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Abstract

This thesis deals with mesoscopic models of cortex called neural fields. The neural

field equations describe the activity of neuronal populations, with common anatom-

ical / functional properties. They were introduced in the 1950s and are called the

equations of Wilson and Cowan. Mathematically, they consist of integro-differential

equations with delays, the delays modeling the signal propagation and the passage

of signals across synapses and the dendritic tree. In the first part, we recall the bi-

ology necessary to read this thesis and derive the main equations. Then, we study

these equations with the theory of dynamical systems by characterizing their equi-

librium points and dynamics in the second part. In the third part, we study these

delayed equations in general, by giving formulas for the bifurcation diagrams, by

proving a center manifold theorem, and by computing the principal normal forms.

We apply these results to one-dimensional neural fields which allows a detailed

study of the dynamics. Finally, in the last part, we study three models of visual

cortex. The first two models are from the literature and describe respectively a

hypercolumn, i.e. the basic element of the first visual area (V1) and a network of

such hypercolumns. The third model is a new model of V1 which generalizes the

two previous models while allowing a detailed study of specific effects of delays.





Résumé

Cette thèse traite de modèles mésoscopiques de cortex appelés champs neuronaux.

Les équations des champs neuronaux décrivent l’activité corticale de populations

de neurones, ayant des propriétés anatomiques/fonctionnelles communes. Elles ont

été introduites dans les années 1950 et portent le nom d’équations de Wilson et

Cowan. Mathématiquement, elles consistent en des équations intégro-différentielles

avec retards, les retards modélisant les délais de propagation des signaux ainsi

que le passage des signaux à travers les synapses et l’arbre dendritique. Dans la

première partie, nous rappelons la biologie nécessaire à la compréhension de cette

thèse et dérivons les équations principales. Puis, nous étudions ces équations du

point de vue des systèmes dynamiques en caractérisant leurs points d’équilibres et

la dynamique dans la seconde partie. Dans la troisième partie, nous étudions de

façon générale ces équations à retards en donnant des formules pour les diagrammes

de bifurcation, en prouvant un théorème de la variété centrale et en calculant les

principales formes normales. Nous appliquons tout d’abord ces résultats à des

champs neuronaux simples mono-dimensionnels qui permettent une étude détaillée

de la dynamique. Enfin, dans la dernière partie, nous appliquons ces différents

résultats à trois modèles de cortex visuel. Les deux premiers modèles sont issus de

la littérature et décrivent respectivement une hypercolonne, i.e. l’élément de base

de la première aire visuelle (V1) et un réseau de telles hypercolonnes. Le dernier

modèle est un nouveau modèle de V1 qui généralise les deux modèles précédents

tout en permettant une étude poussée des effets spécifiques des retards.
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work has been a constant source of inspiration for my research. I would like to

deeply thank my reviewers Paul Bressloff and Gérard Iooss for taking the time to

read carefully, comment and criticize this long Thesis. I warmly thank Frédéric
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Introduction

Les faits mathématiques dignes d’être étudiés, ce sont ceux qui,

par analogie avec d’autres faits, sont susceptibles de nous conduire

à la connaissance d’une loi mathématique de la même façon que

les faits expérimentaux nous conduisent à la connaissance d’une

loi physique.

([Poincaré 1924])

This Thesis is oriented toward the study of mesoscopic models of cortical activ-

ity as part of the world of computational neuroscience. Computational neuroscience

is a relatively new field which aims at understanding the brain functions with differ-

ent interdisciplinary points of view such as mathematics, physics, computer vision,

electrical engineering...

The brain is composed, among other things, of a large number of neurons which

are densely connected by synapses. It is a electrochemical machinery whose basic

elements (the neurons) begin to be understood and modelled, even if the models

are analytically intractable. For example, the description in a single synapse re-

quires dozens of variables to describe various quantities such as ions concentrations

or membrane potentials. Hence, the simulation at the molecular level of intercon-

nected neurons is already a formidable numerical task. It is difficult to imagine

what will be the outcome for the understanding of information processing in the

brain for example. Indeed, such a simulation (see [Markram 2006, Izhikevich 2008])

would produce terabytes of data and it is not obvious that the model would be easier

to understand than the brain itself. It is very unlikely that it would yield work-

ing principles (for example the efficient coding principle as in [Barlow 1961]) and

general laws (the organic evolution theory by C.Darwin or in physics the laws of

electrodynamics for example) of a brain theory. These laws are essential for attack-

ing questions related to information processing in the brain. Instead of this very

precise modelling, another approach is to understand the activity (to be defined)

of a population of neurons which share similar properties (shape of the neuron, cell

type...) or the activity of functional populations of neurons which share similar

functional properties (like being most responsive for the same stimulus). Note that

the labelling of neurons by their functional properties rather than by their intrinsic

properties is a short-cut to describe the network. Indeed, the functional properties

are only consequences of the neurons being embedded in the network that we want

to study and of the set of stimuli that are used to produce the functional responses.

This implies that we have to be careful about the “meaning” of the cortical activity

when studying these networks for a set of stimuli different from the one used to de-

fine the functional properties (see section 11.3.3). In this Thesis, we will study the

two types of networks, the ones where the populations are labelled by a functional

property (see for example chapter 9) and the ones where the functional properties
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are not used to label the population (see chapter 11). The modeling of popula-

tion of neurons with neural fields equations, as pursued in this Thesis, is related

to the mean field approach whose goal is to derive a closed set of equations for a

few macroscopic variables from the huge set of equations describing each individual

neuron in the network. The link, which should be provided by a mean field theory,

between the spiking neural network equations and the neural fields equations is still

missing (but see [Roxin 2005]). Nevertheless, we will study the “simple” neural

fields equations as a first approximation. These neural fields equations describe

the mean membrane potential of populations of neurons that are distributed in the

cortex.

From an experimental point of view, this type of modeling seems well suited (see

for example [Grimbert 2008]) for voltage sensitive dye optical imaging data which

measures the “mean” cortical activity of neurons in the visual cortex in behaving

animals.

The most appealing aspect of the neural fields (resp. mean field) modelling is

that the models are amenable to a mathematical study. Indeed, the number of

equations and parameters is usually small enough to apply tools from dynamical

systems for example. This allows to explore more thoroughly the different parameter

regimes and simplify the study/discovery of working principles by assuming that

the working principles extend from the detailed description to the neural fields

description. Obviously, this approach is likely to work if the mean field equations

are simple enough for an analytical study, but sophisticated enough to account for

some important biological facts. In fact, we will not look for working principles but

do the opposite: we will assume a specific working principle and adjust the neural

fields to agree with this principle. Then we will look at the cortical activity that

is specific to this assumed working principle and see if it agrees with biology (see

part IV).

The goal of this Thesis is the study of the neural fields equations. It is made

of four parts, part I is an introduction to biology and to the neural field equations.

The next two parts are “theoretical” while part IV deals with the application to

visual cortex models of the tools developed in the theoretical parts II and III.

In particular, the models are adjusted to operate in a particular working regime

and the consequences of this regime are drawn. The two parts II and III are

largely independent and part IV concerning the models can be read without a deep

understanding of the two “theoretical” parts.

Part II: Stationary cortical states

The neural fields equations are a system of ordinary differential equations in a

sophisticated phase space. They display stationary solutions which are interpreted

as stationary cortical activities. In these equations, there is a term which describes

the external stimulus. Hence, given a stimulus, these equations can predict what

is the cortical activity corresponding to the stimulus. However, depending on the
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parameters, the neural field equations can have multiple stationary solutions which

are all cortical representations of the stimulus. If more than one stable solution

exists, we will show how to label one of these cortical activities as the “main”

representation of the stimulus and the other as neural illusions. This part focuses

on the study of the stationary solutions. More precisely, we apply topological tools

coupled to bifurcation theory to study the number of stationary solutions as well

as their dependency on various parameters. We use multi-parameters numerical

continuation to compute these solutions. Two numerical examples are presented.

Part III: Delayed neural field equations

In part II, the delays were neglected. There are now taken into account. In our

modelling with neural field equations, we consider two main types of delays. The

first is the propagation delay coming from the finite propagation speed of signals

along axons. The second is an effective delay: it is a convenient/cheap way to

model the synaptic and dynamical spike generation processes. The first chapter of

this part deals with the general theory of delayed neural field equations. The next

two chapters are more computational: we derive computer programs to compute

eigenvalues, bifurcation diagrams and normal forms that are used in the last chapter

dealing with neural networks with simple geometry. In particular, these studies

provide an understanding of the relative contribution of effective/propagation delays

in the dynamics of the delayed neural fields.

Part IV: Application to models study

This part concerns the applications of the tools, developed in the two previous

parts, to three models of visual cortex. We apply the “theoretical” results about

the stationary solutions to two models taken from the literature. The first one, the

Ring Model of orientation tuning is an hypercolumn model, i.e. one of the basic ele-

ments of the primary visual cortex area. The second model is based on experimental

optical imaging data given by the laboratory of F.Chavane. In particular, the rela-

tive importance of feed-forward input (from the LGN) and recurrent computations

(done by the cortex) in the emergence of the cortical activity is investigated. The

last application is a new model of V1 which generalizes the two previous examples

and allows a tractable study of the effect of the delays with the use of the tools

developed in the second part.





Introduction (Version française)

Les faits mathématiques dignes d’être étudiés, ce sont ceux qui,

par analogie avec d’autres faits, sont susceptibles de nous conduire

à la connaissance d’une loi mathématique de la même façon que

les faits expérimentaux nous conduisent à la connaissance d’une

loi physique

([Poincaré 1924])

L’objectif de cette thèse est l’étude de modèles mésoscopiques de l’activité cor-

ticale, elle s’inscrit dans le cadre des neurosciences computationnelles. Le monde

des neurosciences computationnelles est relativement jeune et a pour objectif la

compréhension des fonctions du cerveaux du point de vue des mathématiques, de

la physique, de la vision par ordinateur ou encore de l’électrotechnique.

Le cerveau est composé, entre autres, d’un grand nombre de neurones connectés

par des synapses. C’est un système électro-chimique dont les éléments de base

commencent à être compris et modélisés. Ces modèles n’admettent généralement

pas de solution analytique. Par exemple, la description d’une seule synapse re-

quiert l’utilisation de dizaines de variables pour décrire les concentrations ion-

iques par exemple. Ainsi, la simulation au niveau moléculaire d’un ensemble

de neurones interconnectés est déjà un formidable problème numérique. Il est

difficile d’imaginer quelles seraient les retombées d’une telle simulation pour la

compréhension du traitement de l’information par le cerveau. En effet, une telle sim-

ulation (voir [Markram 2006, Izhikevich 2008]) produirait des téraoctets de données

et il n’est pas évident que ce modèle soit plus facile à comprendre que le cerveau

lui-même. Il est peu problable que cette méthode donne lieu à des principes de

fonctionnement (comme le principe du codage efficace énoncé dans [Barlow 1961])

ou des lois générales (comme la théorie de l’évolution de C.Darwin ou les lois de

l’électrodynamique en physique) d’une théorie du cerveau. Ces lois sont essentielles

pour aborder des questions comme le traitement de l’information dans le cerveau

par exemple. Au lieu de cette modélisation très précise, une autre approche con-

siste a comprendre l’activité (à définir) d’une population de neurones qui partagent

des propriétés anatomiques (forme du neurone, type de cellule...) ou l’activité de

populations fonctionnelles de neurones qui partagent des propriétés fonctionnelles

(comme être sélectif à un stimulus particulier). On peut remarquer qu’indexer des

neurones par leurs propriétés fonctionnelles est un raccourci pour décrire le réseau.

En effet, les propriétés fonctionnelles des neurones sont issues du réseau que l’on

étudie et de l’ensemble des stimuli utilisés pour produire des réponses fonction-

nelles. Dans cette Thèse, nous étudierons les deux types de réseaux : ceux où

les populations sont indexées par des propriétés fonctionnelles (voir par exemple le

chapitre 9) et ceux où les populations sont indexées par des propriétés anatomiques

(voir chapitre 11). La modélisation de populations de neurones avec des équations
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de champs neuronaux, ainsi fait dans cette thèse, est reliée à l’approche du champ

moyen dont le but est d’approcher, par un ensemble d’équations décrivant un

nombre restreint de variables macroscopiques, l’énorme ensemble d’équations qui

décrivent chaque neurone du réseau. Le lien rigoureux, qui serait donné par une

théorie de champ moyen, entre les équations des réseaux de neurones à potentiel

d’action et les équations des champs neuronaux, reste à trouver (voir [Roxin 2005]).

Néanmoins, nous étudierons, dans cette thèse, les équations (simples) des champs

neuronaux en supposant qu’elles sont une approximation de réseaux de neurones à

potentiel d’action dans une certaine plage de fonctionnement. Ces équations des

champs neuronaux décrivent le potentiel membranaire moyen d’une population de

neurones distribués dans le cortex.

L’aspect le plus intéressant de la modélisation par les champs neuronaux est

que les modèles peuvent être mathématiquement étudiés. En effet, le nombre

d’équations et de paramètres est généralement assez petit pour permettre l’usage

des outils de la théorie des systèmes dynamiques. Cela permet d’explorer les effets

des différents paramètres et simplifie l’étude des principes de fonctionnement en sup-

posant que ces principes sont aussi décrits par les équations des champs neuronaux,

i.e. que la description est assez précise. Cette approche est valable si les équations

de champ moyen sont assez simples pour permettre une étude analytique mais assez

précises pour tenir compte de faits biologiques essentiels. En fait, nous procéderons

de la sorte : nous étudierons des principes de fonctionnement présupposés et ajus-

terons les champs neuronaux pour qu’ils satisfassent ces principes. Ensuite, nous

étudierons l’activité corticale produite par ces champs neuronaux et vérifierons si

elle est en accord avec la biologie (voir la partie IV).

Le but de cette thèse est donc l’étude des équations des champs neuronaux. Elle

est composée de quatre parties, la partie I étant une introduction aux équations des

champs neuronaux. Les deux parties qui suivent sont des parties “théoriques”

tandis que la dernière partie IV traite des applications, aux modèles de cortex

visuel, des outils développés dans les deux parties théoriques II et III. Les modèles

sont ajustés pour fonctionner dans un régime particulier et les conséquences de ce

régime de fonctionnement sont étudiées. Les deux parties II et III sont largement

indépendantes et la partie IV, concernant les modèles, peut être abordée sans une

compréhension détaillée des deux parties théoriques.

Partie II: les états stationnaires corticaux

Les champs neuronaux sont décrits par un système d’équations différentielles or-

dinaires dans un espace des phases abstrait. Leurs solutions stationnaires sont

interprétées comme des activités stationnaires corticales. Dans ces équations, on

trouve un terme qui décrit le stimulus (extérieur). Ainsi, étant donné un stimulus,

ces équations prédisent l’activité corticale correspondant à ce stimulus. Cependant,

selon les paramètres, le nombre de telles activités peut être supérieur à un et cha-

cune de ces activités est une représentation du stimulus. Se pose alors la question de
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savoir laquelle est la représentation principale “choisie” par le cortex. Si plusieurs

solutions stationnaires sont stables, nous étudions quelle est, parmi ces activités cor-

ticales stationnaires, celle qui correspond à la représentation principale du stimulus,

les autres étant interprétées comme des illusions neuronales. Cette partie se concen-

tre donc sur l’étude des solutions stationnaires. Plus précisement, nous appliquons

des outils topologiques couplés à la théorie des bifurcations pour étudier le nom-

bre de solutions stationnaires ainsi que leur dépendence en les différents paramètres.

Nous utilisons un programme de continuation numérique pour le calcul des solutions

stationnaires. Deux exemples numériques sont présentés.

Partie III : les équations des champs neuronaux avec retards

Dans la partie précédente, les retards ont été négligés : on les prend maintenant

en compte. Deux types de retard sont considérés dans notre modélisation. Le pre-

mier type de retard est le retard de propagation qui provient de la vitesse (finie) de

propagation des signaux dans les axones. Le second type de retard est un retard

effectif : c’est une façon simple de modéliser la naissance du potentiel d’action

par l’interaction des différentes dynamiques synaptiques et neuronales. Le premier

chapitre concerne la théorie générale des équations des champs neuronaux avec

retards. Dans les deux chapitres suivants, nous donnons des programmes pour cal-

culer les valeurs propres, les diagrammes de bifurcation et les formes normales. Ces

programmes sont utilisés dans le dernier chapitre qui concerne l’étude de réseaux

neuronaux simples où le cortex est de monodimensionnel. Cette dernière étude per-

met de comprendre le rôle respectif des delais effectifs et des delais de propagation

dans la dynamique des champs neuronaux à retards.

Partie IV: application à l’étude de modèles de cortex visuel

Cette dernière partie concerne l’application, des outils développés dans les deux par-

ties précédentes, à trois modèles de cortex visuel. Nous appliquons les outils concer-

nant les solutions stationnaires à deux modèles issus de la littérature. Le premier,

le Ring Model est un modèle d’hypercolonne, une des structures fondamentales de

la première aire visuelle. Le second modèle, décrivant un réseau d’hypercolonnes,

est basé sur des données expérimentales. Nous étudions le poids relatif de l’entrée

thalamique et des calculs effectués par le réseau récurrent dans l’émergence de la

réponse corticale. Le dernier modèle est un nouveau modèle de V1 qui généralise

les deux modèles précédents tout en permettant une étude analytique des effets des

retards en utilisant les outils de la seconde partie.
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The goal of this chapter is not to present a snapshot of the biology of vision at

the present time. This would be impossible and most information would not prove

useful for the rest of our study (despite being of great interest). Also, because of

the huge literature, giving some advice concerning which references to read is very

difficult. Hence, I will expose what I read and hopefully, it will be convenient for

most of the readers. Readers that have not been introduced to the neurosciences

biology should start with the marvellous books et al. [Purves 2004, Kandel 2000,

Rolls 2002] and read the biophysics of neurons and the visual pathways (see also

[Wohrer 2008, Grimbert 2008, Chemla 2010b, Reynaud 2011, Seriès 2002a]).

The brain is composed of an incredible amount of cells that process the inputs

from the eyes and other sensory pathways. In this Thesis, we focus on the role of

neurons, which will be more thoroughly introduced in the next chapter. Neurons

are a particular type of cell whose membrane voltage potential fluctuates depending

on the inputs they receive. If their somatic membrane potential exceeds a threshold,

they produce an action potential, which is transmitted to another neuron through an

axon. Indeed, neurons are connected to other neurons and this is a very important

aspect of the phenomenology.

Definition 1.0.1 (Action potential).The action potential, or spike, is a self-

regenerating wave of electrical activity that propagates from its point of initiation
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at the cell body (called the axon hillock, see figure 2.2) to the terminus of the axon

where synaptic contacts are made. It constitutes the basis of the information code1

used in the brain.

Given a neuron, we can study what type of stimulus will induce a change in

its voltage potential. Note that a particular neuron is likely to feel the stimulus

after it has been “processed” by many other neurons. This motivates the following

definition.

Definition 1.0.2 (Receptive field). The receptive field (RF) of a neuron is the re-

gion in sensory space (e.g., the body surface, or a specialized structure such as the

retina) within which a specific stimulus elicits an action potential response.

The receptive field of neurons is usually subdivided in subregions ON (resp.

OFF) which are excitatory (resp. inhibitory) in that they increase (resp. decrease)

the action potential response.

1.1 The visual pathway in the primates

We recall some of the basic layout of visual pathways in primates. When data is

not available for the primates, we use data for other animals and stress that the

results may not be true for primates.

1.1.1 The eye and the retina

The first element of the vision pathway (see figure 1.1 Left) is the eye, but more

importantly from a neuronal viewpoint, the retina. The retina is the network that

covers the back of the eye ball. It is composed of 5 cells types, stacked in the or-

der that light is received: ganglion cells - amacrine cells - bipolar cells - horizontal

cells and the photoreceptors. Due to the connections in and between upper lay-

ers, light scatters through the network before reaching the photoreceptors. These

photoreceptors further subdivide into two main categories2:

• The cones, which are located in the fovea3 and are in charge of the diurnal

vision. There are roughly 4.5 million in the human retina. The foveola region

is the central region in the fovea: it has the highest density of cones and

is avascular in order to maintain a high visual acuity. Hence, the foveola

is dependent upon the resources coming from the underlying choroid and

pigment epithelium for oxygenation and metabolic sustenance.

• The rods, which are mainly located in the peripheral region, outside the fovea.

They are photoreceptors for the nocturnal vision and their number is roughly

90 million. During diurnal vision, their response saturates, i.e. they are not

sensitive to changes in light.

1which is still unknown
2named because of their shape
3part of the retina mainly composed of cones
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Upon photon scattering, the photoreceptors membrane hyperpolarizes and the

changes in the membrane potentials are transmitted through the network to the

ganglion cells (GC). The ganglion cells are the only cells in the retina which produce

action potentials. The axons, roughly 1.2 million, are packed into the optic nerve

which sends information to the thalamus relay, also called the lateral geniculate

nucleus (LGN). However, unlike a camera, the output from the GCs is influenced

Figure 1.1: Left: the 4 main elements of the visual pathway. Right: the eye and the

retina. The fovea is zoomed in on to show the GCs and the photoreceptors. Bottom:

the thalamus and the LGN with the optic nerve coming in. Figures modified from

[Purves 2004, Kandel 2000, Felten 2010].

by the network made of the cells we have listed above. The RFs of most ganglion

cells display a characteristic, roughly circular center-surround architecture where

the center is excitatory (resp. inhibitory) and the surround is inhibitory (resp. ex-

citatory), see figure 1.2. Moreover, the ON/OFF subregions are usually associated

with particular wavelengths of light. Hence, the GCs act as local spatial contrast

detectors. On the other hand, the temporal responses of the GCs subdivide in two

broad categories: tonic and phasic (see [Gouras 1968]). Tonic cells, also called P-

cells, respond to light stimuli in a steady maintained manner and their RF centers

are extremely small. These cell axons terminate in the parvocellular layer of the

LGN and form the beginning of the parvocellular pathway. The phasic cells, also

called M-cells, are selective for temporal changes in the stimulus. They form the

beginning of the magnocellular pathway and their axons contact the magnocellular

layers of the LGN. Hence, we could think of the retina, as a first approximation,

as a spatiotemporal contrast detector. Indeed, transmitting the same information

constantly is useless, it is changes in the information flow that are important. For
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a general discussion of the retina, see [Wohrer 2008].

Figure 1.2: Responses of the retinal ganglion cells whose receptive field is shown

in the top row. The yellow area indicates which region of the receptive field is

stimulated (time scale is in seconds). From [Kandel 2000].
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1.1.2 The lateral geniculate nucleus (LGN)

The thalamus is the entrance portal for all sensory information passed to the cortex

(see figure 1.1) but it is more than just a relay. The LGN, the part of the thalamus

concerned with vision, is composed of roughly 125 million of neurons and only 10%

of its inputs come from the retina. It is a layered structure and each of the 6

layers receives input from GCs from one eye and from one visual hemisphere (see

figure 1.11). Also, the retinal P-cells and M-cells projections are segregated in the

LGN: each type sends projections to specific layers in the LGN, respectively the

parvocellular layers and the magnocellular layers (see figure 1.11). Finally, the LGN

features the retinotopy property as does the primary visual area (see below). The

retinotopy in the LGN is the fact that two adjacent points in the visual field are

processed by LGN cells located next to one another in the same layer. If we travel

perpendicular to the layers, we find neurons that process the same part of the visual

field, but seen by each retina and through the responses of the P/M-cells. Hence,

it is as if there was a spatio-temporal decoupling of the stimulus in the 3D shape

of the LGN.

The neurons in the LGN are separated4 in two broad categories: the relay cells

(excitatory) and the interneurons (inhibitory). Most of the GCs contact the relay

cells which inherit of their RF, i.e. they are roughly circular with center-surround

organization. The relay cells also receive input from the visual cortex but this

feedback must be seen as modulatory because its inactivation has few effects on the

RF of the relay cells. Finally, the relay cells are found to spike in two firing modes:

the tonic firing mode and the bursting firing mode. Some evidence exists (reviewed

in [Sherman 1996, Sherman 2001]) suggesting that the cortex promotes the firing

mode via direct inputs to the relay cells and promotes bursting firing via indirect

input (i.e. via reticular and possibly interneurons) to the relay cells. For a more

precise account of the LGN properties, see [Sherman 1996].

1.1.3 The visual cortex

The cortex is a folded sheet of width 2cm known as the grey matter. It contains

the somas of the neurons. The white matter is made of the myelinated5 axons of

the grey matter. The cortex shares many features of the LGN. It is a layered struc-

ture, 6 layers that have been identified by [Brodmann 1909], which is also retino-

topically organised (see figure 1.11 where the retinotopy is shown). The mapping

between the visual field and the cortical coordinates is approximatively log-polar

(see [Schwartz 1977]). From the LGN, the information is transmitted to the visual

cortex located at the back of the head (see figure 1.1), mostly to the primary visual

area V1.

4More precisely, they are separated by the use of a specific neurotransmitter: glutamate for the

relay cells and GABA for the interneurons.
5Some axons are entoured of myeline which increases the propagations speed of actions poten-

tials.
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Where does the information go after V1? There are roughly thirty other

visual areas, all smaller than V1, for example V2, V4, MT, MST... (see

[Felleman 1991, DeYoe 1996]) that are different one from one another in architec-

ture, connectivity or functional properties. As a general principle, as we ascend the

hierarchical architecture of visual areas, the RF of neurons is larger and the neu-

rons are selective for stimuli that increase in complexity. For example, the area MT,

which receives direct input from V1, has neurons selective for direction of motion

and depth (see [DeAngelis 1999, Born 2005]). Hence, it is as if the local processing

of information precedes the processing of global properties. This is not completely

true as most higher order area send feedback projections, for example MT send

connections back to V1 which itself connects back to the LGN.

Let us consider V1 more precisely. From the studies of Hubel and Wiesel (see

[Hubel 1962, Hubel 1968]) of extracellular recording of single cells responses to sim-

ple stimuli of anaesthetised cats, the authors characterised two families of neurons in

V1: the simple and the complex cells. The RF of the simple cells is more elongated

than the RF of the LGN cells which accounts for their selectivity for the orientation

of the stimulus. It is also comprised of ON/OFF subregions (see figure 1.7). It has

been shown that these cells better respond to bars than to spots. Moreover, given

a stimulus, one can predict the cell response from the RF. On the other hand, the

complex cells are not so well characterised by their RF despite being responsive to

which eye is stimulated, the orientation, the spatial frequency of the stimulus and

other properties. Among all possible orientations of the stimulus, one yields the

maximum cell response, we call it the preferred orientation (see figure 1.10 below).

For moving bars or drifting gratings, 30% of V1 cells are selective for the direction

of motion (see [Geisler 2001]). In this case, we can define the preferred direction

of motion. However, these neurons have a greater sensitivity to orientation than

direction of motion.

Based on the retinotopy property, it is interesting to compare the preferred

stimulus of V1 cells and see how it is spatially organised in the cortex. This was

first studied in the 50s by Mouncastle and Hubel and Wiesel.

1.1.4 Selectivity and maps

Following [Mountcastle 1957], Hubel and Wiesel also showed that V1 is spa-

tially organised in columns where every neuron in each layer responds to the

same stimulus property. More precisely, by studying different cells located in

the same column perpendicular to the cortex surface, Hubel and Wiesel in

[Hubel 1962, Hubel 1965, Hubel 1977] showed that the preferred orientation of

these cells is the same. However, when moving the electrode parallel to the sur-

face, the preferred orientation of cells, if it exists, changes gradually. A similar

columnar organization exists for eye preference, spatial frequency preference, orien-

tation preference, direction of motion preference... The point-by-point sampling

with microelectrodes of cells preferences, performed by Hubel and Wiesel, has

since been supplemented by the optical imaging method of intrinsic signals (see
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[Blasdel 1986a, Grinvald 1986]), which reveals that the orientation preference map

is composed of pinwheel-like structures as shown in figure 1.3 for the tree shrew

visual cortex. A similar structure has been shown for the macaque primary vi-

sual cortex (see [Blasdel 1986a] and figure 10.1) and the cat visual cortex (see

[Bonhoeffer 1991]). In figure 1.3 B, the colour indicates the preferred orientation

of neurons in the underlying column. This figure was obtained by combining the

cortical responses for different orientation stimulus as shown in figure 1.3 A. The

striking feature, already found by Huber and Wiesel, is the existence of particular

points called pinwheels (see figure 1.3 C Right) where all orientations are repre-

sented. Between these pinwheels, there are linear zones where the local orientation

preference has not radial organization (see figure 1.3 C Left).

Due to the low spatial precision of the optical imaging technique 50µm (see

[Meister 2001]), a study of the pinwheel structure at the neuron scale was not

possible. However, it was shown by Ohki et al. in [Ohki 2005, Ohki 2006], by using

calcium imaging techniques, that the fine-scale structure of the pinwheel centres

is independent of the depth in the cortex. Hence the pinwheel points are not an

averaging artefact from the imaging technique but are functional correlates of the

spatial organization of the cortex.

In addition to the pinwheel structure, there are ocular preference domains, in

effect large bands, that shows to which stimulated eye the columns are more re-

sponsive. This property comes from the connections from the LGN6 which projects

each eye pathway in a segregated manner (see [Blasdel 1992b, Blasdel 1992a,

Blasdel 1986a]). The two maps of orientation preference and ocular preference

can be superposed as in figure 1.4 from [Hubener 1997] (in the cat), it becomes

clear that both systems are spatially related: many iso-orientation lines cross the

borders between ocular dominance columns close to right angles, and the pinwheel-

centers are preferentially located in the middle of the ocular dominance columns

(see [Obermayer 1993] and figure 1.4 for the cat, a similar figure is found in

[Hubener 1997] for the monkey). It seems a general principle that the primary

visual cortex is organized in modules corresponding to each part (left or right)

of the visual field, where evenly possible orientation is represented along with

ocular dominance. This is what Hubel and Wiesel called the hypercolumn (see

[Hubel 1962, Hubel 1977]). The module periodicity is usually in the millimetre

range. Moreover, the columnar organization implies that all feature maps are “su-

perimposed” on the 2D cortical sheet.

Remark 1.In the cat primary visual cortex, the preferred direction of movement

maps have been compared to the orientation map in [Swindale 2003]. These maps

are respectively obtained with static and drifting gratings. It appears that the vertical

(for example) preferred orientation zones (the blue zones in figure 1.3 B) are sub-

divided in two zones of opposed preferred direction of movement and this direction

of movement is horizontal, i.e. perpendicular to the preferred orientation.

6where the eye pathways are separated
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Figure 1.3: Optical imaging of intrinsic signals in tree shrew visual cortex. A)

Difference images obtained for four stimulus angles (00, 450, 900, 1350, shown in

inset of each panel) from one animal. Black areas of each panel indicate areas of

cortex that were preferentially activated by a given stimulus, and light grey areas

indicate areas that were active during presentation of the orthogonal angle. The

dashed line in the 900 panel indicates the approximate location of the V1/V2 border.

B) Orientation preference map obtained by vector summation of data obtained for

each angle. Orientation preference of each location is colour-coded according to the

key shown below. C) Common features of the orientation preference maps. Portions

of the orientation preference map shown in B have been enlarged to demonstrate

that the orientation preference maps contained both linear zones (left) and pinwheel

arrangements (right). From [Bosking 1997] for the tree shrew.
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Figure 1.4: Relationship between ocular dominance and orientation maps. The

coloured iso-orientation lines were derived from the orientation preference map. All

points on lines with a given colour prefer the same orientation. The contours of

the ocular dominance columns were obtained from the ocular dominance map of

the same cortical region, using an objective automated procedure; grey denotes

contralateral eye dominance. From [Hubener 1997] for the cat.

As a last example of a map, we show from [Diogo 2003], redrawn in fig-

ure 1.5, the motion selectivity map of the visual area MT in monkeys which

has been obtained using micro-electrodes arrays. This area is thought to (see

[Born 2005, Masson 2010, Tlapale 2011]) be implicated in the processing of move-

ment. It is highly connected with V1 (forward and feedback connections) and its

cells are mainly tuned for a direction of movement and speed.

The figure 1.5 illustrates the dependency of the maps on stimulus (Left of fig-

ure 1.5 is for drifting grating, Right for a moving dot). A pinwheel7 point is shown

as a white square and the linear zones are shown as in the orientation maps. Note

that it is difficult to obtain these maps because the MT area is not easy to access

in the macaque.

Finally, we would like to mention that adaptation shapes the feature maps. Pro-

longed synaptic activation leads to a decrease in the strength of cortical activation.

Hence, by showing prolonged (2 minutes) stimuli, one grating of fixed orientation

to cats, the neurons which belong to the same orientation column adapt and are

less responsive. The authors in [Dragoi 2000a, Dragoi 2001] show how the initial

orientation map is altered by adaptation (see figure 1.6). In particular, the response

of adapted neurons near pinwheels is more affected than those in the linear zone;

see [Dragoi 2001]. This is very important from an information processing view-

point. It means that the network adjusts its response to the stimulus and even the

orientation preferences of the cells change. Coupled to the micro-saccades of the

eyes, it suggests several interesting extensions to the rather static approach to visual

information processing that we have adopted in this Thesis; see [Schummers 2002].

7In this case the definition of the pinwheel point is a bit different, see [Diogo 2003]
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A

B

C

D

Figure 1.5: A: Colour-coded composite map of the two-dimensional surface of area

MT, which represents the preferred direction for a drifting grating. B: same but

for a moving dot stimulus. Colour code for preferred direction of motion appears

along the right margin of each map. Arrows overlaid on the colour map are a

sub-sampled vector description of local directional preference where relative length

reflects the strength of selectivity. Dark regions of the colour-coded map indicate

areas for which measurements were deemed unreliable. The white crosshairs indi-

cate the locations of recording sites. C/D: Directional tuning curves obtained at

these sites are illustrated at the bottom. Firing rate tuning curves are illustrated

in polar format. Spike rates (s/s) correspond to the scale of the outer circle in each

plot. Broken circles indicate spontaneous activity level. From [Diogo 2003] for the

monkey.

Remark 2.It also suggests that the preference maps are dynamical and are influ-

enced by the history of the stimuli. It would be interesting to analyse the concepts

of maps in the formalism of dynamical systems.

1.2 Connections

We now focus on the connections between the LGN and the cortex and on intra-

cortical connections.

1.2.1 Thalamo-cortical connections

The primary visual cortex has been anatomically subdivided in 6 layers. The LGN

makes most of its connections to layer 4 which is further subdivided into four sublay-
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Figure 1.6: A) Composite maps of orientation angle obtained during control, adap-

tation, and recovery conditions. To obtain these composite maps, the response

at each pixel to the eight single-stimulus orientations (including both directions of

motion) were summed vectorially and the resultant angle of preferred orientation

is displayed in pseudo-colour according to the key at bottom. Adapting orientation

is coded dark green. B) Magnified portion from A), showing the postadaptation

repulsive shift in orientation and the recovery from adaptation. Depending on the

difference between pixel orientation and that of the adapting stimulus, orientation

domains exhibit repulsive shift toward neighbouring orientations: for ∆θ = −22.5o

(light green) most pixels shift toward the “yellow” domain; for ∆θ = 0o (dark

green) many pixels are unchanged while others shift either toward the “light green”

or “light blue” domain; for ∆θ = 22.5o (light blue) most pixels shift toward the

“dark blue” domain. From [Dragoi 2000a] for the cat.
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Figure 1.7: Left: examples of RFs of simple cells in V1. Right: illustration of the

Hubel and Wiesel models which gives elongated RF to V1 simple cells from circular

RF of the LGN. From [Kandel 2000].

ers 4A, 4B, 4Cα, 4Cβ. The M-cells axons terminate in layer 4Cα while the P-cells

axons make contact in layer 4Cβ. Hence, the two pathways are still segregated when

they enter the primary visual cortex (see [Lund 1988, Lund 2003a, Solomon 2002])

and the connections are only excitatory (see [Perkel 1986]). It should be noted that

there is a third pathway, called the koniocellular pathway that links cells between

the LGN layers directly to superficial layers of cortex within the cytochrome oxidase

(CO) blobs8.

The question of how V1 simple cells acquire orientation selectivity from the LGN

cells9 has been addressed in the studies of Hubel and Wiesel (see also section 1.3).

Hubel and Wiesel hypothesised (see below and figure 1.7) that a V1 simple cell

receives many inputs from LGN cells and the sum of the RFs of these LGN cells

is roughly the RF of the simple cell. This has been demonstrated10 for the cat

in a recent paper [Jin 2011]. In this paper, the authors experimentally computed

the thalamic population receptive field of the ON and OFF inputs to a V1 simple

cells of preferred orientation θ. The sum of the (circular) RF of the population

thalamic RF gives an elongated RF in V1 that provides an accurate prediction of

the preferred orientation θ (see also [Reid 1995]).

The area V1 also sends feedback to the LGN mainly from its layer 6. These

connections are called cortico-fugal. An interesting question is to know how the ON

and OFF zones of simple cells in V1 are spatially aligned with the ON and OFF

center LGN cells they influence. For the cat, it has been shown in [Murphy 1996,

Wang 2006] that in general, feedback axons contact LGN cells lying in a line either

parallel to, or perpendicular to, the axis of the orientation preference of the parent

layer 6 cell (see figure 1.8). This was measured by studying the change of the balance

8These blobs are cortical functional compartments revealed by CO, a mitochrondrial enzyme.
9with no orientation preference

10The results reported in this paper calls for more experiments to be sure that they do not

depend on the place of the recorded V1 simple cell inside the pinwheel network.
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between the bursting/tonic firing modes of the LGN cells (see section 1.1.2). Note

that there is a phase reversal of the feedback influence with respect to the ascending

connections, which we now explain. Indeed, the ascending connections connect LGN

cells with ON center area in their RF to V1 simple cells with ON center area in

their RF. The feedback connections show a different pattern. Indeed an ON-center

V1 cell sends direct feedback to OFF-center LGN cells and feedback to ON-centers

LGN cells only via an inhibitory interneuron. The “phase” is said to be aligned

when ON-center cells are connected to ON-center cells and is said reversed when

ON-center cells are connected to OFF-center cells. Moreover, LGN cells arranged

on a line send axons to a V1 simple cell whose RF is elongated along the same

line but the V1 cell sends feedback connections to LGN cells either aligned, or

perpendicular to the V1 cell RF. The authors call this scheme of the feedback

connectivity a reverse Hubel and Wiesel scheme (see figure 1.7 for the usual Hubel

and Wiesel schema ) in feedback from V1 to LGN.

1.2.2 Intra-cortical connections in V1

We now focus on the intra-cortical connections. We will not look at the de-

tailed connectivity between the layers (see for example [Salin 1995, Nowak 1997,

Thomson 2002, Thomson 2003, Markram 2004, Markram 2006, Thomson 2007] and

also [Grimbert 2008, Chemla 2010b]). Let us first mention that the term horizontal

connectivity is used for the intra-cortical connections between columns, parallel to

the cortical surface, whereas the vertical connectivity is used for intra-column con-

nections. The thalamo-cortical connections that we have described in section 1.2.1

provide a very small percentage of the inputs in layer 4: 95% of these inputs are

made of recurrent connections, i.e. intracortical connections (see [Douglas 1995]).

The local excitatory/inhibitory connections are homogeneous, i.e. the pattern of

connections is the same over the cortex. At a given cortical location r, the contacted

neurons are located in a disc of radius which is of the order of 0.5 − 1mm (see

[Malach 1993, Angelucci 2002] for the primate, [Das 1999, Mariño 2005] for the cat

and [Fitzpatrick 1996] for the tree shrew) and they are uniformly distributed in this

disc. In [Das 1999], it is concluded that the synaptic efficacy of these connections

decreases with the distance of projection. This particular organization of local

connectivity together with the structure of orientation maps (as in figure 1.3) implies

that these connections play a different role depending on the place of the neurons

in the pinwheel map (see [Shelley 2002, Mariño 2005, Nauhaus 2008]). Indeed, the

homogeneous connections provide a uniform sampling of the neighbouring neurons.

In the linear zones, the neurons “see” mainly neurons with the same orientation

preference, whereas near pinwheels the neurons can “see” all orientations.

Concerning the long-range connections, it has been demonstrated that they are

mainly made by excitatory neurons in layers 2/3, 4B, 4Cα, 5/6 of macaque area

V1 in [Rockland 1983, Malach 1993, Yoshioka 1996]. These projections are patchy

rather than homogeneous, axons ramify and make extensive terminal branches only

at particular discrete locations across the cortex. In particular, the long-range con-
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cortical 
  soma

axons
of V1 cells

Figure 1.8: Left: a) Arrangement for the phase aligned connections via inhibitory

interneurons (drawn in black) and direct phase reversed connections to relay cells.

b) Receptive field types associated with phase aligned and phase reversed connec-

tions. Cortical cell is shown as having an ON center. LGN cells with “+” centers

are ON center and “-” centers are OFF center. Right: the diagram shows the pat-

tern of feedback made by two layer 6 cells to an ON- center LGN relay cell. The

receptive field of one feedback cell matches that of the LGN cell, in that it has a

central ON sub-region (red cell). The other has a central OFF sub-region (blue

cell). All three receptive fields are centred on the same point in visual space. The

cell with the matched field contacts the LGN cell through an inhibitory inter neu-

ron (black). Conversely, the cell with the mismatched field makes direct excitatory

contact. Modified from [Wang 2006] for the cat.

nections preferentially link cortical domains of similar orientation preference ±30o

(see [Malach 1993, Yoshioka 1996, Stettler 2002, Lund 2003a]). The anisotropy ra-

tio is the extent of long/short axis of the ellipse which contains all the long-range

connections. In [Angelucci 2002], it is found that the mean anisotropy ratio is

1.56 (see white ellipses in figure 1.9). The anisotropy of horizontal connections in

macaques follows from the anisotropy of the visual field representation in V1 (cf.

retinotopy and log-polar map. Recall that there is a cortical magnification of the

fovea.), i.e. it is not correlated to a feature like orientation. In other words, if we
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macaquetree shrew

Figure 1.9: Left: Synaptic bouton distributions after an injection of biocytin shown

over orientation preference maps for the tree shrew. The injection site has a pre-

ferred orientation of 80o. The boutons are localized along the axis of preferred

orientation of the marked cells. From [Bosking 1997]. The synaptic bouton is the

presynaptic terminal at the synapse. Right: patchy horizontal connections in lay-

ers 2/3 of macaque area V1. Small square, labeled patch shown at higher power

in the inset. Scale bar, 500µm. Inset, High-power drawing of patch in the small

square, showing labeled fibers and somata (dots), indicating reciprocity of connec-

tions. Scale bar, 100µm. From [Angelucci 2002]. The white ellipses are meant to

show the anisotropy of the connections.

drew11 figure 1.9 Right in visual field coordinates, the patches would appear to lie in

a disc and not in an ellipse. Finally, these long-range connections are modulatory,

i.e. they cannot elicit a spike in the contacted neuron although they can modulate

its membrane potential.

Remark 3.On the other hand, it has been shown for the tree shrew that the patchy

long-range connections have an anisotropy axis aligned with the axis of preferred

orientation (see [Fitzpatrick 1996, Bosking 1997] and figure 1.9 Left). Hence, the

long-range connections implement a principle of good continuation unlike in the

monkey.

To finish, we would like to emphasize the difference between anatomy and func-

tion. Feature preferences are found by using stimuli, i.e. by puting the network to

work. However, there are no anatomical clues about orientation, spatial frequency...

columns. At best, there are clues for an organization into functional columns in

the macaque area V1 (see [Lund 2003a] and figure 1.9). Also the feature selectivity

11It is specific to macaques.
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does not dictate a columnar organization. One of the best examples is the rat with

well-defined orientation selective neurons mixed spatially in a salt-and-pepper way

without columnar match in preferred orientation whereas its barrel cortex, which

processes its whisker movements, is organised in columns.

See [Voges 2010, Chavane 2011] for a review about patchy connections and long-

range connections.

1.3 A closer look at orientation selectivity

The problem of orientation selectivity is central to the neuroscience community;

most likely because it is a simple phenomenon, easily reproducible, that takes place

at the boundary between the thalamus and the cortex. In effect, the orientation

selectivity properties lie in the relative contributions of the afferent inputs and

recurrent computations (see [Ferster 2000, Martin 2002] and also [Monier 2002]).

Whether the orientation selectivity stems from LGN inputs or cortical computation

is still a matter of debate. More theoretically, this question is related to how much

the cortex is influenced by its sensory inputs.

1.3.1 Biological facts

We have seen that V1 simple cells are orientation selective and that V1 is spatially

organised in a pinwheel network. However, the V1 simple cells in cats share an

additional and remarkable property which is linked to their tuning curves properties.

Definition 1.3.1 (Tuning curve). The tuning curve is the response (firing rate,

membrane potential) of a neuron or a population of neurons to a stimulus as func-

tion of the stimulus parameter(s) (orientation, spatial frequency...).

In [Sclar 1982], the authors showed how the firing rate tuning curves of V1 sim-

ple cells in cats depend on the stimulus contrast12. In particular, the response at

the preferred orientation increases with the exponential of the contrast but the ori-

entation selectivity, related to the width of the firing rate tuning curve, is contrast

invariant (see figure 1.10). Moreover, the maximum response is an increasing func-

tion of the contrast but it saturates below the maximum firing rate of the simple

cell (see [Albrecht 1982, Levitt 1997]) and in some cases, it hypersaturates, i.e. de-

clines with very high contrast levels (see [Levitt 1997]). Hence, the saturation effect

comes from a network property: it is an important clue for the operating regime of

the cortex because it normalizes the signal at the cortical level.

For the macaques, the picture is less clear. For now, contrast invariance has not

been firmly established and a recent study by Nowak et al. in [Nowak 2009] shows

that contrast adaptation is implicated in the contrast invariance of tuning curves

width for the marmoset monkey. In particular, they showed that the tuning curves

are not contrast invariant when the stimulus is presented for 0.2s. For the rest of

12For a drifting grating stimulus S(x, t) = S0(1 + C cos(t − k · x)), the contrast is given by the

pre-factor C. The orientation is given by the angle of the vector k.
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Figure 1.10: Left: typical tuning curves of a cat V1 simple cell as a function of

the contrast of drifting gratings. From [Sclar 1982]. Also shown is the idealisation

of the result on the left. Right: Examples of orientation tuning curves and their

location within the orientation map are shown for a monkey (A) and a cat (B). They

are ranked in order of increasing values of the local homogeneity index (shown near

each local orientation map). From [Nauhaus 2008].

this section, we will focus on the cat biology, especially on the contrast invariance

of tuning curve widths in cats because adaptation is not seen to play a role.

Moreover, it has been shown that the firing rate tuning properties depend on the

spatial localisation of the simple cell in the orientation map for monkeys and cats

(see [Nauhaus 2008]). In particular, it appears (see figure 1.10 Right) that tuning

width decreases with increasing values of the local homogeneity index, which is

an indication of the neighbouring preferred orientations. Note that this result is

in contradiction with the studies in [Schummers 2002, Mariño 2005] which report

a firing rate tuning curve that is invariant across the cortex13. It is supposed

in [Nauhaus 2008] that the discrepancy comes from the coarse sampling of the

orientation tuning curves at 22.5o steps used in [Schummers 2002, Mariño 2005]

given the range of tuning widths seen in cat ∆θ = 5o − 20o.

1.3.2 Two classes of models

In order to account for this contrast invariance property, two classes of models

have emerged that emphasize the role of the LGN afferent inputs, also called the

feedforward models, or the role of the recurrent connections in the cortex, also called

the recurrent models.

The original feedforward model dates back to Hubel and Wiesel’s work. The

model consists of two processing stages. The first is a linear summation of inputs

from LGN cells whose receptive fields are arranged in rows as in figure 1.7. The

second stage is the nonlinear filtering of the summed inputs by the spike threshold.

13These studies also demonstrate that the tuning width of subthreshold membrane potential in

cat, is broader near pinwheels than in iso-orientation domains.
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To have an output, i.e. to be above threshold, the net excitation14 must be larger

than the net inhibition15 and these net contributions are increasing functions of

the contrast16. Unfortunately, after thresholding, the width is also an increasing

function of the contrast, this is called the iceberg effect (see [Rose 1974]). The

model has then been modified in [Troyer 1998] to account for contrast invariance

by using orientation dependent inhibition in order to compensate for the net ac-

tivation. However it is not supported by biology. Recently, a new version of the

feedforward model as been proposed in [Finn 2007] (see also [Carandini 2007]). It

features contrast-gain control, additive noise, and a firing threshold to account for

the contrast invariance of selectivity.

The other type of models that have been used to account for the contrast invari-

ance of tuning width is the recurrent models (see [Ben-Yishai 1995, Somers 1995,

Hansel 1997, Douglas 1995, Carandini 1997, Shelley 2002, Kang 2003]). These

models are motivated by the fact that most of synaptic inputs of layer 4 neurons

are recurrent connections. Hence, the model assumes that the thalamic inputs are

weakly tuned and the tuning is sharpened by the cortical computations. These re-

current models are further subdivided in two classes, those that make explicit use of

a feature dependent connectivity (see [Ben-Yishai 1995, Somers 1995, Hansel 1997,

Douglas 1995, Carandini 1997]) and the one that are based on the local connections

we have described in section 1.2.2 (see [Shelley 2002, Kang 2003]). However, it is

important to note that the latter class of models do not work in the same regime

as the first which operate near a static bifurcation (see chapter 3).

1.4 Conclusion

In this chapter we have reviewed the basic material about the visual pathways

in mammals. I gave in to the temptation to provide more information than will

actually be used in the sequel, but hope that the reader is amazed, as much as I

am, by the fine structure/properties of the retina, the LGN and the cortex. For

convenience, we have collected the principal information in figure 1.11.

In particular, the focus was on the tuning properties of V1 simple cells in cats.

We will come back to the recurrent models in chapter 3 and in part IV. The point

we want to make is that by using simple network models with few parameters and

by trying to account for well-established biological facts, we can constrain a lot the

possible parameters values. The resulting network with those equiped parameters

is likely to feature new behaviours that will be the basis of interesting predictions

that could be tested experimentally.

14sum of the ON subregion responses
15sum of the OFF subregion responses
16from retinal and thalamic cells properties.
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Figure 1.11: Schematic representation of the visual pathway. Note the retinotopic

representation and the magnification of the fovea. Each LGN has 6 layers which

project to V1. For V1, we have represented the orientation and the retinotopy

maps.
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The neural fields model

Contents

2.1 A brief account for the flow neuronal activity . . . . . . . . 24

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Propagation of activity between two neurons . . . . . . . . . 25

2.2 The local models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 The voltage-based model . . . . . . . . . . . . . . . . . . . . 29

2.2.2 The activity-based model . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Relationship between the two formulations . . . . . . . . . . 31

2.2.4 The continuum models . . . . . . . . . . . . . . . . . . . . . . 31

2.2.5 The propagation-delay function . . . . . . . . . . . . . . . . . 33

2.3 The Mexican hat model . . . . . . . . . . . . . . . . . . . . . 33

In this chapter, we present the neural field (NF) model. It first appeared in

the 50’s (see [Beurle 1956]) but the theory really took off in the 70’s with the work

of Wilson and Cowan [Wilson 1972, Wilson 1973] and Amari [Amari 1977]. This

model is a continuous network of interacting populations which are distributed over

the cortex. The spiking activity is approximated by the mean firing rate. Compared

to spiking neural networks, the NF model presents the advantage of having less

parameters, hence, is simpler to analyse. The NF equations are heuristically derived

(see below). A huge effort of researching is put in finding mean field equations that

are the limit equations, when the number of neurons tends to infinity, of equations

of spiking neural networks. The mean field equations have not yet been linked to

the NF equations.

The disadvantages of the neural field model lie in their main modelling assump-

tions. They cannot cope with the spike timing and spike correlation effects. These

effects are at the basis of important intrinsic mechanisms of adaptation and learn-

ing. We would like to point out that these mechanisms have been incorporated at

the mesoscopic level using heuristic arguments. For example, the effects of synaptic

depression/facilitation have been introduced in the NF formalism in [Tsodyks 1998]

and further studied in [Kilpatrick 2010a, Kilpatrick 2010b]. The effects of spike fre-

quency adaptation, which are neuronal effects and not synaptic effects, have been

studied in [Curtu 2004, Coombes 2003, Coombes 2005a]. For a review on neural

field models, see [Ermentrout 1998, Coombes 2005b].
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2.1 A brief account for the flow neuronal activity

2.1.1 Introduction

The goal of this section is not to give a detailed account of the neurons biophysics

and models (see for example [Tuckwell 1988, Dayan 2001a, Purves 2004, Koch 2005,

Izhikevich 2007, Felten 2010, Sterratt 2011]). Rather, we would like to recall some

basic properties of the neural activity that are needed for the derivation of the NF

model.

The neurons are composed of four main components: the dendritic tree, the

soma, the axon which is linked to the soma at the axon hillock and the pre-synaptic

terminals (see figure 2.2). The neurons are connected with synapses which are the

interface between the afferent axon and the targeted neuron. There are two kind

of synapse, the chemical and the electrical (also called gap junctions). We will

not consider the electrical synapses in this Thesis (see [Steyn-Ross 2007] for more

information). When the somatic potential across the membrane reaches a threshold,

a sequence of action potentials (also called spikes) is produced at the axon hillock.

This sequence is then transmitted, without alteration, to the axon terminals where

the synapses with the targeted neuron are located.

When a spike arrives at a synapse, it triggers the release of neurotransmitter in

the synaptic cleft. These neurotransmitters bind to specific receptors on the post-

synaptic neuron. The binding causes ion channels to open (or close), thus changing

the ability of ions to flow through the post-synaptic membrane. Hence, the binding

of neurotransmitters alters the conductance of the post-synaptic membrane. Let us

consider a spike that arrives at t = 0 at the synapse, then we write:

Isyn(t) = gsyn(t)(V (t)− Esyn) (2.1)

where gsyn is the conductance of the post-synaptic membrane, Isyn is the post-

synaptic electrical current, V is the voltage across the post-synaptic membrane1 and

Esyn is the reversal potential of the ion channels that mediate the synaptic current.

Three waveforms of synaptic conductance are commonly used in the literature

gsyn(t) = ḡsyne
−t/τH(t)

gsyn(t) = ḡsyn
t
τ e
−t/τH(t)

gsyn(t) = ḡsyn
τraiseτdecay
τraise−τdecay

(
e−t/τraise − e−t/τdecay

)
H(t)

(2.2)

where H is the Heaviside function. The waveforms, respectively called the expo-

nential decay, the alpha function and the dual exponential, are shown in figure 2.1.

The characteristics of the synapses are contained in the constants ḡsyn, τ · · ·
In order to know the time evolution of the post-synaptic potential V , which will

be written PSP below, another equation is required. It is usually of the form:

τv
dPSP

dt
= ψ(PSP ) + Isyn (2.3)

1also called the post-synaptic potential and written PSP below.
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where ψ is a nonlinear function of the potential PSP . We need to solve (2.3) in

order to know the post-synaptic potential waveform PSP caused by the incoming

pre-synaptic spike at the synapse. However, this is not easily done and we assume

a particular waveform PSP in the next sections 2.2.1 and 2.2.2.

Remark 4. If the decay of the synapse is very fast, then the decay of the post-

synaptic membrane potential PSP is dominated by the passive decay of the post-

synaptic cell membrane. On the other hand, if the synapse is long-lasting, then the

decay of the post-synaptic membrane potential PSP is dominated by the synaptic

time constant.

Figure 2.1: Three waveforms of synaptic conductance: a) exponential decay with

τ = 3ms, b) alpha function with τ = 1ms and c) dual exponential with τraise = 3ms

and τdecay = 1ms. From [Sterratt 2011].

If we connect two neurons with a single synapse described by (2.1), we can study

under what conditions a spike produced in the first neuron will trigger the produc-

tion of a spike in the second neuron. If the dendrite processing is neglected, it can

be shown that the synapses introduce an effective delay D in the production of the

spike by the second neuron (see [Fourcaud-Trocme 2003, Roxin 2005, Roxin 2011]).

This is because of the action potential initiation dynamics in Hodgkin-Huxley-type

neurons. This dynamics is neglected in the NF model but, following [Roxin 2005],

we introduce an effective delay D in the NF model. Indeed, the authors show

that such a delay is necessary for the firing rate models where the spike initiation

dynamics is neglected, to reproduce behaviours found in spiking neurons networks.

They are other sources of delays in the transmission of the neuronal activity

like the propagation delays d which arise because of the finite velocity of spikes

along axons. To roughly take into account the dendritic processing, we could also

introduce another effective delay.

2.1.2 Propagation of activity between two neurons

We have described the basic biophysics of an isolated neuron in the last section. Let

us now recall, in a very schematic way, the path of information from one neuron j to

another one i. When a spike arrives at a synapse sij;k, depicted by A1 in figure 2.2,

it produces a post-synaptic potential PSPij;k as we describe in the previous section.

We drop the index of the synapse k between neuron i and j for convenience. This
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potential is then filtered by the dendritic tree (A1-A2) and the effective potential felt

by the soma is a temporally shifted and attenuated version of the original PSPij .

Hence, depending on where the input comes to the dendrite, the potential felt by

the soma can be quite different. If the somatic membrane potential Vi is above

Axon

Dendrites

Axon hillock

Soma

Axon

Synaptic
  cleft

dendrite

   Axon
terminaison

Dendrites

Neuron
j

Neuron
i

propagation delay

Simplified 
 dendrite

synapse
A1

A2

A3

A4

effective delay

Figure 2.2: Schematic drawing of the membrane potentials during the transmission

of a spike from a neuron i to a neuron j. The soma has the membrane potential Vi
and produces spikes at a rate νi = Si(Vi), where Si is a nonlinear function defined

below. Adapted from [Ermentrout 2009] and N.Rougier’s drawing

a threshold, then a spike is produced at the axon hillock (see A3). This spike is

transmitted along the axon, without attenuation, until it reaches another synapse

(see A4). The delay it takes for a spike to go from the axon hillock to the synapse

is written dji.

http://fr.wikipedia.org/wiki/Fichier:Neuron-figure-fr.svg
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In the NF model, we suppose that the dendrite is punctual and we neglect the

effects of nonlinear spatial filtering that are produced by the dendritic tree (see

[Coombes 2003, Venkov 2008] for a NF model of dendrite). We also assume that

there is a single synapse to simplify the notations. We can compensate for this

assumption by assuming that more spikes come to the synapse between i and j. In

particular, we neglect the propagation delays in the dendritic tree although they

could be easily introduced, in a heuristic way, in our final equations (2.12). On

the other hand, we have seen above that this synapse introduces an effective delay

Dji. Hence, the total delay between the production of the spikes in each neuron is

τji ≡ Dji + dji.

2.2 The local models

We consider p interacting populations of neurons such as those shown in figure 2.3.

The figure is inspired by the work of Alex Thomson [Thomson 2003] and Wolfgang

Maass [Haeusler 2007]. It shows six populations of neurons. Red indicates excita-

tion, blue inhibition. The thickness of the arrows pertains to the strength of the

interaction. The six populations are located in layers 2/3, 4 and 5 of the neo-cortex.

L2/3-E

L5-E

L4-E

L5-I

L4-I

L2/3-I

Figure 2.3: A model with six interacting neural populations.

The following derivation follows closely that of Ermentrout [Ermentrout 1998].

We consider that each neural population i is described by its average (so-

matic) membrane potential Vi(t) or by its average instantaneous firing rate νi(t),

the relation between the two quantities being of the form νi(t) = Si(Vi(t))

[Gerstner 2002, Dayan 2001a], where Si is sigmoidal

Si(x) =
Sim

1 + e−σi(x−θi)
, (2.4)
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σi is the nonlinear gain and θi is the threshold. The threshold determines the

minimum somatic potential that triggers the initiation of a spike at the axon hillock.

The shape of the sigmoidal function is shown in figure 2.4 for the values of the

parameters θi = 0 and σi = 0.5, 1, 10. When σi → ∞, Si/Sim converges to the

Heaviside function H(v − θi) defined by

H(v − θi) =

{
0 if v < θi
1 otherwise

.

s = .5
s = 1
s = 10

 

0

0.2

0.4

0.6

0.8

1

S(v)=1/(1+exp(-s*v))

–10 –8 –6 –4 –2 2 4 6 8 10
v

Figure 2.4: Three examples of sigmoidal functions for different values of the param-

eter σi and θi = 0, see text.

Neurons in population j are connected to neurons in population i. A single

action potential from neurons in population j is seen as a post-synaptic potential

t→ PSPij(t−s) by neurons in population i, where s is the time of the spike hitting

the synapse and t the time after the spike.

Assuming that the spikes contributions sum linearly, the average membrane

potential of population i due to action potentials of population j is

Vi(t) =
∑
k

PSPij(t− tk −Dji),

where the sum is taken over the arrival times, at the synapse between the neurons

j and i, of the spikes produced by the neurons in population j. Recall that the

effective delay Dji is the time interval between the spike time arrival at the synapse

and the maximum of the postsynaptic membrane potential of neuron i. These spikes

have been produced at time tk−dji by the neuron j. The number of spikes arriving

between t and t+ dt is νj(t− dji)dt. Therefore we have

Vi(t) =
∑

j

∫ t
t0
PSPij(t− s−Dji)νj(s− dji) ds (2.5)

or, equivalently

νi(t) = Si

∑
j

∫ t

t0

PSPij(t− s−Dji)νj(s− dji) ds

 (2.6)
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The model as described above is not well defined as we see at t = t0 that we

have set the potentials all to be 0. Since one often takes t0 → −∞, this is not a

big problem. The PSPij can depend on several variables in order to account for

adaptation, learning. . . There are two main simplifying assumptions that appear in

the literature [Ermentrout 1998, Pinto 1996] and produce two different models that

we describe below. Note that the previous equations are integral equations. It

would simplify the analysis if we could write them as differential equations. This is

possible if PSPij are sums of exponentials and powers as we suppose below.

Note that we are not able to solve analytically (2.3) to obtain the post-

synaptic membrane potential PSP . This would allow to plug the expression

of PSP in (2.5) and obtain a system of equations for Vi. This is why we assume

a simple shape for PSPij in the following two sections and discuss in section 2.2.3

under what conditions our simple expression for PSPij is relevant.

2.2.1 The voltage-based model

The assumption, [Hopfield 1984], is that the post-synaptic potential has the same

shape no matter which pre-synaptic population caused it, the sign and amplitude

may vary though. This leads to the relation

PSPij(t) = wijPSPi(t).

If wij > 0 the population j excites population i whereas it inhibits it when wij < 0.

The shape of synaptic response PSPi is often approximated by a simple exponential

decay PSPi(t) = kie
−t/τiH(t), or equivalently that

τi
dPSPi(t)

dt
+ PSPi(t) = kiδ(t). (2.7)

We end up with the following system of delayed differential equations.

Lemma 2.2.1. Equation (2.5) implies that

τi
dVi(t)

dt
+ Vi(t) =

∑
j

wijSj(Vj(t− τji)) + Iiext(t). (2.8)

Proof. We compute

τi
d

dt
Vi(t) =

∑
j

[
τiPSPij(−Dji)νj(t− dji)

+ wij

∫ t

0

(
−PSPi(t− s−Dji) + kjδt−s−Dji

)
νj(s− dji)ds

]
As PSPij(t) = 0 if t < 0, the first term vanishes and we find:

τi
d

dt
Vi(t) = −Vi(t) +

∑
j

wijkjνj(t− τji)
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which concludes the proof. �
Equation (2.8) describes the dynamic behaviour of a population. We have in-

corporated the constant ki in the weights wij and added an external current Iext(t)

to model the non-local connections2 of population i.

Since the decay is governed by the membrane properties of the post-synaptic

cell, τi is legitimately called the membrane time constant.

However, the approximation PSPi introduces a discontinuity at t = 0 and ig-

nores the characteristic delay peak as seen in figure 2.1. A better choice is to use

PSPi(t) = ki

(
e−t/τi;1 − e−t/τi;2

)
H(t)

where τi;1, τi;2 are the time constants of the synaptic response. With this choice of

PSPi, we find, up to a rescaling of wij , the equations

τi;1τi;2
d2Vi(t)

dt2
+ (τi;1 + τi;2)

dVi(t)

dt
+ Vi(t) =

∑
j

wijSj(Vj(t− τji)) + Iiext(t), (2.9)

We will not consider the equations (2.9) except in part III where we show briefly how

the delays impact the second-order time dynamics. In chapter 3, we are interested

in stationary solutions of the NF models and they are the same for (2.8) and (2.9).

We introduce the p × p matrices J such that Jij = wij/τi, and the function S,

Rp → Rp such that S(x) is the vector of coordinates Si(xi), if x = (x1, · · · , xp). We

rewrite (2.8) in vector form and obtain the following system of n delayed differential

equations

V̇(t) + LV(t) = J S(Vt) + Iext(t), (2.10)

where L is the diagonal matrix L = diag(1/τi) and Vt is a compact notation for

the delayed terms Vj(t− τji) (which will be introduced in part III).

2.2.2 The activity-based model

The assumption is that the shape of a PSP depends only on the nature of the

pre-synaptic cell, that is

PSPij(t) = wijPSPj(t).

As above, we suppose that PSPi(t) satisfies the differential equation (2.7) and define

the time-averaged firing rate to be

Aj(t) =

∫ t

t0

PSPj(t− s)νj(s) ds.

A similar derivation as in lemma 2.2.1 yields the following set of p delayed

differential equations under the assumption that t0 → −∞. Hence, the derivation

2for example with the thalamus
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of the activity-based equations is not rigorous but rather heuristic.

τi
dAi(t)

dt
+Ai(t) = Si

∑
j

wijAj(t− τji) + Iiext(t)

 i = 1, · · · , p.

We include the kis in the sigmoids Si and rewrite this in vector form:

Ȧ(t) + LA(t) = S(J ·At + Iext(t)), (2.11)

Note that the true firing rate is the right-hand side of (2.11). A is also called, in

the literature, the synaptic drive (see [Pinto 1996]). Since the τi depend on the

pre-synaptic time constants, they are related to the synaptic decay and not to the

post-synaptic membrane time constant.

2.2.3 Relationship between the two formulations

We have derived two NF models in the last two sections. Based on remark 4, if

the synapses are fast, the dominant time constant is the membrane time constant:

the voltage-based model is more appropriate. On the other hand, if the membrane

time constant is small, the dominant time constant is the synaptic decay time: the

activity-based model is more appropriate.

If we suppose that Iext is stationary, and assume that the delays τji are zero and

L is scalar L = l · Id, then the voltage-based model can be derived from the activity

based model the change of variables V(t) = J · A(t) + Iext. Also the stationary

points of each model are mapped by the change of variables A = S(V).

2.2.4 The continuum models

We now combine these local models to form a continuum of neural fields, e.g., in

the case of a model of a significant part Ω of the cortex. We consider a subset Ω

of Rd, d = 1, 2, 3 which we assume to be connected and compact, i.e. closed and

bounded. This encompasses several cases of interest.

When d = 1 we deal with one-dimensional sets of neural fields. Even though this

appears to be of limited biological interest, this is one of the most widely studied

cases because of its relative mathematical simplicity and because of the insights one

can gain of the more realistic situations.

When d = 2 we discuss properties of two-dimensional sets of neural fields. This

is perhaps more interesting from a biological point of view since Ω can be viewed

as a piece of cortex where the third dimension, its thickness, is neglected. This case

has received by far less attention than the previous one, probably because of the

increased computational difficulty.

Finally d = 3 allows us to discuss properties of volumes of neural fields, e.g. cor-

tical sheets where their thickness is taken into account [Kandel 2000, Chalupa 2004].

We note V(r, t) (respectively A(r, t)) the p-dimensional state vector at the point

r of the continuum. We introduce the p×p matrix function J(r, r′) which describes
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how the neural mass at point r′ influences that at point r. We call J the connectivity

matrix function.

More precisely, Jij(r, r
′) describes how population j at point r′ influences popu-

lation i at point r.

Equation (2.10) can now be extended to

d

dr
V(r, t) = −LV(r, t) +

∫
Ω

J(r, r′)S(V(r′, t− τ (r, r′))) dr′ + Iext(r, t), (2.12)

and equation (2.11) to

d

dr
A(r, t) = −LA(r, t) + S

(∫
Ω

J(r, r′)A(r′, t− τ (r, r′))) dr′ + Iext(r, t)

)
. (2.13)

The quantity τ (r, r′) is the total delay for the processing of the information, from

populations located at r′ to populations located at r (see next section 2.2.5).

As before, we shall write the above equations in a condensed way:

V̇(t) = −LV(t) + J · S(Vt) + Iext(t),

Ȧ(t) = −LA(t) + S(J ·At + Iext(t)).
(2.14)

A significant amount of work has been devoted to this or closely related problems,

starting perhaps with the pioneering work of Wilson and Cowan [Wilson 1973].

A fairly recent review of this work, and much more, can be found in a pa-

per by Coombes [Coombes 2005b]. Amari [Amari 1977] investigated the prob-

lem in the case d = p = 1 when the sigmoid function is approximated by

a Heaviside function and the connectivity function has a “Mexican-hat shape”.

He proved the existence of stable localised stationary solutions in this case.

His work has been extended to different firing-rate and connectivity functions

[Gutkin 2000, Laing 2002, Laing 2003b, Rubin 2004, Guo 2005b, Guo 2005a].

The case p = 1, d = 2 has been considered by several authors including

[Pinto 2001a, Pinto 2001b] for general firing-rate functions and Gaussian-like con-

nectivity functions, and [Blomquist 2005] when the firing-rate functions are approx-

imated by Heaviside functions.

Extending these analysis to two- or three-dimensional continuum is difficult be-

cause of the increase in the degrees of freedom in the choice of the connectivity

function. The case p = 2, d = 1 has been studied in [Werner 2001, Bressloff 2005a]

when the firing-rate functions are approximated by Heaviside functions and the con-

nectivity function is circularly symmetric while the case p = 2, d = 2 is mentioned

as difficult in [Doubrovinski 2005].

To be complete, let us point out that equations of the type of (2.12) and (2.13)

without delays have been studied in pure mathematics, see [Hazewinkel 2001]. They

are of the Hammerstein type [Hammerstein 1930, Tricomi 1985]. This type of equa-

tions has received some recent attention, see [Appell 2006], and progress have been

made toward a better understanding of their solutions.
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2.2.5 The propagation-delay function

Following the derivation in section 2.1.2, we call τ (r, r′) the total delay for the

processing of the information, from populations located at r′ to populations located

at r. What is the space dependent delay function τ (r, r′) in the cortex? Our analysis

is built upon the recent paper [Budd 2010]. It is concluded that if a neuron located

at r is connected to another neuron located at r′, the path length of this connection

is very close to ‖r− r′‖2, the Euclidean distance. In other words, axons are straight

lines. This is true if the two neurons are at most 2mm apart but we will assume it is

also true for long range connections. Our analysis carries through for more general

delay functions. Moreover, we have seen in section 2.1.1 that constant delays have

to be introduced in order to take into account the finite integration time of action

potentials by synapses ans post-synaptic neurons. Hence, we choose the following

delay function:

τij(r, r
′) = Dij + cij

∥∥r− r′
∥∥

2
i, j = 1, · · · , p (2.15)

where cij is the inverse of the propagation speed along axons between populations j

and i. The conduction speeds of the intra-cortical connections are in the range 0.1−
1m/s (see [Nunez 1995]) while the conductions speed for inter-cortical connections

are around 1− 10m/s.

2.3 The Mexican hat model

In order to develop some intuition for NF models and to prepare the ground for

chapter 6 and part IV, we briefly analyse a simple, two-populations, model.

Let us consider two populations of excitatory/inhibitory neurons of the neocor-

tex spread over a cortex (see [Stetter 2000, Pinto 2001b, Kang 2003]). We write the

NF equations (2.12) as(
τE

d
dt + 1

)
VE = JEE · SE(VE)− JEI · SI(VI) + IE(

τI
d
dt + 1

)
VI = JIE · SE(VE) + II

(2.16)

For simplicity, we neglect the recurrent inhibition JII and we suppose that the

connections Jij are modelled with gaussian functions. We also assume that time

constant of inhibition is smaller than that of excitation ([McCormick 1985]). Hence,

we suppose that the inhibitory activity is stationary at the time scale of the exci-

tation τE . This gives a single equation for the excitation:(
τE

d

dt
+ 1

)
VE = JEE · SE(VE)− JEI · SI

(
JIE · SE(VE) + II

)
+ IE (2.17)

This equation can be further simplified. Let us assume that the inhibition is

recruited, i.e. the inhibition membrane potential is above threshold: VI > θI . The

inhibitory neurons can sustain high firing rate (see [McCormick 1985]), their activity
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does not saturate. This means that VI is in the linear part of the sigmoid SI , i.e.

SI(VI) ≈ αVI for some positive α > 0 being the gain of the sigmoid SI . It gives:

(
τE

d
dt + 1

)
VE =

(
JEE − αJEI · JIE

)
· SE(VE) + IE − αJEI · II

≡ J · SE(VE) + I
. (2.18)

For example, if the connectivities Jij(r, r
′) = e−‖r−r

′‖22/2σ2
are gaussians with the

same spatial extension σ, then JEI · JIE is a gaussian of spatial extension 2σ.

Hence in effect, J is a difference-of-Gaussians (DoG) connectivity. It is also called

the Mexican hat connectivity when α < 1. Note that the effective connectivity J

Figure 2.5: Plot of the effective connectivity J(·) for σ = 1 and α = 0.8 on a 1d

cortex.

has never been directly observed in biology because it features local excitation and

lateral inhibition. Indeed, what is commonly observed is local excitation/inhibition

and long-range excitation (see for example [Mariño 2005]).

We can have an intuition about the action of the DoG. Let us assume that we

look at the stationary activity V f
E , i.e. V̇ f

E = 0. Then we find:

V f
E = J · SE(V f

E ) + I = J · SE
(
J · SE(V f

E ) + I
)

+ I

If the input I is strong compared is strong compared to the recurrent activity V f
E ,

we can write:

V f
E ≈ I + J · SE(I)

Hence, V f
E is linked to J ·SE(I). It is straightforward to see that the effect of apply-

ing a mexican hat J to an external input SE(I) is to localise (i.e. to regroup) the

activity spread in space. Hence, given a stationary input, this type of connectivity

favours a stationary activity V f
E . This is called the winner-take-all mechanisms,

well known from the signal processing community.
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On the contrary, the inverted-mexican hat connectivity3, favours the spread of

activity in the tail of the connectivity. Hence, given a stationary input, this type

of connectivity favours a dynamical activity.

Obviously, more quantitative work is needed to validate this first intuition. We

will come back to these two types of connectivities in chapter 6.

3which is a mexican hat connectivity multiplied by −1
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We have derived the delayed neural fields equations in the previous chapter. The

solutions of these equations represent the state of activity of these populations when

submitted to inputs form neighbouring brain aeras. In this chapter we study the

dependency of the stationary solutions of the neural fields equations with respect

to the nonlinear gain and the contrast of the external inputs. This is done by
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using degree theory and bifurcation theory. The joint use of these two theories

allows us to make new detailed predictions about the global and local behaviours of

the solutions. We also provide a generic finite dimensional approximation of these

equations which allows us to study in great details two models. The first model is

a neural mass model of a cortical hypercolumn of orientation sensitive neurons, the

Ring Model [Ben-Yishai 1995, Hansel 1997]. The second model is a general neural

field model where the spatial connectivity is described by heterogeneous Gaussian-

like functions.

3.1 Introduction

Neural or cortical fields are continuous assemblies of mesoscopic models, also called

neural masses, of neural populations that are essential in the modeling of macro-

scopic parts of the brain.

They were first studied by Wilson and Cowan, Amari [Wilson 1973, Amari 1977]

and play an important role in the design of the models of the visual cortex such

as those proposed by Bressloff [Bressloff 2001b]. Neural fields describe the mean

activity of neural populations by nonlinear integro-differential equations. The solu-

tions of these equations represent the state of activity of these populations either in

isolation, one talks about intrinsic activity, or when submitted to inputs from neigh-

bouring brain areas. Understanding the properties of these solutions is therefore

important for advancing our understanding of how the brain encodes and processes

its internal and external inputs.

Among these solutions, the persistent states (or stationary solutions) are im-

portant for at least two reasons. First, in the case of autonomous systems, looking

for persistent states helps to understand the dynamics because they are an easy

way to divide the phase space into smaller components. If one makes the fur-

ther assumption that the connectivity function is symmetric (see the review by

[Ermentrout 1998]), the dynamics is described by heteroclinic orbits connecting the

stationary solutions. Second, they are thought to be good models of the memory

holding tasks on the time scale of the second, as demonstrated by experimentalists

on primates [Colby 1995, Funahashi 1989, Miller 1996].

There are four major ingredients that occur in the mathematical description of

these equations. First, the domain Ω of integration (typically a piece of cortex)

which is of dimension d and can be bounded or unbounded, second, the type of the

nonlinearity (sigmoidal, Heaviside), third, the type of the connectivity function that

appears in the integral (homogeneous,i.e. translation invariant, or heterogeneous),

and fourth, the number p of neuronal populations that are modeled.

Working with an unbounded domain Ω is not biologically relevant and also raises

some mathematical difficulties. We work with a bounded Ω. Besides its biological

relevance, this hypothesis is crucial for our mathematical analysis: it implies that

there is at least one persistent state for any set of parameter values and provides

bounds for these persistent states.
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The nonlinearity in the neural field equations is most of the time chosen to

be a Heaviside function which leads to several mathematical difficulties, one of

them being the difficulty to apply a normal form theory. It is easier, as in

[Faugeras 2009], to use smooth nonlinear functions instead to study the persistent

states. Only a few papers use sigmoidal functions, e.g., [Atay 2005, Venkov 2007],

or an alpha function1, [Laing 2003a]. Moreover, Pinto and Ermentrout have

shown how to extend results obtained with Heaviside functions to results hold-

ing for smooth sigmoids using singular perturbation theory [Pinto 2001a], while in

[Kishimoto 1979, Ermentrout 1993] fixed points theorems are used to prove results

for sigmoids. Let us also mention the fact that some perturbative results for smooth

sigmoids have been obtained in the case of weakly interacting pulses [Bressloff 2006]

and inhomogeneous travelling waves [Bressloff 2001a, Kilpatrick 2008]. In this chap-

ter we make the assumption that the nonlinearity is a sigmoid function,i.e. infinitely

differentiable.

Regarding the connectivity function we only assume that it is square integrable.

Hence it can be heterogeneous, i.e. not translation invariant unlike what is often

assumed in the literature. Despite the fact that they are rarely considered, networks

with heterogenous weights have been studied in previous publications [Jirsa 2000,

Qubbaj 2007, Bressloff 2001a, Bressloff 2003, Kilpatrick 2008, Rubin 2004]. Our

work provides a firmer mathematical setting and generalizes these attempts.

Surprisingly, there are few papers dealing with the persistent states. Their au-

thors use two main methods: Turing patterns (or bifurcation theory) and reduction

to ODEs and PDEs.

The first method is used in almost every paper, e.g. [Atay 2005, Coombes 2004,

Blomquist 2005, Venkov 2007], very often in the case of a translation invariant

connectivity function (hence a convolution kernel), and leads to the description

of a large amount of solutions and behaviours thereof such as traveling waves,

breathers, persistent states, etc. . . that depend on special relations between the

spatial frequency k and the temporal frequency, ω. We generalize this approach

as follows: we do not worry about the spatial structure of the cortical states (i.e.

the solutions, indexed by the spatial frequency k in these previous studies) but

think instead of a cortical state as a point in a (functional) vector space. We

can then elegantly and economically study how this point trajectory varies (and

eventually bifurcates) when the relevant parameters in the neural field equations

vary. By doing so we are able to harvest a lot of results that do not depend upon

the translation invariant assumption, but of course also hold in this case.

The second method is to reduce the search for the persistent states to the prob-

lem of finding homoclinic orbits for some ODEs [Laing 2002] when Ω = R and

p = 1, or of finding of homoclinic orbits for some PDEs [Laing 2003a] if and only

if Ω = R2. The obvious advantage of these approaches is that one can use finite-

dimensional tools such as those described in [Kuznetsov 1998, Guckenheimer 1983],

or PDE methods, such as those described for example in [Kielhöfer 2003], for the

1e−1/v2

H(v), H the Heaviside function.
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bifurcation analysis. When successful, these approaches allow to compute the per-

sistent states independently of their stability and to compute their number as a

function of the strength of the connections.

In [Faugeras 2009], an analysis of the neural fields equations defined over a

finite part of the cortex is performed from two different viewpoints, theoretical and

numerical. The same article concludes that the dynamics is “boring” (every initial

condition converged to a single persistent state) if the nonlinear gain was small.

For example the system could not exhibit oscillatory behaviours. More importantly

this paper do not produce a method for computing more than one, or even all the

persistent states when the system featured several such states.

In this chapter, we relax the hypothesis leading to the uniqueness of the persis-

tent state and try to understand the structure of the set, noted B, of stationary so-

lutions as the parameters2 vary over large ranges of values, thereby departing from a

purely local analysis. The local structure of the set B is described using bifurcation

theory (see [Kuznetsov 1998, Guckenheimer 1983, Kielhöfer 2003, Haragus 2010])

whereas degree theory helps to understand its global structure. This latter theory

can predict the existence of stationary solutions that cannot be obtained using only

bifurcation theory. In order to compute numerically these persistent states, we

use a multiparameter continuation scheme that allows to compute non-connected

branches3 of persistent states that would otherwise be unattainable.

In order to perform our numerical experiments we consider a very general

method for approximating the connectivity kernels, the Pincherle-Goursat kernels

method [Tricomi 1985], which allows to reduce exactly the dynamics to a system

of ODEs whose dimension is directly related to the level of approximation and can

be arbitrarily large, if needed. Hence our choice to use infinite dimensional tech-

niques to the integral equation is guided by the fact that it offers a simple, albeit

abstract, conceptual framework in which the behaviours of interest to us can be

described in a clean and dimension-independent manner. When it comes to numer-

ical experiments, we use the system of ODEs provided by the Pincherle-Goursat

kernels.

The chapter is organized as follows. In section 3.2 we introduce the functional

analysis framework that allows us to study the neural field equations as a Cauchy

problem in a functional space and to derive a number of useful properties of the

solutions of these equations. In section 3.3 we combine the results of the previous

section with a bifurcation study in order to obtain more information about the

set B of solutions. A numerical scheme is proposed to compute the structure of

this set. In section 3.4 we show how to reduce the neural field equations to a

set of ODEs through the use of the Pincherle-Goursat kernels. In section 3.5 we

study in detail a neural mass model that reduces exactly to a finite set of ODEs,

the Ring Model. In section 3.6, we compute the stationary solutions for a model

featuring two populations of neurons on a two-dimensional cortex sheet connected

2We use the nonlinear gain and the contrast of the external inputs but our analysis applies to

other parameters.
3A branch is a one-dimensional set of stationary solutions obtained by varying one parameter.
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by heterogenous Gaussian-like functions: it allows us to provide salient examples

of the predictions obtained in sections 3.2 and 3.3. In section 3.7 we discuss the

biological and numerical validity of two of our main hypotheses, the fact that the

cortex has a finite size and the use of a smooth sigmoid instead of a Heaviside

function. We conclude in section 3.8.

