
Parallel K-Means

Contents
1 Introduction to clustering and distributed Batch K-Means 2

2 Sequential K-Means 5
2.1 Batch K-Means algorithm . 5
2.2 Complexity cost . 6

3 Distributed K-Means Algorithm on SMP and DMM architectures 7
3.1 Distribution scheme . 7
3.2 Communication costs in SMP architectures 9
3.3 Communication costs in DMM architectures 10
3.4 Modeling of communication real costs 11
3.5 Comments . 13
3.6 Bandwidth Condition . 14
3.7 Dhillon and Modha case study 15

4 Implementing Distributed Batch K-Means on Azure 16
4.1 Recall of some Azure specificities 16
4.2 The cloud Batch K-Means algorithm 17
4.3 Comments on the algorithm . 23
4.4 Optimizing the number of processing units 24

5 Experimental results 26
5.1 Azure base performances . 26
5.2 The two-steps reduce architecture benchmark 27
5.3 Experiment settings . 28
5.4 Straggler issues . 28
5.5 Speed-up . 31
5.6 Optimal number of processing units and scale-up 32
5.7 Price . 33

1

1 Introduction to clustering and distributed Batch
K-Means

Clustering is the task of unsupervised classification that assigns a set of objects into
groups such that each group is composed of similar objects. Clustering has been
widely used for more than half a century as a resume technique to build a simplified
data representation and is one of the primary tools of unsupervised learning. It
plays an outstanding role in several pattern analysis, decision making, proximity
exploration or machine-learning situations including text mining, pattern or speech
recognition, web analysis and recommendation, marketing, computational biology,
etc.

Two main clustering questions have been addressed in many contexts, reflecting the
clustering’s broad utility. The first question deals with the similarity notion between
objects. In general, pattern proximity is based on some similarity measure (or
distance function) defined for any pair of data elements. Such a similarity measure
is of prime interest since it totally defines the proximity notion and therefore need
to reflect what the user considers as close or similar. When the data set is contained
in a vectorial space, a simple euclidean distance is often used. In many other
situations, a more specific similarity measure is used, such as in the context DNA
microarrays exploration. In other cases, clustering output is used as the training
input of a set of supervised learning functions. This latter case, often referred as
clusterwise linear regression (see for example [10]), is of prime interest for Lokad
since the timeseries clustering is used to produce groups of timeseries that are
processed group by group. From a computation point of view, the complexity
of the similarity measure has a significant impact on the computational cost of
clustering.

The second clustering aspect that has been widely addressed is the algorithm choice.
For a given similarity measure, one can define a performance criterion (often re-
ferred in the literature as a loss function) for a clustering result to quantify how
close is each point to its assigned cluster. The problem of returning the optimal
clustering solution in regard to this loss function is reputed to be in many cases
computationally untractable (see for example [18] in the case of the K-Means).
Many algorithms are devised to return approximations of the optimal solution,
often by converging to a local minimum of the loss function. We refer the reader to
[14] for an in-depth clustering algorithms review. Some well-known techniques of
non-hierarchical clustering are Batch K-Means, Vector Quantization (VQ), Neural
Gas, Kohonen Maps, etc.

2

This chapter focuses on the Batch K-Means clustering algorithm. The choice of
Batch K-Means is motivated by several reasons. Firstly, while better clustering
methods are available, Batch K-Means remains a useful tool, especially in the
context of data summarization where a very large data set is reduced to a smaller
set of prototypes. As such, Batch K-Means is at least a standard pre-processing
tool. Secondly, Batch K-Means has a low processing cost, proportional to the
data size and the number of clusters. Thus, it is a good candidate for processing
very large data sets. Finally, apart for the number of iterations to convergence, the
processing time of Batch K-Means depends only on the data dimensions and on
K, rather than on the actual data values: timing results obtained on simulated data
apply to any data set with the same dimensions.

Distributed computing in Machine Learning or Data Mining arise when the compu-
tation time to run some sequential algorithm is too long or when the data volume is
too big to fit into the memory of a single computing device. Such algorithms have
already been successfully investigated for fifteen years (see for example [1], [5],
or [13]) and applications build on top of these distributed algorithms are presently
used in a wide range of areas, including scientific computing or simulations, web in-
dexing applications such as Google Search, social network exploration applications
such as Facebook, sparse regression in computer vision, etc. Parallelization is today
one of the most promising ways to harness greater computing resources, whereas
data sets volume keep growing at a much faster rate than sequential processing
power.

In this chapter, we investigate parallelization of Batch K-Means over different
computing platforms. Batch K-Means is known to be easy to parallelize on shared
memory computers and on local clusters of workstations: numerous publications
(see e.g., [5]) report linear speedup up to at least 16 processing units (which can be
CPU cores or workstations). There are two reasons why Batch K-Means is reputed
to be an algorithm suited for parallelization. The first reason is that distributed
Batch K-Means produces exactly the same result than sequential Batch K-Means.
For algorithms where the sequential and the distributed versions produce different
results, it is necessary to confront the two algorithm versions on both speed-up
and accuracy criterion. In the case of Batch K-Means, the comparison of the se-
quential and distributed versions is bounded to the speed-up criterion. In addition,
the exact matching of the two algorithm version results provides an easy mecha-
nism to guarantee that the distributed algorithm version is correctly implemented.
From an engineering point of view, this property ease a lot the development process.

The second reason why distributed K-Means is reputed to be easy to parallelize
is that it has been claimed to be an embarrassingly distributed algorithm. Most

3

of the computation time is spent in evaluating distance between data points and
prototypes. These evaluations can be easily distributed on multiple processing
units. Distributed K-Means can then be viewed as an iterated Map-Reduce algo-
rithm: firstly, the data set is separated into M subsets of equal length (where M
is the number of processing units), each processor (mapper) being responsible
of computing distances between its data points and the prototypes. At the end
of the step, all processors compute a local prototypes version, then forward this
version to a unique processor responsible of gathering all local prototypes versions,
computing the prototypes shared version (reduce step) and sending it back to all
the units. Forwarding the local prototypes versions can be done in several ways,
depending on the hardware/software framework: broadcasting can be done using
MPI (Message Passing Interface) implementation or web services for example.

Batch K-Means has already been successfully parallelized on multiprocessors
machines using MPI (see for example [5], [19] or [24]). This algorithm has also
already been implemented on shared nothing platforms, for example in Hadoop,
but to our knowledge no theoretical study of the behavior of this algorithm on such
a platform has been done yet. This chapter therefore investigate parallelization
techniques of Batch K-Means over a platform of cloud computing (in the present
case Azure). The main difficulty of the cloud algorithm consists in implementing
synchronization and communication between the processing units, using the facili-
ties provided by Windows Azure cloud operating system. We detail this technical
challenge, provide theoretical analysis of speed-up that can be achieved on such a
platform and the corresponding experimental results.

We now briefly outline the chapter. In section 2, we present the sequential K-
Means algorithm and its computational cost. In section 3, we describe how the
Batch K-Means is often distributed on several processors and examine the new
corresponding computational cost. We also build some modeling of the real
cost of a distributed Batch K-Means on Distributed Memory Multiprocessors
and develop a bandwidth condition inequality. Section 4 is devoted to present
some specificities of the cloud that prevent previous developments of Distributed
Memory Multiprocessors K-Means cost to be applied on the cloud. We provide
a new parallelization implementation to adapt the distributed Batch K-Means to
the cloud specificities. Section 5 presents experimental results of a distributed
K-Means on the cloud.

