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Introduction to Cloud Computing

What is Cloud Computing ?

Some Features
1 Abstraction of commodity hardware that can be rent on-demand

on a hourly basis.
2 Quasi-infinite hardware scale-up.
3 Virtualization, that makes web-applications maintenance easier.

Grid vs Cloud
Ownership.
Intensive use of Virtual Machines (VM).
Elasticity.
Hardware administration and maintenance.
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Introduction to Cloud Computing

Everything a as Service
1 Software as a Service (SaaS) : Gmail, Salesforce, Lokad API, etc.
2 Platform as a Service (PaaS) : Azure, Amazon S3, etc,
3 Infrastructure as a Service (IaaS) : Amazon EC2, etc.

Stack of Azure
Storage Level : BlobStorage, TableStorage, QueueStorage,
SQLAzure.
Execution Level : Dryad.
Domain Specific Language Level : DryadLinq, Scope.
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Introduction to Cloud Computing

Figure : Illustration of the Google, Hadoop and Microsoft technology stacks
for cloud applications building.
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Introduction to Cloud Computing

MapReduce
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Introduction to Cloud Computing

The Windows Azure Storage (WAS)

BlobStorage

Key-value pair (blobname/blob) storage.
No more ACID.
But atomicity, strong persistency and strong consistency per blob.
Optimistic Read-Modify-Write primitive (RMW).

QueueStorage

Set of scalable queues.
Asynchronous Message Delivery mechanism.
Approximately FIFO.
Messages returned at least once => Idempotency.
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Introduction to Cloud Computing

Elements of Azure applications architecture

No communication framework such as MPI.
WAS used as a shared memory abstraction.
No affinity between storage and processing units.
Task agnosticity of workers (at least in the beginning).
Idempotence.
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Context

Why clustering?

One of the Lokad’s abilities is to deal with large scale data.
Need to group client data (clustering) to extract information from
complex objects (e.g. time series seasonality).

Problem Set-up

Data set is composed of N points {zt}Nt=1 in Rκ.
Clustering POV: find a simplified representation with κ vectors of
Rd .
These vectors will be called prototypes/centroids and gathered in
a quantization scheme w = (w1, . . . ,wκ) ∈

(
Rd)κ.
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Context

Objective
Clustering challenge can be expressed as a minimization of the
empirical distortion CN , where

CN(w) =
N∑

t=1

min
`=1,...,κ

‖zt − w`‖2, w ∈
(
Rd)κ.

Initial challenge
Exact minimization is computationnaly intractable.

Some approximative algorithms
Batch K-Means
Vector Quantization (Online K-Means)
Neural Gas
Kohonen Maps
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Context

Architecture Context

Why distributed?
A suitable way to allow more computing resources. Faster serial
computers: increasingly expensive + physical limits.

Cloud computing: adopted by Lokad (MS Azure). Early 2012, all
apps on Cloud and scale-up ∼ 300VMs.

Consequences: communication delays and the lack of efficient
shared memory→ asynchronous schemes.
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Distributed Batch K-Means

Sequencial Batch K-Means

Algorithm 1 Sequential Batch K-Means

Select κ initial prototypes (wk )κk=1
repeat

for t = 1 to N do
for k = 1 to κ do

compute ||zt − wk ||22
end for
find the closest centroid wk∗(t) from zt ;

end for
for k = 1 to κ do

wk = 1
#{t ,k∗(t)=k}

∑
{t ,k∗(t)=k}

zt

end for
until the stopping criterion is met
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Distributed Batch K-Means

Characteristics

Relatively fast : BatchWalltime
seq = (3Nκd + Nκ+ Nd + κd)IT flop,

where I refers to the number of iterations and T flop refers to the
time for a floating point operation to be evaluated.
Determinist.
Easy to set-up.
Results stationary from a certain iteration.

Suited for parallelization ?
Obvious data-level Parallelism.
Same result than sequential.
Excellent speed-up efficiency already achieved.
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Distributed Batch K-Means

Distribution Scheme
Data-level parallelism suggests iterated Map-Reduce distribution.
Data set {zt}Nt=1 is homogeneously split into M chunks (one per
processing unit): Si , i ∈ {1..M}.
The processing unit i computes the distance ||zi

t −wk ||22 for zi
t ∈ Si

and k ∈ {1..κ} (Map phase).
Then the new prototypes version is recomputed by one or several
machines (Reduce phase).

Matthieu Durut (Telecom/Lokad) 17 / 55



Distributed Batch K-Means

Batch K-Means distributed over a DMM architecture
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Distributed Batch K-Means

Wall Time

BatchWallTime
DMM = T comp

M + T comm
M ,

where T comp
M refers to the wall time of the assignment phase and

T comm
M refers to the wall time of the recalculation phase (mostly spent

in communications).

Assignment phase

T comp
M =

3INκdT flop

M
.
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Distributed Batch K-Means

Recalculation phase - DMM architecture with MPI

T comm
M = dlog2(M)e IκdS

B
,

where S refers to the size of a double in memory (8 bytes in the
following) and B refers to the communication bandwidth per machine.

