Synchronous and asynchronous clusterings

Matthieu Durut

September 20, 2012

< ∃ >

-

- Let $x = (x_i)_{i=1..n}$ be n points of \mathbb{R}^d (data points)
- Let $c = (c_k)_{k=1..K}$ be k points of \mathbb{R}^d (centroids)
- We define the empirical loss by :

$$\Phi(x,c) = \sum_{i=1}^{n} \min_{k=1..K} (||x_i - c_k||_2^2)$$
(1)

and the optimal centroids by :

$$(c_k)_{k=1..K}^* = Argmin_{c \in \mathbb{R}^{d*K}} \Phi(x, c)$$
(2)

ヨット イヨット イヨッ

- Empirical minimizer too long to compute.
- Algorithms for approximating best clustering :

- Empirical minimizer too long to compute.
- Algorithms for approximating best clustering :
- K-Means
- Self-Organising Map
- Hierarchical Clustering...

- Batch K-Means steps :
 - i Initialisation of centroids
 - ii Distance Calculation for each x_i , get the distance $||x_i - c_k||_2$ and find the nearest
 - centroid
 - iii Centroid Recalculation
 - for each cluster, recompute centroid as the average of points assigned to this cluster
 - iv Repeat steps ii and iii till convergence
- Immediate evidence of the convergence of the algorithm

→ ∃ →

- Online K-Means steps :
 - i Initialisation of centroids
 - ii Get a dataset point. Select the nearest centroid. Update this centroid.
 - iii Repeat steps ii till convergence

Probabilist result of convergence of the Online K-Means

→

Algorithm 1 Sequential Batch K-Means

Select K initial centroids $(c_k)_{i=1..K}$ repeat for i = 1 to n do for k = 1 to K do Compute $||x_i - c_k||_2^2$ end for Find the closest centroid $c_{k^*(i)}$ to x_i ; end for for k = 1 to K do $c_k = \frac{1}{\#\{i,k^*(i)=k\}} \sum_{\{i,k^*(i)=k\}} x_i$ end for **until** no c_k has changed since last iteration or empirical loss stabilizes

向下 イヨト イヨト

K-Means Sequential cost

The cost of a sequential Batch K-Means algorithm has been studied by Dhillon. More precisely :

KMeans Sequential Cost = I(n + K)d + IKd readings

- + InKd soustractions
- + InKd square operations
- + InK(d-1) + I(n-K)d additions
- + IKd divisions
- + 2In + I * Kd writings
- + IKd double comparisons

+ I counts of K sets_{k=1..K} of size n(k)

• E •

where
$$\sum_{k=1}^{K} n(k) = n$$

$\label{eq:KMeans Sequential Time} \begin{array}{l} \textit{KMeans Sequential Time} \end{array} = (3\textit{Knd} + \textit{Kn} + \textit{Kd} + \textit{nd}) * \textit{I} * \textit{T}^{\textit{flop}} \\ \\ \simeq 3\textit{Knd} * \textit{I} * \textit{T}^{\textit{flop}} \end{array}$

回 と く ヨ と く ヨ と …

- 1. Different ways to split computation load
- 2. Splitting load without affinity (worker/cluster) : each worker responsible of n/P points
- 3. Splitting load with affinity : each worker responsible of K/P clusters
- clustering without affinity seems more adequate.

伺 とう ヨン うちょう

Algorithm 2 Synchronous Distributed Batch K-Means without affinity

p = GetThisNodeld() (from 0 to P-1) Get same initial centroids $(c_k)_{k=1..K}$ in every node Load into local memory $S_p = \{x_i, i = p * (n/P)..(p+1) * (n/P)\}$ **repeat**

for $x_i \in S_p$ do for k = 1 to K do Compute $||x_i - c_k||_2^2$ end for Find the closest centroid $c_{k^*(i)}$ to x_i end for

For
$$k = 1$$
 to K do
 $c_{k,p} = \frac{1}{\#\{i, x_i \in S_p \& k^*(i) = k\}} \sum_{\{i, x_i \in S_p \& k^*(i) = k\}} x_i$

end for

Wait for other processors to finish the for loops.

for k = 1 to K do

Reduce through MPI the $(c_{k,p})_{p=0..P-1}$ with the corresponding weight : $\#\{i, x_i \in S_p \& k^*(i) = k\}$

Register the value in c_k

end for

until no c_k has changed since last iteration or empirical loss stabilizes \rightarrow 2

- Distributed K-Means cost is dependent of hardware and how well workers can communicate.
- SMP : Symmetric MultiProcessor (shared memory)

 $\begin{array}{l} \textit{KMeans SMP Distributed Cost} \\ = T_P^{comp} \\ = \frac{(3\textit{Knd} + \textit{Kn} + \textit{Kd} + \textit{nd}) * \textit{I} * T^{flop}}{P} \\ \simeq \frac{3\textit{Knd} * \textit{I} * T^{flop}}{P} \end{array}$

向下 イヨト イヨト

KMeans DMM Distributed Cost

$$= T_P^{comp} + T_P^{comm}$$

=
$$\frac{(3Knd + Kn + Kd + nd) * I * T^{flop}}{P} + T_P^{comm}$$

$$\simeq \frac{3Knd * I * T^{flop}}{P} + O(log(P))$$

• $T_P^{comm} = O(log(P))$ comes from MPI according to Dhillon.

