
HAL Id: tel-00780618
https://pastel.hal.science/tel-00780618v1

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions à l’algorithmique détendue et à la
résolution des systèmes polynomiaux

Romain Lebreton

To cite this version:
Romain Lebreton. Contributions à l’algorithmique détendue et à la résolution des systèmes polyno-
miaux. Calcul formel [cs.SC]. Ecole Polytechnique X, 2012. Français. �NNT : �. �tel-00780618�

https://pastel.hal.science/tel-00780618v1
https://hal.archives-ouvertes.fr

Thèse
présentée pour obtenir le grade de

Docteur de l’École polytechnique

Spécialité :
Mathématiques – Informatique

par
Romain Lebreton

Contributions à l’algorithmique détendue et
à la résolution des systèmes polynomiaux

Soutenue le 11 décembre 2012 devant le jury composé de :

M. Richard Brent Australian National University Rapporteur
M. Marc Giusti CNRS & École polytechnique Directeur
M. Bernard Mourrain Inria Sophia Antipolis - Méditerranée Rapporteur
M. Jean-Michel Muller École Normale Supérieure de Lyon Examinateur
M. Éric Schost University of Western Ontario Directeur
Mme Annick Valibouze Université Paris 6 Examinateur
M. Kazuhiro Yokoyama University of Rikkyo Rapporteur
M. Paul Zimmermann Inria Nancy - Grand Est Examinateur

Remerciements

Ma première pensée va naturellement à mes deux directeurs de thèse MarcGiusti et
Éric Schost. Marc, merci pour tes leçons patientes de géométrie, pour ton soutien
tout au long de ces trois années et pour ton sens de l’humour pince-sans-rire. Faire
une thèse, c’est apprendre l’indépendance et je te sais gré de la liberté que tu m’as
laissée, à l’image de ta propre expérience de la thèse.

Les voyages forment la jeunesse, et mes nombreux séjours à London auprès d’Éric
furent à chaque occasion des catalyseurs de mes recherches. Éric, il faut dire que
je me retrouve dans ta façon d’appréhender la science, de toujours naviguer entre
pensée mathématique et expérimentation informatique sur un exemple « concret ».
Alors merci pour avoir su toujours trouver le temps, le bon éclairage sur nos ques-
tions, ainsi que les mots justes pour remotiver les troupes.

Je suis reconnaissant envers l’École polytechnique pour m’avoir hébergé au labo-
ratoire d’informatique LIX, m’avoir rémunéré via une bourse internationale Gaspard
Monge et également pour m’avoir permis de faire mon monitorat sur place. Cette
thèse a aussi en partie été soutenue par le projet MaGiX ANR-09-JCJC-0098-01
et l’allocation Digiteo 2009-36HD. Merci aussi à l’University of Western Ontario
pour son accueil et son financement de mes visites.

Je remercie vivement Richard Brent, Bernard Mourrain et Kazuhiro
Yokoyama d’avoir accepté d’être rapporteurs de cette thèse. Merci à Jean-Michel
Muller, Annick Valibouze et Paul Zimmermann pour leur présence dans le
jury. Merci aussi aux rapporteurs anonymes des articles écrits lors de cette thèse
qui ont contribué à l’amélioration de mes travaux.

Par ordre chronologique, je tiens à remercier les gens qui ont particulièrement
contribué à ce que je trouve ma voie. Je commence par Nicolas Tosel dont les
excellents cours de prépa et la dévotion à l’enseignement m’ont grandement aidé à
intégrer l’É.N.S. Ulm. Parce qu’il a été le premier à m’enseigner le Calcul Formel
lors de ma préparation à l’agrégation, je tiens à remercier Pierre-VincentKoseleff.
Une discipline qui mêle algèbre et informatique, je crois que je serais tombé dedans
tôt ou tard. Une partie de la révélation est venue d’un court entretien avec mon
tuteur en troisième année d’É.N.S. : Wendelin Werner. Lorsqu’il m’a expliqué
que son attrait pour les probabilités datait de sa jeunesse, il m’est apparu évident
que je ne pourrais faire de mathématiques sans informatique. L’année qui suivit,
fut marquée par Alin Bostan, Bruno Salvy et Frédéric Chyzak dont la passion
communicative pour le Calcul Formel allait de pair avec leur remarquable cours.
C’est ainsi que j’ai commencé ma thèse, voulant mieux comprendre la géométrie
algébrique qui m’avait tant intrigué à l’É.N.S., mais grâce au point de vue toujours
pragmatique du Calcul Formel.

3

Au sein du laboratoire d’informatique LIX, je me dois de commencer par Jérémy
Berthomieu avec qui j’ai passé le plus clair de mes trois années de thèse. Tu as
largement contribué à faire de notre bureau un lieu convivial. Avec ton âme de grand
sportif, mais non-pratiquant, tu resteras à mes yeux un Federer de l’orthographe
et du LATEX. Merci à Grégoire Lecerf pour nos discussions scientifiques et à Joris
van der Hoeven pour ton fourmillement d’idées dépassant allègrement le cadre du
Calcul Formel (TEXMACS, utilisé pour écrire cette thèse, est un exemple parmi tant
d’autres). Une pensée à François Ollivier et à Jean Moulin-Ollagnier qui ont
accueilli deux squats dans leur bureau, et plus généralement à tous les gens que j’ai
rencontrés lors d’un passage, plus ou moins long, au LIX et avec qui j’ai échangé avec
plaisir : Antoine Colin, Philippe Trébuchet, Daouda N. Diatta, Denis Raux,
François Poulain, Miguel de Benito, Pierre Lairez et Olivier Schwander.
Merci à mes collègues d’enseignement, notamment Philippe Chassignet, Jean-
Christophe Filliâtre et Stéphane Lengrand.

Une pensée pour les autres galériens thésards de Calcul Formel Luca de Feo,
Jean-François Biasse, Marc Mezzarobba, Guillaume « Cointin », Alexandre
Benoit, Morgan Barbier, Guillaume Moroz, Adrien Poteaux : heureusement
qu’on n’est pas seul à ramer ! Un grand merci aux assistantes Corinne Poulain,
Sylvie Jabinet et Évelyne Rayssac ainsi qu’à James Regis et Elie Mabo du
service informatique pour le temps passé à m’aider. Je remercie aussi vivement les
Montpelliérains Laurent Imbert, Pascal Giorgi et Eleonora Guerrini qui m’ont
immédiatement intégré et soutenu pour ma fin de thèse.

Je n’oublie pas les gens de London : Javad Doliskani, Marc Moreno Maza,
Muhammad Chowdhury, Esmaeil Mehrabi, Livio Zerbini et Vadim Mazalov.
Et une pensée particulière pour Ephie Tsiapalis qui a été comme une mère pour
moi pendant les hivers canadiens.

À tous mes super-potes du Groupe de Travail « viens boire un p’tit coup à la
maison » de l’É.N.S., spéciale dédicace à Mathieu « shorty » Huruguen, Oolivier
Benoist, Thomouise Benoît-Haettel, Morgane (et Romain) Caribou et son
inénarrable P.-l.-P. Dublanchet sans oublier Pierre, Simon, Loïc, Michal, Nicolas,
Adeline, Damien, Yoann et David...

« Je sers la science et c’est ma joie » dirait le disciple dans Léonard, mais
heureusement pas la seule joie. Je remercie tous mes partenaires de football pour
les bons moments passés ensemble.

Un grand merci à ma famille qu’elle soit de Saint-Raphaël, de Lyon, de Brest, de
Villejuif, de Gauré ou d’ailleurs, pour leur soutien inconditionnel et leur tolérance
à l’Alzheimer des anniversaires dont je semble souffrir.

Et la meilleure pour la fin : merci Isabelle. À deux, c’est toujours mieux !

4 Remerciements

Table des matières

Remerciements . 3

Introduction . 9

1 Algorithmes détendus pour la multiplication 12
2 Nombres p-adiques récursifs . 13
3 Algèbre linéaire sur les p-adiques . 14
4 Séries solutions d’équations (q)-différentielles 16
5 Remontée détendue pour les systèmes algébriques 19
6 Remontée détendue d’ensembles triangulaires 20
7 Algorithmique de l’algèbre de décomposition universelle 22
8 Remontée d’invariants fondamentaux . 24

I On-line algorithms . 25

1 Relaxed algorithms for multiplication . 27

1.1 Computing with p-adics . 27
1.1.1 Basic definitions . 27
1.1.2 Basic operations . 28
1.1.3 On-line and relaxed algorithms . 29

1.2 Off-line multiplication . 32
1.2.1 Plain multiplication of polynomials . 32
1.2.2 Middle product of polynomials . 34
1.2.3 Short product of polynomials . 36
1.2.4 The situation on integers . 37
1.2.5 The situation on p-adics . 38

1.3 Relaxed algorithms for multiplication . 38
1.3.1 Complexity preliminaries . 40
1.3.2 Semi-relaxed multiplication . 43
1.3.3 Semi-relaxed multiplication with middle product 46
1.3.4 Relaxed multiplication . 49
1.3.5 Relaxed multiplication with middle and short products 51
1.3.6 Block variant . 53

1.4 Implementation and timings . 54

2 Recursive p-adics . 57

2.1 Straight-line programs . 57
2.2 Recursive p-adics . 58

5

2.3 Shifted algorithms . 62

II Lifting of linear equations . 69

3 Linear algebra over p-adics . 71

3.1 Overview . 71
3.2 Structured matrices . 77
3.3 Solving linear systems . 78

3.3.1 Dixon’s and Moenck-Carter’s algorithms 78
3.3.2 The on-line point of view on Dixon’s algorithm 80
3.3.3 On-line solving of p-adic linear systems 82

3.4 Implementation and Timings . 84
Acknowledgments . 85

4 Power series solutions of (q)-differential equations 87

4.1 Introduction . 87
4.2 Divide-and-Conquer . 92
4.3 Newton Iteration . 96

4.3.1 Gauge Transformation . 96
4.3.2 Polynomial Coefficients . 97
4.3.3 Computing the Associated Equation . 98
4.3.4 Solving the Associated Equation . 99

4.4 Implementation . 102

III Algebraic lifting . 105

5 Relaxed p-adic Hensel lifting for algebraic systems 107

5.1 Univariate root lifting . 107
5.1.1 Dense polynomials . 108
5.1.2 Polynomials as straight-line programs 109

5.2 Multivariate root lifting . 112
5.2.1 Dense algebraic systems . 112
5.2.2 Algebraic systems as s.l.p.’s . 114

5.3 Implementation and Timings . 115
Acknowledgments . 116

6 Relaxed lifting of triangular sets . 117

6.1 Introduction . 117
6.1.1 Notations . 117
6.1.2 Motivations . 119
6.1.3 Results . 119

6.2 Quotient and remainder modulo a triangular set 121
6.3 Overview of off-line lifting algorithms . 127

6.3.1 Hensel-Newton local lifting of a root . 128

6 Table des matières

6.3.2 Hensel-Newton global lifting of univariate representation 128
6.3.3 Hensel-Newton global lifting of triangular sets 129

6.4 Relaxed lifting of triangular sets . 131
6.4.1 Using the quotient matrix . 131
6.4.2 By-passing the whole quotient matrix 135

6.5 Implementation in Mathemagix . 140
6.5.1 Benchmarks . 141
6.5.2 Conclusion . 142

IV A special algebraic system . 143

7 Algorithms for the universal decomposition algebra 145

7.1 Introduction . 145
7.2 Preliminaries . 149

7.2.1 The Newton representation . 149
7.2.2 Univariate representations . 150

7.3 Newton sums techniques . 150
7.4 Resultant techniques . 154

7.4.1 General algorithms . 154
7.4.2 The case of divided differences . 157

7.5 Implementation and timings . 161

Annexe A Lifting of fundamental invariants 163

A.1 Basic definitions . 163
A.2 Main result . 164

Annexe B Introduction (translated into English) 167

B.1 Relaxed algorithms for multiplication . 170
B.2 Recursive p-adics . 171
B.3 Linear algebra over p-adics . 171
B.4 Power series solutions of (q)-differential equations 173
B.5 Relaxed p-adic Hensel lifting for algebraic systems 176
B.6 Relaxed lifting of triangular sets . 177
B.7 Algorithms for the universal decomposition algebra 179
B.8 Lifting of fundamental invariants . 181

Bibliographie . 183

Table des matières 7

Introduction

An English version of this introduction can be found in Appendix.

De nos jours, la puissance croissante des moyens de calcul est mise à profit,
entre autres, pour améliorer la précision de solutions existantes à certains problèmes
ou pour traiter des défis avec des entrées plus conséquentes. Cependant, il est fré-
quent en Informatique que le temps de calcul d’un algorithme augmente bien plus
rapidement que la précision voulue pour les solutions. Une stratégie efficace pour
contrer cet effet négatif consiste à découper un gros problème en de multiples petits
problèmes, de les résoudre puis reconstruire la solution du problème initial.

En Calcul Formel, le théorème des restes chinois permet un tel découpage. Divi-
sons un problème en plusieurs problèmes similaires modulo des entiers n1, 	 , nr

premiers entre eux. Alors le théorème des restes chinois permet de retrouver la
solution du problème initial à partir des solutions des bouts de problèmes. Ce schéma
de calcul, quand il fait sens, permet de calculer en temps proportionnel à la précision
plus une reconstruction multi-modulaire.

Les techniques multi-modulaires peuvent être utilisées de concert avec une
remontée p-adique. Prenons l’un de ces éléments premiers entre eux, par exemple
n1, de la forme n1= pℓ. Réduisons la taille du problème en ne le résolvant que modulo
p. On appelle remontée p-adique la reconstruction de la solution modulo pℓ à partir
de celle modulo p. Ainsi, la résolution d’un problème modulo pℓ se réduit à la résolu-
tion d’un petit problème et à une remontée p-adique. Dans la mesure où la remontée
peut être plus facile à calculer que la résolution directe du problème complet, l’uti-
lisation d’une remontée p-adique peut réduire considérablement le temps de calcul.

Cette thèse est en majeure partie dédiée au calcul rapide de remontée p-adique
par un type d’algorithmes récent, les algorithmes détendus.

∗ ∗ ∗

Mon travail se situe dans la lignée de la série d’articles sur les algorithmes
détendus initiés par van der Hoeven [Hoe97, Hoe02, Hoe03, Hoe07, Hoe09] pour
les séries formelles et adaptés par Berthomieu, Lecerf et van der Hoeven [BHL11]
au cas des anneaux p-adiques généraux. Un p-adique a est une suite infinie de
coefficients (ai)i∈N que l’on écrit a7 ∑

i∈N
ai p

i.
Les algorithmes détendus sont un cas particulier d’algorithmes en-ligne. Les

algorithmes en-ligne furent créés par Hennie [Hen66] dans le modèle de Turing. Un
algorithme en-ligne qui prend en entrée des p-adiques est un algorithme qui lit les
coefficients du p-adique un à un, et produit le n-ième coefficient de la sortie avant
de lire le (n+1)-ième coefficient de l’entrée.

9

Par exemple, la multiplication de deux p-adiques par un algorithme en-ligne
prend, à première vue, un temps quadratique en la précision. Cependant il existe
un algorithme de multiplication en-ligne quasi-optimal que l’on peut trouver dans
[FS74, Sch97, Hoe97].

Le principal avantage des algorithmes en-ligne est qu’ils permettent la remontée
de p-adiques récursifs . Un p-adique récursif y est un p-adique qui vérifie y =Φ(y)
où Φ est un opérateur tel que le n-ième coefficient du p-adique Φ(y) ne dépend pas
des coefficients d’indice supérieur ou égal à n. Par conséquent, y peut être calculé
récursivement à partir de la donnée de y0 et de Φ.

Dans les articles [Wat89, Hoe02] se trouve un algorithme qui calcule y à partir de
son équation de point fixe y=Φ(y). Un aspect fondamental de cet algorithme est que
son coût est celui de l’évaluation de Φ par un algorithme détendu. En utilisant l’algo-
rithme de multiplication en-ligne rapide, l’article [Hoe97] obtient un cadre de travail
efficace pour calculer avec les p-adiques récursifs. Comme van der Hoeven n’était
apparemment pas au courant des travaux antérieurs sur les algorithmes en-ligne,
il nomma son algorithme « multiplication détendue » et les algorithmes suivants
furent appelés algorithmes détendus. Ainsi, on peut rétrospectivement définir un
algorithme détendu comme un algorithme en-ligne rapide. Les algorithmes détendus
sont aussi liés aux algorithmes paresseux que l’on peut voir comme des algorithmes
en-ligne qui minimisent le coût de chaque étape. En résumé, les algorithmes détendus
et paresseux sont deux cas d’algorithmes en-ligne, le premier minimisant le coût
globalement et le second localement. À partir de maintenant, nous utiliserons ces
définitions et leurs adaptations aux anneaux p-adiques généraux [BHL11].

Une contribution principale de cette thèse est l’utilisation d’algorithmes
détendus dans le contexte de la résolution d’équations par remontée p-adique. Ce
contexte s’applique, entre autres, aux types de systèmes standards et importants
suivants : linéaire, algébrique et différentiel.

Les méthodes en-ligne pour la remontée de p-adiques récursifs doivent être com-
parées à l’autre grande famille d’algorithmes de résolution d’équations par remontée
p-adique. Quand un p-adique y est donné par une équation implicite f(y)=0 dont
la dérivée en y est inversible, l’opérateur de Newton-Hensel s’applique et calcule y

à toutes précisions à partir de son premier coefficient p-adique y0. Cet opérateur a
été introduit par Newton dans [New36] et a été adapté dans le contexte des entiers
p-adiques par Hensel [Hen18]. L’opérateur de Newton ne s’applique pas directement
à toutes les situations. Cependant, le principe sous-jacent peut souvent être adapté
(cf. Chapitres 4 et 6).

Comme nous le remarquerons en de nombreuses occasions dans ce mémoire, la
remontée par des algorithmes en-ligne nécessite, asymptotiquement en la précision,
moins de produits en-ligne que les algorithmes hors-ligne ne nécessitent de multipli-
cations hors-ligne. A contrario, une multiplication en-ligne est plus coûteuse qu’une
multiplication hors-ligne. Nous implémenterons donc la plupart de nos algorithmes
pour comparer les temps en pratique.

∗ ∗ ∗

10 Introduction

Cette thèse explore la remontée p-adique en-ligne de solutions de différents types
de systèmes d’équations. La partie I présente les algorithmes détendus et leur appli-
cation aux p-adiques récursifs. Le chapitre 1, après avoir donné la définition des
algorithmes en-ligne, rappelle plusieurs algorithmes en-ligne rapides de multiplica-
tion de p-adiques et en présente un nouveau. Ensuite, le chapitre 2 met en place le
cadre de travail dans lequel les p-adiques récursifs sont calculés par des algorithmes
en-ligne. Nous utiliserons ce cadre dans les parties II et III pour donner de nouveaux
algorithmes en-ligne pour la remontée p-adique de solutions de différents types de
systèmes d’équations.

La partie II est centrée sur les systèmes linéaires. Au cours du chapitre 3, nous
débutons par l’algèbre linéaire sur les p-adiques puis poursuivons par la résolution de
systèmes linéaires en prenant en compte le type de représentation des matrices. Puis
nous fournissons des algorithmes en-ligne pour calculer les séries formelles solutions
d’une large classe d’équations différentielles ou (q)-différentielles dans le chapitre 4.

La partie III est dédiée à la remontée p-adique de solutions de systèmes algé-
briques, par ordre croissant de généralité. Le chapitre 5 donne un algorithme en-
ligne pour la remontée p-adique de racines régulières de systèmes algébriques. Le
chapitre 6 traite quant à lui de la remontée de représentations à une variable et
d’ensembles triangulaires par des algorithmes en-ligne.

Enfin, la partie IV traite un cas particulier des systèmes algébriques, celui
de l’idéal des relations symétriques. Pour ce problème, avant de commencer la
remontée, le calcul d’une représentation à une variable à précision 0 pose déjà pro-
blème. Nous donnons dans le chapitre 7 un algorithme quasi-optimal pour calculer
une telle représentation à une variable et nous utilisons cette représentation pour
calculer efficacement dans l’algèbre quotient correspondante.

Dans l’appendice A, nous prouvons que la remontée des communément appelés
« invariants fondamentaux » modulo p vers les rationnels est triviale.

Contributions En résumé, les contributions originales de cette thèse sont :

1. un nouvel algorithme détendu de multiplication de p-adiques ;

2. une analyse de complexité précise de plusieurs algorithmes détendus de mul-
tiplication ;

3. un cadre exact pour calculer des p-adiques récursifs par des algorithmes en-
ligne ;

4. un solveur détendu de systèmes linéaires p-adiques ;

5. deux algorithmes de remontée de séries formelles solutions d’équations sin-
gulières aux (q)-différences : l’un est détendu, l’autre est hors-ligne et adapte
l’opérateur de Newton ;

6. un algorithme détendu pour la remontée de solutions p-adiques régulières de
systèmes algébriques ;

7. plus généralement, un algorithme détendu pour la remontée d’ensembles tri-
angulaires et de représentations à une variable ;

Introduction 11

8. une présentation des premiers algorithmes quasi-linéaires qui calculent une
représentation à une variable de l’algèbre de décomposition universelle sur les
corps finis d’une part et le polynôme caractéristique de ses éléments d’autre
part ;

9. enfin, une preuve qu’il suffit, pour calculer des invariants fondamentaux sur
les rationnels, de les calculer modulo p.

Publications Les contributions 3, 4 et 6 ont été publiées dans les actes de la
conférence ISSAC’12 avec J. Berthomieu [BL12]. Leur présentation dans ce mémoire
contient des détails, preuves et exemples additionnels. De plus, l’application du
solveur détendu de systèmes linéaires du point 4 aux matrices structurées est un
travail en cours, fait en commun avec É. Schost. La contribution du point 5 provient
d’un article écrit avec A. Bostan, M. Chowdhurry, B. Salvy et É. Schost qui est
publié dans les actes de ISSAC’12 [BCL+12]. Dernièrement, les contributions de
l’item 8 viennent d’un travail avec É. Schost et publié dans les actes de ISSAC’12
[LS12].

Prix Le prix du meilleur article étudiant m’a été décerné à la conférence ISSAC’12
pour l’article [LS12]. J’ai également reçu à cette conférence le prix du meilleur
poster décerné par le « Fachgruppe Computer Algebra » pour le poster [LMS12] en
collaboration avec E. Mehrabi et É. Schost.

1 Algorithmes détendus pour la multiplication

Cette section présente la notion d’algorithmes en-ligne et détendus sur des anneaux
p-adiques généraux. Soit R un anneau commutatif avec unité. Étant donné un idéal
principal propre (p) avec p ∈R, nous notons Rp la complétion de l’anneau R pour
la valuation p-adique. Les éléments a ∈ Rp sont appelés des p-adiques. Pour avoir
l’unicité de la décomposition des éléments de Rp, fixons un sous-ensemble M de R

tel que la projection π:M →R/(p) soit une bijection. Alors, tout p-adique a ∈Rp

s’écrit de manière unique a=
∑

i∈N
ai p

i avec ai∈M .
Deux exemples classiques sont l’anneau des séries formelles k[[X]] qui est le

complété de l’anneau des polynômes k[X] pour l’idéal (X), et l’anneau des entiers
p-adiques Zp qui est le complété de l’anneau des entiers Z pour l’idéal (p). Dans le
cas, R=Z, nous prendrons M = {−(p− 1)/2,	 , (p− 1)/2} si p� 2 et M = {0, 1} si
p=2. Pour R=k[X], nous prendrons M =k.

Nous sommes maintenant en mesure de donner la définition d’un algorithme
détendu telle qu’elle fut introduite par [Hen66].

Définition 1. ([Hen66, FS74]) Soit une machine de Turing qui calcule une fonc-
tion f sur des suites, avec f : Σ∗×Σ∗→∆∗ et Σ et ∆ des ensembles. On dit que la
machine calcule f en-ligne si, pour toutes suites a=a0a1	 an, b= b0b1	 bn en entrée
et pour des sorties correspondantes f(a, b) = c0c1	 cn, avec ai, bj ∈ Σ, ck ∈ ∆, la
machine écrit la sortie ck avant de lire soit aj, soit bj, avec 06 k < j6n.

La machine calcule f semi-en-ligne (par rapport au premier argument) si elle
écrit la sortie ck avant de lire aj pour 06 k < j 6 n. L’entrée a est appelée l’entrée
en-ligne et b l’entrée hors-ligne.

12 Introduction

Le reste de ce chapitre traite des algorithmes en-ligne rapides pour la multipli-
cation de p-adiques. Ces algorithmes sont faits d’appels à des multiplications hors-
ligne de p-adiques de précision finie. Nous rappelons d’abord l’état de l’art des
algorithmes de multiplication de polynômes et d’entiers qui sont respectivement les
séries formelles et les entiers p-adiques de précision finie. Nous regarderons aussi les
algorithmes existants pour les produits court et médian.

Avec ces notions à portée de main, nous faisons un rappel des algorithmes
détendus suivants de multiplication de p-adiques. Le premier algorithme en-ligne
quasi-optimal de multiplication fut présenté dans [FS74] pour les entiers, puis
dans [Sch97] pour les nombres réels et finalement dans [Hoe97] pour les séries for-
melles. Ce dernier algorithme fut adapté en un algorithme semi-détendu (ou semi-
en-ligne) dans [FS74, Hoe03]. Un première amélioration d’un facteur constant du
produit semi-détendu est présenté dans [Hoe03].

Notre contribution consiste en la présentation d’un nouvel algorithme détendu
utilisant des produits médians et courts qui améliore d’un facteur constant les algo-
rithmes précédents. De plus, nous analysons pour la première fois précisément le
nombre de multiplications de base que font ces algorithmes détendus. Pour finir,
nous donnons des temps de calcul qui confirment le bon comportement des algo-
rithmes détendus qui utilisent le produit médian.

À partir de maintenant, nous utiliserons les notations suivantes. Pour tout p-
adique a=

∑

i∈N
ai p

i, la longueur λ(a) de a est définie par λ(a)7 1+ sup (i∈N |ai�
0) si a� 0 et λ(0)=0. Le coût de la multiplication de deux p-adiques de longueur N
par un algorithme hors-ligne (resp. en-ligne) est noté I(N) (resp. R(N)) dans notre
modèle de complexité précisé en Section 1.1.2. Aussi nous noterons M(N) le nombre
d’opérations arithmétiques que nécessite la multiplication de deux polynômes de
longueur N .

2 Nombres p-adiques récursifs

L’étude des algorithmes en-ligne est motivée par l’implémentation pratique des p-
adiques récursifs à l’aide de ces algorithmes. Il fut pointé pour la première fois
dans [Wat89] que le calcul de séries formelles récursives est bien adapté à l’algorith-
mique paresseuse. Cela donna lieu à l’époque à un cadre très pratique pour calculer
avec les séries formelles récursives, mais pas encore très efficace.

Ce fait fut redécouvert par [Hoe02] plus généralement pour l’algorithmique en-
ligne. Mis bout à bout avec l’algorithme en-ligne rapide de multiplication de [Hoe97],
van der Hoeven obtint un cadre simple et efficace pour calculer avec les séries for-
melles récursives.

Un p-adique récursif y est un p-adique qui satisfait y=Φ(y) pour un opérateur
Φ qui vérifie l’égalité entre les n-ièmes coefficients p-adiques Φ(y)n = Φ(y + a pn)n
pour tout a∈Rp. Par conséquent, y est uniquement déterminé par la donnée de Φ
et de son premier coefficient y0.

Dans ce chapitre, nous rappelons la méthode de [Hoe02] qui, à partir d’un algo-
rithme en-ligne qui évalue la fonction Φ, calcule les coefficients du p-adique récursif
y l’un après l’autre. Cependant cette méthode ne marche pas toujours tel quel.

2 Nombres p-adiques récursifs 13

Notre contribution est d’identifier le problème sous-jacent et de donner une
condition suffisante pour que la méthode précédente marche. Nous n’avons pas
connaissance de traces de ce problème dans la littérature.

Nous introduisons la nouvelle notion d’algorithmes décalés dans l’optique de
résoudre ce problème. Un entier, appelé le décalage, est associé à toute entrée p-
adique d’un algorithme donné et mesure quels coefficients de ces entrées sont lus au
moment où l’algorithme produit le n-ième coefficient de la sortie. À titre d’exemple,
un algorithme est en-ligne si et seulement si son décalage est positif.

Finalement un algorithme est un algorithme décalé si son décalage est positif.
Nous avons alors à notre disposition les outils nécessaires pour énoncer la proposition
fondamentale suivante.

Proposition. Soient y un p-adique récursif et Ψ un algorithme décalé tels que
y=Ψ(y). Alors le p-adique y peut être calculé à précision N dans le temps nécessaire
pour évaluer Ψ en y à précision N.

Ainsi, le coût du calcul d’un p-adique récursif est le même que le coût de sa
vérification. La proposition précédente est la pierre angulaire des futures estimations
de complexité liées à des p-adiques récursifs. Elle sera utilisée dans les chapitres 3,
4, 5 et 6.

3 Algèbre linéaire sur les p-adiques

Dans ce chapitre, nous présentons un algorithme basé sur le cadre détendu pour
les p-adiques récursifs du chapitre 2 qui peut en principe être appliqué à n’importe
quel choix de représentation de matrices (dense, creuse, structurée, etc.). Nous
nous concentrons sur les deux cas particuliers importants que sont les matrices
denses et structurées et nous montrons comment notre algorithme peut améliorer
les techniques existantes.

Considérons un système linéaire de la forme A=B ·C, avec A et B connues et
C inconnue. La matrice A appartient à Mr×s(Rp) et la matrice B ∈Mr×r(Rp) est
inversible ; nous résolvons le système linéaire A=B ·C en C ∈Mr×s(Rp). Les cas
les plus intéressants sont le cas s = 1, qui revient à résoudre un système linéaire,
et s= r, qui contient le problème de l’inversion de B. Une application importante
de la résolution linéaire de systèmes à coefficients p-adiques est la résolution de
systèmes sur R (c’est-à-dire sur les entiers ou les polynômes par exemple) à l’aide
de techniques de remontée.

Nous noterons d7 max (λ(A), λ(B)) la longueur maximale des coefficients des
matrices A et B. Soit N la précision à laquelle nous voulons connaître C. Ainsi,
nous pourrons toujours supposer que d6N . Le cas particulier N = d correspond à
la résolution de systèmes linéaires p-adiques en propre, tandis que la résolution de
systèmes linéaires sur R nécessite souvent une précision N ≫ d. En effet, dans ce
cas et pour les séries formelles par exemple, les formules de Cramer indiquent que
les numérateurs et les dénominateurs de C ont une longueur O(r d), de telle sorte
que l’on doive prendre N de l’ordre de O(r d) pour permettre la reconstruction
rationnelle.

14 Introduction

Parmi les méthodes préexistantes, un premier algorithme dû à Dixon [Dix82]
calcule un à un les coefficients p-adiques de la solution C puis met à jour la matrice
A. De l’autre côté de l’étendue des techniques, on trouve l’itération de Newton
qui double la précision de la solution à chaque étape. L’algorithme de Moenck-
Carter [MC79] est une variante de l’algorithme de Dixon qui travaille avec des pd-
adiques au lieu de p-adiques. Finalement, l’algorithme de Storjohann de remontée à
grande précision [Sto03] peut être vu comme une version rapide de l’algorithme de
Moenck-Carter, adapté aux cas N ≫ d.

Nous contribuons avec un algorithme qui résout des systèmes linéaires par des
techniques détendues. Cette algorithme est obtenu en prouvant que les coefficients
de la solution C = B−1 · A sont des p-adiques récursifs. En d’autres termes, nous
montrons que C est le point fixe d’un certain opérateur décalé.

Si l’on prend par exemple s = 1, le calcul de C à précision N coûte avec notre
algorithme à peu près :

1. une inversion Γ7 B−1 modulo (p) ;

2. O(N) produits matrice-vecteur utilisant l’inverse Γ où chacune des entrées
du vecteur est aussi de longueur 1 ;

3. O(1) produits matrice-vecteur utilisant B, avec un vecteur dont les entrées
sont des p-adiques détendus.

Nous verrons que notre algorithme est un intermédiaire entre les algorithmes de
Dixon et de Moenck-Carter puisque que nous faisons la même peu coûteuse initiali-
sation modulo (p) que Dixon (cf. item 1) tout en gardant la même bonne complexité
asymptotique que Moenck-Carter (cf. item 3).

Le tableau suivant donne les complexités des algorithmes présentés pour le cas
des matrices denses, avec Rp=k[[X]], s=1 et les deux valeurs de N importantes en
pratique, c’est-à-dire N =d et N =r d. Il en ressort que pour la résolution à précision
N =d, notre algorithme est le plus rapide de ceux présentés. En précision N = r d, la
remontée à grande précision de Storjohann est meilleure (car elle est conçue pour de
telles précisions). Soit ω∈R>0 tel que l’on peut multiplier et inverser toute matrice
r× r en O(rω) opérations arithmétiques sur tout corps.

Algorithme N = d N = r d

Dixon Õ(rω+ r2 d2) Õ(r3 d2)

Moenck-Carter Õ(rω d) Õ(r3 d)

Itération de Newton Õ(rω d) Õ(rω+1 d)

Storjohann Õ(rω d) Õ(rω d)

Notre algorithme Õ(rω+ r2 d) Õ(r3 d)

Tableau. Coût simplifié de la résolution de A=B ·C pour des matrices denses sur k[[X]]
avec s=1.

Ensuite, nous analysons la situation pour les matrices structurées. Brièvement,
dans la représentation des matrices structurées, un entier α, nommé le rang (de
déplacement), est associé à toute matrice A ∈ Mr×r(Rp). Les deux principales
caractéristiques de la matrice structurée A est que A peut être stockée en mémoire
par une structure de donnée compacte en taille O(α r) et que le produit matrice-

3 Algèbre linéaire sur les p-adiques 15

vecteur A · V coûte O(α M(r)) pour tout vecteur V ∈Mr×1(Rp). Nous renvoyons
à [Pan01] pour une présentation complète.

Le tableau qui suit rappelle les résultats de complexité connus pour la résolution
de systèmes linéaires structurés et donne le temps de calcul de notre algorithme. Ici,
d′ désigne la longueur des entrées p-adiques de la structure de donnée compacte qui
sert à stocker A. La précision voulue est toujours notée N . Comme précédemment,
nous donnons des complexités simplifiées pour les séries formelles dans le cas s=1
et N = d′ ou N = r d′.

Algorithme N = d′ N = r d′

Dixon Õ
(

α2 r+α r d′2
)

Õ
(

α r2 d′2
)

Moenck-Carter Õ(α2 r d′) Õ(α r2 d′)

Itération de Newton Õ(α2 r d′) Õ(α2 r2 d′)

Notre algorithme Õ(α2 r+α r d′) Õ(α r2 d′)

Tableau. Coût simplifié de la résolution de A=B ·C pour des matrices structurées sur
k[[X]] avec s=1.

Notre algorithme est le plus rapide pour des matrices structurées dans les deux
cas N = d et N = r d. Remarquons que l’algorithme de Moenck-Carter est aussi
rapide dans le second cas.

Pour finir, nous implémentons ces algorithmes et comparons les temps de calcul
pour la représentation dense. Notre implémentation est disponible dans la biblio-
thèque C++ nommée algebramix incluse dansMathemagix [HLM+02]. Comme
application, nous résolvons des systèmes linéaires sur les entiers et nous nous com-
parons aux logiciels Linbox et IML. Nous montrons que nous améliorons les temps
pour les petites matrices à coefficients de grands entiers.

4 Séries solutions d’équations (q)-différentielles

Le but de ce chapitre est de fournir des algorithmes qui calculent les séries solutions
d’une large famille d’équations, ou de systèmes, différentiels ou aux q-différences.
Le nombre d’opérations arithmétiques est linéaire en la précision, à des facteurs
logarithmiques près.

Nous nous concentrons sur le cas particulier des équations linéaires, puisque
dans de nombreux cas une linéarisation est possible [BCO+07]. Quand l’ordre n

de l’équation est strictement plus grand que 1, nous utilisons la technique classique
qui transforme ces équations en des équations du premier ordre sur des vecteurs, et
nous nous intéresserons ainsi à des équations de la forme

xk δ(F)=AF +C, (1)

où A est une matrice n×n sur l’anneau des séries formelles k[[x]] (k étant le corps
des coefficients), C et l’inconnue F sont des vecteurs de taille n sur k[[x]] et δ désigne
temporairement l’opérateur différentiel d/dx. L’exposant k de (1) est un entier
positif qui joue un rôle clé dans cette équation.

16 Introduction

Par résoudre une telle équation, nous entendons calculer un vecteur F de séries
formelles tel que (1) soit vrai modulo xN. À cet effet, il est nécessaire de calculer F
que comme un polynôme de degré au plus N (quand k=0) ou N − 1 (autrement).
Réciproquement, quand (1) a une solution série, ses premiers N coefficients peuvent
être calculés en résolvant (1) modulo xN (quand k � 0) ou xN−1 (autrement).

Si k = 0 et le corps k a caractéristique 0, alors un théorème de Cauchy formel
s’applique et (1) a un unique vecteur de solutions séries pour une condition initiale
donnée. Dans ce cas, des algorithmes existent pour calculer les N premiers termes
de la solution en complexité quasi-linéaire : [BK78] pour les équations scalaires
d’ordre 1 ou 2, adapté dans [BCO+07] pour les systèmes d’équations. Les algo-
rithmes détendus de [Hoe02] s’appliquent aussi à ce cadre.

Dans ce chapitre, nous étendons les algorithmes précédents dans trois directions.

Singularités Nous traitons le cas où k est strictement positif. Le théorème de
Cauchy et les techniques de [BCO+07] ne sont pas applicables. Nous montrons dans
ce chapitre comment dépasser ce comportement singulier et obtenir une complexité
quasi-linéaire.

Caractéristique positive Même dans le cas k = 0, le théorème de Cauchy ne
s’applique pas en caractéristique positive et l’équation (1) peut ne pas avoir de
solutions séries (un exemple simple est F ′ = F). Cependant, une telle équation
peut tout de même avoir une solution modulo xN. Nos objectifs à cet égard sont de
surpasser le manque de théorème de Cauchy, ou d’une théorie formelle des équa-
tions singulières, en donnant des conditions suffisantes pour assurer l’existence de
solutions à la précision demandée.

Équations fonctionnelles Les équations linéaires différentielles ou aux (q)-dif-
férences se résolvent par des algorithmes similaires. Pour ceci, introduisons un
morphisme d’anneau unitaire σ: k[[x]] → k[[x]] et une σ-dérivation δ: k[[x]] →
k[[x]], en ce sens que δ est k-linéaire et que pour tout f , g dans k[[x]], on a

δ(f g)= f δ(g)+ δ(f)σ(g).

Ces définitions, et l’égalité ci-dessus, s’étendent aux matrices sur k[[x]]. Ainsi, notre
objectif est de résoudre la généralisation suivante de (1) :

xk δ(F)=Aσ(F)+C. (2)

Comme auparavant, nous sommes intéressés par le fait de calculer un vecteur F de
séries tel que (2) soit vrai modulo xN.

À propos des algorithmes détendus, les techniques de [Hoe02] s’appliquent déjà
en caractéristique positive. Au commencement de ma thèse, les outils pour adapter
les algorithmes détendus au cas des équations singulières n’existaient pas. Notre
méthode pour traiter le cas des équations singulières a été découverte indépendam-
ment à la même époque par [Hoe11]. Ce dernier article traite d’équations récursives
plus générales comme les équations algébriques, différentielles ou une combinaison
des deux. Cependant, ce même article ne traite pas le cas des équations (q)-diffé-
rentielles et travaille sous des hypothèses plus restrictives.

Nous nous limitons à la situation suivante :

δ(x)= 1, σ: x� q x,

4 Séries solutions d’équations (q)-différentielles 17

pour un élément q ∈k \ {0}. Il n’y a alors que deux possibilités :

• q=1 et δ: f � f ′ (cas différentiel) ;

• q � 1 et δ: f � f(q x)− f(x)

x (q− 1)
(cas (q)-différentiel).

En voyant l’équation (2) comme un système linéaire, on peut résoudre l’équation en
utilisant des méthodes d’algèbre linéaire en dimension nN . Bien que cette solution
soit toujours valable, nous donnons des algorithmes de bien meilleure complexité,
sous des hypothèses de bon spectre liées au spectre SpecA0 du coefficient p-adique
constant de A.

Similairement à l’article [BCO+07] pour le cas non-singulier, nous développons
deux approches. La première est une méthode diviser-pour-régner. Le problème est
d’abord résolu à précision N/2 puis le calcul à précision N est complété en résolvant
un problème du même type à précision N/2. Cela nous donne le résultat suivant.

Théorème. Il est possible de calculer des générateurs de l’espace des solutions de
l’équation (2) à précision N par une approche diviser-pour-régner. En supposant que
A0 a un bon spectre à précision N, cela peut être fait en temps O(nω M(N) log (N)).
Si l’on a soit k > 1 soit k=1 et qiA0− γi Id inversible pour tout 0≤ i<N, le temps
de calcul tombe à O(n2M(N) log (N) +nωN).

Cette approche diviser-pour-régner coïncide avec le calcul détendu d’un p-adique
récursif sous le deuxième ensemble d’hypothèses, c’est-à-dire soit k > 1 soit k=1 et
qiA0− γi Id inversible pour 0≤ i <N . Nous prenons le parti de le présenter comme
un algorithme diviser-pour-régner car cela permettra de traiter plus facilement le
problème sous des hypothèses plus générales.

Notre deuxième algorithme se comporte mieux par rapport à N , avec un coût de
seulement O(M(N)), mais il nécessite des multiplications de matrices polynomiales.
Comme dans de nombreux cas, l’approche diviser-pour-régner évite de telles mul-
tiplications, le deuxième algorithme est à préférer pour des précisions relativement
grandes.

Dans le cas différentiel, quand k=0 et que la caractéristique est 0, les algorithmes
de [BCO+07, BK78] calculent une matrice inversible de solutions séries de l’équation
homogène par une itération de Newton puis en déduisent une solution du problème
initial par la méthode de la variation de la constante. Dans le contexte plus général
que nous considérons ici, une telle matrice n’existe pas. Cependant, il se trouve
qu’une équation associée dérivée de (2) admet une telle solution. Nous utilisons alors
une variante de l’itération de Newton pour résoudre cette équation et obtenons le
résultat suivant.

Théorème. En supposant que A0 a un bon spectre à précision N, il est possible de
calculer des générateurs de l’espace des solutions de l’équation (2) à précision N par
une itération semblable à celle de Newton en temps O(nωM(N) +nω log (n)N).

À notre connaissance, c’est la première fois qu’une complexité aussi basse est
atteinte pour ce problème. Cependant, si l’on retire l’hypothèse de bon spectre, nous
ne pouvons plus garantir que l’algorithme est correct, et encore moins contrôler sa
complexité.

18 Introduction

5 Remontée détendue pour les systèmes algébriques

Ce chapitre peut être vu comme un cas particulier de la remontée d’ensemble trian-
gulaire faite dans le chapitre 6.

Supposons qu’il nous est donné un système polynomial P = (P1, 	 , Pr) dans
R[Y1,	 , Yr] ainsi que y0∈ (R/(p))r tel que P (y0)=0 dans (R/(p))r. Nous travaille-
rons sous l’hypothèse du Lemme de Hensel qui requiert que la matrice jacobienne
JacP (y0) soit inversible. En conséquence, il existe une unique racine y ∈ Rp

r de P

qui se réduise à y0 modulo p.
Notre travail consiste à transformer ces équations implicites en des équations

récursives. Alors, nous pourrons utiliser le cadre des p-adiques récursifs détendus
pour remonter une racine résiduelle y0 ∈ (R/(p))r en la racine y ∈ (Rp)

r de P sur
l’anneau des p-adiques. Nos résultats sur la transformation d’équations implicites
en équations récursives furent découverts en même temps par [Hoe11].

Par souci de clarté, nous ne donnons ici que les complexités asymptotiques quand
la précision N des p-adiques tend vers l’infini. Par conséquent, nous noterons f(n,
L, d,N)=ON→∞(g(n,L, d,N)) s’il existe Kn,L,d∈R>0 tel que pour tout N ∈N, on
ait f(n, L, d,N)6Kn,L,d g(n, L, d,N).

Commençons par énoncer le résultat pour les polynômes denses à une variable.

Proposition. Étant donné un polynôme P de degré d en représentation dense et
une racine simple modulaire y0 de P, la remontée de la racine y0 à précision N dans
Rp coûte (d− 1)R(N)+ON→∞(N).

En comparaison, l’itération de Newton remonte y à précision N en temps (3 d+
4) I(N) + ON→∞(N) (cf. [GG03, Théorème 9.25]). Le premier avantage de notre
algorithme en-ligne est qu’il fait moins de multiplications en-ligne que l’algorithme
hors-ligne ne fait de multiplications hors-ligne. Du coup, nous pouvons espérer des
temps de calcul meilleurs pour l’algorithme en-ligne quand la précision N est telle
que R(N)6 3 I(N).

Traitons maintenant le cas des systèmes de polynômes à plusieurs variables.

Théorème. Soient P =(P1,	 , Pr) un système polynomial dans R[Y1,	 , Yr]
r donné

en représentation dense, vérifiant d> 2 avec d7 max16i,j6r (degXj
(Pi)) + 1, et y0

un zéro résiduel de P sur R/(p).
Alors on peut calculer y à précision N en temps drR(N)+ON→∞(N).

Comparons-nous à nouveau avec l’itération de Newton qui nécessite à chaque
étape une évaluation des équations polynomiales et de leur matrice jacobienne,
et une inversion de la matrice jacobienne évaluée. Cela coûte C (r dr + rω) I(N) +
ON→∞(N) où C est une constante réelle strictement positive. Le théorème précédent
montre que l’on peut économiser le coût de l’inversion de la matrice jacobienne à
précision N avec les algorithmes en-ligne.

Cet avantage est d’autant plus significatif que le coût de l’évaluation du sys-
tème est inférieur au coût de l’inversion de la matrice. Pour mieux quantifier ce
phénomène, nous adaptons notre approche détendue aux polynômes donnés par
des calculs d’évaluation directs (« straight-line programs » en anglais), c’est-à-dire
donnés comme une suite d’opérations arithmétiques sans branchement.

5 Remontée détendue pour les systèmes algébriques 19

Théorème. Soit P un système polynomial de r polynômes à r variables sur R,
donné par un calcul d’évaluation direct contenant L∗ multiplications. Soit y0∈ (R/
(p))r tel que P (y0)= 0mod p et det (JacP (y0))� 0mod p.

Alors, le calcul de y à précision N coûte 3L∗R(N)+ON→∞(N).

Dans ce cas, l’itération de Newton coûte C ′ (L∗+rω) I(N)+ON→∞(N), où C ′ est
une autre constante réelle positive. Ainsi, notre approche détendue est particulière-
ment adaptée aux systèmes polynomiaux qui s’évaluent bien, comme par exemple les
systèmes creux. Notons que malgré ces avantages, nos algorithmes sont plus coûteux
d’un facteur logarithmique en la précision N par rapport à l’itération de Newton.

Finalement, nous implantons ces algorithmes et obtenons des temps de calculs
compétitifs avec Newton, et même meilleurs sur une grande plage de paramètres.
Notre implémentation est disponible dans la bibliothèque C++ algebramix de
Mathemagix [HLM+02].

6 Remontée détendue d’ensembles triangulaires

De la même manière que l’opérateur de Newton-Hensel a été adapté pour remonter
des représentations à une variable dans [GLS01, HMW01] puis des représentations
triangulaires dans [Sch02], nous adaptons notre approche détendue du chapitre 5
pour remonter de tels objets. Aussi, nous avions remarqué en section 5 que les algo-
rithmes détendus peuvent économiser le coût de l’algèbre linéaire pour la remontée
de racines de systèmes polynomiaux, a contrario des méthodes hors-ligne. Nous
souhaitons aussi économiser ce coût dans le cadre présent.

Introduisons la notion de représentation à une variable d’un idéal zéro-dimen-
sionnel I ⊆ R[X1, 	 , Xn]. Soient A l’algèbre quotient R[X1, 	 , Xn]/I et Λ ∈ A

tels que la R-algèbre R[Λ] engendrée par Λ est égale à A. Une représentation à
une variable de A est une famille de polynômes P = (Q, S1, 	 , Sn) de R[T] avec
deg (Si)< deg (Q) telle que l’on ait l’isomorphisme de R-algèbre suivant

A=R[X1,	 , Xn]/I → R[T]/(Q)
X1,	 , Xn � S1,	 , Sn

Λ � T .

La trace la plus ancienne de cette représentation se trouve dans [Kro82] et quelques
années plus tard dans [Kön03]. L’article [Mac16] contient un bon résumé de leur
travaux. Le « shape lemma » de [GM89] énonce l’existence d’une telle représentation
pour une forme linéaire générique Λ d’un idéal zéro-dimensionnel. Il existe tout une
famille d’algorithmes pour calculer cette représentation, utilisant une résolution géo-
métrique [GHMP97, GHH+97, GLS01, HMW01] ou des bases de Gröbner [Rou99].

Un ensemble triangulaire est une famille de n polynômes t = (t1, 	 , tn) de
R[X1,	 ,Xn] telle que ti est dans R[X1,	 ,Xi], unitaire en Xi et réduit par rapport
à (t1,	 , ti−1). La notion d’ensemble triangulaire est née avec l’article [Rit66] dans le
contexte des algèbres différentielles. Plusieurs notions similaires ont été introduites
après coup dans les articles [Wu84, Laz91, Kal93, ALMM99]. Bien que ces notions
ne coïncident pas en général, elles définissent le même objet dans le cas des idéaux
zéro-dimensionnels.

20 Introduction

Les représentations à une variable peuvent être vues comme un cas particulier
d’ensemble triangulaire. En effet, avec les notations précédentes, la famille (Q(T),
X1−S1(T),	 ,Xn−Sn(T)) est un ensemble triangulaire de l’algèbre R[T ,X1,	 ,Xn].
À partir de maintenant, nous considérerons les représentations à une variable comme
un cas particulier d’ensembles triangulaires.

Définissons Rem(d1, 	 , dn) comme étant le coût d’une opération arithmétique
dans l’algèbre quotient R[X1,	 , Xn]/(t1,	 , tn) où di7 degXi

(ti). Quand on utilise
une représentation à une variable, les éléments de A ≃ R[T]/(Q) sont représentés
comme des polynômes à une variable de degré strictement inférieur à d7 deg (Q).
Du coup, la multiplication dans A coûte quelques multiplications polynomiales.

La remontée d’ensembles triangulaires (ou de représentation à une variable) est
une opération cruciale. Plusieurs implémentations d’algorithmes qui calculent des
ensembles triangulaires sur les rationnels se ramènent à calculer ces objets modulo
un nombre premier, puis à faire une remontée p-adique et enfin une reconstruction
rationnelle. Par exemple, le logiciel Kronecker [L+02] qui calcule des représen-
tations à une variable, et la bibliothèque RegularChains [LMX05] de Maple
qui calcule des ensembles triangulaires, utilisent des remontées p-adiques. Mieux
encore, une autre remontée est utilisée au cœur de l’algorithme de résolution géo-
métrique [GLS01, HMW01] qui sous-tend Kronecker. En effet, cet algorithme
manipule des représentations à une variable de courbes et nécessite donc des remon-
tées sur les séries formelles.

En pratique, la majorité du temps de calcul d’un ensemble triangulaire est passé
dans la remontée. Donc toute amélioration de la complexité de la remontée impac-
tera directement l’algorithme complet.

Soit f = (f1, 	 , fn) ∈ R[X1, 	 , Xn] un système polynomial donné par un
calcul d’évaluation direct avec L opérations arithmétiques. Si Lfi est le nombre
d’opérations nécessaires juste pour la sortie fi, alors nous notons L⊥7 Lf1+
 +Lfn

la complexité des calculs indépendants de f1, 	 , fn, c’est-à-dire sans partage de
calculs entre eux. Puisque Lfi6L, nous avons

L6L⊥6nL.

Un algorithme dû à Baur et Strassen [BS83] permet d’évaluer la matrice jacobienne
de f par un calcul direct en 5L⊥ opérations.

Soit t0 un ensemble triangulaire de R/(p)[X1,	 ,Xn] tel que f =0 dans l’algèbre
R/(p)[X1,	 ,Xn]/〈t0〉. Nous travaillerons sous l’hypothèse que le déterminant de la
matrice jacobienne Jacf dans Mn(R/(p)[X1,	 ,Xn]) est inversible modulo t0. Cette
condition est suffisante pour avoir l’existence et l’unicité d’un ensemble triangulaire t
de Rp[X1,	 ,Xn] qui se réduit à t0 modulo p et satisfait f=0 dans Rp[X1,	 ,Xn]/〈t〉.

L’algorithme de remontée calcule, à partir des entrées f et t0, cet unique
ensemble triangulaire t à précision N .

Notre contribution consiste à donner, pour tout ensemble triangulaire p-adique,
un algorithme décalé dont il est point fixe. Nous appliquons alors le cadre détendu
pour la remontée de p-adiques récursifs et en déduisons un algorithme pour calculer
cet ensemble triangulaire.

Par souci de clarté, nous ne donnerons que les complexités asymptotiques en la
précision N des p-adiques. Énonçons les résultats de complexité.

6 Remontée détendue d’ensembles triangulaires 21

Théorème. Notre algorithme détendu peut effectuer la remontée de l’ensemble tri-
angulaire t à précision N en temps

CnLR(N)Rem(d1,	 , dn) +ON→∞(N),

avec C une constante réelle positive.

Le précédent algorithme hors-ligne de [Sch02] fait la remontée de t à précision N

en temps C ′ (L⊥+nω) I(N)Rem(d1,	 , dn)+ON→∞(N) avec C ′ une autre constante
réelle positive. Notre algorithme détendu n’améliore donc la complexité par rapport
au précédent algorithme que dans le cas n L6 nω, c’est-à-dire pour les systèmes f

qui s’évaluent en moins de n2 opérations, en prenant ω=3.
La situation est plus à notre avantage pour la remontée de représentations à une

variable. Supposons que t est une représentation à une variable de degré d.

Théorème. Notre algorithme détendu peut remonter la représentation à une
variable t à précision N en temps

C ′′LR(N)M(d)+ON→∞(N),

avec C ′′ une constante réelle positive.

Comparons notre algorithme avec l’algorithme hors-ligne existant de [GLS01,
HMW01]. Cet algorithme hors-ligne remonte une représentation à une variable t

à précision N en temps C ′′′ (L⊥ + nω) I(N) M(d) + ON→∞(N), où C ′′′ est une
autre constante strictement positive. Par conséquent, notre algorithme détendu fait
toujours asymptotiquement moins de multiplications en-ligne que l’autre algorithme
ne fait de multiplications hors-ligne. De plus, pour les systèmes polynomiaux f

qui s’évaluent en moins de nω opérations, nous pouvons nous attendre à un gain de
performance significatif de la part de notre algorithme.

Pour finir, nous présentons une implémentation de cet algorithme au sein de la
bibliothèque C++ algebramix deMathemagix [HLM+02] dans le cas particulier
des représentations à une variable. Notre algorithme se compare favorablement sur
les exemples présentés. Mentionnons aussi que notre algorithme détendu est en cours
de branchement à Kronecker dans Mathemagix avec l’aide de G. Lecerf.

7 Algorithmique de l’algèbre de décomposition uni-
verselle

Soient k un corps et f ∈ k[X] un polynôme séparable de degré n. Notons R 7
{α1, 	 , αn} l’ensemble des racines de f dans une clôture algébrique de k. L’idéal
des relations symétriques Is est l’idéal

{P ∈k[X1,	 ,Xn] |∀σ ∈Sn, P (ασ(1),	 , ασ(n))= 0}.

L’algèbre de décomposition universelle est l’algèbre quotient A7 k[X1, 	 , Xn]/Is,
qui est zéro-dimensionnelle de degré δ7 n!.

