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Modélisation mathématique et numérique des fluides à l’échelle
nanométrique

Résumé :
Ce travail présente quelques contributions mathématiques et numériques à la modélisation des
fluides à l’échelle nanométrique. On considère deux niveaux de modélisation. Au premier niveau,
une description atomique est adoptée. On s’intéresse aux méthodes permettant de calculer la
viscosité de cisaillement d’un fluide à partir de cette description microscopique. On étudie en
particulier les propriétés mathématiques de la dynamique de Langevin hors d’équilibre permet-
tant de calculer la viscosité. Le deuxième niveau de description se situe à l’échelle du continu
et l’on considère une classe de modèles pour les électrolytes à l’équilibre incorporant d’une part
la présence d’un confinement avec des parois chargées et d’autre part des effets de non-idéalité
dus aux corrélations électrostatiques entre les ions et au phénomène d’exclusion stérique. Dans
un premier temps, on étudie mathématiquement le problème de minimisation de l’énergie libre
dans le cas où celle ci reste convexe (non-idéalité modérée). Puis, on considère le cas non convexe
(forte non-idéalité) conduisant à une séparation de phase.

Mots-clés : Physique statistique computationelle - Dynamique moléculaire hors
d’équilibre - Électrolytes - Équations aux dérivées partielles non linéaires - Mé-
thodes variationelles - Éléments finis

Mathematical and numerical modelling of fluids at nanometric scales

Abstract :
This work presents some contributions to the mathematical and numerical modelling of fluids
at nanometric scales. We are interested in two levels of modelling. The first level consists in
an atomic description. We consider the problem of computing the shear viscosity of a fluid
from a microscopic description. More precisely, we study the mathematical properties of the
nonequilibrium Langevin dynamics allowing to compute the shear viscosity. The second level of
description is a continuous description, and we consider a class of continuous models for equi-
librium electrolytes, which incorporate on the one hand a confinement by charged solid objects
and on the other hand non-ideality effects stemming from electrostatic correlations and steric
exclusion phenomena due to the excluded volume effects. First, we perform the mathematical
analysis of the case where the free energy is a convex function (mild non-ideality). Second, we
consider numerically the case where the free energy is a non convex function (strong non-ideality)
leading in particular to phase separation.

Keywords : Computational statistical physics - Nonequilibrium molecular dynamics
- Electrolytes - Nonlinear partial differential equations - Variational methods - Fi-
nite elements
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1.1 Contexte industriel : le stockage des déchets radioactifs

1.1.1 Le stockage en couche géologique profonde

La gestion des déchets nucléaires en France est assurée par l’Agence nationale pour la
gestion des déchets radioactifs (ANDRA) depuis la loi du 30 décembre 1991 puis celle du 28 juin
2006. Il existe plusieurs types de déchets radioactifs, classifiés selon leur degré de radioactivité
(haute activité (HA), moyenne activité (MA), faible activité (FA) et très faible activité (TFA))
ainsi que leur durée d’activité (vie longue (VL), vie courte (VC)) ; on pourra consulter [82] pour
un inventaire de ces déchets et les différents secteurs d’activité à l’origine de ceux-ci. Les déchets
de haute activité à vie longue, qui sont les plus radioactifs, proviennent en grande partie de la
production d’électricité. Ces déchets représentent moins de 1% du volume total de déchets mais
totalisent à eux seuls environ 96% de la radioactivité. Depuis la loi du 28 juin 2006, le mode
de référence pour la gestion des déchets de haute et moyenne activité à vie longue (HA/MAVL)
est le stockage réversible en couche géologique profonde (environ à 500 mètres de profondeur).
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1.1.2 L’argile : un matériau multi-échelles comme barrière de confinement
naturelle

La principale barrière de confinement envisagée dans le cadre du projet de stockage en
couche géologique profonde est d’origine naturelle, à savoir une argile de type Callovo-Oxfordien,
localisée en Meuse/Haute-Marne. Il s’agit d’une roche sédimentaire formée il y a environ 165
millions d’années. Les argiles sont des matériaux multi-échelles. La plus petite échelle, inférieure
au nanomètre, fait intervenir des feuillets. L’empilement de ceux-ci forme des particules de taille
nanométrique. Entre ces particules peuvent se mouvoir un solvant (eau) et des ions. L’interaction
entre ces particules, lorsque la roche est soumise à des efforts extérieurs, détermine la réponse
mécanique observée à plus grande échelle.

Figure 1.1. Gauche : description microscopique du système argile, eau et ions (image de B. Rotenberg) ; Centre :
Argile à l’échelle du micromètre (ANDRA, 2005) ; Droite : échantillon d’argilite du Callovo-Oxfordien à l’échelle
du centimètre.

1.1.3 Modélisation et simulation des petites échelles

De nombreuses propriétés aux petites échelles ne sont pas accessibles expérimentalement.
On peut alors avoir recours à une approche numérique en les déterminant à partir de simulations
microscopiques de type ab initio, en résolvant le problème de structure électronique ou l’équation
de Schrödinger, ou classiques (dynamique moléculaire, méthode de Monte Carlo) ou à partir de
modèles de milieux continus pour les plus grandes échelles. Dans tous les cas, on s’appuie sur les
outils de la physique statistique [8] (équations intégrales, théorie de la fonctionnelle de la den-
sité). Pour les plus petites porosités, il s’agit de prédire les propriétés d’un système à partir d’une
description à l’échelle atomique et des interactions moléculaires. Ces approches reposent sur une
description simplifiée du système (structure, composition) et des interactions et doivent donc
être validées par la comparaison avec les données expérimentales disponibles (spectroscopies,
diffraction, micromécanique, etc). Deux niveaux peuvent être considérés dans une description
discrète du matériau, du plus fin au plus grossier, l’étape suivante étant le passage au continu.
Le premier niveau correspond à une description complète des feuillets d’argile et du système
composé des molécules d’eau et des espèces ioniques. On peut avoir alors recours aux techniques
de la dynamique moléculaire à l’équilibre (propriétés statiques, coefficients de transport) ou hors
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d’équilibre [28] (transport). Mentionnons par exemple une étude récente en dynamique molécu-
laire hors déquilibre portant sur la validité des équations de l’hydrodynamique dans les feuillets
d’argile [14] (validité de la loi de Newton, condition aux limites pour le champ de vitesse en
bordure de feuillet). Une deuxième échelle se situe à un niveau mésoscopique où l’eau est consi-
dérée comme un solvant continu en conservant une description discrète de l’argile et des ions
ou des ions seulement. Cette approche se justifie dès lors que l’on considère que les ions sont
beaucoup plus gros que les molécules d’eau. Pour traiter les questions d’équilibre, on peut faire
appel aux méthodes de Monte Carlo. Concernant les problèmes de transport, les techniques de
dynamique Brownienne permettent de calculer numériquement les coefficients de diffusion ou la
conductivité électrique dans ce cadre simplifié [55]. Par ailleurs, les simulations en temps long
de dynamique Brownienne permettent aussi de déterminer l’équilibre thermodynamique par le
calcul de moyennes ergodiques. Les méthodes d’équation intégrales pour les fluides inhomogènes
se situent à un niveau intermédiraire car les corrélations spatiales sont décrites explicitement.
C’est le cas par exemple pour des méthodes d’Ornstein–Zernike inhomogène [1,58,59]. Enfin les
modèles continus, tels que Poisson–Boltzmann et théorie de la fonctionelle de la densité (équi-
libre) ou Navier–Stokes couplé à Poisson–Nernst–Planck (transport), constituent une alternative
aux modèles microscopiques, efficace numériquement dès lors que l’on a pu valider ces modèles
grâce aux simulations des modèles les plus fins. On pourra consulter [54] pour une comparaison
entre simulation moléculaire directe, dynamique brownienne et théorie de la fonctionelle de la
densité.

1.2 Contributions de la thèse

L’objectif de cette thèse est l’étude mathématique et numérique de modèles microscopiques
et mésoscopiques pour les fluides chargés confinés, en vue d’une meilleure compréhension des
phénomènes physico-chimiques dans les argiles aux échelles où ils se posent. Une perspective
de ces travaux est l’intégration de ces phénomènes aux plus grandes échelles afin de décrire
notamment le comportement mécanique de la roche. La contribution de cette thèse relevant
des mathématiques appliquées, on s’est attaché en particulier aux aspects méthodologiques des
techniques mathématiques et numériques permettant de simuler les modèles physiques aux dif-
férentes échelles. Les contributions de cette thèse s’articulent en deux volets correspondant à
deux échelles de description du système physique.

1.2.1 Calcul de coefficients de transport à partir d’une description microscopique

Le premier volet concerne le problème du calcul de coefficients de transport, partant
d’une description microscopique (atomique) du système. Le formalisme adopté est celui de la
physique statistique computationelle. Le système est modélisé à l’échelle atomique selon une
description classique de la matière par N atomes (N étant en général très grand, même pour des
systèmes de quelques nanomètres d’épaisseur où N est de l’ordre du millier). Les variables du
problème sont les positions des atomes q, évoluant dans un espace d’état M ⊂ R

dN (d = 2, 3)
et leurs impulsions p évoluant dans R

dN . Les atomes interagissent via des potentiels empiriques
V . La comparaison des propriétés physiques du système avec des données expérimentales vient
confirmer l’utilisation de ces potentiels.
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Une observable A est une fonction du couple position/impulsion et représente une grandeur
physique (énergie, température, pression). Par exemple, l’énergie totale du système est donnée
par le Hamiltonien classique

H(q, p) =
1
2
pTM−1p+ V (q),

où M ∈ R
dN×dN désigne la matrice de masse du système. Les variables (q, p) déterminent le

micro-état du système physique, mais apportent trop d’information. Il est donc souhaitable
de passer à une description plus grossière. Pour ce faire, il s’agit de faire le lien avec un état
macroscopique du système. Ce macro-état est décrit par une mesure de probabilité ν, “la moins
biaisée” vis à vis des conditions d’observation. À l’équilibre thermodynamique, les quantités
telles que la température ou la pression d’un sytème peuvent être déterminées par la seule
connaissance de cette mesure de probabilité. Ainsi, le lien avec le système microscopique est fait
par le biais d’une moyenne d’ensemble de la forme

〈A〉 :=
∫

M×RdN
A(q, p)ν(dq, dp). (1.1)

Un exemple de mesure de probabilité ν est la mesure canonique NVT (correspondant à fixer le
nombre N de particules, le volume accessible V et la température T ) donnée par la formule

νNVT(dp, dq) = Z−1e−βH(q,p)dqdp, Z =
∫

M×RdN
e−βH(q,p)dqdp, (1.2)

où β = (kBT )−1 est proportionel à l’inverse de la température, kB étant la constante de Boltz-
mann. Le plus souvent, le calcul de quantités macroscopiques selon la formule (1.1) est une tache
numérique impraticable par les méthodes de quadratures usuelles en raison de la très grande
dimensionalité du problème (fléau de la dimension). On aura le plus souvent recours à des tech-
niques d’échantillonage de mesures de probabilité, déterministes ou stochastiques. Par exemple,
le calcul de (1.1) est très souvent remplacé par le calcul d’une moyenne en temps long :

lim
s→∞

1
s

∫ s

0
A(qt, pt)dt = 〈A〉 , (1.3)

sous le postulat que la dynamique régissant les (qt, pt) est ergodique pour la mesure ν.

La situation est différente lorsque l’on souhaite déterminer les coefficients de transport
d’un système (conductivité thermique, diffusion, viscosité) partant d’une description microsco-
pique. Les coefficients de transport mesurent la réponse du système par rapport à une petite
perturbation. Il existe plusieurs approches pour calculer les coefficients de transport notamment :

(a) des méthodes d’équilibre, reposant sur la formule de Green–Kubo [34,62], qui permettent de
relier une propriété de transport (typiquement la viscosité de cisaillement) à une intégrale
en temps infini de l’autocorrélation d’une propriété dérivée ;

(b) des méthodes transientes, pour lesquelles on perturbe un système initialement à l’équilibre, et
on étudie le retour à l’équilibre en simulant explicitement la dynamique du système [52,100] ;

(c) des méthodes hors d’équilibre en régime stationnaire (Steady-state Non-Equilibrium Mole-
cular Dynamic). Dans ce cas, on impose un flux dans le système (flux d’énergie, flux de
quantité de mouvement, etc), et on mesure les transferts au sein du système une fois qu’un
état stationnaire est établi. Enfin, on en déduit les coefficients de transport en postulant une
loi macroscopique qui relie le flux au gradient de la quantité qui pilote ce flux [28,104].
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Dans ce cadre, afin de pouvoir quantifier la réponse d’un système, il est nécessaire de pou-
voir quantifier les flux thermodynamiques (flux de chaleur, flux de quantité de mouvement).
Contrairement à un système à l’équilibre, la connaissance de la dynamique sous-jacente est alors
primordiale. Dans cette thèse, on a en grande partie considéré les méthodes hors d’équilibre
en régime stationnaire et fait le lien avec les méthodes d’équilibre (via les résultats de réponse
linéaire). Une méthode standard en dynamique hors d’équilibre consiste à perturber un système
suivant une dynamique de réference (Dref) par un forçage extérieur ξFext non gradient et indé-
pendant du temps. On peut alors calculer la réponse à cette perturbation en mesurant le flux
thermodynamique actif à l’état stationnaire (du moins s’il existe), dans le régime où ξ est petit.
Par analogie avec un système macroscopique, on peut alors définir un coefficient de transport α
par

α = lim
ξ→0

〈R〉ξ
ξ

, (1.4)

où R est le flux thermodynamique activé par la perturbation et 〈R〉ξ est la moyenne de R
dans l’état stationnaire. D’un point de vue physique, la dynamique de référence (Dref) la plus
pertinente semble être la dynamique Hamiltonienne :

{
dqt = M−1pt dt,

dpt = −∇V (qt) dt.
(1.5)

Cependant, comme le forçage agit sur toutes les particules et que la dynamique (1.5) n’est pas
dissipative, l’énergie du système avec un forçage extérieur ne peut que croître et l’état station-
naire ne peut être atteint. Il s’agit alors de modifier la dynamique (Dref) pour permettre au
système d’atteindre un état stationnaire sans toutefois trop perturber la physique intrinsèque
du problème. En particulier, si l’on souhaite calculer un coefficient de transport à une certaine
température, il est souhaitable que la dynamique sous-jacente préserve la température. Il existe
plusieurs dynamiques de thermostatage : chaînes de Nosé–Hoover [49, 85], thermostat Gaus-
sien [28, Chapitre 3], dynamique de particules dissipative (DPD) [56,99], équation de Langevin.
D’un point de vue mathématique, l’existence et l’unicité d’une mesure invariante et a fortiori
l’ergodicité des dynamiques thermostathées peut être une question difficile (et pour laquelle on
sait parfois apporter une réponse négative [65,66]). Une dynamique simple pour laquelle on a de
bons résultats mathématiques concernant l’existence et l’unicité d’un état stationnaire et l’er-
godicité est la dynamique de Langevin [93]. La dynamique de Langevin (sans forçage extérieur)
s’écrit {

dqt = M−1ptdt,

dpt = −∇V (qt)dt− γ(qt)M−1ptdt+ σ(qt)dWt,
(1.6)

où Wt est un mouvement Brownien standard dans R
dN et γ, σ ∈ R

dN×dN sont des matrices de
frottement et de diffusion satisfaisant la relation de fluctuation-dissipation

σ(q)σ(q)T =
2
β
γ(q). (1.7)

De façon générale, l’ajout d’un mécanisme de dissipation dans la dynamique Hamiltonienne
engendre a priori une dépendance des coefficients de transport, α, en les paramètres opératoires,
γ, régissant l’intensité de cette dissipation. D’un point de vue théorique et numérique, il est
alors important de comprendre comment le coefficient de transport calculé peut dépendre de ces
paramètres opératoires.
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Cette partie de la thèse fait l’objet de deux chapitres dans lesquels on s’intéresse au calcul
numérique de la viscosité de cisaillement d’un fluide simple. Dans le chapitre 2, on présente
le formalisme et les méthodes mathématiques et numériques couramment utilisées en physique
statistique computationnelle. Puis, après avoir présenté les méthodes hors d’équilibre dans un
cadre abstrait, on présente les grandes classes de méthodes utilisées pour calculer numériquement
la viscosité (technique de Green–Kubo, méthode hors d’équilibre). Le chapitre 3 est tiré d’un
article publié [P1]. Il porte sur l’analyse mathématique d’une dynamique de Langevin hors
d’équilibre en régime permanent où toutes les particules ressentent la même perturbation (“bulk
driven” steady state nonequilibrium dynamics) et qui prend la forme (en dimension 2)





dqi,t =
pi,t
m

dt,

dpxi,t = −∇qxiV (qt) dt+ ξF (qyi,t) dt− γx
pxi,t
m

dt+

√
2γx
β

dW xi
t ,

dpyi,t = −∇qyiV (qt) dt− γy
pyi,t
m

dt+

√
2γy
β

dW yi
t ,

(1.8)

où ξ mesure l’amplitude du forçage et F est une fonction d’une variable réelle périodique sur
LyT (où T = R/Z est le tore unité). On montre l’existence et l’unicité de la probabilité invariante
de la dynamique. On obtient ensuite un résultat de réponse linéaire permettant de dériver une
équation de conservation macroscopique satisfaite par le profil de vitesse longitudinal ux et le
terme extra-diagonal du tenseur des contraintes macroscopiques σxy sous la forme

(σxy)′(Y ) +
γxρ

m
ux(Y ) =

ρ

m
F (Y ), Y ∈ LyT, (1.9)

ρ étant la densité (constante) du système. La viscosité peut être déduite en postulant une relation
de fermeture pour l’équation (1.9). La relation la plus simple est la loi de Newton

−σxy(Y )
u′x(Y )

= η(Y ) ≡ η > 0 constant, (1.10)

exprimant que pour un fluide Newtonien, le tenseur des contraintes est proportionnel au taux
de cisaillement. L’équation fermée pour le profil de vitesse est alors

−ηu′′x(Y ) + γx
ρ

m
ux(Y ) =

ρ

m
F (Y ), Y ∈ LyT. (1.11)

La viscosité du système peut être déduite de l’équation (1.11) en analysant, par exemple, les
modes de Fourier des profils de vitesse ux(Y ) calculés à partir de la dynamique (1.8). En outre,
on établit que les coefficients de transport calculés par cette méthode peuvent être obtenus par
une formule de Green–Kubo. Ensuite, on étudie théoriquement la dépendance de la viscosité vis
à vis des paramètres de dissipation de la dynamique de Langevin en adaptant et étendant des
résultats obtenus dans l’étude des coefficients d’auto-diffusion [38, 39, 88]. Enfin, ces résultats
sont illustrés numériquement pour différents régimes de paramètres dans le cas d’un système de
Lennard–Jones 2D.

1.2.2 Modèles continus pour les électrolytes

Dans la seconde partie de cette thèse, on s’intéresse à la modélisation et à l’étude ma-
thématique et numérique d’une classe de modèles continus pour les électrolytes confinés par un
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solide négativement chargé. Selon l’échelle d’espace considérée, ces modèles permettent de dé-
crire la porosité interfoliaire (de l’ordre du nanomètre) ou inter-particulaire (quelques dizaines de
nanomètres). Les propriétés d’équilibre de ces électrolytes confinés permettent de comprendre la
distribution spatiale des espèces ioniques présentes dans la porosité et d’étudier les propriétés de
gonflement ou de rétractation de la roche à plus grande échelle. Les modèles que l’on considère
entrent dans la classe des théories de la fonctionelle de la densité “classique” (par opposition à la
théorie quantique). La théorie de la fonctionelle de la densité consiste à introduire un potentiel
thermodynamique, l’énergie libre du système (souvent dérivé de considérations microscopiques)
qui est fonction des concentrations des espèces ioniques (ou densités ioniques). Le paradigme de
la théorie de la fonctionelle de la densité est alors d’imposer des contraintes (température, volume
accessible, pression, potentiel chimique) et de déterminer l’équilibre du système en minimisant
l’énergie libre sous ces contraintes. En outre, de nombreux autres champs d’application peuvent
être abordés à l’aide de ces modèles, par exemple en biologie, génie chimique, énergétique, etc.

Les variables d’interêt des modèles de fonctionelle de la densité sont les concentrations
des espèces ioniques (ci)1≤i≤M (exprimées en m−3 et pour M espèces), ainsi que le potentiel
électrostatique ψ (exprimé en V). À ce niveau de description d’un électrolyte, le solvant, de l’eau
en général, est considéré comme un milieu continu et à l’équilibre, ce milieu étant uniquement
caractérisé par sa constante di-électrique ε (exprimée en CV−1m−1). En général, on considère
un cadre périodique dans une cellule [0, L∗]d, d ∈ {2, 3}, et une échelle de longueur L∗ (exprimée
en m). La cellule élémentaire contient des inclusions ΩS dont la frontière ∂ΩS porte une charge
négative de densité de charge surfacique −ΣS (exprimé en Cm−2 avec la convention ΣS > 0,
voir Figure 1.2, à gauche). Un deuxième cas d’intérêt est le cas des nano-canaux avec conditions
périodiques en entrée et sortie (voir Figure 1.2 à droite). Dans les deux cas, les espèces ioniques
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Figure 1.2. Géométrie type pour Ω : milieu périodique avec inclusion chargée (gauche) ; canal nanométrique
avec murs chargés (droite)

occupent donc le volume Ω := [0, L∗]d \ΩS . La théorie classique de la fonctionelle de la densité
des liquides ioniques est la théorie de Poisson–Boltzmann. L’état d’équilibre du système est
déterminé en résolvant l’équation de Poisson non-linéaire suivante :

−ε∆ψ =
M∑

i=1

ZieΛ−3
i eβµ

bulk
i e−βZieψ, (1.12)
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où e = 1.6 × 10−19 C désigne la charge élémentaire (en Coulomb), {Zi}1≤i≤M la valence des
espèces et {µbulk

i }1≤i≤M sont des potentiels chimiques (en J) donnés ou bien des multiplicateurs
de Lagrange déterminés par des contraintes à préciser. Le paramètre Λi (exprimé en m) est
la longueur de de Broglie et sera défini ultérieurement. Selon les conditions d’observation, des
conditions de Dirichlet (potentiel imposé au bord) ou de Neumann (dérivée normale du potentiel
égale à la charge de surface au bord) sont imposées. L’équation (1.12) signifie que le potentiel
électrostatique est calculé de façon auto-consistante en supposant que les concentrations des
espèces sont distribuées spatialement selon la statistique de Boltzmann :

Λ3
i ci = eβµ

bulk
i e−βZieψ. (1.13)

Ce niveau de modélisation est une vision idéalisée de la physique, où, au niveau continu, les
ions sont des charges ponctuelles interagisseant au travers du potentiel de champ moyen ψ.
Afin d’expliciter la dérivation de l’équation de Poisson–Boltzmann, précisons les conditions aux
limites et les contraintes que nous imposons dans cette thèse. On a considéré le cas de conditions
de Neumann non-homogènes/périodiques sous la forme

ψ est périodique sur ∂Ω \ ∂ΩS , (1.14a)

∇ψ · n = −1
ε
ΣS sur ∂ΩS , (1.14b)

où n est le vecteur normal extérieur à ∂ΩS . Le potentiel électrostatique étant défini à une
constante additive près, on choisit de fixer 〈ψ〉Ω = 0 où 〈·〉Ω désigne la moyenne sur Ω.

Il est commode de définir l’opérateur non-local ΨΣS (explicitant ainsi la dépendance du
potentiel électrostatique en la donnée au bord) comme étant un opérateur affine agissant sur
L2(Ω) tel que pour toute fonction g ∈ L2(Ω),

− ε∆ΨΣS (g) = g − 〈g〉Ω + |Ω|−1
∫

∂ΩS

ΣS , dans Ω, (1.15a)

ΨΣS (g) est périodique sur ∂Ω \ ∂ΩS , (1.15b)

∇ΨΣS (g) · n = −1
ε
ΣS sur ∂ΩS , (1.15c)

〈ΨΣS (g)〉Ω = 0. (1.15d)

Par ailleurs, on a considéré le cas de contraintes canoniques sur les concentrations, consistant à
fixer la moyenne dans Ω des concentrations sous la forme

〈ci〉Ω = cbulk
i , i = 1, . . . ,M. (1.16)

Les concentrations cbulk
i sont données de sorte que la relation d’électro-neutralité globale suivante

soit satisfaite ∑

i=±

Ziecbulk
i =

1
|Ω|

∫

∂ΩS

ΣS , (1.17)

exprimant le fait que les cations et les anions compensent la charge de surface négative portée
par le solide ΩS . On observe alors qu’en minimisant l’énergie libre suivante

FPB(c) :=
M∑

i=1

{∫

Ω
β−1ci

(
log(Λi3ci)− 1

)}
+

1
2

(∫

Ω
ρ(c)ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨΣS (ρ(c))
)
.

(1.18)
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on peut obtenir la solution de l’équation de Poisson–Boltzmann [71,72]. Dans l’équation (1.18),
ρ(c) est la densité de charge

ρ(c) =
M∑

i=1

Zieci. (1.19)

En effet, sous la condition (1.17), on montre formellement qu’un point critique de (1.18) est tel
que le potentiel électro-chimique défini par

µel
i (ψ, c) := β−1 log(Λ3

i ci) + Zieψ, (1.20)

satisfait l’équation

µel
i (ΨΣS (ρ(c)), c) = µbulk

i , µbulk
i ∈ R, i = 1, . . . ,M, (1.21)

les constantes µbulk
i étant les multiplicateurs de Lagrange associés à la contrainte (1.16). On

vérifie alors formellement que résoudre l’équation de Poisson–Boltzmann (1.12) revient à mini-
miser sous contrainte la fonctionelle (1.18), puis à inverser l’équation d’Euler–Lagrange (1.21)
associée à ce problème de minimisation pour obtenir l’équation (1.13).

L’énergie libre (1.18) est la somme de termes idéaux décrivant, au niveau macroscopique,
l’énergie libre d’un gaz parfait multi-espèces et le terme d’interaction électrostatique de champ
moyen. Cette description est dite idéale dans le sens où elle néglige les corrélations entre les ions
et en particulier les corrélations électrostatiques dues à la taille des ions et les effets d’exclusion
stérique aux hautes concentrations. En particulier, cette description idéalisée s’avère efficace
dans le régime dilué des basses concentrations, où les effets de taille peuvent être négligés,
mais peut s’avérer insuffisante pour décrire les phénomènes physiques lorsque le confinement
est nanométrique pour des solutions concentrées, en particulier lorsque la charge de surface
extérieure est relativement importante (ce qui est le cas pour l’argile où ΣS = 0.13 Cm−2).

Une approche qui est souvent considérée afin d’enrichir la théorie de Poisson–Boltzmann
consiste à incorporer des corrections modélisant l’écart à l’idéalité dans la fonctionelle de
Poisson–Boltzmann [13,31,40,78,84]. Ce programme peut être accompli en partant d’une descrip-
tion microscopique enrichie. Une approche consiste à considérer le modèle primitif des liquides
ioniques dans lequel les ions sont des sphères dures chargées de diamètre σ. Ces corrections sont
calculées au coeur du milieu, le “bulk”, (i.e loin de toute interface et lorsque les effets de bord
sont négligeables) par le biais de la théorie des fonctions de distribution radiale (gi,j)1≤i,j≤M dé-
crivant la statistique configurationelle des ions selon les différents types présents dans le système.
Les fonctions de distribution radiale sont calculées par le biais de la théorie d’Ornstein–Zernike
reliant les fonctions de corrélation directe et indirecte [41]. Ces équations ne sont pas fermées et
requièrent une approximation pour pouvoir être résolues soit analytiquement (fermeture Percus–
Yevick, ou Mean spherical approximation de Waisman et Lebowitz [63], [64] et son extension par
Blum [10]), soit numériquement (théorie hyper netted chain (HNC)). Dans certains cas, la réso-
lution analytique de ces équations a pu être effectuée donnant lieu à des expressions approchées
des corrections fcorr (dues aux corrélations) à la densité d’énergie libre.

L’idée est ensuite d’incorporer ces corrections du bulk dans l’énergie libre totale du système
confiné et inhomogène, de sorte que pour une densité d’énergie libre bulk f , l’énergie libre s’écrit

F(c) :=
∫

Ω
f(c) +

1
2

(∫

Ω
ρ(c)ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨ(ρ(c)
)
, (1.22)



10 1 Introduction générale

où

f(c) =

{
M∑

i=1

β−1ci
(
log(Λi3ci)− 1

)}
+ fcorr(c). (1.23)

Ce traitement des termes d’excès de l’énergie libre est local dans le sens où la fonctionelle
d’énergie libre est la somme de l’intégrale d’une densité d’énergie libre et du terme de champ
moyen [35]. On montre alors formellement qu’un minimiseur de F est tel que le potentiel électro-
chimique non-idéal de l’espèce i défini par

µel
i (ψ, c) := β−1 log(Λ3

i ci) + β−1 log(γi(c)) + Zieψ, (1.24)

vérifie l’équation
µel
i (ΨΣS (ρ(c)), c) = µbulk

i , µbulk
i ∈ R, i = 1, . . . ,M. (1.25)

Le nombre sans dimension γi(c) est le coefficient d’activité de l’espèce i et est donné par la
formule

log(γi(c)) = β
∂fcorr

∂ci
(c), i = 1, . . . ,M. (1.26)

D’un point de vue physique, la densité d’energie libre bulk fcorr est la somme de deux contribu-
tions et s’écrit

fcorr(c) := fCoul(c) + fHS(c). (1.27)

Le premier terme provient des corrélations électrostatiques et est, en général, une fonction

concave des concentrations c = {ci}1≤i≤M se comportant comme −c
3
2
i quand ci → 0. Le se-

cond terme, dit de sphères dures, rend compte du phénomene d’exclusion stérique et est, en
général, une fonction convexe des concentrations qui tend vers l’infini quand ci → +∞ (où
même pour des valeurs finies de ci). Enfin, on remarque que le terme idéal

{
M∑

i=1

β−1ci
(
log(Λi3ci)− 1

)}
(1.28)

est une fonction convexe des concentrations. La densité d’énergie libre bulk f est donc, en géné-
ral, la somme de trois contributions : deux contributions convexes et une concave. La fonction
fcorr dépend des paramètres physiques du système, en particulier le diamètre des ions σ ainsi que
la température T . On peut distinguer deux cadres dans l’étude des fonctionelles du type (1.22).
Un premier cadre est celui dans lequel la convexité du terme idéal et du terme de sphères dures
compense la concavité des corrélations électrostatiques (“grand” diamètre des ions à tempéra-
ture fixée). On parlera dans cette thèse de non-idéalité modérée. Le second cadre est celui où
les corrélations électrostatiques dominent les deux termes convexes à basse concentration (en
particulier pour les petits diamètres d’ions à température fixée). Cette situation conduit à une
rupture de convexité si bien que la densité d’énergie libre bulk f a l’allure générale d’un potentiel
double puits. On parlera dans cette thèse de non-idéalité forte. La conséquence physique de ce
phénomène est la coexistence de deux phases par analogie au problème de transition liquide-
vapeur du gaz de Van der Waals. Ici, chacune des deux phases correspond à un intervalle de
valeurs disjoint que peuvent prendre les concentrations.

Cette partie de la thèse fait l’objet de trois chapitres. Le chapitre 4 est un chapitre in-
troductif de modélisation. On y détaille le cadre mathématique dans lequel les études théo-
riques et numériques sont menées puis on y présente une dérivation formelle des fonctionelles
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du type (1.22). Le chapitre 5 est tiré d’un article publié [P2]. Il traite de l’analyse du cas mo-
dérément non-idéal. On y démontre l’existence et l’unicité des concentrations et du potentiel
électrostatique satisfaisant l’équation de conservation du potentiel électro-chimique

{
µel
i (ψ, c)

}
i=±

est constant sur Ω, (1.29)

dans le cas de deux espèces (des cations et des anions). La preuve repose sur l’existence d’un
point selle d’une fonctionelle E concave-convexe des concentrations et du potentiel électrostatique
ainsi que sur l’obtention de bornes positives inférieures et supérieures uniformes en espace pour
les concentrations. Des simulations numériques basées sur la résolution des équations d’Euler–
Lagrange associées au point-selle de E sont présentées. Les hypothèses assurant la convexité en
c de la densité d’énergie libre bulk sont testées numériquement dans le cas où l’énergie libre ré-
sultant des corrélations électrostatiques est évaluée grâce à l’approximation sphérique moyenne
(MSA). Enfin, le chapitre 6 traite du cas fortement non-idéal et est l’objet d’une publication
en cours d’achèvement [Pr1]. On s’intéresse à l’étude numérique du cas où la densité d’éner-
gie libre n’est plus une fonction convexe des concentrations, ce qui conduit à la coexistence de
deux phases (l’une appelée phase diluée et l’autre phase condensée). Il s’agit alors de détermi-
ner l’équilibre thermodynamique. On présente un problème régularisé consistant à chercher un
minimiseur de l’enveloppe convexe de F en utilisant une méthode de viscosité évanescente. Les
concentrations présentent alors une discontinuité au niveau d’une interface séparant la phase
diluée de la phase condensée. La méthode numérique permettant de calculer une solution appro-
chée est détaillée. Enfin, par le biais de simulations numériques du cas à une espèce (contre-ions
multivalents), on a étudié la sensibilité des propriétés d’équilibre (concentration, pression os-
motique) aux paramètres géométriques du système (simulations 1D et 2D) pour des charges
de surface relativement élevées. Enfin, une approche numérique est proposée dans le cas d’un
électrolyte binaire et symétrique (Z+ = −Z−).
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It is nowadays common to characterize the properties of materials by relying to a descrip-
tion at the atomistic level, using the theory of statistical mechanics. In the study of fluids at
nanometric scales, it is useful to resort to the statistical mechanics approach since experiments
are often costly and difficult to perform, particularly in extremely confined situations. The de-
termination of the macroscopic properties of a material given its microscopic description is the
fundamental goal of statistical mechanics [8]. Macroscopic properties can be classified into two
categories: (i) equilibrium properties, such as the heat capacity or the equation of state of the
system (relating the pressure, the density and the temperature); and (ii) transport properties,
such as the thermal conductivity or the shear viscosity. The determination of transport prop-
erties is conceptually and numerically more challenging than the determination of equilibrium
properties since transport phenomena depend both on the chosen thermodynamic ensemble and
on the prescribed microscopic dynamics (which has to leave the thermodynamic state of the
system invariant).

The purpose of this part is the mathematical and numerical study of the methods of
molecular dynamics allowing to compute transport coefficients, in particular the calculation of
the shear viscosity of a fluid. This introducing chapter is organized as follows: in Section 2.1, we
present the basic ideas behind computational statistical mechanics and make precise the rigorous
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mathematical tools and the available results we need in the sequel. In Section 2.2, we present
the methodology adopted in this thesis concerning the computation of transport coefficient. We
cast in an abstract setting the method relying on nonequilibrium dynamics and relate it to the
Green-Kubo formalism. Finally, in Section 2.3, we review alternative standard methods used to
compute transport coefficients with an emphasis on the shear viscosity of fluids.

2.1 Computational statistical mechanics

2.1.1 Microscopic description of the system

We start by considering N atoms of different type i = 1, . . . ,M (N =
∑

M
i=1Ni) occupying a

domain D of volume |D| at temperature T (expressed in K). We denote by mi the masses of
the particles of type i (expressed in kg). A scale length of importance for atomic systems is the
de Broglie thermal wavelength defined by:

Λi =

(
2πβ~

2

mi

) 1
2

, (2.1)

where ~ = 1.054× 10−34 J s is the reduced Planck constant, β−1 = kBT where T is the tempera-
ture (expressed in K), and kB = 1.381× 10−23 J K−1 is the Boltzmann constant. If the following
inequality is satisfied

Λi
ai
≪ 1, (2.2)

where ai =
(
Ni|D|−1

) 1
3 is the typical distance between atoms of type i, then a classical descrip-

tion of the matter is assumed to be sufficient [41] and quantum effect can be neglected.

The micro-state of the system is described by the positions of all atoms and their momenta
(q, p) ∈M×R

dN (with d = 2, 3) whereM = DN is the space of positions. For periodic system,
such as the ones we consider, D = LxT × LyT × LzT (for d = 3) where T = R/Z is the one-
dimensional torus. The energy of the microstate is given by the Hamiltonian function of the
system, which can be decomposed as a sum of kinetic and potential energies:

H(q, p) =
1
2
pTM−1p+ V (q), (2.3)

where M = Diag(m1Id, . . . ,mNId) ∈ R
dN×dN is the mass matrix.

2.1.2 Potential energy

The potential energy contains all the physics of the system and can be decomposed as:

V (q) = Vinter(q) + Vext(q),

where Vinter accounts for the interactions between the particles and Vext is an external potential
applied to the system. In our context, the potential Vext induces a confinement so that the
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system is inhomogeneous. We assume for simplicity that the potential Vinter is the sum of pair
interactions,

Vinter(q1, . . . , qN ) =
∑

1≤i<j≤N

v(|qi − qj |), (2.4)

for a smooth function v. For the applications we consider, when describing condensed matter, the
most widely used interaction potentials are Lennard–Jones (LJ), hard-sphere, and the Coulomb
potential. For molecular fluids, the interactions between the atoms in a molecule, have to be
modelled as well. For example the Lennard–Jones potential is given by the formula

vLJ(r) = 4εLJ

((
dLJ

r

)12

−
(
dLJ

r

)6
)
. (2.5)

In general, modifications of an empirical potential have to be performed. When periodic bound-
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Fig. 2.1. Lennard–Jones interaction energy as a function of the nondimensional distance r
dLJ

.

ary conditions are enforced, a truncation at finite distance rcut is needed (see discussion in
§ 2.1.5). The second modification accounts for the singularity at the origin of the potential. In
practice, we may determine a level of potential energy for which we can make a truncation of
the empirical potential v.

The Lennard–Jones potential depends on two parameters, namely εLJ and dLJ, respectively
a unit of energy (J) and a length (the diameter of the atom in m). To characterize the system,
we also need a reference mass m∗ (expressed in kg). For instance, in the case of argon fluid,
we have εLJ/kB = 120K, so that the energy per atom is εLJ = 1.66 × 10−21 J, the diameter

of an atom is dLJ = 3.405
◦

A, and the mass of an argon atom is mLJ = 6.64 × 10−26 kg. For
convenience, we will work with the nondimensional form of the potential energy

vLJ(r) = 4

((
1
r

)12

−
(

1
r

)6
)
. (2.6)
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We will express every quantity in Lennard–Jones units, and rescale every quantity with these
characteristic values. For example, a time unit (expressed in s) is given by

t∗ =
√
mLJ

εLJ
dLJ = 2.154× 10−12 s. (2.7)

Table 2.1 gives the correspondence from Lennard–Jones units to real units for common physical
quantities.

Physical quantity Reference value
Temperature 120 K

Energy 1.66× 10−21 J
Pressure 42 MPa
Density 1681 kg m−3

Viscosity 9.06× 10−5 Pa s−1

Table 2.1. Various physical quantities evaluated with the reference LJ units.

2.1.3 Thermodynamic ensembles

In this part of the thesis, we only consider bulk, homogeneous, monatomic fluids so that there is
only one type of particle (M = 1) and that no external potential confines the system (Vext = 0).
Moreover, we express all the physical quantities in reduced Lennard–Jones units.

