
A Discussion on Parallelization Schemes for
Vector Quantization Algorithms

Matthieu Durut1,3, Benoit Patra2,3, Fabrice Rossi4

1- Telecom ParisTech - INFRES, 46 rue Barrault - Paris - France

2- Université Pierre et Marie Curie - LSTA, 4 place Jussieu - Paris - France

3- Lokad , 10 rue Philippe de Champaigne - Paris - France

4- Université Paris I Panthéon-Sorbonne - SAMM, 90 rue de Tolbiac - Paris - France

Abstract. This paper studies parallelization schemes of the Vector
Quantization algorithm in order to obtain time speed-ups using distributed
resources. We show that the most intuitive parallelization scheme does
not lead to better performance than the sequential algorithm. Another
distributed scheme is therefore introduced which recovers the expected
speed-ups. Then, it is improved to fit implementation on distributed ar-
chitectures where communications are slow and inter-machines synchro-
nization too costly. The schemes are tested with simulated distributed
architectures and, for the last one, with Microsoft Windows Azure plat-
form obtaining speed-ups up to 32 VMs.

1 Introduction

Motivated by the problem of executing clustering algorithms on very large
datasets, we investigate parallelization schemes of the Vector Quantization (VQ)
method (also called online k-means). This procedure is known for its good sta-
tistical properties but, as any on-line procedure, it is inherently slow. In this
paper, we assume to have access to a satisfactory sequential implementation of
the VQ algorithm. Then, our goal is to distribute efficiently this algorithm in or-
der to bring speed-ups, i.e., gain of time execution brought by more computing
resources compared to a sequential execution. Such theoretical parallel algo-
rithms are developed in [?]. However, they may cover many different practical
implementations. Practical considerations lead us to the present analysis.

The VQ technique computes a summary of a dataset {zt}nt=1 of d dimensional
samples using the following iterations on a vector w = (w1, . . . , wκ) ∈ (Rd)κ,
whose components are called the prototypes,

w(t+ 1) = w(t)− εt+1H
(
z{t+1 mod n}, w(t)

)
, t ≥ 0. (1)

In the equation above, w(0) ∈
(
Rd
)κ

, the εt are positive reals called steps and
H(z, w) is defined by

H(z, w) =
(

(w` − z)1{l=argmini=1,...,κ‖z−wi‖2}
)
1≤`≤κ

, z ∈ Rd and w ∈ (Rd)κ.

(2)



The mod operator stands for the remainder of an integer division operation. For
a discussion on ties that may appear in equation (2) and for a satisfactory al-
most sure convergence theorem of the VQ procedure, the reader is referred to [?].
Remark that the term H(z, w) is accessible with a simple distance computation
and can also be thought as a sample of the gradient of the clustering criterion,
namely the distortion (see for instance [?]). Therefore, the VQ technique also
belongs to the class of stochastic gradient descent algorithms.

This paper follows the VQ ideas presented in [?]. We assume having access to
M computing entities, each of them executing concurrent VQ procedures. These
executions are performed on a dataset, split among the local memory of the
computing instances, and represented by the sequences {zit}nt=1, i ∈ {1, . . . ,M}.
The prototype iterations computed by the multiple VQ techniques are denoted
by {wi(t)}∞t=0 and called versions. We use the following normalized criterion to
measure the speed-up ability of our investigated schemes.

Cn,M (w) =
1

nM

M∑
i=1

n∑
t=1

min
`=1,...,κ

∥∥zit − w`∥∥2, w ∈ (Rd)κ. (3)

Algorithms are tested using simulated distributed architecture and synthetic
vectorial data1 in this paper. In addition, it is organized as follows. First, Sec-
tion 2 provides empirical evidences that the most simple scheme cannot bring
speed-ups. Then, some insights to explain the previous non satisfactory situation
are provided in Section 3. Consequently, we design a new scheme and prove by
practice its ability to bring speed-ups. Finally, in Section 4, we present an asyn-
chronous adaptation of this latter scheme which fits better slow communication
architectures such as Cloud Computing.

2 A first distributed scheme

Our investigation starts with the most intuitive parallelization scheme given by
the system of equations (4). All versions are set equal at time t = 0,
w1(0) = . . . = wM (0). For i ∈ {1, . . . ,M} and t ≥ 0, we have the following
iterations:

witemp = wi(t)− εt+1H
(
zi{t+1 mod n}, w

i(t)
)

wi(t+ 1) = witemp if t mod τ 6= 0 or t = 0,{
wsrd = 1

M

∑M
j=1 w

j
temp

wi(t+ 1) = wsrd
if t mod τ = 0 and t ≥ τ.

(4)
The averaging phase described by the braced inner equations is executed

only whenever τ points have been processed by every concurrent processors. It
produces a shared version of the prototypes, namely wsrd, which is broadcasted

1Source code is available at the address http://code.google.com/p/clouddalvq/



to each processing unit. The Figure 1 shows that multiple resources do not bring
speed-ups for convergence. Even if more data are processed, no gain in term of
wall clock time is provided using this distributed scheme.

Figure 1: Charts of performance curves for iterations (4) with τ = 10 and
different number of computing entities: M = 1, 2, 10.