3.2 General framework

In this section, we precise a bit more the notations introduced in the previous

chapter. The voltage-based model without delays is written:

{
V̇(r, t) = −L ·V(r, t) + [J(t) · S(σ(V(t)− θ))] (r) + Iext(r, t) t > 0

V(·, 0) = V0(·)
(3.1)

This equation is an initial value problem that describes the time variation of the

p-dimensional vector function V defined on Ω, starting from the initial condition

V0, a function defined on Ω. At each time t ≥ 0 V belongs to some functional

space, in effect a Hilbert space F , that we describe in the next section. We now

discuss the various quantities that appear in (3.1). We suppose that Ω is an open

bounded subset of Rd.
J(t) is a linear operator from F to itself defined by:

[J(t) ·V(t)](r) =

∫
Ω

J(r, r′, t)V(r′, t) dr′, (3.2)

where J(r, r′, t) is a p× p matrix that describes the “strength” of the connections.

We also describe in the next section the functional space to which J(t) belongs and

the conditions it must satisfy in order for the equation (3.1) to be well-defined. The

external current input, Iext(·, t), is in F for all t ≥ 0. The function S : Rp → Rp
is defined by S(x) = [S(x1), · · · , S(xp)]

T , where S : R → (0, 1) is the normalized

sigmoid function of equation

S(z) =
1

1 + e−z
. (3.3)

It is infinitely differentiable on Rp and all its derivatives S(q)(x), q = 1, 2, · · ·
are bounded. For all integer q ≥ 1 we note S(q)(x) the p × p diagonal matrix

diag(S(q)(x1), · · · , S(q)(xp)). Because of the form of the function S, the qth order

derivative of S at x ∈ Rp is the multilinear function defined by

DqS(x) · (y1, · · · , yq) = S(q)(x) · (y1 · · · yq), yi ∈ Rp, i = 1, · · · , q (3.4)

where y1 · · · yq is the component pointwise product of the q vectors y1, · · · , yq of

Rp,i.e. the vector of Rp whose kth coordinate, k = 1, · · · , p is equal to the product

of the q kth coordinates of each vector yi, i = 1, · · · , q.
σ is the p × p diagonal matrix diag(σ1, · · · , σp), σi ≥ 0, i = 1, · · · , p that

determines the nonlinear gain of each of the p sigmoids at the origin.
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θ is a p-dimensional vector that determines the threshold of each of the p sig-

moids.

The diagonal p × p matrix L is equal to diag( 1
τ1
, · · · , 1

τp
), where the positive

numbers τi, i = 1, · · · , p determine the exponential decrease dynamics of each neural

population.

We shall also write the activity-based model which leads to the following initial

value problem:{
Ȧ(r, t) = −La ·A(r, t) + S (σ ([J(t) ·A] (r, t) + Iext(r, t))) t > 0

A(·, 0) = A0(·) (3.5)

We let La = diag(α1, · · · , αp).
The two problems (3.1) and (3.5) are closely related. In particular there is a

one to one correspondence between their equilibria, as recalled below for the Ring

Model of section 3.5, which is an activity-based model.

3.2.1 The Cauchy problem

In this section we prove that equation (3.1) is well-posed and provide some prop-

erties of its solutions. We rewrite it as a Cauchy Problem, i.e. as an ordinary

differential equation on the Hilbert space F ≡ L2(Ω,Rp) endowed with the inner

product

〈V(1),V(2)〉F =

p∑
i=1

∫
Ω
drV

(1)
i (r)V

(2)
i (r).

This turns out to be convenient for the upcoming computations. Let us also define

G ≡ L∞(Ω,Rp) ⊂ F . Then we can rewrite (3.1) in a compact form:{
dV
dt = −L ·V + R(t,V) t > 0

V(0) = V0 ∈ F
(3.6)

The nonlinear operator R is defined by

R(t,V) = J(t) · S(σ(V − θ)) + Iext(t) (3.7)

Proposition A.2.1 shows that R(t, ·) : F → F for all t > 0. We have the further

properties:

Lemma 3.2.1. If J ∈ L∞(Ω2,Rp×p), then R satisfies the following properties:

• R(t, ·) ∈ C1(F ,F) and its differential is given by DR(t,V0) =

J(t)DS(σ(V0 − θ))σ for all V0 in F .

• ∀q ∈ N, R(t, ·) ∈ Cq(G,G) and its pth differential is: DqR(t,V0) =

J(t)S(q)(σ(V0 − θ))σq for all V0 in F .

• ‖R(t,U1)−R(t,U2)‖F ≤ σm ‖J(t)‖F ‖U1 −U2‖F for all t > 0 and for all

U1, U2 in F where σm = max
i
σi.
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• R(t, ·) is a compact operator on F for all t > 0.

Proof. It is easy to see from the definition (3.7) of R that, if it exists,

DqR(t,V0)[U1, · · · ,Uq] = J(t) ·
(
S(q)(σ(V0 − θ))σq · (U1 · · ·Uq)

)
. The notation

U1 · · ·Uq is the same as in the definition of DqS in equation (3.4), i.e. the com-

ponent pointwise product of the q functions U1, · · · ,Uq of G. The first property

follows from J ∈ L∞(Ω2,Rp) and from the proposition A.2.1. The q-multilinear

operator DqR(t,V0) is well-defined because, U1 · · ·Uq is in G. It is easy to show

that the q-multilinear operator DqR(t,V0) is continuous on G:

‖DqR(t,V0) · (U1 · · ·Uq)‖G
≤ |Ω|

∥∥∥J(t)S(q)(σ(V0 − θ))σq
∥∥∥

L∞(Ω2,Rp×p)
‖U1 · · ·Uq‖G

≤ K
∏
i

‖Ui‖G

for some positive constant K because G is a Banach algebra. It follows that DqR

is continuous and R(t, ·) ∈ Cq(G,G). This proves the second property. The third

and fourth property were proved in [Faugeras 2009]. �

It is now routine to apply the Cauchy-Lipschitz theorem to obtain the next

proposition as in [Faugeras 2009]:

Proposition 3.2.2. If the following two hypotheses are satisfied:

1. The connectivity function J is in C(R+; L∞(Ω2,Rp)) and is bounded,

|||J(t)|||F ≤ J , t ≥ 0,

2. the external current Iext is in C(R+;F),

then for any function V0 in F there is a unique solution V, defined on R+ and

continuously differentiable, of the initial value problem (3.1).

This solution depends upon 3p parameters, the slopes σ, the thresholds θ and

the diagonal matrix L.

Even if we have made progress in the formulation of the neural field equations,

it still remains the unsatisfactory possibility that the membrane potential becomes

unbounded as t→∞. However this is not the case as shown in the next proposition:

Proposition 3.2.3. If the external current is bounded in time ‖Iext(t)‖F ≤ Iext,

for all t ≥ 0, then the solution of equation (3.6) is bounded for each initial condition

V0 ∈ F .

Proof. Let us define f : R×F → R+ as

f(t,V)
def
= 〈−L ·V + J(t) · S(σ(V − θ)) + Iext(t),V〉F =

1

2

d‖V‖2F
d t

.

We note τmax = maxi=1··· ,p τi and notice that

f(t,V) ≤ − 1

τmax
‖V‖2F + (J + Iext)‖V‖F .
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Thus, if ‖V‖F ≥ 2τmax(J + Iext)
def
= R, f(t,V) ≤ −2τmax(J + Iext)

2 def
= −δ < 0.

Let us show that the open ball of F of center 0 and radius R, BR, is stable

under the dynamics of equation (3.1). We know that V(t) is defined for all t ≥ 0s

and that f < 0 on ∂BR, the boundary of BR. We consider three cases for the initial

condition V0.

If V0 ∈ BR and set τ = sup
{
t | ∀s ∈ [0, t] ,V(s) ∈ BR

}
. Suppose that τ ∈ R,

then V(τ) is defined and belongs to BR, the closure of BR, because BR is closed,

in effect to ∂BR. We also have d
dt‖V‖

2
F |t=τ = f(τ,V(τ)) ≤ −δ < 0 because

V(τ) ∈ ∂BR. Thus we deduce that for ε > 0 and small enough, V(τ + ε) ∈ BR

which contradicts the definition of τ . Thus τ /∈ R and BR is stable.

Because f < 0 on ∂BR, V0 ∈ ∂BR implies that ∀t > 0, V(t) ∈ BR.

Finally we consider the case V0 ∈ {BR. Suppose that ∀t > 0, V(t) /∈ B̄R, then

∀t > 0, d
dt‖V‖

2
F ≤ −2δ, thus ‖V(t)‖F is monotonically decreasing and reaches the

value of R in finite time when V(t) reaches ∂BR. This contradicts our assumption.

Thus ∃τ > 0 |V(τ) ∈ BR. �
Corollary 3.2.4.If V0 /∈ BR and T = inf {t > 0|V(t) /∈ BR}. Then

T ≤
‖V0‖2F −R2

2δ

This proposition shows that BR is an attracting set and that it suffices to

study the dynamics within this set to understand the long time behavior of the

solutions of the Neural Fields Equations. This attracting set contains the stationary

solutions of (3.1), we devote the next section to their study. We quote a result from

[Faugeras 2009] concerning their stability:

Proposition 3.2.5. If the condition

σmρ(Js) < 1,

where holds, then every stationary solution of (3.1) is globally asymptotically stable.

σm = maxσi, Js is the symmetric part (J + J∗)/2 of the operator J, and ρ(Js) its

spectral radius. We define σL to be ρ(Js)
−1.

Similar results hold for the activity-based model (3.5). We end this section by

quoting [Hopfield 1984] which gives the local dynamics in a simple case.

Proposition 3.2.6. If the operator J is symmetric, p = 1, and J, Iext are constant

in time, then there is no homoclinic orbit nor non-constant periodic orbit for (3.1).

Proof. Write A = S(V ) and E = −1
2 〈A, J ·A+ 2Iext〉F +

∫
dr
∫ A(r)

0 S−1(a)da

is a bounded function. Using the symmetries of J :

dE

dt
= −

〈
dA

dt
, Iext + J ·A

〉
+

∫
dr
dA

dt
V =

〈
dA

dt
,−Iext − J ·A+ V

〉
= −

〈
dA

dt
,
dV

dt

〉
= −

〈
dV

dt
S′(V ),

dV

dt

〉
= −

∫
drS′(V (r))

(
dV (r)

dt

)2

≤ 0
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It follows that there is no homoclinic orbit nor non-constant periodic orbit since

E(V ) is decreasing on the trajectories. Since E is bounded, its reaches its minimuma

which satisfy ∇E(V f ) = 0 i.e. I + J ·S(V f ) = V f , the trajectories are heteroclinic

orbits. �

3.2.2 Global properties of the set of persistent states

We look at the equilibrium states of (3.1), when Iext and J do not depend upon

the time. Our goal is to estimate their number and, if possible, to compute them

numerically, for a given set of parameters. It is quite demanding to do it at a given

point in the parameter space except in some very special cases4. We note that when

σ = 0 (or J = 0), the stationary equation is trivially solved. Hence, we can think

of deforming this trivial solution to a solution when σ 6= 0,J 6= 0. This raises a

number of questions. Does such a “manifold” of solutions exist i.e. can we link

the trivial solution to a solution for any given set of parameters? If yes, are there

any other solutions? How do these “manifolds” look globally? These questions

concern global properties of the set of solutions (existence of branches, existence

of intersection points, connectedness. . . ) and are difficult to answer. We provide

some partial answers in the remainder of the chapter.

Before going deeper in the analysis, we need to simplify the parameter space.

The equilibria Vf
λ, independent of time, are solutions of

0 = −L ·Vf
λ + J · S(σ(Vf

λ − θ)) + Iext,

Note that we have written the dependency of these solutions on an arbitrary pa-

rameter λ which is not necessarily scalar. We redefine J as L−1J, V as V− θ and

Iext as L−1 · Iext − θ and restrict our study to:

0 = −Vf
λ + J · S(σVf

λ) + Iext (3.8)

Still, equation (3.8) contains many parameters such as the ones describing J and

Iext, or the nonlinear gains σ. Which parameters λ to choose for the continuation

method: σ or J? We decide to fix J and control σ for two reasons:

• the stationary solutions are bounded for σ ∈ Rp+, see proposition 3.2.7 1, this

is not the case when ‖J‖L2(Ω2,Rp×p) →∞.

• previous studies usually use a Heaviside nonlinearity which is formally equiva-

lent to our nonlinearity when σ’=’∞, varying σ can thus bridge the gap with

previous approaches.

As a matter of fact, the techniques we are about to expose are applicable to any

set of parameters with minor modifications. Hence, we now focus on the influence

4When the nonlinearity J · S(σ(Vf
λ − θ)) is small compared to the linear part L ·Vf

σ, we know

there exists a unique solution and how to compute it. This was shown in [Faugeras 2009].
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of the nonlinear gains σ on the solutions of (3.1). We make the assumption that

they are all equal to σ, σ = σIdp, σ ≥ 0. where Idp is the p × p identity matrix.

The equation becomes

0 = −Vf
σ + J · S(σVf

σ) + Iext
def
= −F (Vf

σ, σ) (3.9)

It is clear that when σ = 0, the stationary equation is trivially solved by

Vf
0

def
= J · S(0) + Iext =

1

2
J · 1 + Iext,

where 1 is the p-dimensional vector with all coordinates equal to 1. Let Bσ be the

set of solutions of equation (3.9) for a given nonlinear gain σ:

Bσ = {V |F (V, σ) = 0}

We next provide some properties of the sets Bσ.

Proposition 3.2.7.

1. The persistent states satisfy the following inequality

∥∥∥Vf
σ −Vf

0

∥∥∥
F
≤ ‖J‖F

√
p|Ω|S0

(
σ2B2

1

p|Ω|

)
, where B1

def
=
√
p|Ω| ‖J‖F+‖Iext‖F ,

S0 : R → R is the “shifted” sigmoid defined by S0(x) = S(x) − S(0) and the

constant B1 is defined in proposition A.6.2 of appendix A.6.

2. If the condition

σ ‖J‖F < 1 (3.10)

is satisfied, then #Bσ = 1. We define σ∗ to be ‖J‖−1
F .

3. ∀σ ∈ R+, Bσ 6= ∅,

4. If the number of non critical solutions5 in Bσ is finite, then it must be odd.

5. Let 0 ≤ a < b be two reals, and consider the set B = ∪σ∈[a, b] (Bσ × {σ}). Then

B contains a connected component C which intersects Ba × {a} and Bb × {b}.

6. If Iext = εI
(0)
ext with I

(0)
ext 6= 0 a.e. and ε > 0 is called the contrast, then ∀σ > 0,

#Bσ = 1 for ε large enough.

Proof.

1. From lemma A.6.1 in appendix A.6 we have S0(σV f
σi)

2 ≤ S0(σ2(V f
σi)

2), i =

1, · · · , p. Therefore

p∑
i=1

S0(σV f
σi)

2 ≤
p∑
i=1

S0(σ2(V f
σi)

2) ≤ pS0

(
σ2

p

p∑
i=1

(V f
σi)

2

)
.

5i.e. solutions where the jacobian is not singular.
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The second inequality comes from Jensen’s and the fact that S0(·) is concave

in R+. It then follows, using again Jensen’s inequality and the fact that S0 is

monotonously increasing, that∥∥∥S0(σVf
σ)
∥∥∥2

F
≤ p|Ω|S0

(
σ2

p|Ω|

∥∥∥Vf
σ

∥∥∥2

F

)
Now ∥∥∥Vf

σ −Vf
0

∥∥∥2

F
=
∥∥∥J · S0(σVf

σ)
∥∥∥2

F
≤ |||J|||2F

∥∥∥S0(σVf
σ)
∥∥∥2

F

The inequality then follows from proposition A.6.2.

2. Use the Picard Theorem. As shown in figure 3.2, this imposes that σ∗ ≤ σL.

Indeed, as ρ(Js) ≤ |||Js||| and |||Js||| = |||J|||, and |||J||| ≤ ‖J‖F , we have

σ∗ = ‖J‖−1
F ≤ σL = ρ(Js)

−1.

3. The first property is that it is non empty: in [Faugeras 2009] we proved that

persistent states always existed in L2(Ω,Rp) for all positive values of σ.

4. If Bσ has a finite number of non critical solutions, we can assume that these

points are non critical. Then according to the Leray-Schauder degree theory

sketched in appendix A.3 we have

degLS(F (V, σ), Br, 0) =
∑

Vf
σ∈Bσ

sign detF(DV F (Vf
σ, σ), Br, 0) =

∑
Vf
σ∈Bσ

sign detF(Id− σJDS(σVf
σ)), (3.11)

where r = 2B1, B1 is defined in proposition A.6.2 in appendix A.6 and detF

is the Fredholm determinant (see appendix C.1.2). We prove in corollary

A.3.2 in appendix A.3 that the first term is equal to 1. Suppose now that

Bσ contains an even number of points, say 2k among which l correspond to

a negative sign and hence 2k − l to a positive sign. The sum that appears in

the last term is equal to 2k − 2l, hence even. Hence Bσ must possess an odd

number of points.

5. The proof uses the Leray-Schauder theorem, see appendix A.3. We apply the

theorem to the function F : F × J → F which is of the form Id + m, with

m(·) = −R. Because m is compact on F × J (see proof in [Faugeras 2008]),

Ba × {a} bounded, and there exists an open bounded neighbourhood Ua of

Ba such that degLS(F (·, a),Ua, 0) 6= 0 (corollary A.3.2 in appendix A.3), the

conclusion follows since the connected component cannot be unbounded, B
being bounded.

6. Let us write Vf
σ = εI

(0)
ext + Ṽf

σ, then Ṽf
σ = J · S(σṼf

σ + εI
(0)
ext). We know that

this last equation has always a (bounded) solution. Hence, any solution Vf
σ
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satisfies Vf
σ
ε→∞∼ Iext. As I

(0)
ext 6= 0 a.e., the operator JDS(σṼf

σ + εI
(0)
ext)

ε→∞→
0 in L(F) and detF(Id − JDS(σṼf

σ + εI
(0)
ext)) = 1 for ε large enough. By

using (3.11) and degF(F (V, σ), Br, 0) = 1, we conclude that there is a unique

stationary state for the contrast large enough.

�

Point 4 is not true at bifurcation points where the jacobian is singular.

Point 6 in the proposition shows that, if the external input Iext is strong, the

network “follows” it.

This proposition answers some of the previous questions at the beginning of

the section. For any positive value of σ, there is always at least one persistent

state and we can find a way to connect the trivial solution Vf
0 to a persistent

state corresponding to an arbitrary value of the parameter σ. We return to this

connection later and also see that not all the solutions in Bσ are in the connected

component of (Vf
0 , 0) in F × R+.

Regarding the connection C between Vf
0 and V, proposition 3.2.7 does not give

us any indication on its regularity but we have the following corollary.

Corollary 3.2.8. Let a and b be as in proposition 3.2.7. For all ε > 0 there exists

a finite sequence (V1, σ1), . . . , (Vn, σn) of points of C such that ‖Vi −Vi+1‖F ≤ ε
for i = 1, · · · , n− 1 and σ1 = a, σn = b.

Proof. C is connected for any topology equivalent to the product topology of

F× [a, b], e.g. for the metric defined by d((V1, σ1), (V2, σ2)) = ‖V1 −V2‖F+ |σ1−
σ2|. Since it is connected for this metric, it is also well-chained [Choquet 1969], and

the conclusion follows. �

In fact, except at points where the Jacobian of F is non-invertible (such points

like B in figure 3.1 are potential bifurcation points, see definition A.0.1), the im-

plicit functions theorem tells that σ → (Vf
σ, σ) is differentiable. Hence in effect

proposition 3.2.7.5 imposes strong constraints on the set Bσ as shown in figure 3.1.

The horizontal axis represents the parameter σ, the vertical axis the space F where

the solutions of (3.9) live. The curves represent possible solutions as functions of

σ. The configurations in the lefthand part of the figure are forbidden by proposi-

tion 3.2.7 5 while those on the righthand side are allowed, the green curve being an

example of a continuous curve s→ (Vf
σ(s), σ(s)) from [0, 1] to F × [a, b].

Proposition 3.2.7 5 gives a very interesting general (non-local) property of the

set of solutions. But it is non-constructive, for example it does not tell us which

branch to chose at point B in figure 3.1 and we need to compute all the branches

to know the path to σ = b. Hopefully such branching points as B are very rare and

one only sees turning points rather than branching points (such as the one at σ1

in figure 3.2, left): (almost) any perturbation will indeed destroy such branching

points (see figure 3.2 right). Hence, if one continues the trivial solution (obtained
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solutions of F(V,    )=0

a b

  solutions of F(V,    )=0

a b

B

4 solutions

2 solutions

5 solutions

1 solution

Figure 3.1: In the lefthand part of the figure, there is no connected curve of solutions

in [a, b]: this is forbidden by proposition 3.2.7.5 which states that we must be in the

situation shown in the righthand part of the figure, where the green curve connects

Ba × {a} and Bb × {b}, see text.

for σ = 0), one will typically find a curve like the green one in figure 3.2 Right. This

may lead to the wrong conclusion that for σ big enough there is only one stationary

solution instead of three. The problem is to find a way to compute, if it exists, the

second, red, curve which is not connected to the green curve, hence not attainable

by σ-continuation.

An idea, directly suggested by the above picture is to restore the branching

points by perturbation. Among all possible perturbations, we choose one of the

simplest, i.e. we vary the amplitude of the external input Iext. Hence, similar to

proposition 3.2.7 6, we define the external current Iext to be εIext where the contrast

ε satisfies 0 ≤ ε ≤ 1. This is suggested by the work of experimentalists who usually

provide neural responses as functions of the contrast. Note that some non-generic

external input may not break the branching points (see section 3.3.2).

The conclusion is that if we only want one solution for σ 6= 0, we can use a σ-

continuation of the trivial solution, but if we want more than one (or the maximum

number of) solutions for σ 6= 0, then we have to perform at least a (σ, ε)-continuation

of the trivial solution.

Remark 5.An interesting question is to predict how close to σL the smallest value

of σ where a “turning point” occurs can be.

However, performing this (σ, ε)-continuation of the trivial solution is bound to

generate a large amount of data. In order to help us to make sense of it, it is useful

to have a priori information about the structure of the set (Vf
σ,ε, σ, ε). The idea is,

again, to think of this set as a deformation of an easier to compute set of stationary

solutions. This is done in the next section.
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1

2

3

V

turning point

1

2

3

V

turning point

Figure 3.2: The white zone is the domain of existence of Vf . The grey zone is

excluded thanks to proposition 3.2.7.1. Left: non generic situation, a transcritical

bifurcation occurs at σ1. Right: same as left with a small perturbation (for example

a small change of the external input Iext), the transcritical bifurcation has opened

up. σL is defined in proposition 3.2.5 and σ∗ in proposition 3.2.7.

Remark 6.It is highly possible that this (σ, ε)-continuation scheme still misses

some solutions. One possibility is to introduce a third parameter, but the continua-

tion may become quickly numerically untractable.

3.3 Exploring the set of persistent states

We exploit the fact that in the neural field equation (3.9) the ratio between the

external current Iext and J is not fixed a priori. Hence when studying the NFE,

one would rather look at

−V + J · S(σV) + εIext = 0 (3.12)

where ε ≥ 0 allows to vary the respective weights of Iext and J. The persistent

states now depend upon the pair (σ, ε) i.e. Vf
σ,ε. The idea is to infer the persistent

states of (3.12) from those, Vf
σ,0 of

−V + J · S(σV) = 0 (3.13)

We further simplify the problem by considering

−V + J · S0(σV) + µJ · S(0) = 0, (3.14)

where S0 is defined in proposition 3.2.7. We recover equation (3.13) when µ = 1.

The advantage is that when µ = 0, we can say a great deal about the persistent

states.
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3.3.1 A simpler case

This simpler case reduces to the study of the previous equation when µ = 0:

−V + J · S0(σV) = 0 (3.15)

In other words, we infer the persistent states of (3.12) from those, Vσ,ε=0,µ=0

of equation (3.15). This case has been studied a lot by several authors

[Ermentrout 1998, Coombes 2005b, Bressloff 2005a] when a constant current Iext is

applied, which amounts to changing the threshold θ in S. V = 0 is a trivial persis-

tent state for (3.15). Recall that a necessary condition for the equation F (V, σ) = 0

to bifurcate at the solution (Vf
σ, σ) is that DV F (Vf

σ, σ) is non-invertible. This ja-

cobian at Vf
σ = 0 is given by:

Lσ = −Id + σJDS0(0) = −Id +
σ

4
J (3.16)

The operator Lσ satisfies the following properties.

Proposition 3.3.1.

1. Lσ is a continuous operator which belongs L(G,F)

2. The spectrum of Lσ is discrete and the eigenvalues have finite algebraic mul-

tiplicity.

3. If J ∈ L∞(Ω2,Rp×p) then
∥∥(iωId− Lσ)−1

∥∥
L(F)

≤ 2
|ω| and∥∥(iωI − Lσ)−1

∥∥
L(G)
≤ 2
|ω| for ω large enough.

Proof.

1. The first property is proved in proposition A.2.1.

2. Because J is a compact operator (see lemma 3.2.1), the kernel of −Id + σ
4 J is

of finite dimension. Also the generalized eigenspace is finite-dimensional (see

[Brezis 1983]), this gives the second property.

3. We now prove the last property. |||iωI − Lσ|||F ≥ |ω| − |||Lσ|||F ≥ |ω|2 for ω

large enough. Then
∥∥(iωId− Lσ)−1

∥∥
L(F)

≤ 2
|ω| for ω large enough. From J ∈

L∞(Ω2,Rp), it follows that R(J) ⊂ G and Lσ : G → G. It is straightforward to

see that Lσ is continuous on G. Hence, we can apply the same kind argument

as above to obtain
∥∥(iωId− Lσ)−1

∥∥
L(G)
≤ 2
|ω| for ω large enough.

�

Remark 7. In the next chapter, we will prove and apply the center manifold

theorem in the case where space-dependent delays are taken into account. In this

chapter, we don’t need such a powerful result to compute the stationary solutions,

the Lyapunov-Schmidt method is sufficient. Nevertheless, we wish to show how to
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apply the center manifold theorem6 of [Haragus 2010] to the non-delayed neural

field equations. We first rewrite V̇ = −V + J ·S0(σV) as V̇ = Lσn + R(V, σ) with

R(V, σ) = (Lσ−Lσn)V +G(V, σ) and G(V, σ) is the second order Taylor integral

remainder term in V. We choose a semilinear formulation with X = F , Y = Z =

G. Then Lσn ∈ L(Z,X ) (see proposition 3.3.1) and ∀q ≥ 0, R ∈ Cq(Z × R,Y)

(see lemma 3.2.1). The other properties necessary to the use of the center manifold

theorem (see therorem A.1.1) have been demonstrated in proposition 3.3.1.

We can therefore state that the values of the parameter σ that determine the

possible bifurcation points are:

σn =
4

<λn
, n = 1, 2, · · · (3.17)

where λn is an eigenvalue of the compact operator J. We assume in the sequel that

σ1 ≤ σ2 ≤ · · · . We will assume that the first k ≥ 1 (k is arbitrary) eigenvalues

are simple because this class of operators is dense in the set of compact operators

set (see appendix A.4). We denote by en (respectively by e∗n) the eigenvector of J

(respectively of the ajoint operator J∗) for the eigenvalue λn which satisfies:

〈e∗n, en〉F = 1.

Let us define χ
(n)
q ≡ 〈e∗n, Gq(en, σn)〉F , Gq(en, σn) = 1

q!D
qR(0, σn)[en · · · en] =

σqn
q! sqJ · (en · · · en) and S

(q)
0 (0)

def
= sq.

Lemma 3.3.2. If λn ∈ R is a simple eigenvalue of J ∈ L∞(Ω2,Rp×p) and χ
(n)
3 6=

0, then in a neighbourhood of (Vf
σ = 0, σn), all the non trivial stationary solutions

of (3.15) are given by Vf
σ = x(σ)en + o(x) where x(σ) ∈ R solves

0 = (−1 + σλn/4)x+ χ
(n)
3 x3 +O(x5)

= σ−σn
σn

x+ χ
(n)
3 x3 +O(x5)

(3.18)

Proof. We wish to apply the Lyapunov-Schmidt method (see [Golubitsky 1984,

Golubitsky 1988, Kielhöfer 2003]). As J ∈ L∞(Ω2,Rp×p), it follows that the

stationary solutions Vf
σ belongs to L∞(Ω,Rp). We write V = xen + W with

〈e∗n,W〉F = 0 for V ∈ F . We can define the projection P on F as PV = W.

V → JS0(σV) is smooth on L∞(Ω,Rp) so we can compute its Taylor expansion.

By using the projector P , we decompose the equation V = JS0(σV):

0 =
(
1− σλn

4

)
x+ σ

48〈e
∗
n,J(xen + W)3〉F + h.o.t.

0 =
(
Id− σλn

4 J
)
W + σ

48PJ(xen + W)3 + h.o.t.
(3.19)

We solve the second equation with the implicit functions theorem by noting that

Id− σλn
4 J is invertible on {e∗n}

⊥. We find:

W = − σ

48

(
Id− σλn

4
J

)−1

PJ(x3e3
n) +O(x5)

6recalled in appendix A.1.1
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which is replaced in the first equation to give:

0 = (−1 + σλn/4)x+ χ
(n)
3 x3 +O(x5).

�
We solve (3.18) for σ close to σn to find the structure of the bifurcated branches,

i.e. the nontrivial solutions. By parity, S
(q)
0 (0)

def
= sq 6= 0 if and only if q is odd.

Hence, the parity of q tells that we have a Pitchfork bifurcation at σn. In particular,

the bifurcated branch is given by

Vf
σ = x(σ)en + o(x),

with x(σ) solution of (3.18). Thus the bifurcation portrait is a set of branches Cn
emanating at points (at least for n ≤ k) (0, σn) for σn ∈ R. Depending on the sign

of χ
(n)
q in (3.18), the Pitchfork branch is oriented toward σ < σn (resp. σ > σn) if

χ
(n)
q > 0 (resp. χ

(n)
q < 0). Let us note eqn the vector en · · · en︸ ︷︷ ︸

q times

. We have

χ(n)
q =

σqnsq
q!
〈J · eqn, e∗n〉F =

σqnsq
q!
〈eqn,J∗ · e∗n〉F =

σq−1
n sq
q!s1

〈eqn, e∗n〉F

Thus, we have found local branches of stationary solutions and continue them

globally in order to obtain the global branches named Cn. An interesting question,

yet unsolved, is to know whether the branches Cn are connected. Some results

exist in this direction in the line of those of Rabinowitz (see [Rabinowitz 1971,

Kielhöfer 2003]) but do not provide much insight in the general case (d > 1, p > 1...).

However, they can be used to derive some properties of the first branch C1.

Proposition 3.3.3 (Turning point property). If σ1 ∈ R and χ
(1)
q > 0, then

∃σT < σ1 such that ∀σ ∈ (σT , σ1), (3.15) has at least 3 solutions and σT =

min
{
σ|(Vf , σ) ∈ C1

}
.

Proof. Let C1 be the connected component in B̄ where B =

{(V, σ)|V 6= 0, (V, σ) satisfies (3.15)} to which (0, σ1) belongs. Then (see

[Ma 2005]) C1 is unbounded in F × R+ or contains a point (0, σn), n > 1. In

either case, C1 exists until σ = σ2. (If σ2 does not exist, the same result shows that

C1 is unbounded). We assume that σ2 exists, it does not alter the results.The proof

when σ2 does not exist requires minor changes.

C̃ = C̄1 ∩ (F × [σ∗, σ2]) is closed and bounded (because every solution Vf
σ is

bounded in F). Let us show that C̃ is compact in F × [0, σ2]. Consider a sequence

(Vn, sn) in C̃. As sn is bounded, we can assume it is convergent. We also have

Vn = J · S0(snVn). As (V, σ) → J · S0(σV) is a compact operator, there exists a

subsequence (Vφ(n), sφ(n)) such that J ·S0(sφ(n)Vφ(n)) is convergent, hence Vφ(n) is

converging. We have proved that C̃ is compact. Hence ΠR+(C̃) is a compact subset

of R+. Then inf ΠR+(C̃) is a min written σT ∈ ΠR+(C̃). As it is an inf, there exists

a sequence sn associated to a Vn ∈ Π−1
R+(sn) in C̃ such that sn → σT . But as C̃ is



56 Chapter 3. General properties of the stationary states

compact, we can assume that Vn → VT . Then (VT , σT ) ∈ C is called a turning

point7.

So we have proved that σT ≤ σ1. But in the case q odd with χ
(n)
q > 0, C1 exists

for σ < σ1 and σT < σ1.

Now, ∀σ ∈ (σT , σ1), ∃(Vf
σ, σ) ∈ C1 \ {(0, σ)} because C1 intersects {0} × R+

only at bifurcation points (0, σn) located ’after’ σ1. Then because of proposition

3.2.7 part 4, there are at least three solutions. �

Remark 8.If the sigmoidal function had satisfied S(2)(0) 6= 0, we would have

seen transcritical bifurcations and the previous proposition still holds in this case.

Remark 9.If we were able to prove that the branches do not intersect, the pre-

vious proposition would apply to all branches Cn satisfying the required conditions

but see section 3.6.

Even if we do not deal with the dynamics, we can say a little using

[Haragus 2010, Kuznetsov 1998]. At every bifurcation point, the center manifold at

V = 0 (see theorem A.1.1) is one-dimensional while the dimension of the unstable

manifold increases as σ crosses values corresponding to transcritical points. Hence

for large σs, we can have a large unstable manifold. Note that every value of σ is

biologically plausible because the locally (around V = 0) exponentially divergent

dynamic is bounded (see proposition 3.2.3), which can make the “global” dynamics

very intricate. In effect, when σ grows to infinity, the sigmoid tends to a Heaviside

function which acts as a threshold.

We now study a particular case where the structure of the nontrivial solutions

is almost entirely understood.

3.3.1.1 The case d = 1, p = 1

We suppose here that d = p = 1 and the connectivity operator J is symmetric with

simple eigenvalues σn and corresponding eigenfunctions en. In this case, we can use

the results of Rabinowitz (see [Rabinowitz 1971]). The Taylor formula allows to

write S0(x) = xh(x) with h > 0, this is required in order to apply [Rabinowitz 1971].

Then from [Rabinowitz 1971], it follows that the bifurcated branches (Pitchforks or

transcritical)8 Cn are unbounded and are characterized by the number of simple

zeros in Ω̊ of their elements ; namely ∀ (Vf , σ) ∈ Cn, Vf has exactly n− 1 simple

zeros in Ω̊. As a consequence, the branches Cn do not intersect.

If we were able to prove that all the stationary solutions are connected to the

zero solution, we would have completely characterized B. Nevertheless, we still have

collected a lot of information.

Remark 10.The study of the simpler case is very important for the numerics. In-

deed, it allows analytical predictions. When one performs the (σ, µ, ε)-continuation,

one should look at the section of solutions (σ, µ = 0, ε = 0) and compare to the

7Not in the sense of [Kuznetsov 1998], here it denotes a local extremum in the parameter along

the curve of solutions.
8In this case, they are connected components in C1(Ω,R)× R+ rather than in F × R+.
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predictions of the simpler case to see if we did not miss any solution (that may

happen when the system has some symmetries).

3.3.2 Returning to the original equation

The overall picture that emerges from the previous section is interesting despite

the fact that some of its features are hard to justify from the biological viewpoint:

no external input, rate function S0 possibly negative. The reason is that it gives

clues about the set of persistent states when ε 6= 0 and provides a way to compute

them numerically. Starting with the trivial solution Vf
0 of (3.13) when the slope

parameter σ is null, we can perform a numerical continuation (see [Kuznetsov 1998,

Guckenheimer 1983, Allgower 2003]) with respect to the two parameters σ, ε.

When ε 6= 0, the only9 bifurcations that are possibly unaltered are the turn-

ing points. The transcritical/Pitchfork bifurcations will be “opened” as described

below. We are still able to predict the stability near the points (0, σn). Let

us write Ī = 〈µJ · S(0) + εIext, e
∗
n〉F and suppose that Iext ∈ L∞(Ω2,Rp). By

using the Lyapunov-Schmidt reduction (see [Golubitsky 1984, Golubitsky 1988,

Kielhöfer 2003]) with external input, we find the following equation:

0 = (−1 +
σλn

4
)x+ χ

(n)
3 x3 + Ī +O(x3(µ2 + ε2 + x2)) (3.20)

Solving the polynomial equation (3.20) allows us to describe different opening

scenarios depending on the sign of Ī. This is shown on figure 3.3. The case of σ1 is

a little bit special according to proposition 3.3.3 and is shown in the righthand part

of figure 3.3. Note that if Ī = 0, a non generic situation, the Pitchfork bifurcations

are not opened by the addition of the external current.

Remark 11.When the first eigenvalue generates a subcritical Pitchfork branch,

proposition 3.3.3 says that a turning point must occurs on this branch: there are

in effect two turning points on this branch. Still we have a local description and it

would be interesting to have more global results for example concerning the behavior

of these turning points when (σ, ε) varies.

3.4 Reduction to a finite dimensional analysis

Neural field models are one of the possible generalizations of standard neural net-

works considered as discrete sets of connected neurons. They can be characterized

by two limit processes. First, we let the total number of neurons grow to infinity

so that each node of the network represents an ideally infinite number of neurons,

in practice a large number of such neurons belonging to different populations, in

effect a neural mass. Second, we assume that these neural masses form a contin-

uous neural material and let the connectivity graph of the neural network become

9if the equations are G-equivariant for a symmetry group G, some Pitchfork bifurcation may

also be unaltered (see definition A.0.2 and chapter 9).
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Figure 3.3: Opening of the Pitchfork bifurcation at the first (right) and nth (n > 1,

left) eigenvalue. Black dots indicate saddle nodes. Note that there are three such

points, see proposition 3.3.3, for the first eigenvalue. Note that the branch may

have a more intricate shape than the one shown. The gray ellipses represent the

part of the phase space which is explained by bifurcation theory.

continuous. The graph connectivity matrix then turns into a continuous function

of the spatial coordinates. One would think that after passing twice to the limit

the resulting system would be infinite-dimensional. However, the dimensionality of

the neural field models depends essentially upon the linear operator J representing

the connectivity function. If this linear operator has a finite-dimensional range, we

show below that the corresponding neural field model is finite-dimensional and is

equivalent to a finite set of ordinary differential equations. Moreover, even if this

condition is not met, we also show that we can always approximate the operator as

accurately as desired by a finite-dimensional range operator and reduce the neural

field model to a finite set of ordinary differential equations.

3.4.1 The Pincherle-Goursat Kernels

In our numerical studies, we use connectivity functions that are such that the corre-

sponding linear operators of F have finite rank,i.e. their range is a finite dimensional

subspace of F . This is without loss of generality because of the following theorem

(see, e.g. [Brezis 1983]):

Theorem 3.4.1.The subspace Rf (F) of finite-dimensional range linear operators

of F is dense in H, the set of linear compact operators of F .

In the area of integral equations, these operators are called Pincherle-Goursat ker-

nels [Tricomi 1985], in short PG-kernels. They are defined as follows

Definition 3.4.2 (Pincherle-Goursat Kernels). The connectivity kernel J(r, r′) is a

PG-kernel if

J(r, r′) =

N∑
k=1

Xk(r)⊗ Yk(r′)
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where Xk, Yk, k = 1 · · ·N are two sets of N linearly independent elements of F ,

and Xk(r)⊗ Yk(r′) is the rank 1 p× p matrix Xk(r)Y T
k (r′).

We have

J ·U =
∑
k

Xk〈Yk,U〉F .

Thus J ·U ∈ Span(X1, · · · , XN ) which we denote by R(J).

3.4.2 Persistent state equation for PG-kernels

We now cast the problem of the computation of the solutions of equation (3.9) into

the PG-kernel framework:

V − Iext = J · S(σV)

Since V − Iext ∈ R(J), we can write V − Iext =
∑
k

vkXk, and note v = (vk)k=1···N .

The persistent state equation reads:

vk =

〈
Yk, S

(
σ

(∑
k

vkXk + Iext

))〉
F

k = 1, · · · , N (3.21)

This is a set of N nonlinear equations in the N unknowns v1, · · · , vN which can be

solved numerically using classical methods.

3.4.3 Reduction to a finite number of ordinary differential equations

In this section, we reduce equation (3.1) (when J is independent of t) to a system

of ODEs. We write I instead of Iext for simplicity.

We note R(J)⊥ the orthogonal complement of R(J) in F with respect to the

inner-product 〈, 〉F :

F = R(J)⊕R(J)⊥.

We write

V = V‖ + V⊥,

where V‖ (resp. V⊥) is the orthogonal projection of V on R(J) (resp. R(J)⊥). We

have a similar decomposition for the external current I

I = I‖ + I⊥

We now decompose R(J) as a Cartesian product of p finite dimensional subspaces

of L2(Ω,R). Because

Jij(r, r
′) =

N∑
k=1

Xi
k(r)Y j

k (r′) i, j = 1, · · · , p,

the membrane potentials Vi for each of the p populations, i = 1, · · · , p of V satisfy

V̇i +
1

τi
Vi =

N∑
k=1

〈Yk,S(σV)〉F X
i
k + Ii i = 1, · · · , p
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Let us consider the p finite dimensional subspaces Ei, i = 1, · · · , p of L2(Ω,R),

where each Ei is generated by the N elements Xi
k, k = 1, · · · , N . We note E⊥i the

orthogonal complement of Ei in L2(Ω,R). This induces a decomposition of F as the

direct sum of the cartesian product
∏p
i=1Ei = R(J) and its orthogonal complement∏p

i=1E
⊥
i = R(J)⊥. We write Vi = V

‖
i + V ⊥i as well as Ii = I

‖
i + I⊥i . We then haveV̇

‖
i + 1

τi
V
‖
i =

N∑
k=1

〈Yk,S(σV)〉F Xi
k + I

‖
i

V̇ ⊥i + 1
τi
V ⊥i = I⊥i

i = 1, · · · , p (3.22)

Considering the canonical basis ei, i = 1, · · · , p, of Rp, we define

V‖ =
p∑
i=1

V
‖
i ei I‖ =

p∑
i=1

I
‖
i ei

V⊥ =
p∑
i=1

V ⊥i ei I⊥ =
p∑
i=1

I⊥i ei

We obtain the pN -dimensional non-autonomous system of ODEs:{
V̇‖ + L ·V‖ = J · S(σV) + I‖

V̇⊥ + L ·V⊥ = I⊥
(3.23)

Remark 12.If I⊥ is stationary then V⊥ converges to L−1I⊥.

3.5 One population of orientation tuned neurons: the Ring

Model

As an application of the previous results, we study the Ring Model of orienta-

tion tuning introduced by Hansel and Sompolinski (see [Hansel 1997, Shriki 2003,

Ermentrout 1998, Dayan 2001a, Bressloff 2000, Bressloff 2001b]), after the work of

Ben-Yishai (see [Ben-Yishai 1995]). It is a model of a hypercolumn in primary

visual cortex. It can be written as:

τȦ(x, t) = −A(x, t) + S

σ
 π/2∫
−π/2

J(x− y)A(y, t)dy/π + εI(x)− θ




Some authors, [Bressloff 2000, Bressloff 2001b], chose J to be a difference of

Gaussians. On the other hand, Ben-Yishai, in [Ben-Yishai 1995], started with a

network of excitatory/inhibitory spiking neurons and derived a meanfield approx-

imation of this network yielding the activity response described by the following

equations: {
J(x) = J0 + J1 cos(α(y − x))

I(x) = 1− β + β cos(α(x− x0))
(3.24)
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α = 2, 0 ≤ β ≤ 1 and the threshold θ = 1 in the above cited papers. We can, up to

a rescaling of the previous equation, make the assumption

J0 = ε0 ∈ {−1, 1}

Being an activity model and not a voltage model in the terminology of

[Ermentrout 1998, Faugeras 2008] it is not directly amenable to our analysis. We

can either extend this analysis to activity models as shown in appendix A.5 or do

the following. We rewrite the previous equation as

τȦ = −A+ S(σ(J ·A+ εI − θ)),

and perform the change of variable V = J ·A+ εI − θ. This leads to the following

equationsτ V̇ (x, t) = −V (x, t) +
π/2∫
−π/2

[J0 + J1 cos(α(y − x))]S(σV (y, t))dy/π + εI(x)− θ

I(x) = 1− β + β cos(α(x− x0))

(3.25)

We are now in the case of the model studied in this chapter with p = 1, d = 1 and

Ω = (−π/2, π/2).

The nonlinearity is often chosen to be a Heaviside function, or, as in

[Ben-Yishai 1995], a piecewise linear approximation of the sigmoid, or, as in

[Ermentrout 1998, Dayan 2001a, Bressloff 2000], a true sigmoidal function. J1 can

take any sign and I is an external current coming from the LGN. J0 is most of the

time negative (see [Ben-Yishai 1995, Dayan 2001a, Bressloff 2000, Bressloff 2001b])

but can be positive as well (see [Bressloff 2001b]): the Jis can be thought of as the

first Fourier coefficients of J , J0, being its mean value.

For example, in [Dayan 2001a], we find J0 = −7.3, J1 = 11, β = 0.1, θ = 0

which are taken from [Ben-Yishai 1995] except for θ = 1. The nonlinear gain is as-

sumed to be σ = 1. Using the previous rescaling, it becomes J0 = −1, J1 = 1.5, σ =

7.3/s1 = 29.2 and θ → θ/7.3 which gives θ ≈ 0.1 in the case of [Ben-Yishai 1995]

and θ = 0 in [Dayan 2001a].

The goal of this section is not to derive the whole bifurcation diagram of the

Ring Model but rather to show how the stationary solutions are organized and to

give clues about the dynamics in a given range of parameters. This study is helpful

because some large scale models of V1 (see for example the work of Bressloff et al.

[Bressloff 2001b]) use the Ring Model for the hypercolumns or can be mapped onto

the Ring Model equations (see [Blumenfeld 2006, Carandini 1997] and Part IV).

We will see that, depending on the nonlinear gain, there may exist many stationary

solutions, which are all acceptable responses of the network for a given input of the

LGN. Thus these local orientation detectors may behave less trivially than they

were initially made for.
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Moreover, the next section will show the importance of the symmetries in the

model. Indeed, for α = 2, the model is translation invariant if Ω has periodic

boundary conditions. It implies that whenever there is a stationary solution, all its

translated versions will also be stationary solutions. This is not very straightforward

to handle numerically. Hence we chose to ’break’ this symmetry by chosing α 6= 2

and study the corresponding system. We will come back later in chapter 9 to

the Ring Model in the case α = 2 by using a change of variable to cope with

the symmetries. Finally, the present study, will show how the stationary solutions

evolve as functions of the nonlinear gain σ and the contrast ε.

3.5.1 Mapping the Ring Model to the PG-kernel formalism

Expanding the cosine in the previous equation, and denoting by cosα (respectively

sinα) the function x→ cos(αx) (respectively x→ sin(αx)), we find that, depending

on the sign of Ji, (εi = sign(Ji), i = 0, 1):

J = ε01⊗1+ε1

√
|J1| cosα⊗

√
|J1| cosα +ε1

√
|J1| sinα⊗

√
|J1| sinα

def
=

2∑
i=0

εiXi⊗Xi,

This formulation has the advantage of preserving the symmetries of J . With the

notations of the previous section, we have I⊥ = 0, and

τ V̇ ‖ = −V ‖ + J · S(σ(V ‖ + V ⊥0 e−t/τ )) + εI‖ − θ

where

V ‖(x, t) = v1(t) + v2(t)
√
|J1| cosα x+ v3(t)

√
|J1| sinα x, (3.26)

i.e. the model is three-dimensional. Note that the previous equation is equiva-

lent to (3.25). Similarly we have

I = I‖ = 1− β +
β cosα x0√
|J1|

X1︷ ︸︸ ︷√
|J1| cosα x +

β sinα x0√
|J1|

X2︷ ︸︸ ︷√
|J1| sinα x (3.27)

As V ⊥(t) → 0, we restrict the study to the case V ⊥ = 0 even if we lose some of

the ’real’ dynamics by doing so. This is motivated by the fact that the dynamics is

made of heteroclinic orbits (as we will see in a moment) between persistent states

belonging to the vector space V ⊥ = 0. Hence, using this simplification, we are led

to study the following 3D system:
τ v̇1 = −v1 + ε0 〈S(σV ), 1〉+ εI

‖
1 − θ

τ v̇2 = −v2 + ε1

√
|J1| 〈S(σV ), cosα〉+ εI

‖
2

τ v̇3 = −v3 + ε1

√
|J1| 〈S(σV ), sinα〉+ εI

‖
3

(3.28)

where 〈f, g〉 =
π/2∫
−π/2

f(x)g(x)dxπ , V is given by equation (3.26) and I
‖
i , i = 1, 2, 3

is given by equation (3.27). Note that the basis (X0, X1, X2) is not orthogonal for
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this inner product. We note v the 3D vector:

v = (v1, v2, v3).

Remark 13.In the numerical applications, the integrals in (3.28) have to be

computed with precision ortherwise some spurious solutions may appear (data not

shown). In practice, we compute the 1D integrals with (ALGLIB), a simple to use

C++ librairy.

The system enjoys the symmetries described by the following lemma.

Lemma 3.5.1. When I
‖
3 = 0, if v = (v1 v2 v3) is a solution, then so is (v1 v2 −v3).

The plane v3 = 0 is invariant by the dynamics.

Proof. This is a consequence of the fact that sinα is an odd function while cosα
is an even function. �

It is easy to see that

E(v) = −〈v,v〉
2

+
1

σ

∫ π/2

−π/2
S̄(σv1ε0 +σv2ε1

√
|J1| cosα x+σv3ε1

√
|J1| sinα x)

dx

π
+〈

εI‖ − ~θ,v
〉
,

where S̄ is a primitive of S and ~θ = (θ, 0, 0), is an energy function for the dynam-

ics,i.e. τ v̇ = ∇E(v). Consequently, even for I non spatially homogenous, there

are no non-constant periodic trajectories nor homoclinic orbits10. Moreover, all

bounded trajectories are stationary solutions or trajectories converging to station-

ary solutions. Having proven that all trajectories are bounded for the neural field

equations in proposition 3.2.3, we have characterized the dynamics. It remains to

compute the stationary solutions and their attraction basins.

Remark 14.We can generalize these facts to PG-kernels of the type J =
N∑
k=0

εkXk ⊗Xk by choosing E(v) = − 〈v,Lv〉2 + 1
σ

p∑
i=1

∫
Ω S̄(

N∑
k=0

σεkvkX
i
k(r)) dr + 〈I,v〉

3.5.2 Finding the persistent states

In order to characterize the set B of stationary solutions, we apply the scheme of

section 3.3.1. Hence we study the following equation

V = J · S0(σV ) + εI‖ + µ(−θ + J · S(0))

with the nonlinearity being the odd function: S0(x) = 1
1+e−x−

1
2 . Note that J ·S(0) =

1
2(ε0 + J1

2sinα(π/2)
απ cosα) = 1

2ε0 + ε1

√
|J1| sinα(π/2)

απ X1. This gives:
v1 = ε0 〈S0(σV ), 1〉+ εI

‖
1 + µ(−θ + ε0

2 )

v2 = ε1

√
|J1| 〈S0(σV ), cosα〉+ εI

‖
2 + µε1

√
|J1| sinα(π/2)

απ

v3 = ε1

√
|J1| 〈S0(σV ), sinα〉+ εI

‖
3

(3.29)

10This follows from the time derivative of the energy E.

http://www.alglib.net/
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3.5.2.1 The simpler case µ = ε = 0

This corresponds to finding the persistent states when µ = ε = 0 ensuring that

v = 0 is a solution. For the sake of simplicity, we reduce the study to the case

α 6= 2 which breaks the translation symmetry so that we do not get involved with

equivariant bifurcation theory (see chapter 9 for a study of the Ring Model with

the symmetries.). The Jacobian at v = 0 is given by (using some symmetries):

−Id3×3 + σs1K,

where s1 = S
(1)
0 (0) = 1

4 and the matrix K is equal to

K =

 ε0 ε0

√
|J1| 〈1, cosα〉 0

ε1

√
|J1| 〈1, cosα〉 J1

〈
1, cos2

α

〉
0

0 0 J1

〈
1, sin2

α

〉


K has in general (for α ≈ 2) three real eigenvalues. We note σ1 the eigenvalue of

K corresponding to the eigenvector (0, 0, 1), σ2 and σ3 the two eigenvalues ot its

upper left-hand 2 × 2 submatrix. The values, noted σi, i = 1, 2, 3, corresponding

to potential11 bifurcations are equal to 4/σi. The signs of the σis give the number

of bifurcated branches (recall that σ > 0). Because s2 = S
(2)
0 (0) = 0 and s3 =

S
(3)
0 (0) = −1/8 6= 0, all branches are Pitchfork branches (see section.3.3.1) whose

third order term is χ
(i)
3 = σ2

i
s3
6s1

〈
e3
i , e
∗
i

〉
F = σ2

i
s3
6s1
‖e2
i ‖2F < 0. Indeed, as J is self

adjoint, we find: e∗i = ei. Hence these branches are directed toward σ > σi. This is

summarized in table 3.1. The eigenvectors ei, i = 1, 2, 3, of the Jacobian of (3.28)

HH
HHHHε0

ε1 -1 1

−1 0 2

1 1 3

Table 3.1: Number of bifurcated Pitchfork branches from (0, σ) depending on the

values of ε0, ε1. The value of α in (3.25) is close to 2.

at v = 0 are given by:

e1 = sinα, e2,3 = a2,3 + b2,3 cosα

We reduce the number of possibilities by assuming, from now on, that J1 > 0.

It turns out that in this case σ2 < 0 and there are only two possibilities to consider:

σ1 < σ3 for α > 2 and σ3 < σ1 for α < 2. This gives the relative position of the

different bifurcated branches, noted Pi, i = 1, 3. Once we have found the bifurcation

point, we can numerically compute the bifurcated branches for all positive values of

σ using a continuation method (we used the pseudo-arc length method as described

11The upcoming nonlinear analysis will show that they are indeed bifurcation points.
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for example in [Sala 2004, Kuznetsov 1998]). From our numerical experiments, we

conjecture that in the case ε0 = −1 and ε1 = 1, P1 and P3 satisfy the following

properties

1. P1 lies on the v3-axis.

2. P3 lies in the plane of equation v3 = 0.

3. P1 and P3 do not intersect.

Remark 15.We can reverse the orientation of the Pitchforks by choosing a non-

linearity such that s3 > 0, the bifurcation diagram would be more complex: more

saddle node points would appear because of proposition 3.3.3. It is the fact that

s2 = 0 for the sigmoid which produces Pitchfork branches. Another choice of non-

linearity, for example S(x) = 1
1+exp(−x+ε) , would produce transcritical branches.

Figure 3.4 shows a typical example corresponding to the values of the parameters

that are found in the largest number of published articles. We come back to this

choice in section 3.5.4. The left part of the figure shows the three components of the

persistent states as functions of σ. For P1 there is only one non-zero component, v3,

in blue. For P3 there are two non-zero components, v1 shown in red and v2 shown

in green. The right part of the figure shows another representation of P1 and P3 as

curves parametrized by σ in the (v1, v2, v3) space. P3 is clearly in the (v1, v2) plane

while P1 is along the v3-axis. The color at each point of the curves represents the

value of σ according to the color scale shown on the right.

In detail we have

σ3 < σ < σ1 When σ goes through σ3, the 0-solution loses its stability and be-

comes a saddle. There are three persistent states, 0 (unstable node) and

two persistent states located on the Pitchfork branch P3, both stable. The

corresponding dynamics is shown in the left part of figure 3.4.

σ1 < σ When σ goes through σ1, the 0-solution loses its stability along the v3-

axis. There are two new persistent states located on the Pitchfork branch

P1, both are unstable nodes (the unstable manifold is one-dimensional). The

corresponding dynamics is also shown in the left part of figure 3.4.

There are at most 5 stationary solutions.

Remark 16.In the case J0 = 1 and ε1 = 1, there is another Pitchfork branch,

see table 3.1. For σ big enough, v = 0 becomes an unstable node and there are 7

stationary solutions instead of 5 for the case J0 = −1

3.5.2.2 The case µ = 1, ε 6= 0

We are now halfway from our scheme completion. To have an idea of the persistent

states at low contrast (i.e. ε ≈ 0), we need to know the persistent states for:

σ, µ = 1, ε = 0, that is we need to know the solutions of

V f
σ = J · S(σV f

σ )− θ
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Figure 3.4: Left: Plot of the bifurcation diagram for α = 2.2. It shows the two

Pitchfork branches P1 and P3. For each branch, we have only plotted the non-zero

coordinates with v1 = red, v2 = green for P3 and v3 = blue for P1. We have also

plotted the dynamics in two and three dimensions according to the values of the

nonlinear gain σ. Right: Plot of the equilibrium points. The color encodes the

value of the nonlinear gain σ (see text). J0 = −1, J1 = 1.5, µ = 0, ε = 0, α = 2.2

Following our program, we numerically compute the persistent states when the

nonlinear gain σ and µ both vary. As described in section 3.2.2 we expect many of

the previous bifurcations to disappear thereby breaking some of the connectivity of

the sets Bσ which can actually be (partially) recovered by considering the sets Bσ,µ
This was done using the library TRILINOS (see [Sala 2004] and the website) using

a multiparameter continuation.

We show an example of this continuation in figure 3.5 Left where we display

the v2 component of the persistent states as a function (sometimes multivalued)

of σ and µ. A cross-section of this set by the plane of equation µ = 0 (shown as

semi-transparent in the figure) yields a curve identical to the one shown in green

figure 3.4 Left. The figure nicely shows how the first Pitchfork bifurcation branch

P3 opens up when µ becomes non zero: this gives the connected component of Vf
σ

which is linearly stable.


0 = v1 − ε0 〈S0(σV ), 1〉+ µ(−θ + ε0

2 )

0 = v2 − ε1

√
|J1| 〈S0(σV ), cosα〉+ µε1

√
|J1| sinα(π/2)

απ

0 = v3 − ε1

√
|J1| 〈S0(σV ), sinα〉

(3.30)

However, as can be seen from 3.5 Right, non-zero values of µ do not break

the Pitchfork P1. It is easy to qualitatively understand why, even though a full

mathematical proof is more difficult to come up with: µ does not affect the third

equation which produces the Pitchfork P1. We can prove it locally for µ near 0

using the implicit function theorem. We are looking for a point (v1(µ), v2(µ), 0) at

http://trilinos.sandia.gov
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Figure 3.5: Left: The v2 component of the 2-parameters continuation (σ, µ). Right:

Plot of the equilibrium points. The color encodes the value of the nonlinear gain σ.

Parameters are J0 = −1, J1 = 1.5, µ = 1, ε = 0, α = 2.2, θ = 0.1.

which a Pitchfork occurs for σ = σ1(µ). Let us consider

H(v1, v2, σ;µ) =

 v1 − ε0 〈S0(σV ), 1〉+ µ(−θ + ε0
2 )

v2 − ε1

√
J1 〈S0(σV ), cosα〉+ µε1

√
|J1| sinα(π/2)

απ

1− σJ1

〈
DS0(σv1X0 + σv2X1), sin2

α

〉
 (3.31)

where the last component of H(v1, v2, σ;µ) is the partial derivative with respect to

v3 of the third equation in (3.30). It is easy to see that H(0, 0, σ1; 0) = [0 0 0]. The

Jacobian of H w.r.t. (v1, v2, σ) at (0, 0, σ1, 0) is (because S(2)(0) = 0): −1 + σ1s1ε0 σ1s1ε1

√
|J1| 〈1, cosα〉 0

σ1s1ε0

√
|J1| 〈1, cosα〉 −1 + σ1s1J1

〈
1, cos2

α

〉
0

0 0 −s1J1

〈
1, sin2

α

〉


It is invertible, hence there exists a unique solution defined locally for µ ≥ 0 sat-

isfying H(v1(µ), v2(µ), σ1(µ);µ) = 0: we have found a bifurcated point. Moreover,

as χ
(3)
1 (µ = 0) 6= 0, it will remains so for small µ: the Pitchfork P1 is not affected

by µ. For large values of µ we have to rely on numerical simulations.

Now, because of lemma 3.5.1, the solutions (v1, v2) corresponding to v3 6= 0 (i.e.

lying on the Pitchfork branch) are the same for v3 and −v3 which gives the branch

2-3 in figure 3.6. Hence, when µ 6= 0, we still have the Pitchfork P1 and the branch

(located in v3 = 0) arising from the opening of P3. This gives the diagram shown

in figure 3.6 for the three components of v. The left part of the figure shows the

case µ = 0.2 while the right part shows te case µ = 1, the one we are interested in.

Each triplet of (red,green,blue) curves represents the variation of (v1, v2, v3) as a

function of the parameter σ. They are labeled by integers between 1 and 5.

This diagram is a bit misleading because if we count the red components, there

are four of them for σ > σ1 which gives an even number of solutions (in contradiction
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Figure 3.6: Plot of the three components (v1, v2, v3) = (red, green, blue) as

functions of the nonlinear gain σ for the following values of the parameters:

J0 = −1, J1 = 1.5, µ = 1, ε = 0, α = 2.2, θ = 0.1. Remember that the

nonlinear gain of the model has to be around σ = 29 in order to be compatible with

previous work. The numbers label the different solutions, any solution is made of 3

components (v1, v2, v3), hence requires three labels. The label 2− 3 indicates that

the solutions 2 and 3 shares one common component.

with proposition 3.2.7). In fact by doing so we miss the symmetry v3 ↔ −v3 and

the corresponding solutions. It is easier to look at figure 3.5 Right to count the

stationary solutions.

From section 3.3.1, it follows that the connected branch of V f
0 is stable as well

as the branch P1. The only unstable branch comes from the opening of P3 and is

shown in figure 3.5 Right.

Remark 17.Figure 3.5 shows an example where our scheme allows to detect an-

other branch of solutions which is not connected to the connected component of the

trivial solution.

Figure 3.6 also tells us which branches will appear when the contrast ε becomes

positive: this will be a perturbation of figure 3.5. Except in the case x0 = 0

(see equation (3.25)), the Pitchfork P1 will open up, giving two new connected

components in addition to the connected component of Vf
0 .

To illustrate further these ideas we have plotted in figures 3.7, 3.8 and 3.9 all

the persistent states (i.e. the functions Af (x) = S(V f (x)) for −90◦ ≤ x ≤ 90◦)

for various values of the nonlinear gain σ, and the contrast ε. In detail we have

εI(x) = ε(1 − 0.1 + 0.1 cosα(x − 0.1)), α = 2.2, J0 = −1, J1 = 1.5, and µ = 1.

Unstable solutions are shown in dotted line, stable solutions in continuous lines.

The width of the continuous lines is proportional to the smallest magnitude of the

(negative) eigenvalues of the Jacobian of the system for this solution. We show in

appendix A.7 that this magnitude is a lower bound of the size of the corresponding

attraction basin. The external current I(x) is plotted as a red continuous line in

figures 3.8 and 3.9.

Figures 3.7 and 3.8 correspond to the cases ε = 0 (no input current) and ε =
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0.05, respectively. In each figure the three subfigures correspond, from left to right,

to the increasing values 14, 20, and 29 of the nonlinear gain σ. In the case of

figure 3.7 the number and the stability of the solutions can be predicted directly

from the righthand side of figure 3.6 while for figure 3.8 this can be achieved from a

perturbation of the same figure. Note that, except for the unstable solution peaking

at x = 0◦, the effect of increasing the nonlinear gain of the sigmoid is to increase

the amplitude of the solutions, as can be seen from an examination of the branches

labelled 4 in the righthand side of figure 3.6.
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Figure 3.7: Stationary solutions for the Ring Model with no input current (ε = 0.0)

for three values of the nonlinear gain parameter σ. From left to right σ = 14, 20, 29.

For σ = 14 there are three solutions, two stable (shown in continuous line) and one

unstable (shown in dotted line). For σ = 20 and σ = 29 there are five solutions,

two stable, and three unstable, see text.
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Figure 3.8: Stationary solutions for the Ring Model with an input current corre-

sponding to the contrast ε = 0.05 for three values of the nonlinear gain parameter

σ. From left to right σ = 14, 20, 29. In all the cases there are at most five solutions,

two of them stable (shown in continuous lines), and three (one for σ = 14) unstable

(shown in dotted line), see text.

Figure 3.9 corresponds to an even higher current than in figure 3.8,i.e. the

contrast ε is equal to 0.1. In this case we only show the stationary solutions for the

values 20 and 29 of the nonlinear gain parameter because there is little difference

between the cases σ = 14 and σ = 20. We note that the effect of increasing the

nonlinear gain is the same as in figure 3.8 and that for a given nonlinear gain, the

effect of increasing the contrast ε is also to increase the amplitude of the solutions,
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except for the unstable solution peaking at x = 0◦. The labels of the five solutions

shown in the righthand part of the figure are the same as in figure 3.6. The reader

should have no problem to transfer them to the solutions plotted in figures 3.7 and

3.8.
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Figure 3.9: Stationary solutions for the Ring Model with an input current corre-

sponding to the contrast ε = 0.1 for two values of the nonlinear gain parameter σ.

From left to right σ = 20, 29. In both cases there are five solutions, two of them

stable (shown in continuous lines), and three unstable (shown in dotted line), see

text.

3.5.3 A closer inspection of contrast dependency and the broken sym-
metry

The previous numerical/theoretical analysis has shown a very interesting point: it

predicts two orthogonal stable stationary states. It means that when an hypercol-

umn is presented (let us say) an horizontal drifting grating, i.e. x0 = 0 in (3.24), the

hypercolumn can interpret this stimulus as being vertical (see figure 3.9). However,

we know from prop 3.2.7 that there is a unique stationary state for a large enough

contrast ε, this state will correspond to a horizontal state. The question we wish to

examine is how much contrast is needed to destroy the illusory vertical stationary

state which is not related to the stimulus orientation? We will come back in chap-

ter 9 to a precise definition of the illusions states and the illusory states. For now,

we just call an illusory state, a state which is not related to the stimulus orientation.

Our analysis have been confined to the case α > 2 up until now. It is straight-

forward to make a similar study for α < 2. The main point to notice is that the

Pitchfork P1 would happen before the Pitchfork P3 (see figure 3.4). Hence, the

stable cortical states would be the solutions labelled 2 − 3 in figure 3.9, i.e. corti-

cal states correspond to a drifting grating oriented at ±45o. These states have no

relation with the horizontal input for x0 = 0.

We will see that all these illusory persistent states are ’artefacts’ coming from

the hypothesis α 6= 2. This hypothesis implies that the network is not anymore
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translation invariant: it has a preference. We have seen that, depending on the

case α ≶ 2 and on the nonlinear gain σ, the network prefers horizontal/vertical

drifting gratings. The following study will show that contrasts ε of the order the

asymmetry |α− 2| destroy the illusory persistent states.

We use the Lyapunov-Schmidt reduction (see [Golubitsky 1984,

Golubitsky 1988, Kielhöfer 2003]) to study the effect of the anisotropy. Hence, our

analysis will work for constrasts/asymmetries small (i.e. close to 0). For larger

values, one has to rely on numerical computations as we did in the previous section.

Let us consider the case α = 2, µ = 1, ε = 0. For any nonlinear gain there is a

constant (in space) solution12 v = (v0, 0, 0). We will see in chapter 9 that there is

always a nonlinear gain σc for which the network (at α = 2, µ = 1, ε = 0) displays

a Pitchfork bifurcation. We summarize the results in the next proposition.

Proposition 3.5.2.Let us consider the parameters ν = (σ, α, ε) ∈ R3 and the

bifurcation point νc = (σc, 2, 0). If we write V = v0 + x1 cos2 x + x2 sin2, then the

equation (around the bifurcation point νc) reads

{
0 = x1

(
δσ + δα+ χ3(x2

1 + x2
2)
)

+ εI1

0 = x2

(
δσ − δα+ χ3(x2

1 + x2
2)
)

+ εI2
(3.32)

with I = β cos2(x0), I2 = β sin2(x0), σ = σc + 2
s1J1

δσ, α = 2 + 4
s1J1

δα and

s1 = DS(σcv0(σc)).

Proof.

Let us write Lν the linearised r.h.s. of (3.25) for a given triplet ν around

the stationary point Vf = v0(σc), V ≡ Vf + U and L ≡ Lνc . The kernel of

L is spanned by cos2, sin2 and we write Pc = 〈·, cos2〉 cos2
2
π + 〈·, sin2〉 sin2

2
π the

projection on the kernel. The equation to solve is 0 = F (U, ν) ≡ −U + J(α) ·(
S(σVf + σU)− S(σVf )

)
+εIext(α). We compute the equation satisfied by (x1, x2)

using the Lyapunov-Schmidt reduction. The method is similar to the one used in

the proof of lemma 3.3.2 except that there are symmetries and the number of

unknowns is 2. The same procedure gives the linear part x1δσ, x2δσ and the terms

corresponding to the external input εI1, εI2. We compute in chapter 9 the nonlinear

part of the “reduced” equation and show that it yields the terms χ3(x2
1 + x2

2)x and

χ3(x2
1+x2

2)y for each component x1, x2. The coefficient χ3 depends on the threshold

θ, the critical gain σc and v0(σc).

It remains to compute the terms in the “reduced” equations corresponding to

the parameter α. There are the linear terms pi × (α − 2) in each equation. The

coefficient p1 (for example) satisfies p1 = 〈 2
π cos2, ∂αF (0;σc, 2, 0)〉 = 0 where the first

equality is given in [Golubitsky 1984][chapter VII.1.d]. We find p1 = p2 = 0. The

next terms are qijxj(α−2) for the equation i = 1, 2. From [Golubitsky 1984][chapter

12This is a consequence of prop 3.2.7 applied to the equation for v0.
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VII.1.d], we find

q11 = 〈 2
π
cos2, ∂αLν · cos2−D2

UF (0;σc, 2, 0)[cos2,L
−1(Id−Pc)∂αF (0;σc, 2, 0)]〉

= 〈 2
π
cos2, ∂αLν · cos2〉

We write α = 2 + 4
s1J1

δα with s1 = DS(σcv0(σc)). From Pc(∂αL)νc |Xc =

s1
J1
4

[
1 0

0 −1

]
, we conclude the proof of the proposition. �

We use this proposition to understand the effect of the different parameters.

Let us assume that the external input is horizontal, i.e. I2 = 0. For θ = 0, we find

(see chapter 9) that χ3 < 0. Up to a rescaling of (x1, x2, ε), we can assume that

χ3 = −1. A little algebra shows that the stationary solutions of (3.32) are given

by:

(S1) :

{
x3

1 − (δσ + δα)x1 − εI1 = 0

x2 = 0

and

(S2) :

{
x1 = − εI1

2δα

(2x2)2 = 4(δσ + δα)−
(
εI1
δα

)2
We are ready to study more carefully what stationary states can be produced de-

pending on the different parameters. Let us start with the case we have been study-

ing until now and assume the network is at the edge of the bifurcation: ν ≈ νc.

Case δα > 0: we know that the solutions (S2) correspond to the Pitchfork P1

because x1 and x2 are non-zero. We are not interested in these solutions.

The illusory persistent state comes from the first group of solutions S1. The

stationary states are solutions of a polynomial equation of third degree. There

are real solutions i.i.f. ∆ ≡ −4(δσ+ δα)3 + 27(εI1)2 ≤ 0. Hence, if δα, δσ are

fixed, for constrasts of order δα3/2, only one solution remains.

Case δα < 0: we know that the second set of solutions (S2) produces the illusory

stationary states. It is easy to show that for constrasts of order |δα|3/2, only

one solution remains.

3.5.4 Discussion

There are two reasons why we presented this example. First, it is a nice simple

model to which the formalism of this chapter easily applies and allows us to push

the analysis far enough to grasp an almost complete understanding of its persistent

states and a somewhat detailed understanding of its dynamics. Second, it conveys

information for models of V1 that is likely to be biologically relevant. For example,

as the nonlinear gain σ of the sigmoid is increased, many new stationary states

appear whose stability evolves with σ. One of these solutions is “dramatic” for the
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purpose of orientation detection: even if the LGN input orientation peaks around

the angle x0 = 0, the Ring Model can produce a stable cortical state (or a percept)

corresponding to an angle of π/2!

However these solutions may be destabilized/destroyed by adding lateral spatial

connections in a spatially organized network of Ring Models; it remains an area of

future investigations. As far as we know, only Bressloff and co-workers looked at

this problem (see [Bressloff 2002a, Bressloff 2001b]) in the case α = 2 but they did

not show cortical responses incompatible with the stimulus.

In an analysis using the Lyapunov-Schmidt reduction, we were able to under-

stand, in a small region of the parameter space, the impact of the asymmetries |α−2|
on the network behaviour. Basically, for contrasts of the order of the anisotropies

|α − 2|, the illusory states are destroyed. We will come back on the impact of

asymmetries in chapter 10.

It should be noted that neural mass models are very often written with a Heav-

iside function for the nonlinearity which, as mentioned previously, is the limit case:

H(x) = lim
σ→∞

S(σx).

We also made the assumption α 6= 2 in the previous analysis. It remains to know

how much of the preceding holds in the case α = 2. More generally, what would

remain if one were to choose a difference of Gaussians as a connectivity function

over a cortex Ω = (−π/2, π/2). This will be done in chapter 9 where we provide a

way to handle the symmetries numerically.

Chapter 9 will also provide a complete understanding of the effects of all the

parameters. We will see that in order for the Ring Model to account for biological

data, one must give specific values to its parameters. In other works, the model is

completely specified by experiments.

3.6 Two populations of spatially organized neurons

We apply the previous theoretical analysis to a system we started to analyse in

[Faugeras 2009]. In the somewhat reduced form we consider here, it consists of two

populations (p = 2), one excitatory, one inhibitory, distributed over a flat (d = 2)

cortex of rectangular shape13 Ω = [−1, 1]× [−0.95, 0.95]. The connectivity matrix

kernel writes:

J(r, r′) =

[
aG11(r− r′) −bG12(r− r′)

bG12(r− r′) −cG22(r− r′)

]
(3.33)

where Gij(r) = e
− ‖r‖

2

2σij , i, j = 1, 2 are two-dimensional Gaussian functions and

a, b, c > 0 characterize the strength of the connections. We also assume Iext = 0.

The parameter µ controlling the translation of the sigmoid (see (3.14)) is therefore

the only parameter, outside σ, that we vary from 0 to 1. We also chose (notice that

13Such choice is motivated by the requirement to break the maximum number of symmetries

which otherwise could make the numerical continuation process more difficult.
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s2 6= 0):

S(x) =
1

1 + e−x+θ
, θ = 1.3

In [Faugeras 2009], we were able to compute the stationary solutions Vf
σ,µ=1

when the slope σ is small (i.e. σ < σ∗) using the Nystrom (see for example

[Kress 1999]) method. We know, from the previous analysis, that if we perform

a continuation of these solutions with respect to σ, we are bound to miss quite a

few of them. Therefore we perform a two-parameter continuation with respect to

the pair (σ, µ) in order to recover more stationary solutions.

Biologically speaking, no systematic investigation has been performed to test

the validity of the translation invariance of the connectivity function. Hence a

roughly translation invariant (called heterogeneous in [Ermentrout 1980]) is not less

biologically relevant. This is where the PG-kernels are useful: they provide an easy

way to approximate the convolution operation as well as an effective representation

of the connectivity (see section 3.4).

There are three reasons why we think this example is interesting:

• We want to show how to deal with heterogeneous kernels. In particular, we

will impose a null connectivity J on the cortex boundary ∂Ω.

• We want to show an example of application of proposition 3.3.3.

• More importantly, we want to show how the results of section 3.3.1.1 may

change in the two-dimensional case.

We also want to give a non trivial example of the existence of a branch of

solutions not connected to the trivial solution Vf
0 . We did not find a model which

showed this behaviour while featuring the three points above. Notice that we gave

an example of our method showing how to compute some non connected components

in the previous example 3.5.

As in the previous case, we are not interested in obtaining the complete bi-

furcation diagram of the system but rather in giving numerical examples of the

previously enumerated points.

3.6.1 Approximation of J

Let us write

e−‖r−r
′‖2/2 = e−‖r‖

2/2e−‖r
′‖2/2e〈r,r

′〉 ≈ e−‖r‖2/2e−‖r′‖2/2
(

1 + 〈r, r′〉+
1

2
〈r, r′〉2 + ...

)
We notice two important facts:

• 1 + 〈r, r′〉+ 1
2〈r, r

′〉2 + ... is a polynomial in the components of r and r′, hence

a PG-kernel.
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• e−a‖r‖2/2 = e−ar
2
1/2e−ar

2
2/2 has a bell-shape which we approximate with the

function Ba(r) ≡
(

1−r2
1

)a/2(
0.952−r2

2

)a/2
. This choice is also motivated by

the fact that e−a‖r‖
2/2 tends to zero at the edges of the infinite cortex that is

usually considered in the literature. We preserve this property with our finite

cortex since Ba = 0 on the boundary ∂Ω of Ω. Any other positive bell shaped

function would be appropriate.

Putting these two facts together, we end-up with the following approximation of a

Gaussian convolution kernel with a PG-kernel.

Jij(r, r
′) = Baij/2(r)Baij/2(r′)Pij(r, r

′), i, j = 1, 2 (3.34)

where P is a 2 × 2 matrix with polynomial entries in r and r′. It is easy to see

that this type of connectivity (3.34) is a PG-kernel. The smaller the degree of the

polynomials Pij , the smaller is the number of unknowns vi in (3.21). Hence, if one

wants a small number of variables, one should try to approximate ex on [−2, 2]

with polynomials. This could be done using the series
N∑
k=0

xk

k!
N→∞→ ex or the best

polynomials interpolation given by the Chebyshev Equioscillation Theorem.

There is the disadvantage that the integrals in (3.21) must be computed accu-

rately using some numerical library.

An other alternative is to discretize Ω and compute the integrals of the integral

kernels with a fixed quadrature rule, this may be cheaper computationally but it

produces a lot of unknowns.

In the following numerical study, we chose the second alternative, i.e. we dis-

cretize Ω with n = 15 points on each axis which gives 152 · 2 = 450 unknowns.

Hence, we do not use the PG-kernels approximation and use the connectivity given

by:

Jij(r, r
′) = Baij/2(r)Baij/2(r′)eaij〈r,r

′〉, i, j = 1, 2 (3.35)

We use the library TRILINOS (see [Sala 2004] for the website) for the multipa-

rameter continuation. The vectors/matrices, in the program, are coded using the

library EPETRA which is a parallel implementation of the linear algebra operations.

Finally, the code is run on 8 processors.

3.6.2 Numerical experiments

In this numerical experiment we have a11 = a22 = 3, a12 = a21 = 2, a = 20, b =

21, c = 25.5 and L = 0.2·Id. Each of the 450 variables is a function of the parameters

σ, µ. We represent in figure 3.10 the 2-norm of the 450-dimensional vector Vf as

a function of the slope parameter σ for µ = 0. We find numerically the first 5

bifurcation points σi, i = 1 · · · 5 for σ ∈ [0, 12]. Depending on the symmetries of

the eigenvectors of J and its adjoint J∗, the different bifurcation points are Pitchfork

or Transcritical bifurcations.

In figure 3.10 (case µ = 0), we see three Pitchforks branches at σ2, σ3, σ4

and two Transcritical branch at σ1 and σ5. According to proposition 3.3.3, a

http://trilinos.sandia.gov
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Figure 3.10: Plot of the 2-norm ‖·‖2 of the 450-dimensional vector Vf as a function

of the slope parameter σ for µ = 0. Some intersection points are labelled. Notice

that Vf = 0 is solution for all values of σ. Each dot shows the intersection between

two branches. SN stands for saddle-node.
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saddle-node (noted SN in the figure) must appear on the Transcritical branches

(see section 3.3.1).

It seems that all the bifurcation points (except σ5 for σ ∈ [0, 12]) are connected

to the first bifurcation point σ1 by bifurcated branches. The intersections between

the different branches are indicated by green dots in figure 3.10. The bifurcated

branch from (0, σ1) displays secondary P
′
1 and tertiary bifurcation points P

′′
1 by

which it connects to the bifurcation point (0, σ4). We had some difficulties to

find such an ’extreme’ example but it seems, based on our numerical experiments,

that it is deeply rooted in the fact that the connectivity is null on the cortex

boundary ∂Ω. Indeed, this property is also true for the stationary solutions and

it seems to constrain the nodal structure of the stationary solutions: we have not

been able to find properties of the nodal structure. When the connectivity has

symmetries, some topological equivariant tools have been developed (see for example

[Ize 2003, Balanov 2006]) which are closely related to the results we presented in

section 3.3.1.1. We have not pushed forward in this direction.

Thus, this example shows, at least numerically, that the Rabinowitz conclusions

in section 3.3.1.1 are specific to the one-dimensional case.

We plot, in figure 3.11, the stationary membrane potential V f
1 of the first popu-

lation for different values of σ along the branch connecting P1−3 to (0, σ3). It shows

how the symmetry of the state, which has the symmetries of a rectangle, change

along the branch until the point σ3 which only displays the reflexion symmetry.

Remark 18.We have chosen the parameters a, b, c such that the first three eigen-

values have zero imaginary parts. Numerically, most of the other eigenvalues σn
have non-zero imaginary part leading to Hopf bifurcations. Other stationary bifur-

cation may appear for large slope values (i.e. σ > 12).

3.7 Discussion

In this section we briefly discuss two important aspects of the neural fields model

with respect to the biology.

3.7.1 Is the cortex really finite?

An important aspect of our work is to assume that the domain Ω is bounded. As

pointed out in the introduction this has the effect of simplifying somewhat the func-

tional analysis of the problem. Since we can then rely essentially on the fact that

the operator defined by the connectivity function is compact, hence also its Frechet

derivative. The spectrum of this derivative is therefore at most countable, 0 being

an accumulation point. The inverses of its positive eigenvalues (multiplied by 4,

see equation (3.17)) determine the possible points of bifurcation of the steady-state

solution with respect to the parameter σ. They accumulate at +∞ but will in gen-

eral have values smaller than the range of values biologically relevant. Assuming

in the worst case that each of these values corresponds to a bifurcation, if they
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Figure 3.11: Plot of the first component V f
1 of the solution Vf = (V f

1 , V
f

2 ) along

the branch connecting P1−3 to σ3 in figure 3.10. The nonlinear gain is indicated

on top of each sub-figure. This figure shows how the symmetry of the bifurcated

solution evolves along the branch from the point P1−3 with the symmetry group of

a rectangle to the point σ3 with just the symmetry reflexion w.r.t. ey.
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are very close to each other the task of the numerical continuation program will

become extremely difficult. This situation occurs when the spread of the connec-

tivity function J is very small with respect to the size of the domain Ω, making the

finite size assumption questionable from the practical viewpoint. In order to get

a feeling for the domain of applicability of our theory we have done the following

experiment. Assume that the domain Ω is 1D, and of length a. Assume further that

the local interaction is described by a Gaussian with zero mean and variance σ2

normalized in such a way that its integral on the interval [−a/2, a/2] is equal to 1.

The eigenvalues σn of J can be computed analytically as the Fourier coefficients of

the function J. As it was just mentioned, they accumulate at 0 since J is compact.

What is important is the separation of their inverses (the σns). For a ratio σ/a

equal to 10% the first 10 positive σns are given by

n 1 2 3 4 5

1.000 1.218 2.202 5.909 23.530

n 6 7 8 9 10

139 1220 15785 337734 2629893

If we decrease the ratio to 5% these numbers become

n 1 2 3 4 5

1.000 1.051 1.218 1.559 2.202

n 6 7 8 9 10

3.4341 5.909 11.224 23.530 54.445

and if we decrease the ratio to 1%:

n 1 2 3 4 5

1.0000 1.0020 1.0079 1.0179 1.0321

n 6 7 8 9 10

1.0506 1.0736 1.1015 1.1347 1.1734

We conclude from this numerical experiment that our methods are applicable in a

straightforward fashion for ratios roughly above 2-3%.