22 Introduction

Le but de ce chapitre est de calculer efficacement dans A. Nous utilisons une
représentation à une variable de A, c’est-à-dire un isomorphisme de la forme A ≃
k[T]/Q(T), puisque les opérations arithmétiques dans A ont un coût quasi-optimal
dans cette représentation. Nous détaillerons deux algorithmes liés, l’un pour calculer
l’isomorphisme précédent et l’autre pour calculer le polynôme caractéristique d’un
élément de A. Ces algorithmes sont les premiers à être quasi-optimaux pour ces
tâches.

Nous mesurerons le coût de nos algorithmes par le nombre d’opérations arith-
métiques dans k qu’ils font. En pratique, ce modèle de complexité est bien adapté
au cas où k est un corps fini ; sur k=Q, il conviendrait d’utiliser une remontée p-
adique comme celle du chapitre 6.

La question de quelle représentation doit être utilisée pour A est le cœur de
l’article ainsi que la clé pour obtenir de meilleurs algorithmes. Une représentation
répandue est celle par ensembles triangulaires . Les différences divisées , aussi connues
sous le nom de modules de Cauchy [Che50, RV99], sont définies par C1(X1)7 f(X1)
et récursivement

Ci+17 Ci(X1,	 ,Xi)−Ci(X1,	 ,Xi−1,Xi+1)

Xi−Xi+1

pour 1 6 i < n. Elles forment une base triangulaire de Is. Les différences divisées
sont peu coûteuses à calculer à partir de leur formule récursive mais il est difficile
de rendre les calculs dans A efficace dans cette représentation. L’article [BCHS11]
donne un algorithme de multiplication qui coûte Õ(δ), mais cet algorithme cache des
facteurs logarithmiques de hauts degrés dans le grand-O. Il n’y a pas d’algorithme
connu pour l’inversion d’éléments de A qui soit quasi-linéaire.

Le seconde représentation que nous considérerons est celle à une variable.
Dans cette représentation, les éléments de A ≃ k[T]/(Q) sont représentés comme
des polynômes à une variable de degré strictement inférieur à δ. La multiplica-
tion et l’inversion (si possible) dans A coûte alors respectivement O(M(δ)) et
O(M(δ) log (δ)). Pour le polynôme caractéristique, la situation n’est pas aussi favo-
rable puisqu’aucun algorithme quasi-linéaire n’est connu : le meilleur résultat, dû
à [Sho94], est O(M(δ) δ1/2 + δ(ω+1)/2), ce qui donne un algorithme en O(δ1.69)
opérations pour le polynôme caractéristique.

Le calcul d’une représentation à une variable de A est coûteux : le meilleur
algorithme existant, dû à [PS11], prend en entrée un ensemble triangulaire (tel que
les différences divisées) et le convertit en une représentation à une variable en temps
Õ(δ1.69).

Pour résumer, une représentation triangulaire de A est facile à calculer mais
implique une algorithmique plutôt inefficace pourA. D’un autre côté, le calcul d’une
représentation à une variable n’est pas chose aisée, mais une fois qu’il est réalisé,
certains calculs dans A deviennent plus rapides. La principale contribution de ce
chapitre est de montrer comment contourner les inconvénients des représentations
à une variable, en donnant des algorithmes rapides pour leur construction. Nous
expliquons aussi comment utiliser l’arithmétique rapide à une variable dans A pour
calculer efficacement des polynômes caractéristiques.

Dans le cas des représentations à une variable, nos algorithmes sont Las Vegas
et nous donnons alors la complexité moyenne des algorithmes.

7 Algorithmique de l’algèbre de décomposition universelle 23

Théorème. Supposons que la caractéristique de k est zéro, ou supérieure à 2 δ2.
Alors nous pouvons calculer une représentation à une variable de A et des polynômes
caractéristiques dans les temps indiqués dans le tableau suivant.

XP ,A
représentation à une variable

(temps moyen)

O(n(ω+3)/2M(δ))= Õ(δ) O(n(ω+3)/2M(δ)) = Õ(δ)

Nous proposons deux approches qui sont toutes les deux basées sur des idées
classiques. La première approche calcule des polynômes caractéristiques grâce à
leurs sommes de Newton, à la suite des travaux [Val89, AV94, CM94], mais en se
limitant à des polynômes simples, comme par exemple les formes linéaires. Cela
produira le meilleur algorithme en pratique. La deuxième approche se base sur des
résultants itérés [Lag70, Soi81, Leh97, RV99] et fournit les estimations de complexité
du théorème.

Finalement, nous implémentons nos algorithmes dansMagma 2.17.1 [BCP97] et
donnons des résultats expérimentaux. Nous observons des améliorations pratiques
pour le calcul de représentation à une variable de A. Notre algorithme de change-
ment de base entre des représentations à une variable et triangulaires est efficace ;
pour une opération telle que l’inversion, et malgré le surcoût dû au changement de
représentation, il est plus efficace de passer par une représentation à une variable.

8 Remontée d’invariants fondamentaux

Ce court appendice est dédié à la preuve d’un résultat utile en théorie des invariants
que nous avons obtenu lors de la rédaction du chapitre 7 : nous montrons que les
invariants fondamentaux de l’action d’un groupe fini se spécialisent toujours bien
modulo tout nombre premier, sauf un petit nombre connu à l’avance. Ce phénomène
est rare en Calcul Formel puisque empiriquement, pour des systèmes non-linéaires,
les nombres premiers donnant lieu à une mauvaise réduction ne peuvent pas être
déterminés directement.

Ce résultat a des implications pratiques : pour calculer les invariants fonda-
mentaux sur les rationnels, il suffit de les calculer modulo p. La remontée vers les
rationnels est alors triviale.

Une correspondance privée avec H. E. A. Campbell, D. Wehlau et M. Roth nous
a appris que ce résultat leur était déjà connu mais, à notre connaissance, jamais
publié. Nous décidons de l’inclure dans cette thèse pour qu’il puisse être utilisé en
pratique : à notre connaissance, un logiciel tel que Magma [BCP97] n’utilise pas ce
résultat pour calculer des anneaux d’invariants.

24 Introduction

Partie I

On-line algorithms

Chapitre 1

Relaxed algorithms for multiplication

This chapter introduces the notions of online and relaxed algorithms. First, we
present a general context of p-adic computations that will be in use for the next
few chapters. Then, we recall the current relaxed algorithms for the multiplication,
and we give for the first time a thorough analysis of their arithmetic complexity.
In a third time, we introduce a new relaxed algorithm for the multiplication using
middle and short product, that improves by a constant factor the previous relaxed
multiplication. Finally, we give some timings to confirm the good behavior of relaxed
algorithms with middle product.

1.1 Computing with p-adics

This section introduces several important notions and notation regarding p-adic
computations, which will be in use for the next few chapters.

1.1.1 Basic definitions
Let R be a commutative ring with unit. We consider an element p∈R−{0}, and we
write Rp for the completion of the ring R for the p-adic valuation. We will assume
that R/(p) is a field (equivalently, that p generates a maximal ideal). This is not
needed for the algorithms in this chapter, but will be useful later on when we deal
with linear algebra modulo (p). We also assume that ∩i∈N(p

i)= {0}, so that R can
be seen as a subset of Rp.

An element a∈Rp is called a p-adic; it can always be written (in a non unique
way) a=

∑

i∈N
ai p

i with coefficients ai∈R.
To get a unique representation of elements in Rp, we will fix a subset M of R

such that the projection π:M→R/(p) is a bijection. Then, any element a∈Rp can
be uniquely written a=

∑

i∈N
ai p

i with coefficients ai∈M . The operations mod and
quo are then defined as

amod p= a0 and a quo p=
∑

i>0

ai p
i−1.

We will suppose that for all a∈M , −a is in M as well.
Two classical examples are the formal power series ring k[[X]], which is the

completion of the ring of polynomials k[X] for the ideal (X), and the ring of p-adic
integers Zp, which is the completion of the ring of integers Z for the ideal (p), with
p a prime number. For R = k[X], we naturally take M = k; for R = Z, we choose
M =

{

−p− 1

2
,	 ,

p− 1

2

}

if p is odd and M = {0, 1} for p=2.

27

Once M has been fixed, we have a well-defined notion of length of a (non-zero)
p-adic: if a=

∑

i∈N
ai p

i, then we define

λ(a)7 1+ sup (i∈N | ai� 0),

so that λ(a) is in N>0 ∪ {∞}; for a = 0, we take λ(a) = 0. Since M is invariant
through sign change, we have that λ(−a)=λ(a) for all a. We will make the following
assumptions:

• λ verifies the conditions

λ(a+ b) 6 max (λ(a), λ(b)) + 1

λ(a b) 6 λ(a) +λ(b);

• all elements of R ⊂ Rp have finite length (this excludes cases where for
instance R is already complete with respect to the (p)-adic topology).

These assumptions are satisfied in the two main cases above (with further simplifi-
cations in the polynomial case, since no carries appear in the case of addition); note
that λ(a− b) satisfies the same inequality as λ(a+ b).

For any a∈Rp and integers 06 r6 s, we define the truncated p-adic ar	 s as

ar	 s7 ar+ ar+1 p+
 + as−1 p
s−1−r ∈R.

We call p-adics at precision n the set of all truncations a0	n of p-adics a∈Rp (for the
two main cases we have in mind, they are simply plain integers, resp. polynomials).
We say that we have computed a p-adic at precision n if the result holds modulo pn.

1.1.2 Basic operations

Algorithmically, we represent p-adics through their base-M expansion, that is,
through a sequence of coefficients in M . Roughly speaking, we measure the cost
of an algorithm by the number of arithmetic operations with operands in M it
performs. More precisely, we assume that we can do the following at unit cost:

• given a0, b0 in M , compute the coefficients c0, c1 of c= a0 b0 at unit cost, and
similarly for the coefficients of a± b

• given a0 in M −{0}, compute b0 in M −{0} such that a0 b0=1 mod p

Remark that when R=k[X], we are simply counting arithmetic operations in k.
The main operations we will need on p-adics are sum and difference, as well as

multiplication and a few of its variants (of course, these algorithms only operate on
truncated p-adics). Addition (and subtraction) are easy to deal with:

Lemma 1.1. The following holds:

• Given two p-adics a,b of length at most ℓ, one can compute a+ b in time O(ℓ)

• Given p-adics a1,	 , aN of length at most ℓ, the p-adic A=
∑

i=1

N
ai has length

O(log (N)+ ℓ), and one can compute it in time O(Nℓ).

• Given p-adics a1, 	 , aN of length at most ℓ, the p-adic A =
∑

i=1

N
ai p

i has
length O(N + ℓ), and one can compute it in time O(Nℓ).

28 Relaxed algorithms for multiplication

Proof. The first point is easily dealt with by induction on ℓ; we will see the algo-
rithm in more detail in Example 1.5 below. To handle the second one, we build a tree
adder, which has depth O(log (N)). The length bound follows; the complexity bound
comes from noticing that we do O(N) additions of p-adics of length ℓ, O(N/2)
additions of p-adics of length ℓ+1, O(N/4) additions of p-adics of length ℓ+2, etc.

To deal with the last point, note that for all i, ai pi has length at most ℓ +
N . Using the second point, we deduce the length bound, and the upper bound
O(N (ℓ + N)) on the time it takes to compute the sum. If N 6 ℓ, we are done.
Else, we rewrite the sum as

∑

j=0

ℓ−1
bj p

j, where bj is the p-adic of length N whose
coefficients are the coefficients of index j of a1,	 , aN. Thus, we have reversed the
roles of ℓ and N , so the claim is valid in all cases. �

For multiplication, we will distinguish several variants; for the moment, we will
simply define the problems, and introduce notation for their complexity.

First, we consider “plain” multiplication: given a and b of length at most n,
compute their product (which has length at most 2n). For this operation, we will
let I:N→N be such that all coefficients of a b can be computed in I(n) operations.
We will assume that I(n) satisfies the property that I(n)/n is non-decreasing. Using
Fast Fourier Transform, it is possible to take I(n) quasi-linear , that is, linear up to
logarithmic factors: we will review this in the next section.

Two related problems will be of interest: short and middle products. The short
product at precision n is essentially the product of p-adics modulo pn; precisely, on
input a and b with max (λ(a), λ(b)) =n, it computes the coefficients of

SP(a, b) 7 ∑

06i+j<n

ai bj p
i+j.

The definition of the middle product is slightly more complex: if a and b are p-adics
with λ(b) = n, the middle product of a and b is defined as (essentially) the middle
part of the product c7 a b; precisely, it computes

MP(a, b) 7 ∑

n−16i+j62n−2

ai bj p
i+j.

In general, attention must be paid to carries: because of them, MP(a, b) may not
consist in exactly the middle coefficients of a b. In the case where R=k[X], though,
middle and short products simply compute a few of the coefficients of the product
a b, so they can be computed by means of “plain” multiplication algorithms. We will
see below that savings are possible: Section 1.2 gives algorithms for short and middle
products, with a focus on the important particular case where R=k[X].

1.1.3 On-line and relaxed algorithms

Next, we introduce the “relaxed” model of computation for p-adics. Although this
terminology is recent and was introduced in [Hoe02], it bears upon older and more
general notions of lazy and on-line algorithms.

To the best of our knowledge, the notion of on-line Turing machine comes from
[Hen66]. We give the definition formulated in [FS74].

1.1 Computing with p-adics 29

Definition 1.2. ([Hen66, FS74]) Let us consider a Turing machine which com-
putes a function f on sequences, where f : Σ∗ × Σ∗ → ∆∗, Σ and ∆ are sets.
The machine is said to compute f on-line if for all input sequences a = a0a1	 an,
b= b0b1	 bn and corresponding outputs f(a, b) = c0c1	 cn, with ai, bj ∈Σ, ck ∈∆, it
produces ck before reading either aj or bj for 06 k < j6n.

The machine computes f half-line (with respect to the first argument) if it pro-
duces ck before reading aj for 06 k < j 6 n. The input a will be referred to as the
on-line argument and b as the off-line argument.

This definition can easily be adapted to more inputs and outputs by changing
the sets Σ and ∆.

Lazy algorithms for power series are the adaptation of the lazy evaluation (also
known as call-by-need) function evaluation scheme to computer algebra [Kar97],
whose principle is to delay as much as possible the evaluation of the argument
of a function. In the lazy approach, power series are represented as streams of
coefficients, and the expressions they are involved in are evaluated as soon as the
needed coefficients are provided; for this reason, algorithms in the lazy framework
are on-line algorithms. Therefore, we will use the following informal definition.

Definition 1.3. Lazy algorithms are on-line algorithms that try to minimize the
cost at each step.

Relaxed algorithms are also on-line algorithms. In opposition to lazy algorithms,
they can do more computations at some step in order to anticipate future compu-
tations. Therefore we will use the following informal definition.

Definition 1.4. Relaxed algorithms are on-line algorithms that try to minimize the
asymptotic cost.

Semi-relaxed algorithms are the counterpart of half-line algorithms. Although
these notions were introduced for power series at first, they are easy to extend to
any p-adic ring Rp.

The next chapters of this thesis present a fundamental application of relaxed
algorithms, the computation of recursive p-adics. Meanwhile, we give some examples
of on-line algorithms for two basic operations, sum and product. They are both
based on an incremental process, which outputs one coefficient at a time.

Example 1.5. The first example of an on-line algorithm is the addition of p-adics.
For computing the addition of p-adics a and b, we use a subroutine that takes as
input another c∈Rp that stores the current state of the computation and an integer
i for the step of the computation we are at.

Algorithm LazyAddStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. c= c+(ai+ bi) p
i

2. return c

30 Relaxed algorithms for multiplication

The addition algorithm itself follows:

Algorithm LazyAdd

Input: a, b∈Rp and n∈N

Output: c∈Rp such that c=(a+ b) mod pn+1

1. c=0

2. for i from 0 to n

a. c= LazyAddStep(a, b, c, i)

3. return c

This addition algorithm is on-line: it outputs the coefficient ci of the addition c=a+b

without using any aj or bj of index j > i. After each step i, c represents the sum of
a mod pi+1 and b mod pi+1; thus, it has length at most i+ 2. As a result, at every
step, we are simply computing ai + bi + ci (which we know has length at most 2),
and insert the result in ci and possibly ci+1.

This algorithm is also lazy as it does only the minimal number of arithmetic
operations at each step. Algorithm LazyAdd is relaxed because it does O(n) addi-
tions of length-1 p-adics, which is essentially optimal, to compute the addition of
two p-adics at precision n. One can write an algorithm LazySub similarly.

Example 1.6. Let us next present the naive on-line algorithm for multiplication of
p-adics.

Algorithm LazyMulStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. c= c+
(
∑

j=0

i
aj bi−j

)

pi

2. return c

Algorithm LazyMul

Input: a, b∈Rp and n∈N

Output: c∈Rp such that c=(a b) mod pn+1

1. c=0

2. for i from 0 to n

a. c= LazyMulStep(a, b, c, i)

3. return c

Algorithm LazyMul is on-line because it outputs ci without reading the coefficients aj

and bj of the inputs for j >i. It is a lazy algorithm because it computes no more that
(a b)i at step i. It allows the multiplication of two p-adics at precision n at costO(n2).

1.1 Computing with p-adics 31

However, the cost of Algorithm LazyMul is prohibitive compared to the quasi-
linear algorithms for the multiplication of high-order p-adics: this algorithm is not
relaxed.

On the other hand, most fast algorithms for multiplication, such as those based
on Fourier Transform, are not on-line. We remedy to this fact in Section 1.3 by
presenting quasi-linear time on-line multiplication algorithms (which will thus be
called relaxed).

1.2 Off-line multiplication

In this section, we review some existing off-line multiplication algorithms (for the
plain, short and middle product), with a focus on the case where R=k[X]. In the
papers of van der Hoeven, off-line algorithms are also called zealous algorithms.

As customary, let us denote by M(n) a function such that over any ring, poly-
nomials of degree at most n − 1 can be multiplied in M(n) base operations, and
such that M(n)/n is non-decreasing (super-linearity hypothesis, see [GG03, p. 242]).
For the particular case of p-adics with ground ring R = k[X], we can thus take
I(n) =M(n).

In the first subsection, we review known results for the function M, followed by
algorithms for the short and middle product. We briefly mention the case R = Z,
and then the general case, at the end of this section.

1.2.1 Plain multiplication of polynomials

We recall here the three main multiplication algorithms: the naive, Karatsuba’s and
the FFT algorithm. Given a, b∈k[X]<n of degree less than n, we want to compute
the product c= a b∈k[X] of a and b.

The naive algorithm computes the n2 terms

c=
∑

06i,j<n

ai bjX
i+j.

Therefore this algorithm performs n2 multiplications and (n− 1)2 additions in k.
The first subquadratic algorithm for multiplication was given by

Karatsuba [KO63]. This algorithm starts by splitting the polynomial inputs in two
halves:

a0	 n= a0	m+ am	nX
m, b0	n= b0	m+ bm	nX

m

where m7 ⌊n/2⌋. Then we compute three half-sized multiplications

d7 a0	m b0	m, e7 (a0	m+ am	n) (b0	m+ bm	n), f 7 am	n bm	n.

Finally we recombine linearly these products to get

c7 d+ (e− d− f)Xm+ fX2m.

32 Relaxed algorithms for multiplication

Therefore if K(n) denotes the cost of Karatsuba’s multiplication algorithm for poly-
nomials of degree less than n, one has

K(n)=K(⌊n/2⌋) + 2K(⌈n/2⌉)+O(n)

leading to K(n)=O(nlog2(3)).
The principle of Karatsuba’s algorithm is related to an evaluation/interpolation

at points 0,1 and +∞. More general evaluation/interpolation schemes can be found
in the algorithms of Toom-Cook [Too63, Coo66]. For any α>1, there exists a Toom-
Cook algorithm that runs in time O(nα).

The paper of Cooley and Tukey [CT65] founded the area of multiplication algo-
rithms based on Fourier transforms. Let us describe the fast Fourier transform
(FFT) algorithm, over a field k. Let m7 2e be the smallest power of two greater or
equal to 2 n. We start by assuming that there exists a mth primitive root of unity
ω in k. The discrete Fourier transform is the k-linear isomorphism

DFTω: km � km

(p0,	 , pm−1) � (P (1), P (ω),	 , P (ωm−1))

where P 7∑

i=0

m−1
piX

i. So DFT induces a bijection between k[X]<m and km. This
transformation gives a new representation (P (1), P (ω),	 , P (ωm−1)) of the polyno-
mial P . The important fact is that the multiplication in km costs m multiplications,
which is optimal.

Let us focus of the computation of DFTω and its inverse morphism DFTω
−1. A

first important result is that

DFTω ◦DFTω−1=DFTω−1 ◦DFTω=m Id

and consequently

(DFTω)
−1=

1

m
DFTω−1.

It remains to give a fast algorithm to compute the discrete Fourier transform. A
divide-and-conquer strategy is used. Write P =P0+P1X

m/2 and let R0=P0+P1∈
k[X]m/2 and R1(X) = (P0−P1)(ωX)∈k[X]m/2. Then for 06 i <m/2, one has

P (ω2i) = P0(ω
2i)+P1(ω

2i)=R0(ω
2i)

P (ω2i+1) = P0(ω
2i+1)−P1(ω

2i+1)=R1(ω
2i).

Therefore the computation of DFTω(P) reduces to two calls DFTω2(R0) and
DFTω2(R1) and O(n) additions and multiplications. If FFT(m) is the cost of com-
puting the discrete Fourier transform DFTω, then

FFT(m) = 2FFT(m/2)+O(m)

which gives FFT(m)=O(m log (m)). Finally the cost of multiplying two polynomials
of degree less than n is 3FFT(m)+O(m)=O(n log (n)).

When no roots of unity of sufficient order are available in the base field, we use
the idea developed in [SS71] and [CK91]. This algorithm adds virtual roots of unity
to our base field; it actually applies to any ring and multiplies polynomials of degrees
less than n in time O(n log (n) log (log (n))).

1.2 Off-line multiplication 33

Let us now sum up all these algorithms.

Theorem 1.7. One can take M(n) ∈ O(n log (n) log (log (n))), and thus I(n) ∈
O(n log (n) log (log (n))) when R=k[X] and p=X.

1.2.2 Middle product of polynomials

The concept of middle product was introduced in [HQZ04]. That paper stresses the
importance of this new operation in computer algebra and uses it to speed-up the
division and square-root of power series.

Let a, b ∈ k[X] with λ(b) = n. Then, we have seen that the middle product
MP(a, b) of a and b is defined as the part cn−1	 2n−1 of the product c 7 a b, so
that deg (MP(a, b))6 n − 1. Naively, the middle product is computed via the full
multiplication c7 (a b) mod p2n−1, which is done in time 2 M(n), but, as we will
see, this not optimal. We denote by MP(n) the arithmetic complexity of the middle
product of two polynomials a, b with λ(b)6n.

The middle product is closely related to the transposed multiplication [BLS03,
HQZ04]. Thus, we will use the Tellegen principle that relates the complexities of a
linear algorithm and its transposed algorithm. A linear algorithm can be formalized
by linear straight-line programs (s.l.p.), which are s.l.p.’s with only linear operations.
We refer to [BCS97, Chapter 13] for a precise exposition.

Theorem 1.8. ([BCS97, Th. 13.20]) Let Φ:Rn→Rm be a linear map that can
be computed by a linear straight-line program of size L and whose matrix in the
canonical bases has no zero rows or columns. Then the transposed map Φt can be
computed by a linear straight-line program of size L−n+m.

As it turns out, the middle product is a transposed multiplication, up to the
reversal of polynomial. We deduce the following complexity result.

Corollary 1.9. The complexity MP of the middle product satisfies

MP(n)=M(n)+n− 1.

More precisely, while the number of additions can slightly differ between the
multiplication and the middle product, the number of multiplications remains the
same [HQZ04, Theorem 4].

Tellegen’s principle gives more than the existence of a middle product algorithm
with good complexity, it tells you how to build the transposed algorithm. It was
first pointed out in [BLS03] that the transposition of algorithms can be done system-
atically and automatically (and the paper [DFS10] actually specifies an algorithm
for automatic transposition based on the language transalpyne). We give a brief
description of the middle product mechanisms corresponding to the transposition of
the naive, Karatsuba and FFT multiplication algorithms.

34 Relaxed algorithms for multiplication

Let us begin by a diagram. If we represent the polynomial coefficients
(ai)06i<2n−1 of a in abscissa and the coefficients (bj)06j<n of b in ordinate, the
unit square whose left bottom corner is at coordinates (i, j) corresponds to the
elementary product ai bj. The big white square includes all the terms involved
in the plain multiplication a b. The terms involved in the middle product MP(a,
b) form a gray rhombus on the diagram.

b

a

MP(a, b)

Figure 1.1. Plain and middle multiplication of polynomials

The naive multiplication algorithm gives the easiest scheme for middle product:
only compute the coefficients ci=

∑

j=0

n−1
ai−j bj of c for n−16 i<2 n−1. This costs

n2 multiplications and n (n−1) additions. Of course, the number of multiplications
is the same as for the multiplication and the difference in the number of additions is
predicted by Corollary 1.9. Indeed the difference of the number of additions between
middle product and multiplication is n (n− 1)= (n− 1)2+n− 1.

Next, we sketch the Karatsuba middle product in the case of even length n=λ(b).

b

a

u v

w z

Figure 1.2. Karatsuba middle product on polynomials

The trick is to divide the diamond-shaped area of the middle product MP(a, b) into
four parts u, v, w and z as depicted in Figure 1.2, that is

u 7 MP(A0, B1)

v 7 MP(A1, B1)

w 7 MP(A1, B0)

z 7 MP(A2, B0)

1.2 Off-line multiplication 35

where A07 a0	n−1, A17 an/2	 3n/2−1, A27 an	 2n−1, B07 b0	n/2 and B17 bn/2	n.
Then we observe that by bilinearity u + v = MP(A0 + A1, B1), v − w = MP(A1,

B1−B0) and w+ z=MP(A1+A2, B0). Therefore we get

MP(a, b)0	 n/2 = (u+ v)− (v−w)

MP(a, b)n/2	 n = (w+ z)+ (v−w).

So we have reduced the problem of Karatsuba middle product to three half-sized
recursive calls and a few additions. The case of odd length n is similar but some-
what more complicated. This algorithm is the transposed algorithm of Karatsuba’s
multiplication [HQZ04, BLS03].

For the FFT variant, and suppose that ω ∈ k is a primitive (2 n − 1)th root of
unity. We cut the product c= a b in three parts c0	n−1, cn−1	 2n−1 and c2n−1	 3n−2

and remark that

(c0	 n−1+ c2n−1	 3n−2)+Xn−1 cn−1	 2n−1= c rem (X2n−1− 1). (1.1)

Consequently given

a(1),	 , a(ω2n−2) 7 FFT(a, ω)

b(1),	 , b(ω2n−2) 7 FFT(b, ω)

we reconstruct e7 c rem (X2n−1 − 1) by e =
1

2n− 1
FFT

((
∑

i=0

2n−2
a(ωi) b(ωi) X i

)

,

ω−1
)

. So finally MP(a, b) = en−1	 2n−1. In practice, we only work with 2ℓth root of
unity and a padding with zeroes is necessary to adjust Formula (1.1).

1.2.3 Short product of polynomials

We denote by k[X]<n the set of polynomials of length lesser or equal to n. Let a,
b∈k[X]<n and define the short product SP(a, b) of a and b as the part c0	n of the
product c7 a b. In other words, c= (a b)modXn. We denote by SP(n) the cost of
the short product of a, b ∈k[X]<n and CSP the ratio with plain multiplication, i.e.
a constant such that SP(n)6CSPM(n) for all n∈N∗.

The situation with the short product is more contrasted than for the middle
product. Although the size of the output is halved, we seldom gain a factor 2 in the
cost: the actual cost of the short product is hard to pin down.

As always, it is easy to adapt the naive multiplication algorithm to compute only
the first terms. In this case, we gain a factor two in the complexity, i.e. CSP=1/2.

Let us now consider Karatsuba’s multiplication. The paper [Mul00] published
the first approach for having CSP< 1 for the cost function M(n) = nlog2(3), which is
an approximation of the cost of Karatsuba’s multiplication. The basic idea is to do
two half-sized recursive calls and use a half-sized multiplication, but this does not
improve the complexity. A refinement of previous idea consists in changing the size of
the cutting of the problem and optimizing the complexity with respect to this size. It
reaches a constant CSP=0.81 for this approximated cost function. However, practical
application of this method to Karatsuba’s algorithm shows that the value 0.81 is
not a upper bound of the ratio of timings but rather an estimation of its average.

36 Relaxed algorithms for multiplication

The analysis of the ratio SP(n)/M(n) for M(n) the exact number of multiplica-
tions of Karatsuba’s algorithm is done [HZ04]. They find the optimal integer cutting
for Karatsuba’s short product and prove that CSP=1 is the best upper bound.

However, the situation is different if we consider an hybrid multiplication
algorithm that uses the naive, quadratic algorithm for small values and switches
to Karatsuba’s method for larger values. In this case, another variant based on
odd/even decomposition [HZ04] performs well. This variant does three half-sized
recursive calls and, intuitively, transfers the factor CSP=1/2 attained by the naive
methods to Karatsuba’s. The paper show that, for a threshold n0 = 32 between
algorithm, one has SP(n) 6 0.57 M(n) for n > n0. The timings of the implemen-
tation of [HZ04] show that this factor CSP = 0.6 is also observed in practice in
the degree range of the Karatsuba multiplication.

No improvement is known for the short product based on FFT multiplication.
However, notice that we can compute c0	n + cn	 2n−1 in time 1/2 M(n) because it
equals to c modulo (Xn−1). We will use this fact in Section 1.3.5 on middle relaxed
multiplication.

1.2.4 The situation on integers
The presence of carries when computing with integers complicates the situation for
all operations. Surprisingly, though, it is possible to obtain a slightly faster plain
multiplication than in the polynomial case. We denote by log∗:R>0→R the iterated
logarithm defined recursively by

log∗ (x)=
{

0 if 0<x6 1
1+ log∗ (log (x)) if 1<x

.

Theorem 1.10. ([Für07, DKSS08]) Two integers with n digits in base p can be
multiplied in bit-complexity O(n log (n) 2log

∗(n)).

Note that this result involves a different complexity model than ours. It seems
that the ideas of [DKSS08] could be adapted to give the same result in our com-
plexity model.

As to middle and short product, few algorithms exist. Indeed, in the integer
case, we face two kinds of problems, both due to carries. First, the middle and short
product can have more than n coefficients. Moreover, the middle product MP(f , g)
can no longer be seen as the middle part of their product.

As always, the naive algorithm adapts well for middle and short product of
integers. The problems due to carries are solved for the Karatsuba middle product
for integers in [Har12]. About the Karatsuba short product, we quote [HZ04]: “the
carries are a simple matter to deal with in Mulders’ method but are a real problem
with our (odd/even) variant”. Finally, it seems that the FFT middle product can
be adapted to integers. Indeed if the middle product is not exactly the middle part
of the multiplication, the difference concerns only a few of the lower and higher
coefficients. Computing a b modulo p2n−1, we get most of the coefficients of the
middle product and compute the missing coefficients in linear time.

We leave it as a future work to implement these methods and to assess their
effect on the complexity of the relaxed multiplication of p-adic integers.

1.2 Off-line multiplication 37

1.2.5 The situation on p-adics
Finally, we prove by a simple reduction that for any p-adic ring Rp, the cost function
of off-line p-adic multiplication is always quasi-linear.

Theorem 1.11. For any p-adic ring Rp, the cost I(n) of multiplication of p-adics
of size n is bounded by O(M(n) log (n)2).

Proof. Let a =
∑

i=0

n−1
ai p

i and b=
∑

i=0

n−1
bi p

i be p-adics of length bounded by n.

Introduce the polynomials A =
∑

i=0

n−1
ai X

i and B =
∑

i=0

n−1
bi X

i of R[X] and let
C =

∑

i=0

2n−2
ciX

i∈R[X] be the product of A and B.
Since the length of the coefficients ci of C is bounded by ℓc 7 ⌈log2 (n)⌉ + 2,

we can multiply the polynomials A and B in the ring (R/(pℓc))[X] and recover C.
Arithmetic operations in (R/(pℓc)) can be computed in time O(I(log (n))), so we
obtain C at cost O(I(log (n))M(n)); taking the naive bound I(n)=O(n2), we get the
claimed cost O(M(n) log (n)2).

Finally the p-adic c7 a b equals to C(p). In view of the third point in Lemma 1.1,
the cost of the additions necessary to compute C(p) is O(n log (n)). �

1.3 Relaxed algorithms for multiplication

In this section, we recall several relaxed algorithms for the on-line multiplication
of p-adics, we analyze precisely their costs and give timings of our implementation
using NTL. To our knowledge, no such precise comparison existed before.

Besides, we introduce a new relaxed multiplication algorithm using middle and
short product, and show that it can perform better than some previous ones.

We start by recalling the state-of-the-art of on-line p-adic multiplication.

Theorem 1.12. ([FS74, Hoe97, BHL11]) Whenever Rp is a power series ring
or the ring of p-adic integers, the cost R(n) of multiplying two p-adics at precision
n by an on-line algorithm is

O
(

∑

k=0

⌊log2(n)⌋
n

2k
I(2k)

)

=

{

O(I(n)) for naïve or Karatsuba’s multiplication

O(I(n) log (n)) for FFT multiplication
.

The previous result was first discovered for integers in [FS74]; the details for
the multiplication of power series were given in [Hoe97] and the paper [BHL11]
generalizes relaxed algorithms for p-adic integers. The latter algorithm is correct for
any p-adic ring but the authors analyze the complexity only for the p-adic integers.
The issue with general p-adic rings is the management of carries. Although we do
not prove it here, we believe that this complexity result carries forward to any p-
adic ring.

Remark 1.13. Recent progress has been made on relaxed multiplication [Hoe07,
Hoe12]. These papers give an on-line algorithm that multiplies power series on a
wide range of rings, including all fields, in time

M(n) log (n)o(1).

38 Relaxed algorithms for multiplication

Also, on-line multiplication of p-adic integers at precision n can be done in bit
complexity

n log (n)1+o(1) log (p) log (log (p)).

We will not give the details of these algorithms here.

In the next subsections, we will give a short presentation of the relaxed product
algorithms that reach the bound of Theorem 1.12. Existing algorithms can be found
in Sections 1.3.2, 1.3.3 and 1.3.4. Our new relaxed multiplication algorithm using
short and middle product is presented in Section 1.3.5.

Although the algorithms are correct for any p-adic ring Rp, we will analyze their
cost in the special case of power series rings: the exposition will be simplified since
there are no carries.

To establish comparisons, and for the sake of completeness, we give for the
first time the constants hidden in the big-O notation of the complexity estimates.
All the following complexity analyses take into account only the number of basic
multiplications, and do not count the basic additions. For the rest of this chapter,
the multiplicative complexity of an algorithm is the number of basic multiplications
it performs. We denote by M∗ the multiplicative complexity function of polynomial
multiplication. We sum up these bounds in the next two tables.

Table 1.1 gives bounds on the multiplicative complexity of semi-relaxed multipli-
cation algorithms depending on the algorithm we use to multiply truncated power
series (naive, Karatsuba or FFT).

The semi-relaxed multiplication algorithm which appears in [Hoe07] gives the
costs of the first line; we give an overview of this algorithm in Section 1.3.2. The
second line corresponds to the semi-relaxed algorithm using middle product pre-
sented in [Hoe03], which can be found in Section 1.3.3.

naive Karatsuba FFT

semi-relaxed 62M∗(n) 63M∗(n) ∼1

2
M∗(n) log2 (n)

semi-relaxed with middle 61.5M∗(n) 62M∗(n) ∼1

4
M∗(n) log2 (n)

Table 1.1. Multiplicative complexity of the semi-relaxed multiplication of power series

Table 1.2 describes relaxed algorithms. The first line of Table 1.2 corresponds
to the relaxed multiplication algorithm of [FS74, Hoe97, BHL11]. This algorithm is
presented in Section 1.3.4. Our contribution, the relaxed multiplication using middle
and short product, gives the results of the second line. It is presented in Section 1.3.5.

naive Karatsuba FFT

relaxed 6M∗(n+1) 62.5M∗(n+1) ∼M∗(n) log2 (n)

relaxed with short
and middle

6M∗(n+1) 6

{

1.75M∗(n+1) if CSP=
1

2

2.5M∗(n+1) if CSP=1
∼ 1

2
M∗(n) log2 (n)

Table 1.2. Multiplicative complexity of the relaxed multiplication of power series

1.3 Relaxed algorithms for multiplication 39

Remark 1.14. It was remarked in [Hoe97, Hoe02] that the Karatsuba multipli-
cation could be rewritten as a relaxed algorithm, thus leading to a relaxed multiplica-
tion algorithm with exactly the same numbers of operations.

However, this algorithm is often not practical. The rewriting induces Ω(log (n))
function calls at each step of the multiplication, which makes it very poorly suited
to practical implementations. For these reasons, we will not study this algorithm.

Remark 1.15. When the required precision n is known in advance, it is possible to
adapt the on-line multiplication algorithms to this specific precision and thus lower
the bounds given in Tables 1.1 and 1.2 (see [Hoe02, Hoe03]). An example of such
an algorithm is given in the paragraph “Link between divide-and-conquer and semi-
relaxed” in Section 1.3.3. However, these considerations are not developed further
in this thesis.

We choose to present a simple form of the relaxed product algorithms, which will
be convenient to understand the operations made in the computation of recursive
p-adics in the next chapter. We allocate ourselves the memory to store the current
state of the computation and we indicate to the program at which step we are. If
one were to implement these algorithms, our description would not be appropriate.
We would recommend the implementation described in [Hoe02, BHL11], which is
actually very close to the implementation in Mathemagix [HLM+02].

1.3.1 Complexity preliminaries

We introduce three auxiliary complexity functions from N to N,

M
(1)
(n) 7 ∑

k=0

⌊log2(n)⌋

M∗(2k)

M
(2)
(n) 7 ∑

k=0

⌊log2(n)⌋ ⌊
n

2k

⌋

M∗(2k)

M
(3)
(n) 7 ∑

k=0

⌊log2(n)⌋ ⌊
n

2(k+1)
+

1

2

⌋

M∗(2k).

These functions will be used afterwards to assess the multiplicative complexity of
our (semi-)relaxed multiplication algorithms.

Lemma 1.16. Let ℓ7 ⌊log2 (n)⌋ and n=
∑

i=0

ℓ
nī 2

i be the base-2 expansion of n.
Assume that M∗(1) = 1 and that there exists α ∈]1; +∞[such that for all n ∈ N,
M∗(2n)= 2αM∗(n). Then

M
(1)
(n) 7 2α

2α− 1
M∗(2ℓ)− 1

2α− 1

M
(2)
(n) 7 2α

2α− 2

∑

i=0

ℓ

nīM
∗(2i)− 2n

2α− 2

M
(3)
(n) 7 2α− 1

2α− 2

∑

i=0

ℓ

nīM
∗(2i)− n

2α− 2
.

40 Relaxed algorithms for multiplication

Proof. First

M
(1)
(n)=

∑

k=0

ℓ

2αk=
2α(ℓ+1)− 1

2α− 1
=

2α

2α− 1
M∗(2ℓ)− 1

2α− 1
.

Next, one has

M
(2)
(n) =

∑

k=0

ℓ
∑

i=k

ℓ

nī 2
i−kM∗(2k)

=
∑

i=0

ℓ

nī 2
i
∑

k=0

i

2(α−1)k

=
∑

i=0

ℓ

nī 2
i 2

(α−1)(i+1)− 1

2(α−1)− 1

=
2α

2α− 2

∑

i=0

ℓ

nīM
∗(2i)− 2n

2α− 2
.

Finally, we have the equalities

M
(3)
(n) =

∑

k=0

ℓ (⌊

n

2(k+1)

⌋

+nk̄

)

M∗(2k)

=
∑

k=0

ℓ
∑

i=k+1

ℓ

nī 2
i−(k+1)M∗(2k)+

∑

k=0

ℓ

nk̄ M
∗(2k)

=
∑

i=1

ℓ

nī 2
i−1
∑

k=0

i−1

2(α−1)k+
∑

k=0

ℓ

nk̄ M
∗(2k)

=
∑

i=1

ℓ

nī 2
i−1 2

(α−1)i− 1

2(α−1)− 1
+
∑

k=0

ℓ

nk̄ M
∗(2k)

=

(

1

2α− 2

∑

i=0

ℓ

nīM
∗(2i)− n

2α− 2

)

+
∑

k=0

ℓ

nk̄ M
∗(2k)

=
2α− 1

2α− 2

∑

i=0

ℓ

nī M
∗(2i)− n

2α− 2
.

�

Lemma 1.17. Assume that M∗ counts the number of multiplication of the naive or
Karatsuba’s algorithm. Let n=

∑

i=0

ℓ
nī 2

i be the base-2 expansion of n. Then

M∗(2ℓ)+ (M∗(3)−M∗(2))
∑

i=0

ℓ−1

nīM
∗(2i)6M∗(n).

Proof. Under the same hypothesis on M∗, we start by proving that for any n> 1,

M∗(2n) + (M∗(3)−M∗(2))M∗(1)6M∗(2n+1). (1.2)

1.3 Relaxed algorithms for multiplication 41

Let C7 (M∗(3)−M∗(2)). For the naive multiplication algorithm, one has

C =56M∗(2n+1)−M∗(2n) = 4n+1.

For Karatsuba’s multiplication algorithm, we proceed as follows. Recall that the
Karatsuba’s cost function satisfies M∗(n) = 2 M∗(⌈n/2⌉) + M∗(⌊n/2⌋). We have to
prove the inequality

C =46M∗(2n+1)−M∗(2n)= 2 (M∗(n+1)−M∗(n)).

So we prove that for any n> 1, M∗(n+1)−M∗(n)> 2. First, M∗(2)−M∗(1)=2 and
M∗(3)−M∗(2)>2. Then recursively, we assume that the result is true until n>2 and
prove it for n+1. We separate the odd and even cases. If n+1=2 k, then k>1 and

M∗(n+2)−M∗(n+1)= 2M∗(k+1)+M∗(k)− 3M∗(k)= 2 (M∗(k+1)−M∗(k))> 4.

Else, if n+1=2 k+1, then k> 1 and

M∗(n+2)−M∗(n+1)=3M∗(k+1)− (2M∗(k+1)+M∗(k))=M∗(k+1)−M∗(k)>2.

So Equation (1.2) is proved and we can prove the lemma. First,

M∗(2ℓ) +C n̄ℓ−1M
∗(2ℓ−1) = 3ℓ−1 (M∗(2)+C n̄ℓ−1M

∗(1))

6 3ℓ−1M∗(2+ n̄ℓ−1 · 1)
= M∗(2ℓ+ n̄ℓ−1 · 2ℓ−1).

Then

M∗(2ℓ) +C
∑

i=ℓ−2

ℓ−1

nīM
∗(2i) 6 M∗(2ℓ+ n̄ℓ−1 · 2ℓ−1)+C n̄ℓ−2M

∗(2ℓ−2)

= 3ℓ−2 (M∗(4+ n̄ℓ−1 · 2)+C n̄ℓ−2M
∗(1))

6 3ℓ−2M∗(4+ n̄ℓ−1 · 2+ n̄ℓ−2 · 1)
= M∗(2ℓ+ n̄ℓ−1 · 2ℓ−1+ n̄ℓ−2 · 2ℓ−2).

We repeat this process until we have

M∗(2ℓ)+C
∑

i=0

ℓ−1

nī M
∗(2i)6M∗

(

∑

i=0

ℓ

nī 2
i

)

=M∗(n). �

Lemma 1.18. If M∗(n) =Kn (log2 n)i (log2 log2 n)j with K ∈R>0, (i, j)∈N2, one
has

M
(2)
(n) ∼n→∞

1

(i+1)
M∗(n) log2 (n)

M
(3)
(n) ∼n→∞

1

2 (i+1)
M∗(n) log2 (n).

42 Relaxed algorithms for multiplication

Proof. We set the notation ℓ7 ⌊log2 (n)⌋. As M∗ is a super-linear function, we get

M
(1)
(n) 6

∑

k=0

ℓ
1

2ℓ−k
M∗((2ℓ/2k) 2k)6 2M∗(n).

Also, one has

M
(2)
(n) =

∑

k=0

ℓ

⌊n/2k⌋M∗(2k) =
∑

k=0

ℓ

(n/2k)M∗(2k)+On→∞

(

M
(1)
(n)
)

.

Since M
(1)
(n)=On→∞(M∗(n)) and since one has for n→∞

∑

k=0

ℓ

(n/2k)M∗(2k) ∼ K
∑

k=0

ℓ

(n/2k) 2k ki log2
j (k)

∼ Kn

(

∑

k=0

ℓ

ki log2
j (k)

)

∼ Kn

(

ℓi+1

i+1
log2

j (ℓ)

)

we deduce that M(2)
(n)∼n→∞

1

(i+1)
M∗(n) log2 (n). Finally, we deal with M

(3):

M
(3)
(n)=

∑

k=0

ℓ
n

2k+1
M∗(2k)+On→∞

(

M
(1)
(n)
)

∼n→∞
1

2 (i+1)
M∗(n) log2 (n). �

1.3.2 Semi-relaxed multiplication

The forthcoming half-line algorithm for the multiplication of p-adics was introduced
in [FS74, Hoe03]. We briefly recall its mechanism. To do the product of p-adics
a and b, we use extra inputs c ∈ Rp and i ∈ N: the p-adic c stores the current
state of the computation and the integer i indicates at which step we are. The
SemiRelaxedProductStep algorithm requires multiplications between finite preci-
sion p-adics. Because the required coefficients of a and b are known at that moment,
any multiplication algorithm that takes as input truncated p-adics can be used.

We denote by ν2(n) the valuation in 2 of the integer n. We obtain the following
algorithm of which a is the only on-line argument.

Algorithm SemiRelaxedProductStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. for k from 0 to ν2(i+1)

a. c= c+ ai−2k+1	 i+1 b2k−1	 2k+1−1 p
i

2. return c

1.3 Relaxed algorithms for multiplication 43

The diagram in Figure 1.3 will help us to understand the multiplications done in
Algorithm SemiRelaxedProductStep. The coefficients a0, a1, 	 of a are placed in
abscissa and the coefficients b0, b1,	 of b in ordinate. Each unit square corresponds
to a product between corresponding coefficients of a and b, i.e. the unit square
whose left-bottom corner is at coordinates (i, j) stands for ai bj. Each bigger square
corresponds to a product of finite precision p-adics; an s × s square whose left-
bottom corner is at coordinates (i, j) stands for ai	 i+s bj	 j+s. The number inside
the square indicates at which step this computation is done.

a

b

0 1 2 3 4 5 6

1 3 5

3

a0 a1 a2 	b0

b1

b2

�
Figure 1.3. Semi-relaxed multiplication

We define two properties for any algorithm Algo with entries in Rp
3 × N and

output in Rp. These properties check that the algorithm computes progressively the
product of the first two entries. The property (HL) is the half-line variant and the
property (OL) is the on-line variant.

Property (HL): For any n ∈ N and any a, b, c0 ∈ Rp, the result c ∈ Rp of the
computation

Algorithm Loop
Algo

Input: a, b, c0∈Rp and n∈N

Output: c∈Rp

1. c= c0

2. for i from 0 to n

a. c= Algo(a, b, c, i)

3. return c

satisfies c = c0 + a b modulo pn+1. Moreover, during the computation, the Turing
machine reads at most the coefficients a0,	 , an of the input a.

Property (OL): Algorithm Algo must satisfy Property (HL) and, additionally,
read at most the coefficients b0,	 , bn of the input b.

44 Relaxed algorithms for multiplication

Property (HL) states that the algorithm Algo is half-line and increments the
number of correct p-adic coefficients of the product c= a b. This is the case for our
algorithm SemiRelaxedProductStep.

Proposition 1.19. Algorithm SemiRelaxedProductStep satisfies Property (HL).

We can check on Figure 1.3 that for all n∈N, all the coefficients of the product
a b=

∑

i=0

n ∑

j=0

i
aj bi−j p

i modulo pn+1 are computed by the semi-relaxed product
before or at step n. We can also check that the algorithm is half-line in a since at
step i, we use at most the coefficients a0, 	 , ai of a. However the operand b is off-
line because, for example, it reads the coefficients b0,	 , b6 of b at step 3.

Complexity analysis As said before, we analyze the cost in the special case of
Rp being a power series ring. For this reason, truncated p-adics are polynomials and
their multiplication cost is denoted by M∗(n). For the sake of clarity, Algorithm
Loop

SemiRelaxedProductStep
will also be called Algorithm SemiRelaxedProduct.

The cost SR∗(n) of all the off-line polynomial multiplications in the semi-relaxed
algorithm SemiRelaxedProduct up to precision n (i.e. the terms in pi for 06 i<n)
is exactly M

(2)
(n). Indeed, we do at each step a product of polynomials of degree 0

which each costs M∗(1) = 1. We do every other step, starting for step 1, a product
of polynomials of degree 1 which each costs M∗(2) and so on.

Proposition 1.20. One has

SR∗(n)6

{

2M∗(n) for the naive multiplication
3M∗(n) for Karatsuba’s multiplication

and these bound are asymptotically optimal since

SR∗(2m)∼m→∞

{

2M∗(2m) for the naive multiplication
3M∗(2m) for Karatsuba’s multiplication.

Moreover when M∗(n)=Kn log2 (n) log2 (log2 (n)) with K ∈R>0, one has

SR∗(n)∼n→∞
1

2
M∗(n) log2 (n).

Proof. Let us begin with the case where M∗ is the cost function of the naive or
Karatsuba’s multiplication. Using Lemma 1.16 for the first equality and Lemma 1.17
for the second inequality, we have that for all n∈N,

SR∗(n) =
2α

2α− 2

∑

i=0

ℓ

nī M
∗(2i)− 2n

2α− 2

6
2α

2α− 2
M∗(n) + 0.

When n=2m, one has

SR∗(2m)=
2α

2α− 2
M∗(2m)− 2 · 2m

2α− 2
∼m→∞

2α

2α− 2
M∗(2m).

1.3 Relaxed algorithms for multiplication 45

At last, when M∗(n)=Kn log2 (n) log2 (log2 (n)), we use Lemma 1.18 to obtain

SR∗(n)∼n→∞
1

2
M∗(n) log2 (n). �

This gives the entries of the first line in Table 1.1, keeping in mind that the cost
of additions O(n log (n)) is omitted.

1.3.3 Semi-relaxed multiplication with middle product

Another semi-relaxed algorithm, using middle products, was introduced in [Hoe03].
Whereas the semi-relaxed product SemiRelaxedProduct used plain multiplication
on truncated p-adics as a basic tool, middle products are used to compute incremen-
tally the product a b. Naturally, the following algorithm is of interest when there
exists efficient middle and short product algorithms, e.g. when Rp = k[[X]]. This
algorithm is on-line with respect to the input a.

Algorithm SemiRelaxedProductMiddleStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. Let m7 ν2(i+1)

2. c= c+MP(ai−2m+1	 i+1, b0	 2m+1−1) p
i

3. return c

The mechanism of the algorithm is sketched in Figure 1.4.

0 1 2 3 4 5 6 7 8 9 1011 12 13
a

b

Figure 1.4. Semi-relaxed multiplication with middle product

46 Relaxed algorithms for multiplication

Proposition 1.21. Algorithm SemiRelaxedProductMiddleStep satisfies Property
(HL).

This algorithm is still half-line for a because at step i, only the coefficients a0,	 ,

ai are required. The input argument b is off-line because, for example, at step 3 the
algorithms reads b0,	 , b6.

Complexity analysis Let MP∗ be the multiplicative complexity function
of the middle product. The multiplicative complexity SRM∗(n) of the semi-
relaxed multiplication algorithm SemiRelaxedProductMiddle, that is Algorithm
Loop

SemiRelaxedProductMiddleStep
, for power series up to precision n is

SRM∗(n)=
∑

k=0

⌊log2(n)⌋ ⌊
(n+2k)

2k+1

⌋

MP∗(2k).

Indeed, as we can see on Figure 1.4, we do a middle product of degree 2k each 2k+1

step starting from step 2k− 1.

Proposition 1.22. One has

SRM∗(n)6

{

1.5M∗(n) for the naive multiplication
2M∗(n) for Karatsuba’s multiplication

and these bound are asymptotically optimal since

SRM∗(2m)∼m→∞

{

1.5M∗(2m) for the naive multiplication
2M∗(2m) for Karatsuba’s multiplication .

Moreover when M∗(n)=Kn log2 (n) log2 (log2 (n)) with K ∈R>0, one has

SRM∗(n)∼n→∞
1

4
M∗(n) log2 (n).

This proposition gives the entries of the second line in Table 1.1.

Proof. Let ℓ7 ⌊log2 (n)⌋. Since MP∗(n)=M∗(n) (see Section 1.2.2), we deduce that

SRM∗(n)7 ∑

k=0

⌊log2(n)⌋ ⌊
(n+2k)

2k+1

⌋

M∗(2k)=M
(3)
(n).

We start by taking M∗ the cost function of the naive or Karatsuba’s multiplication.
By Lemma 1.16 and Lemma 1.17, one has

SRM∗(n)=M
(3)
(n)=

2α− 1

2α− 2

∑

i=0

ℓ

nī M
∗(2i)− n

2α− 2
6

2α− 1

2α− 2
M∗(n).

When n=2m, one has

SRM∗(2m)=
2α− 1

2α− 2
M∗(2m)− 2m

2α− 2
∼m→∞

2α− 1

2α− 2
M∗(2m).

1.3 Relaxed algorithms for multiplication 47

Finally in the case where M∗(n) =Kn log2 (n) log2 (log2 (n)) with K ∈R>0, we use
Lemma 1.18 to get

SRM∗(n)∼n→∞
1

4
M∗(n) log2 (n). �

Link between divide-and-conquer and semi-relaxed In fact, the algorithm
of [Hoe03], referred as the DAC algorithm from now on, is a little bit different. It is
based on the following divide-and-conquer approach. Let us fix the desired precision
n in advance. The computation of c=a b at precision n reduces to the computation
of c0	 k, MP(a0	 ℓ, bn+1−2ℓ	n) and d0	 k where k7 ⌊n/2⌋, ℓ7 ⌈n/2⌉ and d7 aℓ	nb0	 k.
Then

c0	n= c0	 k+MP(a0	 ℓ, bn+1−2ℓ	 n) p
n+1−ℓ+ d0	 k p

ℓ.

This cutting of the problem can be seen geometrically on Figure 1.5.

a

b

0
1

2

2
4

3 5

Figure 1.5. Divide-and-conquer truncated p-adics multiplication for n=6

We have to compute the terms of the product inside a triangle. We make the
biggest rhombus fit in the top left corner of the triangle; this corresponds to the
middle product we do. Then the remaining area is the union of two triangles, which
corresponds to two recursive calls. Now the DAC algorithm just reorders the com-
putation so it can be relaxed up to precision n. Notice that our algorithm coincides
with the DAC algorithm for precisions n that are powers of two minus one.

The first difference with our algorithm is that the scheme of computation of
the DAC algorithm is adapted to the precision n; at step n − 1, no unnecessary
term of the product has been computed in the DAC algorithm. This differs with
our algorithm which of course anticipates some computations. Therefore the DAC
algorithm compares better to the off-line multiplication algorithm of Section 1.2.1.

Because the semi-relaxed multiplication using middle product comes from a
divide-and-conquer approach, we should not be surprised if some relaxed algorithms
for further problems based on this implementation of the multiplication coincides
with divide-and-conquer algorithms. We will encounter two examples during this
thesis: when solving a linear system over p-adics in Chapter 3 and when solving
singular linear differential equations in Chapter 4.

