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° Introduction to Cloud Computing

Matthieu Durut (Telecom/Lokad) 3/55



What is Cloud Computing ?

Some Features

@ Abstraction of commodity hardware that can be rent on-demand
on a hourly basis.

@ Quasi-infinite hardware scale-up.
© Virtualization, that makes web-applications maintenance easier.

4

Grid vs Cloud
@ Ownership.
@ Intensive use of Virtual Machines (VM).
o Elasticity.

@ Hardware administration and maintenance.
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Introduction to Cloud Computing

Everything a as Service
@ Software as a Service (SaaS) : Gmail, Salesforce, Lokad API, etc.
@ Platform as a Service (PaaS) : Azure, Amazon S3, etc,
© Infrastructure as a Service (laaS) : Amazon EC2, etc.

Stack of Azure

@ Storage Level : BlobStorage, TableStorage, QueueStorage,
SQLAzure.

@ Execution Level : Dryad.

@ Domain Specific Language Level : DryadLing, Scope.
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Introduction to Cloud Computing

Data-Parallel Computation

Figure : lllustration of the Google, Hadoop and Microsoft technology stacks
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MapReduce
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The Windows Azure Storage (WAS)

BlobStorage
@ Key-value pair (blobname/blob) storage.
@ No more ACID.
@ But atomicity, strong persistency and strong consistency per blob.
@ Optimistic Read-Modify-Write primitive (RMW).

QueueStorage
@ Set of scalable queues.
@ Asynchronous Message Delivery mechanism.
@ Approximately FIFO.

@ Messages returned at least once => Idempotency.
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Elements of Azure applications architecture

@ No communication framework such as MPI.

@ WAS used as a shared memory abstraction.

@ No affinity between storage and processing units.

@ Task agnosticity of workers (at least in the beginning).
@ |dempotence.
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Why clustering?
@ One of the Lokad’s abilities is to deal with large scale data.

@ Need to group client data (clustering) to extract information from
complex objects (e.g. time series seasonality).

Problem Set-up
e Data set is composed of N points {z;}), in R".
@ Clustering POV: find a simplified representation with « vectors of

RY,
@ These vectors will be called prototypes/centroids and gathered in
a quantization scheme w = (w;,...,w,) € (R9)".
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Objective
Clustering challenge can be expressed as a minimization of the
empirical distortion Cy, where

N

- 2

Cn(w) = minjze—w|®, we (RY)".
t=1

)

Initial challenge
Exact minimization is computationnaly intractable.

Some approximative algorithms
@ Batch K-Means
@ Vector Quantization (Online K-Means)
@ Neural Gas
@ Kohonen Maps
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Architecture Context

Why distributed?
@ A suitable way to allow more computing resources. Faster serial
computers: increasingly expensive + physical limits.

@ Cloud computing: adopted by Lokad (MS Azure). Early 2012, all
apps on Cloud and scale-up ~ 300VMs.

@ Consequences: communication delays and the lack of efficient
shared memory — asynchronous schemes.
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© Distributed Batch K-Means
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Sequencial Batch K-Means

Algorithm 1 Sequential Batch K-Means

Select « initial prototypes (wk)i_4
repeat
fort=1to Ndo
for k =1to x do
compute ||z; — wk||3
end for
find the closest centroid wy- () from z;;
end for
for k =1to x do
Wi = FrEmen D
{t.k*(t)=k}
end for
until the stopping criterion is met
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Distributed Batch K-Means

Characteristics

o Relatively fast : Batchgyd"™® = (3Nkd + Nk + Nd + xd) TP,

where [ refers to the number of iterations and TP refers to the
time for a floating point operation to be evaluated.

@ Determinist.
@ Easy to set-up.
@ Results stationary from a certain iteration.

