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Foreword

The purpose of the this work is to apply optimal control techniques to enhance the performance
of the power management of hybrid vehicles. More precisely, the techniques concerned are viscosity
solutions of Hamilton-Jacobi (HJ) equations, level set methods in reachability analysis, stochastic dy-
namic programming (SDP), stochastic dual dynamic programming (SDDP) and chance constrained
optimal control. These are relatively sophisticated optimal control techniques, presenting a rup-
ture (from the application point of view) of more classical techniques (e.g. dynamic programming,
maximum principle and heuristic algorithms) found in the literature.

The expect outcome of the Ph.D. project is to assess the general interest in applying such tech-
niques to the power management of hybrid vehicles. This includes stating the relevant modeling
choices, implementing a research-level code1 of the algorithms for simulations and providing a proper
interpretation of the simulations results. This represents a first step towards effectively implement-
ing such techniques in series-manufactured hybrid vehicles. Indeed, algorithms implemented into
embedded processors must meet stringent safety and reliability levels. This is a costly decision and
thus the expected associate gains must represent a competitive advantage at least offsetting this
cost. Therefore, a well documented research in laboratory condition is an essential preliminary step.

The conducted research has six main contributions.

• The first contribution is the introduction of the framework of hybrid dynamical systems
in the formulation of the optimal power management control problem. This is a convenient
framework that relates naturally to certain characteristics of the hybrid vehicle model, in par-
ticular the on and off switch of the auxiliary power source and the requirement that successive
switchings on and off of the second power source must be separated by a time interval of 120
seconds. In the continuous-time (deterministic) case, the hybrid optimal control problem leads
to a system of quasi-variational inequalities (SQVI). We show the existence and uniqueness
of the solution of this SQVI in the appropriate viscosity framework and we propose a class of
convergent finite-difference schemes to compute the solution. This line of work represents a
novel contribution both to the field of hybrid systems and of the field of power management
of hybrid vehicles.

• The second contribution is the application of level-set methods to compute the reachable
set of a deterministic discrete-time model of the hybrid vehicle. From the reachability analysis
of the hybrid vehicle power management problem stems two important applications: synthe-
sizing a controller that maximizes the hybrid vehicle range and synthesizing a controller that
reaches a final energy repartition chosen by the driver at the beginning of the trip. The nov-
elty is that our framework replace the state-constrained formulation of the optimal control
problem with an obstacle problem. This new formulation is particularly well-suited to tackle
the maximum reachability problem of hybrid vehicles. In addition, the proposed algorithm,
based on a dynamic programming principle, is more readily implementable and offers a more
straightforward interpretation of the strategies than finite-difference schemes, an adequate
feature for engineering ends.

• The third contribution relates to the application of stochastic dynamic programming for
the power management of hybrid vehicles seeking to minimize the expected financial cost of
a trip. More precisely, the novelty with respect to the literature is the introduction of ad-
ditional route information in the controller synthesis via a navigation system. This allows a
finite-horizon formulation of the stochastic optimal control problem, resulting in a distance-
dependent controller, i.e., receiving feedback of the vehicle position along a route. Classical
approaches consider an infinite-horizon formulation, since no route-specific information is as-
sumed, yielding static controllers, receiving state feedback only.

1In contrast to a prototype-level and embedded-level code.
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• The fourth contribution arises when noticing that the dimension of the state is a limiting
factor whenever using dynamic programming techniques. To tackle this barrier, we study
the potential application of a stochastic dual dynamic programming (SDDP) algorithm to
the optimal power management problem. Since SDDP technique requires the optimization
problem to be convex, we propose a relaxed framework, yielding a convex approximation of
the original vehicle model.

• The fifth contribution seeks to add flexibility to stochastic controllers by introducing a
formulation of the optimal control problem using chance constraints. By replacing an almost
sure constraint, imposing some remaining charge in the battery at the end of a driving cycle, by
a chance constraint, the optimization is made over a larger search space. This means that the
control strategy accepts a level of failure within a certain confidence bound. The consequence is
that an optimal control can be synthesized in driving conditions that were before inaccessible to
the optimization procedure. This work formulates the problem of optimal power management
with control constraints as a chance constraint optimal control problem. This optimal control
problem is then adapted, resulting in an different, but equivalent, formulation. A dynamic
programming principle for the equivalent problem is derived. Finally, it is shown how the
dynamic programming principle can be applied to a dynamic programming algorithm for
numerically synthesizing the optimal control policies.

• The sixth contribution concerns the introduction of a stochastic model of the vehicle speed
profiles as auto-regressive time series using historical data and exogenous information from a
navigation system. These models are used to identify the transition probabilities used in the
stochastic algorithms, as well as a simulation platform to test the resulting control policies.
This approach ensures that the stochastic model used for optimization purposes is the same
as the model used for simulating the stochastic policies.

The Ph.D. research project stems from a collaboration between industrial and academic part-
ners. From the industry side this project was financed and supervised by Renault. This document
synthesizes the work developed during a research project of 32 months conducted partly at Renault’s
research facilities located in Guyancourt, France, and in the research laboratories at the ENSTA
ParisTech located in Paris, France.
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Avant-propos

Le but de cette thèse est de fournir d’étudier des méthodes mathématiques et numériques pour
optimiser la performance de la gestion de l’énergie des véhicules hybrides. Une partie importante
de cette thèse est dédiée à la modélisation du problème et à l’évaluation de l’intérêt d’appliquer, à
la gestion de l’énergie des véhicules hybrides, différentes techniques telles : commande de systèmes
hybrides, équations de Hamilton-Jacobi (HJ) et solutions de viscosité, analyse d’accessibilité et ap-
proche level-set, programmation dynamique stochastique (SDP), programmation dynamique duale
(SDDP) et la commande optimale avec contraintes en probabilité.

Si le fil conducteur de la thèse est axé sur une application industrielle, cette thèse a pour
souci la rigueur mathématique et l’analyse des simulations numériques. L’étude inclut aussi une
contribution théorique dans l’analyse des problèmes de commande optimale des systèmes hybrides
avec délai entre les commutations.

Plus précisément, les principales contributions de cette thèse sont :

• Mise en place d’un cadre d’étude adapté aux systèmes dynamiques hybrides pour la modéli-
sation du problème de contrôle optimal de la gestion d’énergie de véhicules dotés de plusieurs
sources d’énergie. La formulation mathématique proposée semble adéquate pour étudier les
dynamiques continues, qui représentent la loi de l’énergie, et les variables de décisions discrètes.
Ce cadre permet aussi de tenir compte de plusieurs autres impératifs physiques, notamment
l’exigence d’un délai entre commutations successives.

• L’analyse de l’autonomie maximale des véhicules hybrides conduit à l’étude mathématique
d’un problème de commande de systèmes hybrides en présence de contraintes sur l’état et
avec un délai imposé entre les commutations. La fonction valeur du problème considérée est
caractérisée par un système d’inégalités quasi-variationnelles (SQVI). Les résultats théoriques
et numériques obtenus pour ce problème constituent une contribution originale en théorie des
systèmes hybrides, théorie de la viscosité et résolution numérique des équations HJB.

• Une étude plus spécifique concernant un problème industriel d’autonomie maximale pour un
véhicule hybride. Cette analyse propose un algorithme basé sur le principe de programmation
dynamique, plus facilement implémentable sur le problème industriel. Cet algorithme donne
la loi optimale pour une gestion énergétique de plus grande autonomie et permet d’obtenir
une interprétation simple des stratégies des différents régimes.

• Modélisation du problème de loi de gestion d’énergie en tenant compte des aléas de la naviga-
tion. Ici, un modèle stochastique des profils de vitesse du véhicule est proposé. Ce modèle est
obtenu à partir des données historiques et des informations exogènes fournis par un système
de navigation. Cette étude permet d’identifier les probabilités de transition entre les profils
de vitesse et aboutit à une plateforme de simulation pour tester les politiques de contrôle. La
gestion d’énergie est alors étudiée par utilisation d’un algorithme de programmation stochas-
tique. Étant donné que la dimension de l’état est une limitation numérique lorsqu’on utilise
des techniques de programmation dynamique, nous étudions l’application de la programma-
tion stochastique duale (SDDP) pour un système hybride. Cependant la SDDP nécessitant
que le problème d’optimisation considéré soit convexe, nous proposons un cadre adéquat qui
donne une approximation convexe du modèle d’origine de véhicules hybrides.

• Etude de robustesse des stratégies optimales. Le modèle considéré ici est en présence de
contraintes probabilistes sur l’état final de charges des batteries. Un algorithme de résolution
pour un problème de contrôle optimal avec contraintes en probabilité est alors analysé pour
le modèle de loi de gestion d’énergie.

3
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INTRODUCTION

“Everything in life is somewhere else, and you get there in a car.”

Elwyn Brooks White

Transportation is a quintessential human necessity. Transportation is a key aspect that allows
us to fulfill our basic needs for food, water and shelter, as well as more sophisticated needs like
social interaction, economic transactions and intellectual development. The place of transportation
in our modern civilization is so pervasive that our very cities are designed and built around the way
we move. They are conceived to create a better environment for human locomotion.

A major share of the energy produced by mankind is destined towards transportation2 . Amongst
the many ways mankind has created to convey goods and people around the surface of the earth,
road transport is predominant3 . In particular, individual passenger cars are the greatest single
mean of passenger transport in most of the developed countries.

Along with the central role the car has in our modern society, comes an increasingly worrisome
consequence: pollutants emissions. An important share of greenhouse gas emissions and particle
emissions is due passenger cars. These emissions know a steady increase, despite the advancements
in related vehicle technology4 .

There is a consensus in the scientific community that the sharp increase of greenhouse gas
emissions, in particular CO2, since the last ten decades or so has an effect on the composition

2Transportation is responsible for over 27 % of final net energy consumption use in the United States, 24 % in
EU-25 and 31 % in EU-27[37, 50].

3In EU-27, passenger cars represent over 72 % of total passenger transport [38]. The share of roads in the transport
of goods is 45 %. In the United States, passenger cars accounts for 80 % of total passengers kilometers, while roads’
share in goods transportation is 30 %.

4The Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET [54]) is a proposed
model used to asses the full impact of new vehicle and fuel technologies on energetic efficiency and emissions. This
model considers the life-cycle analysis of transport fuels, commonly referred to as well-to-wheel, as well as the vehicle
life-cycle, comprising manufacturing, usage and recycling.

5



6 Introduction

of the earth atmosphere significant enough to provoke changes in the overall global climate. The
extent of such influence on climate is still a matter of debate. However that may be, governments
and consumers around the globe are offering incentives to technological developments that help
curb the trend of increasing emissions. One of the technological (and commercial) breakthroughs
that holds a lot of potential towards a cleaner planet is at the core of this study: electrified power
train technology. Its most prominent manifestations are in the form of electric vehicles and hybrid
vehicles.

The motivation for this study is the increased development of electrified automobile power train
technology. The interest for this technology arises as an increasingly number of automakers wish to
adopt vehicles with an electrification of the power chain as a viable solution for reducing greenhouse
gas emissions worldwide to meet stringer regulative legislation and consumers’ demand5. In one
hand, there is an effort of major constructors in order to deploy fully electric vehicles (EVs) as early
as possible in some car market segments6. In the other hand, hybrid vehicle technology has already
a relatively important market penetration so far and knows an ever-increasing demand. Moreover,
the technological advancements of the hybrid and electric vehicles components is expect to further
increase their attractiveness [1].

Among the many aspects of electrified power train technology lies the question of how the vehicle
power flow can be controlled. In other words, the controller must chose the share of each individual
power source that together meet the total demanded power. Indeed, the extra energy source present
in hybrid vehicles allows a greater degree of freedom that can be cleverly exploited towards a further
increase in the vehicle overall energetic efficiency.

The contribution of this work consists on the study of how to control the power flow of the
vehicle in the best possible way. In other words, this document investigates the optimal control of
the power flow, also referred to as the optimal power management strategy. The proposed line of
study seeks to devise the best control strategies when one wishes to optimize the vehicle range, the
energy flexibility or the financial cost of a trip. We describe these points further:

Optimal vehicle range. Suppose the vehicle has a fixed initial energy distribution between
the different energy storage units available (typically a high-voltage battery and a fuel tank). The
driver then wishes to drive as far as he/she can before stopping for a recharge. In this scenario,
we study techniques of controlling the power flow so that the vehicle reaches the furthest possible
point, i.e., it attains its maximum range.

Optimal energy flexibility. Suppose now that the vehicle has a fixed initial energy distribu-
tion and the driver wishes to drive to a reachable destination. In this context, we propose a control
technique that allows the driver to choose, at the start of the trip, the energy distribution of the
vehicle at the destination point.

Optimal cost. In this particular case, the driver has a strict preference for the cheapest form
of energy. Our investigation proposes a method for synthesizing a controller that maximizes the
usage of the cheapest energy source to achieve an inexpensive trip.

5For an analysis of the European scenario see [2].
6See [66] for a briefing on the broad issues related to electric vehicle technology.
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The novelty of this study lies in the techniques used to tackle the optimization of the power
management. These are viscosity solutions of Hamilton-Jacobi (HJ) equations, level set methods in
reachability analysis, stochastic dynamic programming (SDP), stochastic dual dynamic programming
(SDDP) and chance constrained optimal control. Another novelty of our work consists on the
introduction of the formalism of dynamic hybrid systems the the power management of the hybrid
vehicle. This work tackles the optimal power management problem with relatively sophisticated
optimal control techniques.

This document is structured in seven chapters, described as follows:

1. First Chapter: Models for Hybrid Vehicles and Power Management. This chapter
presents the necessary technical background for the study of optimal power management of
hybrid vehicles. The goal of this chapter is to regroup the details about several modeling
choices used in our work. The contents of the chapter are mainly divided into two parts: the
mathematical framework of hybrid dynamical systems and the engineering tools related to the
hybrid vehicle. Concerning the mathematical framework, the chapter introduces the general
hybrid systems framework. The optimal control of hybrid systems relevant to our application
is then described. Vis-à-vis the application, we describe the components of the vehicle model
and state the optimal power management problem as a hybrid optimal control problem.

2. Second Chapter: Optimal Stochastic Power Management. The synthesis of efficient
power management strategies for hybrid vehicles accounting for uncertainty in the vehicle
speed is at the core of this chapter. After the formulation of the optimal control problem, we
derive a stochastic dynamic programming principle from which one can obtain an algorithm
for the synthesis of optimal strategies. Next it describes the simulation model and numerical
results of the performance of different kind of control strategies.

3. Third Chapter: Stochastic Dual Dynamic Programming and Power Management.
This chapter presents a study on the potential application of a stochastic dual dynamic pro-
gramming (SDDP) algorithm to the optimal power management problem. The chapter starts
by presenting the general principles behind the SDDP and proposing an implementation of
a SDDP algorithm. In particular, attention is draw to the convexity requirements of the
optimization problem. Next, two simple numerical examples are constructed to perform a
preliminary study on the algorithm. Finally, the chapter presents a hybrid vehicle model that
is convex, therefore being adapted to the utilization of a SDDP. This convex hybrid vehicle
model is constructed based upon on a complete empirical hybrid model.

4. Fourth Chapter: Chance Constrained Power Management Strategies. In this chap-
ter we introduce a chance constrained optimal control problem that can be used to synthesize
more flexible optimal control strategies. The chapter presents general remarks about chance
constrained problems and introduces a chance constrained optimization problem in a slightly
more general formulation than that of the optimal stochastic power management, presented
in Chapter 2. Then, the power management problem formulation is adapted to better al-
low the study of chance constraints. It presents a different, but equivalent, formulation of
the optimization problem that can be solved more readily than the original formulation via
a dynamic programming algorithm. Last, it details the dynamic programming principle for
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the equivalent formulation in a form that can be readily used for the numerical synthesis of
optimal feedback using a dynamic programming algorithm.

5. Fifth Chapter: Reachability of Hybrid Systems - Theoretical Study. This chapter
contains theoretical results regarding the reachability analysis of hybrid systems. There, the
reachability set of a continuous-time hybrid system is characterized by a value function via a
level set approach. We show that the value function of a hybrid optimal control problem is the
unique solution of a system of quasi-variational inequalities in the viscosity sense. Then, we
prove the convergence of a class of numerical schemes that allow the numerical computation
of the value function. Finally, one particular scheme is implemented and numerical results are
presented.

6. Sixth Chapter: Reachability of Hybrid Systems - Hybrid Vehicle Application. This
chapter studies of the discrete-time dynamical system and the discrete-time optimal control
problem for the reachability analysis of hybrid systems. Here, the focus on the discrete-time
modeling of the hybrid system leads, instead of a system of quasi-variational inequalities, to
a discrete-time dynamic programming principle which can be used to characterize the value
function. More precisely, in this approach, the (discrete-time) reachable set is shown to be the
level set of a value function associated to a optimal control problem. This value function is
shown to satisfy a dynamic programming principle. Then, we construct an algorithm based on
this dynamic programming principle to compute the value function. Once the value function
is computed we characterize the reachable set and then use an associated minimum time
function to synthesize a feedback control that controls the system to the desired energy state.
Lastly results of some numerical simulations evaluating the autonomy both of a toy model
and realistic vehicle model are presented.

7. Seventh Chapter: Stochastic Modeling of Speed Profiles. This chapter details the
construction of a stochastic model of the speed profile for electric vehicles. This is an im-
portant step in the construction of an optimization model needed later for the synthesis and
simulation of stochastic optimal power management strategies. Additionally, a potential ap-
plication of a stochastic speed model is the forecast of the vehicle power demand in order to
obtain an estimation of the vehicle energy consumption. The speed time series is modeled
as an autoregressive (AR) model. Taking into account a navigation system that feeds infor-
mation about the route environment to the power management system, we parameterize the
forecast models to some local route parameters. After the models are identified, their perfor-
mance with respected to the energy consumption of the vehicle is studied. Also, using the
autoregressive models, a probability law of the random variable modeling the vehicle future
speed is estimated. A kernel density estimation method is used to identify discrete transition
probabilities on a sample space obtained through simulations using the AR models.
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1.1 Introduction

This chapter presents the necessary technical background for the study of optimal power man-
agement of hybrid vehicles. The goal of this chapter is to regroup the details about several modeling
choices used in our work.

The contents of the chapter are mainly divided into two parts: the mathematical framework of
hybrid dynamical systems and the engineering tools related to the hybrid vehicle. We stress that
the word hybrid appearing twice in the last sentence bears two different meanings. In the first case,
the term hybrid dynamical systems designates a general mathematical framework for modeling a
large class of phenomena. These phenomena are similar in the sense that they are governed by
continuous-time and discrete-time processes, thus the name hybrid. In the latter case, the term
hybrid vehicle refers to a vehicle having at least two on-board energy sources.

The chapter is organized as follows. First, an introduction of the hybrid dynamical systems
framework is presented. Second, the main aspects of the optimal control of hybrid systems are
analyzed, with special focus on the aspects related to our application. Following the mathematical
groundwork we start by introducing the hybrid vehicle model used throughout this study in detail.
Next, we discuss the aspects related to the vehicle navigation system. The power management
issue and, more precisely, the optimal management of power is presented. We end this chapter by
introducing uncertainty in the context of power management and discussing the associated modeling
choices.

In the following chapters we present a recall of the main points of the models used to render each
chapter self-contained. The reader is addressed to this chapter (as well as bibliographical references)
whenever details are required.

The next sections are conceived to render the Mathematical Framework and Engineering Tools
self-contained and, whenever possible, independent. We hope by proceeding as such, we can better
guide the reader to the content of his/her interest.

1.2 Hybrid Dynamical Systems

Hybrid dynamical systems (HDS) are a framework used to describe a set of phenomena governed
by interacting continuous-time and discrete-time dynamics. Intuitively, one can think of HDS as
being a family of continuous-time processes, usually modeled by ordinary differential equations, one
of which is ‘active” at any given time and an associated discrete-time transition rule between such
processes. In the case where this transition rule is controllable, HDS can be seen as systems in which
some high-level discrete dynamics allows the controller to chose a particular operation mode. The
interest in HDS arises naturally when dealing with many application, since several modern control
systems involve some high-level logical decision making process coupled with underlying low-level
continuous processes [87, 58, 33]. Some examples are flight control systems, production systems,
chemical processes and traffic management systems. The term hybrid stems from the different
nature of the evolution of the system dynamics, continuous and discrete.

The general formulation of HDS naturally include room for continuous and discrete controllers.
In the literature one finds proposed frameworks for HDS modeling [22, 59, 14]. These frameworks
vary in their degree of generality. We present our work inspired by the framework in [22] that
contains a rather general description of HDS.

In the continuous-time modeling, a dynamic programming approach for the optimal control of
hybrid dynamical systems usually leads to a value function that is a solution (in the viscosity frame-
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work) of a system of quasi-variational inequalities (SQVI). Work [14, Theorem 4.3] characterizes a
continuous value function as the unique solution of a SQVI in a viscosity sense in the particular
case where no autonomous transitions are allowed. In the case [90] they introduce a weaker notion
of solution, namely, discontinuous viscosity solution. The value function is then showed to be a
discontinuous viscosity solution of a rather general SQVI, but it fails to be the unique solution. It
is shown, however, that solutions of the SQVI share the same lower and upper envelopes.

A general uniqueness result is difficult mainly because the inequalities in the SQVI are coupled
non-locally due the action of discrete transitions. In this case, transversality conditions are imposed
to obtain better properties of trajectories near the boundary of the domain [30, 8].

Next, we expose a general description of HDS and stress some modeling points that are more
salient in our application. Later, we discuss in more detail the aspects of the optimal control of
HDS.

We start by defining a (classical) controlled dynamical system.

Definition 1.1. A controlled dynamical system is defined as Σ := [X,Γ, f, U ] where;

• X,U are topological spaces, called respectively continuous state space and continuous control
space. U is supposed to be compact;

• Γ is a topological semigroup with an identity element, usually modeling time;

• f is a transition function f : X ×U ×Γ→ X, often referred to as continuous dynamic of the
system.

Often, we shall consider dynamical systems with a state space X ⊂ IRdx , Γ = IR+ and U ⊂ IRdu ,
for dx, du ≥ 1. When given a control trajectory u : Γ → U , the dynamic f steers the state y from
the initial value x, producing a trajectory y : Γ→ X satisfying

y(0) = x, ẏ(t) = f(y(t), u(t), t), t ≥ 0. (1.1)

Such dynamical systems are referred to as continuous-time dynamical systems.

An alternative model for dynamical systems can be constructed by considering X ⊂ IRdx ,
Γ = Z+ and U ⊂ IRdu . In this case, given a control sequence {u0, u1, · · · }, and initial data x, the
state trajectory {y0, y1, · · · } satisfies

y0 = x, yt+1 = f(yt, ut, t), t ≥ 1. (1.2)

We refer to such a construction as discrete-time dynamical systems.

We present these two particular formulations because they are both employed in the vehicle
application.

Hybrid dynamical systems are defined as following.

Definition 1.2. A hybrid dynamical system (HDS) is defined as

ΣH := [Q,Σ,A,O,D,W, g] , (1.3)

where

• Set Q is a discrete set endowed with a discrete topology. Set Q is called the discrete space
state of the hybrid system. This set contains the discrete states q of the HDS.
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• Σ := {Σq}q∈Q is a family of dynamical systems, where each Σq = [Xq,Γq, fq, Uq] is defined as
in Definition 1.1.

• Collection A := {Aq}q∈Q, where each Aq ∈ Xq, is the autonomous transitions set.

• Collection O := {Oq}q∈Q, where each Oq ∈ Xq, is the optional transitions set.

• Collection D := {Dq}q∈Q, where each Dq ∈ Xq, is the transition landing set.

• Collection W := {Wq}q∈Q, where each Wq, is called discrete control set. Each Wq describes
the possible transitions from state q to other states in Q.

• Denoting X = {Xq}q∈Q, function g : X×Q×W→ D×Q is the discrete transition dynamics,
or shortly, discrete dynamics.

Remark 1.1. For notation convenience, to denote that the discrete mode q is active, we may
employ an index notation such as fq or a function notation as in f(q).

Remark 1.2. This remark seeks to clarify the nomenclature employed throughout this work.
More precisely, the remark is made to stress the distinction between what we mean by continuous,
continuous-time, discrete and discrete-time.

When using the framework of HDS, there are two kinds of dynamics: the continuous dynam-
ics and discrete dynamics. In Definition 1.2, what is referred to as continuous dynamics groups
the family of classical dynamical systems Σ, in particular the continuous state spaces Xq, the con-
tinuous control spaces Uq and the continuous dynamics fq. We stress here that the continuous
dynamics fq can be a discrete-time dynamics as in Equation 1.2. Otherwise said, even if Σ con-
sists of discrete-time dynamical systems, its elements are referred to as continuous state, continuous
control, continuous trajectory, etc. In particular, even if the trajectory y and control u are defined
by sequences {y0, y1, · · · } and {u0, u1, · · · } they are called the continuous trajectory and control,
respectively.

The term discrete dynamics refers to the transition function g and the term discrete state space
refers to Q. Also, the family of discrete control spaces is W.

At this point we explain briefly the typical behavior of HDS avoiding technicalities that are
addressed later on. The state of the system is at first steered by one of the classical dynamical
systems, say, q1 ∈ Q. At a given time τ , the system undergoes a transition. Set Wq contains the
available discrete controls at when discrete state q1 is active. Given w ∈W , the next discrete mode
of operation q2 and the next state value y(τ+) ∈ Dq2 are then given by the value of g(y(τ), q1, w).
This procedure then can be iterated.

With respect to the nature of the transition, they can be categorized in the following manner.
A transition is called a jump or impulse if there is discontinuity in the state trajectory, i.e., y(τ) 6=
y(τ+). Otherwise, if the trajectory remains continuous, the transition is referred to as a switch.
Transitions can be further classified into autonomous or optional according to whether the state
trajectory is inside an autonomous or optional transition set. Indeed, transition can only occur
when the state trajectory reaches one set in the collection A

⋃
O. If the trajectory reaches A it

must necessarily undergo a transition. However, if trajectory reaches O it is left to the controller
to decide whether to perform a mode transition or not.

Remark 1.3. Definition 1.2 is indeed very general and encompasses a large class of systems.
Notice that topological spaces Xq may be quite different from each other, as well as control sets Uq.
Defined as such, each mode of operation can model distinct underlying physical processes, such as
temperature variation, flow adjustment or concentration control in a solution.

The HDS framework allows for a more specific structure aimed at modeling specific behavior of
the physical processes underlying the model. For instance, one may include state constraints or a
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time delay between autonomous and/or optional transitions. Also, one may wish to produce outputs
associated to the continuous or discrete states and/or transitions.

We briefly expose some classical hypothesis on the elements composing a hybrid system ΣH .
This is intended only to complete the general HDS explanation given in this chapter. Because the
technical requirements must be adapted to the specific hybrid system in consideration the hypothesis
used in each case are explained and detailed in the corresponding chapters.

One needs to ensure that trajectories are well defined for each mode of operation of the HDS.
In other words, for all q ∈ Q, the dynamical system Σq must be well defined.

Hypothesis 1.1. For each q ∈ Q, the continuous control is a measurable function u : Γq → Uq
such that

u(t) ∈ Uq for a.e. t ∈ Γq.

Hypothesis 1.2. For each q ∈ Q, fq(·, ·, ·) : Xq × Uq × Γ → Xq is continuous and there exists
Lf > 0 such that

‖ fq(y, u, t)− fq(y′, u, t) ‖ ≤ Lf‖ y − y′ ‖, ‖ fq(y, u, t) ‖ ≤ Lf (1.4)

for all t ∈ Γq, y, y′ ∈ Xq and u ∈ Uq.

Hypothesis 1.3. There exists Lg such that ‖ Lg ‖ > 0 and

‖ g(y, q, w) ‖ ≤ Lg, ∀q ∈ Q,∀y ∈ X and ∀w ∈W.

Moreover, for all q ∈ Q and w ∈W, g(·, q, w) is continuous.

In the case Γ = IR+ of continuous-time dynamical systems, Hypothesis 1.1, 1.2 ensure that the
trajectory y satisfying 1.1 exists, is unique and y ∈ W 1,1([0, T ]), with 0 < T < ∞. If Γ = Z+,
Hypothesis 1.2 ensures a bounded variation from state yt+1 to yt. Hypothesis 1.3 avoids jumping
into infinity whenever D is not bounded or there are infinite many processes.

The next hypothesis concerns the transition phenomena.

Hypothesis 1.4. For all q ∈ Q, sets Aq, Oq and Dq are closed.

Hypothesis 1.5. For all q ∈ Q, Aq ∩Dq = ∅.

Hypothesis 1.6. For all q ∈ Q, Aq ∩Oq = ∅.

Hypothesis 1.4 ensures that transition times are well defined. Hypothesis 1.5, 1.6 avoid the
merging of several autonomous transitions and autonomous and optional transitions occurring at
the same time.

The next hypothesis are known as transversality conditions.

Hypothesis 1.7. For each q ∈ Q, boundary ∂Xq is smooth. Moreover, denoting n(x) the unit
inward-pointing normal vector at x ∈ ∂Xq,

fq(y, u, t) · n(y) ≥ 0, ∀y ∈ ∂Xq \ ∂Aq,∀t ∈ Γq, ∀u ∈ Uq. (1.5)

Hypothesis 1.8. For each q ∈ Q, boundary ∂Aq is smooth and there exists α > 0 such that

fq(y, u, t) · n(y) > α, ∀y ∈ ∂Aq,∀t ∈ Γq,∀u ∈ Uq. (1.6)
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Hypothesis 1.7 forbids the system of leaving space Xq by continuous evolution. Hypothesis
1.8 ensures that the trajectory never approaches the boundary of sets Aq tangentially avoiding
pathological behavior of the trajectory near the boundary ∂Aq. Similar transversality conditions
on ∂Oq may also be considered in some systems.

As mentioned, in specific cases additional properties of the HDS are needed, such as convexity
properties, which require further hypothesis. They shall be presented whenever required.

We present now the concept of hybrid control. The main idea if that the hybrid control groups
a continuous control trajectory and a discrete control sequence. Thus, given a hybrid control one
may obtain a hybrid trajectory for the HDS.

As mentioned, the continuous control is a measurable function u valued in a compact set Uq
that depends on the mode that is currently active. The discrete control is a sequence of transition
decisions

w =
{

(w1, s1), · · · , (wi, si), (wi+1, si+1), · · ·
}
, (1.7)

where each si ∈ Γ and wi ∈ Wq(s−i ). The sequence of discrete transition decisions {wi}i>0 is
associated with a sequence of switching times {si}i>0 where each decision wi is exerted at time si.
The set of available discrete decisions, at time s, Wq(s), depends on the active mode of operation
at the time s, denoted by q(s). We denote by hybrid control the control a := (u,w) grouping both
the continuous control and discrete transition decision sequence.

In the following of the document, we restrict our presentation to finite horizon problems. Also,
we assume, for sake of simplicity, that all Γq ≡ Γ.

The behavior of the trajectory of a HDS, summarized above, can be synthesized as following.
Fix T > 0 and consider Γ = IR+. Given a hybrid control a ∈ A with N switch orders and given
q0 ∈ Q, x := y(s+

0 ) ∈ Xq0 , the hybrid trajectory, denoted by (y(·), q(·)), verifies

ẏ(τ) = f(y(τ), u(τ), τ, qi−1), τ ∈ [si−1, si], (1.8a)
y(s+

i ) = g|X(y(s−i ), q(si−1), wi) (1.8b)
q(si) = g|Q(y(s−i ), q(si−1), wi), q(s0) = q0, i = 1, · · · , N. (1.8c)

Here, g|X and g|Q denotes the projections of g onto D and Q respectively, i.e., g = (g|X , g|Q).

In the case Γ = Z+ the system is

yτ+1 = f(yτ , uτ , τ, qi−1), τ ∈ {si−1, si}, (1.9a)
ysi+1 = g|X(ysi , qsi−1 , wi) (1.9b)
qsi = g|Q(ysi , qsi−1 , wi), qs0 = q0, i = 1, · · · , N. (1.9c)

The hybrid trajectory groups the continuous trajectory y and the discrete trajectory q.

The notion of admissible hybrid control depends on the conditions that must verify the trajecto-
ries of the associated HDS. In a general case, a natural way to define an admissible hybrid control
is as follows:

Definition 1.3. Given 0 < t ∈ Γ, a hybrid control a = (u,w) is said to be admissible if the
continuous control verifies 1.1 and the discrete control sequence w = {wi, si}i>0 has increasing
decision times

0 ≡ s0 ≤ s1 ≤ s2 ≤ · · · ≤ si ≤ si+1 ≤ · · · ≤ T, (1.10)

and admissible decisions
∀i > 0, wi ∈Wq(si). (1.11)
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Moreover, given q ∈ Q, x ∈ Xq and a continuous control u(·), define the following hitting times:

T A(x, q, u(·)) = inf {t | y(t) ∈ Aq} , (1.12)
T O(x, q, u(·)) = inf {t | y(t) ∈ Oq} , (1.13)

where y(·) satisfies
ẏ(t) = fq(y(t), u(t), t)

with initial condition x. Then, the transition times must verify

min
(
T A(y(s+

i ), qi, u(·)), T O(y(s+
i ), qi, u(·))

)
≤ si+1 − si ≤ T A(y(s+

i ), qi, u(·)). (1.14)

We denote by A the set of all admissible hybrid controls.

Remark 1.4. One remark immediately that, if an infinite number of transitions is ruled out by
the appropriated assumptions, in the finite horizon setting, the discrete transition sequence has a
finite number of transitions.

It is of course possible to add other conditions in the definition of admissibility for hybrid
controls. Once more, it is the nature of hybrid phenomena underlying the HDS model that dictates
what conditions are taken into account in Definition 1.3. Admissible hybrid trajectories are defined
as hybrid trajectories satisfying Equations (1.8a)-(1.8c) engendered by admissible hybrid controls
a ∈ A. In the next section, the search for an optimal hybrid trajectory is made only within the set
of admissible hybrid trajectories.

We turn now our attention to the formulation of a hybrid optimal control problem.

1.3 Optimal Control of Hybrid Systems

After introducing some basic terminology and notation of hybrid dynamical systems, we focus
on the optimal control of the continuous-time hybrid systems. This allows to point out the main
features of this class of systems.

The cost functional associated to hybrid systems has also a hybrid-like structure. Generally,
one may consider a running cost function whenever a continuous operation of the system is in place
and place a penalty on each transition made. In this sense, we introduce a discrete cost function
ρ : X×Q×W→ IR+ and, a continuous cost function l : X× U × Γ×Q→ IR+.

In a similar manner, we present usual hypothesis on functions l and ρ.

Hypothesis 1.9. There exists Ll > 0 such that

‖ lq(y, u, t)− lq(y′, u, t) ‖ ≤ Ll‖ y − y′ ‖, ‖ lq(y, u, t) ‖ ≤ Ll (1.15)

for all t ∈ Γq, y, y′ ∈ Xq and u ∈ Uq.

Hypothesis 1.10. There exists Lρ, L′ρ > 0 such that

L′ρ < ρ(y, q, w) < Lρ, ∀y ∈ X,∀q ∈ Q,∀w ∈W. (1.16)

Hypothesis 1.9, 1.10 are introduced to avoid technical difficulties, such as an infinite number of
jumps over a finite time period or several jumps accumulating at a single time instant. They can
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be interchanged for other appropriated assumptions. For instance, one may have a zero transition
cost if one assumes that two consecutive transitions must be separated by a positive time interval.

Fixing 0 < T ∈ Γ and given initial states q ∈ Q and x ∈ Xq and an admissible hybrid control
a ∈ A, one can define the total operating cost by

J(0, x, q, a) =
∫ T

0
l(y(τ), u(τ), τ, q(τ)) dτ +

N∑
i=1

ρ(y(s−i ), q(si−1), wi). (1.17)

This total operating cost is used as a criterion to determine the optimality of a hybrid control. An
optimal hybrid control a∗ is defined as a control such that

J(0, x, q, a∗) ≤ J(0, x, q, a) (1.18)

for any a ∈ A.

The optimal control of HDS can have two different approaches. The first approach is a dynamic
programming approach while the second is a (hybrid) maximum principle approach. This latter
method seek to extend the Pontryagin’s optimality conditions [68] established for classical dynamical
systems to the HDS framework. We can refer the interested reader to [40, 5, 25, 84] for related work
in the area. Our optimal control formulation is described in terms of the dynamic programming
(DP) principle [11, 12].

The total operation cost functional for a system starting with initial states q ∈ Q and x ∈ Xq

at an arbitrary time t ∈ (0, T ] ∩ Γ, given a hybrid control a ∈ A is

J(t, x, q, a) =
∫ T

t
l(y(τ), u(τ), τ, q(τ)) dτ +

N∑
i=i∗

ρ(y(s−i ), q(si−1), wi). (1.19)

where (y(·), q(·)) is solution of (1.8a)-(1.8c) and i∗ = inf{1, · · · , N | s∗i ≥ t}.

A central concept in DP approach is the value function v : Γ × X × Q. The value function is
defined as the optimal cost of operation,

v(t, x, q) = inf
a∈A

J(t, x, q, a). (1.20)

Remark 1.5. As a consequence of the regularity of cost functionals l and ρ assumed by Hypothesis
1.1-1.10, the value function is bounded. More specifically, this is a direct consequence of the bounds
on l and ρ and the finiteness on the number of possible transitions.

Remark 1.6. Discontinuities in the value function may arise due possible discontinuous transition
costs ρ. Also, if one not consider transversality conditions on sets in O, the value function may in
general be discontinuous (see [90, Example 2.12] for an example). In a similar manner, the presence
of sets A without a transversality condition like Hypothesis 1.8 may also engender a discontinuous
value function.

We suggest an approach that consists in the formulation of a optimal hybrid control problem
without transversality conditions, whose value function is Lipschitz. The problem is formulated in
terms of obstacle functions, following the approach used in [17]. We described the formulation in
detail in Chapter 5.

We shall present next a version of the dynamic programming principle verified by the value
function defined in 1.20. As the objective of this exposition is only to enable a discussion about the
main elements around the optimal control of HDS, we voluntarily omit specific technicalities. We
direct the reader in the quest for more detail to the references at the end of the chapter.

In the framework constructed in our general presentation it is worth to separate the influence
of the (admissible) hybrid control on the trajectory in three mutually exclusive cases:
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1. The trajectory hits a set A ∈ A, therefore, requiring the system to perform a transition;

2. The trajectory enters a set O ∈ O and may or may not perform a transition;

3. The trajectory is outside A ∪O and it is influenced only by the continuous control.

From definition (1.20), the value function is the optimal with respect to all admissible hybrid
controls. Therefore, an optimal hybrid control must optimize all the three cases above. This implies
in saying that the value function must verify, in some sense, the inequalities (considering Γ = IR+)

1.
v(t, x, q) ≤ ρ(x, q, w) + v(t, g(x, q, w)) (1.21)

for all t > 0, ∀x ∈ Aq and ∀w ∈Wq;

2.
v(t, x, q) ≤ ρ(x, q, w) + v(t, g(x, q, w)) (1.22)

for all t > 0, ∀x ∈ Oq and ∀w ∈Wq;

3.
∂tv(t, x, q) ≤ l(x, u, t, q) + f(x, u, t, q) · ∂xv(t, x, q) (1.23)

for all t > 0, ∀x /∈ Aq and ∀u ∈ Uq.

Inequalities (1.21)-(1.23) form a system of quasi-variational inequalities (SQVI).

The dynamic programming principle can be seen as a statement linking global optimality with
local optimality, in the sense that a global optimal trajectory is everywhere locally optimal. Thus,
at some point (t, x, q), one of inequalities (1.21)-(1.23) must be tight, depending on the location of
x in the state space Xq. Of course, one still need to establish the correct framework in which the
value function is expected to verify (1.21)-(1.23). These remarks summarize the main ideas behind
the dynamic programming principle for the value function of a hybrid optimal control problem.

Let us introduce some usual and helpful notation. Define the optimal transition operator M as

(Mv)(t, x, q) = inf
w∈Wq

{
ρ(x, q, w) + v(t, g(x, q, w))

}
. (1.24)

In other words, the action of M in v produces an optimal transition.

Now, consider the following system of partial differential equations (PDEs):

max
(
v(t, x, q)− (Mv)(t, x, q) , ∂tv(t, x, q) +H(t, x, q, ∂xv)

)
= 0 in Ac (1.25)

v(t, x, q)− (Mv)(t, x, q) = 0 on ∂Ac, (1.26)

where Ac and ∂A denotes the collection of all the complementary sets and boundaries of sets in A,
respectively and the Hamiltonian H is defined as

H(t, x, q, p) = sup
u∈Uq

{
−l(x, u, t, q)− f(x, u, t, q) · p

}
. (1.27)

The system (1.25)-(1.26) arising from the SQVI (1.21)-(1.23) can be seen as a system of
Hamilton-Jacobi (HJ) equations, coupled by a non-local operator serving as a variable bound-
ary condition on the domain Ac. It is a system of PDEs because one has one couple of equations
(1.25)-(1.26) for each q ∈ Q. Since (1.25)-(1.26) play the role of HJ equations, one can use the
usual procedure of characterizing the value function via finding the solution of the HJ equations in
the viscosity sense [31]. This approach requires uniqueness for the solution of (1.25)-(1.26), usually
obtained in the form of a comparison principle. Once a uniqueness result is established, an appro-
priate numerical scheme allows the computation of the value function by solving a discretization of
(1.25)-(1.26).
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1.4 Hybrid Vehicle Model

This section presents in some detail the vehicle model used throughout the document.

Broadly speaking, hybrid vehicles are vehicles that group at least two energy sources whose
produced power is directed to move the vehicle. According to [63], a hybrid vehicle means “a
vehicle propelled by a combination of an electric motor and an internal combustion engine or other
power source and components thereof.” A more general definition is given by [39]: “A hybrid vehicle
is a vehicle equipped with at least two energy sources for traction purpose.” Therefore, although one
lacks a general precise definition of hybrid vehicles, there is not much loss using the intuitive idea
of a vehicle two energy sources collaborating to the movement of the vehicle.

At this date, there are several types of power-train architectures varying on how the electric and
mechanic power flows are linked together to produce movement of the vehicle and the dimensions
of the specific power-train components, such as batteries, electric motors and internal combustion
engines. There is vast documentation on the several types of hybrid vehicles engineered today on
the Internet. As our objective is not to produce a detailed account of the different types of hybrid
vehicles, we skip a lengthy exposition on the subject. The interested reader should experience no
difficulty in finding adequate material. We direct to [73] for an exposition of hybrid vehicles directed
towards the optimal control thereof.

In this section, we focus on one particular hybrid vehicle model, namely, the range extender
electric vehicle (REEV). The REEV consists mainly of an electric vehicle with a small-dimensioned
internal combustion engine (ICE). The ICE is connected to a fuel tank and to a generator. The
fuel tank acts as a reservoir for the fuel that is consumed by the ICE. The generator transforms the
mechanical movement of the ICE into electric current, which can in turn be supplied to the main
high-voltage network of the electric vehicle (cf. Figure 1.1).

This type of architecture configures a series hybrid architecture. The main point of the config-
uration is that there is no mechanical link between the vehicle wheels and the ICE (otherwise, the
configuration is designated, not surprisingly, as a parallel hybrid architecture).

The ensemble of the tank, ICE and generator composes the range extender (RE) module.

battery AC � DC electric motor vehicle

generator

ICEfuel tank

battery AC � DC electric motor vehicle

generator

ICEfuel tank electric link
mechanic link

range extender
electric vehicle

Figure 1.1 – Diagram sketching the series architecture of the range extender electric vehicle model used in
this study.

The feature that characterizes the RE module is that the RE cannot move the vehicle solely by
itself. In other words, the electric current exiting the generator is not enough to ensure that the
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vehicle can operate in its nominal mode. Acting alone, the RE can, however, operate the vehicle in
a degenerated mode with limited vehicle maximum speed and acceleration.

Besides the extra electric current arriving from the RE module, the REEV works exactly as
an electric vehicle (EV). The movement of an EV is produced by at least one electric motor me-
chanically linked to the vehicle wheels. The electric motor is controlled by an alternating electric
current (AC) fed in the high-voltage network of the vehicle. This electric current is generated by
the voltage drop induced in the network by a high-voltage battery. In the REEV configuration, the
battery acts as the main power source for the vehicle and the RE as a auxiliary power source.

We now describe in more detail the REEV model. In particular, we are interested in how the
available energy varies as a function of vehicle parameters and variables. We refer to [44] for a
complete exposition and a broader discussion.

1.4.1 Newton’s Equation

One way of establishing a dynamic model for the REEV is to consider Newton’s second law of
motion

F (t) = d(mv(t))
dt

= mv̇. (1.28)

Here, m is the mass of the vehicle (assumed to be constant in time) and v(·) is the function of
the vehicle speed relatively to the ground with respect to time. F (t) is the resulting force applied
to the vehicle as a function of time. We assume that F and v have the same direction, horizontal
to the ground, and the ground is an inertial reference frame.

At each time, the total force acting upon the vehicle can be decomposed into four terms

F = Fg + Ff + Fa + Fd. (1.29)

The terms are:

• Gravitational forces Fg. This term is the contribution of terrain inclination that causes a
component of the weight of the vehicle to contribute to the forces horizontal to the ground

Fg = mg0 sinα, (1.30)

where α is the ground inclination and g0 is the standard gravity.

• Friction forces Ff . Friction forces are caused by the friction between the tire and the ground.
They are modeled as

Ff = mg0(C0 + C1v), (1.31)

where C0, C1 are friction coefficients obtained empirically.