48 Relaxed algorithms for multiplication

1.3.4 Relaxed multiplication

Historically, the computation scheme of the forthcoming algorithm came from the
on-line multiplication for integers of [FS74]. Then came the on-line multiplication
for real numbers in [Sch97], and relaxed multiplication for power series [Hoe97,
Hoe02], improved in [Hoe07] for some ground fields. This algorithm was extended to
the multiplication of p-adic integers in [BHL11]. It is on-line with respect to both
inputs a and b.

Algorithm RelaxedProductStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. for k from 0 to ν2(i+2)

a. c= c+ ai+1−2k	 i+1 b2k−1	 2k+1−1 p
i

b. if (i+2=2k+1)
return c

c. c= c+ a2k−1	 2k+1−1 bi+1−2k	 i+1 p
i

2. return c

Here is a diagram that sums up the computation made at each step. We can see on
this figure that the algorithm is online and that at step i, the product is correct up
to at least precision i+1.

0 1 2 3 4 5
1
2 2 4

3
4 4

6 7 8 9

6 8

65
6
7
8

6

8

9

a

b

Figure 1.6. Relaxed multiplication

The relaxed algorithm is built recursively with the help of the semi-relaxed
product. Suppose the relaxed product algorithm is constructed up to precision 2m−
1. Then one can extend it up to precision 2m+1 − 1 with two semi-relaxed algo-
rithms for a2m−1	∞ b and a b2m−1	∞. Then at precision 2m+1 − 1, one completes
the computations with the product a2m−1	 2m+1−1 b2m−1	 2m+1−1 to obtain the terms
∑

06i,j62m+1−1
ai bj p

i+j of the product a b. This construction is more obvious in
Figure 1.6, where we identify the diagrams of the two semi-relaxed products.

1.3 Relaxed algorithms for multiplication 49

Proposition 1.23. Algorithm RelaxedProductStep satisfies Property (OL).
Once again, Figure 1.6 is of great help to see that the relaxed product algorithm

does indeed compute the product a b. It is also easy to check that the algorithm is
on-line on the diagram.

Complexity analysis Denote by R∗(n) the cost induced by all off-line multiplica-
tions done up to precision n, in the case where R=k[X]. We can express it as

R∗(n)=
∑

k=0

⌊log2(n+1)⌋−1 (

2

⌊

n+1

2k

⌋

− 3

)

M∗(2k).

Proposition 1.24. One has

R∗(n)6

{

M∗(n+1) for the naive multiplication
2.5M∗(n+1) for Karatsuba’s multiplication

and these bounds are asymptotically optimal.
Moreover when M∗(n)=Kn log2 (n) log2 (log2 (n)) with K ∈R>0, one has

R∗(n)∼n→∞M∗(n) log2 (n).

Proof. Let ℓ7 ⌊log2 (n + 1)⌋ and n + 1 =
∑

i=0

ℓ
nī 2

i be the base-2 expansion of
n+1. We can express R∗(n) in terms of auxiliary complexity functions by

R∗(n)= 2M
(2)
(n+1)− 3M

(1)
(n+1)+M∗(2ℓ). (1.3)

Assume that M∗ is the cost function of the naive or Karatsuba’s multiplication.
Then, using Lemma 1.16, one has

R∗(n) = 2

(

2α

2α− 2

∑

i=0

ℓ

nī M
∗(2i)− 2n

2α− 2

)

− 3

(

2α

2α− 1
M∗(2ℓ)− 1

2α− 1

)

+M∗(2ℓ)

=

(

2 · 2α
2α− 2

− 3 · 2α
2α− 1

+1

)

M∗(2ℓ) +
2 · 2α
2α− 2

∑

i=0

ℓ−1

nīM
∗(2i)+

3

2α− 1
− 4n

2α− 2

= C1M
∗(2ℓ)+C2

∑

i=0

ℓ−1

nīM
∗(2i)−C3

with C1=
2α+2

(2α− 2) (2α− 1)
, C2=

2 · 2α

2α− 2
and C3=

4n

2α− 2
− 3

2α− 1
. We begin by proving that

for all n∈N>0, C3> 0. Indeed (C3> 0)⇔
(

n>
3 (2α− 2)

4 (2α− 1)

)

and

3 (2α− 2)

2 (2α− 1)
=

{

1/2 for α=2 (naïve multiplication)
3/8 for α= log2 (3) (Karatsuba’s multiplication)

.

We can use Lemma 1.17 to deduce that R∗(n) 6 C1 M
∗(n + 1) because C2/C1 6

(M∗(3)−M∗(2)) for both naïve and Karatsuba’s multiplication.
For n=2m, one has

R∗(2m) = C1M
∗(2m)−C3∼m→∞C1M

∗(2m).

The result for FFT multiplication is a consequence of Lemma 1.18 and Equa-
tion (1.3). �

50 Relaxed algorithms for multiplication

The previous proposition proves the first row in the second table given in the
introduction of this section.

1.3.5 Relaxed multiplication with middle and short products
In this subsection, we introduce a new on-line algorithm that uses both middle and
short products. This algorithm improves by a constant factor the relaxed multipli-
cation of the previous subsection.

We start by giving an overview of our scheme of computation. Figure 1.7 sums up
the computations of the relaxed product algorithm using middle and short products.

0 1 3 7 9
1

3

7

9

2

5
8

8

5

4

4
6

10

10

a

b

Figure 1.7. Relaxed multiplication with middle and short products

Similarly to the classical relaxed multiplication, we build our new relaxed multi-
plication algorithm on top of the semi-relaxed product with middle algorithm. The
construction is recursive. Suppose that you have a relaxed multiplication algorithm
up to precision 2m− 1 and that all the coefficients

∑

i=0

2m−2
∑

j=0

2m−2

ai bj p
i+j

of the product were computed at step 2m − 2. Then, for steps i with 2m − 1 6

i 6 2m+1 − 3, we perform two semi-relaxed products for computing a2m−1	∞ b

and a b2m−1	∞. Therefore, at step 2m+1 − 3, we have computed the coefficients
∑

06i+j62m+1−3
ai bj p

i+j of a b. In order to continue the induction, we have to
compute at step d=2m+1− 2 the missing terms

∑

06i,j6d, i+j>d

ai bj p
i+j

.

These terms form a triangle on the diagram and can be computed by a short product
∑

06i,j6d, i+j>d

ai bj p
i+j7 revd(SP(revd(a), revd(b))) pd

1.3 Relaxed algorithms for multiplication 51

where revd(a) =
∑

i=0

d
ad−i p

i. Thus, right after step 2m+1 − 2, we have the terms
∑

i=0

2m+1−2∑

j=0

2m+1−2
ai bj p

i+j of the product a b and we can pursue the induction. This
gives us the following algorithm, that is on-line with respect to both inputs a and b.

Algorithm RelaxedProductMiddleStep

Input: a, b, c∈Rp and i∈N

Output: c∈Rp

1. m= ν2(i+2)

2. if (i+2=2m)

a. c= c+ revi(SP(revi(a0	 i+1), revi(b0	 i+1))) p
i

b. return c

3. c= c+MP(ai−2m+1	 i+1, b0	 2m+1−1)

4. c= c+MP(bi−2m+1	 i+1, a0	 2m+1−1)

5. return c

Remark 1.25. Even if there is no efficient short FFT multiplication algorithm, we
can compute the short product of Step 2 efficiently. Indeed, we noticed in Section
1.2.3 that we adapt the FFT multiplication to compute c0	n+ cn	 2n−1 where c=a b

and a, b are polynomials of length n. Since the part c0	n was already computed by
previous steps, we can access to cn	 2n−1 = revn−1(SP(revn−1(a0	 n), revn−1(b0	n)))
in half the time of a multiplication.

As expected, our algorithm is a relaxed algorithm that computes the product of
two elements a, b∈Rp. These properties can be read on Figure 1.7.

Proposition 1.26. Algorithm RelaxedProductMiddleStep satisfies Property
(OL).
Complexity analysis Denote by RM∗(n) the cost of the relaxed multiplication
with middle products up to precision n. Let ℓ7 ⌊log2 (n+ 1)⌋ so that this costs is
given by

RM∗(n)=
∑

k=1

ℓ

SP∗(2k− 1)+2
∑

k=0

ℓ−1 ⌊
n+1

2k+1
− 1

2

⌋

MP∗(2k).

This formula comes from the fact that two middle products in size 2k are done every
2k+1 steps, starting from step 3 · 2k − 2. We distinguish two cases for Karatsuba’s
multiplication depending on the value of the ratio CSP between short and plain
multiplication.

Proposition 1.27. One has

RM∗(n)6

M∗(n+1) for the naive multiplication with CSP=1/2
1.75M∗(n+1) for Karatsuba’s multiplication if CSP=1/2
2.5M∗(n+1) for Karatsuba’s multiplication if CSP=1

and these bounds are asymptotically optimal.

52 Relaxed algorithms for multiplication

Moreover, when M∗(n)=Kn log2 (n) log2 (log2 (n)) with K ∈R>0, one has

RM∗(n)∼n→∞
1

2
M∗(n) log2 (n).

As we will see in the following proof, the supremum of the ratio RM∗(n)/M∗(n+
1) depends linearly in CSP. Therefore we can deduce this supremum for other CSP.
For example, in our implementation, we use the hybrid Karatsuba/naïve algorithm
for plain multiplication (see Section 1.2.3) and an odd/even decomposition for short
product. In this situation, the short product has a ratio CSP=0.6. Although Propo-
sition 1.27 does not deal with this hybrid multiplication algorithm, we believe the
results for “pure” Karatsuba’s multiplication should apply in this case for n large
enough and yield a bound RM∗(n)6 1.9M∗(n).

Proof. Let ℓ7 ⌊log2 (n + 1)⌋ and n + 1 =
∑

i=0

ℓ
nī 2

i be the base-2 expansion of
n+1. SinceMP∗(n)=M∗(n), we can express RM∗(n) in terms of auxiliary complexity
functions by

RM∗(n) 6 CSP

∑

k=1

ℓ

M∗(2k− 1)+2
∑

k=0

ℓ−1 (⌊
n+1

2k+1
+

1

2

⌋

− 1

)

M∗(2k)

6 (CSP− 2)M
(1)
(n+1)+ 2M

(3)
(n+1)

Assume that M∗ is the cost function of the naive or Karatsuba’s multiplication.
Then, using Lemma 1.16, one has

R∗(n) = (CSP− 2)

(

2α

2α− 1
M∗(2ℓ)− 1

2α− 1

)

+2

(

2α− 1

2α− 2

∑

i=0

ℓ

nīM
∗(2i)− n

2α− 2

)

= C1M
∗(2ℓ)+C2

∑

i=0

ℓ−1

nīM
∗(2i)−C3

with C1=
2α (2α− 2)CSP+2

(2α− 2) (2α− 1)
, C2=

2 · (2α− 1)

2α− 2
and C3=

2n

2α− 2
− 2−CSP

2α− 1
. We begin by noticing

that for all n ∈ N>0, C3 > 0. Indeed (C3 > 0) ⇔
(

n >
(2−CSP) (2

α− 2)

2 (2α− 1)

)

and since
CSP> 1/2, one has

(2−CSP) (2
α− 2)

2 (2α− 1)
6

{

1/2 for α=2 (naïve multiplication)
3/8 for α= log2 (3) (Karatsuba’s multiplication)

.

We can use Lemma 1.17 to deduce that R∗(n) 6 C1 M
∗(n + 1) because C2/C1 6

(M∗(3) − M∗(2)) for both naïve and Karatsuba’s multiplication and any constant
1/26CSP6 1.

These bounds are asymptotically optimal:

R∗(2m)=C1M
∗(2m)−C3∼m→∞C1M

∗(2m).

Lemma 1.18 also gives the result for FFT multiplication. �

1.3.6 Block variant
For large n, the ratio between on-line and off-line multiplication algorithms can get
too big to be of any interest. This happens usually when using the FFT multiplica-
tion, as the ratio grows like log2 (n).

1.3 Relaxed algorithms for multiplication 53

In this case, a d-block variant of an algorithm uses a pd-adic representation
of the p-adics in R(pd) = R(p). Instead of writing y =

∑

n>0
yn pn, we write y =

∑

n>0
(yn + yn+1 p +
 + yn+d−1 pd−1) pdn ∈ R(pd). Then the d-block variant

algorithm is on-line in the pd-adic representation. It means that it computes d new
coefficients at each step, instead of one coefficient at a time for an on-line algorithm
in the p-adic representation.

By doing so, we can decrease the ratio between on-line and off-line multipli-
cation algorithms by a constant; a complexity for relaxed product that was like
M∗(n) log2 (n) in p-adic representation gives a new complexity M∗(n) log2 (n/d) in
pd-adic representation. We refer to [BHL11] for details.

1.4 Implementation and timings

We give timings, in seconds, of the different multiplication algorithms for the case
of power series Fp[[X]] with the 29-bit prime number p= 268435459. Computations
were done on one core of a Intel Core i5 at 2.40 GHz with 4Gb of RAM running
a 32-bit Linux. Our implementation uses the polynomial multiplication of NTL
5.5.2 [S+90]. The threshold between the naive and Karatsuba’s multiplications is at
degree 16 and the one between Karatsuba’s and FFT multiplications at degree 1500.

In Figure 1.8, we plot the timings of the multiplication of polynomials and of
several relaxed multiplication algorithms on power series depending on the precision
in abscissa. Both coordinate axes use a logarithmic scale. The name SRM stands for
the semi-relaxed multiplication using middle product of Section 1.3.3. The name
RM stands for the relaxed multiplication using middle (and short) product of Sec-
tion 1.3.5. And so on.

We can see that polynomial multiplication is faster from precision 8 on. The gap
between any relaxed algorithm and the polynomial product remains constant in the
Karatsuba range and grows as soon as we reach the FFT multiplication.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

20 22 24 26 28 210 212 214 216 218

 R
 SR
 RM

 SRM
 NTL

Figure 1.8. Timings of different multiplication algorithms

54 Relaxed algorithms for multiplication

In Figure 1.9, we display the ratio of timings of several relaxed multiplica-
tion algorithms compared to the polynomial product depending on the precision
in abscissa. This plot confirms the theoretical bounds for Karatsuba’s multiplication,
except on a few points, and the constants 1, 1/2 or 1/4 in the asymptotic equiv-
alents for the FFT multiplication. We can see that the use of middle product always
improves the performance of both the relaxed and semi-relaxed multiplication algo-
rithms. We save up to a factor 2, which is attained for the FFT multiplication.

 0

 2

 4

 6

 8

 10

 12

20 22 24 26 28 210 212 214 216 218

 R
 SR
 RM

 SRM

Figure 1.9. Ratio of timings of different relaxed products w.r.t. polynomial multiplication

1.4 Implementation and timings 55

Chapitre 2

Recursive p-adics
This chapter is based on a section of the paper Relaxed Hensel p-adic lifting of

algebraic systems published with J. Berthomieu in the proceedings of ISSAC’12
[BL12]. The present chapter contains additional details, proofs and examples.

One strength of relaxed algorithms is to allow the computation of recursive p-
adics. The contribution of this chapter is to give a precise framework, based on
our notion of shifted algorithms, to compute recursive p-adics. The main result ,
Proposition 2.17, is the building block of almost all relaxed algorithms in this thesis.
Most of the following chapters are dedicated to the exploration of the consequences
of this framework to further problems.

As we will see, solving a recursive equation is very similar to verifying it. There-
fore, the cost of solving such an equation depends mainly on the cost of evaluating
the equation.

2.1 Straight-line programs

Straight-line programs are a model of computation that consist in ordered lists of
instructions without branching. We give a short presentation of this notion and refer
to [BCS97] for more details. We will use this model of computation to describe and
analyze the forthcoming recursive operators and shifted algorithms.

Let R be a ring and A an R-algebra. A straight-line program (s.l.p.) is an ordered
sequence of operations between elements of A. An operation of arity r is a map
from a subset D of Ar to A. We usually work with the binary arithmetic operators
+,−, ·: D=A2→A. We also define for r∈R the 0-ary operations rc whose output
is the constant r and the unary scalar multiplication r × _ by r. We denote the
set of all these operations by Rc and R. Let us fix a set of operations Ω, usually
Ω= {+,−, ·} ∪R∪Rc.

An s.l.p. starts with a number ℓ of input parameters indexed from −(ℓ − 1)
to 0. It has L instructions Γ1,	 , ΓL with Γi= (ωi; ui,1,	 , ui,ri) where −ℓ < ui,1,	 ,

ui,ri < i and ri is the arity of the operation ωi ∈ Ω. The s.l.p. Γ is executable on
a=(a0,	 , aℓ−1) with result sequence b=(b−ℓ+1,	 , bL)∈Aℓ+L, if bi=aℓ−1+i whenever
−(ℓ−1)6 i60 and bi=ωi(bu,1,	 , bu,ri) with (bu,1,	 , bu,ri)∈Dωi

whenever 16 i6L.
We say that the s.l.p. Γ computes b∈A on the entries a1,	 , aℓ if Γ is executable on
a1,	 , aℓ over A and b is a member of the result sequence.

The multiplicative complexity L∗(Γ) of an s.l.p. Γ is the number of operations ωi

that are multiplications · between elements of A.

Example 2.1. Let R=Z, A=Z[X,Y] and Γ be the s.l.p. with two input parameters
indexed −1, 0 and

Γ1=(·;−1,−1), Γ2= (·; 1, 0), Γ3=(1c), Γ4= (−; 2, 3), Γ5=(3×_; 1).

57

First, its multiplicative complexity is L∗(Γ) = 2. Then, Γ is executable on (X,

Y)∈A2, and for this input its result sequence is (X,Y ,X2,X2 Y ,1,X2 Y −1,3X2).

Remark 2.2. For the sake of simplicity, we will associate a “canonical” arithmetic
expression with an s.l.p. It is the same operation as when one writes an arithmetic
expression in a programming language, e.g. C, and a compiler turns it into an s.l.p.
In our case, we fix an arbitrary compiler that starts by the left-hand side of an
arithmetic expression. We use the binary powering algorithm to compute powers of
an expression.

For example, the arithmetic expression ϕ:Z� Z4+1 can be represented by the
s.l.p. with one argument and instructions

Γ1=(·; 0, 0), Γ2=(·; 1, 1), Γ3= (1c), Γ4=(+; 2, 3).

2.2 Recursive p-adics

The study of on-line algorithms is motivated by its efficient implementation of recur-
sive p-adics. To the best of our knowledge, the paper [Wat89] was the first to
mention the lazy computation of power series which are solutions of a fixed point
equation y=Φ(y). The paper [Hoe02], in addition to rediscovering the fast on-line
multiplication algorithm of [FS74], connected for the first time this fast multiplica-
tion algorithm to the on-line computation of recursive power series. Van der Hoeven
named these on-line algorithms, that use the fast on-line multiplication, relaxed
algorithms . Article [BHL11] generalizes relaxed algorithms for p-adics.

We contribute by clarifying the setting in which recursive p-adics can be com-
puted from their fixed point equations y = Φ(y) by an on-line algorithm. For this
matter, we introduce the notion of shifted algorithm.

We will work with recursive p-adics in a simple case and do not need the gen-
eral context of recursive p-adics [Kap01, Definition 7]. We denote by νp(a) the
valuation in p of the p-adic a. For vectors or matrices A ∈ Mr×s(Rp), we define
νp(A)7 mini,j (νp(Ai,j)). We start by giving a definition of recursive p-adics and
their recursive equation that suits our needs.

Definition 2.3. Let ℓ∈N, Φ∈ (Rp[Y1,	 , Yℓ])
ℓ, y ∈ (Rp)

ℓ be a fixed point of Φ, i.e.
y = Φ(y). We write y =

∑

i∈N
yi p

i the p-adic decomposition of y. Let us denote
Φ0= Id and, for all n∈N∗, Φn=Φ ◦
 ◦Φ (n times).

Then, we say that the coordinates (y1,	 , yℓ) of y are recursive p-adics and that
the recursive operator Φ allows the computation of y if, for all n ∈ N, we have
νp(y−Φn(y0))>n+1.

The general case with more initial conditions y0, y1,	 , ys is not considered here
but we believe it would to be an interesting extension of these results.

Proposition 2.4. Let Φ ∈ (Rp[Y1, 	 , Yℓ])
ℓ with a fixed point y ∈ Rp

ℓ and let
y0= y rem p. Suppose νp(JacΦ(y0))> 0. Then Φ allows the computation of y.

Moreover, for all n6m∈N∗, the p-adic coefficient (Φ(y))n does not depend on
the coefficient ym, i.e. (Φ(y))n= (Φ(y+a))n for any a∈ (pnRp)

ℓ.

58 Recursive p-adics

Proof. We prove by induction on n that νp(y−Φn(y0))>n+1. First, notice that
νp(y − y0)> 1. Let us prove the claim for n+ 1, assuming that it is verified for n.
For all y , z ∈ Rp

ℓ , there exists, by Taylor expansion of Φ at z, vectors of p-adics
Θi,j(y ,z)∈Rp

ℓ for 16 i6 j6 ℓ such that

Φ(y)−Φ(z) = JacΦ(z) (y− z)+
∑

16i6j6ℓ

(yi− zi) (yj − zj)Θi,j(y , z).

For all n∈N, we set y(n)7 Φn(y0) and we apply the previous statement to y itself
and z= y(n):

y− y(n+1) = Φ(y)−Φ(y(n))

= JacΦ(y(n)) (y− y(n))+
∑

16i6j6ℓ

(yi− y(n),i) (yj − y(n),j)Θi,j(y , y(n)).

By the induction hypothesis, νp(y − y(n))> n + 1. Also νp(JacΦ(y(0)))> 0 implies
νp(JacΦ(y(n)))> 0. As a consequence, one has νp(y− y(n+1))>n+2.

For the second point, remark that if a∈ (pnRp)
ℓ, then

Φ(y+a)−Φ(y)= JacΦ(y)a+
∑

16i6j6ℓ

ai ajΘi,j (y+a, y)∈ (pn+1Rp)
ℓ

since νp(JacΦ(y))> 0 and νp(ai)> 0 because n∈N∗. �

On-line computation of recursive p-adics Let us recall the ideas to compute
y from Φ(y) in the on-line framework. Let Φ be given as an s.l.p. with operations
in Ω= {+,−, ·} ∪R ∪Rc. First, if a ∈Rp

ℓ , we evaluate Φ(a) in an on-line manner
by performing the arithmetic operations of the s.l.p. Φ with on-line algorithms.
Let OnlineAddStep (resp. OnlineMulStep) be the step of any on-line addition (resp.
multiplication) algorithm.

Algorithm OnlineEvaluationStep

Input: an s.l.p. Φ, a= (a1,	 , aℓ)∈ (Rp)
ℓ,
[

c1
(0)
,	 , cL

(0)]∈ (Rp)
L and i∈N

Output: [c1,	 , cL]∈ (Rp)
L

1. [c−ℓ+1,	 , c0] = [a1,	 , aℓ]

2. [c1,	 , cL] =
[

c1
(0)
,	 , cL

(0)]

3. for j from 1 to L

if (Γj= (′+′; u, v))
cj= OnlineAddStep(cu, cv, cj , i)

if (Γj= (′−′;u, v))
cj= OnlineAddStep(cu,−cv, cj , i)

if (Γj= (′·′;u, v))
cj= OnlineMulStep(cu, cv, cj , i)

if (Γj= (r×_; u))
cj= OnlineMulStep(r, cu, cj , i)

if (Γj= (r;))
cj= r

4. return [c1,	 , cL]

2.2 Recursive p-adics 59

We see that Algorithm OnlineEvaluationStep computes the result sequence [c1,	 ,

cL]∈ (Rp)
L of the s.l.p. Φ on the input a∈ (Rp)

ℓ. If one wants to evaluate Φ on a,
it remains to loop on Algorithm OnlineEvaluationStep.

Algorithm OnlineEvaluation

Input: an s.l.p. Φ, a= (a1,	 , aℓ)∈ (Rp)
ℓ and N ∈N

Output: [c1,	 , cL]∈ (Rp)
L

1. [c1,	 , cL] = [0,	 , 0]

2. for i from 0 to N

[c1,	 , cL] = OnlineEvaluationStep(Φ,a, [c1,	 , cL], i)

3. return [c1,	 , cL]

As expected, OnlineEvaluation is an on-line algorithm.

Proposition 2.5. For any N ∈N, any s.l.p. Φ and a∈ (Rp)
ℓ, the output [c1,	 , cL]

of OnlineEvaluation(Φ,a,N) coincides at precision N+1 with the result sequence
of the s.l.p. Φ on the input a.

Moreover, Algorithm OnlineEvaluation(Φ, a, N) is on-line with respect to its
input a.

Now that we have this algorithm, we want to use the relation y = Φ(y) to
compute the recursive p-adics y. What we really compute is Φ(y): suppose that we
are at the point where we know the p-adic coefficients y0,	 , yN−1 of y and Φ(y)
has been computed up to its (N − 1)st coefficient. Since in the on-line framework,
the computation is done step by step, one can naturally ask for one more step of the
computation of Φ(y). Also, from Proposition 2.4, (Φ(y))N depends only on y0,	 ,

yN−1 so that we should be able to compute it and deduce yN =(Φ(y))N.
We denote by i1,	 , iℓ the indices of the outputs of the s.l.p. Φ.

Algorithm OnlineRecursivePadic

Input: an s.l.p. Φ, y0∈M ℓ and N ∈N

Output: a∈ (Rp)
ℓ

1. a= y0

2. [c1,	 , cL] = [0,	 , 0]

3. for i from 0 to N

a. [c1,	 , cL] = OnlineEvaluationStep(Φ,a, [c1,	 , cL], i)

b. a= [ci1,	 , ciℓ]

4. return a

One’s hope is that, with the notations of Definition 2.3, the output a of Algorithm
OnlineRecursivePadic coincides with the recursive p-adic y at precision N + 1.
But one has to be cautious because, even if (Φ(y))N does not depend on yN, the
coefficient yN could still be involved in anticipated computations at step N and may
introduce mistakes in the following coefficients.

60 Recursive p-adics

Here is an example of this issue that has never been raised before.

Warning 2.6. Take R=Q[X] and p=X so that Rp=Q[[X]]. Let Φ associated to
the arithmetic expression Y � Y 2+X, that is the s.l.p. with one input and output
and instructions

Γ1=(·; 0, 0), Γ2= (Xc), Γ3=(+; 1, 2).

Let y be the only fixed point of Φ satisfying y0=0, that is

y=
1− 4X

√
− 1

2
=X +X2+2X3+5X4+O(X5).

Since Φ′(0)= 0, Φ allows the computation of y.
Let us specialize Algorithm OnlineRecursivePadic in our case. We choose to

take Algorithm LazyAddStep for the addition and Algorithm RelaxedProductStep

for multiplication.

Algorithm 2.1

Input: N ∈N

Output: a∈Rp

1. a=0 (=y0)

2. c=0

3. for i from 0 to N

a. c= RelaxedProductStep(c, a, a, i)

b. a= LazyAddStep(a, c,X , i)

4. return a

Since we already have a0= y0 before step 0, the purpose of this step is to initialize
the computations. Then at the first step, we do the computations

c= c+2 a0 a1X =0, a= a+ (c1+1)X =X.

So after step 1, we get a1=1, which is correct, i.e. a1= y1. Now at step 2 we know
that a0 and a1 are correct and we do

c= c+ (2 a0 a2+ (a1+ a2X)2)X2, a= a+ c2X
2.

Even if a2 � y2, the computations produce c = X2 and a = X + X2 which is
correct at precision 3. As predicted by Proposition 2.4, the incorrect coefficient
(a2 = 0) � (y2 = 1) at the beginning of step 2 did not impact the correct result
a2 = (Φ(a))2 = 1 at the end. However the incorrect a2 � y2 is involved in some
anticipated computations of future terms.

An error appears at step 3: we do

c= c+ (2 a0 a3)X
3, a= a+ c3X

3.

2.2 Recursive p-adics 61

This gives c=X2 and a=X+X2 which differs from the correct result X+X2+2X3

at precision 4.

Remark 2.7. We have just seen that OnlineRecursivePadic do not work for
any on-line addition and multiplication algorithms. As it turns out, it does for lazy
addition and multiplication algorithms, no matter the recursive operator Φ as in
Proposition 2.4. Indeed, lazy algorithms do at step N the computations for (Φ(y))N,
and only them. So when we begin to compute (Φ(y))N, that is at step N , we know
y0, 	 , yN−1 and the unknown value of yN does not change the result. Therefore,
(Φ(y))N is computed correctly for all N ∈N.

This may explain why the issue was not spotted before by papers dealing only
with lazy algorithms [Wat89].

As a conclusion, even if (Φ(y))N does not depend on the p-adic coefficient yN,
the coefficient yN can be involved in anticipated computations leading to errors
later. Since we do not know yN at step N , we must proceed otherwise. Given a
recursive operator Φ∈Rp[Y1,	 , Yℓ]

ℓ, we create another s.l.p. Ψ that computes the
same polynomials Φ(Y1,	 , Yℓ) but does not read the p-adic coefficient yN at step N .

2.3 Shifted algorithms

Because of the issue raised in Warning 2.6, we need to make explicit the fact that yN

is not read at step N of the computation of Φ(y). This issue was never mentioned
in the literature before. In this section, we define the notion of shifted algorithms
and prove that these algorithms compute correctly recursive p-adics by the on-line
method of previous section.

We introduce for all s in N∗ two new operators:

ps×_: Rp → Rp _/ps: psRp → Rp

a � ps a, a � a/ps.

The implementation of these operators just moves (or shifts) the coefficients of the
input. It does not call any multiplication algorithm.

Algorithm OnlineShiftStep

Input: a, c∈Rp, s∈Z and i∈N

Output: c∈Rp

1. c= c+ ai−s p
i

2. return c

Let Ω′ be the set of operations {+, −, ·, ps × _, _/ps} ∪ R ∪ Rc. We update the
definition of Algorithm OnlineEvaluationStep to accept s.l.p.’s with operations in
Ω′.

62 Recursive p-adics

Algorithm OnlineEvaluationStep

Input: an s.l.p. Φ, a= (a1,	 , aℓ)∈ (Rp)
ℓ,
[

c1
(0)
,	 , cL

(0)]∈ (Rp)
L and i∈N

Output: [c1,	 , cL]∈ (Rp)
L

1. [c−ℓ+1,	 , c0] = [a1,	 , aℓ]

2. [c1,	 , cL] =
[

c1
(0)
,	 , cL

(0)]

3. for j from 1 to L

if (Γj= (′+′; u, v))
cj= OnlineAddStep(cu, cv, cj , i)

if (Γj= (′−′;u, v))
cj= OnlineAddStep(cu,−cv, cj , i)

if (Γj= (′·′;u, v))
cj= OnlineMulStep(cu, cv, cj , i)

if (Γj= (r×_; u))
cj= OnlineMulStep(r, cu, cj , i)

if (Γj= (r;))
cj= r

if (Γj= (ps×_; u))
cj= OnlineShiftStep(cu, cj , s, i)

if (Γj= (_/ps;u))
cj= OnlineShiftStep(cu, cj ,−s, i)

4. return [c1,	 , cL]

In the next definition, we define a number, the shift , that will indicate which
coefficients of an input of an s.l.p. are read at any step.

Definition 2.8. Let us consider a Turing machine T with n inputs in Σ∗ and
one output in ∆∗, where Σ and ∆ are sets. We denote by a= (a1,	 , aℓ) an input
sequence of T and, for all 16 i6 ℓ, we write ai= a0

ia1
i	 an

i with aj
i ∈Σ. We denote

by c0c1	 cn the corresponding output, where ck∈∆.
For all input index i with 16 i6 ℓ, we define the set of shifts S(T, i)⊆Z as the

set of integers s∈Z such that, for all input sequences a, the Turing machine produces
ck before reading aj

i for 06 k < j+ s6n.
Also, we define the set of shifts S(T)⊆Z by

S(T)7 ⋂

16i6ℓ

S(T, i).

If s∈S(T), we say that T has shift s.

Algorithms do not have a unique shift: if s ∈ S(T, i) then s′ ∈ S(T, i) for all
integers s′6 s. The definition of shift for a Turing machine is a generalization of the
notion of on-line algorithms.

Corollary 2.9. A Turing machine T is on-line if and only if 0∈S(T). Its ith input
is an on-line argument if and only if 0∈S(T, i).

2.3 Shifted algorithms 63

Example 2.10. Let s ∈ Z and denote by OnlineShift(a, c, s, N) the algorithm
that put OnlineShiftStep(a, c, s, i) in a loop with i varying from 0 to N ∈ N.
This construction is similar to Algorithm Loop

Algo
in Chapter 1. Then Algorithm

OnlineShift(a, c, s, N) has shift s with respect to its input a.

Let us now focus on the rules to compute a shift. Let Φ be a s.l.p. and N be
an integer. We are interested in the shift of Algorithm OnlineEvaluation(Φ, a,

N) with respect to its p-adic input a. Let OnlineEvaluation(Φ, _, N) denote
the partial algorithm which maps a to OnlineEvaluation(Φ, a, N). Recall that
Algorithm OnlineEvaluation(Φ,_,N) merely executes the operations of the s.l.p.
Φ with on-line algorithms. For this reason we are able to define an integer sh(Γ, j , h)
for each output index j and input index h, that will be a shift of Algorithm
OnlineEvaluation(Φ,_, N) with respect to this input and this output.

Definition 2.11. Let Γ=(Γ1,	 ,ΓL) be an s.l.p. over the R-algebra Rp with ℓ input
parameters and operations in Ω′. For any operation index j such that −(ℓ − 1) 6
j 6L and for any input index h such that −(ℓ− 1)6 h6 0, the shift sh(Γ, j , h) of
its jth result bj with respect to its hth input argument is an element of Z ∪ {+∞}
defined as follows.

If j corresponds to an input, i.e. j6 0, we define for all −(ℓ− 1)6h6 0

sh(Γ, j , h)=
{

0 if j= h

+∞ if j � h
.

If j corresponds to an operation, i.e. j > 0, then for all −(ℓ− 1)6h6 0

• if Γj= (ωj;u, v) with ωj ∈{+,−, ·}, then we set

sh(Γ, j , h)7 min (sh(Γ, u, h), sh(Γ, v, h));

• if Γj= (rc;), then sh(Γ, j , h)7 +∞;

• if Γj= (ps×_; u), then sh(Γ, j , h)7 sh(Γ, u, h)+ s;

• if Γj= (_/ps;u), then sh(Γ, j , h)7 sh(Γ, u, h)− s;

• if Γj= (ω;u) with ω ∈R, then we set sh(Γ, j , h)7 sh(Γ, u, h).

Finally if Γ has r outputs indexed by j1,	 , jr in the result sequence, then we define

sh(Γ)7 min ({sh(Γ, jk, h) | 06 k6 r,−(ℓ− 1)6 h6 0}).

The following proposition proves that Algorithm OnlineEvaluation(Γ, _, N)
has shift sh(Γ, j , h) with respect to its hth input and its jth output.

Proposition 2.12. With the notations of Definition 2.11, let y = (y0, 	 , yℓ−1) ∈
(Rp)

ℓ be such that Γ is executable on input y. Let N ∈N and c1,	 , cL be the output
of OnlineEvaluation(Γ, y , N). Let 06 h < ℓ and h̄ = h− (ℓ− 1) be the index of
the input yh in the result sequence.

Then, the computation of (cj)N reads at most the terms (yh)i of the argument
yh where 06 i6max (0, N − sh(Γ, j , h̄)).

64 Recursive p-adics

Proof. By induction on the index j in the result sequence. When j corresponds to
an input, i.e. −(ℓ− 1)6 j6 0, the result cj equals to the input yj+(ℓ−1) so that the
proposition is easily checked.

Now recursively for indices j corresponding to operations, i.e. j > 0. If Γj =
(ps × _; u), then for all N ∈ N, (cj)N = (ps cu)N = (cu)N−s which, by assumption,
reads at most the p-adic coefficients (yh)i of the argument yh where 06 i6max (0,
N − s− sh(Γ, j , h̄)). So the definition matches.

If Γj = (·; u, v), then for all N ∈ N, (cj)N = (cu · cv)N. Since the product cu · cv
is done in Algorithm OnlineEvaluation by an on-line algorithm, the term (cj)N
depends only on the terms up to N of cu and cv, and the proposition follows.

The other cases can be treated similarly. �

Given any s.l.p. Γ, its shift index sh(Γ) can be computed automatically thanks
to Definition 2.11. As an important consequence of Proposition 2.12, if an s.l.p. Ψ
has a positive shift, then the computation of (Ψ(y))N does not read yN.

Example 2.13. We carry on with the notations of Warning 2.6. Recall that we
remarked in Warning 2.6 that (Φ(y)N) involved yℓ for 06 ℓ6N . We have now the
tools to explain this. The shift of the s.l.p. Γ with one argument associated to the
arithmetic expression Z� Z2+X (see Remark 2.2) satisfies

sh(Γ) = min (sh(Z� Z2), sh(Z� X))

= min (min (sh(Z� Z), sh(Z� Z)),+∞)

= min (min (0, 0),+∞)

= 0.

Hence Proposition 2.12 gives that the computation of the ith term output of Φ:
Z � Z2 + X reads the jth term of the input with 0 6 j 6 i, as observed in
Warning 2.6.

Example 2.14. Here is a solution to the issue raised in Warning 2.6. Consider the
s.l.p. deduced from the expression

Ψ:Z� X2×
(

Z

X

)

2

+X.

Then sh(Ψ)= 1, since

sh(Z� X2× (Z/X)2) = sh(Z� (Z/X)2) + 2

= sh(Z� Z/X)+ 2

= sh(Z� Z)+ 1.

So Proposition 2.12 ensures that the s.l.p. Ψ solves the problem raised in
Warning 2.6.

Still, we detail the first steps of the new algorithm to convince even the most
skeptical reader. Again, let us specialize Algorithm OnlineRecursivePadic in our
case. The divisions and multiplications by X induce directly a shift in the step of
the relaxed multiplication.

2.3 Shifted algorithms 65

Algorithm 2.2

Input: N ∈N

Output: a∈Rp

1. a=0 (=y0)

2. [c1,	 , c3] = [0, 0, 0]

3. for i from 1 to N

a. c1= a/X

b. c2= RelaxedProductStep(c2, c1, c1, i− 2)

c. c3=X2× c2

d. a= LazyAddStep(a, c3, X , i)

4. return a

At Step 0 on the example, we do

c1= a/X =0, c2= c2, c3=X2× c2=0, a= a+(c3)0+0=0.

Then at Step 1, the following computations are done

c1= a/X =0, c2= c2,

c3=X2× c2=0, a= a+ ((c3)1+1)X =X.
Step 2 computes

c1= a/X =1, c2= c2+ ((c1)0)
2=1,

c3=X2× c2=X2, a= a+((c3)2+0)X2=X +X2.

Step 3 computes

c1= a/X =1+X, c2= c2+2 (c1)0 (c1)1X =1+2X,

c3=X2× c2=X2+2X3, a= a+(c3)3X
3=X +X2+2X3.

Finally Step 4 computes

c1= a/X =1+X +2X,

c2= c2+(2 (c1)0 (c1)2+((c1)1+(c1)2X)2)X2=1+2X +5X2+4X3+4X4,

c3=X2× c2=X2+2X3+5X4+4X5+4X6,

a= a+ (c3)4X
4=X +X2+2X3+5X4

which is still correct. If you look at Step 4 in terms of coefficients of a, we see that
the shift is 1 because we do not read a4:

c1= a/X = a1+ a2X +
 ,

c2= a1
2+2 a1 a2X + (2 a1 a3+ (a2+ a3X)2)X2,

c3= a1
2X2+2 a1 a2X

3+ (2 a1 a3+ (a2+ a3X)2)X4,

a= a+(2 a1 a3+ a2
2)X4.

We use only the coefficients a1, a2, a3 at Step 4, which coincide with y1, y2, y3.
Therefore no error is introduced, even in the anticipated computations. In a word,
we have solved the dependency issue in this example.

66 Recursive p-adics

We are now able to express which s.l.p.’s Ψ are suited to the implementation of
recursive p-adic numbers.

Definition 2.15. Let y ∈ (Rp)
ℓ be a vector of p-adics and Ψ be an s.l.p. with ℓ

inputs, ℓ outputs and operations in Ω′.
Then, Ψ is said to be a shifted algorithm that compute y if

• sh(Ψ)> 1,

• Ψ is executable on y over the R-algebra Rp.

A shifted algorithm is a recursive operator, but with tighter conditions.

Proposition 2.16. If Ψ is a shifted algorithm that computes y then y are recursive
p-adics and Ψ is a recursive operator that allows the computation of y.

Proof. We prove that the output of the on-line algorithm Ψn=Ψ ◦
 ◦Ψ on the
input y0 coincides with y at precision n+1. This result is true for n=0. We prove
it recursively on n.

Assume the claim is verified for n and let us prove it for n + 1. If we denote
by y(n)7 Ψn(y0), we know that νp(y − y(n))> n+ 1. Now in the steps 0,	 , n+1
of the on-line computation of Ψ(y(n)), only the p-adic coefficients of y(n) in pi are
read for i6n because sh(Ψ)>1. So one has the following equalities between p-adic
coefficients

(y(n+1))i=(Ψ(y(n)))i= (Ψ(y))i= yi

for i6 n and finally νp(y− y(n+1))>n+2. �

Next proposition is the cornerstone of complexity estimates regarding recursive
p-adics. We denote by R(N) the cost of multiplying two elements of Rp at precision
N by an on-line algorithm (see Chapter 1).

Proposition 2.17. Let Ψ be a shifted algorithm for recursive p-adics y whose
length is L and multiplicative complexity is L∗. Then, the vector of p-adics y can be
computed at precision N in time L∗R(N) +O(LN).

Proof. We use Algorithm OnlineRecursivePadic to compute y. We have to prove
that this algorithm is correct if Ψ is a shifted algorithm.

For this matter it is sufficient to prove that in the loop of Algorithm
OnlineRecursivePadic, the correct p-adic coefficients of y are written in a before
they are read by a call to OnlineEvaluationStep.

Since sh(Ψ)> 1, Proposition 2.12 tells us that the Nth p-adic coefficients of a
are not read before step N +1 of OnlineEvaluationStep. At step 0 of the loop of
Algorithm OnlineRecursivePadic, the p-adic coefficient a0 equals to y0. Therefore
the computations of OnlineEvaluationStep(Ψ,a, [c1,	 , cL],0) are correct, i.e. they
are the same than if y was given in input instead of a.

At step 1, the call to OnlineEvaluationStep(Ψ,a, [c1,	 , cL], 1) will only read
a0 and carry correct computations, giving y1 = (Ψ(a))1. At step 2, the call to
OnlineEvaluationStep(Ψ,a, [c1,	 , cL], 2) is known to read at most a0,a1, which
coincide with y0, y1. So we will have y2= (Ψ(a))2. And so on.

2.3 Shifted algorithms 67

The key point of our demonstration is that at each step, since the p-adic coeffi-
cients of a which are read in the call to OnlineEvaluationStep coincides with the
ones of y, Algorithm OnlineEvaluationStep does the same computation as if y

was given in input instead of a, and so computes correctly Ψ(y).
Therefore the cost of the computation of y is exactly the cost of the evaluation

of Ψ(y) in Rp. We recall that addition in Rp × Rp, subtraction in Rp × Rp and
multiplication in R × Rp (that is operations in R) up to the precision N can
be computed in time O(N). Scalars from R are decomposed in Rp in constant
complexity. Finally, multiplications in Rp × Rp are done in time R(N). Now the
multiplicative complexity L∗ of Ψ counts exactly the latter operation. �

Of course, if some multiplications in the evaluation ofΨ are between finite length
p-adics, they cost less than R(N). An important special case concerns multiplica-
tions between a p-adic and another p-adic of length d, which can be done in time
O(N R(d)/d) instead of R(N).

Remark 2.18. The important property used in the proof of Proposition 2.17 is that
Algorithm OnlineEvaluation(Φ,_, N) has shift 1. We can extend the set of oper-
ations Ω′ of our s.l.p.’s and adapt the rules of computation of sh(Ψ) consequently,
Proposition 2.17 will remain correct as long as Algorithm OnlineEvaluation(Φ,_,

N) has shift 1.

Newton iteration Under the assumptions of Proposition 2.4, we can use the
Newton iteration algorithm (also called Hensel lifting) to compute y. Let us recall
the mechanism of this lifting method.

If f 7 Id−Φ∈Rp[Y1,	 , Yℓ]
ℓ, then y is a zero of the polynomials f . Moreover

since Id− Jacf(y0)= JacΦ(y0) has positive valuation, the Jacobian matrix Jacf(y)
is invertible over Rp. Then we define recursively y(0)= y0 and for all N ∈N

y(N+1)= y(N)− Jacf(y(N))
−1 f(y(N))∈ (Rp)

ℓ.

It can be shown that for all N ∈N, νp(y(N)− y)> 2N [GG03].
The Newton iteration algorithm, as well as our on-line lifting algorithm for

recursive p-adics, applies to more general operators than polynomial function Φ
and f . For example on power series, the operator Φ can use differentiation and
integration. The notion of shift and shifted algorithms can be extended to s.l.p.’s
with these new operators.

Space complexity One drawback of the relaxed method for computing recursive
p-adics is the space complexity. We have seen that we store the current state of each
computation of Ψ in Algorithm OnlineRecursivePadicStep. This leads to a space
complexity O(N L) to compute the recursive p-adic at precision N where L is the
size of Ψ.

The zealous approach to evaluate Ψ could use significantly less memory by
freeing the result of a computation as soon as it is used for the last time. For this
reason, zealous lifting based on Newton iteration should consume less memory.

68 Recursive p-adics

Partie II

Lifting of linear
equations

Chapitre 3

Linear algebra over p-adics

This chapter deals with the resolution of linear systems over the p-adics. Linear
algebra problems are often classified into broad categories, depending on whether the
matrix of the system is dense, sparse, structured, 	 In the context of solving over
the p-adics, most previous algorithms rely on lifting techniques using either Dixon’s
/ Moenck-Carter’s algorithm, or Newton iteration, and can to some extent exploit
the structure of the given matrix.

In this chapter, we introduce an algorithm based on the p-recursive framework
of Chapter 2, which can in principle be applied to all above families of matrices. We
will focus on two important cases, dense and structured matrices, and show how our
algorithm can improve on existing techniques in these cases.

The relaxed linear system solver applied to dense matrices is a common work
with J. Berthomieu, published as a part of [BL12]. The application to structured
matrices is a joint work in progress with É. Schost.

3.1 Overview

Assumptions on the base ring Throughout this chapter, we continue using
some notation and assumptions introduced in Chapter 1: R is our base ring (typi-
cally, Z or k[X]), p is a non-zero element in R (typically, a prime in Z or X ∈k[X])
and Rp is the completion of R for the p-adic topology (so we get for instance
the p-adic integers, or the power series ring k[[X]]). In order to simplify some
considerations below regarding the notion of rank of a matrix over a ring, we will
make the following assumption in all this chapter: both R and Rp are domains ; this
is the case in the examples above.

As before, we fix a set M of representatives of R/(p), which allows us to define
the length λ(a) of a non zero p-adic a ∈ Rp; recall that we make the assumption
that the elements of R ⊂ Rp have finite length. We generalize the length function
to vectors or matrices of p-adics by setting λ(A) 7 max16i6r,16j6s (λ(Ai,j)) if
A∈Mr×s(Rp).

71

Problem statement We consider a linear system of the form A=B ·C, where A
and B are known, and C is the unknown. The matrix A belongs to Mr×s(Rp) and
B ∈Mr×r(Rp) is invertible; we solve the linear system A=B ·C for C ∈Mr×s(Rp).
We make the natural assumption that s 6 r; the most interesting cases are s = 1
(which amounts to linear system solving) and s= r, which contains in particular the
problem of inverting B (our algorithm handles both cases in a uniform manner).

A major application of p-adic linear system solving is actually to solve systems
over R (in the two contexts above, this means systems with integer, resp. polynomial
coefficients), by means of lifting techniques (the paper [MC79] introduced this idea in
the case of integer linear systems). In such cases, the solution C belongs toMr×s(Q),
where Q is the fraction field of R, with a denominator invertible modulo p. Using
p-adic techniques, we can compute the expansion of C in Mr×s(Rp), from which C

itself can be reconstructed by means of rational reconstruction — we will focus on
the lifting step, and we will not detail the reconstruction step here.

In order to describe such situations quantitatively, we will use the following
parameters: the length of the entries of A and B, that is, d7 max (λ(A), λ(B)), and
the precision N to which we require C; thus, we will always be able to suppose that
d6N . The case N =d corresponds to the resolution of p-adic linear systems proper,
whereas solving systems over R often requires to take a precision N ≫ d. Indeed, in
that case, we deduce from Cramer’s formulas that the numerators and denominators
of C have length O(r (d+ log (r))), so that we take N of order O(r (d+ log (r))) in
order to make rational reconstruction possible.

For computations with structured matrices, we will use a different, non-trivial
representation for B, by means of its “generators”; then, we will denote by d′ the
length of these generators. Details are given below.

Complexity model Throughout this chapter, we represent all p-adics through
their base-M expansion, and we measure the cost of an algorithm by the number of
arithmetic operations on p-adics of length 1 (i.e. with only a constant coefficient) it
performs, as explained in Chapter 1.

The algorithms in this chapter will rely on the notion of shifted decomposition:
a shifted decomposition of a p-adic a ∈ Rp is simply a pair (σa, δa) ∈ Rp

2 such that
a=σa+ p δa. A simple particular case is (amod p, a quo p); this is by no means the
only choice. This notion carries over to matrices without difficulty.

We denote by I(N) the cost of multiplication of two p-adics at precision N and
we let R(N) be the cost of multiplying two p-adics at precision N by an on-line
algorithm. As in Chapter 1, we let further M(d) denote the arithmetic complexity
of multiplication of polynomials of degree at most d over any ring (we will need
this operation for the multiplication of structured matrices). Remark that when
R= k[X], I and M are the same thing, but this may not be the case anymore over
other rings, such as Z.

Let next I(r, d) be the cost of multiplying two polynomials in Rp[Y] with degree
at most r and coefficients of length at most d. Since the coefficients of the product
polynomial have length at most 2 d+ ⌈log2 (r)⌉, we deduce that we can take

I(r, d)=O(M(r) I(d+ log (r)))

72 Linear algebra over p-adics

by working modulo p to the power the required precision; overRp=k[[X]], the log(r)
term vanishes since no carry occurs.

Let us focus on the corresponding on-line algorithm. We consider these poly-
nomials as p-adics of polynomials, i.e. p-adic whose coefficients are polynomials
in M . We denote by R(r, N) the cost of an on-line multiplication at precision N

of polynomials of degrees at most r. As in Chapter 1, this cost is bounded by
R(r, N) =O(I(r, N) log (N)) in the case of power series rings or p-adic integers. If
the length d′ of the coefficients of one operand is less than N , the cost reduces to
O(N R(r, d′)/d′).

Now, let us turn to matrix arithmetic. We let ω be such that we can multiply
r× r matrices within O(rω) ring operations over any ring. The best known bound on
ω is ω62.3727 [CW90, Sto10, VW11]. It is known that, if the base ring is a field, we
can invert any invertible matrix in time O(rω) base field operations. We will further
denote by MM(r, s, d) the cost of multiplication of matrices A,B of sizes (r× r) by
(r × s) over Rp, for inputs of length at most d. In our case s6 r, and taking into
account the growth of the length in the output, we obtain that MM(r, s, d) satisfies

MM(r, s, d) =O(r2 sω−2 I(d+ log (r))),

since λ(A ·B)62 d+⌈log2 (r)⌉; the exponents on r and s are obtained by partitioning
A and B into square blocks of size s.

Let us now consider the relaxed product of p-adic matrices, i.e. p-adic whose
coefficients are matrices over M . We denote by MMR(r, s, N) the cost of the
relaxed multiplication of a p-adic matrix of size r × r by a p-adic matrix of size
r × s at precision N . As in Chapter 1, we can connect the cost of off-line and on-
line multiplication algorithms by

MMR(r, s,N) =O(MM(r, s,N) log (N))

in the case of power series rings or p-adic integers. Likewise, we also notice that
the relaxed multiplication of two matrices A,B ∈ (Mr×s(R))(p) at precision N with
d7 λ(A)6N takes time O(N MMR(r, s, d)/d).

Previous work The first algorithm we will mention is due to Dixon [Dix82];
it finds one p-adic coefficient of the solution C at a time and then updates the
matrix A. On the other side of the spectrum, one finds Newton’s iteration, which
doubles the precision of the solution at each step (and can thus benefit from fast
p-adic multiplication); however, this algorithm computes the whole inverse of B at
precision N , which can be too costly when we only want one vector solution.

Moenck-Carter’s algorithm [MC79] is a variant of Dixon’s algorithm that works
with pℓ-adics instead of p-adics. It takes advantages of fast truncated p-adic mul-
tiplication but requires that we compute the inverse of B at precision d (for which
Newton iteration is used).

Finally, Storjohann’s high-order lifting algorithm [Sto03] can be seen as a fast
version of Moenck-Carter’s algorithm, well-suited to cases where d ≪ N . That
algorithm was presented for R = k[X] and the result was extended to the integer
case in [Sto05]. We believe that the result could carry over to any p-adic ring.

3.1 Overview 73

Historically, these algorithms were all introduced for dense matrices; however,
most of them can be adapted to work with structured matrices. The exception is
Storjohann’s high-order lifting, which does not seem to carry over in a straightfor-
ward manner.

Main results The core of this chapter is an algorithm to solve linear systems by
means of relaxed techniques; it is obtained by proving that the entries of the solution
C =B−1 ·A are p-recursive. In other words, we show that C is a fixed point for a
suitable shifted operator.

This principle can be put to use for several families of matrices; we detail it for
dense and structured matrices. Taking for instance s=1, to compute C at precision
N , the cost of the resulting algorithm will (roughly speaking) involve the following:

• the inversion of B modulo (p),

• O(N)matrix-vector products using the inverse of B modulo (p), with a right-
hand side vector whose entries have length 1,

• O(1) matrix-vector product using B, with a right-hand side vector whose
entries are relaxed p-adics.

Tables 3.1 and 3.2 give the resulting running time for the case of dense matrices,
together with the results based on previous algorithms mentioned above; recall that
d=λ(B) and that N is the target precision. In the first table, we are in the general
case 1 6 s 6 r; in the second one, we take R = k[X] and s = 1, and we choose
two practically meaningful values for N , respectively N = d and N = r d (which
was mentioned above). For the high-order lifting, the ⋆ indicates that the result is
formally proved only for Rp = k[[X]] and R = Z. The complexity MM(r, s N/d, 1)
that appears in this case is bounded by MM(r, sN/d, 1)= rω−1 sN/d.

Most previous complexity results are present in the literature, so we will not
reprove them all; we only do it in cases where small difficulties may arise. For
instance, Newton’s algorithm and its cost analysis extend in a straightforward
manner, since we only do computations modulo powers of p, which behave over
general p-adics as they do over e.g. Rp = k[[X]]; thus, we will not reprove the
running time in this case. On the other hand, we will re-derive the cost of Dixon’s
and Moenck-Carter’s algorithms, since they involve computations in Rp itself (i.e.,
without reduction modulo a power of p), and considerations about the lengths
of the operands play a role.

In most entries (especially in the first table), two components appear: the first
one involves inverting the matrix B modulo (p), or a higher power of p and is
independent of N ; the second one describes the lifting process itself. In some cases,
the cost of the first step can be neglected compared to the cost of the second one.

It appears in the last table that for solving up to precision N = d, our algorithm
is the fastest among the ones we compare; for N= r d, Storjohann’s high-order lifting
does best (as it is specially designed for such large precisions).

