nevertheless, these static gravimeter are not absolute and very
much influenced by the aging of the spring (10−8g.Hz−1/2 per day).

Another, more recent technic but still not absolute uses the levitation induced by the Meiss-
ner effect in supra-conductor [Prothero 68, Goodkind 99]. In these system, the position of a
macroscopic object levitating over a supra-conductor is measured. When the inertial environ-
ment of the gravimeter is changed, the position of the object is modified which indicates on the
variation of g. This modern measurement reaches the tremendous sensitivity of 10−12 g.Hz−1/2

but need the use of a complex cryogenic system and suffer from drift of 10−10 g/day. Neverthe-
less, these systems are very adapted for the measurement of tiny variation of the earth structure
[Courtier 00] and are thus very useful for geophysical studies.

Up to now the best absolute evaluation of g are realized by measuring an object in free
fall. The more commonly used system is a free falling corner cube [Faller 67, Marson 86,
Niebauer 95] that closes one arm of a Michelson interferometer. Recording, during the free
fall, the fringes displacement at the output of the Michelson directly measure the position of the
cube versus time. The sensitivity of this interferometer to the phase and then to g is given by
∆ϕcube = 2kgT 2 where k is the wavevector of the light used in the interferometer. These corner
cube systems involve the same physics of free falling object than the atomic interferometers.
In addition, the sensitivity of both systems scales similarly with the interrogation time (see
equation 1.2). Hence, to be able to compare the performances of these two systems, it is crucial
to determine how these system are affected by noise or systematic bias and how far these noises
can be controlled.

It is also interesting to study the state of the art of atom interferometers themselves with
respect to the classical prediction given for the scaling of their sensitivity. It is well known
in optics that the classical sensitivity of an interferometer is given by the optical shot noise.
In these single particle interferometers, each photon interferes with itself and can be detected
on one or the other output ports. As each photon follows a path independent from the other
photons, the difference of the photocurrents at the outputs will exhibits a Poissonian noise. This
"shot noise" is linked to the number of photon Nph involved in the measurement and scales as�

Nph. The same consideration can apply for atom interferometers that have then a sensitivity
proportional to

√
Nat.

This atomic shot noise limit has now been reached in the recent apparatus that have been
developed in the context of cold atoms interferometers [Santarelli 99]. This type of performance
is depicted on figure 1.2 that describes the sensitivity of the detection of an atomic clock. The
sensitivity scales here as

√
Nat which is the signature of shot noise. Similar performances have

been obtained for the measurement of rotations using a gyroscope interferometer [Gauguet 09].
From figure 1.2, two solutions can be adopted to increase the sensitivity per run. One can
either increase the atom number or overpass the classical limit of the shot noise using non-
classical states such as squeezed states. Obviously a combination of the two approaches, that is
a highly squeezed sample that contains a high atom number, is not forbidden and would actually
guarantee the best sensitivity per run.

At this point, it is interesting to remark that if today, the sensitivity of falling corner cube
and atomic interferometer are comparable, the road map of non-classical (quantum) states give
a strong interest for the future of atomic interferometer. It is indeed clear that the benefit in
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the effect of the noise of the detection system. sdN ,
the uncorrelated rms fluctuations of the atom number per
detection channel, is about 85 atoms per fountain cycle.
This noise contribution becomes less than the projection
noise when Nat . 2 3 104. g is the contribution of the
frequency noise of the interrogation oscillator [10,11].
With the SCO, this contribution is at most 10214t21�2

and can be neglected. As an example, for Nat � 6 3
105 detected atoms, n � 0.8 Hz, Qat � 1.2 3 1010, and
Tc � 1.1 s, the expected frequency stability is sy�t� �
4 3 10214t21�2.
To observe the quantum projection noise, we vary

the number of atoms in the fountain and measure the
frequency stability sy�t� by comparison to the free
running sapphire oscillator which is used as a very
stable reference up to 10–20 s. In Fig. 2 is plotted a
typical measurement of the Allan standard deviation of
the frequency corrections fed to a synthesizer (frequency
resolution 5 3 1025 Hz), which is controlled to bridge
the gap between the Cs frequency and the SCO. The
frequency stability for times longer than the response
time of the servo loop, t . 3 s, and shorter than �10 s,
represents the fountain short-term frequency stability, here
6 3 10214t21�2. For t . 10 s, the frequency stability
departs from the t21�2 line because of the drift of the
SCO. A plot of the normalized Allan standard deviation
as a function of atom number is presented in Fig. 3. Since
we explored several values for Qat and for the cycle
duration Tc, we plot the quantity sy�t�pQat

p
t�Tc for

t � 4 s. This quantity should simply be equal to N
21�2
at

when the detection noise is negligible. At low atom
numbers, the 1�Nat slope indicates that the stability is
limited by the noise of the detection system [third term
in Eq. (1)]. Around 4 3 104 atoms the slope changes.
In order to test the atomic projection noise prediction,
we perform a least squares fit of the experimental points

100 101 102 10310-14

10-13

!y(") =6 10-14
"

-1/2

!
y("

)

"(s)
FIG. 2. The measured Allan standard deviation of the Cs
fountain for Nat � 2.7 3 105 compared to a free running
sapphire clock oscillator (SCO). Between 3 and 10 s this
represents the fountain performance. Above 10 s the drift of
the SCO becomes apparent.

for Nat . 4 3 104 with the exponent b of Nat as a free
parameter. We subtract the small contribution of the
detection noise from the experimental points and the fit
gives b � 0.47�0.03�. Thus, over more than 1 order of
magnitude in atom number, this result is in very good
agreement with the N

21�2
at law.

Since the atomic projection noise is the dominant
contribution, we can in turn use these frequency stability
measurements and Eq. (1) to evaluate the number of
detected atoms. If we set b � 21�2 and fit to y �
aN

21�2
at then we get a � 0.91�0.1� close to the expected

value of 1 (Fig. 3). The 10% uncertainty on a indicates
that this method for measuring the atom number has an
accuracy of 20%, 2.5 times better than that from the
time-of-flight signal. This accuracy could be improved
to better than 5% by a careful evaluation of all terms in
Eq. (1) [14].
At the largest number of detected atoms, Nat � 6 3

105, the stability is 4 3 10214t21�2 for Qat � 1.2 3
1010, Tc � 1.1 s. This is an improvement by a factor
of 5 for primary atomic frequency standards [1]. It is
comparable to the best short-term stability achieved with
microwave ion clocks using uncooled 199Hg1 and 171Yb1

samples [15,16]. In a second experiment, we have locked
the SCO to the fountain signal for Nat � 5 3 105 and
compared it to a hydrogen maser. Figure 4 shows the
Allan standard deviation of this frequency comparison.
The stability is 7 3 10214t21�2 and reaches 6 3 10216

at t � 2 3 104 s, a value close to the flicker floor
of the H-maser. Also shown is the estimated stability
of the H-maser alone (5 3 10214t21�2 for t . 10 s).
The comparison confirms that both the H-maser and
the cesium fountain have equal medium-term frequency
stabilities. Under these conditions, the fountain relative
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FIG. 3. The normalized frequency fluctuations as a function
of the number of detected atoms Nat. The expected quantum
projection noise law is y � N

21�2
at . The thick line y �

0.91�0.1�N21�2
at is a least square fit to the experimental points

for Nat . 4 3 104. The dashed line is the quadratic sum of
the detection noise and quantum projection noise.

4621

Figure 1.2: Detection sensitivity of an atomic clock limited to the shot noise.
The data presents the sensitivity of an atomic clock of Caesium operated in the BNM-LPTF at
Observatoire de Paris. The plain curve has the form α

√
Nat with α = 0.94 that was adjusted

on the data. This dependence in
√

Nat is the signature of atomic shot noise. Data extracted
from [Santarelli 99] with the authorization of the authors.

using quantum mechanics will not apply to a macroscopic object such as a corner cube.

1.2 The international context of non-classical state prepara-
tion.

From the previous section, it appears that the independence of the particles in a single particle
interferometer such as a Mach-Zehnder interferometer is the key issue. Breaking the indepen-
dence require to introduce correlations between the particles. Rephrasing with the vocabulary
of quantum mechanics: the goal is to transform the separable state of independent particles into
an entangled state or squeezed state of reduced uncertainty for the measurement of the "path
length difference" of the two interfering arms.

It is well known in quantum optics [Thorne 78, Caves 81] that such a transformation needs a
non-linearity to occur. Different methods can be applied to generate such a non-linearity includ-
ing the inter-atomic interactions [Esteve 08, Gross 10, Riedel 10], an atom-cavity field inter-
action [Schleier-Smith 10b] or a Quantum Non-Demolition measurement (QND) [Appel 09b,
Louchet-Chauvet 10, Schleier-Smith 10b, Teper 08].

Up to now, the inter-atomic interaction squeezing has been realized in double well and multi
well experiment but does only concern atomic cloud with a "low" number of particles (≈ 103).
It therefore does not really represents an alternative for todays classical interferometers that are
still more sensitive even if they operate in the classical limit. Nevertheless, these experimental
achievements use with ingenuity the atomic interactions that are usually considered as harmful
for the operation of atomic interferometers and have even proven that an increased sensitivity
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Figure 1.3: Schematic of the Mach Zehnder interferometer used in the group of Eugen Polzik
The measurement of the atomic is realized in this experiment by its effect on the path length

difference of the interferometer. The interferometer is operated with two colors, each probing
one of the two hyperfine levels (figure 1.4a) and in a configuration that suppress common noise
of the path length to the level of the difference of frequency of the two laser (≈ 6.8GHz). The

figure presented here are extracted with permission of the author from [Appel 09b]

could be achieved.
In the following, we will describe a few international experiments that represented in 2007

the main attempt for the generation of large atom number and squeezed atomic cloud. The
technical limitation of the sensitivity of each apparatus will be raised. In the last part, we will
sum up the main idea of the experimental apparatus that has been constructed and operated
during this thesis.

1.2.1 Measurement induced spin squeezing in a Mach Zehnder interfer-
ometer

One of the pioneer group to take interest in the implementation of Quantum Non Demolition
measurement for spin squeezing was the group of Eugen Polzik in the Netherlands. Their work
followed the proposal of Kuzemich, Bigelow and Mandel [Kuzmich 98] that stated that a far
of resonance measurement of the index of refraction induced by a two level atomic system was
realizing a Quantum Non Demolition measurement [Caves 81] of the difference of population
of these two levels. Therefore, such a measurement squeezes the observable of the population
difference and reduces, for example, the uncertainty in the outcome of an atomic interferometer.

To realize such a measurement, the Dutch group setted up an optical Mach Zehnder inter-
ferometer in which the atoms are placed in one arm of the interferometer (see figure 1.3). The
measurement of the interferometer outcome indicate on the phase difference of the two arms and
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Fig. 2. Experimental setup. (A) An ensemble of ∼105 Cs atoms cooled to
≈50 µK are confined in 1 arm of a MZI by a trapping beam with the waist of
50 µm folded by 2 dichroic mirrors (DM). The atoms are prepared in a coherent
superposition of the clock states | ↑〉 and | ↓〉 by applying a microwave (MW)
π/2-pulse. Two linearly polarized probe beams P↑ and P↓ enter the interfer-
ometer via separate ports of the input beam splitter (BS). The probes focused
to the waist of 27 µm acquire phase shifts proportional to the number of
atoms in the clock states N↑ and N↓, respectively. An arrangement of polariz-
ers (POL), polarizing beam splitters (PBS), and half wave plates (λ/2) is used to
adjust the powers and polarizations of the probe and reference beams. The
combined phase shift (∝ (N↑ −N↓)) of the 2 probes is measured in a balanced
homodyne configuration. (B) Simplified level scheme of Cs showing the D2
line and the detunings of the clock state-sensitive probes, P↑ and P↓.

is practically absent because of the selection rules and the choice
of detunings (atoms in the ground state level F = 4 are predom-
inantly excited to the level F′ = 5 and hence cannot decay to
the ground state F = 3, and similarly for the reverse scattering).
The effect of the redistribution between the magnetic sublevels
within a given hyperfine level on the projection noise squeezing
is very small (estimated to be less than 1%), as also proven by
a good agreement between the observed and predicted degree
of this squeezing (see Dichromatic QND and the SI Appendix for
further discussion of this issue).

The second and main effect of the spontaneous decoherence on
entanglement is due to the reduction of the coherence between
the clock levels. Both inelastic Raman and elastic Rayleigh spon-
taneously scattered photons lead to shortening of the mean col-
lective spin vector |〈J〉| → (1 − η)|〈J〉| and hence to the reduction
in Ramsey fringe amplitude (see Fig. 1B). The degree of spin
squeezing as defined by Eq. 1 depends on the fraction η of atoms

Fig. 3. Pulse sequence and noise data. (A) Atoms are prepared in state | ↓〉
by an optical pumping sequence and then rotated to the superposition state

1√
2

(| ↑〉 + | ↓〉) by a microwave π/2 pulse before the train of 10 probe pulses
is applied. Combining the results of several pulses, we can change the effec-
tive QND measurement strength as explained in the text. The first effective
probe pulse measurement result φ1 yields the statistics of the Jz for the CSS.
The second effective pulse measurement result φ2 verifies the squeezing, pro-
vided it is sufficiently correlated with φ1. NA is measured at the end of each
sequence. (B) Correlations between the first and the second pulse measure-
ments. (C) The projection noise manifested in the random scattering of about
2,000 measurements of φ1; and the SSS displayed as the reduced noise in φ2

when the QND result is used as (φ2 − ζφ1).

which decohere as a result of spontaneous photon scattering dur-
ing dispersive QND probing. The QND measurement strength can
be cast as κ2 ∝ dη where d is the resonant optical depth of the sam-
ple (26). This highlights the trade-off between information gained

Fig. 4. Projection noise and spin squeezing. Blue points, stars; variances
var (φ1), var (φ2) of the Jz spin noise measurement of atoms in a CSS
versus NA, error bars, corresponding statistical uncertainty centered on
1/2[var (φ1) + var (φ2)]; solid blue line, quadratic fit (see Methods section);
dashed line, CSS projection noise; dash-dotted line, equivalent CSS projection
noise reduced by the loss of atomic coherence; red diamonds, conditionally
reduced variance of a second Jz spin measurement predicted by the first
variance (φ2 − ζφ1); red line, reduced noise of SSS predicted from quadratic
fits to projection noise data (see Methods section); According to the scaling
behavior, we classify different noise contributions (see Data Analysis). Clas-
sical fluctuations are represented by the cyan (empty interferometer) and
red area (atom-light interaction related). Blue area, optical shot noise (light
blue) and detector noise (dark blue); green area, projection noise. (Inset)
Spin squeezing ξ (red boxes) as a function of the decoherence parameter η

corresponding to the fits (dash-dotted black and red line in the main figure)
evaluated for the atom number of the rightmost bin. Error bars, standard
deviation over analysis runs binning into 5 to 30 groups with respect to Na.
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(a) Detuning of the probing frequencies from the atomic transi-
tions.

Fig. 2. Experimental setup. (A) An ensemble of ∼105 Cs atoms cooled to
≈50 µK are confined in 1 arm of a MZI by a trapping beam with the waist of
50 µm folded by 2 dichroic mirrors (DM). The atoms are prepared in a coherent
superposition of the clock states | ↑〉 and | ↓〉 by applying a microwave (MW)
π/2-pulse. Two linearly polarized probe beams P↑ and P↓ enter the interfer-
ometer via separate ports of the input beam splitter (BS). The probes focused
to the waist of 27 µm acquire phase shifts proportional to the number of
atoms in the clock states N↑ and N↓, respectively. An arrangement of polariz-
ers (POL), polarizing beam splitters (PBS), and half wave plates (λ/2) is used to
adjust the powers and polarizations of the probe and reference beams. The
combined phase shift (∝ (N↑ −N↓)) of the 2 probes is measured in a balanced
homodyne configuration. (B) Simplified level scheme of Cs showing the D2
line and the detunings of the clock state-sensitive probes, P↑ and P↓.

is practically absent because of the selection rules and the choice
of detunings (atoms in the ground state level F = 4 are predom-
inantly excited to the level F′ = 5 and hence cannot decay to
the ground state F = 3, and similarly for the reverse scattering).
The effect of the redistribution between the magnetic sublevels
within a given hyperfine level on the projection noise squeezing
is very small (estimated to be less than 1%), as also proven by
a good agreement between the observed and predicted degree
of this squeezing (see Dichromatic QND and the SI Appendix for
further discussion of this issue).

The second and main effect of the spontaneous decoherence on
entanglement is due to the reduction of the coherence between
the clock levels. Both inelastic Raman and elastic Rayleigh spon-
taneously scattered photons lead to shortening of the mean col-
lective spin vector |〈J〉| → (1 − η)|〈J〉| and hence to the reduction
in Ramsey fringe amplitude (see Fig. 1B). The degree of spin
squeezing as defined by Eq. 1 depends on the fraction η of atoms
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by an optical pumping sequence and then rotated to the superposition state
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(| ↑〉 + | ↓〉) by a microwave π/2 pulse before the train of 10 probe pulses
is applied. Combining the results of several pulses, we can change the effec-
tive QND measurement strength as explained in the text. The first effective
probe pulse measurement result φ1 yields the statistics of the Jz for the CSS.
The second effective pulse measurement result φ2 verifies the squeezing, pro-
vided it is sufficiently correlated with φ1. NA is measured at the end of each
sequence. (B) Correlations between the first and the second pulse measure-
ments. (C) The projection noise manifested in the random scattering of about
2,000 measurements of φ1; and the SSS displayed as the reduced noise in φ2

when the QND result is used as (φ2 − ζφ1).

which decohere as a result of spontaneous photon scattering dur-
ing dispersive QND probing. The QND measurement strength can
be cast as κ2 ∝ dη where d is the resonant optical depth of the sam-
ple (26). This highlights the trade-off between information gained

Fig. 4. Projection noise and spin squeezing. Blue points, stars; variances
var (φ1), var (φ2) of the Jz spin noise measurement of atoms in a CSS
versus NA, error bars, corresponding statistical uncertainty centered on
1/2[var (φ1) + var (φ2)]; solid blue line, quadratic fit (see Methods section);
dashed line, CSS projection noise; dash-dotted line, equivalent CSS projection
noise reduced by the loss of atomic coherence; red diamonds, conditionally
reduced variance of a second Jz spin measurement predicted by the first
variance (φ2 − ζφ1); red line, reduced noise of SSS predicted from quadratic
fits to projection noise data (see Methods section); According to the scaling
behavior, we classify different noise contributions (see Data Analysis). Clas-
sical fluctuations are represented by the cyan (empty interferometer) and
red area (atom-light interaction related). Blue area, optical shot noise (light
blue) and detector noise (dark blue); green area, projection noise. (Inset)
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deviation over analysis runs binning into 5 to 30 groups with respect to Na.
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(b) Noise reduction in a cor-
relation measurement

Figure 1.4: Atomic projection reduction in a two color probing
(a) Each probing laser address one of the hyperfine transition. The sum of photocurrent

generated is proportional to the population difference between the hyperfine ground states. (b)
The population difference noise is estimated by applying two successive pulses. In an ideal

measurement, the first pulse measure a phase within the initial atomic projection noise and the
second pulse remeasure in principle exactly the same phase. This effect is depicted here by a
visible reduction of the noise between the individual phase observable φ1 and the correlated

observable φ2 − ζφ1

then on the refractive index induced by the atoms. A first all fibered version of the interferom-
eter was unsuccessful in reaching the high sensitivity required to clearly distinguish the atomic
noise. A second attempt was realized in 2007 by a dynamically stabilized free space interferom-
eter operated close to the zero path length difference. A clever operation of the interferometer
in a bi-frequency design [Saffman 09], allowed to overpass the last technical challenges of path
length fluctuations and to reach measurement of the population difference (figure 1.4) below
the atomic shot noise in 2009 [Appel 09b]. In this bi-frequency (f1 and f2) design, the atomic
index of refraction is measured with respect to the optical wavelength , whereas the path length
fluctuations are common mode and contribute only with respect to the microwave wavelength
(c/(f1 − f2)).

While realizing a very good measurement almost insensitive to path length fluctuations, this
system still suffer from its fairly "low" optical depth (OD ≈ 50) that intrinsically limits the
achievable amount of squeezing. In addition, the measurement is realized in DC, which makes
it perturbed by low frequency noise of the environment such as 1/f noises.

1.2.2 Measurement/Cavity induced spin squeezing at MIT
1.2.2.1 Non demolition measurement by cavity transmission measurement

In the group of Vladan Vuletic at MIT, another experimental apparatus was developed to per-
form the same type of non-demolition measurement. In this system, the atoms are placed in
the center of a linear high Finesse Fabry Perot cavity (F ≈ 100000) and trapped with a far of
resonance light at 851 nm. The index of refraction, induced by the population difference, shifts
the cavity resonance frequency. Adjusting a laser on half fringe of the transmission yields in a



12 CHAP 1 - INTRODUCTION TO NON-CLASSICAL INTERFEROMETRY

Implementation of Cavity Squeezing of a Collective Atomic Spin
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We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled 87Rb atoms using

their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region

are well described by a simple analytical model [M.H. Schleier-Smith, I. D. Leroux, and V. Vuletić,

arXiv:0911.3936 [Phys. Rev. A (to be published)]] through 2 orders of magnitude in the effective

interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB

of metrologically relevant spin squeezing on the canonical 87Rb hyperfine clock transition.

DOI: 10.1103/PhysRevLett.104.073602 PACS numbers: 42.50.Dv, 06.20.!f, 32.80.Qk, 42.50.Lc

Squeezed spin states [1–6], where a component of the
total angular momentum of an ensemble of spins has less
uncertainty [7,8] than is possible without quantum me-
chanical correlations [9–12], attract interest for both fun-
damental and practical reasons. Fundamentally, they allow
the study of many-body entanglement but retain a simple
description in terms of a single collective angular-
momentum variable [4,5]. Practically, they may be a means
to overcome the projection noise limit on precision
[2,3,13,14]. Spin squeezing has been demonstrated using
entanglement of ions via their shared motional modes [9],
repulsive interactions in a Bose-Einstein condensate [10],
or partial projection by measurement [11,12].

In a companion paper [15] we propose a cavity feedback
method for deterministic production of squeezed spin
states using light-mediated interactions between distant
atoms in an optical resonator. This approach generates
spin dynamics similar to those of the one-axis twisting
Hamiltonian H / S2z in the original proposal of Kitagawa
and Ueda [1]. Cavity squeezing scales to a much higher
particle number than direct manipulation of ions [9] (but
see Ref. [16] for a potentially scalable approach) and
employs dilute ensembles rather than dense condensates
of interacting atoms [10]. Unlike measurement-based
squeezing [11,12], it unconditionally produces a known
squeezed state independent of detector performance.

Here we implement cavity squeezing for the canonical
jF ¼ 1; mF ¼ 0i $ jF ¼ 2; mF ¼ 0i hyperfine clock
transition in 87Rb atoms, achieving a 5.6(6) dB improve-
ment in signal-to-noise ratio [2,3]. To our knowledge, this
is the largest such improvement to date. Moreover, the
shape and orientation of the uncertainty regions we observe
agree with a straightforward analytical model [15], without
free parameters, over 2 orders of magnitude in effective
interaction strength.

Our scheme, similar in spirit to the proposal of Ref. [17],
relies on the repeated interaction of the atomic ensemble
with light circulating in an optical resonator, as illustrated
in Fig. 1. We label the two relevant eigenstates (clock
states) of each one of N0 atoms as the spin-up and spin-

down states of a spin-1=2 si, and define a total spin S ¼P
isi. Its z component corresponds to the population dif-

ference between clock states, and its azimuthal angle cor-
responds to their relative phase. For a given total spin
magnitude S ¼ jSj # S0 ¼ N0=2 and a given permutation
symmetry of the ensemble, the set of possible collective
states forms a Bloch sphere.
The coupling of the atoms to the resonator manifests

itself both as a differential light shift of the clock states
which causes the si to precess about the ẑ axis and as a
modified index of refraction which shifts the cavity reso-
nance frequency. If a resonator mode is tuned halfway
between the optical transition frequencies for the two clock

FIG. 1 (color online). Cavity squeezing [15]. (a) The atoms are
trapped in a standing-wave dipole trap inside an optical resona-
tor. (b) The probe laser is detuned from cavity resonance by half
a linewidth, so that atom-induced shifts of the cavity frequency
change the transmitted power. (c) The cavity is tuned halfway
between the optical transition frequencies for the two clock
states. (d) The Sz-dependent light shift shears the circular
uncertainty region of the initial coherent spin state (red circle)
into an ellipse (dotted). Photon shot noise causes phase broad-
ening that increases the ellipse area (solid). The illustration is for
a modest shearing Q ¼ 3 (see text).
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(a) Schematic view of the cavity and the two color trap-
ping and probing

(b) Transmission measurement of the
shift of the cavity frequency realized at
half fringe.

2

Optical dipole trap Atomic cloud

Axial frequency ωax/(2π) 550 kHz Length l 1 mm (∼ 2000 wells)

Radial frequency ωr/(2π) 1.8 kHz RMS radius σr 8.1(8) m

Trap Depth U0/h 24(1) MHz Radial temperature kBTr/h 1.3(2) MHz

TABLE A2: Characteristics of standing-wave dipole trap and atom cloud. The trap depth and trap frequencies are determined
from the intracavity power and mode geometry. The radial temperature is measured by suddenly releasing the atoms and
observing their ballistic radial expansion as a decrease in coupling to the resonator.
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δ23
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FIG. A1: Laser stabilization and detection scheme, indicating frequencies of carrier and lock sidebands (red) and probe and
compensation sidebands (blue) relative to cavity resonances and atomic transitions. Not to scale.

the xy-plane two more times to confirm the CSS projec-
tion noise. In order to compare two identically-prepared
CSSs with the same total atom number, we forego the
state purification procedure described above, since it
leads to a ∼ 12% loss of atoms. We thereby allow our
imperfect optical pumping to leave 12(2) % of the atoms
in |1,±1�. These residual atoms do not contribute to our
measurement of Sz because our spin echo technique (see
Sec. VI) cancels any contribution from atoms not ad-
dressed by microwaves resonant with the |1, 0� → |2, 0�
transition. Therefore, in Fig. 2, the atom number N0

for the data derived from this pair of preparations (open
circles) includes only atoms in |1, 0� and |2, 0� and is sys-
tematically 12% lower than the atom number used to
measure Var(M1) and ∆S2

zmeas (open triangles and solid
diamonds).

State Preparation Noise

Figure 2 indicates the presence of technical noise in
the state preparation. The technical noise evident in
Var(M1) is probably due to slow drifts in microwave
power. An alternative analysis, in which we compare
each measurement M1 with the value Mprec

1 in the pre-
ceding experiment cycle, yields a fit 2Var(M1−Mprec

1 ) =
2650(400) + 0.95(23)N0 + 1(9) × 10−6N2

0 , i.e. a result
consistent with no contribution from the quadratic term.
We also show in Fig. 2 the variance y2 = 2Var(M̃2−M̃1),
which is immune to slow drifts in microwave power. How-
ever, after completing this work, we discovered that the
state preparation preceding the measurement M̃2 was
compromised by an effect of leakage light during that
preparation, to which we attribute the small technical
noise observed in y2.

IV. ATOM-LIGHT INTERACTION IN AN
OPTICAL RESONATOR

We summarize the theory of the interaction of a two-
level atom with an optical resonator mode at large detun-
ing δ � Γ, relative to the excited-state linewidth Γ, from
the atomic transition. The extension to our real system
of many atoms with nontrivial level structure follows in
Sec. V.

A. Atom-Resonator Coupling, Cooperativity, and
Optical Depth

The atom-resonator coupling g(r) = |deg · E(r)|/� for
an atom at position r = (ρ, z) in the Gaussian mode is
given by

g(r)2 = d2
eg

2ωeg

�0�πw2L
e−2ρ2/w(z)2 sin2(kz), (1)

where deg is the dipole matrix element between the two
states |g� and |e�, ωeg is the energy of the transition, w(z)
is the mode waist at the position of the atom, and L is
the resonator length. (2g is the vacuum Rabi frequency.)
The coupling g(r) is related to the atomic excited-state
linewidth Γ = ω3

egd
2
eg/(3π�0�c3) and resonator linewidth

κ by the single-atom cooperativity η(r), the ratio of the
scattering rate into the resonator mode to the free-space
scattering rate [4]:

η(r) =
4g(r)2

κΓ
=

24F
πk2w2

e−2ρ2/w2
sin2(kz), (2)

where F = πc/(Lκ) is the finesse of the resonator and
k = ωeg/c is the probe wavenumber.

The cooperativity is closely related to the resonant op-
tical depth, which for a single atom with scattering cross
section σsc in a uniform beam of area A in free space is

(c) Relative position of the light frequencies and cavity resonances with respect to the atomic transitions

Figure 1.5: Probing the population difference by a measurement of the transmission of a cavity.
The hyperfine state population difference is measured by the frequency shift it induces on a

resonance of the cavity that is tuned in between the two hyperfine states. A far from resonance
twin beam (Compensation) allows a common rejection of the cavity length fluctuations on the
transmitted power while preserving the effect of the difference of population. The locking of
the probing to the resonance is realized by a sideband lock to a higher transverse mode of the

cavity.

transmitted intensity that is proportional to the population difference of the two levels (figure
1.5b). A number of interesting technical choices made for the locking procedure can be seen
in figure 1.5c and are detailed in [Schleier-Smith 10c]. The two main points are the locking on
higher transverse mode that does not perturb the measurement and the use of a second beam
that compensate for cavity path length fluctuations.

This system takes advantage of the high optical depth that is reached in the optical resonator.
Nevertheless, the trapping and the probing being realized at two different wavelength yield in
an inhomogeneous coupling of the probing standing wave. Indeed, the atoms are spread in the
antinodes of the dipole trap which position does not correspond to the antinodes of the probe
(see figure 1.5a). This complicate the analysis of the atomic noise and intrinsically lower the
strength of the measurement. Similarly to the Dutch experiment, this transmission measurement
is also realized in DC and suffer then from the same sensitivity to low frequency noise.

1.2.2.2 Non linearity in the Atom - cavity coupling.

In the research led on this apparatus it appeared in a second step that a stronger squeezing
mechanism could be implemented. This mechanism rely on the dual interaction between atoms
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Figure 1.6: Shearing effect of a coherent state
The non linearity of the atom cavity coupling is strictly equivalent to the twisting hamiltonian
that was first introduced in [Kitagawa 93]. This causes the transformation from the coherent

state (red) to an elongated and squeezed state.

and photons. On one hand, the photons light shift the atomic transition and on the other hand, the
atoms shift the cavity resonance frequency via their index of refraction. This dual mechanism
was both first understood [Schleier-Smith 10a] and observed [Leroux 10] in the MIT group.
The physics can be sum-up in the following. We consider for simplicity that the cavity is tuned
such that for a zero difference of population of the two eigenstates, the cavity resonance is
unshifted. For a positive atom number difference (∆N > 0), the cavity is shifted for example
such that more photons enter the cavity, leading to a light shift effect that furthermore depends
on the absolute value of |∆N |. In reverse, for ∆N < 0, less photons enter the cavity and
a low light shift is observed. Hence, within the initial Poissonian distribution of a coherent
superposition of atom number difference, a shearing effect as described on figure 1.6 can be
observed. Indeed, for ∆N > 0 and ∆N � 1 a large rotation angle is predicted while none will
appear for ∆N = 0. As a matter of fact this system mimics the Twisting Hamiltonian that was
first proposed by Kitagawa and Ueda [Kitagawa 93] for the generation of squeezed states.

1.2.3 Measurement induced spin squeezing in Stanford
In parallel, the group of Mark Kasevich in Stanford published in 2008 [Teper 08] their exper-
imental work on the measurement of atomic noise. The apparatus developed also consists of
a linear cavity, but does not involve trapping since the atoms are released from a MOT and in
free fall during the measurement. An important feature of this apparatus is its measurement
process, that consists to measure the phase of the probe while it is reflected by the cavity (figure
1.7a). The dispersive profile of the cavity is imprinted on the probing light. This profile depends
on the relative position of the probe frequency with respect to the cavity resonance frequency
and is proportional to the difference of population. An experimentally interesting feature of
this detection is that it realizes an AC detection insensitive to low frequency noise. In addition
it takes advantage of a strong local oscillator that helps to reach the optical shot noise for the
detection (see chapter 6). Nevertheless, this system suffers from the low optical density of a
magneto-optical trap.

The results obtained in 2008 is presented on figure 1.7b and shows a noise increase of the
antisqueezed quadrature. No clear signature of squeezing could have been seen in this pioneer
experiment.
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resulting uncertainty in Jz, conditioned on the outcome
of the phase measurement, is given by !!Jz"2

= !N /4"!1+Nn"2t2 /2"−1, compared to the usual projection
noise of !!Jz"2= !N /4".

For interaction times greater than the cavity photon life-
time, the above picture is modified by the leakage of photons
out of the cavity. We treat this in a simplified way, by break-
ing up the interaction time into intervals corresponding to the
photon lifetime #cav, where, after each interval, the probe
state is measured, and the resulting atomic state then inter-
acts with a new coherent photon state. The repeated projec-
tion out of the intracavity photon state destroys the atom-
light coherence between interaction intervals, causing the
pseudospin variances to evolve linearly in time. The squeez-
ing for short times, until the antisqueezed uncertainty begins
to wrap around the Bloch sphere, is then given by
!!Jz"2= !N /4"!1+Nn̄"2t#cav /#2"−1, where n̄ now denotes
the time-averaged intracavity photon number, which depends
not only on the input power, but also on t and #cav !in con-
trast to $20%, where all the time dependence is included ex-
plicitly", and the corresponding antisqueezing is !!Jy"2

= !N /4"!1+Nn̄"2t#cav /#2".
Atomic spontaneous emission into free space reduces the

correlation between the measured probe phase !to which the
atoms that have undergone spontaneous emission contribute"
and the collective pseudospin of the atoms used for the clock
!to which they do not contribute". If the spontaneous emis-
sion rate is known, the average phase shift due to the atoms
that have scattered can be subtracted out, but the stochastic
fluctuations in that phase shift, given by the shot noise on the
number of spontaneous emissions, cannot be accounted for
and will degrade the conditional squeezing $21%.

Our experiment uses a hemispherical optical cavity, pre-
viously described in $22%, with length L=10 cm, finesse F
=205 000, free spectral range !FSR" of 1.505 GHz, half
width at half maximum !HWHM" linewidth $ / !2%"
=3.7 kHz, giving #cav=21.5 &s, and TEM00 mode size of
310 &m at the atomic position, corresponding to a maximum
atom-cavity coupling g / !2%"=53 kHz for the &F=2,mF=2'
→ &F!=3,mF=3' cycling transition, to probe the collective
pseudospin state of a cloud of 87Rb atoms cooled in a
magneto-optical trap !MOT" located at the center of the cav-
ity. The atoms are released from the MOT, further cooled by
optical molasses, prepared in an equal superposition of the
&F=1,mF=0' and &F=2,mF=0' clock states, and probed by a
standing wave of intracavity light.

The modulation scheme we use to couple laser light into
the cavity and perform our measurements is a modified ver-
sion of the one described in $23%, and is shown in Fig. 1. We
use a far-detuned resonant sideband !“locking beam”" to sta-
bilize the laser to the cavity resonance via a Pound-Drever-
Hall lock. The collective atomic pseudospin is measured via
the phase shift produced by the atomic index of refraction on
a near-detuned resonant sideband !“probe”". The probe is
tuned 1.5 GHz to the red of the 52S1/2, F=2→52P3/2, F!
=3 atomic transition with a cavity input power of
1.2–2.5 nW, while the locking beam, 18.06 GHz farther to
the red, has an input power of 2.5 nW.

When we turn on the probe, the atom cloud has a 1 /e
radius of 390 &m and is falling through the cavity mode at

2.9 cm /s while expanding at 3.7 cm /s due to its temperature
of 14.5 &K. While the atoms’ passage through the cavity
limits the interrogation time to several ms, a more stringent
limit is imposed by inhomogeneous broadening due to the
presence of intracavity light. The intracavity standing waves
impose an ac Stark shift, which varies depending on atom
position within the cavity mode, with an average of U /kB
(1 &K !0.2 &K" for a 2.5-nW probe beam and (0.08 &K
!0.06 &K" for a 2.5-nW locking beam, for atoms in the
&F=2,mF=0' !&F=1,mF=0'" state. For the locking light,
which is always on, the 1 /e Rabi oscillation decay time for
atoms in the cavity is around 1 ms. For atoms prepared in an
equal superposition of the two clock states, which is most
sensitive to inhomogeneous broadening, the probe light
dephases the collective spin vector of the sample in several
tens of &s.

There are two distinct time scales for light-induced inho-
mogeneous broadening, corresponding to the longitudinal
and transverse motions of the atoms in the cavity mode. The
atoms are unconfined by the light, and a typical atom’s ther-
mal velocity causes it to travel the 390-nm distance between
adjacent nodes in the longitudinal standing wave in 10 &s, so
measurements over time scales longer than this should aver-
age over the longitudinal inhomogeneities in the ac Stark
shift. In the transverse direction, however, the ac Stark shift
varies by just a few percent in 100 &s of atomic motion, so
its effects can be countered on that timescale by using spin
echo.

The correlated atomic state is generated and measured in
a three-pulse sequence illustrated in Figs. 2!a"–2!c". The
probe light is turned on for a time #sq, then turned off for a
time #off required for the probe light to leak out form the
cavity, after which a microwave % pulse that lasts for a time
#% is used to prepare the spin echo. The probe light is turned
on for #sq, which rephases the atomic spins, then once again
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∆
νlock=6νFSR-δ
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FIG. 1. Schematic of experiment !a" and modulation method !b".
Two sidebands resonant with the cavity are modulated onto a non-
resonant laser by an electro-optical modulator !EOM". A photodi-
ode monitors the beat notes between the carrier and the sidebands
reflected from the cavity. The demodulated beat note between the
carrier and the locking sideband !1" is used to drive a double-pass
acousto-optical modulator !AOM" that keeps the locking sideband
resonant with the cavity, while the beat note between the carrier and
the probe sideband !2" provides the experimental measurement of
the probe phase shift.

TEPER et al. PHYSICAL REVIEW A 78, 051803!R" !2008"

RAPID COMMUNICATIONS

051803-2

(a) The schematic set-up and the frequencies of the
light involved in the experiment.

extinguished for !off, and after a possible final microwave
rotation, which takes a time !r, the probe light is turned on
permanently and the atomic state is measured for a time
!meas. During the two preparation pulses, spontaneous emis-
sion for all data presented here, measured by observing atom
depumping over time, is "6%; for the final, destructive de-
tection pulse, spontaneous emission is 20%–40%. We use
shot-to-shot fluctuations in the difference in the cavity shift
between the second squeezing pulse and the final measure-
ment to quantify the conditional projection noise for our pro-
tocol.

To properly calculate the expected projection noise, we
must account for spatially varying atom-cavity coupling. For
a Gaussian atom cloud with radius ra and a TEM00 standing-
wave cavity mode with spot size rc, the mean atom-cavity
coupling #̄ is less than the maximal on-axis, antinode value
#max by a factor of 2!"ra /rc#2+1$. The variable that the
probe phase measurement couples to is then not #Jz, but
#̄Jz, with an uncorrelated projection noise variance given by

the sum of the individual atom variances. Since the inhomo-
geneous transverse coupling of different atoms does not av-
erage out on the time scale of our measurement, this modi-
fied collective variance scales not as the square of the mean
coupling, but rather as the mean of the squared coupling:
"$#̄Jz#2=%i=1

N "$#i jzi#2= "N /16##max
2 !2"ra /rc#2+1$−1, where

i is an index over individual atoms !the unmodified value is
"$#Jz#2= "N /4##max

2 $. To take advantage of the squeezing
produced by our protocol, subsequent measurements also
need to couple to #̄Jz, which suggests that interferometer
readout should be performed using the cavity shift !24$.

By applying a microwave pulse before the final detection
pulse, it is possible to rotate the uncertainty ellipse around its
center and use the atomic shift to measure its width in an
arbitrary direction. A % /2 pulse rotates the antisqueezed "Jy#
component of the collective atomic spin onto a population
difference "Jz#, which results in maximal noise on the shift,
while a smaller rotation produces a correspondingly smaller
effect. The results of such a series of measurements are
shown in Fig. 2"d#.

To characterize the coherence of our atomic states, we
vary the phase of the final microwave pulse while keeping its
duration fixed at !%/2 by applying a phase offset to the mi-
crowave oscillator that generated the pulse. We thus scan the
collective pseudospin rotation axis in the equatorial plane of
the Bloch sphere, which produces an oscillation in the
atomic populations, which we read out via the mean values
of the final probe measurement. For the final state produced
by our measurement, the contrast in this oscillation is about
73% of the full contrast obtained under the same circum-
stances in the absence of probe squeezing pulses, which
means that the length of the collective spin vector on the
Bloch sphere is reduced to 73% of its initial length due to the
relative dephasing of the individual spins by the squeezing
pulses and the projection noise is reduced by the same
amount. We have also confirmed that the lock light has no
effect on atomic coherence by comparing the contrast mea-
sured after the spin echo sequence without squeezing pulses
to the initial contrast measured immediately after the first
% /2 pulse creates the clock-state superposition.

It is important to distinguish between inhomogeneous
broadening due to the spatially varying probe light intensity,
which leads to dephasing between the pseudospin states of
different atoms, and the dephasing of the collective
pseudospin—i.e., antisqueezing. To study the two effects in-
dependently, we use the fact that spin echo counteracts the
majority of the inhomogeneous dephasing, making it pos-
sible to produce, without spin echo, the same amount of
inhomogeneous dephasing contrast reduction with a much
shorter probe pulse "and, consequently, much less anti-
squeezing#. We find that a 20-&s probe pulse without spin
echo produces the same amount of inhomogeneous dephas-
ing "as measured by microwave oscillation contrast# as two
sequential 60-&s probe pulses with spin echo. However, the
20-&s pulse does not produce a measurable increase in noise
!see open circles in Fig. 2"d#$.

We measured the antisqueezing as a function of atom
number for two different probe intensities. The results, along
with theoretical calculations are shown in Fig. 3. The ob-

τsq τsqτoff τoffτπ τr

(a)

(c)

(b)

τmeas

(d)

FIG. 2. Measurement protocol and results. The traces show a
typical probe signal "a# along with the control sequences for the
probe laser "b# and the microwave state rotation "c#. The results
obtained for the fluctuations in the difference between the means of
the two shaded regions in "a#, chosen to exclude the initial cavity
buildup, as we vary the duration !r of the final microwave pulse are
shown as solid circles in "d#, with each data point corresponding to
58–174 shots, with statistical error bars. The inset in "d# shows a
histogram of the difference of means for 87 shots at a final rotation
of 0.63 rad, the width of which corresponds to the indicated data
point. The solid curve is a theory calculation using our model; the
gray curves account for uncertainties in the experimental param-
eters, dominated by uncertainty in intracavity probe power; the
dashed line is the expected projection noise; and the dotted line is
the measured noise floor in the absence of atoms "detector dark
noise is negligible#. The open circles indicate the results obtained
for inhomogeneous broadening in the absence of spin echo "see
text#. The parameters for this measurement are !sq=!off=60 &s,
!%=50 &s, N&57000, probe power &2.5 nW, and locking power
&2.5 nW.
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(b) The first published results [Teper 08] that
shows the increase of the noise in the anti-
squeezed quadrature .

Figure 1.7: Heterodyne Non demolition measurement apparatus developed at Stanford.
The frequency modulation spectroscopy involved in this experiment allows to reach an optimal

detection limited to the optical shot noise and insensitive to path length fluctuations. The
schematic and results presented here are extracted from [Teper 08] and presented here with the

authorization of the authors.

1.3 The initial orientation of the experiment
As previously mentioned, this experiment emerged from the will to try new types of interfer-
ometers involving ultra-cold atomic gas and to create an apparatus that would push forward
the sensitivities of atomic interferometers. In this last perspective, we choose to follow the
Quantum Non-Demolition approach that scales very well with high atom number.

1.3.1 New sources for new types of gravimeter
A gravimetric experiment that was foreseen and that uses ultra-cold atomic sources was issued
from a proposal of Impens et al [Impens 06] and consisted in a bouncing gravimeter. In this
proposal, an ultra-cold gas is released from a trap at t = 0, after a free fall of time T, a first
Raman pulse stops the cloud while a second one send it back in its original place. As the
efficiency of the Raman pulses depend on the energy momentum dispersion relation, the number
atoms addressed by the pulse depend on the "phase matching condition" : p = �k. This
condition is perfectly satisfied for a kick at time T = �keff/(mg). Measuring the optimal
kicking time that keeps the atoms after N repetitions allows then to evaluate g [Hughes 09].

Regarding the experimental realization, our main concern was to reach degeneracy of the
cold cloud in a compact environment and using low electrical power. This, to demonstrate, for
exemple, the possible implementation of such a system in space application. An optical trapping
and evaporation in an optical cavity were chosen to satisfy this condition. The trapping wave-
length was chosen at 1560 nm to match with the requirements of the Qunatum Non-Demolition
measurement (see section 1.3.2). For the implementation of the Raman pulses, we decided to
phase lock two independent lasers and we designed the vacuum chamber with a large optical
access on the vertical. Interestingly, a Non-Demolition measurement of the atoms that have
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Figure 1.8: A bouncing gravimeter sequence
Pulse sequence of a bouncing gravimeter as proposed by Impens et al [Impens 06]. A

condensate is suddenly released from a trap, starts to fall and is stopped and reversed by the
use of two optical kicks (Counter-propagating Raman transition). The obtention of a levitating

sample by the use of well timed kicks then realizes a measurement of gravity.

bounced could also be an interesting feature to implement in this scheme and would allow to
increase the repeatability of the sequence.

1.3.2 Pushing forward the quantum

Concerning the measurement induced spin-squeezing, different options were still considered
when I started on the project. It was clear that a cavity resonant at 780 nm would help to
increase the atom-light coupling and then to increase the signal-to-noise of the measurement,
but the exact experimental realization was still to be determined. In addition, we wanted to trap
the atoms in the cavity mode. As previously stated, this will allow to use low power laser for the
evaporation and will also automatically guaranty the alignment of the probe on the atomic mode
(mode of the same cavity). To avoid the mismatch of the position of the atoms and the maxima
of the probe that is inherent to a linear cavity, we opted for a traveling wave cavity geometry.
Looking for an evaporation in the cavity, a tight confinement of the mode in all direction was
needed. In a three mirrors geometry, this can only be obtained by focusing the mode, but the
Rayleigh range associated with the longitudinal variation of the beam does not allow for a tight
trapping (except if the focus is almost λ, but then the trapping region is very small). It was then
necessary to implement a four mirrors cavity geometry with two crossing arms. This lead us to
the cavity presented in figure 1.9.

To realize the Non Demolition measurement, we decided to implement a frequency modu-
lation spectroscopy realized at 780 nm in our ring cavity. This scheme benefits from the far off
resonance strong local oscillator which helps to reach an optically shot noise limited detection.
In addition, this method of detection takes also advantage of the atom-light cavity coupling en-
hancement that increases the signal-to-noise ratio. As will be shown in chapter 6, this method
realizes in principle the optimal measurement of very low photon flux and is also insensitive
to optical path (cavity) length fluctuations. Our choice of measurement induced spin-squeezing
and not, for example of interaction induced spin-squeezing relies on the scaling of the process
with the number of particles. Indeed, as the optical shot noise does not depend on the number
of atoms, the measurement induced spin-squeezing is very suitable to realize spin-squeezing of
larger and larger sample for which the atomic noise is ever increasing. To realize the measure-
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Figure 1.9: The four mirror cavity geometry.
The geometry of the cavity arise from a compromise to reach degenerate cold atom sample
trapped in the mode of the cavity while being able to measure with a strong enhancement factor.

ment, our goal is to trap atoms in the 1560 nm radiation injected in one of the cavity mode, to
cool by evaporation and to nondestructively measure the trapped atoms by using light injected
in the 780 nm mode of the cavity. Experimentally, the choice of 1560 nm radiation for the
trapping that is the half frequency of 780 nm radiation allows to refer the cavity length to the
atomic transition of Rb87 while limiting spurious interaction with the atomic sample.
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Experimental set-up
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In this chapter we present the experimental apparatus in its main blocks, namely the optical
and laser system, the vacuum set-up, and the imaging system. As this manuscript is the first
doctoral thesis on the experiment, the description of the technical aspects of the experiment are
rather detailed. I hope that this chapter will be a useful reference for new students who have to
learn about this experiment.

In the first part we detail the generation of all the laser frequencies that are used in this
experiment. The lasers themselves are presented as well as the different locking procedure
implemented among which are atomic spectroscopy, frequency, and phase lock. In the second
part, we give information about the geometry of the vacuum set-up and its use to create a 2D and
a 3D magneto-optical trap (MOT). One of the peculiarity is the implementation of the 3D MOT
coils under vacuum. In the last part, we describe and show the characterization of the imaging
system that has a long working distance (∼ 30 cm) and a high numerical aperture (0.13).

