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Abstract

In this thesis we consider the problem of information hiding in the
scenarios of interactive systems, statistical disclosure control, and refine-
ment of specifications. We apply quantitative approaches to information
flow in the first two cases, and we propose improvements for the usual
solutions based on process equivalences for the third case.

In the first scenario we consider the problem of defining the infor-
mation leakage in interactive systems where secrets and observables can
alternate during the computation and influence each other. We show
that the information-theoretic approach which interprets such systems
as (simple) noisy channels is not valid. The principle can be recovered,
however, if we consider channels of a more complicated kind, that in
information theory are known as channels with memory and feedback.
We show that there is a complete correspondence between interactive
systems and these channels, and we propose the use of directed informa-
tion from input to output as the real measure of leakage in interactive
systems. We also show that our model is a proper extension of the clas-
sical one, i.e. in the absence of interactivity the model of channels with
memory and feedback collapses into the model of memoryless channels
without feedback.

In the second scenario we consider the problem of statistical disclo-
sure control, which concerns how to reveal accurate statistics about a
set of respondents while preserving the privacy of individuals. We focus
on the concept of differential privacy, a notion that has become very
popular in the database community. Roughly, the idea is that a ran-
domized query mechanism provides sufficient privacy protection if the
ratio between the probabilities that two adjacent datasets give a certain
answer is bound by a constant. We observe the similarity of this goal
with the main concern in the field of information flow, namely limiting
the possibility of inferring the secret information from the observables.
We show how to model the query system in terms of an information-
theoretic channel, and we compare the notion of differential privacy with
that of min-entropy leakage. We show that differential privacy implies a
bound on the min-entropy leakage, and we also consider the utility of the
randomization mechanism, which represents how close the randomized
answers are, in average, to the real ones. Finally we show that the notion
of differential privacy implies a tight bound on utility, and we propose a
method that under certain conditions builds an optimal randomization
mechanism.

Moving the focus away from quantitative approaches, in the third
scenario we address the problem of using process equivalences to charac-
terize information-hiding properties (for instance secrecy, anonymity and
non-interference). In the literature, some works have used this approach,
based on the principle that a protocol P with a variable x satisfies such
property if and only if, for every pair of secrets s; and s2, P[*'/,] is
equivalent to P[*2/,]. We show that, in the presence of nondetermin-
ism, the above principle may rely on the assumption that the scheduler
“works for the benefit of the protocol”, and this is usually not a safe as-
sumption. Non-safe equivalences, in this sense, include complete-trace



equivalence and bisimulation. This problem arises naturally when re-
fining a specification into an implementation, since usually the former is
more abstract than the latter, and the refinement process involves reduc-
ing the nondeterminism. The scheduler is, in this sense, a final product
of the refinement process, after all the nondeterminism is ruled out. We
present, a formalism in which we can specify admissible schedulers and,
correspondingly, safe versions of complete-trace equivalence and bisimu-
lation. We prove that safe bisimulation is still a congruence. Finally, we
show that safe equivalences can be used to establish information-hiding
properties.
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Introduction

“There are two mistakes one can make along the road to truth:
not going all the way, and not starting.”
Gautama Siddharta

1.1 Information hiding

In the last few decades the amount of information flowing through computa-
tional systems has increased dramatically. Never before in history has a soci-
ety been so dependent on such a huge amount of information being generated,
transmitted and processed. It is expected that this solid trend of increase will
continue in the near future, if not virtually indefinitely, reinforcing the need
for efficient and safe ways to cope with this reality.

Although the efficient and broad dissemination of information is a goal
in many situations, there are instances where the disclosure of information is
undesirable or even unacceptable. The field of information hiding concerns the
problem of guaranteeing that part of the information relative to an event is kept
secret. In computer science, the term information hiding encompasses a large
spectrum of fields. Different fields have distinct historical motivations and the
resulting research followed a unique path. The variation of the subfields of
information hiding depends on three main factors: (i) what one wants to keep
secret; (i) from which adversary or attacker does one want to keep it secret;
and (iii) how powerful the adversary or attacker is.

The field of confidentiality (or secrecy) refers to the problem of keeping
an action secret. Omne application of confidentiality is cryptographic proto-
cols, where the sender and the receiver of a message can be known, but the
contents of the message itself are considered to be sensitive information. Gen-
erally, we can say that confidentiality concerns data, while the field of privacy
concerns people’s personal information. When dealing with privacy, we may
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be interested in protecting the information about someone (a credit card num-
ber, for instance) or the person’s identity itself. Anonymity is the field that
concerns the protection of the identities of agents involved in events. In prin-
ciple, anonymity can be related to both the active agent (often the sender
of a message), or to the passive agent (often the receiver of a message). For
instance, in the case of a journalist receiving information from a confidential
source, the identity of the sender is intended to be secret. As for the case of
an intelligence agency sending a coded message to a spy, the identity of the
receiver is confidential information. There is yet another kind of anonymity,
sometimes referred to as unlinkability, where the identity of agents and actions
performed are public information, but the linkage between agents and the ac-
tions performed should not be determined. One example of unlinkability is a
confidential voting system, where both the voters and the final vote count are
in the public domain, but the relationship between the voters’ identities and
the ballots cast is protected.

One application of privacy that has drawn a lot of attention in recent years
is the problem of statistical databases. A statistic is a quantity computed from
a sample, and the goal of statistical disclosure control is to enable the user of the
database to learn properties of the population as a whole, while maintaining
the privacy of individuals in the sample. The field of statistical databases
highlights the delicate equilibrium between the benefits and the drawbacks of
the spread of information. A practical example occurs in medical research,
where it is desirable that a great number of individuals agree to give their
personal medical information. With the information acquired, researchers or
public authorities can calculate a series of statistics from the sample (such as
the average age of people with a particular condition) and decide, say, how
much money the health care system should spend next year in the treatment
of a specific disease. It is in the interest of each individual, however, that her
participation in the sample will not harm her privacy. In our example, the
individuals usually do not want to have disclosed their specific status with
relation to a given disease, not even to the users querying the database. Some
studies, e.g. [Joi01], suggest that when individuals are guaranteed anonymity
and privacy they tend to be more cooperative in giving personal information.

Another important field of information hiding is information flow, which
concerns the leakage of classified information via public outputs in programs
and systems. Consider a system that asks the users a password to grant their
access to some functionality. Naturally, the password itself is intended to be
secret, however an attacker trying to guess it will always get an observable
reaction from the system, whether the response is an acceptance or a rejection
of the entered code. In either case, the observable behavior of the system
reveals some information about the password, because even if it is not guessed
correctly, at least the search space is narrowed (even if, in this case, only
slightly).

It is important to note that the subdivisions of information hiding are not
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mutually exclusive. In a system where public outputs can reveal the identity of
agents, for instance, both the problems of information flow and of anonymity
are present. The classification is usually based more on the contextual mo-
tivation for the problem than on a rigid taxonomy of subfields. In fact, in
recent years there has been an active line of research exploring the similarities
between problems such as the foundations of anonymity and information flow,
and also privacy and information flow. The result has been an increasing con-
vergence between these fields. In this thesis we explore the similarities between
information flow, statistical databases, and anonymity.

In a broader context, the importance of information hiding goes far beyond
the realm of computer science, and there are a lot of subtle questions that need
to be considered carefully. From a political and even philosophical perspective,
the unrestricted use of privacy protection can be controversial. Even though
it is broadly accepted that people should have the right to exchange e-mails
privately, to vote in democratic elections anonymously, and to express their
ideas on the Internet freely, there are situations where information protection
policies can be argued to have serious drawbacks. The same mechanism that
grants a political activist anonymity and free speech on the Internet, while
living under a repressive government, also grants a pedophile anonymity to
broadcast harmful material. This balance between freedom and control in the
virtual media has been the subject of passionate discussion. Independently of
whether one’s goal is to maximize or to minimize the degree of information
protection in a given situation, it is anyway desirable to measure the eztent
to which the information is protected, to define which specific definition of
protection the information falls under, and from whom the information is pro-
tected.

In this thesis we avoid the controversy of deciding in which cases the appli-
cation and extent of information hiding methods are justifiable. Rather, our
focus is on measuring the degree of information protection offered by a system,
thus making evaluation and comparison of different systems possible . Specifi-
cally, we are interested in using concepts of information theory to quantify the
leakage of information.

1.2 Qualitative and quantitative approaches to
information hiding: a brief history

Historically, the research on information hiding has evolved from the simple
but imprecise qualitative approach toward the more refined, but at the same
time more complex, quantitative approach. In the following sections we will
briefly overview both. We do not intend to provide here an exhaustive study of
the subject, but rather to highlight some of the most important contributions
of each of these lines of research to the field of information hiding.
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1.2.1 The qualitative approach

The qualitative approach emerged first in the literature of information hiding.
The central idea is that, by observing the output of a system, the adversary
cannot be completely sure of what the secret information is. The principle of
confusion says that for every observable output generated by a secret input,
there is another secret that could also have generated the same output. In
anonymity, for instance, this corresponds to the concept of possible innocence,
i.e. the impossibility of identifying the culprit with certainty by only observing
the system’s output. The principle of confusion does not take into considera-
tion the adversary’s certainty about the value of the secret: it is enough that
there be an alternative hypothesis, no matter how unlikely it is. This is also
known as the possibilistic approach.

One of the first developments in this field dates from 1976, when Bell and
La Padula defined the model of multilevel security systems [BLP76]. In this
model the components of a system are classified as either subjects, i.e. active
entities such as users or processes, or as objects, i.e. passive entities such as files.
The subjects are divided into trusted and untrusted entities, and the authors
define restrictions on how to manage untrusted objects. The rule “no read up
or write down” states that untrusted entities can read only from objects of the
same or lower levels, and that they can only write into objects of the same or
higher levels. This model was developed to support different levels of security,
and aimed to ensure that information only flows from lower to higher levels and
never in the opposite direction. Each input into and output from the system
is labeled with a security level. Any pair of an input and its corresponding
output is called an event. A view of a security level [ corresponds to the events
at level [ or lower, and all the events of a higher level are hidden to level [.

Usually in this model only two levels are distinguished: high and low.
The high level corresponds to sensitive information, which should only be
available to some users with special privileges, while the low level corresponds
to public information accessible to everyone. The goal of secure information
flow analysis is, in this context, to avoid leakage from the high level to the low
level.

Bell and La Padula’s model, however, did not address the problem of leak-
age of information due to covert channels. A covert channel is a way of trans-
mitting information from the high to the low environment by means not de-
signed or intended for this purpose. Consider, for instance, a system where a
low user £ can send a file to a high user h, and h has the power to redefine the
access rights to the file. The user h can either maintain the permission of £ to
write in the file, or she can change the policy so ¢ no longer has access to it. In
this scenario, a covert channel between a corrupted high user h and low user £
can be established as follows. The low user sends a file to the high user, who
then uses her power of deciding whether to grant or to deny ¢ further access
to it to encode a message. In a later stage, ¢ tries to write in the file, and an
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access failure can be interpreted as the bit 0, while a success can be interpreted
as the bit 1. In this way any message can eventually be sent through the covert
channel from the corrupted high user to the low one.

To cope with the threat of covert channels, Goguen and Meseguer devel-
oped the concept of noninterference| GM82|. A system is noninterfering when
the actions of high users do not alter what can be seen by low users. In other
words, the low outputs of the system will only reflect the values of the low
inputs, independently of what the high inputs are (if any). The authors pro-
posed a model of noninterference that separated the system from the security
policies. Their model, nevertheless, was only appropriate for deterministic
systems.

Noninterference, however, may be a too restrictive concept for several prac-
tical applications. It does not allow, for instance, the summarization of data.
It is often the case where a system allows statistical (or summarizing) func-
tions (e.g. mean, total number) to be calculated on its high inputs and then
disclosed to low users, even if the high inputs themselves are supposed to be
kept secret. These systems are typical in the area of statistical databases, and
we will discuss this issue in more detail in Section 1.3.2. Clearly, a system
that allows the summarization of high data for the low environment violates
noninterference, since a change on the high input may affect the low output.

Considering this problem, in 1986 Sutherland [D.S86] proposed the con-
cept of nondeducibility on inputs, which focuses not on whether the output
is affected according to a change in the input, but on whether it is possible
to deduce the input from the output. Under this definition, a system may
allow summarization of data and still be secure, since the output of a sta-
tistical function does not necessarily allow the adversary to deduce what the
inputs are. One drawback of the concept of nondeducibility on inputs is that
it assumes that the strongest form of the principle of confusion is enough to
ensure security. Notably, it relies on the assumption that “no high value can
be ruled out after observing a low value”. This is not a strong enough security
guarantee in many real systems. In some cases, even if no high value can be
ruled out as a possibility, a single value (or a small set of values) can be much
more likely than the others, and in practice it makes little sense to consider
the alternatives. This criticism can be seen as an early attempt to consider a
quantitative approach for information flow, where it is taken into consideration
“how much” an attacker learns (or does not learn) about the secret matters.

Another important issue in security systems is the problem of composi-
tionality. In [McC87], McCullough pointed out the importance of hook-up
security, i.e. the compositionality of multi-user systems. Usually, real systems
are far too complex to be analyzed as a whole, especially because the task
of designing and implementing a system is normally divided between teams.
Each team is responsible for a number of components that, in a later stage,
will be put to work together. It is highly desirable that security properties
be verified in each component separately, and that this verification guarantee
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that the final composite system is also secure. McCullough showed that the
concepts of multilevel security systems, noninterference, and nondeducibility
on inputs are not composable. As a replacement, he proposed the concept of
restrictiveness, according to which no high level information should affect the
behavior of the system, as seen by a low user.

In [WJ90] Wittbold and Johnson addressed the question of nondeducibility
on inputs under a different perspective, showing that it is not a guarantee of
absence of leakage. Consider the following algorithm, where H and L stand for
the high and the low environments, respectively. Here we assume the variables
x and y are binary, and the randomized command x < 0 G5 1 assigns to x
either the value 0 or the value 1 with 0.5 probability each.

while true do

T+ 0685 1;

output x to H;

input y from H;

output (z XOR y) to L;
end while

In the above algorithm, the low environment only has access to the value (x
XOR y). Note, however, that the high environment H learns the value of x
before having to choose the value of y, and therefore it can use this knowledge
to encode a message: To transmit the bit 0, H chooses y = x, and to transmit
the bit 1, H chooses y = 1 —x. It is clear that there is some flow of information
from the high to the low environment, even though L cannot deduce the high
input y from the low output (z XOR y). Hence, satisfying nondeducibility
on inputs does not guarantee a system to be secure. Wittbold and Johnson
defined, then, the concept of nondeducibility on strategies, which means that
regardless of what view L has of the machine, no strategy is excluded from
being used by H.

1.2.2 The quantitative approach

The qualitative approach, although simple and easy to apply, does not reflect
reality in many practical situations. In many cases some information leakage
is tolerable or even intentional. Take an election protocol. After the final vote
count is released, there are fewer possible hypotheses concerning who voted for
whom than the hypotheses available before the votes were cast. In this exam-
ple there is a natural leakage of information, since the uncertainty about the
sensitive information decreases after the observation of the protocol’s output.
This leakage occurs, however, as a necessary functionality of the protocol.

In fact, in most real systems noninterference cannot be achieved, as typical
systems will always leak some information. This does not mean, however, that
all systems are equally good or bad, because the amount of leakage usually
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varies from system to system. Therefore it is important to quantify how much
leakage a system allows. Quantitative methods are useful to evaluate the extent
to which a system is secure, and to compare it to other systems.

One of the first attempts to quantify information leakage was made by
Denning in 1982. In [Den82| she defined the leakage from a state s to a state
s’ as the decrease in uncertainty about the high information in s resulting
from the low information in s’. She used the concept of conditional entropy’
H (hs|ls), where hg is the high information in s and ¢y is the low information
in s’. Her definition of leakage was:

My = H(hs|ls) — H(hs|ly)

If the quantity M; is positive, then it is considered to be the leakage of in-
formation. This measure of leakage, however, does not consider the history of
low inputs, a problem pointed out by Clark, Hunt and Malacaria in [CHMOT].
Without the history one cannot summate the increase in knowledge (or de-
crease in uncertainty) that accumulates between the low states s and s’. They
proposed, instead, the following measure of leakage:

M2 = H(hsws) - H(hswsHES)

Since H(X|Y,Z) < H(X|Y) for all random variables X, Y and Z, we have
My < Ms. The quantity My corresponds to the Shannon conditional mutual
information I (hs; g |ls).

In 1987, Millen made a formal connection between information flow and
Shannon information theory by relating noninterference and mutual informa-
tion [Mil87]. In Millen’s model, a computer system is seen as a channel whose
input is a sequence W, possibly generated by a set of users, and whose output
(after the computation is completed) is Y. The random variable X represents
a subsequence of W generated by a user U, while X represents the high inputs
generated by users other than U. Millen showed that in deterministic systems
if X and X are independent and X is not interfering with Y, then the Shan-
non mutual information I(X;Y) between X and Y is zero. In other words,
noninterference is a sufficient condition for absence of information flow.

In 1990, Massey gave an important contribution to the field of information
theory, which influenced the further development of quantitative information
flow. In [Mas90| he showed that the usual definition of discrete memoryless
(i.e. history-independent) channels used at that time in fact did not take into
account the possibility for the use of feedback. He highlighted the conceptual

'The concepts of entropy, conditional entropy and mutual information will be defined
formally in Chapter 3. For the moment it is enough to know that entropy is a measure of
the uncertainty of a random variable; conditional entropy is a measure of the uncertainty of
one random variable given another random variable; and mutual information is a measure
of how much information two random variables share.
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difference between causality and statistical dependence, and presented an ac-
curate mathematical description of discrete memoryless channels that allowed
feedback. Then he introduced the concept of directed information, which cap-
tures the idea of causality between the input and the output of a channel, and
argued that in the presence of feedback, directed information is a more appro-
priate measure of the flow of information from input to output than mutual
information.

In the same year, McLean also considered the concept of time in the de-
scription of systems by proposing his Flow Model [McL90]. According to this
model, there is a flow of information only when a high user H assigns values
to objects in a state that precedes the state in which a low user L makes her
assignment. In this situation only part of the correlation between high and low
information is considered as leakage. This addressed the problem of causality,
but this model was too general, and relatively difficult to apply.

In [Gra91] Gray worked on bridging the gap between the overly compli-
cated Flow Model and the more practical, yet restricted, approach of Millen.
Gray used a general-purpose probabilistic (as opposed to nondeterministic)
state machine that resembled Millen’s model. In Gray’s model, the value
T (s,1,s',0) represents the probability of a given state s evolving into another
state s’, under the input I, and producing output O. The channels are par-
titioned into two sets, H and L, representing the channels connected to high
and low processes, respectively. The high and the low environments can com-
municate only through their interactions with the system, as no other form
of communication between them is allowed. Gray wanted to take time and
causality into consideration in his definition of leakage, and he did so by allow-
ing feedback and memory in his model. His formulation of a security guarantee
was the following:

PLFNLPnHI nHY) >0 — .
PUIL' N L nH N HO) = P(¢|LF N LO) (1)
where L’ and L represent the history of low inputs and outputs, respectively,
and H' and HO represent the history of high inputs and outputs, respectively.
The symbol £ represents the final output event channels in the low environment.
The formulation (1.1) states that the probability of a low output may depend
on the previous history of the low environment, but not on the previous history
of the high environment.

Gray also tried to generalize the concept of capacity to the case of channels
with memory and feedback. He provided a formula expressing the flow of
information from the whole history of inputs and outputs (during the time
period 0...t — 1) to the the low output (at time t), and conjectured that the
capacity of the channel would be:

¥ im c, (1.2)

n— o0
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where

n
def 1
Cn = n}}%x - Z; I(In_Seq_ Eventy ,, Out_Seq_ Eventy ;
1=

(1.3)
Final _Out _Eventy ,|In_Seq_ Event ,, Out_Seq_ Eventy ;)

and In_ Seq_ Event 4, is the input history at channel A (where A stands for
Lor H) up to time ¢t — 1, Out_Seq_EventAyt is the output history at channel
A up to time ¢t — 1, and Final_ Oul _Eventy, , is the low output event at time
t. Gray showed that the absence of information flow implies that capacity as
formulated in (1.2) is zero. He also conjectured that this definition of capacity
would correspond to the notion of maximum transmission rate supported by
the channel. As pointed out in [AAP11], however, the problem with Gray’s
conjecture is the following. For an output at time ¢, the only causal relation
considered is the one with the history of inputs up to time ¢t —1, while the effect
that the input at time ¢ itself may have on the output is ignored. In this way,
(1.2) does not express the complete causal relation between input and output.
The correct notion of capacity in the presence of memory and feedback, which
corresponds to the maximum transmission rate for the channel, was proposed
in 2009 by Tatikonda and Mitter [TMO09], and it will be discussed later on in
Chapter 4.

A similar formal approach, although with different motivations, was pre-
sented by McIver and Morgan in [MMO03]. They focused on the problem of
preserving security guarantees while refining specifications into implementa-
tions. The authors used an equation similar to (1.3), but in the context of
sequential programing languages enriched with probabilities. Their aim was
to protect the high values during the whole execution of the program, instead
of the initial high values only. In other words, they wanted to assure that if the
high information is not known by the low environment at the beginning of the
computation, then it cannot be inferred at any later stage. They proved that,
for deterministic programs, if the final values of the high objects are protected,
then the initial values are protected as well. Mclver and Morgan also defined
the concept of information escape as:

H(h|t) — H(W'|E)

where H(h|l) represents the uncertainty (conditional entropy) of the high in-
formation given the low information at the beginning of the computation, and
H (W |0") represents the same uncertainty at the end of the computation. They
defined the channel capacity as the least upper bound of information escape
over all possible input distributions. In this context, a system is considered
secure if it has capacity equal to zero. One advantage of this model is that it
is not necessary to keep track of the whole history of the computation, but on
the other hand it can be applied only in scenarios where the adversary does
not have memory.
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In Chapter 3 we will take up again the discussion of quantitative approaches
to information flow based on information theory. For the moment we will focus
on some topics related to information hiding that are of special relevance for
this thesis.

1.3 Case studies of information hiding

In this section we present three case studies of information hiding that we
address in this thesis.

1. The case of quantitative information flow, i.e. how much about the secret
information an adversary can learn by observing the system’s output,
and by knowing how the system works. We give special attention to the
broadly studied problem of anonymity, which can be seen as a particular
case of the more general problem of information flow where the secret
information is the identity of the agents.

2. The question of statistical disclosure control, which concerns the problem
of allowing users of a database to obtain meaningful answers to statisti-
cal queries, while protecting the privacy of the individuals participating
in the database. We focus on differential privacy, an approach to this
problem that has drawn a lot of attention in recent years.

3. The problem of preserving security guarantees while deriving implemen-
tations from specifications. Usually specifications are more abstract than
implementations, i.e. they present more nondeterminism. The task of
implementing a system reduces the nondeterminism of the specification,
and if it is not done carefully, an implementation may rule out possibili-
ties allowed by specification that are essential for the security guarantees.

1.3.1 Quantitative information flow and anonymity

Anonymity is one of the most studied subjects of information hiding. The
research in this area has been active in the past several years, and the advances
made can be extended to the more general scenario of information flow. As
briefly introduced in Section 1.1, anonymity concerns the protection of the
identities of the agents involved in the events.

With the advent of the Internet, the protection of anonymity has become an
issue in the daily life of millions of people around the world. The importance
of anonymity is even more evident concerning the protection of freedom of
speech, a situation that is particularly delicate in countries under repressive
regimes.

Pfitzmann, Dresden and Hansen [PDHO08| have proposed a standard termi-
nology for anonymity concepts. In their work there are three different notions
of anonymity based on the agents involved:

10
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e Sender anonymity: when the identity of the originator should be pro-
tected;

e Receiver anonymity: when the identity of the recipient should be pro-
tected;

e Unlinkability: when it might be known that an agent A originated a
message and an agent B received a message, yet it should not be known
whether the message sent by A was actually the one received by B.

Reiter and Rubin also gave a classification of the types of adversary in
an anonymity system in [RR98], where they also proposed the anonymity
protocol Crowds (see Section 1.3.1). In their work, they considered that the
adversary can be an eavesdropper simply observing the traffic of messages on
the network, or she can be an active attacker (i.e. a collaboration between
senders, between receivers, or between others taking part in the system), or
even a combination of the previous two types. The authors also defined a
hierarchy of anonymity degrees that a system can provide. In decreasing order
of strength, the proposed scale is listed below. In this list, let s, s’ denote
secrets and o an observable, i.e. a particular action or output of the system
that is distinguishable from the point of view of the attacker.

Strong anonymity From the attacker’s point of view, the observables pro-
duced by the system do not increase her knowledge about the secret
information, i.e. the identity of the individual involved in an event.
Chaum also described the concept of strong anonymity in his work on
the Dining Cryptographers protocol [Cha88|. It represents the ideal sit-
uation where the execution of the protocol does not give to the adversary
any extra information about the secrets. The concept was formalized as
follows.

Vs,0 p(slo) = p(s) (1.4)

This definition is the equivalent of “probabilistic noninterference”. In
[CP06|, Chatzikokolakis and Palamidessi showed that the condition ex-
pressed by (1.4) is equivalent to:

Vs,s',0 plols) = p(o]s) (1.5)

i.e. the probability of the system producing an observable is the same,
no matter what the secret information is. This definition is known as
equality of likelihoods and is advantageous as it does not depend on the
probability distribution on secrets.

Another definition of strong anonymity, more restrictive, was proposed
by Halpern and O’Neill [HO03, HP05|. It is equivalent to each of the pre-
vious definitions ((1.4) or (1.5)) plus the assumption that the input prob-
ability is uniform. Halpern and O’Neill focused on the adversary’s lack of

11
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confidence in her guess about the secret, and defined strong anonymity
as:

Vs, s’ 0 p(slo) = p(s']o) (1.6)

The formulation (1.6) is also known as conditional anonymity and cor-
responds to the level of anonymity called beyond suspicion in Reiter and
Rubin’s classification.

Beyond suspicion From the attacker’s point of view, an agent is no more
likely to be the culprit than any other agent in the system. It can be
formalized as in (1.6).

Probable innocence From the attacker’s point of view, an agent does not
appear more likely to be involved in an event than not to be involved.
Formally:

Vs,0 p(slo) <0.5 (1.7)

The formulation (1.7), however, is not broadly accepted as the defini-
tion of probable innocence. In [CP06], Chatzikokolakis and Palamidessi
showed that the property that Reiter and Rubin indeed proved for the
Crowds protocol in [RR9I8| was:

Vs,0 p(o|s) <0.5 (1.8)

Possible innocence From the attacker’s point of view, there is always a non-
zero probability that the agent involved in the event is someone else.
Formally:

Vs, 0. (p(slo) >0 = 3s'.p(s|o) > 0)

The above hierarchy gives a richer classification of the degree of protection
offered by a system than would be possible with simpler possibilistic models.
Among the quantitative approaches to anonymity, two are of our special
interest: the ones based on information-theoretic concepts and the ones based
on the Bayes risk. In the following section we give a brief overview of these
two approaches. These concepts will be revisited in more detail in Chapter 3.

Anonymity protocols as noisy channels

Information theoretic approaches to anonymity, and more generally to informa-
tion flow, rely on concepts such as entropy and mutual information to measure
the adversary’s lack of information about the secret before and after observing
the system’s output. Typically the system is seen as a noisy channel and the
concept of noninterference corresponds to the converse of the channel capacity.

There are several works in the literature that have proposed measures of de-
grees of anonymity in terms of the entropy and mutual information, for instance

12
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[SD02, DSCP02, ZB05, DPWO06]. In [CPP08a] Chatzikokolakis, Palamidessi
and Pananganden proposed the concept of conditional capacity to cope with
the situation where some leakage of information is intended by the system.
Consider again the election protocol example. By design, the final vote count-
ing needs to be announced and it usually increases the attacker’s knowledge
about the secret. In this situation, the leakage should be calculated modulo the
information that is supposed to be disclosed, i.e. the vote count. In this work
the authors also proposed methods to calculate the channel capacity exploiting
some symmetries present in several practical systems.

Hypothesis testing and Bayes risk

In some real world situations an individual faces the following situation: she is
interested in the value of some random variable A € A but she has access only
to the values of another random variable O € O. She knows that A and O
are correlated by a known conditional probability distribution. This situation
occurs in several fields, for instance in medicine (to make a diagnosis, the
physician has access to a list of symptoms, but not to the disease itself). The
attempt to infer A from O is known as the problem of hypothesis testing. Here
we are interested in the use of hypothesis testing in the context of anonymity
(and information flow). More specifically, the adversary tries to infer the secret
A given that she has access to the observables O and she knows how the system
works, i.e. how the probabilities of O are conditioned with relation to A.

A commonly studied approach to the problem is based on the Bayesian
method and consists of assuming the a priori probability distribution on A
as known, and then deriving from that and from the knowledge about how
the system works, an a posteriori probability distribution after some fact has
been observed. It is well known that the best strategy for the adversary is
to apply the MAP rule (Maximum A posteriori Probability rule), which as
the name suggests, chooses the hypothesis with the maximum probability for
the given observation. Here, by “best” strategy we mean the one that induces
the smallest probability of error in guessing the hypothesis, that in this case
corresponds to the Bayes risk.

In [CPP08b] Chatzikokolakis, Palamidessi and Pananganden explored the
hypothesis testing approach to anonymity, in a scenario where the adversary
has one single try to guess the secret (after exactly one observation). They
associated the level of anonymity to the probability of error, i.e. the probability
of an attacker making a wrong guess about the secret. In order to consider
the worst case scenario and to give upper bounds for the level of anonymity
provided, the adversary is assumed to use the MAP rule strategy. In this
case, the probability of error corresponds to the Bayes risk, and the degree of
protection offered by a protocol corresponds to the Bayes risk associated with
the channel matrix.

13
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In [Smi07, Smi09] Smith also considered the scenario of one-try attacks
and proposed the notion of wvulnerability, which takes into consideration the
probability that the adversary can guess the secret correctly after observing
the behavior of the system only once. Smith proposed the framework of min-
entropy leakage, which is closely related to the Bayes risk, but is different as
it uses the concept of entropy (more precisely min-entropy) and formalizes
leakage in information theoretic terms.

In Chapter 3 we will present a deeper discussion about the use of infor-
mation theory for the formalization of information flow, including the notions
of Shannon entropy, mutual information and the framework of min-entropy
leakage for one-try attacks. First, however, we will review some fundamental
anonymity protocols in literature.

Examples of anonymity protocols

On the Internet, every computer has a unique IP address which specifies the
computer’s logical location in the topology of the network. This I[P address
is usually sent along with any request originating from the computer. Even
if the computer uses an IP address for a single session via an ISP (Internet
Service Provider), the identification can be logged and retrieved later with the
ISP’s compliance. One common way to try to preserve anonymity is to use a
prozy, i.e. an intermediary computer that gathers all the requests of a group
of computers and serves as a unique gate for any communication with the
world outside of the network. For practical purposes, it is as if all the requests
originated from the proxy, and the members of the group are indistinguishable
from the point of view of an outside observer. One drawback presented by
the use of proxies is that it creates single points of failures, decreasing the
network’s robustness.

The problem illustrated above is one of the motivations for the use of com-
munication protocols specifically designed to protect anonymity. In this section
we review two of the most fundamental, and probably most famous, examples
of anonymity protocols in literature: the dining cryptographers protocol, and
the Crowds protocol.

The dining cryptographers The dining cryptographers protocol was pro-
posed by Chaum in [Cha88]. It is one of the first anonymity protocols in the
literature, and it is one of the few protocols that can assure strong anonymity.

The protocol is usually presented in a simplified scenario, where three cryp-
tographers employed by the NSA (The National Security Agency of the United
States) are having dinner in a restaurant. At the end of the dinner, the NSA
decides whether it will pay the bill itself or whether it will assign the duty of
paying to one of the cryptographers at the table. In the case the NSA decides
that one of the cryptographers will pay, it announces the decision secretly to
the chosen one. The goal of the protocol is to reveal whether one cryptographer
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will pay the bill or not, without revealing the identity of the payer. In other
words, to an external observer (and to the non-paying cryptographers as well),
the only accessible information is whether the NSA is paying or not, but not
the identity of the cryptographer paying (if any). We assume that the NSA
does not disclose its decision to anyone but to the cryptographer it chooses
(again, if any), and that the solution should be distributed, i.e. only message
passing between agents is allowed, and no centralized agent coordinates the
process.

The dining cryptographers protocol solves this problem as shown schemat-
ically in Figure 1.1. Each cryptographer (Cryptg, Crypt; and Crypts) tosses a
coin that is visible only to himself and to his right-hand neighbor. In this way
every cryptographer has a shared coin with each of the other two. After all
three coins (cp, ¢1 and c¢g) are tossed, each cryptographer checks whether the
two coins visible to him agree (both are heads or both are tails) or disagree
(one is head and the other is tails). Then they announce publicly agree or
disagree, according to the result they obtained with their coins. The only ex-
ception is that, if a cryptographer is paying, he will announce the opposite of
what he sees, i.e. he will announce disagree in the case that his coins agree and
agree if they do not. It can be proven that if the number of disagrees is even,
then the NSA is paying, and if the number of disagrees is odd, then one of the
cryptographers is paying. Moreover, if the coins are all fair, the protocol offers
strong anonymity in the following sense: The execution of the protocol does
not provide to an external observer enough evidence to change her knowledge
about which cryptographer is the payer, if any. In other words the probability
of any cryptographer being the payer, under the adversary’s point of view,
does not change after the observation of the protocol’s execution.

The dining cryptographers protocol can be generalized to any number of
graph nodes (i.e. cryptographers) and any type of graph connectivity (i.e. the
shared coins between pairs of cryptographers). Then the same solution can
be used for anonymous communication as follows. Each pair of nodes share a
common secret (the value of the coin) of length n, equal to the length of the
transmitted data. It is assumed that the coins are drawn uniformly from the set
of possible secrets. Each node then computes the binary sum (XOR operation)
of all its shared secrets and announces the result. The only exception is that
the node that wants to transmit adds the datum, also of length n, to the sum
it announces. It can be shown that the total sum of the announcements of
all nodes is equals to the data to be transmitted, since each secret is counted
twice (once by each node that can see it) and, therefore, is canceled out by
the XOR operation. The protocol works under the assumption that only one
node at a time tries to transmit, and if it is the case that more than one sender
wants to transmit at the same time, the conflict needs to be solved by some
sort of coordinator.

One drawback of the dining cryptographers protocol is its inefficiency:
whenever a single node wants to transmit, all the nodes in the graph need
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Figure 1.1: An example of the dining cryptographers protocol

to collaborate to make it happen, at the cost of a large number of message
exchanges. Moreover, as previously stated, in the case where more than one
node wants to transmit at the same time, a coordinator is necessary to solve
the conflict.

Crowds The Crowds protocol was first presented in [RR98| and it allows
Internet users to perform web transactions without revealing their identity.
Usually, on the Internet, when a user communicates with a server the latter
can discover the TP address of the originator. The idea behind Crowds is to
gather users into a crowd and randomly redirect the request multiple times
inside the group before finally letting it reach the server. In this situation, it
is impossible for the server, and for any other user, to identify the initiator of
the request once it receives the message: whenever someone sends a message
there is a considerable probability that she is only a forwarder for someone
else.

To be more precise, a crowd is a group of m users who participate in the
protocol. It is possible that a subgroup of ¢ users are corrupted and collaborate
to disclose the identity of the original sender. Also, we assume that the protocol
has a parameter py € (0, 1]. We call originator or initiator the user who wants
to make a request to the server. The originator needs to create a path between
herself and the server in order to have her request reach the final destination,
as shown in Figure 1.2.

The protocol works as follows:

o At the first step the initiator chooses, according to a uniform probability
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Figure 1.2: The Crowds protocol at work

distribution, another user in the crowd (possibly herself) and forwards
the request to this user;

e The user who receives the message then makes a random choice. With
probability p; she forwards the message to the server, and with prob-
ability 1 — py she decides to forward the message to some user in the
crowd. If this is the case, she chooses a user (possibly herself) according
to a uniform probability distribution, and forwards the message to this
user. This step is then repeated by the new message holder.

The response from the server to the originator follows the same path, in
the opposite direction. Moreover, all the communications in a path are en-
crypted using a path key, which protects the path from threats posed by local
eavesdroppers. Each user has access to the communications in which she par-
ticipates, but it is assumed that a user cannot intercept messages exchanged
between other users. It can be proven that the protocol is strongly anonymous
with respect to the web server. Intuitively this is the case because at least one
forward step is always performed, and after this step any user can be the holder
of the message with equal probability. Therefore, from the server’s point of
view any user is equally likely to be the originator of the request.

