
Building Cloud Applications

Contents
1 Introduction 2

2 Considerations on Azure that impact the implementation 2
2.1 Lack of MPI . 2
2.2 Azure Storage and the shared memory abstraction 4
2.3 Queues, jobs, tasks and QueueServices 4
2.4 Affinity between workers and storage 5
2.5 Idempotency . 5
2.6 Workers are at first tasks agnostic and stateless 6
2.7 Scaling up is a developer initiative 6
2.8 There are no strict guarantees on the number of workers actually

running . 7
2.9 Pinging queues as a tradeoff between cost and simplicity 7
2.10 Monitoring how many messages are delivered 7
2.11 Workers Communication . 8
2.12 Atomicity in the BlobStorage . 9
2.13 Lokad-Cloud . 9

3 The counter primitive 9
3.1 Sharded Counters . 9

4 The example of a naïve MapReduce 9

1

1 Introduction
The SaaS cloud solutions have already proved to be a successful economical
model, as demonstrated for example by Amazon or Gmail. In parallel, the IaaS
cloud solutions have also proved to be good candidates for many customers, as
suggested by the long list of some of Amazon Web Service customers1 or by their
business volume (see [?]).

The PaaS cloud solutions are reputed to be easy to manipulate. Indeed, many tools
are provided to improve the developer efficiency. In addition to these tools, many
abstractions and primitives are already available to prevent the customer from re-
implementing the same engineering solutions again and again. For example, the
Azure Queues provide a synchronization mechanism that helps building loosely
coupled components at a low development cost. To our knowledge the Azure
platform has not yet been originally designed in the specific goal to host intensive
computations. While the overall system has been designed to provide very satis-
factory scale-up (whether in term of the number of computing units available or
aggregated bandwidth) in order to guarantee scale-up for many cloud applications,
the Azure PaaS system has been originally targeted to business cloud applications,
not to scientific applications. In this chapter, we investigate to what extent is the
Paas platform Azure well-suited to scientific computations.

Since Azure has not been initially designed to be a scientific computing platform,
no computation framework (with the exception of Windows Azure HPC intro-
duced in the introduction of chapter ??) is presently available for Azure: Azure
provides neither a "low-level" framework such as MPI, nor a "high-level" frame-
work such as MapReduce. While the Azure team has reported that they are work-
ing on implementing a MapReduce framework for Azure, this framework is not
already available.

In this situation, the storage abstractions and the update primitives (see for ex-
ample section ??) that are suited for most cloud applications can turn out to be
inefficient for computation-intensive applications. During my thesis work, I’ve
been involved in four of these computation-intensive applications. Two of them
are the cloud Batch K-Means prototype and the cloud Vector Quantization proto-
type2 that are described in detail in chapters ?? and ??.

1http://aws.amazon.com/solutions/case-studies/
2Both of these prototypes are available at http://code.google.com/p/clouddalvq/

2

2 Considerations on Azure that impact the imple-
mentation

2.1 Lack of MPI
The section ?? has highlighted the importance of MPI for the distributed Batch
K-Means on DMM architectures. More specifically, the various MPI implemen-
tations provide an abstraction layer that disburden the application developer from
manual management of inter-machines communications. The section ?? has showed
how the MPI primitives actual implementation has a significant impact on the
speed-up that can be achieved by the distributed Batch K-Means on DMM ar-
chitectures: this is the tree-like topology of the communication patterns of MPI
primitives that results in a O(logM) cost for averaging the prototypes versions.

As explained in section Azure Compute (section ??) of chapter ??, an internal
endpoint is exposed by each processing unit of Azure (the role instances) so that
each of the processing unit could talk directly with the other processing units using
a low-latency, high-bandwidth TCP/IP port. The bandwidth of these direct com-
munications is very sensitive to multiple factors like the number of units that are
communicating at the same time (because of aggregated bandwidth boundaries),
the fact the resource manager may allocate other VM instances from other deploy-
ments (applications) in the same physical hardware, the fact these other VM may
also be I/O intensive, etc. The average behavior of such direct communications
is yet very good: [9] and [1] reports direct inter-machines communication band-
width from 10 MB/sec to 120 MB/sec with median measurement bandwidth of
90MB/sec.

