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Résumé

Les thèmes de recherche abordés dans ce manuscrit sont inspirés et motivés
de problèmes concrets rencontrés par la société Lokad. Ils ont trait principa-
lement à la parallélisation d’algorithmes de classification non-supervisée
(clustering) sur des plateformes de Cloud Computing. Le chapitre 2 propose
un tour d’horizon de ces technologies. Nous y présentons d’une manière
générale le Cloud Computing comme plateforme de calcul. Le chapitre
3 présente plus en avant l’offre cloud de Microsoft : Windows Azure. Le
chapitre suivant analyse certains enjeux techniques de la conception d’ap-
plications cloud et propose certains éléments d’architecture logicielle pour
de telles applications. Le chapitre 5 propose une analyse du premier algo-
rithme de classification étudié : le Batch K-Means. En particulier, nous
approfondissons comment les versions réparties de cet algorithme doivent
être adaptées à une architecture cloud. Nous y montrons l’impact des coûts
de communication sur l’efficacité de cet algorithme lorsque celui-ci est
implémenté sur une plateforme cloud. Les chapitres 6 et 7 présentent un
travail de parallélisation d’un autre algorithme de classification : l’algo-
rithme de Vector Quantization (VQ). Dans le chapitre 6 nous explorons
quels schémas de parallélisation sont susceptibles de fournir des résultats sa-
tisfaisants en terme d’accélération de la convergence. Le chapitre 7 présente
une implémentation de ces schémas de parallélisation. Les détails pratiques
de l’implémentation soulignent un résultat de première importance : c’est le
caractère en ligne du VQ qui permet de proposer une implémentation asyn-
chrone de l’algorithme réparti, supprimant ainsi une partie des problèmes
de communication rencontrés lors de la parallélisation du Batch K-Means.

Mots clés : calcul réparti, méthodes de clustering, K-Means, quanti-
fication vectorielle, asynchronisme, algorithmes en ligne, Cloud Com-
puting, Windows Azure, descente de gradient répartie.
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Abstract

The subjects addressed in this thesis are inspired from research problems
faced by the Lokad company. These problems are related to the challenge
of designing efficient parallelization techniques of clustering algorithms on
a Cloud Computing platform. Chapter 2 provides an introduction to the
Cloud Computing technologies, especially the ones devoted to intensive
computations. Chapter 3 details more specifically Microsoft Cloud Comput-
ing offer : Windows Azure. The following chapter details technical aspects
of cloud application development and provides some cloud design patterns.
Chapter 5 is dedicated to the parallelization of a well-known clustering
algorithm: the Batch K-Means. It provides insights on the challenges of a
cloud implementation of distributed Batch K-Means, especially the impact
of communication costs on the implementation efficiency. Chapters 6 and
7 are devoted to the parallelization of another clustering algorithm, the
Vector Quantization (VQ). Chapter 6 provides an analysis of different paral-
lelization schemes of VQ and presents the various speedups to convergence
provided by them. Chapter 7 provides a cloud implementation of these
schemes. It highlights that it is the online nature of the VQ technique that
enables an asynchronous cloud implementation, which drastically reduces
the communication costs introduced in Chapter 5.

Keywords: distributed computing, clustering methods, K-Means, vec-
tor quantization, asynchronous, online algorithms, Cloud Computing,
Windows Azure, parallel gradient descent.
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Chapitre 1

Introduction

1.1 Contexte scientifique

Dans un article publié dans la revue américaine Nature en 1960 ([113]), Eugène
Wigner s’intéresse à la capacité surprenante des mathématiques à formaliser,
de manière souvent très concise, les lois de la nature. Un récent article intitulé
« The unreasonable effectiveness of data » ([63]) en propose un éclairage nou-
veau. Reprenant avec ironie une partie du titre de l’article d’Eugène Wigner,
ses auteurs défendent la thèse selon laquelle les comportements humains ne se
modélisent pas comme les particules élémentaires, et que des formules ne peuvent
donner de réponse satisfaisante qu’à peu de problèmes dans lesquels des facteurs
humains ou économiques ont un rôle important. Les auteurs proposent plutôt
d’adopter un point de vue plus centré sur les données que sur un modèle spéci-
fique. Forts de leur expérience appliquée chez Google, ils décrivent comment
des algorithmes simples appliqués à des bases de données gigantesques peuvent
fournir de meilleurs résultats que des algorithmes plus fins, appliqués à des bases
de données plus petites.

Cet article illustre un phénomène nouveau : alors que de nombreux champs du
savoir sont limités par un manque de données pour confirmer ou infirmer des théo-
ries, d’autres champs sont désormais confrontés au problème inverse qui consiste
à réussir à exploiter des masses de données très volumineuses, souvent désignées
par le terme « Big Data ». Certains travaux avancent même que la manipulation
et l’utilisation intelligente de ces immenses jeux de données pourrait devenir un
nouveau pilier de la recherche scientifique au même titre que la théorie, l’expéri-
mentation et la simulation ([68]). D’autres travaux encore, comme ceux de Lin et
Dyer dans [81], soulèvent l’hypothèse que certains algorithmes, incapables de pas-
ser à l’échelle et de s’appliquer sur des gros volumes de données, risquent d’être
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délaissés par les praticiens et de se retrouver réduits au statut d’algorithmes jouets.

En statistiques comme ailleurs, le lien avec l’informatique se resserre donc, ou-
vrant des enjeux inter-disciplinaires en partie mésestimés il y a encore quelques
années. Sur un plan théorique, cette multi-disciplinarité est déjà représentée en sta-
tistiques par des branches comme l’apprentissage statistique (machine-learning)
ou les statistiques bayésiennes. Sur un plan pratique, elle était jusqu’à récemment
la chasse gardée de géants tels que Google (20 Pétaoctets de données analysées
par jour en 2008 selon [48]), de Youtube (2 milliards de vidéos visionnées par jour
dès 2010 selon [17]), ou encore le projet européen du Large Hadron Collider (15
Pétaoctets par an). Elle s’est démocratisée et touche aujourd’hui un public bien
plus large et se retrouve même au coeur des enjeux technologiques de nombreuses
startups.

Comment gérer ces quantités phénoménales de données et de calculs ? Une ré-
ponse possible est celle de répartir les tâches sur un ensemble d’unités de calcul
et de stockage plutôt que de se restreindre à une seule machine. Comme ex-
pliqué dans l’ouvrage de Lin et Dyer ([81]), cette idée n’est pas nouvelle : en
1990, Leslie Valiant dans [107] faisait déjà le constat que l’avènement annoncé
du calcul parallèle n’avait pas encore eu lieu. Bien que la démocratisation des
algorithmes répartis soit annoncée partiellement en vain depuis des décennies,
certains éléments portent à croire que s’entame actuellement ce phénomène. Tout
d’abord, l’affaiblissement sensible des progrès dans la cadence des processeurs
ne permet plus de résoudre les problèmes logiciels par l’attente de dispositifs
matériels plus performants. Ensuite, la volonté de diminuer les consommations
énergétiques des unités de calcul (pour améliorer l’autonomie mais aussi diminuer
les coûts) tend à multiplier les coeurs des processeurs plutôt que leur cadence (on
retrouvait déjà ce phénomène par exemple dans l’Amiga ou plus récemment dans
de nombreux smartphones qui multiplient les processeurs dédiés). D’un point
de vue pratique, la solution du calcul réparti sur de nombreuses machines est
d’ailleurs celle retenue le plus souvent par les géants cités précédemment.

La recherche et l’enseignement en statistiques devraient donc offrir une place
toujours plus grande à l’étude d’algorithmes répartis dans les années à venir. Cette
thèse s’inscrit dans cette thématique et a pour objet l’étude de la parallélisation
de certains algorithmes de classification non-supervisée (clustering) 1.

1. Par la suite, nous désignerons ces problèmes par le simple terme de classification.
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1.2 Contexte de la thèse

Cette thèse est le fruit d’une collaboration entre la société Lokad et Télécom
ParisTech.

Lokad est une jeune société éditrice de logiciels, spécialisée dans la prévision
statistique de séries temporelles. Ces prévisions sont vendues à des entreprises
pour gérer et optimiser leurs flux de clients, d’appels ou de stocks. Les clients prin-
cipaux de Lokad sont les acteurs de la grande distribution, les e-commerces, etc.
Pour rendre facilement exploitables ces prévisions, Lokad propose des logiciels
en mode Software as a Service (SaaS), c’est-à-dire des applications hébergées par
ses soins et accessibles directement depuis Internet, qui utilisent ces prévisions
pour fournir des outils d’aide à la décision. Lokad fournit par exemple, via son ap-
plication SalesCast, un système de gestion des stocks en déterminant les niveaux
de stock à maintenir et les réapprovisionnements à effectuer. Lokad propose
également, via son application ShelfCheck, un outil de détection d’indisponibilité
d’un produit en rayonnage, reposant lui aussi sur des prévisions de ventes de
produits.

Deux caractéristiques de Lokad inscrivent cette société dans les thèmes de calcul
intensif et donc parallèle.

La première de ces caractéristiques est le caractère SaaS des logiciels développés
par Lokad. Une utilisation classique des services de Lokad se déroule de la ma-
nière suivante : une application SaaS se charge d’accéder à la base de données
du client ; cette application envoie les données via le réseau sur les serveurs de
Lokad ; le moteur interne de prévision statistique s’applique ensuite aux données
pour fournir des prévisions ; les prévisions sont enfin retournées au client via
le réseau. Cette approche permet à Lokad d’avoir un contrôle fin sur la qualité
des prévisions qu’elle délivre, mais elle implique que l’intégralité des tâches de
calcul soit effectuée par les serveurs de Lokad.

La seconde de ces caractéristiques est la gestion automatisée des prévisions.
Lokad a développé un moteur interne de prévision de séries temporelles qui ne
requiert pas de travail direct d’un statisticien : pour chaque série temporelle à
prévoir, ce moteur évalue la précision de chacun des modèles disponibles en
production par validation croisée, et sélectionne automatiquement les prévisions
du modèle le plus précis pour la série. L’automatisation des prévisions permet à
Lokad de répondre à la demande de certaines entreprises dont la taille des données
rendait très difficile des prévisions plus manuelles. C’est le cas par exemple de la
grande distribution, où chaque enseigne possède des centaines de points de vente,
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et où le nombre de produits par point de vente peut atteindre 50 000 références.
Cette automatisation implique également que la quantité de calcul à fournir soit
au moins proportionnelle au nombre de séries temporelles à prévoir, mais aussi
au nombre de modèles et au nombre de points de validation croisée par modèle.
Ainsi l’automatisation vient au prix de calculs bien plus intensifs.

Parallèlement, Télécom ParisTech est un acteur européen de référence dans les
domaines des Sciences et Technologies de l’Information et de la Communication
(STIC). Télécom ParisTech est impliqué dans de nombreux travaux ayant trait
à des questions statistiques sur des jeux de données volumineux. Par exemple,
Télécom ParisTech et EDF ont eu un partenariat de recherche, concrétisé par
le laboratoire commun BILab, spécialisé dans les technologies de l’aide à la
décision, égalements appelées Business Intelligence (BI). En particulier, le BILab
s’est intéressé aux questions afférentes à la prévision statistique. En raison de la
taille d’EDF, ces questions qui étaient à l’origine statistiques sont à présent aussi
liées à l’informatique et à la nécessité de gérer d’importants volumes de données
et des calculs coûteux.

Télécom ParisTech et Lokad se trouvent donc tous les deux à l’intersection entre
informatique et statistiques, à l’endroit même où les deux disciplines se rejoignent
sur les problèmes d’algorithmes statistiques répartis.

Le concept récent de Cloud Computing (francisé en « informatique dans les
nuages ») est en train de modifier profondément le monde informatique. Le Cloud
Computing propose une transition depuis le modèle économique dans lequel
l’utilisateur possède les logiciels et les infrastructures matérielles vers un modèle
dans lequel l’utilisateur est un simple locataire de services, qu’ils soient logiciels
ou matériels. Le Cloud Computing abstrait et dématérialise donc l’espace phy-
sique dans lequel les calculs et les données sont gérés et ouvre des perspectives
nouvelles pour les entreprises mais aussi pour la recherche académique.

Notre travail de thèse s’inscrit à l’intersection de ces différents sujets : statistiques,
calcul réparti et Cloud Computing. Nos activités de recherche ont porté sur cette
technologie naissante pour laquelle peu de travaux académiques ont à ce jour
été réalisés. Notre travail a consisté à explorer les capacités et limites de ces
technologies encore mal comprises, pour en appréhender les enjeux et proposer
des manières pertinentes de paralléliser des algorithmes. Ce travail d’exploration
et de synthèse donne naissance aux chapitres 2 et 3.

Les algorithmes que nous avons portés sur le cloud se répartissent en deux ca-
tégories. La première catégorie regroupe différents composants du moteur de
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prévision interne de Lokad que nous avons adaptés pour le cloud. Ces travaux,
moins académiques, sont d’autant plus difficiles à partager que le code qui en
découle est propriétaire. Ils nous ont cependant permis par induction de dégager
quelques considérations générales sur la conception d’applications sur le cloud.
Nous en présentons certaines dans le chapitre 4.

La seconde catégorie d’algorithmes a trait aux méthodes de classification non-
supervisée réparties, qui font l’objet principal des chapitres 5 à 7 du présent
document. La question de la classification est un aspect très important de la
prévision de séries temporelles chez Lokad. En effet, pour améliorer ses prévi-
sions, Lokad utilise des méthodes dites « multi-séries ». L’objet de ces méthodes
est d’utiliser l’information contenue dans un groupe de séries homogènes afin
d’affiner la prévision de chacune d’entre elles. Un exemple d’utilisation est l’ex-
ploitation des saisonnalités : en dégageant des comportements saisonniers d’un
ensemble de séries temporelles, certains modèles de Lokad sont capables d’af-
finer la composante saisonnière, plus bruitée sur une seule série temporelle. La
classification est donc un outil essentiel pour Lokad, outil qu’il était nécessaire
d’adapter aux plateformes de Cloud Computing.

Les algorithmes de classification répartis considérés dans ce manuscrit mettent
en lumière certaines des contraintes imposées par les plateformes de Cloud
Computing, notamment en terme de communication. Le chapitre 5 traite de la
parallélisation d’un algorithme bien connu de classification : le Batch K-Means.
La version répartie de cet algorithme nécessite des communications importantes
entre les différentes machines sur lesquelles il est parallélisé, ce qui limite en
partie sa rapidité. Les deux chapitres suivants traitent d’un autre algorithme, cou-
sin germain du Batch K-Means : l’algorithme de Vector Quantization (VQ). Cet
algorithme, qui peut être considéré comme la version en-ligne du Batch K-Means,
permet de contourner certains problèmes de communication inter-machines par
l’introduction d’asynchronisme.

Les travaux scientifiques portant sur des calculs répartis de grande ampleur sont
appliqués à des jeux de données dont l’échelle de taille peut se révéler très va-
riable. Pour chaque ordre de grandeur du problème, les outils logiciels et matériels
adéquats sont très différents ; on conçoit aisément qu’à des problèmes aussi dif-
férents en taille que l’indexation du web par Google Search ou l’affluence de
trafic sur un petit site web, des solutions très distinctes sont fournies. Il est ainsi
primordial de préciser quels sont les ordres de grandeur pour lesquels un travail
donné est conçu. Nos travaux de thèse portent sur des calculs dont l’ampleur
correspondrait sur une seule machine (mono-coeur) à une centaine d’heures, avec
à notre disposition 250 machines. Les jeux de données les plus volumineux sur
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lesquels nous avons fait tourner nos algorithmes représentent environ 50 Giga-
octets. Nous avons choisi de concentrer nos travaux sur ces ordres de grandeur
qui reflètent la taille des données des clients les plus importants actuellement de
Lokad.

La suite de cette partie introductive présente succinctement le contenu de chaque
chapitre de ce manuscrit.

1.3 Présentation des travaux

1.3.1 Chapitre 2 - Introduction au Cloud Computing

Les progrès importants des mécanismes de collecte des données n’ont pas été
accompagnés de progrès aussi rapides dans le développement des processeurs.
Cette réalité a incité au développement de systèmes physiques et logiciels per-
mettant de répartir des charges de travail sur de multiples unités de calcul. Ces
calculs intensifs ont tout d’abord été portés sur des architectures physiques dé-
diées, communément appelées super-calculateurs. Ces super-calculateurs étaient
des dispositifs physiques conçus en faible quantité, spécifiquement pour réaliser
des calculs intensifs. L’explosion du marché des ordinateurs personnels dans les
années 80, puis d’Internet à la fin des années 90 a ouvert des perspectives nou-
velles quant à la manière de répartir des calculs. De nouveaux systèmes sont alors
apparus, reposant sur la collaboration de plusieurs agents administrativement
distincts et mettant en commun une partie de leurs ressources. Parmi ces sys-
tèmes, on trouve des infrastructures de Grid Computing, comme Condor ([105]),
ou des systèmes plus récents, par exemple de Peer-To-Peer, comme Napster ou
Folding@Home.

La parallélisation de calculs sur une vaste quantité de machines soulève de nom-
breuses difficultés, qu’elles aient trait à la communication entre les machines, à
l’accès en écriture ou lecture à une mémoire partagée efficace, ou à la répartition
de la charge de calcul sur les différentes unités disponibles. Les années 2000
ont vu l’émergence d’applications Internet consommant d’immenses ressources :
c’est le cas par exemple de Google Search, de Bing, de Facebook, de Youtube,
d’Amazon, etc. Les entreprises à la tête de ces applications ont développé des
environnements logiciels (frameworks) mais aussi physiques (via la construction
de centres de calcul spécifiques ou data centers) pour proposer des solutions aux
difficultées susnommées.

Certaines de ces entreprises, rejointes par d’autres acteurs économiques, ont alors
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proposé de mettre en location un accès à ces différentes solutions, physiques et lo-
gicielles. Ces sociétés sont alors devenues des fournisseurs de Cloud Computing.

Le Cloud Computing a de très nombreuses implications techniques, scientifiques
ou commerciales. Les différentes offres se distinguent selon qu’elles offrent des
solutions clef en main, ou au contraire qu’elles laissent plus de libertés à leurs
utilisateurs au prix d’une complexité d’utilisation plus élevée. Parmi les solutions
clef en main, on recense les offres de Software as a Service (SaaS), comme
Google Search, Gmail, Deezer, Facebook, etc. On y regroupe également de nom-
breuses solutions spécifiques, développées pour chaque client par des sociétés
tierces (notamment des sociétés de services en ingénierie informatique (SSII)).
Ce chapitre présente principalement la catégorie d’offres de Cloud Computing
les plus à même de permettre l’usage de calculs intensifs. Cette catégorie d’offres
est souvent celles des acteurs clouds les plus importants. Plus standardisées et
orientées performance, leurs offres s’adressent à un public de développeurs ex-
clusivement. Parmi elles, nous approfondirons les différences entre les offres de
Platform as a Service (PaaS) et celles d’Infrastructure as a Service (IaaS).

Les offres de Cloud Computing analysées proposent un ensemble de technolo-
gies, parfois pré-existantes au concept de Cloud Computing, réunies dans une
même pile technologique. Le chapitre 2 traite de ces différentes technologies.
En particulier, nous donnons un apercu des difficultés que soulèvent un système
de stockage de données réparti sur un ensemble de machines distantes. Nous
présentons également certains des environnements logiciels construits pour aider
le développement d’applications réparties, comme le célèbre MapReduce, conçu
originellement par Google et amplement repris.

1.3.2 Chapitre 3 - Introduction à Azure

Microsoft est une société dont les différentes filiales ont d’importants besoins en
matériel informatique : c’est le cas par exemple pour une partie du moteur de
recherche Bing ou pour le stockage de certaines données comme celles liées à
la plateforme de jeu en ligne de la XBox 360. Ces larges besoins internes ont
amené Microsoft à fournir des efforts de recherche et développement dans les
infrastructures matérielles et logicielles pour disposer d’une plateforme de calcul
et de stockage puissante. Ces efforts ont abouti par exemple sur des composants
logiciels comme Cosmos, Scope ([38]), Dryad ([73]) ou DryadLINQ ([116]).

A la suite d’Amazon et de Google, Microsoft a utilisé les outils développés pour
ses besoins internes pour devenir fournisseur de Cloud Computing. Son offre
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cloud se répartit en deux grandes familles de produits. La première regroupe les
applications classiques de Microsoft auparavant proposées en mode « desktop »
et aujourd’hui disponibles en version cloud. Parmi elles, on peut citer Office 365,
qui est la version SaaS du pack Office. Les offres de SQL Server ont également
été portées sur le cloud pour prendre le nom de SQL Azure. Ces migrations sur
le cloud ne se font pas sans certaines difficultés liées au contexte de l’activité de
Microsoft : les offres SaaS de Microsoft font en quelque sorte concurrence à leur
pendant desktop, mais elles modifient également le positionnement de Microsoft
par rapport à certains de ses partenaires dont l’activité principale consistait à
garantir la bonne installation et la maintenance de ces applications desktop chez
les clients de Microsoft. Cependant Microsoft a affiché sa volonté de développer
ces offres qui représenteront très probablement une part importante de son activité
dans les prochaines années.

La deuxième famille de produits est une plateforme de Cloud Computing desti-
née aux éditeurs logiciels, appelée Azure. Cette plateforme permet à ses clients
d’héberger des applications en mode SaaS, qui utilisent les ressources de CPU,
de stockage et de bande-passante fournies par Azure. Microsoft a réutilisé une
partie de la technologie développée dans Cosmos (comme expliqué dans [36])
pour construire un système de stockage dédié pour cette plateforme, appelé Azure
Storage.

Le chapitre 3 présente les caractéristiques et les enjeux techniques d’Azure. En
particulier, nous nous intéressons aux abstractions de stockage proposées, ainsi
qu’à la manière dont elles se sont positionnées par rapport aux différents com-
promis nécessaires aux solutions de stockage réparties, comme introduit dans le
chapitre 2. Nous présentons également quelques clefs du développement d’appli-
cations sur cette plateforme.

1.3.3 Chapitre 4 - Éléments de conception logicielle sur le
cloud

Le chapitre 4 présente certaines techniques ou schémas récurrents (dits « design
pattern ») rencontrés pendant le développement de nos applications sur le cloud.
Ces techniques ont été bien souvent au coeur du développement des quatres appli-
cations sur lesquelles nous avons travaillé durant cette thèse. Les deux premières
applications sont les implémentations cloud de l’algorithme réparti du Batch
K-Means d’une part et de l’algorithme réparti de Vector Quantization d’autre part,
respectivement étudiés dans les chapitres 5 et 7.
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Parallèlement à ces algorithmes, nous avons porté sur le cloud deux applications
qui correspondent au coeur de la technologie de prévision de Lokad. La première
de ces deux applications est le moteur de prévision de séries temporelles de
Lokad. Ce moteur, utilisé en production pour fournir via son API les prévisions
utilisées ensuite dans nos applications-clients, profite de la fiabilité et de l’élasti-
cité proposées par Azure. La seconde application, Lokad Benchmark, est un outil
interne qui réplique le moteur de prévision. Cet outil est utilisé pour améliorer la
précision statistique de nos modèles, pour augmenter le potentiel de passage à
l’échelle de notre moteur sur de plus gros jeux de données, et pour surveiller et
« profiler » l’exécution de prévisions.

Ces quatres applications s’inscrivent dans des contextes différents (prototype/en
production) qui influencent fortement le positionnement de l’application quant
à de nombreux compromis : robustesse/efficatité, passage à l’échelle/facilité de
maintenance, rapidité/précision, etc. À la lumière de ces quatre applications, nous
présentons comment les différentes abstractions et primitives fournies par Azure
peuvent être combinées pour bâtir des applications sur Azure. Nous soulignons
également l’absence de certaines de ces briques « élémentaires », et les consé-
quences sur le design induites par ces absences.

1.3.4 Chapitre 5 - Algorithmes de Batch K-Means répartis

Les algorithmes de classification (toujours au sens clustering) ont un rôle cen-
tral en statistiques. D’un point de vue théorique, ils représentent un problème
d’apprentissage non supervisé très étudié. D’un point de vue pratique, ils sont
un outil souvent indispensable pour l’exploration des données. Ces algorithmes
proposent de résumer un jeu de données en un jeu de données plus petit mais
cependant représentatif des données initiales. Ce résumé est réalisé en constituant
des sous-groupes (également appelés « clusters »), déduits du jeu initial par le
regroupement des données les plus proches suivant un certain critère de similarité.

Etant donnés un critère de similarité et un nombre fixé de sous-groupes, le pro-
blème de trouver un regroupement optimal au sens du critère est un problème
calculatoirement très difficile, souvent irréalisable dans la pratique dès que la
taille du jeu de données dépasse quelques dizaines de points 2. Des algorithmes
d’approximation ont été proposés, fournissant une solution proche de la solution

2. À titre d’exemple, le problème du K-Means théorique comme exposé dans [31] est NP-
complet, même dans le cas le plus simple de la classification dans le plan (voir [87])
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optimale. Parmi ces algorithmes, le Batch K-Means est un algorithme populaire,
connu notamment pour sa simplicité de mise en oeuvre.

Les algorithmes de classification comme le Batch K-Means sont utilisés dans des
domaines très variés, qu’il s’agisse par exemple de biologie moléculaire, d’ana-
lyse de séries temporelles ou d’indexation du web pour les moteurs de recherche,
etc. Chez Lokad, ces procédures sont utilisées pour former des sous-groupes au
sein desquels les séries temporelles partagent un même comportement saisonnier.
Il est alors plus aisé pour Lokad d’extraire une composante saisonnière de chaque
sous-groupe plutôt que de chaque série temporelle, car la composante saisonnière,
moyennée sur ce sous-groupe, se révèle souvent plus régulière que lorsqu’elle est
extraite série par série.

Les algorithmes de classification connaissent depuis une quinzaine d’années le
développement d’un nouveau défi : celui de la parallélisation. En effet, l’évolu-
tion plus rapide des moyens de collecte des données que des moyens de calcul a
conduit les statisticiens à paralléliser leurs tâches de calcul sur de nombreuses
machines, mêlant ainsi toujours plus statistiques et informatique.

Les travaux du chapitre 5 portent sur le problème du Batch K-Means réparti,
en particulier son adaptation aux nouvelles architectures de calcul sur le cloud,
développées au chapitre 2 et 3. Plus précisément, ils montrent comment le premier
cadre théorique de Batch K-Means réparti, proposé par Dhillon et Modha ([51])
dans le cas d’une architecture DMM 3 disposant d’une implémentation MPI 4,
ne s’applique que partiellement à Azure parce que ce dernier ne possède pour
l’instant pas une telle implémentation. Ce chapitre propose une modification de
l’algorithme qui permet de l’adapter à l’infrastructure offerte par Azure, et une
modélisation du coût de notre implémentation.

1.3.5 Chapitre 6 - Considérations pratiques pour les
algorithmes de Vector Quantization répartis

Ce chapitre ainsi que le suivant présentent des travaux réalisés et écrits en collabo-
ration avec Benoit Patra, qui était également doctorant au sein de la société Lokad.
Nous sommes partis du constat du chapitre 5 selon lequel les communications sur

3. Distributed Memory Multiprocessors : architecture parallèle ne disposant pas de mémoire
physique partagée.

4. norme définissant une bibliothèque de fonctions pour fournir des moyens de communica-
tions entre machines.
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une plateforme de Cloud Computing via le stockage réparti sont coûteuses. La
parallélisation du calcul d’un Batch K-Means, bien qu’assez satisfaisante, y est
donc ralentie par les nombreuses communications nécessaires ainsi que par les
processus de synchronisation de toutes les machines. Nous avons donc travaillé
sur la parallélisation d’un autre algorithme de classification, connu sous le nom
d’algorithme de Vector Quantization (VQ) qui supprime ou limite ces problèmes
et se montre donc, selon nous, plus adapté à une implémentation sur le cloud.

Tout comme le Batch K-Means, l’algorithme de VQ permet de calculer des
sous-groupes pertinents en affinant des points de référence appelés centroïdes
ou prototypes qui représentent les différents sous-groupes. Bottou et Bengio
montrent dans [32] que l’algorithme de VQ peut être vu comme la version « en-
ligne » du Batch K-Means : au fur et à mesure que l’algorithme de VQ traite des
points tirés des données à résumer, il fait évoluer en conséquence les prototypes
plutôt que de faire évoluer les points une fois qu’il a examiné toutes les données
comme c’est le cas dans le Batch K-Means.

D’un point de vue statistique, le passage à un algorithme « en-ligne » a présenté
des difficultés particulièrement intéressantes. En effet, ce type d’algorithme est
par essence séquentiel, et la parallélisation du calcul est moins naturelle que dans
le cas d’un Batch K-Means, pour lequel une même instruction doit être appliquée
indépendamment à de nombreux points (on parle alors de tâches exhibant une
propriété dite de « data-level parallelism »). Par certains aspects, l’algorithme de
VQ appartient à la grande famille des algorithmes de descente de gradient sto-
chastique. La parallélisation de ce genre d’algorithmes a déjà fait l’objet d’études
(nous renvoyons par exemple aux articles [118], [49] et [84]). Dans le cas où le
critère est convexe et suffisamment régulier, les stratégies classiques de parallé-
lisation d’algorithmes de descente de gradient par moyennage des résultats des
différentes machines mènent asymptotiquement à des accélérations de conver-
gence optimales, comme démontré dans le récent article de Deker et al. ([49]), et
obtiennent dans la pratique des résultats très satisfaisants, comme dans l’article
de Langford et al. ([118]).

Dans le cas de l’algorithme de VQ, le critère n’est ni convexe ni suffisamment
régulier, et le moyennage des résultats ne mène pas dans le cas général à de
meilleures performances que l’algorithme séquentiel exécuté sur une seule ma-
chine. Ce résultat surprenant nous amène à reformuler l’algorithme proposé sous
une forme qui souligne l’importance de la vitesse de décroissance du pas associé
à la descente de gradient. Ce travail nous permet de donner un éclairage différent
au précédent algorithme pour appréhender les mécanismes qui l’empêchent d’ob-
tenir des accélérations de convergence satisfaisantes.
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Enfin, nous proposons un nouvel algorithme de VQ réparti, qui évite les tra-
vers du précédent. En particulier, notre algorithme va additionner les termes
de descente provenant des différentes machines, plutôt que d’en moyenner les
valeurs. Cette modification de l’algorithme permet d’obtenir des accélérations
de convergence satisfaisantes. Ces accélérations sont présentées en fin de chapitre.

1.3.6 Chapitre 7 - Implémentation cloud d’un algorithme de
Vector Quantization réparti et asynchrone

Dans ce dernier chapitre, nous présentons le projet logiciel Cloud-DAVQ. Ce
projet est la mise en oeuvre des algorithmes étudiés dans le chapitre précédent
sur la plateforme de Cloud Computing de Microsoft : Windows Azure. Des
implémentations ambitieuses d’algorithmes répartis de descente de gradient sto-
chastique ont déjà été proposées, comme c’est le cas dans les articles de Louppe
et al., Langford et al., ou Dekel et al. précédemment cités : [84], [118] et [49].
Cependant, ces travaux se sont à notre connaissance restreints au cas plus simple
où l’infrastructure de calcul possède une mémoire partagée efficace et où les
coûts de communication sont donc très faibles (dans [84] et [49]), ou à un cas où
la convexité du critère permet de supprimer les communications inter-machines
sauf à la fin de l’algorithme (dans [118]). Ainsi, aucun des travaux précédents
ne propose d’exemples d’implémentation d’algorithmes de descente de gradient
répartis dans un contexte où les communications sont à la fois nécessairement
fréquentes et coûteuses.

D’un point de vue informatique, l’aspect « en-ligne » de l’algorithme de VQ nous
a semblé particulièrement pertinent, puisque c’est la suppression du caractère
batch qui permet de retirer la nécessité de la synchronisation des machines. Le
passage vers un algorithme « en-ligne » parallélisé nous permet donc de construire
un algorithme asynchrone, libérant nos machines de processus pénalisant les per-
formances. Ce passage vers l’asynchrone permet dans les faits de supprimer
deux mécanismes de synchronisation : le premier a trait aux organisations inter-
machines, puisque chaque machine n’est plus bloquée dans ses communications
et dans ses calculs par l’attente des résultats des autres unités de calcul. Le second
mécanisme que nous supprimons est celui de la séquentialité lecture/calcul/é-
criture au sein de chaque machine. Par la suite, nous faisons référence à cet
algorithme réparti asynchrone sous l’acronyme de Distributed Asynchronous
Vector Quantization (DAVQ). Dans le cadre du DAVQ, chaque machine peut
effectuer en parallèle (par un recouvrement à base de plusieurs threads) les tâches
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de calcul et de communication pour exploiter au mieux les ressources de CPU et
de bande-passante.

1.4 Résumé des contributions

Notre apport personnel s’articule autour de trois axes. Le premier a trait à la clari-
fication des usages possibles des plateformes de Cloud Computing en général, et
plus particulièrement dans le contexte d’une utilisation à but scientifique du PaaS.
En effet, la littérature académique dans le domaine du cloud émerge seulement,
et il était difficile de comprendre précisément les capacités, les objectifs, et les
limitations techniques du cloud à la seule lumière des documents commerciaux
proposés par les fournisseurs de Cloud Computing. Les chapitres 2 et 3 se veulent
donc une introduction plus rigoureuse des plateformes cloud actuelles.

Le second axe porte sur l’architecture des programmes cloud imposée par les
contraintes technologiques logicielles et matérielles du cloud. En particulier, nous
montrons comment les notions d’idempotence ou l’abandon du système ACID
amènent à repenser la conception d’algorithmes mathématiques mais aussi d’ap-
plications plus générales.

Le troisième axe se penche sur la parallélisation d’algorithmes de classification
répartis. Il montre les limitations d’un algorithme connu de classification, le Batch
K-Means, et étudie la parallélisation d’un autre algorithme : l’algorithme de VQ.
Cet axe a donné lieu à 2 publications à propos de la parallélisation de l’algorithme
de Batch K-Means en collaboration avec mon directeur de thèse Fabrice Rossi, et
à une troisième publication à propos de la parallélisation de l’algorithme de VQ
en collaboration avec Benoit Patra et Fabrice Rossi.





Chapter 2

Presentation of Cloud Computing

2.1 Introduction

For the last twenty years, the technological improvements in computing hardware
have led to a situation where a gigantic amount of data can be gathered, stored
and accessed. The amount of processing power required to explore and use these
data largely exceeds the capacity of a single retail computer (referred to in the
following as commodity hardware). Therefore, several computing systems have
been designed to tackle this issue. In the 80’s, more powerful systems known
as supercomputers were created by improving custom hardware: this solution is
referred to as scaling-up. The present trend is on the contrary to run these broad
computations on a large set of commodity CPU working together, a solution
referred to as scaling-out. In other words, processing more data nowadays often
consists in throwing more commodity hardware at the problem.

The parallelization of computation on a large amount of machines gives rise to
many problems, such as communications between computers, access to shared
resources, or workload balance. The past two decades have been constantly
providing engineered solutions to these issues, some of them known as Grid Com-
puting and Peer-to-Peer architectures. These solutions have led to well-known
software applications or results that have a deep impact on our everyday life, as
is the case for Napster, Google Search, social networks like Facebook, etc.

While these considerations were challenging only few people several years ago,
the number of software companies involved in large-scale computations is grow-
ing quickly. This situation has led to the creation of a new economic market
of storage and computation facilities. Some very large software actors have
decided to provide these facilities as a commercial service, allowing new players
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to outsource their computing solution, making computation and storage a facility
as electricity already is. These new commercial services are referred to as Cloud
Computing.

The fast-growing interest in Cloud Computing over the past few years has led to a
fuzzy and continuously evolving situation: many have heard of it, but few people
actually agree on a specific definition. More importantly, even fewer understand
how it can benefit them. From our point of view, the best definition of Cloud
Computing has been provided by Armbrust et al. in [25]: Cloud Computing
"refers to both the applications delivered as services over the Internet and the

hardware and systems software in the data centers that provide those services".