4

2 Sequential K-Means

2.1 Batch K-Means algorithm
Let us consider the following problem: given a data set of N points {zi}Ni=1 of
a d dimensional space, we want to construct K points {wk}Kk=1, referred in the
following as prototypes or centroïds, as a resume of the data set using the euclidean
distance as a similarity measure. Those K prototypes are a minimizer of the
following loss function (recalled as the empirical distortion function):

{wk}Kk=1 = argmin
{ck}Kk=1∈(Rd)

κ

N∑
i=1

min
k=1..K

(||zi − ck||22) (1)

The existence of an optimal solution is always defined because we can reduce the
optimization set to a compact set. As already stated, the computation of an exact
minimizer is often untractable, and this problem is proved to be NP-Hard, even
in the easier case of d=2 (see [18]). Among the many algorithms that compute
an approximation of the optimal minimizer, the Batch K-Means is a well known
algorithm, widely used because of its ease to implement.

The algorithm alternates 2 phases iteratively. The first phase, called the assignment
phase, takes as input a given set of prototypes, and assigns each point in the data-set
to its nearest prototype. The second phase, referred as the recalculation phase,
is run after the assignment phase is completed. During this second phase, each
prototype is recomputed as the average of all points in the data set that has been
assigned to him. When the second phase is completed, the phase 1 is run again, and
phase 1 and 2 are run iteratively until a stopping criterion is met. The following
logical code (Algorithm 1) describes the alternation of the two phases.

Batch K-Means is an algorithm that produces by construction better prototypes
(in regard of the objective function (1)) for each iteration and that stabilizes on
a local minimum of this objective function. In many cases, the prototypes and
the corresponding empirical loss are deeply modified in the first iterations of the
Batch K-Means then they move much more slowly in the latter iterations, and after
several dozens of iterations the prototypes and the corresponding empirical loss are
totally fixed. Yet, such a behavior is not systematic and Batch-KMeans may need
more iterations before stabilizing (see e.g. [2]). The classical stopping criterion are:
wait until the algorithm is completed (prototypes remain unmodified between two
consecutive iterations), or run an a-priori fixed number of iterations or run the algo-
rithm until the empirical loss gain between two iterations is below a given threshold.

5

Algorithm 1 Sequential Batch K-Means
Select K initial prototypes (wk)k=1..K

repeat
for t = 1 to N do

for k = 1 to K do
compute ||zt − wk||22

end for
find the closest centroid wk∗(t) from zt;

end for
for k = 1 to K do
wk =

1
#{t,k∗(t)=k}

∑
{t,k∗(t)=k}

zt

end for
until the stopping criterion is met

Batch K-Means can be rewritten as a gradient-descent algorithm (see [3]). As in
many other gradient-descent algorithms, Batch K-Means is very sensitive to the
initialization. More specifically, both the time to convergence and the quality of
the clustering are strongly impacted by the prototypes initialization. We refer the
reader to [20] for an in-depth review of different K-Means initialization techniques.
In the following, the K prototypes will be initialized by affecting them the first K
points of our data set and in the case of a distributed algorithm, all the computing
units will be initialized with the same prototypes.

2.2 Complexity cost
The Batch K-Means cost per iteration does not depend on the actual data values
but only on the data size. It is therefore possible to provide a precise cost for a
Batch K-Means for a given data size. This cost has already been studied by Dhillon
and Modha ([5]). Let us briefly list the different operations required to com-
plete the algorithm. For a given number of iterations I , Batch K-Means requires:
I(K+N)d+IKd read operations, IKNd subtractions, IKNd square operations,
IKN(d−1)+I(N−K)d additions, IKd divisions, 2IN+IKd write operations,
IKd double comparisons and an enumeration of K sets whose cumulated size is N .

If the data set is small enough to fit into the RAM memory and specific care is
made to avoid most of cache miss (see for example [8]), one can neglect the read
an write operation costs for the sequential Batch K-Means version. Making the
very rough approximations that additions, subtractions and square operations are

6

all made in a single CPU clock cycle and that N >> K and N >> d, one can
model the time to run I iterations of Batch K-Means by:

SequentialBatchWalltime = (3KNd+KN +Nd)IT flop

where T flop denotes the inverse of CPU cadency (i.e. the time for a floating point
operation to be evaluated).

3 Distributed K-Means Algorithm on SMP and DMM
architectures

3.1 Distribution scheme
As already observed in [6], the Batch K-Means algorithm is inherently data-parallel:
the assignment phase which is the CPU-intensive phase of the sequential algorithm
version, consists in the same computation (distance calculations) applied on all the
points of the data set. The distance calculations are intrinsically parallel, both over
the data points and the prototypes. It is therefore natural to split the computational
load by allocating disjoint subsets of points to the different processing units. This
property makes the Batch K-Means algorithm suitable for many distributed archi-
tectures: the assignment phase is shortened by distributing point assignments tasks
over the different processing units.

Let us assume that we own M computing units and that we want to run a Batch
K-Means over a data set composed of N data points {zt}t=1..N . The initial data
set is split into M parts of homogeneous size Si = {zit}t=1..n for 1 ≤ i ≤M with
n = N/M . The computing units are assigned an Id from 1 to M and the computing
unit m processes the data set Sm. Each computing unit is loaded to the exact same
amount of computation, and the different processors complete their respective tasks
in similar amount of time. When all the computing units are done, a single unit can
proceed to the recalculation phase, before the reassignment phase is run again. We
detail this distributed algorithm version in the following logical code (Algorithm 2).

As previously stated, this distributed algorithm produces after each iteration the ex-
act same result than the sequential Batch K-Means. The distributed Batch K-Means
is therefore only evaluated on a speed-up criterion: how much does this distributed
algorithm version reduce the total time of execution? In many implementations,
the total time of execution is significantly reduced by the parallelization of the
assignments and slightly increased by the communication between the different
processors that is induced by the parallelization. We can therefore model the total

7

Algorithm 2 Distributed Batch K-Means on SMP architectures
Code run by the computing unit m
Get same initial prototypes (wk)k=1..K than other units
repeat

for t = 1 to n do
for k = 1 to K do

compute ||zmt − wk||22
end for
find the closest prototype wk∗(t,m) to zmt

end for
for k = 1 to K do

Set pmk = #{t, zmt ∈ Sm & k∗(t,m) = k}
end for
for k = 1 to K do
wm

k =
1

pmk

∑
{t, zmt ∈Sm & k∗(t,m)=k}

zmt

end for
Wait for other processors to finish the for loops
if i==0 then

for k = 1 to K do

Set wk =
1

M∑
m=1

pmk

M∑
m=1

pmk w
m
k

end for
Write w into the shared memory so it is available for the other processing
units

end if
until the stopping criterion is met

8

time of execution by the equation 2.

Distributed BatchWallT ime = T comp
M + T comm

M (2)

where T comp
M refers to the wall time of the assignment phase and T comm

M refers to
the wall time of recalculation phase (mostly spent in communications).

The wall time of the assignment phase, T comp
M is independent of the computing

platform. This wall time roughly equals the assignment phase time of the sequential
algorithm divided by the number of processing units M . Indeed, for this phase
the translation of the algorithm toward the distributed version does not introduce
nor remove any computation cost. It only distributes this computation load on M
different processing units. Therefore, this wall time is modeled by the following
equation 3.

T comp
M =

(3KNd+KN +Nd)IT flop

M
(3)

As previously stated, the wall time of the reassignment phase is mostly spent in
communications. During this phase, the different M prototypes versions com-
puted by the M processing units are merged together to produce an aggregated
prototype version (which is exactly the prototype version that would have been
produced by the sequential algorithm), and then this prototype version (referred
by shared version in the following) is made available to each computing unit be-
fore the reassignment phase is restarted. In the following sections, we investigate
how the shared prototype version is made available depending of the hardware
architecture and how this communication process impacts the wall time of the re-
calculation phase on Symmetric Multi-Processors (SMP) and Distributed Memory
Multi-processors (DMM) architectures.