Now, what does the biology tell us about the ratio σ/a? In the cat area 17

(analogue to V1 in humans), it is commonly agreed that excitatory connections can

span as much as 8mm whereas inhibitory are limited to 3mm for an area which is

roughly 25x20mm, hence a ratio between 12% and 32%. In humans, less data is

available but Bressloff et al. in [Bressloff 2001b] use a lateral connectivity function

spanning 10mm for an area V1 with area 144x96mm, hence a ratio of roughly 7%.

In both species we are well in the range of separations of the eigenvalues that poses

no numerical problems to the continuation methods.

3.7.2 How steep should the sigmoid be?

When the nonlinear gain σ of the sigmoid in the model increases without bound, the

sigmoid converges toward the Heaviside function. As shown in the chapter, when
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σ increases, we predict the appearance of a variety of new stationary solutions

of the neural field equations. From the biological viewpoint one observes hard

thresholds at the level of single neurons f-I curves [Izhikevich 2000], the curves that

relate the external current to the firing rate. At the population level, the one

described by the neural field equations, these hard thresholds are smoothed over

by the effect of population averaging. Our mathematical analysis can provide an

answer to the question of how steep is a sigmoid from a biological perspective. The

answer is related, in the case of the Ring Model, to the connection between the

nonlinear gain σ and the connectivity function J. As shown in equation (3.24) the

relevant parameter is the product σ|J0| which is constrained by a) the fact that it

must be larger than the first bifurcation value in order for the model to produce

tuning curves, and b) that it must be smaller than the value for which the tuning

curves saturate, hence do not vary with the contrast anymore, in contradiction with

biological measurements. For each application of the neural field equations this is

how the biology enters the mathematics to constrain the model parameter values.

3.8 Conclusion

In this chapter, we have pursued the analysis, started in [Faugeras 2008,

Faugeras 2009], of a special type of integro-differential equation that appears in

neural field and neural mass models where we are interested in approximating meso-

scopic and macroscopic ensembles of neurons by continuous descriptions.

In effect, these equations depend upon a number of biological or experimental

parameters such as the nonlinear gain σ of the nonlinearity, the connectivity matrix

J, or the input I. These parameters vary in general in neural populations because

of such processes as plasticity and learning. It is therefore important to understand

how the solutions of these equations vary when these parameters change. To this

end, we used two theories: the degree theory and the bifurcation theory. The degree

theory describes the general behaviour of the cortical states as the parameters vary.

On the other hand, the bifurcation theory describes the precise local behaviours of

the cortical states as the parameters vary.

We believe that a good model should exhibit bounded membrane potentials

which requires to take a bounded nonlinearity (as opposed to some papers, see for

example [Ben-Yishai 1995]). The degree theory yields the powerful estimate that

the number of persistent states has to be odd, hence it predicts an additional per-

sistent state in the neighbourhood of subcritical Pitchfork/transcritical bifurcation

points. This extra point is invisible to bifurcation theory, which is a local the-

ory (this was conjectured numerically in [Ermentrout 1980]). The extra point may

change drastically the dynamics and shows that local analysis is not sufficient for

the study of the neural field equations.

We have focused on the description of the stationary solutions of the neural

equations when varying the nonlinear gain, and tried to compute numerically the

additional persistent state given by the degree theory for arbitrary external current
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and connectivity. As the set of stationary solutions may not be connected, we

used a multiparameter continuation scheme in order to compute non-connected

branches of solutions and were able to show examples of these (see section 3.5).

Whether these different branches of solutions intersect or are unbounded is still

unknown in the general case. However, the scalar case for a one-dimensional cortex

(p = 1, d = 1, Iext = 0) is almost completely solved (see section.3.3.1.1): we still

don’t know if isolas may exist. This point has never been mentioned in the literature

to our knowledge. The question of whether we have computed all the solutions by

using our multiparameter scheme is unfortunately still open.

To summarize, we have found new stationary solutions that were not predicted

before. This suggests that the analysis of neural field models of the visual system

should be re-examined.
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4.1 Introduction

The Hodgkin-Huxley equations [Hodgkin 1952] provide an accurate and mathe-

matically tractable description of the behavior of an individual neuron in iso-

lation, which later formed the foundation for mesoscopic descriptions of neu-

ral networks where the fine properties of the neurons do not play a fundamen-

tal role. The neural field models [Wilson 1973, Amari 1977, Coombes 2005b],

which describe the firing rate evolution of spatially extended populations of neu-

rons have been used successfully to model the rat barrel cortex [Pinto 1996] and
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the visual cortex [Ben-Yishai 1995, Markounikau 2010]. More specifically, neu-

ral field models have been used to study both stationary and oscillatory be-

haviors; in both regimes the connectivity between neurons dictates the possible

cortical states (see [Ermentrout 1979] for the oscillatory regime). The station-

ary regime has been used to describe neural hallucinations as spontaneous cor-

tical activity [Bressloff 2000, Bressloff 2001b]. The computation of the station-

ary cortical states and their stability is now well documented [Ermentrout 1980,

Bressloff 2000, Bressloff 2001b, Coombes 2005b, Faugeras 2008, Veltz 2010]. An

immediate question is how this stability is altered when delays are introduced.

There are a limited number of studies for which delays are taken into account

but only constant delays are considered in non spatially extended populations

[Bélair 1994, Bélair 1996, Coombes 2009, Shayer 2000, Wu 2001]. Here, we use bi-

furcation theory to study both stationary and oscillatory behaviors in a spatially

extended system with space dependent delays.

Moving from a description of neural activity by ordinary differential equations

(ODEs) to delay differential equations (DDEs) requires significantly more complex

mathematical and numerical tools, mainly due to the fact that the phase space be-

comes infinite dimensional [Wu 1998, Hale 1993, Diekmann 1995, Shampine 2001].

This explains the small number of studies of mesoscopic models with delays. Indeed,

whenever possible, one should try to find a description of the biophysical behavior

with ordinary differential equations. In the case of constant delay across all popula-

tions there is no significant increase in mathematical difficulty, however, in the case

of propagation (spatially dependent) delays, there is no way to give an accurate

description of the dynamics with a reduction to ODEs. However, it would be ad-

vantageous to use equations that intrinsically contain finite propagation speeds (like

the wave equation) instead of neural field equations. When the spatial connectivity

is homogeneous, one can find a partial differential equation which approximates the

delayed neural field equations [Coombes 2007]; a major advantage of this approach

is the speed-up in the numerical computation. However this advantage has been

recently superseded by the algorithm in [Hutt 2010] where the authors take advan-

tage of the convolutional structure of the homogeneous connectivities to efficiently

compute the solutions of delayed neural field equations (DNFEs). All in all, no

simplification exists for general connectivities which suggests that a description of

propagation delays with delay differential equations is still satisfactory.

In the quest to approximate networks of spiking neurons by neural field equa-

tions, it has recently been shown that constant delays must be incorporated in the

mesoscopic description in order to produce oscillations — traveling waves or stand-

ing waves — observed in spiking neural networks [Roxin 2005, Roxin 2011]. These

constant delays take into account the finite integration time of the pre-synaptic ac-

tion potentials by synapses. On the other hand, the space dependent delays coming

from the finite velocity of action potentials propagating along axons are thought to

play an important role in the long range connections observed in the visual cortex

([Bressloff 2003, Lund 2003a]).

The linear stability of stationary cortical states of delayed neural field equations
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was studied in [Atay 2005, Atay 2006, Bressloff 2008, Coombes 2007, Hutt 2009,

Hutt 2008, Jirsa 2000, Bojak 2010] and some delay dependent/independent

bounds of stability were given in [Atay 2005, Atay 2006, Hutt 2006, Hutt 2008,

Veltz 2011b]. Due largely to the fact that the eigenvalue problem is infinite dimen-

sional, the computation of the stability has been confined to some very particular

cases [Venkov 2007, Bressloff 2008]. Hence, little is known about the impact of

(space dependent) delays on the stability of equilibria. Due to the high computa-

tional cost (even for one dimensional cortices with homogeneous connectivities), an

in-depth analysis of the values of delays and connectivity properties giving rise to

oscillatory behavior has yet to be produced. Despite this limitation, the nonlinear

stability has been studied in two papers [Roxin 2011, Venkov 2007]. The first ref-

erence gives, by means of a numerical investigation of the eigenvalue problem, an

almost complete description of the linear stability for constant delays; we show that

it can be done analytically in the most general case. Notice that the nonlinear anal-

ysis is done using weakly nonlinear analysis. The second reference [Venkov 2007]

applies the weakly nonlinear analysis techniques to produce simplified equations

from which the stability is studied. They were able to compute the normal form

of the Hopf bifurcation for different neural field models including neuronal adapta-

tion. From a mathematical point of view, the method produces nonlinear partial

differential equations for the reduced equation which are not so straightforward to

study in practice; the authors consider infinite cortices, modeled in effect as the real

line. By looking at bounded cortices (as in [Roxin 2011]), we show that our method

produces ordinary differential equations whose normal forms are well-documented

[Guckenheimer 1983, Kuznetsov 1998, Haragus 2010].

The main drawback in the use of the weakly nonlinear expansion is that conver-

gence of the dynamics to those of the reduced equation has not been proven. We

decide to apply center manifold and normal form theory in order to get around this

difficulty; hence, we look for such an appropriate version of the theory that can be

applied to DNFEs. The development of bifurcation theory for delayed functional

differential equations was begun in [Hale 1993, Chapter 10], where the authors give

a center manifold equation for finite dimensional delay equations where the neuronal

activity is a vector and not a function of space as in the neural field equations. This

work was later pushed further by Faria and co-authors in [Faria 1995]. Later, they

extended their own work to the infinite-dimensional case for the class of equations

that can be decomposed into a linear delay independent term and a nonlinear delay

dependent term. One restriction, that the linear operator representing the delay

independent terms can generate a compact C0-semigroup [Faria 2001, Faria 2002],

is not satisfied in our case and, therefore, we need to prove a center manifold result

for our equations. We could prove a center manifold theorem as in [Faria 2002]

but we find it more convenient to use the tools developed by Haragus and Iooss

[Haragus 2010]. In contrast with [Hale 1993, Faria 2002], we choose a Hilbert space

for the state space, which simplifies the computation of the spectral projectors and

normal forms. In this way, we only have to identify a bifurcation point in the spec-

trum and then directly apply the corresponding normal forms from [Haragus 2010].
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Our last comment concerns the importance of computing some particular

normal forms. Many of the neural field models operate near a static bifur-

cation point and the bifurcation can be changed into a Fold-Hopf bifurcation

point or a Bogdanov-Takens bifurcation point by the introduction of delays

[Ben-Yishai 1995, Bressloff 2001b]. This has only been studied for point neurons

in [Campbell 2008], which motivates further the need to compute these bifurcation

points in order to understand the effect of the delays.

The chapter has the following structure. In section 4.3, we explain the mathe-

matical setting to study the DNFEs. In section 4.4, we study the linearized equation

around an equilibrium: we show how to compute the spectrum of the linearized op-

erator and we also give the formula to compute the spectral projector. In section 4.5,

we give bounds for the asymptotic stability of stationary cortical states. Finally, in

section 4.6, we derive the center manifold theorem and the reduced equation, and

give the general normal forms for the transcritical/pitchfork bifurcations.

The reader who is not interested in the mathematical details can go directly

to section 4.4.1.1 for the study computation of the Hopf bifurcation curves where

efficient techniques are proposed.

4.2 The neural field model

In this chapter, we consider the most general neural fields models that are studied in

this Thesis, namely the delayed neural fields equations. They have been introduced

in chapter 2 and satisfy
(
d
dt + li

)
Vi(t, r) =

p∑
j=1

∫
Ω

Jij(r, r̄)S [σjVj (t− τij(r, r̄), r̄)− hj ] dr̄

+ Iext,i(r, t), t ≥ 0, 1 ≤ i, j ≤ p
Vi(t, r) = φi(t, r), t ∈ [−T, 0]

(4.1)

Recall that Ω is an open bounded set of Rp. There are the nonlinear gains σi
and the thresholds hi. In particular, the delay function is given by the following

formula:

τij(r, r̄) = Dij + cij ‖r− r̄‖2 .

If the labels are not specified, it means that the delays are the same for every

population:

τij(r, r̄) = D + ‖r− r̄‖2 .

4.3 Mathematical framework and notations

In the first part of this Thesis, we have considered neural field equations without

delays. We have rewritten these equations as an abstract Cauchy problem in the

space F = L2(Ω,Rp). Then, we have used the classical Cauchy-Lipschitz theorem

(see proposition 3.2.2) to show existence and uniqueness of the solutions to the

Cauchy problem. In order to be able to study delayed neural field equations, we
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need to change the phase space L2(Ω,Rp). Indeed, in order to give a meaning

Figure 4.1: The history segment (reproduced from [Bátkai 2005]).

to (4.1), or at least to compute its right-hand side, we need to know the function

t→ V(t, ·) on a time interval of length equal to

τm ≡ max
1≤i, j≤p, (r,r̄)∈Ω

2
τij(r, r̄)

whereas for (3.1), only the membrane potential V(t, ·) at time t is necessary. The

phase space of the equation (4.1) consists of spatio-temporal functions θ → V(t +

θ, r) where θ ∈ [−τm, 0]. This suggests the introduction of the following, classical,

notation: Vt is the history segment Vt(θ) = V(t + θ) with θ ∈ [−τm, 0]. In a

way, delay differential equations are evolution equations for time-window vectors

Vt (see figure 4.1). Hence, the phase space, also called the history space, is made

of functions Vt from [−τm, 0] to F . We have to specify the regularity of these

functions. Intuitively, given an initial history function φ, (4.1) tells how the end

of the history segment Vt(0) = V(t) evolves but not how the whole segment Vt

evolves. Let us start by rewriting (4.1) in a compact way using the notation for

history segments: {
V̇(t) = −L0V(t) + L1S(Vt) + Iext(t)

V0 = ψ
(4.2)

where L1 : φ→
∫
Ω

J(·, r̄)φ(−τ (·, r̄), r̄)dr̄ and S(x) = [S(σ1x1−h1), · · · , S(σpxp−hp)].

The sigmoid S has been defined in chapter 2. From a modeling viewpoint, it is

natural to consider the space of continuous functions

C ≡ C0([−τm, 0],F)

as the history space. The space C is convenient for proving existence and uniqueness

of solutions of (4.2) but not for the study of the eigenspaces. Indeed, it is easier

to work in a Hilbert space to take advantage of the scalar product properties.
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Moreover, the ultimate goal of this chapter is to derive a normal form theory for

the delayed neural field equations. This requires to write (4.2) as an abstract Cauchy

problem: 
u̇ = Au+ R(u)

A ∈ L(Z,X ), R ∈ Ck(Z,Y), k ≥ 2

Z ⊂ Y ⊂ X Z,Y,X Banach spaces,

(4.3)

This is a differential equation for u which belongs to the history space X . Hence

u is a history segment. It is not possible to write a Cauchy problem for (4.2)

with X = C, although one can find such a formulation with X = F × C in

[Faria 1995, Faria 2001]. Indeed, if we try to write a Cauchy problem u̇ =

ACu for (4.2) in the linear case with Iext = 0 and S(x) = x, we find (see

[Hale 1993, Faria 1995, Wu 1996, Arino 2006]) that ACφ = d
dθφ and AC

1 is de-

fined2 on Z =
{
φ ∈ C1([−τm, 0],F) | φ̇(0) = −L0φ(0) + L1φ

}
. Hence the action of

AC is independent of (4.2), it is a derivation, and equation (4.2) only enters in the

definition of the domain Z of AC . If we vary some parameters, for example in the

definition of L1, Z changes and we are not able to apply the bifurcation tools from

[Haragus 2010]. Extending the space from X = C to X = F ×C solves this problem

as shown in [Faria 1995].

Hence, we have seen that working in X = C do not allow to apply the normal

form theory. This is why we have to work in X = F × C.

However, in order to compute normal forms, we need to be able to compute

projections. This task is easy to do in a Hilbert space by using the scalar product.

This motivates the choice of the larger Hilbert space

X = F × L2([−τm, 0],F)

for the history space for which a general expression of the spectral projectors is

known. In order to write (4.2) as a Cauchy problem (4.3), we need to give the

spaces Y,Z. This will be done later in section 4.6

The structure of our study is the following. We first prove existence and unique-

ness of solutions of (4.2) in C but not in X , we also give a bounded attractor set for

these solutions in section 4.3.2. Recall that by doing so, we do not solve a Cauchy

problem. Then, we study (4.2), linearized around an equilibrium Vf , in the space

X . In particular, we give an estimate of the norm of the solutions of the linearized

equation on X with the spectrum of A in section 4.4.1. Then, we use this estimate

to prove the ’principle of linear stability’, which states that the stability of the zero

solution of the linearized equation in X implies the stability of Vf in C. We also

give conditions on the connectivity function J and the delay function τ for which

Vf is asymptotically stable in section 4.5.4. Then, we restate (4.2) as an abstract

1we add the subscript to avoid confusions
2i.e. has a domain D(A) = Z
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Cauchy problem (4.3) for which we give a center manifold theorem in section 4.6.

Hence, the least regular history segments for which we study (4.2) belong to C. If

we want to say more than asymptotic stability, for example, characterize the center

manifold, then we have to restrict the study to more regular history segments in

Z(q) = Lq(Ω,Rp)×W1,q(−τm, 0; Lq(Ω,Rp)).

4.3.1 Solutions of the nonlinear problem

We look at the existence of solutions of{
V̇(t) = −L0V(t) + L1S(Vt) + Iext(t)

V0 = φ ∈ C
(4.4)

in the space C with ‖φ‖C = sup
t∈[−τm,0]

‖φ(t)‖F , which is the history space associated

to equation (4.4). The proof is made of two parts. First we find a mild solution,

i.e. a solution of the integral equation associated to (4.4). Then we prove that

the mild solution is differentiable in time. This is the method used in [Travis 1974,

Wu 1996, Arino 2006].

Proposition 4.3.1. If the following assumptions are satisfied:

1. J ∈ L2(Ω2,Rp×p)

2. the external current Iext ∈ C0(R,F)

3. τ ∈ C0(Ω̄2,Rp×p+ ), max
i, j, (r,r̄)∈Ω̄2

τij(r, r̄) = τm <∞,

Then for any initial condition, φ ∈ C, there exists a unique solution V ∈
C1(0,∞;F) ∩ C0(−τm,∞;F) to (4.4).

Proof. The mapping f(t, φ) = −L0φ(0) + L1S(φ) + Iext(t) is the right-hand side

of (4.4) and f(t, ·) ∈ C0(C,F). Indeed, S(φ) ∈ F because S is bounded and Ω is

also bounded. It is easy to check that f(t, ·) is Lipschitz continuous on C because

the linear operator L1 : C −→ F
φ→

∫
Ω

J(·, r̄)φ(r̄,−τ (·, r̄))dr̄

is continuous with |||L1||| ≤ ‖J‖L2(Ω2,Rp×p). If we write T0(t) = e−L0t, we find that

|||T0(t)|||C ≤ eωt with ω = −mini li. Using the variation of constant formula, (4.4)

is equivalent to:{
V(t) = T0(t)φ(0) +

∫ t
0 T0(t− s)f(s,Vs)ds t ≥ 0

V0 = φ
(4.5)

We apply [Wu 1996, theorem 2.1.1.] to find the unique solution V ∈ C0([0,∞], C)
to the previous equation. As t → V(t) ∈ C0([−τm,∞],F), we apply lemma 2.1.

in [Hale 1993] stating that t → Vt is in C0([0,∞], C). Hence t → f(t,Vt) ∈
C0([0,∞],F). This implies that t→

∫ t
0 T(t−s)f(s,Vs)ds is in C1([0,∞],F), idem

for t→ T(t)φ(0). We have shown that V ∈ C1([0,∞),F) ∩ C0([−τm,∞),F). �
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4.3.2 Boundedness of solutions in C

A valid model of neural network should only feature bounded membrane potentials.

We find a bounded attracting set in the spirit of our previous work with non-delayed

neural mass equations. The proof is almost the same as in proposition 3.2.3 but

some care has to be taken because of the delays.

Theorem 4.3.2. All the trajectories of the equation (4.4) are ultimately bounded

by the same constant R (see the proof) if I ≡ max
t∈R+

‖Iext(t)‖F <∞.

Proof. Let us define f : R× C → R+ by

f(t,Vt)
def
= 〈−L0Vt(0) + L1S(Vt) + Iext(t),V(t)〉F =

1

2

d‖V‖2F
d t

.

We note l = mini=1···p li and from lemma B.2.1:

f(t,Vt) ≤ −l‖V(t)‖2F + (
√
p|Ω| · |||J|||F + I)‖V(t)‖F .

Thus, if ‖V(t)‖F ≥ 2

√
p|Ω|·|||J|||F+I

l
def
= R, f(t,Vt) ≤ − lR2

2
def
= −δ < 0.

Let us show that the open ball of F of center 0 and radius R, BR, is stable

under the dynamics of equation (4.4). We know that V(t) is defined for all t ≥ 0s

and that f < 0 on ∂BR, the boundary of BR. We consider three cases for the initial

condition V0.

If ‖V0‖C < R and set T = sup
{
t | ∀s ∈ [0, t] ,V(s) ∈ BR

}
. Suppose that T ∈ R,

then V(T ) is defined and belongs to BR, the closure of BR, because BR is closed,

in effect to ∂BR. We also have d
dt‖V‖

2
F |t=T = f(T,VT ) ≤ −δ < 0 because V(T ) ∈

∂BR. Thus we deduce that for ε > 0 and small enough, V(T + ε) ∈ BR which

contradicts the definition of T . Thus T /∈ R and BR is stable.

Because f < 0 on ∂BR, V(0) ∈ ∂BR implies that ∀t > 0, V(t) ∈ BR.

Finally we consider the case V0 ∈ {BR. Suppose that ∀t > 0, V(t) /∈ B̄R, then

∀t > 0, d
dt‖V‖

2
F ≤ −2δ, thus ‖V(t)‖F is monotonically decreasing and reaches the

value of R in finite time when V(t) reaches ∂BR. This contradicts our assumption.

Thus ∃T > 0 |V(T ) ∈ BR. �

4.4 Linear analysis

In the Introduction, we have emphasized the need for the study of the stabil-

ity of stationary cortical states. Let us consider an equilibrium Vf which has

been computed for example with tools from [Ermentrout 1980, Bressloff 2000,

Bressloff 2001b, Coombes 2005b, Veltz 2010] or in part II. We recall that this equi-

librium needs not be constant in space. How stable to perturbations is this cortical

state? This is generally studied by looking at a perturbation of the form U = V−Vf

and studying the linearized equation satisfied by U:{
U̇(t) = −L0U(t) + L̃1Ut ≡ LUt

U0 = φ ∈ C
(4.6)
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where L̃1 : φ →
∫
Ω

J(·, r̄)DS(Vf (r̄))φ(r̄,−τ (·, r̄)) dr̄ (this operator will be more

properly defined in section 4.4.1). Looking for exponential perturbations like

U(t, r) = eλtU(r) in (4.6), we find that U solves the eigenvalue problem

(λId + L0) U = J(λ)U (4.7)

where J(λ) is the compact operator (being a Hilbert-Schmidt operator)J(λ) : F −→ F
U→

∫
Ω

J(·, r̄)DS(Vf (r̄))e−λτ (·,r̄)U(r̄) dr̄
(4.8)

A stationary state is linearly stable if any solution (λ,U) of (4.7) satisfies <λ < 0.

Notice that because of the delays, the eigenvalue λ appears in a nonlinear way in

the right-hand side of (4.7). The eigenproblem without delays would have been:

(λId + L0) U = J(0)U

The difficulty of the linear stability analysis lies in this complicated transcendental

eigenvalue equation (4.7) for which we show an elegant solution in the next section.

But before solving the eigenvalue equation, we make our qualitative explanation

of the stability mathematically rigorous in the next section. Then we compute a

spectral projector and find a decomposition of the history space X according to

the generalized eigenspaces in order to prepare the application, to the neural field

equations, of the center manifold theorem given in [Haragus 2010].

4.4.1 Semigroup properties from the spectral study

As we have explained earlier, we look at the equation (4.6) in the larger space

X = F × L2(−τm, 0;F) with〈[
x

φ

]
,

[
y

ψ

]〉
X

= 〈x, y〉F +

∫ 0

−τm
〈φ(s), ψ(s)〉F ds

We note π1, π2 the canonical projections of X on F and L2(−τm, 0;F): π1

[
x

φ

]
=

x, π2

[
x

φ

]
= φ. The choice of X is motivated by the fact that X is a Hilbert

space which simplifies the computation of the spectral projector. This is es-

pecially useful when one wants to compute normal forms as we do later. In-

deed, in order to compute the spectral projectors for delay differential equations,

[Hale 1993, Faria 1995, Arino 2006] introduced a quantity called the bilinear prod-

uct. However, this quantity is difficult to extend to the case where F is a Banach

space (see [Arino 2006]) whereas it appears naturally in the Hilbert space setting.

Next, we rewrite the problem (4.6) in the space X . Note that we need to define
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two functions for the initial condition of (4.9) because φ(0) has no meaning for

φ ∈ L2(−τm, 0;F). Hence we write:{
U̇(t) = −L0U(t) + L̃1Ut ≡ LUt

U0 = φ ∈ L2(−τm, 0;F), U(0) = x ∈ F
(4.9)

where the linear operator L̃1 is given byL̃1 : W 1,2(−τm, 0;F) −→ F
φ→

∫
Ω

J(·, r̄)DS(Vf (r̄))φ(r̄,−τ (·, r̄)) dr̄

and W 1,2(−τm, 0;F) is the Sobolev space of functions with values in F . This

operator is continuous because of lemma3 B.3.1.

Remark 19.In this section, we have used the space L2(−τm, 0;F) (resp.

W1,2(−τm, 0;F)) of vector valued square integrable functions (resp. vec-

tor valued functions of the Sobolev space) without definition. More

precisely, the Lebesgue-Bochner space4 Lp(−τm, 0;F), 1 ≤ p < ∞
is made of the set of all equivalence classes of measurable func-

tions5 φ : [−τm, 0] → F such that ‖φ‖p ≡
(∫ 0
−τm ‖φ(θ)‖pF dθ

) 1
p

<

∞. We define the Sobolev space6 as follow: W1,p(−τm, 0;F) ≡{
φ ∈ Lp(−τm, 0;F) | ∃ψ ∈ Lp(−τm, 0;F) such that φ(θ) = φ(−τm) +

∫ θ
−τm ψ(s)ds

}
.

Then d
dθφ = ψ for ψ ∈W1,p(−τm, 0;F) and ‖φ‖1,p ≡ ‖φ‖p +

∥∥ d
dθφ
∥∥
p
.

Note that L0 is defined on L2(−τm, 0;F) whereas L̃1 is defined on

W 1,2(−τm, 0;F). We call a classical solution of (4.9) a function U ∈
C0([−τm,∞),F) ∩ C1([0,∞),F) such that Ut ∈ W 1,2(−τm, 0;F) and U satisfies

(4.9). To study (4.9), let us introduce the abstract Cauchy problem{
u̇ = Au

u(0) = u0 ∈ X
(4.10)

where

A ≡
[
−L0 L̃1

0 d
dθ

]
(4.11)

with domain

D(A) =

{[
x

φ

]
∈ F ×W 1,2(−τm, 0;F), φ(0) = x

}
.

3Modulo the change of variable JDS→ J.
4it is a Banach space
5such that θ → ‖φ(θ)‖F is integrable and

∫ 0

−τm
‖φ(θ)‖F dθ <∞. It is called Bochner integrable

(see for example [Yosida 1980, Dunford 1988]).
6it is a Banach space
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From [Bátkai 2005], it is known that (4.9) and (4.10) are equivalent: every inte-

gral/classical solution of (4.9) is a mild/strong solution of (4.10) and conversely.

This allows to apply the semigroup theory to (4.10) in order to study (4.9). More

precisely, following [Bátkai 2005][theorem 4.23] (see also [Engel 2001, Arino 2006,

Hale 1993, Wu 1996, Diekmann 1995] in a different functional setting), A generates

a strongly continuous semigroup (T(t))t≥0 on X for which A is the infinitesimal

generator. Every solution of (4.10) is given by T(t)u0: if u0 ∈ D(A), then

T(t)u0 is a strong solution of (4.10). Hence, any solution U of (4.9) is given by

U(t) = π1T(t)u0.

Let us turn to the study of the spectral properties: we want to find an estimate

of ‖U(t)‖F with the spectrum Σ(A) of A, i.e. to link estimates of the semigroup

T to the spectrum of A. This is usually achieved using the Spectral Mapping

Theorem (see [Engel 2001, Bátkai 2005] and theorem B.1.4). Recall (see [Wu 1998,

Hale 1993, Engel 2001, Bátkai 2005, Veltz 2011b]) that λ is in the spectrum Σ(A)

of A if and only if the operator

∆(λ) ≡ λId + L0 − J(λ) ∈ L(F ,F) (4.12)

is not invertible and that u is an eigenvector of A if and only if u(θ, r) =

[
U(r)

eλθU(r)

]
with U ∈ ker ∆(λ). Hence the characteristic values (also written CV, see defini-

tion B.1.10) of λ → ∆(λ) are the eigenvalues of A, they are solutions of (4.7).

We denote the set of eigenvalues by Σp(A), the point spectrum. In order to char-

acterize the spectrum Σ(A), we find it convenient to split it into the essential

spectrum Σess(A) and the point spectrum. As we intend to use the theory of Kato

in [Kato 1995] to study the spectrum, we chose the definition7 of Kato for the

essential spectrum, i.e. Σess(A) ≡ {λ ∈ C|λId−A is not semi-Fredholm}. This

definition is different from the one adopted in [Engel 2001, Bátkai 2005] which is

Σess, Engel(A) ≡ {λ ∈ C|λId−A is not Fredholm}. We state a useful lemma which

links the spectral properties of A to the spectral properties of −L0+J(λ) ∈ L(F ,F).

Lemma 4.4.1. λ ∈ Σess(A)⇔ λ ∈ Σess(−L0 + J(λ))

Proof. Straightforward adaptation of [Bátkai 2005, lemma 3.20] where it is

shown that λ ∈ Σess, Engel(A)⇔ λ ∈ Σess, Engel(−L0 + J(λ)) �

Let us summarize the properties of the spectrum Σ(A) of A:

Lemma 4.4.2. A satisfies the following properties:

1. its essential spectrum is: Σess(A) = Σ(−L0)

2. Σ(A) is at most countable.

3. Σ(A) = Σ(−L0) ∪ CV . These sets are possibly non-disjoint.

7see definitions B.1.7 and B.1.8
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4. For λ ∈ Σ(A) \ Σ(−L0), λ is an isolated eigenvalue and the general-

ized eigenspace Eλ(A) ≡ ∪k ker(λId − A)k is finite dimensional. Hence

Σ(A) \ Σ(−L0) ⊂ Σp(A).

5. Card Σ(A) ∩ {λ ∈ C, <λ > −l} <∞ where l = mini li.

Proof.

1. From lemma 4.4.1 λ ∈ Σess(A) ⇔ λ ∈ Σess(−L0 + J(λ)). Then, we apply

[Kato 1995, Theorem IV.5.26]. It shows that the essential spectrum does not

change under compact perturbation. As J(λ) ∈ L(F) is compact, we find

Σess(−L0 + J(λ)) = Σess(−L0). Let us show that Σess(−L0) = Σ(−L0). The

assertion “⊂” is trivial. Now if λ ∈ Σ(−L0), for example λ = −l1, then

λId + L0 = diag(0,−l1 + l2, ...). Then R(λId + L0) is closed and L2(Ω,R) ×
{0} × ...× {0} ⊂ N (λId + L0). Hence dimN (λId + L0) = ∞. Also R(λId +

L0) = {0}×L2(Ω,Rp−1), hence codimR(λId + L0) =∞. Hence, according to

definition B.1.9, λ ∈ Σess(−L0).

2-4. The assertions 2-4 are direct consequences of [Kato 1995, Theorem IV.5.33].

5. If λ = ρ + iω ∈ Σ(A) and ρ > −l, then λ is a CV i.e. N (Id − (λId +

L0)−1J(λ)) 6= ∅ stating that 1 ∈ Σp((λId + L0)−1J(λ)). But |||(λId +

L0)−1J(λ)|||F ≤ |||(λId + L0)−1|||F · |||J(λ)|||F ≤ 1√
ω2+(ρ+l)2

|||J(λ)|||F ≤ 1
2

for λ big enough since |||J(λ)|||F is bounded. Hence, for λ large enough

1 /∈ Σp((λId + L0)−1J(λ)), which holds by the spectral radius inequality.

This relationship states that the CVs λ satisfying <λ > −l are located in a

bounded set of the right part of C; given that the elements of Σ(A) \Σ(−L0)

are isolated, there are a finite number of them.

�
As an example, Figure 4.2 shows the first 200 eigenvalues computed for a very

simple one-dimensional model. We notice that they accumulate at λ = −1 which is

the essential spectrum. These eigenvalues have been computed using the method in

[Jarlebring 2010], a very efficient method for computing the CVs which is described

in the next chapter. We have shown that the CVs are almost all, i.e. except for

possibly a finite number of them, located on the left part of the complex plane. This

indicates that the unstable manifold is always finite dimensional for the models we

are considering here. The last result of this section is devoted to the regularity of

the semigroup and an estimate of its operator norm. This is useful in order to prove

stability results.

Lemma 4.4.3. If J ∈ L∞(Ω2,Rp), then the semigroup (T(t))t≥0 on X satisfies

the following properties:

1. (T(t))t≥0 is norm continuous8 on X for t > τm.

8see definition B.1.3
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Figure 4.2: Plot of the first 200 eigenvalues of A in the scalar case (p = 1, d = 1)

and L0 = Id, J(x) = −1 + 1.5 cos(2x). The delay function τ(x) is the π periodic

saw-like function shown in figure 5.2. Notice that the eigenvalues accumulate at

λ = −1.

2. Let us define9 ε ≡ max(−l, εp), εp ≡ max< (Σ(A) ∩ {λ ∈ C, <λ > −l}) and

l = mini li. If ε < 0, then ∃M ≥ 1 such that |||T(t)|||X (2) ≤Meεt/2, ∀t ≥ 0.

Proof.

1. This is consequence of lemma B.3 and [Bátkai 2005, prop.4.3].

2. We use the result in [Engel 2001, chapter 4, theorem 3.10 and corollary 3.12]

for eventually norm continuous semigroups (see definition B.1.3 in appendix

B.1) recalled in theorem B.1.4 which links the growth bound of the semigroup

to the spectrum of A:

inf
{
w ∈ R : ∃Mw ≥ 1 such that |||T(t)|||X ≤Mwe

wt, ∀t ≥ 0
}

= sup<Σ(A).

(4.13)

From10 lemma B.3.2 and [Bátkai 2005][proposition 4.3], the semigroup (T(t))

is eventually norm continuous so we can apply theorem B.1.4. From the

previous lemma 4.4.2, we conclude the proof.

�
This lemma states that the asymptotic stability of U = 0 in (4.9) is equivalent

to the condition:

max< (Σ(A) ∩ {λ ∈ C, <λ > −l}) < 0

The fact that Vf is asymptotically stable in C under the same condition will be ex-

amined in section 4.5. Computing the eigenvalues of A is a difficult task in general.

9where we set max ∅ ≡ −∞.
10Modulo the change of variable JDS→ J.
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In the next two sections, we present two analytical formulas for the Hopf bifurca-

tion curves in the parameter plane (D, c) (see section 4.2). The main argument for

these formulae is that we can estimate the rightmost eigenvalue in some cases. We

will come back to the general numerical computation of the eigenvalues in the next

chapter.

4.4.1.1 Hopf curve in the case of constant delays c = 0

We restrict our study to the case where Dij = D, li = l, c = 0. This case has

been studied in [Roxin 2005, Roxin 2011] where the authors show that constant

delays have to be introduced in neural field equations in order to explain oscillatory

patterns seen in spiking networks. Notice that in this case, the eigenvalue problem

reads

(λ+ l) U = eλDJ(0)U (4.14)

If we write Jn, n ∈ N, the eigenvalues of J(0), then the previous equation becomes

λ + l = e−λDJn which is solved using the different branches Wk of the Lambert11

function (see [Corless 1996], it is tabulated in Matlab and Maple) by:

λk,n =
1

D
Wk

(
DelDJn

)
− l, k ∈ Z, n ∈ N (4.15)

This expression was not reported in [Roxin 2005, Roxin 2011] whereas it makes the

linear analysis entirely analytical. The main result of this section is:

Proposition 4.4.4. The following statements are true:

1. 0 ∈ Σ(A) if and only if ∃n | l = Jn, this condition does not depend on D.

2. The rightmost characteristic value belongs to the sub-sequence (λ0,n)n.

3. A necessary and sufficient condition for the rightmost characteristic value of

A to be purely imaginary and nonzero is the existence of an integer n0 such

that l ≤ |Jn0 | and arccos
(

l
|Jn|

)
≤ | arg Jn|. In this case the corresponding

critical delay Dn0 and the eigenvalue iωn0 satisfy:

lDn0 =
1√(

|Jn0 |
l

)2
− 1

(
| arg Jn0 | − arccos

(
l

|Jn0 |

))
, ωn0 = l

√(
|Jn0 |
l

)2

− 1

Proof.

1. Set λ = 0 in (4.7) in order to obtain the result.

2. We first quote a result (see [Shinozaki 2007]): if we define BC ={
z ∈ C,<z ≤ −e−1,=z = 0

}
, then:

max
k
<Wk(z) =

{
<W0(z), z /∈ BC
<W0(z) = <W−1(z), z ∈ BC (4.16)

11It is any function W such that W (z)eW (z) = z, z ∈ C.
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In the latter case, there are two rightmost roots corresponding to W0 and

W−1, one of which serves as the critical root for stability because <W0(z) =

<W−1(z). We solve the characteristic equation λ+ l = e−λDJn with the help

of the Lambert function: λk,n = 1
DWk

[
DelDJn

]
− l = l

(
Wk[DelDJn]

lD − 1

)
.

According to (4.16), the rightmost characteristic value corresponds to k =

0. We look for conditions such that λ0,n is purely imaginary. Write X =

lDelD, i.e. lD = W0(X), then λ0,n = l
(
W0[XJn/l]
W0(X) − 1

)
and look for X such

that λ0,n is purely imaginary. From lemma B.4.1, there is a unique solution

X0 = W0(lD) such that W0(X0) = <W0 (X0Jn) if and only if l ≤ |Jn| and

arccos
(

l
|Jn|

)
≤ | arg Jn|. Then lDn = 1√

|Jn/l|2−1

(
| arg Jn| − arccos

(
l
|J |

))
and ωn = l

√(
|Jn|
l

)2
− 1

�
In the case the eigenvalue Jn is real, we find that the condition for the existence

of a critical delay Dn is Jn ≤ −l. The critical delay is then given by

lDn =
1√(

|Jn|
l

)2
− 1

(
π − arccos

(
l

|Jn|

))

Also, from the above expression, if Jp < Jn ≤ −l, then Dp < Dn.

Similar expressions were found for a network of neurons on a ring in

[Campbell 2005]. This proposition provides some biological insights: if we analyze

a network without delays, we can only make it oscillate (through a Hopf mecha-

nism) if the inhibition is strong enough, that is Jn ≤ −l for some n. This result,

together with the bifurcation analysis exposed in [Roxin 2011], gives a fairly com-

plete overview of what can happen in neural field equations with constant delays.

Remark 20.Note that for a homogeneous12 connectivity and a space constant

equilibrium Vf , the Jn are given by the Fourier transform of the connectivity.

Remark 21.These results are straightforward to generalize for more general in-

trinsic dynamics like
(
d
dt + li

)2
.

4.4.1.2 Hopf curve in the case of space dependent delays

We now turn to the main result of this section. As in the previous section, we

assume Dij = D, li = l but this time c 6= 0. This problem has been studied

in [Coombes 2007, Venkov 2007, Bressloff 2008]. Our approach is the following:

instead of looking for parameters which produce purely imaginary eigenvalues λ =

iω, we plug λ = iω into (4.7) and vary ω. This provides naturally a parametrization

of the Hopf curve. Hence, we do not need to look for this curve in the parameter

plane, we are already there. Notice that it works for general delay functions τ . In

12i.e. convolutional
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practice the following result gives the rightmost Hopf curves in the parameter plane

(D, c) (see also [Veltz 2011a]):

Proposition 4.4.5. Suppose that the spectrum of −l · Id + J(0) has nega-

tive real part. Consider the integral operator13 J(z) whose kernel is given by

Jqr(r, r̄)DS(V f
r (r̄))e−z‖r−r̄‖2 , z ∈ C, q, r = 1 · · · p. Then J(iy), y > 0 is a Hilbert

Schmidt operator on L2(Ω,Cp) whose spectrum Σ (J(iy)) is indexed14 by decreasing

modulus: |J0(iy)| ≥ |J1(iy)| · · · .
Let us define the curves Cn for n ∈ N:

Cn :

[
il
√
|Jn(iy)/l|2 − 1, Dn(y),

y

l
√
|Jn(iy)/l|2 − 1

]
, iy ∈ En (4.17)

where lDn(y) = 1√
|Jn(iy)/l|2−1

(
| arg (Jn(iy)) | − arccos

(
l

|Jn(iy)|

))
and

iy ∈ En =

{
iy ∈ iR+ | =Jn(iy) > 0, l ≤ |Jn(iy)| and

arccos

(
l

|Jn(iy)|

)
≤ | arg (Jn(iy)) |

}
.

1. A necessary and sufficient condition for a rightmost characteristic value of

A to be purely imaginary and nonzero is the existence of an integer n0 such

that (iω0, D, c) belongs to the curve Cn0. In this case, iω0 is a rightmost

characteristic value of A.

2. If we look for solutions (iω,D, c) with c ≤ c∞, then the sets En are bounded

by y ≤ c∞ ‖J(0)‖2. c∞ is an arbitrary upper bound on the inverse velocity.

3. The set En is empty if nl > ‖J(0)‖22. Hence, there are at most b‖J(0)‖22 /lc
curves Cn.

Proof. We start as in the proof of lemma 4.4.4 but the characteristic equation

is a bit different λ + l = e−λDJn(cλ). We solve it with the help of the Lambert

function:

λk,n =
1

D
Wk

[
DelDJn(cλk,n)

]
− l = l

(
Wk

[
DelDJn(cλk,n)

]
lD

− 1

)
.

1. According to (4.16), the rightmost characteristic values correspond to k = 0.

We look for conditions such that λ0,n is purely imaginary. Write X = lDelD,

then λ0,n = l

(
W0[XJn(cλk,n)/l]

W0(X) − 1

)
. For a given

iy ∈ En =
{
iy ∈ iR+ | =Jn(iy) > 0, l ≤ |Jn(iy)| and

arccos

(
l

|Jn(iy)|

)
≤ | arg (Jn(iy)) |

}
,

13It has been defined in (4.8).
14if two different eigenvalues have the same modulus, we chose am arbitrary labeling
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there is a unique X0(y) = lD(y)elD(y) such that W0(X0(y)) =

<W0 (X0(y)Jn(y)) (see lemma B.4.1). Then 1
D(y)W0

(
lD(y)elD(y)Jn(y)

)
− l =

iz ∈ iR+ where z = l
√
|Jn(iy)/l|2 − 1. Then choose c = y/z > 0: it gives a so-

lution (y,D(y), y/z) to the characteristic equation parametrized by y, iy ∈ En.

2. If iy ∈ En, we can find a solution (iω,D, c) of the characteristic equation and

y = cω. It remains to show that |ω| ≤ ‖J(0)‖2. We have iω+l = e−iωDJn(icω)

hence: |ω| = |=(e−iωDJn(icω))| ≤ |e−iωDJn(icω)| = |Jn(icω)| ≤ ‖J(icω)‖2 ≤
‖J(0)‖2.

3. As J(z) is a Hilbert-Schmidt operator, we have
∞∑
q=0
|Jq(iy)|2 ≤ ‖J(iy)‖22. It

gives for all q ≥ 0: q|Jq(iy)|2 ≤ ‖J(iy)‖22 ≤ ‖J(0)‖22. If ‖J(0)‖22 < n, then
‖J(0)‖22

n < 1 and |Jn(iy)|2 ≤ ‖J(0)‖22
n < 1 for all y ∈ R which implies that En = ∅.

�

We will examine the numerical usefulness of this proposition in the next chapter.

4.4.2 Generalized eigenspaces

Let us now compute the generalized eigenspaces of A (see [Hale 1993, Arino 2006,

Wu 1996, Diekmann 1995]). The proof of the next proposition closely follows

[Hale 1993] although it has to be adapted to our functional setting. A general-

ized eigenvector φ 6= 0 is a vector which satisfies (λId−A)kφ = 0 for some integer

k. The generalized eigenspace is then defined by Eλ(A) = ∪∞i=1 ker(λId −A)i. A

convenient way to characterize these spaces is the notion of Jordan chain (see def-

inition B.1.10). Briefly, a Jordan chain (φ1, · · · , φm) ∈ Xm+1 of length m is an

ordered set of vectors such that φ1 6= 0 and:

(λId−A)φ1 = 0, (4.18)

(λId−A)φi+1 = φi, 1 ≤ i ≤ m− 1. (4.19)

Hence, φi is in ker(λId − A)i and the first vector φ1 is always an eigenvector.

Note that this implies that the φi are linearly independent. Conversely, given a

generalized eigenvector φ such that (λId − A)mφ = 0, (λId − A)m−1φ 6= 0, we

can build a Jordan chain. Indeed, it is given (for example) by φm = φ, φm−1 =

(λId−A)φm · · · . Finally, the generalized eigenspace is spanned by a finite number

of Jordan chains. This motivates their use for the linear analysis.

The definition B.1.10 of the Jordan chain that we use is different, although

equivalent, but a bit more convenient for the proofs of the next two propositions.
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Proposition 4.4.6. For λ0 ∈ Σ(A) \ Σ(−L0) and ∀m ≥ 1,

ker (λ0Id−A)m =

{
φ ∈ D(A) | (π2φ)(θ) = eλ0θ

m−1∑
i=0

θi

i!
Um−1−i

where (U0, · · · ,Um−1) is a Jordan chain (see definition B.1.10) for ∆(λ0)

}

Proof. Let us define the following operator: A0φ = d
dθφ with domain

D(A0) =
{
φ ∈W 1,2(−τm, 0;F)| φ(0) = 0

}
and the exponential function

ελ(θ) = eλθ. From [Bátkai 2005][Lemma 3.20]:

∀λ
[
∆(λ) 0

0 λId−A0

]
= F(λ)(λId−A)E(λ) (4.20)

where F(λ) =

[
Id L1R(λ,A0)

0 Id

]
∈ L(X ) and E(λ) =

[
Id 0

ελ ⊗ Id Id

]
∈ L(X ) are

invertible operators with (ελ ⊗ Id)x ≡ ελx ∈ L2([−τm, 0],F) and R(λ,A0) is the

resolvent of A0. We first prove that the Jordan chains of λId − A at λ = λ0

are in one-to-one correspondence with the Jordan chains of ∆(λ) at λ = λ0 if

ker ∆(λ0) 6= ∅. From (4.20) and the fact that Σ(A0) = ∅ (see next section), it

implies that the null spaces ker ∆(λ0) and ker(λId −A) are isomorphic, it suffices

to show that there is a one-to-one correspondence between the Jordan chains of

length k, k ≥ 1 of λId−A and ∆ at λ0.

Indeed, if α(λ) is a root function for λId−A at λ = λ0, then π1E(λ)−1α(λ) is

a root function for ∆(λ) at λ = λ0 and if α(λ) is a root function of ∆(λ) at λ = λ0,

we find that E(λ)

[
α(λ)

0

]
is a root function for λId −A at λ = λ0. In particular

ker(λ0Id −A)m is in one-to-one correspondence with the Jordan chains of length

m of ∆(λ) at λ = λ0. Hence the Jordan chains of λId−A and ∆(λ) have the same

length.

Now, take a Jordan chain (U0, · · · ,Um−1) for ∆(λ0) and form the root function

α(λ) =
m−1∑
i=0

(λ − λ0)iUi. Then, E(λ)

[
α(λ)

0

]
=

[
α(λ)

eλ·α(λ)

]
≡

m−1∑
i=0

(λ − λ0)iVi is a

root function for λId −A at λ = λ0. The Taylor expansion in λ at λ0 of eλθα(λ)

is given by
m−1∑
i=0

(λ − λ0)i
(

i∑
l=0

θi

i! Ui−le
λ0θ

)
. This gives Vi(θ) =

i∑
l=0

θi

i! Ui−le
λ0θ and

Vm−1 ∈ ker(λId−A)m which concludes the proof. �
A characterization of the Jordan chains of ∆(λ) is obtained from lemma B.1.12.

Given λ ∈ Σp(A) and the finite dimensional generalized eigenspace Eλ(A) =

∪∞i=1 ker(λId −A)i, we want to find a spectral projector Pλ on Eλ(A) which com-

mutes with A. As X is a Hilbert space and A is densely defined, we can define the

adjoint A∗ of A, then λ̄ ∈ Σp(A
∗) and dimEλ(A) = dimEλ̄(A∗) ≡ mλ. Thus, if
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(φ1, · · · , φm) is a basis of Eλ(A) and (φ∗1, · · · , φ∗m) is a basis of Eλ̄(A∗) such that

〈φ∗i , φj〉X = δij , a spectral projector is given by:

∀u ∈ X , Pλu ≡
m∑
i=1

〈φ∗i , u〉Xφi (4.21)

Notice that Pλ commutes with A. Although the expression of A∗ is not needed in

what follows, we give it in proposition B.5.1.

4.4.3 Spectral projector on generalized eigenspaces

In order to derive the center manifold theorem in section 4.6, we need to know how

to project any vector of the state space X onto the generalized eigenspaces computed

in section 4.4.1. The expression (4.21) of the spectral projector Pλ for an eigenvalue

λ is impractical as it requires to compute the generalized eigenspace of the adjoint

operator. We show in this section that the inner products 〈φ∗i , u〉X , required to

give Pλ, can be computed without explicitly computing A∗. By following closely

the proof of [Hale 1993, Theorem VII.5.1] adapted in order to fit to our functional

setting by using the tools of [Bátkai 2005], we are able to prove proposition 4.4.10.

This proposition is the basis of the upcoming computation of the normal forms.

Let us define the operator A0 on L2(−τm, 0;F) by A0φ = d
dθφ with domain

D(A0) =
{
φ ∈W 1,2(−τm, 0;F)| φ(0) = 0

}
. The resolvent of A0 is easily found

using a variation-of-constants formula:

[R(λ,A0)φ] (θ) =

∫ 0

θ
eλ(s−θ)φ(s)ds

Notice that Σ(A0) = ∅. An integration-by-parts gives the adjoint of R(λ,A0)

[R(λ,A0)∗φ] (θ) =

∫ θ

−τm
e−λ̄(s−θ)φ(s)ds

The next lemma is used in the proof of proposition 4.4.10.

Lemma 4.4.7. if F(λ) =

[
Id L1R(λ,A0)

0 Id

]
∈ L(X ), then we have

F(λ)∗ =

[
Id 0

J[·]∗ − λ̄R(λ,A0)∗J[·]∗ Id

]

where J[s]∗ is the adjoint in F of J[s] (see lemma B.3.1 for a definition of J[s]).



104 Chapter 4. Theoretical properties

Proof. Let us compute the following scalar product:

〈
[
y

ψ

]
,F(λ)

[
x

φ

]
〉X = 〈y, x〉F +

∫ 0

−τm
〈ψ(s), φ(s)〉Fds+ 〈y,L1R(λ,A0)φ〉F

= 〈y, x〉F+

∫ 0

−τm
〈ψ(s), φ(s)〉Fds+〈y,J [R(λ,A0)φ] (0)〉F−

∫ 0

−τm
〈y,J[s]

d

ds
[R(λ,A0)φ] (s)ds〉F

= 〈y, x〉F +

∫ 0

−τm
〈ψ(s), φ(s)〉Fds−

∫ 0

−τm
〈J[s]∗y, [A0R(λ,A0)φ] (s)ds〉F

= 〈y, x〉F +

∫ 0

−τm
〈ψ(s), φ(s)〉Fds−

∫ 0

−τm
〈J[s]∗y, [−φ+ λR(λ,A0)φ] (s)ds〉F

= 〈y, x〉F +

∫ 0

−τm
〈ψ(s) + J[s]∗y, φ(s)〉Fds−

∫ 0

−τm
〈λ̄R(λ,A0)∗J[s]∗y, φ(s)〉Fds

The identification of the adjoint is now straightforward. �
Using the previous lemma, the proof of the next proposition is very close to the

one of proposition 4.4.6. It consists in showing that the generalized eigenvectors of

A∗ are closely related to the Jordan chains of λ→ ∆(λ)∗. Let us first define FT on

D(A) by:

FT

[
x

φ

]
≡

[
x

J∗[θ]φ(0)−
∫ θ
−τm J[s]∗ dds [φ(s− θ)] ds

]
Before stating the main result of this section, let us define the following bilinear

product:

Definition 4.4.8. The bilinear product 〈〈ψ, u〉〉 for ψ, u ∈ X reads:

〈〈ψ, u〉〉 ≡ 〈π1ψ, π1u〉F+

∫
Ω2

drdr̄
∑
ij

0∫
−τij(r,r̄)

(π2ψ)i(r,−s−τij(r, r̄))J̃ij(r, r̄)(π2u)j(r̄, s)ds

where

J̃ ≡ J(0).

This is written:

〈π1ψ, π1u〉F +

∫
Ω2

drdr̄

0∫
−τ (r,r̄)

〈
(π2ψ)(r,−s− τ (r, r̄)), J̃(r, r̄)(π2u)(r̄, s)

〉
Rp
ds.

It is straightforward to check that:

Lemma 4.4.9.The bilinear product 〈〈, 〉〉 is symmetric if J̃ij(r, r̄) = J̃ji(r̄, r) and

τij(r, r̄) = τji(r̄, r).

Using the bilinear product, we find an expression of the spectral projector Pλ.

Proposition 4.4.10.

1. For λ̄0 ∈ Σ(A∗) \ Σ(−L∗0) and ∀m ≥ 1, we have as in proposition 4.4.6:

ker (λ̄0Id−A∗)m =

{
FTψ,ψ ∈ D(A) | (π2ψ)(θ) = eλ̄0θ

m−1∑
i=0

θi

i! U
∗
m−1−i
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where (U∗0, · · · ,U∗m−1) is a Jordan chain (see definition B.1.10) for ∆(λ̄0)∗

}
2. For λ0 ∈ Σ(A) \ Σ(−L0), choose a basis (φi)i=1···mλ0

(resp.(φ∗i )i=1···mλ0
) of

Eλ0(A) as in proposition 4.4.6 (resp. Eλ̄0
(A∗)) such that 〈φ∗i , φj〉X = δij.

Then, ∀i ≤ mλ0, there are ψi ∈ D(A) as above such that ∀u ∈ X :

〈φ∗i , u〉X = 〈〈ψi, u〉〉

where (π2ψi)(θ) = eλ̄0θ
mi−1∑
r=0

θr

r! U
∗
i;mi−1−r. Then, the projector Pλ0 is given by:

∀u ∈ X , Pλ0u =

mλ0∑
i=1

〈〈ψi, u〉〉φi

Proof. From [Bátkai 2005][Lemma 3.20]:

[
∆(λ) 0

0 λId−A0

]
= F(λ)(λId −

A)E(λ) with F(λ) =

[
Id L1R(λ,A0)

0 Id

]
∈ L(X ) and E(λ) =

[
Id 0

ελ ⊗ Id Id

]
∈ L(X )

, we find: [
∆(λ)∗ 0

0 (λId−A0)∗

]
= E(λ)∗(λ̄Id−A∗)F(λ)∗ (4.22)

Proof of 1.

Similarly to the proof of proposition 4.4.6, the Jordan chains of λ̄Id − A∗ at

λ̄ = λ̄0 are in one-to-one correspondence with the Jordan chains of ∆(λ)∗ at λ̄ = λ̄0.

The proof reduces to finding the Jordan chains φ∗ of A∗. Take a Jordan chain

(U0, · · · ,Um−1) of ∆(λ)∗ at λ̄ = λ̄0, then from (4.22), F(λ)∗
[
α∗(λ̄)

0

]
is a root

function for A∗ where α∗(λ̄) =
m−1∑
i=0

(λ̄− λ̄0)iUi. Computing π2F(λ)∗
[
α∗(λ̄)

0

]
using

lemma 4.4.7, we find up to orders O((λ̄− λ̄0)m):

J∗(θ)α∗(λ̄)−
∫ θ

−τm
λ̄e−λ̄(θ−s)J[s]∗α∗(λ̄)ds =

J∗(θ)α∗(λ̄)−
∫ θ

−τm
J[s]∗

d

ds

[
e−λ̄(θ−s)α(λ̄)

]
ds =

m−1∑
l=0

(λ̄− λ̄0)l

J∗(θ)Ul −
∫ θ

−τm
J[s]∗

d

ds

eλ̄0(s−θ)
l∑

j=0

Ul−j
(s− θ)j

j!

 ds

Hence, we find that

F(λ)∗
[
α∗(λ̄)

0

]
=

m−1∑
l=0

(λ̄− λ̄0)lFTψl
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where ψl =

 U∗l

eλ̄0θ
l∑

j=0
U∗l−j

θj

j!

 ∈ D(A). We have found that the generalized eigen-

vectors of A∗ are given by the FTψl.

Proof of 2.

Let φ∗ be a generalized eigenvector of A. According to 1., we can write φ∗ =

FT

[
x

φ

]
. For the computation of the projector Pλ, we need to compute the scalar

product 〈u, φ∗〉X .

〈u, φ∗〉X = 〈
[
y

ψ

]
,FT

[
x

φ

]
〉X ≡ 〈y, x〉F +

∫ 0

−τm
dθ〈ψ(θ),J[θ]∗φ(0)〉F

−
∫ 0

−τm
dθ

∫ θ

−τm
ds〈ψ(θ),J[s]∗

d

ds
[φ(s− θ)]〉

= 〈y, x〉F +

∫ 0

−τm
dθ〈ψ(θ),J[θ]∗φ(0)〉F

−
∫ 0

−τm
dθ

∫
Ω2

drdr̄

∫ θ

−τm
ds〈ψ(r, θ),J∗(r, r̄)∗φ̇(r̄, s− θ)〉RpH(s+ τ (r, r̄))

= 〈y, x〉F +

∫ 0

−τm
dθ〈ψ(θ),J[θ]∗φ(0)〉F

−
∑
ij

∫
Ω2

drJ̃ij(r, r̄)dr̄

∫ 0

−τm
dθ

∫ θ

−τm
ds ψj(r, θ)φ̇i(r̄, s− θ)H(s+ τij(r, r̄))

= 〈y, x〉F +

∫ 0

−τm
dθ〈ψ(θ),J[θ]∗φ(0)〉F

−
∑
ij

∫
Ω2

drJ̃ij(r, r̄)dr̄

∫ 0

−τij(r,r̄)
dθ

∫ θ

−τij(r,r̄)
ds ψj(r, θ)φ̇i(r̄, s− θ)

= 〈y, x〉F +
∑
ij

∫
Ω2

drJ̃ij(r, r̄)dr̄

∫ 0

−τij(r,r̄)
ds ψj(r, θ)φi(r̄, s− τij(r, r̄)) (4.23)

where H is the Heaviside function. The last line equals the definition of 〈〈
[
x

φ

]
, u〉〉.

The proof is complete. �

We have found an analytical expression for the spectral projector Pλ. We can

use this result to obtain a decomposition (see [Yosida 1980] p228) of the history

space for the eigenvalue λ ∈ Σp(A) of algebraic multiplicity mλ:

X = ker(λId−A)mλ ⊕ Im(λId−A)mλ = Eλ(A)⊕ Im(λId−A)mλ , (4.24)

the last equality comes from ker(λId − A)mλ = Eλ(A). From the general for-

mula ker(λ̄Id − A∗)mλ = (Im(λId − A)mλ)⊥, we obtain that Im(λId − A)mλ =

{φ ∈ X | ∀ψ ∈ Eλ̄(A∗), 〈ψ, φ〉X = 0}.
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4.4.4 Phase space decomposition

We end the section on linear analysis with a decomposition of the history space

according to the eigenvalues of the infinitesimal generator A. This will be useful

for the derivation of the center manifold theorem in section 4.6. Let us write a

splitting of the spectrum of A according to the real part of the eigenvalues15:

Σu ≡ Σ(A) ∩ C+, Σc ≡ Σp(A) ∩ iR, Σs ≡ Σ(A) ∩ C−

It was shown in lemma 4.4.2 that: ∀a > mini li, CardΣ(A) ∩ (a,+∞)C < ∞.

Hence, we can find a spectral gap γ > 0 such that

max<Σs < −γ, min<Σu > γ

As Σc and Σu are finite and included in the point spectrum Σp(A) of A, we can use

(4.24) to obtain a decomposition of X according to the splitting of the spectrum:

X = Xu ⊕Xc ⊕Xs

where the spaces Xu,Xc,Xs are invariant by A and T(t) for all t ≥ 0. For example,

the center part, Xc =
⊕
λ∈Σc

Eλ(A). We write Pc =
∑
λ∈Σc

Pλ, Pu =
∑
λ∈Σu

Pλ the

spectral projectors on Xc,Xu and Ps = Id − Pc − Pu. We also write Au,Ac,As

(resp. Tu,Tc,Ts) the restriction of A (resp. T) to the different subspaces. Notice

that Σ(Ai) = Σi, i = u, c, s. The spectral mapping theorem (see [Engel 2001] and

theorem B.1.4) gives:

|||Ts(t)|||X ≤Me−γt, t ≥ 0

where M is a constant. As Xu is finite dimensional, there is a matrix such that

Tu(t) = etAu (see for example [Engel 2001]). Thus, Tu can be extended to a group

such that:

|||Tu(t)|||X ≤Me−γ|t|, t ≤ 0

Finally, we define the hyperbolic projector Ph = Pu + Ps and associated operators

Ah = APh and Th = TPh.

4.5 Stability results in C

When studying a dynamical system, a good starting point is to look for invari-

ant sets. Theorem 4.3.2 provides such an invariant set but it is a very large one,

not sufficient to convey a good understanding of the system. Other invariant sets

(included in the previous one) are stationary points. Notice that delayed and non-

delayed equations share exactly the same stationary solutions. We can therefore

make good use of the harvest of results that are available about these persistent

states which we note Vf . Note that in most papers dealing with persistent states,

15We have written C− = {z ∈ C | <z < 0} and C+ = {z ∈ C | <z > 0}.
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the authors compute one of them and are satisfied with the study of the local dy-

namics around this particular stationary solution. Very few authors (we are aware

only of [Ermentrout 1980, Veltz 2010]) address the problem of the computation of

the whole set of persistent states. Despite these efforts they have yet been unable to

get a complete grasp of the global dynamics. To summarize, in order to understand

the impact of the propagation delays on the solutions of the neural field equations,

it is necessary to know all their stationary solutions and the dynamics in the region

where these stationary solutions lie. Unfortunately such knowledge is currently not

available. Hence we must be content with studying the local dynamics around each

persistent state (computed for example with the tools of [Veltz 2010]) with and

without propagation delays. This is already, we think, a significant step forward

toward understanding delayed neural field equations.

From now on we note Vf a persistent state of (4.1) and study its stability. Note

that the existence of a stationary solution requires the external current Iext in (4.2)

to be time constant.

We can identify at least three ways to do this:

1. to derive a Lyapunov functional,

2. to use a fixed point approach,

3. to determine the spectrum of the infinitesimal generator associated to the

linearized equation.

Previous results concerning stability bounds in delayed neural mass equations

are “absolute” results that do not involve the delays: they provide a sufficient

condition, independent of the delays, for the stability of the fixed point (see

[Atay 2005, Atay 2006, Hutt 2008, Hutt 2006]). The bound they find is similar to

our second bound in proposition 4.5.7. They “proved” it by showing that if the con-

dition was satisfied, the eigenvalues of the infinitesimal generator of the semi-group

of the linearized equation had negative real parts. This is not sufficient because

a more complete analysis of the spectrum (e.g., the essential part) is necessary as

shown below in order to prove that the semi-group is exponentially bounded. In

our case we prove this assertion in the case of a bounded cortex (see section 4.5.1).

These authors also provide a delay-dependent sufficient condition to guarantee

that no oscillatory instabilities can appear, i.e., they give a condition that forbids

the existence of solutions of the form ei(k·r+ωt). However, this result does not give

any information regarding stability of the stationary solution.

We use the second method cited above, the fixed point method, to prove a

more general result which takes into account the delay terms. We also use both

the second and the third method above, the spectral method, to prove the delay-

independent bound from [Atay 2005, Atay 2006, Hutt 2008, Hutt 2006]. We then

evaluate the conservativeness of these two sufficient conditions. Note that the delay-

independent bound has been correctly derived in [Faye 2010] using the first method,

the Lyapunov method. It might be of interest to explore its potential to derive a

delay-dependent bound.
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For convenience, we recall the linearized equation we are interested in here:{
U̇(t) = −L0U(t) + L̃1Ut ≡ LUt

U0 = φ ∈ C
(4.25)

4.5.1 Stability results in C from the characteristic values

There are two steps in proving the (asymptotic) stability of an equilibrium. First

we show that if the eigenvalues, solutions of (4.7), satisfy <λ < 0, then any solution

of (4.25) is exponentially decaying to U = 0 in C. Then, we show16 that any initial

condition V0 ∈ C close enough17 to Vf converges to Vf for the equation (4.1).

Using the spectrum computed in lemma 4.4.2 and the formula in lemma 4.4.3, we

can state the asymptotic stability of the linear equation (4.9):

Corollary 4.5.1 (Linear stability). The zero solution of (4.25) is asymptotically sta-

ble in C if and only if max< (Σ(A) ∩ {λ ∈ C, <λ > −l}) < 0.

We conclude by showing that the computation of the characteristic values of A

is enough to state the stability of the stationary solution Vf .

Corollary 4.5.2. Let us assume that J ∈ L∞(Ω2,Rp×p). If

max< (Σ(A) ∩ {λ ∈ C, <λ > −l}) < 0, then the persistent solution Vf of

(4.4) is asymptotically stable in C.

Proof. We write U(t) = V(t)−Vf for V(t) solution of (4.4) in C, we write (4.4)

as U̇(t) = −L0U(t) + L̃1Ut + G(Ut). The function G is in C1(C,F) and satisfies

G(0) = 0, DG(0) = 0 and ‖G(Ut)‖F = O(‖Ut‖2C). Let us write ‖G(Ut)‖F ≤
KG‖Ut‖2C and ω = max(−l, εp) < 0 where εp ≡ max< (Σ(A) ∩ {λ ∈ C, <λ > −l}).
Then lemma 4.4.3 gives |||T(t)|||X ≤Meωt with M ≥ 1. Let us define the function

f : t→ G(Ut) ∈ C0(R+,F), then U(t) solves the linear inhomogeneous problem:{
U̇(t) = −L0U(t) + L̃1Ut + f(t)

U0 ∈ C

From the proof of proposition B.7.4, v : t→
∫ t

0 T(t− s)
[
f(s)

0

]
ds ∈ C1(R+,X ) and

from [Pazy 1983][theorem 2.4], v is a strong solution of u̇ = Au+

[
f(t)

0

]
, u(0) = 0.

Hence, U(t) − π1v solves the homogeneous linear problem with initial condition

U0 which is also solved by π1T(t)u(0). In particular, we have U(t) = π1u(t) with

u(t) ≡ v(t) + T(t)u(0) (it is a mild solution).

The proof is now an adaptation of [Wu 1996][theorem 4.1]. We choose

R such that KGR < |ω|eωτm
2M . We want to show that the set BR ={[

φ(0)

φ

]
, φ ∈ C, ‖φ‖C < R

}
is invariant by the dynamics if ‖U0‖C <

R
2M(1+τm) .

16We also have to show that this solution stays in a neighborhood of Vf in C.
17in C
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By way of contradiction, if there exists t1 > 0 so that ‖Ut1‖C = R and ‖Ut‖C < R

for t ∈ [0, t1). Then we find ‖U(t1)‖F = R and:

R = ‖U(t1)‖F ≤ ‖u(t1)‖X < M

≤1︷︸︸︷
eωt1

R

2M
+

∫ t1

0
Meω(t1−s)KG ‖Us‖2C ds

<
R

2
+M

KGR

|ω|
R ≤ R

a contradiction to the choice of t1. If ‖U0‖C <
R

2M(1+τm) , we have shown that

‖Ut‖C < R for all t ≥ 0. Therefore ∀θ ∈ [−τm, 0] such that t+ θ > 0:

‖U(t+ θ)‖F ≤ ‖u(t+ θ)‖X

≤Meωt+|ω|τm ‖u(0)‖X +MKGR

∫ t

0
eω(t−s)+|ω|τm ‖Us‖C ds

which gives:

‖Ut‖C ≤Meωt+|ω|τm ‖u(0)‖X +MKGR

∫ t

0
eω(t−s)+|ω|τm ‖Us‖C ds.

By using Gronwall inequality, we find:

‖Ut‖C ≤Me|ω|τm ‖u(0)‖X e
(ω+MKGRe

|ω|τm )t ≤Me|ω|τm ‖u(0)‖X e
ωt/2

which shows that ‖Ut‖C → 0 as t→∞. �

Remark 22.There is correspondence between the continuous functions of

C0(R,F) and the continuous functions with values in X . Indeed, given a continu-

ous function f ∈ C0(R,F), we build a continuous function t→
[
f(t)

ft

]
∈ X . Hence

the history segment

[
f(t)

0

]
represents a Dirac function X0f(t): (X0f(t)) (θ) ={

0 if θ < 0

f(t) if θ = 0
, which does not belong to C. If we had worked in C and built a

semigroup TC(t) : C → C, we could not have used the variation-of-constant formula

in the previous proof, because it relies on the quantity TC(t − s)X0f(s) which has

no meaning because X0f(s) /∈ C. This is why we chose to work in X for the study

of the semigroup T(t).

Finally, we can use the CVs to derive a sufficient stability result.

Proposition 4.5.3.If ‖J ·DS(Vf )‖L2(Ω2,Rp×p) < min
i
li then Vf is asymptotically

stable for (4.4).

Proof. Suppose that a CV λ of positive real part exists, this gives a vector

in the Kernel of ∆(λ). Using straightforward estimates, it implies that min
i
li ≤

‖J ·DS(Vf )‖L2(Ω2,Rp×p), a contradiction. �
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4.5.2 Generalization of the model

In the description of our model, we have pointed out a possible generalization. It

concerns the linear response of the populations, i.e., the left-hand side
(
d
dt + li

)
of

(4.1). It can be replaced by a polynomial in d
dt , namely Pi

(
d
dt

)
, where the zeros of

the polynomials Pi have negative real parts. Indeed, in this case, when J is small,

the network is stable. We obtain a diagonal matrix P
(
d
dt

)
such that P(0) = L0

and change the initial condition (as in the theory of ODEs) while the history space

becomes (C([−τm, 0],F))ds ' C([−τm, 0],Fds) where ds = maxi degPi. Having all

this in mind equation (4.1) writes
Pi
(
d
dt

)
Vi(t, r) =

p∑
j=1

∫
Ω

Jij(r, r̄)S[σjVj

(
t− τij(r, r̄), r̄

)
− θj ]dr̄ + Iext,i(r, t),

t ≥ 0, 1 ≤ i ≤ p
V

(k)
i (t, r) = φi,k(t, r) ∈ C, t ∈ [−τm, 0], k = 0 · · · ds

(4.26)

Introducing the classical variable V(t) ≡ [V(t),V′(t), · · · ,V(ds)(t)], we rewrite

(4.26) as

V̇(t) = −L0V(t) + L1S(Vt) + Iext (4.27)

where −L0 is the Vandermonde matrix (we put a minus sign in order to

have a formulation very close to (4.1)) associated to P and (L1)k,l=1···ds =

(δk=ds,l=1L1)k,l=1···ds , Iext = [0, · · · , Iext], S(V) = [S(V(t)), · · · ,S(V(ds))]. It ap-

pears that equation (4.27) has the same structure as (4.1): L0,L1, are bounded lin-

ear operators on C0([−τm, 0],Fds) = Cds ; we can conclude that there is a unique so-

lution V to (4.26) in Cds . Using similar tools as in section 4.4.1, the linearized equa-

tion around a persistent states yields a strongly continuous semigroup T (t) which

is eventually continuous. Hence the stability is given by the sign of max<Σ(A)

where A is the infinitesimal generator of T (t). It is then routine to show that

λ ∈ Σ(A)⇔ ∆(λ) ≡ P(λ)− J(λ) non invertible

This indicates that the essential spectrum Σess(A) of A is equal to ∪iRoot (Pi)

which is located in the left side of the complex plane. Thus the point spectrum is

enough to characterize the linear stability:

Proposition 4.5.4. If max<Σp(A) < 0 the persistent solution Vf of (4.26) is

asymptotically stable in Cds.
Using the same proof as in [Atay 2005], one can prove that max<Σ(A) < 0

provided that ‖J ·DS(Vf )‖L2(Ω2,Rp×p) < min
k∈N,ω∈R

|Pk(iω)|.

Proposition 4.5.5.If ‖J · DS(Vf )‖L2(Ω2,Rp×p) < min
k∈N,ω∈R

|Pk(iω)| then Vf is

asymptotically stable in Cds.

4.5.3 Principle of the linear stability analysis via fixed point theory in C

The idea behind this method (see [Burton 2006]) is to write (4.6) as an integral equa-

tion. This integral equation is then interpreted as a fixed point problem. We already
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know that this problem has a unique solution in C0(R+, C). However, by looking

at the definition of the (Lyapunov) stability, we can express the stability as the

existence of a solution of the fixed point problem in a smaller space S ⊂ C0(R+, C).
The existence of a solution in S gives the unique solution in C0(R+, C). Hence, the

method is to provide conditions for the fixed point problem to have a solution in S;

in the two cases presented below, we use the Picard fixed point theorem to obtain

these conditions. Usually this method gives conditions on the averaged quantities

arising in (4.6) whereas a Lyapunov method would give conditions on the sign of the

same quantities. There is no method to be preferred, rather both of them should

be applied to obtain the best bounds.

In order to be able to derive our bounds, we make the further assumption that

there exists a β > 0 such that:∥∥∥∥ 1

τ β

∥∥∥∥
L2(Ω2,Rp×p)

<∞.

Note that the notation 1
τβ

represents the matrix of elements 1/τβij . Finally we use

the notation J̃ for the integral operator on F with kernel Jij(r, r̄)DS(Vf
j (r̄)), i.e.

J̃ij(r, r̄) ≡ Jij(0) = Jij(r, r̄)DS(Vf
j (r̄)). (4.28)

Remark 23.For example, in the 2D one-population case for τ(r, r̄) = c‖r− r̄‖2,

we have 0 ≤ β < 1.

We rewrite (4.6) in two different integral forms to which we apply the fixed

point method. The first integral form is obtained by a straightforward use of the

variation-of-parameters formula. It reads
(P1U)(t) = φ(t), t ∈ [−τm, 0]

(P1U)(t) = e−L0tφ(0) +
t∫

0

e−L0(t−s)(L̃1Us) ds, t ≥ 0
(4.29)

The second integral form is less obvious. Let us define

Z(r, t) =

∫
Ω

dr̄J̃(r, r̄)

t∫
t−τ (r,r̄)

dsU(r̄, s),

Note the slight abuse of notation, namely
(
J̃(r, r̄)

t∫
t−τ (r,r̄)

dsU(r̄, s)
)
i

=

∑
j

J̃ij(r, r̄)
t∫

t−τ ij(r,r̄)

dsUj(r̄, s).

Lemma B.6.1 in appendix yields the upper-bound

‖Z(t)‖F ≤ τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

sup
s∈[t−τm,t]

‖U(s)‖F
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where J̃
τβ

represents the matrix of elements
J̃ij

τβij
. This shows that ∀t, Z(t) ∈ F .

Hence we propose the second integral form:
(P2U)(t) = φ(t), t ∈ [−τm, 0]

(P2U)(t) = e(J̃−L0)tU(0)− Z(t) + e(J̃−L0)tZ(0)−
t∫

0

ds(J̃− L0)e(J̃−L0)(t−s)Z(s), t ≥ 0

(4.30)

We have the following lemma.

Lemma 4.5.6.The formulation (4.30) is equivalent to (4.6).

Proof. The idea is to write the linearized equation as:{
d
dtU = (−L0 + J̃)U− d

dtZ(t)

U0 = φ
(4.31)

By the variation-of-parameters formula we have:

U(t) = e(J̃−L0)tU(0)−
∫ t

0
e(J̃−L0)(t−s) d

ds
Z(s) ds.

We then use an integration by parts:

∫ t

0
e(J̃−L0)(t−s) d

ds
Z(s) ds = Z(t)− e(J̃−L0)tZ(0) +

t∫
0

(J̃−L0)e(J̃−L0)(t−s)Z(s) ds

which allows us to conclude. �
Using the two integral formulations of (4.6) we obtain sufficient conditions of

stability, as stated in the following proposition:

Proposition 4.5.7. If one of the following two conditions is satisfied:

1. max<Σ(J̃− L0) < 0 and there exist α < 1, β > 0 such that

τ
3
2

+β
m

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

(
1 + sup

t≥0

t∫
0

ds|||(J̃− L0)e(J̃−L0)(t−s)|||F
)
≤ α.

2. ‖J̃‖L2(Ω2,Rp×p) < min
i
li.

then Vf is asymptotically stable for (4.4), hence in C.

Proof. We start with the first condition. The problem (4.6) is equivalent to

solving the fixed point equation U = P2U for an initial condition φ ∈ C. Let us

define the Banach space B = C0([−τm,∞),F) with the supremum norm written

‖ · ‖∞,F , as well as

Sφ =
{
ψ ∈ B, ψ|[−τm,0] = φ and ψ → 0 as t→∞

}
Sφ is a complete space because it is closed in the complete space B. We define P2

on Sφ. For all ψ ∈ Sφ we have P2ψ ∈ B and (P2ψ)(0) = φ(0). We want to show

that P2Sφ ⊂ Sφ. We prove two properties.
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1. P2ψ tends to zero at infinity.

Choose ψ ∈ Sφ.

Using corollary B.6.1, we have Z(t)→ 0 as t→∞.

Let 0 < T < t, we also have∥∥∥∥∥∥
t∫

0

(J̃− L0)e(J̃−L0)(t−s)Z(s)

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
T∫

0

(J̃− L0)e(J̃−L0)(t−s)Z(s)ds

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
t∫

T

(J̃− L0)e(J̃−L0)(t−s)Z(s)ds

∥∥∥∥∥∥
F

For the first term we write:∥∥∥∥∥∥
T∫

0

(J̃− L0)e(J̃−L0)(t−s)Z(s) ds

∥∥∥∥∥∥
F

≤
T∫

0

∥∥∥(J̃− L0)e(J̃−L0)(t−s)Z(s)
∥∥∥
F
ds ≤

∣∣∣∥∥∥e(J̃−L0)(t−T )
∥∥∥∣∣∣
F
·
T∫

0

|‖(J̃− L0)e(J̃−L0)(T−s)|‖F · ‖Z(s)‖Fds ≤

τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

·
∣∣∣∥∥∥e(J̃−L0)(t−T )

∥∥∥∣∣∣
F
·
T∫

0

∣∣∣∥∥∥(J̃− L0)e(J̃−L0)(T−s)
∥∥∥∣∣∣
F
ds·‖ψ‖∞,F

≤ α
∣∣∣∥∥∥e(J̃−L0)(t−T )

∥∥∥∣∣∣
F
· ‖ψ‖∞,F

Similarly, for the second term we write∥∥∥∥∥∥
t∫

T

(J̃− L0)e(J̃−L0)(t−s)Z(s)ds

∥∥∥∥∥∥
F

≤

τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

·
t∫

T

∣∣∣∥∥∥(J̃− L0)e(J̃−L0)(t−s)
∥∥∥∣∣∣
F
ds· sup

s∈[T−τm,∞)
‖ψ(s)‖F ≤

α sup
s∈[T−τm,∞)

‖ψ(s)‖F

Now for a given ε > 0 we choose T large enough so that

α sup
s∈[T−τm,∞)

‖ψ(s)‖F < ε/2. For such a T we choose t∗ large enough so

that α
∣∣∣∥∥∥e(J̃−L0)(t−T )

∥∥∥∣∣∣
F
· ‖ψ‖∞,F < ε/2 for t > t∗. Putting all this together,

for all t > t∗: ∥∥∥∥∥∥
t∫

0

(J̃− L0)e(J̃−L0)(t−s)Z(s)ds

∥∥∥∥∥∥
F

≤ ε.
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From (4.30), it follows that P2ψ → 0 when t→∞.

Since P2ψ is continuous and has a limit when t → ∞ it is bounded and

therefore P2 : Sφ → Sφ.

2. P2 is contracting on Sφ
Using (4.30) for all ψ1, ψ2 ∈ Sφ we have

‖(P2ψ1)(t)− (P2ψ2)(t)‖F ≤

‖Z1(t)− Z2(t)‖F +

∥∥∥∥∥∥
t∫

0

ds(J̃− L0)e(J̃−L0)(t−s)(Z1(s)− Z2(s))

∥∥∥∥∥∥
F

≤

τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

‖ψ1 − ψ2‖∞,F +

τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

‖ψ1 − ψ2‖∞,F

t∫
0

ds
∣∣∣∥∥∥(J̃− L0)e(J̃−L0)(s−t)

∥∥∥∣∣∣
F

≤ α‖ψ1 − ψ2‖∞,F

We conclude from Picard theorem that the operator P2 has a unique fixed point in

Sφ.

There remains to link this fixed point to the definition of stability and first show

that

∀ε > 0 ∃δ such that ‖φ‖C ≤ δ implies ‖U(t, φ)‖C < ε, t ≥ 0,

where U(t, φ) is the solution of (4.25) with initial condition φ ∈ C.
Let us choose ε > 0 and M ≥ 1 such that

∣∣∣∥∥∥e(J̃−L0)t
∥∥∥∣∣∣
F
≤M . M exists because,

by hypoThesis, max<Σ(J̃− L0) < 0. We then choose δ < ε satisfying

M

1 + τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

 δ < ε(1− α), (4.32)

and φ ∈ C such that ‖φ‖C ≤ δ. Next define

Sφ,ε =
{
ψ ∈ B, ‖ψ‖∞,F ≤ ε, ψ|[−τm,0] = φ and ψ → 0 as t→∞

}
⊂ Sφ

We already know that P2 is a contraction on Sφ,ε (which is a complete space

because it is closed in the complete space Sφ). The last thing to check is P2Sφ,ε ⊂
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Sφ,ε, that is ∀ψ ∈ Sφ,ε, ‖P2ψ‖∞,F < ε. Using lemma B.6.1 in appendix B.6.1:

‖(P2ψ)(t)‖F ≤Mδ+‖Z(t)‖F+
∥∥∥e(J̃−L0)tZ(0)

∥∥∥
F

+

∥∥∥∥∥∥
t∫

0

(J̃− L0)e(J̃−L0)(t−s)Z(s) ds

∥∥∥∥∥∥
F

≤Mδ + ‖Z(t)‖F +M‖Z(0)‖F + ‖Z‖∞,F

t∫
0

∥∥∥∣∣∣(J̃− L0)e(J̃−L0)(t−s)
∣∣∣∥∥∥
F
ds

≤Mδ + τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

‖ψt‖C +Mτm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

δ+

sup
s∈(0,t)

‖ψs‖C

t∫
0

∥∥∥∣∣∣(J̃− L0)e(J̃−L0)(t−s)
∣∣∣∥∥∥
F
ds ≤

Mδ + αε+Mτm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

δ

= M

1 + τm
3
2

+β

∥∥∥∥∥ J̃

τ β

∥∥∥∥∥
L2(Ω2,Rp×p)

 δ + αε < ε

Thus P2 has a unique fixed point Uφ,ε in Sφ,ε ∀φ, ε which is the solution of the

linear delayed differential equation i.e.

