
A Discussion on Parallelization Schemes for
Vector Quantization Algorithms
Matthieu Durut Benoit Patra Fabrice Rossi

Contribution
We present parallelization schemes for stochas-
tic Vector Quantization (VQ) algorithms in or-
der to obtain time speed-ups using distributed
resources. Because of the non-convexity of
the VQ loss function, the most intuitive paral-
lelization scheme does not lead to better perfor-
mances than the sequential algorithm. Other
schemes that tackle this issue are proposed and
implemented on Microsoft Windows Azure
platform obtaining good speed-ups.

Online and Parallel Online Learning
The VQ technique computes a summary of a dataset {zt}nt=1 of d dimensional samples with κ pro-
totypes, w = (w1, . . . , wκ) ∈ (Rd)κ. The VQ technique belongs to the class of stochastic gradient
descent algorithms and compute iterations of the prototypes as follow:

w(t+ 1) = w(t)− εt+1H
(
zi{t+1 mod n}, w(t)

)
, t ≥ 0

with H(z, w) =
(
(w` − z)1{l=argmini=1,...,κ‖z−wi‖2}

)
1≤`≤κ

, z ∈ Rd and w ∈ (Rd)κ.

We assume having access to M computing entities, each of them executing concurrent VQ pro-
cedures by computing prototype versions denoted by {wi(t)}∞t=0. We investigate techniques that
provide a consensus version of the prototypes {wsrd(t)}∞t=0 for which the convergence is speeded-
up in comparison of the sequential procedure.

Initial scheme


wi(t) = wi(t− 1) − εtH

(
zi{tmod n}, w

i(t− 1)
)
, t ≥ 1

wsrd(t) = 1
M

M∑
j=1

wj(t)

wi(t) = wsrd(t)

if t mod τ = 0.

(1)
In this scheme, computations are synchronized
and prototypes versions are averaged every τ
points.

3.5E+06

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

0 500 1000 1500 2000 2500 3000 3500 4000

E
m

p
ir

ic
a
l 

d
is

to
rt

io
n

 

t (iterations) 

M=1

M=2

M=10

Improved scheme

wi(t) = wi(t− 1) − εtH

(
zi{tmod n}, w

i(t− 1)
)
, t ≥ 1

wsrd(t) = wsrd(t− τ) −
M∑
j=1

∆j
t−τ→t

wi(t) = wsrd(t)

if t mod τ = 0.

(2)

where ∆j
t1→t2 =

t2∑
t′=t1+1

εt′H
(
zj{t′ mod n}, w

j(t′ − 1)
)

.

3.5E+06

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

0 500 1000 1500 2000 2500 3000 3500 4000

E
m

p
ir

ic
a
l 

d
is

to
rt

io
n

 

t (iterations) 

M=1

M=2

M=10

Improved scheme with asynchronism and delays


wi(t) = wi(t− 1) − εtH

(
zi{tmod n}, w

i(t− 1)
)
, t ≥ 1

wsrd(t) = wsrd(t− 1) −
∑

j,t=τj(t)

∆j

τj(τj(t−1)−1)→τj(t−1)

wi(t) = wsrd(τ i(t− 1)) − ∆i
τi(t−1)→t, if t = τ i(t)

(3)
where τ i(t) stands for the last time lesser or equal to t

for which the computing instance i has shared results
with the consensus agent.

3.5E+06

4.0E+06

4.5E+06

5.0E+06

5.5E+06

6.0E+06

6.5E+06

7.0E+06

0 500 1000 1500 2000 2500 3000

E
m

p
ir

ic
a
l 

q
u

a
n

ti
z
a
ti

o
n

 

t (iterations) 

M=1

M=2

M=10

Experiment Settings
All the schemes have been tested using simu-
lated distributed architecture. They have been
evaluated on a synthetic data set of vector B-
Splines using the empirical distortion loss func-
tion. For w ∈ (Rd)κ, it writes:

Cn,M (w) =
1

nM

M∑
i=1

n∑
t=1

min
`=1,...,κ

∥∥zit − w`∥∥2.

Experiments on Windows Azure

The latter scheme has also been
implemented on top of the Cloud
Computing platform Microsoft
Windows Azure. Azure BlobStor-
age, a No-SQL "key-value pairs"
storage, is used as a communica-
tion medium between computing
units. Snapshots of the consensus
shared version are taken regularly
and evaluated offline.

Our software project, named CloudDALVQ (the source code is available at
http://code.google.com/p/clouddalvq/), makes special care of bottleneck and latency issues
related to the consensus building process. This specific design tackle the issue of delays that can
significantly reduce convergence speed, as outlined in [2] in the convex case. Our implementation
proves to provide satisfactory scale-up up to 32 processing units.

Comments
Theoretical results have recently proved that
the averaging of local prototypes versions led
to the best possible speed-ups (see [1]) under
smoothness and convexity assumptions of the
loss function. In the VQ case, this function is
not convex and the naïve averaging does not
lead to any speed-up, as showed in our first
experiment.

We provide another distributed scheme, that
sums the multiple displacement terms instead
of averaging the prototypes versions. This new
scheme proves to provide satisfactory speed-
ups. It also give us licence to suggest an asyn-
chronous version of this scheme (as described
in equations 3). This latter scheme is suited to
implementation on high latency platforms such
as cloud computing.

Conclusion
The non-convexity of the VQ loss function
forbids to employ consensus techniques such
as averaging. The present work provides
different distribution schemes that restore
satisfactory scale-ups. These latter schemes
are adapted to asynchronous implementations
that are particularly suited to cloud computing
environments. Our cloud implementation
on Azure provides scale-ups up to dozens of
processing units.

[1] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin
Xiao Optimal distributed online prediction using mini-
batches In Advances in Neural Information Processing
Systems 22 2009, p2331-2339

[2] Daniel Hsu, Nikos Karampatziakis, John Langford,
Alex J. Smola Parallel Online Learning In Scaling up
Machine Learning chapter 14, 2011, p283-306

1