2.1 Optical bench

2.1.1 Extended cavity diode lasers
The laser system mounted in this experiment relies on extended cavity diode lasers in a linear
configuration which have been first intrduced in [Lucas-Leclin. 98]. A full characterization of
the laser has been realized at Syrte - Observatoire de Paris and an exhaustive study can be found
in [Cheinet 06, Baillard 06, Lucas-Leclin. 98]. In the following, we will just remind the main
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Figure 2.1: Scheme of the extended cavity diode.
The front plane of the diode is imaged on a 10% reflecting mirror that guarantees the necessary

feedback. An interference filter is used in the configuration to narrow the gain profile. The
output beam is re-collimated by L3.

characteristics of these lasers, schematically shown in figure 2.1.

The laser emitter is a diode laser (Eagle Yard, mod. EYP RWE 0790). The front side is
anti-reflection coated while the back side is totally reflecting and is used as one of the two mir-
rors of the cavity. The diverging beam from the diode is collimated by an aspherical lens of 4.5
mm focal length (L1) and refocused on the out-coupling mirror with an aspherical lens (f = 18
mm) (L2). This results in a cat’s eye configuration on the out-coupling mirror which confers its
geometrical stability to the laser. Indeed, the lens L2 conjugates the output plane of the diode
with the out-coupling mirror (M ), and it makes the system independent of the mirror position
and much less sensitive to alignment. The lens L3 (18 mm focal) is used for the collimation of
the beam

In the extended cavity is placed an interference filter (Research Electro-optics) with a band-
pass window of 0.3 nm. This filter allows to considerably reduce the gain window of the diode
and ensures a monomode behavior of the diode laser. The central wavelength of the filter can
be finely tuned by tilting the filter, that changes the multilayer interspacing.
Since laser diodes have considerable round trip gain, it is enough to feedback only 10 % with the
out-coupling mirror. The use of an anti-reflecting diode reduces considerably the mode compe-
tition between the diode and the cavity. Nevertheless, it obliges to maintain a low intra-cavity
power to preserve the anti-reflecting coating of the diode. Indeed, for an intracavity power ex-
ceeding 1 W, the antireflection coating (situated on a focal point) usually gets damaged.

In order to tune the emitting frequency of the laser, the length of the cavity, and then the
position of the longitudinal modes of the cavity, is controlled by a piezo electric-tube on which
is glued the mirror M. The frequency lock is realized by a low bandwidth feedback applied on
the piezo and a high frequency one applied on the current (see section 2.1.4.2). The temperature
stabilization of the laser is ensured by two peltiers elements: one guarantees the stability of the
ensemble and especially the length of the cavity, and the other stabilizes the temperature of the
diode itself.

The measurement of the laser linewidth is presented in figure. 2.2 [Baillard 06]. It is ob-
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Figure 2.2: Beatnote of two extended cavity diodes.
Two ECDL are beated on a fast photodiode (Hamamatsu, mod. G4176). The lasers are
respectively the repumper (locked to 87Rb) and the QND laser (see 2.3, locked on the
repumper). The amplified frequency is analyzed on a spectrum analyzer with 30 kHz

resolution bandwidth (RBW). The green plain curve is a fit of the tail by a Lorentzian of 258
kHz (FWHM). The center is fitted by a Gaussian of 416 kHz standard deviation.

tained by the analysis of the beatnote of two "identical" ECDL, after locking the beatnote to
a local oscillator. The beatnote is detected on a fast photodiode (Hamamatsu, mod. G4176).
The Lorentzian fit of the tail indicates a linewidth of 258 kHz (FWHM) that corresponds to the
convolution of the two Lorentzian. The Lorentzian linewidth of a single laser being then 124
kHz. The low frequency noise is fitted by a Gaussian of 416 kHz standard deviation for the
two lasers. It corresponds to non-fundamental processes such as the feedback noise or thermal
fluctuations. Hence, one laser has a Gaussian linewidth of 294 kHz. These values vary for each
laser but it gives a good idea of the general linewidth properties.

2.1.2 Laser frequency
In this section, we will describe the laser frequency stabilization and the tunability needed in the
experiment. This will be helpful to understand the implementation of the optical bench. Figure
2.3 shows the atomic structure of 87Rb and the laser optical frequencies involved in our bench.

This experiment aims at the non-classical improvement of atomic interferometers. As a
consequence, we need laser radiation to trap and cool the atoms (780 nm), to create a far off
resonance dipole trap (1560 nm), to squeeze by nondemolition measurement (780 nm), and to
perform the interferometric sequence (Raman beams at 780 nm).

• The trapping and cooling of the atoms in the 2D and 3D MOT involve 2 lasers at dif-
ferent frequencies. The cooling laser is tuned slightly on the red of the closed optical
transition

��52S1/2, F = 2� → |52P3/2, Fp = 3
�

while the repumping laser is tuned on the��52S1/2, F = 1
�
→

��52P3/2, Fp = 2
�

transition. Because of the differential light shift at
1560 nm which will be discussed in section 3.2.5.2, the cooling laser requires the pos-
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Figure 2.3: Atomic transition and lasers frequencies.
All the laser frequencies used in the experiment are presented. In brackets is the laser from

which the radiation is generated

sibility to be frequency shifted by a few hundred MHz. This allows to tune the cooling
laser on the

��52S1/2, F = 2
�
→

��52P3/2, Fp = 2
�

transition.

• Based on the study of 2D MOT operation [Cheinet 06, Müller 07, Riis 90, Nellessen 90],
we decided to have the same frequencies for all the beams operating the 2D and 3D MOT.
Hence the push beam is 2.5 Γ detuned from the cycling transition. This is not optimal
to maximize the 2D MOT atomic flux, but simplifies the optical bench design with an
acceptable loss of efficiency.

• To image the cloud by the fluorescence technique, we decided to use the MOT beams
themselves. During such imaging, the beams frequency is tuned on resonance with the��52S1/2, F = 2

�
→

��52P3/2, Fp = 3
�

transition.

The cooling radiation is also used to perform absorption imaging on a different axis. As
the MOT and the absorption imaging beam are never present at the same time on the
atoms, it is not a problem to use the same laser source for the two purposes. Thanks to
a versatile lock the cooling laser can be easily shifted to realize off-resonance absorption
imaging.
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• Since we want to maximize the number of atoms in a non magnetic-sensitive atomic state
(atomic interferometer), a linearly polarized optical pumping on the transition |52S1/2, F =
2� → |52P3/2, Fp = 2� is implemented using the radiation of the cooling laser. This op-
tical pumping allows to accumulate the atoms in the |52P3/2, Fp = 2, mF = 0� atomic
state that is insensitive to magnetic field at first order.

• In order to trap the atom in a non dissipative trap, we use far detuned radiation (1560 nm)
injected in the optical mode of a cavity. The 1560 nm laser is locked to the fundamental
mode of the cavity. As the radiation is far off-resonance, the absolute frequency of the
mode of the cavity is a priori not a critical parameter. Nevertheless, as the cavity is
also used to perform the nondemolition measurement, the cavity resonances have to be
referenced to the 87Rb atomic lines. This involves that the length of the cavity has to be
controlled, and then that the exact frequency of the 1560 nm radiation has to be referenced
to the 87Rb atomic frequency reference.

• To perform atom interferometry (e.g. Ramsey-Bordé type interferometer), and to coher-
ently control the internal atomic state, we choose to implement stimulated Raman transi-
tion induced by far detuned two photon transitions. To enable the transition, the two lasers
need to be coherent with respect to each other and with a frequency difference equal to
the fundamental hyperfine splitting that is 6.834 GHz. The detuning ∆ from the atomic
transition depends on the optical power available and on the diameter of the beams. In
typical experimental configurations that are a few hundreds mW power available over∼ 1
cm beam waist, the detuning is generally in the GHz range.

• Different frequency configurations were considered for the nondemolition measurement.
In order to keep versatility to our design, we decided to dedicate a specific extended cav-
ity diode laser for this purpose. This diode can be easily tuned for a few GHz and is
referenced to an atomic transition.

2.1.3 Scheme of the optical bench
The optical bench has been designed to be compact. The optical system to generate the cooling
and repumping radiation holds only on a 60 × 60 cm breadboard. The beam height is 4 cm
above the table. To minimize the spacing between the optical elements, all the mounts are glued
on the table.

In this optical bench two independent extended cavity diode lasers are implemented: a re-
pumper, locked by saturated absorption (see section. 2.1.4.1) on the cross over |F = 1� →
|Fp = 1, 2� of 87Rb and a cooling laser on the red of |F = 2� → |Fp = 3�. The repumper is
frequency shifted on the |F = 1� → |Fp = 2� transition by an acousto-optic modulator which is
furthermore used as a fast controller for the light intensity. The cooling laser is first injected in
a 1 W diode tapered amplifier (Eagle Yard : mod. EYP TPA 0780) and frequency locked to the
repumper (see section. 2.1.4.2). The relative beatnote lock implemented allows a tunable con-
trol of the laser frequency. The strong beam is separated, controlled in amplitude and injected
in different fibers for the MOT operations, the absorption imaging, and the optical repumping.
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Figure 2.4: Scheme of the optical bench.
The cooling radiation is amplified and split to be used to cool, image and optically pump the

atoms. The repumper is spectroscopically locked on the 87Rb transition. Small fractions of the
beams ∼ 2 mW, are used for the frequency lock of the cooling laser on the repump laser. The

repumper and cooling radiations are geometrically overlapped before being injected in the
fibers toward the 2D and 3D MOT. For the sake of clarity, the optical wave plates have been

intentionally removed from the scheme.
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(b) Saturated absorption on a crossover

Figure 2.5: Saturated absorption
(a) The modulation that is present on the strong pump is transferred onto the weak probe. On

the error signal below, only the atomic lines can be seen and not the crossover. (b) The
modulation is directly applied on the probe and the pump is used to saturate the transition for

the right velocity class of atoms. The error signal is not as clean but the crossovers are present.

2.1.4 Laser locks
2.1.4.1 Saturated absorption on a cross over.

In order to stabilize the laser frequency, one needs an absolute frequency reference. As the final
purpose of the experiments is to control the atomic state, it is common to use the atomic tran-
sition lines themselves as a frequency standard. The main problem in doing so is the existence
in a gas at room temperature of the Doppler broadening of the atomic transitions. At room
temperature the apparent linewidth of atomic state are about 2π × 500 rad.s−1, which is much
more than the natural linewidth Γ = 2π × 6 106 rad.s−1 of the atomic transition |5S� → |5P �.
Nevertheless, using Doppler free spectroscopy techniques [Bennett 62, MacAdam 92] such as
saturated absorption, this enlargement can be circumvented..

To extract an error signal, we proceed with an heterodyne detection. Two main techniques to
insert the modulation are commonly adopted. The first consists to modulate the Zeeman split-
ting of the magnetic sublevels with an external magnetic field. Because of the coils inductance,
magnetic fields cannot be modulated very fast, and the feedback bandwidth is limited to a few
kHz. The second method that we chose is a phase modulation introduced directly on the optical
beam [Shirley 82, Bjorklund 80]. The usual scheme of this method is presented in figure 2.5a.
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The principle of the modulation transfer spectroscopy is to modulate the refractive index
of the cloud with a phase modulated pump beam (red in figure 2.5a). This modulation of the
refractive index, which depends on the relative position of the laser frequencies with respect
to the atomic lines, creates a phase modulation on the probe beam. Because the modulation is
fully transferred by the atoms, it is a spectroscopically sensitive measurement. Nevertheless, the
modulation is applied on the atomic transition that the pump frequency is addressing. Hence, it
is not possible to use this technique for a crossover where the pump and the probe are address-
ing two different transitions.

To circumvent this difficulty, we use an alternative method where the phase modulation is
directly applied on the probe (figure 2.5b). The pump is used to modify the atomic population
between ground and excited state when the two lasers are addressing the same atoms. This
method does not depend on which atomic transition is addressed and work even for a crossover.
The error signal detected for one and the other methods are presented in figure 2.5.

Using this method, the repumper laser is locked on the |F = 1� → |Fp = 1, 2� crossover.
The feedback is realized by a double integrator feedback scheme as presented in figure 2.6.

2.1.4.2 Beat note frequency lock

As shown previously, the repumper is fixed with respect to the atomic lines. In order to guaran-
tee a high tunability of the cooling laser for the molasses and loading phases, it is locked with
respect to the repumper via a beatnote technique.

The basic idea is to observe the beating frequency between the repumper and the cooling
radiation on a fast photodetector (Hamamatsu, mod. G4176-03). The beating frequency is the
difference of frequency between the two lasers (∆ω ≈ 6.8 GHz). Mixing this signal with a
stable (fluctuations � Γ) microwave generator (YIG, mod. LPO-0408), the frequency is down
converted in between 0 and 512 MHz. After a division by 512, the signal is proportionally
converted to a voltage through a frequency to voltage converter (FVC, 1 MHz = 10 V). The
signal is then low pass filtered to avoid residual signal modulation at 1 MHz which passes
through the FVC, and a controllable reference voltage is subtracted. The error signal obtained
is doubly integrated: the fast part of the feedback is applied on the current and the low frequency
feedback is applied on the piezo. The double integrator scheme ensures that the piezo is always
dominating at DC.

The main advantage of this scheme is its versatility and capture range. Changing the ref-
erence voltage, one changes the frequency of the laser over approximately 400 MHz. The full
range (512 MHz) is not available since the FVC does not work at low frequencies (<200 kHz).

When the dipole trap is operated, the cooling frequency needs to be shifted by 250 MHz in 1
ms. Extended cavity diode laser are done to work with a zero average current correction. When
the reference voltage is quickly (τ ≈ 1 ms) changed in a two integrator scheme, all the short
time corrections are applied on the current. This creates an instability in the laser and makes
it more sensitive to mode-hop. In order to improve the speed at which the frequency can be
corrected, we implemented a feedforward on the feedback loop of the piezo. This feedforward
is actually equivalent to a peaked gain at f ≈ 1

τ in the transfer function of the piezo. With
such a proportional feedback, the error signal on the current is kept centered on zero. With this
method, we were able to change the frequency by 60 Γ = 360 MHz in 1 ms.
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Figure 2.6: Scheme of the beatnote lock.
The beatnote detected on the photodiode is down converted in the range 0-1 MHz and linearly
converted to a voltage. The further subtraction of a reference voltage gives the error signal that

is integrated and fed on the piezo and the current of the laser.

2.1.4.3 Raman phase lock

Since the experiment is designed to realize sub-shot noise atom interferometry, a Raman bench
was mounted for the coherent manipulation of the atoms. In the following, we introduce the
coherent manipulation of atoms by two photons Raman transition [Cheinet 06] and emphasize
on their sensitivity to the laser phase noise. The performance of the implemented phase lock of
two independent lasers is then detailed.

Two photon transitions

To realize an atomic interferometer, it is necessary to coherently drive the atoms in a su-
perposition state. This coherent manipulation is the equivalent of the beam splitter in optics.
The superposition can be created by a microwave field oscillating at the frequency difference
between the two states, but this interaction transfers only a small momentum pMW = h/λMW

to the atom. It is then not adapted to generate the spatial separation of the two arms of the inter-
ferometer that is needed for the measurement of inertial forces. The solution was demonstrated
in 1991 [Kasevich 91] and takes advantage of a two photons transition. The implementation of
two photons Raman transition has been a real breakthrough for atom interferometry since the
momentum of the two photons are transferred to the atoms: popt = 2h/λopt � pMW.

If we consider the case of a three level system, and if we neglect the light-shift induced by the
Raman beams, the evolution of a system |ψat� = cf (0) |f�+ ce(0) |e� is given by [Cheinet 06]:

cf (t) =

�
cos

�
ΩRt

2

�
cf (0)− ieiφ0

sin

�
ΩRt

2

�
ce(0)

�
e−iωf t (2.1)

ce(t) =

�
−ie−iφ0

sin

�
ΩRt

2

�
cf (0) + cos

�
ΩRt

2

�
ce(0)

�
e−iωet (2.2)

where ΩR = Ω1Ω2/(2∆) is the Rabi frequency of the two photons transition and Ωi the one
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photon Rabi frequency of each laser. The energies of both hyperfine state are �ωf and �ωe and
φ0 = φ2 − φ1 is the phase difference between the two lasers.

This expression shows that during the coherent transfer, the phase difference of the lasers is
transferred onto the atomic state. As the interferometer measures the phase difference between
the two internal states, the noise on the phase difference between the laser will have a direct
impact on the sensitivity of the interferometer. To reach high precision measurement, this noise
has then to be kept as low as possible.

Phase lock of Raman beams
As previously mentioned, the two Raman lasers have a frequency difference equal to the ground
state hyperfine splitting (6.8 GHz) and a well defined relative phase. To get such a phase rela-
tion between the lasers, two different methods are commonly used:

• The two phase related frequencies can be obtained by the generation of sidebands around
a carrier. This has been for example demonstrated with an acousto-optic modulator in
[Bouyer 96]. In this case, the phase correlation is automatically fulfilled if optical path
length fluctuations are well controlled. This technique, which is quite efficient, lacks ver-
satility in the tunability of the phase difference between the two lasers that can only be
tuned by changing the optical path.

• Instead, we decided to set two independent lasers. The frequency and phase relation be-
tween the lasers is ensured by a locking procedure that is presented in figure. 2.7. The
master laser (Raman 1: R1) is frequency locked to the |F = 1� → |F � = 1, 2� cross
over via the repumper laser (noted: Rep). This frequency lock is done using a Phase
Locked Loop (PLL, Analog device: mod. ADF4108). In this numerical electronic de-
vice, the frequency of the signal, which oscillates at the frequency difference of the lasers
(∆f = fR1 − fRep) is numerically rescaled and compared to a quartz reference to ob-
tain an error signal. With this method, the absolute frequency of the master fR1 can
be placed anywhere close to the repumper (∆f < 8 GHz). Contrarily to what seems
to indicate its generic name, the PLL device is here used for a frequency lock and not
for a phase lock. In recent years, the technology of PLL (bandwidth and compactness)
has been optimized for the need of telephony, where they are used to lock Voltage Con-
trolled Oscillator frequencies. Their application to laser locking is recent and detailed in
[Banerjee 06, Appel 09a].

As described in figure 2.7, the slave laser (Raman 2: R2) is phase-frequency locked to the master
laser. This lock consists in down converting the laser frequency difference (∆f = fR1 − fR2 =
6.834 GHz) around 200 MHz, by mixing the beatnote signal with a reference frequency. This
down converted signal is frequency compared to a tunable Local Oscillator (fLO ≈ 200 MHz) in
a phase-frequency detector (ON Semiconductor, mod. MC100EP40). The error signal obtained
is feedback on the laser as described in figure 2.7. The resulting beatnote presented in figure
2.8b shows that the residual phase noise is below 10 µrad.Hz−1/2 at 10 kHz and reaches 3
µrad.Hz−1/2 at 100 kHz.

Microwave frequency chain
A critical part in the lock of Raman lasers is the quality of the microwave reference. Actually,



2.1 Optical bench 27




 




 









 




 






























Figure 2.7: Scheme of the frequency and phase lock of the Raman beams
A frequency lock between Raman1 and Repumper is first realized by the mean of a Phase

Locked Loop. The phase lock between Raman 2 and Raman 1 is done using a phase frequency
detector (PFD).
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(a) Optimization of the bandwidth of the phase lock: BW= 7GHz

(b) Optimization of the phase noise close to the carrier

Figure 2.8: Phase lock beatnote
This spectrum is obtained by a demodulation with the HP synthetizer (point A in figure 2.7).
The demodulation is introduced to suppress the phase noise of the synthetizers and to look

only for the residual phase noise of the lock.
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a high quality (high gain, high bandwidth) phase lock will copy the noise of the microwave
source on the Raman phase difference. The noise spectrum of figure 2.8 is measured relatively
to the microwave source, and shows that the phase noise performances of the lock are close to
standard performances. Nevertheless, the atoms will be sensitive to the absolute phase noise
and not to the relative one. It is then important to use a clean microwave source to drive the
atomic transition.

In that purpose, we designed in collaboration with the Syrte our own microwave reference
(figure. 2.9b). The basis of the design is a very low noise commercial 5× 2 = 10 MHz crystal
reference (table 2.9a) on which a second 100 MHz reference is phased locked.

On one side, this 100 MHz frequency is divided by 10. The resulting 10 MHz are used as
our common reference for the electronics in the lab.

On the other side, it is multiplied by 10, amplified and sent to a non linear device (step
recovery diode, mod. HP 33005C). The 7th harmonic (7 GHz) is filtered (Bandpass cavity
filter, mod. BP7000-70-6CS) and used as the reference microwave. In order to create a tunable
frequency around 7 GHz, the signal is mixed with a synthetiser tuned around 160 MHz and
referenced to the 10 MHz output of the chain. All the phase noise of the chain is then ensured
by the quality of the reference crystal.

Frequency offset Phase noise

1 Hz -113 dBc/Hz
10 Hz -143 dBc/Hz
100 Hz -163 dBc/Hz
1 kHz -170 dBc/Hz

(a) Reference noise of the Blue top crystal.
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(b) Scheme of the Microwave frequency chain. SRD: Step re-
covery diode

Figure 2.9: Microwave frequency chain
On the left hand side are given the performance of the crystal measured by the manufacturer,

and on the right side is presented the electrical scheme that we implemented.

2.2 Apparatus for cold atom trapping
In this section, we will detail the apparatus where cold atomic sample are generated. The
underlying physics for cooling and trapping of atoms is briefly exposed. In a second part, we
present the vacuum and optomechanical design of our 2D and 3D MOT which are generated in
two different vacuum chambers.

2.2.1 Cooling and trapping of atoms
Laser cooling techniques have been developed and pushed forward in the 80’s. This led to the
Nobel Prize of Steven Chu, Claude Cohen-Tanoudji and William D. Philipps in 1997. The key
idea of laser cooling is to use the radiative pressure exerted by light to slow down atoms. In
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this section we will limit our explanation to the 1D case, and introduce the main notions of
these techniques. For further details on atoms cooling and trapping, one can refer to [Chu 85,
Metcalf 03, Metcalf 01, Adams 97].

2.2.1.1 Cooling atoms

Because of the Doppler effect, two counter-propagating lasers with angular frequency ω will
be absorbed differently depending on the relative atoms’ velocity direction and modulus with
respect to the optical beams. If the lasers are tuned to the red of the atomic transition (ω < ω0),
the atoms absorb preferentially from the beam counter-propagating its displacement. Because
of the momentum transfer associated with this absorption, the atoms are slowed down. A graph
of this dissipative force (Fdop) is presented on figure 2.10a.

Fdop = F0

�
Γ2/4

(ω − kv − ω0)2 + Γ2/4
− Γ2/4

(ω + kv − ω0)2 + Γ2/4

�
(2.3)

where Γ = 2π × 6.066 106 rad.s−1 is the natural linewidth of Rubidium. One can see in figure
2.10a that the force is opposed to the atomic velocity, which makes it equivalent to a friction
force.

Remark

• The model presented before is based on a two levels atom. The cooling mechanisms
actually rely on the existence of a cycling transition that allows to repeat the process
of absorption. In 87Rb, the transition (|F = 2� → |Fp = 3�) is a good candidate.
Nevertheless the cooling laser can still excite the |F = 2� → |Fp = 2� transition.
From |Fp = 2�, the atoms can spontaneously decay to F = 1 where they will no more be
sensitive to the cooling laser. |F = 1� is then called a dark state. An extra laser, called
repumper is needed to bring atoms back in the cycling transition.

• In addition, this description does not take into account the heating term due to the spon-
taneous emission linewidth. This effect limits in principle the lowest temperature achiev-
able to the Doppler temperature Tc,dop:

Tc,dop =
�Γ

2kB
= 144 µK, (2.4)

which corresponds to a mean kinetic energy per particule of �Γ/2

2.2.1.2 Trapping

In order to gather a cold sample of atoms, a velocity dependent force that cools the atoms is
not sufficient. It is also necessary to make the force position dependent. For that purpose, the
atom-magnetic field interaction is used (Zeeman effect). Hence, the energy of the atoms is
modified through an interaction between an external field (B) and the atomic magnetic moment
(µ). In the case of a magnetic splitting smaller than both the fine and the hyper-fine structure
[Steck 10], the interaction Hamiltonian is HB = µBgF

mF
� .Bz, where µB = e�

2mec is the Bohr
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(a) Doppler friction force.







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(b) Zeeman splitting of energy levels

Figure 2.10: Cooling and Trapping mechanism
.

magneton and gF is the Landé factor (gF = 1/2 for F = 2 and gF = 2/3 for Fp = 3). The
splitting energy of an |F, mF � level is then:

∆EF,mF = �F, mF |HB|F, mF � = µBgF mF Bz (2.5)

We consider now a magnetic field B = azez and two counter-propagating and circularly
polarized optical beams (figure 2.10b). Because of selection rules [Cohen-Tannoudji 96], a
σ+ beam authorizes only the |g,m = 0� → |e, m = +1� transition, and a σ− authorizes the
|g,m = 0� → |e, m = −1� transition. For an atom in z > 0, this interaction brings the atom
closer to resonance for the σ− beams and takes it out of resonance for the σ+ beams. The radi-
ation pressure pushes the atom in the direction z=0 which creates the central force desired for
trapping.

In order to create such a linear dependence of the magnetic field, two coils in an anti-
Helmholtz configuration are commonly adopted. The quadrupolar field has the required linear
dependence in the 3 directions of space. The polarization of the six beams trapping beams is
adjusted to match with the direction of the gradient.

2.2.2 Two dimensional Magneto-Optical Trap
To produce the source of atoms for the 3D magneto-optical trap, different methods were pro-
posed and tested. Among them, chirped optical cooling lasers [Ertmer 85] or white light slower
[Hoffnagle 88] can be mentioned. The methods which are now the most commonly adopted
are:

• Dispensers are the easiest way to create a controlled vapor. They consist in a metallic
filament that contains solid Rubidium. In this filament can circulate a current. By Ohm
dissipation, the filament is heated and the Rubium sublimates, creating the desired vapor.
This technique is the simplest to increase the Rubidium vapor pressure but it has the
drawback that the atoms are not well collimated towards the trapping region and thus the
background pressure increases when dispensers are turned on. A high pumping rate is
needed to quickly recover the vacuum that allows the evaporation process to occur.
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• A Zeeman slower allows to extract a directed atomic beam from a hot vapor [Phillips 85].
This hot but directed atoms are slowed down by a laser counter-propagating the atomic
direction. A gradually decreasing or increasing magnetic field allows to compensate for
the decreasing Doppler shift linked with the slowing down of the atoms, such that the
counter-propagating light stays on the red side of the atomic transition. This technique
is very efficient and allow to separate by differential vacuum the high pressure chamber
(oven) from the high-vacuum chamber. The main drawback of the method is the place
needed for the Zeeman slower (few meters).

• 2D-MOT loading is a technique that creates a slow jet of atoms that can circulate in
between two chambers that are separated by a differential vacuum stage. This technique
has been chosen in our set-up for its compactness and is described in the next section. For
a detailed analysis of 2D-MOT processes, one can refer to [Metcalf 01].

2.2.2.1 Principle

The technique involved in a 2D-MOT relies on the cooling mechanism described in section
2.2.1. As shown in figure 2.11a, two pairs of counter-propagating and circularly polarized
beams are applied in two transverse directions (x and y). Following the description given in
section 2.2.1 the atoms will be slowed down in these two directions. Using two pairs of coils
in anti-Helmhotz configuration, a gradient is created on x and y with a zero of field at equal
distance of the coils. Using two pairs of coils as presented in 2.11a, the residual gradient on z
is cancelled at first order. Atoms passing through the region of the beams will be trapped and
cooled along x and y, but free to escape along the longitudinal direction z. This creates a jet of
atoms along z, with a low divergence due to the transverse cooling. To force the atoms in only
one longitudinal direction, a push beam is added to reverse the velocity of atoms propagating in
the undesired direction and push them towards the 3D-MOT region.

2.2.2.2 Design

Vacuum
The titanium vacuum chamber of the 2D-MOT and the whole opto-mechanical system are pre-
sented in figure 2.11b and 2.11c. The design is inherited from the Syrte where our 2D-MOT
has been assembled.

The Rubidium (1 g) is inserted in a glass cell which in turn is placed in a titanium finger.
Once the system is under vacuum, the glass cell is broken by a mechanical pressure on the
titanium finger and the Rubidium vapor is free to reach the 2D MOT chamber. The finger is
usually kept at room temperature but can be heated to increase the 2D MOT flux.

The windows (15×5 cm2) for the cooling laser are elongated to allow for a long trapping
region. For compactness reasons, the windows are glued to the titanium mount. A small hole (2
mm diameter and 2 mm long) followed by a 5 cm long graphite piece with a conical hole (1.5
mm input diameter, 5 mm output diameter) ensures the differential pressure operation of the
2D MOT chamber and the science chamber. The slow jet of atoms reaches the 3D MOT region
through this hole. The vacuum of the two chambers can be isolated by an all metal CF16 valve.
On the 2D MOT side, the vacuum was primarily pump to 10−6 mbar, before a 50 l/s getter pump
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(a) Schematic of the 2D MOT.

(b) Vacuum part of the 2D MOT
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(c) Opto-mechanics assembled around the 2D MOT

Figure 2.11: Two dimensional magneto-optical trap
Two pairs of counter-propagating beams decomposed over three region each generate a slow
jet of atoms that escape through a hole in the vacuum chamber. A push beam helps the atoms

to escape the 2D MOT chamber towards the 3D MOT region.
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Figure 2.12: Loading of the 3D MOT.
The trapping beams of the 3D MOT are suddenly turned on, and the fluorescence of the MOT

is measured on a photodiode.

was started (SAES getters, mod. C50-St707). The vacuum on this side is maintained to about
10−8 mbar with the getter alone.

Light and coils
As explained in 2.1.3, the light used for the 2D MOT is composed of repumper and cooling
radiations which are injected in the same fiber. The light is split in 3 with a commercial device
(Schäfter + Kirchhoff, mod. 1×3) to create 2 cooling beams containing each 20 mW of cooling
and ∼ 0.5 mW of repumper, and 1 push beam made of 0.5 mW of cooling and ∼ 10−2 mW of
repumper.

In order to create a long layer of light to cover the windows, the cooling beams are ellip-
tically shaped with an aspect ratio of 2 and a beam waist of 10 mm on the long axis. As can
be seen in figure 2.11c, the layer is generated by the juxtaposition of three of these elliptical
beams. The circularity of the polarization is ensured by a rotating quarter wave plate. Each of
these 6 = 2 × 3 beams is retroreflected by a mirror on top of which is glued a 1 inch quarter
wave plate.

The magnetic gradient needed for the trapping is generated out of 2 pair of rectangular coils
(15× 5 cm2). Only one pair is really needed, but using 2 pairs ensures the symmetry of the two
transverse trapping direction and cancel at first order the residual longitudinal gradient. Each
coil is composed of 100 turns of 1 mm diameter wires. All the coils are operated in series with
1.5 to 2 A. The zero of magnetic field is adjusted on the axis of the hole using independent
adjustable resistances in parallel to the coils (few percent adjustability).

Performance
Using the adjustability of the magnetic field and power cited above, this 2D MOT loads the 3D
MOT with more than 5 108 at/s. We were able to fully load 3D MOT of a few 109 atoms in
about 3 s.
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2.2.3 Ultra High vacuum set up
The design of the main chamber, the cavity and the coils were carried out as an ensemble.
All the drawings have been realized on Solidworks. The design of the 2D MOT and the main
chamber are independent except for a CF16 flange that links the two. All the mechanical pieces
were realized in non-magnetic material. The chamber is completely done in 316LN stainless
steel. The closest mechanics to the atoms were done in titanium, bronze beryllium or copper.

2.2.3.1 Main chamber

The main chamber is designed to reach ultra high vacuum and contains the optical cavity as
well as the MOT coils. Hence, it has a high volume compare to standard UHV chambers. It is a
cylinder with inner diameter of 25 cm and height of 30 cm. The cavity and the coils are mounted
on the CF250 top flange, which is turned upside down to close the vacuum chamber (see figure
2.13). This chamber includes as many optical ports as possible considering the optical access
left by the cavity and the coils. In particular, there are four CF100 windows (2 on the vertical
and 2 on the horizontal), 13 CF40 and 1 CF16. A precleaning of the cavity was realized by
baking the chamber to 350°C with only blank flanges for 1 week. A second precleaning was
realized at 200°C with the windows for 2 weeks. As described in 2.2.3.2, the coils had their
own precleaning. The cavity with the coils were inserted and the vacuum started with a turbo
pump mounted behind an all metal valve. When a vacuum of about 10−6 mbar was reached,
two (out of four) 50 l/s getter pumps and two 20 l/s ion pumps were started. The valve of the
turbo pump was then closed and the turbo pump removed to avoid vibrations. The chamber was
baked to 80°C for 2 weeks to prevent damages on the piezo-electric elements of the cavity.
To avoid magnetic fields, no gauge was installed on the chamber and the two ion pumps are
shielded. The sum of the two ion pump currents is below 0.5 µA, which is probably the leakage
current. We have no precise value for the residual vacuum pressure, but the life time of the
MOT is about 20 s (see figure 2.16).

2.2.3.2 Coils under ultra high vacuum

Because the science chamber contains the cavity, it has big dimensions. Hence, if the coils had
been out of the vacuum chamber, we should have used about 50 A to generates the 3D MOT
gradient. This would have unnecessarily constrained the experiment. To avoid such a problem,
the coils have been inserted in the science chamber itself. The design is presented in figure 2.15
and the drawings are given in appendix G. The V shaped design of the copper (OFHC) mounts,
that can be seen in figure 2.15b allows for a maximal optical access. To guarantee the overlap
of the cavity center and the zero of magnetic field, the supports of the coils are fixed on the
titanium (TA6V type) plate of the cavity. In this configuration, the coils and the mirror of the
cavity are both referenced to the same mechanical piece (titanium plate) which helps to achieve
the previously mentioned geometrical overlap.

When the coils are supplied, a thermal distortion of the cavity plane could appear. To prevent
for such an effect, the coils supports were attached to the titanium plate with machor ceramics
which are thermally insulating and UHV compatible. To allow for the thermal dissipation to
occur, the coil supports are linked to the science chamber via copper braids which avoid me-
chanical constraints.
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Figure 2.13: Overview of the complete vacuum system
The 2D MOT compact design is on the right and the science chamber containing the ultra-high

finesse cavity is on the left.
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The winding of the coils are made of kapton insulated copper wires. Their section is 2.44×
1.2 mm. The wires are glued together to the support to guarantee the robustness. The glue is
Epotek H77 and was heated up to 180°C under nitrogen to dry. Each coils has 116 turns with
radii between 50 and 77.5 mm and distances to the MOT between 16 and 38.5 mm. Considering
the full geometry, we have 2.2 Gcm−1A−1 and the coils are operated with 4 A. To avoid Eddy
currents, the copper support are cut.

To carry the current in and out of the chamber, a CF16 electrical feedthrough in 316L stain-
less steel with 8 pins has been installed on the vacuum chamber. To avoid heating on the
feedthrough, each way of the current is split onto two pins of the flange. Each pin can handle
15 A with 1 kV.

Before the coils were included in the main chamber, they were baked to 200°C for 2 months
to allow for a maximal degassing. This long degassing time was mainly attributed to the air that
is captured deep in the coil wiring and that has then a low conductivity towards the pump. A
vacuum of 4 10−10 mbar was then reached at room temperature with no current in the coils and
with a 100 l/s pump behind 50 cm of a CF40 elbowed tube.

Remark: In order to create a bias field for optical pumping or Rabi oscillations, we have the
possibility to switch the coils from anti-Helmholtz to Helmholtz configuration. In that case, the
coils create a bias field of 17.4 GA−1 at the position of the MOT.

To compensate for external parasite magnetic fields (e.g. earth fields), we settled the so
called compensation coils. These coils are three pairs of coils mounted in Helmholtz configura-
tion. Each pair of coils compensate for the field in one of the three direction of space such that
the residual magnetic field is null. Hence when the 3D MOT coils are turned off, optical mo-
lasses and subdoppler cooling can be performed in a zero magnetic-field environment. Along
the vertical, they create 31.8 GA−1, in the axis of the 3D MOT coils they create 17.3 GA−1 and
in the last direction they create 34.4 GA−1.

2.2.3.3 Magneto-optical trap

In this section, we describe the optical arrangement and characteristics of the 3D MOT. As
presented in section 2.1.3, the two necessary frequencies for the trapping and cooling are in-
jected in the same polarization maintaining fiber. To send the radiation from the three directions
of space, the light is split in 3 different fibers using 1x3 splitter (Schäfter + Kirshoff). Each
retro-reflecting beam contains 0.5 mW of repumper and 20 mW of cooling and is collimated
to be sent on the atoms. The collimator are commercial couplers (Schäfter + Kirshoff, mod.
60FC-M75) directly fixed on the chamber itself. These couplers are composed of an achromat
lens to collimate the light with a 6.75 mm waist, followed by a quarter wave plate to create left
or right circularly polarized light. To simplify the set-up, we choose to retro-reflect the MOT
beams with a 2 inch quarter wave plate followed by a 2 inch mirror.

Remark 1: This choice of retroreflected MOT beams simplifies the implementation since no
intensity balance is required. At the same time, it becomes critical to reach low temperature
in optical molasse, with the shadow effect on the first path that unbalances the power of the
retroreflection.
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(a) Coils support.

(b) Disposition of the wire

Figure 2.14: The copper support of the coils
The V shape allows beams at 45° to access the atomic sample. The supports are directly

attached to the titanium plate of the cavity.

(a) One of the two 3D MOT coils. (b) Front surface of the coils

Figure 2.15: UHV coils support
The coils are winded on a copper support and are made of 116 winding each. The windings are

glued together to the support by epotek H77.
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Figure 2.16: Life time of the 3D MOT.
The 2D MOT is turned off and the decay of the fluorescence of the 3D MOT atoms is

measured.

Remark 2: For more versatility, we have recently implemented a 3D MOT configuration
using 6 independent beams. The splitting in 6 beams is done by 1×2 fiber splitters (Oz optics).

2.2.3.4 The optical cavity

The optical cavity properties are detailed in chapter 3. Figure 3.4 shows a picture of the me-
chanical layout that gives an idea of the involved geometry for the cavity and of the mechanical
connection between the 3D MOT coils and the cavity plane. Essentially, the cavity is composed
of four mirrors placed at the corners of a square of 90 mm diagonal. Some of the mirror mounts
can be actuated under vacuum for a precise alignment on the atoms.

2.3 Imaging system
The strong interaction of Rb atoms with optical light is of great interest. It allows for all the
trapping and cooling process previously mentioned but can also be used to image the atoms.
When a laser that is resonant with an atomic transition is shined on the atomic cloud, it is
partially absorbed by the atoms, and a shadow appears on the transmitted beam. Recording this
shadow is called an absorption imaging. The optical system which images this atomic shadow
on the CCD is presented in section 2.3.0.5. Another possibility to record an image of the sample
is to collect the light scattered by the atoms, hence realizing a fluorescent imaging.

2.3.0.5 Imaging system

Our imaging system can be used with two different overall magnifications x1 and x4 which
are described in figure 2.18a. The first stage of the optical system is a side object tele-centric
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Figure 2.17: Mechanical design of the cavity
Four mirrors hold at the corners of a 90 mm diagonal square. The mirror mounts are

referenced to a 15 mm thick titanium plate on which are also fixed the coils

telescope described in the next paragraph. The first lens of the telescope is placed at 220 mm
from the atomic ensemble. The image created by the telescope is taken by a microscope ob-
jective x5 or x20 (Zeiss, mod. Fluar) which are infinity-corrected followed by a microscope
lens tube which images the atomic cloud on the sensor of the camera (Apogee). Using the x5
objective, the point spread function of the system is limited by the microscope objective x5 to
about Ø = 2.44λ

NA = 38 µm in the object plane (NA=0.05) and the depth of field is 312 µm. Using
the x20 objective, the point spread function of the system is limited by the telescope to about
Ø = 13 µm in the object plane (NA=0.13) and the depth of field is 46 µm. The adjustment of
the focus is realized by micro-positioning the microscope objective.

Telecentric objective
The two-side tele-centric telescope (Schneider optics, mod. Xenoplan1:5) has been character-
ized on the Zygo laser interferometer of the Institut d’Optique, Graduate School. The telescope
has an input numerical aperture of 0.13 (output NA = 0.65) and a magnification of 1/5 with a
working distance of 270 ±75 mm. As shown on figure 2.19, the telescope is actually diffraction
limited on all its numerical aperture. The test has been realized at 632 nm with NA = 0.125.
The Strehl factor of this telescope is 0.945 on axis, 0.937 out of axis by 2 degree and 0.997 for
half the full NA and out of axis by 2 degree.

Technical notes:

• Telecentric telescope Xenoplan 1/5 : NA 0.13, working distance (WD) 270± 75 mm.

• Microscope objective Zeiss Fluar x5 : NA 0.25, WD 12.5 mm, Transmission (T) > 85%.

• Microscope objective Zeiss Fluar x20 : NA 0.75, WD 0.6 mm, Transmission (T) > 90%.
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Figure 2.18: Imaging system.
The imaging system is made of a telecentric objective that transports the image out of the
vacuum chamber. The image created is conjugated with the CCD plane by a microscope

objective. This configuration allows to switch easily from an overall magnification of 1 to 4
simply by changing the microscope objective.
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Figure 2.19: Modulation Transfer Function of the telescope.
The dashed line are theoretical prediction and the dotted and plain lines are measurement
realized on axis and 2° off axis. The MTF of the telescope shows that it is very close to be

diffraction limited on all its aperture.

• Lens tube edmund optics : focale 164.5 mm, WD 120± 10 mm.

2.3.0.6 Absorption imaging

In most of the experiment described in the following, the detection of the atoms is realized with
an absorption imaging. This technique measures the local optical density of the cloud integrated
along one direction z.
The atomic cross section for atoms on the cycling transition (|F = 2, mF = 2� → |Fp = 3, mF = 3�)
is given by [Steck 10]:

σ =
3λ2

2π

1

1 + (2δ
Γ )2 + I/Isat

(2.6)

where Γ = 2π 6.066 106 rad.s−1 is the natural linewidth, Isat = 1.67 mW.cm−2 is the saturation
intensity, and δ the angular frequency detuning of the probe with respect to the atomic transition.

In our experiment, the quantization axis is not well determined. Hence it is not possible to
define a σ+ polarization of the light and the absorption cross section is reduced by a factor 2.13
[Steck 10].

Using a Beer Lambert law for the intensity, one finds :

I(x, y) = I0(x, y) e−σ
R

ρ(x,y,z)dz (2.7)

ρ =
N0

(2π)3/2σxσyσz
e
−
�

x2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

�
(2.8)

where ρ is the atomic density that is assumed to have a Gaussian distribution and N0 the number
of atoms of the cloud.
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After the integration over the propagation axis and the integration of the 2D image on one
direction (y), one finds the optical density profile:

�
ln

�I(x, y)

I0(x, y

�
dy = −σ

N0√
2πσx

e
−
�

x2

2σ2
x

�
=

�
ln

� I(x, yi)

I0(x, yi)

�
δy (2.9)

where δy is the pixel size.

Fitting the projected image, one obtains the number of atoms N0 as well as the size of the
atomic cloud (σx).

The evolution of the size of the cloud after a time-of-flight is governed by the initial mo-
mentum distribution of the atoms in the cloud and characterizes the temperature of the cloud:

σ2
x(ttof ) = σ2

x(ttof ) +
kBT

m
t2tof (2.10)

This expression is valid for sufficiently diluted cloud (ρa3 << 1) and for non degenerated
samples with a Maxwell-Boltzmann distribution. ρ is the atomic density and a = 5.77 nm the
s-wave scattering length.

2.4 Summary
In this chapter, we have presented the main technical characteristics of the experimental appa-
ratus.

We have described the extended cavity diode laser used in the experiment and shown the
different locking circuit that have been realized. The reference laser is the repumper laser
which is locked by saturation spectroscopy. The other lasers are locked to the repumper using
beatnote techniques in a versatile way. An optical bench to drive two photons Raman transitions
and involving a phase lock has also been realized.

The vacuum system consists of a titanium made 2D MOT chamber and a non-magnetic
stainless steel science chamber where the high finesse cavity sits. Special coils have been de-
signed to be mounted under vacuum.

The imaging set-up has been designed and implemented to be situated at 30 cm from the
atomic sample while keeping a high numerical aperture (NA=0.13). The system has been char-
acterized and is diffraction limited for this numerical aperture.
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The high finesse cavity is at the heart of our experimental apparatus and is its peculiar
element. The four mirrors geometry in a crossed configuration makes it quite specific to trap
atoms. Since it is a novel geometry for cold atoms experiment, a care has been given to properly
understand its characteristics. The cavity has been chosen to be resonant both at 1560 nm and
780 nm. The radiation injected in the cavity at 1560 nm has the purpose to trap the atoms in a far
off-resonance optical dipole trap (FORT). As the waist chosen for the optical mode geometry are
about 100 µm, a finesse of a few thousands is enough to create a trap with a depth of a mK using
laser power that are only in the range of 1 W. On the contrary the 780 nm resonance that is used
to enhance the quality of the nondemolition measurement, should in principle always benefit
from a higher finesse (see for example section 5.3.4.2 or 6.3 or [Lye 03]). In that context, we
searched for a manufacturer that could make the highest finesse possible at 780 nm (∼ 100000)
with the constraint of keeping a finesse of a few thousands at 1560 nm.

The choice of a trapping with a radiation at 1560 nm that is the double of 780 nm was not
fortuitous and was led by the idea to reference the 780 nm cavity resonance to the 87Rb lines
using the 1560 nm lock. This locking of the cavity length that is still prospective in our current
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set-up is detailed in section 6.3. In this perspective, locking the cavity length at a frequency for
which the finesse is "low" may seem problematic to perform a measurement at a high finesse
(low linewidth) frequency. Actually if it is true that the absolute frequency stability of a lock is
proportional to the cavity finesse, it is important to remember that it is also proportional to the
square root of the optical power used to extract the error signal. Hence in our present case (see
section 6.3 for details), the low frequency at 1560 nm can be compensated by a higher optical
power which should in principle allow to approach the optimal situation where all the cavity
length fluctuations are cancelled.

In this chapter, we will present a detailed study which has been led on the cavity. At first,
we will discuss the intrinsic properties of the geometries that have been considered for the
experiment. We will then focus and describe in detail the features of the chosen configuration
and its experimental realization. We introduce at first the formalism for the description of
optical cavities and apply it to derive the fundamental mode profile as well as the stability
conditions. The expected and measured spectrum of the transverse modes are then compared
and give informations on the astigmatism in the cavity. The fundamental mode of the cavity that
is used for the trapping of atoms is characterized via an indirect measurement of the divergence
of the output mode, but also via an in-situ nondemolition measurement that uses the atoms as a
sensor. At last we detail the locking procedure that has been realized.

3.1 The considered geometries
In this section, we present the three geometries that have been foreseen in the experiment.
We first give some qualitative arguments to understand their behavior, and briefly describe the
experimental characterizations that were led before our final choice was made (section 3.1.2).
The description of the butterfly cavity that has been finally implemented is given in detail in
section 3.2.

The geometries were analyzed in regard of the following requirements:

• the ability to switch between running and standing waves in the resonator. Hence, linear
cavity were excluded of the discussion,

• the possibility to reach high confinement in the dipole trap which involves to aim at small
cavity mode waists. The confinement of a trap plays a crucial role to reach a high atomic
density and then to start the evaporation process that leads to the condensation,

• the optimization of the loading of atoms from the MOT to the dipole trap. This is obtained
by creating a good overlap between the MOT volume and the cavity mode with the use of
large cavity mode waist, that is contradictory with the previous point.

These requirements led us to study the geometries presented in the following section and to
look for the best compromise possible.

3.1.1 Different possible geometries... but a common description
Given the requirement of high confinement and our will to use traveling waves, we compared
the 3 mirrors geometry (figure 3.1a, called triangle), the 4 mirrors geometry (figure 3.1b, called
butterfly), the 5 mirrors geometry (figure 3.1c, called star). The position of the atoms in these
different geometries is represented by the red spot.
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(a) 3 mirrors geometry : tri-
angle cavity

(b) 4 mirrors geometry : butterfly
cavity

(c) 5 mirrors geometry : star ge-
ometry

Figure 3.1: Geometry considered for the cavity

In the following of this section, we forget about the astigmatism of the cavity that will be
discussed in section. 3.2.2.2.

As the plane mirrors are only folding the space, it is clear in figure 3.1 that the star geometry
and the triangle geometry are quite equivalent. But there is one major difference: in the triangle
geometry, the atoms are placed at the closest waist from the curved mirrors while it is the reverse
for the star geometry.