Wall time - DMM architecture with MPI

BatchWallTime
DMM =

3INκdT flop

M
+ dlog2(M)e IκdS

B
.
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Distributed Batch K-Means

Speed-up - DMM architecture with MPI

SpeedUpDMM(M,N) =
3NT flop

3NT flop

M + S
B dlog2(M)e

.

Optimal number of processing units

M∗DMM =
3NT flopB

S
.
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Distributed Batch K-Means

Batch K-Means distributed over Azure
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Distributed Batch K-Means
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Figure : Distribution scheme of our cloud Batch K-Means.
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Distributed Batch K-Means

Communication Modeling

T comm
M = I

√
MκdS(2T read

Blob + T write
Blob ),

where T read
Blob (resp. T write

Blob ) refers to the time needed by a given
processing unit to download (resp. upload) a blob from (resp. to) the
storage per memory unit.

Speed-up - Cloud architecture

SpeedUp(M,N) =
3NT flop

3NT flop

M +
√

MS(2T read
Blob + T write

Blob )
.

Optimal number of workers

M∗(N) = 2/3

√
6NT flop

S(2T read
Blob + T write

Blob )
.
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Distributed Batch K-Means
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Distributed Batch K-Means
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Distributed Batch K-Means

N M∗eff M∗ Wall Time Sequential Effective Theoretical
theoretic time Speedup Speedup (= M∗

3 )
Exp. 1 62500 27 28 264 2798 10.6 9.34
Exp. 2 125000 45 45 306 5597 18.29 14.84
Exp. 3 250000 78 71 384 11194 29.15 23.55
Exp. 4 500000 95 112 521 22388 43.0 37.40

Table : Comparison between the effective optimal number of processing units
M∗

eff and the theoretical optimal number of processing units M∗ for different
data set size.
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Distributed Batch K-Means
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Figure : Charts of speedup performance curves with different number of
processing units. For each value of M, the value of N is set accordingly so
that the processing units are heavy loaded with data and computations.
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Distributed Batch K-Means

Figure : Distribution of the processing time (in second) for multiple runs of the
same computation task for multiple VM.
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Distributed Vector Quantization algorithms
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Distributed Vector Quantization algorithms

Asynchronous clustering: motivation
Joint work with Benoit Patra

Every actions should be accounted once
No calculation should be discarded.
No calculation should be used more than once.
All the writes should result into prototypes update everywhere.
All the reads should be used locally.

On War from Clausewitz
Saturate bandwidth, memory, CPU, etc.
=⇒ Asynchronism
=⇒ Online or at least mini-batch (no more batch)
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Distributed Vector Quantization algorithms

Sequential VQ algorithm

Consists in incremental updates of the
(
Rd)κ-valued prototypes

{w(t)}∞t=0.
Initiated from a random initial w(0) ∈

(
Rd)κ.

Given a series of positive steps (εt )t>0, it produces a series of
w(t) by updating w at each step with a “descent term”.

H(z,w) =
(

(w` − z)1{l=argmini=1,...,κ‖z−wi‖2}
)

1≤`≤κ
.

w(t + 1) = w(t)− εt+1H
(
z{t+1 mod n},w(t)

)
, t ≥ 0.
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Distributed Vector Quantization algorithms

Algorithm 2 Sequential VQ algorithm
Select κ initial prototypes (wk )κk=1
Set t=0
repeat

for k = 1 to κ do
compute ||z{t+1 mod n} − wk ||22

end for
Deduce H(z{t+1 mod n},w)
Set w(t + 1) = w(t)− εt+1H

(
z{t+1 mod n},w(t)

)
increment t

until the stopping criterion is met
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Distributed Vector Quantization algorithms

Our context
We assume that a satisfactory VQ implementation has been found
but too slow.
We will not be concerned with optimization of the several
parameters (initialization, sequence of steps etc.)
We have access to a finite dataset:

{
zi

t
}n

t=0, i ∈ {1, . . . ,M}
distributed over M processing units.
When does a distributed VQ implementation perform better than
the corresponding sequential one ?
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Distributed Vector Quantization algorithms

Definition of Speed-up for VQ algorithms

A “reference” prototypes version is made available in the
shared-memory (BlobStorage), referred to as the prototypes
shared version: wsrd .
Performance is measured with the corresponding empirical
distortion: for all w ∈

(
Rd)κ,

LN(w) =
1

nM

M∑
i=1

n∑
t=1

min
`=1,...,κ

∥∥∥zi
t − w`

∥∥∥2

After any t wall time seconds, the empirical distortion of the
prototypes shared version should be lower than for the prototypes
version produced by sequential algorithm.
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Distributed Vector Quantization algorithms

Previous work
VQ as stochastic gradient descent method
Shared-Memory : interlaying the prototypes version updates
No Shared-Memory but Loss Convexity : averaging the prototypes
versions

In our case
No efficient shared-memory
No convexity of the loss function

Organization of our work

Simulated distributed architecture on a single machine.
Then cloud implementation
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Distributed Vector Quantization algorithms