Suited for parallelization ?
@ Obvious data-level Parallelism.
@ Same result than sequential.
@ Excellent speed-up efficiency already achieved.
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Distributed Batch K-Means

Distribution Scheme
@ Data-level parallelism suggests iterated Map-Reduce distribution.
@ Data set {zt}i\’:1 is homogeneously split into M chunks (one per
processing unit): S',i € {1..M}.
@ The processing unit i computes the distance ||z} — wy|[3 for z, € S
and k € {1..x} (Map phase).

@ Then the new prototypes version is recomputed by one or several
machines (Reduce phase).
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Distributed Batch K-Means

Batch K-Means distributed over a DMM architecture
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Distributed Batch K-Means

Wall Time
BatchljgiTime — T£OmP 4 T gomm,

where T refers to the wall time of the assignment phase and
Ti™™ refers to the wall time of the recalculation phase (mostly spent
in communications).

Assignment phase

3INkAT P

T,E’omp _ o
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Distributed Batch K-Means

Recalculation phase - DMM architecture with MPI

T = fHoga(M)] "0,

where S refers to the size of a double in memory (8 bytes in the
following) and B refers to the communication bandwidth per machine.

v

Wall time - DMM architecture with MPI

3INkdT P 1kdS

o+ [loge(M)] 5. |

Batchfjaimime —
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Distributed Batch K-Means

Speed-up - DMM architecture with MPI

3NTop
SNTE® 1 STlogs(M)]

SpeedUppum(M, N) =

Optimal number of processing units

. 3NT™rB
MDMM = T :
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Distributed Batch K-Means

Batch K-Means distributed over Azure
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Distributed Batch K-Me:
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Figure : Distribution scheme of our cloud Batch K-Means.
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Communication Modeling
comm read rite
T = IVMkdS(2Tge5 + Taiob )

where T/29 (resp. T4/e) refers to the time needed by a given
processing unit to download (resp. upload) a blob from (resp. to) the
storage per memory unit.

Speed-up - Cloud architecture
3NTflop
S+ VMS(TgE + Thik)

SpeedUp(M, N) =

Optimal number of workers

. 6NT flop
M (N) = read write\
S(2Tgies + Thiob )
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Distributed Batch K-Means

Reduce phase duration per byte in function of the number of communicating
units
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Figure : Time to execute the Reduce phase per unit of memory
(2TKad + Thrte) in 10~7sec/Byte in function of the number of communicating
units.
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Distributed Batch K-Means

Speedup in function of the number of mappers
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Figure : Charts of speedup performance curves with different data set size.
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Distributed Batch K-Means

N

M*

> | M| Wall Time Sequential Effective Theoretical
theoretic time | Speedup | Speedup (= MT*)
Exp. 1 62500 27 28 264 2798 10.6 9.34
Exp. 2 | 125000 | 45 45 306 5597 18.29 14.84
Exp. 3 | 250000 | 78 71 384 11194 29.15 23.55
Exp. 4 | 500000 | 95 112 521 22388 43.0 37.40

Table : Comparison between the effective optimal number of processing units

M*

data set size.
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Distributed Batch K-Means

Speedup in function of the number of mappers
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Figure : Charts of speedup performance curves with different number of
processing units. For each value of M, the value of N is set accordingly so
that the processing units are heavy loaded with data and computations.
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Distributed Batch K-Means
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Figure : Distribution of the processing time (in second) for multiple runs of the
same computation task for multiple VM.
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@ Distributed Vector Quantization algorithms
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Asynchronous clustering: motivation

Joint work with Benoit Patra

Every actions should be accounted once
@ No calculation should be discarded.
@ No calculation should be used more than once.
@ All the writes should result into prototypes update everywhere.
@ All the reads should be used locally.

On War from Clausewitz
@ Saturate bandwidth, memory, CPU, etc.
@ — Asynchronism
@ — Online or at least mini-batch (no more batch)
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Sequential VQ algorithm

@ Consists in incremental updates of the (Rd)“—valued prototypes
{w(t)}o-
@ Initiated from a random initial w(0) € (R)

@ Given a series of positive steps (¢¢)¢~0, it produces a series of
w(t) by updating w at each step with a “descent term”.

