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Joachim Parrow Rapporteur

Daniele Varacca



ii



iii

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;

L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,

Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent.

Charles Baudelaire, Correspondances
in Les Fleurs du mal
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Outline of the thesis

The work presented in this document in an account of my work as a PhD student
at LIX, École Polytechnique, in the COMETE team under the supervision of
Catuscia Palamidessi. During these studies, I have been in interested in the
various aspects of concurrency covered by the COMETE team activities.

The initial goal of my thesis was to investigate the aspects related to process
calculi based formalisms to express and analyze Security Protocols. The ulti-
mate goal was to makes some advances towards the automatic verification of
security properties. In particular, I was interested in information-hiding proto-
cols which require no cryptography, but normally use randomized mechanisms
and therefore exhibit probabilistic behavior.

Information hiding protocols are used typically in networks, and they are run
by parties that reside in different locations of the system, and therefore interact
asynchronously.

The first work that I did was to try to give a correct meaning to the various
notions of formal asynchronous communications used in various models, in par-
ticular between the field of concurrency and the field of distributed computing,
where this was a recurrent question. These results are presented in the first part
of this document.

Being interested in the formal aspects of information-hiding problems, I took
part in the preparation of the journal version of [BP09], and started preparing
an automated probabilistic anonymity checker based on the formalism presented
in this document. This lead to an initial draft of an implementation presented in
http://vamp.gforge.inria.fr/. The formalism for this analysis is presented
in the fourth part of this document.

Another aspect of the verification of information hiding properties is that it
requires to compute the probabilities of the possible outcomes for each scheduler.
For this reason, this application quickly turned out to be highly inefficient.
However, in an asynchronous system, a lot of transitions are confluent, which
means that when evaluating a process, it is only necessary to choose one of the
two confluent branches.

Hence, I have worked on formalizing the possible optimizations based on the
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possible confluent computations. This work is presented in the second part of
the document.

Another interesting aspects of probabilistic protocols is the possibility to con-
sider infinite runs. By doing such consideration, it is possible to verify the cor-
rection of some probabilistic protocols. For instance, in the case of the Crowds
routing protocol, presented in Section 5.3, the protocol is considered correct
because the probability of running into an infinite execution is null, hence the
message will eventually be delivered.

For this reason, I got interested in extending the meaning of a asynchronous
probabilistic computations to the case of an infinite execution. As a matter of
fact, the combination of infinite computation, confluence and probability is not
easy to treat in the general case.

The problem of confluence in concurrency is solved in an elegant way in an asyn-
chronous paradigm called Concurrent Constraint Programming (CCP). Hence,
I decided to study infinite computations in a probabilistic version of CCP. The
problem, however, is that the meaning of the result of an infinite probabilistic
computation was still an open problem also in that context.

Hence, I studied a possible way to define this result, using the notion of val-
uations and sober spaces, and applied it to give a denotational semantics to
probabilistic CCP, including infinite computations. This work is presented in
the third part of the document.

I have chosen a specific order for the various parts of this document that follows
the various formal models that are used, in order to present each result along
with the corresponding formalism.

• In the first and second parts, I present the formal concurrent models, and
in the particular asynchronous ones.

• In the third part, I present the probabilistic CCP. This part also presents
mathematic structures for the representation of infinite probabilistic exe-
cutions.

• Eventually, an application of both asynchronous and probabilistic models
to the case of probabilistic information hiding is presented in the fourth
part.



Introduction

Asynchronous communications are characterized by the impossibility for a com-
municating agent to control both transmission and reception of the messages.
In real life communication, one may think for instance of mail communication
when one cannot know with certainty when a message will be received and if he
will get an answer. This assumption has important consequences in the behavior
of the agents, and on the algorithmic possibilities.

The first issue studied in this thesis is the relations between the various possible
formal models for representing asynchronous communications: do they all char-
acterize the same notion ? What relations, in terms of expressiveness, can we
make between them ? I give an answer to this question in terms of behavioral
relations between the algebraic models such as the asynchronous pi-calculus and
the models where communication occurs through buffers.

Another interesting phenomenon of concurrent systems is the possibility for
two executions to be confluent due to the fact that they represent different
interleavings: for any order of execution of the concurrent threads, the result of
the computation is the same. I apply this property in order to define conditions
for evaluating only one of the possible confluent executions, thus reducing the
search space greatly.

The study of information hiding problems requires to extend these models to
the case of probabilistic computations, where the model associates probabili-
ties to each elements of the sets of possible transitions. In the case of strong
asynchronous confluence, I study the result of an infinite computation, and give
general conditions under which this result can be decomposed to elementary
probabilities.

At the end of the document, I present an application of probabilistic and asyn-
chronous models to the study of leak of information in an anonymous protocol,
the Dining Cryptographers.
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Asynchronous communication models

Various models for asynchronous communicating systems have been proposed
in the literature, but they do not necessarily coincide. The two most common
classes of models consist in:

• Restraining the control over the emission and reception of messages. This
is the case for the asynchronous pi-calculus where for instance it is not
possible to start the execution of a process exactly when a message has
been transmitted.

• Using an asynchronous communication framework. This is the case in the
field of distributed computing, where the messages are placed in a buffer
that is responsible for their delivery.

The first part of this work tries to bridge the gap between the two classes of mod-
els mentioned before. I propose a hybrid version of the pi-calculus (π-calculus,
[MPW92]) where the processes are processes of the synchronous π-calculus, but
communication is forced to happen through (syntactic) buffers.

The processes of the π-calculus with buffers and those of the asynchronous π-
calculus (πa-calculus, [HT91, Bou92]) are then compared using the notion of
bisimilarity. The bisimilarity is used here for searching whether for any process
of each language, there exists a process of the other language that can behaves
exactly as the other one.

For this correspondence, we use a specific notion of bisimilarity, the asyn-
chronous bisimilarity. This variant of the bisimilarity can be found in [ACS98]
and [HT91]. The difference with usual bisimilarity is that this relation does not
require a bisimilar process to match all the transitions of the other process, but
only those which are relevant in an asynchronous context.

We establish that when adding unordered buffers (aka bags) as communication
medium to the π-calculus, the resulting language is asynchronously bisimilar
to the πa-calculus. In particular, the behavior of processes using mixed choice
and output prefix in the π-calculus, which are the essential difference with πa-
calculus, can be imitated by processes of the πa-calculus when communicating
through these buffers.

We also show that a similar correspondence, using asynchronous bisimilarity,
does not hold when the buffers used for communicating are ordered and follow
the FIFO and LIFO strategies. This suggests that the buffers to represented
by the communications in the πa-calculus are the unordered buffers. Commu-
nication happening through ordered buffers, namely FIFO and LIFO buffers,
should need an intermediate language, in terms of communication mechanisms,
between the π-calculus and the πa-calculus, like the π-calculus with output
prefix, or mixed choice.
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Asynchronous confluence and optimization

An important aspect of concurrency is the fact that it implies confluent execu-
tions. This in increased in the case of asynchronous communications (via bags,
i.e. unordered buffers). Intuitively, the order of execution of two send actions
does not matter if the communication mean is a bag.

When trying to establish a correspondence between two processes of the πa-
calculus, in terms of traces or bisimilarity, these confluences are very interesting
in order to reduce the search space.

For instance, since it is always possible to switch output actions, if a process
can do a trace that begins with two such actions, it can also perform all the
trace where the output action are switched, and the resulting process is exactly
the same.

In the second part of the thesis, I propose a study of the equivalent behaviors
under asynchronous communications. In particular, I propose the definition
of a bunched transition system for the πa-calculus, where the evaluation of a
process is constrained in order to reduce the interleavings generated by asyn-
chronous execution steps while preserving the relevant information that we want
to observe.

We prove that the bisimilarity induced by such a transition system is included
into the bisimilarity of the original system. This means that if two processes
are bisimilar for the bunched bisimilarity, they are also bisimilar for the orig-
inal bisimilarity. This implication is proved by establishing a correspondence
between the confluent executions and the bunched transitions. It is also proved
that if a process succeeds a test for the testing semantics, if and only if the same
process also succeeds the test for the bunched transition system.

The results in this part lead to the intuition that in the πa-calculus, order
between output actions if not relevant unless we enforce communication. So, in
a sense, a certain sequence of output actions is representative of all the sequences
with swapped order. A similar property holds for sequences of output actions
followed by input actions, in the sense that an output followed by an input is
representative also of the sequence where the order is inverted.

Probabilistic executions, confluence and infinite

computations

Another important class of models are those of the probabilistic executions.
These models are useful, for instance, for the quantitative analysis of the ex-
ecutions of a process or protocol. This is in particular the case for the study
of information hiding problems, as presented in the fourth part of this docu-
ment.
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Another motivation for probabilistic models is the possibility to consider prop-
erties of a protocol for infinite computations. This is particularly interesting
when the probability of the correct executions of a protocol is one under an
infinite computation. In this case, this means that the protocol is correct in the
sense that any execution will eventually reach a correct state.

For these reasons, I propose in the third part to study a probabilistic extension
of an asynchronous language, the Concurrent Constraint Programming (CCP).
This extension adds an internal probabilistic choice, which decides internally
a branch of execution among the possible choices. In CCP, the execution of a
process uses a constraint store for establishing an asynchronous form of commu-
nication where each agent can add constraints to the store or deduce constraints
from the current store, but are not able to remove a constraint.

CCP is confluent. One of the results of my investigations is to study the notion
of confluence for the probabilistic extension. To this purpose, the results of the
executions of a program are represented as sets of probabilistic states. Each state
and its associated probability represent the current probability for the program
to be in the given state after an execution for a given interleaving.

By mapping these execution states to a set of functions used for measuring
the opens of a topological space, it is also possible to define a meaning for the
infinite execution of a process. In this part, I give conditions on the constraint
system such that this meaning can also be represented as a set of states along
with individual probabilities for these states.

Using this decomposition, I propose a denotation semantics for this language,
where each program is represented by a vector cone on the vector space of the
valuations. These cones can be obtained by a fixed point construction, and
represent a linear closure operator on the vector space.

Application: information hiding analysis and the

Dining Protocol

In the last part, I propose an illustration of all the considerations and models
used in the previous parts. The example is the dining cryptographers protocol,
where we want to ensure the probabilistic anonymity of the payer. In this
part, I explain the basic models and results about this analysis, and relate the
possible use of the results in my thesis as a basis for an automated probabilistic
anonymity checker.

This example illustrates the fact that probabilistic asynchronous models are
relevant to capture some notions, such as probabilistic anonymity. Further-
more, the scheduler is also identified as a possible vector to leak information.
Hence, the need to analyze the possible executions under any scheduler and
check the resulting probability distributions, and not only the maximum and
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minimum distribution over any scheduler. Finally, the first steps toward an im-
plementation of an automated analysis tool for this purpose showed the need for
important optimizations in this exploration, which lead to the results presented
in the second part.
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Contributions

The structure of this document tries to separate the personal contributions
from the results already present in the literature. Each part of the document is
divided in two chapters. This first chapter should then present the preliminaries
and the background of the work. Then the second chapter presents the new
contributions. The two exceptions are in Chapter 3, which presents new results
in Section 3.3.2, and the fourth part, where the results are almost all present
in the literature. In this part, the results help to show an example of the
considerations mentioned in the previous parts.

In details, the major contributions are the following.

In the first part:

• Theorem 2.3.1 and Theorem 2.3.2 show the equivalence between the πa-
calculus and a synchronous π-calculus communicating through (syntactic)
unordered buffers.

• Theorem 2.4.1 and Theorem 2.4.2 show the impossibility to perform the
same correspondence when trying to encode a synchronous calculus com-
municating through queues (FIFOs) or stacks (LIFOs).

The results in this part have been published in [BPV08].

In the second part:

• Theorem 3.3.1 and Theorem 3.3.2 prove that when trying to prove the late
bisimilarity for the asynchronous π-calculus, the observation of the inter-
nal communications that occur on a public channel and the substitution
after this reception are not relevant.

• Theorem 4.1.2 proves that, under the conditions for a bunched transition
system over an original transition system, the bisimilarity induced by the
bunched one implies the bisimilarity on the original one.

• Definition 4.2.1 and Theorem 4.2.1 establish a bunched transition system
for the πa-calculus.

The results of this part are quite recent and will be submitted for publication
after the defense.

9
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In the third part:

• Definition 5.2.1 presents a a probabilistic extension of the Concurrent
Constraint Programming by adding internal probabilistic choices.

• Definition 6.3.1 presents a denotational semantics for this probabilistic
language using linear closure operators on topological simple valuations
identified by a vector cone of fixed (or resting) points. Theorem 6.3.1 and
Theorem 6.3.2 shows that this semantics is sound and fully abstract with
regard to the operational semantics.

• Theorem 6.1.3 proves a very general decomposition result for the valua-
tions based on a quotient of its image and the opens of the topology. Using
this result, Theorem 6.1.5 proves that any valuation on a lattice whose or-
der can be extended to a total well-founded order is decomposable as a
simple valuation.

The results in this part appeared in [Bea09] and submitted for publication to
the Journal of Theory and Practice of Logic Programming.

In the fourth part, the contribution consists mainly in the systematization and
clarification of notions and results that already appeared in [BP05], their for-
mal proof, and the illustration of an approach to the automatic verification of
the notion of anonymity. Also, this part provides an example for the applica-
tion of the process-calculi concepts that we have developed in previous parts
of the thesis . The content of this part have appeared also in [BCPP08] and
[BP09].
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Asynchronous
communications
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Introduction

Communication, in real life, happens under various forms and since a very long
time. Originally, there was oral communication. Then there was written com-
munication mostly in the form of letters and messages sending. One may also
think of the various imaginative communications medium or language that have
been used in various cultures, such as using smoke or whistles for communicating
through long distance, as the native Americans used to do.

Then, with modern technologies, some new forms of communication progres-
sively appeared. First, the telegraphs and phones, followed by radio communi-
cations and, more recently e-mails and instant messengers.

When trying to characterize the asynchronism of these various forms of com-
munications, several questions may arise:

• Will the message be received ?

• When will the message be received ?

• Will I know when it is received ?

• Will I get an answer ?

All these questions characterize various form of asynchronism in the communi-
cation. All of them are related to the interaction between the two parts of the
communication. Hence, when establishing a communication model, one has to
consider two agents, a sender and a receiver. Then, an item, called a message
will be exchanged between the sender and the receiver. This will stand for the
communication action.

In the case of an oral conversation, most of the time, the sender and receiver are
close to each other, and can see the other part. In such a situation, they both
know almost instantaneously that the message have been sent and received. It
is even possible to supperpose various messages, in a full duplex fashion, so that
they are both sender and receiver. This is even the most common form of oral
communication. Hence, oral communication defines intuitively the notion of
synchronous communication.

Other forms of communications do not usually qualify as being synchronous.
But it would be wrong to consider only synchronous or asynchronous commu-
nications. Indeed, various degree of asynchrony can be identified. For instance,
most of the time, a phone call provides immediate delivery to the receiver. And
both the sender and receiver, though usually far away from each other, know
that delivery should be instantaneous and expect an acknowledgement from the
receiver, either via a simple sound, like “huh”, or via an answer. They may
also speak in full-duplex, though it is less easy in this case. However, this form
of communication is definitely not synchronous since message delivery can take
time, in the case of long distance calls for instance.
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On the other hand, when communicating by mails, either paper mail or elec-
tronic mail, all the usual synchronous properties are lost. When sending a mail,
you cannot know wether it will be received, when it will be received, if it will
be read, and if you will get an answer. Instant messengers work as an inter-
mediate between phone and mails. Indeed, when using an instant messenger,
each message is sent with a similar synchronism as for electronic mail, but an
answer is often expected quite quickly, and the lack of an answer after some
short time often means that the receiver was absent. In other words, long delay
is assumed to be a loss in the communication. Similarly, most of the instant
messenger protocols and clients provide an acknowledgement mechanism, which
informs the sender that the receiver has received the message, as well as an alert
mechanism which notifies you when the sender is writing a message.

Synchronism can also be studied from the point of the communication medium.
Indeed, the communication medium for a phone conversation consists of a path
between the two agents. This path is discovered when establishing the communi-
cation, and is maintained during the whole conversation. Since all the messages
are sent through the same path, one after the other, it can be assumed that the
order between them is always preserved.

However, since the delay can be quite long, it is difficult to maintain a synchro-
nism between messages from each other. In case of long delays, it often happens
that the conversations splits, when each of the two persons start a new sentence
at the same moment, but only get each other’s sentence with a delay. In such a
situation, it is often convenient to establish a synchronization protocol, which
consist of telling the other person when you are done with your sentence and
wait for his answer or acknowledgement before going on. This is how citizens’
band radio communication work most of the time.

The drawback of the telephone communication medium is that it assumes that
each call has its own path, hence needing large communication bandwidth. Mul-
tiplexing technologies, that can merge several calls into one single stream exist,
but they can only apply to calls that have an important common path. It also
needs a centralized network, which is sensitive to failures or destruction of the
central nodes.

On the contrary, in the case of internet communications, the protocol consists
of packets which are sent through the network. There is no underlying notion
of communication path, not even communication streams. Each agent in the
network knows some agents to which it can send its packets. And when an
agent receives a packet that is not for him, he selects a new node according
to the packet’s destination and send it to him. In this case, it is not even
possible to assume that packets will be received in the same order as they were
emitted.

Synchronization mechanisms can be defined on top of this basic medium. The
two most commons protocols on the internet are UDP and TCP. In the case
of UDP, also referred as the “send and pray” protocol, messages are simply
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delivered to the next communication node, and no information is reported at
all. In the case of TCP, each message, equipped with a sequence number, is
acknowledged by the receiver. The receiver may also request that a message is
sent again, in case it was lost during the communication.

However, the synchronization mechanisms have a price, since a part of the
communication bandwidth is used for the acknowledgements. Also, these mech-
anisms are not a perfect imitation of real synchronous communications: since
they include extra communication steps, they also introduce new situations that
are not possible in the original case.

Models in mathematics aim at being abstract representations of real life objects
and events. Hence, these considerations should be present in the various com-
munication models that we will present. In particular, we have discussed in this
section the following issues:

• Reception done in the same order as sending, i.e. the possibility to send
sequentially

• Simultaneous conversations without confusion, i.e. the possibility to de-
cide between sending or receiving, as well as knowing when the receiver
has received your message.

• Synchronization protocols approximating real synchronism, i.e. the behav-
ioral equivalence between original communication and its approximation.

Both Concurrency Theory and Distributed Computing are concerned with the
notion of asynchrony, but they have different approaches. In Concurrency The-
ory, at least in the most recent proposals, asynchronous communications is
characterized by the fact that the send action cannot be prefix of another pro-
cess, i.e. we cannot specify directly that a certain activity starts after the send
action is completed. In Distributed Computing, asynchronous communication
is defined by the reception properties, more specifically, by the fact that the
bound in time for receiving a message is infinite.

These two notions have been intuited for a long time as being related to the same
phenomenon, however, it was never studied formally. In this part, we study the
various definitions of synchronous and asynchronous communications, and try
to bridge the gap between the two approaches.

In chapter 1, we introduce the notion of synchronous and asynchronous com-
munications, with regard to real life situations, and try to get from this pre-
sentation the intuitions about what phenomenon the abstract representation of
communications must model in order to be claimed synchronous or not.

In Chapter 2, we prove a correspondence between those two different approaches
to asynchronous communications in the case of unordered buffers, which shows
that both models represent the same phenomenon. Further investigations showed
that there are correspondences in the cases of queues and stacks (FIFO and
LIFO buffers) require additional control mechanisms.
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Chapter 1

Concurrent communication
models.

This chapter introduces a family of concurrent models with different commu-
nication mechanisms, namely the π-calculi, and establishes basics results based
on the asynchronous properties of these models. We also introduce the basic
observational equivalences for these models, namely the notions of bisimula-
tions.
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18 CHAPTER 1. CONCURRENT COMMUNICATION MODELS.

1.1 The various π-calculi

Introduction

Several models for communication have been proposed in the literature. The
kind of models known as Process Calculi consists of formalisms in which pro-
cesses are specified syntactically by a grammar and semantically by a set of
(structural) transition rules which define their operational behavior.

The first process calculi proposed in literature (CSP [BHR84, Hoa85], CCS
[Mil80, Mil89], ACP [BK84]) were all based on synchronous communication
primitives. This is because synchronous communication was considered some-
what more basic, while asynchronous communication was considered a derived
concept that could be expressed using buffers (see, for instance, [Hoa85]). Some
early proposals of calculi based purely on asynchronous communication were
based on forcing the interaction between processes to be always mediated by
buffers [BKT84, dBKP92].

At the beginning of the 90’s, asynchronous communication became much more
popular thanks to the diffusion of the Internet and the consequent increased in-
terest for widely distributed systems. The elegant mechanism for asynchronous
communication (the asynchronous send) proposed in the asynchronous π-calculus
[HT91, Bou92] was very successful, probably because of its simple and basic
nature, in line with the tradition of process calculi. Thus it rapidly became
the standard approach to asynchronism in the community of process calculi,
and it was adopted, for instance, also in Mobile Ambients [CG00]. A commu-
nication primitive (tell) similar to the asynchronous send was also proposed,
independently, within the community of Concurrent Constraint Programming
[SRP91a].

In the following, we present different variants of the π-calculus, including the
synchronous and asynchronous π-calculus, as well as intermediate languages,
which use synchronization primitives different from the ones of those two cal-
culi.

1.1.1 The synchronous π-calculus: πs

The synchronous calculus is the most expressive calculus of the π-calculus fam-
ily. It was originally introduced by Robin Milner, Joachim Parrow and David
Walker. The model is an extension of the Calculus of Communicating Systems
[Mil80, Mil89] (CCS), adding the possibility of transmitting a message between
two processes trough a communication channel in order to allow dynamic re-
configuration of the network and communication capabilities.

Indeed, in the π-calculus, messages and channels are the same objects, referred
as names. It is then possible to send to a process a new channel name, allowing
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this process to communicate trough this channel. As for the λ-calculus, where
everything is a function, in the π-calculus everything is a name.

Definition 1.1.1

Let N be a countable infinite set. We call the elements of N the names.
If x is a name, then x is the co-name of x.

A process in the π-calculus is built using these names and the following syn-
tax:

Definition 1.1.2

A π-calculus process is an element generated by the following grammar:

P,Q, . . . := 0
∣

∣

∣
xz.P

∣

∣

∣
x(y).P

∣

∣

∣
P + Q

∣

∣

∣
νxP

∣

∣

∣
P |Q

∣

∣

∣
!P

The labels for the transitions in the πa-calculus are:

l,m, . . . := xy
∣

∣

∣
xy

∣

∣

∣
x(y)

∣

∣

∣
τ

The meaning of the grammar is as follow:

• The 0 process is a process that cannot do anything

• xz.P is a process that sends the name z on the channel x, then proceeds
by the execution of the process P . It is refered as a sending prefix or
sending continuation.

• x(y).P is a process that waits for the reception of a value on the channel
x, and then follows with the execution of P , where all occurrences of y
have been replaced by the received value. It is refered as a input prefix.

• P + Q is a process that that can proceed either as P or as Q. As soon as
the transition from one process is executed, the other is dismissed.

• νxP is the process P where all occurrences of x are considered as locally
bound. Any other occurrence of x which is not under the scope of this
binder cannot interact with these local occurrences.

• P |Q is a parallel composition of the processes P and Q. The transitions
of P |Q are those of either P or Q, or the result of any communication
between them.

• !P is a process that can spawn an unbounded number of parallel copies of
P .

The transition labels denotes the various actions that a process can do:

• xy stands for the reception of the value y over the channel x

• xy stands for the sending of the value y over the channel x
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• x(y) stands for the sending of the private value y over the channel x. This
action allows a process to communicate a private name to another process,
creating a private link between them.

• τ stands for the silent (internal) action

If we consider the process x(y).P or νyP , the name y in both cases is a local
name, bound to the scope of the process itself. If the name y appears in the
context of another process, it has a different scope and cannot interact with
the name y as referred by the first process. The set of such bound names of a
process and the set of its free names are used to discriminate which names can
be used to interact with other processes. They are defined as follows:

Definition 1.1.3 ([SW01], Definition 1.1.2)

In each of νzP and x(z).P , the displayed occurence of z is binding with scope
P . An occurence of a name in a process is bound if it is, or it lies into the scope
of, a binding occurence of a name. An occurence of a name in a process is free
if it is not bound. fn(P ) (resp. bn(P )) stands for the free names of P (resp.
bound names of P ).

Bound names are names that are binded internaly. Hence, we can apply α-
renaming on bounded names. More generally, we define a notion of renaming
for the processes of the π-calculus.

Definition 1.1.4 ([SW01], Definition 1.1.5)

Let P be a process of the π-calculus.
• If the name w does not occur in P , then P [w/z] is the process obtained

by replacing each free occurence of z by w.
• A change of bound name is the replacement of a subterm x(z).Q of P by

x(w).Q[w/z], or the replacement of a subterm νzP by νwQ[w/z], where
in each case w does not occur in Q.

• Any process Q is an α-renaming of P if it can be obtained by a finite
number of changes of bound name in P .

We want to enforce some symmetries and obvious equivalences between pro-
cesses. Hence, we define an equivalence relation between processes, to reflect,
for instance, the fact that we want: P |Q ≡ Q |P .
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Definition 1.1.5 (structural congruence)

The relation ≡ is the smallest congruence over processes satisfying:
• α-conversion on bound names
• The commutative monoid laws for parallel and sum composition with 0

as identity
• νx(P |Q) ≡ P | νxQ when x 6∈ fn(P )
• νx0 ≡ 0
• νxνxP ≡ νxP
• νxνyP ≡ νyνxP
• νxz(t).P ≡ z(t).νxP when z 6= x and t 6= x

The structural congruence is convenient in order to define the operational se-
mantics of the language, as explained below. The structural congruence rep-
resents the static equalities that we want to achieve between processes. This
relation is used to match processes that are not syntactically equal, but for which
the equality should be implicit, like when renaming bound names. Hence, it is
very important that it is decidable since it is used often when computing the
possible transitions of a process. In particular, the decidability of this relation is
not known when adding the scope extrusion rules, such as νx(P |Q) ≡ P | νxQ
when x 6∈ fn(P ) and the rule !P ≡ P | !P . The decidability of the structural
congruence when including replication is discussed in details in [EG99]. In par-
ticular, it is proved that, when adding also other rules such as !!P ≡ !P or
!(P |Q) ≡ !P | !Q, then the structural congruence is decidable. Since we do
not need the structural replication rule, we avoid adding any of them in the
relation.