From a consumer’s point of view, Cloud Computing allows any user to rent a
large number of computing instances in several minutes to perform data/compute
intensive jobs or build web applications. Since such instances can be dynamically
provisioned up or down, it allows users to meet specific scale-up constraints, i.e.
to be able to be enlarged to accommodate growing amount of work. For example,
this scaling elasticity lets consumers face weekly data consumption peaks. The
storage and computing capacities are provided as a service in a pay-as-you-go
way. Cloud Computing therefore disburdens users from the hardware investment.

Many Cloud Computing solutions have already been developed. There are two
categories of cloud solutions. The first category includes all the big Cloud Com-
puting providers, such as Google, Microsoft or Amazon. They often provide
the cheapest prices of Cloud Computing solutions, through well-designed but
fixed frameworks. The second category gathers all the small Cloud Computing
offers. Contrary to the former ones, the small actors provide their customers with
custom Cloud Computing solutions. While the storage or CPU costs of these
companies usually cannot compete with the big providers’ prices, their economic
advantage lies in all the specific services provided to their customers with. In
particular, the small Cloud Computing providers sometimes embody the ability
for companies’ top management to challenge or replace some tasks previously
reserved to their Information Technology (IT) department, for example in the case
of a conflict between the top management and the IT. As a consequence, the Cloud
Computing adoption may sometimes be the subject of internal political dealings.
The small and custom Cloud Computing offers are therefore of prime interest
for many potential customers as they can adapt to specific needs. However, the
present chapter does not further detail these offers, as it aims to focus on the most
appropriate cloud solutions for intensive computations.

A survey of Cloud Computing realized in 2011 by TNS ([8]) provides first feed-
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backs of early cloud solution adopters. The survey was conducted on 3645 IT
decision makers in eight different countries. The study states that 33% of compa-
nies adopted cloud primarily to access information from any device rather than
to cut costs. Indeed, while a large part of these companies saved money thanks
to cloud adoption (82%), the savings are on average small (more than half of
the companies report less than $20,000 savings). Beyond the reduction of the
costs, Cloud Computing can contribute to improve most of the quality of services.
93 % of all the companies interviewed have noted some improvements in their
services since their cloud adoption. Among these improvements, the hardware
administration and maintenance release is a major element.

Cloud Computing is also a subject of interest for academic researchers. The use
of Cloud Computing can provide them with access to large-scale experiment plat-
forms without getting hardware access grant or hardware investments from their
administration. All the scientific intensive computing tasks do not fit the Cloud
Computing constraints, especially because of the communication throughput and
latency constraints. Yet, provided the tasks fit into the scope of Cloud Computing,
even scientists with limited experience with parallel systems are provided with
the resources of a large distributed system.

One can foresee that the importance of Cloud Computing in the coming years
will keep growing, as many companies have expressed their will to resort to these
cloud platform solutions. This dynamic is strengthened by the large research and
development investments of the major cloud providers. These providers keep
investing a lot of work and money to improve their services and tackle economical,
ecological and performance challenges. For example, in 2011 Microsoft planned
to spend 90 percent of its $9.6 billion research and development budget on cloud
strategy (according to an interview given by the Microsoft International President
Jean-Philippe Courtois to Bloomberg ([13])).

This chapter is a short overview of the current state of Cloud Computing (in early
2012). It is organized as follows. The second and following section gives a short
introduction to the origins of Cloud Computing. The third section is devoted
to a more in-depth definition of Cloud Computing. In particular, we compare
Cloud Computing and Grid Computing, and give some insights of the different
abstraction levels it targets. Cloud storage design is investigated in a fourth
section, while the fifth section describes the main cloud execution frameworks.
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2.2 Origins of Cloud Computing

2.2.1 HPC and commodity hardware computing

A large part of High Performance Computing (HPC) researches and experiments
is implemented on custom HPC hardware, sometimes called supercomputers.
While the exact beginning of custom HPC platforms is rather uncertain, it goes
back at least to the 1960s and the work of Seymour Cray. These computing
platforms have been successfully used in many research fields such as weather
forecasting, aerodynamic research, nuclear explosion simulations, molecular
dynamics simulation, drug discovery, etc.

During the 80’s and 90’s, the amount of personal computers all around the world
has increased very significantly. The resulting scale economies have led to a
situation where it is nowadays often more cost-effective to stack cheap retail CPU
than buying expensive dedicated hardware. In parallel with HPC development on
supercomputers, research has therefore been made to distribute computations on
commodity hardware.

This situation is summarized by Drepper in [52]: "It is important to understand

commodity hardware because specialized hardware is in retreat. Scaling these

days is most often achieved horizontally instead of vertically, meaning today it is

more cost-effective to use many smaller, connected commodity computers instead

of a few really large and exceptionally fast (and expensive) systems".

To distribute computations on commodity hardware, initial solutions have been
provided to network together distinct commodity computers. For example, the
Parallel Virtual Machine (PVM) framework originally written in 1989 is a soft-
ware system that enables a collection of potentially heterogeneous computers
to simulate a single large computer. A second major framework is the Message
Passing Interface (MPI) framework, whose version 1.0 was released in 1994.
This second framework is more explicitly described in Chapter 5. The hardware
systems composed of multiple commodity computers and networked through
software as PVM or MPI are often called Beowulf clusters.

A halfway solution between supercomputers and Beowulf clusters was introduced
several years ago. This solution mixes the cost efficiency of commodity CPU with
the throughput of dedicated hardware such as custom communication bus and
ethernet cards. This solution is therefore composed of commodity CPU and RAM
memory, along with custom and dedicated power supply devices, motherships,
and inter-machines connections. All the different components are fastened on



2.2. ORIGINS OF CLOUD COMPUTING 19

racks and/or blades, then gathered in rack cabinets.

Grid Computing is a general term referring to hardware and software config-
urations to distribute computations on commodity CPU, whether in Beowulf
clusters or in custom racks and cabinets. The following subsection describes
more precisely the Grid Computing frameworks.

2.2.2 Grid Computing

Grid Computing (or grid for short) is a distributed computing system composed
of many distinct networked computers (sometimes referred to as nodes). These
computers are usually commercial standard hardware gathered into a grid plat-
form. The different components are by design loosely coupled, which means
each computer has little knowledge of the existence and identity of the others.
A dedicated low-level software layer called middleware is used to monitor and
load-balance tasks between the nodes.

Contrary to supercomputers, the network that connects the different devices of a
Grid can be rather slow. In the case of supercomputers, all the processors are geo-
graphically very close and communication is endorsed through an efficient local
computer bus or a dedicated High Performance Network. In the Grid Computing
case, communication goes through a Local Area Network (LAN) or a Wide Area
Network (WAN), which cannot compete with the throughput of a local bus. This
communication constraint on Grid Computing means that Grid is very well-suited
to large batch jobs where there are intensive computational requirements and
small communication needs between machines.

Grid Computing architectures have been implemented in many different ways,
some of them being simple gathering of physical devices where administrators
and end users are one and the same people. In other cases, the system is a more
complex entity composed of distinct collaborative organizations, referred to as
administrative domains. In the latter case, the middleware manages the whole
system administration, grants users access to the resources, and monitors all the
participants to prevent malfunctioning or malicious code from affecting the re-
sults. Depending on the context, the term Grid Computing might refer only to this
latter case. One of the first middleware handling of the multiple administrative
domains is Condor ([105]).

Grids have been successfully set-up and used in many production fields. For
example, it is used by Pratt & Whitney, by American Express, in banks for Value
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At Risk estimation, pricing or hedging. It is also used by the National Aeronautics
and Space Administration (NASA) in various projects such as the Information
Power Grid (IPG) project. Grids have also been provided for academic researches,
as it is the case for the Large Hadron Collider (LHC) in the form of the LHC
Computing Grid, or for Grid 5000 (see [37]).

One of the most well-known forms of Grid Computing appeared in the 2000s,
resulting from two major events of the 90s: the personal computer democrati-
zation and the Internet explosion. This new form of Grid Computing is known
as the Peer-to-peer architecture, which is a Grid Computing platform composed
of a collaborative set of machines dispatched worldwide and called peers. This
architecture removes the traditional client/server model: there is no central ad-
ministration and peers are equally privileged. They share a portion of their own
resources (hard-drive, network bandwidth, CPU, etc.) to achieve the tasks re-
quired. Peer-to-peer model has been popularized by very large-scale distributed
storage system, resulting in peer-to-peer file-sharing applications like Napster,
Kazaa or Freenet ([41]). Since then, Peer-to-peer architectures have also been
successfully applied on very intensive computational tasks. Some of the largest
projects are listed by the Berkeley Open Infrastructure for Network Computing
(see [24]) like Seti@Home or Folding@Home (see [78]).

2.2.3 Emergence of Cloud Computing

During the 2000s, the Internet boom urged some behemoth like Google, Face-
book, Microsoft, Amazon, etc. to experience computation and storage challenges
on data sets of a scale hardly ever met. In addition to the scaling-out of their
systems, they faced two additional challenges. Firstly, they needed to create
abstractions on storage and distributed computations to ease the use of these
systems and allow non-distributed computing experts to run large-scale computa-
tions without getting involved in the current parallelization process. Secondly,
they were concerned with minimizing the operating cost per machine in their data
centers.

Such constraints meant partially dropping the previous mainstream data storage
system (this situation is detailed in Section 2.4) along with developing new soft-
ware and hardware frameworks to easily express distributed computation requests.
These companies continued the work on commodity hardware and merged vari-
ous innovative technologies into coherent technology stacks, on which a short
overview is given in Subsection 2.3.3. They built large data centers hosting tens of
thousands of commodity machines and used the technology stacks they improved
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to meet their internal computations and storage needs.

Initially, the infrastructures and data centers as well as the new storage systems
and the software frameworks for distributed computations were designed to be
tools exclusively dedicated to the companies internal needs. Progressively, some
of these tools have been transformed into public commercial products, remotely
accessed through Application Programming Interface (API) as paying services.
The companies that made these commercial offers became Cloud Computing
providers.

2.3 Cloud design and performance targets

2.3.1 Differences between Cloud Computing and Grid
Computing

A classical distinguishing criterion between Cloud Computing and Grid Com-
puting is the uniqueness or multiplicity of administrative domains. Clouds are
supposed to be rather homogeneous servers located in data centers controlled
by a single organization, while grids are supposed to be a federation of distinct
collaborative organizations sharing (potentially heterogeneous) resources. A
consequence of the multiple administrative domains in Grid Computing is that
grids need to handle the additional constraints of a federated environment, e.g.
checking the credentials and the agents’ identities, but also monitoring the system
to detect malicious uses. These additional constraints, together with the potential
lower bandwidth between two distinct administrative domains increase the com-
munication burdens and therefore tend to require coarser granularity for the tasks
distributed on the Grid than those distributed on the cloud.

A second aspect of Cloud Computing is the intensive use of Virtual Machines
(VM). A VM is the software implementation of a computer that executes programs
as if it was a physical machine. VM implementations were already available
several years ago, but they were uniquely software based and therefore suffered
from a significant impact on their overall performance. Nowadays the VM im-
plementations are both hardware and software based, reducing the loss due to
virtualization in a significant way. While the original motivation for virtual
machines was the desire to run multiple operating systems in parallel, Cloud
Computing is intensively using VM to build a higher degree of abstraction of the
software environment from its hardware. The use of VM provides Cloud Com-
puting with desirable features such as application provisioning and maintenance
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tools, high availability and easier disaster recovery.

A third difference between grid and cloud is ownership. In most Grid Computing
examples, consumers as a group own the resources they use. In the cloud case,
resources are totally outsourced to the cloud provider and do not need delegation
of authentication or authority: cloud consumers are paying for resources in a
pay-as-you-go manner. Rather than accessing resources directly, Cloud Comput-
ing consumers access them through a kind of service they pay for. By adopting
cloud, computing consumers do not need to invest in and own hardware and
infrastructure (data center, power supply, cooling system, etc.) as they would
probably need in the Grid Computing case.

A side effect of this ownership shift is multi-tenancy and elasticity. Elasticity
is the ability for the cloud consumer to provision up or down the number of
computing instances as well as the size of the data storage system. Since differ-
ent resources are gathered into a specific cloud company actor instead of being
held by each customer, the resources are mutualized. Such a mutualization of
resources allows elasticity, in the same way the mutualization of the risks allows
insurance mechanisms. This dynamic reconfiguration of the resources allows
each consumer to adjust its consumption to its variable load, therefore enabling
an optimum resource utilization. For instance, in most Cloud Computing systems,
the number of computing instances can be resized in few minutes.

One last significant difference between cloud and grid is hardware administration
and maintenance. Cloud consumers do not care about how things are running
at the system end. They merely express their requests for resources and the
Cloud Computing service then maps these requests to real physical resources. It
therefore disburdens customers of a part of system administration. In the same
way electricity became available to consumers in the 1930’s when a national
electricity grid was implemented, Cloud Computing is an attempt to commoditize
IT. The administration part left to the cloud consumer depends on the type of
cloud offer which will be chosen (Infractruture as a Service, Platform as a Service,
etc.) as detailed in the following subsection.

From a computing consumer’s point of view, Cloud Computing is therefore a
Grid Computing with a single administrative domain, where the management of
physical resources has a clear outsourced centralized ownership and hardware is
accessed indirectly through abstractions, services and virtual machines. There
are much fewer commitments for the consumer since no initial investments are
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required anymore 1.

2.3.2 Everything-as-a-Service (XAAS)

A Cloud Computing environment is a three-actor-world. It is composed of the
cloud provider which supplies hardware ownership and administration, the cloud
consumer using this abstracted hardware to run applications (the cloud consumer
often being a software company), and the application consumer, which is using
the applications run on the cloud. The three actors are related to each other
as follows: the cloud consumer is the customer of the cloud provider, and the
application consumer is the customer of the cloud consumer.

It is up to the cloud consumer to choose which part of the application build-
ing he wants to handle by himself and which part will be built using the cloud
provider pre-made libraries and services. This decision mostly depends on the
cloud consumer’s will to get involved in low-level software considerations. More
specifically, there is a tradeoff for the cloud consumer between a higher control
on the hardware and the systems he consumes, and a higher level of programming
abstractions where developing applications is made easier.

To address the different choices of the cloud consumers, each cloud system has
developed distinct strategies and API, as reported in [43]. A mainstream clas-
sification of Cloud Computing offers is therefore based on the programming
abstraction level proposed by the cloud providers. Let us provide a short descrip-
tion of these different abstraction levels.

– Infrastructure as a Service (IaaS) is the lowest cloud abstraction level. Re-
sources (computation, storage, and network) are exposed as a capability. Cloud
consumers are relieved of the burden caused by owning, managing or control-
ling the underlying hardware. Therefore they do not access directly the physical
machines, but indirectly through VM. IaaS consumers are given almost full
control on the VM they rent: they can choose a pre-configured Operating
System (OS) image or a custom machine image containing their own applica-
tions, libraries, and configuration settings. IaaS consumers can also choose the
different Internet ports through which the VM can be accessed, etc. A VM in
IaaS can run any application built by the cloud consumer or anyone else. The
main example of IaaS offers is Amazon Elastic Cloud Compute (EC2).

1. With the notable exception of the cost of porting the existing applications on the cloud.
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– Platform as a Service (PaaS) is a higher cloud abstraction level than IaaS,
designed to ease applications building and hosting. Contrary to IaaS on which
the OS and the configuration settings can be chosen and any application can be
run, PaaS provides the cloud consumer with much less freedom. This consumer
is given a fixed and constrained execution environment run on a specialized OS,
and he is only in charge of defining the code to be run within this framework.
The PaaS environment manages code deployment, hosting and execution by
itself. PaaS offers may also provide additional development facilities, such as
application versioning and instrumentation, application testing, system mon-
itoring, etc. In the case of PaaS, storage is mostly provided in the form of a
remote abstracted shared storage service. Prime examples of PaaS are Amazon
MapReduce with Simple Storage Service (S3), Microsoft Azure, BungeeLabs,
etc.

– Software as a Service (SaaS) is the highest cloud abstraction level where appli-
cations are exposed as a service running on a cloud infrastructure. Contrary
to the customer of IaaS or PaaS, the SaaS consumer is not involved in any
software development. This customer is only an application consumer com-
municating through the Internet with the application which is run on the cloud.
Some examples are GMail, Salesforce.com, Zoho, etc.

These distinct abstraction level technologies have different positioning on some
tradeoffs:

– abstraction/control tradeoff : PaaS provides higher abstractions to develop ap-
plications than IaaS, but the applications built on top of PaaS need to conform
and fit with the framework provided. As outlined in Subsection 2.5.1, some
processes hardly fit with a rigid framework like MapReduce. On the other
hand, IaaS will provide cloud consumers with a higher control on the machines
but with fewer off-the-shelf abstractions in return: the same distributed compu-
tation challenges will probably need to be repeatedly solved.

– scalability/development cost tradeoff : Applications run on a PaaS environment
prove to be easily scalable. Yet, this scalability comes as a side-product of a
strong design of the application so that it fits in with the framework provided.
On the contrary, applications run on an IaaS environment provides more flexi-
bility in the way the application can be built, but the scalability remains the
customer’s responsibility.
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2.3.3 Technology stacks

Cloud Computing frameworks are different hardware and software technologies
merged together into technology stacks to handle thousands of machines. This
subsection highlights some of these hardware and software technology stacks
developed by first row cloud actors.

Hardware technologies

In this subsection we describe how some of the cloud challenges are taken up,
namely the minimization of the operating cost per machine and the improve-
ment of bandwidth throughput between machines. The cost issue is managed by
lowering energy consumption and improving automation (we refer the reader to
[72] for an illuminating introduction to automation challenges in the cloud). The
bandwidth throughputs are optimized with specialized hardware improvement
and network topology refinements.

According to Jon Koomey (Consulting Professor at Stanford) on his blog, “Cloud

Computing is (with few exceptions) significantly more energy efficient than using

in-house data centers”. Yet, more than 40% of the amortized cost of a data
center is still energy consumption, according to [59]. This energy consumption
is optimized through special care of the cooling system and the minimization
of power distribution loss (which respectively account for 33% and 8% of the
total energy consumption of data centers, according to [59]). While early days
data centers were built without paying much attention to those constraints, the
most recently built data centers are located in places where power and cooling
are cheap (for example on a river in Oregon for a Google data center, or in the
Swedish town of Lulea for a Facebook data center).

Since automation is a mandatory requirement of scale, a lot of work has been
done to improve it in data centers. According to [59], a typical ratio of IT staff
members to servers is 1:100 in an efficient firm and 1:1000 in an efficient data
center. This is partially due to the technologies developed by hosting companies
(like Rackspace or OVH) or backup companies (like Mozy, funded in 2005). The
virtualization techniques of machines —e.g. VM-ware or Microsoft Hyper-V—
increase administrators’ productivity by letting them handle much more machines.
In addition, the number of CPU and the number of cores per CPU has been re-
cently increased. This led to a situation in which the administrators are handling
much more machines and in which each machine holds more cores. Machines
are replaced when the physical failing machines in a rack or in a container hit a
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given ratio. Other techniques of automation can be found in [72] or [79].

A key factor in cloud performance bandwidth (whether intra or inter data centers
bandwidth) is the spatial disposition of the hardware in the data center, as well
as the network topology between the different nodes dedicated to data storage
and computing. While a lot of research has been made on this subject, major
cloud companies have not been disclosing much about this major technological
challenge and their own implementation. According to [59], Microsoft plans to
upgrade some of its data centers following the networking architecture studied in
[18].

Software technologies

Several software technology stacks have been developed to make the access to
CPU and storage easier. They split into three abstraction level : the storage level,
the execution level, and the DSL (domain-specific language) level.

– The storage level is responsible for preserving the data into the physical storage.
It handles all the issues of distributed storage management, of data contention
and provides the data with a structured access. It can be SQL or No-SQL
storage, as described in Section 2.4. This storage can also be used as a means
of communication between machines. Other types of storage are available
in IaaS solutions such as Amazon Elastic Block Store that provides storage
volumes that can be attached as a device to a running Amazon EC2 instance
and that persist independently from the life of this instance.

– The execution level defines the general execution framework. It specifies how
the machines are supposed to organize themselves, it monitors the workers and
restarts the failing machines. Depending on the type of Cloud Computing offers
(IaaS, PaaS, etc.), the execution level can provide each computing device with
anything a standard OS could achieve, or it can give a much more constrainted
execution framework where the execution flow must be designed in a specific
way (the most famous example of such a constrained execution framework is
MapReduce, described in Subsection 2.5.1).

– The DSL level is a higher level execution framework than the execution level.
It often provides a declarative language instead of the procedural approach
provided by the execution level, therefore saving the users from specifying how
the work is supposed to be parallelized. It provides automated and under the
hood parallelization, scheduling and inter-machines communications. There-
fore, the DSL level helps users focus only on defining the result they want,
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and not on how they want it to be computed. DSL implementations are often
built in a SQL-like manner, allowing the people who are familiar with this
syntax to run those requests in a similar way on an underlying No-SQL storage.
Besides, since it provides a run-time framework to execute those requests, it
spares the users from compiling their software each time they modify or add a
request. Historically, they have been added years after the introduction of the
execution level to provide non developing specialists with a means to easily use
the execution level. PigLatin, Sawzall, DryadLinq are well-known examples
of DSL implementations.

The storage level can be used independently from the two other levels as an
outsourced storage service. The execution level can also be used independently
from the storage level and the DSL level, provided no persistence is required.
However, most cloud applications are built using both storage and execution level
environments. The DSL level is an optional layer provided to ease the usage of the
storage and execution levels. Theoretically, each project at a given level could be
substitutable to any other project at the same level so we could for example plug
and use any storage framework with any execution framework. Yet, in practice,
some components are designed to work only with other components (as it is the
case for the original MapReduce framework which requires some knowledge
about where the data are stored for example). Therefore, there are four main
frameworks that provide a full technology stack holding the three abstraction
levels.

The first framework has been presented by Google. It is the oldest one. On the
storage level, it is composed of Google File System ([56]) and BigTable ([39])
(the latter being built on top of Google File System). The execution level is
represented by the original MapReduce version (described in Subsection 2.5.1):
Google MapReduce ([47]). After the release of MapReduce, Google engineered
a dedicated language, on the DSL level, built on top of MapReduce that provides
the storage and the computation framework a higher level access: Sawzall ([97]).

The second technology stack is the Apache Hadoop project ([112]). This is one
of the most famous open-source frameworks for distributed computing. It is
composed of several widespread subprojects. The storage level includes HDFS,
Cassandra, etc. The execution level includes Hadoop MapReduce, but can also
be hand-tailored with the help of distributed coordination tools such as Hadoop
Zookeeper. The DSL level includes Hive and Pig. Pig is a compiler that processes
Pig Latin ([93]) code to produce sequences of MapReduce programs that can be
run for example on Hadoop MapReduce. Pig Latin is a data processing language
that is halfway between the high-level declarative style of SQL and the lower
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procedural style of MapReduce. Pig Latin is used for example at Yahoo! (see for
example [93]) to reduce development and execution time of data analysis requests.

The third technology stack is composed of Amazon Web Services (AWS) and
AWS-compatible open-source components. Its most popular storage compo-
nents are Amazon Simple Storage Service (Amazon S3), Amazon Simple Queue
Service (Amazon SQS), Amazon SimpleDB, Amazon ElastiCache or Amazon
Relational Database Service (Amazon RDS). AWS execution level is mainly com-
posed of Amazon Elastic Cloud Compute (Amazon EC2) and Amazon Elastic
MapReduce (which uses a hosted Hadoop framework running on top of Amazon
EC2 and Amazon S3). AWS is one of the first large commercial Cloud Comput-
ing offers: it was initially launched in July 2002, and was valued at as a 1 billion
dollar business in 2011 (see [1]). In parallel, Eucalyptus provides an open-source
stack that exports a user-facing interface that is compatible with the Amazon EC2
and S3 services.

The fourth framework has been developed by Microsoft. The storage level is em-
bodied by distinct independent projects: Azure Storage, Cosmos or SQL-Server.
Cosmos is a Microsoft internal project that has been used by Search teams and
BING. Azure Storage is a different project, initially built using a part of the
Cosmos system (according to [36]). Azure Storage is meant to be the storage
level standard layer for applications run on Azure. The execution level being held
by Dryad ([73]) or by Azure Compute (or small frameworks like Lokad-Cloud
([11]) (on top of Azure Compute or Lokad-CQRS ([12])). The DSL level is
represented through two different projects: DryadLINQ ([116]) and Scope ([38]).

Figure 2.1 (on the next page) is taken from a blog post of Mihai Budiu. It
summarizes the technology stacks of Google, Hadoop and Microsoft.

2.4 Cloud Storage level

Persistence is a characteristic that ensures data outlive the process that has cre-
ated them. A data storage is a system that provides data persistence and is a
fundamental element in most application developments. In the case of distributed
computing, data storage can also be used for a different purpose as an inter-
machines means of communication.

While working on a cloud platform, no hardware shared memory is available
since the machines are physically distant. In such a situation, inter-machines
communications can be achieved through direct IP communications or through a
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Figure 2.1: Illustration of the Google, Hadoop and Microsoft technology stacks
for cloud applications building. For each stack, the DSL Level, the Execution
Level and the Storage Level are detailed. In this scheme, SQL is also described
as a stack in which the three levels are merged together and cannot be used
independently.

distributed data storage system. While the direct IP communications have been
much favored in several systems such as most Peer-to-Peer systems and are still
largely used in Amazon EC2, the use of a data storage system as a means of
communication is widely used in numerous Cloud Computing platforms. Since
the cloud storage is abstracted and accessed “as a service”, it is easier to com-
municate through a data storage than to physically access a virtualized machine.
The cloud storage has also been designed to easily scale and address satisfactory
communication throughput.

In this section we describe the challenges involved by a large-scale distributed
data storage system. We introduce in Subsection 2.4.1 the Relational DataBase
Management System (RDBMS), which was the undisputed data storage system
several years ago. Then we explain (in Subsection 2.4.2) why some of the
guarantees of RDBMS impose constraints which are hard to meet in a distributed
world. Finally, we introduce the reader in Subsection 2.4.3 to some new data
storage systems, known as No-SQL storages, which relax some of the guarantees
of the relational database systems to achieve better scaling performance.
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2.4.1 Relational storage and ACID properties

Relational databases are structured through the relations between data entities.
They are inspired by relational algebra and tuple calculus theories, while they do
not respect all of their constraints. Relational databases are well understood and
offer great guarantees for reliably storing and retrieving data in a robust manner.
In addition to these guarantees, the relational model proved to be well-suited to
express real-world business data interdependencies. RDBMS are therefore widely
used in business applications.

A Structured Query Language (SQL) is provided together with the RDBMS to
make the use of data easier. SQL is a declarative programming language (with
some procedural elements) intended to manage data queries. Declarative lan-
guages express what computations should return rather than explicitly defining
how the computations should be done. In the case of relational storages, queries
are expressed in SQL to define requests to the desired data, while the underlying
RDBMS performs the actual operations to answer the requests. Listing 2.1 gives
an example of a SQL query.

Listing 2.1: a SQL query sample

SELECT T1 . v a r i a b l e 1 , T1 . v a r i a b l e 2
FROM Table1 T1 , Tab le2 T2
WHERE T1 . v a r i a b l e 1 = T2 . v a r i a b l e 3
ORDER BY T1 . name

A single “business” operation applied on data stored in a database is called a
transaction. A single transaction can affect several pieces of data at once. The
guarantees provided by RDBMS can be understood by observing how transac-
tions are applied on the database. The following paragraphs introduce the main
relational storage guarantees by describing how they are translated in terms of
transactions management.

– Consistency is a property related to the way data are modified during trans-
actions. There are multiple definitions of consistency, resulting in different
consistency levels and depending on whether the storage is distributed or not.
Initially, consistency was a property that guaranteed that some user-specified
invariants on data were never broken. For example, such an invariant could
consist in having the sum of some variables equal the sum of other variables.
With the rise of distributed storages, the definitions of consistency have been
multiplied, and consistent distributed storage (also called strongly consistent
storages) often refers to the fact that each update is applied to all the relevant
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nodes at the same logical time. A consequence of this definition is that if a
piece of data is replicated on different nodes, the data piece will always be
the same on each node, for each given instant. A more in-depth definition of
consistency can be found in [57].

– Atomicity guarantees each transaction is applied as if it were instantaneous.
More specifically, a transaction composed of n database elementary operations
is atomic if all the operations occur or none occur (if one or several operations
fail) and if all the processing units either see the database in the state it was
before the beginning of the transaction or after the end of the transaction. A
storage has the atomicity property if any transaction can be guaranteed to be
atomic. This property guarantees that any transaction applied on a database
does not corrupt it.

– Isolation guarantees that each transaction should happen independently from
other transactions that occur at the same time.

– Durability enforces that data are persisted permanently and that transactions
remain permanent, even in the presence of a system failure.

These four important guarantees are gathered under the acronym ACID, which
stands for Atomicity, Consistency, Isolation and Durability. These properties
are guaranteed by every relational storage. In the case of a distributed relational
storage, some other very mandatory properties can be desired, such as Partition
tolerance and Availability.

– A network is partitioned when all the messages sent from nodes in one com-
ponent of the partition to nodes in another component are lost. Distributed
storage is said to be partition tolerant when it continues to run in the presence
of a partition failure.

– A distributed storage guarantees Availability if every request received by a
non-failing node in the system returns a response.

2.4.2 CAP Theorem and the No-SQL positioning

The CAP theorem was first expressed by Eric Brewer at the 2000 Symposium on
Principles of Distributed Computing (PODC). The CAP theorem was then proved
in 2002 by Seth Gilbert and Nancy Lynch in [57]. This theorem is a theoretical
impossibility result, which states that a distributed storage cannot achieve both
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Availability, Consistency, and Partition Tolerance.

More specifically, this theorem is a theoretical translation of the well-known
practical challenges of applying ACID transactions on data split on multiple
machines. The ACID constraints require a lot of inter-machines communications
to complete a single transaction (see for example [100]) and lead to serious lock
contentions that deeply decrease the transactional throughput.

Moreover, guaranteeing that the data stored in cheap and unreliable hardware are
highly available implies multiple replications of each single piece of data. Since
data servers are expected to fail from time to time, the data are duplicated several
times (Azure storage is reported to hold for each data 6 replicas: 3 replicas in a
first data center and 3 others in a backup data center ([36])), so that a data server
can die without any data loss. To guarantee strong consistency while keeping
multiple versions of any data pieces in different locations causes large overheads,
as reported in [19].

Scaling traditional ACID-compliant relational databases to distributed shared-
nothing architectures with cheap machines therefore turned out to be very difficult.
Data storage systems developed in the 2000s known as NoSQL storage (for Not
Only SQL) such as Cassandra, HBase, BigTable, SimpleDB, etc. therefore
dropped some of the ACID guarantees to achieve better scaling and lower latency.
As stated by Daniel Abadi and Alexander Thomson in their blog, “NoSQL really

means NoACID” (see [15]).

Some of these systems (like BigTable or Azure BlobStorage) decided to provide
weakened atomicity and isolation guarantees for transactions. Indeed, transac-
tions that modify more than one piece of data are not guaranteed to be either all
done or none. Therefore, no logical transaction implying several pieces of data
can be guaranteed to be atomic at the storage level. It is up to the storage user to
ensure logical transactionality, and that user-specified invariants are not modified.

Other cloud storage systems like Cassandra have been dropping strong consis-
tency between replicas to provide only a weakened consistency guarantee called
eventual consistency. We refer the reader to [108] for an introduction to even-
tual consistency, while an introduction to BASE (Basically Available, Soft state,
Eventually consistent) can be found in [99]. While the eventual consistency is
satisfactory enough for a given number of well-known web applications such as
Facebook, the loss of strong consistency is a very difficult issue for many other
real world applications, which makes application development much harder. This
is a key aspect of No-SQL storage: the responsibilities are partly shifted and the
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scalability comes at the expense of a stronger developer burden. The consistency
of various cloud storage systems has been investigated in [109].

2.4.3 Cloud Storage Taxonomy

Along with the calling into question of ACID properties, the relational data model
which is related to them has also been challenged. No-SQL storages therefore
provide different data models, often noted to provide a more fuzzy division be-
tween the database model and the application. In this paragraph we describe the
most used database models. A more comprehensive list of these models can be
found in [9].

Document-oriented databases assume data are organized around the concept
of documents. Each document holds data and is persisted through a standard
data format such as XML, YAML, JSON, etc. or even through binary or .pdf
files. Contrary to RDBMS where the data scheme is fixed, document-oriented
databases do not impose that each document should own the same fields as the
others. Thus, new information can be added on a document without having to fill
in the same information for all the other available documents. Each document can
be accessed through a unique key, which is often a string. CouchDB, MongoDB,
SimpleDB are well-known document-oriented databases.

Graph databases are structured on the standard graph theory concepts of nodes
and edges. The information is stored on nodes, each node representing a different
entity. Each entity is entitled to a set of properties describing the entity. Edges
connect nodes to nodes or nodes to properties and describe the relationships
between the nodes and the properties. Because of this graph structure, data and
more specifically nodes are given an adjacency notion which is index-free and
only driven by the nature of the data. Horton, FlockDB, AllegroGraph are graph
databases.

Key-value pairs databases are schema-free databases. The data is stored on a ma-
terial device in the form of a serialized programming language datatype, typically
a class object. Any type can be persisted and data are accessed through a key,
which can be a string or a hash of the data content. Apache Cassandra, Dynamo,
Velocity, BigTable, Azure BlobStorage are key-value pairs storages.
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2.5 Cloud Execution Level

We examine in this section some of the most widespread execution frameworks.
While these frameworks are not only cloud-based, they are often an essential part
of scientific cloud applications. The section begins with the most well-known
framework: MapReduce.

2.5.1 MapReduce

General context

MapReduce has two different meanings. It first describes a general framework
concept explained in this section. It also defines the original implementation of
this abstract framework, developed by Google ([47]). Other implementations of
the concept have then been set-up, like Hadoop ([112]), or CloudMapReduce
([82]). Unless explicitly stated otherwise, the term MapReduce refers in this
section to the framework abstraction concept.

MapReduce is a framework that eases distributed computation runs and deploy-
ments. It was born from the realization that “The issues of how to parallelize

the computation, distribute the data, and handle failures conspire to obscure the

original simple computation with large amounts of complex code to deal with

these issues”, as stated by the original MapReduce paper ([47]). MapReduce is a
scale-agnostic programming abstraction (see [64]) originally designed to prevent
programmers from solving these issues repeatedly and to provide access to a
huge amount of computation resources to programmers without any experience
with parallel and distributed systems. The resort to distributed computations
and to these computation resources lead to significant speedup, i.e. the time to
run distributed computations is significantly reduced compared to the sequential
computation.

MapReduce is a gathering of ideas which have already been discussed in the
computer-science literature for a long time (even for decades for some ideas) and
it is not the first framework to have implemented some of these ideas. MapRe-
duce is still a well-known abstraction concept, thanks to the large success of its
first implementation: Google MapReduce. This framework implementation has
proved to be very easy to use for “programmers without any experience with
parallel and distributed systems” —referred to in the following as non-experts—
and achieved very good overall scalability as well as a strong resilience to failures.

In the following paragraphs, we provide a very short overview of this framework.
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We refer the reader to the Hadoop definitive guide ([112]) for in-depth details
of the most famous open-source implementation and to [81] and [40] for exam-
ples of machine-learning problems that can be addressed through a MapReduce
framework.

Programming Model

MapReduce provides an execution environment to process a two-stage execution
(divided into a Map stage and a Reduce stage). A typical job in MapReduce is
composed of many Map tasks and Reduce tasks. In the Map stage, a user-specified
computation —referred to as Map— is applied independently and in parallel on
many data chunks. Each Map task points to a specific data chunk to which the
Map computation will be applied on. Once a Map task is completed, intermediate
results are produced and stored on hard-drives. Once all the Map tasks have
been successfully completed, an aggregation operation is started, referred to as
Reduce. Depending on the size and complexity of all the intermediate results pro-
duced by the Map tasks, the reduce stage is divided into one or many reduce tasks.

The Map and the Reduce logic are defined by the user. This user submits the
MapReduce job through the MapReduce interface, specifying the actual Map and
Reduce computations, in addition to the specification of the data that must be
processed. The framework provides an environment that handles all the execution
orchestration and monitoring. In particular, MapReduce automatically maps
the job into a set of sub-tasks, sends the Map and Reduce instructions to the
right processing units, makes sure all the computations are successfully run, and
restarts or reschedules tasks that have failed.

