Synchronous and asynchronous clusterings

Matthieu Durut

September 20, 2012

Matthieu Durut Synchronous and asynchronous clusterings

Clustering aim

Let x = (x;)i=1..» be n points of RY (data points)

v

v

Let ¢ = (ck)k=1..k be k points of RY (centroids)

v

We define the empirical loss by :

n

O(x,c) =Y min (Il — cil B) M)

i=1

v

and the optimal centroids by :

(ck)k=1.k = Argminccgax ®(x;) (2)

Matthieu Durut Synchronous and asynchronous clusterings

Some approximating algorithms

» Empirical minimizer too long to compute.

» Algorithms for approximating best clustering :

Matthieu Durut Synchronous and asynchronous clusterings

Some approximating algorithms

v

Empirical minimizer too long to compute.

v

Algorithms for approximating best clustering :

K-Means
Self-Organising Map

v

v

v

Hierarchical Clustering...

Matthieu Durut Synchronous and asynchronous clusterings

Batch K-Means

» Batch K-Means steps :

i Initialisation of centroids

ii Distance Calculation
for each x;, get the distance ||x; — ck||> and find the nearest
centroid

iii Centroid Recalculation
for each cluster, recompute centroid as the average of points
assigned to this cluster

iv Repeat steps ii and iii till convergence

» Immediate evidence of the convergence of the algorithm

Matthieu Durut Synchronous and asynchronous clusterings

Online K-Means

» Online K-Means steps :

i Initialisation of centroids
ii Get a dataset point. Select the nearest centroid. Update this

centroid.
iii Repeat steps ii till convergence

> Probabilist result of convergence of the Online K-Means

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 1 Sequential Batch K-Means
Select K initial centroids (cx)j=1.k
repeat

for i=1to ndo
for k=1to K do
Compute [[x; — ck|[3
end for
Find the closest centroid ¢« (j) to x;;
end for
for k =1to K do
— F{i .k ()=k} k*)=k} ik (i)=k} Xi
end for
until no ¢, has changed since last iteration or empirical loss sta-
bilizes

Matthieu Durut Synchronous and asynchronous clusterings

K-Means Sequential cost

The cost of a sequential Batch K-Means algorithm has been
studied by Dhillon. More precisely :

KMeans Sequential Cost = I(n+ K)d + IKd readings
+ InKd soustractions
+ InKd square operations
+ InK(d — 1) + I(n — K)d additions
+ IKd divisions
+ 2In + | x Kd writings
+ IKd double comparisons
+ | counts of K setsx—1.k of size n(k)

K
where Z n(k)=n
k=1

Matthieu Durut Synchronous and asynchronous clusterings

K-Means Sequential cost (2)

KMeans Sequential Time = (3Knd + Kn+ Kd + nd) x | x TP
~ 3Knd * | x TP

Matthieu Durut Synchronous and asynchronous clusterings

Distributing K-Means

1. Different ways to split computation load

2. Splitting load without affinity (worker/cluster) : each worker
responsible of n/P points

3. Splitting load with affinity : each worker responsible of K/P
clusters

» clustering without affinity seems more adequate.

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 2 Synchronous Distributed Batch K-Means without affin-

ity
p = GetThisNodeld() (from 0 to P-1)
Get same initial centroids (ck)k=1..x in every node
Load into local memory S, = {xi,i = p* (n/P)..(p+ 1) % (n/P)}
repeat
for x; € S, do
for k =1 to K do
Compute ||x; — ck||3
end for
Find the closest centroid ¢+ (;) to x;
end for
for k =1 to K do
_ 1
Ckop = FTT, €S, & k= (N=k} Z{i, X €Sp & k*(i)=k} Xi
end for
Wait for other processors to finish the for loops.
for k =1to K do
Reduce through MPI the (ck,p)p=0..p—1 With the corresponding weight :
#{i, xi € Sp & k*(i) = k}
Register the value in ¢
end for
until no ¢, has changed since last iteration or empirical loss stabilizes

Matthieu Durut Synchronous and asynchronous clusterings

SMP Distributed K-Means costs

» Distributed K-Means cost is dependant of hardware and how
well workers can communicate.

» SMP : Symmetric MultiProcessor (shared memory)

KMeans SMP Distributed Cost

__ g-comp
= TP

(3Knd 4 Kn + Kd + nd) * | * Tflop
P
_ 3Knd x | x T
- P

Matthieu Durut Synchronous and asynchronous clusterings

DMM Distributed K-Means costs

» KMeans DMM Distributed Cost

- comp comm
=T "+ Tp

_ (3Knd + Kn+ Kd + nd) * [T flop | Tcomm
P

Knd x | % Tflop
&)

» T5°™™ = O(log(P)) comes from MPI according to Dhillon.

> Issue : the constant is far greater than log(P) for reasonable P.