A key feature of Azure VM system is that the cloud client cannot get any direct
topology information about the VM it temporary owns. On the contrary, the VM
are totally abstracted to disburden the cloud client from these considerations. Such
a design does not prevent to build a MPI-like API to automatically harness direct
inter-machines communications but it makes more difficult to build such an effi-
cient framework. Several works have ported MPI on cloud computing platform
such as EC2 (we refer the reader for example to [3] or [2]).

Because of the importance of bandwidth in the speed-up performance of dis-
tributed Batch K-Means (see section ??), and because the direct inter-machines
bandwidth is much higher than the bandwidth between the storage and the pro-
cessing units (see section ?? of chapter ??), MPI would be a very efficient way to
run Batch K-Means on Azure. To our knowledge, such a framework has not yet

3

been provided for this platform.

UN PARAGRAPHE PR JUSTIFIER POURQUOI JE L’AI PAS IMPLÉMENTÉ ?

2.2 Azure Storage and the shared memory abstraction
The Azure Storage service provides a shared memory abstraction in the form of
the BlobStorage (and the TableStorage, but because of their similarity we will only
mention BlobStorage in this section). The different processors of a SMP system
can access the shared memory RAM to read or write data and therefore use this
shared memory as a communication media between the different processors. In
the same way, all the different computing units of an Azure application can access
any of the blobs stored into the BlobStorage.

There is however a critical difference between the use of shared memory in a SMP
system and the use of BlobStorage as a shared memory in a cloud OS environ-
ment: it is the bandwidth. Indeed, in the SMP case, each processor is geographi-
cally very close to the shared memory and efficient communication media such as
buses are used to convey the data between the shared memory and the processors.
On the contrary, the BlobStorage data are stored on different physical machines
than the ones hosting the processing VM. Therefore, the communication between
the computing units and the BlobStorage are conveyed through TCP/IP connec-
tions between the distant machines. The resulting bandwidth are much lower than
the bandwidth of a real shared memory: around 10MB/sec for reads and 3 MB/sec
for writes (see section ?? of chapter ??)).

2.3 Queues, jobs, tasks and QueueServices
Following the terminology of the original MapReduce research paper ([4]), the
total execution of an algorithm is referred as a job. A given job is divided in mul-
tiple tasks that stands for the elementary blocks of logic that are executed. Each
task is run by a single worker, and a single worker can only process one task at
once. During the duration of an entire job, each processing unit is expected to run
successively one or multiple tasks.

In the event of the number of tasks of a given job being lower than the number of
processing units, or in the event of one or several workers being temporary iso-
lated, some workers may process no tasks during a given job.

4

The multiple tasks are described by items stored in queues. More specifically,
each tasks that need to be run is put in a queue of the QueueStorage. When a pro-
cessing unit is available, it pings a queue and un-queue an item that stands for a
specific task. When the task is completed, the corresponding processing unit pings
a queue to get a new item and then process the corresponding task. The number
of tasks does not need to be defined when the job is started. On the contrary, a
common Azure application design is that many of the tasks that are completed
produce one or several new tasks.

Among all the tasks that are achieved during a given job, many of them refer to
the same logical operations applied on multiple distinct data chunks of the same
type, a situation often described in the literature as data level parallelism. To re-
flect this data parallelism, a frequently chosen design consists in gathering in the
same queue only the items referring to the same specific logical operation but
applied on distinct data chunks. In such a design, to each queue is associated a
QueueService which holds the logical operations to be applied on each item of the
corresponding queue.

2.4 Affinity between workers and storage
Azure is not providing any affinity between data and workers. Data are abstracted
into BlobStorage and TableStorage and it is impossible by design to try to run jobs
on CPUS that are physically near the place data are stored. CITE GOOGLE MAP
REDUCE. LOOK FOR XMPP PROTOCOL.
Presently, there are no mechanisms in Azure that provides the same affinity be-
tween the workers and the storage than MapReduce does. This means that we
cannot push some jobs where the data is stored since we can’t know on which
machine a data piece is stored. Each worker processing data will need to first
download the data it needs to process, on the contrary of Google’s Map Reduce,
where the jobs are scheduled and assigned on each worker by the framework in
such a way that workers downloading data will be minimized.
This is intended by Microsoft (CITATION NEEDED) to simplify development of
cloud apps : one does not need to design its application to take data location into
account, Azure providing a satisfactory scale-up and bandwidth. This choice is
about simplicity over performance.