Technical considerations

The primary targets of MapReduce are heavy computations or computations on
large data sets. The leading idea of MapReduce is that it is not an experimental
framework but a production tool. As a direct consequence, MapReduce provides
a simple and robust abstraction that can easily be handled by a wide range of
non-experts.

The simplicity of MapReduce comes from two different design choices. Firstly,
by making a clear distinction between what needs to be computed (user-defined)
and how the computations are actually made (handled automatically by the frame-
work), MapReduce disburdens the users from difficult parallel computations
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considerations. More specifically, the users need not dive into general parallel ap-
plications design, neither do they need to have any knowledge about the hardware
actually running the computations: MapReduce indeed provides a scale-agnostic
([64]) interface.

Secondly, the framework helps the users to figure out what the parallel algorithm
is actually running. As stated in [81], “concurrent programs are notoriously

difficult to reason about”. Because of its elementary design, a MapReduce exe-
cution has Leslie Lamport’s sequential consistency property 2, which means the
MapReduce result is the same as the one that would have been produced by some
reordered sequential execution of the program. This property helps to understand
the MapReduce execution as it can therefore be rethought as a sequential run
speeded-up.

As previously stated, the MapReduce framework also provides a strong resilience
to failures. A reliable commodity hardware usually has a Mean-Time Between
Failures (MTBF) of 3 years. In a typical 10,000 server cluster, this implies that
ten servers are failing every day. Thus, failures in large-scale data centers are a
frequent event and a framework like MapReduce is designed to be resilient to
single point of failures 3. Such a resilience is hard to achieve since the computing
units are dying silently, i.e. without notifying of their failure. MapReduce holds a
complex monitoring system to ping all the processing units and to ensure all the
tasks will be successfully completed, as detailed in [47].

The initial problems MapReduce has been devised to deal with are related to text
mining. These problems involve gigantic amounts of data that do not fit in the
memory of the processing units dedicated to the computation, as explained in
[48]. In such situations, providing the processing units with a continuous flow
of data without starving these units out would require an aggregated bandwidth
very hard to achieve. MapReduce has provided a new solution to this problem by
co-locating the data storage and the processing system. Instead of pushing the
data chunks to the processing units in charge of them, MapReduce pushes the
tasks to the processing units whose storage holds the data chunks to be processed.
Such a design requires a distributed file system that can locate where the data are
stored, but removes a lot of stress on communication devices.

2. Provided that the map and reduce operators are deterministic functions of their input values.
3. With the noticeable exception of the single orchestration machine referred to as master.
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MapReduce performance

Since its first release, MapReduce has proved to be very well-suited to multiple
large computation problems on machine clusters. An embarrassingly parallel
problem is one for which little effort is required to separate the problem into a
number of parallel (and often independent) tasks. These problems require few
or zero inter-machines communications and therefore allow to achieve speedup
close to the optimal. On such problems, MapReduce is performing very well.

A MapReduce mechanism that can significantly impact MapReduce performance
is the synchronization process: the Reduce stage cannot begin before all the Map
tasks have been completed. This design is very sensitive to stragglers. As defined
in [47], a straggler is a “machine that takes an unusually long time to complete

one of the last few map or reduce tasks”. Because of the synchronization process
in the end of the Map stage, the overall computation is significantly slowed down
by the slowest machine in the pool. In the case of a very large execution involving
thousands of processing units, the worst straggler will behave much worse than
the median behaviour, and significant delays can be noted. MapReduce provides
a backup execution logic that duplicates the remaining in-progress tasks when
almost all the map tasks have already been completed. Such a duplication mecha-
nism is reported to significantly reduce the time to complete large MapReduce
operations in [47].

MapReduce has proved to be very efficient in the case of embarrassingly parallel
algorithms. For example, the Hadoop implementation has been successfully
used by Yahoo! to win the terasort contest (see [92]). The Google implemen-
tation is also reported to be widely used by Google’s internal teams (see e.g. [48]).

Recent criticisms of the MapReduce framework for machine-learning

In addition to the quality of the implementations of Google’s and Hapache’s
MapReduce, a key factor in MapReduce success and adoption by the community
is how easy it is to use. Because MapReduce only supports tasks that can be
expressed in a Map/Reduce logic, it is rather straightforward to parallelize a task
using this framework: either the task is intrinsically in a Map/Reduce form and
the expression of the task within the framework is obvious, or the task cannot be
expressed within MapReduce.

The simplicity to use it and to figure out how to adapt a given sequential algorithm
into the framework has driven the interest of statistical and machine-learning
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researchers and practitioners that had no knowledge in distributed computations.
Such a success has paved the way for numerous research works to modify and
adapt algorithms originally not suited to the MapReduce framework and to sug-
gest MapReduce implementations of the modified algorithms. Yet, since the
MapReduce is a rigid framework, numerous cases have proved to be difficult or
inefficient to adapt to the framework:

– The MapReduce framework is in itself related to functional programming. The
Map procedure is applied to each data chunk independently. Therefore, the
MapReduce framework is not suited to algorithms where the application of the
Map procedure to some data chunks need the results of the same procedure to
other data chunks as a prerequisite. In other words, the MapReduce framework
is not suited when the computations between the different pieces of data are
not independent and impose a specific chronology.

– MapReduce is designed to provide a single execution of the map and of the
reduce steps and does not directly provide iterative calls. It is therefore not
directly suited for the numerous machine-learning problems implying iterative
processing (Expectation-Maximisation (EM), Belief Propagation, etc.). The
implementation of these algorithms in a MapReduce framework means the
user has to engineer a solution that organizes results retrieval and scheduling
of the multiple iterations so that each map iteration is launched after the reduce
phase of the previous iteration is completed and so each map iteration is fed
with results provided by the reduce phase of the previous iteration.

– Both the thinking of the abstract framework and of google’s practical im-
plementation have been originally designed to address production needs and
robustness. As a result, the primary concern of the framework is to handle
failures and to guarantee the computation results. The MapReduce efficiency
is therefore partly lowered by these reliability constraints. For example, the
serialization on hard-disks of computation results turns out to be rather costly
in some cases.

– MapReduce is not suited to asynchronous algorithms.

MapReduce is the reference framework for distributed computations. Its paral-
lelization scheme is the natural choice because of its simplicity. But because of
its limitations, some have started to question the relevance of MapReduce in the
case of fine-granularity tasks in machine-learning. As outlined in the alternative
GraphLab framework introduction paper ([85]) : “The overhead associated with

the fault-tolerant, disk-centric approach is unnecessarily costly when applied to
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the typical cluster and multi-core settings encountered in ML research”. This
position was also shared by numerous researchers (including John Langford)
during the NIPS workshop LCCC debate in December 2010.

The questioning of the MapReduce framework has led to richer distributed frame-
works where more control and freedom are left to the framework user, at the price
of more complexity for this user. Among these frameworks, GraphLab and Dryad
are introduced in the following paragraphs.

2.5.2 GraphLab

GraphLab is a new framework directly designed to address parallelization chal-
lenges of machine-learning algorithms. GraphLab was initially developed after
it has been observed that MapReduce was insufficiently expressive for some
machine-learning algorithms, while low-level APIs (like MPI) usage led to too
much development overhead.

The GraphLab representation model is much more complex and richer than the
MapReduce one. It consists in a directed graph representing the data and com-
putational dependencies and in a set of update functions specifying the local
computations to be run. By adopting a graph model, GraphLab supports struc-
tured data dependencies and is therefore suited to computation schemes where
update scopes overlap and some computations depends on other computation
results. More specifically, the original GraphLab introduction paper states that it
is targeted to “compactly express asynchronous iterative algorithms with sparse

computational dependencies”.

Like MapReduce, GraphLab provides a higher abstraction level than MPI and
prevents users from managing synchronization, data races and deadlocks chal-
lenges by themselves. It also provides ad-hoc tasks schedulers.

GraphLab is therefore a machine-learning parallelization framework which pro-
vides more expressiveness than MapReduce, at the expense of a more complex
usage. To our knowledge, the GraphLab framework is only currently available
on shared-memory multiprocessors setting (only tested on single machines up
to 16 cores), making GraphLab unavailable or ineffective for distributed cloud
computations.
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2.5.3 Dryad and DryadLINQ

Dryad ([73]) is a general-purpose distributed computation framework designed to
scale on any single administrative domain, be it a multi-core single computer or
a whole data center with thousands of computing instances. Conversely, Dryad
is not targeted to multiple administrative domain environments and does not
handle all the authentication and access grants required for most Grid Computing
environments.

Like GraphLab, Dryad exposes a much more expressive computing framework
than MapReduce in the form of a Direct Acyclic Graph (DAG). In this graph,
each vertex is a computation task and edges are data and intermediate results
channels. Dryad infrastructure maps the logical DAG of computation tasks onto
actual physical resources without requiring the developer to get involved in this
mapping process. In addition, Dryad handles scheduling across resources, failure
recoveries, communication concurrencies, etc.

Whereas with MapReduce the developer is given few implementation choices
except on how to fit its computation task into the rigid framework of MapReduce,
Dryad provides the developer with much more control through the expressive-
ness of the DAG. This control gain can be explained by a different approach of
the frameworks: while MapReduce was focused on accessibility to provide the
widest class of developers with computation power, Dryad is more concerned
about expressiveness and performance.

In addition to a richer expressiveness of the execution flow, Dryad provides a
higher control than MapReduce on communication flow and tasks scheduling.
This optional higher control endows the programmers with a better understand-
ings of the underlying hardware performance and topology or of the computation
tasks to improve the overall performance. For example, Dryad provides dif-
ferent communication media between computing nodes: direct communication
through TCP pipes, or indirect communication through files written to hard-drive
or shared-memory buffers. Whereas the default Dryad settings is to use files, the
developer can choose to resort to a different medium, e.g. in the case of a single
multi-core computer.

As a side result of this higher control and expressiveness, Dryad is reported to be
more demanding on the developer’s knowledge and requires several weeks to be
mastered. To make Dryad more user-friendly, Microsoft has also been developing
an additional framework built on top of Dryad and mimicking the LINQ library
interface: this additional framework is called DryadLINQ ([116]). Both Dryad
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and DryadLINQ have been made available on the Microsoft research website.





Chapter 3

Presentation of Azure

3.1 Introduction

With the rise of advanced Internet technologies, an alternative mode of software
consumption has been proposed. This alternative mode, referred to as Software
as a Service (SaaS), provides the use of applications that are not hosted on the
users’ hardware but on a distant server. The user is accessing this distant server
through the Internet, and most of the resources required by the application are
provided on the server side. This server/client approach is a kind of renewal of
the old server/terminals design. This SaaS approach has a lot of advantages and
drawbacks. To name but a few, SaaS lowers maintenance labor costs through
multi-tenancy, it requires a smaller customer commitment since the customer is
renting the usage of a software instead of buying it, it partially outsources IT for
companies for whom it is not the core business, etc. The SaaS approach has also
its detractors. For example, Richard Stallman has incarnated the voice of those
for whom SaaS raises many concerns, e.g. data privacy.

No matter how it turns out, SaaS market will probably experience significant
growth in the following years and Cloud Computing will be a competitive hosting
platform for these software applications. This partial software paradigm shift has
a lot of impact on software development companies. Among them, Microsoft
is an illuminating example. According to its annual report for the fiscal year
ended June 30, 2011, more than 83% of Microsoft revenues are split among
three of its divisions: Windows & Windows Live Division ($ 18,778 millions),
Server and Tools Division ($ 17,107 millions), and Microsoft Business Division
($ 21,986 millions). These 3 divisions all correspond to standard desktop software
or operating system: Windows & Windows Live Division is mainly composed
of Microsoft Windows, the Server and Tools Division mainly deals with Win-
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dows Server and SQL-Server, and the Business Division is related to desktop
software such as Office, SharePoint, Exchange, Lync, Dynamics, etc. While one
can therefore see that Microsoft revenues were and still are mainly driven by
the licence selling of their desktop software applications and of their operating
system Windows, an important migration has been initiated toward Cloud Com-
puting solutions to provide these applications as SaaS. This situation has turned
Microsoft into both a cloud provider and a cloud consumer. This introduction
gives a brief overview of the different Microsoft Cloud Computing solution layers.

A first key aspect of the Microsoft Cloud Computing solutions is this effective
shift operated by Microsoft from desktop software to Software as a Service (SaaS).
An increasing part of the software applications presently sold by Microsoft has
indeed been migrated to the cloud and is offered alternatively as a SaaS solution.
Microsoft Office 365 for example, is a commercial software service offering a
set of Microsoft products. It has been publicly available since 28 June 2011 and
includes the Microsoft Office suite, Exchange Server, SharePoint Server, etc. An-
other important Microsoft cloud SaaS solution is the search engine Bing, which
is run (at least partially) on their Cloud Computing platform (see [36]). The cloud
SaaS version of these applications are targeted to any customer of the desktop
version of the same applications and the use of these cloud applications does
not require any software development knowledge. The consumer just uses these
applications as if everything was processed locally whereas the computations are
actually run on the cloud.

A second aspect of the Microsoft Cloud Computing system is Microsoft cloud
High Performance Computing (HPC) solution. This solution is mainly based on
Dryad and DryadLINQ (see [73] and [116]). A new Azure component available
since november 2011, called Windows Azure HPC Scheduler includes modules
and features that enable to launch and manage high-performance computing
(HPC) applications and other parallel workloads within a Windows Azure service.
The scheduler supports parallel computational tasks such as parametric sweeps,
Message Passing Interface (MPI) processes, and service-oriented architecture
(SOA) requests across the computing resources in Windows Azure. The Azure
HPC solution is targeted to be the corresponding cloud version of the Microsoft
HPC solution on Windows Server.

The purpose of this chapter is to describe the Microsoft cloud components that are
the elementary building blocks upon which cloud applications are build. These
elementary building blocks are used by Microsoft to run its SaaS applications
like Office 365 or its HPC solutions (Azure HPC), but are also used by external
companies to build other cloud applications. For example, Lokad has migrated
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its forecasting engine on the cloud to benefit from the scalability and elasticity
provided by Azure. The Azure elementary building blocks are gathered in the
form of a Platform as a Service (PaaS) solution (see Subsection 2.3.2). This solu-
tion, referred to as Windows Azure Platform, is marketed for software developers
to store data and to host applications on Microsoft’s cloud. Azure lets develop-
ers deploy and run robust and scalable applications. Built upon geographically
distributed data centers all over the world, Azure also provides the hosted web
applications with low-latency responsiveness guarantees and a solid framework
for CPU-intensive processing tasks. Contrary to the SaaS part of their Cloud
Computing solution, only developers are targeted by Windows Azure.

The Windows Azure Platform is composed of a persistent storage (Azure Storage)
and of a cloud operating system (Azure Compute) that provides a computing
environment for applications. In addition to these two core blocks, many tools
are available to help developers during the application building, deployment,
monitoring and maintenance. This chapter provides a short overview of the Azure
Platform. It is organized as follows. The first section below presents Azure
Compute. We give there a definition of the main components of a Windows Azure
application. Section 3.3 defines the different parts of Azure’s persistent storage
system and the architecture proposed to build a scalable storage system. Section
3.4 is dedicated to the raw performances of the storage and of the computing
instances. We report for example on the bandwidth and Flops we have managed
to obtain. These results have a crucial impact on algorithms since they determine
their design and potential achievements. Section 3.5 introduces some key figures
to estimate the total price of running algorithms on Azure.

3.2 Windows Azure Compute

Windows Azure Compute is exposed through hosted services which are deploy-
able to an Azure data center. Each hosted service corresponds to a specific web
application and is composed of roles, each of this role corresponding to a logical
part of the service. The different roles that can be part of a hosted service are: the
web roles, the worker roles and the Virtual Machines (VM) roles. A single hosted
service is composed of at least one web role and one worker role. Each role is
run on at least one virtual machine, referred to as a role instance or a worker, so a
single hosted service requires at least two role instances. We now briefly describe
the different roles:

– Web roles are designed for web application programming. Web Roles allow
public computers to be connected to the hosted service over standard HTTP
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and HTTPS ports. VM running on a given web role are pre-configured with
IIS7 (Internet Information Services) and specifically designed to run Microsoft
web-programming technologies as ASP.NET or Windows Communication
Foundation (WCF), but they also support native codes such as PHP or Java to
build web applications.

– Worker roles are designed to run general background processes. These pro-
cesses can be dependent on a web role (handling the computation required by
the web role) or independent. One of the differences between web and worker
roles is that worker roles don’t come with a pre-installed IIS. Worker roles
execution code can be defined using the .NET framework.

– VM roles are designed to provide developers with a much wider scope of possi-
bilities and especially to control the operating system image. VM roles should
not be used unless worker and web roles do not fit the developer’s purpose, as
it is the case for example when one has long and complicated installations in
the operating system or a setup procedure that cannot be automated. In VM
roles, the developer will upload his own virtual hard drive (VHD) that holds a
custom operating system (more specifically a Windows Server 2008 R2 image)
that will be run on the different VM running the VM role. This role will not be
used in our cloud algorithm implementations.

The role is the scalability unit of a given hosted service. For each role, the number
of role instances that are run is a user-defined quantity that can be dynamically
and elastically modified by the Azure account owner through the Monitoring
API or the Azure account portal. Azure Compute manages the lifecycle of role
instances. More specifically, Azure by itself ensures that all the role instances are
alive and available. In the event of a failure, the failing role instance is automati-
cally restarted on a different virtual machine.

As a consequence, developers are not expected to handle the individual virtual
machines by themselves: they just implement the logic for each role and upload
the code to Azure through a package from the Azure administration portal, or
directly from Visual Studio. An Azure-side engine called Azure Fabric handles
the package deployment on as many virtual machines as requested. Similarly, the
role update requires the developer to only update the role and not each of role
instances, which is automatically handled by Azure.

While the role instances have not been designed to be manually controlled, it is
still possible to directly access them. More specifically, an internal endpoint is
exposed by each role instance so that the other role instances that are related to
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the same role could access it. These internal endpoints are not visible outside the
hosted service.

3.3 Windows Azure Storage

The Windows Azure Storage (WAS) is the storage component of the Windows
Azure Cloud Platform. It is a public cloud service available since November 2008
and which presently (in January 2012) holds 70PBytes of data. It is used as an
independent storage service but also as the persistence storage for the applica-
tions run on Windows Azure Cloud Platform. According to [36], the WAS is
used internally by Microsoft for applications such as social networking search,
serving video music and game content but also outside Microsoft by thousands
of customers.

The WAS has been designed to be highly scalable, so that a single piece of data
can be simultaneously accessed by multiple computing instances and so that a
single application can persist terabytes of data. For example, the ingestion engine
of Bing used to gather and index all the Facebook and Twitter content is reported
to store around 350 TBytes of data in Azure (see [36]).

The WAS provides various forms of permanent storage components with differing
purposes and capabilities. The following subsection describes these components.

3.3.1 WAS components

The WAS is composed of four different elements: Windows Azure BlobStorage,
Windows Azure TableStorage, Windows Azure QueueStorage (respectively re-
ferred to in the following as BlobStorage, TableStorage and QueueStorage), and
Windows Azure SQL.

– The BlobStorage is a simple scalable Key-Value pairs storage system. It is
designed to store serialized data items referred to as blobs.

– The TableStorage is also an alternative Key-Value pairs storage system. It
provides atomicity guarantees in a constrained scope, as detailed below.

– The QueueStorage is a scalable queues system designed to handle very small
objects. It is used as a delivery message mechanism across the computing
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instances.

– Azure SQL is a relational cloud database built on SQL-Server technologies. It
is designed to be an on-demand RDBMS and requires no setup, installation
and management.

A common usage pattern for the different storage elements is as follows: I/O data
transfer is held through the BlobStorage, overall workflow instructions and job
messages are held by the QueueStorage and describe how the blobs need to be
processed, and intermediate results or service states are kept in the TableStorage
or the BlobStorage.

Azure BlobStorage

Azure BlobStorage is a large-scale key-value pairs storage system. It is designed
to be the main storage component of most azure applications.

The objects stored in the BlobStorage are stored in Binary Large OBjects (referred
to as blobs). The size of a blob is bounded to 50GBytes. The blobs are stored
on multiple nodes, and a complex load-balancing system (partially described in
Subsection 3.3.2) ensures the system is at the same time scalable and strongly
consistent. The strong consistency is an important aspect of the BlobStorage
since it has an impact on overall latency and scalability of the BlobStorage, as
explained in 2.4.2. This property is a key characteristic of the WAS, as many
other No-SQL storage (such as Cassandra) do not provide such a guarantee. The
strong consistency implies that each blob is immediately accessible once it has
been added or modified, and that any subsequent read from any machine will
immediately see the changes made by the previous write operations.

Each object stored in the BlobStorage is accessed through its key. The key is a
simple two-level hierarchy of strings referred to as containerName and blobName.
ContainerName and blobName are scoped by the account, so two different ac-
counts can have the same containerNames or blobNames. The BlobStorage API
provides methods to retrieve and push blobs for any given key, and a method to
list all the blobs whose key shares a given prefix.

A key feature of data storages is the way multiple data can be accessed and
modified simultaneously. As detailed in Subsection 2.4.1, a single transaction
may indeed involve multiple pieces of data at once. In the context of RDBMS,
transactions are guaranteed to be atomic, so each piece of data concerned by
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a transaction is updated accordingly or none is (if an update fails). The Azure
BlobStorage does not give any primitive to atomically modify multiple blobs.
Because of the internal design of the WAS, the different blobs are stored on
multiple machines distributed on separate storage stamps (we refer the reader to
more in depth details in Subsection 3.3.2). This physical distance between the
storage nodes of different blobs involved in a transaction precludes low latency
atomic multi-blob transactions. This is why there are no primitives on Azure side
to run transactions over multiple blobs atomically.

Azure TableStorage

Azure TableStorage is the second key-value pair storage component of the WAS.
It is designed to provide structured data used in Azure applications with a more
adapted storage. The structured storage is provided in the form of tables. A single
application may create one or multiple tables, following a data-driven design.
Each table contains multiple entities. To each entity, two keys are associated in
the form of strings: the first key is called the PartitionKey and can be shared with
some other entities of the same table, while the second key is specific to each
entity and is called the RowKey. Any given entity is therefore uniquely referenced
as the combination of its corresponding PartitionKey and RawKey. Each entity
holds a set of < name, typed value > pairs named Properties. A single table
can store multiple entities gathered into multiple different PartitionKeys.

In a given table, each entity is analogous to a “row” of a RDBMS and is a tradi-
tional representation of a basic data item. This item is composed of several values,
filled in the entity’s properties. Each table is schema-free insofar as two different
entities of a given table can have very different properties. Yet, a common design
pattern consists in adopting a fixed schema within a given table so all the entities
have exactly the same set of properties.

Because of the absence of a mandatory fixed schema, even in the case of the
previous design pattern where the schema is de facto fixed, the TableStorage does
not provide any solution to represent the relationships between the entities’ prop-
erties contrary to other structured storage such as RDBMS. Another consequence
of this flexible schema is the lack of “secondary” indices in a given table: the only
way to enumerate entities in a table relies on the entity key, namely the RowKey.
Therefore, selecting entities according to a criterion based on a given property
will lead to execution time linear in the number of entities in the table (contrary
to RDBMS, where secondary indices may lead to requests time proportional to
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the logarithm of the number of entities).

An additional feature of the TableStorage is to allow reads, creations or updates
of multiple entities in a single command. These commands —referred to as
entity group transactions— support executing up to 100 entities in a single batch,
provided the entities are in the same table and share the same PartitionKey. In
addition to the atomicity guarantees described in Subsection 3.3.1, the entity
group transactions are of prime interest since they provide a way to significantly
lower (up to a factor 100) the price of storage I/O in the case of small objects
being stored.

Azure QueueStorage

Azure Queues provide a reliable asynchronous message delivery mechanism
through distributed queues to connect the different components of a cloud ap-
plication. Queues are designed to store a large amount of small messages (with
maximal individual size of 8 KBytes, see for example [7]). Using queues to
communicate helps to build loosely coupled components and mitigates the impact
of any individual component failure.

Azure queues are not supposed to respect FIFO logic (First In First Out) as
standard queues. At a small scale, the Azure queue will behave like a FIFO
queue, but if it is more loaded, it will adopt a different logic so that it can better
scale. Therefore, the FIFO assumption cannot be assumed when designing a
cloud application that uses queues.

Messages stored in a queue are guaranteed to be returned at least once, but
possibly several times: this requires one to design idempotent tasks. When a
message is dequeued by a worker, this message is not deleted but it becomes
invisible for the other workers. If a worker fails to complete the corresponding
task (because it throws some exception or because the worker dies), the invisibility
timer happens to time-out and the message becomes available again. If the worker
processes the message entirely, it notifies the queue that the processing has been
completed and that the message can be safely deleted. Through this process, one
can make sure no task is lost because of a hardware failure for instance.

Synchronization Primitives

Item updates mechanism for BlobStorage and TableStorage is achieved through
an optimistic nonblocking atomic read-modify-write (RMW) mechanism. A non-
blocking update algorithm consists in updates executed speculatively, assuming
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no concurrent machine is updating the data at the same time. The nonblocking
update algorithms do not imply synchronization or locking mechanisms when an
update is executed. However, a check is performed at the end of the update to
make sure that no conflicts have occurred. In the case of a conflict, the update
is aborted and needs to be restarted. Nonblocking update algorithms are often
called optimistic because they bet on the fact conflicts are statistically unlikely to
happen. If concurrent writes happen, then the update mechanism is likely to take
more time than a simple locking update process. Yet on average, the optimistic
update algorithms are much more efficient than locking algorithms.

The optimistic RMW mechanism is allowed in Azure through timestamp referred
to as etag, following the Azure terminology. This timestamp indicates the exact
date of the last successful write operation applied to the item inside the BlobStor-
age or the TableStorage. The Azure item update is performed as follows: the
item to be updated is downloaded by the computer in charge of the item update
in addition to the corresponding etag of the item. The actual value of the item
is locally updated by the computer, then pushed back to Azure BlobStorage or
TableStorage with the previous etag. If the returned etag matches the present etag
of the item version stored in the WAS, then the item is actually updated. If the
two etags do not match, then a distinct machine has been concurrently updating
the same item, and the updating process is relaunched.

The RMW mechanism is a classical synchronization primitive (see for example
[67]). Implementing the timestamp system and an efficient conditionnal write
mechanism is a difficult task on architectures without hardware shared-memory
like Azure since a single piece of data is replicated multiple times on different
machines. More specifically, special attention on Azure side is paid to lower the
overall write latency. A part of the adopted design is described in Subsection 3.3.2.

Partitions, Load-Balancing and multi-items transactionality

To load-balance the objects access, the WAS is using a partitioning system. This
partitioning system is built upon a partition key in the form of a string. For the
BlobStorage, the partition key of a blob is the concatenation of its containerName
and of its blobName strings. In the case of the BlobStorage, each partition is
therefore only holding a single blob, and it is impossible to gather several blobs
into a single partition. For the TableStorage, the partition key is the PartitionKey
string already introduced in Subsection 3.3.1. In this case, multiple entities can
be gathered in a single partition provided they are in the same table and share the



52 CHAPTER 3. PRESENTATION OF AZURE

same partition key.

The load-balancing system is separated into two load-balancing levels. The first
level is achieved by Azure itself and provides an automatic inter-partitions load-
balancing. Nodes dedicated to handle data requests are called partition servers.
The inter-partitions load-balancing system maps partitions to partition servers. A
single partition server can handle multiple partitions. But for a given partition, a
single partition server is in charge of addressing all the requests to this partition,
while the effective data of the partition can be stored on multiple nodes (we
refer the reader to Subsection 3.3.2 for more in depth explanations). The WAS
monitors the usage pattern of the request on the partitions and can dynamically
and automatically reconfigure the map between partitions and partition servers.

Since all the requests related to a single partition are addressed by a single parti-
tion server, the partition is therefore the smallest unit of data controlled by Azure
for load-balancing. The second load-balancing system is handled by the user.
This second system refers to the user’s ability to adjust the partition granularity
so that a given partition handles more or fewer data. More specifically, the WAS
consumer needs to tune the partition granularity with respect to an atomicity/
scalability tradeoff. The bigger a partition is, the more transactions on multiple
data pieces can be done atomically. Yet, since all the requests to this partition
are addressed by a single partition server, the bigger a partition, the busier the
partition server.

For the BlobStorage, since each object is stored in a different partition key, access
to the different blobs (even with the same containerName) can be load-balanced
across as many servers as needed in order to scale access, but no atomicity for
transactions is possible on Azure level. On the contrary, the TableStorage pro-
vides the transactions run on a group of entities sharing the same partition key
with atomicity.

3.3.2 Elements of internal architecture

The internal implementation of the WAS is rather complex and leverages a multi-
layer design. This design lets the storage be at the same time strongly consistent,
highly available and partition tolerant. Providing at the same time these three
properties is a difficult challenge, at least theoretically, due to the CAP theorem.
This subsection provides a short insight of the underlying infrastructure and
shows how the previous guarantees are achieved despite the difficulty mentioned
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above. We refer the reader to [36] for a more in-depth presentation of the WAS
underlying architecture.

Storage stamps

Following the terminology of [36], the storage instances in a data center are
divided into storage stamps. Each storage stamp is a cluster of about 10-20 racks,
each rack holding about 18 disk-heavy storage nodes. While the first generation
of storage stamps holds about 2PBytes of raw data in each stamp, the next gener-
ation holds up to 30PBytes of raw storage in each stamp 1. To lower the cost of
cloud storage, Azure team keeps the storage stamps highly utilized. But to keep
sufficient throughput and high availability even in the presence of a rack failure,
each stamp is not used above 70% of its capacity. When a storage stamp is filled
up to this bound, the location service migrates some accounts to different stamps,
to keep the storage stamp on a capacity usage ratio of 70%.

Each rack within a storage stamp is supported on isolated hardware: each rack is
supplied in bandwidth and energy with independent and redundant networking
and power, to be a separate fault domain.

The data centers hosting WAS services are spread in several regions of North
America, Europe and Asia. In each location, a data center holds multiple storage
stamps. When creating a new cloud application on Azure, customers are asked
to choose a location affinity among these three continents. While the cloud
consumer cannot choose the exact data center location to be primarily used by its
application, this location affinity choice allows the user to lower the application
latency and improve its responsiveness.

Front End Layer

The Front-End layer is composed of multiple servers processing the client’s
incoming requests and routing them to the partition layer. Each front-end server
holds in cache the mapping between partition names (as defined in Subsection
3.3.1) and partition servers of the partition layer. When receiving a client’s

1. These numbers may seem to be surprisingly high in view of the total amount of data stored
in Azure presented in Section 3.3. All these numbers yet come from the same source: [36]. A
first response comes from all the data replicas that are created for each data piece. A second
key aspect may be the Content Delivery Network (CDN), a special Azure service devoted to
serve content to end users with high availability and high performance. Finally, the quantity of
machines dedicated to the storage system may be small in comparison to the total amount of
machines required by computations.
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request, the Front-End layer server authenticates and authorizes the request, then
routes it to the partition server that primarily manages the partition name related
to the request. The most frequently accessed data are cached inside the Front-End
servers and are directly returned to corresponding requests to partially unload the
partition layer servers.

Partition Layer

The Partition layer is composed of multiple servers managing the different par-
titions. As already stated in 3.3.1, one partition server can manage multiple
partitions, but a given partition is managed by only one partition server. For the
BlobStorage, this is obvious since the partition key is down to the blobName. A
partition master monitors each partition server’s load and tunes the load-balancing
process.

Stream Layer

The Stream layer is responsible for persisting data on disk and replicating the
data across multiple servers within a storage stamp. The stream layer is a kind of
distributed file system within a storage stamp.

Following the terminology of [36], the minimum unit of data for writing and
reading is called a “block”. A typical block is bounded to 4 MBytes. An extent
is a set of consecutive and concatenated blocks. Each file stored by the stream
layer is referred to as a stream. Each stream is a list of pointers referring to extent
locations.

The target extent size used by the partition layer is 1 GBytes. Very large objects
are split by the partition layer into as many extents as needed. In the case of small
objects, the partition layer appends many of them to the same extent and even
in the same block. Because the checksum validation is performed at the block
level, the minimum read size for a read operation is a block. It does not mean
that when a client requests a 1 kilobyte object the entire block is sent back to the
customer, but the stream layer reads the entire block holding the object before
returning the actual small object.

Because a stream is only an ordered collection of pointers to extents, a new stream
can be very quickly created as a new collection of pointers of existing extents.
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A key feature of the stream layer is that all writes are append-only. When a
write occurs, the last extent is appended to one or multiple blocks. This append
operation is atomic: either all the entire blocks are appended, or none are. The
atomicity is guaranteed by a two-step protocol. Blocks are firstly written into
the disk and appended after the last block of the last extent of the stream. Once
these write operations are completed, the stream block and extent pointers list are
updated accordingly.

An extent has a target size, defined by the partition layer. When an append
enlarges an extent to the point it exceeds this target size, the extent is sealed and
a new extent is added to the end of the stream. Therefore, all the extents but the
last one are immutable in a stream and only the last one can be appended.

Partition servers and stream servers are co-located on the same storage nodes.

Extent replication and strong consistency

A key feature of data storage is data persistence, durability and availability. Since
data servers are expected to fail from time to time, the data are duplicated several
times, so a data server can die without any data loss. Yet, in the case of a net-
working partitioning, availability and consistency are two properties that are hard
to meet at the same time, as stated by the CAP theorem (see 2.4.2).

The default azure policy consists in keeping three replicas for each extent within
the same storage stamp (according to [36]). This policy is referred to as the
intra-stamp replication policy and is intended to guarantee no data loss, even in
the event of several disks, nodes or rack failures. A second policy designed to
prevent data loss in the rare event of a geographical disaster is called inter-stamp
replication policy. This replication process ensures that each data extent is stored
in two different data centers, geographically distant. This subsection details how
the inter and intra-stamp replication policies fit into the CAP theorem constraints.

The stream layer is responsible for the intra-stamp replication process. When an
extent is created, the Stream Manager promotes one of the three extent nodes
(EN) into a primary EN. The partition layer is told of the primary EN, and all
the write requests of the partition layer are sent to this primary EN. The primary
EN is in charge of applying the write request to its extent but also to make sure
the two other replicas are updated in the same way. It is only once all the three
extents have been updated that the partition layer is notified by the primary EN
of the success of the write request. Therefore, this update process is carried out
as quickly as possible since it impacts the customer’s request latency as no write
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success is returned before all the extents are updated. As the three extents are
located in the same storage stamp, this update process can be quick. This update
mechanism ensures strong consistency among the three extent replicas, and each
read request can be addressed by any of the EN since the three replicas are always
guaranteed to be the same.

During a writing event, if an extent node is unreachable or the write operation
fails on this node, the partition layer is notified the write operation has failed. The
Stream Manager then seals the extent in the state it was before the write failure,
adds a new unsealed extent at the end of the stream and promotes one of the
three extent nodes as a primary node for this extent. This operation is reported in
[36] to be completed within 20ms on average. The partition layer can therefore
resume the write operation in a short time without waiting for the failing nodes to
become available or operational again.

The partition layer is responsible for the inter-stamp replication process. It is
a low priority asynchronous process scheduled so that it does not impact the
customer’s requests performance. Contrary to the intra-stamp replication process
run by the stream layer, the inter-stamp replication process is not designed to
keep data durable in the event of hardware failures. Rather, it is designed to
store each data chunk in two distinct data centers to obviate the rare event of a
geographical disaster happening in one place. It is also used to migrate accounts
between stamps to preserve the 70% usage ratio of each storage stamp. This
replication process does not guarantee strong consistency.

3.3.3 BlobStorage or TableStorage

BlobStorage and TableStorage are both No-SQL storages, designed to store and
persist data through a key-value pairs format. Both of them are well integrated
into the Azure Platform solution. We now investigate some elements that need to
be taken into account while choosing one storage or the other:

– When dealing with really large objects, BlobStorage requests are easier to
express, since each blob can be arbitrarily large (up to 50 GBytes per blob).
We do not need to break an object into a lot of entities, making sure each entity
conforms to the size constraint on entities.

– When manipulating objects that can be stored both in TableStorage and Blob-
Storage, BlobStorage is reported by [69] to be more effective in insert opera-
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tions on blobs larger than 4KBytes.

