
Synchronous and asynchronous clusterings

Matthieu Durut

September 20, 2012

Matthieu Durut Synchronous and asynchronous clusterings

Clustering aim

I Let x = (xi)i=1..n be n points of Rd (data points)

I Let c = (ck)k=1..K be k points of Rd (centroids)

I We define the empirical loss by :

Φ(x , c) =
n∑

i=1

min
k=1..K

(||xi − ck ||22) (1)

I and the optimal centroids by :

(ck)∗k=1..K = Argminc∈Rd∗K Φ(x , c) (2)

Matthieu Durut Synchronous and asynchronous clusterings

Some approximating algorithms

I Empirical minimizer too long to compute.

I Algorithms for approximating best clustering :

I K-Means

I Self-Organising Map

I Hierarchical Clustering...

Matthieu Durut Synchronous and asynchronous clusterings

Some approximating algorithms

I Empirical minimizer too long to compute.

I Algorithms for approximating best clustering :

I K-Means

I Self-Organising Map

I Hierarchical Clustering...

Matthieu Durut Synchronous and asynchronous clusterings

Batch K-Means

I Batch K-Means steps :

i Initialisation of centroids
ii Distance Calculation

for each xi , get the distance ||xi − ck ||2 and find the nearest
centroid

iii Centroid Recalculation
for each cluster, recompute centroid as the average of points
assigned to this cluster

iv Repeat steps ii and iii till convergence

I Immediate evidence of the convergence of the algorithm

Matthieu Durut Synchronous and asynchronous clusterings

Online K-Means

I Online K-Means steps :

i Initialisation of centroids
ii Get a dataset point. Select the nearest centroid. Update this

centroid.
iii Repeat steps ii till convergence

I Probabilist result of convergence of the Online K-Means

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 1 Sequential Batch K-Means

Select K initial centroids (ck)j=1..K

repeat
for i = 1 to n do

for k = 1 to K do
Compute ||xi − ck ||22

end for
Find the closest centroid ck∗(i) to xi ;

end for
for k = 1 to K do
ck = 1

#{i ,k∗(i)=k}
∑
{i ,k∗(i)=k} xi

end for
until no ck has changed since last iteration or empirical loss sta-
bilizes

Matthieu Durut Synchronous and asynchronous clusterings

K-Means Sequential cost

The cost of a sequential Batch K-Means algorithm has been
studied by Dhillon. More precisely :

KMeans Sequential Cost = I (n + K)d + IKd readings

+ InKd soustractions

+ InKd square operations

+ InK (d − 1) + I (n − K)d additions

+ IKd divisions

+ 2In + I ∗ Kd writings

+ IKd double comparisons

+ I counts of K setsk=1..K of size n(k)

where
K∑

k=1

n(k) = n

Matthieu Durut Synchronous and asynchronous clusterings

K-Means Sequential cost (2)

KMeans Sequential Time = (3Knd + Kn + Kd + nd) ∗ I ∗ T flop

' 3Knd ∗ I ∗ T flop

Matthieu Durut Synchronous and asynchronous clusterings

Distributing K-Means

1. Different ways to split computation load

2. Splitting load without affinity (worker/cluster) : each worker
responsible of n/P points

3. Splitting load with affinity : each worker responsible of K/P
clusters

I clustering without affinity seems more adequate.

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 2 Synchronous Distributed Batch K-Means without affin-
ity

p = GetThisNodeId() (from 0 to P-1)
Get same initial centroids (ck)k=1..K in every node
Load into local memory Sp = {xi , i = p ∗ (n/P)..(p + 1) ∗ (n/P)}
repeat

for xi ∈ Sp do
for k = 1 to K do

Compute ||xi − ck ||22
end for
Find the closest centroid ck∗(i) to xi

end for
for k = 1 to K do

ck,p = 1
#{i, xi∈Sp & k∗(i)=k}

∑
{i, xi∈Sp & k∗(i)=k} xi

end for
Wait for other processors to finish the for loops.
for k = 1 to K do

Reduce through MPI the (ck,p)p=0..P−1 with the corresponding weight :
#{i , xi ∈ Sp & k∗(i) = k}
Register the value in ck

end for
until no ck has changed since last iteration or empirical loss stabilizes

Matthieu Durut Synchronous and asynchronous clusterings

SMP Distributed K-Means costs

I Distributed K-Means cost is dependant of hardware and how
well workers can communicate.

I SMP : Symmetric MultiProcessor (shared memory)

KMeans SMP Distributed Cost

= T comp
P

=
(3Knd + Kn + Kd + nd) ∗ I ∗ T flop

P

' 3Knd ∗ I ∗ T flop

P

Matthieu Durut Synchronous and asynchronous clusterings

DMM Distributed K-Means costs

I KMeans DMM Distributed Cost

= T comp
P + T comm

P

=
(3Knd + Kn + Kd + nd) ∗ I ∗ T flop

P
+ T comm

P

' 3Knd ∗ I ∗ T flop

P
+ O(log(P))

I T comm
P = O(log(P)) comes from MPI according to Dhillon.