2.5 Idempotency
Let’s consider the general problem of message processing. Some worker will con-
sume a message and then update some data stored in a durable way (for example in

5

The worker begins a connection
with the QueueStorage

QueueStorage marks a message as
unqueued and make it invisible.
Then it forwards the message to

the worker

The worker process the message
and update some data persisted in

the blobStorage

The worker notifies the
QueueStorage the message has
been successfully processed and

should be deleted

QueueStorage deletes the message

The worker begins a connection
with the QueueStorage

QueueStorage marks a message as
unqueued and make it invisible.
Then it forwards the message to

the worker

The worker dies or is shut down
before making any update of the

BlobStorage

After a fixed invisibility timespan,
the message respawns and is

requeued in the appropriate queue

Another worker gets the message
and correctly process it

The worker begins a connection
with the QueueStorage

QueueStorage marks a message as
unqueued and make it invisible.
Then it forwards the message to

the worker

The worker updates the
BlobStorage but dies before

notifying the QueueStorage that
the message has been processed

After a fixed invisibility timespan,
the message respawns and is

requeued in the appropriate queue

Another worker gets the message
and updates a second time the

BlobStorage

Ti
m

el
in

e

Scenario 1 Scenario 2 Scenario 3

Failure
windows

Figure 1: Some scenario of data updates.

BlobStorage). The message is consumed by the worker, communication is made
between the worker and storage, data is updated in the storage, but the worker
dies before it acknowledges the queue that the message has been processed and
should be deleted. Queues have been designed to react to machine failures as a
"at-least-once" messaging device : in a failure, message is requeued after some
timespan and another worker will process the same message, resulting in a second
update operation being performed on the same data chunk.

Technically, this issue derives from the fact there are no direct mechanism to cou-
ple the message consumption and deletion with the update of the persistent data
chunk in such a way that one of these two events cannot happen without the other.
The absence of this coupling leads to failure windows between the end of data up-
date and message deletion in which the message is delivered and processed more
than once.

2.6 Workers are at first tasks agnostic and stateless
same CPU, no affinity with the storage at first, non-stateless and idempotency

6

2.7 Scaling up is a developer initiative
Through the management API, administrator can change the number of workers
available. Then, we are no more in a fixed hardware framework as K-Means run
in other papers experiments. We can modulate the hardware so it better fits our
need. Therefore we can ask a new question : how many workers do we need to
minimize the whole time of the algorithm ?

2.8 There are no strict guarantees on the number of workers
actually running

Due to the huge amount of time necessary to set up workers [9] (which is going
to be improved), workers will be instanciated before the experiments are run and
their number is supposed to be constant over time. Yet, since a worker can be
shutdown, a VM deplaced or paused arbitrarily by Azure without notification, the
number of workers is not guaranteed to be exactly the number requested at each
instant.

2.9 Pinging queues as a tradeoff between cost and simplicity
Workers will be pinging queues to detect if there are some messages to process.
Since even QueueStorage operations are charged, we can wonder whether pinging
queues can be avoided, and whether it is affordable. Indeed, we could open a
TCP connection on each worker, set-up a listener so each worker is listening for
notification. Each time a notification is sent, the listener tells the worker to ping
the queue and get the message, or the notification is the message by itself and
worker is directly told to process the message. In the first case, we do not ping
queues unless a message needs to be processed. In the second case, we do not
ping queues at all. We have been choosing to not implement listeners patterns
and TCP connections, for simplicity reasons. Pinging a queue every 100 ms for a
worker means a 315 millions request per worker per year, charged as 3000 dollars
(see [?]). We have been adopting a back-off strategy : each time we ping an
empty queue, we double time before pinging again the queue CHECK THIS IN
LOKAD.CLOUD. IN THE EXPERIMENTATION PART, GIVE HOW MANY
TIMES THE QUEUE IS PINGED