∀ε,∃δ < ε (from (4.32)), | ∀φ ∈ C, ‖φ‖ ≤ δ ⇒ ∀t > 0, ‖Uφ,ε‖∞,F ≤ ε and Uφ,ε(t)→ 0 in F

As Uφ,ε(t) → 0 in F implies Uφ,ε
t → 0 in C, we have proved the asymptotic

stability for the linearized equation.

The proof of the second property is straightforward. If 0 is asymptotically

stable for (4.6) all the CV are negative and corollary 4.5.2 indicates that Vf is

asymptotically stable for (4.4).

The second condition says that P1ψ = e−L0tφ(0) +
t∫

0

e−L0(t−s)(L̃1ψ)(s)ds is a

contraction because

‖(P1ψ1)(t)− (P1ψ2)(t)‖F ≤ |||J̃|||Fmin
i
li
‖ψ1 − ψ2‖∞,F .

The asymptotic stability follows using the same arguments as in the case of P2.

�

We next simplify the first condition of the previous proposition to make it more

amenable to numerics.

Corollary 4.5.8. Suppose that ∀t ≥ 0, |||e(J̃−L0)t|||F ≤Mεe
−tε with ε > 0.

If there exist α < 1, β > 0 such that

τ
3
2

+β
m

∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

(
1 + Mε

ε

∥∥∥J̃− L0

∥∥∥
L2(Ω2,Rp×p)

)
≤ α, then Vf is asymptot-

ically stable.
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Proof. This corollary follows immediately from the following upper-bound of the

integral
∫ t

0 |||e
(J̃−L0)(t−s)|||F ds ≤Mε

1−e−εt
ε ≤ Mε

ε . Then if there exists α < 1, β > 0

such that

τ
3
2

+β
m

∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

(
1 + Mε

ε

∥∥∥J̃− L0

∥∥∥
L2(Ω2,Rp×p)

)
≤ α, it implies that the

condition 1. in proposition 4.5.7 is satisfied, from which the asymptotic stability of

Vf follows. �

Notice that ε > 0 is equivalent to max<Σ(−L0 + J̃) < 0. The previous corollary

is useful in at least the following cases:

• If J̃ − L0 is diagonalizable, with associated eigenvalues/eigenvectors: λn ∈
C, en ∈ F , then J̃ − L0 =

∑
n
eλnten ⊗ en and |||e(J̃−L0)t|||F ≤ e

−tmax
n

λn
=

etmax<Σ(−L0+J̃).

• If L0 = l0Id and the range of J̃ is finite dimensional: J̃(r, r′) =
N∑

k,l=1

Jklek(r)⊗

el(r
′) where (ek)k∈N is an orthonormal basis of F , then e(J̃−L0)t = e−l0·Id·teJ̃t

and |||e(J̃−L0)t|||F ≤ e−l0t|||eJ̃t|||F . Let us write J = (Jkl)k,l=1···N the

matrix associated to J̃ (see above). Then eJ̃t is also a compact opera-

tor with finite range and |||eJ̃t|||F ≤
∥∥∥eJ̃t∥∥∥

L2(Ω2,Rp×p)
=

√
Tr(e(J̃+J̃∗)t) =( ∑

λ∈Σ(J̃+J̃∗)

eλt
)1/2

≤
√
Nemax<Σ(J̃)t. Finally, it gives |||e(J̃−L0)t|||F ≤

√
Netmax<Σ(−L0+J̃).

• If J̃ − L0 is self-adjoint, then it is diagonalizable and we can chose ε =

max<Σ(−L0 + J̃), Mε = 1.

Remark 24.If we suppose that we have higher order time derivatives as in section

4.5.2, we can write the linearized equation as

U̇(t) = −L0U(t) + L̃1Ut (4.33)

Suppose that L0 is diagonalizable then |||e−L0t|||(F)ds ≤ e−min<Σ(L0)t where

‖U‖(F)ds ≡
ds∑
k=1

‖Uk‖F and −min<Σ(L0) = max
k
<Root(Pk). Also notice that

J̃ = L̃1|F , |||L1|||(C)ds ≤ |||L1|||C. Then using the same functionals as in the

proof of proposition 4.5.7, we can find two bounds for the stability of a stationary

state Vf :

• Suppose that max<Σ(J̃ − L0) < 0 i.e. Vf is stable for the non-delayed

equation where (J̃ )k,l=1···ds = (δk=ds,l=1J̃)k,l=1···ds. If there exist α < 1, β > 0

such that τ
3
2

+β
m

∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

(
1 + sup

t≥0

t∫
0

ds|‖(L0 + J̃ )e(L0+J̃ )(t−s)|‖(F)ds

)
≤

α.
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• ‖J̃‖L2(Ω2,Rp×p) < max
k
<Root(Pk).

To conclude, we have found an easy-to-compute formula for the stability of

the persistent state Vf . It can indeed be cumbersome to compute the CVs of

neural field equations for different parameters in order to find the region of stability

whereas the evaluation of the conditions in Corollary 4.5.8 is very easy numerically.

The conditions in proposition 4.5.7 and corollary 4.5.8 define a set of param-

eters for which Vf is stable in C. Notice that these conditions are only sufficient

conditions: if they are violated, Vf may still remain stable. In order to find out

whether the persistent state is destabilized we have to look at the characteristic

values.

Condition 1 in proposition 4.5.7 indicates that if Vf is a stable point for the

non-delayed equation (see [Faugeras 2009]) it is also stable for the delayed-equation.

Thus, according to this condition, it is not possible to destabilize a stable persistent

state by the introduction of small delays, which is indeed meaningful from the

biological viewpoint. Moreover this condition gives an indication of the amount of

delay one can introduce without changing the stability.

Condition 2 is not very useful as it is independent of the delays: no matter what

they are, the stable point Vf will remain stable. Also, if this condition is satisfied

there is a unique stationary solution (see [Faugeras 2009]) and the dynamics is

trivial, i.e. converging to the unique stationary point.

4.5.4 Summary of the different stability bounds

The next proposition summarizes the results we have obtained in proposition 4.5.7

and corollary 4.5.8 for the stability of a stationary solution.

Proposition 4.5.9. If one of the following conditions is satisfied:

1. There exist ε > 0 such that |||e−(J̃−L0)t|||F ≤ Mεe
−εt and α < 1, β > 0 such

that

τ
3
2

+β
m

∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

(
1 + Mε

ε

∥∥∥J̃− L0

∥∥∥
L2(Ω2,Rp×p)

)
≤ α,

2. ‖J̃‖L2(Ω2,Rp×p) < min
i
li

then Vf is asymptotically stable for (4.4).

The only general results known so far for the stability of the stationary solutions

are those of Atay and Hutt (see for example [Atay 2005]): they found a bound

similar to condition 2 in proposition 4.5.9 by using the CVs, but no proof of stability

was given. Their condition involves the L1-norm of the connectivity function J and

it was derived using the CVs in the same way as we did in the previous section.

Thus our contribution with respect to condition 2 is that, once it is satisfied, the

stationary solution is asymptotically stable: up until now this was numerically

inferred on the basis of the CVs. We have proved it in two ways, first by using the

CVs, and second by using the fixed point method.
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Condition 1 is of interest, because it allows one to find the minimal propaga-

tion delay that does not destabilize. Notice that this bound, though very easy to

compute, overestimates the minimal speed.

As mentioned above, the bounds in condition 1 are sufficient conditions for the

stability of the stationary state Vf . In order to evaluate the conservativeness of

these bounds, we need to compare them to the stability predicted by the CVs. This

is done in chapter 6 on one specific example.

4.6 Center manifold reduction

Let us recall what we have done so far. We have considered a stationary cortical

state Vf of the delayed neural field equations (4.1). We have shown how to compute

the punctual spectrum Σp of the linearized equation and have proved that the

equilibria Vf is asymptotically stable if and only if all elements in the spectrum

have negative real parts. In the case where some eigenvalue has positive real part

the local dynamics around Vf is exponentially divergent. In particular, we have a

good understanding of the dynamics as long as Σc ≡ Σp(A) ∩ iR = ∅.
In the case where Σc 6= ∅, our program is to study the nonlinear dynamics

of (4.1), using the tools of [Haragus 2010]. We find a manifold, called the center

manifold, which is invariant by the dynamics of (4.1) and which is (exponentially)

attractive if Σu(A) = ∅. From lemma 4.4.2, the center part Xc of the history

space is finite dimensional. As it has the same dimension as the center manifold, it

follows that the center manifold is also finite dimensional. Hence, when studying

the neural field equations with a non empty center part, we can restrict the study

to the center manifold, which produces the local non trivial dynamics: it gives a

finite dimensional system without approximation. A bifurcation is said to occur

when the center part changes.

The study of the center manifold theorem in infinite dimension has led to some

’optimal’ requirements to make the theorem work. The first is to write the dynam-

ical system as an abstract Cauchy problem a bit more specific than (4.3). More

precisely, we need to find three Banach spaces Z ↪→ Y ↪→ X with continuous

embeddings such that
d

dt
u = Au+ R(u) (4.34)

where A is a continuous linear operator in L(Z,X ) and R ∈ Ck(V,Y), k ≥ 2, is

a nonlinear function defined on a neighborhood V ⊂ Z of 0 satisfying R(0) = 0

and DR(0) = 0. Then the spectrum of the linear operator A needs to have a

spectral decomposition with finite dimensional central part Xc and a spectral gap

γ as in section 4.4.4. This gives a finite dimensional center manifold and well

defined convergence/divergence rates to/from the center manifold. Finally, the

linear system
d

dt
u = Au+ f(t)
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has to feature exponentially bounded solutions for t ∈ R for some exponentially

bounded function f defined on R. This will be explained more precisely below.

This last property is needed to give some regularity to the center manifold (it

has the same regularity as R) and also to prove its existence. Note that in the

“simple” version of the Center Manifold theorem that we give in appendix A.1, the

fourth condition implies that the above linear system can be solved. We check the

conditions in the next subsections.

We prove the center manifold theorem for delayed neural field equations in

theorem 4.6.3. Then, we consider the problem of establishing the normal forms

of several important static and dynamic bifurcations. The (classical) idea be-

ing that a) these normal forms are the same for all systems satisfying the

same non-degeneracy conditions and the same conditions on the spectrum and

b) if we understand their dynamics we will understand that of (4.2) (see, e.g.

[Guckenheimer 1983, Kuznetsov 1998, Haragus 2010]).

4.6.1 Formulation as a Cauchy problem

We start by writing (4.2) as in (4.34). We choose a stationary cortical state Vf and

A as in (4.11). Let us consider a parameter µ, for example it can be the nonlinear

gain σ, the constant delay D or the pair (σ, c): we assume that µ ∈ Rmpar , mpar

being the number of parameters. Notice that the equilibrium Vf may depend

on µ. It is such that when µ = µc, then the punctual spectrum contains purely

imaginary eigenvalues. We write the equation (4.4) for a perturbation U of Vf

where V(t) = Vf + U(t):

U̇(t) = −L0U(t) + L1(µ) ·
(
S(Ut + Vf )− S(Vf )

)
(4.35)

Using a Taylor expansion with integral remainder (we have also made the depen-

dency of Vf on the parameter µ implicit), we find:

− L0U(t) + L1(µ) ·
(
S(Ut + Vf )− S(Vf )

)
=

(−L0 + L1(µ)) ·Ut + L1(µ) ·
∫ 1

0
(1− s)S(2)(Vf + sUt)U

2
tds

≡ L(µ)Ut + L1(µ)G(U) (4.36)

In order to use [Haragus 2010, Theorem II.3.3], i.e. the parameter dependent center

manifold, we write the previous equation:

L(µ)Ut + L1(µ)G(U) = L(µc)Ut + (L1(µ)G(U) + (L(µ)− L(µc))Ut)

We take a classical solution U(t) of (4.35), i.e. a function U ∈ C0([−τm,∞),F) ∩
C1([0,∞),F) such that Ut ∈ W 1,2(−τm, 0;F) and U satisfies (4.35). The history
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segment u(t) ≡
[
U(t)

Ut

]
satisfies:

{
u̇(t) = Au(t) + R(u(t), µ)

u(0) ∈ X
with R(u, µ) =

[
L1(µ)(G(π2(u)) + (L(µ)− L(µc))π2(u)

0

]
(4.37)

and A is given by (4.11). It follows that R(0, µc) = 0, DR(0, µc) = 0. Indeed, we

have removed the linear terms in the definition of R. This is the Cauchy problem to

which we will apply the Center Manifold Theorem. In order to apply this theorem,

we need more regularity for R. This is classically obtained by restricting the space.

Thus, we define three Banach spaces for any integer 2 ≤ q < ∞. The “older”

history space X corresponds to the case q = 2. Note that the spaces (for example)

X (q) are subsets of one another for deacreasing qs.
X (q) ≡ Lq × Lq(−τm, 0; Lq),

Y(q) ≡ Lq × Lq(−τm, 0; Lq),

Z(q) ≡
{
u ∈ Lq ×W1,q(−τm, 0; Lq) | π1u = (π2u)(0)

} (4.38)

where Lq ≡ Lq(Ω,Rp) and

‖φ‖Lq(−τm,0;Lq) =
(∫ 0
−τm ‖φ(θ)‖qLq dθ

) 1
q

‖φ‖W1,q(−τm,0;Lq) = ‖φ‖Lq(−τm,0;Lq) +
∥∥ d
dθφ
∥∥

Lq(−τm,0;Lq)
.

(4.39)

We write A(q) the linear operator given by (4.11) with domain D(A(q)) = Z(q).

Then, the regularity of the nonlinear term R is given by the following lemma:

Lemma 4.6.1. For all integer 2 ≤ q <∞,

A(q) ∈ L(Z(q),X (q)),

R ∈ Cq−1(Z(q) × Rmpar ,Y(q)).

and

Dq
uR(u0, µ)[u1, · · · , uq] =

[
L1(µ)S(q)(Vf )π2(u1 · · ·uq)

0

]
, for u0 =

[
Vf

Vf

]
where u1 · · ·up is the component-wise product of the functions ui. We also

define condensed notations for Rq(u0, µ0) ≡ 1
q!D

q
uR(u0, µ0) and Rql(u0, µ0) ≡

1
q!l!

∂q+l

∂qu∂lµ
R(u0, µ0).

Proof.

Case of A(q). We use the continuous embeddings W 1,q(−τm, 0; Lq(Ω,Rp)) ↪→
C0(−τm, 0; Lq(Ω,Rp)) and Lq ↪→ L1. From lemma B.7.1:

‖L1π2(u)‖Lq ≤ ‖L1π2(u)‖Lq = O
(
‖π2(u)‖C0(−τm,0;L1)

)
= O

(
‖π2(u)‖W1,q(−τm,0;L1)

)
= O

(
‖π2(u)‖W1,q(−τm,0;Lq)

)
= O (‖u‖Z(q)) .

It follows that
∥∥A(q)u

∥∥
X (q) = O (‖u‖Z(q)) which proves that A(q) is continuous.
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Case of R. Let us ignore for simplicity the dependence on the parameter

µ. It is easy to see from the definition (4.35) of R that, if it exists,

π1D
qR(u0)[u1, · · · , uq] = L1S

(q)(Vf )π2(u1 · · ·uq) while π2D
qR(u0) = 0. The

notation u1 · · ·uq is the component-wise product of the q functions u1, · · · , uq
in Z(q).

We write φi ≡ π2ui. As W 1,q(−τm, 0; Lq) ⊂ C0(−τm, 0; L1), we find, from the

generalized Hölder’s inequality, that ∀θ φ1(θ) · · ·φq(θ) is in L1 and

‖φ1 · · ·φq‖C0(−τm,0;L1) ≤
q∏
i=1

‖φi‖C0(−τm,0;Lq) .

From lemma B.7.1, it follows that DqR(u0) exists is continuous:

‖DqR(u0)[u1, · · · , uq]‖Y(q) = ‖L1(φ1 · · ·φq)‖Lq ≤

|||L1||| · ‖(φ1 · · ·φq)‖C0(−τm,0;L1) ≤ |||L1||| ·
q∏
i=1

‖φi‖C0(−τm,0;Lq)

≤ K|||L1||| ·
q∏
i=1

‖φi‖W 1,q(−τm,0;Lq) ≤ K|||L1||| ·
q∏
i=1

‖ui‖Z(q)

for some constant K. Note that we have used the continuous embed-

ding W 1,q(−τm, 0; Lq(Ω,Rp) ↪→ C0(−τm, 0; Lq(Ω,Rp)). To prove that R ∈
Cq(Z(q+1) × Rmpar ,Y(q+1)), we first notice that the above expression for

DqR(u0) exists and is well defined because Y(q+1) ↪→ Y(q) and Z(q+1) ↪→ Z(q).

Using the Taylor expansion with integral remainder at order q of S, it is easy

to find a power expansion of π1R(u) up to order q with remainder

1

q!
L1(µ) ·

∫ 1

0
(1− s)qS(q+1)(Vf + sUt)U

q+1
t ds.

Using, the previous estimation, this remainder is of order ‖u‖q+1

Z(q+1) and we

can conclude that R is Cq.

�
Hence we have the quasi-linear formulation (4.40) of the nonlinear problem (4.1):

A ∈ L(Z(q),X (q)) continuous

R(·, µ) ∈ Cq−1(Z(q),Y(q)), ∀q ≥ 2

Y(q) = X (q)

(4.40)

with continuous embeddings: Z(q) ↪→ Y(q) ↪→ X (q). We refer the reader to sec-

tion 4.4.4 for notations that are heavily used in the sequel.

It is easy to see that Σ(A(q)) = Σ(A) if J ∈ L∞(Ω2,Rp×p) and that the eigen-

vectors are the same for the two operators. Also Pλ commutes with A(q). In-

deed, we can check that A(q)Pλ = λPλ on D(A(q)). Moreover, 〈u∗λ,A(q)φ〉X (2) =
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〈u∗λ,A2φ〉X (2) = λ〈u∗λ, φ〉X (2) because A(q) = A2 on X (q). This last equality shows

PλA(q) = λPλ and we have found that Pλ commutes with A(q). As a consequence,

Pλ is the spectral projector of all the operators A(q).

From the continuity18 of L1 ∈ L(W1,q(−τm, 0; Lq),Lq) and from

[Bátkai 2005][theorem II.3.23], A(q) generates a strongly continuous semigroup

(T(q)(t)) on X (q). Lemma B.3.2, [Bátkai 2005][proposition 4.3] and theorem B.1.4

imply19 that (T(q)(t)) satisfies the spectral mapping theorem and that the bounds

for the hyperbolic projections found in section 4.4.4 in the case q = 2 are true for

all integer 2 ≤ q <∞.

We shall drop the index (q) even if all the spaces depend on the integer

q from now on.

4.6.2 Solution of the inhomogeneous problem

Here, we prove the last condition (see the next proposition 4.6.2) for the application

of the center manifold theorem. This condition is more general20 than the fourth

condition given in appendix A.1. This proposition is not easy to prove in general

and the proof is usually done using the sufficient conditions given in [Haragus 2010]

i.e. the norm of the resolvent (iω −A)−1 has to be bounded by some power of 1
|ω| .

This implies21 that the spectrum of A is included in a cone centered on the real

axis, the operator satisfying this condition are called sectorial. The spectrum does

not satisfy this property in the general case. Indeed, by applying (4.15), we see that

the spectrum is rather included in a cone with exponential boundary. Hence the

resolvent (iω −A)−1 is not bounded by some power of 1
|ω| in our case. This is why

we have to prove proposition 4.6.2 directly. Notice that the authors in [Iooss 2000]

also prove a similar result for ’advance-delay’ scalar differential equations with a

method that is different from the one we describe in the present section. Let us

comment a bit about the difficulties raised in proposition 4.6.2. We start with a

definition for a given Banach space E :

C0
η(R, E) ≡

{
φ ∈ C0(R, E), ‖φ‖C0

η
≡ sup

t∈R
e−η|t|‖φ(t)‖E <∞

}
.

Let us define the hyperbolic projection of Y,Z by Yh ≡ PhY, Zh ≡ PhZ. We

have to build a solution of (4.41) in C0
η(R,Zh) which is linearly and continuously

depending on F ∈ C0
η(R,Yh). This solution u = K · F is built using a variation-of-

constants formula which uses a convolution of the semigroup T and F . The linear

operator K is the operator that gives the unique solution of (4.41) given the term

F . There are two main things to prove:

18it results from lemma B.3.1
19Modulo the change of variable JDS→ J.
20the version of the theorem in appendix A.1 is simple but too restrictive for its application to

the delayed systems.
21We thank G.Iooss for pointing out this fact.
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• u(t) ∈ Zh with F (t) ∈ Yh.

• ‖u(t)‖Z is exponentially bounded on R.

However, from the proof of the center manifold theorem in [Haragus 2010],

it can be noted that the linear operator K is always applied to vectors like

PhR(v), PhDR(v) · · · for some vector v. Given the particular shape of these vec-

tors22 Ph

[
?

0

]
, we have to solve (4.41) for functions F that belong to a distinct

subspace of Y, i.e. the space Ph (Lq × {0}). This is done in the next proposition.

We are now in position to prove the main result of the section:

Proposition 4.6.2. Define for all integer 2 ≤ q <∞, Yh = PhY, Zh = PhZ. For

any η ∈ [0, γ] and for any function F = Ph

[
f

0

]
∈ C0

η(R,Yh), the problem

u̇ = Au+ F (t) (4.41)

has a unique solution u = KhF ∈ C0
η(R,Zh) and

|||Kh|||L(C0
η(R,Yh),C0

η(R,Zh)) ≤ C(η)

with C ∈ C0([0, γ],R).

Proof. Note that there is no initial condition in (4.41) because the solution is

required to be defined on R for f given.

Let us prove uniqueness. If f ≡ 0 then any solution is given by u(t) =

T(t)u(0) where u(0) ∈ Zh. To ensure that ‖u(t)‖X = O(eη|t|) as t → ∞ requires

that u(0) ∈ Zs but in that case e−η|t| ‖u(t)‖X is unbounded as t → −∞ unless

u(0) = 0. Hence the only solution when f = 0 is uh = 0. This proves uniqueness of

the solution.

Let us prove existence. Write

(KhF )(t) ≡
∫ t

−∞
Ts(t− r)F (r)dr −

∫ ∞
t

Tu(t− r)F (r)dr

The second term uu(t) ≡ −
∫∞
t Tu(t−r)F (r)dr will not be considered in this proof.

Indeed, as Tu(t) has a finite dimensional range, it is straightforward to prove that

uu(t) fulfills all the properties stated in the proposition. Rather, we will focus on

the study of us(t) ≡
∫ t
−∞Tu(t− r)F (r)dr as it is much more difficult to show that

it yields a solution of the inhomogeneous problem.

The first difficulty arises from the statement that us(t) ∈ Z, i.e. the convolution

of F by Ts yields a vector in the domain of A. This is solved in two steps. First, we

study in lemma B.7.2 the general properties of T(t)

[
x

0

]
. Then, we use a variation-

of-constants formula in lemma B.7.2 to compute T(t) by a perturbation result.

Then, proposition B.7.4 in appendix shows that:

22see the definition of R in (4.37).
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• us ∈ C0
η(R,Z) and ‖us‖C0

η(R,Z) ≤ K(η) ‖f‖C0
η(R,Y) with η → K(η) positive

continuous,

• us ∈ C1(R,X ),

• us satisfies u̇s = Aus + Ps

[
f

0

]
on X , i.e. is a classical solution.

This concludes the proof of the proposition. �

4.6.3 Center manifold and reduced equation

We are now in a position to state the center manifold for an integer q sufficiently

large to ensure the regularity of R required by a series expansion for example. Note

that we drop the index (q) of the different spaces.

Theorem 4.6.3 (Center manifold for delayed neural field equations). Let us write

Xc the vector space of generalized eigenvectors of A with zero real part. As it

is finite dimensional, we can write X = Xc ⊕ Xh where Xh is the hyperbolic part

of the history space. Then, there exist a neighborhood O = Ou × Oµ of (0, 0) in

X × Rmpar , a mapping Ψ ∈ Cq(Xc × Rmpar ;Zh) with Ψ(0, 0) = 0, DΨ(0, 0) = 0

and a manifold M(µ) = {uc + Ψ(uc, µ), uc ∈ Xc} for µ ∈ Oµ such that:

1. M(µ) is locally invariant, i.e., if u is a solution of (4.37) satisfying u(0) ∈
M(µ)∩Ou and u(t) ∈ Ou for all t ∈ [0, T ], then u(t) ∈M(µ) for all t ∈ [0, T ].

2. M(µ) contains the set of bounded solutions of (4.37) staying in Ou for all

t ∈ R, i.e. if u is a solution of (4.37) satisfying for all t ∈ R, u(t) ∈ Ou, then

u(0) ∈M(µ).

3. (Parabolic case) if Σu(A) = ∅, then M(µ) is locally attracting, i.e. if u is a

solution of (4.37) satisfying u(0) ∈ Ou and u(t) ∈ Ou for all t > 0, then there

exists v(0) ∈M(µ) ∩ Ou and γ̃ > 0 such that

u(t) = v(t) +O(e−γ̃t) as t→∞

where v is a solution of (4.37) with initial condition v(0).

Proof.

1-2 Having written our nonlinear problem as (4.40), in order to apply

[Haragus 2010, theorem II.2.9] we have to check several hypotheses. The first

is to check the existence of a spectral decomposition with positive spectral gap

γ where the central part Ac ≡ A|Xc has only a finite number of eigenvalues

with finite algebraic multiplicities, this was proved in section 4.4.4 (see also

the end of section 4.6.1). Finally we have to check an hypothesis regarding

the existence of solutions with exponential divergence at t = ±∞: this was

done in proposition 4.6.2. As a consequence, we can apply [Haragus 2010,

Theorem II.2.9] and obtain the theorem.
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3 This is a consequence of [Haragus 2010, Theorem II.3.23] which requires sev-

eral conditions to be checked. These conditions are very similar to the ones

for 1-2. They are given and checked in appendix B.7.3.

�
From [Haragus 2010, Corollary 2.12], consider a solution u of (4.37) which be-

longs to M(µ) for t ∈ R, then u = uc + Ψ(uc, µ) with uc ∈ Xc and uc satisfies

duc
dt

= Auc + PcR (uc + Ψ(uc, µ), µ) (4.42)

where the projector Pc is defined by the Dunford formula. It is known (see

[Kato 1995, theorem III.6.17]) that the projector given by the Dunford formula

is the unique spectral projector that commutes with A. Hence, we have the expres-

sion from section 4.4.4, Pc =
∑

λ∈Σc(A)

Pλ with Pλ given in proposition 4.4.10.

Let us derive a simpler equation for uc. Write uc =
dimXc∑
i=1

ziφi where zi are

complex numbers and φi, i = 1, · · · , dimXc is a basis of Xc (see proposition 4.4.6).

We want to write ordinary differential equations for the coordinates zi. As Xc is

invariant by A, there is a matrix Ac of size dimXc such that: Auc =
dimXc∑
i=1

(Acz)iφi

with z = (z1, · · · , zdimXc). To find equations for the zi, we need to project (4.42)

on each generalized eigenvector φi. Hence, let us consider a family of vectors ψi
as in proposition 4.4.10, then 〈〈ψi, uc〉〉 = zi and 〈〈ψi,R (uc + Ψ(uc, µ), µ)〉〉 =

〈π1ψi, π1R (uc + Ψ(uc, µ), µ)〉F (see proposition 4.4.10 for the bilinear product). We

use these expressions together with (4.42) to find the reduced equations:

żi = (Acz)i + 〈π1ψi, π1R (uc + Ψ(uc, µ), µ)〉F (4.43)

This equation was given in [Hale 1993, Faria 1995, Wu 1996] in a different functional

setting when L0 generates a compact semigroup.

We have mentioned in the introduction that most of the neural field models are

used close to a stationary bifurcation. This bifurcation can be changed by the in-

troduction of the delays producing either a purely imaginary eigenvalue or changing

the algebraic multiplicity of the static eigenvalue. As we have seen in section 4.4.1.2,

no general criterion is known for the appearance of a purely imaginary eigenvalue.

However such a criterion exists for the algebraic multiplicity and allows to test very

easily if a Bogdanov-Takens can emerge from the initial static bifurcation. This is

done in the next lemma:

Lemma 4.6.4. Let us consider a stationary cortical state Vf of (4.1) and the

(time) constant function φ =

[
e1

e1

]
in the one-dimensional kernel of A where e1 ∈ F .

We write ψ =

[
e∗1
e∗1

]
the constant vector in ker A∗ with 〈e∗1, e1〉F = 1. The algebraic

multiplicity of the zero eigenvalue is at least two if and only if

0 = 〈〈ψ, φ〉〉 = 1 + 〈e∗1,JDS(Vf )τe1〉F
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Proof. We use proposition 4.4.6) to express ker A2:

ker A2 = {V + θU, (U, V ) is a Jordan chain for ∆(0)}

is two-dimensional. By the lemma B.1.12, we have ∆(0)U = 0, ∆′(0)U+∆(0)V = 0

which gives

[
U

U

]
∈ ker A and U = e1. From the Fredholm alternative, ker A2 is

larger than ker A if and only if 〈e∗1,∆′(0)e1〉F = 0. From (4.12): ∆′(0) = Id +

JDS(Vf )τ . Therefore 〈e∗1,∆′(0)e1〉F = 1 + 〈e∗1,JDS(Vf )τe1〉F . Notice that this

last quantity is equal to 〈〈ψ, φ〉〉. The lemma is proved. �

4.6.4 Normal form of the Pitchfork bifurcation

As we have mentioned in the Introduction, many of the neural field models operate

near a static bifurcation point (see for example [Ben-Yishai 1995, Bressloff 2001b]),

it is thus interesting to see how this can be altered by the introduction of delays. We

will treat the case of the pitchfork bifurcation (see [Kuznetsov 1998, Haragus 2010]),

the case of the transcritical bifurcation is very similar. We look at the quantitative

modification of the reduced equation (in the non-delayed case) from the introduction

of delays. Recall that we consider an equilibrium Vf and that we write an equation

for U = V − Vf . Let us consider the nonlinear gain σ ∈ R as a bifurcation

parameter. Suppose that e1 (resp. e∗1) is in the one-dimensional kernel of ∆(0) =

−L0 + J(0) (resp. ∆(0)∗ = −L0 + J(0)∗) at σ = σc. Suppose that the reduced

equation23 for the non-delayed neural mass equation near σ = σc with V = Vf +

xe1 + o(x) reads (see also lemma 3.3.2):

ẋ =
σ − σc
σc

x+ χqx
q + o(xq)

for some χq 6= 0. What happens if we introduce space-dependent delays? If the

delays are small, we expect the eigenvalues of A to be close to the spectrum of the

non-delayed linearized equation, thus yielding again a Pitchfork or a Transcritical

bifurcation. Notice that e1 is in the kernel of ∆(0), hence 0 ∈ Σp(A). Let us

write φ =

[
e1

e1

]
∈ ker A, from proposition 4.4.10, we find that ψ = β

[
e∗1
e∗1

]
∈ ker A∗

with β ∈ R. It is normalized such that 〈〈ψ, φ〉〉 = 1. Some algebra shows that

〈〈ψ, φ〉〉 = β + β 〈JDSτe1, e
∗
1〉F where JDSτ is the integral operator on F with

kernel24 J(r, r′)DS(Vf (r′))τ (r, r′). The normalization condition requires:

β−1 = 1 + 〈JDSτe1, e
∗
1〉F 6= 0

Notice that β−1 6= 0 is equivalent to saying that 0 is a simple eigenvalue of A (see

[Hale 1993, Faria 2001] and lemma 4.6.4). Then uc = xφ + Ψ(xφ, σ) and Ac = 0

23resulting from the application of the center manifold theorem for example
24It is a component-wise product.
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because Aφ = 0. Hence, the reduced equation (3.18) reads:

ẋ = 〈π1ψ, π1R(uc + Ψ(uc, σ), σ)〉F = β〈e∗1, π1R(uc + Ψ(uc, σ), σ)〉F (4.44)

From appendix A.1, Ψ(uc, σ) = o(|x|) which gives25 R(uc+Ψ(uc, σ), σ) = R(uc, σ)+

h.o.t.. By using (4.37), the reduced equation (4.44) is now:

ẋ/β = 〈e∗1, π1R(uc, σ)〉F + h.o.t. = σ−σc
σc

x+ 〈e∗1, G(xen)〉F + h.o.t.

= σ−σc
σc

x+ χqx
q + o(xq),

(4.45)

from the definition of χq in lemma 3.3.2 and (4.36). Thus, introducing delays only

results in a rescaling of time. This analysis holds as long as the only eigenvalue

at σc is the simple 0 eigenvalue. Notice that another eigenvalue may approach the

imaginary axis by increasing the delays (decreasing the propagation speed), if it

is purely imaginary, it would lead to a Fold-Hopf bifurcation scenario, if it is 0, it

would lead to a Bogdanov-Takens bifurcation scenario.

4.7 Conclusion

In this chapter, we have developed a theoretical framework for the study of neural

field equations with space dependent delays. This has allowed us to prove the

existence, uniqueness and the boundedness of the solutions to these equations for

continuous history segments in C. But this is the least one can expect from a

theoretical framework.

Hence, we have then studied the stability of the stationary solutions of these

equations and have proved that the characteristic values are sufficient to characterize

the asymptotic stability of the stationary states in C. This was done using the

semigroups theory (see [Engel 2001]). By using a Hilbert space X for the history

space, we are able, by combining ideas from [Hale 1993] and [Bátkai 2005], to find

a closed form formula for the spectral projector. This formula leads naturally to

the introduction of the bilinear product, a quantity introduced in [Hale 1993] which

is difficult to generalize from DDEs with values in Rn to DDEs with values in a

Banach space (see [Arino 2006]).

However the numerical computation of the characteristic values is very difficult

in the general case. This is why we have looked for simple conditions on the con-

nectivity/delay functions ensuring the asymptotic stability of the stationary states.

By formulating the stability of the stationary solutions as a fixed point problem

we have found delay-dependent sufficient conditions. This is a powerful method

which is less used than the Lyapunov method. Compared to the Lyapunov method,

it presents the advantage of requiring conditions on the average connectivity func-

tion rather than on its sign. These conditions involve all the parameters in the

delayed neural field equations, the connectivity function, the nonlinear gain and

the delay function. Albeit seemingly very conservative, they are useful in order to

25h.o.t. means higher order terms.
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avoid the numerically intensive computation of the CV. They can be applied prior

to the characteristic values computation, to get a rough idea of the impact of the

delays on the network under study.

Then, we gave an analytical expression for the Hopf bifurcation curves, allowing

for the study of heterogeneous connectivities in Nd-cortices at low computational

cost. This is a great achievement as it allows to study, in detail and at low computa-

tional cost, different connectivities. It is also absolutely necessary for the numerical

study with the normal forms. Indeed, the locus of the bifurcation point have to be

known with great precision. If not, we need to compensate this loss of precision

with higher order terms in the normal forms which is a difficult task.

Moreover, this analytical formula gives the following biological insight: given

a network without delays, if one wants to make the network oscillate (through a

Hopf mechanism), then inhibition must be sufficiently strong. The formula for the

Hopf curve introduces the following ’paradox’: even if it is simple to compute the

Hopf bifurcation curves, it is difficult to forecast their very intricate structure; we

could not find a criterion predicting the shape of these curves a priori. This is

important because it would allow for the prediction, without computations, of the

changes to various cortical models by the introduction of space-dependent delays.

Nevertheless, our analytical formula can allow this study.

Later, we proved a center manifold theorem for the delayed neural field equa-

tions. This is not a straightforward task as the usual estimate tools for sectorial op-

erators do no apply. We used the more powerful tools of the semigroups theory as ex-

posed in [Engel 2001, Bátkai 2005]. Hence we combined ideas from [Haragus 2010]

and [Engel 2001, Bátkai 2005] to prove a center manifold theorem. This being done,

we can apply26 a “generic” normal form theory as in [Haragus 2010] and not a spe-

cific one as in [Faria 1995]. It appears that the computation of normal forms of the

delayed neural field equations is not more difficult than for the non-delayed equa-

tions. Formalism by itself is not our ultimate goal. We want to show how the delays

shape the dynamics qualitatively. Hence, after the proof of the center manifold, we

showed how a Pitchfork bifurcation is altered by the introduction of delays. This is

important because most of the neural field models operate near a stationary bifur-

cation: the Pitchfork is unaltered (it is only scaled in time) if the delays are smaller

than a given bound. For larger delays, the Pitchfork bifurcation may degenerate

into a Bogdanov-Takens bifurcation or a Fold-Hopf bifurcation. This introduces

the computation of more normal forms in the next chapter. But before this, we

need to be able to compute the bifurcation diagrams accurately. This is done in

the following chapter.

26This will be done in chapter 5.
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This chapter collects results concerning the numerical computation of the eigen-

elements of the operator A defined in chapter 4. Depending on the shape of the

operator L0, two methods can be used. More precisely, if L0 = lId for some l > 0,

then we can use the formulas in proposition 4.4.5 which yield a fast and precise

computation of the Hopf bifurcation curves. When the condition L0 = lId is not

satisfied, no analytical formula is known and the computation of the Hopf bifurca-

tion curves relies on the numerical computation of the eigenvalues. This is done in

section 5.1.

At the end of the previous chapter 4, we proved a center manifold theorem and

gave the reduced equation that is a finite dimensional system of ordinary differential

equations. In the section 5.2 of the present chapter, we push forward the analysis

by applying a normal form theory and computing the normal forms of the main

bifurcations that appear in the next study of delayed neural fields equations in

chapter 6.

5.1 Numerical computations

In this section, we show how to solve the delayed differential equations (4.1) and

how to compute the spectrum of A. This is essential for the study of the delay

neural fields that is done in chapter 6.

5.1.1 Evolution equation

In this thesis, we have not studied how to compute a numerical solution of (4.1). In

particular, we have not given a numerical scheme to compute the time-dependent

solution. Note that we have not focused on this point but we shall explain our
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method. It relies on a space discretization of Ω in order to form a system of NΩ

scalar delay differential equations:

V̇(t, ri) = −L0V(t, ri) + Iext(ri, t)+
NΩ∑
j=0

wj J(ri, rj)S(V(t− τ(ri, rj), rj)), ∀i = 1 · · ·NΩ
(5.1)

where the (wj)j=1···NΩ
is the weight associated to some numerical integration

scheme. More precisely, we use a trapezoidal rule to approximate the integrals

and use the Matlab routine dde23 to solve the system (5.1). This scheme has been

described in [Hutt 2003, Venkov 2008]. For homogeneous networks, one can take

advantage of the convolutional structure to compute more efficiently the right-hand

side of (5.1) using Fourier transforms (see for example [Hutt 2010] for a recent

reference).

5.1.2 Spectrum computation

This section shows how to compute the (rightmost) eigenvalues of the linear operator

A =

[
−L0 L1

0 d
dθ

]
with domain D(A) =

{[x
φ

]
∈ F × W 1,2(−τm, 0;F), φ(0) =

x
}

. From section 4.4.1, we know that the eigen-elements are given by u(θ, r) =[
U(r)

eλθU(r)

]
where U ∈ F is solution of ∆(λ)U = 0 and λ /∈ Σ(−L0). Basically,

we reduce the delayed neural field equations to a system of scalar delay different

equations by sampling the space Ω and apply generic tools for finding the eigenvalues

of this set of equation. We use the toolbox TraceDDE, [Breda 2009], a very efficient

method for computing the eigenvalues. The library has recently been improved in

[Jarlebring 2010], allowing a much faster computation of the eigenvalues: this is the

scheme we have been using in [Veltz 2011b]. Notice that, even with this scheme, it

is difficult, in practice, to explore many pairs (τ,J) in order to know what are the

possible spatio-temporal behaviors depending on the parameters.

In the next section, we study more thoroughly how to compute the eigenvalues,

in particular, we give a bound for the error made when computing the eigenval-

ues with the discretized space instead of Ω rather than with the ’true’ delayed

neural field equations. Because of the particular structure of the equations, involv-

ing Fredholm operators on Hilbert space, we are able to generalize the method in

[Breda 2006] to prove the convergence of the approximated eigenvalues to the ’true’

eigenvalues.

5.1.2.1 General case

We start by showing an analytical function whose zeros are the eigenvalues.

Lemma 5.1.1.Define J0(λ) ≡ (λId + L0)−1 J(λ) on B ≡ (−min
i
li,∞)C ⊂ C and

the function

d(λ) ≡ detF (Id− J0(λ))
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where detF is the Fredholm determinant (see property C.1.2). Then the zeros of d

are the eigenvalues of A and d is analytical on B.

Proof. The Fredholm determinant is defined for trace-class operators (see

[Grothendieck 1956, Simon 2010]). From the definition C.1.1, it is easy to see that

J(λ) is trace-class on F so is J0(λ). Hence, d is well defined (see proposition C.1.2).

Also λ→ J0(λ) is analytical on B. As K→ detF (Id−K) is analytical on the space

of trace-class operators (see [Grothendieck 1956, Simon 2010]), it follows that d is

analytical on B. The fact that the zeros of d are the eigenvalues of A is a direct

consequence of the property Id−K invertible if and only if detF (Id−K) 6= 0. �

Let us consider an eigenvalue λ, then there is a function φ ∈ C1(−τm, 0;F) such

that: {
−L0φ(0) + L1φ = λφ(0)
d
dθφ = λφ

(5.2)

Next, we build a finite dimensional approximation of (5.2). Let us consider an

orthonormal basis (en)n of F . For NΩ ∈ N, FNΩ
is the finite dimensional subspace

Span(e0, · · · , eNΩ
) of F . We use these spaces to define the projector

PNΩ
:


F → FNΩ

U→
NΩ∑
i=0
〈U, ei〉Fei

and the approximation

L1,NΩ
≡ PNΩ

L1 : F → FNΩ
.

The theorem of Parseval-Bessel gives:

εNΩ
≡ |||Id− PNΩ

||| NΩF→∞→ 0.

Let us consider the time discretization ΘNt = {−τm = θNt < θNt−1 < · · · < θ0 = 0}
of [−τm, 0] of length Nt + 1 where

θi ≡
τm
2

[
1− cos

(
Nt − i
Nt

π

)]
.

This particular discretization is motivated by the approximation result in

lemma 5.1.2. We start with an approximation of the exponential function on

[−τm, 0]. Because of the general shape of the eigenvectors: eλθU. For U ∈ F , we

define the family of polynomials PNt+1(θ; U, λ) in the variable θ with coefficients in

F , of degree smaller than Nt, such that:{
d
dθ (PNt+1(θi; U, λ)) = λPNt+1(θi; U, λ), i = 1 · · ·Nt

PNt+1(θ0; U, λ) = U
(5.3)

From [Breda 2006, lemma 7], we have:
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Lemma 5.1.2. Let λ∗ ∈ C and ρ0 > 0. There exists N0
t ∈ N such that for all

Nt > N0
t , λ ∈ B(λ∗, ρ0), the disc of center λ∗ and radius ρ0, and U ∈ F , the

polynomial PNt+1(·; U, λ) exists and is unique. Moreover:

max
θ∈[−τm,0]

∥∥∥PNt+1(θ; U, λ)− eλθU
∥∥∥
F
≤ C1√

Nt

(
C0

Nt

)Nt
‖U‖F

with C0 = τm(|λ∗|+ ρ0)e and C1 = C1(λ∗, ρ0) is independent of Nt.

This allows to define an approximation of (5.2) by using a time-polynomial approx-

imation of the eigenvector φ, i.e. φ ≈ PNt+1(·; U, λ). Hence we write:

U = (λId + L0)−1 L1,NΩ
PNt+1(·; U, λ)

≡ J0,NΩ,Nt(λ)U
(5.4)

We define the approximated characteristic values λ and eigenvectors U as the so-

lutions of (5.4). In particular, the characteristic values are zeros of the analytical

function dNΩ,Nt defined on B ⊂ C \ Σ(−L0) by:

dNΩ,Nt(λ) = detF (Id− J0,NΩ,Nt(λ))
regular det.

= det(IdFNΩ
− J0,NΩ,Nt(λ)|FNΩ

)
(5.5)

We wish to build a finite dimensional approximation of the linear operator A whose

eigen-elements are the approximated eigen-elements we just defined. Let us define

PolNΩ,Nt to be the space of polynomials of degree less than Nt with coefficients

in FNΩ
. This allows to define an approximation of the space X by XNΩ,Nt ≡

FNΩ
×PolNΩ,Nt . Each polynomial of PolNΩ,Nt is written PNt+1x which is the unique

polynomial of degree less than Nt such that (PNt+1x)(θi) = xi, i = 0 · · ·Nt and

x ≡ (xi)i=0···Nt ∈ FNt+1
NΩ

. We can now define ANΩ,Nt on the elements

[
U

PNt+1x

]
∈

XNΩ,Nt satisfying x0 = U. If we write

[
V

PNt+1y

]
= ANΩ,Nt

[
U

PNt+1x

]
, then we have:{

V ≡ −L0U + L1,NΩ
(PNt+1x)

yi ≡ d
dθ (PNt+1x)|θ=θi , i = 0 · · ·Nt

(5.6)

It is straightforward to check that the eigenvectors of ANΩ,Nt are given by the

functions PNt+1U with U solution of (5.4). The next lemma shows that the two

analytical functions d and dNΩ,Nt are very close on every bounded open set of

B ⊂ C \ Σ(−L0).

Lemma 5.1.3. Let λ∗ ∈ C and ρ0 > 0. There exits N0
t ∈ N such that for all

Nt > N0
t and λ ∈ B(λ∗, ρ0), we have:

|d(λ)− dNΩ,Nt(λ)| ≤ C3

(
εNΩ

+
C1√
Nt

(
C0

Nt

)Nt)

with C3 = C3(λ∗, ρ0) independent of NΩ, Nt.
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Proof. For all U ∈ F , we have

‖J0(λ)U− J0,NΩ,Nt(λ)U‖F ≤ |||(λId+L0)−1|||·‖L1 · ελU− L1,NΩ
· PNt+1(θ; U, λ)‖F

≤ |||(λId + L0)−1|||(
‖L1 · ελU− L1,NΩ

ελU‖F + ‖L1,NΩ
· ελU− L1,NΩ

· PNt+1(θ; U, λ)‖F
)

≤ C

(
εNΩ
|||L1|||+ sup

NΩ

|||L1,NΩ
||| C1√

Nt

(
C0

Nt

)Nt)
‖U‖F

≤ C3

(
εNΩ

+
C1√
Nt

(
C0

Nt

)Nt)
‖U‖F (5.7)

with C3 = sup
λ∈B(λ∗,ρ0)

|||(λId+L0)−1||| ·max(|||L1|||, sup
NΩ

|||L1,NΩ
|||). Since the deriva-

tive of K→ detF (Id−K) is continuous on trace-class operators, the assertion follows

easily. �
We are in a position to state the main result of this section which is adapted

from [Breda 2009]:

Theorem 5.1.4. Let λ∗ ∈ C zero of d with multiplicity ν. There exits C, ρ1 >

0 such that if ρNΩ,Nt < ρ1 with ρNΩ,Nt ≡
(
C3
C

)1/ν (
εNΩ

+ C1√
Nt

(
C0
Nt

)Nt)1/ν

, then

dNΩ,Nt has ν zeros, counted with multiplicities, such that

max
i=1···ν

|λ∗ − λi| ≤ ρNΩ,Nt

Proof. From [Breda 2009, lemma 4], there exists C, ρ1 > 0 such that

∀λ ∈ B(λ∗, ρ1) \ λ∗ we have |d(λ)| > C|λ − λ∗|ν . Since ρNΩ,Nt ≡(
C3
C

)1/ν (
εNΩ

+ C1√
Nt

(
C0
Nt

)Nt)1/ν

< ρ1, we have for |λ− λ∗| = ρ
1/ν
NΩ,Nt

/C

|d(λ)− dNΩ,Nt(λ)| ≤ ρNΩ,Nt = C|λ− λ∗|ν < |d(λ)|

Hence, from Rouché’s theorem [Conway 1978, 7, section 5, theorem 3.8], d

and dNΩ,Nt have the same number of zeros counted with their multiplicities in

B(λ∗, ρNΩ,Nt). �
Let us sum up the way we compute the eigenvalues of A. They are approximated

by the zeros of dNΩ,Nt (see theorem 5.1.4). Hence, to approximate the characteristic

values of A, we need to compute the zeros of dNΩ,Nt which are the eigenvalues of the

finite dimensional operator ANΩ,Nt . To do this, we write ANΩ,Nt in a basis of XNΩ,Nt

to find a matrix of size (Nt + 1)(NΩ + 1) to which we can apply functions like eigs

in Matlab c©. This is what is done in the package TraceDDE, [Breda 2009], which

takes advantage of the very fast convergence rate in O
(
N−Ntt

)
of the approximated

eigenvalues λi for NΩ fixed. The main problem of this method is that it requires

to compute eigenvalues of huge matrices. For a 2D cortex with a rough spatial

discretization NΩ = 1002, Nt = 100, it gives already NΩNt = 106 lines for the
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matrix ANΩ,Nt . Given that we need to find bifurcation points, i.e. that we need to

compute the eigenvalues of ANΩ,Nt for many parameters, the method is not very

practical.

However, thanks to the special way ANΩ,Nt changes shape when one varies the

time discretization of ΘNt , [Jarlebring 2010] gives a factorization of ANΩ,Nt , which

allows a much faster computation of the eigenvalues. Based on an Arnoldi method,

the authors in [Jarlebring 2010] show how to compute the rightmost eigenvalues of

ANΩ,Nt by using matrices of size only NΩ ×NΩ. This is the scheme we have been

using in the most general cases, i.e., when we cannot apply the result of the next

section.

5.1.2.2 Hopf curve in the case of space dependent delays

In this section, we show how to use proposition 4.4.5 to compute numerically the

Hopf curves with space dependent delays. This proposition implies that if we want

to compute the curves for c ≤ c∞, we need to compute the eigenvalues Jn(y) of the

integral operator J(iy) whose kernel is given by Jqr(r, r̄)DS(V f
r (r̄))e−iy‖r−r̄‖2 , z ∈

C, q, r = 1 · · · p, for y ≤ c∞ ‖J(0)‖2 and n ≤ ‖J(0)‖2. It also implies that we do not

miss any Hopf curves in the interval c ∈ [0, c∞] if we respect the bounds given in the

proposition. Recall that the numerical computation of the Hopf bifurcation curve,

for general delay functions τij , requires to find the eigenvalues of a matrix AN of size

NtNΩ and that we have to look for the bifurcation curve in the parameter plane. In

our case, the computation of the eigenvalues of J(iy) for a given y requires to find

the eigenvalues of a matrix of size NΩ and, with the formulas in proposition 4.4.5,

we directly have the bifurcation curve.

Moreover, the numerical error made in the computation of the eigenvalues Jn(iy)

of the integral operator J(iy) is only function of the space discretization which

itself corresponds to a numerical integration scheme. For example, with a trape-

zoidal rule, we know a priori the error made by computing the eigenvalues of the

discretized integral kernel J(iy), i.e. we know that the exact eigenvalue Jn(iy) is

within a ball of center Jn,NΩ
(iy) (the nth eigenvalue of the approximated operator

JNΩ
(iy)) and radius ε given by the trapezoidal rule (for example). We can use this

ball to plot around each curve Cn, described in proposition 4.4.5, a neighborhood

where the exact curve belongs: it allows to first look at the curves at a low resolution

and refine where more resolution is needed.

We use this in figure 5.1. In order to evaluate the efficiency of the scheme,

we compute the eigenvalues for a convolutional network for which the eigen-

values of the operator J(iy) are known analytically. More precisely, we con-

sider a scalar network with Ω = [−π/2, π/2], τ(x, y) = D + c|x − y|π, l = 1,

J(x, x′) = − (0.5 + 2.1 cos(2x− 2x′)] 2
π , S(x) = 1

1+e−x −
1
2 . The equation is lin-

earized around the stationary state V f = 0. The delay function is π-periodic and

is shown in 5.2. From these properties, the eigenvalues of J(iy) are given by the
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Fourier coefficients:

J (2)
n (y) ≡

∫ π

0
J(x)e−iy|x|π cos(nx)dx, n ∈ N. (5.8)

These eigenvalues are not ordered as the Jn(y), that is why they have a different

name. Nevertheless, if we use the coefficients J
(2)
n to draw the curves of proposi-

tion 4.4.5, the only numerical error we make lies in the discretization of the interval

[0, c∞ ‖J(0)‖2] for y which parametrizes the Hopf curve. These ’exact’ curves are

plotted with continuous lines in figure 5.1. On the other hand, we can ’forget’ about

the convolutional structure of the linear operators J(iy) and compute their eigen-

values using a spatial discretization. For a given space discretization NΩ = 100 of

space and Ny = 250 for [0, c∞ ‖J(0)‖2], we show the points defining the curves Cn
in figure 5.1 with stars. Notice how close they lie to the ’exact’ curves. The color of

these stars labels the index n in the Hopf curves Cn in proposition 4.4.5. Each star

is surrounded by an ellipse (see above) which shows where the exact point (c,D) of

the corresponding curve Cn lies. Note how these ellipses are bigger for larger delays.

In the previous numerical example, we have used the Rectangle rule to approxi-

mate the integrals.

The bifurcation curves in figure 5.1 indicate that ’simple’ convolutional systems

may produce a wealth of interesting behaviors. Indeed, when two Hopf curves in-

tersect, they give birth to a Hopf-Hopf bifurcation point with rich dynamics (see

[Guckenheimer 1983, Kuznetsov 1998] for example). This is more thoroughly stud-

ied in chapter 6 after we derive the main normal forms associated to the bifurcation

points in the next section.

5.2 Symbolic computation of some normal forms

In the previous chapter, we have shown how to reduce the dynamics of the delayed

neural field equations to a finite dimensional region of the history space called the

center manifold. In particular, we gave a reduced equation (4.43), in effect, finite

dimensional ordinary differential equations, which describe the dynamics on the

center manifold. This is obtained by the bifurcation theory.

Among all the different reduced equations, some of them produce the same

dynamics up to a change of variable. Normal form theory aims at finding a poly-

nomial change of variable which “simplifies” the reduced equation by removing

the maximum number of terms at every order of its Taylor expansion. Once

simplified, the truncation1, at order k, of the Taylor expansion of the reduced

equation is a polynomial vector field which is called the normal form. In most

of the cases, the truncation of the Taylor expansion of the reduced equation do

not change the dynamics. If the reduced equation satisfies some properties, such

as its linear part has a one dimensional null space, for example, in addition to

some non-degeneracy conditions then, the simplified polynomial vector field has

1i.e. it gives a polynomial of degree k.
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Figure 5.1: Plot of the Hopf curves for Ω = [−π/2, π/2], τ(x, y) = D + c|x − y|π,

l = 1, J(x, x′) = − (0.5 + 2.1 cos(2x− 2x′)] 2
π , S(x) = 1

1+e−x −
1
2 . We show in

continuous lines (blue for n = 0 in (5.8) and red for n = 1 in (5.8), the index n is

not the same used in proposition 4.4.5) the exact curves. The stars are computed

from a discretization JNΩ
(iy) with NΩ = 100. The elliptic curves surround the

regions where the exact point (c,D) lies (see text). Note how they compare with

the continuous solutions. The color of each star and its surrounding ellipse labels

the index n of the curve Cn as in proposition 4.4.5. We have: red for n = 0, green

for n = 1 and blue for n = 2.



5.2. Symbolic computation of some normal forms 139

always the same monomials. These conditions are listed in [Guckenheimer 1983,

Golubitsky 1984, Golubitsky 1988, Kuznetsov 1998, Haragus 2010] as well as the

corresponding normal forms. Moreover, these references also contain the study of

the dynamical system associated to the normal form. Hence, there are two steps in

finding the normal form:

• compute the Taylor expansion of the reduced equation,

• recognize which conditions are satisfied by the reduced equation and

use the tabulated formulas in [Guckenheimer 1983, Golubitsky 1984,

Golubitsky 1988, Kuznetsov 1998, Haragus 2010] to extract the full dynamics

of the delayed neural field equations on the center manifold.

If the normal form is not tabulated, then we need to compute the change of variable.

This is lengthy because we need to compute the center manifold correction Ψ and

then the polynomial change of variable. In fact, we can find the normal form directly

without computing the center manifold correction Ψ as explained in [Haragus 2010].

More specifically, from the Cauchy problem

du

dt
= Au+ R(u, µ),

we build a reduced equation (4.43) for uc ∈ Xc with the center manifold correction

Ψ:

u = uc + Ψ(uc, µ), Ψ(uc, µ) ∈ Zh.

This reduced equation is

duc
dt

= Auc + PcR (uc + Ψ(uc, µ), µ) .

Then, we apply a change of variable to uc

uc = v0 + Φµ(v0), v0 ∈ Xc

to bring the reduced equation to a normal form given by:

dv0

dt
= A|Xcv0 + Nµ(v0) + ρ(v0, µ),

where Nµ is a polynomial of some degree p such that N0(0) = 0, DvN0(0) = 0 and

ρ(v0, µ) = o(‖v0‖p). The general shape of N can be guessed from symmetries for

example (see [Golubitsky 1984, Golubitsky 1988, Haragus 2010]). This nonlinear

function Φµ is solution of a nonlinear equation which is given in [Haragus 2010].

Finally, we can combine the center manifold correction and the change of variable

in one formula:

u = v0 + Ψ̃(v0, µ), Ψ̃(v0, µ) ≡ Φµ(v0) + Ψ(v0 + Φµ(v0), µ) ∈ Z
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The nonlinear function Ψ̃ is solution (see [Haragus 2010, III.4.1]) of the next equa-

tions: Dv0Ψ̃(v0, µ)A|Xcv0 −AΨ̃(v0, µ) + Nµ(v0) = Q(v0)

Q(v0) ≡ Πp

[
R(v0 + Ψ̃(v0, µ), µ)−Dv0Ψ̃(v0, µ)Nµ(v0)

] (5.9)

where Πp is the operator which takes the first p+ 1 terms in the Taylor expansion

in the variable v0.

To sum up, when the normal form is not tabulated, then we need to solve (5.9)

to find the normal form. In the following section, we will use tabulated formulas

for the Pitchfork normal form and the Hopf normal form. The normal form of

the Fold-Hopf bifurcation and the Hopf-Hopf bifurcation with symmetries is not

tabulated and we have to solve (5.9). To this hand, we write a Maple c© that helps

us in this task.

5.2.1 Maple program for computing the normal form Nµ

In order to know which dynamics can be produced by the delayed neural fields

equations, we need to compute the coefficients of the polynomial Nµ as functions

of the parameters that appear in the neural field model. Let us write the Taylor

expansion of R for a given p:

R(u) =
∑

2≤q+l≤p
Rql[u

(q), µ(l)] + o (‖u‖p) , R01 = 0 (5.10)

with Rq defined in lemma 4.6.1, u(q) ≡ (u, · · · , u) ∈ Zqh and µ(l) ≡ (µ, · · · , µ) ∈
(Rmpar)l.

From symmetry arguments, the general shape of Nµ can usually be guessed.

For example, in the case of the Hopf bifurcation with O(2)-symmetry truncated at

order 3, it is known from [Chossat 2000, Haragus 2010] that the normal form looks

like (5.16):

Nµ =

[
A(b1|A|2 + c1|B|2)

B(b1|B|2 + c1|A|2)

]
(5.11)

with v0 = Aφ0 + Bφ1 + c.c. (complex conjugate). Note that this normal form has

no second order term and that only particular monomials are present. It remains

to compute the coefficients b1, c1 of this normal form in terms of the parameters

of the reduced equation. To this hand, we plug (5.11) in (5.9). Then, we Taylor

expand Ψ̃:

Ψ̃(v0, µ) =
∑

m,p,q,r,s

ApĀqBrB̄sµmΨpqrsm, Ψpqrsm ∈ Y

and collect the monomials in (5.9). This gives the equations satisfied by the Ψpqrsm

and by the coefficients of the normal form b1, c1. This operation can easily be

done with a Maple program. Let us assume that the eigenvalues are ±iωH and the

(complex) eigenvectors are ζ1, ζ2, ζ1, ζ2.

> restart; with(linalg); assume(x, real); assume(omega, real);

> # A1=conjugate(A), B1=conjugate(B)
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> v0 := A*zeta1+B*zeta2+A1*conjugate(zeta1)+B1*conjugate(zeta2);

> TildePsi := sum(sum(sum(sum(sum(Psi[q1, q2, l1, l2, r]*A^q1*A1^q2*B^l1*B1^l2

*x^(q1+q2+l1+l2)*mu^r, q1=0..3), q2=0..3), l1=0..3), l2=0..3), r=0..1):

> u := v0+TildePsi;

> N := (a1*mu*A+(b1*A*A)*A1+c1*B*B1*A)*zeta1

+(a1*mu*B+(b1*B*B)*B1+c1*A*A1*B)*zeta2

+conjugate(zeta1)

*(conjugate(a1)*mu*A1+(conjugate(b1)*A1*A1)*A+conjugate(c1)*B1*B*A1)

+conjugate(zeta2)

*(conjugate(a1)*mu*B1+(conjugate(b1)*B1*B1)*B+conjugate(c1)*A1*A*B1);

Then we formally write a Taylor expansion of the neural field equations where

R2(mu) represents the second differential R2 for example. As the variable A is

already used, we write L0(0) for A. The name of the different variables has been

chosen to make it easy the mapping with (5.9).

> R := (v, mu)->L0(mu)+L1(mu)*v+R2(mu)*v*v+R3(mu)*v*v*v;

> DTildePsiL0v0 := I*(diff(TildePsi, B))*B*omega-I*B1*omega*(diff(TildePsi, B1))+

I*(diff(TildePsi, A))*A*omega-I*A1*omega*(diff(TildePsi, A1));

> DTildePsiN := (diff(TildePsi, A))*(a1*mu*A+(b1*A*A)*A1+c1*B*B1*A)

+(diff(TildePsi,A1))

*(conjugate(a1)*mu*A1+(conjugate(b1)*A1*A1)*A+conjugate(c1)*B1*B*A1)

+(diff(tPhi2, B))*(a1*mu*B+(b1*B*B)*B1+c1*A*A1*B)+(diff(TildePsi, B1))

*(c*conjugate(a1)*mu*B1+(conjugate(b1)*B1*B1)*B+conjugate(c1)*A1*A*B1);

> eq := DTildePsiL0v0-L0(0)*TildePsi+N-(R(u,mu)-DTildePsiN);

> # For example, the equation for the coefficient of A*A is given

by:

> subs(A=0,A1=0,B=0,B1=0,x=1,mu=0,L1(mu)=0,diff(eq, A, A));

4 ∗ I ∗ Psi[2, 0, 0, 0, 0] ∗ omega− 2 ∗ L0(0) ∗ Psi[2, 0, 0, 0, 0]− 2 ∗R2(0) ∗ Zeta12

which gives the equation

(2iωH −A)Ψ20000 = R20(φ1, φ1)

used in lemma 5.2.1 (see this lemma for the notations).

5.2.2 Normal forms for 1D convolutional neural fields

The nonlinear analysis with the normal forms requires the computation of the coef-

ficients of the normal forms: this can be done without assuming a particular shape

of the connectivity. What we would like to do here, is not to study a very realistic

model (but see chapter 11), but to understand how the space-dependent delays im-

pact the dynamics of simple models. Indeed, little is known on the relative roles of

constant delays and space dependent delays on the cortical dynamics. The study

of simple models can provide a hint about the importance of propagation delays
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in the cortex. To this hand, having a small number of parameters is a necessity.

A simple way to lower the number of parameters is to impose symmetries to the

model: for example, it requires one parameter (i.e. the spatial extension) to describe

a rotation invariant 2D connectivity with a Gaussian whereas it would require more

parameters not to have such a symmetrical connectivity. However, there is a price

to pay for having less parameters by assuming symmetries: the normal forms are

more complex and not always tabulated. Nevertheless, we will study models with

symmetries.

Hence, we assume that the connectivity is convolutional, also called homoge-

neous and that the cortex features periodic boundary conditions. The eigenvectors

of the connectivity are the Fourier modes, i.e. the cosine and sine functions. We

could do the case of a 3D cortex2 but in this case, this numerical computation

of the solutions of (4.1) would be quite long. Thus, we study neural fields on a

one-dimensional cortex Ω = (−π
2 ,

π
2 ) with periodic boundary conditions. The con-

nectivity function is homogeneous J(x, y) = J(x − y) with J even, but otherwise

unspecified. In chapter 6, we specialize this function to a Mexican hat to push

the study one step further. We also assume the same for the delay function (the

saw-function in figure 5.2)

τ(x, y) = D + c|x− y|π ≡ τ(x− y)

in order to respect the topology of the network. Under these conditions, it can

be shown that constant equilibria exist if the external input Iext is constant in

space. We restrict our analysis to functions (membrane potentials) which are

π-periodic, hence: F = L2
π(Ω,R). This kind of networks have been used in

[Hansel 1997, Ben-Yishai 1995, Roxin 2005, Roxin 2011] and found useful to model

cortical hypercolumns or to reproduce behaviors of spiking neural networks with

rate models.

Remark 25. In the following, we use the notations cosn(x) = cos(2nx),

sinn(x) = sin(2nx) and en(x) = e2inx. Also (f)n ≡
∫

Ω f cosn written fn when

possible. It is useful to note that if J is even, then J · en = (J)n en.

0

Figure 5.2: Plot of the periodic delay function, the saw-function.

2The computation of the normal forms is not more difficult.



5.2. Symbolic computation of some normal forms 143

Let us rewrite the neural field equations in this somewhat simpler framework:
(
d
dt + l

)
V (x, t) =

∫
Ω J(x− y)S0[σV (y, t− τ(x− y))]dy + Iext, t ≥ 0

V0 = φ ∈ C1(−τm, 0; L∞)

(5.12)

with the centered sigmoid given by S0(x) = S(x−h)−S(−h) and h is the threshold.

We suppose that l = 1, Iext = 0. By construction, V f = 0 is a stationary solution.

Let us also write si = S
(i)
0 (0).

Recall that (5.12) has a Lyapunov functional when τ = 0 and that all trajectories

are bounded. The trajectories of the non-delayed form of (5.12) are heteroclinic

orbits and there are no non-constant periodic orbits. Here, we are not interested in

the global dynamics of (5.12), rather we are looking at the local dynamics near the

trivial solution V f = 0 at bifurcation points.

Our assumptions have introduced symmetries that will make the computation of

the normal forms a bit more involved. It requires some basic tools of equivariant bi-

furcation theory which can be found for example in [Golubitsky 1988, Chossat 2000,

Haragus 2010]. Notice that (5.12) is G-equivariant (see definition A.0.2) with re-

spect to the following action3:

(Rγ · V )(x) = V (γ + x)

(S · V )(x) = V (−x)

The fact that (5.12) commutes with the translations Rγ follows from J being ho-

mogeneous. Also the equivariance w.r.t. the reflection S comes from J being an

even function.

The linearisation of (5.12) around the stationary solution V = 0 reads:

d

dt
V (x, t) = −V (x, t) + σs1

∫
Ω
J(x− y)V (y, t− τ(x− y))dy (5.13)

The solutions of this linear equation are eλt sinn or eλt cosn. Also, we can give

the expression of ∆(λ) (see (4.12))

∆(λ) = λId + 1− σs1Je
−λτ

where Je−λτ is the homogeneous integral operator with kernel J(x)e−λτ(x). The

null vectors of ∆(λ) are cosn, sinn and using complex coordinates, we find that

∆(λ)e2inx =
(
λ+ 1− σs1

(
Je−λτ

)
n

)
e2inx

where
(
Je−λτ

)
n

have been defined in remark 25. Hence, the characteristic values

are solution of

λ+ 1− σs1

(
Je−λτ

)
n

= 0.

3where G is the group generated by the two elements 〈Rγ , S〉 and is isomorphic to O(2), see

chapter 9 for more details.
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Also, the null space of ∆(λ) for a characteristic value λ is made of cosn, sinn: it is

two-dimensional if n 6= 0 and one-dimensional otherwise.

We will now compute the normal forms of some bifurcation points that will

appear in chapter 6. In order to do this, we will use the fact that (5.12) is O(2)-

equivariant. It turns out that this simplifies the computation of the normal forms.

This is best achieved by using complex coordinates for the eigenvectors. Formally,

this leads to the extension of the real history space to the complex space XC ≡
X ⊕ iX and to a change from a scalar product on X to a sesquilinear form on XC:

〈ψ, φ〉XC = 〈ψ, φ〉X where ψ is the complex conjugate of φ. Whenever there is no

confusion, we shall write, by abuse of notation, 〈ψ, φ〉X for 〈ψ, φ〉XC . For example,

the spectral projector formula in prop 4.4.10 is now formally:

∀u ∈ XC, Pλ0u =

mλ0∑
i=1

〈〈ψi, u〉〉φi.

We wish to make an important remark on which parameters we are allowed to

use in theorem 4.6.3. The nonlinearity must be regular enough with respect to these

parameters and this can be an issue for the parameters c and D for two reasons.

The first reason is that the state space is changing and the second is the lack of

regularity of R. In the case where only one of these parameters is non-zero, then

we can rescale time and use theorem 4.6.3. For example, if D = 0, then4 the time

rescaling t→ t/c yields

d

dt
V (x, t) = c

(
−V (x, t) + σs1

∫
Ω
J(x− y)S(V (y, t− |x− y|π))dy

)
and the right-hand side is regular in c. Note that the history space is fixed as the

maximum time delay is τm = π. This shows that we can’t take the pair (c,D) as

parameters. In the following, we compute the normal forms truncated at order 3:

the coefficients of the nonlinear terms do not depend on the parameters, only the

linear terms in the voltage variable V do. Hence, at order 3, if we are interested in

other parameters, we only have to compute linear terms.

5.2.2.1 The Pitchfork bifurcation

We start with the simplest of all the bifurcations, the bifurcation parameter is the

nonlinear gain σ. We took a first look at it in section 4.6.4 in the general case.

Suppose that cosn, sinn with n 6= 0, are in the null-space of ∆(0) = Id − σs1J at

the value σP = 1
s1Jn

of σ at the Pitchfork bifurcation, i.e. 0 ∈ ΣP (A). If we write

v0 = zφ + c.c. (complex conjugate) with z ∈ C and φ ≡
[
en
en

]
, in the non-delayed

case, the normal form is (see [Golubitsky 1988, Curtu 2004, Roxin 2011]):

ż =
σ̃

σP
z + χnz|z|2 + o(z3)

4The case c = 0 is analogue.
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with σ = σP + σ̃ and χn = σ3
PJn

[
s3
2 + σP s

2
2

(
J0

1−J0/Jn
+ J2n

2(1−J2n/Jn)

)]
. From sec-

tion 4.6.4, the normal form in the delayed case is

ż/β̄ =
σ̃

σP
z + χnz|z|2 + o(z3)

with (see above for the explanation about the complex conjugate):

β̄−1 = π (1 + σP s1(Jτ)n) 6= 0 (5.14)

which shows that β is real. Recall that we have defined (Jτ)n =
∫
Jτ cosn in

remark 25.

5.2.2.2 The O(2)-Hopf bifurcation

It is known that in the non-delay case (τ = 0), the network (5.12) does not support

periodic solutions; this is not the case with delays. Suppose that there is a simple

eigenvalue iωH ∈ ΣP (A) and n 6= 0 (but see below) when the parameters (D, c)

are equal to (DH , cH). We write τH the delay function DH + cH |c|π. Then a Hopf

bifurcation with O(2) symmetry. This bifurcation is described in [Golubitsky 1985,

Haragus 2010]. By definition, we have ∆(iωH)en = 0 and the eigenvectors of A

read: φ1 =

[
en

eiωHθen

]
, φ2 =

[
e−n

eiωHθe−n

]
. They satisfy:

Rγφ1 = einγφ1, Rγφ2 = e−inγφ2, Sφ1 = φ2, Sφ2 = φ1.

Clearly,
{
φ1, φ2

}
are the eigenvectors associated with −iωH . By using proposi-

tion 4.4.10, we find: ψ1 = β1

[
en

e−iωHθen

]
, ψ2 = β2

[
e−n

e−iωHθe−n

]
. It is straightfor-

ward to check that 〈〈ψi, φj〉〉 = δij provided that5

β̄−1
1

by parity
= β̄−1

2 = π + πs1σH(JτHe
−iωHτH )n (5.15)

Let us assume that c is the free parameter6 while σ is held constant at σH .

Remark 26.Recall from section 5.2.2 that the normal form (5.16) with parameter

c is only valid for D = 0 even if the nonlinear coefficients β, γ does not depend on

c at order 3. If we use the slope σ as the varying parameter with c 6= 0, D 6= 0, the

coefficients β, γ have the same general expression.

In the coordinates system: v0 = z1φ1 + z2φ2 + c.c. with zi ∈ C, it is known that

the normal form (see [Chossat 2000, Haragus 2010]) for the O(2)-Hopf is:{
dz1
dt = z1(iωH + α c−cHcH

+ β|z1|2 + γ|z2|2)
dz1
dt = z2(iωH + α c−cHcH

+ β|z2|2 + γ|z1|2)
(5.16)

5Recall that (JτHe
−iωHτH )n ≡

∫
JτHe

−iωHτH cosn.
6If we chose D instead of c, it only changes the linear term α(c− cH) in the normal form.
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Lemma 5.2.1. The coefficients are given by:
α = iωHπβ1

β = πβ1
iωH+1
s1

σ2
H

[
s3
2 + σHs

2
2

(
J0

1− σHs1J0
+

(Je−2iωHτH )2n

2(2iωH + 1− σHs1(Je−2iωHτH )2n)

)]
γ = πβ1

iωH+1
s1

σ2
H

[
s3 + σHs

2
2

(
J0

1− σHs1J0
+ J2n

1− σHs1J2n
+

(Je−2iωHτH )0

2iωH + 1− σHs1(Je−2iωHτH )0

)]

Proof. See lemma C.2.1. �

Using polar coordinates zi = ρie
iθi , the equations for ρi do not depend on θi

and the dynamics is characterized by a planar system in (ρ1, ρ2). The phase dia-

gram of this planar system is shown below, taken from [Haragus 2010, Chap.3.3.2].

The two equilibria (0, ρf1), (ρf0 , 0) correspond to traveling waves while the equilib-

0

0

0

0

0

Figure 5.3: Phase portraits in the (ρ0, ρ1) plane of the equations for (ρ0, ρ1), for

<α(c− cH) > 0.

rium (ρf0 , ρ
f
0) corresponds to a standing wave. Indeed, the standing wave solution

is 2ρf0<(eiωH te2inx + eiωH te−2inx) = 4ρf0 cos(ωHt) cos(2nx) and the traveling wave

solution is 2ρf0<(eiωH te2inx) = 2ρf0 cos(ωHt+ 2nx). Thus, the dynamics at the Hopf

bifurcation point is fairly simple.

Remark 27.

If n = 0, following the same procedure, we find the normal form:

dz

dt
= z(iωH + αc̃+ β|z|2)
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Indeed, as in [Haragus 2010], we have:

α = 〈φ∗1,R11(φ1) + 2R20(φ1,Ψ001)〉X
β = 〈φ∗1, 2R20(φ1,Ψ110) + 2R20(φ̄1,Ψ200) + 3R30(φ1, φ1, φ1)〉X
Ψ001 = −A−1R01 = 0

Ψ200 = (2iωH −A)−1R20(φ1, φ1)

Ψ110 = −2A−1R20(φ1, φ1)

which gives:α = iωH
cH
πβ1

β = πβ1
iωH+1
s1

σ2
H

[
s3
2 + σHs

2
2

(
J0

1−σHs1J0
+ (Je−2iωHτH )0

2(2iωH+1−σHs1(Je−2iωHτH )0)

)]
a closed form expression for α, β.

5.2.2.3 The Fold-Hopf normal form

The other possible bifurcation that can happen on the line σ = σP , defined in

section 5.2.2.1, is the occurrence of a purely imaginary eigenvalue iωFH , which

gives a Fold-Hopf bifurcation for a particular value of the delays. This bifurcation

can be produced by the intersection of a Hopf curve and the Pitchfork curve in the

parameters plane. We note σFH the value σP = 1
s1Jn

. We restrict the study to the

case where the eigenvector associated with the eigenvalue iωFH is the 0-mode e0

and suppose that the eigenvector for the eigenvalue 0 is in the n-mode with n 6= 0,

it is called the 0 : n steady-state/Hopf mode interaction7. This is a simple case as

well as the case n : 0. The difficult case, which we shall not study, is the case n : p

with n, p non zero.

In our case, we find two eigenvectors:

φ1 =

[
en
en

]
, φ2 =

[
e0

eiωFHθe0

]
, ψ1 = β1φ1, ψ2 = β2

[
e0

e−iωFHθe0

]
with β̄−1

1 = π+πσFHs1(Jτ)n ∈ R, β̄−1
2 = π+πσFHs1(Jτe−iωHτ )0. The coordinates

are v0 = z1φ1 + z2φ2 + c.c. with z1, z2 ∈ C. This normal form is not listed in

[Haragus 2010], but from the O(2)-equivariance, it is known (see [Golubitsky 1988])

that the normal form does not contain any second order terms, hence it writes:{
ż1 = (a1 + b1|z1|2 + c1|z2|2)z1

ż2 = (iωFH + a2 + b2|z2|2 + c2|z1|2)z2
(5.17)

where the complex coefficients bk, ck, k = 1, 2 are given in lemma C.2.2. In the case

of a null threshold h = 0, we have s2 = 0 and we find the simpler expressions:

b1 = πβ̄1
σ2
FHs3

2s1
, c1 = πβ̄1

σ2
FHs3

s1
, b2 = πβ̄2

σ2
FHs3

2s1
(1+iωFH), c2 = πβ̄2

σ2
FHs3

s1
(1+iωFH)

7see [Golubitsky 1988] for example.
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The choice of the varying parameters only affects the expression of the coefficients

ak: we will show how to compute them as functions of the parameters µ = (σ, c) (see

the first remark in section 5.2.2.2). In the expression of R in (4.37), these coefficients

come from (L(µ)−L(µc))φ which can be approximated by (µ−µc)(∂µL)φ close to

the bifurcation point. Let us write σ = σFH + σ̃, c = cFH + c̃, then we compute

the expression of the linear terms on the center part Xc = Span {φ1, φ2}:
Lemma 5.2.2. The expression8 of the linear terms on the center part reads:

(µ− µc)(∂µL) (z1φ1 + z2φ2) = z1

(
σ̃

σFH

)
en

+ z2

(
(1 + iωFH)

σ̃

σFH
+ iωFH

c̃

cFH

)
e0.

It gives: {
a1 = 〈φ∗1, (∂µL)φ1〉X = πβ̄1

σ̃
σFH

a2 = 〈φ∗2, (∂µL)φ2〉X = πβ̄2

(
(1 + iωFH) σ̃

σFH
+ iωFH

c̃
cFH

)
.

Proof. We follow the proof of lemma C.2.1. As one of the varying parameter is

c, we shall rescale the time by c. It is easy to show that the normalisation factors

β1, β2 are the same in the rescaled/not-rescaled case. In this case, the eigenvector

en solves:

(iω̃FH + cFH)e0 = cFHs1σFH

∫
J(· − y)e−iω̃FH |·−y|πe0(y)dy

and we find that ω̃FH = cFHωFH . From
[
∂
∂σL(µ)

]
FH

φ = cFHs1

∫
Ω dyJ(· −

y)φ(y,−| · −y|π) we find[
∂

∂σ
L(µ)

]
FH

en =
cFH
σFH

en,

[
∂

∂σ
L(µ)

]
FH

(eiωFHθe0) = cFH
1 + iωFH
σFH

e0

We have
[
∂
∂cL(µ)

]
FH

φ = −φ+ σFHs1

∫
Ω dyJ(· − y)φ(y,−| · −y|π), which gives:[

∂

∂c
L(µ)

]
FH

en = 0,

[
∂

∂c
L(µ)

]
FH

(eiωFHθe0) = iωFHe0

If we go back to the original equation by using ct→ t and combine these formulas,

we obtain the lemma. �
Using polar coordinates z1 = PeiφP , z2 = HeiφH , the variables decouple and

we obtain a planar system for the amplitudes:{
Ṗ = (a1 + b1P

2 + c1H
2)P

Ḣ = (<a2 + <b2H2 + <c2P
2)H

(5.18)

8This is an abuse of notation as L(µ) is not differentiable w.r.t. c without the time rescaling.
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The only fixed points of this system are (see [Guckenheimer 1983, Chapter 7.5]):

OP = (0,
√
−<a2
<b2 ), OH = (

√
−a1
b1
, 0) and OFH = (

√
−a1<b2−c1<a2

∆ ,
√
−<a2b1−<c2a1

∆ )

where ∆ = b1<b2 − c1<c2.

The equilibria of (5.18) on the P-axis are also equilibria of (5.17), while the equi-

libria not on the P-axis are periodic orbits9 of (5.17). Periodic solutions in the plane

(P,H) are quasi-periodic10 solutions of (5.17) with two basic periods 2π/ω0, 2π/ωFH
which form an invariant two-torus (see [Guckenheimer 1983, chapter 7.5, page 400]).

Hence, the 3 points OP , OH , OFH respectively correspond, to a stationary solution,

to a uniformly oscillating solution and to a superposition of the two previous so-

lutions. Another interesting point is the possibility of appearance of an invariant

torus for (5.17) which is explained by the existence of a Hopf bifurcation for (5.18)

around OFH = (Ps, Hs). No Hopf bifurcation can occur around OP , OH , however, it

is possible around OFH = (Ps, Hs) (see [Langford 1980]) when ∆ > 0, b1<(b2) < 0.

The different phase diagrams of (5.18) are listed in [Guckenheimer 1983, chapter

7]. We only show in figure 5.4 the phase diagram Ib from [Guckenheimer 1983,

chapter 7.5, page 401]. This diagram will be used in chapter 6. It features (in

red) bi-stability between the stationary solution OP and the uniformly oscillating

solution OH . The mixed-mode OFH solution is never stable.