The macro-state of the system is described by some probability measure ν depending on
the thermodynamic conditions of observation (energy, number of particles volume, fixed exactly
or in average, etc). A macroscopic quantity A of interest (e.g. energy, pressure, temperature)
can be computed by averaging an observable A (i.e. a function defined on M× R

dN ) with
respect to the probability measure ν:

A =
∫

M×RdN
A(q, p)ν(dq, dp). (2.8)

For example, we might be interested in computing the pressure of a system in which case the
observable is

P (q, p) =
1

d |D|
N∑

j=1

p2
j

mj
− qj · ∇qjV (q), (2.9)

or the kinetic temperature of a system, associated to the observable

Tkin(q, p) =
1
dN

N∑

j=1

p2
j

mj
. (2.10)

One standard probability measure that appears in molecular dynamics is the micro-
canonical measure νNVE corresponding to the NVE ensemble (fixed number of particles N ,
accessible volume and energy). This measure naturally appears as the least biased probability
measure with fixed energy and is an invariant measure of the classic Hamiltonian dynamics:
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{
dqt = M−1pt dt,

dpt = −∇V (qt) dt.
(2.11)

A rigorous definition of the micro-canonical measure can be found in [67].

Another standard choice for the probability measure ν is to consider the canonical measure
NVT (fixed number of particles N, accessible volume V and temperature T) given by the formula

νNVT(dq, dp) = Z−1e−βH(q,p)dqdp, Z =
∫

M×RdN
e−βH(q,p)dqdp. (2.12)

This measure is the “least biased” under the constraint that the energy is fixed in average. Let
us give a mathematical argument about the derivation of the canonical measure. Such derivation
is performed in [8, 67] using a variational principle, by maximizing the statistical entropy

S(ρ) = −
∫

M×R3N
ρ(q, p) log(ρ(q, p))dqdp, (2.13)

under the constraints

ρ ≥ 0,
∫

M×R3N
ρ(q, p) = 1,

∫

M×R3N
H(q, p)ρ(q, p) = E, (2.14)

for some energy level E. The interpretation of S is that it measures the disorder of the system.
Other thermodynamic ensembles can be considered. In the context of the modelling of fluids, the
grand canonical ensemble µV T is relevant (fixed chemical potential µ and fluctuating number
of particles) or also isobaric ensembles µVT or NPT (more details can be found for example
in [4], [41], [67]).

Remark 1 (Thermodynamic limit) To end up the passage from the microstate to the
macrostate, one has to consider the thermodynamic limit of an observable, that is |D| → +∞
with fixed thermodynamic constraints ((ρ, T ) in the case of the canonical ensemble). The defini-
tion of a macroscopic quantity such as energy density, temperature or pressure of a system has
to be understood in this sense. The interest of the thermodynamic limit is that in this regime,
it is common to consider, in molecular dynamics, that all the thermodynamic ensembles are
equivalent [94]. In practice, in the simulations, we choose a number N of particles sufficiently
large so that the thermodynamic limits is numerically achieved.

Let us now turn to the difficulties encountered in the evaluation of the integral (2.8). First,
the set of integration is high-dimensional so that standard quadrature rules cannot be used. One
has to resort to numerical methods that circumvent the curse of dimensionality, namely methods
relying on ergodic averages:

lim
s→∞

1
s

∫ s

0
A(qt, pt)dt = A , (2.15)

where the trajectory (qt, pt)t≥0 is generated by some dynamics ergodic with respect to the
probability measure ν. Second, the ergodic limit in (2.15) may be difficult to obtain (s should
be very large) in particular for metastable dynamics. We refer to [67] for an overview of the
sampling method used in molecular simulation. In the sequel, we focus on the Langevin dynamics
which allows to sample the canonical measure (2.12).
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2.1.4 The equilibrium Langevin dynamics

As we have seen previously, the Hamiltonian dynamics (2.11) allows to sample the micro-
canonical measure but since this dynamics preserves energy, the Hamiltonian dynamics is not
ergodic with respect to the canonical measure since to obtain the correct temperature, several
levels of energy have to be visited.

A dynamics which is ergodic with respect to the canonical measure is the Langevin dy-
namics: {

dqt = M−1ptdt,

dpt = −∇V (qt)dt− γ(qt)M−1ptdt+ σ(qt)dWt,
(2.16)

where Wt is a standard R
dN Brownian-motion and γ and σ are, in general, position dependant

R
dN×dN matrices. The Langevin dynamics (2.16) preserves the canonical measure νNVT if the

following fluctuation dissipation relationship holds

σ(q)σ(q)T =
2
β
γ(q), γ(q) > 0. (2.17)

Basically the term −γM−1ptdt dissipates energy while the fluctuation term σdWt brings enough
energy for the system to stabilize at the desired kinetic temperature T . In order to avoid
irrelevant technical issues, in this thesis, we make the following assumption:

Assumption 1 The potential V belongs to C∞(DN ) and unless explicitly specified, we consider
γ := diag(γxIN , γyIN , γzIN ) (for d = 3).

Also, to simplify the notations, we consider that all the masses are identical (mi = m, ∀i ∈
{1, . . . , N}). To make precise the fact that the Langevin dynamics is ergodic with respect to the
canonical measure, we introduce the infinitesimal generator of the equilibrium Langevin process
(qt, pt)t≥0 satisfying (2.16):

A0 = Aham +Athm,

where
Aham =

p

m
· ∇q −∇V (q) · ∇p,

is the infinitesimal generator of the Hamiltonian dynamics (2.11) and

Athm =
∑

α=x,y

γα

(
−pα
m
· ∇pα +

1
β
∆pα

)
=

eβH

β

∑

α=x,y

γαdiv pα
(
e−βH∇pα ·

)
,

is the generator of the Ornstein–Uhlenbeck process for momenta

dpt = −γM−1ptdt+ σdWt. (2.18)

In the following, we denote by

ψ0 = Z−1e−βH(q,p), (2.19)

the density of the canonical measure where Z is the canonical partition function given by (2.12).
For further purposes, it is convenient to consider the reference space L2(ψ0) (where the mea-
sure ψ0 is defined (2.19)), endowed with the scalar product
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〈f, g〉L2(ψ0) :=
∫

DN×RdN
f(q, p)g(q, p)ψ0(q, p) dq dp.

We also introduce the Hilbert space

H =
{
f ∈ L2(ψ0)

∣∣∣∣
∫

DN×RdN
fψ0 = 0

}
= L2(ψ0) ∩ {1}⊥,

where the orthogonality is with respect to the L2(ψ0) scalar product. Define also the adjoint
operator on L2(ψ0) of the generator:

A∗0 = −Aham +Athm.

Let ψ(q, t), being the law of the Langevin process (qt, pt)t≥0 at time t ≥ 0 with

ψ(t, ·) := ψ0f(t, ·). (2.20)

Then, we can check that f is the unique solution of the Fokker-Planck equation

∂tf = A∗0f, (2.21)

Hypoellipticity of the infinitesimal generator and stochastic analysis allow to show the existence
and the uniqueness of the invariant measure of (2.16), see the work of Rey-Bellet [93]. Thus, it
can be verified that ψ0 solves the stationary Fokker-Planck equation (see for instance [93]). The
uniqueness of the reference invariant measure ψ0 means that Ker(A∗0) = Span(1).

Remark 2 These results are available for smooth potential since hypoellipticity requires this
regularity. The singular potentials discussed in § 2.1.2 do not enter in this class since they
present a singularity at the origin. The rigorous mathematical analysis of such difficult problem
has been recently addressed in [19].

We will also make use of nice properties of the operator A0 on the weighted space H.
Let us point out that A0 is not an elliptic operator since the diffusion acts only in the velocity
variables, but still enjoys nice properties since it enters in the abstract setting of hypoellipticity
and hypocoercivity [109]. For convenience of the reader, let us recall some useful results.

To state these results, we need to introduce the notion of Lie algebra. This is the vector
space L(X0, . . . , Xm) associated to a family of vector fields (X0, . . . , Xm) which is the vectorial
space of operator containing Span(X0, . . . , Xm) and satisfying the stability property:

B ∈ (X0, . . . , Xm) =⇒ [B,Xi] ∈ L(X0, . . . , Xm), i = 0, . . . ,m, (2.22)

where the Lie bracket between two operators U and V is

[U, V ] = UV − V U. (2.23)

Consider the stochastic differential equation

dxt = b(xt)dt+ σ(xt)dWt, xt ∈ S ⊂ R
d (2.24)
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where b ∈ R
d is a vector valued function, σ ∈ R

d × R
n is matrix valued, and Wt is a standard

d-dimensional Brownian motion (so that the noise does not act in all the directions), and assume
that b and σ are smooth. We write the generator of (2.24) under the “sum of square” form

A0 :=
1
2

d∑

k=1

X2
k +X0, (2.25)

where

Xk :=
d∑

i=1

σi,k, k = 1, . . . , n, (2.26)

and

X0 :=
d∑

i=1

bi∂i −
d∑

i,j

n∑

k=1

σi,k∂i(σj,k)∂j . (2.27)

We have the following results

Theorem 1 (Hörmander condition [51]). If

L(X0, . . . , Xn) = Span(∂1, . . . , ∂d), (2.28)

then A0 is hypoelliptic.

A consequence of this result is

Theorem 2 (Sufficient conditions for ergodicity [60]). Assume there exists a strong so-
lution of (2.24) for all times t ≥ 0 and that condition (2.28) holds true. Then if a stationary
probability distribution π exists, then pathwise ergodicity holds for any initial condition x0:

lim
s→+∞

1
s

∫ s

0
ϕ(xt)dt =

∫

S
ϕdπ, almost surely. (2.29)

The application we consider is xt = (qt, pt) ∈ DN × R
3N , the Langevin process, with generator

A0 for which we can verify Hörmander condition ( [67, Section 2.2.3.1]).

Another useful tool in the study of the Langevin dynamics is the theory of hypocoerciv-
ity [109]. This theory concerns evolution equations of the form

∂tf + Lf = 0, (2.30)

in the case when
L = A∗A+B, (2.31)

in a Hilbert H space where A∗ is the adjoint of the operator A with respect to the H scalar
product denoted (·, ·) here. In Chapter 3, we mainly use the result [109, Theorem 18], and we
refer to this work. The operator A and B are, in general, first order differential operator with
smooth coefficients. The operator B is assumed to be antisymmetric (B∗ = −B, the adjoint
being computed with respect to the H scalar product) whereas the operator A∗A is symmetric.
The situation is well illustrated with the infinitesimal generator of the Langevin processing for
which H = H1(ψ0) ∩ H, A∗A = Athm, and B = Aham. Let us mention the following important
result providing hypocoercivity for the infinitesimal generator of the Langevin process:
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Theorem 3 (Sufficient condition for hypocoercivity [109, Section I.4, Theorem 18]). Con-
sider a linear operator L = A∗A + B, B antisymmetric, and define C := [A,B]. Assume the
existence of constants a1, a2 such that

(i) A and A∗ commute with C, A commutes with A (i.e. each Ai commutes with each Aj);

(ii) [A,A∗] is a1-bounded relatively to I and A;

(iii) [B,C] is a2-bounded relatively to A, A2, C and AC;

Then there is a scalar product ((·, ·)) on H, which defines a norm equivalent to the H
norm, such that

∀h ∈ H, ((h, Lh)) ≥ K
(
‖Ah‖2 + ‖Ch‖2

)
, (2.32)

for some constant K > 0, only depending on a1, a2. If, in addition, A∗A+C∗C is κ-coercive i.e

∀h ∈ H, (h, (A∗A+ C∗C)h) ≥ κ‖h‖2, (2.33)

for some κ > 0, then there is a constant λ > 0, only depending on a1, a2 and κ, such that

∀h ∈ H, ((h, Lh)) ≥ λ((h, h)). (2.34)

In particular, L is hypocoercive in H:

‖e−tL‖H→H ≤ ce−λt, (c <∞), (2.35)

where both λ and c can be estimated explicitly in terms of upper bounds on a1, a2, and a lower
bound on κ.

This theorem in particular gives a nice coercivity estimate of the operator L under a
suitable modification of the scalar product on H (2.34) together with the exponential decay
of the semi group e−tL in the norm associated to this modified scalar product (2.35). Note
that the difference between coercivity and hypocoercivity lies in the presence of a constant
0 < c <∞ in the estimate (2.35). In the case where the operator L is coercive, we would obtain
the estimate (2.35) with constant c = 1. The issue with estimate (2.35) for the hypocoercive
operator L is that the constant c might be very large.

In the case of the infinitesimal generator of the Langevin process, we have

Aα,thm = − 1
β

N∑

i=1

(∂pαi)
∗ ∂pαi = A∗A. (2.36)

A simple calculation shows that

C = [∂pαi ,Aham] =
1
m
∂qαi , (2.37)

so that conditions (i-iii) in Theorem 3 are easily verified (see [109, Section I.7] for a detailed
study of this case).

Others technical results that we need are boundedness and compactness properties of the
operator A−1

0 on weighted Sobolev spaces Hk(ψ0) ∩ H, k ∈ N. Under the assumption that the
potential V is smooth on the compact position space DN , we have the following results
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(i) The operator A−1
0 is a compact operator from H to H ( [46], [25]);

(ii) For any integer m ≥ 0, A−1
0 is a bounded operator from Hk(ψ0)∩H to Hk(ψ0)∩H ( [103]).

These properties are very useful in the proofs performed in Chapter 3 and are inherent to the
Langevin dynamics.

2.1.5 Numerical aspects

Let us now turn to the numerical methods used to discretize the Langevin dynamics, and more
generally methods relying on using a dynamics to compute static and transport properties.
Traditionally, steady equilibrium properties in the canonical ensemble can be computed ow-
ing to Monte Carlo methods ( [43, 77]) and require generally only a statistical information on
the configurational space since velocities are independent Gaussian random variables, and are
therefore straightforward to sample. The Langevin dynamics provides an efficient numerical
method to compute equilibrium properties owing to discretized version of formula (2.15) but is
not especially necessary.

There are roughly three steps to follow when running a molecular simulation:

(i) Definition and approximations used to compute the forces ∇V (q), since in general V is a
complex function of all the positions q ∈ T

3N with N large and the choice of the physical
conditions of observation (density of the system, temperature etc);

(ii) Time integration of the dynamics with dedicated algorithms preserving (approximatively)
the invariants of the dynamics in view of computing reliable approximations of the inte-
gral (2.15);

(iii) Careful post-processing of the obtained results (that can be long time trajectory, self-
correlations functions, localized observables). This step requires also an analysis of the
statistical and numerical errors induced by the noise in the dynamics (2.16).

On the computational side, the most computationally intensive part is the evaluation of
the forces at each time step which requires a special care in the implementation. When dealing
with periodic boundary conditions, one can resort to truncated potential energy when the long
range tail is not dominant. This procedure is systematically performed for the Lennard–Jones
system (see Figure 2.1). Practitioners resort to long range corrections for standard observables
(such as pressure or energy) by analytical computations of the tail integral, assuming that the
particles decorrelate for large distances [4, Chapter II, Section 8]. For long range potentials
such as Coulomb interaction potentials, encountered in the study of water models or charged
system, the decay of the energy versus the distance is slow (r−1) and computations of the force
including the periodic replicas of the particles have to be considered. Ewald type summations
methods are generally used to this end and allow to obtain results in good agreement with
experiments. Note that the implementation of such algorithms requires quite some work and
are generally performed by specialists of the domain of application so that there is a wide
variety of computational code available (LAMMPS, NAMD etc). Most of the numerical results
presented in this thesis have been obtained for a Lennard–Jones system implemented in a home-
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made C++ computational code. We verified a posteriori that the methods we used are easily
implementable in more sophisticated computational code (LAMMPS).

In the case of the Langevin dynamics, we take care of step (ii) owing to a standard splitting
strategy. Observe that when γ = 0, the Langevin dynamics (2.16) reduces to the Hamiltonian
dynamics which can be discretized using the following symplectic scheme, that is Störmer-Verlet:





pn+1/2 = pn − δt

2
∇V (qn),

qn+1 = qn + δt pn+1/2,

pn+1 = pn+1/2 − δt

2
∇V (qn+1).

(2.38)

We can see that an iteration (qn, pn) 7→ (qn+1, pn+1) requires only one evaluation of the forces.
The basic properties of this integrator can be found in [37].

Note now that in the case V = 0 and dqt = 0, the Langevin dynamics reduces to the
dynamics of an Ornstein–Uhlenbeck process, and thus can be integrated explicitly, so that we
use the scheme

pn+1 = αpn +

√
1
β

(1− α)Gn (2.39)

where α = exp(−γδt), and Gn are independent and identically distributed standard Gaussian
random variables. The numerical scheme can then be written





pn+1/2 = pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t pn+1/2,

p̃n+1 = pn+1/2 − ∆t

2
∇V (qn+1),

pn+1 = αp̃n+1 +

√
1
β

(1− α2)Gn,

(2.40)

Step (iii) might be considered as the crucial step in view of the application, since all the
physical information will be deduced from the post-processing. A single molecular dynamics
simulation provide a lot of information about the physical system of interest. It can provide
long time trajectory of an observable, allowing to deduce the equilibrium properties and also
self-correlation function, allowing sometime to evaluate transport coefficients. In this way, it is
important to check that the system is in steady state at the end of the simulation. For example,
one can check that the kinetic temperature of the system coincides with the temperature imposed
by the Langevin bath. For simple systems such as Lennard–Jones system, there is an extensive
bibliography about the equilibrium or transport properties and the comparison with these data
is a way to validate a newly proposed computational code.

Eventually, an important issue with molecular dynamics simulation is to quantify the
statistical uncertainty coming from the use of stochastic methods or from randomness in the
choice of the initial conditions when deterministic dynamics are used. Assume we have run a
simulation for a number of iterations Niter of the scheme (2.40). Denote by 〈A〉 the average of
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an observable A with respect to a thermodynamic ensemble. Assuming we estimated 〈A〉 by an
ergodic average:

〈A〉 := lim
Niter→+∞

ANiter = lim
Niter→+∞

1
Niter

Niter−1∑

n=0

A(qn, pn), (2.41)

and that a Law of large number holds true, we define the asymptotic variance σ2 as

σ2(A) :=
(
〈A2〉 − 〈A〉2

)
+ 2

+∞∑

n=1

Eν̃((A(q0, p0)− 〈A〉)(A(qn, pn)− 〈A〉)). (2.42)

The asymptotic variance decomposes as the sum of the intrinsic variance 〈A2〉 − 〈A〉2 (that we
would obtain if the A(qn, pn) were independent and identically distributed) and the correlation
between the sampled configuration (the infinite series). The notation Eν̃ corresponds to the
average of a random variable distributed according to the numerical approximation ν̃ of the
invariant probability measure ν (note that in general there is non-zero bias between ν̃ and
ν due to the time-step error, nevertheless we do not discuss these issues here). In order to
quantify the statistical uncertainty in the simulations, there are several strategies to compute
an approximation of the correlation. In this thesis we considered two techniques to estimate the
variance:

• Multiple replica strategy, where M independent trajectories are run and the variance is
estimated by an empirical average over the realizations:

Σreplica
Niter,M

:=
Niter

M

M−1∑

k=0


AkNiter

− 1
M

M−1∑

p=1

A
p
Niter




2

. (2.43)

This estimation being more accurate for a large number M of replicas (owing to the Central
limit theorem). The corresponding estimator for the asymptotic variance is then

σ2
est,1(A) := lim

Niter→+∞
lim

M→+∞
Σreplica
Niter,M

. (2.44)

• Block averaging, where only one trajectory of size Niter := NM is integrated, where M is
the number of block and N the number of points within a block. The variance is computed
as follow: Defining the average of A within the k-th block,

A
k
N :=

1
N

kN∑

j=(k−1)N+1

A(qj , pj), k = 1, . . . ,M, (2.45)

the variance is estimated by

ΣBA
Niter,M :=

N

M

M∑

k=1

(
A
k
N −ANiter

)2
. (2.46)

This definition assumes that the averages over one block (〈A〉kN )k=1,...,M are independent and
identically distributed and that a Central limit Theorem holds within each block (see [67]
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and the cited references therein). The corresponding estimator for the asymptotic variance
is then

σ2
est,2(A) := lim

Niter→+∞
lim

M→+∞
ΣBA
Niter,M . (2.47)

In practice, we may consider several trajectories of size Niter = 2p = NM and monitor the
quantity ΣBA

Niter,M
for each trajectory as a function of p, so that the variance is extracted

when a plateau value is reached (see Figure 2.2). Nevertheless, in most of the simulations,
we extract the variance with only one trajectory.
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Fig. 2.2. Illustration of the block-averaging procedure for an observable of the simulations of Chapter 3. The
dashed line represent several replica of the procedure. The bold line indicates the average of these replicas, and
the bold dashed line exhibits the plateau value of σ2

BA.

Once an estimator of the variance is computed, a 95% confidence interval can be deduced in the
form

Iconf :=
[
〈A〉Niter − 1.96

(
σest,i(A)√
Niter

)
, 〈A〉Niter + 1.96

(
σest,i(A)√
Niter

)]
, (2.48)

with σest,i(A), i = 1, 2 estimated with either formula (2.43) or (2.46) (which are respectively
approximations of (2.44) or (2.47)) thus providing an error bar (the standard deviation), which
will be presented in most the numerical results.

2.2 Nonequilibrium dynamics and Green-Kubo formula

In this section, we present nonequilibrium dynamics in an abstract setting and how it can be
related to the Green-Kubo formalism. This formalism will be motivated by examples allowing to
compute the shear viscosity of a fluid, but the study of the other transport coefficients (thermal
conductivity, diffusion) is similar, see for instance [101].
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2.2.1 Nonequilibrium dynamics

We consider a reference equilibrium dynamics with infinitesimal generator A0 and consider a
perturbation of this dynamics. We denote by ξA1 the generator of the perturbation, where
ξ is a small parameter measuring the amplitude of the perturbation. When the equilibrium
process is the Langevin process, the expression of A0 is Aham +Athm. We restrict ourselves to
perturbations of the form

{
dqt = M−1ptdt+ ξC(qt, pt)dt,

dpt = −∇V (qt)dt− γ(qt)M−1ptdt+ ξD(qt, pt)dt+ σ(qt)dWt,
(2.49)

where C and D are smooth functions so that

A1 = C(q, p) · ∇q ·+D(q, p) · ∇p · . (2.50)

We give below examples of admissible perturbation in the case of shear flows. In general D is a
nongradient perturbation and it that case, an analytical expression of the invariant measure of
the system is unknown.

2.2.2 Invariant measure of the nonequilibrium dynamics

The invariant measure of the nonequilibrium dynamics (if it exists, see [93] for a condition relying
on the existence of a Lyapunov function for the system) satisfies the following Fokker-Planck
equation (written here in the weak sense)

∫

M×RdN
(A0 + ξA1)ϕψξ = 0, (2.51)

for all test functions ϕ. It is convenient to write ψξ as a perturbation of the reference measure:

ψξ = fξ ψ0,

and to work in the Hilbert space L2(ψ0).

The function fξ is then the unique solution of the Fokker-Planck equation

(A∗0 + ξA∗1) fξ = 0,
∫

M×RdN
fξψ0 = 1, (2.52)

where adjoints are considered on L2(ψ0). Note that the invariance of the reference measure ψ0

is expressed in this framework as
A∗01 = 0.

In Chapter 3 we prove the following result concerning the invariant measure of the nonequilib-
rium dynamics, and for convenience we recast it on the abstract setting. The result gives the
expression of the function fξ as a power series in ξ when ξ is sufficiently small, under appropriate
assumptions on the perturbation A1.

Theorem 2.1. Assume that (2.52) has a unique solution, and that
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(a) (properties of the equilibrium dynamics) Ker(A∗0) = 1 and A∗0 is invertible on H;

(b) (properties of the perturbation) Ran(A∗1) ⊂ H and (A∗0)−1A∗1 is bounded on H.

Denote by r the spectral radius of the bounded operator (A∗0)−1A∗1 ∈ B(H):

r = lim
n→+∞

∥∥∥
(
(A∗0)−1A∗1

)n∥∥∥
1/n

.

Then, for |ξ| < r−1, the unique solution of (2.52) can be written as

fξ =
(
1 + ξ (A∗0)−1A∗1

)−1
1 =

(
1 +

+∞∑

n=1

(−ξ)n
[
(A∗0)−1A∗1

]n
)

1. (2.53)

The linear term in ξ in the expression of fξ is denoted by

f1 = − (A∗0)−1A∗11.

Note that the measure (2.53) is a probability measure: the normalization constant for ψξ does
not depend on ξ. This owes to the fact that Ran((A∗0)−1A∗1) ⊂ H, and

∫

M×RdN
hψ0 = 0

for any h ∈ H, so that ∫

M×RdN
ψξ =

∫

M×RdN
ψ0 = 1.

The first assumption in the above theorem means that the equilibrium dynamics has good
ergodic properties, while the second one ensures that the perturbation is not too strong. A
typical way of proving that (A∗0)−1A∗1 is bounded on H is to show that A1 is A0-bounded:
D(A0) ⊂ D(A1) and there exists a, b > 0 such that ‖A1ϕ‖ ≤ a‖A0ϕ‖+ b‖ϕ‖ for ϕ ∈ D(A0).

Average properties under the nonequilibrium steady state are obtained by integration of
a microscopic observable h with respect to the nonequilibrium measure:

〈h〉ξ =
∫

M×RdN
h(q, p)ψξ(q, p)dqdp = 〈h, fξ〉L2(ψ0) (2.54)

while equilibrium averages, denoted by 〈h〉0, correspond to an integration with respect to ψ0.

2.2.3 Linear response and correlation functions

The appropriate response functions to be averaged, denoted by R in the sequel, are determined
by the macroscopic property we are interested in, e.g the stress tensor for the shear viscosity
or the heat flux for the thermal conductivity. Susceptibilities or transport coefficients are then
defined as follows (recall that R ∈ H):

α = lim
ξ→0

〈R〉ξ
ξ

. (2.55)
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In practice, an estimate of α can be obtained by choosing a value of ξ sufficiently small, ap-
proximating 〈R〉ξ by a longtime average over one realization of the dynamics similar to (2.15),
and dividing this quantity by ξ. In order to check that the value of ξ is indeed small enough
to neglect higher order contributions, it is possible for instance to check the linearity of the
response by computing approximations of 〈R〉ξ with ξ replaced by, say, ξ/2 or 2ξ, see Chapter 3.

The choice of the reference dynamics is crucial. Theoretically, results are available in
the case where A0 = Athm + Aham but less physical than the standard Hamiltonian dynamics
for which A0 = Aham. Using the expression (2.53) of the invariant measure in terms of the
perturbation parameter ξ, and the equality

−A−1
0 =

∫ +∞

0
etA0 dt

as operators on H (which, requires some decay properties of the semi-group), linear response
properties can be rephrased using correlation functions. Introducing the function S = A∗11, also
called the dissipative flux (see [107]), it holds

α =
∫

M×RdN
R f1 ψ0 = −

∫

M×RdN

[
A−1

0 R
]

[A∗11] ψ0 =
∫ +∞

0
〈R(qt, pt)S(q0, p0)〉eq dt, (2.56)

where the expectation 〈·〉eq is taken over all initial conditions distributed according to ψ0(q, p) dqdp,
and over all realizations of the reference equilibrium dynamics (with generator A0). Note that
its expression is determined by the applied perturbation A1, and not by the response func-
tion R. The self-correlation of R is recovered for perturbations such that S ∝ R. In the case of
a perturbation given by (2.50) the general formula for the dissipative flux is

S = A∗11 = −βC · ∇qV − βD ·M−1p. (2.57)

Examples of application of the abstract setting will be given in a formal way in Section 2.3.2
and in a rigorous framework in Chapter 3.

2.2.4 Discussion on the choice of the underlying dynamics

We now discuss some issues concerning the choice of the underlying dynamics. Often, the Hamil-
tonian dynamics is considered as the reference dynamical evolution of the microscopic system.
However, this dynamics exactly preserves the energy of the system, while energy exchanges with
the environment are expected to happen. The choice of the underlying dynamics of the system
is a modelling choice. In any case, a careful study of the dependence of the computed transport
properties as a function of the parameters of the dynamics should be performed.

Since the system is driven out-of-equilibrium by a nongradient force, some thermostatting
mechanism is required to prevent the uncontrolled increase of the energy and to ensure that
a steady-state can indeed be reached. In many works focusing on the computation of shear
viscosity, the thermostatting is performed with deterministic dynamics, such as Nosé-Hoover
like thermostats [49, 85] or isokinetic dynamics (see [28, Chapter 3]). The ergodicity of these
dynamics is at most unclear (and non-ergodicity can even be proved rigorously in some limiting
cases [65,66]). The mathematical analysis of these methods is therefore untractable. Only formal
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results of linear response can be written down. In some studies, the thermostatting is performed
using dissipative particle dynamics [56, 99], which includes stochastic terms. The ergodicity of
these dynamics is however a very difficult issue, and the only existing results we are aware of
concern one-dimensional systems [98].

2.3 Computation of transport coefficients: the example of the shear viscosity

In this section, we present a short overview of the different approaches to computing the shear
viscosity of a fluid using molecular simulations. There is a huge number of references reporting
shear viscosity computations since the begining of molecular simulations in the middle of the 20th
century. Nowadays, the computation of the shear viscosity of a system is still an important and
active topic of research in the chemical and physical communities and still require a substantial
computational effort. A review of the most standard approaches to computing the shear viscosity
can be read in [28]. See also [104] for a focus on nonequilibrium methods and [48] for a comparison
between various numerical approaches. Let us first, recall basic concepts of continuous fluid
mechanics. The end of the chapter is devoted to the comparison of several methodologies to
compute numerically the shear viscosity of a fluid.

2.3.1 Some elements of continuous fluid mechanics

We recall here some basic concepts of fluid mechanics. Let us consider a fluid described at
the continuous level. We assume the fluid to be isothermal, and incompressible. Its motion
is governed by the Navier–Stokes equations which express the conservation of momentum and
mass in the form {

∂t(ρu) + div (ρu⊗ u)− divΠ = F,

div (u) = 0.
(2.58)

Here, u is the fluid velocity with Cartesian components (ux, uy, uz), ρ the density of the fluid,
Π the stress tensor, and F some volume force. We assume that the fluid occupies a volume Ω.
The the stress tensor Π is defined by

Π = −pId + σ, (2.59)

where Id is the identity tensor on R
3 and σ is the viscous strain tensor. In order to deal with

a closed system of equations, a constitutive relationship between the viscous strain σ and the
velocity field needs to be specified. Assuming the fluid is Newtonian, we define the shear viscosity
of the fluid by the coefficient η such that

σ := 2ηD(u), D(u) =
1
2

(∇u+∇uT ). (2.60)

Let us examine some special flow. To this end, we need to specify some boundary conditions.
A first simple situation is to consider a flow between two flat plates so that the domain Ω :=
LxT× [0, Ly]× LzT (in 3D). Assuming a stationary velocity profile of the form

u = ux(x, y, z)ex, (2.61)
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we observe that owing to the divergence free constraint, we necessarily have

u = ϕ(y)ex, (2.62)

for some function ϕ. We impose that the fluid’s velocity field ux = U at the boundary y = Ly
and is equal to ux = 0 at y = 0. Neglecting pressure gradients, which amounts to consider a
Couette flow, we find that

ϕ(y) =
U y

Ly
, y ∈ [0, Ly], (2.63)

is solution of the Navier–Stokes equation (2.58). We can define the strain rate γ̇ by taking the
derivative of ϕ so that

γ̇ :=
U

Ly
, (2.64)

so that in this case, the shear viscosity satisfy the relation

−ηγ̇ = σxy. (2.65)

In the context of molecular simulations, in particular in nonequilibrium method and linear
response theory, the aim is to compute the shear viscosity η through the knowledge of (nonzero)
microscopic version of σxy by imposing a velocity field in a microscopic system, so that the
strain rate is γ̇. At the microscopic level, an equation such as (2.65) is in fact a definition for
the shear viscosity, and this definition needs to be numerically validated, its validity depending
on the physical system under consideration. In the case where (2.65) is not satisfied numerically
(as often observed for complex fluids [86, Chapter 4]), we need to improve the constitutive law
linking the shear stress to the velocity field. We will see in the sections below some analogies
with the macroscopic theory in the study of equilibrium method in the next paragraph and
nonequilibrium methods, for the Couette flow in § 2.3.3.

2.3.2 Equilibrium methods

We now turn to the first class of method we consider, being equilibrium methods. Equilib-
rium methods are based on time integrals of correlation functions, the so-called Green-Kubo
formulas [34,62] or the Einstein relations ( [41], [48] for systems with periodic boundary condi-
tions). These correlation functions are obtained by sampling initial conditions according to the
thermodynamic ensemble at hand, and averaging over all possible evolutions from these initial
conditions. The standard formula for the shear viscosity is

η = β|D|
∫ +∞

0
〈Σ0

xyΣ
t
xy〉eq dt, (2.66)

In practice, the computation of η by formula (2.66) is an expansive computational task and
requires a careful treatment. To explain this formula, we define the microscopic version of an
off-diagonal term of the Cauchy stress-tensor:

Σxy(q, p) =
1
|D|




N∑

i=1

pxipyi
m
−

∑

1≤i<j≤N

v′(|qi − qj |)
(qxi − qxj)(qyi − qyj)

|qi − qj |


 (2.67)
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The time-dependent version of the stress tensor for a time t ≥ 0 as to be understood as:

Σt
xy := Σxy(Φt(q0, p0)), (2.68)

where Φt is often the Hamiltonian flow starting from initial condition (q0, p0) ∈M×R
dN . The

integrand, given by
〈Σ0

xyΣ
t
xy〉eq, (2.69)

is the canonical average of the self-correlation function of the off-diagonal stress tensor compo-
nent.

The Green–Kubo formula could cast in the previous abstract setting. Indeed, it is shown
formally in [107, Chapter 13 §3.3.1], that the Green-Kubo formula for the shear viscosity is
recovered when the perturbation is of the form (2.50) with

Ci(q, p) = qyiex,

Di(q, p) = −pyiex.
(2.70)

In that case we have:
S = A∗11 = |D|Σxy(q, p), (2.71)

so that by substituting the expressions in formula (2.56), we obtain equation (2.66) By analogy
with Section 2.3.1, the parameter ξ is viewed here as the strain rate γ̇ defined by the rela-
tion (2.65). The definition of the shear viscosity with the above formula require some care,
in particular with the boundary conditions of the system considered in [107]. The choice of
the underlying flow Φt requires also some care. From the physical viewpoint, Hamiltonian flow
seems the natural choice since the particles are expected to be Newtonian. The mathematical
counterpart is less obvious since we are not aware of any result concerning integrability of the
self-correlation functions generated with the Hamiltonian flow, the latter having an infinitesimal
generator lacking a spectral gap.

Practical implementation

Practitioners often run a very long canonical simulation and compute the shear viscosity by
computing self-correlation function their unique simulation. This approach can be heuristically
justified for large systems, by taking the thermodynamic limit, for which the thermodynamic
ensembles are equivalent. Another approach to compute self-correlation functions, based on fast
Fourier transform (FFT), is also considered, see [107, Section 13.4] for a discussion on these
methods.

The direct method (and most rigorous) to compute a self-correlation function is to proceed
as follow: Fix a number of replicas Nreplica ∈ N, for k ∈ {1, . . . Nreplica} do

i Initialize with (qk0 , p
k
0) ∈M× R

dN ;

ii Fix a time step δτeq and a simulation time τeq and run an equilibrium Langevin trajectory;

iii Fix a time step δtdyn and a simulation time τdyn and run the dynamics associated with the
infinitesimal generator A0 (either Langevin or Hamiltonian) starting from canonical initial
condition, then compute the approximation of (2.69) being
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Cδtdyn
(j) :=

1
Nreplica

Nreplica∑

k=1

Σxy(qkj , p
k
j )Σxy(q

k
0 , p

k
0), j = 0, . . . , Ndyn =

⌊
τdyn

δtdyn

⌋
. (2.72)

Note that step (ii) could be replaced by Monte Carlo sampling of the canonical measure, the
use of the Langevin dynamic to generate canonical initial condition is a convenient choice when
using a molecular dynamics simulation code. In the case of the Green-Kubo formula (2.66), an
estimator of the shear viscosity is for instance given by

η ≈ 1
Nreplica

Nreplica∑

k=1

Ndyn∑

j=0

δtdynCδtdyn
(j). (2.73)

The time τdyn as to be taken large enough to capture the long tail of the self-correlation function
while in practice the number Nreplica has to be extremely large because of the variance intrinsic
to the problem. Note that integration in infinite time can easily be improved by using sharper
quadrature rules, since by using the simple integration rule in (2.73) we observed a bias of a few
percent. We will see in Chapter 3 an application of another Green-Kubo type formula and its
corresponding nonequilibrium version.

The setting of the present paragraph can be illustrated by the following numerical ap-
plication for a 2D Lennard–Jones system of 225 particles. The reduced number density and
temperatures are chosen to be (ρ, T ) = (0.69, 2.5) so that the square box is of size L = 18.
There are basically three types of error in such a simulation: (i) the truncature of the integral in
infinite time to an integral in (0, τdyn); (ii) the discretization time-step δtdyn; (iii) the statistical
error linked to the number of replica Nreplica. We reproduced 20 times the above protocol with
a time-step δtdyn = 10−3 and a number of replica Nreplica equal to 6.2× 104 in the Hamiltonian
case and 105 in Langevin case, the friction parameter being γ = 1.

We performed those computations by using both the Hamiltonian and Langevin flow to
compute self-correlation of the off-diagonal term of the stress tensor. The time of equilibration
was chosen to be τeq = 10. The shear viscosity has been estimated by integrating the averaged
self-correlation function on the time interval (0, 1.5). Results and error bar can be found in
Table 2.2 for both Hamiltonian flow and Langevin flow. Observe in Figure 2.3 that after a short
transient time, the self-correlation function fluctuate around zero. Nevertheless, the statistical
error coming out from those computations is large and require a huge number of independent
replica. Figure 2.4 shows these variations by taking the logarithm of the self-correlation function
for several independent replicas. We observe that the resulting viscosity slightly deviate (in
dashed line in the right picture) from its mean value (in bold line in the right picture).

Dynamics η

Hamiltonian 1.707 ±0.101
Langevin 1.63 ±0.06

Table 2.2. Shear viscosity evaluated with the Green-Kubo formula.
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Fig. 2.3. Left: Self-correlation function multiplied by β |D|; Right: Integral of the self-correlation function (shear
viscosity).
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Fig. 2.4. Left: Log plot of the self-correlation function for several replicas; Right: Shear viscosity as a function
of time for several replicas.

2.3.3 Steady state nonequilibrium

In steady state nonequilibrium methods, the system is characterized by the existence of station-
ary fluxes and spatial gradients of some quantities. These fluxes and gradients can be controlled
by forcing terms acting on the boundaries of the system (for instance, a velocity profile can be
obtained by fixing the average velocity in the extremal slabs of a fluid, see the early review [50],
or subsequent works such as [106]), or by a bulk process where fictitious forces act on all particles
(the so-called synthetic molecular dynamics approach [28]).

These are the main two approaches (i) boundary driven techniques where the external forc-
ing is imposed only in boundary regions of the phase space, and (ii) bulk driven dynamics where
all the particles of the system experience an external perturbation. Boundary driven methods
are usually numerically less efficient than bulk-driven methods since there is more correlations in
the system and the convergence to a steady-state starting from some reference equilibrium state
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is slower. Besides, existence and uniqueness results are, in general, not available. Bulk driven
method are often numerically more efficient, and from a theoretical viewpoint more tractable
than boundary driven methods. Finally, let us mention that nonequilibrium methods are closely
linked to the linear response theory in the sense that to each nonequilibrium method, one can
associate a Green-Kubo formula, as we have seen in § 2.3.2.

Example of Boundary driven nonequilibrium method

Let us now describe a numerical illustration of a boundary driven method. One might consider
the following nonequilibrium Langevin dynamics with non constant friction matrices:




dqt = M−1ptdt,

dpt = −∇V (qt)dt− γ(qt)
(
M−1pt − V (qt)

)
dt+ σdWt,

(2.74)

where the diagonal friction matrix γ has the entries

γi,i(q) =





1− qyR−1 qy ≤ R,

1−
∣∣∣∣qy −

L

2

∣∣∣∣R−1

∣∣∣∣qy −
L

2

∣∣∣∣ ≤ R,
qy − L
R

+ 1 qy > L−R,
0 elsewhere.