The operational semantics of the π-calculus is defined in Table 1.1. It formalizes
the meaning of the grammar, as explained above. It is a labeled transition
system where labels are the transition labels given in Definition 1.1.

The rule (open) formalizes the sending of a private value. Hence, the ν binding
is removed since the value has been sent outside of the scope of the process.
However, when placed in parallel with another process, this value should not
match another value. For instance if P = yt | νy(xy.y(v)), then we obviously

do not want that: P
x(y)
→ yt | y(v) since the name y in yt should not be the

same. Hence, the (cong) rule is mandatory. Using it, we should state that:

P ≡ yt | νz(xz.z(v)) and then: P
xz
→ yt | z(v). The (close) rule is entailed by the

rules (sync), (ν) and (cong), hence it may not always be present in some further
operational semantics.

The semantics written in this document is the early semantics, in contrast to
the late semantics. In the late semantics, the input process P = x(y).Q only

has a single transition P
x(y)
→ Q and the name substitution is done in the com-

munication rule, i.e. the rule for the parallel operator. The late semantics is
more convenient for implementations of the language since the input process
has only one single transition, while in the early semantics, there are infinitely
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(in)
z 6∈ bn(P )

x(y).P
xz
→ P [z/y]

(out)
xy.P

xy
→ P

(sync)
P

xy
→ P ′, Q

xy
→ Q′

P |Q
τ
→ P ′ |Q′

(ν)
P

α
→ P ′, a 6∈ fn(α)

νaP
α
→ νaP ′

(open)
P

xy
→ P ′ x 6= y

νyP
x(y)
→ P ′

(close)
P

x(y)
→ P ′, Q

xy
→ Q′

P |Q
τ
→ νy(P ′ |Q′)

(bang)
P | !P

α
→ P ′

!P
α
→ P ′

(cong)
P ≡ P ′, P ′ α

→ Q′, Q ≡ Q′

P
α
→ Q

(comp)
P

α
→ P ′, bn(α) ∩ fn(Q) = ∅

P |Q
α
→ P ′ |Q

(sum) P
α
→ P ′

P + Q
α
→ P ′

Table 1.1: Operational semantics for the π-calculus

many of them. On the other hand, reasoning on the transitions generated by the
late semantics can be more difficult, since one has to take into account the fact
that the received value has not yet been substituted in the resulting process.
Finally, the bisimilarities1 associated to those two semantics are different, the
bisimulation associated to the late semantics being more restrictive than the one
entailed by the early semantics. This issue is discussed in Section 3.1.

When clear from the context, we may use short-hand notations for some pro-
cesses, namely: x(y) = x(y).0, xy = xy.0, x.P = x(v).P , where v 6∈ fn(P ),
x.P = xv.P where v 6∈ fn(P ), and τ = νx(x |x).

1.1.2 The various asynchronous π-calculi.

The π-calculus models communications using a synchronous rule. Indeed, when
two processes communicate with each other, the two operations, sending and
receiving, are done in a single step. The transition is then atomic and hence
synchronous:

xz.P |x(y).Q
τ

−→ P |Q[z/y]

As explained in the introduction, this does not apply quite easily to model most
of the communications in real life, since for almost all of them, the sending
and receiving operations do not happen at the same time. Furthermore, with
the synchronous rule the sending process knows precisely when its message has

1defined in Section 1.2
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been received. In [Pal97], the author shows that there is an expressivity gap,
depending on the possibility to communicate synchronously or not.

The πa-calculus was introduced, simultaneously in [Bou92] and [HT91]. The πa-
calculus restricts the grammar of the π-calculus in order to remove operations
that implies some sort of synchronism. The operational semantics remains the
same with some small modifications, which are mainly restrictions that reflects
the new restricted grammar.

Similarly, the possibility to execute input, output or mixed choices like (resp.)
x(y).P +z(t).Q , xy +xy.Q or xy.P +z(t).Q can be argued to be a synchronous
operation. Consequently, similarly restricted versions of the π-calculus have
been proposed to reflect these considerations.

We will present here tree variants of these asynchronous languages, and prove
simple properties about them. These properties will be usefull later to study the
natural representation of the communications that each calculus model. Each
of these properties are inherited from the less restrictive languages by the most
restrictive ones.

1.1.3 The πsc-calculus

This is a fragment of the synchronous π-calculus where the general choice is
replaced by separate choice: choices are prefixed by a set of actions of the same
type, either sending actions or reception actions.

The restriction is motivated by the fact that the possibility, for a process, to
choose wether it will receive a new value or send a message is not easy to
implement. This is for instance studied in [PH05b]. Intuitively, this relates to
the possibility to communicate in full-duplex. As argued in the introduction,
this possibility is not always granted, and it is even hardly the case. Hence, this
language restricts the communication primitives so as to remove this possibility
in the core language.

The syntax is the following:

P,Q, . . . :=
∑

i∈I

xi(yi).Pi

∣

∣

∣

∑

i∈I

xizi.Pi

∣

∣

∣
νxP

∣

∣

∣
P |Q

∣

∣

∣
!P

Here I is a set of indexes. Note that we have omitted the process 0 since it can
be represented as the empty summation.

The definition of the transition semantics is the same as the one of the π-calculus
(Table 1.1).

The crucial property here is a confluence that holds in the separate-choice π-
calculus, as proved in [Pal03](Lemma 4.1). This property, which is present in
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many asynchronous communication models, is the central result for proving
the separation between the synchronous π-calculus and the asynchronous one.
Indeed, the results is obtained by proving that the application of this confluence
gives the possibility to find incorrect asynchronous executions for the problem
of distributed symmetric consensus.

Lemma 1.1.1 (Confluence, [Pal03], Lemma 4.1)

Let P ∈ πa. Assume that P
xy
−→ R and P

zw
−→ Q.

Then there exists S ∈ πa such that :

P
xy

����������
zw

��???????

R

zw
��

Q

xy��
S

Furthermore, if x = z then:

P
xy

����������

τ

��

xw

��???????

R

xw
��

Q

xy��
S

We can also prove the following extension of the above lemma, illustrated in
Figure 1.1.

Lemma 1.1.2 (Confluence with τ )

Let P ∈ πa. Assume that P
τ

−→ R and P
xy
−→ Q. Then, either

1. P
xz
−→ for any z, or

2. there exists S ∈ πsc such that: Q
τ

−→ S and R
xy
−→ S.

Proof : We have to consider the possibility that the transition P
τ

−→ R is the result

of a synchronization between P1
xy
−→ Q1 and P2

xy
−→ Q2, where P1 and P2 are parallel

subprocesses in P , and the latter transition is the one which induces P
xy
−→ Q. If this

is the case, then P
xz
−→ for any z (note that x cannot be bound in P because P

xy
−→ ).

On the other hand, if P
τ

−→ R does not involve the transition that induces P
xy
−→ Q,

then the proof is the same as for Lemma 1.1.1 (see [Pal03], Lemma 4.1).
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xt

P

R Q

S

xy τ

τ xy

Figure 1.1: Confluence with τ

1.1.4 The πic-calculus

The πic-calculus is a restricted version of the πsc-calculus where choices can
only be made of input prefixed processes. This is a natural restriction that
enforces the fact that the reception cannot be controlled. Not only the resulting
processes are unable to choose between receiving or sending messages, but also
they cannot decide which sending operation may happen.

Again, this reflects the fact that, if various messages are to be sent by a process,
the reception cannot be controlled. Hence, a mutually exclusive choice among
various possible send actions is not possible. Furthermore, sending continuation
is not relevant either, since the process cannot control the reception.

P,Q, . . . :=
∑

i∈I

xi(yi).Pi

∣

∣

∣
xy

∣

∣

∣
νxP

∣

∣

∣
P |Q

∣

∣

∣
!P

Since we removed the sending prefix, send actions in this language can always
be delayed. Hence, we can prove the following properties:

Lemma 1.1.3 ([SW01], Lemma 5.3.1)

If P is a process of the πic-calculus such that P
xy
→ P ′, then P ≡ xy |P ′.

An important consequence is the following property:
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Lemma 1.1.4 ([SW01], Lemma 5.3.2)

Let P be a process from the πic-calculus.

If P
xy
→

α
→ , then P

α
→

xy
→

1.1.5 The πa-calculus

The πa-calculus is the most restrive of the various asynchronous calculi that we
present. It follows the same logic as previous restrictions, but also removes the
input-prefixed choice.

Definition 1.1.6

A πa-calculus process is an element generated by the following grammar:

P,Q, . . . := 0
∣

∣

∣
xz

∣

∣

∣
x(y).P

∣

∣

∣
νxP

∣

∣

∣
P |Q

∣

∣

∣
!P

This fragment of the π-calculus is the most studied of the various asynchronous
calculi. Several encodings of the previous asynchronous calculi have been pro-
posed. In particular, a fairly good encoding of the input prefixed choice is pro-
posed in [NP00], and two variants of the output prefix in [Bou92, HT91].

1.2 Bisimulations and asynchronous communi-

cations

1.2.1 Motivations

Now that we have defined the processes from the π-calculus and their possible
transitions, even though we have a structural equivalence ≡, there still are
processes that we want to identify, but which are not structurally equivalent.
More generally, given two arbitrary processes, we would like to know wether they
can be considered equivalent or not. In particular, one would like to abstract
this equivalence from the internal states of the process, and possibly also internal
steps. We then need an observational equivalence, based on the observations
we can make on the process.

A naive approach could use the notion of morphisms on the graphs generated
by the labeled transition system. However, processes would then be equivalent
when there is an homeomorphism between their associated graphs. But this
notion is too strong, since an homeomorphism means that the graphs are alge-
braically equivalent, which is not what we were looking for. See Figure 1.2 for
an example.





28 CHAPTER 1. CONCURRENT COMMUNICATION MODELS.

equivalent when they pass the same tests.

This notion is much more satisfactory. In particular it is compositional and fully
abstract – that is to say that it contains exactly enough information compared
to the observations you can make: if two processes are not testing-equivalent,
then there exists a context for which a difference can be observed during the
execution.

However, the testing semantics is quite hard to use in a theoretical context,
since it requires the need to prove equivalence for every possible test, which is
not theoretically easy.

On the other hand, the notions of bisimulation and bisimilarity are much more
interesting for the theoretical proofs. Their co-inductive definition make it much
easier to use. Furthermore, as we will see later, they enjoy, in the relevant
languages for this study, all the good properties that testing semantics has. We
present now the various notions of bisimulations used in the literature.

1.2.2 Strong bisimilarity, weak bisimilarity

The reasons mentioned above show the need for an equivalence in terms of
behavior for the processes in the π-calculus. This is achieved with a co-inductive
definition of an equivalence relation called the bisimulation.

To check wether two processes are equivalent, you may look at any arbitrary
action that one can perform, and see if the other one can perform the same
action, and become a process that remains equivalent to the resulting process
for the first one.

In the following, bisimulation will denote one binary relation with the required
properties, while bisimilarity will denote greatest bisimulation relation.

Formally, this gives:

Definition 1.2.1 (strong bisimilarity)

Let P and Q be two π-calculus processes. P and Q are bisimilar if and only if
there exists a binary relation R such that PRQ and:

• if P
α
→ P ′ and bn(α) 6∈ fn(Q) then Q

α
→ Q′ and P ′RQ′

• if Q
α
→ Q′ and bn(α) 6∈ fn(P ) then P

α
→ P ′ and P ′RQ′

∼ is the greatest binary relation satisfying these two properties and is referred
as the bisimilarity relation.

A particular relation R following the definition for a bisimulation relation will
be referred as a bisimulation. The greatest (or union) of all bisimulations will be
referred as the bisimilarity. Bisimilations and bisimilarities can also be given one
or several characterizing adjectives, late, early, weak, asynchronous. . . . When
stated without adjective, the underlying bisimulation notion will be the early
one, which is stated above.



1.2. BISIMULATIONS AND ASYNCHRONOUS COMMUNICATIONS 29

Some examples of bisimilar processes can be:

Example : The following processes are bisimilar

• νxxy ∼ 0

• xy.0 | t(z).0 ∼ xy.t(z).0 + t(z).xy (t 6= x)

The bisimulation expresses the fact that two processes behave in a similar way.
However, when trying to mimic one process, it is sometimes needed to have in-
ternal operations in the imitating process, to reflect some internal administrative
actions. These actions would be labeled τ . We may not want to discriminate
two processes on one of those internal steps, since they should not be distin-
guishable from an external point of view. Hence, the relaxed notion of weak
bisimulation.

In the following, we use the standard notation for weak transitions: P
α

=⇒ Q
stands for P

τ
−→∗ α

−→
τ

−→∗Q. If α = τ , then the transition may also denote
a null transition, which means that the process does nothing and remains the
same.

Definition 1.2.2 (weak bisimilarity)

Let P and Q be two π-calculus processes. P and Q are weakly bisimilar if and
only if there exists a binary relation R such that PRQ and:

• if P
α
→ P ′ and bn(α) 6∈ fn(Q) then Q

α
⇒ Q′ and P ′RQ′

• if Q
α
→ Q′ and bn(α) 6∈ fn(P ) then P

α
⇒ P ′ and P ′RQ′

≈ is the greatest binary relation satisfying these two properties.

1.2.3 Asynchronous bisimilarity

When establishing an observational equivalence for processes communicating
asynchronously, the emission of a message can always be delayed, hence cannot
be tracked down precisely, or shouldn’t since the sending process is unable to
know when reception is done. In this case, one may want to avoid some dis-
tinctions based on this property. A particular case is when a process receives
a message, and then send the message again, acting as a proxy for this mes-
sage. In an asynchronous context, this should not be noticed by an equivalence
relation.

For instance, this is the case when studying processes behavior in the asyn-
chronous π-calculus where Lemma 1.1.4 holds, i.e. where there is no output
prefix.

If a process P can send the message xy, since is x necessarily free in P , then,
P ≡ xy |P ′.

If Q
xy
→ Q′ and Q′ ≡ xy |Q′′, which means that Q receives and sends back the

message, then:









Chapter 2

Communicating trough
buffers

After the introduction of the various communication models in the π-calculus
family, we present a new result on the correspondence between asynchronous
communications as sending primitives without continuation and asynchronous
communications as communication happening through buffers. We define a new
language using the sending primitive of the π-calculus, but were communica-
tion occurs through buffers. We then prove the correspondence using a custom
encoding from and to the πa-calculus and the weak asynchronous bisimulation.
Further result show that there are no such encoding and correspondence for the
weak asynchronous bisimulation when communication occurs through Queues
(aka FIFO) or Stacks (aka LIFO).

These results have been published in [BPV08].
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Introduction

With the results of this chapter, we aim at explaining what represents the most
natural communication mechanism for the asynchronous languages in terms of
buffered-communications. It turns out that the πa-calculus behaves in a very
similar way as a synchronous π-calculus where communications happen through
unordered buffers. Hence, it can be argued that representing asynchronous
communications by the processes’ primitives, as for the πa-calculus, or by the
communication mechanisms results in the same expressiveness, hence the same
model.

Similarly, we observe that the natural representation of the communication
mechanisms happening with sending continuation is the queue, or First In,
First Out (FIFO), policy, where messages are sent from the buffer in the same
order as they are received. Also, the natural representation of the communica-
tion mechanisms happening with sending continuation and mixed choice is the
stack, or Least In, Least Out (LIFO), policy, where the latest received message
is sent last from the buffer.

More precisely, in the case of sending continuation (resp. sending continua-
tion and mixed choice), we state that the communication mechanisms need to
be able to behave like a queue (resp. stack) in order to naturally mimic the
processes from the corresponding π-calculi, and that this is not possible with
processes of the πa-calculus (resp. πic-calculus) up-to weak asynchronous bisim-
ulation.

2.1 Buffers, stacks, queues and bags

A buffer is basically a data structure that accepts messages and resends them
later. We consider different types of buffers, depending on the policy used for
outputting a previously received message. We focus on the following policies,
that can be considered the most common:

• Bag, or unordered policy: any message previously received (and not yet
sent) can be sent next.

• Queue, or FIFO policy: only the oldest message received (and not yet
sent) can be sent next.

• Stack, or LIFO policy: only the last message received (and not yet sent)
can be sent next.

Let us now formally define these three types of buffer. We need to keep the
information about the order of reception to decide which message can be sent
next. This will be achieved using a common core definition for all kinds of
buffers.
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We will use M ∈ M to denote a message that the buffers can accept.

Definition 2.1.1 (Buffer)

A buffer is a finite sequence of messages:
B = M1 ∗ ... ∗ Mk, k ≥ 0, Mi ∈ M (B is the empty sequence if k = 0).

∗ is a wild card symbol for the three types of buffers. Then, we will use the
notation M1 ⋄ ... ⋄ Mk for a bag, M1 ⊳ ... ⊳ Mk for a queue, M1 ⊲ ... ⊲ Mk for a
stack.

A reception on a buffer is the same for all kinds of policies:

Definition 2.1.2 (Reception on a buffer)

Let B = M1 ∗ ... ∗ Mk. We write

B
M
−→ B′ to represent the fact that B receives the message M , becoming B′ =

M ∗ B = M ∗ M1 ∗ ... ∗ Mk.

The emission of a message is different for the three types of buffers:

Definition 2.1.3 (Sending from a buffer)

Let B = M1 ∗ ... ∗ Mk. We write

B
M
−→ B′ to represent the fact that B sends the message M , becoming B′,

where:
• If ∗ = ⋄ (bag case) then M = Mi for some i ∈ {1, ..., k} and B′ =

M1 ⋄ ... ⋄ Mi−1 ⋄ Mi+1 ⋄ ... ⋄ Mk.
• If ∗ = ⊳ (queue case) then M = Mk and B′ = M1 ⊳ ... ⊳ Mk−1.
• If ∗ = ⊲ (stack case) then M = M1 and B′ = M2 ⊲ ... ⊲ Mk.

Remark 2.1.1

If B is a buffer such that B
M1−→ and B

M2−→ with M1 6= M2 then B must be a
bag, i.e. B cannot be a stack or a queue.

Finally, we introduce here the notion of buffer’s content and sendable items.

Definition 2.1.4 (Buffer’s content)

A buffer’s content is the multiset of messages that the buffer has received and
has not yet sent:

C(M1 ∗ ... ∗ Mk) = {{M1, ...,Mk}}

Definition 2.1.5 (Buffer’s sendable items)

A buffer’s sendable items is the multiset of messages that can be sent immedi-
ately:

S(M1 ⋄ M2 ⋄ · · · ⋄ Mk) = {{M1, M2, . . . ,Mk}}
S(M1 ⊳ M2 ⊳ · · · ⊳ Mk) = {{Mk}}
S(M1 ⊲ M2 ⊲ · · · ⊲ Mk) = {{M1}}
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Note that S(B) is empty iff C(B) is empty. Furthermore, if B is a bag, then
C(B) = S(B).

2.2 The πB-calculus

We define a calculus for asynchronous communications obtained by enriching
the synchronous π-calculus with bags, and forcing the communications to take
place only between (standard) processes and bags.

We decree that the bag’s messages are names. Each bag is able to send and
receive on a single channel only, and we write Bx for a bag on the channel x.
We use {{}}x to denote an empty bag on channel x, and {{y}}x for the bag on
channel x, containing a single message, y.

Definition 2.2.1

The πB-calculus is the set of processes defined by the grammar:

P,Q ::=
∑

i∈I αi.Pi

∣

∣

∣
P |Q

∣

∣

∣
νx P

∣

∣

∣
!P

∣

∣

∣
Bx

where Bx is a bag, I is a finite indexing set and each αi can be of the form x(y)
or xz. If |I| = 0 the sum can be written as 0 and if |I| = 1 the symbol “

∑

i∈I”
can be omitted.

Definition 2.2.2 (structural congruence)

The relation ≡ is the smallest congruence over processes satisfying:
• α-conversion on bound names
• The commutative monoid laws for parallel and sum composition with 0

as identity
• νx(P |Q) ≡ P | νxQ when x 6∈ fn(P )
• νxP ≡ 0 when fn(P ) ⊂ {x}
• νxνxP ≡ νxP
• νxνyP ≡ νyνxP
• P ≡ P | {{}}x for all possible x

The early transition semantics is obtained by redefining the rules in and out in
Table 1.1 and by adding the rules inbag and outbag for bag communication as
defined in Table 2.1. Note that they are basically the rules for the (synchronous)
π-calculus except that communication can take place only between (standard)
processes and bags. In fact, the rule out guarantees that a process can only
output to a bag. Furthermore the only rule that generates an output transition
is outbag, hence a process can only input, via sync and close, from a bag.

We also use the symbol
α

−→B to denote a transition using these operational
rules.

The structural equivalence ≡ consists of the standard rules of Definition 1.1.5,
plus P ≡ P | {{}}x. This last rule allows any process to have access to a buffer
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even if the process itself is blocked by a binder. A typical example is P =
νx(xy.x(z).Q), which can not execute any action without this rule. Thanks to
the rule, we have:

P ≡ νx(xy.x(z).Q | {{}}x) →B νx(x(z).Q | {{y}}x) →B νx(Q[y/z] | {{}}x)

Note that we can also restrict the application of P ≡ P | {{}}x to the case in which
P is a pure process (not containing a bag), i.e. a term of the asynchronous π-
calculus). We do not impose this constraint here because it is not necessary,
and also because we believe that allowing multiple bags on the same channel
name and for the same process is a more natural representation of the concept
of channel in distributed systems. Later, when dealing with stacks and queues,
we will have to adopt this restriction in order to be consistent with the nature
of stacks and queues.

A consequence of the rule P ≡ P | {{}}x is that every process P is always input-
enabled. This property is in line with other standard models of asynchronous
communication, for example the Input/output automata (see, for instance,
[Lyn96]), the input-buffered agents of Selinger [Sel97] and the Honda-Tokoro
original version of the asynchronous π-calculus [HT91].

The basic input and output transitions for bags given by inbag and outbag are
defined in terms of receive and send transitions on buffers in Definition 2.1.2 and
2.1.3. The following remark follows trivially from the rules in Table 2.1.

Remark 2.2.1

Let Bx be a bag process. Then Bx
y

−→ B′
x iff Bx

xy
−→B B′

x. Similarly, Bx
y

−→ B′
x

iff Bx
xy
−→B B′

x.

The notions of free names and bound names for ordinary processes are defined
as usual. For bags, we define them as follows. Recall that C gives the content
of a buffer (see Definition 2.1.4).

Definition 2.2.3 (Bag’s free and bound names)

Let Bx be a bag with content C(Bx) = {{y1, . . . , yk}}. The free variables fn
and the bound variables bn of Bx are defined as fn(Bx) = {x, y1, . . . , yk} and
bn(Bx) = ∅.

2.3 Encodings from and to the πa-calculus and

πB-calculus

In this section, we study the relation between the πa-calculus and the πB-
calculus.
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(inbag)
Bx

y
→ B′

x

Bx
xy
−→B B′

x

(outbag)
Bx

y
−→ B′

x

Bx
xy
−→B B′

x

(in)
αj = xy

∑

i∈I

αi.Pi
xz
−→B Pj [z/y]

(out)
Bx

xy
−→B B′

x

(xy.P +
∑

i∈I

αi.Pi) |Bx
τ

−→B P |B′
x

(sync)
P

xy
−→B P ′, Q

xy
−→B Q′

P |Q
τ

−→B P ′ |Q′
(ν)

P
α

−→B P ′, a 6∈ fn(α)

νaP
α

−→B νaP ′

(open)
P

xy
−→B P ′, x 6= y

νyP
x(y)
−→B P ′

(close)
P

x(y)
−→B P ′, Q

xy
−→B Q′, y 6∈ fn(Q)

P |Q
τ

−→B νy(P ′ |Q′)

(bang)
P | !P

α
−→B P ′

!P
α

−→B P ′
(cong)

P ≡ P ′ P ′ α
−→B Q′ Q′ ≡ Q

P
α

−→B Q

(comp)
P

α
−→B P ′, bn(α) ∩ fn(Q) = ∅

P |Q
α

−→B P ′ |Q

Table 2.1: Transition rules for the π-calculus with bags

We will use the two notions of asynchronous bisimulation introduced in the
previous chapter to describe the properties of the encodings from πa to πB and
from πB to πa, respectively. The notion of strong asynchronous bisimulation
is almost the same, but not completely, as the one of [ACS98]. The difference
is that, in [ACS98], when P performs an input action, Q can either perform a
corresponding input action or a τ step. The reason for introducing the change
is essentially to get the correspondence stated in Theorem 2.3.1. We could
have used weak asynchronous bisimulation instead, but we preferred to show
how strong the correspondence is. As for the notion of weak asynchronous
bisimulation, this is essentially the same as the one introduced by [HT91] (called
asynchronous bisimulation in that paper). The formulation is different, since
the labeled transition system of [HT91] is different from ours, however it is easy
to show that the (weak) bisimulations induced by their system, as relations on
process terms, coincide with our weak asynchronous bisimulations.

2.3.1 From πa to πB

We observe that there is a rather natural interpretation of the πa-calculus into
the πB-calculus, formalized by an encoding defined as follows:
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Definition 2.3.1

Let J K : πa →֒ πB be defined as:
• J0Ka = 0
• JxyKa = {{y}}x.
• Jx(y).P Ka = x(y).JP Ka

• JνxP Ka = νxJP Ka

• JP |QKa = JP Ka | JQKa

• J!P Ka =!JP Ka

It is easy to see that there is an exact match between the transitions of P and
the ones of JP Ka, except that {{y}}x can perform input actions on x that the
original process xy cannot do. This is exactly the kind of situation treated
by the additional case in the definition of asynchronous bisimilarity (additional
w.r.t. the classical definition of bisimilarity). Hence we have the following
result:

Theorem 2.3.1

Let J Ka : πa →֒ πB be the encoding in Definition 2.3.1. For every P ∈ πa,
P ≈a JP Ka.