5.2.2.4 The Hopf-Hopf normal form

As we shall see in the next chapter 6, the Hopf curves computed with prop.4.4.5 may

intersect (see for example figure 5.1). This intersection may involve two different

Fourier modes. To keep the computations manageable, we assume that the inter-

section happens between the 0-mode and the n-mode where n > 0: this is called the

0 : n Hopf-Hopf mode interaction. This case was investigated in [Roxin 2011] for

constant delays. From proposition 4.4.4, it is easy to see that the Hopf-Hopf bifur-

cation is possible for constant delays if and only if the connectivity has two Fourier

modes which are equal: J0 = Jn. With propagation delays, we see in figure 5.1

that this is not the case. Let us write iω0, iωn, the purely imaginary eigenvalues

at the Hopf-Hopf point. The normal form of this bifurcation is different depending

on whether or not ω0
ωn
∈ Q (see for example [Golubitsky 1988, Haragus 2010]). It is

impossible to check this hypothesis with the expressions in proposition 4.4.5. We

will assume11 that ω0
ωn

/∈ Q. Indeed, in this case the nonlinear terms of the normal

form are very similar to those of the Folf-Hopf normal form that we have analyzed

in the previous section. The expression of the eigenvectors is the same as for the

9because we have v0 = 2<(Pe2inx+iφP +HeiωFH t+iφH )
10because we have v0 = 2<(P cos(ω0t)e

2inx+iφP +H sin(ω0t)e
iωFH t+iφH )

11Another strategy is to study the case ω0
ωn

/∈ Q by considering the closest rational number r
s

to
ω0
ωn

which has the smallest sum r+ s, and then taking a detuning parameter δ = sω0 − rωn which

is added to the varying parameters. Hence, it amounts to study the case ω0
ωn

/∈ Q as a perturbation

of the rational case.
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Figure 5.4: ε1 ≡ sign(b1), L1 : <a2ε1 = |<b2|
c1

a1, L2 : <a2ε1 = <c2
|b1| a1. Phase

diagram Ib in [Guckenheimer 1983, chapter 7.5, page 401] with time reversal, i.e.

in the terminology of [Guckenheimer 1983], it corresponds to the phase diagram

Ib for which time has been reversed. We plot here the resulting diagram. In

each domain, the small phase diagram gives the corresponding dynamics for the

equations (5.18) in the plane (P,H). Note that the diagrams are a bit different

from [Guckenheimer 1983, chapter 7.5, page 401] because we applied the inverse

scaling of [Guckenheimer 1983, chapter 7.5, page 397].



5.2. Symbolic computation of some normal forms 151

O(2)-Hopf, hence

φ0 =

[
e0

eiω0θe0

]
, φ1 =

[
en

eiω1θen

]
, φ2 =

[
e−n

eiω1θe−n

]
,

and the associated vectors for the spectral projector are:

ψ0 = β0

[
e0

e−iω0θe0

]
, ψ1 = β1

[
en

e−iω1θen

]
, ψ2 = β2

[
e−n

e−iω1θe−n

]
where k = 0, 1, 2 and the normalization factors satisfy β̄−1

k = π +

πs1σHH(JτHHe
−iωkτH )|nk| with (n0, n1, n2) = (0, n,−n). The coordinates on the

center part are v0 = z0φ0 + z1φ1 + z2φ2 + c.c. and, from [Golubitsky 1988], the

normal form is: 
ż0 = z0

(
iω0 + a0 + b0|z0|2 + c0|z1|2 + d0|z2|2

)
ż1 = z1

(
iω1 + a1 + b1|z0|2 + c1|z1|2 + d1|z2|2

)
ż2 = z2

(
iω1 + a1 + b1|z0|2 + d1|z1|2 + c1|z2|2

) (5.19)

The expressions for the coefficients bk, ck, dk are given in lemma C.2.3, they are

simple if the threshold h is zero:

b0/πβ̄0 =
σ3
FHs3

2
(Je−iω0τ )0, c0/πβ̄0 = σ3

FHs3(Je−iω0τ )0, d0 = c0

b1/πβ̄1 = σ3
FHs3(Je−iω1τ )n, c1/πβ̄1 =

σ3
FHs3

2
(Je−iω1τ )n, d1/πβ̄1 =

σ3
FHs3

2
(Je−iω1τ )n.

Notice that in the general case, c0 = d0 and the coefficients c1, d1 are the same as

the coefficients β, γ in the O(2)-Hopf normal form (see lemma C.2.3). As before, the

choice of the two varying parameters only affects the coefficients ak. We will show

how to compute the aks in the case µ = (σ, c) (see the first remark in section 5.2.2.2).

Like for the Fold-Hopf bifurcation, let us write the linear part: (µ− µc)(∂µL) and

σ = σHH + D̃, c = cHH + c̃. The next lemma gives the expression of the linear on

the center part Xc = Span {φ0, φ1, φ2}:
Lemma 5.2.3.The operator ∂µL is diagonal in the base (φ0, φ1, φ2) and

a0/πβ̄0 = (1 + iω0) σ̃
σHH

+ iω0
c̃

cHH
a1/πβ̄1 = (1 + iω1) σ̃

σHH
+ iω1

c̃
cHH

(5.20)

Proof. It is almost the same as the proof of lemma 5.2.2. �
Let us note that each space {z0 = 0} or {z1 = z2 = 0} is invariant under the

dynamics of (5.19): the dynamics is the same as in the Hopf case in the n or 0-mode.

However, compared to the Hopf bifurcation case, this normal form can generate

superpositions of oscillatory behaviors like (z0(t), z1(t), 0) or (z0(t), z1(t), z1(t)) for

example. If we use polar coordinates zk = ρke
iθk , we find (like for the Hopf or the

Fold-Hopf bifurcation) that the equations in ρ and θ are decoupled and we end up

with a 3D real system of ordinary differential equations for the amplitudes ρi, see
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[Golubitsky 1988]. Notice that the equations for (ρ0, ρ1, ρ2 = 0) are the same as

(5.18) in the Fold-Hopf bifurcation:{
ρ̇0 = ρ0(<a0 + <b0ρ2

0 + <c0ρ
2
1)

ρ̇1 = ρ1(<a1 + <b1ρ2
0 + <c1ρ

2
1).

(5.21)

Thus we expect the same kind of solutions: 2 oscillatory solutions, a mixed mode

solution, and possibly, the 2-torus solution resulting from a Hopf bifurcation around

the mixed mode solution. We will not push further the study of the 3D-system for

the amplitude equations, this will be the subject of future work.

5.3 Conclusion

In this chapter, we have prepared the application of the tools developed in chapter 4

for the numerical study that will be performed in the next chapter 6. In particular,

we have given two ways of computing the bifurcation curves depending on the

form of the network under study. One is an analytical formula and the other is

a numerical method for which the error has been bounded by a function of the

space/time discretization. In the second case, the convergence of the approximated

eigenvalue to the real value is very fast, it goes as O(εNΩ
+N

−Nt−1/2
t ) where Nt is

the discretization in time. This shows that the main part of the error comes from

the space discretization NΩ.

We have also computed normals forms and given their qualitative dynamics.

This will simplify their use in the next chapter. Concerning the normal forms, a lot

more can be done. We have computed the Fold-Hopf normal form for the 0 : n mode

interaction. The “only” interesting feature of this mode interaction is the existence

of an invariant torus. More interesting dynamics is expected for the interaction of

two non zero modes. However we shall see that this mode interaction do not appear

in our models (see next chapter and chapter 11).

Similarly, we have started the study of the Hopf-Hopf normal form for the 0 : n

mode interaction and we have looked at a particular subspace of the dynamics. The

full dynamics is much richer and deserve more investigations. As for the Fold-Hopf

normal form, more sophisticated dynamics is expected for the interaction of two

non zero modes and we will see, in section 6.1, that these points do occur quite

often in the bifurcation diagrams.

Hence, our study is far from being complete but it is sufficient for the upcoming

analysis of the models.



Chapter 6

Application to the study of

different connectivities on a ring

Contents

6.1 Bifurcation analysis of two delayed neural field equations . 153

6.1.1 Inverted Mexican-hat connectivity . . . . . . . . . . . . . . . 154

6.1.2 Mexican-hat connectivity . . . . . . . . . . . . . . . . . . . . 157

6.2 Numerical evaluation of the bounds in section 4.5.4 . . . . 160

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

We make good use of the results obtained in chapter 4 and Chapter 5 to deepen

our understanding of 1D delayed neural fields with homogeneous connectivity func-

tions and periodic boundary conditions. We started their study in chapter 5. We

use this class of examples to get a feeling of the conservativeness of the bounds de-

rived in chapter 4 and to push further the analysis of the bifurcations and dynamics

they create.

6.1 Bifurcation analysis of two delayed neural field equa-

tions

We arrive at the last sections of this part concerning the study of the space-

dependent delays: by using the formulas of section 4.4.1.2 for the Hopf curves

together with the computation of the normal forms in section 5.2, we are in a po-

sition to analyse, in great detail, the most simple connectivity functions that have

appeared in the literature. This is a great achievement because the relative role of

constant delays/propagation delays has never been studied and it appears that the

dynamics are fairly rich.

More precisely, we first study a connectivity function which is laterally excita-

tory and locally inhibitory, the so-called inverted Mexican-hat (see [Venkov 2007,

Hutt 2008]). This connectivity is motivated by the fact (stereotyped) that in-

hibition is localized and long-range connections are mainly excitatory in the

mammal visual cortex (see [Lund 2003a]). By construction, this type of con-

nectivity favours the spread of activity. We then study the opposite connec-

tivity, the Mexican-hat, which favours stationary activity: this connectivity has

been mainly used as a functional connectivity in some feature domain (see

[Ben-Yishai 1995, Bressloff 2000, Bressloff 2001b] and also part IV).
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In both cases, we start with spatially extended connectivities given by two

Fourier modes. To describe more localized connectivities requires more Fourier

modes, and in this case we expect an increase in the number of bifurcations.

For convenience, we recall the model. More details are given in section 5.2.2.
(
d
dt + l

)
V (x, t) =

∫
Ω J(x− y)S0[σV (y, t− τ(x− y))]dy, t ≥ 0

V0 = φ ∈ C1(−τm, 0; L∞)
(6.1)

6.1.1 Inverted Mexican-hat connectivity

This is the case where J(x) = −(0.5 + J1 cos2) 2
π .

We chose J1 = 2.1 in order to have local inhibition and lateral excitation (see

figure 6.1). Let us first note, that because the two Fourier modes of the connectivity

are negative, no static bifurcation can occur; this is not generally true for inverted

Mexican-hat connectivities because, for localized connectivities, more Fourier modes

are non-zero and some are possibly positive. In our case, we can nevertheless restrict

ourselves to searching for oscillatory behaviours. We start with constant delays and

then extend the analysis to include space dependent delays.

According to lemma 4.4.4, an equivariant Hopf bifurcation happens for some

constant delay Dn in the Fourier mode n if the connectivity has negative eigen-

modes. Using the same lemma, we find that it is the mode n = 1 that first bifur-

cates for c = 0 when varying D. We plot the constant critical delay D1 as function

of the nonlinear gain σ in figure 6.1 Right: if the nonlinear gain σ is small, i.e. if the

network is linear, then it is not possible to generate oscillations because D1 → ∞
as s1J1σ → 1.
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Figure 6.1: Left: connectivity used in the examples of this section (J1 = 2.1).

Right: plot of the critical constant delay D1 (for the mode n = 1) as function of

the nonlinear gain σ.

Moreover, if the threshold is null, h = 0, the coefficients of the Hopf normal form

(5.16) simplify1: πβ1 = (1+D− iωD)−1, <α = ω2

(1+D)2+ω2D2 > 0 and <β = <γ/2 =

1after a little algebra.
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σ2
Hs3
2s1

1+D+Dω2

(1+D)2+ω2D2 < 0, which implies that the Hopf is supercritical. Depending on

the initial condition (see figure 5.3), it can produce travelling waves (stable) or

standing waves (unstable) (see figure 6.2). The fact that the Hopf is supercritical

and produces stable travelling waves was also proved2 in [Roxin 2011].

We now investigate the case of space dependent delays.

Figure 6.2: Left: standing wave, Right: travelling wave. Parameters: s1σ = 1, c =

0, D = 1.14 (Left) and D ≈ 1.12 (Right). The space discretization is N = 300.

If we introduce propagation delays (i.e. c > 0), we expect changes in the

bifurcation diagram. We know from proposition 4.5.9 that if the nonlinear gain

is too small, oscillations are impossible. Hence, we expect a strong dependency

of the Hopf curves on the nonlinear gain. This is shown in figures 6.3 and 6.4
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Figure 6.3: Plot of the Hopf curves in the (c,D) plane for s1σ = 0.5 (left) and

s1σ = 1 (right). The different Hopf curves are labelled with the corresponding

Fourier mode. The grey part is where the stationary state V f = 0 is asymptotically

stable.

where s1σ = 0.5 in the left panel and s1σ = 1 in the right panel. There are three

interesting features that come out of these figures:

1. No Hopf curve crosses the c-axis for s1σ < 2: it is impossible to produce

oscillations with only propagation delays in this network. This is shown up

2for a different varying parameter.
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to s1σ < 1.3, but further numerical investigations have led to this conclusion

(data not shown). For s1σ > 2, the Hopf curve for the 0-mode crosses the c-

axis, more Hopf curves do this as σ is increased. We could not find a criterion

to predict when a Hopf curve crosses the c-axis.

2. The accumulation of the Hopf curves around c ≈ 10 (see figure 6.4 Left): for

small changes in the constant delays, a lot of eigenvalues cross the imaginary

axis. Very sophisticated dynamics should happen in this parameter region.

3. The number of intersections between Hopf curves, shown with black dots (in

particular in figure 6.4 Left). These intersection points are Hopf-Hopf bifur-

cation points where the dynamics can lead to complicated behaviours (see

[Guckenheimer 1983, Kuznetsov 1998]). We have not studied these bifurca-

tion points in detail.
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Figure 6.4: Left: plot of the Hopf curves in the (c,D) plane for s1σ = 1.3. Right:

plot of the Hopf surfaces in the (c,D, σ) space for a particular region which is shown

in the 2D bifurcation plot. The Hopf-Hopf curves, intersection of two Hopf surfaces

are shown in red. Finally, two Hopf-Hopf curves intersect at a Hopf-Hopf-Hopf

bifurcation point.

Let us go back to figure 6.3 where we have plotted the Hopf curves for s1σ =

1; the grey part is the parameter region where the stationary solution V f = 0

is asymptotically stable. For small propagation delays c ≈ 0, by increasing the

constant delay D, it is the 1-mode that first bifurcates and we find solutions like

those shown in figure 6.2. For larger values of c, it is the 0-mode that first bifurcates,

hence giving a non-equivariant hopf bifurcation; a plot of the oscillatory uniform

solution is shown in figure 6.9 Right. Thus, we find the rather surprising fact

that even if the connectivity does not have a sufficiently negative eigenmode (i.e.

s1σJ0 = −1), Hopf bifurcations may still appear due to the intricate interaction

between the connectivity and the propagation delay functions. Hopf bifurcation can

also happen in modes that are not present in the connectivity as shown in figure 6.4:
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for example there is a Hopf curve in the 2-mode whereas the connectivity has no

2-mode. We have not been able to find a simple criterion to predict the appearance

of an oscillatory solution as we did for constant delays in section 4.4.1.1.

Let us say a few words about the Hopf-Hopf bifurcation points: based on the

normal form study in section 5.2.2.4, we have looked at the Hopf-Hopf bifurcation

point (the one with the smallest c) between the 0-mode and the 1-mode under

the non-resonant assumption ω0
ωn

/∈ Q. We have computed the phase diagram of

the reduced amplitude equations (5.21) for s1σ = 1 and for s1σ = 1.3 as listed

in [Guckenheimer 1983, Chapter 7.5] when the threshold h is varied. If h is close

to zero, then the phase diagram of (5.21) is Ib (with time reversal as shown in

figure 5.4). In all cases, the mixed-mode solution is unstable and the two-torus

does not appear: no new behaviour emerges and the dynamics is that of the Hopf

bifurcation. In order to look for 3-torus and other solutions, it would be necessary

to study the full 3D system as opposed to (5.21). This is the subject of future work.

Remark 28.In the computation of the Hopf-Hopf bifurcation points, we have

looked at a rational approximation r
s of

ωp
ωn

with smallest sum r + s. We always

found a sum r+ s strictly greater than 5 which suggests that the bifurcations Hopf-

Hopf belong to the weakly resonant case (see [Haragus 2010, Chapter III.4.5]).

Finally, for (c,D, s1σ) ≈ (8.06, 0.6, 1.412), we find an intersection between three

Hopf curves in the Fourier modes 0, 1, 3. It is difficult to see this interaction in

the 2D bifurcation planes. This is why we show in figure 6.4 Right a selected

region of the 3D parameter space (c,D, σ) with the plot of the Hopf surfaces3. This

intersection is a Hopf-Hopf-Hopf bifurcation point which we have not studied.

6.1.2 Mexican-hat connectivity

This is the case where J(x) = (−1 + J1 cos(2x)) 2
π .

As explained before, the Mexican-hat connectivity is often used to produce

stationary solutions through a static bifurcation. We want to look at the possible

intersection of the Pitchfork line with a Hopf curve. We write the connectivity

J(x) = (J0 + J1cos(2x)) 2
π with J0 = −1 and J1 ∈ (1, 2) in order to generate locally

excitatory connections. It follows that there is a Pitchfork line σP = 1
s1J1

which

is shown in the bifurcation diagram in figure 6.5 Left labelled as (P). Two time-

evolutions are also shown in figure 6.5 Right in the neighbourhood of the Pitchfork

bifurcation. The x-axis of the bifurcation diagram in figure 6.5 Left is c: we will

see that the diagram stays qualitatively the same if we use the constant delays D

instead.

Let us first consider the case of constant delays c = 0. We know from propo-

sition 4.4.4 that there is only one Hopf curve (for the Fourier mode n = 0) in

the plane (σ,D), its analytical expression was also given. Recall that a necessary

and sufficient condition for the existence of a critical delay D0 is 2s1σJ0 ≤ −1 i.e.

σ > 1
2s1

: the Hopf curve intersects the Pitchfork curve at the Fold-Hopf bifurcation

3given by proposition 4.4.5.
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Figure 6.5: Left : bifurcation diagram in the plane (c, σ), P is the Pitchfork line,

H is the Hopf curve. Right : Time evolution corresponding to the points labelled

1 and 2 in the bifurcation diagram on the left. We used J1 = 1.5.

point if 2 |J0|
J1

> 1. This Hopf bifurcation cannot generate travelling waves or stand-

ing waves because it happens in the 0-mode4. This is also true at the Fold-Hopf

bifurcation point as we will see below.

We plot in figure 6.6 the coefficients of the Fold-Hopf normal form5 as function

of (J1, h) in (recall that h is the threshold). The phase diagram is characterized

in [Guckenheimer 1983, Chapter 7.5, page 401]. We are particularly interested in

the appearance of the quasi-periodic solution described in section 5.2.2.3 because

it is a striking behaviour compared to the dynamics produced by the Hopf bifurca-

tion. Recall that this solution produces an invariant two-torus and its existence is

conditioned by the conditions ∆ > 0, b1<(c2) < 0. We plot the sign of ∆ as func-

tion of (J1, h) in figure 6.6 Left, we also found that b1<(c2) > 0 for all parameters

h, J1 ∈ [0, 2] and this indicates that the doubly periodic solution does not exist in

our network.

The interesting solution, which does not appear in the other bifurcations discussed

so far, is the Mixed-Mode solution (associated to the point OFH in section 5.2.2.3).

This solution is a superposition of the static bifurcated state and the oscillatory solu-

tion: V (x, t) = v1 cos(2x)+v2 cos(ωFHt), for some v1, v2. The Mixed-Mode solution

exists when ∆ 6= 0. More precisely, we find that in the region where ∆ > 0 (resp.

∆ < 0), the system has the phase diagram Ia (resp. Ib) in [Guckenheimer 1983,

Chapter 7.5], modulo a time reversal6. It is then straightforward to select parame-

ters and see the Mixed-Mode solution, shown in figure 6.6.

For J1 > 1, i.e. in the Mexican-hat case, the solution is found to be unsta-

ble. Thanks to the computation of the normal form, we numerically observe this

(unstable) solution, see figure 6.6 Right.

4it has no spatial structure whereas this is required in order to “see” waves
5they are given in section 5.2.2.3.
6It is shown that the diagrams Ia and Ib are very similar.
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Figure 6.6: Left: Sign of ∆ as a function of (J1, h). Green means positive. Right:

example of a (unstable) Mixed-Mode solution for J1 = 1.5, h = 1, σ − σFH ≈
0.0127, D −DFH ≈ −0.0027, N = 200.

The other interesting feature of the phase diagram for J1 > 1 is the bi-stability

between the stationary solution v1cos(2x) and the oscillating solution v2cos(ωFHt),

which are both stable for particular values of the couple (σ,D), as shown in fig-

ure 5.4 Red. The cortical state V can switch from a stationary state to an oscillatory

state (and vice-versa) upon application of the correct external stimulation Iext.

To sum up, the bifurcation portrait is composed of a Pitchfork line, a Hopf

curve in the 0−mode and a Fold-Hopf point. The phase diagram is the same for all

J1 > 1,−2 ≤ h ≤ 2, it is the one of figure 5.4.
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Figure 6.7: Left: Fold-Hopf bifurcation surface in the parameter space (c,D, J1).

Right: plot of cFH (blue) and ωFH (red) as function of J1 where D = 0, i.e. the

case of purely propagation delays.

We now consider the case of propagation delays. We want to know if the

previous instabilities remain and what are the critical values of the constant de-

lays/propagation delays. Using the proposition 4.4.5, we compute the Hopf curves

in the parameter plane (D, c) for each Fourier coefficient J1 (not shown). It appears
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that for c ≤ 10, only the Hopf curve in the 0-mode appears, which is very similar

to the case of purely constant delays, i.e. c = 0. Note that unlike the previous case

of the inverted Mexican-hat, we can destabilize the equilibrium V f = 0 with purely

propagation delays (see figure 6.7 Right). We also find that the Hopf curve and the

Pitchfork line intersect in a Fold-Hopf bifurcation point for all J1 ∈ [1, 2). Hence

we have computed the Fold-Hopf surface in the space (c,D, J1), see figure 6.7 Right.

Using the normal form given in section 5.2.2.3, we can compute the phase diagram
7 of the Fold-Hopf bifurcation point in the space (c,D, J1) for different thresholds

h ∈ [−2, 2]. We find that it is the same as for constant delays, i.e. Ib (see figure 5.4).

Hence compared with the constant delay case, no new behaviour appears.

To conclude, for the Mexican-hat connectivity considered in this section, the

bifurcation diagram is quite simple: there is a Pitchfork line and a Hopf curve in

the mode n = 0. When these two curves intersect at a Fold-Hopf point, it can

produce two different phase diagrams that have been completely characterized (see

figure 5.4). In particular, we found that the doubly periodic solution cannot occur

and that bi-stability between an oscillatory solution and a stationary solution exists

in a limited region of the parameter space.

6.2 Numerical evaluation of the bounds in section 4.5.4

We consider the connectivity function J(x) = (−1 + 1.5 cos(2x)) 2
π in (5.12). The

bifurcation diagram with respect to the parameters (c, σ) is shown in figure 6.8.

It is computed in section 6.1.2. The two bounds derived in section 4.5.4 are also

shown, they are labelled Bound. 1 and Bound. 2. The delay-dependent bound

is computed using the fact that J̃ ≡ DS(0)J = s1J is self-adjoint. Under the

Pitchfork bifurcation curve, labelled (P), and the Hopf bifurcation curve, labelled

(H), the stationary state V f = 0 is stable. This region of stability is larger than

the one delimited by the two bounds, shown in grey in figure 6.8. Hence, it is found

that the bounds are very conservative.

The first bound gives the minimal velocity 1/c below which the stationary state

might be unstable, in this case, even for smaller speed, the state is stable as long as

(c, σ) is below the bifurcation curves. Notice that in the parameter domain defined

by the two curves labelled Bound.1. and Bound.2. in figure 6.8, the dynamic is

very simple: it is characterized by a unique and asymptotically stable stationary

state, V f = 0.

In figure 6.9, we show the dynamics for different parameters corresponding to

the points labelled 1, 2 and 3 in figure 6.8 for a random (in space) and constant

(in time) initial condition φ. When the parameter values are below the curves (P)

and (H), the dynamics converges to the stable stationary state V f = 0. Along the

Pitchfork line labelled (P) in figure 6.8, there is a static bifurcation leading to the

birth of new stable stationary states, this is shown in the middle part of figure 6.9.

The Hopf curve labelled (H) in figure 6.8 indicates the transition to oscillatory

7recall that it does only depend on the nonlinear terms.
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Figure 6.8: Plot of the CVs in the plane (c, σ), the line labelled (P ) is the pitchfork

line, the line labelled (H) is the Hopf curve. The two bounds of proposition 4.5.9 are

also shown. Parameters are: L0 = Id, J(x) = s1(−1+1.5 cos(2x)) 2
π , β = 1

4 , s1 = 1
4 .

The labels 1, 2, 3, indicate approximate positions in the parameter space (c, σ) at

which the trajectories shown in Figure 6.9 are computed. The grey region is the

stability region of V f = 0 given by the bounds 1 and 2.

behaviours as one can see in the right-hand part of figure 6.9.

These numerical simulations reveal that the Lyapunov function derived in

[Enculescu 2007] is likely to be incorrect. Indeed, if such a function existed, as

its value decreases along trajectories, it must be constant on any periodic orbit

which is not possible. However the third plot in figure 6.9 strongly suggests that

we have found an oscillatory trajectory produced by a Hopf bifurcation (this is

proved in section 6.1.2): this oscillatory trajectory converges to a periodic orbit

which contradicts the existence of a Lyapunov functional such as the one proposed

in [Enculescu 2007] .

Let us comment on the tightness of the delay-dependent bound: as shown in

proposition 4.5.7, this bound involves the maximum delay value τm and the norm∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

, hence the specific shape of the delay function, i.e. τ(r, r̄) =

c ‖r− r̄‖2, is not completely taken into account in the bound. We can imagine

many different delay functions with the same values for τm and
∥∥∥ J̃
τβ

∥∥∥
L2(Ω2,Rp×p)

that will cause possibly large changes to the dynamical portrait. For example,

in the previous example, the singularity σ = σ0, corresponding to the fact that

0 ∈ Σp(A), is independent of the details of the shape of the delay function: how-

ever for specific delay functions, the multiplicity of this eigenvalue could change as in

the Bogdanov-Takens bifurcation which involves changes in the dynamical portrait

compared to the Pitchfork bifurcation. Similarly, an additional purely imaginary

eigenvalue could emerge (as for c ≈ 2.5 in the numerical example) leading to a
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Figure 6.9: Plot of the solution of (5.12) for different parameters corresponding to

the points shown as 1, 2 and 3 in the right-hand part of figure 6.8 for a random

(in space) and constant (in time) initial condition, see text. The horizontal axis

corresponds to space, the range is
(
−π

2 ,
π
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)
. The vertical axis represents time.

Fold-Hopf bifurcation. These instabilities depend on the expression of the delay

function (and the connectivity function as well). These reasons “explain” why the

bound in proposition 4.5.7 is not very tight.

6.3 Conclusion

In this chapter, we have applied the tools developed in part III to a simple 1D neural

fields model with homogeneous connectivity and periodic boundary conditions. This

choice of application is motivated by the fact that the eigenvectors of the operator

A are analytically known. Hence, we can compute the normal forms analytically

and look at the dependency of the dynamics on the different parameters. We will

do the same for 2D a neural fields model in chapter 11 although we will not study

in detail the normal forms.

Unsurprisingly, the bounds computed in section 6.2 are very conservative but

compared to the whole bifurcation study, they are much faster to compute. They

should be used in a first attempt to understand a delayed neural fields model, in

order to evaluate the importance of the delays in the model.

Despite the simplicity of the models we chose to study as an application of the

normal form theory, we found interesting bifurcation diagrams, especially for the

inverted Mexican hat connectivity. The bifurcations we have studied, in particular

the codim 2 Fold-Hopf and Hopf-Hopf bifurcations, did not produce sophisticated

dynamics. This is to be expected because we have only considered mode interactions

between the trivial 0−mode and another mode. Much more sophisticated dynamics

is expected for a mode interaction between two non constant modes. In particular,

it could be interesting to study more thoroughly the Hopf-Hopf bifurcation point,

the codim 3 bifurcation Hopf-Hopf-Hopf and see if this codim 3 bifurcation appears

generically for more general connectivities.

As a conclusion, this chapter calls for several extensions. For example, we have
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started to study the “simple” case of n : 0-Hopf/Hopf mode interaction, i.e. when

the Hopf mode is zero. A more detailed analysis of this bifurcation point is needed.

The more general n : p-Hopf/Hopf mode interaction occurs in the bifurcation di-

agram (see figure 6.4) of the inverted Mexican-hat connectivity, it has not been

considered in this chapter. Note that the complete study of these Hopf/Hopf mode

interactions would require an entire chapter. This is the subject of future work.
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This chapter is devoted to the study of a recent model [Deco 2010] by Deco et

al. of the long-range apparent motion percept. We are able to describe with closed

form formulas, the impact of all the parameters in the model whereas the authors

in [Deco 2010] had to rely on numerical simulations. In order to achieve this, we

use the tools developed in chapter 5. We also show how to incorporate intracortical

propagation delays and give the relationship between the apparent speed and the

contrast of the stimulus. This model is a good example of the application of all the

tools developed in this Thesis.

7.1 Introduction

Apparent motion (AM) is the illusory perception of real motion created when two

spatially distinct stationary visual objects are presented in alternating sequence.

It has been used for a long time by the movies maker companies and this percep-

tion has been known for more than a century (see [Exner 1875, Wertheimer 1912,

Adelson 1985]). There are two kind of AMs:

• the short-range apparent motion where the distance between the two consec-

utive objects is less than two degrees of visual angle,

• the long-range apparent motion where the distance between the two con-

secutive objects is larger than two degrees of visual angle (see [Kolers 1964,

Newsome 1986, Seriès 2002b, Fregnac 2010]).
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The long-range AM is present even when stimulus locations are separated by dis-

tances that are many times the size of receptive fields of direction selective neurons

in V1. Also, V1 is activated in locations that are not directly stimulated by the

individual stimuli but correspond to locations on the perceived illusory motion path

(see for example [Muckli 2002]). Therefore, communications between V1 and high

order visual areas, like MT, are expected for the perception of long-range AM (see

[Newsome 1986, Merchant 2004, Zhuo 2003, Hupé 2001]).

In [Deco 2010], based on experiments made in the anaesthetized ferret (see

[Roland 2006, Ahmed 2008]), the authors describe a possible mechanism for long-

range AM. An elicited activity in area 17/18, similar to the V1 area in macaques,

is sent through divergent feedforward connections1 to the high order area 19/21,

similar to the MT area in macaques, where the cortical activity spreads in space.

Upon application of the second stimulus, a short-range AM activity is induced in

the area 19/21 which is sent to 17/18 by the divergent feedback connections. Note

that the loop 17/18→19/21→17/18 is fast and the activity in the area 17/18 can

travel faster though this loop than by intra-cortical connections alone. The model

in [Deco 2010] is simple in that it does not have a lot of parameters. The main

idea is to design a network slow enough to sustain a cortical activity during the

inter-stimulus interval such that this long lasting activity interacts with the affer-

ent input corresponding to the second stimulus. As we will see in section 7.3, this

is achieved by bringing the network close to a static bifurcation.

We start by recalling the model of [Deco 2010] in section 7.2. Then we explain

in section 7.3 how to tune correctly the parameters to make the model work. This

study is made analytically, unlike [Deco 2010]. In section 7.4, we show the effect

of the different parameters on the properties of the long-range AM. In particular,

we show how the inter-cortical communication delays impact the AM. Then, in

section 7.5, we extend the model by incorporating intra-cortical propagation delays

and we study analytically their effects. In section 7.6, we show that the delays

cannot produce time oscillations: this is necessary to check in view of the results

of chapter 4. Finally, in section 7.7, we give the relationship between the apparent

speed and the contrast of the two stimulations.

7.2 Neural field model

We study the dynamical interactions of the visual area 17/18 and 19/21 bor-

ders. We suppose that each cortical area is spread over one-dimensional cortices

Ω17/18,Ω19/21, hence we assume that Ω17/18, Ω19/21 = [−π, π]. We also assume,

to make the computations easier, that there are periodic conditions in each corti-

cal part Ω17/18,Ω19/21. We work in cortical coordinates, hence a distance of 1 in

Ω17/18 corresponds to a distance of 1 in Ω19/21. The use of neural field equations is

motivated by their restricted number of parameters. We index by 1 the quantities

related to Ω17/18, by 2 the quantities related to Ω19/21 and write the following ac-

1which are retinotopically organized
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tivity based model. In the case considered here, the external input is time constant

and the two populations share the same intrinsic time constant τ . Hence, the ac-

tivity and voltage based models are equivalent. We chose the activity based model

to stick with [Deco 2010] even if this choice is arbitrary (but see at the end of the

conclusion).

τ dA
(1)(x,t)
dt +A(1)(x, t) = S

[ π∫
−π

J (1)(x− y)A(1)(y, t)dy

+f b
π∫
−π

W (2)(x− y)A(2)(y, t− τ2)dy + Iext(x)
]

τ dA
(2)(x,t)
dt +A(2)(x, t) = S

[ π∫
−π

J (2)(x− y)A(2)(y, t)dy

+
π∫
−π

W (1)(x− y)A(1)(y, t− τ1)dy
]
.

(7.1)

The intra cortical connections J (1), J (2) in each area are locally excitatory and

laterally inhibitory. Even if this in not in agreement with the biology, it is an

assumption that avoid the use of excitatory/inhibitory populations in each area

thereby doubling the number of equations and of parameters (see section 2.3). We

also assume, as in [Deco 2010], that the spread of the intra-cortical connections in

19/21 is two times the value of the spread of the intra-cortical connections in 17/18.

The feedforward connections W (1) from 17/18 to 19/21 are excitatory, the same is

assumed for the feedback connections f bW (2) from 19/21 to 17/18. In order to

further simplify the model, we assume that W (1) = W (2):
J (1)(x) = 2π

λ1

(
−J0 + J2e

− |x|
λ1

)
,

J (2)(x) = 2π
λ2

(
−J0 + J2e

− |x|
λ2

)
, λ2 = 2λ1

W (1) = W (2) = 2π
α e
− |x|
α

(7.2)

x

x

x

Figure 7.1: The network architecture. The two interacting fields are indicated by the

ellipses. The feedforward connections are plotted in red, the feedback connections

are in green. The intra-cortical connectivities J (1), J (2) are also shown in the right

part of the figure.
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We take, as in [Deco 2010], a delay of τ1 = 4ms for the feedforward connections

and a delay of τ2 = 8ms for the feedback connections. The time constant of each

population is assumed to be τ = 10ms. Finally, only the area 17/19 border receives

an external input from the LGN. Hence, the area 19/21 only sees the stimulation

through the area 17/18. The external input is

Iext(x) = ε

(
1− β + βe

− (x−x0)2

µ

)
(7.3)

where ε is the contrast, β is the anisotropy, µ is the spread of the sensorial input

and x0 is the position at which the external stimulus is presented.

The transfer function is S(x) = 1
1+e−σx+h − 1

1+eh
where σ is the nonlinear gain

and h is the threshold. Compared to the choice of a semi-linear function as in

[Deco 2010], our choice has the advantage of the regularity which allows the use of

normal form theory. In our case, there is the disadvantage that S(x) < 0 if x < 0

but note that it does not reduce the generality of our study as we are looking for a

mechanism and not for precise values of the membrane potentials A(1), A(2). Hence,

the network has the trivial stationary solution (A(1), A(2)) = (0, 0).

Remark 29.The numerical applications use the following set of parameters λ2 =

2λ1 = 0.6, α = 0.4, τ1 = 4ms, τ2 = 8ms, τ = 10ms, J0 = 0.2, J2 = 0.9, f b =

0.16, θ = 0, λ = 0.192.

7.3 Parameter tuning

Let us recall the experimental setup. A stimulus is presented at position x1 which

elicits a stationary cortical response. Then, the stimulation is switched off for an

inter-stimulus interval ∆t (of the order of several 100ms) after which a stimulus is

presented at position x2. The apparent motion comes from the interaction of the

cortical activity at time t = ∆t with the new incoming stimulation at position x2

(see also [Jancke 2004, Bringuier 1999] for a similar argument in the cat and the

macaque). Hence, during the interval ∆t, the cortical activity must not return to

the trivial resting state. This suggests that the network has slow dynamics, indeed

the inter-stimulus interval ∆t is much larger than the intrinsic decay time τ of the

populations ∆t >> τ . As a consequence, the trivial state must be slow to reach

and thus, the Jacobian of (7.1) at the trivial state should be close to singular, i.e.

have a zero eigenvalue. We conclude that the network must be working at the edge

of a static bifurcation.

We look for the (bifurcation) curves2 in the plane (J2, f
b) where the trivial

stationary state produces a static bifurcation. Finding these curves with the com-

munication delays τ1, τ2 is not an easy task3. Hence, we start by assuming that

these delays are null τ1 = τ2 = 0. We will see in the next section 7.4 the impact,

2there are many of them.
3at least analytically.
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on the network behaviour, of the introduction of communication delays. The com-

putation of the bifurcation curves is done in appendix D. The result is that these

curves are parabolas noted Pn. They are plotted in figure 7.2.

0 0.05 0.1 0.15 0.2 0.25
0

0.001

0.002

0.003

0.004

0.005

0.006

Figure 7.2: plot of the bifurcation curves Pn given in appendix D. The grey region

is the working range of the model where it produces AM . The intersection between

the first parabola P1 and the J2-axis is marked with a black dot. S′(0) > 0 is the

derivative of the nonlinear function S at 0.

For parameters (J2, f
b) that lie above one of the parabolas Pn, the network pro-

duces non-trivial spontaneous activity (i.e. when the contrast ε of the external input

equal to zero ε = 0). This is not the working range of the model because no spon-

taneous activity is seen in the experimental data (see [Deco 2010, Ahmed 2008]).

Hence, the parameters must be adjusted such that (J2, f
b) lies just under the first

parabola which is written P1 in figure 7.2. The grey region in figure 7.2 is the

working range of the network. Notice that there is a small region near the black

dot where the AM could be produced by the network without feedback f b = 0 from

the area 19/21.

7.4 Effect of communication delays and feedback

Let us start with the discussion about the feedback. From the expression of the

eigenvalues given in appendix D, it can be shown that a decrease of the feedback

to zero increases the speed of the dynamics (except at the parameter point marked

by a black dot in figure 7.2), the model cannot produce the AM anymore because

it is too fast.

We have designed the model to work near a Pitchfork bifurcation4 because the

network is slow in this case. If we add small communication delays, we have shown

4in effect, a O(2)-Pitchfork bifurcation
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in 5.2.2.1 that this amounts to rescale time near a Pitchfork bifurcation:

t→ t

1 + S′(0)Ŵ1(f bτ2 + τ1)
, (7.4)

where S′(0) > 0 is the derivative of the nonlinear function S at 0 and Ŵ1 ≈ 4π
1+α2 ≈

4π (see appendix D). This time rescaling slows down the dynamics when adding

the delays. Indeed, the convergence to the zero stationary states is proportional

to e
−

β1,+t

1+S′(0)Ŵ1(fbτ2+τ1) , for some positive coefficient5 β1,+ > 0, instead of e−β1,+t: if

we remove the delays, the dynamics are too fast to produce AM. Also, note that

we can compensate small delays τi by strong feedback f b in the previous formula

(7.4). The simple formula (7.4) has the advantage, over numerical computation,

to give the precise relationship between the dynamics and all the parameters. In

particular, the precise value of f b, τ1, τ2 is irrelevant, what matters is the quantity

f bτ2 + τ1.

7.5 Effect of the intra-cortical propagation delays

If we consider intra-cortical propagation delays in each area, we can also use the

result in section 7.4 to find the time rescaling near the Pitchfork bifurcation. The

propagation delays are modelled by changing in (7.1)
π∫
−π

J (1)(x − y)A(1)(y, t)dy to

π∫
−π

J (1)(x−y)A(1)(y, t− 1
vpropa

|x−y|)dy and
π∫
−π

J (2)(x−y)A(2)(y, t)dy to
π∫
−π

J (2)(x−

y)A(2)(y, t− 1
vpropa

|x− y|)dy. Hence, we assume that the propagation speed vpropa
is the same in each area. Then, we find that the time rescaling is now given by:

t→ t

1 + S′(0)Ŵ1(f bτ2 + τ1) + S′(0)D(λ1)+D(λ2)
vpropa

, (7.5)

where D(λ) is a function of λ which is given in appendix D. It is positive for

λ1, λ2 < 1, hence the intra-cortical propagation delays favour production of the

AM.

7.6 Study of oscillatory patterns

It is known that delays can produce time-oscillations6 (see for example Part III).

It is an unsatisfactory behaviour in the present model because it is not seen in

the experiments. Hence, we investigate whether it is possible to produce time-

oscillations by increasing the constant delays τi or by changing the intra-cortical

propagation speed vpropa. There are basically two mechanisms to produce these

5given in appendix D. It is the largest eigenvalue of the linearised equations around V = 0.
6Not considered in [Deco 2010].
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oscillations with delays near bifurcations: by the Bogdanov-Takens bifurcation or

by the Hopf bifurcation.

From lemma 4.6.4, we see that the model cannot produce the Bogdanov-Takens

bifurcation because S′(0)Ŵ1(f bτ2 + τ1) + S′(0)D(λ1)+D(λ2)
vpropa

> 0.

The case of the Hopf bifurcation is investigated in appendix D. The result is that

a Hopf bifurcation is possible strictly above the parabola P1 in the parameter plane

(J2, f
b). Hence, under the working assumption of the model, no time-oscillations

patterns can be produced with the inter-cortical delays (τ1, τ2). We have not com-

puted the Hopf bifurcation curves produced by the intra-cortical propagation delays

in order to keep the present study short. It should be noted that the analytical for-

mula in proposition 4.4.5 only applies when the two constant delays τi are zeros:

τ1 = τ2 = 0.

7.7 Study of the apparent speed/contrast relationship

Close to the bifurcation point where the model is working, we can predict cortical

responses to stimuli. It is shown in appendix D that if the cortical response is

modeled by A(1)(x, t) = A(x− ω0t) for some function A peaked around 0, then we

can estimate the speed ω0. This is done in the case where the contrast ε is small.

The result is

ω0 ∝
εβ

(1 + S′(0)Ŵ1(f bτ2 + τ1))

Hence, an increase of the contrast ε gives an increase of the apparent motion veloc-

ity. The same is true for a decrease of the delays τi. Note that the above formula

is valid for εβ << 1.

7.8 Conclusion

In this chapter, we have studied analytically the model of Deco et al. of long-range

AM. There are two main assumptions in this model:

• two areas 17/18 and 19/21 with divergent inter-connections are necessary for

the perception of the long-range apparent motion,

• the network works near a static bifurcation.

The first assumption tells what is necessary for the model to reproduce the AM

while the second hypothesis tells where (in the parameter domain) the model can

produce the AM. The second assumption is necessary for the network to sustain

a localized activity during the inter-stimulus interval which can interact with the

upcoming afferent input from the second stimulus. The second assumption has very

strong implications but we think that its major consequence lies in the normal form

theory (see part III). Any system of ordinary differential equations, or model, with

or without delays, which works close to a static bifurcation such as the one we have
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studied here, can be simplified into two polynomials equations of degree three (see

appendix D). For example, we could consider two excitatory/inhibitory populations

in each cortical area in order to use more realistic connectivities than the one of

the model, it would still produce the same system of two polynomials equations of

degree three. This is apparent for example in (7.4), where we can compensate a

decrease of a parameter by the increase of another one. In a way, the model is still

over-parametrized.

This model can certainly be further generalized in at least three directions. The

first is to apply the model to the macaque by using the specific (to macaques)

parameters that we can infer from [Albright 1987].

The second is to incorporate the contrast saturation mechanism (see

[Stetter 2000, Stetter 2002]). When the contrast of the stimulus is increased, the

response of the network saturates. It is a property of the population and not of

the neuron7. Therefore, it is not explained by the fact that the nonlinear transfer

function S is bounded. Rather, it should come from the different properties of

excitatory/inhibitory populations. At small contrasts, only the excitatory neurons

are recruited whereas at high contrasts, the inhibitory neurons are recruited, which

damps the overall network response. The primary visual cortex is known to exhibit

contrast saturation. Hence, it would be interesting to make the Deco model account

for contrast saturation.

Finally, the third extension is to change the form of the feedforward/feedback

expressions. Indeed, it is implied by [Hupé 1998], that the feedback connections are

only modulatory and that they modulate the firing rate of the targeted neurons,

i.e. the response above threshold of the neurons. Hence, we would have to consider

a feedback of the form
∫
W (2)(x − y)(C + A(2)(y, t − τ1))A(1)(y, t)dy. Another

choice of interaction amounts to modulate the afferent input from the LGN as

in Iext(1 + CA(2)(y, t − τ1)) (see [Bayerl 2004, Sillito 2006]). In any case, these

simple models are meant to give a hint of the working range and to express basic

principles such as working close to a static bifurcation. We strongly believe that the

tools developed in the two previous parts can help to further simplify their study.

7The characteristics of the neurons of a given population appears in the sigmoidal transfer

function.
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Chapter 8

General Introduction

We arrive at the last part of the Thesis, the one concerned with the models. We

wish to apply the tools developed in the two previous parts to rate models with an

emphasis on biology. As a consequence, the style of writing changes: the mathemat-

ics are less detailed, the technical parts are put in appendix or referenced from the

other chapters. The goal of this part is to use the mathematics we have developed

to make predictions. In effect, we want to explore the biological implications of

some parameter sets for the neural fields model. In particular, we will study three

neural fields models that operate near a Pitchfork bifurcation. Note that we have

already analysed this idea in section 3.5 and in chapter 7.

8.1 The mechanism of Ben-Yishai et al.

We focus essentially on the study of orientation selectivity, especially the property

that the tuning width of V1 simple cells in cats is contrast invariant. We have

already discussed in chapter 1 the two classes of models that have been developed

to account for this property. Here, we analyse the class of recurrent models, i.e.

the one that assumes that the LGN input provides a weakly tuned signal to the

cortex. This signal is sharpened by recurrent intra-cortical connections. To be a

bit more specific, let us consider a neural field model over a two-dimensional cortex

(see chapter 2):

τ
d

dt
V (x, t) = −V (x, t) +

∫
Ω
J(x,y)S [σV (y, t)] dy + εIext(x, t) (8.1)

where V (x, t) is the membrane potential a location x at time t, τ is the intrinsic

time constant of the neuronal population, J(x,y) are the intra-cortical connections,

S is the firing rate transfer function, σ is the nonlinear gain, εIext(x) is the LGN

input at location x and ε is the contrast of the stimulus1. To agree with biology,

the connectivity is chosen homogeneous in a first approximation, i.e. J(x,y) =

J(x− y). Note that this implies that we neglect the long-range connections2. As a

consequence, for a space constant input3, there exists a space-constant stationary

membrane potential V (x) ≡ v0 for any set of parameters. Recall that, by definition,

a stationary solution satisfies (see chapter 3 for more properties):

0 = −V (x) +

∫
Ω
J(x,y)S [σV (y)] dy + εIext(x) (8.2)

1To be correct, the ε constant is related in a monotone way to the stimulus contrast, but we

assume that they are the same to simplify the study.
2but see chapter 11.
3in particular, it is true when there is no input
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where the LGN input is stationary. The constant solution v0 is usually called

untuned because it has no particular spatial structure. From now on, we assume that

there is only one population and that the connectivity J is effective (see section 2.3

for an explanation).

Let us assume that Iθext(x) represents a grating oriented at θ, then the cortical

response V θ,ε(x) to this stimulus is a stable stationary solution of (8.2). It is not

evident, and in fact it is not true in general, that there exists a unique stationary

cortical response to this stimulus. Hence, at each location x, we have a firing rate

tuning curve (see definition 1.3.1) TCx defined as

TCx(θ, ε) = S
[
σV θ,ε(x)

]
.

We know from biology that, as a function of the orientation θ, the tuning curve is

unimodal, i.e. has a unique maximum for a particular orientation θ(x) called the

preferred orientation. Also, the tuning curve width at half-height is independent of

the contrast ε. How can this be possible? At this stage, it is very important to note

that the experimental tuning curves at each location x can be well approximated by

S(A+B cos(θ − θ0)), θ0 being the preferred angle of the simple cell, for some well

chosen coefficients A,B. In the 90s, Ben-Yishai et al. discovered a mechanism (see

[Ben-Yishai 1995]) that we shall describe. The main idea is to set the parameters

such that the model works close to a static bifurcation point as we explain below.

Imagine that for no stimulus, ε = 0, the network can spontaneously produce

a tuned stationary activity V f (x) that is very close to the experimental

tuning curve. The parameters have to be adjusted for this to happen, otherwise

the spontaneous activity is the untuned one v0. Moreover, if the nonlinear gain

is small, the untuned activity is the only stationary solution. We decompose the

tuned spontaneous activity into a constant activity v0 and a tuned activity v1(x)

of zero spatial mean:

V f (x) = v0 + v1(x),

If we require that S [σ(v0 + v1(x))] looks like an experimental tuning curve, we are

faced with the problem that there is no analogue of the stimulus orientation θ in the

theoretical tuning curve S [σ(v0 + v1(x))]. The network must therefore be able to

spontaneously produce a continuum of tuned activities that are labelled for example

by an angle θ, namely V f,θ(x). As the orientation is an angle, it means that the set

of spontaneous tuned activities must be homeomorphic to a circle. Now, we can go

back to the tuning width invariance. What happens if we stimulate the network?

In the recurrent models, the LGN input is assumed to be weakly tuned, i.e. we can

write

I
θaff
ext (x) = I0 + I

θaff
1 (x)

with a small tuned component I
θaff
1 and where θaff is the stimulus orientation.

What will be the network response to this stimulus? At small contrasts ε, according

to (8.2), the cortical response will be a perturbation of the spontaneous activity,

hence the dependency of the tuning properties of the response on the contrast will
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be small. Also, the cortex will select among its spontaneous responses, the one that

match the best the LGN input, i.e. it will try to select a θ that is consistent with

θaff .

This mechanism raises four issues, two being mathematical, and two biological.

The two mathematical questions are 1) can we adjust the parameters in order for

(8.2) to produce tuned spontaneous solutions? and 2) can we make the number

of solutions of (8.2) infinite? From a biological viewpoint, it seems unsatisfactory

for the network to feature a high cortical activity when no inputs is present, it

is a waste of energy. The first biological issue is how can we modify the above

mechanism to remove the spontaneous activity? This will be done in chapter 9

where we show a solution that naturally introduce a perception threshold . This

perception threshold is shared by the three models studied in this part of the Thesis

although it will be only studied in the next chapter 9. The second biological issue

regards the dependency of the tuning width on high contrasts. Again this will be

only thoroughly studied in the next chapter, it is linked to the perception threshold.

It turns out that the second mathematical issue is solved as a consequence

of the connectivity being invariant by a continuous group of symmetries like the

translations or the rotations. Indeed, in this case, any translation (for example) of a

spontaneous tuned activity is also a spontaneous tuned activity. Let us show how to

solve the first mathematical issue using bifurcation theory. We consider the untuned

activity v0 solution of (8.2) as a function of the nonlinear gain σ (for example). As

we vary the nonlinear gain, tuned solutions may exist for a particular value of the

nonlinear gain σ0 called a (static) bifurcation point (see definition A.0.1). That is,

we can find a curve of solutions parametrized by σ σ → V f
σ (x) which intersects the

curve of untuned solutions, such that V f
σ0(x) = v0(σ0), the tuned solution is said

to bifurcate at σ0. How can this be detected? This happens when the linearised

equation (8.3) of (8.1) around the untuned solution v0 has non-zero time constant

solutions.

τ
d

dt
U(x, t) = −U(x, t) + σ0S

′ [σ0v(σ0)]

∫
Ω
J(x,y)U(y, t)dy (8.3)

where S′ is the differential of S. A time constant U(x) solution of (8.3) satisfies

0 = −U(x) + σ0S
′ [σ0v(σ0)]

∫
Ω
J(x,y)U(y)dy (8.4)

written
1

σ0S′ [σ0v(σ0)]
U(x) =

∫
Ω
J(x,y)U(y)dy (8.5)

which is called an eigenvalue problem. Indeed, if a non-zero (also called non-trivial)

solution exist, it is an eigenvector of the integral operation (think of the right-hand

side as a matrix-vector product between J and U). The eigenvalues λn, n ∈ N, and

eigenvector Un(x) of J can be computed in advance, they satisfy

λnUn(x) =

∫
Ω
J(x,y)Un(y, t)dy. (8.6)



178 Chapter 8. General Introduction

The Un are the only possible solutions of (8.3), hence the bifurcation point σ0 must

solve:
1

σ0S′ [σ0v(σ0)]
= λn (8.7)

for a particular value of the index n. Note that this equation has usually a finite

number of solutions. We are now very close to solve the first mathematical issue.

Indeed, let us say that we have detected a bifurcation point σ0 corresponding to

a time constant solution Un0 . Then, for a nonlinear gain close to the bifurcation

point σ0, σ ≈ σ0, the spontaneous stationary solutions of (8.1) for ε = 0 are given4

by

V f (x) =

{
v0(σ0) if σ ≈ σ0

v0(σ0) + f(σ − σ0)Un0(x) if σ ≥ σ0
(8.8)

for a particular function f(σ − σ0) which can be computed. Hence, the tuned

component of the cortical activity is given by f(σ − σ0)Un0(x). We have identified

the spontaneous activity if the nonlinear gain σ is close to σ0: it is tuned only if

σ > σ0.

What happens if we present a stimulus? The LGN input will affect the sponta-

neous activity only if its tuned component I1(x) looks like5 the tuned component

Un0 of the spontaneous activity.

To summarize, we require the spontaneous tuned activity

S [σ0(v0(σ0) + f(σ − σ0)Un0(x))] to look like the experimental tuning curves.

It implies to find the corresponding eigenvector Un0(x) by an educated choice.

This, in turn, sets the bifurcation point σ0 according to (8.7) and the nonlinear

gain σ ≈ σ0. Furthermore, the LGN input is assumed to be:

Iext(x) = I0 + I1Un0(x) + I2(x) (8.9)

with I1, I2 small without further assumptions. Hence, the requirement of match-

ing experimental tuning curves through a static bifurcation scenario basically sets

the form of the external input and the connectivity (see chapter 10 for another

derivation). As seen above, the parameters of the tuning curves will have a weak

dependency on the external input contrast.

In the next chapters, we study in detail this mechanism and show that it features

emergent behaviours that were not explicitly incorporated in the design of the

model(s).

8.2 The three models

The Ring Model of orientation tuning is a bit different from the model we have con-

sidered in (8.1) in that it is not a model over the 2D cortex but over the orientation

4Note that other possibilities are possible, i.e. when the bifurcated solution exist for σ < σ0 or

also for σ ≈ σ0.
5To be more precise, they need to have a non-zero scalar product
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domain. More precisely, it assumes that the activity is a function of the orientation

θ and not a function of the cortical position x as in (8.1). Hence, the connectivity is

defined between two orientations θ, θ̄. Almost no biological evidence supports the

fact that the connectivity is only orientation dependent6. It should be understood

as an effective connectivity as in the case where we suppose that the connectivity is

locally excitatory and laterally inhibitory in contradiction with biological data (see

section 2.3 for a derivation of the effective connectivity in the cortical space). The

Ring Model is a model of hypercolumn (see figure 8.1) which assumes that all the

neurons sharing the same preferred orientation, hence located on a polar ray (black

line), have a similar cortical activity A(θ, t).

0

0

Figure 8.1: Representation of a hypercolumn centred on a pinwheel (black dot).

The colour gives the preferred orientation of the cells located on the cortex at the

point x of coordinates (x1, x2) (phase arbitrary): it only depends on the polar angle

θ.

Let us show how we can derive a feature dependent, effective, connectivity. We

start with one population V (x, t) spread over the hypercolumn with an effective

connectivity J(‖x− y‖2) as explained in section 2.3. The spontaneous stationary

activity solves:

d

dt
V (x, t) + V (x, t) =

∫
Ω
J(‖x− y‖2)S [σV (y, t)] dy (8.10)

Next, we introduce the following quantities which are similar to weighted means of

the membrane potential along polar rays:

V (θ, t) ≡
∫ 1

0 rV (r, θ, t)dr (8.11)

where x = (r cos θ, r sin θ) ≡ (r, θ). As we are working close to the pinwheel located

6More generally, we speak of a feature dependent connectivity when it depends on a feature

like orientation, spatial phases, texture... This type of connectivity is difficult to support from a

biological viewpoint. They are usually assumed to implement Gestalt principles.
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at x = 0, we consider the Taylor expansion of the connectivity7

J(‖x− y‖2) = J0 +J1 ‖x− y‖22 +h.o.t. = J0 +J1

(
r2 + r̄2 − 2rr̄ cos(θ − θ̄)

)
+h.o.t.

(8.12)

where we have used polar coordinates and y ≡ (r̄, θ̄). Then, we find:

d

dt
V (x)+V (x) = (J0+r2J1)

∫
Ω
r̄S
[
σV (r̄, θ̄, t)

]
dr̄dθ̄+J1

∫
Ω
r̄3S

[
σV (r̄, θ̄, t)

]
dr̄dθ̄

− 2rJ1

∫
Ω
r̄2 cos(θ − θ̄)S

[
σV (r̄, θ̄)

]
dr̄dθ̄.

As r → V (r, θ) is assumed to be almost constant, we approximate

2
∫ 1

0 r̄S
[
σV (r̄, θ̄, t)

]
dr̄ ≈ 4

∫ 1
0 r̄

3S
[
σV (r̄, θ̄, t)

]
dr̄ ≈ S(2σV (θ̄, t)) By integrating the

previous equation on polar rays, it gives:

d

dt
V (θ, t) + V (θ, t) = π

(
J0

2
+
J1

3
+
J1

4

)∫ π

−π
S(2σV (θ, t))dθ̄

− J1

3

∫ π

−π
cos(θ − θ̄)S(2σV (θ, t))dθ̄

Finally, by adding the LGN input, we find the equation:

d

dt
V (θ, t) + V (θ, t) =

∫ π

−π

[
J0 + J1 cos(θ − θ̄)

]
S(2σV (θ, t))dθ̄ + Iext(θ, t). (8.13)

where J0 = π
(
J0
2 + J1

3 + J1
4

)
, J1 = −J1

3 . The external input is chosen according to

(8.9), Iext(θ, t) = ε(1+β cos(2(θ−θaff (t))). We have found an effective connectivity

J0 + J1 cos(θ − θ̄) in the orientation domain for the weighted mean V : this is the

connectivity used in the Ring Model of a hypercolumn that will be studied in

chapter 9. Note that we can apply the mechanism of Ben-Yishai et al. , described

above, to (8.13) even if it has only one “spatial” dimension whereas we explained

it for a 2D cortex. A variant of (8.13) exists:

d

dt
A(θ, t) +A(θ, t) = S

[
2σ

(∫ π

−π

[
J0 + J1 cos(θ − θ̄)

]
A(θ, t))dθ̄ + Iext(θ, t)

)]
,

(8.14)

it is equivalent to (8.13) if Iext is stationary. It can be derived using the same

approximations from an activity based version of (8.10).

The main feature of the Ring Model is the presence of excitatory connections

between similar preferred orientations and inhibitory ones between distinct orien-

tations. Hence, given an orientation map θ(x) like in figure 1.3 Bottom, we can

generalise (8.13) to a network of pinwheels encoded in an orientation map θ(x):

d

dt
V (x, t) + V (x, t) =

∫ π

−π

[
J0 + J1 cos(θ(x)− θ(y))

]
S(2σV (y, t))dy + Iext(x, t).

(8.15)

7h.o.t. means higher order terms.
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This is almost8 the Blumenfeld et al. model that we will study in chapter 10, it will

feature many of the Ring-Model properties.

Finally, one may wonder why we should consider (8.13) whereas we know that

an homogeneous connectivity like J(x−y) is more biologically relevant. The reason

is mainly mathematical: the two equations (8.13), (8.15) can be reduced exactly

to three equations in three unknown functions of time, eliminating the variable θ,

see chapter 9. Thus, these low dimensional systems can be thoroughly studied.

Nevertheless, it is not clear that the approximations made at the beginning of this

section work very well. This is why we will consider a more plausible V1 model in

the last chapter 11 of this Thesis and see how the mechanism of section 8.1 applies.

Moreover, this last approach will allow to study the influence of space-dependent

delays, a much more difficult endeavour for (8.15). Finally, we will consider the

long-range connections and how they impact the network behaviours.

8We will see in chapter 10 that the selectivity is also incorporated in the model.





Chapter 9

Illusory persistent states in the

Ring Model of visual

orientation selectivity

In this chapter, we study in detail the Ring Model equation (8.13). We investigate
the mechanism explained in the previous chapter and characterize the dependency
of the tuning curves on the different parameters. We consider more general
connectivities than in (8.13) and study how they influence the tuning curves.
Their computation is difficult because equation (8.13) has a lot of symmetries.
Once it is completed, we study how the width of the tuning curves varies with the
contrast. This dependency naturally introduces a perception threshold.
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The Ring Model of orientation tuning is a dynamical model of a hypercolumn of

visual area V1 in the human neocortex. It has been designed to account for the ex-

perimentally observed orientation tuning curves (see definition 1.3.1) by local, i.e.,

cortico-cortical computations. The tuning curves are stationary, i.e. time indepen-

dent, solutions of this dynamical model. One important assumption underlying the

Ring Model is that the LGN input to V1 is weakly tuned to the retinal orientation

and that it is the local computations in V1 that sharpen this tuning. Because the

equations that describe the Ring Model have built-in symmetry properties in the

synaptic weight distribution, the model in effect encodes an infinite number of tun-

ing curves that are arbitrarily translated with respect to each other. By using the

Orbit Space Reduction technique, we rewrite the model equations in canonical form

as functions of polynomials that are invariant by the symmetries. This allows us

to combine equivariant1 bifurcation theory with an efficient numerical continuation

method in order to compute the tuning curves of the Ring Model. Surprisingly

some of these tuning curves are not tuned to the stimulus. We interpret them as

neural illusory persistent states and show numerically how they can be induced by

simple dynamical stimuli. These neural illusory persistent states are important bio-

logical predictions of the model. They correspond to a remarkable behaviour of the

model as consequence of its working regime. This behaviour should be observed

in any model with the same working range, in this sense, it is generic. We also

show how our theoretical analysis allows to very simply specify the ranges of all the

model parameters by comparing the model predictions with published experimental

observations.

9.1 Introduction

9.1.1 Chronology

Since the discovery by Hubel and Wiesel [Hubel 1962] of the selective response

of a single neuron to some orientations, a long-standing debate has taken place

about the degree of cortical computation involved in this selectivity compared

to the feedforward selectivity implied by the LGN projections. Cortical models

[Somers 1995, Ben-Yishai 1995, Hansel 1997] have been used to show how this se-

lectivity can be produced in a cortex with center-surround interactions in the orien-

tation domain and to reproduce the interactions between contrast and orientation

selectivity (see [Dean 1981, Sclar 1982, Skottun 1987, Alitto 2004]). In particular,

they were designed so that their predictions agree with the fact that the amplitude

of the tuning curves increases with contrast whereas their width remains constant.

The Ring Model of orientation tuning was introduced by Hansel and Sompolinski

[Hansel 1997] and studied by several other scientists [Shriki 2003, Ermentrout 1998,

Dayan 2001b, Bressloff 2000, Bressloff 2001b], after the seminal work of Ben-Yishai

1This is defined in section 9.1.4.
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and colleagues [Ben-Yishai 1995], as a model of a hypercolumn in primary visual

cortex. This rate model is a simplification of complex spiking networks models

[Somers 1995, Douglas 1995, Carandini 1997] that were designed to make it easier

to understand the role of several mesoscopic parameters.

9.1.2 Modelling with neural fields equations

The rate model assumes that the local orientation θ in the receptive fields of the

neurons in the column, is encoded in their activity, or firing rate, noted A(θ, t). The

interaction between the neurons is modeled by a function J of the orientation that

represents how the activities corresponding to two different orientations reinforce

or inhibit each other. This function is called the connectivity function of the model.

With this in mind, the dynamics of the firing rate can be represented by the neural

field equations, a slight generalization of (8.14). Note that the orientation domain

spans (−π/2, π/2) and not (−π, π) as the direction domain. τȦ(θ, t) = −A(θ, t) + S

[
σ

(
π/2∫
−π/2

J(θ − θ̄)A(θ̄, t))dθ̄π + εIext(θ, t)

)]
t > 0

A(θ, 0) = A0(θ)
(9.1)

τ defines the intrinsic dynamics of the population and Iext is the input from the

lateral geniculate nucleus (LGN) to the hypercolumn whose contrast is defined by

the parameter ε, see figure 9.1. S is the sigmoidal function

S(x) =
1

1 + e−x+T
,

σ is a parameter that determines the nonlinear gain of the sigmoid, T is a threshold

that, together with σ, controls for which value the sigmoid takes the value 1/2.

Remark 30.The convention in the literature is to take σT for the threshold in-

stead of T . We found it mathematically more convenient to use our scaling, the

scope of the analysis is not reduced because we also vary T as a parameter.

9.1.3 Parametrization of the external input and of the connectivity func-
tion

We have seen in chapter 8 how to build an effective connectivity that only depends

on the angle θ. As a consequence of our derivation, the effective connectivity is

periodic. From a biological point of vue, it is reasonable to assume that the cortex

processes the different orientations equally: this is translated by the connectivity

function J(θ) being π-periodic. Also, in the derivation of the effective connectivity

J(θ) in the previous chapter, we used a first order Taylor expansion of J(‖r− r̄‖2)

in (8.12). If we had use a better Taylor approximation, it would have introduced

powers of cosines cos(θ − θ̄)k which can be transformed in cosines cos(p(θ − θ̄)) for

some integer p. Thus, by using a better approximation than (8.12), it yields an
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retina LGN hypercolumn

P

Figure 9.1: A simplified view of the visual path from the retina through the LGN

to cortical area V1. The receptive field of the LGN cells feeding the hypercolumn of

orientation of V1 contains a grating of orientation θ0. This grating excites mostly

the LGN cells that share this receptive field and are aligned in the direction θ0; the

tuning is broad, see the curve in the middle part of the figure. These LGN cells

project onto the network of cells in the hypercolumn of orientation of V1 whose

interactions, represented by the Ring Model, result in a sharpening of the tuning

around the grating direction, see the curve in the righthand side of the figure.

The hypercolumn is centered on a pinwheel P and the colour encodes the prefered

orientation of the cells in the nearby columns.

effective connectivity as a sum of cosines cos(p(θ − θ̄)). Hence, we assume J is an

even π-periodic function.

Several variants of this model have been studied in the literature, e.g.,

in [Bressloff 2000, Bressloff 2001b] J is a difference of Gaussians while in

[Ben-Yishai 1995] the authors start with a network of excitatory/inhibitory spiking

neurons and derive a mean field approximation of this network yielding a connec-

tivity function J described by:

J(θ) = J0 + J1 cos(2θ) (9.2)

This is obtained by taking the first two Fourier modes of the periodic function J .

The input Iext from the LGN in response to a drifting grating (DG) has a similar

shape

Iext(θ) = 1− β + β cos(2(θ − θaff )). (9.3)

As mentioned above, and as shown in figure 9.1, it is weakly tuned, i.e., maximal,

at θ = θaff and it is the network, modeled by (9.1), that sharpens this tuning. The

anisotropy β > 0 is a parameter that adjusts how weak the input is tuned.

Remark 31.Note that the general shape of Iext does not matter much. Indeed,

in the following study, we will approximate J by the truncation of its Fourier ex-

pansion. This naturally produces a PG-kernel (see definition 3.4.2). The network

can then be described, without approximation for the stationary states, by ordinary

differential equations (see section 3.4.2). In these equations, what only matters is
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the projection of the external input Iext on the cosine modes in the expression for

J . This is why we can assume the shape (9.3) for the input:

Iext(θ) =

N∑
p=0

Ip cos(2kp(θ − θaff )). (9.4)

where N is the number of Fourier modes in the truncation of the Fourier series of

J .

The sigmoid S is often replaced by a Heaviside function, or, as in

[Ben-Yishai 1995, Hansel 1997], by a piecewise linear approximation of the sig-

moid which forbids the use of bifurcation theory because these approximations

are not differentiable. Indeed, we have seen in the previous chapter that we need

to study a linearized equation (8.3) which requires to differentiate the sigmoid. In

[Ermentrout 1998, Dayan 2001b, Bressloff 2000] it is a true sigmoidal function.

The parameter J1 is positive, an important property of the network that

is necessary to produce the tuning curves. J0 is most of the time negative

[Ben-Yishai 1995, Dayan 2001b, Bressloff 2000, Bressloff 2001b] but can be posi-

tive as well [Bressloff 2001b]. For example, we find the following values:

Paper J0 J1 β T

[Dayan 2001b] −7.3 11 0.1 0

[Ben-Yishai 1995] −7.3 11 0.164 1

Rescaling the values of the parameters by |J0|, we find:

Paper J0 J1 β T

[Dayan 2001b] −1 1.5 0.1 0

[Ben-Yishai 1995] −1 1.5 0.164 0.1

9.1.4 Symmetries of the cortical network

The symmetries of J play a prominent role in our upcoming analysis of the Ring

Model. The reason for this is that, when the contrast ε is equal to 0, equation

(9.1), is equivariant (see [Golubitsky 1984, Chossat 2000, Haragus 2010] and defi-

nition A.0.2), i.e. it has some nice properties with respect to the action of a certain

group that we proceed to describe.

Let us consider the group of translations of R modulo 2π. An element Tγ ,

γ ∈ [0, 2π) of this group2 acts on the orientation θ by Tγ · θ = γ/2 + θ and on the

activity function A(θ, t) by Tγ · A(θ, t) = A(γ/2 + θ, t). Similarly, we consider the

reflection, noted R, such that R · θ = −θ and therefore R ·A(θ, t) = A(−θ, t). G is

the group generated by the Tγ , γ ∈ [0, 2π) and R: G ≡ 〈Tγ , R〉. Observe that the

elements of G further satisfy the following relations:{
Tγ1Tγ2 = Tγ1+γ2 RTγ = T−γR for all γ1, γ2, γ ∈ R/2πZ
T0 = Id R2 = Id

2γ ∈ [0, 2π] because 2π is equivalent to 0
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the group G is, in effect, isomorphic to O(2), the group of two-dimensional orthog-

onal transformations [Haragus 2010, Chapter 1].

Let us examine how this group acts on the equation (9.1). We can abstractly

rewrite equation (9.1) as F(A) = 0, where

F(A) = τȦ(θ, t) +A(θ, t)− S

σ( π/2∫
−π/2

J(θ − θ̄)A(θ̄, t))
dθ̄

π
+ εIext(θ, t)

) .
In the case when there is no stimulus (ε = 0), it is useful to note that F commutes

with Tγ because J is periodic and that F commutes with R because J is even. This

reads 3:

when ε = 0, F(g ·A) = g · F(A), ∀g ∈ G
These two fundamental properties of the connectivity are directly translated

into properties of the network. The fundamental consequence is that, because of

these symmetries, the network is ready to process the different grating orientations

equally.

We say that the model is G-equivariant when ε = 0 (see definition A.0.2).

We will see in the next chapter what happens if the connectivity does not possess

these symmetries.

What happens when there is a stimulus, i.e. when ε > 0? We already know

the integral term in F is G-equivariant. Hence the equivariance of F when ε > 0

amounts4 to the invariance of g · Iext = Iext. What are the elements of G which

leave Iext invariant? The only possible invariance comes from Iext in (9.4) being an

even function of θ − θaff . It yields the invariance by the reflexion around the axis

θ = θaff . Hence, if we define this reflexion by

R̃ = T2θaffRT−2θaff ,

we find5 that

R̃ · Iext = Iext.

Hence, when the input is switched on, the symmetry group of the model reduces

to the subgroup Z2 of G with two elements generated by R̃. This phenomenon is

called symmetry breaking. We call R̃ the residual symmetry .

3For example Tγ · F(A) = τȦ( γ
2

+ θ, t) +A( γ
2

+ θ, t)−S

[
σ
( π/2∫
−π/2

J( γ
2

+ θ − θ̄)A(θ̄, t)) dθ̄
π

)]
and

F(Tγ ·A) = τȦ( γ
2

+ θ, t) +A( γ
2

+ θ, t)− S

[
σ
( π/2∫
−π/2

J(θ − θ̄)A( γ
2

+ θ̄, t)) dθ̄
π

)]
are equal because A

and J are π-periodic.
4Indeed, for example

Tγ · F(A) = τȦ( γ
2

+ θ, t) + A( γ
2

+ θ, t) − S

[
σ
( π/2∫
−π/2

J( γ
2

+ θ − θ̄)A(θ̄, t)) dθ̄
π

)
+ εIext(θ + γ

2
)
)]

and

F(Tγ ·A) = τȦ( γ
2

+θ, t)+A( γ
2

+θ, t)−S

[
σ
( π/2∫
−π/2

J(θ − θ̄)A( γ
2

+ θ̄, t)) dθ̄
π

+ εIext(θ)
)]

are equal

if Tγ · Iext(θ) ≡ Iext(θ + γ
2

) = Iext(θ).
5Indeed: R̃ · Iext(θ) = Iext(−θ + 2θaff ) = Iext(θ).
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9.1.5 General properties of the network and plan of the study

For technical reasons we turn the activity model (9.1) into a voltage model as

follows. We first rewrite equation (9.1) in a more compact and convenient functional

form :

τȦ = −A+ S [σ(J ·A+ εI)] .

J is now thought of as a linear (integral) operator acting on the function A as

the periodic convolution J · A(θ, t) =
π/2∫
−π/2

J(θ − θ̄)A(θ̄, t))dθ̄π , see part II. We then

perform the change of variable V = J ·A+ εI. Assuming that the input current is

not a function of time, this leads to the following equation

τ V̇ = −V + J · S(σV ) + εI (9.5)

Note that this equation, as (9.1), is G-equivariant. It is worth noticing that the

stationary solutions of (9.1) and (9.5) are in one to one correspondence. As a

consequence we will work on (9.5) because it is mathematically more convenient.

The stationary solutions (some of them called tuning curves, see below and the

section 9.5) of (9.1) (respectively of (9.5)) satisfy Ȧ = 0 (respectively V̇ = 0).

Characterizing and computing them for different values of the parameters is the

first step toward understanding the dynamics of the solutions to these equations.

Indeed, it is known (see propositions 3.2.3 and 3.2.6) that this type of equations

only produces heteroclinic (linking two stationary solutions, or equilibria) orbits.

This motivates further the study of the stationary solutions of (9.5). One of our

goals is to show how the stationary solutions are organized and to give indications

about the dynamics in a given range of parameters, corresponding to biologically

plausible values. This is important by itself and because some large scale models

of V1 (see for example the work of Bressloff et al [Bressloff 2001b]) including many

hypercolumns represent them with the Ring Model. Therefore a good understand-

ing of one hypercolumn paves the way to an understanding of a population thereof.

We show that, depending on the nonlinear gain σ, there may exist many stationary

solutions, which are all acceptable responses of the network to a given input from

the LGN (at least for the model at hand). Thus, this local orientation tuning de-

vice may behave less trivially than what it was initially designed for. In effect, the

existence of these stationary solutions, can make the local dynamics quite intricate

when σ is large enough to support the existence of these extra solutions.

We will follow a method similar to the one developed in part II to compute the

stationary states of (9.5). The method has been modified to take into account the

symmetries of the Ring Model. The general idea is that the LGN input is weak and

only modulates the network activity. Hence the cortical network (represented by

the Ring Model) encodes the possible tuning curves within its connectivity function

and when presented with a weak external input, produces small deviations of ’its’

tuning curves. Our goal is to compute these tuning curves. However, because of the

symmetries of the connectivity function J , the model in effect encodes an infinite



190
Chapter 9. Illusory persistent states in the Ring Model of visual

orientation selectivity

number of tuning curves, and this is an endless cause of numerical problems. Indeed

we pointed out above that if the input current was null, equation (9.5) (respectively

(9.1)) was G-equivariant. This implies that if V (θ) is a stationary solution of (9.5)

for ε = 0, so are V (θ + γ), γ ∈ R, and V (−θ). We show that by performing an

appropriate change of variables, we can get rid of this redundancy, recover numerical

accuracy, and make the model amenable to analysis.

Among the stationary solutions, two classes are especially important to us, we

call them the illusions and the illusory persistent states. The illusions are stable

stationary solutions that are unfaithful representations of the stimulus Iext. The

illusory persistent states are unstable stationary solutions that are unfaithful repre-

sentations of the stimulus Iext and such that the corresponding unstable eigenvalues

(see below) are small compared to the intrinsic time constant τ in the Ring Model.

Hence they seem persistent because, despite being unstable solutions, at the time

scale τ , they look ’stable’. Finally a third class is that of the tuning curves which

are unimodal, stable or unstable stationary solutions.

The structure of the study is the following. In section 9.2, we derive a finite

set of ordinary differential equations which are equivalent to (9.1). However, this

simplification is not enough for the numerical study because of the symmetries: if we

know a tuned stationary cortical state, all its translated versions will also be tuned

stationary states. As a computer cannot handle an infinity of such states, we use

a change of variables that generalizes the polar coordinates and allows a numerical

study by removing the redundancy in the equations coming from the symmetries.

In section 9.3, we use the new formulation with the change of variables to find the

stationary states of the network. This study predicts some characteristic dynamical

responses that we discuss in section 9.4. They are based on illusory persistent states.

Finally, in the Discussion section 9.5, we show that all the values of the parameters

of the model are fixed by experimental data. We then study how the network

behaves when the contrast ε of the stimulus is increased.

9.2 Reformulation of the problem and handling of the sym-

metries

In this section, we derive a number of finite dimensional equations equivalent to

(9.5) which are further simplified using a change of variables to take care of the

symmetries. These equations are solved numerically and their consequence are

explored in the following section 9.3. As such, this section may be skipped in a

first reading and the reader who is not interested in the mathematical details can

go directly to section 9.3.

9.2.1 Turning the problem into a finite dimensional one

Problem (9.1) (respectively (9.5)) is infinite dimensional since the solutions are

function of the orientation θ. By truncating the Fourier series of the connectivity
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function J , we reduce the problem to a finite number of dimensions. We write

J(θ) = J0 +
N∑
p=1

Jp cos(2pθ) (9.6)

whereN is the number of Fourier modes that are appropriate to represent J . We will

show how the choice of N affects the functional properties of the Ring Model. Notice

that by varying N , we generate a family of models that approximate all previously

published ones up to the desired accuracy. For example we can approximate a

difference-of-Gaussians connectivity function (see figure 9.5 Left).

Remark 32.For convenience, we shall write cosk for the function θ → cos(kθ).

The same holds for sink.

It was shown in section 3.4 that this form of the connectivity function implies

that the solutions to (9.5) can be written V (θ, t) = V ‖(θ, t) + V ⊥(θ, t), where V ‖ is

a linear combination of the functions cos2p and sin2p, p = 0, · · · , N and the function

V ⊥ tends to I⊥ exponentially fast when t → ∞. The form of the external input

(9.4) together with (9.6) imply that the stationary solutions satisfy V ⊥ = 0. It

follows that any stationary solution to (9.5) can be written

V (θ) = v0 +
N∑
p=1

√
|Jp|

[
v(1)
p cos2p(θ) + v(2)

p sin2p(θ)
]
,

where v0, v
(1), (2)
p , p = 1, · · · , N are 2N+1 reals. Solving (9.7) is therefore equivalent

to finding these reals.

We can, up to a rescaling of σ in (9.1), assume that J0 takes the values ±1:

J0
def
= ε0 ∈ {−1, 1} .

Similarly we define εk = ±1 by

Jk = εk|Jk|, εk ∈ {−1, 1} k = 1, · · · , N

With all this in hands, the stationary solutions of (9.1) satisfy the equation:

V (θ) =

π/2∫
−π/2

J0 +

N∑
p=1

Jp cos2p(θ − θ̄)

S [σV (θ̄, t))
] dθ̄
π

+ εIext(θ) (9.7)

In the case of a general non stationary solution, V ‖(θ, t) is given by the same formula

where the coefficients v
(1)
p , v

(2)
p are now real functions of time. Under the assumption

that V ⊥ is neglected, it is easy to obtain the system of ordinary differential equations

that are satisfied by the functions v0, v
(1), (2)
p . Using the complex values zk

def≡



192
Chapter 9. Illusory persistent states in the Ring Model of visual

orientation selectivity

v
(1)
k + iv

(2)
k , k = 1, · · · , N these equations read6:

τ v̇0 + v0 = ε0

π
2∫
−π

2

S

[
σv0 + σ

N∑
p=1

√
|Jp|zpe−2piθ̄ + c.c.

]
dθ̄
π + εĨ0

def
= B0(v0, {zp}) + εĨ0

τ żk + zk = εk
√
|Jk|

π
2∫
−π

2

S

[
σv0 + σ

N∑
p=1

√
|Jp|zpe−2piθ̄ + c.c.

]
e2kiθ̄ dθ̄

π + εĨk

def
= Bk(v0, {zp}) + εĨk k = 1, · · · , N

(9.8)

where Iext(θ)
def
= I0 +

N∑
k=1

Ĩk
√
|Jk|e2ikθ and Ĩk = Ike

2ikθaff√
|Jk|

(see (9.4)).

The coefficients (v0, {zp}) defining the stationary solutions satisfy the following

equations: {
v0 = B0(v0, {zp}) + εĨ0

zk = Bk(v0, {zp}) + εĨk k = 1, · · · , N

A solution (v0, {zp}) is said tuned if zp 6= 0 for some p. The N + 1 coefficients

(v0, z1, · · · , zN ) are the coordinates of V ‖. In this coordinate system: the group G

action defined in section 9.1.4 reads

Tγ · (v0, z1, z2, · · · , zN ) = (v0, e
2iγz1, e

4iγz2, · · · , e2iNγzN ) γ ∈ R
R · (v0, z1, z2, · · · , zN ) = (v0, z̄1, z̄2, · · · , z̄N )

and also

R̃ · (v0, z1, z2, · · · , zN ) = (v0, e
4iθaff z̄1, e

8iθaff z̄2, · · · , e4iNθaff z̄N ).

As shown in the section 9.1.4, if V f is a stationary solution of (9.8) for ε = 0, so is

g · V f , ∀g ∈ G: there is an infinity of stationary solutions, possibly tuning curves,

that are encoded by the network. However, when ε 6= 0, the symmetries are broken,

(9.8) is only Z2-equivariant and the number of stationary solutions becomes finite.

In the next two sections we study the cases N = 1 and N = 2. In particular we

give another system of coordinates for V ‖ that takes advantage of the symmetries

and removes the redundancy in the equations (9.8). The second case N = 2 shows

that adding more modes does not change the main results of the analysis.

9.2.2 Keeping only one mode in the connectivity J , N = 1

We consider the following connectivity function also used [Ben-Yishai 1995,

Hansel 1997] for example:

J = ε0 + J1 cos2, J1 > 0

6c.c. means complex conjugate.
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Any stationary membrane potential is described by the two-dimensional vector

(v0, z1). More precisely, the firing rate tuning curve reads:

TCφ(θ) = S [σv0 + σ|z1| cos2(θ − φ)] .