(2.75)

and V is the velocity function defined by

V (q) =





−U qy ≤ R,
U

∣∣∣∣qy −
L

2

∣∣∣∣ ≤ R,

−U qy > L−R,
0 elsewhere.

(2.76)

for a positive real number R such that 4R < L and a velocity U . This choice of dynamics
consists to impose a velocity field in the region where the friction is active while the other
regions are governed by the standard Hamiltonian dynamics. We expect that a velocity profile
settles down in the system. This allows to measure the susceptible thermodynamic flux, namely
the off-diagonal term of the Cauchy stress-tensor (see Section 2.3.1). In particular, since there is
a portion of the phase space ruled by the Hamiltonian dynamics, we expect the velocity profile
to be affine in the concerned zone, so that the corresponding off-diagonal term is expected to
be constant, so that a Couette flow is observed in the region where γ = 0. An issue with the
lack of thermostatting is that the local kinetic temperature can fluctuate in the system and
local equilibrium is only ensured by the energy exchange with the zone ruled by the Langevin
dynamics.

As a numerical example, we propose to simulate the dynamics (2.74) for the 2D Lennard–
Jones system at state point (ρ, T ) = (0.69, 2.5). The simulation cell is a rectangle 18T× 360T.
We performed computations for two forcing parameters U = 0.05, 0.1 and for friction parameters
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Fig. 2.5. Computation cell for the boundary driven flow

γx = γy = 1. We can monitor a spatially localized version of the off-diagonal term of the stress
tensor (the method to compute such a quantity is described in detail in Chapter 3). Upon
postulating that the Newton law for the shear viscosity (2.60) holds true, the shear viscosity of
the fluid can be extracted by analyzing the Fourier mode of the velocity profile and the pressure
profile extracted from the simulations (the method to compute such quantities is detailed in
Chapter 3). Indeed, assuming

σxy(Y ) = −ηu′x(Y ), Y ∈ LyT, (2.77)

we see that we can obtain the shear viscosity η by simply taking the quotient of the Fourier
mode of σxy and u′x (in practice we compute the Fourier mode of ux, reducing the numerical and
statistical error). We verified that linear response holds, by remarking that the Fourier modes
for U = 0.05, 0.1, are approximatively proportional. Figure 2.6 depicts the localized velocity
and pressure profiles. Estimated values and error bar for the imaginary part of the first Fourier
coefficient σ̂xy, û′x, and the shear viscosity can be found in Table 2.3 for both computations. The
simulation time was chosen extremely large (Niter > 3× 106) in order to diminish the statistical
uncertainty. We evaluated the variance by running several independent replicas.

U σ̂xy/U −û′x/U η

0.05 0.260± 0.0031 0.156± 0.0015 1.664± 0.02
0.1 0.264± 0.0043 0.154± 0.005 1.71 ±0.04

Table 2.3. Shear viscosity evaluated with the boundary driven dynamics.



38 2 Some elements of statistical mechanics and molecular dynamics

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0

2

4

6

8

10

12

14

16

18

Y

ux(Y )

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 0.25

0

2

4

6

8

10

12

14

16

18

σxy(Y )

Y

Fig. 2.6. Left: Velocity profile for U = 0.1; Right: Off-diagonal term of the stress tensor for U = 0.1.

Example of bulk driven nonequilibrium method

We focus in this section on bulk-driven nonequilibrium molecular dynamics techniques. One
popular method is to use a version of the SLLOD algorithm in conjunction with Lees-Edwards
boundary condition (see the references in [104]), which are consistent with a constant shear
rate and linear velocity profiles. However, a mathematical study of the linear response in this
framework is cumbersome since the boundary conditions for the operators at hand are time-
dependent and also depend on the shear rate. It is easier to study techniques relying on periodic
nongradient forcings. In this case, standard periodic boundary conditions can be resorted to.
This is the path we follow in this thesis. Let us also mention that in methods using the Lees-
Edwards boundary conditions, the velocity profile is known (linear), and the viscosity is extracted
from the ratio of the total off-diagonal stress tensor and the shear rate; whereas in the method
studied in this thesis, some form of spatial localization is needed to obtain velocity profiles, and
the viscosity can be obtained directly from the velocity profile.

One of the seminal works using this technique is the article by Gosling and Mac Don-
ald [33]. It consists in adding a periodic nongradient perturbation in the system and to mea-
suring the response in the velocity profile. The viscosity is then computed by postulating a
macroscopic equation for the velocity. The original method is formulated as follow, assuming
that the volume force has the form F := F (y), where F is a one real variable function de-
fined on LyT and neglecting pressure gradients, the Navier–Stokes equation (2.58) with periodic
boundary conditions can be written

−ηu′′x(y) = ρF (y), y ∈ LyT, (2.78)

so that the shear viscosity of the fluid can be identified owing to Fourier series expansion of the
solution ux and the force profile F (see Chapter 3 for a precise discussion of the method). In fact,
in the original work of Gosling and Mac Donald, a sinusoidal velocity force acts on all the particles
and in this simple case, the viscosity can be estimated by simply fitting the resulting velocity
profile (in this case a sinusoid proportional to F ). An issue with the original method was the
lack of thermostatting in the system since the authors considered the Hamiltonian dynamics as
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Fig. 2.7. Computation cell for the Bulk driven flow with sinusoidal forcing

the reference dynamics, the existence of a steady state in this setting being false. The equations
of motion we propose (written in 2D for simplicity, the extension to 3D being straightforward)
are a linear perturbation of the Langevin equations, with some additional nongradient external
force in the x-direction (the direction of the flow). The dynamics reads (for i = 1, . . . , N):





dqi,t =
pi,t
m

dt,

dpxi,t = −∇qxiV (qt) dt+ ξF (qyi,t) dt− γx
pxi,t
m

dt+

√
2γx
β

dW xi
t ,

dpyi,t = −∇qyiV (qt) dt− γy
pyi,t
m

dt+

√
2γy
β

dW yi
t ,

(2.79)

where (W x
t ,W

y
t )t≥0 is a 2N -dimensional standard Brownian motion, and the friction coefficients

γx, γy are real positive numbers. The purpose of Chapter 3 is to study theoretically (when it
is possible) and numerically (to go beyond what theories allow) the behavior of the transport
coefficient extracted with dynamics (2.79). In particular, we will derive an equation analogous
(2.78) that depends on the parameter γx.

2.3.4 Transient nonequilibrium dynamics

Finally, another class of method consists in monitoring the relaxation of some observable after a
local initial disturbance, using a transient (nonequilibrium) dynamics. Macroscopic coefficients
are obtained by fitting the observed response to the evolution predicted by a macroscopic evo-
lution equation. For instance, in the case of thermal transport, a local temperature hot spot is
initially created in the middle of a homogeneous material, and, assuming that the heat equation
describes well the evolution of the kinetic temperature field, the diffusion of the energy allows
to estimate the thermal conductivity of the material (see for instance [52,100]). An example of
such calculation has been carried in [48, Section iv: Periodic perturbation method] for the shear
viscosity. A periodic one-dimensional velocity profile is imposed at time 0 and by monitoring
the return to equilibrium, the shear viscosity is deduced from the instationary Navier–Stokes
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equation. Note that we did not consider this class of method in this thesis, and a deeper look
in these approaches may be a perspective of future work.
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3.1 Aim of the study

As discussed in Section 2.3.3 we decided to use a standard Langevin dynamics as the underlying
dynamics of the system since this dynamics is ergodic and has many nice mathematical proper-
ties, while still being close enough to the Hamiltonian dynamics. In essence, the nonequilibrium
dynamics we propose is obtained from the standard Langevin dynamics by adding a nongradi-
ent force, which can be interpreted as some fictitious external forcing term. The effect of this
term is to create a velocity profile in the direction of the forcing, and the viscosity of the fluid
can be extracted from this profile. The novelty of this work with respect to the (numerous)
existing studies on the computation of shear viscosity is the rigor of the mathematical argu-
ments used to prove linear response results and obtain the effective equation on the observed
velocity profile in terms of the applied external force. In particular, we benefited from recent
developments on hypocoercivity [109]. Besides, one of our main concern is the dependence of the
viscosity as a function of the parameters of the underlying dynamics, in particular the friction.
We analyzed the large friction asymptotics by extending and adapting mathematical studies



42 3 Nonequilibrium shear viscosity computations with Langevin dynamics

of the auto-diffusion coefficient [38, 88]. For the low friction dependence, we rely on numerical
simulations.

In Section 3.2, we show the existence and uniqueness of the stationary state. The mathe-
matical properties of this stationary state are studied in Section 3.3 (with the proofs postponed
to Section 3.5). In particular, we give a rigorous proof of the linear response. We then show
how to compute the viscosity, and characterize its asymptotic behavior for large frictions by
determining the limiting behavior of the velocity profile. We finally present some numerical
illustrations of the theoretical results in Section 3.4.

3.2 The nonequilibrium Langevin dynamics

In order to avoid irrelevant technical issues, we recall the assumption:

Assumption 2 The potential V and the external force F belong respectively to C∞(DN ) and
C∞(LyT).

3.2.1 Existence and uniqueness of an invariant measure

When ξ 6= 0, there is no obvious invariant probability measure, and the very existence of such a
measure is not guaranteed a priori. However, in the case when γx, γy > 0, standard techniques
based on Lyapunov functions and hypoellipticity arguments can be resorted to to prove the
existence and uniqueness of an invariant measure which has a smooth density with respect to
the Lebesgue measure.

We can then state the following result being a special case of Theorem 2.1.

Theorem 4 Consider γx, γy > 0 and suppose that Assumption 2 holds. Then, for any ξ ∈ R, the
dynamics (2.79) has a unique smooth invariant probability measure with density ψξ ∈ C∞(DN ×
R

2N ). Besides, there exists ξ∗ > 0 such that, for any ξ ∈ (−ξ∗, ξ∗), the following expansion
holds in L2(ψ0):

ψξ = fξψ0, fξ = 1 +
∑

k≥1

ξkfk, (3.1)

where fk ∈ H is such that ‖fk‖L2(ψ0) ≤ C(ξ∗)−k for some constant C > 0 independent of ξ.

Note that the measure (3.1) is indeed a probability measure (its integral over DN × R
2N

is equal to 1) since fk ∈ H for all k ≥ 1 and ψ0 is appropriately normalized. In particular, the
normalization constant for ψξ does not depend on ξ.

The proof is presented in Section 3.5.1. The existence and uniqueness of an invariant
measure in the case when either γx = 0 or γy = 0 is a much more difficult question. To
obtain such a result, more precise assumptions on the potential are required (see Remark 3 in
Section 3.5.1).
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3.3 Mathematical analysis of the viscosity

3.3.1 Linear response

Linear response results allow to compute the average of some property with respect to the
nonequilibrium measure in terms of equilibrium averages, in the limit when the parameter giving
the strength of the nonequilibrium forcing vanishes. To describe the result more precisely, we
recall the definitions of the infinitesimal generator associated to the equilibrium Langevin process
(i.e. (2.79) in the case when ξ = 0):

A0 = Aham +Athm,

where
Aham =

p

m
· ∇q −∇V (q) · ∇p,

and

Athm =
∑

α=x,y

γα

(
−pα
m
· ∇pα +

1
β
∆pα

)
=

eβH

β

∑

α=x,y

γαdiv pα
(
e−βH∇pα ·

)
.

It can be proved (see Section 3.5.1) that A−1
0 is a well defined operator on H.

The generator of the nonequilibrium perturbation reads

B =
N∑

i=1

F (qyi)∂pxi ,

and its adjoint on L2(ψ0) is

B∗ = −
N∑

i=1

F (qyi)∂pxi +
β

m
pxiF (qyi).

The generator of the dynamics (2.79) is therefore

Aξ = A0 + ξB,

with adjoint Lξ = L0 + ξB∗.
Linear response is an easy consequence of Theorem 4:

Corollary 1 Under the same assumptions as in Theorem 4, and for any function h regular
enough,

lim
ξ→0

〈A0h〉ξ
ξ

= − β
m

〈
h,

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

. (3.2)

Besides, for any function h ∈ H,

lim
ξ→0

〈h〉ξ
ξ

= − β
m

〈
A−1

0 h,
N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

. (3.3)
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Using the identity

−A−1
0 =

∫ +∞

0
etA0 dt

as operators on H (see [38, 39, 87] for a precise justification of this equality, obtained as a limit
of a Laplace transform of the semi-group), the linear response statement (3.3) can be rewritten
as a time correlation

lim
ξ→0

〈h〉ξ
ξ

=
β

m

∫ +∞

0

〈
etA0h,

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

dt

=
β

m

∫ +∞

0
E

(
h(qt, pt)

N∑

i=1

pxi,0F (qyi,0)

)
dt

where the expectation is taken over all initial condition distributed according to the equilibrium
measure ψ0, and over all realizations of the equilibrium dynamics with generator A0. This
rewriting allows to make contact with Green-Kubo type formulas.

Proof. Since 〈A0h, 1〉L2(ψ0) = 〈h,L01〉L2(ψ0) = 0, it holds

〈A0h〉ξ = 〈A0h, fξ〉L2(ψ0) = ξ〈A0h, f1〉L2(ψ0) + O(ξ2) = ξ〈h,L0f1〉L2(ψ0) + O(ξ2).

Now, in the proof of Theorem 4, we show that (see (3.26))

L0f1 = −B∗1 = − β
m

N∑

i=1

pxiF (qyi),

which gives the expected result. ♦

3.3.2 Local conservation of the longitudinal velocity

We prove in this section a conservation equation for velocities in the x-direction, when spatial
averages over small windows in the transverse direction y are considered. This allows to state
an equation relating the off-diagonal term of the stress tensor and the nongradient force acting
on the system, see (3.8) below. Our derivation may be seen as a mathematically rigorous
counterpart to the seminal work of Irving and Kirkwood [53]. We assume from now on that the
potential energy is given by a sum of pairwise interactions:

V (q1, . . . , qN ) =
∑

1≤i<j≤N

v(|qi − qj |), (3.4)

for some given smooth potential v.

Consider the following average longitudinal velocity:

U εx(Y, q, p) =
Ly
Nm

N∑

i=1

pxiχε (qyi − Y ) , (3.5)

where χε (with 0 < ε ≤ 1) is an approximation of the identity on LyT. More precisely,
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χε(s) =
∑

n∈Z

1
ε
χ

(
s− nLy

ε

)
,

where χ ∈ C∞(R) has support in [0, Ly] and
∫ Ly

0 χ = 1. The factor Ly in (3.5) accounts for the
fact that χε has units of inverse lengths: in fact,

1
Ly

∫ Ly

0
U εx(Y, q, p) dY =

1
Nm

N∑

i=1

pxi

is the average velocity of the system. In practice, averages such as (3.5) are computed with bin
indicator functions (see Section 3.4.1).

We also need a spatially localized (with respect to the altitude Y ) version of the off-
diagonal term of the stress tensor. This quantity is given by the following expression:

Σε
xy(Y, q, p)

=
1
Lx




N∑

i=1

pxipyi
m

χε (qyi − Y )−
∑

1≤i<j≤N

v′(|qi − qj |)
qxi − qxj
|qi − qj |

∫ qyi

qyj

χε(s− Y ) ds


 .

(3.6)

The fact that it can be interpreted as some stress tensor is motivated below by the limiting
spatial average (3.7) as well as the conservation law (3.8). Note that the spatial average over Y

1
Ly

∫ Ly

0
Σε
xy(Y, q, p) dY

=
1

LxLy




N∑

i=1

pxipyi
m
−

∑

1≤i<j≤N

v′(|qi − qj |)
(qxi − qxj)(qyi − qyj)

|qi − qj |




(3.7)

is the standard expression encountered for the off-diagonal term of the pressure tensor without
spatial localization. The expression (3.6) comes out naturally from the mathematical analysis
(see the proof of Proposition 1), and was already proposed in [105] (where it is called the ’method
of planes’).

The relationship between the local longitudinal velocity and the off-diagonal term of the
stress tensor is made precise in the following proposition.

Proposition 1 The limits

ux(Y ) = lim
ε→0

lim
ξ→0

〈U εx(Y, ·)〉ξ
ξ

and

σxy(Y ) = lim
ε→0

lim
ξ→0

〈
Σε
xy(Y, ·)

〉
ξ

ξ

belong to C∞(LyT) and
dσxy(Y )
dY

+ γxρux(Y ) = ρF (Y ), (3.8)

where ρ = ρ/m is the particle density.
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The proof is based on an application of Corollary 1 with (3.5) as a test function h. The
order of the limits ε → 0 and ξ → 0 cannot be inverted since the linear response result of
Corollary 1 cannot be applied with h replaced by the limit of χε (which is a Dirac mass).

Equations similar to (3.8) could be written down for other quantities such as the transverse
velocity Uy or longitudinal and transverse energy fluxes (see [53] for the original derivation of
the corresponding equations).

3.3.3 Definition and closure relation for shear viscosity computations

We now discuss a closure relation for (3.8), which allows to obtain an equation on the average
velocity only, from which the viscosity can be extracted.

By analogy with continuum fluid mechanics, we define the shear viscosity η as follows:

σxy(Y ) := −η(Y )
dux(Y )
dY

. (3.9)

This definition leads to the following equation on ux:

− d

dY

(
η(Y )

dux(Y )
dY

)
+ γxρux(Y ) = ρF (Y ).

In bulk homogeneous fluids, the simplest closure is to assume that

η(Y ) = η > 0, (3.10)

so that the following equation on ux is obtained:

−ηu′′x(Y ) + γxρux(Y ) = ρF (Y ). (3.11)

In order to ensure the uniqueness of the solution when γx = 0, an additional condition on ux
should be added (such as a vanishing integral over the domain LyT).

The equation (3.11) obtained with the help of the closure relation is the basis for numerical
methods to compute the shear viscosity given a potential energy function V . We were not able
to justify mathematically the assumption (3.10). We nonetheless provide a numerical validation
of this assumption in Section 3.4.2.

3.3.4 Asymptotic behaviour of the viscosity for large frictions

An important issue is the dependence of the viscosity on the parameters of the dynamics. For
the Langevin dynamics (2.79), this means understanding the dependence of the viscosity on the
friction parameters γx, γy. The limits γx → 0 or γy → 0 are very difficult to study mathematically
without strong assumptions on the potential and/or the geometry of the system (see Remark 3).
We therefore rely on numerical simulations for these cases (see Sections 3.4.2 and 3.4.2).

On the other hand, the limit when one of the friction parameters goes to infinity can be
studied. To this end, we have to understand the limit of the velocity field ux as either γx or
γy goes to infinity. This is done by rigorous asymptotic analysis. Thanks to (3.11), limiting
behaviors of the viscosity may be inferred from the limiting behaviors of the velocity profiles.
The key result to obtain the limiting velocity profile is to characterize the limit of some averages
with respect to specific solutions of the Poisson equation (see (3.13) and (3.15) below).
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Infinite transverse friction

We start with the case γy → +∞, for a fixed value γx > 0.

Theorem 5 (Infinite transverse friction) Consider a given smooth function G and a longi-
tudinal friction γx > 0. Define A0(γy) := A0 = Aham + γxAx,thm + γyAy,thm, with

Aα,thm = −pα
m
· ∇pα +

1
β
∆pα , (3.12)

and denote by fγy the unique solution in H of the equation

−A0(γy)fγy =
N∑

i=1

pxiG(qyi). (3.13)

Then, there exist f0 ∈ H1(ψ0) and a constant C > 0 such that, for all γy ≥ γx,

∥∥∥fγy − f0
∥∥∥
H1(ψ0)

≤ C

γy
. (3.14)

Besides, the function f0 is of the general form

f0(q, p) =
N∑

i=1

G(qyi)φi(qx, qy, px),

where the functions φi are C∞.

The proof can be read in Section 3.5.3. The above result can be used to understand the
limit of ux(Y ) as γy → +∞. Indeed, by Proposition 1,

uγy ,εx (Y ) := lim
ξ→0

〈U εx(Y, ·)〉ξ
ξ

=
β

m

〈
U

ε
γy(Y, q, p),

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

,

where −A0(γy)U ε
γy(Y, ·) = U εx(Y, ·) is a Poisson equation of the form (3.13) (with G(y) propor-

tional to χε(y−Y )). The convergence result (3.14) shows that U ε
γy(Y, ·) has a limit as γy → +∞,

and the limiting velocity field reads

u∞,εx (Y ) =
βLy
Nm2

〈
N∑

j=1

χε(qyj − Y )φj(qx, qy, px),
N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

.

The latter quantity has a limit as ε → 0, so that the velocity field converges to some limiting
field u∞x . Therefore, the viscosity extracted from (3.11) also has a finite limit. These theoretical
considerations are illustrated by numerical simulations in Section 3.4.2.
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Infinite longitudinal friction

We now consider the limit γx → +∞, for a fixed value γy > 0. In this case, the leading term of
the expansion in inverse powers of γx is 0, and a refined convergence result is needed to discuss
the limit of the velocity profile.

Theorem 6 (Infinite longitudinal friction) Consider a given smooth function G and a
transverse friction γy > 0. Define A0(γx) := A0 = Aham + γxAx,thm + γyAy,thm, and denote by
fγx the unique solution in H of the equation

−A0(γx)fγx =
N∑

i=1

pxiG(qyi). (3.15)

Then, there exist f1 ∈ H1(ψ0) and a constant C > 0 such that, for all γx ≥ γy,
∥∥∥fγx − γ−1

x f1
∥∥∥
H1(ψ0)

≤ C

γ2
x

. (3.16)

Besides, the dependence of the function f1 in the variable px can be written explicitly as

f1(q, p) = m
N∑

i=1

pxiG(qyi) + f̃1(q, py).

The proof can be read in Section 3.5.4. To obtain asymptotics on the velocity field, we
apply the above convergence result with G(y) proportional to χε(y − Y ) (denoting by f1

ε the
first term in the expansion in inverse powers of γx):

uεx(Y ) := lim
ξ→0

〈U εx(Y, ·)〉ξ
ξ

=
βLy

Nm2γx

〈
N∑

i=1

pxiF (qyi), f1
ε (q, p)

〉

L2(ψ0)

+ O
(

1
γ2
x

)

=
βLy
Nmγx

〈
N∑

i=1

pxiF (qyi),
N∑

j=1

pxjχε(qyj − Y )

〉

L2(ψ0)

+ O
(

1
γ2
x

)

=
Ly
γx

∫ Ly

0
F (y)χε(y − Y ) dy + O

(
1
γ2
x

)
,

where we have used the fact that 〈pxi, f̃1
ε 〉L2(ψ0) = 0 since f̃1

ε does not depend on px. This shows
that the following limit is well defined:

ux(Y ) = lim
ε→0

lim
γx→+∞

γxu
ε
x(Y ) = F (Y ). (3.17)

The limiting velocity profile ux does not depend on the specific interaction potential v, and is
the same for all systems with pairwise interactions. Besides, the viscosity η cannot be extracted
from (3.11) since (uεx)′′ is of order γ−1

x while F and γεxux are of order 1. The limit γx → +∞
is therefore somewhat degenerate from a theoretical viewpoint. Numerical simulations however
allow to investigate the large γx asymptotics, see Section 3.4.2.
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3.4 Numerical results for the Lennard–Jones fluid

We present in this section some numerical illustrations of the theoretical results obtained in
Section 3.3.

3.4.1 Numerical implementation

Description of the system

We consider a Lennard–Jones fluid, which is a standard test case for shear flow computations,
in a 2-dimensional setting (in order to limit the number of degrees of freedom and henceforth
obtain results with lower statistical uncertainties). The potential energy is of the form (3.4),
with

vLJ(r) = 4εLJ

((
dLJ

r

)12

−
(
dLJ

r

)6
)
. (3.18)

Actually, it is numerically more convenient to work with a truncated potential, which reads:

v(r) =





vLJ(r) if r ≤ rspline,

vspline(r) if rspline ≤ r ≤ rcut,

0 if r ≥ rcut.

The function vspline is a polynomial of order 3 which is such that the potential is C1 on (0,+∞).
Note that there is a singularity at r = 0 so that the potential v does not satisfy Assumption 2. It
seems that this singularity does not show up in the numerical simulations. Any problem related
to this singularity could be overcome by modifying appropriately the potential for the very small
values of r. We use rcut = 3dLJ and rspline = 0.9 rcut.

All the results presented below are in reduced units, which are determined by setting to 1
the energy εLJ, the length dLJ, and the mass m. The remaining tunable parameters of the model
are the force amplitude ξ and the friction parameters γx, γy.

The thermodynamic state of the system is determined by the fluid mass density ρ and
the temperature T . In the numerical illustrations below, we set β = 0.4, ρ = 0.69 and consider
Lx = 360 and Ly = 18. The number of simulated particles is therefore N = 4500.

We have checked that the thermodynamic limit is attained for the systems we simulate,
i.e. that the values of the viscosity and the profiles we present are converged with respect to
increasing values of Lx, Ly (at fixed density).

Nongradient forces

We consider three different external perturbations, which are all normalized so that −1 ≤ F (y) ≤
1:

(i) sinusoidal perturbation: F (y) = sin

(
2πy
Ly

)
;
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(ii) piecewise linear perturbation: F (y) =





4
Ly

(
y − Ly

4

)
, 0 ≤ y ≤ Ly

2
,

4
Ly

(
3Ly

4
− y

)
,

Ly
2
≤ y ≤ Ly;

(iii) piecewise constant constant perturbation: F (y) =





1, 0 < y <
Ly
2
,

−1,
Ly
2
< y < Ly.

Note that only the sinusoidal force satisfies Assumption 2. This shape of perturbation, intro-
duced in [33], is the most popular choice for shear viscosity computations.

Integration of the dynamics

The dynamics (2.79) is discretized using a standard splitting scheme, similar to the schemes
proposed in [68]. The evolution is decomposed as the superposition of (i) a Hamiltonian part,
which is integrated with the standard Verlet scheme [37,108]; and (ii) a fluctuation/dissipation
part containing also the nongradient force, which can be integrated analytically since it is an
Ornstein-Uhlenbeck process with a constant drift. The numerical scheme reads





pn+1/2 = pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t pn+1/2,

p̃n+1 = pn+1/2 − ∆t

2
∇V (qn+1),

pn+1
xi = αxp̃

n+1
xi +

√
1
β

(1− α2
x)Gnxi + (1− αx)

ξ

γx
F
(
qn+1
yi

)
, i = 1, . . . , N

pn+1
y = αyp̃

n+1
y +

√
1
β

(1− α2
y)G

n
y ,

(3.19)

where αx,y = exp(−γx,y∆t), and Gnx, G
n
y are independent and identically distributed standard

Gaussian random variables. Note that this scheme is well behaved in the limits γx → +∞
and/or γy → +∞, as well as in the limits γy → 0 or γx → 0 (the well posedness of the latter
case is a consequence of the limit (1− αx) /γx → ∆t as γx → 0). It reduces to the standard
Verlet scheme when F = 0 and γx = γy = 0.

We use ∆t = 0.005 in all the simulations below. This time step ensures that the relative
error in energy is about 1% for the Verlet scheme.

Numerical localization

To analyze the various fields which can be constructed from the numerical data generated by the
simulation (longitudinal velocity, off-diagonal component of the stress tensor, kinetic tempera-
tures, etc), we use a binning procedure in the Y variable. More precisely, we introduce a mesh
with a uniform spacing ∆Y , centered on the altitudes Ys = (s + 1/2)∆Y (with 0 ≤ s ≤ S − 1
and S∆Y = Ly).
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The microscopic observables we wish to average are either the longitudinal velocity (3.5)
or the off diagonal stress tensor (3.6). Both functions are of the general form

Aε(Y, q, p) =
N∑

i=1

ai(q, p)Φε(qyi − Y ),

where Φε is either χε or an integral of this function. Averages of such functions over each cell
are computed as

A
ε
s =

1
ξ∆Y

∫ Ys+∆Y/2

Ys−∆Y/2
〈A(Y, ·)〉ξ dY =

1
ξ∆Y

〈∫ Ys+∆Y/2

Ys−∆Y/2
Aε(Y, ·) dY

〉

ξ

.

Taking advantage of the integration in the Y variable, it is possible to take the limit ε→ 0 in the
latter expression. This amounts to computing ensemble averages with respect to bin indicator
functions (or their integrals). For instance, the average normalized longitudinal velocity in the
sth bin is

Us =
Ly

ξNm∆Y

〈
N∑

i=1

pxi1[Ys−∆Y/2,Ys+∆Y/2](qyi)

〉

ξ

.

In practice, the ensemble average 〈·〉ξ is computed as a time average over numerical trajectories
(qn, pn)n=1,...,Niter .

Estimation of the viscosity

The solutions of Equation (3.11) are periodic in the Y -variable and are hence most easily ana-
lyzed using Fourier series (see for instance the discussion in [28, 42]). We consider the Fourier
coefficients of the the average longitudinal velocity ux and the force F , given respectively for
k ∈ Z by

Uk =
1
Ly

∫ Ly

0
ux(y) exp

(
2ikπy
Ly

)
dy, Fk =

1
Ly

∫ Ly

0
F (y) exp

(
2ikπy
Ly

)
dy. (3.20)

The coefficients Uk can be estimated numerically using trajectory averages as

UNiter
k =

1
NiterξN

Niter∑

n=1

N∑

j=1

pnxj
m

exp

(
2ikπqnyj
Ly

)
. (3.21)

This is a valid estimation provided the particle density is uniform, i.e. when the marginal
distribution in the position variable of one particle is the uniform law on the domain. By
translation invariance, this is true when no external force is present. It remains approximately
true when ξ is not too large. We checked that this approximation has no influence on the
presented numerical results.

The shear viscosity is obtained from a Fourier analysis of (3.11). The value of η should
be independent of k ∈ Z. It should also satisfy the following equation:

Uk =
Fk

η

ρ

(
2π
Ly

)2

k2 + γx

. (3.22)
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The shear viscosity is finally obtained as

η = ρ

(
Fk
Uk
− γx

)(
Ly
2kπ

)2

. (3.23)

A confidence interval on the value of Uk can straightforwardly be obtained from the es-
timator (3.21) using block averaging procedures. The statistical uncertainty on the viscosity is
then obtained with (3.23). Since the coefficients Uk decrease very rapidly as |k| increases, the
relative statistical errors increase rapidly as well. We therefore restricted ourselves to |k| = 1 in
our numerical simulations.

3.4.2 Numerical results

In all cases, time averages were computed over Niter ≃ 107 iterations.

Linear response

We first verify numerically the linearity of the amplitude of the longitudinal velocity as a function
of the magnitude ξ of the nongradient force. More precisely, we check that |U1| is constant, for
the three forces F at hand, in the case when (γx, γy) = (1, 1) (see Figure 3.1). In the sequel,
unless otherwise stated, the numerical results are obtained with ξ = 0.1.

ξ U1 η

0.03 0.788± 0.05 1.53± 0.5
0.1 0.788± 0.01 1.52± 0.14
0.3 0.781± 0.0049 1.59± 0.04
1 0.780± 0.00148 1.60± 0.01

Table 3.1. Fourier coefficient U1 and shear viscosity for various ξ in the case of the sinusoidal force.

Validation of the closure

We present in Figures 3.2, 3.3 and 3.4 the numerical approximations of the longitudinal veloc-
ity ux and the off-diagonal term of the stress tensor σxy. The latter function is compared to
the quantity −ηu′x, where η is obtained from (3.23), and u′x is evaluated using a second order
finite difference. The good agreement between σxy and −ηu′x validates the assumption (3.10),
the discrepancies resulting from statistical fluctuations magnified by the numerical derivative,
and also, for the piecewise constant force, from the singularity at Ly/2.

Besides, the velocity profile is consistent with (3.11) (as can be checked by comparing the
numerical solution and the solution of (3.11) computed with the value of η estimated from the
simulation).
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Fig. 3.1. Value of |U1| as a function of ξ, for (γx, γy) = (1, 1) and the three nongradient forces at hand (piecewise
constant perturbation ×; piecewise linear perturbation +; sinusoidal perturbation ◦).
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Fig. 3.2. Velocity profile and off diagonal component of the stress tensor for the sinusoidal nongradient force.

Nonlinear effects

The numerical results show that the linear response for the velocity is valid even for larger
values of ξ. In fact, a more refined analysis shows that, even if no nonlinear effect can be
observed on the longitudinal velocity for the values of ξ we considered, nonlinear effects on the
kinetic temperature cannot be ignored for values of |ξ| ≥ 0.1 as depicted in Figure 3.5 and 3.6.
More precisely, Figure 3.5 shows spatial variation of small amplitude of the densities profiles
around the constant density imposed in the system (ρ = 0.69) while in Figure 3.6 we observe
a bias in temperature, which deviates significantly from the temperature of the Langevin bath
(T = β−1 = 2.5), a phenomenon that is not observed for small ξ.
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Fig. 3.3. Velocity profile and off diagonal component of the stress tensor for the piecewise linear nongradient
force.
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Fig. 3.4. Velocity profile and off diagonal component of the stress tensor for the piecewise constant force.

Vanishing friction parameter

The mathematical analysis presented in this chapter does not cover the case where one of the
friction parameter vanishes. This consideration is relevant since the presence of the noise is
somewhat artificial. We tested numerically a case where γx = 0, and observed that the system
reach a steady state owing to the dissipation in the y-direction. Figure 3.7 shows that linear
response result for the velocity seem to hold in the case where the longitudinal friction is set to
0. Note that the amplitude of the response is much more sensitive than in the case of positive
γx. Though, the relative statistical error seems to be diminished which is natural since the
noise is less present in the system. Concerning the shear viscosity, a plateau value seems to be
achieved as γx → 0, as we will see in § 3.4.2, and formula (3.23) seems to be valid even in the
limit γx → 0. In contrast, taking both friction parameters γx and γy equal to 0 do not allow to
recover the linear response since the system does not reach a steady state.
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Fig. 3.5. Density profile evaluated with binning method. Left: (γx, ξ, U1) = (1, 2, 2.03); Right: (γx, ξ, U1) =
(0, 0.3, 1.34). The dashed line indicate the value of the constant density of the corresponding equilibrium system
(ρ = 0.69).
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Fig. 3.6. Kinetic temperature profiles evaluated with binning method: Left (γx, ξ, U1) = (1, 2, 2.03); Right:
(γx, ξ, U1) = (0, 0.3, 1.34). The kinetic temperature of the equilibrium system is T = 2.5.

Linear response via the Green-Kubo formula

As we have seen in Chapter 2 and § 3.3.1, the linear response can be evaluated owing to the
Green-Kubo formula:

lim
ξ→0

〈h〉ξ
ξ

=
β

m

∫ +∞

0

〈
etA0h,

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

dt

=
β

m

∫ +∞

0
E

(
h(qt, pt)

N∑

i=1

pxi,0F (qyi,0)

)
dt

By considering the sinusoidal perturbation F (y) = sin

(
2πy
Ly

)
and the observable



56 3 Nonequilibrium shear viscosity computations with Langevin dynamics

−3

10

−2

10

−1

10

0

10

0

10

1

10

ξ

|U1|

+

×
◦

Fig. 3.7. Value of |U1| as a function of ξ, for (γx, γy) = (0, 1) and the three nongradient forces at hand (piecewise
constant perturbation ×; piecewise linear perturbation +; sinusoidal perturbation ◦).

U1(q, p) =
1
N

N∑

j=1

pxj
m

sin

(
2πqyj
Ly

)
,

which is the first Fourier mode of the expected velocity profile in the nonequilibrium steady
state, we obtain the following Green-Kubo formula for U1

U1 = lim
ξ→0

〈U1〉ξ
ξ

=
β

m

∫ +∞

0

〈
U1(qt, pt)

N∑

i=1

pxi,0F (qyi,0)

〉

eq

dt, (3.24)

Now, we can identify the integrand as the canonical average of the following self-correlation
function:

CU1(t, q, p) =

〈
N∑

i=1

pxi,tF (qyi,t)
N∑

i=1

pxi,0F (qyi,0)

〉

eq

. (3.25)

We are now in position to compute the linear response coefficient of the velocity profile with
the Green-Kubo algorithm presented in Chapter 2. The shear viscosity can be deduced from
the closure relationship leading to formula (3.23). Note that herein, we also use formula (3.23)
in the case γx = 0. To illustrate numerically this method we consider the same protocol as in
Chapter 2, Section 2.3.2, for a system of 225 particles at state point (ρ, T ) = (0.69, 2.5) with
Nreplica = 20 × 107. We also investigated the behaviour of the self-correlation function in the
case where the flow used to generate the time-dependant Fourier coefficient is the Hamiltonian
flow. Results with statistical error are reported in Table 3.2. Figure 3.8 depicts the behaviour of
the correlation functions for (γx, γy) = (1, 1) (Langevin flow) and (γx, γy) = (0, 0) (Hamiltonian
flow). Observe that the decorrelation time is much longer in the case of Hamiltonian flow but the
integral seems to converge. More precisely we can observe that the self-correlation function seems
to behave like exp(−λt) for λ > 0 depending on the friction parameters. Finally, we observed
that the value of the Fourier coefficient evaluated by this method are in good agreement with the
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results obtained with the nonequilibrium method (see Table 3.1). Though, the computational
time to achieve the same levels of accuracy is much longer.

Dynamics U1 η tdyn

Langevin 0.781± 0.01 1.59± 0.168 10
Hamiltonian 3.41± 0.094 1.67 ± 0.048 30

Table 3.2. Fourier coefficient U1 evaluated with the Green-Kubo formula and resulting shear viscosity.
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Fig. 3.8. Normalized self-correlation CU1
. Left: Langevin flow; Right: Hamiltonian flow.
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Dependence and asymptotics in γy

We first verify numerically that the velocity profiles converge to some limiting profile as γy → +∞
with γx fixed, and in fact that U1 converges to some limiting value U∞1 (see Figure 3.10). We
estimated U∞1 by long time simulations with αy = 0 in (3.19) (which amounts to formally setting
γy to +∞), and computed the distance |Uγy1 −U∞1 | as a function of γy. A least square fit on the
last computed values (in log-log scale) gives |Uγy1 − U∞1 | ∼ γ−2.6

y .
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Fig. 3.10. Convergence of the velocity profile for increasing values of the transverse friction γy. The dashed line
represents an affine fit in log-log scale.

We present in Figure 3.11 the dependence of the viscosity on the friction parameter γy,
for a fixed value γx = 1. A mild dependence on γy is observed in the limit γy → 0. The value
obtained for γy → +∞ is on the other hand very different from the limit obtained as γy → 0.
Note also that the viscosity seems to be an increasing function of the transverse friction, which
makes sense from a physical viewpoint.

Dependence and asymptotics in γx

The discussion after Theorem 6 suggests that the longitudinal velocity decreases as 1/γx as
γx → +∞. To observe numerically this behavior, it is necessary to increase the magnitude of
the nongradient force. Otherwise, the response is very small (indeed, proportional to γ−1

x ) and
relative statistical errors are too large to obtain meaningful results. We therefore computed the
linear response of the velocity for values of ξ proportional to γx. This is done by modifying the
evolution on px in (2.79) as follows:

dpxi,t = −∇qxiV (qt) dt− γx
(
pxi,t
m
− ξF (qyi,t)

)
dt+

√
2γx
β

dW xi
t .
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Fig. 3.11. Shear viscosity η as function of γy in the case γx = 1, for the sinusoidal nongradient force.

This amounts to replacing ξ in (2.79) by ξ = γxξ. The resulting average velocity profile is γxux
at first order in ξ.

The results depicted in Figure 3.12 show that the average velocity, properly rescaled by
γx, converges to the nongradient force, as predicted by (3.17). The estimated convergence rate
is |γxUγx1 − F1| ∼ γ−0.9

x .

The behavior of the corresponding viscosities cannot be predicted from the results of
Theorem 6 (see the discussion at the end of Section 3.3.4). We therefore investigated numerically
this dependence, see Figure 3.13. The viscosity is more or less constant for low values of γx, and
increases for larger ones.

