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PhD co-supervisor Hugues Talbot Prof. Université Paris-Est ESIEE





Resumé

Cette thèse porte sur la restauration d’images dégradées à la fois par un flou
et par un bruit. Une attention particulière est portée aux images issues de
la microscopie confocale et notamment celles de macroscopie.

Dans ce contexte, un modèle de bruit Poisson-Gauss apparâıt bien adapté
car il permet de prendre en compte le faible nombre de photons et le fort
bruit enregistrés simultanément par les détecteurs. Cependant, ce type de
modèle de bruit a été peu exploité car il pose de nombreuses difficultés
tant théoriques que pratiques. Dans ce travail, une approche variationnelle
est adoptée pour résoudre le problème de restauration dans le cas où le
terme de fidélité exact est considéré. La solution du problème peut aussi
être interprétée au sens du Maximum A Posteriori (MAP). L’utilisation
d’algorithmes primaux-duaux récemment proposés en optimisation convexe
permet d’obtenir de bons résultats comparativement à plusieurs approches
existantes qui considèrent des approximations variées du terme de fidélité.

En ce qui concerne le terme de régularisation de l’approche MAP, des
approximations discrète et continue de la pseudo-norme ℓ0 sont considérées.
Cette mesure, célèbre pour favoriser la parcimonie, est difficile à optimiser
car elle est, à la fois, non convexe et non lisse. Dans un premier temps, une
méthode basée sur les coupures de graphes est proposée afin de prendre en
compte des a priori de type quadratique tronqué. Dans un second temps, un
algorithme à mémoire de gradient de type Majoration-Minimisation, dont
la convergence est garantie, est considéré afin de prendre en compte des a
priori de type norme ℓ2 − ℓ0. Cet algorithme permet notamment d’obtenir
de bons résultats dans des problèmes de déconvolution.

Néanmoins, un inconvénient des approches variationnelles est qu’elles
nécessitent la détermination d’hyperparamètres. C’est pourquoi, deux mé-
thodes, reposant sur une approche Espérance-Maximisation (EM) sont pro-
posées, dans ce travail, afin d’estimer les paramètres d’un bruit Poisson-
Gauss: (1) à partir d’une série temporelle d’images (dans ce cas, des para-
mètres de “bleaching” peuvent aussi être estimés) et (2) à partir d’une seule
image.

De manière générale, cette thèse propose et teste de nombreuses méthodo-
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logies adaptées à la prise en compte de bruits et de flous difficiles, ce qui
devrait se révéler utile pour des applications variées, au-delà même de la
microscopie.

Cette thèse est organisée comme suit:

Le Chapitre 1 a pour but d’introduire le lecteur aux problèmes inverses
et aux outils mathématiques associés. Notre exposé se limite aux
méthodes variationnelles appliquées aux modèles continus ou discrets.
Ensuite, les méthodes d’optimisation associées sont discutées; une at-
tention particulière est portée aux algorithmes de type Majoration-
Minimisation, aux méthodes basées sur les coupures de graphes et
enfin, aux algorithmes proximaux.

La quantification, définie comme le fait d’attribuer à une image un
nombre fini de niveaux, est une opération fondamentale dans l’acqui-
sition d’images et leur codage. Elle est également étroitement liée à
de nombreuses tâches de traitement d’images, telles que le débruitage
et la segmentation. Dans le Chapitre 2 nous étudions la quantifi-
cation vectorielle combinée à des contraintes de régularité. Ce do-
maine encore peu étudié suscite un intérêt, en particulier, dans le
contexte de la quantification en présence de bruit ou d’autres arte-
facts d’acquisition. Nous adoptons une approche d’optimisation afin
de résoudre ce problème. La méthode proposée met en jeu à la fois des
techniques d’optimisation convexe et combinatoire. Notre approche
itérative comportant deux étapes entrelacées se révèle d’une grande
souplesse. Nous illustrons l’efficacité de la méthode proposée sur des
images monochromes et couleur. Nous montrons qu’en utilisant un pe-
tit nombre de niveaux de quantification, notre approche peut fournir
des images de meilleure qualité que les méthodes classiques de quantifi-
cation, optimales en termes de qualité d’approximation et d’entropie.

Dans de nombreux cas, le bruit lié au système d’imagerie n’est pas
additif. En raison de la nature particulaire de la lumière, les im-
ages sont dégradées par le bruit quantique, tandis que bruit ther-
mique peut jouer un rôle moins important. Bien qu’une approxima-
tion gaussienne soit tout à fait justifiée dans certains cas, on peut
avoir besoin de considérer que la moyenne et/ou la variance du bruit
dépendent de l’intensité de l’image. Par conséquent, la reconstruc-
tion d’image en présence de bruit dépendant du signal constitue un
domaine de recherche actif. Le problème d’estimation des paramètres
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d’un modèle de type Poisson-Gauss à partir de données expérimentales,
a récemment suscité beaucoup d’intérêt dans diverses applications,
en particulier pour les systèmes d’imagerie CCD. Dans ce contexte,
un champ de variables aléatoires indépendantes est observé, qui est
variable dans le temps et l’espace. Chaque variable est la somme de
deux composantes: l’une suit une distribution de Poisson et l’autre
une distribution gaussienne. Dans le Chapitre 3, une formulation
générale est considérée lorsque le processus de Poisson est non sta-
tionnaire en espace et présente également une décroissance exponen-
tielle dans le temps, alors que la composante gaussienne correspond
à un bruit blanc stationnaire de moyenne arbitraire. Pour résoudre
le problème d’estimation paramétrique considéré, un processus itératif
de type Espérance-Maximisation (EM) est employé. Une attention est
portée à l’initialisation de l’algorithme EM pour lequel une méthode
de moments est appliquée. On réalise également une analyse des
performances de la méthode mise en œuvre en calculant les bornes
de Cramer-Rao sur les variables estimées. Des illustrations de la
méthode d’estimation proposée sont fournies la fois sur des données
synthétiques et réelles (correspondant à des séquences d’images de
macroscopie confocale). On constate ainsi que l’algorithme produit
des estimations fiables de la moyenne/variance du bruit gaussien et du
paramètre d’échelle de la composante de Poisson, ainsi que des taux
de décroissance exponentielle.

L’objectif du Chapitre 4 est encore l’estimation des paramètres de
bruits de type Poisson-Gauss. Le problème est formulé dans un cadre
d’optimisation mixte discrète-continue. L’approche proposée estime
conjointement le signal d’intérêt et les paramètres du bruit. Ce résultat
est obtenu par l’introduction d’un terme de régularisation adéquat
associé à une terme d’attache aux données dans le critère à min-
imiser. La solution optimale est recherchée de manière itérative en
alternant la minimisation d’un champ d’étiquettes et d’un vecteur de
paramètres de bruit. L’algorithme proposé est inspiré de l’approche
de régularisation spatiale pour la quantification vectorielle introduite
dans le Chapitre 2, tandis que les paramètres de bruit sont estimés
à chaque itération à l’aide des résultats établis au Chapitre 3. Nous
illustrons l’utilité de notre approche sur des données synthétiques et
des images de macroscopie confocale. Dans les résultats de simulation
fournis, nous démontrons l’efficacité de notre approche.

Le Chapitre 5 marque le début de la partie centrale de notre travail lié
à la restauration des données dégradées par un bruit de type Poisson-
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Gauss. Comme nous l’avons déja souligné, un modèle Poisson-Gauss
peut décrire avec précision le bruit présent dans une variété importante
de systèmes d’imagerie. Cependant, la plupart des stratégies de restau-
ration existantes reposent sur des approximations des statistiques du
bruit Poisson-Gauss. Nous proposons un algorithme d’optimisation
convexe pour la reconstruction des signaux dégradés par un opérateur
linéaire et un bruit de type Poisson-Gauss. L’originalité de notre
approche est liée à la prise en compte exacte du modèle continu-
discret. Après avoir établi la Lipschitz-différentiabilité et la convexité
de l’anti-log-vraisemblance Poisson-gaussienne, nous proposons un al-
gorithme primal-dual permettant de minimiser le critère pénalisé as-
socié. La méthode proposée est applicable à un large choix de termes
de pénalisation convexes. Parmi ceux que nous considérons, un a pri-
ori hybride combinant un terme de variation totale et une pénalisation
sur le hessien est démontré produire des résultats de haute qualité pour
les images naturelles dans les problème de restauration de données en
présence de bruit de Poisson-Gauss. La robustesse de notre méthode
nous permet de gérer les difficultés liées au calcul de sommes infinies
résultant du calcul du gradient du critère. L’approche proposée est
validée sur des exemples de restauration d’images.

Le Chapitre 6 aborde le problème de la minimisation des énergies
multi-labels associées à des a priori de type convexes tronqués. Ces
a priori sont connus pour être performants mais également difficiles
et lents à optimiser en raison de leur non-convexité. Nous proposons
deux nouvelles méthodes basées sur les coupures de graphes, à savoir
le convex move et le quantized move. Ces mouvements sont conçus
pour être complémentaires l’un de l’autre mais peuvent aussi être
utilisés indépendamment. Pour améliorer sensiblement l’efficacité de
la méthode, la plage de labels est divisée en intervalles uniformes. Les
quantized move ont tendance à affecter efficacement les labels des pixels
aux intervalles appropriés pour l’énergie avec a priori convexe tronqué.
Puis, le convex move affecte les labels plus précisément dans ces inter-
valles pour la même énergie. Le quantized move de type α-expansion,
peut être intrerprété comme un a priori de type Potts généralisé, qui
attribue une pénalité constante aux arguments au-dessus d’un certain
seuil. Notre mouvement est une version coupures de graphes convexe
de l’algorithme efficace de Murota. Nous ne traitons que les termes
d’attache aux données convexes, puisque cette hypothèse est requise
pour l’algorithme de Murota. Nous introduisons ensuite l’algorithme
Quantized-Convex Split Moves qui minimise les énergies intégrant des
a priori tronqués par alternance des deux mouvements. Cet algo-
rithme est un solveur rapide pour des problèmes impliquant un grand
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nombre de labels et des modèles de données convexes. Nous illustrons
ses performances dans des problèmes de débruitage d’images.