• Aerodynamic forces Fa. These are resistive forces provoked by the air flow surrounding the
vehicle. They are described by the expression

Fa = ρCxSF (v − v0)2. (1.32)

In this expression, ρ is the air density, SF is the frontal vehicle surface in contact with the air
flow, Cx is a drag coefficient dependent on the form of the contact surface and v0 is the wind
speed with respect projected onto the vehicle horizontal axis.
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• Dynamic forces Fd. This is the force that is generated by the vehicle power-train. The dynamic
forces are directed to the vehicle wheels and are given in terms of the torque produced at the
wheel:

Fd = Td
rwheel

. (1.33)

The wheel radius is denoted by rwheel. The torque Td has contributions from a traction term
and a brake term, yielding

Td = Ttraction + Tbrake. (1.34)

The term Ttraction ∈ IR can be positive (for instance, when the vehicle is being propelled
forward by consuming fuel), negative (e.g. when the accelerator pedal is not pressed and
the vehicle has to cope with the power chain components inertia) or zero (for example, in
a negative slope where the weigh of the vehicle compensates the inertia of the power chain
components). The term Tbreak ≤ 0 comes from the torque exercised on the wheels by the
braking system and is non-positive.

All constants and coefficients in expressions (1.30)-(1.33) are empirically measured and are
therefore consider known and fixed. From (1.28), we write the instant torque from the power-train
as a function of the vehicle speed and acceleration under the form

Td = rwheel (mv̇ − Fa(v)− Ff (v)− Fg) . (1.35)

Now we proceed to link the energy consumption in the battery and in the RE with the torque
delivered at the vehicle wheels. To achieve that, we give a dynamic model for each component of
the power-chain.

1.4.2 Gearbox, Electric Motor and AC/DC Converter

The electric motor is linked to the vehicle wheels by a gearbox and a differential. The gearbox
reduces the rotational speed of the electric motor to be delivered to the differential. The differential
allows the left and right wheels to rotate at different speeds, which is required when the vehicle is
turning. The electric motor is connected mechanically in the gearbox shaft. As such, they share
the same rotational speed ωgb = ωem. In our model, there is only one fixed reduction ratio. This
can be modeled as ωem = ωwheelRgb, where ωem and ωwheel are the rotational speeds of the electric
motor and the vehicle wheels respectively and Rgb < 1 is a fixed reduction ratio. To account for
the friction present in the cogwheels that ensure the transmission in the gearbox, we introduce a
efficiency term ηgb ≈ 0.95. Therefore, to engender a total power output of Ttractionωwheel from the
gearbox into the wheels, the total power the electric motor must provide is

Temωem = Ttractionωwheelη
−sign(Tem)
gb , (1.36)

yielding

Ttraction = TemRgbη
sign(Tem)
gb . (1.37)

The electric motor transforms the input power, in the form of electric current, into mechanical
power, in the form of mechanical torque. The model used in this work is based upon a cartography
of the electric motor together with the AC/DC converter. This means that, from our point of view,
the electric power entering the AC/DC converter will be transformed in mechanical power exiting
the electric motor discounted for the losses in between. The losses are modeled in terms of an
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efficiency coefficient ηem < 1 (cf. Figure ) that depends on the electric motor speed and generated
torque. This leads to

InetworkUnetwork = Temωemηem(Tem, ωem)−sign(Tem), (1.38)

which, together with (1.37) yields

Pnetwork = Ttractionωwheel(ηgbηem(Ttraction, ωwheel))−sign(Ttraction). (1.39)
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This is the full expression of the electric power on the high-voltage network of the vehicle, given
a power demand on the wheel. Otherwise said, when the driver requires some power at the wheel
(by controlling the brakes and the accelerator), Pnetwork is the power that is present in the high-
voltage network. Remark that Pnetwork may be negative. This means that energy is injected into
the high-voltage network, effectively charging the battery.

The next step comes from the observation that this power is the contribution of any power
produced in the RE and in the battery.

Pnetwork = PRE + Pbat. (1.40)

We discuss this two terms next.

1.4.3 Range Extender

The ICE in the RE is mechanically attached to the generator. Thus, for a given mechanical
power output of the ICE, there is an electric power output of the generator. The ratio between the
mechanical power produced by the ICE and the electric power arriving in the high-voltage network
is the RE efficiency. Otherwise put, for a RE efficiency ηRE < 1,

PRE→network = TREωREηRE(TRE, ωRE), (1.41)

where the power produced in the ICE is PRE = TREωRE.

In order to produce any power, the ICE needs to consume a certain mass of fuel. The mass
variation needed to produce a given power PRE is also given by a cartography and modeled as
an efficiency coefficient ηfuel. The efficiency on the fuel consumption is a function of the torque
generated by the ICE and the engine speed. To adjust for different units we need to introduce the
specific heat of combustion of the fuel Hfuel. Then, the mass variation reads

ṁfuel(TRE, ωRE) = TREωRE
Hfuelηfuel(TRE, ωRE) . (1.42)
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1.4.4 Battery

The battery is a key element in hybrid vehicle and electric vehicle technology. This component
is responsible to transform chemical energy into electric energy that can be used to move the
vehicle. Although an electro-chemical modeling of the battery is possible, they reveal themselves in
practice computationally intensive and therefore are judged not well suited for the purposes of our
application. A very common modeling approach is the equivalent circuit approach. In this approach,
the battery is viewed as en equivalent electric circuit whose configuration allows to reproduce to
some extent the battery behavior.

A high-voltage battery is composed by an association of cells. A cell is the smallest charge
storage component in a battery. The chemical composition of a cell and the type of the assemblage
used configures a certain type of battery.

In this study we consider a simple battery cell model. This is a steady-state model consists of
a voltage source Uoc linked in series with a resistance Rbat as depicted in Figure 1.2.

Rbat

Uoc
Ibat

U
Figure 1.2 – Equivalent-circuit model
of the battery cells.

This model is characterized by the following quantities:

1. The open circuit voltage Uoc. This is the equilibrium potential of the battery. For a given
battery, it depends only on the charge. However, it can have different values for different
batteries because of the number of cells and the construction methods employed.

2. The internal resistance Rbat. This resistance accounts for the resistance in connections, the
battery terminals, electrodes and electrolytes. Additionally, this term groups electric resis-
tance arising from the chemical reactions and ionic concentration gradients inside the cell.

3. The nominal battery maximum charge capacity Qbat. This nominal quantity represents the
maximum charge that the battery can have obtained after fixed conditions. Indeed, the
maximum charge, and thus, maximum energy that the battery is able to store is a variable
quantity. Factors such as mean discharge current, discharge time, self-discharge time and
overall cells health influence the value of the maximum energy storage capacity of the battery.
Therefore, a nominal value for the battery maximum storage capacity is needed for practical
reasons.

4. The state of charge (SOC) sbat. The state of charge is an image of the remaining energy in
the battery. It is the ratio of the quantity of charge left in the battery and the maximum
charge that the battery can contain. However, as mentioned, the maximum possible charge is
a very variable quantity. It depends in particular of the charge and discharge cycles used in
the battery life. This is the reason why one usually works with a particular value of maximum
charge, namely, the nominal battery capacity. The SOC is a normalized by the nominal capac-
ity Qbat, thus, theoretically ranging from 0 to 1. Although the SOC represents the remainder
of the energy in the battery, the link between the two quantities is not straightforward. It
is still an open challenge an accurate physical measure of the SOC. In practice, the SOC is
estimated using a battery model and measuring other quantities.

From Figure 1.2 one can readily write the relation linking Uoc, Rbat, the voltage at the battery
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terminals U and the circuit current Ibat:

Uoc = U +RbatIbat. (1.43)

The power delivered by the battery is Pbat = IbatU . Together with (1.43), solving for U one obtains

U = Uoc +
√
U2

oc − 4PbatRbat
2 , (1.44)

where we only keep the greater value (with a +) because is the only physically meaningful solution.

An expression for the electric current is then obtained using (1.43):

Ibat = Uoc −
√
U2

oc − 4PbatRbat
2Rbat

. (1.45)

Now we establish the link between the instant SOC and the instant electric current Ibat. By the
SOC’s definition,

ṡbat(t) = −Ibat(t)
Qbat

ηbat(sbat(t))−sign(Ibat(t)), (1.46)

where the current Ibat is the instant charge variation in the cells at time t. Here we choose the
convention that Ibat > 0 is a discharge current, depleting the charge in the battery. Otherwise,
Ibat < 0 is a charge current, increasing the SOC level. The factor ηbat is the charge/discharge
battery efficiency and depends on whether the current is charging the battery or discharging and
depends on the SOC level.

Finally, together with (1.45), one obtains a differential equation for the SOC (omitting the time
dependence),

ṡbat = −Uoc(sbat)−
√
U2

oc(sbat)− 4PbatRbat(sbat)
2Rbat(sbat)Qbat

η(sbat), (1.47)

where we write η(sbat) := ηbat(sbat)−sign(sbat) to shorten notation.

In Expression (1.47) we explicit the SOC dependence of the parameters of the battery, Uoc
and Rbat. The function of these parameters on the SOC may be obtained by further detailed
models of the components or empirically. In our study, we use measured cartographies for functions
Uoc(sbat), Rbat(sbat).

Remark 1.7. We stress here that we a consider a relatively simple battery model. In particular,
we neglect thermal influence on the battery behavior. Indeed, the temperature is known to affect the
electro-chemical reactions in the battery. In a equivalent-circuit modeling, this means that the value
of the circuit components depends on the cell temperature, in addition to the SOC. These effects
are of considerable magnitude and should to be taken into account in a battery model used for real
applications. We refer to [47, 49] for an equivalent-circuit modeling where thermal effects are taken
into account.

1.5 Navigation System

A novelty in our approach to power management in hybrid vehicles is the active utilization of
a navigation system (NAV). It is generally believed that the presence of NAV systems in cars will
experiment a growth in the near future. This phenomena may be accentuated by the rising levels
of information integration present in today’s cars and new future applications. We refer to [85] for
an analysis of the typical usage of NAV systems in cars.
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Of the many questions surrounding NAV systems, this work focus on the NAV as a information-
providing tool, able to deliver exploitable data to a processor in order to smarter energy usage by
the vehicle. The importance of this feature in hybrid and electric vehicles is paramount. For this
reason, we briefly present overall information about NAV systems and detail how they are integrated
in the power management of hybrid vehicles.

In the light of out application, a navigation system has two main features:

1. Given an origin point and a destination point, the NAV can suggest a route linking the origin
and the destination from a given local cartography. A typical utilization scenario is where the
origin point is the current geographic location of the vehicle and the driver enters a desired
destination in a map. A route is then obtained by the NAV system by optimizing a given
criteria, typically the route length, trip time or energy consumption. This implies that the
NAV has access to a processor able to perform such computations and a database containing
cartographies and related information.

2. The NAV system has access to the current location of the vehicle. Usually this information
is in the form of absolute coordinates in the surface of the Earth. This is, however, made
more meaningful by placing the vehicle relatively to a local cartography. In particular, given
a route suggested by the NAV, the vehicle location can be given relatively to a point in this
route. Additionally, the NAV system can also provide the instant speed of the vehicle.

This features are illustrated in Figure 1.3(a).
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(a) Figure illustrating the main features of the NAV sys-
tem for the power management application. The figure
presents a local map (black) where it points out the origin
point O, the destination point D, a route suggested by the
NAV (green) and the vehicle current position (red) along
the route. The NAV route is divided into nodes and links.
The nodes are marked in blue and two consecutive nodes
define a link.
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(b) Example of NAV speed profile. The NAV speed profile
is the NAV recommended cruise speed as a function of the
distance from the origin node of the route. The red dots
coincide with the route nodes.

We now explain in more detail how the available NAV information is used in the optimization
process.

The route suggested by the NAV is composed of links and nodes. Each link represents a segment
of the route. A node is a specific point along the route. A link is defined by an entry node and an
exit node. Thus, a route with K has K + 1 nodes. We shall denote nodes by the index k, ranging
from 0, · · · ,K.

The NAV system provides information about some of the attributes of the links composing the
route. The two most relevant (and only) attributes used in this study are the suggested cruise speed
and the length of the link. The suggested cruise speed, referred to as NAV speed is a driving speed
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suggested to the driver according to traffic conditions, route location, weather conditions and alike.
They are valued 20km/h, 40km/h, 60km/h, 80km/h, 100km/h or 120km/h. For a given route, the
collection of suggested cruise speed in each link is called NAV speed profile. Figure 1.3(b) gives an
example of such profile.

In this study, the NAV speed profile serve two main purposes:

• In the deterministic setting, we assume the vehicle follows a the NAV speed. Indeed, after
adjusting for realistic acceleration and deceleration the speed of the vehicle between links is
assumed to be constant.
In this deterministic setting, denoting by dk the distance between nodes k−1 and k and σk > 0
the (constant) vehicle speed between nodes k− 1 and k, the total time to drive between k− 1
and k is given by dk/σk. This transformation allows us to obtain the vehicle quantities both
as a function of the distance from the origin and the time since departure. In particular, the
deterministic optimization problems in this work can be equivalently stated in terms of time
(time since departure) and space distance from origin.

• For the stochastic optimization algorithms, the speed of the vehicle at future times is consid-
ered to be a random variable. This random variable is modeled as a random deviation from
the NAV speed (cf. Chapter 7 for details on the stochastic model construction). The rationale
behind this model is that the suggested speed contains relevant information about the link’s
surrounding environment such as speed limit and street type (e.g. highway, freeway, urban).
For that reason, although the vehicle will not likely have the exact NAV speed, it will not be
far from it, specially if the NAV is actively suggesting a cruise speed.

Remark 1.8. If one wishes to apply a control sequence to the vehicle it is well advised to evaluate
each control as a function of the position along the path, rather than as a function of the time since
departure. In the case where the vehicle speed is known beforehand, this question is irrelevant and the
choice of a space discretization instead of a time discretization is due the nature of the information
present in the NAV system. In other words, the RE control are a function of the position of the
vehicle on the route, and not the time since departure. If one knowns with certainty the vehicle
speed, then the two formulations are equivalent. However, the choice of a discretization in space is
justified by the possibility of readily transposing the optimal control problem presented in this work
if one wishes to consider the vehicle speed as a random variable. Indeed, if the exact vehicle speed
is unknown, there is no sense in synthesizing a controller that is applied a certain time after the
departure as the vehicle actual position along the path cannot be determined with certainty. In this
stochastic framework, there is no certain vehicle speed and one is unable to transform the control
as a function of distance from departure into a control as a function of time.

1.6 Optimal Control and Power Management Systems

This section is aimed at presenting our formulation of the optimal control problem for the power
management on hybrid vehicles. We structure this presentation in the following form. We first
introduce a general optimal control problem in an abstract framework. Then, we define power
management for hybrid vehicles. Finally, using the model developed in Section 1.4 we formulate
the optimal power management problem in the abstract framework established earlier.

In this section, our focus is the problem statement. To simplify the exposition, this is done
in a deterministic modeling framework. In the cadre of our work, this is equivalent to say that
we consider a known function of the power demand in the high-voltage network Pnetwork. In other
words, we consider that, between times 0 and t, the driver action on the accelerator and brake
pedals, i.e. the driving profile, is perfectly known. We shall come to that assumption later in the
document (Section 2.2).
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1.6.1 Power Management of Hybrid Vehicles

In this paragraph we define power management of hybrid vehicles and state the problem of
optimal power management as an hybrid optimal control problem.

In the automobile industry, the power management of the vehicle bears a larger meaning than
the one used in this work. In the broader sense, the power management of a vehicle deals with
all aspects of energy storage, distribution and usage within a vehicle. This may include thermal
management for cockpit thermal comfort or engine performance, energy routing in the low-voltage
network to auxiliaries such as lights, sensors, processors and electronic actuators, water cooling
system and management of power-electronics components in the high-voltage network. In this work,
whenever the term power management is used, it means high-level control of the power sources in
the vehicle to meet the power demand requested by the driver. “High-level control” means that we
are interested in set-points for the power output of the power sources. In our particular REEV
model (cf. Section 1.4), this comes to the power output of the RE PRE and the power output of the
battery Pbat are set. We suppose that they can be set instantly, in our time-scale, by the low-level
control of the actuators in each component. For instance, in the case of the RE, one can control the
mass of the fuel intake in the combustion chamber and the the time that the spark performs the
combustion. “Meet the power demand of the driver” means that the driver imposes a power request
on the high-voltage network Pnetwork by controlling the brake and accelerator. Furthermore, the
relation Pnetwork = PRE→network + Pbat must hold at all times. Figure 1.3 illustrates the concept of
power management.

vehicle

range extender battery

PRE→network Pbat

Pnetwork

Figure 1.3 – Diagram sketching the principle of a power management strategy. At each time instant, the
vehicle imposes a power demand Pnetwork that must be met by the action of the range extender and the
battery. The only degree of freedom of the system is PRE→network since, once Pnetwork and PRE→network are
fixed, Pbat = Pnetwork−PRE→network can be determined. A power management strategy consists on the choice
of PRE→network at all times.

After giving a precise definition of the concept of power management we proceed to some techni-
cal considerations. These shall be consonant with the concepts of the hybrid optimal control theory
developed in Section 1.3.

Continuous control From the definition of power management, the driver power demand is
imposed on the high-voltage network Pnetwork. In an purely electric vehicle, that power demand is
met by the battery alone Pbat. In the REEV, the RE can also contribute to meet the requested power
by consuming fuel and outputting a power PRE→network. Therefore, since Pnetwork = PRE→network +
Pbat and Pnetwork is imposed, the available degree of the system is the power output from the range
extender, namely PRE→network. The power draw from the battery is then a direct consequence of
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the remaining power necessary to meet the total demand, i.e.

Pbat = Pnetwork − PRE→network. (1.48)

Since the available control is the output power of the RE, we write it as

u ≡ PRE→network. (1.49)

This notation allows us to identify the output power of the range extender as the continuous control
(cf. Remark 1.2).

From (1.41) one sees that the RE power is the product of the torque TRE and engine speed ωRE.
Since the ICE is not mechanically coupled to the vehicle wheels, we may control both quantities.
This means that, for a given power, one can choose freely the values of TRE, ωRE in the corresponding
hyperbole.

Discrete control As an additional technical specification, the controller is also allowed to turn
the ICE off and on during the optimization procedure.

When introducing this flexibility, one is expect to have better (in a sense) control strategies
than one would have without it. The switching on and off of the RE might be interesting because
of periods where the RE is not requested. Indeed, if the ICE is on, even if it does not deliver
any power to the high-voltage network, the engine still needs to consume fuel to keep turning at a
predetermined level to avoid stalling. Therefore, if a control strategy finds it best not to use the
RE to save fuel, switching it off can prevent an additional, non negligible, useless fuel consumption.
The switch control sequence of the RE is denoted w. This on/off control sequence is identified as
the discrete control sequence, detailed in the hybrid framework in Expression (1.7) and detailed in
Definition 1.3.

Control constraints We start by describing the constraints on the continuous control. The
choice of TRE, ωRE is subject to technical constraints.

First, the engine speed has fixed upper and lower bounds,

ω ≤ ωRE ≤ ω1. (1.50)

An upper bound is needed in order to prevent damaging the engine. Also to ensure the physical
safety of the ICE, a lower bound is needed to avoid vibrations that usually resonate at low engine
speed.

Additionally, the engine speed must respect an upper bound that depends on the vehicle speed,

ωRE ≤ ω2(v). (1.51)

This constraint is needed to prevent acoustic nuisance occurring at elevated engine speeds inside
the cockpit, in particular for low vehicle speeds.

The bound constraints on the engine speed are then written as

ω ≤ ωRE ≤ ω(v), (1.52)

where ω(v) := min(ω1, ω2(v)).

The torque delivered by the ICE at the entry of the generator has also lower and upper bounds,

0 ≤ TRE ≤ T (ωRE). (1.53)
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The lower bound ensures that the torque is always non-negative, while the upper bound represents
the maximum torque capacity of the ICE and depends on the engine speed.

The constraints just described must be verified at all times by the ICE. The optimal power man-
agement problem is formulated in terms of the total power delivered by the RE. This simplification
condenses the two degrees of freedom (engine speed and torque) into only one, the ICE output
power. Since the model is formulated in terms of the ICE power, the constraints on the ICE power
are writen in terms of constraints (1.52), (1.53) as

0 ≤ u ≤ u(v) := T (ωRE)ω(v)ηRE(TRE, ωRE). (1.54)

We now describe the constraints on the discrete switching sequence. Let us recall briefly that the
switching sequence w is defined as a sequence of N switching orders wj and N switching positions
sj :

w =
{

(w1, s1), · · · , (wN , sN )
}
. (1.55)

The sj can be identified with any points of the route. In particular, they can be identified as being
the path nodes (cf. Section 1.5).

In the REEV model, only two decision are available: turning on the ICE and turning off the
ICE. Thus, we require

wj ⊂W = {0, 1}, j = 1, · · · , N, (1.56a)

s1 ≤ · · · ≤ sN . (1.56b)

We now introduce an important condition in our model, referred to as lag constraint. The
lag constraint imposes a positive time interval δ > 0 between two consecutive switches. In our
application, the lag interval imposed between transitions is of δ = 120 seconds. In the deterministic
framework we known the vehicle speed vi at each node i of the route. From the navigation system
one can known the distance di between nodes i− 1 and i. Assuming constant speed between nodes
and a discrete-time setting, knowing di and vi, the total time spent between nodes i − 1 and i is
di/vi. The lag condition then requires that between two consecutive switch decisions, sj and sj + 1,
the total time spent is at least 120s. This condition can be written as

sj+1∑
i=1+sj

di
vi
≥ δ. (1.57)

The concrete interest in this condition is that by limiting the number of start-ups and shutdowns of
the ICE, the engine suffers less mechanical wear. The switch limitation imposed by the lag condition
contributes to prolonging the lifespan of the ICE.

Remark 1.9. The lag condition (1.57) fits well into the framework of hybrid systems. When
modeling the hybrid vehicle as a continuous-time hybrid system in Chapter 5, the lag constraint
allows to avoid some technical difficulties concerning the finiteness of transitions.

Discrete state variables The discrete switching control is used to turn on and off the ICE in
the RE module. Thus natural quantity here acting as a discrete variable, modeling the mode of
operation of the RE, is the ICE status or the ICE state, denoted q.

Whenever a switch order wj is performed, the ICE state changes according to

qi+1 = wj(1− qi) + (1− wj)qj . (1.58)

The discrete state takes the values q = 1 if the ICE is on and q = 0 if the ICE is off.
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Continuous state variables In the deterministic setting, the state of the system is a two-
dimensional vector composed of the SOC and the fuel mass.

The SOC, which is a normalized quantity is restricted to lie in a tighter set than [0, 1]:

0 < s ≤ sbat ≤ s < 1. (1.59)

The bounds s and s are safety bounds that restrict charging or depleting the battery too much.
Indeed, a charge level above u or below u can permanently damage the cells in the battery, which
is undesirable.

The fuel mass is only limited by the its existence and the volume of the tank, resulting in the
constraint

0 ≤ mfuel ≤ m. (1.60)

For notational convenience we shall denote the fuel mass and the SOC as

sbat ≡ y, (1.61)
mfuel ≡ r. (1.62)

The SOC dynamics (1.47) is rewritten as

ẏ(t) = f(y(t), u(t), qi, t). (1.63)

They depend on the mode of operation of the RE qi active at time t. Indeed, making the dynamics
f explicit, one obtains (using (1.48))

f(y, u, qi, t) = −Uoc(y)−
√
U2

oc(y)− 4Rbat(y)(Pnetwork(t)− uqi)
2Rbat(y)Qbat

η(y). (1.64)

Observe the effect of the mode of operation qi on the SOC dynamics. If the RE is off, qi = 0 and
the RE power contribution is suppressed. Otherwise, the RE is on, qi = 1 and the power can be
used to decrease the SOC depletion rate accordingly.

The discrete control lag condition formulated in (1.57) is not well adapted to a dynamic pro-
gramming principle formulation, needed later on. In order to include this lag condition in the
optimal control problem in a more suitable form, we introduce a state variable π. Recall that the
decision lag conditions implies that new switch orders are not available up to a time δ since the last
switch. The new variable is constructed such that at a given time τ , the value of π(τ) measures the
time since the last switch. The idea is to impose constraints on this new state variable and treat
them more easily in the dynamic programming principle. Thus, if π(τ) < δ all switch decisions are
blocked and if, conversely, π(τ) ≥ δ the system is free to switch. For that reason, this variable can
be seen as a switch lock.

Now given a final time horizon T > 0, τ ∈ [0, T ], a initial condition p ∈ [0, δ] and a discrete
control w = {wi, si}i>0, the switch lock dynamics is defined by

π(τ) =
{
p+ τ if τ < s1
infsi≤s τ − si if τ ≥ s1

(1.65)

Observe that once given a discrete control, the trajectory π(·) can be determined. Then, the lag
condition is translated in the point-wise state constraint

π(s−i ) ≥ δ (1.66)

for all si, where s−i denotes the limit to the left. Notice moreover that π(s+
i ) = 0 by construction.
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These conditions suffice to define an admissible discrete control set. Therefore, while optimizing
with respect to admissible controls, one needs only look within the set of discrete switching sequence
that engenders a trajectory π(·) with the appropriate structure (1.66).

When starting-up the ICE, there is an associated fuel consumption. This extra fuel consumption
is necessary to counter the inertia in the engine moving parts until a nominal working point is
established. This fixed extra consumption ρ0 > 0 has to be taken into account in the mass dynamics
equation. Since the condition π = 0 characterizes a switch, the dynamics of the mass consumption
can be written as

ṙ(t) = l(u(t), π(t), qi, t) := −o(u(t), t)− ρ01{π=0}(π)(1− qi). (1.67)

where qi is the active RE state and 1A(x) is the indicator function of event x ∈ A. Function
o(·, ·) ≥ 0 is the specific fuel consumption (1.42).

In summary, the state vector is composed of three state variables, the SOC, the fuel mass and
the time since last switch, respectively y, r, π. The continuous dynamics of the state vector are,
given continuous and discrete controls u(·), w, and initial conditions y∗, r∗, p, q given by

ẏ(t) = f(y(t), u(t), qi, t), (1.68)
ṙ(t) = l(u(t), π(t), qi, t), (1.69)

π(t) =
{
p+ t if t < s1
infsi≤s t− si if t ≥ s1

, (1.70)

y(0) = y∗, (1.71)
r(0) = r∗, (1.72)

and at switch nodes sj , j = 1, · · · , N , the intervening discrete dynamics is

qi+1 = wj(1− qi) + (1− wj)qi, (1.73)
q1 = q. (1.74)

Criterion The optimal power management can be viewed as optimizing the efficiency with which
the on-board energy is used. This amounts to minimizing the energy spent on a trip and hence, to
maximizing the quantities related to that energy at the end of a trip, namely, the remaining SOC
and fuel. In a deterministic setting, the quantity to be minimized is the energy used by the control
strategy, imaged in the fuel and SOC consumption. More precisely, the optimization criterion J (we
recall, to be minimized) is, given T optimization stages and a hybrid control variables a = (u,w),

J(y∗, r∗, p, q; a) = (r∗ − r(T )) + β(y∗ − y(T )). (1.75)

Here, (y∗, r∗, p) denotes a initial value for the state vector (y, r, π), q is an initial RE state and The
fixed parameter β ≥ 0 is a constant factor used for units adjustment.

In this study, β is set as the ratio of the prices of the different energy sources, converting the
units of the SOC (typically in % of the total available nominal charge capacity) and the fuel (given,
for instance, in liters) to, say, euros. Such conversion yields β = 0.44 e/MJ at today estimated fuel
and electricity prices1.

1The factor β is seen as a unit conversion factor. In this sense, it is not a weight factor representing a preference of
one energy over another. Even though one can argue that the choice of economic cost is implicitly a kind of preference
of one energy over another, this is an objective choice. We choose to peg β to an objective measure (the price of
energy) to work with a fixed numerical value. We leave open the debate of whether and how β may represent the value
to the driver of one type of energy over another. For instance, if the driver seeks the strategy with least pollutants
emission, one can set β = 0 and if the application requires saving the battery’s energy, one can set β >> 1.
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1.6.2 Optimal Power Management

The model detailed in the above paragraphs enables us to state the optimal power management
problem as a hybrid optimal control problem. The objective of such optimization is to minimize
the total financial cost of the operation of the range extender on a given trip.

The electric vehicle is a technology that begins to penetrate the auto market. The EV technology
is attractive for the client for two main reasons: it is an ecological and economical vehicle (see [53] for
an analysis of the energetic impact of electrified power-train technology in the U.S.). The ecological
argument is straightforward. An EV has zero (tank-to-wheel) pollutants emissions and produces
very little noise. These features contribute to the overall environmental quality, specially in big
urban centers, where the EV is expected to reach its biggest market penetration. Economically,
the EV has a mid- to long-term advantage over classic vehicles. First, an EV has maintenance
costs ≈ 20% less than fuel powered vehicles. Second, in 2012 prices, electric energy costs are about
half of the equivalent fuel generated energy. Since the EV is sold (without the battery) at roughly
the same price of vehicles in the same category, the driver can expect a cost reduction related to
personal transportation, directly proportional to his/hers millage. The main practical issue that
EV technology faces is the relatively low range (≈ 200km). The range extender option is therefore
placed to relief the client of some of the anxiety related to the EV autonomy. In the case of an
ICE acting as a RE, to maintain the main advantages of the EV technology and reassure the client
about the vehicle autonomy, the presence of the RE is required, but it is recommended that its
usage be minimal. The optimal power management of REEV is a tool aimed at achieving the goal
of minimizing the cost of operation of the RE, while at the same time ensuring that the RE is used
whenever is needed.

Vis-à-vis the mathematical formulation, we state the optimal control problem associated to the
optimal power management in two ways in this work. More precisely, we formulate a continuous-
time and a discrete-time hybrid optimal control problem.

With the notation of Paragraph 1.6.1, the discrete-time formulation is as follows:

Let y∗, r∗, p be the initial SOC, the initial available fuel and the time required to the next switch
of the RE respectively. Let q be an initial RE state. Given a route composed of K + 1 nodes,
a speed profile σi and link lengths di, i = 1, · · · ,K, find a hybrid control sequence a∗ = (u,w),
where u = (u1, · · · , uK) and w = {(w1, s1), · · · , (wN , sN )} at switching nodes sj , such that, for all
k = 1, · · · ,K and j = 1, · · · , N :

a∗ ∈ arg min
a∈A

{
(r∗ − rK) + β(y∗ − yK)

}
, (1.76a)

subject to continuous dynamics

yk+1 = yk + f(yk, uk, qi, k)dk
σk
, (1.76b)

rk+1 = rk − o(u(t), t)dk
σk
− ρ01{πk=0}(πk)(1− qi), (1.76c)

πk =


∑k
i=2

di
σi

if 2 ≤ k < s1

inf
sj≤k

∑k
i=sj

di
σi
− dsj

σsj
if k ≥ s1

, (1.76d)

with initial conditions

y1 = y∗, (1.76e)
r1 = r∗, (1.76f)
π1 = p, (1.76g)
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discrete dynamics

qi+1 = wj(1− qi) + (1− wj)qi, (1.76h)
q1 = q, (1.76i)

under control constraints
0 ≤ uk ≤ u, (1.76ja)

wj ⊂W = {0, 1}, (1.76jb)

s1 ≤ · · · ≤ sN , (1.76jc)

and state constraints
s ≤ yk ≤ s, (1.76ka)

0 ≤ rk ≤ m, (1.76kb)

πsj ≥ δ, (1.76kc)

q ∈ {0, 1}. (1.76kd)

The continuous-time model is stated considering that the discrete control sequence is composed
of switching orders and switching times, instead of switching nodes. This simplification provides a
sensible simplification in notation without losing any generality (see Remark 1.8). The continuous-
time optimal power management problem is then formulated as:

Let y∗, r∗, p be the initial SOC, the initial available fuel and the time required to the next switch
of the RE respectively. Let q be an initial RE state. Consider a route with total travel time of
T > 0 and let t ∈ [0, T ] The optimal power management is a hybrid control sequence a∗ = (u,w),
where u ∈ L∞([0, T ], IR) and w =

{
(w1, s1), · · · , (wN , sN )

}
at switching times sj , such that, for a.e.

t ∈ [0, T ] and j = 1, · · · , N :

a∗ ∈ arg min
a∈A

{
(r∗ − r(T )) + β(y∗ − y(T ))

}
, (1.12a)

subject to continuous dynamics

ẏ(t) = f(y(t), u(t), qi, t), (1.12b)
ṙ(t) = l(u(t), π(t), qi, t), (1.12c)

π(t) =
{
p+ t if t < s1
infsi≤t t− si if t ≥ s1

, (1.12d)

with initial conditions

y(0) = y∗, (1.12e)
r(0) = r∗, (1.12f)

discrete dynamics

qi+1 = wj(1− qi) + (1− wj)qi, (1.12g)
q1 = q, (1.12h)

under control constraints
0 ≤ u(t) ≤ u, (1.12ia)

wj ⊂W = {0, 1}, (1.12ib)

s1 ≤ · · · ≤ sN , (1.12ic)
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and state constraints
s ≤ y(t) ≤ s, (1.12ja)

0 ≤ r(t) ≤ m, (1.12jb)

π(sj) ≥ δ, (1.12jc)

q ∈ {0, 1}. (1.12jd)

A hybrid control a satisfying problem (1.76) or (1.12) is said to be an optimal power management
strategy. Chapter 2 presents in detail the methods used to obtain an optimal power management
strategy.



SECOND CHAPTER

OPTIMAL STOCHASTIC POWER
MANAGEMENT

“I never appreciated ‘positive heroes’ in literature. They are almost always clichés, copies of copies,
until the model is exhausted. I prefer perplexity, doubt, uncertainty, not just because it provides a
more ‘productive’ literary raw material, but because that is the way we humans really are.”

José Saramago

The content of this chapter is an adaptation from the following publication and oral communi-
cation:

• Aouchiche K., Bonnans F., Granato, G., and Zidani H. A stochastic dynamic principle for
hybrid systems with execution delay and decision lags, Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on , pp.6788-6793, 12-15 Dec.
2011, doi: 10.1109/CDC.2011.6161303.

• Aouchiche K., Bonnans F., Granato G. and Zidani H. Stochastic Optimization of Hybrid
Systems with Activation Delay and Decision Lag, International Conference on Continuous
Optimization- ICCOPT, 2010, Santiago, Chile, oral communication.
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2.1 Introduction

The synthesis of efficient power management strategies for hybrid vehicles accounting for uncer-
tainty in the vehicle speed is at the core of this chapter. The three main steps considered towards
fulfilling this goal are: the construction of an optimization model, the implementation of an algo-
rithm for the controller synthesis and the subsequent utilization of a simulation model. Each one of
these steps is detailed in the following sections.

We consider a stochastic approach to obtain control strategies that are robust enough to account
for the uncertainty of the vehicle speed profile. In this context, the goal becomes to synthesize power
management strategies that are optimal in average with respect to the efficiency of the utilization
of the energy available on-board. Our approach includes the utilization of information from the
vehicle navigation system as well as a statistical analysis of previously stored driving data.

The construction of an optimization model consists on a series of approximations of the real
system and the real environment. These approximations can be separated into two classes: the
approximation of the physical behavior of the components of the vehicle and an approximation for
the stochastic process underlying the evolution of the vehicle speed. The physical models used for
approximating the physical behavior of the vehicles components is discussed in Chapter 1. The
construction of a model for describing the random evolution of the vehicle speed and the associated
energy consumption is discussed in Chapter 7.

Once both models are obtained, one can use them to state an optimal control problem. The
term optimal control problem refers to a formulation of the optimization problem we must solve
to achieve the objective of synthesizing optimal stochastic power management strategies. This
formulation describes the state of the system, the state constraints, the available controls and the
associated control constraints and the optimization criterion. After the formulation of the optimal
control problem, we derive a stochastic dynamic programming principle from which one can obtain
an algorithm for the synthesis of optimal strategies. This is the subject of Section 2.2. There, the
optimal control problem is first stated into a deterministic framework (Section 2.3) to fix the main
ideas and the stochastic formulation is introduced in Section 2.4.

The third stage concerns the simulation and interpretation of the performance of the obtained
strategies. The appropriate simulation model and the performance of such controllers is discussed
in section 2.5.

2.2 Stochastic Power Management

Stochastic power management stems from the idea of applying power management strategies
to real driving profiles in a mathematically sound fashion. A central hypothesis the deterministic
setting is that the vehicle will follow a known speed profile. This assumption is reasonable in some
cases1. The considered application seeks to enrich the number of cases to which one can apply
optimal power management strategies. Therefore, the general goal of optimal stochastic power
management is to take into account uncertainties in the information about the vehicle state and/or
route in the optimization routine.

1This modeling choice is relevant insofar that hybrid vehicles are expected to be equipped with embedded NAV
systems that actually posses information about expected speeds and topological data. This information can be ex-
ploited in order to construct an expected speed profile with a certain degree of confidence. Moreover, the measurement
of official emission and consumption levels of hybrid vehicles (indeed, any vehicle) is made using normalized driving
cycles. In this measurement setting, a professional driver follows a recommended speed (and gear changes whenever
applicable) as best as possible. In this case, deterministic models are deemed representative of the driving situation.
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The considerations surrounding such uncertainties are an important matter. In the literature [48,
56, 52, 61] one can find three main assumptions concerning the information available to synthesize
the controller:

1. All information is available at departure.
This leads to the formulation of deterministic strategies, as already discussed. The optimal
controller can be synthesized in a open loop fashion, depending on the vehicle state and the
position of the vehicle along the route.

2. Route-specific information is available at departure but the state of the vehicle in the future
is uncertain.
In this case, since the route is known, the controller depends on the vehicle position and has
a state feedback to adjust for the uncertainties occurring during the drive.

3. The route is unknown, as well as the vehicle state.
With this assumption, the controller obtained is independent of the vehicle position and has
a feedback on the vehicle state.

The stochastic power management in this work considers the second level of information, namely,
route-specific information with uncertain vehicle state. The random variable considered is the vehicle
future speed. The vehicle speed enters in the optimization problem as a discrete-time Markov chain
over the nodes on the route.

As mentioned, we use route-specific information available in the NAV in order to synthesize
more robust power management strategies. To devise efficient strategies, the control synthesizer
needs information about future power demands that are as close as possible to the actual power
demand. Otherwise said, given a fixed route, the power management must be robust enough to take
into account most of the situations occurring in a realistic driving cycle. In the case presented here,
the strategy uses information from the NAV to better account for the uncertainty in the vehicle
speed profile.

This approach is justified by the following rationale: the NAV speed profile represents to some
extent the general lines of the driver behavior. It is judged realistic to consider that typically
the driver will not exactly follow the suggested speed but will drive following a certain pattern
depending on the NAV speed, as shown in Figure 2.1. As a result of the disparity between the
actual driving speed - not known a priori - and the given NAV speed profile, the knowledge of how
much power is required by the vehicle is not known with certainty. Each link’s speed depends on
particular characteristics of the route segment considered, such as type, number of lanes, location
and also dynamic factors such as weather conditions or the hour of the day. This characteristics are
relevant to the driver and judged to influence the “real” speed profile of the vehicle. Therefore, the
NAV speed of each link should be taken into account in determining stochastic properties of future
vehicle speeds.

The stochastic optimal control problem is stated in the discrete-time framework. The speed
profile is modeled as a stochastic process. Let (Ω,A) and (Ξ,F) be two measurable spaces. Define
a random variable ξ : Ω → Ξ. We shall refer to ξ as the random variable and its realizations, the
utilization of which will be clear from the context. This random variable models the speed at the
next decision stage, i.e., the next link’s entry node. Now, let IP be a probability over (Ξ,F), so as to
construct the probability space (Ξ,F , IP) and the process {ξ} = (Ξ,F , (ξt)t∈IN, IP) with associated
filtration2 (Ft)t≥0.

2Quickly said, the filtration at node t can be seen as all the information available at time t when looking back to
the process up to t. For the details on the construction of probability spaces, see [13].
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Figure 2.1 – Illustration of how the NAV
speed and measured speed differ.

Let ξt be the known vehicle speed at node t and ΩNAV the NAV speed profile. The conditional
probability of the the term ξt+1 of the process when having information about the process up to
the kth term is written as

IP(ξt+1 | Ft,ΩNAV). (2.1)

From the Markov property, we have

IP(ξt+1 | Ft,ΩNAV) = IP(ξt+1 | ξt,ΩNAV). (2.2)

Intuitively, probability IP should depend on characteristics of the route, such as number of lanes,
location and limiting speed. As mentioned, the NAV provides such information implicitly through
the NAV speed profile. Therefore, one can include this information3 in the conditional probability
in order to “better” assess probabilities.

Remark 2.1. The process {ξ} models the vehicle speed between nodes of the route. In this sense,
the probability IP is the probability of realization of the vehicle speed when the vehicle passes the next
node k + 1. In this model, the dynamic of the speed between nodes is, at first, neglected. In reality,
speed ξt is viewed as the average speed between node t − 1 and t. Therefore, the probabilities IP
represent the likelihood of the average vehicle speed between node t and t+ 1. A precise description
of the probability model is discussed in Chapter 7.

The immediate consequence of a modeling the vehicle speed as a stochastic process is that
the vehicle power demand Pnetwork is a random process. Indeed, the instant power imposed by
the driver on the high-voltage network depends on the vehicle instant speed, acceleration and the
terrain slope. In this study, the contribution of the terrain slope is subtracted and thus, the power
demand depends only on the instant vehicle acceleration and speed.

Remark 2.2. Removing the contribution of the inclination of the terrain is a modeling choice.
The main difficulty of including terrain information in the algorithms is the unavailability of data.
Indeed, the NAV system has information concerning topology of the routes, but the information is
scarce and difficult to treat numerically. Scarcity means that terrain inclinations are not available
for all links in the map database. It is hard to treat because the entry and exit nodes of a link are
arbitrarily defined in the map database. Therefore, even if the inclination is available, it is not an
immediate task to reconstruct the terrain topology for any given route. Since one can evaluate the
energetic contribution for terrain inclination fairly easily, including this contribution directly in our
analysis would result in a redundant complication and is, therefore, not taken into account.

In this work, the acceleration model considered is a constant acceleration from speed ξt to
speed ξt+1. More evolved acceleration models can be constructed to take in account the energetic

3This is treated as exogenous information because it does not belong to the filtration of process {ξ}.
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contribution of intra-link speed dynamics, but this is judged redundant based on our modeling
choices (cf. Remark 2.1).

2.3 Deterministic Dynamic Programming

A first step towards the synthesis of more sophisticated power management strategies consists in
analyzing deterministic feedback strategies. Deterministic strategies are obtained if route-specific
information is available and the vehicle state evolution is known with certainty. In the case of the
model considered in this work, a deterministic strategy assumes that the speed profile, and thus the
power profile, is known with certainty.

A discrete-time setting is used in the formulation of the optimal control problem in this chapter.

We recall the main points of the model, described in detail in Chapter 1 with a slightly different
notation. The nodes are indexed by t = 1, · · · , T . The state is the battery SOC xt ∈ X := [0, 1],
the range extender state (on or off) qt ∈ Q := {0, 1} and the time since the last switch (the switch
lock variable) τt ∈ T := [0, T ′], where T ′ > 0 is a time greater than the time of the trip duration.

Remark 2.3. The objective of this section is to use a dynamic programming (DP) algorithm to
synthesize the optimal control sequence. In this section, we consider that the RE has a unlimited
amount of fuel. The consequence is that the mass of fuel in the tank is not a state variable. This
modeling choice is justified by the following rationale: as mentioned in Chapter 1, the objective
adding a RE module to an EV is to ensure that the driver reaches it target. At the same time, the
objective of the optimization is to reduce the cost of the trip. In current prices, this amounts in
reducing the usage of the RE. In this sense the interesting scenarios to use a stochastic strategy are
those in which the vehicle cannot reach the target in EV mode and must use the RE. This situation
can be achieving by setting the initial SOC to a convenient value with respect to the total drive
distance 4. Even in the limiting cases in which the fuel tank must be completely depleted to ensure
arriving at the destination point, we can a posteriori rule out strategies that consume more than the
available fuel. This simplification in the model allows for a substantial reduction in computational
time in synthesizing optimal controllers, because of the curse of dimensionality in DP algorithms.

In order to shorten the notation, the state components are grouped in a hybrid state vector
denoted by zt := (xt, τt, qt) ∈ Z := X × T × Q. The vehicle speed yt ∈ (0, y] and the link length
dt ≥ 0 are known with certainty. They are treated as exogenous information, e.g., given by a
navigation system or imposed by a driving cycle.

The continuous control consists of the range extender output power ut ∈ Ut ⊂ [u, u] where
u, u > 0 are the continuous control lower and upper bounds respectively. We remark that the
continuous control space U depends on the vehicle speed yt. But since yt is known with certainty,
this dependence is seen through the node index t. The switch control is the switch decision wt ∈
W := {0, 1}.

Remark 2.4. The switch control introduced above has a different structure from the one introduced
in (1.55). Now, we consider that at a node t, a discrete order wt = 1 consists of a switch, i.e. a
change in the discrete state, whereas wt = 0 is a no switch, i.e. no modification of the discrete
state.

4Very roughly, 1% of SOC corresponds to 1km. In simulation, if one consider a, say, 20km driving cycle, the initial
SOC is set at 20% in order to achieve a situation in which a prudent control strategy should use the RE at some
point. If the driving cycle considered has 50km, the departing SOC is set at 50%, accordingly, preserving the scenario
of interest.
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The discrete-time dynamics of the hybrid state components is given by:

xt+1 = ft(xt, qt, ut), (2.3a)

τt+1 = (1− wt)τt + 2 dt
yt + yt+1

, (2.3b)

qt+1 = (1− wt)qt + (1− qt)wt. (2.3c)

Equation (2.3a) represents the non-linear decrease in the SOC as a function of the SOC itself and
range extender state. A particular battery model is used to determine the specific rate of SOC
change (in %/s) while the node dependence reflects the total time spent on the link, affected by
the vehicle speed and link’s length. The switching effect of control wt on the state dynamics is
represented in equation (2.3c). A decision of no switch wt = 0 maintains the value of the discrete
state while a switch wt = 1 moves the discrete state to its complement 1−qt. The switch control also
intervenes on the switch lock through relation (2.3b) by reseting the value of τ whenever a switch
is decided. The decision lag constraint, that imposes a time interval of at least δ > 0 between
consecutive switches, can be stated in terms of the trajectory of the state variable τt.