−1

10

0

10

1

10

2

10

3

10

0.80

0.85

0.90

0.95

1.00

1.05

γx

γxU1

0

10

1

10

2

10

−3

10

−2

10

−1

10

0

10

γx

|γ
x
U
γ
x

1
−
F

1
|

Fig. 3.12. Convergence of the velocity profile for increasing values of the friction γx. The dashed line on the
right picture represents an affine fit in log-log scale.



60 3 Nonequilibrium shear viscosity computations with Langevin dynamics

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

γx

η

0 20 40 60 80 100

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

γx

η

Fig. 3.13. Shear viscosity η as function of γx in the case γy = 1, for the sinusoidal nongradient force. Left:
behavior for small values of γx. Right: large γx asymptotics.

3.5 Proof of the results

Unless otherwise stated, the norm ‖·‖ refers to the norm induced by the canonical scalar product
on L2(ψ0). Recall from Chapter 2 that the operator Aα,thm (α = x, y), defined in (3.12), can be
rewritten as

Aα,thm = − 1
β

N∑

i=1

(∂pαi)
∗ ∂pαi .

Note also that
[∂pαi ,Aham] =

1
m
∂qαi ,

where [A,B] = AB −BA is the commutator of two operators.

3.5.1 Proof of Theorem 4

The existence and the uniqueness of the invariant measure which has a smooth density with
respect to the Lebesgue measure for any ξ ∈ R is a standard result since the position space is
compact and the forces are smooth. It suffices to use hypoellipticity arguments and take the
kinetic energy as a Lyapunov function (see for instance [93] for the general strategy, and [88,
Appendix A] for the specific case under consideration). As a consequence, and recalling the
definitions of the operators given in Section 3.3.1,

Ker(L0) = Span(1) = {cψ0, c ∈ R} ,

the vector space of constant functions on L2(ψ0). Note also that Ker (A0) = Span(1) by [109,
Proposition 15].

The key result to prove the expansion (3.1) is the following lemma (proved below).
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Lemma 1 The operators L−1
0 and L−1

0 B∗ are bounded operator on H (endowed with the L2(ψ0)
scalar product).

In view of this result, we can introduce

ξ∗ =
∥∥∥L−1

0 B∗|H
∥∥∥
−1
,

and define, for k ≥ 1,
fk+1 = −L−1

0 B∗fk,
with

f1 = −L−1
0 (B∗1) = − β

m
L−1

0

(
N∑

i=1

pxiF (qyi)

)
, (3.26)

which is well-defined since the function (q, p) 7→ pxiF (qyi) belongs to H for all i = 1, . . . , N . The
function fξ in (3.1) is well defined for |ξ| < ξ∗ and a straightforward computation shows that

Lξfξ = 0.

The uniqueness of the invariant measure allows to conclude.

We now write the

Proof of Lemma 1. We denote by ‖·‖ the L2(ψ0)-norm. Standard results of hypocoercivity
show that A−1

0 is bounded on H (and in fact compact by a treatment similar to [38, 39, 87]).
Besides, for a smooth test function ϕ,

‖Bϕ‖ ≤ ‖F‖L∞
N∑

i=1

‖∂pxiϕ‖,

while
〈ϕ,A0ϕ〉 = − 1

β

(
γx‖∇pxϕ‖2 + γy‖∇pyϕ‖2

)
.

This shows that there exists a constant C > 0 such that, for any smooth test function ϕ,

‖Bϕ‖2 ≤ C |〈ϕ,A0ϕ〉| ≤ C‖ϕ‖ ‖A0ϕ‖.

In conclusion, for any ϕ ∈ H,

‖BA−1
0 ϕ‖2 ≤ C‖A−1

0 ϕ‖ ‖ϕ‖.

Since Ran(B) ⊂ H, this shows that BA−1
0 is a bounded operator on H. The same holds true for

L−1
0 B∗|H, which is its adjoint on H ⊂ L2(ψ0). ♦

Remark 3 In the above proof, the fact that both γx and γy are non-zero is a crucial assump-
tion. If for instance γx = 0, many arguments break down, and the proofs become much more
technical and/or some results cannot be proved anymore. This is due to the fact that the the Lie
algebra generated by {Aham, ∂py1 , . . . , ∂pyN } may be different from the Lie algebra generated by
{Aham, ∂px1 , . . . , ∂pxN , ∂py1 , . . . , ∂pyN }. Indeed,
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[Aham, ∂pyi ] = ∂qyi , [Aham, ∂qyi ] =
N∑

j=1

∂2
qyi,qyjV · ∂pyj +

N∑

j=1

∂2
qyi,qxjV · ∂pxj .

Possibly, iterated commutators should be computed as well. Additional assumptions on the po-
tential are required to infer that ∂pxi is in the Lie algebra. This amounts to assuming that the
coupling between the x and the y directions is strong enough. To our knowledge, the only cases
where such arguments could be used are one-dimensional atom chains, for which the simple geo-
metric structure of the system is of paramount importance to show that the Lie algebra has full
rank. Obtaining hypocoercivity estimates is more challenging and imposes further restrictions
on the interactions (see [26]).

3.5.2 Proof of Proposition 1

Corollary 1 shows that

lim
ξ→0

〈A0U
ε
x(Y, ·)〉ξ
ξ

= − β
m

〈
U εx(Y, q, p),

N∑

i=1

pxiF (qyi)

〉

L2(ψ0)

= − Ly
mN

N∑

i=1

∫

DN
χε(qyi − Y )F (qyi)ψ0(q) dq,

where ψ0(q) dq = Z−1
q e−βV (q) dq is the marginal of the canonical measure in the q variable. The

integrand in the last equation depends only on one variable qyi. By translation invariance of the
system, the marginal distribution in the qyi variable of ψ0(q) dq is the uniform distribution on
LyT. Therefore, for any i = 1, . . . , N ,

∫

DN
χε(qyi − Y )F (qyi)ψ0(q) dq =

1
Ly

∫ Ly

0
χε(y − Y )F (y) dy −→ F (Y )

as ε→ 0, so that

lim
ε→0

lim
ξ→0

〈A0U
ε
x(Y, ·)〉ξ
ξ

= − 1
m
F (Y ). (3.27)

Now, a simple computation shows that

A0U
ε
x(Y, q, p) =

1
ρLx

(
N∑

i=1

pxipyi
m

∂qyiχ
′
ε (qyi − Y )− χε (qyi − Y ) ∂qxiV (q)

)

− γx
m
U εx(Y, q, p).

The sum on the right-hand side can be decomposed into two contributions, one proportional
to the kinetic part of the off-diagonal part of the stress tensor, and the other one arising solely
from interaction forces. The first contribution can be written as

−
∂Σε

xy,kin(Y, q, p)

∂Y
= − d

dY

(
1
ρLx

N∑

i=1

pxipyi
m

χε (qyi − Y )

)
.
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For the second part, we first use the pairwise character of the interactions to write

∂qxiV (q) =
∑

i6=j

v′(|qi − qj |)
qxi − qxj
|qi − qj |

,

and then symmetrize the resulting expression as

N∑

i=1

χε (qyi − Y ) ∂qxiV (q) =
∑

i6=j

χε (qyi − Y ) v′(|qi − qj |)
qxi − qxj
|qi − qj |

,

=
∑

1≤i<j≤N

(
χε (qyi − Y )− χε (qyj − Y )

)
v′(|qi − qj |)

qxi − qxj
|qi − qj |

.

The second contribution finally reads

−
∂Σε

xy,pot(Y, q, p)

∂Y
=

d

dY


 1
ρLx

∑

1≤i<j≤N

v′(|qi − qj |)
(
qxi − qxj
|qi − qj |

)∫ qyi

qyj

χε(s− Y ) ds


 .

In conclusion, it holds

A0U
ε
x(Y, q, p) = −1

ρ

∂Σε
xy(Y, q, p)

∂Y
− γx
m
U εx(Y, q, p). (3.28)

Combining the latter result and (3.27) leads to

lim
ε→0

lim
ξ→0

1
ξ




1
ρ

∂
〈
Σε
xy(Y, ·)

〉
ξ

∂Y
+
γx
m
〈U εx(Y, ·)〉ξ


 =

1
m
F (Y ). (3.29)

Now, Corollary 1 shows that the limit

uεx(Y ) := lim
ξ→0

〈U εx(Y, ·)〉ξ
ξ

=
Ly
Nm

N∑

i=1

∫

DN×R2N
pxiχε(qyi − Y )f1(q, p)ψ0(q, p) dq dp

is well defined. By hypoellipticity, the function f1 belongs to C∞(DN × R
2N ). The limit ε→ 0

of the right-hand side is therefore well defined and

ux(Y ) =
Ly
Nm

N∑

i=1

∫

DN−1×LxT×R2N
pxi(f1ψ0)(q1, . . . , qi−1, qxi, Y, qi+1, . . . , qN , p) dq1:i:N dqxi dp,

where dq1:i:N = dq1 . . . dqi−1 dqi+1 . . . dqN . A similar reasoning holds for σxy. Passing to the
limit in (3.29),

1
ρ

∂σxy(Y )
∂Y

+
γx
m
ux(Y ) =

1
m
F (Y ),

which is (3.8).
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3.5.3 Proof of Theorem 5

To simplify the notation, we set m = 1 in this section, but the proof can be straightforwardly
modified to account for more general masses. Note first that the solution of (3.13) is well
defined for any γy > 0 by the Fredholm alternative (since A0(γy) has a compact resolvent on
H = L2(ψ0) ∩ {1}⊥, and the right-hand side of the equation is orthogonal to Vect(1)).

We start by formal computations providing possible expressions of f0, f1, and then prove
rigorously the convergence result stated in Theorem 5. To this end, we need some intermediate
uniform hypocoercivity result.

Formal asymptotic expansion in γy

We consider the following ansatz for the solution fγy :

fγy = f0 +
1
γy
f1 +

1
γ2
y

f2 + · · ·

and rewrite the operator A0(γy) as the sum A0(γy) = T0 +γyAy,thm. The kernel of the operator
Ay,thm on L2(ψ0) is

Ker(Ay,thm) =
{
g ∈ L2(ψ0)

∣∣∣ g = g(q, px)
}
.

This is a consequence of the equality

〈g,Ay,thmg〉L2(ψ0) = − 1
β
‖∇pyg‖2

and the fact that the Gaussian measure (in the py variable) satisfies a Poincaré inequality.
Identifying terms with the same powers of γy in (3.13), the following hierarchy is obtained:





Ay,thmf
0 = 0,

T0f
0 +Ay,thmf

1 = −
N∑

i=1

pxiG(qyi),

T0f
1 +Ay,thmf

2 = 0.

(3.30)

The first equation shows that f0 ≡ f0(q, px). The second equation can then be rewritten as

Ay,thmf
1(q, p) = −py · ∇qyf0(q, px)−

N∑

i=1

pxiG(qyi)− Tqyf0(q, px).

where
Tqy = px · ∇qx −∇qxV (qx, qy) · ∇px + γxAx,thm

is an operator parameterized by qy ∈ (LyT)N , and acting on the Hilbert space L2(Ψqy), where

Ψqy(qx, px) = Z−1
qy exp

(
−β

(
V (qx, qy) +

p2
x

2m

))
.
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Setting
f1 = f̃1 + py · ∇qyf0,

it holds

Ay,thmf̃
1(q, p) = −

N∑

i=1

pxiG(qyi)− Tqyf0(q, px).

Since the right-hand side does not depend on py, the solvability condition for this equation is
that the right-hand side vanishes. Besides, by results from [39], the operator Tqy , considered as
an operator on L2(Ψqy), has bounded resolvent on Ker(Tqy)⊥ = {1}⊥ (where the orthogonality
is with respect to the canonical scalar product on L2(Ψqy); see [109, Proposition 15] for a proof
of the latter equality). Therefore, T −1

qy (pxi) is well defined. By linearity,

f0(q, p) = −
N∑

i=1

G(qyi)T −1
qy (pxi),

and
f1(q, p) = py · ∇qyf0(q, p) + f̃1(q, px),

provide admissible solutions for the first two levels of the hierarchy (3.30). The function f̃1 will
be made precise below (see (3.37)).

The function f0 is in H1(ψ0) since T −1
qy is bounded on {1}⊥. To show that the function

f1− f̃1 is indeed well defined, it is enough to show that ∂qyi
[
T −1
qy (pxk)

]
is well defined. This, in

turn, follows from the following equality for any function ϕ = ϕ(qx, px):

∂qyi

(
T −1
qy

)
ϕ =

(
T −1
qy

)


N∑

j=1

∂2
qyi,qxjV (qx, qy)∂pxj



(
T −1
qy

)
ϕ. (3.31)

The operators ∂pxj
(
T −1
qy

)
are bounded on L2(Ψqy) ∩ {1}⊥ for j = 1, . . . , N since

〈
ϕ, Tqyϕ

〉
L2(Ψqy )

= −γx
β
‖∇pxϕ‖2L2(Ψqy ),

which implies, for ‖ϕ‖L2(Ψqy ) ≤ 1,

∥∥∥∇px
(
T −1
qy

)
ϕ
∥∥∥

2

L2(Ψqy )
≤ β

γx
‖ϕ‖L2(Ψqy )

∥∥∥
(
T −1
qy

)
ϕ
∥∥∥
L2(Ψqy )

≤ β

γx

∥∥∥T −1
qy

∥∥∥ .

In conclusion, f1 − f̃1 ∈ H1(ψ0). In addition, by hypoellipticity, the functions f0, f1 − f̃1 are
C∞ when G is smooth.

Uniform hypocoercivity estimates

Let us show that the operator A0(γy) is uniformly hypocoercive for γy large enough (say, γy ≥
γx), provided the domain of the operator is restricted to functions with vanishing average with
respect to the Gibbs measure in the py variable. To this end, we decompose A0(γy) as
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A0(γy) = A0(γx) + (γy − γx)Ay,thm.

Following the proof of Theorem 6.2 in [39], it can be shown that there exists κ > 0 such that,
for all smooth functions u ∈ H,

−〈〈u,A0(γx)u〉〉 ≥ κ 〈〈u, u〉〉 ,

where the norm induced by 〈〈·, ·〉〉 is equivalent to the H1(ψ0) norm

‖u‖2H1(ψ0) = ‖u‖2 + ‖∇pu‖2 + ‖∇qu‖2.

More precisely, 〈〈·, ·〉〉 is the bilinear form defined by

〈〈u, v〉〉 = a 〈u, v〉+ b 〈∇pu,∇pv〉+ 〈∇pu,∇qv〉+ 〈∇qu,∇pv〉+ b〈∇qu,∇qv〉,

with appropriate coefficients a ≫ b ≫ 1. It follows that there exists C > 0 independent of γy
such that

C ‖u‖2H1(ψ0) − (γy − γx) 〈〈u,Ay,thmu〉〉 ≤ − 〈〈u,A0(γy)u〉〉 .
Let us now show that

−〈〈u,Ay,thmu〉〉 ≥ 0 (3.32)

for functions u in an appropriate subspace of H1(ψ0). Using the commutation relations
[∂pα,i , ∂

∗
pα′,j

] = βδα,α′δij (α, α′ ∈ {x, y}), a simple computation shows

〈〈
u,

N∑

i=1

(
∂pyi

)∗
∂pyiu

〉〉
=

N∑

i=1

(a+ βb)‖∂pyiu‖
2 + b‖∇p∂pyiu‖2

+ b‖∇q∂pyiu‖2 + 2〈∇q∂pyiu,∇p∂pyiu〉+ β〈∂qyiu, ∂pyiu〉

≥
N∑

i=1

(
a+ β

(
b− 1

2

))
‖∂pyiu‖

2 + (b− 1)‖∇p∂pyiu‖2

+ (b− 1)‖∇q∂pyiu‖2 −
β

2
‖∂qyiu‖2.

Summing on i ∈ {1, . . . , N}, the quantity (3.32) is seen to be non-negative for an appropriate
choice of constants a ≫ b ≫ 1 provided there exists a constant A > 0 such that, for all
i = 1, . . . , N ,

‖∂qyiu‖ ≤ A‖∇p∂qyiu‖. (3.33)

This indeed implies

N∑

i=1

‖∂qyiu‖2 ≤ A
N∑

i,j=1

‖∂pyj∂qyiu‖2 = A
N∑

j=1

‖∇qy∂pyj‖2 ≤ A
N∑

j=1

‖∇q∂pyj‖2.

Since the Gaussian measure satisfies a Poincaré inequality, the inequalities (3.33) hold provided

∀i = 1, . . . , N,
∫

RN
∂qyiu(q, p) exp

(
−β

p2
y

2

)
dpy = 0.

Defining the closed subspace of L2(ψ0) ∩ {1}⊥
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H0 =

{
v ∈ H1(ψ0)

∣∣∣∣∣ v(q, px) =
(

2π
β

)−N/2 ∫

RN
v(q, p) exp

(
−β

p2
y

2

)
dpy = 0

}
⊂ H, (3.34)

we conclude that, for any u ∈ H0 ∩H2(ψ0),

C ‖u‖2H1(ψ0) ≤ −〈〈u,A0(γy)u〉〉 . (3.35)

In particular, there exists a constant K > 0 such that, for any γy ≥ γx and for any u ∈
H0 ∩H2(ψ0), ∥∥∥A0(γy)−1u

∥∥∥
H1(ψ0)

≤ K‖u‖H1(ψ0).

In fact, this inequality can be extended to functions in H0.

Proof of the limit (3.14)

To prove (3.14), we proceed as follows. Note first that

−A0(γy)
(
fγy − f0 − γ−1

y f1
)

=
1
γy
T0f

1,

so that
fγy − f0 − γ−1

y f1 = − 1
γy
A0(γy)−1T0f

1. (3.36)

Since A0(γy)−1 is bounded on H0, uniformly in γy (see (3.35)), it is sufficient to show that
T0f

1 ∈ H0. The proof is then concluded by setting φi(q, p) = −T −1
qy (pxi).

Let us first show that T0f1(q, px) = 0 (where v is defined in (3.34)). This can be ensured
by an appropriate choice of f̃1. Note first that

T0f
1 = py · ∇qy f̃1 + Tqyf1 +

(
py · ∇qy −∇qyV · ∇py

)
f1 + Tqy f̃1.

The first two terms have a vanishing average with respect to (2π)−N/2 exp
(
−β p

2
y

2

)
dpy. Intro-

ducing

g(q, px) = −(2π)−N/2
∫

RN

(
py · ∇qy −∇qyV · ∇py

)
f1 exp

(
−β

p2
y

2

)
dpy,

the condition T0f1 = 0 is satisfied provided

Tqy f̃1 = g(q, px),

Seeing the function on the right-hand side as a function of (qx, px) indexed by qy allows to define
f̃1 pointwise in qy as

f̃1 = −(2π)−N/2T −1
qy g. (3.37)

Let us now study the regularity of T0f
1. We only treat the term T0(f1 − f̃1) since the

regularity of T0f̃
1 can be proved similarly. In fact, only the derivates in the p variables have to

be considered because the position space is compact. First, recall that by hypoellipticity all the
functions (f, f0, f1) are in C∞

(
DN × R

2N
)
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f1 − f̃1 =−
∑

i

pyiG
′(qyi)T −1

qy (pxi)

−
∑

i,j,k

pyiG(qyj)
{(
T −1
qy

) [
∂2
qyi,qxk

V (qx, qy)∂pxk
] (
T −1
qy

)
pxj
}
.

(3.38)

The py dependence is trivial in the above expression, so that only derivatives in px require some
attention. Since T0 = Ay,ham + Tqy where Ay,ham = py · ∇qy −∇qyV (qx, qy) · ∇py is an operator
in the qy, py variables (parameterized by qx), it suffices to consider Tqyf1. This function is, in
turn, a linear combination of terms of the form pyipxi (cf. the first term in the right-hand side
of (3.38)) and pyi∂pxkT −1

qy pxj (second term in the right-hand side of (3.38)). To prove that the
latter functions are in H1(ψ0), we use the results of [47,103], which show that T −1

qy is a bounded
operator on the Hilbert spaces

{
f ∈ Hm(Ψqy)

∣∣∣∣∣

∫

(LxT)N×RN
f(qx, px)Ψqy(qx, px) dqx dpx

}
⊂ L2(Ψqy)

for any m ≥ 0, with a bound uniform in qy.

3.5.4 Proof of Theorem 6

The proof follows the same lines as the proof presented in Section 3.5.3, so we skip the parts of
the argument which can be straightforwardly extended from there.

As in the previous section, we set m = 1 to simplify the notation, but the proof can
be straightforwardly modified to account for more general masses. Note first that the solution
of (3.15) is well defined for any γx > 0, for reasons similar to the ones exposed at the beginning
of Section 3.5.3. Define

Tqx = py · ∇qy −∇qyV (qx, qy) · ∇py + γyAy,thm,

which is an operator parameterized by qx ∈ (LxT)N , and acting on the Hilbert space L2(Ψqx),
where

Ψqx(qy, py) = Z−1
qx exp

(
−β

(
V (qx, qy) +

p2
y

2m

))
.

Its kernel is Vect(1) = {cΨqx , c ∈ R}.

Formal asymptotic expansion in γx

We start by formal computations, with a discussion parallel to the corresponding one in Sec-
tion 3.5.3. We consider the following ansatz for the solution fγx :

fγx = f0 +
1
γx
f1 +

1
γ2
x

f2 + . . .

and rewrite the operator A0(γx) as the sum A0(γx) = T0 +γxAx,thm. The kernel of the operator
Ax,thm on L2(ψ0) is

Ker(Ax,thm) =
{
g ∈ L2(ψ0)

∣∣∣ g = g(q, py)
}
.
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Identifying terms with the same powers of γx in (3.15), the following hierarchy is obtained:




Ax,thmf
0 = 0,

T0f
0 +Ax,thmf

1 = −
N∑

i=1

pxiG(qyi),

T0f
1 +Ax,thmf

2 = 0.

(3.39)

The first equation shows that f0 ≡ f0(q, py). The second one can be rewritten as

Ax,thmf
1(q, p) = −

N∑

i=1

pxi
(
G(qyi) + ∂qxif

0(q, py)
)
− Tqxf0(q, py),

so that

f1 =
N∑

i=1

pxi
(
G(qyi) + ∂qxif

0(q, py)
)

+ f̃1,

with
Ax,thmf̃

1(q, p) = −Tqxf0(q, py).

The solvability condition requires Tqxf0(q, py) = 0, hence f0 ≡ f0(qx). Besides, f̃1 does not
depend on px. The solvability condition for the third equation in (3.39) is T0f

1 ∈ Ker(Ax,thm).
Now,

T0

(
N∑

i=1

pxi
(
G(qyi) + ∂qxif

0(qx)
))

= −
N∑

i=1

∂qxiV (qx, qy)
(
G(qyi) + ∂qxif

0(qx)
)

+
N∑

i=1

pxipyiG
′(qyi) +

N∑

i=1

p2
xi∂

2
qxif

0(qx),

and

T0f̃
1 = Tqx f̃1 +

N∑

i=1

pxi∂qxi f̃
1.

We therefore set

f0 = 0, f̃1 = T −1
qx

(
N∑

i=1

∂qxiV (qx, qy)G(qyi)

)
,

and

f2(q, p) =
N∑

i=1

pxi
(
pyiG

′(qyi) + ∂qxi f̃
1
)

+ f̃2,

so that

Ax,thmf
2(q, p) = −

N∑

i=1

pxi
(
pyiG

′(qyi) + ∂qxi f̃
1
)

= −T0f
1.

The function f̃2 is chosen such that T0f
2 has a vanishing average with respect to the Gaussian

measure in the px variable.

Note that f̃1 is well defined since
∑N
i=1 ∂qxiV (qx, qy)G(qyi) ∈ Ker(Tqx)⊥ = {1}⊥ (where

the orthogonality is with respect to the scalar product on L2(Ψqx)). Indeed,
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N∑

i=1

∂qxiV (qx, qy)G(qyi) =
N∑

i=1

∑

j 6=i

v′(|qi − qj |)
qxi − qxj
|qi − qj |

G(qyi)

=
∑

1≤i<j≤N

v′(|qi − qj |)
qxi − qxj
|qi − qj |

(
G(qyi)−G(qyj)

)
.

The last line is antisymmetric with respect to the exchange of coordinates qyi and qyj , hence the
average of the corresponding function with respect to Ψqx , which is symmetric with respect to
the exchange of coordinates qyi and qyj , vanishes.

A discussion similar to the one in Section 3.5.3 show also that ∂qxi f̃
1 is well defined, hence

the definition of f2 makes sense.

Proof of the limit (3.16)

The remainder of the proof follows the very same lines as the proof presented in Section 3.5.3,
hence we omit it.
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The purpose of this chapter is to introduce the concepts developed in Chapters 5 and 6
dealing respectively with the mathematical analysis of a continuous model for confined equilib-
rium electrolytes when the underlying bulk free energy density is a convex function of the ionic
concentrations (mild non-ideality setting) and with a numerical study of the case where the bulk
free energy density is not a convex function of the ionic concentrations, leading in particular to
phase separation (strong non-ideality).

This chapter is organized as follows. In Section 4.1, we present a bibliography review
stemming from the chemical physicist community. Section 4.2 states the mathematical frame-
work that will be used in the two next Chapters and summarizes the previous mathematical
results concerning the present setting. The end of the Chapter is devoted to a formal derivation
of the model introduced in Section 4.2 starting from a microscopic description. In Section 4.3,
we present the primitive model for electrolytes and we derive the bulk free energy density for
this model. Finally, in Section 4.4, we present a microscopic model for confined electrolytes and
a derivation of the density functional theory for this microscopic model and the various approx-
imations and closures that are used to derive the model presented in Section 4.2. Chapters 5
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and 6 are independent of Sections 4.3 and 4.4 so that these sections can be omitted in a first
reading.

4.1 Bibliography overview on ideal and non-ideal electrolytes

In continuum models, equilibrium electrolytes (steady state and no flow) can be described by the
electrostatic potential and the ionic concentrations. The properties of such systems constitute
the first step to understand more complex chemical and mechanical behaviours, for instance
within clays.

For nanometric confinements, the classical Poisson–Boltzmann theory, where the electro-
static potential ψ solves a Poisson equation while the ionic concentrations (ci)i=± of the two
species follow the Boltzmann distribution, is valid at low ionic concentrations, that is in the
infinite dilute limit. Multivalent ions and electrolytes near highly charged objects of various
geometries may behave very differently from the ideal behaviour of infinitely diluted solutions,
leading in some cases to phase separation. Phase separation can be defined as the phenomenon
occurring when the physical domain is partitioned in (at least) two regions where the ionic
concentrations take values in distinct sets, typically leading to a diluted phase (low ionic con-
centrations) and a condensed phase (moderately high concentrations). The non-ideality is en-
countered even in bulk solutions, that is, in unconfined geometries and arises mainly from two
types of effects, which both play a larger role as the ionic concentration increases: electrostatic
correlations and short-range excluded volume effects (also referred to as hard-sphere repulsion).
Since the early theories which treat the former at the mean-field level and ignore the latter, such
as the pioneering work of Debye and Hückel (DH) [22], which is valid at relatively low ionic
concentrations, most of the work on the phase behaviour in electrolytes has been performed
within the framework of the primitive models of charged hard spheres in a continuous solvent
characterized only by its dielectric constant. The structural and thermodynamic properties of
more concentrated solutions can then be predicted using integral equation theories, such as the
Mean Spherical Approximation (MSA) [10,11,63,64].

In the case of inhomogeneous electrolytes in contact with charged solid surfaces, e.g. in
confined geometries, electrostatic interactions also control the structure and the phase behaviour
of the solution [30, 89, 90]. In some cases, such as clay minerals, the counterions compensating
the charge of the surface may even be the only ions present in the confined fluid, resulting in
a situation similar to the One Component Plasma (for a review, see [9]). For highly charged
surfaces or multivalent counterions, a large fraction of the counterions occupies a condensed
phase near the charged surface, as suggested by Stern to generalize the Gouy and Chapman
description of charged surfaces. The remaining ions then feel a much weaker effective charge,
which can be described within the Poisson–Boltzmann theory. Nevertheless, the determination
of the fraction of condensed ions and the corresponding effective charge is not straightforward.

A number of approaches have been proposed to incorporate correlations neglected in the
Poisson–Boltzmann theory. In the particular case where counterions are the only ions present, a
perturbative correction to the Poisson–Boltzmann theory has been established [7]. Furthermore,
the so-called "Strong Coupling" theory allows to investigate regimes where the interaction with
the charged surface is stronger than that between ions [36, 80, 83, 95] and to explain the origin
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of the attraction between like-charged surfaces observed under certain conditions. Another
successful development for the description of the inhomogeneous primitive model, considered
in this thesis in Section 4.3, is the use of density functional theory (DFT), which determines
structural thermodynamic properties of an inhomogeneous fluid from the Helmholtz free energy
and its functional dependence on the local densities of particles [13,31,35,40,73,78,84]. Finally,
Molecular Dynamics and Monte Carlo simulations have been used to study the properties of
bulk and confined electrolytes, described either within the primitive model or from a molecular
point of view, thus providing a more realistic description of these complex systems.

In density functional theory, the free energy is decomposed into the sum of an ideal term
and various non-ideal terms and is minimized with respect to the ionic concentrations under some
constraints. In this thesis, in order to take into account correlations between counterions, we
have included electrostatic and hard-sphere contributions in the free energy, calculated with the
MSA and corresponding to Local Density Approximation [61] where the correction is obtained
from the correlation function evaluated for a bulk solution (where there is no external field).
However, within this type of model, the interaction of the ions with the charged solid is still
treated at the mean-field level (thereby neglecting an excluded volume effect between the solid
and the ions).

The problem is formulated in terms of the ionic concentrations c and the electrostatic
potential ψ which is computed self-consistently by the Poisson equation relating the electric
field to the charge density. This free energy functional takes the form

F(c) = Fbulk(c) + Fmf(c). (4.1)

The term Fbulk contains the ideal and non-ideal effects in the bulk solution regardless of the
presence of a negatively charged solid object, while the mean-field term Fmf accounts for the
mean-field electrostatic potential between the ions and the negatively charged solid object. The
equilibrium state of the system is determined by minimizing F under suitable constraints (such
as a fixed average in space of the ionic concentrations c).

4.2 Mathematical statement of the electrochemical model

We now formalize mathematically the problem of determining the thermodynamic equilibrium
of a system consisting in an electrolyte surrounded by a negatively charged object. First, we
describe the geometry, the physical setting and write the equation expressing the thermodynamic
equilibrium. Second, we describe the properties of the free energy functional (4.1) and show
formally that a minimizer of this functional solves the equilibrium equations. Third, we introduce
another functional E depending on the ionic concentrations c and the electrostatic potential
ψ and show formally that a critical point of E solves the equilibrium equation. The end of
this section is devoted to the methodology to compute the pressure of the system. Finally, a
bibliography overview of the mathematical and numerical results available is discussed.

4.2.1 Geometry and equilibrium equations

We focus on binary electrolytes (which means electrolytes composed of two species, cations and
anions), and consider a periodic setting with elementary cell [0, L∗]d, d ∈ {2, 3}, with length
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scale L∗ (expressed in m). The elementary cell contains inclusions ΩS whose boundary ∂ΩS
(see Figure 4.1 left) contains negative charges with surface density ΣS > 0 (expressed in Cm−2).
Our approach also applies to other settings, e.g., confined electrolytes in nanochannels (see
Figure 4.1 right). The problem is posed in the domain Ω := [0, L∗]d \ΩS and consists in finding
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Fig. 4.1. Geometries for Ω: periodic media with negatively charged inclusions (left); nanochannel with negatively
charged walls (right)

the electrostatic potential ψ (expressed in V) and the ionic concentrations c = (c+, c−) (each
concentration is expressed in m−3) such that

−∆ψ =
e
ε

∑

i=±

Zici in Ω, (4.2a)

µel
+(ψ, c) and µel

−(ψ, c) are constant in Ω, (4.2b)

where e is the elementary charge (expressed in C), ε = ε0εr the solvent permittivity with
ε0 the vacuum permittivity (expressed in CV−1m−1) and εr the solvent relative permittivity
(dimensionless), and Zi the valence (dimensionless) of species i = ±. The electrochemical
potentials µel

±(ψ, c) depend on the chemical potentials µ±(c) and the electrostatic potential ψ as
follow:

µel
i (ψ, c) := µi(c) + Zieψ, µi(c) =

1
β

log(Λ3
i ci) +

1
β

log(γi(c)), i = ±, (4.3)

where 1
β = kBT , kB is the Boltzmann constant (expressed in JK−1), T the temperature (ex-

pressed in K), Λi the de Broglie thermal wavelength, and γi(c) the dimensionless activity coef-
ficient of species i = ± accounting for non-ideal behaviour (γi(c) ≡ 1, i = ±, in the ideal case).
Since we consider electrolytes surrounded by a negatively charged solid object, the counterions
concentration is c+ and the coions concentration is c−. A first consequence of equation (4.3) is
that the ionic concentrations have to be sought in the set of non-negative functions (owing to
the presence of the logarithm of the ionic concentrations in the definition of µi).

The presence of the de Broglie thermal wavelength Λi originates from the kinetic contribu-
tion to the microscopic Hamiltonian function (see Section 4.4) and ensures that the product Λ3

i ci
is non-dimensional. Changing the value of Λi (which can be interpreted as modifying artificially
the masses of the ions) only shifts the chemical potential by a constant. In particular, such a
shift does not affect the equilibrium properties (such as the equilibrium ionic concentrations c).
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Thus, in what follows, we suppose (without loss of generality) that the value of the de Broglie
wavelength is

Λi = σ, i = ±, (4.4)

where σ is the mean ion diameter (expressed in m), so that

µi(c) =
1
β

log(σ3ci) +
1
β

log(γi(c)), i = ±. (4.5)

Boundary conditions enforce that

ψ is periodic on ∂Ω \ ∂ΩS , (4.6a)

∇ψ · n = −1
ε
ΣS on ∂ΩS , (4.6b)

where n denotes the unit outward normal to ∂ΩS . The Neumann boundary condition on ψ
hinges on the physical assumption that the solid ΩS is infinitely conducting. Indeed, the natural
boundary condition is that

[∇ψ] · n = −1
ε
ΣS on ∂ΩS , (4.7)

where [g] denote the jump of a function g across ∂ΩS . This condition reduces to (4.6) whenever
the normal derivative of ψ|ΩS is much smaller than ε−1ΣS (see discussion in Section 4.4). Ad-
ditionally, considering canonical constraints, we prescribe the mean ionic concentrations in the
form

〈ci〉Ω = cbulk
i , i = ±, (4.8)

where cbulk
+ and cbulk

− are given nonnegative real numbers and where, for any function g ∈ L1(Ω),
〈g〉Ω denote its mean value in Ω given by

〈g〉Ω :=
1
|Ω|

∫

Ω
g. (4.9)

We assume that the data cbulk
± satisfy the global electroneutrality condition

∑

i=±

Zic
bulk
i =

1
|Ω|

∫

∂ΩS

1
e
ΣS , (4.10)

which is a necessary and sufficient condition for the solvability of the Poisson equation (4.2a)
together with the boundary conditions (4.6) for the electrostatic potential ψ given the ionic
concentrations c. Finally, since the electrostatic potential is determined up to an additive
constant, we require that

〈ψ〉Ω = 0. (4.11)

Remark 4 (Minimal value for L∗.) The present model does not incorporate the hard-sphere
repulsion between the ions and the charged object ΩS, so that the ions are pointwise particles
from the perspective of ΩS. We will assume implicitly that at least one particle fits in the
volume Ω. In the case of a periodic medium without inclusion, the volume Ω is the cube [0, L∗]3

and assuming the ions are spherical, this hypothesis amounts to the condition σ < L∗. More
generally, in a box of length L∗, the maximum number of spheres N is such that
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πσ3

6
N = αL3

∗, (4.12)

with α ≈ 0.74 (for a face-centered cubic lattice). Requiring at least N0 particles in the box leads
to the condition

σ

(
πN0

6α

) 1
3

≤ L∗, (4.13)

e.g. L∗ ≥ 3.367 nm for N0 = 1000 spheres of diameter σ = 3
◦

A.

To summarize, the problem we consider can be formulated as:

Given a surface charge density ΣS and constant ionic concentrations
{
cbulk
i

}
i=±

satis-

fying (4.10), find a set of ionic concentrations c = (c+, c−), an electrostatic potential ψ, and
constant chemical potentials

{
µbulk
i

}
i=±

such that

− ε∆ψ =
∑

i=±

Zieci, in Ω, (4.14a)

µel
i (ψ, c) =

1
β

log(σ3ci) +
1
β

log(γi(c)) + Zieψ = µbulk
i , in Ω, i = ±, (4.14b)

〈ci〉Ω = cbulk
i , (4.14c)

ψ is periodic on ∂Ω \ ∂ΩS , (4.14d)

∇ψ · n = −1
ε
ΣS on ∂ΩS , (4.14e)

〈ψ〉Ω = 0. (4.14f)

Remark 5 (Poisson–Boltzmann equation.) The so-called Poisson–Boltzmann equation is
obtained in the ideal case, namely when γi(c) ≡ 1. In this case, one can invert exactly the
equilibrium equation satisfied by the electrochemical potential (4.14b) yielding

σ3ci = eβµ
bulk
i e−βZieψ, i = ±. (4.15)

It is then more convenient to impose the value of the bulk chemical potentials rather than the
average of the ionic concentrations. To find the equilibrium, one needs to solve the following
nonlinear Poisson equation for the electrostatic potential:

−∆ψ =
e
ε

∑

i=±

σ−3Zie
βµbulk
i e−βZieψ, i = ±, (4.16)

with the boundary conditions (4.14d), (4.14e) and the mean-value condition (4.14f). A strictly
convex functional depending only on ψ can be introduced, and its unique minimizer solves the
Poisson–Boltzmann equation (4.16) with boundary conditions (4.14d), (4.14e) and the mean-
value condition (4.14f). This problem was considered by Looker [72] who performed the mathe-
matical analysis of the Poisson–Boltzmann equation (4.16) with inhomogeneous Neumann bound-
ary conditions, while Allaire, Mikelić, and Piatniski [3] considered this setting in the context of
homogenization. In fact, Allaire et al. consider this approach also in the non-ideal case in [2].
We remark that this procedure is applicable as long as the map (c+, c−) 7→ (µ+(c), µ−(c)) is
invertible.
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4.2.2 First variational formulation

We now turn to a first variational formulation of the problem (4.14). Recall the free energy
functional

F(c) = Fbulk(c) + Fmf(c), (4.17)

which decomposes into two terms: the bulk free energy functional Fbulk and the mean-field free
energy functional Fmf .

Bulk free energy functional

The first term, namely the bulk free energy functional, is given as the integral over the volume
Ω of the bulk free energy density f

Fbulk(c) =
∫

Ω
f(c), (4.18)

where f , defined by

f(c) :=


∑

i=±

fid(ci)


+ fcorr(c), (4.19)

is the sum of the ideal term
(∑

i=± fid(ci)
)

and the non-ideal term fcorr(c). The ideal term is an
entropic term and the function fid : R≥0 → R is such that, for all u ∈ R≥0,

fid(u) :=

{
1
βu(log(σ3u)− 1), u > 0,

0, u = 0.
(4.20)

For the moment, we do not make precise the analytic form of fcorr. We note only that fcorr is
related to the activity coefficients (introduced in (4.3)) by the equation

log(γi(c)) = β
∂fcorr

∂ci
(c), i = ±. (4.21)

For convenience we decompose Fbulk as

Fbulk(c) = Fid(c) + Fcorr(c), (4.22)

where

Fid(c) :=
∫

Ω


∑

i=±

fid(ci)


 , Fcorr(c) :=

∫

Ω
fcorr(c), (4.23)

so that
F(c) = Fid(c) + Fcorr(c) + Fmf(c). (4.24)
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Mean-field free energy functional

In order to define the mean-field free energy functional Fmf , we introduce the affine operator
ΨΣS such that, for all g ∈ L2(Ω), ΨΣS (g) solves

− ε∆ΨΣS (g) = g − 〈g〉Ω + |Ω|−1
∫

∂ΩS

ΣS , in Ω, (4.25a)

ΨΣS (g) is periodic on ∂Ω \ ∂ΩS , (4.25b)

∇ΨΣS (g) · n = −1
ε
ΣS on ∂ΩS , (4.25c)

〈ΨΣS (g)〉Ω = 0. (4.25d)

For later use, we also introduce Ψ0 as the linear operator associated with homogeneous Neumann
boundary conditions (ΣS = 0 in (4.25)). Introducing the charge density ρ defined by

ρ(c) =
∑

i=±

Zieci, (4.26)

it is clear that ψ = ΨΣS (ρ(c)) is the unique solution of (4.14a) with boundary condi-
tions (4.14d), (4.14e) and the mean-value condition (4.14f).

