
K-Means on Azure
Matthieu Durut Fabrice Rossi Telecom ParisTech, France

Contribution
We present how parallel machine learning algo-
rithms can be implemented on top of Microsoft
Windows Azure cloud computing platform. The
storage component of the platform is used to pro-
vide synchronization and communication between
processing units. We report the speedups and
scaleups of a parallel K-Means algorithm obtained
with up to 200 processing units.

Distributed K-Means

Mapper 1

Mapper 2

Mapper 4

Mapper 5

Mapper 6

Mapper 3

Partial 
Reducer

Final 
Reducer

Partial 
Reducer

blobstorage

Final reduce result 

(prototypes)

Partial reduce 

result (prototypes)

Map result 

(prototypes)

worker

push blob into

pings the storage 

untill it finds the 

given blob, then 

downloads it

Microsoft Azure
Our prototype is build on top of several compo-
nents that ease access to storage and workers life-
cycle management:

• Azure Queues provide a message deliv-
ery mechanism through distributed queues.
Messages can be returned multiple times,
which implies that jobs must be idempotent.

• Azure BlobStorage is a key/value pairs stor-
age system. Workers are stateless : all the in-
termediate and final results are stored in the
BlobStorage.

• Lokad-Cloud framework provides an abstrac-
tion layer on storage and workers.

Communication Tree

Mapper 1

Mapper 2

Mapper 4

Mapper 5

Mapper 6

Mapper 3

Partial 

Reducer

Final 

Reducer

Partial 

Reducer

blobstorage

Final reduce result 

(prototypes)

Partial reduce result (prototypes)

Map result 

(prototypes)

worker

push blob into

ping the storage 
untill it finds the 
given blob, then 

download it

The reduce phase is a two-step procedure where all
the partial reduce jobs are run in parallel.

Cost Modelization
Let :
• N be the number of points in RD ,

• D be the points dimension,

• K be the number of clusters,

• I be the number of iterations,

• F be the time needed to perform one floating
point operation,

• B1 be the time needed to read a double from the
blobStorage,

• B2 be the time needed to write a double into the
blobstorage.

In the proposed algorithm, we can roughly model
the cost of computation and communication by :

T comp
P =

3NKDIF

P
, T comm

P = 2
√
PKDI(B1 + 0.5B2)

Speedup can therefore be modeled as :

SP =
T comp
1

T comp
P + T comm

P

=
3NF

3NF
P

+ 2
√
P (B1 + 0.5B2)

The optimal number of mapper PU is given by P ∗ =

(3NF/(B1 + 0.5B2))
2/3. For this value of P ∗, which de-

pends neither on K nor on D, the total processing time
consists in one third of mapping and two third of reduc-
ing. Conversely, for N sufficient, communication is neg-
ligible and one can achieve good speedup.

Results

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
   160	
   180	
  

Sp
ee
du

p	
  

Number	
  of	
  mappers	
  P	
  

Speedup	
  in	
  func3on	
  of	
  the	
  number	
  of	
  mappers	
  

Theore0cal	
  speedup	
   N	
  =	
  62500	
  

N	
  =	
  125000	
   N	
  =	
  250000	
  

N	
  =	
  500000	
   N	
  =	
  1000000	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
  

Sp
ee
du

p	
  

Number	
  of	
  mappers	
  P	
  

Speedup	
  in	
  func3on	
  of	
  the	
  number	
  of	
  mappers	
  

Observed	
  speedup	
  

Theore4cal	
  speedup	
  

The algorithm has been run on different values of N and P. We set K=1000 and D=1000 in all exper-
iments so latency can be neglected , and experiments were run for 10 iterations to get stable timing
estimates.

On the left figure, we fixed N and plot the speedup curve as a function of P, which is relatively flat in a
neighboorhood of P ∗. But for P = P ∗, most of the time is spent in communication, resulting in a rather
inefficient worker allocation.

The algorithm has also been run with much more points per mapper (50,000 points per worker on right fig-
ure). Workload in each worker being much more important, communication becomes small compared to
computation, and satisfactory speedups and scaleups can be reached, provided no straggler issues are met.

	
  

	
  

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

(%!" $'!" $%!" )'!" )%!" %'!" %%!" *'!" *%!" &'!"

!"
#$

%#
&'
(#
)*

+,-.%/01,&*1-#*

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

385	
   387	
   389	
   391	
   393	
   395	
   397	
   399	
   401	
   403	
   405	
  

Fr
eq

ue
nc
y	
  

Computa0on	
  0me	
  (in	
  s)	
  

Empirical	
  distribu0on	
  of	
  a	
  single	
  worker's	
  computa0on	
  
0me	
  

As shown in right figure, each worker performs computation with very stable timing. But some workers
may be slowed-down during a short period of time, as shown in worst cases of left figure. This mechanism
slightly affects performance while running 100 workers, but may become very critical while running
thousands of machines.

Conclusion
Communication costs induce a potential bound on
scaling for cloud applications. As anticipated by
the model, communication takes more time than
computation while running P ∗ mappers. Con-
versely, heavy workload on each worker leads to
very satisfactory speedups. Acknowledgement

Special thanks to the Microsoft Bizspark One team for their sup-
port.

References
[1] Dhillon, Inderjit S. and Modha, Dharmendra S. A Data-

Clustering Algorithm on Distributed Memory Multipro-
cessors In Revised Papers from Large-Scale Parallel Data
Mining, Workshop on Large-Scale Parallel KDD Systems,
SIGKDD

1


