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Abstract

The main topic of the thesis are inverse scattering problems of electromagnetic waves from
periodic structures. We study first the direct problem and its numerical resolution using
volume integral equation methods with a focus on the case of strongly singular integral oper-
ators and discontinuous coefficients. In a second investigation of the direct problem we study
conditions on the material parameters under which well-posedness is ensured for all positive
wave numbers. Such conditions exclude the existence of guided waves. The considered inverse
scattering problem is related to shape identification. To treat this class of inverse problems,
we investigate the so-called Factorization method as a tool to identify periodic patterns from
measured scattered waves. In this thesis, these measurements are always related to plane
incident waves.

The outline of the thesis is the following: The first chapter is the introduction where we
give the state of the art and new results of the topics studied in the thesis. The main content
consists of five chapters, divided into two parts. The first part deals with the scalar case
where the TM electromagnetic polarization is considered. In the second chapter we present the
volume integral equation method with new results on G̊arding inequalities, convergence theory
and numerical validation. The third chapter is devoted to the analysis of the Factorization
method for the inverse scalar problem as well as some numerical experiments. The second
part is dedicated to the study of 3-D Maxwell’s equations. The fourth and fifth chapters
are respectively generalizations of the results of the second and third ones to the case of
Maxwell’s equations. The sixth chapter contains the analysis of uniqueness conditions for the
direct scattering problem, that is, absence of guided modes.





Chapter 1

Introduction

Direct and inverse scattering from periodic structures has a long history. Since the first
study [85] by Lord Rayleigh in 1907, it has received continuous and considerable attention
from researchers not only as an interesting mathematical topic in its own right but also as
a field of great interest in applications. These applications include optical filters, lenses and
beam-splitters in optics, and indeed their non-destructive testing is an important issue to
guarantee the functioning of such devices. An overview about this and further topics in
applied mathematics related to wave propagation in periodic structures can be found in,
e.g., [14,86].

Figure 1.1: Examples of periodic structures in nanotechnology. These photos are from pa-
per [18] (left) and nanotechweb.org (right).

This thesis includes three topics concerning some aspects of numerical and mathematical
analysis of direct and inverse scattering problems of time-harmonic electromagnetic waves
from periodic structures. The first topic which is also the main topic of the thesis is the
study of the periodic inverse scattering problems in both cases of TM modes and Maxwell’s
equations. As a tool serving the first topic, the second topic concerns volume integral equation
methods for the numerical resolution of the direct problem again in both scalar and vector
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cases. Finally, we investigate in the third topic the well-posedness for all wave numbers of the
direct problem for the case of Maxwell’s equations.

1.1 State of the art

Let us first briefly review results from the literature in the three topics mentioned above. For
each topic we indicate ongoing research subjects and new results that have been obtained in
this thesis.

1.1.1 Existence and uniqueness of solutions to direct scattering problems

from periodic structures

Mathematical theory for the well-posedness of electromagnetic scattering problem for periodic
structures has been an active area of research in the last years. In contrast to scattering
from bounded structures, uniqueness of solution for this scattering problem does not hold
in general for all positive wave numbers. Instead, non-trivial solutions to the homogeneous
problem might exist for a discrete set of exceptional wave numbers, and these solutions turn
out to be exponentially localized surface waves.

For the scalar case, the first study can be found in [2] where the author considered a quasi-
periodic boundary value problem for the Helmholtz equation arising from wave scattering by
periodic structures. This paper proved existence and uniqueness of solution for all wave
numbers (or, equivalently, all frequencies), under geometrical conditions on the penetrable
scatterer with Dirichlet boundary conditions. Similar results are obtained in the paper [22]
for more complicated periodic structures which are constituted of conducting and dielectric
materials. The latter paper further gave examples of structures for which non-uniqueness of
solution occurs at the so-called singular wave numbers. These wave numbers were shown to be
related to guided waves (surface waves) that are exponentially localized along the structure.
For a more general case of non-periodic unbounded scatterer, the authors in [29] proved
uniqueness of solution and non-existence of guided waves under such geometrical conditions.

For the case of Maxwell’s equations, the authors of [40] studied well-posedness of the
scattering problem from a medium consisting of two homogeneous materials separated by
a smooth biperiodic surface using an integral equation approach. In [12, 15, 41] the authors
studied existence and uniqueness of solution for the scattering problem from penetrable biperi-
odic structures using a variational approach for the magnetic field formulation. Nevertheless,
unlike the scalar cases, the uniqueness results in these papers were only proven for all but
possibly a discrete set of wave numbers. Furthermore, they only considered the non-magnetic
case, i.e, the magnetic permeability is assumed to be the same constant outside and inside
the periodic structure. The case of variable magnetic permeability was investigated in the
paper [1] for Maxwell’s equations where the biperiodic structure consists of conducting and
dielectric materials. That paper studied a variational approach, formulated in terms of the
electric field, and showed that the obtained saddle point problem satisfies the Fredholm alter-
native, and again uniqueness of solution was proven for all but possibly a discrete set of wave
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numbers. More recently, the paper [105] analyzed the well-posedness of the scattering problem
for penetrable anisotropic biperiodic structures but again with the restriction of non-magnetic
material. The latter paper also proved that the scattering problem is uniquely solvable for
all wave numbers if the structure contains absorbing materials, and if the dielectric tensor is
piecewise analytic.

Therefore, the uniqueness result for all wave numbers for Maxwell’s equations with non-
absorbing biperiodic materials that we have obtained in this thesis is, to the best of our
knowledge, a new result in the topic.

1.1.2 Volume integral equation method and numerical discretization

Motivated by applications of periodic dielectric structures for optics it is important to con-
struct efficient schemes to compute the electromagnetic fields involved in the associated scat-
tering problems in the scattering problems. There are various numerical approaches to solve
the direct problem. One of the two most developed and studied methods that we would
like to mention first is the finite element discretization of the variational problem. One
can find the results for the scalar case in, e.g., [10, 11, 13, 42, 43] as well as for the case of
Maxwell’s equations in [1, 12, 41, 57, 104]. This approach turns out to be advantageous in
dealing with complicated materials. The system matrix is sparse even if in three dimensions
number of degrees of freedoms becomes large. However, one has to take into account the
quasi-periodicity of the solution and the radiation condition which might be difficult using
a standard software package. The second approach mentioned above is the boundary inte-
gral equation methods. The results for both scalar and Maxwell’s equations cases has been
studied in, e.g., [4, 6, 82, 84, 93, 95, 111]. Also, in [4] the author provided a extensive state of
the arts on boundary integral equation methods for the periodic scattering problems as well
as a large amount of related publications. In this second approach the radiation condition is
automatically satisfied and the resulting matrix system is smaller than the one in the first
approach. However that matrix system is dense and setting up such a system matrix is hence
costly both in terms of memory and CPU time. Further as we know that the main ingredient
for this approach is the quasi-periodic Green’s function which is also the kernel of the integral
operator. Thus efficient evaluation of the integral kernel appears quite challenging due to its
singularity.

We next describe the volume integral equation method which received less attention in
the math community than the last two approaches. In the engineering community, volume
integral equation methods are a popular tool to numerically solve scattering problems, see,
e.g., [46,75,97,98], since they allow to solve equations with complicated material parameters
via one single integral equation, the radiation condition is automatically satisfied and the
implementation is simple. The linear system resulting from the discretization of the integral
operator (by, e.g., collocation or finite element methods) is large and dense. However, the
convolution structure of the integral operator allows to use FFT techniques to compute matrix-
vector multiplications in an order-optimal way (up to logarithmic terms), see, e.g., [94, 107,
114]. However, the discretization of the integral operator itself is sometimes done in a crude
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way. The convergence analysis of the method is often missing, in particular when material
parameters are not globally smooth.

Recently, volume integral equation methods also started to attract interest in the applied
math community. The papers [53, 54, 80, 109] provide numerical analysis for the Lippmann-
Schwinger integral equation, when the weakly singular integral operator is compact. Fur-
ther, [38,73,90] analyze strongly singular integral equations for scattering in free space. How-
ever, [90] considers media with globally continuous material properties, and the L2-theory
in [73] does not yield physical solutions if the material parameter appearing in the highest-
order coefficients are not smooth. The paper [38] proves a G̊arding inequality for a strongly
singular volume integral equation arising from electromagnetic scattering from a (discontinu-
ous) dielectric. This implies the convergence of Galerkin discretizations. However, studying
a finite element discretization of the volume integral equation leads to drawbacks of a large
and dense matrix system where the quasi-periodic condition have to be taken into account.

We hence can see that the application of this method to periodic scattering problems
for the cases of discontinuous materials and/or strongly singular integral operators (the form
of the integral equations is of the second kind) is still an subject of ongoing research, and
studying this subject is one of the aims of the thesis.

1.1.3 Periodic inverse scattering problems

Inverse problems in scattering by periodic structures have been an active research area in the
last years. We refer to [3, 16, 17, 44, 45, 67, 112] for uniqueness results for detecting periodic
scattering objects from field measurements. Furthermore, for the topic of shape identification
that is investigated in this thesis, traditional approaches, e.g., Newton-type iterative methods
can be found in [51, 52, 66, 76, 77]. Besides more recent approaches of non-iterative methods
such as Ikehata’s probe method [58–65], singular sources method [88, 89, 91, 92], the linear
sampling method recently appeared as one of the most studied and developed. This method
was first introduced in [33] for the scalar case of the problem of shape identification in inverse
obstacle scattering. It aims to compute a picture of the shape of the scattering object from
measured data. Compared to traditional approaches the linear sampling method is relatively
rapid and does not need a-priori knowledge on material properties. Therefore, it has attracted
much research in recent years, see, e.g., [23, 24, 26, 31, 32, 34–36]. Recent developments of
the linear sampling method can be found in [25, 27]. Furthermore, the latter method has
been recently extended to inverse scattering involving periodic media in [55, 56, 113]. Using
complex-conjugated incident fields the authors in [55, 56] studied the periodic version of the
linear sampling method for the case impenetrable periodic surfaces with mixed boundary
conditions. Instead of the far field equation for the case of bounded obstacles they considered
the near field equation defined on a line/plane above the periodic structure which is a linear
integral equation of first kind. For penetrable periodic structures in a full space setting, the
linear sampling method has been investigated in the recent paper [113] for the corresponding
inverse problem. The authors studied the TE case where the incident fields used are plane
incident waves.
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A problem with the linear sampling method is that for a wide class of scattering problems,
its complete mathematical justification still remains open, see [25]. Recently, some results on
justification of this method have been obtained in [5,9]. The so-called Factorization method,
developed in [68, 74], overcomes this disadvantage. This method has a rigorous justification
from a mathematical point of view, keeps the previously mentioned advantages and of course
is an interesting tool for shape identification problems in inverse scattering. However, the class
of scattering problems to which the Factorization method can be applied is still restricted,
see [72]. We also refer to [72] for applications of the Factorization method to obstacle inverse
scattering problems and impedance tomography.

The Factorization method has been recently extended to inverse scattering problems for
periodic structures. The papers [7, 8] studied the method for detecting impenetrable peri-
odic layers with Dirichlet and impedance boundary conditions. The author of [79] considered
imaging of penetrable periodic interfaces between two dielectrics in two dimensions. Further-
more, the papers [7,8,79] investigated the Factorization method for the TE case. Using point
sources as incident fields the author in [100] obtained a rigorous analysis of the Factorization
method for Maxwell’s equations of inverse scattering from penetrable biperiodic structures.
This work extended similar results in [72] for obstacle inverse scattering of electromagnetic
waves.

Therefore as a contribution to this ongoing research subject, we have developed the Fac-
torization method for periodic inverse scattering problems for the TM case and Maxwell’s
equations using plane incident waves. We are interested in mathematical analysis as well as
numerical implementation of the method for both scalar and vector cases.

1.2 Outline of the thesis

After the first chapter of introduction presented above, the main content of this thesis consists
of five chapters, essentially divided into two parts. In each chapter, we present results obtained
by studying the problems described in three topics in the state of the art above.

Part I deals with the scalar case of TM electromagnetic polarization and contains Chap-
ters 2 and 3. In Chapter 2 we analyze electromagnetic scattering of TM polarized waves
from a diffraction grating consisting of a periodic, anisotropic, and possibly negative-index
dielectric material. We reformulate the periodic scattering problem as a strongly singular
volume integral equation, that is, the integral operators fail to be weakly singular. Then we
prove new (generalized) G̊arding inequalities in weighted and unweighted Sobolev spaces for
this strongly singular integral equation. These inequalities also hold for materials for which
the real part of the material parameter takes negative values inside the diffraction grating,
independently of the value of the imaginary part. Moreover, when the material parameter is
isotropic and positive we show that trigonometric Galerkin methods applied to a periodization
of the integral equation converge. Fully discrete formulas show that the numerical scheme is
easy to implement and numerical examples show the performance of the method.

Chapter 3 concerns the shape identification problem of diffraction gratings from measured
spectral data involving scattered electromagnetic waves in TM mode. More precisely, we con-
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sider diffraction gratings consisting of a penetrable periodic dielectric mounted on a metallic
plate. Using special plane incident fields introduced in [7], we study the Factorization method
as a tool for reconstructing the periodic media. We propose a rigorous analysis for the method.
A simple imaging criterion is also provided as well as numerical experiments to examine the
performance of the method.

Part II is dedicated to the study of Maxwell’s equations and consists of Chapters 4, 5 and
6.

Chapter 4 extends the volume integral equation method investigated in Chapter 1 to
electromagnetic scattering problems from anisotropic biperiodic structures. These problems
are governed by Maxwell’s equations in a full space. We consider the case where the electric
permittivity and the magnetic permeability are both matrix-valued functions. The scattering
problem again can be reformulated as a strongly singular volume integral equation. Since the
compact embedding H1 ⊂ L2 is crucially exploited for the scalar case for proving G̊arding
inequalities, the main difficulty in this case is that the embeddingH(curl) ⊂ L2 is not compact.
We overcome this by not investigating G̊arding inequalities in the support of the contrast
but in a bigger domain under suitable assumptions on the contrast. This turned out to be
sufficient for convergence theory of a trigonometric Galerkin method appplied to the periodic
integral equation. We again propose fully discrete formulas for the numerical scheme as well
as numerical examples.

In Chapter 5 we extend the Factorization method studied in Chapter 2 to the electro-
magnetic inverse scattering problem for Maxwell’s equations. Instead of a half-space setting
of the problem as in the scalar case, we investigate here the vetorial problem for penetrable
biperiodic structures in a full-space setting. By modifying special plane incident fields used
in the scalar case and extending the approach to the vectorial problem we again propose a
rigorous analysis for the Factorization method. We also provide three dimensional numerical
experiments which, to the best of our knowledge, are the first numerical examples for this
method in a biperiodic setting.

Finally, Chapter 6 presents results on existence and uniqueness of solution for all positive
wave numbers for electromagnetic scattering problem from a biperiodic dielectric structure
mounted on a perfectly conducting plate. Given that uniqueness of solution holds, existence of
solution follows from a well-known Fredholm framework for the variational formulation of the
problem in a suitable Sobolev space. In this chapter, we derive a Rellich identity for a solution
to this variational problem under suitable smoothness conditions on the material parameter.
Under additional non-trapping assumptions on the material parameter, this identity allows us
to establish uniqueness of solution for all positive wave numbers (i.e. excluding the existence
of surface waves).

The work of this thesis contains the results presented in the following research articles:

1. A. Lechleiter, D.-L. Nguyen: Volume Integral Equations for Scattering from Anisotropic
Gratings, to appear in Mathematical Methods in the Applied Sciences.

2. A. Lechleiter, D.-L. Nguyen: A Galerkin Method for Strongly Singular Volume Integral
Equation Arising from Grating Scattering, submitted for publication.
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3. A. Lechleiter, D.-L. Nguyen: On Uniqueness in Electromagnetic Scattering from Biperi-
odic Structures, accepted for ESAIM: Mathematical Modelling and Numerical Analysis.

4. D.-L. Nguyen: On Shape Identification of Diffraction Gratings from Spectral Data: The
TM Case, preprint (to be submitted).

5. A. Lechleiter, D.-L. Nguyen: Factorization Method for Inverse Electromagnetic Scatter-
ing from Biperiodic Structures, preprint (to be submitted).
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The Case of TM Modes





Chapter 2

Volume Integral Equation Methods

for Periodic Scattering Problems

Abstract: In Chapter 2 we analyze electromagnetic scattering of TM polarized waves
from a diffraction grating consisting of a periodic, anisotropic, and possibly negative-
index dielectric material (problem (2.10)–(2.12)). In Section 2.3, we reformulate the
periodic scattering problem as a strongly singular volume integral equation (see equa-
tion (2.44)), that is, the integral operator of the integral equation fails to be weakly
singular. Then we prove new (generalized) Gårding inequalities in weighted Sobolev
spaces for this strongly singular integral equation (see Theorem 2.4.5). These in-
equalities also hold for materials for which the real part of the material parameter
takes negative values inside the diffraction grating, independently of the value of the
imaginary part. Further, when the material parameter is a scalar real-valued func-
tion we prove in Theorem 2.5.2 that such inequalities also hold for standard Sobolev
spaces which is important for the numerical implementation of the method. From the
latter result and the additional assumption that the scalar material parameter is pos-
itive, we show that trigonometric Galerkin methods applied to the periodized integral
equation (2.46) converge (see Theorem 2.6.3). Fully discrete formulas show that the
numerical scheme is easy to implement and numerical examples show the performance
of the method (see Section 2.7).

2.1 Introduction

As pointed out in the introduction to this thesis, this chapter analyzes volume integral equa-
tion methods for electromagnetic scattering of TM polarized waves from a diffraction grating
consisting of a periodic, anisotropic, and possibly negative-index dielectric material. We con-
sider diffraction gratings as three-dimensional dielectric structures which are periodic in one
spatial direction and invariant in a second, orthogonal, direction (compare Figure 2.1). They
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are used as optical components, e.g., to split up light into beams with different directions,
and they serve in optical devices as, e.g., monochromators or as optical spectrometers.
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Figure 2.1: The diffraction grating is periodic in x1, translation invariant in x3 and bounded
in x2.

If the wave vector of an incident electromagnetic plane wave is chosen perpendicular to
the invariance direction of the grating, Maxwell’s equations decouple into scalar Helmholtz
equations, known as transverse magnetic (TM) and transverse electric (TE) modes (these
terms are not consistently used in the literature). The equation of the TM mode studied in
this chapter for a non-magnetic grating has the form

div(ε−1
r ∇u) + k2u = 0, k > 0,

where u is a α-quasiperiodic function (that is, u(x1 + 2π, x2) = exp(2πiα)u(x1, x2)) for all x1,
x2 ∈ R). In particular, we allow the real part of the discontinuous and matrix-valued material
parameter ε−1

r to be negative-definite inside the grating structure, independently of the values
of the imaginary part. Negative definite material parameters are a feature that arises in the
modelization of, e.g., optical metamaterials, but also for metals at certain frequencies, see,
e.g., [106].

We reformulate the scattering problem using (α-quasiperiodic) volume integral equations.
These turn out to be strongly singular, that is, the integral operator fails to be weakly singular.
Hence, they do not fit into the standard Riesz theory, since the integral operators are not
compact. Nevertheless, we prove in the first aim of this chapter G̊arding inequalities for
the integral equations in weighted α-quasiperiodic Sobolev spaces, which yields a Fredholm
framework for the scattering problem. This result even holds if the real part Re(ε−1

r ) of the
material parameter is negative definite inside the grating, independently of the imaginary
part Im(ε−1

r ). Our approach extends a technique from [73], where similar volume integral
equations have been analyzed for free space scattering problems in case that the scalar real-
valued contrast is strictly positive. Moreover, we also prove that the G̊arding inequalities
in weighted Sobolev spaces can be transformed to inequalities in standard α-quasiperiodic
Sobolev spaces, if the grating consists of isotropic material. Note that the restriction to the
case of isotropic material is essential for our proof. Another important aspect of the analysis
is that the dielectric properties of the medium are discontinuous at the air/grating interface
(otherwise, the integral operators can be reduced to compact ones, see, e.g., [37, Chapter 9]).

Our second aim is to rigorously analyze a numerical method to solve the TM scattering
problem by trigonometric Galerkin methods, again for discontinuous media, but with isotropic
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and positive contrast. This technique originally stems from [109], where a corresponding
collocation method for volume integral equations involving a compact integral operator has
been analyzed. We prove that the trigonometric Galerkin method converges with optimal
order, and give fully discrete formulas how to implement this method. Finally, we describe a
couple of numerical experiments. In essence, the advantage of the method is that it is simple
to implement, and that the linear system can be evaluated at FFT speed. Of course, the
convergence order is low if the medium has jumps, due to the use of global basis functions
(if the material properties are globally smooth, then the method is high-order convergent).
Nevertheless, the technique is an interesting tool for numerical simulation, as we demonstrate
through numerical examples.

The analysis of the integral equation for material parameters with negative real part is, to
the best of our knowledge, the first application of T -coercivity (a well-known framework for
variational formulations of elliptic partial differential equations with sign-changing coefficients,
see [19–21]) to volume integral equations. As usual, the material parameter is, however, not
allowed to take arbitrary negative values; the solvability condition for instance excludes that
the relative material parameter takes the value −1 inside the grating.

The chapter is organized as follows: In Section 2.2 we give a problem setting and briefly
recall variational theory for the direct scattering problem. While in Section 2.3 we introduce
the corresponding integral equations, we prove in Sections 2.4 and 2.5 G̊arding inequalities on
a continuous level for weighted and unweighted Sobolev spaces, respectively. In Section 2.6 we
prove G̊arding inequalities for periodized integral equations, and error estimates for trigono-
metric Galerkin methods. We discretize the periodic integral equation and give gives fully
discrete formulas for the implementation in Section 2.7. Finally numerical experiments are
given in Section 2.8 to show the performance of the method.

For the convenience of the readers we clarify some notations used in this chapter. The
trace of a function u on a boundary ∂D from the outside and from the inside of a domain D
is γext(u) and γint(u), respectively. The jump of u across ∂D is [u]∂D = γext(u) − γint(u). If
the exterior and the interior trace of a function u coincide, we simply write γ(u) for the trace.
We denote the absolute value and the Euclidean norm by | · |, and the spectral matrix norm
by | · |2.

2.2 Problem Setting

Propagation of time-harmonic electromagnetic waves in an inhomogeneous and isotropic
medium without free currents is described by the time-harmonic Maxwell’s equations for
the electric and magnetic fields E and H, respectively,

curlH + iωεE = σE, curlE − iωµ0H = 0, (2.1)

where ω > 0 denotes the angular frequency, ε is the positive electric permittivity, µ0 is
the (scalar, constant and positive) magnetic permeability, and σ is the conductivity. The
permittivity and conductivity are allowed to be anisotropic, but required to be of the special
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form

ε =

(
εT 0
0 ε33

)
, σ =

(
σT 0
0 σ33

)
,

with real and symmetric 2×2 matrices εT = (εij)i,j=1,2 and σT = (σij)i,j=1,2, and real functions
ε33 and σ33. Furthermore, we assume in this chapter that all three material parameters are
independent of the third variable x3 and 2π-periodic in the first variable x1. Moreover, ε
equals ε0I3 > 0 (where In is the n×n identity matrix) and σ equals zero outside the grating.

If an incident electromagnetic plane wave independent of the third variable x3 illuminates
the grating, then Maxwell’s equations (2.1) for the total wave field decouple into two scalar
partial differential equations (see, e.g., [43]). Indeed, since both, E and H do not depend on
x3 it holds that

curlE =

(
∂E3

∂x2
,−∂E3

∂x1
,
∂E2

∂x1
− ∂E1

∂x1

)⊤
, curlH =

(
∂H3

∂x2
,−∂H3

∂x1
,
∂H2

∂x1
− ∂H1

∂x2

)⊤
.

Setting a = iω(ε+ iσ/ω) and plugging these two relations in the equations of (2.1) we obtain

a11E1 + a12E2 +
∂H3

∂x2
= 0, (2.2)

a21E1 + a22E2 −
∂H3

∂x1
= 0, (2.3)

a33E3 +
∂H2

∂x1
− ∂H1

∂x2
= 0, (2.4)

and

−iωµ0H1 +
∂E3

∂x2
= 0, (2.5)

−iωµ0H2 −
∂E3

∂x1
= 0, (2.6)

−iωµ0H3 +
∂E2

∂x1
− ∂E1

∂x2
= 0. (2.7)

From these two systems we see that the knowledge of E3 and H3 are sufficient to determine
the fields E and H. Now we plug (2.5), (2.6) into (2.4) and find that u = E3 satisfies the
scalar equation

∆u+ ω2µ0

(
ε33 +

iσ33

ω

)
u = 0. (2.8)

From (2.2) and (2.3) we obtain

E1 =
a11∂H3/∂x1 + a21∂H3/∂x2

a22a11 − a21a12
, E2 = −a12∂H3/∂x1 + a22∂H3/∂x2

a22a11 − a21a12
.

Plugging these results into (2.7) we find that u = H3 satisfies

div
(
ε−1
r ∇u

)
+ k2u = 0, (2.9)
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where k := ω
√
ε0µ0 and

εr := ε−1
0

[(
ε22 −ε21
−ε12 ε11

)
+ i

(
σ22 −σ21

−σ12 σ11

)
/ω

]
.

Solutions of the equations (2.8) and (2.9) are called transverse electric modes (TE mode) and
transverse magnetic modes (TM mode), respectively. It is the aim of the first part of this
thesis to study the case of TM mode. The usual jump conditions for the Maxwell’s equations
imply that the field u and the co-normal derivative ν · ε−1

r ∇u are continuous across interfaces
with normal vector ν where εr jumps. Note that εr is 2π-periodic in x1 and equals I2 outside
the grating.

We seek for weak solutions to (2.9) and assume that εr ∈ L∞(R2,C2×2) takes values in
the symmetric matrices, and that ε−1

r ∈ L∞(R2,C2×2). Moreover, we suppose that Re(ε−1
r )

is pointwise strictly positive or strictly negative definite almost everywhere. Note that we do
not assume that Re(ε−1

r ) is positive definite in all of R2.
For the two-dimensional problem (2.9), incident electromagnetic waves reduce to

ui(x) = exp(ik x · d) = exp(ik(x1d1 + x2d2)),

where |d| = 1 and d2 6= 0. When the incident plane wave ui illuminates the diffraction grating
there arises a scattered field us such that the total field u = ui + us satisfies (2.9). Since
∆ui + k2ui = 0, the scattered field satisfies

div(ε−1
r ∇us) + k2us = −div(Q∇ui) in R2, where Q := ε−1

r − I2 (2.10)

is the contrast. Note that ui is α-quasiperiodic with respect x1, that is,

ui(x1 + 2π, x2) = e2πiαui(x1, x2) for α := kd1.

Since ui is α-quasiperiodic and εr is 2π-periodic, the total field and the scattered field both
are also α-quasiperiodic in x1. We complement this problem by a radiation condition that is
set up using Fourier techniques. Since the scattered field us is α-quasiperiodic, the function
e−iαx1us is 2π-periodic in x1, and can hence be expanded as

e−iαx1us(x) =
∑

j∈Z

ûj(x2)e
inx1 , x = (x1, x2)

⊤ ∈ R2.

Here the Fourier coefficients ûj(x2) ∈ C are defined by

ûj(x2) =
1

2π

∫ 2π

0
us(x1, x2)e

−iαjx1 dx1 , αj := α+ j, j ∈ Z.

We define

βj :=





√
k2 − α2

j , k2 ≥ α2
j ,

i
√
α2

j − k2, k2 < α2
j ,
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In the sequel of this chapter we assume that

k2 6= α2
j for all j ∈ Z. (2.11)

This assumption excludes the Rayleigh frequencies which is necessary for the definition of the
Green’s function used in the next section. Note that under assumption (2.11) all the βj are
non-zero.

Recall that εr equals I2 outside the grating, that means εr = I2 and Q = 0 for |x2| >
h, where h > sup{|x2| : (x1, x2)

⊤ ∈ supp(Q)}. Thus it holds that the equation (2.10)
becomes (∆ + k2)us = 0 in {|x2| > h}. Using separation of variables, and choosing the
upward propagating solution, we set up a radiation condition in form of a Rayleigh expansion
condition, prescribing that us can be written as

us(x) =
∑

j∈Z

û±j e
i(αjx1±βj(x2∓h)) for x2 ≷ ±h, (2.12)

where (ûn)n∈Z are the Rayleigh sequences given by

û±j := û±j (±h) =
1

2π

∫ 2π

0
us(x1,±h)e−iαjx1 dx1 , j ∈ Z.

Note that we require that the series in (2.12) converges uniformly on compact subsets of
{|x2| > h}. A solution to the Helmholtz equation is called radiating if it satisfies (2.12). If
k2 > α2

j then the jth mode exp(iαjx1 ± iβj(x2 ∓ h)) is a propagating mode, whereas k2 < α2
j

means that exp(iαjx1 ± iβj(x2 ∓ h)) is an evanescent mode.
Variational solution theory for the scattering problem (2.10)–(2.12) is well-known, see,

e.g., [22,43,66]. Setting

Ωh := (−π, π) × (−h, h), Γ±h := (−π, π) × {±h},

for h > sup{|x2| : (x1, x2)
⊤ ∈ supp(Q)}, one can variationally reformulate the problem in the

space

H1
α(Ωh) := {u ∈ H1(Ωh) : u = U |Ωh

for some α-quasiperiodic U ∈ H1
loc(R

2)}.

The resulting variational formulation is to find us ∈ H1
α(Ωh) such that

∫

Ωh

(ε−1
r ∇us · ∇v − k2usv) dx −

∫

Γh

vT+(us) ds −
∫

Γ−h

vT−(us) ds

= −
∫

Ωh

Q∇ui · ∇v dx

(2.13)

for all v ∈ H1
α(Ωh). The operators T±, ϕ 7→ i

∑
j∈Z

βjϕ̂
±
j e

iαjx1 , are the so-called exte-
rior Dirichlet-to-Neumann operators on Γ±h. The sesquilinear form in (2.13) is bounded
on H1

α(Ωh) and satisfies a G̊arding inequality if, e.g., Re(ε−1
r ) is positive definite, that is,
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Γh

Γ−h

D

Ωh

x1 = −π x1 = π

Figure 2.2: Geometric setting for scattering problem of TM-polarized electromagnetic waves
from a penetrable periodic structure.

ξ∗Re(ε−1
r )(x)ξ ≥ c|ξ|2 ≥ 0 for ξ ∈ C2 and almost every x ∈ Ωh. In this case, analytic Fred-

holm theory implies that the set of real wave numbers (excluding Rayleigh frequencies) where
non-uniqueness occurs is at most countable, see [22, 66]. If Re(ε−1

r ) changes sign, proving
Fredholm properties of the variational formulation (2.13) is non-trivial, at least if Im(ε−1

r )
vanishes, see [19,21].

In this chapter, we establish a Fredholm framework for the scattering problem via integral
equation techniques, that is, uniqueness of solution implies existence. We do not aim to prove
the corresponding uniqueness results, since for periodic scattering problems such results are
anyway not available at all frequencies, except under restrictive geometric (non-trapping)
conditions, see [22] or Chapter 5.

2.3 Integral Equation Formulation

In this section, we reformulate the scattering problem (2.9) as a volume integral equation, and
prove mapping properties of the integral operator between Sobolev spaces. To this end, let
us recall that Q = ε−1

r − I2 and denote by D ⊂ Ωh the support of Q, restricted to one period
{−π < x1 < π}. By Gk we denote the Green’s function to the α-quasiperiodic Helmholtz
equation in R2, see [66]. Under the assumption (2.11) the α-quasiperiodic Green’s function
has the series representation

Gk(x) :=
i

4π

∑

j∈Z

1

βj
exp(iαjx1 + iβj |x2|), x =

(
x1

x2

)
∈ R2, x 6=

(
2πm

0

)
for m ∈ Z. (2.14)

Lemma 2.3.1 (Cf. [66]). The Green’s function Gk can be split into Gk(x) = (i/4)H
(1)
0 (k|x|)+

Ψ(x) in R2 where Ψ is an analytic function solving the Helmholtz equation ∆Ψ + k2Ψ = 0 in
(−2π, 2π) × R.
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We also define a periodized Green’s function, firstly setting

Kh(x) := Gk(x), x =

(
x1

x2

)
∈ R × (−h, h), x 6=

(
2πm

0

)
for m ∈ Z, (2.15)

and secondly extending Kh(x) 2h-periodically in x2 to R2.

The functions

ϕj(x) :=
1√
4πh

exp
(
i(j1 + α)x1 + i

j2π

h
x2

)
, j =

(
j1
j2

)
∈ Z2, (2.16)

are orthonormal in L2(Ωh). They differ from the usual Fourier basis (see, e.g., [102, Section
10.5.2]) only by a phase factor exp(iαx1), and hence also form a basis of L2(Ωh). For f ∈
L2(Ωh) and j = (j1, j2)

⊤ ∈ Z2,

f̂(j) :=

∫

Ωh

f ϕj dx

are the Fourier coefficients of f . For 0 ≤ s <∞ we define a fractional Sobolev space Hs
α,p(Ωh)

as the subspace of functions in L2(Ωh) such that

‖f‖2
Hs

α,p(Ωh) =
∑

j∈Z2

(1 + |j|2)s|f̂(j)|2 <∞. (2.17)

It is well-known that for integer values of s, these spaces correspond to spaces of functions
that are s times weakly differentiable, α-quasiperiodic in x1, periodic in x2, and that the
above norm is then equivalent to the usual Sobolev integral norms. In particular, H1

α,p(Ωh)
is a (strict) subspace of H1

α(Ωh).

Lemma 2.3.1 implies in particular that Kh has an integrable singularity and that the
Fourier coefficients K̂h(j) are well-defined. To compute these coefficients explicitly, we set

λj := k2 − (j1 + α)2 −
(
j2π

h

)2

for j ∈ Z2.

Theorem 2.3.2. Assume that k2 6= α2
j for all j ∈ Z. Then the Fourier coefficients of the

kernel Kh from (2.15) are given by

K̂h(j) =





cos(j2π) exp(iβj1
h)−1√

4πh λj
for λj 6= 0,

i
4j2

(
h
π

)3/2
else,

j =

(
j1
j2

)
∈ Z2.

Remark 2.3.3. Note that K̂h(j) is well-defined for λj = 0: Since k2 6= α2
n for all n ∈ Z, the

definition of λj implies that j2 6= 0 whenever λj = 0. For completeness, we include a proof,
noting that the case λj 6= 0 is also shown in [100, Section 7.1].
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Proof. It is easy to check that (∆ + k2)ϕj = λjϕj for j = (j1, j2)
⊤ ∈ Z2. If λj 6= 0, Green’s

second identity implies that

K̂h(j) =

∫

Ωh

Kh(x)ϕj(x) dx = λ−1
j lim

δ→0

∫

Ωh\Bδ

Gk(x)(∆ + k2)ϕj(x) dx

= λ−1
j lim

δ→0

[(∫

∂Ωh

+

∫

∂Bδ

)(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds (2.18)

+

∫

Ωh\Bδ

(∆ + k2)Gk(x)ϕj(x) dx

]
, (2.19)

where ν denotes the exterior normal vector to Bδ := {|x| < δ} and to Ωh. The last volume
integral vanishes since (∆ + k2)Gk = 0 in Ωh \Bδ for any δ > 0. Let us now consider the first
integral in (2.18). The boundary of Ωh consists of two horizontal lines Γ±h and two vertical
lines {(x1, x2) : x1 = ±π, −h < x2 < h}. Hence, the normal vector ν on these boundaries is
either (±1, 0)⊤ or (0,±1)⊤. Straightforward computations yield that

Gk(x1,±h) =
i

4π

∑

n∈Z

eiβnh

βn
eiαnx1 ,

∂Gk

∂x2
(x1,±h) = ∓ 1

4π

∑

n∈Z

eiβnheiαnx1, (2.20)

ϕj(x1,±h) =
1√
4πh

e−iαj1
x1 cos(j2π), and

∂ϕj

∂x2
(x1,±h) = − ij2π

h
ϕ(x1,±h). (2.21)

In consequence,
∫

Γ±h

(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds = −

∫

Γh

∂Gk

∂x2
ϕj ds +

∫

Γ−h

∂Gk

∂x2
ϕj ds

= −2

∫

Γh

∂Gk

∂x2
ϕj ds .

Using the above formulas for ∂Gk/∂x2 and ϕj in (2.20) and (2.21), respectively, we find that

−2

∫

Γh

∂Gk

∂x2
ϕj ds =

cos(j2π)√
4πh

eiβj1
h.

Computing the partial derivatives of Gk and ϕj with respect to x1 analogously to the above
computations, one finds that the integrals on the vertical boundaries of Ωh vanish due to the
α-quasiperiodicity of both functions. Thus, we obtain that

∫

∂Ωh

(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds =

cos(j2π)√
4πh

eiβj1
h. (2.22)

Now we consider the second integral in (2.18). From Lemma 2.3.1 we know that Gk(x) =
i
4H

(1)
0 (k|x|) + Ψ(x) where Ψ is a smooth function in Ωh. Obviously,

lim
δ→0

∫

∂Bδ

(
Ψ
∂ϕj

∂ν
− ∂Ψ

∂ν
ϕj

)
ds = 0.
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Using precisely the same arguments as in [102, Theorem 2.2.1] one shows that

lim
δ→0

∫

∂Bδ

(
Gk

∂ϕj

∂ν
− ∂Gk

∂r
ϕj

)
ds = − 1√

4πh
, (2.23)

see, e.g., [102, Theorem 2.2.1]. Combining (2.22) with (2.23) yields that

Kh(j) =
1√

4πhλj

(cos(j2π)eiβj1
h − 1) for λj 6= 0.

For λj = 0 we use de L’Hôspital’s rule to find that

Kh(j) = lim
γ→(j1+α)2+(j2π/h)2

cos(j2π) exp(ih
√
γ − (j1 + α)2) − 1√

4πh [γ − (j1 + α)2 − (j2π/h)2]
=

ih3/2

4π3/2j2
.

Note that the assumption that k2 6= α2
j for all j ∈ Z2 implies that λj and j2 cannot vanish

simultaneously.

Since the Fourier coefficients of Kh decay quadratically,

|K̂h(j)| ≤ C/(1 + (j1 + α)2 + (j2π/h)
2) for j ∈ Z2,

the convolution operator with kernel Kh is bounded from L2(Ωh) into H2
α,p(Ωh).

Proposition 2.3.4. Assume that k2 6= α2
j for all j ∈ Z. Then the convolution operator Kh,

defined by

(Khf)(x) =

∫

Ωh

Kh(x− y)f(y) dy for x ∈ Ωh,

is bounded from L2(Ωh) into H2
α,p(Ωh).

Proof. Since ϕj(x − z) =
√

4πhϕj(x)ϕj(z), we exploit the periodicity of z 7→ Kh(z)ϕj(z) to
find that

(Khϕj)(x) =

∫

Ωh

Kh(x− y)ϕj(y) dy =

∫

x−Ωh

Kh(z)ϕj(x− z) dz

=
√

4πhϕj(x)

∫

Ωh

Kh(z)ϕj(z) dz =
√

4πh K̂h(j)ϕj(x).

Let f ∈ L2(Ωh) with Fourier coefficients f̂(j) for j ∈ Z2, and set fN =
∑

|j|≤N f̂(j)ϕj . Then

KhfN =
∑

|j|≤N

f̂(j)Khϕj =
√

4πh
∑

|j|≤N

f̂(j)K̂h(j)ϕj

and
‖KhfN‖2

H2
α,p(Ω2h) ≤ 4

√
πh

∑

|j|≤N

[
1 + (j1 + α)2 + (j2π/h)

2
]2 |f̂(j)|2|K̂h(j)|2.
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From the computation of the coefficients K̂h(j) in Theorem 2.3.2 we know that there is C =
C(k) such that |K̂h(j)| ≤ C/(1+(j1+α)2+(j2π/h)

2). Hence ‖KhfN‖H2
α,p(Ω2h) ≤ C‖fN‖L2(Ω2h)

for a constant C independent of N ∈ N. Passing to the limit as N → ∞ shows the claim of
the proposition.