A more interesting case is to analyze the level of anonymity ensured with
respect to a corrupted user. If in the very first step of the execution of the
protocol the message is forwarded to a corrupted user, she can gain more
information about the possible originator than the server. A user, whether the
originator or not, is said to be detected if she sends a message to a corrupted
user. Since the originator always appears in a path, she is more likely to be
detected than the rest of the users. Detecting a user (at least for the first time
in a path) increases the probability that this user is the originator. Therefore,
strong anonymity cannot hold with relation to corrupted users.

In [RRI8] it is proven that if the number ¢ of corrupted users is not too
large, the protocol can at least ensure the level protection of probable inno-
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cence. More precisely, if the number m of users in the crowd satisfies

m > pfl(c—i—l)
Pf—3

then the protocol ensures probable innocence in the sense of (1.8).

1.3.2 Statistical disclosure control

The field of statistical disclosure control concerns the problem of revealing ac-
curate statistics about a set of respondents while preserving the privacy of
individuals. In statistical databases, the data of a (large) number of par-
ticipants is compiled, and users are allowed to pose statistical queries (such
as average or total counting) about the sample. This kind of database is of
special importance in many areas. For instance, medical databases can pro-
vide information about how a disease spreads, and a census database can help
authorities to decide how to spend the next year’s budget.

The data in a statistical database can be obtained in different ways. It can
be collected in a census, for instance, it can be obtained opportunistically by
monitoring the traffic in a network, or it can even be given by the participants
by their own choice. No matter how the data is obtained, however, it is still
important to ensure that the individual’s participation in the database will
not harm her privacy. This is not a trivial goal to achieve: the main purpose
of a statistical database, in the first place, is to reveal some information about
the population as a whole, i.e. to let users infer “general truths” about this
population. As an example, suppose that a statistical database of individuals
of a certain country indicates that, in this population, the life expectancy for
women is 5 years longer than for men. Clearly this piece of information reveals
something about the whole population, even about individuals not present in
the database.

There are several approaches to dealing with the problem of preserving
privacy in statistical databases. One of them is based on ensuring large query
sets, i.e. that no query can be posed for a small set of individuals. The
problem with this approach is that, even if two query sets are “large enough”,
their combination may not be. Consider the following two queries: “How many
people have disease y?” and “How many people, not named X, have disease
y7”. Both queries operate on large sets, but clearly the superposition of the two
queries immediately reveals sensitive information about the individual named
X. Another attempt to achieve privacy is based on the encryption of the data
in the dataset. This is not a general solution since, as we have seen, the privacy
threats do not concern only the individuals in the database and, therefore, the
encryption of the data will not address this issue.

Another possible solution is to apply some sort of query auditing: the
curator of the database checks whether or not a query is possibly disclosing
before deciding to provide an answer to it. This approach would cope with the
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problem of the two superposing queries mentioned above, yet it presents two
serious drawbacks: first, automatic tools to check every query are practically
infeasible; and, second, the refusal to answer a query can be in itself a disclosing
act. Another attempt to deal with the problem is by using subsampling of the
dataset. We normally view a dataset as a collection of rows, where each row
contains the data of an particular participant. The idea of subsampling is to
randomly choose a subset of the rows, compute the answer to the query based
on this subsample, and then report it as the final answer. If the subset is
large enough, it should reflect the statistical properties of the whole database.
This approach, however, protects a participant only to the extent to which
it is unlikely that she is in the subsample. If being in the subsample has
catastrophic results, then someone will always be seriously harmed.

The input perturbation approach is based on modifying either the data
or the query in hope of confusing the adversary. For instance, a randomized
response mechanism can be used at the moment the data is acquired. This
modification is permanent and not even the curator knows what the original
data was. The queries to the database are then made taking into consideration
the randomized noise.

Yet another approach is to add randomized noise to the answer of the
query. The idea is to compute the answer on the complete set of (the original)
values in the database, and then randomize the response before reporting it
to the user. If this is done naively, however, it can easily be taken care of
by the adversary. Suppose that the noise is chosen to be a Gaussian additive
noise with mean zero. If the query is repeated a sufficient number of times,
a statistical analysis of the answers can easily estimate with high accuracy
what the real answer is. Even if the curator of the database opts to record the
query and always report the same answer for it, it may not solve the problem:
syntactically different queries can be semantically equivalent, and if the query
language is rich enough the semantic equivalence is undecidable.

In this context, it is clear that the problem of statistical disclosure control
is not trivial. Yet another issue to be considered is auziliary (or side) infor-
mation. Auxiliary information is any piece of data about individuals that the
attacker has and that does not come from the database itself. It may originate
from priors, beliefs, newspapers or even other databases. Some decades ago,
Dalenius [Dal77] considered the problem of auxiliary information and proposed
a famous “ad omnia” privacy desideratum: nothing about an individual should
be learnable from the database that could not be learned without access to the
database. In other words, if the adversary has some side information and gains
some knowledge about the individuals using it, by learning the response from
the database this knowledge about individuals should not increase. Dalenius’
property is, however, too strong to be useful in practice: Dwork showed in
[Dwo06] that no useful database can satisfy it. She then proposed the notion
of differential privacy, which is based on the idea that the presence or absence
of an individual in the database, or the individual’s particular value, should
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not significantly change the probability of obtaining a certain answer for a
given query [Dwo06, Dwol0, Dwoll, DL09].

The concept of differential privacy can be formalized as follows. Let X be
the set of all possible databases, and Z be the set of possible answers to a
query. Two databases z, 2’ € X are adjacent (or neighbors), written x ~ ', if
they differ in the value of exactly one individual. Then, for some ¢ > 0:

Definition 1 ([Dwoll]). A randomized function K from X to Z satisfies e-
differential privacy if for all pairs x,x’ € X, with x ~ x', and all S C Z, we
have:

Pr[K(z) € S] < e - Prik(2') € 9]

The concept of differential privacy has had an extraordinary impact in
the database community, and we will discuss the meaning and implications
of the above formulation in greater depth in Chapter 5. For the moment, it
is enough to note that this definition intuitively ensures that individuals can
opt in or out of the database without significantly changing the probability of
any given answer to a query to be reported. In other words, it is “safe” for an
individual to join (or to leave) the database. Dwork also showed that in order
to ensure differential privacy it is enough to consider a Laplacian mechanism
of noise [Dwo06].

Although differential privacy is a promising approach to the question of
statistical disclosure control, the fact that it relies on the randomization of the
query response poses some challenges with respect to the utility of the query
mechanism. If the noise is not added with sufficient care, the reported answer
can be so “different” from the real answer that the informative purpose of the
database is compromised. In Chapter 5 we will come back to the question
of how to apply differential privacy and, at the same time, provide maximum
utility to the query mechanism.

1.3.3 Refining specifications into implementations

Deriving implementations of a system given its specification, while respecting
security constraints, is a challenging problem in information hiding and, more
generally, in security. A specification S is refined by an implementation P if
P preserves all logically expressible properties of S. One needs to be care-
ful, however, when refining a specification in the realm of information hiding.
According to Morgan [Mor09]:

A rigorous definition of how specifications relate to implementa-
tions, as part of reasoning, must ensure that implementations re-
veal no more than their specifications: they must, in effect, preserve
ignorance.
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By “ignorance”, the author means what the user does not know about what
she cannot see. This notion is closely related to the problem of information
flow, i.e. determining how much about the secret behavior of a system an
adversary can infer from an observation and her knowledge about how the
system works.

To illustrate the problem, we will discuss the following example, adapted
from the original one in [Mor09]. Consider a partition of the program states
into wvisible (v) and hidden (h). Assume that the two variables v and h have
the same domain N (the natural numbers), and in a specification S, after the
value of h is assigned, the following is stated: choose v from the domain N.
Then we can ask “from the final value of v, what can the observer deduce about
the value of h, given that she knows how the system works?”. Of course the
answer will depend on how the implementation I of the specification is done.
If I is simply v := 0, then nothing is learned, since what the user knows about
the value of h is exactly what she already knew before. If the implementation
is v := h mod 2, then she can learn A’s parity. If the implementation is v := h,
then she learns the exact value of h. Intuitively, the three implementations are
in increasing order according to the loss of ignorance they induce.

It is desirable that the implementation of a specification be “ignorance
preserving”, in the sense that the implementation should not reveal more about
the secrets than the specification does. Some works in the literature suggest
that one should be careful when dealing with secure refinements if one wants to
preserve information-flow security properties. In [Jac89], for instance, Jacob
shows that even if an implementation is a consistent refinement with respect to
a specification, it does not imply that the (information-flow) security properties
of the specification are preserved in the implementation.

As pointed out in [CNP09], nondeterminism is often used in system specifi-
cations as a way of abstracting from implementation details (such as scheduler
policy). Implementations are obtained from specifications by refinement alge-
bras, which reduce nondeterminism. As we have seen in a previous example, if
we assume v and h are both of type N, then the specification choose v from the
domain N can be refined to v := h, which is simply a reduction of nondeter-
minism. This is known as the “refinement paradox” [Mor09], because it does
not preserve ignorance. While the specification does not tell anything about
the value of h, the refinement completely reveals it.

The process of reducing nondeterminism by refinements is related to the
notion of schedulers in nondeterministic systems: designing an implementation
of a specification involves choosing a scheduler to solve all the nondeterminism
of the specification. The scheduler is indeed a final result of the refinement
process, after all the nondeterminism is ruled out.

According to this perspective, similar concerns about refinement algebras
should be taken into consideration when dealing with schedulers. Indeed, it
can be shown that, given a specification S and a scheduler that leads to a
consistent implementation P with respect to .9, it is not guaranteed that the
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security properties of S are preserved in P.

In the domain of refinement of specifications, the solution proposed in
[Mor09] is to apply some principles to the refinement algebra in order to assure
the preservation of ignorance. These principles restrict the refinement relation,
eliminating the cases that do not preserve ignorance.

A similar problem arises in the context of concurrent systems, where the
scheduler that resolves the nondeterminism can violate security properties.
In Chapter 6 we focus on this problem and we propose restrictions on the
schedulers that also lead to ignorance-preserving refinements.

1.4 Plan of the thesis and contribution

In Chapter 2 we review some basic notions necessary for the development
of this thesis, including the concepts of probability spaces, probabilistic au-
tomata and CCS,, (a probabilistic version of the process algebra of concurrent
communicating processes).

In Chapter 3 we review the main approaches that have been considered
to quantify the notion of information leakage using concepts of information
theory. We explain concepts such as entropy, conditional entropy, mutual
information and capacity. We focus on how distinct notions of entropy can
model attackers with different levels of power, and we introduce the mathe-
matical background necessary for most of this thesis. Finally we compare the
main notions of uncertainty and leakage in the literature.

In Chapter 4 we consider the problem of defining the information leakage
in interactive systems where secrets and observables can alternate during the
computation. We show that the information-theoretic approach that interprets
such systems as classic channels is not valid. The principle can be recovered,
however, if we consider channels of a more complicated kind, namely channels
with memory and feedback. We show that there is a complete correspondence
between interactive systems and such channels. We also propose the use of
directed information, as opposed to mutual information, to represent leakage
in interactive systems. This proposal is based on recent results in information
theory that have shown that, in channels with memory and feedback, the
transmission rate does not correspond to the maximum mutual information
(the standard notion of capacity), but rather to the maximum (normalized)
directed information. We show that our model is a proper extension of the
classical one, i.e. in the absence of interactivity the model of channels with
memory and feedback collapses into the model of memoryless channels without
feedback. Finally, we show that the capacity of the channels associated with
interactive systems is a continuous function with respect to a pseudometric
based on the Kantorovich metric.

In Chapter 5 we analyze critically the notion of differential privacy in the
light of the conceptual framework provided by min-entropy leakage. We show
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that there is a close relationship between differential privacy and leakage, due
to the graph symmetries induced by the adjacency relation on databases. Fur-
thermore, we consider the utility of the randomized answer, which measures
its expected degree of accuracy. We focus on certain kinds of utility functions
called “binary”, which have a close correspondence with the notion of min-
entropy leakage and the Bayes risk. Again, there can be a tight correspondence
between differential privacy and utility, depending on the symmetries induced
by the adjacency relation and by the query. Using these symmetries we can,
in some cases, build an optimal-utility randomization mechanism while pre-
serving the required level of differential privacy. We also provide a study of
the kind of structures that can be induced by the adjacency relation and the
query, and how to use them to derive bounds on the leakage and achieve the
optimal utility.

In Chapter 6 we move away from the quantitative realm and focus on the
problem of nondeterminism in systems specifications. In the field of security,
process equivalences have been used to characterize various information-hiding
properties (for instance secrecy, anonymity and noninterference) based on the
principle that a protocol P with a variable x satisfies such a property if and
only if, for every pair of secrets s; and so, P[*'/,] is equivalent to P[*2/,]. We
argue that, in the presence of nondeterminism, the above principle relies on the
assumption that the scheduler “works for the benefit of the protocol”, and this
is usually not a safe assumption. Non-safe equivalences, in this sense, include
complete-trace equivalence and bisimulation. We present a formalism in which
we can specify admissible schedulers and, correspondingly, safe versions of
these equivalences. We prove that safe bisimulation is still a congruence. Then
we show that safe equivalences can be used to establish information-hiding
properties.

Finally, in Chapter 7 we make our final observations.

1.5 Publications

Most of the results in this thesis have already been the subject of scientific
publications. More precisely:

e Chapter 3 is based on the paper Probabilistic Information Flow
[AAP10b] that appeared in the proceedings of 25" Annual IEEE Sym-
posium on Logic in Computer Science (LICS 2010).

e Chapter 4 is based on the papers:
— Information Flow in Interactive Systems [AAP10a| that ap-
peared in the proceedings of the 215! International Conference on

Concurrency Theory (CONCUR 2010);
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— Quantitative Information Flow in Interactive Systems [AAP11]
to appear in the Journal of Computer Security.

e Chapter 5 is based on two complementary works:

— The paper On the relation between Differential Privacy and
Quantitative Information Flow [AACP11] to appear in the pro-
ceedings of the 38th International Colloguium on Automata, Lan-
guages and Programming (ICALP 2011);

— The technical report Differential Privacy: on the trade-off
between Utility and Information Leakage [AACT11].

e Chapter 6 is based on the paper Safe Equivalences for Security
Properties [AAPvR10] that appeared in the the proceedings of the 6th
IFIP International Conference on Theoretical Computer Science (IFIP-
TCS 2010).



Two

Preliminaries

“I can make just such ones if I had tools, and I could make tools
if I had tools to make them with.”
Eli Whitney

In this chapter we review some technical concepts from the literature that
will be used throughout this thesis.

2.1 Probability spaces

In this section we recall some concepts about probability spaces.

Let Q be a set and P(Q2) represent its powerset, i.e. the collection of all
subsets of Q. A o-algebra (also called o-field) over €2 is a non-empty collection
of sets F C P(Q) that is closed under complementation and countable union.
For any o-field F, the property 2 € F holds, and also that F is closed under
countable intersection (by De Morgan’s laws).

A (positive) measure on F is a function p : F — [0,00) such that

L. p(0) =0, and

2. u(UU; Ci) = >, 1(C;), where {C;}; is a countable collection of pairwise
disjoint sets in F.

A probability measure on F is a measure p on F such that pu(Q2) = 1.
A probability space is a tuple (2, F,u) where Q is a non-empty set called
the sample space, F is a o-algebra on §2 called the event space, and pu is a
probability measure on F. In the discrete case, we have

VC e F. u(C) =) p({z})

zeC
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In this case we can construct p from a function p : Q — [0,1] satisfy-
ing > cqp(x) = 1 by assigning p({z}) = p(xz). The function p is called a
probability distribution over ).

The set of all probability measures with sample space §2 will be denoted
by D(2). We will also denote by d,(-) (called the Dirac measure on x or also
a point mass) the probability distribution such that p({z}) = 1.

If A and B are events, i.e. elements of a o-field F, then AN B is also an
event. If (A) > 0 then we can define the conditional probability p(B|A) as

u(AN B)
1(A)

representing the probability of B given that A holds. Note that p(:|A) is a new
probability measure on F. For the scope of this thesis we are interested only
in the discrete case, so it is enough to use the definition above and make sure
that we never condition on an event A with zero probability.

Let F,F' be two o-fields on €, respectively. A random variable X is
a function X : Q — '/ that is measurable, meaning that the inverse of every
element of F’ belongs to F:

p(B|A) =

VO eF. X Y0)eF

Then, given a probability measure p on F, X induces a probability measure
' on F' as
VO e F. (C) = u(X71(C)
If 1/ is a discrete probability measure then it can be constructed by a
probability distribution over €', called probability mass function (pmf), defined

P([X = z]) = p(X ! (z))

for each x € €. The random variable in this case is called discrete. If X,Y
are discrete random variables then we can define a discrete random variable
(X,Y) by its pmf

P(X =2,V =y]) = p(X M z) N X (y))

If X is a real-valued discrete random variable then its ezpected value (or
expectation) is defined as

E(X) = Zw P([X =x])

A family p = {p,(-)}» of probability measures parametrized on v (where v
can range over {0,...,n} for some natural n) is called a stochastic kernel.'.

'The general definition of stochastic kernel is more complicated (cfr. [TMO09]), but it
reduces to this one in the discrete case, which is what we use in this thesis.
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Notation: We will use capital letters A, B, X, Y, Z to denote random vari-
ables and calligraphic letters A, B, X', ), Z to denote their image. With a slight
abuse of notation we will use p (and p(z),p(y)) to denote either

e a probability distribution, when x,y € €, or
e a probability measure, when x,y € F are events, or

e the probability mass function P([X = z]), P([Y = y|) of the random
variables X, Y respectively, when z € X',y € ).

2.2 Probabilistic automata

Let p: S — [0,1] be a discrete probability distribution on a countable set S,
and let the set of all discrete probability distributions on S be D(S).

A probabilistic automaton [Seg95] is a quadruple M = (S, L, §,9) where
S is a countable set of states, L is a finite set of labels or actions, § is the
initial state, and 9 is a transition function ¥ : S — P(D(L x 8)). If ¥(s) =0
then s is a terminal state. We write s—pu for u € 9(s), s € S. Moreover, we
write s-5r for s,r € § whenever s—pu and p(l,r) > 0. A fully probabilistic
automaton is a probabilistic automaton satisfying |¢(s)| < 1 for all states. In
such an automaton, when ¥(s) # ), we overload the notation and denote by
¥(s) the distribution outgoing from s.

A path in a probabilistic automaton is a sequence o = sg kN s1 g
where s; € S, ¢; € L and s; i—+>lsl-+1. A path can be finite in which case it
ends with a state. A path is complete if it is either infinite, or finite ending
in a terminal state. Given a finite path o, last(o) denotes its last state. Let
Pathsg (M) denote the set of all paths, Paths*s(M) the set of all finite paths,
and CPathss(M) the set of all complete paths of an automaton M, starting
from the state s. We will omit s if s = 5. Paths are ordered by the prefix
relation, which we denote by <. The trace of a path is the sequence of actions
in £* U L% obtained by removing the states, hence for the above ¢ we have
trace(o) = lyly.... If L C L, then tracep(o) is the projection of trace(o) on
the elements of £'.

Let M = (S, L,5,9) be a (fully) probabilistic automaton, s € S a state,
and let o € Pathss(M) be a finite path starting in s. The cone generated by
o is the set of complete paths (o) = {¢’ € CPathss(M) | o < ¢’}. Given a
fully probabilistic automaton M = (S, L, §,9) and a state s, we can calculate
the probability value Ps(o) of any finite path o starting in s as follows:

P.(s) =1, and

Pi(o 4 s") =Pgy(o) u(l,s") where last(c) — p
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Let Qg def CPathss(M) be the sample space, and let Fs be the smallest
o-algebra induced by the cones generated by all the finite paths of M. Then
P induces a unique probability measure on Fs (which we will also denote by
P,) such that Ps((0)) = Ps(o) for every finite path o starting in s. For s = §
we write P instead of Pj.

A (total) scheduler for a probabilistic automaton M is a function defined
as (: Paths®(M) — (£ x D(S) U {L}) such that for all finite paths o, if
Y(last(o)) # O then (o) € ¥(last(c)), and ((o) = L otherwise. Hence, a
scheduler ( selects one of the available transitions in each state, and determines
therefore a fully probabilistic automaton, obtained by pruning from M the
alternatives that are not chosen by (. A scheduler is history dependent since
it takes into account the path and not only the current state. It is possible to
define partial schedulers, i.e. schedulers that may halt the execution at any
time. In this thesis, however, we will consider only total schedulers, to be more
in line with the standard semantics of CCS.

2.3 CCS with internal probabilistic choice

In this section we present an extension of standard CCS (|Mil89]) obtained
by adding internal probabilistic choice. The resulting calculus can be seen as
a simplified version of the probabilistic 7-calculus presented in [HP00, PHO05]
and it is similar to the one considered in [DPP05]. The restriction to CCS and
to internal choice is suitable for the scope of this thesis.

Let a range over a countable set of channel names.

The syntax of CCS,, is the following:

az=a | a| T prefixes
P,Q ::= processes
a.P prefix
| P|Q parallel
| P+@Q nondeterministic choice
| >, piP;  internal probabilistic choice
| (va)P restriction
| \P replication
| 0 nil

where the p;’s in the probabilistic choice should be non-negative and their sum
should be 1. We will also use the notation P, +, % to represent a binary sum
>_; il with py = p and pp =1 —p.

The semantics of a CCS,, term is a probabilistic automaton defined induc-
tively on the basis of the syntax according to the rules in Figure 2.1. We write
s —= 1 when (s,a,p) is a transition of the probabilistic automaton. Given
a process (Q and a measure p, we denote by p | @ the measure u' such that
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2.3. CCS with internal probabilistic choice

ACT _ RES P54 _ a#a,a
a.P — o(P) (va)P — (va)p
SUM1 Pi—gu SUM?2 Qi—lyﬂ
P+Q —pu P+Q—pu
PAR1 — L —u PAR2 — {1
PlQ—plQ PlQ—P|p
a / a /
com L—=90) Q—=0Q)  ppep _
PlQ— 4P |Q) > il — 32 pi0(P)
REP1 P#i)l‘_ REP2 Pi}fj(Pl) P §(Py)
PS5 | 1P P 75 §(P, | By | 'P)

Figure 2.1: The semantics of CCS,

W (P | Q) = u(P) for all processes P and p/(R) = 0 if R is not of the form
P | Q. Similarly (va)u =y such that p/((va)P) = p(P).

A transition of the form P —%+ §(P’), i.e. a transition having for target a
Dirac measure, corresponds to a transition of a non-probabilistic automaton (a
standard labeled transition system). Note that each rule of CCS,, corresponds
to one rule of CCS, except for PROB. The latter models the internal prob-
abilistic choice: a silent 7 transition is available from the sum to a measure
containing all of its operands, with the corresponding probabilities.

Note that in the produced probabilistic automaton, all transitions to non-
Dirac measures are silent. This is similar to the alternating model [HJ89|,
however our case is more general because the silent and non-silent transitions
are not necessarily alternated. On the other hand, with respect to the simple
probabilistic automata the fact that the probabilistic transitions are silent
looks like a restriction. It has been proved by Bandini and Segala [BSO01],
however, that the simple probabilistic automata and the alternating model are
essentially equivalent, so, being in between, our model is equivalent as well.

Encoding message passing into CCS, Sometimes it is convenient to
make message passing explicit in the notation of CCS,. Namely, we enrich
its syntax by allowing the prefixes to be c(a) | ¢{x) | 7, where ¢,a,z are
names, and the semantic rule COM is substituted by:

P sipy o s

COM' ST
PlQ— P |Q[/:])

where P <% 5 (P') denotes a process that sends the name a through channel
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c and then evolves to P/, and Q GG 0(Q’) denotes a process that receives the
name x through channel ¢ and then evolves to @'. Here Q' [*/,] is the process
@' in which every occurrence of z is replace by a.

The expressive power of CCS,, with message passing and without it is the
same |[Mil89]. In this thesis we will use this fact and consider explicit message
passing as an alias for the corresponding encoding into the presentation of
CCS,, given in Figure 2.1.
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Three

The rationale behind the use of
information theory for leakage

“Why, only why?”
Nadia Vertti

In this chapter we review the most important concepts related to the informa-
tion theoretic approach to quantitative information flow. We aim at presenting
these concepts in a contextualized way, discussing the intuition behind them
and interpreting what they mean in terms of security.

Plan of the Chapter Section 3.1 gives a brief overview on information
theory for communication. Section 3.2 introduces the information theoretic
approach to information flow. Section 3.3 presents and compares several dif-
ferent notions based on information theory that have been used in the literature
to characterize uncertainty and leakage.

3.1 Information theory and communication

The study of information theory started with Claude E. Shannon’s work on the
problem of coding messages to be transmitted through unreliable (or noisy)
channels. A communication channel is a (physical) means through which in-
formation can be transmitted. The input is fed into the channel, but due to
noise or any other problems that can occur during the transmission, the output
of the channel may not reflect with fidelity the input. It is usual to describe
the unreliable behavior of the channel in a probabilistic way. In the discrete
(finite) case, if A = {a1,a9,...,a,} represent the possible inputs for the chan-
nel, and B = {by,ba,...,by} represent the possible outputs, the channel’s
probabilistic behavior can be represented as a channel matrix M,,«,, where
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each element M;; (1 < i <mn, 1 < j < m)is defined as the probability of
the channel outputting b; when the input is a;. In this way, we can see the
input and output as two correlated random variables linked by the channel’s
probabilistic behavior .

A unique feature of information theory is its use of a numerical measure of
the amount of information gained when the contents of a message are learned.
More specifically, information theory reasons about the degree of uncertainty
of a certain random variable, and the amount of information that it can reveal
about another random variable. Among the tools provided by information
theory there are concepts as entropy, conditional entropy, mutual information
and channel capacity, which will be reviewed in Section 3.3.1. We consider
here only the discrete case, since this is enough for the scope of this thesis.

3.2 Information theory and information flow

Several works in the literature use an information theoretic approach to model
the problem of information flow and define the leakage in a quantitative way, as
for example [ZB05, CHMO05, Mal07, MC08, MNS03, MNCMO03, CPP08a|. The
idea is to model the computational system as an information theoretic channel.
The input represents the secret, the output represents the observable, and the
correlation between the input and output (mutual information) represents the
information leakage. The worst case leakage corresponds then to the capacity
of the channel, which is by definition the maximum mutual information that
can be obtained by varying the input distribution.

In the works mentioned above, the notion of mutual information is based
on Shannon entropy, which (because of its mathematical properties) is the
most established measure of uncertainty. From the security point of view, this
measure corresponds to a particular model of attack and a particular way of
estimating the security threat (vulnerability of the secret). Other notions have
been considered, and argued to be more appropriate for security in certain sce-
narios. These include: min-entropy [R61, Smi09|, Bayes risk [CT91, CPP08b],
guessing entropy [Mas94], and marginal guesswork [P1i00]. In Section 3.3 we
will discuss their meaning and show how they relate (or do not relate) to each
other and to Shannon entropy.

Whatever definition of uncertainty (i.e. vulnerability) we want to adopt,
the notion of leakage is inherent to the system and can be expressed in a
uniform way as the difference between the initial uncertainty, i.e. the degree
of ignorance about the secret before we run the system, and the remaining
uncertainty, i.e. the degree of ignorance about the secret after we run the
system and observe its outcome. Following the principle advocated by Smith

'Note that we are assuming that channels are loseless, since the rows are probability
distributions instead of sub-probability distributions.
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3.2. Information theory and information flow

[Smi09], and by many others:

information leakage = initial uncertainty (3.1)

remaining uncertainty

In (3.1), the initial uncertainty depends solely on the input distribution,
aka the a priori distribution or prior. Intuitively, the more uniform it is, the
less we know about the secret (in the probabilistic sense). After we run the
system, if there is a probabilistic correlation between input and output, then
the observation of the output should increase our knowledge of the secret. This
is determined by the fact that the distribution on the input changes: in fact we
can update the probability of each input with the corresponding conditional
probability of the same input, given the output. The new distribution is called
the a posteriori distribution. In case the input and output are independent,
then the a priori and the a posteriori distributions coincide and the knowledge
should remain the same. We will use the attributes “a priori” (or “prior”)
and “a posteriori” to refer to before and after the observation of the output,
respectively.

The above intuitions should be reflected by any reasonable notion of un-
certainty: it should be higher on more uniform distributions, and it should
decrease or remain equal with the observation of related events.

If the uncertainty is expressed in terms of Shannon entropy, then the initial
uncertainty is the entropy of the input, the remaining uncertainty is the condi-
tional entropy of the input given the output, and (3.1) matches exactly the defi-
nition of mutual information. This justifies the notion of leakage adopted in the
works mentioned before ([ZB05, CHMO05, Mal07, MC08, MNS03, MNCMO03,
CPP08al).

The analogy between information flow in a system and a (simple) channel
works well when:

(i) there is no nondeterminism, i.e. either the system is deterministic, or
purely probabilistic; and

(i) there is a precise temporal relation between secrets and observables in the
computations; namely, the value of the secret is chosen at the beginning
of the computation, and the computation of the system produces an
observable outcome with a probability that depends solely on the chosen
input and on the system. Furthermore, each new run of the system is
independent from the previous ones.

Restriction (i) implies that for each secret there is exactly one conditional
probability distribution on the observables, where the condition is the secret
value. If a system is deterministic, then under the same input each run pro-
duces always the same output, with probability 1. Therefore the matrix con-
tains only 0’s and 1’s. Yet the problem of inferring the secret is interesting,

33



3. THE RATIONALE BEHIND THE USE OF INFORMATION THEORY FOR
LEAKAGE

because the same output may correspond to different inputs. If the system
is probabilistic, i.e. it uses some randomized mechanisms, then the matrix
usually contains probabilities different from 0 and 1.

Restriction (ii) ensures that this conditional distribution depends uniquely
on the system (not on the input distribution). These conditional probabilities
constitute the channel matrix. Note that in a (basic) information-theoretic
channel the matrix must be invariant with respect to the input distribution,
which is exactly what condition (ii) guarantees.

Unfortunately, usually conditions (i) and (ii) are too restrictive for real-life
systems:

e Specifications typically need to use nondeterminism in order to abstract
from implementation details. This is particularly compelling in the case
of concurrent and distributed systems: The order in which the various
components get executed and their interactions depend on scheduling
policies that may differ from implementation to implementation. Fur-
thermore, even if the scheduling policy is fixed, there are run time cir-
cumstances that may influence the relative speed of the processes. Non-
determinism is, in practice, an unavoidable aspect of concurrency.

e Secrets and observables often alternate and interact during an execu-
tion. In particular, the choice of a new secret may depend on previous
observables. Furthermore, new executions of the systems may depend
on previous ones. This may be due to the way the system works, or to
the presence of an active adversary that may use the knowledge derived
from previous observations to try to tamper with the mechanisms of the
system, with the purpose of increasing the leakage. Examples of such
systems, that we call here interactive systems (where interaction refers
to the interplay between secrets and observables), can be found in the
areas of game theory, auction protocols, web servers, GUI applications,
etc.

In this thesis we consider the challenges of extending the information-
theoretic approach to cases where these conditions are relaxed. More specifi-
cally, Chapter 4 concerns the suppression of condition (ii), and Chapter 6 deals
with the suppression of condition (i).

3.3 Uncertainty and leakage

In this section we recall various definitions of uncertainty based on information
theory proposed in the literature, and we discuss the relation with security
attacks and the way of measuring their success. In general we consider the
kind of threats that in the model of Kopf and Basin [KB07] are called brute-
force guessing attacks, which can be summarized as follows: The goal of the
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adversary is to determine the value of a random variable. He can make a series
of queries to an oracle. Each query must have a yes/no answer. In general
the adversary is adaptive, i.e. he can choose the next query depending on the
answers to the previous ones. We assume that the adversary knows the a priori
probability distribution. In this section, when we talk about the meaning in
security of a particular measure of uncertainty, we refer to the work in [KB07].

In the following, A, B denote two discrete random variables with finitely
many values A = {ay,...,a,}, B=1{by,...,b,,}, and probability distributions
pa(+), pB(+), respectively. We will use A A B to represent the random variable
with carrier A x B and joint probability distribution parp(a,b) = pa(a)-p(b |
A = a), while A - B will denote the random variable with carrier A x B and
probability distribution defined as product, i.e. pa.p(a,b) = pa(a) - pp(b).
Clearly, if A and B are independent, we have A A B = A - B. We shall omit
the subscripts on the probabilities when they are clear from the context. In
reference to a channel, in general A will denote the input (secret), and B the
output (observable).

3.3.1 Shannon entropy
The (Shannon) entropy of A is defined as

Zp ) log p(a

The entropy measures the uncertainty of A. It takes its minimum value
H(A) =0 when p4(-) is a point mass (also called delta of Dirac). The maxi-
mum value H(A) = log | A] is obtained when p4(-) is the uniform distribution.
Usually the base of the logarithm is set to be 2 and the entropy is measured
in bits. Roughly speaking, m bits of entropy means that we have 2" values to
choose from, assuming a uniform distribution.

The conditional entropy of A given B is defined as

H(A|B) = Y p(b) HA|B=b) (3.2)
beB
where
H(A|B=b) = —> plalb)log p(alb)
acA

The conditional entropy measures the uncertainty of A when B is known. It
is well-known that 0 < H(A|B) < H(A). The minimum value, 0, is obtained
when A is completely determined by B. The maximum value H(A) is obtained
when A and B are independent.

The mutual information between A and B is defined as

I(A; B) = H(A) — H(A|B) (3.3)
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The mutual information measures the amount of information about A that
we gain by observing B. It can be shown that I(A;B) = I(B;A) and 0 <
I(A;B) < H(A). If C is a third random variable, the conditional mutual
information between A and B given C'is defined as

I(A; B|C) = H(A|C) — H(A|B,C)

The (conditional) entropy and mutual information respect the chain rules.

Namely, given the random variables A1, Ao, ..., A, B and C, we have:
k
H(Ala A27 s 7"4]?’0) - ZH(AZ’AD s 7Ai—17 C)
i=1
k
I(A1, A, A BIC) = ) 1(Ai; BlAy,..., 4i-1,C) (3.4)
i=1

A discrete memoryless channel is a tuple (A, B,p(+])), where A, B are the
sets of input and output symbols, respectively, and p(b|a) is the probability of
observing the output symbol b when the input symbol is a. These conditional
probabilities constitute the channel matriz. An input distribution p(-) over
A together with the channel determine the joint distribution p(a,b) = p(a|b) -
p(a) and consequently I(A; B). The maximum I(A; B) over all possible input
distributions is the channel’s capacity C:

C =max I(A;B)

pa(r)

The famous Channel Coding Theorem by Shannon relates the capacity of
the channel to its maximum transmission rate. In brief, the channel capacity
is a tight upper bound for the maximum rate by which information can be
reliably transmitted using the channel. Given an acceptable probability of
error &, there is a natural number n and a coding for which n uses of the
channel will result in messages being transmitted with at most the acceptable
probability of error &.

Meaning in security To explain what H(A) represents from the security
point of view, consider a partition {A;};c; of A. The adversary is allowed to
ask questions of the form “does A € A;?” according to some strategy. Let
n(a) be the number of questions that are needed to determine the value of a,
when A = a. Then H(A) represents the lower bound to the expected value
of n(-), with respect to all possible partitions and strategies of the adversary
[P1i00, KBOT].
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3.3.2 Min-entropy

In [R61], Rényi introduced a one-parameter family of entropy measures, in-
tended as a generalization of Shannon entropy. The Rényi entropy of order «
(>0, @ # 1) of a random variable A is defined as

Ha(A) = ——1log 3 pla)”

1l —«
ac€ A

Rényi’s motivations were of an axiomatic nature: Shannon entropy satisfies
four axioms, namely symmetry, continuity, value 1 on the Bernoulli uniform
distribution, and the chain rule?:

H(ANB) = H(A)+ H(B|A) (3.5)

The entropy of the joint probability, H(AA B), is more commonly denoted
by H(A, B). We will use the latter notation in the following.

Shannon entropy is also the only function that satisfies those axioms. If
we replace, however, (3.5) with a weaker property representing the additivity
of entropy for independent distributions:

H(A-B) = H(A)+ H(B)

then there are more functions satisfying the axioms, among which are all those
of Rényi’s family.