– As already expressed in Subsection 3.3.1, data locality management and atomic-
ity concerns can also impact the choice between BlobStorage and TableStorage.
While it is still possible to design custom primitives for multi-blobs atomic
transactions (see Subsection 4.5.3), these primitives are not native and less
efficient.

– Price is another factor that might affect our choice. Using Azure Storage, three
things are charged : the storage used size, the I/O communications, and the
requests to the storage. A single query on the TableStorage can load up to 100
elements at a time and costs as much as a single query on the BlobStorage
(see [3]). When dealing with many small objects, using TableStorage will thus
allow to run requests on objects by groups of 100 entities, so it would divide
up to a factor 100 the bill of storage requests in comparison with running the
corresponding requests one by one on the BlobStorage. If we do not need to
store the objects on different places, we could store them in one bigger blob,
bounding the request to one. Such a design choice would lead to significant im-
provements when all the items thus grouped are all read or updated at the same
time. In the case of random read and write accesses to a pool of items, grouping
them into a single item leads to significant I/O communication increase. The
usage of the TableStorage while dealing with small objects therefore seems to
be more adequate but special attention is required.

All the cloud experiments run on Chapter 5 and Chapter 7 have been implemented
using the BlobStorage. Atomic updates on multiple objects at once will not be
mandatory for most of our storage requests. Besides, the BlobStorage is easier to
manipulate and due to its complexity, the TableStorage suffered some bugs when
we started our experiments (in June 2010).

3.4 Azure Performances

3.4.1 Performance Tradeoffs, Azure Positionning

As outlined in [43], no one cloud system can be said to be the best for all the ap-
plication requirements, and different storage systems have made different choices
while facing some tradeoffs. Before providing some raw numbers of Azure
performances, we try to position the Azure framework in comparison with these
tradeoffs:
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Read/Write tradeoff : There is a natural tradeoff between read throughput and
write throughput. A piece of data cannot be at the same time highly available to
both read and write operations: having a highly available item to read operations
requires the item to be duplicated multiple times; write operations must then
change all the replicas, which slows down the write operations. Azure lets the
traffic arbitrate this tradeoff: the more requested a blob is per time unit, the
more duplicated the blob is and the more available it becomes. In return, the
more duplicated the blob is, the longer it takes to run write operations. Azure
also implements an in-memory mechanism that mitigates this tradeoff: the most
requested blobs (the hot blobs) are kept in cache rather than on hard-drive to
lower read and write latencies. Such a mechanism is adopted in many other stor-
age systems. The impact of both these mechanisms must however be tempered
by the fact they rely on requests which are spread over time: to detect that a
blob is “hot” and that it needs to be both duplicated and put into cache, Azure
Storage first needs to notice a significant amount of requests before launching
these mechanisms. This design makes the mechanism ineffective in the case of a
blob which is first read by multiple workers at the same time, but then never read
again. Such a scenario is frequent in the algorithms presented in Chapters 5 and
7.

Consistency/Persistence/Latency tradeoff : Data persistence is a mandatory fea-
ture for a storage service such as Azure Storage. To prevent client data loss, Azure
stores each single piece of data multiple times in different places to guarantee data
persistence 2. As explained in Subsection 3.3.2, such a replication mechanism
induces longer write operations when strong consistency is also guaranteed. To
lower the overall write latency, Azure implements a two-level replication mech-
anism. The first one, referred to in Subsection 3.3.2 as intra-stamp mechanism,
is a synchronous process: the write operations returns succeed only when all
the replicas have been updated. Since all those replicas are stored in a single
storage-stamp, all the writes are likely to be completed in a small amount of
time. This mechanism guarantees strong consistency among all these replicas.
The second replication process, referred to as the extra-stamp mechanism, is an
asynchronous mechanism: when the storage is not stressed, the data piece is
replicated in another geographically distant storage-stamp. Such a mechanism

2. Such guarantees need to be viewed with caution. Despite Microsoft commitments and
their Service Level Agreement (SLA), the duplication mechanism can only protect data from
hardware failures, not from software bugs or human manipulation errors (as it is the case for all the
technologies). This has been evidenced several times, for example by Amazon EC2 outage started
April 21th 2011, or Azure outage started February 29th 2012 (for which Lokad has suffered from
web-site downtime for several days and temporary loss of a part of its data).
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does not guarantee strong consistency, but is only used as back-up in the very
unlikely event of a complete loss of the first whole storage-stamp.

CAP guarantees / latency tradeoff : This tradeoff has already been partly dis-
cussed in the Consistency/Persistence/Latency tradeoff. As stated by the CAP
theorem, a distributed storage cannot be 100% strongly consistent, 100% avail-
able and 100% partition tolerant. Azure has chosen to guarantee none of these
properties at 100% rate. The strong consistency is guaranteed provided that
the whole primary storage stamp of a given data chunk is not made completely
unavailable (which is an event very unlikely to occur and which didn’t occur to
our knowledge during all our months of experiments). The system is also neither
100% available nor 100% partition tolerant. Yet, all in all Azure framework is
performing well enough for this lack of guarantees to be hardly noticed.

Synchronous actions / Responsiveness tradeoff : Many asynchronous methods are
designed to improve responsiveness. In the special case of an API, it is advised
that methods that are internally implemented synchronously should be exposed
only synchronously and methods that are internally implemented asynchronously
should be exposed only asynchronously (see for example [16]). To our knowl-
edge, this is the design adopted by Azure Storage. More specifically, all the
List, Get, Push and Create methods are all exposed synchronously. Only one
method is exposed asynchronously: it is the container deletion method. The main
priority performance targets of the WAS are low latencies for read and write
operations in addition to throughput. The container deletion method, unlikely to
be used very often, is not designed to be efficient. This method is therefore made
asynchronous and cloud consumers should not recreate a freshly deleted container.

3.4.2 Benchmarks

Benchmarking a storage system is a challenging task involving a lot of experi-
ments and measurements in multiple contexts. Some previous works have already
been made to evaluate some cloud storage solutions. For example, the Yahoo!
Cloud Serving Benchmark ([43]) provides an open-source framework to evaluate
storage services. Other measurement works have been made on specific cloud
storage solutions, such as [111] or [110] for Amazon and [69] or the (now re-
moved) AzureScope website ([6]) for Azure.

In the context of our work, we do not aim to produce such a rigorous and compre-
hensive evaluation of the Azure services performances. Yet we have observed
that the performances of Azure depend on the context in which the requests are
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applied (in particular, the size of the data that is uploaded or downloaded, the
API used to communicate with the BlobStorage, the serializer/deserializer that is
used, etc. are impacting performances). As a consequence, even the previously
mentioned papers that have been run in a rigorous context might be inaccurate
in our specific situation. Because of this, we provide in this subsection naive
measurements made in the specific context of our clustering experiments (see
Chapter 5 and Chapter 7). In particular, the storage bandwidth as well as the CPU
performance are investigated as they are of prime interest for the design of our
algorithms.

Bandwidth between the storage and the role instances

Contrary to [69], we investigate the read and write bandwidth for small data
chunks (several MBytes). To do so, we pushed 8 blobs of 8 MBytes into the
storage, and we measured the time spent to retrieve them. For a single worker
using a single thread, we retrieved the blobs in 7.79 seconds on average, imply-
ing a 8.21 MBytes/sec read bandwidth. We tried to use multiple threads on a
single worker to speedup the download process, and we found out the best read
bandwidth was obtained using 5 threads: we retrieved the 8 blobs in 6.13 seconds
on average, implying a 10.44 MBytes/sec read bandwidth. The multi-threads
read bandwidth we observed differs from what is achieved in AzureScope. This
may be explained by two potential factors: we observed an average bandwidth
whereas AzureScope observed peak performances and we did not have the same
experimental environment. In the same manner, similar experiments have been
made to measure the write throughput. We obtained average throughput of 3.35
MBytes/sec write bandwidth.

This benchmark is very optimistic compared to the downloading context of our
clustering experiments run in Chapter 5 because of a phenomenon referred to
as the aggregated bandwidth bounds discussed in Subsection 5.5.2. In addition
to this aggregated bandwidth bound phenomenon, multiple concurrent I/O op-
erations run in parallel can sometimes overload a specific partition layer server,
resulting in slower request responses: when running experiments with a large
number of workers reading and writing in parallel, we sometimes experienced
blobs already pushed into the storage becoming available only after 1 or 2 minutes.
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Workers Flops performances

In the same way as for the storage bandwidth, the workers’ CPU cadency highly
depends on the kind of tasks the workers are assigned to. All our experiments
were run on Azure small VM that are guaranteed to run on 1.6 GHz CPU. Yet be-
cause of virtualization we do not have any warranty in terms of effective Floating
point operation per second (Flops). On any architecture, this Flops performance
highly depends on the nature of the computation that are run and especially of
the code implementation (see for example Drepper in [52]). Therefore, to fit
our predictive speedup model developed in Chapter 5, we ran some intensive
L2 distance computations to determine how fast our algorithm could be run on
these VM. As a control experiment, the code was first run on a desktop Intel
Core 2 Duo T7250 2*2GHz using only one core. We noticed that our distance
calculations were performed with a performance of 750 MFlops on average. We
then ran the same experiment on Azure small VM and we got for the same code a
performance of 669 MFlops.

It is worth mentioning that differences in processing time between workers have
been observed. These observations are developed in Subsection 5.5.6 of Chapter
5.

Personal notes

During all the experiments that we have been running (from September 2010 to
August 2011), we have noticed various Azure oddities. The following remarks
do not come from rigorous experiments designed to prove these oddities, but as
side observations made while running our clustering algorithms.

– Inter-day Variability of Azure performances: during the months of our experi-
ments, we have noticed several days for which the Azure storage performances
were significantly below average performances (from 30 to 50% below). [69]
reports that “the variation in performance is small and the average bandwidth

is quite stable across different times during the day, or across different days”.
This different result may come from the different environments where the mea-
surements took place. More specifically, our experiments have been run on the
Azure account of Lokad, account for which other hosted services were some-
times run concurrently to execute heavy computations. It is also noteworthy
to mention the date of those experiments. The experiments run by [69] were
run from October 2009 to February 2010 (during the Community Technology
Preview and before the commercial availability of Azure), while our experi-
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ments were run from September 2010 to August 2011. Such variations make
performance measurements of distributed algorithms harder. Especially, our
experiments therefore need to be performed several times before conclusions
can be drawn.

– Sensitivity to the serialization mechanism: different serializers (to name but
a few of them available in .NET: Binary, DataContract, XML, zipped-XML,
JSON, ProtocolBuffers, etc.) are available to serialize an in-memory object
into a stream then stored on a disk or sent through the network. The choice
of the serializer has an impact on the overall communication latency and with
storage duration.

– Temporary unavailability of a blob: we have been experiencing several times
the temporary (around 15 minutes) total unavailability of a given blob when this
blob was read by about 200 machines simultaneously. We have not managed
to isolate the exact reason to account for this phenomenon.

– Temporary unavailability of the storage: we have been experiencing several
times the temporary (around 15 minutes) total unavailability of the BlobStor-
age. We have not managed to isolate the exact reason for this phenomenon.

– Lower throughput for smaller blobs: while the experiments in [69] have been
run on a blob of 1GBytes, a lot of interactions with the storage are made on
much smaller blobs. The throughput for these smaller blobs is sometimes
reduced.

– Code redeployment, VM pool resizing: During our experimenting year, we
noticed impressive improvements in code redeployment and dynamic worker re-
sizing. More specifically, our first code redeployments (December 2009) were
taking hours (with redeployments failing after more than four hours). In Au-
gust 2011, code redeployment was systematically taking less than 10 minutes.
This redeployment mechanism is still improvable: for example, Lokad.Cloud
(see Subsection 4.5.4) provides a code redeployment within several seconds
through a clever trick of separate AppDomain usage (see [2]). Over the same
period, dynamic worker resizing was also significantly improved, with waiting
time reduced from approximately one hour to several minutes (at least when
requiring less than 200 small role instances).

– Queues pinging frequency: Workers are pinging queues on a regular basis to
detect if there are messages to process. To limit the number of network pings,
a standard schedule policy consists in pinging the different queues only once
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per second. This policy introduces a small additional latency.

3.5 Prices

The pricing of Microsoft Azure is driven by the pay-as-you-go philosophy of
Cloud Computing. It requires neither upfront costs nor commitments 3. Cloud
consumers are charged for the compute time, for data stored in the Azure Storage,
for data queries, etc. This section gives a short overview of the Azure pricing
system. We refer the reader to [4] for an accurate pricing calculator and to [5] for
more in-depth pricing details.

CPU consumption is measured in hours of usage of VM. Figure 3.1 presents the
Azure pricing for the different VM sizes. The use of Azure Storage is charged
following three criteria: the quantity of data stored by Azure storage($ 0.125 per
GBytes stored per month), the quantity of data which is transferred from Azure
storage to other machines ($ 0.12 per GBytes for North America and Europe
regions) (all the inbound data transfers or between 2 Azure instances are free),
and the number of requests addressed to the storage ($1 per 1,000,000 storage
transactions).

This pricing can be lowered through subscriptions and are expected to be cut in a
near future: indeed, Azure pricing is in general close to Amazon pricing that has
been cut nineteen times in just six years.

Instance CPU CORES MEMORY DISK I/O PERF. COST PER HOUR

Extra Small Shared 768 MB 20 GB Low $0.02

Small 1 x 1.6 GHz 1.75 GB 225 GB Moderate $0.12

Medium 2 x 1.6 GHz 3.5 GB 490 GB High $0.24

Large 4 x 1.6 GHz 7 GB 1,000 GB High $0.48

Extra Large 8 x 1.6 GHz 14 GB 2,040 GB High $0.96

Table 3.1: Compute instance price details provided by Microsoft on April 2012.
http://www.windowsazure.com/en-us/pricing/details/.

The costs described above seem to traduce the fact that storing data is much
cheaper than using computing units. For many applications hosted by Azure,
most of the costs will therefore come from the VM renting.

3. No commitments are required, but customers can receive significant volume discounts
when signing for commitment offers for several months. In addition, the development cost to
migrate an application on a Cloud Computing Platform is often significant, which is a form of
strong commitment.





Chapter 4

Elements of cloud architectural
design pattern

4.1 Introduction

The SaaS cloud solutions presented in Chapter 2 have already proved to be a
successful economic and technological model, as demonstrated for example by
Amazon or Gmail. In parallel, the IaaS cloud solutions have also proved to
be good candidates for many customers, as suggested by the long list of some
of Amazon Web Service customers 1 or by their business volume (see [1]). In
contrast, the PaaS solutions are younger and address a different market.

The PaaS cloud solutions are deemed to be easy to manipulate. Indeed, many tools
are provided to improve the developer efficiency. In addition to these tools, many
abstractions and primitives are already available to prevent the PaaS customers
from re-implementing the same engineered solutions multiple times. For example,
the Azure Queues provide an asynchronous mechanism that helps to build loosely
coupled components at a low development cost. However, the development of
cloud applications requires specific considerations when the application is ex-
pected to have a certain level of complexity or to achieve a certain scale-up. The
recent interest for PaaS solutions has therefore driven some research about design
patterns for improved cloud application development (see e.g. [64] or [44]).

In addition to the general Cloud Computing design patterns, the question of
design patterns in the context of CPU-intensive cloud applications arises. To
our knowledge, the Azure platform has not been originally designed specifically
to host intensive computations. While the overall system has been designed to

1. http://aws.amazon.com/solutions/case-studies/
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provide very satisfactory scale-up (in terms of the number of available computing
units or of the aggregated bandwidth bounds) for many cloud applications, the
Azure PaaS system does not provide all the specific software primitives that CPU-
intensive applications would require. In this chapter, we investigate the design of
large-scale applications on Azure and provide some cloud design patterns that
have appeared as mandatory when working on these applications.

Since Azure has not been initially designed to be a scientific computing platform,
no computation framework (with the exception of Windows Azure HPC presented
in the introduction of Chapter 3) is presently available for Azure: Azure provides
neither a “low-level” framework such as MPI, nor a “high-level” framework such
as MapReduce. While the Azure team has reported that they are working on
implementing the MapReduce framework for Azure, such a framework is not
available yet. In this situation, one can only resort to the abstractions and the
primitives which are already available (see for example Subsection 3.3.1) to build
CPU-intensive applications. These abstractions and primitives can turn out to be
inadequate for CPU-intensive application development.

During our Ph.D. work, we have been involved in four CPU-intensive applica-
tions. Two of them are the cloud Batch K-Means prototype and the cloud Vector
Quantization prototype 2 that are described in detail in Chapters 5 and 7. In
addition to these two prototypes, we have worked on two applications run by
Lokad that are not open-source. The first one is the Lokad time series forecasting
engine: it is the scientific core of Lokad applications which is hosted on Azure
and provides an API that is in charge of building and returning the actual forecasts.
This engine is used in production and benefits from the scale-up elasticity and the
robustness provided by Azure. The second application is Lokad benchmarking
engine, which replicates the Lokad forecasting engine but which is used as an
internal tool to monitor, profile and evaluate our forecasting engine in order to
improve the accuracy of the forecasts, increase the scale-up potential and reduce
the computation wall time (see definition in section 5.3.1). This application does
not require the same robustness as the Lokad forecasting engine, but faces many
challenges, such as a complex reporting process for which the parallelization is
both mandatory and difficult.

In the light of the experience obtained while working on these four applications,
this chapter describes engineering considerations about the software development
of cloud applications with a specific focus on CPU-intensive issues when it is rel-
evant. It is organized as follows. Section 4.2 describes how the communications

2. Both of these prototypes are available at http://code.google.com/p/clouddalvq/
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can be implemented between the different processing units of a given worker role.
Section 4.3 presents recurring elements of cloud application architecture design.
Section 4.4 presents some elements of the design required to provide the Azure
applications with scalability. Section 4.5 provides additional elements, especially
the idempotence constraint. Section 4.6 presents a synchronization primitive that
happened to be necessary in many situations we encountered.

4.2 Communications

4.2.1 Lack of MPI

The Message Passing Interface (MPI) is an API standard that defines the syntax
and semantics of libraries that provide a wide range of routines to automatically
harness direct inter-machine communications in a distributed architecture. More
specifically, the various MPI implementations provide an abstraction layer that
disburdens the application developer from manual management of inter-machine
communications. In Section 5.3, we highlight the importance of MPI for the
distributed Batch K-Means on Distributed Memory Multiprocessors (DMM) ar-
chitectures. We show how significant the impact of the actual implementation of
MPI primitives is on the speedup that can be achieved by the distributed Batch
K-Means on DMM architectures: this is the tree-like topology of the communica-
tion patterns of MPI primitives that results in a O(log(M)) cost for averaging the
prototypes versions where M is the number of processing units.

Direct inter-machine communications are also available in Azure. As explained
in Section Azure Compute (Section 3.2), an internal endpoint is exposed by each
processing unit of Azure so that each of the processing units could talk directly
to the others using a low-latency, high-bandwidth TCP/IP port. The bandwidth
of these direct communications is very sensitive to multiple factors such as the
number of units that are communicating at the same time (because of aggregated
bandwidth bounds), the fact the resource manager may allocate other VM in-
stances from other deployments (applications) on the same physical hardware, the
fact these other VM may also be I/O intensive, etc. Yet, the average behavior of
such direct communications is very good: [69] and [6] report direct inter-machine
communication bandwidth from 10 MBytes/sec to 120 MBytes/sec with median
measurement bandwidth of 90 MBytes/sec.

While these direct inter-machine communications are available on Azure, no
framework has already been released on Azure to provide higher level primitives
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such as the merging or the broadcasting primitives provided by MPI.

A key feature of the Azure VM system is that the cloud client cannot get any direct
topology information about the VM he temporarily owns. On the contrary, the
VM are totally abstracted to disburden the cloud client from these considerations.
Such a design does not prevent from building a MPI-like API but makes it more
difficult. Several works have ported MPI on Cloud Computing platform such as
EC2 (we refer the reader for example to [88] or [14]) but no MPI implementation
is available on Azure.

Because of the importance of bandwidth in the speedup performance of many
distributed machine-learning algorithms such as Batch K-Means, and because
the direct inter-machine bandwidth is much higher than the bandwidth between
the storage and the processing units (see Subsection 3.4.2), MPI would be a very
useful framework for Azure, as far as intensive computing is concerned.

4.2.2 Azure Storage and the shared memory abstraction

The Azure Storage service provides a shared memory abstraction in the form of
the BlobStorage (and of the TableStorage, but because of their similarity we only
mention BlobStorage in this subsection). The different processors of a Symmetric
Multi-Processors (SMP) system (see Section 5.3) can access the shared memory
implemented in RAM to read or write data and therefore use this shared memory
as a means of communication between the different processors. In the same way,
all the different computing units of an Azure application can access any of the
blobs stored into the BlobStorage.

There is however a critical difference between the use of a shared memory in
a SMP system and the use of the BlobStorage as a shared memory in a cloud
environment: it is the latency and the bandwidth. Indeed, in the SMP case, each
processor is very close to the shared memory and efficient means of communica-
tion such as buses are used to convey the data between the shared memory and
the processors. In contrast, the BlobStorage data are stored on different physical
machines from those hosting the processing VM. Therefore, the communication
between the computing units and the BlobStorage are conveyed through TCP/IP
connections between the distant machines. The resulting bandwidth is much
lower than the bandwidth of a real shared memory: around 10MBytes/sec for
reads and 3 MBytes/sec for writes (see Subsection 3.4.2). In return, the communi-
cation through the BlobStorage provides persistency: if a worker fails and a task
is restarted, many partial results can be retrieved through the storage, therefore
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mitigating the delay for job completion induced by this failure.

4.2.3 Workers Communication

The previous subsections have presented two approaches for the communications:
the first one —a direct inter-machine mechanism through IP communications—
is efficient but made difficult by the lack of any abstraction primitive as MPI
would provide: re-implementing MPI-like primitives in an environment where
the computing units (which are VM) are likely to fail, to be rebooted or to be
moved from a physical device to another one, would be a demanding task that
would be similar to implementing a peer-to-peer network. The second approach,
which consists in communications through the BlobStorage, is designed to be
both simple and scalable, but is inefficient (because of the low bandwidth between
the workers and the storage).

Both approaches seem valid but lead to different designs, challenges and per-
formances. We have made the choice of resorting to the BlobStorage and to
the QueueStorage as communication means between workers because of the
two following reasons. Firstly, beyond the pros and cons of each approach, the
communication through storage seems to be more suited to the Azure develop-
ment philosophy. Indeed, this is the way communications are made in every
Microsoft code sample provided in tutorials, and it is also suggested by the
Azure QueueStorage, which has been specifically designed for this approach.
Secondly, because of its simplicity over the “peer-to-peer” communication model,
the communication through the storage model is the one that has been chosen by
Lokad for both the forecasting engine and the benchmarking engine. Resorting
to the same mechanism for our clustering prototypes was therefore an industrial
constraint.

4.2.4 Azure AppFabric Caching service

Caching is a strategy that consists in storing data in the RAM of a machine instead
of storing it on a hard-drive. Thanks to this strategy, the data can be accessed
more quickly, because one does not need to pay for the cost of hard-drive accesses.
The caching mechanism is therefore known to improve applications performance.

Some cloud providers provide a caching service, such as Google App Engine,
AppScale and Amazon Web Services (through Amazon Elasticache). In the same
way, the Azure AppFabric Caching service (Azure Caching for short) provides
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a caching solution for the Azure applications. This system became available
only after a large part of our clustering algorithm implementations had been
developed and benchmarked. As a consequence, it has not been used in the cloud
algorithms presented in Chapters 5 and 7. We believe the Caching service may yet
lead to significant throughput increase, especially during the prototypes versions
communication between the processing units (see e.g. Chapter 5).

4.3 Applications Architecture

4.3.1 Jobs are split into tasks stored in queues

Following the terminology of the original MapReduce research paper ([47]), the
total execution of an algorithm is referred to as a job. A given job is divided
in multiple tasks that stand for the elementary blocks of logic that are executed.
Each task is run by a single worker, and a single worker can only process one task
at a time. During the duration of an entire job, each processing unit is expected to
run successively one or several tasks.

If the number of tasks of a given job is lower than the number of processing units,
or if one or several workers are temporarily isolated from the rest of the network,
some workers may process no task during a given job execution.

The multiple tasks are described by messages stored in queues. More specifically,
to each task is associated a message queued in the QueueStorage. When a pro-
cessing unit is available, it pings a queue and dequeues a message that describes
a specific task. The message is kept in the queue but becomes invisible to all
the other workers for a specific fixed “invisibility timespan”. Once the task is
completed, the corresponding processing unit notifies the queue that the task
has been successfully completed and that the corresponding message could be
safely deleted, then the processing unit pings the same or another queue to get a
new message and then processes the new corresponding task. If a worker fails
before notifying the queue that the message has been successfully processed, the
message becomes visible again to other machines after the invisibility timespan.
The number of tasks does not need to be defined when the job is started. On the
contrary, a common Azure application design is that many tasks, once completed,
produce one or several new tasks in return.

Among all the tasks that are processed during a given job, many of them refer to
the same logical operation applied on multiple distinct data chunks of the same
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type, a situation often described in the literature as a data-level parallelism. To
reflect this data parallelism, a frequently chosen design consists in gathering in
the same queue only the messages whose corresponding tasks refer to the same
logical operation applied on distinct data chunks. In such a design, to each queue
is associated a QueueService which holds the logical operations to be applied on
each item of the corresponding queue.

4.3.2 Azure does not provide affinity between workers and
storage

As outlined in the original MapReduce research paper ([47]), “Network band-

width is a relatively scarce resource in [our] computing environment”. The
MapReduce framework has therefore adopted a design where the data are not sent
to the processing units, but the code to be executed is sent by the framework envi-
ronment on the machines actually storing the data to avoid network contention
(see also Subsection 2.5.1). This strategy is often referred to as data/CPU affinity.

Presently, there are no mechanisms in Azure to provide such an affinity between
the workers and the storage. Indeed, data are accessed through the BlobStorage
and the TableStorage but the machines that actually store the data (and run the
stream layer described in Subsection 3.3.2) are totally abstracted. As a result, we
cannot run any tasks on the machines where the corresponding piece of data are
stored. Each worker processing data will therefore need to first download the data
it needs to process, contrary to Google’s MapReduce, with which the tasks are
scheduled and assigned on each worker by the framework in such a way that data
downloading is minimized.

4.3.3 Workers are at first task agnostic and stateless

When a worker role (see Subsection 3.2) is deployed, a certain number of process-
ing units (the role instances) which are controlled by the customer are assigned to
the worker role to run the underlying code instructions. In addition to the event
of a role instance failure, the Windows Azure Fabric can arbitrarily and silently
move a VM from a physical machine to another one. Because of these events,
any role instance needs to be resilient to reboot or displace, and therefore must be
stateless, i.e. it must not store, between two tasks, data (in RAM or in the local
hard-drive) that are essential to successfully complete the worker role logical
operations.
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Let us describe three properties shared by all the role instances of a given worker
role. Firstly —as just explained— the role instances are stateless. Secondly, no
instance role stores locally a part of the data to be processed (see Subsection
4.3.2). Finally, all the role instances have the same size (small instances/medium
instances/big instances, etc.). As a consequence of these three properties, all the
role instances are exchangeable and the mapping between the tasks and the role
instances can be done arbitrarily without undergoing any performance drop.

This behavior has been observed in the development of Lokad forecasting engine
or Lokad benchmarking engine. However, we have found out that in the context
of our clustering algorithms a significant reduction of role instances I/O could be
obtained when slightly relaxing the stateless hypothesis and partially dropping
the previous commutability characteristic.

Indeed, many distributed machine-learning algorithms require that the total data
set should be split among the multiple processing units so that each processing
unit loads into its own local memory a part of the total data set, and that multiple
computations are made on this partial data set. In this situation, reloading the
partial data set for each computation to be done leads to a very large I/O overhead
cost with the storage. This overhead cost can be significantly reduced by making
the processing units keep the partial data set within their local memory until the
algorithm is completed. When adopting this design, we reintroduce a data/CPU
locality by assigning to each processing unit all the computations related to a
specific partial data set. This design, close to the memoization technique, is
used in the algorithms presented in Chapters 5 and 7. More specifically, each
processing unit is assigned to the processing tasks of a specific partial data set.
When the partial data set is needed, the processing unit checks if the data set
is already available in the local memory. If the data set is not available, it is
downloaded from the storage and kept into memory for the subsequent uses.

4.4 Scaling and performance

4.4.1 Scaling up or down is a developer initiative

Through the management API or the Azure account portal, the Azure account
manager can modify the number of available workers. Contrary to many other
hardware architectures, the application scaling-up-or-down is therefore left to the
developer’s choice.
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In some cases, the estimation of an adequate number of processing units may
be deduced by the initial data set to be processed. As an example, Chapter 5
provides an algorithm for which the knowledge of the data set size and of the
framework performance (CPU+bandwidth) is sufficient to determine an adapted
number of processing units. This is also the case of the Lokad forecasting engine
in which the knowledge of the data set size (number of time series and length of
each time series) is sufficient to determine how many workers are necessary to
return the forecasts in one hour.

In other cases, the application scaling requirement may be more difficult to an-
ticipate. In these cases, the auto-scaling system may rely on the approximative
estimation of the queue size described in Subsection 4.5.2. More specifically, an
adaptive resizing strategy may be adopted in which the number of processing
units is increased as long as the number of the processing messages in the queues
keeps growing, and in which the number of processing units is decreased when
the number of queued messages is decreasing. Because of the friction cost of
worker resizing (see Subsection 4.4.2), this resizing strategy is adapted only on
the applications that are run during hours on end.

Depending on the granularity level set by the developer, the downsizing of the
workers pool may be delayed until the algorithm is completed. Indeed, the
Azure Management API does not provide any way to choose the workers to be
shut down when downsizing the workers pool. If the granularity level is too
coarse, the chance of shutting down a worker comes at a cost that may deter the
user from downsizing the workers pool before all the computations are completed.

4.4.2 The exact number of available workers is uncertain

Several reasons may affect the number of available processing units. Firstly,
following a resizing request, the re-dimensioning of role instances follows a
general pattern in which a large majority of workers are allocated within 5 to 10
minutes (see for example [69]), but the last workers to be instantiated may take as
much as 30 minutes before becoming available (in the worst encountered case).
Secondly, a worker can be shut down by the Azure Fabric, the hosting VM can be
moved on a different physical machine, or the physical machine can die because
of a hardware failure. Finally, each processing unit may become temporarily
unavailable (for example because of a temporary connectivity loss). Therefore,
the number of available processing units may vary over time.
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As a consequence, no algorithm should rely on an exact number of available
processing units. If this number exceeds the quantity of workers expected by the
algorithm, this excess of computing power often results in a waste: the additional
workers are not of any help (this is the case for example in the algorithm presented
in Chapter 5, in which the initial data set is split into M data chunks processed
by M workers, and additional workers have no impact on the algorithm speedup).
In contrast, the lack of any expected processing unit often results in dramatic
performance reduction: in the event of a synchronization barrier, the lack of a
single processing unit may result in a completion taking twice the expected time
or no completion at all depending on the implementation.

Because of this cost asymmetry, a frequent design is to request a number of
processing units slightly higher than the number of processing units that will be
used by the distributed algorithm.

4.4.3 The choice of Synchronism versus Asynchronism is
about simplicity over performance

While migrating Lokad forecasting engine and Lokad benchmarking engine to
the cloud, we have observed a recurring pattern in which a part of the applica-
tion could be schematized as a sequential set of instructions —referred to as
I1, I2, I3, etc.— applied independently on multiple data chunks, referred to as
D1, D2, D3, etc. A specific task is associated to each pair of instruction and data
chunk.

In this situation, no logical constraint requires the instruction Ij (for j > 1) to
wait for the instruction Ij−1 to be applied on every data chunk before Ij is applied
on any chunk. Yet, we have observed that in this situation, adding artificial syn-
chronization barriers to ensure that the requirement described above is guaranteed
vastly contributes to simplify the application design and debugging. Provided the
number of tasks for each instruction significantly exceed the number of process-
ing units, the relative overhead of these artificial synchronization barriers is kept
small.

On the contrary, when the tasks that can be processed in parallel are tailored to
match the number of available processing units, the overhead of synchronization
induced by the stragglers (see Subsection 2.5.1 or [23]) may be high, as described
in our cloud-distributed Batch K-Means chapter (see Chapter 5). In this situation,
the overhead is actually so big that it leads us to redesign the algorithm to remove
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this synchronization barrier (see Chapters 6 and 7).

4.4.4 Task granularity balances I/O costs with scalability

The choice of task granularity is left to the developer. It results in a tradeoff
between scalability and efficiency because of overhead costs. Indeed, the coarser
the granularity, the less the processing units will pay for I/O with the storage
and for task acquisition through the queue-pinging process. But the coarser the
granularity, the less additional processing units may contribute to the speedup
improvement and the more sensitive the overall algorithm will be to stragglers.

The design of the clustering algorithms of Chapters 5 and 7 has made the choice
of very coarse-grained granularity: each of the processing unit is expected to
process only one task for the total algorithm duration, to minimize the heavy
storage I/O related to the data set download (see Subsection 4.3.3). In contrast,
the Lokad forecasting engine and the Lokad benchmarking engine have been
tuned to use a much finer granularity. In both cases, a general design pattern
has been implicitly followed: the granularity is minimized under the condition
that the I/O overhead induced by the granularity choice does not exceed a few
percents of the total algorithm duration.

4.5 Additional design patterns

4.5.1 Idempotence

Multiple definitions of idempotence have been stated, but we refer the reader to
the definition of Helland in [64]: “idempotence guarantees that the processing of

retried messages is harmless”. The idempotence question arises in many cloud
application situations when the messages queued can be processed multiple times.

Let us consider the cloud context of message processing: a processing unit con-
sumes a message from a queue and then updates some data stored in a durable
way (for example in the BlobStorage). The message is first consumed by the
worker, communication is then made between the worker and the BlobStorage,
and data are updated in the BlobStorage. After the update of the data, the worker
may die before it tells the queue that the message has been successfully processed
and should be deleted (see section 4.3.1). Queues have been designed to react to
machine failures in an “at-least-once” way: in the event of a machine failure, the
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Figure 4.1: Multiple scenarii of message processing that impact the BlobStorage

message is re-queued after some timespan and another worker will process the
same message, resulting in a second updating operation being performed on the
same data stored in the BlobStorage.

Technically, this issue derives from the fact there is no direct mechanism to bind
the message consumption and deletion with the message processing made by the
worker so that one of these two events cannot happen without the other. The
absence of this coupling leads to failure windows between the end of the data
update and the message deletion in which the message is delivered and processed
more than once. This scenario is illustrated in Figure 4.1.

Because of this “at-least-once” design, what Helland refers to as the recipient
entity (which is the BlobStorage entity that may be subject to multiple updates)
must be designed so that the repeated processing of a single message does not lead
to a state for this entity which would be different from the one which could have
been expected with a single processing. In practice, lots of message processing
of our cloud applications are intrinsically idempotent. In particular, provided
the processing is a deterministic function of the input message and that neither
the entities that may be used nor the internal worker state may be modified, the
message processing is idempotent. Among the tasks that suit this pattern, the most
widespread case is the design of a work-flow in which each message processing
is a deterministic function of its input and each entity stored in the permanent
storage is read-only, i.e. it is not modified once it has been created and written
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into the storage for the first time. In this case, when re-processing a message, the
output is necessarily the same as the one obtained the first time, and the same
blob is rewritten with the same value at the same place.

An important case that does not suit this pattern is the message processing that
consists in a blob update, and in particular counter increments and decrements.
In this case, a solution consists in the design of the recipient entity (i.e. the
counter) so that the counter remembers the previous increments and decrements
already made and that the update primitives are idempotent. The particular case
of counter increments and decrements is explored in Section 4.6.

4.5.2 Queues size usage

The Azure QueueStorage API provides a method to get a rough estimation of
the number of messages actually stored in a given queue, but no exact count is
provided by the API. As a result, the API cannot be used as a synchronization
barrier to start a process when x messages have been processed in a specific
queue. In contrast, the approximative estimation of a queue size may be used to
estimate the load of the corresponding QueueService.