Recall that D ⊂ Ωh is the support of the contrast Q. Let us additionally introduce

Ω := (−π, π) × R

and for ℓ ∈ N, R > 0,

Hℓ
α(ΩR) := {u ∈ Hℓ(ΩR) : u = U |ΩR

for some α-quasiperiodic U ∈ Hℓ
loc(R

2)}.

Lemma 2.3.5. Assume that k2 6= α2
j for all j ∈ Z. Then the volume potential V defined by

(V f)(x) =

∫

D
Gk(x− y)f(y) dy , x ∈ Ω,

is bounded from L2(D) into H2
α(ΩR) for all R > 0.

Proof. Consider χ ∈ C∞(Ω) such that χ = 1 in D, 0 ≤ χ ≤ 1 in Ωh \ D and χ(x) = 0 for
|x2| > h. Then V g = χV g + (1 − χ)V g. Note that

(1 − χ)V g =

∫

D
(1 − χ)G(· − y)g(y) dy

is an integral operator with a smooth kernel, since the series in (2.14) converges absolutely
and uniformly for |x2| ≥ h > 0, as well as all its partial derivatives. In consequence, the
integral operator (1 − χ)V is bounded from L2(D) into H2

α(ΩR), since

∥∥∥∥
∂β1

∂x1

∂β2

∂x2
((1 − χ)V g)

∥∥∥∥
2

L2(ΩR)

≤
∫

ΩR

∫

D

∣∣∣∣
∂β1

∂x1

∂β2

∂x2
[(1 − χ(x))Gk(x− y)]

∣∣∣∣
2

dy dx ‖g‖2
L2(D)

for all β1,2 ∈ N such that β1 +β2 ≤ 2. It remains to show the boundedness of χV from L2(D)
into H2(Ωh). Let g ∈ L2(D) and consider the operator K2h from Proposition 2.3.4, mapping
L2(Ω2h) into H2

α,p(Ω2h) ⊂ H2
α(Ω2h),

(K2hg)(x) =

∫

D
K2h(x− y)g(y) dy for x ∈ Ω2h.

If x ∈ Ωh and y ∈ D, then |x2 − y2| ≤ 2h, that is, K2h(x− y) = Gk(x− y). Hence, K2hg = V g
in Ωh, and hence χK2hg = χV g in Ωh. Since χ is a smooth function, we conclude that χV is
bounded from L2(D) into H2

α(Ωh).

Note that the potential V f can be extended to an α-quasiperiodic function in H2
loc(R

2),
due to the α-quasiperiodicity of the kernel.
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Lemma 2.3.6. For g ∈ L2(D,C2) the potential w = divV g belongs to H1
α(Ωh) for all h > 0.

It is the unique radiating weak solution to ∆w + k2w = −divg in Ω, that is, it satisfies

∫

Ω
(∇w · ∇v − k2wv) dx = −

∫

D
g · ∇v dx (2.24)

for all v ∈ H1
α(Ω) with compact support, and additionally the Rayleigh expansion condi-

tion (2.12).

Proof. Lemma 2.3.5 and α-quasiperiodicity of the kernel of V imply that w is a function
in H1

α(Ωh) for all h > 0. It is sufficient to prove (2.24) for all smooth α-quasiperiodic test
functions v that are supported in {|x2| < C} for some C > 0 depending on v. It is well-known
that p = V g, a function in H2

α(Ωh) for all h > 0, is a weak solution to the Helmholtz equation,
that is, ∫

Ω
(∇pj · ∇∂jv − k2pj∂jv) dx = −

∫

D
gj∂jv dx

for j = 1, 2. An integration by parts shows that

∫

Ω
(∇divp · ∇v − k2divp v) dx = −

∫

D
g · ∇v dx ,

which implies (2.24) due to

div p = divV g = w.

Since the components of the potential p = V g satisfy the Rayleigh condition, a simple com-
putation shows that the divergence w = div p does also satisfy the latter condition.

It remains to prove uniqueness of a radiating solution to (2.24) when g vanishes. Then w
belongs to H1

α(Ωh) for any h > 0 and satisfies the variational formulation (2.13) for ε−1
r = 1

with right-hand side equal to zero. Choosing v = us in (2.13) and taking the imaginary part
of the equation shows that

∑

j: k2>α2
j

|k2 − α2
j |1/2

(
|û+

j |2 + |û−j |2
)

= 0.

We conclude that all the propagating modes {j ∈ Z : k2 > α2
j} vanish. Hence, w can be

extended by

w(x) =
∑

j:k2<α2
j

û±j e
iαjx1∓|α2

j−k2|1/2(x2∓h), x2 ≷ ±h, (2.25)

to a solution to the Helmholtz equation in all of Ω that decays exponentially as x2 → ±∞. The
unique continuation property [37] for the Helmholtz equation implies that both representations
of w in x2 ≷ ±h hold for all x ∈ Ω, which can only be true if all coefficients û±n vanish.
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Returning to the differential equation (2.10) for the scattered field us, let us set f =
Q∇ui ∈ L2(D,C2). (Recall that Q = ε−1

r − I2.) The variational formulation of (2.10) is

∫

Ω
(∇us · ∇v − k2usv) dx = −

∫

D
(Q∇us + f) · ∇v dx (2.26)

for all v ∈ H1
α(Ω) with compact support in Ω. From Lemma 2.3.6 we know that the radiating

solution to this problem is given by us = divV (Q∇us +f). Hence, we aim to find us : Ω → C

that belongs to H1
α(ΩR) for all R > 0, such that

us − divV (Q∇us) = divV (f) in Ω. (2.27)

2.4 G̊arding Inequalities in Weighted Sobolev Spaces

For scattering problems in free space and for scalar and positive contrast, the paper [73] inves-
tigates integral equations similar to (2.27) in weighted spaces. In this section we generalize the
results from [73] to anisotropic and possibly sign-changing coefficients in a periodic setting,
proving a G̊arding inequality for I−divV (Q∇·) in an anisotropically weighted α-quasiperiodic
H1-space.

From (2.27) it is obvious that the knowledge of u in D is sufficient to determine u in Ω\D
by integration. Thus, we define the operator L : f 7→ divV f that is bounded from L2(D,C2)
into H1

α(D) and consider the integral equation

u = L(Q∇u+ f) in H1
α(D). (2.28)

To study G̊arding inequalities for volume integral equations, we introduce suitable weighted
Sobolev spaces. To this end, we recall that the symmetric 2 × 2 matrix Re(Q) has pointwise
almost everywhere in D an eigenvalue decomposition Re(Q) = U∗ΣU with a diagonal matrix
Σ and an orthogonal matrix U . This decomposition can be used to define the absolute value
|Re(Q)| = U∗|Σ|U and the square root |Re(Q)|1/2 = U |Σ|1/2U∗, where the absolute value and
the square root are element-wise applied to the diagonal matrix Σ. The two eigenvalues λ1,2

of Re(Q) define

λmin(x) = min{|λ1(x)|, |λ2(x)|}, λmax(x) = max{|λ1(x)|, |λ2(x)|}, x ∈ D. (2.29)

We assume in the following that Re(Q) is pointwise either strictly positive or strictly negative
definite, such that we can assign a sign function sign(Re(Q)) ∈ L∞(Ω) to Re(Q), indicating
whether the eigenvalues of Re(Q) are positive or negative at a certain point. In the sequel,
we write Re(Q) > c in D (Re(Q) < c in D) to indicate that the eigenvalues λ1,2 are larger
than (less than) a constant c, almost everywhere in D.

We denote by H1
α,Q(D) the completion of H1

α(D) with respect to the norm ‖ · ‖H1
α,Q(D),

‖u‖2
H1

α,Q(D) := ‖
√

|Re(Q)|∇u‖2
L2(D,C2) + ‖u‖2

L2(D). (2.30)
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Since we assumed that supp(Re(Q)) = D, this norm is non-degenerate. Moreover, ‖u‖H1
α,Q(D)

is an equivalent norm in H1
α(D) provided that |Re(Q)| is bounded from below in D by some

positive constant. Note that the spectral matrix norm is denoted by | · |2. In general,

‖u‖H1
α,Q(D) ≤ (1 + ‖|

√
|Re(Q)||2‖L∞(D)) ‖u‖H1

α(D).

Note also that the norm of H1
α,Q(D) is linked to the sesquilinear form

aQ(u, v) =

∫

D

[
sign(Re(Q))Q∇u · ∇v + uv

]
dx , u, v ∈ H1

α,Q(D). (2.31)

Indeed, ‖u‖2
H1

α,Q(D)
= Re [aQ(u, u)] for u ∈ H1

α,Q(D). In consequence, the form aQ is non-

degenerate, that is, if aQ(u, v) = 0 for all v ∈ H1
α,Q(D), then u = 0.

If ImQ vanishes in D (that is, the values of x 7→ Q(x) are self-adjoint matrices), then aQ

is simply the inner product associated with the norm of H1
α,Q(D),

〈u, v〉H1
α,Q(D) =

∫

D

[
|Q|∇u · ∇v + uv

]
dx , u, v ∈ H1

α,Q(D).

Lemma 2.4.1. Assume that there exists C > 0 such that

|Im(Q(x))ξ| ≤ C|Re(Q(x))ξ| for almost every x ∈ D and all ξ ∈ C2. (2.32)

Then v 7→ L(Q∇v) is bounded on H1
α,Q(D).

Proof. Due to Theorem 2.3.5, L is bounded from L2(D,C2) into H1
α(D). Furthermore, v 7→

Q∇v is bounded from H1
α,Q(D) into L2(D,C2), since

‖Q∇u‖L2(D,C2) ≤ ‖Re(Q)∇u‖L2(D,C2) + ‖Im(Q)∇u‖L2(D,C2)

≤ ‖|Re(Q)|∇u‖L2(D,C2) + C‖Re(Q)∇u‖L2(D,C2)

≤ (1 + C)‖|
√

|Re(Q)||2‖L∞(D)‖u‖H1
α,Q(D).

(2.33)

Moreover, the embedding H1
α(D) ⊂ H1

α,Q(D) is bounded, as mentioned above. Hence, v 7→
L(Q∇v) is bounded on H1

α,Q(D).

Remark 2.4.2. Condition (2.32) is satisfied if the absolute values of the eigenvalues of ImQ
are pointwise bounded by Cλmin (recall from (2.29) that λmin is the minimum of the absolute
values of the eigenvalues of Re(Q)).

If u ∈ H1
α(D) ⊂ H1

α,Q(D) solves the Lippmann-Schwinger equation (2.28), then Lemma 2.4.1

implies that u solves the same equation in H1
α,Q(D). Since aQ is non-degenerate, solving the

Lippmann-Schwinger equation in H1
α,Q(D) is equivalent to solve

aQ(u− L(Q∇u+ f), v) = 0 for all v ∈ H1
α,Q(D). (2.34)

If u ∈ H1
α,Q(D) solves the latter variational problem for some f ∈ L2(D,C2), then u =

L(Q∇u + f) belongs to H1
α(D), due to (2.33) and since L is bounded from L2(D,C2) into

H1
α(D).
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Proposition 2.4.3. Assume that f ∈ L2(D,C2). Then any solution to the Lippmann-
Schwinger equation (2.28) in H1

α(D) is a solution in H1
α,Q(D) and vice versa.

Our aim is now to prove a (generalized) G̊arding inequality for the variational prob-
lem (2.34). The following lemma will turn out to be useful.

Lemma 2.4.4. Suppose that X and Y are Hilbert spaces. Let T1,2 be bounded linear operators
from X into Y and consider the sesquilinear form a : X × X → C, defined by a(u, v) =
〈T1u, T2v〉Y for u, v ∈ X. If one of the operators T1 and T2 is compact, then the linear
operator A : X → X, defined by 〈Au, v〉X = a(u, v) for all u, v ∈ X, is compact, too.

Proof. It is easily seen that A is a well-defined bounded linear operator. Obviously, |〈Au, v〉X | =
|a(u, v)| ≤ C‖T1u‖Y ‖T2v‖Y for u, v ∈ X. Assume that T1 is compact, and note that

‖Au‖X = sup
06=v∈X

|〈Au, v〉X |
‖v‖X

≤ C‖T1u‖Y .

If a sequence {un} converges weakly to zero in X, then {T1un} contains a strongly convergent
subsequence tending to zero in Y . Consequently, {Aun} also contains a strongly convergent
zero sequence, which means that A is compact. One can analogously derive the compactness
of T in case that T2 is compact, since a(u, v) = 〈T ∗

2 T1u, v〉 and T ∗
2 T1 is compact.

The next lemma proves G̊arding inequalities for the operator v 7→ v − L(Q∇v) using the
sesquilinear form aQ from (2.31). The second part of the claim uses a periodic extension
operator

E : H1
α(D) → H1

α(Ω), E(u)|D = u, E(u)|Ω\Ω2ρ
= 0. (2.35)

We now exemplary show how to construct such a periodic extension operator. We will only
construct E for the case that the boundary of D = {(x1, x2)

⊤ : x1 ∈ (−π, π), ζ−(x1) < x2 <
ζ+(x1)} is given by two 2π-periodic Lipschitz continuous functions ζ± : R → (−ρ, ρ) such
that ζ− < −2ρ/3, ζ+ > 2ρ/3, and |ζ±(x1)− ζ±(x′1)| ≤M |x1 − x′1| for x1, x

′
1 ∈ R. The general

case can be tackled using local patches as in [81, Appendix A], see also [4, Proof of Theorem
4.22].

For u ∈ H1
α(D), we define

v(x1, x2) =





u(x1, 2ζ+(x1) − x2) if ζ+(x1) < x2 < 2ζ+(x1) − ζ−(x1),

u(x1, x2) if ζ−(x1) < x2 < ζ+(x1),

u(x1, 2ζ−(x1) − x2) if 2ζ−(x1) − ζ+(x1) < x2 < ζ−(x1).

Note that 2ζ+(x1)− ζ−(x1) > 2ρ and that 2ζ−(x1)− ζ+(x1) < −2ρ. The periodicity of ζ and
α-quasi-periodicity of v in D imply that the extension belongs is also α-quasi-periodic. Ad-
ditionally, straightforward computations show that ‖v‖H1(Ω2ρ) ≤ max(

√
3, 2

√
2M)‖u‖H1

α(D).
To define the periodic extension operator, we use a smooth cut-off function χ : R → R,

that satisfies 0 ≤ χ ≤ 1, χ(x2) = 1 for |x2| ≤ ρ, and χ(2ρ) = 0 for |x2| ≥ 2ρ. Then we set

E(u) = w, w(x) =

{
χ(x2)v(x) for x ∈ Ω2ρ,

0 else.
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Note that the operator norm of E is

‖E‖H1
α(D)→H1

α(Ω2h) =
(
1 + ‖E‖2

H1
α(D)→H1

α(Ω2h\D)

)1/2
.

Theorem 2.4.5. Assume that D is a Lipschitz domain and that Q ∈ L∞(D,C2×2).
(a) If Re(Q) > 0 in D, then there exists a compact operator K+ on H1

α,Q(D) such that

Re [aQ(v − L(Q∇v), v)] ≥ ‖v‖2
H1

α,Q(D) − Re〈K+v, v〉H1
α,Q(D), v ∈ H1

α,Q(D). (2.36)

(b) If Re(Q) < −1, and if

‖E‖H1
α(D)→H1

α(Ω2h) < inf
D

|Re(Q)|1/2
2 , (2.37)

then there exists a constant C > 0 and a compact operator K− on H1
α,Q(D) such that

−Re [aQ(v − L(Q∇v), v)] ≥ C‖v‖2
H1

α,Q(D) − Re〈K−v, v〉H1
α,Q(D), v ∈ H1

α,Q(D). (2.38)

Remark 2.4.6. If Im(Q) = 0 in D, then both statements (2.36) and (2.38) are nothing
but standard G̊arding estimates: The form aQ defines an inner product on H1

α,Q(D), and,

e.g., (2.36) can be rewritten as Re
〈
v − L(Q∇v), v

〉
≥ ‖v‖2 − Re〈K+v, v〉 for v ∈ H1

α,Q(D).

Proof. (a) We start with the case Re(Q) > 0 in D. Let v ∈ H1
α,Q(D) and define w by

w = Li(Q∇v) = div

∫

D
Gi(· − y)[Q(y)∇v(y)] dy in Ω. (2.39)

Then w ∈ H1
α(Ω) decays exponentially to zero as |x2| tends to infinity. Moreover, ∆w − w =

−div(Q∇v) holds in Ω in the weak sense due to Lemma 2.3.6, that is,
∫

Ω

[
∇w · ∇ψ + wψ

]
dx = −

∫

D
Q∇v · ∇ψ dx for all ψ ∈ H1

α(Ω). (2.40)

Setting ψ = w, we find that −Re
∫
D Q∇v · ∇w dx = ‖w‖2

H1(Ω). Hence,

Re [aQ(v − Li(Q∇v), v)]

=

∫

D

[
Re(Q)∇v · ∇v + |v|2

]
dx − Re

∫

D

[
Q∇w · ∇v +wv

]
dx

=

∫

D

[
|
√

Re(Q)∇v|2 + |v|2 − Re(wv)
]
dx +

∫

Ω

[
|∇w|2 + |w|2

]
dx

≥ ‖v‖2
H1

α,Q(D) −
1

2
‖v‖2

L2(D) +
1

2

∫

D

[
|v|2 + |w|2 − 2Re(wv)

]
dx ,

where the last term on the right is positive. In consequence,

Re [aQ(v − L(Q∇v), v)] ≥ ‖v‖2
H1

α,Q(D) −
1

2
〈v, v〉L2(D) − Re [aQ((L− Li)(Q∇v), v)]
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for all v ∈ H1
α,Q(D). Due to Lemma 2.4.4 and Rellich’s embedding lemma there exists a

compact operator K1 on H1
α,Q(D) such that 〈v, v〉L2(D) = 2Re〈K1v, v〉H1

α,Q(D). Further, the

operator (L − Li)(Q∇·) is compact on H1
α(D) due to the smoothness of the kernel shown in

Appendix A. Hence the operator K2 defined by 〈K2v, v〉H1
α,Q(D) = aQ((L − Li)(Q∇v), v) is

compact on H1
α,Q(D) due to Lemma 2.4.4 and the boundedness of the embedding H1

α(D) ⊂
H1

α,Q(D). Setting K+ := K1 +K2, we obtain the claimed generalized G̊arding inequality.
(b) Now we consider the case that Re(Q) < −1 in D, and assume additionally that (2.37)

holds. As in the first part of the proof, the variational formulation (2.40) for w, defined as
in (2.39), yields that

−Re [aQ(v − Li(Q∇v), v)]

= Re

∫

D

[
Re(Q)∇v · ∇v − |v|2 −Q∇w · ∇v + wv

]
dx

= −
∫

D

[
|
√

|Re(Q)|∇v|2 + |v|2
]
dx + ‖w‖2

H1
α(Ω) + Re

∫

D
wv dx

≥ ‖w‖2
H1

α(Ω) − ‖v‖2
H1

α,Q(D) + Re

∫

D
wv dx .

We plug in ψ = −E(v) into (2.40) and take the real part of that equation, to find that

‖
√

|Re(Q)|∇v‖2
L2(D,C2) ≤ ‖w‖H1

α(Ω)‖E(v)‖H1
α(Ω)

≤ ‖E‖H1
α(D)→H1

α(Ω2h) ‖w‖H1
α(Ω)‖v‖H1

α(D)

≤ ‖E‖ ‖w‖H1
α(Ω)

(
‖|
√

|Re(Q)|−1|2‖L∞(D)‖v‖H1
α,Q(D) + ‖v‖L2(D)

)
.

For x ∈ D, the spectral matrix norm |
√

|Re(Q)|−1
(x)|2 of the inverse of

√
|Re(Q)|(x) equals

the reciprocal value λmin(x)
−1/2 (λmin,max are the smallest/largest eigenvalue, in magnitude,

of Re(Q), see (2.29)). Note that

‖|
√

|Re(Q)|−1|2‖−1
L∞(D)

= [sup
x∈D

λmin(x)
−1/2]−1 = inf

x∈D
λmin(x)

1/2 ≤ sup
x∈D

λmax(x)
1/2

≤ [1 + sup
x∈D

λmax(x)]
1/2 = [1 + ‖|Re(Q)|2‖L∞(D)]

1/2.

Next, we estimate that

‖v‖2
H1

α,Q(D) −
[
1 + ‖|Re(Q)|2‖L∞(D)

]
‖v‖2

L2(D) ≤ ‖v‖2
H1

α,Q(D) − ‖v‖2
L2(D)

≤ ‖E‖ ‖|
√

|Re(Q)|−1|2‖L∞(D) ‖w‖H1
α(Ω)(

‖v‖H1
α,Q(D) + [1 + ‖|Re(Q)|2‖L∞(D)]

1/2‖v‖L2(D)

)
.

Dividing by the term in brackets on the right, we obtain that

‖v‖H1
α,Q(D) −

[
1 + ‖|Re(Q)|2‖∞

]1/2‖v‖L2(D) ≤ ‖E‖ ‖|
√

|Re(Q)|−1|2‖L∞(D) ‖w‖H1
α(Ω). (2.41)
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Note that the constant

c := ‖E‖H1
α(D)→H1

α(Ω2h) ‖|
√

|Re(Q)|−1|2‖L∞(D)

is by assumption (2.37) less than one. If we set for a moment, C = [1 + ‖|Re(Q)|2‖∞]1/2

then (2.41) and Cauchy’s inequality imply that

c2‖w‖2
H1

α(Ω) ≥ ‖v‖2
H1

α,Q(D) + C2‖v‖2
L2(D) − 2C‖v‖H1

α,Q(D)‖v‖L2(D)

≥ (1 − ε2)‖v‖2
H1

α,Q(D) + C2(1 − 1/ε2)‖v‖2
L2(D), ε ∈ (0, 1).

In consequence,

− Re [aQ(v − L(Q∇v), v)] ≥
(

1 − ε2

c2
− 1

)
‖v‖2

H1
α,Q(D)

− Re

∫

D
wv dx + C2 ε

2 − 1

(cε)2
‖v‖2

L2(D) + Re [aQ((L− Li)(Q∇v), v)] (2.42)

for ε ∈ (0, 1). Since c < 1 there exists ε ∈ (0, 1) such that 1−ε2 > c2, that is, (1−ε2)/c2−1 >
0. The last three terms on the right-hand side of (2.42) can then be treated as compact
perturbations, in a similar way as in the proof of the first part.

Remark 2.4.7. (a) If Re(Q) < −1 in D, then solutions to div((I2 + Q)∇u) + k2u decay
exponentially in D. If not only the electric permittivity but also the magnetic permeability
changes sign, then the corresponding solution will not decay, yielding a possibly more inter-
esting metamaterial. Volume integral equations for such structures yield operator equations
combining L and V , see, e.g., [73]. Since V is compact on H1, the above G̊arding inequalities
extend to this setting. For simplicity, we restrict ourselves here to the non-magnetic case.

(b) In the last result, we assumed that the sign of Re(Q) is constant in D. It is possible
to treat sign changes of the contrast function in D, but the simple choice ψ = −E(v) that we
plugged in the second part of the proof into (2.40) has to be adapted.

It is a standard result that the G̊arding inequalities from the last theorem imply the
following consequences for the solvability of the integral equation and the scattering problem.

Theorem 2.4.8. Suppose that the assumptions of Theorem 2.4.5(a) or (b) hold, that the
boundedness condition (2.32) holds, and that the homogeneous equation v − L(Q∇v) = 0 in
H1

α,Q(D) has only the trivial solution. Then (2.28) has a unique solution for all f ∈ L2(D,C2).

If f = Q∇ui, then this solution can be extended by the right-hand side of (2.28) to a solution
to the variational formulation of the scattering problem (2.13). Especially, if the integral
equation is uniquely solvable in H1

α,Q(D), then (2.13) is uniquely solvable in H1
α(Ωh).
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2.5 G̊arding Inequalities in Standard Sobolev Spaces

The generalized G̊arding inequalities from the last section imply G̊arding inequalities in the
standard unweighted periodic Sobolev space H1

α(D) if the material parameter εr (or, equiv-
alently, the contrast), is isotropic. Hence, in this section we assume that the contrast is a
scalar real-valued function q, that is,

Q = qI2 in Ω.

As above, D is the support of q. As mentioned in the introduction this assumption is essential
for the proof of Lemma 2.5.1. Under this assumption we denote the weighted Sobolev spaces
from (2.30) by H1

α,q(D), and their norm by

‖u‖H1
α,q(D) :=

(
‖
√

|Re(q)|∇u‖2
L2(D,C2) + ‖u‖2

L2(D)

)1/2
.

Since q is real-valued, the form aq from (2.31) is the inner product of H1
α,q(D), and the

generalized G̊arding inequalities from the last section directly transform to standard ones.
Again, we assume that the sign of q is constant in D. Since we use regularity theory to prove
compactness of certain commutators, we will need to require more smoothness of q and D
compared to the results in the last section.

Lemma 2.5.1. Assume that D is a domain of class C2,1 and that µ ∈ C2,1(D) is 2π-periodic
in x1. Then T : H1

α(D) → H1
α(D) defined by Tv := div

[
µV (q∇(v/µ))−V (q∇v)

]
is a compact

operator.

Proof. We denote by µ∗ ∈ C2,1(Ωh) a periodic extension of µ ∈ C2,1(D) to Ωh (see (2.35) on
periodic extension operator). Then µ∗|D = µ. Consider the two α-quasiperiodic functions

w1 = V (q∇(v/µ)) and w2 = V (q∇v) in Ωh.

Both functions satisfy differential equations,

∆(µ∗w1) + k2(µ∗w1) =

{
−qµ∇(v/µ) + 2∇µ · ∇w1 + w1∆µ in D,

2∇µ∗ · ∇w1 + w1∆µ
∗ in Ωh \D,

and ∆w2 + k2w2 = −q∇v in D and ∆w2 + k2w2 = 0 in Ωh \D. Hence, w = µ∗w1 −w2 solves

∆w + k2w =

{
−qµ∇(1/µ)v + 2∇µ · ∇w1 + w1∆µ =: g1 in D,

w1∆µ
∗ + 2∇µ∗ · ∇w1 =: g2 in Ωh \D.

The functions g1 and g2 belong to H1
α(D) and H1

α(Ωh \D), respectively. Their norms in these
spaces are bounded by the norm of µ in C2,1(D) times the norm of v in H1

α(D). Due to
Lemma 2.3.5, the jump of the trace and the normal trace of w1,2 across ∂D vanishes. Hence,
the Cauchy data of w are also continuous across the boundary of D.
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Since the volume potential V is bounded from L2(D) into H2
α(D), it is clear that w

belongs to H2
α(D). The smoothness assumptions on D and µ moreover allow to apply elliptic

transmission regularity results [81, Theorem 4.20] to conclude that w is even smoother than
H2. These regularity results will in turn imply the compactness of the operator T : v 7→ divw
on H1

α(D). Since [81, Theorem 4.20] is formulated for a bounded domain, we briefly mention
how to extend this result to the periodic setting.

First, we extend w by periodicity to Ω′
h := (−3π, 3π) × (−h, h) and proceed analogously

with g1,2. Then we choose a finite open cover {Wj}J
j=1 consisting of smooth domains Wj ⊂ Ω′

h

such that ∂D ∩ Ω ⊂ ⋃J
j=1Wj. In these smooth domains, we can then apply [81, Theorem

4.20] to obtain that

‖w‖H3(Wj) ≤ C
[
‖w‖H1

α(Ωh) + ‖g1‖H1
α(D) + ‖g2‖H1

α(Ωh\D)

]
.

Combining this estimate with an interior regularity result (e.g., [81, Theorem 4.18]) in a set
W0 such that D ⊂ ∪J

j=0Wj (see Figure 2.3), we finally obtain that

‖w‖H3(D) ≤ C
[
‖w‖H1(Ωh) + ‖g1‖H1(D) + ‖g2‖H1(Ωh\D)

]
≤ C‖v‖H1

α(D).
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Ωh

W0

Wj

x1 = πx1 = −π

x2 = h

x2 = −h

Figure 2.3: The sets Wj cover the domain D (one period of the support of the contrast q).
These sets are used in the proof of Theorem 2.5.1.

The following lemma shows that the G̊arding inequalities in the weighted spaces H1
α,q(D)

can be transformed into estimates in H1
α(D) if, roughly speaking, the real-valued contrast q

is smooth enough and if (∇q)/q is bounded.

Theorem 2.5.2. Assume that the scalar contrast q is real-valued, that |q| ≥ q0 > 0 in D, and
that

√
|q| ∈ C2,1(D). Moreover, assume that D is of class C2,1.

(a) If q > 0 there exists a compact operator K+ on H1
α(D) such that

Re〈v − L(q∇v), v〉H1
α(D) ≥ ‖v‖2

H1
α(D) − Re〈K+v, v〉H1

α(D), v ∈ H1
α(D).
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(b) If q < 0, and if
‖E‖H1

α(D)→H1
α(Ω2h) < inf

D
|q|1/2, (2.43)

then there exists a compact operator K− on H1
α(D) such that

−Re〈v − L(q∇v), v〉H1
α(D) ≥ C‖v‖2

H1
α(D) − Re〈K−v, v〉H1

α(D), v ∈ H1
α(D),

where C is the constant from (2.38).

Proof. We only prove case (a) here, supposing that q > q0 > 0 in D. The proof for case (b)
is analogous, essentially one needs to replace

√
q by

√
|q|. For simplicity, let us from now on

abbreviate
µ :=

√
q ∈ C2,1(D).

Choose an arbitrary u ∈ H1
α(D) and consider v = u/µ. Our assumptions on q imply that v ∈

H1
α,q(D), since ‖v‖2

H1
α,q(D) ≤ (2 + ‖1/µ‖2

∞ + 2‖(∇µ)/µ‖2
∞)‖u‖2

H1
α(D). In Theorem 2.4.5(a) (see

also Remark 2.4.6) we showed that Re〈v−L(q∇v), v〉H1
α,q(D) ≥ ‖v‖2

H1
α,q(D)−Re〈K1v, v〉H1

α,q(D)

for a compact operator K1 on H1
α,q(D). This implies that

Re〈u− L(q∇u), u〉H1
α(D) ≥ ‖u‖2

H1
α(D) + Re〈K1(u/µ), u/µ〉H1

α,q(D)

+ Re〈K2u, ∇u〉L2(D,C2) + Re〈K3u, u〉L2(D),

with operators

K2u = ∇
[
div
[
µV (q∇(u/µ)) − V (q∇u)

]]
−∇

[
∇µ · V (q∇(u/µ))

]
+ (∇µ)L(q∇(u/µ))

and
K3u = q∇(1/µ) ·

[
∇L(q∇(u/µ))

]
+ L(q∇(u/µ))/µ− L(q∇u).

Lemma 2.5.1, the smoothness of q, and the boundedness of V and L from L2(D) and L2(D,C2)
into H2

α(D) and H1
α(D), respectively, show that K2 and K3 are compact and bounded

from H1
α(D) into L2(D), respectively. Then the compact embedding H1

α(D) ⊂ L2(D) and
Lemma 2.4.4 imply the claim.

2.6 Periodization of the Integral Equation

In this section we reformulate the volume integral equation

u− L(q∇u) = L(f) in H1
α(D) (2.44)

in a periodic setting and show the equivalence of the periodized equation and the original one.
The purpose of this periodization is that the resulting integral operator is, roughly speaking,
diagonalized by trigonometric polynomials. This allows to use fast FFT-based schemes to
discretize the periodized operator and iterative schemes to solve the discrete system. We
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also prove G̊arding inequalities for the periodized integral equation, which turns out to be
involved. These estimates are crucial to establish convergence of the discrete schemes later
on.

Recall that the periodized kernel Kh defined in (2.15) is not smooth at the boundaries
{x2 = ±h}. To prove G̊arding inequalities for the periodized integral equation, we additionally
need to smoothen the kernel. For R > 2h we choose a function χ ∈ C3(R) that is 2R-periodic,
that satisfies 0 ≤ χ ≤ 1 and χ(x2) = 1 for |x2| ≤ 2h, and such that χ(R) vanishes up to order
three, χ(j)(R) = 0 for j = 1, 2, 3 (compare Figure 2.4)).

(a)
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x2 = h

x2 = −h

x2 = R

x2 = −R
(b)

Figure 2.4: (a) The periodic function χ equals to one for |x2| ≤ 2h, and it vanishes at ±R up
to order three. In this sketch, h = 1 and R = 4. (b) The support of the contrast (shaded) is
included in Ωh, and R > 2h.

Let us define a smoothed kernel Ksm by

Ksm(x) = χ(x2)KR(x) for x ∈ R2, x 6=
[
2πm, 2Rn

]⊤
, m, n ∈ Z, (2.45)

where KR is the kernel from (2.15). Note that Ksm is α-quasiperiodic in x1, 2R-periodic in
x2, and a smooth function on its domain of definition (that is, away from the singularity).

Lemma 2.6.1. The integral operator Lp : L2(ΩR)2 → H1
α,p(ΩR) defined by

Lpf = div

∫

D
Ksm(· − y)f(y) dy

is a bounded operator.

Proof. We split the integral operator in two parts,

Lpf = div

∫

D
Ksm(· − y)f(y) dy = div

∫

D
χ(· − y2)KR(· − y)f(y) dy

= div

∫

D
KR(· − y)f(y) dy + div

∫

D
[χ(· − y2) − 1]KR(· − y)f(y) dy .

By Theorem 2.3.4, the integral operator with the kernel KR is bounded from L2(ΩR)2 into
H1

α(ΩR). Further, the definition of χ shows that χ(x2−y2)−1 = 0 for |x2| ≤ h and y ∈ D. The
kernel (χ− 1)KR is hence smooth in ΩR, and the corresponding integral operator is compact
from L2(ΩR)2 into H1

α(ΩR). Hence, Lp is bounded from L2(ΩR)2 into H1
α(ΩR). Periodicity

of the kernel Ksm in the second component of its argument finally implies that Lpf belongs
to H1

α,p(ΩR) ⊂ H1
α(ΩR).
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Let us now consider the periodized integral equation

u− Lp(q∇u) = Lp(f) in H1
α,p(ΩR). (2.46)

Theorem 2.6.2. (a) For f ∈ L2(ΩR)2, Lp(f) equals L(f) in Ωh.

(b) Equation (2.44) is uniquely solvable in H1
α(D) for any right-hand side f ∈ L2(D)2 if

and only if (2.46) is uniquely solvable in H1
α,p(ΩR) for any right-hand side f ∈ L2(ΩR)2.

(c) If q ∈ C2,1(D) and if f = q∇ui for a smooth α-quasiperiodic function ui, then any
solution to (2.46) belongs to Hs

α,p(ΩR) for any s < 3/2.

Proof. (a) For all x and y ∈ ΩR such that |x2 − y2| ≤ 2h it holds that Ksm(x − y) =
χ(x2 − y2)KR(x − y) = Gk(x − y). In particular, for x ∈ Ωh and y ∈ D ⊂ Ωh it holds that
|x2 − y2| ≤ 2h. Consequently,

(Lp(f))(x) = div

∫

D
Ksm(x− y)f(y) dy

= div

∫

D
Gk(x− y)f(y) dy = (L(f))(x), x ∈ Ωh.

(b) Assume that u ∈ H1
α(D) solves (2.44) and define ũ ∈ H1

α,p(ΩR) by ũ = Lp(q∇u + f)
(where we extended f by zero outside D). Since u solves (2.44), and due to part (a), we find
that ũ|D = u. Hence Lp(q∇ũ+ f) = Lp(q∇u+ f) in H1

α,p(ΩR), which yields that

ũ = Lp(q∇ũ+ f) in H1
α,p(ΩR). (2.47)

Now, if f ∈ L2(D)2 vanishes, then uniqueness of a solution to (2.44) implies that u ∈ H1
α(D)

vanishes, too. Obviously, ũ = Lp(q∇u) vanishes, and hence (2.47) is uniquely solvable. The
converse follows directly from (a).

(c) Assume that u ∈ H1
α,p(ΩR) solves (2.46) for f = q∇ui. Part (a) implies that the

restriction of u to Ωh solves u− L(q∇u) = L(q∇ui) in H1
α(Ωh). Hence, Lemma 2.3.5 implies

that u is a weak α-quasiperiodic solution to div((1 + q)∇u) + k2u = −div(q∇ui) in Ωh.
Transmission regularity results imply that u belongs to H2

α(D) ∩H2
α(Ωh \D), and it is well-

known that this implies that u ∈ Hs
α(Ωh) for s < 3/2 (see, e.g., [48, Section 1.2]). The function

u is even smooth in ΩR \ Ωh−ε: Recall that h was chosen such that D ⊂ Ωh. Hence, there is
ε > 0 such that D ⊂ Ωh−2ε, and

u(x) = Lp(q∇(u+ ui))(x) = div

∫

D
Ksm(x− y)q(y)∇(u(y) + ui(y)) dy , x ∈ ΩR \ Ωh−ε

shows that the restriction of u to ΩR \ Ωh−ε is a smooth α-quasiperiodic function, since the
kernel of the above integral operator is smooth.

Next we prove that the operator I −Lp(q∇·) from (2.46) satisfies a G̊arding inequality in
H1

α,p(ΩR).
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Theorem 2.6.3. Assume that
√
q ∈ C2,1(D), that q ≥ q0 > 0, and that D is of class C2,1.

Then there exists C > 0 and a compact operator K on H1
α,p(ΩR) such that

Re〈v − Lp(q∇v), v〉H1
α,p(ΩR) ≥ ‖v‖2

H1
α,p(ΩR) − Re〈Kv, v〉H1

α,p(ΩR), v ∈ H1
α,p(ΩR). (2.48)

Remark 2.6.4. The idea of the proof is to split the integrals defining the inner product on
the left of (2.48) into the three integrals on D, Ωh \ D, and on ΩR \ Ωh. For the term on
D one exploits the G̊arding inequalities from Theorem 2.5.2. The terms on Ωh \ D and on
ΩR \ Ωh can be shown to be compact or positive perturbations.

Proof. Let v ∈ H1
α,p(ΩR). First, we split up the integrals arising from the inner product on

the left of (2.48) into integrals on D, on Ωh \D, and on ΩR \Ωh. Second, we use the G̊arding
inequality from Theorem 2.5.2 to find that

Re〈v − Lp(q∇v), v〉H1
α,p(ΩR) ≥ ‖v‖2

H1
α(D) + 〈Kv, v〉H1

α(D) + ‖v‖2
H1

α(ΩR\D)

− Re
[
〈Lp(q∇v), v〉H1

α(ΩR\Ωh) + 〈Lp(q∇v), v〉H1
α(Ωh\D)

]
(2.49)

with a compact operator K on H1
α(D). Further, the evaluation of Lp(q∇·) on ΩR \Ωh defines

a compact integral operator mapping H1
α(D) to H1

α(ΩR \Ωh), because the (periodic) kernel of
this integral operator is smooth. (This argument requires the smooth kernel Ksm introduced
in the beginning of this section.) Lemma 2.4.4 then allows to reformulate the corresponding
term in (2.49) in the way stated in the claim. Unfortunately, the last term in (2.49) does not
yield a compact sesquilinear form and needs a more detailed investigation.

For x ∈ Ωh \ D and y ∈ D the kernel Ksm(x − y) equals Gk(x − y), which is a smooth
function of x ∈ Ωh \D and y ∈ D. Moreover, ∆Gk(x− y) + k2Gk(x− y) = 0 for x 6= y. Since
∇xGk(x− y) = −∇yGk(x− y), an integration by parts in Ωh \D shows that

L(q∇v)(x) =div

∫

D
Gk(x− y)q(y)∇v(y) dy

= −
∫

D
∇yGk(x− y) · ∇(qv)(y) dy +

∫

D
∇yGk(x− y) · ∇q(y)v(y) dy

= − k2

∫

D
Gk(x− y)q(y)v(y) dy − L(v∇q)(x)

−
∫

∂D

∂Gk(x− y)

∂ν(y)
γint(q)(y)γ(v)(y) ds for x ∈ Ωh \D,

where ν is the exterior normal vector to D. The integral operator appearing in the last term
of the last equation is the double layer potential DL,

DL(ψ) =

∫

∂D

∂Gk(· − y)

∂ν(y)
ψ(y) ds in Ω \ ∂D.