Shannon entropy is obtained by taking the limit of H, as a approaches 1.
In fact we can easily prove, using I’'Hopital’s rule, that

Hy(A) i H,(A) = — Z p(a)log p(a)

a—1
ac A

We are particularly interested in the limit of H, as « approaches co. This
is called min-entropy. It can easily be proven that
Hy(A) % Jim H,(A) = —log max p(a)
a

a—00 cA

Rényi considered also the a-generalization of the Kullback-Liebler diver-
gence, which is defined as (assuming that p and ¢ are distributions on the same
set X):

~—

Dirplla) = 3 pla) log 2&
reX q(w

~—

*The original axiom, called the grouping axiom, does not mention the conditional en-
tropy. It corresponds, however, to the chain rule if the conditional entropy is defined as in
(3.2).
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Rényi’s a-generalization is:

Dalpllg) = = Tlog 3 p(e)" glw)~"
rekX

The standard case, i.e. the Kullback-Liebler divergence, is again obtained
by taking the limit of D, as a — 1.

The interest of the above for our purposes lies on the fact that Shannon mu-
tual information can equivalently be defined in terms of the Kullback-Liebler
divergence (see for instance [CT91]):

I(4;B) = Dki(AAB | A-B)

Therefore, it seems natural to define the a-generalization of the mutual
information as:

I3(A;B) = Da(AAB| A-B)

Other a-generalizations of the mutual information, based on the same idea,
are explored in [Csi95].

As o — o0, the above definition gives the following min-version of the
mutual information:

13,(4; B) d:efo}ggofa(A;B) = log rg%xz%
Another natural way to generalize [(A; B) would be to replace H by H,,
in Definition 3.3. Rényi did not define, however, the a-generalization of the
conditional entropy, and there is no agreement on what it should be.
Various researchers, including Cachin [Cac97], have considered the follow-
ing definition, based on (3.2):

(3.6)

HE*hm(A | B) = 3 p(b) Ha(A| B=1b)
beB

which, as a — oo, becomes

HGehin(A | B) = —Y p(b) log max p(a | b) (3.7)
beB

An alternative proposal for Hy (- | -) came from Smith [Smi09]3:
HS™M (A | B) = —logY ycpmaxeea pla,b) (3.8)

Using (3.7) and 3.8), and the analogue of (3.3) we can define I{%"" and
Igomith 4

3The same formulation had been already used by Dodis et al. in [DORS04], and Smith
proposed it independently. Since it is Smith’s work on the subject that motivates the
approach used in this thesis, we opt to refer to this formulation as Smith’s.

*The notation I5™*" is ours. Smith himself opts for not adopting it, since
symmetric.

I3™th is not

38



3.3. Uncertainty and leakage

Meaning in security The min-entropy can be related to a model of adver-
sary who is allowed to ask exactly one question, which must be of the form “is
A = a?” (one-try attacks). More precisely, the min-entropy H.o(A) represents
the (logarithm of the inverse of the) probability of success for this kind of
attack and with the best strategy, which consists, of course, in choosing the a
with the maximum probability.

As for Hyo(A | B) and I (A; B), the most interesting versions in terms
of security seem to be those of Smith. In fact, in this thesis we adopt his
approach to information leakage, and we will, from now on, use the following
notation:

e H. (A | B) stands for HS™"(A | B) and is referred to as conditional
min-entropy;

e I(A; B) stands for IS (A; B) and is referred to as min-entropy leak-
age.

In fact, the conditional min-entropy Hs (A | B) represents the log of the
inverse of the (expected value of the) probability that the same kind of adver-
sary succeeds in guessing the value of A a posteriori, i.e. after observing the
result of B. The complement of this probability is also known as probability
of error or Bayes risk. Since in general B and A are correlated, observing
B increases the probability of success. In fact, we can prove formally that
Ho(A | B) < Hy(A), with equality if A and B are independent. The min-
entropy leakage I (A; B) corresponds to the ratio between the probabilities
of success a priori and a posteriori, which is a natural notion of leakage. Here
I (A; B) is in the format of (3.1), but the difference becomes a ratio due to the
presence of the logarithms. Note that I (A; B) > 0, which seems desirable for
a good notion of leakage. It has been proven in [BCP09] that C, is obtained
at the uniform distribution, and that it is equal to the sum of the maxima of
each column in the channel matrix, i.e. Coo = Y c gpmax,cap(b | a).

The definition of I’ (A; B) in (3.6) has also an interpretation in security:
it represents the maximum gain in the probability of success, i.e. the max-
imum ratio between the a posteriori and the a priori probability. Note that
also I’ (A; B) is always non-negative and it is 0 if and only if A and B are in-
dependent. More generally, D1 (p || ¢) and its a-extension D, (p || ¢) should
represent the “inefficiency” of an adversary who bases its strategy on the dis-
tribution ¢, when in fact the real distribution is p. Hence I} (A; B) defined as
Dy(ANB || A-B) should represent the gain of the adversary in revising his
strategy according to the knowledge of the correlation between A and B.

Concerning H, Sac’”" and [ S“Chm, they have some nice properties. For in-
stance they enjoy weak versions of the chain rule (3.5). More precisely, the
“="in (3.5) becomes “>” for a < 1, and “<” for & > 1. There is no general
relation between H(*""(A | B) and H..(A), and in particular {2 is not
guaranteed to be non-negative.
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3.3.3 Guessing entropy

The notion of guessing entropy was introduced by Massey in [Mas94|. Let
us assume, for simplicity, that the elements of A are ordered by decreasing
probabilities, i.e. if 1 < i < j < n then p(a;) > p(a;). Then the guessing
entropy is defined as follows:

Hg(A) = Z ip(a;)

1<i<|A|

Massey did not define the notion of conditional guessing entropy. In some
works, like [Cac97, KB07], it is defined analogously to (3.2):

a(A|B) = > p(b) Ho(A| B =)
beB

Meaning in security Guessing entropy represents an adversary who is al-
lowed to ask repeatedly questions of the form “is A = a?”. More precisely,
Hg(A) represents the expected number of questions that the adversary needs
to ask to determine the value of A, assuming that he follows the best strategy,
which consists, of course, in choosing the a’s in order of decreasing probability.

Hg(A | B) represents the expected number of questions a posteriori, i.e.
after observing the value of B and reordering the queries according to the
updated probabilities (i.e. the queries will be chosen in order of decreasing a
posteriori probabilities).

Also in this case, Hg(A | B) is not necessarily smaller than or equal to
Hg(A), so the corresponding notion of mutual information is not guaranteed
to be non-negative®.

3.3.4 Marginal guesswork

The marginal guesswork is a variant of guessing entropy that was proposed
by Pliam [Pli00]. It is parametric in a number 1 > 0, and is defined as
follows. Again, we assume that the elements of A are ordered by decreasing
probabilities.

Hy(4) = min{j | 3 pla)) > n}

1<i<j

Pliam did not define the conditional version of marginal guesswork, but in
[KBO07] it is defined following (3.2):

Hy(A|B) = > p(b) Hy(A|B=b)
beB

5This problem is inherent to the probabilistic case, and therefore it does not occur in
[KBO07], since that work considers only deterministic systems.
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Meaning in security Consider again an adversary who is allowed to ask
repeatedly questions of the form “is A = a?”. H,(A) represents the minimum
number of questions that the adversary needs to ask to determine the value of
A with probability at least 7.

H, (A | B) represents the same notion, but using the a posteriori probabil-
ities. Again, it is not necessarily the case that H,(A | B) < H,(A).

3.3.5 Comparison and discussion

The various notions of entropy discussed in this section have been carefully
compared with Shannon entropy, to conclude that in general there is no tight
relation. Fano’s inequality gives a lower bound to the Bayes risk in terms of
(conditional) Shannon entropy, and Rényi [R61], Hellman-Raviv [HR07], and
Santhi-Vardi [SV06] give upper bounds as well, but all these are rather weak.
Smith has shown in [Smi09] that the orderings induced on channels by the
Bayes risk and by Shannon entropy are in general unrelated.

Massey has shown that the exponential of the Shannon entropy is a lower
bound for the guessing entropy, and that, in case of a geometric distribution,
the bound is tight. Massey has also shown that in the general case the Shannon
entropy can be arbitrarily close to 0 while the guessing entropy is constant
[Mas94].

As for the marginal guesswork. Pliam has shown that it is essentially
unrelated with Shannon entropy [P1i00].

In this thesis we focus on the concepts of leakage based on Shannon entropy
(Chapter 4) and min-entropy (Chapter 5).
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Four

Information flow in interactive systems

“True interactivity is not about clicking on icons or downloading files,
it’s about encouraging communication.”
Edwin Schlossberg

The key idea behind the information-theoretic approaches to information flow
is to interpret the system as an information-theoretic channel, where the secrets
are the input and the observables are the output. The channel matrix consists
of the conditional probabilities p(b | a), defined as the measure of the executions
producing the observable b, relative to those which contain the secret a. The
leakage is represented by the mutual information, and the worst-case leakage
by the capacity of the channel (see Chapter 3 for reference).

In information theory, however, there are several different models of chan-
nels. So far the works in the literature about information theory applied to
information flow have focused on the simplest kind of channels: discrete memo-
ryless channels where the absence of feedback is implicitly assumed. This clas-
sical approach has been successfully used in scenarios where the secret value
is assumed to be chosen at the beginning of the computation. In this chapter,
however, we are interested in the more general scenario in which secrets can
be chosen at any point. More precisely, we consider interactive systems, i.e.
systems in which the generation of secrets and the occurrence of observables
can alternate during the computation and influence each other. Examples of
interactive systems include auction protocols like [Vic61, Sub98, SA99]. Some
of these have become very popular thanks to their integration in Internet-based
electronic commerce platforms [Eba, Ebi, Mer|. Other examples of interactive
programs include web servers, GUI applications, and command-line programs
[BPST09].

Unfortunately, the information-theoretic approach which interprets inter-
active systems as classical channels is not valid. More specifically, in such
systems the channel matrix is not invariant with respect to the input distri-
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bution, so the channel capacity cannot be calculated in the traditional way.
Therefore, the notion of maximum leakage as standard capacity is also com-
promised.

The goal of this chapter is to extend the classical information-theoretic
approach to information flow to the more complicated scenario of interactive
systems.

Contribution The main contributions of this chapter can be summarized
as follows.

e We show that by considering the richer channels that support memory
and feedback it is possible to retrieve the correspondence between sys-
tems and channels. We prove that there is a complete correspondence
between interactive systems and channels with memory and feedback,
and we show how to model the latter as the former.

e We propose the use of directed information, as opposed to mutual in-
formation, to represent leakage in interactive systems. Recent results in
information theory [TMO09] have shown that, in channels with memory
and feedback, the transmission rate does not correspond to the maxi-
mum mutual information (the standard notion of capacity), but rather to
the maximum normalized directed information, a concept introduced by
Massey [Mas90]. We argue that in interactive channels the real leakage is
due to the directed information from secrets to observables, whereas the
directed information from observables to secrets (corresponding to feed-
back) is a characteristic of the system itself and should not be counted
as leakage.

e We show that our model is a proper extension of the classical one, i.e. in
the absence of interactivity the model of channels with memory and feed-
back collapses into the model of memoryless channels without feedback.
Moreover, in that case also the concepts of mutual information and di-
rected information from input to output coincide, the same holds for the
concepts of capacity and directed capacity. We argue that in the clas-
sical approach mutual information is a good measure of leakage exactly
because of this property: in the absence of feedback mutual information
and directed information from input to output are the same.

e We show that the capacity of the channels associated to interactive sys-
tems is a continuous function with respect to a pseudometric based on
the Kantorovich metric. The continuity of the channel capacity was also
proved in [DJGPO02]| for simple channels, but the proof does not adapt
to the case of channels with memory and feedback and we had to devise
a different technique.

Plan of the Chapter This chapter is organized as follows. In Section 4.1
we introduce the concept of interactive systems and we show why channels
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without memory and feedback are inadequate in this scenario. In Section 4.2
we review the notion of channels with memory and feedback, which is the core
of the model we propose. We discuss the concept of directed information and
also the concept of capacity in the presence of feedback. Section 4.3 contains
the main contribution in this chapter: We explain how Interactive Informa-
tion Hiding Systems (ITHSs) can be modeled using channels with memory and
feedback. In particular we show that for any ITHS there is always a channel
that simulates its probabilistic behavior. In Section 4.4 we discuss our no-
tion of adversary and we define the quantification of information leakage as
the channel’s directed information from input to output, or as the directed
capacity, depending on whether the input distribution is fixed or not. In Sec-
tion 4.5 we apply our model to an example, the Cocaine Auction protocol. In
Section 4.6 we propose a pseudometric structure on ITHSs based on the Kan-
torovich metric. We also show that the capacity of the channels associated to
interactive systems is a continuous function with respect to this pseudometric.
In Section 4.7 we present some related work, and in Section 4.8 we review and
discuss the main results of the chapter, and consider future work.

4.1 Interactive systems

In this section we exemplify the problems that arise when we try to apply
the classical information-theoretic approach to interactive systems. In order
to derive an information-theoretic channel, at a first glance it would seem
natural to define the channel matrix by using the definition of p(b|a) in terms
of the joint and marginal probabilities p(a,b) and p(b). Namely, the entry
p(b] a) would be defined as the measure of the traces with (secret, observable)-
projection (a, b), divided by the measure of the traces with secret projection a.
An approach of this kind was proposed in [DJGP02|. In the interactive case,
however, this construction does not really produce an information-theoretic
channel. In fact, by definition a channel should be invariant with respect to
the input distribution, and this is not the case here, as shown by the following
example.

Example 1. Figure 4.1 represents a web-based interaction between one seller
and two possible buyers, rich and poor. The seller can offer two different
products, cheap and expensive, with given probabilities. Once the product is
offered, each buyer may try to buy it, with a certain probability. For simplicity
we assume that the buyers’ offers are mutually exclusive. We assume that the
offers are observables, in the sense that they are made public on the website,
while the identity of the buyer that actually buys the product should be kept
secret from an external observer. The symbols v, q1, q2, T, q1, @2 represent
probabilities, with the convention that T = 1 —r (and the same for the pairs

q1, ﬁ and q2, @)
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Figure 4.1: Interactive system of Example 1

Following [DJGP02] we can compute the conditional probabilities using

p(bla) = %, thus obtaining the matrix in Table 4.1. The matrix however is

not invariant with respect to the input distribution. For instance for r =7 = %,

q1 = 2, and go = % we obtain the matrix in Table 4.2(a). If we change the
input distribution, for instance by changing the value of g5 to be %, also the
matrix changes. We obtain, indeed, the new matrix illustrated in Table 4.2(b).

‘ H cheap ‘ erpensive ‘
rq1 7q2
poor \\ vt | ratre
; rq1 Tq2
rich | s | ratrw

Table 4.1: Channel matrix for Example 1

Consequently, when the secrets occur after the observables and depend on
them, we cannot consider the conditional probabilities (of the observables given
the secrets) as representing a classical channel from secrets to observables, and
we cannot apply the standard information-theoretic concepts. In particular,
we cannot use “the capacity of the matrix” (defined by considering the matrix
as a channel matrix, and taking the maximum mutual information over all
possible inputs) because in general the maximum is given by a distribution
different from the one that was used to define the matrix, hence the result
would be unsound.

The first contribution of this chapter is to consider an extension of the
theory of channels which makes the information-theoretic approach applicable
also in the case of interactive systems. A richer notion of channels, known in
information theory as channels with memory and feedback, serves our purposes.
The dependence of inputs on previous outputs corresponds to feedback, and
the dependence of outputs on previous inputs and outputs corresponds to
memory. Recent results in information theory [TMO09] have shown that, in such
channels, the transmission rate does not correspond to the maximum mutual
information (the standard notion of capacity), but rather to the maximum
normalized directed information, a concept introduced by Massey [Mas90].
We propose to adopt this latter notion to represent leakage.
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‘ H cheap ‘ expensive H Input distr. ‘
poor % % p(poor) = %
rich % % p(rich) = %

(a) r= %Jh = §7Q2 = %

‘ H cheap ‘ expensive H Input distr. ‘
poor % é p(poor) = %
rich % % p(rich) = %

Table 4.2: Two different channel matrices induced by two different input dis-
tributions for Example 1

Our model of attacker is the interactive version of the attacker associated
to Shannon entropy in the classification of Képf and Basin [KB07], discussed
in Chapter 3. In the case of a standard single-use channel, the invulnerability
degree of the secret before the attacker observes the output is the entropy of the
input, determined by its a priori distribution. The invulnerability degree after
the attacker observes the output is the conditional entropy of the input given
the output, determined by its a posteriori distribution. The latter is always
smaller than or equal to the first. The difference between these invulnerability
degrees corresponds to the mutual information, and represents the leakage of
the system. In our interactive framework we consider the same scenario, but
iterated. At each time step, we consider the input sequence so far; and the
increase of its vulnerability caused by the observation of the new output is
given by the contribution of the present step to the leakage. The sum of all
these contributions represents the total leakage and, as we will see, corresponds
to Massey’s directed information. We will come back to the model of attacker
in Section 4.4, and discuss also a variant of this interpretation.

A second contribution of our work is the proof that the channel capacity
is a continuous function of a pseudometric on interactive systems based on
the Kantorovich metric. The reason why we are interested in the continu-
ity of the capacity is for computability purposes. Given a function f from
a (pseudo)metric space X to a (pseudo)metric space Y the continuity of f
means that, given a sequence of objects z1,x2,... € X converging to = € X,
the sequence f(z1), f(z2),... € Y converges to f(x) € J. Hence f(z) can be
approximated by the objects f(z1), f(z2),.... The typical use of this prop-
erty is in the case of execution trees generated by programs containing loops.
Generally the automaton expressing the semantics of the program can be seen
as the (metric) limit of the sequence of trees generated by unfolding the loop
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to an increasingly deeper level. The continuity of the capacity means that we
can approximate the real capacity by the capacities of these trees.

4.2 Discrete channels with memory and feedback

In this section we present the notion of channel with memory and feedback. We
assume a scenario in which the channel is used repeatedly, in a finite temporal
sequence of steps 1,...,T. Intuitively, memory means that the output at time
t(1 <t <T) depends on the input and output histories, i.e. on the inputs up
to time ¢, and on the output up to time ¢t — 1. Feedback means that the input
at time ¢ depends on the outputs up to time ¢ — 1.

We adopt the following notation.

Convention 2. Given sets of symbols (alphabets) A = {ay,...,a,}, B =
{by,...,b,}, we use a Greek letter (o, B, ...) to denote a sequence of symbols
ordered in time. Given a sequence o = a;,a;, . . . a;,,, the notation oy represents
the symbol at time t, i.e. a;,, while o' represents the sequence QG Qe O
For instance, in the sequence o = asasas, we have oy = a; and a? = A0y .
Analogously, if X is a random variable, then X' denotes the sequence of t
consecutive instances X1,...,X; of X.

We now define formally the concepts of memory and feedback. Consider a
channel from input A to output B. The channel behavior after 1" uses can be
fully described by the joint distribution of AT x BT, namely by the probabilities
p(a®,BT). Using the chain rule, we can decompose these probabilities as

follows:
T

p(aT, BT) = Hp(atlat_l, Bt_l)p(ﬁtlat, ﬁt_l) (4.1)

t=1

Definition 3. We say that a channel has feedback if, in general,
playlat=1, 8171 # p(aylal™t), i.e. the probability of a, depends mot only on
o't but also on B'~L. Analogously, we say that the channel has memory if,
in general, p(B,al, B71) # p(B,|oy), i.e. the probability of 3, depends on o
and 1.

Note that in the opposite case, i.e. when p(a,|at=t, B171) coincides with
p(aylaf=1) and p(B,]at, B1) coincides with p(5,|a,), we have a classical chan-
nel (memoryless, and without feedback), in which each use is independent from
the previous ones. The only possible dependency on the history is the one of
a; on a'~'. This is because Aq,..., A7 are in general correlated, due to the
fact that they are produced by an encoding function. Note that in absence of
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memory and feedback (4.1) reduces to:

o’ ) = HP a1 p(Byley)

T

= p(aT) Hp(ﬁt\at) (by the chain rule) (4.2)
t=1

from which we can derive the standard formula for a classical channel after T
uses.

p(a®, 57)
p(al)

T
H (Bylew) (by (4.2))

p(B" ") =

So far we have given a very abstract description of a channel with memory
and feedback. We now discuss a more concrete notion following the presen-
tation of [TMO09]. Such a channel, represented in Figure 4.2, consists of
a sequence of components formally defined as a family of stochastic kernels
[p(-Jat, B, over B.

The probabilities p(3,|at, B1~1) represent innermost behavior of the channel
at time ¢, 1 <t < T the internal channel takes the input a; and, depending
on the history of inputs and outputs so far, it produces an output symbol ;.
The output is then fed back to the encoder with delay one. On the input side,
at time ¢ the encoder takes the message and the past output symbols 5! and
produces a channel input symbol «, according to the code function ¢, (we will
explain this concept in the next paragraph). At final time T the decoder takes
all the channel outputs 87 and produces the decoded message W. The order
in time is the following:

Message W, «q,B;, @9,85, ..., «ap,Bp, Decoded Message W

Let us now explain the concept of code function. Intuitively, a code func-
tion is a strategy to encode the message into a suitable representation to be
transmitted through the channel. There is a code function for each possible
message, and the functions are fixed at the very beginning of the transmission
(time t = 0). The encoding, however, can use the information provided via
feedback, so each component ¢, (1 < ¢t < T') of the code function takes as
parameter the history of feedback 5!~! to generate the next input symbol a.

Formally, let F; be the set of all measurable maps ¢, : B! — A en-
dowed with a probability distribution, and let F; be the corresponding ran-
dom variable. Let FT, FT denote the Cartesian product on the domain and
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r-r—>—""""""=""-—-""- - - -~ -~ -~ -~ - - - - - - 1
I I
W Fucri(;fieo_ns @, | Encoder a, Channel By I Decoder W
oT T Ao = (BN} {p(Bilat, B V] w=a(8")
I I
I I
I I
By
Time 0 : L=l Delay < : Time T + 1
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| Time |
I t=1...T !
L - - - - - |

Figure 4.2: Model for discrete channel with memory and feedback

the random variable, respectively. A channel code function is an element
o' = (o1, 0p) EFT.

Note that, by the chain rule, p(¢”) = [T/_, p(¢|¢'1). Hence the distri-
bution on FT is uniquely determined by a sequence {p(p;|¢*~ 1)} ;. The no-
tation ! (B71) will represent the A-valued t-tuple (o1, o(81), ..., ¢ (B71)).

In Information Theory this kind of channel is used to encode and transmit
messages. If VW is a set of messages of cardinality M with typical element w,
endowed with a probability distribution, a channel code is a set of M channel
code functions ¢’ [w], interpreted as follows: for message w, if at time ¢ the
channel feedback is 5¢~!, then the channel encoder outputs ¢,[w](3'"!). A
channel decoder is a map from B” to W which attempts to reconstruct the
input message after observing all the output history 57 from the channel.

4.2.1 The power of feedback

The original purpose of communication channel models is to represent data
transmission from a source to a receiver. Shannon’s Channel Coding Theo-
rem states that for every channel there is an encoding scheme that allows a
transmission rate arbitrarily close to the channel capacity with a negligible
probability of error (if the number of uses of the channel is large enough). A
general way to find an optimal encoding scheme that is also easy to decode
has not been found yet. The use of feedback, however, can simplify the design
of the encoder and of the decoder. The following example illustrates the idea.

[ Jo[1]e]
0.8] 0 [02
1] 0 [08]02

Table 4.3: Channel matrix for binary erasure channel

Example 2. Consider a discrete memoryless binary channel {A, B,p(.|.)} with
A ={0,1}, B ={0,1, e} and the channel matriz of Table 4.3. This kind of
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channel is called erasure channel because it can lose (or erase) bits during the
transmission with a certain probability. Namely, any bit has 0.8 probability of
being correctly transmitted, and 0.2 probability of being lost. On the output
side the encoder is able to detect whether the bit was erased (by receiving an e
symbol), but it cannot tell which was the actual value of the original bit. The
Channel Coding Theorem guarantees that the mazimum information transmis-
sion rate in this channel is (2 to the power of) the channel capacity, i.e. 0.8
bits per use of the channel.

Following simple principles described in [CT06], an encoding that achieves
the capacity can be easily obtained if the channel can be used with feedback. The
idea is an adaptation of the stop-and-wait protocol [Sta06, Tan89]. Suppose
that every bit received on the output end of the channel is fed back noiselessly to
the source with delay 1. Define the encoding as follows: for each bit transmitted,
the encoder checks via feedback whether the bit was erased. If not, the encoder
moves on to transmit the text of the message. If yes, the encoder transmits the
same bit again.

It is easy to see that with this encoding scheme the transmaission rate is 0.8
bit per usage of the channel, since in 80% of the cases the bit is transmitted
properly, and in 20% it is lost and a retransmission is needed.

We now proceed to illustrate in more detail the design and the function of
the encoder and decoder.

An example illustrating the the encoder/decoder design

We proceed with the erasure channel of Example 2 to show how the enriched
model of channels with memory and feedback can be used to transmit the
message, and in particular how the feedback can be used to design the encoder.
We assume that the set VW of possible messages consists of all finite sequences of
bits. The role of the code functions is to encode the message W into a suitable
representation for the stochastic kernels within the channel. The input and
output alphabets for the stochastic kernels are 4 = {0,1} and B = {0, 1, e},
respectively. We assume that at most 7" uses of the channel are allowed and
we use ¢, with 1 <t < T, to represent the ¢! time step.

We consider a sort of memory that depends only on the input history and
we abstract from its specific form by defining a function 7 : P(A%) — [0,1]
that maps each possible input history to a correction factor to be added to (or
subtracted from) a base probability value. We compute the contribution of 7
to the base values using arithmetic modulo 2, in such a way that the resulting
values are still a probability distribution. More precisely, the stochastic kernels
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are defined as follows.

p(B, = 0|a!710, 7)) = 0.8 — p(at™1)

p(B, = 110,671 =0

p(B, =ela’10,87) = 0.2 + n(af™1) 43
p(/@t:()’atfll /Btfl):O ( . )
p(B, = 1ol 11, 871 = 0.8 — p(al™t)

p(B; = ela!™11, 871 = 0.2+ n(at1)

Correspondingly, the general form of the channel matrix for each time
1 <t <Tis shown in Table 4.4.

| [ o [ + | e |
a, =0,871 1 0.8 —n(at™h) 0 0.2 + n(at=1)
a,=1,8"1 0 0.8 —n(al=1) [ 0.2 + n(at~1)

Table 4.4: General form of channel matrix

The code functions are chosen at time ¢ = 0, based on the message to be
transmitted. For illustration purposes, let us suppose that the message is the
sequence of three bits W = 011. The other cases of W are analogous.

At time ¢t = 1, the channel is used for its first time and the feedback history
so far is empty % = e. The encoder selects the input symbol oy = 0, as in
(4.4).

AW = 011)(8° = ¢) = 0 (4.4)

At time t = 2, the feedback history consists of only one symbol, and in
principle the possibilities are either ' = 0, B = 1 or B! = e. In the first
case, the first bit was successfully transmitted and the encoder can go on to
the second bit of the message. By the way the channel is defined, the second
case is not really possible, so it is not important how the reaction function is
defined for this case. We will denote this indifference by attributing to the
function the symbol x instead of a 0 or a 1. In the last case, 8! = e, the first
bit was erased and the encoder tries to retransmit the bit 0. We can write it
formally as below.

fIW = 011)(8" = 0) =1
W = 011)(81 = 1) = x (4.5)
W = 011](8' = ) = 0

At time t = 3 the feedback histories allowed by the channel are 3? €
{01, 0e, €0, ee} (the other ones have zero probability). In the first case, 32 = 01
the two first bits of the message have been transmitted correctly and the
encoder can send the third bit. If 82 = Oe, the transmission of the first bit
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was successful, but the second bit was erased and needs to be resent. In the
case 32 = e0, the first bit was erased in the first try but was successfully
transmitted in the second try, so now the encoder can move to the second bit
of the message. In the last case, 3? = ee, the two tries were unsuccessful and
the encoder still needs to transmit the first bit of the message. Formally:

f3[W = 011)(6% = 00) = x
F5[W = 011)(82 = 01) = 1
F5[W = 011)(8% = 0e) =1
fo[W = 011)(6% = 10) = x
f3[W =011](8% = 11) = x (4.6)
F5[W = 011](8% = 1e) =x
F5[W = 011)(82 = e0) = 1
f5[W =011](5 = el) =x
F5[W = 011](82 = ee) =0

We can easily extend the construction of code functions f, for 3 <¢ < T
using this encoding scheme.

The decoder is very simple: once all time steps 1,...,7T have taken place,
it just takes the whole output trace ST and removes the occurrences of the
erased bit symbol e in order to recover the original message.

Table 4.5 shows a possible behavior of a binary erasure channel with mem-
ory and feedback in a scenario where the message is W = 011 and the channel
can be used at most T = 3 times. Note that in this particular example the
maximum number of uses of the channel is achieved before the whole mes-
sage is successfully sent: the decoder can recover only the two first bits of the
original message.

We can observe that the channel capacity in the above example does not
increase with the addition of feedback (it is 0.8 bit per usage of the channel with
or without feedback). This is because the channel is memoryless: feedback does
not increase the capacity of discrete memoryless channels [CT06]. In general
however, feedback does increase the capacity of channels with memory.

4.2.2 Directed information and capacity of channels with
feedback

In classical Information Theory, the channel capacity, which is related to the
channel’s transmission rate by Shannon’s Channel Coding Theorem, can be
obtained as the supremum of the mutual information over all possible input
distributions. In the presence of feedback, however, this correspondence no
longer holds. More specifically, mutual information no longer represents the
information flow from AT to BT. Intuitively, this is due to the fact that mu-
tual information expresses correlation, and therefore it is increased by feedback
(Example 5 in Section 4.4 depicts this fact). Yet feedback, i.e. the way the
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Time Code Feedback Encoder Channel Decoder
t functions history o, = p(B;|at, Bt W =
f(B7H gt f W8 (8T
Code
t=0 functions E— E—
for W = 011
are selected.
oy = According to
t=1 As in (4.4) € f1[W = 011](e) p(B8110,€) E—
=0 produces
By =e
a, = According to
t=2 As in (4.5) e fo[W = 011](e) p(B]00, e) —_—
=0 produces
By =0
oy = According to
t=3 As in (4.6) e0 f5[W = 011](e0) | p(B5]001,e0) —_—
=1 produces
ﬂg =1
Decoded
t=4 e message W=
v(B% = e01)
=01

Table 4.5: A possible evolution of the binary channel with time, for W = 011
and T'=3

output influences the next input, is not part of the information to be trans-
mitted. If we want to maintain the correspondence between the transmission
rate and capacity, we need to replace the mutual information with directed
information [Mas90].

Definition 4. In a channel with feedback, the directed information from input
AT to output BT is defined as

T
I(AT — BT) =Y " I(A% By B"™1)
t=1

In the other direction, the directed information from BT to AT is defined as

T
I(B" — AT) =Y " I(A; B7HATY
t=1

In Section 4.4 we will discuss the relation between directed information and
mutual information, as well as the correspondence with information leakage.
For the moment, we only present the extension of the concept of capacity.

Let Dr = {p(ay]at=t, 1)}, be the set of all input distributions in
presence of feedback. For finite T', the capacity of a channel with memory and
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feedback is: .
Cr = sup —=I(AT — BT) (4.7)
vy T
The capacity is also defined when T is infinite, see [TM09]. In this thesis,
however, we only need to consider the finite case.

4.3 Interactive systems as channels with memory
and feedback

Interactive Information Hiding Systems (ITHS) were introduced in [APvRS10]
to represent systems where secrets (inputs) and observables (outputs) can in-
terleave and influence each other. They are a variant of probabilistic au-
tomata in which actions are divided into secrets and observables. They can
be of two kinds: fully probabilistic, and secret-nondeterministic (or input-
nondeterministic). In the former there is no nondeterminism, while in the
latter every secret choice is fully nondeterministic. In this chapter we consider
normalized TTHSs, in which secrets and observables alternate, and the actions
at the first level are secrets. We note that this is not really a restriction, be-
cause given an I[THS which is not normalized, it is always possible to transform
it into a normalized ITHS which is equivalent to the former one up to a given
execution level. The reader can find further below in this Section the formal
definition of the transformation. Furthermore, we require that for each state
s and each action ¢ there is at most one state that can be reached from s by
performing an /¢ transition.

In this section we formalize the notion of ITHS and we show how to associate
to an ITHS a channel with memory and feedback.

Definition 5. A (normalized) ITHS is a triple I = (M, A, B), where A and
B are disjoint sets of secrets and observables respectively, M is a probabilistic
automaton (S, L, §,9) with L= AU B, and, for each s € S:

1. either ¥(s) CD(AXxS) ord(s) CD(BxS). We call s a secret state in
the first case, and an observable state in the second case;

2. if s b 1 then: if s is a secret state then r is an observable state, and if
s 18 an observable state then r is a secret state;

3. § 1is a secret state;
4. if s is an observable state then |9(s)| <1 ;

5. either:

(1) for every secret state s we have |9(s)| < 1 (fully probabilistic ITHS),

or
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(1) for every secret state s there exist a; and s; (i = 1,...,n) such that
U(s) = {6(as, s;)}Iy, where 6(a;, s;) is the Dirac measure (secret-
nondeterministic ITHS);

6. forg every state s and action £ there exists a unique state r such that
s—=r.

In the rest of the chapter we will omit the adjective “normalized” for sim-
plicity. In the above definition, Conditions 1 and 2 imply that the ITHS is
alternating between secrets and observables. Moreover, all the transitions
between nodes at two consecutive depths have either secret actions only, or
observable actions only. Condition 3 means that the first level contains secret
actions. Condition 4 means that all observable transitions are fully probabilis-
tic. Condition 5 means that either all secret transitions are fully probabilistic,
either they are all fully nondeterministic. The term “nondeterministic” is jus-
tified by the fact that the scheme of Condition 5ii represented in Figure 4.3(a),
is equivalent to the one of Figure 4.3(b).

(a) Nondeterministic input using Dirac measures (b) Equivalent scheme

Figure 4.3: Scheme of secret transitions for secret-nondeterministic IIHSs

Note that we do not consider here internal nondeterminism which can
arise from interleaving of concurrent processes. This means that we make
a rather restricted use of probabilistic automata, but this is enough for our
purposes. The nondeterminism generated by concurrency gives rise to a new
set of problems (see for example [CPP08a|) which are orthogonal to those
considered in this chapter.

Condition 6 means that the secret and observable actions determine the
states. As a consequence, the actions are enough to retrieve the path. This is
expressed by the following proposition:

Proposition 6. Given an ITHS, consider two paths o and o’. If trace 4(o) =
trace 4(o") and traceg(o) = traceg(c’), then o = o’.

Proof. By induction on the length of the traces. The initial state of the au-
tomaton is uniquely determined by the empty (secret and observable) traces.
Assume now we are in a state s uniquely determined by secret and observable
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4.3. Interactive systems as channels with memory and feedback

traces a and £, respectively. If s makes a secret transition s — s', then by
Condition 6 there is only one state s’ reachable from s via an a-transition,
and therefore s’ is uniquely determined by the secret trace o’ = aa and the
observable trace 5. The case in which s makes an observable transition is
similar. O

The normalization of ITHS trees

In this section we will address the problem of normalizing an IIHS, namely
transforming it into a stratified automaton in which secret and observable
actions alternate level by level. The process of normalization described bellow
is general enough to be applied to any ITHS without loss of generality or
expressive power.

Let A and B represent the secret and observable actions, respectively. Con-
sider a general ITHS J = (M, A, B) with M = (Q, L, §,v), where L = AU B.
Assume that we are only interested in executions that involve up to 7" interac-
tions, i.e. T uses of the system, with one secret taking place and one observable
produced at each time.

In the normalization process, we unfold the automaton up to level 27", since
there is one secret symbol and one observable symbol for each step. We also
extend the secret alphabet A with a new symbol a, ¢ A and the observable
alphabet B with a new symbol b, ¢ B. These new symbols will be used as
placeholders when we need to re-balance the tree. Let A" = AU {a,} and
B'=BU{b,}.

For a given level t let labels(J,t) be the set of all labels of transitions that
can be performed with a non-zero probability from the states at the t** level
of the automaton. Formally:

labels(J,t) ={¢ € L | Fo,s . |o| =t, last(o) 4 s}

The normalization of the ITHS J leads to an equivalent ITHS ' = (M', A, B'),
where M' = (Q', £/, §,9") and L = A" UB’; and such that, for every 1 <t <
2T

L. labels(7',t) C A" or labels(Jt) C B
2. labels(9',t) C A" if and only if  labels(T',t+1) C B/, for1 <t <T-1,

3. labels(9',1) C A';

Condition 1 states that each level consists of either the secret actions only,
or the observable actions only. Condition 2 states that secret and observable
levels alternate. Condition 3 says that the automaton starts with a secret level.