Dans le Chapitre 7, nous considérons une classe de critères différen-
tiables pour des problèmes parcimonieux en traitement d’images, où
une régularisation non convexe est appliquée à une transformation
linéaire arbitraire de l’image cible. Elle prend en compte, en par-
ticulier, les mesures préservant les contours mais aussi les trames
couramment utilisées en traitement d’image. Comme le montrent
nos résultats asymptotiques, la pénalisation ℓ2 − ℓ0 que nous con-
sidérons peut être utilisée pour fournir des solutions approchées aux
problèmes d’optimisation incluant une pénalisation ℓ0. Un des avan-
tages de l’approche proposée est qu’elle nous permet de développer un
algorithme de sous-espace de type Majoration-Minimisation. La con-
vergence de l’algorithme est étudiée en utilisant des résultats récents
en matière d’optimisation non convexe. Plus précisément, une nou-
velle preuve de convergence de l’algorithme proposé est donnée en ex-
ploitant l’inégalité de Kurdyka- Lojasiewicz. Cette approche offre une
alternative intéressante aux méthodes existantes en termes de qualité
d’image reconstruite et de temps de calcul. La rapidité de convergence
de cette méthode d’optimisation est illustrée au travers d’exemples en
traitement d’image. En particulier, son efficacité est démontrée sur
plusieurs problèmes de restauration de données.

Nous résumons nos contributions et dégageons quelques pistes pour
des travaux futurs dans le Chapitre 8.





Abstract

This thesis deals with the restoration of images corrupted by blur and noise,
with emphasis on confocal microscopy and macroscopy applications.

Due to low photon count and high detector noise, the Poisson-Gaussian
model is well suited to this context. However, up to now it had not been
widely utilized because of theoretical and practical difficulties. In view of
this, we formulate the image restoration problem in the presence of Poisson-
Gaussian noise in a variational framework, where we express and study the
exact data fidelity term. The solution to the problem can also be interpreted
as a Maximum A Posteriori (MAP) estimate. Using recent primal-dual
convex optimization algorithms, we obtain results that outperform methods
relying on a variety of approximations.

Turning our attention to the regularization term in the MAP framework,
we study both discrete and continuous approximations of the ℓ0 pseudo-
norm. This useful measure, well-known for promoting sparsity, is difficult to
optimize due to its non-convexity and its non-smoothness. We propose an ef-
ficient graph-cut procedure for optimizing energies with truncated quadratic
priors. Moreover, we develop a majorize-minimize memory gradient algo-
rithm to optimize various smooth versions of the ℓ2 − ℓ0 norm, with guar-
anteed convergence properties. In particular, good results are achieved on
deconvolution problems.

One difficulty with variational formulations is the necessity to tune au-
tomatically the model hyperparameters. In this context, we propose to
estimate the Poisson-Gaussian noise parameters based on two realistic sce-
narios: one from time series images, taking into account bleaching effects,
and another from a single image. These estimations are grounded on the
use of an Expectation-Maximization (EM) approach.

Overall, this thesis proposes and evaluates various methodologies for
tackling difficult image noise and blur cases, which should be useful in vari-
ous applicative contexts within and beyond microscopy.
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Introduction

The recovery of a target function in the presence of perturbations (e.g. noise)
is a problem studied in the literature over decades and is usually associated
with the term inverse problem. In this thesis, we formulate novel solutions
by studying probably the oldest image processing inverse problem i.e. image
deconvolution.

Context

The human senses cooperate with the brain to gather information. Simi-
larly, new imaging modalities combined with image processing algorithms
allow us to retrieve information that is invisible to the human eyes. The
study of astronomical objects and phenomena, human anatomy, basic cellu-
lar, biochemical, physiological and pathological processes benefit from new
visualization tools. Imaging techniques have emerged in all areas of life
sciences and are becoming increasingly relevant in the biomedical and phar-
maceutical areas. Imaging based diagnostics and screening influence therapy
design and drug development. Fast progress in biology would not be possible
without new instruments and associated software. Rapid changes in opti-
cal acquisition techniques create opportunities and challenges for the image
and video processing community. In this thesis, we face challenges related
to confocal macroscopy.

Confocal macroscopy (i.e. large-area confocal microscopy) is an ad-
vanced fluorescence imaging system, grounded on the principle of confocal
imaging introduced in 1957 by Marvin Minsky [Pawley, 2006, Chapter 1],
[Minsky, 1957]. This innovation has had a huge impact on the develop-
ment of biomedical research and on some areas of clinical practice, e.g.
dermatopathology, ocularpathology. Examples in the area of medicine in-
clude a system for the early noninvasive diagnosis of skin cancer [Park et al.,
2010], studies of drug delivery to the eye [Furrer and Gurny, 2010], analysis
of single DNA damage in human cells [Fairbairn et al., 1993], examination
of some diseases like schizophrenia [Sweet et al., 2010], Parkinson’s [Tatton

1
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and Rideout, 1999] and HIV [Hubner et al., 2009], ... Moreover it influences,
among others, research on artificial eyes [Jeong et al., 2006], coral reef pro-
tection [Hawaii Institute of Marine Biology http://www.hawaii.edu/HIMB/]
and geomaterials [Fredrich et al., 1995].

The popularity of confocal imaging systems stems from the high optical
resolution of the produced images, particularly in the sample depth direc-
tion. This increased resolution is an important advantage of confocal over
convential fluorescence imaging system, namely wide-field. The confocal
light system produces 2D or 3D images of cells, tissues and microorganisms
by measuring its optical or fluorescent properties within a large number of
small, contiguous subvolumes. A collection of such image volumes over time
results in time-series image. A complete image is acquired point-by-point,
i.e. in the process of scanning. The basic idea behind confocal systems is
to illuminate the object with a point source and to detect reflected signal
through a pinhole at a conjugate position in the emission path (see Fig. 1).
Consequently, fine specimen details, which are generally of most interest,
become detectable.

Ilumination pinhole

Detection pinhole

Photodetector Focal plane

A system designed with confocal optics has the effect of eliminating much of the
out-of-focus light from detection (red dotted line). The light originating from object
features lying outside the focal plane is physically blocked by the detection pinhole and
consequently does not reach a photodetector, while the light originating from object
features lying in the focal plane (green line) is focused on the detection-pinhole.

Figure 1: Principle of confocal imaging system

However, until recently the maximum field of view of confocal systems
was very small (typically less than 0.5 × 0.5 mm). Hence, visualization of
large areas of tissue required merging of multiple images taken sequentially,
using montage synthesis methods [Pawley, 2006, Chapter 15]. As an effect,



Introduction 3

the quality of the resulting image had to be compromised. Macroscopy
solves this problem by imaging a large area (up to a couple of centimeters)
in confocal manner while maintaining the flexibility to zoom the smaller part
of the object on demand (see Fig. 2). The confocal macroscopy is suited to
illustrate complex biological samples, especially in multichannel mode (see
Fig. 3).

(a) (b)

(c) (d)

(a-d) illustrates Convallaria from a large to a finer scale (author: Gilbert Engler)

Figure 2: An example illustrating zoom effect in confocal macroscopy
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(a) Channel 1 (b) Channel 2

(c) Multichannel image composed of two channels presented above

Cortical leaf (author: Gilbert Engler)

Figure 3: An example of multichannel confocal image
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Challenges

The challenges stem from the fact that confocal macroscopy suffers from
various aberrations. Thus, an important goal is to improve the quality of
the produced images. A major step toward achieving this goal is to under-
stand how these artifacts are created, i.e. to determine the characteristics
of the noise and the point spread function (PSF). A natural, simple strat-
egy for PSF modeling would be to adopt a model established for confocal
microscopy. However, first results presented in [Pankajakshan et al., 2011]
indicate that it is not a good strategy. A full understanding of the PSF
model requires further studies. They are particularly difficult due to the
fact that precise information about the macroscope optics is not presently
available. The second challenge is due to the noise characteristic and corre-
sponding hyperparameters. Since in any confocal imaging system, increased
resolution comes at the cost of decreased signal intensity (down to 8 − 12
detectable photons per highest intensity pixel [Pawley, 2006, Chapter 2])
one can expect the noise to exhibit either Poisson or Poisson-Gaussian char-
acteristics. Ideally, one wishes to identify this statistics and corresponding
hyperparameters based on measured data.

Another difficulty is to establish distinctive features of high-quality im-
ages. Researchers in a variety of disciplines constantly push the frontiers of
knowledge in order to improve the statistical description of images. As a re-
sult, the problems are formulated using more realistic models incorporating
richer prior knowledge. However, achieved improvements are still limited.
The true signal is estimated under various idealizations of its properties and
using simplified assumptions about the degradation process. The produced
results are accompanied by different artifacts (e.g. ringing, staircase effect).
Some thin details of the object are not well retrieved.

In all these areas, the image processing community can contribute by
formulating the related problems (noise identification, PSF modeling and
deconvolution) in a solvable fashion. In this context, continuous and dis-
crete optimization methods are particularly useful. For instance, the decon-
volution results can be further improved by the design of a new prior term.
In practice, this means the choice of appropriate signal representations and
sparsity measure. The latter choice is most often limited to ℓ1 function.
However, one can search for other sparsity measures. Especially, algorithms
originating from both domains, continuous and discrete, are continuously
extended to be able to handle novel, more advanced models in an efficient
way. Nevertheless, some of the considered problems are naturally formu-
lated in a mixed discrete-continuous framework. Hence, an arising challenge
is to develop appropriate methods featuring both of these worlds.
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Contribution

The contribution of this thesis is developed along two axes. Firstly, we
contribute to image optimization techniques and provide results concern-
ing Poisson-Gaussian distribution, ℓ2− ℓ0 sparsity measures, and associated
algorithmic tools. Secondly, we contribute to the confocal macroscopy tech-
nique and develop tools for noise identification and image deconvolution.
More precisely, the specific contributions are as follows:

Algorithms:

∗ We propose an optimization framework featuring both continuous and
combinatorial techniques (Chapters 2 and 4). Our approaches address
problems, in which all of the variables take values from an unknown dis-
crete set. The discrete set is described by its cardinality and is known to
be an inclusion of a given continuous set. We formulate the problem in
a discrete-continuous framework, while attempting to bring together the
best of both worlds.

∗ We address the same practical problem, namely image denoising with ℓ2−
ℓ0 sparsity measures, in discrete (Chapter 6) and continuous (Chapter 7)
frameworks, which provide an opportunity to compare the two approaches
with respect to the considered applications.