It is well-known that DL defines a bounded operator from H
1/2
α (∂D) into H1

α(ΩR \ D) and
into H1

α(D) (see, e.g., [4]). This implies that the jump of the double-layer potential

Tψ := [DLψ]∂D = γext(DLψ) − γint(DLψ)
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from the outside of D to the inside of D is a bounded operator on H
1/2
α (∂D). It is well-

known that in our case T is even a compact operator on H
1/2
α (∂D), since D is of class C2,1.

Additionally, the equality γint(DLψ) = −ψ/2 + Tψ holds for ψ ∈ H
1/2
α (∂D).

For v ∈ H1
α,p(ΩR),

−〈∇L(q∇v), ∇v〉L2(Ωh\D) = 〈k2∇V (qv) + ∇L(v∇q) + ∇DL(γint(qv)), ∇v〉L2(Ωh\D). (2.50)

The mapping properties of V shown in Lemma 2.3.5 and the smoothness of q imply that
v 7→ k2∇V (qv) + ∇L(v∇q) is compact from H1

α,p(ΩR) into L2(D). To finish the proof we
show that the last term in (2.50) can be written as a sum of a positive and compact term. For
simplicity, we define w = DL(γint(qv)) and note that −v/2 = [γint(w) − T (γint(qv))]/γint(q)
on ∂D. Since it plays no role whether the normal derivative ∂w/∂ν is taken from the inside
or from the outside of D, we skip writing down the trace operators for the normal derivative.
Then

〈∇DL(qv),∇v〉L2(Ωh\D) =

∫

Ωh\D
∇w · ∇v dx

= k2

∫

Ωh\D
wv dx −

∫

∂D

∂w

∂ν
v ds +

∫

Γh

∂w

∂x2
v ds −

∫

Γ−h

∂w

∂x2
v ds (2.51)

and the above jump relation shows that

−1

2

∫

∂D

∂w

∂ν
v ds =

∫

∂D

∂w

∂ν

γint(w)

γint(q)
ds −

∫

∂D

∂w

∂ν

T (γint(qv))

γint(q)
ds

=

∫

D
∇w · ∇

(
w

q

)
dx +

∫

D
∆w

w

q
dx −

∫

∂D

∂w

∂ν

T (γint(qv))

γint(q)
ds

=

∫

D

|∇w|2
q

dx +

∫

D

(
∇q−1 · ∇w − k2w

q

)
w dx −

∫

∂D

∂w

∂ν

T (γint(qv))

γint(q)
ds .

Combining the last computation with (2.51) shows that

〈
∇DL(qv|∂D), ∇v|Ωh\D

〉
L2(Ωh\D)

= 2

∫

D

|∇w|2
q

dx + k2

∫

Ωh\D
wv dx (2.52)

+ 2

∫

D

(
∇q−1 · ∇w − k2w

q

)
w dx − 2

∫

∂D

∂w

∂ν

T (γint(qv))

γint(q)
ds +

(∫

Γh

−
∫

Γ−h

)
∂w

∂x2
v ds .

Using Lemma 2.4.4, all the terms in the second line of the last equation can be rewrit-
ten as 〈K1v, v〉H1

α,p(ΩR) where K1 is a compact operator on H1
α,p(ΩR). The mapping v 7→∫

D |∇w|2/q dx is obviously positive if q > 0. In consequence, (2.49) and (2.50) show that (2.48)
holds.
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2.7 Discretization of the Periodic Integral Equation

In this section we firstly consider the discretization of the periodized integral equation (2.46)
in spaces of trigonometric polynomials. If the periodization satisfies certain smoothness con-
ditions and if uniqueness of solution holds, convergence theory for the discretization is a
consequence of the G̊arding inequalities shown in Theorem 2.6.3. Secondly we present fully
discrete formulas for implementing a Galerkin discretization of the Lippmann-Schwinger in-
tegral equation (2.46). It is also the simplicity of this method that makes it interesting for us,
since we are ultimately interested in using this code to generate data for the inverse scattering
problem.

For N ∈ N we define Z2
N = {j ∈ Z2 : −N/2 < j1,2 ≤ N/2} and TN = span{ϕj : j ∈ Z2

N},
where ϕj ∈ L2(ΩR) are the α-quasiperiodic basis functions from (2.16). Note that the union
∪N∈NTN is dense in H1

α,p(ΩR). The orthogonal projection onto TN is

PN : H1
α,p(ΩR) → TN , PN (v) =

∑

j∈Z2
N

v̂(j)ϕj ,

where v̂(j) denotes as above the jth Fourier coefficient. The next proposition recalls the
standard convergence result for Galerkin discretizations of equations that satisfy a G̊arding
inequality, see, e.g. [103, Theorem 4.2.9], combined with the regularity result from Theo-
rem 2.6.2(c).

Proposition 2.7.1. Assume that q satisfies the assumptions of Theorem 2.6.3 and that (2.28)
is uniquely solvable. Then (2.46) has a unique solution u ∈ H1

α,p(ΩR), and then there is
N0 ∈ N such that the finite-dimensional problem to find uN ∈ TN such that

〈uN − Lp(q∇uN ), wN 〉H1
α,p(ΩR) = 〈f,wN 〉H1

α,p(ΩR) for all wN ∈ TN (2.53)

possesses a unique solution for all N ≥ N0 and f ∈ H1
α,p(ΩR). In this case

‖uN − u‖H1
α,p(ΩR) ≤ C inf

wN∈TN

‖wN − u‖H1
α,p(ΩR) ≤ CN−s‖u‖H1+s

α,p (ΩR), 0 ≤ s < 1/2,

with a constant C independent of N ≥ N0.

Remark 2.7.2. The convergence rate increases to s+ 1 − t if one measures the error in the
weaker Sobolev norms of Ht

α,p(ΩR), 1/2 < t < 1. This could be shown using adjoint estimates
(see, e.g. [103, Section 4.2] for the general technique). However, the (linear) rate saturates at
t = 1/2, since the integral operator is not bounded on Ht

α,p(ΩR) for t < 1/2, that is, the L2-
error decays with a linear rate. We do not present proofs for these error estimates since those
are rather technical. However, we will later on present numerical results that show exactly the
indicated rates.

Similar to the proof of Lemma 2.3.4 we have
∫

ΩR

Ksm(· − y)ϕj(y) dy =
√

4πR K̂sm(j)ϕj for all j ∈ Z2.
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which implies that PN commutes with the periodic convolution operator Lp, that is,

PNLp(f) = Lp(PNf) for all f ∈ L2(ΩR)2.

Hence applying PN to the infinite-dimensional problem (2.46), we obtain the discrete problem
to find uN ∈ TN such that

uN − Lp(PN (q∇uN )) = Lp(PNf). (2.54)

Fast methods to evaluate the discretized operator in (2.54) exploit that the application of Lp to
a trigonometric polynomial in TN can be explicitly computed using an α-quasiperiodic discrete
Fourier transform that we call FN . This transform maps point values of a trigonometric
polynomial ϕj (see (2.16)) to the Fourier coefficients of the polynomial. If we denote by a • b
the componentwise multiplication of two matrices, and if t := (2π/N, 4πR/N)⊤, then

v̂N (j) =

√
4πR

N2

∑

l∈Z2
N

vN (l • t) exp
(
− 2πi (j1 + α, j2)

⊤ · l/N
)
, j ∈ Z2

N .

This defines the transform FN mapping (vN (j • t))j∈Z2
N

to (v̂N (j))j∈Z2
N

. The inverse F−1
N is

explicitly given by

vN (j • t) =
1√
4πR

∑

l∈Z2
N

v̂N (l) exp
(
2πi (l1 + α, l2)

⊤ · j/N
)
, j ∈ Z2

N .

Both FN and its inverse are linear operators on C2
N = {(cn)n∈Z2

N
: cn ∈ C}. The restriction

operator RN,M from C2
N to C2

M , N > M , is defined by RN,M (a) = b where b(j) = a(j)
for j ∈ Z2

M . The related extension operator EM,N from C2
M to C2

N , M < N , is defined by
EM,N (a) = b where b(j) = a(j) for j ∈ Z2

M and b(j) = 0 else.

Lemma 2.7.3. The Fourier coefficients of q∂ℓuN , ℓ = 1, 2, are given by

(q̂∂ℓuN (j))j∈Z2
N

= R3N,NF3N

[
F−1

3N

(
E2N,3N (q̂2N (j))j∈Z2

N

)
• F−1

3N

(
EN,3N (wℓ(j)ûN (j))j∈Z2

N

)]

where w1(j) = i(j1 + α) and w2(j) = ij2π/R for j ∈ Z2.

Proof. For uN ∈ TN , j ∈ Z2, and ℓ = 1, 2,

4πR q̂∂ℓuN (j) = 4πR

∫

ΩR

q∂ℓuNϕj dx = 4πR
∑

m∈Z2
N

∂̂ℓuN (m)

∫

ΩR

qϕjϕm dx (2.55)

=
∑

m∈Z2
N

∂̂ℓuN (m)

∫

ΩR

q(x)e−i[(j1−m1)x1+(j2−m2)x2π/R] dx

= (4πR)1/2
∑

m∈Z2
N

∂̂ℓuN (m)q̂(j −m).
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If j ∈ Z2
N , then the coefficient q̂∂ℓuN (j) merely depends on q̂(m) for m ∈ Z2

2N . Hence,

q̂∂ℓuN (j) = ̂q2N∂ℓuN (j) for j ∈ Z2
N . Obviously, q2N∂ℓuN belongs to T3N . Hence, the Fourier

coefficients of q2N∂ℓuN are given by F3N applied to the grid values of this function at j • h,
j ∈ Z2

3N . The grid values of ∂̂ℓuN are given by F−1
3N (EN,3N (∂̂ℓuN (j)j∈Z2

N
), and the grid values

of q2N can be computed analogously. Finally, taking a partial derivative with respect to x1

or x2 of u yields a multiplication of the jth Fourier coefficient û(j) by i(j1 + α) and ij2π/R,
respectively.

In Lemma 2.3.4 we computed the Fourier coefficients of the kernel KR. The kernel Ksm

used to define the periodized potential Lp is the product of KR with the smooth function
χ (see (2.45)). Hence, the Fourier coefficients of Ksm are convolutions of the K̂R(j) with

χ̂(j2) = (4πR)−1/2
∫ R
−R exp(−ij2πx2/R)χ(x2) dx2 ,

K̂sm(j) =
1

(4πR)1/2

∑

m∈Z2
N

K̂R(j1,m2)χ̂(j2 −m2), j ∈ Z2.

The latter formula can be seen by a computation similar to (2.55). Note that χ is a smooth
function, which means that the Fourier coefficients χ̂ in the last formula are rapidly decreasing,
that is, the truncation the last series converges rapidly to the exact value. The convolution
structure of Lp finally shows that

(̂Lpf)(j) = (4πR)1/2 K̂sm(j)
[
i(j1 + α)f̂1(j) +

ij2π

R
f̂2(j)

]
, f =

(
f1

f2

)
∈ L2(ΩR)2. (2.56)

The finite-dimensional operator uN 7→ Lp(PN (q∇uN )) can now be evaluated in O(N log(N))
operations by combining the formula of Lemma 2.7.3 with (2.56). The linear system (2.54)
can then be solved using iterative methods. Whenever one uses iterative techniques, one
would of course like to precondition the linear system. The usual multi-grid preconditioning
technique for integral equations of the second kind (see, e.g., [109]) does not apply here, since
the integral operator is not compact. For the numerical experiments presented in the next
section, we simply used an unpreconditioned GMRES algorithm.

2.8 Numerical Experiments

In the numerical experiments 2.8.1–2.8.3 we confirm the theoretical convergence statement
from Proposition 2.7.1 and Remark 2.7.2 by computing the relative error between the ap-
proximate solution and the reference solution. These experiments are carried out for different
periodic structures and contrasts. In the last example of this section we present the conver-
gence of the method using an error indicator resulting from the so-called energy conservation.
All the computations in the following experiments were done on a machine with an Intel Xeon
3.20 GHz processor and 12 GB memory using MATLAB. Recall that we aim to compute the
scattered field for an incident field ui(x1, x2) = exp(ik(cos(θ)x1 − sin(θ)x2)) with incident
angle θ.
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2.8.1 Strip structure with constant contrast

In this example we consider the periodic structure as a strip (compare Figure 2.5) where the
contrast q is a positive constant.
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Figure 2.5: Strip structure with constant contrast plotted in (−π, 3π) × (−2, 2).

More precisely, the support D = (−π, π) × (−0.75, 0.75) and ΩR = (−π, π) × (−2, 2). We
approximate the solution in TN whereN = 2n for n = 6, ..., 11. For this example we choose k =
π/2 and θ = π/4, the contrast q equals 2 in D. For this setting one can explicitly compute the
scattered field. The GMRES iteration is stopped when the relative residual is less than 10−5.
In the Figure 2.6 we show the relative error between the numerical solution and the analytical
solution in the norms Hs

α,p(ΩR) where s = 0, 0.5, 1. The relative error measured in the norm
H1

α,p(ΩR) fits quite well to the theoretical statement in Proposition 2.7.1. Furthermore, if
one measures the relative error in the norm Hs

α,p(ΩR) for s = 0 and s = 0.5 the experiment
confirms the statement of Remark 2.7.2. To give an impression about computation times,
the results in Figure 2.6 took about 0.3, 1.1, 3.7, 21.2, 131.7 and 463.7 seconds for N = 2n,
n = 6, . . . , 11, respectively.

2.8.2 Strip structure with piecewise constant contrast

The structure in this example is again a strip where D = (−π, π) × (−0.75, 0.75), ΩR =
(−π, π)× (−2, 2), k = π/2 and θ = π/4 (the same to Experiment 2.8.1). However we consider
the case that q is piecewise constant (compare Figure 2.7),

q =

{
1 in D1 := (−π/2, π/2) × (0, 0.75),

2 in D \D1.

Since the analytical solution for this case is not available, we hence compute the relative
error between the numerical solution uN for N = 2n, n = 4, . . . , 9 and the reference solution
uM for M = 3072. Similar to the last example we compute the relative error in the norms
Hs

α,p(ΩR) where s = 0, 0.5, 1. Recall that D1 and D are rectangles, the Fourier coefficients of
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Figure 2.6: Scattering from strip structure with constant contrast. Relative error of the
approximated solution uN for N = 2n, n = 6, ..., 11 and the analytical solution measured in
Hs

α,p-norm for scattering from a strip. Circles, kites, triangles correspond to s = 1, s = 0.5
and s = 0, respectively. The continuous line and the dotted lines indicate the convergence
order 0.5 and 1, respectively.
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Figure 2.7: Strip structure with constant contrast plotted in (−π, 3π) × (−2, 2). The subdo-
main D1 where q = 1 is in green.

the contrast q in this case can be computed explicitly via the formula

√
4πRq̂(j) = (q1 − q2)

∫

D1

e−ij1x1−ij2πx2/R dx + q2

∫

D
e−ij1x1−ij2πx2/R dx , j ∈ Z2,

Similar to Experiment 2.8.1 the tolerance for GMRES solver is 10−5 for computing the ap-
proximate solution uN for N = 2n, n = 4, . . . , 9. For the reference solution u3072, the GMRES
tolerance is 10−8 and computation time is 3076 seconds.
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Figure 2.8: Scattering from a strip structure with piecewise constant contrast. Relative error
of the approximate solution uN for N = 2n, n = 4, ..., 9 and the reference solution u3072

measured in Hs
α,p-norm. Circles, kites, triangles correspond to s = 1, s = 0.5 and s = 0,

respectively. The continuous line and the dotted lines indicate the convergence order 0.5 and
1, respectively.

2.8.3 Periodic sinusoidal structure

In this example we again confirm the theoretical convergence statement from Proposition 2.7.1
and Remark 2.7.2 for a periodic sinusoidal structure (compare Figure 2.9). More precisely,
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Figure 2.9: The periodic sinusoidal structure plotted in (−π, 3π) × (−2, 2).
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D =

{
(x1, x2)

⊤ ∈ R2 : −π < x1 < π,
sin(2x1) − 1

2
< x2 <

sin(2x1) + 1

2

}
,

ΩR = (−π, π) × (−2, 2), q(x1, x2) =
e−x2

3
, (x1, x2)

⊤ ∈ D.

We choose k = π/2 and θ = π/4. As in Experiment 2.8.2 we compute the relative error
between the approximate solution uN for N = 2n, n = 4, . . . , 9 and the reference solution
uM for M = 3072 in the norms Hs

α,p(ΩR) where s = 0, 0.5, 1. The tolerance for the GMRES
iteration is 10−5 when computing approximate solution uN for N = 2n, n = 4, . . . , 9. For
the reference solution u3072, the GMRES tolerance is 10−8 and computation time is 35327
seconds. In this case the Fourier coefficients of the contrast q can be approximated using
Green’s formula

√
4πRq̂(j) =

∫

ΩR

q(x)e−ij1x1−ij2πx2/R dx =
1

3

∫

D
e−ij1x1−(1+ij2π/R)x2 dx

=
−1

3(1 + ij2π/R)

∫

∂D
ν2(x)e

−ij1x1−(1+ij2π/R)x2 ds

=
−1

3(1 + ij2π/R)

∫ 2π

0
e−ij1t−(1+ij2π/R)(sin(2t)/2+0.5) dt

+
1

3(1 + ij2π/R)

∫ 2π

0
e−ij1t−(1+ij2π/R)(sin(2t)/2−0.5) dt .

For the computations in this example we approximate these integrals with the fourth-order
convergent composite Simpson’s rule.

2.8.4 Periodic rectangle-shaped structure

This last example presents the convergence of the method using an error indicator resulting
from the energy conservation for scattering from rectangle shapes that are periodically aligned
(compare Figure 2.11). The rectangle support D = (−2.5, 2.5) × (−0.75, 0.75), and ΩR =
(−π, π) × (−2, 2). The wave number k equals 2.5, we consider the contrast q given by

q(x1, x2) = 2 cos(x1)
2(x2 + 0.75) for (x1, x2)

⊤ ∈ D.

Recall the Rayleigh coefficients û±j of the scattered field from (2.12). For the incident field,

we define similar coefficients by ûi
j =

∫ π
−π u

i(x1,−h) exp(−iαjx1) dx1 for j ∈ Z. Then Green’s
formula applied to (2.9) and the Rayleigh expansion condition show that

∑

j:k2>β2
j

βj(|û+
j |2 + |û−j + ûi

j |2) = β0. (2.57)
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Figure 2.10: Scattering from periodic sinusoidal structure. Relative error of the approximate
solution uN for N = 2n, n = 4, ..., 9 and the reference solution u3072 measured in Hs

α,p-norm.
Circles, kites, triangles correspond to s = 1, s = 0.5 and s = 0, respectively. The continuous
line and the dotted lines indicate the convergence order 0.5 and 1, respectively.

x
1

x 2

 

 

−2 0 2 4 6 8

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.11: The periodic rectangle-shaped structure plotted in (−π, 3π) × (−2, 2).

Here we call (2.57) the equation of energy conservation. For an incident wave of direction
(cos(θ),− sin(θ))⊤, the sums

Etra(θ) :=
∑

j:k2>β2
j

βj(|û−j + ûi
j |2)/β0, Eref(θ) :=

∑

j:k2>β2
j

βj |û+
j |2/β0

correspond to transmitted and reflected wave energies. In this experiment, we use θ 7→
|1−Etra(θ)−Eref(θ)| as an error indicator for the numerical solution. The Fourier coefficients
of the contrast q can be explicitly computed using integration by parts. Assume that r, ρ are
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the sizes of the rectangle in x1- and x2-dimension, respectively. We have

q̂(j) = A(j1)B(j2)/
√

4πR for j = (j1, j2) ∈ Z2,

where

A(j1) =





sin(rj1)
[
(2 cos(2r)+1)/j1−8/j3

1

]
−4 cos(j1r) sin(2r)/j2

1

1−4/j2
1

j1 ∈ Z \ {0,±2},
sin(4r)/4 + sin(2r) + r j1 = ±2,

sin(2r)/2 + r j1 = 0,

B(j2) =

{
2ρiR
j2π exp(−ij2πρ/R) − 2iR2

(j2π)2
sin(j2πρ/R) j2 6= 0,

2ρ2 j2 = 0.

In these experiments the angle θ are sampled at 200 points uniformly distributed on the
interval [0.2, 1.2]. For Figure 2.12(a) the scattered field is approximated in TN where N = 28

and the computation time for solving for one fixed incident angle θ is about 2 seconds. In
Figure 2.12(b) we check the energy conservation error for different N where the tolerance for
the GMRES iteration is 10−8. As Figure 2.12(b) shows, the error of the computed Rayleigh
coefficients corresponding to propagating modes converges with order 1. This also shows an
instability around Rayleigh frequencies, where k2 = (α + n)2, that is, π = |π cos(θ) + n| for
some n ∈ Z. We can see that the error curves in Figure 2.12(b) have a bend at the angle
θ = arccos(1 − 1/(2.5)) ≈ 0.927.
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Figure 2.12: (a) Reflected and transmitted energy curves versus the angles θ of the incident
field ui. (b) The error curves |1 −Etra(θ)−Eref(θ)| for different discretization parameters N
versus the angles θ of the incident field ui.



Chapter 3

The Factorization Method for

Periodic Inverse Scattering

Abstract: Chapter 3 concerns the shape identification problem of diffraction gratings
from measured spectral data involving scattered electromagnetic waves in TM mode.
In particular, we consider diffraction gratings consisting of a penetrable periodic dielec-
tric mounted on a metallic plate (compare Figure 3.1). Here we model the spectral
measurements which are the Rayleigh sequences of the scattered field by the near field
operator N (see (3.15)). The aim of the inverse problem then is to identify the pe-
riodic scatterer when N is given. Using special plane incident fields introduced in [7]
(see (3.3)), we study the Factorization method as a tool for identifying the periodic
media. First, we factorize the near field operator N in Theorem 3.3.3. Second, we
prove in Lemma 3.4.3 the necessary properties of the middle operator in the factor-
ization. This allows us to apply the version of range identity theorem studied in [78]
(see Theorem 3.4.1) to provide a simple imaging criterion (3.31). Finally, numerical
experiments with different material parameters and periodic structures are given in
Section 3.5 to examine the performance of the method.

3.1 Introduction

This chapter develops a Factorization method for the inverse scattering problem from diffrac-
tion gratings constituted by penetrable periodic dielectrics mounted on a metallic plate. As
in Chapter 1 the diffraction gratings are supposed to be periodic in one direction and invari-
ant in the perpendicular direction, and that we consider the TM mode problem in half-space
setting with Neumann condition on the boundary of the metallic plate. We consider here the
problem in a half-space setting instead of the full-space setting in Chapter 1 is to simplify the
presentation of the technique. This technique is then extended to the full-space problem for
the case of Maxwell’s equations in Chapter 4. The study of our model problem is motivated
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by the important applications of periodic structures in modern optical technologies such as
diffractive optical filters and organic light-emitting diodes, and non-destructive testing of such
structures.

As outlined in the introduction, while the papers [7, 8] studied the Factorization method
for detecting impenetrable periodic layers with Dirichlet and impedance boundary conditions,
the author in [79] considered imaging of penetrable periodic interfaces between two dielectrics
in two dimensions. In the present chapter, the Factorization method is studied as a tool
for identifying shape of diffraction gratings in the TM case. Note that the papers [7, 8, 79]
investigated the Factorization method for the TE case. Furthermore, the periodic structures
that we consider here are different from those studied in the latter cited papers. The measured
data in the periodic inverse problem are coefficients of evanescent and propagating modes in
the radiation condition. Those data are modelled by the so-called near field operator N which
is central of the Factorization method. Given the operator N , the inverse problem then is
to identify the shape of the diffration grating. Using the Factorization method we provide
a sufficient and necessary criterion for a point z in the periodic scattering support using the
eigensystem of the operator N♯ = |Re(N)|−Im(N). To do that one also needs results on range
identities where factorizing the near field operator in a suitable way plays an important role.
Moreover, to examine the performance of the method, a number of numerical experiments are
given for several kinds of diffraction gratings motivated by the ones presented in [49].

Our analysis extends approaches in [7, 72, 78] to the TM mode problem with Neumann
boundary condition on the metallic plate. We use the special plane incident fields introduced
in [7] which allows us to suitably factorize the near field operator. Note that this approach
avoids the use of (in some sense) unphysical complex-conjugated incident fields, as in [8,100],
that are certainly non-trivial to produce in practice. To obtain the necessary properties of
the middle operator for the application of range identity theorem we use the approach in [72]
for obstacle inverse scattering of electromagnetic waves. Further, a modified version of the
method studied in [78] treats the case that the imaginary part of the middle operator in the
factorization is just semidefinite.

The chapter is organized as follows: In Section 3.2 we set up and derive the Fredholm
property of the direct problem. Section 3.3 is for the factorization of the near field operator of
the corresponding inverse problem. We derive the necessary properties of the middle operator
and a characterization of the periodic structure in Section 3.4. Finally, Section 3.5 is devoted
to the study of numerical experiments.

3.2 The Direct Scattering Problem

We consider the TM case, discussed in the previous chapter, of electromagnetic scattering
problems from isotropic periodic dielectric materials mounted on a metallic plate with Neu-
mann boundary condition. Thus we have a problem set on R2

+ := {(x1, x2)
⊤, x2 > 0} as
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follows

div(ε−1
r ∇u) + k2u = 0 in R2

+, (3.1)

ε−1
r

∂u

∂ν
= 0 on {x2 = 0}, (3.2)

where k > 0 is the wave number, ν is the outward unit normal vector to the boundary
{x2 = 0}. We assume that the material parameter ε−1

r is a scalar function in L∞(R2
+) with

Re(ε−1
r ) ≥ c > 0, Im(ε−1

r ) ≤ 0, and that ε−1
r is 2π-periodic in x1 and equals one outside the

grating. We consider the downward propagating incident field ui, i.e.,

ui(x) = eikx·d = eik(x1d1+x2d2), |d| = 1, and d2 < 0. (3.3)

When the incident field ui illuminates the diffraction grating, there arises a scattered field
us such that the total field u = ui + us satisfies (3.1)–(3.2). Since ∆ui + k2ui = 0 we can
write (3.1)–(3.2) as

div(ε−1
r ∇us) + k2us = −div(q∇ui) in R2

+, (3.4)

ε−1
r

∂us

∂ν
= −ε−1

r

∂ui

∂ν
on {x2 = 0}, (3.5)

where q is the contrast defined by

q := ε−1
r − 1.

Similarly to the problem setting in Chapter 1, we find the α-quasiperiodic scattered field us

to the direct problem (3.4)–(3.5), satisfying the Rayleigh expansion radiation condition

us(x) =
∑

n∈Z

ûne
i(αnx1+βn(x2−h)) for x2 > h, (3.6)

where (ûn)n∈Z are the Rayleigh sequences given by

ûn :=
1

2π

∫ 2π

0
us(x1, h)e

−iαnx1 dx1 , n ∈ Z.

Note that we also require that the series in (3.6) converges uniformly on compact subsets of
{x2 > h}. Due to the periodicity of the problem (3.4)–(3.6), we can consider it in one period
Ω := (−π, π) × (0,∞). Set Γρ = (−π, π) × {ρ} for ρ ≥ 0, we rewrite our problem as follows:
Find us : R2 → C such that

div(ε−1
r ∇us) + k2us = −div(q∇ui) in Ω, (3.7)

ε−1
r

∂us

∂ν
= −ε−1

r

∂ui

∂ν
on Γ0, (3.8)

and us satisfies the radiation condition (3.6).
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As mentioned in Chapter 1, the variational solution theory for the problem in full-space
setting is well-known. For the convenience of the reader we give a variational formulation of
problem (3.6)–(3.8) as an adaptation from the works for the full-space problem. Recall that
Ω = (−π, π) × (0,∞), and define

Ωh := (−π, π) × (0, h), for h > sup{x2 : (x1, x2)
⊤ ∈ supp(q)},

H1
α(Ωh) := {u ∈ H1(Ωh) : u = U |Ωh

for some α-quasiperiodic U ∈ H1
loc(R

2
+)}.

Γh

D

Ωh

−π π x1

x2

Γ0

Figure 3.1: Geometric setting for inverse scattering problem of TM-polarized electromagnetic
waves from periodic dielectrics mounted on a metallic plate.

The variational formulation has to couple equations (3.7)–(3.8) with the radiation con-
dition (3.6). To this end we first define the trace space Hs

α(Γh) (s ∈ R) which includes
α-quasiperiodic functions φ satisfying

‖φ‖2
Hs

α(Γh) =
∑

n∈Z

(1 + n2)s/2|φ̂n|2 <∞, φ̂n =
1

2π

∫ 2π

0
φ(t)e−iαnt dt .

Then we can define the Dirichlet-to-Neumann operator T+ from H
1/2
α (Γh) into H

−1/2
α (Γh)

given by

T+(φ) = i
∑

n∈Z

βnφ̂ne
iαnx1 .

It is easy to check that T+ is a bounded operator. Now multiplying (3.7) by v ∈ H1
α(Ωh),

using Green’s identities we formally have
∫

Ωh

(ε−1
r ∇us · ∇v − k2usv) dx −

∫

Γh∪Γ0

ε−1
r

∂us

∂ν
v ds = −

∫

Ωh

q∇ui · ∇v dx . (3.9)

Note that the boundary terms on {x1 = ±π} vanish due to the α-quasiperiodicity. By
replacing ∂us/∂ν by T+(us) on the boundary term Γh, and taking into account the Neumann
boundary condition (3.8), we obtain the following variational problem: Given the incident
field ui, find us ∈ H1

α(Ωh) such that for all v ∈ H1
α(Ωh) it holds

Bp(u
s, v) :=

∫

Ωh

(ε−1
r ∇us · ∇v − k2usv) dx −

∫

Γh

vT+(us) ds

= −
∫

Ωh

q∇ui · ∇v dx −
∫

Γ0

ε−1
r

∂ui

∂ν
v ds . (3.10)
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We can see that Bp is a bounded sesquilinear form on H1
α(Ωh) because of the fact that

∣∣∣∣
∫

Γh

vT+(us) ds

∣∣∣∣ ≤ ‖v‖
H

1/2
α (Γh)

‖T+(us)‖
H

−1/2
α (Γh)

≤ C‖v‖H1
α(Ωh)‖us‖

H
1/2
α (Γh)

≤ C‖v‖H1
α(Ωh)‖us‖H1

α(Ωh) (3.11)

Theorem 3.2.1. The sesquilinear form Bp is of Fredholm type on H1
α(Ωh).

Proof. It is sufficient to show that Bp satisfies G̊arding inequality on H1
α(Ωh). To this end,

we first use the Plancherel identity to compute

−Re

(∫

Γh

uT+(u) ds

)
= −Re

(
i
∑

j∈Z

βj |ûj |2
)

=
∑

j:α2
j>k2

(α2
j − k2)1/2|ûj |2 ≥ 0

Recall that the material parameter ε−1
r satisfies Re(ε−1

r ) ≥ c > 0. Taking the real part of the
sesquilinear form we implies that

Re(Bp(u, u)) ≥ c‖u‖2
H1

α(Ωh) −
∫

Ωh

(Re(ε−1
r ) + k2)|u|2 dx ,

and since H1
α(Ωh) is compactly embedded in L2(Ωh) (this is Rellich’s compact embedding

lemma in the periodic setting), Bp satisfies G̊arding inequality.

Fredholm theory [81] implies that existence of solution for problem (3.10) follows from
uniqueness of solution. For strategies to establish uniqueness of solution by geometric condi-
tions, one can refer to [22,66]. More generally, analytic Fredholm theory establishes uniqueness
of this problem for all but possibly a discrete set of wave numbers k. In this work we assume
that the wave number k is such that uniqueness of solution holds.

3.3 The Near Field Operator and Its Factorization

In this section we set up the corresponding periodic inverse problem and we introduce the near
field operator. Moreover, studying the factorization of the near field operator is an important
step for constructing a factorization method.

Recall that αj = α + j and βj = (k2 − α2
j )

1/2 6= 0 for j ∈ Z. To obtain data for the
factorization method we use the incident fields as α-quasiperiodic plane waves

ui
j = ei(αjx1−βjx2) + ei(αjx1+βjx2), j ∈ Z. (3.12)

The incident fields satisfy the Neumann boundary condition ∂ui
j/∂ν = 0 on Γ0. These incident

fields ui
j have two parts, a downward propagating waves exp(i(αjx1−βjx2)), and exp(i(αjx1+

βjx2)), which is an upward propagating wave. This choice for the corresponding incident
fields for Dirichlet boundary condition has been studied in [7] regarding the analysis of the
factorization method for periodic Dirichlet obstacles.

Denote by D the support of the contrast q in one period Ω = (−π, π) × (0,∞). The
following assumption is necessary for our later frame work.
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Assumption 3.3.1. We assume that D ⊂ R2 is open and bounded with Lipschitz boundary
and that there exists a positive constant c such that Re(q) ≥ c > 0 and Im(q) ≤ 0 almost
everywhere in D.

Since the incident fields ui
j satisfies the Neumann boundary condition for all j ∈ Z, re-

placing ui by ui
j in the variational form (3.10) implies

∫

Ωh

(ε−1
r ∇us · ∇v − k2usv) dx −

∫

Γh

vT+(us) ds = −
∫

D
q∇ui

j · ∇v dx , v ∈ H1
α(Ωh).

We consider a more general form as follows: Given f ∈ L2(D)2, find u ∈ H1
α(Ωh) such that,

for all v ∈ H1
α(Ωh),

∫

Ωh

(ε−1
r ∇u · ∇v − k2uv) dx −

∫

Γh

vT+(u) ds = −
∫

D
q/
√

|q|f · ∇v dx . (3.13)

Since the unique solvability of (3.13) has been discussed in Section 2, we then can define a
solution operator

G : L2(D)2 → ℓ2(Z)

which maps f to the Rayleigh sequence (ûj)j∈Z of u ∈ H1
α(Ωh), solution to (3.13).

Due to the linearity of problem (3.10), a linear combination of several incident fields will
lead to a corresponding linear combination of resulting scattered fields. We obtain such a
linear combination using sequences (aj)j∈Z ∈ ℓ2(Z) and define the corresponding operator by

H(aj) =
√

|q|
∑

j∈Z

aj

βjwj
∇ui

j, where wj :=

{
i, k2 > α2

j ,

exp(−iβjh), k2 < α2
j ,

(3.14)

where dividing by βjwj essentially makes our later computations easier.

In our inverse problem the data measured are the Rayleigh sequences (3.6). We know
that only the propagating modes are measurable far away from the structure. However, we
need in this framework all the modes to be able to uniquely determine the periodic structure
(the finite number of propagating modes is not enough). Hence the operator that models
measurements from the periodic inhomogeneous medium of scattered fields caused by the
incident fields (3.14) is referred to be the near field operator, denoted by N . We define
N : ℓ2(Z) → ℓ2(Z) to map a sequence (aj)j∈Z to the Rayleigh sequences of the scattered field
generated by the incident field H(aj) defined in (3.14), i.e.

[N(aj)]n := (ûn)n∈Z, (3.15)

where u ∈ H1
α(Ωh) is the radiating solution to (3.13) for the source f = H(aj). Then from

the definition of the solution operator G we have

N = GH. (3.16)
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The inverse scattering problem is now to reconstruct the supportD of the contrast q = ε−1
r −1

when the near field operator N is given. We solve this problem using the factorization method.
Factorizing the near field operator is one of the important steps of this method. Before doing
that, in the next lemma, we show some properties of operator H : ℓ2(Z) → L2(D)2 and its
adjoint H∗. We rely on the sequence

w∗
j :=

{
exp(−iβjh), k2 > α2

j ,

i, k2 < α2
j .

Lemma 3.3.2. The operator H : ℓ2(Z) → L2(D)2 is compact and injective. Its adjoint
H∗ : L2(D)2 → ℓ2(Z) satisfies

H∗(f) = 4π(w∗
j ûj)j∈Z,

where ûj is the Rayleigh sequence of the radiating variational solution u ∈ H1
α(Ωh) to ∆u +

k2u = div(
√

|q|f) in Ωh and ∂u/∂ν = 0 on Γ0, i.e.
∫

Ωh

(∇u · ∇v − k2uv) dx −
∫

Γh

vT+(u) ds =

∫

D

√
|q|f · ∇v dx , for all v ∈ H1

α(Ωh). (3.17)

Proof. We have

∫

D
H(aj)f dx =

∑

j∈Z

aj

βjwj

∫

D

√
|q|∇ui

j · f dx =

〈
(aj),

(∫

D

√
|q|f ·

(
∇ui

j

βjwj

)
dx

)〉

ℓ2(Z)

Note that wj = −wj and βj = βj if k2 > α2
j but wj = wj and βj = −βj else, respectively.

Therefore
(

ui
j

βjwj

)
=





− 1
βjwj

(
e−i(αjx1−βjx2) + e−i(αjx1+βjx2)

)
, k2 > α2

j

− 1
βjwj

(
e−i(αjx1+βjx2) + e−i(αjx1−βjx2)

)
, k2 < α2

j

= − 1

βjwj

(
e−i(αjx1−βjx2) + e−i(αjx1+βjx2)

)
.

For the unique solvability of (3.17), the Fredholm property can be obtained as in the last
section. However uniqueness of solution of this problem can be deduced for all wave numbers
k. Indeed, for f = 0, choosing smooth test functions v in (3.17) vanishing on Γh and Γ0

imply that ∆u + k2u = 0 in L2(Ωh). Then multiplying the latter equation by v ∈ H1
α(Ωh),

using the Green’s first indentity, and adding the resulting expression from the variational
formulation (3.17), we find that

∫

Γ0

v
∂u

∂ν
ds +

∫

Γh

v
∂u

∂ν
ds −

∫

Γh

vT+(u) ds = 0, for all v ∈ H1
α(Ωh).

Choose functions v which vanish on Γh we conclude that ∂u/∂ν = 0 in H
−1/2
α (Γ0). Then

using classical approach of separation of variables we conclude that the problem ∆u+k2u = 0

in L2(Ωh) and ∂u/∂ν = 0 in H
−1/2
α (Γ0) only has a trivial solution.
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Now assume that u solves (3.17) and recall that u|Γh
=
∑

l∈Z
ûl exp(iαlx1). Denote vj :=

ui
j/(βjwj). Using the second Green’s identity we have

∫

D

√
|q|f · ∇vj dx =

∫

Ωh

(∇u · ∇vj − k2uvj) dx −
∫

Γh

vjT
+(u) ds

= −
∫

Ωh

(∆vj + k2vj)udx +

∫

Γh

(
u
∂vj

∂x2
− vjT

+(u)

)
ds

=
∑

l∈Z

ûl

∫

Γh

(
eiαlx1

∂vj

∂x2
− iβle

iαlx1vj

)
ds .

Further,

vj|Γh
= − 1

βjwj
(eiβjh + e−iβjh)e−iαjx1 ,

∂vj

∂x2
|Γh

= − i

wj
(eiβjh − e−iβjh)e−iαjx1 .

Thus we find
∫

D

√
|q|f · ∇vj dx = 2i

ûj

wj

∫

Γh

e−iβjh ds =

{
4πûje

−iβjh, k2 > α2
j ,

4πiûj , k2 < α2
j .