From our previous analysis of the Ring Model symmetries, we know that the equa-

tions (9.8) are redundant when ε = 0. Indeed, it is easy to show that B1 in

(9.8) only depends on ρ = |z1|, the phase arg z1 being arbitrary. This produces

an infinity of tuned membrane potentials. Let us therefore use polar coordinates

z1 = v1 + iv2 = ρe2iϕ, which yields to the following equations, assuming θaff = 0:
τ v̇0 = −v0 +B0(v0, ρ) + ε(1− β)

τ ρ̇ = −ρ+ <B1(v0, ρ) + εβ√
J1

cos2(ϕ)

2τρϕ̇ = − sin2(ϕ) εβ√
J1

(9.9)

for the dynamics, and 
v0 = B0(v0, ρ) + ε(1− β)

ρ = <B1(v0, ρ) + εβ√
J1

cos2(ϕ)

0 = sin2(ϕ) εβ√
J1

(9.10)

for the stationary solutions. The functions B0 and <B1 are given by:

B0(v0, ρ) = ε0

π
2∫
−π

2

S(σ(v0 +
√
J1ρ cos2 θ))

dθ
π

<B1(v0, ρ) = εk
√
J1

π
2∫
−π

2

S(σ(v0 +
√
J1ρ cos2 θ)) cos2 θ

dθ
π

Equations (9.9) do not produce the same dynamics as (9.8) because the change

from Cartesian to polar coordinates is not a diffeomorphism, but they yield the

same stationary membrane potentials. Indeed equations (9.10) are most useful for

computing the tuning curves. In the following section 9.3.1, we use (9.10) which

have only two unknowns (v0, ρ) to look for the stationary states of (9.1): this is a

great simplification compared to (9.1) without any numerical approximation.

9.2.3 Keeping two modes in the connectivity J , N = 2

We apply the same ideas as in the previous section when there are two cosine modes

in the connectivity, i.e. we look for the solution (v0, z1, z2) of (9.8). It turns out

that finding the change of variables to remove the equivariance with respect to G

is a lot more difficult. We write:

J = ε0 + J1 cos2 +J2 cos4 .

In order to agree with experimental facts (see chapter 1), the stable stationary

solutions should be mainly unimodal, i.e. tuning curves. Compared to the previous
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case, the fact that the second mode J2 is nonzero could induce an “interaction”

between the two modes leading to stable multimodal stationary solutions that are

unwanted.

Following the analysis of section 9.2.1, we have to solve three coupled equations

which are redundant because of the action of the symmetry group G which, in this

case, reads {
Tγ · (v0, z1, z2) = (v0, e

2iγz1, e
4iγz2)

R · (v0, z1, z2) = (v0, z̄1, z̄2)

In order to eliminate the redundancy arising from this symmetry we used polar

coordinates in the case N = 1. It is tempting to do the same with each complex

variables z1 and z2 but it turns out to lead to a dead-end.

The main reason for this failure is numerical: we compute (see appendix E.2)

the solutions of the nonlinear equations (9.8) using numerical continuation. This

algorithm computes the solutions of (9.8) depending on a parameter, for example,

the nonlinear gain σ. From two already known solutions V1, V2 for two values of

the nonlinear gain σ1 < σ2, it computes a solution V3 of (9.8) for a third value of

the nonlinear gain σ3 > σ2. If σ3 is close to σ2, then the solution (V3, σ3) is roughly

on the line linking (V1, σ1) and (V2, σ2) which gives an approximation of V3. This is

why this algorithm is called ’continuation’ because it continues the path of solutions

from known solutions. This scheme works well if the equations (9.8) are not too

singular7.

If we use polar coordinates as in the previous section: z1 = ρ1e
2iφ1 , z2 = ρ2e

4iφ2 ,

then, we find equations for the phases:

φ̇i = Fi(v0, ρ1, ρ2, φ1, φ2), i = 1, 2

Using the equivariance by the translations Tγ , we can show that the functions Fi
only depend on the difference of the phases ϕ1 − ϕ2. It turns out that the other

equations (for v̇0, ρ̇1, ρ̇2) also involve only ϕ1−ϕ2. We were unable to find a simple

relation between F1 and F2. As a consequence we end up with 5 equations in

the 4 unknowns v0, ρ1, ρ2, ϕ1 − ϕ2: this is inappropriate for numerical continuation

because there are too many equations. We need to find a way to obtain 4 equations

in 4 unknowns.

To reach this goal we turn to a general technique, the Orbit Space Reduction

(see for example [Chossat 2000]), which provides the right change of coordinates

through the use of what is called a Hilbert Basis8. A fundamental property is that

any smooth equivariant function (as the Bi in (9.8)) can be expressed using the

elements of the Hilbert Basis and their gradients. A Hilbert basis associated to the

7more precisely, if the linear part of (9.8) has, at worst, a one-dimensional kernel for some

isolated values of the nonlinear gain.
8The ring RG of O(2)-invariant polynomials is finitely generated as an R-algebra, this goes back

to Hilbert. A family π1, · · · , πs of generators of RG is called a Hilbert Basis.
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action of the group G ([Chossat 2000, page 205][Golubitsky 1988] is given by the

three polynomials:

π1 = z1z̄1, π2 = z2z̄2, π3 = <
(
z2

1 z̄2

)
which satisfy the constraints

π1 ≥ 0, π2 ≥ 0, π2
3 ≤ π2

1π2 (9.11)

Our upcoming analysis uses the so-called Orbit Space, i.e. the subset of R4 of the

four-tuples (v0, ~π), ~π = (π1, π2, π3), that satisfy the inequalities (9.11). Using these

coordinates, the firing rate tuning curves read:

TC(θ) = S
[
σ
(
v0 +

√
π1J1 cos2(θ) +

√
π2|J2| cos4(θ + ϕ2 − ϕ1)

)]
(9.12)

where z1 =
√
π1e

2iϕ1 , z2 =
√
π2e

4iϕ2 , and π1
√
π2 cos4(ϕ2 − ϕ1) = π3.

From the definition of the polynomials πi, it is possible to rewrite (9.8) in the

case of interest here, i.e. N = 2, only in terms of (v0, ~π) (as we did in the previous

section with the polar coordinates):
τ v̇0 = −v0 + B̃0(v0, ~π)

τ π̇1 = 2a(v0, ~π)π1 + 2b(v0, ~π)π3

τ π̇2 = 2c(v0, ~π)π2 + 2d(v0, ~π)π3

τ π̇3 = [2a(v0, ~π) + c(v0, ~π)]π3 + 2c(v0, ~π)π1π2 + d(v0, ~π)π2
1

(9.13)

where the functions B̃0, a, b, c, d are computed in appendix E.1. It should be noted

that a(v0, ~π), b(v0, ~π), c(v0, ~π), d(v0, ~π) are G-invariant functions9. the stationary

states are given by:
0 = −v0 + B̃0(v0, ~π)

0 = 2a(v0, ~π)π1 + 2b(v0, ~π)π3

0 = 2c(v0, ~π)π2 + 2d(v0, ~π)π3

0 = [2a(v0, ~π) + c(v0, ~π)]π3 + 2c(v0, ~π)π1π2 + d(v0, ~π)π2
1

(9.14)

We will solve these equations numerically in section 9.3.2 with the algorithm of

numerical continuation that we sketched at the beginning of this section.

9.3 Tuning curves of the simplified equations

We use the equations (9.10) and (9.14) to find the stationary solutions in the cases

N = 1 and N = 2. Some of these solutions correspond to neuronal illusory persis-

tent states. We then show that adding more modes (N ≥ 2) to the connectivity

function does not change the results. Finally we design two different types of ex-

ternal stimuli for bringing the network to the illusory persistent states.

9i.e. a(g · (v0, ~π)) = a(v0, ~π)...
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9.3.1 Finding the tuning curves, case N = 1

To reiterate, the Ring Model is based on one main ingredient: at null contrast

and for small values of the nonlinear gain σ, there is a unique stationary solution

(v0, z1), which is not tuned, i.e. z1 ≡ ρe2iφ = 0. Indeed, this stationary solution

has to satisfy ρf = 0 otherwise it would not be unique because of the group action.

Thus, in order to produce tuning curves (that are tuned by definition), we need a

solution to (9.10) satisfying ρf 6= 0. This means that we must investigate for which

values of σ, if any, the ρ solution of (9.10) becomes nonzero, i.e. bifurcates (see

also chapter 8).

9.3.1.1 Case of no stimulus, ε = 0

For no external input, the equations (9.10) are:
vf0 = ε0B0(vf0 , ρ

f )

ρf =
√
J1B1(v0, ρ

f )

ϕf ∈ R
(9.15)

A tuned solution ρf 6= 0 arises when the Jacobian at (v0, ρ) = (vf0 , 0) is singular

(see (8.7) in chapter 8). This Jacobian is given by diag(−1 + σε0S
′(σv0),−1 +

σ J1
2 S
′(σv0)). As we are interested in tuned solutions ρf 6= 0, we obtain the condi-

tion:

−1 + σ
J1

2
S′(σv0) = 0.

Finally, the equations for the existence of a tuned stationary solution are:{
vf0 = ε0S(σ0v

f
0 )

1 = σ0S
′(σ0v

f
0 )J1

2

(9.16)

We show in appendix E.3 that there is always a unique pair (vf0 (σ0), σ0) which

solves (9.16) when ε0 < 0. Around σ0: vf0 (σ) ≈ vf0 (σ0) and the equations (9.15)

reduce to the following:

0 =
σ − σ0

σ0
ρf + χ3 (ρf )3 (9.17)

The fact that the previous equation does not have a second order term is a conse-

quence of the connectivity J being an even function. Equation (9.17) is the normal

form of a Pitchfork bifurcation (see for example [Chossat 2000, Haragus 2010]).

Depending on the sign of χ3, two things can happen. If χ3 < 0, the Pitchfork is

oriented towards the increasing σs otherwise it points towards the decreasing σs

(see figure 9.2). In this latter case, it can be shown (see proposition 3.3.3) that the

bifurcated branch has to ’turn around’, which produces 2 additional TCs on each

branch (see figure 9.2.Middle). It is possible to find a closed form for χ3, this is

done appendix E.5. The resulting function of J1 and T is plotted in figure 9.2.Right.
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Figure 9.2: Middle: Plot of the solutions of (9.15) according to the sign of χ3. The

unstable solution are marked with dashed lines. Right: Plot of χ3 as function of

(J1, T ).

When ρf 6= 0, we obtain a continuum of stable tuning curves parametrized by an

arbitrary phase angle ϕ, and noted TCϕ, which are given by:

TCϕ(θ) = S
[
σ
(
vf0 +

√
J1ρ

f cos2(θ − ϕ)
)]
.

9.3.1.2 When there is a stimulus, ε > 0

The next step is to investigate what happens when we switch on the LGN drive,

i.e. when ε 6= 0. The symmetry group of the equations (9.8) is reduced to the

group Z2 (see section 9.1.4). Two important questions are 1) how many, if any,

in the continuum of tuning curves remain solutions and 2) what is their stability?

For very small ε 6= 0, switching on the LGN can be viewed as a perturbation of

the nonlinear equations when ε = 0, as a consequence, we expect an opening of the

Pitchfork as explained in section 3.3.2. We know from our previous analysis that

these solutions satisfy:
vf0 = ε0B0(vf0 , ρ

f ) + ε(1− β)

ρf =
√
J1B1(vf0 , ρ

f ) + εβ√
J1

cos2(ϕf )

2ϕf = kπ, k ∈ Z
Considering the two cases k even and k odd we obtain:

vf0 = ε0B0(vf0 , ρ
f
e ) + ε(1− β)

ρfe =
√
J1B1(vf0 , ρ

f
e ) + εβ√

J1

ϕfe = kπ, k ∈ Z
or


vf0 = ε0B0(vf0 , ρ

f
o ) + ε(1− β)

ρfo =
√
J1B1(vf0 , ρ

f
o )− εβ√

J1

ϕfo = (2k + 1)π2 , k ∈ Z

Because ρ → B0(v0, ρ) is even and ρ → B1(v0, ρ) is odd, necessarily ρfe = −ρfo .

Hence, these two systems of equations give exactly the same solutions V f (θ):

V f (θ) = vf0 ± ρ
f
e

√
J1 cos2(θ).

Also, each one the two solutions is invariant by the residual symmetry R̃, in par-

ticular there are not mapped one to another by R̃. Hence, the residual symmetry
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plays no role in the existence of these solutions. If the contrast is high enough,

proposition 3.2.7 gives that there is only one solutions V f . It can be shown nu-

merically (data not shown) that the two other solutions disappear in a saddle-node

bifurcation for a high enough contrast.

We solve these equations for (v0, ρe) as functions of σ by using a continuation

algorithm (see section 3.3.2), the results are shown in figure 9.3 Left in the case

χ3 < 0.
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Figure 9.3: Left: Plot of the values of (v0, ρe, ρo) shown in red, green, blue, re-

spectively, as functions of σ for ε = 0.01, T = 0, J1 = 1.5, β = 0.1. Notice the

turning points labelled with black dots. Right: The tuning curves TC0 and TCπ/2
for σ = 15, the other parameters are the same. Note that χ3 < 0 in this case.

The bifurcation diagram shown in figure 9.3 indicates that there are three sta-

tionary solutions for σ > 10 ≈ σ0. One, which turns out to be unstable, correspond-

ing to a small value of ρ (thus it is untuned and, by definition, does not represent

a tuning curve), and two which are tuning curves. The first of these tuning curves,

noted TC0, is maximum at x = 0 while the other, noted TCπ/2, is maximum at

θ = π/2. These two tuning curves are shown in figure 9.3 Right. Notice that the

same is true in the case χ3 > 0 and σ > σ0.

Let us now focus on the case χ3 < 0 (see section 9.5). The stability of the tuning

curves is computed in appendix E.6. This analysis shows that TC0 is stable although

its stability along the v2-axis is small in magnitude10. The other tuning curve TCπ/2
is stable along the v1-axis but unstable11 along the v2-axis. In figure 9.4, we show

the phase diagram of the dynamics in the plane (v1, v2) when ε = 0 and ε > 0. The

stationary solutions are represented in red. In the case, ε 6= 0, the orbit linking

TCπ/2 to TC0 is very close to the circle of stationary solutions of the case ε = 0

and shows that the unstable tuning curve TCπ/2 dynamically transforms to TC0

when a stimulus is applied (case ε > 0).

From the analysis in appendix E.6, if εβ
ρf
√
J1
<< τ , the unstable tuning curve

TCπ/2 will appear to be persistent at the time scale defined by τ . When this

10For small positive values of the contrast ε it is equal to − εβ

ρf
√
J1

11For small positive values of the contrast ε the unstable eigenvalue is equal to εβ

ρf
√
J1

.
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Figure 9.4: Left: phase diagram of the dynamics in the (v1, v2) plane when ε = 0

and ε > 0. The stationary solutions are represented in red. In the case ε = 0 there

is an infinity of stable solutions represented by the large plain red circle. Small

plain red disks represent stable tuning curves, small red circles represent unstable

tuning curves. These diagrams are valid for σ > σ0, ε small and χ3 ≶ 0. The arrows

indicate the direction of the flow for some trajectories.

condition is satisfied we call the tuning curve TCπ/2 an illusory persistent state of

the Ring Model, the 90 degrees illusion, since it corresponds to the fact that, even

if the thalamic input is peaked at the zero degree orientation, the Ring Model may

stay for a long time (compared to τ) in the neighbourhood of a state corresponding

to a tuning curve peaking at 90 degrees! In other words, even if the thalamic input

may “say” 0 degrees, the hypercolumn of orientation “says” 90 degrees (for some

time).

Remark 33.The case χ3 > 0 does not correspond to a biological plausible be-

haviour of the network. Indeed, we will see in the discussion that the nonlinear

gain σ must be less than σ0. In this case, it can be shown that the contrast response

function, i.e. the function max
θ
TC(θ), as a function of the contrast ε is not con-

tinuous. This is not supported by biological data (see for example [Chalupa 2004]).

9.3.2 Finding the tuning curves, case N = 2

The previous results may seem to depend very much on the type of simple connec-

tivity function that we have assumed so far. In fact this is not so. By adding one

more mode to this function, we can better approximate, as shown in figure 9.5 an

arbitrary Mexican-hat type of connectivity function which preserves the structure

of the local excitation and the lateral inhibition.

9.3.2.1 Case of no stimulus, ε = 0

The tuning curves without input are now solutions of the nonlinear equations (9.14).

For reasons that are detailed in the appendix E.2, we first look at the case where

the sigmoid function S is zero at the origin, i.e. we formally replace S by S0(x) =
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Figure 9.5: Left: Connectivity function used in the example described in the text.

Right: Plot of the solutions obtained with the centered sigmoid S0, see text, instead

of S as functions of the nonlinear gain σ. Each solution is made of a 4-tuple (red,

green,blue,violet). The parameter values are J0 = −1, J1 = 9, J2 = 6.66, T =

0, ε = 0. The slightly ’wavy’ aspect of the green branch from P1 is a numerical

artefact of the approximation of the centered sigmoid S0 by polynomials, see the

appendix E.1 for details. Note that, as expected because we are on the Orbit

Space, the values of π1 and π2 are positive, see text. The discrepancy between

the theoretical values of P1, P2 and the ones numerically obtained comes from our

polynomial approximation of the sigmoid.

S(x) − S(0). We see on the graph of solutions in the coordinates (v0, ~π) shown in

figure 9.5 Right that there are two bifurcated12 branches from the trivial solution

(v0, ~π) = 0, at the points, noted P1 and P2, corresponding to the values σ1 < σ2 of

the nonlinear gain. Considering again figure 9.5 Right, it motivates the following

remarks:

1. The first bifurcated branch from P1 reaches high values well before the one

bifurcated from P2.

2. The Orbit Space reduction procedure allows to compute numerically such sec-

ondary bifurcation points as P3 which might produce stable solutions. These

are undesirable from a biological viewpoint because they produce stable mul-

timodal stationary solutions, hence not tuning curves.

The stability analysis shows that the branch bifurcating from P1 is stable and

corresponds to a continuum of stable tuning curves parametrized by the phase angle

ϕ and given by:

∀ϕ TC1
ϕ(θ) = S0

[
σ

(
vf0 +

√
πf1J1 cos2(θ + ϕ)

)]
12These are not regular bifurcations because we are working on the Orbit Space.
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The same analysis shows that the branch bifurcating from P2 (before P3) is unstable

and corresponds to a continuum of solutions:

∀ϕ TC2
ϕ(θ) = S0

[
σ

(
vf0 +

√
πf2 |J2| cos4(θ + ϕ)

)]
This shows that in order to have unimodal stable stationary solutions, hence tuning

curves, it is necessary that σ1 < σ2 or equivalently J2 < J1 because the nonlinear

gains which produce the Pitchforks are S′0(0)σi = 2
Ji

, i = 1, 2. This formula explains

the differences in the ranges of values of σ in figures 9.3 Left, 9.5 Right and 9.6.

Moreover, since πf1 quickly reaches high values when σ increases, TC1
0 (0) is close to

1: the response does not depend upon the contrast ε of input from the LGN. This

implies that the working range of the nonlinear gain σ is close to the value σ1.

It is now possible to understand the diagram of solutions shown in figure 9.6

obtained with the regular sigmoid S as a deformation of the diagram shown in

figure 9.5 Right. As in the case N = 1, the bifurcated branches will persist because

we have shown in appendix E.3 that there is always a Pitchfork bifurcation for the

regular nonlinearity S.

We again notice that the first branch bifurcating from P1 (in green in figure

9.6) is quickly reaching high values and that the tuning curve is now asymmetric

(this is much easier to see in the middle part of figure 9.7). This is because the

π2, π3 components (in blue and magenta in figure 9.6) are not zero unlike in the

case N = 1. The stable tuning curve corresponding to the first bifurcated branch

is given by

TC(θ) = S

σ
vf0 +

√
πf1J1 cos2(θ) +

√
πf2 |J2|︸ ︷︷ ︸
small

cos4(θ + ϕ2 − ϕ1)


 (9.18)

where z1 =
√
π1e

2iϕ1 , z2 =
√
π2e

4iϕ2 , and π1
√
π2 cos4(ϕ2 − ϕ1) = π3. Note that ϕ1

and ϕ2 are arbitrary which produces an infinity of tuning curves.

We have plotted in figure 9.7 examples of the tuning curves for three values

of the nonlinear gain σ that are slightly larger than the values corresponding to

the three bifurcation points P1, P2 and P3 in figure 9.6. These tuning curves are

obtained by reading from figure 9.6 the 4-tuple (v0, ~π). This yields, through the

relation π1
√
π2 cos4(ϕ2 − ϕ1) = π3, the value of ϕ2 − ϕ1 that is needed in equation

(9.18). Notice the unstable multimodal tuning curves that appear once the stable

tuning curve has saturated (right plot in figure 9.7). This is an indication that the

nonlinear gain should not be too high, otherwise most responses of the network will

be saturated.

9.3.2.2 When there is a stimulus, ε > 0

If we switch on the LGN, the contrast ε becomes nonzero. The external current

is given by Iext = I0 + I1

√
J1 cos2 +I2

√
|J2| cos4 (see section 9.2.1). If I1I2 6= 0,

we expect a finite number of solutions because (9.8) does not commute with the



202
Chapter 9. Illusory persistent states in the Ring Model of visual

orientation selectivity

0

1

2

3

0.8 1.2 1.6 2.0 2.40.4

Figure 9.6: Plot of the solutions obtained with the regular sigmoid S as a function

of the nonlinear gain σ. Case J0 = −1, J1 = 9, J2 = 6.66, T = 0 ε = 0.

-80 -60 -40 -20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-80 -60 -40 -20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-80 -60 -40 -20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.7: Tuning curves at nonlinear gains σ = 1.04 (left), σ = 1.42 (middle),

and σ = 2.32 (right) when the input is equal to 0, see text. On the left and in the

middle, stable tuning curves are shown in continuous line, unstable ones in dotted

lines. Stability is not shown in the plot on the right, except for the null solution.

The other parameters are the same as in figure 9.6.
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symmetry group O(2) anymore. More precisely, the same argument as in the case

N = 1 shows that we can interpret (9.8) as a perturbation of (9.13) when ε is small.

Hence, when the nonlinear gain σ is close to that of P1 we have z2 ≈ 0 for ε small.

Since the equations {
−v0 +B0(v0, z1, 0) + εĨ0 = 0

−z1 +B1(v0, z1, 0) + εĨ1 = 0

are the same as in the case N = 1 when z2 = 0, they do not change much when z2 ≈
0 and the 90 degrees illusory persistent state found in the previous section remains:

there are two tuning curves, one peaking at the same value of the orientation as the

external input Iext and one translated by 90 degrees. This analysis is confirmed by

the results of the numerical computations shown in figure 9.8 where we show the

solutions of (9.8) for N = 2, I0 = 1− β,
√
J1Ĩ1 = β,

√
|J2|IĨ2 = 0.1β.
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Figure 9.8: The tuning curves TC0 and TCπ/2 for σ = 1.04, ε = 0.01, x0 = 0, T =

0, J1 = 9, J2 = 6.66, β = 0.05 and Ĩ0 = 1−β,
√
J1Ĩ1 = β,

√
|J2|Ĩ2 = 0.1β. Iext is

plotted in red. Notice the unstable weakly tuned tuning curve shown in black and

the unstable TCπ/2 in green.

9.3.3 Arbitrary number of modes in the connectivity function

We can perform the same computations using more modes, this will only bring in

more stationary solutions. Because these stationary solutions only appear once the

stable unimodal tuning curve has saturated, these high values for the nonlinear gain

σ are biologically irrelevant. Notice also that the neuronal illusory persistent states

found in the case N = 1, J1 > 0 are still present for N > 1, J1 > 0, as shown for

example in figures 9.7 and 9.8. Indeed, as seen in the previous section, they only

depend upon the fact that the network features a Pitchfork bifurcation at the point

noted P1 in figures 9.5 Right and 9.6 and this is always the case for any value of

the number N of modes if the coefficients Ji satisfy the mild constraints we have

described previously and that we summarize in the next section 9.4.
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9.4 Dynamical 90 degrees illusory persistent state

In the last two sections, we found two cortical representations of the same external

stimulus: TC0, TCπ/2. An obvious set of questions is how can we bring a hypercol-

umn of orientation into each of these two states? Can we drive the cortical state to

the illusory persistent state TCπ/2 using only the stimulus Iext? We answer them

positively in the next two sections.

9.4.0.1 Rotating the stimulus back and forth

Note that the tuning curve TCπ/2 is very close to the cortical response of the

network to a vertical DG. We first present a horizontal DG to put the system in

the TC0 state. We then slowly rotate the DG to a vertical DG and stay there

for some time ∆t. The network follows the stimulus and its response is peaked

at π/2, the longer ∆t is, the closer to TCπ/2 the cortical state will be. We then

suddenly change the stimulus back to a horizontal DG and since the responses of

the network to vertical/horizontal DGs are very close, the cortical state will remain

close to the state peaked at π/2, the one it is in just before the sudden change of

the stimulus. As TCπ/2 and TC0 have opposite transverse dynamical behaviour,

we deduce that the cortical state will remain close to TCπ/2 at least for a time

interval of the order of ∆t. This is reminiscent of the after-effect illusion and can

be confirmed by numerical simulation.

The resulting effect is shown in figure 9.9 when the time variation of the stimulus

angle θaff of the stimulus in equation (9.3) is given by

θaff (t) =


π
2 min( t

2000 , 1) if t ∈ [0, 2000]ms
π
2 if t ∈ [2000, 2e4]ms

0 if t > 2e4ms

This figure shows that after the system has been put in the state TCπ/2 for about

15s, it stays there for roughly the same amount of time. This is due to the fact

that the eigenvalues corresponding to the stable and unstable states have the same

magnitudes and opposite signs.

9.4.0.2 Using a mixture of the two stimuli

This second dynamical stimulus is very close in principle to the one presented in

the previous section. Instead of rotating the DG, we change its contrast as follows.

Let us note IDG0 the horizontal DG and IDGπ/2 the vertical one, the thalamic input

to the hypercolumn of orientation takes the form

Iext(t) = (1− ψ(t))IDG0 + ψ(t)IDGπ/2

where ψ(t) is the function shown in figure 9.10 satisfying ψ(tf ) = 1. We check

numerically, using the dynamics given by equations (9.8), that the hypercolumn

stays in the cortical state TC0 (see figure 9.11) for roughly 10s after the stimulus
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Figure 9.9: Plot of the stimulus angle θaff (in red) and the cortical angle response

ϕ (in black), both as functions of time. Note that the stimulus drives the network

into a state that is very close to its expected state when presented with a vertical

DG and that it stays there even after the input has been switched to a horizontal

DG. The parameters are the same as in figure 9.3. The time-scale parameter is

τ = 10ms.
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Figure 9.10: Plot of the function ψ allowing to vary the contrast of the thalamic

input, see text.
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changes from a horizontal DG to a vertical DG. Being an illusory persistent state,

hence unstable, after these 10s the cortical state aligns itself with the stimulus.
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Figure 9.11: The vertical direction represents time (s), the horizontal one the ori-

entation (rd). Left: Representation of the dynamical stimulus. a) spatio-temporal

representation of Iext. The stimulus starts as IDG0 to become a mixture of IDG0 and

IDGπ/2 and finishes as a pure IDGπ/2 . b) plot of the network response. It stays in the

cortical state TC0 before evolving to TCπ/2. The parameters are the same as in

figures 9.3. The time-scale parameter is τ = 10ms.

9.5 Discussion

In the previous technical sections, we have computed the tuning curves and shown

how the network responded to stimuli. We will now tune the parameters to have

TCs that are closer to experimental TCs. By doing so, we will constrain all the pa-

rameters. Hence, the working regime of the model will be imposed by experimental

constraints. Then, we study the TC dependency on the stimulus contrast.

9.5.1 Parameter tuning

We provide a detailed account of the functional impact of the parameters T, σ, J1

in the model. The influence of the external stimulus is analysed in the next sub-

section 9.5.2. It turns out that the combination of mathematical and biological

constraints fixes their values. We first note that the requirement for stable uni-

modal responses, the tuning curves, is a very strong constraint. Indeed, it implies

that the first Pitchfork bifurcation, that occurs when σ reaches σ0, the first bifur-

cation point, must correspond to the first cosine mode, which requires

J1 ≥ 0, J1 > Ji ∀i 6= 1

This in turn gives the range for the nonlinear gain σ: it should be large enough to

produce tuning curves that are not saturated. If the tuning curves are saturated,
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they do not vary with the input contrast ε anymore, in contradiction with the

biological measurements. This fixes σ ≈ σ0. The next subsection 9.5.2 will show

that necessarily13:

σ - σ0.

The next constraint comes from the width of the TCs whose experimental value (see

chapter 1) is centered around 600. The width is defined from the values at which

the tuning curve vanishes. As the TCs in our model do not vanish, in contrast to

[Ben-Yishai 1995], our width is not well-defined. This is the reason why we prefer

to use the width at half height whose value should therefore be roughly centered

around 300. This width at half height, noted δ(σ, J1, T ), is a function of σ, J1, T

and can be computed analytically (see appendix E.4): for σ < σ0, δ(σ, J1, T ) = 450

because the cortical state is untuned, then the function σ → δ(σ, J1, T ) appears

(numerically) to increase toward a limit. For different pairs (J1, T ), we compute

lim
σ→∞

δ(σ, J1, T ) = δ∞(J1, T ). The result is shown in figure 9.12 Left, it does not

depend on the threshold T . One can check that the widths at half height of the

TCs in figures 9.3 and 9.7 are in agreement with the values of figure 9.12 Left. It

follows that J1 should be ≤ 2 in order to produce reasonable widths at half height

for the TCs, i.e. widths at half-height around 300.
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Figure 9.12: Left: Plot of 1
2δ∞(J1, T ) as a function of (J1, T ). Right: plot of the

spontaneous firing rate S(σ0v
f
0 (σ0)) which is also equal to −vf0 (σ0).

The last constraint is the spontaneous firing rate (when ε = 0). As the net-

work is working close to the Pitchfork bifurcation, the spontaneous firing rate is

approximated by S(σ0v
f
0 (σ0)). We need to find this value for different pairs (J1, T )

which is done by solving (9.16) numerically. We chose this rate value to be between

5%− 10% which resulted in T = 2 (see figure 9.12 Right).

To conclude, the combination of mathematical and biological constraints leads

to the choice J1 = 1.5, T = 2 which yields σ0 ≈ 40.

13The following notation means below and close to σ0.
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Remark 34.Numerically, we find that, for these values of the parameters, χ3 < 0

which produces a supercritical Pitchfork as shown in figure 9.2 Left. This is the

reason why we only analysed this case in section 9.3.

9.5.2 Perception threshold

Having set our parameters, we now discuss further the conditions for the appear-

ance of tuning curves (i.e. stationary solutions such that z1 6= 0,
√
J1|z1| >>√

|Ji||zi|, i > 1) when the external input is switched on: ε > 0. What condition

on the external input must be satisfied in order to produce such stationary solu-

tions whose width at half height varies slowly with the contrast ε? We consider

only the case N = 1, because since the nonlinear gain σ is close to the Pitchfork

bifurcation point σ0, it does not restrict the generality of our discussion. We have

seen (see figure 9.3 with the black dots indicating turning points) that if a tuning

curve exists, there are two tuned cortical responses and one untuned. Moreover,

for each contrast ε, there is a value σc(ε) of the nonlinear gain σ below which the

two tuning curves disappear, we call it a turning point14. When varying ε, we can

look for the value of the nonlinear gain σ (if there is one) at which a turning point

occurs: it is an indication that tuning curves do exist for higher nonlinear gains, but

also, it is an indication that the illusory persistent state TCπ/2 can be produced by

the network. The TRILINOS package we use in most our simulations features the

numerical continuation of the locus of a turning point. As a result of this, starting

with the turning point of figure 9.3, we were able to produce the locus (ε, σc(ε)) of

the turning points in the plane (ε, σ) as shown in figure 9.13 Left. The blue curve

starts at (0, σc(0)) = (0, σ0) and decreases to a minimum σmin. Above the blue

curve, the stable response of the network is a tuning curve. Note that in the region

labeled Stimulus driven, there is a unique stationary solution given by the value

of the external input. This parameter region is not in the operating range of the

model, because the contrast of external input is too large. Indeed, in the case of

large contrasts ε, the stimulus has too much weight compared to the cortical con-

nections: it is as if the model were purely feedforward. In a similar fashion, below

the dashed horizontal line labelled σ = σmin, for any contrast ε there is a unique

stationary solution which is poorly tuned (see figure 9.13 Right Top). This is not

consistent with experimental findings and therefore this range of parameters does

not belong either to the working range of the model. We conclude that we must

have σ > σmin.

Up until now, we have discussed the network behaviours with the contrast ε

fixed in order to evaluate the most plausible value of the nonlinear gain. It is now

time to simulate the network response, i.e. by fixing the value of the nonlinear gain

σ and varying the contrast.

14It results from the opening of the Pitchfork bifurcation that exists when ε = 0, hence σc
depends on ε and σc(0) = σ0.
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Figure 9.13: Left: Locus of the turning points as function of (ε, σ). The parameters

are J1 = 1.5, T = 2. Right: plot of the width at half height of the solutions for a

nonlinear gain σ = 4 < σmin (top) and for σ = 24 < σ0 ≈ 43 (bottom). In both

cases and in order to avoid saturation of the tuning curve, the width is plotted for

contrast values such that the maximum firing rate is below 90%. Note that we have

represented the perception threshold σ−1
c (24) with a black dot.

If the nonlinear gain is above the Pitchfork bifurcation point σ > σ0, the cortical

response for any contrast ε ∈ [0, 1] is a tuning curve V f (θ) whose tuning angle

arg maxθ V
f (θ) is randomly selected. Indeed, in this case, there is a continuum of

tuning curves and the arg maxθ V
f (θ) depends on the current state of the network.

This is true even for null contrast. It is more biologically relevant that the network

operates in the regime σ < σ0, because otherwise the neurons would have a high

firing rate (around 60% of their maximum firing rate, see figure 9.3) even though

no stimulus is present, this is a waste of energy.

For σmin < σ < σ0, the situation is different. According to the blue curve in

figure 9.13 Left, there exists a particular contrast σ−1
c (σ) for which a turning point

occurs. More precisely, if the contrast is below this value, the network features a

single cortical state which is poorly tuned. If the contrast is above this value, the

network features three cortical states, two of which being tuned and aligned with the

stimulus, the third one, poorly tuned, can be thought as a “remnant” of the cortical

state when the contrast was not high enough to generate a tuned response. Hence,

we may see this particular value σ−1
c (σ) of the contrast as a perception threshold :

below this value, the network response is poorly tuned whereas it is tuned and in

agreement with the stimulus if the contrast is above this value. It follows that the

working range of the nonlinear gain is σ ∈ (σmin, σ0).

Hence, it is natural to call the values σ−1
c (σ) for σ ∈ (σmin, σ0), the perception

thresholds. By definition, the perception threshold is null at the bifurcation point

σ0 and it becomes larger as the nonlinear gain of the network is set to a value close

to σmin. Hence, if the nonlinear gain is set to a value just below σ0, the perception
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threshold is tiny, even a small contrast will trigger a tuned response whereas for a

smaller nonlinear gain, the tuning width becomes constant for contrasts above the

perception threshold (see figure 9.13 Right Bottom ).

The existence of the perception threshold in experiments can be studied through

the dynamical stimulus of section 9.4. Indeed, only above the perception threshold,

the network does feature the two tuned states (in particular the illusory persistent

state) that are needed for the dynamical stimulus.

Also, intuitively, one may understand the threshold contrast σ−1
c (σ) as the

boundary between a regime where the recurrent computations are not influenced

by the stimulus and a regime where the recurrent computations are negligible com-

pared to the LGN drive.

One may ask whether figure 9.13 is generic: under which conditions does the

locus of the values (ε, σc(ε)) corresponding to a turning point have a shape like the

one in figure 9.13, i.e. first decreasing when ε increases, reaching a local minimum

σmin, and increasing again? Using the implicit functions theorem, it can be shown

that ∂σc
∂ε |ε=0 < 0 when J0 < 0, i.e. the curve is locally decreasing for increasing val-

ues of ε. Hence we conclude that the local behaviour around (0, σc(0)) in figure 9.13

is quite general in the case J0 < 0. This analysis provides a tighter constraint on

the nonlinear gain σ, it should be just below σc: σ - σc.

9.5.3 Illusory persistent states

The fact that the cortical network shows two states corresponding to perpendicular

orientations in response to a single stimulus can also be put in resonance with some

published models of the cortical primary visual area (see [Bressloff 2001b] for a

spatial network of Ring Models). Indeed, in this study of planforms in relation to

visual hallucinations, it may come as a surprise to the attentive reader that most

of the stable planforms (in the cortical space) do not respect the good continuation

principles of contours since adjacent hypercolumns show responses corresponding

to orthogonal orientations (see for example the stable contoured rolls on a square

lattice). However once we agree that, for a hypercolumn, two orthogonal states are

closely related, this becomes perhaps less surprising.

We relate our formalism to previous studies of recurrent models of orientation

selectivity by first noting that the 90 degrees illusory stationary solution was not

reported in [Ben-Yishai 1995] although they share the same assumptions as ours.

In [Carandini 1997], the authors used a (voltage based) Ring Model in order to

explain some of the features of the complicated spiking network of [Somers 1995].

Although they used the non-saturating nonlinearity S(x) = max(x, 0), they ob-

served that narrowing the spatial extension of inhibition leads to multimodal re-

sponses which they interpreted as neuronal illusions. This can be understood within

our formalism: decreasing the spatial extent of inhibition introduces more Fourier

terms (possibly with high values) in the connectivity J and can produce stable

multimodal responses to a unimodal stimulus (see section 9.3.2).

Under what conditions do the 90 degrees illusory persistent states survive in
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a network of Ring Models? Can we find similar illusory persistent states in more

sophisticated networks and which experiments could confirm/invalidate our predic-

tions? We just discussed the matter of a network of Ring Models with the study

of [Bressloff 2001b]. In [Blumenfeld 2006], the authors used a generalization of the

Ring Model with a very similar connectivity to explain the spontaneous activity

observed in optical imaging recordings. Although they identified the 90 degrees il-

lusory persistent state, they did not explain how this additional cortical state could

lead to a strongly history dependent cortical response. This is the subject of the

next chapter.

Finally, despite its ability to reproduce several experimental facts, the Ring

Model lacks some anatomical data support because it does not use realistic cor-

tical circuitry. Note that we have provided some clues for the construction of an

effective connectivity in the orientation domain from realistic cortical connections

in chapter 8. Recently, Shelley et al. (see [Shelley 2002]) introduced a reduced

system of a computationally intensive spiking neuron network model of a hyper-

column with realistic cortical circuitry. It could be interesting to look for neuronal

illusions/illusory persistent states predicted by their model using the techniques de-

veloped in part II. In chapter 11, we introduce a V1 model that is very close to the

rate model the Shelley et al. derived in [Shelley 2002] from their spiking network.

9.6 Conclusion

We have pushed further the study, started in part II, of the mathematical prop-

erties of the Ring Model of orientation tuning and of some of their biologi-

cal implications. This was achieved by taking into consideration the rich sym-

metries of the network. The reduced equation (9.17) was already found in

[Bressloff 2002a, Bressloff 2002b, Bressloff 2005b] where the authors used weakly

nonlinear analysis (see also [Ermentrout 1998]) as well as the ’illusory’ tuning curve.

However, the dynamics were not used to make this ’illusory’ tuning curve appear.

For the first time to our knowledge in the field of neural networks, we have

introduced the Orbit Space Reduction technique to deal with translation invariant

connectivity kernels. This allowed us to find a suitable change of coordinates in

order to remove the redundancy introduced by the symmetries. This is a generic

technique that can be applied to many other problems in neuroscience. Using this

reduction, we have shown that the exact shape of the connectivity function did

not matter much as long as the first mode, cos2, was the first to bifurcate, i.e. to

produce tuned solutions.

Our study has allowed us to discover an (unstable) tuning curve encoded in the

network that represents an orientation orthogonal to that of the LGN input. This

neural illusory persistent state can be thought of as a ghost of the first Pitchfork

bifurcation, itself coming from the fact that the connectivity is an even function.

We have shown that it was possible to drive a hypercolumn to the illusory state

by adding some dynamics in the stimulus: this gave rise to two dynamical effects
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showing the strongly history dependent behaviour of the cortical state, one relying

on rotating the stimulus, the other relying on changing its contrast. This is a strong

prediction of the model that could possibly be tested experimentally. However, this

seems difficult given the fact that the Ring Model does not take into account the

lateral spatial connectivity that is present in the visual cortex and allows different

hypercolumns of orientation to interact with each other.

It would be interesting to see if and how the illusory persistent states are mod-

ified when adding lateral spatial connections in a spatially organized network of

Ring Models. This will be done in the next two chapters.

Finally our approach leads to a close to complete understanding of the role of

each parameter in the Ring Model: the shape of the connectivity function through

the weights Ji, the threshold T , and the nonlinear gain σ.



Chapter 10

The model of V1 by Blumenfeld

et al.

In this chapter, we study the second model proposed in chapter 8 as a generalization

of the Ring Model studied in the previous chapter. Despite the fact that it is able

to account for experimental data such as orientation/selectivity maps, the model

studied in this chapter is very close to the Ring Model:

• it is formally equivalent to a three-dimensional model,

• it features the perception threshold...

Nature rarely features the kind of symmetries that are fundamental to the Ring
Model. It is the goal of this chapter to explore how the mechanism explained in
chapter 8 is affected if we relax the symmetry assumption.
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The authors in [Blumenfeld 2006] used data from optical imaging (OI) sig-

nals (see [Grinvald 1986, Blasdel 1986b, Vanzetta 2008]), to build an activity based

model of V1. Their model is a generalization of the Ring Model (see chapter 9)

to which the tools developed in Part II apply well. In particular, it is a 3D-model

based on experimental data, which was originally designed to account for the ap-

pearance of the orientation maps in the spontaneous activity (see [Kenet 2003]). As

such, their model is required to work near a static bifurcation in order to produce

spontaneous activity (see chapter 8). The network in [Blumenfeld 2006] deals with

the orientation feature. We have already emphasized in section 9.1.4 that such a

network should feature the translation invariance in the orientation space. How-

ever, it is difficult to design a network, based on experimental data, that enjoys this

symmetry and the model in this chapter does not (see also section 3.5). We will
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show that the asymmetries produce ambiguous cortical activity at small contrasts

and that it is only for a high enough contrast that the network is able to respond in

agreement with the input, i.e. there is a perception threshold as we studied thor-

oughly in the previous chapter. We are also interested to know if the predictions

about the dynamics, made in the case of the Ring Model in chapter 9, are still

valid. Finally, this study will draw our final conclusions concerning the impact of

symmetries on the existence of illusions/illusory persistent states.

The chapter is structured as follows. In the Introduction, we recall the basics

of the optical imaging techniques and how to model its signal. Then, we give

in section 10.2, the model equation and show how to build the connectivity of

the network. We reduce the full network to a 3D system in 10.4 and study the

spontaneous and evoked activities in sections 10.5 and 10.6. Based on the working

range of the model, we build a dynamical stimulus which produces a characteristic

response in section 10.7. Conclusions are drawn in section 10.8.

10.1 Introduction

The model in [Blumenfeld 2006] was designed with the aim of reproducing the re-

sults of the optical imaging (OI, see chapter 1) study in Kenet et al. ([Kenet 2003]),

where activity patterns, similar to orientation maps,1 were observed in the ab-

sence of an external stimulus. Let us formalise a bit the experiment. Let

φi ∈
[
−π

2 ,
π
2

]
, i = 1 · · · p be the DG angles (equidistributed) presented to the

animal (a cat or a macaque whose cortices produce orientation maps) and let Sφix
be the magnitude of the cortical response as seen from optical imaging signals, at

location x evoked by orientation φi. Let us recall how we compute the orientation

map, i.e. the map of preferred orientations by neurons at a given location x. We

first compute the ’Fourier’ transform

zx ≡ rxe2iθx =
2

p

p∑
j=1

S
φj
x e2iφj .

Then, the preferred orientation map is given by the map θx and the selectivity is

given by rx. The selectivity rx is the maximal response at location x for all possible

stimulus orientations. Note that pinwheels in this representation are “black”, i.e.

zx ≈ 0.

The function φ→ Sφx is called the tuning curve (see definition 1.3.1) at location

x. Notice that it is different from the tuning curve we have considered in the Ring

Model in chapter 9. Indeed, the voltage-sensitive dye optical imaging signal cor-

responds to post-synaptic membrane potentials (see [Sharon 2002, Grinvald 2004,

Faugeras 2007, Markounikau 2010] and also [Chemla 2010a] for a review) rather

than firing rates: the spikes are too fast to make a contribution to the signal. Hence,

1Obtained for example with a drifting grating (DG) stimulus
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V2

chamber

Polar map

Figure 10.1: Left: plot of the polar map zx of a part of the visual cortex in behaving

macaques. The map displays the preferred orientation in colour superimposed to

the selectivity (in grey). The white curve roughly delineates the boundary between

V1 and V2 (which has larger orientation domains). The frontier of the opened

skull is labelled “chamber”. A part of the cortex is (numerically) selected (white

rectangle of size 63× 54) because it presents a small number of artefacts due to the

presence of blood vessels (data not shown). The two figures on the top right are the

selectivity map rx and the preferred orientation map θx of the selected rectangle.

The two figures on the bottom right are the corrected maps to restore a rough

uniform distribution of the values of θx and a scaling of rx (see text). Courtesy of

A.Reynaud, I.Vanzetta and F.Chavane.
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the tuning curves Sφx correspond to membrane potentials tuning curves whereas we

studied firing rate tuning curves in the previous chapter. This also suggests (see

[Faugeras 2007]) the use of an activity based model (see chapter 2)

Ȧ = −A + S(J ·A + Iext)

for the modelling of the membrane potential and the OI signal which is then as-

sumed to be proportional to the total post-synaptic input OI = J ·A + Iext. Here,

J · A is the input due to recurrent connections and Iext is the afferent input to

the cortex: they are function of the cortical position x. The spontaneous activity

corresponds to the activity A when Iext = 0 whereas the evoked activity corre-

sponds to the case when there a stimulus, i.e. Iext 6= 0. Note that the firing rate

tuning curves at location x are modelled by a non-trivial (i.e. non constant) sta-

tionary state A(x) whereas membrane potential tuning curves, originated from the

OI signal, are modelled by

OI = J ·A + Iext. (10.1)

10.2 Definition of the model parameters

Given the cortical responses Sφx for different orientations φ, we would like to build

a neural field model which produces spontaneous stationary signals OIspont = J ·A
(recall that in this case Iext = 0) similar to the signal Sφx (see chapter 8 for this). The

equation OIspont = J ·A shows that the space of functions Sφx for each orientation

φ, is in the range of the integral operator J. Given that this cortical activity is

stationary, it suggests that the integral kernel J fixes this activity, i.e. ∀φ, Sφx ∝ J ·
Sφx . Hence, if one defines the space of tuning curves E ≡ Span

{
Sφx, φ ∈

[
−π

2 ,
π
2

]}
,

then J acts as a projector on this space. It follows that we could choose the

connectivity as

J(x,y) =

π
2∫

−π
2

SφxS
φ
ydφ. (10.2)

The range of this operator is obviously included in the set of tuning curves E . We

could study the model with this connectivity but the different activities produced

by the network is too large for a detailed analysis. Hence, we need to find a way

to reduce the number of different possible activities. We can achieve this, as in

[Blumenfeld 2006], by making the relationship between the cortical response Sφx and

the stimulus angle φ more explicit. Since the tuning curves tend to be unimodal

and centred around the preferred orientation θx (see for example [Benucci 2009])

at location x, it seems reasonable to approximate Sφx by

Mφ
x ≡ rx cos(2θx − 2φ) ≈ Sφx . (10.3)

In this case, equation (10.2) writes

J(x,y) = rxry cos(2θx − 2θy)
π

2
. (10.4)
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We generalize it slightly by:

J(x,y) = J0 + J1rxry cos(2θx − 2θy), J1 > 0. (10.5)

Note that this connectivity connects locations with similar preferred orientations

in a patchy manner because the regions of similar preferred orientations are clus-

tered (see figure 10.1 and [Gilbert 1989, Bosking 1997, Kisvarday 1997]). Also, the

strength of the connections is lower around pinwheels (because rx ≈ 0) than in the

inter-pinwheels region, also called linear zones. This is supported by [Yousef 2001]

for the cat but it seems in contradiction with [Mariño 2005] (also for the cat). The

connectivity (10.5) will be used in this chapter. It acts on the cortical activity A

in the compact form:

J ·A(x) =

∫
Ω

J(x,y)A(y, t)
dy

|Ω|
,

where |Ω| is the area of the cortex Ω under study. Finally, the evolution of the

cortical activity A is described by the standard rate equation

τȦ = −A + Sig [σ (J ·A + Iext)− h] , (10.6)

Sig is the sigmoid function Sig(x) = 1
1+e−x , σ is the nonlinear gain and h is the

threshold. We also define the firing rate function:

S(x) = Sig(x− h).

which allows to write (10.6):

τȦ = −A + S [σ (J ·A + Iext)] , (10.7)

Remark 35.As in the previous chapter, the usual choice is to take σh for the

threshold instead of h. We found it mathematically more convenient to use our

scaling, the scope of the analysis is not reduced because we also vary h as a param-

eter.

The form of the connectivity J in (10.5) is a generalization of the connectivity

(9.2) of the Ring Model but it also incorporates the selectivity map rx. Note that

a similar model without selectivity has been studied in [Goldberg 2004]. In the

following, we will consider an afferent input of the form

Iext(x) = ε [1 + βrx cos(2θx − 2φaff )] , (10.8)

where ε is the contrast and φaff is the stimulus orientation. Using the same rea-

soning as in section 9.1.3, we can show that this choice does not alter the generality

of our study. For a time constant afferent input, (10.7) is formally equivalent, by

the change of variables A→ J ·A + Iext = V and V → S(σV) = A to a “formal”

voltage based model:

τV̇ = −V + J · S (σV) + Iext. (10.9)
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This form is more convenient for the following study, this is why we will use (10.9)

instead of (10.7).

Remark 36.In all the numerical experiments of this chapter, we use J0 =

−1, J1 = 1.5, h = 1, β = 0.1. This is motivated by the parameters values used in

chapter 9 except for the threshold h which is equal to 1 here. In the last chapter, the

value of h was constrained by the spontaneous firing rate. Here, the spontaneous

membrane potential is not constrained by OI data as the “blank”, i.e. the mean

response of the OI signal, is removed from the OI signal to yield Sφx .

From (10.1), we find that OI = V: this further motivates the use of the voltage-

based representation. From the expressions of the connectivity (10.5) and the affer-

ent input (10.8), we find that the stationary OI signals are scaled/shifted versions

of the orientation maps, i.e. OI ∝ A+Brx cos(2θx) for some constants A and B.

10.3 Symmetry/statistical properties of the connectivity J

For the upcoming computations, it is useful to assume that the selectivity map rx
is normalized to satisfy: ∫

Ω
r2
x

dx

|Ω|
= 1,

which amounts to a rescaling of all the values rx. If the part of the cortex Ω under

study is large enough, we can expect (see also section 9.1.4) that the distribution

of preferred orientation θx over the cortex Ω is almost uniform otherwise the pro-

cessing of the afferent input Iext by the cortex would favour an orientation over the

others. Hence, given an experimental orientation map, we perform a statistical nor-

malization of the data, as explained in [Blumenfeld 2006]. This is done in order to

obtain a more uniform distribution for the preferred angles (see figure 10.1). Notice

in figure 10.1 that it does not change much the maps rx, θx.

10.4 Simplification of the equations

We simplify the full equations (10.9) by using the particular form of the con-

nectivity function J in (10.5). This yields a system of three equations which is

easier to analyse as we show in the next sections. Following appendix A.5, we

write OI(x, t) = V(x, t) = v0(t) + v1(t)
√
J1rx cos(2θx) + v2(t)

√
J1rx sin(2θx) with

v0, v1, v2 ∈ R and obtain the equations:
τ v̇0 + v0 = J0

∫
Ω

S (σV ) dx
|Ω| + ε

τ v̇1 + v1 =
√
J1

∫
Ω

S (σV ) rx cos(2θx) dx|Ω| + εβ√
J1

cos(2φaff )

τ v̇2 + v2 =
√
J1

∫
Ω

S (σV ) rx sin(2θx) dx|Ω| + εβ√
J1

sin(2φaff )

(10.10)

Hence, we have reduced the original problem of solving (10.9) to the study of the 3D

system (10.10). We need to find the triplets ~v ≡ (v0, v1, v2) solutions of (10.10) in
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order to identify the spontaneous/evoked cortical states. The spontaneous tuning

curves are linked to the stationary solutions ~vf for null contrast ε = 0, while the

evoked tuning curves correspond to the case ε 6= 0. An untuned solution is a solution

with v1 = v2 = 0 as opposed to a tuned solution. We would like to know when a

tuned solution arises because it may correspond to an orientation map. We will see

that spontaneous tuned activity is possible.

10.5 Study of the spontaneous activity

We start with the case with no stimulus, ε = 0. The analysis that follows is very

similar to what we did in section 9.3.1 for the Ring Model of orientation tuning.

The difficulty, here, is the absence of the network symmetries which helped us to

build tuned activity in chapter 9. Hence, the problem at hand2, is more related

to the one we studied in section 3.5 where the symmetries were broken, than to

the one in chapter 9. Let us recall the main results of section 3.5. If we consider

the nonlinear gain σ as the bifurcation parameter, we can find up to 5 solutions to

(10.10) when ε = 0 for a large enough nonlinear gain σ, 3 of which being stable.

It turns out that there are more than five spontaneous stationary states that

emerge the experimental data shown in figure 10.1. The key to understand what

happens here, is to “restore” the symmetries, it allows us to apply the study of

chapter 9 and to interpret the results for (10.10) as a perturbation of the results in

this chapter.

In order to make the link with the Ring Model more explicit, we change variables.

We replace the spatial integration, i.e. the integration over x, with an integration

over the selectivity r and the preferred angle θ. As a result, we introduce a dis-

tribution function P (r, θ) such that dx
|Ω| = P (r, θ)drdθ. This is a formal change of

variables between the cortical space and the space made of selectivity and preferred

orientation (r, θ). Using this distribution3, we can write (10.10) as:

τ v̇0 + v0 = J0

R∫
0

π/2∫
−π/2

S (σV )P (r, θ)drdθ

τ v̇1 + v1 =
√
J1

R∫
0

π/2∫
−π/2

S (σV ) r cos(2θ)P (r, θ)drdθ

τ v̇2 + v2 =
√
J1

R∫
0

π/2∫
−π/2

S (σV ) r sin(2θ)P (r, θ)drdθ

V ≡ v0 + v1

√
J1r cos(2θ) + v2

√
J1r sin(2θ)

R ≡ max
x∈Ω

rx.

(10.11)

From section 10.3, we know that P (r, θ) can be written 1
π P̃ (r) + P0(r, θ), the

asymmetry P0(r, θ) being small. Indeed, the distribution of preferred orientations

2i.e. the one of finding the tuned solutions of (10.10)
3More precisely, we introduce the jacobian JΦ of the map Φ : x → (rx, θx) and it follows that

P (r, θ) =
| det J

Φ−1 |
|Ω| where JΦ−1 is the jacobian of the inverse map Φ−1.
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is almost uniform (see figure 10.2). It suggests to introduce a new problem rather

than (10.11): let us consider the family of distributions Pα(r, θ) = 1
π P̃ (r)+αP0(r, θ)

and replace P in (10.11) by Pα. For α = 0, we have a distribution of preferred

orientations which is uniform whereas for α = 1 we have the distribution obtained

from the experimental data.
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Figure 10.2: Distribution of the preferred orientations θx for the experimental data

shown in figure 10.1. The red line shows the level of uniform distribution if the

orientations were equidistributed. The number N(θ) is related to the distribution

P (r, θ) by N(θ) =
∫ R

0 P (r, θ)dr ·N where N = 3402 is the number of points in the

data and R ≡ max
x∈Ω

rx. The bin size is π/10.

In the case of the ’uniform’ distribution (for α = 0), it is easy to check that an

untuned solution ~vf (σ) = (v0(σ), 0, 0) exists for all nonlinear gains σ. Using the

result proved in appendix E.3, we know that from this untuned solution, a tuned

solution emerges (or bifurcates) for a particular value of the nonlinear gain4 σ0. The

precise value of σ0 is not important. What is important is the value of σ compared

to σ0. How should we choose σ in order to see tuned spontaneous activity? The

result is that if σ > σ0, the network can produce spontaneous tuned stationary

activity whereas it cannot for σ < σ0. If we write ρf =

√
vf1 + vf2 , the situation is

shown in figure 9.2 Left which shows the solution ρf as a function of the nonlinear

gain σ. In particular, if σ > σ0, there is a ring of tuned spontaneous activities given

by (vf0 (σ), ρf (σ) cos(φ), ρf (σ) sin(φ)) for φ arbitrary.

In the case of the experimental distribution (for α = 1), we expect a perturbation

of the diagram in figure 9.2 Left. The result5 is shown in figure 10.3 where we plot

4which depends on the threshold h and the positive coefficient J1
5It is possible to derive polynomial equations of degree three which approximate (10.11) for

σ ≈ σ0, α ≈ 0 as we did in proposition 3.32. They would show that if α > 0, the Pitchfork branch

that appears at σ = σ0 for α = 0 is broken in 4 pieces when α > 0 yielding 7 stationary solutions. A
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the solutions (vf1 , v
f
2 ) of (10.10) as functions of the nonlinear gain σ. We do not

plot vf0 because it is not necessary for knowing if the spontaneous activity is tuned

or not. We see that if the nonlinear gain σ is above 4.5, there are 6 tuned activities

and one untuned activity. Otherwise6, there is only one stationary cortical state

which is untuned, written A0.
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Figure 10.3: Plot of the stationary solutions (vf1 , v
f
2 ) (vf0 is not shown) of (10.10)

as functions of the nonlinear gain σ in the case of no external input ε = 0. As σ

reaches the value 4.5, 6 tuned cortical activities appear, beside the untuned one A0.

We show the 7 solutions with large dots for σ ≈ 5.3. The yellow disk corresponds to

the untuned activity because it is close to the origin. The stability of the different

branches of solutions is indicated. The grey circle shows that the solutions almost

lie on a circle as in the case of the uniform distribution of preferred angles. The

stability is computed numerically. Note that the polar angle φ of the vector (vf1 , v
f
2 )

is twice the angle of the stimulus that produces the response M
φ/2
x encoded by

(vf0 , v
f
1 , v

f
2 ).

What does a stationary state vf = (vf0 , v
f
1 , v

f
2 ) represent? To answer this ques-

tion, we write vf1 = ρf cos(φ) and vf2 = ρf sin(φ) (see figure 10.3) and compute

OI(x) = Vf (x) = vf0 + vf1
√
J1rx cos(2θx) + vf2

√
J1rx sin(2θx)

= vf0 +
√
J1ρ

frx cos(2θx − φ)

= vf0 +
√
J1ρ

fM
φ/2
x .

(10.12)

Hence OI(x) is a scaled-shifted version of M
φ/2
x which is by definition (see (10.3))

the response of the cortex to a DG oriented at φ/2. Note that the polar angle

perturbation of the O(2)-Pitchfork would yield 9 = 3 ·3 solutions at most according to the Bézout’s

theorem. Indeed, the theorem bounds the number of solutions by the product of the degree.
6i.e. if σ ≤ 4.5
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φ of the vector (vf1 , v
f
2 ) is twice the angle of the stimulus that produces

the response M
φ/2
x encoded by (vf0 , v

f
1 , v

f
2 ).

Hence, the network spontaneously produces, for a sufficiently high nonlinear gain

σ, three unstable tuned activities Aπ/2,A5π/4,A−π/4 oriented at π
4 ,

5π
8 ,−

π
8 , three

stable tuned activities Aπ/4,A−π/2,A3π/4 oriented at π
8 ,−

π
4 ,

3π
8 and one unstable

untuned activities A0, see figure 10.3. Note that the stability of the solutions has

been numerically obtained.

We plot the corresponding six OI signals (see (10.12)) in figure 10.4 for a non-

linear gain σ = 5.3. In line with the long-standing convention employed by experi-

mentalists, we removed the DC component v0, also called blank in the OI signals.

Note that the OI signals in each column are phase reversed.
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Figure 10.4: Plot of the spontaneous stationary OI signal associated to the station-

ary cortical states A found in figure 10.3 for a nonlinear gain σ = 5.3.

10.6 Study of the evoked activity

Having studied the spontaneous activity in the previous section, we now study what

happens when the network is stimulated. We answer the question of how the dif-

ferent spontaneous cortical activities found in the previous section are modified by

the afferent input. In particular, how can the network produce a response that

is related to the stimulus orientation φaff despite its apparent preference for the

orientations π
4 ,

3π
4 , −

π
2 ? To answer these questions, we assume that the network

works at the edge of the bifurcation we analysed in the previous section (see chap-

ter 8). This means that we choose the nonlinear gain σ to be close to the bifurcation

value σ0 ≈ 4.5 (see also chapter 9).
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In the following numerical experiment, the afferent input is oblique, i.e. φaff =

π/8. It is a simple case because it is already aligned with one of the spontaneous

cortical responses. However, one should note that this is not a great loss of generality

because it is not aligned with the six others. Hence, we shall see how the tuned

responses behave when the constrast is increased. The result is shown in figure 10.5.

Based on section 3.5 and chapter 9, if we switch on the afferent input, i.e.

choose ε > 0, we expect two main phenomena to happen: 1) destruction of 4 tuned

solutions when the contrast exceeds the asymmetry 2) persistence of a cortical state

“orthogonal” to the stimulus angle for larger contrasts.

We start by discussing the results of figure 10.5. If the contrast is above 0.1,

then the 4 tuned activities A±π/2,A−π/4,A3π/4 which are not aligned with the

stimulus at φ = π
4 are destroyed. More precisely, A3π/4 and Aπ/2 are destroyed7

for contrasts ε ≈ 0.01 while A−π/4 and A−π/2 are destroyed8 for contrasts ε ≈ 0.1.

There remain two tuned solutions Aπ/4, A5π/4, the first one stable, aligned with the

stimulus and the other, unstable, which is perpendicular to the stimulus orientation.

For large contrasts (data not shown), the perpendicular solution A5π/4 disappears9

together with A0 and it only remains the stable solution Aπ/4 (see section 9.5.2 for

a detailed explanation). This agrees with 2).

With regard to the relationship between the asymmetry and the contrast for

the existence of tuned solutions, we have not performed a detailed numerical anal-

ysis. Rather, we numerically observe that for contrasts ε of order the value of the

asymmetry10 max
r,θ
|P0(r, θ)| ≈ 0.1055, all cortical states which are not aligned with

the stimulus are destroyed. This is in agreement with the results in section 3.5.3.

It should be noted that the existence of the perpendicular response, in the case

of the symmetrical network (α = 0), amounts to the symmetry θ → −θ in the

synaptic weights J. Hence, whenever the network is stimulated with a grating, 3

responses are possible. One is the untuned activity, the second is the response of

the network (i.e. the one aligned with the stimulus) and the third is the perpen-

dicular activity. A similar phenomenon happens here. In the numerical example

shown in figure 10.5, the perpendicular activity is evidently A 5π
4

. However, as the

experimental network is not symmetric, Aπ
4

and A 5π
4

are not symmetric w.r.t. to

the origin11 in figure 10.5. In particular, these two states do not have the same

amplitude: A 5π
4

is closer to an untuned state than Aπ
4
.

10.7 Design of a dynamical stimulus

In this section, we would like to construct a stimulus that puts the network in a

state wich is not aligned with the stimulus like we did in chapter 9. This is a

7In effect, they disappear through a saddle-node bifurcation.
8idem.
9idem.

10numerically computed from the experimental data
11see figure 9.4 in the case of the Ring Model
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Figure 10.5: Plot of the stationary activities (vf1 , v
f
2 ) (vf0 is not shown) as functions

of the contrast ε of the afferent input, for a stimulus orientation φaff = π
8 and for a

nonlinear gain σ very close to the critical gain σ0 = 4.5 (see text). As ε reaches 0.1,

only 3 evoked activities remain. We have indicated with large disks, as an example,

the seven evoked activities obtained for ε ≈ 0.005.

behaviour that was not explicitly incorporated in the design of the model.

In chapter 9, we have shown that when stimulated with a sequence of gratings

respectively horizontal, vertical and then horizontal, the network response did not

vary much: it was almost stationary. From its viewpoint, the two stimuli produce

very similar cortical responses. We would like to derive the same dynamical stimu-

lus for the experimental network. One should first note, that if the distribution of

preferred angles is almost uniform, then the dynamical stimulus designed in chap-

ter 9 also works. However, the slight asymmetries of the experimental network

make the design of the dynamical stimulus more difficult and we have to rely on

numerical computations. This makes the application of the dynamical stimulus idea

to biological experiments more difficult.

In the previous section, we have studied the evoked activity and gained a good

understanding of the states that the network produces spontaneously. We found

that any12 stimulus produces three activities13. Let us recall how the dynamical

stimulus works. We know that A5π/4 is unstable when the stimulus angle is φaff =
π
8 and that A5π/4 is close to the stable cortical response to a stimulus oriented

at φaff = 5π
4 , we take advantage of this fact. We present a stimulus oriented at

φaff = π
8 which is called horizontal to make the analogy with section 9.4 more

precise. In response to this stimulus, the cortical activity converges to the stable

state Aπ/4. Then, we slowly rotate the stimulus angle from φaff = π
8 to a vertical

12In effect, we have shown that the contrast must be higher than the asymmetry.
13possibly unstable.
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one, i.e. φaff = 5π
8 . It makes the cortical activity converges to A5π/4. We suddenly

present again the horizontal stimulus. As the current cortical states A5π/4 is already

very close to the stationary (unstable) cortical response to the vertical stimulus, the

cortical response does not vary much and it takes a long time before the cortical

activity moves to Aπ/8, i.e. the cortical response to a horizontal stimulus. The

stimulus sequence is written horizontal
slow−→ vertical

fast−→ horizontal.

However, this scheme would not work as well as in the case of the Ring Model

because of the asymmetry. This asymmetry gives different dependencies of the seven

cortical response amplitudes (see figure 10.5) on the contrast. Hence, to improve

the dynamical stimulus, we have to change the stimulus angle and also the contrast

in the gratings sequence. The contrasts have to be more precisely adjusted in the

case of large asymmetries. This was unnecessary in the case of the Ring Model.

Let us derive the condition to improve the above dynamical stimulus, i.e. to trap

the cortex in the perpendicular state more efficiently. For convenience, we make the

dependency on the contrast explicit. The first (horizontal) stimulus I
(1)
ext has orienta-

tion φaff = π
8 and contrast ε1. It produces the tuned responses A

(1)
π/4(ε1),A

(1)
5π/4(ε1)

respectively stable and unstable. The second (vertical) stimulus I
(2)
ext has orienta-

tion φaff = 5π
8 and contrast ε2. It produces (data not shown) the tuned responses

A
(2)
π/4(ε2),A

(2)
5π/4(ε2) respectively unstable and stable. Hence, the dynamical stimu-

lus works if

A
(1)
5π/4(ε1) ≈ A

(2)
5π/4(ε2). (10.13)

Having computed the stationary activities for the two stimuli as functions of the

contrast (as in figure 10.5 for the horizontal stimulus I
(1)
ext), it is straightforward,

given a contrast ε1, to find a second contrast ε2 such that (10.13) is satisfied. This

would trap more efficiently the network in the perpendicular state.

10.8 Conclusion

In this chapter, we have followed [Blumenfeld 2006] and built a neural field model

that produces, as stationary activity, experimental orientation maps. We have

shown in section 10.2 that the choice of the connectivity J was a direct conse-

quence of the idea of cortical responses Sφx . We were then able to approximate the

experimental orientation maps to produce a 3D network equivalent to (10.9).

This 3D network is formally similar to the Ring Model we studied in chapter 9.

The resemblance is only formal as they do not model the same biology while they

share a lot of mathematical properties (like being 3D, working near a Pitchfork

bifurcation point, having very similar connectivity, a perception threshold...).

The Ring Model features a stationary spontaneous activity which is homeomor-

phic to a circle if the nonlinear gain is high enough14. Hence, it can produce an

infinite number of stationary activities which are translations in the features space of

14We argued in section 3.7 that this is not the working range of the model.
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each other. The model of this chapter only produces a discrete number of stationary

spontaneous cortical states15 which expresses the preference of the network for spe-

cific orientations stimuli. Hence, with an afferent input like (10.8), the spontaneous

activity converges to one of these stationary cortical states. If we add a Brownian

noise to the afferent input, then the structure of the noise will be transmitted to

the cortical activity. Indeed, the network operating near a bifurcation, it is slow

compared to the time-variations of the noise. For the modeling of the Kenet et

al. experiment in [Kenet 2003] (see the beginning of section 10.1), it would predict

that the statistics of appearance of orientation maps in the spontaneous activity

reflect the noise properties and is very peaked around specific activities shown in

figure 10.4 depending on the noise amplitude.

Compared to [Blumenfeld 2006], we have not supposed that the distribution

of preferred orientations θx was uniform. This has the consequence of creating

orientation preferences (at roughly π
4 ,

3π
4 ,−

π
2 as shown in figure 10.3). We then

studied how the network processed an arbitrary oriented stimulus. We saw that

if the contrast was small, the response of the network was ambiguous. As soon

as the contrast is high enough (above a perception threshold), this value of the

threshold contrast being related to the asymmetry of the network, then the response

is not ambiguous anymore, at least for stationary stimuli. However, if we switch

alternatively between two perpendicular stimulus of well tuned contrasts, then the

network response is stationary in time. This is a consequence of working near a

Pitchfork bifurcation.

The connectivity given by (10.5) does not depend on the distance between

the pre and postsynaptic locations as opposed to reported biological data (see

[Gilbert 1989, Kisvarday 1997, Yousef 2001, Mariño 2005]).This can be modified by

multiplying the connectivity (10.5) by a Gaussian Ga(x,y) = e−‖x−y‖
2/2a2

where a

is the extent of lateral connections. We cannot use the reduced system (10.11) to

study this new connectivity. However, the network could still be made work ingclose

to a Pitchfork bifurcation. The specific nature of the connections only shapes the

number of spontaneous/evoked stationary cortical states and we know it cannot be

above 9 (see section 10.5). These states will be organized in a similar way as in

figures 10.3 and 10.5. Also, the spatial structure of these spontaneous states will be

very similar to the one shown in figure 10.4. Hence, the assumption that the system

works close to a bifurcation is very strong and shapes completely the structure of

the spontaneous/evoked activity. We will not further study this particular model

but instead propose a new model of V1 which is much more driven by documented

experimental data. The price to pay is that the numerics become very involved.

15up to 9 theoretically although we have obtained 7 with the experimental data of figure 10.1.



Chapter 11

A model of V1 without

feature-based connectivity

In the last two chapters, we have applied the strategy proposed in chapter 8. We

turn now to the last model studied in this Thesis. It is a model of interacting

pinwheels with short-range connections that are feature-independent, each pinwheel

working close to a Pitchfork bifurcation. This is a general principle that has been

used in the models of Bressloff et al. (see for example [Bressloff 2001b]). We have

arrived at a similar requirement from other considerations in chapter 8. In this

chapter, we

• adjust the model parameters such that the mechanism of chapter 8 works

• study the influence of delays

• study the long-range connections.

In particular, we do not consider the problems of the width of the tuning curves

and of the perception threshold because this is far more sophisticated than for the

Ring Model. Indeed, the model of this chapter does not feature the symmetries of

the Ring Model that allow “easy” computations.
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11.7 Conclusion and extensions . . . . . . . . . . . . . . . . . . . . 250

11.1 Introduction

There are many models of V1/hypercolumn in the literature that have been intro-

duced to account for biology. These models can be segregated in two categories:

the spiking neural networks (to cite a few [Suarez 1995, Somers 1995, Somers 1998,

Shelley 2002, Tao 2004, Rangan 2005, Haeusler 2007, Chemla 2010b]) and the

rate models (for example [Ben-Yishai 1995, Carandini 1997, Dragoi 2000b,

Bressloff 2000, Stetter 2000, Bressloff 2001b, Bressloff 2003, Kang 2003,

Miikkulainen 2005, Blumenfeld 2006, Schwabe 2006, Baker 2009]). These models

depend on a lot of parameters and it is rare, especially for the spiking network

models, to find a study about the parameter tuning. In a caricature way, account-

ing for a few biological effects with thousands of independent parameters seems

unreasonable. We think it is very important to make the choice of a parameter

regime (i.e. a set of parameters) which implies predictions that are (or not) verified

in the biology. This line of thinking have been more thoroughly applied to the rate

models (see for example [Ben-Yishai 1995, Bressloff 2001b, Blumenfeld 2006]).

In the rate models community, the orientation selectivity have been mainly

modelled by assuming a feature-dependent connectivity (see [Ben-Yishai 1995,

Bressloff 2001b, Chossat 2009]), only a few studies, like [Ernst 2001, Kang 2003,

Bressloff 2003, Baker 2009], use a more reasonable connectivity like we described in

chapter 1, i.e. a connectivity that does not depend on the orientation (for example).

Note that the paper [Kang 2003] does not consider the regime where the network

is close to a stationary bifurcation.

Finally, in the rate model community, we are only aware of models (see the work

of Bressloff et al. ) of pinwheels interactions which assume a continuum of pinwheels

spread over the cortex. This is not supported from a biological viewpoint. Also, the

activity in the linear zones is neglected. Nevertheless, these models are often ref-

erenced for their spectacular ability to reproduce the contoured and non-contoured

planforms (see also [Ermentrout 1979]) as reported by Kluver in [Kl”uver 1966]. In

particular, the use of long range connections as shown in section 1.2.2 is critical

for the model to produce contoured planforms. Note that the impact of space-

dependent delays in these models have been studied in [Bressloff 2008] for the linear

stability.

In this chapter, we consider a rate model with a connectivity that does not

depend explicitly on the preferred orientation and respects the basic properties of

the local connections (see section 1.2.2). We suppose that the populations are spread

over a square lattice of hypercolumns, this choice is motivated by the analytical

formulas it provides. This model has very few parameters and is tuned to operate in

a similar regime than in the Ring Model, i.e. near a Pitchfork bifurcation. Then, we

study what happens if we introduce long-range connections. Finally, we study how
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the space-dependent delays impact the network behaviour. To our best knowledge,

this is the only study, apart from [Bressloff 2008], about these effects with a rate

model.

11.2 A rate model with one population

Let us recall why we do not want a feature-based connectivity (see also chapter 1).

One of the most striking correlate of the orientation selectivity is the pinwheel

columnar structure as shown in the experiments of Bosking et al. in [Bosking 1997].

This raises the question “Is the pinwheel structure encoded in the cortical con-

nections?” An element of answer is given by [Lund 2003a] who concludes that the

patchy lateral connections are the only clearly identifiable example of an anatomical

column. Hence, in a dead cortex there is some evidence for a columnar organization

and less for orientation selectivity or the pinwheel network. This indicates, that the

connectivity should not depend on the orientation otherwise there should be some

anatomical evidence for it. Let us note that the pinwheel structure is observed when

an animal is shown highly contrasted full field drifting gratings1, i.e. the network

has to be activated. The other element of answer comes from the theoretical study

in [Ernst 2001] of primary visual cortex at the very first stages of development.

This model features a difference of Gaussians connectivity on a two-dimensional

cortex that can generate pinwheels. Upon stimulation with drifting grating, the au-

thors found a pinwheel network and the extent of the (produced) pinwheels lattice

corresponds to the width of the connectivity. Hence, no feature-based connectiv-

ity between cortical neurons seems needed to account for the pinwheel structure.

In particular, it seems unnecessary to introduce the pinwheel structure within the

cortical connectivity.

To simplify the study, we will not consider two populations of excita-

tory/inhibitory spread over a 2D cortex. Indeed, such model requires too many

parameters, for example in the definition of the connections between the two popu-

lations, the different nonlinear gains, the thresholds... Rather, we use the simplifi-

cation exposed in section 2.3 and consider a single population. Hence, we consider

the equation for the membrane potential V (x, t) which depend only on the cortex

position x. This equation is:

τ
d

dt
V (x, t) = −V (x, t) +

∫
Ω
J(x,y)S [σV (y, t)] dy + Iext(x) (11.1)

where Ω is a two-dimensional piece of cortex and S(v) = 1
1+e−v+T . We sup-

pose that Ω has periodic boundary conditions because this simplifies the

computations of the spectral properties in (8.6) of the integral operator.

According to the biological properties of the connectivity seen in chapter 1, we shall

decompose it as a sum of the local connectivity and the long-range connectivity:

J(x,y) = Jloc(x− y) + εLRJLR(x,y).

1there are also orientation maps for local stimuli, see [Chavane 2011] for example.
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As the long-range connectivity is modulatory, we assume that εLR is small. Hence,

we start with the case where there are only local connections εLR = 0 in the next

section. The long-range connections are introduced in section 11.6. The next three

sections are devoted to the derivation of expressions for the connectivity function

Jloc and the external input Iext. For the input, this goes through the study of

theoretical orientation maps θ(x) similar to the experimental ones that we studied

in the previous chapter.

11.2.1 The expression of the local connectivity, Jloc

From [Lund 2003a, Mariño 2005], we know that the local connectivity is homoge-

neous in the cat and in the monkey:

J(x,y) = Jloc(x− y), ‖x− y‖2 ≤ 1 (11.2)

If we suppose that the excitatory/inhibitory connections are modelled by Gaus-

sians with identical width σloc, then the excitatory population features an effective

connectivity given by a difference of Gaussians:

Jloc(x) = ae
− ‖x‖

2

2σ2
loc − e

− ‖x‖
2

4σ2
loc (11.3)

This local connectivity implies that there is always a space constant stationary

activity V (x) = v0 for all parameters when there is no input Iext. This activity

solves:

v0 = Ĵ0S(σv0) (11.4)

where Ĵ0 is the integral of Jloc over the cortex Ω.

11.2.2 The expression of the external input, Iext

Here, we shall give an expression for Iext. The optical imaging technique gives the

preferred orientation (PO) map x → θ(x) ∈
[
−π

2 ,
π
2

]
by a procedure that we de-

scribed in section 10.1. The orientation map being computed with high contrast

drifting gratings stimuli, we assume that the LGN drives the cortex and that the

recurrent computations are negligible. Hence, for a given orientation stimulus θaff
expressed by a particular form of Iext, the membrane potential converges to a sta-

tionary solution V f . Using equation (11.1), when ‖Iext‖2 is large, we find that

the stationary cortical state V f is roughly2 given by Iext and is also the OI signal

(see section 10.2). This stationary cortical state is used for the computation of the

PO map. Hence, Iext(x) carries the information about θ(x). This motivates the

expression

Iext(x) = f(x, θ(x))

for some function f that has to be found. The rest of this section is devoted to

finding f . We start with the case where there is a single pinwheel (like in figure 8.1)

in the PO map.

2because S is bounded.
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Around such a pinwheel, the preferred orientation is given by the polar angle θ

(see figure 8.1): the LGN input only depends on this angle θ, i.e. Iext(x) = f(arg x)

written I(x) = f(θ). Moreover, f has to be a periodic function of θ because the

preferred orientation is periodic around the pinwheel. Hence, by keeping the first

Fourier modes of f , we can assume that

Iext(x) = A+B cos(2θ − 2φ), (11.5)

around the pinwheel for some arbitrary A,B > 0 and φ. For a given cortical

location, θ = φ gives the maximum response. Hence, we can interpret φ as the

stimulus angle, written θaff , at location x. Also, as the LGN input is supposed

weakly tuned, we can fix A = 1, B = β << 1.

How can we generalise the above expression of Iext for a network of pinwheels

with the property that around each pinwheel, we have the same expression (11.5)?

A solution is given by the expression

Iext(x) = 1 + β cos(2θ(x)− 2θaff (x)).

If we add a function I0 of the space to localise the stimulus, we find (see also

[Shelley 2002] for a different derivation):

Iext(x) = ε [1 + β cos(2θ(x)− 2θaff (x))] I0(x) (11.6)

where ε is the contrast and β is the (input) anisotropy. In the case of a full field

stimulus, I0 = 1 whereas for a local stimulus I0 is a Gaussian, for example. In the

model we consider here, the LGN gives a weakly tuned input which means that β

is small. In order to proceed further, we need the expression of the PO map θ(x).

11.2.3 The pinwheel lattice

We now assume that the pinwheels are distributed on a planar lattice. This reg-

ularity makes it easier to apply the mechanism of chapter 8. Indeed, the tuned

component of a full field grating stimulus

I
θaff
1 (x) = εβ cos(2θ(x)− 2θaff )

has to be approximated by an eigenvector of Jloc according to (8.9). We will see in

section 11.3.2 that the eigenvectors of Jloc are given by cos(k ·x), sin(k ·x) where k

is an arbitrary wavevector. Hence, the simpler θ(x), the easier the approximation

of I
θaff
1 (x) by eigenvectors is.

We describe a planar lattice L by two independent vectors v1,v2 and let

L = {2πn1v1 + 2πn2v2 | n1, n2 ∈ Z} .

We can distinguish three types of lattices depending on the angle ψ between the

two basis vectors v1,v2: the square lattice (ψ = π
2 ), the rhombic lattice (0 < ψ <

π
2 , ψ 6=

π
3 ) and the hexagonal lattice (ψ = π

3 ). To simplify the study, i.e. to reduce
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the number of different cases, we assume that the pinwheels are distributed on

a square lattice. The upcoming analysis could be easily extended to the rhombic

lattice. The case of the hexagonal lattice is different, in particular, its larger number

of symmetries changes the Pitchfork normal form expression (11.13) and its analysis

in section 11.4.2.

We now show some particular PO maps θ(x) where the pinwheels are distributed

over a square lattice. How can we build them? We have to find maps such that

the preferred orientation around a pinwheel looks like figure 8.1. The tiled pin-

wheel map can be generated from a single π× π square hypercolumn like figure 8.1

by first generating a rectangle of size 2π × π with a reflection along the vertical

axis. From this rectangle, we then generate a 2π × 2π square with a reflection

along the horizontal axis. This periodic 2π × 2π square tiles naturally without any

transformation. We call Np the number of tiles used to generate a PO map, hence

Ω = [−Npπ, Npπ].

In figure 11.1 Left, we plot an example of PO map θ1 and the procedure to

make the 2π × 2π square of 4 pinwheels is shown in white.

Initial square
hypercolumn

Figure 11.1: Left: Orientation map θ1. Right: plot of cos(2θ1), the surface forms

spots. Positive values are transparent whereas negative values are dark. The ori-

entation map is seen by transparency. Note that Np = 3.

How can we generate other maps? As the lattice inherits the properties of the

initial square hypercolumn, given the initial square hypercolumn of the map θ1 (see

figure 11.1 Left), we can multiply it by −1 (modulo π) or add a constant (modulo

π), it will produce a square hypercolumn like figure 8.1. Hence, we find that other

PO maps are given by:

θ = ±θ1 + θ0 [π]

where θ0 is an arbitrary constant. We conjecture that we find all the square PO

maps using this procedure starting from an initial square hypercolumn.
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It is interesting to look at the tuned component of the input in the case of full

field gratings. In figure 11.1 Right, we plot cos 2θ1: it is displayed as an alpha

map on top of the underlying PO map θ1, where transparency represents positive

values of cos 2θ1 and dark represents negative values. We observe that cos 2θ1

generates spots. A shift of the PO map, similar to a rotation of a full field grating

stimulus, would change the spots into stripes (see figure 11.2). Hence, by rotating

the stimulus, the input patterns change from spots to stripes.