The hybrid control is denoted by at := (ut, wt) with values in At := Ut × W. This notation
enables us to abbreviate the set of equations (2.3) conveniently as

zt+1 = ht(zt, at).

Although hybrid controls are defined in a set of admissible values, the control sequence (a1, · · · , aT )
might not respect the decision lag constraint of switching decisions. The next definition introduces
the set of admissible hybrid control sequence that respect the lag constraint.

Definition 2.1. The control sequence a := (a1, · · · , aT ) is an admissible hybrid control sequence
if it satisfies the relations

1. For (z1, · · · , zT ) ∈ ZT , we have a ∈ A1 × · · · × AT .

2. Let S := {t ∈ {1, · · · , T − 1} | wt = 1} be the set of links in which a switch decision is made.
Then, τt ≥ δ for t ∈ S.

Given T > 0, denote by AT the set of all admissible hybrid controls containing T decisions, i.e.,
AT := {a = (a1, · · · , aT ) | a verifies 1. and 2.}.

The first condition states that every hybrid control should be in the hybrid control domain. The
second condition is the decision lag imposed on the value of variable τt at nodes in which a switch
decision is made.

At each node, a hybrid decision incurs a fuel cost. The fuel cost can be separated into a running
cost lt(ut) and a switching cost ρ(qt, wt). The running cost represents the amount of fuel consumed in
the range extender to output power ut. The term in function lt contains a specific fuel consumption
(typically in g/s) that depends on the type of range extender considered. Also, the running cost
function depends on the time spend on the link and thus, on yt, tt+1 and dt. This dependence is
included in the non-autonomous character of lt. The switching cost ρ represents a constant start-up
cost of the range extender. There is no turn off cost.

As discussed above, the optimization criteria considered in this section is the total economic
cost of operation of the range extender during driving cycle. To construct such a criteria, the cost
of electric energy must be included in the criterion. Since the battery SOC – which can be seen
as the image of the energy available on the battery – is a state variable, the total electric energy
consumption can be obtained through the SOC final value, xT+1. Then, given an initial SOC x1,
the total electric energy consumption, in % of the maximum energy capacity, is given by x1−xT+1.
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In the deterministic setting, given T > 0, initial conditions z1 = z ∈ Z and an admissible hybrid
control sequence a ∈ AT , the set of equations (2.3) can be used to determine the trajectory of the
system with certainty. The total (economic) cost of operation, that we wish to minimize, for the
hybrid control sequence a ∈ AT , starting at node t = 1 with hybrid state z1 := z = (x1, τ1, q1) is
defined as

J1(z, a) =
T∑
t=1

lt(ut) + ρ(qt, wt) + β(x1 − xT+1). (2.4)

As discussed before, β > 0 is a parameter that represents the price ration of electric energy and
fuel. Such a conversion applied to current price estimates yields β = 0.44 e/MJ.

Now we proceed to state the optimal control problem associated to the problem of finding a
hybrid control sequence that minimizes the total operating cost of the vehicle. Set T > 0. For
an arbitrary starting node t ∈ {1, · · · , T}, giving initial conditions zt := z = (xt, τt, qt) and an
admissible hybrid control sequence a ∈ AT−t the total operating cost is

Jt(z, a) =
T∑
k=t

lk(uk) + ρ(qk, wk) + β(xt − xT+1). (2.5)

The value function is then defined as the cost of the optimum control sequence:

vt(z) = inf
a∈AT−t

Jt(z, a). (2.6)

The next proposition states that the value function satisfies a dynamic programming principle.

Proposition 2.1. The value function defined in (2.6) verifies, for all z ∈ Z, t = T, · · · , 1,

vT+1(z) = 0, (2.7a)
vt(z) = inf

a∈At
lt(u) + ρ(q, w) + β(x− xt+1(x, a)) + vt+1(ht(z, a)). (2.7b)

Proof. The proof is derived from simple recursion (see [15] for details).

In the deterministic setting, the number of state variables – the dimension of the state – is
3. A state of dimension 3 is deemed acceptable for equations (2.7) to be solved via a dynamic
programming algorithm. This algorithm constructs a grid by discretization of the state space. The
dynamic programming algorithm can be broadly divided in two parts: the computation of the value
function and the computation of a optimal hybrid control sequence. One can compute the value
function using equations (2.7),which are solved backwards for all values of z in the grid, coupled
with some interpolation method whenever a value of zt+1 falls outside of the grid. Then, given an
initial decision at the first node, the hybrid control is sequentially chosen such that it minimizes the
total operating cost lt(u) + ρ(q, w) + β(x − xt+1(x, a)) + vt+1(ht(z, a)). This procedure is detailed
in the algorithm that follows.

Algorithm 2.1 (Dynamic Programming Algorithm). Step 1: Compute value function.

1.1 Set t = T + 1, set β and construct a discretization of the state space Z#;

1.2 For all z ∈ Z# set vt(z) = 0;

1.3 For t = T, · · · , 1, for all z ∈ Z# compute

vt(z) = min
a∈At

lt(u) + ρ(q, w) + β(x− xt+1(x, a)) + vt+1(ht(z, a)).
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Once having evaluated v in Z# at all links the optimal trajectory can be synthesized as follows:

Step 2: Control synthesis.

2.1 Set t = 1, and initial condition zt = z;

2.2 Compute hybrid control:

a∗t = arg min
a∈At

lt(u) + ρ(q, w) + β(x− xt+1(x, a)) + v#
t+1(ht(z, a))

2.3 Update state to z ← ht(z, a∗t ), set t ← t+ 1. If t = T + 1 terminate the algorithm, otherwise
go to 2.2.

Here, v#(ht(z, a)) denotes an interpolate of the value function v at point ht(z, a), which may fall
out of the points in grid Z#. The control sequence a∗ = (a∗1, · · · , a∗T ) obtained using algorithm 6.1 is
only an approximation of the global optimum trajectory since one only considers the value function
at discrete points of the state space. Nevertheless, it can be showed that the control sequence
a∗ converges to the optimum control sequence as the grid covering the state space becomes finer,
covering all Z in the limit. As so, for a grid fine enough, one cannot expect to outperform a control
sequence a∗ synthesized using algorithm 6.1.

Remark 2.5. We draw the attention to the fact that one needs to compute the value function for
all points in Z# for all nodes. Denoting by D the dimension of Z#, D := dim(Z), and supposing
the grid is uniform in all directions with NZ points, the total number of value function computations
is T ×ND

Z . The exponential character in the dimension of the state space for the computation of the
value function is better know as the curse of dimensionality. This "curse" makes the application of
the dynamic programming algorithm prohibitively expensive even for relatively low-dimension states
of dimension 7 or 8. When such is the case, one can still recourse to parallelization techniques
and/or machine power to compute the value function on Z#. Nevertheless, for applications with
state dimension of 3 or 4, such as ours, the dynamic programming algorithm can be expected to have
a reasonable performance in commercial desktop PCs.

Before concluding this section, one must stress that the performance levels of controls synthesized
using a dynamic programming algorithm in the deterministic setting are only valid if the evolution
of the hybrid state vector is dictated by function ht. More precisely, the supposedly known speed
profile yt engenders a vector field ht that then is used in the backward computation of the value
function at points of Z#. Then, once the value function is computed over Z#, given one initial state
z, one can perform an open-loop synthesis of an approximation optimal controller. However, in real
driving conditions, it is highly unlikely that the state vector trajectory will follow the prescribed
dynamics ht. In this case, the value function computed in step 1 does not correspond in any
way to the optimal cost and there is no guarantee whatsoever that the control sequence will have a
performance as expected. A possible way to counter some of these degrading effects on the controller
is to close the loop on the state, by measuring it at each node t. Even proceeding as such, the value
function still does not represent the optimal cost, the system only is refreshed with new information
about the state at each node, an improvement with respect to the open-loop case. This closed-loop
solution might reveal itself interesting from the point of view of a practical implementation, but has
no guarantee of optimality in any sense. Due to the practical interest they represent, simulation of
the performance levels of a deterministic closed-loop controller are performed and the results are
presented in section 2.5 below.
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2.4 Stochastic Dynamic Programming

After presenting the set-up of a deterministic approach for the synthesis of power management
synthesis in section 2.3, we focus on the synthesis of stochastic power management strategies. We
start by recalling the motivation for such an approach. Then, the stochastic optimal control problem
is presented along with a dynamic programming principle verified by the associated value function.
Finally, we give a description of the algorithm used to synthesize feedback strategies, namely, the
stochastic dynamic programming algorithm.

As highlighted in the preceding section, deterministic power management strategies suppose
that the vehicle power demand profile is known with certainty. This amounts to suppose that the
speed profile of the vehicle is known with certainty, since we consider a flat terrain. Although this
assumption may result in a tolerable approximation in certain controlled cases, one cannot expect
to have an exact knowledge of the vehicle speed profile in general situations. Typically, in a routine
usage of a hybrid vehicle, the speed developed by the driver cannot be predicted with enough
precision to assume that the speed is known with certainty. An immediate consequence is that in
a routine usage of a hybrid vehicle the emission levels and/or fuel costs tend to be higher than the
official declared levels if the official levels are obtained using global optimization techniques. This
consideration motivates the development of power management system that are more "robust" with
respect to the driving conditions encountered by a hybrid vehicle user. Modeling the evolution of
the vehicle speed as a random process allows the evolution of the hybrid state to be treated as
random process. In this case, the notion of optimality of a controller differs conceptually from the
deterministic notion of optimality.

In the stochastic setting, the state variables are the battery SOC xt ∈ X := [0, 1], the range
extender on/off state qt ∈ Q = {0, 1}, the switch lock τt ∈ T := [0, δ] and the vehicle instant
speed yt ∈ Y := (0, y]. Similarly, for convenience, we denote the hybrid state vector by zt :=
(xt, yt, τt, qt) ∈ Z := X × Y × T × Q. With respect to the notation introduced earlier, since ξt is
Ft measurable, we set at node t, yt ≡ ξt. This is only done to homogenize the notation with that
introduced in the last section.

Hybrid controls comprise the continuous control ut ∈ U(yt) ⊂ [u, u] representing the range
extender output power and the discrete switch control wt ∈ W := {0, 1} applied to the system at
nodes t = 1, · · · , T . (Notice that the dependency of the control domain on the vehicle speed, via
(1.54), is made explicit). The hybrid control is denoted by at = (ut, wt) valued in A(zt) = U(yt)×W.

In the stochastic setting, a working hypothesis is that the hybrid control sequence satisfies a
non-anticipative constraint:

at � Ft. (2.8)
This constraint imposes decision at to be Ft measurable (for a more detailed account, we refer to
[78]). The interpretation is that the decision at is a function only of the past values of the process
{ξ} up to t, and not of future realizations. After the decision at is made, a realization of the random
variable ξt becomes know, the decision cost is incurred and the process is repeated. This decision
process is summarized in the causality diagram below:

decision at  realization ξt+1  decision at+1  · · ·

Given a state at node t and a hybrid control at = (ut, wt), the hybrid state vector at node t+ 1
is a random variable given by the dynamics:

Xt+1 = ft(xt, qt, ut, ξt+1), (2.9a)

Υt+1 = (1− wt)τt + 2 dt
yt + ξt+1

, (2.9b)

qt+1 = (1− wt)qt + (1− qt)wt. (2.9c)
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These dynamics are abbreviated using the notation Zt+1 = h(zt, at, ξt+1).

Given the nonanticipativity constraint (2.8) at the beginning of the process, one cannot build
a sequence of admissible controls depending on future values of the state. A control may however
plan in advance what action it should take if a given random realization occurs. This leads to the
notion of a hybrid control policy (or hybrid control strategy) defined next.

Definition 2.2. Given a hybrid state z ∈ Z, define an admissible control law α as a mapping of
the state space in the admissible hybrid control set:

α : Z → A (2.10)
z 7→ α(z) = a

Given T > 0, an admissible hybrid control policy π is defined as a sequence of admissible control
laws π := (α1, · · · , αT ). We denote by Πt the set of all admissible hybrid control policies containing
t control laws.

Now, given an initial hybrid state z and a hybrid policy π, the hybrid state process starting at
z and controlled by policy π is given by

Z1 = z, Zt+1 = ht(Zt, αt(Zt), ξt+1), t = 1, · · · , T (2.11)

and the total expected cost of the process solution of (2.11) is

J1(z, π) = IE
[
T∑
t=1

lt(ut) + ρ(qt, wt) + β(x1 −XT+1)
]
. (2.12)

The power management strategy in the stochastic setting is a hybrid control policy that mini-
mizes the expected total cost of operation. More precisely, policy π∗ is said to be optimal if, given
a initial state, the policy achieves

π∗ ∈ arg inf
π∈ΠT

J1(z, π).

For an arbitrary starting point t ∈ {1, · · · , T + 1}, initial conditions z = (x, y, τ, q) and a control
policy π, the total expected operating cost of process {Z} is

Jt(z, π) = IE
[
T∑
k=t

lk(uk) + ρ(qk, wk) + β(xt −XT+1)
∣∣∣ Ft,ΩNAV

]
. (2.13)

We define the value function associated with the minimization of the cost (2.13) as

vt(z) = inf
π∈Πt−T

Jt(z, π). (2.14)

To obtain a dynamic programming principle, we start by conditioning the criterion to the fil-
tration FT , minimizing with respect to the control policy; obtaining the following structure

inf
a1

IE
[
l1(u1) + ρ(q1, w1) + β(x1 −X2) + inf

a2
IE
[
l2(u2) + ρ(q2, w2) + β(X2 −X3)

+ · · ·+ inf
aT

IE
[
lT (uT ) + ρ(qT , wT ) + β(XT −XT+1)

∣∣∣ FT ] · · · ∣∣∣ F2
] ∣∣∣ F1

]
, (2.15)

where we omit the conditioning with respect to ΩNAV.

This imbricated structure enables the computation of the value function in a sequential backward
manner. The next proposition details the dynamic programming principle for the value function
defined in (2.14).
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Proposition 2.2. The value function defined in (2.14) verifies, for all z ∈ Z, t = T, · · · , 1,

vT+1(z) = 0, (2.16a)

vt(z) = inf
a∈A(z)

lt(u) + ρ(q, w) + IE
[
β(x−Xt+1) + vt+1

(
ht(z, a, ξ)

) ∣∣∣ Ft]. (2.16b)

Proposition 2.2 is the stochastic counterpart to proposition 2.1. In equation (2.16b) one can
readily see that the control choice at stage t has the objective of optimizing the expected cost of the
process from time t+ 1 to T . If for any reason process {Z} can be known with certainty, then one
can simply drop the expected value in (2.16b) and replace the realization of ξ by its certain value.
The resulting deterministic dynamic programming principle in proposition 2.1 is then recovered.

The robust character of a stochastic optimal policy, with respect to a deterministic one, stems
from the fact the one is optimizing the average of the process. In a sense, each control decision at
"takes into account" all possible realizations of ξt, weighted by the probability of each realization, to
steer the system in a cost-optimal fashion. Such an optimization procedure can be justified by the
fact that the process {Z} is often repeated and a the optimal policy π∗ can be applied several times.
For one particular realization of the process {Z} starting at z, the total operation cost a posteriori
obtained by a stochastic optimal policy π∗ may be greater than or lower than the expected optimal
cost v1(z). However, after a great number of realizations of {Z}, each controlled by an stochastic
optimal policy π∗, the total operating cost average is close to the optimal value v1(z).

The value function can be calculated using the stochastic dynamic programming principle stated
in proposition 2.2.

The stochastic dynamic programming algorithm is very similar to the deterministic dynamic
programming algorithm, the main difference being in the evaluation of the expected value of the
future cost. The first step is to construct a discrete grid Z# of the state space, the idea being to
compute the value function at the points of this grid. A discretization of the set Ξ is also necessary.
We detail this point further.

We recall that the vehicle speed in the future is modeled as a random variable ξ : Ω→ Ξ, where
(Ω,A) is a measurable space and (Ξ,F , IP) is a probability space. So far, no assumptions were made
about the properties of Ξ. For instance, Ξ can be a discrete or continuous set, finite or infinite. The
characteristics of Ξ depends on the model used for representing the random variable ξ. However,
at some point, a discretization of Ξ is needed to deal numerically with the random variable ξ. This
discretization can be done before or after the construction of a model of ξ. We denote by Ξ# the
discretization of Ξ, the image space of the random variable ξ. We denote the number of elements
of Ξ# as NΞ. Once Ξ# is constructed, the expected value operator can be replaced by its discrete
counterpart. In our application Ξ# is constructed from a discrete set, i.e. Ξ is already discrete
and Ξ# ⊂ Ξ. In this case the discrete expected value of a (measurable) function h of the random
variable ξ is given by

IE[h(ξ)] =
NΞ∑
i=1

h(ξi)IP({ξ = ξi}). (2.17)

We point to [91, 7, 6] for details on quantization methods and error analysis.

Having a discretization of the state space, a discretization of Ξ and a way of computing the
expect value, the stochastic dynamic programming algorithm computes the value function for all
points in Z# in backward fashion and then synthesizes the optimal feedback. This procedure is
detailed next.

Algorithm 2.2 (Stochastic Dynamic Programming Algorithm). Step 1: Compute value function.

1.1 Set t = T + 1, set β and construct Z#,Ξ#;
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1.2 For all z ∈ Z# set vt(z) = 0;

1.3 For t = T, · · · , 1, for all z ∈ Z# compute

vt(z) = min
a∈A(z)

lt(u) + ρ(q, w) +
∑
ξ∈Ξ#

(
β(x− ft(x, q, u, ξ)) + vt+1

(
ht(z, a, ξ)

))
IP(ξ).

Once having evaluated v in Z# at all links the optimal trajectory can be synthesized as follows:

Step 2: Feedback control synthesis.

2.1 Set t = 1, and initial condition zt = z;

2.2 Compute hybrid control:

a∗t = arg min
a∈A(z)

lt(u) + ρ(q, w) +
∑
ξ∈Ξ#

(
β(x− ft(x, q, u, ξ)) + v#

t+1
(
ht(z, a, ξ)

))
IP(ξ);

2.3 Draw a realization ξ∗ ∈ Ξ;

2.4 Update state to z ← ht(z, a∗t , ξ∗), set t← t+1. If t = T +1 terminate the algorithm, otherwise
go to 2.2.

Step 2.3 can be seen as a feedback coming from the environment. As the process {ξ} evolves,
more information can be add to the synthesis of future controls. In the case of the synthesis of
a power management strategy, the random variable ξt models the (random) vehicle speed at node
t + 1. Once the vehicle arrives at node t + 1 the speed can be measured and this information can
be added to the synthesis of the next control. The measured speed corresponds to a particular
realization of the random variable ξt and counts as information that can be used by the system. In
the algorithm, this information is used to compute the state vector at node t+ 1 in step 2.3.

Now we turn our attention to the existence of an optimal trajectory. We introduce the concept
of feasible state:

Definition 2.3. Given t > 0, a state z ∈ Z is said to be feasible for the stage t if there exists at
least one admissible control input a such that ht(z, a, ξ) ∈ Z for all realizations of ξ. More precisely,
given a decision stage t, the set of all feasible states is defined as

feas(t) = {z ∈ Z | ∃a ∈ A(z), ht(z, a, ξ) ∈ Z, ∀ξ ∈ Ξ} (2.18)

The optimization problem has state constraints and the state must remain inside an admissible
region Z. A standard approach to deal with the state constraints in the dynamic programming
algorithm is to penalize the control every time the state falls outside Z# by setting v·(z) = ∞, if
z /∈ Z (or a numerical equivalent). (We recall that one must always be cautious when handling
the "infinity" in numerical simulations, in particular when interpolating the value function near the
border of Z). In this direction, the grid Z# must be slightly larger than Z and the value function
is initialized as vT (z) = 0 if z ∈ feas(T ) = Z and vT (z) =∞ otherwise.

When proceeding backwards to stage T − 1, given a state z, feasibility demands that exists at
least one admissible control a such that hT−1(z, a, ξ) for all possible realizations of ξ. One can readily
see that the feasibility property is preserved when the method of penalizing the value function is
applied. Indeed, given a state z ∈ Z, if for all admissible controls a is there is at least one realization
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ξ− such that hT−1(z, a, ξ−) /∈ Z, the expectation is set to∞. Then, the value function at this point
is also penalized, vT−1(z) =∞ and the non-feasibility information (points of Z at which the value
function is ∞) is correctly propagated to subsequent stages.

In terms of the vehicle application, the existence of an optimal (indeed any) trajectory is related
to themaximum autonomy of the vehicle. The case of having an empty feasible set at the destination
point indicates that irrespectively of the control applied, the vehicle cannot reach its destination.
A study about the maximum range of hybrid vehicles is developed in Chapter 5.

2.5 Simulation Results

This section is dedicated to the results obtained from simulations of synthesized optimal deter-
ministic and stochastic controllers. The section is divided into two parts. The first deals exclusively
with the deterministic algorithm and the second presents results for the stochastic algorithm.

2.5.1 Deterministic Controllers

Our goal here is to discuss the synthesis of deterministic controllers. We recall that in the
deterministic case, the vehicle speed evolution is assumed to be known with certainty. The value
function is then computed and a controller is synthesized using the dynamic programming Algorithm
6.1.

The first part of this subsection deals with alternative ways of treating the decision lag constraint
imposed on the switching decision sequence. As pointed out, the main drawback of a dynamic
programming algorithm is the curse of dimensionality, in which resource needs grows exponentially
with the dimension of the state. In order to deal with the decision lag constraint, our model
introduces the switch lock state variable τ . Since the CPU time of a dynamic programming algorithm
can be sensibly reduced by lowering the number of state variables, this works explores alternative
ways of introducing the decision lag constraint without adding a state variable.

One important aspect is to avoid fast ICE switching. Since the intermittent fast switching is
undesirable, a possible approach is to penalize the switch cost. In this direction, we introduce a
penalty λ ≥ 1 in the switch cost, effectively considering the cost to be λρ(·). In Figure 2.2 we
observe, the SOC trajectory for different values of λ.

The CPU time is of 95.5 seconds for all values of λ.

Table 2.1 shows the RE operation cost and number of switches obtained for several values of
the penalization factor. For λ = 1 the system is in its nominal cost configuration, but does not
take into account the lag constraint in the discrete decision sequence. Penalizing the switch cost
reduces indeed the number of switches of a strategy. Approximately, in the range λ ∈ [10, 50] the
optimal strategy consists of 9 switches and for λ > 50 the strategy seems to stabilize at 8 switches.
The penalization approach has the practical advantage of simple numerical implementation and
relatively fast execution time (95s). It also effectively reduces the number of total switches. The
downside is that the technique does not see to that the control respects the lag condition. Even if
there are fewer switches, they are not necessarily spaced enough in time to respect the decision lag.

As discussed before, in the deterministic setting, the optimal controller synthesis is done in an
open-loop fashion. In other words, when using a specific speed profile to compute the value function
the same speed profile must be used to the controller synthesis (step 2 of Algorithm 6.1). Therefore,
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Figure 2.2 – State and control trajectories for deterministic controllers using a switch cost penalty factor λ.

Penalization Operation cost (e ) switchs
λ = 1 0.8069 22
λ = 3 0.8095 15
λ = 15 0.8211 9
λ = 20 0.8521 9
λ = 50 0.8690 8
λ = 100 0.9690 8
λ = 200 1.1690 8

Table 2.1 – Performance criteria for deterministic controllers using a switch penalization factor λ ≥ 1.
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since the speed is known with certainty, the state can be integrated with certainty and no deviations
are to be expected. This is what enables the open-loop synthesis, any feedback being unnecessary.

As mentioned, this approach is interesting in many cases such as normative cycles and bus lines,
where the speed can be known with a relatively high degree of confidence. This remark motivates
the next heuristic approach to make the controller more robust with respect to the minor deviations.
The approach consists in feed-backing measured information to the controller, hoping the controller
is able to “correct” the trajectory towards the supposed optimal one. Consider the implementation
of the following closed-loop algorithm:

Algorithm 2.3. Step 1: Compute value function as in Algorithm 6.1.

Step 2: Feedback control synthesis.

2.1 Set t = 1, and initial condition zt = z;

2.2 Compute hybrid control:

a∗t = arg min
a∈At

lt(u) + ρ(q, w) + β(x− xt+1(x, a)) + v#
t+1(ht(z, a))

2.3 Feedback next state value z1 and update state to z ← z1, set t← t+ 1. If t = T + 1 terminate
the algorithm, otherwise go to 2.2.

Observe that the crucial difference between Algorithms 6.1 and 2.3 is that in step 2.3, the state
is updated with information coming from the feedback z1, not from the model h. In both cases, the
control decision is obtained by minimizing the cost at the next node using the model ht (step 2.2),
but in the close-loop version, the de facto next state comes from the feedback, not from the model
ht. This approach is compared against other feedback strategies in the next subsection.

2.5.2 Stochastic Controllers

The performance of policies synthesized using Algorithm 2.2 is studied in this subsection. As
mentioned, stochastic power management strategies performance only have a sense in the light of
several utilizations.

The simulations are prepared as follows: we fix a discretization of the state space and of the
random variable. By using the probabilities identified from the model of the random variable ξ,
the value function is computed. Then, Np speed profiles are generated using the same model of
random variable ξ. Each one of the Np speed profiles is called a scenario. A scenario corresponds to
a particular realization of the process {ξ}. For each scenario, a control sequence is synthesized. The
performance of the algorithm can be then analyzed using the distribution of Np operating costs.

In order to establish a practical reference against which one can infer about the performance
of the stochastic power management, we propose an empirical and intuitive power management
strategy. This empirical strategy, referred to as handmade strategy, consists basically of setting the
range extender output power inversely proportional to the SOC level in the battery. In more detail,
consider three SOC reference levels 1 < x3 < x2 < x1 < 0 and the output power bounds u, u.

The dependence of the control bounds on the vehicle speed is omitted to simplify the presentation
of the strategy, but the dependency is taken into account in the implementation. The switching
is managed by a hysteresis cycle running between x2 and x1: the range extender is turned on if
xt ≤ x2 coming from the right and it is turned off if xt ≥ x1 coming from the left. For simulation
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Figure 2.3 – Handmade power management strategy.

purposes, the values of the parameters were set at x1 = 0.8, x2 = 0.2 and x3 = 0.1. We remark that
this handmade strategy is made for quantitative results comparison only and thus, the parameter
setup values is not object of any particular tunning effort.

Also, in order to compare with different (and available) strategies, the deterministic open-loop
controller is included in the analysis. In this case, the value function is computed for the same state
space discretization Z#, considering only the deterministic state variables, SOC, switch lock and
range extender state, without using the vehicle speed as a state variable. Then, for the same set
of Np scenarios the control sequence was synthesized using Algorithm 2.3. We again stress the fact
that a controller synthesized used the procedure described has no guarantee whatsoever of working,
let alone incurring an acceptable performance. If the speed profile used in the computation of the
value function differs from the speed profile used in the feedback, all the computation loses its
meaning and one might as well have computed the value function using any different model.

The initial configuration retained for the numerical tests is a very tight one. More precisely,
for the 20km driving cycle used, the vehicle starts with a low SOC (20%) so to force the optimal
policy to use the range extender. The idea is that, the fuel being set to be more expensive than
electric energy, an optimal strategy should use as least as possible the range extender. If the initial
SOC is set at a high-level, allowing thus the vehicle to arrive to its destination without requiring
the range extender, the optimal strategy clearly consists of using only battery energy. Therefore,
all strategies would yield very close performance levels. By setting very tight conditions (typically,
an initial SOC at 20% does not suffice to arrive at the destination) one is able to compare the
performance of several different power management strategies in a more significant and non-obvious
manner. The initial SOC level is set at 20%, roughly, 1% of SOC allows the vehicle to drive 1km.
Simulations are run for Np = 1000 scenarios.

Overall performance. Figure 2.4 shows the distribution of costs obtained using two stochas-
tic power management strategy, a deterministic power management strategy and the handmade
strategy. The figure also contains the rate of success of each strategy, i.e., the ratio of scenarios in
which the final destination was attained with a final SOC above 0%. The two stochastic strategies
are referred to as A and B. Stochastic strategy A uses the probability density functions estimators
obtained from the samples generated from ARMA speed profiles. In the other hand, stochastic
strategy B algorithm computes the expected values considering the probability density estimators
identified from the measured speed set of samples (cf. Section 7.4).

From Figure 2.4, one can verify that, although the stochastic controller B is cheaper in average
than controller A, there is a drop of 20% of the success rate. This degradation of the rate of
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Figure 2.4 – Histogram of operating costs, in e (euros) for Np = 1000 simulations. The figure shows the
costs obtained by a deterministic close-loop controller (blue), stochastic controller A (red), stochastic con-
troller B (green) and a handmade heuristic controller (black). The legend contains the rate of success of the
corresponding strategies. In absolute values, the deterministic controller has 482 successes against 999 of the
stochastic controller A, 808 successes of the stochastic controller B and 1000 of the handmade controller.

success stems from the fact that, as already mentioned, for stochastic controller B, the optimization
model, here including the estimators p̂ is different from the simulation model, i.e. simulated ARMA
processes. Indeed, the stochastic processes de facto considered in the value function computation
and the controller synthesis via the density estimators is the “real” one. However, since the stochastic
process used in the numerical simulations, i.e. the ARMA(2,1) process, is of a different nature, the
value function is expected to incorporate erroneous information about the probability for future
realizations of ξ. This results in a greater presence of outliers5, greater standard deviation (cf.
Table 2.2) and a degraded rate of success.

We draw attention to the difference in the rate of success of the deterministic close-loop strategy.
With roughly 50% of rate of success, the costs presented in the figure are of little importance. The
cost of a vehicle stop due to the low battery charge for a client lie well above the order of magnitude
of the costs obtained by the other strategies, being estimated at around 100 e. Implemented as
suggested, the simulations show that a deterministic close-loop strategy is of little or no practical
interest. For the sake of argument, one can still think on how to improve the rate of success of a
deterministic controller. An heuristic improvement proposed in this work consists of penalizing the
value function heuristically to try to avoid a very low SOC. The results of a penalized deterministic
close-loop controller is showed in Figure 2.5.

A penalization method is indeed able to bring the rate of success of a deterministic controller to
a near perfect score, at any rate, comparable with the stochastic and handmade controller. After
a mild effort in tunning the penalization, we observe that if one is to attain a rate of success of
near 100%, the cost distribution is still somewhat higher than even a simply designed handmade
controller. After these remarks, we judge the technique of using a deterministic controller unsuited
for routine realistic driving profiles.

5An outlying observation is an observation that “appears to deviate markedly from other members of the sample
in which it occurs” [42].
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Figure 2.5 – Histogram of cost distributions including the costs of a penalized deterministic close-loop con-
troller (green). The success rate of the penalized deterministic controller is 999 out of 1000 simulations.

Observing the information presented in Table 2.2 one can verify that the cost distribution from
the stochastic controller using the adequate probability model has less outliers (11) than the other
three (34 for handmade controllers and 66 when using penalized deterministic controllers). Also,
when comparing the stochastic strategies, when the suitable probability model is used, we remark a
somewhat lower relative number of outliers (stochastic controller A, 11 outliers) than an inadequate
one (stochastic controller B, 57 outliers). The information about the number of outliers shows that
the cost distribution associated to stochastic controllers is "tighter" (precisely, it has less excess
kurtosis) that the other distribution, a much appreciated feature in our application. This indicates
in particular that if one is to run more simulations, the new stochastic associated costs will more
likely fall inside the present distribution.

Comparing the two stochastic, handmade and penalized deterministic strategies, the average
cost for operating under stochastic strategies is the lowest. Also, stochastic strategies present far
less variation on the total cost for the same set of speed profiles as one can observe from the
standard deviation levels in Table 2.2. This behavior illustrates the robustness of the stochastic
power management strategies with respect to the variations of vehicle speed. Indeed, this is one
of the main reasons to consider the utilization of stochastic algorithms in the synthesis of hybrid
vehicles controllers. The 0.95-quantile is the cost of operation that encompasses 95% of the cases.
For the distribution of stochastic strategies, the 0.95-quantile is of 1.19e for an average cost of
1.08e, yielding a difference of 0.08e. For the handmade and the penalized deterministic strategies,
this difference is of 0.24e and 0.17e respectively.

Policy structure. Figure 2.6 compares the different SOC trajectories and hybrid controls ob-
tained with the different algorithms tested in this work. In the first scenario, the deterministic
controller enables the vehicle to reach its destination. In the second scenario, the deterministic
controller fails to do so. Notice the difference of the overall control policy between the handmade
and stochastic strategies. The handmade control deploys a more conservative charge sustaining op-
eration of the RE. This particular strategy reveals itself safe, but more expensive than the stochastic
controller. Indeed, given the considered parameters of the strategy, the RE output power is pro-
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Algorithm average (e) std. deviation (e) 0.95-quantile (e) success rate
Deterministic 0.5689 0.0392 0.6561 48.2%
Stochastic A 1.0714 0.0622 1.1912 99.9%
Stochastic B 0.6842 0.0728 0.8344 80.8%
Handmade 1.4836 0.1213 1.7290 100.0%
Det. Penalized 1.7343 0.1256 1.9028 99.9%

Algorithm min cost (e) max cost (e) spread (e) outliers
Deterministic 0.4828 0.7282 0.2454 76
Stochastic A 0.9515 1.3957 0.4442 11
Stochastic B 0.5543 1.1528 0.5985 57
Handmade 1.2555 2.2739 1.0184 34
Det. Penalized 0.9538 2.0655 1.1117 66

Table 2.2 – Table containing statistical quantities of distributions presented in Figure 2.4 and Figure 2.5.

portional to the SOC discharge. A different calibration of the parameters of the heuristic strategy
(cf. Figure 2.3) might change the policy structure.

The structure of the policy of the stochastic controller is detailed in Figure 2.7. The strategy is
composed of four different high-level operation phases detailed below:

A. Preemptive recharge phase. The optimal stochastic controller is able to perceive the tight
initial situation of the vehicle (20% of SOC for 20km). The controller operates the RE near
maximum capacity to recharge the battery in this first phase of the driving cycle. Proceeding
as such, the strategy increases the energy in the battery to a safe level, around 25% in this
particular route. This is not an obvious optimal strategy. Indeed, recharging the battery
while driving causes the output energy of the RE to pass trough two conversion processes
(thermal → electric → mechanic), instead of only one (thermal → mechanic) as is the case if
the energy is directly used to help traction. Due inexorable losses, the energetic yield is lower.
However, due the RE power limitation and the critical charge situation, the strategy behaves
in a robust less risky fashion, making a charge provision for the remainder of the trip.

B. Charge sustaining phase. During this phase, the RE operates to assure a constant charge
in the battery. This is an intermediary phase in which the RE operates in a more economic,
but still conservative fashion.

C. Reactive discharge phase. As soon as the optimal policy judges that the remaining distance
can be met safely with the current SOC level, the RE output is completely halted while at the
same time keeping the RE running. This can be seen as a guided discharge phase where the
RE is able to deliver power at any time if needed. This proves to be the central contribution
to the performance levels of the optimal stochastic controller. There is substantial fuel (and
therefore cost) savings in this phase, as it lasts for most of the driving cycle. Moreover, this
behavior is representative of the robustness of the stochastic controllers, as it remains ready
to counter any “bad” future events.

D. Fuel saving phase. Near the end of the route, the controller judges safe to turn off the RE,
further reducing the cost of operating the RE.

This strategy structure is at the same time conservative, reactive and economic.

Sensibility with respect to the initial SOC. As mentioned in Remark 2.3, the configuration
of the simulations is designed to ensure that a non-obvious RE operation is required to finish the
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Figure 2.6 – Plots regrouping the SOC (left), instant fuel consumption (center) and range extender requested
power (right) for a particular scenario realization. The curves are obtained using a deterministic close-
loop controller (blue), a stochastic controller (red), a handmade controller (black) and a penalized close-loop
deterministic controller (green). The center plot shows the total fuel consumption, in milliliters, for this
scenario according to the strategy used.

trip. We investigate the sensibility of the strategies with respect to the initial SOC. Figure 2.8
shows the average operation costs and the success rate over 1000 simulations of different strategies.
The success rate of the stochastic, handmade and penalized deterministic strategies remains near
100% for all SOC values (the stochastic and the penalized deterministic have a success rate of
99.9% and 99.8% respectively). These three strategies have a similar operation cost sensibility with
respect to the initial SOC. The average cost of the stochastic strategy is the lowest between the
three strategies. Indeed, the stochastic strategy average cost, for an initial SOC of 30% is 0.22e
lower than the handmade strategy, representing an improvement of near 30%. For an initial SOC
of 10% this difference rises to 0.57e . In this case, the utilization of a stochastic strategy results in
a relative improvement of over 35%. The deterministic strategy has a success rate of 100% only for
an initial SOC above 30%. From an initial SOC below 25%, the success rate6 degrades rapidly.

Resource utilization. The CPU running time7 for computing the value function using the
stochastic dynamic programming algorithm is of 1838s. The resulting data structure uses a hard
disk space of over 720kb. For the computation of the value function using any deterministic algo-
rithm using the same discretization setting, the running time is of 82s and the data structure is
stored in roughly 160kB From these values, one can observe the curse of dimensionality in effect.
There is a factor of over 20 times the time of computation and a factor of over 4.5 in the hard drive
space needed for storage required to add one extra state variable.

6For an initial SOC of 20% the success rate is of approximately 90%. This is a different value than the one shown
in Table 2.2 because a thiner discretization grid has been used for the sensibility study.

7Intel Xeon E5504 @ 2× 2.00GHz, 2.99Gb RAM.
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Figure 2.7 – Optimal state and control trajectories (SOC and power control) for 200 scenarios. Four distinct
phases of operation appear distinctively for this route: preemptive recharge (A), charge sustaining (B),
reactive discharge (C) and fuel saving (D).
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2.6 Discussion

Table 2.3 summarizes qualitative features of the different strategies tested.

reliability operation cost CPU resources overall rating

Stochastic A

Handmade

Stochastic B

Det. Penalized

Deterministic

= OK = Acceptable = KO

Table 2.3 – Table summarizing main qualitative information about the performance of simulated controllers.

In our application, the reliability is a decisive factor of the performance of a strategy. This is
measured by the success rate of the strategy. We stress that the simulations consider a configuration
in which it is always possible to reach the final destination. Therefore, failure to do so is judged
unacceptable.

The success rate of the two stochastic strategies shows that the quality of the stochastic model
used for representing the random evolution is relevant. In the best case, the stochastic process whose
data is used to estimate the Markov-chain transition probabilities is the same of the process actually
used in the simulations (ARMA models in our case). When the simulation model and optimization
model use the same stochastic processes the success rate increased of 20% with respect to a strategy
where the processes are different. In addition, the robustness of the strategy is enhanced, with a
14% lower standard deviation.

We propose two ways of harmonizing the stochastic information used in the simulation and
optimization models.

• Driving data. A substantial database of driving profiles can be used to construct both a
optimization model and a simulation platform. First, a part of the available data is used
well identify the transition probabilities. Next, the part of the driving profiles not used for
probability estimation are used for simulation purposes, acting as a backtesting to check how
strategies would have performed if they were implemented in the past. In this approach, the
quantity of good quality data must be enough to allow a statistical significance of both the
probability estimator and the simulation results.

• Modeling effort. In the absence of a large database, an effort can be made towards the
implementation of more evolved stochastic models. A more sophisticated stochastic modeling
(e.g. GARCH, ARIMA, see [20]) may capture in more detail the features of the real measured
driving profiles. If these models can well reproduce (stochastically) the real process underlying
the measurements, they can be used in the approach proposed in this study: they are used to
generate artificial data used to construct the optimization model and to simulation ends.

A heuristic strategy can be very reliable. This reliability is obtained by paying a higher cost for
the operation of the RE. The stochastic feedback controller decreases the average operation cost by
over 27% and over 31% if 95% of the cases are considered, when compared to the heuristic strategy
considered (cf. Figure 2.3).
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As it is expected, the CPU time needed to evaluate the value function in the stochastic algorithm
is penalized due the increased state space. The running time is 1838s against 82s for the deterministic
value function. The disk space required, in the same conditions, is of over 720kb against 160kb. In
spite of the relatively higher resource needs of the stochastic controller with respect to the other
controllers, the application of stochastic controllers for a real application is deemed suitable and
deserves further study. We propose three utilization scenarios that might help overcome the higher
computational needs and move a step towards a real hybrid vehicle stochastic controller:

• Value function storage. The value function is computed only once. It can then be ap-
plied successively to the optimal control on the same route. Indeed, to effectively implement
stochastic strategies on-board vehicles, the value function is computed and then, it is used
as a look-up table to choose the optimal control on-line. In this study, the value function is
computed for a specific route. An important observation is that, once the value function is
computed for a first utilization of the route, it can be used for all subsequent drives along the
same route. Because the typical scenario of the REEV is a home � work drive, only a few
value functions need to be stored in memory. Then, a few value functions can account for the
utilization of on-line stochastic feedback control strategies in a large proportion of the vehicle
mileage.

• Trip planning. The value function can be computed off-lined and stored outside the vehicle
processors. One can think of an off-line computation of the value function as a part of a
trip planning application. In this scenario, as the driver plans the trip (e.g. checking for
restaurants along the route, traffic conditions, weather reports one day prior to the trip) and
the route is chosen, the application computes off-line the value function. The resulting look-
up table is then stored in a flash drive and uploaded to the vehicle, where it can be used to
synthesize the optimal feedback control for the trip. This procedure can be of worth even in
the case where the REEV is expect to perform most, namely, on a home � work scenario.
The main advantage is that the computation can be made in more powerful hardware, such
as smartphones, notebook computers or even desktop computers.

• Heuristic power management design. The stochastic strategy presents a high-level con-
trol structure that can be used to design and tune heuristic strategies. As an overall rule,
heuristic strategies require little computational resources. The drawback is the tunning effort
needed in the conception phase to produce a safe, robust and economic control policy. To
assist with the tunning effort, the stochastic policy can offer great insight on how an optimal
controller is expect to behave. This high-level control information render the task of tunning
hand-tailored strategies somewhat easier. Moreover, simulating the stochastic policy to gain
insight on the structure of the controller can open a path for designing more sophisticated
heuristic strategies that would otherwise be very hard to calibrate or even to conceive. For
instance, the heuristic controller can integrate NAV information, expected traffic conditions
and driver style in its design. Therefore, regarding a real-vehicle implementation, the opti-
mal policy structure revealed by the stochastic controller serves as a starting point for better
designed heuristic strategies.

Since the main issue with the stochastic dynamic programming is the CPU requirements, we
investigate the potential utilization of a different algorithm used to compute the value function,
namely, the stochastic dual dynamic programming (SDDP). This investigation consisted on the
construction of a suitable approximation of the vehicle model to state the optimal control problem
as a convex optimization problem. Some issues concerning the implementation of the algorithm and
the synthesis of the optimal controller are discussed in the next chapter.
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3.1 Introduction

Section 2.4 studies the utilization of a stochastic dynamic programming algorithm for numeri-
cally computing the value function defined in (2.14). This stochastic dynamic programming (SDP)
algorithm synthesizes an optimal feedback that controls the power split used in a REEV to minimize
the expected energy cost along a given route. The SDP algorithm constructs an approximation of
the value function on points of a grid obtained by discretization of the state space. Then, Equations
(2.16a)-(2.16b) are solved backwards for all values of z in the grid, eventually using some inter-
polation whenever a value of zt+1 falls outside of the grid. The bottleneck of the SDP algorithm
is the curse of dimensionality. This practical limitation of the size of the state dimension may be
overcome by using a different form of approximating the value function. This is the main interest
of the SDDP application. The objective of the study is to focus on justifying the SDDP approach
to the specific hybrid vehicle model.

The SDDP algorithm was first introduced [67] as a way to find an approximate solution to
stochastic optimization problems. Broadly, the idea is to approximate the expected value function
by piecewise linear functions obtained by solving the associated dual optimization problem at each
stage. In this context no state space discretization is needed and thus, the method is suitable
for treating large dimension optimization problems. Instead, the SDDP algorithm approximates
a convex value function by the maximum of supporting hyperplanes sequentially computed. This
requires the knowledge of the value and the a sub-gradient of the function at a point. Figure 3.1
illustrates the different approximations methods of the SDP and the SDDP.

x

State space discretization (SDP)

f(x)

x

Maximum of supporting hyperplanes (SDDP)

f(x) Unknown function
SDP approximation
SDDP approximation

Figure 3.1 – Figure illustrating the approximations of the value function produced by a SDP (blue) and a
SDDP (green) algorithm of a (unknown) function f . The SDP constructs a grid by a discretization of the
state space and computes the value function on the grid. Between grid points, an interpolation method is used
(here, a linear interpolation is used). The SDDP sequentially constructs supporting hyperplanes and takes
their maximum as the approximation of the value function. Notice that the convexity of f is essential for the
SDDP approximation.

In order to fix the main ideas, consider the following optimization problem:

inf
g1(z1)≤0
g2(z2)≤0
h1(z1)=0

h2(z1,z2,ξ)=0

φ(z1) + IE
[
ψ(z2)

]
, (3.1)

where ξ is a random variable valued in Ξ (IP is a probability over the measurable space (Ξ,F)),
z1, z2 ∈ IRd are decision variables, g1, g2 : IRd → IRd convex constraints, φ, ψ : IRd → IR+ (cost
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functions) are lower semi-continuous convex functions, h1 : IRd → IRd is affine and h2 : IRd × IRd ×
Ξ→ IRd is affine in the second variable.