Hence we have shown that H∗(f) = 4π(w∗
j ûj)j∈Z. Since the operations f 7→ u|Γh

and u|Γh
7→

(ûj) are bounded from L2(D)2 into H
1/2
α (Γh) and from H

1/2
α (Γh) into ℓ2(Z), respectively, and

since (w∗
j )j∈Z is a bounded sequence, H∗ is a bounded operator. Moreover, elliptic regularity

results [81] imply that u is H2-regular in a neighborhood of Γh, thus, f 7→ u|Γh
is a compact

operation from L2(D)2 into H
1/2
α (Γh) and H∗ is a compact operator. Therefore, H is compact

as well.
To show that H is injective it is sufficient to show that H∗ has dense range, which follows

from the fact that all sequences (δjl)l∈Z belong to the range ofH∗ (by definition, the Kronecker
symbol δjl equals one for j = l and zero otherwise). To see this, we note that exp(i(αjx1 +
βj(x2 − h)) has Rayleigh sequence (δjl)l∈Z. Set ϕj(x1, x2) = exp(i(αjx1 + βj(x2 − h)). We
choose χ1, χ2 ∈ C∞

per(Ω) = {χ ∈ C∞(Ω) : χ is 2π-periodic in x1} such that
∫
D χ2 dx 6= 0,

χ2 vanishes on a neighborhood of boundary Γ0 and Ω \D, and χ1 vanishes for x2 ∈ Ω \D,
(1 − χ1)ϕj satisfies Neumann condition on Γ0. We set

Φj = (1 − χ1)ϕj −
∫
D(1 − χ1)ϕj dx + 1

k2

∫
∂D ∂ϕj/∂ν ds∫

D χ2 dx
χ2. (3.18)

Then the Rayleigh sequences of Φj and ϕj are equal and

k2

∫

D
Φj dx +

∫

∂D

∂ϕj

∂ν
ds = 0. (3.19)

Due to Lax-Milgram theorem, there exists a unique solution v ∈ H1
⋄ (D) := {v ∈ H1(D) :∫

D v dx = 0} to the equation
∫

D

√
|q|∇v · ∇ψ dx =

∫

D
(∇Φj · ∇ψ − k2Φjψ) dx −

∫

∂D

∂ϕj

∂ν
ψ ds
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for all ψ ∈ H1
⋄ (D). This equation still holds for all the test function ψ ∈ H1(D) due to (3.19).

From (3.18) we know that Φj = ϕj in Ω \D which implies ∆Φj + k2Φj = 0 in Ω \D. Thus
Green’s first identity shows that

∫

Ωh\D
(∇Φj · ∇ψ − k2Φjψ) dx −

∫

Γh

T+(Φj)ψ ds = −
∫

∂D

∂ϕj

∂ν
ψ ds

for all ψ ∈ H1
α(Ωh). Adding the two last equations we obtain

∫

Ωh

(∇Φj · ∇ψ − k2Φjψ) dx −
∫

Γh

T+(Φj)ψ ds =

∫

D

√
|q|∇v · ∇ψ dx

for all ψ ∈ H1
α(Ωh). Now we set f = ∇v ∈ L2(D)2 with an extension zero outside D which

shows that H∗(f) = 4π(w∗
j δjl)l∈Z. By a simple scaling this implies that (δjl)l∈Z ∈ Rg(H∗) for

any j ∈ Z.

Now we show a factorization of the near field operator N in the following theorem. For
simplicity we define the sign of q by

sign(q) :=
q

|q| in Ω.

Theorem 3.3.3. Let W : ℓ2(Z) → ℓ2(Z) be defined by W (aj) = (−4πw∗
jaj)j∈Z. The operator

T : L2(D)2 → L2(D)2 is defined by Tf = sign(q)(f +
√

|q|∇v), where v ∈ H1
α(Ωh) is the

solution to (3.13). Then near field operator N satisfies

WN = H∗TH.

Proof. Let us first note that W is a bounded operator on ℓ2(Z) since |w∗
j | = 1 for all j ∈ Z.

For simplicity, we denote by Q the operator that maps f ∈ L2(D)2 to the Rayleigh sequence
(ûj)j∈Z of u ∈ H1

α(Ωh), radiating variational solution to ∆u + k2u = div(
√

|q|f) in Ωh

and ∂u/∂ν = 0 on Γ0. This operator already appeared in Lemma 3.3.2, where we showed
that H∗ = −WQ. By definition of the solution operator G we have Gf = (ûj)j∈Z where
u ∈ H1

α(Ωh) is a radiating variational solution to div(ε−1
r ∇u) + k2u = −div(q/

√
|q|f) in Ωh

and ε−1
r ∂u/∂ν = 0 on Γ0. This means that ∆u + k2u = −div(

√
|q| sign(q)(f +

√
|q|∇u)) in

Ωh and ∂u/∂ν = 0 on Γ0, thus

Gf = −Q(sign(q)(f +
√
|q|∇u)) = −(QT )f.

Recall that we have N = GH which implies

WN = WGH = −WQTH = H∗TH.
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3.4 Characterization of the Periodic Support

To give a characterization of the periodic support of the contrast q we need an abstract result
on range identities. For the convenience of the reader, we give a rather complete proof, see
also in [72,78]. First, we introduce real and imaginary part of a bounded linear operator. Let
X ⊂ U ⊂ X∗ be a Gelfand triple, that is, U is a Hilbert space, X is a reflexive Banach space
with dual X∗ for the inner product of U , and the embeddings are injective and dense. Then
the real and imaginary part of a bounded operator T : X∗ → X are defined in accordance
with the corresponding definition for complex numbers,

Re(T ) :=
1

2
(T + T ∗), Im(T ) :=

1

2i
(T − T ∗).

Theorem 3.4.1. Let X ⊂ U ⊂ X∗ be a Gelfand triple with Hilbert space U and reflexive
Banach space X. Furthermore, let V be a second Hilbert space and F : V → V , H : V → X
and T : X → X∗ be linear and bounded operators with

F = H∗TH

We make the following assumptions:
a) H is compact and injective.
b) There exists t ∈ [0, 2π] such that Re(eitT ) has the form Re(eitT ) = T0 + T1 with some
positive definite selfadjoint operator T0 and some compact operator T1 : X → X∗.
c) ImT is non positive on X, i.e., 〈ImTφ, φ〉 ≤ 0 for all φ ∈ X.
Moreover, we assume that one of the two following conditions is fullfilled
d) T is injective and the number t from b) does not equal π/2 or 3π/2.
e) ImT is negative on the (finite dimensional) null space of Re(eitT ), i.e., for all φ 6= 0 such
that Re(eitT )φ = 0 it holds 〈ImTφ, φ〉 < 0.

Then the operator F♯ := |Re(eitF )|− ImF is positive definite and the ranges of H∗ : X∗ →
V and F

1
2

♯ : V → V coincide.

Proof. We first recall from [69] that it is sufficient to assume that X = U is a Hilbert space
and that H has dense range in U . The reduction to the Hilbert space case follows from the

introduction of the positive definite root T
1/2
0 : X → U , see, e.g., [99, Theorem 12.33], since

F = H∗TH = (H∗T 1/2
0 )(T

−1/2
0 TT

−1/2
0 )(T

1/2
0 H) =: H̃∗T̃ H̃.

If the range Rg(H) ofH is not dense in U , we replace U by its closed subspace Rg(H) using the
orthogonal projector P from U to Rg(H). Since PH = H, the factorization F = H∗P ∗TPH
holds and all the assumptions of the theorem are preserved. Hence, we can assume that
X = U and that H has dense range. We first recall from [69] that it is sufficient to assume
that X = U is a Hilbert space and that H has dense range in U . The reduction to the Hilbert

space case follows from the introduction of the positive definite root T
1/2
0 : X → U , see, e.g.,

[99, Theorem 12.33], since

F = H∗TH = (H∗T 1/2
0 )(T

−1/2
0 TT

−1/2
0 )(T

1/2
0 H) =: H̃∗T̃ H̃.
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If the range Rg(H) ofH is not dense in U , we replace U by its closed subspace Rg(H) using the
orthogonal projector P from U to Rg(H). Since PH = H, the factorization F = H∗P ∗TPH
holds and all the assumptions of the theorem are preserved. Hence, we can assume that
X = U and that H has dense range.

The factorization of F implies that Re(eitF ) = H∗Re(eitT )H is compact and selfadjoint.
By the spectral theorem for such operators, there exists a complete orthonormal eigensystem
(λj , ψj)j∈N of Re(eitF ). In consequence, the spaces

V + = span{ψj : λj > 0} and V − = span{ψj : λj ≤ 0}

are invariant under Re(eitF ) and satisfy V = V + ⊕ V −. We set U− = HV −.
In the next step we show that U− is finite dimensional. The operator T1 = Re(eitT )− T0

is a selfadjoint and compact operator, we denote by (µj , φj)j∈N an eigensystem of T1. By
assumption of T0, there exists α > 0 such that 〈T0ϕ,ϕ〉 ≥ α‖ϕ‖2 for all ϕ ∈ U . We set
W+ = span{φj : µj > −α}, W− = span{φj : µj ≤ −α} and note thatW− is finite dimensional
since µj → 0. Let now φ = Hψ ∈ U− with (unique) decomposition φ = φ+ + φ−, φ± ∈ W±.
Since ψ ∈ V −,

0 ≥ 〈Re(eitF )ψ,ψ〉 = 〈Re(eitT )Hψ,Hψ〉 = 〈Re(eitT )(φ+ + φ−), φ+ + φ−〉
= 〈Re(eitT )φ+, φ+〉 + 〈Re(eitT )φ−, φ−〉 ≥ c‖φ+‖2 − ‖Re(eitT )‖‖φ−‖2,

thus, ‖φ‖2 = ‖φ+‖2 + ‖φ−‖2 ≤ C‖φ−‖2. This shows that the mapping φ 7→ φ− is boundedly
invertible from U− into W−. Consequently, U− is finite dimensional.

Denseness of the range of H implies that the sum HV + + U− is dense in U . Since U− is
a finite dimensional and therefore complemented subspace, we can choose a closed subspace
U+ of HV + such that the (non-orthogonal) sum U = U+ ⊕ U− is direct. Let moreover
U0 := HV + ∩ U− be the intersection of HV + and U−, we will show that U0 is contained in
the kernel of Re(eitT ). We denote PU± : U → U± the canonical projections, that is, every
φ ∈ U has the unique decomposition φ = PU+φ + PU−φ. Both operators PU± are bounded
and PU+ − PU− is an isomorphism, since

(PU+ − PU−)2 = P 2
U+ + P 2

U− − PU+PU− − PU−PU+ = PU+ + PU− = Id .

From the factorization Re(eitF ) = H∗Re(eitT )H and the definition of U± we obtain that
H∗Re(eitT )(U−) = Re(eitF )(V −) ⊂ V −. Note also that, by definition we have U+ ⊂ HV +.
In consequence, for φ− ∈ U− and ψ+ ∈ V + we have

0 = 〈H∗(Re(eitT ))φ−, ψ+〉 = 〈Re(eitT )φ−,Hψ+〉 = 〈φ−, (Re(eitT ))Hψ+〉. (3.20)

We conclude that Re(eitT )U− ⊂ (HV +)⊥ = (U+ ⊕ U0)⊥ ⊂ (U+)⊥ and, Re(eitT )U+ ⊂
Re(eitT )HV + ⊂ (U−)⊥. Indeed, for φ+ ∈ HV + there is a sequence ψ+

n ∈ V + such that
Hψ+

n → φ+ and Re(eitT )Hψ+
n ⊂ (U−)⊥ by (3.20), thus, Re(eitT )φ+ ⊂ (U−)⊥. For φ0 ∈

HV + ∩ U−, these mapping properties of Re(eitT ) imply that Re(eitT )φ0 is orthogonal both
to U− and U+. Therefore Re(eitT )φ0 = 0 and we conclude that U0 = HV +∩U− is contained
in the kernel of Re(eitT ). This inclusion allows to show a factorization of F♯ in the next step.
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Let ψ ∈ V and ψ± be its orthogonal projection on V ±. Then

|Re(eitF )|ψ = H∗Re(eitT )H(ψ+ − ψ−)

= H∗Re(eitT )(PU+Hψ+ + PU−Hψ+ − PU+Hψ− − PU−Hψ−)

= H∗Re(eitT )(PU+Hψ + 2 PU−Hψ+

︸ ︷︷ ︸
∈U0⊂ker(Re(eitT ))

−PU+Hψ)

= H∗Re(eitT )(PU+ − PU−)Hψ

This factorization of |Re(eitF )| yields a factorization of F♯,

F♯ = |Re(eitF )| − ImF = H∗(Re(eitT )(PU+ − PU−) − ImT )H = H∗T♯H,

where T♯ = Re(eitT )(PU+−PU−)−ImT . Due to the fact that 〈Re(eitT )(PU+−PU−)Hφ,Hφ〉 =
〈|Re(eitF )|φ, φ〉 ≥ 0 for all φ ∈ V and denseness of the range of H in U we conclude that
Re(eitT )(PU+ − PU−) is nonnegative on U . Since T♯ is therefore a nonnegative operator, we
can apply the inequality [69, Estimate (4.5)] for bounded nonnegative operators,

〈T♯ψ,ψ〉 ≥
1

‖T♯‖
‖T♯ψ‖2, ψ ∈ U (3.21)

Now, we show that assumption d) implies assumption e). Under the assumption d), let φ
belong to the null space of Re(eitT ) and suppose that 〈ImTφ, φ〉 = 0. We need to show that
this implies that φ = 0. By definition of the real part of an operator,

eitTφ+ e−itT ∗φ = 0 (3.22)

Furthermore, −ImT is a bounded nonnegative operator so the application of (3.21) to −ImT
yields

0 = 〈−ImTφ, φ〉 ≥ 1

‖ImT‖‖ImTφ‖
2, φ ∈ U,

hence ‖ImTφ‖ = 0 and Imφ = 0. By definition of the imaginary part, this is to say that
Tφ − T ∗φ = 0. Combine this equation with (3.22) yields that (1 + ei2t)Tφ = 0. Since
t ∈ [0, 2π] \ {π

2 ,
3π
2 }, this implies Tφ = 0 and φ = 0 by assumption d). We have hence proven

that 〈ImTφ, φ〉 < 0 for all 0 6= φ ∈ ker(Re(eitT )). This is precisely assumption e) which is
considered next.

Assuming e), we will show that T♯ is injective. Suppose that T♯φ = 0, then we have
〈Re(eitT )(PU+ − PU−)φ, φ〉 − 〈ImTφ, φ〉 = 0. Boths terms on the left are nonnegative so we
have {

〈Re(eitT )(PU+ − PU−)φ, φ〉 = 0
〈ImTφ, φ〉 = 0

(3.23)

From this and application of (3.21) to Re(eitT )(PU+ −PU−) yield Re(eitT )(PU+ −PU−)φ = 0.
Moreover, due to the selfadjointness we obtain

Re(eitT )(PU+ − PU−) = (PU+ − PU−)∗Re(eitT )
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and since PU+ − PU− is an isomorphism so is (PU+ − PU−)∗. Consequently, Re(eitT )φ = 0.
Assumption e) now implies that 〈ImTφ, φ〉 < 0 if φ 6= 0. However, we showed, in (3.23), that
〈−ImTφ, φ〉 = 0, that is, φ = 0 and therefore T♯ is injective.

Hence, by assumption d) or e), T♯ is an injective Fredholm operator on index 0 (Fredholm-
ness is due to assumption b)) and hence boundedly invertible. By (3.21) we obtain

〈T♯ψ,ψ〉 ≥
1

‖T♯‖
‖T♯ψ‖2 ≥ C‖ψ‖2 for all ψ ∈ U

Now, as T♯ has been show to be positive definite, the square root T
1/2
♯ of T♯ is also positive

definite on U , see, e.g., [99], hence the inverse T
−1/2
♯ is bounded and we can write

F♯ = F
1/2
♯

(
F

1/2
♯

)∗
= H∗T♯H =

(
H∗T 1/2

♯

)(
H∗T 1/2

♯

)∗

However, if two positive operators agree, then the ranges of their square root agree, as the
following well known lemma shows.

Lemma 3.4.2. (Lemma 2.4 in [69]). Let V , U1 and U2 be Hilbert spaces and Aj : Uj → V ,
j = 1, 2, bounded and injective such that A1A

∗
1 = A2A

∗
2. Then the ranges of A1 and A2

coincide and A−1
1 A2 is an isomorphism from U2 onto U1.

Setting A1 = F
1/2
♯ and A2 = H∗T 1/2

♯ , the last lemma states that the ranges of F
1/2
♯

and H∗T 1/2
♯ agree and that F

−1/2
♯ H∗T 1/2

♯ is an isomorphism from U to V . Since T
1/2
♯ is an

isomorphism on U , we conclude that the range of H∗T 1/2
♯ equals the range of H∗ and that

F
−1/2
♯ H∗ : U → V is bounded with bounded inverse.

For an application of the Theorem 3.4.1, we need to study properties of the middle operator
T in the factorization of Theorem 3.3.3

Lemma 3.4.3. Suppose that the contrast q satisfies the Assumption 3.3.1 and that the direct
scattering problem (3.13) is uniquely solvable for any f ∈ L2(D)2. Let T : L2(D)2 → L2(D)2

be the operator defined as in Theorem 3.3.3, i.e.

Tf = sign(q)(f +
√

|q|∇u),

where u ∈ H1
α(Ωh) is the radiating variational solution to div(ε−1

r ∇u)+k2u = −div(q/
√

|q|f)
in Ωh and ε−1

r ∂u/∂ν = 0 on Γ0, i.e., for all ψ ∈ H1
α(Ωh),

∫

Ωh

(ε−1
r ∇u · ∇ψ − k2uψ) dx −

∫

Γh

ψT+(u) ds = −
∫

D
q/
√

|q|f · ∇ψ dx . (3.24)

Then we have

(a) T is injective and 〈Im(T )f, f〉 ≤ 0 for all f ∈ L2(D)2.
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(b) Define the operator T0 : L2(D)2 → L2(D)2 by T0f = sign(q)(f +
√

|q|∇ũ) where
ũ ∈ H1

α(Ωh) solves (3.24) for k = i and f ∈ L2(D)2. Then we have that T − T0 is compact in
L2(D)2.

(c) For T0 defined as in (b), if Re(q) > 0 on L2(D)2 then Re(T0) is coercive in L2(D)2,
i.e., there exists a constant γ > 0 such that

〈Re(T0)f, f〉L2(D)2 ≥ γ‖f‖L2(D)2 .

Proof. (a) We show the injectivity of T by assuming that Tf = sign(q)(f +
√

|q|∇u) = 0,
then u is a radiating variational solution to the homogeneous problem ∆u+k2u = 0 in Ωh and
∂u/∂ν = 0 on Γ0. However, we showed in the proof of Lemma 3.3.2 that the latter problem
has only the trivial solution which implies that u = 0 in Ωh. Thus, f = 0 or T is injective.

Now we set w = f +
√

|q|∇u, then Tf = sign(q)w and

〈Tf, f〉L2(D)2 =

∫

D
sign(q)w · (w −

√
|q|∇u) dx

=

∫

D
(sign(q)|w|2 − q/

√
|q|w · ∇u) dx

=

∫

D
sign(q)|w|2 dx +

∫

Ωh

(|∇u|2 − k2|u|2) dx −
∫

Γh

uT+(u) ds (3.25)

Now recall Theorem 3.2.1, using Plancherel identity implies that

−Im

(∫

Γh

uT+(u) ds

)
= −Im

(
i
∑

j∈Z

βj |ûj|2
)

= −
∑

j:k2>α2
j

(k2 − α2
j )

1/2|ûj |2 ≤ 0

Together with the fact that Im(q) ≤ 0 in D, we hence obtain

〈Im(T )f, f〉L2(D)2 =

∫

D

Im(q)

|q| |w|2 − Im

(∫

Γh

vT+(v) ds

)
≤ 0.

(b) From the definitions of T and T0 we note that Tf − T0f = q/
√

|q|∇(u − ũ) where
u, ũ ∈ H1

α(Ωh) are the solutions, for k and k = i, of

∫

Ωh

(ε−1
r ∇u · ∇ψ − k2uψ) dx −

∫

Γh

ψT+(u) ds = −
∫

Ωh

q/
√

|q|f · ∇ψ dx , (3.26)

∫

Ωh

(ε−1
r ∇ũ · ∇ψ + ũψ) dx −

∫

Γh

ψT+(ũ) ds = −
∫

Ωh

q/
√

|q|f · ∇ψ dx , (3.27)

for all ψ ∈ H1
α(Ωh). Consider now the sequence fj which converges weakly to zero in L2(D)2,

and denote by uj, ũj the corresponding solutions in (3.26),(3.27), respectively. It is sufficient
to prove that ‖(T − T0)fj‖L2(D)2 → 0. Due to the boundedness of the solution operator from
L2(D)2 into H1

α(Ωh) we imply that uj and ũj converge weakly to zero in H1
α(Ωh). That means
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that wj := uj − ũj converge strongly to zero in L2(Ωh) because of the compact embedding
H1

α(Ωh) ⊂ L2(Ωh).

Now consider (3.26),(3.27) for uj, ũj and fj, making a subtraction we have

∫

Ωh

(ε−1
r ∇wj · ∇ψ − k2wjψ) dx −

∫

Γh

ψT+(wj) ds = (k2 + 1)

∫

Ωh

ũjψ dx .

Choose ψ = wj we obtain

∫

Ωh

(ε−1
r |∇wj |2 − k2|wj |2) dx −

∫

Γh

wjT
+(wj) ds = (k2 + 1)

∫

Ωh

ũjwj dx , (3.28)

We know that ‖wj‖L2(Ωh) → 0, and ũj, T
+(wj) are bounded sequences. Moreover we recall

that uj and ũj are smooth in a neighborhood of Γh, and hence wj = uj − ũj converge
uniformly to zero on Γh. The latter facts allow us to conclude that ‖∇wj‖L2(Ωh) → 0 as j
tends to infinity. Thus we have ‖(T − T0)fj‖L2(D)2 → 0.

(c) If Re(q) > 0, we return to (3.25) for ũ instead of u. Then taking the real part implies
that

〈ReT0f, f〉L2(D)3 = Re

∫

D
sign(q)|f +

√
|q|∇ũ|2 dx

+

∫

Ωh

(|∇ũ|2 + |ũ|2) dx − Re

∫

Γh

ũT+(ũ) ds

≥ Re

∫

D
sign(q)|f +

√
|q|∇ũ|2 dx +

∫

Ωh

(|∇ũ|2 + |ũ|2) dx (3.29)

since we know in Theorem 3.2.1 that −Re
∫
Γh
ũT+(ũ) ds ≥ 0. Now assume that there is no

such a constant γ > 0 for the statement of (c), then we can find a sequence {fj} such that
‖fj‖L2(D)2 = 1 and 〈ReT0fj, fj〉L2(D)2 → 0. Due to (3.29), we imply that fj +

√
|q|∇ũj → 0 in

L2(D)2 where ũj denotes the solution of (3.24) for f and k replaced by fj and i, respectively.
Also, we have from the variational formulation for ũj that

∫

Ωh

(|∇ũj |2 + |ũj|2) dx ≤ −Re

∫

D
q/
√

|q|(fj +
√

|q|∇ũj) · ∇ũj dx ,

which let us obtain that ‖ũj‖H1
α(Ωh) → 0. Hence fj → 0 in L2(D)2 which is a contradiction

to ‖fj‖L2(D)2 = 1. Therefore Re(T0) is coercive.

Next, by using a special test sequence, we show a characterization of a point z belonging
to the support D of the contrast q.

Lemma 3.4.4. Let H∗ : L2(D)2 → ℓ2(Z) be the operator defined as in Theorem 3.3.2.
Suppose that the contrast q satisfies Assumption 3.3.1 and that the direct problem (3.13) is
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uniquely solvable for any f ∈ L2(D)2. Moreover, the complement of D in Ωh is assumed to
be connected. Then for z ∈ Ωh, the sequence (rj(z))j∈Z given by

rj(z) =
i

4πβj
e−i(αjz1+βj(z2−h)), (3.30)

belongs to Rg(H∗) if and only if z belongs to the interior of the support D of q.

Proof. From (2.14) we see that

Gk(x, z) =
∑

j∈Z

i

4πβj
e−i(αjz1+βj(z2−h))ei(αjx1+βj(x2−h)), z ∈ Ωh, x2 > h.

Then (rj(z))j∈Z is the Rayleigh sequence of Gk(·, z). Now we assume that z is not in D and
(rj(z))j∈Z ∈ Rg(H∗). Then there exists u ∈ H1

α(Ωh) solving the problem (3.17) with the
source function f ∈ L2(D)2 in the right hand side. Further ûj = rj(z) for j ∈ Z. Since the
Rayleigh sequences of Gk(·, z) and u are equal, both functions coincide in (−π, π) × (h,∞).
Due to the analyticity of u and Gk(·, z) in Ω \D and Ω \ {z}, respectively, and the analytic
continuation we conclude that u = Gk(·, z) in Ω \ (D ∪ {z}). However from [8] we know that
Gk(·, z) has a logarithmic singularity at z. This is hence a contradiction since u ∈ H1(B) for
some neighborhood B of z but Gk(·, z) /∈ H1(B) due to the singularity at z.

To show that for z ∈ D there exists f ∈ L2(D)2 such that H∗(f) = (rj(z))j∈Z, we just
apply the proof of the injectivity of H in Lemma 3.3.2 to the Green function Gk(·, z) instead
of exp(i(αjx1 + βj(x2 − h)).

Theorem 3.4.5. Suppose that the contrast q satisfies Assumption 3.3.1 and that the direct
problem (3.13) is uniquely solvable for any f ∈ L2(D)2. For j ∈ Z, denote by (λn, ψj,n)n∈N

an orthonormal eigensystem of (WN)♯ = |Re(WN)| + Im(WN) and by (rj(z))j∈Z the test
sequence from (3.30). Then a point z ∈ Ωh belongs to the support of q if and only if

∞∑

n=1

|〈rj(z), ψj,n〉ℓ2(Z)|2
λn

<∞. (3.31)

Proof. As we assumed in the theorem, let (λ
1/2
n , ψj,n)n∈N be an orthonormal eigensystem

of (WN)
1/2
♯ . The assumptions of Theorem 3.4.1 on H, H∗ and T have been checked in

Lemma 3.4.4 and Lemma 3.3.2. Therefore, an application of Theorem 3.4.1 to the factorization

WN = H∗TH yields that Rg((WN)
1/2
♯ ) = Rg(H∗). Combine the latter range identities with

the characterization given in Lemma 3.4.4 we obtain that (rj(z))j∈Z ∈ Rg((WN)
1/2
♯ ) if and

only if z ∈ D. Then the criterion (3.31) follows from the Picard’s range criterion.

3.5 Numerical Experiments

The study of numerical examples in this section mainly focuses on the dependence of the
reconstructions on the number of the incident fields used, and the perfomance of the method
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when the data is perturbed by artificial noise. We also indicate the number of the evanescent
modes which are used for each reconstruction. Furthermore, different incident directions d1

in (3.3) are considered for the reconstructions for each structure. These experiments are
studied via three periodic structures motivated by the ones presented in [49]. More specific,
for −π ≤ x1 ≤ π, we consider the following diffraction gratings represented by the support D
of the contrast q in one period Ω:

(a) τ1(x1) =
− sin(x1)

2
+ 1, q = 1.5 in D = {(x1, x2)

⊤ ∈ Ω : 0 < x2 < τ1(x1)}.

(b) τ2(x1) =
3

2
1[−π,−3π/4]∪[3π/4,π] +

1

2
1[−π/2,π/2] +

(
4

π
x1 − 1.5

)
1[π/2,3π/4]

+

(
− 4

π
x1 − 1.5

)
1[−3π/4,−π/2],

q = (x2 + 1)(sin2(x1) + 0.5)/3 − 2i in D = {(x1, x2)
⊤ ∈ Ω : 0 < x2 < τ2(x1)}.

(c) τ3(x1) =
1

2
1(−π/2,π/2) +

3

2
1[−π,π/2]∪[π/2,π], D = {(x1, x2)

⊤ ∈ Ω : 0 < x2 < τ3(x1)},

q =

{
1 − 3i in D1 = {(x1, x2)

⊤ ∈ D : −π/2 < x1 < π/2},
0.5 in D \D1.

Here the functions τ1,2,3 have 2π-periodic extensions in x1 direction. Note that, in our numeri-
cal examples, we consider different kinds of the contrast q for different structures. Specifically,
in the case (a) the contrast q is considered to be homogeneous (constant) and non-absorbed in
its support D. The case (b) studies an inhomogeneous and absorbing contrast, and a partially
absorbing contrast having jumps in its support is investigated in the case (c).

We use the data of the direct scattering problem implemented by the volume integral
equation method studied in Chapter 1. For the numerical experiments we solve the direct
problem for a finite number j = −M1, ...,M2 of incident fields ui

j = ei(αjx1−βjx2)+ei(αjx1+βjx2)

where M1,M2 ∈ N. For −M1 ≤ n, j ≤ M2, the near field operator N then corresponds to
the matrix [ûn,j] of Rayleigh sequences ûn corresponding to the incident fields ui

j . Denote
by NM1,M2

the matrix corresponding to the discretization of the operator WN . Then the
symmetric matrix Re(NM1,M2

) can be decomposed as

Re(NM1,M2
) = V DV −1,

where D, V are the matrices of eigenvalues and corresponding eigenvectors of Re(NM1,M2
),

respectively. Note that D is a diagonal matrix and we denote by |D| the absolute value of D
which is taken componentwise. Then we have

(NM1,M2
)♯ := V |D|V −1 + Im(NM1,M2

).

Computing the singular value decomposition of (NM1,M2
)♯ implies that

(NM1,M2
)
1/2
♯ = U |S|1/2V −1,
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where S is the diagonal matrix of singular values λl of (NM1,M2
)♯. Also U = [ψj,l] is a

(M1 +M2 + 1) × (M1 +M2 + 1) matrix of “left” singular vectors. Then the criterion (3.31)
for computing the image P can be approximated as follows

P (z) =




M1+M2+1∑

l=1

1

λl

∣∣∣∣∣
M2∑

j=−M1

rj(z)ψj+M1+1,l

∣∣∣∣∣

2


−1/2

, (3.32)

Note that P should be small outside of the support D of the contrast and big inside of D.
To show the performance of the method with noisy data, we pertub our synthetic data by

artificial noise. More particularly, we add the noise matrix X of uniformly distributed random

entries to the data matrix (NM1,M2
)
1/2
♯ . Denote by δ the noise level, then the noised data

matrix (NM1,M2
)
1/2
♯,δ is given by

(NM1,M2
)
1/2
♯,δ := (NM1,M2

)
1/2
♯ + δ

X
‖X‖2

‖(NM1,M2
)
1/2
♯ ‖2,

where ‖ · ‖2 is the matrix 2-norm. Note that from the latter equation we also have

‖(NM1,M2
)
1/2
♯,δ − (NM1,M2

)
1/2
♯ ‖2

‖(NM1,M2
)
1/2
♯ ‖2

= δ.

We apply Tikhonov regularization [30], then instead of implementing (3.32) we consider

P (z) =




M1+M2+1∑

l=1

(
λ

1/2
l

λl + γ

)2
∣∣∣∣∣

M2∑

j=−M1

rj(z)ψj+M1+1,l

∣∣∣∣∣

2


−1/2

, (3.33)

Here λl, ψj,l are the singular values and vectors of (−NM1,M2
)♯,δ, respectively. The parameter

γ is chosen by Morozov’s generalized discrepancy principle which can be obtained by solving
the equation

M1+M2+1∑

l=1

γ2 − δ2λl

(λl + γ)2

∣∣∣∣∣
M2∑

j=−M1

rj(z)ψj+M1+1,l

∣∣∣∣∣

2

= 0

for some fixed sampling point z. For the numerical examples in this section, we choose the
wave number k = 3.5. The number of the incident fields used is M1 + M2 + 1. The exact
geometry is the domain below the white line (in one period), and the pictures are plotted in
two periods.
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(a) 3 evanescent modes, M1,2 = 3
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(b) 6 evanescent modes, M1,2 = 6
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(c) 16 evanescent modes, M1,2 = 11
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(d) 30 evanescent modes, M1,2 = 18
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(e) 30 evanescent modes, M1,2 = 18, 2% noise
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(f) 30 evanescent modes, M1,2 = 18, 5% noise

Figure 3.2: Reconstructions for the case of function τ1, q = 1.5 in D, k = 3.5, d1 = cos(π/6),
4 propagating modes for (a) and 7 propagating modes for the rest.
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(a) 2 evanescent modes, M1,2 = 3
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(b) 6 evanescent modes, M1,2 = 6
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(c) 16 evanescent modes, M1,2 = 11

 

 

−2 0 2 4 6 8
0

0.5

1

1.5

5

10

15

20

(d) 34 evanescent modes, M1,2 = 20
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(e) 34 evanescent modes, M1,2 = 20, 2% noise
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(f) 44 evanescent modes, M1,2 = 25, 5% noise

Figure 3.3: Reconstructions for the case of function τ2, q = (x2 + 1)(sin2(x1) + 0.5)/3 − 2i in
D, k = 3.5, d1 = cos(π/4), 5 propagating modes for (a) and 7 propagating modes for the rest.
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(a) 2 evanescent modes, M1,2 = 4
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(b) 10 evanescent modes, M1,2 = 8
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(c) 24 evanescent modes, M1,2 = 15
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(d) 44 evanescent modes, M1,2 = 25
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(e) 44 evanescent modes, M1,2 = 25, 2% noise
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(f) 54 evanescent modes, M1,2 = 30, 5% noise

Figure 3.4: Reconstructions for the case of function τ3, q = 1 − 3i in D1 = {(x1, x2)
⊤ ∈ D :

−π/2 < x1 < π/2} and q = 0.5 in D \D1, k = 3.5, d1 = cos(π/2), 7 propagating modes.
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Part II

The Case of Maxwell’s Equations





Chapter 4

Volume Integral Equation Methods

for Biperiodic Scattering Problems

Abstract: In Chapter 4, we extend the volume integral equation method investi-
gated in Chapter 1 to electromagnetic scattering problems from anisotropic biperiodic
structures. These problems are governed by Maxwell’s equations in a full space. We
consider the case where the electric permittivity and the magnetic permeability are
both matrix-valued functions. The scattering problem again can be reformulated as a
strongly singular volume integral equation (see equation (4.23)). Since the compact
embedding H1 ⊂ L2 is crucially exploited for the scalar case for proving Gårding in-
equalities, the main difficulty in this case is that the embedding H(curl) ⊂ L2 is not
compact. We overcome this by not investigating Gårding inequalities in the support
of the contrast but in a bigger domain under suitable assumptions on the contrast
(see Theorem 4.4.2). This turned out to be sufficient for convergence theory of a
trigonometric Galerkin method appplied to the periodized integral equation (see The-
orem 4.5.3 and Theorem 4.6.1). We again propose fully discrete formulas for the
numerical scheme as well as numerical examples (see Section 4.6–4.7).

4.1 Introduction

In this chapter we extend the volume integral equation method investigated in Chapter 1 to
the case of Maxwell’s equations for the direct scattering problem from biperiodic structures.
By biperiodic, we mean that the structure is periodic in the, say, x1- and x2-direction, while
it is bounded in the x3 direction (compare Figure 4.1).

Central to the study is again to prove G̊arding inequalities for strongly singular integral
equations (again, “strongly singular“ simply means that the kernels of the corresponding in-
tegral operators fail to be weakly singular, and the integral operators in general fails to be
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x3

x1

x2

Figure 4.1: Sketch of the biperiodic structure under consideration.

compact). In this chapter we do not aim to investigate such inequalities for negative-index
dielectric material as in the scalar case. Instead we study such inequalities for the case that
the electric permittivity and the magnetic permeability are both positive-semidefinite matrix-
valued functions. We again exploit the technique studied for the case of positive contrast of
Theorem 2.4.5 in Chapter 1. Obviously, in the H(curl)-formulation studied for the Maxwell’s
equations, the embedding H(curl) ⊂ L2 is not compact. Therefore, a straightforward exten-
sion from the proof of Theorem 2.4.5 does not seem to work since the compact embedding
H1 ⊂ L2 is crucially exploited in the proof. We overcome this by not investigating G̊arding
inequalities in the support of the contrasts but in a bigger domain using the technique of The-
orem 2.4.5. In this way we can directly obtain the G̊arding inequality for standard Sobolev
spaces without studying weighted spaces. Further from this result one can easily prove that
such an inequality also holds for the periodized integral equation which leads to convergence
theory of the Galerkin method. It turns out also that we need weaker assumptions on the
contrasts as well as on their support. However, a price we have to pay for the Maxwell case
is that for discontinuous material parameters the solution is less regular than the scalar case
which does not allow us to obtain the order of convergence estimate as in the case of TM
modes. Anyway the approach can be applied to obstacle scattering problems for both scalar
and vector cases. Finally we propose fully discrete formulas for the numerical scheme as well
as numerical examples to indicate the performance of the method.

The chapter is organized as follows: In Section 4.2 we give a problem setting for the direct
scattering problem. While in Section 4.3 we give the volume integral equation formulation
of the problem, we prove in Sections 4.4 the G̊arding inequality on a continuous level. In
Section 4.5 we periodize the integral equation, prove G̊arding inequalities for periodized in-
tegral equation, and error estimates for trigonometric Galerkin methods. We discretize the
periodic integral equation and give fully discrete formulas in Section 4.6. Finally, we give
some numerical experiments in Section 4.7 to examine the performance of the method.

4.2 Problem Setting

We consider scattering of time-harmonic electromagnetic waves from a biperiodic structure.
The electric field E and the magnetic field H are governed by the time-harmonic Maxwell
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equations at frequency ω > 0 in R3

curlH + iωεE = σE in R3, (4.1)

curlE − iωµH = 0 in R3, (4.2)

where the electric permittivity ε, the magnetic permeability µ and the conductivity σ are
matrix-valued functions in L∞(R3,R3×3). We assume that ε and µ are 2π-periodic in x1

and x2, and that there are positive constants ε0 and µ0 such that ε ≡ ε0I3, µ ≡ µ0I3, and
that σ ≡ 0I3 outside the biperiodic structure. As usual, the problem (4.1)–(4.2) has to be
completed by a radiation condition that we set up using Fourier techniques.

The biperiodic structure is illuminated by an electromagnetic plane wave with wave vector
d = (d1, d2, d3) ∈ R3, d3 6= 0 such that d · d = ω2ε0µ0. The polarizations p, s ∈ R3 of the
incident wave satisfy p · d = 0 and s = 1/(ωε0)(p × d). With these definitions, the incident
plane waves Ei and H i given by

Ei = seid·x, H i = peid·x, x ∈ R3. (4.3)

For d = (d1, d2, d3) ∈ R3 defined in (4.3), we set α = (α1, α2, 0) = (d1, d2, 0). Similar to the
scalar case a function u : R3 → C3 is called α-quasiperiodic if, for all (x1, x2, x3)

⊤ ∈ R3,

u(x1 + 2π, x2, x3) = e2πiα1u(x1, x2, x3), u(x1, x2 + 2π, x3) = e2πiα2u(x1, x2, x3).

Note that the incident fields Ei, H i defined in (4.3) are α-quasiperiodic functions. The relative
material parameters are defined by

εr =
ε+ iσ/ω

ε0
, µr =

µ

µ0
.