The butterfly geometry can also be brought back to the triangle case considering that the
upper part of the cavity is the symmetric of the lower one. A plane mirror placed at the center
would preserve the mode geometrical properties.

Studying the stability of the 3 mirrors configuration, one can see that there exists actually
two different stability regimes that lead to an inverted ratio of the waist in A and B:

• f = R
2 > L1. In that condition, the waist in A is smaller than in B. This condition would

be the one to apply for 3.1b and 3.1c to have the tightest confinement on the atoms.

• f = R
2 < L2. In that condition, the waist in B is smaller than in A. This condition would

be optimal for 3.1a.

More generally, it can be intuitively understood by the fact that the waist in A and B are
reciprocally imaged by the curved mirrors. The smallest waist is the one whose distance from
the curved mirrors is closer to the focal length.

3.1.2 Triangle and star geometry
In this section, we describe the coupling efficiency that can be reached in the triangle and star
geometries, and determine the finesse of such cavities.

3.1.2.1 Coupling efficiency

Looking to the stationary equation for the propagation of the electric field at each interface,
we calculate the inner and transmitted field in the cavity. In the following, the results will be



48 CHAP 3 - THE HIGH FINESSE CAVITY

Figure 3.2: Notation for the electric field in the cavity.
The reflection and transmission r and t are considered to be identical for all the mirrors.

presented in two columns. The first describes the triangle geometry and the second the star
geometry.

Definition:
The field amplitude reflexion, transmission and losses of the mirrors are noted r, t and κ re-
spectively. The cavity reflection and transmission are noted (R,T ) in amplitude and (R,T ) in
intensity. We note Ei and Er the complex amplitude of the incident and reflected electric field
on the mirror M and Ec the complex amplitude in the cavity (see figure 3.2).

In the stationary limit, we have:

Triangle cavity Star cavity

Ec = t Ei + r3Ec eikL Ec = t Ei + r5Ec eikL

Er = tr2 Ec eikL − r Ei Er = tr4 Ec eikL − r Ei

(3.1)

Solving these equations, one finds the reflectivity (R) and transmission (T ) coefficients,
which should verify R+ T = 1 for a lossless cavity.

Triangle cavity Star cavity

R =
���Er
Ei

���
2

= r2 1+r2−2r cos(kL)
1+r6−2r3 cos(kL) R = r2 1+r6−2r3 cos(kL)

1+r10−2r5 cos(kL)

T =
���Et
Ei

���
2

= t4 r2

1+r6−2r3 cos(kL) T = t4 r6

1+r10−2r5 cos(kL)

(3.2)

The coupling efficiency (C) is defined as the part of the energy which is not reflected, i.e.
C = 1 − R. It can be experimentally easily estimated by measuring the reflected power in
and out of resonance.

From 3.3a, the coupling efficiency increases for a decreasing reflectivity. Indeed, in the low
reflectivity limit, we are approaching the free space condition where all the light is transmitted
(no mirrors), i.e. the coupling converge to 1.
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(c) Reflectivity of the star cavity.

Figure 3.3: Reflectivity of the cavities in p polarisation
The theoretical limit to the coupling efficiency is presented in dashed line on the figures.
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In the high mirror reflectivity limit, figure. 3.3a shows that the more mirrors are involved,
the lower the coupling efficiency. In the case of the Fabry-Perot cavity, the coupling efficiency
is 100% whatever the mirrors reflectivity. This happens because the transmission of the first
mirror perfectly matches the reflection of the second mirror. In other terms, the contrast of the
interference on the first mirror is full: the cavity is impedance matched for the propagation of
light. For additional mirrors added in the cavity, the contrast of the coupling interference on
the first mirror is lowered and part of the light is reflected. In our experimental realization,
this property was well verified for the triangle geometry but not for the star geometry that
exhibits a higher coupling than expected (see figure. 3.3c). Our explanation holds on the angle
of incidence on the mirrors and on the calculation that assumes identical reflectivity for the
mirrors. The mirrors used were treated to have an optimal reflection for an angle of incidence
of 0°. In the case of the star geometry realized experimentally, the input mirror had an angle of
incidence of 45° while the others had about 20°. The high angle of incidence on the in-coupling
mirror probably lowers its reflectivity, and allows to approach the case of impedance matching
(r1 ≈ r2.r3.r4.r5).

The coupling efficiency obtained experimentally for the triangle and star geometries were
respectively 80% and 87%.

3.1.2.2 Finesse

Another important characteristic of a cavity is its ability to store the light, or in other terms the
average number of turns that a photon realizes before it exits the cavity. This parameter is called
the finesse of the cavity. The finesse is related to the average propagation distance in the cavity
over the length L of the cavity. It is also the ratio of the frequency distance between two adjacent
longitudinal modes (Free Spectral Range - FSR) over the width of the cavity transmission.

F =
∆νFSR

δνcav
, (3.3)

where ∆νFSR = c/L is the FSR frequency, and δνcav is the spectral width of the cavity trans-
mission, which is linked to the coherence length of the cavity and is inversely proportional to
the decay time τ of the cavity.

In equation 3.2, the denominator D defines the width of the cavity resonance (δνcav) and
can be rewritten as:

D = (1− r3)2(1 + m1 sin2(kL/2)) D = (1− r5)2(1 + m2 sin2(kL/2))
m1 = 4r3

(1−r3)2 m2 = 4r5

(1−r5)2
(3.4)

The linewidth of the cavity is measured at half width at half maximum (HWHM) of the reso-
nance line and corresponds to the condition:

k
L

2
=

πL

c

�
ν ± δνcav

2

�
≈ pπ ± 1√

m
. (3.5)

The cavity linewidth and the free spectral range are then given by:

δνcav = 2π
2c√
mLπ

, (3.6)

∆νFSR = 2π
c

L
. (3.7)
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Combining these two results, one obtains the finesse in the form:

F =
π

2

√
m (3.8)

Such a definition of the finesse shows that it is an increasing and unbound1 function of the re-
flectivity. Even if the coupling efficiency gets down with reflectivity, it is always profitable to
increase the reflectivity of the mirror if the losses of the cavity can be neglected. Considering
the specifications of the mirrors, the finesse were calculated to be 417 and 250 for the triangle
and star cavities respectively. Their experimental measurements gave 60 for both geometries.
This discrepancy is essentially attributed to the mirrors that were not taken at their specified
angle of incidence (AOI).

Remark: The cavities have also been tested in s polarization (⊥ to the cavity plane) for which
they give finesse of 160 and 105 with coupling efficiency of 41% and 28% for the triangle
and the star geometries respectively. This polarization dependence of the mirrors is linked
to the nonzero angle of incidence that allows to differentiate the two polarizations (Fresnel
coefficients).

3.1.2.3 Optical beam dimensions

We focus now on the size of the single trapping beam of the triangle and star geometries. All
the relevant definitions for Gaussian beams are given in section 3.2.2.1.

To perform an evaporation in a atomic trap requires high atomic densities. To reach these
densities, a tight trapping of the atoms has to be obtained. In the case of an optical dipole trap,
the trapping frequencies are mostly determined by the beam size which should be typically
below 200 µm. Hence, for a tight trapping in the transverse direction, the waist (w) should be
less than 200 µm. The characteristic length for the confinement in the longitudinal direction
of a Gaussian beam is called the Rayleigh range zR = πw2/λ. To respect the same condition
on the dimension in the longitudinal direction, i.e. zR < 200 µm, the waist of the beam would
actually be limited to 10 µm at 1.56 µm. This waist dimension would be a priori technically
feasible but would require to operate the cavity close to the unstable limit of the concentric
geometry. Indeed, in this limit, the waist at the center of the cavity approaches the diffraction
limit (w ≈ λ/2). There are nevertheless some drawbacks to such a situation.

• Beams with small waist, are highly diverging θ ∝ λ/w0. Hence, the mirrors need to be
close to the cavity center so that they can be used under high numerical aperture while
preserving the beam from aberrations. This proximity of the mirrors constrains the optical
access needed for all the cooling and trapping operation. In that perspective, the star
configuration has the advantage to have its tightest waist the furthest from the mirrors.

• To operate a cavity close to an instability limit is technically difficult since the length of
the cavity becomes a very critical parameter. For example, during the bake out the system
for degassing, the cavity length may change so that the cavity becomes unstable.

1Only true in a lossless cavity as will be discussed in 3.2.7
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• When considering to obtain a quantum degenerate sample in a cavity, a crucial parameter
is to reach high densities. For that, not only the trapping frequencies are important pa-
rameters but also the number of atoms loaded from the MOT into the dipole trap formed
by the cavity mode. Regarding this second constraint, a dipole trap with a waist of 10 µm
is completely unadapted to load atoms from a MOT that has typical dimensions of a few
hundred µm.

Considering these geometrical arguments, we converged to the crossing cavity geometry
(see figure 3.3b) in which the Rayleigh range does not play any role. The strong constrain on
the waist dimension, i.e. w ≈ 10 µm, is then removed. This geometry allows at the same time
for high trapping frequencies in all directions, and for a high volume of capture with waist of
the cavity beam that can be about 100 µm. On the other hand, this geometry has the drawback
that interferences between the two arms can appear in the crossing region. The pattern of the
interference is linked with the position of the mirrors and will then shake with acoustic noise,
inducing heating of the atomic sample. To avoid the interference, we use light polarized in
the plane of the cavity and we finely adjust the angle between the two crossing arms to 90°. A
second drawback is due to the fact that for the butterfly cavity all the waists are positioned inside
the cavity while the triangle and star cavities have waists on the plane mirrors. This geometrical
difference makes mode matching more difficult to achieve.

3.2 The Butterfly geometry
In this section we present a detailed analysis of the cavity used in the experiment. We give its
mechanical design and describe the geometrical properties of the mode and the spectral response
of the cavity. A last part is dedicated to present the locking scheme of the 1.5 µm laser to the
cavity.

3.2.1 The a priori cavity properties
3.2.1.1 Geometry and mechanical design

The cavity adopted for this experiment is a four mirror cavity with two arms crossing at its
center as presented in figures 3.1b and 3.4a.

The cavity, shown in 3.4, is made up of four mirrors placed at the corners of a square with
a diagonal of 90 mm. All the mechanical components of the cavity are realized in titanium
to maintain a low magnetic environment for the trapped atoms. The size of the cavity results
from a compromise to maximize the optical access while minimizing the cavity mode to en-
sure a tight trapping. For a polarization in the cavity plane, the square geometry enables a 90°
crossing angle which avoids an interference pattern in the crossing region. The mirrors are all
identical and are plane-concave with a radius of curvature R = 100 mm. They have a diameter
of 1/2 inch. With the notations of figure 3.1b, we are in a configuration where L1 ∼ f = R/2
which corresponds to a concentric cavity. Considering in addition the astigmatism, we are ac-
tually very close to the concentric cavity case for the horizontal direction (see figure 3.14).

All the parts are tightly mounted on a 15 mm thick titanium plate, which gives its stability
to the mechanical design. Two mirror mounts allow an axial degree of freedom (θy) for air
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(a) Scheme of the cavity geometry

(b) The inner cavity set up

Figure 3.4: The crossed cavity configuration
The cavity is a square of 90 mm diagonal, and all the mirror mounts are mechanically

referenced to titanium supporting plate. Under vacuum, two mounts are completely fixed
whereas the two others can be piezo actuated. One mount realizes the coarse alignment and the

other one gives the fine adjustment of the cavity length.

alignment but are completely fixed once under vacuum 3.5a. One mount (figure 3.5b) is hold
with an exact constraint design (point-line-plane), in which the screws are newfocus picomotors
(Newfocus, mod.4301). These linear actuator can be driven under vacuum and allow for a coarse
alignment of the cavity, necessary to vertically overlap the two crossing arms. The last mount
(figure 3.5c) is adapted from a nano positioning system (Madcitylabs, mod. M3Z) ; it is a 3
axis (θx, θy, z) piezo actuated titanium mount with maximal angular displacement of 2 mrad
and translation of 50 µm. It allows for a fine adjustment of the cavity crossing angle and for a
dynamical control of the cavity length (20 Hz - bandwidth).

To fix the mirrors in these mounts, the mirrors are inserted in an adjusted hole and com-
pressed onto a front reference plane. In each mount a care was given to mechanically reference
this front plane. Following the study presented in section. 3.2.3.2, the position tolerance was
fixed to T0 = 100 µm and an angle tolerance of θ = 100 µrad was accepted

To avoid mechanical distortion on the mirrors, special o’ring string have been designed and
fabricated in Bronze-Berrylium which is a non-magnetic and elastic material. These o’ring
compress the mirror from the back (see figure 3.5a).
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(a) Cavity axis definition

(a) UHV fixed mount (b) Two axis, high tunable range
mount

(c) Three axis fine piezo con-
trolled mount

Figure 3.5: UHV mirror mount mechanics.
Under vacuum, two mounts are completely fixed (a). Among the two others, one is actuated by
picomotors and gives a coarse alignment of the cavity whereas the other is actuated by piezo

element and give a continuous and fine adjustment.

3.2.1.2 Mirror datasheet

The high reflectivity mirrors were ordered from ATFilms. On the back side, the surface is plane
and is anti-reflection coated at both 1560 nm (r2 = 0.03419%) and 780 nm (r2 = 0.07929%).
The front is a concave surface with 100 mm radius of curvature. It has a superpolish finish
(roughness < 5 Å). The transmission of the front side is t2 = 0.03776% at 1560 nm and t2 =
0.001545% at 780 nm.

These are manufacturer measured data on a dark background, i.e. the high quality reflexion
is measured by the transmission leaks.
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3.2.1.3 Coupling efficiency and finesse expression

The formalism used in 3.1.2 is applied to model the coupling mechanism of the field in the
cavity. In a stationary limit, one has:

Ec = t Ei + r4Ec eikL, (3.9)
Er = tr3 Ec eikL − r Ei. (3.10)

This leads to a field (R(ω), T (ω)) and intensity (R(ω), T (ω)) coefficients of the form:

R = Er
Ei

= t2r3eikL

1−r4eikL − r R =
���Er
Ei

���
2

= r2

1+r8−2r4 cos(kL)

T = Et
Ei

= tEc
Ei

= t2

1−r4eikL T =
���Et
Ei

���
2

= t4

1+r8−2r4 cos(kL)

(3.11)

where k = ω/c is the wavevector of the light.

The maximal coupling that can be achieved if all the mirrors are identical is:

C = 1−R(ω) = 1− r2 1

(1 + r2)2
≈ 75%. (3.12)

As in section 3.1.2.2, the denominator D of equation 3.11:

D = (1− r4)2(1 + m sin2(kL/2)), (3.13)

where:

m =
4r4

(1− r4)2
, (3.14)

leads to the expression of the finesse:

F =
π
√

m

2
=

πr2

1− r4
= 4160 at 1560 nm and F = 101 668 at 780 nm.(3.15)

The value given in 3.12 and 3.15 are theoretical values calculated from the specifications. They
have to be compared to the measured ones which are presented in section 3.2.6.

3.2.2 The gaussian mode : TEM00

Gaussian profiles and more generally Hermite-Gauss or Laguerre-Gauss beams are very useful
in optics. They have the property to be self consistent, which means that during their propaga-
tion, they change size but not shape. In addition, it is possible to prove with Huygens integral
formalism [Nicolas 05], that they also conserve their shape while going through a linear optical
system.
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3.2.2.1 Definition of the cavity modes

In this section, we will give some definitions and formulas relevant to the context of this
manuscript. All the following formulas on Gaussian beams can be derived directly from the
Helmholtz equation of propagation of field in free space:

�
∇− 1

c2

∂2

∂t2

�
E(r, t) = 0. (3.16)

In the case of a time separable electric-field E(r, t) = A(x, y, z) ei(ωt−k.z), the wave equation
3.16 simplifies to its equivalent on the field spatial amplitude:

�
∇+ k2

�
A(x, y, z) = 0. (3.17)

In the paraxial approximation (∂A
∂z << kA and ∂2A

∂z2 << k2A ≡ sin(θ) << 1), the expression
3.17 becomes:

�
∇⊥A− 2ik

∂A

∂z

�
= 0. (3.18)

If the x and y coordinates can be further separated, which is true for an astigmatic cavity, the
complex amplitude of the electric field is found to be the Hermite-Gauss functions:

E = E0
w0

w(z)
ϕm(

√
2x

ω(z)
)ϕn(

√
2y

ω(z)
)e

„
−i k(x2+y2)

2q(z)

«

e(−ikz+i(m+n+1)ζ(z)), (3.19)

where

ϕ(ξ) =
Hm(ξ)�
2mm!

√
π

e

„
− ξ2

2

«

, (3.20)

Hn(x) = e
x2

2

�
x− d

dx

�n

e−
x2

2 , (3.21)

and Hm is the nth Hermite polynamial with H0(x) = 1, H1(x) = 2x and H2(x) = 4x2 − 1.

With this formalism, the fundamental mode is a Gaussian mode that takes the form of:

E = E0
w0

w(z)
e

“
−i kr2

2q(z)

”

e(−ikz+iζ(z)) (3.22)

= E0
w0

w(z)
e

“
− r2

w2(z)

”

e
“
−ikz−i r2

2R(z)+iζ(z)
”

. (3.23)

In equations 3.19 to 3.23, we have used the following definitions:

• q(z) = ( 1
R(z) −

iλ
πw2(z))

−1 is the complex curvature of the beam,

• R(z) = z

�
1 +

�
z
zr

�2
�

is the wave front curvature,
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Figure 3.6: Gaussian beam profile and definitions

• w0 is the beam waist at the focus and w(z) = w0

�
1 +

�
z
zr

�2
the beam waist at distance

z,

• zr = πw2
0

λ is the Rayleigh range,

• ζ(z) is the Gouy phase of the mode [Gouy 90b, Gouy 90a].

The intensity I(z, r) = �0nc |E(r,z)2|
2 of the fundamental mode writes:

I(r, z) = I0

�
w0

w(z)

�2

exp

�
− 2r2

w2(z)

�
(3.24)

where I0 stands for the maximum intensity at the center of the beam, and is linked to the power
P0 through I0 = 2P0

πw0
2

Remark 1: Harmonic oscillator
When the field complex amplitude A(x, y, z) = B(x, z).C(y, z) is transversally separated, it
is possible to show [Steuernagel 05] that the paraxial approximation of the Helmholtz equation
is equivalent to the Schrödinger equation of the harmonic oscillator. It is then not surprising
that the profile of the optical mode corresponds to the space profile of the harmonic oscillator
eigenstates.

Remark 2: Useful formula for beams characterization
In the context of Gaussian beams, we give here some useful formula for the waist characteri-
zation when realizing a Foucaultage. The Foucaultage consists to cut progressively part of the
beam and to measure the remaining and normalized power:

Pr(z) =

� +∞
x=−∞

� +∞
y=a I(x− x0, y − y0, z)dxdy

P0
. (3.25)
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Deriving this signal, one re-obtains the Gaussian profile. For an intensity profile centered in
(x0, y0), and using equation (3.24), the expression 3.25 can be simplified in:

Pr(z) =
1

2

�
1 + erf

�√
2(y − y0)

w(z)

��
, (3.26)

where erf(z) is the error function defined as:

erf(a) =
2√
π

� a

y=0

exp (−y2)dy. (3.27)

3.2.2.2 ABCD Matrix study

The Gaussian beams introduced in the previous section are self consistent profile, and the only
parameter to be determined during their propagation is their complex radius of curvature q(z).

Introduction to the ABCD formalism

The ABCD formalism introduced in [Kogelnik 66] expresses the idea that the geometrical prop-
agation parameters (y,α) evolve linearly when the light propagates through passive optical sys-
tems (fig. 3.7a). They can thus be expressed using a matrix formalism (3.7). In the context of
optics, it is called the ABCD formalism. Such a formalism makes the beam rays calculation
very systematic and easy to implement.

 


(a) Effect of an optical system.

�
y�

α�

�
=

�
A B
C D

� �
y
α

�

Figure 3.7: ABCD formalism

As an example, we give in 3.1 two commonly used matrices: the free space and lens matri-
ces.

Free space Lens
�

1 L
0 1

� �
1 0
−1
f 1

�

Table 3.1: Commonly used ABCD matrices.

The propagation of an electric field can be calculated using the Huygens-Fresnel integral :

E(x�, y�) =
i

λL

�

Π

E(x, y)
exp (−ikMM�)

MM � dxdy (3.28)
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which describes the fact that each point in space is emitting a spherical wave.

Using the Huygens integral of equation. 3.28 on a Gaussian beam E(x, y) for which the trans-
verse direction (x�,y�) can be calculated from ABCD laws, it is possible to derive [Siegman 86]
a formula for the evolution of the complex curvature qf introduced in 3.2.2:

qf =
Aqi + B

Cqi + D
(3.29)

where A, B, C and D are the element of the propagation matrix through the system and qi is
the initial complex radius of curvature. To determine the Gaussian properties of a beam after
propagation, one first calculates the ABCD matrix of the optical system by multiplying all the
individual matrices and applies 3.29 to obtain the beam properties at the output.

Off axis mirrors

A concave mirror of radius of curvature R acts as a lens of focal length f = R/2 that also
modifies the direction of the optical axis. This does not make any difference for the beam
profile but allows to recycle the space.

As it can be seen on figures 3.8a and 3.8b, when a mirror is taken off axis by an angle θ,
the focal distance is no more R/2 but depends on the direction with respect to the plane of
incidence. The optical profile will have a focal fx = R/(2 cos θ) for the x direction (⊥ to
the incident plane) and fy = R cos(θ)/2 for the y direction (� to the incident plane). This is
illustrated on figure 3.8 and makes the cavity strongly astigmatic. This astigmatism of the mirror
purely results from geometrical considerations and is strictly equivalent to the astigmatism of a
tilted lens.

fy

(a) Beams traces in yOz plane

fx

(b) Beams traces in xOz plane

Figure 3.8: Ray traces
Off axis mirrors are astigmatic. The ray traces show that the focal (crossing) point of parallel
traces depend on the direction with respect to the plane of incidence (orthogonal, xOz or parallel
yOz).

yOz plane xOz plane

fy = R
2 cos (θ) fx = R

2 cos (θ)
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Figure 3.9: Profile of the beam along the optical axis for 1560 nm radiation.
These profile are obtained by applying the ABCD formalism in which is including the

correction of focal due to the nonzero angle of incidence. The astigmatism arises from the
astigmatism of off-axis reflection on curved mirrors.

Waist profile of the fundamental mode

It has been shown that the complex radius of curvature q(z) could be expressed from q(0)
and the propagation matrix:

M(z) =

�
A B
C D

�
. (3.30)

Since the profile is auto imaged by the cavity mirrors, we have :

q(Lc) = q(0) =
Aq(0) + B

Cq(0) + D
(3.31)

where A, B, C and D are the matrix coefficients of one round trip in the cavity starting from
z = 0.

The expression 3.31 determines the size of the waist at any place in the cavity. Figure 3.9
shows the beam profile for the two eigen-directions of the cavity (⊥ and � to the cavity plane).
Because the mirror focal length is smaller in the cavity plane, the cavity gets closer to instability
in this direction (part 3 of figure. 3.14). As can be seen in figure 3.9, the beam waist is smaller
in the cavity plane.

For a 1560 nm radiation, this calculation allows us to predict a priori a waist in the cavity
plane of w� = 81 µm and w⊥ = 128 µm perpendicular to this plane. This gives Rayleigh ranges
of zr,� = 13.2 mm and zr,⊥ = 34 mm respectively.

For 780 nm wavelength, the same calculation gives w� = 57.4 µm and w⊥ = 91 µm. The
Rayleigh range are the same as the one given at 1560 nm.
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(a) Scheme of the alignment problem. In
black, the perfect alignment. In blue (resp.
red) an acceptable (resp. unacceptable) mis-
alignment.

(b) Experimental configuration for alignment.
The green light is injected in the cavity to real-
ize a pre-alignment. The 1560 nm radiation is
then injected by counter-aligning on the green
and by optimizing the transmitted signal.

Figure 3.10: Alignment and injection of the cavity

3.2.3 Cavity alignement
In the initial study that has been led on the cavity, one of the key elements considered was the
inaccessibility of the cavity once under vacuum, and the complicate geometry that has many
degrees of freedom. In particular, we analyzed the alignment of the cavity injection as being
a critical experimental parameter. The procedure used for the alignment of the cavity is first
described in section. 3.2.3.1, and the sensitivity of the optical axis to misalignement is then
estimated.

3.2.3.1 Alignment procedure

In a non-confocal cavity only one optical axis exists. This axis is defined by the optical ray
which overlaps after one turn. The first constraint in the alignment is to make sure that such an
axis exists and stands on the mirror (see figure 3.10b).

Once this first constraint is fulfilled, it becomes sufficient to align the injection beam on
this axis to couple light in the cavity. For a cavity under vacuum the windows limit the optical
access and make the prealignement more critical. More details on the coupling are given in
section C at the end of this chapter.

Experimentally, we used the configuration described in figure 3.10b. A visible green laser
was used to realize a prealignment of the cavity: the cavity mirrors are rotated such that the
green light overlaps after one turn. The green light is not coupled on resonance in a cavity
mode, we only take advantage of the low reflectivity in the green to have a visible beam in the
cavity. For the alignment, we took advantage of the degree of freedom given by the mechanical
design (section 3.2.1.1). Once the cavity was close to be aligned and because the mirror have
some reflection at 532 nm (about 90%), it was possible to distinguish the structure of a cross
in the transmitted mode, that indicates the injection of the transverse modes. The structure was
modified until it became point-like which indicates the end of the prealignement. The 1560 nm
laser was injected in counter-propagation with the green (figure 3.10b) outside the cavity to the
obtain the first 1560 nm signal in transmission. It is then directly this transmission signal that is
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



y�

α�

Tx

θx



 =

Back in the OOAF� �� �





1 0 1 −R
0 1 0 0
0 0 1 0
0 0 0 1





Action of the mirror in its own frame� �� �





1 0 0 0
−1
fx

1 0 0
0 0 1 0
0 0 0 1





TDMF� �� �





1 0 −1 R
0 1 0 0
0 0 1 0
0 0 0 1





OOAF� �� �



y
α
Tx

θx





=





1 0 0 0
− 1

f 1 − 1
f −R

f

0 0 1 0
0 0 0 1









y
α
Tx

θx





Table 3.2: ABCD formalism for a misaligned mirror.

optimized.

3.2.3.2 Stability of the optical axis

In this section we focus on the sensitivity of the optical axis position to misalignments (transla-
tion or rotation) of the mirrors. This study was realized because the cavity is mounted and used
under vacuum. In addition, the cavity mirrors are about 20 cm from the vacuum windows. It
is then crucial to ensure that the mode position, in other word the optical axis, is close to the
theoretical cavity axis and stands in the windows aperture.

This study defines the mechanical requirements (planarity and parallelism) that constrain
the cavity realization. It also gives some clues on the type of deformation that can be expected
for our concentric geometry.

To lead this analysis, we adapted the ABCD formalism to take into account the possible
rotation and translation of the cavity mirrors. The cavity is completely unfolded using the
procedure of figure. 3.11b. In addition, a ray (y,α) arriving on a mirror that has been translated
and rotated by (Tx,θx) will exit as (y�,α�) with respect to the original optical axis. In the ABCD
formalism, it can be formally written as in table 3.2.

where OOAF and TDMF stand respectively for the Original Optical Axis Frame and the
Tilted and Displaced Mirror Frame.

Since the position of the mirror is completely defined by that of its center of curvature, it is
possible to show that the translation of a mirror is in first approximation equivalent to a rotation
around its center, and the link between the two is the radius of curvature. Figure 3.11a illustrates
this equivalence.

In order to be sure to take into account the worst misalignment possible, we scan the mirrors
rotation (+θ0,0,-θ0) and translation (+T0,0,-T0) in both direction for all mirrors. For rotation, the
error angle considered is θ0 = 100 µrad. For translation, we considered T0 = 100 µm. These
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 
(a) Equivalence between rotation
and translation

(b) Unfolding the cavity using the mirror-lens equivalence.

Figure 3.11: Translation and rotation of a mirror
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Figure 3.12: Trajectory of the mode compared to the theoretical optical axis. The curve are obtained
for θ0 = 100 µrad and T0 = 0 µm.

values were chosen because they are standard mechanical achievable precision.

In figure 3.12, the mode position is presented when only rotation (θ0 = 100 µrad) misalign-
ments of the mirrors are permitted. We note that in the worst combination, the displacement of
the optical axis is below 500 µm on the mirror, and below 3mm on the output vacuum windows
(CF 40). Thus rotational misalignment are not critical. Figure 3.12a shows the trajectories in
the horizontal plane which appear to be degenerate. The horizontal direction is the closest to
the instability regime, and the transverse modes are close to be degenerate with the next funda-
mental mode (see figure 3.14).

In figure 3.13, the optical path for all possible rotations and translations of the mirrors are
traced. The result shows a much stronger displacement on the mirrors (few mm) as well as on
the vacuum windows (below 3 cm) than for the pure rotational misalignment. The cavity is then
much more sensitive to translational misalignment than rotational one. This is due to the fact
that a rotation α is equivalent to a translation via T = Rα ≈ 10 µm.

In the figures, we see that at the center of the cavity, where the atoms are situated, the two
directions have different behaviors. In the horizontal (i.e. cavity plane, figure. 3.13a), the optical
axis always passes through the same point while on the vertical (figure. 3.13b) it is more spread.
This means that for a misalignment in the vertical, the two crossing beam can be one over the
other. On the other hand, for an horizontal misalignment, the two beams will always cross at
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Figure 3.13: Trajectory of the mode compared to the theoretical optical axis. The curves are obtained
for θ0 = 100 µrad and T0 = 100 µm.

the center of the configuration but the crossing angle will be modified.

3.2.4 Transverse mode study, an indication of the anisotropy
3.2.4.1 Gouy phase of the transverse modes

The Gouy phase ζ(z) [Gouy 90b] accumulated when propagating through the focus is related
to the waist size. The tighter the beam is focused, the higher will be the Gouy phase. Since the
beam focus is controlled by the cavity geometry, the Gouy phase is linked to the geometrical
parameters.

A reinterpretation of the Gouy phase in terms of Heisenberg like inequalities in [Feng 01]
makes quite understandable the dependance of the Gouy phase with the transverse mode num-
bers. Indeed, the higher transverse modes have smaller lobes. As a consequence, their diver-
gence and then the Gouy phase are increased.

A possibility to study the geometrical properties of the cavity is to look for the transverse
mode spectrum (see figure 3.14). This spectrum is related to the Gouy phase acquired by the
mode while traversing the beam focus and are then determined by the cavity geometry parame-
ters through [Siegman 86]:

νp,m,n =
c

2πL

�
2pπ + (m +

1

2
)Arg

�
Am +

Bm

qm

�
+ (n +

1

2
)Arg

�
An +

Bn

qn

��
, (3.32)

where p is the longitudinal mode order, m and n are the two non degenerate transverse mode
orders (horizontal and vertical), Am, Bm factors refer to the ABCD matrix element in the m
direction and qm is the complex radius of curvature of the beam. A, B and q are completely
determined by the geometrical properties of the cavity (length, angle and mirrors radius of
curvature).

3.2.4.2 A correction on the astigmatism

To measure the transverse mode cavity spectrum, the cavity length is scanned for a fixed fre-
quency of the injection laser. Since the cavity is astigmatic, the transverse modes are Hermite-
Gauss modes. To obtain the blue curve of figure 3.15a a vertical misalignment of the injection
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Figure 3.14: Transverse mode frequency position
The position of the high order transverse modes of the cavity are shown for different cavity
geometries. From up to down, the coplanar, confocal or Fabry Perot and concentric cavity.

is voluntary applied to create a mode overlap with the TEM0m transverse modes. Doing the
same in the horizontal direction, we obtained the TEMn0 modes which correspond to the black
curve.

The horizontal mode inter-spacing is 78.9 MHz and the vertical is 164.6 MHz.
On figure 3.15b the experimental data for the relative frequencies (red cross) are presented

as well as the a priori calculation (red dashed) based on 3.32.
The discrepancy of the horizontal splitting is corrected by a phenomenological factor α�

that, for example, accounts for aberrations. This factor is applied on the horizontal effective
radius of curvature R� = α�R cos θ, and is adjusted on the slope of the data giving α� =
1.020(5) (black curve in 3.15b). In the adopted quasi-concentric configuration, the parallel
direction is the closest one to the instability regime. A 2% deviation of α� induces a noticeable
frequency shift as it can be seen in 3.15b. Including this correction for the astigmatism, we infer
a horizontal waist ω� = 93.1 µm to be compared with 98(1) µm found using a tomographic
measurement [Brantut 08a, Bertoldi 10] and reported in section 3.2.5.2. The vertical waist is
calculated to be ω⊥ = 129.8 µm. The corresponding Rayleigh ranges are z�r = 17.46 mm and
z⊥r = 33.9 mm.

3.2.5 Measurement of the optical profile
The trapping of atoms being realized in the cavity, it is essential to precisely know the cav-
ity mode size. As we are close to instability regime, where the geometrical mode properties
diverge a calculation of the size is not sufficient. To that purpose, we first realize an indirect
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(a) Cavity transmission.
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Figure 3.15: Transverse mode splitting
(a) The cavity transmission signal when the cavity length is scanned for an horizontal (black,
"TEMm0") and vertical (blue, "TEM0n") misalignment of the injection beam. (b) Frequency
splitting of the transverse mode relatively to the closest fundamental mode. The red dashed

lines represents eq. 3.32 when only the off axis incidence on the mirrors is taken into account.
The black dashed-dotted line includes furthermore the correction factor α� as presented in the

text.
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Figure 3.16: Divergence of the beam measured on a diagonal output.
The waist is extracted using the equation: 3.26. The vertical divergence is of 4.7 mrad while

the horizontal 6.4 mrad. These values are extracted from the fit of the slope.

measurement of the mode given by the divergence of the transmitted profile. To complete this
measurement, we realized a direct nondestructive measurement of the mode using the atoms as
a sensor.

3.2.5.1 Indirect measurement: the divergence of the mode

When radiation is injected in the cavity, the transmitted mode has the profile of the intracavity
mode that further propagated through the diverging transmission mirror. Therefore, the mea-
surement of the transmitted mode waist and divergence gives information on the intra cavity
mode characteristics.

The divergence of a beam is linked to its waist through:

tan (θ) =
λ

πw0
. (3.33)

Realizing a Foucaultage of the transmitted beam with a chopper, we measured the waist as a
function of distance as presented in figure. 3.16. The waist are calculated using equation 3.26.

The divergence in the cavity plane is θ� = 6.4 mrad and perpendicularly to this plane we
have θ⊥ = 4.7 mrad. The waist extracted from this measurement are w� = 77 µm and w⊥ =
104 µm. Considering in addition, the diverging lens effect f of the out-coupling mirror, we find
w� = 95.7 µm for f� = −f0 × cos(22.5°) and w⊥ = 125.6 µm for f⊥ = −f0/ cos(22.5°).

In these formula, f0 = 200 is the focal length of the mirror in transmission which is calcu-
lated from the refractive index and the radius of curvature: f0 = −R/(n − 1). These values
are in good agreement with the prediction from the ABCD matrix calculation that was giving:
w� = 81 µm and w⊥ = 128 µm.
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3.2.5.2 A direct nondestructive measurement of the optical profile

In situ measurement of cavity modes are tricky to realize. Indeed, a destructive measurement
such as a Foucaultage for example cannot be done in a cavity. When the mode start to be
destructively measured, this create losses in the cavity that prevent the coupling of the injected
radiation. For in-situ measurement, one needs then to perform a nondestructive measurement.

In this section, we present a nondestructive measurement of the optical field in the cav-
ity that uses the differential light shift that 1560 nm light induces on the imaging transition��52S1/2, F = 2

�
→

��52P3/2, Fp = 3
�
.

Light shift in the optical dipole trap
Under the influence of the dipolar interaction, the atomic state energy are shifted by:

∆E = −1

2
Re(α)E2 = −Re(α)I

2�0c
, (3.34)

where α is the atomic polarizability which describes the atom-light coupling strength, E is the
rms value of the electric field and I the optical intensity. For a spatially dependent intensity,
one obtains a spatially dependent light-shift.

The exact expression of the polarizability is derived in appendix D and takes the form:

αµ ≈
1

�
�

k

����k| �d |µ�
���
2
ωk,µ

ω2
k,µ − ω2

, (3.35)

where k designs all the possible transient states coupled by the light, ωk,µ = (Ek−Eµ)/� is the
algebraic transition frequency and �k| �d |µ� is the dipole element between k and µ.

The atomic structure relevant for our discussion is presented in figure 3.17a. From the
ground states 52S1/2, and for a radiation at 1560 nm, only the D2 and D1 lines need to be
considered. For these transitions, we have ω < ωk , and the ground state will be down shifted
for a maximum of the intensity. A Gaussian beam will be trapping atoms in the ground state
(figure 3.17b).

On the other hand, if it was only for the D-lines, the state 52P3/2 should be blue shifted
(expelling the atoms) at this same maximum. Actually, for the polarizability of 5P3/2, one
should also consider the transitions to the 42D3/2 and 42D5/2 states which are at 1529 nm and
which have dipole elements similar to the one of the D-lines (table 3.3). As the excitation
frequency is also red detuned for this transition, the state 52P3/2 is red shifted by the 1560 nm
radiation. In addition, the proximity of these 1529 nm resonances, makes the light-shift of the
52P3/2 states large compare to the one of the 52S1/2 state. The resulting differential light-shift
structure is presented in figure 3.17b.

In the case of a 1560 nm radiation and using for the calculation all the relevant transitions,
we find (scalar) polarizabilities :

αs
52S1/2

= 6.8253 10−39 Jm2/W, (3.36)

αs
52P3/2

= 3.2550 10−37 Jm2/W. (3.37)
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(a) Relevant states structure of 87Rbfor a 1560 exci-
tation light



(b) Differential light-shift of the imaging transition

Figure 3.17: Differential light shift structure.
The 1560 nm radiation is close to the frequency of the transition from 52P3/2 to 42D states,
which strongly shifts the state 52P3/2 to the red. Hence a differential light-shift is created on

the imaging transition by the 1560 nm radiation.

Table 3.3: Dipole elements relevant in the context of 1560 nm radiation
The data are extracted from [Steck 10, Arora 07, Safronova 06, Clement 08] and are given in
units of ea0 where e is the electron charge and a0 the Bohr radius.

Transition λ [nm] d [ea0]
5S1/2 → 5P1/2 794.979 4.221
5S1/2 → 5P3/2 780.241 5.956

5P3/2 → 6S1/2 1366.875 6.047
5P3/2 → 4D1/2 1529.261 3.633
5P3/2 → 4D5/2 1529.366 10.899
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Figure 3.18: Tomographic images of the fundamental
(Top) Tomographic images of the optical potential setting the probe frequency to different

detuning with respect to the D2 line. (Bottom) Integral optical density obtained by projecting
the upper images on the 45° dashed line crossing one arm of the cavity.

This leads to a polarizability ratio (β) of:

β =
α52P3/2

α52S1/2

= 47.7. (3.38)

Under the influence of the 1560 nm radiation, the imaging transition has an energy:

�ωS,P = �ω0 +
Re(α52S1/2

)I

2�0c
−

Re(α52P3/2
)I

2�0c
(3.39)

= �ω0 +
Re(α52S1/2

)I

2�0c
(1− β). (3.40)

Optical tomography of the Gaussian mode

We will show now how such a differential light shift can be used for the measurement
of the modes profiles. The atoms released from the MOT are used as sensors of the light
intensity. From expression 3.40, it appears clearly that the imaging transition is frequency
shifted depending on the light intensity. Therefore, a probe tuned off resonance by δ (see figure
3.17b) and on the red of the transition will be resonant with atoms that are in a position of space
where the light intensity I verifies:

�δ =
Re(α52S1/2

)I

2�0c
(1− β) (3.41)

As a consequence, by changing the detuning of the probe beam with respect to the D2

transition it is possible to bring into resonance atoms placed at different positions in the optical
potential [Brantut 08a].

This method provides the isopotentials of the crossed dipole trap, as shown in figure 3.18,
where the 1560 nm laser is locked to the fundamental transversal mode (TEM00). In each shot,
the probe detuned by δ is absorbed by the atoms with potential energy U(r) = Re(α)I(r)/(2�0c) =
�δ/(β− 1) in the ground level; for this atomic class the probe is shifted into resonance because
of the local light shift. The optical density was projected on an axis parallel to one cavity arm
(figure. 3.18, lower row), and the relative profile fitted to obtain the distance of the couples
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Figure 3.19: Tomographic profile of the fundamental
Optical potential depth when the 1560 nm laser is locked to the fundamental transversal mode
of the optical resonator. The measurement was obtained by projecting the signal relative to one

arm of the cavity. The result of the fit with the first Hermite-Gauss mode is shown with a
continuous line.

of isopotential lines. Plotting the position of these isolines versus the probe detuning provides
the cavity mode profile, as shown in figure 3.19, and the fit with the first Hermite-Gauss mode
gives a waist w = 98(1) µm. This is in good agreement with the result obtained in section 3.2.4,
where a correction on the astigmatism was applied: w� =96 µm and w⊥ = 128µm.

Optical tomography of the transverse modes

The characterization previously led on the Gaussian mode can easily be extended to other
Hermite-Gauss modes. In order to properly inject the higher excited modes of the cavity, phase
masks are inserted in the path of the gaussian beam. A (0 − π) phase mask projects the gaus-
sian mode with a 79% overlap on the first transverse mode TEM01 (see figure. 3.20a). In the
same way a (0 − π − 0) phase mask will project on the second transverse mode TEM02(see
figure. 3.20b), with a maximum overlap of 68%.

Since the imaging is realized from the top, the injected transverse modes are the horizontal
ones. The figures 3.21 and 3.22 show the absorption image which are obtained on the first and
second transverse mode.

Looking to the isopotential distance as a function of detuning, we were able to retrace their
profiles which are given on figure 3.23 The dashed lines on figure 3.23 represent the fitted
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Figure 3.20: Phase mask transformation.
Abrupt phase transition can be used to approximate high order Hermite-Gauss mode. A

(0− π) (resp (0− π − 0)) phase mask essentially project the Gaussian input beams on the
TEM01 (resp. TEM02) Hermite-Gauss mode.
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Figure 3.21: Tomographic absorption images of the TEM01

The images are realized with off resonance absorption image on atoms in the MOT when the
TEM01 mode was injected in the cavity. The image are realized for a detuning of 2Γ (a), 4Γ

(b), 6Γ (c), 8Γ (d).

Hermite Gauss modes which are given by:

TEM01(x) = U0

�

y

e
− 2y2

w2
y xe

− 2x2

w2
x dy (3.42)

= U �
0xe

− 2x2

w2
x (3.43)

TEM02(x) = U �
0(

4x2

w2
x

− 1)e
− 2x2

w2
x (3.44)

These fits give a waist of 101(1) µm for the TEM01 and 99.8(4) µm for the TEM02, in
agreement with the measurement of the fundamental waist: w = 98(1) µm.

In principle the precision of this measurement is given by the local intensity gradient and can
thus be very high. Nevertheless, in practice, this method is limited by the fact that a minimum
number of atoms are necessary for the imaging of each trench.
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Figure 3.22: Tomographic absorption images of the TEM02.
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Fig. 3. (Top) Absorption images with the 1560 nm laser
locked to the TEM00 (a), TEM10 (b), and TEM20 (c)
mode of the cavity, with the detuning of the probe light
set to 5 Γ to the red of the transition. (Bottom) Integral
optical density obtained by projecting the upper images
on the 45◦ dashed line crossing one arm of the cavity.

much smaller than Γ. If the local potential energy gra-
dient is known, δE can be converted into spatial spread.
A high ratio between the maximum ground state energy
shift in each cavity arm and δE allows to finely section
the optical potential, but reduces the number of atoms
probed at each measurement. A good compromise was
reached with a ratio of about 10, and the power of the
input beam was set accordingly. To increase the atomic
density in the region of interest, the MOT cloud was
compressed before its release. After 5 ms the optical po-
tential was imaged at different depths by measuring the
atomic absorption with a 50 µs optical pulse containing
both probe and repumper radiation. Typical images are
reported in Fig. 3, where the 1560 nm laser is locked to
the first three transversal cavity modes. The dark lines
result from atomic absorption where the optical poten-
tial shifts the detuned probe into resonance. By fitting
the projected optical density signal reported in the lower
row of Fig. 3 the position of the isopotential lines was
obtained. The smaller peaks in the projections of the
TEM00 and TEM10 modes are due to a second less in-
tense probe component, frequency red shifted with re-
spect to the main one: it shows that the optical poten-
tial can be probed simultaneously at different depths.
The measurement of the isopotential lines position was
repeated for different values of the probe detuning, which
allowed to reconstruct the cavity modes profile as shown
in Fig. 4. The waist of the cavity was obtained by fit-
ting each series of data with the appropriate Hermite-
Gauss mode: the result was 97(1), 101(1), and 99.8(4)
µm for the TEM00, TEM10, and TEM20 respectively. In
the case of the TEM00 mode, the potential depth of the
5S1/2 levels for each cavity arm is kB × 60 µK, which
corresponds to a power of 8.0 W in the cavity. Consid-
ering the power of the input beam and the coupling effi-
ciency, it means a cavity gain factor of 160. Using the full
available power, the peak power in the resonator reaches
about 200 W, which means an optical potential depth
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Fig. 4. Optical potential depth induced by the laser at
1560 nm locked to the first three transversal modes of
the cavity. Each series of points is fitted with the corre-
sponding Hermite-Gaussian mode. Some points at high
detuning were removed because of a stability problem of
the probe laser.

per arm of kB×1.4 mK. The resulting curvatures at the
center of the potential dimple are 1.2 kHz along the two
cavity arms, and 1.6 kHz in the vertical direction. The
good degree of vertical alignment for the two beams was
confirmed by the depth of the crossing region, which was
measured to be twice the one–arm depth within 10%.

In conclusion, we have frequency locked a fiber tele-
com laser to different transverse modes of a folded optical
cavity. The absorption of cold rubidium atoms, strongly
modified by the light shift induced by the 1560 nm radi-
ation, was used to align the optical resonator and map
in situ the optical potential. The radiation field obtained
will be exploited to optically trap and evaporatively cool
neutral atoms to achieve a BEC directly in the cavity.
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modes of the cavity. Each series of points is fitted with the corresponding Hermite-Gaussian
mode.



74 CHAP 3 - THE HIGH FINESSE CAVITY

3.2.6 Cavity parameters at 1560 nm.
In addition to the geometrical properties characterized in the previous section, the spectral fea-
tures of the cavity that are the Free Spectral Range (FSR) and the linewidth are of first impor-
tance.

3.2.6.1 Free spectral range

The Free Spectral Range is the frequency distance between adjacent cavity modes. It is propor-
tional to the inverse of the cavity length (equation 3.45).

In order to measure precisely the FSR we have realized a spectroscopic measurement. The
length of the cavity is scanned over three cavity lines and we observe the transmission of the
cavity when the input light is phase modulated (1 carrier and 2 sidebands). To obtain the FSR,
the frequency of the phase modulation is arranged so that the sidebands are resonant with the
cavity for the same cavity length as the carrier. In that case the modulation frequency corre-
sponds to an integer number of FSR. In the measurement, the sidebands were injected two FSR
away from the carrier for a modulation of 1952.4 MHz, which gives:

∆νFSR = 2π
c

L
= 2π × (976.2± 0.05) rad.MHz (3.45)

For a perfect square cavity, the FSR measured corresponds to a diagonal of 90.010(5)mm and
we were expecting 90mm from the design.

Polarization As the mirrors are used off-axis, the two orthogonal polarizations acquire a dif-
ferent phase at the reflection (Fresnel coefficients). This does not change the FSR, but modifies
the resonant condition. The two polarizations are non-degenerate, and they are frequency split
by 68 MHz. When a laser is locked on the cavity, only one polarization goes through, and the
other one is completely reflected.

3.2.6.2 Linewidth

To measure the linewidth of the cavity resonance, different methods were used. A commonly
adopted method is the ring down method, which consists to suddenly turn off the injection of
the cavity and measure the decay time τ . The linewidth is given by δν = 2/τ in rad.s−1 where
τ is the decay time. This method did not prove to be very precise in our case since the finesse at
1560 nm is not very high and the decay time is of the order of 1 µs which is difficult to measure
without any artifact due to the nonzero extinction time of the injected radiation [Lawrence 99].

As a consequence, to get a precise estimation, the linewidth has been measured by a spec-
troscopic method. The cavity and the laser are free running. A sidedand is added to the laser
frequency with an EOM and its transmission through the cavity is measured while the sideband
is swept across the resonance. The sweeping is precisely controlled by a synthesizer, so that
the abscissa of figure 3.24 is very well known. In principle, it could be better to lock the laser
on the cavity, but in that case, the transmission of the sideband has to be distinguished from
the transmission of the carrier (bright background measurement). In addition, it did not reveal
necessary in our case since the sideband is swept with frequency velocity of 12 MHz/ms and no
substantial relative displacement of the laser frequency with respect to the resonance occurs in
this lapse of time.
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Figure 3.24: Linewidth of the cavity at 1560 nm
The black curve is a measurement of the cavity linewidth while sweeping the frequency across

the resonance. The white line is a Lorentzian fit on the data with a width of 2 π × 546 103

rad.s−1.