4.5.3 Atomicity in the BlobStorage

As already stated in Subsection 3.3.1, the Azure BlobStorage does not provide
any atomicity for transactions implying multiple blobs. Indeed, as outlined for
example in [64], “a scale-agnostic programming abstraction must have the notion

of entity as the boundary of atomicity”.

Despite this framework impossibility, it is still possible to design applications so
that the transactions implying multiple objects (for example class objects) can
be done atomically. The first solution consists in storing the multiple objects
in a single entity (i.e. in a single blob, as far as the BlobStorage is concerned).
This solution leads to some overhead cost: the read (resp. the update) of any of
the objects stored in an entity requires the whole entity to be downloaded (resp.
downloaded then re-uploaded). When the design of the application results in a
situation in which the read/update of one of the objects stored in an entity and
the reads/updates of the other objects stored in the same entity always happen
simultaneously, this overhead is negligible.
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A second solution consists in resorting to an indirection through a kind of “blob
pointer”. Let us examine the case of two objects stored in two different entities
and that may be both involved in a single update operation requiring atomicity.
In this context, the storage locations of the two entities may be unknown by the
processing units and only accessed through a third entity that stores location of
the two previous entities; this third entity being referred to in the following as the
pointer entity. When a given processing unit needs to update one entity (resp. the
two entities), it accesses the pointer entity, downloads the entity (resp. the two
entities), locally updates it (resp. them), and re-uploads it (resp. them) into the
storage in a new location (resp. two new locations). Then it updates the pointer
entity so that it stores the updated location (resp. locations). In the event of a
concurrent update of one or the two entities through the same mechanism, the
Read-Modify-Write (RMW) primitive described in Chapter 3 guarantees that one
update will succeed while the other will fail and will be restarted on the updated
pointer entity and on the updated entity (resp. entities). Due to the indirection
cost introduced by the pointer entity, this second solution use cases appear to be
rare.

In the algorithms presented in Chapters 5 and 7, the prototypes versions and their
corresponding weights are stored together in a single entity, following the first
solution. On the contrary, sometimes the atomicity is not mandatory, as shown
through the example detailed in Subsection 4.6.3.

4.5.4 Lokad-Cloud

Lokad-Cloud 3 is an open-source framework developed by Lokad that adds a
small abstraction layer on top of the Azure APIs to ease the Azure workers startup
and life cycle management, and the storage accesses. For example, in the same
manner than TCP/IP provides a reliable (but “leaky”, see [10]) abstraction using
unreliable IP layers, Lokad.Cloud abstracts the storage read and write operations
to handle most of issues that could be encountered while dealing with the WAS
through exponential back-off retries. Lokad.Cloud has been awarded the 2010
Microsoft Windows Award. A slightly customized Lokad.Cloud framework has
been used to build our cloud prototypes described in Chapters 5 and 7.

3. http://code.google.com/p/lokad-cloud/



4.6. THE COUNTER PRIMITIVE 79

4.6 The counter primitive

4.6.1 Motivation

While Azure is deemed to provide many primitives and abstractions that ease the
application development, it does not presently provide a synchronization barrier
primitive that is lifted once a given set of tasks has been completed. To implement
this synchronization barrier we choose to resort to a concurrent counter stored in
the BlobStorage 4 . This counter is initially set to the number of tasks that need
to be processed and is decremented every time a task is completed. When this
counter hits 0, all the tasks have been completed and the synchronization barrier
can be lifted.

The design of synchronization barriers and counters in a distributed world has
been studied in many contexts. In particular, special attention is paid to avoid
memory contention in order to achieve overall slow latency and high throughput.
To alleviate the memory contention, a classical pattern is to resort to a combining
tree structure of counters that distributes the data requests on multiple pieces of
data instead of a single one. This pattern, referred to as software combining in
[67] has been used for more than a quarter of a century (see e.g. [115], [58], [66]
or [67]).

4.6.2 Sharded Counters

Before presenting the adopted solution, let us describe a well-known type of dis-
tributed counters used in many cloud applications: the sharding counters ([60]).
A sharding counter consists in a very simple set of distributed counters designed
to limit the memory contention and therefore to achieve a much higher update
rate. Instead of using a single counter that is incremented or decremented, the
sharding counter owns L different counters referred to as shards. To increment or
decrement the counter, a shard is chosen at random and this shard is incremented
or decremented accordingly.

Sharding counters are designed to address the use-case in which the actual value
of the counter may be slightly outdated or non-consistent when it is read, and the
write operations (increment or decrement) are much more frequent than the read
operations. Indeed, since the counter is split into L shards, the read operation

4. As explained in Subsection 4.2.4, this counter would probably vastly benefit from being
stored in the Azure Caching service using the same implementation strategy than the one described
below, but this service was released too late for our implementations.
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requires to read the actual L values and to add them up. A well-known example
of sharding counters use-case is the monitoring of online users for a given appli-
cation to adapt the quantity of servers with the traffic-load. In this scenario, the
traffic-load may be approximated with several percent of error margin without
damaging the servers dimensioning logic.

In the context described in the previous subsection, the counter is read after each
decrement to check if the value 0 has been hit. The sharding counters abstraction
would therefore lead in our situation to unsatisfactory read latencies.

4.6.3 BitTreeCounter

Based on the observation that sharded counters were not suitable to our purpose
and that no other cloud counter abstraction was available, we have developed a
new implementation of a combining tree counter, referred to in the following as
BitTreeCounter. The BitTreeCounter is designed to be a synchronization barrier
primitive: the counter returns a boolean that is true only when the tasks of a given
set are all completed.

Our BitTreeCounter is designed to lead to efficient use of optimistic read-modify-
write concurrent operations (see Subsection 3.3.1) by implementing a set of
dependent counters to avoid collisions and remove the contention issues.

In addition to the large throughput and the low latency required for many dis-
tributed counters, we also require our BitTreeCounter to be adapted to the idempo-
tence requirement described in Subsection 4.5.1: the number of times a given task
is processed should not impact our counter behaviour. This additional condition
requires that tasks should be given an id (to fix ideas, the number of tasks is set to
T and task ids are set in the range 0 to T − 1), and that the counter should own
the list of the tasks already completed at least once (and therefore for which the
counter has already been decremented).

Let us now describe the actual implementation of our BitTreeCounter. It is de-
signed so a single method can be used externally: it is the decrement method that
takes in input the task id that is completed, and returns a boolean to tell if all the
tasks have been completed and therefore if the synchronization barrier can be
lifted. Internally, the BitTreeCounter is implemented as a tree of nodes, for which
each node is stored inside the BlobStorage in a distinct entity. The topology of
the BitTreeCounter is organized as follows: each node, with the exception of the
leaves, has exactly C children. The tree depth H is set such as H = ⌈ log(T )

log(C)
⌉.
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At depth h (with 1 ≤ h ≤ H), our BitTreeCounter has therefore Ch−1 nodes,
referred to in the following as the nodes {N(p, h)}Ch−1−1

p=0 . Figure 4.2 presents
the BitTreeCounter topology when C = 3 and H = 3.

Each node holds a bit array of length C: for 1 ≤ h ≤ H and 0 ≤ p ≤ Ch−1 − 1,
the bits of node N(p, h) are referred to as {b(i, p, h)}C−1

i=0 . There is a bijection
between tasks ids (from 0 to T−1) and all the bits of the leaves. More specifically,
the task id i completion information is stored in the bit b(i/CH−1, i%CH−1, H)
of the leave N(i%CH−1, H) 5. For a non-leave node, each bit in its bit array
corresponds to the state of one of its children. More specifically, for 1 ≤ h ≤
H − 1, 0 ≤ p ≤ Ch−1 − 1 and 0 ≤ i ≤ C − 1, b(i, p, h) = 0 if and only if all
the bits of node N(iC + p, h+ 1) are set to 0, that is Equation (4.1).

b(i, p, h) = 0 ⇐⇒ b(u, iC + p, h+ 1) = 0 for 0 ≤ u ≤ C − 1 (4.1)

Let us describe how the BitTreeCounter is updated. At the beginning, all
the bit arrays are filled with 1 values. When the task i is completed, the
bit b(i/CH−1, i%CH−1, H) of the leave N(i%CH−1, H) is set to 0. If all the
bits of this leave are also equal to 0, then the leave’s parent (i.e. the node
N(i%CH−2, H − 1)) is also updated: b(i%CH−1/CH−2, i%CH−2, H − 1) is
then set to 0. In the same manner, if the other bits of the node N(i%CH−2, H −
1) are equal to 0, then the bit b(i%CH−2/CH−3, i%CH−3, H − 2) of node
N(i%CH−3, H − 2) is also updated, etc. When all the bits of the root node
have been set to 0, then all the tasks have been completed at least once, and the
synchronization barrier is lifted.

Notice that our BitTreeCounter may happen to be in an inconsistent state. Indeed,
since the multiple nodes are stored in distinct entities and since they are accessed
directly and not through an indirection (the “blob pointer” described in Subsection
4.5.3), a given node may be filled with 0 while its parent has failed to be updated.
The choice not to resort to a blob pointer is about efficiency over consistence. In
our situation, this potential inconsistent state does not result in any problematic
behavior: since each task is not marked as completed before the BitTreeCounter
is updated accordingly, the failure to complete the BitTreeCounter update of a
leave (and if necessary of its parent and of the parent of its parent, etc.) results in
a task failure; the task will be re-processed after it re-appears in the queue and
the BitTreeCounter will in the end be updated to recover its correct state. Such a
failure happens very infrequently.

5. Notice that two successive tasks are by design not related to the same leave. Since in most
of our use cases the tasks are processed in approximatively the same order than they are created,
this design prevents most of concurrent write operations.
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Figure 4.2: Distribution scheme of our BitTreeCounter. In the current situation,
the tasks {3, 12, 18, 23} are not yet completed. The bit arrays of the corresponding
leaves (N(0, 3), N(3, 3) andN(5, 3)) are therefore not yet filled with 0. When
the task 23 will be completed, the node N(5, 3) will be updated accordingly.
Since its bit array will then become filled with 0, the node N(2, 2) will then be
updated, which will in turn lead to the update of node N(0, 1). Once the tasks
{3, 12, 18, 23} are completed, the root node N(0, 1) will be filled with 0 and the
BitTreeCounter then returns true to lift the synchronization barrier.



Chapter 5

Distributed Batch K-Means

5.1 Introduction to clustering and distributed
Batch K-Means

Clustering is the task of unsupervised classification that assigns a set of objects
into groups so that each group is composed of similar objects. Non-hierarchical
clustering has been widely used for more than half a century as a summarizing
technique to build a simplified data representation. It is one of the primary tools of
unsupervised learning. It plays an outstanding role in several pattern analyses, in
decision making, proximity exploration or machine-learning situations including
text mining, pattern or speech recognition, web analysis and recommendation,
marketing, computational biology, etc.

Two main clustering questions have been addressed in many contexts, reflecting
the clustering’s broad utility. The first question deals with the notion of similar-
ity between objects. In general, pattern proximity is based on some similarity
measure defined for any pair of data elements. Such a similarity measure is of
prime interest since it totally defines the proximity notion and therefore needs to
reflect what the user considers as close or similar. When the data set is contained
in a vectorial space, a simple euclidean distance is often used. In many other
situations, a more specific similarity measure is used, such as in the context of
DNA microarrays exploration. In other cases, clustering output is used as the
training input of a set of supervised learning functions. This latter case, often
referred to as clusterwise linear regression (see for example [65]), is of prime
interest for Lokad since the time series clustering is used to produce groups of
time series that are processed group by group. From a computation point of
view, the complexity of the similarity measure has a significant impact on the
computational cost of clustering.
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The second clustering aspect that has been widely addressed is the algorithm
choice. For a given similarity measure, one can define a performance criterion
(often referred to in the literature as a loss function) for a clustering result to
quantify how close to its assigned cluster each point is. The problem of returning
the optimal clustering solution in regard to this loss function is known to be
in many cases computationally untractable (see for example [87] in the case of
the K-Means). Many algorithms are devised to return approximations of the
optimal solution, often by converging to a local minimum of the loss function.
We refer the reader to [74] for an in-depth clustering algorithm review. Some
well-known techniques of non-hierarchical clustering are Batch K-Means, Vector
Quantization (VQ), Neural Gas, Kohonen Maps, etc.

This chapter focuses on the Batch K-Means clustering algorithm. The choice
of Batch K-Means has been motivated by several reasons. Firstly, while better
clustering methods are available, Batch K-Means remains a useful tool, espe-
cially in the context of data summarization where a very large data set is reduced
to a smaller set of prototypes. As such, Batch K-Means is at least a standard
pre-processing tool. Secondly, Batch K-Means has a low processing cost, pro-
portional to the data size and the number of clusters. Thus, it is a good candidate
for processing very large data sets. Finally, apart from the number of iterations
to convergence, the processing time of Batch K-Means depends only on the
data dimensions and on K, rather than on the actual data values: timing results
obtained on simulated data apply to any data set with the same dimensions.

Distributed computing in machine-learning or data-mining arises when the com-
putation time to run some sequential algorithm is too long or when the data
volume is too big to fit into the memory of a single computing device. Such
algorithms have already been successfully investigated for fifteen years (see for
example [22], [51] or [102]) and applications built on top of these distributed
algorithms are presently used in a wide range of areas, including scientific com-
puting or simulations, web indexing applications such as Google Search, social
network exploration applications such as Facebook, sparse regression in computer
vision, etc. Parallelization is today one of the most promising ways to harness
greater computing resources, whereas the volume of data sets keeps growing at
a much faster rate than the sequential processing power. In addition, most of
recent CPU are now multi-cores, implying parallelization to benefit from these
supplementary resources.

In this chapter, we investigate the parallelization of Batch K-Means over different
computing platforms. Batch K-Means is known to be easy to parallelize on shared



5.1. INTRODUCTION TO CLUSTERING AND DISTRIBUTED BATCH
K-MEANS 85

memory computers and on local clusters of workstations: numerous publications
(see e.g. [51]) report linear speedup up to at least 16 processing units (which can
be CPU cores or workstations). There are two reasons why the Batch K-Means
algorithm is suited for parallelization. The first reason is that distributed Batch
K-Means produces exactly the same result as sequential Batch K-Means. For
algorithms where the sequential and the distributed versions produce different
results, it is necessary to confront the two algorithm versions on both speedup and
accuracy criteria. In the case of Batch K-Means, the comparison of the sequential
and distributed versions is limited to the speedup criterion. In addition, the exact
matching of the results of the two algorithm version provides an easy mechanism
to guarantee that the distributed algorithm version is correctly implemented. From
an engineering point of view, this property makes the development process much
easier.

The second reason why distributed K-Means is easy to parallelize is that it has
been claimed to be an embarrassingly parallel algorithm (we refer the reader to
Subsection 2.5.1 for a definition of embarrassingly parallel problems). Most of
the computation time is spent on evaluating distance between data points and
prototypes. These evaluations can easily be distributed on multiple processing
units. Distributed K-Means can then be viewed as an iterated MapReduce al-
gorithm: firstly, the data set is split into M subsets of equal size (where M is
the number of processing units), each processor (mapper) being responsible for
computing distances between its data points and the prototypes. In the end, all
the processors compute a version of local prototypes, then forward this version to
a unique processor responsible for gathering all the versions of local prototypes
versions, computing the prototypes’ shared version (reduce step) and sending it
back to all the units. Forwarding the versions of local prototypes can be done in
several ways, depending on the hardware/software framework: broadcasting can
be done using MPI (Message Passing Interface) implementation or web services
for example.

Batch K-Means has already been successfully parallelized on DMM architectures
using MPI (see for example [51] or [75]). This algorithm has also already been
implemented on shared-nothing platforms, for example using Hadoop, but to
our knowledge no theoretical study of the behavior of this algorithm on such a
platform has been done yet. This chapter therefore investigates parallelization
techniques of Batch K-Means over a platform of Cloud Computing (in the present
case Azure). The main difficulty of the cloud algorithm consists in implementing
synchronization and communication between the processing units, using the
facilities provided by Windows Azure cloud operating system. We detail this
technical challenge, provide theoretical analyses of speedup that can be achieved



86 CHAPTER 5. DISTRIBUTED BATCH K-MEANS

on such a platform and the corresponding experimental results.

Let us now briefly outline the chapter. In Section 5.2, we present the sequential
Batch K-Means algorithm and its computational cost. In Section 5.3, we describe
how the Batch K-Means is often distributed on several processors and examine
the new corresponding computational cost. We also build some model of the real
cost of a distributed Batch K-Means on DMM and develop a bandwidth condition
inequality. Section 5.4 is devoted to some specificities of the cloud that prevent
previous developments of DMM Batch K-Means cost from being applied on the
cloud. We provide a new parallelization implementation to adapt the distributed
Batch K-Means to the cloud specificities. Section 5.5 presents the experimental
results of our distributed Batch K-Means on the cloud.

5.2 Sequential K-Means

5.2.1 Batch K-Means algorithm

Let us consider the following problem: given a data set of N points {zt}Nt=1 of
a d dimensional space, we want to construct K points {wk}Kk=1, referred to in
the following as prototypes or centroids, as a summary of the data set using the
euclidean distance as a similarity measure. Through this similarity measure, one
can define the empirical distortion:

CN(w) =
N
∑

t=1

min
ℓ=1,...,K

‖zt − wℓ‖2, w ∈
(

R
d
)K

.

CN is guaranteed to have at least one minimizer, as it is both continuous and
coercive. As already stated, the computation of an exact minimizer is often
untractable, and this problem is proved to be NP-Hard, even in the easier case of
d = 2 (see [87]). Among the many algorithms that compute an approximation
of the optimal minimizer, the Batch K-Means is a well known algorithm, widely
used because it is easy to implement and provides overall satisfactory results.

The Batch K-Means algorithm belongs to the class of alternating optimization al-
gorithms. Indeed, it alternates two optimization phases iteratively. The first phase,
called the assignment phase, takes as input a given set of prototypes, and assigns
each point in the data set to its nearest prototype. The second phase, referred to
as the recalculation phase, is run after the assignment phase has been completed.
During this second phase, each prototype is recomputed as the average of all the
points in the data set that has been assigned to him. Once the second phase has
been completed, phase 1 is run again, and phase 1 and 2 are run iteratively until a
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stopping criterion is met. Algorithm 1 logical code describes the alternation of
the two phases.

Algorithm 1 Sequential Batch K-Means

Select K initial prototypes (wk)
K
k=1

repeat
for t = 1 to N do

for k = 1 to K do
compute ||zt − wk||22

end for
find the closest centroid wk∗(t) from zt;

end for
for k = 1 to K do
wk =

1
#{t,k∗(t)=k}

∑

{t,k∗(t)=k}
zt

end for
until the stopping criterion is met

Batch K-Means is an algorithm that produces, by construction, improved pro-
totypes (in regards to the objective function (6.1)) for each iteration and that
stabilizes on a local minimum of this objective function. In many cases, the
prototypes w and the corresponding empirical loss CN(w) are deeply modified
in the first iterations of the Batch K-Means then they move much more slowly
in the latter iterations, and after several dozens iterations the prototypes and the
corresponding empirical loss are totally fixed. Yet, such a behavior is not sys-
tematic and Batch K-Means may need more iterations before stabilizing (see e.g.
[26]). The classical stopping criteria are: wait until the algorithm is completed
(prototypes remain unmodified between two consecutive iterations), or run an
a-priori fixed number of iterations or run the algorithm until the empirical loss
gain between two iterations is below a given threshold.

Batch K-Means can be rewritten as a gradient-descent algorithm (see [32]). As
one can notice in many other gradient-descent algorithms, Batch K-Means is very
sensitive to initialization. More specifically, both the time to convergence and the
quality of the clustering are strongly impacted by the prototypes initialization. We
refer the reader to [35] for an in-depth review of different K-Means initialization
techniques. In the following, the K prototypes are initialized with the values of
the first K points of our data set and in the case of a distributed algorithm, all the
computing units will be initialized with the same prototypes.
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5.2.2 Complexity cost

The Batch K-Means cost per iteration does not depend on the actual data values
but only on the data size. It is therefore possible to provide a precise cost for
a Batch K-Means for a given data size. This cost has already been studied by
Dhillon and Modha in [51]. Let us briefly list the different operations required
to complete the algorithm. For a given number of iterations I , Batch K-Means
requires: I(K+N)d+ IKd read operations, IKNd subtractions, IKNd square
operations, IKN(d− 1) + I(N −K)d additions, IKd divisions, 2IN + IKd
write operations, IKd double comparisons and an enumeration of K sets whose
cumulated size is N .

If the data set is small enough to fit into the RAM memory and if specific care is
made to avoid most of cache miss (see for example [52]), the read and write oper-
ation costs can be neglected for the sequential Batch K-Means version. Making
the reasonable approximation that additions, subtractions and square operations
are all made in a single CPU clock cycle and that N >> K and N >> d, one
can model the time to run I iterations of Batch K-Means by:

SequentialBatchWalltime = (3KNd+KN +Nd)IT flop,

where T flop denotes the time for a floating point operation to be evaluated.

5.3 Distributed K-Means Algorithm on SMP and
DMM architectures

5.3.1 Distribution scheme

As already observed in [51], the Batch K-Means algorithm is inherently data-
parallel: the assignment phase which is the CPU-intensive phase of the sequential
algorithm version, consists in the same computation (distance calculations) ap-
plied on all the points of the data set. The distance calculations are intrinsically
parallel, both over the data points and the prototypes. It is therefore natural
to split the computational load by allocating disjoint subsets of points to the
different processing units. This property makes the Batch K-Means algorithm
suitable for many distributed architectures: the assignment phase is shortened by
distributing point assignments tasks over the different processing units. Overall,
the distributed Batch K-Means wall time —i.e. the human perception of the
passage of time from the start to the completion of the algorithm, as opposed to
the CPU time— is reduced compared to its sequential counterpart because of the
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shortening of this assignment phase duration.

Let us assume that we own M computing units and that we want to run a Batch
K-Means over a data set composed of N data points {zt}Nt=1. The initial data
set is split into M parts of homogeneous size Si = {zit}nt=1 for 1 ≤ i ≤ M
with n = N/M . The computing units are assigned an Id from 1 to M and the
computing unit m processes the data set Sm. Each computing unit is given the
same computation load, and the different processors complete their respective
tasks in similar amount of time. Once all the computing units have completed
their task, one or multiple units can proceed to the recalculation phase, before the
reassignment phase is run again. We detail this distributed algorithm version in
the following logical code (Algorithm 2).

As previously stated, this distributed algorithm produces after each iteration
the very same result as the sequential Batch K-Means. The distributed Batch
K-Means is therefore only evaluated on a speedup criterion: how much does
this distributed algorithm version reduce the total time of execution? In many
implementations, the overall time of execution is significantly reduced by the
parallelization of the assignments and slightly increased by the communication
between the different processors that is induced by the parallelization. We can
therefore model the total time of execution by the equation (5.1).

Distributed BatchWallT ime = T comp
M + T comm

M , (5.1)

where T comp
M refers to the wall time of the assignment phase and T comm

M refers to
the wall time of the recalculation phase (mostly spent in communications).

The wall time of the assignment phase (T comp
M ) does not depend on the computing

platform. This wall time roughly equals the assignment phase time of the se-
quential algorithm divided by the number of processing units M . Indeed, for this
phase the translation of the algorithm toward the distributed version does neither
introduce nor remove any computation cost. It only distributes this computation
load on M different processing units. Therefore, this wall time is modeled by the
following equation (5.2).

T comp
M =

(3KNd+KN +Nd)IT flop

M
. (5.2)

As previously stated, the wall time of the reassignment phase is mostly spent in
communications. During this phase, the different M prototypes versions com-
puted by the M processing units are merged together to produce an aggregated
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Algorithm 2 Distributed Batch K-Means on SMP architectures
Code run by the computing unit m
Get same initial prototypes (wk)

K
k=1 as other units

repeat
for t = 1 to n do

for k = 1 to K do
compute ||zmt − wk||22

end for
find the closest prototype wk∗(t,m) to zmt

end for
for k = 1 to K do

Set pmk = #{t, zmt ∈ Sm & k∗(t,m) = k}
end for
for k = 1 to K do

wm
k =

1

pmk

∑

{t, zmt ∈Sm & k∗(t,m)=k}
zmt

end for
Wait for other processors to finish the for loops
if i==0 then

for k = 1 to K do

Set wk =
1

M
∑

m=1

pmk

M
∑

m=1

pmk w
m
k

end for
Write w into the shared memory so it is available for the other processing
units

end if
until the stopping criterion is met
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prototypes version (which is exactly the prototypes version that would have been
produced by the sequential algorithm), and then this prototypes version (referred
to as shared version in the following) is made available to each computing unit
before the reassignment phase is restarted. In the following subsections, we
investigate how the shared prototypes version is made available depending on
the hardware architecture and how this communication process impacts the wall
time of the recalculation phase on Symmetric Multi-Processors (SMP) and DMM
architectures.

5.3.2 Communication costs in SMP architectures

SMP refers to a multiprocessor computer architecture where several identical pro-
cessors are connected to a shared memory and controlled by a single OS instance.
A typical SMP configuration is a multi-core processor, where each core is treated
as a separate processor. In SMP architectures, the different processing units, the
main memory and the hard-disks are connected through dedicated hardware such
as buses, switches, etc. In this context, the communication is very fast.

In such an architecture, the communication costs of the recalculation phase
are therefore very small compared to the processing costs of the reassignment
phase. This brings us to neglect the communication costs in the case of a SMP
architecture (T comm,SMP

M = 0). One can then simplify the Batch K-Means cost
on SMP architecture by the simplified equation (5.3).

Distributed BatchWallT ime
SMP = T comp

M =
(3KNd+KN +Nd)IT flop

M
. (5.3)

This model of Batch K-Means on SMP architectures provides a perfect theoreti-
cal model where the neglect of SMP communication costs leads to a theoretical
perfect speedup of a factor M for M processing units.

5.3.3 Communication costs in DMM architectures

In contrast with SMP architectures, a DMM system refers to a multi-processor in
which each processor has a private memory and no shared memory is available.
In such a system, the prototypes version computed by the processing unit i is
accessible by the processing unit j (with i 6= j), if and only if the processing unit
i explicitly sends its result to the processing unit j. Since all the communications
in DMM architectures need to be explicit, several frameworks have been devised
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to provide communication and synchronization primitives. These frameworks
disburden the application developer from specific communication handling by
providing a higher level communication layer. Among such frameworks, the most
well-known ones are Message Passing Interface (MPI) (see e.g. [103]) or PVM
(see e.g. [104]).

The wall time of the synchronous distributed Batch K-Means algorithm on DMM
has been studied by Dhillon and Modha in [51] then by Joshi in [75]. In both
cases, Batch K-Means is distributed on DMM architecture using a MPI frame-
work. In [51], this wall time is modeled by the following equation (5.4).

Distributed BatchWallT ime
DMM = T comp

M + T comm,DMM
M (5.4)

=
(3KNd+KN +Nd)IT flop

M
+O(dKIT reduce

M ),

(5.5)

where T reduce
M , following the notation of [51], denotes the time required to per-

form a sum or an average operation of M doubles distributed on M processing
units.

To determine the wall time of the recalculation phase on DMM architectures
using MPI, one therefore needs to determine the time to perform a sum or an
average operation distributed on M processing units, referred to as T reduce

M . This
quantity is determined by the design of MPI: the MPI framework can perform
communication and can broadcast data between the processing units using a
tree-like topology that is described in the following subsection (5.3.4). For such a
tree-like topology, the communication and broadcasting primitives are reported
to be performed in O(log(M)). As a consequence, T reduce

M is also reported to be
performed in O(log(M)) (see e.g. [70]).

In many cases, the hardware architecture provides enough bandwidth for MPI
to be very efficient. In the experiments made in [51], the communication costs
are very acceptable and have little impact on the distributed Batch K-Means
speedup (see Subsection 5.3.7). Yet, the communication latency and the band-
width between processing units should not be neglected in many other cases.
The following subsections provide a more detailed evaluation of T reduce

M and
compute some bandwidth condition to prevent communications from becoming a
bottleneck of the algorithm.
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5.3.4 Modeling of real communication costs

A lot of work has been done to provide precise model of the MPI primitives
performances over the last two decades. In [70], numerical values of many MPI
execution performances are provided. As outlined in [62], achieving such numer-
ical measurements is a very difficult task that highly depends on the underlying
hardware topology, on the synchronization methods, on the network congestion,
on the different MPI implementations, etc. In this subsection we do not aim to
provide accurate performance evaluation of the MPI behavior in our clustering
context but rather to explicit qualitative patterns of the constraints brought by
communications.

Let us consider the communication scheme described in Figure 5.1. This overly-
simplified communication scheme highlights the tree-like nature of the communi-
cation patterns adopted by many MPI implementations. More specifically, the
figure highlights the logarithmic scaling of the communication mechanism: to
sum or average values across computing units, many MPI implementations have
developed a structure where data chunks are sent in multiple steps. Each step of
this communication pattern consists in two actions: a processing unit sends its
data to a second one, the receiving unit merges the two data chunks into a data
chunk of the same size. After each step, the number of data chunks that are sent
in parallel is divided by 2. Such a pattern induces ⌈log2(M)⌉ communication
steps.

In the following equations, we neglect communication latencies as well as the
time to merge the data chunk (which is small in comparison with the data com-
munication between the two processing units) and model communication costs as
the ratio of the quantity of data to be sent divided by the bandwidth. We therefore
provide a theoretic model of T comm,DMM

M by:

T comm,DMM
M =

⌈log2(M)⌉
∑

m=1

IKdS

BDMM,MPI
M
2m

,

where S refers to the size of a double in memory (8 bytes in the following) and
BDMM,MPI

x refers to the communication bandwidth per machine while x process-
ing units are communicating at the same time. The number of processing units
that are communicating at the same time x has a strong impact on BDMM,MPI

x

because of a phenomenon referred to as aggregated bandwidth bounds.
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Figure 5.1: This non-realistic scheme of the merging prototype logic highlights
the tree structure of many MPI primitives. To begin with, the first worker sends a
data chunk to the second worker, while the third worker sends simultaneously its
data chunk to the fourth worker. A second step follows the first one in which the
merging result of the first and second workers are sent to the fourth worker that
already owns the merging result of the third and fourth workers. In two steps, the
data chunks of the four workers are merged.

The aggregated bandwidth refers to the maximum number of bytes the actual net-
work can transfer per time unit. We refer the reader to Subsection 5.5.2 for a more
precise explanation. As regards our model, let us make the strong simplification
that the bandwidth per worker only depends on the hardware context and on the
total number of processing units, and not on the actual number of processing units
communicating at the same time. We therefore note this bandwidth BDMM,MPI

M .

The time spent in communication is then written:

T comm
M =

⌈log2(M)⌉
∑

m=1

(
IKdS

BDMM,MPI
M

)

= ⌈log2(M)⌉ IKdS

BDMM,MPI
M

.

We can then deduce an estimation of the speedup rate on DMM architectures
more detailed than in [51], where T comm

M is specified :
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Speedup(M,N) =
SequentialBatchWalltime

Distributed BatchWallT ime
DMM

(5.6)

=
T comp
1

T comp
M + T comm

M

(5.7)

=
3NKdIT flop

3NKdIT flop

M
+ IKdS

BDMM,MPI
M

⌈log2(M)⌉
(5.8)

=
3NT flop

3NT flop

M
+ S

BDMM,MPI
M

⌈log2(M)⌉
. (5.9)

Using the previous speedup model, one can deduce the optimal number of pro-
cessing units for distributed Batch K-Means implemented on DMM architectures:

M∗
DMM =

3NT flopBDMM,MPI
M

S
. (5.10)

5.3.5 Comments

The speedup model provided in the previous Subsection 5.3.4 is too simple to
provide a satisfactory forecasting tool to anticipate with enough precision the ac-
tual speedup provided by a distributed Batch K-Means implementation on a given
architecture. Yet, this naive model allows us to draw some qualitative conclusions
shared by many distributed Batch K-Means implementations on shared-nothing
architectures:

– The speedup depends neither on the number of prototypes (K), nor on the data
dimension (d), neither does it depend on the data distribution. It only depends
on the number of points in the data set (N ) and on architecture characteristics
such as bandwidth or CPU frequency.

– The speedup is a monotonically increasing function of N . In particular, the
previous equation leads to lim

N→+∞
SpeedUp(M,N) = M . From this theoreti-

cal result, a conclusion can be drawn: the more loaded the RAM of workers
is, the more efficient the workers are. Provided the processing units are given
enough RAM, it is possible to get an efficiency per worker arbitrarily close to
100%.

– The actual speedup of the distributed implementation might even be higher
than the theoretical speedup model since we have not taken into account the
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fact that the RAM is bounded. Indeed, the accumulated RAM from each of the
machines may enable the data set to move from disk into RAM thereby drasti-
cally reducing the time access for read and write operations. This phenomenon
is often referred to as superlinear speedup.

– The previous equation shows that speedup is a monotonically decreasing func-
tion of T flop and a monotonically increasing function of BDMM,MPI

M . This
result shows that the parallelization is best suited on slow machines with high
communication bandwidth.

– Because of the actual values of bandwidths and CPU frequencies in present
real world DMM architectures, it is always efficient to use all the available pro-
cessing units of a DMM architecture to perform a distributed Batch K-Means.

5.3.6 Bandwidth Condition

In this subsection we briefly determine some theoretical conditions that guarantee
that the recalculation phase is small in comparison with the reassignment phase.
This condition turns into:

T comm
M << T comp

M .

Such a condition translates into:

IKdS

BDMM,MPI
M

⌈log2(M)⌉ <<
(3NKd+NK +Nd)IT flop

M
. (5.11)

A sufficient condition for equation (5.11) to be verified is that the following
equation (5.12) is verified:

IKdS

BDMM,MPI
M

⌈log2(M)⌉ <<
3NKdIT flop

M
. (5.12)

Finally we get the following condition:

N

M⌈log2(M)⌉ >>
S

3T flopBDMM,MPI
M

.

For example, in the context of a DMM architecture with 50 computing units
composed of a single mono-core retail processor (2Ghz) and a network interface
controller with a 1 Gbit/sec bandwidth, the condition turns into:
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N >> 12, 000.

Assuming that the dimension d = 1000, it is therefore necessary to have a data set
of more than 10 GBytes (i.e. 200 MBytes per machine) on such an architecture,
to ensure that communications will cost less than 1% of the computation duration.

5.3.7 Dhillon and Modha case study

The experiments of [51] have been run on an IBM SP2 platform with a maximum
of 16 nodes. Each node is an IBM POWER2 processor running at 160MHz
with 256 MBytes of main memory. Processors communicate through the High-
Performance Switch (HPS) with HPS-2 adapters. Performance of the HPS has
been discussed in [117] and [20]. In [20] for example, point-to-point bandwidth
in a SP2 with HPS and HPS-2 adapters using MPI is reported to be about 35
MBytes/sec.

It is difficult to estimate the bandwidth actually obtained during the experiments
of [51], as it is also difficult to estimate effective Flops. In [51], no comments are
made about bandwidth, yet Flops are reported to be very fluctuent: 1.2 GFlops in
some experiments, 1.8 GFlops in others (the maximum would be 16 * 160MFlops
= 2,5GFlops). Yet, on smaller data sets, Flops might be very much lower than the
reported numbers. Since we cannot guess the actual bandwidth and Flops during
these experiments, theoretical bandwidth and Flops are used in the following to
provide approximative results.

Dhillon and Modha report that they have obtained a speedup factor of 6.22 on
16 processors when using 211 points. Using condition (5.6), we can estimate
speedup when using 211 points :

EstimatedSpeedup =
3NT flop

3NT flop

M
+

(

2 S

BDMM,MPI
M

+ 5T flop
)

⌈log2(M)⌉

≃ 11.

We can see the estimated speedup is not accurate, but we are in the range where
communication is important enough to prevent a perfect speedup and small
enough though for a significant speedup to be observed.

When using 221 points, we get :



98 CHAPTER 5. DISTRIBUTED BATCH K-MEANS

EstimatedSpeedup =
3NT flop

3NT flop

M
+

(

2 S

BDMM,MPI
M

+ 5T flop
)

⌈log2(M)⌉

≃ 15.996.

[51] reports that for 221 points, a 15.62 speedup is observed. Again, anticipated
speedup indicates there will be little issue to parallelize, and observed speedup is
indeed excellent.