Figure 11.2: Plot of cos
(
2θ1 − 2π8

)
, the surface forms stripes. Positive values are

transparent whereas negative values are dark. The orientation map is seen by

transparency. Note that Np = 3.

11.3 Basic properties of the network: local connectivity

We start by exploring the properties of the model that are solely due to the local

connectivity.

11.3.1 Network symmetries

Let us write (11.1) as F(V ) = 0 with F(V ) ≡ V̇ + V − Jloc · S(σV ) − Iext. As in

the case of the Ring Model in chapter 9, the symmetries of the model change if the

stimulus is switched on (ε 6= 0) or not.

In the case where there is no stimulus (ε = 0), we find that F commutes with

the translations:

F(Tt · V ) = Tt · F(V ) with Tt · V (x) ≡ V (x + t),

this is a consequence of Jloc being homogeneous and of the periodic boundary con-

ditions imposed on Ω. Because of our assumptions, the group of spatial translations

is isomorphic to the torus T2 ≡ R2/(2NpπZ)2. The model is also symmetric with re-

spect to the transformations that leave the basic structure invariant. This is because
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Jloc is rotation invariant and an even function. These transformations form the di-

hedral group D4 = 〈R,S〉 generated by R,S, a rotation and a reflection which act on

the membrane potential as: R·V (x1, x2) = V (x2, x1) and S·V (x1, x2) = V (x1,−x2).

The full symmetry group when ε = 0 is:

Gloc = D4 n T2. (11.7)

The index loc is used to recall that the connectivity is the local connectivity. When

the long-range connections are introduced in the model, the symmetries are changed,

see section 11.6. Hence, we have shown that the model is Gloc-equivariant when

ε = 0.

We now present a stimulus to the network, i.e. ε > 0. We have seen in sec-

tion 9.1.4 that F commutes with a transformation if the input Iext is invariant by

the transformation. Hence, at most, the symmetry group of the model is Gloc. We

are left to find the symmetries that leave the input invariant. When the LGN input

Iext is space constant, the model is Gloc-equivariant. We now focus on the case of

full field gratings I0 = 1. The input is not invariant under all the translations Tt but

only those satisfying t = (2πn1, 2πn2) , ni ∈ Z. This comes from the periodicity

of the PO map θ which is obtained by tiling the basic 2π × 2π square (see white

dashed square in figure 11.1 Left). Hence the translations group is reduced from T2

to a discrete subgroup Z2. No further symmetries are found.

We end this section by looking at the symmetries of the PO map θ1. They are

“obvious” symmetries like the reflections along the vertical (resp. horizontal) axis

of equation x1 = π/2 (resp. x2 = π/2). There are also transformations that do

not leave θ1 invariant, like the reflection, written S̄, along the line x1 = x2 which

change the sign of the map:

θ1(S̄x) = −θ1(x) [π].

Indeed the reflection S amounts to exchange the blue zones with the green

zones. Finally, we have a nice transformation coming from the shift. If we add
π
4 modulo π, to the map, it transfers the colour zones according to the chain

blue→cyan→violet→red which amounts to rotate the entire map by an angle of
π
2 . Hence, if we write Rφ the rotation of angle φ, we find:

θ1(R2φx) = θ1(x) + φ [π], φ ∈ π
4
Z. (11.8)

whereRφ is the rotation of angle φ. If we consider a general map θ2 = ε0θ
1+θ0, ε0 =

±1, we find:

θ2(R2φx) = θ2(x) + ε0φ [π], φ ∈ π
4
Z. (11.9)

This relation simply shows that θ(x) is affected in a counter-clockwise (resp. clock-

wise) way if the increasing values of θ are seen counter-clockwise (resp. clockwise)

in the initial square hypercolumn.
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11.3.2 Eigenvalue decomposition of the connectivity

In the mechanism described in chapter 8, we have seen that it was important to

compute the eigen-elements (λ,U), satisfying (8.6), of the integral operator asso-

ciated to the local connectivity Jloc. As we imposed periodic boundary conditions

to the cortex Ω, the eigenvectors U are given by cos(k · x), sin(k · x) with the

wavevector k =
(
k1
Np
, k2
Np

)
, ki ∈ Z. Then, the eigenvalues, noted Ĵk, read

Ĵk =

∫
Ω
Jloc(y) cos(k · y)dy.

There is an analytical expression3 for the Ĵk but we choose a convenient approxi-

mation which is valid when Np is large. In effect, we have:

Ĵk ≈ 4π2σ2
loc

[
ae−σ

2
loc‖k‖

2/2 − 2e−σ
2
loc‖k‖

2
]
, Np →∞

The eigenvalues indexed by the wavevector k may be the same for different k.

We find that the eigenvalue Ĵ(0,0) is attained once, the eigenvalues Ĵ(k1,0) (resp.

Ĵ(k1,k1)) are attained four times by the wavevectors k = (±k1, 0), (0,±k1) (resp.

k = (±k1,±k1)) and the eigenvalues Ĵ(k1,k2) with k1, k2 6= 0 are attained eight

times4. This also gives the dimension of the eigenspace.

It is important to note that the largest eigenvalues are separated by a quantity

of order 1
Np

5 because the different wavevectors are separated by at most 1
Np

. It

implies that the bifurcation points, solution of (8.7), are very close.

11.3.3 A first look at the spontaneous activity

We would like to show some spontaneous cortical states that can be produced by

the model and discuss their interpretation. We have seen in chapter 8 that the

network features a constant (untuned) spontaneous activity v0 when no stimulus

is shown. What happens if we have pharmacologically modified the population

properties like the threshold T or the nonlinear gain σ? For some value of the

nonlinear gain (for example), the untuned activity may become unstable and tuned

spontaneous activity may emerge. Close to a bifurcation point, this tuned activity

would look like6 v0 + U where U is an eigenvector for some wavevector k. It is

interesting to understand how this spontaneous activity may be interpreted. For

example, we have seen that the spots or stripes of spatial extension π and centred

on the linear zones should be interpreted as full field gratings.

But if the stripes are centred on the pinwheels centres (shown with white dots in

figure 11.3 Left) as in figure 11.3 Top Left, then the interpretation changes. Indeed,

3which involves the erf function
4by the wavevectors k = (k1, k2), (−k2, k1), (k2, k1), (−k1, k2).
5and also because k→ Ĵk is smooth
6It is unclear if this is true far from a bifurcation point. For example, the nodal structure of

the spontaneous activity may be conserved along bifurcated branches but we have not been able

to find such a general criterion. See also part II.
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in this case, the hypercolumns are either not activated or entirely activated. For

the ones entirely activated, we can suppose that all the orientations are present in

the stimulus, i.e. that it is a small spot. The right column in figure 11.3 is the

interpretation of the cortical activity in the left column. We represent spots with

red squares centred on pinwheels (black dots). It follows that the first activity a)

represents stripes of light and the second activity b) represents spots of light. These

are called the non-contoured planforms in [Bressloff 2001b].

On the other hand, when only a fraction of the hypercolumn is activated, we

determine which local contour produces such cortical activity by pooling7 the ori-

entations “that are activated”. For example, in the case of thin stripes of activity

in figure 11.3 c), we obtain an example of contoured planform.

Finally, there are activities that have an ambiguous interpretation. It is in-

deed difficult to see if the cortical activity in figure 11.3 d) Left is indeed rep-

resented by a mixture of contoured/non-contoured planforms as we have done in

figure 11.3 d) Right. The interpretation is ambiguous because the local contours

around the square should match the contours of the square. This might come from

the fact that the spot of light is not really a square in this case.

11.4 Generalisation of the Ring Model

In this section, we adjust the parameters (a, σ, T ) in order to produce the mechanism

explained in chapter 8. One of the basic requirements of this mechanism is that the

network must be able to spontaneously produce activity that looks like the LGN

input when the nonlinear gain σ is high enough. As we have already computed the

eigenvalues and eigenvectors, the basis of the mechanism is almost set. We start

with the identification of an eigenvector that looks like the tuned component of a

full field grating.

11.4.1 Identification of the critical wavevector

From figure 11.1, we see that cos(2θ1(x)) ≈ (sin(x1) + sin(x2))/2 for the square

lattice 1. Also we have (data not shown) that sin(2θ1(x)) ≈ (− sin(x1)+sin(x2))/2.

From cos(2θ1−2θaff ) = cos 2θ1 cos 2θaff +sin 2θ1 sin 2θaff , we conclude that for all

full field grating orientations, the input is composed of spots or stripes of wavelength

1. Hence, a candidate for the wavevector to be spontaneously selected is:

kc = (1, 0).

From the discussion in chapter 9, kc must be the first wavevector to undergo a

bifurcation when the nonlinear gain σ is varied: this happens if Ĵkc is the largest

positive eigenvalue of Jloc (see lemma F.1.1) and the nonlinear gain that produces

the bifurcation is written σ0. Then, by symmetry, the static bifurcation is a Pitch-

fork bifurcation with symmetry group D4 n T2.

7This is done by computing the Fourier transform: arg
∫
V (x)e2iθ(x)dx around each pinwheel.

The contour is validated if the total activity |
∫
V (x)e2iθ(x)dx| is high enough.
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a)

b)

c)

d)

PO map

PO map

PO map

PO map

Figure 11.3: Plot of various plane wave membrane potential solutions.

a) cos(x), b) cos(x) + cos(y), c) sin(2x), d) cos(2x+y
4 ) + cos(−2x+y

4 ) + cos(2y+x
4 ) +

cos(−2y+x
4 ). See text for more information. Right: corresponding interpretation in

terms of stripes, spots and contours (see text). The first two rows are for the PO

map θ1. The last two rows are for the PO map θ2.
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11.4.2 Parameter tuning and network behaviour

Once we have adjusted the connectivity parameters, it remains to tune the operating

point of the network by tuning the nonlinear gain. In the case of the Ring Model, we

chose a nonlinear gain close to a Pitchfork bifurcation σ ≤ σ0. Then, we studied the

spontaneous activity depending on the nonlinear gain. This gave us a hint about

the cortical responses to small contrasts. Indeed, the switching of the stimulus

“opens” the Pitchfork (see section 3.3.2) and produces a turning point that we can

follow as function of the contrast. This turning point arises for a nonlinear gain σc
which is a decreasing function of the contrast: ε → σc(ε). For a particular value

of the contrast ε0, which we call the perception threshold, the turning point has

the same value as the nonlinear gain of the network, i.e. σ = σc(ε0). Then, for

larger contrasts, the network features a tuned response. The last important remark

about the Ring Model is the rotation invariance. This invariance implies that the

network responses are all the same V f (θ) = f(θ − θaff ) where θaff is the stimulus

orientation. For the Ring Model, we found up to three different functions f for a

given stimulus and one of them is called the tuning curve (see definition 1.3.1). In

the case here, we will only sketch the first part of this analysis, i.e. the study of

the activity depending on the nonlinear gain. In particular we will not study the

opening of the Pitchfork bifurcation. Note that we conjecture the present model

to feature a perception threshold. However, because of the absence of the rotation

symmetry, it has a finite number of cortical responses to a particular stimulus.

However, we have not been able to derive the dependency of these responses on the

stimulus angle θaff in a simple way. In particular, we are not able to compute the

tuning curves analytically. Finally compared to the Ring Model, something new

happens. As the network has spontaneous preferred orientations, when presented

an arbitrary stimulus orientation, it will give a tuned response for contrasts above

the perception threshold and the cortical response orientation will depend on the

contrast. Hence, there could be a second perception threshold corresponding to the

contrast value for which the cortical response aligns with the stimulus angle. This

does not happen in the Ring Model because the cortical response is always aligned

with the stimulus.

11.4.2.1 Tuning of the connectivity, Jloc

Having identified the critical wavevector, let us adjust the connectivity such that

Ĵkc becomes the largest positive eigenvalue of Jloc. As the critical eigenvalue must

be positive, this requires

Ĵkc ≈ 4π2σ2
loc

[
ae−σ

2
loc/2 − 2e−σ

2
loc

]
= 4π2σ2

loce
−σ2

loc/2
[
a− 2e−σ

2
loc/2

]
> 0 (11.10)

which gives: a > 2e−σ
2
loc/2. Also, we find that the extremum of k → Ĵk occurs at

‖k‖ = 1
σloc

√
−2 log(a/4). From ‖kc‖ = 1, we find:

a = 4e−σ
2
loc/2. (11.11)
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To describe completely the connectivity Jloc, we need to fix the value of σloc. Rather,

σloc will remain a free parameter that we adjust to have different network behaviours

(see next sections). As σloc should not be too small compared to the square hyper-

column size (σloc ≈ π), we shall assume that

Ĵ0 = 4π2σ2
loc [a− 2] = π2σ2

loc [a− 2] = 8π2σ2
loc

[
2e−σ

2
loc/2 − 1

]
< 0,

i.e. σloc >
√

2 log(2) ≈ 1.1774.

11.4.2.2 Tuning of the nonlinear gain, σ

Let us now operate as in chapter 8. We suppose that there is no input ε = 0

and look for a nonlinear gain σ = σ0 such that the constant activity V f (x) = v0

bifurcates. We find the equations (see (8.7) in chapter 8):{
v0 = Ĵ0S(σ0v0)

1 = σ0ĴkcDS(σ0v0).
(11.12)

We proved in appendix E.3 that these equations have a unique solution (v0, σ0) if

Ĵ0 < 0 which implies a < 2 and

σloc >
√

2 log(2) ≈ 1.1774.

According to the discussion in section 9.5.2, the nonlinear gain σ of the network

should be adjusted just below σ0, i.e. σ - σ0. Indeed, in this case, when there is

no input, the network does not have a tuned response.

The bifurcation point (v0, σ0) corresponds to a Pitchfork with the square symme-

try group, it is called a D4-Pitchfork bifurcation. The critical eigenvectors are given

by (cos(x1), sin(x1), cos(x2), sin(x2)). Let us write V f (x) = v0+z1e
ix1+z2e

ix2+c.c.8.

Unlike in lemma 3.3.2 where we used the Lyapunov-Schmidt method to derive

an equation in (z1, z2) for the stationary solutions, we are here interested in the local

dynamics. We will see how this dynamics is changed when the delays are varied for

example. This is why we apply the center manifold theorem (see remark 7) to the

non-delayed neural fields equations to derive the reduced equation for (z1, z2) (see

[Ermentrout 1991]):  ż1 = z1

(
σ−σ0
σ0

+ β|z1|2 + γ|z2|2
)

+ I1

ż2 = z2

(
σ−σ0
σ0

+ β|z2|2 + γ|z1|2
)

+ I2

(11.13)

with β, γ ∈ R given in appendix F. We also find in section 3.3.2 that I1 =∫
Ω Iext(x1, x2)e−ix1dx1dx2/(2πNp)

2 and I2 =
∫

Ω Iext(x1, x2)e−ix2dx1dx2/(2πNp)
2.

In the case of full field gratings (i.e. I0 = 1 in (11.6)) and the PO map θ1, we have:

I1 = −i εβ4 (cos 2θaff − sin 2θaff )

I2 = −i εβ4 (cos 2θaff + sin 2θaff ) .
(11.14)

8complex conjugate.
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It is known from [Golubitsky 1988] that the normal form (11.13) has two types of

stationary solutions:

• the stripes (eiφ1zf1 , 0), (0, eiφ2zf1 ) with zf1 =
√

σ0−σ
σ0β

and φ1, φ2 arbitrary,

• the spots (zf1 e
iφ1 , zf1 e

iφ2) with zf1 =
√

σc−σ
σ0(β+γ) and φ1, φ2 arbitrary,

when I1 = I2 = 0. Note that when the stimulus is switched on, the stationary

solutions zf1 , z
f
2 of (11.13) are purely imaginary for the PO map θ1. Hence there

is a finite number9 of cortical responses to a particular stimulus. In the case of no

input, ε = 0, the spots are stable if and only if

β < −|γ| < 0 (11.15)

whereas the stripes are stable if and only if

γ < β < 0. (11.16)

It implies that the stripes and spots are mutually exclusive as stable patterns. We

have plotted in figure 11.4 the two conditions (11.15)-(11.16) as function of the

“threshold” T and the lateral extent of the local connectivity σloc. In all cases, it

requires the connectivity extent to be two to three times smaller than the

hypercolumn extent. This seems shorter than what is reported in the biology

(see chapter 1).
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Figure 11.4: Left, Middle: Plot of the coefficients β, γ of the D4-Pitchfork normal

form as function of the threshold T and the spatial extent of the local connectivity

σloc. Right: region in the parameter plane (T, σloc) where the spots or the stripes

are stable in the case ε = 0.

Suppose that we have set the parameters such that the stripes are stable (for

example). We have seen that depending on the stimulus orientation, the external

9Like in the previous chapter, this number is bounded by 9 by Bezout theorem.
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input pattern is composed of stripes or spots. In the case of a horizontal full field

grating (θaff = 0), the input pattern is composed of spots for the PO map θ1.

This is a difficult task for the network to produce spots whereas it prefers stripes.

The network is able to do so if the contrast is high enough. To understand this

mechanism, i.e. how the network manages to give a “correct” response and for which

contrast, requires a delicate study that we do not perform here. This would amount

to solve (11.13) in (z1, z2) as function of (ε, θaff ). The main issue is that for a given

contrast ε, there can be many solutions (z1, z2) and it is difficult, for example, to

find an analytical condition on the contrast for a unique solution to exist. Also, at

contrast fixed, the “tuning response” θaff → (z1, z2) is more complicated than a

cosine function as for the Ring Model.

We were not able to solve (11.13) and (11.14) as functions of (ε, θaff ), in par-

ticular, we were unable to compute the tuning curves. These equations could be

numerically studied but this would lengthen too much the present study. Neverthe-

less, we can make the following two predictions. Let us call zf1 (θaff , ε), z
f
2 (θaff , ε)

a solution of (11.13). Then the firing rate at cortical location x0 is given by

TC(θaff ) = S
[
σ
(
v0(ε) + 2<

(
zf1 (θaff , ε)e

ix1 + zf2 (θaff , ε)e
ix2

))]
(11.17)

where the scalars v0, z
f
i (θaff , ε), i = 1, 2, are independent of the cortical location

x0. If the contrast is large enough, there is a unique cortical response to a stim-

ulus oriented at θaff . The tuned component of this response looks like the tuned

component of the input. Hence we should be able to write

TC(θaff ) ≈ S [σ (v0(ε) + 2ρ1(ε) cos 2(θ(x)− θaff ))]

where ρ1(ε) is real scalar. It follows that the tuning width is the same at

every cortical location for contrasts large enough to produce a cortical

response which can be approximated by the above formula. This is in

contradiction with the experiments in [Nauhaus 2008] but in agreement with those

in [Mariño 2005].

Another interesting effect is to look at the cortical response to a local oriented

stimulus. Hence, we assume that the mask function I0 in (11.6) is centred around

x = 0 and activates a feedforward region of 4 pinwheels: I0(x) = exp
(
− ‖x‖

2

2(8π)2

)
.

Using the same argument, if the contrast is large enough, we have:

TC(θaff ) ≈ S [σ (v0(ε) + 2ρ1(ε)I0(x) cos 2(θ(r)− θaff ))] .

In particular, it is localized. But for smaller contrasts, the cortical response is

given by (11.17): it is not localized and is regularly spatially organized at the

hypercolumn scale. Hence, it looks like the cortical response to a full field grating.

We conjecture that at small contrasts, the localized stimulus will excite populations

of nearby hypercolumns with similar orientation (we do not know if this orientation

is close to θaff ). This seems in contradiction with recent experiments by Chavane

et al. in [Chavane 2011]. Further numerical studies are required to understand the
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link between the cortical response and the stimulus. However, we stop here our

investigations in order to show how the tools, that we have developed for the delays

in the previous part, apply to the present model.

11.5 Space dependent delays effects

In the two previous examples of this part, the Ring Model and the Blumenfeld et

al. model, we have not looked at the delay dependent effects.

The Ring Model being a hypercolumn model without spatial extension, it is

difficult to introduce propagation delays. Instead, we could have studied the effects

of constant delays. This was done in chapter 6 although it was not a hypercolumn

model. We found a Fold-Hopf bifurcation if the constant delay was large enough. In

particular, around this bifurcation point, there can be bistability between stationary

solutions and oscillating solutions.

We could have introduced constant delays in the Blumenfeld et al. model in the

previous chapter. As the equations are very similar to those of the Ring Model, we

expect similar conclusions to hold for the Blumenfeld et al. model.

Propagation delays in a V1 neural field model have only been studied once to our

best knowledge in [Bressloff 2008]. This V1 model features a network of interacting

Ring Models with a connectivity given by Jloc(θ− θ̄)+εLRJLR(x, θ) where the local

connectivity Jloc is the Ring Model connectivity and the long-range connectivity is

basically the connectivity we use in section 11.6 up to the change θ ↔ θ(x). The

authors found a Fold-Hopf bifurcation for a particular propagation speed, the Hopf

bifurcation occuring for the wavevector k = 0. Note that they did not look at the

constant delays effects.

In this section, we take into consideration the delays as described in part III.

More precisely, we modify (11.1) into:

τ
d

dt
V (x, t) = −V (x, t) +

∫
Ω
J(x,y)S [σV (y, t− τ(x,y))] dy + Iext(x) (11.18)

where τ(x,y) = D + c ‖x− y‖2. As in the previous part, we make the distinction

between the constant delays (c = 0), the purely propagation delays (D = 0) and the

space dependent delays in the general case. Let us first characterize the spontaneous

activity and see how the constant cortical activity V f (x, t) = v0 (which depends on

the nonlinear gain σ) is altered by the introduction of delays. We study whether

this stationary state can oscillate when delays are added. In this case, we write

V (x, t) = v0 + z0e
iωH teikH ·x + c.c. where z0 is a scalar complex and call kH the

wavevector. The difficulty in finding this oscillating solution lies in finding the

frequency ωH and the wavevector. As explained in chapter 8 in the case of the

static bifurcation, an oscillatory instability, called a Hopf bifurcation, arises when

the linearised equation around the stationary state V f = v0

τ
d

dt
U(x, t) = −U(x, t) + σs1

∫
Ω
J(x,y)U(y, t− τ(x,y))dy, (11.19)
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with s1 = S(1)(v0), has solutions of the form U(t,x) = eiωH teikH ·x. The issue here

is to find when such solutions defined by (ωH ,kH) exist. Fortunately, the model

(11.18) belongs to the class of models for which we have found analytical formulas

for the bifurcation point (ck, Dk) at which solutions defined by (ωH ,kH) of (11.19)

exist. As before in this Thesis, we start with the constant delays case.

11.5.1 Case of constant delays

In this section, we look for particular constant delays Dk such that (11.19) has an

oscillating solution. We have seen in section 4.4.1.1 that this critical delay Dk for

the wavevector k exists if and only if

σs1Ĵk ≤ −1. (11.20)

From proposition 4.4.4, the smallest critical delay Dk is obtained for the largest

eigenvalue Ĵk which satisfies (11.20). We have adjusted Jloc in section 11.4.2 and

the largest negative eigenvalue is Ĵ0, it follows that the most unstable wavevector

is kH = 0. The model works close to the Pitchfork bifurcation point σ = σ0. That

is why we plot in figure 11.5, the values, in the parameter plane (‖k‖ , σloc), of the

critical delay Dk/τ at the Pitchfork point σ = σ0. In this case, the condition (11.20)

reduces to Ĵk/Ĵkc ≤ −1 because σ0s1Ĵkc = 1. Under the curve labelled “∞”, no

critical delay exists whereas the critical delay values are indicated by the labels on

the different isolevel curves.
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Figure 11.5: Plot of the critical delay values Dk/τ as function of (‖k‖ , σloc) at the

Pitchfork point σ = σ0. Note that below the curve labelled “∞”, no critical delay

exists.
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Lemma F.1.2 indicates that if no critical delay exists at the Pitchfork bifurcation

point σ = σ0, then no critical delay exists for smaller nonlinear gains σ < σ0.

On the other hand, if a critical delay exists at the Pitchfork bifurcation point,

then this critical delay is a decreasing function of σ (from proposition 4.4.4 and

lemma F.1.2). We find that the smallest local connectivity extent σloc for which

there is an oscillating solution is given by σloc ≈ 0.42π for σ = σ0.

The value σ0s1 is independent of the threshold T as it equals 1/Ĵkc . Hence,

the value of the critical delay does not depend on the threshold T for σ = σ0.

It implies that the critical delay never exists if the model operates in the spots

regime (see figure 11.4 Right) or in the stripes regime because these regimes require

the spatial extent of the local connectivity to be smaller than σloc < 0.405 (see

figure 11.4 Right).

Having shown that no oscillating solutions can be found with constant delays at

the Pitchfork bifurcation point σ = σ0, we now turn to the study of space-dependent

delays.

11.5.2 Case of space-dependent delays

In this section, we show that the introduction of propagation delays can produce

oscillating solutions. Again, we use the result of section 4.4.1.2 to compute the Hopf

bifurcation curves10.

The Hopf bifurcation curves11 should depend on the three parameters

(σloc, c,D). As such, they form surfaces in the 3D parameter space. Instead of

plotting these surfaces, we find it more convenient to show the bifurcation curves

in the plane (D, c) for some particular σloc. This is done in figure 11.6 for σ = σ0.

Each Hopf curve corresponds to a wave vector k = (m,n)/Np and the black dots

mark the curve intersections which are Hopf-Hopf bifurcation points, i.e. the in-

tersection between two Hopf curves. The first two panels (σloc = 0.38π, 0.385π)

correspond to the stripes regime and the last panel (σloc = 0.395π) corresponds to

the spots regime. We plot two panels in the first case because there is a Hopf-Hopf

bifurcation point in the null wavevector if the local extent σloc is small enough. In

the spots regime, there is no Hopf-Hopf bifurcation in the null wavevector. In both

regimes, the most unstable wavevector is the null wavevector (corresponding to the

blue curve) because it appears for the smallest critical delays. Hence, we do not

consider the other Hopf-Hopf bifurcation points.

Finally, note that the first instabilities (c0, D0), i.e. the ones for the smallest

delays, arise for D0 < τ, c0 ≈ τ on the blue curve for the null wavevector kH = 0.

As τ ≈ 10ms, it gives a critical constant delay below 10ms. In figure 11.6, the grey

region indicates the parameter region where no oscillating solutions have bifurcated.

Also the critical speed is in the range c−1
0 = 0.1us/ms where us is the unit of space.

10Note that we have used the C + + library Cubature to compute the 2D Fourier transforms

needed for the eigenvalues of Jiy in the Hopf curves formulas.
11They form a set in the parameter space (σloc, D, c) where a solution like eiωH teik·x exists for

(11.19).

http://ab-initio.mit.edu/wiki/index.php/Cubature
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Figure 11.6: Plot of the Hopf curves in the parameter plane (c,D) for different

local connectivity extent σloc and Np = 5 at the Pitchfork point σ = σc. The labels

(m,n) indicate the wavevector k = (m,n)/Np. The intersection of the curves is

labelled with a black dot.
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A hypercolumn has an extension of π us ≈ 1mm (see figure 11.1 Left). Hence,

the critical speed is in the range 0.03mm/ms which is 30 times smaller then the

speed seen in tissues. Hence, these instabilities should not be observed for biological

values of the parameters.

Imagine that we can decrease the propagation speed pharmacologically, it in-

creases c which can be larger than c0. Then, the results in figure 11.6 indicate that,

depending on the value of σloc, the D4-Pitchfork instability of the previous section,

may degenerate into a D4-Pitchfork-Hopf instability12 where the Hopf instability

appears in the null wavevector k = 0. We have already encountered this type of

bifurcation in chapter 5 in the case of one-dimensional neural fields. Here, it is

a bit more sophisticated because of the symmetries. More precisely, if we write

U(x, t) = eiωH t the solution of (11.18) for k = 0, then the membrane potential near

the instability reads13:

V (x, t) = v0 + z0e
iωH t + z1e

ix1 + z2e
ix2 + c.c. (11.21)

and the normal formal form is given by14
ż0 = z0

(
iωH + α

(T )
H (T − T0) + α

(σloc)
H (σloc − σloc,0) + βH |z0|2 + α1|z1|2 + α1|z2|2

)
+I0

ż1 = z1

(
σ−σc
σc

+ α2|z0|2 + β|z1|2 + γ|z2|2
)

+I1

ż2 = z2

(
σ−σc
σc

+ α2|z0|2 + β|z2|2 + γ|z1|2
)

+I2

(11.22)

where β, γ, I1, I2 are the same as in (11.13), I0 =
∫

Ω Iext(x)dx/(2πNp)
2 and

(T0, σloc,0) are the critical parameters.

Remark 37.The equations satisfied by the amplitudes are the same as for

the Hopf-Hopf bifurcation with O(2) symmetry (see [Golubitsky 1988] and sec-

tion 5.2.2.4). Hence, the equations for the amplitudes ρp and phases θp of the

zp = ρpe
iθps are decoupled and we find a 3D system for the amplitudes.

We will not study these equations because they are extremely sophisticated (see

[Golubitsky 1988, Chossat 1986]). However we can give the general flavour of what

can or cannot happen, leaving the complete analysis for future work. There are

the static solutions (0, z1, z1), (0, z1, 0), (0, 0, z1) studied in the previous section

or the oscillating solution (z0, 0, 0). But more importantly, there are Mixed-Mode

solutions (see also section 5.2.2.3) like:

VMM (x, t) = v0 + 2ρ0 cos(ωHt+ φ0) + 2<(z1e
ix1 + z2e

ix2), (11.23)

or quasi-periodic solutions (see also section 5.2.2.3) like:

VFH(x, t) = v0 + 2ρ0 sin(ωHt) sin(ωFHt) + 2<(z1e
ix1 + z2e

ix2) cos(ωFHt), (11.24)

12We also found a D4-Pitchfork-Hopf-Hopf instability in the stripes regime in the null vector,

i.e. the most unstable.
13where c.c. means complex conjugate.
14Recall that T is the threshold
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where ωFH is a frequency. Let us have a look at the Mixed-Mode solution for exam-

ple. The membrane potential oscillates between the values v0 − 2ρ0 + 2<(z1e
ix1 +

z2e
ix2) and v0 + 2ρ0 + 2<(z1e

ix1 + z2e
ix2). We can try to find a stimulus which

produces such cortical responses. For example, we recognize in the Mixed-Mode so-

lution, the tuned component of the cortical response to a full field grating while the

untuned component is oscillating. If v0−2ρ0+2<(z1e
ix1 +z2e

ix2) < T and v0+2ρ0+

2<(z1e
ix1 + z2e

ix2) > T , then the firing rate S
(
σ
[
v0 − 2ρ0 + 2<(z1e

ix1 + z2e
ix2)
])

is low while v0 − 2ρ0 + 2<(z1e
ix1 + z2e

ix2) is above threshold. Hence, VMM could

be produced by a drifting grating that is periodically switched on/off.

We stop here the investigation of these time periodic cortical responses as they

require the in-depth study of their stability which requires the study of the system

(11.22).

Finally, we would like to look at the last instability that can appear with the

delays: the Bogdanov-Takens bifurcation. Its occurrence has been investigated in

lemma 4.6.4 and is conditioned by the inequality:

0 >
1

Ĵkc

∫
Ω
Jloc(x) (D + c ‖x‖2) cos(x1)dx = D +

c

Ĵkc

∫
Ω
Jloc(x) ‖x‖2 cos(x1)dx.

(11.25)

Numerically, we find that 1
Ĵkc

∫
Ω Jloc(x) ‖x‖2 cos(x1)dx is an increasing function of

σloc which maps (0.375π, 0.405π) to (1.515, 1.804). This rules out the possibility of

a Bogdanov-Takens bifurcation.

In this section, we have studied the responses of the network, working close

to the D4-Pitchfork bifurcation point, when the delays are added. In the case of

constant delays, no oscillating response can be produced by the network if it works

in the spots or stripes regime. In the case of space dependent delays, we have found

oscillating solutions in the null wavevector kH = 0. This wavevector is the most

unstable, i.e. by decreasing the propagation speed, this is the first mode to become

unstable. If the speed is decreased around a critical speed, the model features

a D4-Pitchfork-Hopf bifurcation. An analogue, yet simpler, bifurcation has been

analysed in section 5.2.2.3. Here, the larger number of symmetries makes it difficult

the study of this bifurcation which is postponed to future work. Recall that the

authors in [Bressloff 2008] also found a Pitchfork-Hopf bifurcation with kH = 0 but

they did not perform the study of the normal form.

11.6 Study of the long-range connections

We now take the long-range connections in consideration. Recall from section 1 that

these connections are patchy, connect populations with similar preferred orientation

and, depending on the species, present an anisotropy. Given a cortical position x,

we can connect the population at x with the other populations at y according to

JLR(x,y) = Gσθ(θ(x) − θ(y)) with σθ ≈ 30o. We obtain a patchy connectivity

because the regions of similar preferred orientations are patchy in figure 11.1. Note

that the patchiness of this connectivity depends on the cortical location x.
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Remark 38.There is another way to produce patchiness (see chapter 1), i.e. by

using Gσθ(θ(x−y+v)−θ(v)) where v /∈ πZ2. The vector v is used so that θ(0+v)

is defined. Recall that θ(0) is undefined because 0 is right at the pinwheel. This type

of connectivity produces a patchiness that is homogeneous: it does not depend on

the cortical position x as opposed to the connectivity we are using in this chapter.

Depending on the species, we have seen in section 1 that the long range

connections present an anisotropy in that they tend to align with the preferred

orientation θ(x0) at x0. This can be modeled by a term “à la” Bressloff et

al. (see for example [Bressloff 2003, Baker 2009]) J0(χ,R−2θ(x0)(x0 − y)) where

J0(χ,x) = e−[(1−χ)2x2
1+x2

2]/2σ2
LR . R2θ(x0) is the counter-clockwise rotation15 of angle

2θ(x0) and σLR is the long-range connections extent.

Remark 39.There are two minor issues here. First, to agree with the network

geometry, the function x → J0(χ,x) should satisfy the periodic boundary condi-

tions assumed for Ω. Geometrically, Ω is a torus. Hence, in the expression of

R−2θ(x0)(x0−y), we have to perform a rotation of the vector x0−y which belongs to

the torus. It is not possible to define a rotation on a torus. Hence, R−2θ(x0)(x0−y)

is not well defined. The solution is to assume that the long-range connections are

strictly contained in a disc of diameter smaller then 2Npπ.

If χ = 0, then there is no anisotropy (as for the macaque for example) whereas for

χ ∈ (0, 1), this connectivity presents an anisotropy along the preferred direction16

(as for the tree shrew for example). All in all, the long-range connectivity reads:

JLR(x,y) = J0(χ,R−2θ(x)(x− y)) ·Gσθ(θ(x)− θ(y)) (11.26)

Finally, we have seen that the long-range connections are modulatory, i.e. they are

small compared to the local connections, hence, the connectivity in (11.1) is now:

J(x,y) = Jloc(x− y) + εLRJLR(x,y) (11.27)

where εLR is small compared to a−1 = Jloc(0). The long-range connections feature

the following relations:

Lemma 11.6.1. The long-range connections satisfy the following invariances. For

the PO maps ±θ1 + θ0:

JLR(Rφx, Rφy) = JLR(x,y), φ ∈ π
4
Z

Proof. See appendix F.2.1. �

15i.e. Rθ =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
16Indeed, when χ > 0, the function x→ J0(χ,x) is close to one on the x-axis and has a contour

plot similar to an ellipse aligned with the x-axis. Hence, the connectivity J0(χ,R−2θ(x0)(x0 − y))

is non zero when R−2θ(x0)(x0 − y) is on the x-axis i.e. x0 − y ∝ ±R2θ(x0)ex where ex is the unit

vector of the x-axis. This last condition corresponds to y being along the preferred direction of

the neurons located at x0.
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Let us look at the D4-Pitchfork in (11.13) with the long-range connections.

As these connections are small, we can apply the center manifold theorem (see

appendix A.1) with the two parameters (σ, εLR) instead of just σ. It gives: ż1 = z1

(
σ−σ0
σ0

+ εLRJ
(LR)
1 + β|z1|2 + γ|z2|2

)
+ I1

ż2 = z2

(
σ−σ0
σ0

+ εLRJ
(LR)
2 + β|z2|2 + γ|z1|2

)
+ I2

(11.28)

with 
J

(LR)
1 =

∫
Ω2

JLR(x,y)ei(x1−y1)dxdy/(2πNp)
2

J
(LR)
2 =

∫
Ω2

JLR(x,y)ei(x2−y2)dxdy/(2πNp)
2.

(11.29)

These coefficients govern the effects of the long-range connections. From the sym-

metries of JLR, we find the following properties of the coefficients J
(LR)
k , k = 1, 2:

Lemma 11.6.2.For the PO maps ±θ1 + θ0, we have:

J
(LR)
1 = J

(LR)
2 ∈ R.

Proof. See appendix F.2.2. �
We also need to study the dependency of J

(LR)
1 (which equals J

(LR)
2 by the

previous lemma) on the anisotropy χ. This is done numerically by using the fact

that the integrand in J
(LR)
1 is known analytically as a function of x,y. Indeed, we

can use that
cos(2θ1(x)) ≈ (sin(x1) + sin(x2))/2

sin(2θ1(x)) ≈ (− sin(x1) + sin(x2))/2
(11.30)

to express the integrand. The result is shown in figure 11.7. Two facts are inter-
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Figure 11.7: Plot of the coefficients J
(LR)
1 as function of the anisotropy χ for the

map θ1. Computed with Np = 5.

esting. First J
(LR)
1 is positive for χ ∈ [0, 1] and it is an increasing function of
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χ. Hence, from (11.28), the long-range connections improve the response: for a

given stimulus, they increase the cortical response. This cortical response is further

increased by the anisotropy χ for both local and full field stimuli.

We also provide the corrected normal form for the Pitchfork-Hopf bifurcation

(11.22) with the long-range connections although we shall not push further its study:

ż0 = z0

(
iωH + α

(T )
H (T − T0) + α

(σloc)
H (σloc − σloc,0)+

εLRJ
(LR)
0 + βH |z0|2 + α1|z1|2 + α1|z2|2

)
+I0

ż1 = z1

(
σ−σ0
σ0

+ εLRJ
(LR)
1 + α2|z0|2 + β|z1|2 + γ|z2|2

)
+I1

ż2 = z2

(
σ−σ0
σ0

+ εLRJ
(LR)
2 + α2|z0|2 + β|z2|2 + γ|z1|2

)
+I2

(11.31)

with J
(LR)
0 = e−iωHD

∫
Ω2

dxdyJLR(x,y)e−iω‖x−y‖2/(2πNp)
2.

11.7 Conclusion and extensions

We have shown how to implement the mechanism of Ben-Yishai et al. in a network

with a biologically realistic connectivity on a PO square lattice. We have restricted

the study to a one-population model and have found that it forced the (effective)

connectivity to be a Mexican hat. Depending on the spatial extent of the local con-

nectivity, the network spontaneously produces stripes or spots and this spontaneous

response has to be adjusted in order to match the LGN input. The spatial extent

of the local connectivity has to be two to three times smaller than the hypercolumn

extent.

The study of the tuned responses has not been performed because of the diffi-

culty to solve the equations. Note that this could be done numerically. We found

that the width of the tuning curves was independent of the cortical position at large

contrasts. We also found that the cortical response to a local oriented stimulus at

θaff preferentially activated nearby populations of similar preferred orientation, this

orientation was not linked to the stimulus angle θaff . In fact this dependency is a

function of the contrast. Hence, it would be very interesting to look at the spon-

taneous responses and how they are altered by a stimulus. We expect something

similar to the perception threshold of chapter 9 to hold but something new hap-

pens. There should be a perception threshold corresponding to the contrast value

for which the cortical response aligns with the stimulus angle. Indeed, at small con-

trasts, the network has definite preferred orientations which are independent of the

stimulus angle. For larger contrasts, there is a unique response which is (almost)

aligned with the stimulus. At intermediate contrasts, the (stable) response angle

is different from that of the stimulus angle. Hence, this suggests the existence of

a threshold contrast at which the cortical response agrees with the stimulus. This

does not happen in the Ring Model because the cortical response is always aligned

with the stimulus. More study is needed to understand this mechanism. Note that

this is central for the understanding of how much work is done by the recurrent

connections compared to the LGN input in order to shape the cortical response.
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We then studied how space-dependent delays could change the above conclu-

sions. We found that if the model is insensitive to constant delays, it can be

destabilized for particular pairs of constant-propagation delays. This requires a

propagation speed that is 30 times smaller than the biological value. Hence, the

model is insensitive to space-dependent delays as well. However, the delay-induced

instabilities are very rich and could give rise to time periodic planform. We have not

studied the resulting equations which, theoretically, support a wealth of behaviours.

These behaviours could be seen if the propagation speed in tissues was pharmaco-

logically reduced as with drugs for example. We have then considered long-range

connections and showed that they increased the cortical response to drifting grat-

ings and that the anisotropy further increased this response. However, they do not

shape the spontaneous activity as they do in the work of Bressloff et al. .

Finally, this model has been a fantastic test-bed for the techniques we have

developed in the two previous part. In particular, we have used the normal forms

reduction for non-delayed/delayed neural fields and the analytical formulas for the

Hopf bifurcation curves. Without this very last tool, the study of the model would

have been far more difficult to achieve and would have relied on very intensive

numerical computations.

This model could be extended in several ways in addition to the study of the

reduced equations. The first step would be to study the pinwheel hexagonal lattice

to see if it produces the same value for the local connectivity extent. Then it

would be interesting to incorporate neuronal adaptation as it has been shown to

be necessary for the orientation tuning in monkeys in [Nowak 2009]. Also a more

detailed analysis of the Pitchfork-Hopf normal form is needed. Note that a study of

centre-surround modulation is unlikely to reproduce biological data as it has been

shown in [Seriès 2002a] that is requires at least two populations.

However, the real challenge is to make the model work with two excita-

tory/inhibitory populations with the same local spatial extent of the connectivity.

The number of parameters is greatly increased but some other biological facts can

be used to restrict their value. For example, contrast saturation of cortical re-

sponses, centre-surround modulations, motion streaks... These effects have already

been widely modeled (see for example [Stetter 2000, Seriès 2002a, Lund 2003b]) but

the idea here, would be to propose a working regime that rules out a huge set of

possible parameters. To reach this goal, the tools developed in this Thesis will be

essential.





Chapter 12

Conclusion

You can’t always get what you want

But if you try sometimes you might find

You get what you need

(The Rolling Stones)

In this Thesis, we have used tools from dynamical systems theory to probe gen-

eral neural field equations in the quest of understanding the more complex spiking

neural networks. We decided to study these equations in the most general case with

the minimal assumptions. This decision naturally split the Thesis in three main

parts, two being “theoretical” and one collecting the applications to specific models

of primary visual cortex.

In the part concerning the stationary cortical states, we found, by applying

the degree theory, that the number of stationary solutions is odd for almost any

parameters values. Moreover, the degree theory suggested a way of computing these

solutions by deforming the nonlinearity to a new one, that we can treat analytically,

and then following the solutions by deforming the nonlinearity back to the one we

are interested in. This scheme can be parallelized on many computers to deal with

large networks. Also, we found that by looking at the range of the integral operator

linked to the connectivity function, we could describe without approximations the

stationary solutions with potentially few variables.

Concerning the delays in the neural field, the two most important achievements

have been the discovery of an analytical formula for the Hopf bifurcation curve and

the proof of a center manifold theorem. The analytical formula provides the critical

pair (effective delay, propagation delay) and the center manifold theorem allows

to reduce the local dynamics around stationary solutions to ordinary differential

equations. Then, various normal forms were computed in view of their use in

the study of 1D simple neural networks. Despite their apparent simplicity, these

networks can display sophisticated dynamics which require further investigations.

In the last part, we applied these results to particular models of the primary

visual cortex (V1). The first application concerns the Ring Model, an hypercolumn

model, to which we applied the Orbit Space Reduction to cope with the internal

symmetries. Our bifurcation analysis provided a complete understanding of all

parameters. We also identified a perception threshold, i.e. the minimal stimulus

contrast that is required by the network to produce a cortical response in agreement

with the stimulus. Finally, we found that the hypercolumn can be “fooled” by a

well chosen sequence of stimuli. Then, we studied a V1 model which relies on

experimental data and generalises the Ring Model. The idea was to see how many
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of the results for the Ring Model extend to a network of hypercolumns. Also, we

were interested in the effects of symmetries as experimental models do not display

perfect symmetries. We conjectured the existence of a perception threshold but

we failed to understand the mechanism in its full generality, it deserves further

work. This understanding is of major importance because it gives the amount of

cortical computation on top of the LGN input which is needed to shape the resulting

cortical activity. The two previous models feature unrealistic connectivity between

populations. We have then developed a new V1 model that generalises the previous

two in the way they work, i.e. close to a static bifurcation, while modeling more

closely biology. We have then used the analytical formulas for delays to arrive

at the conclusion that the critical propagation speed is thirty times smaller than

the experimental one whereas the critical effective delay is in the range of what is

experimentally observed. Hence, the delay dependent effects cannot be seen without

decreasing the propagation speed with drugs for example (see section 11.7).

Perspectives

The work concerning the stationary solutions can be pushed further. One could, for

example, couple degree theory and equivariant theory to get results concerning the

bifurcated branches in networks with symmetries. Also, in the 2D case, a criterion

(such as the nodal structure of the cortical activity) is missing to describe the global

structure of bifurcated branches. Such criterion, if it exists, would help the study

of more realistic neural field models.

In the case of delays, a better understanding of the multiple effective delays case

is required in order to avoid heavy simulations. Despite our proposition of a general

numerical scheme applicable to any kind of delays, we think that the analytical

study of two excitatory/inhibitory populations on 1D cortices with distinct effective

delays and no propagation delays could be a first step to more sophisticated models

well worth investigating. This would be particularly useful for the generalization of

our V1 model to two populations for example.

On a more theoretical point of view, the study of the normal forms Fold-Hopf

and Hopf-Hopf with O(2)-symmetry in the general case is lacking in our analysis. It

would allow a complete understanding of the simple network with inverted Mexican-

hat connectivity and delays.

An interesting aspect, not covered in this Thesis, is the interaction between

neuronal/synaptic adaptation and delays. This has largely been ignored in the

literature (we are only aware of the work of Venkov and co-workers) despite the

usefulness and applicability to visual cortex models. Indeed, if after some intense

period of activity, an hypercolumn is required to rest for some time δt regardless

of its afferent inputs, it can only “see” hypercolumns at distance vδt, where v is

the propagation speed of signals along axons. It seems that interesting behaviours,

for biology and pattern theory could emerge from this interaction. The analysis of

such models could be done with our tools without much change.
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This suggests the move of neural fields modeling to a more dynamical stage.

In the neuronal systems, and in particular in the visual system, there are many

aspects which call for more dynamics. The first intriguing aspect of our vision

system lies in the fixational eye movements (see the review [Martinez-Conde 2004])

that continuously modify - although without attention - the input to the network.

These eye movements are driven by the Superior Colliculus which also sends the

information to the visual area MT. The importance of the fixational eye move-

ments for the visual system is crucial as it has been experimentally demonstrated

that the blockade of eye movements paralyses our vision system in less than 100ms

(see [Martinez-Conde 2004]). It is believed that the eye movements are necessary

in order to counter the adaptation of the neuronal system to the external input.

A first interesting remark is that by the spatial arrangement of the cortical neu-

rons receptive fields, when the eye is pointing to an object of the visual field, a

multi-scale representation of the scene is automatically generated. When looking

at some contour, the activity is locally fluctuating (because of the eye movements)

and is shaped by the phenomena of spike frequency adaptation and synaptic depres-

sion/facilitation. If one contour has been seen at a given location r0, it generates

some high neuronal activity which is transmitted to the neighbourhood at a propa-

gation speed of v ≈ 0.1−1mm/ms (see section 2.2.5) while the neurons at r0 will be

silent, because they spiked a lot, for a few hundreds of milliseconds. This activity

wave will depolarize the neighbourhood and facilitates the detection of the contour

(which has moved because of the eye movements) by the synchronization of the de-

polarization wave and the stimulus input (see also [Bringuier 1999, Seriès 2002b])

at the condition that the horizontal propagation speed and the eye movement speed

are of the same order in cortical coordinates (for example). We think that the tools

developed in this Thesis are mature enough to cope with these more dynamical

questions about information processing in the first stages of the visual stream.

The work in part II is published in [Veltz 2010]. The analytical formula for

the Hopf bifurcation curve in delayed neural field equations given in chapter 4

is published in [Veltz 2011a]. Finally, the stability analysis of stationary states

in neural field equations through the use of fixed point methods is published in

[Veltz 2011b].
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Appendix A

Stationary properties

Definition A.0.1 (Stationary bifurcation point). Let us consider an equation

F (V, σ) = 0, V ∈ B, σ ∈ Rp on a Banach space B. Let us assume that

V = 0 is solution of this equation for all σ. Then, σ0 is said to be a bifurcation

point if there exists a sequence (Vn, σn) of solutions such that (Vn, σn) → (0, σ0)

and (Vn)n is not a null sequence.

If F is differentiable in the first variable, the Implicit functions theorem implies

that σ0 is a bifurcation point if the differentialDVF (0, σ0) at (0, σ0) is not invertible.

Definition A.0.2 (Equivariant vector field). A vector field F : B → B is said G-

equivariant if G acts on B and ∀V ∈ B, ∀g ∈ G, F (g ·V) = g · F (V).

A.1 The center manifold theorem from [Haragus 2010]

Let us consider the equation :

d

dt
U = LU + R(U, µ) (A.1)

with 3 Banach spaces Z → Y → X with continuous embeddings. Let us assume

that:

• L ∈ L(Z,X ).

• R(0, 0) = 0, DuR(0, 0) = 0 and R ∈ Ck(V1 × V2,Y), k ≥ 2 with V1 × V2, a

neighbourhood of (0, 0) in Rmpar ×Z

• the spectrum of L is : Σ(L) = Σs − (L) ∪ Σc(L) ∪ Σu(L) with sup Σu(L) >

γ > 0, sup Σs(L) < −γ. Moreover, Σc(L) is the finite set of eigenvalues of

finite algebraic multiplicities with zero real part.

• there are ω0 > 0, c > 0, α ∈ [0, 1) such that ∀ω, |ω| > ω0, then iω /∈ Σ(L) and

∥∥(iωI − L)−1
∥∥
L(X )

≤ c

|ω|

∥∥(iωI − L)−1
∥∥
L(Y,Z)

≤ c

|ω|1−α
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We write Xc the sum of the generalized eigenspaces for the eigenvalues in Σc(L)

and Pc the unique projector on Xc which commutes with L. We also define the

hyperbolic projector Ph ≡ Id−Pc.

Theorem A.1.1 ([Haragus 2010]). There is an application Ψ ∈ Ck(Xc ×
Rmpar ,PhZ) with Ψ(0, 0) = 0, DΨ(0, 0) = 0 and a neighbourhood Ou×Oµ of (0, 0)

in Z×Rmpar such that µ ∈ Oµ and a manifoldM0(µ) = {Uc + Ψ(Uc, µ),Uc ∈ Xc}
such that :

• M(µ) is locally invariant, i.e., if U is a solution of (A.1) satisfying U(0) ∈
M(µ) ∩ Ou and U(t) ∈ Ou for all t ∈ [0, T ], then U(t) ∈ M(µ) for all

t ∈ [0, T ].

• M(µ) contains the set of bounded solutions of (A.1) staying in Ou for all

t ∈ R, i.e. if U is a solution of (A.1) satisfying for all t ∈ R, U(t) ∈ Ou,

then U(0) ∈M(µ).

A solution on the center manifold reads U = U0 + Ψ(U0, µ) and satisfies

d

dt
U0 = L0Uc + PcR(Uc + Ψ(Uc, µ)). (A.2)

A.2 Well-posedness of operators

We prove proposition A.2.1:

Proposition A.2.1. If ∀t, J(t) ∈ L2(Ω2,Rp×p), the linear integral operator J(t) is

continuous from F to F and its norm |||J(t)|||F is bounded by ‖J(t)‖L2(Ω2,Rp×p).

Proof. The integral in the right-hand side of (3.2) exists because for almost all

r ∈ Ω the p2 elements Jij(r, ·, t), i, j = 1, · · · , p of J are in L2(Ω) for all t > 0 and

the p coordinates of V(·, t) are in L2(Ω) for all t > 0. Because of Fubini’s theorem

it is clear that U(t) = J(t) ·V(t) is an element of F for all t > 0. Next we have (we

drop the time variable to simplify)

|Ui(r)| ≤
∑
j

∣∣∣∣∫
Ω
Jij(r, r

′)Vj(r
′) dr′

∣∣∣∣
and (Cauchy-Schwarz):

|Ui(r)| ≤
∑
j

(∫
Ω
J2
ij(r, r

′) dr′
)1/2

‖Vj‖2 ,

from where it follows that (Cauchy-Schwarz again, discrete version):

|Ui(r)| ≤

∑
j

‖Vj‖2

1/2 ∑
j

∫
Ω
J2
ij(r, r

′) dr′

1/2

= ‖V‖F

∑
j

∫
Ω
J2
ij(r, r

′) dr′

1/2

,
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from what it follows that y is in L2
n(Ω) (thanks again to Fubini’s theorem) and

‖y‖2F ≤ ‖V‖2F
∑
i,j

∫
Ω×Ω

J2
ij(r, r

′) dr′ dr = ‖V‖2F ‖J‖2L2(Ω2,Rp×p).

�

A.3 Fixed points theorems

We briefly describe some applications of Brouwer’s and Leray-Schauder’s degree

theories. They are central in the proofs of parts 4 and 5 of proposition 3.2.7.

We first recall Schaeffer’s theorem and provide a short proof based on the Leray-

Schauder degree.

Theorem A.3.1 (Schaeffer). Let X be a real Banach space. Suppose M : X → X

is a compact mapping and

S = {x ∈ X | ∃t ∈ [0, 1] such that x = tM(x)}

is bounded. Then M has a fixed point.

Proof. We provide for completeness a short proof based on Leray-Schauder’s

degree theory. Taking r > 0 large enough such that S ⊂ B◦r , we define m(x, t) =

x− tM(x) on B̄r × [0, 1]. Then 0 /∈ m(∂Br × [0, 1]) by construction. According to

the homotopy invariance of the Leray-Schauder degree

degLS(Id−M,Br, 0) = degLS(Id, Br, 0) = 1 6= 0,

thus, according to the Kronecker property of the Leray-Schauder degree, there exists

a solution to the equation M(x) = x. �
We can apply this theorem to prove existence of solutions to equation (3.9). We

consider the function F̃ : F → F defined by:

F̃ (V, σ) = −F (V, σ) + V = J · S(σV) + I,

where F is defined in equation (3.9).

It is known that F̃ is a nonlinear compact operator of F [Faugeras 2009]. We

can apply Schaeffer’s theorem to the function F̃ since it is easy to prove (see

[Faugeras 2009]) that for all V such that F̃ (V, σ) = tV the following holds

‖V‖F ≤ t(σ
√
p|Ω|‖J‖F + ‖I‖F ), (A.3)

where ‖ ‖F is the Frobenius norm.

Hence for all σ there exists Vf
σ such that

F̃ (Vf
σ, σ) = Vf

σ

The following easy consequence of the proof of theorem A.3.1 is used in the

article.
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Corollary A.3.2. For each σ ≥ 0 there exists an open bounded set Uσ containing

S (defined in theorem A.3.1) such that degLS(Id− F̃ ,Uσ, 0) = 1.

We next give without proof a theorem due to Leray and Schauder.

Theorem A.3.3 (Leray-Schauder).Let X be a real normed space, J = [a, b] and

M : X × J → X be of the form Id + m with m : X × J → X compact on X × J .

Let

Σ = {(x, σ) ∈ X × J : M(x, σ) = 0}

and for each σ ∈ J , let

Σσ = {x ∈ X : (x, σ) ∈ Σ}

Assume that Σa is bounded and that

degLS(M(., a),U , 0) 6= 0

for some open bounded set U ⊃ Σa.

Then Σ contains a connected component C intersecting Σa×{a} and which either

intersects Σb × {b} or is unbounded.

A.4 Compact operators with simple eigenvalues

Proposition A.4.1. For every m ∈ N∗, the set of compact operators with m simple

first eigenvalues is dense in the set of compact operators.

Proof. The set Rf (F) of finite dimensional range linear operators is dense in the

setH of the linear compact operators of F [Brezis 1983]. Thus we only need to prove

the theorem for Rf (F). Let us consider J ∈ Rf (F), and R(J) = Span(e1, ..., ek),

k ≥ m. Without loss of generality we assume that the first eigenvalue of J has

multiplicity two, i.e. β1 = β2. Its corresponding Jordan block is then[
β1 ε

0 β1

]

Then if we define Jn = J + 1
ne2 ⊗ e2, we have limn→∞ Jn = J. The first two

eigenvalues β1 and β1 + 1
n of Jn are simple, i.e. Jne1 = β1e1 and Jn(nεe1 + e2) =

(β1 + 1
n)(nεe1 + e2). We can do the same for the other eigenvalues, and define an

operator Jn with m simple first eigenvalues, a finite dimensional rank, and which

is arbitrarily close to J. �

Proposition A.4.2.The same proposition holds for operators of the type Id + J

where J is a compact operator.

Proof. It follows from that of A.4.1. �
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A.5 Reduction of the activity based model to a finite num-

ber of ordinary differential equations

We consider the equation for the activity-based model:{
Ȧ = −La ·A + Sσ (J ·A + I) t > 0

A(·, 0) = A0(·) (A.4)

We recall that La 6= L (see [Ermentrout 1998]) because they do not have the same

biological meaning: One is related to the synaptic time constant and the other to

the cell membrane time constant. We let La = diag(α1, · · · , αp). We also recall

the PG-kernel decomposition of J =
∑
k

Xk ⊗ Yk. Each of the p coordinates Ai,

i = 1, · · · , p of A satisfies

Ȧi + αiAi = Sσ(J ·A + I)i i = 1, · · · , p

Similarly to the voltage case, let us consider the p finite dimensional subspaces

Fi, i = 1, · · · , p of L2(Ω,R), where each Fi is generated by the N elements

Y i
k , k = 1, · · · , N . We decompose L2(Ω,R) as the direct sum of Fi and its or-

thogonal complement for 〈, 〉2 F⊥i , L2(Ω,R) = Fi ⊕ F⊥i and write Ai = A
‖
i + A⊥i .

We note
∏‖
i (respectively

∏⊥
i ) the projection from L2(Ω,R) to Fi (respectively to

F⊥i ) parallel to F⊥i (respectively to Fi). This induces a decomposition of F as the

direct sum of F =
∏p
i=1 Fi and F⊥ =

∏p
i=1 F

⊥
i such that for each vector A of F

we can write A = A‖ + A⊥. By construction we also have

J ·A⊥ = 0,

and therefore {
Ȧ
‖
i + αiA

‖
i =

∏‖
i Sσ(J ·A‖ + I)i

Ȧ⊥i + αiA
⊥
i =

∏⊥
i Sσ(J ·AF + I)i

i = 1, · · · , p

which is a 2p-dimensional non-autonomous system of ODEs:{
Ȧ‖ + La ·A‖ =

∏‖ Sσ(J ·A‖ + I)

Ȧ⊥ + La ·A⊥ =
∏⊥ Sσ(J ·A‖ + I)

,

where
∏‖A = (

∏‖
i Ai)i=1,··· ,p and

∏⊥A = (
∏⊥
i Ai)i=1,··· ,p are the projections of A

on F and F⊥. The first equation is a p-dimensional autonomous system of ODEs,

which can be solved before solving the second one.

A.6 Lemmas for the general bounds

Lemma A.6.1. For all x, σ ∈ R we have

(S(σx)− S(0))2 ≤ S(σ2x2)− S(0)

Proof. We set X = σx and consider two cases.
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X > 1 We have e−X > e−X
2

and therefore S(X)− 1/2 < S(X2)− 1/2. Moreover,

since S(X)− 1/2 < 1, (S(X)− 1/2)2 < S(X)− 1/2 and we are done.

0 < X < 1 We let X = log y, 1 < y < e. We therefore have

S(X)− 1/2 =
1

2

y − 1

y + 1
S(X2)− 1/2 =

1

2

ylog y − 1

ylog y + 1

We consider the expression (y−1)2(ylog y + 1)−2(y+ 1)2(ylog y−1) and prove

it is negative. Because ylog y < y it is upperbounded by (y − 1)2(ylog y + 1)−
2(ylog y + 1)2(ylog y−1) which has the sign of (y−1)2−2(y2 log y−1). The last

expression is upperbounded by (y−1)2−2(ylog y−1) = (eX−1)2−2(eX
2−1)

which is negative for 0 < X < 1.

�
Proposition A.6.2. The solutions of equation (3.9) satisfy the following inequali-

ties for all σ ≥ 0 ∥∥∥Vf
σ

∥∥∥
F
≤
√
p|Ω| ‖J‖F + ‖Iext‖F

def
= B1∥∥∥Vf

σ −Vf
0

∥∥∥
F
≤ 1

2

√
p|Ω| ‖J‖F

def
= B2,

as well as ∥∥∥Vf
σ −Vf

0

∥∥∥
F
≤ σ

4
‖J‖F B1

Proof. The first inequality is a straightforward consequence of equation

(3.9), taking the F-norm and using the fact that 0 ≤ S(x) ≤ 1 for all x ∈
R.http://fidji.inria.fr/biblio For the second one we write Vf

σ −Vf
0 = J · (S(σVf

σ)−
S(0)), take the F-norm of both sides of the equality and use the Cauchy-Schwarz

inequality. We find
∥∥∥Vf

σ −Vf
0

∥∥∥
F
≤ ‖J‖F ·

∥∥∥S(σVf
σ)− S(0)

∥∥∥
L2(Ω,Rp)

. But since

∀x ∈ R, −1
2 ≤ S(x)− S(0) ≤ 1

2 , we have
∥∥∥S(Vf

σ)− S(0)
∥∥∥

L2(Ω,Rp)
≤ 1

2

√
p|Ω|, which

proves the first inequality.

The third inequality can be obtained as follows. It is easy to see that S(σx)−
S(0) ≤ σ

4 |x| for all x ∈ R and all σ ≥ 0. This implies that
∥∥∥S(Vf

σ)− S(0)
∥∥∥ ≤

σ
4

∥∥∥Vf
σ

∥∥∥. The first inequality yields the third. �

A.7 The size of the basin of attraction of a stable persistent

state

In order to get a rough estimate of the size of the basin of attraction of a stable

stationary solution of the neural field equations we prove the following, general,

lemma.

Lemma A.7.1.Let xf be a stable stationary solution of the finite dimensional

dynamical system ẋ = f(x) at which the Jacobian matrix A is symmetric. If the
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second order derivative D2f is bounded (
∥∥D2f

∥∥
∞ <∞), the stable manifold of xf

contains the open ball B(xf , R) with R = 2min |σ(A)|
‖D2f‖∞

, where σ(A) is the spectrum of

the Jacobian matrix A.

Proof. We assume w.l.g. that xf = 0. We write A = Df(0) and f(x) =

Ax + ε(x), then it is known, and easy to verify, that L(x) =
∫∞

0

∥∥esAx∥∥2
ds is a

Lyapunov function. Moreover, because of the Taylor’s formula without remainder

we have

ε(x) =

(∫ 1

0
(1− s)D2f(sx) ds

)
· (x, x),

from which we deduce that

‖ε(x)‖ ≤ 1

2
‖x‖2

∥∥D2f
∥∥
∞ .

Let us compute

DL(x) · f(x) = DL(x) · (Ax+ ε(x)) = −‖x‖2 +DL(x) · ε(x)

Now DL(x) · h = −
〈
A−1x, h

〉
and since A is symmetric, we obtain |DL(x) · h| ≤

1
min |σ(A)| ‖x‖ ‖h‖ and finally

DL(x) · f(x) ≤ ‖x‖2
(
−1 +

1

2

∥∥D2f
∥∥
∞

1

min |σ(A)|
‖x‖
)
< 0

if ‖x‖ < 2 min |σA|
‖D2f‖∞

≡ R �





Appendix B

Theory of delays

B.1 Operators and their spectra

We recall and gather in this appendix a number of definitions, results and hypothe-

ses that are used in the body of the Thesis to make it more self-sufficient.

Definition B.1.1.We note |||J|||F the operator norm of a bounded operator J ∈
L(F ,F), ie

sup
‖V‖F≤1

‖J ·V‖F
‖V‖F

It is known, see e.g. [Kato 1995], that

|||J|||F ≤ ‖J‖L2(Ω2,Rp×p)

Definition B.1.2. A semigroup (T(t))t≥0 on a Banach space X is strongly con-

tinuous if ∀x ∈ X, t→ T (t)x is continuous from R+ to X.

Definition B.1.3. A semigroup (T (t))t≥0 on a Banach space X is norm continuous

if t→ T (t) is continuous from R+ to L(X). It is said eventually norm continuous

if t → T(t) is norm continuous from (t0,∞) to L(X). If t0 can be chosen to be 0,

we say that (T (t))t≥0 is immediately norm continuous.

Theorem B.1.4. Let (T (t))t≥0 be a strongly continuous semigroup on a Banach

space X with generator (A, D(A)). Moreover, assume that (T (t))t≥0 is eventually

norm continuous. Then the Spectral Mapping Theorem

Σ(T (t)) \ {0} = etΣ(A)

holds for all t ≥ 0. As a consequence, if −∞ < sup<Σ(A) < 0, then there exists

M ≥ 1 such that:

|||T (t)||| ≤Me
t
2

sup<Σ(A), ∀t ≥ 0.

Theorem B.1.5 (Miyadera-Voigt,[Engel 2001]). Let (A,D(A)) be the generator of

a strongly contiuous semigroup (T (t))t≥0 on a Banach space X and let C ∈
L((D(A), ‖·‖A), X) with ‖x‖A ≡ ‖x‖ + ‖Ax‖. Assume that there exist contants

t0 > 0, 0 ≤ q < 1 such that∫ t0

0
‖CT (s)x‖ ds ≤ q ‖x‖ , ∀x ∈ D(A)
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Then (A+C,D(A)) generates a strongly continuous semigroup (U(t))t≥0 on X

which satifies ∀x ∈ D(A):

U(t)x = T (t)x+
∫ t

0 T (t− s)CU(s)xds

= T (t)x+
∫ t

0 U(t− s)CT (s)xds.

Theorem B.1.6 ([Bátkai 2005]). Let (A,D(A)) be the generator of a strongly con-

tiuous semigroup (T (t))t≥0 on a Banach space X and let C ∈ L((D(A), ‖·‖A), X)

with ‖x‖A ≡ ‖x‖+‖Ax‖. Define the abstract Volterra operator V : C0(R+,L(X))→
C0(R+,L(X)) by V F ≡ t →

∫ t
0 F (t − s)CT (s)ds on D(A) and by its continuous

extension on X. If the following assumptions are satisfied:

• there exist a contant ε > 0 and a function q : [0, ε)→ R+ such that∫ t

0
‖CT (s)x‖ ds ≤ q(t) ‖x‖ , ∀x ∈ D(A),∀t ∈ [0, ε)

with lim
t↘0

q(t) = 0.

• (T (t))t≥0 is norm continuous for t > α

• there exists n ∈ N such that V nT is norm continuous for t > 0

Then (A+C,D(A)) generates a strongly continuous semigroup on X which is norm

continuous for t > nα.

Definition B.1.7. A closed operator T ∈ L(X) of a Banach space X is Fredholm

if dimN (T ) and codimR(T ) are finite and R(T ) is closed in X.

Definition B.1.8. A closed operator T ∈ L(X) of a Banach space X is semi-

Fredholm if dimN (T ) or codimR(T ) is finite and R(T ) is closed in X.

Definition B.1.9. If T ∈ L(X) is a closed operator of a Banach space X the

essential spectrum Σess(T ) is the set of λs in C such that λId − T is not semi-

Fredholm i.e. either R(λId−T ) is not closed or R(λId−T ) is closed but dimN (λId−
T ) = codimR(λId− T ) =∞.

Definition B.1.10 ([Hale 1993]). If K(λ) : B1 → B2, the Bi being complex Banach

spaces, be a linear operator-valued functions that depends analytically on λ ∈ C. A

point λ0 is a characteristic value of K if ∃x0 ∈ B1 \ {0} such that K(λ0)x0 = 0.

An ordered set (x0, · · · , xk−1) ⊂ B1 is a Jordan chain for K(λ0) if x0 6= 0 and

K(z)α(z) = O((z − λ0)k) where α is the root function:

α(z) =

k−1∑
i=0

(z − λ0)ixi
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The maximum length of the Jordan chains starting at x0 is called the rank of x0.

Definition B.1.11 ([Hale 1993]). We call (x1,0, · · · , x1,r1−1, · · · , xp,0, · · · , xp,rp−1)

a canonical system of Jordan chains for K(λ0) if (x1,0, · · · , xp,0) is a basis of

Ker K(λ0) and for each k, (xk,0, · · · , xk,rk−1) is a Jordan chain of rank rk.

Lemma B.1.12 ([Hale 1993]). (x0, · · · , xp−1) is Jordan chain of length p for

K(λ0) if and only if (x0, · · · , xp−1) ∈ Ker Kp with

Kp =


K(λ0) 0 · · · 0
d
dzK(λ0) K(λ0) · · · 0

...
. . .

...
1

(p−1)!
dp−1

dzp−1K(λ0) 1
(p−2)!

dp−2

dzp−2K(λ0) · · · K(λ0)


Proof. Easy to prove from a Taylor expansion of λ→ K(λ) at λ = λ0. �

B.2 Boundedness in F

Lemma B.2.1. We have | 〈L1S(Vt),V(t)〉F | ≤
√
p|Ω| · |||J|||F‖V(t)‖F .

Proof. By the Cauchy-Schwarz inequality:

| 〈L1S(Vt),V(t)〉F | ≤ ‖L1S(Vt)‖F‖V(t)‖F ≤
√
p|Ω| · |||J|||F‖V(t)‖F because

S is bounded by 1. �

B.3 Regularity

Lemma B.3.1. If we define Lq ≡ Lq(Ω,Rp) (recall that F ≡ L2). Then, we have

∀φ ∈W 1,q(−τm, 0; Lq),

L1φ = Jφ(0)−
∫ 0

−τm
J[s]φ̇(s)ds

where ∀s ∈ [−τm, 0], Jij(r, r
′)[s] ≡ Jij(r, r′)H(s+ τij(r, r

′)) and H is the Heaviside

function.

Proof.

((L1φ)(r))i =

p∑
j=1

∫
Ω
Jij(r, r̄)φj(r̄,−τij(r, r̄))dr̄

= −
p∑
j=1

∫
Ω
Jij(r, r̄)

[∫ 0

−τij(r,r̄)
φ̇j(r, s)ds− φj(r, 0)

]

=

p∑
j=1

Jijφj(0)−
p∑
j=1

∫
Ω
Jij(r, r̄)

∫ 0

−τm
φ̇j(r, s)H(s+ τij(r, r̄))ds

= (Jφ(0))i −
∫ 0

−τm

(∫
Ω

J(r, r̄)H(s+ τ (r, r̄))φ̇(r, s)

)
(B.1)
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As τ is continuous, J(r, r′)[s] ∈ Lq(Ω2 × [−τm, 0],Rp×p). �
Let us define the operator:

∀U ∈ Lq,∀θ ∈ [−τm, 0], (StU)(θ) =

{
e−(t+θ)L0U if −t < θ ≤ 0

0 if −τm < θ ≤ −t

and the nilpotent semigroup

∀φ ∈ Lq(−τm, 0; Lq),∀θ ∈ [−τm, 0], (T0(t)φ)(θ) =

{
φ(t+ θ) if t+ θ ≤ 0

0 if t+ θ > 0

Hence T0(t) = 0 if t > τm. We show that the property (M) in [Bátkai 2005] is true:

Lemma B.3.2. If J ∈ L∞(Ω2,Rp), then for each space X (q) ≡ Lq×Lq(−τm, 0; Lq)

where Lq ≡ Lq(Ω,Rp) and 2 ≤ q <∞, there exists Q : R+ → R+ with lim
t→0+

Q(t) = 0

such that

∀
[
x

φ

]
∈ D(A)

∫ t

0
‖L1(Ssx+ T0(s)φ)‖Lq ds ≤ Q(t)

∥∥∥∥[xφ
]∥∥∥∥
X (q)

.

Proof. Let us first focus on the term
∫ t

0 ‖L1(Ssx)‖Lq ds. As t ≥ 0, we

find (L1(Ssx)) (r) =
∫
dr̄1[τ(r,r̄),∞)(s)J(r, r̄)e−(s−τ(r,r̄)L0x(r̄). For s fixed, J2(s) :

(r, r̄)→ 1[τ(r,r̄),∞)(s)J(r, r̄)e−(s−τ(r,r̄)L0 defines an integral operator on Lq such that

L1(Ssx) = J2(s)x. Its norm is bounded1 by: |||J2(s)|||Lq ≤ |Ω|√p ‖J‖L∞(Ω2,Rp).

This gives
∫ t

0 ‖L1(Ssx)‖F ds ≤ t|Ω|
√
p ‖J‖L∞(Ω2,Rp).

Let us look at the second term
∫ t

0 ‖L1(T0(s)φ)‖Lq ds. As t ≥ 0,

we find (L1(T0(s)φ)) (r) =
∫
dr̄1[0,τ(r,r̄)](s)J(r, r̄)φ(s − τ(r, r̄), r̄). We write∫ t

0 ds ‖L1(T0(s)φ)‖Lq =
∫ t

0 h
1/q with

h(s) ≡
∫

Ω
dr

∥∥∥∥∫
Ω
dr̄ 1[0,τ(r,r̄)](s)J(r, r̄)φ(s− τ(r, r̄), r̄)

∥∥∥∥q
Rp
.

We apply the Hölder inequality with q̄ such that q−1 + q̄−1 = 1:

∀r,
∥∥∥∥∫

Ω
dr̄ 1[0,τ(r,r̄)](s)J(r, r̄)φ(s− τ(r, r̄), r̄)

∥∥∥∥
Rp

≤
∫

Ω
dr̄ 1[0,τ(r,r̄)](s) ‖J(r, r̄)φ(s− τ(r, r̄), r̄)‖Rp

≤
∫

Ω
dr̄ 1[0,τ(r,r̄)](s)|||J(r, r̄)|||Rp ‖φ(s− τ(r, r̄), r̄)‖Rp

≤ √p ‖J‖L∞(Ω2,Rp)

∫
Ω
dr̄ 1[0,τ(r,r̄)](s) ‖φ(s− τ(r, r̄), r̄)‖Rp

Holder
≤ √

p ‖J‖L∞(Ω2,Rp)

(∫
Ω
dr̄

)1/q̄ (∫
Ω
dr̄ 1[0,τ(r,r̄)](s) ‖φ(s− τ(r, r̄), r̄)‖qRp

)1/q

.

1Using the Cauchy-Schwarz inequality followed by the Hölder inequality.
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This gives:

h(s) ≤
(√

p ‖J‖L∞(Ω2,Rp) |Ω|
1/q̄
)q ∫

Ω
dr

∫
Ω
dr̄ 1[0,τ(r,r̄)](s) ‖φ(s− τ(r, r̄), r̄)‖qRp

Again, we apply the Hölder inequality with q̄ such that q−1 + q̄−1 = 1:

∫ t

0
h1/q ≤

[∫ t

0
1

]1/q̄ [∫ t

0
h

]1/q

≤

√
p ‖J‖L∞(Ω2,Rp) |Ω|

1/q̄t1/q̄
[∫ t

0
ds

∫
Ω
dr

∫
Ω
dr̄ 1[0,τ(r,r̄)](s) ‖φ(s− τ(r, r̄), r̄)‖qRp

]1/q

Fubini
=
√
p ‖J‖L∞(Ω2,Rp) |Ω|

1/q̄t1/q̄
[∫

Ω
dr

∫
Ω
dr̄

∫ t

0
ds 1[0,τ(r,r̄)](s) ‖φ(s− τ(r, r̄), r̄)‖qRp

]1/q

≤ √p ‖J‖L∞(Ω2,Rp) |Ω|
1/q̄t1/q̄

[∫
Ω
dr

∫
Ω
dr̄

∫ 0

−τm
dθ ‖φ(θ, r̄)‖qRp

]1/q

Fubini
=
√
p ‖J‖L∞(Ω2,Rp) |Ω|

1/q̄t1/q̄
[
|Ω|
∫ 0

−τm
dθ ‖φ(θ)‖qLq

]1/q

=
√
p ‖J‖L∞(Ω2,Rp) |Ω|t

1/q̄ ‖φ‖Lq(−τm,0;Lq)

Finally we find:∫ t

0
‖L1(Ssx+ T0(s)φ)‖Lq ds ≤

√
p ‖J‖L∞(Ω2,Rp) |Ω|max(t, t1/q̄)

∥∥∥∥[xφ
]∥∥∥∥
X (q)

which concludes the proof. �

B.4 Analytical formula for the Hopf bifurcation curve in the

parameter plane (D, c)

These formulae rely on the following lemma:

Lemma B.4.1. If J = |J |eiψ, ψ ∈ (−π, π], there is a (unique) solution X0 > 0

to <W0(JX) = W0(X) iff 1 ≤ |J | and arccos
(

1
|J |

)
≤ |ψ|. This solution is given by

X0 = ξ0e
ξ0 with

ξ0 =
1√
|J |2 − 1

(
|ψ| − arccos

(
1

|J |

))
.

Then =W0(JX0)
W0(X) = sign(ψ)√

|J |2−1
.

Proof. Let us define Ψ(z) = zez, by definition Ψ(W0(z)) = z, hence the equation

becomes Ψ(<W0(JX)) = X > 0. We write W0(JX) = ξ + iη with η ∈ (−π, π]

(by definition of the principal branch) and JX = |J |Xeiψ, ψ ∈ (−π, π]. As

sign (=(W0(z))) = sign (arg z) (see [Corless 1996]), we find that sign(ψ) = sign(η).

From the symmetry W0(z) = W0(z̄), we conclude that η(ψ) can be written



276 Appendix B. Theory of delays

sign(ψ)η(|ψ|): we can suppose that ψ ≥ 0 and thus that η ≥ 0. By definition

of W0, JX = Ψ(ξ + iη), it gives:{
|J |Xcos(ψ) = eξ(ξcos(η)− ηsin(η))

|J |Xsin(ψ) = eξ(ξsin(η) + ηcos(η))

Using ξeξ = X, we find
(
η
ξ

)2
= |J |2 − 1 ⇒ η

ξ =
√
|J |2 − 1 and the two equations

reduce to

ei(ψ−η) =
1

|J |

[
1 + i

√
|J |2 − 1

]
= eiφ, φ = arccos

(
1

|J |

)
∈
[
0,
π

2

]
This gives η = ψ − φ [2π]. If ψ − φ ≥ 0, then we have a solution η = ψ − φ.

However, if ψ−φ < 0, the only potential solution is η = ψ−φ+2π, but ψ−φ+2π ≥
−π

2 + 2π > π but η ≤ π. Hence there is a (unique) solution iff ψ − φ ≥ 0 which is

η = ψ − φ. In this case ξ =
ψ−arccos

(
1
|J|

)
√
|J |2−1

.

�

B.5 Study of the adjoint A∗

Lemma B.5.1. The adjoint A∗ of A for 〈 , 〉X satisfies

A∗
[
y

ψ

]
=

[
−L∗0y + ψ(0)
d
dθ (J∗[θ]y − ψ)

]
with domain

D(A∗) =

{[
y

ψ

]
∈ X , ψ(s)− (J[s])∗y ∈W 1,2(−τm, 0;F) and ψ(−τm) = (J[−τm])∗y

}
.

Proof. The proof follows [Nakagiri 1988]. For all

[
x

φ

]
∈ D(A), let us write

〈A
[
x

φ

]
,

[
y

ψ

]
〉X = 〈

[
x

φ

]
,

[
z

η

]
〉X and look for

[
z

η

]
. Using lemma B.3.1, we have :

〈A
[
x

φ

]
,

[
y

ψ

]
〉X = 〈y,−L0x+ Jx〉F −

∫ 0

−τm
〈y,J[s]φ̇(s)〉Fds+

∫ 0

−τm
〈φ̇(s), ψ(s)〉Fds

= 〈x, z〉F +

∫ 0

−τm
〈φ(s), η(s)〉Fds

In the scalar product
∫ 0
−τm〈φ(s), η(s)〉Fds, we would like to make appear φ̇. Thus

we set M(s) =
∫ s
−τm η, then∫ 0

−τm
〈φ(s), η(s)〉Fds = 〈φ(0),M(0)〉F −

∫ 0

−τm
〈φ̇,M〉F
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Also: ∫ 0

−τm
〈(J[s])∗y, φ̇(s)〉Fds = 〈φ(0),J∗y〉F − 〈L1φ, y〉F

because (J[0])∗ = J∗. Then:∫ 0

−τm
〈φ̇(s),−ψ(s) + (J[s])∗y −M(s)〉Fds = 〈x, z + L∗0y − J∗y +M(0)〉F .

This last equality is true ∀
[
x

φ

]
∈ D(A), if we choose the constant function φ(θ) =

x ∈ F , it gives:

z = −L∗0y + J∗y −M(0)

then

ψ(s)− (J[s])∗y +M(s) = 0 ∀s ∈ [−τm, 0].

It follows that

ψ(−τm) = (J[−τm])∗y

and

M(0) = −ψ(0) + (J(0))∗y = −ψ(0) + J∗y.

We still need to find η to finish the proof. Because M is C1, we have

η(s) = − d

ds
[ψ(s)− (J[s])∗y] .

�

B.6 Linear analysis

B.6.1 Stability

In this section we prove lemma B.6.1 which is central in establishing the first suffi-

cient condition in proposition 4.5.7.

Lemma B.6.1. Let β > 0 be such that 1
τβ
∈ L2(Ω2,Rp×p)). Then we have the

following bound:

‖Z(t)‖F ≤ τm
3
2

+β‖Ut‖C

√√√√∑
i,j

∫
Ω2

Jij(r, r̄)2/τij(r, r̄)2β ≡ τm
3
2

+β

∥∥∥∥ J

τ β

∥∥∥∥
L2(Ω2,Rp×p)

‖Ut‖C

Proof.