This measurement gives a cavity linewidth (FWHM) of:

δν = 2π × 546 103rad.s−1 (3.46)

This linewidth measurement, together with the measurement of the FSR gives a finesse :

F =
δνFSR

δν
= 1788 (3.47)

which has to be compared with the theoretical value Ftheo = 4160.

The difference between the two indicates that the mirrors are not as good as expected from
the specification. Two possible reasons for this discrepancy:

• The reflectivities of the mirrors are lower than the specified values

• The losses in the cavity are of primary importance and should be taken into account.

Remark: To have the expected Lorentzian profile for the transmission signal , it is important
to sweep adiabatic with respect to the loading and emptying of the cavity. The relevant time
for the emptying is the decay time τ , while for the loading, it is

�
L/c× τ . The physics of the

loading and emptying is well described in [Lawrence 99, Rohde 02].

3.2.7 Losses of the cavity
The low finesse that has been measured in the previous section raises questions about the losses
of the cavity.
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Figure 3.25: Reversed light in the cavity as a function of the forward intensity
The transmitted light in the two directions is monitored while the injection is misaligned

vertically (black dots), and horizontally in the two direction (red cross and blue circle). The
magenta dashed line is adjusted on the data, and shows a proportionality relation.

3.2.7.1 Backward propagating light

When the 1560 nm radiation is coupled into the cavity, some light propagates in the reverse
direction. For 90 mW of transmitted power in the forward direction, about 100 µW can be mea-
sured in the reverse direction. Some external parameters can slightly (a few percent) change
this ratio. Among these parameters is for example the presence of optical elements in the trans-
mitted path. This backward propagating light might principally arise from two sources. Either
it comes from some backscattering after the transmission on the in-coupling mirror (solution 1),
or or it comes from some optical back reflexion on external optics (e.g. vacuum windows) after
the reflection on the in-coupling mirror that would recouple in reverse into the cavity (solution
2).

We distinguish these two possibilities since the beam reflected by the cavity is the most
intense (∼ 5W) of the experiment and is then the first suspect. To disentangle the two, we
look at the power in the reverse direction as a function of the power in the forward direction (in
transmission) while the injection beam is misaligned. In transmission on the in-coupling mirror,
the spatial mode is filtered by the cavity. In the case of solution 1, the reduction of intensity
due to the misalignment in the forward and backward direction should be proportional. On the
contrary, in the case of solution 2, no linearity is expected since the light in the forward and the
backward direction correspond to two independent spatial mode-matching condition which are
disentangled by the displacement. The result presented in figure 3.25 shows a linear behavior
(solution 1). It suggests that the solution 1 is correct and that the backward light is either due
to intracavity scattering or to optical back reflection in the transmitted beam. A high scattering
is astonishing considering the expected surface quality of the mirrors but the reduction of the
finesse observed support this conclusion. The next section presents the effect of intracavity
scattering on the cavity finesse.

3.2.7.2 Loss effects in a cavity

Comparing the theoretical finesse given in section 3.2.1.3 Ftheo = 4160 with the measured one
of F = 1788 highly suggests that the cavity is more lossy than expected. In the following,
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we will try to evaluate the scattering on the mirrors by incorporating in the equation of section
3.2.1.3 a scattering in field amplitude κ. The scattering is considered to be the same on every
mirror. We have r2 + t2 + κ2 = 1. The equation 3.11 remains valid but it is no more possible
to replace t2 by 1 − r2. From the equation 3.11 on the transmitted intensity, it is clear that the
expression of the finesse is unchanged :

F =
πr2

1− r4
(3.48)

The finesse measurement gives then the mirror reflectivity :

r2 =

�
1− π

F ≈ 1− π

2F = 99.91% (3.49)

This fixes the "losses" to t2 + κ2 = 1 − r2 = 9.24 10−2. In the following, we will express
the scattering κ relatively to the transmission by defining x = κ2/t2. From equation 3.48, the
mirror transmission can be expressed in terms of the finesse and this parameter x by:

t2 =
π

2(1 + x)F . (3.50)

The maximum cavity coupling (C) efficiency 3.12, when the radiation is on-resonance be-
comes:

C = 1−R = 1−
����

t2r3

1− r4
− r

����
2

(3.51)

= 1−
�
1− 1

2(1 + x)
+

π

4F

�
3

2(1 + x)
− 1

��2

, (3.52)

and the intra-cavity power Pintra can be expressed on one hand as a function of the input power
Pin and the effective cavity coupling (measured) and on the other hand by the output power
Pout.

Pintra =
Ceff

C
F

2(1 + x)π
Pin (3.53)

=
1

t2
Pout (3.54)

=
2(1 + x)F

π
Pout. (3.55)

From our spectroscopic measurement, we have the value of the finesse F , and the output
power can be easily recorded. To obtain a value of the losses, the intracavity power still needs
to be determined. As previously mentioned, it is usually a difficult parameter to measure since
the presence of power in the cavity rely on a interference effect. In addition, in our case, the
cavity is under vacuum and the mode volume is completely out of reach.

Fortunately, the 1560 nm radiation offers a solution with the differential light-shift it creates
on the atoms. For an output power Pout = 5.1 mW, we measured a differential light shift in one
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Figure 3.26: Effect of the losses on the cavity response.
Losses in the cavity reduce both the contrast of the coupling interference (lower coupling

efficiency) and the finesse of the cavity (lower intra-cavity power).

arm that is ∆E = 11 Γ. Using the expression of the polarizability given in 3.35, we extract the
input intensity and power:

Iintra =
2�0c∆E

α5P3/2
− α5S1/2

= 2.26× 108 W/m2, (3.56)

Pintra =
πwxwyIintra

2
= 14.3 W, (3.57)

where wx = 98 µm and wy = 128 µm are the two transverse waists.

The losses over transmission ratio is then:

x =
πPintra

2FPout
− 1 = 1.46 (3.58)

With this value, we obtain a maximum coupling efficiency of C = 36%. Experimentally we
obtained C = 35%.

This ratio x = 1.46 indicates that the losses on the mirrors are really important and superior
to the mirror transmission. The finesse at 780 nm has not been measured yet, but it might be
heavily affected by these losses.

3.3 Locking of the 1560 nm laser to the cavity

3.3.1 The cavity: a low pass frequency filter
"A cavity is a low pass frequency filter": As I am used to say, it is a property that is very
well known from people who know it. In this section, we will give some evidence about this
statement [Fox 03].

In transmission of the cavity, this property is obvious since any photon that comes in, will
be delayed by the number of round trips it has made before it exits. Thus any information is
delayed by the τ = 2/γ = FL/(πc), where γ is the linewidth of the cavity in rad.s−1. In
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reflection, this property is less clear since photons do not appear to transit through the cavity
(which is not true).

We consider a Fabry Perot with mirror reflectivity r, transmitivity t and without losses
(r2 + t2 = 1).The cavity length is L. We consider an input field Ein at frequency ω0 = 2πpc/L,
i.e. exactly on resonance with the cavity. At t = 0, the frequency of the input is suddenly
changed by δω and we take δω � γ such that the transmitted and reflected amplitude are not
changed.

We consider time steps of length δt = L/c, such that the reflected field Er after N steps can
be written as:

Er(Nδt) = rEin − tr2
∞�

k=0

r2kEin(N − 1− k) (3.59)

= rei(ω0+δω)Nδt − tr2

�
N−1�

k=0

r2kei(ω0+δω)(N−1−k)δt +
∞�

k=N−1

r2keiω0(N−1−k)δt

�

= reiδωNδt

�
(1− r2eiδωδt)

N−1�

k=0

r2keiδωkδt

��
1− t2e−iδωδt

1− r2e−iδωδt

�
. (3.60)

The last term in equation 3.60 is the reflection coefficient of the cavity for ω = ω0 + δω in
the steady state regime. Indeed, this last term is the long term limit of equation 3.60 since

(1− r2eiδωδt)
N−1�

k=0

r2keiδωkδt, (3.61)

converges to 1 for N →∞.
In addition, as we have δω � γ, it gives 1− r2 = π/F and the first term of the sum in 3.61

can be approximated to 1. For small N, equation 3.61 can be simplified to: Nπ/F . It results
that the reflected signal builds up in time with a rate :

1

τ
=

πc

FL
=

γ

2
. (3.62)

This proves that even in reflection, the Pound Drever Hall scheme gives an error signal which
is low pass filtered by the cavity (fc = γ).

The same formalism can be applied in the case of a phase jump and would show that the
cavity is actually a high pass filter for phase. This is the expected result since the frequency is
the derivative of the phase.

3.3.2 Pound Drever Hall Method
The Pound Drever Hall scheme [Drever 83a, Black 01, Bjorklund 83] is a very efficient method
to determine if a laser is on-resonance with a cavity line, and is naturally used to generate an
error signal to lock lasers to cavities and vice versa. The essential idea is to create sidebands on
the incoming laser and to compare on a fast detector the phase of the reflected sidebands to the
phase of the on-resonant carrier. If the carrier is not perfectly on-resonance, it accumulates a
phase per turn that is slightly different from 2nπ and that is summed over the number of turns.
The PDH scheme compare this phase shifted carrier with the reflected sidebands, and gives the
error signal.
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Figure 3.27: The cavity as a low pass frequency filter
The ratio of the instantaneous reflected field over the steady state reflected field is given as a

function of time. The ratio increases linearly with a slope πγ and saturates to one. The curve is
given for a finesse F = 10000 and a length L = 10 cm

The PDH method present the advantage to be applicable to cavities, independently of its
finesse. Indeed, the resonance linewidth of the cavity reduces with the finesse, but at the same
time, the sensitivity of the detection increases since the number of turns per photon increases.

Details on phase and frequency modulation are given in B.

In order to suppress most of the common mode noise, the sidebands are created by phase
modulating the beam. The effect of residual amplitude modulation is discussed in section
6.1.3.1. Experimentally, the phase modulation is applied using an electro-optical modulator
(EOM).

After reflection on the cavity the different frequency components of the light have experi-
enced a phase shift Φi and a reduction of amplitude Ai. The field reflectivity R(ω) = A(ω)eiΦ(ω)

has been given in 3.2.1.3:

E = E0e
iω0t

�
J0(β)|R(ω0)|eiΦ0

+ J1(β)|R(ω0 + Ω)|ei(Ωt+Φ1) + J−1(β)|R(ω0 − Ω)|e−i(Ωt−Φ−1)
�
. (3.63)

Assuming that the two sidebands are far enough from resonance, so that they are completely
reflected (|R(ω0 + Ω)| = |R(ω0 − Ω)| = 1) and that they experience the same phase shift
(Φ1 = Φ−1), one obtains the simplified expression:

E ≈ E0e
iω0t

�
|R(ω0)|eiΦ0 + β

�
ei(Ωt+Φ1) − e−i(Ωt−Φ−1)

��
. (3.64)

The current iph generated on the photodetector is then:

iph = η|E|2 = ηE∗ E (3.65)

= ηE2
0

�
|R(ω0)|2 + 2 ∗ β2

2

+|R(ω0)|β
�
ei(Ωt+Φ1−Φ0) − ei(Ωt+Φ0−Φ−1)

�

−β2ei(2Ωt+Φ1−Φ−1)
�

+ c.c. (3.66)
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Figure 3.28: PDH like error signal with an amplitude modulator.

After demodulation with a local oscillator LO= ei(Ωt+ΦLO) + c.c. and DC filtering, one obtains
the error signal S,

S = ηmixeriph LO (3.67)
= ηmixerηE2

0 |R(ω0)|β
�
ei(Φ1−Φ0−ΦLO) − ei(Φ0−Φ−1−ΦLO)

�
+ c.c. (3.68)

Using a demodulation phase ΦLO = π/2, we have ei(Φ1−Φ0−ΦLO) + cc = 2 sin(Φ1 − Φ0), and
the demodulated signal becomes:

S = 2ηmixerηE2
0 |R(ω0)|β (sin (Φ1 − Φ0)− sin (Φ0 − Φ−1)) (3.69)

≈ 2ηmixerηE2
0 |R(ω0)|β (Φ1 + Φ−1 − 2Φ0) . (3.70)

Equation 3.70 shows the comparison of the phase shift of the different frequency components
that was mentioned at the beginning of the section.

The feedback signal is integrated in a double stage proportional integrator similar to that
used for laser locking (see figure 2.6) [Fox 03]. The low frequency correction is applied on
the piezo of the laser for long term stability and the fast correction is realized via a double pass
acousto-optic modulator.

Interlude: PDH with an acousto-optic modulator
In the experiment, we currently use a phase modulator (EOM) to realize the Pound Drever

Hall lock. Nevertheless, it is interesting to notice that the Pound Drever Hall method is a very
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general method which compares the phase of two frequency components. Actually, when the
project started, we first used an AOM in double pass as presented in figure 3.28a to generate
one sideband. The light sent on the cavity was containing two frequency components separated
by twice the modulation frequency. The local oscillator was doubled for the demodulation.
The signal S after demodulation writes: S ∝ sin(Φ0 − Φ1) where Φ0 and Φ1 are the phases
accumulated in reflection on the cavity, and have dispersive shapes when the cavity resonance is
crossed (see figure 3.28b). Such a system was easy to implement but was also lacking stability.
As a matter of fact, the beams are not on the same path between the AOM and the retro-reflection
mirror. As can be seen in figure 3.28c, due to air fluctuations the frequency components of the
beam accumulate different phases which are indistinguishable from the phases induced by the
cavity and the error signal is then perturbed by these fluctuations. This problem of differential
fluctuations seen by the frequency components also applies to the heterodyne nondemolition
measurement (chapter 6) for which the sensitivity has to be pushed to an optimum.

3.3.3 Locking a Koheras fiber laser to the cavity

At 1560 nm, that is a telecommunication wavelength, two kind of lasers are commonly used:
Distributed feed back (DFB) diode and DFB fiber lasers (see for example [Zeller 10]). The
diode technology has a laser linewidth of a few MHz but offers the possibility to fast correct the
frequency (high bandwidth). On the contrary, the DFB fiber lasers have linewidths that can be
as low as a few kHz but have only low feedback capabilities (BW < 10 kHz).

In our experiment, the delay in the 5W fiber amplifier that is 30 m long, intrinsically limits
the closed loop bandwidth to 2.5 MHz (π/2 phase delay). As the DFB diode has a linewidth big-
ger than the cavity resonance, the feedback bandwidth should be higher than the laser linewidth
(× 5) so as to narrow the laser linewidth with respect to the cavity resonance. With the delay
previously mentioned, this is obviously not possible. The use of a DFB diode has then naturally
been eliminated to the profit of a DFB fiber laser (NKT photonics).

This laser has a specified linewidth of 1 kHz and an output power of about 100 mW . In order
to give the feedback loop more bandwidth, we inserted a double pass acousto-optic modulator
before the high power amplifier (see figure. 3.29a). Using this scheme we obtained 250 kHz
bandwidth essentially limited by the propagation of the acoustic wave in the Te02 crystal for
which the propagation velocity of the two eigen-polarizations are 4.2 mm/µs and 0.6 mm/µs).

The noise power spectral density (PSD) of the relative frequency between the laser and
the cavity as well as the relative intensity noise of the transmitted power are presented in fig-
ure. 3.29b.

The noise spectral density shows the servo-bump of the fast AOM correction loop placed at
about 250 kHz, and stays below the 0.1 Hz/Hz1/2 level between 10 Hz and 10 kHz. Below 100
Hz the frequency noise is dominated by a 1/f component with 0.1 Hz/Hz1/2 at 10 Hz.

The intensity noise of the radiation field in the cavity was measured evaluating the Fast
Fourrier Transform (FFT) of the transmission signal (PD2 in figure. 3.29a). As shown on the
lower spectrum of figure. 3.29b, the intensity noise PSD is always below 10−9 Hz1/2 with re-
spect to the DC level, except for narrow peaks in the acoustic band (important in relation to
parametric excitation of the atom in the optical trap) and close to 1 MHz. The integral value of
the relative intensity noise PSD between 1 Hz and 10 kHz amounts to 2.8 10−6 dBc.
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Optical dipole traps [1] proved to be a reliable tool to
manipulate ultracold neutral matter, both for atoms and
molecules. Once the detuning from the resonance is fixed,
the depth of the optical potential is directly proportional
to the local intensity of the radiation. An optical cavity is
a straightforward way to increase the optical intensity,
thanks to the long storage time of the photons in the
resonator. For this reason optical resonators are increas-
ingly adopted in cold atom physics: after the demon-
stration of cavity trapping of atoms [2,3], cavity cooling
schemes have been proposed [4], superradiance [5] and
collective atomic motion [6] have been observed in res-
onators. Recently, spin–squeezing of a cavity confined
atomic sample was proved [7], and Bose–Einstein con-
densates (BECs) have been coupled to the field of optical
resonators [8, 9].

In this Letter, we report the characterization of the
optical potential generated in a high finesse optical cav-
ity using cold 87Rb atoms as sensors of the local opti-
cal intensity. The scattering rate on the D2 line at 780
nm becomes strongly dependent on the local potential
depth because of the differential light shift of the two
levels of the probe transition [10], determined by the
1560 nm radiation pumping the cavity. The ring folded
resonator was designed to have two of its beams per-
pendicularly crossing at the center of the configuration.
The optical potential obtained by locking the DFB fiber
laser to several transversal modes of the non-degenerate
cavity was precisely characterized as concerning shape
and optical depth. The resulting configuration meets the
requirements to optically trap neutral atoms and could
possibly bring to BEC directly in the optical resonator:
the two arms consent a large capture volume for atoms
pre–cooled in a MOT, whereas the central crossing re-
gion provides a tight confinement along all directions.

An overview of the laser frequency stabilization sys-
tem is presented in Fig. 1. The optical cavity consists
of four identical mirrors having a radius of curvature
of 100 mm, and a dielectric coating with reflectivity

R = 0.99965 at 1560 nm for p–polarized light. The mir-
rors are mounted on a rigid titanium platform and form
a horizontal square with a diagonal of 88.5 mm. They
are oriented to produce a folded, “8”–shaped cavity ge-
ometry. The resonator has a nearly concentric configu-
ration, with a free spectral range (FSR) of 976 MHz.
The nominal Rayleigh length of the cavity at the center
of the configuration is 1.86 cm (3.46 cm) for horizontal
(vertical) direction. Two mirrors are fixed, and one is
mounted on a three axis nanopositioning system provid-
ing more than one FSR of cavity tuning. The horizontal
and vertical angles of the fourth mirror are controlled by
piezoelectric actuators, used to align the resonator. The
cavity assembly is tightly fixed on a CF 250 flange, which
is mounted on the main ultra–high–vacuum chamber.

The optical resonator is pumped with the radiation
produced by a single longitudinal mode DFB EDFL near

Fig. 1. (Color online) Frequency stabilization setup to
lock the DFB EDFL to a transversal mode of the folded
optical cavity. In blue and red the fibered and the free
space optical path, in black the electronic connections.

1

(a) Locking scheme of the DFB fiber laser

1560 nm (Koheras laser from NKT Photonics). The laser
has a typical linewidth of a few kHz, an output power of
100 mW, and a frequency noise spectral density domi-
nated by 1/f components as reported in [11]. Before its
injection in the resonator the laser radiation is ampli-
fied with a 5 W erbium–doped fibered amplifier (EDFA
with a gain of 37 dB, using a monomode polarization
maintaining fiber) to obtain an optical potential depth
of the order of kB × 1 mK in each cavity arm for ru-
bidium atoms. The radiation is coupled to the resonator
through a beam–expander and a tilted doublet to opti-
mize the mode–matching. The angle of the doublet al-
lows to correct for the astigmatism of the cavity modes,
given by the off–axis incidence angle of 22.5◦ on the cav-
ity mirrors. The degree of astigmatism was calculated
with ABCD matrix formalism for paraxial ray propa-
gation [12], and experimentally confirmed by measuring
the profile versus distance of the beam transmitted by
one cavity mirror. A coupling efficiency of about 25%
was determined by measuring the reflected power on the
input mirror when scanning the cavity length across its
TEM00 resonance. The coupling efficiency of the TEM10

and TEM20 modes was optimized by using phase masks,
achieving 17% and 12%, respectively. The scattering in
the reverse mode at the cavity mirrors, determined by
measuring the light transmitted in the opposite direc-
tion, causes a 4% lattice potential.

The laser is locked to a mode of the cavity using the
Pound–Drever–Hall technique [13]: optical sidebands at
about 55 MHz are generated using a fibered electro–
optic modulator (EOM), and the beatnote is detected
in reflection with a InGaAs photodiode (PD1 in Fig.
1). The dispersive signal obtained by demodulating the
beatnote is used to lock the laser frequency to the cavity.
A 250 kHz bandwidth feedback is applied on an acousto–
optic modulator (AOM) in double–pass through a pro-
portional and integral loop, whereas a 100 Hz feedback is
applied to the piezo–electric element controlling the laser
cavity length. The main delay limiting the total correc-
tion bandwidth is the propagation time of the RF signal
in the AOM crystal from the electrode to the optical
beam.

The power spectral density (PSD) of the frequency
difference noise between the laser and the cavity was
obtained by measuring the error signal for a closed servo
loop (Fig. 2). The noise spectral density shows the servo–
bump of the fast AOM correction loop placed at about
250 kHz, and stays below the 0.1 Hz/Hz1/2 level between
10 Hz and 10 kHz. Below 100 Hz the frequency noise is
dominated by a 1/f component with 0.1 Hz/Hz1/2 at 10
Hz. The intensity noise of the radiation field in the cavity
was measured evaluating the FFT of the transmission
signal (PD2 in Fig. 1): as shown on the spectrum of Fig.
2, the intensity noise PSD is always below 10−9 Hz−1

with respect to the DC level, except for narrow peaks in
the acoustic band (important in relation to parametric
excitation of the atom in the optical trap) and close to
1 MHz. The integral value of the noise PSD between 1
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Fig. 2. Frequency difference noise (top) and relative in-
tensity noise (bottom) versus Fourier frequency of the
fiber laser stabilized on the fundamental transversal
mode of the optical cavity.

Hz and 10 kHz amounts to 2.8×10−6.
In the crossing region of the two arms of the resonator

was operated a 87Rb MOT. The absorption signal of the
laser cooled atoms was used to characterize the cavity.
The radiation field at 1560 nm1 injected in the cavity
is close to the rubidium transitions 5P3/2 – 4D3/2,5/2

at 1529 nm: therefore it causes a widely stronger red
light shift of the upper level (5P3/2) with respect to the
ground one (5S1/2) when the D2 line is adopted to probe
the atoms. More precisely, the shift ratio of the two lev-
els at 1560 nm, given by the scalar polarizability ratio, is
47.5. If the optical power in the cavity causes a light shift
of the 5P3/2 level much larger than the natural linewidth
of the probe transition (Γ = 2π×6.065(9) MHz), the po-
tential energy of the atoms in the 1560 nm beam is spec-
trally resolved. Atoms at different depths in the optical
potential are thus imaged by changing the probe detun-
ing with regard to the atomic resonance [10].

Using the absorption of a released MOT cloud, the
optical resonator was aligned by tilting the two angles
of the movable cavity mirror. The two central arms of
the cavity were vertically overlapped. A precise orthog-
onality is important in relation with atom trapping, be-
cause it eliminates interferences between the two crossing
beams when the radiation polarization is set to be in the
plane of the cavity.

To determine the geometry and depth of the optical
potential, the absorption of a probe beam was imaged
at different values of its detuning δ with respect to the
D2 line. The probe interacts with atoms having poten-
tial energy U(r) = h̄δ/(47.5− 1) in the ground level; the
width in energy of the atomic class addressed is set by the
linewidth of the probe transition (δE = h̄Γ/(47.5− 1) =
kB × 6.3 µK), since the linewidth of the probe laser is

1The two-photon transition on the D2 line is inhibited by selec-
tion rules, and is further suppressed by tuning the laser frequency
so as to avoid the resonance condition.

2

(b) Noise PSD and Relative intensity noise.

Figure 3.29: Locking scheme and noise of the laser
The noise intensity is measured in transmission on the cavity. The relative frequency noise is

deduced from the Pound-Drever Hall signal and rely on a calibration of the error signal.

3.3.4 Opto-mechanical injection of the cavity

As it has been described in section 3.4b, the reference plate of the cavity is fixed to the upper
flange of the vacuum chamber. In order to stabilize the pointing injection and to optimize the
cavity coupling we designed a mechanical system directly attached to the vacuum chamber, and
not to the optical table. For beam stability, the optical path from fiber output to the vacuum
window has been made as short as possible. The path includes a Glan-Thompson polarizer
to purify the polarization after the fiber, an amplitude modulator (EOM between two crossed
polarizers, Conoptics) to control the beam intensity, a beam expander, two position adjustable
mirrors and a coupling lens. In this set-up, The Glan-Thompson polarizers allow to achieve
high extinction ratio of the amplitude modulator. Since the power is changed during the exper-
imental sequence, a low power AOM has been inserted before the PDH photodiode to maintain
a constant power on this one. The scheme and a picture of the opto-mechanical system are
presented in figures 3.30a and 3.30b.

3.4 Summary
In this chapter we have presented a detailed characterization of the bi-frequency cavity used in
the experiment. In particular, we have emphasized the criteria that led our choice of geometry.
The cavity implemented has been carefully analyzed, and we have especially shown:

• The cavity has a four mirrors geometry which gives it a significantly different behavior
with respect to a Fabry Perot resonator. The coupling efficiency for example is quite
reduced in this configuration.
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(b) Picture of the mechanical injection of the cavity.

Figure 3.30: Cavity injection opto-mechanics.
The amplified fiber laser output is filtered in polarization (GT: Glan Thompson polarizer) and

its power is controlled an amplitude modulator (EOM: Electro Optic Modulator used as an
intensity controller). The mode matching is realized by a variable beam expander (BE) and a

tilted lens doublet.
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• The optical profile has been calculated and measured with different methods, including
a transverse mode spectrum analysis and an in situ nondemolition measurement which
relies on the differential ac-Stark shift induced by the 1560 nm light on 87Rb atoms. All
the methods agree within 10% and give horizontal and vertical waists of 95 ± 5 µm and
128± 5 µm respectively.

• The spectral characteristics of the cavity were measured with precise spectroscopic tech-
niques which gave a linewidth of 2π× 546 103 rad.s−1 at 1560 nm. At 780 nm, the
linewidth has not been measured but the expected finesse F = 100 000 would lead to a
resonance linewidth of about 2π× 10 103 rad.s−1.

• The losses in the cavity can be inferred from the measurement of the intracavity power.
It was shown that in our experiment the losses κ are essentially due to absorption and
scattering on the surface of the mirrors. These losses are of the same order of magnitude
than the mirror transmission t (κ = 1.5 t).

• The locking scheme of the 1560 nm laser is achieved using a Pound Drever Hall technique
that allows to fast correct the frequency with an acousto-optic modulator in double pass.
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Atom interferometers, such as a Ramsey-Bordé sequence [Riehle 91], rely on single particle
interference. As this interferometers are operated close to the zero path length difference, the co-
herence of the source essentially presents no interest. In that perspective, atom interferometers
do not take advantage of ultra-cold or condensed samples. Nevertheless, different geometries of
the interferometers such as the bouncing gravimeter can be considered [Impens 06] and benefit
for example of the low divergence of a condensate [Robert-de Saint-Vincent 10, Hughes 09].

In addition, as discussed in section 6.1.6, the density and number of atoms are of primary
importance for the realization of efficient Quantum Non Demolition (QND) measurement valu-
able for the improvement of atom interferometers. In the set-up that we exploit, high number of
particles (∼ 107) are trapped and automatically overlapped with the QND probe, hence realizing
a situation close to an optimum for the generation of highly squeezed states.

In the following, we will first theoretically introduce the subject of Bose Einstein conden-
sation and raise the experimental parameters of concerns for the experimentalist. Secondly, we
present the characteristics of the dipole trap that is realized by the fundamental mode of the
cavity, and describe the loading procedure as well as the properties of the trapped cloud. At last
we present the perspectives of cavity trapping that include the possibility to use the transverse
modes to generate exotic potentials, and to use a second radiation at 1529 nm to engineer the
differential light shift.

4.1 Introduction to Bose Einstein condensation
The Bose Einstein condensation corresponds to the transition where a macroscopic number of
particles accumulates in the ground state of the system. In classical physics, particles are de-
scribed as points, and the only relevant distance is the inter-atomic distance d = n−1/3. On the
other hand, in quantum mechanics, particles are formalized by wavefunctions which have an
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extent given by the de Broglie wavelength λdB = h/
√

2πmkBT .

For particles that are far enough from each other, the idea of particles that have a sort of
radius given by λdB is easily acceptable. But how to interpret a case where the atoms are so close
to each other that the wavefunction have to overlap? Particles can no more be distinguished from
each other and the system crosses the critical point of the Bose Einstein condensation.

4.1.1 Saturation of the excited states
The bosonic character of the particles is of first importance in the process. Indeed, it is this
character that allows the particles to overlap, and that even stimulates the overlap. This can be
expressed through the statistics of the energy occupation of the bosons in a trap.

We consider a three dimensional harmonic trap in the form:

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (4.1)

which admits a discrete set of energy levels:

�n,m,p = �(nωx + mωy + pωz). (4.2)

For Bosons at a temperature T, the number of particles in the state of energy �n,m,p is given by
the Bose distribution:

N(�n,m,p) =
1

e
�n,m,p−µ

kBT − 1
(4.3)

Tautologically, the number of atoms in the ground state N0 is the number of atoms which are
not in the excited states:

N0 = N −
�

n,m,p �=0

N(�n,m,p), (4.4)

and, for the trap of concern, the number of atoms in the excited state is actually limited [Dalfovo 99]
to:

�

n,m,p �=0

N(�n,m,p) = ζ(3)

�
kBT

�ω

�3

, (4.5)

where ζ(n) is the Rieman function and ω = (ωxωyωz)1/3 is the geometrical average of the trap-
ping frequencies.

This is the so-called saturation of the excited states. If the number of particles N is increased
above this value, for a given temperature T , the atoms have to accumulate in the ground state
of the harmonic oscillator.
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The critical temperature for the apparition of such a behavior can be expressed as a function
of the number of atoms N . It is obtained when N exceeds the excited states population limit in
equation (4.5):

Tc =
�ω

kB
(

N

ζ(3)
)1/3 = 0.94

�ω

kB
N1/3 (4.6)

We notice that this expression confirms the comparison previously proposed. Indeed, the
transition corresponds to the point where individual wavepackets start to overlap, i.e. when the
phase-space density verifies:

D = n0λ
3
dB ∼ 1, (4.7)

where n0 is the atomic density at the center of the trap.

The atomic density of the thermal part (excited states) follows a Maxwell-Boltzman distri-
bution (n(r) = n0 exp(−V (r)/kBT )) which has a width:

σ =

�
kBT

mω

�1/2

(4.8)

In the harmonic potential, the ground state wave function is given by:

φ0(r) =

�
mω

π�

�3/4

exp(−m

2�(ωxx
2 + ωyy

2 + ωzz
2)) (4.9)

resulting in a density of the condensed part that is n(r) = N |φ0(r)|2, and an extension of the
ground state:

aho = (�/mω)1/2. (4.10)

For a gaz below Tc, the density distribution shows a bimodal distribution, with the thermal
Gaussian on the outerpart and the condensed fraction in the center.

4.1.2 Effect of the interactions
The statistical behavior previously described in the case of a non-interacting gas effectively
shows the apparition of a macroscopic population in the ground state of the harmonic oscillator.
Nevertheless, to determine the wavefuntion extension and the atomic density, the interactions
have to be taken into account. In the case of dilute gas, where the scattering length (a=5.3 nm) is
small compared to the interatomic distance n−1/3, the interactions can be accounted by a mean
repulsing field in the form: Vrep = grepn(r, t) = grep|Ψ(r, t)|2 where grep = 4π�2a/m.

The evolution of the wavefunction Ψ(r, t), is then governed by the Gross Pitaevskii equa-
tion:

i� ∂

∂t
Ψ(r, t) =

�
− �2∇2

2m
+ Vext(r) + grep |Ψ(r, t)|2)

�
Ψ(r, t). (4.11)

Looking for the ground state, we have a time independent problem, and the wavefunction can
be separated in:

Ψ(r, t) = e−i µ
� tϕ(r), (4.12)
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where ϕ(r) is the amplitude of density that verifies:

µϕ(r) =

�
− �2∇2

2m
+ Vext(r) + g |ϕ(r)|2)

�
ϕ(r) (4.13)

The chemical potential µ is the energy that it would cost to take one atom out of the condensate
wavefunction.

Thomas-Fermi regime
In the case of large particles number, the interaction energy overcomes the kinetic energy :
N � aho/a, and we enter the Thomas-Fermi regime. The wavefunction in this regime has a
simple solution:

ϕ(r) =

� �
µ−Vext(r)

G if µ ≥ Vext(r)
0 otherwise

With the interactions, the atomic density in an harmonic trap takes the form of an inverted
parabola:

n(r, t) = |Ψ(r, t)|2 = |ϕ(r, t)|2 (4.14)

=
µ− Vext(r)

g
(4.15)

= n0 max
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, 0

�
. (4.16)

The radii of the parabola are:

Ri =

�
2µ

mω2
i

, (4.17)

and the normalization of the atomic density to the total number of particles N gives the
chemical potential expression:

µ =
�who

2

�
15Na

aho

�2/5

(4.18)

4.2 Trapping atoms in a crossed optical cavity
In the description given above we show that Bose Einstein condensation can be reached if one is
able to obtain a phase-space density (atomic density and temperature) that fulfills equation 4.7.
Practically, it means that the temperature of the sample should be decreased and/or the density
should be increased . For an experimentalist, the obvious question is how such a regime can be
reached. The answer was given back in the 90’s and is called the evaporation process. Removing
the particles of the sample which have the highest energy allows to reduce the mean energy
per particles and thus to increase the phase-space density. This technique has been efficiently
applied in the case of magnetic traps [Anderson 95, Davis 95, Bradley 95] and optical dipole
trap [Barrett 01]. In the following, we focus on the specific case of the dipole potential that is
created by the modes of our optical cavity.
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4.2.0.1 The optical dipole potential

In order to trap the atoms in a non-dissipative potential, we use the spatially dependent light
shift created by the Gaussian profile of the fundamental cavity mode. In annexe D, we derived
a complete expression for the polarizability. In our case of concern, the driving field at 1560 nm
is very far from the D1 and D2 transitions (see annexe A). Hence, the hyperfine splitting can be
neglected and the polarizability of the hyperfine ground state becomes:

αF=1,2 =
1

�



 ω0

ω2
0 − ω2 + iΓω3

ω2
0

�

F �,m�
F ,q

���
�
J � = 1/2, F �, m�

F |�dq.eq|J, F,mF

����
2

+
ω1

ω2
1 − ω2 + iΓω3

ω2
1

�

F �,m�
F ,q

���
�
J � = 3/2, F �, m�

F |�dq.eq|J, F,mF

����
2



 , (4.19)

where ω0 = 2πc/λ0 and ω1 = 2πc/λ1 are the transition frequencies of the D1 (λ0 = 794.98
nm) and D2 lines (λ1 = 780.03 nm) respectively.

From the symmetry of the dipole operator [Steck 10], we have:

αF=1,2 =
1

�

�
ω0

ω2
0 − ω2 + iΓω3

ω2
0

(J � = 1/2�d�J)2

2J + 1
+

ω1

ω2
1 − ω2 + iΓω3

ω2
1

(J � = 3/2�d�J)2

2J + 1

�

(4.20)
where (J � = 1/2�d�J) = 4.228ea0 and (J � = 3/2�d�J) = 5.97ea0 are the reduced dipole
elements given in [Arora 07]. Using the definition of the linewidth that is [Grimm 00]:

Γ =
ω3

0

π�0�c3

(J � = 1/2�d�J)2

2J � + 1
∼ ω3

0

3π�0�c3

(J � = 3/2�d�J)2

2J � + 1
(4.21)

we finally find:

αF=1,2 =
π�0c3

ω3
0

�
Γω0

ω2
0 − ω2 + iΓω3

ω2
0

+
2Γω1

ω2
1 − ω2 + iΓω3

ω2
1

�
(4.22)

Hence, atoms in the hyperfine ground state will be transversally trapped by a Gaussian
intensity profile I in an optical potential given by:

U = −Re(αF=1,2)
I

2�0c
(4.23)

Because the real part of α is positive, this potential is indeed trapping for a maximum of inten-
sity.

In our experimental configuration which consists of two Gaussian modes that cross at 90°,
the optical potential is given by:

U = −Re(αF=1,2)
P0

π�0cwhwv
e
−2 z2

w2
v

�
e
−2 x2
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h + e

−2 y2
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h

�
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w2
v

�
e
−2 x2

w2
h + e

−2 y2

w2
h

�
.

(4.24)
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where wh ∼ 98 µm and wv ∼ 128 µm are the waists of the cavity mode, and U0 = −Re(αF=1,2)P0/(π�0cwhwv)
is the potential depth of one arm.

Close to the bottom of the trap, U can be approximated by an harmonic potential Uhar:

Uhar = U0

�
1− 4

z2

w2
v

− 2
x2

w2
h

− 2
y2

w2
h

�
= U0 −

mω2
zz

2

2
− mω2

xx
2

2
−

mω2
yy

2

2
(4.25)

where

ωx = ωy =

�
4U0

mw2
h

, and ωz =

�
8U0

mw2
v

(4.26)

are the trapping frequencies.

The value of the depth and the trap frequencies are given in table 4.1, for the experimental
value usually achieved:

Parameters Full power Loading
Power at one output Pout 80 mW 8mW

Intracavity power in one arm Pintra 228 W 22.8W
Intracavity intensity in one arm Iintra 11.9×109 W.m−2 1.19×109 W.m−2

Depth in one arm U0 1.47×10−26 J 1.47×10−25 J
Depth in one arm U0 3.69 Γ 0.369 Γ
Depth in one arm U0 1.1 mK 0.11 mK

Horizontal trapping frequencies ωx 2 π 1.04 kHz 2 π 329 Hz
Vertical trapping frequencies ωz 2 π 1.13 kHz 2 π 356 Hz

Table 4.1: Relevant parameters for our trap configuration.

In the table 4.1, the intracavity power is computed using equation (3.55).

Scattering
From the expression of the polarizability in equation 4.22, we can derive the scattering rate of
an atom at the position r of the potential:

Γscatt =
Im(αF=1,2)I(r)

��0c
(4.27)

In our specific case, in the center of the trap that is operated at full power, this makes a
scattering rate that is Γscatt = 1.6 event.s−1. The full power is only conserved for a few ms
before the power is ramped down for the evaporation, and this rate should not play any role in
the evaporation.

4.2.1 Trapping cold atoms
4.2.1.1 Loading the dipole trap

We focus now on the transfer of atoms from the MOT to the dipole trap. This process is among
the most critical to achieve a Bose Einstein condensate [Barrett 01] in an all optical evaporation.
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Figure 4.1: Atoms loaded in the dipole trap.
(a) Number of atoms kept in the dipole trap after 1 s of trapping as a function of the intracavity
optical power. (b) Temperature of the atoms in the dipole trap measured by the cloud size after

a time of flight expansion and given as a function of the intracavity power.

Contrarily to magnetic traps that uses an RF knifes to adjust the potential depth, optical traps
uses directly the finite depth of the trap for the evaporation. Hence, to lower the temperature,
it is directly the optical power that is lowered. But this reduces the trapping frequencies, and
lowers the efficiency of the evaporation. In such an evaporation, an efficient loading is essential
to start with the highest phase-space density possible (∼ 10−3 ). Actually, it is mainly thanks to
a high loading efficiency that the first all optical BEC was achieved [Barrett 01].

The first parameter that optimizes the loading is the overlap of the MOT (few 100 µm) with
the dipole trap (∼ 100 µm). In addition, to maximize the phase-space density in equation (4.7)):

D ∝ N

�
ω

T

�3

, (4.28)

the trapping frequencies should be as high as possible. In equation 4.28, ω = (ωxωyωz)1/3

is the geometrical average of the trapping frequencies. Equation 4.26 shows that either the
power should be increased or the waist should be lowered. To increase the power is not an ideal
solution. Atoms loaded in the arms of the optical potential acquire the energy of the depth of
the trap when they fall in the trapping region. Hence, the thermalized sample has a temperature
that scales linearly with the potential depth. On the other hand, the trapping frequencies scale
as the square root of the depth (equations 4.26), meaning in equation 4.28 a loss of phase-space
density. A better solution is to lower the waist but it is in contradiction with the optimization of
the mode overlap. Our chosen optical waist of 100 µm results from a compromise to keep an
efficient loading with frequencies in the kHz range.

Differential light shift: the induced Dark MOT

As it has been previously mentioned in section 3.2.5.2, the 1560 nm light not only creates a
dipole trap for the atoms, but also shifts the state 52P3/2 which is part of the cycling transition for
laser cooling. This induces some subtleties since the coupling of the atoms to the cooling light is
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Figure 4.2: Scheme realized to load the dipole trap.
In the center of the trap the repump light is far from resonance, and the atoms accumulate in
|F = 1�. The depth of the trap during the loading is chosen such that the cooling laser can be
in between the transition to the hyperfine state |Fp = 2� and |Fp = 3� whatever the position of

the atoms in the trap.
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now dependent on their position in the trap [Griffin 06]. In [Clément 09, Clement 08], different
methods are presented to efficiently load a trap at 1560 nm. The more efficient took advantage
of this differential light shift to create an induced Dark MOT in the trap. The principle of this
method [Clement 08] is schematically presented in figure 4.2 and is applied in our experimental
sequence:

• A 3D MOT of about 1010 atoms is loaded from the 2D MOT source. For the loading, the
depth of the far off resonance dipole trap (FORT) starts at ∼ 110 µK.

• A compressed MOT phase [Petrich 94] is operated by detuning the MOT beams to 5 Γ
from the atomic resonance for 50 ms. The cloud is compressed and the atomic density
increases in the FORT region.

• The cooling beams are further detuned to 40 Γ for 100 ms. At this detuning, the cooling
radiation is on the red-side of the |F = 2� → |Fp = 3� transition for any position
of the atoms in the trap. Indeed, the depth of the FORT during the loading is fixed to
∼ 110 µK = 35Γ, such that there still exists a frequency range where the cooling laser
can be in between the |F = 2� → |Fp = 3� and |F = 2� → |Fp = 2� transitions
even in the presence of the strong differential light shift (see figure 4.2). Moreover, in
the FORT region the repump light is out of resonance and the atoms accumulate in the
|F = 1� hyperfine state, realizing in this way a dark SPOT MOT [Ketterle 93] induced
by the 1560 nm light shift.

• Finally, the cooling radiation and the MOT coils are turned off (cooling and repumper
lasers), and the power in the FORT can be either kept constant or ramped up. In figure
4.4, we see for example the number of atoms present after 1s for different final power in
the FORT.

At the end of the loading sequence about 20 million atoms are loaded in the crossing region
of the dipole trap that has been raised to full power, and the temperature of the cloud is about
230 µK (see figure 4.4b).

Remark: As the dipole trap is operated in the cavity, the 1560 nm light cannot be turned on
and off at will. To be able to repeat the sequences, the laser needs to stay locked all the time.
Actually, the stability of our set-up allows us to turn the power off for a few ms during which
the images of the sample are taken. When the laser is turned on again, it automatically re-locks.

4.2.1.2 Keeping cold atoms...

In the history of the experiment, the trapping of atoms in the mode of the cavity has been quickly
achieved. Nevertheless, in the early stage of the experiment the dipole trap had a lifetime of
about 100 ms. Some fundamental limiting processes such as two photon Raman transitions,
molecular recombination or two photon excitations were suspected but all of them are orders
of magnitude away to generate such an effect. As a matter of fact, the heating rate limiting
the trap lifetime proved to be linked to the retroreflected light mentioned in section 3.2.7.1. In
principle this light is phase related to the forward propagating field, and the interference pattern
between the backward and the forward traveling field should be fixed. Nevertheless, the acoustic
environment in the laboratory as well as the noise on the piezo that controls the length of the
cavity cannot be ignored.
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Figure 4.3: Acoustic resonance of the cavity.
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Figure 4.4: Free evaporation in the trap.
Atom number (a) and temperature (b) in the dipole trap as a function of time when the power

in the dipole trap is kept constant.
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Figure 4.5: Trapping frequencies measurement by parametric excitations.
A fluctuation of the intensity of the dipole trap is induced and the losses of atoms are measured

as a function of the excitation frequency.

In figure 4.3 the atom number kept in the dipole trap is presented as a function of the fre-
quency of an acoustic wave excitation. It clearly exhibit a resonance at 345 Hz, which is at-
tributed to a mechanical resonance of the cavity. In the natural environment of the lab, there is
no specific excitation at this peculiar frequency, and the losses are essentially linked to the back-
ground acoustic noise and the residual noise of the piezo-elements that control the cavity length.

The backward reflected light is lowered by adjusting the position of the cavity mirrors, and
the noise on the piezo elements of the cavity have been passively filtered to lower the displace-
ment of the residual fringes.

After such an optimization, the trapping time of the dipole trap reached 6.6 s. As shown in
figure 4.4a, it is limited by one body collisions with the residual background gas as indicated by
the exponential decay. After thermalization in the full trap, the sample temperature is 230 µK,
leading to a temperature to trap depth ratio kBT/U0 ∼ 4.8. No increase of the temperature
can be seen in figure 4.4b, which indicates that the evaporation can be started. The phase-space
density before any evaporation is 9.2×10−5. As the ratio η is small compare to other experiment
(∼ 10 in [Clément 09]), it should be possible to lower further the initial temperature and then
to increase the initial phase-space density.

Using the tomographic characterization of the cavity mode, we were able to precisely mea-
sure the waist of the mode, which gives us the horizontal trapping frequency. For the vertical
trapping frequency equation 4.26 gives an estimate, but it relies on the assumption that the two
arms are well crossed on the vertical. At a high trap depth, this parameter is measured in-situ by
parametric excitations (see figure 4.5). For a low trap depth, they are estimated by time-of-flight
measurement that are extrapolated to 0.

Parametric excitation To measure the trapping frequencies, we induce a modulation of the
intensity of the dipole trap and observe the number of atoms that remain in the trap. Experi-
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Figure 4.6: Trapping frequencies measurement by time of flight expansion.
The time of flight expansion gives the temperature and its extrapolation to 0 gives the initial

rms size.

mentally, atoms are loaded in the dipole trap as described in section 4.2.1.1. The intensity of
the dipole laser is increased and after the thermalization, a modulation is applied to the intensity
of the laser. It was shown in [Gehm 98, Savard 97] that due to the parity of the excitation, the
excitation resonances are twice the trapping frequencies. The result obtained is presented in
figure 4.5 and is centered around 1.6 kHz, leading to trap frequencies of 800 Hz. This value is
small compared to our expectation (1.1 kHz). In addition, the resonance in figure 4.5 is quite
large compare to similar measurements [Brantut 08b]. A default in the alignment of the two
arms is suspected to be the reason of both the enlargement and the low frequencies. This point
is presently under study.

Time-of-flight measurement In the case of small trap frequencies, the method of paramet-
ric excitation cannot be applied because its resonance is too large. In order to estimate the
frequency, we proceed to a time of flight expansion of the cloud as presented in figure 4.6. Ex-
trapolating the expansion towards 0, and using equation 2.10, we obtain the initial rms size of
the cloud σ0, the temperature T and the atom number N . The initial density at the center of the
cloud for a thermalized sample is :

n0 =
N

(2πσ2
0)

3/2
=

Nm3/2ω2
hωv

(2πkBT )3/2
(4.29)

Hence, the geometrical averaged frequency is given by:

ω =
1

σ0

�
kBT

m
. (4.30)

The data presented in figure 4.6 are obtained after reduction of the trap depth to three different
values of the intracavity power that correspond to final temperature of 7.8, 4.4 and 3.4 µK. The
frequency obtained from equation 4.30, are respectively: ω1 = 2π 78.5 Hz, ω2 = 2π 67.8 Hz
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and ω3 = 2π 67.1 Hz. The expected ratio calculated from the final power are (ω1/ω2)exp = 1.12
and (ω1/ω3)exp = 1.38, and the measured one are (ω1/ω2)meas = 1.16 and (ω1/ω3)meas = 1.7.
This tends to indicate that the sample at 3.4 µK was not yet thermalized.

In addition, the first set of data at 7.8 µK, was realized for a trap depth ∼1/38 times lower
than the full trap depth. Using equation 4.26, we find that at full power the trapping frequencies
should be ω = 484 Hz, which is contradictory with the measurement realized by the parametric
excitation. This discrepancy is attributed to the effect of the gravity that modifies the shape of
the potential for low potential depths.