3.2 Communication costs in SMP architectures
SMP refers to a multiprocessor computer architecture where several identical pro-
cessors are connected to a shared memory and controlled by a single OS instance.
A typical SMP configuration is a multi-core processor, where each core is treated
as a separate processor. In SMP architectures, the different processing units, the
main memory and the hard-disks are connected through dedicated hardware such
as buses, switches, etc. Provided that the quantity of communication does not
exceed the bandwidth of the interconnection device, the communication are very

9

fast.

In such an architecture, the communication costs of the recalculation phase are
very small compared to the processing costs of the reassignment phase. This
brings us to neglect the communication costs in the case of a SMP architecture
(T comm,SMP

M = 0). One can then simplify the Batch K-Means cost on SMP
architecture by the simplifying equation 4.

Distributed BatchWallT ime
SMP = T comp

M =
(3KNd+KN +Nd)IT flop

M
(4)

This modeling of Batch K-Means on SMP architectures provides a perfect theoreti-
cal model where the neglect of SMP communication costs leads to a theoretical
perfect speed-up of a factor M for M processing units.

3.3 Communication costs in DMM architectures
In contrast to SMP architectures, a DMM system refers to a multi-processor in
which each processor has a private memory and no shared memory is available.
In such a system, the prototypes version computed by the processing unit i is
accessible by the processing unit j (with i 6= j), if and only if the processing unit i
explicitly sends its result to the processing unit j. Since all the communications
in DMM architectures need to be explicit, several frameworks have been devised
to provide communication and synchronization primitives. These frameworks
disburden the application developer from specific communication handling by
providing a higher level communication layer. Among these frameworks, the most
well known are Message Passing Interface (MPI) (see e.g. [21]) or PVM ([22]).

The wall time of the synchronous distributed Batch K-Means algorithm on DMM
has been studied by Dhillon and Modha (see [5]) then by Joshi (see [19]). In both
cases, Batch K-Means is distributed on DMM architecture using a MPI framework.
In [5], this wall time is modeled by the following equation 3.3.

Distributed BatchWallT ime
DMM = T comp

M + T comm,DMM
M

= (3KNd+KN+Nd)IT flop

M
+O(dKIT reduce

M)

where T reduce
M , following the notation of [5], denotes the time required to perform

a sum or an average operation of M doubles distributed on M processing units.

To determine the recalculation phase wall time on DMM architectures using MPI,
one therefore need to determine the time to perform a sum or an average operation

10

distributed on M processing units, referred as T reduce
M . This quantity is determined

by the design of MPI: the MPI framework performs communication and broad-
casts data between the processing units using a tree-like topology that is described
in the following section (3.5). For such a tree-like topology, the communica-
tion and broadcasting primitives are reported to be performed in O(log(M)). By
consequence, T reduce

M is also reported to be performed in O(log(M)) (see e.g. [11]).

In many cases, the hardware architecture provides enough bandwidth for MPI to
be very efficient. In the experiments made in [5], the communication costs are
very acceptable and have little impact on the distributed Batch K-Means speed-up
(see section 3.7). Yet, the communication latency and the bandwidth between pro-
cessing units should not be neglected in many other cases. The following sections
provide a deeper evaluation of T reduce

M and computes some bandwidth condition to
prevent communications to become a bottleneck of the algorithm.

3.4 Modeling of communication real costs
A lot of work has been made to provide precise modeling of the MPI primitives
performances during the last two decades. In [11], numerical values of many MPI
execution performances are provided. As outlined in [9], achieving such numer-
ical measurements is a very difficult task that highly depends on the underlying
hardware topology, on the synchronization methods, on the network congestion,
on the different MPI implementations, etc. In this section we do not aim to provide
satisfactory numerical values of the MPI behavior in our clustering context but
rather to explicit qualitative patterns of the constraints brought by communications.

Let us consider the communication scheme described in figure 1. This overly-
simplified communication scheme highlights the tree-like nature of the commu-
nication patterns adopted by many MPI implementations. More specifically, the
figure highlights the logarithmic nature of the communication mechanism: to
sum or average values across computing units, many MPI implementations have
developed a structure where data chunks are send in multiple steps. Each step of
this communication pattern consists in two actions: a processing unit sends its
data to a seconde one, the receiving unit merges the two data chunks into a data
chunk of the same size. After each step, the number of data chunks that are send in
parallel is divided by 2. Such a pattern induces dlog2(M)e communication steps.

In the following equations, we neglect communication latencies as well as the the
time to merge the data chunk (which is small in comparison of data communication
between the two processing units) and model communication costs as the ratio of

11

Figure 1: This non-realistic scheme of the merging prototypes logic highlights the
tree structure of many MPI primitives. In the first step, the first machine sends a
data chunk to the second machine, while the third machine sends simultaneously
its data chunk to the fourth machine. A second step follows the first one in which
the merging result of the first and second machines are send to the fourth machine
that already owns the merging result of the third and fourth machines. In two steps,
the data chunks of the four workers are merged.

the quantity of data to be send by the bandwidth. We therefore provide a theoretic
modeling of T comm,DMM

M by:

T comm,DMM
M =

dlog2(M)e∑
m=1

IKdS

BDMM,MPI
M
2m

where S refers to the size of a double in memory (8 bytes in the following) and
BDMM,MPI

x refers to the communication bandwidth per machine while x process-
ing units are communicating at the same time. The number of processing units that
are communicating at the same time x has a strong impact on BDMM,MPI

x because
of a phenomenon referred as aggregated bandwidth boundaries.

The aggregated bandwidth refers to the maximum number of bytes the actual
network can transfer per time unit. We refer the reader to the section 5.2 for a more
precise explanation. In the context of our model, we make the rough simplification
that the bandwidth per worker only depends on the hardware context and on the
total number of processing units, and not on the actual number of processing units

12

communicating at the same time. We therefore note this bandwidth BDMM,MPI
M .

The time spent in communication is then written:

T comm
M =

dlog2(M)e∑
m=1

(
IKdS

BDMM,MPI
M

)

= dlog2(M)e IKdS

BDMM,MPI
M

We can then deduce an estimation of the speed-up rate on DMM architectures more
detailed than in [5], where T comm

P is specified :

Speedup =
KMeans Sequential Cost

KMeansDMMDistributedCost
(5)

=
T comp
1

T comp
P + T comm

P

(6)

=
3nKdIT flop

3nKdIT flop

M
+ IKdS

BDMM,MPI
M

dlog2(M)e
(7)

=
3nT flop

3nT flop

M
+ S

BDMM,MPI
M

dlog2(M)e
(8)

3.5 Comments
The speed-up modeling provided in the previous section is too rough to provide
a satisfactory forecasting tool to anticipate the actual speed-up provided by a dis-
tributed Batch K-Means implementation on a given architecture. Yet, this naive
modeling allows us to draw some qualitative conclusions shared by many dis-
tributed Batch K-Means implementations on shared-nothing architectures:

• The speed-up does depend neither on the number of prototypes (K), nor
on the data dimension (d) or on the law from which the data are drawn. It
only depends on the number of points in the data set (N) and on architecture
characteristics such as bandwidth, CPU frequency or whether the OS is a
32-bit or a 64-bit OS.

• The speed-up is a monotonically increasing function of N . In particular, the
previous equation leads to limN→+∞ SpeedUp = M . From this theoretical

13

result, one can draw two conclusions: the more the RAM memory of workers
is loaded, the more the workers are efficient. Provided the processing units
are given enough RAM, it is possible to get an efficiency per worker arbitrary
close to 100%.