Proof : We prove the bisimulation using the following binary (symmetric1) relation:

R =
S

P∈πa

`

{(P, JP Ka}
´

∪
S

{{y1,...,yn}}x
{({{y1, . . . , yn}}x, xy1 | . . . |xyn)}

As we can see from the encoding, if P is not an output, then if P
α

−→ P ′ then also
JP Ka

α
−→B P ′′, and P ′RP ′′ and vice-versa.

Also, if xy1 | . . . |xyn
xyi−→ P then also {{y1, . . . , yn}}x

xyi−→B B with PRB, and vice-
versa.

The only remaining case is the reception on a buffer, for which, if:

{{y1, . . . , yn}}x
xz
−→B {{z, y1, . . . , yn}}x

then:

{{z, y1, . . . , yn}}xR xz |
`

xy1 | . . . |xyn

´

.

Such that the weak asynchronous bisimulation still holds, using the asynchronous case
of the definition.

The encoding from πB into πa is more complicated, but still we can give a rather
faithful translation.

2.3.2 From πB to πa

Our encoding of the πB-calculus into the πa-calculus is given below.

1For readibility, we only specify one half of the relation in this proof.
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Definition 2.3.2

The encoding J KB : πB →֒ πa is defined as follows:

J
∑

i∈I αi.PiKB = ν(l, t, f) (lt |Πi∈IJαi.PiKB,l)

JP |QKB = JP KB | JQKB

Jνv P KB = νv JP KB

J!P KB = !JP KB

JBxKB = Πyi∈S(Bx)xyi

where J KB,l is given by

Jx(y).P KB,l = x(y).l(λ).
[

(if λ = t then JP KB,l,x(y) else xy) | lf
]

JP KB,l,x(y) = νl′
[

l′() | l′().JP KB | l′().
(

xy | Jx(y).P KB,l | lt
)]

Jxy.P KB,l = l(λ).
[

(if λ = t then xy | JP KB) | lf
]

In this definition, we use a if-then-else construct in the form if λ = t then P else
Q which is syntactic sugar for λ | t.P | f.Q. This is correct within the scope of
our definition because λ can only be t or f , and λ, t and f are private.

This encoding of the mixed choice is similar to the first encoding of input
guarded choice defined in [Nes00]. The JP KB,l,x(y) is important to establish
the bisimilarity result. It consists of a non deterministic choice between going
back to initial state, or following with JP KB.

The soundness of the encoding depends crucially on the fact that in the πB-
calculus the output of a standard process is non-blocking.

Note that this encoding is not termination preserving. As in [Nes00], this prob-
lem could be addressed by removing the backtracking possibility and using a
coarser semantic (coupled bisimilarity). Here, we consider the stronger notion
of weak asynchronous bisimilarity recalled above.

Theorem 2.3.2

Let J KB : πB →֒ πa be the encoding in Definition 2.3.2. Then, for every
P ∈ πB, P ≈a JP KB.

Proof : We give the proof only for the non-trivial cases of the encoding, which are:

1. JBxKB

2. J
P

i∈I αi.PiKB

We will show that the above encodings are weakly asynchronous bisimilar to their
source processes. For (1), the statement follows from:

• Bx
xy
−→B B′

x =⇒ JB′
xKB = JBxKB |xy

• Bx
xy
−→B B′

x ⇐⇒ JBxKB

xy
−→ JB′

xKB

Let us now consider the case (2).
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x(y).P + zv.Q

xw

xw

x(y).P + zv.Q | {{w}}x

τ

P [w/y]

xw

τ

Q | {{v}}z

Figure 2.1: Transitions of a πB sum.

For the sake of simplicity, we outline the proof for a choice construct with only one
input-guarded and one output-guarded branches, the proof for a choice with more
than two branches can be easily generalized from this case.

There are three possible transitions from this choice2:

1. x(y).P + zv.Q
τ

−→B Q | {{v}}z

2. x(y).P + zv.Q
xw
−→B P [w/y]

3. x(y).P + zv.Q
xw
−→B (x(y).P + zv.Q) | {{w}}x

These transitions are matched by the encoded process in the following way:

1. Jx(y).P+zv.QKB

τ
−→ νl(zv | JQKB | lf | Jx(y).P KB,l) ≡ νl(lf | Jx(y).P KB,l) | JQKB | zv

2. Jx(y).P+zv.QKB

xw
−→

τ
−→

τ
−→ νl(JP [w/y]KB | lf | Jzv.QKB,l) ≡ νl(lf | Jzv.QKB,l) | JP [w/y]KB

3. (x(y).P + zv.Q) | {{w}}x ≈a Jx(y).P + zv.QKB |xw

In the case of νl(lf | Jx(y).P KB,l), the only transitions that can be executed for this pro-

cess are: νl(lf | Jx(y).P KB,l)
xz
−→

xz
−→ νl(lf) Hence, it is weakly asynchronous bisimilar

to 0, according the to asynchronous case of the relation.

Also, since νl(lf | Jzv.QKB,l) can only do a τ transition and become νl(lf), it is weakly
asynchronous bisimilar to 0.

In the other direction, we have the above transitions plus the following one:

Jx(y).P + zv.QKB

xw
−→ R

where R = νl(lt | l(x).((if x = true then JP [w/y]KB,l,x(w) else xw) | lf) | Jzv.QKB,l). In
this case, the choice is not commited: the process can continue with Jzv.QKB,l and
then release xw, or send xw and come back to its initial state, or receive the value on
x(y).P . This is matched by the following transition from the original process:

x(y).P + zv.Q
xw
−→B (x(y).P + zv.Q) | {{w}}x

Figures 2.1 and 2.2 show the transitions of a typical binary choice and its encoding
and how they are related by weak asynchronous bisimilarity.

2In the third transition, the input could be on a channel different from x. The proof
however proceeds in the same way.
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Jx(y).P + zv.QKB

xw

τ

τ

τ

xw

τ
≈a x(y).P + zv.Q | {{w}}x

x(y).P + zv.Q | {{w}}x ≈a

x(y).P + zv.Q | {{w}}x ≈a

P [w/y] ≈a

τ

≈a Q | {{v}}z

Figure 2.2: Transitions of the πa encoding of the πB sum in Figure 2.1.

2.4 Impossibility result for the other types of

buffer

In this section, we show the impossibility of encoding other kinds of buffers (i.e.
not bags) into the asynchronous π-calculus and into the π-calculus with separate
choice. In particular, we show that a calculus with queues and stacks cannot
be encoded into πa up-to weak asynchronous bisimilarity. Then, we show a
stronger result for stacks: a calculus with stacks cannot even be encoded, up-to
weak asynchronous bisimilarity, in the π-calculus with separated-choice. Note
that, since weak bisimilarity is a special case of weak asynchronous bisimilarity,
those results also hold up-to weak bisimilarity.

We stress the fact that these results strongly depend on the requirement that
a term (in particular a stack or a queue) and its encoding be asynchronously
bisimilar. We believe that it is possible to simulate stacks or queues in πa.
Our results only say that it cannot be done via an encoding that satisfies the
requirement of translating a process into a weakly asynchronously bisimilar
one.

We start by defining the π-calculus with stacks and queues.

Definition 2.4.1

The π-calculus with buffers of type T , written πT , where T is either Q (queues)
or S (stacks) is the set of processes defined by the grammar:

P,Q ::=
∑

i∈I αi.Pi

∣

∣

∣
P |Q

∣

∣

∣
νx P

∣

∣

∣
!P

∣

∣

∣
Bx

where Bx represents a buffer of type T .

The operational semantics of πT is the same as the one defined in Section 2.2,
except that the last congruence rule (P ≡ P | {{}}x) only applies when P is a
pure π-calculus process (i.e. not containing a buffer), in order to avoid behaviors
that do not represent FIFO or LIFO strategies. Furthermore, the rules for bags
(inbag and outbag) should be interpreted as rules for stacks (resp. queues) in
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the sense that the transitions in the premises should be those defined for stacks
(resp. queues) in Definition 2.1.3.

2.4.1 Impossibility of encoding queues and stacks

In this section we show that it is not possible to find a valid encoding using the
πa-calculus for queues and stacks modulo weak asynchronous bisimilarity.

Theorem 2.4.1

Let J K be an encoding from πQ into πa (resp. from πS into πa). Then there
exists P ∈ πQ (resp. P ∈ πS) such that JP K 6≈a P .

Proof : We prove the theorem by contradiction, for P ∈ πQ . The case of P ∈ πS is
analogous.

Let P be a queue Bx of the form · · · ⊳ y ⊳ z with y 6= z. Then we have:

Bx
xz
−→Q

xy
−→Q (2.1)

Since we are assuming JBxK ≈a Bx, we also have JBxK
xz

=⇒
xy

=⇒. By using Lemma 1.1.4

we obtain JBxK
τ

−→ * xz
−→

xy
−→

τ
−→ *. Using Lemma 1.1.4 again we get: JBxK

τ
−→ *

xy
−→

xz
−→

τ
−→ *.

Since JBxK ≈a Bx we have Bx
xy

=⇒
xz

=⇒, and, since a buffer in isolation does not give
rise to τ steps, we also have

Bx
xy
−→Q

xz
−→Q

By the latter, and (2.1), and Remark 2.1.1, we have that B cannot be a queue.

Remark 2.4.1

We could give a stronger result, namely that for any encoding J K : πQ →֒ πa

(resp. J K : πS →֒ πa) and any queue (resp. any stack) Bx, JBxK 6≈a Bx. We
leave the proof to the interested reader. The idea is that if Bx contains less
than two elements, then we can always make input steps so to get a queue with
two elements.

2.4.2 Impossibility of encoding stacks in the π-calculus
without mixed-choice operator

In this section we prove that stacks cannot be encoded in πsc-calculus.

Theorem 2.4.2

Let J K be an encoding from πS into πsc. Then there exists P ∈ πS such that
P 6≈a JP K.
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JSxK

τ

τ

τ

xy τ
τxz

xy xz

Figure 2.3: Impossibility to encode a stack.

Proof : Let Bx be a stack of the form y ⊲ . . . . Assume by contradiction that Bx ≈a

JBxK (i.e. Bx is weakly asynchronously bisimilar to JBxK) . Then Bx must be weakly
bisimilar to JBxK. In fact, if Bx

xz
−→S B′

x ≈a JBxK|xz ≈a Bx|xz, then we would have

both Bx
xy
−→S and Bx

xz
−→S , which by Remark 2.1.1 is not possible.

Let z 6= y. We have Bx
xy
−→S B′

x and Bx
xz
−→S . Since Bx is weakly bisimilar to JBxK,

we have, for some P , JBxK
τ

−→ *P
xy
−→

τ
−→ * and P

τ
−→ * xz

−→
τ

−→ *.

Let us assume that the number of τ steps before P inputs xz is not zero. That is to
say, P

τ
−→ P ′ τ

−→ * xz
−→ . From Lemma 1.1.2, we have that either P

xz
−→ for any z, or

P ′ xy
−→ . Then, by re-applying this reasoning to each sequence of τ transitions before

the input of xz, we eventually get P
xy
−→ and P

xz
−→ . By applying Lemma 1.1.1 we

have P
xy
−→

zz
−→ P ′ and P

zz
−→

xy
−→ P ′. From the fact that Bx and JBxK are weakly

bisimilar, we get Bx
xy
−→S

xz
−→S and Bx

xz
−→S

xy
−→S . Finally, we observe that the last

sequence is not possible, because after the input action xz a stack can only perform
an output of the form xz.

Figure 2.3 illustrates the fact that the encoded process must have a point where con-
fluence occurs, which is used in this proof.

Remark 2.4.2

Also in this case we could give a stronger result, namely that for any encoding
J K : πS →֒ πsc and any stack Bx, JBxK 6≈a Bx. Again the idea is that if Bx is
not in the right form (i.e. it is empty), then we can make an input step so to
get a stack with one element.
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of observations, in order to reduce the search space when trying to prove obser-
vational equivalence between two processes.

In Chapter 3, we first present some known results about the various usual bisim-
ilarity relations in the various asynchronous calculi. We then present two new
results extending the previous work in this topic. In particular, we show that
the value received by an asynchronous process is not relevant for the bisimi-
larity, and that the transition resulting of an internal communication on a free
channel need not to be taken into account.

In Chapter 4, we first define a notion of bunched transition system, where tran-
sitions are sequences of transitions of the original transition system, preserving
confluence and causality. We prove that the bisimilarity relation defined on such
a Labeled Transition System is included in the original bisimilarity. We then
apply it to the case of the πa-calculus: using the asynchronous causalities that
can be inferred from the grammar of the processes, we define a bunched Labeled
Transition System for the πa-calculus for which the bisimilarity is included into
the original bisimilarity.

We conclude with several intuitions about further extensions of this work, as well
as details on the relations with the original motivations, which was to speed-up
the evaluation, or simulation, of an asynchronous process.
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3.1 The late semantics

Introduction

Other operational semantics for the π-calculus than the one described in Def-
inition 1.1 exist. The semantics described in this table is referred as the early
semantics. When a process x(y).P receives a value xz, the name y is substituted
in every place by the name z. The semantics used in Definition 1.1 presents a
transition system where this substitution is done in the (in) reception rule. Al-
though this seems natural, this definition has some drawbacks. In particular,
since the process can receive any possible value, each of these possible value
entails a transition, leading to an infinite number of possible transitions for the
receiving process. This has consequences both in the theoretical models, where
infinite branchings can be troublesome, and on practical implementations, where
a program should always be represented by a finite object.

Furthermore, the requirement to have a single transition per possible value
seems overkill. In particular, we know that if the process x(y).P performs an
input transition, then it should become a process where y has been replaced by
the received value. Formally speaking, after a reception, all the infinitely many
possible cases may all be lumped into a process waiting for the new value.

That is what is achieved with the late semantics and the associated transition
system.

3.1.1 The late transition system

Under the late semantics, the (in) rule is replaced by a generic rule of the
form:

x(y).P
x(y)
−→l P

As we can see, no substution is done in this rule. Indeed, substitution happens
during the synchronization rule:

P
xz
−→l P

′, Q
x(y)
−→l Q

′

P |Q
τ

−→l P
′ |Q′[z/y]

The receiving process has a single transition and substitution happens when
this communication is matched with an available value.

The operational rules of the late transition system are described in Table 3.1.
They are almost the same as the early rules, but with the modifications discussed
above: the substitution is not longer done in the (in) rule, but in the (sync) one,
which is the communication rule, where the actually received value is known.
The substitution was not added for the (close) rule. The received value is
a bound channel from the sending process. In this case, the value received
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(in)
x(y).P

x(y)
−→l P

(out)
xy.P

xy
−→l P

(sync)
P

xz
−→l P

′, Q
x(y)
−→l Q

′

P |Q
τ

−→l P
′ |Q′[z/y]

(ν)
P

α
−→l P

′, a 6∈ fn(α)

νaP
α

−→l νaP ′

(open)
P

xy
−→l P

′ x 6= y

νyP
x(y)
−→l P

′
(close)

P
x(y)
−→l P

′, Q
x(y)
−→l Q

′

P |Q
τ

−→l νy(P ′ |Q′)

(bang)
P | !P

α
−→l P

′

!P
α

−→l P
′

(cong)
P ≡ P ′, P ′ α

−→l Q
′, Q ≡ Q′

P
α

−→l Q

(comp)
P

α
−→l P

′, bn(α) ∩ fn(Q) = ∅

P |Q
α

−→l P
′ |Q

(sum) P
α

−→l P
′

P + Q
α

−→l P
′

Table 3.1: Late operational semantics for the π-calculus

is up to α-conversion. Since the receiving value is also a bound channel, it
is also up to α-conversion. Hence, this can be the same value on both sides
of the communication, eliminating the need for a substitution in the resulting
process.

3.1.2 Late bisimilarity

This transition system entails a different notion of bisimulation. This is due to

the fact that if P and Q are bisimilar, and P
x(y)
−→l P

′, then Q should perform

the same action x(y): Q
x(y)
−→l Q

′, but also, since the actual value is not known,
P ′[z/y] and Q′[z/y] should be bisimilar for any value z.

Definition 3.1.1 (strong late bisimilarity)

Let P and Q be two π-calculus processes. P and Q are late bisimilar if and
only if there exists a binary relation R such that PRQ and:

• if P
α

−→l P
′ and bn(α) 6∈ fn(Q), then Q

α
−→l Q

′ and P ′RQ′. If α = x(y),
then for every possible name z, P ′[z/y]RQ′[z/y]

• if Q
α

−→l Q
′ and bn(α) 6∈ fn(Q), then P

α
−→l P

′ and P ′RQ′. If α = x(y),
then for every possible name z, P ′[z/y]RQ′[z/y]

If two processes are bisimilar for the late bisimilarity, we write: P ∼l Q.

In the general case, these bisimilarities are known not to coincide:
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Proposition 3.1.1 ([SW01], Lemma 4.5.3)

The early bisimilarity is strictly greater than the late bisimilarity:
∼l ( ∼.

For the late semantics, when a process P performs a transition: P
x(y)
−→ P ′ the

value y in P ′ represents a variable that is substituted in the (sync) rule, such

as: P |xz
τ

−→ P ′[z/y]. Hence, the name z received in the (sync) rule carries a
non-deterministic choice and the behaviour of the process P ′[z/y] may change
depending of this value.

For instance, for the early semantics, when a reception occurs within a choice
operator, the choice of the received value is drawn exactly at the same moment as
the choice of the continuation, while in the case of the late semantics, the choice
of the continuation is resolved before the received variable is known.

Hence, under the early semantics, a process may imitate the behavior of an-
other based on the simultaneous choice of value and continuation, while the late
semantics requires a greater set of transitions and states for the imitating pro-
cess, since it has to match all the possible processes that results of the chosen
continuation for any possible received value.

In other words, the correspondence fails because, in the case of the late seman-
tics, there are two different non-deterministic choices, while in the case of the
early one, they are lumped into a single choice.

As we will see later, this also relies on the presence of mixed input and out-
put choice. When no mixed choice are allowed, then all the usual variants of
bisimilarities collapse.

In the following, ∼, always denotes the early bisimilarity, unless stated explic-
itly.

3.2 Bisimilarities and congruences

3.2.1 Congruence under any context

A natural requirement for a process equivalence relation is that it is preserved
by the application of any context. In particular, if P is equivalent to Q then
we may want that any process obtained from the grammar using P would then
be equivalent to the same construction using Q. For instance, for any arbitrary
process R, P |R and Q |R are equivalent. Such an equivalence relation is a con-
gruence. As we will see this is unfortunately not true for the strong bisimilarity
in the π-calculus.

First, we recall the notion of context for the π-calculus:
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Definition 3.2.1

A context in the π-calculus is obtained by the following grammar, where P
stands for a regular process:

C[.] := .
∣

∣

∣
0

∣

∣

∣
xz.C[.]

∣

∣

∣
x(y).C[.]

∣

∣

∣
C[.] + P

∣

∣

∣
P + C[.]

∣

∣

∣
νxC[.]

∣

∣

∣
C[.] |P

∣

∣

∣
P |C[.]

∣

∣

∣
!C[.]

Where . is a placeholder. For a context C[.] and a process P , C[P ] is the process
obtained by replacing all occurrences of the . placeholder by P in C[.].
Contexts for the π-calculus variants are defined the same way.

Then, we say that an equivalence relation R between processes in the π-calculus
is a congruence when it is stable under any context. Formally:

Definition 3.2.2

Let R be an equivalence relation between processes from the π-calculus. R is
a congruence if and only if for any P,Q and any context C[.],

PRQ =⇒ C[P ]RC[Q]

3.2.2 Congruent bisimilarities

In the case of the π-calculus, for all possible constructs except input prefix, i.e.
x(y).P , the bisimilarity is a congruence:

Theorem 3.2.1 ([SW01], Theorem 2.2.8)

Let P , Q R be 3 processes from the π-calculus such that P and Q are bisimilar.
Then:

• P |R ∼ Q |R
• νxP ∼ νxQ
• P + R ∼ P + Q
• !P ∼ !Q

However, this is not true for x(y).P :

Theorem 3.2.2 ([SW01], Theorem 2.2.8)

The strong bisimilarity is not a congruence for the input prefix.

In order to define a congruence from a bisimulation, invariance under renaming
needs to be added to restrict the bisimulation relations. A renaming is a function
σ : N −→ N . For a process P , we write Pσ to denote the process obtained by
replacing all free names in P by their image with σ. For a transition α, σ(α) is
the transition where free names have been replaced by their image by σ.
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Definition 3.2.3

Let R be a bisimulation relation, either late or early. R is a congruent bisimu-
lation if and only if for any two processes P,Q such that PRQ, then PσRQσ
for any renaming σ on the free names of P and Q.

It is easy to prove that if R is a congruent bisimulation, then it is a congru-
ence.

3.3 The asynchronous case

3.3.1 Equivalences and congruences

The considerations above were stated in the general – synchronous – case. How-
ever, in the asynchronous case, things are much different. First, most of the
issues above came from the non-determinism introduced by the choice operator
+. The counter examples for the fact that late bisimilarity is more restrictive
than early bisimilarity, or that both are not congruences, was built using a
mixed choice between an input transition, or an output transition.

In the case where the mixed choice operator is no longer present, one may
wonder what happens of the results stated in previous sections. The answer is
that they are both invalidated, and it comes from a great difference that arises in
the asynchronous case: bisimilarities are preserved under any renaming.

In the following, ∼ denotes the early bisimilarity and ∼l the late bisimilar-
ity.

We first prove the following lemma. A similar lemma can be found in [San95]
(Lemma 5.4). The difference is that in this version the renaming is not assumed
to be injective, which leads to the second case described below.

We state and prove this lemma here because it is used in the next chapter to
prove the results presented there.
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Lemma 3.3.1

Let σ be a renaming, α a transition label and ω a special name used as a variable
and not occuring in the processes or transitions.
Let P and P ′′ be two processes of the πa-calculus such that Pσ

α
→ P ′′. There

exists a renaming σ′ such that for any x 6= ω, σ′(x) = σ(x), and one of the
assertions below is true.

1. There exists γ and P ′ such that P
γ
→ P ′ with P ′′ = P ′σ′. If α = σ(x)y,

then γ = xω and σ′(ω) = y, otherwise α = σ(γ) and σ′(ω) = ω.1

2. There exists x, y, z and x′, y′ and P ′ such that:
• α = τ
• σ(xy) = x′y′, σ(z) = x′

• σ′(ω) = y′

and:

P
zy

~~}}}}}}} xy

  AAAAAAA Pσ

τ

��

x′ω

||zzzzzzzz x′y′

""DDDDDDDD

xy   @@@@@@@@

zy~~~~~~~~~~

x′y′ !!DDDDDDDD

x′ω}}zzzzzzzz

P ′ P ′σ′

Proof : We prove the lemma by induction on the process’ syntax:

Let us consider the various cases:

Input prefix: P = x(y).P ′

Then Pσ = σ(x)(y).S and the only action that it can perform is:

Pσ
σ(x)t
→ S[t/y]. Then x(y).P ′ xω

→ R, such that Rσ′ = S[t/y].

Output P = xy
This case is trivial.

Binding prefix P = νxP ′

In this case, Pσ = νx(P ′σ′), with σ′(x) = x and σ′(y) = σ(y) otherwise, since
renaming does not modify bound names. Hence, the transitions of Pσ are those
of P ′σ′ for which x is not a free name. The only particular case is then in the case

were assertion 2 holds, with P ′σ′ xy
−→

xt
−→ P ′′. In this case, however, assertion

1 holds for Pσ: since σ′ does not modify x, then Pσ
τ
→ P ′′ and P

τ
→ P ′ where

P ′′ = P ′σ.

Parallel composition P = A |B
The only particular case is when there are two original transitions xy and zt such
that σ(xy) = x′y′ and σ(zt) = x′y′. In this case, then Pσ has a new τ transition
such that Pσ

τ
→ P ′′. However, since P is a process from the πa-calculus, then,

P ≡ R |S, where R
zt
→ R′ and S

xω
→ S′. Then P ′′ = (R′ |S′)σ′ and assertion 2 is

true.

Input/output prefixed choice P =
P

i∈I xi(yi).Pi or P =
P

i∈I xi(yi).Pi

In these two cases, the first assertion is obviously true.

Bang composition P = !P ′

We have: (!P )σ = !(Pσ). If !(Pσ)
α

−→ P ′, then this transition is entailed by a

1The value in this case does not matter.
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finite number of applications of the (bang) rule, such that there exists a process
(Pσ) | . . . | (Pσ) so that (Pσ) | . . . | (Pσ)

α
−→ P ′′ and P ′ = P ′′ | !(Pσ). Hence,

the proposition is true since it is true for (Pσ) | . . . | (Pσ) by a finite number of
application of the parallel composition.

We also prove another lemma, which is specific to the πa-calculus. This lemma
is also used in the next chapter to prove the results preseted there.

Lemma 3.3.2

Let σ be a renaming such that σ(x) = σ(z) = x′, ω a name not occurring
elsewhere and P a process of the πa-calculus. If

P
zy

~~}}}}}}} xy

  AAAAAAA

xy   @@@@@@@@

zy~~~~~~~~~~

P ′

Then:

Pσ′

x′ω

}}zzzzzzzz

τ

��

x′y′

!!DDDDDDDD

x′y′ !!DDDDDDDD

x′ω}}zzzzzzzz

P ′σ′

Where σ(y) = y′, σ′(ω) = y′ and σ′(z) = σ′(z) otherwise.

Proof : By inference on the process’ structure, we prove that P ≡ R |S where R
zy
→ R′

and S
xy
→ S′. Hence, Pσ′ ≡ Rσ′ |Sσ′ and we obtain the required transitions.

Using these lemmas, we can now state the asynchronous cases of the results
of previous section. These results are not new, and each of them is linked to
its statement in the litterature. However, we prove them again, using the two
lemmas that we just stated.

The following proposition is stated in a different form in Lemma 5.3.7 in [SW01].
The statement here is however implied by the lemma of this reference.

