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Contribution
We present how parallel machine learning algo-
rithms can be implemented on top of Microsoft
Windows Azure cloud computing platform. The
storage component of the platform is used to pro-
vide synchronization and communication between
processing units. We report the speedups and
scaleups of a parallel K-Means algorithm obtained
with up to 200 processing units.
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Microsoft Azure
Our prototype is build on top of several compo-
nents that ease access to storage and workers life-
cycle management:

• Azure Queues provide a message deliv-
ery mechanism through distributed queues.
Messages can be returned multiple times,
which implies that jobs must be idempotent.

• Azure BlobStorage is a key/value pairs stor-
age system. Workers are stateless : all the in-
termediate and final results are stored in the
BlobStorage.

• Lokad-Cloud framework provides an abstrac-
tion layer on storage and workers.

Communication Tree
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The reduce phase is a two-step procedure where all
the partial reduce jobs are run in parallel.

Cost Modelization
Let :
• N be the number of points in RD ,

• D be the points dimension,

• K be the number of clusters,

• I be the number of iterations,

• F be the time needed to perform one floating
point operation,

• B1 be the time needed to read a double from the
blobStorage,

• B2 be the time needed to write a double into the
blobstorage.

In the proposed algorithm, we can roughly model
the cost of computation and communication by :

T comp
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Speedup can therefore be modeled as :
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The optimal number of mapper PU is given by P ∗ =

(3NF/(B1 + 0.5B2))
2/3. For this value of P ∗, which de-

pends neither on K nor on D, the total processing time
consists in one third of mapping and two third of reduc-
ing. Conversely, for N sufficient, communication is neg-
ligible and one can achieve good speedup.

Results
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The algorithm has been run on different values of N and P. We set K=1000 and D=1000 in all exper-
iments so latency can be neglected , and experiments were run for 10 iterations to get stable timing
estimates.

On the left figure, we fixed N and plot the speedup curve as a function of P, which is relatively flat in a
neighboorhood of P ∗. But for P = P ∗, most of the time is spent in communication, resulting in a rather
inefficient worker allocation.

The algorithm has also been run with much more points per mapper (50,000 points per worker on right fig-
ure). Workload in each worker being much more important, communication becomes small compared to
computation, and satisfactory speedups and scaleups can be reached, provided no straggler issues are met.
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As shown in right figure, each worker performs computation with very stable timing. But some workers
may be slowed-down during a short period of time, as shown in worst cases of left figure. This mechanism
slightly affects performance while running 100 workers, but may become very critical while running
thousands of machines.

Conclusion
Communication costs induce a potential bound on
scaling for cloud applications. As anticipated by
the model, communication takes more time than
computation while running P ∗ mappers. Con-
versely, heavy workload on each worker leads to
very satisfactory speedups. Acknowledgement
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