First distributed scheme

All the versions are set equal at time t = 0, w1(0) = . . . = wM(0). For
all i ∈ {1, . . . ,M} and all t ≥ 0, we have the following iterations:

w i
temp = w i(t)− εt+1H

(
zi
{t+1 mod n},w

i(t)
)

w i(t + 1) = w i
temp if t mod τ 6= 0 or t = 0,{

wsrd = 1
M
∑M

j=1 w j
temp

w i(t + 1) = wsrd if t mod τ = 0 and t ≥ τ.
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Distributed Vector Quantization algorithms

A first basic parallelization scheme

Global 
time reference

Averaging phase

Figure : A simple (and synchronous) scheme: whenever τ points are
processed an averaging phase occurs.
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Distributed Vector Quantization algorithms

A first basic parallelization scheme

Figure : Charts of performance with different number of computing entities:
M = 1,2,10 and τ = 10.
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Distributed Vector Quantization algorithms

A comparison between the previous parallel scheme and the
sequential VQ

For t mod τ = 0 and t > 0. Then, for all i ∈ {1, . . . ,M}, w i(t + 1) =

w i(t − τ + 1)−
∑t

t ′=t−τ+1 εt ′+1

(
1
M
∑M

j=1 H
(

zj
t ′+1,w

j(t ′)
))

(parallel)

w(t + 1) =
w(t − τ + 1)−

∑t
t ′=t−τ+1 εt ′+1H

(
z{t ′+1 mod n},w(t ′)

)
(sequential)

Terms in blue are estimators of the gradient.
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Distributed Vector Quantization algorithms

Two SGD algorithms with the same sequence of steps then, they
have similar convergence speed.
Sequence of steps→ learning rate→ trade-off
exploration/convergence.

Introducing displacement/descent terms

For all j ∈ {1, . . . ,M} and t2 ≥ t1 ≥ 0 set

∆j
t1→t2 =

t2∑
t ′=t1+1

εt ′+1H
(

zj
{t ′+1 mod n},w

j(t ′)
)
.

corresponds to the displacement of the prototypes computed by j
during (t1, t2),
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Distributed Vector Quantization algorithms

Second distributed scheme


w i

temp = w i(t)− εt+1H
(

zi
{t+1 mod n},w

i(t)
)

w i(t + 1) = w i
temp if t mod τ 6= 0 or t = 0,{

wsrd = wsrd −
∑M

j=1 ∆j
t−τ→t

w i(t + 1) = wsrd if t mod τ = 0 and t ≥ τ.
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Distributed Vector Quantization algorithms

Displacement terms

Figure : Illustration of the parallelization scheme of VQ procedures described
by equations (43).
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Distributed Vector Quantization algorithms

Figure : Charts of performance curves for a reviewed scheme M = 1,2,10
and τ = 10.
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Distributed Vector Quantization algorithms

Delayed distributed scheme


w i

temp = w i(t)− εt+1H
(

zi
{t+1 mod n},w

i(t)
)

w i(t + 1) = w i
temp if t mod τ 6= 0 or t = 0,{

wsrd = wsrd −
∑M

j=1 ∆j
t−2τ→t−τ if t mod τ = 0 and t ≥ 2τ,

w i(t + 1) = wsrd −∆i
t−τ→t if t mod τ = 0 and t ≥ τ.
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Distributed Vector Quantization algorithms

delay

Figure : Illustration of the parallelization scheme described by equations (46).
The reducing phase is only drawn for processor 1 where t = 2τ and
processor 4 where t = 4τ .
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Distributed Vector Quantization algorithms

Figure : Charts of performance curves for iterations (46) with different
numbers of computing entities, M = 1,2,10 and τ = 10.
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Distributed Vector Quantization algorithms

Simulated parallelization schemes first conclusions

Motto: summing displacement term rather than averaging versions.

Experimental results
Satisfactory speed-ups are recovered for the later simulated
parallel schemes.
Delays (determinist + random) are also studied: reasonable
[random] delays do not have sever impact on the convergence.
Good perspectives for a true implementation on a could
computing platform.
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Distributed Vector Quantization algorithms

The CloudDALVQ project

Scientific project for testing new large scale clustering/quantization
algorithms distributed on a Cloud Platform (MS Azure).

Open source written in C#.NET released under new BSD Licence.
http://code.google.com/p/clouddalvq/
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Distributed Vector Quantization algorithms
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Figure : Distribution scheme of our cloud VQ implementation.
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Distributed Vector Quantization algorithms
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Distributed Vector Quantization algorithms

Figure : Normalized quantization curves with M = 1,2,4,8,16. Troubles
appear with M = 16 because the ReduceService is overloaded.
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Distributed Vector Quantization algorithms

Figure : Normalized quantization curves with M = 8,16,32,64 with an extra
layer for the so called “reducing task”.
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Distributed Vector Quantization algorithms

Figure : This chart reports on the competition between our cloud DAVQ
algorithm and the cloud Batch K-Means. The graph shows the empirical
distortion of the algorithms over the time.
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