5.4 Implementing Distributed Batch K-Means on
Azure

5.4.1 Recall of some Azure specificities

The architecture of most Azure hosted applications is based on two components:
web roles and worker roles. Web roles are designed for web application program-
ming. In the context of our cloud-distributed Batch K-Means prototype, a single
web role is used for monitoring the algorithm behaviour, observing the queues
load, noticing the BlobStorage short outages or unavailability, profiling our algo-
rithm and redeploying quickly our application using the Appdomain trick (see
Subsection 3.4.2 and [2]). Worker roles are designed to run general background
processing. Each worker role typically gathers several cloud services and uses
many workers (Azure’s processing units) to execute them. Our cloud-distributed
Batch K-Means prototype uses only one worker role, several services and tens or
hundreds of workers. This worker role is used to run the actual Batch K-Means
algorithm.

The computing power is provided by the workers, while the Azure storage system
is used to implement synchronization and communication between workers. It
must be noted indeed that Azure does not currently offer any standard API for dis-
tributed computation, neither a low-level one such as MPI, nor a higher-level one
such as MapReduce ([47]) or Dryad ([73]). MapReduce could be implemented
using Azure components (following the strategy of [82]), yet, as pointed out in e.g.
[85], those high-level API might be inappropriate for iterative machine-learning
algorithms such as Batch K-Means. Therefore we rely directly on the Azure
queues and the BlobStorage.
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Our prototype uses Lokad-Cloud 1 (see Subsection 4.5.4), an open-source frame-
work that adds a small abstraction layer to ease Azure workers startup and life
cycle management, and storage access.

5.4.2 The cloud Batch K-Means algorithm

As already outlined, the distributed Batch K-Means can be reformulated as an
iterated MapReduce where the assignment phases are run by the mappers and the
recalculation phases are performed by the reducers. The design of our distributed
cloud Batch K-Means is therefore vastly inspired by the MapReduce abstraction
and follows the considerations introduced in Chapter 4. This section presents our
cloud implementation. Figure 5.2 provides a scheme of the cloud implementation
of our distributed Batch K-Means. Algorithms 3 (resp. 4 and 5) reproduce the
logical code run by the mappers (resp. the partial reducers and the final reducer).

Following the MapReduce terminology, we split our algorithm into three cloud
services (setup, map and reduce services), each one matching a specific need.
A queue is associated to each service; it stores messages specifying the storage
location of the data needed for the tasks. The processing units regularly ping the
queues to acquire a message. Once it has acquired a message, a worker starts
running the corresponding service, and the message becomes invisible till the
task is completed or timeouts. Overall, we use M +

√
M + 1 processing units in

the services described below (we suppose in the following that
√
M is an integer).

The SetUpService generates M split data sets of n = N/M points in each and
puts them into the BlobStorage. It is also generating the original shared proto-
types which are also stored in the BlobStorage. Once the processing units in
charge of the set-up have completed the data generation, they push M messages
in the queue corresponding to the “Map Service”. Each message contains a taskId
(from 1 to M ) related to a split data set to be processed and a groupId (from 1
to

√
M ), which is described above. The same processing unit also pushes

√
M

messages in the queue corresponding to the “Reduce Service”. In the current
implementation 2, the SetUp service is executed by M processing units to speedup
the generation process.

Once the set-up has been completed, the Map queue is filled with M messages
(corresponding to the M map tasks) and the Reduce queue is filled with

√
M

1. http://code.google.com/p/lokad-cloud/
2. available at http://code.google.com/p/clouddalvq/
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Mapper 1
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Mapper 4

Mapper 5

Mapper 6

Mapper 3
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Reducer
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(prototypes)
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Figure 5.2: Distribution scheme of our cloud-distributed Batch K-Means. The
communications between workers are conveyed through the BlobStorage. The
recalculation phase is a two-step process run by the partial reducers and the final
reducer to reduce I/O contention.

messages (corresponding to the
√
M reduce tasks). Each processing unit pings

the different queues to acquire a Map task or a Reduce task.

When executing a MapService task, a processing unit is referred to as a mapper.
Each mapper first downloads the corresponding partial data set it is in charge
of (once for all). Then the mapper loads the initial shared prototypes and starts
the distance computations that form the assignment phase. Once the assignment
phase has been completed, the mapper builds a local version of the prototypes
according to the locally run assignment phase. This prototypes version is sent to
the BlobStorage, and the mapper waits for the Reduce service to produce a shared
version of the prototypes. When the shared version of the prototypes is made
available, the mapper downloads it from the storage and restarts the assignment
phase using the new prototypes version thus obtained. The instructions performed
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Algorithm 3 Distributed Cloud Batch K-Means : Mapper
Dequeue a message from the Map Queue.
Get taskId, groupId and IterationMax from the message.
Set m=taskId
Retrieve the partial data set Sm = {zmi }Ni=1 from the storage
Retrieve the initial prototypes shared version {wsrd

k }Kk=1

Initialize wm as wm = wsrd

for It=0; It < IterationMax ; It++ do
for zmi ∈ Sm do

for k = 1 to K do
Compute ||zmi − wk||22

end for
Find the closest prototype wk∗(i,m) to zmi

end for
for k = 1 to K do

Set pmk = #{t, zmt ∈ Sm & k∗(t,m) = k}
end for
for k = 1 to K do

Set wm
k =

1

pmk

∑

{t, zmt ∈Sm & k∗(t,m)=k}
zmt

end for
Send wm into the storage in a location depending on the iteration It
Send pm into the storage in a location depending on the iteration It
Ping the storage every second to check if wsrd is available for iteration It
Download it when it becomes available
Replace wm by the new downloaded shared version

end for

by the mappers are detailed in Algorithm 3.

When executing a ReduceService task, a processing unit is referred to as a partial
reducer. Each partial reducer downloads from the storage multiple prototypes
versions that come from different Map tasks, and merges them into an average
prototypes version. More specifically, each Reduce task consists in merging

√
M

prototypes versions. The Reduce task message holds an Id called groupId that
refers to the group of prototypes versions that this task needs to collect. When the√
M prototypes versions it is in charge of are retrieved, the partial reducer merges

the prototypes versions using weighted averages and pushes the merged result
into the storage. Once all the

√
M Reduce tasks have been completed, a last

reducer, referred to as the final reducer, downloads the
√
M merged results thus
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Algorithm 4 Distributed Cloud Batch K-Means : Partial Reducer
Dequeue a message from the Partial Reduce Queue.
Get groupId and IterationMax from the message.
Set g= groudId
for It=0; It < IterationMax ; It++ do

Retrieve the prototypes version {wm}(g+1)
√
M

m=g
√
M

corresponding to iteration It

Retrieve the corresponding weights {pm}(g+1)
√
M

m=g
√
M

corresponding to iteration
It
for k = 1 to K do

Set pgk =
(g+1)

√
M

∑

m=g
√
M

pmk

Set wg
k =

1
pgk

(g+1)
√
M

∑

m=g
√
M

pmk w
m
k

end for
Send wg into the storage in a location depending on the iteration It
Send pg into the storage in a location depending on the iteration It

end for

Algorithm 5 Distributed Cloud Batch K-Means : Final Reducer
Dequeue the single message from the Final Reduce Queue.
Get IterationMax from the message.
for It=0; It < IterationMax ; It++ do

Retrieve the prototypes version {wg}g=1..
√
M corresponding to iteration It

Retrieve the corresponding weights {pg}g=1..
√
M corresponding to iteration

It
for k = 1 to K do

Set psrdk =

√
M

∑

g=1

pgk

Set wsrd
k = 1

psrdk

√
M

∑

g=1

pgkw
g
k

end for
Send wsrd into the storage in a location depending on the iteration It

end for
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produced and merges all of them into a single prototypes version called shared
version. This shared version is pushed into the storage to be made available for
the mappers 3. When this shared version is read by the mappers, a new iteration
of the algorithm is started and the assignment phase is re-run by the mappers.
The instructions performed by the partial reducers (resp. the final reducer) are
detailed in Algorithm 4 (resp. Algorithm 5).

The two-step design of the ReduceService (partial reducers and the final reducer)
is of paramount importance. This design ensures no processing unit needs to
download more than

√
M prototypes versions per iteration. In the same way,

√
M

copies of the shared prototypes version are made available in the storage instead
of one, to ensure no blob is requested in parallel by more than

√
M processing

units per iteration.

For each iteration of the algorithm, there are three synchronization barriers.
Firstly, each partial reducer needs to get the results of the

√
M mappers it is re-

lated to before merging them. Secondly, the final reducer needs to get the results
of all the

√
M partial reducers before merging them into the shared prototypes

version. Finally, each mapper needs to wait for the final reducer to push the
shared version into the BlobStorage before restarting the reassignment phase. As
outlined in Chapter 4, the synchronization primitive is one of the few primitives
that is not directly provided by Azure. Let’s consider two different designs to
implement this synchronization process.

The first solution consists in using a counter to keep track of the number of tasks
that need to be completed before the synchronization barrier can be lifted. This
counter needs to be idempotent and designed so that the contention should be
limited. Such a counter has been already described in the BitTreeCounter section
of Chapter 4. For example, all the mappers that process tasks sharing the same
groupId could own such a counter initially set to

√
M ; once a mapper is done,

it decrements the counter, and when a mapper decrements the counter from 1 to
0, it knows all the other mappers of the same groupId are also done, so that the
corresponding partial reduce task can be started.

The second solution comes from the ability for each processing unit to ping a
specific blob storage location to determine if there is a blob in there. Let us
re-examine the previous example. Instead of using a specific counter and starting

3. More specifically, the final reducer pushes
√
M copies of the shared prototypes version

in the storage instead of one. Each of these copies is read by all the mappers sharing the same
groupId.
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the reducer only when the counter hits 0, the partial reducer could be started
from the beginning, together with the mappers. This partial reducer would then
regularly query the storage to detect whether the prototypes versions produced
by the mappers have already been made available. When all the

√
M versions

have been retrieved, then the partial reducer can start the merging operation.
This second solution requires that each blob put into the storage should have a
corresponding blobName that is pre-defined using a fixed rule; in the case of
prototypes versions made by mappers, the corresponding blobNames are built
using the following addressing rule: prefix/iteration/groupId/jobId.

Both solutions provide idempotence and avoid contention. The second solution
has been chosen because it helps to reduce stragglers (see Subsection 5.5.6) by
overlapping the latest computations of mappers with the retrieval of first available
results by the partial reducer. This second solution comes with the drawback of
running more workers (M +

√
M +1) than the first solution (M ). This drawback

is not that significant since —as this is highlighted in the following subsections—
the scale-up of our algorithm will be more limited by the bandwidth/CPU power
of our machines than by the actual cost of these machines.

Let us remark that the two-step design of our clustering prototype has been in-
spired by previous design choices that we adopted unsuccessfully. Indeed, our
first design was a single-step reduce run by a single worker, with a synchroniza-
tion barrier between the assignment phase and the recalculation phase in the form
of a single naive blob counter. The contention on this naive blob counter, just as
the overload on the single reducer motivated us to the design presented above.

5.4.3 Comments on the algorithm

In the previous proposed algorithm as well as in the DMM implementation of
[51], the assignment phase of Batch K-Means is perfectly parallelized. As al-
ready outlined in the model of speedup in the case of DMM architectures, the
global performances are hindered by the wall time duration of the reduction
phase. In the case of a SMP architecture, the recalculation phase is approximately
instantaneous and the parallelization in such architectures is very efficient. On
DMM architectures, we have already shown how the MPI framework provides
very efficient primitives to perform the reduction phase in amounts of time that
are in most cases negligible (with a O(log(M)) cost). In such cases, the DMM
implementations lead to a linear speedup nearly as optimal as in the SMP case, as
confirmed in the large data set experiments of [51].
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In the case of our Azure implementation that relies on the storage instead of
on direct inter-machine communications, the recalculation phase is proportion-
ally much longer than in the DMM case. The two-step design of our algorithm
produces a recalculation phase cost of O(

√
M) because the partial reducers as

well as the final reducer need to download
√
M prototypes versions per iteration.

Such a cost is asymptotically much higher than the asymptotical cost of the MPI
framework (O(log(M))). While it would have been possible for our reduction
architecture to complete in O(log(M)) by implementing a log(M)-step archi-
tecture, such a design would have led to higher recalculation costs because of
frictions. Indeed, the latency between the time a task to being completed and the
time the consumer of the former task manages to acknowledge that the result is
available, is rather high. This phenomenon highlights a previously stated remark
(see Chapter 3): the cloud platforms are probably not suited to process very
fine-grained tasks.

We also draw the reader’s attention on the importance of the data set location and
downloading. The previous algorithm is inspired by an iterated MapReduce with
the noticeable exception that no Map task corresponds to a single iteration of
K-Means but to all the iterations. Since Azure does not provide any mechanism to
run computations on the physical machines where the data are stored through the
BlobStorage, each processing unit need to download the data set from the storage
(i.e. from distant machines). To prevent each of the workers from re-loading a
data set at each iteration, we have chosen that each processing unit should be
processing the same data chunk for each iteration.

5.4.4 Optimizing the number of processing units

A very important aspect of our cloud implementation of Batch K-Means is the
elasticity provided by the cloud. On SMP or DMM architectures, the quantity of
CPU facilities is bounded by the actual hardware, and the communications are
fast enough. As a result, the user has better run the algorithm on all the available
hardware. The situation is significantly different for our cloud implementation.
Indeed, the cloud capabilities can be redimensionned on-demand to better suit
our algorithm requirements. Besides, the communication costs which are induced
show that oversizing the number of workers would lead to increasing the overall
algorithm wall time because of these higher communication costs. Running Batch
K-Means on Cloud Computing therefore introduces a new interesting question:
what is the (optimal) amount of workers that minimize our algorithm wall time?
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To answer this question, let us re-tailor the speedup formula detailed in Sub-
section 5.3.4. As already explained in Subsection 5.4.2, the symbol M in the
following will not refer to the total number of processing units but to the number
of processing units that will run the Map tasks. The total amount of processing
units could be lowered to this quantity, but as outlined in the same subsection, it
would come at the cost of a slightly slower algorithm. As in the DMM case, the
wall time of distance calculations remains unmodified:

T comp
M =

(3NKd+NK +Nd)IT flop

M
,

where N , as in the DMM architecture case, stands for the total number of points
in all the data sets gathered. In addition to the distance calculations, a second cost
is introduced to model the wall time of the reassignment phase: the time to load
the data set from the storage. Let us introduce T read

Blob (resp. Twrite
Blob ) that refers to

the time needed by a given processing unit to download (resp. upload) a blob
from (resp. to) the storage per memory unit. The cost to load the data set from
the storage is then modeled by the following equation:

TLoad
M =

NdST read
Blob

M
.

Let us keep in mind that by design this loading operation needs to be performed
only once, even when I > 1. This loading operation can be neglected in speedup
model if TLoad

M << TComp
M . A sufficient condition for this to be true is:

ST read
Blob

3IKT flop
<< 1.

This condition turns out to be true in almost all the cases. Let us provide a new
wall time model of the recalculation phase performed by the two-step reduce
architecture provided in Subsection 5.4.2. This recalculation phase is composed
of multiple communications between workers and storage as well as average
computation of the different prototypes versions. More specifically, each iteration
requires:
– M mappers to write their version “simultaneously” in the storage;
– each of the partial reducers to retrieve

√
M prototypes versions;

– each of the partial reducers to compute an average of the versions thus retrieved;
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– each of the partial reducers to write “simultaneously” its result in the storage;
– the final reducer to retrieve the

√
M partial reducer versions;

– the final reducer to compute the shared version accordingly;
– the final reducer to write the

√
M shared versions in the storage;

– all the mappers to retrieve the shared version.
The recalculation phase per iteration can therefore be modeled by the following
equation:

T comm,periteration
M = KdSTwrite

Blob +
√
MKdST read

Blob + 5(
√
M)KdT flop

+KdsT read
Blob +KdSTwrite

Blob +
√
MKdST read

Blob

+ 5(
√
M)KdT flop +

√
MKdSTwrite

Blob .

Keeping only the most significant terms, we get:

T comm
M ≃ I

√
MKdS(2T read

Blob + Twrite
Blob ).

More generally, we can show that a p-step reduce process leads to communication
cost of the following form:

T comm, p−step
M ≃ I

1/p
√
MKdS(pT read

Blob + (p− 1)Twrite
Blob ).

In the context of our 2-step reduce process, we can deduce an approximation of
the speedup factor :

SpeedUp =
T comp
1

T comp
M + T comm

M

(5.13)

≃ 3IKNdT flop

3IKNdT flop

M
+ I

√
MKdS(2T read

Blob + Twrite
Blob )

(5.14)

≃ 3NT flop

3NT flop

M
+
√
MS(2T read

Blob + Twrite
Blob )

. (5.15)
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Using this model, which is kept simple, one can see there is an optimal number
of workers to use. This number (M∗) can be expressed as:

M∗ = 2/3

√

6NT flop

S(2T read
Blob + Twrite

Blob )
. (5.16)

This quantity must be compared to the optimal number of processing units in
the DMM case expressed in equation (5.10). Let us remark that contrary to the
DMM model, the best number of processing units in our cloud model does not
scale linearly with the number of data points N . It directly follows that our cloud
implementation suffers from a theoretical impossibility to provide an infinite
scale-up with the two-step reduce architecture. Subsection 5.5.5 investigates
how our cloud-distributed Batch K-Means actually performs in terms of practical
scale-up.

One can verify that for the previous value of M∗, T comp
M∗ = 1

2
T comm
M∗ , which means

that when running the optimal number of processing units, the reassignment
phase duration is half of the recalculation phase duration. In such a situation the
efficiency of our implementation is rather low: with M∗ +

√
M∗ + 1 processing

units used in the algorithm, we only get a speedup of M∗/3.

5.5 Experimental results

5.5.1 Azure base performances

In order to use our cost model as a predictive tool to determine the optimal number
of workers M∗ and our implementation performance, one needs to evaluate the
performances of Azure services. These performances have already been briefly
analyzed in Subsection 3.4.2. We refer the reader to this subsection for more
explanations and just recall here the recorded performances.

– BlobStorage Read Bandwidth: 8MBytes/sec
– BlobStorage Write Bandwidth: 3MBytes/sec
– CPU performance while performing distance calculations: 670 MFlops
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5.5.2 The two-step reduce architecture benchmark

The aggregated bandwidth refers to the maximum number of bytes the actual
network can transfer per time unit. In most cases, such a quantity does not equal
the product of maximal bandwidth per processing unit by the number of process-
ing units, since the network may not sustain such maximal bandwidths for each
worker when all of them are communicating at the same time. The aggregated
bandwidth measurement is a difficult task that is hardware and task dependent. In
this subsection we focus on a specific case raised by our clustering algorithm.

In the case of the two-step recalculation phase implementation developed in
Subsection 5.4.2, it is both difficult and inaccurate to theoretically determine
the recalculation phase duration, partly because of the previously mentioned
aggregated bandwidth bounds. We therefore produce a custom benchmark to
evaluate the time spent in the recalculation phase as follows: the prototypes are
designed as a data chunk of 8MBytes and the recalculation phase is run 10 times
(I = 10). For the different values of M , the clustering implementation is run but
the processing part is replaced by waiting for a fixed period of time (15 seconds),
so that communication time can be recorded without being affected by straggler
issues, as reported in Subsection 5.5.6. The following table provides the wall
time of this benchmark (for 10 iterations), and the amount of time spent in the
recalculation phase (Wall Time - 10*15 seconds).

M 5 10 20 30 40 50 60 70 80
Wall Time (in sec) 287 300 335 359 392 421 434 468 479

Communication (in sec) 137 150 185 209 242 271 284 318 329
2T read

Blob + Twrite
Blob , (in 10−7sec/Byte) 7.64 5.92 5.16 4.76 4.78 4.78 4.59 4.73 4.58

M 90 100 110 120 130
Wall Time (in sec) 509 533 697 591 620

Communication (in sec) 359 383 547 441 470
2T read

Blob + Twrite
Blob , (in 10−7sec/Byte) 4.71 4.77 6.51 5.02 5.13

Table 5.1: Evaluation of the communication throughput per machine and of the
time spent in the recalculation phase for different number of communicating units
M .

First of all, one can notice that the quantity 2T read
Blob + Twrite

Blob does not grow with
M (at least for M < 100), which proves that we do not suffer in our experiment
from aggregated bandwidth bounds before using 100 workers. Secondly, we
can note that the obtained value is smaller than the value that would be obtained
using the values provided in Subsection 5.5.1 (which corresponds to 5.83 ∗ 10−7

sec/Byte): indeed, the parallelization of downloads and uploads in each machine
(through multiple threads) reduces enough the communication to compensate
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Figure 5.3: Time to execute the Reduce phase per unit of memory (2T read
Blob+Twrite

Blob )
in 10−7sec/Byte in function of the number of communicating units.

the frictions introduced by our two-step design. Finally, the whole process is
sometimes behaving much worse than expected (see the outlier M = 110). The
case M = 110 has been re-launched 1 hour later, obtaining the value 4.85. Figure
5.3 sums up the table and shows that aggregated bandwidth bounds are not hit
before 100 hundred processing units are used. Before this threshold, the quantity
2T read

Blob + Twrite
Blob remains constant.

5.5.3 Experimental settings

In the following experiments, Batch K-Means are run on synthetic data. As
explained in the introduction to this chapter, the Batch K-Means wall time de-
pends on the data size but not on the actual data values, except for the number of
iterations to convergence. Thus, the synthetic nature of the data has no impact
on the conclusion that we draw. Besides, the synthetic nature of our data has
allowed us to easily modify parameters such as the dimension d to highlight
some results. The synthetic data are generated uniformly in the unit hypercube
using the following settings: the dimension d is set to 1000 and the number of
clusters K is set to 1000. The number of points in the total data set depends
on the experiment. For speed-up experiments, the total data set is composed of
500, 000 data points (for a total size of 4 GBytes) that are evenly split among the
multiple processing units. For scale-up experiments, the data set total number of
points grows with the number of processing units in the scale-up experiments.
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In all our experiments, the algorithm is run for 10 iterations to get stable timing
estimates.

Theoretically, K and d should have the same impact on map and reduce phases
since Map and Reduce costs are supposed to be proportional to Kd. As a con-
sequence, the speedup is theoretically agnostic to K or d. Yet, since our model
does not take latency into account, having very small values of K and d would
lead to underestimate communication costs by neglecting latency. Provided K
and d are kept big enough, our speedup/scale-up results do not depend on K or d.

As explained in the introduction to the chapter, the distributed Batch K-Means
produces for each iteration the very same results as what a sequential Batch K-
Means would return. Thus, the following experiments only focus on the speedup
provided by the parallelization and not the function loss improvements.

5.5.4 Speedup

In this subsection we report on the performances of the cloud implementation
proposed in Subsection 5.4.2 in terms of speedup. In other words, we investigate
whether the proposed implementation allows us to reduce the Batch K-Means
execution wall time for a given data set. In addition, we compare the observed
optimal speedup to the theoretical optimal speedup obtained by the equation
(5.13). We report on the results of one out of multiple experiments that we have
run, the other experiments having shown the same general patterns and qualitative
conclusions.

The proposed implementation is tested using the settings described in Subsection
5.5.3. The algorithm is run for 10 iterations to get stable timing estimates. Ne-
glecting loading time and memory issues (a small instance has only 1.75 GBytes
of memory), a sequential Batch K-Means implementation would use approxi-
mately 6 hours and 13 minutes to run the 10 iterations.

The following table reports on the total running time in seconds (including data
loading) of the proposed implementation for different numbers of mappers (M ).
We also report on the speedup over the theoretical total running time, and the effi-
ciency (speedup divided by the total number of processing units M +

√
M + 1).

The speedup as a function of M is plotted in Figure 5.4 (it is the curve with
N = 500, 000).
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M 10 50 60 70 80 90 95 100 110
Time 2223 657 574 551 560 525 521 539 544

SpeedUp 10.0 34.1 39.0 40.6 40.0 42.6 43.0 41.5 41.2
Efficiency 0.67 0.58 0.57 0.51 0.44 0.42 0.41 0.37 0.34

M 120 130 140 150 160
Time 544 574 603 605 674

SpeedUp 41.2 39.0 37.1 37.0 33.2
Efficiency 0.31 0.27 0.24 0.23 0.19

Table 5.2: Evaluation of our distributed K-Means speedup and efficiency for
different number of processing units M .

As expected, the total processing time is minimal for a specific value of M re-
ferred to as M∗

eff (here 95), for which the speedup (43.0) is comparable to M∗
eff/3

(as predicted by the model). With the values of T flop reported in Subsection 5.5.1
and the values of 2T read

Blob + Twrite
Blob evaluated in Subsection 5.5.2, the theoretical

value of M∗ is 112.While the theoretical optimal number of workers M∗ slightly
overestimates the actual optimal number of workers M∗

eff , the equation (5.16)
provides a good first estimate of this number before running the experiments.
More specifically, once the values 2T read

Blob + Twrite
Blob and T flop have been evaluated,

our equations provide an a-priori tool to estimate what the optimal number of
machines to use would be.

5.5.5 Optimal number of processing units and scale-up

Let us bear in mind that the scale-up is the ability to cope with more data in the
same amount of time, provided that the number of processing units is increased
accordingly. In our cloud Batch K-Means, the theoretical optimal number of
mappers M∗ is not proportional to N (see equation (5.16)), contrary to the DM-
M/MPI model cost. As a consequence, our cloud version cannot hope to achieve
linear scale-up.

As a consequence, the scale-up challenge is turned into minimizing growth of
wall time as N grows, using M∗(N) mappers. Theoretically, our model gives a
processing cost (T comp

M ) proportional to N/M and a communication cost (T comm
M )

proportional to
√
M . As a consequence, the algorithm execution total time

(T comp
M +T comm

M ) is proportional to 1/3
√
N and the optimal number of workers M∗

is proportional to 2/3
√
N .

In the following experiment, the values of K and d are kept constant (K = 1000
and d = 1000). For various values of N , our implementation is run on different
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Figure 5.4: Charts of speedup performance curves for our cloud Batch K-Means
implementation with different data set size. For a given size N , the speedup
grows with the number of processing units until M∗, then the speedup slowly
decreases.

values of M to determine the effective optimal values M∗
eff for a given N .

N M
∗

eff M
∗ Wall Time Sequential Effective Theoretical

theoretic time Speedup Speedup (= M∗

3
)

Exp. 1 62500 27 28 264 2798 10.6 9.34
Exp. 2 125000 45 45 306 5597 18.29 14.84
Exp. 3 250000 78 71 384 11194 29.15 23.55
Exp. 4 500000 95 112 521 22388 43.0 37.40

Table 5.3: Comparison between the effective optimal number of processing units
M∗

eff and the theoretical optimal number of processing units M∗ for different
data set size.

As expected, one can see that M∗
eff (N) and T comp

M + T comm
M do not grow as fast

as N . Between the experiment 1 and the experiment 4, N is multiplied by 8. Our
theoretical model anticipates that M∗

eff should grow accordingly by 82/3 = 4.
Indeed, M∗

eff grows from 27 to 95 (that is a 3.51 ratio). In the same way, our
model anticipates that the execution wall time should grow by 81/3 = 2. Indeed,
the execution wall time grows from 264 seconds to 521 seconds. Figure 5.4
provides the detailed experiment results of the speedup obtained for multiple
values of N and M .
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Figure 5.5: Charts of speedup performance curves for our cloud Batch K-Means
implementation with different number of processing units. For each value of M ,
the value of N is set accordingly so that the processing units are heavy loaded
with data and computations. When the number of processing units grows, the
communication costs increase and the spread between the obtained speedup and
the theoretical optimal speedup increases.

For our last experiment, we aim to achieve the nominal highest value possible
for speedup. As explained in Subsection 5.3.5, for a fixed number of mappers
M , the best achievable speedup is obtained by filling the RAM of each machine
with data so each machine is in charge of a heavy computation load. While the
previous table and Figure 5.4 show how the speedup grows with N (using M∗(N)
mappers), Figure 5.5 shows how the speedup grows with M (using the highest
value of N that do not oversize the RAM of our VM). For this experiment, we set
K = 1000, d = 1000, and set N in such a way that each mappers is given 50,000
data points N = M ∗ 50, 000 4. The results are reported in Figure 5.5.

Overall, the obtained performances are satisfactory and the predictive model
provides reasonable estimates of the execution wall time and of the optimal
number of processing units that need to be used. While there is room for im-

4. The value of n = 50, 000 corresponds to 400 MBytes in RAM, while the RAM of a small
role instance is supposed to be 1.75GBytes. In theory, we could have therefore loaded much more
our instances. In practice, when we run this experiment in 2010, the VM crashed when we used
higher values for n
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Figure 5.6: Distribution of the processing time (in second) for multiple runs
of the same computation task for a single VM. As expected, the distribution is
concentrated around a specific value.

proving our implementation, the latency issues might prevent resorting on a tree
like O(log(M)) reducer as available in MPI without using direct inter-machines
communications. Without native high performances API, communication aspects
will probably remain a major concern in Azure implementations.

5.5.6 Straggler issues

In this subsection we investigate the variability of CPU performances of the
multiple processing units and show that some tasks are processed in amounts of
time significantly higher than expected, a phenomenon referred to as stragglers
(see e.g. [47] or [80]).

In the first experiment, we run the same task —that consists in a heavy distance
calculations load (each task corresponds to a reassignment phase)— 100 times.
The task is expected to be run in 7 minutes. The results are provided in Figure 5.6.

In the second experiment, the same task is run 10 times in a row by 85 workers.
Each of the 850 records therefore consists in the same computation load, per-
formed on processing units supposedly of the same performance (Azure small
role instances). The same experiment has been run on 2 different days, on 2



116 CHAPTER 5. DISTRIBUTED BATCH K-MEANS

Figure 5.7: Distribution of the processing time (in second) for multiple runs of the
same computation task for multiple VM. One can note the “3 modes” distribution
and outliers (tasks run in much more time).

different hours, on different workers, but the same following patterns have been
observed. Figure 5.7 provides the empirical distribution of these computation
durations.

From this experiment, we can deduce that:
– The 3-mode distribution : 90% of the tasks are completed between 390 and 500

seconds. For the tasks which have been completed in this interval, we observe
3 different modes of our empirical distribution.The 3 modes may be due to
hardware heterogeneity or multiple VM hosted on the same physical machine.

– A worker can be affected by temporary slowness : The three longest runs (823
seconds, 632 seconds, 778 seconds) have been performed by the same VM,
which has also performed very well on other iterations: (360 seconds, 364
seconds, ...). This could be explained by very different reasons, such as the fact
the physical machine hosting our VM has been hosting temporarily another
VM, a temporary downsizing of the size of cache memory for our VM, etc.

Straggler issues have already been pointed out, for example in the original MapRe-
duce article ([47]) by Google, yet they were observed while running thousands of
machines. We show that straggler issues are also observed on a pool of workers
as small as 100 VM. [47] describes a monitoring framework to detect tasks tak-
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ing too much time, and uses backup workers to re-launch tasks that have been
detected to be too long. Yet, this approach leads to wait for the standard duration
of the task before detecting straggler tasks and launching again the correspond-
ing tasks. This situation severely limits the potential speedup that can be achieved.

As pointed out by Graphlab in [85], the easy access of MapReduce frameworks
and the great help it provides to design scalable applications has driven part of
the machine-learning community to think their algorithms to fit in a MapReduce
framework. However, in many cases the combination of stragglers and of a
synchronous framework like MapReduce prevents users from obtaining good
overall speedups.





Chapter 6

Practical implementations of
distributed asynchronous vector
quantization algorithms

6.1 Introduction

The distributed Batch K-Means is a synchronous distributed algorithm: the
reassignment phase, which is the CPU-intensive phase, consists in distance com-
putations that can be distributed over a pool of processing units thanks to its
data-level parallelism property. Chapter 5 has highlighted how this algorithm
can achieve good overall speedup and scale-up on a Cloud Computing platform
but has also shown that its performance still suffers from the stragglers and the
high costs of cloud communications. In the two following chapters, we develop
a distributed asynchronous clustering algorithm so that the asynchronism will
eventually reduce the performance loss incurred by the stragglers and the com-
munications.

To do so, let us investigate the parallelization techniques of an algorithm which
is a close relative to Batch K-Means. This algorithm is the Vector Quantization
(VQ) algorithm, also referred to in the literature as online K-Means. The VQ
algorithm is indeed online: its data input is drawn and processed piece-by-piece
in a serial-fashion. After the examination of each data piece, a resume of the data
—the prototypes— is refined accordingly to better reflect the data set. A reminder
of the sequential VQ algorithm is given in Section 6.2.

Because of the online property of the VQ algorithm, the parallelization techniques
of the VQ algorithm presented in Section 6.4 do not introduce unavoidable syn-
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chronization barriers that would lead to overheads which would be comparable
to the distributed Batch K-Means implementation ones. As a consequence, the
VQ algorithm may seem to be more adapted to Cloud Computing platforms. Our
work on the distributed VQ (DVQ) algorithm is divided into two chapters: the
present chapter investigates various parallelization schemes of the VQ algorithm
using simple programs simulating a distributed architecture, while Chapter 7
presents the actual behavior of the chosen DVQ scheme on Azure.

As outlined by Pagès in [94], the VQ algorithm belongs to the class of stochastic
gradient descent algorithms (for more information on stochastic gradient descent
procedures we refer the reader to Benveniste et al. in [29]). The DVQ algorithm
is based upon the VQ technique: it executes several VQ procedures on different
(and possibly distant) processing units while the results are broadcasted and
merged through the network. As a consequence, the DVQ algorithm falls within
the general framework of parallel gradient descent algorithms.

The distributed gradient descent algorithms have been vastly experimented and
analyzed (see e.g. Chapter 14 of [28]). Distributed and asynchronous stochas-
tic gradient descent procedures for supervised machine-learning problems have
been studied theoretically and experimentally by Langford et al. in [118] and by
Louppe and Geurts in [84]. In these papers the computer programs are based on
shared memory architectures. However, our work focuses on the unsupervised
learning problem of clustering without any efficient distributed shared memory.
The lack of such a shared memory introduces significant time penalties when
accessing data, therefore slowing down the exchange of information between the
computing entities.

In order to avoid this problem, Zinkevich et al. propose in [119] a parallelized
stochastic gradient descent scheme with no communication between processors
until the end of the local executions. As mentioned by the authors, this perfectly
suits the popular distributed computing framework MapReduce (see, for instance,
Dean and Ghemawat in [47]). However, in our quantization context this approach
would not work because the loss function, namely the empirical distortion, is not
convex 1. Therefore a final average of completely independent VQ executions
would not lead to satisfactory prototypes, as shown by the results of Section 6.4
below when the delays get large.

The non-convexity of the loss function recalled in equation (6.1) seems to be

1. Even in a convex context, this solution may turn out to be not optimal, as outlined in the
so-called “no-communication” solution study in [49].
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a very important point, if not the most important, of the nature of our problem.
Indeed, in the convex and smooth case, recent results have presented paralleliza-
tion schemes that have proved to be asymptotically optimal (see for instance the
recent [49]). We show in this chapter that comparable distribution schemes do not
provide speedup in our non-convex case but we provide improvements through
other distribution schemes for which sensitive speedups are obtained.

We will not be concerned with practical optimizations of the several parameters
of VQ implementations such as the initialization procedures or the choice of the
sequence of steps {εt}∞t=1 (introduced in Section 6.2). In the present chapter,
we assume that a satisfactory sequential VQ implementation has been found.
Therefore, our goal is to make this algorithm “scalable” (i.e. able to cope with
larger data sets) using multiple computing resources without modifying those
parameters. Consequently, in all our experiments, the initialization procedure
is always the same: each initial prototype is an average of 20 arbitrary data
vectors. For a review of standard initialization procedures, the reader is referred
to Peterson et al. in [96] where a satisfactory method is also provided for the
usual Batch K-Means algorithm. The techniques proposed by Milligan and Isaac
in [89], Bradley and Fayyad in [35], or Mirkin in [90] also seem to perform well.
As for the learning rate, similarly to Langford et al. in [118] or [28], we set
εt = 1/

√
t for all t ≥ 1. A thorough analysis of the theoretical properties of the

learning rates can be found in Bottou et al. in [33, 34].