• The actual speed-up of the distributed implementation might even be higher
than the theoretical speed-up modeling since we do not have take into ac-
count that the RAM is bounded. When the data is split across the RAM
of the multiple processing units in such a way that it fits into the multiple
RAM while it would not have fit into the RAM of a single machine, then the
speed-up achieved by the distributed version on M processing units can be
drastically higher than M .

• The previous equation shows that speed-up are a monotonically decreasing
function of T flop and a monotonically increasing function of BDMM,MPI

M .
This result shows that the parallelization is best suited on slow machines
with high communication bandwidth.

3.6 Bandwidth Condition
In this section we briefly determine some theoretical conditions that guarantee that
the recalculation phase will be small in comparison of the reassignment phase.
This condition translates into:

T comm
M << T comp

M

Such a condition translates into:

IKdS

BDMM,MPI
M

dlog2(M)e <<
(3NKd+NK +Nd)IT flop

M

A sufficient condition for equation 3.6 to be verified is that the following equation
9 is verified:

IKdS

BDMM,MPI
M

dlog2(M)e <<
3nKdIT flop

M
(9)

Finally we get the following condition:

14

N

Mdlog2(M)e
>>

S

3T flopBDMM,MPI
M

For example, in the context of a DMM architecture with 50 computing units
composed of a single mono-core retail processor (2Ghz) and a network with
100MB/sec bandwidth per processing unit, the condition turns into:

N >> 16, 000

3.7 Dhillon and Modha case study
The experiments of [5] have been run on a IBM SP2 platform with a maximum of
16 nodes. Each node is a IBM POWER2 processor running at 160MHz with 256
MBytes of main memory. Processors communicate through the High-Performance
Switch (HPS) with HPS-2 adapters. Performance of the HPS has been discussed in
[23] and [7]. In [7] for example, point-to-point bandwidth in a SP2 with HPS and
HPS-2 adapters using MPI is reported to be about 35 MBytes/sec.

It is difficult to estimate bandwidth actually obtained during the experiments of
[5], as it is also difficult to estimate effective Flops. In [5], no comments are made
about bandwidth, yet Flops are reported to be very fluctuent: 1.2 GigaFlops in
some experiment, 1.8 GFlops in another (maximum would be 16 * 160MFlops =
2,5GFlops). Yet, on smaller data sets Flops might be very much lower than the
reported numbers. Since we cannot guess the actual bandwidth and Flops during
these experiments, theoretical bandwidth and Flops are used in the following to
provide approximative results.

Dhillon reports that he has obtained a speed-up factor of 6.22 on 16 processors
when using 211 points. Using condition (5), we can estimate speed up when using
211 points :

EstimatedSpeedup =
3NT flop

3NT flop

P
+
(
2 SoD

BDMM,MPI
P

+ 5T flop
)
dlog2(P)e

' 11

We see the estimated speedup is not accurate, but we are in the range where com-
munication is important enough to prevent a perfect speedup, but yet small enough
so a significant speedup is observed.

15

When using 221 points, we get :

EstimatedSpeedup =
3nT flop

3nT flop

P
+
(
2 SoD

BDMM,MPI
P

+ 5T flop
)
dlog2(P)e

' 15.996

[5] reports that for 221 points, a 15.62 speed-up is observed. Again, anticipated
speed-up indicates there will be little issue to parallelize, and observed speed-up is
indeed excellent.

4 Implementing Distributed Batch K-Means on Azure

4.1 Recall of some Azure specificities
Windows Azure Platform is Microsoft’s cloud computing solution, in the form of
Platform as a Service (PaaS). The underlying cloud operating system (Windows
Azure) provides services hosting and scalability. It is composed of a storage system
(that includes Blob Storage and Queue Storage) and of a processing system (that
includes web roles and worker roles). We refer the reader to the chapter ?? for an
in-depth overview of Azure.

The architecture of an Azure hosted application is based on two components: web
roles and worker roles. Web roles are designed for web application programming
and do not concern our present work. Worker roles are designed to run general
background processing. Each worker role typically gathers several cloud services
and uses many workers (Azure’s processing units) to execute them.

Our cloud distributed Batch K-Means prototype uses only one worker role, several
services and tens of workers. The computing power is provided by the workers,
while Azure storage system is used to implement synchronization and communica-
tion between workers. It must be noted indeed that Azure does not offer currently
any standard API for distributed computation, neither a low level one such as
MPI, nor a more high level one such as Map Reduce ([4]) or Dryad ([12]). Map
reduce could be implemented using Azure components (following the strategy of
[16]), yet, as pointed out in e.g. [17], those high level API might be inappropriate
for iterative machine-learning algorithms such as the k-means. We rely therefore
directly on Azure queues and blob storage.

16

Our prototype uses Lokad-Cloud1, an open-source framework that adds a small
abstraction layer to ease Azure workers startup and life cycle management, and
storage access.

4.2 The cloud Batch K-Means algorithm
As already outlined, the distributed Batch K-Means can be reformulated as an
iterated MapReduce where the assignment phases are run by the mappers and the
recalculation phases are performed by the reducers. The design of our distributed
cloud Batch K-Means is therefore vastly inspired of the MapReduce abstraction
and follows the considerations introduced in the section ?? of chapter ??.

Following the MapReduce terminology, we split our algorithm into three cloud
services (setup, map and reduce services), each one matching a specific need. A
queue is associated to each service: it contains messages specifying the storage
location of the data needed for the tasks. The processing units regularly ping the
queues to acquire a message. Once it has acquired a message, a worker starts
running the corresponding service, and the message becomes invisible till the task
is completed or timeouts. Overall, we use M +

√
M + 1 processing units in the

services described below.

The SetUp Service generates M split data sets of n = N/M points in each and
put them into the BlobStorage. It is also generating the original shared prototypes
which are also stored in the BlobStorage. Once the processing units in charge of
the set-up have completed the data generation, they pushes M messages in the
queue corresponding to the "Map Service". Each message contains a taskId (from
1 to M) related to a split data set to be processed and a groupId (from 1 to

√
M),

which is described above. The same processing unit also pushes
√
M messages in

the queue corresponding to the "Reduce Service". In the current implementation2,
the SetUp service is executed by M processing units to speed-up the generation
process.

Once the set-up is completed, the Map queue is filled with M messages (corre-
sponding to the M map tasks) and the Reduce queue is filled with

√
M messages

(corresponding to the
√
M reduce tasks). Each processing unit pings the different

queues to acquire a Map task or a Reduce task.

1http://code.google.com/p/lokad-cloud/
2available at http://code.google.com/p/clouddalvq/

17

When executing a Map Service task, a processing unit is referred as a mapper.
Each mapper first downloads the corresponding partial data set it is in charge of
(once for all). Then the mapper loads the initial shared prototypes and starts the
distance computations that form the assignment phase. When the assignment phase
is completed, the mapper builds a local version of the prototypes according to the
assignment phase locally run. This prototypes version is sent to the BlobStorage,
and the mapper waits for the Reduce service to produce a shared version of the
prototypes. When the shared version of the prototypes is made available, the
mapper downloads it from the storage and restart the assignment phase using the
new prototypes version thus obtained.