▶ Issue : the constant is far greater than log(P) for reasonable P.

• 3 > 1

- n = 20 000 000 series
- d = 87600 (10 years of hourly series)
- $K = \sqrt{n} = 4472$ clusters
- ▶ P = 10000 processors
- I = 100 iterations
- $T^{flop} = \frac{1}{100000000}$ seconds

向下 イヨト イヨト

On SMP architecture (RAM limitations are not respected), we would get :

 $T_{P,SMP}^{comp} = 235066 seconds$

 $T_{P,SMP}^{comm} \simeq 0$ seconds

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Case study on DMM using MPI

On DMM architecture, we get :

 $T_{P,DMM}^{comp} = 235066 seconds$

For communication between 2 nodes, we can suppose :

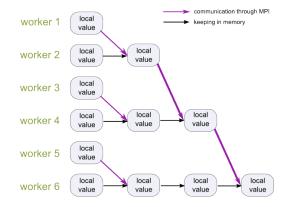
Centroids broadcast between 2 processors time $= \frac{I * Kd * sizeof 1 value}{bandwith}$ $= I * \frac{5977 Mbytes}{20 Mbytes/second} = 29800 seconds$

Centroids merging time

- $= I * kd * T^{flop} * 5 operations : (2 multiplications, 2 additions, 1 division)$
- = 195.87 seconds

伺い イヨト イヨト 三日

Communicating through Binary Tree



・ロト ・日本 ・ヨト ・ヨト

Э

if MPI binary tree topology, $T_{P,DMM}^{comm}$ becomes :

 $T_{P,DMM}^{comm} = (Centroids \ broadcast + Centroids \ merging \ time) * \lceil log_2(P) \rceil$ $= (\frac{I * Kd * sizeof 1 value}{bandwith} + 5 * I * Kd * T^{flop}) * \lceil log_2(P) \rceil$ $\simeq 420000 seconds$

白 ト イヨト イヨト

2

Estimating when communication is a bottleneck

$$T_P^{comm} <= T_P^{comp}$$

$$(\frac{l * Kd * sizeof1value}{bandwith} + 5*l*Kd*T^{flop})*\lceil log_2(P)\rceil <= \frac{(3nKd)*l*T^{flop}}{P}$$

$$\frac{n}{P\lceil \log_2(P)\rceil} \ge \frac{\frac{sizeof1value}{bandwith} + 5 * T^{flop}}{3T^{flop}}$$
$$\frac{n}{P\lceil \log_2(P)\rceil} \ge 255$$

回 と く ヨ と く ヨ と

Empirical speed-up already observed

- (Kantabutra, Couch) 2000, clustering with affinity : P=4 (workstations with ethernet) , D=2, K =4, N=900000, best speed-up of 2.1, concludes they have a O(K/2) speed-up.
- ► (Kraj, Sharma, Garge, ...) 2008, (1 master, 7 nodes dualcore 3Ghz), D=200, K = 20, N=10000 genes, best speed-up 3
- (Chu, Kim, Lin, Yu,...) 2006, (1 sun workstation, 16 nodes), N=from 30000 to 2500000, speed-up from 8 to 12.
- (Dhillon, Modha) 1998, (1 IBM PowerParallel SP2 16 nodes (160Mhz)), D=8, K = 16, N= 2000000 then speed-up of 15.62 on 16 nodes, N = 2000, speed-up of 6 on 16 nodes

イロト イポト イヨト イヨト

Hardware resources on-demand for storage and computation

- < ≣ →

- 1. All data must transit through storage
- 2. Storage bandwith is limited
- 3. Bandwith, CPU power, latency are guaranteed on average only
- 4. Workers are likely to fail
- Workers shouldn't wait for each other

• 3 >

Algorithm 3 Asynchronous Distributed K-Means without affinity

p = GetThisNodeld() (from 0 to P-1) Get same initial centroids $(c_k)_{k=1..K}$ in every node. Persist them on the Storage Load into local memory $S_p = \{x_i, i = p * (n/P)..(p+1) * (n/P)\}$ **repeat**

for $x_i \in S_p$ do for k = 1 to K do Compute $||x_i - c_k||_2^2$ end for Find the closest centroid $c_{k^*(i)}$ to x_i end for for k = 1 to K do $c_{k,p} = \frac{1}{\#\{i, x_i \in S_p \& k^*(i) = k\}} \sum_{\{i, x_i \in S_p \& k^*(i) = k\}} x_i$ end for Don't wait for other processors to finish the for loops. Retrieve centroids $(c_k)_{k=1..K}$ from the storage for k = 1 to K do

Update c_k using $c_{k,p}$

end for

Update storage version of the centroids.

until empirical loss stabilizes

(日本)(日本)(日本)

- 1. Synchronous K-Means
- 2. Asynchronous K-Means
- 3. Getting a speed-up (hopefully)

→ ∃ →

A ₽

• 3 > 1

Present technical difficulties of coding on the cloud

- Code Abstractions : Inversion of Control, SOA, Storage Garbage Collection, ...
- Debugging the cloud : Mock Providers, Reporting System, ...
- Profiling the cloud : no release date
- Monitoring the cloud : Counting workers, Measuring utilization levels, ...

高 とう ヨン うまと