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The algorithm has been run for different values of N and P. We set K=1000 and D=1000 in all ex-

A// periments so latency can be neglected , and experiments were run for 10 iterations to get stable timing
.y estimates.

The reduce phase is a two-step procedure where all | | On the left figure, we fixed N and plot the speedup curve as a function of P, which is relatively flat in a
the partial reduce jobs are run in parallel. neighboorhood of P*. But for P = P*, most of the time is spent in communication, resulting in a rather
inefficient worker usage.

The algorithm has also been run with much more points per mapper (50,000 points per worker on right fig-
ure). Workload in each worker being much more important, communication becomes small compared to
computation, and satistactory speedups and scaleups can be reached, provided no straggler issues are met.
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Our prototype is build on top of several compo- the cost of computation and communication by : Computation time (in s Computation time (in s
nents that ease access to storage and workers life-
cycle management: Teomp — SNKDIF T — 9\ /PKDI(By + 0.5B5) As shown in right figure, each worker performs computation with very stable timing. But some workers
1 may be slowed-down during a short period of time, as shown in worst cases of left figure. This mechanism
e Azure queues provide a message deliv- Speedup can therefore be modeled as : has little effect on performance while running 100 workers, but may become very critical while running
ery mechanism through distributed queues. com housands of machines.
Messages can be returned multiple times, T = Comfl — SNV
which implies that jobs must be idempotent. Tp™" +Tp™™ 355 +2V/P(B1 +0.58s)

The optimal number of mapper PU is given by P* =
(3NF/(B1 + 0.5B5))?/3. For this value of P*, which de-
pends neither on K nor on D, the total processing time
consists in one third of mapping and two third of reduc-

e Azure blobstorage is a key/value pairs stor-
age system. Workers are stateless : all the in-
termediate and final results are stored in the
blobstorage.

[1] Dhillon, Inderjit S. and Modha, Dharmendra S. A Data-
Clustering Algorithm on Distributed Memory Multipro-
cessors In Revised Papers from Large-Scale Parallel Data

Mining, Workshop on Large-Scale Parallel KDD Systems,
SIGKDD

Communication costs induce a potential bound on
scaling for cloud applications. As anticipated by
the model, communication takes more time than

computation while running P* mappers. Con-
versely, heavy workload on each worker leads to
very satisfactory speedups while running up to 150
mappers. Beyond this scale, straggler issues may
become a bottleneck, and should be handled.

ing. Conversely, for N sufficient, communication is neg-
o [okad-Cloud framework provides an abstrac- ligible and one can achieve good speedup.
tion layer on storage and workers.
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