When executing a Reduce Service task, a processing unit is referred as a partial
reducer. Each partial reducer downloads from the storage multiple prototypes
versions that come from different map tasks, and merge them into an average
prototypes version. More specifically, each Reduce task consists in merging

√
M

prototypes versions. The Reduce task message holds an Id called groupId that
refers to the group of prototypes versions that this task needs to collect. When the√
M prototypes versions it is in charge of are retrieved, the partial reducer merges

the prototypes versions using weighted averages and pushes the merged result into
the storage. When all the

√
M Reduce tasks have been completed, a last reducer,

referred as the final reducer, downloads the
√
M merged results thus produced

and merge all of them into a single prototypes version called shared version. This
shared version is pushed into the storage to be made available for the mappers3.
When this shared version is read by the mappers, a new iteration of the algorithm
is started and the assignment phase is re-run by the mappers.

The two-steps design of the Reduce service (partial reducers and the final reducer)
is of primary importance. This design ensures no processing unit needs to down-
load more than

√
M prototypes versions per iteration. In the same manner,

√
M

copies of the shared prototypes version are made available in the storage instead of
one, to ensure no blob is requested in parallel by more than

√
M processing units

per iteration.

For each iteration of the algorithm, there are 3 synchronization barriers. Firstly,
each partial reducer needs to get the results of the

√
M mappers it is related with

before merging them. Secondly, the final reducer needs to get the results of all
the
√
M partial reducers before merging them into the shared prototypes version.

Finally, each mapper needs to wait for the final reducer to push into the BlobStor-

3More specifically, the final reducer pushes
√
M copies of the shared prototypes version in the

storage instead of one. Each of this copies is read by all the mappers sharing the same groupId.

18

age the shared version before restarting the reassignment phase. As outlined in the
chapter ??, the synchronization primitive is one of the few primitives that is not
directly provided by Azure. Let’s consider two different designs to implement this
synchronization process.

A first solution consists in using a counter to keep track of the number of tasks
that need to be completed before the synchronization barrier could be removed.
This counter needs to be idempotent and designed such as the contention is limited.
Such a counter has been already described in the BitTreeCounter section of chapter
??. For example, all the mappers that process tasks sharing the same groupId could
own such a counter initially set to

√
M ; when a mapper is done, it decrements the

counter, and when a mapper decrements the counter from 1 to 0, it knows all the
other mappers of the same groupId are also done, so that the partial reduce could
be started.

A second solution comes from the ability for each processing unit to ping a specific
blob in the storage to determine if the blob exists or not. Let us re-examine the
previous example. Instead of using a specific counter and starting the reducer only
when the counter hits 0, the partial reducer could be started from the beginning,
in parallel of the mappers. This partial reducer would then regularly query the
storage to detect whether the prototypes versions produced by the mappers have
already been made available. When all the

√
M versions have been retrieved,

then the partial reducer can start the merging operation. This second solution
requires that each blob put into the storage has a corresponding blobName that is
pre-defined using a fixed rule; in the case of prototypes versions made by mappers,
the corresponding blobNames are built using the following addressing rule: pre-
fix/iteration/groupId/jobId.

Both the solutions presented provide idempotency and avoid contention. The sec-
ond solution has been chosen because it helps reducing straggler issues (see section
5.4) by overlapping latest computations of mappers with retrieval of first available
results by the partial reducer. This second solution comes with the drawback of
running more workers (M +

√
M + 1) than the first solution (M). This drawback

is not of primary importance since, as this will be highlighted in the following
sections, the scale-up of our algorithm will be more limited by the bandwidth/CPU
power of our machines than by the actual cost of these machines.

The figure 4.2 provides a scheme of the cloud implementation of our distributed
Batch K-Means. The algorithms 3 (resp. 4 and 5) reproduce the logical code run
by the mappers (resp. the partial reducers and the final reducer).

19

Mapper 1

Mapper 2

Mapper 4

Mapper 5

Mapper 6

Mapper 3

Partial
Reducer

Final
Reducer

Partial
Reducer

blobstorage

Final reduce result

(prototypes)

Partial reduce

result (prototypes)

Map result

(prototypes)

worker

push blob into

pings the storage

untill it finds the

given blob, then

downloads it

Figure 2: Distribution scheme of our cloud distributed Batch K-Means. The
communications between workers are conveyed through the BlobStorage. The
recalculation phase is a two-step process run by the partial reducers and the final
reducer to reduce I/O contention.

20

Algorithm 3 Distributed Cloud Batch K-Means : Mapper
Dequeue a message from the Map Queue.
Get taskId, groupId and IterationMax from the message.
Set m=taskId
Retrieve the partial data set Sm = {zmi }i=1..N from the storage
Retrieve the initial prototypes shared version {wsrd

k }k=1..K

Initialize wm as wm = wsrd

for It=0; It < IterationMax ; It++ do
for zmi ∈ Sm do

for k = 1 to K do
Compute ||zmi − wk||22

end for
Find the closest prototype wk∗(i,m) to zmi

end for
for k = 1 to K do

Set pmk = #{t, zmt ∈ Sm & k∗(t,m) = k}
end for
for k = 1 to K do

Set wm
k =

1

pmk

∑
{t, zmt ∈Sm & k∗(t,m)=k}

zmt

end for
Send wm into the storage in a location depending of the iteration It
Send pm into the storage in a location depending of the iteration It
Ping the storage every second to check if wsrd is available for iteration It
Download it when it becomes available
Replace wm by the new downloaded shared version

end for

21

Algorithm 4 Distributed Cloud Batch K-Means : Partial Reducer
Dequeue a message from the Partial Reduce Queue.
Get groupId and IterationMax from the message.
Set g= groudId
for It=0; It < IterationMax ; It++ do

Retrieve the prototypes version {wm}m=g
√
M..(g+1)

√
M corresponding to itera-

tion It
Retrieve the corresponding weights {pm}m=g

√
M..(g+1)

√
M corresponding to

iteration It
for k = 1 to K do

Set pgk =
(g+1)

√
M∑

m=g
√
M

pmk

Set wg
k =

1
pgk

(g+1)
√
M∑

m=g
√
M

pmk w
m
k

end for
Send wg into the storage in a location depending of the iteration It
Send pg into the storage in a location depending of the iteration It

end for

Algorithm 5 Distributed Cloud Batch K-Means : Final Reducer
Dequeue the single message from the Final Reduce Queue.
Get IterationMax from the message.
for It=0; It < IterationMax ; It++ do

Retrieve the prototypes version {wg}g=1..
√
M corresponding to iteration It

Retrieve the corresponding weights {pg}g=1..
√
M corresponding to iteration It

for k = 1 to K do

Set psrdk =

√
M∑

g=1

pgk

Set wsrd
k = 1

psrdk

√
M∑

g=1

pgkw
g
k

end for
Send wsrd into the storage in a location depending of the iteration It

end for

22

4.3 Comments on the algorithm
In the previous proposed algorithm as well as in the DMM implementation of
[6], the assignment phase of Batch K-Means is perfectly parallelized. As already
outlined in the modeling of speed-up in the case of DMM architectures, the global
performances are hindered by the reduction phase wall time duration. In the case
of a SMP architecture, the recalculation phase is approximately instantaneous and
the parallelization in such architectures are very efficient. On DMM architectures,
we have already showed how the MPI framework provides very efficient primitives
to perform the reduction phase in amounts of time that are in most cases negligible
(with a O(log(M)) cost). In such cases, the DMM implementations lead to a linear
speedup nearly as optimal as in the SMP case, as confirmed in the large data set
experiments of [6].

In the case of our Azure implementation that relies on the storage instead of direct
inter-machines communications, the recalculation phase is proportionally much
longer than in the DMM case. The two-steps design of our algorithm produces
a recalculation phase cost of O(

√
M) because the partial reducers as well as the

final reducer need to download
√
M prototypes versions per iteration. Such a cost

is asymptotically much higher than the asymptotical cost of the MPI framework
(O(log(M))). While it would have been possible for our reduction architecture
to complete in O(log(M)) by implementing a log(M)-steps architecture, such a
design would have led to higher recalculation costs because of frictions. Indeed,
the latency between a task to being completed and the consumer of the former task
result to acknowledge that the result is available is rather high. This phenomenon
highlights a previously stated remark (see chapter ??): the cloud platforms are
probably not suited to process very fine-grained tasks.