We have:∥∥∥∥∥∥∥
∫
Ω

dr̄J(·, r̄)

t∫
t−τ (·,r̄)

U(r̄, s)ds

∥∥∥∥∥∥∥
2

F

=

∫
Ω

dr
∑
i

∑
j

∫
Ω

dr̄Jij(r, r̄)

t∫
t−τij(r,r̄)

Uj(r̄, s)ds


2

(B.2)
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and if we set yi(r) =
∑
j

∫
Ω

dr̄Jij(r, r̄)
t∫

t−τij(r,r̄)

Uj(r̄, s)ds, we have : |yi(r)| ≤

∑
j
|
∫
Ω

dr̄Jij(r, r̄)
t∫

t−τij(r,r̄)

Uj(r̄, s)ds| and from the Cauchy-Schwartz inequality:

∫
Ω

dr̄Jij(r, r̄)

t∫
t−τij(r,r̄)

Uj(r̄, s)ds ≤

√√√√∫
Ω

dr̄
Jij(r, r̄)2

τij(r, r̄)2β

√√√√√√∫
Ω

dr̄τij(r, r̄)2β


t∫

t−τij(r,r̄)

Uj(r̄, s)ds


2

Again, from the Cauchy-Schwartz inequality applied to

{
t∫

t−τij(r,r̄)

Uj(r̄, s)ds

}2

:

∫
Ω

dr̄τij(r, r̄)2β


t∫

t−τij(r,r̄)

Uj(r̄, s)ds


2

≤
∫
Ω

dr̄τij(r, r̄)2β+2

t∫
t−τm

Uj(r̄, s)
2ds

≤ τ2β+2
m

∫
Ω

dr̄

t∫
t−τm

Uj(r̄, s)
2ds = τ2β+2

m

t∫
t−τm

∫
Ω

dr̄Uj(r̄, s)
2ds (B.3)

Then, from the discrete Cauchy-Schwartz inequality:

|yi(r)| ≤ τβ+1
m

∑
j

√√√√√ t∫
t−τm

ds

∫
Ω

dr̄Uj(r̄, s)2

√√√√∫
Ω

dr̄Jij(r, r̄)2/τij(r, r̄)2β

≤ τβ+1
m

√√√√√∑
j

t∫
t−τm

ds

∫
Ω

dr̄Uj(r̄, s)2

√√√√∑
j

∫
Ω

dr̄Jij(r, r̄)2/τij(r, r̄)2β

= τβ+1
m

√√√√√ t∫
t−τm

ds‖U(s)‖2F

√√√√∑
j

∫
Ω

dr̄Jij(r, r̄)2/τij(r, r̄)2β

≤ τβ+ 3
2

m ‖Ut‖C

√√√√∑
j

∫
Ω

dr̄Jij(r, r̄)2/τij(r, r̄)2β (B.4)

which gives as stated:

∑
i

∫
Ω

yj(r)2dr ≤ τ2β+3
m ‖Ut‖2C

∑
i

∑
j

∫
Ω

dr̄Jij(r, r̄)2/τij(r, r̄)2β

and allows us to conclude. �
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B.7 The Cauchy problem

B.7.1 Regularity of R

Lemma B.7.1. Let us assume that J ∈ L∞(Ω2,Rp×p). Then L1 is a continuous

operator from C0(−τm, 0; L1(Ω,Rp)) to Lq(Ω,Rp).

Proof. We take φ ∈ C0(−τm, 0; L1(Ω,Rp)) and write, for convenience, φd(r, r̄) =

φ(−τ(r, r̄), r̄). If U ≡ L1φ, we have:

|Ui(r)| =
∣∣∣∑

j

∫
Ω
dr̄ Jij(r, r̄)φdj (r, r̄)

∣∣∣ ≤ ‖J‖L∞(Ω2,Rp×p)

∫
Ω

∑
j

∣∣∣φdj (r, r̄)
∣∣∣dr̄

Cauchy−Schwarz
≤ √

p ‖J‖L∞(Ω2,Rp×p)

∫
Ω

∥∥∥φd(r, r̄)
∥∥∥
Rp
dr̄

Also, we find:∫
Ω

∥∥∥φd(r, r̄)
∥∥∥
Rp
dr̄ ≤ sup

r∈Ω

∫
Ω

∥∥∥φd(r, r̄)
∥∥∥
Rp
dr̄ ≤

sup
θ∈[−τm,0]

∫
Ω
‖φ(θ, r̄)‖Rp dr̄ = sup

θ∈[−τm,0]
‖φ(θ)‖L1(Ω,Rp) ≡ ‖φ‖C0(−τm,0;L1(Ω,Rp))

which gives |Ui(r)| ≤ √p ‖J‖L∞(Ω2,Rp×p) ‖φ‖C0(−τm,0;L1(Ω,Rp)). It follows that

‖U‖Lq(Ω,R) ≤ p
√
p|Ω|1/q ‖J‖L∞(Ω2,Rp×p) ‖φ‖C0(−τm,0;L1(Ω,R))

which concludes the proof. �

B.7.2 The inhomogeneous equation

Lemma B.7.2. Let (T0(t)) be the C0-semigroup with generator A0 =

[
−L0 0

0 d
dθ

]
,

D(A0) = D(A) and B ≡
[
0 L1

0 0

]
∈ L(D(A),X ). It is known from

[Bátkai 2005][theorem 3.25] that A0 generates the strongly continuous semigroup

T0(t) =

[
S(t) 0

St T0(t)

]
∈ L(X ) where S(t) ≡ e−L0t, St, T0(t) are defined in ap-

pendix B.3. Then we have:

T(t) = T0(t) +
∫ t

0 T0(t− s)BT(s)ds

= T0(t) +
∫ t

0 T(t− s)BT0(s)ds.
(B.5)

on D(A)⊕ (F × {0}).
Proof. There are 3 main parts in the proof. First, we find the regularity of

π2T(t)

[
x

0

]
. Then we use the Miyadera-Voigt perturbation theorem to prove the

lemma on D(A). Finally, we extend the formula to D(A)⊕(F × {0}) by continuity.
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1. Let us write

[
f(t)

ξ(t)

]
≡ T(t)

[
x

0

]
. We consider a sequence D(A) 3

[
x

φn

]
→
[
x

0

]
in X . Then,

[
fn(t)

ξn(t)

]
≡ T(t)

[
x

φn

]
∈ D(A) is a classical solution of:

{
ḟn = −L0fn + L1ξn
ξ̇n = ∂ξn

∂θ

(B.6)

where the second equation is solved by ξn(t, θ) = Hn(t+ θ). From the initial

condition ξn(0, θ) = φn(θ) and the belonging to D(A), ξn(t, 0) = fn(t), we

find:

Hn(t) =

{
fn(t) if t ≥ 0

φn(t) if t ≤ 0.
(B.7)

As T(t)

[
x

φn

]
→ T(t)

[
x

0

]
in X for all t ≥ 0, we have:

ξ(t, θ) =

{
f(t+ θ) if t+ θ ≥ 0

0 otherwise .
(B.8)

As T is strongly continuous on X , it gives f ∈ C0(R+,L
q) and ξ(t, ·) has one

discontinuity point if and only if t < τm.

2. We apply the perturbation theorem B.1.5 to A0+B (see [Bátkai 2005][theorem

3.26] and lemma B.3.2). We find ∀u ∈ D(A):

T(t)u = T0(t)u+
∫ t

0 T0(t− s)BT(s)u ds

= T0(t)u+
∫ t

0 T(t− s)BT0(s)u ds.

3. Then, we extend by continuity the above formulas. Let us notice that F×{0}
is in the closure of D(A) in X and write (for example) δ(t) = T(t)− T0(t)−∫ t

0 T0(t − s)BT(s)ds. We wish to extend δ(t) to F × {0}. Let us first notice

that δ(t) is bounded on F × {0} for ‖·‖X . Indeed, this comes from L1 being

bounded on history segment like π2T(t)

[
x

0

]
. Then, we consider a sequence

D(A) 3 un → u ∈ F × {0} in X . We have δ(t)un = 0 and as δ(t) is bounded

on D(A)⊕F × {0}, we have:∥∥∥∥∥∥δ(t)un︸ ︷︷ ︸
=0

−δ(t)u)

∥∥∥∥∥∥
X

≤ K ‖un − u‖X

which gives δ(t)u = 0. the other formula is similar. This concludes the proof

of the lemma.

�

We need the following estimations for the main proposition that follows.

Lemma B.7.3. For f ∈ C0
η(R,Lq), we have:
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1.
∫ t+ε
t St+ε−rf(r)dr

ε→0+

= O(ε1+1/q) in Lq(−τm, 0; Lq),

2. ∀λ ∈ C such that <λ ≥ 0,
∫ t+ε
t T0(t + ε − r)f(r)eλ·dr

ε→0+

∼ εf(t)eλ· in

Lq(−τm, 0; Lq).

Proof.

1. Let us write U1(t; ·) =
∫ t+ε
t St+ε−rf(r)dr. From the definition of St, we find:

‖U1(t; ·)‖qLq(−τm,0;Lq) =

∫ 0

−τm
dθ

∥∥∥∥∫ t+ε

t
S(t+ ε− r + θ)f(r)H(t+ ε− r + θ)dr

∥∥∥∥q
Lq

=

∫ 0

−ε
dθ

∥∥∥∥∫ θ+ε

0
S(ε− r + θ)f(t+ r)dr

∥∥∥∥q
Lq

≤
∫ 0

−ε
dθ

(∫ θ+ε

0
‖S(ε− r + θ)f(t+ r)‖Lq dr

)q
= O

(∫ 0

−ε
dθ

(∫ θ+ε

0
1dr

)q)
= O(εq+1)

where H is the Heaviside function. Hence, we have:

U1(t; ·) = O(ε1+1/q) = o(ε).

2. Let us write U2(t; θ) =
∫ t+ε
t (T0(t+ε− r)(f(r)eλ·))(θ)dr. From the definition2

of T0(t),

U2(t; θ) =

∫ t+ε

t
f(r)eλ(t+θ+ε−r)H(−(t+ θ + ε− r))dr =

∫ t+ε

max(t,t+ε+θ)
f(r)eλ(t+θ+ε−r)dr

≡ U2,1(t; θ) + U2,2(t; θ)

with:

U2,1(t; θ) ≡

{ ∫ t+ε
t+ε+θ f(r)eλ(t+θ+ε−r)dr if θ > −ε

0 if θ ≤ −ε
(B.9)

and

U2,2(t; θ) ≡
{ ∫ t+ε

t f(r)eλ(t+θ+ε−r)dr if θ < −ε
0 if θ ≥ −ε.

(B.10)

For the first term, we find:

‖U2,1(t; ·)‖qLq(−τm,0;Lq) =

∫ 0

−ε
dθ

∥∥∥∥∫ t+ε

t+θ+ε
f(r)eλ(t+θ+ε−r)dr

∥∥∥∥q
Lq

= O

(∫ 0

−ε
dθ

(∫ t+ε

t+θ+ε
1dr

)q)
= O(εq+1).

Hence, we have:

U2,1(t; ·) = o(ε).

2see appendix B.3
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For the second term, it is easy to show that:

∀θ ∈ [−τm, 0],
1

ε
U2,2(t; θ)

ε→0+

→ f(t)eλθ in Lq(−τm, 0; Lq)

which concludes the proof.

�

Proposition B.7.4. For all η ∈ [0, γ] and F =

[
f

0

]
∈ C0

η(R,Y), we consider

u(t) =

∫ t

−∞
T(t− r)Ps

[
f(r)

0

]
dr.

Then, u satisfies the following properties:

1. u ∈ C0
η(R,Z) and ‖u‖C0

η(R,Z) ≤ K(η) ‖f‖C0
η(R,Y) with η → K(η) positive

continuous,

2. u ∈ C1(R,X ),

3. u satifies u̇ = Au+ Ps

[
f

0

]
on X , i.e. is a classical solution.

Proof. Choose γ′ > γ such that the spectral splitting (see section 4.4.4) is still

valid with γ′. It gives

|||T(t)Ps|||X ≤Me−γ
′t, t > 0. (B.11)

Note that the group S(t) = e−L0t satifies:

‖S(t)‖L(Lq) ≤ e
−lt, l > γ′, ∀t. (B.12)

Let us prove that u(t) exists for all t ∈ R. From (B.11), we find∥∥∥∥T(t− r)Ps
[
f(r)

0

]∥∥∥∥
X
≤Me−γ

′(t−r)+η|r| ‖f‖C0
η(R,Y) which gives:

‖u(t)‖X ≤M ‖f‖C0
η(R,Y)

∫ t

−∞
e−γ

′(t−r)+η|r|dr.

We change of variable in the integral to find∫ 0

−∞
eγ
′r+η|t+r|dr ≤

∫ 0

−∞
eγ
′r+η|t|+η|r|dr =

eη|t|

γ′ − η
.

This gives:

‖u(t)‖X ≤M ‖f‖C0
η(R,Y)

eη|t|

γ′ − η
. (B.13)
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1. From lemma B.7.2, we find

u(t) =

∫ t

−∞

(
T0(t− r)Ps

[
f(r)

0

]
+

∫ t−r

0
T0(t− r − v)BT(v)Ps

[
f(r)

0

]
dv

)
dr

≡ u1(t) + u2(t). (B.14)

We shall prove Point 1. for each ui(t), i = 1, 2.

Case of u1. The first term is:

u1(t) =

∫ t

−∞
T0(t− r)Ps

[
f(r)

0

]
dr.

Recall from proposition 4.4.10 that

Ps(u) = u−
∑
i

〈〈ψi, u〉〉φi

where φi =

[
xi

xie
λiθ

]
are the generalized eigenvectors of A for the eigen-

values λi such that <λi ≥ 0. Write ψi =

[
yi
π2ψi

]
, fi(r) ≡ 〈yi, f(r)〉Fxi

and H the Heaviside function. Note that:

‖fi(r)‖X = O (‖f(r)‖X ) = O(eη|r|) (B.15)

because X (q) ↪→ X (2) for q ≥ 2. Then, we have:

T0(t− r)Ps
[
f(r)

0

]
= T0(t− r)

f(r)−
∑
i
fi(r)

−
∑
i
fi(r)e

λiθ



=

 S(t− r)
(
f(r)−

∑
i
fi(r)

)
St−r

(
f(r)−

∑
i
fi(r)

)
−
∑
i
fi(r)e

λi(t−r+θ)H(−(t− r + θ))

 .
We shall see that the second component is continuous in θ. It is then

easy to see that the two components are equal when θ = 0. We have for

the second component:

θ →
∫ t+θ

−∞
S(t− r+ θ)

(
f(r)−

∑
i

fi(r)

)
dr−

∑
i

∫ t

t+θ
fi(r)e

λi(t−r+θ)dr.

The second term is C1 on [−τm, 0]. We wish to apply the dominated

convergence theorem to the first integral term. Hence, we need to bound

the norm of the derivative of its integrand by an integrable function of

r. This derivative is

−L0S(t− r + θ)

(
f(r)−

∑
i

fi(r)

)
which is bounded3 by K|||L0|||F ‖f‖C0

η(R,Y) e
lτme−l(t−r+τm)+η|r| which is

3for some constant K depending on xi, yi.
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r-integrable. Hence, the dominated convergence theorem shows that the

second component belongs to C1(−τm, 0; Lq) for all time t. This implies

that

∀t ∈ R, u1(t) ∈ Z

because π1u1(t) = (π2u1)(0). Finally:

‖u1(t)‖Z ≤

∥∥∥∥∥
∫ t

−∞
S(t− r)

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
Lq

+

∥∥∥∥∥
∫ t

−∞
St−r

(
f(r)−

∑
i

fi(r)

)
−
∑
i

fi(r)e
λi(t−r+θ)H(−(t− r + θ))dr

∥∥∥∥∥
W1,q(−τm,0;Lq)

≤

∥∥∥∥∥
∫ t

−∞
S(t− r)

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
Lq

+

∥∥∥∥∥
∫ t

−∞
St−r

(
f(r)−

∑
i

fi(r)

)∥∥∥∥∥
W1,q(−τm,0;Lq)

+

∥∥∥∥∥
∫ t

−∞

∑
i

fi(r)e
λi(t−r+θ)H(−(t− r + θ))dr

∥∥∥∥∥
W1,q(−τm,0;Lq)

. (B.16)

The first term is bounded by4 by K ‖f‖C0
η(R,Y)

∫ t
−∞ e

−l(t−r)+η|r|dr ≤

K ‖f‖C0
η(R,Y)

∫ t
−∞ e

−γ′(t−r)+η|r|dr ≤ K ‖f‖C0
η(R,Y)

eη|t|

γ′−η . Let us write:

∥∥∥∥∥f(r)−
∑
i

fi(r)

∥∥∥∥∥
X

≤ Kf ‖f‖C0
η(R,Y) e

η|r|

for some constant Kf . For the second term in (B.16), we have:

∥∥∥∥∥
∫ t

−∞
St−r

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
q

Lq(−τm,0;Lq)

=

∫ 0

−τm

∥∥∥∥∥
∫ t+θ

−∞
S(t− r + θ)

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
q

Lq

dθ

≤
∫ 0

−τm

(∫ t+θ

−∞
Kf ‖f‖C0

η(R,Y) e
η|t|−l(t−r+θ)dr

)q
dθ

≤ τm

(
Kf ‖f‖C0

η(R,Y)

eη|t|+lτm

γ′ − η

)q
4for some constant K
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and∥∥∥∥∥ ddθ
∫ t

−∞
St−r

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
q

Lq(−τm,0;Lq)

=

∫ 0

−τm

∥∥∥∥∥
(
f(t+ θ)−

∑
i

fi(t+ θ)

)
−
∫ t+θ

−∞
L0S(t− r + θ)

(
f(r)−

∑
i

fi(r)

)
dr

∥∥∥∥∥
q

Lq

dθ

|a+b|q≤2q−1(|a|q+|b|q)
≤ 2q−1

∫ 0

−τm

∥∥∥∥∥f(t+ θ)−
∑
i

fi(t+ θ)

∥∥∥∥∥
q

Lq

+ 2q−1

(∫ t+θ

−∞

∥∥∥∥∥L0S(t− r + θ)

(
f(r)−

∑
i

fi(r)

)∥∥∥∥∥
Lq

dr

)q
dθ

≤ Kq
f ‖f‖

q
C0
η(R,Y)

(∫ 0

−τm
eqη|t+θ|dθ+|||L0|||q

∫ 0

−τm
dθ

(∫ t+θ

−∞
e−l(t−r+θ)+η|r|dr

)q )
≤ Kq

f ‖f‖
q
C0
η(R,Y)

eqη|t|τme
qητm

(
1 +

(
|||L0|||
γ′ − η

)q)
. (B.17)

The third term in (B.17) is very similar. This allows to conclude that:

‖u1(t)‖Z ≤ K1(η) ‖f‖C0
η(R,Y) e

η|t|.

Finally, let us write for t > s:

u1(t)− u1(s) =

∫ t

−∞
(T0(t− r)− T0(s− r))Ps

[
f(r)

0

]
dr

+

∫ t

s
T0(t− r)Ps

[
f(r)

0

]
dr

Using the same arguments as above, it is straightforward to show that:∥∥∥∥∫ t

s
T0(t− r)

[
f(r)

0

]
dr

∥∥∥∥
Z

= O(|t− s|)

and ∥∥∥∥∫ t

−∞
(T0(t− r)− T0(s− r))

[
f(r)

0

]
dr

∥∥∥∥
Z

= O(|t− s|)

because t → S(t) is C1. This shows that ‖u1(t)− u1(s)‖Z ≤ K|t − s|,
hence t→ u1(t) is continuous in Z. It follows that

u1 ∈ C0
η(R,Z).

Case of u2. We start with the introduction of convenient notations:[
h(v, r)

0

]
≡ BT(v)Ps

[
f(r)

0

]
.
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Note from (B.11) that

‖h(v, r)‖Lq ≤ K ‖f‖C0
η(R,Y) e

−γ′v+η|r| (B.18)

for some constant K. It follows that u2 is given by:

u2(t) =

∫ t

−∞
dr

∫ t−r

0
dv

[
S(t− r − v)h(v, r)

St−r−vh(v, r)

]
(B.19)

and

π2u2(t; θ) =

∫ t

−∞
dr

∫ t−r

0
dv S(t− r − v + θ)h(v, r)H(t− r − v + θ)

=

∫ t+θ

−∞
dr

∫ t−r+θ

0
dv S(t− r − v + θ)h(v, r).

We want to show that this function is C1 on [−τm, 0] by applying the

dominated convergence theorem. The integrand is C1 in θ. Taking the

derivative w.r.t. θ gives:

h(t− r + θ, r)−
∫ t−r+θ

0
dv L0S(t− r − v + θ)h(v, r).

The first term is bounded by K ‖f‖C0
η(R,Y) e

−γ′(t−r)+η|r| and the second

term is bounded by

K ‖f‖C0
η(R,Y) |||L0|||

∫ t−r+θ

0
dv e−l(t−r−v−τm)e−γ

′v+η|r| = O(e−γ
′(t−r)+η|r|).

Hence, the derivative is O(e−γ
′(t−r)+η|r|) which is r-integrable. It follows

from the dominated convergence theorem that π2u2(t) is C1 on [−τm, 0]

for all time t. We find that:

∀t ∈ R, u2(t) ∈ Z.

We can now compute the norm ‖u2(t)‖Z :

‖u2(t)‖Z =

∥∥∥∥∫ t

−∞
dr

∫ t−r

0
S(t− r − v)h(v, r)dv

∥∥∥∥
Lq

+

∥∥∥∥∫ t

−∞
dr

∫ t−r

0
St−r−vh(v, r)dv

∥∥∥∥
W1,q(−τm,0;Lq)

. (B.20)

From computations similar to the ones for ‖u1(t)‖Z and by using the

bound (B.18), we find that

‖u2(t)‖Z ≤M(η) ‖f‖C0
η(R,Y) e

η|t|
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where η →M(η) is a positive continuous function of η. Finally, we have

for δ > 0 (for example):

u2(t+ δ)− u2(t) =∫ t

−∞
dr
(∫ t−r

0
dv [T0(t+ δ − r − v)− T0(t− r − v)]

[
h(v, r)

0

]
+

∫ t+δ−r

t−r
dv T0(t+δ−r−v)

[
h(v, r)

0

])
+

∫ t+δ

t
dr

∫ t+δ−r

0
dv T0(t+δ−r−v)

[
h(v, r)

0

]
.

By bounding each term, it can be shown, albeit being lengthy, that

‖u2(t+ δ)− u2(t)‖
=

δ ∼ 0 O(|δ|). It follows that

u2 ∈ C0(R,Z).

Combining the results for u1 and u2, we have shown that u ∈ C0
η(R,Z) and

that

‖u‖C0
η(R,Z) ≤ K(η) ‖f‖C0

η(R,Y)

for some positive continuous function η → K(η).

2. As in Point 1., we have:

u(t) =

∫ t

−∞

 S(t− r)
(
f(r)−

∑
i
fi(r)

)
St−r

(
f(r)−

∑
i
fi(r)

)
−
∑
i
fi(r)e

λi(t−r+θ)H(−(t− r + θ))

 dr
+

∫ t

−∞
dr

∫ t−r

0
dv

[
S(t− r − v)h(v, r)

St−r−vh(v, r)

]
.

The only difficulty in showing that t→ u(t) is C1 in X comes from the second

component because t→ S(t) is analytical on Lq. To keep the proof small, we

shall only prove that

t→ U(t) ≡
∫ t

−∞
St−rf(r)dr

is C1, the other terms being very similar. We write:

U(t; θ) =

∫ t+θ

−∞
S(t+ θ − r)f(r)dr.

Using the dominated convergence theorem, we find:

d

dt
U(t; θ) = f(t+ θ)−

∫ t+θ

−∞
L0S(t+ θ − r)f(r)dr = f(t+ θ)− L0U(t; θ).

As θ → d
dtU(t; θ) ∈ Lq(−τm, 0; Lq), we have that

U ′(t) = −L0U(t) + f(t+ ·).

Doing similar estimations with the other terms of the second component of

u(t), we find that:



288 Appendix B. Theory of delays

u ∈ C1(R,X ).

3. Let us consider a > 0. From the definition of u(t), we find:

u(t+ a) = T(a)u(t) +

∫ t+a

t
T(a+ t− r)Ps

[
f(r)

0

]
dr.

As u is in C1(R,X ) ∩ C0(R,Z), we can take the derivative w.r.t. a and find:

d

da
u(t+ a) =

d

dt
u(t+ a) = Au(t+ a) +

d

da

∫ t+a

t
T(a+ t− r)Ps

[
f(r)

0

]
dr.

Then, taking the limit a→ 0 in X :

u̇(t) = Au(t) + lim
a→0

d

da

∫ t+a

t
T(a+ t− r)Ps

[
f(r)

0

]
dr.

Hence we need to compute

lim
a→0+

1

a

∫ t+a

t
T(a+ t− r)Ps

[
f(r)

0

]
dr.

Let us write ua(t) =
∫ t+a
t T(a+ t− r)Ps

[
f(r)

0

]
dr. As in Point 2., we find:

ua(t) =

∫ t+a

t

 S(t+ a− r)
(
f(r)−

∑
i
fi(r)

)
St+a−r

(
f(r)−

∑
i
fi(r)

)
−
∑
i
fi(r)T0(t+ a− r)eλi·

 dr
+

∫ t+a

t
dr

∫ t+a−r

0
dv

[
S(t+ a− r − v)h(v, r)

St+a−r−vh(v, r)

]
First term. We start by the first component which gives the limit (it is

differentiable):

lim
a→0+

1

a

∫ t+a

t
S(t+ a− r)

(
f(r)−

∑
i

fi(r)

)
= f(t)−

∑
i

fi(t).

Using lemma B.7.3, we find

lim
a→0+

1

a

∫ t+a

t
St+a−r

(
f(r)−

∑
i

fi(r)

)
−
∑
i

fi(r)T0(t+ a− r)eλi·

= −
∑
i

fi(r)T0(t+ a− r)eλi·.

Hence, the limit of the first term is Ps

[
f(t)

0

]
.
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Second term. Using lemma B.7.3, we find that the second term is o(ε2).

Because u ∈ C1(R,X ), we have shown that ∀t ∈ R,

u̇ = Au+ Ps

[
f

0

]
.

This concludes the proof of the proposition. �

B.7.3 The inhomogeneous equation (Parabolic case)

We would like to show that the center manifold is attracting when the unstable

spectrum is empty Σu(A) = ∅. This requires to check two properties like we did in

appendix B.7.2. We start with a definition for a given Banach space E :

Fη(R, E) ≡
{
φ ∈ C0(R, E), ‖φ‖Fη(R,E) ≡ sup

t∈R
eηt‖φ(t)‖E <∞

}
.

Then, we have the following proposition (analog to proposition 4.6.2)

Proposition B.7.5. Let us assume that the unstable spectrum is empty Σu(A) = ∅.
Define for all integer 2 ≤ q <∞, Yh = PhY(q), Zh = PhZ(q). For any η ∈ [0, γ],

1. and for any u0 ∈ Zh, the problem u̇ = Au with initial condition u0 has a

unique solution u ∈ C0(R+,Zh) and ‖u(t)‖Z ≤ cηe−ηt for all t ≥ 0 and some

positive constant cη.

2. and for any function F = Ph

[
f

0

]
∈ Fη(R,Yh), the problem

u̇ = Au+ F (t) (B.21)

has a unique solution u = KhF ∈ Fη(R,Zh) and

|||Kh|||L(Fη(R,Yh),Fη(R,Zh)) ≤ C(η)

with C ∈ C0([0, γ],R).

Proof. Choose γ′ > γ such that the spectral splitting (see section 4.4.4) is still

valid with γ′.

1. Let us write u0 =

[
x0

φ0

]
. The solution u is given by u(t) = T(t)u0. From

Z(q) = D(A(q)), we find that u is a strong solution and that u(t) ∈ Zh. Using

the same trick as in proposition B.7.4, we write u(t) = T0(t)u0 +
∫ t

0 T0(t −
s)BT(s)u0ds ≡ u1(t) + u2(t). For u0 ∈ Zh, we find u1(t) ∈ Zh. Also,

for t > τm, we have u1(t) =

[
S(t)x0

Stx0

]
, where S(t) ≡ e−L0t, which gives
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‖u1(t)‖Z = O(e−lt). Let us look at the expression u2(t). From BT(s)u0 ≡[
h(s)

0

]
, we have ‖h(s)‖Lq ≤ Ke−γ

′s ‖u0‖Z . We find

u2(t) =

∫ t

0

[
S(t− s)h(s)

St−sh(s)

]
ds

which belongs to Z. Using the estimate of h, it is straightforward to show

that ‖u2(t)‖Z = O(e−ηt) (see the proof of proposition B.7.4). This allows to

conclude the proof of the first part.

2. Let us consider

u(t) =

∫ t

−∞
T(t− r)Ps

[
f(r)

0

]
dr.

As Fη(R,Yh) is continuously embedded in C0
η(R,Yh), proposition 4.6.2

shows that u ∈ C0
η(R,Zh) ∩ C1(R,X ) and that u is a classical solution

of (B.21). In order to prove that u ∈ Fη(R,Zh) and the inequality

on |||Kh|||L(Fη(R,Yh),Fη(R,Zh)), we have to modify the estimates in proposi-

tion 4.6.2 although the general plan of the proof is exactly the same. Chang-

ing the norms ‖·‖C0
η(R,·) into ‖·‖Fη(R,·) in the estimates of proposition 4.6.2

is straightforward but lengthy and we shall only show how to do this for

the first one of them, the other being very similar. The inequality we shall

consider is the first that arises in the proof of proposition 4.6.2. We find:∥∥∥∥T(t− r)Ps
[
f(r)

0

]∥∥∥∥
X
≤Me−γ

′(t−r)−ηr ‖f‖Fη(R,Yh) which gives:

‖u(t)‖X ≤M ‖f‖Fη(R,Yh)

∫ t

−∞
e−γ

′(t−r)−ηrdr ≤M ‖f‖Fη(R,Yh)

e−ηt

γ′ − η
.

Following the proof of proposition 4.6.2, we can prove of the second part of

the present proposition.

�



Appendix C

Numerics of delays

C.1 Definitions

Definition C.1.1 (trace-class). A bounded linear operator J over a separable Hilbert

space F is said to be in the trace-class if for some (and hence all) orthonormal

bases (ek)k∈N of F , the sum of positive terms ‖J‖1 :=
∑

k〈(J∗J)1/2 ek, ek〉 is finite.

In this case, the sum
∑

k〈Jek, ek〉 is absolutely convergent and is independent of

the choice of the orthonormal basis. This value is called the trace of J, denoted by

Tr(J).

Proposition C.1.2 (Fredholm determinant). The Fredholm determinant of the per-

turbation of identity by a trace-class operator J satisfies detF (Id+J) =
∏
k

(1+λk(J))

where (λk(J))k is the punctual spectrum of J.

C.2 Normal form computation

C.2.1 The Hopf bifurcation

We have the following normal form coefficients:

Lemma C.2.1. The coefficients are given1 by:
α = πβ1

iωH
cH

β = πβ1
iωH+1
s1

σ2
H

[
s3
2 + σHs

2
2

(
J0

1− σHs1J0
+

(Je−2iωHτH )2n

2(2iωH + 1− σHs1(Je−2iωHτH )2n)

)]
γ = πβ1

iωH+1
s1

σ2
H

[
s3 + σHs

2
2

(
J0

1− σHs1J0
+ J2n

1− σHs1J2n
+

(Je−2iωHτH )0

2iωH + 1− σHs1(Je−2iωHτH )0

)]

Proof. The bifurcation is studied in [Haragus 2010] where it is shown that:
α = 〈φ∗1,R11(φ1) + 2R20(φ1,Ψ00001)〉X
β = 〈φ∗1, 3R30(φ1, φ1, φ1) + 2R20(φ1,Ψ20000) + 2R20(φ1,Ψ11000)〉X
γ = 〈φ∗1, 6R30(φ1, φ2, φ2) + 2R20(φ1,Ψ00110) + 2R20(φ2,Ψ10010) + 2R20(φ2,Ψ10100)〉X

with Rql = 1
q!l!

∂q+l

∂qu∂lc
R. Recall that the expression of Ri0 have been given in

lemma 4.6.1. For example, R01 = ∂cR(0, c) = 0. The equations for the Ψ coeffi-

cients are also given in [Haragus 2010]. They are solved below and we only show

1Recall that (Je−2iωHτH )n ≡
∫
Je−2iωHτH cosn.
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how to solve one of them.

AΨ00001 = −R01 = 0 ⇒ π2Ψ00001 = 0

(2iωH −A)Ψ20000 = R20(φ1, φ1) ⇒ π2Ψ20000 = σ2
Hs2

(Je−2iωHτ )2n

2(2iωH+1−σHs1(Je−2iωHτ )2n)
e2iωHθe2n

AΨ11000 = −2R20(φ1, φ1) ⇒ π2Ψ11000 = σ2
Hs2

−J0
−1+σHs1J0

e0

(2iωH −A)Ψ10100 = 2R20(φ1, φ2) ⇒ π2Ψ10100 = σ2
Hs2

(Je−2iωHτ )0

2iωH+1−σHs1(Je−2iωHτ )0
e2iωHθe0

AΨ10010 = −2R20(φ1, φ2) ⇒ π2Ψ10010 = σ2
Hs2

−J2n

−1+σ2
Hs2J2n

e2n

Ψ00110 = S ·Ψ11000 (reflexion) ⇒ Ψ00110 = Ψ11000

Recall that the Ψijklm belongs to Z = D(A). This is why we only give the second

component of the Ψ coefficients in the above equations. Let us show, for exam-

ple, how to solve the second equation (2iωH − A)Ψ20000 = R20(φ1, φ1). From

(2iωH − d
dθ )π2Ψ20000 = 0, we find that (π2Ψ20000)(θ) = (π1Ψ20000)e2iωHθ. Using

R20(φ1, φ1) =

[ s2
2 (Je−2iωHτ )2ne2n

0

]
, the equation for the first component is:

s2

2
(Je−2iωHτ )2ne2n = (2iωH + 1− σHs1J(2iωH))π1Ψ20000

This convolutional equation shows that Ψ20000 is colinear to e2n which then gives

the solution:

π2Ψ20000 = σ2
Hs2

(Je−2iωHτH )2n

2(2iωH + 1− σHs1(Je−2iωHτ )2n)
e2iωHθe2n

The expressions for β, γ follow easily. The case of α is a bit more different

according to the first remark in section 5.2.2.2. As the varying parameter is c, we

shall rescale the time by c. It is easy to show that the normalisation factor β1 is

the same in the rescaled/not-rescaled case. In this case, the eigenvector en solves:

(iω̃H + cH)en = cHs1σH

∫
J(· − y)e−iω̃H |·−y|πen(y)dy

and we find that ω̃H = cHωH . Then, we find that π1R11φ1 = iωHen which gives

the linear term iωHπβ1(c− cH) in the reduced equation for the rescaled time cHt.

If we go back to the original equation by using ct → t, it gives the linear factor

iωHπβ1
c−cH
cH

. Recall that to the third order, the coefficients β, γ do not depend on

c. This is why we did not use the rescaled time trick for their computation.

�

C.2.2 Fold-Hopf bifurcation

Lemma C.2.2. The Fold-Hopf normal form:{
ż1 = (a1 + b1|z1|2 + c1|z2|2)z1

ż2 = (iωFH + a2 + b2|z2|2 + c2|z1|2)z2
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has the following coefficients:

b1
πβ1

= σ3
FHJn

[
s3
2 + σFHs

2
2

(
J0

1−J0/Jn
+ J2n

2(1−J2n/Jn)

)]
c1
πβ1

= σ3
FHJn

[
s3 + σFHs

2
2

(
J0

1−J0/Jn
+ (Je−iωFHτFH )n

iωFH+1−(Je−iωFHτFH )n/Jn
+ (JeiωFHτFH )n
−iωFH+1−(JeiωFHτFH )n/Jn

)]
b2
πβ2

= (iωFH + 1)Jnσ
3
FH

[
s3
2 + σFHs

2
2

(
J0

1−J0/Jn
+ (Je−2iωFHτFH )0

2(2iωFH+1−(Je−2iωFHτFH )0/Jn)

)]
c2
πβ2

= (iωFH + 1)Jnσ
3
FH

[
s3 + σFHs

2
2

(
J0

1−J0/Jn
+ 2 (Je−iωFHτFH )n

iωFH+1−(Je−iωFHτFH )n/Jn

)]
where J · en ≡ Jnen, σFH = 1

s1Jn
, (Je−iωFHτFH )0 = iωFH+1

σFHs1
= (iωFH + 1)Jn.

Proof.

Let us write the nonlinear change of variable Ψ̃ to bring the delayed neural field

equations to the normal form (5.17). We Taylor expand Ψ̃ as in section 5.2.1:

Ψ̃(v0, µ) =
∑

l1+l2+p1+p2+r>1

zl11 z̄
l2
1 z

p1
2 z̄

p2
2 µ

rΨ̃l1,l2,p1,p2,r, Ψ̃l1,l2,p1,p2,r ∈ Z,

where Ψ̃ satisfies Ψ̃(0, 0) = 0, Dv0Ψ̃(0, 0) = 0. Using the equation (5.9) satisfied

by Ψ̃ and a Maple program similar to the one given in section 5.2.1, we find the

following equations. For convenience, we have indicated, in brackets, the monomials

that are used to find the equation.

−a1φ1 = −AΨ̃1,0,0,0,1 −R0,1(φ1)− 2 R2(φ1, Ψ̃0,0,0,0,1) [z1]

−a2φ2 = (iωFH −A)Ψ̃0,0,1,0,1 −R0,1(φ2)− 2 R2(φ2, Ψ̃0,0,0,0,1) [z2]

−2b1φ1 = −2 LΨ̃2,1,0,0,0 − 4 R2(φ1, Ψ̃1,1,0,0,0)− 4 R2(φ1, Ψ̃2,0,0,0,0)

−6 R3(φ1, φ1, φ1) [z1
2z̄1]

−c2φ2 = (iωFH −A)Ψ̃1,1,1,0,0 − 2R2(Ψ̃0,1,1,0,0, φ1)

−2R2(φ1, Ψ̃1,0,1,0,0)− 2R2(φ2, Ψ̃1,1,0,0,0)− 6R3(φ2, φ1, φ1) [z1z̄1 z2]

−c1φ1 = −2 AΨ̃1,0,1,1,0 − 2 R2(Ψ̃1,0,0,1,0, φ2)

−2 R2(φ2, Ψ̃1,0,1,0,0)− 2 R2(φ1, Ψ̃0,0,1,1,0)− 6 R3(φ2, φ1, φ2) [z2z̄2 z1]

−2 b2 φ2 = 2 (iωFH −A)Ψ̃0,0,2,1,0 − 4 R2(Ψ̃0,0,1,1,0, φ2)− 4 R2(φ2, Ψ̃0,0,2,0,0)

−6 R3(φ2, φ2, φ2) [z̄2 z
2
2 ]

Thus, using the Fredholm alternative in2 X = X (2):

a1 = 〈φ∗1,R0,1(φ1) + 2R2(φ1, Ψ̃0,0,0,0,1)〉X
a2 = 〈φ∗2,R0,1(φ2) + 2R2(φ2, Ψ̃0,0,0,0,1)〉X
b1 = 〈φ∗1, 2 R2(φ1, Ψ̃1,1,0,0,0) + 2R2(φ1, Ψ̃2,0,0,0,0) + 3R3(φ1, φ1, φ1)〉X
c2 = 〈φ∗2, 2R2(Ψ̃0,1,1,0,0, φ1) + 2R2(φ1, Ψ̃1,0,1,0,0) + 2R2(φ2, Ψ̃1,1,0,0,0)

+6R3(φ2, φ1, φ1)〉X
c1 = 〈φ∗1, 2 R2(Ψ̃1,0,0,1,0, φ2) + 2 R2(φ2, Ψ̃1,0,1,0,0) + 2 R2(φ1, Ψ̃0,0,1,1,0)

+6 R3(φ2, φ1, φ2)〉X
b2 = 〈φ∗2, 2 R2(Ψ̃0,0,1,1,0, φ2) + 2 R2(φ2, Ψ̃0,0,2,0,0) + 3 R3(φ2, φ2, φ2)〉X

2Recall that we are working with three spaces X (q),Y(q),Z(q). Solving the equations in X (2)

gives the solutions in X (q) for q ≥ 2.
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where Rql = 1
q!l!

∂q+l

∂qu∂lc
R. In order to find the coefficients of the normal form, we are

led to compute some of the coefficients of Ψ̃. By taking the second order monomials,

we find:

AΨ̃0,0,0,0,1 = 0 ⇒ π2Ψ̃0,0,0,0,1 ∈ Cφ1

AΨ̃1,1,0,0,0 = −2R2(φ1, φ̄1) = −2
σ2
FHs2

2 J0

[
e0

0

]
⇒ π2Ψ̃1,1,0,0,0 = − σ2

FHs2J0

−1+σFHs1J0
e0

+ Cφ1

(iωFH −A)Ψ̃1,0,1,0,0 = 2R2(φ1, φ2) = 2
σ2
FHs2

2 (Je−iωFHτFH )n

[
en
0

]
⇒ π2Ψ̃1,0,1,0,0 =

σ2
FHs2(Je−iωFHτFH )n

iωFH+1−σFHs1(Je−iωFHτFH )n
ene

iωFHθ

+ Cφ2

AΨ̃0,0,1,1,0 = −2R2(φ2, φ̄2) = −2
σ2
FHs2J0

2

[
e0

0

]
⇒ π2Ψ̃0,0,1,1,0 = − σ2

FHs2J0

−1+σFHs1J0
e0

+ Cφ1

(2iωFH −A)Ψ̃0,0,2,0,0 = R2(φ2, φ2) =
σ2
FHs2

2 (Je−2iωFHτFH )0

[
e0

0

]
⇒ π2Ψ̃0,0,2,0,0 =

σ2
FHs2(Je−2iωFHτFH )0

2(2iωFH+1−σFHs1(Je−2iωFHτFH )0)
e2iωFHθe0

AΨ̃2,0,0,0,0 = −R2(φ1, φ1) = −σ2
FHs2

2 J2n

[
e2n

0

]
⇒ π2Ψ̃2,0,0,0,0 = − σ2

FHs2
2(−1+σFHs1J2n)J2ne2n

+ Cφ1

(iωFH + A)Ψ̃1,0,0,1,0 = −2R2(φ1, φ̄2) = −2
σ2
FHs2

2 (JeiωFHτFH )n

[
en
0

]
⇒ π2Ψ̃1,0,0,1,0 =

−σ2
FHs2(JeiωFHτFH )n

iωFH−1+σFHs1(JeiωFHτFH )n
ene
−iωFHθ

+ Cφ2

(iωFH −A)Ψ̃0,1,1,0,0 = 2R2(φ2, φ̄1) = 2
σ2
FHs2

2 (Je−iωFHτFH )−n

[
e−n
0

]
⇒ π2Ψ̃0,1,1,0,0 =

σ2
FHs2(Je−2iωFHτFH )−n

iωFH+1−σFHs1(Je−iωFHτFH )−n
e−ne

iωFHθ

+ Cφ2

Let us just indicate how to solve the third equation (iωFH − A)Ψ̃1,0,1,0,0 =

2R2(φ1, φ2). The second component of the equation: (iωFH − d
dθ )π2Ψ̃1,0,1,0,0 = 0

gives π2Ψ̃1,0,1,0,0 = π1Ψ̃1,0,1,0,0e
iωFHθ. If we insert this solution in the first compo-

nent of the equation, we find:

(iωFH + 1− σFHs1J(iωFH))π1Ψ̃1,0,1,0,0 = 2
σ2
FHs2

2
(Je−iωFHτFH )nen.

The kernel is ker (iωFH + 1− σFHs1J(iωFH)) = Ce0 and we find: π2Ψ̃1,0,1,0,0(θ) =
σ2
FHs2(Je−iωFHτFH )n

iωFH+1−σFHs1(Je−iωFHτFH )n
ene

iωFHθ + Ce0e
iωFH t. Using the previous formulas and
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J · en ≡ Jnen, σFH = 1
s1Jn

, (Je−iωFHτFH )0 = iωFH+1
σFHs1

= (iωFH + 1)Jn, it is staight-

forward to obtain the lemma. �

C.2.3 Hopf-Hopf normal form

Lemma C.2.3. The Hopf-Hopf normal form
ż0 = z0

(
iω0 + a0 + b0|z0|2 + c0|z1|2 + d0|z2|2

)
ż1 = z1

(
iω1 + a1 + b1|z0|2 + c1|z1|2 + d1|z2|2

)
ż2 = z2

(
iω1 + a1 + b1|z0|2 + d1|z1|2 + c1|z2|2

) (C.1)

has the following coefficients:

b0/πβ0(Je−iω0τ )0 =
σ3
FHs3

2 + σ4
FHs

2
2

[
J0

1−σFHs1J0
+ (Je−2iω0τ )0

2(2iω0+1−σFHs1(Je−2iω0τ )0)

]
c0/πβ0(Je−iω0τ )0 = σ3

FHs3 + σ4
FHs

2
2[

(Je−i(ω0−ω1)τ )n
i(ω0−ω1)+1−σFHs1(Je−i(ω0−ω1)τ )n

+ (Je−i(ω0+ω1)τ )n
i(ω0+ω1)+1−σFHs1(Je−i(ω0+ω1)τ )n

+ J0
1−σFHs1J0

]
d0 = c0

b1/πβ1(Je−iω1τ )n = σ3
FHs3 + σ4

FHs
2
2[

(Je−i(ω1−ω0)τ )n
i(ω1−ω0)+1−σFHs1(Je−i(ω1−ω0)τ )n

+ (Je−i(ω0+ω1)τ )n
i(ω0+ω1)+1−σFHs1(Je−i(ω0+ω1)τ )n

+ J0
1−σFHs1J0

]
c1/πβ1(Je−iω1τ )n =

σ3
FHs3

2 + σ4
FHs

2
2

[
J0

1−σFHs1J0
+ (Je−2iω1τ )2n

2(2iω1+1−σFHs1(Je−2iω1τ )2n)

]
d1/πβ1(Je−iω1τ )n = σ3

FHs3 + σ4
FHs

2
2

[
J2n

1−σFHs1J2n
+ (Je−2iω1τ )0

2iω1+1−σFHs1(Je−2iω1τ )0
+ J0

1−σFHs1J0

]
Proof. The normal form for the Hopf-Hopf bifurcation between the 0-mode and

the n-mode in the non-resonant case where ω0
ωn

/∈ Q is given in [Golubitsky 1988]:
ż0 = z0

(
iω0 + a0 + b0|z0|2 + c0|z1|2 + d0|z2|2

)
ż1 = z1

(
iω1 + a1 + b1|z0|2 + c1|z1|2 + d1|z2|2

)
ż2 = z2

(
iω1 + a1 + b1|z0|2 + d1|z1|2 + c1|z2|2

)
Recall that the eigenvalue iω0 has the eigenvector φ0 =

[
e0

eiω0θe0

]
and that iω1

has the eigenvectors φ1 =

[
en

eiω1θen

]
, φ2 =

[
e−n

eiω1θe−n

]
. Let us write the nonlinear

change of variable Ψ̃ to bring the delayed neural field equations to the normal form

(C.1). We Taylor expand Ψ̃ as in section 5.2.1:

Ψ̃(v0, µ) =
∑

k1+k2+l1+l2+p1+p2+r>1

zk1
0 z̄k2

0 zl11 z̄
l2
1 z

p1
2 z̄

p2
2 µ

rΨ̃k1,k2,l1,l2,p1,p2,r, Ψ̃k1,k2,l1,l2,p1,p2,r ∈ Z,
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where Ψ̃ satisfies Ψ̃(0, 0) = 0, Dv0Ψ̃(0, 0) = 0. Using the equation (5.9) satisfied by

Ψ̃ and a Maple program similar to the one given in section 5.2.1, we find the next

equations.

0 = 2(iω0 −A)Ψ̃2,1,0,0,0,0,0 + 2b0φ0 − 4R2(Ψ̃1,1,0,0,0,0,0, φ0)− 4R2(φ0, Ψ̃2,0,0,0,0,0,0)

−6R3(φ0, φ0, φ0)

0 = (iω0 −A)Ψ̃1,0,1,1,0,0,0 + c0φ0 − 2R2(Ψ̃1,0,0,1,0,0,0, φ1)− 2R2(φ1, Ψ̃1,0,1,0,0,0,0)

−2R2(φ0, Ψ̃0,0,1,1,0,0,0)− 6R3(φ0, φ1, φ1)

0 = (iω0 −A)Ψ̃1,0,0,0,1,1,0 + d0φ0 − 2R2(Ψ̃1,0,0,0,0,1,0, φ2)− 2R2(φ2, Ψ̃1,0,0,0,1,0,0)

−2R2(φ0, Ψ̃0,0,0,0,1,1,0)− 6R3(φ0, φ2, φ2)

0 = (iω1 −A)Ψ̃1,1,1,0,0,0,0 + b1φ1 − 2R2(Ψ̃0,1,1,0,0,0,0, φ0)− 2R2(φ0, Ψ̃1,0,1,0,0,0,0)

−2R2(φ1, Ψ̃1,1,0,0,0,0,0)− 6R3(φ1, φ0, φ0)

0 = 2(iω1 −A)Ψ̃0,0,2,1,0,0,0 + 2c1φ1 − 4R2(Ψ̃0,0,1,1,0,0,0, φ1)− 4R2(φ1, Ψ̃0,0,2,0,0,0,0)

−6R3(φ1, φ1, φ1)

0 = (iω1 −A)Ψ̃0,0,1,0,1,1,0 + d1φ1 − 2R2(Ψ̃0,0,1,0,0,1,0, φ2)− 2R2(φ2, Ψ̃0,0,1,0,1,0,0)

−2R2(φ1, Ψ̃0,0,0,0,1,1,0)− 6R3(φ1, φ2, φ2)

0 = (iω1 −A)Ψ̃1,1,0,0,1,0,0 + b1φ2 − 2R2(Ψ̃0,1,0,0,1,0,0, φ0)− 2R2(φ0, Ψ̃1,0,0,0,1,0,0)

−2R2(φ2, Ψ̃1,1,0,0,0,0,0)− 6R3(φ2, φ0, φ0)

0 = (iω1 −A)Ψ̃0,0,1,1,1,0,0 + d1φ2 − 2R2(Ψ̃0,0,0,1,1,0,0, φ1)− 2R2(φ1, Ψ̃0,0,1,0,1,0,0)

−2R2(φ2, Ψ̃0,0,1,1,0,0,0)− 6R3(φ2, φ1, φ1)

0 = 2(iω1 −A)Ψ̃0,0,0,0,2,1,0 + 2c1φ2 − 4R2(Ψ̃0,0,0,0,1,1,0, φ2)

−4R2(φ2, Ψ̃0,0,0,0,2,0,0)− 6R3(φ2, φ2, φ2)

Notice that the equations for b1, c1, d1 are redundent: because of the symmetries,

they give the same result. Using the Fredholm alternative in3 X = X (2), we find:

2b0 = 〈ψ0, 4R2(Ψ̃1,1,0,0,0,0,0, φ0) + 4R2(φ0, Ψ̃2,0,0,0,0,0,0) + 6R3(φ0, φ0, φ0)〉X
c0 = 〈ψ0, 2R2(Ψ̃1,0,0,1,0,0,0, φ1) + 2R2(φ1, Ψ̃1,0,1,0,0,0,0) + 2R2(φ0, Ψ̃0,0,1,1,0,0,0)

+6R3(φ0, φ1, φ1)〉X
d0 = 〈ψ0, 2R2(Ψ̃1,0,0,0,0,1,0, φ2) + 2R2(φ2, Ψ̃1,0,0,0,1,0,0) + 2R2(φ0, Ψ̃0,0,0,0,1,1,0)

+6R3(φ0, φ2, φ2)〉X
b1 = 〈ψ1, 2R2(Ψ̃0,1,1,0,0,0,0, φ0) + 2R2(φ0, Ψ̃1,0,1,0,0,0,0) + 2R2(φ1, Ψ̃1,1,0,0,0,0,0)

+6R3(φ1, φ0, φ0)〉X
2c1 = 〈ψ1, 4R2(Ψ̃0,0,1,1,0,0,0, φ1) + 4R2(φ1, Ψ̃0,0,2,0,0,0,0) + 6R3(φ1, φ1, φ1)〉X
d1 = 〈ψ1, 2R2(Ψ̃0,0,1,0,0,1,0, φ2) + 2R2(φ2, Ψ̃0,0,1,0,1,0,0) + 2R2(φ1, Ψ̃0,0,0,0,1,1,0)

+6R3(φ1, φ2, φ2)〉X

where Rql = 1
q!l!

∂q+l

∂qu∂lc
R. In order to find the coefficients of the normal form,

we are led to compute some of the coefficients of Ψ̃. By taking the second order

terms, we find the next equations and using the fact that φ0 =

[
e0

eiω0φ1θe0

]
, φ1 =

3Recall that we are working with three spaces X (q),Y(q),Z(q). Solving the equations in X (2)

gives the solutions in X (q) for q ≥ 2.
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[
en

eiω1θen

]
, φ2 =

[
e−n

eiω1θe−n

]
:

AΨ̃1100000 = −2R2(φ0, φ0)

= −2
σ2
HHs2

2 J0

[
e0

0

]
⇒ π2Ψ̃1100000 = − σ2

HHs2J0

−1+σFHs1J0
e0

(4iω0 − 2A)Ψ̃2000000 = 2R2(φ0, φ0)

= 2
σ2
HHs2

2 (Je−2iω0τ )0

[
e0

0

]
⇒ π2Ψ̃2000000 =

σ2
HHs2(Je−2iω0τ )0e2iω0θ

2(2iω0+1−σFHs1(Je−2iω0τ )0)
e0

(iω0 − iω1 −A)Ψ̃1001000 = 2R2(φ1, φ0)

= σ2
HHs2(Je−i(ω0−ω1)τ )n

[
e−n
0

]
⇒ π2Ψ̃1001000 =

σ2
HHs2(Je−i(ω0−ω1)τ )nei(ω0−ω1)θ

i(ω0−ω1)+1−σFHs1(Je−i(ω0−ω1)τ )n
e−n

(iω1 + iω0 −A)Ψ̃1010000 = 2R2(φ1, φ0)

= 2
σ2
HHs2

2 (Je−i(ω0+ω1)τ )n

[
en
0

]
⇒ π2Ψ̃1010000 =

σ2
HHs2(Je−i(ω0+ω1)τ )nei(ω0+ω1)θ

i(ω0+ω1)+1−σFHs1(Je−i(ω0+ω1)τ )n
en

AΨ̃0011000 = −2R2(φ1, φ1)

= −2
σ2
HHs2

2 J0

[
e0

0

]
⇒ π2Ψ̃0011000 = − σ2

HHs2J0

−1+σFHs1J0
e0

(−iω1 + iω0 −A)Ψ̃1000010 = 2R2(φ2, φ0)

= 2
σ2
HHs2

2 (Je−i(ω0−ω1)τ )n

[
en
0

]
⇒ π2Ψ̃1000010 =

σ2
HHs2(Je−i(ω0−ω1)τ )nei(ω0−ω1)θ

i(ω0−ω1)+1−σFHs1(Je−i(ω0−ω1)τ )n
en

(iω1 + iω0 −A)Ψ̃1000100 = 2R2(φ2, φ0)

= 2
σ2
HHs2

2 (Je−i(ω0+ω1)τ )n

[
e−n
0

]
⇒ π2Ψ̃1000100 =

σ2
HHs2(Je−i(ω0+ω1)τ )nei(ω0+ω1)θ

i(ω0+ω1)+1−σFHs1(Je−i(ω0+ω1)τ )n
e−n

AΨ̃0000110 = −2R2(φ2, φ2)

= −2
σ2
HHs2

2 J0

[
e0

0

]
⇒ π2Ψ̃0000110 = − σ2

HHs2J0

−1+σFHs1J0
e0

(iω1 − iω0 −A)Ψ̃0110000 = 2R2(φ1, φ0)

= 2
σ2
HHs2

2 (Je−i(ω1−ω0)τ )n

[
en
0

]
⇒ π2Ψ̃0110000 =

σ2
HHs2(Je−i(ω1−ω0)τ )nei(ω1−ω0)θ

i(ω1−ω0)+1−σFHs1(Je−i(ω1−ω0)τ )n
en

(4iω1 − 2A)Ψ̃0020000 = 2R2(φ1, φ1)

= 2
σ2
HHs2

2 (Je−2iω1τ )2n

[
e2n

0

]
⇒ π2Ψ̃0020000 =

σ2
HHs2(Je−2iω1τ )2ne2iω1θ

2(2iω1+1−σFHs1(Je−2iω1τ )2n)
e2n
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AΨ̃0010010 = −2R2(φ2, φ1)

= −2
σ2
HHs2

2 J2n

[
e2n

0

]
⇒ π2Ψ0010010 = − σ2

HHs2J2n

−1+σFHs1J2n
e2n

(2iω1 −A)Ψ̃0010100 = 2R2(φ2, φ1)

= 2
σ2
HHs2

2 (Je−2iω1τ )0

[
e0

0

]
⇒ π2Ψ̃0010100 =

σ2
HHs2(Je−2iω1τ )0e2iω1θ

2iω1+1−σFHs1(Je−2iω1τ )0
e0

which gives the lemma. �



Appendix D

The Deco-Roland model of long

range apparant motion in the

ferret

D.1 Eigenvalues and linearized equation

We assume that the stationary activity is (A(1), A(2)) = (0, 0). The jacobian of (7.1)

is given by:

L =
1

τ

[
−Id + S′(0)J (1) S′(0)f bW

S′(0)W −Id + S′(0)J (2)

]
. (D.1)

Because the connectivities functions J (1), J (2),W are homogeneous, the eigenvectors

of L have the form:

[
v1
n cosn
v2
p cosp

]
. Then necessarilly, we find that n = p. Hence, looking

for the eigenvalues amounts to diagonalize the following matrices:

Ln =
1

τ

[
−1 + S′(0)Ĵ

(1)
n S′(0)fbŴn

S′(0)Ŵn −1 + S′(0)Ĵ
(2)
n

]
. (D.2)

where, for example Ĵ
(1)
n =

∫ π
−π J

(1)(x)cos(nx)dx. Finally, we have:

Σ(L) =
⋃
n

{
βn,± ≡

1

τ

(
−1 + S′(0)

Ĵ
(1)
n + Ĵ

(2)
n

2
± S′(0)

2

√
(Ĵ

(1)
n − Ĵ (2)

n )2 + 4f bŴ 2
n

)}

Remark 40.We have: βn,− < −1 + S′(0)Ĵ
(2)
n < −1 + S′(0)Ĵ

(1)
n < βn,+.

D.2 Computation of the bifurcation curves

Lemma D.2.1.The pitchfork bifurcation curves are located on parabolas (fb, J2)

f cb =
1

Ŵ 2
ns

2
1

[
1− S′(0)Ĵ (1)

n

] [
1− S′(0)Ĵ (2)

n

]
A condition to slow down the dynamical system, is to be close to this bifurcation

curve, i.e.:

f ≤ fc
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in the ferret

Proof. First, we compute the Fourier coefficients and give the approximations

from the parameters used in the model:

Ĵ (i)
n =

∫ π

−π
J (i) cosn =

 −4π2 J0
λ + 4πJ2(1− e−

π
λi ) ≈ −4π2 J0

λi
+ 4πJ2, n = 0

4πJ2e
− π
λi

1+n2λ2
i

(
e
π
λi + (−1)n+1

)
≈ 4πJ2

1+n2λ2
i
< 4πJ2, n > 0

(D.3)

and

Ŵn =

∫ π

−π
W cosn =

{
4π(1− e−

π
α ) ≈ 4π, n = 0

4πe−
π
α

1+n2α2

(
e
π
α + (−1)n+1

)
≈ 4π

1+n2α2 < 4π, n > 0
(D.4)

Notice that e−
π
α ≈ 4e−4 and Ŵn > 0, idem for Ĵ

(i)
n , n > 0, which justifies the

above approximations. We look for a relashionship such that βn = 0. It gives:

fb =
1

Ŵ 2
ns

2
1

[
1− S′(0)Ĵ (1)

n

] [
1− S′(0)Ĵ (2)

n

]
which is a parabola in (fb, J2). On each parabola Pn, the smallest value of J2 such

that fb = 0 is given by J2 = 1+n2λ2

4πS′(0) ≥
1+λ2

4πS′(0) , n > 0 and J2 =
1+

4π2S′(0)

λ′ J0

4πS′(0) otherwise.

Hence, there are
√

4π2S′(0)
λ′λ2 J0 ≈ 6 parabolas ’before’ P0. �

D.3 Effect of the intra-cortical propagation delays

From appendix 7.4, we need to compute :

1

vpropa

π∫
−π

J (1)(x)|x| cos(x)dy +
1

vpropa

π∫
−π

J (2)(x)|x| cos(x)dy

By neglecting e−π/λ, we find:

D(λ1) =

π∫
−π

J (1)(x)|x| cos(x)dy ≈ 4π
(2J0 − J2)λ4

1 + (4J0 + J2)λ2
1 + 2J0

λ1(λ4
1 + 2λ2

1 + 1)

It is positive for J0 = 0.2, J2 = 0.9 and λ1 ∈ (0, 1). The same is true for D(λ2).

D.4 Study of the Hopf bifurcation curves for constant de-

lays

From chapter B, we need to find the characteristic values s = iω ∈ iR such that

the linearized operator

L(s) =

[
−τs− 1 + S′(0)J (1) S′(0)f bWe−sτ2

S′(0)We−sτ1 −τs− 1 + S′(0)J (2)

]
(D.5)
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has a nontrivial kernel. We find that the null vector has to be

[
cosn
cosn

]
(or the same

but with cos → sin). Hence, we find the following equations for the characteristic

values

0 = det

[
−s− 1 + s1Ĵ

(1)
n s1f

bŴne
−sτ2/τ

s1Ŵne
−sτ1/τ −s− 1 + s1Ĵ

(2)
n

]

≡ det

[
−s− a s1f

bŴne
−sτ2/τ

s1Ŵne
−sτ1/τ −s− b

]
= (s+ a)(s+ b)−Ae−sB

(D.6)

with s1 = S′(0), a = 1−s1Ĵ
(1)
n > 0, b = 1−s1Ĵ

(2)
n > 0, A = s2

1fbŴ
2
n > 0, B = τ1+τ2

τ .

We find a purely imaginary characteristic value s = iω i.f.f.{
A cos(ωD) = −ω2 + ab

A sin(ωD) = ω(a+ b)
(D.7)

which give 2ω2 = −(a2 + b2)±
√

(a2 − b2)2 + 4A2. As ω2 > 0, it forces

2ω2 = −(a2 + b2) +
√

(a2 − b2)2 + 4A2 > 0.

This is possible exists i.f.f. (a2 + b2)2 < (a2 − b2)2 + 4A2 i.e. |ab| < A. Notice that

the pitchfork bifurcation curves read:

An = anbn

Hence, above each pitchfork curve Pn, there is a Hopf bifurcation for some delay

critical B which is infinite on the parabola and decreases as we move away from

the parabola. Hence, no oscillatory patterns can be found in the parameter regime

of the model.

D.5 Study of the apparent speed/contrast relationship

Close to the pitchfork bifurcation point (Jbif2 , f bbif ), the dynamics is well approxi-

mated by (A(1)(t), A(2)(t)) ≈ z1(t)

[
cos

cos

]
+ z2(t)

[
sin

sin

]
. If we write εβeiθ, the pro-

jection of the external input on Span

([
cos

cos

]
,

[
sin

sin

])
where ε is the contrast, we

find ż/β2 = β1z + χ3|z|2z + εIeiθ where χ3 can be computed analogously as in sec-

tion E.5, β2 = 1+S′(0)Ŵ1(fbτ2 +τ1) from section 5.2.2.1 and β1 =
J2−Jbif2

Jbif2

+
fb−fbbif
fbbif

.

A solution z = ρeiφ satisfies:{
τ ρ̇/β2 = β1ρ+ χ3ρ

3 + εβ cos(θ − φ)

τρφ̇/β2 = εβ sin(θ − φ)
(D.8)

Then speed of the apparent motion, for which ρ is almost constant, is given by:

ω0 =
εβ

β2τρf
≈ εβ

(1 + S′(0)Ŵ1(fbτ2 + τ1))(
√

β1

χ3
+ ε/2β1)

≈ εβ

(1 + 1 + S′(0)Ŵ1(fbτ2 + τ1))
√

β1

χ3

.





Appendix E

The Ring Model

E.1 Numerical computation of the invariant functions

Let us say a few words about the practical computation of the invariant functions

B̃0, a, b, c, d. As we are interested in the tuning curves, using the estimates in

prop A.6.2, we obtain that the L2-norm
∥∥V f

∥∥
2

of the tuning curve is upperbounded

by 14 for the connectivity function shown in figure 9.5. The relation
∥∥V f

∥∥2

2
=

π
(
v2

0 + J1
2 π1 + J2

2 π2

)
yields the estimation:∥∥∥V f

∥∥∥
∞
≤ |v0|+

√
J1(|v(1)

1 |+|v
(2)
1 |)+

√
|J2|(|v(1)

2 |+|v
(2)
2 |)

Cauchy−Schwarz
≤ 3√

π

∥∥∥V f
∥∥∥

2
≤ 6.75

for the same values of the parameters. The next step is to approximate the sigmoid

S by a polynomial P on some interval [−α, α] where the value of α is chosen so that

σ
∥∥V f

∥∥
∞ ≤ α. As we need to observe the first two Pitchfork bifurcations, reached

for the values σ1 < σ2 of σ, see remark E.2, we need at least σ = σ2 and, being

a little bit conservative, we end up computing the solutions for σ ∈ [0, 1.6]. This

in turn requires α ≈ 11. Note that the more accurate the approximation of S, the

higher the degree of P with the consequence that some numerical instabilities may

develop since this implies raising small numbers to high powers.

P is then expressed in the basis of the Chebychev polynomials as P =
∑

i αiTi.

The reason for this is that the Chebychev polynomials having rational coefficients,

we can use, for example, the Groebner basis package of the symbolic computation

package Maple to express the invariants B0, B1, B2 as functions of (v0, ~π). For

example, we have:

B0 = ε0
π

π
2∫
−π

2

S
[
σv0 + σ<

(√
J1z1e

−2piy +
√
J1z2e

−4piy
)]
dy

≈ ε0
π

π
2∫
−π

2

P
[
σv0 + σ<

(√
J1z1e

−2piy +
√
J1z2e

−4piy
)]
dy

= ε0
π

∑
i αi

π
2∫
−π

2

Ti
[
σv0 + σ<

(√
J1z1e

−2piy +
√
J1z2e

−4piy
)]
dy

Maple
= ε0

π

∑
i αiT̃i(v0, ~π)

The computation of T̃i(v0, ~π) =

π
2∫
−π

2

Ti
[
σv0 + σ<

(√
J1z1e

−2piy +
√
J1z2e

−4piy
)]
dy is

done automatically by the Groebner basis package but requires that the coefficients
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of the polynomial Ti be rational, not real. This justifies the Chebychev approxima-

tion. For α = 14 and an approximation error of 0.01 (‖S − P‖∞,[−14,14] < 0.01),

it yields a polynomials P of degree 19. One important advantage of this method

is that it does not require the vector (v0, ~π) to be on the Orbit Space to do the

computations, i.e. we can compute B̃0, a, b, c, d even for values of (v0, ~π) that make

no sense, e.g. π1 < 0, and then project the result on the Orbit Space. Note that

the method is coherent since the results shown in figures 9.5 and 9.6 obtained by

numerical continuation do satisfy σ
∥∥V f

∥∥
∞ < 11, that is, are consistent with the

numerical approximation.

E.2 Numerical computation of the solutions of the nonlin-

ear equations in the case N = 2

In order to solve the nonlinear equations (9.14) for the tuning curves, we apply

the strategy of section 3.3. The idea is to use a homotopy to solve the problem:

we introduce a new parameter µ which translates S, i.e. S(µ)
def
= S0 + µS(0).

Thus S(0) = S0 and S(1) = S. This way we change the nonlinearity in (9.8)

in order to find the tuning curves analytically (notice that this translation only

affects the first equation of (9.8)). Indeed, when the nonlinearity is the centered

sigmoid S0 we obtain the trivial solution V f = 0 and we can also compute the

values of the nonlinear gain σ where the Pitchfork bifurcations occur. We can then

numerically continue this trivial solution with respect to the parameters (σ, µ) to

find the solutions of the equations with the “correct” nonlinearity, namely S. We

then simply take a slice of the output of the continuation program for µ = 1 and

obtain the dependency of the solutions w.r.t. the nonlinear gain σ. This approach,

though numerically intensive, is very convenient because it automatically gives the

bifurcated branches. It also allows to compute some non-connected branches of

solutions. This strategy relies on the library TRILINOS, see the acknowledgements

below.

E.3 Existence of the Pitchfork bifurcation

In this appendix we prove that there is always a Pitchfork bifurcation for some

nonlinear gain σ = σ0.

Lemma E.3.1.For every pair (T, J1), there exists a unique pair (σ0 > 0, vf0 ) such

that

(E) :

{
vf0 = ε0S(σ0v

f
0 )

1 = σ0S
′(σ0v

f
0 )J1

2

when ε0 = −1.

Proof. We do the case ε0 = −1. As S′ = S(1−S), the second equation (E.2)

becomes : 1 = σJ1
2 S(1−S)

using(E.1)
= σJ1

2 (−U)(1+U) where U
def
= vf0 . This quadratic
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equation in U has real solutions if and only if σJ1 ≥ 8, and they are given by

U±(σ) =
−1±

√
1− 8

σJ1

2

We still have to verify that (E.1) is satisfied for at least one of these solutions.

For example, for U+, we obtain the equation in (σ, J1, T ) : U+(σ) =

−S(σU+(σ) − T ). Notice that σ → U+(σ) is increasing from −1
2 to 0− and that

σ → σU+(σ) is increasing from − 4
J1

to − 2
J1

. Hence σ → −S(σU+−T ) is decreasing

from −S(− 4
J1
−T ) to −S(− 2

J1
−T ) < 0. We conclude that there is always a unique

intersection point σ0 between these two curves. By using similar arguments, the

equation U− = −S(σU− − T ) has no solution in σ.

�

E.4 The width of the tuning curves

Lemma E.4.1.The width δc at half-height of the tuning curve is given by

cos(δc) =
−1

4b

(
4 a− T + ln

(
e−4 a+4 b+T + e−4 a−4 b+T + 2 e−8 a+2T

2 + e−4 a+4 b+T + e−4 a−4 b+T

))
where a = σvf0 and b = σ

√
J1ρ

f .

Proof. From the definition of the width δc at half-height,. we find:

S(4(a+ b)− T )− S(4(a− b)− T ) = 2 [S(4(a+ cos(δc)b)− T )− S(4(a− b)− T )] .

Using some algebra, the equation S(4(a + b) − T ) + S(4(a − b) − T ) = 2S(4(a +

cos(δc)b)− T ) yields the result. �

E.5 Computation of the coefficient χ3

Let us call σ0 the bifurcation point solution of:{
vf0 = ε0S(σvf0 )

1 = σS′(σvf0 )J1
2

By symmetry, this (static) bifurcation is a Pitchfork bifurcation. The kernel is

written:

X0 = Span(cos2, sin2) = ker Lσ0

where Lσ ≡ −Id+σS′(σv(σ)f )J . The reduced equation obtained with the Equivari-

ant Lyapunov-Schmidt reduction (see [Golubitsky 1984]) is also equivariant. Using

the coordinates U0 = A cos2 +B sin2 with A,B ∈ R, the reduced equation is given

by (see [Golubitsky 1984, Haragus 2010]):

0 =
(
β(σ) + χ3(A2 +B2)

)
A

0 =
(
β(σ) + χ3(A2 +B2)

)
B.
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Let us write the equation to solve 0 = F(U;σ) ≡ −U + J ·S(σvf0 +σU) + vf0 . From

[Golubitsky 1984][chapter VII.1.d], we have the following expression:

6χ3 = 〈 2
π

cos2, D
3F(0;σ0)[cos2, cos2, cos2]− 3D3F(0;σ0)[cos2,W]〉2 (E.1)

with

Lσ0W = (Id−PX0)D2F(0;σ0)[cos2, cos2].

From D3F(0;σ0)[cos2, cos2, cos2] = S(3)σ3
0J · cos2

2 where we have written S(3) for

S(3)(σ0v
f
0 ), we find:

〈 2
π

cos2, D
3F(0;σ0)[cos2, cos2, cos2]〉2 =

3

8
S(3)σ3

0J1.

E.5.1 Computation of W

From D2F(0;σ0)[cos2, cos2] = S′′σ2
0J ·cos2

2 where we have written S′′ for S(2)(σ0v
f
0 ),

we find:

D2F(0;σ0)[cos2, cos2] =
S′′σ2

0

8

(
J0 +

J2

2
cos4

)
.

By using a Fourier expansion of W, we find:

W =

(
J0

−1 + S′σ0J0
+

J2

2(−1 + S′σ0J2/2)
cos4

)
S′′σ2

0

2

where we have written S′ for S(1)(σ0v
f
0 ). Using the equality 1 = σ0S

′ J1
2 , we have:

W =

(
J0

−1 + 2J0/J1
+

J2

2(−1 + J2/J1)
cos4

)
S′′σ2

0

2

E.5.2 Finding χ3

Using the above expressions of W and D2F, we find:

χ3 = σ3
0

(
S(3)

2
+ σ0S

′′2
[

J0

1− 2J0/J1
+

J2/2

2(1− J2/J1)

])
J1

8

If we simplify this expression for the case J = ε0 + J1 cos2, J1 > 0 of section 9.3.1

and using the coordinates U0 =
√
J1v1 cos2 +

√
J1v2 sin2, we find:

χ3 = σ3
0

(
S(3)

2
+ σ0S

′′2 ε0

1− 2ε0/J1

)
J2

1

8
.
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E.6 Stability of the tuning curves with external input turned

on

Consider a nonlinear gain σ high enough to generate the O(2)-Pitchfork bifurcation.

If we turn on the external input, for small contrasts, we can derive an equation on

the center manifold as (3.20). We find:

ż = z

(
σ − σ0

σ0
+ χ3|z|2

)
+ ε

β√
|J1|
≡ z

(
σ̃ + χ3|z|2

)
+ ε

β√
|J1|

(E.2)

which shows that z is real. We assume here that χ3 < 0. When ε = 0, there is a

circle of solutions given by |z0|2 = σ̃
−χ3

in addition to the untuned solution z = 0.

Now if ε > 0 is small, we obtain three solutions, two arising from the previous

circle. They are given, up to the first order in ε, by: zf± = ±
√

σ̃
−χ3

+ ε
2σ̃

β√
|J1|
∈ R.

Computing the Jacobian of the system (E.2) in real coordinates at the two nontrivial

stationary solutions zf±, we find a diagonal matrix with diagonal elements:

Jac(zf±) =

{
−2σ̃ ∓ 3

ε

|z0|
β√
|J1|

,∓ ε

|z0|
β√
|J1|

}

Hence zf+ is stable and zf− is unstable.





Appendix F

A model of V1 without

feature-based connectivity

F.1 Lemmas for the bifurcation points

Lemma F.1.1. Let v0 be the stationary membrane potential solution of v0 = Ĵ0S(v0)

with Ĵ0 < 0. Then there is a unique bifurcation point σ0 for the wavevector kc with

positive eigenvalue Ĵkc. Moreover, σ0 is a decreasing function of Ĵkc.

Proof. The bifurcation point reads{
v0 = −S(σ0v0)

1 = σ0ĴkcDS(σ0v0)
(F.1)

were we have supposed that Ĵ0 = −1 (a rescaling in v0 allows this assumption). We

proved in appendix E.3 that these equations have a unique solution (v0, σ0). Let

us look at σ′0 ≡ d
dĴkc

σ0. We write v′0 ≡ d
dĴkc

v0, s1 = DS(σv0) and s2 = D2S(σv0).

Then taking the derivative of (F.1) Top:

v′0 = −(σ0v0)′s1 = −(σ′0v0 + σ0v
′
0)s1 (F.2)

which gives

v′0 = − σ′0v0s1

1 + σ0s1

and

(σ0v0)′ = σ′0v0 + σ0v
′
0 = σ′0v0 − σ0

σ′0v0s1

1 + σ0s1
= σ′0v0

1

1 + σ0s1
.

Also, from the derivative of (F.1) Bottom, −σ′0s1Ĵkc = σ0s1 +σ0(σ0v0)′s2Ĵkc which

gives:

−σ′0Ĵkc
(
s1 +

σ0v0s2

1 + σ0s1

)
= σ0s1 =

1

Ĵkc
> 0.

Hence the sign of −σ′0 is the sign of s1 + σ0v0s2
1+σ0s1

. But:

s1 + s2v0σ0
1+σ0s1

= 1
1+σ0s1

[
s1 + σ0s

2
1

(
1 + s2

s21
v0

)]
= 1

1+σ0s1

[
s1 + σ0s

2
1

(
1− s2

s21
S(σ0v0)

)]
= 1

1+σ0s1

[
s1 + σ0s

2
1e
σ0v0−T

]
> 0

(F.3)

This concludes the proof. �
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Lemma F.1.2. Let v0 be the stationary membrane potential solution of v0 =

Ĵ0S(v0) with Ĵ0 < 0. Then, the v0 is unique, negative and the function σ →
v0(σ)DS(v0(σ)) is increasing.

Proof. The activity is solution of v0 = Ĵ0S(v0) with Ĵ0 < 0. When can, up to a

rescaling of σ, v0 assume that Ĵ0 = −1. Hence we look at the equation v0 = −S(σv0)

which have only one solution v0 for each σ. Write s1 = DS(σv0) and s2 = D2S(σv0):

d

dσ
(σs1) = s1 + σs′1 = s1 + σ(σv0)′s2 (F.4)

Also (σv0)′ = v0 + σv′0 = v0 − σ(σv0)′s1 and (σv0)′ = v0
1+σs1

which gives

(σs1)′ = s1 + v0
s2σ

1+σs1
= 1

1+σs1

[
s1 + σs2

1

(
1 + s2

s21
v0

)]
= 1

1+σs1

[
s1 + σs2

1

(
1− s2

s21
S(v0)

)]
= 1

1+σs1

[
s1 + σs2

1e
σv0−T

]
> 0

(F.5)

This concludes the proof. �

F.2 The case of the long-range connections

Lemma F.2.1. The long-range connections features the following invariances. For

the PO maps ±θ1 + θ0:

JLR(Rφx, Rφy) = JLR(x,y), φ ∈ π
4
Z

Proof. We start by the PO map θ1 + θ0 using (11.8):

JLR(R2φx, R2φy) = J0

(
χ,R−2θ(R2φx)R2φ(x− y)

)
= J0

(
χ,R−2θ(x)−2φR2φ(x− y)

)
= J0

(
χ,R−2θ(x)(x− y)

)
= JLR(x,y).

For the PO map −θ1 + θ0 using (11.9):

JLR(R2φx, R2φy) = J0

(
χ,R−2θ(R2φx)R2φ(x− y)

)
= J0

(
χ,R−2θ(x)+2φR2φ(x− y)

)
= J0

(
χ,R4φR−2θ(x)(x− y)

)
= JLR(x,y)

because J0 is even. �

Lemma F.2.2. For the maps ±θ1 + θ0, we have:

J
(LR)
1 = J

(LR)
2 ∈ R.

Proof. We first note that Gσθ(θ(x) − θ(y)) is invariant by Rπ, Rπ/2. The fact

that JLR is invariant by Rπ implies that the coefficients are real numbers. The

facts that JLR is invariant by Rπ/2 (which is the map (x, y) → (−y, x)) and that

the coefficients are real imply that the two coefficients are equal. �
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F.3 Computation of the D4-Pitchfork normal form

Lemma F.3.1.The D4-Pitchfork normal form: ż1 = z1

(
σ−σ0
σ0

+ β|z1|2 + γ|z2|2
)

ż2 = z2

(
σ−σ0
σ0

+ β|z2|2 + γ|z1|2
) (F.6)

has the following coefficients:

β/σ3
0Ĵkc = σ0s

2
2

[
Ĵ0

1−Ĵ0/Jkc

+
Ĵ2kc

2(1−Ĵ2kc/Ĵkc )

]
+ s3/2

γ/σ3
0Ĵkc = σ0s

2
2

[
Ĵ0

1−Ĵ0/Jkc

+ 2
Ĵ(1,1)

1−Ĵ(1,1)/Ĵkc

]
+ s3

(F.7)

and s2 ≡ S(2)(v0), s3 ≡ S(3)(v0).

Proof. The linear part is the same as in lemma 3.3.2. Let us write the nonlinear

change of variable Ψ̃ to bring the neural field equations to the normal form (F.6).

We Taylor expand Ψ̃ as in section 5.2.1:

Ψ̃(v0, µ) =
∑

l1+l2+p1+p2+r>1

zl11 z̄
l2
1 z

p1
2 z̄

p2
2 µ

rΨ̃l1,l2,p1,p2,r, Ψ̃l1,l2,p1,p2,r ∈ Z,

where Ψ̃ satisfies Ψ̃(0, 0) = 0, Dv0Ψ̃(0, 0) = 0. Using the equation (5.9) satisfied

by Ψ̃ and a Maple program similar to the one given in section 5.2.1, we find the

following equations with eix ≡ ζ1, e
iy ≡ ζ2, ζ

∗
1 ≡ 1

(2πNp)2 e
−ix, ζ∗2 ≡ 1

(2πNp)2 e
−iy:

0 = −2LΨ2,1,0,0,0 + 2βζ1 − 4R2(Ψ1,1,0,0,0, ζ1)− 4R2(ζ̄1,Ψ2,0,0,0,0 − 6R3(ζ1.ζ1, ζ̄1)

0 = −LΨ1,1,1,0,0 + γζ2 − 2R2(Ψ0,1,1,0,0, ζ1)− 2R2(ζ̄1,Ψ1,0,1,0,0)− 2R2(ζ2,Ψ1,1,0,0,0)

−6R3(ζ2, ζ1, ζ̄1)

where the differentials Rp ≡ 1
p!D

pR(0, σ0) are given in lemma 3.2.1 and L = −Id +

σ0s1J. From the Fredholm alternative, we find:

β = 〈ζ∗1 , 2R2(Ψ1,1,0,0,0, ζ1) + 2R2(ζ̄1,Ψ2,0,0,0,0) + 3R3(ζ1.ζ1, ζ̄1)〉2
γ = 〈ζ∗2 , 2R2(Ψ0,1,1,0,0, ζ1) + 2R2(ζ̄1,Ψ1,0,1,0,0) + 2R2(ζ2,Ψ1,1,0,0,0)

+ 6R3(ζ2, ζ1, ζ̄1)〉2
.

In order to find the coefficients of the normal form, we are led to compute some of

the coefficients of Ψ̃. By taking the second order monomials, we find:

0 = 2LΨ2,0,0,0,0 + 2R2(ζ1, ζ1)

0 = LΨ1,1,0,0,0 + 2R2(ζ1, ζ̄1)

0 = LΨ0,1,1,0,0 + 2R2(ζ2, ζ̄1)

0 = LΨ1,0,1,0,0 + 2R2(ζ1, ζ2)

which are solved by

Ψ2,0,0,0,0 = Span(ζ1, ζ2, ζ̄1, ζ̄2) +
σ2

0s2
2

Ĵ2kc

1−s1σ0Ĵ2kc

ζ2
1

Ψ1,1,0,0,0 = Span(ζ1, ζ2, ζ̄1, ζ̄2) + 2
σ2

0s2
2

Ĵ0

1−s1σ0Ĵ0

Ψ0,1,1,0,0 = Span(ζ1, ζ2, ζ̄1, ζ̄2) + 2
σ2

0s2
2

Ĵ(1,1)

1−s1σ0Ĵ(1,1)
ζ2ζ̄1

Ψ1,0,1,0,0 = Span(ζ1, ζ2, ζ̄1, ζ̄2) + 2
σ2

0s2
2

Ĵ(1,1)

1−s1σ0Ĵ(1,1)
ζ1ζ2.
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Let us indicate how to solve the first equation for example. Note that R2(ζ1, ζ1) =
σ2

0s2
2 J · ζ2

1 =
σ2

0s2
2 Ĵ2kcζ

2
1 . A particular solution is given by Aζ2

1 where A satisfies

(1− s1σ0Ĵ2kc)A =
σ2

0s2
2 Ĵ2kc to which we must add any null vector of L. This gives

the coefficient Ψ2,0,0,0,0.

It is then straightforward to obtain β and γ. �
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