Problem (3.1) is called a two-stage problem. The idea is to make the first decision z1 (first-
stage) before the realization of the random variable ξ. After the cost of the first decision is paid,
the state z2 is obtained from decision z1 and a realization of ξ and the second stage cost is paid. In
formulation (3.1) the first decision is made to minimize the expected cost of the decision1.

Define the optimal value of the second-stage problem function Q : IRd × Ξ→ IR+ as being

Q(z1, ξ) := inf
g2(z2)≤0

h2(z1,z2,ξ)=0

ψ(z2), (3.2)

Define, to shorten notation, function Q(·) = IE[Q(·, ξ)]. Then, problem (3.1) can be written in
the form

inf
g1(z1)≤0
h1(z1)=0

φ(z1) +Q(z1). (3.3)

As a next step, consider the formulation of the dual problem associated to (3.2). Given (z1, ξ),
the Lagrangian is

L(z2, λ, ν; z1, ξ) = ψ(z2) +<λ |g2(z2)>+<ν |h2(z1, z2, ξ)>,

where we denote by <a |b> the scalar product of a and b. The dual function is written as

L(λ, ν; z1, ξ) = inf
z2∈IRd

L(z2, λ, ν; z1, ξ).

Defining the domain (of feasibility) of L as Λ(·, ·) = {(λ, ν) | λ ≥ 0, L(λ, ν; ·, ·) > −∞}, one can
state the dual problem associated to (3.2) as

sup
(λ,ν)∈Λ(z1,ξ)

L(λ, ν; z1, ξ). (3.4)

The SDDP algorithm requires the knowledge of one subgradient of Q with respect to the first
decision variable z1. For fixed (z1, ξ), if the strong duality property holds for a point (λ∗, ν∗), then
Q(z1, ξ) = L(λ∗, ν∗; z1, ξ) and, since the sub-differential and the expected value are linear operators,
one obtains

η(z1) ∈ ∂Q(z1) = IE
[
∂L(λ∗, ν∗; z1, ξ)

]
. (3.5)

This means that the solution of (3.4) allows the calculation of one subgradient η ∈ ∂Q at the point
z1. Notice that, in general, (λ∗, ν∗) depends on (z1, ξ).

Remark 3.1. For a given (z1, ξ), if z∗2 minimizes the Lagrangian, the sub-differential with respect
to z1 of IE

[
L
]
can be written as

∂Q(z1) = <ν∗ | IE
[
∂h2(z1, z

∗
2 , ξ)

]
>.

Notice that ∂Q does not depend on λ, the Lagrange multipliers associated to the inequality con-
straints.

1This is not the only possible formulation. As mentioned minimizing the expected cost can be justified in a context
where decision z1 has to be made several times. The optimal strategy then minimizes the average cost over a large
number of realizations. Otherwise, one may be interested in minimizing the risk of the decision or the worst case
scenario. For a detailed discussion on the larger issues arising in stochastic programming, we refer to [78].
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In the case the strong duality property does not hold, one can still obtain the sub-differential in
a point on the convex hull of Q, since L(λ∗, ν∗; z1, ξ) = conv(Q(z1, ξ)).

As mentioned above, the SDDP algorithm aims at constructing a piecewise linear approximation
of the function Q made of supporting hyperplanes and then use it to solve the first stage problem.

More precisely, suppose that the realization set Ξ is finite. Given a feasible trial solution z
(0)
1

(feasibility implies that g1(z(0)
1 ) ≤ 0 and h1(z(0)

1 ) = 0), define the initial support plane as Q0 ≡ −∞.
Solve problem (3.2) for all ξ ∈ Ξ to obtain Q(z(0)

1 , ξ). By solving the dual to (3.2), one obtains
a subgradient η(z(0)

1 , ξ). Now, evaluate Q(z(0)
1 ) = IE

[
Q(z(0)

1 , ξ)
]
and η(0)(z(0)

1 ) = IE
[
η(z(0)

1 , ξ)
]
and

construct a supporting plane π(0)(z) = Q(z(0)
1 ) + <η(0) |z − z(0)

1 >. The approximation of the
expected value is updated to Q1(z) = max{Q0(z), π(0)(z)}. Then, one can solve the problem

min
g1(z1)≤0
h1(z1)=0

φ(z1) +Q1(z)

and use the solution z(1)
1 to iterate the procedure2.

In the next section we detail the ideas exposed above.

3.2 Stochastic Dual Dynamic Programming Implementation

The goal in this section is to propose an implementation of a multi-stage SDDP algorithm.

The SDDP algorithm broadly consists of two stages: a backward pass and a forward pass, iterated
until a stopping criteria is met. Before presenting a SDDP algorithm formulation, we discuss briefly
the main concepts behind the proposed method.

The goal of solving our optimization problem is to obtain an optimal control feedback that can
be applied in the “real system”. However, test the performance of controllers on the real system
for development ends usually is prohibitively expensive. Such procedure requires a configurable
embedded controller, a vehicle prototype and suitable testing conditions. Therefore, simulation of
the real system seems to be an essential step in developing control laws before they can be tested
in the real system. In the context of a SDDP algorithm, using simulation to synthesize and test
control feedbacks leads to three distinct layers of approximation (the articulation of these ideas is
greatly inspired from [80]).

The introduction of a (indeed any) model to simulate the behavior of the unknown quantity is a
first layer of approximation. In our application, the random parameter is the vehicle future speed.
The uncertain dynamic evolution of the vehicle speed is represented with an autoregressive model
identified using measured samples. Then, assuming the autoregressive model is a Markov chain,
discrete transition probabilities are identified using the autoregressive models. These probabilities
are used to evaluate the expectation of the value function.

Solving stochastic programs requires the evaluation of the expected value of the optimal cost

Q(z) = IE
[
Q(z, ξ)

]
. (3.6)

Dismissing the very specific case of an analytical close-form for the expectation (3.6), one is even-
tually bound to work with discrete random variables. The expected value can then be expressed as

2A more complete description of the algorithm is given after below, after properly introducing the optimization
problem related to the optimal power management.
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a sum and problem (3.3) can be solved using the adequate mathematical programming techniques.
In our context, the main issue arising is the size of the resulting problem (see [79] for a more com-
plete analysis on the complexity of stochastic programs). The number of terms in the summation
is exponential in the dimension of ξ. If the random vector has d independent dimensions with r
values along each dimension, the total number of realizations is K = rd. This implies that one has
to solve K (deterministic) second-stage problems in order to solve the first stage problem. One
can only hope to solve such problem if the second stage problems are “easy” to solve (e.g., linear
programs) and the number of realizations K is not “too large”. Additionally, the two-stage problem
is required to have relatively complete recourse, i.e., for all admissible first-stage decisions z ∈ Z the
second-stage problem has, for all realizations of the random data, a feasible solution.

A way of computing an approximation of the expect value of the value functions is the sample
average approximation (SAA) [51, 88]. The aim of the SAA is to approach the expectation of
the value function by its average value over a great number of random realizations, or scenarios,
There are several methods for generating scenarios (see [34] for a survey). For instance, one can
use a Monte Carlo-based discretization technique [81]. One then replaces the original problem
of minimizing the expected value, as in criterion (3.51), with the sample average approximation
problem (SAA) of minimizing Q̃(z) = 1

N

∑N
i=1Q(z, ξi) where ξi are N random sample points from

Ξ.

In the multi-stage setting, the optimization problem can be stated as

inf
g1(z1)≤0

...
gT (zT )≤0
h1(z1)=0

...
hT (zT−1,zT ,ξT−1)=0

IE
[
T∑
t=1

φt(zt, ξt+1)
]
, (3.7)

The complexity of a general multi-stage stochastic problem grows disastrously with the horizon T .
In [79], authors argue that such problems are seemingly intractable. Even in the light of such poor
prospects, particular problems may be solved using sampling methods to a reasonable accuracy.
The complete recourse property continues to be required for multi-stage problems. In this context,
for all stages t and all past decisions z1, · · · , zt−1, the t-stage problem has, for all realizations ξt, a
feasible solution.

The SAA for multi-stage stochastic problems follows the same principle of the SAA of two-stage
problems, only that now, the scenarios are processes (ξi1, · · · , ξiT ), i = 1, · · · , N instead of simple
realizations. The scenarios generated for the SAA approximation are structured in a scenario tree.
A procedure for constructing scenario trees is explained further.

The stochastic dual dynamic programming (SDDP) is then introduced to solve the SAA problem.
We next detail a SDDP algorithm implementation.

Step 0: Scenario Tree To construct an appropriate scenario tree, the idea is to describe succes-
sive realizations of the random variable (ξ1, · · · , ξT ). At each stage t, the SAA problem considers
a particular selection Ξt of Ξ as the support of ξt. (If the probability space is continuous, the Ξt
are a particular discretization). The cardinality of each set Ξt is denoted by Nt. At stage t, each
possible value ξt ∈ Ξt is called a node. Assuming stagewise independence between the random
variables (ξ1, · · · , ξT ), each node ξt gives origin to other Nt+1 nodes, called child nodes. From this
construction, one can readily notice that each node ξt has a unique origin node ξt−1 called parent
node. Proceeding for t = 1, · · · , T , the total number of nodes on the tree is given by N1× · · · ×NT .
A scenario is a particular sequence (ξ1, · · · , ξT ) of realizations of the random variable. Figure 3.2
illustrates a scenario tree with T = 3, N1 = 1, N2 = 4, N3 = 2.
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Figure 3.2 – Illustration of a scenario tree. In this
case, T = 3, N1 = 1, N2 = 4, N3 = 2. Sets Ξ2
and Ξ3 are highlighted in green and blue respectively.
A particular scenario realization (ξ1, ξ

3
2 , ξ

1
3) is high-

lighted in red.

Step 1: Sampling of SAA scenarios The selection (or discretization) of the probability spaces
allows the SAA problem and a SDDP algorithm is applied to this approximation. Consider M iid
scenarios (ξk1 , · · · , ξkT ), k = 1, · · · ,M , sampled from the SAA scenario tree using the real probability
distribution. Denote by Qt a piecewise-linear approximation to function Qt. It is convenient to
rewrite Qt using inequalities constraints and an auxiliary decision variable θ. More precisely, let
there be N c

t > 0 linear functions (or cuts) πmt (z) = amt +<bmt |z> for j = 1, · · · , N c
t , corresponding

to supporting hyperplanes. Then, one can write the condition of minimizing function Qt(z) =
maxm πmt (z) over z as

min
z,θ

θ s.t. θ ≥ πmt (z), m = 1, · · · , N c
t . (3.8)

At t = 1, given a feasible trial decision z1, for each scenario k one can construct a feasible policy,
i.e., a sequence z1, · · · , zkT , by solving

zkt ∈ arg inf
gt(zt)≤0

ht(zkt−1,zt,ξ
k
t )=0

θ≥πmt+1(z), m=1,··· ,Nc
t

φt−1(zkt−1, ξ
k
t ) + θ. (3.9)

The idea is to use zkt as trial decisions, for some or all k = 1, · · · ,M .

Step 2: Backward recursion The next step of the algorithm is called backward step. For
t = T, · · · , 2 the function Q̃jt (zkt−1), defined as

Q̃jt (zkt−1) = inf
gt(zt)≤0

ht(zkt−1,zt,ξ
j
t )=0

θ≥πmt+1(zt), m=1,··· ,Nc
t

φt−1(zkt−1, ξ
j
t ) + θ, (3.10)

is solved for all child nodes ξjt , j = 1, · · · , Nt of ξkt−1. In (3.10) we set πmT+1 ≡ 0. Writing the dual
function as

Lt(λt, µt, νt; zkt−1, ξ
j
t ) = inf

zt
φt−1(zkt−1, ξ

j
t ) + θ +

<λt |gt(zt)>+
<µt |πmt+1(zt)− θ>+
<νt |ht(zkt−1, zt, ξ

j
t )>, (3.11)
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the dual formulation of (3.10) (c.f. (3.4)) is

sup
(λt,µt,νt)∈Λ(zkt−1,ξ

j
t )
Lt(λt, µt, νt; zkt−1, ξ

j
t ), (3.12)

where the dual feasible space Λ is defined by

Λ(·, ·) = {(λ, µ, ν) | λ ≥ 0, µ ≥ 0, L(λ, µ, ν; ·, ·) > −∞} . (3.13)

This means that, for given zkt−1, ξ
j
t , function Lmust be bounded below for any feasible dual variables.

Once the optimal solution (z∗t , λ∗t , µ∗t , ν∗t ) of (3.12) is obtained, the algorithm then computes a
sub-differential η̃jt (zkt−1) at trial point zkt−1. The optimal solutions Q̃jt and sub-differentials η̃jt are
then averaged to obtain

Q̃t(zkt−1) = 1
Nt

Nt∑
j=1

Q̃jt (zkt−1), (3.14)

η̃t(zkt−1) = 1
Nt

Nt∑
j=1

η̃jt (zkt−1), (3.15)

and construct a new cut πN
c
t +1

t (zt−1) = Q̃t(zkt−1) + η̃t(zkt−1)(zt−1 − zt−1) to add to the collection of
existing cuts at stage t.

Notice that functions Qt are not available for computation. Indeed, the problem one should
solve is

inf
gt(zt)≤0

ht(zkt−1,zt,ξ
j
t )=0

φt−1(zkt−1, ξ
j
t ) +Qt+1(zt). (3.16)

However, this problem is replaced by (3.10), using the linear piece-wise approximations Qt instead
of Qt. As the cuts are supporting hyperplanes of Q̃t that may be strictly smaller than Qt, the
approximations may only be cutting hyperplanes of Qt. Thus, Qt ≤ Qt (with the inequality usually
being strict [80]). As a consequence, the solution to the SAA problem using approximations Q,

V = inf
g1(z1)≤0
h1(z1)=0

Q2(z1), (3.17)

yields a lower bound V on the optimal solution of (3.16). The lower bound V shall later be used in
a stopping criteria for the algorithm.

Step 3: Forward step The forward step consists in the generation of a new set of M ′ scenarios
sampled from the SAA tree and using the real probability distributions. The number of scenarios
may well be M ′ = M or not. For simplicity, we shall retain that M ′ = M while keeping this remark
in mind. (Indeed, [80] shows that the speed of convergence of the algorithm may be increased when
M ′ changes with the iteration.) After scenarios (ξk1 , · · · , ξkT−1), k = 1, · · · ,M are sampled, one can
construct feasible policies z1, · · · , zkT that have a twofold objective. First, constructed policies can
be used as trial decisions in the backward step on the next iteration. Second, they can be used to
compute the total cost of each policy

Vk =
T∑
t=1

φt(zt). (3.18)

The average of such over the sampled scenarii yields an (statistical, since it is sample dependent)
upper bound of the optimal value of the multistage problem. More precisely, consider the sample
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average and sample standard error of policies values

V̂M = 1
M

M∑
k=1
Vk, (3.19)

σ̂M =

√√√√ 1
M − 1

M∑
k=1

(
V̂M − Vk

)2
. (3.20)

By the Central Limit Theorem, the distribution of the estimator V̂M approximates a normal distri-
bution if M is arbitrarily large. Denoting ζα the 1− α quantile of the normal distribution, one can
establish a 1− α confidence lower bound for V

V̂M − ζα
σ̂M√
M
, (3.21)

and similarly, a 1− α confidence upper bound

V = V̂M + ζα
σ̂M√
M
. (3.22)

In [80] there is an argument for using the difference of upper bound (3.22) and lower bound
(3.17) as a stopping criterion for the SDDP algorithm. Therefore, whenever a tolerance is required
for stopping the algorithm it is understood that the stopping test checks the difference ∆V = V−V.
Alternatively, one also may find interesting to stop the algorithm after a certain fixed number of
iterations.

3.3 Feedback control synthesis

Once the algorithm stops, one can use the supporting-hyperplane approximations to synthesize
a controller. The synthesis of a controller in the simulation phase can be obtained with a varying
degree of approximation. First, a controller can be obtained and tested by sampling of a large num-
ber of scenarios Ms (typically larger than M) using the scenario tree and solving the optimization
problem at each stage t = 1, · · · , T :

inf
gt(zt)≤0

ht(zt−1,zt,ξk)=0

Qt+1(zt).

For each k = 1, · · · ,Ms the policy xk1, · · · , xKT yields a total operating cost (3.18). The average cost
of Ms scenarios gives an indicator of the performance of the SDDP algorithm that engendered the
approximations Qt.

Second, the performance of controllers synthesized can be studied using the procedure described
in the above paragraph in more realistic conditions. Notice that in the preceding paragraph, the
sampling of scenarios is made using a constructed scenario tree. We recall that the scenario tree is
constructed from a discretization of the image space of the random variable (or of a particular selec-
tion if the image space is already finite) and therefore may not contain all the possible realizations
of the random variable. Then, a more realistic simulation environment can be obtained if instead of
sampling scenarios using a scenario tree, the random process ξ1, · · · , ξT is generated using a more
realistic method, e.g. non-Markovian autoregressive models.

The synthesis of a controller in “real” conditions is also implementable. This becomes the case
if instead of using the dynamic equations for computing the state at the next stage one wishes to
directly measure the state of the real system at each stage. Proceeding as such, one can use the
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state feedback and past realizations of the random variable to solve sequentially first stage problems
of the form (3.17). More precisely, given initial conditions z∗, solve

inf
g1(z1)≤0
h1(z1)=0

Q2(z1)

to find solution z1. Such a solution vector contains the (feasible) control u1, w1 to be applied at the
first stage. In the second stage, one can measure the “real” state z∗1 , arising from a ‘true’ random
realization and use it as initial condition to solve

inf
g1(z2)≤0
h1(z2)=0

Q3(z2).

Notice that one keeps the first-stage constraints g1, h1 while using the supporting hyperplane ap-
proximation for Q3. This procedure is iterated until stage T .

In the next section, we illustrate the SDDP algorithm behavior and comment on some of its
features via two numerical examples.

3.4 Numerical Simulations

In this section we present some numerical simulations of a SDDP algorithm. At a first moment,
we use a simple stochastic logistics problem on a network. This linear model allows us to verify the
convergence of the algorithm, as well as the behavior of the solution with respect to the number of
stages considered. Additionally, we compare the performance of SDDP-synthesized controllers with
respect to controllers synthesized using a dynamic programming algorithm.

To gain further insight on the behavior of the SDDP algorithm, we test the algorithm on a
simple linear vehicle-like model.

3.4.1 Linear Stochastic Logistics Model

This model describes a transportation network over which routing decisions have to be made
at each stage. The random variable may be view as an uncertain traffic condition impacting the
transportation costs on each route segment. The objective of the optimization is to minimize the
total expected cost.

We start by presenting a 2-stage formulation. At the initial location A, one disposes of a total
quantity of 1 cargo. A share of the cargo can be shipped to a northern warehouse W 1

n with a known
shipping cost of a1

n or to a southern warehouse W 2
s with a known shipping cost of a1

s. The transport
costs from those intermediate warehouses to the final destination, a2

n, a
2
s are subject to uncertain

traffic conditions, given by ξ. The random variable ξ can take two values, depending on whether
there is light traffic (ξ = 0) or heavy traffic (ξ = 1). The traffic information becomes available only
when the cargo arrives at the intermediate warehouses. At this point, the decision maker may opt
to transfer a certain share of the goods from one warehouses to another, at a cost r2

n (relocating
the goods to the northern warehouse) or r2

s (relocating the goods to the southern warehouse). This
relocation and the subsequent shipment to location B are the recourse decisions and are made after
the event ξ is known. The relocation costs are known with certainty and do not depend on ξ. Figure
3.3 illustrates the network for the two-stage problem. Denoting by xt = (x1

t , x
2
t , x

3
t , x

4
t )ᵀ the decision

vector at stage t, the described system can modeled as

min
x1,x2

cᵀ1x1 + IE
[
c2(ξ)ᵀx2

]
, (3.23a)
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under the conservation constraints

A1x1 = b1, (3.23b)
A2x1 +Bx2 = b2, (3.23c)

and the capacity constraints

x1 ∈ [0, 1]4, (3.23d)
x2 ∈ [0, 1]4. (3.23e)

The matrices in the conservation constraints are

A1 =
(

1 1 0 0
)
,

A2 =
(

1 0 0 0
0 1 0 0

)
,

B =
(
−1 0 −1 1
0 −1 1 −1

)
,

b1 = 1,

b2 =
(

0
0

)
,

and the cost vectors are

c1 =
(
a1
n a1

s ∞ ∞
)ᵀ

c2(ξ) =
(
a2
n(ξ) a2

s(ξ) r2
s r2

n

)ᵀ
.
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W 1
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W 1
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Figure 3.3 – 2-stage stochastic logistics model illustration. The objective is to transport a cargo from node
A to node B, shipping the cargo, at stage t, between warehouses located in the north W t

n or south W t
s . The

segments are named after advance cargo via north at stage t (at
n), advance cargo via south at stage t (at

s),
relocate cargo south at stage t (rt

s), relocate cargo north at stage t (rt
n). The costs of advancing the cargo in

stage 2 are impacted by uncertain traffic conditions modeled by the random variable ξ.

To study the convergence properties and overall CPU performance of the SDDP algorithm, we
introduce a multi-stage logistics model with an adjustable time horizon, T . The behavior of the
multi-stage case is similar to the 2-stage case already mentioned. The information of the process
ξ = (ξ2, · · · , ξT ) enters the system sequentially before the recourse decision is made. The model
associated to this case is an immediate extension of problem (3.23). Figure 3.4 illustrates the system.

In our simulations, we use the instance

• a1
n = 3, a1

s = 2,
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Figure 3.4 – Multi-stage stochastic logistics system illustration.

T Solution Iterations CPU time (s)
SDP n = 3 SDP n = 6 SDDP

3 9.75 3 4.53 – 0.45
4 13.44 3 13.40 – 1.55
5 17.09 4 20.45 – 6.79
6 20.73 4 26.92 – 8.88
7 24.37 4 33.22 – 14.20
10 35.25 4 29.83 774.36 56.79
15 53.37 4 48.22 1263.93 81.33
20 71.50 4 67.16 1753.06 120.52
30 107.75 7 104.72 2620.28 1174.70

Table 3.1 – SDDP algorithm performance results on linear stochastic logistics model

• rts = 1 and rtn = 2 for all t = 2, · · · , T ,

• atn = 31ξt=0(ξt) + 41ξt=1(ξt) for all t = 2, · · · , T ,

• ats = 21ξt=0(ξt) + 151ξt=1(ξt) for all t = 2, · · · , T .

Here, we denote by 1G the indicator function of set G.

As a first step, a value function is computed via a dynamic programming algorithm and the
feedback construction, procedure described in section 3.3, is repeated Nf times to obtain a distri-
bution of the total operation costs. The quality of the dynamic programming policies, in general,
depends on the discretization step used in the construction of the discretized state space grid. In
this linear problem however, since the optimal solutions are the on the boundary of the control
set (bang-bang type solutions) causing the state vector also to be on the bounds of the admissible
values, the discretization step does not impact the optimal solution. Since the discretization size of
the state space grid used in the dynamic programming does not affect the optimal value, it remains
fixed for all simulations.

Table 3.1 presents the optimal value obtained with a dynamic programming algorithm using to
different state space discretization (3 and 6 points per dimension), the average number of iterations
needed to stabilize the lower bound increase towards the optimal value and the corresponding aver-
age CPU times. Indeed, in this numerical experiment, the stopping criteria is based on the difference
between the lower bound V and the optimal value. The CPU time for the SDDP algorithms is the
time spent in the construction of the supporting hyperplanes of the value function.
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The upper bound V defined in (3.22) is a random variable as the cost average V̂M and standard
deviation σ̂M depend on the scenario selection at a particular iteration. Since V̂M , σ̂M are sample
estimators, to achieve a statistical significance level, the number of sampled scenarios M must be
large. This is not the case in our simulations. We observe that working with M = 1 provides a
satisfactory rate of convergence of the lower bound V of the algorithm towards the optimal solution,
the latter being given by a stochastic dynamic programming algorithm which, discretization and
interpolation errors apart, guarantees the global optimum. The goal of implementing a SDDP
algorithm in our application is precisely replace a dynamic programming-based solution, judged
too expensive. Therefore, in a more realistic setting one cannot expect the have the optimal value
available to be used as a stopping criteria. When dealing with the realistic case where no information
about the optimal solution is available, one has to rely on the difference ∆V = V−V to determine the
convergence of the algorithm. This in turn implies on being able to generate statistically significant
upper bounds. The case M = 1 is indeed a reasonable choice from the numerical performance point
of view, but it does not yield statistically significant values of V. An alternative way to obtain an
upper bound is to evaluate the upper bound over a moving window over the past iterations. More
precisely, denoting V̂M (k) the average cost V̂M at iteration k and a window of I iterations, one may
consider, at iteration i, the value

V̂∗M = 1
I

I−1∑
j=0
V̂(i−j)
M , (3.24)

and the associated sample standard deviation over the moving window σ̂∗M . Of course, this in turn
implies that the number of iterations is large enough to justify the statistical significance of V̂∗M .

In this simple application, the optimal solution is attained by the SDP with a state space
discretization of only 3 points. Of course, for a finer discretization of the state space, the SDDP
algorithm becomes more “competitive”. This finer discretization, however is not needed to increase
the quality of the approximation of the value function. Figure 3.5 shows the operation costs obtained
for several state space discretization and different stages. One can observe from the figure that there
is almost influence of the number of the points of the discretized state space on the quality of the
policies.

Therefore, we judge that the information in Table 3.1 does not allow for a conclusion about the
CPU performance of the SDPP algorithm against a dynamic programming counterpart.

In the next section we develop a simple hybrid vehicle model to assess the quality of the SDDP
approximations with respect to an optimal obtained in a closed form.

3.4.2 Linear Stochastic Hybrid Vehicle Model

We now introduce a simplified vehicle model. Noticeably, this model do not include the possi-
bility of switching the RE on and off.

The state is composed of x, the SOC of the battery and r, the fuel left in the RE reservoir.
The control is denoted u and represents the power produced by the RE. We shall consider that
the SOC consumption may experiment a random impact, denoted by ξ. In a realistic application,
this random variable may represent speed fluctuations around a recommended cruise speed given
by the navigation system of the vehicle. If a stochastic model for the vehicle speed is available, ξ
may be interpreted as a forecast error. Those kinds of deviations from a predicted speed impact
the predicted energy consumption and are a major factor impacting several applications on the
automotive industry. Besides the power management application we focus in this study, we may
cite autonomy estimation for electric vehicles and routing.
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Figure 3.5 – Policy operation costs obtained using value function computed via a dynamic programming
algorithm and a SDDP algorithm. The costs are function of the number of points in the discretized state
space used in the dynamic programming algorithm and the number of stages T . The costs are obtained for
Nf = 1000 feedbacks.

The system dynamics is given by

xt+1 = xt − ax + ut + ξt+1, (3.25)
rt+1 = rt − arut, (3.26)

with given x1, r1. We assume a unit system in which all the constants needed to adjust the units
accordingly are 1. In this simple model, the power produced by the RE causes the fuel level to
decrease at a constant rate ar > 0. In the other hand, producing power can reduce the rate
of depletion of the battery or indeed recharge the battery. The constant ax > 0 represents an
“expected” rate of depletion of the battery. The evolution of the SOC is affected by the random
quantity ξ which may increase or decrease the depletion rate. We assume that capacities of the
battery and reservoir are normalized, and therefore, xt, rt ∈ [0, 1] at all times. Also, the power
control is bounded above by u and thus, ut ∈ [0, u].

The objective of a power management strategy is to minimize the expected total financial cost
of a particular car trip. Denote the horizon by T , representing the total length of a given route.
Indeed, REEV are expected to be equipped with navigation systems. If the driver inputs a desired
geographic location, the navigation system can propose a route from its actual location to the
destination point. Ergo, using the available information from the navigation system is a rather
natural approach in our optimization model. In this simplified setting, the criterion one wishes to
minimize is given by

J(z) = IE[(r0 − rT ) + β(x0 − xT )]. (3.27)

The non-negative weight factor β represents the relative importance of the electric energy consump-
tion relative to the fuel consumption.
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Writing the constraints gt ≤ 0, ht = 0 of the problem, one obtains

gt(zt) ≡


xt − 1
−xt

rt − 1
−rt

(3.28)

and

h1(z1) ≡
{
x1 − x∗
r1 − r∗

(3.29)

ht(zt−1, zt, ξt−1) ≡
{
xt − xt−1 + ax − ut − ξt
rt − rt−1 + arut.

(3.30)

The optimization problem in this case is given by

min
z∈Z

IE
[
(r0 − rT ) + β(x0 − xT )

]
, (3.31)

under constraints (3.28)-(3.30).

This problem allows an analytic optimal cost. Assuming IE
[
ξ
]

= 0, the optimal value is given
by

J∗ = (T − 1)(u∗(ay − β) + βax), (3.32)

where
u∗ =

{
0 if ay − β ≥ 0
u otherwise. (3.33)

Indeed, one may see the term Tβax as the natural loss due the battery constant depletion rate.
The difference ay − β balances the rate of using fuel with its price relatively to the battery usage.
Since the problem is linear, one has a bang-bang solution whether using the RE at maximum power
whether doing nothing and using the electric energy in the battery.

From remark 3.1 one sees that only the equality constraints ht, t > 1 contribute to the sub-
differential. In this toy model, the computation can be made explicitly. Denoting ν the multiplier
associated with the equality constraints ht, assume that, for given zt−1 := (xt−1, rt−1, ut−1), z∗t , ν∗
optimize the associated dual problem to (3.31). From expression (3.5) and remark 3.1 one obtains

∂Q(zt−1) = <ν∗ | IE[∂ht(zt−1, z
∗
t , ξt)]>,

which yields

∂Q(zt−1) =
(
0 0 <ν∗ |

(
−1
ay

)
>
)
.

Numerical simulations are performed using the instance

• ax = 0.1, ay = 1.1,

• β = 1, u = 0.05,

• ξt uniformly distributed in [−0.01, 0.01], for t = 1, · · · , T .

In this instance, the optimal value is simply

J∗ = (T − 1)ax. (3.34)
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In this setting, due the support of the distribution of ξ, the system can experiment “favorable”
outcomes (in the sense that they tend to inflict lesser costs than the mean value of ξ). Therefore,
even with a reasonable number of cuts in each iteration, the lower bound of the SAA problem may
be higher than the optimal value.

Additionally, as mentioned, the feasibility of the problem is tied to whether or not the vehicle
can reach the destination given initial SOC and fuel. In the other direction, given initial SOC and
fuel, one has to account for the possibility of an overcharge of the battery caused by a particular
realization of ξ. The latter case can be ruled out by taking x∗ ∈ [0, 0.9], since inf ξt = −0.01 is
the worst overcharge scenario. In the first case, the initial condition limits the number of possible
stages. This is a natural characteristic of the system and reflects well the issues also arising in the
industrial application.

Using the aforementioned instance, with T = 3, 4, 5, 6, we approximate the SAA value function
by supporting hyper-planes and use them to synthesize controllers, following the procedure described
in subsection 3.3. Figure 3.6 shows the distribution of total operation costs forMs = 1000 scenarios.
The figure also presents the optimal cost (3.34) for each number of stages.
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Figure 3.6 – Cost distributions for policy synthesized with SDDP applied to the SAA problem. The simulations
used 1 cut per iteration and a scenario tree with Nt = 3

Table 3.2 groups detailed information about the performance of the stochastic controllers ob-
tained with the SDDP algorithm. The table contains the average cost of operation of 1000 scenarios,
the loss that this average cost represents as a proportion of the optimal cost (3.34) and the devi-
ation of the distribution as a proportion of the average cost. From this information, the SDDP
feedbacks performance decreases sub-linearly as the number of stages increases. The considered
loss is the distance of the average cost from the optimal cost relatively to the optimal cost. For a
fixed number of cuts, the increase in the number of stages makes the approximation errors stack
further, resulting in an increasing relative loss of optimality. In the other direction, the distribution
of the costs deviates relatively less from the average cost as the number of stages increases. A direct
consequence of this behavior is that the left tail of the distribution moves closer to the average
cost at the same time that the average cost moves away from the optimal cost as the number of
stages grows. The distribution tail groups the more infrequent realizations (favorable or not) of the
random process. As the number of stages grows, the weight of this favorable events is less marked,
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T Average cost % Loss Deviation

3 0.2055 2.75 3.94 %
4 0.3103 3.43 3.19 %
5 0.4145 3.80 2.77 %
6 0.5195 3.90 2.52 %
7 0.6251 4.19 2.30 %
8 0.7296 4.23 2.06 %

Table 3.2 – SDDP-based policies results on linear hybrid vehicle model

since the fluctuations around the average cost diminishes as more realizations are considered in the
process.

In the next section, we detail how a SDDP algorithm can be applied to a more realistic hybrid
vehicle model.

3.5 Hybrid Vehicle Model

In this section, the main points of the vehicle model, detailed in Chapter (2) are briefly explained.
We refer the reader to that chapter for the full model description. The goal is to apply the ideas
described above to the optimal power management problem.

3.5.1 Random Variables

The random variable is denoted as ξ : Ω → Ξ. We shall refer to ξ as the random variable and
also as its realizations, the utilization will be clear from the context. This random variable models
the vehicle speed. Let IP be a probability over (Ξ,F), so as to construct the probability space
(Ξ,F , IP) and the process {ξ} = (Ξ,F , (ξt)t∈IN, IP).

3.5.2 Decision Variables

The decision variables are grouped into two categories, using the usual terminology of optimal
control, namely, the state and control variables. The T stages correspond to points along the vehicle
path, which is supposedly known in advance.

Control Variables

The control variables are the output power of an internal combustion engine (ICE) ut and the
order to switch the ICE’s state (on or off) wt. If wt = 1 the state of the engine should switch (if it
is on, it becomes off, and vice-versa). If wt = 0 the engine’s state remains the same. The control
variables are grouped in a hybrid control vector at = (ut, wt).
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State Variables

The state variables are: the state of charge (SOC) of the battery xt,the time since the range
extender was last switch τt, the range extender’s state (on or off) qt and the actual vehicle speed
yt. The SOC is the image of the energy in the battery useful for driving the vehicle in nominal
conditions. The state at stage t + 1 is considered to be measurable with respect to the filtration
engendered by the process up to time t. For that reason, at stage t+1, whatever information about
the speed process one might need is condensed in a state variable yt. In our application we consider
Markovian processes and thus, yt = ξt.

The state variables are grouped in the vector zt = (xt, τt, qt).

3.5.3 Constraints

Control Constraints

In the case of an ICE, the power is bounded below (in order to limit the engine vibrations) and
above (in order to prevent breaking the engine). Moreover, the upper bound depends on the vehicle
speed to ensure acoustic comfort inside the vehicle. Naturally, this is the case only if the ICE is on.
Otherwise, the ICE output power should be zero.

Also, the ICE is subject to a decision (switching) lag. Frequent switching of the ICE is undesir-
able because it produces mechanical wearing off of the engine and acoustic nuisance for the driver.
Decision lags impose that some minimum time is to be respected before turning the engine on and
thus, avoid this issues. The decision lag period is of δ = 120s.

These remarks, in the case of the power control, translate to the relations

uqt ≤ ut ≤ u(yt)qt, (3.35)

and in the case of the switch control into

wt ∈ {0, 1} if τt = δ,
wt = 0 if τt < δ.

(3.36)

The hybrid controls at are constrained to act before any realization of the random process after
time t. This translates, in the Markovian case, to the measurability constraint

at ≺ ξt. (3.37)

State Constraints

The total energy of the battery is limited. Thus, the SOC levels have lower and upper bounds
(one cannot recharge them indefinitely either)

x ≤ xt ≤ x, (3.38)

Also, the vehicle speed is assumed to be positive (for simplicity, bounded below by y = 1) and
bounded above by y = 140km/h,

y ≤ yt ≤ y (3.39)
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Switching times cannot be negative. Also, since all times τt ≥ δ are equivalent, i.e. they all bring
the same information about the system, one can choose any upper bound greater than δ. Hence,

0 ≤ τt ≤ δ. (3.40)

Finally, the on state of the range extender is represented by qt = 1, whereas the off state corresponds
to qt = 0.

State Dynamics

At each stage t, the SOC dynamic is given by

xt+1 = ft(ut, xt, yt, ξt). (3.41)

The time since the last switch τt and the range extender state qt follow the dynamics

τt+1 = (1− wt)τt + 2dt
yt + ξt+1

, (3.42)

qt+1 = qt(1− wt) + (1− qt)wt (3.43)

respectively.

3.5.4 Criterion

We wish to minimize the total energy consumption in a hybrid vehicle, namely, the SOC con-
sumption and the fuel consumed by the internal combustion engine (ICE). We shall denote the fuel
consumption by

Lt(at, zt, ξt+1) = lt(ut)
2dt

yt + ξt+1
+ ρ(qt, wt), (3.44)

This notation incorporates the switching cost ρ, the specific consumption lt and the time spent on
the link, assuming a linear acceleration model 2dt

yt+ξt+1
.

The criterion (2.12) is then written as:

J1(z, a) = IE
[
T∑
t=1

Lt(at, zt, ξt+1) + β(x1 −XT+1)
]
. (3.45)

Define the function QT+1(zT , ξT+1) as the solution of the optimization problem

QT+1(zT , ξT+1) := min
aT∈AT

LT (aT , zT , ξT+1) + β(xT − xT+1). (3.46)

For t = T − 1, · · · , 2, define Qt+1(zt, ξt+1) as the solution of

Qt+1(zt, ξt+1) := min
at∈At

Lt(at, zt, ξt+1) + β(xt − xt+1) +Qt+2(zt+1), (3.47)

where the function Qt+1(zt) is defined as

Qt+1(zt) = IE
[
Qt+1(zt, ξt+1)

]
. (3.48)

Then, the optimal solution of the multi-stage optimization problem (2.6) is

min
a1∈A1

Q2(z1). (3.49)
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We recall that the admissible hybrid control actually depends on the current state, i.e. A1 := A1(z1).
This is omitted to shorten the notation.

For the studied performed next, it is convenient to write the optimal control problem (2.6) as
an optimization problem. To that end, denote by z := (z, a) (in bold letter) the decision variables
vector, regrouping the state and control variables.

With the notation of the general problem defined in (3.1), the inequality constraints are, for
t = 1, · · · , T , given by

gt(zt) ≡



xt − x
x− xt
yt − y
y − yt
τt − δ
−τt

ut − u(yt)qt
uqt − ut,

(3.50a)

while the equality constraints are (given initial conditions x∗, τ∗, y∗, q∗)

h1(z1) ≡



x1 − x∗
τ1 − τ∗
y1 − y∗
q1 − q∗

w1(w1 − 1) if τ1 = δ
w1 if τ1 < δ,

(3.50b)

ht(zt−1, zt, ξt) ≡



xt − ft−1(ut−1, xt−1, yt−1, qt−1, ξt)
τt − (1− wt−1)τt−1 − 2dt−1

yt−1+ξt
qt − qt−1(1− wt−1)− (1− qt−1)wt−1
wt(wt − 1) if τt = δ
wt if τt < δ.

(3.50c)

The optimal power management decision problem can be stated as: find z1, · · · , zT such that

inf
g1(z1)≤0

...
gT (zT )≤0
h1(z1)=0

...
hT (zT−1,zT ,ξT )=0

IE
[
T∑
t=1

φt(zt, ξt+1)
]
, (3.51)

where the costs are identified as

φt(zt, ξt+1) ≡ Lt(at, zt, ξt+1) + β(xt − xt+1), (3.52)

for t = 1, · · · , T .

To compute an optimal solution using a SDDP algorithm, (3.51) must be convex. Next, we
detail the study on the convexity properties of the optimization problem (3.51).

3.6 Model Convexity Assessment

The goal of this section is to verify whether the considered optimization problem can be modeled
by convex functions. If this is the case, one can apply a SDDP algorithm to solve the convex problem.
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Otherwise, we shall investigate the possibilities of adapting the model to establish a satisfactory
convex approximation of the original problem. Additionally, in order to use SDDP in a more
effective way, we derive analytic expressions for representing the functions in the model, instead of
using look-up tables.

The look-up tables present in the hybrid vehicle model are needed because some vehicle compo-
nents do not have analytical expressions modeling their dynamics. The tables depend on component-
specific behavior and they are constructed using cartography maps. These cartographies – for in-
stance, mapping the engine torque and regime to a fuel consumption and the high-voltage network
voltage or the battery internal resistance as a function of the battery SOC – are obtained through
empirical methods and describe the behavior of the components in a certain range of input variables.
As an illustration, figures 3.7 and 3.8 show the cartographies of engine efficiency as a function of
engine torque and regime (the power is obtained through the product of the regime and torque)
and the high-voltage network voltage as a function of the SOC.
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Figure 3.7 – Mapping of the ICE effi-
ciency as a function of the ICE torque
and regime. The black dots mark the opti-
mal working points, i.e., for all iso-power
hyperboles, the point that maximizes the
efficiency.

Figure 3.8 – Battery cell’s voltage as a
function of the battery’s state of charge.
A battery imposes its voltage to the high-
voltage network and is composed of sev-
eral cells.

We recall that the ICE has two available controls: the engine speed and its torque. These
quantities form the so-called ICE working point. The total power is then calculated from the
product of the regime and the torque. The ICE efficiency (c.f. Figure 3.7) depends on its working
point. Since the ICE has, for an iso-power level, several possible working points, it is reasonable to
assume that the best working point is the one that maximizes the ICE efficiency. Therefore, the
ICE is seen as having only one available control, its output power u, and it is understood that the
corresponding working point is set to be optimal working point, in the sense of maximizing the ICE
efficiency.
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Figure 3.9 – Mapping of the ICE fuel
consumption as a function of the ICE’s
torque and regime. Regime (RPM)
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We recall the definition of convex problem. Consider the general optimization problem

inf
g(x)≤0
h(x)=0

f(x). (3.53)

Problem (3.53) is a convex optimization problem if three conditions are met: the objective function
f is convex; the inequality constraints g are convex; the equality constraints h are affine. We next
study the hybrid vehicle model in the light of these properties.

Integer Variables The first straightforward thing to notice is the presence of integer variables
in the optimization problem. Indeed, the hybrid character of the formulation requires discrete state
and control variables, namely, the discrete state variable q and the discrete switch control w. In our
case, q ∈ Q = {0, 1} and w ∈ W = Q = {0, 1}. Since set {0, 1} is not convex, functions ht, gt are
not defined over convex sets and thus, are not convex.

In view of that difficulty, we introduce a simpler but still very relevant model in which there
are no discrete decisions. By considering sets Q# = W# = [0, 1] so that variables are valued in
convex sets q ∈ Q#, w ∈W#, allows for the possibility of problem (3.51) to be convex. A practical
consequence of this new model is that the once-discrete state q is now interpreted as a scaling factor
of the output power of the RE, ranging from 0 to 1. Recalling the expression of the SOC dynamics
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described in (1.64)

f(u, x, y, q, t, ξ) = − d(t)
y + ξ

Uoc(x)−
√
U2

oc(x)− 4Rbat(x)(Pnetwork(x)− uq)
Rbat(x)Qbat

η(x), (3.54)

observe that the RE state acts like an efficiency factor, de facto limiting the ICE output power
between [qu, qu]. Moreover, the RE state dynamics can be rewritten simply as

qt+1 = wt. (3.55)

Thus, the “switch” now controls directly the modulation of output power. The direct consequence
is that this new non-hybrid configuration makes the continuous power control and the “relaxed”
switching redundant. Also, under these circumstances, it is not clear how to interpret the lag
condition between switching. The bottom line is that this model without the integer constraints
indeed allow for the possibility of a convex optimization problem suited for a SDDP algorithm. Due
the striking similarity with a relaxed version of the hybrid model, we shall refer to the non-hybrid
problem as the relaxed hybrid problem. In the new relaxed framework, the former discrete state and
control lose their relevant modeling utility and become obsolete.

The above considerations lead us to opt for a relaxed version of the power management problem.
In this new model, we forgo the utilization of a hybrid dynamic system modeling. The RE can be
viewed as if it is running at all times. Additionally, the lag constraint is dropped. More precisely,
the optimization problem now being considered is written as:

gt(zt) ≡



xt − x
x− xt
yt − y
y − yt

ut − u(yt)
u− ut,

(3.56a)

h1(z1) ≡
{

x1 − x∗
y1 − y∗,

(3.56b)

ht(zt−1, zt, ξt) ≡ xt − ft−1(ut−1, xt−1, yt−1, ξt). (3.56c)

with the cost function
Lt(at, zt, ξt+1) = lt(ut)

2dt
yt + ξt+1

. (3.56d)

We stress that the relaxed framework result in a simplified model that is judged still very relevant
for the hybrid vehicle application. Indeed, as discussed in Section 2.6, in the considered scenario,
the stochastic controller consider switching off the RE only at near the end of the driving cycle.
Thus, the decrease in the controller performance is expected to be low, since the optimal policy
should differ from the relaxed optimal policy only at this point. As the gains from CPU time and
memory usage are expected to outweigh the associate loss from dropping the possibility of switching
off the RE to save fuel, the simplification is judged acceptable.