74 Linear algebra over p-adics

Algorithm Cost

Dixon O(rω+MM(r, s, 1) N d)

Moenck-Carter O
(

rω I(d)+MM(r, s, d)
N

d

)

Newton iteration O(rω I(N))

High-order lifting⋆ O
(

rω log (N
d
) I(d)+MM(r, s

N

d
, 1) I(d)

)

Our algorithm O
(

rω+N
MMR(r, s, d)

d

)

Table 3.1. Cost of solving A=B ·C for dense matrices

Algorithm N = d N = r d

Dixon Õ(rω+ r2 d2) Õ(r3 d2)

Moenck-Carter Õ(rω d) Õ(r3 d)

Newton iteration Õ(rω d) Õ(rω+1 d)

High-order lifting⋆ Õ(rω d) Õ(rω d)

Our algorithm Õ(rω+ r2 d) Õ(r3 d)

Table 3.2. Simplified cost of solving A=B ·C for dense matrices over Rp=k[[X]], with
s=1

Next, we discuss the situation for structured matrices; for that, a brief reminder
is in order (for a thorough presentation, see [Pan01]).

A typical family of structured matrices are Toeplitz matrices, which are invariant
along diagonals; exploiting this structure, one can multiply and invert such matrices
in quasi-linear time. In this chapter, we will consider structured matrices as being
matrices which are “close” to being Toeplitz. Formally, let us define the operator

φ+: Mr×r(Rp) → Mr×r(Rp)
A � A−A ′,

where A′ is obtained by shifting A down and right by one unit. If A is Toeplitz,
φ+(A) is zero, except in the first row and column; the key remark is that in this
case, φ+(A) has a small rank (at most 2), and can be written φ+(A) =G ·H t, with
G and H matrices of sizes r× 2, with entries in Rp.

The key idea is then to measure the “structure” of the matrix A as the rank of
φ+(A), which is called its displacement rank , usually denoted by α(A). If α(A)6α,
then there exist matrices G and H in Mr×α(Rp) such that φ+(A)=G ·H t.

The key idea of algorithms for structured matrices is to use such generators as
a compact data structure to represent A, since they can encode A using O(α r)
elements of Rp instead of r2. As typical examples, note that the displacement rank

3.1 Overview 75

of a Sylvester matrix is at most 2; more generally, matrices coming from e.g. Padé-
Hermite approximation problems have small displacement ranks. The last important
property of structured matrices is that the matrix-vector multiplication A · V for
A ∈ Mr×r(Rp) and V ∈ Mr×1(Rp) boils down to polynomial multiplication, so
that it costs O(αM(r)) (we will also need to pay attention to the precision of the
arguments).

Table 3.3 recalls previously known results about solving structured linear systems
and shows the running time of our algorithm. Recall that here, d′ denotes the length
of the generators of B and N is still the target precision. As before, Table 3.4 gives
simplified results for s=1 and N = d′ and N = r d′.

Previous algorithms can all be found in [Pan01] for rings such as R = Z and
R=k[X], so as in the case of dense matrices, we will only prove those cost estimates
where attention must be paid to issues such as the length of the p-adics. Note that
the high-order lifting entry has disappeared, since we do not know how to extend it to
the structured case. As in the dense case, the running times involve two components:
inverting the matrix modulo (p), then the lifting itself.

Algorithm Cost

Dixon O(α2M(r) log (r)+αsM(r)Nd′)

Moenck-Carter O
(

α2M(r) log (r)+α2M(r) I(d′) +α sN
I(r, d ′)

d ′

)

Newton iteration O(α2M(r) log (r) +α2M(r) I(N) +α sM(r) I(N))

Our algorithm O
(

α2M(r) log (r)+α sN
R(r, d′)

d ′

)

Table 3.3. Cost of solving A=B ·C for structured matrices

Algorithm N = d′ N = r d′

Dixon Õ
(

α2 r+α r d′2
)

Õ
(

α r2 d′2
)

Moenck-Carter Õ(α2 r d′) Õ(α r2 d′)

Newton iteration Õ(α2 r d′) Õ(α2 r2 d′)

Our algorithm Õ(α2 r+α r d′) Õ(α r2 d′)

Table 3.4. Simplified cost of solving A=B ·C for structured matrices over k[[X]], with
s=1

To summarize, in all these cases, our algorithm performs at least as well, and
often better, than previous algorithms.

The relaxed linear system solver applied to dense matrices was published as a
part of [BL12]. It has been implemented inside the Mathemagix computer algebra
system [HLM+02]. The application to structured matrices is a joint work in progress
with É. Schost.

76 Linear algebra over p-adics

3.2 Structured matrices

While we need only fairly standard results about dense matrices, we believe it is
worth recalling a few facts about the structured case. We will need very little of the
existing results on structured matrices: mainly, how to reconstruct a matrix from
its generators, as well as a few properties of the inverse of a structured matrix.

Let us start with a discussion of the inverse of A (assuming A is invertible).
Then, is it know that the displacement rank α(A−1) is at most α(A) + 2, so that
A−1 can be represented in a compact manner. What’s more, generators of A−1 can
be computed in time O(α2M(r) log (r)) (using a Las-Vegas algorithm); this is called
the Morf / Bitmead-Anderson algorithm [Mor74, Mor80, BA80].

At the heart of most algorithms for structured matrices lies the following ques-
tion. LetG,H be generators for a matrix A. To use the generators G andH as a data
structure, we must be able to recover A from these matrices. Indeed, the operator
φ+ is bijective, and it can be inverted as follows. Denote by Hi and Gi the columns
of G and H , for 16 i6α. For any V =(v0,	 , vr−1)∈Rp

r, we define the lower (resp.
upper) triangular matrix L(V) (resp. U(V)) by

L(V)7

v0 0
 0
v1 v0 �� 0
vr−1
 v1 v0

∈Mr×r(Rp)

and U(V)7 L(V)t. Then, for any matrices G,H ∈Mr×α, we have the equivalence

φ+(A) =G ·Ht ⇔ A=
∑

i=1

α

L(Gi) ·U(Hi).

This representation of A is essential to perform the matrix-vector multiplication
by A efficiently. For n∈N and P =

∑

i=0

n
Pi Y

i ∈Rp[Y], we denote by revn(P) the
reverse polynomial of P defined by

revn(P)7∑

i=0

n

Pn−i Y
i∈Rp[Y]6n.

Besides, to a vector V 7 [v0, 	 , vr−1]
t ∈ Mr×1(Rp), we associate the polynomial

v ∈ Rp[X] defined by v 7 ∑

i=0

r−1
vi X

i. This association is bijective. Next, if a, c,

v∈Rp[Y]<r are the polynomials associated to some vectors A,C,V ∈Mr×1(R), then

c=

{

revr−1(a revr−1(v)) if C =U(A) ·V
a vmodY r if C =L(A) ·V .

(3.1)

This shows that given generators for A of size r × α, the matrix-vector multiplica-
tions A ·V can be done using 2α short products of polynomials in degree r.

To estimate costs precisely, we have to take into account the size of the operands.
We will thus consider the length d′ of the entries of the displacement generators.
Then, if a vector V has length d′ as well, the matrix-vector multiplication B ·V costs
O(α I(r, d′)), with α7 α(B). Indeed, the cost of all multiplications is easily seen to
be controlled by the above bound; the cost of additions follows from Lemma 1.1.

3.2 Structured matrices 77

We can further deduce an on-line algorithm for the matrix-vector multiplication
B · V . For the polynomial multiplication of Rp[Y] of Equation (3.1), use on-line
algorithms on p-adic of polynomials. This algorithm is on-line with respect to the
entries of the displacement generators G,H of B and with respect to V . It computes
B · V at precision N in time O(α R(r, N)). If the length d′7 max (λ(G), λ(H)) of
the displacement generators is less than N , then the on-line multiplication B · V
takes time O(αN R(r, d′)/d′).

Since in many situations we will encounter, the matrix B is known, we can adapt
the latter algorithm to be half-line, that is off-line in B and on-line in V . For this
matter, just replace on-line multiplication algorithms in Rp by half-line algorithms
(which are slightly cheaper, see Chapter 1).

3.3 Solving linear systems

In this section, we give the details of the algorithm underlying the new results in
Tables 3.1 to 3.4. We start by recalling Dixon’s algorithm (and briefly mention the
closely related Moenck-Carter’s algorithm). In the second subsection, we will show
how this algorithm can be seen as a relaxed algorithm that computes C as a fixed
point and is useful when B has small length; finally, the last subsection introduces
the general algorithm.

As a preamble, note that any matrix A ∈ Mr×s(Rp) can be seen as a p-adic
matrix, i.e. a p-adic whose coefficients are matrices over M . In this case, the coeffi-
cient matrix of index n will be denoted by An∈Mr×s(M), so that A=

∑

n=0

∞
An p

n.
We will use this notation frequently.

In this section, we denote by d 7 max (λ(A), λ(B)) the maximum length of
entries of A and B. If we assume that B is structured, its displacement rank is
α7 α(B); in that case, as input, we assume that we are given generators G,H for
B with entries in Rp, and we let d′7 max (λ(G), λ(H)). In all cases, we want C at
precision N , so we suppose that d, d′6N .

3.3.1 Dixon’s and Moenck-Carter’s algorithms

The paper [Dix82] presented a simple algorithm to solve an integer linear system
via a p-adic lifting; we present here a straightforward extension to our slightly more
general context. This algorithm is based on the following lemma.

Lemma 3.1. Let B∈Mr×r(Rp) invertible and A,C∈Mr×s(Rp) such that A=B ·C.
Then for all i∈N, there exists A(i)∈Mr×s(Rp) such that

C =B−1 ·A=C0+C1 p+
 +Ci−1 p
i−1+ piB−1 ·A(i). (3.2)

Proof. One has A−B · (C0+C1 p+
 +Ci−1 p
i−1)=A−B ·C=0 inMr×s (R/(pi)).

So we can define A(i)7 p−i [A−B · (C0+C1 p+
 +Ci−1 p
i−1)] in Mr×s(Rp) that

satisfies Equation (3.2). �

78 Linear algebra over p-adics

The algorithm follows: at each step in the for loop, the matrix A is updated; the
proof of the previous lemma shows that we are precisely computing the sequence A(i).

In order to analyze the algorithm, we need the following lemma describing the
cost of polynomial or matrix multiplication with p-adic coefficients, in cases where
the operands have unbalanced lengths. We will need the following extension of
Lemma 1.1.

Lemma 3.2. The following holds:

• Let P be in Mr×r(Rp) and Q in Mr×s(Rp), with λ(P) = d and λ(Q) = 1.
Then we can compute S=P Q in time O(MM(r, s, 1) d).

• Let P , Q be in Rp[X]<r with λ(P) = d and λ(Q) = 1. Then we can compute
S =P Q in time O(I(r, 1) d).

Proof. In both cases, the strategy is the same. If the p-adic decomposition of Q

is
∑

i=0

d−1
Qi p

i, then S=
∑

i=0

d−1
(PQi) p

i. This amounts to d multiplications between
operands of length 1 and some additions. Since the length of the entries of P Qi

are bounded by ⌈log2 (r)⌉, Lemma 1.1 bounds the cost of the final addition by
O(d log (r)), which is negligible compared to the cost of multiplications. �

Algorithm - Dixon

Input: A∈Mr×s(Rp), B ∈Mr×r(Rp) and N ∈N

Output: C ∈Mr×s(Rp) such that A=B ·Cmod pN

1. Γ=B−1mod p

2. C07 (Γ ·A)mod p

3. for i from 1 to N − 1

a. A7 (A−B ·Ci−1) quo p

b. Ci7 (Γ ·A)mod p

4. return C7 ∑

i=0

N−1
Ci p

i

Proposition 3.3. Algorithm Dixon is correct and its cost is summed up in the table

Dense matrices O(rω+MM(r, s, 1) N d)

Structured matrices O(α2M(r) log (r) +α sM(r)Nd′)
.

Table 3.5. Cost of Dixon’s algorithm depending on matrix representation

Proof. We refer to [Dix82] for the proof of correctness of the algorithm (which
readily follows from the previous lemma).

After computing Γ, at each step, the algorithm performs one multiplication
B ·Ci−1 and one multiplication Γ ·A modulo p, plus some additions, remainders and
quotients whose cost is dominated by the multiplications.

3.3 Solving linear systems 79

Let us first study the cost for dense matrices. Computing Γ takes O(rω) oper-
ations (since this is arithmetic modulo (p)). To compute B · Ci−1, we apply the
previous lemma, since B has length d and Ci−1 has length 1; the cost is O(MM(r, s,
1) d) using Lemma 3.2. Computing Γ ·Amod p is cheaper, since we do all operations
modulo p. Taking all i into account, we get the claimed result.

For structured matrices, notice that B mod p is a structured matrix of rank
at most α and so Γ = B−1 mod p has rank α(Γ) 6 α + 2. Therefore the cost for
structured matrices is O(α2M(r) log (r)), for the computation of Γ, plus, for each i,
the cost induced by the products B ·Ci−1 and Γ ·Amod p. The latter is negligible.
The former is done by means of O(α s) polynomial multiplications in degree r,
with coefficients of lengths respectively d′ and 1. The cost estimate follows from the
previous lemma. �

Moenck-Carter’s algorithm can be seen as a pℓ-adic variant of Dixon’s, where
we compute ℓ p-adic coefficients of C at a time (thus, the algorithm is formally the
same, up to replacing p by pℓ). By suitably choosing ℓ, it allows us to benefit from
fast p-adics multiplication algorithms.

One quickly sees that the optimal asymptotic cost in N is obtained by choosing
ℓ = d (in the dense case) and ℓ = d′ (in the structured case). This gives the costs
reported in Table 3.6 below, which we justify now.

Dense matrices O
(

rω I(d)+MM(r, s, d)
N

d

)

Structured matrices O
(

α2M(r) log (r)+α2M(r) I(d′)+α sM(r, d′)
N

d ′

)
.

Table 3.6. Cost of Moenck-Carter’s algorithm depending on matrix representation

The algorithm starts by computing the inverse Γ of B modulo pℓ; for this, we use
Newton iteration, whose cost was recalled in the previous section. At each step of the
loop, the algorithm computes Γ ·A modulo pℓ and B ·Ci, where now Ci has length ℓ.

For dense matrices, taking ℓ = d, the product Γ · A modulo pℓ takes time
O(r2 sω−2 I(d)), which is always less than the cost of B ·Ci, that is O(MM(r, s, d)).
Since the loop now has length N/d, it sums to the announced cost.

For structured matrices, we take ℓ= d′. Using Newton iteration., the first inver-
sion costs O(α2M(r) log (r)+α2M(r) I(d′)). For each i in the main loop, the product
Γ · A modulo pℓ takes time O(α sM(r) I(d′)), which is always less than the cost of
computing B ·Ci, that is O(α sM(r, d′)). Since we now do N/d′ passes through the
loop, this gives the announced cost.

3.3.2 The on-line point of view on Dixon’s algorithm

We published in [BL12, Section 4.1] an on-line algorithm to solve linear systems
B · C = A for C, well-adapted to cases where λ(B) is small. With hindsight, we
realized that this algorithm coincides with Dixon’s algorithm.

80 Linear algebra over p-adics

In this subsection, we make this remark more precise: we prove that Dixon’s
algorithm is on-line, by presenting it slightly differently to write it as a fixed point
algorithm OnlineDixon. Then we prove that this algorithm is a shifted algorithm.
This will be useful for the next subsection, where we deal with cases where λ(B) is
arbitrary.

We will use two operators Mul_rem and Mul_quo, defined for B ∈Mr×r(Rp) and
A∈Mr×s(Rp) by

Mul_rem(B,A) 7 ∑

n∈N

(B ·Anmod p) pn∈Mr×s(Rp)

Mul_quo(B,A) 7 ∑

n∈N

(B ·An quo p) pn∈Mr×s(Rp)

so that we have

B ·A= Mul_rem(B,A)+ p Mul_quo(B,A).

We see on these definitions that Mul_rem(B, A) and Mul_quo(B, A) are on-line
algorithms with respect to the input A.

Proposition 3.4. Let A ∈Mr×s(Rp) and B ∈Mr×r(Rp). Suppose B is invertible
modulo p and define Γ7 B−1mod p. Set C07 (Γ ·A)mod p and let OnlineDixon

denote the algorithm

OnlineDixon(A,B, Y)7 Mul_rem(Γ, A− p× Mul_quo(B, Y)).

Then, Algorithm OnlineDixon has shift 1 with respect to its input Y and has shift 0
with respect to its input A. Moreover,

C = OnlineDixon(A,B,C).

Proof. First,

A = Mul_rem(B,C) + p Mul_quo(B,C)

⇒ Mul_rem(B,C) = A− p Mul_quo(B,C)

⇒ C = Mul_rem(Γ, A− p Mul_quo(B,C))

so that Ψ(C)=C.
Next, for any n ∈N, the p-adic coefficient OnlineDixon(A, B, C)n requires the

nth p-adic coefficient of A − p× Mul_quo(B, C). This computation reads at most
the coefficients Ai with 06 i6 n, so 0 ∈ S(OnlineDixon, 1) (see Definition 2.8). It
also requires the coefficient Mul_quo(B,C)n−1, which reads at most the coefficients
Ci with 06 i6n− 1, so 1∈S(OnlineDixon, 3). �

Dixon’s algorithm coincides with Algorithm OnlineDixon. Indeed, in the on-
line algorithm presented here, the computation A − p Mul_quo(B, C) subtracts
quo(B ·Ci, p) to A at step i, which corresponds to the instruction

A7 (A−B ·Ci) quo p

3.3 Solving linear systems 81

in Dixon’s algorithm. Similarly, the Mul_rem operations corresponds to the compu-
tation modulo p in Dixon’s algorithm.

3.3.3 On-line solving of p-adic linear systems

For dense matrices, the running time analysis showed that Dixon’s algorithm is
satisfactory when λ(B) = 1, but not anymore when λ(B) is large (since when
λ(B) ≃ N , the behavior is then quadratic in N). The same holds for structured
matrices — in that case, it is the length of the given generators that matters.

To by-pass this issue, we give our main result concerning the resolution of linear
systems, which shows that the solution C of the system is a fixed point for an
operator easily deduced from the original system, and whose matrix has better
length properties than B. This is an extension of the algorithm for division of p-
adics of [Hoe02, BHL11].

Proposition 3.5. Let A ∈ Mr×s(Rp) and B ∈ Mr×r(Rp) be two matrices such
that B0 is invertible of inverse Γ = B0

−1mod p. Let C 7 B−1 · A and C0 7
(Γ ·A)mod p. Let finally (σB , δB) ∈Mr×r(Rp)

2 be any shifted decomposition of B.
We note OnlineSolve(A,B, Y) the algorithm defined by

OnlineSolve(A,B, Y)7 OnlineDixon(A− p× (δB ·Y), σB , Y).

Then, the s.l.p. Ψ with operations in {+,−, ·, ps × _, _/ps, Mul_rem, Mul_quo} ∪
R∪Rc defined by

Ψ: Y� OnlineSolve(A,B, Y) (3.3)

verifies that OnlineEvaluation(Ψ,_, N) has shift 1 and that C =Ψ(C).

Proof. We begin by noticing that

σB ·C =(A− p× (δB ·C))

which gives Ψ(C)= OnlineDixon(σB ·C, σB , C) =C.
Next, we compute the shift of Ψ. Recall that Proposition 3.4 states that Algo-

rithm OnlineDixon is on-line with respect to its first argument and has a shift 1
with respect to its third input. As a consequence, for any n∈N, the computation of
Ψ(y)n reads at most the p-adic coefficients [A− p× (δB ·Y)]i and Yj with 06 i6 n

and 06 j 6 n− 1. Since [A− p× (δB · Y)]i reads at most Yk for 06 k 6 n − 1, we
have proved our assertion. �

The following proposition analyze the complexity in our two cases of interest.
Let us recall that R(d) denotes the cost of the relaxed multiplication at precision N .

Proposition 3.6. Let B∈Mr×r(Rp) and A∈Mr×s(Rp) be two p-adic matrices and
note d7 λ(B) the length of B. Let α7 α(B) be the displacement rank of B and
d′7 max (λ(G), λ(H)) where G,H are generators for B. We solve the linear system
B ·C =A at precision N so we can always assume that N > d.

82 Linear algebra over p-adics

Then the computation costs of C =B−1 ·A are displayed in the following table,
depending on the matrix representation of B.

Dense representation O
(

rω+N
MMR(r, s, d)

d

)

Structured matrices O
(

α2M(r) log (r) +α sN
R(r, d′)

d ′

)

Table 3.7. Cost of solving linear system for finite length matrices

Proof. Proposition 3.5 tells us that for any shifted decomposition (σB , δB) of B,
the s.l.p.

Ψ: Y � OnlineDixon(A− p× (δB ·Y), σB , Y)

satisfies the hypothesis of Proposition 2.17, taking into consideration Remark 2.18.
Therefore, this s.l.p. can be used to compute B−1 · A at precision N in the time
necessary to evaluate Ψ at y.

If B is a dense matrix, we take the shifted decomposition (σB , δB)7 (σ(B), δ(B))
of B. Since the p-adic matrix δB has length lesser or equal to d, the multiplication
δB ·Y costsO(N MMR(r,s,d)/d). Using Proposition 3.3 with λ(B0)=1, we conclude
that the cost of solving for dense matrices is

O(N MMR(r, s, d)/d)+O(MM(r, s, 1)N)+O(MM(r, r, 1)).

For structured matrices B, we write B as

B =
∑

i=0

α

L(Gi) ·U(Hi)

=
∑

i=0

α

L(σ(Gi)) ·U(σ(Hi))�
σB

+ p

(

∑

i=0

α

L(δ(Gi)) ·U(Hi)+L(σ(Gi)) ·U(δ(Hi))

)�
δB

.

We take the (σB , δB) of previous equation as a shifted decomposition for B. The
important point is that α(σB) 6 α and α(δB) 6 2 α. Moreover the displacement
generators of σB are σ(G), σ(H), which have length 1. The matrix multiplication
δB · Y costs O(α N R(r, d′)/d′). The cost of applying OnlineDixon is given by
Proposition 3.3. Summing up, the cost of solving for structured matrices is

O(α sN R(r, d′)/d′)+O(α sM(r)N) +O(α2M(r) log (r)). �

Remark 3.7. For matrices B with length greater than 1, one should use Algorithm
OnlineSolve instead of OnlineDixon as it is faster. However, we had to present
Algorithm OnlineDixon for any matrices B of finite length. Indeed, in the latter
proof in the structured matrix case, the matrix σB has length ⌈log2 (r)⌉.

3.3 Solving linear systems 83

3.4 Implementation and Timings

In this section, we display computation times in milliseconds for the univariate
polynomial root lifting and for the computation of the product of the inverse of a
matrix with a vector or with another square matrix. Timings are measured using
one core of an Intel Xeon X5650 at 2.67 GHz running Linux, Gmp 5.0.2 [G+91]
and setting p= 536871001 a 30 bit prime number.

Our implementation is available in the files whose names begin with
series_carry or p_adic in the C++ library algebramix of Mathemagix.

In the following tables, the first line, “Newton” corresponds to the classical
Newton iteration [GG03, Algorithm 9.2] used in the zealous model. The second
line “Relaxed” corresponds to our best variant. The last line gives a few details
about which variant is used. We make use of the naive variant “N” and the relaxed
variant “R”. These variants differ only by the on-line multiplication algorithm used
in Algorithm OnlineEvaluationStep inside Algorithm OnlineRecursivePadic to
compute the recursive p-adics (see Section 2.2.2). The naive variant calls Algo-
rithm LazyMulStep of Section 1.1.1.3, whereas the relaxed variant calls Algorithm
RelaxedProductStep of Section 1.1.3.4. In fact, since we work on p-adic inte-
gers, the relaxed version uses an implementation of Algorithm Binary_Mul_Padic

p

from [BHL11, Section 3.2], which is a p-adic integer variant of Algorithm
RelaxedProductStep.

Furthermore, when the precision is high, we make use of blocks of size 32 or
1024. That means, that at first, we compute the solution f up to precision 32 as
F0 = f0 +
 + f31 p

31 with the variant “N”. Then, we say that our solution can be
seen as a p32-adic integer F =F0+
 +Fn p

32n+
 and the algorithm runs with F0

as the initial condition. Then, each Fn is decomposed in base p to retrieve f32n,	 ,

f32n+31. Although it is competitive, the initialization of F can be quite expensive.
“BN” means that F is computed with the variant “N”, while “BR” means it is with
the variant “R”. Finally, if the precision is high enough, one may want to compute F
with blocks of size 32, and therefore f with blocks of size 1024. “B2N” (resp. “B2R”)
means that f and F are computed up to precision 32 with the variant “N” and then,
the p1024-adic solution is computed with the variant “N” (resp. “R”).

The next two tables correspond to timings for computing B−1 ·A at precision n,
with A,B ∈Mr×r(Zp). In this case, it is fair to compare our relaxed algorithm with
Newton’s iteration algorithm because they both have quasi-optimal cost Õ(rω n).
We see that “Relaxed” performs well.

n 4 16 64 28 210 212 214 216

Newton 0.097 0.22 0.89 6.8 59 490 3400 20000
Relaxed 0.15 0.61 3.1 8.1 38 335 1600 14000
Variant N N N BN BN BN B2N B2N

Table 3.8. Square matrices of size r=8

84 Linear algebra over p-adics

n 4 16 64 28 210

Newton 930 2600 14000 140000 1300000
Relaxed 3600 18000 53000 150000 1000000
Variant N N N BN BN

Table 3.9. Square matrices of size r= 128

Now, we solve integer linear systems and retrieve the solutions over Q, using the
rational number reconstruction [GG03, Section 5.10]. We set q as p to the power 2j

and pick at random a square matrix B of size r with coefficients inM ={0,	 , q−1}.
We solve B ·C =A with a random vector A. Because we deal with q-adic numbers
at low precision, we only use the variant “N”. We compared with Linbox [Lin08]
and IML [CS04] but we do not display the timings of IML within Linbox because
they are about 10 times slower. As Linbox and IML are designed for big matrices
and small integers, it is not surprising that “Relaxed” performs better on these small
matrices with big integers.

j 0 2 4 6 8 10 12
Linbox 1.0 1.4 3.6 25 310 4700 77000
Relaxed 0.10 0.24 0.58 2.1 14 110 760

Table 3.10. Integer linear system of size r=4

j 0 2 4 6 8 10
Linbox 5.9 25 170 1900 27000 480000
Relaxed 24 150 360 2000 14000 90000

Table 3.11. Integer linear system of size r= 32

In fact, when j 6 3, there is a major overhead coming from the use of Gmp.
Indeed, in these cases, we transform q-adic numbers into p-adic numbers, compute
up to the necessary precision and call the rational reconstruction.

Acknowledgments

We would like to thank J. van der Hoeven, M. Giusti, G. Lecerf, M. Mez-
zarobba and É. Schost for their helpful comments and remarks. For their help
with Linbox, we thank B. Boyer and J.-G. Dumas.

3.4 Implementation and Timings 85

Chapitre 4

Power series solutions of
(q)-differential equations

This chapter is published in the homonym paper with A. Bostan, M. Chowd-
hurry, B. Salvy and É. Schost in the proceedings of ISSAC’12 [BCL+12].

We provide algorithms computing power series solutions of a large class of differ-
ential or q-differential equations or systems. Their number of arithmetic operations
grows linearly with the precision, up to logarithmic terms.

4.1 Introduction

Truncated power series are a fundamental class of objects of computer algebra.
Fast algorithms are known for a large number of operations starting from addition,
derivative, integral and product and extending to quotient, powering and several
more. The main open problem is composition: given two power series f and g,
with g(0) = 0, known mod xN, the best known algorithm computing f(g)mod xN

has a cost which is roughly that of N
√

products in precision N ; it is not known
whether quasi-linear (i.e., linear up to logarithmic factors) complexity is possible
in general. Better results are known over finite fields [Ber98, KU11] or when more
information on f or g is available. Quasi-linear complexity has been reached when g

is a polynomial [BK78], an algebraic series [Hoe02], or belongs to a large class
containing for instance the expansions of exp (x)− 1 and log (1+x) [BSS08].

One motivation for this work is to deal with the case when f is the solution of a
given differential equation. Using the chain rule, a differential equation for f(g) can
be derived, with coefficients that are power series. We focus on the case when this
equation is linear, since in many cases linearization is possible [BCO+07]. When the
order n of the equation is larger than 1, we use the classical technique of converting
it into a first-order equation over vectors, so we consider equations of the form

xk δ(F)=AF +C, (4.1)

where A is an n × n matrix over the power series ring k[[x]] (k being the field
of coefficients), C and the unknown F are size n vectors over k[[x]] and for the
moment δ denotes the differential operator d/d x. The exponent k in (4.1) is a non-
negative integer that plays a key role for this equation.

87

By solving such equations, we mean computing a vector F of power series such
that (4.1) holds modulo xN. For this, we need only to compute F polynomial of
degree less than N + 1 (when k= 0) or N (otherwise). Conversely, when (4.1) has
a power series solution, its first N coefficients can be computed by solving (4.1)
modulo xN (when k � 0) or xN−1 (otherwise).

If k=0 and the field k has characteristic 0, then a formal Cauchy theorem holds
and (4.1) has a unique vector of power series solution for any given initial condition.
In this situation, algorithms are known that compute the first N coefficients of the
solution in quasi-linear complexity [BCO+07]. Also the relaxed algorithm of [Hoe02]
applies to this case. In this article, we extend the results of [BCO+07] in three
directions:

Singularities We deal with the case when k is positive. A typical example is the
computation of the composition F = f(g) when f is Gauss’ 2F1 hypergeometric
series. Although f is a very nice power series

f =1+
a b

c
x+

a (a+1) b (b+1)

c (c+1)

x2

2!
+
 ,

we exploit this structure indirectly only. We start from the differential equation

x (x− 1) f ′′+(x (a+ b+1)− c) f ′+ a b f =0 (4.2)

and build up and solve the more complicated

g (g− 1)

g ′2
F ′′+

g ′2 (g (a+ b+1)− c)+ (g− g2) g ′′

g ′3
F ′+ a b F =0

in the unknown F , g being given, with g(0)= 0. Equation (4.2) has a leading term
that is divisible by x so that Cauchy’s theorem does not apply and indeed there
does not exist a basis of two power series solutions. This behavior is inherited by the
equation for F , so that the techniques of [BCO+07] do not apply — this example
is actually already mentioned in [BK78], but the issue with the singularity at 0 was
not addressed there. We show in this article how to overcome this singular behavior
and obtain a quasi-linear complexity.

Positive characteristic Even when k = 0, Cauchy’s theorem does not hold in
positive characteristic and Equation (4.1) may fail to have a power series solution (a
simple example is F ′=F). However, such an equation may have a solution modulo
xN. Efficient algorithms for finding such a solution are useful in conjunction with the
Chinese remainder theorem. Other motivations for considering algorithms that work
in positive characteristic come from applications in number-theory based cryptology
or in combinatorics [BMSS08, BSS08, BS09].

Our objectives in this respect are to overcome the lack of a Cauchy theorem, or of
a formal theory of singular equations, by giving conditions that ensure the existence
of solutions at the required precisions. More could probably be said regarding the
p-adic properties of solutions of such equations (as in [BGVPS05, LS08]), but this
is not the purpose of this chapter.

88 Power series solutions of (q)-differential equations

Functional Equations The similarity between algorithms for linear differential
equations and for linear difference equations is nowadays familiar to computer alge-
braists. We thus use the standard technique of introducing σ:k[[x]]→k[[x]] a unitary
ring morphism and letting δ:k[[x]]→k[[x]] denote a σ-derivation, in the sense that
δ is k-linear and that for all f , g in k[[x]], we have

δ(f g)= f δ(g)+ δ(f)σ(g).

These definitions, and the above equality, carry over to matrices over k[[x]]. Thus,
our goal is to solve the following generalization of (4.1):

xk δ(F)=Aσ(F) +C. (4.3)

As above, we are interested in computing a vector F of power series such that (4.3)
holds mod xN.

Concerning on-line algorithms, the techniques of [Hoe02] already apply to the
positive characteristic case. At the beginning of my thesis, the tools to adapt relaxed
algorithms for singular equations did not exist. Our method to deal with singular
equations was discovered independently at the same time by [Hoe11]. This paper
deals with more general recursive power series defined by algebraic, differential equa-
tions or a combination thereof. However, this paper does not consider the case of
(q)-differential equations and works under more restrictive hypotheses.

One motivation for the generalization to functional equations comes from coding
theory. The list-decoding of the folded Reed-Solomon codes [GR08] leads to an
equation Q (x, f(x), f (q x))=0 where Q is a known polynomial. A linearized version
of this is of the form (4.3), with σ: φ(x)� φ(q x). In cases of interest we have k=1,
and we work over a finite field.

In view of these applications, we restrict ourselves to the following setting:

δ(x)= 1, σ: x� q x,

for some q ∈k \ {0}. Then, there are only two possibilities:

• q=1 and δ: f � f ′ (differential case);

• q � 1 and δ: f � f(q x)− f(x)

x (q− 1)
(q-differential case).

As a consequence, δ(1)= 0 and for all i≥ 0, we have

δ(xi)= γi x
i−1with γ0=0 and γi=1+ q+
 + qi−1 (i > 0).

By linearity, given f =
∑

i≥0
fix

i∈k[[x]],

δ(f)=
∑

i≥1

γi fi x
i−1

4.1 Introduction 89

can be computed mod xN in O(N) operations, as can σ(f). Conversely, assuming
that γ1,	 , γn are all non-zero in k, given f of degree at most n − 1 in k[x], there
exists a unique g of degree at most n such that δ(g) = f and g0= 0; it is given by
g=

∑

0≤i≤n−1
fi/γi+1 x

i+1 and can be computed in O(N) operations. We denote it

by g =
∫

q
f . In particular, our condition excludes cases where q is a root of unity

of low order.

Notation and complexity model We adopt the convention that uppercase let-
ters denote matrices or vectors while lowercase letters denote scalars. The set of
n×m matrices over a ring R is denoted Mn,m(R); when n=m, we write Mn(R). If
f is in k[[x]], its degree i coefficient is written fi; this carries over to matrices. The
identity matrix is written Id (the size will be obvious from the context). To avoid
any confusion, the entry (i, j) of a matrix M is denoted M (i,j).

Our algorithms are sometimes stated with input in k[[x]], but it is to be under-
stood that we are given only truncations of A and C and only their first N

coefficients will be used.

The costs of our algorithms are measured by the number of arithmetic operations
in k they use. We letM:N→N be such that for any ring R, polynomials of degree less
than n in R[x] can be multiplied inM(n) arithmetic operations in R. We assume that
M(n) satisfies the usual assumptions of [GG03, §8.3]; using Fast Fourier Transform,
M(n) can be taken in O(n log (n) loglog (n)) [CK91, SS71]. We note ω ∈ (2, 3] a
constant such that two matrices in Mn(R) can be multiplied in O(nω) arithmetic
operations in R. The current best bound is ω < 2.3727 ([VW11] following [CW90,
Sto10]).

Our algorithms rely on linear algebra techniques; in particular, we have to solve
several systems of non-homogeneous linear equations. For U in Mn(k) and V in
Mn,1(k), we denote by LinSolve(U X = V) a procedure that returns ⊥ if there
is no solution, or a pair F , K, where F is in Mn,1(k) and satisfies U F = V , and
K ∈Mn,t(k), for some t≤n, generates the nullspace of U . This can be done in time
O(nω). In the pseudo-code, we adopt the convention that if a subroutine returns ⊥,
the caller returns ⊥ too (so we do not explicitly handle this as a special case).

Main results Equation (4.3) is linear, non-homogeneous in the coefficients of F ,
so our output follows the convention mentioned above. We call generators of the
solution space of Eq. (4.3) at precision N either ⊥ (if no solution exists) or a
pair F , K where F ∈Mn,1(k[x]) and K ∈ Mn,t(k[x]) with t ≤ n N , such that for
G∈Mn,1(k[x]), with deg (G)<N , xk δ(G)=A σ(G)+CmodxN if and only if G can
be written G=F +KB for some B ∈Mt,1(k).

Seeing Eq. (4.3) as a linear system, one can obtain such an output using linear
algebra in dimension nN . While this solution always works, we give algorithms of
much better complexity, under some assumptions related to the spectrum SpecA0

of the constant coefficient A0 of A. First, we simplify our problem: we consider
the case k = 0 as a special case of the case k = 1. Indeed, the equation δ(F) =
A σ(F)+CmodxN is equivalent to x δ(F)=P σ(F)+QmodxN+1, with P =xA and
Q=xC. Thus, in our results, we only distinguish the cases k=1 and k > 1.

90 Power series solutions of (q)-differential equations

Definition 4.1. The matrix A0 has good spectrum at precision N when one of the
following holds:

• k=1 and SpecA0∩ (qiSpecA0− γi)= ∅ for 1≤ i <N

• k > 1, A0 is invertible and

− q=1, γ1,	 , γN−k are non-zero, |SpecA0|=n and SpecA0⊂k;

− q � 1 and SpecA0∩ qiSpecA0= ∅ for 1≤ i <N.

In the classical case when k has characteristic 0 and q=1, if k=1, A0 has good
spectrum when no two eigenvalues of A0 differ by a non-zero integer (this is e.g. the
case when A0=0, which is essentially the situation of Cauchy’s theorem; this is also
the case in our 2F1 example whenever cval(g) is not an integer, since SpecA0= {0,
val(g) (1− c)− 1}).

These conditions could be slightly relaxed, using gauge transformations
(see [Bal00, Ch. 2] and [BBP10, BP99]). Also, for k > 1 and q = 1, we could
drop the assumption that the eigenvalues are in k, by replacing k by a suitable
finite extension, but then our complexity estimates would only hold in terms of
number of operations in this extension.

As in the non-singular case [BCO+07], we develop two approaches. The first
one is a divide-and-conquer method. The problem is first solved at precision N/2
and then the computation at precision N is completed by solving another problem
of the same type at precision N/2. This leads us to the following result, proved in
Section 4.2 (see also that section for comparison to previous work). In all our cost
estimates, we consider k constant, so it is absorbed in the big-Os.

Theorem 4.2. Algorithm 4.2 computes generators of the solution space of Eq. (4.3)
at precision N by a divide-and-conquer approach. Assuming A0 has good spectrum
at precision N, it performs in time O(nω M(N) log (N)). When either k >1 or k=1
and qiA0− γi Id is invertible for 0≤ i<N, this drops to O(n2M(N) log (N)+nωN).

Our second algorithm behaves better with respect to N , with cost in O(M(N))
only, but it always involves polynomial matrix multiplications. Since in many cases
the divide-and-conquer approach avoids these multiplications, the second algorithm
becomes preferable for rather large precisions.

In the differential case, when k = 0 and the characteristic is 0, the algorithms
in [BCO+07, BK78] compute an invertible matrix of power series solution of the
homogeneous equation by a Newton iteration and then recover the solution using
variation of the constant. In the more general context we are considering here, such
a matrix does not exist. However, it turns out that an associated equation that
can be derived from (4.3) admits such a solution. Section 4.3 describes a variant of
Newton’s iteration to solve it and obtains the following.

Theorem 4.3. Assuming A0 has good spectrum at precision N, one can compute
generators of the solution space of Eq. (4.3) at precision N by a Newton-like itera-
tion in time O(nωM(N)+nω log (n)N).

4.1 Introduction 91

To the best of our knowledge, this is the first time such a low complexity is
reached for this problem. Without the good spectrum assumption, however, we
cannot guarantee that this algorithm succeeds, let alone control its complexity.

4.2 Divide-and-Conquer

The classical approach to solving (4.3) is to proceed term-by-term by coefficient
extraction. Indeed, we can rewrite the coefficient of degree i in this equation as

RiF i=∆i, (4.4)

where ∆i is a vector that can be computed from A, C and all previous F j (and
whose actual expression depends on k), and Ri is as follows:

{

Ri= (qiA0− γi Id) if k=1

Ri= qiA0 if k > 1.

Ideally, we wish that each such system determines F i uniquely that is, that Ri

be a unit. For k = 1, this is the case when i is not a root of the indicial equation
det (qiA0− γi Id)=0. For k>1, either this is the case for all i (when A0 is invertible)
or for no i. In any case, we let R be the set of indices i ∈ {0,	 , N − 1} such that
det (Ri)= 0; we write R= {j1<	 < jr}, so that r= |R|.

Even when R is empty, so the solution is unique, this approach takes quadratic
time in N , as computing each individual ∆i takes linear time in i. To achieve quasi-
linear time, we split the resolution of Eq. (4.3) mod xN into two half-sized instances
of the problem; at the leaves of the recursion tree, we end up having to solve the
same Eq. (4.4).

When R is empty, the algorithm is simple to state (and the cost analysis sim-
plifies; see the comments at the end of this section). Otherwise, technicalities arise.
We treat the cases i∈R separately, by adding placeholder parameters for all corre-
sponding coefficients of F (this idea is already in [BBP10, BP99]; the algorithms in
these references use a finer classification when k>1, by means of a suitable extension
of the notion of indicial polynomial, but take quadratic time in N).

Let f1,1, 	 , fn,r be n r new indeterminates over k (below, all boldface letters
denote expressions involving these formal parameters). For ρ=1,	 , r, we define the
vector Fjρ

with entries f1,ρ,	 , fn,ρ and we denote by L the set of all vectors

F= ϕ0+ ϕ1Fj1
+
 + ϕrFjr

,

with ϕ0 in Mn,1(k[x]) and each ϕℓ in Mn(k[x]) for 1≤ ℓ≤ r. We also define L i the
subspace of vectors of the form

F= ϕ0+ ϕ1Fj1
+
 + ϕµ(i)Fµ(i),

92 Power series solutions of (q)-differential equations

where µ(i) is defined as the index of the largest element jℓ ∈R such that jℓ < i; if
no such element exist (for instance when i=0), we let µ(i) = 0. A specialization S:
L →Mn,1(k[x]) is simply an evaluation map defined by f i,ℓ� fi,ℓ for all i, ℓ, for
some choice of (fi,ℓ) in knr.

We extend δ and σ to such vectors, by letting δ(fi,ℓ) = 0 and σ(fi,ℓ) = fi,ℓ for all
i, ℓ, so that we have, for F in L

δ(F)= δ(ϕ0) + δ(ϕ1)Fj1
+
 + δ(ϕr)Fjr

,

and similarly for σ(F).

Algorithm 4.1
Recursive Divide-and-conquer RDAC(A,C, i, N , k)

Input: A∈Mn(k[[x]]),C∈L i, i∈N, N ∈N \ {0}, k ∈N \ {0}
Output: F∈L i+N

if N =1
if (k=1) then Ri7 qiA0− γi Id else Ri7 qiA0

if (det (Ri) = 0) then return Fi else return −Ri
−1C0

else
m7 ⌈N/2⌉
H7 RDAC(A,C, i,m, k)

D7 (C−xk δ(H)+ (qiA− γi x
k−1 Id) σ(H)) div xm

K7 RDAC(A,D, i+m,N −m,k)
return H+xmK

The main divide-and-conquer algorithm first computes F in L , by simply skip-
ping all equations corresponding to indices i ∈R; it is presented in Algorithm 4.2.
In a second step, we resolve the indeterminacies by plain linear algebra. For i≥ 0,
and F,C in L , we write

E(F,C, i) =xk δ(F)− ((qiA− γi x
k−1 Id) σ(F)+C).

In particular, E(F,C,0) is a parameterized form of Eq. (4.3). The key to the divide-
and-conquer approach is to write H=Fmodxm, K=F div xm and D=(C−E(H,

C, i)) div xm. Using the equalities

xk δ(F)= xk δ(H)+ xm+k δ(K) + γm xm+k−1 σ(K)

and γi+m= γm+ qm γi, a quick computation shows that

E(F,C, i)= (E(H,C, i)mod xm) +xmE(K,D, i+m). (4.5)

Lemma 4.4. Let A be in Mn(k[x]) and C in L i, and let F= RDAC(A,C, i, M ,

k) with i+M ≤N. Then:

1. F is in L i+M;

4.2 Divide-and-Conquer 93

2. for j ∈{0,	 ,M −1} such that i+ j � R, the equality coeff(E(F,C, i), xj)=0
holds;

3. if C and F in Mn,1(k[x]) with degF <M are such that E(F ,C, i)=0modxM

and there exists a specialization S: L i → Mn,1(k[x]) such that C = S(C),
there exists a specialization S ′:L i+M→Mn,1(k[x]) which extends S and such
that F =S(F).

F is computed in time O((n2+ r nω)M(M) log (M) +nωM).

Proof. The proof is by induction on M .

Proof of 1. For M = 1, we distinguish two cases. If i ∈ R, say i = jℓ, we return
Fi= Fjℓ

. In this case, µ (i+ 1) = ℓ, so our claim holds. If i � R, because C0 ∈L i,
the output is in L i as well. This proves the case M =1.

For M > 1, we assume the claim to hold for all (i, M ′), with M ′ < M . By
induction, H∈L i+m and K∈L i+M. Thus, D∈L i+m and the conclusion follows.

Proof of 2. For M =1, if i∈R, the claim is trivially satisfied. Otherwise, we have
to verify that the constant term of E(F,C, i) is zero. In this case, the output F is
reduced to its constant term F0, and the constant term of E(F,C, i) is (up to sign)
RiF0+C0=0, so we are done.

For M > 1, we assume that the claim holds for all (i,M ′), with M ′<M . Take j

in {0,	 ,M −1}. If j <m, we have coeff(E(F,C, i), xj)= coeff(E(H,C, i), xj); since
i+ j � R, this coefficient is zero by assumption. If m≤ j, we have coeff(E(F,C, i),
xj)= coeff(E(K,D, i), xj−m). Now, j+ i� R implies that (j−m)+(i+m)� R, and
j −m<M −m, so by induction this coefficient is zero as well.

Proof of 3. For M =1, if i∈R, say i= jℓ, we have F=Fjℓ
, whereas F has entries

in k; this allows us to define S ′. When i � R, we have F =S(F), so the claim holds
as well. Thus, we are done for M =1.

ForM>1, we assume our claim for all (i,M ′) withM ′<M . WriteH=F modxm,
K =F div xm and D=(C −xk δ(H)+ (qiA− γi x

k−1 Id) σ(H)) div xm. Then, (4.5)
implies that E(H,C,i)=0modxm and E(K,D,i+m)=0modxM−m. The induction
assumption shows that H is a specialization of H, say H = S ′(H) for some S ′:
L i+m → Mn,1(k[x]) which extends S. In particular, D = S ′(D). The induction
assumption also implies that there exist an extension S ′′:L i+m→Mn,1(k[x]) of S ′,
and thus of S, such that K =S ′′(K). Then F =S ′′(F), so we are done.

For the complexity analysis, the most expensive part of the algorithm is the
computation of D. At the inner recursion steps, the bottleneck is the computa-
tion of A σ(H), where H has degree less than M and A can be truncated mod
xM (the higher degree terms have no influence in the subsequent recursive calls).
Computing σ(H) takes time O(N (n + r n2)) and the product is done in time
O((n2+ r nω)M(M)); recursion leads to a factor log (M). The base cases use O(M)
matrix inversions of cost O(nω) and O(M) multiplications, each of which takes time
O(r nω). �

94 Power series solutions of (q)-differential equations

The second step of the algorithm is plain linear algebra: we know that the output
of the previous algorithm satisfies our main equation for all indices i � R, so we
conclude by forcing the remaining ones to zero.

Algorithm 4.2
Divide-and-Conquer DAC(A,C,N , k)

Input: A∈Mn(k[[x]]), C ∈Mn,1(k[[x]]), N ∈N \ {0}, k ∈N \ {0}
Output: Generators of the solution space of

xk δ(F) =Aσ(F)+C at precision N .

F7 RDAC(A,C, 0, N , k)
(F has the form ϕ0+ ϕ1Fj1

+
 + ϕrFjr
)

T7 xk δ(F)−Aσ(F)−Cmod xN

Γ7 (Ti
(j)
, i∈R, j=1,	 , n)

Φ,∆7 LinSolve(Γ= 0)
M 7 [ϕ1,	 , ϕr]
return ϕ0+M Φ,M ∆

Proposition 4.5. On input A, C, N , k as specified in Algorithm 4.2, this algo-
rithm returns generators of the solution space of (4.3) mod xN in time O((n2 +
r nω)M(N) log (N) + r2nωN + rωnω).

Proof. The first claim is a direct consequence of the construction above, combined
with Lemma 4.4. For the cost estimate, we need to take into account the computa-
tion of T, the linear system solving, and the final matrix products. The computation
of T fits in the same cost as that of D in Algorithm 4.1, so no new contribution
comes from here. Solving the system Γ=0 takes timeO((r n)ω). Finally, the product
[ϕ1
 ϕr] ∆ involves an n × (r n) matrix with entries of degree N and an (r n)× t

constant matrix, with t≤ r n; proceeding coefficient by coefficient, and using block
matrix multiplication in size n, the cost is O(r2nωN). �

When all matrices Ri are invertible, the situation becomes considerably simpler:
r = 0, the solution space has dimension 0, there is no need to introduce formal
parameters, the cost drops to O(n2 M(N) log (N) + nω N) for Lemma 4.4, and
Proposition 4.5 becomes irrelevant.

When A0 has good spectrum at precision N , we may not be able to ensure that
r= 0, but we always have r ≤ 1. Indeed, when k= 1, the good spectrum condition
implies that for all 0 ≤ i < N and for j ∈ N, the matrices Ri and Rj have disjoint
spectra so that at most one of them can be singular. For k > 1, the good spectrum
condition implies that all Ri are invertible, whence r=0. This proves Thm. 4.2.

Previous work. As said above, Barkatou and Pflügel [BP99], then Barkatou,
Broughton and Pflügel [BBP10], already gave algorithms that solve such equations
term-by-term, introducing formal parameters to deal with cases where the matrix
Ri is singular. These algorithms handle some situations more finely than we do
(e.g., the cases k ≥ 2), but take quadratic time; our algorithm can be seen as
a divide-and-conquer version of these results.

4.2 Divide-and-Conquer 95

In the particular case q� 1, n=1 and r=0, another forerunner to our approach is
Brent and Traub’s divide-and-conquer algorithm [BT80]. That algorithm is analyzed
for a more general σ, of the form σ(x) = x q(x), as such, they are more costly than
ours; when q is constant, we essentially end up with the approach presented here.

Let us finally mention van der Hoeven’s paradigm of relaxed algorithms [Hoe02,
Hoe09, Hoe11], which allows one to solve systems such as (4.3) in a term-by-term
fashion, but in quasi-linear time. The cornerstone of this approach is fast relaxed
multiplication, otherwise known as online multiplication, of power series.

In [Hoe02, Hoe03], van der Hoeven offers two relaxed multiplication algorithms
(the first one being similar to that of [FS74]); both take time O(M(n) log (n)).
When r = 0, this yields a complexity similar to Prop. 4.5 to solve Eq. (4.3), but it
is unknown to us how this carries over to arbitrary r.

When r = 0, both our divide-and-conquer approach and the relaxed one can
be seen as “fast” versions of quadratic time term-by-term extraction algorithms. It
should appear as no surprise that they are related: as it turns out, at least in simple
cases (with k=1 and n= 1), using the relaxed multiplication algorithm of [Hoe03]
to solve Eq. (4.3) leads to doing exactly the same operations as our divide-and-
conquer method, without any recursive call. We leave the detailed analysis of these
observations to future work.

For suitable “nice” base fields (e.g., for fields that support Fast Fourier Trans-
form), the relaxed multiplication algorithm in [Hoe02] was improved in [Hoe07,
Hoe12], by means of a reduction of the log (n) overhead. This raises the question
whether such an improvement is available for divide-and conquer techniques.

4.3 Newton Iteration

4.3.1 Gauge Transformation

Let F be a solution of Eq. (4.3). To any invertible matrix W ∈Mn(k[x]), we can
associate the matrix Y =W−1F ∈Mn(k[[x]]). We are going to choose W in such a
way that Y satisfies an equation simpler than (4.3). The heart of our contribution
is the efficient computation of such a W .

Lemma 4.6. Let W ∈Mn(k[x]) be invertible in Mn(k[[x]]) and let B ∈Mn(k[x])
be such that

B=W−1 (xk δ(W)−Aσ(W))mod xN. (4.6)

Then F in Mn,1(k[x]) satisfies

xk δ(F) =Aσ(F)+CmodxN (4.7)

96 Power series solutions of (q)-differential equations

if and only if Y =W−1F satisfies

xk δ(Y) =Bσ(Y)+W−1Cmod xN. (4.8)

Proof. Differentiating the equality F =WY gives

xk δ(F)= xk δ(W)σ(Y) +xkWδ(Y).

Since xk δ(W)=Aσ(W)−WBmod xN, we deduce

xk δ(F)−Aσ(F)−C =W (xk δ(Y)−Bσ(Y)−W−1C)mod xN.

Since W is invertible, the conclusion follows. �

The systems (4.3) and (4.8) are called equivalent under the gauge transforma-
tion Y =WF . Solving (4.3) is thus reduced to finding a simple B such that (4.8)
can be solved efficiently and such that the equation

xk δ(W)=Aσ(W)−WBmod xN (4.9)

that we call associated to (4.3) has an invertible matrix W solution that can be
computed efficiently too.

As a simple example, consider the differential case, with k=1. Under the good
spectrum assumption, it is customary to choose B =A0, the constant coefficient of
A. In this case, the matrix W of the gauge transformation must satisfy

xW ′=AW −WA0modxN.

It is straightforward to compute the coefficients of W one after the other, as they
satisfy W 0= Id and, for i > 0,

(A0− i Id)W i−W iA0=−
∑

j<i

Ai−jW j.

However, using this formula leads to a quadratic running time in N . The Newton
iteration presented in this section computes W in quasi-linear time.

4.3.2 Polynomial Coefficients

Our approach consists in reducing efficiently the resolution of (4.3) to that of an
equivalent equation where the matrix A of power series is replaced by a matrix B

of polynomials of low degree. This is interesting because the latter can be solved in
linear complexity by extracting coefficients. This subsection describes the resolution
of the equation

xk δ(Y)=Pσ(Y) +Q, (4.10)

where P is a polynomial matrix of degree less than k.

4.3 Newton Iteration 97

Algorithm 4.3
PolCoeffsDE(P , Q, k,N)

Input: P ∈Mn(k[x]) of degree less than k,
Q∈Mn,1(k[[x]]), N ∈N \ {0}, k ∈N \ {0}

Output: Generators of the solution space of
xk δ(Y)=Pσ(Y)+Q at precision N .

for i=0,	 , N − 1
C7 Qi+ (P1 q

i−1Yi−1+	 +Pk−1 q
i−k+1Yi−k+1)

if (k=1)
Yi,Mi7 LinSolve((γi Id− qiP0)X =C)

else
Yi,Mi7 LinSolve(−qiP0X =C − γi−k+1Yi−k+1)

return Y0+	 + YN−1x
N−1, [M0 M1 x
 MN−1x

N−1]

Lemma 4.7. Suppose that P0 has good spectrum at precision N. Then Algorithm 4.3
computes generators of the solution space of Eq. (4.10) at precision N in time
O(nωN), with M ∈Mn,t(k) for some t≤n.

Proof. Extracting the coefficient of xi in Eq. (4.10) gives

γi−k+1Yi−k+1= qiP0Yi+	 + qi−k+1Pk−1Yi−k+1+Qi.

In any case, the equation to be solved is as indicated in the algorithm. For k=1, we
actually have C = Qi for all i, so all these systems are independent. For k > 1, the
good spectrum condition ensures that the linear system has full rank for all values
of i, so all Mi are empty. For each i, computing C and solving for Yi is performed
in O(nω) operations, whence the announced complexity. �

4.3.3 Computing the Associated Equation

Given A ∈ Mn(k[[x]]), we are looking for a matrix B with polynomial entries of
degree less than k such that the associated Equation (4.9), which does not depend
on the non-homogeneous term C, has an invertible matrix solution.

In this article, we content ourselves with a simple version of the associated equa-
tion where we choose B in such a way that (4.9) has an invertible solution V modxk;
thus, V and B must satisfy A σ(V) = V Bmod xk. The invertible matrix V is
then lifted at higher precision by Newton iteration (Algorithm 4.6) under regularity
conditions that depend on the spectrum of A0. Other cases can be reduced to this
setting by the polynomial gauge transformations that are used in the computation
of formal solutions [BBP10, Was65].