The proof is straightforward. First, the new symbols a, and b, are place-
holders for the absence of a secret and observable symbol, respectively. If in
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4. INFORMATION FLOW IN INTERACTIVE SYSTEMS

a given level ¢ we want to have only secret symbols, we can postpone the oc-
currences of observable symbols at this level as follows: add a, to the secret
level and “move” all the observable symbols to the subtree of a,. Figure 4.4
exemplifies the local transformations we need to make on the tree.

(a) Local nodes of the tree before the trans- (b) Local nodes of the tree after
formation the transformation

Figure 4.4: Local transformation in an ITHS tree

Note that in 4.4(b) the introduction of new nodes changed the probabilities
of the transitions in the tree. In general, whenever we need to introduce a, in
order to postpone the observable symbols, the probabilities change as follows:

1. For every a;,, 1 < ¢ < n, the associated probability is maintained as
/
pai - pala

2. The probability of the new symbol a, is introduced as pa, = Y ;- Db, ;

3. If pa, # 0, then for 1 <i < m, the associated probability of bj is updated
to py = po,/Pa. = Po, /> ko P, W pa, =0, then py, =0, for 1 <i <m,
and p, = 1.

The subtrees of each node of the original tree are preserved as they are,
until we apply the same transformation to them. If a node does not have a
subtree (i.e. no descendants), we create a subtree by adding all the possible
actions in B with probability 0, and the action b, with probability 1.

If we are normalizing an observable level, the same rules apply, guarding
the proper symmetry between secrets and observables. We then proceed in
the same way on the deeper levels of the tree. Figure 4.5 shows an example of
a full transformation on a tree (for the sake of readability, we omit the levels
where only a, = 1 or b, = 1).

4.3.1 Construction of the channel associated to an ITHS

We now show how to associate a channel to an ITHS.

In an interactive system secrets and observables may interleave and influ-
ence each other. Considering a channel with memory and feedback is a way
to capture this rich behavior. Secrets have a causal influence on observables
via the channel, and, in the presence of interactivity, observables have a causal
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4.3. Interactive systems as channels with memory and feedback

(a) Tree before transforma- (b) Tree after transformation
tion

Figure 4.5: Transformation in an ITHS tree

influence on secrets via feedback. This alternating mutual influence between
secrets and observables can be modeled by repeated uses of the channel. Fach
time the channel is used it represents a different state of the computation, and
the conditional probabilities of observables on secrets can depend on this state.
The addition of memory to the model allows expressing the dependency of the
channel matrix on such a state.

We will see that a secret-nondeterministic ITHS determines a channel as
specified by its stochastic kernels, while a fully probabilistic ITHS determines,
additionally, the input distribution.

In Section 4.5 we will give an extensive and detailed example of how to
make such a construction for an actual security protocol.

Given a path o of length 2t — 1, we will denote trace4(c) by af, and
traceg(o) by B

Definition 7. Let J be an IIHS. For each t, the channel’s stochastic kernel
corresponding to J is defined as p(B,at, B = 9(s)(B;, s'), where s is the
state reached from the root via the path o whose secret and observable traces
are o and B respectively.

Note that s and s’ in the previous definition are well defined: by Proposi-
tion 6, s is unique, and since the choice of §, is fully probabilistic, s’ is also
unique.

The following example illustrates how to apply Definition 7, with the help
of Proposition 6, to build the channel matrix of a simple example.

Example 3. Let us consider an extended version of the website interactive sys-
tem of Figure 4.1. We maintain the general definition of the system, i.e. there
are two possible buyers (rich and poor, represented by rc. and pr., respectively)
and two possible products (cheap and expensive, represented by chp. and exp.,
respectively). We still assume that offers are observable, since they are visible
to everyone on the website, but the identity of buyers should be kept secret. We
consider two consecutive rounds of offers and buys, which implies that, after
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4. INFORMATION FLOW IN INTERACTIVE SYSTEMS

normalization, T = 3. Figure 4.6 shows an automaton for this example in
normalized form. Transitions with null probability are omitted, and the symbol
a, 1s used as a place holder to achieve the normalized IIHS.

To construct the stochastic kernels {p(B;|at, B}, we need to deter-
mine the conditional probability of an observable at time t given the history up
to time t.

Let us take the case t = 2 and compute the conditional probability of the
observable B, = cheap given that the history of secrets up to time t = 2 is
o’ = a,,poor and the history of observables is B' = expensive. Applying
Definition 7, we see that p(By = cheapla® = a,,poor, B = expensive) =
V(s)(cheap, s'). By Proposition 6, the traces o = a,,poor, ' = expensive
determine a unique state s in the automaton, namely, the state s = 5. More-
over, from the state 5 a unique transition labeled with the action cheap is
possible, leading to the state s’ = 11. Therefore, we can conclude that p(f, =
cheap|a? = a,,poor, B = expensive) = ¥(s = 5)(cheap, s’ = 11) = pa3.

Similarly, with t = 1 and history o' = a,,B° = €, the observable sym-
bol 3, = ewpensive can be observed with probability p(3; = expensive|a! =
a,, " =¢) =9(s = 0)(cheap, s’ =2) =py1.

If J is fully probabilistic, then it determines also the input distribution and
the dependency of oy on Bt~! (feedback) and on o~ 1.

Definition 8. Let J be an ITHS. If J is fully probabilistic, the associated chan-
nel has a conditional input distribution for each t defined as p(ay|at=1, B171) =
V(s)(ay, "), where s is the state reached from the root via the path o whose se-
cret and observable traces are o~ and B! respectively.

Example 4. Since the system of Example 3 is fully probabilistic, we can cal-
culate the values of the conditional probabilities {p(cy|at=t, B~} L.

Let us take, for instance, the case where t = 2 and compute the conditional
probability of secret oy = poor given that the history of secrets up to time t = 2
is a' = a, and the history of observables is ' = expensive. Applying Defini-
tion 8, we see that p(ay, = poor|ay = a,, B = expensive) = J(s)(poor, s'). By
Proposition 6, the traces o' = a*,ﬁl = expensive determine a unique state s
in the automaton, namely, the state s = 2. Moreover, from the state 2 a unique
transition labeled with the action poor is possible, leading to the state s’ = 5.
Therefore, we can conclude that p(ay = poor|a; = a,,B' = expensive) =
¥(s = 2)(poor, s’ =5) = q12.

Similarly, with t = 3 and history o® = a,, rich, 3> = cheap, expensive,
the secret symbol cig = rich can be observed with probability p(as = rich|a® =
a,.,rich, B° = cheap, expensive) = ¥(s = 10)(cheap, s’ = 22) = Gos.
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4.3. Interactive systems as channels with memory and feedback

Figure 4.6: The normalized ITHS for the extended website example

4.3.2 Lifting the channel inputs to reaction functions

Taken together, Definitions 7 and 8 show how to obtain the the joint probabil-
ities p(at, B?) for a fully probabilistic ITHS. We still need to show, however, in
what sense this joint probability distribution defines an information-theoretic
channel.

The {p(B;|at, 3771}, determined by the ITHS trivially correspond to a
channel’s stochastic kernel. The problem resides in the conditional probabili-
ties {p(a;|a~t, B71)}L ;. In an information-theoretic channel, the value of o
is determined in the encoder by a deterministic function ¢,(5¢~1). Therefore,
inside the encoder there is no possibility for a probabilistic description of «;.
The solution is to externalize this probabilistic behavior to the code functions.

As shown in [TMO09], the original channel with feedback from input symbols
AT to output symbols B can be lifted to an equivalent channel without feed-
back from code functions F7 to output symbols B7. This transformation also
allows us to calculate the channel capacity. Let {p(p,|¢'~ 1)}, be a sequence
of code function stochastic kernels and let {p(8;]af, 5°71)}L; be a channel
with memory and feedback. The channel from F? to B” is constructed using
a joint measure Q(¢”,a’, BT) that respects the following constraints:

Definition 9. A measure Q(p”,a”, ") is said to be consistent with re-
spect to the code function stochastic kernels {p(¢,|¢'™1)}_, and the channel

{p(B,lat, BYH)YL, if, for each t:

1. There 1s no feedback to the code functions:
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Q1 a7 8171 = plpy] ™)

2. The input is a function of the past outputs:

Q(at’@ta atila /Btil) - 5{@t(ﬁt*1)}(at)
where § is the Dirac measure;

3. The properties of the underlying channel are preserved:

QBIF" = @', A" = o', B = 1) = p(B[a’, 571

The following result states that there is only one consistent measure
Q" ", 87).
Theorem 10 ([TMO09]). Given the probability distributions {p(w;|e'™ 1)},

and a channel defined by {p(B,|at, B~1)YL,, there exists only one consistent
measure Q(o*, o™, BT). Furthermore the channel from F' to BT is given by:

Q(Bl¢", 871 = p(Bile" (871, 871

Since in our setting the concept of encoder makes little sense as there is
no information to encode, we externalize the probabilistic behavior of o, as
follows. Code functions become a single set of reaction functions {p,}1_; with
B as parameter (the message w does not play a role any more). Reaction
functions can be seen as a model of how the environment reacts to given system
outputs, producing new system inputs (they do not play a role of encoding a
message). These reaction functions are endowed with a probability distribution
that generates the probabilistic behavior of the values of «;.

Definition 11. A reactor is a distribution on reaction functions, i.e. a se-
quence of stochastic kernels {p(¢,|p'~1)}_,. A reactor R is consistent with a
fully probabilistic ITHS Z if it induces the compatible distribution Q(¢T, o™, T)
such that, for every 1 <t < T, Q(oy|al™t, B71) = p(ay|al=t, B1), where the
latter is the probability distribution induced by J.

The main result of this section states that for any fully probabilistic ITTHS
there is a reactor that generates the probabilistic behavior of the IIHS. Before
moving to this result, we need to introduce a lemma.

Lemma 12. Let X,) be non-empty finite sets, and let & € X,y € Y. Let
p: X xY — [0,1] be a function such that, for every x € X, we have:

> yeyP(@,y) =1. Then:

Z Hp(xaf(x)) :p('i'7g)
fex—y reX
@)=y

62



4.3. Interactive systems as channels with memory and feedback

Proof. By induction on the number of elements of X.

Base case: X' = {z}. In this case:

Z Hp(xaf(x)) :p(j,f(j)) :p(i,g)
fex—y reX
@)=y

Inductive case: Let X = X' U {z}, with £ € X’ and = ¢ X’. Then:

Z H p(z, f(x)) =  (by distributivity)
f@)=g

Z H p(z, f(x)) Z p(z,g(2)) = (by the assumption)

fex'—y vEX ge{e}=Y
@)=y
> Il p @)= (by theind. hyp.)
fex’—y X
@)=y

p(Z,9)

Theorem 13. Let J be a fully probabilistic IIHS inducing the joint probability
distribution p(at, BY), 1 <t < T, on secret and observable traces. It is always
possible to construct a channel with memory and feedback, and an associated
probability distribution Q((pT, al, BT), which corresponds to J in the sense that,
for every 1 <t < T, o, B, the equality Q(at, BY) = p(at, 5) holds.

Proof. First note that, by laws of probability, Q(at, 5t) = Zeat Qe at, BY).
So we need to show that >° . Q(¢', o', 8") = p(a’, ) by induction on ¢.

Base case: t = 1. Let us define Q(¢qle) = p(p;(€)) and Q(B;|at,e) =
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p(By|ay). Then:

S Q6! 0t 5Y) =
<P1

Z Qp1,q,81) = (by the chain rule)
Y1
> Qa6 - Qaler e )
Y1
Q(Bylp1,aq,€)) = (by Definition 9)

ZQ P11€)d14 (o) (1)Q (Bylat,e) (by construction of Q)

Zp 01(6))8(5, (03 (@)p(By loy) = (by definition of 9)

plag)p(Bylay) =
p(ay, 5y)
p(a', 8

Inductive case: Let us define Q(B;|at, 371) = p(B;|at, B1~1), and

Qoo™ = [ ple (B DI (87%), 871
Btfl

Note that, if we consider X = {871 | 8, € B,1 <i <t—1}, Y = A,
and p(B~1 o) = play|et=1(B172), 8171, then X, Y and p satisfy the
hypothesis of Lemma, 12.

Then:

Z Q(@t,ataﬁt) = (by the chain rule)
t

%)
Z (Q(@tfljatfljﬁtfl)_

ot
Q(@t’@til,atil,,@til)'
Q(at‘(pt7at_175t_1) ' Q(/Bt’(pt7at7/8t_l))
> QBT - Qe

ot

(by Definition 9)

5{%(6’5*1)}(0%) : Q(Bt\aﬁﬂt*l)) = (by constr. of Q)
Y (@t g,

ot
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I pe. (BNl (872), 817
5’t—1

I, (a1} () -p(ﬂt\at,ﬁt*)) —  (by definition of §)
> Qe

ot

e (B H=y

| B CA = A e
5’1&—1
p(Blat, B171)) =

Z ( Q(tpt_l,Oét_l,ﬂt_l)p(ﬂt’at,,@t_l)

QOt71
Z H P(@t(ﬂltfl)’@tfl(ﬂltﬁ),Bltfl) )= (by Lemma 12)
0, B’t—l
0 (B =0y
D Qa8 - p(Blat, 8-
Lpt71

plaga™" 871 ) =
p(ﬁt‘at7 Btil) : p(at’atia Btil)'
> Qe g = (by ind. hyp.)
Lpt_l

p(Bilat, B71) - plagla™t, 871 - p(a’ ™1, B71) = (by the chain rule)
p(a’, 5")

O

Corollary 14. Let J be a fully probabilistic ITHS. Let {p(B,|at, 571} be
a sequence of stochastic kernels and {p(a,|a’=1, "1}, a sequence of input
distributions defined by J according to Definitions 7 and 8. Then the reactor
R = {p(p ™1} | compatible with respect to the J is given by:

p(ey) = plagla®, 8% = play)  (4.8)

plede™) = JIp@B Nl (87%),87"), 2<t<T  (49)
Btfl

Figure 4.7 depicts the model for ITHS. Note that, in relation to Figure 4.2,
there are some simplifications: (1) no message W is needed; 2) the encoder
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becomes an “interactor”; (3) the decoder is not used. At the beginning, a reac-
tion function sequence ¢’ is chosen and then the channel is used T times. At
each usage ¢, the interactor produces the next input symbol «, by applying the
reaction function ¢, to the fed back output 3'~!. Then the channel produces
an output 3, based on the stochastic kernel p(3,|at, 3~!). The output is then
fed back to the encoder, which uses it for producing the next input.

r-r——>>">">">"~""~~"~" """~~~ “~"“~“—“— === A
. | |
?Eﬁgggﬁ; @ | “Interactor” a, Channel By |
GO T o =8O [T et BN [T
I [
| |
| |
P Delay k
L Delay _J

Figure 4.7: Channel with memory and feedback model for ITHS

We conclude this section by remarking on an intriguing coincidence: The
notion of reaction function sequence ¢’ on the ITHSs, corresponds to the
notion of deterministic scheduler [Seg95]. In fact, each reaction function ¢,
selects the next step, oy, on the basis of the 3/~1 and a!~! (generated by ¢'~1)
and B71, a1 represent the path up to that state.

)

4.4 Leakage in interactive systems

In this section we propose a definition for the notion of leakage in interactive
systems. We first argue that mutual information is not the correct notion, and
we propose to replace it with the directed information instead.

In the case of channels with memory and feedback, mutual information is
defined as I(AT; BT) = H(AT) — H(AT|BT), and it is still symmetric (i.e.
I(AT; BT) = I(BT; AT)). Since the roles of AT and BT in I(AT; BT) are
interchangeable, this concept cannot capture causality, in the sense that it does
not imply that A7 causes BT, nor conversely. Mutual information expresses
correlation between the sequences of random variables A7 and BT.

Mathematically the mutual information I(A”; BT) for T uses of the chan-
nel can be expressed with the help of the chain rule of (3.4) in the following

way.
T

I(AT; BT) =Y "I(AT; B,|B"™")
t=1
In the equation above, each term of the sum is the mutual information
between the random variable B; and the whole sequence of random variables
AT = Ay, ..., Ap, given the history B‘~!. The equation emphasizes that at
time 1 < ¢t < T, even though only the inputs o = ay,ay,...,q, have been
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fed to the channel, the whole sequence AT, including A;;1, Asio,. .., A7, has
a statistical correlation with B;. Indeed, in the presence of feedback, B; may
influence Ay, Apro, ..., Ap.

In order to show how the concept of directed information contrasts with
the above, let us recall its definition:

I(AY; B;|B'™1).

WE

1(AT - BT =
1

~+~
I

I(BT — AT) =Y "I(Ay; B7HAT.
t=1

These notions capture the concept of causality, to which the definition of
mutual information is indifferent. The correlation between inputs and outputs
I(AT; BT) is split into the information I(AT — BT) that flows from input to
output through the channel and the information I(BT — A7) that flows from
output to the input via feedback. Note that the directed information is not
symmetric: the flow from AT to B” takes into account the correlation between
At and By, while the flow from BT to AT takes into account the correlation
between B! and A;.

It was proved in [TMO09] that

I(AT; BTy = (AT — BT) + (BT — AT) (4.10)

i.e. the mutual information is the sum of the directed information flow in
both senses. Note that this formulation highlights the symmetry of mutual
information from yet another perspective.

Once we split mutual information into directed information in the two op-
posite directions, it is important to understand the different roles that the
information flow in each direction plays. I(AT — BT) represents the system
behavior: via the channel the information flows from inputs to outputs ac-
cording to the specification of the system, modeled by the channel stochastic
kernels. This flow represents the amount of information an attacker can gain
from the inputs by observing the outputs, and we argue that this is the real
information leakage.

On the other hand, I(BT — AT) represents how the environment reacts to
the system: given the system outputs, the environment produces new inputs.
We argue that the information flow from outputs to inputs is independent of
any particular system: it is a characteristic of the environment itself. Hence,
if an attacker knows how the environment reacts to outputs (the probabilistic
behavior of the reactions of the environment given the system outputs), this
knowledge is part of the a priori knowledge of the adversary. As a further
justification, observe that this is a natural extension of the classical approach,
where the choice of secrets is seen as external to the system, i.e. determined by
the environment. The probability distribution on the secrets constitutes the
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a priori knowledge and does not count as leakage. In order to encompass the
classical approach, in our extended model we should preserve this principle,
and a natural way to do so is to consider the secret choices, at every stage of
the computation, as external. Their probability distributions, which are now
in general conditional probability distributions depending on the history of
secrets and observables, should therefore be considered as part of the external
knowledge, and not counted as leakage.

The following example supports our claim that, in the presence of feedback,
mutual information is not a correct notion of leakage.

Example 5. Consider the discrete memoryless channel with secret alphabet
A ={ay,ay} and observable alphabet B = {b;, by} whose matriz is represented
i Table 4.6.

[ Lo [ ]
a, |[05]0.5
ay || 05| 0.5

Table 4.6: Channel matrix for Example 5

Suppose that the channel is used with feedback, in such a way that, for all
1<t < T, we have oy = ay if By = by, and oy 1 = ay if By = by. It is
easy to show that if T > 2 then I(A”; BT) # 0. Yet there is no leakage from
AT to BT since the rows of the matriz are all equal. We have indeed that
I(AT — BT) = 0, and the mutual information I(AT; BT) is only due to the
feedback information flow I(BT — AT).

Having in mind the above discussion, we now propose a notion of infor-
mation flow based on our model. We follow the idea of defining leakage and
maximum leakage using the concepts of mutual information and capacity, mak-
ing the necessary adaptations.

As discussed in Chapter 3, in the non-interactive case the definition of
leakage as mutual information, for a single use of the channel, is

I(A; B) = H(A) — H(A|B)

(cfr. for instance [CPP08a, KB07]). This amounts to viewing the leakage as
the difference between the a priori invulnerability and the a posteriori one. As
explained in Chapter 3, these correspond to H(A) and H(A|B), respectively.
This corresponds to the model of an attacker based on Shannon entropy dis-
cussed by Kopf and Basin in [KBO07].

In the interactive case, we can extend this notion by considering the leakage
at every step t as given by

I(AY; BB = H(AYB'"™) — H(A" By, B 1)
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The notion of attack is the same modulo the fact that we consider all the
input from the beginning up to step t, and the difference in its vulnerability
induced by the observation of B; (the output at step t), taking into account
the observation history B'~!. Tt is then natural to consider as total leakage
the summation of the contributions I(A’; B;|B*~!) for all the steps t. This is
exactly the notion of directed information (cfr. Definition 4):

T
I(AT - BT) =Y "I(A"; BB 1)
t=1

Definition 15. The information leakage of a fully probabilistic IIHS is de-
fined as the directed information I(AT — BT) of the associated channel with
memory and feedback.

We now show an equivalent formulation of directed information that leads
to a new interpretation in terms of an attack model. First we need the following
lemma.

Lemma 16. I[(B” — AT) = H(AT) - Y. H(A;|A*1, B1Y)

Proof.
T
I(BT — AT) =Y " I(Ay; B AT (by Definition 4)
t=1
T
= (H(A]A™
t=1
—H(A| A1, B (by def. of mutual info.)
T
H(AT) =Y H(AA™, B (by the chain rule)
t=1
O

The next proposition points out the announced alternative formulation of
directed information from input to output:

Proposition 17. I(AT — BT) = "1 H(AA™ ', Bt~1) — H(AT|BT)
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Proof.
I(AT — BT) = 1(AT; BT) — (BT — AT) (by (4.10))
= 1(AT; BT) — H(AT)
T
+) H(AAT BT (by Lemma 16)
t=1

_I._
[~ =

AT) = H(AT|BT) — H(AT)

H(A;| AL B (by def. of mutual info.)

o~
Il

1

H(A|A™, B"Y) — H(AT|BT)

I
] =

W
Il
—_

O

We note that the term Y7 | H(A;A*!, B""1) can be seen as the entropy
Hp of the reactor R, i.e. the entropy of the inputs, taking into account their
dependency on the previous outputs. This brings us to an intriguing alternative
interpretation of leakage.

Remark 18. The leakage can be seen as the difference between the a priori
invulnerability degree of the whole secret AT, assuming that the attacker knows
the distribution of the reactor, and the a posteriori invulnerability degree, after
the adversary has observed the whole output BT .

In Section 4.5 we give an extensive and detailed example of how to calculate
the leakage for an actual security protocol.

In the case of secret-nondeterministic ITHS, we have a stochastic kernel
but no distribution on the reaction functions. In this case it seems natural to
consider the worst leakage over all possible distributions on reaction functions.
This is exactly the concept of capacity.

Definition 19. The maximum leakage of a secret-nondeterministic ITHS is
defined as the capacity Cr of the associated channel with memory and feedback

(cfr. (4-7))-

A comparison with the definition of Gray (cfr. [Gra91], Definition 5.3) is
in order. As explained in the introduction, Gray’s model is more complicated
than ours, because it assumes that low and high variables are present at both
ends of the channel. If we restrict the definition of Gray’s capacity C¢ to our
case, by eliminating the low input and the high output, we obtain the following
formula:

T
1
G t—1. t—1
CF =sup E I(A" % By|B"™) (4.11)

Dr = 434
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By comparing (4.7), which is based on Definition 4, to (4.11), we can see
that the only difference is that (4.11) considers the correlation between B; and
A'1instead of A’. This seems to be intentional (cfr. [Gra91], discussion after
Definition 4.1). We are not sure why C'¢ is defined in this way, our best guess
is that the high values must be those of the previous time step in order to
encompass the theory of McLean [McL90]. In any case, Gray’s conjecture that
C’%‘Y corresponds to the channel transmission rate does not hold. For instance,
it is easy to see that for 7" = 1 we always have qu = 0, but there obviously
are channels which can transmit a non-zero amount of information even with
one single use.

We conclude this section by showing that our approach to the notion of
leakage generalizes the classical approach (based on mutual information) to
the case of feedback. The idea is that, if a channel does not have feedback,
then I(BT — AT) = 0 and therefore I(AT; BT) = 1(AT — BT). In our
opinion, the fact that mutual information turns out to be a particular case of
directed information helps to justify the former as a good measure of infor-
mation flow, despite its symmetry: in channels without feedback it is a good
measure because it coincides with directed information from input to output.

Lemma 20. In absence of feedback, I(BT — AT) =0
Proof. When feedback is not allowed, B‘~! and A; are independent for every
1<t <T. Then:

I(BT — AT) =) "I(4;; B71ATY) (by Definition 4)

B

o~
Il

I
=

(H (A A
=1
— H(A; AT BT (by def. of mutual info.)
T
=D (H(A4]A™Y
=1
— H(A;ATY) (B! and A! are independent)
=0
U

Proposition 21. In absence of feedback, leakage can be equivalently defined
as directed information or as mutual information. Similarly, in absence of
feedback, the mazimum leakage can be equivalently defined as directed capacity
or as capacity.

Proof. Tt follows directly from Lemma 20 and (4.10). O
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4.5 An example: the Cocaine Auction protocol

In this section we show the application of our approach to the Cocaine Auction
Protocol [SA99]. The formalization of this protocol in terms of ITHSs using our
framework makes it possible to prove the claim in [SA99] suggesting that if the
seller knows the identity of the bidders then the (strong) anonymity guaranties
are no longer assured.

Let us consider a scenario in which several mobsters are gathered around
a table. An auction is about to be held in which one of them offers his next
shipment of cocaine to the highest bidder. The seller describes the merchandise
and proposes a starting price. The others then bid increasing amounts until
there are no bids for, say, 30 consecutive seconds. At that point the seller
declares the auction closed and arranges a secret appointment with the winner
to deliver the goods.

The basic protocol is fairly simple and is organized as a succession of rounds
of bidding. Round 7 starts with the seller announcing the bid price b; for that
round. Buyers have ¢ seconds to make an offer (i.e. to say yes, meaning “I'm
willing to buy at the current bid price b;”). As soon as one buyer anonymously
says yes, he becomes the winner w; of that round and a new round begins. If
nobody says anything for ¢ seconds, round i is concluded by timeout and the
auction is won by the winner w;_1 of the previous round, if one exists. If the
timeout occurs during round 0, this means that nobody made any offers at the
initial price by, so there is no sale.

Although our framework allows the formalization of this protocol for an
arbitrary number of bidders and bidding rounds, for illustration purposes we
will consider the case of two bidders (Candlemaker and Scarface) and two
rounds of bids. Furthermore, we assume that the initial bid is always 100
euros, so the first bid does not need to be announced by the seller. In each
turn the seller can choose how much he wants to increase the current bid
value. This is done by adding an increment to the last bid. There are two
options of increments, namely inc; (100 euros) and incy (200 euros). In that
way, b;y1 is either b; + incy or b; 4+ ince. We can describe this protocol as
a normalized 1THS 7 = (M, A, B), where A = {Candlemaker, Scarface,a*} is
the set of secret actions, B = {incy,incy, b, } is the set of observable actions,
and the probabilistic automaton M is represented in Figure 4.8. For clarity
reasons, transitions with probability 0 are not represented in the automaton.
Note that the special secret action a, represents the situation where neither
Candlemaker nor Scarface bid. The special observable action b, represents
the end of the auction and it can only occur if no one has bid in the round.

Table 4.7 shows all the stochastic kernels for this example.

The next step is to construct all possible reaction functions {¢,(3'71)}L,.
As seen in Section 4.3.2, the reaction functions correspond to the encoder in
the channel. They take the feedback story and decide how the world will react
to this situation. Table 4.8 contains the reaction functions for each time ¢t < 2.
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b incy i b, incy
* g32 5 * Q37

Figure 4.8: Cocaine auction example

| o, — By || incy | incy | b, |
Candlemaker q4 qs 0
Scarface s q7 0
a* 0 0 1
(a) = 17p(ﬁl|a17 BO)

[ o, Bras — Bo [inci [ incs [ b, |
Candlemaker,incy ,Candlemaker q22 Q23 0
Candlemaker,incy,Scarface q24 q25 0
Candlemaker,incy ,a, 0 0 1
Candlemaker,inco,Candlemaker q27 Q28 0
Candlemaker,incy,Scarface q29 qs0 | O
Candlemaker,incs ,a, 0 0 1
Scarfacejincy,Candlemaker q32 q33 0
Scarfaceyincy,Scarface q34 q35 0
Scarfacejincy ,a, 0 0 1
Scarfaceince,Candlemaker qs7 q3s 0
Scarface,incs,Scarface q39 qio | O
Scarfacejincy,a, 0 0 1
a,,b,,a, 0 0 1
All other lines 0 0 1

(b) t= 27p(52|a2751)

Table 4.7: Stochastic kernels for the Cocaine Auction example

Now we need to define the reactor, i.e. the probability distribution on
reaction functions. Corollary 14 shows that we can do so by using the following
equations:

p(p1) = P(Oé1’0607 ﬁo) = p(ay)

plede™) = T ples (BNl (872),871), 2<t<T
ﬂt—l

For instance, p(f1(1)) = p(Candlemaker) = p;. In the same way, p(fl(Q)) =
p(Scarface) = po and p(f1(3)) = p(a,) = ps.
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BT Tarm
‘ 0 H Candlemaker ‘ Scarface ‘ a, ‘
(a) All 3 reaction functions ¢,

L8 Bu®) | he®) | he®) | hwB) ]
incy Candlemaker | Candlemaker | Candlemaker | Candlemaker
incy Candlemaker | Candlemaker | Candlemaker Scarface
b, Candlemaker Scarface a, Candlemaker

|8 | fe®) | he®) | heB) | fw) ]
incy || Candlemaker | Candlemaker | Candlemaker | Candlemaker

mncy Scarface Scarface a, a,

b, Scarface a, Candlemaker Scarface

LA 50@) | hun®) | 5un®) | fan®) |
incy || Candlemaker Scarface Scarface Scarface
mncy a, Candlemaker | Candlemaker | Candlemaker
b, a, Candlemaker Scarface a,

L8 ] £0wB) | han®) | Hun®) | fueB) |
mney Scarface Scarface Scarface Scarface
mncsy Scarface Scarface Scarface a,

b, Candlemaker Scarface a, Candlemaker

L8 | L) | fae®) | fan®B) | faen®B) ]
mncy Scarface Scarface a, a,
incy a, a, Candlemaker | Candlemaker
b, Scarface a, Candlemaker Scarface

L8 hen®) | fen®) | fhen®) | ey
ncy a, a, a, a,
incy || Candlemaker Scarface Scarface Scarface
b, a, Candlemaker Scarface a,

‘ 51 H f2(25)(ﬂl> ‘ fg(%)(ﬂl) ‘ f2(27)(51) ‘ T
incy a, a, a, —

e a, a, a, —

b, Candlemaker Scarface a, —

(b) All 27 reaction functions ¢, (3")

Table 4.8: Reaction functions for the cocaine auction example
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Let us take as an example the calculation of p(f2(6)\f1(1)):

f2(6 |f1 HP f2(6 |801 1)

= p(f2(6) (incy )| Candlemaker, incy )-
p(fo(6) (inc2)| Candlemaker, incy)-
p(fo(6)(bs)|Candlemaker, b,)

= p(Candlemaker|Candlemaker,incy)-
p(Scarface| Candlemaker, incsy)
p(a,|Candlemaker,b,)

=po-p13-1

= PoP13

Note that some reaction functions can have probability 0, which is consis-
tent with the probabilistic automaton. For instance:

P(f2(25)|f1 HP f2(25 |901(3 1)

. p(fQ(%) (m1)[yy in1) - D fy(o5) (in€2) |0 inca)
p(f2(25) (b,)la,,b,)

= p(a,|a,,incy) - p(a,|a,,incy) - p(Candlemaker|a,,b,)
—1-1-0
=0

4.5.1 Calculating the information leakage

Let us now calculate the information leakage for this example using the con-
cepts from Section 4.4. We will analyze three different scenarios:

Example a: There is feedback, but the probability of an observable does not
depend on the history of secrets. In the auction protocol, this corre-
sponds to a scenario where the probability of one of the mobsters to bid
can depend on the increment imposed by the seller, but the history of
who has previously bid in the past has no influence on how the seller
chooses the bid increment in the coming turns. In other words, the
seller cannot use the information of who has been bidding to change his
strategy of defining the new increments. This situation corresponds to
the original description of the protocol in [SA99]|, where the seller does
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not have access to the identity of the bidder, for the sake of anonymity
preservation. In general, we have p(f8,|af, B171) = p(B,|pt71) for every
1 <t < T. There is an exception, however: if there is no bidder, the
case modeled by the secret being a,, then the auction terminates, which
is signaled by the observable b,.

Example b: This is the most general case, without any restrictions. The
presence of feedback allows the probability of the bidder to depend of
the increment in the price. For instance, if Candlemaker is richer than
Scarface, it is more likely that the former bids if the increment in the price
is inco instead of incy. Also, the probability of an observable can depend
on the history of secrets, i.e. in general p(3;|at, B171) # p(B,|8!~1) for
1 <t < T. This scenario can represent a situation where the seller
is corrupted and can use his information to affect the outcome of the
auction. As an example, suppose that the seller is a friend of Scarface
and he wants to help him in the auction. One way of doing so is to check
who was the winner of the last bidding round. Whenever the winner is
Candlemaker, the seller chooses as increment the small value incy, hoping
that it will give Scarface a good chance to bid in the next round. On
the other hand, whenever the seller detects that the winner is Scarface,
he chooses as the next increment the greater value ince, hoping that
it will minimize the chances of Candlemaker to bid in the next round
(and therefore maximizing the chances of the auction to end up having
Scarface as the final winner).

Example c: There is no feedback. In the cocaine auction, we can have the
(perhaps unrealistic) situation in which the increment added to the bid
has no influence on the probability of Candlemaker or Scarface being the
bidder. Mathematically, we have p(a,|a~t, B171) = p(a,|al~1) for every
1 <t <T. Asin Example b, however, we do not impose any restriction

on p(Bat, B7).

For each scenario we need to fill in the values of the probabilities in the
protocol tree in Figure 4.8. The probabilities for each example are listed in
Table 4.9. Table 4.10 shows a comparison between some relevant values for
the three cases.

In Example a, since the probability of observables does not depend on the
history of secrets, there is (almost) no information flowing from the input to
the output, and the directed information I(A” — BT) is close to zero, i.e.
the leakage is low. The only reason why the leakage is not zero is because the
end of an auction needs to be signaled. Due to presence of feedback, however,
the directed information in the other sense I(BT — AT) is non-zero, and so
is the mutual information I(AT; BT). This is an example where the mutual
information does not correspond to the real information leakage, since some (in
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Probability || Example a | Example b | Example ¢
variable value value value
P1 0.75 0.70 0.70
D2 0.24 0.24 0.24
D3 0.01 0.01 0.01
q4 0.50 0.55 0.30
qs 0.50 0.45 0.70
qs 0.50 0.45 0.70
q7 0.50 0.55 0.30
P9 0.04 0.80 0.75
P1o 0.95 0.19 0.20
P11 0.01 0.01 0.05
P12 0.95 0.19 0.75
P13 0.04 0.80 0.20
P14 0.01 0.01 0.05
P15 0.04 0.90 0.65
P16 0.95 0.09 0.35
P17 0.01 0.01 0.05
p1s 0.95 0.09 0.65
P19 0.04 0.90 0.35
P20 0.01 0.01 0.05
q22 0.50 0.80 0.45
q23 0.50 0.20 0.55
q24 0.50 0.20 0.55
425 0.50 0.80 0.45
Q27 0.45 0.75 0.45
428 0.55 0.25 0.55
29 0.45 0.35 0.55
q30 0.55 0.65 0.45
q32 0.50 0.55 0.45
q33 0.50 0.45 0.55
q34 0.50 0.40 0.55
q35 0.50 0.60 0.45
qs7 0.45 0.60 0.45
q38 0.55 0.40 0.55
439 0.45 0.35 0.55
q40 0.55 0.55 0.45

Table 4.9: Values of the probabilities in Figure 4.8 for Examples a, b, and ¢

this case, most) of the correlation between input and output can be attributed
to the feedback.

In Example b the information flow from input to output I(A” — BT) is
significantly higher than zero, but still, due to feedback, the information flow
from outputs to inputs I(BT — AT) is not zero and the mutual information
I(AT; BT) is higher than the directed information I(AT — BT).
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Interpretation ‘ Symbol H Example a | Example b | Example ¢
Input uncertainty H(AT) 1.9319 1.9054 1.9158
Reactor uncertainty Hp 1.1911 1.5804 1.9158
A posteriori uncertainty | H(AT|BT) 1.0303 1.2371 1.4183
Mutual information I(AT; BT) 0.9016 0.6684 0.4975
Leakage I(AT — BT) 0.1608 0.3433 0.4975
Feedback information I(BT — AT) 0.7408 0.3250 0.0000

Table 4.10: Values of the entropy and directed information for Examples a, b,
and ¢, where I(A”; BT) = H(AT) — H(AT|BT) and I(AT — B") = Hp —
H(AT|BT)

In Example c, the absence of feedback implies that I(BT — AT) is zero.
In that case the values of I(A”; BT) and I(AT — BT) coincide, and represent
the real leakage.