Then εr and µr equal I3 outside the biperiodic structure. In the rest of this chapter, we will
work with the magnetic field H. This is motivated by the important case of non-magnetic
media where we also have the divergence-free condition div(H) = 0. Hence, introducing the
wave number k = ω(ε0µ0)

1/2, and eliminating the electric field E from (4.1)–(4.2), we find
that

curl
(
ε−1
r curlH

)
− k2µrH = 0 in R3. (4.4)

We wish to reformulate the last equation in terms of the scattered field Hs, defined by Hs :=
H − H i. Since, by construction, curl curlH i − k2H i = 0, subtracting the latter equation
and (4.4) implies that

curl
(
ε−1
r curlHs

)
− k2µrH

s = − curl
(
Q curlH i

)
+ k2PH i in R3, (4.5)

where the contrasts Q, P are defined by

Q := ε−1
r − I3, P := µr − I3.
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As in the scalar case εr, µr are 2π-periodic in x1 and x2, the incident fieldH i is α-quasiperiodic,
thus the solutionHs that we seek for is α-quasiperiodic as well. We next complement this prob-
lem by a radiation condition for the scattered field Hs that is set up using Fourier techniques.
This step is carried out similarly to the scalar case. Indeed due to the α-quasiperiodicity of
Hs, we obtain that e−iα·xHs is 2π-periodic in x1 and x2, and can hence be expanded as

e−iα·xHs(x) =
∑

n∈Z2

Ĥn(x3)e
i(n1x1+n2x2), x = (x1, x2, x3)

⊤ ∈ R3.

Here the Fourier coefficients Ĥn(x3) are defined by

Ĥn(x3) =
1

4π2

∫ 2π

0

∫ 2π

0
Hs(x1, x2, x3)e

−iαn·x dx1 dx2 , n ∈ Z2.

where

αn := (α1,n, α2,n, 0) = (α1 + n1, α2 + n2, 0).

Define, for n ∈ Z2,

βn :=

{√
k2 − |αn|2, k2 ≥ |αn|2,

i
√

|αn|2 − k2, k2 < |αn|2.

Note that we also exclude the Rayleigh frequencies as in the scalar case, that is, all βn are
supposed to be nonzero.

Recall that ε−1
r and µr equal I3 outside the structure that implies ε−1

r = µr = I3 and
Q = P = 0I3 for |x3| > h where h > sup{|x3| : (x1, x2, x3)

⊤ ∈ supp(Q) ∪ supp(P )}. Thus,
from equation (4.5) it holds that divHs vanishes for |x3| > h, and (∆ + k2)Hs = 0 in
{|x3| > h}. Using separation of variables, and choosing the upward propagating solution, we
set up a radiation condition in form of a Rayleigh expansion condition, prescribing that Hs

can be written as

Hs(x) =
∑

n∈Z2

Ĥ±
n e

i(αn·x±βn(x3∓h)) for x3 ≷ ±h, (4.6)

where

Ĥ±
n = Ĥn(±h) =

1

4π2

∫ 2π

0

∫ 2π

0
Hs(x1, x2,±h)e−iαn·x dx1 dx2 .

From now, a function which satisfies (4.6) is called to be radiating. Note that we require that
the series in (4.6) converges uniformly in compact subsets of {|x3| > h}. Further, note that
only a finite number of terms in (4.6) are propagating plane waves which are called propagating
modes, the rest are evanescent modes which correspond to exponentially decaying terms.

The problem (4.5)–(4.6) can be reduced to one period Ω := (−π, π)2 × R due to its
periodicity. Consider a more general following problem: Given f, g ∈ L2(D)3, find u : Ω → C3

such that

curl
(
ε−1
r curlu

)
− k2µru = − curl f + k2g in Ω, (4.7)
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and
u(x) =

∑

n∈Z2

û±n e
i(αn·x±βn(x3∓h)) for x3 ≷ ±h, (4.8)

where the Rayleigh sequences û±n are defined as in (4.6).

4.3 Integral Equation Formulation

In this section, we reformulate the scattering problem (4.7)–(4.8) as a volume integral equa-
tion, and prove mapping properties between Sobolev spaces of the integral operators that
are involved. As in two-dimensional case, we denote by Gk the Green’s function to the
α-quasiperiodic Helmholtz equation in R3, see [4]. Recall that all βj are nonzero, the α-
quasiperiodic Green’s function has the series representation

Gk(x) :=
i

8π2

∑

j∈Z2

1

βj
exp(iαj · x+ iβj |x3|), (4.9)

for x = (x1, x2, x3)
⊤ ∈ R3, x 6= (2πm1, 2πm2, 0), (m1,m2) ∈ Z2. Similar to Lemma 2.3.1 we

also have

Gk(x) =
eik|x|

4π|x| + Ψ(x) in R3, (4.10)

where Ψ is an analytic function solving the Helmholtz equation ∆Ψ+k2Ψ = 0 in (−2π, 2π)2×
R.

Now recall that Ω = (−π, π)2 × R and h > sup{|x3| : (x1, x2, x3)
⊤ ∈ supp(Q) ∪ supp(P )}

we set
D := [supp(Q) ∪ supp(P )] ∩ Ω.

We also define a periodized Green’s function, firstly, setting

Kh(x) := Gk(x), (4.11)

for x = (x1, x2, x3)
⊤ ∈ R2 × (−h, h), x 6= (2πm1, 2πm2, 0), (m1,m2) ∈ Z2, and secondly

extending Kh(x) 2h-periodically in x3 to R3. We define

Ωh := (−π, π)2 × (−h, h), j̃ := (j1, j2)
⊤ for j = (j1, j2, j3)

⊤ ∈ Z3.

Then, similar to the scalar case, the trigonometric polynomials

ϕj(x) :=
1√

8π2h
exp

(
iαj̃ · x+ i

j3π

h
x3

)
, (4.12)

form an orthonormal basis in L2(Ωh), and the Fourier coefficients of f ∈ L2(Ωh) are given by

f̂(j) =

∫

Ωh

f ϕj dx , j = (j1, j2, j3)
⊤ ∈ Z3.
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Γ−h
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(x1, x2)

−π π

Figure 4.2: Geometric setting for scattering problem of electromagnetic waves from a pene-
trable biperiodic structure (in two dimentions, for simplicity).

For 0 ≤ s < ∞ we recall from (2.17) the fractional Sobolev space Hs
α,p(Ωh) consisting of

functions in L2(Ωh) such that

‖f‖2
Hs

α,p(Ωh) =
∑

j∈Z3

(1 + |j|2)s/2|f̂(j)|2 <∞.

To compute the Fourier coefficients K̂h(j) of the periodic Green’s function Kh explicitly, we
set

λj := k2 − |αj̃|2 −
(
j3π

h

)2

for j ∈ Z3.

and carry out similarly to the two-dimensional case.

Theorem 4.3.1. The Fourier coefficients of the kernel Kh from (4.11) are given by

K̂h(j) =





cos(j3π) exp(iβj̃h)−1√
8π2h λj

for λj 6= 0,

ih3/2

4
√

2π2j3
else,

j =



j1
j2
j3


 ∈ Z3.

Remark 4.3.2. Note that K̂h(j) is well-defined for λj = 0: Since k2 6= |αj̃ |2 for all j ∈ Z3,
the definition of λj implies that j3 6= 0 whenever λj = 0.

Proof. It is easy to check that (∆+ k2)ϕj = λjϕj for j = (j1, j2, j3)
⊤ ∈ Z3. If λj 6= 0, Green’s

second identity implies that

K̂h(j) =

∫

Ωh

Kh(x)ϕj(x) dx = λ−1
j lim

δ→0

∫

Ωh\B(0,δ)
Gk(x)(∆ + k2)ϕj(x) dx

= λ−1
j lim

δ→0

[(∫

∂Ωh

+

∫

∂B(0,δ)

)(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds (4.13)

+

∫

Ωh\B(0,δ)
(∆ + k2)Gk(x)ϕj(x) dx

]
, (4.14)



4.3. Integral Equation Formulation 75

where ν denotes the exterior normal vector to B(0, δ). The last volume integral vanishes
since (∆ + k2)Gk = 0 in Ωh \ B(0, δ) for any δ > 0. Let us now consider the first integral
in (4.13). The boundary of Ωh consists of two horizontal planes Γ±h and four vertical planes
{(x1, x2, x3) : x1 = ±, x2 = ±π, −h < x3 < h}. Hence, the normal vector ν on these
boundaries can be (±1, 0, 0)⊤ or (0,±1, 0)⊤ or (0, 0,±1)⊤. Straightforward computations
yield that

Gk(x1, x2,±h) =
i

8π2

∑

n∈Z2

eiβnh

βn
eiαn·x,

∂Gk

∂x3
(x1, x2,±h) = ∓ 1

8π2

∑

n∈Z2

eiβnheiαn·x, (4.15)

ϕj(x1, x2,±h) =
e−iαj̃ ·x
√

8π2h
cos(j3π), and

∂ϕj

∂x3
(x1, x2,±h) = − ij3π

h
ϕj(x1, x2,±h). (4.16)

In consequence,
∫

Γ±h

(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds = −

∫

Γh

∂Gk

∂x3
ϕj ds +

∫

Γ−h

∂Gk

∂x3
ϕj ds

= −2

∫

Γh

∂Gk

∂x3
ϕj ds .

Using the above formulas for ∂Gk/∂x3 and ϕj in (4.15) and (4.16), respectively, we find that

−2

∫

Γh

∂Gk

∂x3
ϕj ds =

cos(j3π)√
8π2h

eiβj̃h.

Computing the partial derivatives of Gk and ϕj with respect to x1, x2 analogously to the
above computations, one finds that the integrals on the vertical boundaries of Ωh vanish due
to the α-quasiperiodicity of both functions. Thus, we obtain that

∫

∂Ωh

(
Gk

∂ϕj

∂ν
− ∂Gk

∂ν
ϕj

)
ds =

cos(j3π)√
8π2h

eiβj̃h. (4.17)

Now we consider the second integral in (4.13). From (4.10) we know thatGk(x) = exp(ik|x|)/(4π|x|)+
Ψ(x) where Ψ is a smooth function in Ωh. Obviously,

lim
δ→0

∫

∂B(0,δ)

(
Ψ
∂ϕj

∂ν
− ∂Ψ

∂ν
ϕj

)
ds = 0.

Taking into account the asymptotics of exp(ik|x|)/(4π|x|) for small |x| allow to show that

lim
δ→0

∫

∂B(0,δ)

(
Gk

∂ϕj

∂ν
− ∂Gk

∂r
ϕj

)
ds = − 1√

8π2h
, (4.18)

see, e.g., [102, Theorem 2.2.1]. Combining (4.17) with (4.18) yields that

Kh(j) =
1√

8π2hλj

[
cos(j3π)eiβj̃h − 1

]
for λj 6= 0.
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For λj = 0 we use de L’Hôspital’s rule to find that

Kh(j) = lim
γ→|αj̃ |2+(j3π/h)2

cos(j3π) exp
(
ih[γ − |αj̃ |2]1/2

)
− 1

√
8π2h [γ − |αj̃ |2 − (j3π/h)2]

=
ih3/2

4
√

2π2j3
.

Note that the assumption that k2 6= α2
j for all j ∈ Z3 implies that λj and j3 cannot vanish

simultaneously.

As in the scalar case, the Fourier coefficients of Kh decay quadratically,

|K̂h(j)| ≤ C/(1 + |αj̃ |2 + (j3π/h)
2)

for j ∈ Z3, thus the convolution operator with kernel Kh is bounded from L2(Ωh) into
H2

α,p(Ωh).

Proposition 4.3.3. The convolution operator Kh defined by

(Khf)(x) =

∫

Ωh

Kh(x− y)f(y) dy for x ∈ Ωh,

is bounded from L2(Ωh) into H2
α,p(Ωh).

Again, similar to Lemma 2.3.5 for the scalar case we have

Lemma 4.3.4. The volume potential V defined by

(V f)(x) =

∫

D
Gk(x− y)f(y) dy , x ∈ Ω,

is bounded from L2(D) into H2
α(ΩR) for all R > 0.

Note that the potential V f can be extended to a quasiperiodic function in H2
loc(R

3), due
to the quasiperiodicity of the kernel. Now we define

Hα,loc(curl,Ω) := {u ∈ Hloc(curl,Ω) : u = U |Ω for some α-quasiperiodic U ∈ Hloc(curl,R3)},
(4.19)

Lemma 4.3.5. Let V be the volume potential defined in Lemma 4.3.4. Then the potentials
curlV and (k2 + ∇div)V are bounded from L2(D)3 into Hα,loc(curl,Ω). Further, for g ∈
L2(D)3, w1 = curlV g and w2 = (k2 +∇div)V g are the unique radiating variational solutions
to curl2w − k2w = curl g and curl2w − k2w = k2g in Ω, respectively, that is, they satisfy

∫

Ω
(curlw1 · curlψ − k2w1ψ) dx =

∫

D
g · curlψ dx (4.20)

∫

Ω
(curlw2 · curlψ − k2w2ψ) dx = k2

∫

D
g · ψ dx (4.21)

for all ψ ∈ Hα(curl,Ω) with compact support, and additionally the Rayleigh expansion condi-
tion (4.6).
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Proof. We first consider the potential w1. Lemma 4.3.4 and quasi-periodicity of the kernel of
V imply that w1 is a function in Hα(curl,ΩR) for all R > 0. It is sufficient to prove (4.20) for
all smooth quasiperiodic test functions ψ that are supported in {|x3| < C} for some C > 0
depending on ψ. Since smooth functions with compact support in D is dense in L2(D)3,
it is sufficient to consider g ∈ C∞

0 (D)3. It is well-known that u = V g ∈ H2
α(Ω) solves

∆u+ k2u = −g. In the other hand, see also in [71], we have

w(x) = curl

∫

D
Gk(x, y)g(y) dy =

∫

D
curlx(Gk(x, y)I3)g(y) dy

= −
∫

D
curly(Gk(x, y)I3)g(y) dy =

∫

D
Gk(x, y) curl g(y) dy .

Consequently, w1 = curlV g = V (curl g) solves ∆w1 + k2w1 = − curl g. Further, the potential
w1 is by construction divergence free which implies that curl2w1 = −∆w1. Hence, we obtain
that

curl2 w1 − k2w1 = curl g, in Ω.

By substituting the expression of Gk(x, y) into the latter expression, it follows that

w1(x) =
∑

j∈Z2

i

8π2βj

∫

D
curl g(y)e−iαj ·y∓iβj(y3∓h) dy eiαj ·x±iβj(x3∓h) for x3 ≷ ±h,

which shows that w1 satisfies the Rayleigh expansion (4.6). Uniqueness of a radiating solution
to (4.20) when g = 0 can be shown using integral representation formulas from Theorem 3.1
of [100].

Now we prove the claim concerning w2. Since curl∇ = 0, we imply that curl(k2+∇div)V =
k2 curlV which shows the boundedness of (k2 + ∇div)V from L2(D)3 into Hα(curl,ΩR) for
all R > 0 due to part (a). Furthermore, we have

curl2w2 = k2 curl2 V g = k2(k2 + ∇div − (∆ + k2))V g = k2w2 + k2g,

which implies (4.21). The uniqueness of w2 follows from uniqueness of solution of (4.20), and
the Rayleigh expansion condition for w2 can be checked similarly as for w1.

Return to the differential equation (4.7), and recall that Q = ε−1
r − I3, and P = µr − I3.

We write its variational formulation as
∫

Ω
(curlu · curlψ − k2uψ) dx = −

∫

D
(Q curlu+ f) · curlψ dx + k2

∫

D
(Pu+ g) ·ψ dx , (4.22)

for all ψ ∈ Hα(curl,Ω) with compact support. Now we define, for f ∈ L2(D)3,

Af = curlV f = curl

∫

D
Gk(· − y)f(y) dy ,

Bf = (k2 + ∇div)V f = (k2 + ∇div)

∫

D
Gk(· − y)f(y) dy ,
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which are bounded operators from L2(D)3 into Hα,loc(curl,Ω) due to Lemma 4.3.5. We next
show that the problem (4.22) is equivalent to the integral equation

u+A(Q curl u+ f) −B(Pu+ g) = 0 in Ω. (4.23)

The proof of the next theorem is similar to the one of Theorem 2.3 in [70] for the free space
case. However, for convenience, we also give a proof for the periodic case.

Theorem 4.3.6. Assume that u ∈ Hα,loc(curl,Ω) is a radiating solution to (4.22), then u
solves (4.23), and vice versa.

Proof. Let u ∈ Hα,loc(curl,Ω) be a radiating solution to (4.22). We rewrite (4.7) as

curl2 u− k2u = curl(Q curlu+ f) + k2(Pu+ g)

Define u1 and u2 by

u1 = A(Q curlu+ f), u2 = B(Pu+ g).

Then, due to Lemma 4.3.5, we imply that u1 and u2 satisfy

curl2 u1 − k2u1 = curl(Q curlu+ f), curl2 u2 − k2u2 = k2(Pu+ g),

in the variational sense. From the last two equations we obtain

curl2(u1 + u2) − k2(u1 + u2) = curl(Q curlu+ f) + k2(Pu+ g) = curl2 u− k2u

Since u1 +u2 and u are radiating solutions, and due to Lemma 4.3.5, the equation curl2(u1 +
u2 − u) − k2(u1 + u2 − u) = 0 has only the trivial solution or u1 + u2 = u. The converse
direction can be obtained using Lemma 4.3.5.

4.4 G̊arding Inequality

We recall that D ⊂ Ωh. Due to the structure of the operators A and B in (4.23), one can see
that the knowledge of u in Ωh is sufficient to determine u in Ω \Ωh by integration. Thus, we
consider the integral equation

u+A(Q curlu) −B(Pu) = −Af +Bg in Hα(curl,Ωh). (4.24)

The goal of this section is to prove the G̊arding inequality for the operator in the left hand
side of equation (4.24). As pointed out in the introduction the main difference from the scalar
case is that we investigate a G̊arding inequality for the corresponding integral equation in
Ωh instead of D. Exploiting the smoothness of the biperiodic Green’s function away from
its singularity we treat the boundary terms arising from using Green’s identities. Compared
to the scalar case this approach only needs the contrasts P and Q to satisfy the following
assumption.
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Assumption 4.4.1. We assume that the support D ⊂ Ωh is open and bounded with Lipschitz
boundary. Furthermore, z⊤Re(Q)(x)z ≥ 0 and z⊤Re(P )(x)z ≥ 0 for all z ∈ C3 and almost
all x ∈ D.

We also need to define, for f ∈ L2(D)3,

Aif = curl

∫

D
Gi(· − y)f(y) dy , Bif = (k2 + ∇div)

∫

D
Gi(· − y)f(y) dy .

These are bounded operators from L2(D)3 into Hα,loc(curl,Ω) due to Lemma 4.3.5.

Theorem 4.4.2. Assume that the contrasts Q and P satisfy Assumption 4.4.1. Then there
exists a compact operator K on Hα(curl,Ωh) such that

Re〈u+A(Q curl u) −B(Pu), u〉Hα(curl,Ωh) ≥ ‖u‖2
Hα(curl,Ω) − Re〈Ku, u〉Hα(curl,Ωh),

for all u ∈ Hα(curl,Ωh).

Proof. Let u ∈ Hα(curl,Ωh) and define w1, w2 by

w1 = Ai(Q curlu) = curl

∫

D
Gi(· − y)Q(y) curl u(y) dy in Ω, (4.25)

w2 = Bi(Pu) = (−1 + ∇div)

∫

D
Gi(· − y)P (y)u(y) dy in Ω. (4.26)

Due to Lemma 4.3.5 we obtain that w1, w2 ∈ Hα,loc(curl,Ω) are variational solutions to
curl2 w1 + w1 = curl(Q curlu), curl2w2 + w2 = Pu, respectively. Now recall that C∞

p (Ω) =
{χ ∈ C∞(Ω) : χ is 2π-periodic in x1 and x2}, consider χ ∈ C∞

p (Ω) such that χ = 1 in Ωh,
and χ(x) = 0 for |x3| > 2h. Then the test function χu belongs to Hα(curl,Ω), it has compact
support, and

∫

Ωh

(curlw1 · curlu+ w1 · u) dx +

∫

Ω2h\Ωh

(curlw1 · curl(χu) +w1 · χu) dx

=

∫

D
curlu⊤Q curludx .

Now using Green’s theorems and exploiting the fact that w1 satisfies curl2 w1 + w1 = 0 in
Ω \ Ωh, we obtain that

∫

Ωh

(curlw1 · curlu+w1 · u) dx +

∫

Γ±h

(ν × curlw1) · (ν × u) × ν ds

=

∫

D
curlu⊤Q curludx .

Similarly for w2 we also have
∫

Ωh

(curlw2 · curlu+ w2 · u) dx +

∫

Γ±h

(ν × curlw2) · (ν × u) × ν ds = −
∫

D
u⊤Pudx .
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Note that, for y ∈ D, Gi(· − y) is smooth on Γ±h. Therefore, the kernels of the potentials w1

and w2 is smooth on Γ±h, and the traces on Γ±h in the variational equations above are well
defined. Now we have

Re〈u+Ai(Q curlu) −Bi(Pu), u〉Hα(curl,Ωh) = Re〈u+ w1 − w2, u〉Hα(curl,Ωh)

= ‖u‖2
Hα(curl,Ωh) + Re

∫

Ωh

[
curl(w1 − w2) · curlu+ (w1 − w2) · u

]
dx

= ‖u‖2
Hα(curl,Ωh) − Re

∫

Γ±h

(ν × curl(w1 − w2)) · (ν × u) × ν ds

+

∫

D
(curlu⊤Re(Q) curlu+ u⊤Re(P )u) dx

≥ ‖u‖2
Hα(curl,Ωh) − Re

∫

Γ±h

(ν × curl(w1 − w2)) · (ν × u) × ν ds

In consequence, we obtain that

Re〈u+A(Q curlu) −B(Pu), u〉Hα(curl,Ωh) ≥ ‖u‖2
Hα(curl,Ωh)

+Re〈(A−Ai)(Q curl u) − (B −Bi)(Pu), u〉Hα(curl,Ωh)

−Re

∫

Γ±h

(ν × curl(w1 − w2)) · (ν × u) × ν ds .

Now recall from (4.10) that the Green function Gk(x, y) = Φk(x, y) + Ψ(x, y) where
Φk(x, y) = exp(ik|x− y|)/(4π|x − y|) and Ψ(x, y) is an analytic function. Furthermore, from
Appendix A we have

Φk(x, y) − Φi(x, y) = α(|x− y|2) + |x− y|β(|x− y|2)

where α and β are analytic functions. Therefore, the singularities of the kernels of the oper-
ators (A − Ai)(Q curl ·), (B − Bi)(P ·) which are as strong as ∂2[Φk(x, y) − Φi(x, y)]/∂xj∂xl

for j, l = 1, 2, 3, are at most as strong as 1/|x − y|. They are hence compact operators
on Hα(curl,Ωh) due to their weakly singular kernels. Now the operator K1 defined by
〈K1u, u〉Hα(curl,Ωh) = 〈(A−Ai)(Q curl u)−(B−Bi)(Pu), u〉Hα(curl,Ωh) is compact onHα(curl,Ωh)
due to Lemma 2.4.4. Similarly, the operator K2 defined by 〈K1u, u〉Hα(curl,Ωh) =

∫
Γ±h

(ν ×
curl(w1 − w2)) · (ν × u) × ν ds is also compact on Hα(curl,Ωh) due to the smoothness of the
kernel Gi on Γ±h. Setting K := K1 +K2, we obtain the claimed G̊arding inequality.

4.5 Periodization of the Integral Equation

In this section we reformulate the volume integral equation

u+A(Q curlu) −B(Pu) = −Af +Bg in Hα(curl,Ωh). (4.27)
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in a periodic setting and show the equivalence of the periodized equation and the original one.
The purpose of this periodization is that the resulting integral operator is, roughly speaking,
diagonalized by trigonometric polynomials. This allows to use fast FFT-based schemes to
discretize the periodized operator and iterative schemes to solve the discrete system. We also
prove G̊arding inequalities for the periodized integral equation, which are crucial to establish
convergence of the discrete schemes later on.

The periodized kernel Kh is not smooth at the boundaries {x3 = ±h}. To prove G̊arding
inequalities for the periodized integral equation, we additionally need to smoothen the kernel
(as we did for the scalar case, see (2.45)). For R > 2h we choose a function χ ∈ C3(R) that
is 2R-periodic, that satisfies 0 ≤ χ ≤ 1 and χ(x3) = 1 for |x3| ≤ 2h, and such that χ(R)
vanishes up to order three, χ(j)(R) = 0 for j = 1, 2, 3 (compare Figure 2.4)).

Let us define a smoothed kernel Ksm by

Ksm(x) = χ(x3)KR(x) for x ∈ R3, x 6=
[
2πm, 2Rn

]⊤
, m ∈ Z2, n ∈ Z, (4.28)

where KR is the periodic kernel defined in (4.11). Note that Ksm is α-quasiperiodic in x1 and
x2, 2R-periodic in x3, and a smooth function on its domain of definition (that is, away from the
singularity). To study the periodization of equation (4.27) we define the space Hα,p(curl,ΩR)
as a subspace in L2(ΩR)3 containning those f ∈ L2(ΩR)3 such that

‖f‖2
Hα,p(curl,ΩR) =

∑

j∈Z3

(
|f̂(j)|2 + |(α1,j , α2,j , j3π/R) × f̂(j)|2

)
<∞. (4.29)

Note that a function f ∈ Hα,p(curl,ΩR) is α-quasiperiodic in x1 and x2, 2R-periodic in x3,
and that the norm ‖ · ‖Hα,p(curl,ΩR) on Hα,p(curl,ΩR) is equivalent to the usual integral norm
‖ · ‖H(curl,ΩR).

Lemma 4.5.1. Let the integral operators Ap, Bp from L2(ΩR)3 into Hα,p(curl,ΩR) be defined
by

Apf = curl

∫

D
Ksm(· − y)f(y) dy in Ω,

Bpf = (k2 + ∇div)

∫

D
Ksm(· − y)f(y) dy in Ω.

Then Ap, Bp are bounded operators.

Proof. We split the integral operator Ap into two parts,

Apf = curl

∫

D
Ksm(· − y)f(y) dy = curl

∫

D
χ(· − y3)KR(· − y)f(y) dy

= curl

∫

D
KR(· − y)f(y) dy + curl

∫

D
[χ(· − y3) − 1]KR(· − y)f(y) dy .

By Theorem 4.3.3, the integral operator with the kernel KR is bounded from L2(ΩR)3 into
H1

α(ΩR)3. Further, the definition of χ shows that χ(x3 − y3) − 1 = 0 for |x3| ≤ h and y ∈ D.
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The kernel (χ − 1)KR is hence smooth in ΩR, and the corresponding integral operator is
compact from L2(ΩR)3 into H1

α(ΩR)3. Hence, Ap is bounded from L2(ΩR)3 into H1
α(ΩR)3.

Periodicity of the kernel Ksm in the third component of its argument finally implies that
Apf belongs to H1

α,p(ΩR)3 ⊂ H1
α(ΩR)3. Then the boundedness of Ap from L2(ΩR)3 into

Hα,p(curl,ΩR) follows from the bounded embedding H1
α,p(ΩR)3 ⊂ Hα,p(curl,ΩR). Now we

have curl∇ = 0, thus we deduce that curlBp = k2 curlAp which also implies the boundedness
of Bp from L2(ΩR)3 into Hα,p(curl,ΩR).

Let us now consider the periodized integral equation

u+Ap(Q curlu) −Bp(Pu) = −Apf +Bpg in Hα,p(curl,ΩR). (4.30)

Theorem 4.5.2. (a) For f ∈ L2(ΩR)3, Apf = Af and Bpf = Bf in Ωh.
(b) Equation (4.27) is uniquely solvable in Hα(curl,Ωh) for any right-hand side f, g ∈

L2(D)3 if and only if (4.30) is uniquely solvable in Hα,p(curl,ΩR) for any right-hand side
f, g ∈ L2(ΩR)3.

Proof. (a) We only prove the case of Ap, the proof for the case of Bp is analogous. For all x and
y ∈ ΩR such that |x3 − y3| ≤ 2h it holds that Ksm(x− y) = χ(x3 − y3)KR(x− y) = Gα(x− y).
In particular, for x ∈ Ωh and y ∈ D ⊂ Ωh it holds that |x3 − y3| ≤ 2h. Consequently,

(Apf)(x) = curl

∫

D
Ksm(x− y)f(y) dy

= curl

∫

D
Gα(x− y)f(y) dy = (Af)(x), x ∈ Ωh.

(b) Assume that u ∈ Hα(curl,Ωh) solves (4.27) and define ũ ∈ Hα,p(curl,ΩR) by ũ =
−Ap(Q curlu + f) + Bp(Pu + g) (where we extended f , g by zero outside D). Since u
solves (4.27), and due to part (a), we find that ũ|Ωh

= u. Hence Ap(Q curl ũ + f) =
Ap(Q curlu+ f), and Bp(Pũ+ g) = Bp(Pu+ g) in Hα,p(curl,ΩR), which yields that

ũ = −Ap(Q curl ũ+ f) +Bp(Pũ+ g) in Hα,p(curl,ΩR). (4.31)

Now, if f, g ∈ L2(D)3 vanish, then uniqueness of a solution to (4.27) implies that u ∈
Hα(curl,Ωh) vanishes, too. Obviously, ũ = −Ap(Q curl u)+Bp(Pu) vanishes, and hence (4.31)
is uniquely solvable. The converse follows directly from (a).

Next we prove that the operator I +Ap(Q curl ·)−Bp(P ·) from (4.30) satisfies a G̊arding
inequality in Hα,p(curl,ΩR).

Theorem 4.5.3. Assume that the contrasts Q and P satisfy the Assumption 4.4.1. Then
there exists a compact operator K on Hα,p(curl,ΩR) such that

Re〈u+Ap(Q curlu) −Bp(Pu), u〉Hα,p(curl,ΩR) ≥ ‖u‖2
Hα,p(curl,ΩR) − Re〈Ku, u〉Hα,p(curl,ΩR),

(4.32)
for all u ∈ Hα,p(curl,ΩR).
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Proof. Let u ∈ Hα,p(curl,ΩR). First, we split up the integrals arising from the inner product
on the left of (4.32) into integrals on Ωh, and on ΩR \ Ωh. Second, we use the G̊arding
inequality from Theorem 4.4.2 to find that

Re〈u+Ap(Q curlu) −Bp(Pu), u〉Hα,p(curl,ΩR) ≥ ‖u‖2
Hα(curl,Ωh) + Re〈K1u, u〉Hα(curl,Ωh)

+ ‖u‖2
Hα(curl,ΩR\Ωh) + Re〈Ap(Q curl u) −Bp(Pu), u〉Hα(curl,ΩR\Ωh) (4.33)

with a compact operator K1 on Hα(curl,Ωh). Further, the evaluation of Ap(Q curl ·)−Bp(P ·)
on ΩR \ Ωh defines a compact integral operator mapping Hα(curl,Ωh) to Hα(curl,ΩR \ Ωh),
because the (periodic) kernel of these integral operators is smooth. (This argument requires
the smooth kernel Ksm introduced in the beginning of this section.) Lemma 2.4.4 then allows
to reformulate the corresponding term in (4.33) in the way stated in the claim.

4.6 Discretization of the Periodic Integral Equation

In this section we firstly consider the discretization of the periodized integral equation (4.30)
in spaces of trigonometric polynomials. If the periodization satisfies certain smoothness con-
ditions and if uniqueness of solution holds, convergence theory for the discretization is a
consequence of the G̊arding inequalities shown in Theorem 4.5.3. Secondly we present fully
discrete formulas for implementing a Galerkin discretization of the Lippmann-Schwinger in-
tegral equation (4.30), together with a couple of numerical examples that we computed using
these formulas.

For N ∈ N we define

Z3
N = {j ∈ Z3 : −N/2 < j1,2,3 ≤ N/2}, TN = span{ϕj : j ∈ Z3

N},
where ϕj ∈ L2(ΩR)3 are the α-quasiperiodic basis functions from (2.16). Note that the union
∪N∈NTN is dense in Hα,p(curl,ΩR). The orthogonal projection onto TN is

PN : Hα,p(curl,ΩR) → TN , PN (v) =
∑

j∈Z3
N

v̂(j)ϕj ,

where v̂(j) denotes as above the jth Fourier coefficient.
The next proposition recalls the standard convergence result for Galerkin discretizations

of equations that satisfy a G̊arding inequality, see, e.g. [103, Theorem 4.2.9].

Proposition 4.6.1. Assume that Q and P satisfy Assumption 4.4.1 and that (2.28) is
uniquely solvable. Then (4.30) has a unique solution u ∈ Hα,p(curl,ΩR), and then there
is N0 ∈ N such that the finite-dimensional problem to find uN ∈ TN such that

〈uN +Ap(Q curluN ) −Bp(PuN ), wN 〉Hα,p(curl,ΩR) = 〈−Apf +Bpg,wN 〉Hα,p(curl,ΩR) (4.34)

for all wN ∈ TN , possesses a unique solution for all N ≥ N0 and f, g ∈ L2(ΩR)3. In this case

‖uN − u‖Hα,p(curl,ΩR) ≤ C inf
wN∈TN

‖wN − u‖Hα,p(curl,ΩR),

with a constant C independent of N ≥ N0.
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Remark 4.6.2. The solution u can be in H1 if the contrast P satisfies some global smoothness,
see, e.g., [47, 83, 101]. However H1-regularity is not sufficient to conclude convergence rates
as in Proposition 2.7.1. To prove such rates one can probably follow the technique of duality
estimates for solutions to Maxwell’s equations in the book [83, Chapter 7]. This is out of the
scope of this thesis.

It is also obvious that if the solution has higher regularity Hs with s > 1, then one could
have convergence rates in H1 as in Proposition 2.7.1. We can have more regularity on the
solution by assumming global smoothness of P and Q. That is somehow unattractive, since
this is what we wanted to avoid in the beginning, and also since in this case, the integral
equation could be reduced to a weakly singular integral equation following the integration by
parts trick in the book [37, Chapter 9.1 and 9.2].

Similar to the scalar case, the operator PN commutes with the periodic convolution oper-
ators Ap, Bp. We apply PN to the infinite-dimensional problem (4.30) and obtain the discrete
problem to find uN ∈ TN such that

uN +Ap(PN (Q curl uN )) −Bp(PN (PuN )) = −Ap(PNf) +Bp(PNg) (4.35)

Fast methods to evaluate the discretized operator in (4.35) exploit that the application of
Ap and Bp to a trigonometric polynomial in TN can be explicitly computed using an α-
quasiperiodic discrete Fourier transform that we call FN . This transform maps point values
of a trigonometric polynomial ϕj (see (2.16)) to the Fourier coefficients of the polynomial. Now
recall that α1,j = j1 + α1, α2,j = j2 + α2 for j ∈ Z3. If we denote by a • b the componentwise
multiplication of two matrices, and if t := (2π/N, 2π/N, 2R/N)⊤ , then

v̂N (j) =

√
8π2R

N3

∑

l∈Z3
N

vN (l • t) exp
(
− 2πi(α1,j , α2,j , j3)

⊤ · l/N
)
, j ∈ Z3

N .

This defines the transform FN mapping (vN (j • t))j∈Z3
N

to (v̂N (j))j∈Z3
N

. The inverse F−1
N is

explicitly given by

vN (j • t) =
1√

8π2R

∑

l∈Z3
N

v̂N (l) exp
(
2πi(α1,l, α2,l, l3)

⊤ · j/N
)
, j ∈ Z3

N .

Both FN and its inverse are linear operators on C3
N = {(cn)n∈Z3

N
: cn ∈ C}. The restriction

operator RN,M from C3
N to C3

M , N > M , is defined by RN,M (a) = b where b(j) = a(j)
for j ∈ Z3

M . The related extension operator EM,N from C3
M to C3

N , M < N , is defined by
EM,N (a) = b where b(j) = a(j) for j ∈ Z3

M and b(j) = 0 else.

Lemma 4.6.3. For µ ∈ L2(ΩR)3 and uN ∈ TN , the Fourier coefficients of µ∂ℓuN , ℓ = 1, 2, 3,
are given by

(µ̂∂ℓuN (j))j∈Z3
N

= R3N,NF3N

[
F−1

3N

(
E2N,3N (µ̂2N (j))j∈Z3

N

)
• F−1

3N

(
EN,3N (wℓ(j)ûN (j))j∈Z3

N

)]

where w1(j) = iα1,j , w2(j) = iα2,j and w3(j) = ij3π/R for j ∈ Z3.
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Proof. For uN ∈ TN , j ∈ Z3, and ℓ = 1, 2, 3,

8π2R µ̂∂ℓuN (j) = 8π2R

∫

ΩR

µ∂ℓuNϕj dx = 8π2R
∑

m∈Z3
N

∂̂ℓuN (m)

∫

ΩR

µϕjϕm dx (4.36)

=
∑

m∈Z3
N

∂̂ℓuN (m)

∫

ΩR

µ(x)e−i[(j1−m1)x1+(j2−m2)x2+(j3−m3)x3π/R] dx

=
√

8π2R
∑

m∈Z3
N

∂̂ℓuN (m)µ̂(j −m).

If j ∈ Z3
N , then the coefficient µ̂∂ℓuN (j) merely depends on µ̂(m) for m ∈ Z3

2N . Hence,

µ̂∂ℓuN (j) = ̂µ2N∂ℓuN (j) for j ∈ Z3
N . Obviously, µ2N∂ℓuN belongs to T3N . Hence, the Fourier

coefficients of µ2N∂ℓuN are given by F3N applied to the grid values of this function at j • h,
j ∈ Z3

3N . The grid values of ∂̂ℓuN are given by F−1
3N (EN,3N (∂̂ℓuN (j)j∈Z3

N
), and the grid values

of µ2N can be computed analogously. Finally, taking a partial derivative with respect to x1

or x2 or x3 of u yields a multiplication of the jth Fourier coefficient û(j) by iα1,j or iα2,j or
ij3π/R, respectively.

In Lemma 4.3.3 we computed the Fourier coefficients of the kernel KR. The kernel Ksm

used to define the periodized potentials Ap and Bp is the product of KR with the smooth
function χ (see (4.28)). Hence, the Fourier coefficients of Ksm are convolutions of the K̂R(j)

with χ̂(j3) = (8π2R)−1/2
∫ R
−R exp(−ij3πx3/R)χ(x3) dx3 ,

K̂sm(j) =
1√

8π2R

∑

m∈Z3
N

K̂R(j1, j2,m3)χ̂(j3 −m3), j ∈ Z3.

The latter formula can be seen by a computation similar to (4.36). Note that χ is a smooth
function, which means that the Fourier coefficients χ̂ in the last formula are rapidly decreasing,
that is, the truncation of the last series converges rapidly to the exact value. The convolution
structure of Ap and Bp finally shows that, for f = (f1, f2, f3) ∈ L2(ΩR)2,

(̂Apf)(j) =
√

8π2R




iα2,j

[
iα1,j f̂2(j) − iα2,j f̂1(j)

]
− ij3π

R

[ ij3π
R f̂1(j) − iα1,j f̂3(j)

]
ij3π
R

[
iα2,j f̂3(j) − ij3π

R f̂2(j)
]
− iα1,j

[
iα1,j f̂2(j) − iα2,j f̂1(j)

]

iα1,j

[ ij3π
R f̂1(j) − iα1,j f̂3(j)

]
− iα2,j

[
iα2,j f̂3(j) − ij3π

R f̂2(j)
]


 K̂sm(j),

(4.37)

(̂Bpf)(j) =
√

8π2R




(k2 − α2
1,j)f̂1(j) − α1,jα2,j f̂2(j) − α1,jj3π

R f̂3(j)

−α2,jα1,j f̂1(j) + (k2 − α2
2,j)f̂2(j) − α2,jj3π

R f̂3(j)

−α1,jj3π
R f̂1(j) − α2,jj3π

R f̂2(j) + (k2 − ( j3π
R )2)f̂3(j)


 K̂sm(j). (4.38)

The finite-dimensional operators uN 7→ Ap(PN (Q curluN )) and uN 7→ Bp(PN (PuN )) can now
be evaluated in O(N log(N)) operations by combining the formula of Lemma 4.6.3 with (4.37)
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and (4.38). Similar to the scalar case the linear system (4.35) can then be solved using iterative
methods. The usual multi-grid preconditioning technique for integral equations of the second
kind (see, e.g., [109]) does not apply here, since the integral operator is not compact. For
the numerical experiments presented below, we simply used an unpreconditioned GMRES
algorithm.