The mean-field free energy functional, is given by

Fmf(c) =
1
2

(∫

Ω
ρ(c)ΨΣS

(ρ(c))−
∫

∂ΩS

ΣSΨΣS
(ρ(c))

)
, (4.27)

or, equivalently, by

Fmf(c) =
ε

2

(∫

Ω
|∇ΨΣS (ρ(c))|2

)
. (4.28)

Indeed, for any function ϕ ∈ H1
per(Ω) with 〈ϕ〉Ω = 0, there holds, owing to the global elec-

troneutrality condition (4.10),

ε

∫

Ω
∇ΨΣS (ρ(c)) · ∇ϕ =

∫

Ω
ρ(c)ϕ−

∫

∂ΩS

ΣSϕ, (4.29)

so that the equality (4.28) is obtained from (4.29) by testing with ϕ = ΨΣS (ρ(c)). From a
modelling viewpoint, this contribution is called mean-field free energy since it is the energy in
an electrolyte where the ions experience the mean-field potential ψ.

Remark 6 (Convexity of Fmf .) It is easy to verify that Fmf is a convex functional (but not
strictly convex in general). Indeed, for any test functions u, v such that 〈u〉Ω = 0 and 〈v〉Ω = 0,
we can write the Hessian of Fmf as

[
∂2
ci,cjFmf(c)

]
(u, v) = εZiZje2

∫

Ω
∇Ψ0(u) · ∇Ψ0(v), i = ±, j = ±, (4.30)

and observe that this bilinear form is positive semi-definite. When there is only one species (as
considered in Chapter 6), the functional Fmf is strictly convex.
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Partial derivative of F

Let us now turn to the evaluation of the partial derivative of the bulk free energy functional
(needed to establish a variational principle). Formally (see Chapter 5 for precise statements),
the partial Gâteaux derivative of F at point c = (c+, c−) is given by

〈∂ciF(c), φi〉L2 =
∫

Ω
(µi(c) + ZieΨΣS (ρ(c)))φi =

∫

Ω
µel
i (ΨΣS (ρ(c)), c)φi, (4.31)

for any function φi ∈ L2(Ω) such that 〈φi〉Ω = 0. This computation is only formal since we did
not precise the regularity of fcorr. The first thing to notice to obtain formally the result is that

µi(c) =
∂f(c)
∂ci

, i = ±, (4.32)

owing to equality (4.21) and the definition of the ideal bulk free energy density (4.20). The
second thing lies in the following Lemma, that delivers the partial Gâteaux derivative of Fmf .

Lemma 2 The partial Gâteaux derivative of Fmf with respect to ci is given by

〈∂ciFmf(c), φi〉L2 =
∫

Ω
ZieΨΣS (ρ(c))φi, (4.33)

for any function φi ∈ L2(Ω) with 〈φi〉Ω = 0.

For convenience we provide a short proof of this Lemma.

Proof. We compute the partial Gâteaux derivative with respect to the variable c+ (the case
of c− is treated similarly). For any function φ+ ∈ L2(Ω) with 〈φ+〉Ω = 0, setting φ = (φ+, 0),
by taking a variation c+ φ in Fmf , we obtain for the quadratic contribution of Fmf

∫

Ω
ρ(c+ φ)ΨΣS (ρ(c+ φ)) =

∫

Ω
(ρ(c) + ρ(φ)) (ΨΣS (ρ(c)) + Ψ0(ρ(φ)))

=
∫

Ω
ρ(c)ΨΣS (ρ(c)) +

∫

Ω
ρ(c)Ψ0(ρ(φ)) + ρ(φ)ΨΣS (ρ(c))

+
∫

Ω
ρ(φ)Ψ0(ρ(φ)),

(4.34)

where we made use of the identity

ΨΣS (ρ(c+ φ)) = ΨΣS (ρ(c)) + Ψ0(ρ(φ)). (4.35)

It follows easily that the partial Gâteaux derivative of Fmf with respect to c+ is given by

〈
∂c+Fmf(c), φ+

〉
L2 =

1
2

(∫

Ω
ρ(c)Ψ0(ρ(φ)) + ρ(φ)ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨ0(ρ(φ))
)
, (4.36)

and since ρ(φ) = Z+eφ+, we obtain

〈
∂c+Fmf(c), φ+

〉
L2 =

1
2

(∫

Ω
ρ(c)Ψ0(Z+eφ+) + Z+eφ+ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨ0(Z+eφ+)
)
. (4.37)
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The conclusion follows from the fact that
∫

Ω
ρ(c)Ψ0(Z+eφ+)−

∫

∂ΩS

ΣSΨ0(Z+eφ+) = ε

∫

Ω
∇ΨΣS (ρ(c)) · ∇Ψ0(Z+eφ+)

=
∫

Ω
Z+eφ+ΨΣS (ρ(c)),

(4.38)

by definition of Ψ0. ♦

The minimization problem and equivalence with (4.14)

We now motivate the introduction of the free energy functional F by deriving formally the
variational principle allowing to solve problem (4.14).

The mathematical problem we want to solve concerning F can be formulated as fol-
lows: Given a surface charge density ΣS and constant ionic concentrations

{
cbulk
i

}
i=±

satisfy-

ing (4.10), find a set of ionic concentrations c = (c+, c−) such that

F(c) = min
{
F(c̃) | c̃ s.t 〈c̃i〉Ω = cbulk

i , c̃i ≥ 0, i = ±
}
, (4.39)

(the precise functional space where c is sought will be made precise in Chapter 5). Then, if F
is differentiable at point c, c is a critical point of F and is therefore such that,

µel
i (ΨΣS (ρ(c)), c) = µbulk

i , i = ±, (4.40)

owing to (4.31), where
{
µbulk
i

}
i=±

are the Lagrange multipliers resulting from the constraint

〈c̃i〉Ω = cbulk
i , i = ±. Under a convexity assumption on Fbulk (so that F is convex since Fmf is

always convex), we prove that solving the problem (4.39) is equivalent to solving (4.14), so that
critical points are minimizers. Note that in the situation where ΣS = 0 and the ionic concen-
trations c = (cbulk

+ , cbulk
− ) are constant, owing to the global electroneutrality condition (4.10), we

find that ψ = 0 is the unique solution of (4.14a) with boundary conditions (4.14d), (4.14e) and
the mean-value condition (4.14f). In the case where the bulk free energy density is a strictly
convex function of the ionic concentrations, we verify easily that c = (cbulk

+ , cbulk
− ) is the unique

minimizer of F .

4.2.3 Second variational formulation

For the mathematical and numerical study, in order to avoid the use of the nonlocal operator
ΨΣS , we adopt the following reformulation by introducing the two variables functional

E(ψ, c) = U(ψ)− B(ψ, c)−Fbulk(c), (4.41)

with

U(ψ) =
ε

2

∫

Ω
|∇ψ|2 +

∫

∂ΩS

ΣSψ, (4.42a)

B(ψ, c) =
∑

i=±

∫

Ω
Zieciψ =

∫

Ω
ρ(c)ψ. (4.42b)
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Working either with the functional E or F is essentially equivalent since E is strictly convex in
the variable ψ. Moreover, whenever Fbulk is convex in the variable c (as assumed in Chapter 5),
E is concave in the variable c. Within this setting, we will be searching for a saddle-point (ψ, c)
of the functional E (i.e a minmax in (ψ, c)).

The saddle-point problem and equivalence with (4.14)

We now motivate the use of functional E . The mathematical problem we address is the following:

Given a surface charge density ΣS and constant ionic concentrations
{
cbulk
i

}
i=±

satisfy-

ing (4.10), find a set of ionic concentrations c = (c+, c−) and an electrostatic potential ψ such
that (ψ, c) is the saddle-point of E:

E(ψ, c) = min max
{
E(ψ̃, c̃) | (ψ̃, c̃) s.t 〈ψ̃〉Ω = 0, 〈c̃i〉Ω = cbulk

i , c̃i ≥ 0, i = ±
}
, (4.43)

(the precise functional spaces where ψ and c are sought will be made precise in Chapter 5).

If E is differentiable at (ψ, c), then (ψ, c) is a critical point of E . Differentiating E with
respect to its first argument shows that ψ solves the Poisson problem (4.14a), (4.14d)-(4.14f),
while differentiating E with respect to its second argument shows that the electrochemical poten-
tials µel

±(ψ, c) are constant in Ω with µel
i (ψ, c) = µbulk

i , i = ±, where the µbulk
i ’s are the Lagrange

multipliers associated with the constraints on the mean ionic concentrations. Under a convex-
ity assumption (so that E is concave in the c variable), we can verify that formulations (4.14)
and (4.43) are equivalent so that critical points are saddle-points.

The main issue with the above statements is that in practice, we need to prove that either
F or E are differentiable at the point c respectively minimizer of F/ maximizer of E(ψ, ·). This
property depends on the hypothesis made for the non-ideal bulk free energy density fcorr, but
also on the ideal free energy density fid that forbids negative ionic concentrations. The strategy
of proof to differentiate the functionals is to obtain uniform upper and positive lower bounds
on the ionic concentrations. These questions are treated in detail in Chapter 5 with a precise
mathematical setting for fcorr.

4.2.4 Modelling of non-ideality

We now describe the model of bulk free energy density fcorr that we consider in this thesis. The
non-ideal term fcorr has the general form

fcorr(c) := fCoul(c) + fHS(c). (4.44)

Following (4.44) and (4.21), the activity coefficient γi(c), i = ±, is correspondingly split into
two parts in such a way that

log(γi(c)) = log(γCoul
i (c)) + log(γHS(c)), i = ±. (4.45)

where

β
∂fCoul

∂ci
(c) = log(γCoul

i (c)), i = ±, β
∂fHS

∂ci
(c) = log(γHS(c)) (4.46)
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We note that in the case of the activity coefficient γHS, there is no dependences in i = ± (owing
to the fact that we consider the mean ion diameter σ). Furthermore, in many models (MSA,
Debye-Hückel), the density fCoul depends on c only through the ionic strength I : R

2
≥0 → R≥0

(expressed in m−3) such that, for all c ∈ R
2
≥0,

I(c) :=
∑

i=±

ηici, ηi :=
1
2
Z2
i . (4.47)

Then, it is convenient to introduce the function f0 : R≥0 → R such that

fCoul(c) = 2f0(I(c)). (4.48)

Following this path, we also define the function γ0 : R≥0 → R>0 such that

log(γCoul
i (c)) = Z2

i log(γ0(I(c))), i = ±. (4.49)

For example, the MSA model introduces a screening parameter ΓMSA given by ΓMSA =
ΥMSA(I(c)) with the function ΥMSA : R≥0 → R≥0 such that, for all θ ∈ R≥0,

ΥMSA(θ) :=
1

2σ

(√
2σ(4πLB)1/2(2θ)1/2 + 1− 1

)
. (4.50)

The function f0 is then given by

f0(θ) := −LB

βσ

(
θ − 2σ

3πLB
(ΥMSA(θ))3 − 1

2πLB
(ΥMSA(θ))2

)
, (4.51)

so that

log(γ0(θ)) = − LBΥMSA(θ)
1 + σΥMSA(θ)

. (4.52)

Concerning the hard-sphere term, further discussed in Section 4.3.3, we remark that
in most models (Percus–Yevick, Carnahan–Starling), fHS only depends on the concentration
through the packing number ξ(c) :=

∑
i=± ϑci where ϑ := πσ3

6 , so that

fHS(c) =
1
ϑ
f1(ξ(c)), (4.53)

for some function f1 : R≥0 → R. It follows that the activity coefficient γHS is of the form

log(γHS(c)) = log(γ1(ξ(c))), (4.54)

for a function γ1 : R≥0 → R>0. For example, in the case of the Carnahan-Starling (CS) activity
coefficient, we have

log(γCS
1 (t)) := (8t− 9t2 + 3t3)(1− t)−3, t < 1, +∞, t ≥ 1, (4.55)

while its linearized version (CS1) (valid at low ionic concentrations) is

log(γCS1
1 (t)) := 8t, t ≥ 0. (4.56)
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The bulk free energy density for (CS) is obtained by integration of (4.54) with respect to
the ionic concentrations, yielding

f1(t) := − 1
βϑ

t2 (3t− 4)

(1− t)2 , t < 1, +∞, t ≥ 1, (4.57)

while the bulk free energy density for (CS1) is

f1(t) :=
4t2

βϑ
, t ≥ 0. (4.58)

In summary, when the bulk free energy density is evaluated with the MSA model with (CS1)
for the hard-sphere repulsion term, there holds

fcorr(c) := −2LB

βσ

(
I(c)− 2σ

3πLB
(ΥMSA(I(c)))3 − 1

2πLB
(ΥMSA(I(c)))2

)
+

4
βϑ

ξ(c)2, (4.59)

while using (CS) for the hard-sphere repulsion term, there holds

fcorr(c) : = −2LB

βσ

(
I(c)− 2σ

3πLB
(ΥMSA(I(c)))3 − 1

2πLB
(ΥMSA(I(c)))2

)

− 1
βϑ

ξ(c)2 (3ξ(c)− 4)

(1− ξ(c))2 , ξ(c) < 1, +∞, ξ(c) ≥ 1.
(4.60)

4.2.5 Mild and strong non-ideality

In view of the mathematical analysis of the problems (4.39) and (4.43), an important question
is the convexity of the functional Fbulk. This question reduces to the convexity of the bulk free
energy density f defined by (4.19).

We can see in the above examples of bulk free energy densities that fCoul is a concave

function of c that behaves like −c
3
2
i when ci → 0 and that f0 is continuous on R≥0 and C∞ on

R>0. Concerning the hard-sphere term, fHS is a convex function of c on its domain, the domain
of a function g being defined as the set

dom(g) :=
{
c ∈ R

2
≥0, g(c) < +∞

}
. (4.61)

For the examples given above we obtain

• domfHS := {c+ ≥ 0, c− ≥ 0} in the case of (CS1);

• domfHS := {c+ ≥ 0, c− ≥ 0, ξ(c) < 1} in the case of (CS).

It turns out that in general f1 is C∞ on R≥0 (as for (CS1)) or C∞ on [0, 1) (as for (CS)). Finally,
the ideal bulk free energy density fid defined by (4.20) is convex and continuous on R≥0 and
strictly convex and C∞ on R>0. These qualitative behaviours for the bulk free energy densities
are common to other models [41, 75,84].

When studying mathematically and numerically the behaviour of the bulk free energy
density f , we identify two physical settings. The first setting is the case where the convexity of
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the ideal term fid and the steric exclusion term fHS compensate the concavity of the electrostatic
correlations modelled by fCoul so that f is altogether a convex function of the ionic concentrations
(this behaviour corresponds generally to a sufficiently large ion diameter at fixed temperature).
We refer to this setting as mildly non-ideal. The second setting is the case where at relatively low
ionic concentrations, the non-ideal term accounting for electrostatic correlations fCoul dominates
the two other terms

∑
i=± fid(ci) and fHS, so that the bulk free energy density f is a non convex

function of the ionic concentrations (this behaviour corresponds generally to a sufficiently small
ion diameter at fixed temperature). For example, for a system with one species, the bulk free
energy density f has the shape of a double-well potential (see Chapter 6). A physical consequence
of the lack of convexity is the possible appearance of phase separation. This phenomenon has
been widely studied in the past two decades, in particular in a work of Levin and Fisher [69] and
in the work of Groh et al [35] who computed the phase diagram for the bulk free energy density
defined by (4.60). The mathematical counter-part is the ill-posedness of the problems (4.14),
(4.39), (4.43) since uniqueness is lost. In this thesis, this last setting is referred to as strongly
non-ideal.

Remark 7 (Debye–Hückel limit) For extremely low values of the mean ion diameter, σ → 0,
we recover the expression derived in the Debye–Hückel theory, namely log(γ0(θ)) = −(2πL3

Bθ)
1/2.

Noticing that both (CS) and (CS1) goes to zero when σ → 0 we infer that the bulk free energy
density for the Debye–Hückel theory is a non convex function of the concentration for a wide
range of physical parameter.

4.2.6 Application: mechanical equilibrium and evaluation of the pressure

We have seen that thermodynamic equilibrium allows to find the spatial distribution of the
ionic concentrations and the electrostatic potential. In view of applications in mechanics, a key
quantity is the pressure of the system [1, 59, 97]. The pressure p of the electrolyte is a useful
quantity to characterize mechanical equilibrium in a confined ionic system. In the absence of
any external forcing, there holds

−∇p =
∑

i=±

Zieci∇ψ, (4.62)

expressing the fact that the spatial pressure gradient balances the Coulomb force. Assuming the
ionic concentrations to be smooth enough, since we have ∇ (µi(c) + Zieψ) = 0, i = ±, then

∇p =
∑

i=±

ci∇ (µi(c)))

= ∇ (posm(c)) ,
(4.63)

where posm is the osmotic pressure, satisfying the Gibbs-Duhem relation

posm(c) :=


∑

i=±

ciµi(c)


− f(c), (4.64)

so that p and posm differ only by an additive constant. Moreover, denoting E = −∇ψ the electric
field, we observe that
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∇p = (ε∆ψ)E

= ε (∇ · E)E

=
ε

2
∇ ·

(
2E ⊗ E − |E|2 Id

)

= ∇ · τm(ψ),

(4.65)

where
τm :=

ε

2

(
2E ⊗ E − |E|2 Id

)
, (4.66)

is the Maxwell tensor and Id the identity tensor. Thus, it is convenient to introduce the total
pressure tensor Π defined by

Π := −τm(ψ) + posm(c)Id. (4.67)

The mechanical equilibrium (4.62) can then be expressed equivalently by

div (Π) = 0. (4.68)

4.2.7 Previous mathematical results

Let us now turn to the mathematical results available concerning the study of the free energy
functional (4.1). We start by briefly reviewing the mathematical results available concerning
ideal models and the Poisson–Boltzmann equation (4.16). The work of Looker [72] establishes
existence and uniqueness of the solution of the Poisson–Boltzmann equation with inhomogeneous
Neumann boundary conditions, formulated in terms of the electrostatic potential ψ. The same
model is considered by Allaire, Mikelić, and Piatniski [3] in view of homogenization of confined
electrolytes coupled with Stokes flow.

Generalizations of the ideal setting have been addressed previously in the literature.
In [71], Li analyzes the generalized Poisson–Boltzmann theory with implicit solvent. This formu-
lation, also considered by Borukhov, Andelman, and Orland [13], accounts for steric exclusion
effects, but not for electrostatic correlations. For an electrolyte with M species, the solvent
concentration c0 is introduced such that

σ3c0 := 1−
M∑

i=1

σ3ci,

where σ > 0 represents the mean ion diameter, and the ideal contribution of the solvent concen-
tration, c0(log(σ3c0)− 1), is included in the free energy functional. The mathematical analysis
has been extended to different ion diameters by Li [70]. The critical points of the free energy are
sought in a convex set enforcing ci ≥ 0 for all 0 ≤ i ≤ M , so that the ionic concentrations are
a priori bounded from above. One important result in the analysis of [70, 71] is the proof that
these constraints are not active, that is, that all the ci’s, 0 ≤ i ≤ M , are bounded uniformly
away from zero. The technique of proof, which consists in further optimizing the free energy
by modifying the ionic concentrations at extreme values if the above abounds are not satisfied,
will be extended in Chapter 5 for fcorr defined by (4.59). This extension is not straightfor-
ward owing to the model we consider for fcorr that couples in a more intricate way all the ionic
concentrations.
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Furthermore, the work of Carlen et al. [17] considers nonlinearities of the same kind
as those described by the implicit solvent. The authors analyze long-range interactions by
incorporating a nonlocal term with long-range Kac type potentials. The mathematical analysis
shows that L∞-bounds on the ionic concentrations can be enforced in the convex set where the
minimization is taken, but also that under a condition on both the ideal and steric exclusion
terms, L∞-bounds can be achieved [17, Theorem B.1]. The authors also address mathematically
the question of phase separation, vapor-liquid coexistence and segregation of species, in systems
with long-range interactions.

In the strongly non-ideal case, phase separation is expected to take place owing to the
non convexity of the bulk free energy density as discussed in Section 4.1. There is an extensive
bibliography concerning the theoretical and numerical study of phase separation phenomena in
other settings than confined electrolytes. In general, the free energy density used in such phase
field theory is a double well potential inducing a partition of the state space into two phases.
Most of the studies have been performed in bulk situations where no external field perturbs the
constant ionic concentrations profiles in each phase. The first mathematical difficulty comes
from the fact that the underlying free energy density f is a non convex function of the ionic
concentrations, e.g. f is typically a double-well potential. Results have been achieved by
considering a regularized free energy functional of the form

Fκ,bulk(c) =
∫

Ω

{
κ2L3

∗

2β
|∇c|2 + f(c)

}
, (4.69)

with κ > 0 the regularization parameter, e.g., in the seminal work of Modica [79] without
nonlocal term. References on phase transition and links with Γ -convergence can also be found
in the book of Braides [15]. Other recent results concerning the study of the Ohta-Kawasaki
model (modelling diblock copolymer systems) are relevant here owing to the similarity of the
mathematical problem. Let us mention, without exhaustivity, the mathematical and numerical
works of Muratov [81], Choksi [18], and more recently Goldman, Muratov and Serfaty [32] who
studied Γ -convergence properties and Γ -expansions of a functional similar to Fκ,bulk when a
nonlocal operator accounting for Coulomb interaction is added.

The situation we consider in this thesis is slightly different since our nonlocal operator
takes into account the mean field internal energy of the ions and also the presence of a charged
inclusion or of a surrounding charged wall. In general, under those conditions, we do not
expect piecewise constant ionic concentrations profiles, but phase separation between a diluted
phase and a condensed phase with inhomogeneous ionic concentrations profiles in both phases,
induced by the gradient of the electrostatic potential in the system. In Chapter 6, we propose a
numerical approach to solve this phase separation problem in the case where a single counterion
compensates the negative surface charge. The method is based on two regularizations of the
initial model: using the convex hull of the bulk free energy instead of the free energy itself and
adding a gradient perturbation that penalizes the oscillation of the ionic concentrations (such
as (4.69)). These regularizations can be motivated by Γ -convergence arguments (sketched at
the end of Chapter 6).

Finally, we mention some work on the time-dependent setting and nonequilibrium situa-
tions that we do not consider in this thesis. We refer to the work of Schmuck [96] and Prohl and
Schmuck [91] who studied the time dependent Navier–Stokes–Poisson–Nernst–Planck (NSPNP)
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system and its numerical analysis, noting that steady-state solutions of the homogeneous NSPNP
system (for example with periodic boundary conditions and no source term) solve the Poisson–
Boltzmann equation. This mathematical and numerical analysis has been performed for models
that do not incorporate non-ideal effects. In fact, when considering transport within time-
dependent settings, in addition to the non-ideal terms in the electro-chemical potential (that
are relevant at equilibrium), additional corrections due to non-ideality appear in the diffusion
Onsager tensor [2, 23].

4.3 The primitive model for homogeneous electrolytes

We now turn to the derivation of the model presented in Section 4.2 starting from a model at
the molecular level. The present material is a formal derivation and collects existing results and
methods from various fields of Statistical physics (equilibrium thermodynamics, integral equa-
tions, inhomogeneous DFT, partial differential equations, mean-field theory). The calculations
are formal (unless mentioned), and the mathematical justification of the derivation is definitely a
challenge. We start by presenting the bulk theory in Section 4.3 where we derive the expression
of the ideal bulk free energy density fid and the non-ideal bulk free energy density fcorr. In
Section 4.4, we introduce a microscopic description of confined electrolytes and derive a density
functional theory for this model. We also present various approximations leading to the model
considered in Section 4.2 and in particular to the free energy functional F defined by (4.17) and
the bulk free energy density defined by (4.59).

We refer to the textbooks [41, 75] for further insight into the physical background. We
consider a simplified description of electrolytes which is the primitive model of electrolytes.
This model attempts to describe the behaviour of ions in solution by considering ions as charged
hard spheres of diameter σ± (expressed in m) and to consider the water as a continuous medium
of uniform dielectric constant ε = ε0εr. In this thesis, we consider the restricted primitive model
for electrolytes where all ions have the same diameter σ± = σ. The primitive model has been
considered historically for an isolated system, so that we may consider that the space of position
is R

3. This situation is referred to as the “bulk” situation, where the system is homogeneous (in
opposition to the confined situation, where the system is inhomogeneous).

4.3.1 Hamiltonian of the isolated system

In the primitive model, for binary electrolytes (two species) the ions are described by N =
N+ + N− particles of position and momenta (q, p) ∈ R

3N × R
3N and the energy of the system

is given by the Hamiltonian

H(q, p) =
1
2
pTM−1p+ V(q), (4.70)

with M = diag(m+,m−) the mass matrix, thereby considering that all the ions of same type
have the same mass. As we consider a two-species model, we can make more tractable the form
of the potential energy by collecting the positions of the ions of same type:

q = (q+, q−) ∈ R
3N+ × R

3N− ,
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and in the same fashion, we suppose that all the ions of the same type have the same valence
Z+ ∈ Z

+ \ {0} or Z− ∈ Z
− \ {0}. We write all the expressions of the potential energy by

distinguishing the contribution only through the species type. We start with the interaction
potential energy

V(q) =
∑

k=±

Vk(q), (4.71)

where we defined the potentials

Vk(q) =
∑

1≤i≤Nk


 ∑

i<j≤Nk

vk,k
(
qik − qjk

)
+

1
2

∑

1≤j≤N−k

vk,−k
(
qik − qj−k

)

 , k = ±. (4.72)

The pair potential is defined by

vk,l(r) :=





+∞, r ≤ σ,
ZkZl

(
LB

β

)
r−1, r > σ, k, l = ±, (4.73)

where the Bjerrum length LB is defined by

LB :=
βe2

4πε
. (4.74)

The Bjerrum length measures the distance at which the interaction between two charged particles
equals the thermal energy 1

β = kBT . The pairwise potential defined by (4.73) describes the
hardcore repulsion between the ions for distances lower than the ionic diameter and the Coulomb
interaction between the ions for distances larger than the ionic diameter.

4.3.2 The ideal gas bulk free energy density

We now present the derivation of thermodynamics quantities with the help of the microscopic
Hamiltonian defined by (4.70). We consider that the particles live in a bounded domain Ω and
are isolated from any external perturbation so that the system is homogeneous. We consider
a canonical setting (NVT) where the number of particles N , the occupied volume V and the
temperature T are fixed.

For completeness, we start by deriving the standard thermodynamic properties of the
ideal gas. Assume that the particles are confined in a volume Ω. Then, the expression of the
canonical measure for a system of N particles (with N = N+ + N−) at fixed temperature T is
given by

ψeq(q, p) =
1

N+!N−!~3N

e−βH(q,p)

Z
, (4.75)

where the partition function is given by

Z =
1

N+!N−!~3N

∫

ΩN×R3N
e−βH(q,p)dqdp < +∞, (4.76)
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for ~ the reduced Planck constant. In classical thermodynamics, it is convenient to introduce
the Helmholtz free energy of the system which is the thermodynamical potential defined by

F = − 1
β

log (Z) , (4.77)

which is minimal at equilibrium for a system at fixed number of particles N , volume V, and
temperature T . The free energy of the system is commonly written as

F = U − TS, (4.78)

where U is the internal energy and S is the entropy defined through the relations

S = −
(
∂F

∂T

)

N,V
, U =

(
∂(βF )
∂β

)

N,V

. (4.79)

Another useful quantity for the following derivation is the notion of bulk free energy density,
the latter being the rescaling of the free energy by the occupied volume:

f =
F

|Ω| . (4.80)

These equations make the link between classical thermodynamics and statistical mechanics.

Pursuing the analysis, using the separated form of the Hamiltonian, we can make more
explicit the partition function remarking that integration with respect to the momenta yields

Z =
1

Λ
3N+
+ Λ

3N−
− N+!N−!

∫

ΩN
e−βV(q)dq, (4.81)

since the distribution of momenta are Gaussians. When the potential energy is V = 0, we obtain
the partition function of the ideal gas:

Z id =
|Ω|N

N+!N−!Λ3N+
+ Λ

3N−
−

, (4.82)

where we recall the definition of the de Broglie wavelength

Λi =

(
2πβ~

2

mi

) 1
2

, i = ±. (4.83)

For nonzero V, we write
Z = Z idZex, (4.84)

with
Zex =

1

|Ω|N
∫

ΩN
e−βV(q)dq. (4.85)

We can turn back to the expression of the Helmholtz free energy, splitting F into ideal (Fid)
and excess component (Fex) by taking the logarithm of (4.84). This yields

F = Fid + Fex, (4.86)
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where
Fid := − 1

β
log(Z id), Fex := − 1

β
log(Zex). (4.87)

We can write

Fid =
1
β

[
log

(
N+!Λ3N+

+

|Ω|N+

)
+ log

(
N−!Λ3N−

−

|Ω|N−

)]
,

and using the Stirling approximation

log(k!) ∼k→∞
∫ k

0
log(n)dn = k (log(k)− 1) ,

we can approximate the ideal gas free energy as

FNid =
1
β

∑

i=±

(
Ni log

(
Λ3
i ci
)
− 1

)
, (4.88)

where we introduced the bulk ionic concentrations c = (c+, c−) (expressed in m−3) defined as

ci =
Ni

|Ω| , i = ±. (4.89)

In the thermodynamic limit, that is, ci =
Ni

|Ω| fixed and |Ω| → +∞, we obtain the ideal gas free

energy density

lim
thermo

FNid
|Ω| =

∑

i=±

fid(ci), (4.90)

where the function fid is defined by

fid(ci) :=
1
β
ci(log(Λ3

i ci)− 1), i = ±, ci ≥ 0. (4.91)

Note that this ideal gas contribution to the free energy density is purely entropic remarking
that, for fixed ci, we have

∂(βfid(ci))
∂β

= 0, i = ±, (4.92)

so that the corresponding internal energy is 0.

4.3.3 The non-ideal bulk free energy density

We now present a method to obtain the bulk free energy density fcorr which is, in general, an
approximation of Fex defined by (4.87). We do not reproduce all the tedious explicit calculations
but only the key ideas and will mostly refer to the bibliography.
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Distribution functions theory and the homogeneous Ornstein–Zernike equation

As detailed in the textbook [41], the key quantity to describe properties of bulk electrolytes is
the so-called pair distribution function gi,j defined by

gi,j(x, y) = (cicj)−1ρ2
i,j(x, y), i, j = ±, (4.93)

where x, y are positions in Ω and where

ρ2
i,i(q

1
i , q

2
i ) =

Ni(Ni − 1)

|Ω|N
∫

ΩN−2
(Zex)−1e−βV(q)dq3

i : dqNii dq−i, i = ±, (4.94a)

ρ2
i,j(q

1
i , q

1
j ) =

NiNj

|Ω|N
∫

ΩN−2
(Zex)−1e−βV(q)dq2

i : dqNii dq2
j : dqNjj , i = ±, j = −i, (4.94b)

recalling that the ci = Ni
|Ω| are the constant ionic concentrations. Notice that we have ρ2

i,j = ρ2
j,i.

Owing to translation invariance and isotropy, we have in fact

gi,j(x, y) ≡ gi,j(|x− y|), (4.95)

so that gi,j is also referred to as the radial pair distribution function. The physical interpretation
of the quantity gi,j(|x− y|) is that it is proportional to the probability of finding an ion of type
j at distance |x− y| of an ion of type i. The interest of the function gi,j is that it is directly
measurable by experiments (radiation-scattering experiments).

Let us introduce some notions and notation about the Ornstein–Zernike equation. The
Ornstein–Zernike equation is an integral equation relating the so-called direct pair correlation
function Ci,j to the so-called indirect pair correlation function hi,j . The indirect pair correlation
function hi,j is simply given by

hi,j := gi,j − 1, (4.96)

while the direct pair correlation function Ci,j is defined by the Ornstein–Zernike equation:

hi,j(|x− y|) = Ci,j(|x− y|) +
∑

k=±

ck

∫

Ω
Ci,k(

∣∣x− x′
∣∣)hk,j(

∣∣y − x′
∣∣)dx′. (4.97)

For convenience, we denote r = |x− y| > 0. The Ornstein–Zernike equation has a simple
physical interpretation since it splits the correlation between the ions in a direct contribution
Ci,j (the correlation between ion i and ion j) and an indirect correlation (the interaction of ion
i and ion j through a third one k). The practical interest of equation (4.97) is that it seems
easier to make an approximation of gi,j with the help of the direct pair correlation function Ci,j

solving (4.97). Indeed, the difficulty is that even in this bulk situation, the function gi,j is a
complex function of the high dimensional interaction potential V (and so is hi,j = gi,j − 1). The
idea is then to introduce a closure (either exact or approximate) specifying Ci,j for r > σ and
gi,j for r ≤ σ in order to solve (4.97) and find both gi,j and Ci,j for all r > 0 (analytically or
numerically).

Remark 4.1. (Well posedness of the Ornstein–Zernike equation.) The Ornstein–
Zernike equation (4.97) is formulated in the grand-canonical ensemble. In this thesis, we consider
a canonical setting and modifications of the Ornstein–Zernike theory are required to take into
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account the thermodynamics constraints, see White and Velasco [110]. In the homogeneous case
(considered above), it is stated in [110] and [92] that the equations of the canonical and grand
canonical settings only differ through an additive factor that goes to zero in the thermodynamic
limit.

The Mean Spherical Approximation

We now turn to the approximation leading to the non-ideal bulk free energy density considered
in this thesis. The goal is to obtain a suitable approximation of gi,j and Ci,j satisfying (4.97).

There is a wide variety of closures. We consider mostly the Mean Spherical Approxi-
mation (MSA) introduced by Waisman and Lebowitz in [63] and [64]. Blum generalised this
model to asymmetric electrolytes [10] with ions of different ionic diameters. The interest of the
MSA is that it provides semi-analytical expressions of most of the thermodynamic quantities
of interest (internal energy, free energy density, osmotic pressure). The MSA requires global
electroneutrality in the form: ∑

i=±

Zieci = 0, (4.98)

where we recall that ci are the bulk (constant) ionic concentrations. The closure is to postulate

hi,j(r) = −1, r ≤ σ, (4.99a)

Ci,j(r) = −ZiZjLBr
−1, r > σ. (4.99b)

The physical interpretation of the MSA is the following: the exact closure relation for hi,j
indicates that the ions cannot overlap each other, while the approximate closure for Ci,j supposes
an asymptotic behaviour matching that of the long-range potential. We define the short-range
part of the direct pair correlation function Ci,j by

C
SR
i,j (r) := Ci,j(r) + ZiZjLBr

−1, (4.100)

so that in the case of MSA we have

C
SR
i,j (r) =

{
Ci,j(r) + ZiZjLBr

−1, r ≤ σ,
0, r > σ.

(4.101)

Another remark of interest (observed in [64]) is that we can split the direct correlation function
calculated with the MSA into a hard-sphere component C HS and an electrostatic component
C Coul
i,j so that

C
SR
i,j (r) := C

HS(r) + C
Coul
i,j (r), (4.102)

for which we will give analytic expressions in the next sections. In bulk homogeneous fluids,
the correlation functions only depend on the distance between the atoms. The function C HS is
the direct-correlation function calculated with the Percus–Yevick closure for a pure hard-sphere
interaction potential, while the correlation function C Coul

i,j contains the electrostatic contribution
at distances lower than the ionic diameter [64]. These correlation functions have only a short-
range contribution owing to (4.101).
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Thermodynamics relationships

For a bulk system, we can derive exact expressions of various thermodynamics quantities such as
internal energy, compressibility, entropy and deduce formulas for derived or integrated quantities
(thermodynamic integration, virial theorem, Gibbs–Duhem equation). These formulas depend
generally on the pairwise potential energy vi,j and the radial distribution functions gi,j . For
example, the formula for the internal energy (per unit of volume) is given by

Uex

|Ω| =
1
2

∑

i,j=±

cicj

(∫

Ω
vi,j(x)gi,j(x, β)dx

)
. (4.103)

In general, the free energy is obtained by thermodynamic integration of a thermodynamic
quantity derived from the excess free energy. For example, thermodynamic integration of the
excess internal energy with respect to the inverse temperature β yields

βFex(β) =
∫ β

0
Uex(β′)dβ′, (4.104)

from definition (4.79). Another useful formula relates the pressure to the free energy, for example
for a one-component mixture, we have

βFex

|Ω| = c

∫ ξ

0

(
βP (ξ)
c
− 1

)
dξ′

ξ′
, (4.105)

where ξ is the packing number (defined by (4.109)) and using the thermodynamic relationship

P = −
(
∂F

∂V

)

T,N
. (4.106)

There also is a formula linking the free energy to the direct correlation function, which is
(see [41, Eq. 3.5.25])

βFex

|Ω| =
∑

i,j=±

cicj

∫ 1

0
(λ− 1)

∫

Ω
Ci,j(x, λc+, λc−)dxdλ. (4.107)

When the function gi,j is defined by (4.93) and (4.94) and Ci,j is defined by (4.97), then
(4.104) is equivalent to (4.107). This equivalence does not hold when using approximate closures
(such as MSA) so that gi,j does no longer satisfy (4.93) and (4.94). This phenomenon is the
so-called thermodynamic inconsistence.

In the next sections, we present the examples of the Percus–Yevick bulk free energy density
and the electrostatic component of the MSA bulk free energy density.

Hard-Sphere bulk free energy density for MSA

We now reproduce the derivation of the Hard-Sphere bulk free energy density used within the
MSA, the latter resulting from the decomposition of short-range steric exclusion effect and
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short-range Coulomb interaction. The Percus–Yevick direct correlation function is given by the
approximation of the solution of the Ornstein–Zernike equation in the form (see e.g [41, Section
4.4] and the proof therein):

C
HS(r, c) =




−λ1(ξ(c))− 6ξ(c)λ2(ξ(c))

(
r

σ

)
− 1

2
ξ(c)λ1(ξ(c))

(
r

σ

)3

, r ≤ σ,

0, r > σ,
(4.108)

where ξ(c) stands for the packing fraction and is defined through

ξ(c) :=
∑

i=±

ϑci, ϑ :=
πσ3

6
, (4.109)

and r = |x|. The functions λ1 and λ2 are defined, for 0 ≤ t < 1, by

λ1(t) =
(1 + 2t)2

(1− t)4
, λ2(t) = −

(
1 + t

2

)

(1− t)4
. (4.110)

Using this solution of the Ornstein–Zernike equation, two equations of state relating the
pressure (defined by (4.106)) to the concentration can be obtained by the so-called “virial route”
or the so-called “compressibility route”. One obtain (see [41, Section 4.4])

βPv(c)
c

=
1 + 2ξ(c) + 3ξ(c)2

(1− ξ(c))2 ,
βPcomp(c)

c
=

1 + ξ(c) + ξ(c)2

(1− ξ(c))3 , (4.111)

where Pv/comp is the pressure evaluated respectively via the virial route and compressibility
route. An interesting observation is that one obtain the Carnahan–Starling equation of state [74]
by considering a particular linear combination of the equations of state obtained through the
Percus–Yevick solution of the Ornstein–Zernike equation. There holds

βPCS(c)
c

=
β

3c
(2Pcomp(c) + Pv(c)) . (4.112)

The bulk free energy density accounting for the hard-sphere potential is obtained by using
formula (4.105) for the various pressure given above. In the applications, we do not consider
a Percus–Yevick expression of the hard-sphere free energy but rather two alternatives that are
the Carnahan-Starling given by

fCS(c) =




− 1
βϑ

ξ(c)2 (3ξ(c)− 4)

(1− ξ(c))2 , ξ(c) < 1,

+∞, ξ(c) ≥ 1.
(4.113)

and the linearized expression being obtained by a Taylor expansion of fCS at second order:

fCS(c) =
4ξ(c)2

βϑ
+O(c3) = fCS1(c) +O(c3).