The rest of this chapter is organized as follows. Section 6.2 provides a short
introduction to the sequential VQ algorithm. Section 6.3 describes the synthetic
functional data used in the experiments of this and the next chapter. Section
6.4 is devoted to analyses and discussions about simple distributed schemes
implementing VQ procedures. In particular, we show in this section that the
first natural implementation of VQ cannot bring satisfactory results. However,
we describe alternative parallelization schemes that, as we had expected, give
substantial speedup, i.e. gain of execution time brought by more computing
resources compared to a sequential execution.

6.2 The sequential Vector Quantization algorithm

Let us recall the exact clustering problem dealt with in Chapter 5 and detailed in
equation (6.1): given a data set of N points {zt}Nt=1 of a d dimensional space, we
want to construct κ points {wk}κk=1, referred to in the following as prototypes or
centroids, as a resume of the data set using the euclidean distance as a similarity
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measure. Through this similarity measure, one can define the empirical distortion:

CN(w) =
N
∑

t=1

min
ℓ=1,...,κ

‖zt − wℓ‖2, w ∈
(

R
d
)κ
. (6.1)

Like Batch K-Means, the popular VQ algorithm (see Gersho and Gray in [55])
introduces a technique to build prototypes {wk}κk=1 that provides a satisfactory
result as regards the previous criterion.

The VQ algorithm defined by equation (6.2) consists in incremental updates of the
(

R
d
)κ

-valued prototypes {w(t)}∞t=0. Starting from a random initial w(0) ∈
(

R
d
)κ

and given a series of positive steps (εt)t>0, the VQ algorithm produces a series
of w(t) by updating w at each step with a “descent term”. Let us first introduce
H(z, w) defined by

H(z, w) =
(

(wℓ − z)1{l=argmini=1,...,κ‖z−wi‖2}
)

1≤ℓ≤κ
.

Then, the VQ iterations can be written:

w(t+ 1) = w(t)− εt+1H
(

z{t+1 mod n}, w(t)
)

, t ≥ 0, (6.2)

where the mod operator stands for the remainder of an integer division operation.
The entire VQ algorithm is described in the logical code of Algorithm 6. The
VQ iterations make passes (i.e. cycles) over the data set until a stopping criterion
is met. The comparison with the theoretical description, where the data set is
supposed to be infinite and consequently where there is no cycle, has been studied
by Bermejo and Cabestany in [30].

As pointed out by Bottou and Bengio in [32], the VQ algorithm defined by the
iterations (6.2) can also be viewed as the online version of the widespread Batch
K-Means presented in Chapter 5 (which is also referred as Lloyd’s method in [83]
for the definition). The VQ algorithm is also known as the Competitive Learning
Vector Quantization (especially in the data analysis community), the Kohonen
Self Organizing Map algorithm with 0 neighbor (see for instance Kohonen in
[76]) or the online K-Means procedure (see MacQueen in [86] and Bottou and
Bengio in [32]) in various fields related to statistics.

As already explained in the introduction, it is well known that the VQ algorithm
belongs to the class of stochastic gradient descent algorithms. However, the
almost sure convergence of the VQ algorithm cannot be obtained by general tools
of gradient descent such as the Robbins-Monro method for instance (see Patra
in [95]). Indeed, the main difficulty essentially arises from the lack of convexity
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and smoothness of the distortion. We refer the reader to Pagès in [94] for a proof
of the almost sure convergence of the VQ procedure.

Algorithm 6 Sequential VQ algorithm
Select κ initial prototypes (wk)

κ
k=1

Set t=0
repeat

for k = 1 to κ do
compute ||z{t+1 mod n} − wk||22

end for
Deduce H(z{t+1 mod n}, w)
Set w(t+ 1) = w(t)− εt+1H

(

z{t+1 mod n}, w(t)
)

increment t
until the stopping criterion is met

6.3 Synthetic functional data

The various parallelization schemes investigated in this chapter have been tested
using simple programs simulating a distributed architecture, and synthetic vec-
tor data 2. Contrary to Batch K-Means, the parallelization schemes of the VQ
algorithm and the sequential VQ implementation do not provide the very same
results. As a consequence, the actual data values have an influence on the al-
gorithm duration and performance; contrary to Batch K-Means, we will need
to evaluate each parallelization scheme both on a speedup criterion and on an
accuracy criterion (using the empirical distortion defined by equation (6.1) above).
The use of synthetic data serves three purposes: firstly, through this synthetic
generation, the data set size can be tuned to resize our clustering problem so that
it embodies a challenging problem as far as computations and communications
are concerned. Secondly, for a given data set size, we can tune the “clustering
difficulty” by modifying the complexity of our data, i.e. by modifying the actual
data set dimensionality (tuned by G in the following). Finally, the ability to
re-generate any part of the data set on any processing unit without downloading it
from a storage is of great help when evaluating any quantization results on the
cloud as it removes a lot of communication and therefore eases the evaluation
process architecture.

2. Source code is available at the address http://code.google.com/p/clouddalvq/
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Many real-world applications produce high dimensional data. In numerous sit-
uations, such data can be considered as sampled functions. This is the case
in the popular context of time series, meteorological data, spectrometric data
etc. We therefore have chosen to resort to B-splines to analyze our clustering
algorithm implementations. In the present section we explain the construction
of the B-splines mixtures random generators used in our experiments. Note that
the recent researches by Abraham et al. in [21] and Rossi et al. in [101] focus on
clustering algorithms for B-splines functional data.

6.3.1 B-spline functions

The B-spline functions have been thoroughly studied for many decades. They
have been analyzed both for their surprising mathematical properties and their
ability to create nice shapes. Consequently they are frequently used in industries
related to design such as automotive industry, architecture, graphics editor soft-
ware, etc. In this subsection we only provide a computational definition. For
more information on B-splines history and mathematical properties, we refer the
reader to de Boor in [46].

The term “B-spline” —an abbreviation of basis spline—, is ambiguous as its
meaning varies depending on the context: in some situations, a B-spline refers
to one of the bi,n(.) functions defined below. In other situations, a B-spline
refers to a linear combination of the bi,n(.) functions. In the following, the bi,n(.)
functions are referred to as basic B-splines, and a B-spline is defined as a linear
combination of these basic B-splines.

The family of basic B-spline functions of degree n with χ knots x0 ≤ x1 ≤ . . . ≤
xχ−1 is composed of χ− n− 1 piecewise polynomial functions. The symbols n
and χ denote both integers satisfying χ ≥ n+ 2. They can be defined recursively
by the Cox-de Boor formula below (see for instance de Boor in [45]). For all
x ∈ [x0, xχ−1],

bi,0(x) =

{

1 if xi ≤ x < xi+1

0 otherwise
, i = 0, . . . , χ− 2,

and

bi,n(x) =
x− xi

xi+n − xi

bi,n−1(x)+
xi+n+1 − x

xi+n+1 − xi+1

bi+1,n−1(x), i = 0, . . . , χ−n−2.

Figure 6.1 is a plot of six cubic basic B-splines where χ = 10 and n = 3.
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Figure 6.1: Plots of the six basic cubic B-spline functions with ten uniform knots:
x0 = 0, . . . , x9 = 9 (n = 3, χ = 10).

As mentioned earlier, a B-spline is a vector of the linear span of the basic B-
splines. Thus, a B-spline takes the form, for any x ∈ [x0, xχ−1],

b(x) =

χ−n−2
∑

i=0

pibi(x), (6.3)

where {pi}χ−n−2
i=0 ∈ R

χ−n−1 are referred to as the control points or de Boor points.
Figure 6.2 shows a cubic (i.e., n = 3) B-spline. The graph illustrates the natural
smoothness of such functions. In the sequel, we consider only cubic B-splines
and uniform knots: x0 = 0, . . . , xχ−1 = χ− 1 with χ ≥ 6.

6.3.2 B-splines mixtures random generators

Let us now describe the random generators used throughout the experiments
described in Chapters 6 and 7. Each of these vector-valued generators is based
on G (G ≥ 1) B-spline functions which, from now on, will be referred to as
the centers of the mixture. We also want these centers “not to be too close to
each other”. To do so, we have chosen our centers with (nearly) orthogonal
coefficients pi’s appearing in equation (6.3). In the next paragraph, we explain
the construction of such coefficients.

For g = 0, . . . , G − 1 and i = 0, . . . , χ − 5, let the ug,i’s be reals, drawn inde-
pendently from the standard uniform distribution on the open interval (0, 1). The
vectors {{pg,i}χ−5

i=0 }G−1
g=0 are defined as block-wise orthogonal vectors computed
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Figure 6.2: Plot of a cubic B-spline, a linear combination of the basic B-splines
plotted in Figure 6.1

by applying a revised Gram-Schmidt procedure on the G vectors {ug,i}χ−5
i=0 (see

for instance Greub in [61]). Let us keep in mind that the Gram-Schmidt algorithm
is well defined if the number of vectors, here G, is lower than or equal to the di-
mension of the vector space which is equal to χ−4. In all our experiment settings,
we will have G > χ−4. Therefore, we divide our G vectors {{ug,i}χ−4

i=0 }G−1
g=0 into

subgroups of χ− 4 vectors. To each group, we apply a block-wise Gram-Schmidt
procedure. All the G vectors thus obtained are then normalized to a common
value sc > 0 and are then referred to the G vectors {{pg,i}χ−5

i=0 }G−1
g=0 .

For any g ∈ {1, . . . , G − 1}, let Bg be the B-spline defined by equation (6.3)
with the control points {pg,i}χ−5

i=0 chosen as explained in the paragraph above. Let
us not forget that in our context, the data cannot be functions but only sampled
functions. Consequently, the centers of the distribution are the functions Bg’s,
only observed through the d-dimensional vector (d ≥ 1) Bg, where

Bg = {Bg (i(χ− 1)/d)}d−1
i=0 .

The vectors B0, . . . , BG−1 define the centers of the R
d-valued law of probability

defined below. As shown in Figure 6.3, the orthogonal property of the coefficients
makes them “not too close to each other”, as requested.

We are in a position to define the distribution simulated by our Rd-valued ran-
dom generator. Let N be a uniform random variable over the set of integers
{0, . . . , G − 1} and ε a R

d-valued Gaussian random variable with 0 mean and
σ2Id for covariance matrix, where σ > 0 and Id stands for the d × d identity
matrix. Our random generators simulate the law of the d-dimensional random
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Figure 6.3: Plot of four splines centers with orthogonal coefficients: B1, . . . , B4

where G = 1500, d = 1500, χ = 50, sc = 10.

variable Z, defined by
Z = BN + ε. (6.4)

Figure 6.4 shows two independent realizations of the random variable Z defined
by equation (6.4), the sampled functional data used in our experiments.

Figure 6.4: Plot of two independent realizations of the random variable Z defined
by equation (6.4): B1, . . . , B4 where G = 1500, d = 1500, χ = 50, sc = 10.

6.4 Discussing parallelization schemes of the VQ
algorithm

This section is devoted to the analysis of some practical parallelization schemes
for the DVQ algorithm. Indeed, the practical parallelization of the VQ procedure
is not straightforward. For example, let us remark that, if two different prototypes
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versions w1 and w2 have been computed by two concurrent VQ executions, there
is no guarantee that the quantization scheme provided by the convex combination
αw1 + (1− α)w2 (α ∈ (0, 1)) has good performance regarding the non-convex
empirical distortion criterion. Therefore, careful attention should be paid to the
parallelization scheme of any attempt of DVQ implementation.

Following the notation of Subsection 5.3.1, we suppose that we own a (poten-
tially) large data set split among the local memory of M computing units. This
split data set is represented by the sequences Si = {zit}nt=1, i ∈ {1, . . . ,M}, the
global data set being composed of N = nM vectors. In addition to its part of the
split data set Si, the processing unit i owns a specific version of the prototypes
wi.

From the M prototypes versions wi, i ∈ {1, . . . ,M}, a shared version wsrd of
the prototypes is built, following a merging logic which varies over the different
parallelization schemes described below. This shared version corresponds to
the result that the algorithm would return to the user if it was asked to. It is
strongly related to the “consensus version” described for example in [95]. The
shared version is the prototypes version used to evaluate the actual accuracy of
our various implementations. More specifically, we use a normalized empirical
distortion to evaluate the vector wsrd. This empirical distortion is defined for all
w ∈

(

R
d
)κ

by

Cn,M(w) =
1

nM

M
∑

i=1

n
∑

t=1

min
ℓ=1,...,κ

∥

∥zit − wℓ

∥

∥

2
. (6.5)

We have already highlighted in Chapter 5 the importance for distributed Batch
K-Means of making sure that the machines RAM are heavily loaded. In the same
manner, the RAM of each processing unit is heavily loaded in our distributed VQ
experiments. As a consequence, the number of points in the total data set (nM )
is made dependant of the number of computing unit M . Strictly speaking, the
values of Cn,M(w) obtained for different values of M and fixed values of n and
w are therefore not equal. Yet, they are all very close to the generalization error
and can be compared without trouble.

All the following parallelization schemes are evaluated with a simulated dis-
tributed architecture (actually performed sequentially on a single-core CPU). All
the experiments in this section are carried out with the following parameters:
n = 1000, d = 100, κ = 100 and with the synthetic data sampled by the random
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generators introduced above. The generators are tuned with the following settings:
G = 150, χ = 100, sc = 100 and σ = 5.0. As it is detailed in Subsection 7.2.2,
the evaluation of a prototypes version is often as long as the entire quantization
algorithm. As a consequence, reporting the evolution of the quantization error
over time or over the iterations is much more costly than running the algorithm (as
for a given VQ execution, the evaluation of the quantization error is run multiple
times to plot its evolution). The chosen settings reflect this fact and are kept small
to lower the evaluation time performed on our single-core CPU. Our evaluation
settings are modified in Chapter 7 to induce much larger computational chal-
lenges, as we will leverage on hundreds of processing units for the quantization
algorithms and for the evaluation of these algorithms.

In order to bring substantial speedup, three schemes for VQ parallelization are
proposed below. We start by the investigation of the most natural paralleliza-
tion scheme, where the versions resulting of the distributed VQ executions are
averaged on a regular basis. This updating rule is used for example in [106],
[95] or [49] 3. We have tracked the evolution of the empirical distortion with
the iterations. This evolution shows that no speedup can be brought using this
scheme. Thus, a new model is proposed to overcome this unsatisfactory situation.
The main idea beneath this new scheme is the following one: the agreement
between the computing units is not performed using an average anymore, but it
uses instead the cumulated sum of the so-called “displacement terms”. Finally,
the last model to be considered is an improvement of the second model, where
delays are introduced to prepare the analysis of asynchronism used in Chapter 7.

6.4.1 A first parallel implementation

Our investigation therefore starts with the following simple parallelization scheme
of the VQ technique. All the versions are set equal at time t = 0, w1(0) = . . . =
wM(0). For all i ∈ {1, . . . ,M} and all t ≥ 0, we have the following iterations:























wi
temp = wi(t)− εt+1H

(

zi{t+1 mod n}, w
i(t)

)

wi(t+ 1) = wi
temp if t mod τ 6= 0 or t = 0,

{

wsrd = 1
M

∑M
j=1 w

j
temp

wi(t+ 1) = wsrd
if t mod τ = 0 and t ≥ τ.

(6.6)

3. In [49], the gradients are averaged but the prototypes versions. However, this strategy
results in the very same prototypes version update rule
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This algorithm is composed of two phases. The processing phase is given by the
first equation of (6.6). It corresponds to a local execution of the VQ procedure.
The result of these computations is referenced by the variables wi

temp. The averag-
ing phase, defined by the braced inner equations, describes the merging strategy
chosen for this parallelization scheme. Note that the averaging phase is executed
only whenever τ points have been processed by each concurrent processor. The
larger the integer τ is, the more independent the concurrent processors are left
for their execution. During the averaging phase a common shared version wsrd

is computed as the average of all the wi, i ∈ {1, . . . ,M} . Once wsrd has been
computed, all the local versions, namely the wi, are set equal to wsrd. If the
averaging phase does not occur, then the local versions are naturally set equal to
the result of the local computations. See Figure 6.5 for a graphical illustration of
the iterations (6.6).
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Figure 6.5: Illustration of the parallelization scheme of VQ procedures described
by equations (6.6). The prototypes versions are synchronized every τ points.

This parallelization scheme fits the theoretical Distributed Asynchronous Learn-
ing Vector Quantization (DALVQ) model presented by Patra in [95]. In particular,
the iterations (6.6) define a DALVQ procedure without asynchronism and for
which the averaging phases are performed on a regular basis. A straightforward
examination shows that both sets of assumptions (AsY1) and (AsY2) presented
in [95] are satisfied. As a consequence, asymptotic consensus and convergence
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towards critical points are guaranteed.

The results are gathered with different values of τ (τ ∈ {1, 10, 100}) in the
charts displayed in Figure 6.6. For each chart, we plot the performance curves
when the distributed architecture has a different number of computing instances:
M ∈ {1, 2, 10}. The curve of reference is the sequential execution of the VQ,
that is M = 1. We can notice that for every value of τ ∈ {1, 10, 100}, multiple
resources do not bring speedup for convergence. Even if more data are processed,
there is no increase in the convergence speed. To conclude, no gain in terms of
wall time can be brought using this parallel scheme. In the next subsection we
investigate the cause of these non-satisfactory results and propose a solution to
overcome this problem.

6.4.2 Towards a better parallelization scheme

Let us start the investigation of the parallel scheme given by iterations (6.6)
by rewriting the sequential VQ iterations (6.2) using the notation introduced in
Section 6.1. For t ≥ τ it holds

w(t+ 1) = w(t− τ + 1)−
t

∑

t′=t−τ+1

εt′+1H
(

z{t′+1 mod n}, w(t
′)
)

. (6.7)

For iterations (6.6), consider a time slot t ≥ 0 where an averaging phase occurs,
that is, t mod τ = 0 and t > 0. Then, for all i ∈ {1, . . . ,M},

wi(t+ 1) = wi(t− τ + 1)−
t

∑

t′=t−τ+1

εt′+1

(

1

M

M
∑

j=1

H
(

zjt′+1, w
j(t′)

)

)

. (6.8)

To the empirical distortion defined by equation (6.5) is associated its theoretical
counterpart the distortion function C (see for example [98] or [31]). In the
first situation of iterations (6.7), for a sample z and t′ > 0, H(z, w(t′)) is an
observation and an estimator of the gradient ∇C(w(t′)) (see e.g. [95]). In the
second situation of iterations (6.8), let us assume that the multiple versions are
close to each other. This means that wj(t′) ≈ wi(t′), for all (i, j) ∈ {1, . . . ,M}2.
Thus, the average

1

M

M
∑

j=1

H
(

zj{t′+1 mod n}, w
j(t′)

)

can also be viewed as an estimation of the gradient ∇C(wi(t′)), where i ∈
{1, . . . ,M}.
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Figure 6.6: Charts of performance curves for iterations (6.6) with different
numbers of computing entities: M = 1, 2, 10. The three charts correspond to
different values of τ which is the integer that characterizes the frequency of the
averaging phase (τ = 1, 10, 100).
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In both situations, the descent terms following the step εt′+1 in equations (6.7)
and (6.8) are estimators of gradients. Consequently, the two algorithms can be
thought of as stochastic gradient descent procedures with different estimators.
However, they are driven by the same learning rate which is given by the sequence
of steps {εt}∞t=1. The convergence speed of a non-fixed step gradient descent
procedure is essentially driven by the decreasing speed of the sequence of steps
(see for instance Kushner et al. in [77] or Benveniste et al. in [29]). The choice
of this sequence is subject to an exploration/convergence trade-off. In the case of
the sequential VQ iterations (6.2) the time slot t and the current count of samples
processed are equal. Therefore, for the same time slot t, the distributed scheme
of iterations (6.6) has visited much more data than the sequential VQ algorithm
to build its descent terms. Yet, since the two algorithms share the same learning
rate, they are expected to get comparable convergence speeds, which is confirmed
by the charts in Figure 6.6.

We now introduce for all j ∈ {1, . . . ,M} and t2 ≥ t1 ≥ 0 the term ∆j
t1→t2

—referred to in the following as the “displacement term”— which corresponds to
the variation of the prototypes computed by processor j during the time interval
(t1, t2),

∆j
t1→t2 =

t2
∑

t′=t1+1

εt′+1H
(

zj{t′+1 mod n}, w
j(t′)

)

.

Using the notation above, the parallel scheme given by iterations (6.6) writes, for
all t > 0 where t mod τ = 0 and all i ∈ {1, . . . ,M},

wi(t+ 1) = wi(t− τ + 1)− 1

M

M
∑

j=1

∆j
t−τ→t. (6.9)

In the previous paragraphs we have explained that the sequential VQ and the
distributed scheme above share the same convergence speed with respect to the
iterations t ≥ 0. Therefore, if one considers the evolution of the learning rate
with respect to the number of samples processed, then the distributed scheme
has a much lower learning rate, thereby favoring exploration to the detriment of
convergence. As explained in the introduction to the chapter, we assume that
the learning rate provided by the sequence {εt}∞t=1 is supposed to be satisfactory
for the sequential VQ. In this work, we seek for a parallel scheme that has, in
comparison to a sequential VQ, the same learning rate evolution in terms of
processed samples and whose convergence speed with respect to iterations is
accelerated. Notice that these iterations correspond to the true wall time measured
by an exterior observer. With this aim in view, we propose the new system of



134
CHAPTER 6. PRACTICAL IMPLEMENTATIONS OF DISTRIBUTED

ASYNCHRONOUS VECTOR QUANTIZATION ALGORITHMS

equations (6.10).

At time t = 0 all versions are equal, w1(0) = . . . = wM(0) = wsrd. For all
i ∈ {1, . . . ,M} and all t ≥ 0, the new parallel scheme is given by






















wi
temp = wi(t)− εt+1H

(

zi{t+1 mod n}, w
i(t)

)

wi(t+ 1) = wi
temp if t mod τ 6= 0 or t = 0,

{

wsrd = wsrd −∑M
j=1 ∆

j
t−τ→t

wi(t+ 1) = wsrd
if t mod τ = 0 and t ≥ τ.

(6.10)

��������	�
����	�

Figure 6.7: Illustration of the parallelization scheme of VQ procedures described
by equations (6.10).

Roughly speaking, these iterations add up the displacement terms ∆j
.→. rather than

use the average as shown in equation (6.9). The computation of wsrd described
in equations (6.10) is now called “reducing phase” instead of “averaging phase”.
It can be easily implemented, but at the price of keeping supplementary infor-
mation in the local memory of the computing units. More precisely, iterations
(6.10) require to have, for processor j at any time t ≥ 0, the displacement term
from ⌊t/τ⌋τ + 1 (last reducing phase) to the current time t. With the notation
above, this displacement term writes ∆j

⌊t/τ⌋τ→t. Figure 6.7 provides a synthetic
representation of these iterations.

Contrary to the previous parallelization scheme, the iterations defined in equation
(6.10) do not fit into the theoretical Distributed Asynchronous Learning Vector
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Quantization (DALVQ) model presented by Patra in [95]. To our knowledge, no
theoretical results provide such iterations with the convergence towards critical
points. However, the results of the simulations in the charts displayed in Figure
6.8 show effective convergence and that substantial speedups are obtained with
more distributed resources. The acceleration is greater when the reducing phase
is frequent. Indeed, if τ is large then more autonomy has been granted to the
concurrent executions and they could be attracted to different regions that would
slow down consensus and convergence.

6.4.3 A parallelization scheme with communication delays.

In the previous subsections we have focused on the speedup that can be brought
by parallel computing resources. However, the previous parallelization schemes
did not deal with the computation of shared versions. In our context, no efficient
shared-memory is available. The shared version will be visible for other proces-
sors only through network connections. The resulting communication costs need
to be taken into account in our model. With this aim in view, we introduce delays.

The effect of delays for parallel stochastic gradient descent has already been stud-
ied for instance by Langford et al. in [118] or by Dekel et al. in [49]. However,
these authors consider only the case where the computing architecture is endowed
with an efficient shared memory. In this context, as outlined in [118], computing
the gradient is much more time-consuming than computing the update (which
includes communication latencies). On the contrary, in the Cloud Computing
environment, the gradient computation in a single point is much faster than the
actual update, because of the communications. In this subsection, we improve
the model of iterations (6.10) with non negligible communication costs, resulting
in the following more realistic iterations (6.11).

For each time t ≥ 0, let τ i(t) be the latest time before t when the unit i finished
to send its updates and received the shared version. At time t = 0 we have
w1(0) = . . . = wM(0) = wsrd, and for all i ∈ {1, . . . ,M} and all t ≥ 0,























wi
temp = wi(t)− εt+1H

(

zi{t+1 mod n}, w
i(t)

)

wi(t+ 1) = wi
temp if t mod τ 6= 0 or t = 0,

{

wsrd = wsrd −∑M
j=1 ∆

j
t−2τ→t−τ if t mod τ = 0 and t ≥ 2τ,

wi(t+ 1) = wsrd −∆i
t−τ→t if t mod τ = 0 and t ≥ τ.

(6.11)
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Figure 6.8: Charts of performance curves for iterations (6.10) with different
numbers of computing entities, M = 1, 2, 10. The three charts correspond to
different values of τ (τ = 1, 10, 100).
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The main difference with iterations (6.10) is the introduction of stale information:
a dedicated process permanently modifies the shared version with the latest up-
dates received from the processing units. This shared version is made available
for every processing unit as a kind of consensus that emerges from the aggre-
gation of the prototypes versions. Because of the communication delays now
modeled, each processing unit can access to all the information of its own VQ
procedure, but can only access stale gradient results from the other processing
units through the shared version. This model easily extends to asynchronous
schemes, as the aggregation process does not require the displacement terms
from all of the processing units to proceed and can provide a partially updated
shared version. This model is therefore close to the cloud asynchronous version
developed in Chapter 7. Figure 6.9 gives a synthetic view of the iterations (6.11).

The performance curves resulting from the simulations of this distributed scheme
are displayed in Figure 6.10. Remark that in our experiments small delays (τ = 1
or 10) do not have any severe impact, since the results are similar to the non-
delayed model reported in Figure 6.8. However, large delays τ = 100 can have a
significant impact and prevent the distributed scheme from bringing speedup to
convergence with more computing resources.

�����

Figure 6.9: Illustration of the parallelization scheme described by equations
(6.11). The reducing phase is only drawn for processor 1 where t = 2τ and
processor 4 where t = 4τ .
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Figure 6.10: Charts of performance curves for iterations (6.11) with different
numbers of computing entities, M = 1, 2, 10. The three charts correspond to
different values of τ (τ = 1, 10, 100).
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6.4.4 Comments

The results presented in this chapter are rather insensitive to the experiment set-
tings that we have chosen. In particular, the main conclusion is that averaging the
results of multiple prototypes versions has not led to any speedup in our context
—probably because of the non-convexity of our empirical distortion— but that the
alternative parallelization scheme introduced in Subsection 6.4.2 provides such
a speedup. This conclusion has proved to be verified in numerous experiment
settings on which we have not reported. More specifically, this conclusion is true
for multiple choices of the decreasing learning rate (εt)t>0 , for multiple choices
of G, d, χ, κ, sc. In the same way, the introduction of small randomness and
asynchronism between the communication windows in model (6.11) does not
affect the conclusion.

Conversely, the choice of τ is of prime importance. While in the first two par-
allelization schemes, this value shows little impact on the speedup achieved, it
becomes a decisive factor in the scheme presented by equations (6.11). Indeed,
the use of stale information (or information with delays) leads to less effective
schemes: such a conclusion has already been stated, for example in [28] or in
[49]. More specifically, the degree of delay that is endurable without suffering
noticeable performance loss must be set with regards to both the time to compute
a gradient on a single point and the number of points to be processed for the
scheme to approach convergence. As an example, the delays that will be observed
in the following chapter are much higher than τ = 100 but are compensated with
much larger computation requirements before convergence.





Chapter 7

A cloud implementation of
distributed asynchronous vector
quantization algorithms

7.1 Introduction

The problem of the choice between synchronism or asynchronism has already
been presented in Subsection 4.4.3 as an expression of the natural tradeoff be-
tween simplicity and efficiency (because of the stragglers mitigation). Resorting
to asynchronism for cloud machine-learning algorithms therefore seems to be an
important mechanism to improve the overall algorithms efficiency when tasks are
coarse-grained. In the context of Cloud Computing platforms, the communica-
tion costs prompt us to design coarse-grained tasks, and therefore to investigate
whether the asynchronism may be appropriate.

Beyond the stragglers mitigation, choosing asynchronism seems to improve the
efficiency of some algorithms as this strategy allows the full usage of all the
resources which are available. One can easily notice that distributed algorithms
benefit from bandwidth throughput improvement, CPU cores load increase or
apparent latency reductions. As a result, asynchronism may improve the usage
ratio of all the available hardware components and as a consequence the algorithm
behaviors by allowing overlaps of communication and computation.

The interest of asynchronism in scientific computations has already been inves-
tigated on multiple platforms: asynchronous algorithms have been analyzed on
GPU hardware (see e.g. [42]), on heterogeneous clusters (see e.g. [27]) or on
a multi-cores machine (see e.g. [71]). Many results on the theoretical conver-
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gence of asynchronous stochastic gradient optimization algorithms have also been
proved, especially by Tsitsiklis (see e.g. [106]) or more recently by Patra in [95].
To our knowledge, we provide in this chapter the first experimental results of
asynchronous gradient-descent algorithms implemented on a Cloud Computing
platform.

Two main difficulties arise from distributed asynchronous clustering algorithms.
The first one is intrinsic to asynchronous algorithms, and mainly comes from the
randomness thus introduced: a distributed asynchronous algorithm is not only
producing different results from its sequential counterpart, but its returned result
is also non-determinist, making the experiments hardly reproducible, contrary to
Batch K-Means as outlined for example in [53]. In addition to this first difficulty,
a specific challenge of our clustering problem consists in the non-convexity of our
loss function (see equation (6.1)). This non-convexity leads to an additional diffi-
culty: the natural update mechanism, suggested for example by [106] or [95] and
tested in the fist parallelization scheme of Chapter 6 does not provide any speedup.

The algorithm used in this chapter therefore relies on an asynchronous version of
the latter parallelization schemes of online gradient descent developed in Chapter
6. The adoption of an online paradigm allows the introduction of asynchronism.
In addition, online gradient descent algorithms are deemed to provide faster
rates of convergence than their batch counterparts (see e.g. [114]). This a-priori

is confirmed at the end of this chapter: for the clustering context described in
Section 7.4, our distributed asynchronous Vector Quantization (DAVQ) algorithm
significantly outperforms Batch K-Means.

This good performance must however be assessed in terms of the development
cost of our DAVQ prototype: as presented in the introduction to this document,
the DAVQ project 1 is a shared project with Benoit Patra. While we were already
familiar with the Azure application development, the development of this project
took us months; moreover, while the distributed Batch K-Means experiments have
required hardly more than 10,000 hours of CPU, the DAVQ project experiments
took us more than 110,000 hours. In addition to this very costly development, the
DAVQ algorithm proved to be bound in speedup: beyond a certain limit defined
by the clustering context, an excess of workers led to unstable results (see the
case M = 16 in Figure 7.4 or the case M = 64 in Figure 7.5).

Let us now briefly describe our DAVQ prototype. Like our distributed Batch
K-Means algorithm, it is built on top of Azure. As already explained, our cloud

1. http://code.google.com/p/clouddalvq/
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DAVQ implementation makes a great use of the results obtained in Chapter 6
where parallel implementations of DAVQ have been tested and discussed in
general (i.e. independently of the distributed architecture). More particularly,
the update mechanism based on the communication of the displacement terms is
implemented. The DVQ models presented in Chapter 6 introduced non negligible
delays that will picture essential aspects of the communication on the Cloud
Computing platforms. Our DAVQ prototype is an open-source project released
under the new BSD license and written in C#/.NET. The project is also built using
the open-source project Lokad.Cloud 2 which provides an O/C (Object to Cloud)
mapper and an execution framework that abstracts away low level technicalities
of Windows Azure.

This chapter is organized as follows. Section 7.2 focuses on the software archi-
tecture of our DAVQ algorithm and many connections are drawn with Chapter 6.
The study of the scalability of the DAVQ technique is presented in Section 7.3.
The experiments are similar in spirit to those made in Section 6.4. More precisely,
we investigate the scalable gain of time execution brought by DAVQ algorithms
compared to a single execution of the VQ method. Finally, Section 7.4 is a bench-
mark between our DAVQ implementation and the distributed implementation of
Batch K-Means developed in Chapter 5.

7.2 The implementation of cloud DAVQ algorithm

7.2.1 Design of the algorithm

The cloud implementation of our DAVQ algorithm is similar to the cloud im-
plementation of Batch K-Means depicted in Chapter 5. In particular, it is based
on two main QueueServices: the ProcessService and the ReduceService. These
services are close to the MapService and ReduceService described in Chapter
5, but the MapService has been renamed ProcessService to highlight that this
new design does not fit in an iterative MapReduce perspective anymore. The
two services are based on the main idea introduced in Chapter 6 and according
to which the averaging of concurrent local versions wj’s does not provide the
convergence with any speedup. A better approach consists in computing the sum
of all the displacement terms as shown in Subsection 6.4.2.

The core logic of our DAVQ implementation is embedded in the implementation
of the ProcessService. Similarly to the cloud Batch K-Means implementation, we
have multiple role instances running the ProcessService in parallel —referred to as

2. http://lokad.github.com/lokad-cloud/
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M instances following the terminology used in Chapters 5 and 6— each instance
performing a VQ execution. In parallel, the displacement terms introduced in
Subsection 6.4.2, namely the ∆j

.→.’s, are sent to the BlobStorage. The ReduceSer-
vice is hosted by a dedicated worker (a single instance for now). Its task consists
in retrieving the multiple displacement terms and computing the shared version
of the prototypes, wsrd. This shared version is the common reference version
retrieved by the multiple instances of the ProcessService which use it to update
their local version. Figure 7.2 provides a synthetic overview of the “reducing task”
assigned to the ReduceService, while Figure 7.1 gives a representation of the
communication of the ProcessService instances and the ReduceService instance
through the BlobStorage. The implementation of the ProcessService is more
complicated than that of the ReduceService and is discussed in the next paragraph.

�����������	��


	���������

�����������	��


	���������

�����������	��


	���������

����������	��

�������

����������

Figure 7.1: Overview of the interaction between ProcessService instances and
the instance of ReduceService. All the communications are made through the
BlobStorage: ReduceService gets the blobs put by the ProcessService instances
while they retrieve the computation of the ReduceService.

The ProcessService is designed to benefit from the suppression of the synchro-
nization process. As explained in the introduction to this chapter, in addition to
the mitigation of stragglers which is an inter-machine mechanism, asynchronism
allows us to adopt an intra-machine optimization: the overlap of communication
and computation inside each processing unit. Indeed, each worker running a
process task will compute local VQ iterations while it downloads the latest shared
version from the BlobStorage and uploads a displacement term. The design of
the communication and computation overlap of our ProcessService addresses
two difficulties we have encountered. The first difficulty is related to a problem
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Figure 7.2: Overview of the ReduceService instance processing the “reducing
task”. This QueueService builds the shared version by computing the sum of
all the available displacement terms sent by the ProcessService instances in the
BlobStorage.

of compatibility between our prototype, the .NET framework, Azure and the
Lokad.Cloud framework. During the first months of the development of our pro-
totype, the Lokad.Cloud framework was built on top of the .NET framework 3.5;
because of compatibility issues, we were not able to resort to the asynchronous
I/O primitives of the .NET framework 4.0.

The second difficulty we encountered was related to the thread-handling mecha-
nism of Azure. To our surprise, we noticed after many attempts that we could not
manage to obtain both satisfactory I/O bandwidth and satisfactory Flops with an
automatic thread management. In many cases, the Flops obtained were close to
the Flops obtained without handling parallel communications but the I/O band-
width was 10 times lower than if we had only been performing an I/O operation.
The exact reason of this disappointing result has not been clearly isolated but
probably comes from an unsatisfactory behavior of the thread scheduler inside a
VM. The solution to circumvent this difficulty is presented below. The following
paragraph describes how each process task is organized in multiple threads run in
parallel.