When k=1 or q � 1, the choice

B=Amodxk, V = Id

98 Power series solutions of (q)-differential equations

solves our constraints and is sufficient to solve the associated equation. When q=1,
k > 1 (in particular when the point 0 is an irregular singular point of the equa-
tion), this is not be the case anymore. In that case, we use a known technique
called the splitting lemma to prepare our equation. See for instance [Bal00, Ch. 3.2]
and [BBP10] for details and generalizations.

Lemma 4.8. (Splitting Lemma) Suppose that k > 1, that |SpecA0|=n and that
SpecA0⊂k. Then one can compute in time O(nω) matrices V and B of degree less
than k in Mn(k[x]) such that the following holds: V 0 is invertible; B is diagonal;
AV =VBmod xk.

Proof. We can assume that A0 is diagonal: if not, we let P be in Mn(k) such that
D = P−1AP has a diagonal constant term; we find V using D instead of A, and
replace V by P V . Computing P and P V takes time O(nω), since as per convention,
k is considered constant in the cost analyses.

Then, we take B0=A0 and V 0= Id. For i > 0, we have to solve A0 V i−V iA0−
Bi=∆i, where ∆i can be computed from A1,	 , Ai and B1,	 , Bi−1 in time O(nω).
We set the diagonal of Vi to 0. Since A0 is diagonal, the diagonal Bi is then equal
to the diagonal of ∆i, up to sign. Then the entry (ℓ, m) in our equation reads
(rℓ − rm) Vi

(ℓ,m) = ∆i
(ℓ,m), with r1, 	 , rn the (distinct) eigenvalues of A0. This can

always be solved, in a unique way. The total time is O(nω). �

4.3.4 Solving the Associated Equation

Once B and V are determined as in §4.3.3, we compute a matrix W that satisfies the
associated Equation (4.9); this eventually allows us to reduce (4.3) to an equation
with polynomial coefficients. This computation of W is performed efficiently using a
suitable version of Newton iteration for Eq. (4.9); it computes a sequence of matrices
whose precision is roughly doubled at each stage. This is described in Algorithm 4.6;
our main result in this section is the following.

Proposition 4.9. Suppose that A0 has good spectrum at precision N. Then, given
a solution of the associated equation mod xk, invertible in Mn(k[[x]]), Algorithm 4.6
computes a solution of that equation modxN, also invertible in Mn(k[[x]]), in time
O(nωM(N)+nω log (n)N).

Before proving this result, we show how to solve yet another type of equations
that appear in an intermediate step:

xk δ(U) =Bσ(U)−UB+Γmod xN , (4.11)

where all matrices involved have size n× n, with Γ= 0mod xm. This is dealt with
by Algorithm 4.4 when k=1 or q � 1 and Algorithm 4.5 otherwise.

For Algorithm 4.4, remember that B = Amod xk. The algorithm uses a rou-
tine Sylvester solving Sylvester equations . Given matrices Y , V , Z in Mn(k), we
are looking for X in Mn(k) such that YX −XV = Z. When (Y , V) have disjoint
spectra, this system admits a unique solution, which can be computed O(nω log (n))
operations in k [Kir01].

4.3 Newton Iteration 99

Algorithm 4.4
Solving Eq. (4.11) when k=1 or q � 1 DiffSylvester(Γ, m,N)

Input: Γ∈ xmMn(k[[x]]),m∈N \ {0}, N ∈N \ {0}
Output: U ∈ xm−kMn(k[x]) solution of (4.11).

for i=m,	 , N − 1

C 7 (B1 q
i−1Ui−1+	 +Bk−1 q

i−k+1Ui−k+1)
−(Ui−1B1+	 +Ui−k+1Bk−1)+Γi

if (k=1)
Ui7 Sylvester(XB0+ (γi Id− qiB0)X =C)

else
Ui7 Sylvester(XB0− qiB0X =C − γi−k+1Ui−k+1)

return Um xm+	 +UN−1 x
N−1

Lemma 4.10. Suppose that k=1 or q� 1 and that A0 has good spectrum at precision
N. If Γ=0mod xm, with k ≤m<N, then Algorithm 4.4 computes a solution U to
Eq. (4.11) that satisfies U =0mod xm−k+1 in time O(nω log (n)N).

Proof. Extracting the coefficient of xi in (4.11) gives

γi−k+1U i−k+1= qiB0U i−U iB0+C,

with C as defined in Algorithm 4.4. In both cases k = 1 and k > 1, this gives a
Sylvester equation for each U i, of the form given in the algorithm. Since B0=A0, the
spectrum assumption on A0 implies that these equations all have a unique solution.
Since Γ is 0modxm, so is U (so we can start the loop at index m). The total running
time is O(nω log (n)N) operations in k. �

Algorithm 4.5
Solving Eq. (4.11) when k > 1 or q=1 DiffSylvesterDifferential(Γ, m,N)

Input: Γ∈ xmMn(k[[x]]),m∈N \ {0}, N ∈N \ {0}
Output: U ∈ xm−kMn(k[x]) solution of (4.11).

for i=1,	 , n

for j=1,	 , n

if (i= j)

U (i,i)7 xk
∫

(x−k Γ(i,i)) mod xN

else
U (i,j)7 PolCoeffsDE(B(i,i)−B(j,j),Γ(i,j), k,N)

return U

This approach fails in the differential case (q = 1) when k > 1, since then the
Sylvester systems are all singular. Algorithm 4.5 deals with this issue, using the fact
that in this case, B is diagonal, and satisfies the conditions of Lemma 4.8.

100 Power series solutions of (q)-differential equations

Lemma 4.11. Suppose that k>1, q=1 and that A0 has good spectrum at precision
N. If Γ=0mod xm, with k ≤m<N, then Algorithm 4.5 computes a solution U to
Eq. (4.11) that satisfies U =0mod xm−k+1 in time O(n2N).

Proof. Since B is diagonal, the (i, j)th entry of (4.11) is

xk δ(U (i,j)) = (B(i,i)−B(j ,j))U (i,j)+Γ(i,j)mod xN.

When i= j, B(i,i)−B(j ,j) vanishes. After dividing by xk, we simply have to compute
an integral, which is feasible under the good spectrum assumption (we have to divide
by the non-zero γ1= 1,	 , γN−k =N − k). When i � j, the conditions ensure that
Lemma 4.7 applies (and since k > 1, the solution is unique, as pointed out in its
proof). �

We now prove the correctness of Algorithm 4.6 for Newton iteration. Instead of
doubling the precision at each step, there is a slight loss of k− 1.

Algorithm 4.6
Newton iteration for Eq. (4.9) NewtonAE(V ,N)

Input: V ∈Mn(k[x]) solution of (4.9) mod xk invertible in Mn(k[[x]]),
N ∈N \ {0}

Output: W ∈Mn(k[x]) solution of (4.9) mod xN invertible in Mn(k[[x]]),
with W = V mod xk

if (N 6 k)
return V

else
m7 ⌈N + k− 1

2
⌉

H7 NewtonAE(V ,m)
R7 xk δ(H)−Aσ(H) +HB

if (k=1) or (q � 1)
U7 DiffSylvester(−H−1R,m,N)

else
U7 DiffSylvesterDifferential(−H−1R,m,N)

return H +HU

Lemma 4.12. Let m ≥ k and let H ∈ Mn(k[x]) be invertible in Mn(k[[x]]) and
satisfy (4.9) mod xm. Let N be such that m≤N ≤ 2m− k+1. Let R and U be as
in Algorithm 4.6 and suppose that A0 has good spectrum at precision N.

Then H +H U is invertible in Mn(k[[x]]) and satisfies the associated equation
modxN. Given H, U can be computed in time O(nωM(N) +nω log (n)N).

Proof. By hypothesis, R=0mod xm. Then

xk δ(H+HU)−Aσ(H +HU)+ (H +HU)B

=(xk δ(H)−Aσ(H) +HB) (Id+σ(U))

+H (xk δ(U)+UB −Bσ(U))

=R (Id+σ(U))−Rmod xN =Rσ(U)mod xN.

4.3 Newton Iteration 101

Using either Lemma 4.10 or Lemma 4.11, U = 0mod xm−k+1, so σ(U) =
0modxm−k+1. Thus, the latter expression is 0, since 2m−k+1≥N . Finally, since
H U = 0mod xm−k+1, and m ≥ k, H +H U remains invertible in Mn(k[[x]]). The
various matrix products and inversions take a total number of O(nω M(N)) oper-
ations in k (using Newton iteration to invert H). Adding the cost of Lemma 4.10,
resp. Lemma 4.11, we get the announced complexity. �

We can now prove Proposition 4.9. Correctness is obvious by repeated applica-
tions of the previous lemma. The cost C(N) of the computation up to precision N

satisfies
C(N)=C(m)+O(nωM(N) +nω log nN), N >k.

Using the super-additivity properties of the function M as in [GG03, Ch. 9], we
obtain the claimed complexity.

We can now conclude the proof of Thm. 4.3. In order to solve Equation (4.3),
we first determine B and V as in §4.3.3; the cost will be negligible. Then, we use
Proposition 4.9 to compute a matrix W that satisfies (4.9) mod xN. Given C in
Mn,1(k[[x]]), we next compute Γ = W−1 Cmod xN. By the previous lemma, we
conclude by solving

xk δ(Y) =Bσ(Y)+Γmod xN.

Lemma 4.7 gives us generators of the solution space of this equation modxN. If it is
inconsistent, we infer that Eq. (4.3) is. Else, from the generators (Y ,M) obtained in
Lemma 4.7, we deduce that (WY ,WM)modxN is a generator of the solution space
of Eq. (4.3) modxN. Since the matrix M has few columns (at most n), the cost of all
these computations is dominated by that of Proposition 4.9, as reported in Thm. 4.3.

4.4 Implementation

We implemented the divide-and-conquer and Newton iteration algorithms, as well
as a quadratic time algorithm, on top of NTL 5.5.2 [S+90]. In our experiments, the
base field is k= Z/pZ, with p a 28 bit prime; the systems were drawn at random.
Timings are in seconds, averaged over 50 runs; they are obtained on a single core of
a 2 GHz Intel Core 2.

Our implementation uses NTL’s built-in zz_pX polynomial arithmetic, that is,
works with “small” prime fields (of size about 230 over 32 bit machines, and 250 over 64
bits machines). For this data type, NTL’s polynomial arithmetic uses a combination
of naive, Karatsuba and FFT arithmetic.

There is no built-in NTL type for polynomial matrices, but a simple mechanism
to write one. Our polynomial matrix product is naive, of cubic cost. For small sizes
such as n= 2 or n= 3, this is sufficient; for larger n, one should employ improved
schemes (such as Waksman’s [Wak70], see also [DIS11]) or evaluation-interpolation
techniques [BS05].

Our implementation follows the descriptions given above, up to a few optimiza-
tions for algorithm NewtonAE (which are all classical in the context of Newton
iteration). For instance, the inverse of H should not be recomputed at every step,
but simply updated; some products can be computed at a lower precision than it
appears (such as H−1R, where R is known to have a high valuation).

102 Power series solutions of (q)-differential equations

In Fig. 4.1, we give timings for the scalar case, with k=1 and q� 1. Clearly, the
quadratic algorithm is outperformed for almost all values of N ; Newton iteration
performs better than the divide-and-conquer approach, and both display a sub-
quadratic behavior. Fig. 4.2 gives timings when n varies, taking k=1 and q � 1 as
before. For larger values of n, the divide-and-conquer approach become much better
for this range of values of N , since it avoids costly polynomial matrix multiplication
(see Thm. 4.2).

 0

 0.005

 0.01

 0.015

 0.02

 0 100 200 300 400 500 600 700 800 900 1000

ti
m

e

N

Newton

DAC

Naive

Figure 4.1. Timings with n=1, k=1, q � 1

✥

�

✁

✂ ✄ �✄✄ ✂✄✄ ☎✄✄ ✆✄✄ ✥✄✄✄

✄✝✥

✄✝�

✄✝✁

✄✝✂

✄✝✞

✄✝☎

✄✝✟

✄✝✆

t✠✡☛
◆☛☞t✌✍

❉✎✏

✍
◆

t✠✡☛

Figure 4.2. Timings with k=1, q � 1

Finally, Table 4.1 gives timings obtained for k=3, for larger values of n (in this
case, a plot of the results would be less readable, due to the large gap between the
divide-and-conquer approach and Newton iteration, in favor of the former); DAC
stands for “divide-and-conquer”. In all cases, the experimental results confirm to a
very good extent the theoretical cost analyses.

4.4 Implementation 103

Newton
n

5 9 13 17

N

50 0.01 0.11 0.32 0.72
250 0.22 1.2 3.7 8.1
450 0.50 2.8 8.3 18
650 0.93 5.1 16 34

DAC
n

5 9 13 17

N

50 0.01 0.01 0.02 0.04
250 0.03 0.07 0.15 0.25
450 0.06 0.16 0.32 0.52
650 0.10 0.27 0.53 0.88

Table 4.1. Timings with k=3, q � 1

104 Power series solutions of (q)-differential equations

Partie III

Algebraic lifting

Chapitre 5

Relaxed p-adic Hensel lifting for
algebraic systems

This chapter is the main part of the homonym paper published with J.
Berthomieu in the proceedings of ISSAC’12 [BL12].

In this chapter, we show how to transform algebraic equations into recursive
equations. As a consequence, we can use relaxed algorithms to compute the Hensel
lifting of a root from the residue ring R/(p) to its p-adic ring Rp. This chapter can
be seen as a special and simpler case of lifting of triangular set done in Chapter 6.

We work under the hypothesis of Hensel’s lemma, which requires that the deriva-
tive at the point we wish to lift is not zero. Our algorithms are worse by a logarithmic
factor in the precision compared to Newton iteration. However, the constant factors
hidden in the big-O notation are potentially smaller. Moreover, our algorithm’s
cost is roughly the cost of evaluating the implicit equation by on-line algorithms.
This can lead to further savings compared to the cost of off-line methods. For
example, consider the multivariate Newton-Hensel operator which performs at each
step an evaluation of the implicit equations and an inversion of its evaluated Jaco-
bian matrix. In Theorems 5.11 and 5.14, we manage to save the cost of the inversion
of the Jacobian matrix at full precision.

Finally, we implement these algorithms to obtain timings competitive with
Newton and even lower on wide ranges of input parameters. As an application,
we solve linear systems over the integers and compare to Linbox and IML. We
show that we improve the timings for small matrices and big integers.

Our results on the transformation of implicit equations to recursive equations
were discovered independently at the same time by [Hoe11]. This paper deals with
more general recursive power series defined by algebraic, differential equations or
a combination thereof. However, its algorithms have yet to be implemented and
only work in characteristic zero. Furthermore, since the carry is not dealt with,
the blockwise product as presented in [BHL11, Section 4] cannot be used. This is
important because blockwise relaxed algorithms are often an efficient alternative.

5.1 Univariate root lifting

In [BHL11, Section 7], it is shown how to compute the dth root of a p-adic number
a in a recursive relaxed way, d being relatively prime to p. In this section, we extend
this result to the relaxed lifting of a simple root of any polynomial P ∈R[Y]. Hensel’s
lemma ensures that from any modular simple root y0∈R/(p) of P̄ ∈R/(p)[Y], there
exists a unique lifted root y ∈Rp of P such that y= y0mod p.

107

From now on, P is a polynomial with coefficients in R and y ∈Rp is the unique
root of P lifted from the modular simple root y0∈R/(p).

Proposition 5.1. The polynomial

Φ(Y)7 P ′(y0)Y −P (Y)

P ′(y0)
∈K[Y]

allows the computation of y.

Proof. It is clear that if P (y) = 0 and P ′(y0) � 0, then y =
P ′(y0) y−P (y)

P ′(y0)
= Φ(y).

Furthermore, Φ′(y0) = 0. �

In the following subsections, we will derive some shifted algorithms associated
to the recursive equation Φ depending on the representation of P .

5.1.1 Dense polynomials

In this subsection, we fix a polynomial P of degree d given in dense representation,
that is as the vector of its coefficients in the monomial basis (1, Y ,	 , Y d). To have
a shifted algorithm, we need to express Φ(Y) with a positive shift. Recall, from
Definition 2.11, that the shift of Φ(Y) is 0. In this chapter, for any two p-adics a and
b, we denote by a · b their multiplication. If at least one of them has finite precision,
we denote by a b their multiplication.

Lemma 5.2. The s.l.p. Γ:Z� p2×
((

Z − y0

p

)

2 ·Zk
)

for k ∈N−{0} is executable
on y and sh(Γ)=1.

Proof. Since y0= ymod p, Γ(y)∈Rp and thus Γ is executable on y. Furthermore,

the shift sh(Γ) equals 2+min
(

sh
(

Z − y0

p

)

, sh(Z)
)

=1. �

We are now able to derive a shifted algorithm for Φ.

Algorithm - Dense polynomial root lifting

Input: P ∈R[Y] with a simple root y0 in R/(p).
Output: A shifted algorithm Ψ associated to Φ and y0.

1. Compute Q(Y) the quotient of P (Y) by (Y − y0)
2

2. Let sq(Z):Z� (Z − y0

p

)

2

3. return the shifted algorithm Ψ:

Z→ −1

P ′(y0)
(P (y0)−P ′(y0) y0+ p2× (Q(Z) · sq(Z))).

108 Relaxed p-adic Hensel lifting for algebraic systems

Proposition 5.3. Given a polynomial P of degree d in dense representation and a
modular simple root y0, Algorithm 5.2.1 defines a shifted algorithm Ψ associated to
Φ. The precomputation of such an operator involves O(d) operations in R. If λ is
the length of P ′(y0), then we can lift y at precision N in time

(d− 1)R(N)+O(Nd+N R(λ)/λ)

or equivalently

(d− 1)R(N) +O(Nd) +N log (λ)O(1).

Proof. First, Ψ is a shifted algorithm for Φ. Indeed since sh(P (y0)− P ′(y0) y0) =
+∞ and, due to Lemma 5.2, sh(p2× (sq(Z) ·Q(Z))) = 1, we have sh(Ψ)= 1. Also,
thanks to Lemma 5.2, we can execute Ψ on y over the R-algebra Rp. Moreover, it
is easy to see that Φ(Y) =Ψ(Y) over the R-algebra K[Y].

The quotient polynomial Q is precomputed in time O(d) via the naïve Euclidean
division algorithm. Using Horner scheme to evaluate Q(Z), we have L∗(Ψ) = d− 1
and we can apply Proposition 2.17. Note that by Proposition 3.6 for r = 1, the
inversion of P ′(y0) costs O(N R(λ)/λ). Finally, the evaluation of Q also involves
O(d) on-line additions which cost O(Nd). �

In comparison, Newton iteration lifts y at precisionN in time (3 d+O(1)) I(N)+
O(dN) (see [GG03, Theorem 9.25]). Here, the universal constant in the O(1) cor-
responds to p-adic inversion and can be taken less than 4. The reminder on Newton
iteration can be found in Section 6.3.1.

So the first advantage of our on-line algorithm is that it does asymptotically less
on-line multiplications than Newton iteration does off-line multiplications. Also, we
can expect better timings from the on-line method for the Hensel lifting of y when
the precision N satisfies R(N)6 3 I(N).

5.1.2 Polynomials as straight-line programs

In [BHL11, Proposition 7.1], the case of the polynomial P (Y)=Y d− a was studied.
Although the general concept of a shifted algorithm was not introduced, an algo-
rithm of multiplicative complexity O(L∗(P)) was given. The shifted algorithm was
only present in the implementation in Mathemagix [HLM+02]. We clarify and
generalize this approach to any polynomial P given as an s.l.p. and propose a shifted
algorithm Ψ whose complexity is linear in L∗(P).

In this subsection, we fix a polynomial P given as an s.l.p. Γ with L operations
in Ω 7 {+, −, ·} ∪ R ∪ Rc and multiplicative complexity L∗ 7 L∗(P), and a
modular simple root y0 ∈ R/(p) of P . Then, we define the polynomials TP(Y)7
P (y0)+P ′(y0) (Y − y0) and EP(Y)7 P (Y)−TP(Y).

Definition 5.4. We define recursively a vector τ ∈R2 and an s.l.p. ε with operations
in Ω′7 {+,−, ·, pi×_,_/pi}∪R∪Rc. Initially, ε07 0 and τ 07 (y0, 1). Then, we
define εi and τ i recursively on i with 16 i6L by:

• if Γi=(ac;), then εi7 0, τ i7 (a, 0);

• if Γi=(a×_; u), then εi7 a× εu, τ i7 a τu;

5.1 Univariate root lifting 109

• if Γi=(±; u, v), then εi7 εu± εv, τ i7 τu± τ v;

• if Γi = (·; u, v) and we denote by τu = (a, A), τ v = (b, B), then τ i = (a b,

aB+ bA) and εi equals

εu · εv + p × (((A × εv + B × εu)/p) · (Z − y0)) + (a × εv + b × εu) +

p2× ((AB)× ((Z − y0)/p)
2). (5.1)

Recall that multiplications denoted by · are the ones between p-adics. Finally, we set
εP7 εL and τP7 τL where L is the number of instructions in the s.l.p. P.

Lemma 5.5. The s.l.p. εP is a shifted algorithm for EP and y0. Its multiplicative
complexity is bounded by 2 L∗ + 1. Also, τP is the vector of coefficients of the
polynomial TP in the basis (1, (Y − y0)).

Proof. Let us call Pi the ith result of the s.l.p. P on the input Y over R[Y], with
0 6 i 6 L. We denote by Ei 7 EPi

and T i 7 TPi
for all 0 6 i 6 L. Let us prove

recursively that εi is a shifted algorithm for Ei and y0, and that τ i is the vector of
coefficients of T i in the basis (1, (Y − y0)).

For the initial step i=0, we have P0=Y and we verify that E0(Y)=ε0(Y)=0 and
T 0(Y)= y0+(Y − y0). The s.l.p. ε0 is executable on y over Rp and its shift is +∞.

Now we prove the result recursively for i> 0. We detail the case when Γi=(·;u,
v), the others cases being straightforward. Equation (5.1) corresponds to the last
equation of

Pi = PuPv

⇔ Ei = (Eu+T u) (Ev+T v)−T i

⇔ Ei = EuEv+ [T vEu+ T uEv] + (T uT v −T i)
⇔ Ei = EuEv+ [(Pu

′(y0)E
v+Pv

′(y0)E
u) (Y − y0)+ (Pu(y0)E

v+Pv(y0)E
u)]

+Pu
′(y0)Pv

′(y0) (Y − y0)
2.

Also τ i=(Pu(y0) Pv(y0), Pu(y0)Pv
′(y0)+Pv(y0)Pu

′(y0)). The s.l.p. εi is executable on
y over Rp because, for all j < i, sh(εj)> 0 implies that (A εv(y) +B εu(y))/p ∈Rp.
Concerning the shifts, since sh(εu), sh(εv)> 0, we can check that every operand in
Equation (5.1) has a positive shift. So sh(εi)> 0. Then, take i= r to conclude the
proof.

Concerning multiplicative complexity, we slightly change ε0 such that it com-
putes once and for all ((Y − y0)/p)

2 before returning zero. Then, for all multiplica-
tion instructions · in the s.l.p. P , the s.l.p. εP adds two multiplications · between
p-adics (see Equation (5.1)). So L∗(εP) = 2L∗+1. �

Proposition 5.6. Let P be a univariate polynomial over Rp given as an s.l.p. whose
multiplicative complexity is L∗. Then, the following algorithm

Ψ:Z� −P (y0)+P ′(y0) y0− εP(Z)

P ′(y0)

is a shifted algorithm associated to Φ and y0 whose multiplicative complexity is
2L∗+1.

110 Relaxed p-adic Hensel lifting for algebraic systems

Proof. We have Φ(Y) = Ψ(Y) over the algebra K[Y] because Φ(Y) = (−P (y0) +
P ′(y0) y0+EP(Y))/P ′(y0). Because of Lemma 5.5 and νp(P

′(y0))=0, the s.l.p. Ψ is
executable on y over Rp and its shift is positive. We conclude with L∗(Ψ)=L∗(εP)=
2 L∗+1 as the on-line division by P ′(y0) does not require any multiplication between
full precision p-adics (see Chapter 3). �

Remark 5.7. By adding the square operation _2 to the set of operations Ω of P ,
we can save a few multiplications. In Definition 5.4, if Γi= (_2; u) and τu= (a, A),
then we define εi by εu · (εu + 2× (a+A × (Z − y0))) + p2 × (A2× ((Z − y0)/p)

2).
Thereby, we reduce the multiplicative complexity of εP and Ψ by the number of
square operations in P .

Theorem 5.8. Let P ∈ R[Y] and y0 ∈ R/(p) be such that P (y0) = 0mod p and
P ′(y0)� 0mod p. Denote by y ∈Rp the unique solution of P lifted from y0. Assume
that P is given as an s.l.p. with operations in Ω 7 {+, −, ·} ∪ R ∪ Rc whose
multiplicative complexity is L∗. Let λ be a bound on the length of all elements Pi(y0)
in the result sequence of the evaluation of P at y0 and on all r∈R such that r×_
is an operation of the s.l.p. P.

Then, we can lift y up to precision N in time

(2L∗+1)R(N)+O(NLR(λ)/λ),

that is

(2L∗+1)R(N)+NL log (λ)O(1).

Proof. By Propositions 5.1 and 5.6, y can be computed as a recursive p-adic number
with the shifted algorithm Ψ. Proposition 2.17 gives that the cost of lifting y up to
precision N is the cost of evaluating Ψ(y) at precision N . This evaluation requires
(2L∗+1) on-line multiplications, O(L) additions, O(L) multiplications between p-
adics with one operand of finite length O(λ) (coming either from operations r×_
or · in P) and a division by P ′(y0) for a total cost of

(2L∗+1)R(N) +O(NL+NLR(λ)/λ+N R(λ)/λ). �

In this case, Newton iteration costs (4L∗+O(1)) I(N) +O(LN). To prove this
claim, we have to show that the evaluation of P at precision N costs L∗ I(N) +
O(LN), and that the evaluation of P ′ at precision N/2 costs 2 L∗ I(N/2)+O(LN).
One way to compute (P (y), P ′(y)) is to evaluate P at y + ε in the ring of tangent
numbers Rp[ε]/ε

2. Then P (y+ ε)=P (y)+ ε P ′(y). Note that

(a+ b ε)+ (c+ d ε) = (a+ c)+ (b+ d) ε

(a+ b ε) (c+ d ε) = a c+ (b c+ a d) ε

in Rp⊕Rp ε=Rp[ε]/ε
2. Consequently a multiplication in Rp[ε]/ε

2 costs 3 multipli-
cations in Rp. But because we want the coefficient in ε at precision only N/2, we
require b and d at precision N/2. Therefore by evaluating P at y + ε in R/(pN)⊕
R/(pN/2) ε, we obtain P (y) at precision N and P ′(y) at precision N/2 in time
2L∗ I(N/2)+L∗ I(N)+O(LN). The inversion of P ′(y) costs O(I(N)).

5.1 Univariate root lifting 111

Therefore the last step of Newton iteration costs (2 L∗+O(1)) I(N) +O(LN).
Finally, the whole Newton iteration involves the steps N , N/2, N/4, 	 for a total
cost of (4L∗+O(1)) I(N) +O(LN).

Remark 5.9. We can improve the bound on the multiplicative complexity when
the polynomial has a significant part with positive valuation. Indeed suppose that
the polynomial P is given as P (Y)=α(Y)+ p β(Y) with α and β two s.l.p.’s. Then
the part p β(Y) is already shifted. In this case, set ε̃P7 εα+ p β so that

Ψ:Z� −α(y0)+α ′(y0) y0− ε̃P(Z)
α ′(y0)

is a shifted algorithm for P with multiplicative complexity 2L∗(α) +L∗(β) + 1.

5.2 Multivariate root lifting

In this section, we lift a p-adic root y ∈ Rp
r of a polynomial system P = (P1, 	 ,

Pr)∈R[Y]r=R[Y1,	 , Yr]
r in a relaxed recursive way. We make the assumption that

y0=(y1,0,	 , yr,0)∈ (R/(p))r is a regular modular root of P , i.e. its Jacobian matrix
JacP (y0) is invertible in Mr (R/(p)). The Newton-Hensel operator ensures both the
existence and the uniqueness of y ∈Rp

r such that P (y)=0 and y0= ymod p. From
now on, P is a polynomial system with coefficients in R and y ∈Rp

r is the unique
root of P lifted from the modular regular root y0∈ (R/(p))r.

Proposition 5.10. The polynomial system

Φ(Y)7 JacP (y0)
−1(JacP (y0)Y −P (Y))∈K[Y]r

allows the computation of y.

Proof. We adapt the proof of Proposition 5.1. Since JacΦ(y0) = 0, Φ allows the
computation of y. �

As in the univariate case, we have to introduce a positive shift in Φ. In the
following, we present how to do so depending on the representation of P .

5.2.1 Dense algebraic systems

In this subsection, we assume that the algebraic system P is given in dense repre-
sentation. We assume that d> 2, where d7 max16i,j6r (degXj

(Pi))+1, so that the
dense size of P is bounded by r dr.

As in the univariate case, the shift of Φ(Y) is 0. We adapt Lemma 5.2 and
Proposition 5.3 to the multivariate polynomial case as follows. For 16 j6 k6 r, let
Q(j ,k) be polynomial systems such that P (Y) equals

P (y0)+ JacP (y0)Y +
∑

16j6k6r

Q(j ,k)(Y) (Yj − yj ,0) (Yk− yk,0).

112 Relaxed p-adic Hensel lifting for algebraic systems

Algorithm - Dense polynomial system root lifting

Input: P ∈R[Y]r with a regular root y0 in (R/(p))r.
Output: A shifted algorithm Ψ associated to Φ and y0.

1. For 16 j6 k6 r, compute a Q(j ,k)(Y) from P (Y)

2. For 16 j6 k6 r, let prj ,k(Z)7 (Zj − yj,0

p

)(

Zk − yk,0

p

)

3. Let Ψ1:Z�∑16j6k6r
Q(j,k)(Z) · prj,k(Z)

4. return the shifted algorithm

Ψ:Z� −JacP (y0)
−1(P (y0)− JacP (y0) y0+ p2×Ψ1).

Theorem 5.11. Let P = (P1, 	 , Pr) be a polynomial system in R[Y]r in dense
representation, satisfying d > 3 where d 7 max16i,j6r (degXj

(Pi)) + 1, and let y0

be an approximate zero of P. Let λ be a bound on the length of the polynomial
coefficients of P and on the entries of JacP (y0).

Then Algorithm 5.2.1 outputs a shifted algorithm Ψ associated to Φ and y0.
The precomputation in Ψ costs O(r dr) operations in R, while computing y up to
precision N costs

drR(N)+O(N [r drR(λ)/λ+MMR(r, 1, λ)/λ] + rω),

that is

drR(N) +Nrdr log (λ)O(1)+O(rω).

Proof. First, for j 6 r, we perform the Euclidean division of P by (Yj − yj ,0)
2 to

reduce the degree in each variable. The naïve algorithm does the first division in time
O(r dr). Then the second division costs O(r 2 dr−1) because we reduce a polynomial
with less monomials. The thirdO(r 22 dr−2) and so on. At the end, all these divisions
are done in time O(r dr). Then, for each Pi, it remains a polynomial with partial
degree at most 1 in each variable. Necessary divisions by (Yj − yj ,0) (Yk − yk,0)
are given by the presence of a multiple of Yj Yk, which gives rise to a cost of
O(2r)= o(r dr). Finally, the entries of the Jacobian matrix JacP (y0) are obtained as
the coefficients in (Yj − yj,0) of the resulting polynomial and P (y0) as the constant
coefficient. The multiplication JacP (y0) y0 takes O(r2) = o(r dr) operations in R.

Next, we have to evaluate Ψ1 at y. We start by computing the evaluation at y

of all the monomials appearing in Ψ1. There are at most dr monomials. Since each
monomial, except 1, is obtained as the product of another monomial by one Zj with
16 j6 r, all these evaluations take dr on-line multiplications.

Then, for each component of the vector Ψ1, we multiply the monomials by the
corresponding polynomial coefficient in R and had these terms together. These
coefficients have length λ, hence a cost O(NrdrR(λ)/λ+Nr dr).

Finally, we have to multiply this by the inverse of the Jacobian of P at y0, which
is a matrix with coefficients in R of length λ. By Proposition 3.6, and since we only
lift a single root, it can be done at precision N in time O(N MMR(r, 1, λ)/λ+ rω).
We conclude with the relation MMR(r, 1, λ) = Õ(r2 log (λ)O(1)). �

5.2 Multivariate root lifting 113

Once again, we compare with Newton iteration which performs at each step
an evaluation of the polynomial equations and of their Jacobian matrix, and an
inversion of its evaluated Jacobian matrix. This would amount to a cost O((r dr+
rω) I(N)), since both the evaluations cost O(r dr) arithmetic operations on p-adics.
The latter theorem shows that we manage to save the cost of the inversion of the
Jacobian matrix at full precision with on-line algorithms.

This latter advantage is meaningful when the cost of evaluation of the system is
lower than the cost of linear algebra. Therefore we adapt our on-line approach to
polynomials given as straight-line programs.

5.2.2 Algebraic systems as s.l.p.’s

In this subsection, we assume that the algebraic system P is given as an s.l.p. We
keep basically the same notations as in Section 5.1.2. Given an algebraic system P ,
we define TP (Y)7 P (y0)+ JacP (y0) (Y − y0) and EP (Y)7 P (Y)−TP (Y). We
adapt Definition 5.4 so that we may define τ and ε for multivariate polynomials.

Definition 5.12. We define recursively τi ∈ R × Rp, εi ∈ Rp for 1 6 i 6 r with
operations in Ω′7 {+,−, ·, pj ×_,_/pj}∪R∪Rc.

Initialize εi
−r+j 7 0, τi

−r+j 7 (yj,0, yj − yj ,0) for all 1 6 j 6 r. Then for
16 j 6 Li where Li is the number of instructions in the s.l.p. Pi, we define εi

j and
τi
j recursively on j by formulas similar to Definition 5.4. Let us detail the changes

when Γj=(·; u, v):
Let τi

u=(a,A) and τi
v=(b,B), then define τi

j by (a b, a×B+ b×A) and εi
j by

p×
(

(a+A+ εi
u) · εi

v

p
+(b+B) · εi

u

p

)

+ p2×
(

A

p
· B
p

)

.

As before, we set εPi
7 εi

Li and τPi
7 τi

Li.

Lemma 5.13. If τPi
= (a, A) then a = Pi(y0) and A = JacPi

(y0) (Y − y0) ∈ Rp.
Besides, εP7 (εP1

,	 , εPr
) is a shifted algorithm for EP and y0 whose complexity is

3L∗.

Proof. Following the proof of Lemma 5.5, the first assertion is clear, as is the fact
that εP is a shifted algorithm for EP and y0. Finally, for all instructions · in the
s.l.p. Pi, εPi

adds three multiplications between p-adics (see operations · in formulas
above). So L∗(εP)= 3L∗. �

Theorem 5.14. Let P be a polynomial system of r polynomials in r variables over
R, given as an s.l.p. such that its multiplicative complexity is L∗. Let y0∈ (R/(p))r

be such that P (y0)=0mod p and det (JacP (y0))� 0mod p. Denote by y the unique
solution of P lifted from y0. Let λ be a bound on the length of all r ∈ R such that
r×_ is an operation of P, all elements Pi(y0) in the result sequence of the evaluation
of P at y0 and all entries of JacP (y0).

114 Relaxed p-adic Hensel lifting for algebraic systems

Then, the algorithm

Ψ:Z� JacP (y0)
−1(−P (y0)+ JacP (y0) y0− εP (Z))

is a shifted algorithm associated to Φ and y0. This algorithm requires a precomputa-
tion of O(r L+ r2) operations in R. Then, one can compute y to precision N in time

3L∗R(N)+O(N [LR(λ)/λ+MMR(r, 1, λ)/λ] + rω),

or equivalently,

3L∗R(N)+N (L+ r2 log (r)O(1)) log (λ)O(1)+O(rω).

Proof. Similarly to Proposition 5.6,Ψ is a shifted algorithm. In terms of operations
in R, the evaluation of P (y0) and JacP (y0) costs O(r L) operations by [BS83], and
JacP (y0) y0 requires O(r2) more operations. By Lemma 5.13, the evaluation of
εP (y) cost 3 L∗ on-line multiplications,O(L) on-line additions,O(L)multiplications
between p-adics with one operand of finite length O(λ) (coming either from opera-
tions r×_ or · in P) and a division by JacP (y0) for a total cost of

3L∗R(N)+O(NL+NLR(λ)/λ+ rω+N MMR(r, 1, λ)/λ). �

In this case, Newton iteration costs O(r L∗+ rω) I(N) +O(NL). Hence our on-
line approach is particularly well-suited to systems that can be evaluated cheaply,
e.g. sparse polynomial systems.

5.3 Implementation and Timings

In this section, we display computation times in milliseconds for the univariate
polynomial root lifting and for the computation of the product of the inverse of a
matrix with a vector or with another square matrix. Timings are measured using
one core of an Intel Xeon X5650 at 2.67 GHz running Linux, Gmp 5.0.2 [G+91]
and setting p= 536871001 a 30 bit prime number.

Our implementation is available in the files whose names begin with
series_carry or p_adic in the C++ library algebramix of Mathemagix.

In the following tables, the first line, “Newton” corresponds to the classical off-
line Newton iteration [GG03, Algorithm 9.2]. The second line “Relaxed” corre-
sponds to our best variant. The last line gives a few details about which variant
is used. We make use of the naive variant “N” and the relaxed variant “R”. These
variants differ only by the on-line multiplication algorithm used in Algorithm
OnlineEvaluationStep inside Algorithm OnlineRecursivePadic to compute the
recursive p-adics (see Section 2.2.2). The naive variant calls Algorithm LazyMulStep

of Section 1.1.1.3, whereas the relaxed variant calls Algorithm RelaxedProductStep

of Section 1.1.3.4. In fact, since we work on p-adic integers, the relaxed version
uses an implementation of Algorithm Binary_Mul_Padic

p
from [BHL11, Section

3.2], which is a p-adic integer variant of Algorithm RelaxedProductStep.

5.3 Implementation and Timings 115

Furthermore, when the precision is high, we make use of blocks of size 32 or
1024. That means, that at first, we compute the solution f up to precision 32 as
F0 = f0 +
 + f31 p

31 with the variant “N”. Then, we say that our solution can be
seen as a p32-adic integer F =F0+
 +Fn p

32n+
 and the algorithm runs with F0

as the initial condition. Then, each Fn is decomposed in base p to retrieve f32n,	 ,

f32n+31. Although it is competitive, the initialization of F can be quite expensive.
“BN” means that F is computed with the variant “N”, while “BR” means it is with
the variant “R”. Finally, if the precision is high enough, one may want to compute F
with blocks of size 32, and therefore f with blocks of size 1024. “B2N” (resp. “B2R”)
means that f and F are computed up to precision 32 with the variant “N” and then,
the p1024-adic solution is computed with the variant “N” (resp. “R”).

Polynomial root This table corresponds to the lifting of a regular root from Fp

to Zp at precision N as in Section 5.1.1.

N 512 210 211 212 213 214 215

Newton 17 48 140 380 1000 2500 5900
Relaxed 120 140 240 600 1600 4200 11000
Variant R BN BN BR BR BR BR

Table 5.1. Dense polynomial of degree 127

In this table, the timings of “Newton” are always better than “Relaxed”. However,
if the unknown required precision is slightly above a power of 2, e.g. 2ℓ + 1, then
one needs to compute at precision 2ℓ+1 with Newton algorithms. Whereas relaxed
algorithms increase the precision one by one. So the timings of “Relaxed” are better
on significant ranges after powers of 2. Notice that this remark is only valid when
the required precisionN is not known in advance. Otherwise, we can adapt Newton’s
iteration to end with precision N or N +1.

Acknowledgments

We would like to thank J. van der Hoeven, M. Giusti, G. Lecerf, M. Mez-
zarobba and É. Schost for their helpful comments and remarks. For their help
with Linbox, we thank B. Boyer and J.-G. Dumas.

This work has been partly supported by the Digiteo 2009-36HD grant of the
Région Île-de-France, and by the French ANR-09-JCJC-0098-01 MaGiX project.

116 Relaxed p-adic Hensel lifting for algebraic systems

Chapitre 6

Relaxed lifting of triangular sets

In this chapter, we present a new lifting algorithm for triangular sets over p-adics.
Our contribution is to give, for any p-adic triangular set, a shifted algorithm of
which the triangular set is a fixed point. Then we can apply the recursive p-adic
framework and deduce a relaxed lifting algorithm for this triangular set.

We compare our algorithm with the adaptation of the Newton-Hensel operator
for triangular sets of [GLS01, HMW01, Sch02]. Our algorithm always improves the
asymptotic cost in the precision for the special case of univariate representations.
The general situation is more contrasted.

Finally we implement these algorithms in the C++ library Algebramix of
Mathemagix [HLM+02] for the special case of univariate representations. Our
new relaxed algorithm compares favorably on the examples. We mention that our
on-line algorithm is currently connected to Kronecker inside Mathemagix with
the help of G. Lecerf.

This chapter contains work in progress.

6.1 Introduction

6.1.1 Notations

Throughout this chapter, we use the notions and notations of Chapter 1, Section
1.1. In particular, we use the ring of p-adics Rp with its assumption on the length
function λ and its complexity model. We recall that I(n) and R(n) denotes the cost
of multiplying two p-adics of length n by respectively an off-line and an on-line
algorithm.

In this chapter, we choose to denote elements by small letters, e.g. a∈Rp, vectors
by bold fonts, e.g. a∈ (Rp)

n, and matrices by capital letters, e.g. A∈Mn(Rp). We
denote by v1 ·v2 the inner product between two vectors and c×v the coefficientwise
product of a scalar c by a vector v.

Let M(d1, 	 , dn) denote the cost of multiplication of dense multivariate poly-
nomials P ∈R[X1, 	 , Xn] satisfying degXi

(P)6 di for all 16 i6 n. By Kronecker
substitution, we get that M(d1, 	 , dn) = O(M(2n d1
 dn)). We point to Chapter
1, Section 1.2 for details on the cost function M of polynomial multiplication. We
denote by 〈P1,	 , Pk〉 the ideal spanned by P1,	 , Pk∈R[X1,	 , Xn].

117

Let us introduce the notion of univariate representation of a zero-dimensional
ideal I ⊆R[X1,	 ,Xn] for any ring R. An element P of A7 R[X1,	 ,Xn]/I will be
called primitive if the R-algebra R[P] spanned by P is equal to A itself. If Λ is a
primitive linear form in A, a univariate representation of A consists of polynomials
P= (Q, S1, 	 , Sn) in R[T] with deg (Si)< deg (Q) such that we have a R-algebra
isomorphism

A=R[X1,	 , Xn]/I → R[T]/(Q)
X1,	 , Xn � S1,	 , Sn

Λ � T .

The oldest trace of this representation is to be found in [Kro82] and a few years
later in [Kön03]. A good summary of their work can be found in [Mac16]. The shape
lemma [GM89] states the existence of such a representation for a generic linear form
Λ of a zero-dimensional ideal. Different algorithms compute this representation, from
a geometric resolution [GHMP97, GHH+97, GLS01, HMW01] or using a Gröbner
basis [Rou99].

When using univariate representations, the elements of A≃R[T]/(Q) are then
represented as univariate polynomials of degree less than d 7 deg (Q). Then,
multiplication in A costs O(M(d)).

A triangular set is a set of n polynomials t=(t1,	 , tn)⊆R[X1,	 ,Xn] such that
ti is in R[X1,	 , Xi], monic and reduced with respect to (t1,	 , ti−1). The notion of
triangular set comes from [Rit66] in the context of differential algebra. Many similar
notions were introduced afterwards [Wu84, Laz91, Kal93, ALMM99]. Although all
these notions do not coincide in general, they are the same for zero-dimensional
ideals.

As it turns out, univariate representations can be seen as a special case of tri-
angular sets. Indeed, with the notations above, the family (Q(T), X1 − S1(T), 	 ,

Xn−Sn(T)) is a triangular set in the algebra R[T ,X1,	 , Xn].

For any triangular set t in R[X1, 	 , Xn], we define the number e of essential
variables by e7 #{i|di > 1} where di7 degXi

(ti). If r is a reduced normal form
modulo t, then r is written on e variables, that is r ∈ R[Xj]j∈{i|di>1}. Only those
variables play a true role in the quotient algebra A7 R[X1,	 , Xn]/〈t〉. We define
Rem(d1, 	 , de) to be the cost of reducing polynomials P ∈ R[X1, 	 , Xn] satisfying
degXi

(P)6 2 (di − 1) modulo t. As it turns out, the cost of arithmetic operations
in the quotient algebra A is O(Rem(d1, 	 , de)) (see Section 6.2). The number e of
essential variables plays an important role because Rem(d1,	 ,de) is exponential in e.

As in Chapter 3, we denote by ω the exponent of linear algebra on fields, so that
we can multiply and invert matrices in Mn×n(R) in O(nω) arithmetic operations.
We will also need to invert matrices over rings that are not fields, e.g. in quotients
of polynomial ring R[T]/(Q). We denote by O(nΩ) the arithmetic complexity of
the elementary operations on n× n matrices over any commutative ring: addition,
multiplication, determinant and adjoint matrix. In fact, Ω can be taken less than
2.70 [Ber84, Kal92, KV04]. For the special case of matrices over Rp[T]/(Q), we
combine linear algebra over (R/(p))[T]/(Q) and Newton iteration to invert matrices
in time O((nω I(N)+nΩ)M(d)), where d7 degT (Q).

118 Relaxed lifting of triangular sets

In this chapter, we denote by f =(f1,	 , fn)∈R[X1,	 ,Xn] a polynomial system
given by an s.l.p. with L operations in {+,−,∗}. If Lfi is the evaluation complexity
of only the output fi, then we denote by L⊥7 Lf1 +
 + Lfn the complexity that
corresponds to computing f1, 	 , fn independently, that is without sharing any
operations between the computation of different outputs fi. Since Lfi6L, we always
have

L6L⊥6nL.

When f is given as an s.l.p., its Jacobian matrix can be computed by an algorithm
from Baur and Strassen [BS83]. This method uses O(Lfi) arithmetic operations to
compute the gradient of fi. Therefore, the Jacobian matrix of f can be evaluated
in time O(L⊥).

6.1.2 Motivations

Lifting triangular sets (or univariate representations) is a crucial operation. Most
implementations of algorithms that compute triangular set on rationals compute
this object modulo a prime number, and then lift the representation. For example,
the Kronecker software [L+02] for univariate representations and the Regu-
larChains package [LMX05] of Maple for triangular sets use a lifting. Even
better, the geometric resolution algorithm [GLS01, HMW01] which is implemented
in Kronecker requires yet another lifting: a lifting on power series is employed to
compute univariate representations of curves, which is a basic step of the algorithm.

As it turns out, most of the time required to compute triangular sets (or uni-
variate representations) is spend in the lifting. Therefore, any improvement on the
lifting complexity will have repercussions on the whole algorithm.

It was shown in Chapter 5 that relaxed algorithms could reduce the cost due to
linear algebra when lifting a regular root of a polynomial system compared to off-
line, or zealous, algorithms. In the same way that the Newton iteration was adapted
to lift univariate representations in [GLS01, HMW01] and then triangular sets in
[Sch02], we adapt our relaxed approach to lift such objects with the hope of getting
rid of the contribution of linear algebra in the complexity.

6.1.3 Results

Let f = (f1,	 , fn) be a polynomial system in R[X1,	 , Xn] and t0 be a triangular
set in R/(p)[X1,	 , Xn] such that:

• f is given as an s.l.p. with inputs X1, 	 , Xn and n outputs corresponding
to f1,	 , fn. This s.l.p. has operations in {+,−, ∗} and can use constants in
A/〈t0〉;

6.1 Introduction 119

• f =0 in R/(p)[X1,	 , Xn]/〈t0〉;

• the determinant of the Jacobian matrix Jacf in Mn(R/(p)[X1,	 ,Xn]) must
be invertible modulo t0.

This last condition is sufficient to have the existence and uniqueness of a triangular
set t in Rp[X1,	 ,Xn] which reduces to t0 modulo p and satisfies f =0 in Rp[X1,	 ,

Xn]/〈t〉. From these inputs, we compute at some precision N this unique triangular
set t. We call this operation the lifting of the triangular set t at precision N .

Example 6.1. We consider the polynomial system f =(f1, f2) in Z[X1, X2] with

f1 7 33X2
3+ 14699X2

2+ 276148X1+ 6761112X2− 11842820

f2 7 66X1X2+X2
2− 94X1− 75X2− 22.

Let t0 be the triangular set of (Z/7Z)[X1,X2] given by

t07 (X1
2+5X1, 3X1X2+X2

2+4X1+2X2+6).

We lift the triangular set t0 from (Z/7Z)[X1,X2] to a triangular set t in Z7[X1,X2].
At each step of the relaxed lifting, we increment the precision. So at the first step,
we have

t=(X1
2+ (5+ 5 · 7)X1+7, (3+2 · 7)X1X2+X2

2+4X1+(2+3 · 7)X2+(6+3 · 7))

in (Z7/7
2Z7)[X1,X2]. We iterate again and find

t = (X1
2+ (5+ 5 · 7+ 6 · 72)X1+(7+72),

(3 + 2 · 7 + 72) X1 X2 + X2
2 + (4 + 5 · 72) X1 + (2 + 3 · 7 + 5 · 72) X2 +

(6+3 · 7+6 · 72))

in (Z7/7
3Z7)[X1,X2]. The precision is enough to recover the triangular set

t7 (X1
2−9X1+ 56, 66X1X2+X2

2− 94X1− 75X2− 22)∈Z[X1, X2].

Theorem 6.2. With the former notations and hypotheses, we can lift the triangular
set t at precision N in time

[O(nLR(N))+n2 log (n)O(1)N +O(nΩ)]Rem(d1,	 , dn).

A different technique improves the dominant asymptotic cost in the precision
n L R(N) Rem(d1, 	 , dn) when the number e of essential variables is lower than n.
This technique requires to solve a linear system where the matrix has finite precision.
Since the definition of this matrix σB is quite technical, we just content ourselves
with saying that its finite length, denoted by λ, satisfies λ= Õ(L d1
 dn) and with

120 Relaxed lifting of triangular sets

pointing to Formula 6.13 for a recursive definition of the rows of the matrix. In the
special case where arithmetic operations in Rp have no carries, this length reduces
to λ=1.

Theorem 6.3. We keep the former notations and hypotheses. We can lift the tri-
angular set t at precision N in time

O([e LR(N)+N MMR(n, 1, λ)/λ+nLN +nΩ]Rem(d1,	 , dn)),

that is

[O(e LR(N))+n2 log (n)O(1) log (λ)O(1)N +O(nLN +nΩ)]Rem(d1,	 , dn)

where λ satisfies λ= Õ(Ld1
 dn).

We deduce the following important corollary for univariate representations.

Corollary 6.4. (of Theorem 6.3) Let f = (f1, 	 , fn) be a polynomial system
in R[X1, 	 , Xn] given by an s.l.p. Γ and P0 = (Q0, S1,0, 	 , Sn,0) a univariate
representation in R/(p)[X1,	 , Xn] such that f(S1,0,	 , Sn,0) = 0 in R/(p)[X]/Q0.

Then there exists an integer λ satisfying λ = Õ(L d) such that we can lift the
univariate representation P at precision N in time

O([LR(N)+N MMR(n, 1, λ)/λ+nLN +nΩ]M(d)).

Let us compare the relaxed approach to the off-line methods of Section 6.3. We
focus on the asymptotic behavior in the precision N . For triangular sets, we have
to compare the relaxed cost n L R(N) Rem(d1,	 , dn) to the zealous bound O(((L⊥+
nω) I(N) + nΩ) Rem(d1,	 , dn)). In this case, we can hope for an improvement only
when nL≪nω and for precisions N where the ratio R(N)/I(N) is moderate.

The relaxed approach for univariate representations is more profitable. The
relaxed cost LR(N)M(dn) always compares favorably to the zealous cost O((L⊥+
nΩ) I(N)M(dn)) for precisions N where the ratio R(N)/I(N) is moderate.

6.2 Quotient and remainder modulo a triangular set

This section deals with Euclidean division modulo a triangular set. From now on,
we denote by t=(t1,	 , tn) a triangular set of R[X1,	 ,Xn]. Computing remainders
is a basic operation necessary to be able to compute with the quotient algebra
A7 R[X1,	 , Xn]/〈t〉. We are also interested in the quotients of the division since
we will need them later.

6.2 Quotient and remainder modulo a triangular set 121

We start by defining quotients and remainder of the Euclidean division by t in
a unique manner. Then we focus on computing this objects. We circumvent the
fact that the size of the quotients is exponential in the size d1
 dn of the quotient
algebra A by computing only reductions of the quotients modulo a triangular set.
This leads us to Algorithms Rem_triangular and Rem_quo_triangular.

Canonical quotients and remainder For any P ∈ R[X1, 	 , Xn], the existence
of r, q1,	 , qn∈R[X1,	 , Xn] satisfying P = r+ q1 t1+
 + qn tn and degXi

(r)<di is
guaranteed because the elements of a triangular set are monic. The quotients q1,	 ,

qn are not unique. For 16 i< j6n, let zi,j be the vector of R[X1,	 ,Xn]
n with only

tj in the i-th position and −ti in the j-th position. We can add to any choice of
quotients an element of the syzygy R[X1,	 ,Xn]-module spanned by the (zi,j)16i<j6n

in R[X1, 	 , Xn]
n. Nevertheless, a canonical choice of quotient can be made, as for

the division by a standard, or Gröbner, basis

Lemma 6.5. For all P ∈R[X1,	 ,Xn], there exists a unique vector of polynomials
(r, q1,	 , qn) in R[X1,	 ,Xn]

n+1 such that

P = r+ q1 t1+
 + qn tn

and for all 16 i6n, degXi
(r)<di and for all 16 i < j6n, degXj

(qi)<dj.

Proof. Take any Euclidean decomposition P = r+ q1 t1+
 + qn tn with degXi
(r)<

di. Then use the syzygies (z1,i)1<i6n to reduce the degree of q1 in X2,	 ,Xn. Again
use the syzygies (z2,i)2<i6n to reduce the degree of q2 in X3,	 ,Xn. This last action
do not change q1. Continuing the process until we reduce the degree of qn−1 in Xn

by zn−1,n, we have exhibited a Euclidean decomposition satisfying the hypothesis of
the lemma.

Now let us prove the uniqueness of (r, q1, 	 , qn). Because r is unique, we have
to prove that if q1 t1+
 + qn tn= 0 with degXj

(qi)< dj for all 16 i < j 6 n, then
q1 =
 = qn = 0. By contradiction, we suppose there is such a decomposition with
a non-zero qi. Let j be the maximal index of a non-zero qj. Then degXj

(qj tj)> dj

and in the same time

degXj
(qj tj) = degXj

(q1 t1+
 + qj−1 tj−1)

6 max
i<j

(degXj
(qi ti))

6 max
i<j

(degXj
(qi))

< dj.

Contradiction. �

We call canonical quotients and remainder, those which satisfies the conditions
of Lemma 6.5. We denote by P rem t the remainder of P modulo t. We can not
compute the qi because they suffer from the phenomenon of intermediate expression
swell ; in the computations of the remainder of a polynomial modulo a triangular
set, the size of intermediate expressions, e.g. the size of the quotients, increases too

122 Relaxed lifting of triangular sets

much. A quick estimate gives that the size of the quotients is exponential in the size
d1
 dn of the quotient algebra A.