In what follows, we refer to fHS when considering the hard-sphere component of the bulk free
energy density. This derivation justifies the definition of the bulk free energy density (CS) and
(CS1) previously defined by (4.57) and (4.58).
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Electrostatic correlations bulk free energy density for MSA

We now turn to the evaluation of the bulk free energy density accounting for electrostatic
correlations. From previous work ( [63], [64] and [10]), we can obtain an analytical expression of
the direct correlation function solution of (4.97) with the MSA closure (4.99). We express the
short-range direct correlation function in the form presented in [64] that reads

C
Coul
i,j (r) =




−LBZiZj

(
2B
σ
−
(
B

σ

)2

r − 1
r

)
, r ≤ σ,

0, r > σ,

(4.114)

the only difference with [64] being the last term proportional to r−1 coming from the fact we
subtracted this contribution in equation (4.100). In fact, following [35], this term can be omitted.
At this stage, the non-dimensional parameter B remains to be defined and is a function of the
ionic concentrations. To this end, we introduce the screening parameter ΓMSA (expressed in
m−1) derived in [10] as the solution of

Γ 2
MSA = πLB

∑

i=±

Z2
i ci

(1 + σΓMSA)2
, (4.115)

For convenience, we introduce the ionic strength (expressed in m−3) such that,

I(c) =
1
2

∑

i=±

Z2
i ci, (4.116)

The algebraic equation (4.115) can be easily solved when considered for equal ionic diameters
and the solution is

ΓMSA(c, β) =
1

2σ

(√
2σ(4πLB)1/2(2I(c))1/2 + 1− 1

)
(4.117)

Finally, the non-dimensional parameter B derived in [64] is given by

B(c, β) = − σΓMSA(c, β)
1 + σΓMSA(c, β)

. (4.118)

The method of derivation of the thermodynamics quantities is of paramount importance.
For example, for a bulk solution, where the ionic concentrations c = (c+, c−) are constant and
satisfy the electroneutrality condition (4.98), evaluating the integral (4.107) yields the value 0.
However, as mentioned in [11], the most reliable formula for the free energy density of the MSA is
obtained through the internal energy by computing Uex defined by (4.103) and thermodynamic
integration, applying formula (4.104). An issue is that even with the approximations performed,
the gi,j computed owing to the MSA are complex functions of ΓMSA (see [35, equation 10]) and as
explained in [64], some tricks of the analytic resolution of (4.97) with the approximations (4.99)
must be used to compute the integral (4.103). We mention the result derived in [64] where the
excess free energy density accounting for electrostatic correlations obtained by thermodynamic
integration of the internal energy is given by
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uCoul(c, β) :=
(

2LB

βσ

)
I(c)B(c, β), (4.119)

so that, using ∫ β

0
uCoul(c, β′)dβ′ = βfCoul(c, β), (4.120)

we get

fCoul(c, β) = fCoul(c) := −2LB

βσ

(
I(c)− 2σ

3πLB
(ΓMSA(c))3 − 1

2πLB
(ΓMSA(c))2

)
. (4.121)

Note that the electrostatic correlation bulk free energy density is a function only depending
on the ionic strength and is a priori only valid on the set



ci ≥ 0,

∑

i=±

Zici = 0



 ⊂ R

2.

Nonetheless, in the applications, we will not restrict ourselves to this bulk setting and use this
expression for any couple of positive ionic concentrations. Moreover, the free energy density
given by (4.121) is the sum of a non-zero internal energy and a non-zero entropy (as opposed
to the ideal and hard-sphere bulk free energy densities for which we have seen that the internal
energy is 0).

Eventually, all these calculations lead to the following bulk free energy density:

f(c) :=


∑

i=±

fid(ci)


+ fcorr(c), fcorr(c) := fCoul(c) + fHS(c). (4.122)

which was the first task of the derivation.

Remark 8 (Thermodynamic limit) As in the case of the ideal bulk free energy density, the
non-ideal bulk free energy density has to be understood in the thermodynamic limit [94].

4.4 Derivation of the free energy functional F for confined electrolytes

4.4.1 A microscopic model for confined electrolytes

We now turn to the description of a microscopic model for confined inhomogeneous fluids at the
molecular level. In what follows, we still consider thermodynamic properties in the canonical
ensemble, that is the number of particles N , the volume V, and the temperature T are fixed.
This section shares a lot of elements with Section 4.3, and we try to emphasize the differences
caused by the inhomogeneity and the confinement. In order to derive the continuous model, the
space of positions is required to be a three-dimensional torus of the form

D = ℓx1T× ℓx2T× ℓx3T, (4.123)
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Fig. 4.2. Geometry for this derivation.

for length scales (ℓx1 , ℓx2 , ℓx3) ∈ R
3. To simplify the notation, we set ℓx1 = ℓx2 = ℓx3 = L∗

and we recall the minimal assumption L∗ > σ, so that a single cell [0, L∗]3 contains at least one
particle. We introduce the subset ΩS of D being the solid object whose boundary is negatively
charged and Ω = D \ ΩS . Here we assume that ΩS ⊂⊂ D, see Figure 4.2. We consider a
system of N ions of positions and momenta (q, p) ∈ DN × R

3N . The energy of the system is
now described by the Hamiltonian

H(q, p) =
1
2
pTM−1p+ V (q), V (q) = Vinter(q) + Vext(q),

with M the mass matrix as before. The internal potential Vinter is the sum of the pair interactions
in the form

V (q) =
∑

k=±

{
V k

inter(q) + V k
ext(q)

}
. (4.124)

We define the potential

V k
inter(q) =

∑

1≤i≤Nk


 ∑

i<j≤Nk

vk,k
(
qik − qjk

)
+

1
2

∑

1≤j≤N−k

vk,−k
(
qik − qj−k

)

 , k = ±, (4.125)

with pairwise potential for x ∈ D,

vi,j(x) :=

{
+∞, |x| ≤ σ,
ZiZjvCoul(x), i, j = ±, elsewhere,

(4.126)

with the same conventions as in Section 4.3. To define the periodic version of the Coulomb
potential, vCoul, we consider G, the Green function for D, such that ϕ = (G ⋆ (g − 〈g〉D)) solves

−∆ϕ = g − 〈g〉D, ϕ L∗-periodic , 〈ϕ〉D = 0, (4.127)

where 〈g〉D denote the average of g over the volume D. In general, the function G is not a
function only depending on the distance to the origin (as opposed to the case of the whole space
where GR3 is invariant with respect to the rotations). The potential vCoul is defined by

vCoul(x) :=
4πLB

β
G(x), x ∈ D. (4.128)

The external potentials V k
ext are of the form
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V k
ext :=

{
(Zke)ψS (x) , x ∈ Ω, k = ±,
+∞, x ∈ ΩS .

(4.129)

This potential describes the Coulomb interaction and the hardcore repulsion between the ions
and the solid object ΩS negatively charged on its surface. The present setting can be adapted
to the case of nanochannels or cylindrical inclusions.

The definition of the electrostatic potential ψS relating the charged solid ΩS to the other
particles requires some care. We introduce the surface charge density ΣS > 0 (expressed in
Cm−2) carried by the boundary of ΩS . For convenience, we also define the permittivity of the
domain D as the piecewise constant function

εD(x) =

{
ε, x ∈ Ω,
εS, x ∈ ΩS ,

(4.130)

where εS > 0 is the permittivity of the solid ΩS . The last definition allows us to consider ψS as
the solution (up to an additive constant) of the following boundary value problem on D:





− div (εD∇ψS) =
1Ω
|Ω|

∫

∂ΩS

ΣS , in D,

ψS periodic on ∂D ,

[εD∇ψS] · n = −ΣS , on ∂ΩS ,

(4.131)

where [g]∂ΩS is the jump of the function g across the boundary ∂ΩS in the direction of the
normal vector n which is oriented outward to ∂ΩS . A simplification of the problem (4.131) is
to consider that

εS (∇ψS · n) |ΩS ≪ ΣS , (4.132)

so that we consider that ψS is the unique solution of the problem




− ε∆ψS =
1
|Ω|

∫

∂ΩS

ΣS , in Ω,

ψS periodic on ∂Ω \ ∂ΩS ,

∇ψS · n = −ΣS
ε
, on ∂ΩS , 〈ψS〉Ω = 0,

(4.133)

where the last condition fixes the additive constant on ψS.

At this level of description, the system consisting of discrete ions and the solid object is
still high-dimensional and requires a statistical mechanics treatment. Since the charged object
has hard repulsion, we consider the problem posed on the volume accessible to the ions that
is, Ω = D \ ΩS , and we denote |Ω| the volume of Ω that is L3

∗ − |ΩS |. We now attempt to
derive macroscopic thermodynamics quantities for the system confined system, following the
same ideas as in the bulk theory derived in Section 4.3.

4.4.2 Inhomogeneous Ornstein–Zernike equation

We define the probability density ρeq of positions defined by
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ρeq(q) := Z−1
ex e
−βV (q), Zex :=

1

|Ω|N
∫

ΩN
e−βV (q)dq. (4.134)

By analogy with Section 4.3, we perform partial integrations of the equilibrium probability
density ρeq with respect to all the positions of the ions of each species except one or two particles
allowing us to define the one-body and two-body macroscopic densities

ρ1
i (q

1
i ) =

Ni

|Ω|N
∫

ΩN−1
ρeq(q)dq2

i : dqNii dq−i, i = ±, (4.135a)

ρ2
i,i(q

1
i , q

2
i ) =

Ni(Ni − 1)

|Ω|N
∫

ΩN−2
ρeq(q)dq3

i : dqNii dq−i, i = ±, (4.135b)

ρ2
i,j(q

1
i , q

1
j ) =

NiNj

|Ω|N
∫

ΩN−2
ρeq(q)dq2

i : dqNii dq2
j : dqNjj , i = ±, j = −i. (4.135c)

Notice that we still have ρ2
i,j = ρ2

j,i. The function ρ1
i is the one-body macroscopic density

and ρ2
i,j is the two-body macroscopic density. We integrated over Ω, since supp(ρ1

±) = Ω and
supp(ρ2

±,±) = Ω×Ω. This is in fact a consequence of the presence of the hard-sphere term (4.129)
excluding the ions from the volume ΩS . Indeed, we notice that the equilibrium distribution ρeq

satisfies

ρeq(q) = Z−1
ex e
−βVinter(q)

∏

1≤k≤N

e−βV
k

ext(qk) = 0, ∀q ∈
⋃

1≤k≤N

{qk ∈ ΩS}. (4.136)

In what follows, we define the (inhomogeneous) ionic concentrations by

ci(x) = ρ1
i (x), x ∈ Ω, ci(x) = 0, x ∈ ΩS . (4.137)

Still by analogy with the homogeneous theory, an inhomogeneous Ornstein–Zernike theory
can be derived. We recall that in this framework, the indirect pair correlation function is defined
by

hi,j = gi,j − 1, i, j = ±, (4.138)

where gi,j is the so-called pair distribution function

gi,j(x, y) :=
ρ2
i,j(x, y)

ci(x)cj(y)
, i, j = ±, (4.139)

so that gi,j and hi,j are well defined through the knowledge of ρeq. The direct correlation function
Ci,j is defined by the following integral equation:

hi,j(x, y) = Ci,j(x, y) +
∑

k=±

∫

Ω
ck(x′)Ci,k(x, x′)hk,j(x′, y)dx′. (4.140)

We assume that the solution of (4.140) exists and is uniquely determined by hi,j and c±. The
direct correlation function allows us to define the following free energy functional:

Finter(c) =
1
β

∑

i,j=±

∫

Ω×Ω
ci(x)cj(y)

∫ 1

0
(λ− 1) Ci,j(x, y, λc+, λc−)dλdxdy, (4.141)

by analogy with formula (4.107). This free energy functional is motivated for example in [29].



102 4 Modelling of non-ideal equilibrium electrolytes

4.4.3 Ansatz for the free energy functional

We assume that the following ansatz for the free energy functional F holds true:

F(c) = Fid(c) + Finter(c) + Fext(c). (4.142)

We will define Fext and Fid, while Finter has been defined by (4.141). In Section 4.2, the free
energy functional F has been written as

F(c) = Fid(c) + Fcorr(c) + Fmf(c). (4.143)

For the derivation, the formula (4.142) is more convenient and we will see that some contribution
of Finter distributes in Fcorr while the remainder contributes to Fmf .

The ideal contribution Fid is obtained by integration over the volume Ω of the ideal bulk
free energy density derived in Section 4.3.2:

Fid(c) :=
∑

i=±

∫

Ω
fid(ci), (4.144)

where fid is defined by (4.91).

We define the external free energy functional by

Fext(c) :=
∫

Ω
ρ(c)ψS, (4.145)

with
ρ(c(x)) :=

∑

i=±

Zieci(x), x ∈ Ω, ρ(c(x)) := 0, x ∈ ΩS , (4.146)

the charge density and by definition of V k
ext for x ∈ Ω, see (4.129).

It remains to derive the functional Finter. To this purpose, we make approximations of the
function ρ2

i,j . The rewriting in terms of the direct-correlation function Ci,j is still motivated by
the fact that it is easier to make approximations on Ci,j rather than on ρ2

i,j . This is the purpose
of the remainder of this section.

Anticipating the approximation to be performed on Ci,j , we define the so-called short-range
contribution

C
SR
i,j (x, y) = Ci,j(x, y) + ZiZj4πLBGlr(x, y), (4.147)

analogous to the decomposition we performed in § 4.3.3. The function Glr is the Green func-
tion for the operator −∆ on Ω with homogeneous Neumann boundary condition on ∂ΩS and
periodic boundary conditions on ∂Ω \ ∂ΩS . This rewriting defines in fact a first closure re-
lation for Ci,j , thereby assuming that the long-ranged contributions on Ci,j can be written as
−ZiZj4πLBGlr(x, y). This is motivated by the analogy with the bulk where Glr(x, y) = 1

4π|x−y| .
Then, we define

ψinter(x) =
1
ε

∫

Ω
ρ(c(y))Glr(x, y)dy, (4.148)

so that using (4.141), (4.147), (4.145), and the definition of Glr, we get
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1
2β

∑

i,j=±

∫

Ω×Ω
ci(x)cj(y)

(
βe2

ε

)
Glr(x, y)dxdy =

1
ε

∫

Ω×Ω
ρ(c(x))ρ(c(y))Glr(x, y)dxdy, (4.149)

(recalling LB = βe2

4πε). It follows that

Finter(c) =
1
ε

∫

Ω×Ω
ρ(c(x))ρ(c(y))Glr(x, y)dxdy−

1
β

∑

i,j=±

∫

Ω×Ω
ci(x)cj(y)

∫ 1

0
(λ− 1)C SR

i,j (x, y, λc+, λc−)dλdxdy,
(4.150)

so that, re-arranging the terms, we infer

Finter(c) + Fext(c) =
1
2

∫

Ω
ρ(c) (ψinter + 2ψS)

− 1
β

∑

i,j=±

∫

Ω×Ω
ci(x)cj(y)

∫ 1

0
(λ− 1)C SR

i,j (x, y, λc+, λc−)dλdxdy.
(4.151)

For further purpose we introduce the functional F̃mf as

F̃mf(c) :=
1
2

∫

Ω
ρ(c) (ψinter + 2ψS) , (4.152)

(we will see in § 4.4.4 that F̃mf and Fmf defined by (4.27) only differ by an irrelevant additive
constant). The correlation free energy functional is given by

Fcorr(c) := − 1
2β

∑

i,j=±

∫

Ω×Ω
ci(x)cj(y)

∫ 1

0
(λ− 1)C SR

i,j (x, y, λc+, λc−)dλdxdy. (4.153)

The mean-field term contains the internal Coulomb energy coupled with the external contribu-
tion Fext while the term Fcorr contains correlations coming from the interaction between the ions,
including Coulomb interaction and hard-sphere repulsion. The superscript SR indicates that the
removal of the Coulomb potential on the total correlation function Ci,j allows to consider C SR

i,j

as a short-range function. This statement is motivated in section 4.4.5.

4.4.4 Derivation of Fmf

We now derive the mean-field free energy functional related to the equation satisfied by the
electrostatic potential ψ defined on Ω. We start by imposing global electroneutrality of the
system ∫

Ω
ρ(c) =

∫

∂ΩS

ΣS , (4.154)

Let us recall that the ionic concentrations ci are such that

supp(ci) ⊂ Ω, i = ±, (4.155)

meaning the ions are excluded from the volume ΩS . By definition of ψinter, see (4.148), ψinter is
the solution of the boundary value problem on Ω



104 4 Modelling of non-ideal equilibrium electrolytes
{
− ε∆ψinter = ρ(c)− 〈ρ(c)〉Ω, in Ω,

ψinter is periodic on ∂Ω \ ∂ΩS , ∇ψinter · n = 0 on ∂ΩS , and 〈ψinter〉Ω = 0,
(4.156)

and we recall that ψS is the unique solution of




− ε∆ψS =
1
|Ω|

∫

∂ΩS

ΣS , in Ω,

ψS is periodic on ∂Ω \ ∂ΩS , ∇ψS · n = −ΣS
ε

on ∂ΩS , and 〈ψS〉Ω = 0.
(4.157)

It follows that ψ = ψinter + ψS is the solution of the following boundary value problem on Ω:

− ε∆ψ = ρ(c) in Ω, (4.158a)

ψ is periodic on ∂Ω \ ∂ΩS , ∇ψ · n = −ΣS
ε

on ∂ΩS , and 〈ψ〉Ω = 0. (4.158b)

We are now in a position to define the mean-field component of the electrostatic excess
free energy as

Fmf(c) :=
1
2

(∫

Ω
ρ(c)ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨΣS (ρ(c))
)
, (4.159)

with ψ = ΨΣS (ρ), where ΨΣS is defined by (4.25) in Section 4.2.

Let us rewrite the second contributions in F̃mf . Using the weak formulation for the bound-
ary value problem for ψ and ψS, we have that

∫

Ω
ρ(c)ψS =

∫

Ω
∇ψ · ∇ψS +

∫

∂ΩS

ψSΣS

= −
∫

∂ΩS

(ψ − ψS)ΣS .
(4.160)

The term
∫
∂ΩS

ψSΣS is independent of c so that we can forget it; a constant shift in the functional

being transparent in view of minimization. It follows that F̃mf and Fmf differ only by an
irrelevant additive constant. This constant is in fact the free energy accounting for the solid-
solid interaction.

4.4.5 Approximations of Fcorr

We now present the final approximation that we need to end up with the derivation of F . For
completeness, we start by presenting the Mean-field approximation in the ideal case yielding the
Poisson–Boltzmann equation, and then we present the two approximations needed to derive the
functional Fcorr defined by (4.23).

Mean-field approximation of Fcorr in the ideal case

We start by the Mean-field approximation yielding the Poisson–Boltzmann equation. The sim-
plest approximation consists in setting
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gi,j ≡ 1 and σ ≡ 0, (4.161)

thereby neglecting the correlations between the particles and the size of the particles (assuming
the ions are pointwise).

This approximation has two consequences. At the continuous level, the ions experience the
same mean-field potential ψ. The second consequence is that the hard-sphere potential energy
is now 0. Since Ci,j = 0 is, in this particular case, the unique solution of (4.140), it follows that

Fcorr(c) ≡ 0. (4.162)

Within this approximation, the free energy functional F is then the sum of the ideal and mean-
field term

F(c) := Fid(c) + Fmf(c), (4.163)

The Poisson–Boltzmann theory is a mean-field theory in the sense that approximation (4.161)
is an assumption of independence of the particles in the system. We have seen in Section 4.2
that a minimizer c of F under the canonical constraints is such that ψ = ΨΣS

(ρ(c)) solves the
Poisson–Boltzmann equation

−ε∆ψ =
∑

i=±

eΛ−3
i Zie

βµbulk
i e−βZieψ, (4.164)

with inhomogeneous Neumann boundary conditions and for some constant chemical potential
µbulk
i .

Remark 9 (Mean-field limit theory.) In fact, the assumption of independence of the parti-
cles in the system can be rigorously proved in some cases using probabilistic tools and the theory
of mean-field limits [102]. Such a rigorous mathematical treatment of the mean-field limit is not
covered in this thesis; we refer to previous work that studied similar problems in the bulk for
systems with Coulomb interactions in 2D [12,16] .

Local Density Approximation of Fcorr

We now present the approximations made on Fcorr allowing to finish the derivation of F . The
first approximation that we make is to postulate that

C
SR
i,j (x, y) ≡ C

SR
i,j (|x− y|), (4.165)

where C SR
i,j is the short-range direct correlation solution of the homogeneous Ornstein–Zernike

equation (4.97). In particular, the consequence of this approximation is that the correlations
between the ions and the charged surface ∂ΩS are neglected so that the interaction between the
ions and the solid ΩS are only treated at a mean-field level through the free energy functional
Fmf .

The second approximation is the so-called Local Density Approximation (LDA) introduced
by Kohn and Sham [61] in the context of Hartree–Fock models. Nevertheless, the key ideas are
similar to the present framework. The LDA consists in assuming that
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Fcorr(c) ≡
∫

Ω
fcorr(c), (4.166)

where fcorr is the exact bulk free energy density accounting for non-ideality evaluated for a bulk
solution (without approximations either on gi,j or Ci,j). In practice, we use the approximations
derived in Section 4.3, so that fcorr is given by formula (4.122). As mentioned in [61], this
approach may be valid for slowly varying ionic concentrations. From a numerical viewpoint, the
functional

Fcorr(c) =
∫

Ω
fcorr(c), (4.167)

is much more tractable than the original functional involving the evaluation of non-local opera-
tors.

In comparison with the Mean-field approximation in the ideal case, yielding the Poisson–
Boltzmann free energy (4.163), we observe that the LDA yields a functional similar to the
Poisson–Boltzmann functional with corrections on the bulk free energy density coming from
the microscopic theory. This derivation is a first step towards models closer to the microscopic
description. Improvement of the approximations of the functional Fcorr is still an active topic
of research.
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5.1 Introduction

In this chapter, we undertake the mathematical analysis of the model describing equilibrium
binary electrolytes surrounded by charged solid walls. Our main result, Theorem 7 below, states
that there is a unique saddle point (ψ, c) of the functional (4.41) for an equilibrium binary
electrolyte surrounding a charged inclusion or confined by charged walls. The electrostatic po-
tential ψ is sought in the Sobolev space H1 with zero mean-value, while the ionic concentrations
c = (c+, c−) are sought in the closed convex subset of L2×L2 consisting of nonnegative ionic con-
centrations with prescribed mean-value (canonical constraint). Moreover, we prove that ψ and
c± are in L∞(Ω), and that c± are uniformly bounded away from zero. Theorem 7 is established
under four main assumptions stated in §5.2.2. The first two assumptions are the classical global
electroneutrality condition on the prescribed mean ionic concentrations and elliptic regularity
for the Poisson problem governing the electrostatic potential (with non-homogeneous Neumann
boundary conditions). The other two conditions are formulated in an abstract setting for the ac-
tivity coefficient log(γ0) describing non-ideal electrostatic correlations. These conditions, which
in particular encompass the MSA setting, require a sublinear growth condition at large ionic
concentrations for log(γ0), and a lower bound on the derivative of log(γ0) with respect to the
ionic strength. This last condition is important to assert the convexity of the bulk free energy.
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This convexity condition is derived here using the linear expression (4.54) for the activity coeffi-
cient related to steric exclusion. The main idea is that the ideal and hard-sphere contributions,
which dominate respectively at very low and large ionic concentrations, are both convex, but the
electrostatic correlations lead to a non convex contribution to the bulk free energy. Furthermore,
we observe that we do not need to enforce a priori L∞-bounds on the concentrations. To the
best of our knowledge, the present analysis, together with the ongoing work [2] investigating
the role of non-ideality for homogenized ion transport in porous media, is the first to address
mathematically the critical points of the free energy in the presence of electrostatic correlations.

This chapter is organized as follows. In §5.2, we state the mathematical assumptions
together with our main result, we present first the main steps of its proof for more clarity, and
then we prove various technical lemmas, dealing in particular with the convexity of the bulk free
energy and the a priori bounds on the electrostatic potential and ionic concentrations. Finally,
we focus on numerical aspects in §5.3, providing details about the numerical method employed
to solve the conservation equations and some numerical illustrations of the physical setting.

5.2 Mathematical analysis

In this section, following the mathematical framework of Section 4.2, we prove that, under
the assumptions stated below, the functional E defined by (4.41) admits a unique saddle point
(ψ, c). Moreover, we establish some a priori bounds on (ψ, c) and show that ψ solves the Poisson
problem (4.14a), (4.14d)-(4.14f) while the electrochemical potentials µel

i (ψ, c), i = ±, defined
by (4.5) are constant in Ω. In what follows, we consider an abstract setting for the one-real
variable function log(γ0) which can be chosen arbitrarily provided assumptions (H3)-(H4) below
are satisfied. The MSA case where log(γ0) is defined by (4.52) is a special case of application,
for which the verification of assumptions (H3)-(H4) is discussed in §5.3. We use the expression
(CS1) given by (4.56) for the steric exclusion term.

5.2.1 Non-dimensionalization

We start by making the equations non-dimensional. There are three length scales in the problem:
the characteristic size of the elementary cell L∗, the mean ion diameter σ, and the Bjerrum length
LB = βe2

4πε . It is convenient to introduce the reference Debye length L∗D and the non-dimensional
ratio λ such that

L∗D :=

√
L3
∗

4πLB
, λ :=

(
L∗D
L∗

)2

=
L∗

4πLB
. (5.1)

The reference Debye length represents the scale over which the ions screen out the electric field
at the reference concentration L−3

∗ .

In what follows, we use L∗ as the reference length. Moreover, the reference electrostatic
potential is the so-called Zeta potential ψ∗ := kBT/e, the reference electrochemical potential is
µ∗ := kBT , the reference surface charge density is ΣS∗ := kBTε/(eL∗), and the reference ionic
concentration is c∗ := L−3

∗ . Typical values for these quantities are provided in §5.3. With these
reference values, the governing equations are recast into non-dimensional form, and to alleviate
the notation, we use the same symbols for non-dimensional quantities.
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The Poisson problem for the electrostatic potential ψ takes the form

− λ∆ψ =
∑

i=±

Zici in Ω, (5.2a)

ψ is periodic on ∂Ω \ ∂ΩS , (5.2b)

∇ψ · n = −ΣS on ∂ΩS , (5.2c)

〈ψ〉Ω = 0. (5.2d)

The mean ionic concentrations cbulk
± satisfy the global electroneutrality condition

∑

i=±

Zic
bulk
i =

λ

|Ω|

∫

∂ΩS

ΣS , (5.3)

and the electrochemical potentials are such that

µel
i (ψ, c) = log(σ3ci) + log(γi(c)) + Ziψ, i = ±. (5.4)

The functional E is now
E(ψ, c) = U(ψ)− B(ψ, c)−Fbulk(c), (5.5)

where

B(ψ, c) =
∑

i=±

∫

Ω
Ziciψ, (5.6a)

U(ψ) =
λ

2

∫

Ω
|∇ψ|2 + λ

∫

∂ΩS

ΣSψ. (5.6b)

The bulk free energy density functional Fbulk is such that

Fbulk(c) = Fid(c) + Fcorr(c), (5.7)

with
Fid(c) :=

∑

i=±

∫

Ω
fid(ci), Fcorr(c) :=

∫

Ω
fcorr(c). (5.8)

The nondimensional ideal free energy density is given by

fid(u) :=

{
u(log(σ3u)− 1), u > 0,

0, u = 0,
(5.9)

while the excess free energy density fcorr : R
2
≥0 → R is now given by

fcorr(c) := f0(I(c)) +
2πσ3

3
(c+ + c−)2, (5.10)

where I(c) =
∑
i=± ηici, ηi = 1

2Z
2
i , is the ionic strength. In the MSA case, there holds, for all

θ ∈ R≥0,

f0(θ) := − 1
4πσλ

(
θ − 8λσ

3
(ΥMSA(θ))3 − 2λ (ΥMSA(θ))2

)
. (5.11)
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The ideal bulk free energy density fid is continuous in R≥0 and continuously differentiable in
R>0, while the excess bulk free energy density fcorr is continuously differentiable in R

2
≥0 with

∂fcorr

∂ci
(c) = log(γi(c)), i = ±. (5.12)

The rescaled activity coefficients γ±(c) are decomposed as in (4.45). The Coulomb term is still
given in the form (4.49) in terms of the function γ0 : R≥0 → R≥0. In the MSA case, there holds,
for all θ ∈ R≥0,

log(γ0(θ)) := − 1
4πλ

ΥMSA(θ)
1 + σΥMSA(θ)

, (5.13)

with the function ΥMSA : R≥0 → R≥0 such that,

ΥMSA(θ) :=
1

2σ

(√
2σλ−1/2(2θ)1/2 + 1− 1

)
. (5.14)

Finally, the steric exclusion term is simply given by

log(γHS(c)) = log(γ1(ξ(c))) = 8ξ(c) =
4π
3
σ3(c+ + c−). (5.15)

5.2.2 Assumptions

We consider the sets

H :=
{
φ ∈ H1

per(Ω), 〈φ〉Ω = 0
}
, (5.16)

K :=
{
c = (c+, c−) ∈ [L2(Ω)]2, c± ≥ 0 a.e. in Ω, 〈c±〉Ω = cbulk

±

}
, (5.17)

where the functional spaces H1
per(Ω) and L2(Ω) are, respectively, the closure of C∞per(Ω), the

space of periodic and infinitely differentiable functions in Ω, for the canonical norms ‖·‖H1(Ω)

and ‖·‖L2(Ω). It is clear that H is a closed subspace of H1
per(Ω) and that K is a closed convex

subset of [L2(Ω)]2.

In what follows, we make the following assumptions:

• (H1) ΣS ∈ H1/2(∂ΩS), the real numbers cbulk
± are positive and satisfy the global electroneu-

trality condition (5.3).

• (H2) The affine operator ΨΣS : L2(Ω) → H (in nondimensional form) such that, for all
g ∈ L2(Ω), ΨΣS (g) ∈ H solves −∆ΨΣS (g) = g−〈g〉Ω+ |Ω|−1

∫
∂ΩS

ΣS in Ω with the Neumann
boundary condition ∇ΨΣS (g)·n = −ΣS on ∂ΩS and 〈ΨΣS (g)〉Ω = 0, is bounded from L2(Ω)
to H2(Ω).

• (H3) The function θ 7→ log(γ0(θ)) is continuous on R≥0; moreover, there is β ∈ [0, 1) and
(C1, C2) ∈ R

2
≥0 such that

∀θ ∈ R≥0, | log(γ0(θ))| ≤ C1 + C2θ
β . (5.18)
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• (H4) The function θ 7→ log(γ0(θ)) is non-increasing and continuously differentiable on R>0

and there holds, for all θ ∈ R>0,

η♯
θ

+
4πσ3

3
+

(
2η2
♯ +

2πσ3

3η♭
θ(η♯ − η♭)2

)
(log(γ0))′(θ) > 0, (5.19)

where η♯ := max(η+, η−) and η♭ := min(η+, η−).

An important consequence of assumption (H3) is that the excess bulk free energy fcorr is a
nondecreasing function of both its arguments if at least one ionic concentration is large enough.

Lemma 3 Assume (H3). Then, there is κγ ∈ R≥0 such that, for all c ∈ R
2
≥0 satisfying c+ ≥ κγ

or c− ≥ κγ, there holds
∂fcorr

∂c+
(c) ≥ 0,

∂fcorr

∂c−
(c) ≥ 0. (5.20)

Proof. Recall that

∂fcorr

∂c±
(c) = log(γ±(c)) = 2η± log(γ0(I(c)) +

4π
3
σ3(c+ + c−).

Invoking assumption (H3), we infer that for suitable constants C3 and C4, there holds

∂fcorr

∂c±
(c) ≥ 4π

3
σ3(c+ + c−)− C3 − C4(cβ+ + cβ−).

Since β ∈ [0, 1), the conclusion is straightforward. ♦

5.2.3 Main result and main steps of its proof

It is readily verified that the functional E maps H× K to R. We recall that (ψ, c) ∈ H× K is a
saddle point of E if

∀c̃ ∈ K, E(ψ, c̃) ≤ E(ψ, c) ≤ E(φ, c), ∀φ ∈ H. (5.21)

We can now state the main result of this chapter.

Theorem 7 Assume (H1, (H2), (H3) and (H4). Then, the functional E has a unique saddle
point (ψ, c) ∈ H × K. Moreover, ψ ∈ L∞(Ω) and there are 0 < cm ≤ cM < +∞ such that,
for a.e. x ∈ Ω, cm ≤ ci(x) ≤ cM , i = ±. Finally, ψ solves the Poisson problem (5.2), and the
electrochemical potentials µel

i (ψ, c), i = ±, defined by (5.4) are constant in Ω.

Remark 10 (Minimizer of F) Under the same technical assumptions (H1), (H2), (H3) and
(H4), we can prove that the problem (4.39) admits a unique minimizer solving (4.14).

Proof. The proof is decomposed into several steps.
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Existence of a saddle point

For any c̄ ∈ K, the functional H ∋ ψ 7→ E(ψ, c̄) ∈ R is strictly convex, continuous, and satisfies,
for all ψ ∈ H with ‖ψ‖H1(Ω) → +∞, E(ψ, c̄) → +∞. Furthermore, in Lemma 4 below, we use
assumption (H4) to prove that the bulk free energy functional Fbulk is convex on K, while in
Lemma 5, we use assumption (H3) to prove that the bulk free energy functional Fbulk is contin-
uous on K. Hence, for any ψ̄ ∈ H, the functional K ∋ c 7→ E(ψ̄, c) ∈ R is concave and continuous.
Additionally, for all c ∈ K with ‖c‖[L2(Ω)]2 → +∞, Fbulk(c) → +∞ and E(ψ̄, c) → −∞ since,
at high concentrations, the hard-sphere contribution to the activity coefficient dominates. As
a result, we can apply the Ky Fan–Von Neumann theorem [27, Prop. 2.2, p. 161] to infer the
existence of a saddle point (ψ, c) of the functional E .

Characterization of, and bound on electrostatic potential

Let (ψ, c) ∈ H × K be a saddle point of the functional E . Since E is differentiable with respect
to ψ and since H is a vector space, there holds

〈∂ψE(ψ, c), φ〉 = λ

∫

Ω
∇ψ·∇φ+ λ

∫

∂ΩS

ΣSφ−
∑

i=±

∫

Ω
Ziciφ = 0, ∀φ ∈ H.

This shows that ψ solves the Poisson problem (5.2). Moreover, recalling the affine operator ΨΣS :
L2(Ω)→ H introduced in assumption (H2) and using the global electroneutrality condition (5.3),
we infer

ψ = ΨΣS


 1
λ

∑

i=±

Zici


 .

As a result, ψ ∈ H2(Ω), and owing to the Sobolev embedding theorem, ψ ∈ L∞(Ω).

Characterization of, and bound on ionic concentrations

Using assumption (H3), we prove in Lemmas 6 and 7 below that there are 0 < cm ≤ cM < +∞
such that, for a.e. x ∈ Ω, cm ≤ ci(x) ≤ cM , i = ±. Finally, owing again to the uniform lower
bound on the ionic concentrations and using Lemma 5, we infer that the functional E is Gâteaux-
differentiable at (ψ, c) with respect to c± along any direction v ∈ C∞per(Ω) with 〈v〉Ω = 0, and
there holds

〈∂c±E(ψ, c), v〉 =
∫

Ω
µel
±(ψ, c)v,

where µel
±(ψ, c) are the electrochemical potentials defined by (5.4). Let now v ∈ C∞per(Ω).

Since (ψ, c) is a saddle point, there holds 〈∂c±E(ψ, c), ṽ〉 = 0 with ṽ = v − 〈v〉Ω, whence∫
Ω{µel

±(ψ, c)− 〈µel
±(ψ, c)〉Ω}v = 0. By density of C∞per(Ω) in L2(Ω), this shows that the electro-

chemical potentials are constant in Ω.

Uniqueness

The functional E is strictly convex in its first argument. Moreover, owing to the uniform lower
bound on the ionic concentrations, the bulk free energy is strictly convex in c (see, again,
Lemma 4 below). This yields uniqueness of the saddle point. ♦
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Remark 11 (Critical points are saddle points) It is readily verified using convexity argu-
ments that if (ψ, c) (with c uniformly bounded from above and below) is a critical point of the
free energy functional E, then (ψ, c) is a saddle point of E. In §5.3, we will compute an ap-
proximation of the saddle point by solving the Euler–Lagrange equations satisfied by the critical
point.

5.2.4 Technical results

We prove the various lemmas invoked in the proof of our main result, Theorem 7. Our first
result concerns the convexity of the bulk free energy functional Fbulk.

Lemma 4 (Convexity of the bulk free energy) Assume (H4). Then, the functional Fbulk

is convex on K and strictly convex on the subset K>0 := {c ∈ K; c+ > 0 and c− > 0 a.e. in Ω}.

Proof. It suffices to show that the bulk free energy density f : R
2
≥0 → R such that, for all

c = (c+, c−) ∈ R
2
≥0,

f(c) := fid(c+) + fid(c−) + fcorr(c)

is convex on R
2
≥0 and strictly convex on R

2
>0. The convexity of f on R

2
≥0 follows from the

strict convexity of f on R
2
>0 and the continuity of f . Hence, it is sufficient to address the strict

convexity of f on R
2
>0. Set η♯ := max(η+, η−), η♭ := min(η+, η−), and η̄ := 1

2(η+ + η−). The
Hessian associated with f is given by

Hess(f) =

(
1
c+

+A+Bη2
+ A+Bη+η−

A+Bη+η−
1
c−

+A+Bη2
−

)
,

where A := 4π
3 σ

3 and B := 2(log(γ0))′(θ) with θ = I(c). We verify that the trace and the
determinant of Hess(f) are positive. We obtain

c+c− det Hess(f) = 1 +A(c+ + c−) +
(
η2

+c+ + η2
−c− +Ac+c−(η+ − η−)2

)
B.

Since c+ + c− ≥ θ/η♯, η2
+c+ + η2

−c− ≤ η♯θ, c+c− ≤ θ2/(4η−η+), and B ≤ 0, we infer that, under
condition (5.19), that is,

η♯
θ

+A+
(
η2
♯ +

A

4η♭
θ(η♯ − η♭)2

)
B > 0, (5.22)

there holds det Hess(f) > 0. Furthermore,

1
2

tr Hess(f) =
1
2

(
1
c+

+
1
c−

)
+A+

1
2

(η2
+ + η2

−)B.

Since (c−1
+ + c−1

− )/2 ≥ η̄/θ, we infer that, under the condition

η̄

θ
+A+

1
2

(η2
♯ + η2

♭ )B > 0, (5.23)

there holds tr Hess(f) > 0. Finally, it is readily verified that, for all θ ∈ R>0, (η♯θ +A)1
2(η2

++η2
−) ≤

( η̄θ +A)(η2
♯ + A

4η♭
θ(η♯ − η♭)2), so that (5.22) implies (5.23). ♦
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Remark 12 (Convexity condition for symmetric electrolytes) In the case of symmetric
electrolytes, that is, η+ = η− = η, condition (5.19) reduces to

η

θ
+

4πσ3

3
+ 2η2(log(γ0))′(θ) > 0, (5.24)

and this condition is also necessary for convexity of the bulk free energy. Condition (5.19) is
also necessary and sufficient for electrolytes with M species, all with the same coefficient η.