Proposition 3.3.1

Let P and Q be two πa-calculus processes such that P ∼ Q, and σ a renaming.
Then:

Pσ ∼ Qσ

Proof : Using Lemma 3.3.2, we prove that the relation: R = ∪σ{(Pσ, Qσ) | P ∼ Q}
is a bisimulation relation.
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Indeed, if Pσ
α
→ P ′′, then, according to the lemma, either P

γ
−→ P ′ and P ′σ′ = P ′′,

or:

P
zy

~~}}}}}}}
xy

  AAAAAAA

xy   @@@@@@@

zy~~~~~~~~~

P ′

and:

Pσ′

x′ω

}}zzzzzzzz

τ

��

x′y

!!DDDDDDDD

x′y !!DDDDDDDD

x′ω}}zzzzzzzz

P ′σ′

In both cases, since Q ∼ P , there exists Q′ ∼ P ′. Furthermore, in both cases,
Qσ

α
→ Q′σ′.

In particular, if:

P
zy

~~}}}}}}}
xy

  AAAAAAA

xy   @@@@@@@

zy~~~~~~~~~

P ′

then also:

Q
zy

��~~~~~~~~
xy

��@@@@@@@@

xy ��@@@@@@@

zy���������

Q′

According to Lemma 3.3.2, then:

Qσ′

x′ω

}}{{{{{{{{

τ

��

x′y

!!CCCCCCCC

x′y !!CCCCCCCC

x′ω}}{{{{{{{{

Q′σ′

Hence, (P ′σ′, Q′σ′) ∈ R.
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Corollary 3.3.1 ([SW01], Theorem 5.3.11)

The early and late bisimilarities for the πa-calculus coincide: ∼ = ∼l.

Proof : We already know that ∼l ⊂ ∼.

Let P and Q be two processes for which P ∼ Q. If P
x(y)
−→l P ′, then: Q

x(y)
−→l Q′, with

P ′ ∼ Q′. Furthermore, according to the previous result, P ′σ ∼ Q′σ for any name
renaming σ, so, in particular, P ′[z/y] ∼ Q′[z/y], for any name z.

Hence, since all the other cases are straight forward, ∼ is also a late bisimilarity
relation, so P ∼l Q.

Corollary 3.3.2 ([SW01], Theorem 5.3.11)

The strong bisimilarity is a congruence in the πa-calculus.

Proof : The only particular case is the input prefix. Let P and Q be two bisimilar

processes, then: x(y).P
xt
→ P [t/y] and x(y).Q

xy
→ Q[t/y]. We conclude using Proposition

3.3.1, since P [t/y] ∼ Q[t/y].

A similar proof can be written for the asynchronous bisimulations. The case of
the asynchronous bisimulations is also detailed in [SW01].

3.3.2 Late bisimulation and the input/output πa-calculus

In this section, we prove a new result about the late bisimilarity. Following the
previous results on the (good) relations between the πa-calculus and bisimu-
lations, we prove that, when working on the late transition system, we do not
need to check if the resulting processes remain equivalent under any substitution
after the reception of a value. This is because, contrary to the π-calculus, the
πa-calculus behaves much better when renaming free names. In particular, the
relations between the transitions before and after the renaming is homogeneous,
as detailed in Lemma 3.3.2.

Naive late bisimilarity

We define a late bisimulation without substitution on input transitions. In the
following, the transitions follow the Late Transition System, as defined in Table
3.1, and thus we use

α
−→ for those transitions, without the l subscript.
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Definition 3.3.1 (naive late bisimilarity)

Let P and Q be two π-calculus processes. P and Q are naively late bisimilar if
and only if there exists a binary relation R such that PRQ and:

• if P
α
→ P ′ and bn(α) 6∈ fn(Q) then Q

α
→ Q′ and P ′RQ′.

• if Q
α
→ Q′ and bn(α) 6∈ fn(P ) then P

α
→ P ′ and P ′RQ′.

If two processes are bisimilar for the naive late bisimilarity, we write: P ∼nl

Q.

We prove that the naive late bisimilarity coincide with the late bisimilarity for
the asynchronous πa-calculus:

Theorem 3.3.1

The late bisimilarity and the naive late bisimilarity coincide on the πa-calculus:
∼l = ∼nl

Proof : By using Lemma 3.3.2, we prove, similarly to the early and late case, that
R = ∪σ{(Pσ, Qσ) | (P, Q) ∈∼nl} is a naive late bisimulation.

Hence, if P ∼nl Q and P
x(y)
→ P ′ such that Q

x(y)
→ Q′ and P ′ ∼nl Q′, then P ′[z/y] ∼nl

Q′[z/y], such that ∼nl⊂∼l.

It is also clear that ∼l⊂∼nl.

This result has an important consequence for the theory. It states that, in the
case of the πa-calculus, the transition graph generated by the late labeled tran-
sition system represents enough information to characterize the late bisimilarity
(hence the early, which coincides). Indeed, the late labeled transitions do not
represent the substitution after a reception, whereas the early transitions do.
Hence, for the case of the π-calculus, there can be two processes which have the
same late transition graph but are not late bisimilar.

Input/output bisimilarity

As explained previously, in the πa-calculus, when a process performs a τ tran-
sition, this transition is always related to an internal communication. However,
if the communication happens on a channel that is free, we also observe the cor-
responding sending and receiving actions. Furthermore, the process resulting
of the τ transition can also be known by looking at the two processes obtained
after the sending and receiving actions.

Since, reciprocally, when a process is able to do a sending and the reception on
a free channel, then it can do the corresponding internal τ transition, we get
the intuition that it is not necessary to observe the τ transitions occurring on a
free channel, since we already observe the corresponding sending and receiving
actions.
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This also is consistent with the results in Chapter 2, since the internal τ transi-
tion may be executed through a buffer, which means sending to the buffer and
then receiving from it.

The results in this section formalize this intuition. We define a bisimulation
where we do not match the τ transitions resulting from a communication on a
free channel, and we prove that this bisimilarity, for the πa-calculus, coincide
with the original bisimilarity. We use the late formalism.

Definition 3.3.2

The input/output π-calculus, written πio-calculus, is the calculus where pro-
cesses are processes of the πa-calculus, and operational semantics is given in
Table 3.1, except for the (sync) rule, which is replaced by:

(sync)

P
xz

~~}}}}}}} x(y)

  AAAAAAA

x(y)   @@@@@@@@

xz~~~~~~~~~~

P ′

νxP
τ

−→ νxP ′[z/y]
(syncb)

P
x(z)

~~}}}}}}} x(y)

  AAAAAAA

x(y)   @@@@@@@@

x(z)~~~~~~~~~~

P ′

νxP
τ

−→ νxνzP ′[z/y]
Also, the rule (close) is removed from the operational semantics.2

The operational semantics of the πio-calculus formalizes the considerations men-
tioned above. Only the (sync) communication rule is modified in order to only
applies to internal communication, while any public communication must now
pass through a sending and a receiving action.

We can now define the input/output bisimulation for this language:

Definition 3.3.3 (strong input/output late bisimilarity)

Let P and Q be two π-calculus processes. P and Q are bisimilar if and only if
there exists a binary relation R such that PRQ and:

• if P
α
→ P ′ and bn(α) 6∈ fn(Q) then Q

α
→ Q′ and P ′RQ′.

• if Q
α
→ Q′ and bn(α) 6∈ fn(P ) then P

α
→ P ′ and P ′RQ′.

If two processes are bisimilar for the input/output late bisimilarity, we write:
P ∼io Q.

Now we state the correspondence:

Theorem 3.3.2

The strong late bisimilarity and the input/output bisimilarity coincide:
∼io = ∼l

2This rule is redundant with the others so it could also have been removed in the original
operational semantics.



3.3. THE ASYNCHRONOUS CASE 61

Proof : We prove that the input/output bisimilarity and the naive late bisimilarity
coincide. According to Theorem 3.3.1, this is sufficient to prove this result.

We write P
α

=⇒ Q if P can do an α transition and become Q for the input/output
semantics, and P

α
→ Q if P can do an α transition and become Q for the naive late

semantics.

The only difficult case is to prove that ∼io ⊂ ∼nl. In this situation, the only difficult
case is for P ∼io Q such that: P

τ
→ P ′ for which the (sync) (or (close)) of the late

semantics was applied. Then there exists x, y and z such that:

P
xz

��������� x(y)

��@@@@@@@

x(y) ��@@@@@@@

xz���������

R

Furthermore, we have: R[z/y] = P ′. Hence, since the input and output rules are the
same for the late πa-calculus and the πio-calculus, then we also have:

P
xz

{� �������

�������
x(y)

�#
@@@@@@@

@@@@@@@

x(y) �#
@@@@@@@

@@@@@@@

xz{� �������

�������

R

Since P and Q are input/output bisimilar, then there exists S such that R ∼io S and:

Q

xz

{� �������

�������
x(y)

�#
???????

???????

x(y) �#
@@@@@@@

@@@@@@@

xz{� ~~~~~~~

~~~~~~~

S

Again, since the operational rules in this case are the same, we have:

Q

xz

��������� x(y)

��???????

x(y) ��@@@@@@@

xz��~~~~~~~

S

As usual, we then have: Q
τ
→ S[z/y] = Q′.

Since R ∼io S, then, by applying the same reasoning as for Theorem 3.3.1, we get:
R[z/y] = P ′ ∼io S[z/y] = Q′

Eventually, we get that: P
τ
→ P ′, and Q

τ
→ Q′ with P ′ ∼io Q′. The same reasoning

can be also done for the case of rule (close) using the (syncb) rule.
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Introduction

Assume that we have a labeled transition system and consider a second labeled
transition system which transitions are sequences of transitions of the first sys-
tem. In this chapter, we give conditions under which the bisimilarity of the
second is a bisimulation of the first. Such a labeled transition system is then
called a “bunched labeled transition system”.

We then define a new transition system for the πa-calculus where transitions
consist of sequences of transitions from the original transition system. We prove
that this labeled transition system is a bunched transition system, for which the
induced bisimilarity is a bisimilarity for the original transition system.

Finally, we give intuitions about further extensions on this topic, in particu-
lar how to maximize the bunched transition system so that the bisimilarities
induced coincide with the original bisimilarity.

The work on this chapter has been inspired by a technique known in logic as
focusing. The author believes that the definitions and results are the transpo-
sition of this technique to the Labeled Transition Systems and the πa-calculus.
However, the word focusing has been omitted on purpose in order to avoid con-
fusing the reader. The connection with focusing is detailed intuitively in Section
4.3.1.

4.1 Bunched Labeled Transition Systems

In this section, we give the conditions under which a transition system where
each transition can be seen as a bunch of transitions of another transition system.
Intuitively, a bunched labeled transition system is a transition system for which
each transition consist of an arbitrary large number of transitions from the
original system, with some consistency conditions of confluence. Eventually, we
prove that the bisimularity relation induced on the bunched transition system
is included in the bisimilarity relation induced on the original one.

The idea behind this is that the large transition of the bunched transition sys-
tem executes deterministic sequences of computation. Hence, it allows to re-
duce as much as possible the confluence and interleavings between the various
possible transitions, by executing bunched simultaneous executions of several
transitions.

4.1.1 Bunched transition systems

First, we define the notion of labeled transition system:
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Definition 4.1.1 (Labeled Transition system)

Let S and N be two sets. A labeled transition system (LTS) is a set of triplets
LTS ⊂ S × S × N .
The elements of S are the states of the LTS, and the elements of N are the

labels of the LTS. We write “P
l
→ P ′“ when (P, P ′, l) ∈ LTS.

The notion of bisimulation extends to LTSs:

Definition 4.1.2

Let LTS be a labeled transition system whose set of states is X and labels N .
Let R be a binary relation on X.
R is a bisimulation relation if and only if for any P,Q ∈ R,

• if P
l
→ P ′, then there exist Q′ such that Q

l
→ Q′ and P ′, Q′ ∈ R

• if Q
l
→ Q′, then there exist P ′ such that P

l
→ P ′ and P ′, Q′ ∈ R

∼ is the greatest binary relation on LTS that satisfies these conditions.

Not all notions of bisimulations coincide with this generalization. For instance,
it does not extend to the late bisimulation relations, since in this case, the
labeled transition system does not represent all the required information for
establishing a correct bisimulation. However, in the case of the πa-calculus,
they coincide, as proved in Section 3.3.1.

We define now the notion of bunched transition system:
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Definition 4.1.3

Let LTS be a transition system whose labels are in the set N and LTSf a tran-
sition system whose labels are finite sequences of elements of N and states the
same as for LTS. We write P

α
→ P ′ for the transitions of LTS, and P

α
=⇒ P ′ for

the transitions of LTSf . When writing P
l.L
=⇒ P ′, L can be empty, meaning that

P
l

=⇒ P ′. When L is an empty sequence we may write: P
L

=⇒ P for notation
simplicity.
LTSf is a bunched transition system of LTS if and only if:

reciprocity If P
l.L
=⇒ Q, then there exists P ′ such that: P

l
→ P ′ and P ′ L′

=⇒ Q.

extensivity If P
l
→ P ′ then there exists L such that: P

l.L
=⇒ P ′′ and P ′ L

=⇒ P ′′.

compatibility If P
l.L
=⇒ Q

L′

=⇒ S, where L is not empty, and P
L′

=⇒ Q′ l.L
=⇒ S,

and, by reciprocity, P
l
→ U

L
=⇒ Q and Q′ l

→ V
L

=⇒ S then U
L′

=⇒ V .

consistency If P
l.L
=⇒ P ′, where L is not empty, with P

l
→ R

L
=⇒ P ′, and R

L′

=⇒ R′

where L 6= L′ or P ′ 6= R′, then there exists Q and S such that:

P

l.L

	�

l

��~~~~~~~

L′

�$

R
L

z� ~~~~~~~

~~~~~~~

L′

�#
??????????????????

??????????????????

P ′

L′

�#

Q

l.L

lt

l��
R′

Lz�
S

The intuition behind a bunched transition system, is that each transition in
the bunched system corresponds to a sequence of transitions from the original
system, for which there was no interleavings. The reciprocity and extensivity
properties assure the first hypothesis, that each bunched transition corresponds
to a sequence of elementary transitions. The compatibility and consistency prop-
erties assure the fact that two different bunched transitions corresponds to two
different sequences of original transitions, for which confluence occurred.

In the following, we will write ǫ to denote the empty sequence.

4.1.2 Bunched traces

Traces are sequences of transitions of a LTS. The definition of a bunched transi-
tion system implies some correspondences between the original transitions an the
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bunched transitions. Even more, a bunched transition is a trace for the original
transition system. A natural question that arises then is to compare the traces
of the original transitions system with the bunched traces. This section shows
that the two transition system are equivalent for the testing semantics.

First, we define a trace:

Definition 4.1.4

Let LTS be a transition system. A trace of a state P is a (possibly infinite)
sequence L such that for any finite prefix L′ = l1 . . . ln of L, then there exists

P ′, such that: P
l1−→ . . .

ln−→ P ′.

A particular way of characterizing a process is the trace semantics. In the trace
semantics, a process P is composed in parallel with a test T . The test T is a
context obtained with the same grammar as P , plus a special symbol, say θ.
Then, we say that the process P |T passes the test T for the trace L, written
P ⊢L T , if and only if there is a trace L starting with P |T such that L contains
θ. In the case of a bunched transition system, we write P �L T .

We can then prove the following correspondence:

Theorem 4.1.1

Let LTS be a labeled transition system, and LTSf a bunched transition system
for LTS. Let P be a process and T a test.

∃L, P ⊢L T ⇔ ∃L′, P �L′ T

Proof : By reciprocity, it clear that if P �L T , then also P ⊢L T .

In order to simplify the notations, for any trace L, we will write P
L

−→ P ′ and P
L

=⇒ P ′

to specify that P can generate the trace L and become P ′.

Reciprocally, we can proceed by induction, with this proposition: P(n) holds if and

only if, for any trace L of length n of any process P , if P
L
→ P ′ and L contains θ, then

there exists L′ containing θ such that P
L′

⇒ P ′′.

Let L = l.L′ be a trace of length n + 1 such that P(n) holds and P ⊢L T . If l = θ,

then by extensivity, the result is proved. Otherwise, P |T
l
→ P ′ and P ′ L′

→ P ′′ where
L′ contains θ and is of length n.

According to P(n), there exists a trace L′′ such that P ′ L′′

=⇒ R and L′′ contains θ.
Then, according to extensivity and compatibility, there must exist a trace S = l.S′

containing θ such that: P |T
S

=⇒ and P(n + 1) holds.

Of course, P(1) holds by extensivity.
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4.1.3 Bunched Bisimilarity

If we have a LTS and a bunched LTS for this LTS, this gives two notions of
bisimulation, the first on the original LTS, and the second on the bunched one.
Then, one may like to compare the two. The result of this is that the bisimilarity
on the bunched transition system is included in the bisimilarity on the original
LTS, meaning that two bunched-bisimilar processes are also bisimilar for the
original LTS.

In the following, LTS is a labeled transition system, and LTSf a bunched
transition system for LTS. P ∼ Q denotes two states bisimilar for LTS, and
P ∼f Q two states bisimilar for LTSf .

First, we define the notion of one-step extension on a bunched transition sys-
tem.

Definition 4.1.5 (One-step extension)

Let P and Q be two states such that P ∼f Q.
A pair (P ′, Q′) of states extends P and Q by one step if and only if there exists
L 6= ǫ and l such that:

P

l.L

�#

l

��

∼f Q

l.L

{�

l

��
P ′

L

��

Q′

L

��
P ′ ∼f Q′′

Ex(P,Q) denotes the set of all such pairs of states (P ′, Q′).

Now, we prove the following lemma, which states that bisimulation is stable by
one-step transitions:

Lemma 4.1.1 (one-step stability)

Let R be a bisimulation relation for LTSf , and (P,Q) ∈ R.
Then S = R∪(P,Q)∈R Ex(P,Q) is also a bisimulation.

Proof : Let (P, Q) ∈ S. The only difficult case is when (P, Q) 6∈ R.

Suppose that (P, Q) ∈ S \ R.

Then there exists (P ′, Q′) ∈ R such that (P, Q) extends (P ′, Q′), i.e. there exists
L 6= ǫ and l such that:

P ′ l.L
=⇒ P ′′ and Q

l.L
=⇒ Q′′, and P ′′ ∼f Q′′.

P ′ l
→ P

L
=⇒ P ′′ and Q′ l

→ Q
L

=⇒ Q′′.

Since R is a bisimulation relation, we also have: (P ′′, Q′′) ∈ R.

Suppose that P
L′

=⇒ R.

• If L′ = L and R = P ′′, by hypothesis, Q
L

=⇒ Q′′, and (P ′′, Q′′) ∈ R ⊂ S.
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• Otherwise, by consistency, there exists R, R′ such that :

P ′

l.L

	�

l

~~}}}}}}}}

L′

�$

P

L

z� }}}}}}}

}}}}}}}

L′

�$
AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

P ′′

L′

�$

R′

l.L

lt

l~~
R

Lz�
R′′

Since (P ′, Q′) ∈ R, (P, Q) ∈ R, and R is a bisimulation relation, we also have:

Q′RP ′

l.L

��

l

}}{{{{{{{{

L′

�$

QSP

L

y� {{{{{{{

{{{{{{{

L′

�%
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Q′′RP ′′

L′
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l.L

nv

l
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SSR

Ly�
S′′RR′′

Indeed, there exists S′ such that Q′ L′

=⇒ S′, with (R′, S′) ∈ R. Again, since

then R′ l.L
=⇒ R′′ and P ′′ L′

=⇒ R′′, then there exists S′′ for which S′ l.L
=⇒ S′′ and

Q′′ L′

=⇒ S′′ with (R′′, S′′) ∈ R.

By reciprocity, there exists S such that: S′ l
→ S and S

L
=⇒ S′′.

Since Q′ l.L
=⇒

L′

=⇒ S′′ and Q′ L′

=⇒
l.L
=⇒ S′′, by compatibility, Q

L′

=⇒ S.

We conclude by the fact that: (R, S) ∈ S since (R, S) ∈ Ex(R′, S′).

Now, we can state the main result:

Theorem 4.1.2

Let LTS be a transition system, and LTSf a bunched transition system for
LTS. Let ∼ (resp. ∼f ) be the bisimilarity induced by LTS (resp. LTSf ),
then:

∼f ⊂ ∼
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Proof : Let (P, Q) ∈∼f . Suppose that: P
l
→ P ′. We must prove that there exists Q′

such that: Q
l
→ Q′ with Q ∼f Q′.

By extensivity, there exists L such that P
l.L
→ P ′′ , and P ′ L

=⇒ P ′′.

Since P and Q are bisimilar for LTSf , there exists Q′′ such that: Q
l.L
=⇒ Q′′ and

P ′′ ∼f Q′′.

By reciprocity, there exists Q′ for which Q
l
→ Q′ and Q′ L

=⇒ Q′′.

Then, (P ′, Q′) ∈ Ex(P, Q).

Since ∼f is the greatest bisimulation, and since ∼f ∪(P,Q)∈∼f
Ex(P, Q) is a bisimula-

tion, ∼f⊂∼f ∪(P,Q)∈∼f
Ex(P, Q) ⊂∼f .

Hence, ∼f=∼f ∪(P,Q)∈∼f
Ex(P, Q) and (P ′, Q′) ∈∼f .

The converse result is not true in general. The issue being that, if P ∼ Q, then if

P
L

=⇒ P ′, with L = l1 . . . ln, then, by reciprocity, P
l1→ . . .

ln→ P ′ for LTS.

Since Q is bisimilar to P , then Q
l1→ . . .

ln→ Q′, but it cannot be proved in the

general case that then Q
L

=⇒ Q′.

4.2 Bunched transition system for the πa-calculus

In this section, we use Theorem 4.1.2 to define a bunched transition system for
the input/output πa-calculus. As proved in the previous section, the bisimi-
larity induced by this transition system is a bisimulation for the original pro-
cess.

4.2.1 Bunched transition system

When trying to establish a bunched transition system, the main issue that has
to be sorted out is how far can the bunched transition go. The general idea
is that we would like to go as far as possible while there is only one possible
transition, or, alternatively, until there is an execution choice to do between
two non-confluent continuations. However, this should also be quite easy to
compute, since we aim at using the syntax of the process to infer the bunched
transitions.

For the output transitions, there is no continuation, so the real question arises
for input and τ transitions. A first approach would be to consider the processes
of the form: x(y).z(t) . . . P and perform all the inputs. However, this naive
strategy would not group, for instance, x(y).z(t) in x(y).(0 | z(t).P ). Hence, we
will proceed with this idea, but up to any structural equivalence. The structural
equivalence being quite simple to compute, we can still claim that we base our
bunched transitions on the syntax of the processes.
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Secondly, we only observe the internal communications on private channels.
Communications occurring internally on a public channel do not need to be
observed, according to Theorem 3.3.2.

In the following, we write
α
→ for the transitions of the input/outout LTS, and

α
=⇒ for the transitions of the bunched LTS.

(in)
P 6≡ x(y).P ′, L = x1(y1) . . . xn(yn)

x1(y1) . . . xn(yn).P
L

=⇒ P
(out)

xy
xy

=⇒ 0

(sync) P
xz

=⇒
x(y)
=⇒ P

νxP
τ

=⇒ νx(P ′[z/y])
(ν)

P
α

=⇒ P ′, a 6∈ fn(α)

νaP
α

=⇒ νaP ′

(open)
P

xy
=⇒ P ′ x 6= y

νyP
x(y)
=⇒ P ′

(inb)
P

L.x(y).L′

=⇒ P ′′, x 6∈ fn(L), P
L

=⇒ P ′

νxP
L

=⇒ νxP ′

(bang)
P | !P

α
=⇒ P ′

!P
α

=⇒ P ′
(cong)

P ≡ P ′, P ′ α
=⇒ Q′, Q ≡ Q′

P
α

=⇒ Q

(comp)
P

α
=⇒ P ′, bn(α) ∩ fn(Q) = ∅

P |Q
α

=⇒ P ′ |Q
(syncb)

Q
x(z)
→ Q′, P

L.x(y).L′

=⇒ P ′′, P
L
→ P ′, x 6∈ fn(L)

P |Q
L

=⇒ P ′ |Q

Table 4.1: Operational semantics for the bunched πa-calculus.

Definition 4.2.1

The bunched asynchronous π-calculus, written πf -calculus is the language
where processes are those of the πa-calculus, and operational semantics is de-
scribed in Table 4.1.

The meaning of this operational semantics is to group simultaneous sequen-
tialized input. Hence, x(y).z(t).0, for instance, has single transition, labeled
x(y).z(t). As for the πio-calculus, we do not allow internal communication
on a free channel, only in the case of a private channel, as enforced by rule
(sync).

The first and immediate result on this language is the following:

Proposition 4.2.1

If P
α
→ P ′ and α is not an input action, then P

α
=⇒ P ′.

Proof : This is an immediate consequence of the operational semantics.

We can now state the main result of this chapter:
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Theorem 4.2.1

The labeled transition system for the πf -calculus is a bunched labeled transition
system of the πio-calculus.

Proof : The proof follows directly from the respective operational semantics.

• If P
l.L
=⇒ P ′′, where L = x1(y1) . . . xn(yn), then l = x(y), P ≡ x(y).P ′ and

P ′ ≡ x1(y1) . . . xn(yn).P ′′, so reciprocity is true.

• If P
l
→ P ′, then if l is not an input action, P

l
=⇒ P ′. Otherwise l = x(y), and let

L = x1(y1) . . . xn(yn) be the maximal sequence (possibly empty) such that: P ≡

x(y).x1(y1) . . . xn(yn).P ′′. Then, P
x(y)
→ P ′, and P ′ L

=⇒ P ′′. Hence, extensivity is
true.

• If P
l.L
=⇒ Q

L′

=⇒ S and P
L′

=⇒ Q′ l.L
=⇒ S′. By a case analysis on the operational

semantics, those two transitions must be inferred from two different sub-processes

that can only be composed in parallel. Hence, P ≡ P1 |P2 where P1
l.L
=⇒ P ′′

1 and

P2
L′

=⇒ P ′
2. By reciprocity, P1

l
→ P ′

1
L

=⇒ P ′′
1 , and P

l
→ P ′

1 |P2
L′

=⇒ P ′
1 |P

′
2.