We also draw the reader’s attention on the importance of the data set location and
download. The previous algorithm is inspired from an iterated MapReduce with the
noticeable exception that each map task does not correspond to a single iteration of
K-Means but to all the iterations. Since Azure does not provide a mechanism to
run computations on the physical machines where the data are stored through the
BlobStorage, each processing unit need to download the data set from the storage
(i.e. from distant machines). To prevent each of the workers from re-loading a data
set at each iteration, we have chosen that each processing unit was processing the
same data chunk for each iteration.

23

4.4 Optimizing the number of processing units
A very important aspect of our cloud implementation of Batch K-Means is the
elasticity provided by the cloud. On SMP or DMM architectures, the quantity
of CPU facilities is bounded by the actual hardware, and the communication are
fast enough so the interest of the user is to run the algorithm on all the hardware
available. The situation is significantly different for our cloud implementation.
Indeed, the cloud capabilities can be redimensionned on-demand to better suit
our algorithm requirements. Besides, the communication costs induced show that
oversizing the number of workers would lead to increase the overall algorithm
wall time because of these higher communication costs. Running Batch K-Means
on cloud computing therefore introduce a new interesting question: what is the
(optimal) amount of workers that minimize our algorithm wall time?

To answer this question, we re-tailor the speed-up formula detailed in section 3.5.
As already explained in section 4.2, the symbol M in the following will not refer
to the total number of processing units but to the number of processing units that
will run the Map tasks. The total amount of processing units could be lowered to
this quantity, but as outlined in the same section, it would come at the cost of a
slightly slower algorithm. As in the DMM case, the distance calculations wall time
stays unmodified:

T comp
M =

(3NKd+NK +Nd)IT flop

M

where N , as in the DMM architecture case, stands for the total number of points in
all the data sets gathered. In addition to the distance calculations, a second cost is
introduced to model the reassignment phase wall time: it is the time to load the data
set from the storage. Let us introduce T read

Blob (resp. Twrite
Blob) that refers to the time

needed by a given processing unit to download (resp. upload) a blob from (resp.
to) the storage per memory unit. The cost to load the data set from the storage is
then modeled by the following equation:

TLoad
M =

NdST read
Blob

M

We recall that by design this loading operation need to be performed only once,
even when I > 1. This loading operation can neglected in speed up model if
TLoad
M << TComp

M . A sufficient condition for this to be true is:

24

ST read
Blob

3IKT flop
<< 1

This condition is true in almost all the case. We now provide a new wall time
modeling of the recalculation phase performed by the two-steps reduce architec-
ture provided in section 4.2. This recalculation phase is composed of multiple
communications between workers and storage as well as average computation of
the different prototypes versions. More specifically, each iteration requires:

• M mappers to write their version "simultaneously" in the storage

• Each of the partial reducers to retrieve
√
M prototypes versions

• Each of the partial reducers to compute an average of the versions thus
retrieved

• Each of the partial reducers to write "simultaneously" its result in the storage

• The final reducer to retrieve the
√
M partial reducer versions

• The final reducer to compute the shared version accordingly

• The final reducer to write the
√
M shared versions in the storage

• All the mappers to retrieve the shared version

The recalculation phase per iteration can therefore be modeled by the following
equation:

T comm,periteration
P = KdSTwrite

Blob +
√
MKdST read

Blob + 5(
√
M)KdT flop

+KdsT read
Blob +KdSTwrite

Blob +
√
MKdST read

Blob

+ 5(
√
M)KdT flop +

√
MKdSTwrite

Blob

Keeping only the most significant terms, we get:

T comm
M ' I

√
MKdS(2T read

Blob + Twrite
Blob)

25

Then we can deduce an "idea" of the speed-up factor :

SpeedUp =
T comp
1

T comp
M + T comm

M

(10)

' 3IKNdT flop

3IKNdT flop

M
+ I
√
MKdS(2T read

Blob + Twrite
Blob)

(11)

' 3NT flop

3NT flop

M
+
√
MS(2T read

Blob + Twrite
Blob)

(12)

Using this modeling, which is very naive, one can see there is an optimal number
of workers to use. This number is obtained by having time spent by communication
equals time spent by computation.

M∗ = 2/3

√
3NT flop

S(2T read
Blob + Twrite

Blob)
(13)

In this model, the best number of processing units does not scale linearly with the
number of data points n (whereas it was the case in the DMM implementation cost
model). It directly follows that our model provide a theoretical impossibility to
provide an infinite scale-up with the two-steps reduce architecture. The section 5.6
investigates how our cloud distributed Batch K-Means actually perform in terms of
practical scale-up.

One can verify that for the previous value of M∗, T comp
M∗ = T comm

M∗ . This means that
when running the optimal number of processing units, the reassignment phase and
the recalculation phase have the same duration. In such a situation the efficiency of
our implementation is rather low: with M∗ +

√
M∗ + 1 processing units used in

the algorithm, we only get a speed-up of M∗/2.

5 Experimental results

5.1 Azure base performances
In order to use our cost models as a predictive tool to determine the optimal num-
ber of workers M∗ and our implementation performance, one needs to evaluate
the Azure services performances. These performances have already been briefly
analyzed in section ?? of chapter ??. We refer the reader to this section for more
explanations and just recall here the recorded performances.

26

• BlobStorage Read Bandwidth: 8MBytes/sec

• BlobStorage Write Bandwidth: 3MBytes/sec

• CPU performance while performing distance calculations: 670 MFlops

5.2 The two-steps reduce architecture benchmark
The aggregated bandwidth refers to the maximum number of bytes the actual
network can transfer per time unit. In most cases, such a quantity does not equal
the product of maximal bandwidth per processing unit by the number of processing
units, since the network may not sustain such maximal bandwidths for each workers
when all of them are communicating at the same time. The aggregated bandwidth
measurement is a difficult task that is hardware and task dependant. In this section
we focus on a specific case raised by our clustering algorithm developed in chapter
??.

In the case of the two-steps recalculation phase implementation developed in
section 4.2, theoretically determining how long would the recalculation phase be is
too difficult and inaccurate, partly because of the previously mentioned aggregated
bandwidth boundaries. We therefore produce a custom benchmark to evaluate
the time spent in the recalculation phase as follows: the prototypes are designed
as a data chunk of 8MBytes and the recalculation phase is run 10 times(I = 10).
For different values of M , the clustering implementation is run but the processing
part is replaced by waiting a fix period of time (15 seconds), so we could record
communication time without being affected by straggler issues, as reported in
section 5.4. The following table provides wall time of this benchmark (for 10
iterations), and the amount of time spent in the recalculation phase (Wall Time -
10*15 seconds).

M 5 10 20 30 40 50 60 70 80
Wall Time (in sec) 287 300 335 359 392 421 434 468 479

Communication (in sec) 137 150 185 209 242 271 284 318 329
2Tread

Blob + Twrite
Blob , (in 10−7sec/Byte) 7.64 5.92 5.16 4.76 4.78 4.78 4.59 4.73 4.58

M 90 100 110 120 130
Wall Time (in sec) 509 533 697 591 620

Communication (in sec) 359 383 547 441 470
2Tread

Blob + Twrite
Blob , (in 10−7sec/Byte) 4.71 4.77 6.51 5.02 5.13

First of all, one can notice that the quantity 2T read
Blob + Twrite

Blob does not grow with M
(at least for M < 100). This result proves that we do not suffer in our experiment
from aggregated bandwidth boundaries before using 100 workers. Secondly, we
note that the obtained value is smaller than the value that would be obtained fol-
lowing the values provided in section 5.1: indeed, the parallelization of downloads

27

and uploads in each machine (through multiple threads) reduces enough the com-
munication to unbalance the frictions introduced by our two-step design. Finally,
the whole process is sometimes behaving much worse than expected (see the case
M = 110). The case M = 110 has been re-launched 1 hour later, obtaining the
value 4.85.