Our second result deals with the continuity and Gâteaux-differentiability of the bulk free
energy functional Fbulk.

Lemma 5 (Continuity and differentiability of the free energy) Assume (H3). Then, the
bulk free energy functional Fbulk is continuous on [L2(Ω)]2. Moreover, for all c ∈ [L2(Ω)]2 such
that there is cm > 0 with ci(x) ≥ cm for a.e. x ∈ Ω and all i = ±, Fbulk is Gâteaux-differentiable
at c along any direction v ∈ C∞per(Ω), and there holds

〈∂c±Fbulk(c), v〉 =
∫

Ω
{log(σ3c±) + log(γ±(c))}v.

Proof. A classical result of nonlinear analysis [57, Lemma 16.2, p. 61] states that, if F : R→ R

is a continuous function satisfying the growth condition

∃a, b ∈ R, ∀u ∈ R, |F (u)| ≤ a+ b|u|p/q,

with 1 ≤ p, q < +∞ then, for all v ∈ Lp(Ω), there holds F (v) ∈ Lq(Ω), and the superposition
operator Lp(Ω) ∋ v 7→ F (v) ∈ Lq(Ω) is continuous. This result can be applied to the function
F1(x) = fid(x) (extended by zero for x ≤ 0) showing that Fid(c) is continuous from [L2(Ω)]2

to L1(Ω). The result can also be applied to the function F2(x) = 2f0(x) (extended by zero for
x ≤ 0) since, owing to assumption (H3), F2 satisfies the above growth condition with exponent
1 + β < 2. Since the function c 7→ I(c) maps continuously [L2(Ω)]2 to L2(Ω), we infer that
the functional c 7→ f0(I(c)) is continuous from [L2(Ω)]2 to L1(Ω). Finally, the continuity of the
hard-sphere contribution c 7→ 2πσ3

3 (c+ + c−)2 from [L2(Ω)]2 to L1(Ω) is obvious.

Gâteaux-differentiability

Let now c ∈ [L2(Ω)]2 be such that there is cm > 0 with ci(x) ≥ cm for a.e. x ∈ Ω and all
i = ±. We treat the partial derivative with respect to c+; the other case is treated similarly. Let
v ∈ C∞per(Ω) with 〈v〉Ω = 0. There is t0 > 0 such that, for all t ∈ [−t0, t0], c+(x) + tv(x) ≥ 1

2cm
for a.e. x ∈ Ω. Since the function F3(x) = log(σ3x) for x ≥ 1

2cm extended by the constant
value log(1

2σ
3cm) for x ≤ 1

2cm satisfies a linear growth condition, we can show, using the proof
of [57, Lemma 17.1, p. 64], that the ideal bulk free energy is Gâteaux-differentiable with

〈∂c+Fid(c), v〉 =
∫

Ω
log(σ3c+)v.

Gâteaux-differentiating the excess free energy is simpler. We use the growth condition in as-
sumption (H3) to infer



5.2 Mathematical analysis 115
〈
∂c+

(∫

Ω
2f0(I(c))

)
, v

〉
=
∫

Ω
2η+ log(γ0(I(c))v =

∫

Ω
log(γCoul

+ (c))v,

while Gâteaux-differentiating the hard-sphere term 2πσ3

3 (c+ + c−)2 is straightforward. ♦

Our third result delivers an a priori L∞-bound on the ionic concentrations c = (c+, c−).

Lemma 6 (Upper bound on c) Assume (H3). Let (ψ, c) ∈ H × K be a saddle point of the
functional E. Then, there is cM < +∞ such that, for a.e. x ∈ Ω, ci(x) ≤ cM for all i = ±.

Proof. Let (ψ, c) ∈ H× K be a saddle point of the functional E . Proceeding by contradiction,
we assume that there is i = ± such that, for all n ∈ N, the set

Ani := {x ∈ Ω; ci(x) > 2n}

has positive measure. We then construct modified ionic concentrations c̃ ∈ K such that E(ψ, c̃) >
E(ψ, c), thereby providing the desired contradiction with (5.21). As a result, for all i = ±, there
is ni ∈ N such that the set Anii has zero measure, yielding the statement of Lemma 6 with cM =
maxi=± 2ni . The principle of the construction is that, by diminishing the ionic concentration
where it is very large, the bulk free energy can be decreased, and thus the functional E . Both
the ideal term and the steric exclusion term are large enough at high concentrations to lead
to a bulk free energy decrease. We choose to work with the ideal term since, in the proof of
Lemma 7 below, the ideal term is the only one leading to the bulk free energy decrease at small
concentrations; thus, the two proofs are similar. Furthermore, we observe that some care is
needed when perturbing the ionic concentrations since it is necessary to preserve their mean
values.
Without loss of generality, we assume that, for all n ∈ N, the set An+ has positive measure. We
first observe that there is k ∈ N such that the set

Ωk
+ := {x ∈ Ω; 2−k ≤ c+(x) ≤ 2k} (5.25)

has positive measure (otherwise, c+ is zero or infinity a.e. in Ω which contradicts the fact that
〈c+〉Ω = c0

+ > 0). In what follows, we fix such k ∈ N, and, without loss of generality, we assume
that n ≥ k so that the sets An+ and Ωk

+ are disjoint. Moreover, since 〈c−〉Ω = c0
− and c−(x) ≥ 0

for a.e. x ∈ Ω, we infer that, for all m ∈ N, c0
− ≥ 1

|Ω|2
m|Am− |, which shows that |Am− | → 0 as

m → ∞. As a result, there is m ∈ N such that the set Ωk,m := Ωk
+ ∩ (Ω \ Am− ) has positive

measure. In what follows, we fix such m ∈ N. We observe that in Ωk,m, both ionic concentrations
c± are bounded by Ck,m := max(2k, 2m). We now define the function c̃n+ as follows:

c̃n+(x) =





0, x ∈ An+,
c+(x) + δn, x ∈ Ωk,m,

c+(x), x ∈ Ω \ (An+ ∪Ωk,m),

with δn = 1
|Ωk,m|

∫
An+

c+. It is readily verified that 〈c̃n+〉Ω = c0
+ so that c̃n := (c̃n+, c−) ∈ K. We

observe that the real number δn is uniformly bounded since δn ≤ δ := 1
|Ωk,m|

|Ω|c0
+ for all n ∈ N.

It is important to modify c+ only in the set Ωk,m to preserve its mean value (and not in the



116 5 Mild non-ideality: convex bulk free energy

larger set Ωk
+); indeed, a bound on c− is needed to control the variation of the non-ideal terms

between c and c̃n.
To conclude the proof, we show that it is possible to choose n large enough so that

∆E := E(ψ, c̃n)− E(ψ, c) > 0.

There holds
∆E = −∆Fid −∆Fcorr −∆B

with ∆Fid := Fid(c̃n)−Fid(c), ∆Fcorr := Fcorr(c̃n)−Fcorr(c), and ∆B := B(ψ, c̃n)−B(ψ, c). We
estimate the three terms separately. Since

∆B = −Z+

∫

An+

c+ψ + Z+

∫

Ωk,m
δnψ,

we infer, since ψ ∈ L∞(Ω) owing to the second step in the proof of Theorem 7, that

|∆B| ≤ 2Z+‖ψ‖L∞(Ω)

∫

An+

c+.

Since
∆Fid =

∫

An+

−fid(c+) +
∫

Ωk,m
{fid(c+ + δn)− fid(c+)} =: T1 + T2,

we infer that

T1 ≤ −(log(σ32n)− 1)
∫

An+

c+,

|T2| ≤ δn
∫

Ωk,m
m(c+, c+ + δn) ≤ m(2−k, 2k + δ)

∫

An+

c+,

where we have used the fact that c+ ≥ 0, δn ≤ δ, and that, for b ∈ R>0 and a ∈ R≥0, there
holds |fid(b)− fid(a)| ≤ |b− a|m(a, b) with m(a, b) := max(| log(σ3a)|, | log(σ3b)|). Turning next
to ∆Fcorr, recall that the excess bulk free energy density fcorr is continuously differentiable in
R

2
≥0 and that ∂fcorr

∂c+
(u) ≥ 0 for all u = (u+, u−) ∈ R

2
≥0 such that u+ ≥ κγ or u− ≥ κγ as shown

in Lemma 3. Let Cγ := maxu∈Kγ |∂fcorr

∂c+
(u)| with the compact set Kγ := [0,max(2k + δ, κγ)] ×

[0,max(2m, κγ)]. We decompose ∆Fcorr into

∆Fcorr =
∫

An+

{fcorr(c̃n+, c−)− fcorr(c+, c−)}+
∫

Ωk,m
{fcorr(c̃n+, c−)− fcorr(c+, c−)} =: T3 + T4.

Observing that fcorr(c̃n+, c−)− fcorr(c+, c−) =
(∫ c̃n+
c+

∂fcorr

∂c+
(u+, c−)du+

)
, we obtain

|T4| ≤
∫

Ωk,m
Cγδ

n = Cγ

∫

An+

c+,

since for all x ∈ Ωk,m and for all u+ ∈
[
c+(x), c̃n+(x)

]
, (u+, c−(x)) ∈ Kγ . Moreover, owing to

Lemma 3,
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T3 ≤
∫

An+

{fcorr(0, c−)− fcorr(min(κγ , c+), c−)}

≤
∫

An+∩{c−≤κγ}
{fcorr(0, c−)− fcorr(min(κγ , c+), c−)} =: T ′3,

since for c− > κγ , fcorr(0, c−)− fcorr(min(κγ , c+), c−) ≤ 0. Moreover,

|T ′3| ≤
∫

An+∩{c−≤κγ}

(∫ min(κγ ,c+)

0

∣∣∣∣
∂fcorr

∂c+
(u+, c−)

∣∣∣∣ du+

)

≤
∫

An+∩{c−≤κγ}
Cγ min(κγ , c+) ≤ Cγ

∫

An+

c+.

Collecting the above bounds, we infer

∆E ≥ (log(σ32n)− 1− C)
∫

An+

c+,

with C = 2Z+‖ψ‖L∞(Ω) +m(2−k, 2k+δ)+2Cγ . Taking n large enough so that log(σ32n) ≥ 1+C
and since An+ has positive measure, we infer ∆E > 0. ♦

Our last result delivers a uniform positive lower bound on the ionic concentrations.

Lemma 7 (Uniform positive lower bound on c) Assume (H3). Let (ψ, c) ∈ H × K be a
saddle point of the functional E. Then, there is cm > 0 such that, for a.e. x ∈ Ω, ci(x) ≥ cm for
all i = ±.

Proof. Let (ψ, c) ∈ H × K be a saddle point of the functional E . The structure of the proof
is similar to that of Lemma 6, though a bit simpler since we already have upper bounds on c±.
Proceeding by contradiction, we assume that there is i = ± such that, for all n ∈ N, the set

Bn
i := {x ∈ Ω; ci(x) < 2−n}

has positive measure. We then construct modified ionic concentrations c̃ ∈ K such that E(ψ, c̃) >
E(ψ, c), thereby providing the desired contradiction with (5.21). As a result, for all i = ±, there
is ni ∈ N such that the set Bni

i has zero measure, yielding the statement of Lemma 7 with
cm = mini=± 2−ni .
Without loss of generality, we assume that, for all n ∈ N, the set Bn

+ has positive measure.
We fix k ∈ N such that the set Ωk

+ defined by (5.25) has positive measure, and, without loss
of generality, we assume that n is large enough so that 2−n ≤ 1

|Ω| |Ωk
+|2−k. Since this implies

2−n ≤ 2−k, the sets Bn
+ and Ωk

+ are disjoint. We now define the function c̃n+ as follows:

c̃n+(x) =





c+(x) + 2−n, x ∈ Bn
+,

c+(x)− δn, x ∈ Ωk
+,

c+(x), x ∈ Ω \ (Bn
+ ∪Ωk

+),

with δn = 1
|Ωk+|
|Bn

+|2−n. It is readily verified that 〈c̃n+〉Ω = c0
+. Moreover, since |Bn

+| < |Ω|,
δn < 1

|Ωk+|
|Ω|2−n ≤ 2−k, so that c̃n+ ≥ 0 in Ω. Hence, c̃n := (c̃n+, c−) ∈ K.

To conclude the proof, we show that it is possible to choose n large enough so that
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∆E := E(ψ, c̃n)− E(ψ, c) > 0.

As in the proof of Lemma 6, we write ∆E = −∆Fid−∆Fcorr−∆B. Since ψ ∈ L∞(Ω) owing to
the second step in the proof of Theorem 7, we infer

|∆B| ≤ 2Z+‖ψ‖L∞(Ω)2
−n|Bn

+|.

Moreover,

∆Fid =
∫

Bn+

{fid(c+ + 2−n)− fid(c+)}+
∫

Ωk+

{fid(c+ − δn)− fid(c+)} =: T1 + T2,

with

T1 ≤
∫

Bn+

2−n log(σ32−n+1) = log(σ32−n+1)2−n|Bn
+|,

|T2| ≤
∫

Ωk+

δnm(c+ − δn, c+) ≤ m(2−k − δ, 2k)2−n|Bn
+|.

Finally, let C ′γ := maxu∈K′γ |
∂fcorr

∂c+
(u)| with the compact set K ′γ := [0, 2k]× [0, cM ]. We obtain

|∆Fcorr| ≤
∫

Bn+∪Ω
k
+

(∫ c̃n+

c+

∣∣∣∣
∂fcorr

∂c+
(u+, c−)

∣∣∣∣ du+

)
≤ C ′γ

∫

Bn+∪Ω
k
+

|c̃n+ − c+| ≤ 2C ′γ2−n|Bn
+|,

since for all x ∈ Bn
+ ∪ Ωk

+ and for all u+ ∈
[
c+(x), c̃n+(x)

]
, (u+, c−(x)) ∈ K ′γ . Collecting the

above bounds, we infer
∆E ≥ (log(σ−32n−1)− C)2−n|Bn

+|,
with C = 2Z+‖ψ‖L∞(Ω)+m(2−k−δ, 2k)+2C ′γ . Taking n large enough so that log(σ−32n−1) ≥ C
and since Bn

+ has positive measure, we infer ∆E > 0. ♦

5.3 Numerical aspects

This section presents numerical experiments in the case where the activity coefficient log(γ0) is
evaluated using the MSA (5.13) and the steric exclusion term using the (CS1), linearized version
of (CS), given by (5.15).

5.3.1 Physical input

The physical input parameters are the temperature T , the surface charge density ΣS , the ion
diameter σ, the relative permittivity of the solvent εr, and the geometric length scale L∗. A con-
venient way to specify the mean ionic concentrations while satisfying the global electroneutrality
condition is to choose a concentration of added salt csalt and to set

cbulk
+ := csalt +

1
Z+|Ω|

∫

∂ΩS

1
e
ΣS , cbulk

− = −Z+

Z−
csalt.

In the case where there is no added salt, the mean concentration of co-ion is cbulk
− = 0 while

the mean concentration of counterions is only ruled by global electroneutrality and given by
cbulk

+ = 1
Z+|Ω|

∫
∂ΩS

1
eΣS .
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5.3.2 Verification of assumptions for MSA

We verify the abstract assumptions (H3)-(H4) in the context of the MSA, that is, when
log(γ0) is defined by (5.13) with the screening parameter ΥMSA defined by (5.14). Assump-
tion (H3) is straightforward to verify, so that we focus on (H4). For all θ > 0, setting

y :=
√

2σλ−1/2(2θ)1/2 + 1, we obtain

(log(γ0))′(θ) = − σ

πλ2

1
y(y + 1)2(y2 − 1)

,

and a simple calculation shows that (H4) is equivalent to the fact that the sixth degree polynomial

P (y) = y (y − 1)2 (y + 1)3 − (η♯ − η♭)2

16πλση♭

(
y2 − 1

)2
(y − 1)

+
(

6η♯
πλσ

)
y (y + 1)− 3

2

(
η♯
πλσ

)2

(y − 1)

takes positive values for all y > 1. This condition, in turn, can be checked numerically. It holds
under a condition of the form σλ > υ0, where the threshold υ0, which depends on the species
valences Z±, is reported in the second column of Table 5.1 for several values of Z±. Recalling the
definition (5.1) of the non-dimensional parameter λ and reverting to dimensional length scales,
the above condition can be expressed as σ/LB > 4πυ0. Using the values e = 1.60 × 10−19 C,
ε0 = 8.85×10−12 CV−1m−1, and kB = 1.38×10−23 J K−1, the Bjerrum length can be evaluated
as a function of the temperature T (yielding LB = 7.1

◦

A at T = 300 K with εr = 78.3 and

LB = 7.7
◦

A at T = 350 K with εr = 62.0 [6]), and a minimal value σ0 for the mean ion
diameter can be computed so that (H4) holds true for σ > σ0. The threshold σ0 is reported
in the third and fourth columns of Table 5.1. We observe that σ0 takes slightly higher values
as the temperature is increased. The condition σ > σ0 is also more stringent for 2:1 and 2:2
electrolytes than for 1:1 electrolytes, and becomes difficult to fulfill for 3:1 and 3:3 electrolytes.
Interestingly, the condition σ > σ0 shows that the mean ion diameter cannot take extremely low
values within the present physical model if convexity of the bulk free energy is to be asserted
(in particular, the Debye–Hückel limit σ → 0 does not yield a convex bulk free energy).

Z+ : |Z−| υ0 σ0 (
◦

A)
- - T = 300 K T = 350 K

1 : 1 6.263× 10−3 0.560 0.606
2 : 1 2.605× 10−2 2.329 2.521
2 : 2 2.505× 10−2 2.239 2.424
3 : 3 5.637 × 10−2 5.039 5.454
3 : 1 8.224× 10−2 7.352 7.958

Table 5.1. Threshold values above which assumption (H4) holds true.
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5.3.3 Numerical methods

Let us now turn to the approximation of the ionic concentrations and of the electrostatic po-
tential. The saddle point of the functional E is computed numerically by solving the associated
Euler–Lagrange conditions approximately using finite elements for space discretization (using
the FreeFEM++ library [44]) in conjunction with a Newton–Raphson algorithm to solve the dis-
crete set of coupled nonlinear equations. The constraints on the mean value of the electrostatic
potential and of the ionic concentrations are handled using three additional Lagrange multipliers.

Finite element discretization

We start by discussing the weak variational formulation of the system coupling the Poisson
equation and the constancy of the electrochemical potential. The solution (ψ, c) provided by
Theorem 7 lives in a convex subset of H1

per(Ω)×
[
L2(Ω)

]2. We introduce two finite-dimensional
subspaces Vh ⊂ H1

per(Ω) and Ph ⊂ L2(Ω) and solve the nonlinear variational formulation (we
omit the indices h on the discrete solution) Find (ψ, c, λel, µ

bulk
+ , µbulk

− ) ∈ Vh×P 2
h ×R

3 such that:
∀(uh, vh, wh, p, q, r) ∈ Vh × P 2

h × R
3,





∫

Ω
λ∇ψ · ∇uh + λel〈uh〉Ω =

∫

Ω
(Z+c+ + Z−c−)uh − λ

∫

∂ΩS

ΣSuh,

p〈ψ〉Ω = 0,
∫

Ω

(
∂c+f(c) + Z+ψ

)
vh =

∫

Ω
µbulk

+ vh,

q〈c+〉Ω = qcbulk
+ ,

∫

Ω

(
∂c−f(c) + Z−ψ

)
wh =

∫

Ω
µbulk
− wh,

r〈c−〉Ω = rcbulk
− .

(5.26)

In our simulations, we use either P0 piecewise constant finite elements or conforming continuous
P1 finite elements for the concentrations and conforming P1 finite elements for the electrostatic
potential. The constants (λel, µ

bulk
+ , µbulk

− ) ∈ R
3 are the Lagrange multipliers mentioned above.

Periodic boundary conditions are enforced strongly in the finite element space. Nevertheless,
for various shapes of the domain Ω, we exploit symmetries of the solution and simply enforce
natural boundary conditions on symmetry boundaries.

A Newton–Raphson algorithm

The main difficulty with the system of equations (5.26) is its nonlinear character since there is
a quadratic coupling between c and ψ and since the equation on c is nonlinear. This discrete
system can be solved by means of a Newton–Raphson algorithm. Let us recall the basic steps
of the method. Consider the system (5.26) in the abstract form

J (yh) = 0, yh = (ψ, c, λel, µ
bulk
+ , µbulk

− ) ∈ Vh × P 2
h × R

3. (5.27)

The Newton–Raphson algorithm can be written as follows:
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(i) Fix a small positive tolerance tol > 0 and an initial condition y0
h such that c0 satisfies the

global electroneutrality condition and set ψ0 = ΨΣS
(
λ−1∑

i=± Zic
0
i

)
; set k = 0;

(ii) Update yk+1
h = ykh −

(
∇J (ykh)

)−1 (
J (ykh)

)
;

(iii) Check convergence; if satisfied stop, else set k = k + 1 and return to step (ii).

The convergence of the algorithm can be checked by monitoring the evolution of three quantities,
at iteration k ≥ 0,

(a) The norm of the residual of the problem E1,k
cvg := ‖J (ykh)‖, where ‖ · ‖ is the Euclidean norm;

(b) The norm of the difference between two successive iterates E2,k
cvg := ‖yk+1

h − ykh‖;

(c) The discrete free energy E3,k
cvg := −E

(
ΨΣS

(
λ−1ρ(ck)

)
, ck
)

with

ρ(c) :=
∑

i=±

Zici (5.28)

the nondimensional charge density;

Convergence of the iterative process is achieved if we have E1,k
cvg <

(
E1,0

cvgtol
)

and E2
cvg <

(
E2,0

cvgtol
)
.

Monitoring the quantity E3,k
cvg is motivated by the fact that, if (ψ, c) is a saddle point of E , c

minimizes the functional −E
(
ΨΣS

(
λ−1ρ(·)

)
, ·
)

under the canonical constraints.

In practice, the matrix ∇J (yh) and the vector J (yh) are computed with the analytical
formulas of the chemical potential µi(c) = ∂cif(c) and its first derivative ∂cjµi(c) = ∂2

ci,cjf(c).
The components of the 6 × 6 block matrix [∇J (yh)]i,j are thus obtained by differentiating the
operator y 7→ J (y). The right-hand side of the linear system to be inverted is given by

bkh = −J (ykh), (5.29)

and the linear system
[
∇J (ykh)

] (
yk+1
h − ykh

)
= bkh is solved iteratively using the UMFPACK library

called by FreeFem++ (see [44] and [21]).

5.3.4 Validation of the approach: flat nanochannel

In the ideal case, for a 1D geometry such as a nanochannel with parallel negatively charged
flat walls and in the one-species case, there is an analytical solution to the Poisson-Boltzmann
equation for the electrostatic potential, see [24]. The concentration of counterions is given by

c+(x) =
a

cos
(
Z+

√
a

2λ

(
x− 1

2

))2 , x ∈ [0, 1], (5.30)

where the parameter a satisfies the nonlinear equation

tan
(
Z+

√
a

8λ

)
= ΣS

√
λ

2a
, (5.31)
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resulting from the global electroneutrality condition. We verified that our computational code
produces an accurate approximation of this analytical solution. In the non-ideal case, there
is, a priori, no analytical result available. We ran simulations for a 1:1 electrolyte in a flat
nanochannel with physical parameters T = 300K, ΣS = 0.1 Cm−2, L∗ = 10

◦

A, and σ = 3
◦

A.
The concentration of added salt is set to csalt = 0.1 mol/l so that the canonical constraints
are cbulk = (cbulk

+ , cbulk
− ) = (2.17, 0.1) mol/l. The problem is solved on the half interval ex-

ploiting the symmetry of the problem with a constant discretization parameter δx = 0.001.
The algorithm is initialized with concentrations satisfying the canonical constraints while we set
ψ0 = ΨΣS

(
λ−1ρ(c0)

)
. Figure 5.1 depicts the behaviour of the Newton–Raphson algorithm in

this situation. Convergence is achieved extremely fast for the two indicators. As expected, the
indicator related to the functional E decreases along the iterations of the Newton–Raphson al-
gorithm, and in fact is almost stationary after the third iteration. We will see in Chapter 6 that
the situation is much more complex when dealing with a non convex bulk free energy density.
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Fig. 5.1. Convergence indicators for the Newton–Raphson algorithm. Left: convergence indicator;Right: Decrease
of the free energy.

5.3.5 Periodic medium with charged inclusions

We consider a two-dimensional setting where the inclusionΩS is a disk of radius R = 0.3L∗ whose
center coincides with that of the elementary cell [0, L∗]2. We take L∗ ∈ {1, 10} nm, T = 300 K,

and ΣS = 0.13 Cm−2. With these values, the Debye length is in the range [3.345, 105.8]
◦

A.
We consider a 1:1 electrolyte. We set the concentration of added salt to csalt = 0.15 mol/l. In
particular, since the disk is negatively charged, there is always an excess of counterions to ensure
the global electroneutrality of the system. It is readily seen that assumptions (H1)-(H2) hold

true. Moreover, the ion diameter is set to σ ∈ {3, 4, 5}
◦

A, so that assumptions (H3)-(H4) also
hold true (see Table 5.1). Figure 5.2 (left) depicts the activity coefficient log(γ0) as a function of
ionic strength for the various values of the parameter σ, whereas Figure 5.2 (right) depicts the
hard-sphere activity coefficient γHS as a function of total concentration. This figure illustrates
that electrostatic correlations have a more pronounced effect for small values of σ, whereas the
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opposite effect is observed for steric exclusion. For completeness, we also present the steric
exclusion activity coefficient for the (CS) expression (4.56).
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Fig. 5.2. Left: activity coefficient log(γ0) as a function of ionic strength I(c) (mol/l); Right: hard-sphere activity
coefficient γHS as a function of total concentration (c+ + c−) (mol/l)

Figure 5.3 depicts iso-values of the counterion concentration for the two values of the
reference length L∗ and for a ion diameter equal to 3

◦

A (the elementary cell is rescaled to [0, 1]2

in the figure so that the two plots have the same size). We observe that for large L∗, boundary
layers appear near the charged walls: counterion concentrations exhibit a steep gradient close
to the charged surface and take almost constant values in the region far from the disk.

Fig. 5.3. Counterion concentration (mol/l) for a 1:1 electrolyte with parameters csalt = 0.15 mol/l and σ = 3
◦

A.
Left: L∗ = 1 nm; Right: L∗ = 10 nm.

To gain further insight, we compare the solutions obtained for the three values of the ion
diameter σ ∈ {3, 4, 5}

◦

A and for the two values of L∗ ∈ {1, 10} nm. We focus on the results
obtained on the horizontal line [0.8L∗, L∗]×{0.5L∗} joining the rightmost part of the disk to the
right vertical side of the elementary cell. Figure 5.4 depicts the values of the activity coefficient
log(γ±(c)) (note that log(γ+(c)) = log(γ−(c)) for a symmetric electrolyte), while Figure 5.5
depicts those of the counterion concentration; for completeness, concentrations values obtained
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in the ideal Poisson–Boltzmann case (γ±(c) = 1) are also reported. We observe three different

behaviors in Figure 5.4: electrostatic correlations dominate for σ = 3
◦

A (log(γ±(c)) < 0),

steric exclusion effects dominate for σ = 5
◦

A (log(γ±(c)) > 0), or both effects play a role

for σ = 4
◦

A. In Figure 5.5, we observe the influence of the non-ideality on the counterion
concentration close to the charged disk, especially when comparing the concentrations to those
obtained within the Poisson–Boltzmann theory. The main effect of non-ideality is to lower the
counterion concentration close to the charged surface. Interestingly, the ideal predictions are
more accurate for larger cell sizes (L∗ = 10 nm). Finally, we notice that for L∗ = 1 nm and

σ = 5
◦

A, the packing number defined as ξ(c) = π
6

∑
i=± σ

3ci takes values of the order of 0.2 close
to the disk. The hard-sphere contribution can also be evaluated using the Carnahan–Starling
expression log(γCS

1 (ξ(c)) := (8ξ−9ξ2+3ξ3)(1−ξ)−3 instead of its first-order approximation (6.7).
With this expression for log(γHS(c)), the counterion concentration near the charged disk is
lowered by about 10%. Notice that assumption (H4) still provides a sufficient condition for
convexity in this case. Indeed, recalling the setting of Section 4.2.4, log(γHS(c)) = log(γ1(ξ(c))
is solely a function of the packing number such that, for all t ∈ [0, 1),

[
log(γCS

1 (t)
]′

=
[
(8t− 9t2 + 3t3)(1− t)−3

]′
≥
[
log(γCS1

1 (t)
]′

= 8. (5.32)
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This chapter is organized as follows: in Section 6.1 we restate the electrochemical model in
the bulk focusing on the one-species setting. The reason for this choice is that phase separation
in the bulk can be treated using the Maxwell equal area rule, analogous to the Van der Waals
model of liquid-vapor phase transition. In Section 6.2, we detail the confined setting and the
numerical methods that we used to solve the phase separation problem. Numerical results are
presented in Section 6.3. A possible approach to treat binary symmetric electrolytes is proposed
in Section 6.4. Finally, a discussion on the mathematical aspects underlying the minimizing
properties of the free energy functional in the non convex case is presented in Section 6.5.

6.1 Bulk thermodynamics of the one-species setting

We consider equilibrium electrolytes described by the electrostatic potential ψ and the concen-
tration of counterions c. The electrochemical potential is defined by
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µel(ψ, c) := µ(c) + Zeψ =
1
β

(
log(σ3c) + log(γ(c))

)
+ Zeψ, (6.1)

σ, Z, e standing respectively for the ion diameter, the positive valence of the counterion, and
the elementary charge, while β = (kBT )−1 is proportional to the inverse of the temperature T .
Here, µ is the chemical potential and γ the activity coefficient. We start by describing the form
of the chemical potential, the free energy of the electrolyte solution, and the osmotic pressure.
Then, we deal with phase separation.

6.1.1 Chemical potential

The chemical potential µ splits into the ideal part

µid(c) =
1
β

log(σ3c), (6.2)

and the non-ideal part

µcorr(c) =
1
β

log(γ(c)). (6.3)

The activity coefficient γ(c) is split into two parts in such a way that

log(γ(c)) = log(γCoul(c)) + log(γHS(c)). (6.4)

The first contribution accounts for Coulomb interactions, while the second contribution is a
hard-sphere term introducing steric effects which dominate at high ionic concentrations.

For the Coulomb term, we consider the mean spherical approximation (MSA) valid for
a neutral binary electrolyte, which we use in this one-species setting without modifications
accounting for a neutralizing background of negatively charged constituents. The MSA hinges
on the screening parameter ΓMSA (expressed in m−1) defined by

ΓMSA(c) :=
1

2σ

(√
2σ(4πLB)1/2Z

√
c+ 1− 1

)
, (6.5)

where LB is the Bjerrum length defined by LB :=
βe2

4πε
, where ε = ε0εr is the permittivity of the

solvent. Then, the activity coefficient γCoul(c) is given by

log(γCoul(c)) = −Z2 LBΓMSA(c)
1 + σΓMSA(c)

. (6.6)

For the hard-sphere contribution, we consider the Carnahan–Starling expression

log(γHS(c)) := log(γCS
1 (ξ(c)) =





8ξ(c)− 9ξ(c)2 + 3ξ(c)3

(1− ξ(c)))3 , ξ(c) < 1,

+∞, ξ(c) ≥ 1,
(6.7)

where ξ(c) stands for the packing number defined as

ξ(c) := ϑc, (6.8)
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and ϑ =
1
6
πσ3. For low values of ξ(c), we recover the linearized hard-sphere contribution (CS1)

considered in Chapter 5,

log(γHS(c)) ≈ log(γCS1
1 (ξ(c)) = 8ξ(c) =

4
3
πσ3c. (6.9)

6.1.2 Free energy density

We can now write the bulk free energy density by integrating the chemical potentials with respect
to the ionic concentration. We write the free energy density as the sum of the ideal contribution

fid(c) :=
1
β
c(log(σ3c)− 1), (6.10)

the Coulomb contribution

fCoul(c) := −2LB

βσ

(
I(c)− 2σ

3πLB
(ΓMSA(c))3 − 1

2πLB
(ΓMSA(c))2

)
, (6.11)

and the hard-sphere contribution

fHS(c) :=




− 1
βϑ

(
ξ(c)2 (3ξ(c)− 4)

(1− ξ(c))2

)
, ξ(c) < 1,

+∞, ξ(c) ≥ 1.
(6.12)

Collecting the contributions, we write the bulk free energy density as

f := fid + fcorr := fid + fCoul + fHS. (6.13)

The bulk free energy functional is the integral of the free energy density over the volume Ω
occupied by the electrolyte:

Fbulk(c) :=
∫

Ω
f(c). (6.14)

In a canonical setting that consists in fixing the space-average of the counterion concentration,
minimizing the thermodynamic potential Fbulk with canonical constraint yields thermodynamic
equilibrium expressed by the constancy of the electro-chemical potential over the domain.

6.1.3 Osmotic pressure

Owing to the Gibbs-Duhem relation, see Section 4.2.6, we write the pressure of the system (up
to an additive constant) as

posm(c) := (cµ(c)− f(c)) . (6.15)
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6.1.4 Phase separation

For a wide range of physical parameters, the bulk free energy density f is not a convex function
of its argument, see Chapter 5 for explicit bounds in the case of the linearized hard-sphere
contribution. This is a consequence of the presence of the Coulombic excess free energy which
is concave in c, whereas the ideal and steric exclusion terms are convex in c. This phenomenon
is illustrated by the behaviour of the chemical potential depicted in Figure 6.1. We observe
that at fixed temperature and for large ion diameters σ, the chemical potential remains an
increasing function of the concentration while for smaller ion diameters, the chemical potential
can decrease locally. The same phenomenon is observed when fixing the ion diameter and letting
the temperature vary. By assuming that the solvent under consideration is bulk water at ambient
conditions of observation, we assign a permitivitty constant to each temperature in the range
T ∈ [300, 350] K by following [6]. We then observe that for higher temperatures, the bulk free
energy density is no longer convex. The conclusion of this study is that for a wide range of
situations, thermodynamic equilibrium cannot be determined by simply minimizing the bulk
free energy since there might be multiple equilibria.
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Fig. 6.1. Left: Chemical potential for Z = 3 with varying ionic diameter at fixed temperature T = 300 K. Right:

chemical potential at various temperatures T ∈ [300, 350] K for Z = 2 and σ = 5.2
◦

A. Dashed lines indicate the
chemical potential resulting from a convexified bulk free energy density as described in §6.1.5.

6.1.5 The Maxwell equal area rule

When the bulk free energy density is not convex, it takes the form of a double-well potential,
with two roots for its second derivative. The convex hull of f (denoted f⋆⋆) can be calculated
analytically owing to the Maxwell equal area rule. This construction consists in determining
binodal concentrations c♭, c♯ and an equilibrium chemical potential µ⋆ such that

µ(c♭) = µ(c♯) = µ⋆ and
∫ c♯

c♭

µ(c) = µ⋆ (c♯ − c♭) , (6.16)
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as depicted in Figure 6.2. In addition to the binodal concentrations, we consider the spinodal
concentrations c♭, c♯ defined as the two roots of f ′′. Then, concentrations outside (c♭, c♯) are
deemed stable, those inside (c♭, c♯) unstable, and concentrations inside (c♭, c♭)∪(c♯, c♯) metastable.

The first derivative of the convex hull f⋆⋆ is given by

µ⋆⋆(c) =

{
µ(c), c /∈ (c♭, c♯) ,

µ⋆, c ∈ [c♭, c♯].

The explicit formula for the convex hull of f is

f⋆⋆(c) =

{
f(c), c /∈ (c♭, c♯) ,

(c− c♭)µ⋆ + f(c♭), c ∈ [c♭, c♯].

We observe that the osmotic pressure associated with the convex hull f⋆⋆ satisfies the relation

p⋆⋆osm(c♭) = p⋆⋆osm(c♯),

and moreover,
p⋆⋆osm(c) ≥ 0, ∀c ≥ 0, (6.17)

since
(p⋆⋆osm)′(c) = c(f⋆⋆)′′(c) ≥ 0, for allmost every c ≥ 0, (6.18)

p⋆⋆osm(0) = 0, and p⋆⋆osm is continuous. This result is important in view of the applications of this
theoretical setting to confined electrolytes (see Section 6.3).

The Maxwell equal area rule is only applicable to univariate functions. For bivariate
functions (as in the case of two species with counterions and coions), the convex hull of the
free energy density can be obtained by means of the double Legendre transform, but analytical
results are not available in general, so that that the transform has to be performed numerically
(see e.g. Helluy and Mathis [45]).

6.1.6 Convex hull: numerical illustrations

To illustrate this theoretical setting, we compute values of (µ⋆, c♭, c♯) by combined Newton and
dichotomy algorithms. Figure 6.3 depicts the behaviour of the binodal concentrations for divalent
counterions and ion diameters in [1.8, 2.23]

◦

A at a fixed temperature T = 300 K. Furthermore,
Table 6.1 collects values for the binodal and spinodal concentrations for divalent and trivalent
ions at selected diameters. We also report the value of the packing number ξ(c♯) to illustrate
the fact that its values are still relatively far away from 1 at the highest binodal concentration.

Remark 6.1. Figure 6.3 is in fact the phase diagram for the bulk free energy density of a ionic
fluid evaluated using the bulk free energy density (6.13). We can see in [Pr1] that the phase
diagram computed in this thesis is in very good agreement with [35].
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Fig. 6.2. Left: Chemical potential as a function of the concentration c with ionic diameter of σ = 2.1
◦

A
at T = 300 K, Z = 2; Right: Affine shift of the bulk free energy density f̃(c) = f(c) − ((c− c♭)µ⋆ + f(c♭))
illustrating the double-well form of f .

Z = 2 Z = 3

σ(
◦

A) c♭ c♭ c♯ c♯ ξ(c♯) σ(
◦

A) c♭ c♭ c♯ c♯ ξ(c♯)
2 0.15 0.66 9.62 16.60 0.041 4.5 0.01 0.05 0.84 1.45 0.041

2.1 0.32 0.87 6.35 10.20 0.029 4.75 0.03 0.07 0.52 0.84 0.028
2.2 0.92 1.37 3 4.70 0.014 5 0.12 0.15 0.24 0.28 0.011

Table 6.1. Computed values of the binodal (c♭, c♯) and spinodal concentrations (c♭, c♯) (mol/l) for various ion

diameters (
◦

A) at T = 300 K.
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Fig. 6.3. Binodal values (c♭, c♯) (mol/l) for Z = 2 at T = 300 K for various ion diameter.

6.2 Confined electrolytes: Theory and method

We now turn to confined electrolytes. As in the previous chapters, the physical domain contain-
ing the counterions is denoted Ω with reference length scale L∗, and we suppose that there is a
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negatively charged surface ∂ΩS . We consider two geometries: a nanochannel with flat (1D) or
wavy walls (2D) and a network of inclusions (2D). In the case of flat nanochannel, Ω := [0, L∗]
so that ∂ΩS = {0, L∗}. The nanochannel with wavy walls is described in § 6.3.2. The second
2D case consists in a reference cell minus a disk D(R) of radius R so that Ω := [0, L∗]

2 \D(R)
with ∂ΩS = ∂D(R).

We now describe the variational setting in which we solve the conservation equations
involving the electrochemical potential depending on the electrostatic potential ψ and the ionic
concentration c. In the situations where the bulk free energy of the system is non convex, we
expect to observe a separation between a diluted and a condensed phase. A regularization is
then needed to make precise the mathematical and numerical setting.