At the end of these sequences, the phase-space density obtained are D1 = 2.8 × 10−4,
D2 = 9.1 × 10−4 and D3 = 1.5 × 10−3. These values are still far from the critical value of 1.
Current efforts are oriented to reach a lower temperature in the trap at full depth.

4.2.2 Perspectives
Recent progress in the experiment allowed the trapping of a large number of atoms (107) on long
time scales (5 s), opening the way to the Bose-Einstein condensation in the mode of the cavity.
This is presently the main goal. Up to now we obtained an efficient loading, and more work
is needed to lower the temperature, which may require some initial cavity cooling [Vuletic 00]
and to optimize the evaporation process [Wu 97, Luiten 96]. In addition, to the condensation
in the fundamental mode, it could be very interesting to couple the condensate to higher modes
of the cavity that present multiple extrema of the intensity. This would open the way to the
creation of scalable trap array. Interestingly, based on the 1560 nm differential light shift, the
use of different wavelengths could allow to engineer the atomic state.

4.2.2.1 Higher modes trapping

As shown in figure 4.7, trapping in these higher modes has already been achieved. These multi-
trap geometry can be raised at any time in an experimental sequence, and could be superimposed
to the fundamental mode, allowing to condense and to split the cloud or on the contrary to con-
dense in a multi-trap geometry and to regroup the condensate in the fundamental mode. The
modes are transverse modes of the cavity, they are non-degenerate, and apart from each other
by several tenth of MHz. The local beatnote between the modes is modulated at this frequency
difference and the dynamics of the atoms should not be affected by it, and will only react to the
average potential.

4.2.2.2 Engineering the light shift

As described for the loading procedure, the 1560 nm creates a strong light shift on the D2 line
that is used for the cooling. This prevents the loading of the trap at full trap depth. One solution
considered to overcome this difficulty, is to use a laser at 1529 nm injected in the cavity, and that
compensate for the differential light shift [Griffin 06]. Indeed, as this radiation is blue detuned
but close to the 52P3/2 → 52D3/2,5/2 transitions, it creates on the 52P3/2 an opposite effect with
respect to 1560 nm light. In addition, as the wavelength (1560 nm and 1529 nm) are close,
the profile of the modes are similar and the engineered light shift can reproduce very well a
magic wavelength. Figure 4.8 represents the differential light shift between the ground state
52S1/2 and the excited state 52P3/2 when such a compensation is realized. It shows that the
residual differential light shift can be cancelled in one point (e.g. at the center), but the overall
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(a)

(b)

(c)

(d)

Figure 4.7: Trapping in the transverse modes.
In (b) and (d) two clouds are shown that were trapped in the TEM01 and TEM02 transverse

modes respectively . In (a) and (c) are the potentials calculated for the corresponding
Hermit-Gauss modes.
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Figure 4.8: 1529 nm compensation of the light shift.
The dipole trap shape of the ground state is presented in blue (below) and the residual

differential light shift of the excited state is in green (above).

shape will still present light shift fluctuations of the order of the ground state depth (∼ Γ at
full power). The curves in figure 4.8 are given for a power of 200 W of the 1560 nm radiation
concentrated in 100 µm waist. The 1529 nm radiation was adjusted to a power of 2.36W in
100

�
1.529/1.56 = 98 µm waist.

The light shift of the excited state that is created by the 1560 nm alone is of the order of
1.2 GHz. To control the engineered light shift suppression, for example, at better than the
inhomogeneity on the cloud size, requires a relative power stability of the 1529 nm light with
respect to the 1560 nm light that is δP/P ∼ 5× 10−3.

We underline that this compensation may actually be very valuable for the realization of the
dispersive nondemolition measurement. Indeed, it allows to uniformly couple the atoms to the
probing light, independently of their position.

Some work in this direction has been already realized with the locking of the 1529 nm to
a test cavity. For this lock we developed a frequency control through a serrodyne procedure
[Johnson 10] that appears to be promising.

4.3 Summary
In this chapter we have presented the work realized in the direction of the trapping of cold atoms
in the modes of the cavity. We first introduced the parameters relevant for the description of an
ultra cold atomic sample and showed that a dipole trap at 1560 nm realized in the fundamental
mode of the cavity was suitable for such a purpose.

In the second part, we described the loading procedure of the trap that needs to take into
account for the differential light shift of the excited state. We showed that about 20 million
atoms are loaded in the crossing region of the dipole trap. After a reduction of the effect of the
backward propagating light, a lifetime of 6.6 s was obtained in the dipole trap. The trapping
frequencies that are of primary importance for the condensation were measured by parametric
excitation and time of flight evaluation.

At last we present the possibility to use the higher transverse modes to trap in different
geometries. In addition, to compensate for the differential light shift induced by the 1560 nm
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radiation we consider the injection of 1529 nm radiation that would allow to engineer the dif-
ferential light shift.
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The measurement in quantum mechanics is at the same time one of the simplest and one
of the most complex principles. Indeed, when looking to the formalism it looks fairly simple,
since it is composed of easily applicable rules. When measured, a physical system is projected
on an eigenvector of the measured variable, that is the observable. In this way, a repeated
measurement on the system should always give the same result. The description of systems as
wavefunctions and the possibility to project the wavefunction on a single state (the eigenstate) is
at the heart of the wave-particle duality. But it is also one of the most disturbing fact in quantum
mechanics: our world and the behavior of system are quantum, and described by a wavefunction
that can exhibit different results in the same situation. In the quantum mechanical description of
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the measurement process, physical objects acquire properties that were not intrinsically present
before the measurement.

In this chapter, we will not answer these deep questions but merely try a modest approach
to address the problem of partial measurements on practical devices. The measurement that
has been described above is the ideal projective measurement that requires an infinite signal-to-
noise to be able to fully distinguish between eigen-vectors. Obviously, a measurement device
does not have such a signal-to-noise and some care should be taken when treating it.

In a first part, we will describe the physical system that is composed of N two level atoms
and introduce some formalism for its description. This formalism is then applied to show the
influence of the atomic shot-noise on the performance of atomic interferometers. In a second
part, we will give some elements of the theory of Quantum Non-Demolition (QND) measure-
ment and show that the dispersive measurement foreseen in our experiment is indeed QND. In
the last part, we introduce a wavefunction formalism that allows us to describe the partial pro-
jection of the atomic wavefunction photon after photon. This description is particularly useful
to understand the dynamical collapse of the atomic state that leads to the creation of a squeezed
state.

5.1 Introduction to the Bloch sphere
In this section, we will introduce the Bloch sphere formalism, which is convenient to describe
the coherent manipulation of atoms or to represent squeezed states. In that purpose, we will
start from the Hamiltonian which holds clear evidence of the physics, and derive the proper set
of operators for the description of the evolution: the Pauli matrices.

5.1.1 Coherent manipulation of a single two level system
As described in figure. 5.1, we consider here the case of a two level atom (|g�, |e�) driven by an
off-resonant electro-magnetic field E = A0 exp i(ωt + φ), with angular frequency ω and phase
φ. We will use in the following a semi-classical description where the atoms are quantized and
the field is classical. The atomic state evolves with respect to the Hamiltonian H:

H = Hat +HI, (5.1)

where Hat describes the free evolution of the atoms and HI the atom-field interaction.



Figure 5.1: Two level atom scheme.
The two levels have energies ±E0 = ±�ω0/2. The driving field E is frequency detuned by

δ = ω − ω0 from the atomic transition.
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The zero of potential energy is chosen in between the two states. The atomic free evolution
is described by the Hamiltonian :

Hat = �ω0
�jz, (5.2)

where �jz = 1
2 (|e� �e| − |g� �g|) is an observable of the atomic state. It measures the difference

of population between e and g.

As developed in many quantum mechanics textbook [Cohen-Tannoudji 96, Aspect 06], the
atom - field coupling that arises from the interaction of the individual charged particle that
constitute the atom, can be expanded and limited to its first term: the electric-dipole interac-
tion. In this approximation, the (charged) electron follows the oscillation of the electric field.
Its wavefunction can oscillate back and forth in between eigenstates: the spherical harmonic
wavefunctions. The Hamiltonian of the interaction is

HI = −�D.E, (5.3)

where �D = e.�r is the dipole operator.

Two states with identical parity being not coupled by �r, the diagonal terms are null. The
coupling of this two level system can thus be simplified to:

�D =

�
0 deg

d∗eg 0

�
(5.4)

= deg |e� �g|+ d∗eg |g� �e| , (5.5)

where deg = �e| �D |g� is the dipole element between |e� and |g�.

The interaction Hamiltonian is then:

HI = −
�
deg

�j+e−i(ωt+φ) + d∗ge
�j−ei(ωt+φ)

�
A0, (5.6)

where �j+ = |e� �g| and �j− = |g� �e| are the raising and lowering operators that describe the
transfer from one state to the other.

In the rotating frame of the electric field, the interaction Hamiltonian is H̃I = U †HIU with
U = eiωbjzt. In this frame, the lowering and raising operators are �̃j±U †�j±U = �j±e±iωt, and we
have:

H̃I = −
�
deg

�j+e−iφ + dge
�j−eiφ

�
.A0 − �ω�jz (5.7)

= −deg

�
cos(φ)

�
�j+ + �j−

�
+ sin(φ)

�
�j+ − �j−

��
A0 − �ω�jz. (5.8)

Defining

�jx =
1

2

�
�j+ + �j−

�
=

1

2
(|e� �g|+ |g� �e|) , (5.9)

�jy =
−i

2

�
�j+ − �j−

�
=
−i

2
(|e� �g| − |g� �e|) (5.10)
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we obtain the Jaynes-Cummings Hamiltonian [Jaynes 63] in the semi-classical limit:

H = �δ�jz + �Ω
�
cos(φ)�jx + sin(φ)�jy

�
(5.11)

where δ = ω0 − ω is the angular detuning of the field with respect to the atomic transition, and
Ω = −2d.A0/� = ΩR is the on-resonance Rabi frequency which includes the coupling strength
d as well as the field amplitude A0.
In the expression 5.11 of the Hamiltonian, the set of operator (�jx, �jy, �jz) appears as essential to
describe the evolution of the atomic system.

The phase φ of the electric field is arbitrarily defined at t = 0, but latter value of the phase
will then be related to this initial definition.

5.1.2 The rotation operators and the Bloch sphere
To describe the effect of the Hamiltonian 5.11 on an atomic system, we will determine the
evolution of the density matrix. The trace of the density matrix being normalized to one, only 3
parameters are necessary to parametrize the density matrix �ρat. Decomposed in the (1,�jx,�jy,�jz)
basis, the density matrix takes the form:

�ρat =
1

2
+ n.�j (5.12)

where n = nxex + nyey + nzez contains the decomposition information of the density matrix.
The vector n is called the Bloch vector. It is the mean value of 2�j, and is then included in a
sphere of radius 1.

In order to understand the effect of the Hamiltonian (5.11) on �ρat, we focus on the specific
case of an on-resonance excitation with initial electro-magnetic phase φ = 0. In this case the
Hamiltonian simplifies to:

�H = �Ω�jx. (5.13)

After an interaction time t, the density matrix in the interaction frame is rotated by the
evolution operator e−

i bHt
� :

�ρat(t) = e−
i bHt

� �ρate
i bHt

� = e−iΩtbjx �ρate
iΩtbjx (5.14)

=
1

2

�
1+ 2nx

�jx + 2 (ny cos (Ωt)− nz sin (Ωt))�jy

+ 2 (nz cos (Ωt) + nz sin (Ωt))�jz

�
, (5.15)

where we have used:

e−iΩtbjx = cos

�
Ωt

2

�
1− i sin

�
Ωt

2

�
�jx (5.16)

The Hamiltonian H = �Ω�jx generates then a rotation of the Bloch vector representation
of the density matrix around the x axis with angular frequency Ω (see equation (5.15)). Under
such an evolution, the measurement of the atomic state: ��jz� (projection of the Bloch vector on
the z-axis) would exhibit the well known Rabi oscillations.
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couples state |0� and |1� and rotates the Bloch vec-
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Figure 5.2: Bloch sphere
(a) Representation of a two level atom on the Bloch sphere, (b) Rotation of |0� induced by the

momentum operator �jθ.

Generalization

This rotation property on the Bloch sphere is not only limited to �jx, but is obtained for any linear
combination of the set of operator (�jx,�jy,�jz). Indeed, the Hamiltonian H = �Ω1

�jx + �Ω2
�jy +

�Ω3
�jz generates a rotation of the Bloch vector around eα = 1√

Ω2
1+Ω2

2+Ω2
3

(Ω1ex + Ω2ey + Ω3ez)

with angular frequency Ωeff =
�

Ω2
1 + Ω2

2 + Ω2
3.

These operators �j that were derived from the interaction Hamiltonian are named the Pauli
matrices:

�σx = 2�jx =

�
0 1
1 0

�
�σy = 2�jy =

�
0 −i
i 0

�
�σz = 2�jz =

�
1 0
0 −1

�
(5.17)

that were first introduced to describe the evolution of two-level systems.
In the following, we will prefer the �j notations (and not the �σ), which are commonly adopted in
the context of spin 1/2 equivalent systems.

The �j operators verify the commutation relations of angular momentum operators:
�
�jx,�jy

�
= i�jz ,

�
�jz,�jx

�
= i�jy ,

�
�jy,�jz

�
= i�jx. (5.18)

Because of this rotation property of the Hamiltonian, the Bloch sphere is very well adapted
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to describe the atomic state evolution. Indeed, for any state, the evolution can be very easily
analyzed or computed by simple rotations on the Bloch sphere.

A few physical situations

• We consider the situation of a free evolution of an atomic system that may be latter excited
by a driving field that is detuned by δ = ω − ω0. The Hamiltonian of the system is:

H = �δ�jz, (5.19)

and the Bloch vector rotates with angular frequency δ around the z axis. The simple
interpretation is that during a free evolution that lasts for a time T , the field accumulates
a phase φ = δT . This phase will only be revealed by a later interaction between the
microwave field and the atom through the Hamiltonian (5.11). In other terms, the phase
is measured if the interferometer is closed.

• The driving field is applied with a small detuning δω, compare to the Rabi frequency
ΩR � δω, and the Hamiltonian simplifies to:

H = �ΩR
�jy. (5.20)

This corresponds to a rotation around the y axis of the Bloch sphere.

5.1.3 Extension to the many body system
In sections 5.1.1 and 5.1.2, we have discussed the evolution of a single particle that interacts
with an electro-magnetic field. Now the purpose is to extend the formalism introduced to the
case of a cloud of Nat two levels atoms. Before any correlations have been introduced in the
system, the cloud starts as an ensemble of independent two level atoms. The many-body Hamil-
tonian describes then the evolution of each atoms independently:

H =
N�

i=0

�
�δ�j(i)

z + �Ω
�
cos(φ)�j(i)

x + sin(φ)�j(i)
y

��
(5.21)

The collective momentum operators are defined as the sum over all the individual contribu-
tions:

�Jx =
N�

i=0

�j(i)
x , �Jy =

N�

i=0

�j(i)
y , �Jz =

N�

i=0

�j(i)
z . (5.22)

�Jz is an observable since it measures the population difference between the two atomic levels.
The definitions (5.22) should be regarded carefully. Each �j(i) operator working in a different

Hilbert space, the contracted notation �j(i) actually stands for
�

�j(i) ⊗
j �=i

1(j)

�
.

The commutation relation hold for these global operators:
�

�Jx, �Jy

�
= i �Jz ,

�
�Jz, �Jx

�
= i �Jy ,

�
�Jy, �Jz

�
= i �Jx, (5.23)
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Figure 5.3: Illustration of a coherent state polarized along �Jx.
This representation does not mean that the collective vector has an unknown position on the

sphere since any pure state is well defined by one point on the surface of the Bloch sphere. In
the present case, the Bloch vector is well defined and pointing along x. The uncertainty
represented comes from the projection of the wavefunction on the quasi continuum of

eigenstates of �Jz, i.e. the variance of �Jz is nonzero.

and the associated Heisenberg inequalities are:

∆ �Jx∆ �Jy =

�
�Jz

�

2
, ∆ �Jz∆ �Jx =

�
�Jy

�

2
, ∆ �Jy∆ �Jz =

�
�Jx

�

2
. (5.24)

Similarly to the momentum analysis, the set formed by �J2 =
�

k=x,y,z
�J2
k , �Jz is a complete

set of commuting observable (C.S.C.O., [Cohen-Tannoudji 86]). Regarding many-body system,
this statement should be taken carefully since it only applies to the symmetrized form of the
state, which mean that we are in a second quantization formalism where the particle exchange
permutation invariance is assumed. The eigenstate of this C.S.C.O. are the |J, n� vectors which
verify:

�J2 |J, n� = J (J + 1) |J, n� , (5.25)
�Jz |J, n� = n |J, n� . (5.26)

A state |J, n� is called a Dicke state. The set of all the Dicke state forms a basis for the sym-
metrized states.

Remark:
To actually regard the set �J2 and �Jz as a C.S.C.O., we have neglected the external degree of
freedom of the atoms. In the case of a measurement on a Bose Einstein condensate this would
be totally acceptable since all the atoms are in the same external wavefunction. Regarding a
thermalized sample the question of the legitimacy of such a reduction may be questioned. In
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our specific case of a dispersive measurement, the measurement is independent of the external
degree of freedom (position and velocity), and the description can be reduced to the internal
state.

The coherent state

To familiarize with the Dicke states, we detail now the decomposition of the coherent state
in the Dicke basis. In our present context, we call a coherent state |Ψ�, the state given by Nat

independent atoms all in a balanced superposition of the two levels |f� and |g�:

|Ψ� =
Nat⊗
i=1

�
1√
2

(|f�i + |g�i)
�

(5.27)

=
1

2
Nat
2

Nat�

k=0

�

σ

|f�σ(1) ... |f�σ(k) |g�σ(k+1) |g�σ(Nat)
(5.28)

where the sum is done over all the possible permutations. Experimentally, this state is obtained
by the application of a π/2 pulse on atoms that are all in the same initial state. The Bloch
representation of the coherent state is given in figure 5.3.

The collective basis |n� is obtained by symmetrizing and normalizing the state |f�Nat/2+n |g�Nat/2−n

(n = k −N/2):

|n� =
1�

CNat/2+n
Nat

�

σ

|f�σ(1) ... |f�σ(Nat/2+n) |g�σ(Nat/2+n+1) |g�σ(Nat)
, (5.29)

and the coherent state decomposition becomes:

|Ψ� =
Nat/2�

n=−Nat/2

cn |n� =
1

2
Nat
2

Nat/2�

n=−Nat/2

�
CNat/2+n

Nat
|n� (5.30)

The initial coefficients of the distribution are:

cn =
1

2
Nat
2

�
CNat/2+n

Nat
(5.31)

For N � 1 and n � N/2, the binomial distribution is very well approximated by a normal
distribution. This is the Moivre-Laplace theorem which gives:

cn =
1

2
Nat
2

�
CNat/2+n

Nat
≈ 1

(πNat/2)1/4
e−

n2

Nat (5.32)

The initial distribution of the coherent state after a π/2 pulse follows a normal distribution
centered on 0 and with variance Nat

2 . The initial variance of �Jz is:

∆ �J2
z = �Ψ| �J2

z |Ψ� =
Nat/2�

n=−Nat/2

c2
nn

2 �n|n� =
Nat

4
(5.33)

.



5.1 Introduction to the Bloch sphere 111

Contrarily to the case of the single atom Bloch sphere where the eigenvalues are only the
poles, for Nat � 1 the collective Bloch sphere eigenvalues form almost a continuum in between
the poles. For this reason, the coherent state can be represented as a density of distribution as
depicted in figure 5.3.

In the cases that will be discussed later on, and that apply to atom interferometry, the initial
atomic state correspond to Nat atoms all starting in their lower state. This corresponds to the
Dicke state |J = Nat/2, n = −Nat/2�. The total angular momentum J = Nat/2 being con-
served during the coherent interaction, latter manipulations of the state preserve J . The Dicke
states will then only be depicted by their projection on z, namely:

|J = Nat/2, n� = |n� (5.34)
For independent particles, all the single body results can be directly extended to the many body
system. It is particularly true for the evolution of the system that can be completely described
in terms of rotation on the sphere, which has now a radius of Nat/2. The rotation on this
extended Bloch Sphere is a complex problem of algebra, especially concerning the evolution of
the variance. Details can be found in [Arecchi 72], where the rotations are treated in details.

5.1.4 Shot noise in atomic interferometry
Atomic energy levels are at the same time very well defined, but also very sensitive to their
environment. Measuring the exact energy of a transition E0 = �ω0, can thus be either a way
to properly define the time T = 2π/ω0 or to precisely measure perturbing effects. Atomic in-
terferometers [Kasevich 91], and especially atomic clocks [Santarelli 99] must be placed in this
context of energy/frequency measuring devices.
Because atoms are massive particles compared to photons, they are sensitive to inertial forces.

Atomic accelerometer [Gouët 08] and gyroscope [Gauguet 09] are part of the devices that allow
to measure inertial constants.

As it is well known for optical interferometers, the ultimate limit for a classical system is
the optical shot noise, that describes the independence of particles that can go in one or the
other output port of the interferometer. For uncorrelated particles, this results in a Poissonian
noise that limits the best precision achievable for optical interferometers to

�
Np, where Np is

the number of photon used for the experiment.

An atom interferometer presents the exact same behavior, meaning that the best precision
is limited by the Poissonian noise of the atomic distribution that has a width

√
Nat after the

first beamsplitter. This noise found at the output of the interferometer is linked to the disper-
sion of �Jz that has been discussed in section 5.1.3. This idea is depicted in figure 5.4 where
a clock interferometer (Ramsey) is presented. In a usual interferometric sequence, a first π/2
pulse (5.4 (b)) creates a superposition states. A following free evolution gives rise to the phase
φ = δT in the equatorial plane, where T is the free evolution time and δ the detuning between
the microwave driving field and the clock transition. In figure 5.4, the free evolution phase has
been chosen to π/2 which brings the interferometer in half fringe where it has the highest phase
sensitivity. After the last π/2 pulse 5.4(f), the atomic state is read and presents shot-to-shot
fluctuations related to the atomic shot noise: ∆ �Jz =

√
Nat/2.
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Figure 5.4: Shot-noise and squeezed limited interferometric sequence
On the left a typical atomic clock sequence limited by the atomic shot-noise. The atoms start

all in the same state (a) and a coherent superposition is created by π/2 pulse around y (b).
After a free evolution (e) the interferometer is closed by a π/2 pulse around y (f). On the right,

a sequence that uses a squeezed state to improve the SNR: the coherent superposition is
squeezed along z (c), a π/2 pulse around x transfer this gain on the phase quadrature (d), the

interferometer is closed (e,f) and exhibits a noise reduction.
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Figure 5.5: Illustrating fringes of the shot-noise and squeezed limited interferometric sequence
On the left, a fringe that is blurred by the atomic shot noise. On the right, the improvement that

can be achieved after the correlation of the QND result and the interferometric result.

Using squeezed states, the atomic shot noise influence can be lowered [Wineland 92]. After
the first π/2 pulse, a QND measurement is applied on the state to reduce the variance ∆ �J2

z . A
π/2 pulse rotation induced by �Jx is then applied to transfer the gain obtained in the number
difference quadrature on the phase quadrature. After the "π/2" free evolution, the last π/2
pulse rotation induced by �Jy closes the interferometer, and the atomic noise clearly appears to
be lowered.

Here, it is very important to notice that if directly drawn, the fringes in the squeezed case
will exhibit exactly the same noise as the non-squeezed case. This is due to the fact that the
position of the squeezing is non determinist and may occur anywhere in the initial density distri-
bution. This stochastic offset induces a noise at the output that is a priori indistinguishable from
the atomic shot noise. It is only by correlating the result of the QND measurement, that gives
the offset of the squeezed state with the result of the interferometer, that a substantial sensitivity
improvement can be achieved.

The fringes obtained from the two sequences are presented in figure 5.5 which illustrates
the improvement that brings a non-classical state on the clock sensitivity for an equal number
of particles considered.

The improvement of the interferometer performance has been in the last decade one of the
main reasons to investigate squeezed state of light or matter. To prepare squeezed states, the
system must experience a non-linear evolution:

• A non-linear interaction in the form for example of a twisting Hamiltonian [Kitagawa 93]

• Transferring the squeezing from an optical state to an atomic state [Kuzmich 97]

• The strong non-linearity of an ideal projective measurement that collapses the state on one
of the observable eigenstates, i.e. a Quantum Non-Demolition measurement [Kuzmich 98,
Caves 80b, Thorne 78].

This last point is the one chosen in our experiment. The following part of this chapter
describe the partial projection in an indirect Quantum Non-Demolition (QND) measurement.
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5.2 Quantum Non-Demolition measurement
It is well known in quantum mechanics that a measurement modifies the state of the measured
sample. In certain conditions, correlations between the particles can be created. At first, we will
give a hand-wavy physical argument to justify the creation of correlations in the sample. The
formalism of Quantum Non-Demolition measurement is then introduced before we describe the
specific case of a dispersive measurement of the population difference.

5.2.1 Global measurement
To simplify our point, we consider the specific case of the collective observable �Jz which mea-
sures the atom number difference. Because it is a collective observable, it gives information on
the ensemble but not on the state of a specific atom.

To illustrate the correlation, we consider for example an ideal projective measurement real-
ized on the coherent state. As previously mentioned, in this state the atoms are independent, i.e.
the state is separable. After the measurement, the atomic state is projected on an eigenstate |n�
of �Jz.

In this Dicke state, we have no information on individual atoms, but it is an entangled
state for the atoms. Indeed, if we were to measure one of the atoms of the ensemble, then the
wavefunction of the others would be projected in accordance with the measurement result.

The acquisition of a collective information has entangled the atoms.

5.2.2 Element of theory
Before we present the specific case of the off-resonance interaction between an optical probe
and a measured sample, we give the general formalism of QND measurement that is also sum-
marized in [Grangier 98]. A pedagogical review of the indirect QND measurement is presented
in [Heidmann 07].

5.2.2.1 Indirect measurement

In experimental situations, most of the apparatus that are encountered not only measure a sys-
tem, but usually also destroy it. This is clearly the case for example with photodetectors where
the photon is absorbed by the material or with micro-channel plates. To overcome this difficulty,
the signal that is the system under study is measured via the effect it generates on a probe called
meter.

In experimental situations, the signal can be either an atomic [Louchet-Chauvet 10] or a
photonic system [Roch 97], whereas the meter is usually optical. Actually, to my knowl-
edge, only one experiment uses an atomic meter to measure an optical signal [Guerlin 07,
Gleyzes 07].

We consider a signal operator �Q and its conjugate �P . And a meter operator �Y that has
conjugate �X . The commutation relations are:

[ �P , �Q] = i, [ �X, �Y ] = i. (5.35)

Because the measurement is quantum non-destructive, the signal operator �Q has to stay un-
changed during the interaction. It should then commute with the interaction Hamiltonian.
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Figure 5.6: Schematic of the interaction between the system and the measurement device.

This condition will be fulfilled for example for an Hamiltonian of the form:

HI = �g �Q�Y (5.36)

, and for all interaction time τ , we have:

�Y out(τ) = �Y in, (5.37)
�Qout(τ) = �Qin (5.38)

The operators �P and �X are modified during the interaction, and their evolution is given by
the Heisenberg equation of motion:

d �X
dt

=
−i

� [ �X,HI ] = g �Q d �P
dt

=
−i

� [ �P ,HI ] = g�Y (5.39)

Hence, after an interaction time τ that leaves the operator �Q and �Y unperturbed, we have
the in-out relations:

�Xout = �X in + gτ �Qin, �Y out = �Y in, (5.40)
�P out = �P in + gτ �Y in, �Qout = �Qin. (5.41)

The information contained in the signal �Q is transferred onto the operator �X . In this inter-
action, the signal operator �Q is not changed. This interaction transfer the noise of �Q (resp. �Y )
on �X (resp. �P ). This noise transfer is the backaction of the measurement (see figure 5.6).

∆ �Xout2 = ∆ �X in2
+ g2τ 2∆ �Qin2

, (5.42)

∆ �P out2 = ∆ �P in2
+ g2τ 2∆�Y in2

. (5.43)

The resulting output fluctuations of �X is the result of the convolution of the initial fluctua-
tions ∆ �X in with the fluctuations of the signal ∆ �Qin.

Projection postulate
In the process described above, the signal variable is unchanged. From this description, it is not
possible to show that the variance of the signal is actually lowered. The squeezing only happens
because the operator �X is measured, and thus projected.

After the interaction, the signal and the meter are entangled. The measurement of the meter
projects the state of the signal. This is the projection postulate that cannot be avoided to express
that further measurement of the system (signal) will exhibit lower fluctuations.
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The study presented in section 5.3 and followings, precisely addresses the problem of the
collapse of the measured state, and shows that the initial coherent state stays minimal with
respect to the Heisenberg inequality. If this conserved minimality is accepted, the variance of
the meter can be easily calculated by:

∆ �Qout2 =
1

∆ �P out
2 =

1

∆ �P in
2
+ g2τ 2∆�Y in

2 (5.44)

= ∆ �Qin2 1

1 + κ2
, (5.45)

where

κ2 = g2τ 2 ∆ �Qin2

∆ �X in
2 . (5.46)

The variance of the signal is then always reduced with respect to the parameter κ. This param-
eter is the signal-to-noise of the measurement defined as the signal width over the meter width.
The parameter g is the strength of the transfer of information: the higher is g, the lower the
variance. In addition, the prefactor gτ converts from one variable units to the other one. For
example, in the case of the dispersive measurement, this factor converts the atom number noise
in light phase noise.

Decoherence
In the description of the QND measurement that we gave above, we have considered a her-
mitian Hamiltonian that fulfill the Heisenberg equation of motion. This equation is actually
not complete and should be corrected by Lindblad operators Lν [Lindblad 76] that describe the
coupling to the environment via for example spontaneous emission processes.

ρ̇ = − i

� [H, ρ] +
�

ν

�
2LνρL†

ν − {L†
νLν , ρ}

�
, (5.47)

where {., .} is the anticommutator. In the case where the signal is an atomic variable, the
Lindblad operator is Lν =

√
γσ−, where σ− is the atomic lowering operator.

This coupling to the environment perturbs the free evolution described the hermitian Hamil-
tonian H and the non demolition character breaks down.

If we consider the case of a two level atomic system coupled to the environment, sponta-
neous emission processes will make all superposition states, and particularly all squeezed states
decohere towards mixed states. The problem of the effect of the decoherence is a complex
problem that is, yet, not completely solved. For the system previously mentioned, one of the
main difficulties is that for each spontaneous emission event, the basis of eigenstate has to be ex-
tended. In the case of spin-squeezing for example, spontaneous emission makes the system exits
the (|J = Nat/2, n�)n basis which should be decomposed in the complete (|J, n�)0�J�Nat/2

−J�n�J ba-
sis [Chase 08]. This simple description illustrates the complexity of the problem of spontaneous
emission that becomes even less intuitive when the number of atoms is not conserved or when
the state looses the symmetry by particles exchange.

A qualitative shape of the influence of spontaneous processes on the variance of the final
state is given in [Echaniz 05].
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Figure 5.7: Three level system considered for the QND Hamiltonian.

5.2.2.2 Dispersive effective Hamiltonian

We focus now on the collective observable �Jz measured in the context of a dispersive mea-
surement [Kuzmich 98]. In this section we will show that the dispersive interaction has an
Hamiltonian of the form (5.36).

The system studied is a three level atom with two hyperfine ground states (f and g, figure
5.7) which are initially equally populated and one excited state (e). The transition f → e is
noted 1 and g → e is noted 2. The Pauli matrices σ(i)

+ , σ(i)
− , σ(i)

z are used to describe the transi-
tion i.

The system of one optical field interacting with this three level system can be described by
a fully quantized Jaynes Cummings Hamiltonian of the form:

HJC = �δ1�σ(1)
z + �Ω1

�
�σ(1)

+ �a + �σ(1)
− �a†

�
+ �δ2�σ(2)

z + �Ω2

�
�σ(2)

+ �a + �σ(2)
− �a†

�
. (5.48)

To derive an effective hamiltonian, we consider the evolution of the operator �σ(i)
+ and �σ(i)

− that
are given by:

d

dt
�σ(i)
± =

−i

� [�σ(i)
± ,HJC]. (5.49)

From the commutation relations [�σ(i)
± , �σ(i)

z ] = ∓�σ(i)
± and [�σ(i)

− , �σ(i)
+ ] = −�σ(i)

z /2, we obtain:

d

dt
�σ(i)

+ = i

�
δi�σ(i)

+ − Ωi

2
�σ(i)

z �a†
�

,
d

dt
�σ(i)
− = −i

�
δ�σ(i)

− − Ω

2
�σ(i)

z �a
�

. (5.50)

Using the adiabatic elimination of the excited state and considering then the steady state of
the evolution, d

dt�σ
(i)
+ = d

dt�σ
(i)
− = 0, it follows:

HJC = �δ1�σ(1)
z + �δ2�σ(2)

z + �
�

Ω2
1

δ1
�σ(1)

z +
Ω2

2

δ2
�σ(2)

z

�
�a†�a +

1

2

�
Ω2

1

δ1
�σ(1)

z +
Ω2

2

δ2
�σ(2)

z

�
. (5.51)

Except for the off resonance two photons process that has been neglected, the hamiltonian 5.51
corresponds to the effective hamiltonian of the system [Cohen-Tannoudji 96].
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In the case of a far-off resonant light, the atoms stay in the two ground states and we have
σ(1)

z = σf = �N/2 + �Jz and σ(2)
z = σg = �N/2− �Jz. It comes:

HJC = K1�σ(1)
z + K2�σ(2)

z + �
�

Ω2
1

δ1
+

Ω2
1

δ1

�
�N + 2�

�
Ω2

1

δ1
− Ω2

1

δ1

�
�Jz�a†�a, (5.52)

where
Ki = �δi +

Ω2
i

2δi
. (5.53)

If, in addition, we consider detunings such that :

Ω2
1

δ1
= −Ω2

2

δ2
=

Ω2

δ
, (5.54)

the Hamiltonian of the system becomes:

HJC = K1�σ(1)
z + K2�σ(2)

z + 2�
�

Ω2

δ
�Jz�a†�a

�
. (5.55)

The last term in equation 5.55 can either be seen as the atomic state that is energy shifted by the
optical field (light-shift) or the field that is frequency shifted by the atoms (refractive index).

To measure an optical phase shift it is necessary to hold the initial phase information, i.e. to
be able to compare the mode to a reference. This idea, which consists to compare two modes, is
very general, and can be applied to any two level system such as two orthogonal polarizations,
two modes of a Mach-Zehnder or two frequency components of the optical field.

We consider a reference mode a0 of the optical field, and we assume that it does not interact
with the atomic state. Using these two modes a and a0, we construct the Stokes operators for
the light:

�S0 =
1

2
(a†a + a†0a0), (5.56)

�Sx =
i

2
(a†a0 + a†0a), (5.57)

�Sy =
i

2
(a†a0 + a†0a0), (5.58)

�Sz =
1

2
(a†a− a†0a0). (5.59)

These operators are very common in optics where they are used, for example, to describe
the polarization of the light on the Poincaré sphere.

The Stokes operators are very similar to the collective-spin �J operators, and follow the same
commutation relations:

�
�Sx, �Sy

�
= i�Sz,

�
�Sy, �Sz

�
= i�Sx,

�
�Sz, �Sx

�
= i�Sy,

�
�Si, �S0

�
= 0. (5.60)

Clearly we have a†a = �S0 + �Sz, and the Hamiltonian of the system can be described as the
interaction between two fictitious spins:

HJC = K1�σ(1)
z + K2�σ(2)

z + 2�
�

Ω2

δ
�Jz

�S0

�
+ 2�

�
Ω2

δ
�Jz

�Sz

�
. (5.61)
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As an interferometer (Mach-Zehnder, polarimetry...) measures the �Sz component of the pseudo-
spin, only this part needs to be conserved. Nevertheless, in principle, a measurement of �Jz

through its interaction with �S0 could be also implemented.
Equation 5.61 demonstrates the QND (equation 5.36) character of the off-resonance disper-

sive detection, where the interaction Hamiltonian is:

HJC,int = 2�
�

Ω2

δ
�Jz

�Sz

�
. (5.62)

Specific In - Out relations
Actually, the Hamiltonian in equation (5.62), is not exactly an Hamiltonian of the form 5.36.
The difference comes from the operators �Jz and �Sz which do not have exact conjugate variables:

�
�Sy, �Sz

�
= i�Sx,

�
�Jy, �Jz

�
= i �Jx. (5.63)

Nevertheless for states polarized along x, the commutation relations are almost the one of con-
jugate variables, and the in-out relation of the interaction are:

�Sout
y = �Sin

y +
Ω2τ

δ
��Sx� �J in

z , �Sout
z = �Sin

z , (5.64)

�Jout
y = �J in

y +
Ω2τ

δ
� �Jx��Sin

y , �Jout
z = �J in

z . (5.65)

From here we see a limitation for the measurement, since during the collapse of the atomic
state, the strength of the backaction decreases as � �Jx� decreases.

5.2.3 Optical phase detection
5.2.3.1 A classical point of view

As it was first shown in [Kuzmich 98] and reviewed in section 5.2.2, the atom light interaction
can be described by the effective Hamiltonian:

H = �Ω�Sz
�Jz. (5.66)

Similarly as in [Brune 92], but reversing the roles played by photons and atoms, the effect
of this Hamiltonian can be seen as a change of the light rotating frequency for the interaction
time ti. This results in an accumulated optical phase shift, described by an operator �Φ = Ωti �Jz

that applies on the optical field.

The fully quantized description presented in section. 5.2.2 is actually not necessary to un-
derstand the squeezing dynamics. The atomic sample can be treated as a dispersive sample,
with a refractive index that depends on the atomic state population difference.

Considering the three level atom as described in figure 5.7, the probing light will acquire a
phase shift when it passes through the sample. This phase is the sum of two opposite contri-
butions which are weighted by the number of atoms in each state. It results in an optical phase
that depends on the atomic population difference between the hyperfine states.
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In practice, the optical shift is obtained by evaluating the refractive index n and its depen-
dance with the frequency detuning δ of the electric field frequency with respect to the atomic
transition. The refractive index describes the sum of the non perturbed and scattered fields:

D = �0n
2E = �0 (E + χE) . (5.67)

The perturbation is described by the susceptibility χ that is linked to the atomic polarizability
α.

The refractive index is given by:

n = 1 + χ = 1 +
Nfαf

2�0
+

Ngαg

2�0
. (5.68)

where Nf and Ng are the linear density of atoms in state f and g, and αf and αg are the
corresponding atomic polarizabilities.

The precise calculation of the polarizability has been introduced in section D.2 of the ap-
pendix and relies on the calculation of all the dipole elements �F �, m�| �D |F, m� which are also
given in the appendix D.1.

The expression that is relevant for our experimental situation is given in section 6.20. We
choose the detuning such that αf = −αg = α0. Hence, the refractive index seen by the light is:

n− 1 = α0(Nf −Ng). (5.69)

The refractive index is thus proportional to the atom number difference between the two states.
The optical phase shift relation with the refractive is given through:

Φ = Re ((n− 1)kLat) =
2π

λ
∆N

Re(α0)

2�0
(5.70)

= φ∆N, (5.71)

where k = 2π/λ is the light wavevector, Lat is the atomic sample length, ∆N is the atom
number difference in the probed volume, and φ is the phase shift for an atom number difference
of one.

As a consequence, the measurement of the optical phase shift is a measurement of the pop-
ulation difference observable �Jz.

Another approach to study the evolution of the atomic state consists to analyze the Hamil-
tonian via the tensor polarizability. In that case it can be shown, that the Hamiltonian does
not only lead to squeezed state [Geremia 06], but can also be engineered for quantum cloning
[de Echaniz 08].

5.2.3.2 Phase shift measurement

In order to measure the optical phase shift induced by the atoms, the probe phase has to be
referenced to a local oscillator. The local oscillator can be either a copy of the optical field,
in which case an homodyne detection is realized (Mach-Zehnder interferometer), or an optical
mode with a different frequency, namely an heterodyne detection.

In section 5.3, we will consider by turn these two techniques and study the evolution of the
atomic wave function during the measurement.
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Figure 5.8: Sequencial description of the non demolition measurement
The measurement of Np independent photons modifies the atomic state that is partially

projected from |ψat(Np)� to |ψat(Np + 1)�.

5.3 Quantum trajectories in a wavefunction analysis of the
squeezing process

To understand the physics that leads a sample from Nat independent atoms to a correlated sam-
ple, we developed a wavefunction description of the measurement process. This method is in-
spired from [Dalibard 92] where the authors reinterpret spontaneous emission effect in a wave-
function formalism. Different approaches such as stochastic master equation [Stockton 04] give
similar results than the one that will be presented in the following, but these approaches are usu-
ally heavy to handle and does not intuitively present the physical arguments. In the following,
we consider the wavefunction collapse of an atomic coherent state |Ψ� by a partial projection
process that is described photon after photon. This method allows to follow the time evolution
of the atomic state and to understand the effect of a single photon. In section 5.3.1, we present
the general idea of the method which is then applied to the specific case of a Mach-Zehnder
interferometer and to the heterodyne measurement.

For details on the partial measurement projection, one can refer to the lectures at College
de France of Serge Haroche, and particularly the courses 3 and 6 of 2007-2008. In addition,
our analysis follows the work [Brune 90, Brune 92, Bouchoule 02] where a description of the
measurement process and the partial projection is led.

5.3.1 Background formalism
5.3.1.1 The measurement process

The method which was first introduced in [Bouchoule 02] , considers the sequencial process:

1. An initial atomic state |ψat(Np)� =
�

cn(Np)|n� is given, where Np is the number of
photon detected in this sequential approach.

2. A photon arrives, and interacts with the sample. An entangled state is created between
the atoms and the photon.

3. The photon is measured and the atomic wavefunction gets partially projected. This new
wavefunction |ψat(Np + 1)� is the one that interacts with the next photon and so on.

This scheme is synthesized in figure 5.8 where the notations are introduced. A comment is
given in section 5.3.7 to justify the sequential approach for pulses of photon that may all interact
with the atoms before any has been measured.
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5.3.1.2 The atom-photon interaction

As described in section 5.2.3, the atom number difference �Jz is measured by the phase shift
it induces on a probe. A simple description of the phenomena consists to consider the single
atom phase shift φ introduced in section 5.2.3. The electric field that probes the sample will
accumulate a phase that depends on the population difference in the form:

�Φ = φ �Jz. (5.72)

A unique photon in the mode a arrives on a beam splitter B and ends up in a superposition
of the two modes α and β: �

α
β

�
= B

�
a
b

�
. (5.73)

These modes can be spatially separated as in a Mach-Zehnder, or frequency separated as for
the heterodyne detection. Only one of these modes a�0 is interacting with the atoms. The other
one a�1 serves as a phase reference. The QND interaction matrix UQND( �Jz) depends on �Jz and
can then be written as :

UQND( �Jz) =

�
eiφ bJz 0

0 1

�
. (5.74)

Formally, the operator obtained after the non demolition interaction can be calculated by:
�

α�

β�

�
= UQND( �Jz)B

�
a
b

�
. (5.75)

This description corresponds to the Heisenberg representation that will be conserved in the
following of this chapter.

5.3.1.3 The photon measurement and the partial projection

Before the measurement of the photon, the total system {Atoms + photon} is in an entangled
state. The measurement of the photon partially project the atomic wavefunction. Hence the
annihilation operator u( �Jz) projects the state |10, 01�⊗ |ψat(Np)� onto |00, 01�⊗ |ψat(Np + 1)�.

The partial projection operation satisfies:

|ψat(Np + 1)� ∝
�
00, 01|u( �Jz)

�
|10, 01

�
⊗ |ψat(Np)�

�
(5.76)

The proper annihilation operator u to apply depends on the exact measurement procedure
and will be explicitly given in the following for each measurement device considered.

5.3.2 The Mach-Zehnder interferometer
We apply now the method previously described to study the dynamics of the squeezing process
using a Mach-Zehnder interferometer as described in figure 5.9. The atoms are inserted in one
arm of a Mach-Zehnder interferometer. A π/2 phase is applied in the other arm so that the
interferometer operates in a balanced configuration of the two outputs.
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5.3.2.1 The projection of the atomic state

At the end of the Mach-Zehnder interferometer, a photon can be detected either in u or in v, but
not on both detectors. Decomposing the initial state on the basis that represent the two possible
outcome, we have:

|1a, 0b� ⊗ |ψat(Np)� ∝ |1u, 0v� ⊗ |ψu
at(Np)�+ |0u, 1v� ⊗ |ψv

at(Np)� , (5.77)

where |1u, 0v� is obtained by applying the creation operator u†( �Jz) onto the vacuum state
|0a, 0b�. The previous decomposition of the input state shows the entanglement between the
photonic and the atomic state. Detecting a photon on u consists in projecting the entangled
wavefunction on |1u, 0v� = u†( �Jz) |0a, 0b� which can be written as:

|ψat(Np + 1)� =
�
1u, 0v|

�
|1a, 0b

�
⊗ |ψat(Np)

��
(5.78)

=
�
0a, 0b|u( �Jz)

�
|1a, 0b

�
⊗ |ψat(Np)

��
= |ψu

at(Np)� . (5.79)

In conclusion, two possibilities can happen when a photon arrives in a Mach Zehnder:

• A click on u has been detected and the atomic state becomes:

|ψat(Np + 1)� =
�
0a, 0b|u( �Jz)

�
|1a, 0b

�
⊗ |ψat(Np)�

�
. (5.80)

• A click on v has been detected and the atomic state becomes:

|ψat(Np + 1)� =
�
0a, 0b|v( �Jz)

�
|1a, 0b

�
⊗ |ψat(Np)�

�
. (5.81)

.

5.3.2.2 The Mach-Zehnder scattering matrix: Expression of u( �Jz) and v( �Jz)

The two beam splitters are identical and have reflexion r, and transmission t such that r2 + t2 =
1. The beam splitter matrix B and the interaction matrix as described in figure 5.9 can be
expressed as:

B =

�
t r
−r t

�
, UQND( �Jz) =

�
eiφ bJz 0

0 eiπ/2

�
. (5.82)

The overall transfer matrix T = BUQND( �Jz)B gives:

�
u
v

�
= T

�
a
b

�
=

�
t2eiφ bJz − ir2 rt(i + eiφ bJz)

−rt(i + eiφ bJz) −r2eiφ bJz + it2

��
a
b

�
. (5.83)

From the transfer matrix, follows the expression for u applied on |1a, 0b�:

u |1a, 0b� = ei(φ bJz
2 +π

4 )

�
�
t2 − r2

�
cos (

φ �Jz

2
− π

4
)) + i sin(

φ �Jz

2
− π

4
)

�
|0a, 0b� , (5.84)

(5.85)
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Figure 5.9: Scheme of the Mach-Zehnder interferometer considered.
The two paths are separated by a beam splitter B and latter recombined on another beam

splitter. A phase of π/2 in one arm ensure that the output of Mach-Zehnder interferometer are
balanced, but the beam splitter themselves can be unbalanced (r �= t).

Similarly, for v applied on |1a, 0b�, we have:

v |1a, 0b� = 2rtei(φ bJz/2+π/4) cos

�
φ �Jz

2
− π

4

�
|0a, 0b� (5.86)

In the specific case of balanced beam splitter r2 = t2 = 1/2, the expression 5.84 and 5.86
simplify to:

u |1a, 0b� = iei(φ bJz
2 +π

4 ) sin

�
φ �Jz

2
− π

4

�
|0a, 0b� , (5.87)

v |1a, 0b� = ei(φ bJz/2+π/4) cos

�
φ �Jz

2
− π

4

�
|0a, 0b� . (5.88)

5.3.2.3 The atomic state collapse

After a click on u, the atomic state is modified and becomes:

|ψat(Np + 1)� ∝ ei(φ bJz
2 +π

4 )

�
�
t2 − r2

�
cos (

φ �Jz

2
− π

4
)) + i sin(

φ �Jz

2
− π

4
)

�
|ψat(Np)� ,

(5.89)
while a click on v gives:

|ψat(Np + 1)� ∝ −2rtei(φ bJz
2 +π

4 ) cos (
φ �Jz

2
− π

4
)) |ψat(Np)� . (5.90)

For the sake of clarity, in the following, the normalization factor of |ψat(Np)� will be intention-
ally removed.
After Np = Nu + Nv measurements with Nu clicks on u and Nv clicks on v, the atomic state
distribution is obtained from the initial distribution through:

|ψat(Np + 1)� = �FNu,Nv |ψat(0)� , (5.91)
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where the distribution �FNu,Nv is called the squeezing function and is given by:

�FNu,Nv = eiNp(φ bJz
2 +π

4 )

�
�
t2 − r2

�
cos (

φ �Jz

2
− π

4
) + i sin(

φ �Jz

2
− π

4
)

�Nu

×
�
−2rt cos (

φ �Jz

2
− π

4
)

�Nv

. (5.92)

The shape of the squeezing function describes how the initial atomic distribution is affected by
the measurement.