We now study more in detail the convexity of functions of relaxed problem (3.56). The fuel
consumption function l and SOC dynamics f are considered to be specific quantities with respect
to the length of the route link dt. This is equivalent to fixing the link’s length at d =1 km and
dropping the stage subscript t dependence. Then, functions f are l are considered to satisfy ft = fdt
and lt = ldt for a link of arbitrary length dt.
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Inequality Constraints Inequality constraints gt are affine, with the exception of function u(y)
in (1.54) (upper bound of the ICE regime to avoid breaking). Indeed, the ICE regime has to work
below a certain level that depends on the vehicle current speed y. Since we assume that the ICE
always operates at optimal working points, an upper bound on the regime bound the ICE output
power from above. We stress that this is a (somewhat useful) simplification of the model. One
need not to consider an output power limitation because of a regime upper bound. One can always
increases the torque, at constant regime, to produce an increase in the output power. However,
proceeding as such degrades the ICE efficiency relatively to the optimal efficiency at a given output
power. In view of the achieved simplification, we shall consider that the output power of the ICE
is limited by the vehicle speed. Figure 3.11 exhibits the empirically mapped upper bound and the
polynomial approximation that shall be used in this study. Because of the structure of function
u(y), the constraint is replaced by two affine boundaries. Moreover, the affine upper bounds are to
constructed to ensure that the approximations are lower than function u for all values of y.

Figure 3.11 – ICE power output upper
bound u as a function of the vehicle speed.
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As such, all inequality constraints in the considered model are affine, therefore convex.

Equality Constraints Equality constraint h1 is readily affine.

The convexity properties of equality constraints ht are a less straightforward matter because of
functions ft.

The SOC dynamics can be seen as a variable of u, y and have two contributions from ξ: it is a
function of the time spent in each link and the vehicle power demand obtained from the vehicle speed
(to determine aerodynamic resistance forces and friction forces) and acceleration through Newton’s
(second) law. Figure 3.12 illustrates projections of f(·, x, y, ·) for several values of y, x = 20%, using
the available cartographies.

Notice that the feasible domain of ξ depends on y. Indeed, as the electric engine power is
bounded, the vehicle cannot perform any desired acceleration from y to ξ in 1km. Thus, for
instance, in the left upper-most plot (y = 2km/h), the maximum speed achieved by the vehicle due
the engine’s power limitation is roughly 110km/h.

Let us now look in more detail at function f . Our goal is to establish an analytic affine approx-
imation of f .

The expression for the SOC consumption (in %/km) is rewritten as

f(x, u, y, ξ) = ε(x, u, y, ξ)
(y + ξ)RQbat

∆(x, u, y, ξ), (3.57)
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obtained for x = 20% (initial SOC).

SOC (%)

E
ffi

ci
en

cy

Battery's discharge efficiency

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ICE power (W)

E
ffi

ci
en

cy

Generator efficiency

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

× 10
4

Empirical model

Approximation

Figure 3.13 – Function and approxima-
tions of the battery’s faradaic efficiency ε
as a function of the SOC (left) and gen-
erator’s efficiency εg as a function of ICE
output power (right).

where
∆(x, u, y, ξ) = V (x)−

√
V 2(x)− 4R (p(y, ξ)− uεg(u)). (3.58)

Equation (3.57) mainly has three terms.

The first is the battery’s faradaic efficiency ε. This efficiency depends whether the battery is
charging or discharging. For the discharge regime, the efficiency is a function of the battery SOC,
denoted ε+. If the SOC is increasing (battery charging), the efficiency is constant and approaches
1. Since the effective efficiency depends on the ratio of power demanded by the driver and delivered
by the RE, ε is a function of the vehicle actual and future speeds and of the ICE output power, as
well as of the battery SOC. Denoting by 1A the indicator function of set A, the faradaic efficiency
is written as

ε(x, u, y, ξ) = ε+(x)1{u≤p(y,ξ)} + ε−1{u>p(y,ξ)}.

Function p(y, ξ) denotes the power needed to drive the vehicle 1 km, changing the speed linearly
from speed from y to ξ. As a first approximation, we consider the faradaic efficiency ε ≡ 0.936,
regardless whether the battery is charging or discharging. This allows a considerable simplification
in the construction of the linear model of f .

Function εg is the generator efficiency. The generator efficiency is approximated by a second
order polynomial. Functions ε+ and εg are shown in Figure 3.13 together with the constant ap-
proximations considered.
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Figure 3.14 – Empirical function and ap-
proximation of battery voltage V (x).
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Using the aforementioned simplifications, the partial derivatives of f are given by

∂f

∂x
= ∂∆

∂x

(
ε

(y + ξ)RQbat

)
(3.59a)

∂f

∂u
= ∂∆

∂u

(
ε

(y + ξ)RQbat

)
(3.59b)

∂f

∂y
=

(
∂∆
∂y

+ ∆ 1
(y + ξ)

)(
ε

(y + ξ)RQbat

)
(3.59c)

∂f

∂ξ
=

(
∂∆
∂ξ

+ ∆ 1
(y + ξ)

)(
ε

(y + ξ)RQbat

)
(3.59d)

and the partial derivatives of function ∆ are given by

∂∆
∂x

= dV

dx

1− V√
V 2 − 4R

(
p− uεg

)
 (3.59e)

∂∆
∂u

= −
(
εg + u

dεg

du

) 2R√
V 2 − 4R

(
p− uεg

) (3.59f)

∂∆
∂y

= ∂p

∂y

2R√
V 2 − 4R

(
p− uεg

) (3.59g)

∂∆
∂ξ

= ∂p

∂ξ

2R√
V 2 − 4R

(
p− uεg

) . (3.59h)

Abbreviating ζ = (x, u, y, ξ), the linear model f̂ around a point ζ∗ = (x∗, u∗, y∗, ξ∗) is given by

f̂(ζ) = f(ζ∗) + (x− x∗)∂f
∂x

(ζ∗) + (u− u∗)∂f
∂u

(ζ∗) + (y − y∗)∂f
∂y

(ζ∗) + (ξ − ξ∗)∂f
∂ξ

(ζ∗). (3.60)

Now we proceed to construct polynomial (analytic) expression for V, p to be inserted in the
partial derivatives (3.59)

Figures 3.14 and 3.15 shows the original function (obtained using a mapped cartography) and
a polynomial model that approximates the data.

In the case of cell voltage, the polynomial approximation considered is a linear function. The
vehicle power demand p is approximated by a second degree polynomial in both variables. The
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Figure 3.15 – Function and polynomial approximation of function p(y, ξ).

analytic expressions of ∆ are then used to obtain an analytic expression that approximates f
linearly at a given point (x∗, u∗, y∗, ξ∗).

Figure 3.16 compares the behavior of function f obtained using (3.59) against the empirical data.
The figure shows two different affine model, obtained centering the approximation of the empirical
model around two different points. The points are ζ∗1 = (0.3, 9.6, 40, 50) and ζ∗2 = (0.5, 17.17, 30, 50),
where the SOC is valued between 0 and 1 and the remaining units are, respectively, kW and km/h.
The consideration of these points is because the state of the vehicle is most likely to operate around
those points of SOC, ICE output power and speeds.

Remark 3.2. Figure 3.16 shows that the empirical model for the SOC consumption is quasi-
convex, and good indications that it is indeed convex. In particular, the model is monotonically
decreasing with respect to the ICE output power. We recall that although there is some evidence that
f is convex, the property cannot be fully asserted only by looking at the contour curves of f .

Remark 3.3. By plugging explicitly the structure of function ht (3.56c) into (3.11), the dual
function becomes

Lt(λt, µt, νt; zkt−1, ξ
j
t ) = φt−1(zkt−1, ξ

j
t ) + θ +<νt |−ft−1(zkt−1, ξ

j
t )>+

inf
zt

{
<µt |πmt+1(zt)− θ>+<λt |gt(zt)>+<νt |xt>

}
.

This consideration is important for computational efficiency, since the minimization in zt does not
depend on the random variable. This feature allows for cuts to be “transported” from (3.10) to
(3.10) using ξit, i 6= j.

It is expected that, using the constructed approximated affine model for function f , the control
feedbacks synthesized by an SDDP algorithm should behave well when applied to the empirical
model. In conclusion, the affine model introduced ensures that the equality constraints are linear.

Criteria For the convexity of problem (3.56), it is required that functions Lt are convex. Convex-
ity of Lt depends on convexity properties of functions lt, namely, the ICE fuel consumption. Figure
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Figure 3.16 – Function f (battery energy consumption in %/km) as a function of future vehicle speed ξ for
two values of ICE power u (on optimal working points). The curves show the mapped cartography functions
(blue) against the affine approximation of function f (red) centered at different points.
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3.10 shows the specific fuel consumption (in units of kg/s) as a function of the ICE power, obtained
from the optimal working points. Qualitatively speaking, by observing Figure 3.10 one can asses
that, although the specific consumption curve is not convex it is not far from it. Figure 3.17 shows
one affine approximation obtained for the specific consumption and the empirical function.
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Figure 3.17 – Empirical function (blue)
and affine approximation (red) of specific
fuel consumption l(u).

Figure 3.18 reports the level curves of function L(z, a, ·) as function of the future speed ξ.
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Figure 3.18 – Criteria L (fuel consumption in kg/km) as a function of future vehicle speed for two values of
ICE power u (on optimal working points). The curves show the mapped cartography functions (blue) against
the polynomial approximation of criteria L (red).

From the cuts shown in Figure 3.18 one can infer that function L is quasi-convex in and,
qualitatively, that function l is convex. Indeed, the function appears to be monotonically decreasing
in all variables.

In conclusion, qualitatively, one can verify that the approximations of the inequality constraints
and the criteria are convex functions. Together with the affine approximations of the inequality and
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equality constraints, the relaxed problem should prove to be a useful model for a first implementa-
tion of the SDDP algorithm application to the optimal power management synthesis. As already
mentioned, the interest on such approach is enabling a possible faster way of computing optimal
power management policies.
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4.1 Introduction

This chapter seeks to provide an adequate mathematical framework for the synthesis of stochastic
power management strategies incorporating a chance constraint. A chance constraint, or probability
constraint, is introduced to limit the rate of failure of a stochastic policy.

More precisely, we wish to replace almost-sure (a.s.) constraints of the kind

Xt ≥ 0, t = 1, · · · , T, (4.1)

with T > 0, for constraints of the kind

IP(X1 ≥ 0, · · · , XT ≥ 0) ≥ α, t = 1, · · · , T, (4.2)

where IP is a probability and α ∈ [0, 1] is a confidence level. The almost-sure constraints stress
the fact that the constraints must be satisfied for almost all realizations of the random variables.
In general, the drawback in considering almost-sure constraints in stochastic optimization is that
they tend to produce conservative feedbacks, sometimes leading to a prohibitive cost of operation.
In broad terms, when the control policy is synthesized using a chance constraint instead of an a.s.
constraint, scenarios which were before not tolerated because they violate the hard constraint are
now admissible. The associated confidence level has the role of limiting the frequency at which
those scenarios can occur.

The chance constrained model is expected to add more flexibility to the feedback control synthe-
sis. The optimization problem stated under this kind of constraint has a greater admissible search
space for the optimal policy. Therefore, the optimal cost is no bigger than the cost using a tighter
search space.

This chapter is organized as follows: Section 4.2 presents general remarks about chance con-
strained problems. This section introduces a chance constrained optimization problem in a slightly
more general formulation than that of the optimal stochastic power management, presented in
Chapter 2. In addition, the power management problem formulation is adapted to better allow
the study of chance constraints. Section 4.3 presents a different, but equivalent, formulation of the
optimization problem that can be solved more readily via a dynamic programming algorithm than
the original formulation. Also, we detail the dynamic programming principle for the equivalent
formulation in a form that can be readily used for the numerical synthesis of optimal feedback using
a dynamic programming algorithm.

4.2 Probability Constraints

In this section we discuss the relevance of introducing probability constraints in stochastic op-
timization problems.

When facing the problem of decision making under uncertainty one has to take into consideration
several aspects of the decision making process. This step is necessary to formulate an adequate
problem (in mathematical terms) using an adequate model of the system and its environment. The
problem can then be solved and the solution, if any, may be used for analysis or operating purposes.

The first important aspect of the decision making process is to realize how the decision and
observation of the uncertainty parameters are related. The first case is when only one decision is
made and then a subsequent observation is possible. Decisions of this kind are called open-loop
decisions. The second case regards decision processes in which after a decision and a observation,
another decision follows. The decision in hindsight is labeled recourse decision. In this study we
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are interested in dynamic multi-stage stochastic optimization problems, which translates to several
recourse decisions as the random process unfolds.

We remark that the chance constraint optimization problem is analyzed in a more general
formulation than the one required for the application to the optimal power management application.

In mathematical terms, the general class of stochastic optimal control problem considered in
this work may be formulated as

min
X=(Xt0 ,··· ,XT )
U=(Ut0 ,··· ,UT−1)

J(X,U), (4.3a)

subject to

X ∈ X , (4.3b)
U ∈ U(X), (4.3c)

h(X,U , ξ) = 0, (4.3d)
g(X) ≤ 0, (4.3e)

Ut � Ft. (4.3f)

Here, we consider thatK decisions Ut have to be made at each stage t = t0, · · · , t0+K−1 , T−1
in order to control the state of the system Xt such that the cost of operation J : X × U → IR+ is
minimized. Notice that the system starts at time t0 and the problem has K + 1 stages. The state
process X is valued in X , XK+1, where X ⊂ IRn. Similarly, the control process U is valued in
U(X). The notation U(X) indicates that, for each stages, the control set may depend on the value
of the state, i.e., Ut ∈ U(Xt) ⊂ IRm. The random process is denoted ξ , (ξt)t0≤t≤T , with each
ξt : Ω→ Ξ. We denote Ft the σ-algebra generated by the process (ξt0 , · · · , ξt) and IPt : Ft → [0, 1]
a probability. The equality constraints h : X × U × ΞK+1 → IRmh may refer to some dynamic
equations dictating the evolution of the state variables, relating thus Xt+1 with Xt, Ut and ξ. They
usually are given by physical models inherent to the nature of the system considered. The inequality
constraints g : X → IRmg represent quantities that one has to keep above or below a certain level
throughout the operation of the system. Constraints (4.3b)–(4.3e) have to be satisfied at each stage
with probability 1. The information (or measurability, or filtration) constraints (4.3f) are functional
and non-pointwise (except for trivial cases Ft ≡ Ft0 ≡ {∅,Ξ}). This qualitative difference introduces
a deal of theoretical and computational challenges [45].

If some realizations of the random data causes the failure of the system (where the concept
of failure depends on the context), one may find interesting to make decisions that preempt the
occurrence of such realizations. In reference to problem (4.3), a failure is considered to be a violation
of the inequality constraints (4.3e). Indeed, constraints (4.3b)–(4.3d) are physical considerations
as part of the system model while (4.3e) stems from technical considerations. However, decisions
that ensure the complete safety against all possible realizations of the random quantities of the
system are frequently unavailable or prohibitively expensive. One is therefore bounded to work
with confidence levels of operation, i.e., the decisions have to respect a given confidence level, often
imposed by regulation or quality standards. Denoting by α ∈ [0, 1] the confidence level, the decision
making problem may be formulated as

min
X,U

J(X,U), (4.4a)

subject to (4.3b)-(4.3d), (4.3f) and
IP(g(X) ≤ 0) ≥ α. (4.4b)
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Here, g is a real vector valued function g = (g1, · · · , gmg), representing thus mg constraints. The
stochastic constraint (4.4b) refers to the joint stochastic constraint

IP(g1(X) ≤ 0, · · · , gmg(X) ≤ 0) ≥ α. (4.5)

In [29] stochastic constraints are considered individually, i.e. as

IP(gi(X) ≤ 0) ≥ αi, i = 1, · · · ,mg. (4.6)

This may indeed represent a valid model choice whenever the random variable present in the indi-
vidual constraints gi are independent of each other. Citing the illustration in [71], this might be the
case if the a constraint gi models the technical requirements of non-connected water systems that
operate under independent climatic conditions. In this case, if αi are chosen such that

m∑
i=1

1− αi ≤ 1− α, (4.7)

then any control vector yielding a trajectory satisfying (4.6) also satisfies (4.5).

Reference [60] deals with joint probability constraints considering the random variables inde-
pendent. The study of joint stochastic constraints (4.5) without the assumption of independence of
the random variables withing each one of them is studied in [69, 70].

As already mentioned, constraints (4.3b)-(4.3d) represent the physical behavior of the system.
As such, we require that the solution vector of the optimization problem (4.4) satisfies these con-
straints almost surely. In the other hand, constraints (4.3e) usually models technical requirements,
needed for the nominal operation of the system. Therefore, we are interested in studying the prop-
erties of the optimization problem when replacing the almost sure-type technical constraints with
probability constraints. In this case, the joint stochastic constraints (4.4b) translate the fact that
the state should operate within a specified nominal or safe mode of operation at a given confidence
level.

We are interested in a special case of joint stochastic constraints (4.5). In this particular case,
one has mg = K constraints that impose a certain threshold on some of the state variables at all
times. This requirement can be formulated as

IP(gt0(Xt0) ≤ 0, · · · , gT (XT ) ≤ 0) ≥ α. (4.8)

The presentation is made clear if the joint constraint is stated in a more convenient form, namely,
of an expectation over the final state. We start by rewriting condition (4.8) by adding an additional
state variable. Consider the vector B = (Bt0 , · · · , BT ) where Bt ∈ {0, 1} such that

Bt0 = 1,
Bt+1 = Bt1Xad

t+1
(Xt+1),

where Xad
t =

{
x ∈ X | gt(x) ≤ 0

}
. Observe that the binary vector B keeps track of the violation

of the constraints gt(Xt) ≤ 0. If at any time a violation occurs, the value of Bt drops from 1 to 0
and keeps at 0 for all subsequent times. Therefore, (4.8) can be rewritten as a constraint only on
the final state.

IP(BT = 1) ≥ α. (4.9)

Equation (4.9) is in turn rewritten as

IE
[
θ(BT )

]
≥ α, (4.10)
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where θ(BT ) = 1B#(BT ) with B# =
{
b ∈ {0, 1} | b = 1

}
. We stress that writing chance constraints

as constraints in expectation as in Equation (4.10) should be seen as a notational convenience as
there are complexities introduced in the problem by considering an indicator function, for instance,
related to convexity and differentiability.

For convenience, we consider that the state variable Bt is incorporate in the state vector Xt as
a new component.

The cost functional J has an additive-kind cost structure, which can be seen as running costs
Lt : X× U× Ξ→ IR+ and a final cost ϕ : X→ IR+, namely,

J(X,U) = IE

T−1∑
t=t0

Lt(Xt, Ut, ξt+1) + ϕ(XT )

 . (4.11)

The equality constraints h have the form

h(X,U , ξ) ≡
{
Xt0 − x
Xt+1 − ft(Xt, Ut, ξt+1),

for t = t0 + 1, · · · , T − 1 where x ∈ X is a given initial condition. The controlled vector fields
ft : X× U× Ξ→ X model the evolution of the state process.

Finally, we shall assume that the random variables (ξt0 , · · · , ξT ) are independent. This particular
structure is not a restrictive assumption since all dynamical behavior between ξt and past realizations
can be transfered to the state vector at the cost of increasing the dimension of the state vector.

Summarizing, the formulation of the optimization problem of interest is

min
X,U

IE

T−1∑
t=t0

Lt(Xt, Ut, ξt+1) + ϕ(XT )

 (4.12a)

subject to state and control constraints

X ∈ X , (4.12b)
U ∈ U(X), (4.12c)

dynamic constraints

Xt0 = x, (4.12d)
Xt+1 = ft(Xt, Ut, ξt+1), (4.12e)

information constraints
Ut � Ft (4.12f)

and a stochastic target constraint
IE
[
θ(XT )

]
≥ α. (4.12g)

We digress here about the choice of the expected value as an optimization criterion. This choice
is justifiable if the controller is risk-neutral and has to act upon the system in several occasions.
As such, the law of Large Numbers ensures that, after many realizations of optimal processes, the
average cost approaches the optimal expected value. Of course, if no safeguard is made to limit
potentially large losses due the variation of the performance of the controller, the decision maker may
face a bankruptcy issue. Optimization problems formulated to account for the risk of large losses are
referred to risk-averse problems. Risk-averse modeling is also justifiable when the controller must
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act upon process X only a few times, such that the optimization of the average performance is
less meaningful. Because in our application, limiting the size of the loss upon a failure is relatively
unimportant, the main concern being avoiding failing at all, we choose to optimize an expected
value of a chance constrained process rather than using risk-averse models (for details in risk-averse
optimization, see [76, 77, 74]).

The choice of introducing probability constraints in this control problem is due the binary
character of the failure considered, that is, g(x) ≤ 0 (succes) or g(x) > 0 (failure). In order words,
the formulation of the optimization problem under probability constraints is recommended whenever
one wishes to limit the frequency of failure events in successive utilization of the optimal policy.
Any quantitative information on the size of the loss in a failure event is not taken into account. This
feature characterizes the chance constraints as a qualitative risk measure (to follow the nomenclature
in [4]). It is indeed well desirable, in some applications, to be interested in how much loss is incurred
whenever a failure occurs. In this case, is more adequate to consider quantitative risk measures such
as the conditional value-at-risk (CVAR) (cf. [75, 78] for an introduction on optimization using risk
measures).

In the next section we present an algorithm based on the dynamic programming principle applied
to an adequate version of Problem (4.12).

4.3 Dynamic Programming

Chance constraint problem (4.12) is equivalent to an optimization problem without probability
constraints but with an augmented state and control vector.

Consider the optimization problem

min
X,Z,U ,V

IE

T−1∑
t=t0

Lt(Xt, Ut, ξt+1) + ϕ(XT )

 , (4.13a)

subject to state and control constraints

X ∈ X , (4.13b)
U ∈ U(X), (4.13c)
Z ∈ Z, (4.13d)
V ∈ V, (4.13e)

dynamic constraints

Xt0 = x, (4.13f)
Xt+1 = ft(Xt, Ut, ξt+1), (4.13g)
Zt0 = 0, (4.13h)
Zt+1 = Zt + Vt, (4.13i)

information constraints

Ut � Ft, (4.13j)
Vt � Ft+1, (4.13k)

an almost-sure constraint in the final state

θ(XT )− ZT ≥ α, (4.13l)
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and constraints in expectation
IE
[
Vt | Ft

]
= 0, (4.13m)

where Z = ZK , V = VK−1 with Z,V ⊂ IR.

The next theorem is found in [41, Theorem 5.5]. It is an adaptation of the techniques in [19] to
the discrete-time case.

Theorem 4.1. Problems (4.12) and (4.13) are equivalent.

Proof. The equivalence is in the sense that both problems have the same admissible space. There-
fore, since the criterion is the same, they amount to the same problem.

We start by showing the equivalence (4.12) ⇒ (4.13). Suppose X,U are admissible processes
of Problem (4.12), i.e., they satisfy constraints (4.12b)–(4.12g). Define

Zt+1 = Zt + Vt, Zt0 = 0,

Vt = IE
[
θ(XT ) | Ft+1

]
− IE

[
θ(XT ) | Ft

]
.

Following this definition, one obtains Zt = IE[θ(XT ) | Ft]− IE[θ(XT ) | Ft0 ] and in particular

ZT = IE
[
θ(XT ) | FT

]
− IE

[
θ(XT ) | Ft0

]
.

Since θ(XT ) is measurable with respect to FT , Ft0 is the trivial σ-algebra {0,Ξ} and the process
X satisfies (4.12g), one obtains

θ(XT )− ZT = IE
[
θ(XT )

]
≥ α.

Moreover, notice that Vt � Ft+1 by construction.

Now we show (4.13)⇒ (4.12). Let processes Z,V ,X,U be admissible to Problem (4.13). From
(4.13h)–(4.13i), one obtains Zt+1 =

∑t
i=t0 Vi, yielding in particular

IE
[
ZT
]

=
T−1∑
i=t0

IE
[
Vi
]
.

Writing IE[Vi] = IE
[
IE[Vi | Fi]

]
, because of condition (4.13m), IE[ZT ] = 0. The almost-sure final

constraint (4.13l) then yields

IE
[
θ(XT )

]
− IE

[
ZT
]
≥ α⇒ IE

[
θ(XT )

]
≥ α.

At the expense of introducing an extra state process Z and an extra control process V , as well
as additional measurability conditions (4.13k) and conditional expectation constraints (4.13m) over
V , one effectively replaces an expected value-type constraint (4.12g) with an a.s-type constraint
(4.13l). The main advantage of formulation (4.13) is that now one is able to derive a dynamic
programming principle for a problem with a.s.-constraints. This allows for the possibility of using
a dynamic programming algorithm to synthesize optimal feedbacks.

Another advantage of such a formulation is that the optimal feedback obtained is dynamically
consistent (for a very clear exposition on dynamic consistency, see [28]).

The next step in this section is to derive the dynamic programming equations for problem (4.13).
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Definition 4.1. The value function is defined as the solution value of problem (4.13),

vt0(x, z) = min
U ,V

IE

T−1∑
t=t0

Lt(Xt, Ut, ξt+1) + ϕ(XT )

 . (4.14a)

under constraints (4.13b)-(4.13m) and initial conditions

Xt0 = x, Zt0 = 0 (4.14b)

We begin considering the problem starting from t0 = T . By the definition (4.14), the value
function is

vT (x, z) = ϕ(x) + χCadm(x, z), (4.15)

where χC is the characteristic function of set C and we define Cadm , {(x, z) | θ(x)− z ≥ α}. Now,
posing t0 = T − 1 and abridging the notation with

RT (x, z, U, V, ξ) , LT−1(x, U, ξ) + vT (fT−1(x, U, ξ), z + V ),

the optimal value is given by

vT−1(x, z) = min
U�FT−1
V�FT

IE[V |FT−1]=0

IE
[
LT−1(x, U, ξT ) + ϕ(fT−1(x, U, ξT )) + χCadm(fT−1(x, U, ξT ), z + V )

]

= min
U�FT−1
V�FT

IE[V |FT−1]=0

IE
[
RT (x, z, U, V, ξT )

]

= min
U�FT−1

min
V�FT

IE[V |FT−1]=0

IE
[
RT (x, z, U, V, ξT )

]
. (4.16)

Here, in the absence of the constraint IE[V | FT−1] = 0 on the minimization of V , one is able to
interchange the operator of minimization with respect to V with the expectation operator thanks
to the measurability properties of V . This operator interchange is studied in [72, Theorem 14.60].
Reference [72] uses a continuous-time setting and considers Ξ to be a continuous set. We do not
address the complexities arising in a continuous-time model and we consider the much simpler
case where Ξ is a finite-valued set with cardinality of N . When the constraint IE[V | FT−1] = 0
is taken into account, as in the inner minimization problem in (4.16), a question concerning the
measurability of the optimal feedback arises. More precisely, considering the optimization problem

V ∗ ∈ arg min
V�FT

IE[V |FT−1]=0

IE
[
RT (x, z, U, V, ξT )

]
, (4.17)

the question is whether the optimal feedback V ∗ is FT -measurable. In [41, Theorem 5.6], it is shown
that, indeed, V ∗ is FT -measurable.

We proceed now to detail the dynamic programming principle for problem (4.12). Function
RT is independent of ξT−1. This allows us to write the optimization of the expected value in a
conditional fashion. Thus, consider the following optimization problem:

min
V�FT

IE[V |FT−1]=0

IE
[
RT (x, z, U, V, ξT )

]
, (4.18)

Problem (4.18) can be decomposed in N independent subproblems

min
V�FT

IE[V |ξT−1=ωi]=0

IE
[
RT (x, z, U, V, ξT )

]
, (4.19)

where ωi ∈ Ξ, i = 1, · · · , N are the possible values of random variables ξ.
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Remark 4.1. Problems (4.19) are independent. On can therefore solve them in parallel.

More in detail, since V � FT , one can write V under the form

V =
N∑
i=1

V i1{ξT−1=ωi}, (4.20)

where each V i is FT -measurable. Proceeding as such, problem (4.19) can be rewritten as

min
V i�FT
IE[V i]=0

IE[RT (x, z, U, V i, ξT )]. (4.21)

Notice that the originally conditional expectation on V becomes a unconditional expectation con-
straint on each V i. Since ξ is discrete-valued, on can take further profit of the measurability
properties of V and write

V i =
N∑
j=1

V ij1{ξT=ωj}, (4.22)

with each V ij is a constant. This allows the N independent problems (4.19) to be rewritten as

GiT (x, z, U) = min
V i1,··· ,V iN

N∑
j=1

RT (x, z, U, V ij , ωj)IP(ωj) (4.23a)

under the coupling constraint
N∑
j=1

V ijIP(ωj) = 0. (4.23b)

The value function is then

vT−1(x, z) = min
U

N∑
i=1

GiT (x, z, U)IP(ωi). (4.24)

Proceeding backwards, for t0 = T − 2, · · · , 0, one can obtain expressions that allow to compute
recursively the value function defined in (4.14). In a similar way, the optimal feedback can be
synthesized. The overall procedure is described in the next proposition:

Proposition 4.1. For all (x, z) ∈ X × Z, the value function can be computed by the relations:

vT (x, z) = ϕ(x) + χCadm(x, z), (4.25)

vt(x, z) = min
Ut,Vt

IE[Vt|ξt]=0

IE
[
Rt+1(x, z, Ut, Vt, ξt+1)

]
, (4.26)

for t = T − 1, · · · , 0, where Cadm ,
{

(x, z) | θ(x)− z ≥ α
}
and

Rt+1(x, z, Ut, Vt, ξt+1) = Lt(x, Ut, ξt+1) + vt+1(Xt+1, Zt+1). (4.27)

Moreover, if process ξ = (ξ1, · · · , ξT ), where the ξt are independent, are discrete random variables
with N possible values ω1, · · · , ωN , expression (4.26) is given by

vt(x, z) = min
Ut

N∑
i=1

Git+1(x, z, Ut)IP(ωi), (4.28)

where each Gi is the solution of the optimization problem

Git+1(x, z, Ut) = min
V i1,··· ,V iN

N∑
j=1

Rt+1(x, z, Ut, V ij
t , ωj)IP(ωj) (4.29a)
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with V ij
t satisfying

N∑
j=1

V ij
t IP(ωj) = 0. (4.29b)

Controls Vt are given by

Vt =
N∑

i,j=1
V ij1{ξt=ωi,ξt+1=ωj}. (4.30)

The optimal feedbacks are denoted by U∗0 , · · · , U∗T−1 and V ∗0 , · · · , V ∗T−1 and satisfy

U∗t (x, z) ∈ arg min
u

N∑
i=1

Git+1(x, z, u)IP(ωi),

V ∗t (x, z, u, ξt, ξt+1) =
N∑

i,j=1
V ∗ijt (x, z, u)1{ξt=ωi,ξt+1=ωj}.

where the V ∗ijt (x, z, u) solve (4.29), interpolating the value function whenever necessary.

Then, given some initial conditions x and a process ξ, the optimal state trajectories X∗0 , · · · , X∗T
and Z∗0 , · · · , Z∗T are given by

X∗0 = x, (4.31a)
Z∗0 = 0, (4.31b)

X∗t+1 = ft(X∗t , U∗t (X∗t , Z∗t ), ξt+1), (4.31c)
Z∗t+1 = Z∗t + V ∗t (X∗t , Z∗t , U∗t (X∗t , Z∗t ), ξt, ξt+1). (4.31d)

Remark 4.2. The dynamic programming algorithm computes the projection of the value function
over points of a discrete grid of the state space. It is well known that the way the state space is
discretized matters on the performance of the algorithm and the a priori quality of the solution.
In the augmented problem (4.13), although the physical characteristics of the model may provide
some insight into how to create a grid of X , a similar insight into the discretization of Z does not
seem straightforward. The additional control process V may be interpreted as the variation of the
perception of the expectation constraint (4.12g) due the additional information generated by the
unfolding of process ξ. The state process Z keeps tract of the cumulated level of that perception.
Indeed, this interpretation stems from construction

Zt+1 = Zt + Vt (4.32)

Vt = IE
[
θ(XT ) | Ft+1

]
− IE

[
θ(XT ) | Ft

]
(4.33)

used in the proof of theorem 4.1. Notice that, since θ : X → {0, 1}, from Equation (4.33), controls
Vt ∈ [−1, 1]. Moreover, from (4.32) and the particular structure of (4.33), the cumulated perception
of the constraint Zt also lies in the interval [−1, 1].

4.4 Chance-constrained Power Management

This section is devoted to present the vehicle model that represents the application of interest.
The ultimate goal is to synthesize an optimal controller dictating the power request repartition
among an internal combustion engine (ICE) and a high-voltage battery. The optimality is seen
as the total economic cost of a car trip, which amounts to the least possible use of the ICE. The
random variable present in the model is a random perturbation on the total remaining charge of
the battery.
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The vehicle in consideration is a particular class of hybrid vehicles called range extender electric
vehicles (REEV), thoroughly detailed in Chapters 1,2.

We recall the main points of this application. Given a route (for instance, proposed by a
navigation system), one faces three possible scenarios: first, the energy on the battery is enough to
allow the vehicle to reach its destination ; the second scenario is when the total energy available
(energy on the battery plus energy on the range extender) is not enough to allow the vehicle to
reach its destination ; finally, the last scenario is when the battery does not have enough charge to
reach the destination and the utilization of the range extender (RE) is absolutely required to allow
the vehicle to reach the destination1.

A failure is the event of running out of energy before attaining the final destination. In the case of
the range extender electric vehicle, a failure event occurs whenever the battery charge drop below
a certain given level. Mathematically, this question is translated into a discrete-time stochastic
optimal control problem under chance constraints.

In any case, the model imposes the requirement of not running out of energy in the battery.
Indeed, the REEV controller fails whenever the SOC drops to zero, even if there is some fuel left in
the range extender.

In a first time, we shall introduce a somewhat simplified model of the vehicle. The state is
composed of x, the SOC of the battery. We denote by r, the fuel left in the RE reservoir. Following
Remark 2.3, the fuel available in the RE reservoir is not considered a state variable. The control is
denoted u and represents the power produced by the RE. We shall consider that the SOC consump-
tion may experiment a random impact, denoted by ξ. In a realistic application, this random variable
may represent speed fluctuations around a recommended cruise speed given by the navigation sys-
tem of the vehicle. If a stochastic model for the vehicle speed is available, ξ may be interpreted
as a forecast error. Those kinds of deviations from a predicted speed impact the predicted energy
consumption and are a major factor impacting several applications on the automotive industry.

The SOC and fuel dynamics is given by

Xt+1 = xt − ax + ut + ξt+1, (4.34)
rt+1 = rt − arut, (4.35)

with given x0, r0. We assume a unit system in which all the constants needed to adjust the units
accordingly are 1. In this simple model, the power produced by the RE causes the fuel level to
decrease at a constant rate ar > 0. In the other hand, producing power can reduce the rate
of depletion of the battery or indeed recharge the battery. The constant ax > 0 represents an
“expected” rate of depletion of the battery. The evolution of the SOC is affected by the random
quantity ξ which may increase or decrease the depletion rate. We assume that capacities of the
battery and reservoir are normalized, and therefore, xt, rt ∈ [0, 1] at all times. Also, the power
control is bounded above by u and thus, ut ∈ [0, u].

The objective of a power management strategy is to minimize the fuel usage on a particular
car trip. Denote the horizon by T , representing the total length of a given route. The criterion to
optimize is given by

J(X,U) = IE
[
(r0 − rT )

]
. (4.36)

Following the expression of the fuel dynamics (4.35), one can readily rewrite the criterion to be
minimized as

J(U) = IE
[
T−1∑
t=0

ut

]
, (4.37)

1We observe that, given a total initial energy and a route, the identification of the corresponding scenario is a
delicate matter.
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since r0 − rT = ar
∑T−1
t=0 ut.

Now we introduce the chance constraint. The event the application wants to avoid is the complete
discharge of the battery. Since the RE cannot drive without power from the battery, the failure
happens whenever the SOC reaches x = 0 before completing the trip. Alternatively, a success refers
to whenever the vehicle reaches its final destination keeping a SOC positive at all times. Thus, The
chance constraint is written as

IE
[
X0 ≥ 0, · · · , XT ≥ 0

]
≥ α, (4.38)

where α is a specified confidence level.

Vis-à-vis the application, the interesting case happens when the ratio of initial SOC to the
total drive distance is tight so that a “modest” operation of the RE may cause a failure. Another
interesting setting is when the random variable may have extreme realizations as to cause an increase
in the awareness of the control policy. If the probability of these extreme events is small, the
controller is overrating the failure possibility and routinely applying an over-conservative feedback,
resulting in a unnecessary operation cost of the RE.

The instance used for the numerical simulations is

• ax = 0.07, ar = 1.3, x0 = 0.50,

• T = 10, u = 0.07.

The random variable presents the following distribution:

ξ

−0.10 −0.05 0.00 0.05 0.10 0.15

02% 13% 20% 20% 35% 10%

Figure 4.1 – Distribution probabil-
ity for random perturbation of the
battery charge consumption.

Two confidence levels are considered in the simulation, α = 0.90, 0.99. The value function is
computed used the algorithm presented in Proposition 4.1 and N = 1000 feedbacks are synthesized.
Figure 4.2 shows the cost of the policies and the state trajectories for each value of α. Table 4.1
summarizes the results obtained in the simulations. The table presents, for each value of confidence
level α the average cost of policies, the standard deviation as a percentage of the average cost and
the obtained success rate. The success rate obtained using the computed policies are indeed close
to the required confidence level. For the most stringent confidence level (α = 0.99) the average cost
is higher, representing an increase of 6% with respect to a confidence level of 90%. Also, following a
more strict confidence level, the cost distribution is tighter, presenting a reduction of over 7% in the
deviation with respect to the average cost. This behavior reflects the fact the less strict confidence
level generates policies that are more lax, making room for more extreme cost savings.

The next step towards a real world application is the study of the chance constrained problem
in richer models. In particular, the random variable must be accurately modeled if the chance
constrained policies are expected to perform well in simulations using real vehicle data.
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Figure 4.2 – Cost distributions and SOC trajectories for N = 1000 policies. Trajectories in blue are successful
while trajectories in red are fails.
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confidence level average cost deviation success rate

90% 1.347 21.09 % 86.45 %
99% 1.428 13.24 % 98.70 %

Table 4.1 – Summary of simulations results using chance constrained power management strategies.

4.5 Discussion

As mentioned, the introduction of chance constraints in the optimal power management problem
adds flexibility to the optimal control policy. In scenarios where success cannot be fully assured,
the control policy is still able to be optimal, in the sense of the financial cost, while at the same
time limiting the frequency of failures to satisfy a certain safety level.

In the optimal power management case, the chance constraints must be verified at each opti-
mization stage. The section proposes a transformation that allow the chance constraint to bear
upon the final state only.

This section introduces an equivalent formulation of the stochastic optimal control problem
under chance constraints in the final state which enables the problem to be solved via an dynamic
programming algorithm. Indeed, by adding a new state variable and a new control variable with
adequate measurability properties, a dynamic programming principle is derived which can be used
as a base for an algorithm to synthesize the optimal feedback control. The new state variable can
be interpreted as the perception of how good the feedback is in satisfying the chance constraints
viewed from the initial time. The new control variable can be viewed as adjusting this perception
as the system evolves in time.

A dynamic programming principle is derived for this equivalent formulation. The dynamic
programming principle in Proposition 4.1 is detailed and presented in such a way that it is readily
implementable as a DP algorithm for numerically computing optimal feedbacks.

The simulation results shows that, indeed, lower confidence bounds yield less conservative feed-
backs. The consequence is a reduction on the average cost over several policy utilizations associated
with the reduction of the success rate of the strategies.

Considering a more realistic application, considering a full hybrid vehicle model and a richer
stochastic model for the random variable, tuning the success rate to increase fuel economies and
reduce emission levels seems to be a promising idea. This introductory study paves the way for
further research in this direction.
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FIFTH CHAPTER

REACHABILITY OF HYBRID SYSTEMS:
THEORETICAL STUDY

“If in other sciences we should arrive at certainty without doubt and truth without error, it
behooves us to place the foundations of knowledge in mathematics.”

Roger Bacon

The content of this chapter is an adaptation from the following publication and oral communication:

• Granato, G. and Zidani, H. Level-set approach for reachability analysis of hybrid systems under
lag constraints, SIAM J. Control and Optimization, submitted, awaiting review.

• Granato G. and Zidani H. HJB Equations for Non-Autonomous Hybrid Dynamical Systems,
Summer School and Workshop of the Initial Training Network for Sensitivity Analysis and
Deterministic Optimal Control - SADCO, 2011, London, England, invited speaker.
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5.1 Introduction

This chapter deals with the characterization of a reachable set of a hybrid dynamical system with
a lag constraint in the switch control. The approach consists in the introduction of on adequate
hybrid optimal control problem with lag constraints on the switch control whose value function
allows a characterization of the reachable set.

This work is motivated by an application in the automobile industry, namely, calculating the
autonomy of a class of electric vehicles (EVs), the range extender electric vehicle (REEV) class,
which posses two distinct sources of energy from which we can use to tract the vehicle. In this
setting, the study aims at finding the control sequence of the two energy sources that allows the
vehicle the reach the furthest possible point of a given route. The REEV is modeled as a hybrid
dynamical system in which the state vector represents the energy capacities of the two different
energy sources embedded in the vehicle.

The term hybrid system refers to a general framework that can be used to model a large class of
systems. Broadly speaking, they arise whenever a collection continuous- and discrete-time dynamics
are put together in a single model. In that sense, the discrete dynamics may dictate switching
between the continuous dynamics, jumps in the system trajectory or both. Moreover, they can
contain specificities, as for instance, autonomous jumps and/or switches, time delay between discrete
decisions, switching/jumping costs. This work considers a particular class of hybrid system where
only switching between continuous dynamics are operated by the discrete logic, with no jumps in
the trajectory, and there are no switching costs. In addition, switch decisions are constrained to be
separated in time by a non-zero interval, fact which is referred to as switching lag.

Before referring to the reachability problem in the hybrid setting, the main ideas are introduced
in the non-hybrid framework. Given a time t > 0, a closed target set X0 and a closed admissible
set K, considering a controlled dynamical system

ẏ(τ) = f(τ, y(τ), u(τ)), a.e. τ ∈ [0, t], (5.1)

where f : IR+× IRd×U → IRd and u : IR+ → U is a measurable function, the reachable set RX0 at
time t is defined as the set of all initial states x for which there exists a trajectory that stays inside
K on [0, t] and arrives at the target:

RX0(t) := {x | (y, u) satisfies (5.1) , with y(0) = x and y(t) ∈ X0 and y(s) ∈ K on [0, t]}.

It is a known fact that the reachable set can be characterized by the the negative region of the value
function of an optimal control problem. For this, following the idea introduced by Osher [64], one
can consider the control problem defined by:

v(x, t) := inf{v0(y(t)) | (y, u) satisfies (5.1), with y(0) = x and y(s) ∈ K on [0, t]}, (5.2)

where v0 is a Lipschitz continuous function satisfying v0(x) ≤ 0⇐⇒ x ∈ X0 (for instance,v0 can be
the signed distance dX0 to X0). Under classical assumptions on the vector-field f , one can prove
that the reachable set is given by

RX0(t) = {x ∈ K, v(x, t) ≤ 0}.

Moreover, when K is equal to IRd, the value function has been shown to be the unique viscosity
solution of a Hamilton-Jacobi-Bellman (HJB) equation [8]:

∂tv + sup
u∈U

(−f(s, x, u) · ∇v) = 0 on IRd × (0, t],

with the initial condition v(x, 0) = v0(x).
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When the set K is a subset of IRd (K 6= IRd), the characterization of v by means of a HJB equa-
tion becomes a more delicate matter and usually requires some additional controllability properties
[27, 17]. However, it was pointed out in [17] that in case of state-constraints, the auxiliary control
problem should be introduced as

V (x, t) := inf
{
v0(y(t))

∨
max
θ∈[0,t]

g(y(θ)) | (y, u) satisfies (5.1), with y(0) = x

}
, (5.3)

where g is any Lipschitz continuous function satisfying g(x) ≤ 0 ⇐⇒ x ∈ K (again, g can be the
signed distance dK to K). This new control problem involves a supremum cost but does not include
any state constraints. The reachability set is still given by

RX0(t) = {x ∈ K,V (x, t) ≤ 0},

and the value function V is the unique viscosity solution of a variational inequality

min(∂tV + sup
u∈U

(−f(s, x, u) · ∇V ), V − g) = 0 on (0, t]× IRd,

with the initial condition v(x, 0) = min(v0(x), g(x)), but no controllability assumption is needed.

In this paper, we are interested in the extension of the reachability framework to some class of
control problems of Hybrid systems.

Let us recall that a hybrid dynamical system is a collection of controlled continuous-time pro-
cesses selected through a high-level discrete control logic. A general framework for the (optimal)
control hybrid dynamical systems was introduced in [22]. Several papers deal with the optimal
control problem of hybrid systems, let us just mention here the papers of [40, 5, 25, 84] where the
optimality conditions in the form of Pontryagin’ principle are studied and [90, 26, 32] where the
HJB approach is analyzed.

A feature of the hybrid system used in our work is a time lag between two consecutive switching
decisions. From the mathematical viewpoint this remove the particularities linked to Zeno-like
phenomena [89]. Indeed, the collection of state spaces is divided in subsets labeled in three categories
according to whether they characterize discrete decisions as optional, required (autonomous) or
forbidden. Landing conditions ensure that whatever the region of the state space the state vector
“lands” after a switch no other switch is possible by requiring a positive distance (in the Hausdorff
sense) between the landing sets and the optional/autonomous switch sets. In the other hand,
when allowed to switch freely without any costs, when no time interval is imposed between discrete
transitions, a controller with a possibly infinite number of instantaneous switches may become
admissible. Switch costs can be introduced in order to rule out this kind of strategy by the controller
as it becomes over-expensive to switch to a particular mode using superfluous transitions. However,
such costs do not make sense in the level-set approach used in this paper.

Diffusion processes with impulse controls including switch lags are studied in [24], where it is
considered the idea of introducing a state variable to keep track of the time since the last discrete
control decision. There, in addition, discrete decisions also suffer from a time delay before they can
manifest in the continuous-time process. In that case, one has the possibility of scheduling discrete
orders whenever the time for a decision to take place may be longer than that of deciding again.
Then, the analysis also includes keeping record of the nature of this scheduled orders. This work
inspired the idea of a state variable locking possible transitions used here.