K

..... 1<t<k ’

w(t+1) = w(t) — erp1H (Z{141 mod n}, W(t)) , t>0.
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Distributed Vector Quantization algorithms

Algorithm 2 Sequential VQ algorithm
Select « initial prototypes (wk)i_4
Set t=0
repeat

for k =1to x do
compute ||Z;+1 mod ny — W[5
end for
Deduce H(z{t—H mod n}> W)
Set w(t+1) = w(t) — ery-1H (Zt+1 mod n}» W(1))
increment ¢
until the stopping criterion is met
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Distributed Vector Quantization algorithms

Our context
@ We assume that a satisfactory VQ implementation has been found
but too slow.
@ We will not be concerned with optimization of the several
parameters (initialization, sequence of steps etc.)
@ We have access to a finite dataset: {z}}7 , i€ {1,...,M}
distributed over M processing units.

@ When does a distributed VQ implementation perform better than
the corresponding sequential one ?
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Distributed Vector Quantization algorithms

Definition of Speed-up for VQ algorithms

@ A “reference” prototypes version is made available in the
shared-memory (BlobStorage), referred to as the prototypes
shared version: ws.

@ Performance is measured with the corresponding empirical
distortion: for all w € (R9)",

M
1 .
bv(w) = g 2 2 min,

@ After any t wall time seconds, the empirical distortion of the
prototypes shared version should be lower than for the prototypes
version produced by sequential algorithm.

>

; 2
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Distributed Vector Quantization algorithms

Previous work
@ VQ as stochastic gradient descent method
@ Shared-Memory : interlaying the prototypes version updates

@ No Shared-Memory but Loss Convexity : averaging the prototypes
versions

v

In our case
@ No efficient shared-memory
@ No convexity of the loss function

Organization of our work
@ Simulated distributed architecture on a single machine.
@ Then cloud implementation
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First distributed scheme

All the versions are set equal at time t = 0, w'(0) = ... = wM(0). For
allie{1,...,M} and all t > 0, we have the following iterations:

Wtemp =w (t) —etH ( g(t+1 mod n}* Wi(t)>

Wit +1) = Wi, ‘ iftmodT#0o0rt=0,
srd __
{W(t+1,\)42/ ;rdtemp iftmodT=0andt>r.
w
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A first basic parallelization scheme

~ Global |ux| |u2| |u| |u4|
time reference
u:*‘"dfli(u +w? 4+ w? 4+ w?)
w, w?, wi wt = werd
psrd— 1 4
! +u +w? +w?)
w!,w? w?, wt = wsrd

Averaging phase

@ Y

3 Bl 3
Il Il | | |
+—t —+—
P L
— —+—
o I
— —+—+
L L
—t —+—

wd= é(uv +w? 4w +w)
w

1l2! u-ﬂ_uerd

w

wsril= %(url +w? 4+ w? +w?)
71'3

ar srd

whw?, wd wt = w

Figure : A simple (and synchronous) scheme: whenever 7 points are
processed an averaging phase occurs.

Matthieu Durut (Telecom/Lokad) 38/55



A first basic parallelization scheme

tau=10
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Figure : Charts of performance with different number of computing entities:
M=1,2,10 and 7 = 10.
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Distributed Vector Quantization algorithms

A comparison between the previous parallel scheme and the
sequential VQ

Fortmod 7 =0andt> 0. Then, forallic {1,...., M}, w/(t+1) =
Wit —7+1) = b g et <1m M H (z’t,+1, w/(t’))) (parallel)

w(t+1) =
W(t -7+ 1) - E;/:t,ﬂﬂ €41 H (Z{t/+1 mod n}>» W(t/)) (sequential)

Terms in blue are estimators of the gradient.
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Distributed Vector Quantization algorithms

@ Two SGD algorithms with the same sequence of steps then, they
have similar convergence speed.