We notice that the coefficient cn(Np) of the decomposition of the state |ψat(Np)� are ampli-
tude of probabilities and can be complex. But the measurable quantities are real:

�
�Jz

�
=

�
ψat(Np + 1)| �Jz|ψat(Np + 1)

�
(5.93)

∝
Nat/2�

n=−Nat/2

n|FNu,Nv(n)|2|cn(0)|2, (5.94)

∆ �J2
z =

�
�J2
z

�
−

�
�Jz

�2
, (5.95)

where FNu,Nv(n) is such that:

�FNu,Nv |n� = FNu,Nv(n) |n� . (5.96)

Practically, the expression of FNu,Nv(n) is obtained by replacing �Jz by n in the equation 5.92.

Gaussian approximation
In figure 5.10, is presented the squeezing function |FNu,Nv(n)|2 with its Gaussian approxima-
tion. The analytical expression of the Gaussian approximation is derived in appendix E.1. From
figure 5.10, it appears that the gaussian approximation matches well with the exact squeezing
function. We have already seen in section 5.1.3 that the initial distribution cn(0) was approxi-
mated by a Gaussian. By Deriving the analytical expression of the gaussian approximation of
|FNu,Nv(n)|2, we will obtain analytical expression for

�
�Jz

�
and ∆ �Jz that will naturally arise as

the first and second momenta of the distribution.

The Gaussian approximation of |FNu,Nv(n)|2 is:

|FNu,Nv(n)|2 = |FNu,Nv(n0)|2 e
−(n−n0)2

2σ2 (5.97)
To derive the expression of n0 and σ, we proceed to the Taylor expansion of the Gaussian
distribution that is given in appendix E.1:

|FNu,Nv(n)|2 ≈ |FNu,Nv(n0)|2
�

1− (n− n0)2

2σ2

�
(5.98)

≈ |FNu,Nv(n0)|2 +
d

dn
|FNu,Nv(n)|2

��
n0

(n− n0)

+
1

2

d2

dn2
|FNu,Nv(n)|2

��
n0

(n− n0)
2 (5.99)
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Figure 5.10: Squeezing function

The squeezing function
��FNp/2,Np/2(n)

��2 is plotted in black for Nat = 100, φ = 10−2 and
Np = 1, 10, 100, 1000, 10000. In red dashed dotted line is given the gaussian approximation of

equation 5.102. In blue dashed line is given, for reference, the initial atomic distribution
|cn(0)|2.

After the stochastic measurement of Nu photons on u and Nv photons on v, the squeezing
function is centered on:

n0 =
2

φ

�
arctan

�
−

�
(Nv + 2Nu)C −Nv

Nv(1 + C)

�
+

π

4

�
, (5.100)

where C is the contrast of the unbalanced (r �= t) interferometer:

C =
2t2r2

r4 + t4
. (5.101)

The variance of |FNu,Nv(n)|2 is given by:

σ2 =
1

φ2NpC
. (5.102)

In equation 5.100, the negative root has been chosen so that n0 is centered around 0 for a con-
trast C ∼ 1. An identical choice could have been done by taking a phase of −π/2, instead of
π/2, in the second arm of the interferometer in figure 5.9. The result obtained in equation 5.102,
is only valid for a contrast C ∼ 1, for which the squeezing function is centered around 0.

In equation 5.32 we have seen that the initial atomic distribution cn(0) of the coherent su-
perposition was well approximated by a Gaussian distribution:

cn(0) ≈
�

2

πNat

�1/4

e−
n2

Nat . (5.103)
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The distribution of the Dicke state probability after Np detection is obtained by applying the
squeezing function induced by the measurement onto the initial atomic state:

|cn(Np)|2 = |FNu,Nv(n)cn(0)|2 ∝
�

2

πNat
|FNu,Nv(n0)|2 e−

(n−n1)2

2σ�2 , (5.104)

with

σ�2 =
N/4

1 + φ2NatNpC
4

, (5.105)

n1 = n0σ
�2φ2NpC. (5.106)

In conclusion, the measurement of Nu photons on u and Nv photons on v has modified the
atomic state wavefunction such that:

�
�Jz

�
= n1 = n0σ

�2φ2NpC (5.107)

∆ �J2
z = ξ2

z∆ �J2
z (0) =

∆ �J2
z (0)

1 + κ2
=

∆ �J2
z (0)

1 + φ2NatNpC
4

(5.108)

In consequence, while the process is purely stochastic as indicated by the random mean value
� �Jz�, the variance of the atomic distribution follows a deterministic compression. In addition,
the stronger is the interaction φ, the more information is collected by each photon, and the more
the variance will be lowered for a given number of photons. In the following, we parametrize
the strength of the measurement by the parameter M2 = Cφ2/4 such that κ2 = M2NatNp. In
equation 5.108, we defined the squeezing parameter ξ2

z , which describes the reduction of the
variance. As the mean length of the Bloch representation has been reduced, the real gain for an
interferometric sequence is ξ2

W = ξ2
zJ/� �Jx� [Wineland 92].

.

5.3.2.4 Simulation of the collapse in a Mach-Zehnder

The formalism previously described is very well adapted to simulate the collapse of the
atomic state, via a Monte Carlo simulation:

1. An initial atomic state with a Gaussian distribution is given: |ψat(0)�.

2. A photon arrives at the input of the interferometer and is randomly detected on u or v
with probability:

Pv =
����0u, 1v|

�
|1a, 0b� ⊗ |ψat(Np)�

����
2

= 4r2t2
Nat/2�

n=−Nat/2

cos2 Φ(n)c2
n(Np) (5.109)
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3. After it has been determined wether the photon arrived on u or v, the new atomic wave-
function |ψat(1)� is computed using equation 5.89 and 5.90.

4. A new photon arrives and the process restarts at step 2.

The mean value and the variance of �Jz are evaluated using:

�
�Jz

�
=

Nat/2�

n=−Nat/2

n|cn(Np)|2 (5.110)

∆ �J2
z =

Nat/2�

n=−Nat/2

n2|cn(Np)|2 −
�

�Jz

�2
(5.111)

The stochastic behavior of the mean value of �Jz can be seen in figure 5.11a where each trajec-
tory leads to the collapse of the state on a different Dicke state. In figure 5.11b, the shape of
the deterministic behavior of the reduction of the variance shows that the analytical expression
found by the Gaussian approximation is in very good agreement with the simulation. The long
time behavior which becomes stochastic is discussed in section 5.3.3. The density of probability
of this partial projection process is presented in figure 5.11c.

In figure 5.11c the Gaussian envelope describes the initial state distribution c2
n and shows

that this photon by photon description reproduces the Born probability rule: Pn = |�n|ψat(0)|n�|2.
This was a priori non trivial even if highly expected since the Born rule was assumed for the
photonic projection.

5.3.3 Long term behavior
We analyze now the long term behavior of the variance that starts deterministic and ends
stochastic in figures 5.11b and 5.19c. The determinist behavior that was shown for example
with the Gaussian approximation method relies on the fact that the atomic distribution can be
well approximated by a continuous Gaussian distribution, i.e. that many Dicke State contribute
to form the Gaussian. This approximation is no more verified for highly squeezed states where
the weights of the atomic distribution are essentially spread over only one or two Dicke states.
In that case the variance strongly depends on the position of the distribution compared to the
closest eigenvalue of �Jz and two extreme cases arise:

• The squeezing function is centered exactly in between two Dicke states. In that case, the
variance is the one of 2 equally weighted points and separated by 1 (figure 5.12 (a)):

∆ �J2
z = 1/4. (5.112)

• The squeezing function is centered on a given Dicke state |n0�. In that case, three states
contribute to the variance: |n0�with weight∼ 1 and |n0 ± 1�with weight exp(−2M2Np)
(figure 5.12 (b)). In that case we have:

∆ �J2
z = 2 exp(−2M2Np) (5.113)
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Figure 5.11: Simulation of the atomic wavefunction collapse in a Mach-Zehnder measurement for
Nat = 100 and φ = 10−2.
While the mean value has a stochastic behavior, the variance of the atomic state gets squeezed

by a deterministic amount. A stochastic behavior reappear for ∆ �J2
z = 1/4 (discussed in

section 5.3.3). In the long time behavior (b), it clearly appears that the steady state that
corresponds to ∆ �J2

z = 1/4 is unstable and that all the trajectories converge towards a Dicke
state. The partial measurement projection finally finishes with mean values that satisfies the

Born probability rule Pn = |�n|ψat(0)�|2.
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Figure 5.12: Long time behavior, the continuity breaks down
For long interrogation time, when the squeezing function approaches the single Dicke state,

the precise position of the squeezing function FNp(n) plays a role in the determination of the
variance since it matters then if the sueezing function is centered on an eigen value or in

between two eigen values (see text, section 5.3.3). Thus the stochastic behavior of the mean
value is transferred on the value of the variance.

These two limits are very clear on the simulations of figure 5.11b and 5.19c. These limits
are reached when the atom number is known to within one atom. If the initial sample contains
a tenth of atoms, a small amount of squeezing would be sufficient to enter these regime. Some
experiments [Guerlin 07] should actually already see these non-determinist behaviors if they
exist. Nevertheless, they are transient behavior since only the case of figure 5.12 (b) is stable
since in the case 5.12 (a) any new measured photon will unbalance the equilibrium and make
it converge towards a Dicke Stata. Every state should collapse on a Dicke state, but it can take
more or less time. This is coherent with the fact that the Dicke state are the eigen vector of
themeasured observable.

We emphasize that in the previous wavefunction description, the spontaneous emission pro-
cesses and the decoherence they induces were not taken into account [Chase 08]. These effects
are among the main limiting factors to reach these highly squeezed states.

5.3.4 The Mach-Zehnder including losses and in an optical cavity
Now that we have described the collapse of the atomic wave function with the measurement,
we include two more phenomena in the analysis:

• the losses of photons and thus of information.

• the coupling enhancement of a cavity.

5.3.4.1 Losses in the Mach-Zehnder interferometer

To model the losses, we consider the extra coupling of one mode to the vacuum mode through
an additional beam splitter in the Mach Zehnder interferometer. It is formally presented in
figure 5.13. Three modes are now entering the set-up (a, b, p) and three exiting (u, v, p�). They
are linked by: 


u
v
p�



 = BUlossUQND( �Jz)B




a
b
p



 , (5.114)
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Figure 5.13: Scheme of the lossy Mach-Zehnder
The losses are modeled by the coupling of one arm to the vacuum through an additional beam

splitter which reflects η in intensity (losses).

with

B =




t r 0
−r t 0
0 0 1



 , UQND( �Jz) =




eiφ bJz 0 0

0 eiπ/2 0
0 0 1



 , Uloss =




1 0 0
0
√

1− η
√

η
0 −√η

√
1− η



 .

(5.115)
In the case of a balanced Mach-Zehnder interferometer (t2 = r2 = 1/2), the resulting

transfer matrix is:

T = BUlossUQND( �Jz)B =




sinh(iΦ� − 1

4 ln(1− η)) cosh(iΦ� − 1
4 ln(1− η)) 1√

2

√
η

− cosh(iΦ� − 1
4 ln(1− η)) − sinh(iΦ� − 1

4 ln(1− η)) 1√
2

√
η

1√
2

√
ηi − 1√

2

√
ηi

√
1− η





(5.116)
where Φ� = φ �Jz/2− π/4.

Similarly to the method presented previously, detecting a photon on u consists to project
|1a, 0b, 0p� ⊗ |ψat(Np)� on |1u, 0v, 0p�� = u†( �Jz) |0a, 0b, 0p� and it results:

|ψat(Np + 1)� =
�
0a, 0b, 0p|u( �Jz)

�
|1a, 0b, 0p

�
⊗

��ψat(Np)
��

(5.117)

= e
i
“

φ bJz
2 +π

4

”

sinh(iΦ� − 1

4
ln(1− η)) |ψat(Np)� . (5.118)

For a click on v, we have:

|ψat(Np + 1)� = −e
i
“

φ bJz
2 +π

4

”

cosh(iΦ� − 1

4
ln(1− η)) |ψat(Np)� . (5.119)

The mean value and variance of �Jz are still described by the square modulus of the squeezing
function FNu,Nv(n) which is now:

|FNu,Nv(n)|2 =

����sinh(iΦ� − 1

4
ln(1− η))

����
2Nu

����cosh(iΦ� − 1

4
ln(1− η))

����
2Nv

(5.120)

∝ (1 + C sin(φn))Nu (1− C sin(φn))Nv , (5.121)
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where C is the contrast of the interferometer:

C =
2t2r2

√
1− η

(1− η)r4 + t4
r2=t2=1/2

=
2
√

1− η

2− η
. (5.122)

The Gaussian approximation of |FNu,Nv(n)|2 leads to:

|FNu,Nv(n)|2 ∝ e−
(n−n0)2

2σ , (5.123)

with

n0 =
1

φ
arcsin

�
∆N

C(Nu + Nv)

�
, (5.124)

1

σ2
= C2φ2Np

�
1 +

�
∆N

NpC

�2
�

. (5.125)

The variance reduction of |FNu,Nv(n)|2 is then again determinist up to the second order in the
output probability.

In conclusion, photon losses in the Mach-Zehnder reduces the squeezing effect by an amount
proportional to the square of the contrast reduction C , i.e.

∆ �J2
z =

∆ �J2
z (0)

1 + κ2
=

∆ �J2
z (0)

1 + φ2NatNpC2

4

. (5.126)

As in equation 5.108, we can define the strength of the measurement that is now M2 = φ2C2/4
which scales quadratically with the contrast. The loss of information due to photon losses is
identical to the one due to beamsplitters imbalance, and the relevant parameter to describe the
loss of information is the contrast of the interferometer.

.

5.3.4.2 The cavity

We concentrate now on the case of a Mach-Zender in which the atoms are placed at the center
of a Fabry-Perot cavity as presented in figure 5.14. We assume that the cavity is on resonance
with the light if the atoms cause no phase shift (nφ = 0), and we consider small atomic phase
shifts such that the transmission of the cavity can be considered as constant.

A priori argumentation Classically, if the atoms induces in single pass a phase φat, a photon
that makes Nc turns in the cavity accumulates a phase 2Ncφat. The finesse F being the average
number of turns of a photon, the previous argument suggests that the cavity enhancement in the
reduction of ∆ �J2

z will scale as φ2F2. Nevertheless, this scaling law can be doubted since the
photons make a stochastic number of turns which may blur the accumulated information. The
following demonstration intends to show that this scaling law actually applies.
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Figure 5.14: Scheme of the Mach-Zehnder with a sensitivity increased by the cavity.
The atoms are inserted in a Fabry-Perot cavity that modify the atom-light scattering matrix

Scav

Demonstration We consider the simplified case of a balanced Mach-Zender interferometer:
r2 = t2 = 1/2. The cavity has mirror reflectivity R in intensity. If the kth photon has made Ñ (k)

c

turn in the cavity, it has accumulated a phase shift per atom number difference that is: 2Ñ (k)
c φ.

The squeezing function as introduced previously is given by:

F (C)
Nu,Nv

(n) =
Nu�

k=1

cos(
φn

2
2Ñ (k)

c − π

4
)

Np�

k=Nu+1

sin(
φn

2
2Ñ (k)

c − π

4
) (5.127)

where Ñ (k)
c is the stochastic number of turn of the kth photon. In the following we neglect

the atomic absorption as well as the variation of transmission of the cavity due to the atomic
phase shift. Under these conditions, the number of turns follows a stationary process, and the
probability for a photon to make m turns is given by P (m) = TRm.

The product of equation 5.127 can be rearranged to regroup the photons that made the same
number of turns.

F (C)
Nu,Nv

(n) =
∞�

m=0

cosP (m)Nu(φnm− π

4
) sinP (m)Nv(φnm− π

4
) (5.128)

=
∞�

m=0

F (SP )
Nu,Nv

(nn)P (m) (5.129)

where F (SP )
Nu,Nv

(nm) is the single pass squeezing function defined in 5.92.

Using the Gaussian approximation for
���F (SP )

Nu,Nv
(nm)

���
2
, it follows immediately:

���F (C)
Nu,Nv

(n)
���
2
∝ e−T

P∞
m=0 Rm(φ2Np(nm−ñ0)2) (5.130)

∝ e−T
P∞

m=0 Rmφ2Npn2m2
eT

P∞
m=0 Rm2nmñ0 (5.131)

The variance σ2 of
���F (C)

Nu,Nv
(n)

���
2

is given by:

1

σ2
= 2T

∞�

m=0

Rmφ2Npm
2 ≈ 4

φ2

(1−R)2
Np (5.132)
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This leads to the desired result:

σ2 ≈ π2

4(Fφ)2Np
(5.133)

and proves that the variance of the states decreases deterministically even if the number of turns
is a stochastic parameter. In addition, it shows that the proper quantity to take into account for
the enhancement of the squeezing is the finesse of the cavity F .

Similarly to equation 5.108, in this enhanced measurement, the variance of �Jz evolves as:

∆ �J2
z =

∆ �J2
z (0)

1 + κ2
c

=
∆ �J2

z (0)

1 + φ2F2

π2 NatNp

(5.134)

For a cavity enhanced measurement, the measurement strength is M2 = φ2F2

π2

.

This results suggests that the signal-to-noise κ of the measurement increases as F/π. This
statement can be confusing regarding [Lye 03] where the signal-to-noise is shown to scale as�
F/π. In fact, in our description, we have ignored the spontaneous emission destructivity that

increases with the finesse. To understand the enhancement that brings the cavity, it is important
to compare situations which are inducing the same number of spontaneous emission events.
As a photon interacts F/π times with the atoms, the destructivity in a cavity scales as FNp/π
whereas it scales as Np in single pass. Hence for Np photons used in single pass, πNp/F should
be used in the cavity, and the signal-to-noise κc is then truly enhanced by

�
F/π (see equation

5.134).

5.3.5 The heterodyne measurement
This section aims at the description of the partial collapse in an heterodyne measurement. The
heterodyne scheme has been chosen in the experiment because of the technical advantages
it exhibits in terms of common noise suppression as well as in the benefit it takes from the
strong local oscillator. These technical properties will be further discussed in section 6.1.3.
We concentrate here on the description of the quantum partial projection and on the squeezing
dynamics of the heterodyne detection. We first describe the concept of a phase modulator for
a single photon. The partial projection that each photon realizes is then discussed, and the
collapse of the wavefunction is evaluated.

5.3.5.1 A frequency splitter for single photons

In appendix E.3, we derived the matrix expression of a single sideband frequency modulator.
The result shows that such a frequency modulator is the frequency analog of a beam splitter,
and that the splitting matrix takes the form:

�
a�0

a�1e
iΩt

�
=

� √
T

√
Re−iΩt

−
√

ReiΩt
√

T

� �
a0

a1eiΩt

�
, (5.135)
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





Figure 5.15: Schematic of the detection of a photon in a superposition of two modes.
Here is represented the amplitude of probability A of arrival of 1 photon. The envelope

describes the coherence length of the photon. The amplitude A is defined such that
P (t) = |A(t)|2.









 




Figure 5.16: Schematic of the detection of a photon in a superposition of two modes.
Single-photons are sent through a spectral beamsplitter B and interact non-destructively with

the atomic ensemble (UQND). When a photon in the superposition of the mode u0 and u1

arrive on the detector, a click is measured. The detection time of each photon is measured by
comparison with a time reference signal.

where a0 and a1 are two input modes of the field and Ω is the modulation frequency that corre-
sponds to the frequency splitting between the two modes.

The effect of such a modulator on the photonic wavefunction of a single photon is illustrated
in figure 5.15 where we see the modulation of the wavefunction, that is latter detected on the
photodiode.

5.3.5.2 The interaction, the detection and the collapse of the atomic state

To use one of the two modes as a phase reference, one of the two modes has to be non-interacting
with the atoms. Experimentally, one mode is adjusted close to the atomic resonance while
the other one is far detuned. The scattering matrix UQND( �Jz) and the transfer matrix S =

UQND( �Jz)B are then :

UQND( �Jz) =

�
1 0

0 eiφ bJz

�
, (5.136)

and,
�

u0

u1eiΩt

�
= S( �Jz)

�
a0

a1eiΩt

�
=

� √
T

√
Re−iΩt

−
√

Rei(Ωt+φ bJz)
√

Teiφ bJz

��
a0

a1eiΩt

�
(5.137)
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In the Mach-Zehnder interferometer, we were projecting the atomic wavefunction differ-
ently if the photon was arriving on u or on v. Here we have only one photodetector and cannot
distinguish photons that arrive from one or the other mode. In an heterodyne detection, the
information is encoded in the time arrival of photons with respects to the clicks of the local
oscillator. Indeed, an atomic phase shift delays or accelerates the photon, and the detected
beatnote is phase shifted with respect to the local oscillator. As a consequence, there are not
only two states where the photonic wavefunction can be projected but a continuum, that can be
formally written as: ��1t=t̃, 0t�=t̃

�
= |1t=t̃� (5.138)

This basis describes a photon that arrives at a time t = t̃ and not at any other time.
Because the local oscillator is periodic, we can reference the time of detection t̃ to the closest

click of the oscillator tn, and parametrize the detection by the time delay δ̃t = t̃− tn which is a
stochastic variable that is different for each photon. With such a definition, we have:

|1t=t̃� = |1t=δ̃t� (5.139)

The state �1t=δ̃t| is obtained by applying the time dependent annihilation operator of the pho-
todetection (u0( �Jz) + u1( �Jz)eiΩδ̃t) on the vacuum state (�0|). Hence, we have :

�1t=δ̃t| = �0|
�
u0( �Jz) + u1( �Jz)e

iΩδ̃t
�

(5.140)

Thus, when the Np + 1 photon is detected with a time delay δ̃t, the atomic wave function is
projected as:

|ψat(Np + 1)� ∝ �0|u0( �Jz) + u1( �Jz)e
iΩδ̃t

�
|10, 01� ⊗ |ψat(Np)�

�
(5.141)

∝
�
(
√

T −
√

R) cos(
Ωδ̃t

2
+

φ �Jz

2
)

−i(
�

(R) +
�

(T )) sin(
Ωδ̃t

2
+

φ �Jz

2
)

�
|ψat(Np)� . (5.142)

A time delay ˜δtk of the kth photon corresponds to a phase

ϕ̃k = Ω ˜δtk − π, (5.143)

at the detection. To obtain the expression 5.142, a phase of π has been introduced in the demod-
ulation so that the photons arrival times coincide with a tooth of the comb of temporal pulses
(time reference).

The squeezing function FNp(n) that was introduced in equation 5.92 becomes:

��FNp(n)
��2 ∝

Np�

k=1

(1 + C cos(ϕ̃k + φn)) (5.144)

where C = 2
√

RT is the contrast of the beatnote.
To further continue, we derive the Gaussian approximation of

��FNp(n)
��2:

��FNp(n)
��2 ∝ exp

�
−2M2Np

�
n2 + 2δϕ̃n/φ

��
(5.145)
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where

δϕ̃ =
1

Np

Np/Nt�

j=1

Ntδϕ̃j (5.146)

is the average mean phase shift over the followed trajectory. For the sake of clarity, these an-
alytical expressions are derived in paragraph 5.3.5.3 which is rather technical. In the analysis,
we consider subset of Nt successive photons for which the process is considered stationary.
δϕ̃j = −φ

�
�Jz

�

i
is the mean phase shift induced by the atoms. The hypothesis of stationarity

over the subset i consists to assume that
�

�Jz

�

i
is constant over the subset, and that every pho-

tons of the subset follow the same probability distribution P (ϕ) for the detected phase (ϕ) (see
equation 5.149). δϕ̃ describes the mean value of the mean phase shift of each subset.

In equation 5.145, we introduced the measurement strength of the heterodyne detection:

M2 =
φ2

4

�
1−

√
1− C2

�
, (5.147)

As for the case of the Mach Zehnder (section ??), M2 depends on the light-atom coupling φ
and on the contrast of the interferometer C.

As consequence, the heterodyne measurement is expected to collapse the atomic state with a
variance that follows:

∆ �J2
z =

∆ �J2
z (0)

1 + M2NatNp
(5.148)

The factor
�
1−

√
1− C2

�
in the expression of M2 is interesting because it exactly represents

the fraction of photons of the less populated mode. This property matches the fact that the signal
to noise of an heterodyne detection is limited by the smaller of the two beating fields.

.

5.3.5.3 The Gaussian approximation

To derive the Gaussian approximation for the squeezing function, we decompose the effect of
the Np photons into stationary sub-processes of Nt photons. The idea of this decomposition
is to consider that the atomic state does not evolve much for the few photons of a subset. For
one sub-process, the atomic state is considered fixed and modify the interferometer output in a
fixed way. This decomposition into stationary sub-processes is important to extract an analytical
formula for the evolution of

More precisely, we consider that the output density of probability P (ϕ) does not change for
the Nt consecutive photons. A sufficient condition is to use a low enough number of photons
such that the signal-to-noise κ2 = φ2NatNt is small compare to 1. The formal definition of
a phase operator �ϕ and of the subsequent density of probability is in general not trivial. The
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Figure 5.17: Detection probability of a phase ϕ
P0(ϕ) is the density of probability if there is no atomic contribution, whereas P (ϕ) describe

the distribution when the beatnote has been shifted by a nonzero mean difference of
population.

introduction of the phase by the means of the time of arrival of photons in equation 5.143 is
quite intuitive but should be regarded with care for further expansion of the formalism.

The density of probability to detect a phase ϕ for the (Np + 1)th photon knowing the state
|ψat� =

�N/2
n=−N/2 cn(Np) |n� is :

P (ϕ) =
1

2π

N/2�

n=−N/2

|cn(Np)|2 (1 + C cos(φn + ϕ)). (5.149)

In the weak coupling limit, φNat � 1, we can limit the expansion of P (ϕ) to the first order in
φn:

P (ϕ) =
1

2π




N/2�

n=−N/2

|cn(Np)|2
�

(1 + C cos ϕ)− Cφn sin ϕ
�


 (5.150)

= P0(ϕ)− 1

2π
Cφ

�
�Jz

�
sin(ϕ), (5.151)

where

P0(ϕ) = (1 + C cos(ϕ)) (5.152)

is the initial density of probability to detect a phase ϕ. P0(ϕ) applies in particular for the first
detected photon. At first order, P (ϕ) is shifted by δϕ̃ = −φ

�
�Jz

�
which is the mean phase shift

induced by the atomic sample.

Similarly to an experiment that would have a resolution for the time arrival of the photons,
we define a phase resolution π/m where m is an integer (m � 1). The squeezing function
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��FNp(n)
��2 can be further reordered following the sub-processes and regrouping the photons that

arrived in the same phase interval l. The lth phase interval is defined as ϕ ∈
�
lπ/m(l +1)π/m

�

��FNp(n)
��2 =

Np/Nt�

j=1

m−1�

l=−m

���f (j,l)
Np

(n)
���
2
, (5.153)

where ���f (j,l)
Np

(n)
���
2

= (1 + C cos(φn + πl/m))Nj,l , (5.154)

and Nj,l = π
mPj(πl/m)Nt is the number of photons of the jth subprocess that arrived in the

lth interval. This division into all the resolution interval is valid if every interval holds a large
number of photon. In particular, this should be verified for the extremal interval:

Nt

� π

π−π/m

P0(ϕ)dϕ ∼ Nt[
1− C
2m

+
π2C

12m3
] � 1. (5.155)

A strong constraint of Nt � m3 is given for C = 1. Any other value of C highly reduce this
limit to Nt � m.

The Gaussian approximation of
���f (j,l)

Np
(n)

���
2

around n = 0 gives

���f (j,l)
Np

(n)
���
2
∝ exp

�
−2M (2)

l Nj,l(n− nl)
2
�
, (5.156)

with

M (2)
l =

Cφ2

4

C + cos (πl
m)

(1 + C cos (πl
m))2

, (5.157)

nl = −
sin (πl

m)

φ

1 + C cos (πl
m)

(C + cos (πl
m))

. (5.158)

The expression of the measurement strength is easily obtained by:

M2Np =

Np/Nt�

j=1

m�

j=−m

M (2)
l Nj,l. (5.159)

The sum over the interval can be transformed in an integral that has an analytical solution which
gives:

M2 =
Cφ2

8π

� π

−π

C + cos(ϕ)

1 + C cos(ϕ)
dϕ (5.160)

=
�
1−

√
1− C2

� φ2

4
. (5.161)

Thus, we obtain the Gaussian approximation of
��FNp(n)

��2:

��FNp(n)
��2 ∝ exp

�
−2M2Npn

2 + T
�
. (5.162)
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(c) Center nl of the squeezing function of the lth interval.

Figure 5.18: Measurement strength M (2)
l and center nl of the squeezing function

���f (j,l)
Np

(n)
���
2

The parameters are given for contrast: C = 1 (black), C = 0.95 (blue), C = 0.7 (red),
C = 0.1 (magenta).
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The offset of n0 of the squeezing function is given by T :

T = 4nNpδϕ̃C2φ
1

2π

� π

−π

sin(ϕ)2

1 + C cos(ϕ)
dϕ (5.163)

= 4nNpφ
�
1−

√
1− C2

�
δϕ̃. (5.164)

Remark:

Figure 5.18a represents the measurement strength M (2)
l as a function of the interval number

l. It shows that for a contrast C = 1, the photons that bring the highest information are the
one the closest from the dark port (l = −1000 or l = 1000). A trivial way to understand this
increased strength of the projection, is to remark that without atoms, these borders have almost
a zero probability to arise for a contrast C = 1. Therefore, if a click is detected in this region, it
is because of the presence of the atoms [Laloë 10]. These rare photons are then giving a strong
information on the sample.

This behavior breaks down when the contrast is lower than 1 (C < 1) since the borders are
no more forbidden in the absence of the atoms. From figure 5.18b, photons that arrive on the
border are even counterproductive for the squeezing of the state: they enlarge the variance of
the atomic distribution.

The fact that for a contrast of one, the border photons are very efficient in terms of squeezing
efficiency can be linked to [Feizpour 11, Simon 10] where the authors present a post processing
of the measurement of a Mach-Zehnder. The proposal relies on the outcome from a second
Mach-Zehnder interferometer tuned close to the dark fringe.

5.3.5.4 Simulations

In order to verify the previous analytical results, a Monte Carlo simulation was performed
for the heterodyne measurement scheme. The algorithm that simulates the process is:

1. An initial atomic state |ψat(0)� is given .

2. A photon arrives at the input of the interferometer and is randomly detected with a phase
ϕ given by the density of probability:

PNp(ϕ) =
1

2π

N/2�

n=−N/2

|cn(Np)|2 (1 + C cos(φn + ϕ)) (5.165)

For the simulation, the density of probability is numerically integrated to obtain the
cumulated density of probability:

FNp(ϕ0) =

� ϕ0

ϕ=−π

PNp(ϕ)dϕ (5.166)

By generating a random number with an uniform distribution over [0, 1] and numerically
inverting FNp+1, we get the phase detected for the (Np + 1)-th photon.
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
(a) Mean value of the atomic wavefunction for a few
"experimental" realizations

(b) Mean value arrival probability traced over 1000
trajectories







(c) Variance of the atomic wavefunction.

Figure 5.19: Simulation of the atomic wavefunction collapse under an heterodyne measurement for
Nat = 100 and φ = 10−2.
Whereas the mean value has an erratic behavior, the variance of the atomic state gets squeezed
by a deterministic amount. A stochastic behavior appears for ∆ �J2

z = 1/4 (discussed in section
5.3.3). The partial measurement projection finally finishes with a mean value that satisfies the

Born probability rule Pn = |�n|ψat(0)�|2. The dashed line represent the analytical
expression(5.145) and the black curved line is the average variance realized over 1000

trajectories.
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3. The new atomic wavefunction |ψat(Np)� is computed using equation 5.142.

4. A new photon arrive and the process restarts at step 2.

The mean value and the variance of �Jz are evaluated using equation 5.110 and 5.111.

The result are shown in figure 5.11b. As expected, we obtain a similar behavior as in the
case of the Mach-Zehnder measurement, i.e.:

• The mean value evolves as a stochastic parameter during the collapse. Nevertheless, the
states converge to Dicke states with a probability that follows the Born probability rule.

• The variance of the squeezing function decreases in a deterministic way that follows the
analytical result given by the Gaussian approximation

5.3.6 Comparison between the Mach-Zehnder interferometer and the het-
erodyne measurement

We can now underline the physical difference between the Mach-Zehnder interferometer and
the heterodyne scheme. For each photon, the Mach-Zehnder interferometer gives a binary in-
formation. The photon went on u or on v. This is a strong constraint which give all photons the
same weight in the projection of the atomic function. At the same time, it obliges the photon to
make a choice: one way or the other.

In the heterodyne scheme, the result is continuous and photons are not forced to this binary
operation. Photons can arrive at any time (weighted by the probability P (ϕ)). Most photons
arrive in phase with the local oscillator and give a small (but nonzero) information on the atomic
state. As it can be seen in figure 5.18a, the photons that are the more useful are the ones which
arrive close to the other quadrature where no photons should arrive if there were no atoms.

The strength of the measurement is given in figure 5.20 as a function of the contrast for both
the lossy Mach-Zehnder interferometer (section 5.3.4.1) and the heterodyne scheme (section
5.3.5). From this plot, it is clear that the forced path choice of the Mach-Zehnder interferometer
is quite favorable to the measurement. For low contrast, the strength of the heterodyne scheme
scales as C/

√
2 .

This result is actually quite surprising. An heterodyne measurement as presented for ex-
ample on figure 5.15 can be reinterpreted as a homodyne detection of the RF field. With such
an equivalence, that is presented in figure 5.21, one would expect a similar behavior for the
two detection schemes. Actually, the RF equivalent Mach-Zehnder interferometer of the het-
erodyne scheme is an unbalanced interferometer. It has a balanced output mirror (the mixer)
and an unbalanced input mirror (frequency modulator with amplitude coefficients:

√
R,
√

T ).
The contrast of such an unbalanced Mach-Zehnder interferometer is C = 2

√
RT which is the

contrast found for the heterodyne detection.

5.3.7 Comment on the photon by photon versus single pulse measurement
The study previously presented was done in an interferometer operating in the single-photon
regime and modifying the atomic state step by step. Experiments are not necessarily realized
in these conditions. Often it is a pulse of photons that are sent on the atoms and later detected.
Typical numbers consider 106 photons in a 1 µs pulse. This makes an average of 1 photon every



144
CHAP 5 - ATOMIC SQUEEZING INDUCED BY QUANTUM NON-DEMOLITION MEASUREMENT:

THEORY



Figure 5.20: Comparison of the Mach Zehnder interferometer and the heterodyne detection.
Measurement strength as a function of contrast C for the lossy Mach-Zehnder interferometer

and for the heterodyne measurement.





 

Figure 5.21: An heterodyne detection seen as an homodyne detection of the RF field.
The RF field is splitted in two. One part goes directly to the mixer while the other interacts

with the atoms while being transported on an optical carrier. The mixer is seen as a balanced
homodyne detection
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1 ps, which means that the photons are separated by 100 µm. The first photon has then not been
detected before the second interacts, which looks critical in our description.

Actually it is not, since when a photon interacts and before its detection, it is in an entangled
state with the atomic sample. The second photon does not interact with the atomic wave function
alone but with the full entangled state. The measurement of the first photon, not only project
the atomic state, but also all the photons that came afterwards. It is then effectively as if the
photons were interacting and measured in a sequential way.

A second counter-argument can be raised considering that the photon number is a very
well defined variable in our photon by photon description while for a coherent pulse it would
present quantum fluctuations. Actually, a balanced detection in a Mach-Zehnder interferometer
or an heterodyne detection scheme are experimentally only sensitive to the noise of the phase
quadrature, and this noise is accounted in our model by the randomness of the detection process.

Obviously, if one uses squeezed light at the input of the interferometer, the photons could
not be considered as independent and a treatment photon by photon as previously described
would fall down. Nevertheless, a model could probably be developed by taking into account for
the probability of the outcome of each photons, not only the atomic state with which it interacts
but also the influence of all the previously detected photons.

5.3.8 Perspectives
This theoretical study and the introduction of the squeezing function are powerful tools that
helps to understand the process of the partial collapse of the atomic state. It also gives some
formalism for the study of similar situation. Of particular interest is the creation of Schrödinger
cats [Mekhov 09], the entanglement of separated clouds [Mullin 10], and the analysis of Zeno
effect for collective states.

5.3.8.1 Schrödinger cats

To generalize the idea of the squeezing function, in the following we call it the backaction
function. The squeezing function presented in figure 5.10, was a particular case of a backaction
function. It was a Gaussian centered around 0. This choice was realized by choosing the observ-
able (quadrature) measured, by changing the phase of the reference arm in the Mach-Zehnder
interferometer or by changing the local oscillator demodulation phase in the heterodyne scheme.
Choosing the opposite quadrature, the backaction function has a minima in 0 and two maxima
on the side (figure 5.22a). This separation in two parts of the backaction function can be used
to create Schrödinger cats. In figure 5.22a, the backaction function is presented for different
contrast and in 5.22b the atomic state distribution at the output of the interferometer.

In other terms, because we have chosen the other quadrature, we are sitting at an extremum
of the output fringe. Thus, for a given output, it is not possible to distinguish between the atomic
phase shift φn0 and −φn0. The measurement make us converge towards non-classical states of
the form |n0� + |−n0� which is the supperposition of two Dicke state. This state has a zero
average phase shift but an important and stochastic dispersion.

Unstable preparation?
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(b) Evolution of a state on a single trajectory for C = 1.
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(c) Density distribution of the final state |n0�+ |−n0� for C = 1

Figure 5.22: Simulation of the atomic wavefunction collapse into Schrödinger cats for a Mach-Zehnder
interferometer.

(a) The squeezing function presented for three different contrast, C=1, 0.95, 0.7. The dip for
n = 0 is a numerical issue and is not physical. (b) The state distribution evolve with the

number of photon Np measured, (c) The state converge stochastically towards Schrödinger cats
with a probability that satisfies the Born probability rule.
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Figure 5.23: Description in the plane (n1,n2) of the entanglement of two clouds.
(a) The initial atomic state, (b) the squeezing function and (c) the resulting atomic state.

Unfortunately, this process suffers from two weaknesses: The first is linked to the measure-
ment process itself: it does not create a Cat state in a deterministic way. This is a stochastic
process. Nevertheless, the information on which state has been created is contained in the out-
put probability of the interferometer. The higher is n0 for the cat state |n0�+ |−n0�, the higher
the probability of the dark port. As the information is given to the experimentalist, it could be in
principle possible to engineer quantum feedback to prepare deterministically the output state.

Secondly, this scheme relies on a well centered squeezing function. Experimentally, this
means that the demodulation phase has to be controlled to better than the phase induced by the
atomic dispersion (δφdem � φ

√
Nat). If not, the measurement looses its symmetry and the

production of Cat states becomes impossible.

5.3.8.2 Multi-cloud entanglement

Previously, we have seen that the measurement was unable to distinguish between the particle.
Thus, the collected information on the sample is entangling the particles. In the same way,
two clouds on the path of a single beam would as well be entangled, since it is not possible to
distinguish between a phase shift induced by one or the other.

The initial state is a coherent state for both clouds which have Nat,1 and Nat,2 atoms respec-
tively. The state can be written as the product of two gaussian distributions:

|ψat� =

Nat,1/2�

n1=−Nat,1/2

Nat,2/2�

n2=−Nat,2/2

exp(−n2
1/Nat,1 − n2

2/Nat,2) |n1, n2� . (5.167)

This state is depicted in figure 5.23 (a) where it is plotted in the 2D plane (n1, n2).
The squeezing function FNp(n) that acts on this state, only depends on n = n1 + n2. It is

centered in n0 and has a standard deviation that decreases with Np. It is represented in figure
5.23 (b) by the green zone. After the measurement, the resulting state is the product of the
initial states with the squeezing function. It is a tilted and compressed state in the total number
difference n. The angle of the state θNp in figure 5.23 (c) contains the entanglement information.
The atomic state cannot be expressed anymore as the product of two independent distributions
that would correspond to the two independent clouds. Instead, we have an entangled state.

These entanglement of two clouds is of interest for the improvement of atom interferometry
and could be used as the two input state of a Ramsey-Bordé interferometer. It was shown in
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Figure 5.24: Representation of the Dicke state rotation
The effect of the rotation induced by the microwave is reduced by the absence of coherence of

the Dicke state.

[Bouyer 97, Caves 81, Pezzé 06] that it could enhance the interferometer performance down to
the Heisenberg limit.

5.3.8.3 Zeno effect induced squeezing

In the following, the prospect is to try to revisit the Zeno effect with the language of measure-
ment induced squeezed atomic ensembles. The Zeno effect arises when a repeated [Morton 05]
or continuous [Streed 06] measurement is applied on an evolving system. The information ob-
tained by each measurement projects the system in an eigenstate and stops its evolution. The
Zeno effect was observed on the photon number of a cavity mode [Bernu 08] and on single
qubits, but what would happen for a collective measurement?

The argument is fairly simple. We consider an initial sample with all atoms in the |F = 1, mF = 0�
hyperfine ground state. At t = 0, a linear microwave field is shined on the sample and drives a
Rabi oscillation towards |F = 2, mF = 0� with Rabi frequency ΩR. With a high repetition rate
1/δt compare to ΩR, the sample is measured by an ideal quantum nondemolition measurement,
i.e. the atomic state |ψat� is projected on a Dicke state |n� with probability P = |�n|ψat�|2. In
between two measurements, the projected state evolves because of the microwave excitation.

On the Bloch sphere representation of the process, in figure 5.24, the Zeno effect arise from
the total loss of coherence of �Jx and �Jy during the ideal QND measurement. Indeed, the Dicke
state, that is obtained after each measurement, is fully spread over the sphere and the influence
of the microwave is reduced since it acts in reverse for two opposite points on the sphere. In
figure 5.24, we see for example that a part of the state goes up (point B) when the other side
goes down (point A). Nevertheless, because the rotation is around the y-axis that is off centered
compare to the Dicke state mean value, the average effect is non zero. As shown on figure 5.25,
this effect has an exponential behavior:

� �Jz� =
1

2

�
1 + exp(Ω2

R

δt

2
T )

�
(5.168)

which has an initial slope Ω2
Rδt/4 which is identical to the slope obtained for the Zeno effect

of a single particle [Streed 06]. Nevertheless, in this collective state approach, and contrarily to
the case of a Zeno effect for single particles, the state does not evolve towards all the atoms in
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|F = 2� but towards the Dicke state |n = 0�, which is a pointer state of the evolution.
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Figure 5.25: Mean value of � �Jz� for a collective Zeno effect.
The probability follows an exponential decay. In Black the simulation of a rotated Dicke state
and in white the analytical expression � �Jz� = 1/2(1 + exp(Ω2

Rδt/2T )). In blue (below) the
expected Zeno effect for the single atom case: exp(Ω2

Rδt/4)). The simulation and analytical
expression are given for ΩR = 2π103 Hz and δt = 0.1 µs which are experimentally achieved

parameters.

In the simulation presented in figure 5.25 and realized for ΩR = 2π103 Hz and δt = 0.1 µs,
one can observe a characteristic time of the state evolution of about 1 ms while the free evolution
would lead to a π pulse in only 50 µs. The convergence towards a state of equal population
difference can also be seen in figure 5.25.

Obviously, one would think to use this driven evolution to deterministically generate the
Dicke state |n = 0�. Actually, the closer the state is from the equator, the slower is the con-
vergence towards |n = 0�. This Dicke state |n = 0� is only an asymptotic limit. It would take
an infinite amount of time to reach the Dicke state, except if one was to start with only a few
particles.

We clearly see here an effect of the correlations that are induced by the measurement. As
it would not have been expected for independent particles, the Dicke state |n = 0� is invariant
under the total evolution: "Microwave + measurement". In order to experimentally realize such
a Zeno effect, it is actually crucial that the nondemolition measurement probes both states. For
example, in the demonstration of the Zeno effect in [Streed 06], one state is measured and is
fully depleted at each pulse. This does not create correlations in the sample, and the remaining
atoms are kept in a separable state. In such a system, we expect the sample to fully deplete
and not to converge to an equal population in both states. The equal population convergence is
specific to collective ensembles.

5.4 Summary
In this chapter, we detailed the formalism background to treat the problem of multi-particles
coherent and squeezed states. For that purpose, we introduced the collective spin operators �J
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and gave their evolution through the interaction Hamiltonian.
We also presented the potential enhancement of atomic interferometer sensitivity with the

used of spin-squeezed state. The experiment intended to reach squeezed states through the
measurement process, we reminded some basics of the theory of QND measurement. We have
shown that in the specific case of an off-resonance dispersive measurement has indeed a QND
character.

In the last part, we developed a wave function formalism introduced in [Bouchoule 02]
that allows to understand the dynamics of the squeezing evolution. This description allowed
us to emphasize on the critical parameters to reach highly squeezed state and to quantify the
influence of each term. This description was applied to both the Mach-Zehnder interferometer
and the heterodyne detection. Even if these apparatus look quite different, it was shown that, in
principle, they should have similar performances.

At last, we detailed three possible applications of the method that seems adapted to the
description of Schrödinger cats preparation, multi-cloud entanglement and Zeno effect on spin-
squeezed system.
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The implementation of an efficient Quantum Non-Demolition measurement as described
in the previous chapter is experimentally challenging. Indeed, in the previous description, it
has been emphasized that spontaneous emission processes were blurring the squeezing effect.
Even if some particular cases of atoms in lattice have proven that the decoherence could be
suppressed [Meiser 08], the optimal detection to generate spin-squeezed states should still be
able to use as few photons as possible to collect as much information as possible. In other
word, one should reach a shot noise limited detection for low optical powers. In this chapter,
we present the experimental progress that have been achieved in this direction.

At first, we detail the frequency modulated spectroscopy that has been set-up and focus on
its noise sensitivity. In the second part, we show a characterization of the effect of the probe
on the atomic sample itself. In particular, we will detail the spontaneous rate induced by the
probe as well as the inhomogeneous light-shift it induces on a sample that undergoes Rabi
oscillations. Finally, we give the perspective for the atomic noise measurement and the cavity
enhanced measurement.
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6.1 Heterodyne detection and detector performance

6.1.1 General Argumentation
As discussed in section 5.2.2.2, the dispersive measurement of an atomic sample can realize
a quantum nondemolition measurement of the atomic population difference in the two ground
states [Kuzmich 98]. Two main constraints are actually limiting such a dispersive measurement.
The first is the effect of spontaneous emission, that makes the measurement partially destructive
(see section 6.1.6). The second constraint is the ability of the experimentalist to realize such a
measurement in optimal conditions, that are to be fully limited by quantum noises.

The argumentation of section 5.2.2.2 has shown that the implementation of a phase detection
relies on the comparison of the phase induced on a mode of the optical field to the phase of a ref-
erence mode. Several techniques can then be implemented to measure this phase shift, including
Mach-Zehnder interferometry [Louchet-Chauvet 10], mapping phase fluctuations into intensity
fluctuations using a cavity tuned on the side of its resonance [Schleier-Smith 10b], or comparing
the probe dephasing to a far from resonance local oscillator [Teper 08, Vanderbruggen 11].

Mach-Zehnder interferometry
In the case of the Mach-Zehnder, the two modes that are compared are the two spatially sepa-
rated arms. This system has been extensively studied in the group of E. Polzik [Oblak 05]. This
technique presents the strong advantage that the local oscillator which is in one arm does not
couple to the atoms which are in the other arm. As a consequence it induces no spontaneous
emission. The main drawback is that the sensitivity of the interferometer to length fluctuations
(δL) scales only as δL/λ where λ ≈ 1 µm is the optical wavelength. This high sensitivity
to noise can be reduced using a multi-color probing [Saffman 09] that rejects common mode
noise. This scheme has already proved that it can enhance the sensitivity of an atomic clock
[Louchet-Chauvet 10]. Another experimental difficulty of this set-up lies in the measurement
that is realized in DC and which is then affected by 1/f low frequency classical noise. A spe-
cial very low noise detector had then to be developed [Hansen 01].

Cavity intensity fluctuations
The second implementation that has already been experimentally realized in the group of V.
Vuletić, consists in using the cavity as a tunable attenuator [Schleier-Smith 10b]. A laser tuned
on the side of the cavity resonance converts the atomic population fluctuations into frequency
shifts of the cavity mode, resulting in a modification of the transmission of the cavity. Again, in
this method, the measurement is realized in DC, and is sensitive to 1/f noise. In addition, as
the measurement is realized with a cavity, path length fluctuations have to be well controlled.

In the latter stage of this experiment, it has been shown that a non-linear coupling between
the light and the atoms could be mediated by the cavity [Leroux 10, Schleier-Smith 10a]. This
method proved quite efficient to generate up to 5.6 dB of metrological squeezing [Wineland 92].