To study the reachability sets for our system, we follow the level set approach and adapt the
ideas developed in [17] to hybrid systems by proposing a suitable control problem which allows us
to handle in a convenient way the state constraints and the decision lag. It is proven that

RX0(s) = {x | ∃(q, p) ∈ Q× P, v(x, q, p, s) ≤ 0}.
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where v denotes the value function of a hybrid optimal control problem. Thus, through a char-
acterization of v, one obtains the desired reachable set, defined in the hybrid context, x is in the
(physical) state of the system, q is the discrete variable and p is a switch lock variable (defined fur-
ther below). Here the main difficulty is to characterize the value function associated to the control
problem. It turns out that this value function satisfies a quasi-variational HJB inequality system
(in the viscosity sense)

min(∂su+ ∂pu+H(s, x, q,∇xu), u− ϕ(x)) = 0 , (x, q, p, s) ∈ Ω, (5.4)
u(x, q, p, s)− (Mu)(x, q, p, s) = 0 , p = 0 (5.5)
u(x, q, p, 0) = max(φ(x), ϕ(x)). (5.6)

where t > 0, d > 0, X = IRd, Q = {0, 1}, P = (0, t], T = (0, t], Ω = X × Q × P × T and
where φ, ϕ : X → IR are target and obstacle indicator functions (defined properly further below).
Here,M is a non-local switch operator that acts whenever the state variable p touches the boundary
p = 0. Moreover, we give a comparison principle of this system. Usually, the proof of the comparison
principle requires some transversality assumptions that do not make sense in the kind of applications
we are interested in. However, while the decision lag complicates the structure of the problem it
also plays a role in the proof of comparison principle (the same role that the transversality assumed
in [90, 33]) acting as a kind of landing condition in the sense explained above. The proof of the
comparison principle is close to the one given in [32, 9] and adapts the idea of using “friendly
giants”-type functions.

This chapter is organized as follows: firstly, it describes briefly the industrial application moti-
vating the study. (in a slightly more general setting than that required for the application). Then,
a hybrid optimal control problem is stated, the reachable set and the value function are defined and
a dynamic programming principle for the value function is obtained. The value function is shown to
be Lipschitz continuous and also a solution of an system of quasi-variational inequalities (SQVI). It
follows with the proof of a comparison principle for the SQVI that ensures uniqueness of its solution
and is used to show the convergence of a class of numerical schemes for the computation of the
value function. Lastly results of some numerical simulations evaluating the autonomy of a REEV
toy model and illustrating the convergence of a discretization scheme are presented.

5.2 Motivation and Problem Settings

5.2.1 Range Extender Electric Vehicles

This section proposes an algorithm to synthesize controllers for the power management on board
hybrid vehicles that allows the vehicle to reach its maximum range along a given route. Although
the algorithm is readily applicable to all classes of hybrid vehicles, this work focuses on a specific
class, namely, range extender electric vehicles (REEV). A range extender (RE) electric vehicle is an
electric vehicle that disposes of an additional source of energy besides the main high voltage (HV)
traction battery. The controls available are the RE’s state – on or off – and the power produced
in the RE (and delivered into the powertrain). The power delivered into the powertrain is a non-
negative piecewise continuous time function. The RE’s state is controlled by a discrete sequence
of switching orders decided and executed at discrete times. An important feature of the REEV
model is a time interval δ > 0 imposed between two consecutive decisions times. From the physical
viewpoint, this assumption incorporates the fact that frequent switching of the RE is undesirable in
order to avoid mechanical wear off and acoustic nuisance for the driver. The model considers that
the vehicle’s traction capability is conditioned to the existence of some electric energy in the battery.
Since the vehicle must halt whenever there is no charge available in the battery, the objective of
finding the vehicle autonomy is summarized into finding the furthest point away from the vehicle
geographic starting point where the battery is depleted for the first time.
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The REEV is modeled as a discrete-time dynamical system in which the state vector represents
the energy capacities of the two different energy sources embedded in the vehicle. In this setting,
the study aims at finding the control sequence of the two energy sources that allows the vehicle the
reach the furthest possible point of a given route.

5.2.2 Hybrid Dynamical System

Hybrid systems have some supervision logic that intervenes punctually between two or more
continuous functions. The main elements of the class of hybrid dynamical systems considered in
this work are a family of continuous dynamics (vector fields) f and continuous state spaces X,
indexed by a discrete state q valued in a discrete set Q. Each continuous dynamic system fq valued
in Xq models a physical process controlled by a continuous control function u, from which the
system is free to switch to another process fq′ using a specified discrete control w and a discrete
dynamics g.

More precisely, the continuous state variable is denoted y and it is valued in the state space
X = IRd. The discrete variable is q ∈ Q = {0, 1, · · · , dq}, where dq is the number of possible
dynamics that can operate the system. (for simplicity of the presentation, through this paper, we
consider that Xq = X for all q ∈ Q). Each of these dynamics models a different mode of operation
of the system or a different physical process that the system is undergoing. Moreover, define a
compact set K ⊂ X as the hybrid system admissible set, i.e., a set inside which the state must
remain.

The continuous control is supposed to be a measurable function u valued in a set that depends
on the mode that is currently active U(q). The discrete control is a sequence of switching decisions

w = {(w1, s1), · · · , (wi, si), (wi+1, si+1), · · · }, (5.7)

where each si ∈ [0,∞[ and wi ∈W (q) ⊂ {0, 1, · · · , dq}. The sequence of discrete switching decisions
{wi}i>0 (designating the new mode of operation) is associated with a sequence of switching times
{si}i>0 where each decision wi is exerted at time si. The set of available discrete decisions, at time
s, W (q(s)), depends on the discrete state variable and it corresponds to a decision of switching the
system to another process wi.

The lag condition between switches is included by demanding that two switch orders must be
separated by a time interval of δ > 0, i.e.,

si+1 − si ≥ δ.

Remark 5.1. Regarding the vehicle application, the vehicle’s energy state is a two-dimensional
vector y ∈ X = IR2, where y = (y1, y2) denotes the state of charge of the battery and the fuel
available in the range extender module. Each of these quantities are the image of the remaining
energy in the battery and the RE respectively. It is clear here that the state variables have to be
constrained to remain in the compact set K = [0, 1]2, where the energies quantities are normalized.
q ∈ Q = {0, 1} is the RE state, indicating whether the RE is off (q = 0) or on (q = 1). The power
output is a measurable function u(·) ∈ U(q(·)) where U(·) is the admissible control set, compact
subset of IR dependent naturally on the RE state.

In this setting, given a discrete state q, the continuous control u steers the continuous system

ẏ(τ) = f(τ, y(τ), u(τ), qi), for a.e. τ ∈ [0, t] (5.8)

where some continuous dynamics f(·, ·, ·, qi) is activated. f is a family of vector fields indexed by the
discrete variable q. When q = qi, the corresponding vector field is active and dictates the evolution
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of the continuous state. At some isolated times {si}i>0, given by the discrete switching control
sequence, the discrete dynamic g is activated

qi−1 = g(wi, qi) (5.9)

and the continuous state follows another vector field f(·, ·, ·, qi−1). In the considered system, the
discrete decisions only switch the continuous dynamics and introduce no discontinuities on the
trajectory. In more general frameworks, we can also include jumps in the continuous state vector
that can be used to model an instant change in the value of the state following a discrete decisions
[22, 14].

Assume controlled continuous dynamics f and the discrete dynamic g satisfy the following:

(H0) The continuous control is a measurable function u : [0,∞[→ IRm such that

u(τ) ∈ U(q(τ)) for a.e. τ ∈ [0, t].

(H1) There exists Lf > 0 such that, for all s ≥ 0, y, y′ ∈ X, q ∈ Q and u ∈ U(q),

‖f(s, y, u, q)− f(s, y′, u, q)‖ ≤ Lf‖y − y′‖, ‖f(s, y, u, q)‖ ≤ Lf .

(H2) For all q ∈ Q, f(·, ·, ·, q) : [0,∞[×X×U → X is continuous and for all s ∈ [0,∞[, x ∈ X,u ∈ U ,
f(s, x, u, ·) : Q→ X is continuous with respect to the discrete topology.

(H3) For all s ∈ [0, t], y ∈ X and q ∈ Q, f(s, y, U, q) is a convex subset of X.

(H4) There exists Lg > 0 such that, for all q ∈ Q and w ∈W (q),

‖g(w, q)‖ ≤ Lg

(H5) g(·, ·) is continuous with respect to the discrete topology.

Assumption (H1) ensures that a trajectory exists and that it is unique. Assumptions (H2)-(H5)
are used to prove the Lipschitz continuity of the value function and (H3) is needed in order to
observe the compactness of the trajectory space.

Denote A the space of hybrid controls a = (u,w). We precise the class of admissible controls
A ⊂ A in the following definition:

Definition 5.1. For a fixed t ≥ 0 a hybrid control a = (u,w) ∈ A is said to be admissible if the
continuous control verifies (H0) and the discrete control sequence w = {wi, si}i>0 has increasing
decision times

s1 ≤ s2 ≤ · · · ≤ si ≤ si+1 ≤ · · · ≤ t, (5.10)

admissible decisions
∀i > 0, wi ∈W (q(si)) ⊂ Q, (5.11)

and verifies a decision lag
si+1 − si ≥ δ, (5.12)

where δ > 0.

An important consequence in the definition of admissible control is the finiteness of the number
of switch orders:

Proposition 5.1. Fix s ≥ 0. Let a ∈ A be an admissible hybrid control. Then, the discrete
control sequence has at most N = bs/δc switch decisions.
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Fix t > 0. Given a hybrid control a ∈ A with N switch orders and given x ∈ X, q ∈ Q, the
hybrid dynamical system is

ẏ(τ) = f(τ, y(τ), u(τ), qi), τ ∈ [0, t], y(t) = x (5.13)
qi−1 = g(wi, qi), i = 1, · · · , N, qN = q (5.14)

Denote the solutions of (5.13)-(5.14) with final conditions x, q by yx,q;t and qx,q;t. As pointed
out, not all discrete control sequences are admissible. Only admissible control sequences engender
admissible trajectories. Thus, given t > 0, x ∈ X and q ∈ Q, the admissible trajectory set Y x,q

[0,t] is
defined as

Y x,q
[0,t] = {y(·) | a ∈ A and yx,q;t solution of (5.13)-(5.14) } (5.15)

A consequence of proposition 5.1 and the above definition is the finiteness of the number of discrete
decisions in any admissible trajectory. Observe that the admissible trajectories set does not include
the discrete trajectory.

The hybrid control admissibility condition formulated as in conditions (5.10)-(5.12) is not well
adapted to a dynamic programming principle formulation, needed later on. In order to include the
admissibility condition in the optimal control problem in a more suitable form, we introduce a new
state variable π. Recall that the decision lag conditions implies that new switch orders are not
available up to a time δ since the last switch. The new variable is constructed such that at a given
time τ ∈ [0, t], the value of π(τ) measures the time since the last switch. The idea is to impose
constraints on this new state variable and treat them more easily in the dynamic programming
principle. Thus, if π(τ) < δ all switch decisions are blocked and if, conversely, π(τ) ≥ δ the system
is free to switch. For that reason, this variable can be seen as a switch lock.

Now given t > 0, τ ∈ [0, t] and a discrete control w = {wi, si}i>0, the switch lock dynamics is
defined by

πw(τ) = π(τ) =
{
δ + τ if τ < s1
infsi≤τ τ − si if τ ≥ s1

(5.16)

Indeed, once the discrete control is given, the trajectory π(·) can be determined. Proceeding with
the idea of adapting the admissibility condition in order to manipulate it in a dynamic programming
principle, we wish to consider π(t) = p, with p ∈ P := (0, t], the final value of the switch lock variable
trajectory and impose the lag condition under the form π(s−i ) ≥ δ for all si, where s−i denotes the
limit to the left at the switching times si (notice that π(s+

i ) = 0 by construction). Then, since
these conditions suffice to define an admissible discrete control set, while optimizing with respect
to admissible functions, one needs only look within the set of hybrid controls that engenders a
trajectory π(·) with the appropriate structure. In other words, given t > 0, x ∈ X, q ∈ Q and
p ∈ P , define a admissible trajectory set Sx,q,p[0,t] as

Sx,q,p[0,t] = {y(·) | a = (u, {wi, si}Ni=1) ∈ A, yx,q;t solution of (5.13)-(5.14),

π(·) solution of (5.16), π(t) = p, π(s−i ) ≥ δ, i = 1, · · · , N}. (5.17)

The next lemma states a relation between sets Y and S:
Lemma 5.1. Following the above definitions, sets (6.6) and (6.8) satisfy

Y x,q
[0,t] =

⋃
p∈P

Sx,q,p[0,t]

Proof. The equivalence between Y x,q
[0,t] and

⋃
p∈P S

x,q,p
[0,t] is obtained by construction.

In the following of the paper, whenever we wish to call attention to the fact that the fi-
nal conditions of (5.13), (5.14) and (6.7) are fixed, we denote their solutions respectively by
yx,q,p;t, qx,q,p;t, πx,q,p;t.
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5.2.3 Reachability of Hybrid Dynamical Systems and Optimal Control Problem

Let X0 ⊂ X be the set of allowed initial states, i.e. the set of states from which the system
(5.13)-(5.14) is allowed to start. Define the reachable set as the set of all points attainable by y
after a time s starting within the set of allowed initial states X0 to be

RX0(s) = {x | ∃q ∈ Q, yx,q;s ∈ Y x,q
[0,s], yx,q;s(0) ∈ X0, and yx,q;s(θ) ∈ K, ∀θ ∈ [0, s]}

= {x | ∃(q, p) ∈ Q× P, yx,q,p;s ∈ Sx,q,p[0,s] , yx,q,p;s(0) ∈ X0

and yx,q,p;s(θ) ∈ K, ∀θ ∈ [0, s]}. (5.18)

In other words, the reachable set RX0(s) contains the values of yx,q;s(s), regardless of the final
discrete state, for all admissible trajectories – i.e., trajectories obtained through an admissible hybrid
control – starting within the set of possible initial states X0, that never leave set K.

Observe that (6.9) defines the reachable set RX0(s) in terms of both admissible trajectory sets
Y and S.

Remark 5.2. In particular, the information contained in (6.9) allows one to determine the first
time where the reachable set is empty. More precisely, given X0 ⊂ X, define s∗ ≥ 0 to be

s∗ = inf{s | RX0(s) ⊂ ∅}. (5.19)

The time (6.10) is the autonomy of the hybrid system (5.13)-(5.14). Indeed, one can readily see that
if no more admissible energy states are attainable after s∗, any admissible trajectory must come to
a stop beyond this time. Therefore, s∗ is the longest time during which the state remains inside K.

The following proposition ensures that the space of admissible trajectories is a compact set.

Proposition 5.2. Given T ′ > 0, the admissible trajectory set Y x,q
[0,T ′] is a compact set in C([0, T ′])

endowed with the topology W 1,1.

Proof. Fix q ∈ Q and 0 ≤ s < t ≤ T ′. Consider a bounded admissible continuous control sequence
un ∈ L1([s, t]). Since un is bounded, there exists a subsequence unj such that unj ⇀ u in L1([s, t]).
Invoking (H1) − (H2), we have yun = yn ⇀ y in W 1,1([s, t]). Since W 1,1([s, t]) is compactly
embedded in C0([0, t]), we get the strong convergence of the solution yn → y in C0([s, t]). Hypothesis
(H3) guarantees that the limit function y is a solution of (5.13). Because all controls un and the
limit control u are admissible, y is an admissible solution.

So far, the proof shows that the limit trajectory is admissible when q is hold constant. Consider
a sequence of admissible discrete control sequences (w)n where the number of switching orders,
0 ≤ kn ≤ bT/δc may depend on n. Since each term of this sequence has a (first) discrete component
and is bounded on the (second) continuous component, then, as n→∞ there exists a subsequence
(w)nl and Λ > 0 such that qnj = q for all l > Λ. This implies kn → k. As the number of switches
is constant from the Λth term and s, t are arbitrary, one can obtain, using the limit discrete control
sequence w, the time intervals [si−1, si] over which qi is constant and the argument in the first
paragraph of the proof. Because the trajectory is continuous and admissible on all time intervals
[si−1, si], i = 1, · · · ,K, it is admissible on [0, T ].

Moreover, observe that ∀s ∈ [0, t], yn(s) ∈ K. Since for all s ∈ [0, t], yn(s) → y(s), by the
compactness of K we get that ∀s ∈ [0, t], y(s) ∈ K, which completes the proof.

Remark 5.3. The arguments presented in the above proof can be slightly modified to show that the
admissible trajectory set with fixed final p, Sx,q,p[0,T ′] is compact. Also in a similar way, the proof can be
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adapted to show that the reachable RX0 is closed. Indeed, by the compactness of set X0, a sequence
of initial conditions (y0)n ∈ X0, associated with admissible trajectories yn ∈ Y x,q

[0,T ′], converges to
y0 ∈ X0 which is also the initial condition for the limiting trajectory yn → y.

In order to characterize the reachable set RX0 this paper follows the classic level-set approach
[64]. The idea is to describe (6.9) as the negative region of a function v. It is well known that the
function v can be defined as the value function of some optimal control problem. In the case of
system (5.13)-(5.14), v happens to be the value function of a hybrid optimal control problem.

Consider a Lipschitz continuous function φ̃ : X → IR such that

φ̃(x) ≤ 0⇔ x ∈ X0.

Such a function always exists – for instance, the signed distance function dX0 from the set X0. For
LK > 0, one can construct a bounded function φ : X → IR as

φ(x) = max(min(φ̃(x), LK),−LK). (5.20)

For a given point s ≥ 0 and hybrid state vector (x, q, p) ∈ X ×Q× P , define the value function
to be

v0(x, q, p, s) = inf
Sx,q,p[0,s]

{φ(yx,q,p;s(0)) | yx,q,p;s(θ) ∈ K, ∀θ ∈ [0, s]} (5.21)

Observe that (6.9) works as a level-set to the negative part of (6.14). Indeed, since (6.14) contains
only admissible trajectories that remain in K, by (6.13) implies that v0(x, q, p, s) is negative if and
only if yx,q,p;s(0) is inside X0, which in turn implies that x ∈ RX0(s).

Remark however that when defining the value function with (6.14), one includes state con-
straints, with the condition that yx,q,p;s(θ) ∈ K for all times. When K 6= IRd, one cannot expect v
to be continuous and the HJ equation associated with (6.14) may have several solutions. In order to
bypass such regularity issues, this paper follows the idea of [17, 16]. Define a Lipschitz continuous
function ϕ̃ : X → IR to be

ϕ̃(x) ≤ 0⇔ x ∈ K,

and
ϕ(x) = max(min(ϕ̃(x), LK),−LK). (5.22)

Then, for a given s ≥ 0 and (x, q, p) ∈ X ×Q× P , define a total penalization function to be

J(x, q, p, s; y) =
(
φ(yx,q,p;s(0))

∨
max
θ∈[0,s]

ϕ(yx,q,p;s(θ))
)

and then, the optimal value :

v(x, q, p, s) = inf
y∈Sx,q,p[0,s]

J(x, q, p, s; y). (5.23)

Observe that (6.14) and (6.16) are bounded thanks to the constructions (6.13) and (6.15) respec-
tively. The idea in place is that one needs only to look at the sign of v0 or v to obtain information
about the reachable set. Therefore, the bound LK removes the necessity of dealing with an un-
bounded value function besides providing a convenient value for numerical computations. In order
to ensure that constructions (6.13) and (6.15) do not interfere with the original problem’s formula-
tion (in the sense that using φ, ϕ or φ̃, ϕ̃ should yield the same results), given s,X0 and x, assuming
one does use signed distance functions to sets X0,K, it suffices to take LK > supx′∈X0 x

′eLf |x−x
′|s,

where Lf is the Lipschitz constant of f .
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5.3 Main Results

The next proposition certifies that (6.9) is indeed a level-set of (6.14) and (6.16).

Proposition 5.3. Assume (H1)-(H3). Define Lipschitz continuous functions φ and ϕ by (6.13)
and (6.15) respectively. Define value functions v0 and v by (6.14) and (6.16) respectively. Then,
for s ≥ 0, the reachable set is given by

RX0(s) = {x | ∃(q, p) ∈ Q× P, v0(x, q, p, s) ≤ 0} = {x | ∃(q, p) ∈ Q× P, v(x, q, p, s) ≤ 0} (5.24)

Proof. The proof begins by showing that v0(x, q, p, s) ≤ 0⇒ v(x, q, p, s) ≤ 0. Assume v0(x, q, p, s) ≤
0. Then, using lemma 5.2, there exists an admissible trajectory such that

φ(yx,q,p;s(0)) ≤ 0, yx,q,p;s(θ) ∈ K, ∀θ ∈ [0, s].

Thus, maxθ∈[0,s] ϕ(yx,q,p;s(θ)) ≤ 0 and

v(x, q, p, s) ≤ max(φ(yx,q,p;s(0)), max
θ∈[0,s]

ϕ(yx,q,p;s(θ))) ≤ 0

Now, show that v(x, q, p, s) ≤ 0 ⇒ v0(x, q, p, s) ≤ 0. Assume v(x, q, p, s) ≤ 0. Then, by lemma
5.2 there exists a trajectory that verifies

max(φ(yx,q,p;s(0)), max
θ∈[0,s]

ϕ(yx,q,p;s(θ))) ≤ 0.

By the definition of ϕ, ∀θ ∈ [0, s],

max(ϕ(yx,q,p;s(θ))) ≤ 0⇒ yx,q,p;s(θ) ∈ K,

which implies v0(x, q, p, s) ≤ 0. Therefore, u and v have the same negative regions.

Now, assume yx,q,p;s(s) ∈ RX0(s). Then, by definition, there exists (q, p) ∈ Q × P and an
admissible trajectory such that yx,q,p;s(θ) ∈ K for all time and yx,q,p;s(0) ∈ X0. This implies that
maxθ∈[0,s](ϕ(yx,q,p;s(θ))) ≤ 0 and φ(yx,q,p;s(0)) ≤ 0. It follows that v(x, q, p, s) ≤ J(x, q, p, s; y) ≤ 0.

Conversely, assume v(x, q, p, s) ≤ 0. For any optimal trajectory ŷ (which is admissible thanks to
proposition 5.2) v(x, q, p, s) = J(x, q, p, s; ŷ) ≤ 0. Since the maximum of the two quantities is non
positive only if they are both non positive one can draw the desired conclusion.

Proposition (6.1) sets the equivalence between (6.9) and the negative regions of (6.14) and
(6.16). In particular, it states that it suffices to computes v or v0 in order to obtain information
about RX0 . In this sense, this paper focuses on (6.16), which is associated with an optimal control
problem with no state constraints.

In the sequel, it is shown that (6.16) is the unique (viscosity) solution of a quasi-variational
inequalities’ system. The first step is to state a dynamic programming principle for (6.16).

First, we present some preliminary notation. Given t > 0, set T = (0, t], Ω = X × Q × P × T
and denote its closure by Ω. For a fixed p0 ∈ P , define Ω|p0 = X ×Q× {p0} × T and denote Ω|p0

the closure of Ω|p0 . Define

V(Ω) := {v | v : Ω→ IR, v bounded }, (5.25)
V(Ω|p0) := {v | for p0 ∈ P, v : Ω|p0 → IR, v bounded } (5.26)
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For v ∈ V(Ω), denote its upper and lower envelope at point (x, q, p, s) ∈ Ω respectively as v∗ and
v∗:

v∗(x, q, p, s) = lim sup
xn→x
qn→q
pn→p
sn→s

v(xn, qn, pn, sn) (5.27)

v∗(x, q, p, s) = lim inf
xn→x
qn→q
pn→p
sn→s

v(xn, qn, pn, sn) (5.28)

In the case where p0 ∈ P is fixed and v ∈ V(Ω|p0), the upper and lower envelopes of v are also given
by (5.27), (5.28) with pn = p0 for all n.

Now, fix p = 0 and define the non-local switch operators M,M+,M− : V(Ω|0)→ V(Ω|0) to be

(Mv)(x, q, 0, s) = inf
w∈W (q)
p′≥δ

v(x, g(w, q), p′, s)

(M+v)(x, q, 0, s) = inf
w∈W (q)
p′≥δ

v∗(x, g(w, q), p′, s)

(M−v)(x, q, 0, s) = inf
w∈W (q)
p′≥δ

v∗(x, g(w, q), p′, s)

The action of these operators on the value function represents a switch that respects the lag
constraint. They operate whenever a switch is activated, which is equivalent to the condition p = 0.
Therefore, they are defined only for a fixed p = 0. Let us recall here some classical properties of
operators M,M+ and M− (adapted from [90]):

Lemma 5.2. Let v ∈ BV( Ω). Then M+v∗ ∈ BUSC( Ω) and M−v∗ ∈ BLSC( Ω). Moreover
(Mv)∗ ≤M+v∗ and (Mv)∗ ≥M−v∗.

Proof. Fix q ∈ Q, p = 0 and ε > 0. Let w∗ ∈ W (x, q) and p∗ > 0 be such that for all x ∈ X and
s ∈ T , (M+v∗)(x, q, p, s) ≥ v∗(x, g(w∗, q), p∗, s)− ε. Consider sequences xn → x and sn → s. Then

M+v∗(x, q, 0, s) ≥ v∗(x, g(w∗, q), p∗, s)− ε
≥ lim sup

xn→x
sn→s

v∗(xn, g(w∗, q), p∗, sn)− ε

≥ lim sup
xn→x
sn→s

inf
w∈W (xn,q),p′≥δ

v∗(xn, g(w, q), p′, sn)− ε

= lim sup
xn→x
sn→s

(M+v∗)(xn, q, 0, sn)− ε.

Notice that q and p are held constant throughout the inequalities and thus, the limsup of the jump
operator considering only sequences xn → x and sn → s corresponds to its envelope at the limit
point. Then, by the arbitrariness of ε, this proves the upper semi-continuity of M+v∗. The lower
semi-continuity of M−v∗ can be obtained in a similar fashion.

Now, observe that Mv ≤M+v∗. Taking the upper envelope of each side, one obtains:

(Mv)∗ ≤ (M+v∗)∗ = M+v∗.

By the same kind of reasoning Mv ≥M−v∗ and

(Mv)∗ ≥ (M−v∗)∗ = M−v∗.
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The next proposition is the dynamic programming principle verified by (6.16):

Proposition 5.4. The value function (6.16) satisfies the following dynamic programming princi-
ple:

(i) For s=0,
v(x, q, p, 0) = max(φ(x), ϕ(x)), ∀(x, q, p) ∈ X ×Q× P, (5.29)

(ii) For p = 0,
v(x, q, 0, s) = (Mv)(x, q, 0, s), (x, q, s) ∈ X ×Q× T, (5.30)

(iii) For (x, q, p, s) ∈ Ω, define the non-intervention zone as Σ = (0, p ∧ s). Then, for h ∈ Σ,

v(x, q, p, s) = inf
Sx,q,p[s−h,s]

{
v(yx,q,p;h(s− h), q, p− h, s− h)

∨
max

θ∈[s−h,s]
ϕ(yx,q,p;h(θ))

}
(5.31)

Proof. The dynamic programming principle is composed of three parts.

(i): Equality (6.20) is obtained directly by definition (6.16).

(ii): ” ≤ ”. Let (x, q, s) ∈ X×Q×T and p = 0. Consider a hybrid control a = (u(·), {wi, si}Ni=1)
and an associated trajectory ya. Construct a control a = (u(·), {wi, si}N−1

i=1 ) with associated trajec-
tory ya, where u = u, wi = wi and si = si for i = 1, · · · , N − 1 and sN = s, wN = w′. Then, one
obtains,

v(x, q, 0, s) ≤ J(x, q, 0, s; ya)
= J(x, g(w′, q), p′, s; ya),

where the controller must respect the condition p′ ≥ δ for it to be admissible. Since a is arbitrary,
one can choose it such that

v(x, q, 0, s) ≤ inf
ya∈S(x,g(w′,q),p′)

[0,s]

J(x, g(w′, q), p′, s; ya) + ε1

= v(x, g(w′, q), p′, s) + ε1,

where ε1 > 0. Now, choose the last switch w′ and p′ such that

v(x, q, 0, s) ≤ inf
w′∈W (q)
p′≥δ

v(x, g(w′, q), p′, s) + ε1

= (Mv)(x, q, p, s) + ε1.

” ≥ ”. For (x, q, p) ∈ X × Q × P and p = 0, there always exists an admissible control that aε,
such that there exists ε2 > 0 and,

v(x, q, 0, s) + ε2 ≥ J(x, q, 0, s; yaε)

Using the same hybrid control constructions as in the “≤” case, one obtains

J(x, q, 0, s; yaε) = J(x, g(w′, q), p′, s; yāε)
≥ v(x, g(w′, q), p′, s)
≥ inf

w′∈W (q)
p′≥δ

v(x, g(w′, q), p′, s)

= (Mv)(x, q, 0, s).
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Relation (6.21) is obtained by the arbitrariness of both ε1, ε2.

(iii): ” ≤ ”. For (x, q, p, s) ∈ Ω and 0 < h ≤ p ∧ s, (6.16) yields

v(x, q, p, s) ≤ max
((

φ(yx,q,p;s(0))
∨

max
θ∈[0,s−h]

ϕ(yx,q,p;s(θ))
)
, max
θ∈[s−h,s]

ϕ(yx,q,p;s(θ))
)
, (5.32)

for any y ∈ Sx,q,p[0,s] . By the choice of h, there is no switching between times s − h and s. Write the
admissible control a = (u,w) as a0 = (u0, w) and a1 = (u1, w) with

u0(s) = u(s), s ∈ [0, s− h],
u1(s) = u(s), s ∈ (s− h, s].

Since a is admissible, both controls a0, a1 are also admissible. Denote the trajectory associated with
controls a, a0, a1 respectively by ya, y0, y1. Then, ya ∈ Sx,q,p[0,s] and by continuity of the trajectory we
achieve the following decomposition:

y1 ∈ Sx,q,p[s−h,s], y0 ∈ Sy
1(s−h),q,p−h

[0,s−h] .

The above decomposition together with inequality (5.32) yields

v(x, q, p, s) ≤ max
((

φ(y0(0))
∨

max
θ∈[0,s−h]

ϕ(y0(θ))
)
, max
θ∈[s−h,s]

ϕ(y1(θ))
)
,

And one concludes after minimizing with respect to the trajectories associated with a0 and a1.

The ” ≥ ” part uses a particular ε-optimal controller and the same decomposition, allowing to
conclude by the arbitrariness of ε. This is possible because there is no switching between s− h and
s.

A direct consequence of proposition 5.4 is the Lipschitz continuity of the value function, stated
in the next proposition:

Proposition 5.5. Assume (H1)-(H2). Define Lipschitz continuous functions φ and ϕ by (6.13)
and (6.15), with Lipschitz constants Lφ and Lϕ respectively. Then, for p > 0, (6.16) is Lipschitz
continuous.

Proof. Fix s, s′ > 0, x, x′ ∈ X, q ∈ Q, p > 0. Then, using max(A,B) − max(C,D) ≤ max(A −
B,C −D), one obtains,

|v(x, q, p, s)− v(x′, q, p, s)| ≤ max
(∣∣φ(yx,q,p;s(0))− φ(yx′,q,p;s(0))

∣∣ ,
max
θ∈[0,s]

∣∣ϕ(yx,q,p;s(θ))− ϕ(yx′,q,p;s(θ))
∣∣)

≤ max
(
Lφ
∣∣yx,q,p;s(0)− yx′,q,p;s(0)

∣∣ ,
Lϕ max

θ∈[0,s]

(∣∣yx,q,p;s(θ)− yx′,q,p;s(θ)∣∣)
)

≤ Lv|x− x′|,

where Lv = max(Lφ, Lϕ)eLf s.
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Now, take h > 0 and observe that v(x, q, p, s) ≥ ϕ(x). Then,

|v(x, q, p+ h, s+ h)− v(x, q, p, s)| ≤ max
(∣∣∣∣v(yx,q,p+h;s+h(s), q, p, s)− v(x, q, p, s)

∣∣∣∣ ,∣∣∣∣∣ max
θ∈[s,s+h]

ϕ(yx,q,p;s+h(θ))− ϕ(x)
∣∣∣∣∣
)

≤ max
(
Lv

∣∣∣∣yx,q,,p+h;s+h(s)− yx,q,p;s(s)
∣∣∣∣ ,

Lϕ max
θ∈[s,s+h]

|ys,q,p+h;s+h(θ)− yx,q,p;s(s)|
)

≤ Lf max(Lv, Lϕ)h.

In order to proceed to the HJB equations, define the Hamiltionian to be

H(s, x, q, z) = sup
u∈U(q)

f(s, x, u, q) · z (5.33)

Before stating the next result, we recall the notion of viscosity solution [30] used throughout
this paper.

Definition 5.2. A function u1 (resp. u2) upper semi-continuous (u.s.c.) (resp. lower semi-
continuous (l.s.c) is a viscosity subsolution (resp. supersolution) if there exists a continuously dif-
ferentiable function ψ such that u1 − ψ has a local maximum (resp. u2 − ψ has a local minimum)
at (x, q, p, s) ∈ Ω and

∂sψ + ∂pψ +H(s, x, q,∇xψ)
∧
u1 − ϕ(x) ≤ 0 if (x, q, p, s) ∈ Ω (5.34)

u1(x, q, p, s) ≤ (M+u1)(x, q, p, s) if p = 0, (5.35)
u1(x, q, p, s) ≤ max(φ(x), ϕ(x)) if s = 0, (5.36)

(with the inequalities signs inversed and M− instead of M+ for u2). A bounded function u is a
(viscosity) solution of (5.34) –(5.36) if u∗ is a subsolution and u∗ is a supersolution.

The next statement shows that the value function defined in (6.16) is a solution of a quasi-
variational system.

Theorem 5.1. Assume (H1)-(H5). Let the Lipschitz functions φ and ϕ be defined by (6.13) and
(6.15) respectively. Then, the Lipschitz, bounded value function v defined in (6.16) is a viscosity
solution of the quasi-variational inequality

∂sv + ∂pv +H(s, x, q,∇xv)
∧
v − ϕ(x) = 0 , ∀(x, q, p, s) ∈ Ω, (5.37)

v(x, q, 0, s) = (Mv)(x, q, 0, s) , ∀(x, q, s) ∈ X ×Q× [0,∞[ (5.38)
v(x, q, p, 0) = max(φ(x), ϕ(x)) , ∀(x, q, p) ∈ X ×Q× P. (5.39)

Proof. By definition, v satisfies the initial condition (5.39). The boundary condition (5.38) is
deducted from proposition 5.4. Now, we proceed to show that (i) v is a supersolution and (ii) a
subsolution of (5.37):
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First, let us prove the supersolution property (i). To satisfy min(A,B) ≥ 0 one needs to
show A ≥ 0 and B ≥ 0. Since v − ϕ(x) ≥ 0, it is immediate that B ≥ 0. Now, consider
0 < h ≤ p ∧ s. Let ψ be a continuously differentiable function such that v − ψ attains a minimum
at (x, q, p, s). Then,using proposition (5.4)(iii) and selecting an ε-optimal controller, dependent on
h, with associated trajectory yεx,q,p;s, it follows that

ψ(x, q, p, s) = v(x, q, p, s) ≥ inf
Sx,q,p[0,s]

v(yx,q,p;s(s− h), q, p− h, s− h)

≥ v(yεx,q,p;s(s− h), q, p− h, s− h)− hε
= ψ(yεx,q,p;s(s− h), q, p− h, s− h)− hε

and then,
ψ(x, q, p, s)− ψ(yεx,q,p;s(s− h), q, p− h, s− h) ≥ −hε.

Since the control domain is bounded and using the continuity of f, p and ψ we divide by h and take
the limit h→ 0 to obtain

∂sψ + ∂pψ +H(s, x, q,∇xψ) ≥ −ε

and conclude that A ≥ 0 by the arbitrariness of ε.

For (ii), observe that for min(A,B) ≤ 0 it suffices to show that A ≤ 0 or B ≤ 0. If v(x, q, p, s) =
ϕ(x), it implies B ≤ 0. On the contrary, if v(x, q, p, s) > ϕ(x), then there exists a Σ 3 h ≥ 0 small
enough so that

v(yux,q,p;s(s− h), q, p− h, s− h) > max
θ∈[s−h,h]

ϕ(yux,q,p;s(θ))

strictly, using the Lipschitz continuity of f, p and the compactness of U (which ensures the trajec-
tories will remain near each other). Thus, proposition 5.4(iii) yields

v(x, q, p, s) = inf
yu∈Sx,q,p[s−h,s]

v(yux,q,p;s(s− h), q, p− h, s− h).

Fix an arbitrary u ∈ U and consider a constant control u(s) = u for 0 < s < h. Let ψ be a
continuously differentiable function such that v−ψ attains a maximum at (x, q, p, s). Also, without
loss of generality, assume that v(x, q, p, s) = ψ(x, q, p, s). Hence,

v(x, q, p, s) ≤ v(yux,q,p;s(s− h), q, p− h, s− h)
≤ ψ(yux,q,p;s(s− h), q, p− h, s− h)

and by dividing by h and taking h→ 0 one obtains

∂sψ + ∂pψ + f(s, x, u) · ∇xψ ≤ 0.

Since u is arbitrary and admissible, we conclude that A ≤ 0, which completes the proof.

Theorem 5.1 provides a convenient way to characterize the value function whose level-set is
the reachable set defined in (6.9). However, in order to be sure that the solution that stems from
(5.37)-(5.39) corresponds to (6.16), a uniqueness result is necessary. This is achieved by a comparison
principle which is stated in the next theorem. Let BUSC(Ω) and BLSC(Ω) respectively be the
space of u.s.c. and l.s.c. functions defined over the set Ω.

Theorem 5.2. Let u1 ∈ BUSC(Ω) and u2 ∈ BLSC(Ω) be, respectively, sub- and supersolution
of

∂su+ ∂pu+H(s, x, q,∇xu)
∧
u− ϕ(x)) = 0 , ∀(x, q, p, s) ∈ Ω, (5.40)

u(x, q, 0, s)− (Mu)(x, q, 0, s) = 0 , ∀(x, q, s) ∈ X ×Q× [0,∞[ (5.41)
u(x, q, p, 0) = max(φ(x), ϕ(x)) , ∀(x, q, p) ∈ X ×Q× P. (5.42)

Then, u1 ≤ u2 in Ω.
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The proof is inspired by earlier work on uniqueness results for hybrid control problems. The
idea is to show that u1 ≤ u2 in all domain Ω and then on the boundary p = 0. The main difficulty
arises when dealing with points in the boundary p = 0 where the system has a switching condition
given by a non-local switch operator. This is tackled by the utilization of “friendly giant”-like test
functions [9], [55]. Classically, these functions are used to prove uniqueness for elliptic problems with
unbounded value functions where they serve to localize some arguments regardless of the function’s
possible growth at infinity. This feature proves itself very useful in our case because one can properly
split the domain in no-switching and switching regions. In this work, the lag condition for the switch
serves as an equivalent to the “landing condition”– which states that after an autonomous switch
the system must land at some positive distance away from the autonomous switch set [32], [90].

Proof. Let Ω be defined as above, ∂Ω|T = X ×Q× P × {0} and ∂Ω|P = X ×Q× {0} × T .

First, the comparison principle is proved for ∂Ω|T (case 1), followed by Ω (case 2) and finally
for ∂Ω|P (case 3), which concludes the proof for Ω.

Case 1: At a point (x, q, p, t) ∈ ∂Ω|T , from the sub- and supersolution properties,

u1(x, q, p, 0)−max(φ(x), ϕ(x)) ≤ 0,
−u2(x, q, p, 0) + max(φ(x), ϕ(x)) ≤ 0,

which readily yields u1 ≤ u2 in ∂Ω|T .

Case 2: Start by using to sub- and supersolution properties of u1, u2 to obtain, in Ω,

min(∂su1 + ∂pu1 +H(s, x, q,∇xu1), u1 − ϕ(x)) ≤ 0, (5.43)
min(∂su2 + ∂pu2 +H(s, x, q,∇xu2), u2 − ϕ(x)) ≥ 0. (5.44)

Expression (5.44) implies that both
u2 ≥ ϕ(x) (5.45)

and
∂su2 + ∂pu2 +H(s, x, q,∇xu2) ≥ 0. (5.46)

From (5.43), one has to consider two possibilities. The first one is when u1 ≤ ϕ(x). If so, together
with (5.45), one has immediately u1 ≤ u2. Now, if ∂su1 + ∂pu1 +H(s, x, q,∇xu1) ≤ 0, one turns to
(5.46).

Define v = u1−u2. Notice that v ∈ BUSC(Ω). The next step is to show that v is a subsolution
of

∂sv + ∂pv +H(s, x, q,∇xv) = 0 (5.47)
at (x̄, q̄, p̄, s̄).

Let ψ ∈ C2(Ω), bounded, be such that v − ψ has a strict local maximum at (x̄, q̄, p̄, s̄) ∈ Ω.
Define auxiliary functions over Ωi × Ωi, i = 0, 1 as

Φi
ε(x, p, s, ξ, π, ς) = u1(x, i, p, s)− u2(ξ, i, π, ς)− ψ(x, p, s) (5.48)

−|x− ξ|
2

2ε − |p− π|
2

2ε − |s− ς|
2

2ε .

Because the boundedness of ψ, u1 and u2 the suprema points are finite, for each i = 0, 1. Denote
(xε, pε, sε, ξε, πε, ςε) ∈ Ωq̄ × Ωq̄ a point such that

Φq̄
ε(xε, pε, sε, ξε, πε, ςε) = sup

Ωq̄×Ωq̄
Φq̄
ε(x, p, s, ξ, π, ς).

The following lemma establishes some estimations needed further in the proof:
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Lemma 5.3. Define Φi
ε and (xε, pε, sε, ξε, πε, ςε) as above. Then, as ε→ 0,

|xε − ξε|2

ε
→ 0, |pε − πε|

2

ε
→ 0, |sε − ςε|

2

ε
→ 0,

|xε − ξε| → 0, |pε − πε| → 0, |sε − ςε| → 0,

and (xε, pε, sε, ξε, πε, ςε)→ (x̄, p̄, s̄, x̄, p̄, s̄)

Proof. Writing

2Φi
ε(xε, pε, sε, ξε, πε, ςε) ≥ Φi

ε(xε, pε, sε, xε, pε, sε) + Φi
ε(ξε, πε, ςε, ξε, πε, ςε),

for i = 0, 1, one obtains,

|x− ξ|2

ε
+ |p− π|

2

ε
+ |s− ς|

2

ε
≤ (u1 + u2)(xε, i, pε, sε)− (u1 + u2)(ξε, i, πε, ςε) +

ψ(xε, pε, sε)− ψ(ξε, πε, ςε),

which means that, since ψ, u1 and u2 are bounded that

|xε − ξε|2

ε
≤ C∗, |pε − πε|

2

ε
≤ C∗, |sε − ςε|

2

ε
≤ C∗, (5.49)

where C∗ depends on the sup |u1|, sup |u2|, sup |ψ| and is independent of ε. Expression (5.49) yields

|xε − ξε| ≤
√
εC∗, |pε − πε| ≤

√
εC∗, |sε − ςε| ≤

√
εC∗.

which implies that the doubled terms tend to zero.

Since (x̄, q̄, p̄, s̄) is a strict maximum of v − ψ, one gets (xε, pε, sε, ξε, πε, ςε) → (x̄, p̄, s̄, x̄, p̄, s̄).
Remark that, since p̄ > 0, one can always choose a suitable subsequence εn → 0 such that all
pεn > 0, avoiding thus touching the switching boundary.

A straightforward calculation allows to show that there exists a, b ∈ IR such that

(a, b,Dε) ∈ D−u2(ξε, q̄, πε, ςε)
(a+ ∂sψ, b+ ∂pψ,Dε +∇xψ) ∈ D+u1(xε, q̄, pε, sε),

where D−, D+ respectively denote the sub- and super differential [30] and Dε = 2|xε − ξε|/ε, which
implies

a+ b+H(ςε, ξε, q̄, Dε) ≥ 0
a+ ∂sψ + b+ ∂pψ +H(sε, xε, q̄, Dε +∇xψ) ≤ 0,

which in turn yields, as ε→ 0,
∂sψ + ∂pψ − Lf |∇xψ| ≤ 0

at (x̄, q̄, p̄, s̄) ∈ Ω. By adequately choosing the test functions ψ, one can repeat the arguments to
show that this assertion holds for any point in Ω. Thus, this establishes that v is a subsolution of
(5.47) in Ω.

Now, take κ > 0 and define a non-decreasing differentiable function χκ : (−∞, 0) → IR+ such
that

χκ(x) = 0, x ≤ −κ ; χκ(x)→∞, x→ 0.

Take η > 0, and define a test function

ν(x, p, s) = ηs2 + χκ(−p).
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Observe that v − ν achieves a maximum at a finite point (x0, q̄, p0, s0) ∈ Ω. Since κ can be made
arbitrarily small one can consider p0 > κ without loss of generality. Therefore, using the subsolution
property of v, by a straightforward calculation one has

2ηs0 ≤ 0,

since χ′η(−p0) = 0. The above inequality implies that s0 = 0. Noticing that ν(x0, p0, s0) =
v(x0, q̄, p0, s0) = 0, it follows

v(x, q̄, p, s) ≤ ηs2 + χκ(−p)

for all s ∈ T , x ∈ X and p > κ. Letting η → 0, κ→ 0 and from the arbitrariness of q̄, we conclude
that v ≤ 0 in Ω.