Fast multivariate Euclidean division by a triangular set Therefore we use
a variant of the remainder algorithm of [LMMS09] that do not compute the entire
quotients but modular reductions of them. Then we describe a second algorithm
that keeps the quotient modulo another triangular set, avoiding once again to pay
the cost due to their sizes.

We mention a different approach to compute remainders modulo a triangular
set whose basic idea is to an evaluation / interpolation on the points of the variety
defined by the triangular set [BCHS11]. The motivation behind this approach is to
circumvent the exponential factor in the complexity. But because this approach can
not be adapted to obtain the quotients, we will not use it here.

We denote by di7 degXi
(ti) the degree in Xi. For the sake of simplicity in our

forthcoming algorithms, we will assume that the set of indices {i|di> 1} of essential
variables is {1,	 , e}, so that any reduced normal form r belongs to R[X1,	 ,Xe].

Our algorithm Rem_triangular is a slight improvement of the algorithm of
[LMMS09]: it does 3 de recursive calls instead of 4 de. As a consequence, the expo-
nential factor in the complexity is 3e instead of 4e. Algorithm Rem_triangular is
meant to reduce the product of two reduced elements. Therefore we suppose that
the input polynomial P ∈R[X1,	 , Xe] satisfies degXi

(P)6 2 (di− 1).

The forthcoming algorithm is a triangular version of the fast univariate division
with remainder (see [GG03, Section 9.1]). If P ∈ R[X1, 	 , Xe], we denote by
P [Xe

i] ∈ R[X1, 	 , Xe−1] the coefficient of P in Xe
i. If degXe

(P) = d, we denote by

revXe
(P) its reverse polynomial w.r.t. Xe defined by revXe

(P)7∑

i=0

d
(P [Xe

d−i])Xe
i.

Algorithm Rem_triangular

Input: t and P ∈R[X1,	 , Xe] such that degXi
(P)6 2 (di− 1)

Output: r ∈R[X1,	 , Xe] reduced modulo t such that

r=P rem t.

1. Let t′7 (t1,	 , te−1) and R ′7 R[X1,	 ,Xe−1]/〈t′〉.
Compute the quotient qe of P by te in R ′[Xe]:

a. qe7 ∑

i=de

2de−1
Rem_triangular(t′, P [Xe

i])Xe
i

b. Precompute I7 1/revXe
(te) remXe

de−1 in R ′[Xe]

c. qe7 revXe
(qe) I remXe

de inR ′[Xe]

d. qe7 revXe
(qe)

2. r7 (P − qe te) remXe
de in R[X1,	 , Xe−1][Xe]

3. r7 ∑

i=0

de−1
Rem_triangular(r[Xe

i], t′)Xe
i

4. return r

6.2 Quotient and remainder modulo a triangular set 123

The precomputation of step 1.b means that, as the object I depends only on t, we
compute it once and for all at the first call of Algorithm Rem_triangular.

In accord with the introduction, we denote by Rem(d1,	 , de) the complexity of
Algorithm Rem_triangular.

Proposition 6.6. The algorithm Rem_triangular is correct and runs in time
Rem(d1,	 , de) =O(M(3e d1
 de)).

Proof. Since Algorithm Rem_triangular is very similar to their algorithm, we refer
to [LMMS09] for the proof of correction of our algorithm.

Step 1.c involves a multiplication in R[X1, 	 , Xe] and a reduction by t′ of the
coefficients in Xe

i for i < de. So multivariate multiplications are used in steps 1.c
and 2 and de reductions by t′ are done in steps 1.a, 1.c and 2. Thus the complexity
analysis becomes

Rem(d1,	 , de) = 3 deRem(d1,	 , de−1)+ 2M(d1,	 , de),

and

Rem(d1,	 , de) = O
(

∑

i=1

e

3e−iM(d1,	 , di) di+1
 de

)

⇒ Rem(d1,	 , de) = O
(

∑

i=1

e

3e−iM(2i d1
 di) di+1
 de

)

⇒ Rem(d1,	 , de) = O
(

∑

i=1

e

M

(

3e
(

2

3

)

i

d1
 de

)

)

⇒ Rem(d1,	 , de) = O(M(3e d1
 de)).

The precomputation of step 1.b costs O(M(d1, 	 , de) + de Rem(d1, 	 , de−1)) by
Newton iteration for the inversion, that is O(Rem(d1,	 , de)). �

Remark that non-essential variables do not impact the complexity of our algo-
rithm, i.e. Rem(d1,	 , de,1,	 ,1)=Rem(d1,	 , de). Indeed if di=1, then we condition
degXi

(P)6 2 (di− 1) implies that P does not depend on Xi.

Recall that since the product of two reduced element in the quotient algebra
R[X1, 	 , Xe]/〈t〉 satisfies the degree condition of the input of Algorithm
Rem_triangular, arithmetic operations in this quotient algebra cost M(d1,	 , dn)+
Rem(d1,	 , dn), that is O(Rem(d1,	 , dn)).

Now we adapt Algorithm Rem_triangular to keep the quotients modulo another
triangular set t2. In order to simplify the algorithm and because it suits our future
needs, we assume that for all i, degXi

(ti
1) = degXi

(ti
2) and still denote by di this

degree.

124 Relaxed lifting of triangular sets

Algorithm Rem_quo_triangular

Input:

• Triangular sets t1, t2

• P ∈R[X1,	 ,Xe] such that degXi
(P)6 2(di− 1)

Output: r, q1,	 , qe∈R[X1,	 ,Xe] reduced modulo t1 (or t2) such that

P = r+
∑

i=1

e

qi ti
1 modulo 〈t1〉 〈t2〉.

1. Let t2′7 (t1
2,	 , te−1

2) and R ′7 R[X1,	 ,Xe−1]/〈t2′〉. Compute the quotient qe
of P by te

1 in R ′[Xe]:

a. qe7 ∑

i=de

2de−1
Rem_triangular(t2

′
, P [Xe

i])Xe
i

b. Precompute I7 1/revXe
(te

1) remXe
de−1 in R ′[Xe]

c. qe7 (revXe
(qe) I) remXe

de in R ′[Xe]

d. qe7 revXe
(qe)

2. r7 (P − qe te
1) in R[X1,	 ,Xe]

3. r17 r remXe
de and r2= r− r1

4. 0, q1,	 , qe−17 ∑

i=de

2de−1
Rem_quo_triangular(r2[Xe

i], t2
′
, (t1

1,	 , te−1
1))Xe

i

5. for i from 1 to e− 1
qi
′7 Rem_triangular(qi, t

1)

6. r7 r1+ q1
′ t1

2+
 + qe−1
′ te−1

2 in R[X1,	 ,Xe]

7. r, q1,	 , qe−17 ∑

i=0

de−1
Rem_quo_triangular(r[Xe

i], t1
′
, t2

′
)Xe

i

8. return r, q1,	 , qe−1, qe

We denote by RemQuo(d1,	 , de) the complexity of Rem_quo_triangular for trian-
gular sets t1 and t2 of same degrees d1,	 , de.

Lemma 6.7. If r is reduced modulo t1 and P = r +
∑

i=1

e
qi ti

1 modulo the product
ideal 〈t1〉 〈t2〉, then r is the reduced normal form of P modulo t1 and

P = r+
∑

i=1

e

qi ti
1 modulo t2.

Proof. Since the product ideal 〈t1〉 〈t2〉 is included in both the ideals 〈t1〉 and 〈t2〉,
the relation P = r+

∑

i=1

e
qi ti

1 stands modulo both these ideals. So P = r modulo t1

and since r is reduced, it is the reduced normal form of P . �

Proposition 6.8. The algorithm Rem_quo_triangular is correct and its costs ver-
ifies RemQuo(d1,	 , de)=O(eRem(d1,	 , de)).

6.2 Quotient and remainder modulo a triangular set 125

Proof. We proceed recursively on the number e on variables involved in P . In one
variable, our algorithm coincides with the fast univariate division with remainder
(see [GG03, Section 9.1]). So it is correct and RemQuo(d1) =Rem(d1).

Let’s suppose that we have proved our claims in less that e variables. Since
qe is the quotient of P by te

1 in (R[X1, 	 , Xe−1]/〈t2′〉)[Xe], we have r2 = 0 in
(R[X1, 	 , Xe−1]/〈t2′〉)[Xe]. By assumption, the recursive call of step 4 gives the
decomposition

r2=
∑

i=1

e−1

qi ti
2 modulo 〈t1′〉 〈t2′〉

and also modulo 〈t1〉 〈t2〉. The reduction of the quotient of step 5 gives

r2=
∑

i=1

e−1

qi
′ ti

2 modulo 〈t1〉 〈t2〉

where the polynomials qi
′ are reduced modulo t1. Therefore the polynomial r2′ 7

∑

i=1

e−1
qi
′ ti

2 has degree degXe
(r2

′)<de and degXi
(r2

′)<2 di for i<e. Because r1 satisfies
the same degree conditions, they are still satisfied by r= r1+ r2

′ . By the induction
hypothesis, at step 7, we have for all 06 i<de and 16 j6e−1, that qj[Xe

i] is reduced
modulo t1

′. Since qj has degree less than de in Xe, it is reduced modulo t1. The last
quotient qe is also reduced because it was computed in (R[X1, 	 , Xe−1]/〈t2′〉)[Xe]
and degXe

(qe)=degXe
(P)− degXe

(te
1)<de. Finally

P = r1+ r2+ qe te
1 = (r1+ r2

′)+ qe te
1 modulo 〈t1〉 〈t2〉

=

(

r+
∑

i=1

e−1

qi ti
1

)

+ qe te
1 modulo 〈t1〉 〈t2〉.

Concerning the complexity analysis, we have

RemQuo(d1,	 , de) = 2 deRemQuo(d1,	 , de−1)+ 2 deRem(d1,	 , de−1)+

(e− 1)Rem(d1,	 , de) + (e+1)M(d1,	 , de)

which gives

RemQuo(d1,	 , de)=O(eRem(d1,	 , de)). �

As for the remainder algorithm, we have RemQuo(d1, 	 , de, 1, 	 , 1) equals to
RemQuo(d1,	 , de), so that

RemQuo(d1,	 , dn)=RemQuo(d1,	 , de)=O(e Rem(d1,	 , de))=O(e Rem(d1,	 , dn)).

Also we notice that the remainder and quotients modulo 〈t1〉 〈t2〉 of the product of
two reduced element in A costs O(RemQuo(d1,	 , de)).

When we apply Algorithm Rem_quo_triangular to the triangular sets t and
t0 in Section 6.4, the reductions modulo t2 = t0 will be cheaper than reductions
modulo t1 = t since they can be done coefficientwise. However the overall costs of
Algorithm Rem_quo_triangular(t,t0,) will remain bounded by O(e) times the cost
of reduction by t.

126 Relaxed lifting of triangular sets

Finally, we point out the situation would have been different with naïve algo-
rithms for the remainder and quotients. The naïve remainder algorithm reduces the
leading terms in Xe one by one, as would do a Gröbner basis reduction algorithm for
the lexicographical monomial ordering withX1≪
≪Xn. This algorithm implicitly
computes the whole quotients and therefore RemQuo(d1,	 , dn)=Rem(d1,	 , dn) with
naïve algorithms.

Shift index The shift index is a theoretical tool used to prove the correctness of
the computation of recursive p-adic numbers (see Proposition 2.17). We assess the
shift index of the two previous algorithms with respect to the p-adic coefficients of
the triangular sets.

Lemma 6.9. Let Γ be an s.l.p. with n inputs and one output which satisfies sh(Γ)>
0. Let Γ(t) denote the output of Γ on the inputs t.

Then one has, for any triangular set t2,

sh(t� Rem_triangular (t,Γ(t)))> 0

sh(t� Rem_quo_triangular (t, t2,Γ(t)))> 0.

In other words, Lemma 6.9 states that if the nth p-adic coefficient of a polynomial
Γ(t) involves only the ith coefficients of t for i6n, then so it is for the polynomials
Rem_triangular (t, Γ(t)) and Rem_quo_triangular (t, t2, Γ(t)). The notation
t� Rem_triangular (t,Γ(t)) refers to an s.l.p. which takes as input t and outputs
Rem_triangular (t, Γ(t)) (see Remark 2.2). The entries t are given by the list of
their polynomial coefficients, so that we can reverse polynomials.

Proof. We prove it for Rem_quo_triangular, the other case being similar. We
proceed by induction on the number n of variables involved in the input of t1. If
no variables are involved, then our algorithm does nothing and its shift index is the
one of Γ. From now on, let us assume that the result is valid for input of less than
n variables.

First, we prove that the computations that leads to I7 1/revXn
(tn) remXn

dn−1 in
R ′[Xn] have a non-negative shift. Define I07 1 and Iℓ7 Iℓ−1− Iℓ−1 (revXℓ

(tℓ) Iℓ−1−
1) in R ′[Xn]/〈Xn

ℓ 〉. Thereby I = I⌈log2(dn−1)⌉ modulo Xn
dn−1. Since I0 has a non-neg-

ative shift index and since Iℓ is obtained from Iℓ−1 by multiplication and reduction
modulo t′ of operands which have a non-negative shift, we deduce that I has itself
a non-negative shift by the induction hypothesis.

Our algorithm uses only recursive calls in less variables, addition and multipli-
cation. Since all these operations preserve a non-negative shift, we deduce that qe,

r and finally r, q1,	 , qe have non-negative shift indices. �

6.3 Overview of off-line lifting algorithms
We present three existing lifting algorithms, which are off-line, in increasing order of
generality (and complexity). First algorithm lifts only a regular root, so it applies
only to triangular sets with d1 =
 = dn = 1. Second algorithm lifts a univariate
representation, that is a triangular set with d1 =
 = dn−1 = 1 and any degree dn.
And finally we present an algorithm that lift any triangular set.

6.3 Overview of off-line lifting algorithms 127

6.3.1 Hensel-Newton local lifting of a root

We start by recalling the local Newton iterator, that lift a regular root of an alge-
braic system into the completion ring Rp. It was first introduced by [New36] for
finding power series solutions of univariate polynomials with coefficients in k[[X]].
This method allows a local study of an algebraic variety. A relaxed version of this
algorithm is presented in Chapter 5.

We detail the Newton iteration that doubles the precision of a regular solution
of the algebraic system f .

Algorithm Local_Newton_step

Input:

• System of equation f and its Jacobian Jacf as an s.l.p.

• A root S=(S1,	 , Sn) of f in R/
(

p2
m−1
)

• Inverse IJacf(S) of Jacf(S) in Mn

(

R/
(

p2
m−2
))

Output:

• A root S ′=(S1
′,	 , Sn

′) of f in R/(p2
m

)

• Inverse IJacf(S)′ of Jacf(S) in Mn

(

R/
(

p2
m−1
))

1. In Mn

(

R/
(

p2
m−1
))

, compute

IJacf(S)′7 IJacf(S)− IJacf(S) (Jacf(S) · IJacf(S)− Idn)

2. S ′7 S − IJacf(S)′ · f (S) in (R/(p2
m

)[T])n

3. return S ′, IJacf(S)′

Proposition 6.10. The algorithm Local_Newton_step_univariate is correct and
costs O((L⊥+nω) I(N) +nΩ) to lift a regular root in Rp at precision N.

Proof. The proof of correctness is classical and can be found in [GG03]. The cost
O(nΩ) is to compute the inverse of the Jacobian matrix modulo p. The Jacobian
matrix Jacf can be evaluated in O(L⊥) operations in R/(p2

m

), which each costs
I(2m), so the result follows. �

6.3.2 Hensel-Newton global lifting of univariate representa-
tion

128 Relaxed lifting of triangular sets

The following algorithm lifts univariate representations under the condition that
the Jacobian matrix is invertible modulo the univariate representation over R/(p).
This algorithm is a slight modification from the local Newton iterator. It was first
introduced in [GLS01, HMW01] and generalizes the previous approach.

Algorithm Global_Newton_step_univariate

Input:

• System of equation f and its Jacobian Jacf as an s.l.p.

• u=λ1X1+
 +λnXn a linear form with λi∈R

• Univariate representation S=(S1,	 , Sn) and Q in R/
(

p2
m−1
)

[T]

• Inverse IJacf(S) of Jacf(S) in Mn

(

R/
(

p2
m−2
)

[T]/Q
)

Output:

• Univariate representation S ′=(S1
′,	 , Sn

′) and Q ′ in R/(p2
m

)[T]

• Inverse IJacf(S)′ of Jacf(S) in Mn

(

R/
(

p2
m−1
)

[T]/Q
)

1. In Mn

(

R/
(

p2
m−1
)

[T]/Q
)

, compute

IJacf(S)′7 IJacf(S)− IJacf(S) (Jacf(S) · IJacf(S)− Idn)

2. S ′7 (S − IJacf(S)′ · f (S)) remQ in (R/(p2
m

)[T])n

3. ∆7 u(S ′)−T in (R/(p2
m

)[T])n

4. S ′7 S ′−
((

∂S ′

∂T
∆
)

remQ
)

in (R/(p2
m

)[T])n

5. Q′7 Q−
((∂Q

∂T
∆
)

remQ
)

in R/(p2
m

)[T]

6. return S ′, Q′ and IJacf(S)′

Proposition 6.11. The algorithm Global_Newton_step_univariate is correct
and costs O((L⊥+nω)M(d) I(N)+nΩ) to lift a univariate representation at precision
N under the condition that Jacf(S) is invertible in R/(p)[T]/Q.

We refer to [GLS01] for a proof of this proposition.

6.3.3 Hensel-Newton global lifting of triangular sets

The following algorithm was introduced in [Sch02]. Roughly speaking, it can be seen
as a classical Newton iteration for finding a zero of the function Φ:Y � B ·Y − f

where B is an element of Mn(R[X1,	 ,Xn]) satisfying f =B · t. This algorithm lifts
any triangular set under an inversibility condition of the Jacobian matrix. In the
special case of univariate representations, this algorithm does the same computations
as Algorithm Global_Newton_step_univariate, but they are presented differently,
with only matrix multiplications, and more concisely.

6.3 Overview of off-line lifting algorithms 129

Example 6.12. We consider the polynomial system f = (f1, f2) in Z[X1, X2] with

f1 7 33X2
3+ 14699X2

2+ 276148X1+ 6761112X2− 11842820

f2 7 66X1X2+X2
2− 94X1− 75X2− 22.

Let t0 be the triangular set of (Z/7Z)[X1,X2] given by

t07 (X1
2+5X1, 3X1X2+X2

2+4X1+2X2+6).

We lift the triangular set t0 from (Z/7Z)[X1,X2] to a triangular set t in Z7[X1,X2].
At each step of the off-line lifting, we double the precision. So at the first step, we
have

t= (X1
2+ 40X1+7, 17X1X2+X2

2+4X1+ 23X2+ 27)∈ (Z/72Z)[X1, X2].

We iterate again and find

t=(X1
2+ 2392X1+ 56, 66X1X2+X2

2+ 2307X1+ 2326X2+ 2379)

in (Z/74Z)[X1,X2]. The precision is enough to recover the triangular set

t7 (X1
2−9X1+ 56, 66X1X2+X2

2− 94X1− 75X2− 22)∈Z[X1, X2].

Algorithm Global_Newton_step_triangular

Input:

• System of equation f and its Jacobian Jacf as an s.l.p.

• Triangular set t= (t1,	 , tn) in R/
(

p2
m−1
)

[X1,	 ,Xn]

• Inverse IJact of Jact in Mn

(

R/
(

p2
m−2
)

[X1,	 ,Xn]/〈t〉
)

Output:

• Triangular set t′= (t1
′ ,	 , tn

′) in R/(p2
m

)[X1,	 , Xn]

• Inverse IJacf of Jacf in Mn

(

R/
(

p2
m−1
)

[X1,	 ,Xn]/〈t〉
)

1. In Mn

(

R/
(

p2
m−1
)

[X1,	 , Xn]/〈t〉
)

, compute

IJacf′ 7 IJacf − IJacf (Jacf · IJacf − Idn)

2. δt7 Jact · IJacf(t)′ · f in (R/(p2
m

)[X1,	 ,Xn]/〈t〉)n

3. t′7 t+ δt in (R/(p2
m

)[X1,	 ,Xn]/〈t〉)n

4. return t′

Proposition 6.13. The algorithm Global_Newton_step_triangular is correct
and costs O((L⊥ + nω) Rem(d1, 	 , dn) I(N)) to lift a triangular set at precision N

under the condition that Jacf is invertible in R/(p)[X1,	 ,Xn]/〈t〉.

130 Relaxed lifting of triangular sets

6.4 Relaxed lifting of triangular sets

Let t0 be a triangular set of R/(p)[X1, 	 , Xn]. Define the R/(p)-algebra A0 by
A07 R/(p)[X1,	 ,Xn]/〈t0〉. Let f be given as an s.l.p. Γ with inputs X1,	 ,Xn and
n outputs corresponding to f1,	 , fn. The s.l.p. Γ has operations in {+,−,∗} and can
use constants in A/〈t0〉. We assume that the triangular set t0 satisfies the property
that Jac(f0) is invertible in Mn(A0). Then there exists a unique triangular set t in
Rp[X1,	 ,Xn] which reduces to t0 modulo p and satisfies f =0 in Rp[X1,	 ,Xn]/〈t〉.

In this section we detail two relaxed algorithms that lift t at precision N . The
first algorithm of Section 6.4.1 should be used for generic triangular set. We refine
this algorithm in Section 6.4.2 for triangular sets with few essential variables, e.g.
for univariate representations.

Throughout this section, we denote by P−n, 	 , PL the result sequence of the
s.l.p. Γ on the input X1, 	 , Xn. Let ri and bi be the canonical remainder and
quotients of Pi for −n6 i6 L. So we have Pi= ri + bi t ∈R[X1,	 , Xn]. Let i1,	 ,

in be the indices of the n outputs of Γ, so that we have fj = Pij for 16 j 6 n. We
denote by B ∈Mn(R[X1,	 ,Xn]) the matrix whose jth row is bij. Therefore one has
f =B t∈Mn,1(R[X1,	 ,Xn]).

6.4.1 Using the quotient matrix

We define two maps σ and δ from Rp to Rp by σ(a) = a0 and δ(a) 7 a− a0

p
for

any a =
∑

i∈N
ai p

i ∈ Rp. For any a ∈ Rp, we have a = σ(a) + p δ(a). We extend
the definition of σ and δ to A 7 Rp[X1, 	 , Xn] by mapping Xi to itself and to
Mr,s(A) by acting componentwise. Thus σ(t), also denoted by t0, is defined by
σ(t)7 (σ(t1),	 , σ(tn)).

Recursive formula for t The triangular set t is a recursive p-adic vector of
polynomials.

Lemma 6.14. The matrix σ(B) ∈ Mn(Rp[X1, 	 , Xn]) is invertible modulo t0.
Moreover the triangular set t satisfies the recursive equation

t− t0=σ(B)−1 (f − p2 (δ(B) · δ(t))) rem t0 (6.1)

in Mn,1(Rp[X1,	 ,Xn]).

Proof. For any P ∈ R[X1, 	 , Xn], let r and a be the canonical remainder and
quotients of P by t so that

P − r=a · t= σ(a) · t+ p δ(a) · t=σ(a) · t+ p δ(a) · t0+ p2 δ(a) · δ(t).
Thus we have

σ(a) · t=P − (r+ p2 δ(a) · δ(t))

in R[X1,	 , Xn]/〈t0〉. Now if P ∈ 〈t〉, then r=0 and we get

σ(a) · t=P − p2 (δ(a) · δ(t))

6.4 Relaxed lifting of triangular sets 131

in R[X1,	 , Xn]/〈t0〉. We apply this to the equations f and get

σ(B) · t= f − p2 (δ(B) · δ(t)) (6.2)

in R[X1,	 , Xn]/〈t0〉.
By differentiating the equality f0 = σ(B) t0 ∈ Mn,1(R/(p)[X1, 	 , Xn]), we

get Jac(f0) = σ(B) Jac(t0) in Mn(A0). Since Jac(f0) is invertible in Mn(A0) by
hypothesis, B0 and Jac(t0) are invertible in Mn(A0) and

σ(B)= Jac(f0) Jac(t0)−1 (6.3)

in Mn(A0). Because its zeroth p-adic coefficient is invertible, we deduce that σ(B)
is invertible in Mn(Rp[X1,	 , Xn]/〈t0〉). After inverting σ(B) in Equation (6.2), it
remains to notice that t− t0 is the remainder of t by t0 to conclude. �

Let us explain the idea behind our algorithm. If one takes the coefficient in pm

of Equation (6.1) for m>1, the left-hand side is the p-adic coefficient tm7 (t1,m,	 ,

tn,m) of t but the right-hand side depends only on the p-adic coefficients Bi and ti
with i <m. Since the matrix B is made of quotients of f by the triangular basis t,
its coefficient Bi only depends on the coefficients tj with j6 i. So we can deduce tm
from the previous p-adic coefficients of t, and compute t at any precision. Informally
speaking, we have introduced a shift in the p-adic coefficients of t in the right-hand
side.

Computation of B modulo t0 In this paragraph, we explain how to compute
the remainder ri and quotients bi by t of any element Pi of the result sequence.
Since Equation (6.1) is modulo t0, this quantities are only required modulo t0. We
proceed recursively on the index i for −n6 i6L.

First, for −n< i6 0, let ı̄ 7 i+n such that Pi=Xı̄ . We distinguish two cases :

• if degXı̄
(tı̄) = 1, then bi7 (0, 	 , 0, 1, 0, 	 , 0) with only a one in position ı̄

and ri= tı̄ −Xı̄ .

• if degXı̄
(tı̄) > 1, then Xı̄ is already reduced modulo t, we put ri7 Xı̄ and

bi7 (0,	 , 0).

Secondly, if the i-th result Pi is a constant in A/〈t0〉, then it is reduced modulo t

because degXi
(σ(ti)) = degXi

(ti) for any 16 i6 n. Consequently, we take ri7 Pi

and bi7 (0,	 , 0).
Let us consider the final case when Pi=Pj opPk with op∈{+,−, ∗} and j , k < i.

The case where op is the addition is straightforward

ri 7 rj+ rk

bi 7 bj+ bk.

The case of the subtraction is similar. Let us deal with the case of the multiplication.
Let

s, q7 Rem_quo_triangular(t, t0, rj rk)

be the reductions modulo t0 of the canonical remainder and quotients of rj rk by t.
They satisfy

rj rk = s inA/〈t〉
rj rk = s+ q · t inA/〈t0〉.

132 Relaxed lifting of triangular sets

Then one has in A/〈t0〉

PjPk = rj rk+ [(rj+ bj · t)× bk+ rk×bj] · t
= s+ [q+(rj+ bj · t)× bk+ rk×bj] · t

which implies, still in A/〈t0〉,

ri 7 s

bi 7 q+(rj+ bj · t)× bk+ rk×bj. (6.4)

We put all these formulas together to form an algorithm that computes all the
remainders ri and quotients bi modulo t0. We describe this algorithm as a straight-
line program, in order to prove that it is a part of a shifted algorithm.

Let L be the length of the s.l.p. Γ of f . We define recursively in i such that
−n< i6L some s.l.p.’s εi with n inputs. These s.l.p.’s εi compute, on the entries t
given as the list of their polynomial coefficients, the remainders rj and quotients bj

of Pj for j < i. We call ρi and αi=(α1
i ,	 , αn

i) the outputs of εi corresponding to ri
and bi.

Definition 6.15. Let us initiate the induction for −n< i6 0 and ı̄ 7 i+n:

• if degXı̄
(tı̄)=1, then we define εi7 (−rı̄ ,0,1) where rı̄7 tı̄ −Xı̄. The output

ρi points to −rı̄ and αm
i points to 0 if m� ı̄ or 1 otherwise;

• if degXı̄
(tı̄)> 1, then we define εi7 (Xı̄ , 0). The output ρi points to Xı̄ and

αm
i points to 0 for any 16m6n.

Now recursively for 0< i6L, depending on the operation type of Γi:

• if Γi= (P c) with P ∈A reduced modulo t0, then we define εi7 (P , 0). The
output ρi points to P and αm

i points to 0 for any 16m6n;

• if Γi= (+; u, v), then we build εi on top of εu and εv in such a manner that
one has ρi7 ρu+ ρv and αi7 αu+αv;

• if Γi= (−; u, v), then we build εi on top of εu and εv in such a manner that
one has ρi7 ρu− ρv and αi7 αu−αv;

• if Γi=(∗;u, v), we define εi accordingly to formula (6.4). First, we compute
s, q7 Rem_quo_triangular(ρu(t) ρv(t), t, t0). Then ρi7 s and αi is defined
by

q+(ρu(t) +αu(t) · t)×αv(t)+ ρv(t)×αu(t).

Finally, we set ε= εL.

Shifted algorithm In this paragraph, we prove that formula (6.1) gives rise to a
shifted algorithm to compute t. Mainly, we have to prove that the p-adic coefficient
in pm of p2 (δ(B) · δ(t)), that is the coefficient in pm−2 of δ(B) · δ(t), depend at most
in the coefficients ti of t with i<m. For that matter, we will compute the shift index
of the computation of p2 (δ(B) · δ(t)) and prove that it is positive.

6.4 Relaxed lifting of triangular sets 133

Since the s.l.p. ε computes the matrix B on the entries t, we can build an s.l.p.
Λ on top of ε such that

Λ: t� t0+ [σ(B)−1 (f − p2× (δ(B) · δ(t))) rem t0].

In the s.l.p. Λ, the resolution of the linear system

σ(B)a=(f − p2× (δ(B) · δ(t)))∈Mn,1(A/〈t0〉)
in a is performed by the relaxed algorithm of Chapter 3, Section 3.3.2. Indeed, σ(B)
has length 1 and this algorithm is adapted to low length matrices.

Lemma 6.16. The s.l.p. Λ is a shifted algorithm of which t is a fixed point when
the computations are done in the algebra Rp[X1,	 ,Xn].

Proof. The triangular set t is a fixed point of the s.l.p. Λ over Rp[X1,	 ,Xn] because
of Equation (6.1).

Since the s.l.p. ε uses only additions, subtractions, multiplications, calls to
Rem_triangular and Rem_quo_triangular, and since all these operations preserve
a non-negative shift index (Lemma 6.9), we know that sh(t� B)> 0. Besides

sh(t� p2× (δ(B) · δ(t))) = 2+ sh(t� δ(B) · δ(t))
= 2+min (sh(t� δ(B)), sh(t� δ(t)))

= 1+min (sh(t� B), sh(t� t))

> 1.

Furthermore, notice that f rem t0 and σ(B) depend only on t0. Finally the resolution
of the linear system does not change the shift, hence we have proved that sh(Λ)>
0. �

Proof. (of Theorem 6.2) The triangular set t is a fixed point of the s.l.p. Λ,
which is a shifted algorithm by Lemma 6.16. Proposition 2.17 shows that we can
compute t in time the number of operations in Λ.

We count the number of operations of Λ:

• Computation of the remainder r and the quotients b at each step of the
computation of f :

We focus on the steps which correspond to a multiplication ∗ in the
s.l.p. f because they have the worst complexity. The remainder and quo-
tients require a call to Algorithm Rem_quo_triangular. Then b uses an
inner product and scalar vector multiplications ×. The inner product costs
less than a call to Rem_quo_triangular, since this latter algorithm does an
inner product. Summing up, the total cost is

O(LR(N)RemQuo(d1,	 , dn)+nLR(N)Rem(d1,	 , dn))

that is O(nLR(N)Rem(d1,	 , dn)) (see Proposition 6.8);

• Computation of f rem t0 in time O(LRem(d1,	 , dn)R(N));

• Computation of p2× (δ(B) · δ(t)) requires n inner products δ(bi) · δ(t), whose
costs are dominated by O(nR(N)RemQuo(d1,	 , dn)), which is bounded by
O(nLR(N)Rem(d1,	 , dn)) since L>n;

134 Relaxed lifting of triangular sets

• Resolution of the linear system in σ(B):
Since σ(B) has length one, Proposition 3.6 solves the linear system in

time O(N MMR(n, 1, 1)/1+nΩ) = Õ(n2)N +O(nΩ). �

6.4.2 By-passing the whole quotient matrix

In the algorithm of Section 6.4.1, we computed the whole quotient B. This raised
a component O(n L R(N) Rem(d1, 	 , dn)) in the complexity. We also had to call
Rem_quo_triangular for each multiplication in the s.l.p. of f , leading to a cost of
O(eLR(N)Rem(d1,	 , dn)). These two costs are balanced when e≃n.

However, when e≪n, we can benefit from not computing the whole quotient B.
We present in this section a new method to compute δ(B) · δ(t) without computing
B, thus leading to an asymptotic complexity of O(L R(N) Rem(d1, 	 , dn)) plus
some calls to Rem_quo_triangular. That is how we reach a total complexity of
O(eLR(N)Rem(d1,	 , dn)).

Nevertheless, this new method makes it harder to deal with the carries involved
in the computation of B. We introduce the notion of shifted decomposition to solve
this issue. In return, we increase the subdominant part of the complexity when N

tends to infinity.

Shifted decomposition Recall that σ and δ were defined by σ(a)=a0 and δ(a)7
a− a0

p
and that, for any a∈Rp, we have a= a0+ p δ(a).

To our great regret, σ and δ are not ring homomorphisms. To remedy this
fact, we call a shifted decomposition of a ∈ Rp a pair (σa, δa) ∈ Rp

2 such that
a = σa + p δa. Shifted decompositions are not unique. For any a ∈ Rp, the pair
(σ(a), δ(a)) is called the canonical shifted decomposition of a. Because σ and δ are
not ring homomorphisms, we will use another shifted decomposition that behaves
better with respect to arithmetic operations.

Lemma 6.17. Let a, b∈Rp and (σa, δa), (σb, δb)∈Rp
2 be shifted decompositions of a

and b. Then

1. (σa+σb, δa+ δb) is a shifted decomposition of a+ b;

2. (σa−σb, δa− δb) is a shifted decomposition of a− b;

3. (σaσb, δaσb+ a δb) and (σaσb, δa b+ σa δb) are shifted decompositions of a b.

Proof. These shifted decompositions are direct consequences of the relations

a+ b = σa+ σb+ p (δa+ δb) (6.5)

−a = −σa+ p (−δa) (6.6)

a b = σaσb+ p (δa b+σa δb)

= σaσb+ p (δaσb+ a δb). (6.7)

�

6.4 Relaxed lifting of triangular sets 135

We extend the notion of shifted decomposition naturally to polynomials
Rp[X1,	 , Xn], vectors (Rp)

n and matrices Mr,s(Rp).

Recursive formula for t The recursive formula (6.1) for t adapts well to shifted
decomposition.

Lemma 6.18. Let (σB , δB) be any shifted decomposition of the quotient matrix
B ∈Mn(Rp[X1,	 ,Xn]).

Then the matrix σB ∈Mn(Rp[X1,	 , Xn]) is invertible modulo t0. Moreover the
triangular set t satisfies the recursive equation

t− t0= σB
−1 (f − p2 (δB · δ(t))) rem t0 (6.8)

in Mn,1(Rp[X1,	 ,Xn]).

Proof. We proceed similarly to the proof of Lemma 6.14. For any P ∈R[X1,	 ,Xn],
let r and a be the canonical remainder and quotients of P by t. For any shifted
decomposition (σa, δa) of a, one has

P − r=a · t=σa · t+ p δa · t=σa · t+ p δa · t0+ p2 δa · δ(t).

We apply this to the equations f and get

σB · t= f − p2 (δB · δ(t))
in Rp[X1,	 , Xn]/〈t0〉.

Since the zeroth p-adic coefficient of σB is the one of B which in invertible
in Mn(A0) (see the proof of Lemma 6.14), we deduce that σB is invertible in
Mn(Rp[X1, 	 , Xn]/〈t0〉). It remains to invert σB and to notice that t − t0 =
t rem t0 to conclude. �

Computation of r, σB and δB · δ(t) For every multiplication of the s.l.p. Γ
of f , we did n calls to Rem_triangular and one call to Rem_quo_triangular to
compute the corresponding quotients with our first method of subsection 6.4.1. In
this paragraph, we present a method that does only O(1) calls to Rem_triangular

and one call to Rem_quo_triangular in the same situation.
We denote by (σbi, δbi) a shifted decomposition of the quotients bi. The main

idea of our new method is to deal with δbi · δ(t)∈Rp instead of δbi ∈ (Rp)
n. Let us

explain how to compute ri, σbi and δbi · δ(t). We proceed recursively on the index i

for −n< i6L.
First, for an index i corresponding to an input, i.e. −n< i6 0, we set ı̄ 7 i+n.

Therefore Pi=Xı̄ and we distinguish two cases:

• if degXı̄
(tı̄) = 1, then we set ri 7 tı̄ − Xı̄ ∈ Rp[X1, 	 , Xi−1] reduced with

respect to t1, 	 , ti−1. Also we set σbi7 (0, 	 , 0, 1, 0, 	 , 0) the vector with
only a one at position ı̄ and δbi · δ(t)= 0.

• if degXı̄
(tı̄)> 1, then Xı̄ is already reduced modulo t and we take

ri7 Xı̄ , σbi7 (0,	 , 0), δbi · δ(t) = 0. (6.9)

136 Relaxed lifting of triangular sets

Now let 0 < i 6 L that corresponds to operations in Γ. If the i-th result Pi is a
constant in A/〈t0〉, then, as before, we take

ri7 Pi, σbi7 (0,	 , 0), δbi · δ(t)= 0. (6.10)

Consider the final case when Pi=Pj opPk with op∈{+,−,∗} and j , k < i. The case
where op is the addition is straightforward; using Lemma 6.17, one takes

ri 7 rj+ rk

σbi 7 σbj+ σbk (6.11)

δbi · δ(t) 7 δbj · δ(t)+ δbk · δ(t).

The case of subtraction is similar. Let us deal with the more complicated case of
multiplication. We start by computing the remainder and quotients

s, q7 Rem_quo_triangular(t, t0, rj rk)

of rj rk by t modulo t0. They satisfy

rj rk = s inA/〈t〉
rj rk = s+ q · t inA/〈t0〉.

Thus we still have over A/〈t0〉

ri 7 s (6.12)

bi 7 q+(rj+ bj · t)× bk+ rk×bj.

We use the formulas of Lemma 6.17 to compute the shifted decomposition of bi
from shifted decompositions of its operands. Shifted decompositions of bj and bk
were computed at a previous step of the recursion. We choose to take the canonical
shifted decomposition for rj , rk, q and t. Since the scalar multiplication operator ×
and the inner product · are made of additions and multiplications, we deduce that
we can take

σbi = q0+ ((rj)0+σbj · t0)×σbk+(rk)0×σbj

δbi = δ(q)+ (δ(rj)+ δbj
· t0+bj · δ(t))×bk+((rj)0+σbj · t0)× δbk+ δ(rk)×bj+

(rk)0×δbj.

Because we work in A/〈t0〉, this decomposition simplifies and we define

σbi 7 q0+(rj)0×σbk+(rk)0×σbj (6.13)

δbi 7 δ(q)+ δ(rk)×bj+(rk)0×δbj +

(δ(rj)+ bj · δ(t))× bk+(rj)0× δbk.

Now that we have computed ri and σai
, it remains to compute δbi · δ(t). Using σbj,

σbk, δbj · δ(t), δbk · δ(t) and other known polynomials, we compute

δbi · δ(t) 7 δ(q) · δ(t)+ δ(rk) (bj · δ(t))+ (rk)0 (δbj · δ(t))+
(δ(rj)+ bj · δ(t)) (bk · δ(t)) + (rj)0 (δbk ·δ(t)) (6.14)

6.4 Relaxed lifting of triangular sets 137

where bj · δ(t)7 σbj · δ(t) + p (δbj · δ(t)) and the same for bk · δ(t). This formula is
new and admits no equivalents for canonical shifted decompositions when the p-
adics have carries.

We sum up all these computations in an algorithm. We define recursively for
−n< i6L some s.l.p.’s ξi with n inputs. These s.l.p.’s ξi compute, on the entries t
given as the list of their polynomial coefficients, the remainder rj and the quantities
σbj and δbj · δ(t) for j < i. We name ρi, αi = (α1

i , 	 , αn
i) and θi the outputs of ξi

corresponding to ri, σbi and δbi · δ(t).

Definition 6.19. Let us initiate the induction for −n< i6 0 and ı̄ 7 i+n:

• if degXı̄
(tı̄)=1, then we define ξi7 (−rı̄ ,0,1) where rı̄7 tı̄ −Xı̄. The output

ρi points to −rı̄, αm
i points to 0 if m� ı̄ or 1 otherwise and θi points to 0;

• if degXı̄
(tı̄)> 1, then we define ξi7 (Xı̄ , 0). The output ρi points to Xı̄, θi

and αm
i points to 0 for any 16m6n.

Now recursively for 0< i6L, depending on the operation type of Γi:

• if Γi= (P c) with P ∈A reduced modulo t0, then we define ξi7 (P , 0). The
output ρi points to P and αm

i points to 0 for any 16m6n;

• if Γi=(+;u, v), then we build ξi on top of ξu and ξv in such a manner that
one has ρi7 ρu+ ρv, αi7 αu+αv and θi7 θu+ θv;

• if Γi=(−;u, v), then we build ξi on top of ξu and ξv in such a manner that
one has ρi7 ρu− ρv, αi7 αu−αv and θi7 θu− θv;

• if Γi=(∗;u, v), we define ξi accordingly to formulas (6.12,6.13,6.14). First,
we compute s, q7 Rem_quo_triangular(ρu(t) ρv(t), t, t0). Then ρi7 s, αi

is defined by

σ(q) + (ρu(t) +αu(t) · t)×αv(t)+ ρv(t)×αu(t)

and θi is defined by

δ(q) · δ(t)+ δ(ρv) (Θu)+ (ρv)0 (θ
u) + (δ(ρu)+Θu) (Θv) + (ρu)0 (θ

v)

where Θu7 αu · δ(t)+ p× θu and the same for Θv.

Finally, we set ξ= ξL.

Shifted algorithm Similarly to Section 6.4.1, we prove that Lemma 6.18 gives
rise to a shifted algorithm to compute t. For that matter, we will compute the shift
index of the computation of p2 (δB · δ(t)) and prove that it is positive.

Lemma 6.20. For any −n< i6L, one has

sh(t� ρi(t))> 0, sh(t� αi(t))> 0, sh(t� θi(t))>−1.

Proof. We proceed recursively on i for −n< i6L.
We initialize the induction for any −n< i6 0. One has

sh(t� αi(t)) = sh(t� θi(t))=+∞, sh(t� ρi(t)) =

{

+∞ if degXı̄
(tı̄)> 1

0 otherwise
.

138 Relaxed lifting of triangular sets

Now recursively for 0< i6L, depending on the type of the i-th operation of Γ:

• if Γi= (P c) with P ∈A reduced modulo t0, one has

sh(t� ρi(t))= sh(t� αi(t))= sh(t� θi(t))=+∞.

• if Γi= (ω; u, v) with ω ∈ {+,−, ∗} then we proceed as follows. The s.l.p. ξi

uses only additions, subtractions, multiplications, shifts p×_ by p, and calls
to Rem_triangular and Rem_quo_triangular. These operations preserve a
non-negative shift index, so

sh(t� ρi(t))> 0, sh(t� αi(t))> 0.

Now θi is an arithmetic expression in δ(q), δ(t), (ρu)0, δ(ρu), αu, θu, p× θu

and the same for v. All this quantities have a shift index greater or equal to
−1 and so it is for θi. �

Since the s.l.p. ξ computes on the entries t the p-adic vector δB · δ(t), we can
build an s.l.p. ∆ on top of ξ such that

∆: t� t0+ [σB
−1 (f − p2× (δB · δ(t))) rem t0].

The resolution of the linear system in ∆ is done by the relaxed algorithm of Chapter
3, Section 3.3.3.

Lemma 6.21. The s.l.p. ∆ is a shifted algorithm of which t is a fixed point when
the computations are done in the algebra Rp[X1,	 ,Xn].

Proof. The s.l.p. ∆ compute t on the entries t in the algebra Rp[X1,	 ,Xn] thanks
to Lemma 6.18 and because the formulas that define ξ in Definition 6.19 match
formulas (6.9) to (6.14).

A direct consequence of Lemma 6.20 is that

sh(t� p2× (δB · δ(t)))> (2+ sh(t� δB · δ(t)))> 1.

Since f remt0 and σB depend only on t0, and since the resolution of the linear system
does not impact the shift, we have proved ∆ has a positive shift index. �

Proof. (of Theorem 6.3) By Lemma 6.21, the triangular set t is a fixed point of
the shifted algorithm ∆. Proposition 2.17 shows that we can compute t in time the
number of operations in ∆. Let us count the number of operations in ∆.

Cost of σB. We start by evaluating the maximal length of the entries of σB. We
look at the effect of one operation of the s.l.p. of f on σbi. The worst case happens
for the multiplication ∗. In this case, recall from Formula 6.13 that

σbi= q0+(rj)0×σbk+(rk)0×σbj.

The multiplication modulo a triangular set increase the length of the p-adics by a
factor Õ(d1
 dn) (see [Lan91, Theorem 3]), so that

λ(σbi)6max (λ(σbk), λ(σbj
))+ 2 Õ(d1
 dn)+ 2 .

There are L operations and consequently λ7 λ(σB)= Õ(Ld1
 dn).

6.4 Relaxed lifting of triangular sets 139

The multiplication of two p-adics of length 1 and λ costs O(min (λ,N)) and so
does the addition of two p-adics of length λ. Put it all together for a total cost of
O(nLmin (λ,N)Rem(d1,	 , dn)).

Computation of f rem t0 in time O(LRem(d1,	 , dn)R(N)).

Computation of ri and δbi · δ(t) at each step of the computation of f . We
focus on the operations of Γ which are multiplications because they induce the
more operations in ∆. The remainder s and quotients q of rj rk require a call to
Algorithm Rem_quo_triangular. Then δB · δ(t) use an inner product δ(q) · δ(t)
and O(1) multiplications in Rp[X1,	 ,Xn]/〈t0〉. The inner product costs less than a
call to Rem_quo_triangular, since this latter algorithm does an inner product q · t.
Summing up, the total cost is O(L R(N) (RemQuo(d1,	 , dn)+Rem(d1,	 , dn))), that
is O(e LR(N)Rem(d1,	 , dn)).

Resolution of the linear system in σB: Since the matrix σB has finite length λ,
Proposition 3.6 tells us that the cost of solving the linear system is

O([N MMR(n, 1, λ)/λ+nΩ]Rem(d1,	 , dn)),

that is [Nn2+o(1) log (λ)O(1)+O(nΩ)]Rem(d1,	 , dn). �

6.5 Implementation in Mathemagix

The computer algebra software Mathemagix [HLM+02] provides a C++ library
named Algebramix implementing relaxed power series or p-adic numbers [Hoe02,
Hoe07, BHL11, BL12]. We implemented the lifting of univariate representations
over the power series ring Fp[[X]] for both the off-line and the relaxed approach.
The implementations over the p-adic integers Zp are still in progress. Although they
work, they still require some efforts to be competitive.

Our implementation is available in the files whose name begins with lift_ in the
C++ library Gregorix of Mathemagix. We mention that our on-line algorithm
is currently connected to Kronecker inside Mathemagix with the help of G.
Lecerf.

We now give some implementation details:

• for the multiplication of polynomials of power series in (Fp[[X]])[Y], we first
converted them as power series of polynomial in (Fp[Y])[[X]]. Then the
relaxed multiplication algorithm reduces to multiplications of finite precision
power series of polynomials, that is polynomials of polynomials in (Fp[Y])[X].
We classically used a Kronecker substitution to reduce these products to
multiplications of univariate polynomials in Fp[Z];

• since remainder and quotients modulo t or t0 are often used, we stored
the precomputation of the inverse of these elements in Algorithms
Rem_triangular and Rem_quo_triangular;

• for the matrix multiplication modulo Q inside the off-line Algorithm
Global_Newton_step_univariate, we delayed the reductions until after the
matrix multiplication to reduce their numbers;

140 Relaxed lifting of triangular sets

• as we mentioned before, Algorithms Rem_triangular and
Rem_quo_triangular greatly simply with univariate representations since
we just have to compute quotient and remainder of univariate polynomials.

6.5.1 Benchmarks

We report the timings of our implementation in milliseconds. Timings are measured
using one core of an Intel Xeon X5650 at 2.67 GHz running Linux 64 bits, Gmp
5.0.2 [G+91] and setting p= 16411 a 15-bit prime number.

We start by giving some comparison of timings between the relaxed and zealous
product in (Fp[[X]])[Y] depending on the degree in Y and the precision N of power
series.

Degree 32 in Y Degree 64 in Y Degree 128 in Y Degree 256 in Y

N zealous relaxed zealous relaxed zealous relaxed zealous relaxed
8 0 0 0 1 1 1 2 4
16 0 1 0 3 1 5 3 11
32 0 3 1 7 2 14 6 34
64 1 8 3 18 6 41 12 100
128 3 21 6 49 12 110 30 270
256 6 56 12 130 29 300 70 700
512 12 150 30 340 71 790 170 1800
1024 29 370 71 860 170 2000 340 4500
2048 72 920 170 2100 350 4800 750 11000

Table 6.1. Timings of zealous and relaxed multiplication in (Fp[[X]])[Y]

We observe that the ratio of the timings between the relaxed and zealous
algorithms grows as log (N). As a future work, we will apply the new relaxed
multiplications of [Hoe07], generalized to more general ring in [Hoe12], to keep
the ratio R(N)/I(N) smaller.

To be fair, we mention that our zealous lifting implementation could also be
improved. Especially the multiplication of matrices with polynomial entries could
have benefit from an interpolation/evaluation scheme, especially since our matrices
have reasonable size n×n and big entries in (Fp[[X]])[Y].

We tried our algorithm on two family of examples. The Katsura polynomials
systems comes from a problem of magnetism in physics [Kat90]. The system Kat-
sura-n has n+1 unknowns X0,	 , Xn and n+1 equations:

for 06m<n,
∑

ℓ=−n

n

X|ℓ|X|m−ℓ|=Xm

and X0+2
∑

ℓ=1

n
Xℓ=1.

The other family of polynomial system MulLinForm-n has n unknowns and n

equations of the form

(λ1X1+
 + λnXn) (µ1X1+
 + µnXn)=α

where the λi, µi and α are random coefficients in Fp.

6.5 Implementation in Mathemagix 141

We indicate with a bold font the theoretical bound for the precision of power
series required in the Kronecker algorithm.

Katsura-3 Katsura-4 Katsura-5 Katsura-6
N zealous relaxed zealous relaxed zealous relaxed zealous relaxed
2 21 7 75 20 250 58 780 170
4 31 11 106 29 350 78 1100 220
8 49 18 170 48 550 130 1700 360
16 82 36 290 92 940 240 1900 700
32 140 74 510 200 1700 530 5200 1500
64 260 160 970 440 3300 1200 10000 3600
128 510 360 1900 1000 6600 2800 21000 8600
256 1000 820 4000 2400
512 2200 1900 8600 5500

Table 6.2. Timings of zealous/relaxed lifting of univariate representations for Katsura-
n.

MulLinForm-4 MulLinForm-5 MulLinForm-6
N zealous relaxed zealous relaxed zealous relaxed
2 44 16 160 45 520 130
4 64 23 230 63 720 180
8 96 38 340 100 1000 300
16 150 69 520 180 1700 540
32 230 140 850 380 2900 1000
64 370 180 1400 780 5200 2300
128 670 580 2600 1600 9500 4800

Table 6.3. Zealous/relaxed lifting timings of univariate representations ofMulLinForm-
n.

6.5.2 Conclusion

As a conclusion, we remark that a relaxed approach has generated new algorithms for
the lifting of triangular sets. Our hope was to save the cost of linear algebra in the
dominant part of the complexity when the precision N tends to the infinity. Besides,
previous experiences, with e.g. the relaxed lifting of regular roots, showed that we
could expect to do less multiplications in the relaxed model than in the zealous one.
Therefore, whenever the precision N gives a measured ratio of complexity between
relaxed and zealous multiplication, we can expect better timings from the relaxed
approach.

In view of our hopes, we are not completely satisfied with the lifting of general
triangular sets, for it does more multiplications when n L > nω. On the contrary,
the lifting of univariate representations always improve the asymptotic number of
multiplications.

142 Relaxed lifting of triangular sets

Partie IV

A special algebraic
system

Chapitre 7
Algorithms for the universal
decomposition algebra

Let k be a field and let f ∈ k[T] be a polynomial of degree n. The universal
decomposition algebra A is the quotient of k[X1, 	 , Xn] by the ideal of symmetric
relations (those polynomials that vanish on all permutations of the roots of f).
We show how to obtain efficient algorithms to compute in A. We use a univariate
representation of A, i.e. an isomorphism of the form A≃ k[T]/Q(T), since in this
representation, arithmetic operations in A are known to be quasi-optimal. We give
details for two related algorithms, to find the isomorphism above, and to compute
the characteristic polynomial of any element of A.

7.1 Introduction
Let k be a field and let f =Xn+

∑

i=1

n
(−1)i fiX

n−i in k[X] be a degree n separable
polynomial. We let R7 {α1,	 , αn} be the set of roots of f in an algebraic closure
of k. The ideal of symmetric relations Is is the ideal

{P ∈k[X1,	 ,Xn]|∀σ ∈Sn, P (ασ(1),	 , ασ(n))= 0}.
It is is generated by (Ei − fi)i=1,	 ,n, where Ei is the ith elementary symmetric
function on X1,	 , Xn. Finally, the universal decomposition algebra is the quotient
algebra A 7 k[X1, 	 , Xn]/Is, of dimension δ 7 n!. For all P ∈ A, we denote by
X P ,A its characteristic polynomial in A, that is, the characteristic polynomial of the
multiplication-by-P endomorphism of A. Stickelberger’s theorem shows that

X P ,A(T)=
∏

σ∈Sn

(T −P (ασ(1),	 , ασ(n)))∈k[T]. (7.1)

This polynomial is related to the absolute Lagrange resolvent

LP(T)7 ∏

Stab(P)\\Sn

(T −P (ασ(1),	 , ασ(n)))∈k[T],

where Stab(P)\\Sn are the left cosets of the stabilizer of P in the symmetric group
Sn; indeed, these polynomials satisfy the relation X P ,A=LP

#Stab(P).
Computing Lagrange resolvents is a fundamental question, motivated for

instance by applications to Galois theory or effective invariant theory. There exists
an abundant literature on this question [Lag70, Soi81, Val89, AV94, AV97, Leh97,
Yok97, RV99, AV00]; known symbolic methods rely on techniques involving resul-
tants, symmetric functions, standard bases or invariants (we will make use of some
of these ingredients as well). However, little is known about the complexity of these
methods. As it turns out, almost all algorithms have at least a quadratic cost
δ2 in the general case.

145

In some particular cases, though, it is known that resolvents can be computed
in quasi-linear time [CM94]. Our goal in this article is thus to shed some light on
these questions, from the complexity viewpoint: is it possible to give fast algorithms
(as close to quasi-linear time as possible) for general P ? What are some particular
cases for which better solutions exist? To answer these questions, we measure the
cost of our algorithms by the number of arithmetic operations in k they perform.
Practically, this is well adapted to cases where k is a finite field; over k = Q, a
combination of our results and modular techniques, such as in [Ren04] for resolvents,
should be used.

The heart of the article, and the key to obtain better algorithms, is the question
of which representation should be used for A. A commonly used representation is
triangular . The divided differences , also known as Cauchy modules [Che50, RV99],
are defined by C1(X1)7 f(X1) and

Ci+17 Ci(X1,	 ,Xi)−Ci(X1,	 ,Xi−1,Xi+1)

Xi−Xi+1
(7.2)

for 16 i<n. They form a triangular basis of Is, in the sense that Ci is in k[X1,	 ,Xi],
monic in Xi and reduced with respect to (C1,	 , Ci−1). In particular, they define a
tower of intermediate algebras Ai for 16 i6n:

A17 k[X1]/(C1)�
Am7 k[X1,	 , Xm]/(C1,	 , Cm)�

A=An7 k[X1,	 , Xn]/(C1,	 , Cn).