Polarization birefringence and magnetometry
Another method takes advantage of the polarization dependence of atomic states and measures
this birefringence with precise polarimeters [Chaudhury 06, Smith 04]. Again, this is a DC
measurement which makes it difficult to be limited by the optical shot noise. Nevertheless,
impressive results have been obtained, among which is the estimation of a quantum state with
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Figure 6.1: Schematic view of a population sensitive heterodyne measurement.
The circles are instantaneous phase representation of the optical frequency components in the
frame rotating at the carrier frequency. The positive sideband (+) starts in phase with carrier
and turns with angular frequency Ω while the negative sideband (-) starts opposite phase and
turns with angular frequency −Ω. The (+) sideband (blue) is close to the atomic transition

(ω0), it accumulates an additional phase (φat) that is extracted after demodulation.

a fidelity higher than 0.90% [Smith 06], and the generation of spin-squeezed states of 171Yb
[Takano 09].

Heterodyne measurement

Last but not least, is the heterodyne detection. In particular, we focus on the frequency mod-
ulation spectroscopy technique [Drever 83b, Black 01, Bjorklund 83]. A laser beam is phase
modulated to produce frequency sidebands one sideband is placed close to an atomic transition
and experiences a phase shift φat passing through the atomic sample, the second side-band is
far from resonance and experiences essentially no phase shift. The detection of the beatnote at
the modulation frequency gives an estimation of the atomic population of the probed state. This
situation is represented in the rotating frame in figure 6.1.

Actually, the real strength of the heterodyne scheme lies in the full transfer of a phase shift
in the optical range onto a phase shift in the microwave range. This point is illustrated in figure
6.2. If the two beating field are in phase at time 0, the beatnote is constructive (figure 6.2a)
while if the two fields start in opposite phase, their interference is destructive (figure 6.2b). As
a consequence, the difference of phase between the two fields is mapped onto the phase of the
microwave, that is detected after comparison (mixing) with a reference that is the microwave
local oscillator.

In addition, this scheme highly benefits from the almost noninteracting carrier used as a
local oscillator. For a laser, limited by its quantum fluctuations (see section 6.1.3.2 and 6.1.5),
the signal-to-noise ratio (SNR) of the detection is

SNR ∝
√

NsNc�
(
√

Ns)2 + (
√

Nc)2 + (
√

Ne)2
sin φat, (6.1)

where Ns represents the total number of photon detected in the sideband and Nc the number of
photons in the carrier. The contribution of technical noises in units of photon number is Ne. We
underline that in a heterodyne measurement, the two first terms of the denominator in equation
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Figure 6.2: Phase transfer from the optical range to the microwave range.
(a) up is the beatnote detected by the photodetector at the modulation frequency, a zoom of the

two beating field that are in phase is shown (b) Beat-note of two fields that are in opposite
phase (zoom).

6.1 are the quantum phase noise of the laser expressed in terms of photon number [Aspect 06].
In the case of a frequency modulation these terms represent the amplitude noise (see section
6.1.3.2).

For a high power in the local oscillator, the shot noise overcomes the detection noise Nc �
Ne, and equation 6.1 simplifies to SNR ≈

√
Ns sin φat, which corresponds to a sideband shot

noise limited detection, independently of the sideband power. This property is of primary im-
portance for a shot noise limited detection of very low signals.

In the following, we study the sensitivity to the fluctuations of the optical path length that
have not been considered in equation (6.1). In section 6.1.3.2 we also discuss the influence of
the noise of the laser.

6.1.2 Considered case

In order to clarify the experimental situation that will be encountered, we give in figure 6.3
the relative frequency component position with respect to the atomic transition. In figure 6.3a,
6.3b and 6.3c, we present the experimental configurations that allows to probe respectively
the |F = 1� population, |F = 2� population and the population difference between the two
hyperfine states.
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Figure 6.3: Presentation of the laser frequency configurations considered to probe of the atomic popu-
lation.
In black is represented the carrier of the phase modulated optical probe and in red and blue are

presented the positive and negative sideband. To switch from one configuration to the other,
both the absolute frequency (δ + ∆) of the carrier and the modulation frequency (Ω = ∆) have

to be changed.
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6.1.3 A low sensitivity to common mode noise
6.1.3.1 Path length fluctuations

In homodyne detections, such as the Mach-Zehnder interferometry, the sensitivity to path length
fluctuations is determined by the optical wavelength λ. In a heterodyne detection scheme for
which frequency components are spatially overlapped, the relevant length is the modulation
wavelength λmod = Ω/(2πc). For a modulation in the microwave range, λmod is of the order of
a few centimeters, whereas λ is of the order of the micrometer. As a consequence, the sensitivity
to length fluctuations is greatly reduced.

In the following, we focus on the sensitivity of a phase modulated detection with respect to
length fluctuations, and consider the effect of residual amplitude modulation (RAM) [Gehrtz 85,
Johnson 00]. An optical field E, phase modulated at Ω, can be written as:

E = E0

∞�

n=−∞
Jn(β) cos (ωct + nΩt) , (6.2)

where Jn are Bessel functions of the first kind and β is the modulation depth.

For a small modulation depth (β � 1) the expansion can be limited to the first orders
(J0(β), J1(β), J−1(β)) ≈ (1, β, −β). Let φ0, φ1, and φ−1 be the different atomic phase
shift experienced by each frequency component of the optical field. The photocurrent idet at the
output of the photodetector is

idet = ηPopt

�
1 + β cos

�
Ωt− ΩL

c

�
∆Φ+ + β sin

�
Ωt− ΩL

c

�
∆Φ−

�
, (6.3)

where L is the distance from the modulator to the detector, Popt the optical power in the local
oscillator, η is the detection sensitivity of the photodiode, and

∆Φ+ = cos (φ1 − φ0)− cos (φ0 − φ−1) , (6.4)
∆Φ− = sin (φ1 − φ0)− sin (φ0 − φ−1) . (6.5)

After the demodulation of idet by sin(Ωt + Φdem) with Φdem = ΩL/c, and for length noise
fluctuations δL of the optical path integrated in the detection bandwidth ∆f , the dispersive
signal obtained is S = S0 + δSL where:

S0 = ηβPopt∆Φ−, (6.6)

δSL = 2πηβPopt
δL

λmod
∆Φ+, (6.7)

where δSL is the contribution of the optical path length fluctuations to the noise.
Since the atomic contributions to phase shift are small φ−1, φ0, φ1 � 1, we have at second
order:

∆Φ+ =
1

2
(φ1 − φ−1) (2φ0 − φ1 − φ−1) , (6.8)

∆Φ− = φ1 + φ−1 − 2φ0. (6.9)

Considering the cases (a), (b) and (c) depicted in figure 6.3, we have: In table 6.1, φres
at repre-
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Population in |F = 1� Population in |F = 1� Population difference
φ0 0 0 0
φ1 0 φat -φat

φ−1 −φat 0 φat

∆Φ+ φ2
at/2 −φ2

at/2 0
∆Φ− φat φat φatφres

at

Table 6.1: Signal and noise contribution in the different configuration

sents the nonzero phase contribution of the carrier.

From equations (6.7), (6.8) and (6.9), the detection noise in the three configuration is:

δSL = ηβPoptφ
2
at

δL

2λmod
, δSL = ηβPoptφ

2
at

δL

2λmod
, δSL = ηβPoptφatφ

res
at

δL

λmod
(6.10)

Hence, for a pure phase modulation, a small atomic phase shift φat makes the signal even less
sensitive to length fluctuations than δL/λmod. In the case of the population difference measure-
ment, the rejection is even higher.

A major noise source in this heterodyne scheme arises from the residual amplitude mod-
ulation due to phase modulation imperfections. The residual amplitude modulation unbal-
ances the field amplitude in the sidebands and the optical electric field can be written as E =
E0eiωct

�
1 + β(1 + �)eiΩt − β(1− �)e−iΩt

�
. The signal after demodulation is:

S = ηβPopt

�
(∆Φ− + �∆Φ−,AM) + 2π

δL

λmod
(∆Φ+ + �∆Φ+,AM)

�
(6.11)

where ∆Φ+,AM and ∆Φ−,AM are the atomic phase contribution for a pure amplitude modulation:

∆Φ+,AM = 2 +
1

2

�
(φ1 − φ0)

2 + (φ−1 − φ0)
2� , (6.12)

∆Φ−,AM = φ1 − φ−1. (6.13)

The contribution for the cases (a), (b) and (c) depicted in figure 6.3, are presented in table 6.2.

Population in |F = 1� Population in |F = 1� Population difference
∆Φ+,AM 2 2 2
∆Φ−,AM −φat φat 0

Table 6.2: Signal and noise contribution in the different configuration

In the cases 6.3(a) and 6.3(b), the overall noise contribution of length fluctuations is:

δSL = ηβPopt(φ
2
at + �)

δL

λmod
. (6.14)
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and for the case (c) we have:

δSL = ηβPopt(φatφ
res
at + �)

δL

λmod
. (6.15)

It clearly appears that the cases (a) and (b) are the most sensitive to optical path length
fluctuations. For comparison, the optical shot noise is given by δSshot =

�
2eηPopt∆f . As a

consequence, in a phase modulated detection, the length fluctuations are at least rejected by a
factor (φ2

at + �)λ/λmod with respect to a Mach-Zehnder interferometer (equation (6.14)). For
our experimental parameters, � = 10−2, λmod=10 cm, λ = 1 µm, and for φat < 100 mrad, it
represents 7 orders of magnitude of rejection on δSL. In addition, since δSL/δSshot scales as�

Popt, if the photodetector is shot noise limited for a low optical power in the local oscillator
(section 6.1.5) there is no need of a dynamical control of the optical path length1.

6.1.3.2 Laser noise

In the previous section, we have shown that the influence of the path length fluctuations was
essentially rejected, but what about the classical noise of the laser? Actually, as the phase mod-
ulator exactly copies the phase noise of the carrier on the sideband, and thanks to the mode
comparison (equation 6.5) the phase noise is rejected.

On the other hand, in equation 6.6 the signal is proportional to the optical power. Hence,
if the optical power fluctuates, it will be imprinted in the signal. Nevertheless, as ∆Φ− �= 0,
this enter as a second order effect. The frequency modulation technique is very similar to a self
locked Mach-Zehnder interferometer with zero path length difference. The spectral coherence
of the source has no importance.

6.1.4 Optical set-up
The optical setup is presented in Fig. 6.4. The detection beam is generated by an extended
cavity diode laser (ECDL) frequency locked to a reference laser. The reference laser is the
repump laser that is locked on the |F = 1� → |F � = 1, 2� crossover transition using standard
frequency modulation spectroscopy technique (see section 2.1.4.1). The beatnote between the
detection and the reference laser is detected on a fast photodetector (Hamamatsu, mod. G4176
- 10 GHz bandwidth on 50Ω). This beatnote is frequency referenced [Appel 09a] to a 40 ± 10
MHz tunable oscillator through a high-frequency Phase Locked Loop (PLL: Analog devices,
mod. ADF4108). The tunability of this oscillator allows to shift both the carrier, and the side-
bands, relatively to the atomic transition.

The detection beam is send through an acousto-optic modulator (AOM) used as a switch to
generate probe pulses with 300 ns rise time. The beam is injected in a polarization maintain-
ing fibered electro-optic modulator (EOM) (NIR-MPX800-LN-05-P-P-FA-FA from Photline
Technologies), before passing through the atomic cloud. The beatnote is detected on a fast pho-
todiode (see section. 6.1.5) and demodulated with the local oscillator. The demodulated signal
is acquired with a digital oscilloscope.

1Looking back to the case of the population difference measurement (figure 6.3c), we also remark that the
presence of an amplitude modulation does not produce any offset in the signal (see table 6.2).
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Figure 6.4: Set-up of the single-pass non-destructive measurement.
The probing light is generated by an extended cavity diode laser and offset locked to the

atomic transition via a phase locked loop and a proportional integrator feedback loop. The
absolute frequency of the light is controlled by changing the reference frequency of the Phase

Locked Loop. The atoms are probed with the optical pulses generated by the AOM. The
sidebands for the heterodyne detection are inserted by a phase modulator.

The internal atomic state is manipulated with a microwave signal at about 6.834 GHz gener-
ated by the home-made frequency chain that was mentioned in section 2.1.4.3. After amplifica-
tion, about 27 dBm of microwave power arrive on the linear dipolar antenna which is placed at
about 20 cm from the sample. The multiple reflections on the metallic chamber walls establish
stationary waves. In addition, due to this reflections in the chamber, the direction of the linear
polarization is not conserved on the atoms.

6.1.5 The optical detector
The beatnote signal is detected on a fast GaAs PIN photodiode with integrated transimpedance
amplifier designed for high-speed optical communications at 850 nm (Finisar, model. HFD3180-
203). The electronic scheme for the photodiode and the amplifier is presented in figure 6.5. The
integration of the photodiode and amplifier in the same package greatly reduces parasitic capaci-
tances and allows a high detection bandwidth of a few GHz together with a high transimpedance
gain of the order of one kΩ. The detector is mounted on a home-made high frequency printed
circuit board. The output of the transimpedance amplifier is differential, but only one out-
put is used. Except for the rejection of the noise of the electronic ground this does not affect
the signal-to-noise. The outputs of the integrated differential amplifier is connected to a 50
Ω matched coplanar waveguide and AC-coupled to a SMA connector. To avoid microwave
reflections, the output that is not used is 50 Ω terminated.

The noise at the output of the photodiode has been measured with a spectrum analyzer. The
output of the transimpedance amplifier was amplified by 36 dB to overcome the noise level
of the spectrum analyzer. The noise power spectral density of the illuminated detector was
measured at 1 GHz and 2 GHz, as reported in figure 6.6.

The measurement shows a very good linearity of the noise power spectral density versus



160 CHAP 6 - NON-DEMOLITION MEASUREMENT: EXPERIMENT

Figure 6.5: Scheme of the optical detector.
It is composed of a fast photodiode followed by a transimpedance amplifier of gain RF and a

buffer with gain g.

Figure 6.6: Noise power spectral density of the detector.
Noise power spectral density versus the incident optical power for two different detection

frequencies, 1 GHz (circles) and 2 GHz (triangles). The inset presents the set-up used for the
noise measurement.

the incident power, which means that the laser is shot-noise limited at the adopted frequencies.
Actually, it also suggests that at low optical power involved (few 100 µW), the detector noise
is limited to the optical shot-noise. The figure of merit κ considered is the electronic noise
equivalent light shot-noise, that is, the optical power required to generate the same noise as
the detection electronics [Windpassinger 09]. We measured κ = 165 µW at 1 GHz, and κ =
469 µW at 2 GHz.

Moreover, the slope provides a direct measurement of the photodiode gain GPD = Vout/Popt =
gRF η where η ∼ 0.5 A/W is the sensitivity of the photodiode (see figure 6.5 for notations). At
the output of the transimpedance amplifier, voltage fluctuations induced by the light shot noise
are vn = gRF

�
2eηPopt∆f , where e is the charge of the electron and ∆f the detection band-
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Figure 6.7: Linearity after demodulation of the signal on the fast photodetector.
The optical power on the detector is varied and the corresponding demodulated output is

measured.

width. Hence the noise power spectral density on a resistance load RL of 50 Ω is:

PSDn =
v2

n

RL∆f
= 2e

G2
PD

RLη
Popt. (6.16)

From the slopes of figure 6.6, one gets GPD = 1466 V/W at 1 GHz and GPD = 880 V/W at 2
GHz, values in good agreement with the nominal value of 1250 V/W.

In addition, we have checked the linearity of the output signal after demodulation with
respect to the input power Popt. In order to obtain a beatnote on the photodetector, the atoms
were introduced in the path to dephase one of the side-band. The result is presented in figure
6.7. The slope of this curve gives the atomic phase shift through:

Vdem = GPDβPopt sin(φat). (6.17)

In practice, for optical powers above 100 µW, the photodiode presents an unexpected and
unexplained dead time of 50 µs. This makes impossible to pulse the light in a detection con-
figuration that would be shot noise limited (Popt > 200 µW). For this reason, and because
we wanted pulsed measurement to induce a low destructivity, in the following, the power in
the carrier is kept below 100 µW even if the detection is then not fully optimal. As the QND
measurement will be ultimately realized with the cavity (see section 6.3), this dead time will be
avoided with a carrier continuously on.

6.1.6 Atomic phase and spontaneous emission
In section 6.1.3.1, we have seen the dependance of the detected signal on the phase induced by
the atoms. In this section, we will express this phase shift as a function of the experimental
parameters: the frequency detuning, and the size of the atomic and optical profile.

In appendix D we derive the complete expression of the polarizability. We consider here an
excitation at 780 nm, the counter-rotating term can be neglected. Hence, in equation D.20, we
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have:
∆ωF,F �

∆ω2
F,F � − ω2 + iΓω3

ω2
0

≈ 1

2

∆F,F � + iγ

∆2
F,F � + γ2

, (6.18)

where γ = Γ/2 and ∆F,F � = ∆ωF,F � − ω.

For atoms in the |F, mF � state, and for a light polarized along the normalized vector u =
�−1e−1 + �0e0 + �1e1, the polarizability αF,mF on this specific polarization is:

αF,mF =
1

�
�

J �,F �,m�
F ,q

���
�
J �, F �, m�

F |�dq|J, F,mF

����
2
�2
q

∆F,F � + iγ

∆2
F,F � + γ2

, (6.19)

where �dq = e�rq is the dipole operator.

From there, we intend to derive the expression of the atomic phase shift and the spontaneous
emission rate when the hyperfine splitting cannot be neglected.

The atomic transition probed is the D2 line at 780 nm (52S1/2 → 52P3/2). In the experimen-
tal configuration considered, all the light components are at maximum a few GHz away from
the atomic transition. The closest atomic transition is the D1 line at 795 nm that is 7250 GHz
away from the optical excitation, and that contribute to the signal for less than 1�. Hence, only
the D2 line needs to be considered and the sum on J � is unnecessary.

For an atomic distribution ρF,mF (x, y, z) in the hyperfine ground states, the optical refractive
index n(x, y, z) experienced by the light is:

n(x, y, z) = 1 +
1

2��0

�

F,mF

ρF,mF (x, y, z)
�

F �,m�
F ,q

���
�
F �, m�

F |�dq|F, mF

����
2
�2
q

∆F,F � + iγ

∆2
F,F � + γ2

. (6.20)

Phase
The phase accumulated by one frequency component at ω along the propagation in the sample
is:

Φ(x, y) =

�

z

(k − k0)dz =

�

z

2π

λ
Re(n(x, y, z)− 1)dz. (6.21)

For a Gaussian distribution of the atomic density ρ(x, y, z) = ρ0e
− 2(x2+y2+z2)

wat , one finds:

Φ(x, y) =

√
2π3/2

λ
watRe [n(x, y, 0)− 1] . (6.22)

When the probe is measured, the phase detected Φdet is the integral of Φ(x, y) weighted by the

density of photon that passed in (x, y), i.e. the optical intensity I(x, y) = I0e
− 2(x2+y2)

wph :

Φdet =

�
x,y Φ(x, y)I(x, y)dxdy

�
x,y I(x, y)dxdy

. (6.23)
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For the Gaussian distributions considered previously, the equation 6.23 has the following
analytical solution:

Φdet =

√
2π3/2

λ

wat

2��0

w2
eff

w2
ph

�

F,mF

ρF,mF
0

�

F �,m�
F ,q

���
�
F �, m�

F |�dq|F, mF

����
2
�2
q

∆F,F �

∆2
F,F � + γ2

, (6.24)

=
ω0

��0c

1

w2
at + w2

ph

�

F,mF

NF,mF

�

F �,m�
F ,q

���
�
F �, m�

F |�dq|F, mF

����
2
�2
q

∆F,F �

∆2
F,F � + γ2

, (6.25)

where we have introduced the effective waist weff and the total atom number NF,mF in the state
|F, mf�:

weff =

�
1

w2
ph

+
1

w2
at

�−1/2

, (6.26)

NF,mF =
�π

2

�3/2
ρF,mF

0 w3
at. (6.27)

Equation 6.25 shows that if the atoms are well within the probe volume (wat � wph), the
detected phase only depends on the total atom number and not on the column density.

Spontaneous emission

The scattering rate Γsc of an atom situated in (x, y) is given by:

Γsc(x, y) =
I(x, y)

��0c
Im(α). (6.28)

Hence, the average scattering per atom is:

Γsc,tot =
1

Nat

�

x,y,z

ρ(x, y, z)Γsc(x, y)dxdydz = Nph
w2

eff

w2
atw

2
ph

Im(α)

��0c
. (6.29)

The optimal configuration

We consider now the optimal optical waist that should be used to probe a given atomic
distribution wat. The effective number of atoms N eff

at seen by the probe is:

N eff
at =

1

I0

�

x,y,z

ρ(x, y, z)I(x, y)dxdydz = Nat
w2

eff

w2
at

. (6.30)

Hence, the atomic shot noise measured by the probe scales as
√

Natweff/wat in atom number,
and each atom contributes to the detected phase proportionally to w2

eff/(w2
atw

2
ph) (see equation

6.25).
We define the signal-to-quantum-noise κ as the phase contribution of the atomic noise over

the optical phase noise, that is 1/
�

Nph:

κ ∝ w3
eff

w3
atw

2
ph

�
NatNph. (6.31)
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Figure 6.8: Signal-to-noise as a function of the ratio wph/wat.

If we compare situations that are inducing the same average scattering per atom, that is for
Γsc,tot constant, we have:

κ ∝ w2
eff

w2
atwph

�
Nat =

wph

w2
at + w2

ph

�
Nat. (6.32)

This equation is plotted in figure 6.8 as a function of wph/wat. It presents a maximum for
wph = wat that is the optimal situation. In addition, equation 6.32 indicates that the signal-to-
noise increases as the optical density. We underline that an optical cavity effectively increases
the optical density of the sample, and will then increase the signal-to-noise of the measurement.

The optimal situation is then to have a sample as dense as possible and to adjust the optical
waist on the atomic waist.

6.2 Non demolition measurement of the atomic sample

6.2.1 Dispersive spectroscopic measurement
Because of the low power/destructivity of the probe, we are able to realize on-resonnance dis-
persive measurement on the MOT. For the signal presented in figure 6.9, the probe is frequency
swept over 20 MHz in 2 ms around the atomic resonance. The measurement is realized. The
fitting procedure on the data gives a linewidth Γ = 2π × 9.65± 0.1 106 rad.s−1, larger than the
natural linewidth of 2π×6 106 rad.s−1. As the measurement is realized directly on the MOT, we
believe that this enlargement is essentially due to the magnetic gradient that splits the Zeeman
sublevels.

6.2.2 Probe induced destructivity
In measurement induced squeezing experiments, the probe induced spontaneous emission is
among the limiting factor to reach highly entangled states [Echaniz 05]. In order to quantify the
destructivity in our detection set-up, a careful study has been devoted to measure the sponta-
neous emission rate induced by the probe. Our goal in this study is to check that the spontaneous
emission rate of the different frequency components of the light is as expected.
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Figure 6.9: Spectroscopy on the MOT
The probe is scanned through the resonance. This spectroscopy is realized on the transition

|F = 1� → |F � = 2�. The absolute value of the frequency is not calibrated.

The measurement uses the probe both to induce and to measure the spontaneous emission
rate. In that purpose, the atoms are prepared in the |F = 1� hyperfine ground state in the dipole
trap. The dipole trap is used here to create a dense and well delimited atomic cloud within
the probe waist. To avoid the differential light-shift induced by the 1560 nm radiation (see
section 3.2.5.2), the atoms are released from the trap. Thus, the sample is in free fall during the
measurement.

The cloud contains 4.7(3) million atoms in an initial rms size σat = 41 µm and expands due
to a nonzero temperature of 55(5) µK. The positions adopted for the optical frequencies with
respect to the atomic transitions are presented in figure 6.3a. The modulation frequency is fixed
to 2.808 GHz, the detuning (δ) of the probing sideband with respect to the atomic transition is
changed by moving the absolute frequency of the carrier. As a consequence, the demodulation
stays on the same quadrature, independently from the detuning δ. The probe passes on the
atoms only once and has a linear polarization.

Spontaneous emissions induced by the probe transfer the atoms to |F = 2� where they be-
come transparent for the probe. The measured exponential decay time τ of the signal (inset of
figure 6.10) expressed as a decay rate γ = 1/(πτ) in figure 6.10 is then closely linked to the
spontaneous emission rate of the probe.

The predicted decay rate γ shown in figure 6.10 (gray zone) is calculated from the beam
waist (245 µm), the carrier power (120 µW), and the power in each sideband (76 nW) of the
linearly polarized probe, and is expressed as:

γ = γp +γCA +γexp = b2
ΓIp/(2Isat,2)

1 + 4
�

δ
Γ

�2
+ Ip/Isat,2

+
2�

i=0

bi
ΓIc/(2Isat,i)

1 + 4
�

∆i
Γ

�2
+ Ic/Isat,i

+γexp, (6.33)

where Isat,i is the saturation intensity for the π transition from |F = 1� to |F � = i� and the
Zeeman sub-levels are considered equally populated. We have Isat,0 = 16.67 W/m2, Isat,1 =
26.7 W/m2 and Isat,2 = 61.23 W/m2. The branching probabilities bi to spontaneously scatter
from |F � = i� to |F = 2� are b0 = 0, b1 = 1/5 and b2 = 1/2. Ip = 2Pp/(πw2) is the sideband
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Figure 6.10: Destructivity as a function of probe detuning.
Probe induced scattering rate. The red dashed line represents the theoretical decay rate. The
only adjustable parameter is the expansion rate of the cloud (γexpansion). In the inset the contin-
uous measurement of the decay and its exponential fit at δ = 4.81Γ is shown.

intensity while Ic is the carrier intensity, ∆i = 2.808+∆2i GHz is the carrier detuning from the
transition and ∆2i is the angular frequency difference between |F � = 2� and |F � = i�. γexp =
120 Hz is a constant to take into account the signal loss due to the combination of fall and
expansion of the cloud. It is the only adjusted parameter in figure 6.10. A simulation of the loss
of signal with the expansion gives a decay rate of 159 Hz, showing good qualitative agreement
with the value found for γexp.

The gray zone in figure 6.10 accounts for uncertainties in the experimental parameters eval-
uation, and shows that the model used well describes the spontaneous emission. Figure 6.10
shows that, whereas the probe is very weak compared to the carrier, it induces more spontaneous
emission for δ < 5Γ in this specific experimental realization.

6.2.3 Non-demolition measurement of Rabi oscillations.

Microwave driven Rabi oscillation is a well understood physical phenomenon and one of the
main examples of coherent manipulation. It is therefore very convenient to precisely character-
ize how a non-destructive probe affects the oscillating system [Windpassinger 08a, Windpassinger 08b,
Chaudhury 06] .
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6.2.3.1 Non-demolition measurement of the oscillations

The atomic system is prepared in the hyperfine ground state |F = 1, mF = 0�. At t = 0,
the atoms are released from the MOT and a microwave driven Rabi oscillation starts between
|F = 1, mF = 0� and |F = 2, mF = 0�. A magnetic bias field of 0.5 G is applied along the
vertical axis so that other Zeeman transitions are off-resonance. The cloud with an initial rms
size of σat = 150 µm contains ∼ 107 atoms and expands with a temperature of 80 µK. The
probe used in this experiment has a waist of wph = 800 µm and delivers pulses of 1.25 µs every
10 µs or 20 µs with a carrier power of 70 µW and a sideband power of 90 nW. As described in
figure 6.11a, one sideband is detuned by δ from the |F = 2� → |F � = 3� transition whereas the
carrier is 2.5 GHz away from the resonance. Hence, the configuration is probing the population
in the |F = 2� state. In this experiment, the probe is retroreflected and the polarization is rotated
by a λ/4 placed close to the retroreflecting mirror, realizing a lin perp lin probing. In addition,
the quantization axis was defined at 45° from both linear polarization. Hence, the polarization
on the sample is essentially a balanced superposition of all angular momentum (σ±, π).

Figure 6.11 shows two examples of these real time measurements of the atomic evolution
obtained in a single shot. Figure 6.11b was taken with a probe detuning of 7.9Γ and shows a
trace of Rabi oscillations undergoing decoherence. Figure 6.11c, which was taken for a detun-
ing of 0.8Γ, presents an up-lift of the average oscillation. This effect is qualitatively explained
by taking into account the probe induced spontaneous emission which transfers atoms from
|F = 2, mF = 0� to |F = 2, mF �= 0�. There, the atoms still contribute to the detected signal
while being off resonance from the microwave excitation.

Figure 6.12a presents the Rabi frequency difference (δΩR = ΩR,10µs − ΩR,20µs) of two dif-
ferent pulses repetition times of 10 µs and 20 µs as a function of detuning. The Rabi frequency
is obtained by fitting the first 800 µs of the oscillation where the expansion has little effect.
It clearly shows that the probe light modifies the Rabi frequency (ΩR ∼ 6.6 kHz). For the
experimental parameters cited above, the carrier induces a light-shift of ∆EC/h ∼ 2 kHz for
a 10 µs pulse repetition time while the sideband light-shift is below 380 Hz for the smallest
detuning considered. The difference in Rabi frequency calculated from the carrier light-shift
is δΩR = 227 Hz, in reasonable agreement with the 197 Hz average of figure 6.12a. In addi-
tion, from the fitting procedure, we extract a detection SNR=1 for a destructivity of 2.6 10−6

scattering event per atom.
The damping rate β presented in figure 6.12b describes an exponential damping of the Rabi

oscillations and is the sum of three independent terms:

β = βspont + βshift + βelse, (6.34)

where βspont represents the damping of the oscillation by the spontaneous emission process of
both the carrier and the sideband, βshift stand for the light-shift inhomogeneity of the light Gaus-
sian profile which is essentially limited to the carrier effect and βelse are the probe independent
decoherence effects such as the microwave inhomogeneity or the expansion of the cloud.

Inhomogeneous light-shift.

The carrier light-shift inhomogeneity βshift contributes to the damping rate of the oscillations

by the Rabi frequency dispersion ∆ΩR =
�
�Ω2

R� − �ΩR�2 it causes on the size of the sample.
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Figure 6.11: Non-demolition measurement of the atomic population in |F = 2� when Rabi oscillations
are driven in the atomic sample.
The probing sequence is realized with a 1.25 µs long pulse repeated every 10 µs. Each graph is

realized in a single experimental cycle. The detuning of the probe to the transition is set to
7.9Γ (b) and 0.8Γ (c). The dashed black line helps as a guide for the eyes.
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Figure 6.12: Dependence of the Rabi oscillation parameters from the probe detuning.
(a) Rabi frequency difference of the two set of pulse repetition time of 10 µs (20 µs). (b)

Damping rate of the coherence. In red open diamond (blue plain square) data with a repetition
time of 10 µs (20 µs) are presented. The solid lines are the expected decay rate taking into

account spontaneous emission, inhomogeneous light-shift and the expansion. The dashed lines
are the same without the spontaneous emission.
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For the following calculation, we consider a Gaussian optical and atomic profile with respective
waist wph and wat = 2σat. An atom placed at a position x, y in the Gaussian optical profile will
oscillate with a Rabi frequency:

Ωeff(x, y) =

�

Ω2
R +

∆E2
C

�2
e
− 4(x2+y2)

w2
ph , (6.35)

and the mean value of the Rabi frequency is obtained by:

�ΩR� =
1

Nat

∞�

x,y,z=−∞
Ωeff(x, y)ρ0e

− 2(x2+y2+z2)

w2
at dxdydz (6.36)

As the inhomogeneity is measured by the probe itself, it is not the full inhomogeneity that is
measured, but only its value weighted by the optical profile:

�Ωmes
R � =

23/2

π3/2ρ0I0watw
(0)
eff

2

∞�

x,y,z=−∞
I(x, y)Ωeff(x, y)ρ0e

− 2(x2+y2+z2)

w2
at dxdydz (6.37)

and in the limit ∆EC/(�ΩR) � 1, we have:

�Ωmes
R �2
Ω2

R

= 1 +

�
∆EC

�ΩR

�2
�

w(1)
eff

w(0)
eff

�2

− 1

4

�
∆EC

�ΩR

�4



�

w(2)
eff

w(0)
eff

�2

−
�

w(1)
eff

w(0)
eff

�4


 (6.38)

where the effective waists are given by:

w(0)
eff =

�
1

w2
ph

+
1

w2
at

�−1/2

, (6.39)

w(1)
eff =

�
3

w2
ph

+
1

w2
at

�−1/2

, (6.40)

w(2)
eff =

�
5

w2
ph

+
1

w2
at

�−1/2

. (6.41)

From there, it comes the dispersion of the Rabi frequency:

∆Ωmes
R =

∆E2
C

2�2ΩR

����
�

w(2)
eff

w(0)
eff

�2

−
�

w(1)
eff

w(0)
eff

�4

=
α∆E2

C

2�2ΩR
. (6.42)

Using the experimental parameters given above, we find α = 0.162 which is used for the
theoretical curves plotted in figure 6.12b. The offset is adjusted on the data and gives βelse =
90 Hz.
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Spontaneous emission rate
The spontaneous emission rate βspont for atoms in |F = 2� is calculated similarly as in equation
6.33:

βspont =
ΓIp/(4Isat,2)

1 + 4
�

δ
Γ

�2
+ Ip/Isat,2

+
2�

i=0

ΓIc/(4Isat,i)

1 + 4
�

∆i
Γ

�2
+ Ic/Isat,i

+ γexp. (6.43)

Here, there is no need to consider the branching ratios since each spontaneous event makes
the system decohere. Since the atoms oscillate during the measurement between the two states
|F = 1� and |F = 2�, a factor 1/2 has been applied in equation 6.43 to take into account for the
effective time the atoms spend in |F = 2�.

The sum of the three damping coefficients reproduces well the observed behavior. Close to
resonance, the damping of the oscillation is dominated by spontaneous emission events from
the sideband. This study shows that whereas the spontaneous scattering events can be domi-
nated by the sideband contribution, the carrier in a heterodyne detection still plays a role by
the inhomogeneous light-shift it induces on the sample. A complementary study of the probe
induced light-shift can be found in [Windpassinger 08a] where a two colors Mach-Zehnder in-
terferometer was used to realize the measurement.

6.2.4 Interferometric phase in a spin-echo sequence
The following experiment aims at the nondemolition measurement of the atomic state during an
interferometric sequence. We are particularly interested in the evolution in the equatorial plane,
i.e. the evolution of the interferometric phase. It is usually stated that the superposition state
of an interferometer cannot be measured without blurring the fringes. Indeed, for example in
Young’s slits experiment, if we know by which slit the particle passed, no interference will be
observed on the screen. This is only true for an infinite signal-to-noise where we know with
probability 1 that the particle passed in one or the other slit. In the general case, a weak mea-
surement can be realized on the system and give some information on the interferometric state
without a complete destruction of the coherence.

In the following experiment, the atoms are initially prepared in the |F = 1, mF = 0� state
and probed in the configuration described in figure 6.3b . The interferometer is a π

2 − π − π
2

spin-echo sequence. Because the atoms are released, the sequence was run in less than 500
µs to avoid loss of signal due to the expansion. The π pulse has a duration of 74.5 µs. The
intermediate π pulse allows us to map the inter-state phase on the measured observable �Jz+ �N/2
(z-axis in the Bloch sphere - figure 6.13c). To modify the inter-state atomic phase, the frequency
of the microwave driving field is scanned with respect to the ground state hyperfine transition.
Figure 6.13a shows the traces of the interferometer acquired in real time for different microwave
detunings.

To quantitatively understand the observed behavior, we use the Bloch sphere representation
introduced in section 5.1.1. In the present case, the interaction is sequentially governed by two
different Hamiltonians:

• H = �δ �Jz +�ΩR
�Jy, when the microwave is shined on the atomic sample (noted (1) in the

figures). This evolution generates a rotation of the Bloch vector around the axis (0, ΩR, δ)
with angular frequency

�
Ω2

R + δ2,
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Figure 6.13: Spin-echo sequence.
(a) Non-demolition measurement during the interferometric sequence. Each curve is the

average of three repetitions. The measurement uses 1.25 µs detection pulses repeated every
10 µs. The different curves are obtained by changing the microwave frequency. The

microwave detuning from the atomic transition is 0 Hz (red curve), 1 kHz (blue curve), 1.2 kHz
(green curve) and 1.8 kHz (black curve). The colors in (b) and (c) refer to the same microwave
detuning. (b) Simulation of the interferometric state. (c) Trajectories of the atomic state on the
Bloch sphere. (d) Absolute value of the amplitude of the intermediate π pulse. The red dots are

extracted from the fitted data whereas the black dashed line is the expected amplitude.
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• H = �δ �Jz, which is the free evolution when the microwave is turned off. (noted (2)
in the figures). On the Bloch sphere, the state precesses around the z axis with angular
frequency δ.

The simulation of these rotations reproduces very well the observed behavior (figure 6.13b-
6.13c).

The amplitudes of the intermediate π oscillations were extracted from the traces and com-
pare well with the predicted ones (figure 6.13d). This study shows that the superposition state
of an interferometer can be measured without necessarily blurring the fringes. The weak mea-
surement that was presented here does not strongly projects the interferometric state.

Moreover, in a usual interferometric sequence, the atoms are lost after the destructive mea-
surement. With such a nondemolition measurement at the end of the sequence, the atoms can
be reused so as to increase the duty cycle of atomic interferometers [Lodewyck 09].

6.2.5 First study of the atomic noise
In the previous sections, we described the ability of the set-up to probe atomic states in the weak
coupling regime. Meaning that we are able to extract a signal without creating much decoher-
ence in the sample. This allows us to repeat measurements on the same sample [Andrews 96,
Savalli 99]. This is a necessary condition to generate spin-squeezed atomic states, but it is not
sufficient. Indeed, it should also be shown that if the number of photon per pulse is increased,
i.e. that the optical shot noise is lowered, one measures the atomic shot noise distribution.

6.2.5.1 Atomic noise contribution

The atomic noise of the population difference after a π/2 pulse is the exact equivalent of the
photonic noise that is found at the output of a beam splitter in optics. It arises from the indepen-
dence of the particles that choose in between the two output modes without being affected by the
other particles. Hence, for the atomic noise, it is expected to measure Poissonian fluctuations
with a standard deviation:

σat =
�

Nat. (6.44)

To measure such a noise of the population difference, the scheme proposed is described in
figure 6.3c.

The atomic state considered is a coherent superposition of |F = 1, mF = 0� and |F =
2, mF = 0� with atomic population N1 = NF=1,mF =0 = Nat

2 (1 + �) and N2 = NF=2,mF =0 =
Nat
2 (1− �).

Considering the case where the carrier accumulates no phase shift and where each sideband
is only sensitive to the closest hyperfine ground state, the atomic phase shift contribution are
given by equation 6.25:

φ0 = 0 (6.45)

φ1 =
1

��0
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w2
at + w2

ph
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����
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�2
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∆2
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, (6.46)
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��0
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2
�2
q

∆2,F �

∆2
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. (6.47)
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Because the detunings ∆F=1,F � and ∆F=2,F � are of opposite sign, it is possible to choose the
position of the carrier and the modulation such that :

�

F �,m�
F

���
�
F �, m�

F |�dq|1, 0
����

2
�2
q

∆1,F �

∆2
1,F � + γ2

= −
�

F �,m�
F

���
�
F �, m�

F |�dq|2, 0
����

2
�2
q

∆2,F �

∆2
2,F � + γ2

= D2. (6.48)

From equation 6.6 and 6.9, the signal detected is:

S = ηβPopt∆N
D2

��0(w2
at + w2

ph)
, (6.49)

where ∆N = NF=2,mF =0 − NF=1,mF =0 is the population difference between the two ground
states. The detected signal is then sensitive to the atomic population difference and its standard
deviation should be proportional to

√
Nat.

6.2.5.2 Classical noise

In section 6.1.3, we have emphasized that the sensitivity of our detection scheme to optical
classical noise such as length fluctuations was very much suppressed. But what happens with
the atomic classical noise ?

First of all, in experiments, there are shot-to-shot fluctuations in the atom number Nat. In
the best case, these fluctuations are Poissonian fluctuations in

√
Nat. In the case where the pop-

ulation difference is probed, the detection is insensitive to the initial atom number fluctuations
at first order.

Nevertheless, some classical noise can be mediated by the atomic sample. We consider for
example frequency noise on the carrier. In section 6.1.3.2 we argued that this noise should be
rejected, but it was without counting on the frequency dependence of the light-atoms coupling.
Hence, if we consider a change of the carrier frequency by δω, then the side-band detuning
∆i,F � with respect to the atomic transition are modified in equation 6.48 by:

∆1,F � → ∆1,F � + δω, ∆2,F � → ∆2,F � − δω. (6.50)

For far detuned sidebands ∆i,F � � γ, it results in a change of the coupling D2
i of each side-band

(i) to the atomic state:

D2
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= D2 − δωK1, (6.53)
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and,
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= D2 + δωK2. (6.56)

The detected signal has now a contribution that is directly proportional to the total number
of atoms:

S = ηβPopt
1

��0(w2
at + w2

ph)

�
∆ND2 −Natδω(K1 + K2)

�
. (6.57)

In conclusion, in the detection of the atomic population, we expect three kinds of noise
behavior:

• The detection is limited by the optical shot noise δSopt shot and no dependance on the
atomic number is expected.

• The detection is limited by the atomic shot noise δSat shot and the standard deviation of
the signal scales as

√
Nat.

• The detection is limited by classical noise δScl and the standard deviation scales as Nat.

In general the variance of the noise δS2 is the sum of these three contributions::

δS2 = δS2
opt shot + δS2

at shot + δS2
cl. (6.58)

6.2.5.3 First measurement

To evaluate the contributions of the different noise sources, a first series of measurements was
led on atoms released from the MOT. A cloud containing 7×107 atoms in the |F = 1, mF = 0�
state is continuously probed with the frequency configuration described in figure 6.3a. As it
has been seen in section 6.2.2, the probe transfers the atoms in the |F = 2� states and is no
more affected by their presence. In the data presented in figure 6.14, the carrier power was
continuously shined with 500 µW (shot noise limited detection) and the sideband was turned
on at time t = 0 with a power of ∼ 500 nW and detuned by 21.4 MHz from the transition
|F = 1� → |F = 2�.

The transfer of atoms leads to an exponential decay of the atomic population in |F = 1�
presented in inset of figure 6.14. Looking to the variance δS2 of the signal as a function of the
height in the exponential over 100 repetitions of the sequence, directly measures the standard
deviation δS as a function of the atom number. For that purpose, the exponential decay traces
are subdivided in steps of 215 µs. The mean value of the signal of the k-th step of the i-th
repetition (one shot) is noted S(i)

k (see figure 6.14). Figure 6.14 shows the variance calculated
over the repetitions δV (k)2 = Var(S(i)

k

2
) as a function of the mean value of the exponential for

the k-th step V (k) = �S(i)
k �i.
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Figure 6.14: Variance of the signal δV 2 = δS2 as a function of its mean value �V � = �S� ∝ N .
The probe is 21.4 MHz away from the resonance. The data presented are given for slices of

τp = 215µs. The blue line is a linear fit on the first 10 points and the green curve is a quadratic
fit on the whole set. In the inset a typical exponential decay curve is presented with the step

decomposition for the data analysis.

Model We note δV (0)2 = Var(S(i)
0

2
) the initial variance on the preparation of the sam-

ple, which can be either due to atomic shot noise or to classical atomic noise. If we as-
sume a deterministic exponential decay with time: V (t) = V0e−t/τ , the variance becomes
δV 2 = δV (0)2e−2t/τ = δV (0)2/V 2

0 × V (t)2 and scales quadratically with V .
For low values of the signal V , the deterministic character of the decay is blurred by the Poisso-
nian noise induced by the spontaneous emission process. Indeed, an atom excited to |Fp = 2�
as a probability 1/2 to fall back in |F = 1�. Hence, for low values of V the variance δV 2 should
scale linearly with V, indicating for the Poissonian nature of the distribution .

The data and the fit that are presented in figure 6.14 suggest that we have indeed a quadratic
behavior for the high values of V. The low values seem to present a linear behavior that would
be the signature of a Poissonian noise, but the quality of the data does not allow us to be sure
about it.

To confirm this result, similar measurements are planned to be done on the dipole trap where
the atomic density is much higher. In addition, it is planned to measure the population number
difference that is insensitive to the fluctuations of the initial preparation. In these conditions,
it is expected to see a linear behavior of the variance of the signal with the number of atoms,
which is the signature of the atomic shot noise.
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6.3 Perspectives: High SNR cavity measurement
As shown in equation 5.108, [Oblak 05] the optimal level of squeezing ξ2 = 1/(1 + κ2) is
related to the signal to noise ratio (κ) of the measurement [Vanderbruggen 11]:

κ2 =
φ2NatNp

2
= µρ0η (6.59)

where φ is the single atom induced phase shift, µ is the detuning dependence of the SNR , ρ0

is the resonant optical density and η is the single atom spontaneous emission probability for a
pulse of Np photons. The expression of µ and η in the configuration depicted in figure 6.3 are
given by [Vanderbruggen 11]:

µ =
S2

L , and η =
ρ0

Nat

C2Np

2
L, (6.60)

where

S ≈ S1 =
�
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γ∆1F �

∆2
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SFF � = −
�

F �

γ∆2F �

∆2
2F � + γ2

SFF � = −S2, (6.61)

L =
�

FF �

γ2

∆2
FF � + γ2

SFF � . (6.62)

SFF � is the oscillator strength of the transition F → F � and ∆FF � is the detuning of the optical
frequency with respect to the F → F � transition. Si describe the dispersive coupling strength
of each sideband to the closest transition i which scales as 1/∆ and L is the normalized spon-
taneous rate that scales as 1/∆2.

Hence, the detuning dependence µ is bound to 1 and there is no need or interest to work at
very large detuning since µ −→

Γ/δ→0
1. In addition, the coherence loss due to spontaneous emission

cannot be avoided since η enters directly in the equation of κ. Nevertheless, using a cavity to
strengthen the atom-light interaction increases the coupling φ by the cavity finesse F . This
results in a SNR enhancement proportional to

√
F [Lye 03] for an overall given spontaneous

emission rate (η ∝ Ns).
To prevent for the light-shift effect of the carrier, the measurement can be realized in reflec-

tion [Teper 08]. In the scheme presented in figures 6.15 and 6.16, the detection realized with
the two sidebands, that measures the population difference is shot noise limited because of the
strong local oscillator. In addition, the effective interaction between atoms and photons can take
advantage of the trapping and probing that exploit the same cavity mode.

In this scheme, the carrier does not enter the cavity. All the frequency components are
then no more overlapped during the propagation, and the fluctuations of the cavity length will
directly enter as noise in the detected signal. These fluctuations are even increased by the finesse
of the cavity and could be very critical.

The solution foreseen to avoid these fluctuations is to lock the carrier in between two reso-
nances. For that purpose, we exploit the specificity of our design that uses 1560 nm light that
is the half of the probing frequency at 780 nm. As presented in figure 6.16, the 1560 nm radi-
ation is locked on the cavity. A part of the signal is frequency doubled in a PPLN crystal. The
doubled 1560 nm is used both to reference the cavity lines to Rubidium through a comparison
with the repump laser and to lock the 780 nm QND probe. To reference the cavity resonance
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Figure 6.15: Scheme of the Pound-Drever-Hall like measurement method.
The carrier is locked at the center of two cavity resonances to suppress cavity noise. Each

sideband probes one of the hyperfine states.

Figure 6.16: Complete locking scheme foreseen for the QND measurement.
The trapping light at 1560 nm is locked to the cavity and doubled in a PPLN crystal to serve as
a reference for the 780 nm probing light (QND). The cavity resonance are fixed with respect to

the atomic transition by comparing the doubled light to the repumper laser.
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to the atomic structure, a slow feedback below 20 Hz is applied on the piezo of the cavity. To
reference the QND laser to the cavity resonance, a fast feedback loop locks the QND probe to
the doubled 1560. Indeed, because the 1560 nm radiation is locked on the cavity, its doubled
components also follows the cavity lines at 780 nm. Hence, by locking the QND probe to this
doubled light, the detection becomes insensitive at first order to the fluctuations of the cavity.

Nevertheless, even for a carrier that stays perfectly in between two resonances, a fluctuation
of the cavity length L by δL modifies the free spectral range (FSR) by cδL/L2. Hence the
transitions that are 2.5 FSR away from the carrier are frequency shifted by 2.5cδL/L2. Actually,
for a frequency/phase modulation, the probed cavity resonances move in opposite direction with
respect to the carrier, i.e. both goes away from the carrier or both comes closer. Hence the two
side-bands accumulate an opposite phase shift which cancels in equation 6.9. Unfortunately,
the residual amplitude modulation does not benefit from such a suppression (see equation 6.13)
and will be fully sensitive to the cavity length fluctuations.

6.4 Summary
We have presented in this chapter the apparatus that has been developed for the production of
spin-squeezed cold atomic samples in a dual-frequency high-finesse cavity. The high rejection
of optical path length fluctuations as well as the rejection of the laser noise were pointed out.
We have seen that the apparatus developed is limited by the optical shot noise of the sideband
for modulations up to a few GHz, and this for any power in the sideband.