3 Towards a better scheme

The investigation of the previous non-satisfactory result starts by rewriting both
the sequential and the distributed scheme. On the one hand, the sequential VQ
iterations (1) can be rewritten:

w(t+ 1) = w(t− τ + 1)−
t∑

t′=t−τ+1

εt′+1H
(
z{t′+1 mod n}, w(t′)

)
, t ≥ τ . (5)

On the other hand, if t mod τ = 0 and t > 0 then, for all i ∈ {1, . . . ,M},
iterations (4) write

wi(t+1) = wi(t−τ+1)−
t∑

t′=t−τ+1

εt′+1

 1

M

M∑
j=1

H
(
zj{t′+1 mod n}, w

j(t′)
) (6)

Assuming that wj(t′) ≈ wi(t′), for all (i, j) ∈ {1, . . . ,M}2 and t′ ≥ 0, the
mean in parenthesis is an estimator of the gradient of the distortion at wi(t′).
Consequently, the two algorithms can be thought as stochastic gradient descent
procedures with different estimators but driven by the same learning rate which
is given by the sequence {εt}∞t=1.

The convergence speed of a non-fixed step gradient descent procedure is es-
sentially driven by the decreasing speed of the sequence of steps (see for instance
[?]). The choice of this sequence is subject to an exploration/convergence trade-
off. Since the two procedures above share the same learning rate with respect to
the iterations t ≥ 0, they share the same convergence speed with respect to the



wall clock time (time measured by an exterior observer). Yet, the distributed
scheme of Section 2 has a much lower learning rate with respect to the number
of samples processed, favoring exploration to the detriment of the convergence.
The multiple resources therefore lead to better exploration but to similar con-
vergence speed with respect to wall clock time.

Remind that we suppose to have a satisfactory VQ implementation. Con-
sequently we seek for a distributed scheme that have the same learning rate
evolution in term of processed samples and which convergence speed with re-
spect to iterations is accelerated.
Set,

∆j
t1→t2 =

t2∑
t′=t1+1

εt′+1H
(
zj{t′+1 mod n}, w

j(t′)
)
, j ∈ {1, . . . ,M} and t2 > t1 ≥ 0.

(7)
At time t = 0, w1(0) = . . . = wM (0) = wsrd. For all i ∈ {1, . . . ,M} and all

t ≥ 0, consider the distributed scheme given by
witemp = wi(t)− εt+1H

(
zi{t+1 mod n}, w

i(t)
)

wi(t+ 1) = witemp if t mod τ 6= 0 or t = 0,{
wsrd = wsrd −

∑M
j=1 ∆j

t−τ→t
wi(t+ 1) = wsrd

if t mod τ = 0 and t ≥ τ.

(8)
The results of the simulations are displayed in the charts of Figure 2. The

charts show that substantial speed-ups are obtained with distributed resources.
The acceleration is greater when the reducing phase (described by the braced
inner equations) is frequent. Indeed, if τ is large then more autonomy has been
granted to the concurrent executions, they could be attracted to different regions
that would slow down the consensus and the convergence.

Figure 2: Charts of performance curves for iterations (8) with τ = 10 and
different number of computing entities: M = 1, 2, 10.



4 A model with stochastic delays

The previous parallelization schemes do not deal with communication costs intro-
duced by update exchanges between machines. In the context of cloud comput-
ing, no efficient shared memory is available and these costs introduce delays. The
effect of delays for parallel stochastic gradient descent has already been studied
(see for instance [?]). However in the previous paper the computing architecture
is endowed with an efficient shared memory. Moreover, the unreliability of the
cloud computing hardware introduces strong straggler issues and makes the syn-
chronization process inappropriate. In this subsection, we improve the model of
iterations (8) with random communication costs that follows a geometric distri-
bution and we remove the synchronization process of reducing phase, resulting
in the more realistic iterations (9) below. For each time t ≥ 0, let τ i(t) be the
latest time before t when the unit i finished to send its updates and received the
shared version. At time t = 0 we have w1(0) = . . . = wM (0) = wsrd, and for all
i ∈ {1, . . . ,M} and all t ≥ 0,



witemp = wi(t)− εt+1H
(
zi{t+1 mod n}, w

i(t)
)

wi(t+ 1) = witemp if t 6= τ i(t)

wi(t+ 1) = wsrd(τ i(t− 1))−∆i
τ i(t−1)→t if t = τ i(t)

wsrd(t+ 1) = wsrd(t)−
∑

j,t=τj(t)

∆j
τj(τj(t−1)−1)→τj(t−1)

(9)

Figure 3: Charts of performance curves for iterations (9) with τ = 10 and
different number of computing entities: M = 1, 2, 10.

There are no more synchronization between processing units: each machine
uploads its updates and downloads the shared version as soon as its previous
uploads and downloads are completed. A dedicated unit permanently modifies
the shared version with the latest updates received from the other machines
without any synchronization barrier. The figure 3 shows that the introduction
of small delays and asynchronism only slightly impacts performances, compared



to the scheme given by equations (8). The figure 4 shows the results obtained
by our cloud implementation of the iterations (9) using 32 real processing units.
A future paper will describe more precisely this cloud implementation.

Figure 4: Charts of performance curves for iterations (9) on our cloud imple-
mentation and different number of computing entities.

5 Conclusion

In this paper we show that the naive parallelization scheme proposed in section
2 does not provide better performance than the sequential scheme. This surpris-
ing result derives from the fact that our first parallel scheme leads to a decrease
of the learning rate per data points processed. We therefore propose a new
parallelization scheme relying on asynchronous updates of a common ”shared
version”. This latter algorithm is very well suited for parallel computation on
slow communication networks such as cloud computing platforms. Our imple-
mentation on Azure show significant scale-up, up to 32 machines.