The ProcessService performs simultaneously three functions using the following
threads: a process thread, a push thread, and a pull thread. The process thread is
a CPU-intensive thread while the push thread and the pull thread are dedicated to
the communications with the BlobStorage. Let us lay the emphasis on the fact
that this parallelization is made inside the VM, at CPU level. The multi-threaded
execution of the ProcessService (in its latest version) is based upon the Task
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Parallel Library provided in the .NET framework 4.0 (see for instance Freeman
[54]). More precisely, the pull thread is responsible for providing the latest shared
version to the process thread. The pull thread uses the BlobStorage’s times-
tamps (etags) to detect new shared versions sent by the ReduceService and made
available. The pull thread and the process thread are communicating through a
classical producer/consumer design pattern, implemented through a read buffer
built upon the .NET 4.0 BlockingCollection class which is of great help to the
read buffer to manage concurrency issues. The push thread is responsible for
pushing to distant blobs the displacement term updates computed by the process
thread. The interaction of the push thread and the process thread also uses a
Producer/Consumer design pattern with a communication buffer (referred to in
the following as write buffer). However, in this context, the process thread is the
producer and the push thread is the consumer.

As described above, the automatic scheduling of these three threads led to poor
I/O bandwidth that severely deteriorated the communication behavior and there-
fore the consensus agreement between the multiple processing unit running the
ProcessService. To avoid this, we forced the process thread to sleep during very
short period so that it could return control to the thread scheduler thus allowing
the two I/O threads to gain more CPU time. This method required a fine tuning
of the sleep parameters that depends both on the time to communicate a displace-
ment term and on the time to compute a single gradient estimation. We did not
manage to find a cleaner method to regulate the threads balance.

The blobs pushed by the push thread are then consumed by the ReduceService:
this QueueService is notified by messages in its queue that new displacement
terms can be used for the shared version updates. Figure 7.3 illustrates the multi-
threaded logic of the ProcessService.

7.2.2 Design of the evaluation process

In the experiments depicted in Section 7.3 and Section 7.4, the performance of
clustering algorithms could have been measured during their executions. However,
the algorithms should not be slowed down by their performance measurements.
Consequently, our DAVQ algorithm uses the fact that the BlobStorage has been
designed to cope with multiple reading actions. A new QueueService is im-
plemented: the SnapshotService and a dedicated worker is deployed to host it.
The SnapshotService keeps making deep copies of the shared version blob —the
snapshots— and stores them in other persistent blobs. Let us keep in mind that the
blob containing the shared version is constantly modified by the ReduceService.
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Figure 7.3: Overview of the ProcessService. Each triangle stands for a specific
thread (process thread, push thread and pull thread). The arrows describe read-
/write actions: the tail of a blue dashed arrow is read by the entity at its head and
the entity at the tail of a red solid arrow makes update on the entity that lies at its
head. The push thread and the pull thread enable communications between the
process thread and the BlobStorage. The process thread alternatively performs
three actions (process action 1, 2, 3). Process action 1 replaces the local version
of the prototypes by the sum of the latest shared version (kept in the read buffer)
and a displacement term. Process action 2 uses data to execute VQ iterations and
updates both the local version and the displacement term. Process action 3 moves
the displacement term to a dedicated buffer (write buffer) and pushes its content
to the BlobStorage.

Therefore it is necessary to make copies to track back its evolution. Once the
multiple ProcessService instances stop processing VQ iterations, i.e. when the
stopping criterion is met, then the evaluation processus starts: all the computing
instance that previously ran the ProcessService or the ReduceService now run the
EvaluationService (another QueueService); for each snapshot, one of the com-
puting units compute the corresponding empirical distortion given by equation
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(6.1) (or its normalized version (6.5)). In order to perform the evaluations of the
snapshots the same synthetic data are generated again by using new instances
of random generators. Therefore, no data is broadcast through the network that
would have been a massive bottleneck for the evaluations of the algorithms. This
task is still highly CPU consuming: indeed, the evaluation of a single snapshot
requires delays that are comparable to a whole iteration of Batch K-Means or to
all the VQ iterations performed by a ProcessService instance. However, thanks to
the elasticity of the VM allocations, it can be completed within reasonable delays.

7.3 Scalability of our cloud DAVQ algorithm

7.3.1 Speedup with a 1-layer Reduce

In this subsection our objective is to prove that our DAVQ algorithm brings a
substantial speedup which corresponds to the gain of wall time execution brought
by more computing resources compared to a sequential execution. Consequently
the experiments presented in this subsection are similar to those provided in Chap-
ter 6. In the previous chapter, we proved that a careful attention should be paid
to the parallelization scheme, but without any specifications on the architecture.
We should bear in mind that the experiments presented in Chapter 6 simulated a
generic distributed architecture. In this subsection we present some experiments
made with our true cloud implementation.

The following settings will attempt to create a synthetic but realistic situation for
our algorithms. We load the local memory of the workers with data generated
using the splines mixtures random generators defined in Section 6.3. Using the
notation introduced in this section, each worker is endowed with n = 10000
vector data that are sampled spline functions with d = 1000. The benefit of
using synthetic data for our implementations has been discussed in Section 6.3.
The number of clusters is set to κ = 1000 while there are G = 1500 centers in
the mixture and the number of knots for each spline χ is set to 100. The model
made in Chapter 5 has shown that it is not possible to tune the relative amount
of time taken by a gradient computation compared to the amount of time taken
by prototypes communication. Indeed, both of them linearly depend on κ and d.
The chosen settings ensure that the complexity of the clustering job would lead to
approximately an hour execution on a sequential machine when using the same
learning rate as in the previous chapter: εt = 1√

t
for t > 0.

Similarly to Section 6.4, we investigate the speedup ability of our cloud DAVQ
algorithm. Let us keep in mind that the number of samples in the total data set
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equals to nM . Thus, this number is varying with M (the number of ProcessSer-
vice instances). Consequently, the evaluations are performed with the normalized
quantization criterion given by equation (6.5).

Figure 7.4 shows the normalized quantization curves for M = 1, 2, 4, 8, 16. We
can notice that our cloud DAVQ algorithm has a good scalability property for
M = 1, 2, 4, 8: the algorithm converges more rapidly because it has processed
much more points as shown at the end of the section. Therefore, in terms of wall
time, the DAVQ algorithm with M = 2, 4, 8 clearly outperforms the single exe-
cution of the VQ algorithm (M = 1). However we can remark the bad behavior
of our algorithm with M = 16. This behavior is explained in the subsequent
subsection and a solution to overcome the problem is presented and evaluated.

Figure 7.4: Normalized quantization curves with M = 1, 2, 4, 8, 16. Our cloud
DAVQ algorithm has good scalability properties up to M = 8 instances of the
ProcessService. Troubles appear with M = 16 because the ReduceService is
overloaded.

7.3.2 Speedup with a 2-layer Reduce

The performance curve with M = 16 of Figure 7.4, shows an unsatisfactory situ-
ation where the algorithm implementation does not provide better quantization
results than the sequential VQ algorithm. Actually, the troubles arise from the
fact that the ReduceService is overloaded 3. Indeed, too many ProcessService

3. The Lokad.Cloud framework provides a web application that provides monitoring tools,
including a rough profiling system and real time analysis of queues length, which helped us to
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instances communicate their results (the displacements terms) in parallel and fill
the queue associated to the ReduceService with new tasks resulting in a Reduce-
Service overload. Once again the elasticity of the cloud enables us to allocate
more resources and to create a better scheme by distributing the reducing tasks
workload on multiple workers. As we did for Batch K-Means, we now set an
intermediate layer in the reducing process by replacing the ReduceService by
two new QueueServices: the PartialReduceService and the FinalReduceService.
We deploy

√
M instances of PartialReduceService that will be responsible for

computing the sum of the displacement terms, but only for a certain fraction
of ProcessService instances: each PartialReduceService instance is gathering
the displacement terms of

√
M ProcessService instances in the same way as for

Batch K-Means. Then, the unique instance of FinalReduceService retrieves all
the intermediate sums of displacement terms made by the PartialReduceService
instances and computes the new shared version. Figure 7.6 is a synthetic represen-
tation of the new layers, which are introduced to remove the difficulty brought by
the overload of the initial ReduceService. In Figure 7.5 we plot the performance
curves with PartialReduceService instances. We can remark that a good speedup
is obtained up to M = 32 ProcessService workers. However, the algorithm does
not scale-up to M = 64.

Contrary to the phenomenon observed when using a single-layer Reduce, the
queues were not overloaded in the case M = 64. This unsatisfactory result high-
lights again the sensitivity of VQ algorithms to the learning rate {εt}t>0 and to
the first iterations: we have observed in some of these unsatisfactory experiments
that the aggregated displacement term was too strong when M was exceeding a
threshold value. Beyond this threshold, the aggregated displacement term leads
indeed to an actual shared version of the prototypes that oscillate around some
value, while moving away from it. These issues may be solved by adapting the
learning rate to the actual value of M for the first iterations, when M exceeds a
specific threshold.

7.3.3 Scalability

Let us recall that the scalability is the ability of the distributed algorithm to
process growing volumes of data gracefully. The experiments reported in Figure
7.7 investigate this processing ability with more accuracy, by counting the samples
that have been processed for the computation of the shared version. The graph
shows the results with one or two layers for the reducing task and with different

note that the ReduceService became overloaded when M = 16
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Figure 7.5: Normalized quantization curves with M = 8, 16, 32, 64 instances
of ProcessService and with an extra layer for the so called “reducing task”.
Our cloud DAVQ algorithm has good scalability properties for the quantization
performance up to M = 32. However, the algorithm behaves badly when the
number of computing instances is raised to M = 64.
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Figure 7.6: Overview of the reducing procedures with two layers:
the PartialReduceService and the FinalReduceService.

values of M , namely M = 1, 2, 4, 8 for the first case and M = 8, 16, 32, 64 for
the second one. The curves appear linear, which proves that the algorithms behave
well. The slopes of the multiple curves, characteristic of the processing ability
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of the algorithm, exhibit a good property: the slope is multiplied by 2 when
the number of processing instances M is multiplied by 2. This proves that the
algorithm has a good processing scalability as we had hoped for. This is confirmed
by Figure 7.8, showing a linear curve for the number of points processed in a
given time span (3600 seconds) using different computing instances M . We can
remark that the scalability in terms of data processed is still good up to M = 64
while the algorithm does not work well in terms of accuracy (i.e. quantization
level). Furthermore, the introduction of the second layer does not slow down the
execution even for intermediate values of M (M = 8) as proved by the charts
displayed in Figure 7.7.

7.4 Competition with Batch K-Means

The experiments provided in the previous section prove the benefit of using our
cloud DAVQ algorithm for large scale quantization jobs compared to the usual VQ
algorithm. However, such experiments do not prove that our cloud DAVQ algo-
rithm is a good clustering method in-itself. In this section we present a comparison
between our cloud DAVQ algorithm and distributed Batch K-Means, which is
a standard clustering method. More precisely, we compare our cloud DAVQ
algorithm with the Azure implementation of the distributed Batch K-Means de-
veloped in Chapter 5. While we do not aim to compare the performances of the
two algorithms in a general context (the difficult task of comparing the sequential
VQ algorithm with the sequential Batch K-Means algorithm has already been
vastly investigated, for example in [114] or in [53]), we provide in this section a
context in which cloud DAVQ seems to be a good clustering method as it clearly
outperforms Batch K-Means. We work with a fixed large synthetic data set and
our goal is to provide a summary with a reduced set of prototypes. The two
algorithms are compared with the evolution of the quantization error using in-
termediate values of the prototypes that are observed through the SnapshotService.

The number of mappers in the cloud Batch K-Means is the number of processing
units. Therefore it is natural to compare our cloud DAVQ and Batch K-Means
with the same data set and the same number of ProcessService instances and
mappers M . The local memory of a worker is loaded with n = 500, 000 vector
data whose dimension d is set to 100. The number of clusters is set to κ = 5, 000
while the number of centers in the mixture G equals 7, 500 and the number of
knots for each spline χ equals 100. We set the learning rate εt (see Section 6.2) to
a constant value ε = 10−2. In all our previous experiments, we had supposed that
a satisfactory value of the learning rate had already been chosen in the form of the
decreasing sequence εt =

1√
t

with t > 0 and compared the DVQ or DAVQ im-
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Figure 7.7: These charts plot the number of points processed as time goes by.
The top chart shows the curves associated to M = 1, 2, 4, 8 with one layer
for the reducing task whereas at the bottom a second layer is added and M =
8, 16, 32, 64.
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Figure 7.8: This chart plots the number of points processed in a given time
span (3600 seconds) for different values of M (M = 1, 2, 4, 8, 16, 32, 64). The
reducing task is composed of one layer for M = 1, 2, 4 and two layers for
M = 8, 16, 32, 64. We can observe a linear scalability in terms of point processed
by the system up to M = 64 computing instances.

plementations with the sequential VQ iterations. In this experiment, the constant
value of the learning rate ε = 10−2 is made comparable to the corresponding
learning rate of Batch K-Means when seen as a gradient descent algorithm (see
Bottou and Bengio in [32]). We have not made any optimization of the learning
rate, which is therefore probably not optimal.

Figure 7.9 shows the curves of the clustering performance for the two procedures
which are in competition. We report there on three experiments with various
sizes of data sets nM (M = 8, 16, 32). The quantization curve of the cloud Batch
K-Means corresponds to a step function. Indeed, the reference version used for
the Batch K-Means evaluations is the version built during the synchronization
phase and is modified only there. We can see that our cloud DAVQ algorithm
clearly outperforms the cloud Batch K-Means. In all cases (M = 8, 16, 32) the
VQ algorithm takes less time to reach a similar quantization level. Therefore,
this implementation seems to be a competitor to existing solutions for large scale
clustering jobs, thanks to its scalability and its mathematical performance.

The following tables reformulate the results provided in Figure 7.9. For each
value of M , we provide the amount of time spent by the DAVQ procedure to
obtain the same quantization loss levels than the ones obtained for the four first
iterations of Batch K-Means. One can notice that in these experiments, for a given
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Figure 7.9: These charts report on the competition between our cloud DAVQ
algorithm and the cloud Batch K-Means. The graphs show the empirical distortion
of the algorithm over the time. The empirical distortion is computed using the
shared version for our cloud DAVQ algorithm while it is computed during the
synchronization phase (all mappers receiving the same prototypes) for the cloud
Batch K-Means. In these experiments the cloud DAVQ algorithm outperforms the
cloud Batch K-Means: the same quantization level is obtained within a shorter
period.
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value of quantization, the DAVQ procedure may return the results as quickly as
14 times faster than the Batch procedure would.

Iteration 0 1 2 3 4
Batch duration (in sec.) (M=8) 0 1383 2679 4019 5401
DAVQ duration (in sec.) (M=8) 0 132 346 2031 5256

Iteration 0 1 2 3 4
Batch duration (in sec.) (M=16) 0 1426 2765 4278 5617
DAVQ duration (in sec.) (M=16) 0 130 198 665 2981

Iteration 0 1 2 3 4
Batch duration (in sec.) (M=32) 0 1400 2722 4087 5505
DAVQ duration (in sec.) (M=32) 0 86 181 803 ?

Table 7.1: Evolution of the empirical distortion for distributed Batch K-Means
and our VQ algorithm. The tables report how much time Batch K-Means requires
to complete a specific number of iteration, and how much time it takes to our
DAVQ implementation to achieve the same level of empirical distortion.



Conclusion

Nous avons montré dans les premiers chapitres de cette thèse que le Cloud Com-
puting est une offre protéiforme qui répond à un besoin grandissant du monde
économique en ressources informatiques, qu’elles soient logicielles ou maté-
rielles. Durant nos trois années de thèse, nous nous sommes appliqués à bâtir
des projets logiciels sur l’environnement matériel et logiciel fournit par une pla-
teforme PaaS spécifique, celle d’Azure. A la lumière de ces projets, nous nous
proposons maintenant de donner notre vision d’Azure en tant que plateforme de
calcul, puis de rappeler nos conclusions présentées dans les chapitres 5, 6 et 7
quant à la parallélisation d’algorithmes de clustering.

De l’utilisation du PaaS comme plateforme de
calcul intensif

Constat technique

Le premier constat que nous pouvons porter sur Azure est celui d’une plateforme
qui tient ses promesses en termes de garantie de performance, au moins jusqu’à
200 machines. En effet, les résultats que nous obtenons sont comparables aux
valeurs nominales présentées par Microsoft sur le site AzureScope, site aujour-
d’hui supprimé. Ainsi, nous avons bien retrouvé les puissances de calcul que
nous nous attendions à obtenir par rapport à la taille des VM que nous avions
louées, et les performances du BlobStorage que nous avons observées concordent
également avec celles qui étaient déclarées par Microsoft. Enfin, la contrainte sur
la bande passante agrégée est bien d’environ 850 Mégaoctets/sec, comme déclaré
par Microsoft.

Cependant, ces performances sont loin d’égaler celles que nous pourrions obtenir
avec un nombre équivalent de CPU ou de GPU sur un cluster de machines en
local. Toutes choses égales par ailleurs, le cloud semble peu efficace dans le sens
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où il ne tire pas un profit optimal des ressources matérielles sous-jacentes : la
virtualisation 4, les communications moins efficaces que dans un réseau local, et le
manque actuel de contrôle dans la fabrique d’Azure sur la topologie des machines
qui nous sont allouées, apportent des limites physiques sur la quantité de calcul
que nous pouvons effectuer sur cette plateforme, à nombre de machines fixé. Ce
constat est particulièrement vérifié quand le nombre de processeurs impliqués
est faible : lorsque nous souhaitons implémenter un algorithme sur 16 unités de
calcul, il est bien plus simple et performant d’utiliser une seule machine pourvue
de 16 coeurs, dont le coût est très accessible. Lorsque nous augmentons le nombre
de processeurs que nous souhaitons utiliser, les solutions disponibles se raréfient,
et le cloud devient alors d’autant plus compétitif. Nous pouvons donc raisonna-
blement prendre le pari que les cas d’applications du Cloud Computing comme
plateforme de calcul intensif impliqueront des projets nécessitant au moins une
centaine d’unités de calcul.

Un autre aspect intéressant des limitations actuelles d’Azure réside dans le
manque d’environnements logiciels adaptés, qu’ils aient trait à l’exécution géné-
rale ou à la communication. Le PaaS est réputé plus simple d’utilisation que le
IaaS en raison des primitives supplémentaires qu’il propose. En effet, les “briques
élémentaires” du PaaS sont de plus haut niveau que celles proposées dans les
solutions IaaS. Cependant les solutions IaaS proposent aujourd’hui des implé-
mentations éprouvées d’environnements logiciels comme MapReduce ou MPI.
Ces environnements, qui simplifient bien plus la tâche de développement que
les primitives de plus haut niveau fournies par le PaaS, sont encore en cours de
développement pour les solutions PaaS. Ainsi, plusieurs projets d’implémenta-
tion de MapReduce pour Azure ont été proposés, notamment celui de Microsoft
Research —appelé projet Daytona— dont la première version a été mise à dis-
position du public en juillet 2011. Ce projet, qui est à l’heure où nous écrivons
ces lignes, la version la plus aboutie des implémentations de MapReduce sur
Azure, est encore à l’état de prototype et n’a pas été intégré à l’offre commer-
ciale d’Azure. Paradoxalement, ce sont donc les offres IaaS qui semblent fournir
à l’heure actuelle les solutions les plus simples pour effectuer des calculs intensifs.

Nous identifions cependant quatre cas d’utilisation (qui ne s’excluent pas mu-
tuellement) dans lesquels le Cloud Computing est déjà compétitif techniquement
pour réaliser des calculs intensifs. Le premier de ces quatre cas a trait à un besoin
en calcul volatile : puisqu’Azure est à la fois élastisque et agnostique à la charge
en calcul, le nombre de machines disponibles peut être sous quelques minutes
redimensionné pour s’adapter à un pic de demande, ou réciproquement à une

4. Que ce soit via la machine virtuelle .NET ou la virtualisation de l’OS hébergée sur le cloud.
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baisse temporaire de celle-ci. Un second cas d’utilisation d’Azure est incarné par
les tâches de calcul requérant plusieurs centaines de machines ; dans ce cas, moins
de solutions sont facilement accessibles, et Azure devient donc par contraste plus
compétitif. Une troisième catégorie de tâches sont celles ne requérant pas des
communications importantes ou des latences faibles entre les machines, deux
des points faibles d’Azure par rapport à un cluster local de machine. Enfin, et
c’est à nos yeux une catégorie très importante de tâches, de nombreux calculs
intensifs sont réalisés dans un contexte de production, c’est à dire dans un cadre
où la robustesse est primordiale. Azure fournit un environnement de calcul dans
lequel le remplacement d’une machine morte est réalisé automatiquement dans
un délai très bref, et dans lequel la perte d’une telle machine affecte peu le temps
total d’exécution d’une tâche de calcul.

Les quatres contextes qui viennent d’être évoqués sont souvent tous réunis dans le
cas d’enjeux industriels. C’est le cas par exemple pour le coeur technologique de
Lokad, la société dans laquelle j’ai réalisé cette thèse. En effet, ce coeur technolo-
gique fournit une API qui permet d’exécuter des prévisions sur un ensemble de
séries temporelles. Dans ce contexte, les garanties de robustesse et d’élasticité du
cloud sont primordiales. Par ailleurs, une partie importante des calculs présentant
un cas de parallélisme sur les données (dit de « data-level parallelism »), ces
tâches de prévision demandent peu de communication entre les différentes unités
de calcul. Enfin, les volumes de données, ainsi que la complexité algorithmique
de ce coeur technologique requièrent d’allouer chaque jour plusieurs fois entre
100 et 200 machines, mais ce coeur technologique n’est pas utilisé une majorité
du temps, et utilise donc dans ces circonstances une seule VM (c’est à dire le
minimum). Pour Lokad, Azure est donc une excellente solution technologique à
ses besoins de performance, de robustesse et d’élasticité.

Constat économique

Au-delà des divers éléments techniques qui viennent d’être présentés, nous
sommes convaincus que l’adoption du cloud en général et du PaaS en particulier
se joueront probablement plus sur des considérations économiques et stratégiques
que techniques. A ce titre, trois éléments doivent être pris en compte : le coût
de développement de l’application d’une part (c’est à dire le coût du software),
et le coût du hardware d’autre part (achat amorti ou location, consommation
énergétique, administration, entrepôt, etc.).

En ce qui concerne le développement d’applications très intensives en calcul,
Azure n’est pas encore compétitif en raison du manque actuel d’environnement
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logiciel disponible. Nous avons déjà constaté que ce manque fait d’Azure une
plateforme sur laquelle le développement de ces applications est rendu long et
délicat. Ce coût de développement peut aujourd’hui se révéler trop important,
puisque le coût horaire d’un ingénieur compétent peut représenter l’équivalent du
coût horaire de plus d’un millier de machines sur des plateformes comme Azure
ou Amazon. Microsoft a cependant annoncé qu’une implémentation commerciale
de MapReduce pour Azure est en cours de développement. Alors qu’une première
version d’une adaptation de Dryad sur Azure a été développée et lancée, Micro-
soft a abandonné le projet pour se concentrer sur une implémentation officielle
de MapReduce sur Azure, plus simple à manipuler et donc plus accessible pour
ses clients que Dryad.

L’estimation du coût moyen d’usage du matériel physique ne fait quant à elle pas
l’objet d’un consensus. En effet, certaines incertitudes demeurent sur les tarifs à
long terme que proposeront Amazon ou Azure. En effet, ces tarifs ont été maintes
fois diminués au cours des dernières années (ainsi certains des prix d’Amazon
ont fait l’objet de 19 réductions successives sous différentes formes depuis 6 ans),
et devraient probablement encore l’être à l’avenir.

Au delà de ces incertitudes à la fois sur les coûts de développement et sur les coûts
d’utilisation, Azure peut-il se révéler une solution économiquement compétitive
pour réaliser du calcul intensif ? En d’autres termes sera-t-il plus rentable d’utili-
ser une plateforme cloud comme Azure par rapport à un cluster local de machines,
des GPU, du matériel reprogrammable comme des Field-Programmable Gate
Array (FPGA) ou des Application Specific Integrated Circuit (ASIC) ? En ce qui
concerne les FPGA et les ASIC, leur marché est en sensible croissance, mais
l’utilisation de ce type de solutions entraine souvent des coûts de développement
qui rendent leur utilisation si ce n’est situationnelle, du moins peu adaptée dans
de nombreux cas. Puisque de récentes offres de cloud (comme celles d’Amazon)
proposent maintenant des GPU, la vraie question de la compétitivité économique
du cloud est donc celle de la performance relative du cloud vis-à-vis d’un cluster
local de machines, contenant des CPU et/ou des GPU.

Sur ce dernier point, l’analogie entre Cloud Computing et Assurance peut apporter
des éléments de réponse. De la même manière que les mécanismes d’assurance
fournissent une mutualisation des risques pour lisser en espérance les coûts liés
à des accidents, les mécanismes de cloud fournissent une mutualisation des res-
sources pour lisser dans le temps les besoins en consommation de multiples
clients, et ainsi transformer l’informatique en un bien de production courant
comme l’électricité. De nombreuses organisations ont des besoins fluctuants en
calcul mais n’ont pas la taille critique au delà de laquelle les besoins internes
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sont suffisants pour que la mutualisation s’opère sans recourir à une organisation
extérieure. Gageons alors qu’au moins pour ces organisations, les solutions cloud
sont ou pourront être pertinentes.

Implémentation d’algorithmes de clustering
répartis

Cloud Batch K-Means

La parallélisation du Batch K-Means est un problème bien maitrisé dans le
cas d’architectures Symmetric Multi-Processors (SMP) ou Distributed Memory
Multi-processors (DMM), à tel point qu’il fait parfois figure de cas d’école pour le
développement d’algorithmes de machine-learning parallèle. En effet, son schéma
de parallélisation est évident et son efficacité est excellente à condition que les
coûts de communication soient faibles. Sur des architectures SMP ou sur des
architectures DMM pourvues de MPI, ces coûts sont effectivement très faibles.
À l’inverse, les coûts de communication sur Azure rendent cette parallélisation
moins efficace. Même si nous avons obtenu des accélérations de convergence
qui avaient été atteintes précédemment dans peu de travaux académiques 5, nous
avons aussi montré que l’utilisation des ressources était peu efficace.

Plus précisément, le synchronisme de l’algorithme du Batch K-Means réparti met
en lumière deux phénomènes connus en calcul réparti, mais qui semblaient peu
illustrés du côté de la communauté machine-learning. Le premier de ces phéno-
mènes est l’aspect crucial que peuvent revêtir des ralentissements non-anticipés
sur certaines machines, un phénomène dit de « stragglers » 6. L’aspect synchrone
de l’algorithme du Batch K-Means réparti implique en effet que le comportement
général de l’algorithme est déduit non pas du comportement moyen des machines
mais du comportement de la “pire” de celles-ci.

Le second phénomène est celui de l’importance des débits dans les communi-
cations. Puisque le synchronisme ne permet pas dans le cas du Batch K-Means
de recouvrir les temps de communication et ceux de calcul, le coût des premiers
doit être ajouté à celui des seconds. En l’absence d’un environnement logiciel
efficace pour prendre en charge ces communications, nous avons utilisé le sto-

5. avec certaines exécutions 58 fois plus rapides que leur pendant séquentiel exécuté sur une
machine avec la même puissance mais une RAM infinie

6. phénomène qui n’est sensible que sur des architectures matérielles peu intégrées comme
celles d’un cloud
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ckage d’Azure comme moyen de transférer des données entre les machines. Dans
ce contexte, les coûts de communication ne peuvent plus être négligés. Nous
pouvons montrer qu’un mécanisme d’aggrégation des résultats des M différentes
unités de calcul en p étapes conduit à un coût de communication en O(p 1/p

√
M).

Cependant, les latences internes à Azure et les fréquences de ping des queues
empêchent de concevoir des mécanismes efficaces d’aggrégation en p = log(M)
étapes comme c’est le cas dans MPI. Nous avons analysé le modèle correspondant
au mécanisme d’aggrégation en deux étapes que nous avons retenu pour notre
implémentation. Ce modèle de coût permet notamment d’anticiper l’ordre de
grandeur du nombre optimal de machines à utiliser pour minimiser le temps
d’exécution de notre Batch K-Means réparti sur Azure.

Cloud DAVQ

Les ralentissements non-anticipés (les « stragglers ») et les coûts de communica-
tion qui viennent d’être rappelés nous ont donc incités à orienter nos travaux vers
des algorithmes asynchrones de clustering. Pour le Batch K-Means, c’est le carac-
tère « Batch » de l’algorithme qui entraine le synchronisme : l’étape de recalcul
des prototypes nécessite que les communications soient réalisées exactement une
fois par itération. Le passage vers un algorithme « en-ligne »—l’algorithme de
Vector Quantization (VQ)— permet donc de supprimer ce point de synchronisa-
tion évidente.

La parallélisation de l’algorithme de VQ sur le cloud présente deux difficultés
majeures : la non-convexité de la fonction de perte et la latence des écritures
d’un objet (dans notre cas situé dans le BlobStorage). De nombreux travaux ont
été proposés pour répondre à la question de la descente de gradient parallèle en
présence d’une de ces difficultés mais aucun à notre connaissance ne proposait de
réponse lorsque les deux difficultés sont réunies.

Lorsque les latences des écritures sont faibles par rapport au coût de calcul du gra-
dient, il est possible de ne posséder qu’une seule version du paramètre à optimiser
(dans notre cas les prototypes qui résument les données). Ainsi, certains travaux
comme [84] ou [50] proposent des schémas de parallélisation dans lesquels diffé-
rents threads executés sur une seule machine multi-coeurs accèdent en écriture
chacun leur tour au paramètre pour le modifier (on parle alors d’entrelacement
des écritures). Comme souligné dans les conclusions de [50] ou dans [28], ce
mécanisme d’entrelacement n’est possible que sur une architecture matérielle
avec mémoire partagée et pour un nombre faible de coeurs.
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Sur le cloud, les temps d’écriture dans le BlobStorage sont trop importants par
rapport au temps de calcul du gradient pour utiliser de telles techniques. Chaque
unité de calcul, ici des machines virtuelles potentiellement distantes, possède
donc sa propre version du paramètre (i.e. des prototypes) qu’elle modifie locale-
ment au fur et à mesure qu’elle examine des points issus du jeu de données sur
lequel elle travaille. La difficulté de la parallélisation réside alors dans le choix
d’une stratégie d’utilisation de ces différentes versions pour obtenir une version
« meilleure ».

La présentation dans les chapitres 6 et 7 de notre travail de parallélisation de
l’algorithme de VQ, désigné dans la suite par Distributed Asynchronous Vector
Quantization (DAVQ), reprend à rebours la chronologie de notre travail. En effet,
inspirés par les résultats présentés dans [106], [95] ou [49], nous avons tout
d’abord implémenté sur Azure une version répartie asynchrone de l’algorithme
de VQ dans laquelle les différentes versions des prototypes sont moyennées
de manière asynchrone. À notre surprise les premiers résultats ne fournissaient
pas d’amélioration par rapport à l’algorithme séquentiel. Nous avons pendant
longtemps cherché à comprendre ce résultat que nous mettions initialement sur le
compte de spécificités d’Azure ou de réglages inhérents aux algorithmes stochas-
tiques, notamment le réglage de la décroissance du pas {εt}∞t=1.

Ces premiers résultats négatifs nous ont amenés à une analyse plus fine des
schémas de parallélisation, analyse présentée dans le chapitre 6. En particulier,
nous avons montré que dans notre problème le moyennage de différentes ver-
sions des prototypes ne mène pas à une meilleure version. Ce résultat vient très
probablement de l’absence de convexité de notre fonction de perte, puisque des ré-
sultats théoriques d’accélération sont fournis dans des cadres très proches lorsque
l’hypothèse de convexité est ajoutée (nous renvoyons par exemple à [49]). Les
modélisations (6.10) et (6.11) présentent des schémas alternatifs de parallélisation
dont la simulation a présenté une accélération de la convergence par rapport à la
version séquentielle de l’algorithme de VQ.

Le chapitre 7 présente l’implémentation cloud des travaux précédents. En particu-
lier, nous décrivons en détail l’ordonnancement de notre algorithme en différents
services et les mécanismes classiques de recouvrement de calcul et de communi-
cation utilisés au sein de chaque unité de calcul. Nous montrons que la version
cloud de notre DAVQ permet d’obtenir des gains conséquents en terme d’accé-
lération de la convergence : l’utilisation de machines supplémentaires permet
jusqu’à un certain point d’augmenter cette vitesse de convergence vers un niveau
de quantification équivalent.
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La dernière section du chapitre 7 présente un exemple dans lequel notre implé-
mentation cloud du DAVQ converge plus rapidement que notre implémentation
cloud du Batch K-Means vers des niveaux de quantification comparables. Nous
retrouvons ainsi comme dans le cas séquentiel certaines des conclusions qui
avaient été tirées de comparaisons réalisées entre Batch K-Means et Online K-
Means (c’est à dire VQ) dans lesquelles l’algorithme en-ligne permettait d’obtenir
plus rapidement un même niveau de quantification. Ces bonnes performances
statistiques de notre version stochastique doivent être mises en regard avec le coût
important de développement de l’algorithme, ainsi que l’instabilité et la difficulté
de paramétrage inhérente à de nombreux algorithmes stochastiques.



Perspectives

Les ressources logicielles et matérielles sur le cloud, tout comme les enjeux
technologiques de Lokad, sont en constante évolution. À ce titre, il est crucial de
ne pas dissocier les résultats présentés dans cette thèse, ainsi que les questions
qui les ont engendrés, du contexte historique où ces questions et réponses ont
été exprimées. Par exemple, le choix d’utiliser le système de stockage persistent
d’Azure comme moyen de communication est le fruit du manque d’environne-
ments logiciels comme MPI ou MapReduce lorsque ce travail de thèse a été
réalisé. Ces environnements logiciels devraient cependant sans doute être dis-
ponibles dans un futur proche pour Azure. Lorsqu’ils le seront, de nouvelles
possibilités s’ouvriront pour paralléliser nos algorithmes.

Au delà de cette adaptation à l’évolution technologique, il serait également inté-
ressant de réfléchir à une adaptation de nos travaux dans le cas d’une métrique
différente de classification. Comme nous l’avons déjà évoqué, l’utilisation du cri-
tère présenté dans les chapitres 5 et 6 présente en effet deux lacunes. La première
est d’ordre numérique : sa non-convexité entraine des difficultés supplémentaires
importantes lorsque nous cherchons un minimum à ce critère. En second lieu,
le critère précédent n’est peut être pas le plus pertinent eu égard à l’utilisation
qui en est faite ensuite par Lokad : il faudrait effectivement choisir un critère qui
tienne compte de la technique de régression utilisée à la suite de la classification.
Ces questions sont abordées dans la littérature sous le terme de « clusterwise
regression », et pourraient permettre de proposer des critères de classification plus
adéquats dans notre cas.

Les techniques de minimisation de notre critère présentées dans les chapitres 6 et
7 sont appliquées à un problème de classification mais peuvent s’adapter sans dif-
ficulté majeure à de nombreux autres problèmes de descente de gradient parallèle.
Il serait intéressant de les comparer en pratique, dans le cas d’autres fonctions
à minimiser, aux techniques de moyennage des résultats proposées par exemple
dans [49], pour lesquelles des vitesses optimales de convergence sont démontrées.
Dans le cadre de notre algorithme de VQ réparti, nous pourrions également tester
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des techniques d’accélération de descente de gradient, par exemple la méthode de
Nesterov (nous renvoyons le lecteur à [91]).

De manière plus générale, nous observons à la lumière des expériences que nous
avons réalisées que la parallélisation d’algorithmes d’apprentissage statistique
ou de fouille de données n’est pas encore un domaine mûr. En effet, l’offre ac-
tuelle des environnements logiciels disponibles propose deux alternatives souvent
insatisfaisantes : l’alternative MapReduce d’une part, simple d’utilisation mais
limitée dans l’expressivité et peu adaptée à des algorithmes asynchrones, ou avec
de nombreuses communications, ou encore à des algorithmes itératifs. La seconde
alternative est actuellement représentée par des environnements logiciels plus
riches, comme Dryad ou Graphlab, qui ne sont pas encore réellement disponibles
sur le cloud, et dont la complexité nous semble restreindre très fortement leur
public respectif. Des environnements logiciels à la fois simples et puissants dans
leur expressivité restent donc à imaginer et concevoir.
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