Similarly, Q′ ≡ P1 |P
′
2

l
→ P ′

1 |P
′
2

L
=⇒ P ′′

1 |P ′
2, and compatibility is true.

• Consistency is the most important and difficult part. If P
l.L
=⇒ P ′ where P

l
→ R

L
=⇒ P ′

by reciprocity, and R
L′

=⇒ P ′′ with L′ 6= L or P ′′ 6= P ′. Then, the transitions
in L′ can only be input transitions. Indeed, in all other cases, the operational
semantics breaks the bunched transitions when those actions are just available,
thanks to rules (inb) and (syncb). Hence, as usual, this sequence of actions must

be in parallel in the initial process P such that P ≡ S |T with S
l.L
→ S′ and T

L′

→ T ,
and consistency is true.

Hence, any process that is bisimilar for the bunched labeled transition system
is bisimilar for the original bisimulation.

Corollary 4.2.1

Let ∼f be the bisimilarity induced by the bunched transition system of the πf -
calculus, then: ∼f ⊂ ∼. Hence, if P and Q are two processes of the πa-calculus
such that P ∼f Q, then P ∼ Q.

Proof : Since the πf -calculus is a bunched transition system of the πio-calculus, if
P ∼f Q, then P ∼io Q, where ∼io is the bisimilarity induced by the input/output
transition system.

According to Theorem 3.3.2, then P ∼io Q. Eventually, P ∼ Q, according to Theorem
3.3.2
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4.3 Further discussions

The results stated in previous section allow to define a bunched transition system
for the πa-calculus. Using this transition system, the number of states for the
processes is reduced with regard to the original number of states. Furthermore,
we proved that two bisimilar processes for this transition system are bisimilar
for the original transition system.

However, this work may be extended and discussed in several ways. We list
some of them in this section.

4.3.1 Bunched Concurrent Transitions

In this work, we have forced sequentialized inputs to happen in a single tran-
sition. The idea behind is that it didn’t change the result of the computation,
but only removed some possible interleavings. Similarly, if a process P can do
the transitions:

P
α

~~}}}}}}} β

  AAAAAAA

β   @@@@@@@@

α~~~~~~~~~~

P ′

Then it can be claimed that the two transitions are confluent, in the sense that
the order in which they appear does not change the overall computation.

Hence, another type of bunched Transition System, say Concurrent Bunched

Transition System, could have a single transition in this case: P
α | β
=⇒ P ′. For the

bunched πa-calculus, this would be the case, for instance, with all the possible

outputs: xy | zt
xy | zt
=⇒ 0.

When doing both (Sequentialized) Bunched Transitions and Concurrent Bunched
Transitions, the transition labels would then be obtained from the following
grammar:

T ::= l
∣

∣

∣
T.T

∣

∣

∣
T |T

Where l is a label of the original labeled transition system.

If the notion of Concurrent Bunched Transition System is well defined, then the
bisimilarity for this labeled transition system should also imply the bisimilarity
on the original one.

The two combination of Sequentialized and Concurrent optimization also relates
to the two main property of asynchronous systems, as explained previously:
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confluence and commutativity of the outputs.

This intuition is also a very good way to understand the connections of this
work with the focusing in logic and, in particular, in linear logic, as defined
in [And92]. Focusing is defined as a an alternation between asynchronous and
synchronous phases, as explained in [MS07]. During an asynchronous phase,
all the actions for which the syntax indicates that they are trivially confluent
are executed. Then, during a synchronous phases, all the possible syntactic
sequentialized actions are executed. The synchronous phases correspond to the
Sequentialized Bunched Transitions, and the asynchronous phases correspond
to the Concurrent Bunched Transitions.

4.3.2 Maximal Bunched Transitions

Another question that could be investigated is the fact that we only proved
an inclusion of the bunched bisimilarity into the original bisimilarity. Hence,
it would be interesting to give conditions under which the two bisimilarities
coincide.

Looking at the application to the πa-calculus, one may notice that this is not an
easy issue. For instance, the two processes: !(x(y).x(y)) and !x(y) are bisimilar.
However, a natural strategy to group transitions based on the syntax of the
process would give x(y).x(y) as the possible transitions of the first one, and x(y)
for the second. Hence, they would not be bisimilar for the bunched transition
system.

More generally, the bunched bisimilarity introduces distinctions on the processes
that are generated from their respective syntax, while the original bisimilarity
only considered possible transitions and observable. Hence, it can be expected
that the bunched bisimilarity differentiate processes based on syntactic differ-
ences, while the original did not.

Then, if we plan to obtain a full correspondence between the bunched bisimilar-
ity and the original bisimilarity, it is necessary to give more informations about
the relations between observable behavior and bunched transitions.

For instance, we can prove the following proposition:
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Proposition 4.3.1

Let LTSf be a bunched transition system of LTS and P a process.
We say that the bunched transition system is maximal for P if:

P
L

=⇒ P ′ if and only if there exists no transitions from P ′ which are not conflu-
ent, i.e. for any labels l and l′ and processes R and S such that:

P ′

l

~~}}}}}}}
l′

  @@@@@@@@

R S
There is no transitions of the form:

R

l′ ��@@@@@@@ S
l

���������

T
We say that a process P is recursively maximal if for any bunched trace:

P
L

=⇒ . . .
L′

=⇒ P ′, the bunched transition system is maximal for P ′.
Let P and Q be two recursively maximal processes. Then P ∼f Q if and only
if P ∼ Q.

Proof : We only have to prove that if P ∼ Q then P ∼f Q.

Let Q be a process such that P ∼ Q. Suppose that P
L

=⇒ P ′, where L = l1 . . . ln.

By reciprocity, P
l1→ . . .

ln→ P ′ and, since Q is bisimilar to P , then also Q
l1→ . . .

ln→ Q′,
with P ′ ∼ Q′.

By hypothesis, since P
L

=⇒ P ′, if P ′ l
→ R and P ′ l′

→ S, then there is no T such that

R
l′

→ T and S
l′

→ T . Since P ′ and Q′ are bisimilar, this also stands for Q′.

Again, by hypothesis, this implies that Q
L

=⇒ Q′. Since P and Q play the same role
in the hypothesis, and since the two processes are recursively maximal, we conclude.

This result states that a bunched transition system for which all the observed
transitions are reaching a state where all derivations are not confluent would
induce a bisimilarity that coincide with the original bisimilarity. Such a bunched
bisimilarity system may then be considered as maximal.

However, this hypothesis cannot be easily granted in general. For instance, the
processes !(x(y).x(y)) and !x(y) do not have any non confluent continuations. In
this case, the bunched system may operate infinitely many transitions, without
reaching a point where two non confluent transitions are possible. As a con-
sequence, a maximal bunched transition system should then take into account
such processes. A possible solution could be to limit the depth of the bunched
transitions to a given value.

Another interesting intuition that arises from this remark is that, in the πa-

calculus, if P
α
→ P ′ and P

β
→ P ′′ such that the two do not confluate, then α =

β = τ and this corresponds to an internal reception on a private channel in the
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process P . Then, it can be noticed that in the asynchronous languages, only the
internal choices are non-deterministic. Hence, the bunched evaluation should
stop only in this case.

As we will see in the next part, it is indeed possible to give a fully deter-
ministic probabilistic semantics to an asynchronous calculus whose only non-
deterministic transitions are internal choices, provided we define a probability
distribution for the choices.

4.3.3 Bunched evaluation strategy and schedulers

Another way of understanding the bunched transition system could be to for-
malize it as a focusing function f(x) ∈ {0; 1}. Then, upon trying to find a
bunched transition for a process P , we would first select one of the possible

transitions, such that P
l
→ P ′. We would then apply the function f to P ′ such

that, if f(P ′) = 1, we can select any of the transitions of P ′ and continue this
operation.

We would then require that when repeating this operation, the function f would
return 0 at some point. Then, the sequence of transitions we have just executed
would be a bunched transition of the process P . For instance, the intuition
behind the bunched transition system for the πa-calculus is: f(P ) = 1 if and
only if P ≡ x(y).P ′.

This formalization would then be a very interesting way of implementing a
program executing and testing processes. Indeed, when computing the transi-
tions and processes of a process, the implementation would need to be able to
compute the original transitions and the result of the function f applied to a
process. The evaluation would then immediately be optimized without wasting
the required informations.

This work has been initiated after a first try in implementing an asynchronous
evaluator for the πa-calculus that would also keep track of the specific scheduler
that was used. Indeed, in the case of the πa-calculus, due to all possible inter-
leavings, the number of schedulers to consider was exploding, leading to a very
slow evaluation, even for simple processes. Using the results of this chapter, it
is then possible to reduce greatly the number of schedulers to consider, without
loosing the information we want to observe.
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Asynchronous probabilistic
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Introduction

The need to deal with probabilistic phenomena arises in many fields in Computer
Science. For instance, a large part of the recent research on security and trust is
oriented toward understanding and formalizing probabilistic properties.

The formal treatment of probabilistic phenomena is particularly difficult in the
presence of concurrency, as concurrency itself presents many complicated as-
pects. Among the many formalisms which have been developed for concurrency,
Concurrent Constraint Programming (CCP, [Sar89]) is a very elegant one. CCP
is a model of computation in which the information available to the process is
represented by the notion of constraint. Each process has access to a global
store, with respect to which it tests and adds constraints. In [SRP91b], a de-
notational semantics is defined for the processes in CCP. In this semantics, a
process is represented by the input/output relation that the process computes.
In the case of CCP, that relation belongs in a particular class of functions called
the closure operators. These functions can be represented by the set of their
fixed points. Hence, a process in this semantics will be represented by its set
of fixed points. This set can be computed using a fixed-point construction.
The denotational semantics for CCP is a very elegant model for reasoning in a
particularly simple and modular way.

Probabilistic extentions of CCP have been explored in several works. In the
probabilistic CCP, defined by Vineet Gupta et al. in [GJS97, GJP99], the prob-
ability is defined at the level of the constraint system and inconsistent executions
are removed at run-time. This models the probabilistic choice as an external
process independent from the program. During an execution, the program waits
until a probabilistic choice has been drawn, and proceed according to the out-
come. When the external choice was inconsistent, the program should detect
it and avoid any further computation. In [Pie00, PW98], the CCP is extended
with a probabilistic construct on the process’ syntax. It models probabilistic ex-
ecutions as the choice of the program. Hence, in this case, probabilistic choices
that lead to an inconsistent store should be considered as a failure from the
program and as such should not be hidden during the program’s execution. In
this work, we follow the approach used in [Pie00, PW98] and we address the
problem of giving a denotational semantics for infinite executions, which were
treated neither in [Pie00, PW98] nor in [GJS97, GJP99]. Also, we extend the
lattice of constraints to any well-ordered lattice, whereas in [Pie00, PW98] the
lattice had to be finite.

When studying probabilistic phenomena, it is often very important to consider
infinite succession of events. Indeed, when observing an infinite sequence of
events, one can be in a situation where the probability of a given outcome
reaches 0 as the limit of the infinite execution. For instance, in the Crowds
routing protocol, as defined in Section 5.3, the probability to not deliver a
message is the result of an infinite execution and has a null probability. Hence,
it can be stated that a message will always be delivered.
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But the difficulty that arise when one wants to define the outcome of an infinite
execution is that this outcome should again represent the probabilities associ-
ated to the original deterministic states. A natural requirement is that if pi(S) is
the probability of being in the state S in the ith execution step, then the proba-
bility of being on the state S after an infinite execution is limi→∞ pi(S). Further-
more, probabilities measure should be additive, meaning that the probability to
observe a set of deterministic events is the sum of the probabilities to observe
each individual events. Without any further hypothesis, none of these require-
ments are met in general. In particular, an infinite sum of limits is not in general

to the limit of the infinite sums, i.e.
∑

s∈S

lim
n→∞

pn(s) 6= lim
n→∞

∑

s∈S

pn(s).

We address these issues using a relevant mathematic framework. We use a
topological notion of probabilities called the valuations, which forms a domain
usually referred as the Jones powerdomain. This domain has been studied
extensively in [Jon90].

We prove that the probabilistic states of a program in our language can be
represented by a subset of valuations called the simple valuations, where the
measure of a set of states is exactly the sum of the measure of the individual
states. We prove that the outcome of an infinite run in our language can also
be represented by a valuation. We then characterize some conditions under
which all the valuations are simple valuations, which implies that the valuations
representing the infinite executions are also a simple valuations.

Eventually, we observe that the input/output relation induced by a process in
our language, mapping an initial valuation representing the initial probabilistic
state to the valuation representing the (possibly infinite) execution of the process
started with this valuation, is a linear closure operator on the vector spaces
of valuations. We then define a denotational semantics using a fixed point
construction, and prove the correctness with the input/output relation.

Another contribution of this work is the definition of an asynchronous concurrent
language with an internal choice where executions are deterministic. Indeed, un-
der asynchronous communications, the only non-determinism is introduced by
the internal choice. Hence, when adding probabilities for each branches of each
choice, the result becomes deterministic in terms of probabilities. This has im-
portant algorithmic properties, since we can ignore some possible computations
whose probability is 0. In particular, this allows implementing protocols that
are known to be impossible to implement in non probabilistic asynchronous
languages, such as the leader election.

Compared to real life communication, this formalizes for instance the following
idea: when trying to decide for a meeting agenda, instead of proposing any of
his possible dates, each agent decides on the basis of others’ answer, reducing its
behavior to a probabilistic choice, where the data which matches the greatest
number of agents has the greatest probability.



Chapter 5

Probabilistic Concurrent
Constraint Programming.

We define in this chapter a probabilistic concurrent constraint language (CCP+P).
The language is an extension of the original CCP defined in [Sar89, SRP91b].
The interested reader may find there detailed definitions and properties on which
this language is based.

In this language, each program is equipped with a constraint store, which is
used to put new constraints and test if one constraint can be entailed by it.
We start be defining the constraint system. We then define the syntax of the
processes, as well as the operational semantics. We finish with an example of
application as a model of the crowds anonymous routing protocol.

This chapter introduces the basics of the language, mainly syntax, operational
semantics and observables. These definitions are used in the next chapter to
define the denotational semantics of the language and prove the correctness with
regard to the operational semantics.
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5.1 The Constraint System

In the following, if X is a set, then Pfin(X) is the set of finite subsets of X.

5.1.1 Simple constraint system

Definition 5.1.1 (Simple Constraint System)

A simple constraint system is a structure 〈D,⊢〉, where D is a non-empty (count-
able) set of tokens or (primitive) constraints and ⊢ ⊆ Pfin(D)×D is an entail-
ment relation satisfying:

1. P ⊢ u if and only if u ∈ P
2. Q ⊢ v if and only if P ⊢ v and ∀u ∈ P , Q ⊢ u

⊢ is extended to Pfin(D) × Pfin(D) by: u ⊢ v iff u ⊢ c, for all c ∈ v.
We define u ≡ v iff u ⊢ v and v ⊢ u.

An equivalent representation of the constraints is a lattice equipped with the
order: x ≤ y iff y ⊢ x and c ⊔ d = c ∧ d.

For two finite sets of primitive constraints c, d ∈ Pfin(D), c ∧ d represents the
logical conjunction of the two sets, i.e. c∧d = c⊔d. The ⊤ constraint represents
the logical false: for any constraints c, ⊤ ⊢ c. ⊥ corresponds to the logical true:
c ⊢ ⊥ ⇒ c = ⊥.

5.1.2 Cylindric constraint system

Definition 5.1.2 (Cylindric constraint system)

A cylindric constraint system is a structure 〈D,⊢, Var, {∃X | X ∈ Var}〉 such
that:

• 〈D,⊢〉 is a simple constraint system
• Var is an infinite set of indeterminates or variables
• for each variable X ∈ Var, ∃X : Pfin(D) → Pfin(D) is an operation satis-

fying:
1. u ⊢ ∃Xu,
2. u ⊢ v implies ∃Xu ⊢ ∃Xv,
3. ∃X(u ∧ ∃Xv) ≡ ∃Xu ∧ ∃Xv,and
4. ∃X∃Y u ≡ ∃Y ∃Xu

We also add diagonal constraints of the form γXY which are used for parameter
parsing, with the following axioms:
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Definition 5.1.3 (Diagonal elements)

Diagonal elements are constraints of the form γXY where X and Y are variables.
They satisfy the following axioms:

1. ∅ ⊢ γXX

2. if X 6= Y then γXY ≡ ∃Z(γXZ ∧ γZY )
3. γXY ∧ ∃X(u ∧ γXY ) ⊢ u

5.2 The language

In the following, we may omit, when clear from the context, the sets over which
we index families, sequences, sums and unions. These sets are not assumed to
be limited to the integers (or ω). The sums over positive reals with indexes
greater than the integers are extended by transfinite induction1.

5.2.1 Syntax

The grammar of the language is as follow:

Definition 5.2.1

The CCP+P language is defined by the following grammar, where the c’s and
ci’s represent constraints.

Agent A ::= 0
∣

∣

∣
c

∣

∣

∣
c → A

∣

∣

∣
A |A

∣

∣

∣
∃X.(c, A)

∣

∣

∣
⊕i(Ai, ci, pi)

∣

∣

∣
p(X)

Procedure D ::= ǫ
∣

∣

∣
p(X) :: A

∣

∣

∣
D.D

Process P ::= D.A

We also require the following:
The guard c in c → A is finitely algebraic.2

All constraints on a probabilistic choice are mutually exclusive pure constraints:

P = ⊕i(Ai, ci, pi) ⇒







∀i 6= j, ci ∧ cj ⊢ ⊤

∃Xci ⊢ ci, for all X

The pis in the above agent are positive reals whose sum is 1.

The ask agent c waits for adding the constraint c to the store. If the current
store can entail the constraint c, then the tell agent c → A is replaced by the
agent A. Otherwise, it does nothing. The algebraic requirement on guards for
the c → A construction will be usefull later. Without this, the programs would

1We define the sum of a family of positive real values (xi)i∈I as the least upper bound of

the partial finite sums, that is of the number
X

i∈J

where J traverses the finite subsets of I.

2For any directed sequence (xi) such that supi xi = x, there exists a finite i0 such that
xi0 = x.
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not be idempotent in general. A |B is the parallel concurrent execution of A
and B. Direct communication between A and B is not possible. Communi-
cation can only happen through the constraint store, using tell and ask. The
agent ∃X.(c, P ) proceeds like P , but considers X as a private variable and c is a
private constraint that only this process knows. Hence, the operational seman-
tics takes care of removing any external information on X before computing the
possible transitions of P under the current store. Similarly, when a transition
has been executed, it removes from the global store information related to X
and keeps it private for the process. p(X) :: A stands for the procedure defini-
tion. When a program reaches p(Y ), it can then start the procedure A[X/Y ],
allowing recursion and infinite behavior.

All these constructs are present in the original CCP. The additional operator in
the CCP+P is the choice operator ⊕. It corresponds to a guarded blind choice.
When executed at run-time, if none of the branch constraints can be entailed,
it selects one of the possible branches, adds the corresponding constraint to the
global store and continue with the corresponding agent. If one of the branch
constraints can be entailed, then it follows the execution with the corresponding
agent. Since the branch constraints in the choice are all mutually exclusives,
the behavior in this case is always deterministic.

The guards are used to keep track of resolved choice. From the language point of
view, it means that each probabilistic choice is resolved once and for all. Hence,
each resolved choice can be retrieved from the current store and is not drawn
again if the program is restarted with the same store.

We now introduce the operational semantics, starting with the notion of config-
urations:

Definition 5.2.2

A CCP+P configuration is a set of elements of the form C = ∪i{(Pi, ci, pi)}
where the Pi are processes, the ci constraints, and the pi positives reals such
that

∑

i pi = 1.

From a configuration in the CCP+P, we can extract a configuration on the
constaints lattice:

Definition 5.2.3

The projection of a configuration C = ∪{(Pi, ci, pi)} over the constraint lattice
is the set: Π(C) = {(c,

∑

(Pi,ci=c,pi)
pi)}.

5.2.2 Operational semantics

We define an operational semantics for the language in terms of transitions be-
tween configurations. We first introduce the possible transitions for a singleton,
and extend them later.
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Definition 5.2.4

The transition relation for CCP+P is defined by the following inductive rules:

(tell) .

{(c, d, 1)} → {(0, d ∧ c, 1)}
(ask) d ⊢ c

{(c → P, d, 1)} → {(P, d, 1)}

{(A, d, 1)} → ∪i{(Ai, di, xi)}
{(A|B, d, 1)} → ∪i{(Ai|B, di, xi)}

{(B, d, 1)} → ∪i{(Bi, di, xi)}
{(A|B, d, 1)} → ∪i{(A|Bi, di, xi)}

(choice1) c ⊢ ci

{(⊕i(Ai, ci, pi), c, 1)} → {(Ai, c, 1)}

(choice2)
c 6⊢ ci, ∀i

{(⊕i(Ai, ci, pi), c, 1)} → ∪i{(Ai, c ∧ ci, pi)}

{(P, c ∧ ∃Xd, 1)} → ∪i{(Pi, di, xi)}
{(∃X.(c, P ), d, 1)} → ∪i{∃X.(di, Pi), d ∧ ∃Xdi, xi)}

p(X) := A
{(p(Y ), c, 1)} → {(A[Y/X], c, 1)}

(linext) {(Pi0 , di0 , pi0)} → ∪j{(P
′
j , d

′
j , a

′
j)}

∪i{(Pi, di, pi)} →
⋃

(Pi,di) 6=(P ′

j
,d′

j
)

i 6=i0

{(Pi, di, pi)} ∪
⋃

j

{(P ′
j , d

′
j , pi0a

′
j +

∑

(Pi,di)=(P ′

j
,d′

j
)

pi)}

The two operational rules (choice1) and (choice2) for the probabilistic choice
are quite straight forward. (choice1) states that if the current store can entail
one of the branch constraints, meaning that the choice was already done, then
the process continues on this branch without changing the current probabilistic
state. Otherwise, (choice2) states that it proceeds with each choice, adding
constraints to each store in order to keep track of the resolved choices.

The rule (linext) allows to extend operational rules based on singletons to any
configuration. It states that when an atomic transition is possible from a set
of states with probabilities, then the whole set can make the same transition,
where the new states and probabilities are obtained by linearity.

Other rules are simply lifted from the original operational semantics for the
CCP. For instance, {(c → P, d, p)} may evolve to {(P, d, p)} iff d ⊢ c, just as for
CCP.

This language extends the probabilistic CCP defined in [PW98]. Indeed, the
grammar and syntax are very similar, in particular the choice operator. How-
ever, the constraints lattice has to be finite in [PW98]. We will prove later that
in our case, the constraint lattice has to be countable.
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forwarder id. This predicates is written elem(i) = (id, dst). We also define a per-
position choice constraints. The predicates means that the message at position
pos was examined by agent id, and its value is the chosen forwarder. It is written
chosen(id, pos) = dst. This information can be made private using for instance a
custom hash of the receiver instead of the receiver, and a local per-agent variable
X for which we would add the constraints (X = hash(dst))∧ chosen(id, pos) =
X). Again, this is not detailled here for simplicity and concision.

We consider that sender and receiver are agents of the pool. Hence, the algo-
rithm will stop as soon as the selected forwarder is the receiver. We also consider
a uniform probability distribution for the next selected hop. n stands for the
cardinality of the pool.

5.3.2 Implementation and infinite runs

A simple implementation of one agent is proposed in Algorithm 1. The imple-
mentation works as follow: the messages are sequentialized as a stream. Each
agent starts with the first message in the stream. It examines it, and if it is
not for him, then proceed with the message at next position. If it is for him,
either he is the final receiver, and the program stops, or he selects a new node
and add a new constraint representing the new message. The tricky part is at
line 3. In this sub-process, the variables i and dst are instantiated as private
variable. However, since the process tells to the store elem(pos) = (i, dst) then
by unification these private variables’ values are necessary those of the public
ones. This how values are usually retrieved in CCP.

The algorithm is then started by the instantiation of n parallel agents all waiting
on the position 0 on the message stream, equipped with the store {elem(0) =
(k, k′)}, for some positive integers k,k′ ≤ n.

Algorithm 1 The Agent process

Agent(id,pos) :=
1: ∃i,dstelem(pos) = (i, dst) →
2: ∃i,dst

3: | elem(pos) = (i, dst)
4: | (id = i) →
5: | (id = dst) → 0
6: | (id 6= dst) →
7: | ⊕j(elem(pos + 1) = (j, dst), chosen(id, pos) = j, 1

n
)

8: | Agent(id,pos + 1)
9: | (id 6= i) → Agent(id,pos + 1)

Important studies exist in the literature about the execution of this routing
algorithm. In particular, the outcome of an infinite execution is well studied
from a security point of view, when the choice for next hop is biased (see [CPP06]
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for instance). In the case of this implementation, one may want to study the
various configurations that are entailed by the operational semantics and try
to retrieve the outcome of an infinite execution. However, this is not really
possible in this language with only the operational semantics since the result of
an infinite computation cannot be defined.