2.10 Monitoring how many messages are delivered
It is not possible to get an exact count of how many messages are stored in some
queue, we only can get an approximative count of queued messages when asking
to the queue its metadata. When a service needs to process P messages, then

7

need to push a message in another queue to launch a new service, we need to get
an exact count of remaining messages to process. To achieve this, we are using
blobcounters, blobs storing an integer and decremented by each worker using etag
properties when the worker is done with a message. Since the worker can fail at
any moment, and a failure means the message is requeued after some delay and
is going to be processed again, we decrement the counter in the end, when the
job is finished and the message is going to be deleted. Thus, the only way a
single message can lead to decrement twice the counter is to make the worker fail
exactly when it is noticing the queue to delete the message. Theoretically, the
counter could therefore be decremented twice (with a very low probability). One
way to deal with this issue would be to use an idempotent counter :

1. we push P messages in the queue. Each message has a unique Id between 1
and P

2. we push a binary counter of P bits set to 1111..1111 in the blobStorage

3. each time the job stored in message i is completed, we update using etag the
counter and apply to the counter a & operation 111110111111 where 0 is at
index i. This way we made a counter where decrements will be idempotent.

Even if getting number of messages stored in a queue is approximate, Azure is
providing a transactional count of how many times a message is dequeued. FIN-
ISH HERE

2.11 Workers Communication
Azure does not offer currently any standard API for distributed computation, nei-
ther a low level one such as MPI [8], nor a more high level one such as Map
Reduce [4] or Dryad [5]. Map reduce could be implemented using Azure com-
ponents (following the strategy of [6]), yet, as pointed out in e.g. [7], those high
level API might be inappropriate for iterative machine learning algorithms such
as the k-means or learning vector quantization because of MapReduce overhead
on synchronisation and waiting process.
We therefore need to explicitly design our communication process between Azure
workers, process that can realized by 2 means :

1. Workers can communicate each other through direct IP communications,
that is to say re-implement a peer-to-peer network inside Azure cloud. TO
DEVELOP

2. Azure storage system can be used to implement synchronization and com-
munication between workers : each worker is pinging (or "listening") a

8

specific queue, and it gets some message from this queue holding some
blobname in BlobStorage where it can retrieved the data it needs.

While the first solution comes with higher performance in terms of bandwidth, as
reported in AzureScope or ... (CITATION NEEDED), it implies a very tough work
which would be like implementing MPI on Azure, which was outside the scope of
this thesis. Moreover, the "storage approach" for communication is much more in
agreement with Azure’s abstractions and design thinking (CITATION NEEDED).
Thus, we will rely therefore directly on Azure queues and blob storage to build all
our communication systems.

2.12 Atomicity in the BlobStorage

2.13 Lokad-Cloud
Lokad-Cloud3, an open-source framework that adds a small abstraction layer to
ease Azure workers startup and life cycle management, and storage access.

3 The counter primitive

3.1 Sharded Counters

4 The example of a naïve MapReduce

References
[1] Azure scope. http://azurescope.cloudapp.net/.

[2] Mpi cluster on ec2. http://datawrangling.s3.amazonaws.com/
elasticwulf_pycon_talk.pdf read the 03/05/2012.

[3] Dan C.Marinescu. Cloud Computing: Theory and Practice.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on Sympo-
sium on Opearting Systems Design & Implementation, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association.

3http://code.google.com/p/lokad-cloud/

9

[5] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.
In EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 59–72, New York, NY, USA,
2007. ACM.

[6] Huan Liu and Dan Orban. Cloud mapreduce: a mapreduce implementation
on top of a cloud operating system. Technical report, Accenture Technology
Labs, 2009. http://code.google.com/p/cloudmapreduce/.

[7] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Graphlab: A new parallel framework
for machine learning. In Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island, California, July 2010.

[8] Marc Snir, Steve Otto, Steven Huss-Lederman, Walker David, and Jack Don-
garra. MPI: The Complete Reference. MIT Press, Boston, 1996.

[9] Ming Mao Arkaitz Ruiz-Alvarez Zach Hill, Jie Li and Marty Humphrey. Early
observations on the performance of windows azure.

10