5.3 Experiment settings
In the following experiments, Batch K-Means are run on synthetic data. As ex-
plained in the introduction of this chapter, the Batch K-Means wall time depends
on the data size but not on the actual data values, except for the number of it-
erations to convergence. Thus, the synthetic nature of the data has no impact
on the conclusion that we draw. Besides, the synthetic nature of our data has
allowed us to easily modify parameters such as d to highlight some results. The
synthetic data are generated uniformly in the unit hypercube using the following
settings: the dimension d is set to 1000 and the number of clusters K is set to
1000. The number of points in the total data set depends on the experiment run: for
scale-up experiments, the total data set is composed of 500, 000 data points that are
evenly split among the multiple processing units, while the data set total amount of
points grows with the number of processing units in the scale-up experiments. In all
our experiments, the algorithm is run for 10 iterations to get stable timing estimates.

Theoretically, K and d should have the same impact on map and reduce phases
since map and reduce costs are supposed to be proportional of KD. This result
traduces the fact that speed-up is theoretically agnostic to K or d. Yet, since our
model does not take into account latency, having very small values of K and D
would lead to underestimate communication costs by neglecting latency. Provided
that K and d are kept big enough, our speed-up/scale-up results remain strongly
close.

As explained in the introduction of the chapter, the distributed Batch K-Means
produce for each iteration the exact same results than a sequential Batch K-Means
would run. Thus, the following experiments only focus on the speed-up provided
by the parallelization and not the function loss improvements.

5.4 Straggler issues
In this section we investigate the variability of CPU performances of the multiple
processing units and show that some tasks are processed in amounts of time signifi-

28

Figure 3: Distribution of the processing time (in second) for multiple runs of the
same computation task for a single VM. As expected, the distribution is tightened
on a specific value.

cantly higher than expected, a phenomenon referred as stragglers (see e.g. [4] or
[15]).

In the first experiment, we run 100 times the same task that consists in a heavy
distance calculations load (each task corresponds to a reassignment phase). The
task is expected to be run in 7 minutes. The results are provided in figure 5.4.
In the second experiment, the same task is run 10 times in a row by 85 mappers.
Each of the 850 records therefore consists in the same computation load, per-
formed on processing units supposedly of the same performance (Azure small role
instances). The same experiment has been run on 2 different days, on 2 different
hours, on different workers, and the same following patterns have been observed.
The following figure provides the empirical distribution of these computation dura-
tions.

From this experiment, we deduce that:

• The 3 modes distribution : 90% of the tasks are completed between 390 and
500 seconds. For the tasks completed in this interval, we observe 3 different
modes of our empirical distribution.The 3 modes may be due to hardware
heterogeneity or multiple VM hosted on the same physical machine.

• A worker can be affected by temporary slowness : The three longest runs

29

Figure 4: Distribution of the processing time (in second) for multiple runs of the
same computation task for multiple VM. One can note the "3 modes" distribution
and outliers (tasks run in much more time).

(823 seconds, 632 seconds, 778 seconds) have been performed by the same
VM, which has also performed very well on other iterations: (360 seconds,
364 seconds, ...). This could be explained by very different reasons, such as
the fact the physical machine hosting our VM has been hosting temporarily
another VM, a temporary downsizing of the size of cache memory for our
VM, etc.

Straggler issues have already been pointed out, for example in the original MapRe-
duce article [4] by Google, yet they were observed while running thousands of
machines. We show that straggler issues are also observed on as such a small pool
of workers as 100 VM. [4] describes a monitoring framework to detect tasks taking
too much time, and use backup workers to re-launch tasks that has been detected
to be too long. Yet, this approach leads to wait for the standard duration of the task
before detecting straggler tasks and launching again the corresponding tasks. This
situation severely limits the potential speed-up that can be achieved.

As pointed out by Graphlab [17], the ease of access of MapReduce frameworks
and the great help it provides to design scalable applications has driven part of
the machine-learning community to think their algorithms to fit in a MapReduce
framework. However, the combination of stragglers and of a synchronous frame-
work like MapReduce prevent in many cases users from obtaining overall good

30

speed-ups.

5.5 Speed-up
In this section we report the performances of the cloud implementation proposed
in section 4.2 in term of speed-up. In other terms, we investigate whether the
proposed implementation allows us to reduce the Batch K-Means execution wall
time for a given data set. In addition, we compare the observed speed-up to the
theoretical speed-up obtained by the equation 10. We report the results of one
out of multiple experiments that we run. The other experiments showed the same
general patterns and qualitative conclusions.

The proposed implementation is tested using the settings described in section 5.3.
The algorithm is run for 10 iterations to get stable timing estimates. Neglecting
loading time and memory issues (a small instance has only 1 GB of memory), a
sequential Batch K-Means implementation would use approximately 6 hours and
13 minutes to run the 10 iterations.

The following table reports the total running time in seconds (including data load-
ing) of the proposed implementation for different numbers of mappers (M). We
report the speedup over the theoretical total running time, the efficiency (speedup
divided by the total number of processing units M +

√
M + 1) and the theoretical

efficiency predicted by the model.

M 10 50 60 70 80 90 95 100 110 120 130 140 150 160
Time 2223 657 574 551 560 525 521 539 544 544 574 603 605 674

SpeedUp 10.0 34.1 39.0 40.6 40.0 42.6 43.0 41.5 41.2 41.2 39.0 37.1 37.0 33.2
Efficiency 0.67 0.58 0.57 0.51 0.44 0.42 0.41 0.37 0.34 0.31 0.27 0.24 0.23 0.19
Theo. Eff. 0.63 0.61 0.60 0.55 0.53 0.49 0.48 0.47 0.43 0.41 0.37 0.36 0.33 0.32

As expected, the total processing time is minimal for a specific value of M (here
95), for which half of the total time is spent in the map phase and for which the
speed-up (43.0) is approximately M∗/2 (as predicted by the model). With the
values of T flop reported in section 5.1 and the values of 2T read

Blob +Twrite
Blob evaluated in

section 5.2, the estimated optimal number of mappers is 70. While the theoretical
optimal number of workers slightly underestimate the actual optimal number of
workers, the equation 13 provides a first estimate of this number before running
the experiments. More specifically, once the values 2T read

Blob + Twrite
Blob and T flop have

been once evaluated, our equations provide an a-priori tool to estimate what would
be the optimal number of machines to use.

31

5.6 Optimal number of processing units and scale-up
We recall that the scale-up is the ability to cope with more data in the same amount
of time, provided that the number of processing units is increased accordingly.
In our cloud Batch K-Means, the theoretical optimal number of mappers M∗ is
not proportional to N (see equation 13), contrary to the DMM/MPI model cost
(because of the communication cost in O(log(M))). As a consequence, our cloud
version cannot hope to achieve linear scale-up.

As a consequence, the scale-up challenge turns into minimizing growth of wall time
as N grows, using M∗(N) mappers. Theoretically, our model gives a processing
cost (T comp

M) proportional to N/M and a communication cost (T comm
M) proportional

to
√
M . As a consequence, the algorithm execution total time (T comp

M + TMcomm)
is proportional to 1/3

√
N and the optimal number of workers M∗ is proportional to

2/3
√
N .