However, in the case of this implementation, the result of an infinite execu-
tion can be intuited quite easily. Indeed, the projection of the initial state
is: {(elem(0) = (k, k′), 1)}. Then, after the next execution step, if cl,m,n =
chosen(l,m) = n ∧ (elem(l + 1) = (m, k′), the outcome will be:

⋃







{(elem(0) = (k, k′) ∧ c0,k,k′), 1
n
)}

∪j 6=k′{(elem(0) = (k, k′) ∧ c0,k,j),
1
n
)}

And then after another step:

⋃



















{(elem(0) = (k, k′) ∧ c0,k,k′ , 1
n
)}

⋃

j 6=k′{(elem(0) = (k, k′) ∧ c0,k,j ∧ c1,j,k′), 1
n2 )}

⋃

j 6=k′

⋃

i 6=k′{(elem(0) = (k, k′) ∧ c0,k,j ∧ c1,j,i),
1

n2 )}

And, after the next step:

⋃































{(elem(0) = (k, k′) ∧ c0,k,k′ , 1
n
)}

⋃

j 6=k′{(elem(0) = (k, k′) ∧ c0,k,j) ∧ c1,j,k′), 1
n2 )}

⋃

j 6=k′

⋃

i 6=k′{(elem(0) = (k, k′) ∧ c0,k,j ∧ c1,j,i ∧ c2,i,k′), 1
n3 )}

⋃

j 6=k′

⋃

i 6=k′

⋃

l 6=k′{(elem(0) = (k, k′) ∧ c0,k,j ∧ c1,j,i ∧ c2,i,l),
1

n3 )}

Hence, the infinite execution leads to the following distribution, where we have
removed the infinite sequences, since the associated probability converges to
zero. First, let (en) be a sequence of identifiers, (en) ∈ Fl if and only if (en) has
l+1 elements such that for any i 6= l, ei 6= k′ and el = k′. Then, the probability
distribution resulting of an infinite execution can be defined as:

E =
⋃

l∈N

⋃

(en)∈Fl
{(elem(0) = (k, k′)

∧l−1
i=0 ci,ei,ei+1

, 1
nl+1 )}

Of course, we need to prove that the sum of the probabilities in E is one. Since
the cardinality of Fl is (n − 1)l, we can prove that:

∑x
l=0

∑

(en)∈Fl

1
nl+1 =

∑x
l=0

(n−1)l

nl+1 =
∑x

l=0
n(n−1)l−(n−1)l+1

nl+1

Hence,
∑x

l=0

∑

(en)∈Fl

1
nl+1 =

∑x
l=0(

n−1
n

)l − (n−1
n

)l+1 and we recognize an al-
ternated sum such that:
∑x

l=0

∑

(en)∈Fl

1
nl+1 = 1 − (n−1

n
)x+1 −→x→∞ 1.

We have then proved that
∑

(c,p)∈E p = 1



5.3. APPLICATION: CROWDS ANONYMOUS ROUTING 89

In order to generalize this and properly define the result of an infinite compu-
tation for the CCP+P,we introduce a denotation semantics, that represents the
program as a function. This is the purpose of the next chapter.
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Chapter 6

Denotational semantics for
the CCP+P

In this chapter, we give a denotational semantics for the CCP+P. Along the
way, we also prove a very general result about the possibility to decompose a
valuation. This results allows many powerful applications to semantics and limit
of infinite probabilistic executions.

The result in this chapter appeared in [Bea09] and have been submitted for
revision to the Journal of Theory and Practice of Logical Programming.
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Introduction

In this chapter, we give a denotational semantics for the CCP+P. This semantics
allows to characterize the processes by a function mapping the initial input to
the (possibly infinite) execution it can generate. The interesting consequence
is that the (fair) execution of a program in the CCP+P is probabilistically
deterministic.

For this semantics, we want to define the maximal probabilistic state as for any
finite run, which means of the form ∪i{(ci, pi)}. We achieve that by mapping
each finite execution to a measure function for the opens of the Scott topology,
namely a valuation. More precisely, we map the finite executions to a particular
type of valuation called simple valuation, of the form

∑

i piδxi
.

We then prove that the sequence of finite executions is directed and reaches a
limit. We then introduce a very general result on the structure of the image
of the valuation to characterize under which conditions this limit can be also
decomposed in the form of a simple valuation

∑

j p′jδc′
j
. Hence, we define the

result of an infinite run as ∪j{(c
′
j , p

′
j)}.

Finally, we also characterize this limit as the image of a closure operator for
which we give a recursive definition of its fixed points. The defined semantics is
then proved to be sound and fully abstract.

6.1 Valuations

In order to define a denotational semantics, one has to decide which kind of ob-
ject the denotational meaning of a program will be. Here, we chose to consider
programs as mappings from valuations to valuations1. Valuations are prob-
ability measures for topological spaces. They measure the probability of an
open set of atomic states, much like the wave function in quantum mechanics.
The execution of a program against an initial probabilistic state returns a new
probabilistic state.

Simple constraint valuations are measures that can be decomposed as individ-
ual probabilities over constraints. This property is very important in order to
achieve some consistency for the result of an infinite computation. Hence, we
want the limit state of an execution to be represented as a simple valuations,
where each individual state has a probability and the probability of a set of
individual states is the sum of their probabilities.

In this section, we study the conditions under which all valuations are simple
valuations. An infinite directed sequence of valuations will then have a sim-
ple valuation as its limit. That way, every program will be interpreted as a

1This approach was inspired by the work done in [Koz81]
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linear mapping from simple valuations to simple valuations, even when run-
ning an infinite sequence of operations, allowing a denotational semantics to be
defined.

The mathematic results on the decomposition of valuations based on the image
of the function is new. It implies the important result that any valuation on a
totally well-ordered lattice is simple.

In the second section, we define the mathematical structure needed for defining
the denotational semantics of the language. It mainly extends some definitions
from lattices to vector cones, including the notion of closure operator, namely
linear closure operators, will then be the domain of the denotational semantics
for the probabilistic CCP.

In the following, we use the Axiom of Dependent Choice. It can be stated as
follows: for any nonempty set X and any entire binary relation2 R on X, there
is a sequence (xn) in X such that xnRxn+1 for each n.

Using this constructive axiom, it is possible to build an infinite sequence of
elements xi such that for any i, xiRxi+1. It means that one can do an infinite
sequence of choices. Since each choice depends on the previous one, it is called
a dependent choice. It implies the Axiom of Choice over a countable family of
sets.

This axiom allows to define the theory using directed sequences instead of di-
rected sets. Indeed, the domain theory can be stated using directed sets, which
are subsets where the order is total, or using directed sequences and famillies.
It can be proved that the two theories are equivalent under this axiom.

Indexes on directed sequences can be any ordinal. However, the results also
hold when replacing transfinite assumptions with only infinite (ω) assump-
tions.

In the following, we will use directed sequence or sets without any distinction.
A directed sequence (xi) is total if and only if for any xi, xj and any x such
that xi ≤ x ≤ xj , then x is also an element of the sequence.

Definition 6.1.1

Let (X, τ) be a topological space where τ is the set of open sets. A valuation
on X is a function: µ : τ → R+ with the properties:

1. µ(∅) = 0
2. µ(O) + µ(U) = µ(O ∪ U) + µ(O ∩ U)
3. O ⊆ U =⇒ µ(O) ≤ µ(U)
4. µ(X) < +∞

We write Val(X, τ) for the set of all possible valuations on X. When clear from
the context, τ will be omitted.

2In this document, an entire binary relation is relation R such that for any x, there exists
at least one y such that xRy.
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Definition 6.1.2 (Simple Valuation)

The function:

δx : O 7→







1, if x ∈ O

0, otherwise

is a valuation, called Dirac valuation.
A simple (resp. finite) valuation is a countable (resp. finite) linear combination
of elementary Dirac valuations:

v =
∑

i∈I

aiδxi

Where the ai are positive reals such that:
∑

i ai < +∞.

We define the following order on valuations:

Definition 6.1.3

Let µ and ν be two valuations.

µ ≤ ν ⇐⇒ ∀U, µ(U) ≤ ν(U)

6.1.1 Sober spaces

We also introduce the topological notion of sober space. A sober space is a
topological space where the prime filters characterize the elements of the space.
This is very interesting since it allows to identify a point based on a prime filter.
We will use this notion to define the elementary decomposition of a valuation
to a simple valuation.

Definition 6.1.4

Let (X, τ) be a topological space. A filter on X is a set F of open sets of X
such that:

• F is upward closed: ∀O ∈ F , if O ⊆ O′ then O′ ∈ F .
• F is stable by finite intersections: ∀O,O′ ∈ F , O ∩ O′ ∈ F

We say that a filter is prime if and only if for any family of open sets (Ui)i∈I ,
we have:

∪i∈IUi ∈ F ⇒ ∃j ∈ I s.t. Uj ∈ F

The canonical example is the set of open sets containing a point:

Example : Let x be an element of a set X and Fx = {O ∈ τ | x ∈ O}, then Fx is a
prime filter.

Proof : • If x ∈ O and O ⊂ O′ then x ∈ O′
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• If x ∈ O and x ∈ O′ then x ∈ O ∩ O′

• If x ∈ ∪i∈IOi then x ∈ Oi0 for at least one i0.

A particular application of prime filters is the notion of sober space. For these
spaces, all prime filters of open sets are of the form Fx = {O ∈ τ | x ∈ O}.

Definition 6.1.5

Let (X, τ) be a topological space. We say that (X, τ) is sober if and only if for
any prime filter F , there exists a point x such that F = {O ∈ τ | x ∈ O}.

Examples of sober spaces are:

• N ∪ {+∞} equipped with the Scott-topology

• Any Hausdorff/T2 space

• Any domain

This property is very useful in conjunction with valuations: one can retrieve the
elements and coefficients of a simple valuation by looking at the values of the
function on the open sets.

6.1.2 Well-founded orders and lattices

We will use the notion of well-founded order:

Definition 6.1.6

Let X be a set and R a binary relation on X. R is well-founded if there does
not exist infinite decreasing sequences, i.e. sequences (xi)i∈N such that for any
i ∈ N, xi+1Rxi.

By contradiction, this can also be characterized as:

Proposition 6.1.1

Let X be a set and R a binary relation on X.
R is well-founded if and only if for any sequence (xi)i∈I of elements of X such
that xi+1Rxi, then I is a finite set of indexes.

A well-ordered set is a set equipped with an order whose corresponding strict
order is well-founded.

Well-ordered sets are those on which transfinite recursion can be proved3:

3This theorem can also be used to define well-founded orders: a well-founded order is then
an order for which all points are recursively enumerable under a transfinite recursion.
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Theorem 6.1.1

Let X be a well-ordered set, and P (α) a predicate where α ∈ X.
If when for any z < x, P (z) is true then P (x) true,
then P (x) is true for any x ∈ X.

Proof : We prove the result by contradiction. Suppose that P (x0) is false for a par-
ticular x0, then there must exist a x1 < x0 such that P (x1) is not true.

By repeating this sequence, we obtain a sequence of decreasing points xi for which
P (xi) is false. By assumption, this sequence must reach a minimal element x of the
set X.

However, since there is no z such that z < x, P (x) is true and we have a contradiction.

We give now some interesting results on a special class of well-ordered lattices.
In the following, a complete lattice is meet-continous if the meet operation is
continous, i.e. if xi is a directed sequence such that x = supi xi, then for any y,
inf(y, xi) is a directed sequence and supi(inf(y, xi)) = inf(y, x).

Definition 6.1.7

A countable complete meet-continous lattice X, is totally well-ordered, written
WOL, if and only if there exists a directed sequence (xi) such that:

• (xi) is well-ordered
• ∪i{xi} = X
• For any algebraic element x, the index of x in the sequence is finite.

Such a sequence can be seen as a consistent well-ordered extension of the order
on the lattice to a total order. It is illustrated in Figure 6.1.
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Figure 6.1: An example of a WOL

Hence, we use WOL for the class of countable well-ordered lattices, since they
coincide in our case. Now, we prove that any well-ordered lattice is sober.

First we introduce the following propositions:
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Proposition 6.1.2

Let X be a WOL, and S ⊂ X such that for any x ∈ S, if x ≤ y then
y ∈ S.
Then S = ∪x∈↓S ↑ x,
where ↓ S = {x ∈ S | ∀y ∈ S, y ≤ x ⇒ y = x}, and ↑ x = {y | x ≤ y}.

Proof : First, ∪x∈↓S ⊂ S, so we need to prove the converse.

Let x ∈ S. If x ∈↓ S, then x ∈ ∪x∈↓S ↑ x.

Otherwise, there exists x1 ∈ S such that x1 ≤ x.

Since the lattice is well-ordered, by repeating this construction, we find a xk ∈↓ S
such that xk ≤ x. Hence, x ∈ ∪x∈↓S ↑ x.

In the following, an element x is algebraic if and only if for any directed sequence
(xi) such that supi xi = x, then there exists i0 such that xi0 = x.

Proposition 6.1.3

For any Scott-open O on X, O = ∪x∈↓O ↑ x, and x is algebraic for any x ∈↓ O.
Reciprocally, for any algebraic element x, ↑ x is an open.

Proof : For any x ∈↓ O and any directed sequence xi such that x = supi xi, since
x ∈ O there exists i0 such that xi0 ∈ O. Since x ∈↓ O, xi0 = x.

Let xi be a directed sequence such that supi xi ∈ ↑ x. Then inf(xi, x) is a directed
sequence such that supi inf(xi, x) = x. Hence there exists i0 such that inf(xi0 , x), and
x ≥ xi0 such that xi0 ∈ ↑ x.

Before stating the main result, we need the following Lemma:

Lemma 6.1.1

Let F be a prime filter on a WOL such that ∩O∈FO =↑ x and G = {z | ↑ z ∈
F}.
Then supG = x.

Proof : G is not empty since ⊥ ∈ G.

By contradiction, suppose that z = sup G 6= x. Then there exists O ∈ F such that
z 6∈ O. Let y ∈ G, then O′ =↑ y ∩ O ∈ F .

Since O′ = ∪v∈↓O′ ↑ v and F is a prime filter, there exists v ∈↓ O′ such that ↑ v ∈ F .

By definition of G, v ≤ z, hence z ∈ O′ and we have a contradiction.

Theorem 6.1.2

A WOL is sober for the Scott-topology.

Proof : Let F be a prime filter, and S = ∩O∈FO. S is non-empty since it contains
the top element ⊤.
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According to Proposition 6.1.2, S = ∪x∈↓S ↑ x.

Let O ∈ F . Similarly, O = ∪x∈↓O ↑ x.

Then, since F is a prime filter, there exists x ∈↓ O such that ↑ x ∈ F .

Hence, for any y ∈↓ S, x ≤ y, such that: x ≤ inf ↓ S, and for any open O ∈ F ,
inf ↓ S ∈ O, such that: inf ↓ S ∈ S.

Hence, S =↑ x for some x, and for any O ∈ F , x ∈ O.

Conversely, let I be an open such that x ∈ I and G = {z | ↑ z ∈ F}.

According to Lemma 6.1.1, sup G = x ∈ I. Hence, since I is a Scott-open, there exists
y ∈ G such that y ∈ I and, by definition of G, ↑ y ∈ F and I ∈ F .

6.1.3 Decomposition of valuations

We present a new result extending a theorem first introduced for finite valuations
in [Tix95]. Limits of sequence of finite valuations are also studied extensively in
[GL05], although this result is not stated there. This result allows the decom-
position of valuations under some assumptions. Using this general result, we
prove that the decomposition is possible in any WOL. In the terms and defini-
tions used in [GL05], it means that on such a lattice, the classes of semi-simple
valuations and discrete valuations are the same, and probably others too.

Definition 6.1.8

Let v be a valuation on a sober space (X, τ).
The set I(v) is the set τ quotiented with the following equivalence relation:
O ≡ O′ if and only if for any open I, v(O ∩ I) = v(O′ ∩ I).
The relation: x ⊑ y if and only if there exists O ∈ x, and O′ ∈ y such that
O′ ⊂ O is an order on I(v).
χ (resp. φ) is the equivalence class of X (resp. ∅).

Proof : We have to prove that the relation ≡ is an equivalence relation. Indeed, it is
clearly symmetric, reflexive and transitive.

The relation ⊑ is an ordering relation for ≡:

• x ⊑ x

• if x ⊑ y and y ⊑ z, there exists I ∈ x, J ∈ y and K ∈ z such that: K ⊂ J ⊂ I.
Hence, there exists I ∈ x and K ∈ z such that K ⊂ I and x ⊑ z.

• if x ⊑ y and y ⊑ x, then let X ∈ x. By definition, there exists I ∈ x, J ∈ y such
that J ⊂ I. For J ∈ y, there exists K ∈ x such that K ⊂ J ⊂ I. Hence, for any
open O, K∩O ⊂ J∩O ⊂ I∩O, and v(K∩O) ≤ v(J∩O) ≤ v(I∩O). By definition,
v(I ∩ O) = v(K ∩ O) = v(X ∩ O). Hence, for any open O, v(J ∩ O) = v(X ∩ O)
and X ∈ y.
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Theorem 6.1.3

If there exists a total directed sequence (xi)i∈N of elements of I(v) such that:
• x0 = χ
• if i 6= j, then xi 6= xj

• for any i,
⋃

O∈xi

O ∈ xi

then there exists a simple valuation f such that for any n ∈ N, any open
On ∈ xn, and any open I, v(I) − f(I) = infn v(On ∩ I).

We prove this theorem using the intermediate results presented now. In the
following, X is a sober space and v a valuation on X that satisfies the conditions
for Theorem 6.1.3.

First we define a set of opens which will be proved to be a prime filter and used
for the initial step of the decomposition:

Definition 6.1.9

Let O ∈ x1. We define: FO = {O′ ∈ τ | v(O ∪ O′) = v(X)}.

This set has some nice properties:

Proposition 6.1.4

Let I and J be two opens:
• v(O ∪ I) ∈ {v(O); v(X)}
• if v(O ∪ I) = v(O) and v(O ∪ J) = v(O), then v(O ∪ (I ∪ J)) = v(O).
• if v(O ∪ I) = v(X) and v(O ∪ J) = v(X), then v(O ∪ (I ∩ J)) = v(X).

Proof : The first part follows directly from the fact that v(O ∪ I) ≥ v(O), but the
only two possible values are v(O) and v(X) since (xi) is well-ordered and total.

The second part makes use of the decomposition over union and intersection for valu-
ations: v(O∪(I∪J)) = v((O∪I)∪(O∪J)) = v(O∪I)+v(O∪J)−v((O∪I)∩(O∪J)).

Since (O ∪ I)∩ (O ∪ J) = O ∪ (I ∩ J) ⊂ O ∪ I, then v((O ∪ I)∩ (O ∪ J)) = v(O), and:

v(O ∪ (I ∪ J)) = v(O)

.

The third part is proved in a similar way:

v(O∪(I∩J)) = v((O∪I)∩(O∪J)), hence v(O∪(I∩J)) = v(O∪I)+v(O∪J)−v(O∪I∪J).

Since v(O ∪ I ∪ J) ≥ v(O ∪ I) = v(X), then v(O ∪ I ∪ J) = v(X) and:

v(O ∪ (I ∩ J)) = v(X)

We can also prove that FO is a prime filter:

Lemma 6.1.2

FO is a prime filter.
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Proof : We prove the result using the previous Proposition:

• v(O ∪ X) = v(X) hence X ∈ FO.

• if I ∈ FO and I ⊂ J , then v(O ∪ J) ≥ v(O ∪ I) = v(X). Hence v(O ∪ J) = v(X)
and J ∈ FO.

• if I ∈ FO and J ∈ FO, then, according to previous Proposition, v(O∪ (I ∩J)) =
v(X). Hence I ∩ J ∈ FO.

• Let (Oi)i∈I be a family of opens such that: ∪i∈IOi ∈ FO and for any J ⊂ I,
UJ = ∪j∈JOj . Suppose that for any i ∈ I, v(O ∪ Oi) = v(O) or, equivalently,

O ∪ Oi ∈ x1, then by assumption, also v(O ∪ (
[

i∈I

Oi)) = v(
[

i∈I

(O ∪ Oi)) = v(O):

contradiction.

Hence, we obtain a prime filter FO. Then, since the space is sober, this filter
defines a point x0 so that we can define a new valuation:

Proposition 6.1.5

Let f = v − (v(X) − v(O))δxO
, then for any open I, f(I) = v(O ∩ I).

Proof : Let I be an open, then:

• if xO 6∈ I, then f(I) = v(I). However, then also: v(O ∪ I) = v(O), hence:
v(O) + v(I)− v(O ∩ I) = v(O), and: v(I) = v(O ∩ I), such that f(I) = v(O ∩ I).

• if xO ∈ I, then v(O ∪ I) = v(X). Hence, v(O) + v(I) − v(O ∩ I) = v(X), such
that: v(I) − v(X) + v(O) = v(O ∩ I), and: f(I) = v(O ∩ I).

In any case, we have that: f(I) = v(O ∩ I).

Another interesting property of this decomposition is that is invariant for any
open O′ such that O ≡ O′. Hence, the decomposition can be done on (xi).

We can now prove that this decomposition holds for any xi. First, we define
the proposition that we want to prove. We use a strong induction principle in
order to state the unicity of the decomposition.

Definition 6.1.10

For any xi, F (xi) is true if and only if there exists a simple valuation f such
that for any open I, and any open Oi ∈ xi, v(I) − f(I) = v(Oi ∩ I).
P (xi) is true if and only if:

• F (xj) is true for any xj ⊑ xi

• For any xk ⊑ xj ⊑ xi such that F (xj) is true for fj =
∑

l alδcl
and F (xk)

is true for fk =
∑

n anδcn
, then ∪n{cn} ⊂ ∪l{cl}, and if cl = cn, al = an.

Theorem 6.1.4

P (xi) is true for any i ∈ N.

Proof : We prove the theorem by recursion on N.

P (x0) is true according to Proposition 6.1.5.
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Suppose that P (xn) is true for some n ∈ N. Then there exists a valuation fn =
P

k akδck
such that for any open I, and any open On ∈ xn, v(I)− fn(I) = v(On ∩ I).

We consider the valuation v′ = v − fn. Since the sequence xi is total for v, it is also
total for v′.

We can then apply Proposition 6.1.5 to v′ and obtain a valuation an+1δxn+1
such that

for any open I and any open On+1 ∈ xn+1, v(I)− f(I)− an+1δxn+1
(I) = v(On+1 ∩ I)

Now we can prove Theorem 6.1.3:

Proof of Theorem 6.1.3 : The decomposition obtained by Theorem 6.1.4 is unique,
so we can take: C = ∪n ∪kn {ckn} where for any n ∈ N, fn =

P

k aknδckn
, and for any

c ∈ C there a unique value ac. We define: f =
P

c∈C acδc. If fn is the decomposition
obtained for xn, then by definition of the sequence (xi), for any n ∈ N any On ∈ xn,
On+1 ∈ xn+1 and any open I, we have: v(On+1 ∩ I) ≤ fn(I) = v(On ∩ I). Hence,
f(I) = infn v(On ∩ I).

We can apply this result to any well-ordered lattice.

Theorem 6.1.5

Any valuation on a WOL equipped with the Scott topology is a simple valua-
tion.

Proof : Let v be a valuation on a WOL lattice.

According to Theorem 6.1.2, the lattice is sober.

Furthermore, there exists a total well-ordered directed sequence (xi) with the proper-
ties described in Definition 6.1.7.

We construct a sequence of opens (On)n∈N that we use for the initial decomposition.

We consider the minimal index α of a non-algebraic element in the sequence (xi).

If this element does not exist, then the sequence (xi) contains only algebraic elements,

the lattice has a finite number of elements and we take On =
[

i≥n

(↑ xi).

Otherwise, we consider the sequence of algebraic elements (yj) that are below xα in

(xi) and define On =
[

xk 6=yj

j≤n

(↑ xk).

We can now consider the sequence of the different equivalence classes ρn obtained
with the sequence (On)n∈N. By construction, this sequence is total, and for any n,
∪O∈ρnO ∈ ρn.

For this sequence, there exist a simple valuation fα such that for and any open I,
v(I) − fα(I) = infn v(On ∩ I).

We finish this initial step by taking gα = fα + xα.δxα , where xα = fα(X) − fα(O),

with O =
[

i∈N

xi 6≤xα

(↑ xα).

Then, for any open I,
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v(I) − gα(I) = v(I ∩ (
[

xi 6≤xα

(↑ xi))

We conclude by a transfinite recursion on the non-algebraic elements in the sequence
(xi).

For each non-algebraic element xs, we build a sequence of algebraic elements (yj)
below xs.

We take for the sequence (yj) all the (xi) that are below xs and build the next valuation
gs exactly as for the initial step above.

Similary, we have for that:

For any non-algebraic element xs, let (sk)k∈K be the set of algebraic elements below
xs in the sequence (xi), and Xs = {x ∈ (xi) | ∀k ∈ K, x 6≤ sk} we have:

v(I) − gs(I) = v(I ∩ (
[

x∈Xs

(↑ xi)) (6.1)

Eventually, or any non-algebraic element xs, we build a valuation gs that satisfies 6.1.

Since the lattice is meet-continous, if y is a non-algebraic element such that for any
element x, x ≤ y, then y is the maximal element of the lattice, and the recursion
terminates.

Hence, for the maximal element ⊤, we get a simple valuation g⊤ such that, according
to 6.1:

v(I) − g⊤(I) = v(I ∩ (
[

x6≤X⊤

(↑ xi)) = v(∅) = 0

Then v = g⊤.

Example : We define X = (N ∪ ∞)2 ordered by: (n, m) ≤ (k, l) iff n ≤ k and
m ≤ l. This is a meet-continous well-ordered lattice, and we have a sequence:
(0, 0); (1, 0); (0, 1); (2, 0); (1, 1); (0, 2); . . . ;
(∞, 0); (∞, 1); . . . ;
(0,∞); (1,∞); . . . ;
(∞,∞).

Hence X is a WOL.

The sequences used for the decomposition in Theorem 6.1.5 are:
(0, 0) < (1, 0) < · · · < (∞, 0);
(0, 0) < (1, 0) < (1, 1) < · · · < (∞, 1); . . . ;
(0, 0) < (0, 1) < · · · < (0,∞); . . .

In the following, we assume that X is a WOL.

Theorem 6.1.6

Let µn be a directed sequence of simple valuations all bounded by the same
positive real M . Then, the pointwise limit:

µ : O 7→ supn µn(O)
is a simple valuation.
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Proof : The sequence µn(O) is bounded by M , hence it has a sup.

We then prove that all the requirements listed in the definition of valuations are
met by µ. In particular, µn(A ∪ B) = µn(A) + µn(B) − µn(A ∩ B) entails, that
µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B)4.

By Theorem 6.1.5, µ is also a simple valuation.

This property is very important. It expresses a closure property for the space
of simple valuations. Hence, we can define a language that operates on simple
valuations, and expect a simple valuation as the result of the computation, even
when the computation is infinite. This is generally not the case. [GL05] studies
extensively these limits in the general case.