Finally, Figure 4.9 shows a comparison between the values of the entropy
and of the directed information in the examples. The totality of the mutual
information I(A”; BT) is represented by the height of the correspondent bar,
and we emphasize the contribution of the directed information in each direc-
tion by splitting the bar into two parts. This figure highlights the fact that
mutual information can be misleading as a measure of leakage. The great-
est mutual information is obtained in Example a, followed by Example b and
then by Example c. The real leakage, however, given by I(AT — BT), re-
spects exactly the inverse order, namely Example a presents the lowest value
while Example ¢ presents the highest one. Indeed, in Example a the value of
I(AT — BT) represents only 18% of the mutual information, while in Example
b it represents 51% and in Example ¢ it amounts to 100%.

4.6 Topological properties of ITHSs and their
capacity

In this section we show how to extend to IIHSs the notion of pseudometric
defined in [DJGP02] for Concurrent Labeled Markov Chains, and we prove
that the capacity of the corresponding channels is a continuous function with
respect to this pseudometric. The pseudometric construction is sound for gen-
eral ITHSs, but the result on capacity is only valid for secret-nondeterministic
ITHSs.

Given a set of states S, a pseudometric is a function d that yields a non-
negative real number for each pair of states and satisfies the following:

(i) d(s,s) =0;
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Erample a Example b Example ¢

Figure 4.9: Comparison between the leakage in Examples a, b, and ¢

(i) d(s,t) =d(t,s); and

(i) d(s,t) < d(s,u)+ d(u,t).

We say that a pseudometric d is c-bounded if Vs, t : d(s,t) < ¢, where ¢ is
a positive real number.

Note that, in contrast to metrics, in pseudometrics two elements can have
distance 0 without being identical. We consider pseudometrics instead of met-
rics because our purpose is to extend the notion of (probabilistic) bisimulation:
having distance 0 will correspond to being bisimilar.

We now define a complete lattice structure on pseudometrics, in order
to define the distance between ITHSs as the greatest fixpoint of a particular
transformation, in line with the coinductive theory of bisimilarity. Since larger
bisimulations identify more, the natural extension of the ordering to pseudo-
metrics must shorten the distances as we go up in the lattice:

Definition 22. M is the class of 1-bounded pseudometrics on states with the
ordering

d=d ifVs,s'eS:d(ss)>d(s,s).

It is easy to see that (M, <) is a complete lattice. In order to define
pseudometrics on ITHSs, we now need to lift the pseudometrics on states
to pseudometrics on distributions in D(L x S). Following standard lines
[vVBWO01, DJGP02, DCPP06], we apply the construction based on the Kan-
torovich metric [Kan42].
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Definition 23. For d € M, and p, i’ € D(L x S), we define d(p,p') (over-
loading the notation d) as

d(u,,u') = max Z (M(&,si)—u'(&,si))xi
(fi,si)el:XS

where the mazimum is taken over all possible values of the x;’s, subject to the
constraints 0 < x; < 1 and x; — x; < d((4;, si), (¢5,55)), where

N O | if U # L
d((&,sz)’(@"g])) - {d(Si,Sj) otherwise

It can be shown that with this definition m is a pseudometric on D(L x S).

Definition 24. A pseudometric d € M is a bisimulation pseudometric ! if,
for all e € 0,1), d(s,s") < e implies that if s — p, then there exists some '
such that s — p' and d(p, ') <e.

Note that it is not necessary to require the converse of the condition in
Definition 24 to get a complete analogy with bisimulation: the converse is
indeed implied by the symmetry of d as a pseudometric. Note also that we
prohibit € to be 1 because, throughout this chapter, 1 represents the maximum
distance, which includes the case where one state may perform a transition and
the other may not.

The greatest bisimulation pseudometric is

dmaz = |_|{d € M| d is a bisimulation pseudometric} (4.12)

We now characterize d,q; as a fixed point of a monotonic function ® on
M. Eventually we are interested in the distance between ITHSs, and for the
sake of simplicity, from now on we consider only the distance between states
belonging to different ITTHSs. The extension to the general case is trivial. For
clarity purposes, we assume that different IIHSs have disjoint sets of states.

Definition 25. Given two I[IHSs with transition relations 0 and 0" respectively,
and a pseudometric d on states, define ® : M — M as:

max; d(s;, s;) if 9(8) = {0ar,51)5 -+ > O(am,sm) }
a/nd 19/(3/) = {5(a178l1)7 “e 75((177175'/,”)}

(

O(d)(s,s') = Aw, ') if 9(s) = {u} and V'(s") = {4}
0 if 9(s) =09'(s) =0
1 otherwise

'In literature a pseudometric with this property is also known as bisimulation metric,
although it is still a pseudometric.
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It is easy to see that the definition of ® is a particular case of the function
F defined in [DJGP02, DCPP06], which is characterized as follows (cf. Lemma
3.8 in the full version of [DJGP02], and Definition 2.7 in [DCPP06]):

F(d)(s,s') = max{sup inf d(u,u), sup inf d(u,u)}
S— L s'—u! s/ S

Hence it can be proved, as an instance of the analogous result for F' (cf.
Lemma 2.8 in [DCPP06]), that ®(d) is a pseudometric, and that the following
property holds.

Lemma 26. Fore € [0,1), ®(d)(s,s") < € holds if and only if whenever s — p,
there exists some p' such that s — p' and d(p, p1') <e.

From the above lemma and Definition 24 we derive (see also Lemma 2.9 in
[DCPP06]):

Corollary 27. A pseudometric d is a bisimulation pseudometric if and only
if d < ®(d).

By applying Corollary 27 to (4.12) we obtain
s = |_[{d € M| d = 2(d)}

Furthermore, by adapting the proof of the monotonicity of F' (cf. Lemma 3.9
in the full version of [DJGP02]) we can prove the following:

Lemma 28. ® is monotonic on (M =<).

Thanks to Lemma, 28, and using Tarski’s fixed point theorem as formulated
in [Tar55|, we have that dp,., is the greatest fixed point of ®. Furthermore,
by Corollary 27 we know that dy,,; is indeed a bisimulation pseudometric, and
that it is the greatest bisimulation pseudometric.

In addition, the finite branching property of IIHSs ensures that the closure
ordinal of ® is w (cf. Lemma 3.10 in the full version of [DJGP02]). Therefore
we can proceed in a standard way to show that

dmaz = |_| {(I)Z(T) | S N}’

where T is the greatest pseudometric (i.e. T(s,s’) = 0 for every s,s’), and
O(T)=T.

Given two ITHSs J and 7', with initial states s and s’ respectively, we define
the distance between J and I’ as d(J,7) = dpmaz(s, s’). The following properties
are auxiliary to the theorem which states the continuity of the capacity.

Lemma 29. Consider two IIHSs J and I with transition functions 9 and
9 respectively. Given t > 2 and two sequences o' and B!, assume that both
I(al=1, BN and I (L, 871 are defined. Assume also it is the case that

Amag(I(a!1, 171, T (71, B171)) < p(Be | o, B71), and 9(I(a!, B'71)) # 0.
Then:
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1. 99 (at, B71)) £ 0 holds as well,
- I(at, B and T (at, B) are both defined, p(B; | of, B1) > 0, and

dmaz(f](atfljﬁtfl)’j/(atfljﬁtfl))
p(Be | af, B1).

dmas(I(a, 8), 7' (", 8%)) <

Proof.
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1. Assume J(J(at, B71)) # 0 and, by contradiction, ¥'(7'(at, B71)) = 0.

Since dpqq 1s a fixed point of @, we have dye0 = P(dmas), and therefore

dm,w(ﬂ(at,Bt’l),ﬂ’(at,ﬂt’l)) _ (I)(dm,w)(f](at,ﬁtil),fy(at,ﬁtil))
= 1

2 p(ﬁt ‘ aaﬂtil)a

which contradicts the hypothesis.

S If9(I(at, B871)) # 0, then, by the first point of this lemma, we have

that /(3 (af, B'~1)) # 0 holds as well, and therefore both J(af, ) and
J(at, Bt) are defined. The hypothesis dpqz(J(af~1, 871, 7 (ot~ g171)) <
p(B: | o, B-1) ensures that p(B, | o, B 1) > 0.

Let us now prove the bound on dy,q,(I(at, 5Y),7(at, BY)). By definition
of ®, we have

(I)(dm‘w)(:](atil ) IBtil)v J/(Oétﬂ’ Btil)) > dmaz(f](ata /Btil)a j/(Oét, /Btil)).

Since dpay = P(dmaz), we have

dmaz(I(' ™1, 871, T (@71, 871) 2 dmae((at, 871), 7' (0, B171)).
(4.13)

By definition of ® and of the Kantorovich metric, we have

(I)(dmtw)(f](at7Btil)vfy(aaﬂtil)) > p(ﬁt ‘ Oﬁ?ﬂtil)'
dmaz(j(ata/Bt),jl(ataﬁt))‘

Using again dpez = P(dmaz), we get

dmaz(J(O‘t’Bt_l)ajl(at’ﬁt_l)) > p(B | O‘t,ﬁt_l)'
dmaz(j(ataﬁt)7jl(ataﬁt))a

which, together with (4.13), allows us to conclude.
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Lemma 30. Consider two IIHSs J and 7', and let p(- | -,-) and p'(- | -,-)
be their distributions on the output nodes. Given T > 0, and two sequences
ol and BT, assume that p(B; | o, 1) > 0 for every t < T. Let m =
minj<i<7 p(B; | of, BE71) and let € € (0,m*1). Assume d(J,7) < e. Then,
for every t < T, we have

€

p(ﬁt ‘ aaﬂtil) _pl(ﬁt ‘ aaﬂtil) < mT_l'

Proof. Observe that, for every t < T, J(a!, %) must be defined, and, by re-
peatedly applying Lemma 29(1), we get that also J'(af, ') is defined. By
definition of ®, and of the Kantorovich metric, we have

p(Be | o', BN = P/ (B[ of, 171) < (dmae)(I(a' ™, 871, T (71, 471,

and since dy,,, is a fixed point of ®, we get

p(Be |, ) =p' (B | o, 1) < dimas(I(@'™H, 871, (071, B17Y)). (4.14)
By applying Lemma 29(2) ¢ — 1 times, from (4.14) we get

ao 0 ! a() 0
(B | at76t71) — ' (B | at76t71) < dmaz(3( ,%)iﬂ( N:))

m
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3
i
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o
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Note that previous lemma states a sort of continuity property of the matri-
ces obtained from ITHSs, but not uniform continuity, because of the dependence
on one of the two ITHSs. It is easy to see (from the proof of the Lemma) that
uniform continuity does not hold.

The main contribution of this section, stated in the next theorem, is the
continuity of the capacity with respect to the pseudometric on ITHSs. For this
theorem, we assume that the ITHSs are normalized. Furthermore, it is crucial
that they are secret-nondeterministic (while the definition of the pseudometric
holds in general).

Theorem 31. Consider two normalized IIHSs I and ', and fit a T > 0. For
every € > 0 there exists v > 0 such that if d(3,7') < v then |Cp(J) —
Cr(7)] <e.

Proof. Consider two normalized ITHSs J and 7’ and choose T,e > 0. Let Drp
be the set of all input distributions in presence of feedback. Observe that

Cr(9) — Cr(7)| = |max %I(AT s BT) - max %I(A’T 5 BT

Dr Dr

< %n%f;x |1(AT — BT) — 1(A'"" — B'")|
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Since the directed information I(A? — BT) is defined by means of arith-
metic operations and logarithms on the joint probabilities p(at, ') and on the
conditional probabilities p(at, 8%), p(at, 5~1), which in turn can be obtained
by means of arithmetic operations from the probabilities p(3; | of, 8#~!) and
pr(e'), we have that I(AT — BT) is a continuous function of the distribu-
tions p(B; | of, A1) and pp(p?), for every t < T. Let p(B; | of, B171), p/'(By |
al, B=1) be the distributions on the output nodes of J and J’, modified in the
following way: starting from level T', whenever p(B; | af, 8771) = 0, then we re-
define the distributions at all the output nodes of the subtree rooted in J(a?, 5¢)
so that they coincide with the distribution of the corresponding nodes of in 7',
and analogously for p/(3; | af, 3~!). Note that this transformation does not
change the directed information, because the subtree rooted in J(at, %) does
not contribute to it, due to the fact that the probability of reaching any of its
nodes is 0. The continuity of I(A?T — BT) implies that there exists ¢ > 0 such
that, if [p(B; | f, B71) — p/(B; | of, B71)| < € for all t < T and all sequences
al, B, then, for any pr(¢?), we have |[I(AT — BT) — (A" — B'")| < €. The
result then follows from Lemma 30, by choosing

v =¢ - min min p(B | Qt,,@til),
1<t<T

p(Be | o, f71) >0

min p'(Be | ot B
1<t<T

p/(,ﬁt | at,ﬁt_l) >0
O

We conclude this section with an example showing that the continuity
result for the capacity does not hold if the construction of the channel is done
starting from a system in which the secrets are endowed with a probability
distribution. This is also the reason why we could not simply adopt the proof
technique of the continuity result in [DJGP02] and we had to come up with
different reasoning.

Example 6. Consider the two following programs, where ay,as are secrets,
b1, by are observable, || is the parallel operator, and +, is a binary probabilistic
choice that assigns probability p to the left branch, and probability 1 — p to the
right one.

s) (send(a1) 4+, send(az)) || receive(z).output(by)

t) (send(ay)+q send(ag)) || receive(x).if x = ay then output(by) else output(by).
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Table 4.11 shows the fully probabilistic ITHSs corresponding to these pro-
grams, and their associated channels, which in this case (since the secret ac-
tions are all at the top-level) are classical channels, i.e. memoryless and with-
out feedback. As usual for classical channels, they do not depend on p and q.
It 1s easy to see that the capacity of the first channel is O and the capacity of
the second one is 1. Hence their difference is 1, independently of p and q.

Let now p =0 and q = €. It is easy to see that the distance between s and
t is €. Therefore (when the automata have probabilities on the secrets), the
capacity 1s not a continuous function of the distance.

S b1 b2 t b1 b2
aj 0 1 aj 1 0
a 0 1 a 0 1
(a) (Channel for s (b) Channel for ¢

Table 4.11: The ITHSs of Example 6 and their corresponding channels

4.7 Related work

Gray investigated a concept similar to directed information in [Gra91]. In
contrast to our model, which is based on an eavesdropper scenario, he con-
sidered leakage in a sender-receiver model. More precisely, he considered a
system based on Millen’s synchronous state machine [Mil90], and connected to
“low” and “high” environments via communication channels. His purpose was
to measure the flow of information from the high environment to the low one,
assuming that the only way for the low environment to learn about the high
one (and vice versa) is through the system. To this end, he defined a notion
of “quasi-directed information” by extending Gallager’s formula for discrete
finite state channels [Gal68]. He also conjectured a correspondence between
the quasi-directed information and the transmission rate of the channel. His
formulation of quasi-directed information, however, is not completely the same
as directed information, and as a result the conjecture does not hold.

The continuity of the channel capacity was also proved in [DJGP02]| for
simple channels, but the proof does not adapt to the case of channels with
memory and feedback and we had to devise a different technique.
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4.8 Chapter summary and discussion

In this chapter we have investigated the problem of information leakage in
interactive systems, and proved that these systems can be modeled as channels
with memory and feedback. We have also proved that the channel capacity is
a continuous function of a pseudometric based on the Kantorovich metric.

We have considered various kinds of automata corresponding to different
combinations of nondeterministic and probabilistic choice, as summarized in
Table 4.12(a). Note that in this the third row corresponds to the limit case in
which the reactor is a Dirac measure, i.e. the probability is all concentrated
on exactly one o! € F. It is easy to see that in this case [(AT — BT) =0 (all
the entropies that constitute I(AT — BT) are 0), although I(BT — AT) #
0. Therefore there is no leakage. In the classic case this corresponds to the
situation in which the input distribution is a Dirac measure.

Table 4.12(b) summarizes the comparison between the channels with mem-
ory and feedback investigated in this chapter, and the classic channels.

Throughout this chapter we have assumed that the dependence of the secret
choices on the observables is part of the external knowledge and, therefore,
not considered leakage. The reader may wonder what would happen if this
assumption were dropped. We argue that in this case (BT — AT) could be
considered as part of the leakage. In the cases a and b of the cocaine auction
example in Section 4.5, for instance, one may want to consider the information
that we can deduce about the secrets (the identities of the bidder) from the
observables (the increments of the seller) as a leak due to the protocol.

In some other cases the flow of information from the observables to the
secrets may even be considered as a consequence of the active attacks of an
adversary, which uses the observables to modify the probability of the secrets.
In this case (BT — AT) could represent a measure of the effectiveness of the
adversary.

As future work, we would like to provide algorithms to compute the leak-
age and maximum leakage of interactive systems. These are rather challenging
problems given the exponential growth of reaction functions (needed to com-
pute the leakage) and the quantification over infinitely many reactors (given
by the definition of maximum leakage in terms of capacity). One possible so-
lution is to study the relation between deterministic schedulers and sequence
of reaction functions. In particular, we believe that for each sequence of reac-
tion functions and distribution over it there exists a probabilistic scheduler for
the automata representation of the secret-nondeterministic ITHS. In this way,
the problem of computing the leakage and maximum leakage would reduce to
a standard probabilistic model checking problem (where the challenge is to
compute probabilities ranging over infinitely many schedulers).

In addition, we plan to investigate measures of leakage for interactive sys-
tems other than mutual information and capacity.

We intend to study the applicability of our framework to the area of
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| ITHSs as automata | ITHSs as channels | Notion of leakage |
Normalized ITHSs with Sequence of
nondeterministic secrets stochastic kernels Leakage as capacity

and probabilistic observables | {p(8,|at, 37~}
Sequence of

Fully probabilistic stochastic kernels Leakage as directed
normalized ITHSs {p(Blat, B=H}L, | information
-+ reactor I(AT — BT)

{p(erle ™)}y
Sequence of
Normalized ITHSs with a stochastic kernels
deterministic scheduler {p(B,]at, B~H}L, | No leakage
solving the nondeterminism | + reaction function
sequence @7

(a) The various models considered in this chapter

| Classical channels || Channels with memory and feedback |
The system is modeled in The system is modeled in several
independent uses of the channel, consecutive uses of the channel.

often a unique use.

The channel is defined on

AT — BT, ie. its input is The channel is defined on F — B, i.e.
a single string o’ = ay ... ap its input is a reaction function ¢,
of secret symbols and its output and its output is an observable j,.

is a single string 8T = 3, ... B
of observable symbols.

The channel is memoryless and The channel has memory. Despite the

in general it is implicitly assumed || fact that the channel defined on F — B

the absence of feedback. does not have feedback, the internal
stochastic kernels do.

The capacity is calculated using The capacity is calculated using mutual

mutual information I(AT; BT). directed information I(AT — BT).

(b) Classical channels vs. channels with memory and feedback

Table 4.12: Summary of results

game theory. In particular, the interactive nature of games such as Prisoner
Dilemma [Pou92| and Stag and Hunt [Sky03] (in their iterative versions) can
be modeled as channels with memory and feedback following the techniques
proposed in this work. Furthermore, (probabilistic) strategies can be encoded
as reaction functions. In this way, optimal strategies are attained by reaction
functions maximizing the leakage of the channel.
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Five

Differential privacy: the trade-off
between leakage and utility

“If you have nothing to hide, then you don’t have a life.”
cited by Daniel J. Solove

In this chapter we consider the differential privacy approach to the prob-
lem of statistical disclosure control. In general a statistical database contains
data of a group of individuals, and users can pose queries to obtain statis-
tical information about the sample in the dataset. To preserve the privacy
of the the participants in the database, it is desirable to restrict the amount
of information that the system leaks about their individual values. One way
of dealing with the problem is by using randomization mechanisms: to avoid
leakage, the real answer is modified with some carefully added noise before
being reported to the users. A very popular and studied way of doing so is
based on the concept of differential privacy.

In our work we consider the relation between differential privacy and quan-
titative information flow. We address the problem of characterizing the pro-
tection that differential privacy provides to individuals with respect to infor-
mation leakage, and the problem of the utility, i.e. the measure of how close
the reported answer is to the true answer.

Contribution The main contributions of this chapter can be summarized
as follows.

e We propose an information-theoretic framework to reason about both
information leakage and utility.
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e We explore the graph-theoretic foundations of the adjacency relation on
databases', and we point out two types of symmetries which allow us
to establish a strict link between differential privacy and information
leakage.

e We prove that e-differential privacy implies a tight bound on the min-
entropy leakage.

e We prove that e-differential privacy implies a bound on the utility, mea-
sured in terms of binary gain functions. We prove that, under certain
conditions, the bound is tight.

e We identify a method that, under certain conditions, constructs random-
ization mechanisms that maximize utility while providing e-differential
privacy.

Plan of the Chapter This chapter is organized as follows. In Section 5.1
we formalize the notion of differential privacy and present an alternative inter-
pretation for it in the special case where the adjacency relation on databases
is complete (i.e. every two distinct databases are adjacent). In Section 5.2 we
introduce our model to reason about leakage and utility for randomized func-
tions in the case where the query and the randomization mechanism can be
split into two distinct channels. In Section 5.3 we review some concepts from
graph theory and present two special classes of graphs having symmetries that
we will explore to make the connection between differential privacy and quan-
titative information flow. We also show that the graph structure on databases,
induced by the adjacency relation and the query, presents these symmetries.
In Section 5.4 we use the results of the previous section to prove a bound on
the a posteriori min-entropy of the channel matrix. Then we apply this bound
to derive our results for leakage in Section 5.5 and for utility in Section 5.6.
Finally, in Section 5.7 we review some of the related work in the literature,
and in Section 5.8 we make our final remarks and conclude this chapter.

5.1 Differential privacy

Databases are commonly used for obtaining statistical information about their
participants. Simple examples of statistical queries are, for instance, the pre-
dominant disease in a certain population, or the average salary of a group of
people. The fact that the answer is publicly available may, however, constitute
a threat for the privacy of the individuals.

In order to illustrate the problem, consider a database that stores the values
of the salaries of a set of individuals, and assume that a user can pose the query
“what is the average salary of the participants in the database?”. In principle

!The adjacency relation on databases will be defined precisely in Section 5.2.

90



5.1. Differential privacy

we would like to consider the global information relative to the database as
public, and the individual information about a participant as private. In this
example, we would like to obtain the average salary without being able to
infer the salary of any specific participant. Unfortunately this is not always
possible. In particular, if the number of participants in the database is known,
and an individual is removed from (or included in) the database, it is possible
to infer his salary by querying again the database and calculating the influence
of the removal (or inclusion) on the reported answer to the query.

Another kind of private information we may want to protect is whether
a specific individual is participating or not in a database. If we know that a
particular individual earns, say, 5.000€ a month, and all the other individuals
earn less than 4.000€ a month, then learning that the average salary is greater
that 4.000€ will reveal immediately the presence of our individual of interest
in the database.

A common approach to this problem is to introduce some output pertur-
bation mechanism based on randomization: instead of the exact answer, the
querying mechanism reports a “noisy” answer. Namely, a randomized function
is used to produce answers according to some probability distribution that de-
pends on the database. The goal is to report this randomized answer, which
ideally should be “close enough” to the real one, yet should make it harder
for the user to guess the values of individual participants. For certain distri-
butions, however, it may still be possible to guess the value of an individual
with a high probability of success. The notion of differential privacy, due to
Dwork [Dwo06, DL09, Dwol0, Dwoll], is a proposal to control the risk of
violating privacy for both kinds of threats described above (value and partici-
pation). The idea is to say that a randomized function K satisfies e-differential
privacy (for some € > 0) if the ratio between the probabilities that two ad-
jacent databases give a certain answer is bound by e, where by “adjacent”
we mean that the databases differ in only one individual (either for the value
of an individual or for the presence/absence of an individual). The notion of
differential privacy was developed to be independent of the side (or auziliary)
information the user can have about the database, and how it can affect his
knowledge about the database before posing the query. This information can
come from external sources (e.g. newspapers, common knowledge, etc), but
does not affect the guarantees assured by differential privacy.

In this chapter we explore the similarities between differential privacy and
quantitative information flow. We base our approach on the following observa-
tions: at the motivational level, the concern about privacy is akin the concern
about information leakage. At the conceptual level, the randomized function
K can be seen as an information-theoretic channel, and the limit case of € = 0,
for which the privacy protection is total, corresponds to a 0-capacity channel,
which does not allow any leakage. More specifically, we investigate the no-
tion of differential privacy and its implications in the light of the min-entropy
framework for information flow discussed in Chapter 3.
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5.1.1 Formal definition

Let X be the set of all possible databases. Two databases z,2’ € X are
adjacent (or neighbors), written x ~ z’, if they differ in the value of exactly
one individual. Note that the structure (X, ~) forms an undirected graph.

Intuitively, differential privacy is based on the idea that a randomized query
function provides sufficient protection if the ratio between the probabilities of
two adjacent databases to give a certain answer is bound by e€, for some € > 0.
Formally:

Definition 32 ([Dwoll]). A randomized function K from X to Z satisfies
e-differential privacy if for all pairs x,2’ € X, with x ~ x', and all S C Z, we
have:

PriK(z) € S] <ef x Pr[K(z') € 9]

In this thesis we consider Z to be finite, therefore each of its probability
distributions is finite and we can rewrite the property of e-differential privacy
more simply. Using the notation of conditional probabilities, and considering
both quotients, we can say that e-differential-privacy holds in the discrete case
if, for all z,2’ € X with z ~ 2/, and all 2z € Z:

1 - Pr(Z = z| X = z]
e T PrlZ =z X =2a'] ©

e (5.1)

where X and Z represent the random variables associated to X and Z, respec-
tively.

Intuitively, (5.1) implies that, if a value of one single individual changes
in a dataset (either by inclusion, removal or modification), the probability of
the querying mechanism to report a specific answer will not “vary much”. In
other words, the influence of a single individual in a database is “negligible”
with respect to the whole set of individuals. Of course the notion of what is
meant by “much” and “negligible” depends on the value of e.

5.2 A model of utility and privacy for statistical
databases

In this section we present a model of statistical queries on databases, where
noise is carefully added to protect the privacy of the participants in the sample,
and the reported answer to a query does not need to be the real one. In
this model, the notion of information leakage is to measure the amount of
information that an adversary can learn about the database by posing queries
and then analyzing the reported answers. Note that in principle the adversary
can be a user of the database, and therefore the privacy guarantees should not
depend on distinctions of who is posing the queries. Our model will also allow
us to quantify the utility of the query, i.e. how much information about the
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real answer can be obtained from the reported one. In our work we focus on
the case in which all the values of interest are discrete.

We fix a finite set Ind = {0,1,...,u — 1} of u individuals participating
in the database. In addition, we fix a finite set Val = {vo,vi,...,vp_1},
representing the set of (v different) possible values for the sensitive attribute
of each individual (e.g. disease-name in a medical database). In the more
general case where there are several sensitive attributes in the database (e.g.
salary and security number in a census sample), we can think of the elements
of Val as tuples. The absence of an individual in the database, if allowed, can
be modeled with one special value in Val (see the discussion in Section 5.2.2).
A database D = dy...dy_1 is a u-tuple where each d; € Val is the value of
the corresponding individual. The set of all databases is X = Val*. Two
databases x,z’ are adjacent, written x ~ 2/, if and only if they differ in the
value of exactly one individual. As we already pointed out, the structure
(X, ~) forms an undirected graph, and we call ~ its adjacency relation.

Let K be a randomized function from X to Z, where Z = Range(K) (see
Figure 5.1). This function can be modeled by a channel (X, Z, pz x(-|-)), where
X and Z are the input and output alphabets, respectively, and pz|x(-|-) is the
channel matrix. The random variables modeling the input and output of the
channel are denoted by X and Z, respectively. The definition of differential
privacy can be directly expressed as a property of the channel: it satisfies
e-differential privacy if

p(z]x) < ep(z]2’) for all z,2" € X with x ~2’, and all z € Z

X Z
—_— IC ———
dataset reported
answer
e-diff. priv.

randomized function

Figure 5.1: Randomized function K

Intuitively, the correlation between X and Z measures how much infor-
mation about the complete database the attacker can obtain by observing the
reported answer. We will refer to this correlation as the leakage of the chan-
nel, denoted by £(X, Z). In Section 5.5 we will discuss how this leakage can
be quantified using notions from information theory, and we will study the
behavior of the leakage for differentially private queries.

In our model the true answer to the query f is modeled by the random
variable Y ranging over ) = Range(f). The correlation between Y and Z
measures how much we can learn about the real answer from the reported
one. We will refer to this correlation as the utility of the channel, denoted by
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Uility

r=-=-=-=-=-===-========-- A

1 1

X Y Z

f T— H
dataset real answer L reported answer

N randomization ~

| query mechanism !

! IC (e-diff. priv. randomized function) !
] Leakage . __. !

Figure 5.2: Leakage and utility for oblivious mechanisms

U(Y,Z). In Section 5.6 we will discuss in detail how the utility can be quan-
tified, and we will investigate how to construct a randomization mechanism,
i.e. a way of adding noise to the query outputs, so that utility is maximized
while preserving differential privacy.

In practice, the randomization mechanism is often oblivious, meaning that
the reported answer Z only depends on the real answer Y and not on the
database X. In this case, the randomized function C, seen as a channel, can
be decomposed into two parts: a channel modeling the query f, and a channel
modeling the oblivious randomization mechanism 4. These two channels are
said to be in cascade, as the output of the first one is the input for the second
one. The definition of utility can be then simplified as it only depends on
properties of the sub-channel corresponding to H. The leakage relating X and
Y and the utility relating Y and Z for a decomposed randomized function are
shown in Figure 5.2.

We capture the notion of the attacker’s side information as the prior dis-
tribution on X, which is standard in information flow and also in papers on
differential privacy [GRS09, KSJ.

5.2.1 Leakage about an individual

As already discussed, £(X, Z) can be used to quantify the information that the
attacker can learn about the whole database. Protecting the entire database
at once, however, is not the main goal of differential privacy. In fact, some
information will necessarily be revealed, otherwise the query would not be
useful. Instead, differential privacy aims at protecting the value of any single
individual, even in the worst case where the values of all other individuals are
known. To quantify this information leakage we can define smaller channels,
where only the information of a specific individual varies. Let z— € Val*~! be
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a (u—1)-tuple with the values of all individuals but one (the individual whose
degree of protection we want to quantify). We create a channel - whose
input alphabet is the set of all databases in which the v — 1 other individuals
have the same values as in ~. Note that, since 2~ is fixed, to define the input
of the channel it is enough to specify the value of the individual of interest. In
this way the input for the channel can be seen as a random variable V' ranging
over the set Val. Intuitively, the information leakage of this channel measures
how much information about one particular individual the attacker can learn
if the values of all others are known to be x~. This leakage will be studied in
Section 5.5.1.

5.2.2 A note on the choice of values

The choice of the set Val depends on the assumptions about the attacker’s
knowledge. In particular, if the attacker does not know which individuals
participate in the database, a distinguished value in Val could be interpreted
as absence (e.g. the value 0 or the special value null). As discussed in [Dwoll],
a database 2/ adjacent to x can be though of either as being a superset (or
subset) of x with one extra (or missing) row, or as being exactly the same
database as z in all rows except for one which has a different (non-null) value.
Our definition of ~ with the possibility of null values covers all these cases.

At this point an important observation should be made about the choice of
Val. Most often we are interested in protecting the actual value of an individ-
ual, not only his participation in the database. In this case, the definition of
differential privacy (as well as the channels we are constructing) should include
databases with all possible values for each individual, not just the “real” ones.
In other words, to prevent the attacker from finding out the individual’s value,
the probability p(z|z), where = contains the individual’s true value, should be
close to p(z|x’) where 2’ contains a hypothetical value for this individual. This
might seem unnecessary at first sight, since differential privacy is often thought
of as protecting the participation of an individual in a database. Hiding the
participation of an individual, however, does not imply hiding his value. Con-
sider the following example: we aim at learning the average salary of employees
in a small company, and it happens that all of them have exactly the same
salary s. We allow anyone to participate or not, while offering e-differential
privacy. If we only consider s as the value in all possible databases, then the
query is always constant, so answering it any number of times without any
noise should satisfy differential privacy for any ¢ > 0. Since all reported an-
swers are s, the attacker can deduce that the salary of all employees, including
those not participating in the query, is s. Indeed, the attacker cannot find out
who participated, despite the value of all individuals is revealed.

In other cases, we are only interested in hiding the identity of the par-
ticipants (e.g. in a database with information about anonymous donations).
Thus, Val should be properly selected according to the application. If who has
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participated is known and we only wish to hide the values, then Val should
contain all possible values, e.g. all possible salaries in the example above. If
the values are known and participation is to be hidden, then Val can contain
just the values 0 and 1 denoting absence and presence respectively. Finally, if
both the value and the the identities of the participants are to be protected,
then Val should contain all values plus null.

5.2.3 The questions we explore with the help of our model

We will use the model we just introduced to explore the following questions:

1. Does e-differential privacy induce a bound on the information leakage of
the randomized function K7

2. Does e-differential privacy induce a bound on the information leakage
relative to an individual?

3. Does e-differential privacy induce a bound on the utility?

4. Given a query f and a value € > 0, can we construct a randomized func-
tion IC which satisfies e-differential privacy and also presents maximum
utility?

We will see that the answers to 1 and 2 are positive in case we take the
measure of leakage to be the min-entropy leakage, and we provide bounds that
are tight (i.e. for every e there is a IC whose leakage reaches the bound). For 3
we are able to give a tight bound in some cases which depend on the structure
of the query, and for the same cases, we are able to construct an oblivious K
with maximum utility (defined in terms of a binary gain function), as requested
by 4.

5.3 Graph symmetries

In this section we explore some classes of graphs that will allow us to derive
a strict correspondence between e-differential privacy and the a posteriori en-
tropy of the input. As we already mentioned, the input domain of databases
and the adjacency relation forms an undirected graph, and this fact will be
used to derive bounds on information leakage and utility. We will present two
classes of graphs, distance-regular and V7", that will be used in the next
section to transform a generic channel matrix into a matrix with a symmetric
structure, while preserving the a posteriori min-entropy and the e-differential
privacy.

Let us first recall some basic notions. Given a graph G = (V,~), the
distance d(v,w) between two vertices v,w € V is the number of edges in a
shortest path connecting them. The diameter ¢ of GG is the maximum distance
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between any two vertices in V. The degree of a vertex is the number of edges
incident to it. G is called regular if every vertex has the same degree. A regular
graph with vertices of degree k is called a k-regular graph. An automorphism
of G is a permutation ¢ on the vertex set )V, such that for any pair of vertices
v,w, if v~ w, then o(v) ~ o(w). If o is an automorphism, and v is a vertex,
the orbit of v under o is the set {v,o(v),...,o" 1 (v)} where k is the smallest
positive integer such that o®(v) = v. Clearly, the orbits of the vertices under
o define a partition of V. If V' is the set of vertices of G, we denote by V4 (v)
the subset of vertices in V that are at distance d from the vertex v.

The following two definitions introduce the classes of graphs that we are
interested in. The first class is well known in literature.

Definition 33 (Distance-regular graph). A graph G = (V, ~) is called distance-
regular if there exist integers by and cq (d € {0,...,}) (called intersection
numbers) such that, for all vertices v,w at distance d(v,w) = d, there are
exactly

e by neighbors of w in Vig11)(v)
e ¢y neighbors of w in Vig_1(v)

Some examples of distance-regular graphs are illustrated in Figure 5.3.

(a) Tetrahedral graph (b) Cubical graph (c) Petersen graph

Figure 5.3: Some distance-regular graphs with degree 3

The second class we are interested in is a variant of the VT (vertex-
transitive?) class:

Definition 34 (VT graph). A graph G = (V,~) is VT (vertex-transitive
+) if there are n automorphisms oy, o1, ...0n—1, where n = |V|, such that,
for every vertex v € V, we have that {o;(v) |0 <i<n—1}=V.

In particular, the graphs for which there exists an automorphism o which
induces only one orbit are VT't: it is sufficient to define o; = o’ for all i
from 0 to n — 1. Figure 5.4 illustrates some VT graphs with a single-orbit
automorphism.