Matthieu Durut Synchronous and asynchronous clusterings

Case Study : EDF load curves.

n = 20 000 000 series

d = 87600 (10 years of hourly series)
K = /n = 4472 clusters

P = 10000 processors

| = 100 iterations
Tflop

v

v

v

v

v

v

_ 1
= Tooooo0000 Seconds

Matthieu Durut Synchronous and asynchronous clusterings

Case study on SMP

On SMP architecture (RAM limitations are not respected), we
would get :

T,i‘fg",(/}P = 235066seconds

T smp = Oseconds

Matthieu Durut Synchronous and asynchronous clusterings

Case study on DMM using MPI

On DMM architecture, we get :
T;?[)"A’}M = 235066seconds

For communication between 2 nodes, we can suppose :

Centroids broadcast between 2 processors time
| x Kd x sizeof 1value

bandwith
5977 Mbytes

20 Mbytes / second

= 29800seconds

Centroids merging time

= | x kd * TP « 5operations : (2multiplications, 2additions, 1division)
= 195.87seconds

Matthieu Durut Synchronous and asynchronous clusterings

Communicating through Binary Tree

— =3 communication through MPI
[local ‘

| —> keeping in memory
\ value |

worker 1

. local N local |

worker 2 \ value J \ value.,

[local ‘

| value |
e :

.
worker 3

" local |
| wvalue
N .

(" local
| value J

[local ‘
| value |
_ '

worker 4

local
worker 5 | e |

" local)
\ value/-

. ™ e ™
local [local |
_ value y, L value J

e ™\
[local |
worker 6 | vaie |

Synchronous and asynchronous clust:

comm

Estimation of Tg°A v,

if MPI binary tree topology, T,S"’E,\'}]M becomes :

comm
T DMmm

= (Centroids broadcast + Centroids merging time) x [log>(P)]|
I % Kd * sizeof lvalue

= (bandwith
~ 420000seconds

+ 5% % Kd % Tﬂo”) * [loga(P)]

Matthieu Durut Synchronous and asynchronous clusterings

Estimating when communication is a bottleneck

comm _ comp
Tp <=Tp

| x Kd * sizeof 1value (3nKd) = I % T flop

flop _
(bandwith +5x[xKdx T"P)x[loga(P)] <= 5
N e +5x TP
P[loga(P)] 3T flop

Plioga(P)] ~~ 2>

Matthieu Durut Synchronous and asynchronous clusterings

Empirical speed-up already observed

(Kantabutra, Couch) 2000, clustering with affinity : P=4
(workstations with ethernet) , D=2, K =4, N=900000, best
speed-up of 2.1, concludes they have a O(K/2) speed-up.

v

v

(Kraj, Sharma, Garge, ...) 2008, (1 master, 7 nodes dualcore
3Ghz), D=200, K = 20, N=10000 genes, best speed-up 3
(Chu, Kim, Lin, Yu,...) 2006, (1 sun workstation, 16 nodes),
N=from 30000 to 2500000, speed-up from 8 to 12.

(Dhillon, Modha) 1998, (1 IBM PowerParallel SP2 16 nodes
(160Mhz)), D=8, K = 16, N= 2000000 then speed-up of
15.62 on 16 nodes, N = 2000, speed-up of 6 on 16 nodes

v

v

Matthieu Durut Synchronous and asynchronous clusterings

Cloud Computing

» Hardware resources on-demand for storage and computation

Matthieu Durut Synchronous and asynchronous clusterings

Clustering on the cloud

. All data must transit through storage
. Storage bandwith is limited

. Bandwith, CPU power, latency are guaranteed on average only

A W N =

. Workers are likely to fail

» Workers shouldn’t wait for each other

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 3 Asynchronous Distributed K-Means without affinity
p = GetThisNodeld() (from 0 to P-1)
Get same initial centroids (cx)«=1..x in every node. Persist them on the Storage
Load into local memory S, = {xi,i = p* (n/P)..(p + 1) * (n/P)}
repeat
for x; € S, do
for k=1to K do
Compute ||x; — ci|[3
end for
Find the closest centroid c,=(j) to x;
end for
for k=1 to K do
_ 1
Ckop = F7, x €S, & k*(=k} E{i, Xi€Sp & k*(i)=k} Xi
end for
Don't wait for other processors to finish the for loops.
Retrieve centroids (ck)k=1..x from the storage
for k=1to K do
Update ¢k using ckp
end for
Update storage version of the centroids.
until empirical loss stabilizes

Matthieu Durut Synchronous and asynchronous clusterings

1. Synchronous K-Means
2. Asynchronous K-Means

3. Getting a speed-up (hopefully)

Matthieu Durut Synchronous and asynchronous clusterings

Present technical difficulties of coding on the cloud

» Code Abstractions : Inversion of Control, SOA, Storage
Garbage Collection, ...

» Debugging the cloud : Mock Providers, Reporting System, ...
» Profiling the cloud : no release date

» Monitoring the cloud : Counting workers, Measuring
utilization levels, ...

Matthieu Durut Synchronous and asynchronous clusterings