∗ We investigate ℓ2 − ℓ0 functions as a sparsity measures (Chapter 7).

∗ We develop an approximation for the Poisson-Gaussian neg log likelihood,
and provide a bound on the involved error (Chapter 3). Building upon
this result, the main contribution of Chapter 3 is a numerical method for
computing a maximum likelihood estimate of Poisson-Gaussian distribu-
tion hyperparameters and its Cramer-Rao bounds.

∗ We propose a new algorithm designed in a combinatorial graph-cut frame-
work for minimizing energies with truncated convex regularization func-
tion (Chapter 6).

∗ We show that Poisson-Gaussian neg log likelihood is an µ-Lipschitz dif-
ferentiable convex function. This result provides us new opportunities to
solve the related optimization problems, such as these offered by proximal
splitting algorithms (Chapter 5).

Confocal macroscopy:

∗ We provide tools for a study of the noise characteristics, i.e. the shape
of its probability distribution and values of the related hyper-parameters.
Our tools allow us to identify the noise parameters from time series data
(Chapter 3), as well as from single image (Chapter 4). This forms a
backbone for calibration systems and constitutes a crucial preliminary
step towards development of image restoration algorithms.
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∗ We provide new tools for image deconvolution (Chapters 5 and 7). The
method proposed in Chapter 5 incorporates a realistic noise model, but
no PSF. Hence, it can be regarded as a preliminary work towards future
restoration techniques.

Publications:

Journal papers:

1. Caroline Chaux, Anna Jezierska, Jean-Christophe Pesquet, and Hugues
Talbot, A spatial regularization approach for vector quantization, Jour-
nal of Mathematical Imaging and Vision, vol 41, pages 23-38, 2011

2. Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet, and
Hugues Talbot, A Majorize-Minimize Subspace Approach for ℓ2 − ℓ0
Image Regularization , accepted to SIAM Journal on Imaging Science,
2011

3. Anna Jezierska, Caroline Chaux, Jean-Christophe Pesquet, Hugues
Talbot and Gilbert Engler An EM Approach for Poisson-Gaussian
Noise Modeling, submitted to IEEE Transactions on Signal Processing,
2012

Conference papers:

4. Anna Jezierska, Caroline Chaux, Hugues Talbot, and Jean-Christophe
Pesquet Image quantization under spatial smoothness constraints, In-
ternational Conference on Image Processing (ICIP), Honk Kong, 26-29
September 2010

5. Anna Jezierska, Hugues Talbot, Olga Veksler, and Daniel Wesierski A
fast solver for truncated-convex priors: quantized-convex split moves,
Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR), Saint Petersburg, 25-27 July 2011

6. Anna Jezierska, Caroline Chaux, Jean-Christophe Pesquet, and Hugues
Talbot An EM approach for Poisson-Gaussian noise modeling, Euro-
pean Signal Processing Conference (EUSIPCO), Barcelona, 29 August
- 2 September 2011

7. Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues Talbot, and
Anna Jezierska A memory gradient algorithm for l2 - l0 regulariza-
tion with applications to image restoration, International Conference
on Image Processing (ICIP), Brussels, 11-14 September 2011

8. Anna Jezierska, Emilie Chouzenoux, Jean-Christophe Pesquet, and
Hugues Talbot A primal-dual proximal splitting approach for restoring
data corrupted with Poisson-Gaussian noise, International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, 25-30
March, 2012
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9. Anna Jezierska, Hugues Talbot, Caroline Chaux, Jean-Christophe Pes-
quet, and Gilbert Engler Poisson-Gaussian noise parameter estima-
tion in fluorescence microscopy imaging, International Symposium on
Biomedical Imaging (ISBI), Barcelona, 2-5 May, 2012

10. Daniel Wesierski, Maher Mkhinini, Patrick Horain, and Anna Jezierska
Fast Recursive Ensemble Convolution of Haar-like Features, Computer
Vision and Pattern Recognition (CVPR), Providence, Rhode Island,
18-20 June, 2012

Organization and summary

The rest of this thesis is organized as follows. The next chapter serves to
introduce the reader to the topic of inverse problems and associated math-
ematical tools, i.e. variational methods applied to either continuous or dis-
crete models. We briefly discuss majorize-minimize, graph-cut and proximal
optimization algorithms. Then, the subsequent Chapters 2-7 address vari-
ous inverse problems. Each of them aims to provide a review of the state of
the art, describe a problem, propose a solution and illustrate it with results.
More precisely, in Chapter 2 we develop an optimization framework featur-
ing both continuous and combinatorial techniques. In Chapter 3 we propose
an Expectation-Maximization algorithm for Poisson-Gaussian noise param-
eters estimation from time series data. Then, in Chapter 4, using the results
from the two previous Chapters, we develop a single image noise estimation
approach. In Chapter 5, we study the problem of restoring data corrupted
by Poisson-Gaussian noise using an exact continuous-discrete model. Chap-
ters 6-7 provide an insight into the topic of minimizing objective function,
which includes terms with ℓ2 − ℓ0 sparsity measure. Chapter 6 deals with
a discrete problem formulation in the presence of truncated convex priors.
In Chapter 7, we extend the work of [Chouzenoux et al., 2011] to minimize
non necessarily convex functions. Finally, we draw some conclusions and
perspectives in Chapter 8.



- Chapter 1 -

Background

An image is a realization of a stochastic signal which includes visual informa-
tion about one or several objects. One says “A picture is worth a thousand
words”, which refers to the huge amount of information conveyed in a single
image. Indeed, it is huge but also restricted in the following sense: the visual
information about an object is acquired by imaging systems, which impose
some limits on the amount of transmitted information. The question then
arises if and how the lost information can be retrieved? There has been
extensive research on this topic. In this chapter, we review some of the re-
sults relevant to our studies. Firstly, we provide an introduction to the topic
of inverse problems and to the associated mathematical tools. In our con-
text, the presentation is restricted to variational methods applied to either
continuous or discrete models. Then, the related optimization methods are
discussed, while a special attention is devoted to expectation-maximization,
graph-cut and proximal optimization algorithms.

§ 1.1 Inverse problems

In signal theory, inverse problems refer to the principle of converting an
observed signal into information about a physical object of interest, which
is unobservable and inaccessible by direct measurements. Hence, the ideal
solution usually cannot be computed exactly (an estimation is needed) and
its computation may be highly unstable and sensitive to small changes in the
data. There are many problems formulated within this framework. Exam-
ples in the area of image processing include segmentation, depth estimation,
shape recognition, ...

In the following we study the problem of recovering information about an
imaging system and an input signal. We consider an imaging system to be
described by the distortion it introduces, which can be broadly divided into

9
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deterministic and stochastic parts, usually a blur and a noise perturbation,
where blurring is related to the process of image formation and noise to the
process of image recording. This can be described by the following model:

y = z (H(x)) + w (1.1)

where the operator H : X 7→ Y models blur, X and Y are subsets of finite
dimensional real Hilbert spaces, and z(H(x)) and w are realizations of signal
dependent and additive noise, respectively. Model (1.1) is a direct model i.e
the opposite of an inverse problem. It relates vector of observations y ∈ Y
with original signal x ∈ X . In the context of image reconstruction, typical
examples of X include: real matrix space R

N×M , real vector space R
N ,

nonnegative integer matrix set N
N×M or LN×M , where L is any countable

subset of real numbers. Signals x = (xi)i∈X and y = (yi)i∈Y are realizations
of random vectors X and Y , respectively. In such settings X and Y denote
the support of the signals associated with x and y, respectively, (i.e. their
components in some basis of the underlying Hilbert spaces).

It is further assumed that statistical properties of the noise is known.
More specifically, z(H(x)) and w are regarded as realizations of mutually
independent random variables Z(H(x)) and W having independent compo-
nents. The components of variables Z and W are scalar random variables
defined by parametric probability measures PZi

and PWi
, respectively. Ad-

ditionally we assume that the families of distributions PZi
and PWi

can be
described by a finite number of parameters. They are collected together
to form a single vector of parameters θ. We study the following associated
inverse problems:

• Noise parameter estimation, where measurements are used to infer pa-
rameters in a mathematical model. This problem consists of searching
θ and x under the assumption that y is known. In a denoising setting,
the existence of H is neglected (see Fig. 1.1(a)).

• Signal recovery, where measurements are used to infer the original
signal. This problem consists of searching x under the assumption
that y, H and θ are known (see Fig. 1.1(b)).

Beyond these issues, one can consider blind restoration techniques, which
are designed to simultaneously estimate the degradation kernel H and the
original signal x. However, in the following, we assume that non-blind de-
blurring techniques can be efficiently used provided that the blur and noise
models are accurate enough.
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w

Measurements

y = z(x) + w
z(·) +

θ, x

(a) Noise parameter identification

w

x Direct model Measurements

y = z(H(x)) + wH
z(·) +

(b) Signal recovery

Figure 1.1: Block diagrams of considered inverse problems

The characteristic mathematical aspect of inverse problems is that they
are usually ill-posed i.e. at least one of the properties of a well-posed problem
is violated. According to the definition provided by Hadamard [Hadamard,
1902], well-posed problems respect the following conditions:

• a solution exists;

• the solution is unique;

• the solution is stable.

When a new problem is proposed, the first concern is to establish its well-
posedness. The existence and uniqueness are usually addressed for a given
class of functions e.g. the convex function class, while the stability is studied
by verifying if the solution depends continuously on the data, i.e. d(y−y′) →
0 ⇒ d(x− x′) → 0 where d denotes a distance measure.

Example 1.1.1 A classical ill-posed inverse problem is the following. Let
us consider the simple case when H is a linear operator and the problem is to
restore signal x ∈ R

N in the presence of blur H ∈ R
Q×N from observations

y ∈ R
Q. One can obtain the direct solution as x = H−1y. This solution is

computationally feasible if H is invertible i.e. H is a square matrix (Q = N)
and Ker (H) = {0}. If the first condition fails, the solution x to the linear
problem Hx = y does not necessarily exist, while if the second condition fails
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the solution x is not unique. The third Hadamard’s condition is satisfied
provided that H is well-conditioned, i.e. the stability of the solution can be
evaluated in terms of condition number of H.