2A graph G = (V,~) is said to be vertez-transitive if for any pair v, w € V there exists
an automorphism o such that o(v) = w.
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(a) Cycle: degree 2 (b) Degree 4 (c) Clique: degree 5

Figure 5.4: Some VT graphs

From graph theory we know that neither of the two classes subsumes the
other. They have however a non-empty intersection, which contains in partic-
ular all the structures of the form (Val",~), i.e. the database domains.

The two next propositions show that the structure (X,~) = (Val", ~) is
both a distance-regular graph and a V't graph.

Proposition 35. If v > 2, the graph (Val*,~) is a connected distance-reqular
graph with diameter § = u, and intersection numbers by = (u — d)(v — 1) and
cg=d, for all0 < d < 6.

Proof. The vertices of (Val",~) are u-tuples (v1,...,vy),v; € Val and two
vertices are adjacent if and only if the differ in exactly one element v;. It is
easy to see that the distance between two vertices is the number of elements
in which they differ. Let x1,z9 € Val" with d(z1,22) = d, so they differ in
exactly d elements. To go at distance d + 1 from z; we can select any of the
remaining u — d elements and change it in v — 1 possible ways, so the total
number is (u — d)(v — 1) and depends only on d, not on x1,z9. Similarly, by
changing one of the differing elements of xo to match the value of x1 we get a
vertex at distance d — 1, and there are d such elements. ]

Proposition 36. The graph (Val",~) is a VT graph.

Proof. Recall that we assume the values in the set Val to be indexed, i.e.
Val = {vo,...,vj,...,Vy—1}, where v = | Val|. Note that, for convenience, we
opt to use here the indexing from 0 to v — 1. Let us define an bijective function
p: Val — Val as

p(vj) = Viel

for every v; € Val, and where @ represents the sum modulo v. We define the
composition of p with itself ¢ times as

p'(vi)=popo...op(vj)
————

i times
Note that since p is injective, p’ is injective as well.
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We represent a database in Val" as @ = vy, ... vy, ... Vg, ,, with 0 < £ <
u—1and 0 < k¢ <v—1. We now define a family {o,}"";' of automorphisms
as follows. Given a 0 < (¢ <" — 1, consider the representation in base v of ¢:

=g 0"+ . i gy 0T (5.2)
where 0 < iy < v — 1. Then define

o,(x) = pi"(vko) . pi“(vke) ... pi“*(vkufl) (5.3)

where x = v ... Vi, o Ve,
We have to show that:

e o, is an automorphism for all 0 < ¢ < v* —1.

First we show that o, is injective. Let us consider two arbitrary databases
T = Viyooo ViV, , and 2/ = Vi oo Vi oo Vi, and assume o, =
p(). p (). pmt (). I w # 2’ then vy, # vy for some ¢, and
since an arbitrary p* is injective we have p*(vy,) # ,o”(vké). Therefore
o.(z) # o,(2).

Now we show that if z ~ 2’ then o,(x) ~ o,(2’). Consider an ar-
bitrary pair of adjacent databases x = vi,...vg, ... v, , and =

Vig - Vi) -+ Vk where x and ' differ exactly for vy, # Vi, We

u—1)
know that o,(z) = p™(vi,) ... p"(vk,) ... p"~1(vy, ,) and we also know
that o,(z') = p(vi,)--- p”(yké) L plut (qu_l). Therefgre o,(z) and
0,(2) can differ at most in p*(vy,) and p"(vy,). Since p' is injective,

we have p(vy,) # pil(vkz), and it follows that o,(z) ~ o,(2/).

o Foreveryx = Vi, ... Vi, ... Vg, , in Val" we have Ufial{ab(x)} = Val".
Take an arbitrary element 2’ = vy, ... vy, ... v in Val". Note that
PFm (Vi) = Vi, for all 0 < m,n < v — 1. Therefore the automorphism
o = proSko (L) | pkeSke() . pFu1O%u-1(.) where © represents the sub-
traction modulo v, satisfies o(x) = 2. Since 0 < k; &k < v —1 we have
that o = o, for o = (k{,Sko) v +.. .+ (k,0ke)v'+. . .+ (K,_Sky—1)v"" 1,
and therefore o belongs to the family {7, }*_ ;.

O

Figure 5.5 illustrates some examples of structures (Val*,~). Note that
when |Val| = 2, (Val", ~) is the u-dimensional hypercube.

The relation between graph structures we consider in this chapter is sum-
marized in Figure 5.6. We remark that in general the graphs (Val*, ~) do not
have a single-orbit automorphism.
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P CCC - -~ _ R
bbba bbbb /S oeeh T ~e "7 bee
/ s // v > T N
N / cca / beb -~ acc
bbaa N bbab NN~ Ny~
> abba - abbb J [~. bea achb -1
N / /! / /7“~-aca——’ V\\ \
b b b 1 \ \
e aw ' cba | \ \_abc !
VT bba Va7
/aaba - aabb Y N ~ o e )
S N aba Y
auaa aaab B caa , /' aac
babd - babb N h AV
/ | / R baa\ ,’/aab 7
baaa baab Tt--—aaa---""
a) u = 4, Val = a,b 4- b) u = 3, Val = {a,b,c} (for read-
( ) ) ) b b )
dimensional hypercube) ability sake we show only part of the
graph)

Figure 5.5: Some (Val“,~) graphs

Dist-regular

Figure 5.6: Venn diagram for the classes of graphs considered in this section.
Here S* = {Val* | |Val| =2,u <2}

5.4 Deriving the relation between differential
privacy and quantitative information flow on
the basis of the graph structure

In this section we present the main technical contribution of the chapter: a
general technique that explores the graph structure induced by the adjacency
relation ~ on X and the query f to determine relations between e-differential
privacy and min-entropy leakage, and between e-differential privacy and utility.
We use the symmetries of the graph structure (X', ~) to transform the channel
matrix into an equivalent matrix with certain regularities. These regularities
are the key that allow us to establish the link between e-differential privacy
and the a posteriori min-entropy (i.e. the conditional min-entropy associated
to the channel). The establishment of bounds on the a posteriori entropy will
allow us to derive bounds on leakage and utility: in Section 5.5 we will cope
with leakage and in Section 5.6 we will cope with utility.

But first, in Section 5.4.2 we will present how to perform the transformation
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on the channel matrix, and in Section 5.4.3 we will show how to derive a bound
on the a posteriori min-entropy for the matrix obtained. It is important to note
that we consider the case where the channel input has the uniform distribution.
This is not a restriction for our bounds on the leakage: as seen in Chapter 3, the
maximum min-entropy leakage is achieved in the uniform input distribution
and, therefore, any bound for the uniform input distribution is also a bound for
all other input distributions. In the case of utility the assumption of uniform
input distribution is more restrictive, but we will see that it still provides
interesting results for several practical cases.
Before we present formally our technique, let us fix some notation.

5.4.1 Assumptions and notation

In the rest of this section we consider channels (usually referred to by M, M’,
M" or N) with input A and output B, with finite carriers A = {ag, ..., a1}
and B = {bo,...,bn_1}, respectively, and we assume that the probability
distribution of A is uniform. Furthermore, we assume that |A| =n < |B| = m.
If it is the case that n > m, we just add to the matrix enough zero-ed columns,
i.e. columns containing only 0’s, so as to match the number of rows. Note
that adding zero-ed columns does not change the min-entropy leakage nor
the conditional min-entropy of the channel. We assume as well an adjacency
relation ~ on A, i.e. that (A, ~) is an undirected graph structure. With a
slight abuse of notation, we will also write ¢ ~ h when i and h are associated
to adjacent elements of A, and we will write d(i,h) to denote the distance
between the elements of A associated to i and h. More generally, we may use
the number 7 to denote the element a; of A (or, equivalently, the element b; of
B) whenever it is clear from the context.

We note that a channel matrix M satisfies e-differential privacy if for each
column j and for each pair of rows ¢ and h such that ¢ ~ h we have that:
1 < My < e“.

e = My; —

The a posteriori entropy of a channel with matrix M will be denoted by
HM(A|B), and its min-entropy leakage by I (A; B).

We denote by M|l — k] the matrix obtained by “collapsing” the column I
into k, i.e.

M+ M, it j =k,
M[l—)k‘]i,j: 0 ifj:l,

M; ; otherwise

Given a partial function p : A — B, the image of A under p is p(A) =
{p(a)la € A, p(a) # L}, where L stands for “undefined”.

In the proofs we will need to use several indices, and we will typically use
the letters i, 7, h, k,l to range over rows and columns (usually 4, h,[ will range
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over rows and j, k will range over columns). Given a matrix M, we denote by

maxéw the maximum value of column j over all rows 1, i.e. maxéw = max; M; j,

and by max™

Finally, given a graph G = (V,~) with diameter §, we denote by A¢g the
set {0,1,...,0}. We may omit the subscript and denote the set only by A if
the context does not allow any confusion. The notation V4 (v) represents the
subset of V of all elements w at distance d from v. For a fixed d, we define
ng = Vg (v)| as the number of vertices in V at distance d from v, and we
intend that it will be always clear by the context to which set of vertices V

and element v the value ng is associated to.

= max; ; M; ; the maximum element of the matrix.

5.4.2 The matrix transformation

The transformation on the channel matrices is divided into two steps, and we
start this section by giving an overview of the process. Consider a channel
whose matrix M has at least as many columns as rows and assume that the
input distribution is uniform. First, we transform M into a matrix M’ in which
each of the first n columns has a maximum in the diagonal, and the remaining
columns are all 0’s. Second, under the assumption that the input domain is
distance-regular or VT, we transform M’ into a matrix M” whose diagonal
elements are all the same, and coincide with the maximum element max™ !
of M"”. The transformation ensures that both M’ and M" are valid channel
matrices (i.e. each row is a probability distribution), also respect e-differential
privacy, and preserve the value of the a posteriori entropy for the uniform
input distribution. A scheme of the transformation is shown in Figure 5.7,
where Lemma 37 (Step 1) is applied on the first step of the transformation,
and on the second step either Lemma 38 (Step 2a) or Lemma 39 (Step 2b) is
applied, depending on whether the graph structure is distance-regular or V1'T,
respectively.

We now present formally the transformation. The next Lemma is relative
to the first step.

Lemma 37 (Step 1). Let M be a channel matriz of dimensions n X m with
at least as many columns as rows, and assume that M satisfies e-differential
privacy. Then it is possible to transform M into a matriz M’ satisfying the
following conditions:

(i) M' is a valid channel matriz: Z;”:_Ol M ;=1 forall0<i<n-—1;

(ii) Each of the first n columns has a mazimum in the diagonal: MZ-’J- =
maxﬁw/ forall0<i<n-—1;

(i1i) The m —n last columns contain only 0’s: M;; =0 for all 0 <i<n—1
and alln < j<m-—1;
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Moo My 1 . Mo,m—1
MLO Ml,l R Ml,mfl
M N N . .
Mp_10 Mp_1:1 coo My_1m—
! Lemma Step 1
i (any graph structure)
maxg” - . - 0 ... 0
- ma’ - 0 ... 0
M’ . )
- - oomax o .0
Lemma Step 2a / \ Lemma Step 2b
(distreg) ) VT
max™” - . - 0 ... 0
_ maxMI/ - 0 0
M/l . .
_ _ maxM// 0 0

Figure 5.7: Steps of the matrix transformation for distance-regular and V71"
graphs

M

(iv) M’ satisfies e-differential privacy: 7+ < e for all 0 <i,h <n —1 s.t.
.
i~handall0<j<m-—1; ’

(v) HM' (A|B) = HM(A|B), if A has the uniform distribution.

Proof. We first show that there exists a matrix IV of dimensions n x m, and
an injective total function p : A — B such that 3:

o N i) = max]p\éi) for all ¢ € A, and

(i
e N, ;=0 forall j € B\p(A) and all i € A.

We iteratively construct p and N “column by column” via a sequence of
approximating partial functions ps; and matrices Ny (0 < s < m).

e Initial step (s = 0)

Define pg(i) = L for all i € A and Ny = M.

3To avoid a heavy notation, here we will use the convention established in Section 5.4.1
and denote Ny, 1., where a; € A and b; € B, simply by N; ;.

isbjo
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o s step (1 <s<m)

Let j be the s-th column and let i € A be one of the rows containing
the maximum value of column j in M, ie. M;; = maxé\/[ . There are two
cases:

1. ps—1(7) = L. We define:

ps = ps—1 U{i— j} and
Ng = Ns_1

2. ps—1(i) = k € B. We “collapse” column j into column % (recall the
notation introduced in Section 5.4.1):

Ps = Ps—1 and
Ns = stl[j — k?]

Since the operation of “collapsing” assigns j in ps and then zeroes the
column j in Ny, all unassigned columns B\ p,,(A) must be zero in N,,. We
finish the construction by taking p to be the same as p,, after assigning to
each unassigned row one of the columns in B\ p,,,(A) (there are enough such
columns since n < m). We also take N = N,,. Note that by construction N
is a channel matrix.

Thus we get a matrix N and a function p : A — B which, by construction,
is injective and satisfies IV; ;) = max%) for all i € A, and NN; ; = 0 for all
j € B\p(A) and all i € A. Furthermore, N provides e-differential privacy
(condition (iv)) because each column is a linear combination of columns of M.
It is also easy to see that ), maxév =2 maxﬁu , and from that it immediately
follows that HY (A|B) = HM (A|B) (recall that A has the uniform distribution
and therefore the a posteriori entropy is a function of the sum of the maximum
of each column), so condition (v) is satisfied.

Finally, we create our claimed matrix M’ from N just by rearranging the
columns according to p. Note that the order of the columns is irrelevant, since
any permutation represents the same conditional probabilities and therefore
the same channel *. The resulting matrix M’ has all maxima in the diagonal
MZ’Z for 0 <4 <n—1, and every element in the columns n < j < m —1 are 0,
which satisfies conditions (ii) and (iii). Also, since N is a valid channel matrix,
so is M’ and condition (i) is also satisfied.

O

*Note that by rearranging the columns of the channel matrix we may change the marginal
probability of the outputs. This, however, does not pose a problem for our purposes, since
the maximum a posteriori entropy of the channel will be maintained. If we want the marginal
probability of the outputs to remain unchanged, we can just “relabel” the columns after the
rearrangement so they will match the correct outputs.
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The second step of the transformation depends on the graph structure of
(A, ~). But before we discuss this step, let us introduce a notion of distance
between elements in B, derived from the notion of distance between elements
in A. Let M be a channel matrix in which the maximum of each column is
in the diagonal, as in Figure 5.8. Then we define the distance between two
elements ji, jo € B as follows:

o d(i1,i2) if there are i1,i2 € A such that iy = j; and iy = jo,
d(j1,J2) = .
L otherwise.
(5.4)
Note that the range of the notion of distance defined above is the set
A =1{0,1,...,d}, where ¢ is the diameter of (A, ~). Based on (5.4), we define
the set B (j) as the subset of B of elements at distance d from an element

J € B. It is clear that for any j € B, we have (Jyca Bia) (7) = B-

Moo Moy ... oo Mom—z Mo
Mg ... . My
row ¢ ML() e Miyjl cee Mi’j// cee Mivmfl

J PG,

Mj// g = max%

Moo ... i Mg
My 10Mp_11 ... oo My 12 My 1m1

Figure 5.8: The relation between elements of a row ¢ and the elements in the
diagonal

We can extend the adjacency relation ~ on A to an adjacency relation ~'
on B by using the notion of distance of (5.4). For any ji,jo € B, we have
j1 ~' jo if and only if d(j1,j2) = 1. Therefore, if (A, ~) is distance-regular, so
it is (B, ~').

Now we are ready to present the lemma for the second step of the trans-
formation, in the case of distance-regular graphs.

Lemma 38 (Step 2a). Let M’ be a channel matriz of dimensions n x m with
at least as many columns as rows, and assume that M' satisfies e-differential
privacy. Let ~ be an adjacency relation on A such that the graph (A,~)
s connected and distance-reqular. Assume that the maximum value of each
column is on the diagonal, that is M;; = maxM for all i € A, and that all the
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last m —n columns have only zero elements, i.e. MZ/J =0forall0<i<n-—1
and n < j < m — 1. Then it is possible to transform M’ into a matriz M"
satisfying the following conditions:

(i) M" is a valid channel matriz: Zm 1 M” =1forall0<i<n-—1;

(i) The elements of the diagonal are all the same, and are equal to the maz-
imum of the matriz: M;'; = max™” for all0 <i<n—1;

(i1i) The m —n last columns contain only 0’s: M;'; =0 for all 0 <i<n—1
and alln <j<m-—1;

/

(iv) M" satisfies e-differential privacy: M, <ef forall0<i,h<n-—1s.t.
t~handall0<j<m-—1;

E

(v) HM"(A|B) = HM'(A|B), if A has the uniform distribution.

Proof. Let us define B* = {0,1,...,n — 1}, i.e. the subset of B that excludes
the zero-ed columns of M’ from n to m — 1. Note that we can safely use the
set B* instead of B in this proof because the zero-ed columns do not contribute
to the a posteriori entropy, and trivially respect e-differential privacy.

We then define the matrix M” as follows.

1 / e *
M = {"|A<d(i,j>>(i)| 2oheB 2he A py ) Mg 15 € B

i, .
’ 0 otherwise.

By the definition above, condition (iii) is immediately satisfied. We then
show that this definition also induces a channel matrix. We have

> M=) g 2 Mg

n
= fep 1l Agags i (0] (d(i.g keB* he A, ) (k)

Z Z )>(z‘)] Z Mf/uk

keB* JeB* heAqi, ) (k)
Recall that A = {0,...,d}, where § is the diameter of the graph. Note that

for every i, B* = UdeA By (i i), and for different values of d the sets By (i i) are
disjoint. Therefore the summatlon over j € B* can be split as follows

IYY Y e o

keBr ded jeBr, (i) 7 DN et (k)
1

:EZZ Z M, Z A (0]
KeBrdeAheAgy (k) jeBl, @) T
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1
as Z r = 1, we obtain

- YY Y M,

keB* deA heA gy (k)

and now the summations over h can be joined together

EPPRLE
keB* he A
=1

which implies that condition (i) is satisfied.
We now turn our attention to the elements of the diagonal. We have

1
4 !
M;; = - Z My, 1,
heA

and so they are all identical. To fulfill condition (ii) we still need to show that
M!". = maxM" for all i € A.

Mz/,,] = H‘A Z Z th

kEB* h€A<d (i J)>(k)

< — A Z Z M h (since the biggest element
| @)l keB* he Aaqi jyy (k) is in the diagonal)

. 1
:_ZM,;,I% 2 1
niege o MAaap O =

1 | Aagi )y (k)]
Ly gy M
n | A a5 (0)]

keB*
1
== Z M, -1 (since the graph
" s is distance-regular)

Since A has the uniform distribution, H'(A|B) = HM"(A|B) (condition
(v)) follows immediately.

It remains to show that M” satisfies e-differential privacy (condition (iv)).
We need to show that

M{; <eMj; VjieBjiiecA:i~i
From the triangular inequality we have (since d(i,4") = 1)

Thus, there are 3 possible cases:
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1. d(i,j) = d(@, j)

108

The result is immediate since M]’; = My .
We define the set of neighbors of h “one step further away” from k:

Fug =0 ~h | W € Agm+(k)}

Note that |Fp k| = by k) since the graph is distance-regular. The fol-
lowing inequalities hold for any h,h' € A:

M/lk < eeM,'L,7k Vh' € Frk (diff. privacy) =
baenkyMp j < € Z My, 4, (sum of the above)
h'E]‘-h,k

we now fix a distance d and sum the above inequalities for all vertices at
distance d from h:

Do baMpp<es Y YT My,

h€A<d> (k) h€A<d> (k) WeFn i

Note that each h' € Ag;qy(k) is contained in Fj for exactly cgiq
different h € A (k). So the right-hand side above sums all vertices of
Aqag1y (k) exactly cqy 1 times each. Thus we get that forall k € B*,d € A:

Y. Mpg<ecan Y, My, (5.5)

h€A<d> (k) hEA(d+1>(/<:)

Finally, note that cay1[A@y1y(i)] = balAg(i)| (both sides count the
number of edges between a vertex at distance d and a vertex at distance
d+1). So we have

Mil,/j:nM |Z Z th

keB* he Ay (k)

<ef nIA Cd“ Z S My, (from (5.5))

keB* he Agq1y (k)

— 66 n|A d+1 | Z Z th

keB* he Agy1y (k)

__ € "
=e ]\4'2/7‘7
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3. d(i,7) =d(i,j)+1

This case is analogous to the case case where d(i,j) = d(i',j) — 1.

O

The next lemma is relative to the second step of the transformation, for
the case of VT graphs.

Lemma 39 (Step 2b). Consider a channel matriz M’ satisfying the assump-
tions of Lemma 38, except for the assumption about distance-reqularity, which
we replace by the assumption that (A,~) is VT'". Then it is possible to trans-
form M’ into a matriz M" with the same properties as in Lemma 38.

Proof. Let us define B* = {0,1,...,n — 1}, i.e. the subset of B that excludes
the zero-ed columns of M’ from n to m — 1. Note that we can safely use the
set B* instead of B in this proof because the zero-ed columns do not contribute
to the a posteriori entropy, and trivially respect e-differential privacy.

We then define the matrix M” as follows.

1 n—1 e
o dn =0 Mo, )0y T € BT
" 0 otherwise.
By the definition above, condition (iii) is immediately satisfied. We then

show that this definition also induces a channel matrix. Recall that {o}(5)|0 <
h <n—1} = A since the graph is VTT.

n—1 n—1 1 n—1

"o /
DMG=) = My y00)
5=0 j=0 "~ h=0

n—1 1 n—1
_ - !
=2~ Mo
h=0 " j=0
n—1 1
= Z .1 (since o}, is a permutation)
n
h=0

=1

which implies that condition (i) is satisfied.

Now we prove that the diagonal contains the maximum values of the matrix
(condition (ii)), i.e. for every i, M/, = max™”. Tt is easy to see that, by
definition, the elements of the diagonal are all the same (they are the average

of the diagonal elements of M’). Then we need to show that they are the
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maximum of each column, from which it follows that they are the maximum
of the matrix.

1 n—1
"o /
M=~ Mg, .06
h=0
1« o
= ;Z (i),0h(5) (since Mg, (j) 5, () = MaXg;(5)
= M}

We now prove that M” provides e-differential privacy (condition (iv)). For
every pair ¢ ~ i and every j:

1 n—1
"o /
My == My, )0,
h=0
< - Z eEM’h(Z ) (by e-diff. privacy,.lfor some i’
s.t. on(i') = on(j))
— eEMZ’//IJ

Finally, we prove condition (v):

y 1
H"(A|B) = ~ > My,

1 n—1 1 n—1
_ = /
== =D My onii
=0 h=0

n—1
1 ' : '
= L3 HY(41) (since My, (1 5, i) = maxhl,)

yOh (Z)
=0

= HY'(4]B)

O

5.4.3 The bound on the a posteriori entropy of the channel

Once the transformation presented in the previous section has been applied,
and the channel matrix respects the properties of M”, we can use again the
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graph structure of (A, ~) to determine a bound on the a posteriori entropy
HM"(A|B) of M". Recall that our matrix transformation preserves the value
of the a posteriori conditional entropy, so the bound we find is also valid for
the original channel matrix we started with.

It is a known result in literature (cfr. [BCP09|) that, if the distribution
on A is uniform, then the a posteriori entropy of the channel M is given by

1
HM(A|B) = —log, ~ > max
jeB

Hence, under our assumption that the input distribution A is uniform,
and knowing that matrix the M” the diagonal elements are all equal to the
Ml

. !
maximum max" , we have

HM"(A|B) = —log, max™"” (5.6)

Therefore to find a bound on the a posteriori entropy of the channel M”
it is enough to find a bound on max™ ”. This is exactly what we do in this
section.

We proceed by noting that the property of e-differential privacy induces a
relation between the ratio of elements at any distance:

Remark 40. Let M be a matriz satisfying e-differential privacy. Then, for
any column j, and any pair of rows © and h we have that:

1 Mij _ ed(in)

ecd(ih) — Mh,j

In particular, as we know that the diagonal elements of M are equal to the
maximum element max™ , then for each element M; ; we have that:
max™

Mij 2 caas

(5.7)

which motivates the next proposition.

Proposition 41. Let M be a channel matriz satisfying e-differential privacy
where the diagonal elements are the mazimum element maz™ of the matriz.

Then.:
M 1

i
deA ced

where A = {0,1,...,8}, § is the diameter of the graph (A,~), and ng =
A (4) is the number of elements M, ; that are at distance d from the corre-
sponding diagonal element M, ;, i.e. such that d(i,j) = d.

max
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Proof. The elements of any given row ¢ of M represent a probability distribu-
tion, therefore they sum to 1.

> Mij=1
J
By substituting (5.7) in the equation above we obtain:

maXM <1
Z e€d(i,j) | —

J
Z (EmaxM) <1
eed
d

and therefore

O
Putting together all the steps of this section, we obtain our main result.

Theorem 42. Consider a channel matriz M satisfying e-differential privacy
for some € > 0, and assume that (A,~) is either distance-reqular or VT,

Then we have: 1
HY (A|B) > —log, = (5.8)
Zd eed
where ng = |Aq)(i)| is the number of nodes j € A at distance d from i € A.
Moreover, this bound it tight, in the sense that we can build a matriz for

which (5.8) holds with equality.

Proof. The inequality follows directly from (5.6) and Proposition 41. To prove
that the bound is tight, it is sufficient to define each element M ; according
to (5.7) with equality instead of inequality. O

In the next sections we will see how to use this theorem for establishing a
bound on the leakage and on the utility.

5.5 Application to leakage

As discussed in the Section 5.2, the correlation £(X,Z) between X and Z
measures the information that the attacker can learn about the database by
observing the reported answers. In this section we consider the min-entropy
leakage as a measure of this information, that is £(X, Z) = Io(X; Z). We then
investigate bounds on information leakage imposed by differential privacy.

Before we continue, let us make a very important observation about the
results we obtain in this section.
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Remark 43. The bounds on the min-entropy leakage we present in this section
(Theorem 44, Proposition 47, and Proposition 48) are derived under the as-
sumption that the input distribution X for the channel is uniform. As seen in
Chapter 3, we know from the literature [BCP09, Smi09] that the min-entropy
leakage IM(X;2Z) of a given matriz M is mazimum when input distribution
is uniform (even though it may not be the only case). Therefore the bounds
we present in this section, although based on the assumption that X has the
uniform distribution, are valid for every possible input distribution. As we
model side information as input distributions, and as we provide bounds on
the leakage for any possible input distribution, it follows that our bounds on
the min-entropy leakage are valid for any possible side information the attacker
may have.

Our first result shows that the min-entropy leakage of a randomized func-
tion K is bounded by a quantity depending on €, and on the numbers v = |Ind|
and v = | Val| of individuals and values respectively. We assume that v > 2.

As seen in Section 5.2, K can be modeled as a channel with input X and
output Z. From Propositions 35 and 36 we know that (X', ~) is both distance-
regular and VT, and therefore we can apply Theorem 42. Then, by (5.7) we
know that for j € Xg (z) (i.e. every j in A" at distance d from a given ) it

is the case that M, ; > m:j;M. Furthermore we note that each element j at
distance d from x can be obtained by changing the value of d individuals in
the u-tuple representing 7. We can choose those d individuals in (Z) possible
ways, and for each of these individuals we can change the value (with respect
to the one in x) in v — 1 possible ways. Therefore | X4 ()| = (%) (v —1)4, and
we obtain that the number of databases at distance d from x is

ni= @) = () 0= (5.9

In fact, recall that « can be represented as a u-tuple with values in V. We
need to select d individuals in the u-tuple and then change their values, and
each of them can be changed in v — 1 different ways.

Using the value of ng from (5.9) in Theorem 42 we obtain the following
result.

Theorem 44. If K satisfies e-differential privacy, then the information leakage
s bound from above as follows:

v et

Ioo(X; Z) < u logy P

= Bnd(u,v,€)

Proof. For this proof we need a matrix with all column maxima on the di-
agonal, and all equal. We obtain such a matrix by transforming the matrix
associated to K as follows: first we apply Lemma 37 to it (with A = X and
B = Z7), and then we apply either Lemma 38 or Lemma 39 (we can choose
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either of them, since (X, ~) is both distance-regular and VT). The final ma-
trix M has all non-zero elements on its n x n submatrix, with n = |X| = Val",
provides e-differential privacy, and for every row ¢ we have that M;; = max™ .
Furthermore, IM (X Z) is equal to the min-entropy leakage of K, assuming a
uniform distribution on X.

Then we can derive:
n U M
max
S a2 >on
j=1 d=0
u M
u max
= (v —1) (by (5.9))
> (o)

Since each row represents a probability distribution, the elements of row ¢

must sum up to 1:
" (u dmaxM
Z <d> (v—1) (e€)d =1
d=0

and by multiplying both sides of the inequality by e we get

maxM ZZ:O (z) (1) _ 1)dee(ufd) < efu

Since by the binomial expansion Z (Z) (v—1D%e ) = (v—14e)Y,

d=0
we obtain: .
max™ < (=55 (5.10)
Therefore:

IM(X, V)= Hyo(X) — HM(X|Y) (by definition)

= logy Val" + log, max™ (by (5.6))
e “

< log, Val" +1 _ by (5.10
< togy Yl + o (=) (by (5.10))
ol ve*
Bt v—1+e€

To conclude our proof we recall that, since the above bound on IM (X;Y)
is valid for the case where X has the uniform distribution, it is also valid for
any distribution on X.

O

Note that the bound Bnd(u,v,€) = u logy (v_vlie_:ee) is a continuous function
in €, has value 0 when € = 0, and converges to u log, v as € approaches infinity.
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Figure 5.9: Graphs of Bnd(u,v,e¢) for u=100 and v=2 (lowest line), v=10
(intermediate line), and v=100 (highest line), respectively.

Figure 5.9 shows the growth of Bnd(u,v,€) along with e, for various fixed
values of v and v.

The next proposition shows that the bound obtained in previous theorem
is tight.

Proposition 45. For every u, v, and € there exists a randomized function K
which provides e-differential privacy and whose min-entropy leakage, for the
uniform input distribution, is I(X;Z) = Bnd(u,v,€).

Proof. The adjacency relation in X determines a graph structure Gy. Set
Z = X and define the matrix of IC as follows:

prc(zl) = % (5.11)

where d is the distance between x and z in Gy.
We need to show that px(-|x) is a probability distribution for every x:

Z Bnd(u, v, €) _ Bnd(u,v, ) Z 1

€)d €)d
= @ ez (&)
:Bnd(u,v,e)z Tid
7 (<)
1

maxM

1
Bnd(u,v,¢€)

U

—~

= Bnd(u,v,€)

by Proposition 41
= Bnd(u,v,€) take d = 0 in (5.11)
=1

To see that K provides e-differential privacy, just take d = 1 in (5.11), and
to see that I (X;Z) = Bnd(u,v,€) take d = 0 in the same equation.
O
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We now give an example of the use of Bnd(u,v,¢) as a bound for the
min-entropy leakage.

Example 7. Assume that we are interested in the eye color of a certain pop-
ulation Ind = {Alice, Bob}. Let Val = {a,b,c} where a stands for absent
(i.e. the null value), b stands for blue, and c stands for coalblack. We can
represent each dataset as a tuple dody, where dy € Val represents the eye
color of Alice (cases dy = b and dy = c), or that Alice is not in the dataset
(case dy = a). di provides the same kind of information for Bob. Note that
v =3. Fig 5.10(a) represents the set X of all possible datasets and its adja-
cency relation. Fig 5.10(b) represents the matriz with input X which provides
e-differential privacy and has the highest min-entropy leakage. In the repre-

: . : M :
sentation of the matriz, the generic entry o stands for =&, where max™ is
€

M _ e€ _ _ e
T (v—14e) T (2+4e9) "

the highest value in the matriz, i.e. max

[ Haa[ab[ac[ba[ca[bb[bc[cb[cc‘

daal i lgb| i lacl.: aalOTL[1]1[1]2[2]2]2
H ! ab[[T]0]1]2]2]1]2]1]2
S, .- .............. ‘. ......... acll1l1lol 22121121
: : bal[ 1220 T[T[2[1]2
baibbébc'ﬁ ca[ T[2]2[1]0][2]2[1]1
........... woll2]1]2]1]2]0(1[1]2
; be[2[21[1[2[1]0]2]1
Acalileb|iect bl 2[1[2]2]1[1]2]0]1
m. ..... ........ ; :'~'.‘.=‘;:: ce[[2]2]1]2]1]2]1]1]0
(a) The datasets and their (b) The representation of
adjacency relation the matrix

Figure 5.10: Universe and highest min-entropy leakage matrix giving e-
differential privacy for Example 7.

Note that the bound Bnd(u,v,€) is guaranteed to be reached with the
uniform input distribution. The construction of the matrix for Proposition 45
gives a square matrix of dimension Val" x Val". Often, however, the range
of K is fixed, as it is usually related to the possible answers to the query f.
Hence it is natural to consider the scenario in which we are given a number
r < Val*, and want to consider only those K’s whose range has cardinality
at most r. Proposition 47 shows that in n this restricted setting we can find
a better bound than the one given by Theorem 44. But first we need the
following lemma.

Lemma 46. Let KC be a randomized function with input X, where X = Val*,
providing e-differential privacy. Assume that v = |Range(K)| = v¢, for some
0 < u. Let M be the matriz associated to K. Then it is possible to build a

14 14

square matriz M’ of size v° x v°, with row and column indices in A C X, and
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a binary relation ~'C A x A such that (A, ~') is isomorphic to (Val*,~y), and
such that:

(i) M' is a valid channel matriz: Z;ﬁ;()l M ;=1 forall0<i<n-1;

(i1) Mj; < (eﬁ)“*HdM,’m for all i,h € X and j € Y, where d is the ~'-
distance between 1 and h;

(i1i) The elements of the diagonal are all equal to the mazimum element of
the matriz: M/, = max™’ for all i € X;

(iv) HM' (X|Y) = HM(X|Y), if X has the uniform distribution.

Proof. We first apply a procedure similar to that of Lemma 37 to construct a
square matrix of size v’ x v’ which has the maximum values of each column
in the diagonal. (In this case we construct an injection from the columns to
rows containing their maximum value, and we eliminate the rows that at the
end are not associated to any column.) Then define ~’ as the projection of ~,,
on Val’. Tt is easy to see that condition (ii) in is satisfied by this definition of
~/'. Finally, apply the procedure in Lemma 38, or equivalently the procedure
in Lemma 39, on the structure (X,~’) to make all elements in the diagonal
equal to the maximum element of the matrix (condition (iii)). Note that this
procedure preserves the property of condition (ii), and conditional min-entropy
((iv)). Also the matrix obtained is a valid channel matrix (condition (i)). O

Now we are ready to prove the proposition.

Proposition 47. Let K be a randomized function with associated channel
matriz M, and let v = |Range(K)|. If K provides e-differential privacy then
the min-entropy leakage associated to K is bounded from above as follows:

r(e)"

(v—1+4e)" —(e)" + (e)"

M(X;7) < log,

where £ = |log, r|.

Proof. Assume first that r is of the form v‘. We transform the matrix M
associated to K by applying Lemma 46, and let M’ be the resulting matrix.
Let us denote by max™’ the value of every element in the diagonal of M’ i.e.

maxM' — M; ; for every row i, and let us denote by .A’< 4 (#) the set of elements

whose ~/-distance from i is d. Note that for every j € A'<d> (i) we have that

M} < M (e)" ="+, hence

M

, max
Mij 2 (eeyurra
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Furthermore each element j at ~'-distance d from 4 can be obtained by
changing the value of d individuals in the ¢-tuple representing i (remember
that (A, ~') is isomorphic to (Val,~;)). We can choose those d individuals
in (2) possible ways, and for each of these individuals we can change the value
(with respect to the one in 7) in v — 1 possible ways. Therefore

A @1 = () 0= 1

Taking into account that for M;; we do not need to divide by (e)*~**+,

1
we obtain: o
AT
max™ + 375, (o) (v — 1)d(er?)61}7}5e+d < DM
Since each row represents a probability distribution, the elements of row 4
must sum up to 1. Hence:

M
max™ 4370, (1) (0 - D) S <1 (5.12)

A

By performing some simple calculations, similar to those of the proof of
Theorem 44, we obtain:

M (66)u
max S (U_1+ee)l_(ee)ﬁ+(ee)u
Therefore:
IM(X;2) = Hy(X) — HM' (X|2) (by definition)  (5.13)
3
v
= logy v" + log, Z max™ L (5.14)
j=1
1
= logy v" + logy — + log, (v max™) (5.15)
v
ot (6e)u

< log,

by (5.12 5.16

Consider now the case in which 7 is not of the form v*. Let ¢ be the
maximum integer such that v* < r, and let m = r — v*. We transform the
matrix M associated to K by collapsing the m columns with the smallest
maxima into the m columns with highest maxima. Namely, let j1, 72, ..., jm
the indices of the columns which have smallest maxima values, i.e. max% <
maxé‘/[ for every column j # ji,jo, ..., jm. Similarly, let ki, ks, ..., Kk, be the

indexes of the columns which have maxima values. Then, define
N = M[jl — /ﬁ”jg — /{:Q] [jm — km]

Finally, eliminate the m zero-ed columns to obtain a matrix with exactly
v’ columns. Tt is easy to show that
r
I(X;7) < I5(X:Z)
v
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After transforming N into a matrix M’ with the same min-entropy leakage
as described in the first part of this proof, from (5.13) we conclude

r r(ef)

M. M [y
IOO(Xﬂz) S Ioo (X,Z)W S logZ (v_1+ee)g_(eﬁ)g+(ee)u

O

Note that this bound can be much smaller than the one provided by The-
orem 44. For instance, if r = v this bound becomes:

v (e)"

logy ——/
B2, 1 (e€)w

which for large values of w is much smaller than Bnd(u, v, €).