4.7 Numerical Experiments

In this section we describe the convergence of the method using the energy error presented in
Experiment 2.8.4. For simplicity we consider the case that the material is non-magnetic and
isotropic, that is, Q = qI3 and P = 0 or the terms of the operator Bp in (4.35) vanish. As
in the scalar case all the computations in the following experiments were done on a machine
with an Intel Xeon 3.20 GHz processor and 12 GB memory using MATLAB. The scattered
field in the examples of this section is computed for an incident field

ui(x) = (− sin(θ2), cos(θ2), 0)e
ik[cos(θ1) cos(θ2)x1+cos(θ1) sin(θ2)x2−| sin(θ1)|x3],

where θ1 ∈ (0, π), θ2 ∈ [0, 2π). As in the scalar case we compute the energy error for ’many’
incidence angles of ui. For simplicity we fix θ2 = π/4, the energy conservation error is then
tested for θ1 sampled at 75 points uniformly distributed on the interval [1.2, 1.95]. Further,
the numerical examples below do not show the effect of the Rayleigh frequencies as in the
scalar case. This is probably can be seen when one considers a larger interval of θ1 where the
number of sample points are big enough. This is out of the scope of this section. Now recall
the Rayleigh coefficients û±j of the scattered field from (4.6). We define Rayleigh coefficients

for the incident field ui by

ûi
j =

∫ π

−π

∫ π

−π
ui(x1, x2,−h)e−i(α1,jx1+α2,jx2) dx1 dx2 .

As in the scalar case the equation of energy conservation is

∑

j:k2>β2
j

βj(|û+
j |2 + |û−j + ûi

j |2) = β0. (4.39)

where the transmitted and reflected wave energies are again given by

Etra(θ1) :=
∑

j:k2>β2
j

βj(|û−j + ûi
j |2)/β0, Eref(θ1) :=

∑

j:k2>β2
j

βj |û+
j |2/β0.

Similar to Experiment 2.8.4, we use θ1 7→ |1 − Etra(θ1) − Eref(θ1)| as an error indicator for
the numerical solution in the three experiments considered in this section.
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4.7.1 Flat structure with piecewise constant contrast

In this example we consider the biperiodic structure as a flat plane (compare Figure 4.3)
where D = (−π, π)2 × (−0.5, 0.5), ΩR = (−π, π)2 × (−1, 1), and the contrast q is piecewise
constant

q =

{
0.5 in D1 := (−π/2, π/2)2 × (0, 0.5),

1 in D \D1.

As in Experiment 2.8.2 the Fourier coefficients of the contrast q can be explicitly computed

Figure 4.3: Flat structure with piecewise constant contrast viewed down x3 axis. The domains
where q = 0.5 and q = 1 are in blue and red, respectively. This is plotted in (−3π, 3π)2.

via the formula

q̂(j) =
(q1 − q2)√

8π2R

∫

D1

φj dx +
q2√
8π2R

∫

D
φj dx , j ∈ Z3,

where φj(x) = exp(−i(j1x1+j2x2+j3πx3/R)). The wave number k is 2π/3 in this experiment.
In Figure 4.4 we check the energy conservation error for N = 2n, n = 3, . . . , 6 where the
tolerance for the GMRES iteration is 10−8. We can see in Figure 4.4 that the error of the
computed Rayleigh coefficients corresponding to propagating modes converges with order 1.

4.7.2 Biperiodic structure of cubes

In this example we consider the biperiodic structure of cubes (compare Figure 4.5) where
D = (−2.5, 2.5)2 × (−1, 1), ΩR = (−π, π)2 × (−2, 2), and the contrast q is given by

q(x) =
1

2
cos(x1)

2(x3 + 1), x = (x1, x2, x3) ∈ D.

In this experiment the wave number k is π/2. Similar to the case in Experiment 2.8.4, the
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Figure 4.4: Scattering from flat structure with piecewise constant contrast. The error curves
|1 − Etra(θ1) − Eref(θ1)| for different discretization parameters N versus the angles θ1 of the
incident field ui.

(a) View down x3 axis (b) 3D view

Figure 4.5: Biperiodic structure of cubes of size 2.5× 2.5× 1 plotted in (−3π, 3π)2 × (−1, 1).

Fourier coefficients of q can be computed explicitly. Assume that r is the size of the cube in
x1- and x2-dimensions, ρ is the size of the cube in x3-dimension. We have

q̂(j) =
A(j1)B(j2)C(j3)

4
√

8π2R
for j = (j1, j2, j3) ∈ Z3,



4.7. Numerical Experiments 89

where

A(j1) =





sin(rj1)
[
(2 cos(2r)+1)/j1−8/j3

1

]
−4 cos(j1r) sin(2r)/j2

1

1−4/j2
1

j1 ∈ Z \ {0,±2},
sin(4r)/4 + sin(2r) + r j1 = ±2,

sin(2r)/2 + r j1 = 0,

B(j2) =

{
2 sin(j2r)/j2 j2 6= 0,

2r j2 = 0,

C(j3) =

{
2ρiR
j3π exp(−ij3πρ/R) − 2iR2

(j3π)2 sin(j3πρ/R) j3 6= 0,

2ρ2 j3 = 0.

In Figure 4.4 we check the energy conservation error for N = 2n, n = 3, . . . , 6 where the
tolerance for the GMRES iteration is 10−8.
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Figure 4.6: Scattering from biperiodic structure of cubes. The error curves |1 − Etra(θ1) −
Eref(θ1)| for different discretization parameters N versus the angles θ1 of the incident field ui.

4.7.3 Biperiodic structure of spheres

This last example deals with scattering from the biperiodic structure of spheres (compare
Figure 4.7). We have

D = {(x1, x2, x3)
⊤ ∈ R3 : (|x1|2 + |x2|2 + |x3|2)1/2 < 2},

ΩR = (−π, π)2 × (−4, 4), q(x) = 0.5, for x ∈ D.

In this experiment the wave number k is π/2. The Fourier coefficients of constant contrast q
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(a) View down x3 axis (b) 3D view

Figure 4.7: Biperiodic structure of spheres of radius 2 plotted in (−3π, 3π)2 × (−2, 2).

in this case can be computed explicitly, see [87]. Assume that q = q0 > 0, r is the radius of
the sphere, and I(j) = |j1|2 + |j2|2 + |j3π/R|2 for j = (j1, j2, j3) ∈ Z3, we have

√
8π2Rq̂(j) =

{
4πr3q0/3 I(j) = 0,

q04π
[
− r cos(I(j)r)/I(j) + sin(I(j)r)/I(j)2

]
/I(j) I(j) 6= 0.

As in the last two experiments we check in Figure 4.4 the energy conservation error for N = 2n,
n = 3, . . . , 6 where the tolerance for the GMRES iteration is 10−8.
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Figure 4.8: Scattering from biperiodic structures of spheres. The error curves |1 − Etra(θ) −
Eref(θ)| for different discretization parameters N versus the angles θ of the incident field ui.



Chapter 5

The Factorization Method for

Biperiodic Inverse Scattering

Abstract: In this chapter, we extend the Factorization method studied in Chapter
2 to the electromagnetic inverse scattering problem for Maxwell’s equations. Instead
of a half-space setting of the problem as in the scalar case, we investigate here the
vectorial problem for penetrable biperiodic structures in a full-space setting (compare
Figure 5.1). To extend the technique of the scalar problem to the vectorial problem, we
first introduce special plane incident fields that, basically, are suitable modifications of
the fields used in the scalar case (see (5.9)). Second, we again factorize the near field
operator N and prove necessary properties of the middle operator in the factorization
(see Theorem 5.3.2 and Theorem 5.4.1). Again, this allows us to apply Theorem 3.4.1
of range identity to provide a simple imaging criterion (5.30). In Section 5.5, we also
provide three dimensional numerical experiments which, to the best of our knowledge,
are the first numerical examples for this method in a biperiodic setting.

5.1 Introduction

This chapter is the extension of the Factorization method studied in Chapter 2 to inverse
biperiodic medium scattering for Maxwell’s equations. We consider penetrable biperiodic
structures similar to the one in Chapter 3. Further, Chapter 2 investigates the problem in
a half-space setting with Neumann boundary condition. We study in the present chapter
the vectorial problem for penetrable biperiodic structures in a full-space setting. The in-
verse problem that we treat in this paper is again the shape reconstruction of a biperiodic
medium from measured data consisting of scattered electromagnetic waves. We consider plane
electromagnetic waves as incident fields.

The aim again is to study the Factorization method as a tool for reconstructing three-
dimensional biperiodic structures from measurements related to scattered waves. More pre-
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cisely, the measured data that we consider here are the coefficients of propagating and evanes-
cent modes of the scattered fields. Given those coefficients of the tangential components
of the electromagnetic scattered fields, the inverse problem is then to determine the three-
dimensional penetrable biperiodic scatterer. As presented in the rest of the chapter, the
Factorization method is shown to be an efficient tool to our imaging problem. From a full
mathematical justification of the method, a simple criterion for imaging is shown to work ac-
curately in the three-dimensional numerical experiments which, to the best of our knowledge,
are the first numerical examples for this method in a biperiodic setting. Besides the difficult
technicalities of the Maxwell case, the vectorial problem in a full-space setting requires mea-
surements from above and below of the biperiodic structure. Thus we need to suitably adapt
the special plane incident waves used in Chapter 2 for the case of Maxwell’s equations.

Similar to the scalar case, the imaginary part of the middle operator in the factorization
is just semidefinite. Therefore we need a modified version of the central range identity of the
Factorization to overcome that. This modification follows again [78] in a comparable way
to Chapter 2. Again the neccessary properties of the middle operator are obtained by the
approach in [72] for obstacle inverse scattering of electromagnetic waves.

The chapter is organized as follows: In Section 5.2 we introduce the direct problem and
set up the corresponding inverse problem. Section 5.3 is dedicated to study the factorization
of the near field operator. We derive the neccessary properties of the middle operator in
the factorization in Section 5.4. Finally, a characterization of the biperiodic structure and
numerical experiments are given in Section 5.5.

5.2 Problem Setting

As in the previous chapter the electric field E and the magnetic field H are governed by the
time-harmonic Maxwell equations at frequency ω > 0 in R3,

curlH + iωεE = σE in R3, (5.1)

curlE − iωµ0H = 0 in R3. (5.2)

Compared to Chapter 3 we restrict ourselves here to the case that the electric permittivity
ε and the conductivity σ are scalar bounded measurable functions which are 2π-periodic in
x1 and x2, and that the magnetic permeability µ0 is a positive constant. We assume that
ε equals ε0 > 0 and that σ vanishes outside the biperiodic structure. The relative material
parameter is again

εr :=
ε+ iσ

ε0
.

Note that εr equals 1 outside the biperiodic structure. Recall that the magnetic permeability
µ0 is constant which motivates us to work with the divergence-free magnetic field. Hence,
introducing the wave number k = ω(ε0µ0)

1/2, and eliminating the electric field E from (5.1)–
(5.2), we find that

curl
(
ε−1
r curlH

)
− k2H = 0 in R3. (5.3)
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Assume that the biperiodic structure is illuminated by α-quasiperiodic incident electric and
magnetic fields Ei and H i, respectively, satisfying

curlH i + iωε0E
i = 0, curlEi − iωµ0H

i = 0 in R3.

Simple examples for such α-quasiperiodic fields are certain plane waves that we introduce
below. We wish to reformulate (5.3) in terms of the scattered field Hs, defined by Hs :=
H −H i. Straightforward computations show that curl curlH i − k2H i = 0, and

curl
(
ε−1
r curlHs

)
− k2Hs = − curl

(
q curlH i

)
in R3, (5.4)

where q is the scalar contrast defined by

q := ε−1
r − 1.

Similarly to the problem setting in Chapter 3, we find the α-quasiperiodic scattered field Hs

to the direct problem (5.4), satisfying the Rayleigh expansion radiation condition

Hs(x) =
∑

n∈Z2

Ĥ±
n e

i(αn·x+βn|x3−h|) for x3 ≷ ±h, (5.5)

where (Ĥ±
n )n∈Z2 are the Rayleigh sequences given by

Ĥ±
n := Ĥn(±h) =

1

4π2

∫ 2π

0

∫ 2π

0
Hs(x1, x2,±h)e−iαn·x dx1 dx2 , n ∈ Z2.

Note that we require that the series in (5.5) converges uniformly on compact subsets of
{|x3| > h}. Recall that, for n ∈ Z2, αn = (α1,n, α2,n, 0) = (α1 + n1, α2 + n2, 0) and

βn =

{√
k2 − |αn|2, k2 ≥ |αn|2,

i
√

|αn|2 − k2, k2 < |αn|2,

and βn is assumed to be nonzero for all n ∈ Z2. Further, only a finite number of terms in (5.5)
are propagating plane waves which are called propagating modes, the rest are evanescent
modes which correspond to exponentially decaying terms.

Denote by D the support of the contrast q in one period Ω = (−π, π)2 × R. We make an
assumption which is neccessary for the subsequent factorization framework.

Assumption 5.2.1. We assume that the support D ⊂ Ω is open and bounded with Lipschitz
boundary and that there exists a positve constant c such that Re(q) ≥ c > 0 and Im(q) ≤ 0
almost everywhere in Ω.

Considering a more general source term on the right hand side of (5.4), we have the
following direct problem: Given f ∈ L2(D)3, find u : Ω → C3 in a suitable function space
such that

curl
(
ε−1
r curlu

)
− k2u = − curl

(
q/
√

|q|f) in Ω, (5.6)
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x3

(x1, x2)

−π π

Figure 5.1: Geometric setting for inverse scattering problem of electromagnetic waves from a
penetrable biperiodic structure (in two dimentions, for simplicity).

and u satisfies the Rayleigh expansion condition (5.5). In the following, a function which
satisfies (5.5) is said to be radiating. It is also seen that if u is a solution of (5.4) then u
solves (5.6) for the right hand side of f = curlH i/

√
|q|.

For a variational formulation of the problem we recall from (4.19) that

Hα,loc(curl,Ω) = {u ∈ Hloc(curl,Ω) : u = U |Ω for some α-quasiperiodic U ∈ Hloc(curl,R3)},

and Ωh = (−π, π)2 × (−h, h) for h > sup{|x3| : (x1, x2, x3)
⊤ ∈ supp(q)} with boundaries

Γ±h = (−π, π)2×{±h}. The variational formulation to the problem (5.6) is to find a radiating
solution u ∈ Hα,loc(curl,Ω) such that

∫

Ω
(ε−1

r curlu · curlψ − k2u · ψ) dx = −
∫

Ω
q/
√

|q|f · curlψ dx , (5.7)

for all ψ ∈ Hα,loc(curl,Ω) with compact support. Existence and uniqueness of this problem
can be obtained for all but possibly a discrete set of wave numbers k, see e.g. [12, 41, 105].
In the sequel we assume that (5.7) is uniquely solvable for any f ∈ L2(D)3 and fixed k > 0.
Then we define a solution operator

G : L2(D)3 → ℓ2(Z2)4

which maps f to the Rayleigh sequences (û+
1,j , û

−
1,j , û

+
2,j , û

−
2,j)j∈Z2 of the first two components

of u ∈ Hα,loc(curl,Ω), solution to (5.7). Note that the Rayleigh sequences û±(1,2),j are given by

û±(1,2),j =
1

4π2

∫ 2π

0

∫ 2π

0
u(1,2)(x1, x2,±h)e−iαj ·x dx1 dx2 , j ∈ Z2. (5.8)

Now we introduce the notation b̃ = (b1, b2,−b3)⊤ for b = (b1, b2, b3)
⊤ ∈ C3. To obtain the

data for the factorization method we consider the following α-quasiperiodic plane waves

ϕ
(l)±
j = p

(l)
j ei(αj ·x+βjx3) ± p̃

(l)
j ei(αj ·x−βjx3), l = 1, 2, j ∈ Z2, (5.9)
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where p
(l)
j = (p

(l)
1,j , p

(l)
2,j, p

(l)
3,j) ∈ C3 \ {0} are complex polarizations chosen such that, for all

j ∈ Z2,

i) p
(1)
j × p

(2)
j = cj(α1,j , α2,j, βj)

⊤, for cj ∈ C \ {0}. (5.10)

ii) |p(1)
j | = |p(2)

j | = 1. (5.11)

Together with the assumption that βj 6= 0 for all j ∈ Z2, such polarizations are linear
independent. One possible choice is

p
(1)
j = (0, βj ,−α2,j)/(|βj |2 + α2

2,j)
1/2, p

(2)
j = (−βj , 0, α1,j)/(|βj |2 + α2

1,j)
1/2.

Note that ϕ
(l)±
j are propagating plane waves if βj are real, and evanescent waves if βj are com-

plex. Further ϕ
(l)±
j are divergence-free functions for all j ∈ Z2, l = 1, 2. Due to the linearity

of the problem, a linear combination of several incident fields will lead to a corresponding lin-
ear combination of the resulting scattered fields. We obtain such a linear combination using

sequences (aj)j∈Z2 =
(
a

(1)+
j , a

(1)−
j , a

(2)+
j , a

(2)−
j

)
j∈Z2 ∈ ℓ2(Z2)4 and define the corresponding

operator H : ℓ2(Z2)4 → L2(D)3 by

H(aj) =
√

|q|
∑

j∈Z2

1

βjwj

[
a

(1)+
j curlϕ

(1)+
j +a

(2)+
j curlϕ

(2)+
j +a

(1)−
j curlϕ

(1)−
j +a

(2)−
j curlϕ

(2)−
j

]
,

(5.12)
where

wj :=

{
i, k2 > α2

j ,

exp(−iβjh), k2 < α2
j .

Note that we divide by βjwj to make later computations easier.
In our inverse problem the data that we measure are the Rayleigh sequences defined

in (5.8). Similar to the scalar case we need both propagating and evanescent modes to be able
to uniquely determine the periodic structure. Hence the operator that models measurements of
fields scattered from the periodic inhomogeneous medium caused by the incident fields (5.12)
is referred to be the near field operator, denoted by N . We define N : ℓ2(Z2)4 → ℓ2(Z2)4 to
map a sequence (aj)j∈Z2 to the Rayleigh sequences of the first two components of the scattered
field generated by the incident field H(aj) defined in (5.12), i.e.

[N(aj)]n := (û+
1,n, û

−
1,n, û

+
2,n, û

−
2,n)n∈Z2 ,

where u ∈ Hα,loc(curl,Ω) is the radiating solution to (5.7) for the source f = H(aj). Then
from the definition of the solution operator we have

N = GH. (5.13)

The inverse scattering problem is now to reconstruct the supportD of the contrast q = ε−1
r −1

when the near field operator N is given. Note that it is not clear yet that N is a bounded
linear operator, but we will prove this in the next section.
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5.3 Factorization of the Near Field Operator

We study the inverse problem of the previous section using the factorization method. One
of the important steps of the latter method that this section is devoted to is factorizing the
near field operator. Before doing that, in the next lemma, we show some properties of the
operator H : ℓ2(Z2)4 → L2(D)3 and its adjoint H∗. We need the sequence

w∗
j :=

{
exp(−iβjh), k2 > α2

j ,

i, k2 < α2
j .

Lemma 5.3.1. For p
(l)
j = (p

(l)
1,j , p

(l)
2,j, p

(l)
3,j), j ∈ Z2, l = 1, 2, defined as in (5.10) and (5.11),

the operator H : ℓ2(Z2)4 → L2(D)3 is compact and injective, and its adjoint H∗ : L2(D)3 →
ℓ2(Z2)4 satisfies

(H∗f)j = 8π2w∗
j




p
(1)
1,j(û

+
1,j + û−1,j) + p

(1)
2,j(û

+
2,j + û−2,j)

p
(2)
1,j(û

+
1,j + û−1,j) + p

(2)
2,j(û

+
2,j + û−2,j)

p
(1)
1,j(û

+
1,j − û−1,j) + p

(1)
2,j(û

+
2,j − û−2,j)

p
(2)
1,j(û

+
1,j − û−1,j) + p

(2)
2,j(û

+
2,j − û−2,j)




⊤

, j ∈ Z2, (5.14)

where (û+
1,j , û

−
1,j , û

+
2,j , û

−
2,j)j∈Z2 are the Rayleigh sequences of the first two components of u ∈

Hα,loc(curl,Ω), the radiating variational solution to curl2 u− k2u = curl(
√

|q|f) in Ω.

Proof. For l = 1, 2 and j ∈ Z2, we have

∫

D
H(aj)f dx =

∑

j∈Z2

[ ∑

l=1,2

a
(l)+
j

βjwj

∫

D

√
|q|f · curlϕ

(l)+
j dx +

∑

l=1,2

a
(l)−
j

βjwj

∫

D

√
|q|f · curlϕ

(l)−
j dx

]

=

〈
(aj),

(∫

D

√
|q|f ·

(
curlϕ

(l)+
j

βjwj

)
dx ,

∫

D

√
|q|f ·

(
curlϕ

(l)−
j

βjwj

)
dx

)〉

ℓ2(Z2)4

.

Note that the equation curl2 u − k2u = curl(
√

|q|f) in Ω with Rayleigh expansion condition
is uniquely solvable for all wave numbers k > 0. The Fredholm property can be obtained
as in [12, 41, 105], and using integral representation formulas from Theorem 3.1 in [100] one

shows the uniqueness. Now we define v
(l)±
j = ϕ

(l)±
j /(βjwj) and consider a smooth function

φ ∈ C∞(R) such that φ = 1 in (−h, h), φ = 0 in R \ (−2h, 2h). Then φv
(l)±
j belongs to

Hα(curl,Ω) with compact support in {|x3| < 2h}. Assume that u ∈ Hα,loc(curl,Ω) is the
variational radiating solution to curl2 u− k2u = − curl(

√
|q|f) in Ω. We have

∫

D

√
|q|f · curl v

(l)±
j dx =

∫

Ωh

(curlu · curl v
(l)±
j − k2u · v(l)±

j ) dx

+

∫

Ω2h\Ωh

(curlu · curl(φv
(l)±
j ) − k2u · φv(l)±

j ) dx .
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Now using Green’s theorems and exploiting the fact that v
(l)±
j and u are divergence-free

solutions to the Hemholtz equation in R3 and Ω \ Ωh, respectively, we obtain that

∫

D

√
|q|f · curl v

(l)±
j dx =

∫

Γh

(e3 × curlu · v(l)±
j − e3 × curl v

(l)±
j · u) ds

+

∫

Γ−h

(e3 × curl v
(l)±
j · u− e3 × curlu · v(l)±

j ) ds

=

(∫

Γh

−
∫

Γ−h

)
∂v

(l)±
2,j

∂x3
u2 −

∂u2

∂x3
v
(l)±
2,j +

∂v
(l)±
1,j

∂x3
u1 −

∂u1

∂x3
v
(l)±
1,j


 ds . (5.15)

Note that we have

v
(l)+
1,j =

(
p
(l)
1,j

βjwj

)
(eiβjx3 + e−iβjx3)e−iαj ·x,

∂v
(l)+
1,j

∂x3
= iβj

(
p
(l)
1,j

βjwj

)
(eiβjx3 − e−iβjx3)e−iαj ·x.

Then by straightforward computation we obtain

∫

Γh


∂v

(l)+
1,j

∂x3
u1 −

∂u1

∂x3
v
(l)+
1,j


 ds =

∑

n∈Z2

û+
1,n

∫

Γh

eiαn·x


∂v

(l)+
1,j

∂x3
− iβnv

(l)+
1,j


 ds

= 8π2w∗
jp

(l)
1,jû

+
1,j .

Similarly we also have

∫

Γh


∂v

(l)+
2,j

∂x3
u2 −

∂u2

∂x3
v
(l)+
2,j


 ds = 8π2w∗

jp
(l)
2,jû

+
2,j ,

∫

Γ−h


∂v

(l)+
2,j

∂x3
u2 −

∂u2

∂x3
v
(l)+
2,j +

∂v
(l)+
1,j

∂x3
u1 −

∂u1

∂x3
v
(l)+
1,j


 ds = −8π2w∗

j (p
(l)
1,jû

−
1,j + p

(l)
2,jû

−
2,j).

Now substituting the last two equations into (5.15) we derive

∫

D

√
|q|f · curl v

(l)+
j dx = 8π2w∗

j (p
(l)
1,j û

−
1,j + p

(l)
2,jû

−
2,j + p

(l)
1,jû

+
1,j + p

(l)
2,jû

+
2,j).

Similarly we have

∫

D

√
|q|f · curl v

(l)−
j dx = 8π2w∗

j (−p
(l)
1,jû

−
1,j − p

(l)
2,jû

−
2,j + p

(l)
1,jû

+
1,j + p

(l)
2,jû

+
2,j)
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which shows that H∗ satisfies (5.14). Next we show the compactness of H∗. This relies on
the operator W : ℓ2(Z2)4 → ℓ2(Z2)4 defined by

W ((al)l∈Z2) = −8π2w∗
j




p
(1)
1,j(a

(1)+
j + a

(1)−
j ) + p

(1)
2,j(a

(2)+
j + a

(2)−
j )

p
(2)
1,j(a

(1)+
j + a

(1)−
j ) + p

(2)
2,j(a

(2)+
j + a

(2)−
j )

p
(1)
1,j(a

(1)+
j − a

(1)−
j ) + p

(1)
2,j(a

(2)+
j − a

(2)−
j )

p
(2)
1,j(a

(1)+
j − a

(1)−
j ) + p

(2)
2,j(a

(2)+
j − a

(2)−
j )




⊤

, j ∈ Z2. (5.16)

Since (w∗
j )j∈Z2 is a bounded sequence, and since the sequences (p

(l)
j )j∈Z2 are bounded for

l = 1, 2 due to (5.11), the operator W is bounded. Now we define the operator

Q : L2(D)3 → ℓ2(Z2)4 (5.17)

which maps f to (û+
1,j , û

−
1,j, û

+
2,j , û

−
2,j) where u is the radiating variational solution to curl2 u−

k2u = curl(
√

|q|f) in Ω. Then we have

H∗ = −WQ. (5.18)

The following trace spaces are neccessary for our proof: We define

Y (Γ±h) = {f ∈ H−1/2(Γ±h)3| there exists u ∈ Hα(curl,Ωh) with ± e⊤3 × u|Γ±h
= f}

with norm

‖f‖Y (Γ±h) = inf
u∈Hα(curl,Ωh),±e⊤

3
×u|Γ±h

=f
‖u‖Hα(curl,Ωh).

The trace spaces Y (Γ±h) are Banach spaces with this norm, see [83, Chapter 3]. Note that the
results in latter reference are presented for bounded Lipschitz domains which are certainly
valid for Ωh. Further the operation u 7→ ((0, 0,±1) × u|Γ±h

) × (0, 0,±1) is bounded from
Hα(curl,Ωh) into Y ′(Γ±h) which is the dual space of Y (Γ±h).

Now we know that the operation which maps f ∈ L2(D)3 into u ∈ Hα,loc(curl,Ω), radiating
variational solution to curl2 u−k2u = curl(

√
|q|f), is bounded. Note that ((0, 0,±1)×u|Γ±h

)×
(0, 0,±1) = (u1, u2, 0). We obtain that the operations f 7→ (u1, u2, 0)|Γh

and (u1, u2, 0)|Γh
7→

(û+
1,j, û

+
2,j) are bounded from L2(D)3 into Y ′(Γh) and from Y ′(Γh) into ℓ2(Z2)2, respectively.

Similarly for Γ−h we obtain that f 7→ (û−1,j , û
−
2,j) are bounded from L2(D)3 into ℓ2(Z2)2.

Together with the boundedness of the sequence (w∗
j )j∈Z2 , Q is a bounded operator. We know

that in a neighbourhood of Γ±h u solves the Hemholtz equation. Hence elliptic regularity
results [81] imply that u is H2-regular in a neighbourhood of Γ±h, thus, f 7→ (u1, u2, 0)|Γ±h

is a compact operation from L2(D)3 into Y ′(Γ±h). Then Q is a compact operator and H∗ is
compact. Therefore H is compact as well.

To obtain the injectivity of H, we prove that H∗ has dense range. It is sufficient to prove
that W has dense range and all sequences ((δjl)l∈Z2 , 0, 0, 0), (0, (δjl)l∈Z2 , 0, 0), (0, 0, (δjl)l∈Z2 , 0)
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and (0, 0, 0, (δjl)l∈Z2) belong to the range of Q (by definition, the Kronecker symbol δjl equals
one for j = l and zero otherwise). The operator W has dense range due to the fact that

det




p
(1)
1,j p

(1)
1,j p

(1)
2,j p

(1)
2,j

p
(2)
1,j p

(2)
1,j p

(2)
2,j p

(2)
2,j

p
(1)
1,j −p(1)

1,j p
(1)
2,j −p(1)

2,j

p
(2)
1,j −p(2)

1,j p
(2)
2,j −p(2)

2,j




= −4

(
p
(2)
1,jp

(1)
2,j − p

(2)
2,jp

(1)
1,j

)2

= 4(cjβj)
2 6= 0,

due to the property (5.10) of the polarizations. Now we show that ((δjl)l∈Z2 , 0, 0, 0) belongs
to the range of Q, and the other cases can be done in a similar way. We choose a cut-off
function χ1,j ∈ C∞(R) such that χ1,j(t) = 0 for t < 0 and χ(t) = 1 for t > h/2. Then
(x1, x2, x3) 7→ χ1,j(x3) exp(i(αj · x + βj(x3 − h)) has Rayleigh sequence ((δjl)l∈Z2 , 0). For all
j ∈ Z2, we define

ϕj(x) = (χ1,j(x3), 0, χ3,j(x3))
⊤ exp(i(αj · x+ βj(x3 − h)),

where

χ3,j(x3) = −iα1,je
−iβjx3

∫ x3

0
eiβjtχ1,j(t) dt .

Then divϕj = 0 in Ω and the Rayleigh sequences of the first two components of ϕj are
((δjl)l∈Z2 , 0, 0, 0). Next we show that there exists fj ∈ L2(D)3 such that curl2 ϕj − k2ϕj =
curl(

√
|q|fj) in Ω holds in the variational sense. Set

gj(x) := curl2 ϕj(x) − k2ϕj(x), x ∈ Ω,

then we have div(gj) = 0 in Ω which also implies that

∫

∂Ωh

gj · ν ds = 0.

Therefore, due to Theorem 3.38 in [83], there exists ψj ∈ H1(Ωh)3 such that

gj = curlψj in Ωh.

Define fj =
√

|q|−1
ψj , then fj ∈ L2(D)3 and we have, in the weak sense,

curl2 ϕj − k2ϕj = curl(
√

|q|fj) in Ωh.

Together with curl2 ϕj − k2ϕj = 0 in Ω \ Ωh, we complete the proof.

Now we show a factorization of the near field operator N in the following theorem. To
this end, we define the sign of q by

sign(q) :=
q

|q| .
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Theorem 5.3.2. Assume that q satisfies the Assumption 5.2.1. The operator W is defined
as in (5.16). Let T : L2(D)3 → L2(D)3 be defined by Tf = sign(q)(f +

√
|q| curl v), where

v ∈ Hα,loc(curl,Ω) is the radiating solution to (5.7). Then the near field operator satisfies

WN = H∗TH.

Proof. We recall the operator Q in (5.17) that maps f ∈ L2(D)3 to the Rayleigh sequences
(û+

1,j, û
−
1,j , û

+
2,j , û

−
2,j) where u is the radiating variational solution to curl2 u−k2u = curl(

√
|q|f)

in Ω. By definition of the solution operator G we have Gf = (û+
1,j , û

−
1,j , û

+
2,j , û

−
2,j) where

u ∈ Hα,loc(curl,Ω) is a radiating weak solution to

curl(ε−1
r curlu) − k2u = − curl(q/

√
|q|f)

. This means that curl2 u− k2u = − curl(
√

|q| sign(q)(f +
√

|q| curl v)), thus, Gf = −(QT )f .
Now due to the fact that N = GH we have

WN = WGH = −WQTH.

Additionally we know from (5.18) that H∗ = −WQ which completes the proof.

5.4 Study of the Middle Operator

In this section we analyze the middle operator T in the factorization of Theorem 5.3.2 and
derive its neccessary properties for the application of the Theorem 3.4.1. This is seen in the
following lemma.

Lemma 5.4.1. Suppose that the contrast q satisfies the Assumption 5.2.1 and that the direct
scattering problem (5.7) is uniquely solvable for any f ∈ L2(D)3. Let T : L2(D)3 → L2(D)3

be the operator defined as in Theorem 5.3.2, i.e.

Tf = sign(q)(f +
√

|q| curl v),

where v ∈ Hα,loc(curl,Ω) is the radiating variational solution to

curl(ε−1
r curlu) − k2u = − curl(q/

√
|q|f). (5.19)

Then we have
(a) T is injective and 〈ImTf, f〉 ≤ 0 for all f ∈ L2(D)3.
(b) Define the operator T0 : L2(D)3 → L2(D)3 by T0f = sign(q)(f +

√
|q| curl ṽ) where

ṽ ∈ Hα,loc(curl,Ω) solves (5.19) for k = i, f ∈ L2(D)3, in the variational sense. Then we
have that T − T0 is compact in L2(D)3.

(c) For T0 defined as in (b), if Re(q) > 0 on L2(D)3 then Re(T0) is coercive in L2(D)3,
i.e, there exists a constant γ > 0 such that

〈Re(T0)f, f〉L2(D)3 ≥ γ‖f‖L2(D)3 .
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Note that the proofs of (b) and (c) can be found in Theorem 4.9 [100] or Theorem 5.12 [72].
Here, for convenience, we repeat the proofs in [72] with slight modifications.

Proof. (a) We show the injectivity of T by assuming that Tf = sign(q)(f +
√

|q| curl v) = 0,
then v is a radiating variational solution to the homogeneous problem curl2 v − k2v = 0.
However, we showed in the proof of Lemma 5.3.1 that the latter problem has only the trivial
solution which implies that v = 0 in Ω. Thus, f = 0 or T is injective.

Now we set w = f +
√

|q| curl v, then Tf = sign(q)w and

〈Tf, f〉L2(D)3 =

∫

D
sign(q)w · (w −

√
|q| curl v) dx

=

∫

D
(sign(q)|w|2 − q/

√
|q|w · curl v) dx

For r > sup{|x3| : (x1, x2, x3)
⊤ ∈ D}, we consider a smooth function χ ∈ C∞(R) such that

χ = 1 in Ωr, χ = 0 in Ω \ Ω2r. Then χv belongs to Hα,loc(curl,Ω) with compact support in
Ω3r. Since v ∈ Hα,loc(curl,Ω) is the radiating solution to (5.19), we have

−
∫

D
q/
√

|q|w · curl v dx =

∫

Ωr

(| curl v|2 − k2|v|2) dx

+

∫

Ω2r\Ωr

(curl v · curl(χv) − k2v · χv) dx

Now using Green’s theorems and exploiting the fact that v solve the Hemholtz equation in
Ω \ Ωh, we obtain that

−
∫

D
q/
√

|q|w · curl v dx =

∫

Ωr

(| curl v|2 − k2|v|2) dx +

(∫

Γr

−
∫

Γ−r

)
(e3 × curl v · v) ds

=

∫

Ωr

(| curl v|2 − k2|v|2) dx +

(∫

Γr

−
∫

Γ−r

)(
−v1

∂v1
∂x1

− v2
∂v2
∂x3

+ v3
∂v3
∂x3

)
ds .

(5.20)

Taking the imaginary part of the latter equation we have

−Im

∫

D
q/
√

|q|w · curl v dx = Im

(∫

Γr

−
∫

Γ−r

)(
−v1

∂v1
∂x3

− v2
∂v2
∂x3

+ v3
∂3v3
∂x3

)
ds .

Recall that v satisfies the radiating Rayleigh condition for |x3| > r. Thus all the terms corre-
sponding to evanescent modes tend to zero as r tends to infinity. Then due to a straightforward
computation we derive

−Im

∫

D
q/
√

|q|w · curl v dx = lim
r→∞

Im

(∫

Γr

−
∫

Γ−r

)(
−v1

∂v1
∂x3

− v2
∂v2
∂x3

+ v3
∂v3
∂x3

)
ds

= −4π2
∑

j:k2>α2
j

βj(|v̂+
j |2 + |v̂−j |2),
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which implies that

〈ImTf, f〉L2(D)3 =

∫

D
Imq/|q||w|2 dx − Im

∫

D
q/
√

|q|w · curl v dx

=

∫

D
Imq/|q||w|2 dx − 4π2

∑

j:k2>α2
j

βj(|v̂+
j |2 + |v̂−j |2) ≤ 0,

since Im(q) ≤ 0 in D.

(b) From the definitions of T and T0 we note that Tf − T0f = q/
√

|q| curl(v − ṽ) where
v, ṽ ∈ Hα,loc(curl,Ω) are the solutions, for k and k = i, of

∫

Ω
(ε−1

r curl v · curlψ − k2v · ψ) dx = −
∫

Ω
q/
√

|q|f · curlψ dx , (5.21)

∫

Ω
(ε−1

r curl ṽ · curlψ + ṽ · ψ) dx = −
∫

Ω
q/
√

|q|f · curlψ dx , (5.22)

respectively, for all ψ ∈ Hα(curl,Ω) with compact support. By substituting ψ = ∇ϕ for
scalar functions ϕ ∈ C∞(Ω) with compact support we obtain that

∫
Ω v · ∇ϕ dx = 0 for all

ϕ ∈ C∞(Ω) with compact support which means that divv = 0, and analogously, divṽ = 0 in
Ω. The difference w = v − ṽ solves

∫

Ω
(ε−1

r curlw · curlψ − k2w · ψ) dx = (k2 + 1)

∫

Ω
ṽ · ψ dx ,

for all ψ ∈ Hα(curl,Ω) with compact support.

Let now the sequence fj converge weakly to zero in L2(D)3 and denote by vj , ṽj ∈
Hα,loc(curl,Ω) the corresponding radiating solutions of (5.21) and (5.22), respectively. Define
wj ∈ Hα,loc(curl,Ω) again by the difference wj = vj − ṽj. Set R > supp{|x3| : (x1, x2, x3)

⊤ ∈
D}, then D ⊂ ΩR. By the boundedness of the solution operator we conclude that vj and ṽj

converge weakly to zero in Hα(curl,ΩR). Furthermore, vj and ṽj are smooth outside of D and
converges uniformly (with all of its derivatives) to zero on Γ±h. In consequence, wj converges
to zero in C(∂ΩR). We determine pj ∈ H1

α,⋄(ΩR) as the solution of

∫

ΩR

∇pj · ∇ϕdx =

∫

∂ΩR

(ν · wj)ϕ ds (5.23)

for all ϕ ∈ H1
α,⋄(ΩR). Here the subspace H1

α,⋄(ΩR) of H1
α(ΩR) is defined as H1

α,⋄(ΩR) =
{ϕ ∈ H1

α(ΩR) :
∫
ΩR

ϕds = 0}. The solution of (5.23) exists and is unique since the form

(p, ϕ) 7→
∫
ΩR

∇p · ∇ϕdx is bounded and coercive on H1
α,⋄(ΩR) by the inequality of Poincaré

(cf. [108]). The latter states that there exists a constant c > 0 with

∫

ΩR

|∇ϕ|2 dx ≥ c‖ϕ‖2
H1

α(ΩR) for all ϕ ∈ H1
α,⋄(ΩR). (5.24)
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Problem (5.23) is the variational form of the Neumann boundary value problem

∆pj = divwj = 0 in ΩR,
∂pj

∂νj
= ν · wj on ∂ΩR.