§ 1.2 Estimation of the solution

The solutions of inverse problems are the results of estimation problems. The
goal of estimation is to find a solution x̂ which is reasonably close to the
original signal x. Estimation techniques are often classified into two groups:
deterministic or statistical. The difference stems from the assumptions made
on the models. The statistical approach involves stochastic models, even the
solution itself can be viewed as a random variable.

We adopt the following general definition of an estimator. An estimator
X̂ is a rule by which we guess the value of unknown signal X on the basis
of Y , where X and Y are vectors of random variables (Xi)i∈X and (Yi)i∈Y,

respectively. Hence, X̂ : y 7→ X̂(y) is a function. It is described by the
following characteristics:

• bias(X̂) =
(
E
[
X̂i(Y ) −Xi

])
i∈X

(bias)

• cov(X̂) =
(
E
[(
X̂i(Y ) − E(X̂i(Y ))

)(
X̂j(Y ) − E(X̂j(Y ))

)])
(i,j)∈X

(co-

variance matrix)

• MSE =
(
E
[
(X̂i(Y ) −Xi)

2
])

i∈X
(mean square error vector).

An estimator calculates an estimate for particular observations {yi}i∈Y. An

unbiased estimator X̂ is called a minimum variance unbiased estimator
(MVUE) if for every estimator X ′

trace
(

cov(X̂)
)
6 trace

(
cov(X̂ ′)

)
(1.2)

where a lower bound on the variance of the components of X̂ is provided by
the Cramer-Rao theorem [Rao, 1945], [Cramer, 1946].

Next we describe two classical estimators, namely the maximum like-
lihood estimator (MLE) and Bayesian estimators. The former is usually
applied to well-posed problems while the latter one to ill-posed problems.

1.2.1 Maximum likelihood estimator

Let pY (· | X = x) be a probability measure i.e.

• a likelihood function in the continuous case

• a probability mass function in the discrete case
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then the maximum likelihood estimate X̂MLE is defined as

∀y X̂MLE(y) ∈ arg max
x

pY (y | X = x) (1.3)

and for differentiable function x 7→ pY (y | X = x) it satisfies

∂pY (y | X = x)

∂x
|
X̂MLE(y)

= 0. (1.4)

In some cases, a maximum likelihood estimator is given as an explicit func-
tion of the observations. However, in many instances, no closed-form so-
lution is available, and the MLE has to be found numerically using opti-
mization methods. This can be illustrated with the example of the noise
parameter estimation problem addressed in Chapter 3.

1.2.2 Bayesian estimators

Assuming that a desired property of a solution is known a priori, an ill-
posed inverse problem can be replaced by a better-posed one, i.e. leading
to solutions with a lower sensitivity to perturbations of the input data but
not necessarily well-posed in the sense of Hadamard. For instance, the
resulting problem can be non strictly convex or it can be discrete i.e. X is a
discrete set. In both cases the solution is not guaranteed to be unique and
all solutions are equally likely.

Bayesian estimators constitute a classical example of estimators incor-
porating prior belief. More recently, considerable interest has been drawn
in empirical Bayesian approaches. For instance, there has been much atten-
tion devoted to Stein’s unbiased risk estimate (SURE) [Stein, 1981],[Pesquet
et al., 2009]. However, the discussion here is limited to classical Bayesian
estimators. They are given as the solution of the following problem:

Find arg min
x̂

E [C(x̂, X) | Y = y] (1.5)

where C is a cost function and E
[
C(X̂(Y ), X)

]
is called a risk function. A

number of various estimators have been proposed which differ in the choice
of a cost function. Among them we recall:

• MMSE: minimum mean square error estimator associated with a quadratic
cost function. Then, rewriting Problem (1.5) yields:

Find arg min
x̂

E
[
‖X − x̂‖2 | Y = y

]
(1.6)

which results into

X̂MMSE(y) = EX|Y=y [X] . (1.7)
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• MAP: maximum a posteriori estimator associated with hit or miss cost
function defined as

∀(u, v) ∈ X 2, u = (ui)i∈X , v = (vi)i∈X ,

C(u, v) =

{
0 if ∀i ∈ X |ui − vi| < ∆

1 otherwise.
(1.8)

Assuming that ∆ > 0 and ∆ tends to 0, Problem (1.5) results in

X̂MAP(y) ∈ arg max
x

pX(x | Y = y). (1.9)

By using Bayes rule, this can be simplified as follows:

X̂MAP(y) ∈ arg max
x

pX(x | Y = y) ⇔

X̂MAP(y) ∈ arg max
x

(
pY (y | X = x)

pX(x)

pY (y)

)
⇔

X̂MAP(y) ∈ arg max
x

(pY (y | X = x) pX(x)) . (1.10)

Due to the monotonicity of the logarithm function this can be rewritten
as:

x̂MAP ∈ arg min
x

Φ(x) + ρ(x) (1.11)

where Φ(x) = − log (pY (y | X = x)) and ρ(x) = − log (pX(x)). The
former function is called a data fidelity term, while the latter a regu-
larization term.

The MMSE estimator can be regarded as an interesting choice. However, in
general due to the involved high-dimensional integral, it is more difficult to
compute. On the other hand the MAP estimator is computationally simple
and consequently offers more flexibility in the choice of a prior.

1.2.2.1 Data fidelity term

In image reconstruction problems, the data fidelity term usually consists of
the noise negative log likelihood or an approximation of it. The assumption
of independence of the noise components translates into:

pY |X=x(x) =
∏

i∈Y
pYi|X=x(yi) (1.12)

and consequently the data fidelity term is given by:

Φ(x) = −
∑

i∈Y
log
(
pYi|X=x(yi)

)
(1.13)
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Usually pY |X=x(y) models simple types of noise. Among them the most
popular are the uniform, Gaussian, Poisson and impulse (also known as
salt-and-pepper) noises. Sometimes the Rayleigh and Gamma noise are
considered. In the following, for brevity, we skip over the description of
noise types other than Gaussian and Poisson.

A zero-mean Gaussian noise is additive and has a probability density
function defined by the normal (N ) distribution i.e. for all i ∈ Y

pYi|X=x(yi) =
1√

2πσ2
e

(yi−[H(x)]i)
2

2σ2 (1.14)

where σ2 is a variance. This leads to

Φ(x) =
1

2σ2

∑

i∈Y
(yi − [H(x)]i)

2. (1.15)

The simple form of this data fidelity term makes the Gaussian noise as-
sumption to be commonly encountered in imaging. By simple we mean that
function (1.15) is convex, non negative and Lipschitz differentiable (pro-
vided that H is linear), which is desirable for solving estimation problems
efficiently. However, nowadays, efficiency can also be guaranteed for more
involved estimation problems. Hence, present studies are not limited to the
simplest Gaussian case.

Poisson noise is signal dependent and can be analytically described by
the following distribution (P): for all i ∈ Y

pYi|X=x(yi) =
([H(x)]i)

yi

yi!
exp(− [H(x)]i) (1.16)

The associated data fidelity term takes the form of a Kullback-Leibler di-
vergence i.e.

Φ(x) =
∑

i∈Y
(yi log (yi) − yi log ([H(x)]i) + [H(x)]i − yi) (1.17)

and by dropping the terms independent of x we can set

Φ(x) =
∑

i∈Y
([H(x)]i − yi log ([H(x)]i)) . (1.18)

Alternatively, one can resort to variance stabilization techniques, which
are defined by a mapping νP replacing random variable Y by Y ′ such that
var (Y ′) does not depend on x. For instance, in the case of Poisson noise it
consists of finding νP such that var (Y ′) is a given constant value i.e. for all
i ∈ Y

Yi ∼ P
(

[H(X)]i
)
⇔ νP (Yi) ≈ N (νP ([H(X)]i), 1) (1.19)
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Classical examples include:

• The Bartlett transform [Bartlett, 1936]: νP (x) = 2 (
√
xi + c)i∈Y. For

c = 3
8 Anscombe transform [Anscombe, 1948] is recovered.

• The Wilson-Hilferty transform [Wilson and Hilferty, 1931]: νP (x) =(
3
√
xi
)
i∈Y

• The Box - Cox transform [Box and Cox, 1964] : νP (x) = (log(xi))i∈Y

• The Haar-Fisz transform [Fryzlewicz and Nason, 2004] where νP is de-
fined in terms of Haar wavelet coefficients and it changes each detailed
coefficient of x by normalizing it by the square root of the correspond-
ing approximation coefficient.

This technique allows us to apply standard methods developed for Gaussian
noise. In such settings, usually a three-step procedure is developed, i.e. for-
ward transform followed by Gaussian data processing and inverse transform.
However the simplicity of this procedure may compromise result quality. In
fact, these approaches are known to provide poor numerical results for low-
intensity signals. Nevertheless, some improvements have been achieved by
providing a better inverse transform [Makitalo and Foi, 2011],[Sampathku-
mar and Arun, 2012]. Another possibility is to use the technique proposed
in [Dupé et al., 2009]. In this work, the authors study the following data
fidelity term:

Φ(x) = ΦG ◦ νP (x) (1.20)

where ΦG is given by (1.15) and νP is defined by the Anscombe transform.
This data fidelity term is shown to be a convex, non negative, Lipschitz
differentiable function, which opens the possibility of employing variance
stabilization techniques while not requiring an inverse transform.

Single noise analysis is attractive due to its simplicity. However many
images are affected by a mixture of noise sources. A Poisson-Gaussian noise
serves as a good example. In this case, pY |X=x(y) models a weighted sum of
a signal dependent Poisson noise and an additive Gaussian noise such that
Y = αZ +W , where Z ∼ P(H(X)), W ∼ N (c, σ2) and α is a Poisson noise
scaling parameter.
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(a) Phantom of a 128 × 128 confo-
cal microscopy image illustrat-
ing a neuron; Image intensities
range between 0.25 and 17.25
(Source: F.X. Dupe homepage http:

//fxdupe.free.fr/software.html)

(b) Image corrupted by Gaussian noise
(c = 0, σ = 1)

(c) Image corrupted by Poisson noise (d) Image corrupted by Poisson-Gaussian
noise (α = 1, c = 0, σ = 1)

Figure 1.2: Influence of different noise types

A related distribution is given by a discrete convolution of Gaussian and
Poisson probability measure, i.e. for all i ∈ Y:

pYi|X=x(yi) =
+∞∑

n=0

e−[H(x)]i([H(x)]i)
n

n!

e−
1

2σ2 (yi−c−αn)2
√

2πσ2
(1.21)

http://fxdupe.free.fr/software.html
http://fxdupe.free.fr/software.html
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which leads to:

Φ(x) =
∑

i∈Y

{
[H(x)]i − log

(
+∞∑

n=0

([H(x)]i)
n

n!

e−
1

2σ2 (yi−c−αn)2
√

2πσ2

)}
. (1.22)

Similarly to the Poisson case, approximations are often considered, e.g.:

• “Gaussianization” [Murtagh et al., 1995] by means of a variance sta-
bilization transform νPG defined as: for all i ∈ Y

Yi ∼ αP
(

[H(X)]i
)
∗ N (c, σ2) ⇔
νPG(Yi, θ) ≈ N (νPG([H(X)]i , θ), 1) (1.23)

where ∗ denotes the discrete convolution operator and θ = [α, c, σ]⊤.