In the following experiment, the values of K and D are kept constant (K = 1000
and D = 1000). For various values of N , our implementation is run on different
values of M to determine the effective optimal values of M for a given N .

N M∗ Wall Time Sequential Effective Theoretical
theoretic time Speedup Speedup (= M∗

2
)

Experiment 1 62500 27 264 2798 10.6 9
Experiment 2 125000 45 306 5597 18.29 15
Experiment 3 250000 78 384 11194 29.15 26
Experiment 4 500000 95 521 22388 43.0 31.6

As expected, one can see that M∗(N) and T comp
M + TMcomm do not grow as fast

as N . Between the experiment 1 and the experiment 4, N is multiplied by 8. Our
theoretical model anticipates that M∗ should grow accordingly by 82/3 = 4. Indeed,
M∗ grows from 27 to 95 (that is a 3.51 ratio). In the same way, our model antici-
pates that the execution wall time should grow by 81/3 = 2. Indeed, the execution
wall time grows from 264 seconds to 521 seconds. The figure 5.6 provides the de-
tailed experiments results of the speed-up obtained for multiple values of N and M .

For our last experiment, we aim to achieve the nominal highest value possible for
speed-up. As explained in section 3.5, for a fixed number of mappers M , the best
achievable speed-up is obtained by filling the RAM of each machine with data so
each machine is in charge of a heavy computation load. While the table ?? and
the figure 5.6 show how the speed-up grows with N (using M∗(N)), the following
figure 5.6 shows how the speed-up grows with M (using the highest value of N
that do not oversize the RAM of our VM). For this experiment, we set K = 1000,

32

0	

10	

20	

30	

40	

50	

60	

70	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	
 160	
 180	

Sp
ee
du

p	

Number	
 of	
 mappers	
 P	

Speedup	
 in	
 func3on	
 of	
 the	
 number	
 of	
 mappers	

Theore0cal	
 speedup	
 N	
 =	
 62500	

N	
 =	
 125000	
 N	
 =	
 250000	

N	
 =	
 500000	
 N	
 =	
 1000000	

Figure 5: Charts of speed-up performance curves for our cloud Batch K-Means
implementation with different data set size. For a given size N , the speed-up grows
with the number of processing units until M∗, then the speed-up slowly decrease.

D = 1000, and set N in such a way that each mappers is given 50.000 data points
N = M ∗ 50.0004.
Overall, the obtained performances are satisfactory and the predictive model pro-
vides reasonable estimates of the execution wall time and of the optimal number
of processing units that need to be used. While there is room for improving our
implementation, the latency issues might prevent resorting on a tree like O(log(P))
reducer as available in MPI without using direct inter-machines communications.
Without native high performances API, communication aspects will probably re-
main a major concern in Azure implementations.

5.7 Price
Without any commitment and package, 1 hour of CPU on small VM is charged 0.1
dollar and 1000000 transactions between workers and storage (QueueStorage or
BlobStorage) are charged 1 dollar. Therefore, one clustering experiment with 10
workers (decreasing wall time from 6 hours to 37 minutes) is charged less than 2

4The value of n = 50.000 corresponds to 400 MBytes in RAM, while the RAM of the small
role instances are supposed to have 1.75GBytes. In theory, we could have therefore loaded much
more our instances. In practice, when we run this experiment in 2010, the VM crashed when we
used higher values for n

33

0	

20	

40	

60	

80	

100	

120	

140	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

Sp
ee
du

p	

Number	
 of	
 mappers	
 P	

Speedup	
 in	
 func3on	
 of	
 the	
 number	
 of	
 mappers	

Observed	
 speedup	

Theore4cal	
 speedup	

Figure 6: Charts of speed-up performance curves for our cloud Batch K-Means
implementation with different number of processing units. For each value of M ,
the value of N is set accordingly so that the processing units are heavy loaded
with data and computations. When the number of processing units grows, the
communication costs increase and the spread between the obtained speed-up and
the theoretical optimal speed-up increases.

34

dollars, and our biggest experiment running 175 workers is charged less than 20
dollars. Since our experiments are not one hour long but 10 minutes long at worst,
if one can recycle the 50 other minutes running other computations, then the cost
of our biggest experiment drops to 4 dollars on average. For bigger uses, some
packages are available to decrease charges.

References
[1] R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design,

implementation, and experience. IEEE Trans. Knowledge and Data Eng.,
8(6):962-969, 1996.

[2] David Arthur and Sergei Vassilvitskii. How slow is the k-means method?

[3] Léon Bottou and Yoshua Bengio. Convergence properties of the k-means
algorithms. In Advances in Neural Information Processing Systems 7, pages
585–592. MIT Press, 1995.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[5] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm
on distributed memory multiprocessors. Large-scale Parallel KDD Systems
Workshop, ACM SIGKDD, August 1999.

[6] Inderjit S. Dhillon and Dharmendra S. Modha. A data-clustering algorithm
on distributed memory multiprocessors. In Revised Papers from Large-Scale
Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems,
SIGKDD, pages 245–260, London, UK, 2000. Springer-Verlag.

[7] On Ibm Sp (draft, Gang Cheng, and Marek Podgorny. The high performance
switch and programming interfaces on ibm sp2, 1995.

[8] Ulrich Drepper. What every programmer should know about memory, 2007.

[9] William Gropp and Ewing Lusk. Reproducible measurements of mpi perfor-
mance characteristics. pages 11–18. Springer-Verlag, 1999.

[10] C. Hennig. Models and methods for clusterwise linear regression. In Pro-
ceedings in Computational Statistics, pages 3–0. Springer, 1999.

35

[11] Torsten Hoefler, Rajeev Thakur, and Jesper Larsson Träff. Toward perfor-
mance models of mpi implementations for understanding application scaling
issues.

[12] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.
In EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 59–72, New York, NY, USA,
2007. ACM.

[13] R. Agrawal J. C. Shafer and M. Mehta. A scalable parallel classifier for
data mining. Proc. 22nd International Conference on VLDB, Mumbai, India,
1996.

[14] A K Jain, M N Murty, and P. J. Flynn. Data clustering: A review. In ACM
computing surveys, Vol.31, no.3, September, 1999.

[15] Jimmy Lin. The curse of zipf and limits to parallelization: A look at the
stragglers problem in mapreduce.

[16] Huan Liu and Dan Orban. Cloud mapreduce: a mapreduce implementation
on top of a cloud operating system. Technical report, Accenture Technology
Labs, 2009. http://code.google.com/p/cloudmapreduce/.

[17] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Graphlab: A new parallel framework
for machine learning. In Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island, California, July 2010.

[18] Kasturi Varadarajan Meena Mahajan, Prajakta Nimbhorkar. The planar k-
means problem is np-hard. ?, - -.

[19] Manasi N.Joshi. Parallel k-means algorithm on distributed memory multipro-
cessors. ?, spring 2003.

[20] A. D. Peterson, A. P. Ghosh, and R. Maitra. A systematic evaluation of
different methods for initializing the k-means clustering algorithm. Technical
report, 2010.

[21] Marc Snir, Steve Otto, Steven Huss-Lederman, Walker David, and Jack
Dongarra. MPI: The Complete Reference. MIT Press, Boston, 1996.

[22] V. S. Sunderam. Pvm: A framework for parallel distributed computing.
Concurrency: Practice and Experience, 2:315–339, 1990.

36

[23] John Sobolewski Vasilios Georgitsis. Performance of mpl and mpich on the
sp2 system.

[24] Liao W. Parallel k-means data clustering. 2005.

37