@ Sequence of steps — learning rate — trade-off
exploration/convergence.

Introducing displacement/descent terms
Forallje{1,...,M}and f > t; > 0 set

2]
P . .
N, = D ersihH (zj{t’-H mod n}’ W/(t/)) :
t=t;+1

corresponds to the displacement of the prototypes computed by j
during (1, 1),
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Second distributed scheme

Wtemp w (t) — 8t+1H <Zﬂ£t+1 mod n}? W’(t))
Wit +1) = Wi, if tmod 7 #0ort=0,

Wsrd Wsrd
{ Z" t=r=t iftmodr=0andt> .

wi(t+1) = wsd
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Distributed Vector Quantization algorithms

4 4 wh= ! = w? = w? = w!
3 4 B
Af- JAv .
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w = Ao, — Af, = Al — A,
w, w? A —qperd
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A7 o, AT o,
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3r w L w 3 2 A?Tﬁ!}r =A% 3 = AG 3 — A s,
' whw? w wt = wrd
1 T 2 T 3 T 4 b
A3 sar Adsar A3 ar A3 ar
T T .,srd — , srd 1 2 3 4
Ar we =W Adrsar = B3 ar = Agrur — D3rar
1 w2, w3, wh = gerd

Figure : lllustration of the parallelization scheme of VQ procedures described

by equations (43).
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Distributed Vector Quantization algorithms
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Figure : Charts of performance curves for a reviewed scheme M =1,2,10
and 7 = 10.
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Delayed distributed scheme

Wtemp w (t) —eH (zl{t-ﬂ mod n}’ Wi(t))
Wit +1) = Wiy if tmod r# 0ort=0,
wed = wsd M A, iftmodT=0andt> 27,
wi(t4+1) = w9 — Al iftmod7=0andt>r.

t—1—t
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Distributed Vector Quantization algorithms

l w' l l w? l l w l [ w? l [ word l
. &+ &+ -+ + wird = ! = w?
=’ =w!
T 4
delay
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Figure : lllustration of the parallelization scheme described by equations (46).
The reducing phase is only drawn for processor 1 where t = 27 and
processor 4 where t = 4r.
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Distributed Vector Quantization algorithms
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Figure : Charts of performance curves for iterations (46) with different
numbers of computing entities, M =1,2,10 and 7 = 10.
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Simulated parallelization schemes first conclusions

Motto: summing displacement term rather than averaging versions. J

Experimental results

@ Satisfactory speed-ups are recovered for the later simulated
parallel schemes.

@ Delays (determinist + random) are also studied: reasonable
[random] delays do not have sever impact on the convergence.

@ Good perspectives for a true implementation on a could
computing platform.

Matthieu Durut (Telecom/Lokad) 48 /55



The CloudDALVQ project

@ Scientific project for testing new large scale clustering/quantization
algorithms distributed on a Cloud Platform (MS Azure).

@ Open source written in C#.NET released under new BSD Licence.
http://code.google.com/p/clouddalvyg/
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Distributed Vector Quantization algorithms
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Figure : Distribution scheme of our cloud VQ implementation.
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buted Vector Quantization algorithms

BlobStorage

BlobStorage
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Distributed Vector Quantization algorithms

one layer
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Figure : Normalized quantization curves with M = 1,2,4,8,16. Troubles
appear with M = 16 because the ReduceService is overloaded.
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Distributed Vector Quantization algorithms

two layers
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Figure : Normalized quantization curves with M = 8,16, 32, 64 with an extra
layer for the so called “reducing task”.
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Distributed Vector Quantization algorithms
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Figure : This chart reports on the competition between our cloud DAVQ
algorithm and the cloud Batch K-Means. The graph shows the empirical
distortion of the algorithms over the time.
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