• “Poissonization” procedure [Chakrabarti and Zickler, 2012], i.e. for all
i ∈ Y:

Yi ∼ P
(

[H(X)]i
)
∗ N (c, σ2) ⇔
(
Yi − c+ σ2

)
≈ P([H(X)]i + σ2) (1.24)

• Approximations of gradient involving exponential functions:

.
Φ (x) = H⊤

(
1− exp

(
−1 + 2(α [H(x)]

i
+ c− yi)

2(α [H(x)]
i
+ c + σ2)

)

i∈Y

)
(1.25)

or

.
Φ (x) = H⊤

(
1−

(
yi + σ2

α [H(x)]
i
+ c + σ2

)

i∈Y

)
(1.26)

where Φ denotes the function defined in (1.22) and
.
Φ its gradient.

These two approximations were proposed in [Benvenuto et al., 2008].
They apply only if yi is sufficiently large i.e. according to authors
greater than 30.

Among the listed above approximations, the most popular is Gaussianization
using the generalized Anscombe transform (GAT) given by:

νPG(x, θ) =
2

α

(√
αxi +

3

8
α2 + σ2 − αc

)

i∈Y
(1.27)

The corresponding optimal inverse transform, proposed in [Makitalo and
Foi, 2012], is relevant for three-step approaches. Instead, one can explore
the fact that

Φ(x) = ΦG ◦ νPG(x) (1.28)

exhibits the same desirable properties as (1.20) i.e. it is non-negative, con-
vex and Lipschitz differentiable. The influence of the described noises is
illustrated on the example in Fig. 1.2.
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1.2.2.2 Regularization term

The general objective of regularization terms consists of enforcing prior
knowledge or assumptions about the solution. Additionally, a regulariza-
tion term should meet the following criteria:

• good performance across a class of considered images

• robustness to the choice of parameters

• low computational cost.

Let the number of constraining terms be denoted by R ∈ N
∗. Then, the

regularization combining different terms is called a hybrid regularization,
i.e.

ρ(x) =
R∑

r=1

ψr(Vr(x)) (1.29)

where Vr : X 7→ Vr is an operator, Vr is a subset of a finite dimensional real
Hilbert space. If an operator Vr is parametrized by y we call ψr(Vr(x)) an
image adaptive prior [Peyré, 2011]. Otherwise, it is called a non-adaptive
prior.

In our context, the most common assumption is that the signal of interest
x has a sparse representation with respect to preassigned operator Vr, i.e.
Vr(x) has a small number of large coefficients and zeros elsewhere. According
to [Donoho et al., 1995], an ideal measure of sparsity ψr is the ℓ0 measure,
i.e.

ℓ0(x) =
∑

j∈X
χ(xj) (1.30)

where

χ(xj) =

{
0 if xj = 0

1 otherwise.
(1.31)

However, due to the non-convexity of ℓ0, different measures of sparsity have
been proposed. Among them the ℓ1 measure is the most popular, i.e.:

ℓ1(x) =
∑

j∈X
|xj | (1.32)

where |·| denotes absolute value. In this thesis we will examine the ℓ2 − ℓ0
measure. A detailed discussion is provided in Chapter 7. Next, we illus-
trate the sparsity concept with some examples of regularization terms often
encountered in the context of image restoration.
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Example 1.2.1 The first example concerns the sparsity of the gradient and
higher order differences i.e. the case when Vr is either a gradient operator or
a higher order difference operator. In both cases, depending on the choice
of function ψr, the prior can be either isotropic or anisotropic. Isotropy is
achieved by applying non-separable functions, for instance an ℓ2 measure.
In contrast, in anisotropic formulation, the differences in each direction con-
tributes to the regularization cost independently, for instance using an ℓ1
measure. The sparsity of the gradient is exploited in various image recovery
application. It is enforced by the so-called total variation prior (TV), firstly
introduced in imaging by Rudin, Osher and Fatemi [Rudin et al., 1992a].
In the classical settings, i.e. X = R

N , X = {1, . . . , N} the total variation is
defined by a collection of linear operators Vj , which for all j ∈ X are given
by Vj = [V 1

j , . . . , V
O
j ]⊤, where O states for the number of considered orien-

tations. Often for 2D images O = 2 while V 1
j and V 2

j denote the vertical
and horizontal gradient operators, respectively. A similar concept was stud-
ied in the context of Markov Random Field (MRF) [Geman and Geman,
1984], [Geman and Reynolds, 1992]. In the latter formulation, the sparsity
of the gradient is enforced by defining a pairwise clique potential depend-
ing on the gradient at each location j. The concept of total variation has
been generalized to higher order differences. For instance, the Hessian based
regularization was already discussed in the work by [Geman and Reynolds,
1992], [Li and Huttenlocher, 2008], where it is introduced by the MRF higher
order clique model, while the authors in [Lefkimmiatis et al., 2012] provide
a definition of operators Vr explicitly.

Example 1.2.2 The second example concerns the sparsity of differences
across the directions defined by some image features. This prior is known
as nonlocal total variation (NLTV) and was introduced by Gilboa and Os-
her [Gilboa and Osher, 2008]. It stems from the fact that the choice of direc-
tions pointed by local gradient is regarded as a drawback of TV prior. Hence,
NLTV is associated with image-driven directions i.e. the directions are cho-
sen for all j ∈ X independently, based on a similarity score between pixel
intensity in a local neighborhood. Originally the patch based score [Buades
et al., 2005] has been proposed. However different similarity measures can be
employed. By analogy to TV, NLTV can be isotropic or anisotropic, which is
related to the choice of sparsity measure ψr. NLTV requires a preprocessing
step, which consists of computing weights and the number of orientations.
In the setting from the previous example i.e. X = R

N and X = {1, . . . , N}
NLTV is defined by a collection of linear operators Vj , which for all j ∈ X

are given by Vj = [ω1
jV

1
j , . . . , ω

Oj

j V
Oj

j ]⊤, where the integers (Oj)j∈X state

for the number of orientations and (ωoj )o∈{1,...,Oj} ∈ [0,+∞)Oj is a vector of
weights.
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(a) Fragment of original macro confocal
image (author: Gilbert Engler) Image
parts highlighted by blue and red rect-
angles are illustrated in (b) and (c), re-
spectively

(b) Differences across horizontal and ver-
tical gradient (TV). Local gradient at
pixel (highlighted by red rectangle) is
given by differences of its intensity and
one of adjacent pixel. Green rectangles
highlight horizontal and vertical neigh-
bors.

(c) Differences across the directions defined
by some image features (NLTV). Gradi-
ent at pixel (highlighted by red rectan-
gle) is given by differences of its intensity
and one of pixel, chosen based on given
similarity measure. Chosen neighboring
pixels are highlighted by green rectan-
gles.

Figure 1.3: Illustration of idea behind local and nonlocal total variation.

Example 1.2.3 The next example concerns sparsity in a frame domain.
The frame approach consists of decomposing a signal into a dictionary of
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“atoms”. In general, the sparsity of the coefficients can be increased using
an appropriate frame for the given class of signals. For convenience, let
us assume that X = R

N , then a frame is a collection of vectors Vr, with
r ∈ {1, . . . , RF }, such that v ‖x‖2 6

∑
r∈{1,...,RF } |〈x, Vr〉|2 6 v ‖x‖2, where

v, v are two positive scalars in (0,+∞), 〈·, ·〉 denotes the scalar product and
‖·‖ =

√
〈·, ·〉 the norm of RN . It is worth noticing that in a finite dimensional

case the upper bounds is always satisfied. An interesting special case is when
the frame reduces to an orthonormal basis, i.e. when v = v = 1 and for all
r ∈ {1, . . . , RF } , ‖Vr‖ = 1. Some examples of orthonormal bases include:
discrete Fourier transform, orthogonal wavelets [Mallat, 1999] ... However,
often overcomplete representations are considered, e.g. Gabor transform,
ridgelets [Candès, 1998]. The redundancy of frames is also typical for some
image-adaptive frames, like Principal Component Analysis (PCA) bases [Yu
et al., 2012], and Block Matching 3-D filtering (BM3D) [Danielyan et al.,
2012]. One can also classify frames as tight-frames or non tight-frames. A
frame is tight if and only if v = v. This classification stems from some
mathematical requirements. Indeed, in some algorithms, computation of
the pseudo-inverse of the frame analysis operator is required. This might be
difficult, unless we have a tight frame. In such case, the pseudo-inverse of
the frame analysis operator is given by its transpose (up to a multiplicative
factor). Some examples of tight frames include: orthonormal basis union,
shearlet tight frames [Hauser and Steidl, 2013] and curvelets [Candès and
Donoho, 2001], while BM3D constitues an example of non-tight frame de-
composition.

Another class of priors constitutes hard constraints. They are usually
incorporated into the optimization problem by defining ψr as an indicator
function ιC , where

ιC(x) =

{
0 if x ∈ C
+∞ otherwise

(1.33)

and C is a subset of X .

Example 1.2.4 In the context of image restoration, especially when dealing
with Poisson noise, a common assumption is that for all j ∈ X, xj > 0,
which is known as a positivity constraint. Hence, in standard settings, i.e.
X = R

N , the set C is given by the positive orthant [0,+∞)N .