Case 3: In this case the switch lock variable arrives at the boundary of the domain, incurring
thus a switch, as all others variables remain inside the domain. For all (x0, q0, p0, s0) ∈ ∂Ω|P , for
any p ≥ δ one has (using case 2 and noticing that M+u1 = Mu1 and M−u2 = Mu2)

(M+u1)(x0, q0, p0, s0) ≤ u1(x0, q0, p, s0) ≤ u2(x0, q0, p, s0).

Taking the infimum with respect to p, the above expression yields M+u1 ≤ M−u2 in ∂Ω|P . This
suffices to conclude, since that by the sub- and supersolution properties

v = u1 − u2 ≤M+u1 −M−u2.

5.4 Numerical Analysis

5.4.1 Numerical Scheme and Convergence

Equations (5.37)-(5.39) can be solved using a finite differences scheme. This section proposes a
class of discretization schemes and shows its convergence using the Barles-Souganidis [10] framework.

Set mesh sizes ∆x > 0, ∆p > 0, ∆t > 0 and denote the discrete grid point by (xI , pk, sn), where
xI = I∆x, pk = k∆p and sn = n∆t, with I ∈ Zd and k, n integers. The approximation of the value
function is denoted

v(xI , q, pk, sn) = qvnIk

and the penalization functions are denoted φ(xI) = φI , ϕ(xI) = ϕI . Define the following grids:

G# = I∆x×Q×∆p{0, 1, · · · , np} ×∆t{0, 1, · · · , ns},
G#
H = ∆t{0, 1, · · · , ns} × I∆x×Q

and the discrete space gradient at point xI for any general function µ:

D±µ(XI) = D±µI =
(
D±x1µI , · · · , D

±
xd
µI
)
,

where
D±xjµI = ±µIj,± − µI∆x ,

with
Ij,± = (i1, · · · , ij−1, ij ± 1, · · · , id).

Define a numerical Hamiltonian H : G#
H × IRd × IRd → IR destined to be an approximation of

H. We assume that H verifies the following hypothesis:
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(H6) There exists LH1 , LH2 > 0 such that, for all s, x, q ∈ G#
H and A+, A−, B+, B− ∈ IRd,

|H(s, x, q, A+, A−)−H(s, x, q, B+, B−)| ≤ LH1(||A+ −B+||+ ||A− −B−||
||H(s, x, q, A+, A−)|| ≤ LH2(||A+ +A−||).

(H7) The Hamiltonian satisfies the monotonicity condition for all s, x, q ∈ G#
H and almost every

A+, A− ∈ IRd:

∂A+
i
H(s, x, q, A+, A−) ≤ 0, and ∂A−i H(s, x, q, A+, A−) ≥ 0.

(H8) There exists LH3 > 0 such that for all s, x, q ∈ G#
H , s′, x′, q′ ∈ T ×X ×Q and A ∈ IRd,

|H(s, x, q, A,A)−H(s′, x′, q′, A)| ≤ LH3(|s− s′|+ ||x− x′||+ |q − q′|).

Let Φ : Ω→ IR, h = (∆x,∆p,∆t) and set

SΩ
h (x, q, p, s, λ; Φ) = min

(
λ− ϕI ,H(s, x, q,D+Φ(x, q, p, s), D−Φ(x, q, p, s))+

λ− Φ(x, q, p, s)
∆t + λ− Φ(x, q, p−∆p, s+ ∆t)

∆p

)
.

Now, consider the following scheme

Sh(x, q, p, s, λ; Φ) =
{
SΩ
h (x, q, p, s, λ; Φ) if (x, q, p, s) ∈ Ω
λ−minw∈W (x,q),p′≥δ Φ(x, g(w, q), p′, s) if p = 0, (5.50)

along with the following operator

F(x, q, p, s, u,∇u) =
{
u− ϕ(x)

∧
∂su+ ∂pu+H(s, x, q,∇xu) if (x, q, p, s) ∈ Ω

u(x, q, p, s)− (Mu)(x, q, p, s) if p = 0. (5.51)

Proposition 5.6. Let Φ ∈ C∞b (Ω). Under hypothesis (H6−H8) and the CFL condition

∆t

 1
∆p + 1

∆x

∣∣∣∣∣
∣∣∣∣∣
d∑
i=1

∂A+
i
H+ ∂A−i

H
∣∣∣∣∣
∣∣∣∣∣
∞

 ≤ 1 (5.52)

the discretization scheme (5.50) of (5.51) is stable, monotone and consistent.

Moreover, a solution uh of (5.50) converges towards the solution u of (5.51) as h→ 0.

Proof. The proof follows the lines used in the framework of Barles-Souganidis [10]. The goal is to
show that the numerical scheme solutions’ envelopes

u(x′, q′, p′, s′) = lim inf
(x,q,p,s)→(x′,q′,p′,s′)

h→0

uh(x, q, p, s)

u(x′, s′, p′, s′) = lim sup
(x,q,p,s)→(x′,q′,p′,s′)

h→0

uh(x, q, p, s),

are respectively supersolution and subsolution of (5.51). Then, using the comparison principle in
theorem 5.2, one obtains u ≤ u. Since the inverse inequality is immediate (using the definition of
limsup and liminf, one gets u ≡ u = u achieving thus the convergence.

Only the subsolution property of u is presented next, the proof of the supersolution property of
u being very alike.
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Firstly, the proofs shows that (5.50) is stable, monotone and consistent. Observe that S is
proportional to−Φ in the terms outside the Hamiltonian. Since fluxesH are monotone by hypothesis
(H7) (see [65] for details in monotone Hamiltonian fluxes) whenever the CFL condition (5.52) is
satisfied, the monotonicity of S follows. The stability is ensured by the boundedness of Φ and
hypothesis (H6). Finally, hypothesis (H8) and lemma 5.2 are used in a straightforward fashion to
obtain the consistency properties below:

lim sup
(x′,q′,p′,s′)→(x,q,p,s)

h→0

Sh(x′, q′, p′, s′, λ; Φ) ≤ F∗(x, q, p, s,Φ,∇Φ)

lim inf
(x′,q′,p′,s′)→(x,q,p,s)

h→0

Sh(x′, q′, p′, s′, λ; Φ) ≥ F∗(x, q, p, s,Φ,∇Φ)

Now, choose Φ ∈ C∞b (Ω) such that u − Φ has a strict local maximum at (x0, q0, p0, s0) ∈ Ω
(without loss of generality assume (u− Φ)(x0, q0, p0, s0) = 0).

First, suppose p0 > 0. Then there exists a ball centered in (x0, q0, p0, s0) of radius r > 0
such that u(x, q, p, s) ≤ Φ(x, q, p, s), ∀(x, q, p, s) ∈ B((x0, q0, p0, s0), r) ⊂ Ω. Construct sequences
(xε, qε, pε, sε)→ (x0, q0, p0, s0) and hε → 0 as ε→ 0 such that uhε(xε, qε, pε, sε)→ u(x0, q0, p0, s0) and
(xε, qε, pε, sε) is a maximum of uhε − Φ in B((x0, q0, p0, s0), r). Denote ζε = (uhε − Φ)(xε, qε, pε, sε).
(Remark that ζε → 0 as ε→ 0).

Then, uhε ≤ Φ + ζε inside the ball and since S(xε, qε, pε, sε, uhε(xε, qε, pε, sε);uhε) = 0, by the
monotonicity property one obtains

S(xε, qε, pε, sε,Φ(xε, qε, pε, sε) + ζε; Φ + ζε) ≤ 0.

Taking the limit (inf) ε → 0 together with the consistency of the scheme, one obtains the desired
inequality

F∗(x0, q0, p0, s0,Φ,∇Φ) ≤ 0.

Suppose now that p0 = 0. Construct sequences (xε, qε, p0, sε) → (x0, q0, p0, s0) and hε → 0 as
ε→ 0 such that uhε(xε, qε, p0, sε)→ u(x0, q0, p0, s0). Then,

lim inf
xε→x0
qε→q0
sε→s0
hε→0

Sh(xε, qε, p0, sε,Φ(xε, qε, p0, sε),Φ) = lim inf
xε→x0
qε→q0
sε→s0
hε→0

(Φ−MΦ)(xε, qε, p0, sε)

= (Φ− (MΦ)∗)(x0, q0, p0, s0).

Since each uhε is a solution of (5.50), using lemma 5.2 the above expression yields at the point
(x0, q0, p0, s0):

0 = (Φ− (MΦ)∗)(x0, q0, p0, s0)
≥ (Φ− (MΦ)∗)(x0, q0, p0, s0)
≥ (Φ− (M+Φ))(x0, q0, p0, s0)
= F∗(x0, q0, p0, s0,Φ,∇Φ)

achieving the desired inequality.
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5.4.2 Numerical Simulations

For the numerical simulations, the numerical Hamiltonian H is discretized using a monotone
Local Lax-Friedrichs scheme [65] (where the two components of the gradient are explicit):

H
(
t, x, q; a+, a−, b+, b−

)
= H

(
t, x, q; a

+ + a−

2 ,
b+ + b−

2

)
−

ca

(
a+ − a−

2

)
− cb

(
b+ − b−

2

)

where a± = D±i v, b± = D±j v and the constants ca, cb are defined as

ca = sup
t,x,q,r

|∂raH(t, x, q, r)| (5.53)

cb = sup
t,x,q,r

|∂rbH(t, x, q, r)|. (5.54)

Setting u#
h = [ qvnIk, qvnI1±k

, · · · , qvn
Id±k

, qvnIk−1], the equation

Sh(xI , q, pk, sn+1,
qvn+1
Ik ;u#

h ) = 0

allows an explicit expression of vn+1 as a function of past values vn:

qvn+1
Ik =


ϕI
∨ qvnIk −∆t

( qvnIk−
qvnIk−1

∆p +H(tn, xI , q,D− qvnIk, D+ qvnIk)
)

if (I, q, k, n) ∈ Ω#

minw∈W (xI ,q),k′≥δ/∆p
g(w,q)vnIk′ if k = 0.

(5.55)

In order to illustrate the work presented, a simple vehicle model is used in the simulations. This
model allows an analytic evaluation of it’s autonomy and is suitable for an a posteriori verification
of the results.

The switch dynamics is given by

g(w, q) = |q − w|.

The energetic dynamical model is given by f(u, q) = (−ax + qu,−q(ay + u)), where ax, ay > 0 are
constant depletion rates of the battery’s electric energy and the reservoir’s fuel (whenever the RE
is on), respectively. The control domain is taken U = [0, umax].

Considering this dynamics, an exact autonomy of the system can be evaluated analytically.
Given initial conditions (x0, y0) the shortest time to empty the fuel reservoir is given by t∗ =
y0/(ay + umax). The SOC evaluated at this instant is given by x(t∗) = x(0) − t∗(ax − umax). If
x(t∗) ≤ 0, it means the fuel cannot be consumed fast enough before the battery is depleted. This
condition can be expressed in terms of the parameters of the model as x0(ay+umax) ≤ y0(ax−umax).
In this case, the autonomy is given by T 0 = x0/(ax − umax). Otherwise, the autonomy is given by
T 1 = (x0 + umaxt∗)/ax.

Simulations are running fixing ∆p = 0.05 and several ∆x. The time step ∆t is obtained using
(5.52) to ensure the numerical stability. Different instances of x0, y0 are tested, all with a lag of
δ = 1, and the theoretical and evaluated autonomy are compared. For numerical purposes, the
set of initial energies is a ball of radius 2∆x around (x0, y0) and the admissible region is set as
K = [0, 1]2. Remark that (6.13), (6.15) give a natural value L̃K for the numerical boundary outside
set K.
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(x0, y0) ∆x ε Iterations CPU1 running time (s)

(0.5,0.5)

0.06 0.609 98 9.2
0.05 0.090 99 13.3
0.04 0.220 113 24.7
0.03 0.049 128 51.9
0.02 0.278 161 151.5

(0.3,0.8)

0.06 0.754 86 6.6
0.05 0.102 84 8.5
0.04 0.345 98 15.6
0.03 0.041 108 31.5
0.02 0.265 135 94.0

Table 5.1 – Convergence results and running times of an instance using ax = 0.10, ay = 0.15, umax = 0.07.
The table indicates the difference ε = |T ∗−s∗| from the theoretical autonomy as a function of the discretization
step ∆x. Two initial conditions are used. The theoretical autonomy for this instance is T ∗ = 6.5909s for
(x0, y0) = (0.5, 0.5) and T ∗ = 5.5455s for (x0, y0) = (0.3, 0.8).

The simulated instances use ax = 0.10, ay = 0.15, umax = 0.07. Tests are made using two initial
conditions. Table 5.1 groups the error ε = |T ∗ − s∗| between exact autonomy and the autonomy
(6.10) evaluated using the scheme (5.55) and the algorithm running times.

Figures 5.1, 5.2 and 5.3 show the minimum of the value function for all values of p ∈ P# for
q = 0, 1 and the corresponding reachable set of the instance (x0, y0) = (0.3, 0.8) at times s = 2.65,
s = 3.00, s = 3.75 respectively.

Figure 5.1 – Reachable set and value functions at s = 2.65.

From table 5.1 one can observe the convergence of the computed autonomy towards the theo-
retical value. This is a solid indication about the convergence of the numerical scheme towards the
solution of the HJ equation. Even though this convergence is observed, one remarks that the CPU
running time seems to grow in an exponential fashion as ∆x decreases. This behavior is caused by

1Intel Xeon E5504 @ 2× 2.00GHz, 2.99Gb RAM.
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Figure 5.2 – Reachable set and value functions at s = 3.00.

Figure 5.3 – Reachable set and value functions at s = 3.75.
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the conjunction of two main factors: the increase in the total mesh points considered in the scheme
and the corresponding decrease in the time step needed to satisfy the CFL condition (5.52). In one
hand, the increase in the number of mesh points naturally increases the computational overhead
needed to evaluate the value function at each time step. In the other hand, the CFL constraints
the time step ∆t for a given discretization step ∆x. In the instance considered in the numerical
simulations, for step sizes of ∆p = 0.15 and ∆x = ∆y = 0.01, the time step must verify approxima-
tively ∆t ≤ 0.026. This time step requires roughly 300 iterations before reaching an autonomy of
about 8s. With the perceived trend, the total running time is over 1600s. Although this is arguably
still manageable in the simple dynamic system considered, when applied to a more realistic vehicle
model the computation of the value function via the scheme (5.55) becomes prohibitive. Indeed,
a more realistic simulation, even considering a relatively an initial state low on energy, such as
(x0, y0) = (0.2, 0.2), yields time autonomies of over 2400s (≈ 40min). Treating such instance with
a relatively coarser grid with a step size of ∆x = 0.10 would still require a time step of 1s or over
2000 iterations. With the supplementary computational overhead due the complexity of the vehicle
model, the CPU time would be over a few hours, which is judged unreasonable for an application.
This fact motivates the study of an alternative way of computing the value function developed in
the next section.
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SIXTH CHAPTER

REACHABILITY OF HYBRID SYSTEMS:
HYBRID VEHICLE APPLICATION

“In theory there is no difference between theory and practice. In practice there is.”

Albert Einstein

The content of this chapter is an adaptation from the following publications:

• Granato, G. Reachability of Hybrid Systems Using Level-set Methods, Optimization and En-
gineering, submitted, awaiting review.

• Granato G. Range Optimization of Hybrid Vehicles, Proceedings of the International Con-
ference of Engineering Optimization - ENGOPT, 2012, Rio de Janeiro, Brazil, http://www.
engopt.org/paper/297.pdf.
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6.1 Introduction

This section develops the study of the discrete-time dynamical system and the discrete-time
optimal control problem for the reachability analysis of hybrid systems. In Chapter 5 theoretical
aspects of a continuous-time system is studied. We show the the reachable set can be characterized
by means of a level-set approach using the value function associated to the value function of an
optimal control problem. This value function is shown to be the unique solution of a system of quasi-
variational inequalities. Additionally, we show the convergence of a class of numerical schemes that
allow the numerical computation of the value function, therefore enabling us to characterize the
reachable set.

In this section, the focus on the discrete-time modeling of the hybrid system leads to, instead
of a system of quasi-variational inequalities, a discrete-time dynamic programming principle which
can be used to characterize the value function. More precisely, in this approach, the (discrete-time)
reachable set is shown to be the level set of a value function associated to a optimal control problem.
This value function is shown to satisfy a dynamic programming principle. Then, we construct an
algorithm based on this dynamic programming principle to compute the value function. Once the
value function is computed we characterize the reachable set and then use an associated minimum
time function to synthesize a feedback control that controls the system to the desired energy state.

This study is motivated mainly by the hybrid vehicle application. The goal of this work is
twofold. In one hand, given a geographic destination point and an associated route, if the energy
on-board is sufficient to enable the vehicle to reach its destination, we can let the driver choose
what will be the SOC and fuel at the destination point. In the other hand, if the vehicle is on a
route that is too long respectively to the energy available on-board (i.e., not enough SOC – battery
state of charge – nor fuel), one can compute the vehicle range. Since the discrete-time case of the
broader study about the reachability analysis of hybrid systems is mainly motivated by the industrial
application, the next sections are focused on the issues related to hybrid vehicles and the synthesis
of feedback using the reachable set. This section seeks therefore to focus on the implementation of
an algorithm to a vehicle application.

We recall briefly the main aspects of the range extender electric vehicle class of hybrid vehicles.
According to [39], "a hybrid vehicle is a vehicle equipped with at least two energy sources for traction
purposes". In this setting, the following question arises naturally: how much each power source shall
contribute to meet the total power demand of the vehicle? The control policy of this power split
is called power management strategy. In order to achieve such demanded power split between the
energetic subsystems on-board the vehicle, the precise operation of the vehicle components varies
according to the vehicle architecture and specifications. For instance, in the case of a hybrid series
architecture containing an internal combustion engine (ICE) coupled to an alternator connected to
the high-voltage network, the power split can be achieved by controlling the ICE torque and regime.
Indeed, by controlling torque and regime, the total power output of the ICE is obtained, which in
turn imposes the power output from the high-voltage battery. If at least two energy sources are
present in the vehicle, it is clear that the vehicle maximum range becomes conditional to the control
strategy. This paper addresses the issue of synthesizing the optimal power management strategy in
the sense of maximizing the vehicle range.

As mentioned, this study focus on a range extender electric vehicle (REEV). This kind of hybrid
vehicle consists of a primary power source - a high-voltage battery - and a small (powerwise)
dimensioned ICE acting as an additional power source. Additionally, the REEV cannot rely solely
on the ICE’s power to drive the vehicle. In other words, the model considers that the vehicle’s
traction capability is conditioned to the existence of electric energy in the battery. The architecture
is that of a series hybrid electric vehicle [73], which means that the ICE is not mechanically connected
to the transmission. Instead, a generator transforms the mechanical energy produced in the ICE
into electric current that can be directed towards the electric motor or charge the battery. Controls
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available include the turning on and off of the ICE and the power produced by it. The controlled
variables are the state of charge (SOC) of the battery, the remaining fuel on the ICE’s reservoir and
the ICE state on or off. In this setting, a power management strategy is a control sequence that
dictates the state of the ICE - on or off - and if it is on, sets its output power. An important feature
of the REEV model is a time interval δ > 0 imposed between two consecutive decisions times. From
the physical viewpoint, this assumption incorporates the fact that frequent switching of the RE is
undesirable in order to avoid mechanical wear off and acoustic nuisance for the driver.

This section is organized as follows: firstly, it describes the REEV model motivating the study
and states the associated hybrid optimal control problem. Then, the reachable set and the value
function are defined and a dynamic programming principle for the value function is obtained. It fol-
lows that the dynamic programming principle is used to derive an dynamic programming algorithm
to compute the value function thus characterizing the reachable set of the system. Lastly, results
of some numerical simulations evaluating the autonomy both of a REEV toy and realistic model
are presented. We recall that our objective is to synthesize a controller that enables the driver to
choose the SOC and fuel levels, among the possible alternatives, at the end of a given trip.

6.2 Hybrid Vehicle Model

This section discusses briefly (for a complete discussion, see Chapter 1) the model of the power
management system of a REEV that is to be optimized and introduces the notation used throughout
the document. A REEV is a vehicle that combines a primary power source - a HV battery - and
a small dimensioned (powerwise) secondary power source - in our case an ICE. The traction (or
propulsion) of the vehicle is performed by an electric motor connected to the vehicle’s wheels through
a reduction gear. Both energy sources can supply some share of the necessary power to meet the
driver power request. Additionally, since the model considers a range-extender electric vehicle type,
it cannot rely solely on the RE power to drive the vehicle. Thus, the model considers that the
vehicle’s traction capability is conditioned to the existence of some electric energy in the battery.

The ICE state is controlled by a discrete sequence of switching orders. An important feature
of the REEV model is a time lag δ > 0 imposed between two consecutive decisions times. From
the physical viewpoint, this assumption incorporates the fact that frequent switching of the RE is
undesirable in order to avoid mechanical wear off and acoustic nuisance for the driver. This lag has
an order of magnitude of about 120s.

The controlled variables are the state of charge (SOC) of the battery, the remaining fuel on the
ICE reservoir and the ICE state on or off.

This setting considers that the optimal power management strategy is synthesized for a specific
trip. In this direction, we assume that information about the vehicle’s future power demand is
known. In particular, it is assumed that the vehicle future speed, i.e. the speed profile of the
vehicle, as well as the relief of the route followed by the vehicle are known. As a consequence,
the problem can be stated in a deterministic setting. This may seem a very strong assumption.
However, range extender electric vehicles are expected to be equipped with embedded navigation
systems (NAV) that actually have information about expected speeds and topological data. This
information can be exploited in order to construct an expected speed profile with a certain degree
of confidence.

In the following of the paper, index k = 1, · · · , κ shall index a position in the route. Since the
vehicle speed is assumed to be known, on can easily obtain, from a known location k, the time to
attain it. More precisely, denote by dk the distance between points k − 1 and k and σk > 0 the
(constant) vehicle speed between points k − 1 and k. The total time to drive between k − 1 and k
is then simply dk/σk.
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The state vector is composed of the vehicle energy state and the ICE state. The vehicle energy
state is a two-dimensional vector y ∈ X = IR2, where y = (y1, y2) denotes the state of charge of the
battery and the fuel available in the range extender module respectively. Each of these quantities
are the image of the remaining energy in the battery and in the RE respectively. Moreover, because
energy capacities of the battery and the fuel tank are limited (and normalized between 1 – full
reservoir – and 0 – empty reservoir), the set of admissible states is defined as K = [0, 1]2. Remark
that we define the state space as all the plane X = IR2 and introduce a set of admissible states
K. The set K represents the "physically admissible" SOC and fuel levels, considering that they are
normalized capacities. This is a modeling choice that later enables us to deal easily with the state
constraints in the dynamic programming principle (in opposition to imposing "hard" constraints on
the state space like X = [0, 1]2).

The RE state is denoted by q ∈ Q = {0, 1} and indicates whether the RE is off (q = 0) or on
(q = 1).

The control variables are the output power of the ICE and the order to switch the ICE’s state
(on or off). The first is referred to as the continuous control and the latter as the discrete (or switch)
control. The continuous control is applied at all points k = 0, · · · , κ− 1 of the route and is denoted
uk ∈ U(qk).

The discrete control w is a sequence of switching decisions

w = {(w1, s1), · · · , (wN , sN )}, (6.1)

where for all j = 1, · · · , N , si ∈ {1, · · · , κ − 1} and wj ∈ W (qsj ) ⊂ Q. The sequence of switch
controls {wj}Nj=1 (designating the new mode of operation of the ICE) is associated with the sequence
of switching positions {sj}Nj=1 so that each decision wj is exerted at node sj . The set W (q) is a
set value function of the actual discrete state and contains all possible new discrete states. In the
vehicle application, where there are only two discrete modes of operation (on or off), this set is
simply W (1) = {0} and W (0) = {1}. The switching decision is introduced so one is able to stop
the range extender whenever there are large idle periods, thus saving fuel. More precisely, if the
ICE is running and no output power is required, there is still an idle fuel consumption, as energy is
required to keep the engine running to avoid stalling. In the case of extended idle periods, it may
be worth to stop the ICE and pay a fuel overhead to restart the engine whenever needed.

The switch lag condition imposes that two consecutive switch decisions must be separated by a
time interval of δ > 0, i.e.

sj+1∑
i=sj+1

di
σi
≥ δ.

Given a discrete control sequence w and a discrete state qj , the continuous control steers the
state according to

yk−1 = fk(yk, uk−1, qj)

and at isolated points {sj}, the discrete state changes according to

qj−1 = g(qj , wj).

These expressions mean that: given a discrete control sequence w, let qj be a mode of operation
activated at some point sj+1. Then, the dynamic f·(·, ·, qj) operates on the state between points
k = sj+1, · · · , sj and the trajectory of the discrete state is simply qk = qj for k between sj+1
and sj . When point sj is reached, the discrete dynamics undergoes a switch associated with the
switch control wj and changes to qj−1 = g(qj , wj), activating the new mode of operation given by
f·(·, ·, qj−1) . Observe moreover that the process is modeled and described in backward fashion.
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We assume that functions f and g produce bounded increase, i.e., there exists Lf ≥ 0 such that,
for all k = 0, · · · , κ, y ∈ X, q ∈ Q and u ∈ U(q), ‖y− fk(y, u, q)‖ ≤ Lf and there exists Lg ≥ 0 such
that, for all q ∈ Q and w ∈W (q), ‖q − g(w, q)‖ ≤ Lg.

At this point, we introduce the notion of hybrid control and admissible hybrid control. The
hybrid control is introduced for notational convenience. It is a control regrouping both the range
extender power u and the switch decision w. More in detail, given a discrete control sequence
w = {(w1, s1), · · · , (wN , sN )} and a continuous control sequence u = (u1, · · · , uκ−1), the hybrid
control is denoted by a = (u,w) and groups the continuous and discrete controls. Denote by A the
set of all hybrid controls. As mentioned, the hybrid control a must contain controls (u,w) such
that uk ∈ U(qk) and wj ∈ W (qsj ) for j = 1, · · · , N . However, the admissibility of each discrete
and continuous control does not imply the admissibility of the hybrid control without additional
structural conditions. By structural conditions we refer to the fact that the decision nodes sj must
be increasing with j and that the associated decision times must respect the lag condition. The
next definition introduces the necessary structure for an admissible hybrid control.

Definition 6.1. A hybrid control a = (u,w) is said to be admissible if it has increasing decision
nodes

s1 ≤ s2 ≤ · · · ≤ sN , (6.2)

and satisfies the decision lag condition (where δ > 0)
sj+1∑
i=sj+1

di
σi
≥ δ. (6.3)

Denote by Aadm ⊂ A the set of admissible hybrid controls.

The structure imposed on the admissible hybrid controls a ∈ Aadm allows the system to engen-
der admissible trajectories. An admissible trajectory can be regarded as a "physically" admissible
trajectory. Such trajectories correspond to the evolution of the SOC and fuel levels whenever the
system is steered by an admissible control sequence. Fix κ > 0. Given a (not necessarily admissible)
hybrid control a ∈ A and given final conditions x ∈ X and q ∈ Q, the hybrid dynamical system is
written as

yk−1 = fk(yk, uk−1, qj), k = κ, · · · , 1, yκ = x (6.4)
qj−1 = g(qj , wj), j = 1, · · · , N, qN = q. (6.5)

Denote the solutions of (6.4)-(6.5) with final conditions x, q by yx,q;κ and qx,q;κ. As pointed out, not
all discrete control sequences are admissible. Only admissible control sequences engender admissible
trajectories. Thus, given κ > 0, x ∈ X and q ∈ Q, the admissible trajectory set Y x,q

(0,κ) is defined as

Y x,q
(0,κ) =

{
yx,q;κ | a ∈ Aadm and yx,q;κ solution of (6.4)-(6.5)

}
(6.6)

Observe that the admissible trajectories set does not include the discrete trajectory.

The hybrid control admissibility condition formulated in conditions (6.2)-(6.3) is not well
adapted to a dynamic programming principle formulation, needed later on. In order to include
the admissibility condition in the optimal control problem in a more suitable form, we introduce
a new state variable π. Recall that the decision lag condition implies that new switch orders are
not available until a time δ after the latest switch. The new variable is constructed such that, at
a given position k, the value πk measures the time since the last switch. The idea is to translate
the structural conditions (6.2)-(6.3) into conditions satisfied by this new variable and treat them
as state constraints. Thus, if πk < δ all switch decisions are blocked and if, conversely, πk ≥ δ the
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system is free to switch. For that reason, this variable can be seen as a switch lock. Now, given
κ > 0, k = 1, · · · , κ and a discrete control sequence w, the switch lock dynamics is defined by

πwk = πk =

 δ +
∑k
i=1

di
σi

if k < s1

inf
sj≤k

∑k
i=sj

di
σi
− dsj

σsj
if k ≥ s1

(6.7)

Indeed, once the discrete control is given, the trajectory πk can be determined. Proceeding with the
idea of adapting the admissibility condition we wish to consider πκ = p, with p ∈ P := (0, T ], where
T is the total travel time, the final value of the switch lock variable trajectory and impose the delay
condition under the form πsj−1 ≥ δ for all sj (notice that πsj = 0 by construction). These conditions
suffice to define an admissible discrete control set. So, while optimizing with respect to admissible
functions, one needs only look within the set of hybrid controls that engender a trajectory πk with
an appropriate structure. In other words, given κ > 0, x ∈ X, q ∈ Q and p ∈ P , define a admissible
trajectory set Sx,q,p(0,κ) as

Sx,q,p(0,κ) = {yx,q,p;κ | a = (u, {wj , sj}Nj=1) ∈ A, yx,q,p;κ solution of (6.4)-(6.5),
πx,q,p;κ solution of (6.7), πκ = p, πsj−1 ≥ δ, j = 1, · · · , N}. (6.8)

Following the above definitions, sets (6.6) and (6.8) satisfy

Y x,q
(0,κ) =

⋃
p∈P

Sx,q,p(0,κ)

In the following of the paper, whenever we wish to call attention to the fact that the fi-
nal conditions of (6.4), (6.5) and (6.7) are fixed, we denote their solutions respectively by
yx,q,p;κ, qx,q,p;κ, πx,q,p;κ and their values at some point k by (yx,q,p;κ)k, (qx,q,p;κ)k, (πx,q,p;κ)k.

6.3 Reachability Problem and Autonomy

Let X0 ⊂ X be the set of allowed initial states, i.e. the set of states from which the system
(6.4)-(6.5) is allowed to start. Define the reachable set as the set of all points attainable by y after
driving until point k starting within the set of allowed initial states X0 to be

RX
0

k =
{
x | ∃(q, p) ∈ Q× P, yx,q,p;k ∈ Sx,q,p(0,k) ,

(yx,q,p;k)0 ∈ X0, and (yx,q,p;k)θ ∈ K, θ = 0, · · · , k
}

(6.9)

In other words, the reachable set RX0
k contains the values of the final energy state (yx,q;k)k,

regardless of q, p at point k, for all admissible trajectories – i.e., trajectories obtained through an
admissible hybrid control – starting within the set of possible initial states X0 that never leave set
K.

In particular, the information contained in (6.9) allows one to determine the first point where
the reachable set is empty. More precisely, given X0 ⊂ X, define k∗ ≥ 0 to be

k∗ = inf{k ≥ 0 | RX0
k ⊂ ∅}. (6.10)

The position (6.10) is identified as the autonomy of the hybrid system (6.4)-(6.5). Indeed, one can
readily see that if no more admissible energy states are attainable after k∗, any admissible trajectory
must leave set K of admissible values beyond this time. Therefore, k∗ is interpreted as the last
point in the path in which there is some usable energy on-board the vehicle.
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In the case of range extender electric vehicles, the vehicle stops operating in nominal mode when
the battery is depleted, even if there is some fuel left in the tank. If the driving conditions allows all
the fuel to be consumed, then the last reachable energy state of the vehicle is the state (0, 0), where
there is no charge in the battery and no fuel in the tank. However, this is by all means the sole
last reachable energetic state in all situations. Indeed, because the range extender is power-wise
small dimensioned, it may be the case that the engine cannot consume energy quickly enough to
empty the fuel tank. For instance, if the vehicle is driving through a steep slope, the battery may
be depleted before all the fuel is consumed resulting thus in a final state (0, y2), y2 > 0.

The reachable set RX0
k is associated with the minimum time function T : X → IR+ ∪ {∞},

defined as

T (x) = inf{k ≥ 0 | x ∈ RX0
k } (6.11)

The minimum time function associated to a point x in the state space is the minimum time
that any admissible trajectory needs to reach x departing from set X0 while respecting the state
constraints K. Observing the definition of autonomy (6.10), if the initial set X0 consists of only
one point, the autonomy k∗ is linked to the minimum time function by the relation

k∗ = sup{T (x) <∞ | x ∈ X}. (6.12)

In other words, the autonomy is the greatest (finite) minimum time of the system. This is not the
case if X0 contains more than one point.

6.4 Optimal Control Problem and Dynamic Programming Principle

In order to characterize the reachable set RX0
k this paper follows the classic level-set approach

[64]. The idea is to describe (6.9) as the negative region of a function v. It is well known that the
function v can be defined as the value function of some optimal control problem. In the case of
system (6.4)-(6.5), v happens to be the value function of a (discrete time) hybrid optimal control
problem.

Consider a Lipschitz continuous function φ̃ : X → IR such that

φ̃(x) ≤ 0⇔ x ∈ X0.

Such a function always exists – for instance, the signed distance function dX0 from the set X0. For
LK > 0, one can construct a bounded function φ : X → IR as

φ(x) = max(min(φ̃(x), LK),−LK). (6.13)

For a given point k ≥ 0 and hybrid state vector (x, q, p) ∈ X ×Q×P , define the value function
to be

v0
k(x, q, p) = inf

Sx,q,p(0,k)

{φ((yx,q,p;k)0) | (yx,q,p;k)θ ∈ K, ∀θ ∈ {0, · · · , k}} . (6.14)

Observe that (6.9) works as a level-set to the negative part of (6.14). Indeed, since (6.14) contains
only admissible trajectories that remain in K, by (6.13) implies that v0

k(x, q, p) is negative if and
only if (yx,q,p;k)0 is inside X0, which in turn implies that x ∈ RX0

k .

Now we proceed to describe the state constraints in the similar manner. The set X\K of state
constraints is treated as an obstacle in the state space, i.e., the state trajectory cannot pass through
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the obstacle set K. We recall that K = [0, 1]2 is the normalized SOC and fuel quantities. More
precisely, define a Lipschitz continuous function ϕ̃ : X → IR to be

ϕ̃(x) ≤ 0⇔ x ∈ K,

and
ϕ(x) = max(min(ϕ̃(x), LK),−LK). (6.15)

Then, for a given k ≥ 0 and (x, q, p) ∈ X ×Q× P , define a total penalization function to be

Jk(x, q, p; y) =
(
φ((yx,q,p;k)0)

∨
max

θ∈{0,··· ,k}
ϕ((yx,q,p;k)θ)

)

and then, the optimal value :

vk(x, q, p) = inf
y∈Sx,q,p(0,k)

Jk(x, q, p; y). (6.16)

Here and in the rest of the paper, we denote a ∨ b := max(a, b).

Observe that (6.14) and (6.16) are bounded thanks to the constructions (6.13) and (6.15) respec-
tively. The idea in place is that one needs only to look at the sign of v0 or v to obtain information
about the reachable set. Therefore, the bound LK removes the necessity of dealing with an un-
bounded value function besides providing a convenient value for numerical computations. In order
to ensure that constructions (6.13) and (6.15) do not interfere with the original problem’s formula-
tion (in the sense that using φ, ϕ or φ̃, ϕ̃ should yield the same results), given k,X0, it suffices to
take LK > supx∈X0 ‖x‖+ kLf , where Lf is the bound on |yk+1 − yk| (so that the dynamics f will
not allow the norm of the state to reach the value LK).

The next proposition certifies that (6.9) is indeed a level-set of (6.14) and (6.16).

Proposition 6.1. Let X0 ⊂ X. Define functions φ et ϕ respectively by (6.15) and (6.13). Define
value functions v0 et v respectively by (6.16) and (6.14). Then, for k > 0, the reachable set (6.9) is
given by

RX0
k = {x | ∃(q, p) ∈ Q× P, vk(x, q, p) ≤ 0} =

{
x | ∃(q, p) ∈ Q× P, v0

k(x, q, p) ≤ 0
}
. (6.17)

Proposition (6.1) sets the equivalence between (6.9) and the negative regions of (6.14) and
(6.16). In particular, it states that it suffices to computes v or v0 in order to obtain information
about RX0 . In this sense, this paper focuses on (6.16), which is associated with an optimal control
problem with no state constraints.

The value function can also be used to characterize the minimum time function. In addition to
the minimum function, the next proposition introduces the extended minimum time function, which
takes into account all state variables x, q, p. This extended function is needed later to the controller
synthesis.

Proposition 6.2. The minimum time function T : X → IR+ ∪ {∞} is given by

T (x) = inf {k | ∃(q, p) ∈ Q× P, vk(x, q, p) ≤ 0} . (6.18)

The extended minimum time function T ′ : X ×Q× P → IR+ ∪ {∞} is given by

T ′(x, q, p) = inf {k | vk(x, q, p) ≤ 0} . (6.19)

Observe that equation (6.18) is an immediate consequence of the level set identities in proposition
6.1. Relation (6.19) characterizing the extended minimum time function using the value function is
derived in a similar fashion.
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Before stating a dynamic programming principle satisfied by (6.16), we introduce some prelim-
inary notations.

Given κ > 0, set K = {1, · · · , κ}, Ω = X ×Q× P × K and denote its closure by Ω. (We recall
that, concerning the vehicle application, X = IR2, Q = {0, 1}, P = (0, T ], where T is taken to be
the total travel time). As such, (6.16) is defined as

v : Ω → IR
(x, q, p, k) 7→ vk(x, q, p)

Define
V(Ω) := {v | v : Ω→ IR, v bounded }.

Now, define the non-local switch operator M : V(Ω) → V(Ω) to be (adapted from the ideas in
[90])

(Mvk)(x, q, p) = inf
w∈W (q)
p′≥δ

vk(x, g(w, q), p′)

The action of this operator on the value function represents a switch that respects the delay
constraint. Thus, they only make sense when p = 0.

The next proposition states the dynamic programming principle verified by (6.16).

Proposition 6.3. The value function (6.16) satisfies the following dynamic programming princi-
ple:

(i) For k=0,
v0(x, q, p) = φ(x)

∨
ϕ(x), ∀(x, q, p) ∈ X ×Q× P, (6.20)

(ii) For p = 0,
vk(x, q, 0) = (Mvk)(x, q, 0), ∀(x, q, k) ∈ X ×Q×K, (6.21)

(iii) Otherwise,
vk(x, q, p) = inf

uk−1

{
vk−1

(
fk(x, uk−1, q), q, p−

dk
σk

)∨
ϕ(x)

}
. (6.22)

Proof. The dynamic programming principle is composed of three parts.

(i): Equality (6.20) is obtained directly from definition (6.16).

(ii): ” ≤ ”. Consider hybrid controls a = (u, {wj , si}Ni=1) and a = (u, {wj , sj}N−1
j=1 ) such that

u = u, wj = wj , sj = sj for j = 1, · · · , N−1 and wN = w′, sN = k. For short, denote by y ≡ yx,q,0;k
the trajectory associated with control a and y ≡ yx,g(q,w′),p′;k the trajectory associated with control
a. Then, it follows that

vk(x, q, 0) ≤ Jk(x, q, 0; y)
= Jk(x, g(q, w′), p′, y).

In order to the switch (w′, k) be admissible, p′ ≥ δ. Since a is arbitrary, one can choose it such that

vk(x, q, 0) ≤ inf
y∈Sx,g(q,w

′),p′
(0,k)

Jk(x, g(q, w′), p′, y) + ε1

= vk(x, g(q, w′), p′) + ε1,
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where ε1 > 0. Now, choose the last switch w′ and p′ such that

vk(x, q, 0) ≤ inf
w′∈W (q)
p′≥δ

vk(x, g(q, w′), p′) + ε1

= (Mvk)(x, g(q, w′), p′) + ε1.

” ≥ ”. Choosing an ε2-optimal controller aε and denoting by yε the associated trajectory, one
has

vk(x, q, 0) + ε2 ≥ Jk(x, q, 0; yε).

Proceeding with the same hybrid control constructions as in the “≤” case, one obtains

Jk(x, q, 0; yε) = Jk(x, g(w′, q), p′, s; yε)
≥ vk(x, g(w′, q), p′)
≥ inf

w′∈W (q)
p′≥δ

vk(x, g(w′, q), p′)

= (Mvk)(x, q, 0).

Relation (6.21) is then obtained by the arbitrariness of both ε1, ε2.

(iii): Consider a hybrid control a = (u,w) where u = (u0, · · · , uk−1). From (6.16) one obtains

vk(x, q, p) = inf
a∈A

φ((yx,q,p;k)0)
∨

max
θ∈{0,··· ,k}

ϕ((yx,q,p;k)θ)

= inf
a∈A

max
((

φ((yx,q,p;k)0)
∨

max
θ∈{0,··· ,k−1}

ϕ((yx,q,p;k)θ)
)
, ϕ((yx,q,p;k)k)

)

= inf
a∈A

max
((

φ((yx,q,p;k)0)
∨

max
θ∈{0,··· ,k−1}

ϕ((yx,q,p;k)θ)
)
, ϕ(x)

)
. (6.23)

The next relations allows one to rewrite the trajectory yx,q,p;k in terms of its value at point k − 1
instead of k:

(yx,q,p;k)0 = (y(yx,q,p;k)k−1,q,p−dk/σk;k−1)0 (6.24)
max

θ∈{0,··· ,k−1}
ϕ((yx,q,p;k)θ) = max

θ∈{0,··· ,k−1}
ϕ((y(yx,q,p;k)k−1,q,p−dk/σk;k−1)θ) (6.25)

Now, construct hybrid controls a0 = ((u0, · · · , uk−2), w) and a1 = ((uk−1), w). Since πk = p > 0
the discrete control sequence w does not switch at the point k. (We recall that, following (6.7),
a switch at point s is characterized by πs = 0). Therefore, hybrid control a0 corresponds to the
hybrid control sequence a up to point k − 1 and a1 corresponds to the hybrid control at point k,
namely, uk−1.

The above conclusion together with relations (6.24), (6.25) allow (6.23) to be rewritten as

vk(x, q, p) = inf
uk−1

{
vk−1

(
(yx,q,p;k)k−1, q, p−

dk
σk

)∨
ϕ(x)

}
. (6.26)

Finally, equation (6.22) is obtained by plugging (6.4) in (6.26).

The dynamic programming principle allows one to compute the value function and consequently
characterize the reachable set RX0

k . Once the value function is obtained, one can synthesize a
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controller using the minimum time function T . The computation of the value function and the
subsequent controller synthesis are obtained by a dynamic programming algorithm. The algorithm
is the projection of the dynamic programming principle (cf. proposition 6.3) over a grid X ×Q×P
of the discretized state space.

Algorithm 6.1 (Dynamic Programming Algorithm). Step 1: Compute value function.

1.1 Given route information σj , dj, j = 1, · · · , κ (recommended speeds and link lengths respec-
tively), set k = 1 and construct a discretization of the state space X ,P ;

1.2 For all (x, q, p) ∈ X ×Q× P set vk(x, q, p) = φ(x)
∨
ϕ(x);

1.3 For k = 2, · · · , κ, for all (x, q, p) ∈ X ×Q× P compute

vk(x, q, p) = (Mvk)(x, q, p), if p = 0,

vk(x, q, p) = inf
uk−1

{
v#
k−1

(
fk(x, uk−1, q), q, p−

dk
σk

)∨
ϕ#(x)

}
otherwise .

Once having evaluated v in X ×Q× P at all times the controller can be synthesized as follows:

Step 2: Control synthesis.

2.1 Set k ∈ {1, · · · , κ}, and select reachable final state (xk, qk, pk) = (x′, q′, p′) such that
vk(x′, q′, p′) ≤ 0;

2.2 Compute switch control: If pk = 0 set w∗k = 1 and update

qk ← g(wk, qk),
pk ← arg min

p≥δ
T ′#(xk, qk, p).

Otherwise, set w∗k = 0 and update

pk ← pk −
dk
σk

∧
0.

Compute power control:

u∗k = arg min
u
T ′#(fk(xk, u, qk), qk, pk)

2.3 Update state to xk ← fk(xk, u∗k, qk), set k ← k−1. If k = 1 terminate the algorithm, otherwise
go to 2.2.

Here, v#
k−1, ϕ

#, T ′# denote the interpolate of the value function, obstacle function and extended
minimum time function at a point in the grid X ×Q×P of the discretized state space, respectively.
In step 2.1, one chooses k to be the node located at the destination if it is reachable. If this is not
the case, k may be set to k∗ in order to obtain the controller that maximizes the vehicle range.

Algorithm 6.1 outputs a controller (u∗, w∗) that controls the range extender power output and
its mode of operation to reach the destination point after a time κ such that the final state is
(x′, q′, p′) departing from a state in X0. Additionally, the trajectory remains inside set K, which
in our case amounts to respect the fuel and SOC capacities. One can observe that the extended
minimum time function plays a major role in the synthesis of the controller. Indeed, the value
function numerical values have no physical meaning since the obstacle and target functions φ and ϕ
are arbitrary. Only the sign of the value function is needed to determine the reachable set. Instead,
the physical information is encoded in the minimum time function. In the next section, we present
numerical simulations illustrating algorithm (6.1).
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6.5 Numerical Simulations

Proposition 6.3 provides the expressions that allow the computation through a dynamic pro-
gramming algorithm. Once the value function obtained, one can use (6.17) to characterize the
reachable set and (6.10) to obtain the autonomy of the system.

First, a simple vehicle model is used in the simulations. In addition, a constant vehicle speed
is assumed during this first simulation phase. This model allows an analytic evaluation of the
autonomy and is suitable for an a posteriori verification of the results. After the algorithm is tested
using this simple configuration, we introduce a realistic vehicle model and a realistic speed profile.