In addition, we demonstrated the method in single pass by performing nondestructive mea-
surements of the coherent evolution of internal atomic states. From the nondestructive mea-
surement of Rabi oscillations, we have shown that the decoherence induced by the probe can
be limited by the inhomogeneous light-shift from the carrier and not by the spontaneous emis-
sion induced by the sideband. We also presented a real-time measurement of the atomic state
evolution in a Ramsey interferometer with low decoherence, where we were able to look at the
evolution of the interferometric phase.

Some first measurements of the noise have shown a contribution of the atomic noise. Nev-
ertheless, the test was not fully conclusive on the shot-noise nature of this noise, and further
measurements on a denser sample are planned. As a perspective, we emphasized on the po-
tential gain of a cavity enhanced measurement and gave the set-up foreseen for a practical
implementation insensitive to the cavity noise.
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In this chapter, we present the realization of a narrow linewidth Raman laser [Hilico 92,
Guerin 08] that uses cold atoms as the gain medium. The experiment was realized in the group
of Pr Kasevich in Stanford.

The achievement of ultra-narrow lasers is of primary importance for ultra-high spectroscopy
and metrology applications. Recent works [Meiser 09] have shown that using cold atoms in
high-finesse cavity, would allow to generate very narrow linewidth laser that would improve
the sensitivity of optical clock by two orders of magnitude. Thanks to the high-finesse cavity,
the Raman laser that is presented in the following presents such a narrow Schawlow-Townes
linewidth limit in the 100 mHz range [Grynberg 10, Schawlow 58]. Such narrow linewidths are
usually attributed to actively stabilized diode lasers [Schoof 01, Fox 03]. In addition, Raman
lasers present a narrow gain bandwidth and an easily tunable absolute frequency which has been
extensively used for the characterization of the process. The tunability of Raman gain could
be used to generate anomalous dispersion in optical cavities, and hence increase the signal-
bandwidth of gravitational wave detectors [Pati 07].

In this chapter we will shortly present the experimental apparatus and emphasize on the
relevant experimental parameter for the Raman laser. In a second part, we present the Raman
laser realized and its characterization in terms of laser threshold, laser linewidth, and at last an
interesting atomic population dependance of the laser absolute frequency.

7.1 Experimental set-up
The experimental vacuum system is composed of two chambers. One is used to generate a 2D
MOT. The jet of atoms created loads the 3D MOT centered on the linear high-finesse cavity in
the second chamber. In this section, we will present the specificities of the experimental appa-
ratus, namely the stable vacuum system, the high-finesse linear cavity and the narrow linewidth
laser system.
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(a)

(b)

Figure 7.1: The Zerodur vacuum system with the integrated linear cavity.

7.1.1 Vacuum chamber integrated cavity
The entire vacuum system is realized in Zerodur, which is a ceramic with a near-to-zero thermal
expansion coefficient (2 × 10−8 K−1). It is completely a-magnetic and then very suitable for
atom interferometry applications. The different components of the chamber are glued together.
The compactness of the design results in a very short distance between the 2D MOT and the 3D
MOT trapping region which optimizes the loading rate. The source of atoms of the 2D MOT
comes from a dispenser that is situated on the opposite side with respect to the 3D MOT. No
push beam is used in the 2D MOT set-up.

The high-finesse linear cavity has been directly integrated in the 3D MOT chamber. The
whole vacuum is pumped by a single ion pump on the 3D MOT side where the vacuum is
below 10−9 mbar. The compact opto-mechanical design is contained in the black box presented
in figure 7.2. All the beams used on the atoms arrive fibered on the structure, and all the optics
are tightly fixed to this aluminum (black) structure that surrounds the cavity. This structure
gives long term stability to the design, and reduces the optical path such that steering effects of
the beams are minimized.

7.1.2 The linear cavity
The linear cavity is made of two 10 cm radius-of-curvature mirrors that are separated by L =
10.7 cm. The cavity is then close to the confocal configuation (Fabry-Perot, see figure 3.14 in
chapter 2) where transverse modes are almost degenerate. At 780 nm the beam waist is 110 µm
at the center of the cavity where the atoms are situated. The mirrors are highly reflective at both
780 nm and 1560 nm, resulting in a measured finesse of F780 = 175,000 and F1560 = 117,000
and linewidths κ780 = 2π × 4 103 rad.s−1 and κ1560 = 2π × 6 103 rad.s−1.
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Figure 7.2: Compact opto-mechanical design.
The MOT and cavity beams reach the opto-mechanical set-up through optical fibers connected

to collimators tightly fixed to the vacuum chamber.

The longitudinal mode spacing is given by the free spectral range ∆νFSR = c/2L = 1.396
GHz, and the transverse mode spacing is ∆νtms = ∆νFSR/2 + 37.5 MHz. This results in
a spacing of 2∆νtms − ∆νFSR = 75 MHz between nearest transverse modes. This splitting
quantifies the difference with the exact-confocal geometry. Due to a small imperfection in the
cavity mirrors, the cavity is slightly astigmatic. Hence, the transverse modes TEMmn that have
the same order (n + m = Cte) are non-degenerate and their profile is given by the Hermite-
Gauss functions. For example, the TEM01 and TEM10 modes are separated by 515 kHz.
The spectral properties of the cavity are measured using the spectroscopic method described in
section 3.2.6. This method relies on the injection and frequency control of the sidebands that
are generated by frequency modulating the light that probes the cavity.

Since the vacuum chamber is entirely realized in Zerodur, the cavity length is very stable
and is tuned by controlling the temperature of the chamber. This allows to precisely set the
absolute frequency of the cavity modes.

7.1.3 The laser system
The laser system used to generate the frequencies at 780 nm for the cooling and trapping stays
all within the surface of an A4 paper. It is composed of two Littrow extended diode lasers,
spectroscopically locked to rubidium. One is on the |F = 1� → |Fp = 2� transition and is used
as a repump, the other one is locked on the |F = 2� → |Fp = 2, 3� crossover, and frequency
shifted by a double pass acousto optic modulator. To increase the power of the cooling laser,
a slave laser is optically injected and about 60 mW are available directly on the atoms for the
operation of both the 2D MOT and 3D MOT.

The 1560 nm laser

As it will be described in section 7.2, the cavity length is tracked using a laser at 1560
nm locked on the cavity (see figure 7.3). The source of the radiation is a 1560 nm Vortex
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Figure 7.3: Optical system of the Raman laser experiment.
A vortex at 1560 nm is phase locked to a scrubbing cavity. The transmitted light is amplified

and is used both to reference the cavity length through a PDH lock and doubled in a non-linear
crystal to serve as an optical pump for the Raman process.

with a linewidth of a few hundred kHz. The light of this laser is phase locked on a scrubbing
cavity that has characteristics similar to the science cavity. The transmitted light has a few kHz
linewidth, and injects a slave diode that injects a 1 W Erbium doped amplifier. The amplified
light is frequency locked to the cavity using the Pound Drever Hall (PDH) method [Drever 83b].
Instead of the usual scheme that locks the carrier to the cavity, the sideband is here injected. This
presents two advantages:

• The power coupled into the cavity can be easily changed by modifying the power in the
sideband, and the PDH beatnote always benefits from a strong local oscillator (carrier).

• The exact frequency of the carrier can be chosen independently from the cavity lines, by
modifying the modulation frequency of the PDH.

The lock on the science chamber has a slow feedback applied on the piezo that controls the
length of the scrubbing cavity and a fast correction is realized by a double pass acousto-optic.
A part of the carrier light that is not injected in the science cavity is frequency doubled in a
periodically poled lithium niobate (PPLN) waveguide crystal to generate 780 nm light. As only
a few hundred µW are obtained after doubling, the doubled 1560 nm light is injected in a slave
diode that gives ∼ 7 mW of light. This light at 780 nm has a linewidth below 2π 6 103 rad.s−1

and is referenced to the cavity length. If the cavity length changes, the modes of the cavity at
780 nm and the doubled 1560 nm are shifted by the same amount.
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Figure 7.4: Frequency scheme and spatial modes of the Raman laser.
The Raman pump drives a two photons process that is completed down to |F = 1� by a cavity

mode.

7.2 Raman laser
The possibility to engineer the laser gain medium is an interesting feature of Raman lasers that
can emit at any frequency. In addition, the large experimental control of the parameters in
cold atomic physics is advantageous to precisely characterize the gain mechanism and the laser
limitations.

7.2.1 Principle
The system under study is a magneto-optical trap operated at the center of the high finesse linear
cavity, and an off-resonant laser called Raman pump is shined on the atoms of the MOT.

The atoms undergo a two-photon Raman transition driven by this frequency tunable pump
laser which excites the atoms from the |F = 2� hyperfine ground state to an intermediate virtual
state. The two photon transition is completed by the emission of a photon in an allowed cavity
resonance which has a frequency that matches the transition between the virtual level and the
|F = 1� hyperfine ground state. The atoms are driven back to |F = 2� by the repump light
associated with the 3D-MOT. Hence, the repumper ensures the inversion of population and the
continuous operation of the laser. The relevant atomic energy levels and laser frequencies are
shown in figure 7.4a.

In practice, an interesting feature is given by the Raman pump that is frequency referenced
to the cavity length. If the cavity changes its length, because for example of thermal drifts,
the Raman pump follows the frequency drift of the cavity mode that completes the two-photon
process. Hence, when a given resonant condition of the two-photons process is found, changing
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Figure 7.5: Threshold of the laser

the cavity length preserves the resonance condition and allows us to scan the detuning ∆ of the
virtual state with respect to the |F = 2� → |Fp = 2� transition.

To reach a resonant condition, the frequency of the Raman pump is arranged so that its
separation from the cavity mode is exactly the hyperfine ground state splitting. In that purpose,
both the 1560 nm carrier tunability from the cavity resonance (see section 7.1.3) and an acouto-
optic modulator in double pass are used.

The cavity mode that completes the process can be either a fundamental mode or a higher
transverse mode. In figure 7.4b four transverse profiles of the output laser are shown including
the TEM00, TEM01, TEM10, and both the TEM01 and TEM10 that emit at the same time.

7.2.2 Laser characteristics
7.2.2.1 Laser threshold

In order to prove that this laser is indeed a Raman laser and not just a Raman two-photon
transition that would emit in the cavity mode, we measured the output power of the cavity as
a function of the atom number (figure 7.5a) and of the pump power (figure 7.5b). The two
signals present clear thresholds, which correspond to the point where the losses of the mirrors
are overcome by the gain of the medium. These thresholds prove that we are in the presence of
a lasing behavior.

7.2.2.2 Raman gain profile

Usually Raman two-photon transitions, are driven by two coherent laser fields. As a conse-
quence, one could expect the laser to show a very narrow transition gain profile, of the order of
the cavity linewidth (∼ 2π × 4 103 rad.s−1). In figure 7.6 is presented the output power of the
cavity when the Raman pump is scanned through the resonance condition. The three structures
are three identical sweeps across the resonance. In this particular case, we were addressing
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Figure 7.6: Output power of the cavity when the Raman pump laser is scanned across the resonance
condition.

the first transverse modes (TEM10 and TEM01) separated by 515 kHz. This explains the sub-
structure in the profile. Each bump is due to one of the two modes. When the gain is tuned in
between the modes, we have mode competition and both modes can emit together (see figure
7.4b). The Gaussian rms size of the individual bump is 1.1± 0.1 MHz, which indicates a much
broader gain profile than the expected kHz. This can be explained by the fact that the atoms are
subjected to the MOT light. They are then continuously cycling in a saturated transition. In that
case, the ground state |F = 2� can be described as a state with an effective linewidth that is of
the order of the excited state linewidth (∼MHz).

In addition, to check on the gain profile, we artificially enlarged the Raman pump using the
double pass acousto-optic modulator (figure 7.3) and saw that the laser output power was inde-
pendent of the Raman pump linewidth. This is in agreement with the large gain profile observed.

7.2.2.3 Laser linewidth

Another very interesting feature is given by the Schawlow-Townes linewidth limit of the laser
[Grynberg 10, Schawlow 58]. This limit gives the smallest linewidth achievable:

∆νST =
2πhνκ2

Pout
≈ 100 mHz (7.1)

Thanks to the high-finesse of the cavity, this linewidth is particularly small. The measurement
of such a low linewidth is an experimentally challenging problem. The usual method consists
to compare two identical lasers. Obviously this was not possible for us since we would have
needed a second identical vacuum chamber. Instead, we looked to the beatnote of two transverse
modes that were emitting simultaneously, namely the TEM10 and TEM01. We underline that this
is not a measurement of the laser linewidth since common noise is rejected in such a procedure.

Since the transverse modes are spatially orthogonal, both modes were partially injected in
the same single mode fiber and the beatnote was recorded on an Single Photon Counting Module
avalanche photodiode. The recorded beatnote linewidth is presented in figure 7.7. The result is
a 117 Hz Lorentzian linewidth for one mode. This "high" value for the linewidth is attributed
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Figure 7.7: Beatnote of the TEM10 and TEM01 modes.
The beatnote of the two modes has a Lorentzian linewidth of 234 Hz, leading to 117Hz

linewidth for one laser.

to the transverse modes spatially addressing different parts of the atomic cloud. Hence, spatial
fluctuations of the atom number which shift the cavity resonant frequency of each modes, are
not common mode noise and can then enlarge the beatnote.

The problem of spatial fluctuations is typical of a MOT operation where the particles are in
motion. Using localized trapped ions as a gain media could in principle solve this problem.

7.2.2.4 Frequency shift of the laser

The Rabi frequency of a two-photon process scales as :

Ω =
Ω1Ω2

2∆
(7.2)

where ∆ is detuning of the driving field from the atomic transition, and Ω1/2 are the one photon
on-resonance Rabi frequencies induced by the Raman pump and the cavity field. Hence, to
keep an efficient process, ∆ should be relatively small. As a consequence, the cavity mode that
completes the two photons process is close to the atomic transition and can be frequency shifted
by the atomic population that acts as a refractive medium. In addition, this frequency shift is
emphasized by the finesse of the cavity, or in other words by the single photon Rabi frequency
g [Miller 05]. Using the notations of strongly coupled cavities, the cavity mode frequency shift
is ∆f = Natg2/∆ and in our configuration we have g = 116 kHz.

This is exactly what is shown in figure 7.8 where the absolute frequency of the mode is
shifted as the atom number increases. Experimentally, the absolute frequency of the laser is
obtained by beating the output field of the cavity with the doubled 1560 nm used as a local
oscillator. The beatnote at 6.834 GHz is observed on a high frequency photodiode. We underline
again the high sensitivity of heterodyne detections since in this laser the output power of the
cavity is ∼ 1 nW.

As we compare the doubled 1560 nm that is referenced to the length of the cavity and the
cavity mode at 780 nm, a drift of the beatnote is a signature of a frequency dependent shift.

Figure 7.8 shows that for two opposite detunings, the cavity mode is shifted in opposite
directions. This indicates that the shift is related to the population in |F = 1�.
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FIG. 3. Lasing mode frequency shift as a function of Neff for (a) red and (b) blue detuned light.

The opposite slopes are due to the positive and negative susceptibilities associated with the red

and blue detuned configurations respectively. Relative positioning of the two curves is arbitrary.

increasing the gain and further increasing the lasing and the Stark shift until equilibrium

is reached. For negative δ the Stark shift will decrease the gain, resisting the increase in

lasing.

The proposed mechanism can be modeled with a three level system [levels |1�, |2�, |3� in

Fig. 1(a)], disregarding the details pertaining to the repump and cooling beams, and taking

their effects into account phenomenologically by adding a population transfer rate Γ12 from

|1� to |2� and additional decoherence rates. The gain associated with an ensemble of atoms

can be calculated by solving for the steady state values of the density matrix elements in a

standard fashion [11]. The quantity of interest is the density matrix element ρ31 giving the

atomic polarization at the lasing transition frequency ωl, which can be expressed as a sum

of one-photon and two-photon terms:

ρ(1ph)
31 =

1

2 (∆ + iγ31)
(ρ33 − ρ11)

ρ(2ph)
31 =

|Ωp|2

4∆2

1

2 (−δ� + iγ21)
(ρ22 − ρ11)

ρ31 =
�
ρ(1ph)

31 + ρ(2ph)
31

�
Ωce

iωlt (1)

Here (ρ33 − ρ11) and (ρ22 − ρ11) are population differences, γ31 and γ21 are coherence

decay rates, Ωp and Ωc are the Rabi frequencies associated with the pump and cavity lasing

transitions, δ� = δ − (δac1 − δac2) is the effective two-photon detuning with δac1 = |Ωc|2
4∆ ,

δac2 = |Ωp|2
4∆ being the AC Stark shifts, and (ρ22 − ρ11) = 1/ (1 + s) with s = γ21

Γ12

|Ω|2
δ�2+γ2

21

given in terms of the two-photon Rabi frequency Ω = −Ω∗
pΩc

2∆ . In solving the density matrix

equations we utilize simplifying assumptions based on ∆ � γij, Γij, δ. The imaginary part

7

Figure 7.8: Absolute frequency drift as a function of the effective atom number for (a) red and (b) blue
detuned light.
The opposite slopes are due to the positive and negative susceptibilities associated with the red

and blue detuned configurations respectively. The relative position of the two curves is
arbitrary.

Concerning the curve (a) in figure 7.8, the detuning ∆ = −321 MHz indicates that the cav-
ity mode is on the red of all the atomic transition. In equation 6.20, we find a refractive index
above 1 (∆ = −∆F,F �). Hence, the effective length at 780 nm will increase with the number of
atoms in |F = 1�, and the absolute frequency of the mode will then decrease as seen in figure
7.8. The same reasoning can be realized for the opposite detuning (curve (b)).

In figure 7.8, we observe that the slope has a higher absolute value for (b) than for (a).
Regarding the excited state hyperfine splitting in figure 7.4a, we expect the coupling of the
cavity mode to the atomic state to be higher in (a) than in (b) since |F = 1� is only coupled
to |Fp = 0, 1, 2�. This contradiction actually indicates that the atoms in |F = 2� play a role
in this frequency shift. Indeed, for the case (b), the cavity mode is blue detuned both for the
atoms in |F = 1� and for the atoms in |F = 2�. On the contrary, for (a) the cavity mode is red
detuned with respect to atoms in |F = 1� and blue detuned for the atoms in |F = 2�, resulting
in opposite shifts, in agreement with the reduced slope of figure 7.8(a).

This also brings to light the solution to suppress such a shift: one should tune ∆ in a position
where both shifts cancel, i.e. find the 0 of refractive index.

We consider now the threshold scan presented in figure 7.9. Each curve is a measurement
of the threshold of the TEM01 and TEM10 modes as a function of the Raman Pump. These
thresholds are parametrically plotted against the detuning ∆ at which they were taken. Inter-
estingly, we see a dependance of the shape of the threshold with ∆. This dependance can be
qualitatively understood by the single photon spontaneous emission rate. For a small detuning
∆, the Raman pump depumps the atoms from |F = 2� to |F = 1�. Hence it increases the
population in |F = 1� which frequency shifts the cavity mode as previously explained.

Three cases can be distinguished:

• The Raman pump is far from the |F = 2� → |Fp = 2� transition (labelled "3" in figure
7.9) and induces very little spontaneous emission. A classical threshold is expected.



190 CHAP 7 - RAMAN LASER











































Figure 7.9: Laser threshold shape as a function of the detuning ∆.
The shape of the threshold is affected by the single photon and two photon depumping rates
which are linked with the relative detuning ∆ of the Raman pump with respect to the atomic

transition.

• The Raman pump is closer to resonance (labelled "2"). The Raman pump threshold is
reached while the cavity mode is still on the lower frequency mode (e.g.TEM01). By
increasing the pump, more atoms are transferred to |F = 1� and the cavity mode shifts to
higher frequency. It first experiences the intermediate dip in the gain (figure 7.6) before
it switches to the other transverse mode (TEM10).

• For smaller ∆, the Raman pump is increased and the threshold is reached when the cavity
mode has already been shifted to the next transverse mode. No deep is present in the
threshold curve (labelled "1").

7.3 Summary
In this chapter, we have presented the experimental apparatus developed in the group of Pr.
Kasevich in Stanford. The apparatus is the fruit of many years of technical research that led to
a very compact and stable set-up.

We presented the principle of the Raman laser that we operated in the ultra-high finesse
cavity. This laser is based on a two photons Raman transition between a Raman pump and a
cavity mode.

With this laser, we demonstrated a common mode narrow linewidth of 117 Hz that could be
further engineered to reach the Schawlow-Townes limit that is below the Hz level. In the actual
set-up, it is believed that the main source of frequency noise comes from spatial atom number
fluctuations.
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At last we have shown a dependance of the cavity absolute frequency on the atom number,
and qualitatively described it by arguing on the refractive index induced by the atoms.
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Conclusion

In this thesis, we have presented the work realized towards the creation of non-classical states
of matter with high particle numbers. This work was carried out with both the intention to im-
prove the sensitivity of atom interferometers below the atomic shot-noise, but also to study the
fundamental properties of such non-classical states.

As a first PhD student on the experiment, my first task has been to design and assemble
the experimental apparatus. A system of 2D and 3D magneto-optical traps has been set-up and
allowed to load an optical dipole trap at 1560 nm. The mode that is generated by the optical
dipole trap is one of the specificities of our design: it is the mode of a crossed optical cavity.
Because of the crossed geometry, the trapping frequencies are high in all directions of space
and the cooling by an evaporation procedure can be considered. Concerning the creation of a
degenerate gas, we obtained some recent breakthrough such as the ability to load high numbers
of particles and to lower all the heating sources below the residual background collisions, but up
to now no condensed fraction has been observed. Nevertheless, the ability to trap large numbers
of particles in the dipole trap allows us to reach dense samples which can be further exploited
for the creation of highly squeezed states.

As presented in chapter four, the generation of non-classical states requires the effect of a
non-linear evolution of the atomic state. Interestingly, the measurement in quantum mechanics
and more precisely the Quantum Non-Demolition measurement offers such a non-linearity. For
the improvement of atom interferometry, the relevant observable is the population difference
between the hyperfine ground states of the system. It was shown that a dispersive measurement
that precisely evaluates the population difference realizes a QND measurement. To intuitively
understand the dynamics that leads an ensemble of independent particles to a correlated sample,
a wavefunction analysis was developed. The application of this formalism relies on a precise
description of the experimental apparatus, and has the advantage to obtain the key experimental
parameters. Using this description we studied two experimental apparatus that are the Mach-
Zehnder interferometer and the heterodyne detection. On these well known test apparatus, we
have shown that during the measurement, the variance of the atomic state decreases in a deter-
ministic way that essentially depends on the coupling strength and the contrast. In addition, the
model reproduces well the randomness of the measurement result that follows the Born proba-
bility rule.

To practically realize the dispersive measurement, we have studied and implemented a fre-
quency modulation method that has a very low sensitivity to classical noise. The key exper-
imental difficulty of this method relies on the photodetector that needs both to be shot noise
limited for a low power (< 500 µW) and to operate with a high bandwidth (2 GHz). These two
properties, that are usually not conciliable, were achieved by taking advantage of the advances
of the telecommunication technology. Applying this heterodyne detection in single pass, we
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were able to non-destructively follow an atomic sample undergoing Rabi oscillations. On this
test-bench that are the Rabi oscillations, we proved that even if the spontaneous emission in-
duced by the carrier of the frequency modulation can be neglected, the inhomogeneous light
shift generated by the carrier is our main source of decoherence for far off-resonance prob-
ing. In addition, the detection scheme was applied to follow an interferometric sequence where
it showed its non-destructive character. For the creation of squeezed states, the measurement
needs to be pushed forward to exhibit a sensitivity to the atomic shot-noise. The first series of
measurements of the atomic noise realized on a MOT have essentially shown an influence of
the classical atomic noise. The use of a denser sample and of the coupling enhancement due to
the cavity will increase the signal-to-noise ratio and should make the measurement below the
atomic shot noise possible.

Cold atoms and a high-finesse cavity are two well known systems that raise a rich physics
when coupled to each other. Going to Stanford gave me the possibility to work on an experi-
mental apparatus complementary to the one developed in our experiment. There we studied a
Raman laser that uses cold atoms as the gain medium. The atomic sample being surrounded
by a high finesse (∼105) cavity, the expected linewidth of the laser is in the 100 mHz range.
The beatnote of two transverse modes of this laser was measured to 171 Hz, without any dy-
namical stabilization. The discrepancy with the theoretical limit is attributed to atom number
fluctuations. As the lasing cavity mode is close to the atomic transitions, population fluctuations
modify the refractive index seen by the cavity mode and induce a shift of the lasing frequency.

Perspectives
This experiment that we constructed has a potential for many applications.

Obviously I hope that soon the QND measurement of large atomic sample will be realized
and that the potential of highly squeezed states will really prove valuable for the improvement
of atom interferometry. The demonstrations that have been shown all around the world were
necessary steps but an implementation on large sample will prove that the use of non-classical
states can bring a real advantage. In this perspective, our experiment already proved its ability
to a trap large number of particles. In addition, the first successful tests of nondemolition
measurement in single pass suggest a great potential for the implementation of the measurement
in the cavity.

Our wavefunction description that was applied to study the squeezing dynamics was able
to describe the generation of Schrödinger Cat states. The experimental implementation that
it suggests is no more complex than the generation of squeezed states, and only the observed
quadrature should be changed. These Schrödinger Cat states of large particle numbers are very
sensitive to decoherence and could give new perspectives to our understanding of the coupling
to the environment.

The creation of a condensate in the fundamental mode of the cavity would represent an
interesting experimental achievement and would strongly reduce the constraint on the optical
power necessary for its obtention. This gain that is usually of no interest in a laboratory may
prove determinant for the application of atom interferometry and more generally of cold atomic
physics in space. In addition, the ability to split and recombine the condensate at will using the
transverse modes may give the possibility to carry a wide range of experiments on the phase
coherence of the sample.
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Similarly to the experiment performed in Stanford, our experimental apparatus in France
has also shown some lasing properties. The lasing process has not been identified yet, but
our design that does not involve standing waves can lead to interesting processes such as the
collective atomic recoil lasing [Zimmermann 04].
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Rubidium D2 transition
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A P P E N D I X B

Phase and frequency modulation

In experimental physics, modulation techniques are very often used for precision measurement.
They present the advantage to transfer the measurement in AC where they become insensitive
to low frequency noise. When it comes to optical frequency, one uses acousto optics modulator
(AOM) or electro-optics modulator (EOM) to generate the modulation. The first shift the fre-
quency by diffracting the light on a refractive index grating which was creating by an acoustic
wave. The second modulate the refractive index on the optical path and then the phase of the
optical beam. The EOM or Pockels cell are then very well adapted to create phase modulation.
The light electric field E after modulation at Ω writes:

E = E0 cos (ω0t + Φ(t)) (B.1)
= E0 cos (ω0t + β cos Ωt). (B.2)

The equation B.10 can be rewritten as a serie including a Bessel decomposition:

E = E0

∞�

n=−∞
Jn(β) cos (ω0t + nΩt), (B.3)

where Jn are the first kind Bessel functions

Jn(x) =
�x

2

�n
∞�

p=0

(−1)p

22pp!(p + n)!
x2p. (B.4)

The expression B.3 can be demonstrated by a careful decomposition in series of eiω0t+iβ sin (Ωt).

With an EOM, β is the modulation depth and is proportional to the applied electric field and
to the relevant element of the electro-optical tensor of the material [Jonathan 05].

For small modulation depth β << 1, one has:

J0(β) = 1 J1(β) = β J−1(β) = −β, (B.5)

and the expression B.3 becomes:

E ≈ E0 (J0(β) cos (ω0t) + J1(β) cos ((ω0 + Ω)t) + J−1(β) cos ((ω0 − Ω)t)) (B.6)

≈ E0

2
eiω0t

�
J0(β) + J1(β)eiΩt + J−1(β)e−iΩt

�
+ c.c. (B.7)
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FM modulation
Frequency modulation is a particular case of phase modulation. It can be directly obtained by
modulating for example the input of a VCO. In that case one has:

E = E0 cos (Φ(t)) (B.8)

= E0 cos

�� t

0

(ω0 + ω∆ cos Ωτ)dτ

�
(B.9)

= E0 cos
�
ω0t +

ω∆

Ω
sin (Ωt)

�
(B.10)

where ωi = ω0 + ω∆ cos Ωτ is the instantaneous angular frequency. Hence, the frequency
modulation is a phase modulation with modulation depth β = ω∆/Ω.
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A P P E N D I X C

Interlude on alignement locks

Because the cavity is under vacuum, a great care has been given to the understand the critical
parameters of its injection. A lock of the geometrical injection has been foreseen, but it has
not yet been implemented. In this section we give a description of the general method which
was first presented in [Anderson 84]. The method takes advantage of the transverse mode of
the cavity and their partial coupling when the alignment is not well realized. It would be very
suitable in our astigmatic cavity were transverse direction are non degenerate and can be dis-
tinguished from each other. In the following, one consider only one transverse direction x and
only the fundamental U0(x) and first transverse U1(x) modes.

It is possible to show [Anderson 84], that an injection beam Ψ(x) translated by tx compared
to the optical axis can be decomposed on the eigenmodes of the cavity. At first order, one
obtains:

Ψ(x) ≈ A
�
U0(x) +

tx
w0

U1(x)
�
, (C.1)

where w0 is the waist of the cavity modes.
Similarly, for a rotation θx, one can show:

Ψ(x) ≈ A
�
U0(x) + πi

θxw0

λ
U1(x)

�
. (C.2)

If the injection beam is gaussian, a criterium to know if the injection is well realized is to
minimize the injection of higher order modes while maximizing the injection of the fundamental
mode. This is the standard procedure. It is actually possible to go further as will be shown in
the following.

The scheme presented on figure C.1b is derivated from [Anderson 84] and allows the lock
of the cavity injection. In order to create the error signal, two side bands are introduced (ampli-
tude E1) around the carrier frequency (amplitude E0). These sidebands are created by a phase
modulation at ν0, which corresponds to the frequency difference between the transverse U0 and
U1.

The intensity profile I(x) of the beam on the quadrant detector is (??) :

I(x) = �E0U0(x)�2 + �A1E1U1(x)�2 + 2A1E0E1U0(x)U1(x) cos(ν0t + ϕ + ϕ0),

(C.3)

where

A1 =

�� ax

w0

�2
+

�παxw0

λ

�2
�1/2

, (C.4)

ϕ = tan−1 παxw2
0

λax
. (C.5)
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(a) Cavity injection. In each direction,
the injection beam can be translated (t)
or rotated (θ) relatively to the optical
axis.
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can be implemented to obtain the optimal injection.

Figure C.1: Locking the alignment of the cavity.

Alignment of the optical axis
As seen in section 3.2.3.2, displacements of cavity mirrors are changing the position of the
optical axis. This could be used to overlap the optical axis with the injection beam. It is usually
preferred to do the opposite, i.e. to align the injection on the optical axis using external mirrors.
Nevertheless, it can be an advantage to move the cavity mirrors since this action can recenter
the out-coupled beam on the quadrant detector and then compensate for drift of the optical axis.
In that purpose, one can use the DC signal of equation C.4. Looking to the difference on the
quadrants, an error signal can be obtained and used to correct the position of one mirror.

Locking the injection.
Starting from equation C.4 we want to show now that it is also possible to lock the injection
direction and then obtain an optimal coupling.

To obtain such an error signal, one uses the AC part of the signal I(x) (C.4). We note that
U0 and U1 are orthogonal modes. A classical detector that would fully integrate the interfer-
ence of these two fields would not measure any interference. Nevertheless, using a quadrant
photodetector and subtracting the two opposites parts, one obtains a signal V (t) of the form:

V (t) ∝ A1E0E1 cos(ν0t + ϕ + ϕ0). (C.6)

After demodulation, the two quadratures become:

VP ∝ A1E0E1 cos(ϕ) =
ax

w0
E0E1, (C.7)

VQ ∝ A1E0E1 sin(ϕ) =
παxw0

λ
E0E1. (C.8)

Each quadrature shows linear dependence with the misalignment parameters. These two signals
can then be employed as error signals for translation (furthest mirror) and rotation (closest
mirror), for an automatic injection of the cavity.
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Complete expression of the polarizability

D.1 Dipole elements
The dipolar excitation correspond to the interaction between the outer electron charge with
the electric field. Under this excitation, the electron may change states and bring the atom
in an excited states. Obviously this process can only happen if the initial state and the final
state are overlapping through the dipolar interaction. The strength of the overlap and then of
the probability of transition are given by the dipole elements [? ]. To calculate these matrix
elements, we use the Wigner-Eckart theorem [Igor 06, Landau 91]:

�L, I, J, FmF |�d|L�, I �, J �, F �m�
F � = �FmF |erq|F �m�

F � (D.1)
= �L, I, J, F�er�L�, I �, J �, F ���FmF |F �1m�

F q� (D.2)

= �L, I, J, F�er�L�, I �, J �, F ��(−1)F �−1−mF
√

2F + 1

�
F � 1 F
m�

F q −mF

�
(D.3)

= (−1)2∗F �−mF +J+I
�

(2F + 1)(2F � + 1)

�
F � 1 F
m�

F q −mF

�

�
J J � 1
F � F I

�
(L, I, J�d�L�, I �, J �) (D.4)

where L is the orbital angular momentum of the outer electron, I is the total nuclear angular
momentum, J = L + S is the total electron angular momentum with S = 1/2 the spin angular
momentum of the electron. It result in a total atomic angular momentum F = I + J . Because
the dipolar interaction only concern the electron that has a much lower inertia than the nucleus,
the total nuclear angular momenta is conserved during the interaction, resulting in I = I �.

Some examples of states of 87Rb used through out this manuscript are given in table ??:

State 5S1/2 5P1/2 5P3/2 4D3/2 4D5/2

L 0 1 1 2 2
I 3/2 3/2 3/2 3/2 3/2
J 1/2 1/2 3/2 3/2 5/2
F 1,2 1,2 0,1,2,3 0,1,2,3 1,2,3,4

Table D.1: Quantum numbers of some states

The element (L, I, J�d�L�, I �, J �) of the Rb87 transition can be found in [Arora 07, Clement 08].
They are their expressed in units of ea0 where e is the unitary charge and a0 = 4π�0�2/(mee2) =
52.910−12m the bohr radius.
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D.2 Dipolar electric interaction: complete expression of the
polarizability

The atomic polarizability expresses the overall atom light interaction for an Electric-dipole
hamiltonian. One it has been properly calculated, it becomes then straight forward to calculate
the atomic AC Stark shift or the optical phase shift induced on a beam. Even spontaneous
emission processes can be accounted for if decoherence processes are taken into account.

A fully quantized picture can be developed to express the atomic polarizability [Stockton 05].
Nevertheless, to take into account decoherence processes in this frame, it obliges to involve mas-
ter equation in the Lindblad form to describe the non-unitary evolution of the density matrix ρ.
This makes the calculation and the interpretation quite complex while a semi-classical picture
of an electron elastically linked to the nucleus gives similar result.

In the following, we intend to derive a complete expression for the polarizability that takes
into account down to the hyperfine splitting. The result obtained in equation D.20 is used in the
manuscript for two different limit:

• The excitation by a very far off resonance excitation at 1560 nm, that realize a dipole trap.

• A far but closer to resonance excitation at 780 nm that is in the context of dispersive
non-demolition measurement.

Remark:
In the context of far off resonance excitation, a very elegant method to derive the polarizability
consists to consider the operator VEE ([Schmieder 72]):

VEE =
�

F ��,m��

�d |F ��, m��� �F ��, m��| �d (D.5)

This operator describes the second order expansion of the atomic states energy under the (small)
perturbation of the dipolar interaction. The calculation of the different elements �F, m|VEE|F �, m��
is developed in [Schmieder 72] and rely on the precise analysis of the symmetry of the spherical
harmonics. From there, the authors expresses the dipolar elements as a function of the (3 J) and
{6 J} coefficient.

�F, m|VEE|F �, m�� = −1

2
α0(ω)δF,F �δm,m� − 1

2
α2(ω)QFF � mm� (D.6)

where α0 and α2 are the scalar and the tensorial polarizabilities given in [Safronova 06, Arora 07].
The tensorial element QFF � mm� is given by:

QFF � mm� =

�
15

2

�
(J + 1)(2J + 1)(2J + 3)

J(2J − 1)

�

q,ηµ,ηµ�

�
1 2 1
µ −q −µ�

�

(−1)I+J+F+F �−m��
(2F + 1)(2F +� 1)

�
F 2 F �

m q −m�

� �
F 2 F �

J I J

�
(D.7)

Unfortunately, this method relies on the calculation of the scalar and tensorial polarizabili-
ties which are usually expressed without taking into account the hyperfine splitting. Therefore,
in the case of close to resonance excitation (∼ GHz) were the hyperfine splitting cannot be
neglected, this is not applicable.

As a consequence, the polarizability is derived in the following by summing over all the
possible hyperfine transition. Before we express the semi-classical expression of the polariz-
abitility, we show at first the frequency dependance of the interaction.
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Classical expression of the forced oscillation of an electron

In order to express the polarizability from the dipole elements, lets consider first the simple
model of an electron (mass m and charge e) elastically linked to the nucleus [Aspect 06].

We consider an electric field E = E0 cos(ωt)e, where E0 is the amplitude of the oscillation
and e is the polarization of the field. In the basis of the angular momenta, the light polarisation
is e = (e1, e0, e−1) where the angular basis is:

u1 =
−1√

2
(ux + iuy) (D.8)

u0 = uz (D.9)

u−1 =
1√
2

(ux − iuy) (D.10)

The force that generates this electric field on the electron is eE. The position r of the
electron obeys the differential equation [Aspect 06]:

mr̈ + mω2
0r − 2/3

ma0

c
...
r = eE0 cos(ωt) (D.11)

where mω2
0r is the force of the spring that link the electron to the nucleus and 2/3ma0

c

...
r is the

friction force due to the energy loss issued from the radiation of the oscillating electron. This
last terms describe a loss of mechanical energy that exactly matches the radiated energy. Thus
preserving the conservation of energy. a0 = e2/(4π�0mc2) is the classical radius of the electron.

Looking for a solution, of the movement of the electron in the form:

r = s0 exp(−Γclt/2) ∗ cos(ω0t), (D.12)

one can show that the complex amplitude s0 must satisfy:

s0 =
qE0

m

1

ω2
0 − ω2 + iΓclω3

ω2
0

. (D.13)

The classical polarizability αcl is defined by its relation to the electric dipole p:

p = er = αclE (D.14)

The previous calculation leads to:

α =
e2

m

1

ω2
0 − ω2 + iΓclω3

ω2
0

. (D.15)

The frequency dependance of the polarizability scales then as:

1

ω2
0 − ω2 + iΓclω3

ω2
0

≈
ω∼ω0

1

2ω0

∆ + iγ

∆2 + γ2
. (D.16)

where ∆E = �ω0 is the energy splitting of the transition considered.
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Semi-classical expression of the polarizability

For a sinusoidal perturbation such as the one created by an electro-magnetic field, the per-
turbation theory leads us to an energy shift of the state k:

∆Ek =
1

2
αkE2

eff =
1

4
αkE2

0 (D.17)

where the atomic polarizability is given by [Grimm 00]:

αk =
2

�
�

ν

����ν| �d.e |k�
���
2
(ωk − ων)

(ωk − ων)2 − ω2
(D.18)

The summation is performed over ν which scan all the atomic state that have an overlap with k
through the dipolar operator.

The expression D.19 of αk does only account for coherent processes. In the previous sec-
tion, we have introduced energy loss of the atoms through the radiation of the atoms. This can
be taken into account by a dissipative term in the polarizability (complex term) in the form:

αk =
2

�
�

ν

���
�
ν|�d.e|k

����
2
(ωk − ων)

(ωk − ων)2 − ω2 + iΓω3

ω2
0

(D.19)

In the precise case of the hyperfine state, |L, I, J, F,mF �, the atomic polarizability is:

αL,I,J,F,mF =
2

�
�

L�,I�,J �,F �,m�
F ,q

���
�
L�, I �, J �, F �, m�

F |�dq.eq|L, I, J, F,mF

����
2
∆ωF,F �

∆ω2
F,F � − ω2 + iΓω3

ω2
0

(D.20)

.

The calculation of the dipole elements �L�, I �, J �, F �, m�
F |�dq.eq|L, I, J, F,mF � has been given

in annexe D.1.



A P P E N D I X E

Theory calculation

In this appendix, we detail some of the calculation that were eluded in chapter 5. The first
concerns the derivation of the Gaussian approximation in equation 5.102. The second gives
two useful identities to treat the problem of losses (equation 5.121) and the last describes the
quantum description of the single photon frequency splitter (section 5.3.5.1).

E.1 The Gaussian approximation of the Mach Zehnder in-
terferometer

To derive the Gaussian approximation of the squeezing function |FNu,Nv(n)|2, we proceed to
the Taylor expansion as described in equations 5.98 and 5.98. The first momenta (mean value)
is obtained after first differentiation of |FNu,Nv(n)|2:

d

dn
|FNu,Nv(n)|2 = 0 (E.1)

∝ sin Φ(n) cos Φ(n)
�
(1− C) cos2 Φ(n) + (1 + C) sin2 Φ(n)

�Nu−1

×
�
C cos2 Φ(n)

�Nv−1 C
�
((Nv + 2Nu)C −Nv) cos2 Φ(n)−Nv(1 + C) sin2 Φ(n)

�
(E.2)

where Φ(n) = φn/2− π/4.

The distribution is then centered in n0 which verifies:

tan2 Φ(n0) =
(Nv + 2Nu)C −Nv

Nv(1 + C)
(E.3)

To obtain the second momenta (variance) of the distribution, one needs to evaluate the sec-
ond derivative of |FNu,Nv(n)|2 in n0:

����
d2

dn2
|FNu,Nv(n)|2

����
n0

= −4 |FNu−1,Nv−1(n0)|2 sin2 Φ(n0) cos2 Φ(n0)φ
2NpC2 (E.4)

≈ − |FNu,Nv(n0)|φ2NpC2 (E.5)
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E.2 Losses
For the calculation of equation 5.121, on the consequence of losses in the Mach Zehnder, we
have used the following identities of the hyperbolic function:

����sinh(iΦ� − 1

4
ln(1− η))

����
2

=
1

2

�
1

2
(
�

1− η +
1√

1− η
)− cos(Φn− π

2

�
(E.6)

=
1

2

�
2− η

2
√

1− η
+ sin(Φn)

�
(E.7)

����cosh(iΦ� − 1

4
ln(1− η))

����
2

=
1

2

�
2− η

2
√

1− η
− sin(φn)

�
(E.8)

E.3 Frequency splitter
To describe the heterodyne measurement of single photons, a clear understanding of the effect
of a phase or frequency modulation on a single photon wavefunction is needed. We consider
in the following the case of a single sideband modulator, that mixes the mode a0 and a1. The
hamiltonian which describe the transfer of photons from one mode to the other is:

H = i�g(a†ma†0a1 − ama0a
†
1) (E.9)

The energy difference between the two modes is transferred to the RF field.
Such a Hamiltonian clearly couples the mode a0 and a1. As on a beam splitter, the - sign in

the hamiltonian guarantees the conservation of energy.
The evolution of the state |Ψin� is given by:

|Ψout� = eiHt�
� |Ψin� (E.10)

where t� is the interaction time.
We consider a coherent states on the RF field and a single photon that can be either in a0

or a1. Using the identities given at the end of the section, we have for an input state |Ψin� =
|αm� ⊗ |10, 01�:

|Ψout� =
∞�

k=0

(gt�)2k

(2k)!
(a†ma†0a1 − ama0a

†
1)

2k (|αm� ⊗ |10, 01�)

+
∞�

k=0

− (gt�)2k+1

(2k + 1)!
(a†ma†0a1 − ama0a

†
1)

2k+1 (|αm� ⊗ |10, 01�) (E.11)

=
∞�

k=0

(−1)k(gt�αm)2k

(2k)!
(|αm� ⊗ |10, 01�)

+
∞�

k=0

(−1)k(gt�αm)2k+1

(2k + 1)!
(|αm� ⊗ |00, 11�) (E.12)

|Ψout� = cos(αmgt�) (|αm� ⊗ |10, 01�) + sin(αmgt�) (|αm� ⊗ |00, 11�) (E.13)

For |Ψin� = |αm� ⊗ |10, 01�, the same calculation leads to:

|Ψout� = cos(αmgt�) (|αm� ⊗ |00, 11�)− sin(αmgt�) (|αm� ⊗ |10, 01�) (E.14)
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The phase modulator is then exactly a frequency splitter which follows the splitting matrix
B:

B =

�
cos(αmgt�) sin(αmgt�)
− sin(αmgt�) cos(αmgt�)

�
(E.15)

This matrix takes only into account for the amplitude of coupling between the two modes but
forget about their frequency shift. Thus, the full frequency beam splitter matrix can be rewritten
as: �

a�0
a�1e

iΩt

�
=

�
cos(αmgt�) sin(αmgt�)e−iΩt

− sin(αmgt�)eiΩt cos(αmgt�)

� �
a0

a1eiΩt

�
(E.16)

In the following, we will use simplified notation for the beam splitter matrix using
√

T =
cos(αmgt�) and

√
R = sin(αmgt�), which gives:

�
a�0

a�1e
iΩt

�
=

� √
T

√
Re−iΩt

−
√

ReiΩt
√

T

� �
a0

a1eiΩt

�
(E.17)

In conclusion, the beam splitter creates a superposition of the two modes which beat together
on the photodetector as depicted in figure 5.15.

Useful identities For the calculation, in equations E.11 and E.13, we have used the following
identities for |10, 01�:

(a†ma†0a1 − ama0a
†
1)

2k (|αm� ⊗ |10, 01�) = (−1)k |αm|2k a†0a1a0a
†
1 (|αm� ⊗ |10, 01�)

= (−1)k |αm|2k (|αm� ⊗ |10, 01�) (E.18)
(a†ma†0a1 − ama0a

†
1)

2k+1 (|αm� ⊗ |10, 01�) = (−1)k+1 |αm|2k+1 a0a
†
1 (|αm� ⊗ |10, 01�)

= (−1)k+1 |αm|2k+1 (|αm� ⊗ |00, 11�) (E.19)

and for |00, 11�:

(a†ma†0a1 − ama0a
†
1)

2k (|αm� ⊗ |00, 11�) = (−1)k |αm|2k (|αm� ⊗ |00, 11�) (E.20)
(a†ma†0a1 − ama0a

†
1)

2k+1 (|αm� ⊗ |00, 11�) = (−1)k |αm|2k+1 (|αm� ⊗ |10, 01�) (E.21)
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CQED and classical definitions

In this appendix, our goal is to show the equivalence between the Cavity Quantum Electro-
Dynamics (CQED) definition of the cavity frequency shift and the shift that arise from our
definition of the effective single pass phase introduced in section 6.1.6.

In Cavity Quantum Electro-Dynamics (CQED) experiment, the strength of the coupling
between the atom and the cavity field of a Fabry-Perot resonator is described by the single
photon Rabi frequency of an atom placed at a maximum of the electric field:

g =

�
ω

2�Vmode�0
�e|�d.e|g�, (F.1)

and the volume of the mode for a Fabry Perot cavity is given by:

Vmode =
1

|E0|2
�

|E(r)|2d3r ≈ π

4
w2

phL, (F.2)

where the electric field is:

E(r) = E0 cos(k.z) exp

�
−x2 + y2

w2
ph

�
e (F.3)

The frequency shift of the cavity is:

∆ωCQED = Nat
g2

∆
= 2Nat

ω

��0L

����e|�d.e|g�
���
2

(F.4)

In section 6.1.6, we have shown that the classical phase shift acquired by a Gaussian beam
was:

Φdet =
ω

��0c

1

w2
ph

Nat

����e|�d|g�
���
2 1

∆
(F.5)

where it is assumed that the atoms stand at the center of the beam.
For the Fabry-Perot resonator considered, the phase is accumulated twice per turn, and a

phase of 2π corresponds to a cavity frequency shift of one FSR. Hence the classical frequency
shift is:

∆ωCl =
2Φdet

2π

c

2L
= Nat

ω

��0L

����e|�d.e|g�
���
2

=
∆ωCQED

2
(F.6)

This results shows that the description of an effective phase on the beam takes well into
account for the dilution of the photon into the mode. Nevertheless there is still a factor 1/2
difference between the two descriptions. This factor is the consequence of the standing wave
in the cavity that is not taken into account in the classical description where the forward and
the backward field are described as two independent propagating field. Indeed, in the CQED
description, we placed the atoms at a node of the standing wave and the mode volume was then
divided by two.



214 APP F - CQED AND CLASSICAL DEFINITIONS



A P P E N D I X G

Mechanical design

In this appendix, we give the mechanical drawings of the chamber that should be helpful if latter
modification of the under-vacuum set-up were to be realized. This design and the drawing were
realized in close collaboration with the Syrte-Observatoire de Paris, and particularly with David
Holleville who very much helped us for all the design.
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