I Issue : the constant is far greater than log(P) for reasonable P.

Matthieu Durut Synchronous and asynchronous clusterings

Case Study : EDF load curves.

I n = 20 000 000 series

I d = 87600 (10 years of hourly series)

I K =
√
n = 4472 clusters

I P = 10000 processors

I I = 100 iterations

I T flop = 1
1000000000 seconds

Matthieu Durut Synchronous and asynchronous clusterings

Case study on SMP

On SMP architecture (RAM limitations are not respected), we
would get :

T comp
P,SMP = 235066seconds

T comm
P,SMP ' 0seconds

Matthieu Durut Synchronous and asynchronous clusterings

Case study on DMM using MPI

On DMM architecture, we get :

T comp
P,DMM = 235066seconds

For communication between 2 nodes, we can suppose :

Centroids broadcast between 2 processors time

=
I ∗ Kd ∗ sizeof 1value

bandwith

= I ∗ 5977Mbytes

20Mbytes/second
= 29800seconds

Centroids merging time

= I ∗ kd ∗ T flop ∗ 5operations : (2multiplications, 2additions, 1division)

= 195.87seconds

Matthieu Durut Synchronous and asynchronous clusterings

Communicating through Binary Tree

Matthieu Durut Synchronous and asynchronous clusterings

Estimation of T comm
P,DMM

if MPI binary tree topology, T comm
P,DMM becomes :

T comm
P,DMM

= (Centroids broadcast + Centroids merging time) ∗ dlog2(P)e

= (
I ∗ Kd ∗ sizeof 1value

bandwith
+ 5 ∗ I ∗ Kd ∗ T flop) ∗ dlog2(P)e

' 420000seconds

Matthieu Durut Synchronous and asynchronous clusterings

Estimating when communication is a bottleneck

T comm
P <= T comp

P

(
I ∗ Kd ∗ sizeof 1value

bandwith
+5∗I∗Kd∗T flop)∗dlog2(P)e <=

(3nKd) ∗ I ∗ T flop

P

n

Pdlog2(P)e
>=

sizeof 1value
bandwith + 5 ∗ T flop

3T flop

n

Pdlog2(P)e
>= 255

Matthieu Durut Synchronous and asynchronous clusterings

Empirical speed-up already observed

I (Kantabutra, Couch) 2000, clustering with affinity : P=4
(workstations with ethernet) , D=2, K =4, N=900000, best
speed-up of 2.1, concludes they have a O(K/2) speed-up.

I (Kraj, Sharma, Garge, ...) 2008, (1 master, 7 nodes dualcore
3Ghz), D=200, K = 20, N=10000 genes, best speed-up 3

I (Chu, Kim, Lin, Yu,...) 2006, (1 sun workstation, 16 nodes),
N=from 30000 to 2500000, speed-up from 8 to 12.

I (Dhillon, Modha) 1998, (1 IBM PowerParallel SP2 16 nodes
(160Mhz)), D=8, K = 16, N= 2000000 then speed-up of
15.62 on 16 nodes, N = 2000, speed-up of 6 on 16 nodes

Matthieu Durut Synchronous and asynchronous clusterings

Cloud Computing

I Hardware resources on-demand for storage and computation

Matthieu Durut Synchronous and asynchronous clusterings

Clustering on the cloud

1. All data must transit through storage

2. Storage bandwith is limited

3. Bandwith, CPU power, latency are guaranteed on average only

4. Workers are likely to fail

I Workers shouldn’t wait for each other

Matthieu Durut Synchronous and asynchronous clusterings

Algorithm 3 Asynchronous Distributed K-Means without affinity
p = GetThisNodeId() (from 0 to P-1)
Get same initial centroids (ck)k=1..K in every node. Persist them on the Storage
Load into local memory Sp = {xi , i = p ∗ (n/P)..(p + 1) ∗ (n/P)}
repeat

for xi ∈ Sp do
for k = 1 to K do

Compute ||xi − ck ||22
end for
Find the closest centroid ck∗(i) to xi

end for
for k = 1 to K do

ck,p = 1
#{i, xi∈Sp & k∗(i)=k}

∑
{i, xi∈Sp & k∗(i)=k} xi

end for
Don’t wait for other processors to finish the for loops.
Retrieve centroids (ck)k=1..K from the storage
for k = 1 to K do

Update ck using ck,p

end for
Update storage version of the centroids.

until empirical loss stabilizes

Matthieu Durut Synchronous and asynchronous clusterings

Current work

1. Synchronous K-Means

2. Asynchronous K-Means

3. Getting a speed-up (hopefully)

Matthieu Durut Synchronous and asynchronous clusterings

Present technical difficulties of coding on the cloud

I Code Abstractions : Inversion of Control, SOA, Storage
Garbage Collection, ...

I Debugging the cloud : Mock Providers, Reporting System, ...

I Profiling the cloud : no release date

I Monitoring the cloud : Counting workers, Measuring
utilization levels, ...

Matthieu Durut Synchronous and asynchronous clusterings