1.2.3 Estimator quality

Different estimators yield various results on the same dataset. For a given
amount of data, one estimator may prove to be the most attractive according
to a given quality measure. The choice of quality measure is not unique.
The superiority of one estimator over another depends on properties of the
estimator we evaluate. Ideally, an estimator should carry at least the same
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information about the unknown signal x as the observed data, be unbiased
and have minimum variance.

In the context of image restoration, the estimation performance is often
evaluated in terms of image quality assessment. Among various measures,
the most standard ones are:

• SNR: Signal to noise ratio

SNR(x̂, x) = 10 log10

( ∑
j∈X(xj)

2

∑
j∈X(x̂j − xj)2

)
(1.34)

SNR often serves as a gold standard. However its objectiveness is de-
batable. In [Cosman et al., 1994] the author writes that “Common
faults of squared error are that a slight spatial shift of an image causes
a large numerical distortion but no visual distortion and, conversely,
a small average distortion can result in a damaging visual artifact if
all the error is concentrated in a small important region.”, and further
“ The popularity of squared error is partly owed to the wealth of the-
ory and numerical methods available for the analysis and synthesis of
systems which are optimal in the sense of minimizing mean squared
error”. SNR belongs to a family of quadratic error measures, which
also includes, e.g. peak signal to noise ratio (PSNR) and improved
signal to noise ratio (ISNR).

• MAE: Mean absolute error

MAE(x̂, x) =

∑
j∈X |x̂j − xj |
card (X )

. (1.35)

In the context of image restoration, MAE is used as an image qual-
ity assessment measure in the case of images corrupted by Poisson
noise [Dupé et al., 2009].

• Threshold based quality measure

TQM(x̂, x) = C(x̂, x), (1.36)

where C is the cost function defined in (1.8). TQM is less popular than
SNR and MAE, but advocated, for instance in [Abrams et al., 2010].
It is closely related to the receiver operating characteristic (ROC),
popular in signal detection theory, i.e. ROC is used to evaluate the
performance of medical, biometric, and machine learning models, for
instance described in the context of medical image compression in [Cos-
man et al., 1994]. TQM also naturally corresponds to MAP estima-
tor (1.10).
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These criteria owe popularity due to their simplicity. However, it was ob-
served that they do not correlate well with human perceived quality mea-
surement. Pioneering works related to this topic include [Budrikis, 1972],
[Stockham, 1972]. However, a good model of human image perception is yet
to be defined. Thus, the corresponding measures include various heuristics
and usually are adjusted to a given data type [Wang et al., 2002]. Among
them, the most popular are: a structural similarity measure (SSIM) [Wang
et al., 2004], a visual information fidelity criterion (VIF) [Sheikh et al.,
2005], a wavelet-based visual signal-to-noise ratio for natural images measure
(VSNR) [Chandler and Hemami, 2007] and a multi-scale structural similar-
ity measure (MS-SSIM) [Rouse and Hemami, 2008]. Most of the attention
has been devoted to natural images, while to the best of our knowledge there
is no measure designed for instance for confocal imaging data.

It is worth noticing that, in the area of image coding one additionally
uses Shannon block entropy defined as:

SBE(X) = −
∑

b∈B Pb log2(Pb)

B
(1.37)

where b is a block symbol, B the considered set of symbols (codebook),
B the block size, and Pb is the probability of symbol b. This measure
provides an expected value of information contained in a signal. The entropy
reaches its maximum value for signals for which block symbols are uniformly
distributed. The entropy reaches its minimum for signals for which a given
block symbol arises almost surely.

§ 1.3 Algorithms

An estimate of the original image can be computed in several ways, i.e. via
different algorithms. Hence, selecting the best algorithm to solve a given
inverse problem is a challenge by itself [Smith-Miles, 2008], [Kadioglu et al.,
2011]. The question then arises which algorithm is better. Let us recall a
quote by Paul Erdös ”Why are numbers beautiful? It’s like asking why is
Beethoven’s Ninth Symphony beautiful. If you don’t see why, someone can’t
tell you”. By an analogy to algorithms, it is often very difficult to compare
them objectively. In the following, we recall some basic criteria for algorithm
evaluation.

Firstly, an algorithm can be analyzed in terms of its produced solution.
Generally, for iterative algorithms the solution needs to be guaranteed by
algorithm convergence properties and can be either local or global with re-
spect to a given solution set. In some cases, the convergence is further
classified, for instance as monotone or non-monotone. Additionally, in an
infinite dimensional Hilbert space, one considers convergence to be weak or
strong while in discrete optimization, it is a common practice to show that
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the solution obtained is within some bounded distance to the global opti-
mum. The solution of an optimization problem can also be computed by
non-iterative procedures. In such case a theoretical justification of optimal-
ity is still desired.

Secondly, an algorithm can be evaluated in terms of its limitation i.e. the
number of assumptions it requires. Due to some strong assumptions, some
algorithms may only be applicable to a very restricted class of problems. In
the worst case this class may only include problems of little practical use. We
refer to an algorithm with strong assumptions as a demanding algorithm. An
algorithm producing valid results irrespective of data uncertainty is called
robust [Bertsimas et al., 2010].

An algorithm can be also evaluated in terms of its effectiveness, by its
capacity to produce quickly high quality but not necessarily optimal solu-
tions to complex optimization problems. Usually computational complexity
and memory consumption are regarded as objective measures of effective-
ness [Drepper, 2007]. In the case of iterative algorithms one can additionally
estimate efficiency by inspecting a number of iterations before convergence,
a predisposition to parallelization, and processing time.

Finally, the significance of an algorithm needs to be analyzed. The prac-
tical value of an algorithm can be judged based on its usefulness either in
a broad spectrum of applications or for a problem which has never been
addressed before. Significance of an algorithm can also result from its the-
oretical originality.

A digital image is naturally discrete, i.e. each pixel takes a value in a
finite set. Nevertheless, imaging problems are often formulated in a continu-
ous framework, by allowing pixels to take value from a continuous set. Con-
sequently, in the context of image processing, the continuous and discrete
optimization fields are increasingly intertwined. Often approaches cross the
boundaries between discrete and continuous optimization. Examples include
convex relaxation techniques [Pock et al., 2010], [Zach and Kohli, 2012]. In
the following:

• we propose an optimization framework featuring both continuous and
combinatorial techniques (Chapters 2 and 4). Our approaches address
problems, in which all of the variables take values from an unknown
discrete set. The discrete set is described by its cardinality and is
known to be an inclusion of a given continuous set. We formulate
the problem in a discrete-continuous framework, while attempting to
bring together the best of both worlds.

• We address the same practical problem, i.e. image denoising with
ℓ2 − ℓ0 sparsity measures, in discrete (Chapter 6) and continuous
(Chapter 7) frameworks, which provide an opportunity to compare
the two approaches with respect to the considered applications.
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The description of mathematical tools used in this thesis can be found in
books on convex optimization [Boyd and Vandenberghe, 2004], [Bauschke
and Combettes, 2011], combinatorial optimization [Papadimitriou and Stei-
glitz, 1982], [Graham and Lovász, 1995] and incremental gradient methods
[Lange, 2010]. Hence in the following we only provide basic ideas behind
these methods and survey some of their properties.

1.3.1 Continuous optimization

We present two strategies for deriving a continuous optimization algorithm.
The first relies on majorize-minimize the principle (MM), while the second
on proximal minimization. Based on these general concepts, many algo-
rithms have been derived, within them some focus on image reconstruction
problem. Generally these algorithms prove to be useful for high-dimensional
problems. In such a context, Model (1.1) is formulated in Hilbert spaces i.e.
X and Y are finite dimensional real Hilbert spaces.

1.3.1.1 Majorize-Minimize Framework

MM strategy consists of substituting a difficult problem into a series of sim-
ple ones. Usually in optimization routines, simplicity is highly rated. Diffi-
culties can be evaded by e.g. separating variables involved in optimization
problem and avoiding matrix inversion. More precisely, in the MM frame-
work one minimizes at each iteration a carefully chosen surrogate function
g instead of the original one f . This function is called a tangent majorant
and needs to satisfy the following conditions at x′ ∈ X :

∀ x ∈ X , g(x, x′) > f(x) (1.38)

and

g(x′, x′) = f(x′). (1.39)

MM strategy guarantees that a function value sequence
(
f(x(ℓ))

)
ℓ∈N is mono-

tonically nonincreasing, where x(ℓ+1) minimizes the tangent majorant func-
tion g

(
·, x(ℓ)

)
and ℓ denotes the current iteration index. Indeed (1.38) and

(1.39) imply that, for every ℓ:

f(x(ℓ+1)) 6 g
(
x(ℓ+1), x(ℓ)

)
6 g

(
x(ℓ), x(ℓ)

)
= f(x(ℓ)). (1.40)

For the sake of illustration, consider a simple case when X = R (Fig. 1.4).
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x(ℓ)x(ℓ+1)x(ℓ+2)

The function sequence
(
f(x(ℓ))

)

ℓ∈N

is monotonically nonincreasing, where x(ℓ+1) and

x(ℓ+2) are the minimum of tangent majorant functions at x(ℓ) and x(ℓ+1) denoted in
blue and red, respectively. The majorants are associated with the original function
f denoted in black.

Figure 1.4: Illustration of idea behind Majorize-Minimize methods

The design of an algorithm in the MM framework consists of a choice
of a sequence of tangent majorant functions. Generally, the sequence of
majorant functions can be iteration dependent [Jacobson and Fessler, 2007],
e.g. adapted based on an observed progress in the previous iterations. They
can also be block alternating, i.e. at each iteration a domain of tangent
majorant function can be restricted to a given subset of X ×X [Fessler and
Hero, 1994]. Regardless of which modeling technique is used, minimization
of majorizing function needs to be computationally simpler than the original
function. Many standard methods of constructing majorizing functions are
summarized in [Lange, 2010, Chapter 12.3].

Among others, they include a quadratic strategy adapted to the problem
considered in Chapter 7, which applies to Lipschitz differentiable functions.
The basic idea consists of majorizing the second-order Taylor expansion of
f , i.e. if f is a twice differentiable function, ∀ (x, x′) ∈ X 2:

f(x) = f(x′) + ∇f(x′)⊤
(
x− x′

)
+

1

2

(
x− x′

)⊤∇2f(x′′)
(
x− x′

)

6 f(x′) + ∇f(x′)⊤
(
x− x′

)
+

1

2

(
x− x′

)⊤
A
(
x− x′

)

= g(x, x′) (1.41)
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where x′′ lies in the line segment from x to x′ and A is a positive definite
matrix satisfying the following condition: for every x ∈ X , matrix A −
∇2f(x) is positive definite.