Let us clarify that there is no contradiction with the fact that the bound
Bnd(u,v,€) is strict: in fact it is strict when we are free to choose the range,
but here we fix the dimension of the range.

5.5.1 Measuring the leakage about an individual

As discussed in Section 5.2, the main goal of differential privacy is not to
protect information about the complete database, but about each of its indi-
vidual participants. To capture the leakage about a particular individual, we
start from a tuple = € Val*~! containing the given (and known) values of all
other v — 1 individuals. Then we create a channel whose input V' ranges over
the values in Val and represents the value of our individual of interest. Note
that this means that we take into consideration all possible input databases
where the values of the other individuals are exactly those of = and only
the value of the selected individual varies. Intuitively, IZ (V;Z) measures the
leakage about the individual’s value where all other values are known to be as
in z~. (Similarly, HZ (V|Z) represents the conditional entropy of V given Z
for a fixed database where all other values are x7.) As all these databases are
adjacent, differential privacy provides a stronger bound for this leakage.

Therefore, the leakage for a single individual can be characterized as fol-
lows.

Proposition 48. Assume that K satisfies e-differential privacy. Then the
information leakage for an individual is bound from above by:

v et

I3 (V3 B) < log, P

Proof. Let us fix a database x, and a particular individual ¢ in Ind. The
possible ways in which we can change the value of i in z are v — 1. All the
new databases obtained in this way are adjacent to each other, i.e. the graph
structure associated to the input is a clique of v nodes. Recall that ng is the
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number of elements of the input at distance d from a given element z. In this
case we have

1 for d =0,
ng=<qv—1 ford=1,
0 otherwise.

By substituting this value of ng in Theorem 42, we get

_ 1
HS, (V|Z) =2 =logy ———
1+
66
= _log, ——
Og2v—1+e6

The particular individual can present v different values, and thus in the
case the input distribution is uniform its min-entropy is HZ (V') = log, v.

I3, (Vi Z) = Hy, (V) — Hy, (V[Y) (by definition)
€
= logy v + log, I (by the derivations above)
v—1+e°
1 ve*
= 10 _—
82 v—1+e€

Since the min-entropy leakage is maximum in the case of the uniform input
distribution, the result follows.
O

Note that the bound on the leakage for an individual does not depend on
the size u of Ind, nor on the database z~ that we fix.

5.6 Application to utility

As discussed in Section 5.2, the utility of a randomized function K is the
correlation between the real answers Y for a query and the reported answers
Z.

For our analysis we assume an oblivious randomization mechanism. As
discussed in Section 5.2, in this case the system can be decomposed into the
cascade of two channels, and the utility becomes a property of the channel
associated to the randomization mechanism H which maps the real answer
y € ) into areported answer z € Z according to given probability distributions
pzly (+|-). The user, however, does not necessarily take z as her guess for the
real answer, since she can use some Bayesian post-processing to maximize the
probability of success, i.e. a right guess. Thus for each reported answer z the

120



5.6. Application to utility

user can remap her guess to a value ¢y € ) according to some strategy that
maximizes her expected gain.

The standard way to define utility is by means of gain functions (see for
instance [BS94]). We define gain : Y x Y — R and the value gain(y,y’)
represents the reward for guessing the answer ¢y’ when the correct answer is y.

It is natural to define the global utility of the mechanism # as the expected
gain:

Zp )> o/ [y)gain(y,y') (5.17)

y'

where p(y) is the prior probability of real answer y, and p(y'|y) is the proba-
bility of the user guessing ¢y when the real answer is y.

Assuming that the user uses a remapping function guess : Z — ), we can
derive the following characterization of the utility. Recall that d,(-) represents
the probability distribution which has value 1 on x and 0 elsewhere.

Zp Zp y'ly)gain(y.y') (by (5.17))

y'

=> py) Z(ZP 2ly)p(y'|2 )galn(y, )

=> py) Z (ZP 2|y)dy (guess (= ))) gain(y,y') (y' = guess(z))
= Zp Zp z|y) Z(S (guess(z))gain(y,y')
= Zp Y,z 25 (quess(z))gain(y,y')

= Zp Y,z gam(y,gueSS(Z)) (5.18)
y7z
We focus here on the so-called binary gain function, which is defined as
1 ify=y,
0 otherwise.

gainy, (y,y') = {

Note that in the above equation the value 3’ represents the user’s guess
after the observed answer z. Therefore we have

gainy;, = 0y(guess(z))

This kind of function represents the case in which there is no reason to pre-
fer one answer over another, except if it is the correct answer. More precisely,
we obtain some gain if and only if we guess the right answer. Note that if the
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answer domain is equipped with a notion of distance (i.e. even if two answers
are wrong, one of them may be “closer” to the correct one than the other) then
the gain function could take into account the proximity of the reported answer
to the real one. In this case a “close” answer, even if wrong, is considered
better than a distant one. We do not assume here a notion of distance, and
therefore we will focus on the binary case. The use of binary gain functions in
the context of differential privacy was also investigated in [GRS09]°.
By substituting gain with gain;, in (5.18) we obtain:

Zp (y, 2)0y (quess(z)) (5.19)

which tells us that the expected utility is the greatest when guess(z) = y is
chosen to maximize p(y, z). Assuming that the user chooses such a maximizing
remapping, we have:

Z) = ngxp(y,z

= Zmax (z]y)) (by the Bayes law) (5.20)

If the gain function is binary, and the function guess is chosen to optimize
utility (i.e. it represents the user’s best strategy), then there is a well-known
correspondence between U and the Bayes risk / the a posteriori min-entropy.
This correspondence is expressed by the following proposition:

Proposition 49. Assume that function gain is binary and the function guess
1s optimal. Then:

Zmax (2ly)) = 27 = (12)

Proof. Just substitute (5.20) in the definition of conditional min-entropy: H.o(Z |
Y) = —logy >, maxy ((p(y) p(2]y))- O

5.6.1 The bound on the utility

In this section we show that,in some special cases, the fact that K provides
e-differential privacy induces a bound on the utility as defined in terms of a
binary gain function. We start by extending the adjacency relation ~ from
the datasets X to the real answers ), in such a way that two values in ) are
adjacent if they have pre-images that are adjacent. Intuitively, the function f
associated to the query determines a partition on the set of all databases (X,
i.e. Val"), and we say that two classes are adjacent if they contain an adjacent
pair. More formally:

>The authors of [GRS09] used the dual notion of loss functions instead of gain functions,
but the final result is equivalent.
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Definition 50. Given y,y € Y, withy # v, we say that y and y' are adjacent
(notation y ~ '), if and only if there exist x,x' € Val" with x ~ 2’ such that

y=f(z) and y' = f(2').

Since ~ is symmetric on databases, it is also symmetric on ), therefore
also (), ~) forms an undirected graph.

Using the above concept of neighborhood for the inputs of the random-
ization mechanism #, we can show that in an oblivious mechanisms (see Fig-
ure 5.2) if the query f is deterministic, then the randomized function K pro-
vides e-differential privacy with respect to neighbor databases if and only if
‘H respects e-differential privacy with respect to neighbor answers. Intuitively,
this result follows from the fact that a deterministic query f remaps every
database z € X to a sole answer y € ), working as a sort of “relabeling”
that substitutes databases for answers in the adjacency graph structure, and
therefore preserving e-differential privacy. Note also that if I is oblivious, the
probability of any reported answer z € Z does not depend on the database, but
solely on the real answer y. Therefore under a deterministic f, two databases
x and 2’ can be mapped to same value of y only if, for all z, K(z|z) = K(z]z').

Proposition 51. If the query function f is deterministic, then the randomized
function IC satisfies e-differential privacy with respect to every pair of neighbor
databases x,2’" € X if and only if the randomization mechanism H satisfies
e-differential privacy with respect to every pair of neighbor answers y,y' € ).

Proof. Since the matrix IC can be obtained by the product of the two matrices
corresponding to f and H, we can derive that, for every pair of neighbor
databases x and 2’ and for all reported answer z:

K(z|z) _ Pr|Z = z| X = x|

K(z|z")  Pr|Z =z|X = 2]
2y PrlY =y X =a|Pr[Z = 2]Y =y
N Zy PrlY =y|X = a/|Pr[Z = 2|Y = y]

_ 2y 0@ Pr(Z = 2Y =y]
>y 0p@n (Y PrZ = 2|Y =y

_ PriZ =Y = J(@)
Pr(Z = z|Y = f(a')]

(matrix multiplication)

(since f is deterministic)

(applying the Dirac ¢)

 HEIf)
H(z|f(2")]
Therefore it follows immediately that ,’g&% < ef if and only if % <
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O

The link the above proposition establishes between the randomized func-
tion K and the randomization mechanism #H will help us find determine a
bound on the utility of H, since, in the case the query f is deterministic,
requiring IC to respect e-differential privacy is equivalent to requiring that H
does.

Theorem 52. Consider a randomized mechanism H, and let y be an element
of Y. Assume that the distribution of Y is uniform and that (), ~) is either
distance-regular or VT and that H satisfies e-differential privacy. For each
distance d € {0,1,...,8}, where § is the diameter of (Y, ~), we have that:

UY, 7)< —

Zeed
d

(5.21)

where ng is the number of nodes y' € Y at distance d from y.

Proof. Since (Y, ~) is distance-regular or VT, we can apply Theorem 42 to
derive that HM(Z|Y) > —log, > L. Then we just substitute this result in
d ced

Proposition 49. U

The above bound is tight, in the sense that (provided (), ~) is distance-
regular or VT't) we can construct a mechanism H which satisfies (5.21) with
equality. More precisely, for 0 < ¢ <n—1and 0 < j <n— 1, we define H
(here identified with its channel matrix for simplicity) as follows:

_0

Hi ;= (5.22)

where
1

nd
: : eed
d

Note that H is a square matrix of dimension n x n, where n = |X|. This is
not a problem because since we assume (), ~) to be either distance-regular or
VT, via Theorem 42 we can transform the channel matrix into an equivalent
one such that all non zero elements are in the submatrix of dimensions n x n.
Let us introduce now Z* = {0,1,...,n— 1}, i.e. the subset of Z that excludes
the zero-ed columns of the channel matrix from n to m — 1. Note that for the
following result we can safely use the set Z* instead of Z because the zero-ed
columns do not contribute to the a posteriori entropy, and trivially respect
e-differential privacy.

= (5.23)
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Theorem 53. Assume (),~) is distance-reqgular or VIT'" and that the dis-
tribution of Y is uniform. Then the matriz H defined in (5.22) satisfies e-
differential privacy and has mazximal utility:

1

nq

Z eed
d

Proof. First we prove that the matrix as defined in (5.22) is a channel matrix,
i.e. that each row is a probability distribution.

)
> Hii= > awp

jeZ* jeZ*
1
=7 Z oed(ir))
jeZ*
nq
=7 i by (5.23)

Uy,z) =

U, z) = ) | max(p(y) H(zly)) by (5.20)
ZEZ* Y
1
= Z max —H(z|y) since Y is uniform
2
1 Y
=— Y max— by (5.22
D}‘ ZGZZ* ¥y  maxy eed(z,]) ( )
1
= — 27 maximum is d = 0
|y| zEZ*
1 *
=D 2%y
= since Y| = |Z¥|=n

O

Therefore we can always define H as in (5.22): the matrix so defined will
be a legal channel matrix, and it will satisfy e-differential privacy. If (), ~) is
neither distance-regular nor VT, then the utility of such H is not necessarily
optimal.

The conditions for the construction of the optimal matrix are strong, but
there are some interesting scenarios in which they are satisfied. Depending on
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the degree of connectivity ¢ of the graph (), ~), we can have L%J — 1 different
cases (note that the case of ¢ = 1 is not possible because the datasets are fully
connected via their adjacency relation), whose extremes are:

o (V,~)isa clique, i.e. every element has exactly |V|—1 adjacent elements.

e (V,~) is a ring, i.e. every element has exactly two adjacent elements.
This is similar to the case of the counting queries considered in [GRS09],
with the difference that our “counting” is in arithmetic modulo |Y|.

Remark 54. Note that our method can be applied also when the conditions
of Theorem 53 are not met: We can always add “artificial” adjacencies to the
graph structure so as to meet those conditions. Namely, for computing the
distance in (5.22) we use, instead of (V,~), a structure (Y, ~") which satisfies
the conditions of Theorem 53, and such that ~C ~'. Naturally, the matriz
constructed in this way provides e-differential privacy, but in general is not
optimal. It is clear that, in general, the smaller ~' is, the higher is the utility.

The matrices generated by (5.22) can be very different, depending on the
value of ¢. The next two examples illustrate queries that give rise to the clique
and to the ring structures, and show the corresponding matrices.

Example 8. Consider a database with electoral information where each entry
corresponds to a voter and contains the following three fields:

e Id: a unique (anonymized) identifier assigned to each voter;
e City: the name of the city where the user voted;

e Candidate: the name of the candidate the user voted for.

Consider the query “What is the city with the greatest number of votes for
a given candidate cand?’. For such a query the binary utility function could
be taken as the natural choice: from the user’s point of view, only the right
city could give some gain, and oll wrong answers would be equally bad. It is
easy to see that every two answers are neighbors, i.e. the graph structure of
the answers is a clique.

Let us consider the scenario where City = {A, B,C, D, E,F} and assume
for simplicity that there is a unique answer for the query, i.e. there are no two
cities with exactly the same number of individuals voting for candidate cand.
Table 5.1 shows two alternative mechanisms providing e-differential privacy
(with e =1n2). The first one, My, is based on the truncated geometric mecha-
nism method used in [GRS09] for counting queries (here extended to the case
where every two distinct answers are neighbors). The second mechanism, Ma,
is obtained by applying the definition of (5.22). From Theorem 53 we know
that for the uniform input distribution My gives optimal utility.
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[In/Out]] A | B [ C | D] E | F |
0.535 | 0.060 | 0.052 | 0.046 | 0.040 | 0.267
0.465 | 0.069 | 0.060 | 0.053 | 0.046 | 0.307
0.405 | 0.060 | 0.069 | 0.060 | 0.053 | 0.353
0.353 | 0.053 | 0.060 | 0.069 | 0.060 | 0.405
0.307 | 0.046 | 0.053 | 0.060 | 0.069 | 0.465
0.267 | 0.040 | 0.046 | 0.052 | 0.060 | 0.535
(a) Mi: truncated geometric mechanism

[In/Out|| A[ B|C | D]|E]|F]
/7117 /7] 1)T]1)7
72/t 71717
7 yT2/r 171717
7y /T 2/1]1/7]1)7
7yt 7] 2/7[1)7
7y /T 7] 1/7]2/7

(b) Mas: our mechanism

Y| | O Q |

M| | O Qf |

Table 5.1: Mechanisms for the city with higher number of votes for candidate
cand

For the uniform input distribution, it is easy to see that U(M;) = 0.2242 <
0.2857 = U(Ms). Ewven for non-uniform distributions, our mechanism still
provides better utility. For instance, for p(A) = p(F) = 1/10 and p(B) =
p(C) = p(D) = P(E) = 1/5, we have U(M;) = 0.2412 < 0.2857 = U(M>).
This is not too surprising: the geometric mechanism, as well as the Laplacian
mechanism proposed by Dwork, perform very well when the domain of answers
is provided with a metric and the utility function is not binary®. It also works
well when (Y,~) has low connectivity, in particular in the cases of a ring
and of a line. But in this example, we are not in these cases, because we are
considering binary gain functions and high connectivity.

Example 9. Let us consider the same database as the previous example, but
now assume a counting query of the form “What is the number of votes for
candidate cand?”. It is easy to see that each answer has at most two neighbors.
More precisely, the graph structure on the answers is a line. For illustration
purposes, let us assume that only 5 individuals have participated in the election.
Table 5.2 shows two alternative mechanisms providing e-differential privacy
(e =log2): the truncated geometric mechanism M proposed in [GRS09] and
the mechanism we propose Ms. Note that in order to apply our method we
have first to apply Remark 54 to transform the graph structure from a line into
a Ting.

5As we mentioned before, in the metric case the gain function can take into account the
proximity of the reported answer to the real one, the idea being that a close answer, even if
wrong, is better than a distant one.
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Let us consider the uniform prior distribution. We see that the utility of
M, is higher than the utility of Ma, in fact the first is 4/9 and the second is
8/21. This does not contradict our theorem, because our matriz is guaranteed
to be optimal only in the case of a ring structure, not a line as we have in this
example. If the structure were a ring, i.e. if the last row were adjacent to the
first one, then My would not provide e-differential privacy. In case of a line as
i this example, the truncated geometric mechanism has been proved optimal

[GRS09].

[In/Out|] 0 | 1 | 2 | 3 | 4 [ 5 |

0 3/3 | 1/6 | 1/12 | 1/24 | 1/48 | 1/48
1 1/3 | 1/3 | 1/6 |1/12 | 1/24 | 1/24
2 1/6 | 1/6 | 1/3 | 1/6 | 1/12 | 1/12
3 |[1/12|1/12] 1/6 | 1/3 | 1/6 | 1/6
1 (124|124 1/12| 1/6 | 1/3 | 1/3
5 || 1/48 |1/48 | 1/24 [1/12] 1/6 | 2/3
(a) M: truncated i-geom. mechanism
[In/Out|] 0 | 1 | 2 | 3 | 4 [ 5 |

0 8/21 | 4/21|2/21 | 1/21|2/21 | 4/21

4/21 | 8/21 | 4/21 | 2/21 | 1/21 | 2/21

2/21 | 4/21|8/21|4/21|2/21|1/21

1/21 | 2/21 | 4/21 | 8/21 | 4/21 | 2/21

2/21 | 1/21|2/21 | 4/21|8/21|4/21

4/21 | 2/21 | 1/21 | 2/21 | 4/21 | 8/21
(b) Mas: our mechanism

Ut Cof W[ N =

Table 5.2: Mechanisms for the counting query (5 voters)

5.7 Related work

To the best of our knowledge, the first work to investigate the relation between
differential privacy and information-theoretic leakage for an individual was
[ACDP10|. In this work, the definition of channel was relative to a given
database x, and the channel inputs were all possible databases adjacent to
z. Two bounds on leakage were presented, one for the min-entropy, and one
for Shannon entropy. Our bound in Proposition 48 is an improvement with
respect to the (min-entropy) bound in [ACDP10].

Barthe and Kopf [BK11] were the first to investigate the (more challeng-
ing) connection between differential privacy and the min-entropy leakage for
the entire universe of possible databases. They considered the “end-to-end
differentially private mechanisms”, which correspond to what we call the ran-
domized function K in this chapter, and proposed, like we do, to interpret them
as information-theoretic channels. They provided a bound for the leakage, but
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pointed out that it was not tight in general. They also showed that there
cannot be a domain-independent bound, by proving that for any number of
individuals u the optimal bound must be at least a certain expression f(u, €).
Finally, they showed that the question of providing optimal upper bounds for
the leakage of e-differentially private randomized functions in terms of rational
functions of ¢ is decidable, and left the actual function as an open question.
In our work we used rather different techniques and found (independently) the
same function f(u,e€) (the bound in Theorem 42), but we actually proved that
f(u,€) is the optimal bound”. Another difference between their work and ours
is that [BK11] captures the case in which the focus of differential privacy is
on hiding participation of individuals in a database, whereas we consider both
the participation and the values of the participants.

Clarkson and Schneider also considered differential privacy as a case study
of their proposal for quantification of integrity [CS11]. There, the authors
analyzed database privacy conditions from the literature (such as differential
privacy, k-anonymity, and [-diversity) using their framework for utility quan-
tification. In particular, they studied the relationship between differential
privacy and a notion of leakage (which is different from ours - in particular
their definition is based on Shannon entropy) and they provided a tight bound
on leakage.

Heusser and Malacaria [HMO09]| were among the first to explore the appli-
cation of information-theoretic concepts to databases queries. They proposed
to model database queries as programs, which allows for statistical analysis
of the information leaked by the query. [HMO09], however, did not attempt to
relate information leakage to differential privacy.

In [GRS09] the authors aimed at obtaining optimal-utility randomization
mechanisms while preserving differential privacy. The authors proposed adding
noise to the output of the query according to the geometric mechanism. Their
framework is very interesting in the sense it provides a general definition of
utility for a mechanism M that captures any possible side information and
preference (defined as a loss function) the users of M may have. They proved
that the geometric mechanism is optimal in the particular case of counting
queries. Our results in Section 5.6 do not restrict to counting queries, but on
the other hand we only consider the case of binary loss function.

5.8 Chapter summary and discussion

In this chapter we have investigated the relation between e-differential privacy
and leakage, and between e-differential privacy and utility. Our main con-
tribution was the development of a general technique for determining these
relations depending on the graph structure of the input domain, induced by

"When discussing our result with Barthe and Kopf, they said that they also conjectured
that f(u,€) is the optimal bound.
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the adjacency relation and by the query. We have considered two particular
structures, the distance-regular graphs, and the V'™ graphs, which allowed us
to obtain tight bounds on the leakage and on the utility. We also constructed
an optimal randomization mechanism satisfying e-differential privacy for some
special cases.

As future work, we plan to extend our result to other kinds of utility
functions. In particular, we are interested in the case in which the the answer
domain is provided with a metric, and we are interested in taking into account
the degree of accuracy of the inferred answer.
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Six

Safe equivalences for security
properties

“Too much may be the equivalent of none at all.”
Lee Loevinger

In the field of Security, process equivalences have been used to character-
ize various information-hiding properties (for instance secrecy, anonymity and
noninterference) based on the principle that a protocol P with a variable x
satisfies such a property if and only if, for every pair of secrets s; and so,
P[**/,] is equivalent to P[*2/,]. We argue that, in the presence of nondeter-
minism, the above principle may rely on the assumption that the scheduler
“works for the benefit of the protocol”, and this usually is not a safe assump-
tion. Non-safe equivalences, in this sense, include complete-trace equivalence
and bisimulation.

The goal of this chapter is to present a formalism in which we can specify
admissible schedulers and, correspondingly, safe versions of these equivalences.
Then we are able to show that safe equivalences can be used to establish
information-hiding properties.

Contribution The main contributions of this chapter can be summarized
as follows.

e We propose a formalism for concurrent distributed systems which ac-
counts for both probabilistic and nondeterministic behavior, and in which
the latter is of two kinds: global and local. The global nondeterminism
represents the possible interleavings produced by the parallel compo-
nents, which may be influenced by the attacker. The local nondeter-
minism is associated to the possible internal choices of each component,
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which may depend on the secrets or other unknown parameters, not con-
trolled by the attacker. Correspondingly, we split the scheduler into two
constituents: a global one and a local one. The latter is actually a tuple
of local schedulers, one for each component of the system.

e We propose a notion of admissible scheduler for the above systems,
in which the global constituent is not allowed to see the secrets, and
each local constituent is not allowed to see any information about the
other components. We then generalize the standard definition of strong
(probabilistic) information hiding (such as noninterference and strong
anonymity) to the case in which also nondeterminism is present, under
the assumption that the schedulers are admissible.

e We use admissible schedulers to define safe versions of complete-trace'
equivalence and bisimilarity which are specially tuned for security. This
means that we account for the possibility that the global constituent of
the scheduler is in collusion with the attacker, and therefore does not
necessarily help the system to obfuscate the secret. We show that the
bisimilarity is still a congruence, as in the classical case.

e We finally show that our notions of safe complete-trace equivalence and
bisimilarity imply strong information hiding in the sense discussed above.

Plan of the Chapter This chapter is organized as follows. In Section 6.1
we review the role equivalences traditionally play in formalizing security prop-
erties. In Section 6.2 we formalize the notions of distributed systems and
components used in this chapter. In Section 6.3 we focus on restricting the
discerning power of global and local schedulers, and in Section 6.4 we present
our proposal for safe equivalences, namely safe complete-traces and safe bisim-
ilarity. In Section 6.5 we define the notion of information hiding under the
novel assumption that nondeterminism is handled partly in a demonic way
and partly in an angelic way. Finally, in Section 6.6 we review the related
bibliography, and in Section 6.7 we summarize the chapter and outline some
future work.

6.1 The use of equivalences in security

As we have seen in Chapter 1, one technique used to prevent an attacker of
inferring the secret from the observables is to create noise, namely to make sure
that for every execution in which a given secret produces a certain observable,
there is at least another execution in which a different secret produces the
same observable. In practice this is often done by using randomization.

'In this chapter we may refer to “complete traces” simply as “traces”.
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In the literature about the foundations of computer security, however, the
quantitative aspects are often abstracted away, and probabilistic behavior is
replaced by nondeterministic behavior. Correspondingly, there have been var-
ious approaches in which information-hiding properties are expressed in terms
of equivalences based on nondeterminism, especially in a concurrent setting.
For instance, [SS96] defines anonymity as follows?: A protocol S is anonymous
if, for every pair of culprits a and b, S[*/,] and S[’/,] produce the same ob-
servable traces. A similar definition is given in [AG99] for secrecy, with the
difference that S[*/,] and S[’/,] are required to be bisimilar. In [DKR09], an
electoral system S preserves the confidentiality of the vote if for any voters v
and w, the observable behavior of S is the same if we swap the votes of v and
w, i.e. if S[%/, |° /] is bisimilar to S[°/, |* /uw]-

These proposals are based on the implicit assumption that all the nonde-
terministic execulions present in the specification of S will always be possible
under every implementation of S. Or at least, that the adversary will believe
so. In concurrency, however, as argued in [CNP09|, nondeterminism has a
rather different meaning: if a specification S contains some nondeterministic
alternatives, typically it is because we want to abstract from specific imple-
mentations, such as the scheduling policy. A specification is considered cor-
rect, with respect to some property, if every alternative satisfies the property.
Correspondingly, an implementation is considered correct if all executions are
among those possible in the specification, i.e. if the implementation is a re-
finement of the specification. There is no expectation that the implementation
will actually make possible all the alternatives indicated by the specification.

We argue that the use of nondeterminism in concurrency corresponds to a
demonic view: the scheduler, i.e. the entity that will decide which alternative
to select, may try to choose the “worst” alternative. Hence we need to make
sure that all alternatives are “good”, in the sense that they satisfy the intended
property. In the approaches to formalize security properties mentioned above,
on the contrary, the interpretation of nondeterminism is angelic: the scheduler
is expected to actually help the protocol to confuse the adversary and thus
protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy, but
relevant for the achievement of security properties: the scheduler should not be
able to make its choices dependent on the secret, or else nearly every protocol
would be insecure, i.e. the scheduler would always be able to leak the secret
to an external observer (for instance by producing different interleavings of
the observables, depending on the secret). This remark has been made several
times already, and several approaches have been proposed to cope with the
problem of full-information schedulers (aka almighty, omniscient, clairvoyant,
etc.), see for example [CCK™06a, CCKT06b, CP, CNP09, APvRS|.

The risk of a naive use of nondeterminism to specify a security property is

>The actual definition of [SS96] is more complicated, but the spirit is the same.
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not only that it may rely on an implicit assumption that the scheduler behaves
angelically, but also that it is clairvoyant (fully-informed), i.e. that it peeks
at the secrets (that it is not supposed to be able to see) to achieve its angelic
strategy.

Example 10. Consider the following system, presented in a CCS-like syntaz:

SY (A | H | Ho | Corr), with A ¥ a(sec), Hi % c(s).out(a),

H, o c(s).out(b), Corr o c(s).out(s). The name sec represents a secret.

It is easy to see that we have S [*/sec] ~ S [b/sec] , as shown in the execution
tress in Figure 6.1. Note that, in order to simulate the rightmost branch in
S[%/sec), the process S [b/sec] needs to follow its leftmost branch. Vice-versa, in
order to simulate the rightmost branch in S [b/sec] , the process S [*/sec] needs
to follow its middle branch. This means that, in order to achieve bisimulation,
the scheduler needs to know the secret, and change its choice accordingly.

() |l c(s)-out(a) || c(s)-out(b) || c(s).out(s)

— |l out(a) [| — || - == llout®) || = =1 = Il = [l out{a)
out/(a) l out(b) lm@)
Y
- =1-1- - =1-1- =1 -1n-
(a) S[*/sec]

(b) 1| c(s)-outa) || c(s)-out(b) || c(s)-out(s)

= |l out(a) [| — || = — |l =[] out(d) I| — =1 =1 = I out(b)
out (a) l lmao) lma))
=1 -1- =11~ =1 -1~
(b) S["/sec]

Figure 6.1: Execution trees for Example 10

This example shows a distributed system that intuitively is not secure,
because one of its components, Corr, reveals whatever secret it receives. Ac-
cording to the equivalence-based notions of security discussed above, however,
it 4s secure. But it is considered secure thanks to a scheduler that:
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(i) angelically helps the system to protect the secret; and

(ii) does so by making its choices dependent on the secret.

We consider these assumptions on the scheduler to be excessively strong.

Here we do not claim, however, that we should rule out the use of angelic
nondeterminism in security: on the contrary, angelic nondeterminism can be a
powerful specification concept. We only advocate a cautious use of this notion.
In particular, it should not be used in a context in which the scheduler may be
in collusion with the attacker. The goal of this chapter is to define a framework
in which we can combine both angelic and demonic nondeterminism in a setting
in which also probabilistic behavior may be present, and in a context in which
the scheduler is restricted (i.e. not fully-informed). We define “safe” variant of
typical equivalence relations (complete traces and bisimulation), and we show
how to use them to characterize information-hiding properties.

6.2 Distributed systems and components

In this section we describe the kind of distributed systems we are dealing
with. We start by introducing a variant of probabilistic automata, that we
call Tagged Probabilistic Automata (TPA). These systems are parallel com-
positions of probabilistic processes, called components. Each component is
equipped with a unique identifier, called tag. Whenever a component (or a
pair of components in case of synchronization) makes a step, the correspond-
ing transition will be decorated with the associated tag (or pair of tags).

Similar systems have been already introduced in [APvRS]. The main dif-
ferences are that here the components may contain nondeterminism

6.2.1 Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 55. A Tagged Probabilistic Automaton (or TPA) is a tuple
(Q,T,L,4,9), where Q is a set of states, T is a set of tags, L is a set
of actions, ¢ € Q is the initial state, and ¥: Q@ — P(T x L x D(Q)) is a
transition function.

In the following we write ¢ toq p for (tg,a, 1) € 9(q), and we use enab(q)
to denote the tags of the components that are enabled to make a transition.
More formally:

enab(q) def {ty € T | there exists a € L, € D(Q) such that g tag wh

In these systems, we can decompose the scheduler into two: a global scheduler,
which, via tags, decides which component or pair of components makes the
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next move, and a local scheduler, which, also via tags, solves the internal
nondeterminism of the selected component.

We assume that the local scheduler can only select enabled transitions, and
that the global scheduler can only select enabled components. This means
that the execution does not stop unless all components are blocked. This is in
line with the tradition of process algebra and of Markov Decision Processes,
but contrasts with that of Probabilistic Automata [SL95|. The results in this
chapter, however, do not depend on this assumption.

Definition 56. Let M = (Q,T,L,q,9) be a TPA. Then:

o A global scheduler for M is a function ¢: Paths*(M) — (T U{L}) such
that for all finite paths o, if enab(last(c)) # 0 then (o) € enab(last(o)),
and ((o) = L otherwise.

o A local scheduler for M is a function &: Paths*(M) — (T x L x D(Q)U
{L}) such that, for all finite paths o, if ¥(last(c)) # O then £(o) €
Y(last(0)), and (o) = L otherwise.

o A global scheduler ( and a local scheduler & for M are compatible if,
for all finite paths o, {(0) = (tg,a, p) implies ((0) = tg4, and {(o) = L
implies (o) = L.

o A scheduler is a pair (,&) of compatible global and local schedulers.

6.2.2 Components

We will use a simple probabilistic process calculus, very close to the CCS,, we
introduced in Chapter 2, to specify the components.

We assume a set of actions or channel names £ with elements a, aq,ao, - - -,
including the special symbol 7 denoting a silent step. FExcept for 7, each action
a has a co-action a € £ and we assume a = a. Components are specified by
the following grammar:

g == 0 | aq | ate | Ddop:ia | ale | (@ | Q
i

The constructs 0, a.q, ¢1 + g2, q1|g2 and (a)q represent termination, prefix-
ing, nondeterministic choice, parallel composition, and the restriction operator,
respectively. > . p; : ¢; is a probabilistic choice, where p; represents the prob-
ability of the 4-th branch and must satisfy 0 < p; < 1 and > ,p; = 1. The
process call @) is a simple process identifier. For each identifier, we assume
a corresponding unique process declaration of the form @ = q. The idea is
that, whenever (@) is executed, it triggers the execution of q. Note that ¢ can
contain ) or another process identifier, which means that our language allows
(mutual) recursion. We will denote by fn(q) the free channel names occurring
in g, i.e. the channel names not bound by a restriction operator.
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Components’ semantics: The operational semantics consists of probabilis-
tic transitions of the form ¢—u where ¢ € Q is a process, a € L is an action and
u € D(Q) is a distribution on processes. They are specified by the following
rules:

q1 = 2
PRF —m—— NDT —m———
a a
a.q — dq Q+aq—p
q1 = 2
PRB - PAR -
diPitGi = »;pi O a1l g p e
qi/‘ df q1£>5r1 q2£>6r2
CALL — if AS COM
A= p a1 | g2 = Opy |y
a5 p
RST — a,a#b
(b)g = (b)

We assume also the symmetric versions of the rules NDT, PAR and COM.
Recall that the symbol d, is the delta of Dirac, which assigns probability 1 to ¢
and 0 to all other processes. The symbol »°. is the summation on distributions.
Namely, », p; - p1; is the distribution p such that pu(z) = >, p; - pi(x). The
notation p | g represents the distribution p’ such that 4/(r) = p(¢') if r =4’ | q,
and p/(r) = 0 otherwise. Similarly, (b)u represents the distribution u' such
that 1/(q) = p(¢) if ¢ = (b)¢’, and p/(q) = 0 otherwise.

Remark 57. In some of the examples in this chapter we use an extension of
our process calculus that allows message passing (cfr. Chapter 2). Since the
expressive power of our calculus with message passing or without it is the same,
we consider explicit message passing simply as an alias for the correspondent
encoding into the presentation of the calculus given above.

6.2.3 Distributed systems

A distributed system has the form (A) q1 || g2 || - || ¢n, where the ¢;’s are
components and A C L. The restriction on A enforces synchronization on the
channel names belonging to A, in accordance with the CCS spirit.

Systems’ semantics The semantics of a system gives rise to a TPA, where
the states are terms representlng systems during their evolution. A transition
now is of the form ¢ toq p where a € £, p € D(Q), and ty, € T is either the
tag of the component which makes the move, or a (unordered) pair of tags
representing the two partners of a synchronization. We can simply define T
as T =1 UI? where I = {1,2,...,n} is the set of components’ identifiers.
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i = 1 Pk Ogyy
Interleaving - agA

A qull gl [l an == 2k Pr S(A)ar ]l llgie - llan

where ¢ is the tag indicating that the component i is making the step. Note
that we assume that probabilistic ch01ces are finite. This implies that every
transition ¢ H 1 can be written ¢ —> » 4. Dk - Og,, and justifies the notation
used in the interleaving rule.

q; i) (5(1; q; i) (5(1;
Synch. il
1,77
Aall - laill-- el [T an == dayqull-liglli-lia; I-llan

here {i,7} is the tag indicating that the components making the step are i and
j. Note that it is an unordered pair. Sometimes we will write 4, j instead of
{1, 7}, for simplicity.