6.2.1 Canonical constraints and thermodynamic equilibrium

The physical setting can be described by a thermodynamic potential which is the free energy
functional of the system. In a canonical setting, the mean ionic concentration is prescribed in
the form

〈c〉Ω = cbulk, (6.19)

where 〈·〉Ω denotes the mean value over Ω. The thermodynamic potential we consider is given
by

F(c) := Fbulk(c) + Fmf(c). (6.20)

The bulk free energy Fbulk functional is defined by (6.14). Moreover, letting ρ(c) := Zec denote
the charge density, there holds for the mean-field energy Fmf ,

Fmf(c) =
1
2

(∫

Ω
ρ(c)ΨΣS (ρ(c))−

∫

∂ΩS

ΣSΨΣS (ρ(c))
)

=
ε

2

∫

Ω
|∇ΨΣS (ρ(c))|2 , (6.21)

as discussed in Section 4.2. The non-local affine operator ΨΣS is defined by (4.25) in Section 4.2,
while Ψ0 denotes the linear operator associated with homogeneous Neumann boundary condi-
tions. We assume that the datum cbulk in the canonical constraint (6.19) satisfies the global
electroneutrality condition

Zcbulk =
1
|Ω|

∫

∂ΩS

1
e
ΣS . (6.22)

As discussed in Section 4.2, a minimizer of the free energy functional under the canonical con-
straint (6.22) solves (at least formally)

µ(c) + ZeΨΣS (ρ(c)) = µbulk in Ω, 〈c〉Ω = cbulk, (6.23)

for a suitable constant µbulk. A major issue of the above statement is that without convexity
properties of the functional Fbulk, uniqueness of a solution to the minimization problem is lost.

6.2.2 Mechanical equilibrium

We briefly recall the notion of mechanical equilibrium in a confined ionic system, see Sec-
tion 4.2.6. Mechanical equilibrium can be described by the fact that the gradient of the osmotic
pressure balances the Coulomb force:
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−∇posm(c) = Zec∇ψ, (6.24)

Denoting E = −∇ψ, the electric field, it is convenient to introduce the total pressure tensor Π
defined by

Π := −ε
2

(
2E ⊗ E − |E|2 Id

)
+ posm(c)Id. (6.25)

Mechanical equilibrium is then expressed by the fact that the tensor Π is divergence free. If there
is phase separation, the normal component of Π remains continuous at the interface between
the two phases, and the zero divergence condition is understood in the distributional sense.

6.2.3 Regularizations

We now present two regularizations needed to carry the numerical study of the model. The first
regularization is to consider the convex hull of the bulk free energy density leading to

F⋆⋆bulk(c) :=
∫

Ω
f⋆⋆(c), F⋆⋆(c) := F⋆⋆bulk(c) + Fmf(c). (6.26)

By construction of f⋆⋆, the functional F⋆⋆bulk is convex in the variable c, but not strictly convex
in c since the second derivative of f⋆⋆ cancels for c ∈ [c♭, c♯].

Remark 13 (Computation of the convex hull of the functional Fbulk). The definition
of F⋆⋆bulk by (6.26) is a priori only a definition. We can verify that we have the identity

(Fbulk(c))⋆⋆ = F⋆⋆bulk(c), (6.27)

for the L2(Ω)-weak topology. This result is obtained under mild-assumptions on the function f
that are fulfilled in our case (positivity up to a trivial shift, growth conditions, and regularity)
as we have seen in Section 6.1.5 (see [27, Chap. IX, Sec. 2, Prop. 2.3]).

From a physical viewpoint, finding a minimizer of F⋆⋆ seems more pertinent since we expect
that a single sharp interface will separate Ω into a diluted and a condensed phase, so that c will
not take values in the interval (c♭, c♯).

From the numerical viewpoint, finding a minimizer of F⋆⋆ under the canonical con-
straint (6.22) or solving the corresponding Euler–Lagrange equations is not an easy task since
we do not know a priori where the sharp interface is located in Ω. In order to circumvent
this difficulty, we introduce a second regularization, which penalizes in a least-squares way the
gradient of the concentration. This leads to the modified free energy functional

F⋆⋆κ (c) := F⋆⋆(c) + Fκ(c), Fκ(c) :=

(
κ2L3

∗

2β

)∫

Ω
|∇c|2 , (6.28)

with κ > 0 a length parameter (expressed in m). The role the gradient term is to penalize the
oscillations that can appear in a minimizer of the functional F⋆⋆. This type of regularization
is commonly introduced in phase-field theory, and there is an extensive bibliography about the
κ→ 0 process in bulk environment, process also known as the sharp interface limit. The situation
here is different owing to the presence of the gradient of the electrostatic potential resulting from
the surface charge density carried by the walls. We also introduce the non-dimensional number
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ℓ =
(
κ

L∗

)2

, (6.29)

that will be used in the numerical studies. In what follows, we denote cκ a solution of the
constrained minimization problem of F⋆⋆κ under the constraint (6.22), and we also set ψκ :=
ΨΣS (ρ(cκ)).

The equilibrium equation after both regularizations is expressed as




−
(
κ2L3

∗

β

)
∆cκ + µ⋆⋆(cκ) + Zeψκ = µbulk

κ in Ω,

∇cκ · n = 0 on ∂Ω, 〈cκ〉Ω = cbulk.

(6.30)

Remark 14 (Boundary condition on cκ). The homogeneous Neumann boundary condition
enforced on cκ results from the penalty term and induces a boundary layer of the concentration
since the gradient of the concentration near the boundary is not expected to be zero. It is possible
to enforce a nonlinear boundary condition that corrects this phenomenon. Indeed, the equa-
tion that we expect for (6.30) when κ → 0 expresses the constancy of the convexified chemical
potential, so that (assuming that cκ is smooth near the boundary), we have

∇(µ⋆⋆(cκ) + Zeψκ) · n = 0, on ∂ΩS ,

Using the boundary condition satisfied by ψκ leads to the boundary condition

µ⋆⋆′(cκ)∇cκ · n =
ZΣSε

e
, on ∂ΩS .

Using this condition, we have to verify that (µ⋆⋆)′(cκ) actually does not cancel on ∂ΩS. This is
generally the case in our numerical simulations (see Section 6.3) since the interface is located at
a positive distance of ∂ΩS for κ > 0. After this verification, the nonlinear boundary condition
can be enforced by a fixed point iterative process. The interest of this condition is to obtain the
correct behaviour of the concentration near the boundary for κ > 0. Of course, the artificial
boundary layer disappears in the sharp interface limit. In what follows, we use the simpler
homogeneous Neumann boundary condition in (6.30).

Mathematical issues concerning the minimizers of the various above functionals are discussed in
Section 6.5. In the next sections, we carry a numerical study of the limit behaviour κ→ 0.

6.2.4 Discretization and nonlinear solver

For the discretization, we adopt a conforming finite element formulation both for the electrostatic
potential and the concentration. The discrete variational formulation can be written: Find
(cκ, ψκ, λel

κ , µ
bulk
κ ) ∈ (Xh)2 × R

2 such that ∀(ϕ, v, p, q) ∈ (Xh)2 × R
2:





∫

Ω
ε∇ψκ · ∇ϕ+ λel

κ 〈ϕ〉Ω =
∫

Ω
ρ(cκ)ϕ−

∫

∂Ωs
ΣSϕ,

p〈ψκ〉Ω = 0,
∫

Ω

(
κ2L3

∗

β

)
∇cκ · ∇v + (µ⋆⋆(cκ) + Zeψκ) v =

∫

Ω
µbulk
κ v,

q〈cκ〉Ω = qcbulk.

(6.31)
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The finite dimensional vector space Xh is typically the space of conforming piecewise P1 func-
tions.

To solve the discrete algebraic system of nonlinear equations that we cast into the form

J (yh) = 0, yh = (cκ, ψκ, λel
κ , µ

bulk
κ ),

we use a Newton–Raphson algorithm by computing analytically the Jacobian of J (analogous
to the one introduced in Chapter 5). The Newton–Raphson algorithm is initialized with a
ionic concentration c0

κ (such that the constraint of global electroneutrality is fulfilled) and ψ0
κ =

ΨΣS
(
ρ(c0

κ)
)
. The convergence of the algorithm can be checked by monitoring the evolution of

three quantities, at iteration k ≥ 0:

(i) The norm of the residual of the problem E1,k
cvg = ‖J (ykh)‖;

(ii) The norm of the difference between two successive iterates E2,k
cvg = ‖yk+1

h − ykh‖;

(iii) The discrete free energy F⋆⋆κ (ckκ);

By fixing a tolerance value 0 < tol ≪ 1, convergence of the iterative process is achieved if we
have E1,k

cvg < (E1,0
cvgtol) and E2,k

cvg < (E2,0
cvgtol). The main difference with the setting of Chapter 5

is that, in practice, the value of the parameter κ is of paramount importance regarding the
convergence properties of the method since the problem is harder to solve for small κ when
initialized with a constant value. In general, a continuation process has to be performed to
achieve the sharp interface limit κ → 0 by diminishing progressively the value of κ. Another
numerical issue is that the second derivative of f⋆⋆ is discontinuous at the binodal points so that
the Newton–Raphson algorithm is non-smooth. Additionally, a phenomenon that can occur
in practice is that the concentration ckκ takes negative values or values such that the packing
number ξ(ckκ) > 1. A correction is then needed leading to the following clipping

scmin,cmax(c) =





cmin, c ≤ cmin,

c, cmin < c ≤ cmax,

cmax, cmax < c.

(6.32)

with concentrations cmin and cmax carefully chosen depending on the state of the system (mildly
or highly charged). In practice, we can chose cmax such that ξ(cmax) ≤ 0.7 to remain in the
domain of validity of the Carnahan–Starling formula. By using this correction, we are able to
obtain convergence of the Newton–Raphson algorithm in all the studies considered in this work.

The general Newton–Raphson algorithm is then performed as follows:

(i) Initialize with a chosen y0
h (typically yold

h coming from a previous successful computation for
a larger value of κ); set k = 0;

(ii) For k ≥ 0, iterate in the Newton–Raphson algorithm ykh → yk+1
h :

ii(a) Solve the linear system;

ii(b) Clip the concentration by setting: c̃k+1
κ = scmin,cmax(ck+1

κ );

ii(c) Rescale the concentrations to enforce the global electroneutrality condition;
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Fig. 6.4. Convergence indicators for the Newton–Raphson algorithm.

(iii) Check convergence; if satisfied stop, else set k = k + 1 and return to step (ii).

In practice, the first initialization in step (i) of the Newton–Raphson algorithm is done with the
constant value c0

κ = cbulk. Figure 6.4 depicts the convergence process of the Newton algorithm.
The physical parameters were chosen to be L∗ = 10−9 m, ΣS = 0.1 Cm−2, T = 300 K , Z = 3,
and σ = 4.5

◦

A. We chose κ so that the value of the nondimensional parameter defined by (6.29)
is ℓ = 10−6. The energy curve is a decreasing function of the number of iterations until the 6th
iteration where the clipping makes the energy increase locally. This behaviour happens here only
at this iteration, and more generally, we observed that it happens only at a very few iterations.
This is confirmed by the behaviour of the convergence indicators both going to zero. Notice also
that with the above physical parameters, the maximal packing number is approximately equal
to 0.08≪ 1.

6.2.5 Validation test cases

In this section, we provide a numerical assessment of the sharp interface limit (that is κ → 0)
to solve the phase separation problem. The protocol consists in computing approximations of
the function cκ obtained at convergence of the Newton–Raphson algorithm and to monitor, as
κ goes to 0, the convergence of the quantity

EXκ := ‖cκ − cκ→0‖X ,

where X denotes a functional space (e.g Lp(Ω) functions for p ∈ [1,∞]), and cκ→0 is a solution
actually computed with κ = 0, after the continuation process. The meshes used for these
computations are adapted to the presence of the sharp interface and are smoothly refined in
order to capture the steep variation of the concentrations for κ > 0. We consider the same
geometric settings as in Section 5.3. Recall that owing to symmetries, we discetize only the half
interval for the 1D case and a quarter of the domain for the 2D case with inclusions. Mesh
resolution is increased using local adaptation around the interface. For example, in 1D, the
numerical protocol for this procedure is as follows:
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(i) Fix κ > 0 and a coarse mesh Tδx with nodes x0 = 0 < . . . < xN = 0.5L∗ with xk = kδx and

δx =
L∗
2N

;

(ii) Compute the discrete solution in the space of conforming piecewise P1 functions
{
ckκ, 0 ≤ k ≤ N

}
;

(iii) Determine xinter by sorting ckκ (in descending order) and finding

xinter = argmin0≤k≤N

{
ckκ ≤

c♭ + c♯
2

}
;

(iv) Adaptive mesh generation: local refinement around xinter by defining three types of nodes:

(a) Ninter nodes in the interval (xinter − δ, xinter + δ) (diffuse interface zone);

(b) Nbulk nodes in the interval (xinter + δ, 0.5L∗) (diluted phase);

(c) N∂ΩS
nodes in the interval (0, xinter − δ) (condensed phase);

for a real number δ > 0 small enough and regularize the nodes distribution e.g by solving
a Laplace equation −ν∆u + u = f with f the bĳective node distribution function, and
0 < ν ≪ 1 a small real parameter.

In practice, the integers (Ninter, Nbulk, N∂ΩS
) are such that Nbulk < N∂ΩS < Ninter and can

be computed adaptively from the knowledge of the discrete derivatives of cκ. The procedure
can be reproduced in the 2D case for more complex geometries by using adaption tools of the
FreeFEM++ library. Figures 6.5 depicts the meshes typically generated by the above protocol
and that we used in our numerical studies.

0 0.5

xinter

Fig. 6.5. Left: 1D refined mesh; Right: 2D refined mesh.

Asymptotic κ→ 0: convex case

Let us consider a convex case for the 1D setting, for example divalent counterions of diameter
equal to 4.5

◦

A, for which f⋆⋆(c) = f(c). We choose L∗ = 10−9 m, ΣS = 0.1 Cm−2, T = 300 K for
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the physical parameters defining the state of the system. Figure 6.6 depicts the convergence of
EL

∞

κ to 0 with an estimated rate α ∼ 1. The horizontal axis uses the nondimensional parameter
ℓ defined by (6.29). This kind of behaviour is expected since the solution of (6.23) does not
present any discontinuity in this case.
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Fig. 6.6. Asymptotic κ→ 0 for EL
∞

κ : convex case with divalent counterions of diameter 4.5
◦

A.

Asymptotic κ→ 0: non convex case

We choose now L∗ = 10−9 m, ΣS = 0.1Cm−2, T = 300 K, Z = 3, and σ = 4.5
◦

A (resulting in a
non convex bulk free energy density). We consider both the 1D setting (flat nanochannel) and
the 2D setting (cylindrical inclusions). For the 2D case, the radius of the disk is chosen equal
to R = 0.3L∗. The results are presented in Figure 6.7 for the 1D and 2D cases. We observe
numerically a convergence of the quantity EL

1

κ with an estimated rate α ∼ 1
3 (the quantity

EL
∞

κ does not converge to 0 as expected for discontinuous solutions). We observe in Figure 6.8
(flat nanochannel) that the quantity L∞-error concentrates in the interface zone, whereas the
solutions coincide almost exactly outside this part of the domain for all values of κ (reasonably
small).

6.3 Confined electrolytes: Numerical results

We investigate the dependence on the geometric length scale L∗ of the equilibrium properties
such as concentration and pressure. To do so, we fix a surface charge density ΣS and we study
the dependence of the computed solutions versus L∗. Simulations are performed for L∗ > σ
(although values of L∗ close to σ are not realistic in a continuous modelling, see Remark 4). We
recall that there are three length scales in the problem: the characteristic size of the elementary
cell L∗, the ion diameter σ, and the Bjerrum length LB. We also recall the definition of a
reference Debye length L∗D and the non-dimensional ratio λ such that
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interface.

L∗D :=

√
L3
∗

4πLB
, λ :=

(
L∗D
L∗

)2

=
L∗

4πLB
, (6.33)

the reference Debye length L∗D corresponding to the choice of L−3
∗ for the reference concentration.

The Debye length represents the scale over which the ions screen out the electric field, while the
Bjerrum length measures the length below which thermal effects are negligible.

6.3.1 Flat nanochannel

We start by considering the case of the flat nanochannel, for which L∗ is the spacing between the
two charged planes. For this simple geometry, we can determine an interval [L♯, L♭] for which
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we know a priori there will be a phase separation. This interval corresponds to values of L∗ for
which the average concentration cbulk falls into the interval [c♭, c♯]. Note that L∗ ∈ [L♯, L♭] is
only a sufficient condition for the appearance of phase separation. The average concentration of
counterions in the system is given by

cbulk =
2ΣS
ZeL∗

, (6.34)

owing to the global electroneutrality condition. In Figure 6.9 we observe that, for the length
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Fig. 6.9. Average concentration of counterions versus L∗. Left: divalent counterions with σ = 2.2
◦

A; Right:

trivalent counterions with σ = 4.5
◦

A.

scales of interest, phase separation occurs for a wide range of surface charge densities for trivalent
counterions. Since the surface charge density has a strong influence on the heterogeneity of the
concentrations profiles, a finer analysis is needed to determine necessary conditions on L∗ below
which the discontinuity actually appears. For instance, we determine a critical length Lcrit

♯ for
which the discontinuity does not occur by calculating several solutions for L∗ < Lcrit

♯ and using
affine extrapolation in the concentration at the mid-plane c (xmid) (with xmid = 0.5L∗) to the
value c♯. Since the concentration takes its minimal value at the mid-plane, the determined
value Lcrit

♯ corresponds to the first value of L∗ where the concentration at mid-plane reaches the
binodal value c♯. Finally, as seen in Figure 6.9, the value of L♭ typically exceeds 10−8 m. As
we do not consider much larger scales, Lcrit

♭ does not enter in this range of length scales except
for small surface charge densities which we do not consider here. Values for L♯ and Lcrit

♯ are
reported in Table 6.2 for various ΣS and σ.

We now turn to the behaviour of concentrations and pressure. Since we consider the 1D
geometry, the total pressure of the system can be reduced to determining the osmotic pressure
posm since the divergence-free constraint for the Maxwell tensor is equivalent to

Π(x) = posm(c(x))− ε

2
(
ψ′(x)

)2 = α, α ∈ R. (6.35)

The pressure function Π is defined up to an additive constant that we fix to 0, assuming that
when the spacing L∗ goes to infinity, the pressure in the system is 0. The constant α in (6.35) is
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Z = 2 - σ = 2.2
◦

A Z = 3 - σ = 4.5
◦

A
ΣS L♯ Lcrit

♯ ΣS L♯ Lcrit
♯

0.5 1.1 0.236 0.3 1.42 0.457
1 2.2 0.305 0.5 2.37 0.573

Table 6.2. Computed values of (L♯, Lcrit
♯ ) (nm) for various ΣS (Cm−2) at T = 300 K.

equal to the total pressure of the system. Since ψ′(x) = 0 at xmid = 0.5L∗, we evaluate the total
pressure at mid-plane as posm(c(xmid)). Note that, in general, the finite element approximation
of Π does not satisfy exactly equation (6.35). Figure 6.10 depicts the concentration at mid-
plane as a function of L∗, and Figure 6.11 depicts the total pressure as a function of L∗. Both
figures compare the behaviour of the non-ideal model and the standard Poisson–Boltzmann
model (for which the solution is analytic for a 1D flat nanochannel, see Section 5.3). Even if
phase separation occurs, the total pressure is still a positive decreasing function of the spacing
between the charged plates, and the total pressure expectedly goes to 0 as L∗ → +∞ (up to
spatial discretization error). Indeed, even if the concentration at mid-plane is a discontinuous
function of L∗, using the convex hull of the bulk free energy density prevents the appearance of
negative pressure in the system. Furthermore, we observe that the Poisson–Boltzmann theory
almost always predicts a larger pressure than the pressure obtained with the non-ideal model.
The difference is more pronounced in the case where L∗ is greater than the critical length Lcrit

♯

since in this case the non-ideal model predicts a pressure close to 0.

An interesting feature of the non-ideal model is that it introduces naturally the concept
of effective charge considered in the literature to correct the Poisson–Boltzmann theory since
this theory is known to estimate poorly the concentration of counterions near a wall in highly
charged systems (i.e. for concentrated solutions). We define the total charge in the condensed
phase as

Σcond =
Ze
|Ω|

∫

{c>c♯}
c(x)dx. (6.36)

An interesting consequence of our results is that nearly 99% of the charge is contained in the
condensed phase. This behaviour does not seem to be affected by the spacing between the
charged plates meaning that the negative charges at the surface are almost completely screened
by the counterions. Figure 6.12 depicts the position xinter of the interface in [0, 0.5L∗] as a
function of L∗. Quite interestingly, xinter is essentially equal to the ion radius (σ/2) regardless of
the value of L∗, indicating that one layer of counterions screens out the negative surface charge.
Comparing the left and right plots of Figure 6.12, we observe that high valences reduce the
influence of L∗ on the results.

6.3.2 Periodic network of charged inclusions and wavy channel

In the 2D setting, the total pressure tensor is given as the sum of the osmotic pressure and the
Maxwell tensor

Π(x) = posm(x)Id− τm,

with
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Fig. 6.10. Concentration at mid-plane as a function of L∗ at temperature T = 300 K; Left: Z = 2, σ = 2.2
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A

and ΣS = 0.5, 1 Cm−2; Right: Z = 3, σ = 4.5
◦

A, and ΣS = 0.3, 0.5 Cm−2.
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A and ΣS = 0.3, 0.5 Cm−2.

τm =
ε

2

(
2E ⊗ E − |E|2 Id

)
,

(see Section 6.2.2). We evaluate the total pressure tensor at the upper right corner of the
periodic cell since by symmetry, the electric field cancels at this point. Figure 6.13 depicts the
concentration and the logarithm of the osmotic pressure at the cell corner. We observe the
same kind of behaviour as for the case of a flat nanochannel regarding the monotonicity of the
pressure as a function of L∗. In Figure 6.14, we present the shapes and positions of the interface
for various values of L∗. We observe that the interface closely follows the shape of the charged
object and that the thickness of the condensed phase depends weakly on the choice of the cell size
L∗. Finally, we also present results for a periodic nanochannel with wavy walls. The waviness
of the wall is described by a sinusoidal function of amplitude ζ. In this geometric setting, a high
value for the waviness (ζ = 0.35L∗) of the charged walls leads to the formation of a droplet of
diluted phase, see Figure 6.15.
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6.4 An approach for symmetric salts

In the case where there is added salt to the counterions, the computation of the convex hull f⋆⋆

is not straightforward since f becomes a bivariate function for which the Maxwell equal area
rule cannot be applied. For symmetric salts (that is Z+ = −Z− and equal diameters), we exploit
the fact that the excess bulk free energy density is only a function of the total concentration

ctot := c+ + c−, (6.37)

since the ionic strength I(c) = 1
2

∑
i=± Z

2
i ci is proportional to ctot. To emphasize this point, we

rewrite the bulk excess free energy density as fcorr(ctot) (with fcorr defined in Section 6.1). To
handle the ideal term, we write the total bulk free energy density as
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Fig. 6.14. Concentrations for T = 300 K, Z = 3, σ = 4.5
◦

A, ΣS = 0.5 Cm−2, and L∗ = {7.6, 8.2, 10, 20}
◦

A (from
left to right and top to bottom)

Fig. 6.15. Concentrations for T = 300 K, Z = 3, σ = 4.5
◦

A, ΣS = 0.1 Cm−2,L∗ = 10
◦

A, and the channel waviness
parameter ζ = 0.35.

f(c) =β−1ctot

(
log

(
σ3ctot

)
− 1

)
+ fcorr(ctot) + β−1

∑

i=±

ci log
(
ci
ctot

)

= β−1


∑

i=±

ci
(
log

(
σ3ci

)
− 1

)

+ fcorr(ctot).

(6.38)
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Then, we introduce the bivariate function frel and the univariate function fsum such that

frel(c) = β−1
∑

i=±

ci log
(
ci
ctot

)
, (6.39)

and
fsum(ctot) := β−1ctot

(
log

(
σ3ctot

)
− 1

)
+ fcorr(ctot). (6.40)

This yields
f(c) = fsum(ctot) + frel(c). (6.41)

The interesting feature is that the convex hull of fsum is computable easily using the Maxwell
equal area rule, while frel is a convex function of the concentrations c = (c+, c−) (as easily
verified). Computing the convex hull of the function fsum, we are thus able to exhibit a convex
function that provides a lower bound for f , but which is not necessarily f⋆⋆ since we only have
the inequality

f⋆⋆sum + frel ≤ f⋆⋆. (6.42)

We refer to f⋆⋆sum+frel as the “pseudo” convex hull of f . We can perform computations accounting
for added salt using this “pseudo” convex hull of f . To this purpose, we apply the same protocol
as in the case of single counterions. The regularization is

Fκ(c) :=
κ2L3

∗

2β

∑

i=±

∫

Ω
|∇ci|2 . (6.43)

We observe in Figure 6.16 that phase separation occurs with only one interface. We also
observe that, with the present approach, phase separation leads to avoiding concentrations in
the region {c+ + c− ∈ (c♭, c♯)}. This is shown in Figure 6.17 where c♭, c♯ are now the binodal
concentrations for the function fsum. Interestingly, we also remark in Figure 6.16 that the coion
concentration presents a bump in the condensed zone, creating an additional boundary layer
within the condensed phase. This phenomenon is explained by the effective boundary condition
satisfied by c− (even in the limit κ→ 0) coming from the Neumann boundary condition on the
electrostatic potential. It indicates that even if most of the coions lie in the condensed phase,
they are repelled by the negative surface charge.

Remark 15 A different problem is considered in the work of Carlen et al [17], where the authors
consider a bulk fluid and observe phase separation and segregation into four states due to the
presence of potentials presenting both attractive and repulsive features. In the present setting,
we do not actually observe segregation between the two species.

6.5 Some mathematical aspects

Returning to the one-species setting, we briefly discuss the existence, uniqueness, and properties
of minimizers of the functionals F⋆⋆ and F⋆⋆κ . To simplify the discussion, we consider the case
where the activity coefficient accounting for steric exclusion is γHS(c) = γCS1

1 (ξ(c)) (defined
by (6.9)), the extension to the general Carnahan–Starling expression requiring some additional
work.
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Fig. 6.16. Concentration of counterions (left) and coions (right) for a 2:2 mixture with 0.1 mol/l of added salt

at T = 300 K, ΣS = 0.2, σ = 2.2
◦

A, and L∗ = 10
◦

A.
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Fig. 6.17. Concentration of coions as a function of counterions for a 2:2 mixture with 0.1 mol/l of added salt

at T = 300 K, ΣS = 0.2, σ = 2.2
◦

A, and L∗ = {8, 10, 16}
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A. The dashed lines delimit the binodal zone
c♭ ≤ c+ + c− ≤ c♯.

6.5.1 Minimizing properties of F⋆⋆

We can apply almost all of the mathematical arguments developed in Chapter 5 to study exis-
tence and uniqueness of a critical point of F⋆⋆. By a convexity argument, it is readily verified
that the strictly convex functional F⋆⋆, sum of the convex functional F⋆⋆bulk and of the strictly
convex functional Fmf (see Section 4.2) possesses a unique minimizer c ∈ L2(Ω) under the canon-
ical constraint. To obtain a conclusion similar to the one of Theorem 7, the arguments of the
proof of Lemmas 6 and 7 need to be adapted to the present setting since we used the particular
form of the bulk free energy density, especially the structure of sum of the ideal term fid and
the non-ideal term fcorr. More precisely, the proof can be modified by defining the measurable
set
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An := {x ∈ Ω; c(x) > max(2n, c♯)},
and the measurable set

Ωn := {x ∈ Ω; 2−n ≤ c(x) ≤ 2n}. (6.44)

Then, we define Ω̃n := Ωn \Ω♭,♯ where the metastable/unstable zone Ω♭,♯ is defined by

Ω♭,♯ := {x ∈ Ω; c(x) ∈ [c♭, c♯]}. (6.45)

By perturbing the concentrations in the set Ω̃n, the evaluation of free energy differences can
be performed by considering the bulk free energy density f . With these modifications, we can
adapt the proof of Lemmas 6 and 7 (which are in fact simpler in the one-species setting) and
obtain the conclusions of Theorem 7.

6.5.2 Minimizing properties of F⋆⋆κ

The existence theory concerning a minimizer of F⋆⋆κ under the canonical constraint can be
obtained by adapting the arguments of Chapter 5 (in particular, thereby modifying the convex
subset H, i.e. by searching a concentration c ∈ H1

per(Ω)). Nevertheless, the main conclusions
of Theorem 7 (upper and lower bounds) are not straightforward and require some additional
material. Indeed, the strategy of proof based on the perturbation of the concentration needs to
be adapted since an additional constraint for the perturbed concentration appears, being that
the perturbed concentration needs to be of class H1

per(Ω) (which is not the case in the proof of
Lemmas 6 and 7).

6.5.3 Existing Γ -convergence results

The natural question is whether the unique minimizer of the functional F⋆⋆κ converges (in a
certain sense, say in the L2 sense) towards the unique minimizer of the functional F⋆⋆ as κ→ 0.
The numerical results of Section 6.2.5 encourage us to address mathematically this question, in
order to motivate the numerical method employed. The problem of convergence of the minimizers
of the penalized problem is often addressed within the theory of Γ -convergence (see the book of
Braides [15]). The Γ -convergence is a notion of convergence of functionals defined on a metric
space, thus a metric topology need to be specified when dealing with this notion.

Definition 1 Let (X, d) be a metric space and let Fǫ : X 7→ R. Then, Fǫ Γ -converges toward
F0 as ǫ→ 0+ if the following two conditions are satisfied for all x ∈ X:

(i) (lim inf inequality) for all xǫ → x, liminfǫ→0+Fǫ(xǫ) ≥ F0(x).

(ii) (existence of a recovery sequence) there exists xǫ → x such that limǫ→0+ Fǫ(xǫ) = F0(x).

The convergence of minimizers of Fǫ to the minimizers of F0 requires the equi-coerciveness of
the function Fǫ. We may impose the following additional sufficient compactness condition to
the definition of Γ -convergence (which ensures the convergence of the minimizers):

Definition 2 Let (X, d) be a metric space and let Fǫ : X 7→ R. Then, Fǫ Γ -converges toward
F0 as ǫ→ 0+ if the following three conditions are satisfied for all x ∈ X:
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(i) (compactness) for all xǫ ∈ X such that |Fǫ(xǫ)| < C for some C > 0, there is a subsequence
xǫ′ such that xǫ′ → x ∈ X.

(ii) (lim inf inequality) for all xǫ → x, liminfǫ→0+Fǫ(xǫ) ≥ F0(x).

(iii) (existence of a recovery sequence) there exists xǫ → x such that limǫ→0+ Fǫ(xǫ) = F0(x).

Condition (i) is in fact too demanding, and most of the time we only need to verify equi-
coerciveness of the functional Fǫ [15].

Often, the Γ -convergence of functionals of the form

Fǫ(u) :=
∫

Ω
W (u) + ǫ2 |∇u|2 , (6.46)

is considered in the literature, where the bulk free energy density W is commonly a double-well
potential. The theoretical studies concern the different convergence regimes of the functional
Fǫ, ǫ−α (Fǫ(xǫ)−m), for α > 0 and m = minu∈X F0(u), (development by Γ -convergence). In
equation (6.46), the bulk free energy density itself is considered (rather than its convex hull).
Theoretical questions often concern the shape and width of the interface in the framework of
geometric measure theory [5]. The arguments developed in [79, Section 3, Proposition 4] may
be adapted to our setting, since the bulk free energy functional F⋆⋆κ that we consider is only
perturbed with the functional Fmf which has nice properties of convexity and continuity, for
example for the metric of L2-weak convergence. We provide the following result from [15] when
Ω := [0, L∗] (the extension to 2D or 3D requiring some care).

Theorem 6.1. Assume that the bulk free energy density W : R→ R≥0 is continuous and fulfills
a 2-growth condition of the form

C ′u2 − C ′′ ≤W (u) ≤ C(1 + u2), ∀u ∈ R, (6.47)

and that W is a double-well potential with two minima c1 < c2 so that W (c1) = W (c2) = 0. Let
the functional Fκ be defined by

Fκ(c) :=





∫

Ω

{
W (c) +

κ2L3
∗

2β
|∇c|2

}
, 〈c〉Ω = cbulk, c ∈ H1(Ω),

+∞, otherwise,
(6.48)

while F ⋆⋆ is defined by

F
⋆⋆(c) :=





∫

Ω
W ⋆⋆(c), 〈c〉Ω = cbulk, c ∈ L2(Ω),

+∞, otherwise.
(6.49)

Then, we have the following Γ -convergence result:

F
⋆⋆(c) = Γ− limκ→0+Fκ(c), (6.50)

with respect to the L2(Ω)-weak metric. Moreover, let cκ be a minimizer of (6.48) for every κ > 0.
Then, up to extraction of a sub-sequence, as κ → 0, cκ converges weakly in L2(Ω) towards c,
minimizer of (6.49).
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This result somehow motivates the numerical method described in Section 6.2. Let us
give a few comments about the modifications that have to be performed to extend this type
of result to the setting of equilibrium electrolytes. The first main modification is the addition
of the mean-field free energy that couples the concentrations to the self-consistently computed
electrostatic potential. The addition of such a term is in fact very simple in the framework of
Γ -convergence owing to the stability of Γ -convergence with respect to continuous perturbation
(with respect to the metric chosen). Owing to the compactness properties of ΨΣS as operator
L2(Ω) 7→ H2(Ω) →֒ H1(Ω) →֒ L2(Ω) (the embeddings H2 →֒ H1 and H1 →֒ L2 being compact
owing to the Rellich Theorem), we deduce that Fmf defined by (6.21) is continuous with respect
to the L2(Ω)-weak metric (the convergence of the minimizers following from the fact that Fmf

is a positive functional and that Fκ(c) fulfills the compactness property owing to the 2-growth
condition in the case of (CS1), the (CS) case requiring appropriate modifications).

The second modification concerns the properties of the bulk free energy density. A techni-
cal issue lies in the fact that for electrolytes, the bulk free energy density is defined on R≥0, since
the concentrations are sought in a set of positive functions and the ideal free energy density

fid(c) = β−1c
(
log(σ3c)− 1

)
, c ≥ 0, (6.51)

(or the MSA term involving the square-root of c), forbids negative concentrations. Then, we
need to verify that the Γ -convergence result of Theorem 6.1 is compatible with this constraint of
positivity or maybe modifying the definition of f on R≤0. As we have seen in Section 6.1.5, for
some physical parameters, we may prove that the bulk free energy density f has the double-well
form of Theorem 6.1 in the case where f is evaluated with the ideal and non-ideal MSA and CS
term. The existence of binodal concentrations c♭, c♯ and µ⋆ allows us to build the convex hull
of f , so that after affine shifting, the bulk free energy has the double-well form. Finally, the
convergence of minimizers is in a weak L2 sense which obviously is not entirely satisfactory.
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Summary and perspective of future work (Part II)

In this second part of the thesis we considered a class of continous models for electrolytes
surrounded by a negatively charged solid object, based on the Density Functional Theory for
ionic liquids.

In Chapter 4, we presented a formal derivation of the model. Several points still remain
to be clarified both on the modelling and mathematical sides. An interesting question is to
incorporate the steric exclusion effect between the ions and the negatively charged object. We
believe that negative pressures observed in the work of Aguilar-Pineda, Jimenez-Angeles, Yu,
and Lozada-Cassou [1] or in the works of Kjellander and Marceljà [58, 59] essentially lie in the
presence of such an excluded volume effect. On the mathematical side, a clarification concerning
the well-posedness of the Ornstein–Zernike equation and the various relations between the DFT
and the Ornstein–Zernike equation is important in further understanding this class of models.
Another question is to assess the accuracy of the approximations made in Section 4.4. These
questions seem actually out of reach with the available mathematical tools.

In Chapter 5, we performed the mathematical analysis of the free energy for a two-species
model when the bulk free energy density is a convex function of the concentrations (mild non-
ideality). Extension of the obtained results to more general nonlinearities such as the Carnahan–
Starling free energy density (6.12) would be appreciable. In fact, existence and uniqueness theory
may be tackled in the same fashion by modifying appropriately the convex set where the ionic
concentrations are sought. The main remaining difficulty is to prove the qualitative properties
on the concentrations (uniform positive upper and lower bounds) in this singular case, leading
to the Euler–Lagrange equations. We believe that the proof of Theorem 7 can be extended to
this setting, perhaps by using suitable truncation or comparison principles.

In Chapter 6, we considered the case where the bulk free energy density is a non convex
function of the concentration in a one-species setting, leading in general to phase separation
(strong non-ideality). We derived an efficient numerical method that allowed us to perform
numerical studies for a one-species setting and proposed an approach for the two-species setting.
We observed that the model did not lead to negative pressures in contrast with the results
obtained in [1,58,59]. On the mathematical side, the Γ -convergence result (Theorem 6.1) needs
to be rigorously formalized in our setting. Nevertheless, such a result is only one step in the
mathematical study of the minimizers of these regularized free energies. Indeed, the numerical
simulations of the previous sections indicate that the minimizers of F⋆⋆ are discontinuous and
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that the set Ω♭,♯ defined by (6.45) has a zero Lebesgue measure. It would be interesting to
prove rigorously this result. We have also seen in the numerical results (see Figure 6.7) that
the concentration cκ appears to converge towards cκ→0 in L1-norm with the rate κ

2
3 in the

non convex setting and κ2 in the convex setting. These results may require to study higher
order developments by Γ -convergence for the functional Fκ. A rigorous proof of these rates
of convergence would be a nice result in the present setting. Questions concerning the shape
and behaviour of the interface in a charged system similar to the one we considered have been
addressed by Goldman, Muratov and Serfaty in [32], with the difference that there is no charged
inclusion in their domains, but even in this case the mathematical analysis is quite intricate.
Let us point out that the extension to several species setting might require some care in the
mathematical analysis. From the numerical viewpoint, we have discussed in Section 6.1.5 the
possibility to resort to a numerical evaluation of the double Legendre transform of the bulk
free energy density in order to treat asymmetric electrolytes, and assess numerically the use of
the pseudo-convex hull introduced in Section 6.4. Promising results have been achieved in this
direction by Contento [20].

Finally, a comparison of the numerical results obtained with this class of continous models
with molecular dynamics or Brownian dynamics simulation should foster a deeper understanding
of the physical and chemical properties of these complex systems.



Part III

Annexes
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Other work in fluid mechanics and thermal modelling

8.1 Numerical study of a thin liquid film flowing down an inclined wavy plane

This work has been performed during a Master internship at CERMICS, École des Ponts Paris-
tech, with a funding of ANR METHODE [76]. We investigated the stability of a thin liquid
film flowing down an inclined wavy plane using a direct numerical solver based on a finite ele-
ment/arbitrary Lagrangian Eulerian approximation of the free-surface Navier–Stokes equations.
We studied the dependence of the critical Reynolds number for the onset of surface wave instabil-
ities on the inclination angle, the waviness parameter, and the wavelength parameter, focusing
in particular on mild inclinations and relatively large waviness so that the bottom does not
fall monotonously. In the present parameter range, shorter wavelengths and higher amplitude
for the bottom undulation stabilize the flow. The dependence of the critical Reynolds number
evaluated with the Nusselt flow rate on the inclination angle is more complex than the classical
relation (5/6 times the cotangent of the inclination angle), but this dependence can be recovered
if the actual flow rate at critical conditions is used instead. This work has been published in a
journal article [A1].

8.2 A multiscale problem in thermal science

This work has been performed during the 2011 CEMRACS Summer School at CIRM, Luminy.
We considered a multiscale heat problem in civil aviation: determine the temperature field in a
plane in flying conditions, with air conditioning. Ventilated electronic components in the bay
bring a heat source, introducing a second scale in the problem. We considered three levels of
modelling for the physical phenomena, which were applied to the two sub-problems: the plane
and the electronic component. Then, having reduced the complexity of the problem to a linear
non-symmetric coercive PDE, we used the reduced basis method for the electronic component
problem. This work has been accepted for publication in ESAIM proceedings [A2].
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