In this approach, elements of A are represented by means of multivariate poly-
nomials reduced modulo (C1, 	 , Cn). For all m 6 n, Am has dimension δm 7
n!/(n−m)!; its elements are represented as polynomials in X1,	 , Xm.

Introducing these intermediate algebras makes it possible for us to refine our
problem: we will also consider the question of fast arithmetics, and in particular
characteristic polynomial computation for Am. The characteristic polynomial of
P ∈Am will be written X P ,Am

∈k[T]; it has degree δm and admits the factorization

X P ,Am
=

∏

α1,	 ,αm∈Rpairwise

(T −P (α1,	 , αm)). (7.3)

Divided differences are inexpensive to compute via their recursive formula, but it is
difficult to make computations in Am efficient with this representation. To review
known results, it will be helpful to consider two extreme cases: when m is small
(typically, m is a constant), and when m is close to n. Note that the first case covers
some useful cases for Galois theory (such as the computation of resolvents associated
to simple polynomials of the form X1X2+X3X4,).

146 Algorithms for the universal decomposition algebra

When m is fixed (say m = 4 in the above example) and n → ∞, δm = n!/

(n −m)! is equivalent to nm. In this case, there exist algorithms of cost Õ(δm) =

Õ(nm) for multiplication and inversion (when possible) in Am [DMMSX06, LMS09].
Here, and everywhere else in this chapter, the Õ notation indicates the omission
of logarithmic factors. For characteristic polynomial computation, it is possible to
deduce from [LMP09] a cost estimate of Õ(δmn2) = Õ(nm+2).

However, all these algorithms hide exponential factors in m in their big-O,
which makes them unsuitable for the case m ≃ n. For the case m = n, the paper
[BCHS11] gives a multiplication algorithm of cost Õ(δn), but this algorithm hides
high degree logarithmic terms in the big-O. There is no known quasi-linear algo-
rithm for inverting elements of An.

The second representation we discuss is univariate. For m6n, an element P of
Am will be called primitive if the k-algebra k[P] spanned by P is equal to Am itself.
If Λ is a primitive linear form in Am, a univariate representation of Am consists of
polynomials P = (Q, S1, 	 , Sm) in k[T] with Q = X Λ,Am

and deg (Si) < δm for all
i6m such that we have a k-algebra isomorphism

Am=k[X1,	 , Xm]/(C1,	 , Cm) → k[T]/(Q)
X1,	 ,Xm � S1,	 , Sm

Λ � T .

A brief history of univariate representations and triangular sets can be found in
Section 6.6.1.1.

When using univariate representations, the elements of Am ≃ k[T]/(Q) are
then represented as univariate polynomials of degree less than δm. As usual, we
will thus denote by M(n) the cost of polynomial multiplication for polynomials
of degrees bounded by n, under the super-linearity assumptions of [GG03]. One can
take M(n)=O(n log (n) log (log (n))) using Fast Fourier Transform [SS71, CK91].

Then, multiplications and inversions (when possible) in Am cost respectively
O(M(δm)) and O(M(δm) log (δm)). For characteristic polynomial, the situation is
not as good, as no quasi-linear algorithm is known: the best known result [Sho94]
is O(M(δm) δm

1/2 + δm
(ω+1)/2). Here, ω is so that we can multiply n × n matrices

within O(nω) ring operations on any ring R. The best known bound on ω is ω 6

2.3727 [CW90, Sto10, VW11], resulting in a O(δm
1.69) characteristic polynomial algo-

rithm.

Computing a univariate representation for Am is expensive: for m= n, starting
from any defining equations of Is, it takes time Õ(δn

2) with the geometric resolu-
tion algorithm [GLS01]. Starting from the divided differences, the RUR algorithm
[Rou99] or the FGLM algorithm [FGLM93] take timeO(δn

3); a recent improvement of
the latter [FM11] could reduce the exponent using sparse linear algebra techniques.
Some other algorithms are specifically designed to take as input a triangular set
(such as the divided differences) and convert it to a univariate representation, such as
[BLMM01] or [PS11]; the latter performs the conversion for any m in subquadratic

time Õ(M(δm) δm
1/2+ δm

(ω+1)/2), which is Õ(δm
1.69).

7.1 Introduction 147

Thus, the triangular representation for Am is easy to compute but leads to rather
inefficient algorithms to compute in Am. On the other hand, computing a univariate
representation is not straightforward, but once it is known, some computations in Am

become faster. Our main contribution in this chapter is to show how to circumvent
the downsides of univariate representations, by providing fast algorithms for their
construction (for An itself, or for each Am) in many cases. We also show how to use
fast univariate arithmetics in Am to compute characteristic polynomials efficiently.

We give two kinds of estimates, depending on whether m is fixed or not. In the
first case, we are interested in what happens when n→∞; the big-O estimates may
hide constants depending on m. In the second case, when both m and n can vary,
a statement of the form f(m,n)=O(g(m,n)) means that there exists K such that
f(m,n)6K g(m,n) holds for allm,n. For univariate representations, our algorithms
are Las Vegas: we give expected running times.

Theorem 7.1. Let m 6 n and suppose that the characteristic of k is zero, or at
least 2 δm

2 . Then we can compute characteristic polynomials and univariate repre-
sentations in Am with costs as specified in the following table.

XP ,Am

univ. representation
(expected time)

m fixed
O(M(δm)) O(M(δm) log (n))for P linear

m6n/2
O(nmM(δm)) O(nm2M(δm))for P linear

any m O(n(ω+1)/2mM(δm)) O(n(ω+1)/2mM(δm))

In particular, when m is fixed, we have optimal algorithms (up to logarithmic
factors) for characteristic polynomials of linear forms. For arbitrary P , the results
in the last item are not optimal: when m is fixed, the running time of our algorithm
is Õ(nm+1.69), for an output of size nm. For small values of m, say m=2, 3, 4, this
is a significant overhead. However, these results do improve on the state-of-the-art.

We propose two approaches; both of them rely on classical ideas. The first one
(in Section 7.3) computes characteristic polynomials by means of their Newton sums,
following previous work of [Val89, AV94, CM94], but is limited to simple polyno-
mials, such as linear forms; this will establish the first two items in the theorem. The
second one (in Section 7.4) relies on iterated resultants [Lag70, Soi81, Leh97, RV99]
and provides the last statements in the theorem. The last section gives experimental
results.

In addition to the general results given in the theorem above, the following
sections also mention other examples for which our techniques, or slight extensions
thereof, yield quasi-linear results – as of now, we do not have a complete classification
of all examples for which this is the case.

148 Algorithms for the universal decomposition algebra

In all this chapter, our focus is on computing characteristic polynomials rather
than resolvents. From this, one can deduce resolvents by root extraction, but it is
of course preferable to compute the resolvent directly, by cleaning multiplicities
as early as possible. The basic ideas we use are known to make this possible: we
mention it in the next section for the Newton sums approach and [Leh97, RV99,
AV12] discuss the resultant-based approach. However, quantifying the complexity
gains of this improvement is beyond the scope of this chapter. Note also that for
cases where P is fixed, such as P 7 X1X2+X3X4, and n→∞, we can save only a
constant factor in the running time with such considerations.

7.2 Preliminaries

7.2.1 The Newton representation

Let g be monic of degree n in k[X], and let β1, 	 , βn its roots in an algebraic
closure of k. For i ∈ N, we let Si(g) ∈ k be the ith Newton sum of g, defined by
Si(g)7 ∑

ℓ=1

n
βℓ
i, and for m∈N we write S(g,m)7 (Si(g))06i6m.

The conversion from coefficients to the Newton representation S(g,m) and back
can be done by the Newton-Girard formulas, but this takes quadratic time in m. To
achieve a quasi-linear complexity, we recall a result first due to Schönhage [Sch82];
see [Bos03] for references and a more detailed exposition, including the proofs of the
results we state below.

Lemma 7.2. Let g be a monic polynomial of degree n in k[X]. Then, for m ∈N,
one can compute S(g,m) in time O(M(m)). If the characteristic of k is either zero
or greater than n, one can recover g from S(g, n) in time O(M(n)).

In particular, knowing S(g, n), we can compute S(g, n ′) for any n ′> n in time
O(M(n′)).

The Newton representation is useful to speed up certain polynomial operations,
such as multiplication and exact division, since Si (g h)=Si(g)+Si(h) for all i∈N.
Other improved operations include the composed sum and composed product of g

and another polynomial h, with roots γ1,	 , γm; they are defined by

g⊕h 7 ∏

i=1	 n,j=1	m

(X − (βi+ γj)),

g⊗h 7 ∏

i=1	 n,j=1	m

(X − (βi γj)).

Lemma 7.3. ([Bos03, section 7.3]) Let g, h be monic polynomials in k[X], and
suppose that S(g, r) and S(h, r) are known. Then one can compute S (g ⊗ h, r) in
time O(r); if the characteristic of k is either zero or greater than r, one can compute
S (g⊕h, r) in time O(M(r)).

We write ⊗NS(S(g, r),S(h,r), r) and ⊕NS(S(g,r),S(h,r), r) for these algorithms;
the subscript NS shows that the inputs and outputs are in the Newton representation.

7.2 Preliminaries 149

7.2.2 Univariate representations
We recall a few facts on univariate representations. Let us fix m6n. Then, a linear
form Λ is primitive for Am if and only if it takes distinct values on the points of
the variety defined by Is∩k[X1,	 ,Xm]. This is the case if and only if the minimal
polynomial of Λ coincides with its characteristic polynomial X Λ,Am

, if and only if
X Λ,Am

is squarefree. For instance when m=n, Λ is primitive in An if and only if the
values Λ(ασ(1),	 , ασ(n)) are all distinct for σ ∈Sn.

By Zippel-Schwartz lemma [Zip79, Sch80], for K ∈N>0, a random linear form Λ
will be primitive for Am with probability greater than 1− 1/(2K) if its coefficients
are taken in a set of cardinality Kδm

2 ; this still holds if we set λ17 1. One can find
primitive linear forms for Am in a (non-uniform) deterministic manner, but with a
cost polynomial in δm [CG10].

When Λ is primitive, in the univariate representation P = (Q, S1, 	 , Sn)
corresponding to Λ, we obtain Q as Q = X Λ,Am

. The polynomials Si are called
parametrizations because they are the images of the variables Xi by the isomor-
phism Am ≃ k[T]/(Q). We will now argue that any “reasonable” algorithm that
computes Q will also give us the parametrizations for a moderate overhead.

Let us extend the base field k to k′ 7 k(L1, 	 , Lm), where Li are new inde-
terminates. Let Am

′ 7 Am ⊗k k′ be obtained by adding L1, 	 , Lm to the ground
field in Am, and let finally X L,Am

′ ∈ k′[T] be the characteristic polynomial of L7
L1X1+
 +LnXm. Then, the following holds:

Si=−∂X L,Am
′

∂Li

/
∂X L,Am

′

∂T
modX L,Am

′

∣

∣

∣

∣

L1,	 ,Lm=λ1,	 ,λm

;

see for instance [Kro82, Kön03, Mac16, HKP+00, GLS01, DL08].
We can avoid working with m-variate rational function coefficients, as the for-

mula above implies that we can obtain Si as follows. Let kε 7 k[ε]/(ε2). For a
given Λ, and for i6m, let XΛi

be the characteristic polynomial of Λi7 Λ + ε Xi,
computed over kε. Then, X Λi

takes the form X Λi
=X Λ,Am

+ ε Ri, and we obtain Si

as Si=Ri/X Λ,Am

′ modXΛ,Am
.

We will require that the algorithm computing X Λ,Am
performs no zero-test or

division (other than by constants in k, since those can be seen as multiplications by
constants). Since any ring operation (+,×) in kε costs at most 3 operations in k,
given such an algorithm that computes the characteristic polynomial of any linear
form in Am in time C, we can deduce an algorithm that computes each Si in time
O(C), and S1,	 , Sm in time O(m C).

7.3 Newton sums techniques

In this section, we give our first algorithm for computing characteristic polynomials
in Am. This approach is based on the following proposition and as such applies only
to polynomials satisfying certain assumptions; the main result in this section is in
Proposition 7.5 below. Our approach relies on Newton sums computations, following
[Lag70, Val89, AV94, CM94]; an analogue of the following result can be found in
[CM94] for the special cases P =X1+
 +Xm and P =X1
 Xm. See also [BFSS06]
for similar considerations in the bivariate case.

150 Algorithms for the universal decomposition algebra

Proposition 7.4. Let P ∈Am be of the form

P (X1,	 , Xm)7 Q(X1,	 , Xm−1)+R(Xm),

with Q in Am−1. For 16 i6m− 1, define

Pi7 Q(X1,	 , Xm−1)+R(Xi)∈Am−1,

and let R17 R(X1)∈A1. Then the following equality holds:

X P ,Am
=

X Q,Am−1⊕XR1,A1
∏

i=1
m−1 X Pi,Am−1

. (7.4)

Proof. Let R= {α1, 	 , αn} be the roots of f and note that XR1,A1
=
∏

i=1

n
(T −

R(αi)). We rewrite (7.3) as

X Q,Am−1
=

∏

α1,	 ,αm−1∈Rpairwise

(T −Q(α1,	 , αm−1)).

Thus, X Q,Am−1
⊕XR1,A1

equals

∏

α1,	 ,αm−1∈Rpairwise,αm∈R

(T −P (α1,	 , αm)).

This product contains parasite factors compared to X P ,Am
, corresponding to cases

where αm = αi for some i between 1 and m − 1. For a given i, the factor due to
αm=αi is

∏

α1,	 ,αm−1∈Rpairwise

(T −P (α1,	 , αm−1, αi)),

that is, X Pi,Am−1
. Formula (7.4) follows. �

This result can lead to a recursive algorithm, provided all recursive calls are well-
defined (not all polynomials P satisfy the assumptions of this proposition). We will
consider a convenient particular case, when the input polynomial is linear. In this
case, we can continue the recursion all the way down, remarking that for m = 1,
the characteristic polynomial of λX1 is f (λ T). We deduce our recursive algorithm
CharNSRec, together with the top-level function CharNS; they compute X Λ,Am

, for
Λ= λ1X1+
 + λmXm.

The algorithm CharNSRec uses the Newton sums representation for all polyno-
mials involved; the only conversions are done in the top-level function CharNS. The
algorithm thus takes as an extra argument the precision ℓ, that is, the number of
Newton sums we need. As in the previous proposition, we write Λ07 λ1X1+
 +
λm−1Xm−1 and, for i6m, Λi7 λ1X1+
 +λm−1Xm−1+λmXi.

7.3 Newton sums techniques 151

Algorithm CharNSRec

Input: S(f , n), m, Λ, the precision ℓ.
Output: S(X Λ,Am

, ℓ).

1. ℓ′7 min (ℓ, δm)

2. if (m=1) then out7 (Si(f)λ1
i)06i6n else

a. out7 CharNSRec(S(f , n),m− 1,Λ0, ℓ
′)

b. out7 ⊕NS(out,CharNSRec(S(f , n), 1, λmX1, ℓ
′), ℓ′)

c. for i from 1 to m− 1
out 7 out−CharNSRec(S(f , n), m− 1,Λi, ℓ

′)

3. if (ℓ′<ℓ) then Extend the series “out” up to precision ℓ

4. return out

The minus in step 2.c corresponds to a division in Formula (7.4). The main algorithm
follows; it uses a trick when m=n to reduce the depth of the recursion by one unit.

Algorithm CharNS

Input: f , m, Λ.
Output: X Λ,Am

.

1. if (m=n) then

a. Λ̄7 (λ1−λn)X1+
 + (λn−1−λn)Xn−1

b. return CharNS(f , n− 1, Λ̄)⊕ (X −λn f1)

2. Compute the Newton representation S(f , n)

3. S(X Λ,Am
, δm)7 CharNSRec(S(f , n), m,Λ, δm)

4. Recover X Λ,Am
from S(X Λ,Am

, δm)

5. return X Λ,Am

Proposition 7.5. Let m6n and suppose that the characteristic k is either zero or
greater than δm. Then Algorithm CharNS computes the characteristic polynomials
of linear forms in Am in time O(M(δm)) if m is bounded, O(mnM(δm)) if m6n/2
and O(2nM(δm)) in general.

Proof. Let be C(m, ℓ) be the cost of CharNSRec on input Λ∈Am and precision ℓ.
We use the abbreviation C(m)7 C(m, δm), so that C(1)=O(n). For 26m6n− 1,
Lemma 7.2 gives C(m, ℓ)= C(m)+O(M(ℓ)) for ℓ> δm, so we get

C(m) = m C (m− 1, δm)+ C(1, δm)+O(mM(δm))

= m (C (m− 1)+O(M(δm))) +O(mM(δm))

6 m C (m− 1)+O(mM(δm)).

152 Algorithms for the universal decomposition algebra

Then, by unrolling the recurrence and using the super-linearity of the function M,
we deduce

C(m)

M(δm)
6 O

(

m+m (m− 1)
δm−1

δm
+
 +m!

δ1
δm

)

6 O
(

∑

i=1

m
m!

(i− 1)!

(n−m)!

(n− i)!

)

6 O
(

n
(

n

m

)

∑

i=1

m
(

n− 1
i− 1

)

)

.

When m is bounded, the sum is bounded. If m6n/2, we derive the bound C(m)=
O(mnM(δm)) from the remark

(

n− 1
i− 1

)

6
(

n

i

)

6
(

n

m

)

for 16 i6m. For m6 n− 1, we
get the cruder bound C(m)=O(2n M(δm)). In all cases, the cost of Algorithm CharNS

is the same, up to O(M(δm)) for conversions. For m=n, let Λ̄7 (λ1−λn)X1+
 +
(λn−1−λn)Xn−1. Then, f1=

∑

i
αi implies X Λ,An

=X Λ̄,An−1
⊕ (X −λn f1); the cost

form=n is thus the same as form=n−1, up toO(M(δn)) for the composed sum. �

This proves the left-hand columns of the first two rows in Theorem 7.1. Using
the discussion in Subsection 7.2.2, we can also compute a univariate representa-
tion of Am. After computing X Λ,Am

, we test whether Λ is primitive for Am, by
testing whether X Λ,Am

is squarefree; this takes time O(M(δm) log (δm)), which is
O(mM(δm) log (n)). If the characteristic of k is either zero, or at least equal to 2 δm

2 ,
we expect to try finitely many Λ before finding a primitive one. When this is the
case, we can apply the procedure of Subsection 7.2.2 to obtain all parametrizations;
this costs m times as much as computing X Λ,Am

. Considering the cases m constant
and m6 n/2, this completes the proof of the first two points in our main theorem.

To conclude this section, we mention (without proof) some extensions. First, it
is possible to adapt this algorithm to exploit symmetries of P , since they are known
to create multiplicities in X P ,Am

: we can accordingly reduce the number of Newton
sums we need (thus, one can compute resolvents directly in this manner). This is
useful in practice, but we were not able to quantify the gains in terms of complexity.

Another remark is that an analogue to Proposition 7.4 holds for P (X1,	 ,Xm)7
Q(X1, 	 , Xm−1) × R(Xm), replacing the operation ⊕ by ⊗. As an application,
consider the case P 7 X1 X2 X3 + X4, so that Q 7 X1 X2 X3 and R 7 X4. To
compute X P ,A4

, we are led to deal with Q, P17 (1+X2X3)X1, P27 (1+X1X3)X2

and P37 (1 +X1 X2)X3 in A3. By symmetry, it is enough to consider Q and P3.
For Q, we can continue the recursion all the way down to univariate polynomials,
using the multiplicative version of the previous proposition. For P3, however, we
cannot. Writing P3 as (1 +X1 X2)×X3, the recursive call lead us in particular to
compute the characteristic polynomial of (1 +X1X2)×X2, which does not satisfy
the assumptions of the proposition.

Similar (but slightly more complicated) results hold when P (X1,	 ,Xm) can be
written as Q(X1,	 , Xℓ) opR(Xℓ+1,	 , Xm), with op∈ {+,×}. Taking for instance
P7 X1X2+X3X4, we are led recursively to compute the characteristic polynomials
of X1 X2 and P1 7 X1 (X2 + X3). However, the case of P1 reduces to that of
X2 (X2 + X3), which does not satisfy the assumptions of the proposition. We will
discuss these examples again in the next section.

7.3 Newton sums techniques 153

7.4 Resultant techniques

Resultant methods to compute characteristic polynomials in Am go back to
Lagrange’s elimination method (similar to today’s resultant) to compute resolvents
[Lag70]. This idea was developed in [Soi81, Leh97, RV99].

The basic idea is simple. Let again C1,	 ,Cn be the divided differences associated
to f . For P ∈k[X1,	 , Xm], define recursively the resultants

Gm 7 T −P (X1,	 , Xm)∈k[X1,	 ,Xm, T],

Gi 7 ResXi+1
(Ci+1, Gi+1)∈k[X1,	 ,Xi, T],

for i=m−1,	 ,0, so that X P ,Am
=G0∈k[T]. In order to avoid an exponential growth

of the degrees in the intermediate Gi’s, we need to compute the resultant ResXi
(Ci,

Gi) over the coefficient ring Ai−1[T].

However, we mentioned that arithmetic in Ai−1 is rather slow; univariate compu-
tations are faster. We give below a general framework that relies on both triangular
and univariate representations to compute efficiently such resultants. Recall that
a family of polynomials T = (T1, 	 , Tm) in k[X1, 	 , Xm] is a triangular set if the
following holds for all i6m: Ti is in k[X1,	 ,Xi], Ti is monic in Xi and Ti is reduced
with respect to (T1,	 , Ti−1). Our main idea holds for general triangular families of
polynomials, but it is only for the special case of divided difference that it will lead
to an efficient algorithm (see Corollary 7.11 below).

7.4.1 General algorithms

In this section, we describe a general approach to compute characteristic polynomials
modulo a triangular set. Following [DFS09, PS11], our main idea is to introduce
mixed representations, that allow one to convert from triangular to bivariate repre-
sentations, and back, one variable at a time.

Let T =(T1,	 ,Tm) be a triangular set in k[X1,	 ,Xm]. For i6m, let di7 deg (Ti,

Xi) , µi7 d1
 di and µi
′7 di+1
 dm. We write RT 7 k[X1, 	 , Xm]/(T1, 	 , Tm);

this is a k-algebra of dimension µm= d1
 dm. More generally, for i6m, we write
RT ,i7 k[X1,	 ,Xi]/(T1,	 , Ti); this is a k-algebra of dimension µi.

Generalizing the notation used up to now, for P in RT , we write X P ,RT
for its

characteristic polynomial in RT , that is, the characteristic polynomial of the multi-
plication-by-P endomorphism of RT . To compute X P ,RT

, we will use the “iterated
resultant” techniques sketched in the preamble.

Since computing modulo triangular sets is difficult, our workaround is to intro-
duce a family of univariate representations P1, 	 , Pm−1 of respectively RT ,1, 	 ,

RT ,m−1; in the introduction, we only defined univariate representations for the alge-
bras Ai, but the definition carries over unchanged to this slightly more general
context [GLS01, PS11]. For i6m− 1, Pi has the form Pi= (Qi, Si,1,	 , Si,i), with
all polynomials in k[Zi] and with associated linear form Λi7 λi,1X1+
 + λi,iXi.
For i=1, we add w.l.o.g. the mild restriction that Λ1=X1, so that Q1= T1.

154 Algorithms for the universal decomposition algebra

We first show how to use these objects to perform conversions between multi-
variate and bivariate representations, going one variable at a time. For i6m − 1,
we know that Qi has degree µi and that we have the k-algebra isomorphism

ϕi:
RT ,i � k[Zi]/(Qi)

X1,	 , Xi � S1,i,	 , Si,i

Λi � Zi.

We extend ϕi to another isomorphism

Φi: RT ,i[Xi+1,	 ,Xm]� k[Zi]/(Qi)[Xi+1,	 , Xm],

where ϕi acts coefficientwise, and we define Qi,j=Φi(Tj) for i+16 j6m.
Let us see Qi,i+1, 	 , Qi,m in k[Zi, Xi+1, 	 , Xm], by taking their canonical

preimages. Then, (Qi, Qi,i+1, 	 , Qi,m) form a triangular set in k[Zi, Xi+1,	 , Xm],
such that deg (Qi,j ,Xj)=deg (Tj ,Xj) for i+16 j6m. For i6m−1 and i6 j6m,
we will write

Ri,j=k[Zi, Xi+1,	 , Xj]/(Qi, Qi,i+1,	 , Qi,j).

Then, still acting coefficientwise in Xi+1,	 ,Xj, ϕi extends to an isomorphism Φi,j:
RT ,j→Ri,j.

Two operations will be needed to convert between the various induced repre-
sentations: lift-up and push-down [DFS09, PS11]. For i6m− 2 and i+16 j 6m,
we call lift-up the change of basis up

i,j
7 Φi+1,j ◦Φi,j

−1. This is thus an isomorphism
Ri,j→Ri+1,j, with

Ri,j = k[Zi,Xi+1,	 , Xj]/(Qi, Qi,i+1,	 , Qi,j),

Ri+1,j = k[Zi+1, Xi+2,	 , Xj]/(Qi+1, Qi+1,i+2,	 , Qi+1,j).

In particular, with j= i+1, we write up
i
instead of up

i,i+1
; thus, it is the bivariate-

to-univariate conversion given by

up
i
:

Ri,i+1=k[Zi, Xi+1]/(Qi, Qi,i+1)
↓

Ri+1,i+1=k[Zi+1]/(Qi+1).

Conversely, we call push-down the inverse change of basis; as above, for j= i+1, we
write downi=downi,i+1. The operations upi and downi are crucial, since all upi,j (resp.

downi,j), for j> i+2, are obtained by applying up
i
(resp. downi) coefficientwise. We

do not discuss here how to implement them in general (see [PS11]); we will give a
better solution in the case of divided differences below. For the moment, we simply
record the following straightforward result.

Lemma 7.6. For i6m− 2, suppose that one can apply up
i
(resp. downi) using ui

(resp. vi) operations in k. Then, one can apply up
i,m

using uiµi+1
′ operations in k

(resp. one can apply downi,m using viµi+1
′ operations in k).

7.4 Resultant techniques 155

Finally, we define Up
m
= up

m−2,m
◦
 ◦ up

1,m
and Downm=Up

m
−1 so that we have

Rm−1,m=k[Zm−1, Zm]/(Qm−1, Qm−1,m)
Downm↓ ↑Upm

RT =k[X1,	 ,Xm]/(T1,	 , Tm).

We could want to go all the way down to univariate polynomials instead of bivariate,
but it would not be useful: the algorithm below uses bivariate polynomials. In terms
of complexity, the following is a direct consequence of Lemma 7.6.

Lemma 7.7. For i6m− 2, suppose that one can apply up
i
(resp. downi) using ui

(resp. vi) operations in k. Then one can apply Up
m

(resp. Downm) in respective
times

∑

i=1

m−2

uiµi+1
′ and

∑

i=1

m−2

viµi+1
′ .

Now we explain how to compute G 7 X P ,RT
∈ k[Y] for any P in RT . Let

k′7 k[Y]; then, T is also a triangular set in k′[X1,	 ,Xm], and we define, for i6m,

RT ,i
′ 7 k′[X1,	 ,Xi]/(T1,	 , Ti) =RT ,i[Y].

As explained in the preamble of this section, we start by defining Gm7 Y − P ∈
RT ,m

′ . For i=m − 1, 	 , 0, suppose that we know Gi+1 ∈RT ,i+1
′ . Seeing RT ,i+1

′ as
RT ,i+1

′ =RT ,i
′ [Xi+1]/(Ti+1), we define

Gi7 ResXi+1
(Ti+1, Gi+1)∈RT ,i

′ .

Standard properties of resultants (see e.g. [Bou73, § 12.2]) show that G0 = G. By
induction, we prove that deg (Gi, Y)= µi

′; in particular, deg (G0, Y)= µ, as it should
be.

We are going to compute Gm−1, 	 , G0 assuming that we know the univariate
representations P1, 	 , Pm−1, and use univariate arithmetic as much as possible.
For 16 i6m− 1 and i6 j6m, Ri,j

′ is well defined and isomorphic to RT ,j
′ because

Ri,j
′ =Ri,j[Y] and RT ,j

′ =RT ,j[Y]. Besides, lift-up and push-down are still defined;
they are written respectively up

i
′:Ri,i+1

′ →Ri+1,i+1
′ and downi

′.

Lemma 7.8. For i 6 m − 2, suppose that one can apply up
i
(resp. downi) using

ui (resp. vi) operations in k. Then, for F in Ri,i+1
′ , with d7 deg (F , Y), we can

compute up
i
′(F) ∈ Ri+1,i+1

′ using O(d ui) operations in k. For F in Ri+1,i+1
′ , with

d7 deg (F , Y), we can compute downi
′(F)∈Ri,i+1

′ using O(d vi) operations in k.

This leads to our algorithm for characteristic polynomials. For convenience, we
let R0,17 R1, and we let down0

′ be the identity map. For the moment, we assume
that all polynomials Qi,i+1 needed below are already known.

156 Algorithms for the universal decomposition algebra

Algorithm CharResultant

Input: P in RT .
Output: X P ,RT

.

1. P ′7 Up
m
(P) P ′∈Rm−1,m

2. Gm7 Y −P ′ Gm
′ ∈Rm−1,m

′

3. for i=m− 1,	 , 1 do

a. Gi
′7 ResXi+1

(Qi,i+1, Gi+1)Gi
′∈Ri,i

′

b. Gi7 downi−1
′ (Gi

′) Gi∈Ri−1,i
′

4. return G0=ResX1
(G1, Q1). G0∈R ′

To analyze this algorithm, we remark that over any ring R, resultants of polynomials
of degree d in R[X] can be computed in O(d(ω+1)/2) ring operations, provided one
of these polynomials is monic, and 1, 	 , d are units in R. Indeed, the resultant
ResX(A,B), with A monic of degree d and deg (B,X)<d is the constant term of the
characteristic polynomial of B modulo A. This whole polynomial can be computed
in time O(d(ω+1)/2) by an algorithm of Shoup [Sho94] which performs no zero-test
and only divisions by 1,	 , d.

Proposition 7.9. Suppose that one can apply up
i
(resp. downi) using ui (resp.

vi) operations in k, and that k has characteristic either zero, or at least µm. Then
Algorithm CharResultant computes X P ,RT

in time

O
(

∑

i=1

m−2

(ui+ vi) µi+1
′ +

∑

i=0

m−1

di+1
(ω+1)/2

M(µm)

)

.

Proof. We have seen that Step 1 takes time
∑

i=1

m−2
uiµi+1

′ . For i=m− 1,	 , 1, Gi
′

has degree µi
′ in Y , so Step 3.b takes time vi−1 µi

′ by Lemma 7.8.
In Step 3.a, we compute Gi by evaluation / interpolation in the variable Y , using

evaluation points in geometric progression [BS05]; such points exist by assumption
on the characteristic of k. Both Gi+1 and Qi,i+1 have degree at most di+1 in Xi+1,
and deg (Gi

′, Y) = µi
′. Thus, the cost is O(di+1 M(µi

′)) operations in Ri,i for all
evaluations / interpolations. Since the evaluation points are in k, evaluation and
interpolation are k-linear operations, so each of them uses µi operations in k.

The cost for all individual resultants is O(µi
′ di+1

(ω+1)/2) ring operations in Ri,i,
each of which takes O(M(µi)) operations in k. The conclusion follows using the
inequalities µiM(µi

′)6M(µm) and M(µi) µi
′6M(µm). �

7.4.2 The case of divided differences

We now apply the former results to the triangular set of divided differences. Fix
m ∈ N such that m 6 n, and take T = (C1, 	 , Cm) in k[X1, 	 , Xm]. Note that
di7 deg (Ci, Xi) is equal to n+ 1− i6 n, and that RT ,i becomes Ai for 16 i6m.
We also have µi= δi and µi

′= δm/δi.

7.4 Resultant techniques 157

We are going to study lift-up and push-down for divided differences, with the
objective to give estimates on the quantities ui and vi defined above. Thus, we start
from univariate representations P1,	 ,Pm−1 for A1,	 ,Am−1; for the moment, they
are part of the input.

We impose a further restriction on P1,	 ,Pm−1 , assuming that for all i<m−1,
Λi+1 = Λi + λi+1 Xi+1 for some λi+1 in k. When this is the case, we call P1, 	 ,

Pm−1 compatible . Then, we have Λi=X1+ λ2X2+
 + λiXi, since by assumption
Λ1 =X1. Thus, compatible univariate representations are associated to a (m − 2)-
uple (λ2,	 , λm−1)∈km−2, with the condition that every X1+λ2X2+
 +λiXi is a
primitive element of Ai for all i6m−1. Under this condition, we now study the cost
of lift-up and push-down. Indeed, in this case, we can deduce the explicit form of up

i
:

up
i
:

k[Zi,Xi+1]/(Qi, Qi,i+1) � k[Zi+1]/(Qi+1)
Zi � Zi+1−λi+1Si+1,i+1

Xi+1 � Si+1,i+1

Zi+λi+1Xi+1 � Zi+1.

The key for the following algorithms is then the remark that f(Xi+1)=0 in Ai+1; we
will exploit the fact that the polynomial f is a small degree, univariate polynomial.
To analyze its cost, we will use the following bounds: for ℓ > 1, consider the sum
S(m,n, ℓ)7 ∑

16i6m
iℓM(δi). Then we claim that the following holds:

S(m,n, ℓ)6 exp (1)mℓM(δm) =O(mℓM(δm)).

Indeed,the super-linearity of the function M implies

S(m,n, ℓ)

M(δm)
6
∑

16i6m

iℓ
δi
δm

6mℓ
∑

16i6m

δi
δm

6
∑

i∈N

1

n!
.

Proposition 7.10. Suppose that P1, 	 , Pm−1 are known and compatible. If the
characteristic of k is either zero or at least δm−1, then for 16 i6m − 2, up

i
and

downi can be computed in time ui=O(M(n)M(δi+1)) and vi=O(M(n)M(δi+1)).

Proof. First, we study the following simplified problem: given λ∈k, some polyno-
mials A∈k[Z], B ∈k[Z,X] monic in X, and W ,S in k[Z], compute the mapping

up:

k[Z,X]/(A,B) � k[Z]/(W)
Z � Z −λS

X � S

Z + λX � Z,

and its inverse down, assuming up is well-defined and invertible. We write a7
deg (A) and b7 deg (B,X), so that deg (W) = a b. We also assume that f(X) = 0
in k[Z, X]/(A, B), for some monic polynomial f ∈ k[X] of degree n > b. Finally,
the characteristic of k is supposed to be either 0 or at least a b. Then, we show that
both directions take time O(M(n)M(a b)).

158 Algorithms for the universal decomposition algebra

Computing up. Given H ∈ k[Z, X]/(A, B), we first show how to compute G7
up(H). Let H⋆ be the canonical preimage of H in k[Z,X], so that G=H⋆(Z −λ S,

S)modW . Then, we obtain G as follows:

1. Compute H⋆ (Z − λ X, X) modulo f using the shift algorithm of [ASU75]
(which is possible under our assumption on the characteristic of k) with
coefficients in k[X]/(f)

2. Evaluate previous result at X =S using Horner scheme.

Step 1 takes time O(M(n)M(a)); the next step uses n multiplications modulo W ,
for a total of O(nM(a b)).

Computing down. Conversely, for G ∈ k[Z]/(W), we show how to compute H 7
down(G). Let G⋆ be the canonical preimage of G in k[Z], so that H = G(Z +
λX)mod (A,B). We obtain H as follows:

1. Compute G (Z+λX) modulo f , using again the shift algorithm of [ASU75]
with coefficients in k[X]/(f).

2. Reduce previous result modulo (A,B).

Step 1 takes time O(M(n)M(a b)), then the reduction takes time O(M(n)M(a b)) by
fast Euclidean division.

Conclusion. By the former discussion, given A = Qi, B = Qi,i+1 and W = Qi+1,
up

i
and downi can be computed in time ui=O(M(n)M(δi+1)).

First, though, we have to compute Qi,i+1. Supposing that Qi−1,i is known, we
can compute Qi,i+1 by adjusting Formula (7.2), writing

Qi,i+1= up
i−1,i+1

(

Qi−1,i(Zi−1,Xi+1)−Qi−1,i(Zi−1, Xi)

Xi+1−Xi

)

.

The quotient can be computed in O(δi−1 di+1
2). Next we apply upi-1 coefficientwise

on a polynomial of degree di+1 in Zi+1 — this is possible, since we know Qi−1,i, so
this costs O(M(n)M(δi) di+1). To summarize, we can compute Qi,i+1 from Qi−1,i in
time O(M(n)M(δi+1)). By the discussion on the function S(m,n, ℓ), with here ℓ=0,
the total cost from Q0,1=Q1 to Qi,i+1 is O(M(n)M(δi+1)). �

Corollary 7.11. Suppose that P1, 	 , Pm−1 are known and compatible. If the
characteristic of k is either 0 or at least δm, then for any P ∈Am, we can compute
X P ,Am

in time O(n(ω+1)/2mM(δm)).

If P = Λ is a primitive linear form in Am, compatible with the previous ones,
we can compute the corresponding parametrizations in the same expected amount of
time.

Proof. The first part is obvious, as the dominant term from Proposition 7.9 comes
from Step 3.a.

7.4 Resultant techniques 159

When P =Λ is primitive, we will write as usual Qm instead of X P ,Am
. Using the

discussion in Subsection 7.2.2, we can compute Qm and the last parametrization
Sm,m ofPm in the same cost. The other parametrizations are obtained fromPm−1by
Sm,j = up

m−1
(Sm−1,j) for j <m. This is done using Proposition 7.10, since all that

is required for algorithm up
m−1

are Qm and Sm,m. So all other parametrizations cost
O(mM(n)M(δm)), which is not dominant. �

Proof. (of Theorem 7.1) We will give here the complexity estimate for computing
P1, 	 , Pm – once they are known, computing the characteristic polynomial of an
arbitrary P is done using the corollary above.

We need to pick Λ 7 1 + λ2 X2 +
 + λm Xm ∈ Am primitive such that its
restrictions Λi 7 1 + λ2 X2 +
 + λi Xi to fewer variables are still primitive. As
per the assumption on the characteristic of k, we pick the coefficients λ2,	 , λm in
{1, 	 , 2 δm

2 }. By the remark in Subsection 7.2.2, for 26 i6m, Λi is not primitive
for Ai with probability at most δi2/4 δm2 . Because of the inequality

∑

26i6m

δi
2

δm
2 6

∑

i∈N

1

(n!)2
< 2.5,

the probability of all Λi being primitive is at least 0.375. Thus, on average, we have
to pick a finite number of Λ.

Our algorithm first picks Λ as explained above. We assumed in Subsection 7.4.2
that the representation P1 ought to be associated to Λ1=X1, so that P1= (f(Z1),
Z1). Assume now that P1,	 ,Pi−1 are known. Using the first point in the previous
corollary, we compute X Λi,Ai

and we test whether this polynomial is squarefree. If
not, we start all over from a new Λ. Otherwise, we continue with the second point
in the corollary, to deduce Pi.

The dominant cost comes from applying the corollary. Since we expect to
pick finitely many Λ, the expected cost is O(

∑

i6m
n(ω+1)/2 i M(δi)). This is

O(n(ω+1)/2 m M(δm)), in view of our discussion on the function S(m, n, ℓ), with
here ℓ=1. This concludes the proof of our main theorem. �

Improvements given in [Leh97, RV99] to take into account predictable multiplic-
ities in the successive resultants can be applied here as well; however, it is unclear
to us how they would impact the complexity analysis.

Our last remark concerns examples from the previous section. We mentioned
there some issues with the application of Proposition 7.4 (and its multiplicative
version) to the polynomial X1 X2 X3 + X4, as we could not apply that propo-
sition recursively to the polynomial (1 + X1 X2) × X2. The result above shows
that we can compute the characteristic polynomial of (1 + X1 X2) × X2 in time
O(n(ω+1)/2M(δ2)) =O(M(δ4)). As a result, we are thus able to complete the whole
computation for P in quasi-linear timeO(M(δ4)) as well. The same holds forX1X2+
X3X4.

160 Algorithms for the universal decomposition algebra

7.5 Implementation and timings

Our algorithms were implemented in Magma 2.17.1; we report here on some exper-
iments dedicated to computations in the case m= n, that is, in An. Timings were
measured on one core of a Intel Xeon at 2.27GHz with 74Gb RAM.

When m=n, although the complexity of CharNS is not quasi-linear (due to a 2n

overhead), it usually does better than algorithm CharResultant. A first reason is that
for the former, the constant in the big-O is mild (we do only a few multiplications at
each step). Besides, some other ideas are used in our code. Different recursive calls
have often computations in common, so we use memoization. We also make use of
symmetries: if Λ has a large stabilizer, as explained in Section 7.2, we can reduce
the number of Newton sums we need to compute its characteristic polynomial. We
usually attempt to pick favorable Λ: a good strategy is to take Λ=

∑

16i6n−1
i Xn−i,

for which the linear forms over An−2 (which are the most expensive) have repeated
coefficients.

In the following table, we take k = Fp, with p a 28 bit prime; we give timings
to compute a univariate representation of An. We are not aware of other available
implementations for this problem in Magma, so we compared our algorithm with
the Magma Gröbner basis functions. Our algorithm is tailored for computations
in An, so it is at an advantage compared to generalist functions; on the other hand,
Magma’s Gröbner basis functions use highly optimized C code. Despite an extra
2n factor in the cost analysis, algorithm CharNS performs very well for this compu-
tation.

n 4 5 6 7 8
Time Gröbner 0.001 0.03 5.8 1500 >6h
(sec) CharNS 0.005 0.05 0.52 6.8 100

Table 7.1. Timings of computation of univariate representations

Next, we discuss the cost of basic arithmetic in An, comparing in particular
univariate operations to arithmetic modulo the Cauchy modules. Several Magma
constructions exist for this purpose; we report on the most efficient solutions we
found. As a conclusion, for an operation such as inversion, even with the overhead
of lift-up and push-down, it pays off to convert to a univariate representation.

n 5 6 7 8
Up 0.008 0.1 2 40

Down 0.01 0.1 1.4 25
Time Univ. × 40µs 0.0005 0.006 0.06
(sec) Univ. ÷ 0.002 0.028 0.29 4.5

Magma × 0.003 0.085 4 170
Magma ÷ 0.1 28 >30min >6h

Table 7.2. Timings of arithmetic in An

7.5 Implementation and timings 161

Finally, we focus computing X P ,An
, for a generic polynomial P . The best alter-

native we could find comes from [Sho94] and is written “Shoup” in the table. This
algorithm uses univariate arithmetic; for it to be applicable, we must already know a
univariate representation of An, and the input must be written on the corresponding
univariate basis. The complexity of “Shoup” is higher than that of CharResultant,
but the algorithm is simpler and relies on fast built-in Magma code; as a result, it
outperforms CharResultant. If the input P is a linear form in X1,	 , Xn, CharNS is
actually faster than both, as showed in the first table.

n 4 5 6 7 8
Time Shoup 0.001 0.01 0.23 6.8 200
(sec) CharResultant 0.03 0.24 2.6 45 1100

Table 7.3. Timings of computation of X P ,An
for generic polynomials P

162 Algorithms for the universal decomposition algebra

Annexe A

Lifting of fundamental invariants

This short appendix is dedicated to prove a useful result in invariant theory,
that we obtained while of writing Chapter 7: it shows that so-called fundamental
invariants of finite group actions always specialize well modulo all primes, except a
few exceptions known in advance. This is a rare phenomenon in computer algebra,
since as a rule of thumb, for non-linear systems, the primes of “bad reduction” cannot
be determined in any straightforward manner.

This result has practical implications. For example, in order to compute rational
primary invariants, it is sufficient to compute primary invariants modulo p. Then
the lifting of primary invariants to rational coefficients is trivial.

Private communications with H. E. A. Campbell,D. Wehlau andM. Roth
revealed that this result was known to them, but as far as we know, it has not
appeared in print before. We chose to include it in this thesis, since it could find
practical applications — to the best of our knowledge, software such as Magma
[BCP97] do not make use of this kind of result in their algorithms for computing
invariant rings.

This is a joint work with É. Schost. We thank N. Thiéry for providing a
simplification of our original proof.

A.1 Basic definitions

Let n ∈N and let k be a field; we write k[X]7 k[X1,	 , Xn]. We consider a finite
group G and a faithful representation (that is, an injective group morphism)

ρ:G→GLn(k).

The group G induces a right-action on k[X] given by

∀g ∈G, ∀P ∈ k[X], P g(X1,	 , Xn)=P (g(X1,	 ,Xn)).

We denote by k[X]G the k-algebra of invariant polynomials; this algebra is finitely
generated and graded by total degree. The Reynolds operator

RG(P)=
1

|G|
∑

g∈G

P g∈ k[X]G

is a k[X]G-module homomorphism, and induces a projection k[X]→k[X]G (see e.g.
[Stu93, Proposition 2.1.2]).

163

Some algebraically independent homogeneous invariants Π1, 	 , Πn ∈ k[X]G are
called primary invariants if k[X]G is a finitely generated k[Π1,	 ,Πn]-module. If the
characteristic of k does not divide |G|, then k[X]G is a Cohen-Macaulay ring (see
e.g.[DK02, Theorem 3.4.1]); in that case, if Π1, 	 ,Πn are primary invariants, then
k[X]G is actually a free k[Π1,	 ,Πn]-module.

The elements S1, 	 , Sr of any k[Π1, 	 , Πn]-module basis of k[X]G are called
secondary invariants , and the following direct sum is then called Hironaka decom-
position:

k[X]G=
⊕

j=1

r

k[Π1,	 ,Πn]Sj.

We call fundamental invariants the union of primary and secondary invariants.

A.2 Main result

Let us now describe the context of our main theorem. We consider a local domain
A, its fraction field K = Frac A and a maximal ideal m in A, with residual field
k=A/m. We will suppose that the characteristic of k does not divide |G|. We fix
a faithful representation ρ:G� GLn(K).

We denote by Ḡ ⊂ GLn(k) the group obtained by reducing all elements of G

modulo m (where we consider G as a matrix group), assuming that this reduction
makes sense; the group morphism G→ Ḡ is then onto. The group morphism G→G

is surjective. Let H be its kernel, so that G ≃G/H . We fix a set of representatives
S⊂G of each right-class over H.

Lemma A.1. The mapping ϕ: A[X]G → k[X]Ḡ of reduction modulo m is a well-
defined, surjective ring morphism.

Proof. We first prove that the image of an invariant polynomial is invariant. For
P ∈A[X], we have

ϕ(RG(P)) = RG(P) =
1

|G|
∑

g∈G

P g

=
1

|G|
∑

g∈G

(P g) =
1

|G|
∑

s∈S

∑

h∈H

P̄ s̄h̄

=
|H |
|G|

∑

s∈S

P̄ s̄ =
1

|Ḡ |
∑

g ′∈Ḡ

P̄ g ′

= RḠ(P̄).

Thus, if P ∈A[X]G, we have ϕ(P) = ϕ(RG(P)) =RḠ(ϕ(P)) and so ϕ(P)∈k[X]Ḡ.
To prove surjectivity, let P ∈A[X] be such that P̄ ∈k[X]Ḡ. Then, we have

ϕ(RG(P))=RḠ(P̄) = P̄ ,

and surjectivity follows, since RG(P)∈A[X]G. �

164 Lifting of fundamental invariants

We can then state our main result.

Theorem A.2. Let Π1,	 ,Πn and S1̄,	 , Sr̄ be respectively primary and secondary
invariants of k[X]Ḡ. Using Lemma A.1, we can assume that Π1,	 ,Πn, S1,	 , Sr∈
A[X]G. Then, these invariants are respectively primary and secondary invariants for
K[X]G.

Proof. Let d∈N. We denote by (K[X]G)d the homogeneous component of degree
d of K[X]G. Since Π1,	 ,Πn and S1̄,	 , Sr̄ are fundamental invariants of k[X]Ḡ, we
know from the Hironaka decomposition that the family of polynomials

Fk7 {

Π1
i1
 Πn

inSj̄

∣

∣

∣

∣

∣

deg (Sj̄) +
∑

l=1

n

il deg (Πl̄) = d

}

form a k-vector basis of
(

k[X]Ḡ
)

d
. We aim at proving it for Π1, 	 , Πn, S1, 	 , Sr.

That is we prove that the family

FK7 {

Π1
i1
 Πn

inSj

∣

∣

∣

∣

∣

deg (Sj)+
∑

l=1

n

il deg (Πl)= d

}

is a K-vector basis of the homogeneous component (K[X]G)d. Then the Hironaka
decomposition follows straightforwardly and so does the fact that Π1,	 ,Πn, S1,	 ,

Sr are fundamental invariants.
We start by proving that we can take a common vector basis of k[X]d

Ḡ andK[X]d
G.

By Lemma A.1, the projection ϕ: A[X]G→ k[X]Ḡ is surjective. So let B = {b1, 	 ,

br} be such that ϕ(B)7 (ϕ(b1), 	 , ϕ(br)) is a k-vector space basis of k[X]d
Ḡ. By

Nakayama’s Lemma (see e.g. [AM69, Proposition 2.8]), we know that B generates
A[X]d

G as an A-module. For any P ∈K[X]G, there exists a∈A such that a P ∈A[X]G.
So we can deduce that B generates the K-vector space K[X]d

G.
We will prove in Lemma A.3 below that (k[X]Ḡ)d and K[X]d

G have the same
dimension, so B is a K-vector basis of K[X]d

G.
We denote byM the matrix at coefficient in A whose columns are the coordinates

of the family FK in the basis B. Since Fk is a basis of (k[X]Ḡ)d, we know that the
reduction of M modulo m is invertible. So the determinant of M is non-zero modulo
m, and consequently it is non-zero in K. Since M is invertible, FK is a basis of
K[X]d

G, which concludes the proof. �

Recall that the Hilbert series H(A, t) of a graded k-algebra A =
⊕

n∈N
An is

given by

H(A, t)=
∑

n∈N

dimk (An) t
n.

The last missing ingredient is the following lemma about the Hilbert series associated
to k[X]G and k[X]Ḡ.

Lemma A.3. The following equality holds:

H(K[X]G, t)=H(k[X]Ḡ, t).

A.2 Main result 165

Proof. Note first that the eigenvalues of the elements of G are all |G|th-roots
of unity. Let us then fix a group isomorphism between the |G|th-roots of unity
is a suitable extension of k and those in C. For g ∈ Ḡ , we write det0 (1 − t g) =
(1− t λ1)
 (1− t λn)∈C[t], where λ1,	 , λn are the images of its eigenvalues in C

(this is independent of the isomorphism we chose).
Then, Molien’s formula (see e.g. [DK02, Theorem 3.2.2]) allows us to compute

H(k[X]G, t) and H(k[X]Ḡ, t) as follows:

H(k[X]G, t) =
1

|G|
∑

g∈G

1

det (1− t g)
and

H(k[X]Ḡ, t)=
1

|Ḡ |
∑

g∈Ḡ

1

det0 (1− t g)
.

Now, by definition of det0 , for all g ∈G, we have

det0 (1− t g) =det (1− t g)= det0 (1− t ḡ).

Then, we get

H(K[X]G, t) =
1

|G|
∑

g∈G

1

det0 (1− t g)
=

1

|G|
∑

g∈G

1

det0 (1− t ḡ)

=
|H |
|G|

∑

s∈S

1

det0 (1− t s̄)
=

1

|Ḡ |
∑

g ′∈Ḡ

1

det0 (1− t g ′)

= H(k[X]Ḡ, t),

so the lemma is proved. �

For applications, the simplest case is when the matrices of G have integer, or
possibly rational entries. Let d be the lcm of all denominators arising in the entries
of the elements in G and let p be a prime that does not divide d|G|. We let A be
the local ring Z(p), K=Q and m= (p). Then, to compute primary and secondary
invariants for Q[X]G, it is enough to compute such invariants modulo p, for Fp[X]Ḡ.

More generally, one can consider the case of number fields. Consider a faithful
representation ρ:G� GLn(Q(θ)), where θ is algebraic over Q.

Let O be the ring of integers of Q(θ); then, each c ∈ Q(θ) can be written as
c= p/q, with p∈O and q∈N. We let d be the lcm of all denominators arising in this
fashion for the elements of G, and we take p a prime that does not divide d, nor |G|.
The ideal pO ⊂O may not be prime, so we choose a prime (hence maximal) ideal
P that contains it; then, all coefficients of the elements of G are in the local ring OP.

We can then apply Theorem A.2 to the localization A=OP,K=Q(θ),k=Fpm=
OP/P. To obtain primary and secondary invariants for Q(θ)[X]G, it is then enough
to compute them modulo p, for Fpm[X]Ḡ.

Using slightly more advanced results from (see e.g. [Ser78, Chapter 2, Theorem
6]), one can prove that the number field case includes most other cases: if G is a
finite group and k is a field of characteristic zero, then any representation of G on
k is isomorphic (over k) to a representation on Q̄∩ k.

166 Lifting of fundamental invariants

Annexe B
Introduction
(translated into English)

Nowadays, the increasing performance of computers is used, among other things,
to refine the accuracy of known solutions to problems or to tackle challenges with
larger inputs. However, it is common in Computer Science that the running time of
an algorithm increases many times faster than the desired precision for the solutions.
An efficient strategy to remedy this fact is to cut one large problem into many small
parts, solve them and reconstruct the solution of the original problem.

In the context of Computer Algebra, the Chinese remainder theorem gives such
a tool. Split a problem into many identical problems modulo coprime integers n1,	 ,

nr. Then the Chinese remainder theorem allows the reconstruction of the solution of
the main problem from the solutions of the split problems. This scheme of computa-
tion, when applicable, allows one to compute in time proportional to the precision,
plus a multi-modular reconstruction.

Multi-modular techniques can be used in association to p-adic lifting. Take one
of the coprime elements, e.g. n1, of the form n1 = pℓ. Then reduce the size of the
problem by solving it only modulo p. The reconstruction of the solution modulo pℓ

from the one modulo p is called p-adic lifting . Hence, to solve a problem modulo a
power pℓ, we have to solve one small problem and then apply a p-adic lifting. As
the lifting may be easier to compute than to solve the whole problem, we may spare
a lot of time by using the p-adic lifting technique.

This thesis is mainly dedicated to the fast computation of p-adic lifting by a
novel type of algorithms, the relaxed algorithms.

∗ ∗ ∗

My work is in the line of a series of papers dealing with relaxed algorithms initi-
ated by van der Hoeven [Hoe97, Hoe02, Hoe03, Hoe07, Hoe09] for powers series and
adapted by Berthomieu, Lecerf and van der Hoeven [BHL11] to the case of general
p-adic rings. Roughly speaking, a p-adic a is an infinite sequence of coefficients
(ai)i∈N that we write a7 ∑

i∈N
ai p

i.
Relaxed algorithms are a special case of on-line algorithms. On-line algorithms

were introduced by Hennie [Hen66] in the Turing model. An on-line algorithm with
p-adic inputs is an algorithm that reads the p-adic coefficients of the input one
by one, and outputs the nth coefficient of the output before reading the (n+ 1)th
coefficient of the input.

For instance, the multiplication of two p-adics by an on-line algorithm takes, at
first glance, quadratic time in the precision. But a quasi-optimal on-line multiplica-
tion algorithm exists and can be found in [FS74, Sch97, Hoe97].

167

The major advantage of on-line algorithms is that they enable the lifting of
recursive p-adics. A recursive p-adic y is a p-adic that satisfies y = Φ(y) for an
operator Φ such that the nth coefficient of the p-adic Φ(y) does not depend on the
coefficients of order greater or equal to n of y. As a consequence, y can be computed
recursively from its first coefficient y0 and Φ.