6.2 Vector cones of simple valuations

Theorem 6.1.5 shows that if the space X is a WOL, then any valuation on X can
be represented as a set of points and positive masses on those points. Hence,
we will represent it as a cone on the vector space of absolutely convergent point
masses.

6.2.1 Vector cones
Definition 6.2.1

A set of vectors C from a vector space V whose scalars is the field of real
numbers R is a cone iff:

• I finite, and ∀i ∈ I, ai ∈ R+ such that
∑

i∈I ai < +∞, and xi ∈ C ⇒
∑

i∈I aixi ∈ C.
• x,−x ∈ C =⇒ x = 0

Valuations are a special case of vector cones:

Proposition 6.2.1

Let V be the set of continuous real functions defined on the open sets of the
constraint lattice X
Let also W be the subspace {

∑

i∈N
aiδdi

, d constraint,
∑

i |ai| < +∞} of all
possible infinite linear combinations of Dirac valuations.
Then Val(X) is a cone of the vector space V . If X is a WOL, then it is a cone
of the subspace W .

Proof : Val(X) is a cone since any positive linear combination of valuations is again
a valuation.

Then, if X is a WOL, all valuations are simple valuations.

4This would not hold with probabilities over a σ-algebra.
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Remark 6.2.1

In the literature, cones of vectors are usually used to define a partial order on
the vectors. In this case, we already have a natural order on valuations. Besides,
it can be proved that the two orders do not coincide.

In the following, we will assume that X is a WOL.

6.2.2 Linear closure operators

In the case of simple valuations, the pointwise order combined with linearity
yields the notions of linear closure operator.

First, we recall the definition and fundamental property of closure operators:

Definition 6.2.2

An operator p on a partially ordered set is a closure operator iff:
• x ≤ p(x) (Extensiveness)
• p(p(x)) = p(x) (Idempotence)
• x ≤ y =⇒ p(x) ≤ p(y) (Monotonicity)

The fundamental property for closure operators is:

Proposition 6.2.2

If p is a closure operator, and P the set of its fixed points, then:
p(x) = min(↑ x ∩ P )

In the original CCP, closure operators are the denotational meaning of the
programs. For our language, we will lift this notion to linear operators on the
vectors space.

Definition 6.2.3

A continuous linear mapping on W is a linear closure operator iff it is a closure
operator on the cone of valuations for the pointwise order.

One example of a linear closure operator for valuations is then the follow-
ing:

Proposition 6.2.3

Let Θ be an operator on constraints, then the linear continuous function ⋉Θ
is defined on the Dirac valuations as:

⋉Θ(δdi
) = δΘ(di)

If Θ is a closure operator, then so is ⋉Θ.

Proof : The usual property are proved by the fact that: d ≤ d′ ⇐⇒ δd ≤ δd′ :

• xi ≤ Θ(xi) ⇒
P

i aiδxi ≤ ⋉Θ(
P

i aiδxi) =
P

i aiδΘ(xi)
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• Θ(Θ(xi)) = Θ(xi) ⇒ ⋉Θ(⋉Θ(
P

i aiδxi)) =
P

i aiδΘ(Θ(xi)) =
P

i aiδΘ(xi) =
Θ(

P

i aiδxi)

• xi ≤ yi ⇒ Θ(xi) ≤ Θ(yi). Hence, ⋉Θ(
P

i aiδxi) =
P

i aiδΘ(xi) ≤
P

i aiδΘ(yi) =
⋉Θ(

P

i aiδyi)

Since a closure operator is idempotent, linear closure operators is a subset of
the linear projections. Even more, since the Dirac valuations are all valuations,
their images can be uniquely defined on the cone of valuations, and we then have
the following extension of the fundamental property on closure operators:

Proposition 6.2.4

Let C∗(B) = {
∑

i aibi | ai ≥ 0,
∑

i ai < +∞, bi ∈ B} be the set of all possible
positive linear combination of vectors from B.
Let p be a linear closure operator and x a valuation, then:

p(x) = min(↑ x ∩ C∗{p(δd) | d constraint})

Proof : For any valuation v =
P

i aiδdi
and any continuous linear function f :

f(v) =
P

i aif(δdi
)

Hence the image of f on the valuation cone is exactly C∗({f(δd) | d constraint}).

We conclude using the usual property on closure operators.

This results shows that linear closure operators can be identified with the cone of
their images on valuations. This is also the set of resting points of the associated
closure operator on valuations.

6.2.3 Observables for the CCP+P

In this section, we identify the projection of a configuration on the constraints
to a simple valuation on constraints. We then show that the relation that maps
the projection of a configuration to the projection of its derivative under the
operational semantics is consistent with the order over valuations. We also
establish some basic convergence results for this relation.

An execution trace from a configuration of the language will give a directed
sequence of projected simple valuations on constraints. This sequence will then
converge to a simple valuation, which will be the output of the program.

We eventually show that the input/output relation on valuations entailed by a
(possible infinite) run of a process is a linear closure operator.

Definition 6.2.4

Let f be a CCP+P configuration and Π(f) = {(c, p)} its projection. The
valuation associated to Π(f) is P (f) =

∑

(c,p)∈Π(f) p.δc.
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Ordering on valuations is consistent with the derivation under the operational
semantics, as show by the next result.

Theorem 6.2.1

If f and f ′ are two configurations such that f −→ f ′, then P (f) ≤ P (f ′).
Furthermore, P (f)(X) = P (f ′)(X) where X stands for the whole constraint
lattice.

Proof : Each individual transition from a Dirac valuation yields a greater valuation.

Theorem 6.2.2

If P (ν0) → . . . P (νn) → · · · → is the projection of an execution trace, then it
has a limit which is a simple valuation.

Proof : We apply Theorem 6.1.6 to the directed bounded sequence (P (νn))n∈N

We use the fact that the language is confluent, along with the ordering on
valuations on constraints to identify infinite fair executions to dominant traces,
and use the limit reached during these executions as the observable for the
language.

Theorem 6.2.3

CCP+P is confluent.

Proof : This is an extended version of the original confluence result for CCP.

First we notice that the probabilistic choice {(⊕i(Pi, ci, pi), d)} is deterministic.

For all other constructions from the grammar of the language, confluence occurs over
individual processes, and we sum up the simple valuations, so that by commutativity
of product and sum, we get the same result with both paths.

We will use this result to define a notion of fair execution based on the order
on valuations. Those executions are characterized by dominant traces.

Definition 6.2.5

An execution trace F = f1 → f2 → · · · → fn → . . . is dominant if and only if
for any other execution trace G = g1 → g2 → · · · → gn → . . . , then:

lim
n→∞

P (gn)(O) ≤ lim
n→∞

P (fn)(O)
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Corollary 6.2.1

If F = f1 → f2 → · · · → fn → . . . and G = g1 = f1 → g2 → · · · → gn → . . .
are two dominant execution traces, then:

lim
n→∞

P (gn) = lim
n→∞

P (fn)

We need to prove that there exist at least one dominant execution trace.

Theorem 6.2.4

For any configuration in CCP+P, there exist at least one dominant execution
trace that starts with that configuration.

Proof : Let f be a configuration, and Ti = {ti: (t0 = f) → · · · → ti} be the set of
configurations generated by traces of length i.

Then by confluence, for each Ti, there exist a finitely constructible configuration sj

that is superior to each configuration in Ti:

si ≥ t, ∀t ∈ Ti

We can construct a sequence of finite traces from Vi : vi → · · · → vi+1, where si ≤ vi

for all i:

• V0 = f

• Vi = vi → · · · → vi+1 where vi+1 realizes the confluence for vi and si+1

Those traces exist by confluence. Then, S = V0 → · · · → Vn → . . . is a dominant
execution trace.

We define the observable associated to a process P and to a valuation on con-
straints µ.

Definition 6.2.6

Let µ =
∑

i∈N
aiδci

be a valuation on constraints, and let P be a process.
The observable associated to (P, µ) are:

O(P, µ) = {vf | f execution trace }
Where f : f0 = ∪i∈N{(P, ci, ai)} → · · · → fn . . . is an execution trace, vf : O 7→
limn→∞ P (fn)(O)

Proposition 6.2.5

For every P, µ, the valuation max{O(P, µ)} exists and is obtained for a dominant
trace. We will denote it as D(P, µ)

We show the connection between the semantics based on closure operators for
the original CCP and the semantics based on vector spaces already used in the
literature.
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Theorem 6.2.5

The operator νP : f 7→ D(P, f) extends to a linear operator on the vector space
W .

Proof : νP is a linear operator on valuations by definition of the language. So, it can
be decomposed into its values on the basis (δx). Hence, the extension on the whole
space W by linearity.

In order to prove that it is also a closure operator, the main difficulty is idempotency.

The first key property that ensures idempotency is the algebraicity of the guards. This
ensures that, by taking the limit of an infinite dominant execution, we do not introduce
new guarded constraints that could not be reached during the execution. Hence, when
starting the same process with this limit, all enabled transitions are enabled also for
the same process started with the original valuation, possibly after a finite sequence
of steps.

The other important property is the use of constraint guards on choices. Indeed, when
restarted with its maximal configuration, all the previously resolved choice reduce to
the exact previous outcome. Hence, idempotency is proved for the probabilistic choice
construct.

This result shows a strong connection between the linear approach for defining
semantics on probabilistic CCP, as used in [PW98] and the semantics using
closure operator based on fixed points as defined in [SRP91b].

6.3 Denotational semantics

In the previous part, we have shown that the observable associated to a given
process is a linear closure operator on the vector cone of simple valuations.

In this section we propose a denotational semantics for which this observable is
obtained by a fixed point construction. We then prove the correspondence with
the operational semantics.

In the following, C∗B is the vector cone generated by all the possible positive
linear combinations of the vectors in B. E is the whole cone. We define linear
closure operators using their set of fixed points, which is also the cone gen-
erated by the images on the Dirac valuations. We also use the operation ⋉

(Proposition 6.2.3) to define linear operators using operators on constraints. If
f is an operator on valuations, and X a set of valuations, f(X) will denote the
set {f(x) | x ∈ X}. For simplicity, indexes on sums will be omitted. α is a
distinguished variable which cannot be used in the programs.
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Definition 6.3.1

Let e be a mapping from procedures to cones of valuations on constraints.

Let J . Kp be the function:
• J0Kp(e) = E
• JcKp(e) = C∗{δd∧c for all possible d}
• Jc → P Kp(e) = C∗{δd | d 6≥ c} ∪ C∗{JP Kp(e)(δd) | d ≥ c}
• JA|BKp(e) = JAKp(e) ∩ JBKp(e)
• J⊕i(Pi, ci, pi)Kp(e) = C∗{

∑

i pi ⋉ fci
(JPiKp(e)(δd))} where fc(x) = x ∧ c

• J∃X.AKp(e) = (⋉Φ)−1(JAKp(e)) where Φ(x) = ∃Xx
• Jp(X)Kp(e) = ⋉f(e(p)) where f(x) = ∃α(γαX ∧ x)}

Let J . Kd be the function,
• JǫKd(e) = e
• Jp(X) :: AKd(e) =

p′ 7→







e(p′) if p′ 6= p

⋉f(JAKp(e)) otherwise

where: f(x) = ∃X(γαX ∧ x)
• JD.DKd(e) = JDKd(JDKd(e))

We define the denotational semantics of a process A in the program D as fol-
lows:

JD.AK = JAKp(fix(JDKd))

We show a strong correspondence between this semantics and the observables
based on dominant traces.

Theorem 6.3.1

Let P be a process from the CCP+P, we have: JP K = νP : λfD(P, f)

Proof : The proof of this results is in two parts:

1. The function JDKd is continuous and monotone, such that the least fixed point
exists.

2. The least fixed point fix(JDKd) composed with JAKp is equal to λfD(P, f)

First, the domain D that we consider is the domain of mappings from procedure
names to cones on valuations. The order of the domain is: f ≤ g if and only if for any
procedure name p: g(p) ⊂ f(p). The bottom element ⊥ for this lattice if λx.E, where
E is the whole space. This defines a complete lattice for which any directed sequence
has a limit, hence it is a domain.

The continuity and monotony of the function JDKd over D is straight forward. For
a directed sequence of elements ei, the sequence JDKd(ei) is directed and its limit is
λx. ∩i JDKd(ei)(x).

The second part is less trivial. First, we introduce the usual property for the domains,
which is that fix(JDKd) = supnJDKn

d (⊥). By continuity of JAKp, we also have that:
JAKp(fix(JDKd)) = supnJAKp(JDKn

d (⊥)).
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We then remark that, for any integer n and any constraint c, JAKp(JDKn
d (⊥))(c) repre-

sents the result of a partial (finite) computation where the recursive procedures have
been substituted n times with their corresponding agents. This results is proved by
induction on n and the syntax of the language.

Eventually, the limit supnJAKp(JDKn
d (⊥)) is then exactly the outcome of an infinite

maximal computation, as defined in 6.2.5.

Our semantics is fully abstract, as stated by the following result.

Theorem 6.3.2

For any context C[.] and any processes P and Q,
JP K = JQK if and only if λf.D(C[P ], f) = λf.D(C[Q], f)

Proof : The proof of this results derives directly from the fact that the denotational
semantics is compositional. The semantics of D(C[P ], f) is determinitically obtained
using JP K. Hence the equality when JP K = JQK.

Conclusion

This work extends previous linear approaches to probabilistic extensions of the
CCP to infinite constraints. The use of valuations has given us a more gen-
eral framework than previous approaches. Indeed, it is much more appropriate
to compute a probabilistic measure on an open, which takes into account all
branches contributing to the measure, whereas by following each probabilistic
branch, one might be in the situation where the probability of each branch
reaches zero but the limit of the sum is not null. This framework is also a good
starting point for an extension to continuous probability measures.

The fact that any valuation on a WOL is simple is very important, and assures a
very general definition of the CCP+P. The fact that the denotational semantics
is deterministic for maximal computations is also a great achievements in the
purpose of establishing solid foundations in the semantics of infinite concurrent
probabilistic asynchronous programs.

We plan to continue this work by applying our result to other probabilistic
protocols. The semantics defined here allows to consider probabilistic proper-
ties of a protocol or a program, like the possibility to reach a given constraint
representing an outcome of the protocol
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Introduction

The concept of anonymity comes into play in those cases in which we want to
keep secret the identity of the agents participating to a certain event. There is a
wide range of situations in which this property may be needed or desirable; for
instance: voting, anonymous donations, and posting on bulletin boards.

Anonymity is often formulated in a more general way as an information-hiding
property, namely the property that a part of information relative to a cer-
tain event is maintained secret. One should be careful, though, not to confuse
anonymity with other properties that fit the same description, notably confiden-
tiality (aka secrecy). Let us emphasize the difference between the two concepts
with respect to sending messages: confidentiality refers to situations in which
the content of the message is to be kept secret; in the case of anonymity, on the
contrary, it is the identity of the originator, or of the recipient, that has to be
kept secret. Analogously, in voting, anonymity means that the identity of the
voter associated with each vote must be hidden, and not the vote itself or the
candidate voted for. A discussion about the difference between anonymity and
other information-hiding properties can be found in [HO03].

An important characteristic of anonymity is that it is usually relative to the
capabilities of the observer. In general the activity of a protocol can be observed
by diverse kinds of observers, differing in the information they have access to.
The anonymity property depends critically on what we consider as observables.
For example, in the situation of an anonymous bulletin board, a posting by one
member of the group is kept anonymous to the other members; however, it may
be possible that the administrator of the board has access to some privileged
information that may allow him to infer the member who posted it.

In general anonymity may be required for a subset of the agents only. In order
to completely define anonymity for a protocol it is therefore necessary to specify
which set(s) of members has to be kept anonymous. A further generalization is
the concept of group anonymity: the members are divided into a number of sets,
and it is revealed which one, among the groups, is responsible for an event, but
the information as to which particular member has performed the event remains
hidden. In this work, however, we only consider the case of a single group of
anonymous users.

Various formal definitions and frameworks for analyzing anonymity have been
developed in literature. They can be classified into approaches based on process-
calculi [SS96, RS01], epistemic logic [SS99, HO03], and “function views” [HS04].
In this work, we focus on the approach based on process-calculi.

The framework and techniques of process calculi have been used extensively in
the area of security, to formally define security properties, and to verify cryp-
tographic protocols. See, for instance, [AG99, Low97, Ros95, Sch96, AL00].
The common denominator is that the various parties involved in the protocol
are specified as concurrent processes and present typically a nondeterministic
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behavior. In [SS96, RS01], the nondeterminism plays a crucial role in the def-
inition of the concept of anonymity, definition which is based on the so-called
“principle of confusion”: a system is anonymous if the set of the possible ob-
servable outcomes is saturated with respect to the intended anonymous users.
More precisely, if in one computation the culprit (the user who performs the
action) is i and the observable outcome is o, then for every other agent j there
must be a computation where j is the culprit and the observable is still o.

The principle of anonymity described above is elegant and general, however it is
limited in that it does not cope with quantitative information. Now, many pro-
tocols for anonymity use random mechanisms, see, for example, Crowds [RR98],
Onion Routing [SGR97], and Freenet [CSWH00]. The probability distribution
of these may be known or become known through statistical experiments. From
this knowledge, and the observables, one may be able to differentiate the agents
quantitatively, namely to deduce that one agent is more likely (has higher prob-
ability) to be the culprit than the others. This means that we don’t have perfect
anonymity. However the definition of the non-deterministic approach (in which
of course the random mechanisms are approximated by nondeterministic mech-
anisms) may still be satisfied, as long as it is possible for each of the other agents
to be the culprit, even with very low probability. In other words, the approach
in [SS96, RS01], is based on set-theoretic notions, and it is therefore only able to
detect the difference between possible and impossible, and not the quantitative
differences.

Another advantage in taking into account probabilistic information is that it
allows to classify various notions of anonymity according to their strength. See
for instance the hierarchy proposed by Reiter and Robin [RR98]. In this work we
explore a notion of anonymity which corresponds to the strongest one in [RR98],
namely beyond suspicion5: from the observables all agents appear equally likely
to be the culprit.

A probabilistic notion of anonymity was developed (as a part of a general epis-
temological approach) in [HO03]. The approach there is purely probabilistic, in
the sense that both the protocol and the users are assumed to act probabilis-
tically. In particular the emphasis is on the probability of the users to be the
culprit.

In this work, we take the opposite point of view, namely we assume that we may
know nothing about the users. They may be totally unpredictable, and change
attitude every time, so that the choice of being the culprit cannot be quantified
probabilistically, not even by repeating statistical observations. Namely, it is a
typical nondeterministic choice6. We regard this as a special case, though: In

5To be more precise we should say that we think that it corresponds to the intended notion

of beyond suspicion in [RR98]. We cannot prove this correspondence because the definition
there is given only informally.

6Some people consider nondeterministic choice as a probabilistic choice with unknown
probabilities. Our opinion is that the two concepts are different: the notion of probability
implies that we can gain knowledge of the distribution by repeating the experiment under



115

general, we assume that the behavior of the users may be in part probabilistic
and in part nondeterministic. As for the protocol, it may use mechanisms like
coin tossing, or random selection of a nearby node, which are supposed to exhibit
a certain regularity and obey a probabilistic distribution. On the other hand,
also the protocol can behave nondeterministically in part, due, for instance, to
the (unpredictable) interleaving of the parallel components.

In summary, we investigate a notion of anonymity which combines both prob-
ability and nondeterminism, and which is suitable for describing the general
situation in which both the users and the protocol can exhibit a combination of
probabilistic and nondeterministic behavior. We also investigate the properties
of the definition for the particular cases of purely nondeterministic users and
purely probabilistic users.

One of the results of our investigation is that the property of anonymity does
not depend on the probabilities of the users. We consider this a fundamental
property of a good notion of anonymity. In fact, a protocol for anonymity should
be able to guarantee this property for every group of users, no matter what is
their probability distribution for being the culprit.

In order to define the notion of probability we need, of course, a model of
computation able to express both probabilistic and nondeterministic choices.
This kind of systems is by now well established in literature, see for instance
the probabilistic automata of [SL95], and has been provided with solid mathe-
matical foundations and sophisticated tools for verification. For expressing the
protocols, we will use the probabilistic asynchronous π-calculus introduced in
[HP00, PH05a], whose semantics is based on a model similar to [SL95].

Some of the results of this document have appeared initialy in [BP05]. These
results were then completed and generalized in [BP09], including detailed proofs
and comments about the possible implementation of an automated verification
of these properties.

the same conditions and by observing the frequency of the outcomes. In other words, from
the past we can predict the future. This prediction element is absent from the notion of
nondeterminism.
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Chapter 7

Anonymous protocols: the
dining cryptographer

We present in this chapter a particular application of probabilistic and asyn-
chronous anonymity protocol, the Dining Cryptographers.

In Section 7.1 we recall the nondeterministic approach of [SS96, RS01] to the
notion of anonymity.

In Section 7.2 we recall the dining cryptographers’ Problem by Chaum [Cha88],
which will serve as a running example, and we motivate the necessity of copying
with probabilities.
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C

A

BS

Figure 7.1: Classification of the actions in an anonymous system (cfr. [RS01]).

7.1 The nondeterministic approach to anonymity

In this section we briefly recall the approach in [SS96, RS01]. In these works,
the actions of a system S are classified into three sets (see Figure 7.1):

• A: the actions whose performer is intended to remain anonymous for the
observer,

• B: the actions that are intended to be completely visible to the observer,

• C: the actions that are intended to be hidden from the observer.

Typically the set A consists of actions of the form a(i), where a is a fixed
“abstract” action (the same for all the elements of A), and i represents the
identity of an anonymous user. Hence:

A = {a(i) | i ∈ I},

where I is the set of all the identities of the anonymous users.

Consider a dummy action d (different from all actions in S) and let f be the
function on the actions of A

⋃

B defined by f(α) = d if α ∈ A, and f(α) = α
otherwise. Then S is said to be (strongly) anonymous on the actions in A
if

f−1(f(S\C)) ∼T S\C,

where, following the CSP notation [Hoa85], S\C is the system resulting from
hiding C in S, f(S′) is the system obtained from S′ by applying the relabeling
f to each (visible) action, f−1 is the relation inverse of f , and ∼T represents
trace equivalence1.

Intuitively, the above definition means that for any action sequence ~α ∈ A∗, if
an observable trace t containing ~α (not necessarily as a consecutive sequence)

1The definition given here corresponds to that in [SS96]. In [RS01] the authors use a
different (but equivalent) definition: they require ρ(S\C) ∼T S\C for every permutation ρ in
A.
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is a possible outcome of S\C, then, any trace t′ obtained from t by replacing ~α
with an arbitrary ~α ′ ∈ A∗ must also be a possible outcome of S\C.

We now illustrate the above definition on the example of the dining cryptogra-
phers.

7.2 The dining cryptographers’ problem

This problem, described by Chaum in [Cha88], involves a situation in which
three cryptographers are dining together. At the end of the dinner, each of
them is secretly informed by the master whether he should pay the bill or not.
So, either the master will pay, or he will ask one of the cryptographers to pay.
The cryptographers, or some external observer, would like to find out whether
the payer is one of them or the master. However, if the payer is one of them,
they also wish to maintain anonymity over the identity of the payer. Of course,
we assume that the master himself will not reveal this information, and also we
want the solution to be distributed, i.e. communication can be achieved only
via message passing, and there is no central memory or central ‘coordinator’
which can be used to find out this information.

A possible solution to this problem, described in [Cha88], is the following: Each
cryptographer tosses a coin, which is visible to himself and to his neighbor to
the right. Each cryptographer then observes the two coins that he can see, and
announces agree or disagree. If a cryptographer is not paying, he will announce
agree if the two sides are the same and disagree if they are not. However,
if he is paying then he will say the opposite. It can be proved that if the
number of disagrees is even, then the master is paying; otherwise, one of the
cryptographers is paying. Furthermore, if one of the cryptographers is paying,
then neither an external observer nor the other two cryptographers can identify,
from their individual information, who exactly is paying.

7.2.1 Nondeterministic dining cryptographers

In the approach of [SS96, RS01] the dining cryptographers are formalized as a
purely nondeterministic system: the coins are approximated by nondeterministic
coins, and the choice on who pays the bill is also nondeterministic.

The specification of the solution can be given in a process calculus style as illus-
trated below. In the original works [SS96, RS01] the authors used CSP [Hoa85].
For the sake of uniformity here we use the π-calculus [MPW92]. We recall that
+ (

∑

) is the nondeterministic sum and | (Π) is the parallel composition. 0 is the
empty process. τ is the silent (or internal) action. cm and c(x) are, respectively,
send and receive actions on channel c, where m is the message being transmit-
ted and x is the formal parameter. ν is an operator that, in the π-calculus, has
multiple purposes: it provides abstraction (hiding), enforces synchronization,
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Figure 7.2: Chaum’s protocol for the dining cryptographers [Cha88, RS01].

and generates new names. For more details on the π-calculus and its semantics,
we refer to [BCPP08].

In the code below, ⊕ and ⊖ represent the sum and the subtraction modulo 3.
Messages p and n sent by the master are the requests to pay or to not pay,
respectively. pay i is the action of paying for cryptographer i.

We remark that we do not need all the expressive power of the π-calculus for
this program. In particular, we do not need guarded choice (all the choices are
internal because they start with τ), and we do not need neither name-passing
nor scope extrusion, thus ν is used just like the restriction operator of CCS
[Mil89].
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Master =
∑2

i=0 τ .mip .mi⊕1n .mi⊕2n . 0

+ τ.m0n . m1n .m2n . 0

Crypt i = mi(x) . ci,i(y) . ci,i⊕1(z) .

if x = p

then pay i . if y = z

then out idisagree

else out iagree

else if y = z

then out iagree

else out idisagree

Coini = τ .Head i + τ .Tail i

Head i = ci,ihead . ci⊖1,ihead . 0

Tail i = ci,itail . ci⊖1,itail . 0

DCP = (ν ~m)(Master

| (ν~c)(Π2
i=0Crypt i | Π2

i=0Coini) )

Let us consider the point of view of an external observer. The actions that are
to be hidden (the set C) are the communications of the decision of the master
and the results of the coins (~m, ~c). These are already hidden in the definition
of the system DCP . The anonymous users are of course the cryptographers,
and the anonymous actions (the set A) is constituted by the pay i actions, for
i = 0, 1, 2. The observable actions (the set B) is constituted by those of the
form out iagree and out idisagree, for i = 0, 1, 2.