We observe that (5.23) holds even for all ϕ ∈ H1
α(ΩR) since

∫
∂ΩR

(ν · wj) ds vanishes by the
divergence theorem and the fact that divwj = 0. Substituting ϕ = pj into (5.23) yields,
using (5.24) and the trace theorem,

c‖pj‖2
H1

α(ΩR) ≤
∫

ΩR

|∇pj|2 dx =

∫

∂ΩR

(ν · wj)pj ds ≤ c̃‖wj‖C(∂ΩR)‖pj‖H1
α(ΩR),

i.e. ‖pj‖H1
α(ΩR) ≤ (c̃/c)‖wj‖C(∂ΩR) which converges to zero. Therefore, the functions w̃j :=

wj −∇pj ∈ Hα(curl,ΩR) satisfy

• w̃j ∈ Hα,div(curl,ΩR) := {u ∈ Hα(curl,ΩR) :
∫
ΩR

∇ϕ · udx = 0 for all ϕ ∈ H1
α(ΩR)}

• w̃j ⇀ 0 weakly in L2(ΩR)3,

• curl w̃j = curlwj ⇀ 0 weakly in L2(ΩR)3.

These three conditions assure that w̃j converges to zero in the norm of L2(ΩR)3 since the
closed subspace Hα,div(curl,ΩR) of Hα(curl,ΩR) is compactly imbedded in L2(Ω)3. We refer
to [110], see also [83], Theorem 4.7. Since also ‖∇pj‖L2(ΩR)3 → 0 this yields ‖wj‖L2(ΩR) → 0 as
j tends to infinity. Now we return to the variational equation for wj and substitute ψ = φwj

where φ ∈ C∞(Ω) is some function with compact support such that φ = 1 on ΩR. This yields

∫

ΩR

(ε−1
r | curlwj|2 − k2|wj |2) dx =

∫

Ω\ΩR

(ε−1
r curlwj · curl(φwj) − k2φ|wj |2) dx

+ (k2 + 1)

∫

Ω
φṽj · wj dx .

We note that wj is smooth in Ω \ ΩR. Green’s theorem in ΩmR \ ΩR (for a sufficiently large
value of m) and application of curl2 wj − k2wj = (k2 + 1)ṽj in this region yields

∫

ΩR

(ε−1
r | curlwj |2 − k2|wj |2) dx =

∫

∂ΩR

(ν × curlwj) · wj ds + (k2 + 1)

∫

ΩR

ṽj · wj dx

which tends to zero as j tends to infinity since ṽj and curlwj are bounded sequences and
‖wj‖L2(ΩR), ‖wj‖C(∂ΩR) tend to zero. Therefore, also curlwj tends to zeros in L2(ΩR)3 which
complete the proof.

(c) If Re(q) > 0, we return to (5.20) for ṽ instead of v. Since ṽ decays exponentially to
zero as |x3| tends to infinity we conclude, by letting r tend to infinity,

〈ReT0f, f〉L2(D)3 = Re

∫

D
sign(q)|f +

√
|q| curl ṽ|2 dx +

∫

Ω
(| curl ṽ|2 + |ṽ|2) dx . (5.25)
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Now assume that there is no such a constant γ > 0 for the statement of (c), then we can
find a sequence {fj} such that ‖fj‖L2(D)3 = 1 and 〈ReT0fj, fj〉L2(D)3 → 0. Due to (5.25), we

have that fj +
√

|q| curl ṽj → 0 in L2(D)3 where ṽj denotes the solution of (5.19) for f and k
replaced by fj and i, respectively. Then we have

∫

Ω
(| curl ṽj|2 + |ṽj |2) dx = −

∫

Ω
q/
√

|q|(fj +
√
|q| curl ṽj) · curl ṽj dx ,

which let us obtain that ‖ṽj‖Hα(curl,Ω) → 0. Hence fj → 0 in L2(D)3 which is a contradiction
to ‖fj‖L2(D)3 = 1. Therefore Re(T0) is coercive.

5.5 Characterization of the Biperiodic Support

In this section, we give a characterization when a point z belongs to the support of the contrast
q by exploiting special test sequences. A simple criterion for imaging the periodic support is
also proposed.

First recall from (4.9) that the α-quasiperiodic Green’s function Gk(x, y) of the Hemholtz
operator in three dimensions is given

Gk(x, y) =
i

8π2

∑

j∈Z

1

βj
eiαj ·(x−y)+iβj |x3−y3|, x, y ∈ Ω, x3 6= y3. (5.26)

Further from (4.10) Gk(x, y) can be decomposed as

Gk(x, y) =
eik|x−y|

4π|x− y| + Ψk(x− y), (5.27)

where Ψk is the analytic solution to the Hemholtz equation in (−2π, 2π)2 × R.
The α-quasiperiodic Green’s tensor Gk(x, y) defined by

Gk(x, y) = Gk(x, y)I3 + k−2∇xdivx(Gk(x, y)I3), x, y ∈ Ω, x3 6= y3,

solves
curl2x Gk(x, y) − k2Gk(x, y) = δy(x)I3, x ∈ Ω,

where I3 is again the 3×3 identity matrix. Here, the curl of a matrix is taken columnwise, the
div of a matrix and the ∇ are meant to be taken columnwise and componentwise, respectively.
Note that Gk satisfies the Rayleigh expansion condition.

Lemma 5.5.1. Let the operator W be defined as in (5.16). For any z ∈ Ω and fixed nonzero
p = (p1, p2, p3) ∈ C3 we denote by (Ψ̂±

z,j)j∈Z2 ∈ ℓ2(Z2)4 the Rayleigh coefficients of the first
two components of

Ψz(x) := k2Gk(x, z)p

=




[
k2Gk(x, z) + ∂2Gk(x,z)

∂x2
1

]
p1 + ∂2Gk(x,z)

∂x1∂x2
p2 + ∂2Gk(x,z)

∂x1∂x3
p3

∂2Gk(x,z)
∂x2∂x1

p1 +
[
k2Gk(x, z) + ∂2Gk(x,z)

∂x2
2

]
p2 + ∂2Gk(x,z)

∂x2∂x3
p3

∂2Gk(x,z)
∂x3∂x1

p1 + ∂2Gk(x,z)
∂x3∂x2

p2 +
[
k2Gk(x, z) + ∂2Gk(x,z)

∂x2
3

]
p3


 , (5.28)
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for x ∈ Ω, x 6= z. Then z belongs to D if and only if W (Ψ̂±
j,z) ∈ Rg(H∗).

Remark 5.5.2. Note that the Rayleigh sequences Ĝ±
k,j(z) of the α-quasiperiodic Green’s func-

tion Gk(·, z) can be obtained from the representation of Gk(·, z) in (5.26)

Ĝ±
k,j(z) =

i

8π2βj
e−i[α1,jz1+α2,jz2±βj(z3∓h)].

Then the Rayleigh sequences (Ψ̂±
z,j)j∈Z2 ∈ ℓ2(Z2)4 of the first two components of Ψz can be

given as

Ψ̂±
z,j =

(
(k2 − α2

1,j)Ĝ
±
k,j(z)p1 − α1,jα2,jĜ

±
k,j(z)p2 ∓ α1,jβjĜ

±
k,j(z)p3

−α2,jα1,jĜ
±
k,j(z)p1 + (k2 − α2

2,j)Ĝ
±
k,j(z)p2 ∓ α2,jβjĜ

±
k,j(z)p3

)
. (5.29)

From (5.27) and (5.28) we can see that the Green’s tensor Gk has the same singularity to the
function ∂2Φk/∂xi∂xj where Φk(x, y) = exp(ik|x − y|)/(4π|x − y|) and i, j = 1, 2, 3. Further
denote by δij the Kronecker symbol (δij = 1 for i = j, δij = 0 for i 6= j), we have

∂2Φk(x, y)

∂xi∂xj
= Φk(x, y)

(
ikδij
|x− y| +

4π(ik)2(xi − yi)(xj − yj) − δij
4π|x− y|2

− 8πik(xi − yi)
2 + ik(xi − yi)(xj − yj)

4π|x− y|3 +
3(xi − yi)

2

4π|x− y|4

)

which implies that the singularity of ∂2Φk/∂xi∂xj is as strong as 1/|x− y|3.

Proof. First, let z ∈ D. Recall the operator Q defined in (5.17). Due to the fact that
H∗ = −WQ, it is sufficient to show that (Ψ̂z,j)j∈Z2 ∈ Rg(Q). Choose r > 0 such that
B(z, r) ∈ D and consider a cut-off function ϕ ∈ C∞(R3) with ϕ(x) = 0 for |x− z| ≤ r/2 and
ϕ(x) = 1 for |x− z| ≥ r. We define

w(x) = curl2(ϕ(x)Gk(x, z)p), x ∈ Ω.

Note that, for |x− z| ≥ r, we have

w(x) = curl2(ϕ(x)Gk(x, z)p) = k2Gk(x, z)p,

and further (ŵj)j∈Z2 = (Ψ̂z,j)j∈Z2 . Using Green’s theorem we obtain

∫

Ω
(curlw · curlψ − k2w · ψ) dx =

∫

Ω
(curlw − k2 curl(ϕ(x)Gk(x, z)p)) · curlψ dx

=

∫

Ω
g · curlψ dx ,
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for all ψ ∈ Hα(curl,Ω) with compact support, and g := curlw− k2 curl(ϕ(x)Gk(x, z)p). Since

g is smooth and vanishes for |z−x| ≥ r, thus supp(g) ⊂ D. Set f =
√

|q|−1
g ∈ L2(D)3. Then

we have ∫

Ω
(curlw · curlψ − k2w · ψ) dx =

∫

D

√
|q|f · curlψ dx ,

which implies that (Ψ̂z,j)j∈Z2 ∈ Rg(Q).

Now let z /∈ D, and on the contrary, assume that Ψ̂z,j ∈ Rg(Q). That means there
exists u ∈ Hα,loc(curl,Ω) and f ∈ L2(D)3 such that u is the variational radiating solution to

curl2 u − k2u = curl(
√

|q|f) and ûj = Ψ̂z,j for all j ∈ Z2. Since the Rayleigh sequences of
u and Ψz are equal, both functions coincide in (−π, π)2 × {|x3| > h} where h > supp{|x3| :
(x1, x2, x3)

⊤ ∈ D}. Due to the analyticity of u and Ψz in Ω \D and Ω \{z}, respectively, and
the analytic continuation we conclude that u = Ψz in Ω \ (D ∪ {z}). This is a contradiction
since u ∈ H(curl, B) for any ball B containing z but curl(k2Gk(·, z)p) /∈ H(curl, B) due to a
strongly singularity at z.

Theorem 5.5.3. Suppose that the contrast q satisfies the Assumption 5.2.1 and that the
direct scattering problem (5.7) is uniquely solvable. For j ∈ Z2, denote by (λn, ψn,j)n∈N

the orthonormal eigensystem of (WN)♯ = |Re(WN)| + Im(WN) and by (Ψ̂±
z,j)j∈Z2 the test

sequence defined in (5.29). A point z belongs to the support of q if and only if

∞∑

n=1

|〈Ψ̂±
z,j, ψj,n〉ℓ2(Z2)4 |2

λn
<∞. (5.30)

Proof. As we assumed in the theorem, (λn, ψn,j)n∈N is an orthonormal eigensystem of (WN)♯.
The assumptions of Theorem 3.4.1 on H, H∗ and T in the factorization WN = H∗TH have
been checked in Lemmas 5.3.1 and 5.4.1. Therefore, an application of Theorem 3.4.1 yields

that Rg((WN)
1/2
♯ ) = Rg(H∗). Combining this range identity with the characterization given

in Lemma 5.5.1 we obtain that (Ψ̂±
z,j)j∈Z2 ∈ Rg((WN)

1/2
♯ ) if and only if z ∈ D. Then the

criterion (5.30) follows from Picard’s range criterion.

5.6 Numerical Experiments

As mentioned in the introduction, these are to the best of our knowledge the first three-
dimensional examples of the Factorization method in a biperiodic setting. These numerical
examples focus on the dependence of the reconstructions on the number of the incident fields
(or, equivalently, the evanescent modes), and the performance of the method when the data
is perturbed by artificial noise. Further, we also indicate the number of the evanescent and
propagating modes which are used for each reconstruction. These experiments use three
biperiodic structures presented in one period Ω = (−π, π)2 × R in terms of the support D of
the contrast q as follows:
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(i) Biperiodic structures of ellipsoids,

D = {(x1, x2, x3)
⊤ ∈ Ω :

x2
1

2.52
+

x2
2

2.52
+

x2
3

0.42
≤ 1},

q = 0.5 in D.

(ii) Biperiodic structures of cubes,

D = {(x1, x2, x3)
⊤ ∈ Ω : |x1| ≤ 2.5, |x2| ≤ 2.5, |x3| ≤ 0.45},

q = (x3 + 1)(sin(x1)
2 sin(x2)

2 + 0.3)/4 − 0.4i in D.

(iii) Biperiodic structures of plus signs,

D = Ω ∩ [({|x1| ≤ 1.75} ∪ {|x2| ≤ 1.75}) ∩ {|x3| ≤ 0.45}],

q =

{
0.5 − 0.6i in D1 = {(x1, x2)

⊤ ∈ D : −1 < x1 < 1},
0.3 in D \D1.

The data of the direct scattering problem has been obtained by the volume integral equation
method studied in Chapter 3 for the case of the Maxwell’s equations. Of course it is not

possible to numerically compute data for all incident fields (ϕ
(l)±
j )j∈Z2 in (5.9). Denote

Z2
M1,M2

= {j = (j1, j2) ∈ Z2 : −M1 ≤ j1, j2 ≤M2}, for M1,M2 ∈ N.

For the numerical experiments here we solve the direct problem for a number j = (j1, j2) of

incident fields ϕ
(l)±
j where j ∈ Z2

M1,M2. Now recall that û±(1,2),n are the Rayleigh sequences

defined in (5.8). For l = 1, 2, we denote by (û±(1,2),n)
(l)±
j the Rayleigh sequences corresponding

to the the incident fields ϕ
(l)±
j . Denote by NM1,M2

the block matrix corresponding to the
discretization of the near field operator N . Then NM1,M2

is given by

NM1,M2
=




(û+
1,n)

(1)+
j (û+

1,n)
(1)−
j (û+

1,n)
(2)+
j (û+

1,n)
(2)−
j

(û+
2,n)

(1)+
j (û+

2,n)
(1)−
j (û+

2,n)
(2)+
j (û+

2,n)
(2)−
j

(û−1,n)
(1)+
j (û−1,n)

(1)−
j (û−1,n)

(2)+
j (û−1,n)

(2)−
j

(û−2,n)
(1)+
j (û−2,n)

(1)−
j (û−2,n)

(2)+
j (û−2,n)

(2)−
j



, j, n ∈ Z2

M1,M2
. (5.31)

Note that each component of NM1,M2
is a matrix of size (M1 + M2 + 1)2, thus NM1,M2

is a
4(M1 +M2 + 1)2 × 4(M1 +M2 + 1)2 matrix. The matrix WNM1,M2

which corresponds to the
discretization of WN can be computed using (5.14), the symetric matrix Re(WNM1,M2

) can
be decomposed as

Re(WNM1,M2
) = V DV −1,

where D, V are the matrices of eigenvalues and corresponding eigenvectors of Re(WNM1,M2
),

respectively. Denote by |D| the absolute value of D which is taken componentwise. Then we
have

(WNM1,M2
)♯ := V |D|V −1 + Im(WNM1,M2

).
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Computing singular value decomposition of (WNM1,M2
)♯ implies that

(WNM1,M2
)
1/2
♯ = U |S|1/2V −1,

where S is the diagonal matrix of singular values λm of (WNM1,M2
)♯. Also U = [ψn,m] is

a 4(M1 + M2 + 1)2 × 4(M1 + M2 + 1)2 matrix of “left” singular vectors . We now reshape

[ψn,m] into 4 arrays [ψ
(l)
j+M1+1,m], l = 1, ..., 4, j ∈ Z2

M1,M2
, where each of them consists of

4(M1 +M2 + 1)2 square matrices of size M1 +M2 + 1. Note that the elements of [ψ
(l)
j+M1+1,m]

are taken columnwise from [ψn,m].
Now recall that we have Ψ̂±

z,j = (Ψ̂+
1,z,j, Ψ̂

+
2,z,j, Ψ̂

−
1,z,j, Ψ̂

−
2,z,j)

⊤ which can be rewritten as

Ψ̂z,j = (Ψ̂
(1)
z,j , Ψ̂

(2)
z,j , Ψ̂

(3)
z,j , Ψ̂

(4)
z,j)

⊤. Then the criterion (5.30) for computing the image can be
approximated as follows

P (z) =

[ 4(M1+M2+1)2∑

n=1

An(z)

λn

]−1

, (5.32)

where

An(z) =

∣∣∣∣∣
4∑

l=1

∑

j∈Z2
M1,M2

Ψ̂
(l)
z,jψ

(l)
j+M1+1,n

∣∣∣∣∣

2

.

Note that P should be small outside of D and big inside of D.
To show the performance of the method with noisy data, we pertub our synthetic data by

artificial noise. More particularly, we add the noise matrix X of uniformly distributed random

entries to the data matrix (WNM1,M2
)
1/2
♯ . Denote by δ the noise level, then the noise data

matrix (WNM1,M2
)
1/2
♯,δ is given by

(WNM1,M2
)
1/2
♯,δ := (WNM1,M2

)
1/2
♯ + δ

X
‖X‖2

‖(WNM1,M2
)
1/2
♯ ‖2,

where ‖ · ‖2 is the matrix 2-norm. Note that from the latter equation we also have

‖(WNM1,M2
)
1/2
♯,δ − (WNM1,M2

)
1/2
♯ ‖2

‖(WNM1,M2
)
1/2
♯ ‖2

= δ.

Since we apply Tikhonov regularisation [30], instead of implementing (5.32) we consider

P (z) =

[ 4(M1+M2+1)2∑

n=1

(
λ

1/2
n

λn + γ

)2

An(z)

]−1

, (5.33)

where

An(z) =

∣∣∣∣∣
4∑

l=1

∑

j∈Z2
M1,M2

Ψ̂
(l)
z,jψ

(l)
j+M1+1,n

∣∣∣∣∣

2

.



5.6. Numerical Experiments 109

Here λn, ψj,n are the singular values and vectors of (WNM1,M2
)♯,δ, respectively. The param-

eter γ is chosen by Morozov’s generalized discrepancy principle which can be obtained by
solving the equation

4(M1+M2+1)2∑

n=1

γ2 − δ2λn

(λn + γ)2
An(z) = 0.

for each sampling point z. For the following experiments, we choose the wave number k =
2π/3. The number of the incident fields used is 4(M1 +M2 +1)2. Further, the reconstructions
have been smoothened using the command smooth3 in Matlab, and we plot the pictures in
3 × 3 periods.
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(a) Exact geometry (view down x3

axis)
(b) M1,2 = 2 (view down x3 axis)

(c) M1,2 = 4 (view down x3 axis) (d) M1,2 = 8 (view down x3 axis)

(e) Exact geometry (3D view) (f) M1,2 = 8 (3D view)

Figure 5.2: Reconstructions of biperiodic shapes of ellipsoids for different number of incident
fields without noise. The number of Rayleigh coefficients measured in each reconstruction is
4(M1 +M2 +1)2. The contrast q = 0.5 in D. (b) 48 propagating modes, 52 evanescent modes,
isovalue 7 (c) 52 propagating modes, 312 evanescent modes, isovalue 0.1 (d) 52 propagating
modes, 1104 evanescent modes, isovalue 0.01.
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(a) Exact geometry (view down x3

axis)
(b) M1,2 = 2 (view down x3 axis)

(c) M1,2 = 4 (view down x3 axis) (d) M1,2 = 8 (view down x3 axis)

(e) Exact geometry (3D view) (f) M1,2 = 8 (3D view)

Figure 5.3: Reconstructions of biperiodic shapes of cubes for different number of incident fields
without noise. The number of Rayleigh coefficients measured in each reconstruction is 4(M1 +
M2 +1)2. The contrast q = (x3 +1)(sin(x1)

2 sin(x2)
2 +0.3)/4− 0.4i in D. (b) 48 propagating

modes, 52 evanescent modes, isovalue 40 (c) 52 propagating modes, 312 evanescent modes,
isovalue 1.8 (d) 52 propagating modes, 1104 evanescent modes, isovalue 0.008.
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(a) Exact geometry (view down x3

axis)
(b) M1,2 = 2 (view down x3 axis)

(c) M1,2 = 4 (view down x3 axis) (d) M1,2 = 8 (view down x3 axis)

(e) Exact geometry (3D view) (f) M1,2 = 8 (3D view)

Figure 5.4: Reconstructions of biperiodic shapes of plus signs for different number of incident
fields without noise. The number of Rayleigh coefficients measured in each reconstruction
is 4(M1 + M2 + 1)2. The contrast q = 0.5 − 0.6i in D1 = {(x1, x2)

⊤ ∈ D : −1 < x1 < 1}
and q = 0.3 in D \ D1. (b) 48 propagating modes, 52 evanescent modes, isovalue 15 (c)
52 propagating modes, 312 evanescent modes, isovalue 2 (d) 52 propagating modes, 1104
evanescent modes, isovalue 0.05.
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(a) Exact geometry (view down x3

axis)

(b) 2% artificial noise, M1,2 = 8
(view down x3 axis)

(c) 5% artificial noise, M1,2 = 8
(view down x3 axis)

(d) Exact geometry (3D view) (e) 5% artificial noise, M1,2 = 8 (3D view)

Figure 5.5: Reconstructions of biperiodic shapes of ellipsoids for artificial noise. The number
of Rayleigh coefficients measured in each reconstruction is 4(M1 + M2 + 1)2. The contrast
q = 0.5 in D. (b) 52 propagating modes, 1104 evanescent modes, isovalue 0.0012 (c) 52
propagating modes, 1104 evanescent modes, isovalue 0.0023.
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(a) Exact geometry (view down x3

axis)

(b) 2% artificial noise, M1,2 = 8
(view down x3 axis)

(c) 5% artificial noise, M1,2 = 8
(view down x3 axis)

(d) Exact geometry (3D view) (e) 5% artificial noise, M1,2 = 8 (3D view)

Figure 5.6: Reconstructions of biperiodic shapes of cubes for artificial noise. The number
of Rayleigh coefficients measured in each reconstruction is 4(M1 + M2 + 1)2. The contrast
q = (x3 +1)(sin(x1)

2 sin(x2)
2 +0.3)/4−0.4i in D. (b) 52 propagating modes, 1104 evanescent

modes, isovalue 0.1 (c) 52 propagating modes, 1104 evanescent modes, isovalue 0.02.
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(a) Exact geometry (view down x3

axis)

(b) 2% artificial noise, M1,2 = 8
(view down x3 axis)

(c) 5% artificial noise, M1,2 = 8
(view down x3 axis)

(d) Exact geometry (3D view) (e) 5% artificial noise, M1,2 = 8 (3D view)

Figure 5.7: Reconstructions of biperiodic shapes of plus signs for artificial noise. The number
of Rayleigh coefficients measured in each reconstruction is 4(M1 + M2 + 1)2. The contrast
q = 0.5 − 0.6i in D1 = {(x1, x2)

⊤ ∈ D : −1 < x1 < 1} and q = 0.3 in D \ D1. (b)
52 propagating modes, 1104 evanescent modes, isovalue 0.1 (c) 52 propagating modes, 1104
evanescent modes, isovalue 0.02.





Chapter 6

Uniqueness for All Wave Numbers

in Biperiodic Scattering Problems

Abstract: In this chapter, we present results on existence and uniqueness of solution for
all positive wave numbers for an electromagnetic scattering problem from a biperiodic
dielectric structure mounted on a perfectly conducting plate. Given that uniqueness
of solution holds, existence of solution follows from a Fredholm framework for the
variational formulation of the problem in a suitable Sobolev space (see Section 6.3). In
Section 6.4 we obtain integral identities which are necessary for establishing a Rellich
identity for a solution to the variational problem (see Lemma 6.5.1). This identity
is obtained under suitable smoothness conditions on the material parameter. Under
additional non-trapping assumptions on the material parameter (see (6.32)), the Rellich
identity allows us to obtain a solution estimate in Lemma 6.5.4. This solution estimate
is the key point to derive uniqueness of solution for all positive wave numbers, that is,
to be able to exclude the existence of surface waves (see Section 6.6).

6.1 Introduction

As mentioned in the state of the art of the introduction that uniqueness of solution for
this scattering problem does not hold in general for all wave numbers. Instead, non-trivial
solutions to the homogeneous problem might exist for a discrete set of exceptional wave
numbers, and these solutions turn out to be exponentially localized surface waves. Further
the introduction also pointed out that uniqueness results for all wave numbers for the case
of Maxwell’s equations still remains as an open problem if the biperiodic materials is non-
absorbing. In this chapter we aim to study this open problem for the model of electromagnetic
scattering from a dielectric biperiodic structure mounted on a perfectly conducting plate
in three dimensions. More precisely we prove that the electromagnetic scattering problem
for non-absorbing biperiodic dielectric structures mounted on a perfectly conducting plate is
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uniquely solvable for all positive wave numbers if the material parameter satisfies non-trapping
and smoothness conditions. This also means that materials satisfying the latter conditions
cannot guide surface waves.

We formulate the Maxwell’s equations variationally in terms of the magnetic field in a
suitable Sobolev space. We further restrict ourselves to the case of non-magnetic and isotropic
materials. The variational problem is well-known to fit into a Fredholm framework, see,
e.g., [12, 41, 105]. (These works deal with periodic scattering in the full space, but can be
adapted to the half-space setting that we consider here.) To prove the uniqueness result we
derive a so-called Rellich identity for a solution to the homogeneous variational problem. The
solution estimates resulting from this integral identity allow us to show that the homogeneous
variational problem has only the trivial solution for all positive wave numbers.

Our analysis extends the approach in [50] that was motivated by an existence and unique-
ness proof for solutions to rough surface scattering problems via Rellich identities in [28]. For
scalar periodic problems, a related technique has been used in [22]. The paper [50] studied elec-
tromagnetic scattering from rough, unbounded penetrable layers. Such scattering problems
are considered to be more complicated than those for periodic structures since the problem to
find the scattered field cannot reduced, e.g., to a bounded domain. The applications of rough
scattering problems include for instance outdoor noise propagation, oceanography or even
optical technologies when the dielectric lacks periodicity. The authors in [50] formulated the
latter scattering problem in terms of the electric field. We will instead choose a formulation in
terms of the magnetic field, which somewhat changes the role of the dielectric material param-
eter in the integral identities since the material is non-magnetic. The paper [50] establishes
existence and uniqueness of solution under non-trapping and smoothness conditions on the
material parameter. While a priori estimates resulting from the Rellich identity allowed the
authors in [50] to deduce uniqueness of solution, existence of solution has been obtained using
a limiting absorption argument. The approach studied in the present chapter is, from the tech-
nical point of view, somewhat similar to the one introduced in [50]. However, the analysis of
the biperiodic case is definitely simpler since uniqueness of solution directly implies existence.
Therefore, one only needs to investigate the Rellich identity and estimates for solutions to the
homogeneous problem. It turns out also that this procedure produces weaker assumptions on
the material parameter than those found in [50]. More precisely, uniqueness and existence of
solution for all wave numbers are obtained under the following (non-trapping and smoothness)
assumptions on the biperiodic relative material parameter εr : R3

+ := {x ∈ R3, x3 > 0} → R.
First, we assume that ε−1

r ∈ L∞(R3
+) equals one in {x3 > h} for some h > 0 and possesses

essentially bounded and measurable first weak derivatives. Second, we require that

(a)
∂ε−1

r

∂x3
≤ 0 in R3

+,

(b) It holds that
∂ε−1

r

∂x3
< 0 in some non-empty open subset of R3

+,

(c) There exists δ > 1/2 such that
δ

2
‖∇T ε

−1
r ‖2

L∞(R3
+)3 +

√
2

h

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
L∞(R3

+)

<
2

h2
,
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where ∇T ε
−1
r := (∂ε−1

r /∂x1, ∂ε
−1
r /∂x2, 0)

⊤. Under these conditions, the existence of surface
waves is automatically ruled out. While conditions (a) and (c) are similar to conditions (a)
and (d) in [50, Eq. (7.2)], condition (b) is weaker and clearly simpler than the corresponding
conditions (b) and (c) in [50, Eq. (7.2)].

The half-space setting that we consider in this chapter is somewhat special, and it seems
worth to mention that the Rellich identity itself generalizes to a corresponding periodic scat-
tering problem in full space. The resulting estimate for a solution H to the scattering problem
has a similar structure to the estimate in Lemma 6.5.4. However, in the half-space setting,
the term 2Re

∫
Ω(∂ε−1

r /∂x3) (∂H3/∂x3)H3 dx can be treated without integration by parts us-
ing a Poincaré lemma. In contrast, in the full-space setting the only obvious way of treating
this term is to integrate by parts. Since we seek for solution estimates, this introduces the
condition that x3 7→ ε−1

r (x1, x2, x3) needs to be concave to conclude. Since this is a somewhat
unnatural condition, we do not present this result in more detail.

One can further generalize the results presented here to certain anisotropic structures.
However, already for the simpler case of isotropic coefficients the derivation of the Rellich
identity is a technical matter. Again, we have opted to try to keep the presentation simple
instead of treating the most general setting that could be considered.

The chapter is organized as follows: In Section 6.2 we present setting of the problem.
Section 6.3 is dedicated to a variational formulation and to the Fredholm property of the
latter. Section 6.4 contains a couple of technical lemmas. We derive the integral inequalities
resulting from the Rellich identity in Section 6.5. Finally, the uniqueness of the variational
problem for all wave numbers is proven in Section 6.6.

6.2 Problem Setting

We consider scattering of time-harmonic electromagnetic waves from a biperiodic structure
which models a dielectric layer mounted on a perfectly conducting plate. The electric field E
and the magnetic field H are governed by the time-harmonic Maxwell’s equations at frequency
ω > 0 in R3

+ = {(x1, x2, x3) ∈ R3 : x3 > 0},

curlH + iωεE = 0 in R3
+, (6.1)

curlE − iωµH = 0 in R3
+, (6.2)

e3 × E = 0 on {x3 = 0}, (6.3)

where e3 = (0, 0, 1)⊤. The electric permittivity ε is a real-valued bounded measurable function
that is 2π-periodic in x1 and x2. Further, we assume that ε equals ε0 > 0 outside the biperiodic
structure, that is, for x3 ≥ h where h > 0 is chosen larger than sup{x3 : (x1, x2, x3)

⊤ ∈
supp(ε − ε0)}. The magnetic permeability µ = µ0 is assumed to be a positive constant and
the conductivity is assumed to vanish. As usual, the problem (6.1)–(6.3) has to be completed
by a radiation condition that we set up using Fourier series.

The biperiodic structure is illuminated by an electromagnetic plane wave with wave vector
d = (d1, d2, d3) ∈ R3, d3 < 0, such that d · d = ω2ε0µ0. The polarizations p, q ∈ R3 of the
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incident wave satisfy p · d = 0 and q = 1/(ωε0)(p × d). With these definitions, the incident
plane waves Ei and H i are given by

Ei := qeid·x, H i := peid·x, x ∈ R3
+.

In the following we will exploit that one can explicitly compute the corresponding reflected field
at {x3 = 0}. To this end, we introduce the notation ã = (a1, a2,−a3)

⊤ for a = (a1, a2, a3)
⊤ ∈

R3. The reflected waves at the plane {x3 = 0} are

Er(x) := −q̃eid̃·x, Hr(x) := p̃eid̃·x, x ∈ R3
+,

since divEr = 0, divHr = 0, and e3 × (Ei + Er) = 0, e3 · (H i +Hr) = 0 on {x3 = 0}. From
now on, we denote the sum of the incident and reflected plane waves by

Eir := Ei + Er and H ir := H i +Hr.

To support technical computations that this chapter will deal with we need some change of
variables as follows: Set

α = (α1, α2, α3)
⊤ := (d1, d2, 0)

⊤

and define Eir
α and H ir

α by

Eir
α := e−iα·xEir(x), H ir

α := e−iα·xH ir(x), x ∈ R3
+,

such that Eir
α and H ir

α are 2π-periodic in x1 and x2. If we apply the same phase shift to
solutions E and H of the Maxwell’s equations (6.1)–(6.3),

Eα = e−iα·xE(x), Hα = e−iα·xH(x),

and if we denote

∇αf = ∇f + iαf, curlα F = curlF + iα× F, divαF = divF + iα · F

for scalar functions f and vector fields F , then Eα and Hα satisfy

curlαHα + iωεEα = 0 in R3
+, (6.4)

curlαEα − iωµ0Hα = 0 in R3
+, (6.5)

e3 × Eα = 0 on {x3 = 0}. (6.6)

Note that we still have divα curlα = 0 and curlα ∇α = 0. Let us denote the relative material
parameter by

εr :=
ε

ε0
.

Obviously, εr equals one outside the biperiodic dielectric structure. Recall that the magnetic
permeability µ0 is constant which motivates us to work with the divergence-free magnetic
field, that is, divαHα = 0.
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Note that (6.4) plugged in into (6.6) implies that e3 × (ε−1
r curlαHα) = 0 on {x3 = 0}

and that the condition e3 ·Hα = 0 on {x3 = 0} can be derived by plugging (6.6) into (6.5).
Hence, introducing the wave number k = ω(ε0µ0)

1/2, and eliminating the electric field Eα

from (6.4)–(6.6), we find that

curlα
(
ε−1
r curlαHα

)
− k2Hα = 0 in R3

+, (6.7)

e3 × (ε−1
r curlαHα) = 0 on {x3 = 0}, (6.8)

e3 ·Hα = 0 on {x3 = 0}. (6.9)

We wish to reformulate the last three equations in terms of the scattered field Hs
α, defined by

Hs
α := Hα −H ir

α . Since, by construction, curlα curlαH
ir
α − k2H ir

α = 0 in R3
+, H ir

α · e3 = 0 and
e3 × (ε−1

r curlαH
ir
α ) = 0 on {x3 = 0}, a simple computation shows that

curlα
(
ε−1
r curlαH

s
α

)
− k2Hs

α = − curlα
(
(ε−1

r − 1) curlαH
ir
α

)
in R3

+,

e3 × (ε−1
r curlαH

s
α) = 0 on {x3 = 0},

e3 ·Hs
α = 0 on {x3 = 0}.

(6.10)

Due to the biperiodicity of the right-hand side and of εr, we seek for a biperiodic solution Hs
α,

and reduce the problem to the domain (0, 2π)2 × (0,∞). We complement this boundary value
problem by a radiation condition that we set up using Fourier series. The scattered field Hs

α

is 2π-periodic in x1 and x2 and can hence be expanded as

Hs
α(x) =

∑

n∈Λ

Ĥn(x3)e
in·x, x = (x1, x2, x3)

⊤ ∈ R3
+, Λ = Z2 × {0},

where the Fourier coefficients Ĥn(x3) are defined by

Ĥn(x3) =
1

4π2

∫ 2π

0

∫ 2π

0
Hs

α(x1, x2, x3)e
−in·x dx1 dx2 , n ∈ Λ.

Define

βn :=

{√
k2 − |n+ α|2, k2 ≥ |n+ α|2,

i
√

|n+ α|2 − k2, k2 < |n+ α|2,
n ∈ Λ.

Since ε−1
r equals one for x3 > h it holds that divαH

s
α vanishes for x3 > h, and equation (6.10)

becomes (∆α + k2)Hs
α = 0 in {x3 > h}, where ∆α = ∆ + 2iα · ∇ − |α|2. Using separation of

variables, and choosing the upward propagating solution, we set up a radiation condition in
form of a Rayleigh expansion condition, prescribing that Hs

α can be written as

Hs
α(x) =

∑

n∈Λ

Ĥne
iβn(x3−h)+in·x for {x3 > h}, where Ĥn := Ĥn(h), (6.11)

and that the series converges uniformly in compact subsets of {x3 > h}.
The scattering problem to find a scattered field Hs

α that satisfies the boundary value
problem (6.10) and the expansion (6.11) is in the following section reformulated variationally
in a suitable Sobolev space.
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6.3 Variational Formulation

We solve the scattering problem presented in the last section variationally, and briefly recall
in this section a variational formulation of the problem in a suitable Sobolev space. Our
framework is an adaption of the results from [105] to our half-space setting. In contrast to
the variational formulation in H(curl) in [1], the papers [12, 15, 41, 105] set up a variational
formulation in H1 for the magnetic field. Indeed, since the latter is divergence-free, any
solution that is locally H(curl) indeed belongs locally to H1. For our purposes, the H1

formulation has the additional advantage that it is well-defined at Rayleigh-Wood frequencies,
as it was noted in [105]. We define a bounded domain
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Ω

Figure 6.1: Geometric setting for electromagnetic scattering problem from a biperiodic dielec-
tric structure mounted on a perfectly conducting plate (in two dimensions, for simplicity).

Ω = (0, 2π)2 × (0, h) for h > sup{x3 : (x1, x2, x3)
⊤ ∈ supp(εr − 1)},

with boundaries Γ0 := (0, 2π)2 × {0} and Γh := (0, 2π)2 × {h}, and Sobolev spaces

Hℓ
p(Ω)3 := {F ∈ Hℓ(Ω)3 : F = F̃ |Ω for some 2π-biperiodic F̃ ∈ Hℓ

loc(R
3)3}, ℓ ∈ N,

H1
p,T(Ω)3 := {F = (F1, F2, F3)

⊤ ∈ H1
p(Ω)3 : F3 = 0 on Γ0},

equipped with the usual integral norm, e.g.,

‖F‖2
H1

p(Ω)3 = ‖F‖2
L2(Ω)3 + ‖∇αF‖2

L2(Ω)3 .

The space H1
p,T(Ω)3 of periodic vector fields that are tangential on Γ0 is well-defined due to

the standard trace theorem in H1. We also define periodic Sobolev spaces of functions with
d = 1, 2, 3 components on Γh: for s ∈ R,

Hs
p(Γh)d := {F ∈ Hs(Γh)d : F = F̃ |Γh

for some 2π-biperiodic F̃ ∈ Hs
loc({x3 = h})d}.

A periodic vector field F ∈ Hs(Γh)d can be developed in a Fourier series, F (x) =
∑

n∈Λ F̂n exp(in·
x), and ‖F‖Hs

p(Γh)d = (
∑

n∈Λ(1 + n2)s|F̂n|2)1/2 defines a norm on Hs
p(Γh)d.
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We define a non-local boundary operator Tα (the exterior Dirichlet-Neumann operator)
by

(Tαf)(x) =
∑

n∈Λ

iβnf̂ne
in·x, for f =

∑

n∈Λ

f̂n exp(in · x) ∈ H1/2
p (Γh).

It is a classical result that Tα is bounded from H
1/2
p (Γh) into H

−1/2
p (Γh), see, e.g., [4]. Using

Tα, we define a vector of (pseudo-)differential operators Rα := (∂α/∂x1, ∂
α/∂x2, Tα). For a

vector field F ∈ H
1/2
p (Γh)3,

Rα × F = (∂α/∂x1, ∂
α/∂x2, Tα) × F, Rα · F = (∂α/∂x1, ∂

α/∂x2, Tα) · F.

Since all components of Rα are bounded operators fromH
1/2
p (Γh) intoH

−1/2
p (Γh), the operator

F 7→ Rα × F is bounded from H
1/2
p (Γh)3 into H

−1/2
p (Γh)3, and F 7→ Rα · F is bounded from

H
1/2
p (Γh)3 into H

−1/2
p (Γh). If a biperiodic function H ∈ H1

loc(R
3
+) satisfies the Rayleigh

expansion condition, then TαH3 = ∂H3/∂x3 on Γh. This implies that e3 × (curlαH) =
e3 × (Rα ×H) on Γh (see, e.g., [105]).