One can find in [Wat89, Hoe02] an algorithm that computes y from its fixed
point equation y = Φ(y). A key aspect of this algorithm is that its cost is the
one of evaluating Φ by an on-line algorithm. Using the fast on-line multiplication
algorithm of [Hoe97], it leads to an efficient framework for computing with recursive
p-adics. As van der Hoeven was apparently not aware of previous work on on-line
algorithms, he called his algorithm “relaxed multiplication algorithm” and the sub-
sequent algorithms for recursive p-adics were called relaxed algorithms. Therefore
we can retrospectively define a relaxed algorithm to be a fast on-line algorithm.
Relaxed algorithms are also related to lazy algorithms, which can be seen as on-line
algorithms that try to minimize the cost at each step. To sum up, relaxed and lazy
algorithms are two instances of on-line algorithms, with the first minimizing the cost
globally and the second locally. These definitions, and their adaptation to general
p-adic rings [BHL11], will be used for now on.

A main contribution of this thesis is to use relaxed algorithms in the context of
resolution of equations by p-adic lifting. This context is applicable to standard and
important systems of equations: linear, algebraic and differential.

The on-line framework for recursive p-adic lifting has to be compared with the
other general framework for resolution of equations by p-adic lifting. Whenever a p-
adic y is given by an implicit equation f(y) = 0 whose derivative in y is invertible,
the Hensel-Newton operator can be applied to compute y at any precision given its
first coefficient y0. This operator was introduced by Newton in [New36] and adapted
to the case of p-adic integers by Hensel in [Hen18]. There exist situations where the
Newton operator do not apply in a straightforward manner. However, the underlying
principle can often be adapted (see Chapters 4, 6).

As we will see on many occasions throughout this thesis, on-line lifting algorithms
perform, asymptotically in the precision, less on-line multiplications than off-line
algorithms do off-line multiplications. For example, on-line algorithms reduce the
cost due to inverting the Jacobian matrix in Newton iteration. In return, on-line
multiplication costs more than off-line multiplication. So we will implement most of
our algorithms and compare them in practice.

∗ ∗ ∗

This thesis explores the relaxed p-adic lifting of the solutions of many different
types of systems. Part I introduces relaxed algorithms and their application to recur-
sive p-adics. In Chapter 1, after giving the definition of on-line algorithms, we recall
several fast on-line, or relaxed, multiplication algorithms for p-adics and introduce
a new one. Then in Chapter 2, we introduce a framework in which recursive p-adics
can be computed by on-line algorithms. We will use this framework in Parts II and
III of this thesis to give new on-line p-adic lifting algorithms for solutions of different
types of systems.

168 Introduction (translated into English)

Part II is focused on linear systems. We start in Chapter 3 by linear algebra over
p-adics and solve linear systems taking into consideration the representation of the
matrices. Next, we provide algorithms computing power series solutions of a large
class of differential or (q)-differential systems in Chapter 4.

In increasing order of generality, Part III is devoted to the p-adic lifting of
solutions of algebraic systems. Chapter 5 gives an on-line algorithm for the p-adic
lifting of regular roots of any algebraic system. Chapter 6 deals with the lifting of
univariate representations and triangular sets by on-line algorithms.

Part IV is dedicated to the special case of the ideal of symmetric relations. In
this setting, before the lifting step, the computation of a univariate representation
at precision 0 was already an issue. We give in Chapter 7 a quasi-optimal algorithm
to compute this univariate representation, and use it to obtain efficient algorithms
to compute in the corresponding quotient algebra.

In Appendix A, we prove that the lifting of any so-called fundamental invariants
modulo p to rational coefficients is trivial.

Contributions To summarize, the contributions of this thesis are:

1. A new relaxed multiplication algorithm of p-adics;

2. A thorough complexity analysis of several relaxed multiplication algorithms;

3. An accurate framework to compute recursive p-adics by on-line algorithms;

4. A relaxed linear system solver over p-adics;

5. Two new lifting algorithms of power series solutions of singular (q)-differential
equations: one relaxed algorithm, and one off-line which adapts the Newton
iteration;

6. A new relaxed lifting algorithm for p-adic regular root of algebraic systems;

7. More generally, a new relaxed lifting algorithm for triangular sets and uni-
variate representations;

8. Next, we give the first quasi-linear algorithms to compute a univariate rep-
resentation of the universal decomposition algebra on finite fields and to
compute characteristic polynomials of its elements;

9. Finally, we show that in order to compute rational fundamental invariants,
it is sufficient to compute fundamental invariants modulo p.

Publications The contributions 3, 4 and 6 were published in the proceedings of
ISSAC’12 with J. Berthomieu [BL12]. Their presentation in this thesis contains
additional details, proofs and examples. Moreover, the application of the relaxed
linear algebra solver of item 4 over p-adics for structured matrices is a joint work
in progress with É. Schost. The contributions of item 5 is a joint work with A.
Bostan, M. Chowdhurry, B. Salvy and É. Schost that was published in the
proceedings of ISSAC’12 [BCL+12]. Finally, the contributions of item 8 is a joint
work with É. Schost, published in the proceedings of ISSAC’12 [LS12].

Awards I received the “Best Student Paper Award” for the paper [LS12] at the
conference ISSAC’12 . I also received the best poster award from the “Fachgruppe
Computer Algebra” for the poster [LMS12] in collaboration with E. Mehrabi and
É. Schost.

Introduction (translated into English) 169

B.1 Relaxed algorithms for multiplication

The section introduces the notion of on-line and relaxed algorithms on general p-
adic rings. Let R be a commutative ring with unit. Given a proper principal ideal
(p) with p∈R, we write Rp for the completion of the ring R for the p-adic valuation.
An element a∈Rp is called a p-adic. To get a unique writing of elements in Rp, let
us fix a subset M of R such that the projection π:M→R/(p) is a bijection. Then,
any element a∈Rp can be uniquely written a=

∑

i∈N
ai p

i with coefficients ai∈M .

Two classical examples are the formal power series ring k[[X]], which is the
completion of the ring of polynomials k[X] for the ideal (X) and the ring of p-adic
integers Zp, which is the completion of the ring of integers Z for the ideal (p), with
p a prime number. For R=Z, we take M = {−(p− 1)/2,	 , (p− 1)/2} if p� 2 and
M = {0, 1} for p=2. For R=k[X], we take M =k.

We can now give the definition of on-line algorithm on p-adics introduced by
[Hen66].

Definition B.1. ([Hen66, FS74]) Let us consider a Turing machine which com-
putes a function f on sequences, where f : Σ∗ × Σ∗ → ∆∗, Σ and ∆ are sets.
The machine is said to compute f on-line if for all input sequences a = a0a1	 an,
b= b0b1	 bn and corresponding outputs f(a, b) = c0c1	 cn , with ai, bj ∈Σ, ck ∈∆, it
produces ck before reading either aj or bj for 06 k < j6n.

The machine computes f half-line (with respect to the first argument) if it pro-
duces ck before reading aj for 06 k < j 6 n. The input a will be referred to as the
on-line argument and b as the off-line argument.

The remaining part of the chapter is devoted to the presentation of fast on-
line algorithms for the multiplication of p-adics. These algorithms are made of
suitable calls to off-line multiplication algorithms on finite precision p-adics. We
start by recalling the state-of-the-art of multiplication algorithms on polynomials
and integers, which correspond respectively to finite precision power series and p-
adic integers. We also give a special focus on the existing algorithms for middle
product and short product.

With these notions at hand, we recall the following existing relaxed multipli-
cation algorithms for p-adics. The first quasi-optimal on-line algorithm for the multi-
plication was presented in [FS74] for integers, then in [Sch97] for real numbers
and finally in [Hoe97] for power series. This latter algorithm was adapted to a semi-
relaxed (or half-line) multiplication algorithm in [FS74, Hoe03]. A first improve-
ment of the semi-relaxed product by a constant factor is presented in [Hoe03].

Our contribution is to present a new relaxed algorithm for the multiplication
using middle and short product (when Rp supports such operations), that improves
by a constant factor the previous ones. Moreover, we give for the first time a thor-
ough analysis of the arithmetic complexity of all these multiplication algorithms.
Finally, we show some timings to confirm the good behavior of relaxed algorithms
using middle product.

170 Introduction (translated into English)

From now on, we use the following notations. For any p-adic a=
∑

i∈N
ai p

i, the
length λ(a) of a is defined by λ(a)7 1+ sup (i∈N |ai� 0) if a� 0 and λ(0)=0. The
cost of multiplying two p-adics of length N by an off-line (resp. an on-line algorithm)
is denoted by I(N) (resp. R(N)) in our complexity model specified in Section 1.1.2.
Next, we denote by M(N) the arithmetic complexity of the multiplication of two
polynomials of length N .

B.2 Recursive p-adics

The study of on-line algorithms is motivated by their efficient implementation of
recursive p-adics. It was first spotted in [Wat89] that the lifting of recursive power
series is well-suited to lazy algorithms. It gave at the time a very convenient frame-
work to compute recursive power series but not yet efficient.

This fact was rediscovered in [Hoe02] for general on-line algorithms. Together
with the fast on-line multiplication algorithm of [Hoe97], it led to an efficient frame-
work for computing with recursive power series.

A recursive p-adic y is a p-adic that satisfies y = Φ(y) for an operator Φ such
that we have the equality between the nth coefficients Φ(y)n=Φ(y+ pn a)n for any
a∈Rp. As a consequence, y is uniquely determined by its first coefficient y0 and Φ.

In this chapter, we recall the method from [Hoe02] which, from an on-line algo-
rithm that evaluates the function Φ, outputs the coefficients of the recursive p-adic
y one by one. However this method does not always work as is.

Our contribution is to raise and solve the problem to find which functions Φ
make the method work. This issue was never mentioned before in the literature.

In order to fix this problem, we introduce the new notion of shifted algorithms .
An integer called the shift is associated to any p-adic input of an algorithm and
measure which coefficients of this input are read when the algorithm produces the
nth coefficient of the output. For example, an algorithm is on-line if and only if its
corresponding shift is non-negative.

Then we define a shifted algorithm to be an algorithm that has a positive shift.
Now we have the tools to state the next fundamental proposition.

Proposition. Let y be a recursive p-adic and Ψ be a shifted algorithm such that
y=Ψ(y). Then, the p-adic y can be computed at precision N in the time necessary
to evaluate Ψ at y at precision N.

Hence the cost to compute a recursive p-adic is the same that the cost of veri-
fying it. This latter proposition is the cornerstone of complexity estimates regarding
recursive p-adics and will be used in Chapters 3, 4, 5 and 6.

B.3 Linear algebra over p-adics

We introduce an algorithm based on the p-recursive framework of Chapter 2, which
can in principle be applied to all representation of matrices (dense, sparse, struc-
tured,). We focus on two important cases, dense and structured matrices, and
show how our algorithm can improve on existing techniques in these cases.

B.3 Linear algebra over p-adics 171

We consider a linear system of the form A=B ·C, where A and B are known,
and C is the unknown. The matrix A belongs to Mr×s(Rp) and B ∈ Mr×r(Rp)
is invertible; we solve the linear system A = B · C for C ∈ Mr×s(Rp). The most
interesting cases are s=1 (which amounts to linear system solving) and s= r, which
contains in particular the problem of inverting B. A major application of p-adic
linear system solving is actually to solve systems over R (that is over e.g. the integers
or the polynomials), by means of lifting techniques.

We denote by d7 max (λ(A), λ(B)) the length of the entries of A and B. Let
N be the precision to which we require C. Thus, we will always be able to suppose
that d6N . The case N = d corresponds to the resolution of p-adic linear systems
proper, whereas solving systems over R often requires to take a precision N ≫ d.
Indeed, in that case and for e.g. power series, we deduce from Cramer’s formulas
that the numerators and denominators of C have length O(r d), so that we take N

of order O(r d) in order to make rational reconstruction possible.
Among the existing algorithms, a first algorithm is due to Dixon [Dix82]; it

finds one p-adic coefficient of the solution C at a time and then updates the matrix
A. On the other side of the spectrum, one finds Newton’s iteration, which doubles
the precision of the solution at each step. Moenck-Carter’s algorithm [MC79] is a
variant of Dixon’s algorithm that works with pd-adics instead of p-adics. Finally,
Storjohann’s high-order lifting algorithm [Sto03] can be seen as a fast version of
Moenck-Carter’s algorithm, well-suited to cases where d≪N .

Our contribution is an algorithm to solve linear systems by means of relaxed
techniques; it is obtained by proving that the entries of the solution C = B−1 · A
are recursive p-adics. In other words, we show that C is a fixed point for a suitable
shifted operator.

Taking for instance s=1, to compute C at precision N , the cost of the resulting
algorithm will (roughly speaking) involve the following:

1. the inversion Γ7 B−1 modulo (p),

2. O(N) matrix-vector products using the inverse Γ, where all entries of the
right-hand side vector have also length 1,

3. O(1) matrix-vector product using B, with a right-hand side vector whose
entries are relaxed p-adics.

We will see that our algorithm is a middle point between Dixon’s and Moenck-
Carter’s algorithms since we do the same cheap initialization modulo (p) as Dixon
(see item 1) and still have the same good asymptotic behavior as Moenck-Carter
(due to item 3).

The next table gives the resulting running time for the case of dense matrices,
with Rp=k[[X]] and s=1 and two practically meaningful values for N , respectively
N = d and N = r d. It appears that for solving up to precision N = d, our algorithm
is the fastest among the ones we compare; for N= r d, Storjohann’s high-order lifting
does best (as it is specially designed for such large precisions). We let ω be such
that we can multiply and invert r× r matrices within O(rω) arithmetic operations
over any field.

172 Introduction (translated into English)

Algorithm N = d N = r d

Dixon Õ(rω+ r2 d2) Õ(r3 d2)

Moenck-Carter Õ(rω d) Õ(r3 d)

Newton iteration Õ(rω d) Õ(rω+1 d)

High-order lifting Õ(rω d) Õ(rω d)

Our algorithm Õ(rω+ r2 d) Õ(r3 d)

Table. Simplified cost of solving A=B ·C for dense matrices over Rp=k[[X]], with s=1

Next, we discuss the situation for structured matrices. In a few words, in a
structured matrix representation, an integer α, called the rank, is associated to any
matrix A ∈ Mr×r(Rp). The two main characteristics of the structured matrix A

are that A can be stored by a compact data structure in space O(α r) and that the
matrix-vector multiplication A · V costs O(αM(r)) for any vector V ∈Mr×1(Rp).
We refer to [Pan01] for a thorough presentation.

The next table recalls previously known results about solving structured linear
systems and shows the running time of our algorithm. Here, d′ denotes the length
of the entries of the compact data structure that stores A and N is still the target
precision. As before, we give simplified results for power series, s=1 and N = d′ or
N = r d′.

Algorithm N = d′ N = r d′

Dixon Õ
(

α2 r+α r d′2
)

Õ
(

α r2 d′2
)

Moenck-Carter Õ(α2 r d′) Õ(α r2 d′)

Newton iteration Õ(α2 r d′) Õ(α2 r2 d′)

Our algorithm Õ(α2 r+α r d′) Õ(α r2 d′)

Table. Simplified cost of solving A=B ·C for structured matrices over k[[X]], with s=1

Our algorithm is the fastest for structured matrices for both cases N = d and
N = r d. Note that Moenck-Carter’s algorithm is equally fast, modulo a constant
factor, in the second case.

Finally, we implement these algorithms and compare timings for dense linear
algebra. Our implementation is available in the C++ library algebramix of
Mathemagix [HLM+02]. As an application, we solve linear systems over the inte-
gers and compare to Linbox and IML. We show that we improve the timings
for small matrices and large integers.

B.4 Power series solutions of (q)-differential equa-
tions

The aim of this chapter is to provide algorithms computing power series solutions
of a large class of differential or q-differential equations or systems. Their number
of arithmetic operations grows linearly with the precision, up to logarithmic terms.

B.4 Power series solutions of (q)-differential equations 173

We focus on the case when this equation is linear, since in many cases lineariza-
tion is possible [BCO+07]. When the order n of the equation is larger than 1, we
use the classical technique of converting it into a first-order equation over vectors,
so we consider equations of the form

xk δ(F)=AF +C, (B.1)

where A is an n × n matrix over the power series ring k[[x]] (k being the field
of coefficients), C and the unknown F are size n vectors over k[[x]] and for the
moment δ denotes the differential operator d/d x. The exponent k in (B.1) is a non-
negative integer that plays a key role for this equation.

By solving such equations, we mean computing a vector F of power series such
that (B.1) holds modulo xN. For this, we need only compute F polynomial of degree
less than N +1 (when k=0) or N (otherwise). Conversely, when (B.1) has a power
series solution, its first N coefficients can be computed by solving (B.1) modulo xN

(when k � 0) or xN−1 (otherwise).
If k=0 and the field k has characteristic 0, then a formal Cauchy theorem holds

and (B.1) has a unique vector of power series solution for any given initial condition.
In this situation, algorithms are known that compute the first N coefficients of the
solution in quasi-linear complexity: [BK78] for scalar equations of order 1 and 2,
adapted in [BCO+07] for systems of equations. Also the relaxed algorithm of [Hoe02]
applies to this case.

In this chapter, we extend the previous algorithms in three directions.

Singularities We deal with the case when k is positive. Cauchy’s theorem and the
techniques of [BCO+07] do not apply. We show in this chapter how to overcome
this singular behavior and obtain a quasi-linear complexity.

Positive characteristic Even when k = 0, Cauchy’s theorem does not hold in
positive characteristic and Equation (B.1) may fail to have a power series solution (a
simple example is F ′=F). However, such an equation may have a solution modulo
xN. Our objectives in this respect are to overcome the lack of a Cauchy theorem,
or of a formal theory of singular equations, by giving conditions that ensure the
existence of solutions at the required precisions.

Functional equations Linear differential equations and linear difference equa-
tions can be solved by similar algorithms. For this matter, introduce σ:k[[x]]→k[[x]]
a unitary ring morphism and let δ:k[[x]]→k[[x]] denote a σ-derivation, in the sense
that δ is k-linear and that for all f , g in k[[x]], we have

δ(f g)= f δ(g)+ δ(f)σ(g).

These definitions, and the above equality, extend to matrices over k[[x]]. Thus, our
goal is to solve the following generalization of (B.1):

xk δ(F) =Aσ(F) +C. (B.2)

As above, we are interested in computing a vector F of power series such that (B.2)
holds modulo xN.

174 Introduction (translated into English)

Concerning on-line algorithms, the techniques of [Hoe02] already apply to the
positive characteristic case. At the beginning of my thesis, the tools to adapt relaxed
algorithms for singular equations did not exist. Our method to deal with singular
equations was discovered independently at the same time by [Hoe11]. This paper
deals with more general recursive power series defined by algebraic, differential equa-
tions or a combination thereof. However, this paper does not consider the case of
(q)-differential equations and works under more restrictive hypotheses.

We restrict ourselves to the following setting:

δ(x)= 1, σ: x� q x,

for some q ∈k \ {0}. Then, there are only two possibilities:

• q=1 and δ: f � f ′ (differential case);

• q � 1 and δ: f � f(q x)− f(x)

x (q− 1)
(q-differential case).

Seeing Eq. (B.2) as a linear system, one can obtain such an output using linear
algebra in dimension n N . While this solution always works, we give algorithms
of much better complexity, under some good spectrum assumptions related to the
spectrum SpecA0 of the constant coefficient A0 of A.

As in the paper [BCO+07] for the non-singular case, we develop two approaches.
The first one is a divide-and-conquer method. The problem is first solved at preci-
sion N/2 and then the computation at precision N is completed by solving another
problem of the same type at precision N/2. This leads us to the following result.

Theorem. One can compute generators of the solution space of Eq. (B.2) at pre-
cision N by a divide-and-conquer approach. Assuming A0 has good spectrum at
precision N, it can be done in time O(nω M(N) log (N)). When either k> 1 or k=1
and qi A0− γi Id is invertible for 0≤ i<N, this drops to O(n2M(N) log (N)+nωN).

This divide-and-conquer approach coincides with an on-line recursive p-adic
computation under the second set of hypothesis, that is either k > 1 or k = 1
and qi A0 − γi Id is invertible for 0 ≤ i < N . We choose to present it by a divide-
and-conquer approach because it will make it convenient to study the problem
under more general hypotheses.

Our second algorithm behaves better with respect to N , with cost in O(M(N))
only, but it always involves polynomial matrix multiplications. Since in many cases
the divide-and-conquer approach avoids these multiplications, the second algorithm
becomes preferable for rather large precisions.

In the differential case, when k = 0 and the characteristic is 0, the algorithms
in [BCO+07, BK78] compute an invertible matrix of power series solution of the
homogeneous equation by a Newton iteration and then recover the solution using
variation of the constant. In the more general context we are considering here, such
a matrix does not exist. However, it turns out that an associated equation that can
be derived from (B.2) admits such a solution. We describe a variant of Newton’s
iteration to solve it and obtain the following.

B.4 Power series solutions of (q)-differential equations 175

Theorem. Assuming A0 has good spectrum at precision N, one can compute gen-
erators of the solution space of Eq. (B.2) at precision N by a Newton-like iteration
in time O(nωM(N)+nω log (n)N).

To the best of our knowledge, this is the first time such a low complexity is
reached for this problem. Without the good spectrum assumption, however, we
cannot guarantee that this algorithm succeeds, let alone control its complexity.

B.5 Relaxed p-adic Hensel lifting for algebraic sys-
tems

This chapter can be seen as a special case of lifting of triangular set done in Chapter
6.

We are given as input a polynomial system P = (P1, 	 , Pr) in R[Y1,	 , Yr] and
a modular root y0∈ (R/(p))r such that P (y0) = 0 in (R/(p))r. We work under the
hypothesis of Hensel’s lemma, which requires that the Jacobian matrix JacP (y0) is
invertible. As a consequence, there exists a unique root y∈Rr of P that reduces to
y0 modulo p. We say that y is the lifted root of P from y0.

Our work consists in transforming these implicit polynomial equations into recur-
sive equations. Therefore we can use the relaxed framework for p-adic numbers to
lift a modular root y0 over R/(p) to a p-adic root y over Rp. Our results on the
transformation of implicit equations to recursive equations were discovered indepen-
dently at the same time by [Hoe11].

For the sake of simplicity, we present here only the asymptotic complexities when
the p-adic precision N tends to infinity, that is f(n,L,d,N)=ON→∞(g(n,L, d,N))
if there exists Kn,L,d∈R>0 such that for all N ∈N, f(n,L, d,N)6Kn,L,d g(n,L, d,
N).

Let us start by enunciating the result for dense univariate polynomials.

Proposition. Given a polynomial P of degree d in dense representation and a
modular simple root y0, we can lift y0 at precision N in time (d − 1) R(N) +
ON→∞(N).

In comparison, Newton iteration lifts y at precision N in time (3 d+ 4) I(N) +
ON→∞(N) (see [GG03, Theorem 9.25]). So the first advantage of our on-line
algorithm is that it does asymptotically less on-line multiplications than Newton
iteration does off-line multiplications. Also, we can expect better timings from the
on-line method for the Hensel lifting of y when the precision N satisfies R(N) 6
3 I(N).

Let us now deal with multivariate polynomial systems.

Theorem. Let P = (P1, 	 , Pr) be a polynomial system in R[Y1, 	 , Yr]
r in dense

representation, satisfying d> 2 where d7 max16i,j6r (degXj
(Pi))+ 1, and let y0 be

an approximate zero of P.

176 Introduction (translated into English)

Then we can lift y0 at precision N in time drR(N) +ON→∞(N).

Once again, we compare with Newton iteration which performs at each step an
evaluation of the polynomial equations and of their Jacobian matrix, and an inver-
sion of its evaluated Jacobian matrix. This amounts to a cost C (r dr + rω) I(N) +
ON→∞(N) where C is a constant in R>0. The latter theorem shows that we manage
to save the cost of the inversion of the Jacobian matrix at full precision with on-line
algorithms.

This latter advantage is meaningful when the cost of evaluation of the system
is lower than the cost of linear algebra. Therefore we adapt our on-line approach
to polynomials given as straight-line programs (s.l.p.), that is as a sequence of
arithmetic operations without branching.

Theorem. Let P be a polynomial system of r polynomials in r variables over R,
given as an s.l.p. with L∗ multiplications. Let y0 ∈ (R/(p))r be such that P (y0) =
0mod p and det (JacP (y0))� 0mod p.

Then, one can lift y0 at precision N in time 3L∗R(N)+ON→∞(N).

In this case, Newton iteration costs C (L∗+ rω) I(N) +ON→∞(N), where C is a
constant in R>0. Hence our on-line approach is particularly well-suited to systems
that can be evaluated cheaply, e.g. sparse polynomial systems. Note that despite all
these advantages, our algorithms are worse by a logarithmic factor in the precision
N compared to zealous Newton iteration with the current implementation of the
relaxed multiplication.

Finally, we implement these algorithms to obtain timings competitive with
Newton and even lower on wide ranges of input parameters. Our implementation
is available in the C++ library algebramix of Mathemagix [HLM+02].

B.6 Relaxed lifting of triangular sets

We noticed in Section B.5 that relaxed algorithms could reduce the cost due to linear
algebra when lifting a regular root of a polynomial system compared to previous
off-line algorithms. In the same way that the Newton-Hensel operator was adapted
to lift univariate representations in [GLS01, HMW01] and then triangular sets in
[Sch02], we adapt our relaxed approach of Chapter 5 to lift such objects with the
goal of getting rid of the contribution of linear algebra in the complexity.

Let us introduce the notion of univariate representation of a zero-dimensional
ideal I ⊆ R[X1, 	 , Xn]. Let A be the quotient algebra R[X1, 	 , Xn]/I and Λ ∈
A such that the R-algebra R[Λ] spanned by Λ is equal to A itself. A univariate
representation of A consists of polynomialsP=(Q,S1,	 ,Sn) in R[T] with deg(Si)<
deg (Q) such that we have a R-algebra isomorphism

A=R[X1,	 , Xn]/I → R[T]/(Q)
X1,	 , Xn � S1,	 , Sn

Λ � T .

B.6 Relaxed lifting of triangular sets 177

The oldest trace of this representation is to be found in [Kro82] and a few years
later in [Kön03]. A good summary of their work can be found in [Mac16]. The shape
lemma [GM89] states the existence of such a representation for a generic linear form
Λ of a zero-dimensional ideal. Different algorithms compute this representation, from
a geometric resolution [GHMP97, GHH+97, GLS01, HMW01] or using a Gröbner
basis [Rou99].

A triangular set is a set of n polynomials t = (t1, 	 , tn) ⊆ R[X1, 	 , Xn] such
that ti is in R[X1,	 ,Xi], monic in Xi and reduced with respect to (t1,	 , ti−1). The
notion of triangular set comes from [Rit66] in the context of differential algebra.
Many similar notions were introduced afterwards [Wu84, Laz91, Kal93, ALMM99].
Although all these notions do not coincide in general, they are the same for zero-
dimensional ideals.

As it turns out, univariate representations can be seen as a special case of tri-
angular sets. Indeed, with the notations above, the family (Q(T), X1 − S1(T), 	 ,

Xn−Sn(T)) is a triangular set in the algebra R[T ,X1,	 ,Xn]. From now on, we will
consider univariate representations as a special case of triangular sets.

We define Rem(d1,	 , dn) to be the cost of arithmetic operations in the quotient
algebra R[X1,	 , Xn]/(t1,	 , tn) with di7 degXi

(ti). When using univariate repre-
sentations, the elements of A≃R[T]/(Q) are represented as univariate polynomials
of degree less than d7 deg (Q). Then, multiplication in A costs a few polynomial
multiplications.

Lifting triangular sets (or univariate representations) is a crucial operation. Sev-
eral implementations of algorithms that compute triangular sets on the rationals
compute these objects modulo a prime number, and then lift the representation.
For example, the Kronecker software [L+02], for univariate representations, and
the RegularChains package [LMX05] of Maple, for triangular sets, use a lifting.
Even better, another lifting is at the core of the geometric resolution algorithm
[GLS01, HMW01] of Kronecker. This algorithm manipulates many univariate
representations of curves, and so requires many lifting on power series.

As it turns out, most of the time required to compute triangular sets (or uni-
variate representations) is spent in the lifting. Therefore, any improvement on the
lifting complexity will have repercussions on the whole algorithm.

Let f =(f1,	 , fn)∈R[X1,	 ,Xn] be a polynomial system given by an s.l.p. with
L operations. If Lfi is the evaluation complexity of only the output fi, then we
denote by L⊥7 Lf1+
 +Lfn the complexity that corresponds to computing f1,	 ,

fn without sharing any operations. Since Lfi6L, we always have

L6L⊥6nL.

An algorithm from Baur and Strassen [BS83] gives an s.l.p. that evaluates the
Jacobian matrix of f in 5L⊥ operations.

Let t0 be a triangular set in R/(p)[X1, 	 , Xn] such that f = 0 in R/(p)[X1, 	 ,

Xn]/〈t0〉. We work under the assumption that the determinant of the Jacobian
matrix Jacf in Mn(R/(p)[X1, 	 , Xn]) must be invertible modulo t0. This last
condition is sufficient to have the existence and uniqueness of a triangular set t in
Rp[X1,	 ,Xn] which reduces to t0 modulo p and satisfies f =0 in Rp[X1,	 ,Xn]/〈t〉.

178 Introduction (translated into English)

The lifting algorithms will compute, from the inputs f and t0, this unique tri-
angular set t at precision N .

Our contribution is to give, for any p-adic triangular set, a shifted algorithm of
which it is a fixed point. Then we can apply the recursive p-adic framework and
deduce a relaxed lifting algorithm for this triangular set.

For the sake of simplicity, we give the asymptotic complexities when the p-adic
precision N tends to infinity. Let us now state the complexity results.

Theorem. Our on-line algorithm can lift the triangular set t at precision N in time

CnLR(N)Rem(d1,	 , dn) +ON→∞(N),

where C is a constant in R>0.

The previous off-line algorithm of [Sch02] lift the triangular set t at precision N

in time C (L⊥+nω) I(N) Rem(d1,	 , dn)+ON→∞(N) where C is a positive constant.
Therefore, we can expect the on-line algorithm to improve the complexity of the
previous algorithm only in the case n L6 nω, that is for systems f that evaluates
in roughly less than n2 operations.

The situation is more at our advantage when lifting univariate representations.
We suppose in this paragraph that t is a univariate representation of degree d.

Theorem. Our on-line algorithm can lift a univariate representation t at precision
N in time

CLR(N)M(d)+ON→∞(N),

where C is a constant in R>0.

We compare our algorithm with the previous off-line algorithm of [GLS01,
HMW01]. The off-line algorithm lifts the univariate representation t at precision
N in time C (L⊥ + nω) I(N) M(d) + ON→∞(N), where C is a positive constant.
Consequently, our algorithm always does asymptotically less on-line multiplication
than the other algorithm does off-line multiplications. Moreover, for systems of
polynomial equations f that can be evaluated in less than nω operations, we can
expect a considerable gap in performance from our algorithm.

Finally we implement these algorithms in the C++ library Algebramix of
Mathemagix [HLM+02] for the special case of univariate representations. Our
new relaxed algorithm compares favorably on the examples. We mention that our
on-line algorithm is currently connected to Kronecker inside Mathemagix with
the help of G. Lecerf.

B.7 Algorithms for the universal decomposition
algebra

Let k be a field and let f in k[X] be a degree n separable polynomial. We let
R7 {α1,	 , αn} be the set of roots of f in an algebraic closure of k. The ideal of
symmetric relations Is is the ideal

{P ∈k[X1,	 ,Xn] |∀σ ∈Sn, P (ασ(1),	 , ασ(n))= 0}.

B.7 Algorithms for the universal decomposition algebra 179

The universal decomposition algebra is the quotient algebra A7 k[X1, 	 , Xn]/Is,
of dimension δ7 n!.

We show how to obtain efficient algorithms to compute in A. We use a univariate
representation of A, i.e. an isomorphism of the form A≃ k[T]/Q(T), since in this
representation, arithmetic operations in A are known to be quasi-optimal. We give
details for two related algorithms, to find the isomorphism above, and to compute
the characteristic polynomial of any element of A, that are the first quasi-optimal
algorithms for these tasks.

We measure the cost of our algorithms by the number of arithmetic operations
in k they perform. Practically, this is well adapted to cases where k is a finite field;
over k=Q, we should use lifting algorithms from Chapter 6.

The heart of the article, and the key to obtain better algorithms, is the question
of which representation should be used for A. A commonly used representation is
triangular . The divided differences , also known as Cauchy modules [Che50, RV99],
are defined by C1(X1)7 f(X1) and

Ci+17 Ci(X1,	 ,Xi)−Ci(X1,	 ,Xi−1,Xi+1)

Xi−Xi+1

for 16 i<n. They form a triangular basis of Is. Divided differences are inexpensive
to compute via their recursive formula, but it is difficult to make computations in
A efficient with this representation. The paper [BCHS11] gives a multiplication
algorithm of cost Õ(δ), but this algorithm hides high degree logarithmic terms in
the big-O. There is no known quasi-linear algorithm for inverting elements of A.

The second representation we discuss is univariate. When using univariate repre-
sentations, the elements of A≃k[T]/(Q) are represented as univariate polynomials
of degree less than δ. Then, multiplications and inversions (when possible) in A

cost respectively O(M(δ)) and O(M(δ) log (δ)). For characteristic polynomial, the
situation is not as good, as no quasi-linear algorithm is known: the best known
result [Sho94] is O(M(δ) δ1/2+ δ(ω+1)/2), resulting in a O(δ1.69) characteristic poly-
nomial algorithm.

Computing a univariate representation for A is expensive: the best known algo-
rithm [PS11] takes as input a triangular set (such as the divided differences) and
convert it to a univariate representation in time Õ(δ1.69).

Thus, the triangular representation for A is easy to compute but leads to rather
inefficient algorithms to compute in A. On the other hand, computing a univariate
representation is not straightforward, but once it is known, some computations in
A become faster. Our main contribution in this paper is to show how to circumvent
the downsides of univariate representations, by providing fast algorithms for their
construction. We also show how to use fast univariate arithmetics in A to compute
characteristic polynomials efficiently.

For univariate representations, our algorithms are Las Vegas: we give expected
running times.

Theorem. Suppose that the characteristic of k is zero, or at least 2 δ2. Then we
can compute characteristic polynomials and univariate representations in A with
costs as specified in the following table.

180 Introduction (translated into English)

XP ,A
univariate representation

(expected time)

O(n(ω+3)/2M(δ)) = Õ(δ) O(n(ω+3)/2M(δ))= Õ(δ)

We propose two approaches; both of them rely on classical ideas. The first
one computes characteristic polynomials by means of their Newton sums, following
previous work of [Val89, AV94, CM94], but is limited to simple polynomials, such
as linear forms; this will provide the best algorithms in practice. The second one
relies on iterated resultants [Lag70, Soi81, Leh97, RV99] and provides the complexity
statements of the theorem.

Finally, we implement our algorithms inMagma 2.17.1 [BCP97] and give exper-
imental results. We show practical improvements for the computation of univariate
representation of A. Our change of basis algorithms between the univariate and
the triangular representation are efficient; for an operation such as inversion, even
with the overhead of change of representation, it pays off to convert to a univariate
representation.

B.8 Lifting of fundamental invariants

This short appendix is dedicated to prove a useful result in invariant theory, that we
obtained while writing Chapter 7: it shows that so-called fundamental invariants of
finite group actions always specialize well modulo all primes, except a few exceptions
known in advance. This is a rare phenomenon in computer algebra, since as a rule of
thumb, for non-linear systems, the primes of “bad reduction” cannot be determined
in any straightforward manner.

This result has practical implications. For example, in order to compute rational
primary invariants, it is sufficient to compute primary invariants modulo p. Then
the lifting of primary invariants to rational coefficients is trivial.

Private communications with H. E. A. Campbell,D. Wehlau andM. Roth
revealed that this result was known to them, but as far as we know, it has not
appeared in print before. We chose to include it in this thesis, since it could find
practical applications — to the best of our knowledge, software such as Magma
[BCP97] do not make use of this kind of result in their algorithms for computing
invariant rings.

This is a joint work with É. Schost.

B.8 Lifting of fundamental invariants 181

Bibliographie

[ALMM99] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J.
Symbolic Comput., 28(1-2):105–124, 1999. Polynomial elimination—algorithms and
applications.

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[ASU75] A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polynomials at fixed sets of
points. SIAM J. Comput., 4(4):533–539, 1975.

[AV94] J.-M. Arnaudiès and A. Valibouze. Calculs de résolvantes. Rapport LITP 94.46 ,
1994.

[AV97] J.-M. Arnaudiès and A. Valibouze. Lagrange resolvents. J. Pure Appl. Algebra,
117/118:23–40, 1997.

[AV00] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.
J. Symb. Comp., 30(6):635–651, 2000.

[AV12] P. Aubry and A. Valibouze. Algebraic computation of resolvents without extraneous
powers. European Journal of Combinatorics , 2012. to appear.

[BA80] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz
and related systems of linear equations. Linear Algebra Appl., 34:103–116, 1980.

[Bal00] W. Balser. Formal power series and linear systems of meromorphic ordinary diffe-
rential equations . Universitext. Springer-Verlag, New York, 2000.

[BBP10] M. A. Barkatou, G. Broughton, and E. Pflügel. A monomial-by-monomial method
for computing regular solutions of systems of pseudo-linear equations. Math.
Comput. Sci., 4(2-3):267–288, 2010.

[BCHS11] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and É. Schost. Homotopy
methods for multiplication modulo triangular sets. J. Symb. Comp., 2011. To
appear.

[BCL+12] A. Bostan, M. F. I. Chowdhury, R. Lebreton, B. Salvy, and É Schost. Power series
solutions of singular (q)-differential equations. In Proceedings of ISSAC’12 , pages
107–114. ACM Press, 2012.

[BCO+07] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast com-
putation of power series solutions of systems of differential equations. In 18th ACM-
SIAM Symposium on Discrete Algorithms , pages 1012–1021, 2007. New Orleans,
January 2007.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory ,
volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences] . Springer-Verlag, Berlin, 1997. With the col-
laboration of Thomas Lickteig.

[Ber84] S. J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Inform. Process. Lett., 18(3):147–150, 1984.

183

[Ber98] D. J. Bernstein. Composing power series over a finite ring in essentially linear time.
J. Symbolic Comput., 26(3):339–341, 1998.

[BFSS06] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation of special resul-
tants. J. Symb. Comp., 41(1):1–29, 2006.

[BGVPS05] A. Bostan, L. González-Vega, H. Perdry, and É. Schost. From Newton sums to
coefficients: complexity issues in characteristic p. In MEGA’05 , 2005.

[BHL11] J. Berthomieu, J. van der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic
numbers. J. Théor. Nombres Bordeaux , 23(3):541–577, 2011.

[BK78] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the ACM , 25(4):581–595, 1978.

[BL12] J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel lifting for algebraic systems.
In Proceedings of ISSAC’12 , pages 59–66. ACM Press, 2012.

[BLMM01] F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In ISSAC’01 , pages 38–47.
ACM, 2001.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In Proceedings
of ISSAC’03 , pages 37–44. ACM Press, 2003.

[BMSS08] A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing
isogenies between elliptic curves. Math. Comp., 77(263):1755–1778, 2008.

[Bos03] A. Bostan. Algorithmique efficace pour des opérations de base en Calcul formel .
PhD thesis, École Polytechnique, 2003.

[Bou73] N. Bourbaki. Éléments de mathématique, Fasc. XXIII . Hermann, Paris, 1973. Livre
II: Algèbre. Chapitre 8: Modules et anneaux semi-simples.

[BP99] M. Barkatou and E. Pflügel. An algorithm computing the regular formal solutions
of a system of linear differential equations. J. Symbolic Comput., 28(4-5):569–587,
1999. Differential algebra and differential equations.

[BS83] W. Baur and V. Strassen. The complexity of partial derivatives. Theoret. Comput.
Sci., 22(3):317–330, 1983.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets
of points. J. Complexity , 21(4):420–446, 2005.

[BS09] A. Bostan and É. Schost. Fast algorithms for differential equations in positive cha-
racteristic. In ISSAC 2009—Proceedings of the 2009 International Symposium on
Symbolic and Algebraic Computation, pages 47–54. ACM, New York, 2009.

[BSS08] A. Bostan, B. Salvy, and É. Schost. Power series composition and change of basis.
In ISSAC 2008 , pages 269–276. ACM, New York, 2008.

[BT80] R. P. Brent and J. F. Traub. On the complexity of composition and generalized
composition of power series. SIAM J. Comput., 9(1):54–66, 1980.

[CG10] A. Colin and M. Giusti. Efficient computation of squarefree lagrange resolvents.
2010.

[Che50] N. Chebotarev. Grundzüge des Galois’shen Theorie. P. Noordhoff, 1950.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Inform., 28(7):693–701, 1991.

[CM94] D. Casperson and J. McKay. Symmetric functions,m-sets, and Galois groups. Math.
Comp., 63(208):749–757, 1994.

[Coo66] S. A. Cook. On the minimum computation time of functions . PhD thesis, Harvard
University, 1966.

[CS04] Z. Chen and A. Storjohann. IML, the Integer Matrix Library, 2004. Version 1.0.3.

184 Bibliographie

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Math. Comp., 19:297–301, 1965.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symb. Comp., 9(3):251–280, 1990.

[DFS09] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields.
In ISSAC’09 , pages 127–134. ACM, 2009.

[DFS10] L. De Feo and É. Schost. transalpyne: a language for automatic transposition. ACM
Commun. Comput. Algebra, 44(1/2):59–71, July 2010.

[DIS11] C.-É. Drevet, M. N. Islam, and É. Schost. Optimization techniques for small matrix
multiplication. Theoret. Comput. Sci., 412(22):2219–2236, 2011.

[Dix82] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer.
Math., 40(1):137–141, 1982.

[DK02] H. Derksen and G. Kemper. Computational invariant theory. Invariant Theory and
Algebraic Transformation Groups, I. Springer-Verlag, Berlin, 2002. Encyclopaedia
of Mathematical Sciences, 130.

[DKSS08] A. De, P. Kurur, C. Saha, and R. Saptharishi. Fast integer multiplication using
modular arithmetic. In STOC’08 , pages 499–505. ACM, New York, 2008.

[DL08] C. Durvye and G. Lecerf. A concise proof of the Kronecker polynomial system solver
from scratch. Expo. Math., 26(2):101–139, 2008.

[DMMSX06] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5
principle. In Transgressive Computing , pages 149–168, 2006.

[FGLM93] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comp., 16(4):329–344,
1993.

[FM11] J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of zero-dimensional
Gröbner bases with sparse multiplication matrices. In ISSAC’11 , pages 115–122.
ACM, 2011.

[FS74] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. J. Comput.
System Sci., 9:317–331, 1974.

[Für07] M. Fürer. Faster Integer Multiplication. In Proceedings of STOC 2007 , pages 57–
66, San Diego, California, 2007.

[G+91] T. Granlund et al. GMP, the GNU multiple precision arithmetic library, 1991.
Version 5.0.2.

[GG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge, second edition, 2003.

[GHH+97] M. Giusti, J. Heintz, K. Hägele, J. E. Morais, L. M. Pardo, and J. L. Montaña.
Lower bounds for Diophantine approximations. J. Pure Appl. Algebra, 117/118:277–
317, 1997. Algorithms for algebra (Eindhoven, 1996).

[GHMP97] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. Le rôle des structures de
données dans les problèmes d’élimination. C. R. Acad. Sci. Paris Sér. I Math.,
325(11):1223–1228, 1997.

[GLS01] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system
solving. J. Complexity , 17(1):154–211, 2001.

[GM89] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using
Groebner bases. In Applied algebra, algebraic algorithms and error-correcting codes
(Menorca, 1987), volume 356 of Lecture Notes in Comput. Sci., pages 247–257.
Springer, Berlin, 1989.

Bibliographie 185

[GR08] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: error-
correction with optimal redundancy. IEEE Trans. Inform. Theory, 54(1):135–150,
2008.

[Har12] D. Harvey. The Karatsuba middle product for integers. to appear, 2012.

[Hen18] K. Hensel. Eine neue Theorie der algebraischen Zahlen. Math. Z., 2(3-4):433–452,
1918.

[Hen66] F. C. Hennie. On-line turing machine computations. Electronic Computers, IEEE
Transactions on, EC-15(1):35 –44, 1966.

[HKP+00] J. Heintz, T. Krick, S. Puddu, J. Sabia, and A. Waissbein. Deformation techniques
for efficient polynomial equation solving. J. Complexity , 16(1):70–109, 2000.

[HLM+02] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, 2002. SVN Version
7058. Available from http://www.mathemagix.org.

[HMW01] J. Heintz, G. Matera, and A. Waissbein. On the time-space complexity of geome-
tric elimination procedures. Appl. Algebra Engrg. Comm. Comput., 11(4):239–296,
2001.

[Hoe97] J. van der Hoeven. Lazy multiplication of formal power series. In ISSAC ’97 , pages
17–20, Maui, Hawaii, 1997.

[Hoe02] J. van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput., 34(6):479–542,
2002.

[Hoe03] J. van der Hoeven. Relaxed multiplication using the middle product. In Procee-
dings of the 2003 International Symposium on Symbolic and Algebraic Computation,
pages 143–147 (electronic), New York, 2003. ACM.

[Hoe07] J. van der Hoeven. New algorithms for relaxed multiplication. J. Symbolic Comput.,
42(8):792–802, 2007.

[Hoe09] J. van der Hoeven. Relaxed resolution of implicit equations. Technical report, HAL,
2009.

[Hoe11] J van der Hoeven. From implicit to recursive equations. Technical report, HAL,
2011.

[Hoe12] J. van der Hoeven. Faster relaxed multiplication. Technical report, HAL, 2012.

[HQZ04] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm. I.
Appl. Algebra Engrg. Comm. Comput., 14(6):415–438, 2004.

[HZ04] G. Hanrot and P. Zimmermann. A long note on Mulders’ short product. J. Symbolic
Comput., 37(3):391–401, 2004.

[Kal92] E. Kaltofen. On computing determinants of matrices without divisions. In P. S.
Wang, editor, Proc. 1992 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’92),
pages 342–349, New York, N. Y., 1992. ACM Press.

[Kal93] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular repre-
sentations of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.

[Kap01] G. Kapoulas. Polynomially time computable functions over p-adic fields. In Com-
putability and complexity in analysis , volume 2064, pages 101–118. Springer, Berlin,
2001.

[Kar97] J. Karczmarczuk. Generating power of lazy semantics. Theoret. Comput. Sci.,
187(1-2):203–219, 1997.

[Kat90] S. Katsura. Spin glass problem by the method of integral equation of the effective
field. New Trends in Magnetism , pages 110–121, 1990.

[Kir01] Peter Kirrinnis. Fast algorithms for the Sylvester equation A X − X B〈ssf〉T = C.
Theoret. Comput. Sci., 259(1-2):623–638, 2001.

186 Bibliographie

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.
Soviet Physics Doklady , 7:595, 1963.

[Kön03] J. König. Aus dem Ungarischen übertragen vom Verfasser . B. G. Teubner, Leipzig,
1903.

[Kro82] L. Kronecker. Grundzüge einer arithmetischen theorie des algebraischen grössen. J.
reine angew. Math., 92:1–122, 1882.

[KU11] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular compo-
sition. SIAM J. Comput., 40(6):1767–1802, 2011.

[KV04] E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput.
Complexity, 13(3-4):91–130, 2004.

[L+02] G. Lecerf et al. Kronecker, 2002. Available from
http://lecerf.perso.math.cnrs.fr/software/kronecker/.

[Lag70] J.-L. Lagrange. Réflexions sur la résolution algébrique des équations. Mémoires de
l’Académie de Berlin, 1770.

[Lan91] L. Langemyr. Algorithms for a multiple algebraic extension. In Effective methods
in algebraic geometry), volume 94 of Progr. Math., pages 235–248. Birkhäuser, 1991.

[Laz91] D. Lazard. A new method for solving algebraic systems of positive dimension. Dis-
crete Appl. Math., 33(1-3):147–160, 1991. Applied algebra, algebraic algorithms,
and error-correcting codes (Toulouse, 1989).

[Leh97] F. Lehobey. Resolvent computations by resultants without extraneous powers. In
ISSAC ’97 , pages 85–92. ACM, 1997.

[Lin08] The LinBox Group. LinBox – Exact Linear Algebra over the Integers and Finite
Rings, 2008. SVN Version 4136.

[LMMS09] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from
theory to practice. J. Symbolic Comput., 44(7):891–907, 2009.

[LMP09] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In
ISSAC’09 , pages 239–246. ACM, 2009.

[LMS09] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from
theory to practice. Journal of Symbolic Computation , 44(7):891–907, 2009.

[LMS12] R. Lebreton, E. Mehrabi, and É Schost. On the complexity of computing certain
resultants. Poster at ISSAC’12, 2012.

[LMX05] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S.
Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[LS08] R. Lercier and T. Sirvent. On Elkies subgroups of l-torsion points in elliptic curves
defined over a finite field. J. Théor. Nombres Bordeaux , 20(3):783–797, 2008.

[LS12] R. Lebreton and É. Schost. Algorithms for the universal decomposition algebra. In
Proceedings of ISSAC’12 , pages 234–241. ACM Press, 2012.

[Mac16] F. S. Macaulay. The algebraic theory of modular systems . Cambridge University
Press, 1916.

[MC79] R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions
to systems of linear equations. In EUROSAM ’79 , volume 72, pages 65–73. Springer,
1979.

[Mor74] M. Morf. Fast algorithms for multivariable systems . PhD thesis, Stanford Univer-
sity, 1974.

[Mor80] M. Morf. Doubling algorithms for toeplitz and related equations. In IEEE Confe-
rence on Acoustics, Speech, and Signal Processing , pages 954–959, 1980.

Bibliographie 187

[Mul00] T. Mulders. On short multiplications and divisions. Appl. Algebra Engrg. Comm.
Comput., 11(1):69–88, 2000.

[New36] I. Newton. The method of fluxions and infinite series: with its application to the
geometry of curve-lines . Henry Woodfall, 1736.

[Pan01] V. Y. Pan. Structured matrices and polynomials . Birkhäuser Boston Inc., Boston,
MA, 2001. Unified superfast algorithms.

[PS11] A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional
triangular sets. Submitted , 2011.

[Ren04] N. Rennert. A parallel multi-modular algorithm for computing Lagrange resolvents.
J. Symbolic Comput., 37(5):547–556, 2004.

[Rit66] J. F. Ritt. Differential algebra. Dover Publications Inc., New York, 1966.

[Rou99] F. Rouillier. Solving zero-dimensional systems through the rational univariate repre-
sentation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[RV99] N. Rennert and A. Valibouze. Calcul de résolvantes avec les modules de Cauchy.
Exp. Math., 8(4):351–366, 1999.

[S+90] V. Shoup et al. NTL: a library for doing number theory, 1990. Version 5.5.2. Avai-
lable from http://www.shoup.net/ntl/.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM , 27(4):701–717, 1980.

[Sch82] A. Schönhage. The fundamental theorem of algebra in terms of computational com-
plexity. Technical report, Univ. Tübingen, 1982. 73 pages.

[Sch97] M. Schröder. Fast online multiplication of real numbers. In STACS 97 (Lübeck),
volume 1200 of Lecture Notes in Comput. Sci., pages 81–92. Springer, Berlin, 1997.

[Sch02] É. Schost. Degree bounds and lifting techniques for triangular sets. In Proceedings of
the 2002 International Symposium on Symbolic and Algebraic Computation , pages
238–245 (electronic), New York, 2002. ACM.

[Ser78] J.-P. Serre. Représentations linéaires des groupes finis . Hermann, Paris, revised
edition, 1978.

[Sho94] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb.
Comp., 17(5):371–391, 1994.

[Soi81] L. Soicher. The computation of the Galois groups . PhD thesis, Concordia University,
Montreal, Quebec, Canada, 1981.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

[Sto03] A. Storjohann. High-order lifting and integrality certification. J. Symbolic Comput.,
36(3-4):613–648, 2003. ISSAC’2002, Lille.

[Sto05] A. Storjohann. The shifted number system for fast linear algebra on integer matrices.
J. Complexity , 21(4):609–650, 2005.

[Sto10] A. Stothers. On the Complexity of Matrix Multiplication . PhD thesis, University of
Edinburgh, 2010.

[Stu93] B. Sturmfels. Algorithms in invariant theory . Texts and Monographs in Symbolic
Computation. Springer-Verlag, Vienna, 1993.

[Too63] A. L. Toom. The complexity of a scheme of functional elements simulating the
multiplication of integers. Dokl. Akad. Nauk SSSR, 150:496–498, 1963.

[Val89] A. Valibouze. Fonctions symétriques et changements de bases. In EUROCAL’87 ,
volume 378 of LNCS , pages 323–332, 1989.

188 Bibliographie

[VW11] V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. 2011.

[Wak70] A. Waksman. On Winograd’s algorithm for inner products. IEEE Trans. Compu-
ters , C-19(4):360–361, 1970.

[Was65] W. Wasow. Asymptotic expansions for ordinary differential equations . Pure and
Applied Mathematics, Vol. XIV. Interscience Publishers John Wiley & Sons, Inc.,
New York-London-Sydney, 1965.

[Wat89] S. Watt. A fixed point method for power series computation. In P. Gianni, editor,
Symbolic and Algebraic Computation, volume 358 of Lecture Notes in Computer
Science, pages 206–217. Springer Berlin / Heidelberg, 1989.

[Wu84] W. J. Wu. Basic principles of mechanical theorem proving in elementary geometries.
J. Systems Sci. Math. Sci., 4(3):207–235, 1984.

[Yok97] K. Yokoyama. A modular method for computing the Galois groups of polynomials.
J. Pure Appl. Algebra, 117/118:617–636, 1997.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM’79 ,
volume 72 of LNCS , pages 216–226. Springer, 1979.

Bibliographie 189

Résumé
Contributions à l’algorithmique détendue et
à la résolution des systèmes polynomiaux

Cette thèse est en majeure partie dédiée au calcul rapide de remontée p-adique par des
algorithmes détendus.

Dans une première partie, nous présentons le cadre général des algorithmes détendus et
de leur application au calcul de p-adiques récursifs. Pour appliquer ce cadre à la remontée
p-adique de divers systèmes d’équations, il reste à transformer ces équations implicites
en équations récursives. Ainsi, la seconde partie traite des systèmes d’équations linéaires,
éventuellement différentiels. La remontée de résolutions de systèmes polynomiaux se trouve
en troisième partie. Dans tous les cas, les nouveaux algorithmes détendus sont comparés,
en théorie comme en pratique, aux algorithmes existants.

En quatrième partie, nous étudions l’algèbre de décomposition universelle d’un poly-
nôme. Nous développons un algorithme rapide pour calculer une représentation adéquate
de cette algèbre et l’utilisons pour manipuler efficacement les éléments de l’algèbre.

Finalement, nous montrons en annexe que la recherche d’invariants fondamentaux
d’algèbres d’invariants sous un groupe fini peut se faire directement modulo p, facili-
tant ainsi leur calcul.

Mots clés. Algorithme détendu, résolution de systèmes polynomiaux, remontée p-
adique.

Abstract
Contributions to relaxed algorithms and polynomial system solving

This PhD thesis is mostly devoted to the computation of p-adic lifting by relaxed
algorithms.

In a first part, we introduce relaxed algorithms and their application to the computation
of recursive p-adics. In order to use this framework for the p-adic lifting of various systems
of equations, we have to transform the given implicit equations into recursive equations.
The case of systems of linear equations, possibly differential, is treated in the second part.
This third part contains the lifting of resolutions of polynomial systems. In any cases, these
new relaxed algorithms are compared, both in theory and practice, to existing algorithms.

In the fourth part, we focus on the universal decomposition algebra. We present a fast
algorithm which computes an adequate representation of this algebra and use it to compute
efficiently with the elements of this algebra.

Finally, we show in the appendix that finding fundamental invariants of polynomial
invariants algebras under a finite group can be done directly modulo p, hence making their
computation easier.

Keywords. Relaxed algorithm, polynomial system solving, p-adic lifting.