In the context of this thesis, it is worth noticing that Expectation - Max-
imization (EM) algorithms can be regarded as a special case of MM methods
with a Jensen’s inequality based majorant [Lange, 2010, Chapter 12.4], [Ja-
cobson and Fessler, 2007]. More precisely, the direct consequence of Jensen’s
inequality is that the following holds. Let f be given by − log pY |X(y) and Z
be some hidden random variable in a discrete set Z, then, for ∀ (x, x′) ∈ X 2:

f(x) = − log
(
pY |X=x(y)

)∑

z∈Z
pZ|Y=y,X=x′(z)

= −
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pY,Z|X=x(y, z)

pZ|X=x,Y=y(z)

)

= −
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pY,Z|X=x(y, z)

)

+
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pZ|X=x,Y=y(z)

)

= −
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pY,Z|X=x(y, z)

)

+
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pZ|X=x,Y=y(z)

pZ|X=x′,Y=y(z)

)

+
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pZ|Y=y,X=x′(z)

)

6 −
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pY,Z|X=x(y, z)

)

+ log

(∑

z∈Z
pZ|X=x′,Y=y(z)

pZ|X=x,Y=y(z)

pZ|X=x′,Y=y(z)

)

+
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pZ|Y=y,X=x′(z)

)

= −
∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pY,Z|X=x(y, z)

)

︸ ︷︷ ︸
EM term

+

∑

z∈Z
pZ|Y=y,X=x′(z) log

(
pZ|Y=y,X=x′(z)

)

︸ ︷︷ ︸
Entropy term

= g(x, x′). (1.42)

In the above derivation, we have adopted a unified notation for the proba-
bility density functions, discrete probabilities and mixed discrete-continuous
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probability measures. In practice one just needs to minimize the EM term.
This is equivalent to computing a conditional expectation and maximizing
the obtained result. Hence, the first part of the tangent majorant in (1.42)
is equal to E [log (pY,Z(y, Z | X = x)) | Y = y,X = x′]. The EM concept is
illustrated by the algorithm derived in Chapter 3.

There are also many others algorithms that fit into the MM framework.
For instance the concave-convex procedure (CCCP) [Yuille and Rangarajan,
2003] can be regarded as an MM algorithm with a linear majorant. Hence,
often the properties of MM types of algorithms were established indepen-
dently, for a given majorant. In this thesis, we recall some of the results
related to the general MM framework and EM algorithm. The global con-
vergence of MM types of algorithms is ensured for strictly convex, coercive
and differentiable f [Lange, 2004, Chapter 10.3]. The local convergence
result of the EM algorithm under the joint continuity assumption was pre-
sented in [Wu, 1983], i.e. under the assumption that the majorant function
is continuous in terms of x and x′. These results were generalized to a
wider class of MM procedures in [Fessler and Hero, 1995], i.e. iteration de-
pendent MM. Then, in [Jacobson and Fessler, 2007] the authors relax the
continuity assumption in favor of the requirement that the tangent majorant
functions are locally upper bounded around x′. Further studies and conver-
gence results for non-convex functions f are provided in Chapter 7. Besides
their convergence guaranties and their simplicity, MM-type algorithms offer
a great efficiency in some instances [Chouzenoux et al., 2011]. However, this
does not generalizes to the EM case, whose convergence rate can be quite
slow, depending on the amount of missing information. This justifies an
extensive research focusing on accelerating the EM algorithm [Lange, 1995],
[Liu et al., 1998],[Fischer and Kersting, 2003].

1.3.1.2 Parallel-Proximal Splitting algorithms

Proximal splitting strategy consists of decomposing f into a sum of simpler
functions (fr)16r6R such that either an element of the sum fr, e.g. f1, is
µ-Lipschitz differentiable with µ ∈ (0,+∞), i.e.

∀(x, x′) ∈ X 2,
∥∥∇f1 (x) −∇f1

(
x′
)∥∥ 6 µ

∥∥x− x′
∥∥ (1.43)

or the closed form solution of the associated proximity operator exists. Pro-
vided that this is possible, the proximal algorithm iterations can become
more efficient than alternative methods, i.e. subgradient iterations. Both
subgradient and parallel-proximal splitting algorithms are particularly at-
tractive due to their capability to deal with nonsmooth problems. However,
proximal methods are often considered to be more stable [Bertsekas, 2011].
The presentation here features these algorithms. Among them, we discuss
primal-dual proximal splitting algorithm, which retains i) the simplicity of
iterative projection algorithms while retaining the capacity to handle non
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differentiable functions fr and ii) the flexibility of forward-backward itera-
tions together with the capacity of handling the problem corresponding to
the minimization of a sum of more than two functions. Most of the presented
results are valid under the assumption that f ∈ Γ0(X ).

Definition 1.3.1 Γ0(X ) is the class of lower semicontinuous convex func-
tions f : X 7→ (−∞,+∞] such that their domain dom f is nonempty.

The splitting procedure results in an additive cost problem of the fol-
lowing form:

∀x ∈ X , f(x) =

R∑

r=1

fr(x), (1.44)

which is often encountered in practice. For instance, it arises naturally in
the context of MAP estimator (1.11), where the component functions fr are
defined by the data fidelity and the regularization term, possibly hybrid in
(1.29). If at least one function fr is nondifferentiable on at least one point,
the problem (1.44) is called nonsmooth. The optimization algorithms associ-
ated with nonsmooth problems are often related with a concept generalizing
the gradient, namely the subdifferential.

Definition 1.3.2 The subdifferential [Rockafellar and Wets, 2004] of a func-
tion f ∈ Γ0(X ) at x ∈ X , denoted by ∂f(x), is defined as:

∂f(x) :=
{
x′ ∈ X | ∀x′′ ∈ X , f(x) + x′⊤

(
x′′ − x

)
6 f(x′′)

}
(1.45)

It admits the following geometric interpretation: x′ 7→ f(x) + x′⊤ (x′′ − x)
is a lower bounding tangent function of f at x. ∂f is set-valued and ∂f(x)
is nonempty for any x in the relative interior of dom (f).

The usefulness of this concept becomes clearer in view of the following clas-
sical result relating subgradient and optimality. For any function f , x is a
minimizer of f if

0 ∈ ∂f(x) (1.46)

This inclusion principle is essential in developing nonsmooth optimization
algorithms. More precisely the non-differentiability is handled via the sub-
differential or via the closely related concept of proximity operator.

Definition 1.3.3 The proximity operator [Rockafellar, 1976] of a function
f ∈ Γ0(X ) at x, denoted by proxf : X 7→ X , is defined as:

∀x ∈ X , proxf (x) := arg min
p∈X

f(p) +
1

2
‖x− p‖2 (1.47)

The proximity operator is non-expansive, i.e.
∥∥proxf (x) − proxf (x′)

∥∥ 6

‖x− x′‖ for every (x, x′) ∈ X 2.
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In the following, a proximal algorithm is defined as one involving the com-
putation of proximity operators. The proximity operator was introduced in
[Moreau, 1965] as a generalization of orthogonal projections. The funda-
mental result about this operator is the one relating the proximity operator
and the subdifferential:

∀x ∈ X , p = proxf (x) ⇔ x− p ∈ ∂f(p) (1.48)

which implies that proxf (x) = x if and only if 0 ∈ ∂f(x), i.e. the fixed point
set of proximity operator of f is precisely the set of minimizers of f . Hence,
one can find the optimal x by testing the condition proxf (x) = x, which
is the key to the Rockafellar’s proximal point algorithm [Rockafellar, 1976],
i.e.

∀ℓ ∈ N, x(ℓ+1) = proxγ(ℓ)f

(
x(ℓ)
)
, (1.49)

where (γ(ℓ))ℓ∈N is a sequence of positive, possibly varying stepsizes. The
above algorithm can be described as follows: an update is based on the
minimization of function f in the neighborhood of a current x(ℓ). There
are several extensions of this method, which differ in the update scheme,
assumptions about the number of involved functions R and the presence of
smooth terms. In this thesis, we use proximal methods, which incorporate
each functions fr via proximity operator, i.e. PPXA+ [Pustelnik et al., 2011]
in Chapter 2 and Douglas-Rachford [Lions and Mercier, 1979] in Chapter 3.
These algorithms are related to the alternating-direction method of multi-
pliers [Fortin and Glowinski, 1985]. We refer to [Combettes and Pesquet,
2011] for a survey. Moreover, motivated by the problem addressed in Chap-
ter 5, we use primal-dual splitting algorithms, which incorporate functions
(fr)16r6R either via their proximity operators or via their gradients.

The presence of a smooth term becomes important if: 1) at least one
of the component functions fr is differentiable, 2) computing gradient of
differentiable fr presents some advantages over computing its proximity op-
erator, e.g. it is more efficient. This can be illustrated with the example
of image restoration in the presence of Poisson-Gaussian noise addressed in
Chapter 5. However, not all proximal methods offer the required flexibil-
ity. More precisely, in the case when R = 2, one can employ either the
forward-backward algorithm [Lions and Mercier, 1979], [Bach et al., 2012,
Chapter 3]:

∀ℓ ∈ N, x(ℓ+1) = proxγ(ℓ)f1

(
x(ℓ) − γ(ℓ)∇f2

(
x(ℓ)
))

(1.50)

or the forward-backward-forward algorithm [Tseng, 2000]:

∀ℓ ∈ N, x(ℓ+1) =proxγ(ℓ)f1

(
x(ℓ) − γ(ℓ)∇f2

(
x(ℓ)
))

− γ(ℓ)∇f2
(

proxγ(ℓ)f1

(
x(ℓ) −∇f2

(
x(ℓ)
)))

, (1.51)
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where f1 ∈ Γ0(X ) and f2 ∈ Γ0(X ) are assumed to be µ-Lipschitz differen-
tiable. The important, well known special case of algorithm (1.50) is the
projection gradient algorithm [Polyak, 1987], which is recovered for f1 given
by an indicator function (1.33). In the case of R > 2 one can resort to
primal-dual techniques proposed in [Combettes and Pesquet, 2012] and [Vu,
2011],[Condat, 2012], where the former one can be regarded as an exten-
sion of forward-backward-forward algorithm (1.51), while the latter one is
an extension of forward-backward algorithm (1.50). We should also mention
the Chambolle-Pock algorithm [Chambolle and Pock, 2011], which can be
viewed as a special case of the algorithm by Vu. These algorithms are de-
signed to jointly solve the primal and dual formulations of an optimization
problem by use of the Fenchel duality theorem.