In this simple setting, we assume that the vehicle follows a constant speed of σ ≡ 1m/s and the
distance between any two points k−1 and k is dk = 1m. We consider that X = IR2 and Q = {0, 1}.
The switch dynamics are given simply by

g(w, q) = w,

ensuring that w imposes the new mode of operation at every switching time.

The continuous state dynamic models a simple REEV charge behavior. The evolution of the
energetic state (x, y) ∈ IR2 – respectively, the battery SOC and the range extender fuel – is given
by

f(u, q) =
(
−ax + qu

(−ay − u)q

)
, (6.27)

where ax, ay > 0 are constant depletion rates of the battery electric energy and the reservoir fuel
(whenever the RE is on), respectively. The coefficient ax models a non-negative power requirement
throughout the driving cycle and therefore, a non-negative SOC consumption. However, the net
SOC variation can be made zero or even positive (i.e., charge the battery) by the action of the
output power of the range extender u. To do so, the range extender must be running and fuel
must be consumed. The factor ay represents the fuel consumed to generate the necessary power
to counter the inertia of moving parts of the range extender while u is the effective share of power
transfered to the electric motor. In order to simplify the analysis we consider the conversion factors
from units of power to units of (normalized) fuel mass and percentage of battery SOC to be unitary.

The engine maximum power is denoted by umax and the minimum power is set to be 0.

We start by assuming that the vehicle has enough available energy to reach its final geographic
destination. Thus, one application of this study is to compute the reachable set at the destination
and by proceeding as such, to enable the driver to chose among any SOC and fuel level at the
destination. After the driver chooses a SOC and fuel level among the possible choices, the algorithm
synthesizes a controller that will drive the range extender so to reach the desired energetic state.

Considering dynamics (6.27), an exact autonomy of the system can be evaluated analytically.
Since there are no non-linearities in the model, an optimal strategy to reach the furthest point is
to empty completely the fuel as soon as possible, thus obtaining the maximum amount of energy
available. Given initial conditions (x0, y0) the shortest time to empty the fuel reservoir is given by

t∗ = y0
ay + umax

.

The SOC evaluated at this instant is given by x(t∗) = x(0)− t∗(ax − umax). If x(t∗) ≤ 0, it means
the fuel cannot be consumed fast enough before the battery is depleted. This condition can be
expressed in terms of the parameters of the model as x0(ay + umax) ≤ y0(ax − umax). In this case,
the autonomy is given by

T 0 = x0
ax − umax

. (6.28)
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Autonomy (6.28) is the time needed to spend all the energy on board, using the range extender at
full power.

In the other hand, if x(t∗) > 0, all the fuel in the range extender can be consumed and there is
still some time until the battery is emptied. In this case, the autonomy of the system given by

T 1 = x0 + umaxt∗

ax
. (6.29)
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Figure 6.1 – Figure showing the trajectory of the energy state from a valid initial state until the last reachable
point. The plot on the left groups the contour levels of the minimum time function, the obstacle and initial
sets. On the right, the figure displays the range extender power control u and the switch sequence w controlling
the ICE state. The synthesis is obtained using step sizes of ∆x = 0.0245,∆p = 0.4211,∆t = 0.4.

Figure 6.1 illustrates controllers synthesized using algorithm 6.1 for two initial conditions. They
present the contour plots of the minimum time function over the reachable states. One can readily
see that the reachable set, and in particular, the trajectory remains inside the authorized region of
the state space K = [0, 1]2. Also, the controllers respect the delay condition δ = 1 between two
consecutive switches. The initial set is taken to be a ball around (x0, y0) in each case for numerical
reasons. Indeed, when considering only one point, the interpolation procedure for the value function,
obstacle function and extended minimum function becomes a delicate matter.
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Figure 6.2 – Figure illustrating the differences in the controllers when using a constant and linear interpolation
of v#

k−1, ϕ
#, T ′# in algorithm 6.1
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(x0, y0) ∆x ε CPU1 running time(s)

(0.5,0.5)

0.05 3.291 2.48
0.04 1.154 2.89
0.03 0.218 4.21
0.02 0.081 8.55
0.01 0.054 19.01

(0.3,0.8)

0.05 1.536 1.91
0.04 0.600 2.36
0.03 0.336 3.34
0.02 0.072 6.95
0.01 0.191 16.75

Table 6.1 – Convergence results and running times. Fixed ∆t = 0.4 and ∆p = 0.5. Instance considering
ax = 0.10, ay = 0.15, umax = 0.07

Table 6.1 presents the error between the theoretical and computed autonomy as well as the CPU
time required for two initial conditions in the instance using ax = 0.10, ay = 0.15, umax = 0.07
and δ = 1. One can observe the convergence of the algorithm towards the theoretical value as ∆x
approaches 0. A main advantage of this algorithm is that the convergence is observed even holding
the time step ∆t fixed. Empirically, a negligible sensibility with respect to ∆p is observed.

The interpolation method of functions v#
k−1, ϕ

#, T ′# plays a role in the synthesis of the controller.
Figure 6.2 presents two interpolation methods used in the numerical simulations, namely, a constant
and a linear interpolation. The CPU time required for the controller synthesis is of 21.34s when
using a constant interpolation and of 24.89s when using linear interpolation. These interpolation
methods ensure that the monotonicity of the functions are preserved (i.e., their suprema and infima
points). The constant interpolation is less precise than its linear counterpart. However, when using
a linear interpolation method, we observe that for smaller grid sizes ∆x a dissipative effect on
the propagation of the reachable set appears. Figure 6.3 illustrates this effect. We remark that
the results illustrated in figure 6.1 are obtained using a constant interpolation method. However,
the gain in precision obtained using the linear interpolation is judged to outweigh the larger CPU
time and thus, is the method select to be used in the controller synthesis for the vehicle model.
Nevertheless, one must keep in mind that the dissipation observed has to be taken into account
when creating the discretization grid of the state space.

These remarks about the behavior of the algorithm allow us to proceed to the study of the
reachable set in the realistic vehicle model. The procedure for implementing the simulations is as
follows. We consider a driving profile consisting of κ > 0 nodes and κ − 1 links. At each node
k, entry to the link k there is an associated link speed σk and the length of the link dk. Figure
6.4 shows the speed profile σk and the length of the some links dk. This cycle is a 19.6km cycle
obtained from the recommended speed profile of a navigation system for a test track. Once σk, dk
are known, one can fix the time steps ∆tk used in the algorithm. Notice that the time steps depend
on the link, the problem being non-autonomous in this case.

We proceed to the computation of the autonomy using a realistic vehicle model. Table 6.2
summarizes the main results. Figure 6.5 regroups the minimum time function, the synthesized
controller that allows the vehicle to reach its maximum range and the corresponding evolution of
the SOC and fuel. The simulations consider two initial conditions, namely, (0.3, 0.3) and (0.6, 0.4).
The CPU time required is, respectively, of 921s and 1658s. The computed autonomy is respectively
of T ∗(0.3,0.3) = 3195s and T ∗(0.6,0.4) = 5400s. This is equivalent to a range of Rangemax

(0.3,0.3) = 45.126km
and Rangemax

(0.6,0.4) = 78.405km. The autonomies computed in both cases can be compared to the
autonomy of the vehicle under a purely electric utilization. In the first case, the utilization of

1Intel Xeon E5504 @ 2× 2.00GHz, 2.99Gb RAM.
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Figure 6.4 – Speed profile used in the simulations of vehicle model. The speed is extracted from the rec-
ommended speed profile of a navigation system of a 19.6km driving cycle. The dashed lines indicate the
discretization points of the route on which the control decision is taken. Each red dot (and the corresponding
dashed line) indicate the entry nodes of each link.

the range extender, when operated following the controller synthesized by algorithm 6.1, roughly
doubles the range of the vehicle (a 104.7% range increase). When considering the initial condition
with a SOC at 60% and fuel at 40%, the range extender increases the vehicle range by over 60%.
The increase in range relatively to the purely electric utilization due the optimal utilization of the
range extender (in the sense that the maximum range is reached) depends on the relative levels
of initial SOC and fuel. We also consider the total operating financial cost (given in euros in this
study) of the range extender. This cost is based on an estimated η = 1.5 e/l of fuel. The range
extender operating cost is then normalized with respect to 100km to yield a more meaningful result.
Denoting the reservoir capacity by y, the operating cost is calculated as

Op. cost = 100ηy
(

y0
Max range− EV range

)
. (6.30)

We stress that we take into consideration in the cost of the range extender operation only the
additional distance due the range extender. Therefore, the values of operating cost should be read
as euros per 100km of range extender utilization instead of 100km of driving distance. In our model
the reservoir has a total capacity of y = 6l. From table 6.2, one can observe that the total cost of
operation is stable with respect to the two initial conditions considered.

In addition to the vehicle range optimization, the algorithm also allows the driver to choose a final
SOC/fuel repartition among the reachable states. More precisely, as the driver enters his/her final
destination in the navigation system and the navigation system proposes a route to the destination
point, the first step of algorithm 6.1 evaluates the reachable set at the destination. The reachable set
is then presented to the driver where the selection of a desired final energy distribution is possible.
The algorithm then synthesizes the controller based on the driver choice. Finally, the range extender
is operated accordingly, thus reaching the desired final state. This versatile application is illustrated
in Figure 6.6. The figure represents 3 different control strategies, each of which steers the vehicle
energy state to one of the preselected final energy distributions. Departing from state (0.6, 0.4),
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Figure 6.5 – Figure showing the trajectory of the energy state from an valid initial state until the last reachable
point. The plot on the left groups the contour levels of the minimum time function, the obstacle and initial
sets. On the right, the figure displays the range extender power control u and the switch sequence w controlling
the ICE state. The synthesis is obtained using step sizes of ∆x = 0.0308. We consider 30 grid points in the
p dimension in both cases.
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Initial SOC, fuel (0.3, 0.3) (0.6, 0.4)
Max range 45.126 km 78.405 km
EV range 22.045 km 48.209 km
Relative range increase 104.70% 62.64%

Range extender op. cost 11.70 e/100km 11.92 e/100km

Table 6.2 – Results for the autonomy of the range extender electric vehicle. The table presents the maximum
range of the vehicle when equipped with a range extender (Max range) and the range of the same vehicle when
operating in a purely electric mode (EV range). This allows us to evaluate the relative range increase due the
utilization of the range extender, operated following the controller synthesized by algorithm 6.1. The financial
cost of operation of the range extender is estimated, based on a price of 1.5 e/l.

the selected final states represents three classes of choices: a high final SOC/low final fuel selection
representing a privileged range extender utilization; a low final SOC/high final fuel state representing
an economic/ecologic range extender operation and a balanced final state. In the right side of Figure
6.6, the control strategy that steers the energy state to the driver selection is shown. Notice that
the final states selection does not correspond to the same final point, as the time to reach each of
the final states is different.

One difficulty of the numerical implementation of the algorithm relates to the step size ∆p
(and more generally to the curse of dimensionality). The domain of p ∈ [0, P ] must include the
possibility of a strategy that never switches. This can be the case only if P is greater than the vehicle
autonomy. More precisely, the switch lock variable may be seen as a countdown time towards a
switch. Denoting T ∗ the autonomy of the vehicle, if P < T ∗, the longest one can wait before
switching is P . This means that for an initial value of p = P , the ICE is obliged to switch after
a time P , which occurs before the end of the trip. Therefore, if P < T ∗, a strategy that never
switches can never be synthesized. As any realistic application must make room for such a strategy,
the domain of the switch lock variable must be P ≥ T ∗. That being said, the typical expected
autonomy of a vehicle with 30% of SOC and fuel at a mean speed of 50km/h is about 60km which
yield of a time 1.2 hours. The lag time is of δ = 120s. A step size of 120s for an autonomy of
1.2 hours yields 70 grid points in the p dimension. Together with a energy state discretized with
∆x = ∆y = 0.2 (or 50 grid points) and 70 time steps (about one each minute), the total number
of points in the state space is 50 × 50 × 70 × 70 × 2 = 24.5 × 106 points. Using double precision
to store each value, the storage of the value function only takes about 200Mb. Ergo, even for
this conservative instance, 70 grid points in the p dimension reveals itself prohibitively expensive
in terms of physical memory required. As a consequence, in order to reach a more manageable
problem size, one has to accept a compromise between the versatility of strategies and the quality
of the solutions. Figure 6.2 shows the behavior of the reachable set when a zero-switch strategy is
not accepted. Notice that after approximatively 20min (1200s, near the point (0.4, 0.4)) there is no
strategy that allows one to save fuel by keeping the range extender off. This strategy is admissible,
but the algorithm cannot take it into account due the above remarks.

6.6 Discussion

In this study we present an algorithm to determine the autonomy of a hybrid vehicle. The
algorithm uses information about the driving profile of the vehicle, obtained typically through a
navigation system. Once the destination is fixed and if there is not enough energy on-board the
vehicle to reach the destination point, the algorithms computes the longest driving distance and
synthesize the associated control sequence of the controllable power source. Otherwise, if the final
destination is within reach, given the total available energy on-board, the algorithm enables the
driver to choose the final energy distribution between the energy sources among the set of possible
energy distributions. In our application, we focus on the range extender electric vehicle-class of
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Figure 6.6 – Figure illustrating examples of trajectories where one selects the final energy distribution of the
vehicle. The initial energy distribution of the vehicle considered is (around) the state (x0, y0) = (0.60, 0.40).
The final states chosen are (0.70, 0.10), (0.07, 0.20) and (0.30, 0.25), corresponding respectively to trajectories
A,B,C. They represent, respectively, points with high SOC/low fuel, low SOC/high fuel and a balanced final
distribution, relatively to the initial state.

hybrid vehicles. Our model considers an internal combustion engine as a range extender and a high
voltage DC battery as main energy source. The dynamic evolution of the state is considered to be
a discrete-time evolution.

The algorithm computes the reachable set, set of reachable states, given a final time and initial
state, via a level-set approach. The reachable set is characterized as the negative region of a value
function associated to an optimal control problem. To compute the value function, we formulate
an optimal control problem with obstacle and we state a dynamic programming principle verified
by the optimal control problem. Then, the value function can be computed using a (deterministic)
dynamic programming principle.

Numerical simulations of this procedure are performed first using a hybrid vehicle toy model and
then using a realistic range extender electric vehicle model. The results shows that, depending on the
initial conditions, operating the range extender as described in this paper may yield a 100% increase
in the vehicle range, with respect to a purely electric vehicle. Moreover, numeric implementation
aspects are discussed. Finally, controllers that operate the range extender to reach a driver-chosen
final SOC/fuel distribution are presented.
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7.1 Introduction

The core of this document concerns the study of optimal control strategies for the energy man-
agement of hybrid vehicles. A share of this investigation deals with stochastic control strategies.
This means that the strategies take into account some uncertainty related to the model. In our
case, the uncertainty models the vehicle future power demand. The random future power demand is
considered a function of the uncertain vehicle future speed and other known variables. The goal of
this section is twofold: first, to construct a model for the vehicle future speed, seen as a stochastic
process. Second, to apply the stochastic model in forecasting the energy consumption of an electric
vehicle, enabling therefore an estimation of its autonomy.

This Chapter details the construction of a stochastic model of the speed profile of an electric
vehicle. The model can then be used to describe the power demand of the vehicle in order to obtain
an estimation of the vehicle energy consumption. Additionally, the construction of a stochastic
model for the vehicle speed is an important step in the construction of an optimization model
needed later for the synthesis and simulation of stochastic optimal power management strategies.

Energy consumption is understood as the consumption of whatever form of energy is used to
meet the power requirements of the vehicle. Aiming at predicting the autonomy of the vehicle, the
central idea is to construct a model that enables us to forecast the power demand of the vehicle at
some point of the route (in the future) given a set of available information (in the present). The
integration of this power demand gives an estimation of the energy needs of the vehicle which in
turn is used to obtain the vehicle estimated autonomy. In the context of electric vehicles this task
is considered critical because of their relatively low range (between 80km and 200km).

Energy consumption estimation is based on two components: a consumption model and a power
demand profile. A consumption model is a model, generally a look-up table, linking a set of variables
to the instant energy consumption. Works [3, 62] construct such models by linking vehicle drive-
like variables such as speed and acceleration directly to fuel consumption. Also, other exogenous
factors are also linked to the fuel consumption, ranging from the vehicle model and type of the route
to driver age and weather conditions [35]. A statistical analysis of a set of measurements is used
to describe the relations between such variables (or group of variables) and energy consumption
and to obtain a consumption model. A method for the construction of a stochastic driving cycle
is proposed in [57]. They consider a Markov process of model events, i.e. regime phases (idle,
cruise, acceleration, deceleration) of the driving profile of the vehicle. The transition matrix for this
Markov process is then identified using data from California Air Resources Board, same data used
to creating the Unified LA92 driving cycle [86].

An alternative way to construct a consumption model is to use a physical model for each one of
the components on the power chain. Knowing the vehicle speed and acceleration and road topology,
one can integrate the dynamic equations and obtain the instant power requirement. Together with
physical models, describing for instance tires, transmission, engine mechanics, engine efficiency and
fuel chemical properties (for details, refer to [43, 92]), one is able to compute the energy necessary
to meet the power requirements. The physical model linking power demand to energy consumption
can be obtained, for instance, using empirical maps of engine and/or motor efficiency constructed
after a carefully designed set of measurements.

In both kinds of constructions (statistical analysis or physical modeling) the main input variables
are the vehicle speed and the road topology. The vehicle instant acceleration can be estimated by
differentiating the speed data. For practical reasons, as mentioned, we do not consider the influence
of the road topology in this study, i.e., we neglect the effect of slopes on the energy consumption in
our simulations. (We stress that this is not a restrictive simplification as road topology information
can be obtained in a deterministic fashion. However, it is clear that any credible consumption
estimator must take the topology into account). As a consequence, we treat the speed of the
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vehicle as sufficient data to determine the power requirement of the vehicle and thus the energy
consumption.

In addition to a consumption model, a power demand profile is needed to assess the energy
consumption of the vehicle. To estimate the energy consumption one may therefore use a forecast
of the speed profile. Once in possession of a speed profile, together with a consumption model, the
energy needed for a particular trip can be estimated. This work uses reverse quasi-static models of
the components of the vehicle power chain to construct a consumption model (cf. Chapter 1 and
[44]). The objective is to capture the essential information of realistic driving patterns to build a
model that forecasts representative speed profiles.

As depicted in [36], the external factors influencing driving patters can be separated in travel
behavior, driver factors, vehicle factors, weather factors, traffic conditions and road environment
(cf. map in Figure 7.1).

driving
pattern

driver
factors

vehicle
factors

weather
factors

traffic
condi-
tions

road
environ-
ment

travel
behavior

Figure 7.1 – Diagram of factors affecting driving patterns. Some of these factors can be used to parametrize the
energy consumption forecast model. In this study, the energy consumption forecast models are parametrized
with respect to the speed recommended by the vehicle navigation system.

It is pertinent to consider that information is available about some of these factors as to
parametrize the forecast model accordingly. More precisely, several forecast models can be con-
structed, each one corresponding to a set of relevant factors. For example, one can build a forecast
model using data sampled from urban driving and another model using data obtained in highways.
When an autonomy estimation is required for a known type of road the appropriate forecast model
is selected.

Parameterizing several forecast models has the advantage of compartmentalizing factors that
play a strong role in the variability of driving patterns. (One can expected a speed profile in
a urban environment to somewhat differs from one in a highway). The drawback is that there
is less historical data available to the construction of forecast model. In this sense, this work
consider vehicle specific power management systems, which fix the vehicle parameters such as mass,
aerodynamics characteristics and maximum engine power.

This study also takes into account a navigation system that feeds information about the route
environment to the power management system. As explained, the route is divided in links by
the navigation system and each link contains its set of information. In particular, to each link
is attributed a suggested cruise speed corresponding to the speed limit of the street which the
link represents minus 10km/h. In this study, we parameterize the forecast models to each of the
possible suggested speeds, namely, 20km/h, 40km/h, 60km/h, 80km/h, 100km/h and 120km/h.
From a practical point of view, the suggested speed contains relevant information about the link’s
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surrounding environment and speed limit, as well as street type. Therefore, each forecast model
benefits from the compartmentalization of these factors, which are relevant to the variability of the
driving pattern [35].

The historical data consists of vehicle speed measurements on a same route. After being sepa-
rated according to the suggested speed of the link on which the measurements were taken, they are
modeled as a stationary time series. To each of the resulting time series, we identify an autoregres-
sive (AR) model [23] To do so, we perform an a priori set of analysis on the structure of such data
to justify the utilization of AR models of relevant order. After the models are identified, we study
their performance with respected to the energy consumption of the vehicle, using the consumption
model.

Autoregressive (AR) models are models that seek to describe stationary time series as a linear
combination of past realizations. Once a model is identified, one can use it, in principle, to repli-
cate the behavior of the time series within a certain degree of accuracy. This replicated behavior
generates data points that can be seen as reproducing the stochastic phenomenon underlying the
data presented in the time series.

The choice of AR models for the forecast of speed profiles is justified by their simplicity of
implementation and reasonable accuracy, described in detail next. We mention here that there are
more sophisticated models, for stationary and non-stationary time series, as for instance ARMAX
(ARMA with exogenous inputs), ARIMA (autoregressive integrated moving average), and GARCH
(generalized autoregressive conditional heteroskedasticity) models. We avoid many technicals and
conceptual details in their description, since the forecast of speed profiles plays only a supportive
role in the numerical simulations of power management strategies, which are at the core of this
study. We refer to [20, 23] for a detailed description.

Additionally, the term “forecast”, whenever mentioned in this section, does not bear the same
meaning understood in the statistics literature. In precise terms, forecasting means using a set of
data of a process to best estimate future realizations of the data.

In this work, forecast is used in a broader sense, meaning that one can obtain some information
about future events (e.g. the vehicle driven distance) using present information (the historical speed
data).

7.2 Data Set Analysis and Model Selection

This paragraph describes the data set used for the identification of relevant AR models next.

The historical data consists of instant speed measurements of an electric vehicle. The data is
obtained in two different conditions, representing two kind of driving profiles. The first sample set S1
comprises data obtained from measurements of a regular driving profile. Set S1 represents a home
� workplace driving profile of 13.6km being composed of urban/highway/urban segments. The
second set used in this study, S2 represents a relatively less regular driving style aimed to reproduce
heavier traffic conditions and/or a more sportive driving style. It is referred to as a sportive driving
profile. The route used for sampling has a structure of urban/highway/mountain/highway, with a
total length of 19.6km. Figure 7.2 shows two examples of speed profile of each sample set. Notice
the differences between the more regular profile from set S1 and the relatively less regular one from
set S2. In the case of S1, the total number of speed profiles available is N1 = 17 and if S2, the
number of speed profiles is N2 = 53.

As mentioned, each route has an associated recommended speed given by a navigation speed,
called NAV speed. This particular information from the navigation system is judged to be relevant
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Figure 7.2 – Examples of speed profile data used in the identification of a stochastic speed model. The
measurements are shown in red and the associated NAV speed is shown in blue. Above, example of more
regular driving profile in a urban/highway/urban route from set S1. Below, relatively less regular driving
profile in a urban/highway/mountain/highway cycle from set S2.

in isolating specific conditions that affect the driving pattern. For that reason, each set data point
in Sj , j = 1, 2, is classified according to a particular NAV speed. Proceeding as such, we group data
points in subsets of Sj that share further common features. More precisely, the data from each set
Sj is grouped into one of subsets {NAV20, NAV40, NAV60, NAV80}, corresponding to the NAV
speeds 20km/h, 40km/h, 60km/h, 80km/h. Then, each subset is used to identify an AR model.

We seek to identify an ARMA(p, q) model of the vehicle speed at each step t, of the form

yt =
p∑
j=1

ajyt−j +
q∑
j=1

bjet−j+1, (7.1)

where et is a zero-mean white noise of variance σ2
e . The data in sets Sj , j = 1, 2 are connected to

form a time series, which is denoted by {Yj}. The goal is to create a stochastic process {y} using
(7.1) that has similar statistical properties to {Yj}.

A first step in the construction of stochastic models is the sampling time selection. This is
needed in order to select the period of the time delay ∆t = tj − tj+1. The sample time is chosen to
be ∆t = 1s. This choice is made to enable the stochastic model to capture enough information about
the relevant frequencies of the speed dynamics that contributes most to the energy consumption.
The greatest contribution for energy consumption in electric vehicles are the breaking phases of the
speed profile. A breaking phase denotes the period of time where the driver actually steps on the
brake pedal. This causes a dissipation of an important fraction of energy that could otherwise be
used to recharge the battery via regenerative breaking. As typical breaking phases take place over
a period of ≈ 5s, a sampling time of 1s is judged enough to model this feature.

In order to gain insight about the possible order p concerning the autoregressive share of the
ARMA model, we study the partial autocorrelation function of the series {Y }. More precisely (see
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[21] for details), denote by γh the h-auto-covariance of {y} (assumed to have zero mean),

γh = IE
[
ytyt+h

]
= IE

[
ytyt−h

]
,

and by ρh its h-autocorrelation function,

ρh = γh
γ0
.

The h-autocorrelation function, valued between 0 and 1, gives the relative degree of dependence
of the term yt with respect to the past term yt−h. Figure 7.3 illustrates the relation between the
autocorrelation function of lags h and the autocorrelation matrix (the illustration is inspired from
[21, Figure 2.5]).

R =


1 ρ1 ρ2 · · · ρh−1
ρ1 1 ρ1 · · · ρh−2
...

...
...

...
...
...

...
ρh−1 ρh−2 ρh−3 · · · 1

 . (7.2)

1 −0.4 0.3 −0.1 0.8

−0.4 1 −0.4 0.3 −0.1

0.3 −0.4 1 −0.4 0.3

−0.1 0.3 −0.4 1 −0.4

0.8 −0.1 0.3 −0.4 1




k

−4
−3
−2
−1

0
1

2
3

−4

ρ k

1

0

La
g

Figure 7.3 – Sketch illustrating the relation between the autocorrelation matrix and the autocorrelation func-
tion.

The AR coefficients a := (a1, · · · , ah)ᵀ of an autoregressive model of order p > 1, q = 1 [23]
satisfy a system of equations involving the partial autocorrelation functions ρ := (ρ1, · · · , ρh)ᵀ and
the autocorrelation matrix R:

Ra = ρ. (7.3)
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The system of equations (7.3) is known as the Yule-Walker equations. Notice that the autocorrela-
tion ρh between the term yt and term yt−h depends on other autocorrelations ρ1, · · · , ρh−1.

The h-partial autocorrelation function (PACF) is given by the quantity ah. This function gives
a degree of the dependence between terms yt and yt−h adjusted for the contribution of intermediary
terms yt−1, · · · , yt−h+1. The PACF vanishes for lags h > p. Therefore, analyzing the sample PACF
of set Y#, we can infer about the order of the linear autoregressive model that is best suited for
representing {Y }.
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Figure 7.4 – Sample partial autocorrelation functions for the sets of samples obtained from speed measure-
ments. The sampling time used is ∆t = 2s. The figure contains the PACF for four sample sets divided
according to the corresponding NAV speed present at the moment of the sample. The full blue lines indicate
the statistical significance of values of autocorrelations. Values that are between the blue lines are statistically
zero. The dashed green lines represent the approximation used in this study. Therefore, correlations of less
than 7% are ignored.

Figure 7.4 groups the sample autocorrelation functions of four different sample sets, divided
according to the NAV speed, as explained. Each sample set is used to identify one distinct ARMA
model. The values of correlation that fall between the two blue lines correspond statistically to zero
and are thus ignored.

7.3 Consumption Forecast Simulations

Now we turn our attention to the performance of the ARMA models describing the speed
evolution as a mean of estimating the energy consumption. As explained, this work uses models
describing the physical behavior of the components on the power chain. Using those models, one
can input a speed profile Σ and obtain the energy consumption E associated with the speed profile.
This procedure is sketched in Figure 7.5.
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speed profile
Σ

physical components
models

energy consumption
E

Figure 7.5 – Sketch of the relation between the speed profile generated using an ARMA model, the physical
models of the vehicle components and the associated consumption.

To verify the pertinence of the obtained consumption levels using AR generated speed profiles
measured speeds profiles obtained in real driving conditions are used.

Associated to each speed profile Σj
i from set Sj there is an energy consumption which we denote

by Eji .

The performance of the set of AR models associated with the sample set Si is given by the average
relative absolute error with respect to the measured consumption. More precisely we simulate N AR
speed profiles and denote its associated energy consumption by EARMA

k , k = 1, · · · , N . Given a
measured driving cycle j from set Si, the associated energy consumption is denoted by Eij1.

The average relative absolute error between the measured consumption level of cycle j from set
Si and the ARMA consumption levels is then

∆i
j = 1

N

N∑
k=1

|Eij − EARMA
k |

Eij
. (7.4)

For each set Si, i = 1, 2, the performance coefficient (or performance factor) ηi of the ARMA model
is defined as the average of error defined in (7.4) over all cycles in Si:

ηi = 1
Ni

Ni∑
j=1

∆i
j . (7.5)

The average dispersion coefficient is defined as the average over all cycles of the sample standard
deviation of the relative absolute error, namely,

σi = 1
Ni

Ni∑
j=1

√√√√ 1
N − 1

N∑
k=1

(
|Eij − EARMA

k |
Eij

−∆i
j

)2

(7.6)

Figure 7.6 shows the performance factor for different ARMA models compared against the two
measurement sets S1, S2.

From Figure 7.6 one can observe that there is virtually no impact of the order of the model on
the relative forecast error for AR orders higher than 3. The effective utilization of information from
the navigation system enables the ARMA models to reduce the relative forecast error by roughly
2%. As a general conclusion, one can infer that the ARMA models capture well the features of the
driving pattern and can generate energy consumption forecasts within an average 20% of deviation
from the real consumption. One can also remark that the model with AR order of 1 presents the
best forecast performance of the regular driving profile.

To assess the sensibility of the performance coefficient with respect to the length of the route
in which one wishes to estimate the energy consumption, we compare the performance coefficient
obtained for cycle of different lengths. In other words, the energy consumption is computed, for a
given speed profile, up to a predefined distance. When the vehicle dynamic equations are integrated,
the simulation is stopped when the vehicle has reached this predefined distance. Figure 7.7 shows
a histogram of the performance coefficient for several values of driven distances.

1This consumption level is referred to as "measured" consumption, but we stress that Eij is obtained by the
procedure sketched in Figure 7.5 and not actually measured.



160 Chapter 7. Stochastic Modeling of Speed Profiles

re
la

tiv
e 

fo
re

ca
st

 e
rr

or
 (

%
)

Regular Driving Profile

ARMA(1,1) ARMA(2,1) ARMA(3,1) ARMA(4,1) ARMA(5,1) ARMA(6,1)
0

10

20

30

Sportive Driving Profile

re
la

tiv
e 

fo
re

ca
st

 e
rr

or
 (

%
)

ARMA(1,1) ARMA(2,1) ARMA(3,1) ARMA(4,1) ARMA(5,1) ARMA(6,1)
0

10

20

30
no NAV

NAV

no NAV

NAV

16.4% 25.6% 26.0% 26.7% 27.0% 26.5%

23.7%23.9%23.6%22.4%21.6%18.8%

24.6%24.8%24.7%24.2%24.4%28.1%

22.3%22.2%22.3%22.0%22.7%24.6%

Figure 7.6 – Performance coefficient η1, η2 obtained using 1000 simulations with models to order 6. The
figure compares models constructed using exogenous information from the navigation system (NAV, blue, red)
against models identified using data irrespectively on NAV information (no NAV, cyan, pink).

One notices that there is little impact on the forecast error due the driven distance used in the
simulations, except for the sportive profile using 5km.

The identification of ARMA models to describe the behavior of the vehicle speed modeled as
a random variable represents a first approximation towards the formulation of the optimal control
problem that is the aim of this work. Indeed, to formulate the stochastic optimal control problem
one requires what we shall refer to as an optimization model. This optimization model corresponds,
as all models do, to a simplification of the "real" physical phenomenon. In this sense, as the evolution
of the "real" vehicle speed is unlikely to be described with certainty, we describe its evolution by
a random process where the random variable verifies one of the ARMA models analyzed studied
above.

7.4 Markov Chain Transition Probability Estimation

In this subsection we construct the probability law of the random variable modeling the vehicle’s
future speeds. We use a kernel density estimation method on a sample space obtained through
simulations using the ARMA models.

The optimization model used to formulate the stochastic optimal control problem for the synthe-
sis of optimal power management strategies considers the future vehicle speed as a random variable.
As explained in Chapter 1, the vehicle speed at a future node on the vehicle path needs to be
considered. More precisely, we assume that we have complete information about the current vehicle
speed, denoted y, i.e., we assume we can measure with enough precision the vehicle speed. Then,
the vehicle speed at the next node is modeled as a random variable ξ.

To properly define this random variable a probability space is constructed (for a fuller study on
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Figure 7.7 – Performance factors η1, η2 and associated standard deviation obtained using 1000 ARMA(3,1)
simulations for cycles of different lengths. The cycles are from the different data sets S1, S2. For simulated
lengths greater than the cycle, cycles are concatenated.

random variables and practical issues see [13]). From a theoretical point of view, the construction
of such probability space poses no particular problem. From a practical point of view however, one
has to construct a probability law IP over the σ-algebra of the set of possible speeds.

Denote by y, y the lower and upper bounds on the vehicle speed, respectively. Define Ξ := [y, y],
the interval of possible admissible speed values, ξ ∈ Ξ. Next, define a σ-algebra over Ξ denoted by
F , a probability IP and a probability space (Ξ,F , IP). The probability law IP quantifies the possible
occurrences of the random variable ξ.

Now, consider a discrete process {ξ} := (ξ1, · · · , ξT ) of random variables ξ and denote by Ft the
filtration of {ξ} at time t. Given a process {ξ} we are interested in describing the probabilities of
ξt conditional to Ft−1. In particular, this information includes the current and past vehicle speed.
This speed process is modeled as a Markov chain. In view of a practical consideration, the stochastic
optimal control problem is solved via a stochastic dynamic programming algorithm. Therefore, due
the curse of dimensionality, it is well advised to avoid increasing to much (beyond 6) the state
dimension. A Markov chain contributes with one state variable1.

To simplify notation, denote by y the last known value of process {ξ} and by ξ the next value, i.e.,
given Ft, y := ξt and ξ := ξt+1. To describe the Markov chain process, the transition probabilities
p(y, ξ) := IP(ξ | y) need to be identified.

Two approaches may be considered in identifying probability densities, namely, using parametric
or non-parametric models. Parametric modeling consists of choosing an a priori parametric density
function (e.g. Gaussian, exponential, Cauchy) and determining its parameters, for instance, using
a best least-square fit of the distribution and the sampled data. This approach can be justified

1Briefly and roughly, the curse of dimensionality labels the fact that a dynamic programming algorithm require-
ments grows exponentially with the number of past speeds ξt, ξt−1, · · · , ξt−k considered in the model of future speed
values ξt+1.
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by knowing that the sample data (population) are draw from a known parametric distribution.
On the contrary, non-parametric methods do not impose any particular structure of the density
function beforehand and thus can be seen as more robust (cf. [46]). A histogram is an example of
a non-parametric estimation of a probability density.

In this work we use a kernel density estimation (KDE) method for constructing a smooth density
probability function (see [83, 82] for a more detailed description). The KDE is a non-parametric
method.

Given a sample set, the main idea is to place, centered at each observation, a given probability
density. More precisely, consider a data set Y# containing M observations of the form yj :=
(yj , ξj) ∈ Ξ × Ξ. Consider a two-dimensional density kernel K : Ξ × Ξ → [0, 1] and a smoothing
parameter h > 0. Given a particular observation yj = (yj , ξj), one approximates locally the density
of ξ conditional to y by adding the density kernel centered on the observation yj :

1
h2K

(yj
h

)
.

Then, the estimator of the density of the conditional probability function of ξ given y, denoted by
p̂(y) := p̂(y, ξ), is the normalized contribution of all M points of the data set Y#

p̂(y) = 1
Mh2

M∑
j=1

K

(y− yj
h

)
. (7.7)

For this study, the density kernel is chosen to be a bivariate Gaussian kernel

K (x) := 1√
2π
e−

x2
2 .

We use a bivariate kernel density estimator as described in [18] (the Matlab® function for univariate
and bivariate kernel estimator identification is available on-line).

At this point, we give some technical considerations of our vehicle application. We recall that
we seek to use speed profiles in order to identify a density probability function of a future speed ξ
having knowledge of a current speed y.

nodes

speed

t− 1 t t+ 1

y

ξ
NAV speed

Average vehicle speed
Measured vehicle speed

Figure 7.8 – Figure illustrating the information contained in the data set used for probability estimation. The
16 estimators are constructed according to the NAV speed (green) between links. The sample points contain
the values of the average (blue) of the measured speeds over a link.

The first point is to give a precise meaning of where in the “future” the random variable ξ is.
The controller acts only at certain points of the vehicle route. The future speed is considered to be
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the speed at the next point of the route on which the controller will act. In terms of the vocabulary
introduced in Chapter 1, considering a route segmented composed of links and nodes, the current
speed y is associated with the vehicle speed at the current node whereas the future speed ξ is
associated with the vehicle speed at the next node.

The second observation is that, like the ARMA model identification procedure, it is interesting
to condition the set Y# to available information in the navigation system seeking therefore to
construct more representative estimators. Since p̂ is a bivariate estimator, one needs to consider
the NAV speed at both sample points y (current NAV speed) and ξ (NAV speed at next link). In
other words, we seek to construct one estimator p̂ per NAV speed combinations. In our case, this
amounts to 42 = 16 estimators.

A third remark concerns what information the sample points actually encode. The speed sample
y at node t is the average speed of the instant speed measures between nodes t− 1 and t. Similarly,
the sample speed ξ at node t+1 is the average speed between nodes t and t+1. Figure 7.8 illustrates
the above statements.

The last remark refers to what speed profiles are employed to create the observations used in the
construction of the estimator defined in 7.7. One can use directly the real speed data available from
driving measurements. On the other hand, in possession of ARMA models capable of simulating
the speed process {ξ}, one can generate as many process as necessary to obtain a relatively greater
number of observations in Y#. The first approach has the advantage of having the sample points
draw from the "real" distribution governing the stochastic process {ξ}. Using the measured data
raises two points:

• Quality of the estimators. Firstly, one is limited to only a relatively small number of
samples. Indeed, as mentioned, this study has 53 driving records available and the observations
are distributed among the 16 existent NAV speeds transitions, reducing further the number
of sample points available to be used in the identification of each estimator.

• Relevance of the estimators. Secondly, the simulations to assess the efficiency of optimal
controllers use speed profiles generated with the autoregressive models identified with the
measured data. This means that, considering probabilities identified from measured data,
the optimal control problem synthesizes controllers that take into account information about
the “real” process. However, the performance of the controllers are assessed using simulated
processes generated from an autoregressive model, hence, not constituting the same processes
that synthesized the controller. In the light of this conceptual incoherence, it is not clear
how one could interpret and draw conclusions about the quality of control strategies from the
simulation results.

To shed a light in the points explained above, we construct the transition probabilities estimators
with both data obtained from autoregressive models simulations and measured data. Proceeding
as such, the differences between stochastic control strategies associated to the different estimators
can be investigated.

Figure 7.9 shows four of the sixteen estimators p̂ obtained through the kernel density estimator
method. Each set of 16 estimators is identified using two different sample sets. The first contains
speed measurements obtained from real driving data. The second contains speed values obtained
from speed profiles simulated using an ARMA(2,1) model. Qualitatively, one can observe data the
estimators obtained from measured data are relatively more dispersed than from the estimators
obtained from simulated data. In this work, we do not perform any statistical analysis on the
obtained probability density estimators. Their pertinence is analyzed in the light of the performance
of the associated power management strategies described in Chapter 2.
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(a) Measured driving cycles.
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Figure 7.9 – Four examples of estimators p̂ of the density probability obtained using the measured data set
from 53 driving profiles (a) and from sample set constructed using ARMA simulated speed profiles (b). From
the upper-leftmost proceeding clockwise, they represent the estimators for NAV speed transition of 20km/h→
20km/h, 40km/h→ 40km/h, 60km/h→ 60km/h and 80km/h→ 80km/h respectively. The red dots are the
sampled points of set Y# whereas the filled surface indicates the probability density.



CONCLUSION AND PERSPECTIVES

“ Wherefore I perceive that there is nothing better, than that a man should rejoice in his own
works; for that is his portion: for who shall bring him to see what shall be after him?”

The Holy Bible, KJV, Ecclesiastes 3:22.

The techniques detailed in this document seek to enhance the efficiency of power management of
hybrid vehicles. By exploiting the greater degree of freedom created by the introduction of an extra
power source, optimal control techniques offer a large range of tools to do so. This study contributes
to the engineering community by investigating some of these available tools and techniques.

They may be categorized according to the level of information available for the synthesis of
the controller. In one case, often referred to as deterministic case, the controller has access to all
information needed for optimality with perfect certainty. In the other case, called stochastic case,
the controller has perfect information only about the past of the system. Information about future
events is available, but not with certainty.

In the deterministic configuration, the optimization of the financial cost is fairly well docu-
mented in the literature. We suggest an interesting approach to two wholly new applications: the
optimization of the vehicle autonomy and the optimization of the flexibility over the final energy
distribution. In a continuous-time setting, this work contributes by introducing new theoretical
results, namely, the proof of a comparison principle for the value function associated to the optimal
control of a hybrid dynamical system and the proof of the convergence of a class of finite-difference
numerical schemes. This results enables the numerical computation of the value function, effectively
allowing the range/flexibility optimization.

In addition, the approach is considered in a discrete-time setting, with similar goals. The
reachability problem is originally stated as an obstacle problem, instead of a state-constrained
optimal control problem. The numerical algorithm arising from the discrete-time setting analysis
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offers the advantage of being of more intuitive implementation and calibration, being thus, closer
to engineering needs in developing real-life controllers.

The study of the stochastic setting provides interesting insight on how real-life control strategies
can be made more economic and cleaner. Firstly, by introducing an adequate stochastic model for
driving profiles using information from the navigation system, we are able to construct an adequate
simulation platform. This platform allows for the simulation of stochastic strategies and their
subsequent interpretation. Two numerical approaches to compute stochastic control policies are
studied. The first is a stochastic dynamic programming algorithm and the second a stochastic dual
dynamic programming. In the first case, the performance of the resulting stochastic controllers
is very satisfactory. In particular, the stochastic strategies present are somewhat robust, assuring
the success of the mission in spite of imperfect information. At the same time, these strategies
outperform two heuristically designed strategies. These performance gains present a potential for
substantial cost and emissions reductions over a mid- or long-term utilization of a hybrid vehicle.

With the objective of reducing the computational needs required to compute the value function, a
potential application of a stochastic dual algorithm programming (SDDP) is studied. In particular,
this work addresses the main bottleneck to the application of the SDDP to the optimal control
problem: the model convexity properties. We propose a convex non-hybrid approximation of the
original hybrid dynamical model. This new version of the model is crafted to fit as best as possible
the main share of scenarios where a stochastic strategy is expected to be applied.

The optimal stochastic power management offers a new interesting application to another opti-
mal control technique, namely, the study of chance constrained optimization problems. Here, the
interest is in the introduction of the right notion of chance constrained power management. We
construct an adequate problem formulation and investigate its information structure to derive a
dynamic programming principle. The dynamic programming principle can, in turn, stem an al-
gorithm to compute optimal policies that are more flexible than their almost-surely constrained
counterparts.

The results and ideas presented in this document offer a rich spectrum of new promising ap-
plications and further research topics. We number a few, more readily exploitable, interesting
examples:

• Stochastic reachability. The natural extension of the reachability study developed here is
the introduction of a stochastic setting. In this case, the reachable set may be defined as the
probability of reaching some energy state. In consequence, one can compute a probability
distribution of maximum vehicle range. This information can be used to propose to the
driver a driver profile that enhances his/her chances of reaching the furthest possible point.
Alternatively, if the driver chooses the final state, he/she can do it within a certain confidence
level.

• Advanced driving profile stochastic models. An effort can be made towards the im-
plementation of more evolved stochastic models of the driving profile. More sophisticated
stochastic modeling may capture in more detail the features of the real measured driving
profiles. If these models can well reproduce (stochastically) the real process underlying the
measurements, they can be used in the approach proposed in this study: generate artificial
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data to feed optimization models, simulation ends and other applications. This procedure
may benefit from a larger database of driving measurements.

• More complex vehicle models. The introduction of more complex models for modeling
the vehicle seems a very relevant consideration. For instance, more refined battery models
may offer the possibility of synthesizing controllers to take into account the temperature or
the state of health of the battery. One can also think of optimizing the duration of the battery
life, since the high-voltage battery is by far the most important (and expensive!) component
in the power train.

• Greater driver interaction. With the capabilities of incorporating additional information
in the synthesis of optimal controllers, the driver may play a pivotal role in further enhanc-
ing the performance of stochastic strategies. The driver can participate in this process by
providing him/herself additional information to the controller (e.g. driving style, particular
conditions not present in the navigation system, customized preferences). In the other direc-
tion, the machine may communicate relevant information to the driver, expecting to modify
his/her behavior towards more efficient driving conditions. On-line information in this sense
can be in the form of probabilities of failure, suggesting more efficient routes, notifying changes
in driver driving style. Off-line, the driver may participate in social communities comparing
emission or energy efficiency data with others or receive customized feedback on how improve
his/her driving style.

We hope that all the modest contributions present in this document eventually help the advance
of electrified power train technology. If not, may they awake the interest for the subject in other
researchers so to push a bit further the boundaries of engineering and mathematics.

Probably, in the future, the good things in life will continue to be somewhere else. Hopefully,
we will get there in a cleaner car.
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