Let f be the function f(pay i) = pay and f(α) = α for all the other actions.
It is possible to check that f−1(f(DCP ))) ∼T DCP , where we recall that ∼T

stands for trace equivalence. Hence the nondeterministic notion of anonymity,
as defined in Section 7.1, is satisfied.

7.2.2 Limitations of the nondeterministic approach

As a consequence of approximating the coins by nondeterministic coins, we
cannot differentiate between a fair coin and a biased one. However, it is evident
that the fairness of the coins is essential to ensure the anonymity property in
the system, as illustrated by the following example.
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Example : Assume that, whenever a cryptographer pays, an external observer obtains
almost always one of the three outcomes represented in Figure ??, where a stands for
agree and d for disagree. More precisely, assume that these three outcomes appear
with a frequency of 33% each, while the missing configuration, d, a, a, appears with
a frequency of only 1%. What can the observer deduce? By examining all possible
cases, it is easy to see that the coins must be biased, and more precisely, Coin0 and
Coin1 must produce almost always head, and Coin2 must produce almost always tail

(or vice-versa). From this estimation, it is immediate to conclude that, in the first
case, the payer is almost for sure Crypt1, in the second case Crypt2, and in the third
case Crypt0.

In the situation illustrated in the above example, clearly, the system does not
provide anonymity. However the nondeterministic definition of anonymity is
still satisfied (and it is satisfied in general, as long as “almost always” is not
“always”, i.e. the fourth configuration d, a, a also appears, from time to time).
The problem is that the nondeterministic definition can only express whether
or not it is possible to have a particular outcome, but cannot express whether
one outcome is more likely than the other.

7.2.3 Probabilistic dining cryptographers

The probabilistic version of the protocol can be obtained from the nondetermin-
istic one by attaching probabilities to the coins. We wish to remark that this
is the essential change with respect to [SS96, RS01]: we faithfully model the
random mechanisms of the protocol as probabilistic, rather than approximate
them as nondeterministic.

Concerning the choices of the users (represented in this example as the choice
of the master), those are in a sense independent from the protocol, and can be
either nondeterministic, or probabilistic, or both.

We use the probabilistic π-calculus (πp) introduced in [HP00, PH05a]. The
essential difference with respect to the π-calculus is the presence of a probabilistic
choice operator of the form

∑

i

piαi.Pi

where the pi’s represents probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi =
1, and the αi’s are non-output prefixes, i.e. either input or silent prefixes.
(Actually, for the purpose of this work, only silent prefixes are used.) The
detailed presentation of this calculus is in [BCPP08].

With respect to the program presented in Section 7.2.1, the definition of the
Coini’s must be modified as follows (ph and pt represent the probabilities of the
outcomes of the coin tossing):

Coini = phτ .Head i + ptτ .Tail i
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It is clear that the system obtained in this way combines probabilistic and non-
deterministic behavior, not only because the master may be nondeterministic,
but also because the various components of the system and their internal in-
teractions can follow different scheduling policies, selected nondeterministically
(although it can easily be seen that this latter form of nondeterminism is not
relevant for this particular protocol).
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Chapter 8

Toward an automated
probabilistic anonymity
checker

After having introduced the anonymity problem we consider, we explain in this
chapter the details about its probabilistic analysis.

In Section 8.1 we briefly recall some basic notions about probabilistic automata
and the probability of events (a more formal and detailed presentation can be
found in [BCPP08]).

In Section 8.2 we illustrate the notions and assumptions which are at the basis
of our notion of anonymity.

In Section 8.3 we present the various models of probabilistic anonymous execu-
tions.

In Section 8.4, we expose several considerations toward the implementation of
an automatic probabilistic protocol and process checker.
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8.1 Probabilistic automata

The models of computation combining probabilistic and nondeterministic be-
havior are by now well established in literature, see for instance the probabilistic
automata of [SL95], and have been provided with solid mathematical founda-
tions and sophisticated tools for verification.

By unfolding a probabilistic automaton we obtain a computation tree, whose
nodes, in general, offer both probabilistic and nondeterministic choices. In the
probabilistic choices, the arcs are weighted with probabilities. The canonical
way of defining the probabilistic notions relevant for our work is the following:
First we solve the nondeterminism, i.e. we choose a function ς (called scheduler)
which, for each nondeterministic choice in the computation tree, selects one
of the possible alternatives. After pruning the tree from all the non-selected
alternatives, we obtain a fully probabilistic tree. In such a tree, determined by
ς, an execution (or run) is a maximal path, and an event is a (measurable) set
of executions. In the finite case, we define the probability of an execution as the
product of all the weights in its arcs, and the probability of an event e, pς(e),
as the sum of the probabilities of the executions in e. For the infinite case, and
for more details about the above notions, we refer to [BCPP08].

It should be clear, from the description above, that in general the probability
of an event depends on the chosen scheduler. For example, in Figure 8.1 the
tree P represents a computation tree. From its root there is a nondeterministic
choice between two transition groups (aka steps), which represent probabilistic
choices. We adopt the convention of identifying a step by drawing a curve
across its transitions. Analogously, there is a nondeterministic choice between
two steps in the fourth node at the level immediately below the root. The trees
Q, R and S represent the result of pruning P under different schedulers. Let us
denote these schedulers by ς, ϑ and ϕ respectively. The probability of the event
b, under each of these schedulers, is: pς(b) = 1/3+1/9 = 4/9, pϑ(b) = 1/2, and
pϕ(b) = 0.

8.2 Our framework for probabilistic anonymity

In this section we illustrate the notions and assumptions which constitute the
basis for our definition of probabilistic anonymity.

The system in which the anonymous users live and operate is modeled as a
probabilistic automaton M [SL95], see [BCPP08]. Like in Section 7.1, we classify
the actions of M into the three sets A, B and C, which are determined by the
anonymous users, the specific kind of action on which we want anonymity, and
the capabilities of the observer:
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Figure 8.1: A computation tree P and the fully probabilistic trees which derive
from it under different schedulers. The irrelevant labels are omitted, and the
probability is omitted when it is 1.
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• The set of the anonymous actions:

A = {a(i) | i ∈ I}

where I is the set of the identities of the anonymous users and a is an
injective functions from I to the set of actions which we call abstract
action.

• The set of the visible actions, B. We will use b, b′, . . . to denote the
elements of this set.

• The set of the hidden actions C.

In the following we assume that the actions in C are already restricted in the
system, so we do not need to mention them explicitly.

It should be remarked that the term “visible” here is relative: we assume that
the observer can see only B and a, but, to the purpose of defining anonymity
and checking whether a system is anonymous, we need to leave the actions a(i)’s
visible (i.e. not restricted) as well.

Differently from [SS96, RS01], we do not assume that the observables are nec-
essarily the traces of visible actions. A trace, indeed, contains not only the
information on which actions have been executed, but also in what order they
have been executed. Now, the observer may or may not be able to detect the
order, and this is important because the order may give information on the
culprit. Another reason for considering such abstraction is to make the analysis
simpler. If we know, for instance, that the order of the visible actions does not
give any information about the culprit (for instance because we know that the
interleaving choices do not depend on the choice of the culprit) then we can
forget about it.

In general, we abstract from the (visible) traces by assuming a partition O on
them. The observables of the system are then the elements of this partition,
denoted by o, o′, . . .. Note that each of them is a set of traces.

For instance, in the dining cryptographers, the visible traces are the sequences
of the form

out ixi.outjxj .outkxk

for {i, j, k} = {0, 1, 2}, and xi, xj , xk ∈ {agree, disagree}. If we wish to abstract
from the order, we can stipulate that all the sequences with the same xi, xj , xk

are in the same equivalence class, and that these classes constitute the observ-
ables. In the following we will use the notation 〈x0, x1, x2〉 to represent such a
class. So for instance 〈d , a, a〉, (where we have abbreviated agree by a and dis-
agree by d for simplicity), represents all the traces in which the cryptographer
0 announces disagree, and the other two announce agree.

Another difference from [SS96, RS01] is that we consider the possibility that the
observer can somehow affect the scheduler. Thus, we take the set of possible
schedulers to be a parameter of the notion of anonymity. Another reason for
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considering a restricted class of schedulers is to make the check of the anonymity
condition more efficient. If we know, for instance, that the interleavings do not
give any information about the culprit then we can fix one particular interleav-
ing, thus reducing the number of schedulers to be taken into account.

Definition 8.2.1

An anonymity system is a tuple (M, I, a,O,Z , p), where M is a probabilistic
automaton, I is the set of anonymous users, a is the abstract anonymous action,
O is a set of observables, Z is a set of schedulers for M , and for every ς ∈ Z , pς

is a probability measure on the event space generated by the execution tree of
M under ς (denoted by etree(M, ς)), i.e. the σ–field generated by the cones in
etree(M, ς) (cfr. [BCPP08]).

Note that, as expressed by the above definition, given a scheduler ς, an event
is a set of executions in etree(M, ς). We introduce the following notation to
represent the events of interest:

• a(i) : all the executions in etree(M, ς) containing the action a(i)

• a : all the executions in etree(M, ς) containing an action a(i) for an arbi-
trary i

• o : all the executions in etree(M, ς) containing an element of o.

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and
the complement of events, respectively. By definition of a, we have

a =
⋃

i∈I

a(i)

Furthermore, by definition of O, all the observables are pairwise disjoint:

∀ς ∈ Z . ∀o1, o2 ∈ O. o1 6= o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2) (8.1)

and they cover all possible traces:

∀ς ∈ Z . pς(
⋃

o∈O

o) = 1 (8.2)

In this work we assume there is at most one culprit per run. In other words, we
assume that all the a(i)’s are pairwise disjoint. This assumption is fundamental
for the notion of anonymity we propose, and for the results we obtain.

Assumption 8.2.1 (At most one culprit)

∀ς ∈ Z . ∀i, j ∈ I. i 6= j ⇒ pς(a(i) ∪ a(j)) = pς(a(i)) + pς(a(j))
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8.3 The various notions of anonymity

8.3.1 Probabilistic anonymity for users with probabilistic
and nondeterministic behavior

In this section we develop a notion of anonymity for the general case in which
also the users, besides the protocol, combine probabilistic and nondeterministic
behavior.

Example : An example of such kind of behavior in the dining cryptographers is the
following: assume the master may have a different attitude depending on the group of
cryptographers that meet for dinner. Say that there are two groups, and which of them
will meet for dinner is decided nondeterministically. The master will select the payer
with probabilities p0, . . . , p3 in the case of the first group, and q0, . . . , q3 in the case
of the second. Note that this situation may be quite common in practice: a certain
protocol may be used by different groups of users, which may act probabilistically, but
whose probability distribution may vary from one group to the other.

Such a master can be represented in πp as follows:

Master = τ.Master1 + τ.Master2

Master1 =
P2

i=0 pi τ . mip . mi⊕1n . mi⊕2n . 0

+ p3τ.m0n . m1n . m2n . 0

Master2 =
P2

i=0 qi τ . mip . mi⊕1n . mi⊕2n . 0

+ q3τ.m0n . m1n . m2n . 0

Note that the choice in Master is nondeterministic while the choices in Master1 and
Master2 are probabilistic.

The notion of anonymity must take into account the probabilities of the a(i)’s.
When we observe a certain event o, the probability of o having been induced by
a(i) must be the same as the probability of o having been induced by a(j) for
any other j ∈ I. To formalize this notion, we need the concept of conditional
probability. Recall that, given two events x and y with p(y) > 0, the conditional
probability of x given y, denoted by p(x | y), is equal to the probability of x and
y, divided by the probability of y:

p(x | y) =
p(x ∩ y)

p(y)

We are now ready to propose our notion of anonymity:
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Definition 8.3.1

A system (M, I, a,O,Z , p) is anonymous if

∀ς, ϑ ∈ Z . ∀i, j ∈ I. ∀o ∈ O.

(pς(a(i)) > 0 ∧ pϑ(a(j)) > 0) ⇒ pς(o | a(i)) = pϑ(o | a(j))

Example : Consider the system in Example 8.3.1. Assume that the coins are totally
fair. For simplicity, let us fix the order of execution of the various components (inter-
leaving)1, so that the only nondeterministic choice is the choice of the master. Hence
we have Z = {ς, ϑ} where ς and ϑ selects Master1 and Master2 respectively. Assume
now that Master1 and Master2 select as the payers i ∈ I with probability pi and j ∈ I
with probability qj , respectively. The possible observable events, in both cases, are
o0 = 〈a, a, d〉, o1 = 〈a, d, a〉, o2 = 〈d, a, a〉, and o3 = 〈d, d, d〉. These are the results in
case one of the cryptographers is the payer. The case in which none of them is the
payer gives the 4 configurations with an even number of d, which we will indicate by
o4, . . . , o7. Consider now the possible outcomes of the coins. These are 8: 〈h, h, h〉,
〈h, h, t〉, . . . 〈t, t, t〉. It is easy to see that, independently from which cryptographer is
the payer, each of the above observables is produced by exactly two configurations.
If the coins are fair, then, independently from the probability of the selected cryp-
tographer, each observable o corresponds to a cone in the tree (rooted in the node
immediately after the selection of the cryptographer) which has probabilistic measure
1/4 (cfr Figure 8.2). Therefore pς(o | a(i)) = 1/4 = pϑ(o | a(j)). Hence Definition 8.3.1
is satisfied.

The behavior of a master which combines nondeterministic and probabilistic
behavior can be much more complicated than the one illustrated above. However
it is easy to see, by following the reasoning in the example above, that as long
as the master does not influence the behavior of the coins, and these are fair,
the conditional probability of each observable for a given payer is 1/4.

Proposition 8.3.1

Consider the dining cryptographers with arbitrary master (possibly combining
nondeterminism and probability). If the coins are fair under every scheduler,
then the system is probabilistically anonymous.

The proof of the above proposition is a straightforward generalization of the
Example 8.3.1.

Example : Consider again the system in Example 8.3.1, but assume now that the
coins are biased. Say, Coin0 and Coin1 give head with probability 9/10 and tail with
probability 1/10, and vice-versa Coin2 gives head with probability 1/10 and tail with
probability 9/10. (This situation is analogous to that illustrated in Example 7.2.2.)
Let us consider the observable o0 = 〈a, a, d〉. In case Crypt1 is the payer, then the

1It is easy to see that, for this example, it does not matter how many and which interleav-
ings we consider.
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Figure 8.4: Basic transformation step for the proof of Theorem 8.3.1.

of an observable o, given a(i), is the same as the probability of o given a under
every other scheduler.

Theorem 8.3.2

A system (M, I, a,O,Z , p) is anonymous iff

∀ς, ϑ ∈ Z . ∀i ∈ I. ∀o ∈ O. (pς(a(i)) > 0 ∧ pϑ(a) > 0) ⇒ pς(o | a(i)) = pϑ(o | a)

Proof : If part) Let ς, ϑ ∈ Z and i, j ∈ I such that pς(a(i)) > 0 and pϑ(a(j)) > 0.
Since pϑ(a(j)) > 0 implies pϑ(a) > 0, by the hypothesis we have pς(o | a(i)) =
pϑ(o | a). Furthermore, by replacing in the hypothesis ς with ϑ and i with j we
have pϑ(o | a(j)) = pϑ(o | a).

Only if part) Let ς, ϑ ∈ Z and i ∈ I such that pς(a(i)) > 0 and pϑ(a) > 0.

pϑ(o ∩ a) = pϑ(o ∩
S

j∈I a(j))

= pϑ(
S

j∈I(o ∩ a(j)))

=
P

j∈I pϑ(o ∩ a(j)) (by Assumption 8.2.1)

=
P

pϑ(a(j))>0 pϑ(o ∩ a(j))

=
P

pϑ(a(j))>0 pϑ(o | a(j)) pϑ(a(j))

= pς(o | a(i))
P

pϑ(a(j))>0 pϑ(a(j)) (by Definition 8.3.1)

= pς(o | a(i)) pϑ(a)
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Hence pϑ(o | a) = pϑ(o ∩ a)/pϑ(a) = pς(o | a(i)).

8.3.2 Probabilistic Anonymity for nondeterministic users

The case in which the users are purely nondeterministic is characterized by the
fact that each scheduler determines completely whether an action of the form
a(i) takes place or not. Formally:

∀ς ∈ Z . ∀i ∈ I. pς(a) = 0 ∨ pς(a(i)) = 1 (8.3)

It is immediate to see that, in the case of nondeterministic users, the definition
of anonymity simplifies as follows:

Proposition 8.3.2

A system (M, I, a,O,Z , p) in which the choice of a(i) (for i ∈ I) is nondeter-
ministic in each run, is anonymous if

∀ς, ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

8.3.3 Probabilistic Anonymity for fully probabilistic sys-
tems

In this section we investigate how the removal of the nondeterminism influences
our definition of anonymity. We consider therefore purely probabilistic systems.
This will allow us also to compare our notion with other probabilistic proposals
in literature.

Since the system is totally probabilistic, the probability measures do not depend
on the choice of the scheduler. To be more precise, there is only one scheduler.
So we can eliminate the component Z from the tuple and we can write p(x)
instead of pς(x). The definition of probabilistic anonymity given in previous
section (cfr. Definition 8.3.1) simplifies into the following:

Remark 8.3.1

A fully probabilistic system (M, I, a,O, p) is anonymous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0) ⇒ p(o | a(i)) = p(o | a(j))

Furthermore, the alternative characterization in Theorem 8.3.2 reduces to the
following:
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Remark 8.3.2

A fully probabilistic system (M, I, a,O, p) is anonymous iff

∀i ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a) > 0) ⇒ p(o | a(i)) = p(o | a)

In the fully probabilistic case there are two other notions of anonymity that seem
rather natural. The first is based on the intuition that a system is anonymous
if the observations do not change the probability of a(i): we may know the
probability of a(i) by some means external to the system, but the protocol
should not increase our knowledge about it. This is already known in literature
as conditional anonymity (cfr. [HO03]). The second is based on the (similar)
idea that observing o rather than o′ should not change our knowledge of the
probability of a(i).

It is possible to prove that these two notions are equivalent. Furthermore, if
we assume that the action a (i.e. the existence of a culprit) is totally visible
to the observer, then we can prove that these notions are equivalent to ours.
The condition “a is totally visible” means that every observable o indicates
unambiguously whether a has taken place or not, i.e. it either implies a, or it
implies ¬a. In set-theoretic terms this means that either o is contained in a or
in the complement of a. Formally:

Assumption 8.3.1 (The existence of a culprit is observable)

∀ς ∈ Z . ∀o ∈ O. pς(o ∩ a) = pς(o) ∨ pς(o ∩ ¬a) = pς(o)

We prove now our claims of equivalence.

Proposition 8.3.3

Under Assumption 8.3.1, the following conditions are equivalent to each other
and to our condition of anonymity (for the fully probabilistic case, cfr. Re-
mark 8.3.1).

(i) ∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i))/p(a)
(ii) ∀i ∈ I. ∀o, o′ ∈ O. (p(o∩a) > 0∧p(o′∩a) > 0) ⇒ p(a(i) | o) = p(a(i) | o′).

Proof : The equivalence of (i) and the condition in Remark 8.3.2 is easy to prove,
and we leave it as an exercise for the reader. As for the equivalence of (i) and (ii), we
have:

(i) ⇒ (ii)) Let i ∈ I, and o, o′ ∈ O such that p(o ∩ a) > 0 and p(o′ ∩ a) > 0. By (i)
we have p(a(i) | o) = p(a(i))/p(a) = p(a(i) | o′).
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(ii) ⇒ (i)) Let i ∈ I and o ∈ O such that p(o ∩ a) > 0. We have

p(a(i)) = p(a(i) ∩
S

o′∈O o′) (by (8.2)

= p(
S

o′∈O(a(i) ∩ o′))

=
P

o′∈O p(a(i) ∩ o′) (by (8.1)

=
P

p(o′∩a)>0 p(a(i) ∩ o′)

=
P

p(o′∩a)>0 p(a(i) | o′) p(o′)

= p(a(i) | o)
P

p(o′∩a)>0 p(o′) (by (ii))

= p(a(i) | o) p(a) (by (8.2) and Assumption 8.3.1)

Proposition 8.3.3 can be reformulated as a general property of probabilistic
spaces, independent from the notion of anonymity. Similar results have been
presented in [GH03] and in [GvdLR97] (for the case in which a always occurs,
i.e. p(a) = 1).

Since the notion of conditional anonymity (as well as the other notion in Propo-
sition 8.3.3) is equivalent to ours, we have that also these notions are indepen-
dent from the probability of the users. On the other hand, one has to keep
in mind that he correspondence only holds under the Assumptions 8.2.1 (only
one culprit) and 8.3.1 (the existence of a culprit is observable). Without As-
sumption 8.3.1 conditional anonymity is not independent from the probabilities
of the users. Without Assumption 8.2.1 neither conditional anonymity nor our
notion are.

Example : Figure 8.5 shows an example in which Assumption 8.3.1 does not hold,
and conditional anonymity depends on the probability of the users. In fact the first
tree satisfies conditional anonymity, while the second does not. (They both satisfy our
notion of anonymity.)

Example : Figure 8.6 shows an example in which Assumption 8.2.1 does not hold, and
both conditional anonymity and our notion of anonymity depend on the probability
of the users. In fact the first tree satisfies both kinds of anonymity, while the second
does not.

Conditional anonymity and nondeterminism

It is not clear whether the characterizations expressed in Proposition 8.3.3 can
be generalized to the case of the users with combined nondeterministic and
probabilistic behavior. The “naive” extensions obtained by introducing the
scheduler in the formulae would not work. Let us consider the first characteri-
zation, i.e. conditional anonymity (for the other we would follow an analogous
reasoning):

∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i))/p(a)
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for i = 1, and o2 = 〈a, a, d〉 for i = 2. Then we would have pςi(oj ∩ a) > 0 only if
j = i, and pςi(a(i) | oi) = 1 = pςi(a(i))/pςi(a). Hence the above condition would be
satisfied, but the system is not be anonymous at all: whenever we observe 〈d, a, a〉, for
instance, we are sure that Crypt0 is the payer.

8.4 Toward an automatic probabilistic checker

We have formulated the notion of anonymity in terms of observables for pro-
cesses in the probabilistic π-calculus, whose semantics is based on the proba-
bilistic automata of [SL95]. This opens the way to the automatic verification of
the property. We are currently developing a model checker for the probabilistic
π-calculus. In order to achieve this goal, several practical issues have to be
fixed.

An automatic checker for our probabilistic notion of anonymity needs a full
evaluation of the execution. This differs from the model checkers, where the
process is checked against a single property. In our case, we want to have
a full review of the various outcomes of the protocol and relate them to the
inputs.

The natural language for an implementation is the asynchronous version of the
π-calculus. In the asynchronous variant of the π-calculus, only internal (blind)
choice are allowed and message sending is limited.

For a majority of applications, the asynchronous π-calculus is the natural lan-
guage for expressing a protocol or an algorithm, since most real-life communica-
tions and modern electronic networks use asynchronous communication medi-
ums. Furthermore, the asynchronous constructs of the πa-calculus can be argued
to represent faithfully an asynchronous communication medium, as studied in
the first part of this document.

For instance, the implementation of the the dining cryptographers proposed
in this work is purely asynchronous. However, asynchronous communications
imply algorithmic limitations, such as for implementing a distributed consensus,
as studied in [Pal97]. Adding probabilities to the language helps resolving these
limitations, and restoring some determinism, as studied in the third part of the
document.

A naive evaluation of the probabilistic executions can be very inefficient. When
communicating asynchronously, most communications happen without a partic-
ular order. This generates interleavings, where several sequence of actions can
be observed in any order, but the overall result is the same. When evaluating
this kind of executions, it is much more efficient to constrain the evaluation to
only one of these possible interleavings. This leads to the definition of bunched
executions described in the third part of the document.

Such evaluations have been proved to maintain all relevant informations on
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the evaluated process. The may testing semantics is equivalent on bunched
and original executions. Furthermore, two bisimilar processes for the bunched
executions are bisimilar for the original executions.

We use this optimized evaluator to compute the outcome of a probabilistic pro-
tocol or process. In the case of the dining cryptographers, the optimization
induced by the bunched executions is not really relevant, but for more compli-
cated protocols, it greatly reduces the search space.

We plan on preparing a generic bunched evaluator that could be used in various
common and uncommon situations, in order to contribute to the automatization
of probabilistic protocol and process checkers.



Conclusion

In this document, I have presented the various work achieved during my thesis.
Although the various results presented are different, they all shared a common
interest, which is the study of asynchronous and probabilistic formal languages
in the context of security analysis.

The work presented in the first part makes a connection between the algebraic
definitions of asynchronous communications and the operational asynchronous
mediums. These results give ground for understanding the relations between
the abstract algebraic properties of the asynchronous communications and the
concrete implementation of the communication mediums.

The second part studies the algebraic notion of unordered communications.
In particular, it shows how an evaluation of an asynchronous process can be
greatly reduced by reducing the executed transitions, taking into account the
redundancy of the various unordered communications, by forcing deterministic
computations to happen sequentially.

Among the intuitions that arise from the second part, an important one is
that the non-deterministic computations in the asynchronous formal language
are in fact internal choices of the agents. Hence, when adding probabilities to
these choices, it is possible to have a deterministic language. This is purpose of
the third part, which defines a probabilistic concurrent language with internal
probabilistic choices.

This language is proved to be fully deterministic, and a denotational semantics is
proposed for giving a meaning to the programs of the language. This semantics
is correct and fully abstract with regard to the operational semantics of the
language.

Eventually, the fourth part presents an application of a probabilistic and non-
deterministic language to the security analysis of the dining cryptographers
problem.

Further work on these topics include the implementation of a probabilistic se-
curity checker in order to automatize the methods used in the fourth part. This
security analysis, based on the algebraic properties of the communications, will
be relevant for buffered asynchronous communications, according to the results
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in the first part, and greatly optimized, according to the results in the second
part.
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