Example 11. Consider again the systems of Example 10. Figures 6.2(a) and
6.2(b) show the TPAs for S [*/sec] and for S [°/sec] respectively. For simplicity
we do not write the restriction on channels ¢ and out, nor the termination
symbol 0. We use ’
tags are indicated in the figure with numbers above the components.

The set of enabled transitions should be clear from the figures. For instance,
we have enab(S [*/sec]) = {{1,2},{1,3},{1,4}} and enab( — || out(a) ||
|| =) ={2}. The scheduler ¢ defined as

— " to denote a component that is stuck. The corresponding

({14} if =5/,
wl? ifa:S[a/sec]i4<— Foutta) | =1l =),
GRS if 0=5[/sec] =3 (— || — || out{d) || - ),
4 if 0=5/wd 5 (|| = || = || out(a)),
L otherwise,

is a global scheduler for S[%/sec|.

6.3 Admissible schedulers

In this section we restrict the discerning power of the global and local sched-
ulers in order to avoid the problem of the information leakage induced by
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{1,3}:7

= [[out(a) [| — Il = =l = Il out(d) || = = = Il = [l out(a)
2:0ut<a)l 3:out(b) l4:out<a)
\
=== =1 =1- - =1-=1-
(a) S[*/see]

{1,3}:7

4

= [l outla) || — |l - =l = [l out(d) || - = =1 = [l out()
2:out(a) l 3:out(b) 14 :out(b)
v
- =1-=1- =1 =1- I =1=1-
(b) S["/sec]

Figure 6.2: TPAs for Example 11

clairvoyant schedulers. We impose two kinds of restrictions: For the global
scheduler, following [APvRS]|, we assume that it can only see, and keep mem-
ory of, the observable actions and the components that are enabled, but not
the secret actions. As for the local scheduler, we assume that the local nonde-
terminism of each component is solved on the basis of the view of the history
local to that component, i.e. the projection of the history of the system on
that component. In other words, each component has to make decisions based
only on the history of its own execution; it cannot see anything of the other
components.

6.3.1 Restricting global schedulers

We assume that the set of actions £ is divided in two disjoint sets, the secret
actions S and the observable actions O, such that S UO = L. The secret
actions are supposed to be invisible to the global scheduler. Formally, this can
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be achieved using a function sift with

sift(a) = {T ifaesS,

a otherwise.

Then, we restrict the power of the global scheduler by forcing it to make the
same decisions on paths he cannot tell apart.

Definition 58. Given a TPA M, a global scheduler  for M is admissible if
for all paths o1 and o9 we have view(o1) = view(oa) implies ((o1) = ((02),
where

tgo:az tgn:an

. tg1:a d R .
view <q glad g — o — qn+1> :ef(enab(q),szft(al),tgl)

(enab(qu), sift(a), tg2) - - (enab(ga). sift(an), tgn)

The idea is that view sifts the information of the path that the scheduler
can see. Since sift “hides” the secrets, the scheduler cannot take different
decisions based on them.

6.3.2 Restricting local schedulers

The restriction on local schedulers is based on the idea that a step of the
component 7 of a system can only be based on the view that 7 has of the history,
i.e. its own history. In order to formalize this restriction, it is convenient to
introduce the concept of i-view of a path o, or projection of o on i, which we
will denote by o;. We define it inductively:

L Il —b> Oq, if tg = {45} and p= b4y qufl.llaill-.| 1l
(0= mi=9 o, L% ifty=i
o otherwise
In the above definition, the first line represents the case of a synchronization
step involvin% the component i, where we assume that the premise for ¢ is of
the form ¢, — &,,. The second line represents an interleaving step in which ¢
is the active component. The third line represents step in which the component
7 is idle.
The restriction to the local scheduler can now be expressed as follows:
Definition 59. Given a TPA M and a local scheduler & for M, we say that

¢ is admissible if for all paths o and o', if whenever {(o) = (t4,a,p), and
§(o') = (ty,d', ') we have:

o ifty =ty =1 and oy; = 0}, then {(0) = ¢(0’),
o ifty =1ty =1{i,j}, oy =0, and o} = O'/M- then (o) = &(0”).

A pair of compatible schedulers ((,§) is called admissible if ¢ and & are
admissible.
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6.4 Safe equivalences

In this section we revise process equivalence notions to make them safe for
security.

6.4.1 Safe complete traces

We define here a safe version of complete-trace semantics. The idea is that
we compare two processes based not only on their traces, but also on the
choices that the global scheduler makes at every step. We do this by recording
explicitly the tags in the traces.

Definition 60. Here we define the notion of safe complete traces.

e Given a TPA M = (Q,T,L,q,9), the (complete) safe traces of M, de-
noted here by Tracesg, are defined as the probabilities of sequences of tags
and actions corresponding to all possible complete executions, i.e.

Tracess(M) ={ f: (T x £)>° — [0,1] |
there exists an admissible scheduler(¢,§) s.t.
Vit e (T x L£)™
f(t) =Purce({o € CPaths(M) | tracei, (o) =t}) }

where Py ¢ e is the probability measure in M under ((,§), and tracey,
extracts from a path the sequence of tags and actions, i.e.

trace,(€) = €
tg:
tracea(q -3 o) = tg:a- tracey, (o)
o We denote by Tracess(q) the safe traces of the automaton associated to
a system q.

o Two systems q1 and qo are safe-trace equivalent, denoted by q1 ~s qo, if
and only if Tracess(q1) = Tracess(qa).

The following example points out the difference between ~; and the stan-
dard (complete) trace equivalence.

Example 12. Consider the TPAs of Example 11. The two TPAs have the
same complete traces. In fact we have

Traces(S [*/see]) = {r-out{a), 7-out(d)} = Traces(S [b/sec})
But on the other hand, we have
TT’aC@SS(S [a/sec]) = {fl,f2,f3} 7£ {flaf?af4} = Tmcess(S [a/sec])
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where

1 ift={1,2}:7-2: out{a),

L) = { 0 for all other values of t € (T x L)*.
1 ift={1,3}:7-3:out(h),

fat) = { 0 for all other values of t € (T x L)*.
1 ift={1,4} : 7-4: out{a),

fat) = { 0 for all other values of t € (T x L)*.
1 ift={1,4} : 7-4: out(d),

Jalt) = { 0 for all other values of t € (T x L)*.

6.4.2 Safe bisimilarity

In this section we propose a security-safe version of strong bisimulation, that
we call safe bisimulation. This is an equivalence relation stricter than safe-
trace equivalence, with the advantage of being a congruence. Since in this
chapter we assume that schedulers can always observe which component is
making a step (even a silent step), it does not seem natural to consider weak
bisimulation.

We start with some notation. Given a TPA M = (Q,T,L,q,9), and a
global scheduler ¢, we write ¢ i)g w if there exists o € Paths*(M) such that
C(o) # L, (((0),a,p) € ¥(q), and g = last(c). Note that the restriction to ¢
still allows nondeterminism, i.e. there may be p1, o, such that ¢ &C p1 and
q &C o (with either a; = as or a; # as).

We now define the notion of safe bisimulation. The idea is that, if ¢; and
g2 are bisimilar states, then every move from ¢; should be mimicked by a move
from qy using the same (admissible) scheduler.

Definition 61. Given a TPA M = (Q,T,L,q,V), we say that a relation
R C Q x Q is a safe bisimulation if and only if, whenever ¢1 R qo:

1. enab(q1) = enab(q2), and

2. for all admissible global schedulers ¢ for M such that ((o1) R ((o2) when-
ever last(o1) = q1 and last(o2) = qa:

e ifqi i>< 1, then there exists po such that qo i>< o and 1 R e,
and

e if gy i>< o, then there exists py such that q; i>< w1 and p1 R pa,

where 1 R pio means that for all equivalence classes X € Qp, we have
p1(X) = pa(X), where R is the smallest equivalence class induced by R.
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It is possible to simplify Definition 61, restricting the schedulers to be
history-independent. In other words, to show that two distributed systems
are bisimilar, it suffices to consider one-step computations and show that two
states are equivalent by using only history-independent schedulers. The lemma
bellow justifies this claim.

Lemma 62. Let M = (Q,T,L,§,9) be a TPA, and let R be an equivalence
relation on the set of states Q. Consider ¢ to be a global scheduler for M such
that, for every pair of states q1,q2 € Q, if g1 = last(o1)R last(oz) = qo then
C(o1) = ¢(02). In that case ¢ is history-independent, i.e. it depends only on
the last state of a path o.

Proof. 1t is easy to see that the relation of having the same last state is an
equivalence relation on paths, and therefore it determines a partition on the set
of paths. Since the above g; and g2 may be identical, the scheduler must give
the same value on equivalent paths and it is, therefore, history-independent.

O

Using the lemma above, in the following results about safe bisimulation
we will usually write ((¢) where ¢ is a state. Note however that this does
not mean that in the computations of safely bisimilar systems the schedulers
are necessarily history-independent: at each step of the computation we may
change scheduler, and therefore we may change alternative when we pass by
the same state ¢ at a later time.

The following result is analogous to the case of standard bisimulation. It
implies that largest safe bisimulation exists, and coincides with the union of
all safe bisimulations. We call it safe bisimilarity, and we denote it by ~yq.

Proposition 63. The union of all the safe bisimulations is still a safe bisim-
ulation.

Proof. Assume that q1 ~s q2. Then ¢; R ¢o holds, for some safe bisimulation
R. Hence we have enab(q1) = enab(gz), and for every global scheduler ¢, if
C(q1) = C(g2), and ¢ i)g 11, then there exists po such that go i)g 12,
and p1 R po. This implies that gy ~g pe. In fact R (the smallest equivalence
class induced by R) is a finer relation than ~g, ie. ¢ ﬁqg implies q1~4qs.
Also, R is an equivalence relation, and therefore it induces a partition on
each of the equivalence classes X € Q< . Hence we have, for each X € Q< _,
p(X) = Zye)g2 p(Y) = Zyexﬁ p2(Y) = pa(X).

We proceed analogously to show that, if g9 i)g Wo, then there exists p

such that ¢ i>< w1 and py ~g fo.
O

Given two TPAs M1 = (Ql,T, ﬁ,(jl,ﬂl) and M2 = (QQ, T,ﬁ, (jg,ﬂg) shar-
ing the same set of tags 7 and actions £, we can define bisimulation and
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bisimilarity across their states, i.e. as relations on (Q; U Q2), in the obvious
way, by constructing the TPA M with a new initial state ¢ with transitions to
04, and to dg4,, respectively.

Given two components or systems ¢ and ¢, we will say that ¢; and g9 are
safely bisimilar, denoted by ¢; ~g qo, if the initial states of the corresponding
TPAs are safely bisimilar. Note that q; ~ go is possible only if ¢; and ¢» have
the same number of active components, where “active”, for a component, means
that during the execution of the system it will make at least one step. Note that
in the case of components, or of systems constituted by one component only,
safe bisimulation and safe bisimilarity coincide with standard bisimulation and
bisimilarity (denoted by ~), respectively. This is not the case for systems, as
shown by the following example:

Example 13. Consider again the TPAs of Example 11. As pointed out earlier
in this chapter, we have S[*/sec] ~ S [b/sec] Yet S[*/sec] #s S [b/sec]
show this, let us. construct a new, TPA (as described before) with initial state
q such that ¢ A S[*/sec) and ¢ % g [°/sec|. Now consider the (admissible)
global scheduler ¢ such that

(

iy if o=4q,

{1a4} Zfa_q—hg[/seC]’

2 zfa—qthS[/seC]ﬂ<—||m<a> -1 -),

3 zfa—q B S see) 5 (= || — || oul(d) || — ),
def )4 if 0 =058 “F (=] = || — || ouk(a) ),

((o) = Ath b

{154} ZfO'—q S[/sec],

2 if 0=G"5 [/ 25 (|| outla) || — || —),

3 if 0 =G5 8" (|| = || oul(®) || — ),

4 if o= 8" sed] (= = || — || oul(d)),

\J_ otherwise.

It is easy to see that S [°/scc] cannot mimic the transition 4:out(a) produced
by S [*/sec] using the same scheduler (.

We now show that safe bisimulation is a congruence with respect to all the
operators of our language. In the following theorem, statements 2a and 2b are
just the standard compositionality result for probabilistic bisimulation.

Theorem 64.
1. ~g is an equivalence relation.

2. Let a € L be an action and A,B,B" C L be sets of restrictions. Let
P1,---,Dn be probability values, and let q,q1,q2, - qn, Q1 Qs --->q, be
components.
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a) If 1 ~s q2, then a.qi ~5a.q2, @ +q~sq@+q,  (a)q ~s
(a)g2, and  q1 | qg~sq2|q.

b) If i ~s 1y Gn ~s @y, then D7Dt qi~v Y iDit G

) IfB)all -l an ~s (B)ay -l andfnlqg) g BUB,
then
(AUB) g |l .- lall - lan ~s (AUB) g1 |- Nl all -1 -

Proof.

1. Although safe bisimulations are not equivalence relations in general, their
union, i.e. safe bisimilarity, is an equivalence. In fact:

e [t is easy to see that, if R is a safe bisimulation, then the smallest
equivalence that includes R, namely R, is also a safe bisimulation.

e From Proposition 63 we know that ~ is a safe bisimulation.

e Hence we derive that ~; is a safe bisimulation, and therefore ~g C
~s. But since obviously ~;C <, we conclude that ~,= ~,, which
means that ~ is already an equivalence relation.

2. Assume that a, A, B, B, p1,.. ,Pn,q,q1,925- - Gn, 415G, -- -, q, are of
the type prescribed by the hypothesis of the theorem.

a) Assume g1 ~s qo.

o Let
R ={(a.q1,a.92)} U ~5.

We show that R is a safe bisimulation, which is sufficient to
prove that a.q1 ~s a.qo. Note that, since there is only one
component in each of those states, and it is enabled, we have
enab(a.q1) = enab(a.q2) = {1}, and ((a.q1) = ((a.q2) = 1 for
any global scheduler ¢. Given a global scheduler (, there is
exactly one transition from each of a.q; and a.qa: these are
a.qq i>< 0q, and a.qo ﬂ)g d0g4,, respectively, which mimic each
other in the action a. Finally, since q1 ~ g2, we have dq;, ~ d¢,
and therefore 4, R dg,.

o Let
R={ln+aae+q}tu ~;.
We show that R is a safe bisimulation, which is sufficient to
prove that ¢; + ¢ ~s g2 + g. We have that enab(q1 + q) =
enab(q1) U enab(q) = enab(gz) U enab(q) = enab(qa+q), in fact
enab(q1) = enab(qz) since q1 ~5 qo. Correspondingly, given a
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global scheduler ¢, we have either ((q; + ¢) = (g2 + ¢) = 1 or
C(q1 4+ q) = (g2 + q) =L, since there is only one component.
Assume ¢; + ¢ i>< 1. We have two cases: either ¢ 3)4 L1, Or
q ﬁ)g 1. The second case is obvious. In the first case, since
q1 ~s G2, we have that also ¢ i>< pa, with py ~g po. We derive
that g1 R pa. For the transitions from gs + ¢ we proceed in the
analogous way.

o Let
R ={((a)q1,(a)q2) | g1 ~s g2}

We show that R is a safe bisimulation, which is sufficient to
prove that, if g1 ~s g2, then (a)q; ~s (a)ga. First observe that
enab((a)q1) = enab(q1) = {1} if ¢1 can make a transition with
a label different from a, otherwise enab((a)q1) = 0. The same
holds for (a)ga. Since g1 ~s g2, we derive that enab((a)q1) =
enab((a)qs). Accordingly, given a global scheduler ¢, we have
that either ¢((a)g1) = (((a)az) =1, or (((a)a1) = (((a)g2) =L.
Assume (a)q; —¢ p1. Then we must have b # a and py =
(a)u}, where ¢ —¢ pj. Since ¢ ~s g2, We have also ¢ —b>< 1,
with p) ~g py. We derive (a)gz —¢ (a)ph, and (a)p) R (@) .

We proceed in an analogous way for the transitions from (a)go.

e The case of the parallel operator in components is similar to
the case of the parallel operator on systems (see the last item
of this proof).

b) Assume q1 ~s ¢}, ..., qn ~s q,. Let

R = {(sz‘ : Qi7zpi Lg) U~

We show that R is a safe bisimulation, which is sufficient to prove
that > . p; : ¢i ~s ;i : ¢;. Observe that both ). p; : ¢; and
>;pi © ¢, are enabled, and, since there is only one component,
enab(}_,; pi : qi) = enab(>_,;pi : ¢}) = {1}. Accordingly, if ¢ is a
global scheduler, we have enab(},;pi : ¢;) = enab(>_;p; : ¢}) = 1.
Given a global scheduler ¢, the only transitions from ), p; : ¢; and
Sipi g are Y pi i g ¢ X pi- Og, and Y pi 1 qf D¢ X pi - Oy
respectively, which mimic each other in the action 7. It is easy
to see that we have (3> ,pi : @) ~s (O_;pi : q}), and therefore

(OZipi @) R pit i)
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c) Let
((AuB)aull... gl gn,
R=¢ (AuB)q .. llall---lla) ]
B)all--Nlan ~s BYg |-,

We show that R is a safe bisimulation, which is sufficient to prove
that, if
B)arll--Ngn ~s B)Yall---la,

then

AuB)a |- lall - lan ~s (AUB)Y G |- Mgl a,-
Observe first that

enab((AUB) q || - gl [l gn) =
enab(AUB) qu || .- [lq |- Il a)

In fact the enabled components are the same as those of
(B) g1 || --- || @n and of (B) ¢} || ... || ¢}, (modulo the index
shift), which are equal by the bisimilarity hypothesis, plus possibly
the component ¢, plus possibly the synchronizations with ¢, which
again are equal by the bisimilarity hypothesis, minus the transitions
with labels in A. Note that the hypothesis fn(q) € BU B’ is essen-
tial here to guarantee that the component ¢ is enabled (or disabled)
in both sides.

Let us consider the synchronization case; the interleaving case is
just a simplified variant. Given a global scheduler {, assume

CAUB) il - gl ) =C(AUBY qr |- gl - Il ap)-

Consider a move from the system in the left-hand side:

2,J:T

(AUB) qull - Mlaill - FaslF-- 1 an == dcargivfirsll-lirs I-llan-
Then we must have
@G = 0r qy'—a>5rj :
where one of the ¢;,¢; could be ¢, and
CAUB)qull - llgll-- gl Ian) = {i, 5}

Since g; ~s ¢; and g ~5 ¢; (in case ¢; = q then ¢; = ¢ and therefore
¢ ~s ¢, because ~y is reflexive, and analogously for g;), we must
have
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for some 7/, 7’3- such that d,, ~; d,, and d,; ~; 5,;,. We derive that

0,]:T
(AUB) gy - Ngi - 115 - W dn == Scaygg ottt -l >
and, since &y, ~g 0,7, Op; ~s 57»3. imply r; ~s 17, 7j ~s 77, and by the
definition of R, we conclude
Ocargu -l 1--llan) R (5(A)Q'1||---||7’§||---||7’§||---||q4L)'

We proceed in an analogous way for the transitions from the right-
hand side.

O

The following property shows that bisimulation is stronger than safe-trace
equivalence, like in the standard case.

Proposition 65. If g1 ~ g2 then q1 ~5 qo.

Proof. For this proof, it is convenient to consider a coinductive approxima-
tion of safe-trace equivalence. We start with a coinductive characterization of
the safe traces. This in itself is not a key notion of the proof, but will help
understanding the definition of the approximation.

Given a TPA M = (Q,T,L,q,V), consider the operator

Trr : (Q — P(CPaths(M) — [0,1])) — (Q — P(CPaths(M) — [0, 1]))
defined as:

Trr(F)(q) = { f: (T xL£)> = [0,1] |
if ¢ 4 then f(e) =1, else f(e) =0 and,
forallt, € T,a € L,

ty:
o if there exists yu s.t. ¢ ——» i, then for each ¢ € Q
there exists f}, € F'(¢) s.t. for every t € (T x L),

fltga-t) =32 m(d)fe(t)
eifgq tﬁgZL), then f(¢)(tg:a-t)=0 }

where ¢ / means that for all t, € T,a € £, we have ¢ tgﬁ&
Consider the ordering C on Q — P(CPaths(M) — [0, 1]) given by

FCF'  ifand onlyif  forall g€ Q,F(q) C F'(q)

Clearly (CPaths(M) — [0, 1]),C) is a complete lattice and T, is monotonic, so
by the theorem of Knaster-Tarski it has a greatest fixed point, which coincides
with Tracesg.
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Following the definition of Jr,, we now give a coinductive approximation of
the equivalence relation induced by Tracess. Given a TPA M = (Q,T,L,q, V),
consider the operator

TTreq : (CPaths(M) — Q x Q) — (CPaths(M) — Q x Q)

defined as:
O Treg®)©) 2 € (@A S ep)

and

@ Treeg®)(tyg a-t) ¢ H

tg: tg:
G 25 = Fua(ge =3 g Ay R(E) o)
AN

tg: tg:
G2 =5 o = (g 5 Ay R(E) o)
Consider the ordering < on CPaths(M) — Q x Q given by

R=R if and only if  for all + € CPaths(M), R(t) C R'(t)
Clearly (CPaths(M) — Qx Q, <) is a complete lattice and Ty is monotonic,
hence by the Knaster-Tarski theorem it has a greatest fixed point, which also
coincides with the greatest pre-fixed point, i.e. the greatest relation R such
that R =< Trpeq(R). Using the definition of T, it is easy to see that, if R is
a pre-fixed point, and ¢; R(t) g2 for all t € CPaths(M), then Tracess(q1) =
Tracess(q2), i.e. q1 ~s qo. In fact, if F(q1) = F(q2), and g1 R(t) g2 for
all ¢ € CPaths(M), and R is a pre-fixed point of Tryeq, then Tp,.(F)(q1) =
T1-(F)(g2)3. Consider now a safe bisimulation R, and let us lift it to a constant
function R : CPaths(M) — Q x Q defined as R(t) = R. It is easy to see that
R is a pre-fixed point of ‘J’Treq‘l.

Assume now ¢ R go. We trivially derive that g1 R(t) go for all ¢t €
CPaths(M), from which we conclude ¢ ~ go.
[l

Like in the standard case, the vice-versa does not hold, and safe-trace

equivalence is not a congruence®.

*Note that the condition is only sufficient, because g () i () = 32 p2(q") fora(t)

may hold even if u1 and po assign different probability to some equivalence class of R(t).
4Note that the converse does not hold, i.e. R could be a pre-fixpoint of Tr,eq even if
R is not a bisimulation. This is because R is sensitive to the (nondeterministic) branching
structure, while R is not.
*This is because we are considering the complete traces.
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6.5 Safe nondeterministic information hiding

In this section we define the notion of information hiding under the most
general hypothesis that the nondeterminism is handled partly in a demonic
way and partly in an angelic way. We assume that the demonic part is in
the realm of the global scheduler, while the angelic part is controlled by the
local scheduler. The motivation is that in a protocol the local components
can be thought of as programs running locally in a single machine, and locally
predictable and controllable, while the network can be subject to attacks that
make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the absence of leakage,
such as noninterference and strong anonymity, is expressed as follows (see for
instance [BP]). Given a purely probabilistic automaton M, and a sequence
a = ajaz...ay, let Pys([a]) represent the probability measure of all complete
paths with trace @ in M. Let S be a protocol containing a variable action
secr, and let s be secret actions. Let M, be the automaton corresponding to
S[®/secr]- Define Pr(a | s) as Py ([a]). Then S is leakage-free if for every
observable trace a , and for every secret s1 and sg, we have Pr(a | s1) = Pr(a |
82).

In a purely nondeterministic setting, on the other hand, the absence of
leakage has been characterized in the literature by the property S[*!/gecr| =
S[°2 /secr], where 2 is an equivalence relation like trace equivalence, or bisim-
ulation. As we have argued in the introduction, this definition assumes an
angelic interpretation of nondeterminism.

We want to combine the above notions so to cope with both probability
and nondeterminism. Furthermore, we want to extend it to the case in which
part of the nondeterminism is interpreted demonically. Let us first introduce
some notation.

Let S be a system containing a variable action secr. Let s be a secret action.
Let M be the TPA associated to S[*/secr] and let (¢, &) be a compatible pair
of global and local schedulers for M. The probability of an observable trace
a given s is defined as Pr¢g(a| s) = Pag, ¢ e([al).

The global nondeterminism is interpreted demonically, and therefore we
need to ensure that the conditional of an observable, given the two secrets,
are calculated with respect to the same global scheduler. On the other hand,
the local scheduler is interpreted angelically, and therefore we can compare the
conditional probabilities generated by the two secrets as sets under different
schedulers. In other words, we have the freedom to match conditional proba-
bility from the first set with one of the other set, without requiring the local
scheduler to be the same.

Either angelic or demonic, we want to avoid the clairvoyant schedulers,
i.e. a scheduler should not be able to use the secret information to achieve its
goals. For this purpose, we require both the global and the local scheduler to
be admissible.
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Definition 66. A system is leakage-free if, for every pair of secrets s1 and so,
every admissible global scheduler ¢, and every observable trace a,

{Pree(a] si) | € is admissible and compatible with (} =
{Pr¢e(a) s2) | € is admissible and compatible with (}

The safe equivalences defined in Section 6.4 imply the absence of leakage:

Theorem 67. Let S be a system with a variable action secr and assume
S/ seer] s S[°2/secr] for every pair of secrets s1 and sa. Then S is leakage-
free.

Proof. Consider the abstraction operator § from safe traces to pairs of the
form (tagged observable trace, probability) defined as:

@pes® € p = 3 f0
fer
75[7’><(’):(~z

It is easy to see that [ is an abstraction, i.e. if F} = Fy then B(F)) =
B(Fy). Therefore, S[*'/secr] ~s S[%2/secr] implies B(Tracess(S[**/secr]) =
B(Tracess(S[*?/secr]). Finally, the latter holds (for every pair of secrets si,

s9) if and only if S is leakage-free.
U

Note that the vice versa is not true, i.e. it is not the case that the leakage-
freedom of S implies S[** /seer] 25 S[%2/seer]- This is because in the definition of
safe trace equivalence we compare the set of probability functions (determined
by the schedulers) on traces, while in the definition of leakage-freedom we
compare the set of probabilities of each trace, which may come from different
functions. This additional degree of freedom generated by the local scheduler
helps the system to obfuscate the secret, and provides further justification for
the adjective “angelic” for the local nondeterminism.

From the above theorem and from Proposition 65, we also have the follow-
ing corollary (with the same premises as the previous theorem):

Corollary 68. If S[*'/secr| ~s S[*2/secr] for every pair of secrets sy and s,
then S is leakage-free.

6.6 Related work

The problem of deriving correct implementations from secrecy specifications
has received a lot of attention already. One of the first works to address the
problem was [Jac89], which showed that the fact that an implementation
is a consistent refinement with respect to a specification does not imply that
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the (information-flow) security properties are preserved. More recently, [AZ06]
has proposed a notion of secrecy-preserving refinement, and a simulation-based
technique for proving that a system is the refinement of another. [CS08] argues
that important classes of security policies such as noninterference and average
response time cannot be expressed by traditional notion of properties, which
consist of sets of traces, and proposes to use hyperproperties (sets of properties)
instead. [DDM10] addresses the problem of supervisory control, i.e. given a
critical system G that may leak confidential information, how to design a
controller C' so that the system G|C dos not leak. An effective algorithm is
presented to compute the most permissible controller such that the system is
still opaque with respect to a secret.

Concerning angelic and demonic nondeterminism, there are various works
which investigate their relation and possible combination. In [BvW92] it is
shown that angelic and demonic nondeterminism are dual. [MCRO07| uses
multi-relations to express specifications involving both angelic and demonic
nondeterminism. There are two kinds of agents, demonic and angelic ones, and
there is the point of view of the internal system and the one of the external
adversary.

[Mor09] considers the problem of refining specifications while preserving
ignorance. While the focus is on the reduction of demonic nondeterminism of
the specification, the hidden values are treated essentially in a angelic way.

The problem of the leakage caused by full-information schedulers has also
been investigated in the literature. [CCK'06a] and [CCKT06b] work in the
framework of probabilistic automata and introduce a restriction on the sched-
uler to the purpose of making them suitable to applications in security pro-
tocols. Their approach is based on dividing the actions of each component of
the system in equivalence classes (tasks). The order of execution of different
tasks is decided in advance by a so-called task scheduler, which is history-
independent and therefore much more restricted than our notion of global
scheduler. [APvRS] proposes a notion of system and admissible scheduler very
similar to our notion of system and admissible global scheduler. The main
difference is that in that work the components are deterministic and therefore
there is no notion of local scheduler.

The work in [CP, CNP09] is similar to ours in spirit, but in a sense dual
from a technical point of view. Instead of defining a restriction on the class
of schedulers, the authors a way to specify that a choice is transparent to the
scheduler. They achieve this by introducing labels in process terms, used to
represent both the states of the execution tree and the next action or step
to be scheduled. They make two states indistinguishable to schedulers, and
hence the choice between them private, by associating to them the same label.
We believe that every scheduler in our formalism can be expressed in theirs,
too. In [CNP09| the authors consider the problem of defining a safe version of
bisimulation for expressing security properties. They call it demonic bisimu-
lation. The main difference with our work is that we consider a combination
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of angelic and demonic nondeterminism, and this affects also the definition of
bisimulation. Similarly, our definition of leakage-freedom reflects this combi-
nation. In [CNP09] the aspect of angelicity is not considered, although they
may be able to simulate it with an appropriate labeling.

The fact that full-information schedulers are unrealistic has also been ob-
served in fields other than security. First attempts used restricted schedulers
in order to obtain rules for compositional reasoning [d{AHJO01|. The justifica-
tion for those restricted schedulers is the same as for ours, namely, that not
all information is available to all entities in the system. That work considers
a synchronous parallel composition, however, so the setting is rather different
from ours. Later on, it was shown that model checking is unfeasible in its
general form for the restricted schedulers in [dAHJ01] (see [GDO07] and, more
recently, [Gir09]). Despite of undecidability, not all results concerning such
schedulers have been negative as, for instance, the technique of partial-order
reduction can be improved by assuming that schedulers can only use partial
information [GDF09].

6.7 Chapter summary and discussion

In this chapter we have observed that some definitions of security properties
based on process equivalences may be too naive, in the sense that they assume
the scheduler to be angelic, and, worse yet, to achieve its angelic strategy by
peeking at the secrets. We have presented a formalism allowing us to specify a
demonic constituent of the scheduler, possibly in collusion with the attacker,
and an angelic one, under the control of the system. We have also considered
restrictions on the schedulers to limit the power of what they can see, and
extended to our nondeterministic framework the (probabilistic) information-
hiding properties like non interference and strong anonymity. We then have
defined “safe” equivalences. In particular we have defined the notions of safe
trace equivalence and safe bisimilarity, and we have shown that the latter is
still a congruence. Finally, we have shown that the safe equivalences can be
used to prove information-hiding properties.

For the future, we plan to extend our framework to quantitative notions
of information leakage, possibly based on information theory. We also plan to
implement model checking techniques to verify information hiding properties
for our kind of systems.
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Seven

Conclusion

“To succeed, jump as quickly at opportunities as you do at conclusions.”
Benjamin Franklin

In this thesis we concentrated on the problem of information hiding in the sce-
narios of interactive systems, statistical disclosure control, and the refinement
of specifications. We started by giving a general overview of the field of infor-
mation hiding, including a brief description of its historical development. We
then discussed the main differences between the qualitative and the quantita-
tive approaches to information hiding, and we introduced the background for
the three main topics covered in this thesis: information flow (exemplified by
anonymity), statistical disclosure control, and the refinement of specifications
into implementations.

Having adopted the quantitative approach, we then continued to discuss
the rationale of the use of information theory for quantitative information flow.
We reviewed several formulations of entropy, with a special focus on Shannon
entropy and min-entropy, and the related concept of mutual information and
its interpretation in terms of attacks and information leakage.

We then proceeded to present the technical contributions of the thesis. We
started with the scenario of interactive systems, i.e systems where secrets and
observables can alternate and influence each other during the computation.
In this type of systems the traditional information theoretical approach that
makes use of classic memoryless channels, and the related concepts of mutual
information and classical capacity, no longer works. We proposed to model
interactive systems with a richer notion of channels, namely channels with
memory and feedback. In this more general model it is possible to split the
statistical correlation between secrets and observables (that correspond to the
input and the output of the channel, respectively) into two causal components:
the directed information from input to output represents the flow of informa-
tion through the channel, and the directed information from output to input
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corresponds to the way the input is influenced by the output via feedback.
We showed that the directed information is the correct measure of leakage in
interactive systems, and so is the concept of directed capacity if we are inter-
ested in the worst case leakage. We also proved that our model is a proper
extension of the classic one: in the absence of feedback (i.e interaction) our
model collapses into the simpler classic model. Finally, we showed that the
capacity of channels with memory and feedback is a continuous function of a
pseudometric based on the Kantorovich metric.

With respect to interactive systems, as future work we want to explore
algorithms to calculate the leakage and the maximum leakage using our model.
This is a rather challenging problem, given the exponential growth of reaction
functions (a technical aspect of our model) and the quantification of possibly
infinite many reactors (also another technicality of our model). We also want
to explore other notions of entropy as a measure of leakage, as for instance the
min-entropy and the corresponding notion of one-try attack.

In the sequence we moved to the problem of statistical disclosure control.
We considered the problem of preserving the privacy of individuals participat-
ing in a database that allows statistical queries to be posed by users. Using
differential privacy, databases that are similar, i.e differ by the contents of at
most one row, should give statistically “similar” answers to the same query.
This is achieved by introducing noise in the query mechanism to blur the link
between the reported answer and the data about individuals. We proposed
a model where the differential privacy mechanism can be split into two chan-
nels in cascade, in the case the randomization mechanism is oblivious (i.e it
only depends on the real answer to the query, and not on the database it-
self). The first channel corresponds to the query, and it maps the database
to the real answer to the query. The second channel corresponds to the obliv-
ious randomization mechanism, and it takes the real answer and maps it to
a randomized answer to be reported to the user. In this scenario we see the
leakage as the correlation between the reported answer and the database, and
the wutility as the correlation between the real answer and the reported one.
We used this model to derive bounds for the leakage and utility based on the
level of differential privacy designed for the system (namely the parameter €).
As a measure of leakage we adopted the min-entropy leakage, and for utility
we used the notion of gain functions, focusing on the binary gain function,
which is strictly related to min-entropy leakage and Bayes risk. We used the
graph structure on the input domain derived from the adjacency relation on
databases to derive bounds for the maximum min-entropy leakage of channels.
We showed that if the graph structure is distance-regular or VT (which is
always the case for the database domain), then we can derive bounds for the
maximum min-entropy leakage associated to the channel. Finally, we found a
way of constructing a utility-maximizing randomization function that respects
differential privacy for a special class of graph structures.

In relation to statistical databases, as future work we intend to extend our
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results to other types of gain functions than the binary one, namely gain func-
tions that take into consideration a notion of distance between answers. We
also want to investigate whether or not non-oblivious randomization mecha-
nisms can be used to improve utility while still preserving differential privacy.

The last scenario we investigated in the thesis was the use of equivalence
relations to specify security guarantees, which is a common approach when
refining implementations into specifications. Under this perspective, two sys-
tems (e.g a specification and its implementation) are considered equivalently
secure if they respect some equivalence relation defined to capture the intended
security guarantee. Such equivalences include, for instance, trace-equivalence
and bisimilarity. We showed that a naive use of these equivalences can lead to
unrealistic assumptions about the scheduler: (i) that the scheduler is angelic,
i.e that it will help to keep the secret information from the attacker; and (ii)
that the scheduler can peek at the secrets to make its choices. Those assump-
tions are not safe in practical cases and, therefore, we proposed a model that
deals with the problem. We introduced a formalism that explicitly separates
the demonic and angelic parts of the scheduler, and we imposed restrictions
to limit the power of the scheduler with respect to what it can see. Namely,
the scheduler cannot peek at the secrets to make its choices. We then de-
fined notions of safe-equivalences (safe trace equivalence and safe bisimilarity)
and we showed that the latter is a congruence. Finally, we showed that safe
equivalences can be used to prove information hiding properties.

As future work regarding safe equivalences, we want to extend our model
to quantitative notions based on information theory, and we want to use model
checking to certify information hiding properties for our systems.

As final remark, we believe that information hiding is a very promising
field of research, and we are excited and thrilled by the promising challenges
that lie ahead.
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