Assume that Hs
α is a distributional periodic solution to the boundary value problem (6.10)

such that Hs
α, curlαH

s
α, and divαH

s
α are locally square-integrable, such that the radiation

condition (6.11) is satisfied, and such that ν · (Hs
α + H ir

α ) and ν × (ε−1
r curl(Hs

α +H ir
α )) are

continuous over interfaces with normal vector ν where εr jumps. As noted in [105], this implies
that, following the above notation, Hs

α ∈ H1
p,T(Ω). Then the Stokes formula [1, 105] implies

that
∫

Ω
(ε−1

r curlαH
s
α · curlα F − k2Hs

α · F ) dx

−
∫

Γ0

e3 × (ε−1
r curlαH

s
α) · F dx +

∫

Γh

e3 × (Rα ×Hs
α) · F ds

=

∫

Ω
(1 − ε−1

r ) curlαH
ir
α · curlα F dx −

∫

Γ0

(e3 × (1 − ε−1
r ) curlαH

ir
α ) · F dx

for all test functions F ∈ H1
p,T(Ω)3. Since we assumed that

0 = e3 × (ε−1
r curlαHα) = e3 × (ε−1

r curlα(Hs
α +H ir

α )) on Γ0,

the above identity simplifies to

∫

Ω
(ε−1

r curlαH
s
α · curlα F − k2Hs

α · F ) dx +

∫

Γh

e3 × (Rα ×Hs
α) · F ds

=

∫

Ω
(1 − ε−1

r ) curlαH
ir
α · curlα F dx −

∫

Γ0

(e3 × curlαH
ir
α ) · F dx .

By construction, e3 × curlαH
ir
α vanishes on Γ0, that is, we can neglect the last term in the
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last equation. The divergence constraint divαH
s
α = 0 that follows from (6.10) shows that

B(Hs
α, F ) :=

∫

Ω
(ε−1

r curlαH
s
α · curlα F − k2Hs

α · F ) dx + ρ

∫

Ω
(divαH

s
α)(divαF ) dx

+

∫

Γh

e3 × (Rα ×Hs
α) · F ds −

∫

Γh

(Rα ·Hs
α)(e3 · F ) ds

=

∫

Ω
(1 − ε−1

r ) curlαH
ir
α · curlα F dx , (6.12)

where ρ is some complex constant with Re(ρ) ≥ c > 0 and Im(ρ) < 0.
We next prove that the bounded sesquilinear form B : H1

p,T(Ω)3 ×H1
p,T(Ω)3 → C satisfies

a G̊arding inequality (this goes back to [1]), i.e. there exist strictly positive constants c1 and
c2 such that

Re(B(H,H)) ≥ c1

∫

Ω
|∇αH|2 dx − c2

∫

Ω
|H|2 dx . (6.13)

for all H ∈ H1
p,T(Ω)3.

Theorem 6.3.1. Assume that ε−1
r ∈ L∞(Ω) is positive and bounded away from zero. Set

Reρ = infΩ ε
−1
r > 0 and choose Imρ < 0. Then B satisfies (6.13).

Proof. As in [105, proof of Theorem 1] one shows that

Re(B(H,H)) ≥ Re(ρ)

∫

Ω
(| curlαH|2 + |divαH|2) dx − k2

∫

Ω
|H|2 dx

− Re

∫

Γh

TαH ·H ds − 2Re

∫

Γh

(
H3

∂αH1

∂x1
+H3

∂αH2

∂x2

)
ds .

The following identity follows from integrations by parts, the periodicity, and the vanishing
normal component of H on Γ0,

∫

Ω
(| curlαH|2 + |divαH|2) dx =

∫

Ω
|∇αH|2 dx + 2Re

∫

Γh

(
H3

∂αH1

∂x1
+H3

∂αH2

∂x2

)
ds .

In consequence,

Re(B(H,H)) ≥ Re(ρ)

∫

Ω
|∇αH|2 dx − k2

∫

Ω
|H|2 dx

− Re

∫

Γh

TαH ·H ds − 2(1 − Re(ρ))Re

∫

Γh

(
∂αH1

∂x1
+
∂αH2

∂x2

)
H3 ds .

Precisely as in [105] one shows now by a Fourier series argument that

−Re

∫

Γh

TαH ·H ds − 2(1 − Re(ρ))Re

∫

Γh

(
∂αH1

∂x1
+
∂αH2

∂x2

)
H3 ds ≥ Re

∫

Γh

K(H) ·H ds

≥ −C
∫

Ω
|H|2 dx
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for a finite-dimensional operator K on H
1/2
p (Γh)3. Note that the last inequality follows from

|
∫
Γh
K(H) ·H ds | ≤ C

∫
Ω |H|2 dx due to the finite-dimensional range of K and the fact that

on finite-dimensional spaces all norms are equivalent. The last inequality implies a G̊arding
inequality for B.

For simplicity we write from now on H for the searched-for scattered field Hs
α in (6.12)

and replace the source function curlH ir
α by a G ∈ H1

p(Ω)3. The last theorem implies the
following corollary.

Corollary 6.3.2. The variational problem to find H ∈ H1
p,T(Ω)3 such that

B(H,F ) =

∫

Ω
(1 − ε−1

r )G · curlα F dx for all F ∈ H1
p,T(Ω)3 (6.14)

satisfies the Fredholm alternative, i.e., uniqueness of solution implies existence of solution.

Note that this formulation corresponds to the usual variational formulation of the Maxwell’s
equations with perfectly conducting magnetic boundary conditions in smooth bounded do-
mains, see, e.g., [39, Section 4.5(b)]. For special material parameters ε−1

r in

W 1,∞
p (Ω) := {f ∈ L∞(Ω) : f = f̃ |Ω for some 2π-biperiodic f̃ ∈W 1,∞(R3)}

we will in the sequel of the chapter establish a uniqueness result via a Rellich identity. The
next lemma will be useful when proving this identity.

Lemma 6.3.3. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero, and
that G ∈ H1

p(Ω)3. Then a solution H ∈ H1
p,T(Ω)3 to problem (6.14) satisfies

curlα(ε−1
r curlαH) − k2H = curlα((1 − ε−1

r )G) in L2(Ω)3, (6.15)

divαH = 0 in L2(Ω), (6.16)

e3 × (ε−1
r curlαH) = e3 × ((1 − ε−1

r )G) in H−1/2
p (Γ0)

3, (6.17)

e3 ·H = 0 in H1/2
p (Γ0). (6.18)

Moreover,

e3 ×Rα ×H = e3 × curlαH in H−1/2
p (Γh)3 and Rα ·H = 0 in H−1/2

p (Γh), (6.19)

and ∂H/∂x3 = Tα(H) holds in H
−1/2
p (Γh).

Proof. The proof that divαH = 0 is analogous to the proof of [105, Theorem 2]. In con-
sequence, using a test function F ∈ C∞

0 (Ω)3 in the variational problem (6.14) shows that
the solution H satisfies the differential equation (6.15) in the distributional sense. Since
H ∈ H1

p,T(Ω)3, (6.15) holds in the L2-sense if the right-hand side belongs to L2(Ω)3, which

holds if ε−1
r ∈W 1,∞

p (Ω) and G ∈ H1
p(Ω)3.
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Multiplying (6.15) by F ∈ H1
p,T(Ω)3, using the Stokes formula, and subtracting the re-

sulting expression from the variational formulation (6.14), we find that

∫

Γh

e3 × (Rα ×H) · F ds −
∫

Γh

(Rα ·H)(e3 · F ) ds −
∫

Γh

e3 × curlαH · F ds

+

∫

Γ0

e3 × (ε−1
r curlαH) · F ds −

∫

Γ0

e3 × ((1 − ε−1
r )G) · F ds = 0.

If we choose F such that F |Γh
= 0, then we see that e3 × (ε−1

r curlαH − (1 − ε−1
r )G) = 0

in H
−1/2
p (Γ0). If e3 · F |Γh

= 0, it follows that e3 × (Rα ×H) = e3 × curlαH in H
−1/2
p (Γh)3.

Hence, Rα ·H = 0 in H
−1/2
p (Γh). These identities imply that ∂H/∂x3 = Tα(H) in H

−1/2
p (Γh)

due to [105, Lemma 1].

Remark 6.3.4. Instead of the above variational formulation in H1
p,T(Ω)3, one can also con-

sider formulations in Hp(curlα,Ω)3, the natural energy space for the second-order Maxwell
equations (6.10), see, e.g., [1]. In Hp(curlα,Ω)3 there is no bounded trace operator for the
normal component of the field, and in consequence, the formulation (6.14) needs to be adapted.
Usually, one replaces F 7→ e3 × (Rα × F ) × e3 by Q(e3 ×H), where Q is a bounded operator

between the natural trace spaces H
−1/2
p,div (Γh) and H

−1/2
p,curl(Γh), defined by

(QF )(x) = −
∑

n∈Λ

1

iβn
{k2F̂T,n − [(n+ α) · F̂n](n+ α)}ein·x, for F (x) =

∑

n∈Λ

F̂ne
in·x, (6.20)

see, e.g., [1]. Obviously this definition only makes sense if all βn are non-zero. If this is the
case, then the variational formulation (6.14) is equivalent to the formulation in Hp(curlα,Ω)3

obtained using Q. Under the assumption that βn 6= 0, all subsequent results could also be
obtained via the formulation in Hp(curlα,Ω)3.

6.4 Integral Identities

This section is concerned with technical lemmas that will be used to derive the Rellich identity
and solution bounds subsequently. Roughly speaking, for deriving the Rellich identity, we
will multiply the Maxwell equations (6.15) by x3∂H/∂x3 and integrate by parts. Therefore,
it is the aim of the technical lemmas in this section to analyze the term Re

∫
Ω x3∂H/∂x3 ·

curlα(ε−1
r curlαH) dx for a solution H ∈ H1

p,T(Ω)3 to the problem (6.14). Note that the

first two lemmas need the function H to be in H2
p(Ω)3. These lemmas for the magnetic field

formulation actually correspond to the ones for the electric field formulation in [50, Section
3].

We need to introduce some notation. For a vector field F = (F1, F2, F3)
⊤ we denote by

FT = (F1, F2, 0)
⊤ its transverse part. Recall that ∂αf/∂xj = ∂f/∂xj + iαjf for a scalar
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function f and j = 1, 2, 3. Further, we introduce

∇T f :=

(
∂f

∂x1
,
∂f

∂x2
, 0

)⊤
, ∇α,Tf :=

(
∂αf

∂x1
,
∂αf

∂x2
, 0

)⊤
,

−−→
curlα,T f :=

(
∂αf

∂x2
,−∂

αf

∂x1
, 0

)⊤
,

and, for a vector field F = (F1, F2, F3)
⊤,

divα,TF :=
∂αF1

∂x1
+
∂αF2

∂x2
and curlα,T F :=

∂αF2

∂x1
− ∂αF1

∂x2
.

It is straightforwards to show that divα,T
−−→
curlα,T = 0 as well as curlα,T ∇α,T = 0. Moreover, a

tedious computation shows that

curlα F = (curlα,T FT )e3 +
−−→
curlα,TF3 −

∂(F × e3)

∂x3
,

and further

| curlα F |2 = | curlα,T FT |2 + |−−→curlα,TF3|2 +

∣∣∣∣
∂FT

∂x3

∣∣∣∣
2

− 2Re

(
∇α,TF3 ·

∂FT

∂x3

)
. (6.21)

Lemma 6.4.1. Assume that ε−1
r ∈W 1,∞

p (Ω) is positive and bounded away from zero and that
H ∈ H2

p(Ω)3. Then

2Re

∫

Ω
x3
∂H

∂x3
· curlα(ε−1

r curlαH) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlαH|2 dx + h

∫

Γh

| curlαH|2 ds

+ 2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx + 2hRe

∫

Γh

∂HT

∂x3
· (e3 × curlαH) ds . (6.22)

Proof. Denote by ν the outward unit normal to Ω. Using integration by parts and noting that
ν = e3 on Γh, and that the boundary term on Γ0 vanishes since x3 = 0 on Γ0, we find that

2Re

∫

Ω
x3
∂H

∂x3
· curlα(ε−1

r curlαH) dx

= 2Re

∫

Ω
ε−1
r curlα

(
x3
∂H

∂x3

)
· curlαH dx + 2Re

∫

∂Ω
x3
∂H

∂x3
· (ν × ε−1

r curlαH) ds

=

∫

Ω
ε−1
r x3

∂| curlαH|2
∂x3

dx + 2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx

+ 2hRe

∫

Γh

∂HT

∂x3
· (e3 × curlαH) ds

= −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlαH|2 dx + 2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx

+ h

∫

Γh

| curlαH|2 ds + 2hRe

∫

Γh

∂HT

∂x3
· (e3 × curlαH) ds .
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The next lemma continues the analysis of the term Re
∫
Ω ε

−1
r (e3 × ∂H/∂x3) · curlαH dx

in the right hand side of (6.22).

Lemma 6.4.2. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero. Then
for all H ∈ H2

p(Ω)3 the following identity holds,

2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx = 2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx

−2Re

∫

Ω

∂(ε−1
r H3)

∂x3
divαH dx − 2Re

∫

Γh

(
∂H3

∂x3
− divαH

)
H3 ds

−2Re

∫

Γ0

ε−1
r H3divα,THT ds . (6.23)

Proof. First, we have

2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx = 2

∫

Ω
ε−1
r

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

dx

−2Re

∫

Ω
ε−1
r

∂HT

∂x3
· ∇TH3 dx + 2Re

∫

Ω
ε−1
r

∂HT

∂x3
· iαH3 dx . (6.24)

Second, we compute that

− 2Re

∫

Ω
ε−1
r

∂HT

∂x3
· ∇TH3 dx = 2Re

∫

Ω
divT

(
ε−1
r

∂HT

∂x3

)
H3 dx

= 2Re

∫

Ω
ε−1
r divT

(
∂HT

∂x3

)
H3 dx + 2Re

∫

Ω
∇T ε

−1
r · ∂HT

∂x3
H3 dx

= −2Re

∫

Ω

∂ε−1
r

∂x3
H3divTHT dx − 2Re

∫

Ω
ε−1
r

∂H3

∂x3
divTHT dx

+ 2Re

∫

Ω
∇T ε

−1
r · ∂HT

∂x3
H3 dx + 2Re

∫

Γh

H3divTHT ds − 2Re

∫

Γ0

ε−1
r H3divTHT ds

Now, using the identity divTHT = −∂H3/∂x3 + divαH − iα ·H, we obtain that

− 2Re

∫

Ω
ε−1
r

∂HT

∂x3
· ∇TH3 dx = 2Re

∫

Ω

∂ε−1
r

∂x3
H3(iα ·H) dx + 2Re

∫

Ω

∂ε−1
r

∂x3
H3

∂H3

∂x3
dx

− 2Re

∫

Ω

∂ε−1
r

∂x3
H3divαH dx + 2Re

∫

Ω
ε−1
r

∂H3

∂x3
(iα ·H) dx + 2Re

∫

Ω
ε−1
r

∣∣∣∣
∂H3

∂x3

∣∣∣∣
2

dx

− 2Re

∫

Ω
ε−1
r

∂H3

∂x3
divαH dx + 2Re

∫

Ω
∇T ε

−1
r · ∂HT

∂x3
H3 dx + 2Re

∫

Γh

H3divTHT dx

− 2Re

∫

Γ0

ε−1
r H3divTHT ds
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Applying Green formula to the term 2Re
∫
Ω(∂ε−1

r /∂x3)H3(iα ·H) dx , we have

− 2Re

∫

Ω
ε−1
r

∂HT

∂x3
· ∇TH3 dx = −2Re

∫

Ω
ε−1
r

∂HT

∂x3
· iαH3 dx + 2Re

∫

Ω
ε−1
r

∣∣∣∣
∂H3

∂x3

∣∣∣∣
2

dx

− 2Re

∫

Ω

∂ε−1
r

∂x3
H3divαH dx − 2Re

∫

Ω
ε−1
r

∂H3

∂x3
divαH dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx

− 2Re

∫

Γh

(
∂H3

∂x3
− divαH

)
H3 ds − 2Re

∫

Γ0

ε−1
r H3divα,THT ds

Now the claim follows from substituting this identity into equation (6.24).

In the following final lemma of this section we will reformulate the term

Re

∫

Ω
x3∂H/∂x3 · curlα(ε−1

r curlαH) dx

for a solution H ∈ H1
p,T(Ω)3 to the problem (6.14) using the last two lemmas.

Lemma 6.4.3. Assume that ε−1
r ∈ W 1,∞

p (Ω) is positive and bounded away from zero. Then
any solution H ∈ H1

p,T(Ω)3 to the problem (6.14) satisfies

2Re

∫

Ω
x3
∂H

∂x3
· curlα(ε−1

r curlαH) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlαH|2 dx + h

∫

Γh

| curlαH|2 ds

+2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx − 2Re

∫

Γh

H3
∂H3

∂x3
ds

+2hRe

∫

Γh

∂HT

∂x3
· (e3 × curlαH) ds .

Proof. It is sufficient to prove that H satisfies (6.22) and

2Re

∫

Ω
ε−1
r

(
e3 ×

∂H

∂x3

)
· curlαH dx = 2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx

− 2Re

∫

Γh

H3
∂H3

∂x3
ds . (6.25)

Recall that, for h > sup{x3 : (x1, x2, x3)
⊤ ∈ supp(εr−1)}, there exists a constant 0 < η ≪

1 such that εr = 1 in (0, 2π)2×(h−η, h). Hence, a solution H ∈ H1
p,T(Ω)3 to the problem (6.14)

belongs to H1
p,T(Ω)3∩H2

p((0, 2π)2×(h−η, h))3 due to interior elliptic regularity theory. Then

one can extend H to a function defined in all of R3 that is 2π-biperiodic and belongs to
H1

p((0, 2π)2 × (−∞, h))3 ∩H2
p((0, 2π)2 × (h − η,∞))3 (This can be seen using [81] combined

with suitable cut-off arguments.) By abuse of notation, we still denote the extended function
by H. Let φ ∈ C∞(R3) be a smooth and non-negative function supported in the unit ball and
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∫
R3 φdx = 1. For δ > 0 and x ∈ R3 let φδ(x) = δ−3φ(x/δ). The convolution Hδ := φδ ∗H

belongs to H2
p(Ω)3 and thus satisfies (6.22). Then, from Lemma 6.3.3 and the fact that

Hδ → H in H1
p,T(Ω)3 ∩H2

p((0, 2π)2 × (h− η, h))3 we obtain that

curlα(ε−1
r curlαH

δ)
δ→0→ curlα(ε−1

r curlαH) in L2(Ω)3.

Moreover, the convergence in H2
p((0, 2π)2 × (h − η, h))3 implies that curlαH

δ → curlαH in
L2(Γh)3 as δ → 0. Consequently, H satisfies (6.22).

It remains to show that H also satisfies (6.25). The function Hδ satisfies (6.23) and we
consider the limit of this identity as δ → 0. It is easily seen that divαH

δ → divαH = 0 in
L2(Ω). Thus, we have

e3 ·Hδ δ→0→ e3 ·H = 0 in H1/2
p (Γ0), divα,TH

δ
T

δ→0→ divα,THT in H−1/2
p (Γ0),

due to the convergence of Hδ to H in H1
p(Ω)3. Further, the convergence of Hδ to H in

H2
p((0, 2π)2 × (h− η, h))3 and the fact divαH = 0 on Γh imply that

∂Hδ

∂x3
− divαH

δ → ∂H3

∂x3
− divαH =

∂H3

∂x3
in H−1/2

p (Γh).

Plugging in these limits into (6.23) shows that (6.25) holds.

6.5 Rellich Identity and Solution Estimate

For establishing uniqueness of solution to the variational problem (6.14), we derive in this
section the so-called Rellich identity relating | curlαH|2 and |∂H/∂x3|2 where H is a solution
to the homogeneous variational problem corresponding to (6.14). Then, under suitable non-
trapping and smoothness conditions on the material parameter, integral inequality resulting
from this identity allow us to obtain estimate for a solution to the homogeneous problem.
As mentioned in the introduction, the Rellich identity and solution estimate obtained in this
section are much simpler than the ones in [50, Section 4]. It turns out also that the non-
trapping assumptions on the parameter material are weaker than the ones in the latter paper.

The proof of the Rellich identity is based on an integration-by-parts technique that goes
back to Rellich [96]. Typically, this technique requires more regularity of a solution than just
to belong to the energy space. In our case we will roughly speaking multiply the Maxwell’s
equations (6.15), for G = 0 in the right hand side, by x3∂H/∂x3 and integrate by parts.

Lemma 6.5.1 (Rellich Identity). Assume that ε−1
r ∈W 1,∞

p (Ω) is positive and bounded away
from zero. Then the following identity holds for all solutions H ∈ H1

p,T(Ω)3 to the homoge-
neous problem corresponding to (6.14),

∫

Ω

[
2ε−1

r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlαH|2 + 2Re

(
∇ε−1

r · ∂H
∂x3

H3

)]
dx

+ Re

∫

Γh

e3 × (Rα ×H) ·H ds − 2Re

∫

Γh

Tα(H3)H3 ds = 0. (6.26)
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Proof. Let H ∈ H1
p,T(Ω)3 be a solution to the homogeneous problem corresponding to (6.14).

First, using integration by parts we have

Re

∫

Γh

∂HT

∂x3
· (e3 × curlαH) ds =

∫

Γh

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

ds + Re

∫

Γh

∂HT

∂x3
· ∇α,TH3 ds .

Note that H satisfies the assumptions of Lemma 6.4.3. Together with the latter equation we
obtain

2Re

∫

Ω
x3
∂H

∂x3
· curlα(ε−1

r curlαH) dx = −
∫

Ω

∂(x3ε
−1
r )

∂x3
| curlαH|2 dx + h

∫

Γh

| curlαH|2 ds

+ 2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx − 2Re

∫

Γh

∂H3

∂x3
H3 ds

− 2h

∫

Γh

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

ds + 2hRe

∫

Γh

∂HT

∂x3
· ∇α,TH3 ds .

We exploit that H solves (6.15) for G = 0,

2Re

∫

Ω
x3
∂H

∂x3
· curlα(ε−1

r curlαH) dx = k22Re

∫

Ω
x3
∂H

∂x3
·H dx = k2

∫

Ω
x3
∂|H|2
∂x3

dx

= −k2

∫

Ω
|H|2 dx + k2h

∫

Γh

|H|2 ds .

From the last two equations we conclude that

−
∫

Ω

(
∂(x3ε

−1
r )

∂x3
| curlαH|2 − k2|H|2

)
dx + 2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx

− 2Re

∫

Γh

H3
∂H3

∂x3
ds − 2h

∫

Γh

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

ds + 2hRe

∫

Γh

∂HT

∂x3
· ∇α,TH3 ds

+ h

∫

Γh

(| curlαH|2 − k2|H|2) ds = 0.

Due to the variational formulation (6.14) for G = 0,

∫

Ω
(ε−1

r | curlαH|2 − k2|H|2) dx + Re

∫

Γh

e3 × (Rα ×H) ·H ds = 0 (6.27)

since divαH = 0 in Ω and Rα ·H = 0 in H
−1/2
p (Γh) due to Lemma 6.3.3. Adding the last two

equations yields that the term
∫
Ω k

2|H|2 dx cancels, and further exploiting ∂H3/∂x3 = TαH3
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on Γh to yields that

−
∫

Ω
x3
∂ε−1

r

∂x3
| curlαH|2 dx + 2

∫

Ω
ε−1
r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx + 2Re

∫

Ω
∇ε−1

r · ∂H
∂x3

H3 dx

− 2Re

∫

Γh

Tα(H3)H3 ds + Re

∫

Γh

e3 × (Rα ×H) ·H ds + 2hRe

∫

Γh

∂HT

∂x3
· ∇α,TH3 ds

+ h

∫

Γh

(
| curlαH|2 − k2|H|2 − 2

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2)

ds = 0.

Recall equality (6.21),

| curlαH|2 = | curlα,T H|2 + |−−→curlα,TH3|2 +

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

− 2Re

(
∂HT

∂x3
· ∇α,TH3

)
.

Combining the last two equations yields

L(H) = h

∫

Γh

(∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

+ k2|H|2 − | curlα,T H|2 − |−−→curlα,TH3|2
)

ds

where L(H) is the left hand side of (6.26). It remains now to prove that the right hand side
of the latter equation vanishes. First, we recall from Lemma 6.3.3 that ∂H/∂x3 = TαH in

H
−1/2
p (Γh) which yields that

∫

Γh

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

=
∑

n∈Λ

|βnĤT,n|2,
∫

Γh

∣∣∣∣
∂H3

∂x3

∣∣∣∣
2

=
∑

n∈Λ

|βnĤ3,n|2.

Using the latter formulas and replacing k2 by |n+α|2 +β2
n in the first boundary term in (6.26)

yields

∫

Γh

(∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

+ k2|H|2 − | curlα,T H|2 − |−−→curlα,TH3|2
)

ds

=
∑

n∈Λ

[
|βnĤT,n|2 + (|n+ α|2 + β2

n)(|ĤT,n|2 + |Ĥ3,n|2) − |(n+ α) × ĤT,n|2 − |n+ α|2|Ĥ3,n|
]

=
∑

n∈Λ

[
(β2

n + |βn|2)|ĤT,n|2 + |n+ α|2|ĤT,n|2 − |(n+ α) × ĤT,n|2 + β2
n|Ĥ3,n|

]
. (6.28)

On the other hand, due to the divergence-free condition, we have

∑

n∈Λ

[
|n+ α|2|ĤT,n|2 − |(n+ α) × ĤT,n|2

]
=
∑

n∈Λ

|(n1 + α1)Ĥ1,n + (n2 + α2)Ĥ2,n|2

= ‖divα,THT‖2
L2(Γh) = ‖∂H3/∂x3‖2

L2(Γh) =
∑

n∈Λ

|βnĤ3,n|2.
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Now substituting the latter equation into (6.28) leads to

∫

Γh

(∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

+ k2|H|2 − | curlα,T H|2 − |−−→curlα,TH3|2
)

ds = 2
∑

βn≥0

β2
n|Ĥn|2, (6.29)

where we exploited that βn is either a non-negative or a purely imaginary number. The proof
is hence finished if we show that

∑
βn≥0 β

2
n|Ĥn|2 = 0 (since then L(H) = 0, which is the claim

of the theorem). First, we compute that

〈e3 × (Rα ×H),H〉Γh
=
∑

n∈Λ

i(n+ α) · ĤT,nĤ3,n −
∑

n∈Λ

iβn|ĤT,n|2

= −
∑

n∈Λ

iβn|Ĥ3,n|2 −
∑

n∈Λ

iβn|ĤT,n|2.

Since Re(βn) ≥ 0 this implies that

Im〈e3 × (Rα ×H),H〉Γh
= −

∑

n∈Λ

Re(βn)|Ĥn|2 ≤ 0, and (6.30)

Re〈e3 × (Rα ×H),H〉Γh
=
∑

n∈Λ

Im(βn)|Ĥ3,n|2 +
∑

n∈Λ

Im(βn)|ĤT,n|2. (6.31)

(The second equation will be exploited later on.) Taking the imaginary part of the variational
formulation (6.14) with G = 0 and F = H, and exploiting Lemma 6.3.3, we obtain that

0 = Im〈e3 × (Rα ×H),H〉Γh

(6.30)
= −

∑

n∈Λ

Re(βn)|Ĥn|2.

This implies that |Ĥn|2 = 0 for all n such that Re(βn) > 0. Since βn is either purely imaginary
or non-negative, we conclude that

∑
βn≥0 β

2
n|Ĥn|2 = 0.

The next Poincaré-like result is classical (see, e.g., [28] for a proof).

Lemma 6.5.2. For u ∈ {v ∈ H1
p(Ω) : v|Γ0

= 0} there holds 2‖u‖2
L2(Ω) ≤ h2‖∂u/∂x3‖2

L2(Ω).

The following assumptions on ε−1
r will guarantee a stability estimate and a uniqueness

statement for a solution to the variational problem (6.14):

(a) ε−1
r ∈W 1,∞

p (Ω) satisfies
∂ε−1

r

∂x3
≤ 0 in Ω,

(b) It holds that
∂ε−1

r

∂x3
< 0 in a non-empty open ball B ⊂ Ω,

(c) There exists δ > 1/2 such that
δ

2
‖∇T ε

−1
r ‖2

L∞(Ω)2 +

√
2

h

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
L∞(Ω)

<
2

h2
.

(6.32)
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Remark 6.5.3. Note that (6.32)(a) implies that ε−1
r ≥ 1, since, by construction, ε−1

r = 1 in
{h − η < x3 < h} for some small η > 0. For the case of periodic non-absorbing structures,
the main difference between these non-trapping conditions and the ones for the scalar case
in [22] is the additional condition (6.32)(c). This condition arises from estimating the term
2Re

∫
Ω(∇ε−1

r · ∂H/∂x3H3) dx in the Rellich identity (6.26) using the Poincaré-like result
above. This is natural since the Rellich identity resulting from a similar technique for the
scalar case [22] does not have a corresponding term.

Let us construct a function ε−1
r that satisfies the above assumptions (6.32). Choose con-

stants 0 < h1 < h2 < h, λ > 0, and a C1-smooth cut-off function χ ∈ C1((0, 2π)2)
with compact support in (0, 2π)2 such that 0 ≤ χ ≤ 1 and χ = 1 in (π/2, 3π/2)2. For
x = (x1, x2, x3)

⊤ ∈ Ω, we define

ε−1
r (x1, x2, x3) =





λχ(x1, x2) + 1, 0 < x3 < h1,

λ
(

x3−h2

h1−h2

)
χ(x1, x2) + 1, h1 < x3 < h2,

1, h2 < x3 < h.

Then ε−1
r is a decreasing function that satisfies (6.32)(a), and condition (6.32)(c) is satisfied

when λ > 0 is small enough. Moreover, ε−1
r also satisfies condition (6.32)(b) in (π/2, 3π/2)2×

(h1, h2). However, ε−1
r does not satisfy the corresponding conditions (7.2)(b,c) in [50], which

require, roughly speaking, strict positivity of ∂εr/∂x3 in (0, 2π)2 × (h1, h2) (an arbitrary ball
B ⊂ Ω as in (6.32)(b) is not sufficient for the proof in [50]).

Lemma 6.5.4. Assume that ε−1
r satisfies the three assumptions in (6.32). Then there exists

C > 0 (independent of k > 0) such that

C

∫

Ω

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

dx ≤
∫

Ω
x3
∂ε−1

r

∂x3
| curlαH|2 dx

for all solutions H ∈ H1
p,T(Ω)3 to the homogeneous problem corresponding to (6.14).

Proof. We first estimate the two boundary terms in (6.26). We find that

−2Re

∫

Γh

Tα(H3)H3 ds = 2
∑

n∈Λ

Im(βn)|Ĥ3,n|2 ≥ 0.

Together with (6.31) we obtain

Re〈e3 × (Rα ×H),H〉Γh
− 2Re

∫

Γh

Tα(H3)H3 ds =
∑

n∈Λ

Im(βn)|Ĥn|2 ≥ 0.

Therefore, from the Rellich identity (6.26) we deduce V (H) ≤ 0 where V (H) is the volumetric
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terms in (6.26). We need now to bound V (H) from below,

V (H) =

∫

Ω

[
2ε−1

r

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlαH|2 + 2Re

(
∇T ε

−1
r · ∂HT

∂x3
H3 +

∂ε−1
r

∂x3

∂H3

∂x3
H3

)]
dx

≥
∫

Ω

[
2

∣∣∣∣
∂H

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlαH|2 dx

]
dx − γ−1

∥∥∥∥
∂H3

∂x3

∥∥∥∥
2

L2(Ω)

− γ

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω)

− δ‖∇T ε
−1
r ‖2

L∞(Ω)2‖H3‖2
L2(Ω) − δ−1

∥∥∥∥
∂HT

∂x3

∥∥∥∥
2

L2(Ω)2

for arbitrary δ, γ > 0. Poincaré’s inequality from Lemma 6.5.2 and the binomial formula
imply that

V (H) ≥
∫

Ω

[
(
2 − δh2

2
‖∇T ε

−1
r ‖2

L∞(Ω)2
)∣∣∣∣
∂H3

∂x3

∣∣∣∣
2

+
2δ − 1

δ

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

− x3
∂ε−1

r

∂x3
| curlαH|2 dx

]
dx

− γ−1

∥∥∥∥
∂H3

∂x3

∥∥∥∥
2

L2(Ω)

− γ

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω)

Again, we exploit Poincaré’s inequality, to find that

γ−1

∥∥∥∥
∂H3

∂x3

∥∥∥∥
2

L2(Ω)

+ γ

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
2

L∞(Ω)

‖H3‖2
L2(Ω) ≤

(
γ−1 + γ

h2

2

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
2

L∞(Ω)

)∥∥∥∥
∂H3

∂x3

∥∥∥∥
2

L2(Ω)

.

The minimum of γ 7→ γ−1 + Cγ is 2
√
C. In consequence,

V (H) ≥
[
2 − δh2

2
‖∇T ε

−1
r ‖2

L∞(Ω)2 −
√

2h

∥∥∥∥
∂ε−1

r

∂x3

∥∥∥∥
L∞(Ω)

]∫

Ω

∣∣∣∣
∂H3

∂x3

∣∣∣∣
2

dx

+
2δ − 1

δ

∫

Ω

∣∣∣∣
∂HT

∂x3

∣∣∣∣
2

dx −
∫

Ω
x3
∂ε−1

r

∂x3
| curlαH|2 dx .

Finally, assumption (6.32)(c) implies that there exists δ > 1/2 such that the first bracket on
the right-hand side is positive.

6.6 Uniqueness of Solution for All Wave Numbers

In this section, we prove our main uniqueness result for the electromagnetic scattering prob-
lem (6.14), under the assumption that εr satisfies (6.32). As mentioned above, corresponding
uniqueness results that hold for all wave numbers currently exist, to the best of our knowledge,
only for absorbing materials, see [105], or simpler two-dimensional structures, see [22].

Theorem 6.6.1. Assume that ε−1
r satisfies the assumptions (6.32). Then problem (6.14) is

uniquely solvable for all right-hand sides G ∈ H1
p(Ω) and for all wave numbers k > 0.
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Proof. Consider a solutionH ∈ H1
p,T(Ω)3 to the homogeneous problem corresponding to (6.14).

Due to Lemma 6.5.4 and the assumptions on ε−1
r we obtain that ∂H/∂x3 = 0 in Ω and

curlαH = 0 in the ball B (see assumption (6.32)(b)). Equation (6.15) implies that H van-
ishes in B, too.

SinceH is independent of x3, it is sufficient to show thatH vanishes on Γh−η = {(x1, x2, x3) ∈
Ω : x3 = h− η} for some (small) η > 0 to conclude that H vanishes entirely in Ω. If η is small
enough, then all three components Hj , j = 1, 2, 3, satisfy

∆αHj + k2Hj = 0, ∆αHj := ∆Hj + 2iα · ∇Hj − |α|2Hj,

in some neighborhood of Γh−η. Let us denote by ∆2 = ∂2/∂x2
1 + ∂2/∂x2

2 the two-dimensional
Laplacian. Since ∂2Hj/∂x

2
3 vanishes, Hj|Γh−η

∈ H1
p(Γh−η) is a weak solution to the two-

dimensional equation

∆2Hj + 2iα · ∇THj + (k2 − |α|2)Hj = 0 on Γh−η, j = 1, 2, 3.

Standard elliptic regularity results imply that Hj|Γh−η
belongs to H2

p(Γh−η). Moreover, since

H vanishes in the open ball B and since H is independent of x3, Hj vanish in a non-empty
relatively open subset of Γh−η.

In this situation, the unique continuation principle stated in Theorem 6.6.2 (see, e.g., [83])
implies that Hj vanishes on Γh−η for j = 1, 2, 3, and hence H vanishes in Ω.

Theorem 6.6.2. Let O be an open and simply connected set in R2, and let u1, ..., um ∈ H2(O)
be real-valued such that

|∆uj | ≤ C
m∑

l=1

(|ul| + |∇ul|) in O for j = 1, ...,m. (6.33)

If uj vanishes in some open and non-empty subset of O for all j = 1, ...,m, then uj vanish
identically in O for all j = 1, ...,m.



Appendix A

Smoothness of the Difference of

Periodic Green’s Functions

The following lemma is a consequence of the corresponding result for the fundamental solution
to the Helmholtz equation in free-space (see Lemma 2.3.1).

Lemma A.0.3. Assume that k2 6= α2
j for all j ∈ Z. Then the difference Gk,α − Gi,α can be

written as

Gk,α(x) −Gi,α(x) = α(|x|2) + C|x|2 ln(|x|)β(|x|2)

where α and β are analytic functions and C is a constant.

Proof. Recall that the Bessel function

Jn(t) =

∞∑

p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

n = 0, 1, 2, ...

is an analytic function for all t ∈ R. It is moreover well-known that the Neumann function

Yn(t) =
2

π

{
ln
t

2
+C

}
Jn(t) − 1

π

n−1∑

p=0

(n − 1 − p)!

p!

(
2

t

)n−2p

− 1

π

∞∑

p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

{ψ(n + p) + ψ(p)}

is analytic for t ∈ (0,∞). (Here ψ(0) := 0, ψ(p) :=
∑p

m=1
1
m for p = 1, 2, . . . , and C is Euler’s

constant.) If n = 0 the finite sum in the expression of Yn is set equal to zero. From [66]
we know that the Green’s function Gk,α can be split as Gk,α(x) = i

4H
1
0 (k|x|) + Ψk(x), where

Ψk is an analytic function. The same decomposition holds for Gi,α, with a different analytic
function Ψi. Hence, it only remains to consider the difference H1

0 (k|x|) − H1
0 (i|x|). To this
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end, we note that

J0(k|x|) − J0(i|x|) =

∞∑

p=0

(−1)p

(p!)24p

[
(k|x|)2p − (i|x|)2p

]

= |x|2
∞∑

p=0

(−1)p+1

[(p + 1)!]24p+1

[
(k)2p+2 − (i)2p+2

]
(|x|2)p. (A.1)

Use the ratio test one can check that the power series in (A.1) converges to some analytic
function of the variable |x|2 in R. Moreover, due to the expression of Y0 we can see that

Y0(k|x|) − Y0(i|x|) =
2

π
ln(|x|)

[
J0(k|x|) − J0(i|x|)

]
+ Ψ1(|x|2), (A.2)

where Ψ1 is an analytic function. Furthermore, we have

Gk,α(x) −Gi,α(x) =
i

2

[
H1

0 (k|x|) −H1
0 (i|x|)

]

= J0(k|x|) − J0(i|x|) + i
[
Y0(k|x|) − Y0(i|x|)

]
.

Substitution of (A.1) and (A.2) into the last equation finishes the proof.

Now we prove a similar result for the fundamental solution to the three-dimensional
Helmholtz equation in free-space.

Lemma A.0.4. Assume that Φk(x) = exp(ik|x|)/(4π|x|) for x 6= 0. We have

Φk(x) − Φi(x) = α(|x|2) + |x|β(|x|2)

where α and β are analytic functions.

Proof. First we have

e−|x| =

∞∑

n=0

(−1)n|x|n
n!

=

∞∑

n=0

|x|2n

(2n)!
−

∞∑

n=0

|x|2n+1

(2n+ 1)!
(A.3)

By the ratio test the last sum in (A.3) can be rewritten as |x|f(|x|2) where f is an analytic
function. Therefore,

e−|x| = 1 +

∞∑

n=1

|x|2n

(2n)!
− |x|f(|x|2)

In the other hand we know that

eik|x| = cos(k|x|) + i sin(k|x|) = 1 +
∞∑

n=1

(−1)nk2n|x|2n

(2n)!
+ i

∞∑

n=0

(−1)nk2n+1|x|2n+1

(2n+ 1)!
(A.4)
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Similarly the last sum in (A.4) converges to |x|g(|x|2) where g is an analytic function. We
hence obtain

eik|x| − e−|x| =
∞∑

n=1

[(−1)nk2n − 1]|x|2n

(2n)!
+ |x|(f + g)(|x|2),

= |x|2
∞∑

n=0

[(−1)n+1k2n+2 − 1]|x|2n

(2n + 2)!
+ |x|(f + g)(|x|2)

Now the ratio test deduces that the first sum converges to |x|2l(|x|2) where l is an analytic
function. This implies that

eik|x|

4π|x| −
e−|x|

4π|x| =
(f + g)(|x|2)

4π
+ |x| l(|x|

2)

4π
,

which completes the proof.
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