Definition 1.3.4 The Fenchel-Rockafellar duality [Bauschke and Com-
bettes, 2011, Chapter 15] theorem states that for any convex functions
f1 : X 7→ R and f2 : V 7→ R:

inf
x∈X

{f1(x) + f2(V x)}
︸ ︷︷ ︸

Primal problem

= sup
v∈V

{−f⋆1 (V ⋆v) − f⋆2 (−v)}
︸ ︷︷ ︸
Fenchel-Rockafellar dual problem

(1.52)

where f⋆ : X 7→ R is the convex-conjugate of f : X 7→ R [Bauschke and
Combettes, 2011, Chapter 13] i.e.

∀v ∈ X , f⋆ (v) = sup
x∈X

(〈x, v〉 − f (x)) , (1.53)

V : X 7→ V is a linear operator and V ⋆ is its adjoint. In such settings, primal
and dual variables refer to x and v, respectively.

In a primal-dual scheme, the dual variable is used in the derivation of an
update of the primal variable. From a practical point of view, the considered
primal-dual algorithms [Combettes and Pesquet, 2012], [Vu, 2011] have the
great advantage of avoiding a computationally expensive inversion of the
linear operators involved into some optimization problems and that they
are error-tolerant. More precisely, they are robust to an error resulting from
inexact computation of a gradient or a proximity operator, provided that
this error is absolutely summable.

In the context of our work, it is worth noticing that the EM algorithm,
discussed previously in the context of MM methods, can also be recast as a
proximal point algorithm with a Kullback information penalty. This inter-
pretation was firstly presented in [Chretien and Hero, 1998] and then further
results were presented in [Tseng, 2004], [Chretien and Hero, 2008].

In general, proximity methods are known for their good convergence
properties. However, most of the results are established for convex functions,
while there exist very few results related to the non-convex case [Kaplan
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and Tichatschke, 1998], [Attouch et al., 2011], [Sra, 2012]. In the following,
we apply mostly proximal methods to convex problems, apart of Douglas-
Rachford in Chapter 3. The proximal methods are also considered to be
efficient, provided that the computation of the proximity operator is rela-
tively simple. Ideally, from the efficiency point of view, they should admit a
closed-form expression. Examples of such proximity operators are provided
in [Combettes and Pesquet, 2011], [Bach et al., 2012, Chapter 3]. For fur-
ther properties of proximity operator we refer to [Bauschke and Combettes,
2011, Chapter 23].

1.3.2 Discrete optimization

Similarly to continuous optimization, discrete optimization is a vast field
offering mathematical methods to challenging problems, some of them often
encountered in image processing and computer vision. Examples of discrete
methods include among others iterated conditional mode [Besag, 1986], dy-
namic programming [Amini et al., 1990], [Felzenszwalb and Huttenlocher,
2005], message passing [Felzenszwalb and Huttenlocher, 2004], [Kolmogorov,
2006] and graph-cut algorithms. For a survey, we refer to [Felzenszwalb and
Zabih, 2011]. We focus on graph-cut methods, which has had a signifi-
cant and lasting impact on image processing and computer vision. Ideas
on the use of graph-cuts in image processing go back at least to the work
by [Greig et al., 1989], where they were employed for denoising binary im-
ages. Later, these algorithms were shown to be useful for various image
processing problems, e.g. stereo-vision [Woodford et al., 2008], multiview
reconstruction [Sinha et al., 2007], motion analysis [Xiao and Shah, 2007],
segmentation [Boykov and Jolly, 2001] and image restoration [Darbon and
Sigelle, 2006]. In such a context, Model (1.1) is formulated in a discrete
space i.e. X is a discrete subset of finite dimensional real Hilbert spaces
while Y can be either a finite dimensional real Hilbert spaces or one of its
subsets.

1.3.2.1 Graph-cut framework

Graph-cut strategy consists of presenting an optimization problem on a di-
rected graph, and then solving it by applying efficient max-flow/min-cut
algorithms. The global convergence of these methods is guaranteed in the
binary case, i.e X = {0, 1}N . A number of discrete problems have been
shown to be equivalent to a “binary” min-cut problem, e.g. closure/selection
problem [Balinski, 1970], [Picard, 1976], [Hochbaum, 2004]. Hence, firstly
our discussion is limited to this scenario.

Definition 1.3.5 A directed graph G is defined by a set of nodes X and a
collection of ordered pairs of elements of X, i.e. a set of edges E.
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Alternatively, one defines a graph by X and a node-arc incident-matrix E.
It is defined as follows [Papadimitriou and Steiglitz, 1982, Definition 3.3]:
let N = card(X) and M = card(E), then the node-arc incidence-matrix E
is the N ×M matrix such that: ∀k ∈ {1, . . . , N} , ∀e ∈ {1, . . . ,M}

E(k, e) =





1 if E(e) = (i, j) and i = k

−1 if E(e) = (i, j) and j = k,

0 otherwise

(1.54)

where E(e) denotes the e-th element of E. In the graph-cut routine, there
is a variable xi associated with each node i ∈ X. Moreover, one assumes X

to include two special nodes {s, t} with assigned values xs = 0 and xt = 1.
Nodes s and t are called the source and sink, respectively. An example of
directed graph is provided in Fig. 1.5.

xs

xt

xa

xb

xc

xd




1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 −1 1 0 0 0
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 0 1 0 −1
0 0 0 0 1 −1




︸ ︷︷ ︸
E⊤




xs
xa
xb
xc
xd
xt




︸ ︷︷ ︸
x

︸ ︷︷ ︸
X = {s, a, b, c, d, t}
E = {(s, a) , (s, b) , (a, c) , (b, a) ,

(b, d) , (c, d) , (c, t) , (d, t)}

Figure 1.5: An example of a directed graph

The problem then is to find an optimal solution (X0,X1) such that X =
X0∪X1, X0∩X1 = ∅, s ∈ X0 and t ∈ X1 to an associated objective function
f , which assigns to each edge (i, j) ∈ E the cost ωi,j ∈ (0,+∞]. The cost ωi,j
is usually called the capacity of the edge (i, j). A collection of ωi,j forms a

vector ω ∈ (0,+∞]M . Given sets X0 and X1 one finds x using the following
relation:

∀i ∈ X, , xi =

{
0 if i ∈ X0

1 if i ∈ X1.
(1.55)

A graph G = (X,E) can be partitioned into two disjoint sub-graphs G0 =
(X0,E0) and G1 = (X1,E1) by removing the edges connecting the two parts,
i.e. by a cut. The capacity of the cut is defined as the sum of the capacities
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of its forward part, i.e

cut (X0,X1) =
∑

i ∈ X0, j ∈ X1

(i, j) ∈ E

ωi,j (1.56)

An example illustrating a cut with its forward and backward part is provided
in Fig. 1.6.

xs

xt

xd

xbxa

xc

(a)

xs

xt

xd

xbxa

xc

(b)

xs

xt

xd

xbxa

xc

(c)

(a,b,c) illustrate separating edges, edges involved in the cost of the cut (forward ones)
and edges omitted in the cost of the cut (backward ones), respectively. Edges of interest
are denoted with dashed arrows.

Figure 1.6: A cut

Definition 1.3.6 The min-cut problem takes the following form. Given the
graph G(X,E) and ω, find

min
X0,X1

cut (X0,X1) (1.57)

such that s ∈ X0 and t ∈ X1.

The graph-cut problem defined above admits also the following formulation:

min
x∈X

∑

(i,j)∈E
ωi,j (1 − xi)xj such that xs = 0, xt = 1. (1.58)

Introducing the binary variable di,j = (1 − xi)xj transforms (1.58) into the
minimization of a linear functional over a finite set of vectors. Alternatively,
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one can attempt to minimize over the convex hull of this finite vector set, i.e.
a convex polytope [Graham and Lovász, 1995, Chapter 30]. In this fashion,
Problem (1.58) can be rewritten as

min
x∈X , d∈{0,1}M

ω⊤d such that E⊤x+ d > 0, d > 0, xs = 0, xt = 1,

(1.59)
which is a standard Integer Linear Program. Moreover, the total unimod-
ularity 1 of matrix E implies that the solutions of the linear programming
(LP) relaxation of the Problem (1.59) has integral solutions. Hence, one can
resort to LP techniques for solving this problem. However, in some instances
discrete algorithms are considered to be more efficient. These algorithms use
often a dual formulation to min-cut problem (as defined in 1.3.6), namely the
max-flow problem. The max-flow problem is defined over the dual variable
to x, i.e. v. The vi,j ∈ [0,+∞) associated with each (i, j) ∈ E is called flow,

while a collection of all vi,j forms a vector v ∈ [0,+∞)M . If additionally v
satisfies the flow conservation constraint, i.e.

∀ i ∈ X \ {s, t} ,
∑

(i,j)∈E
vi,j −

∑

(j,i)∈E
vj,i = 0 (1.60)

and the capacity constraint, i.e.

∀ (i, j) ∈ E, 0 6 vi,j 6 ωi,j (1.61)

then it is called s-t flow. The max-flow problem is related to the concept
of an s-t flow polytope Cflow , i.e. the set of all vectors v ∈ R

M satisfying
constraints (1.60) and (1.61).

Definition 1.3.7 The max-flow problem [Papadimitriou and Steiglitz, 1982,
Chapter 5.6] consists of finding the maximum value of total flow vs from the
source node s to the sink node t through the graph G(X,E), subject to the
flow conservation (1.60) and the capacity (1.61) constraints, i.e.

max
v∈Cflow

vs (1.62)

where vs =
∑

(s,i)∈E vs,i.

Similarly like in the case of min-cut problem, by the total modularity of
incidence matrix E, if ω is integral, then the s-t flow polytope has integral
vertices [Graham and Lovász, 1995, Chapter 30]. More precisely, the max-
flow problem defined above admits the following linear formulation:

max vs such that Ev + vsz 6 0, v 6 ω, −v 6 0 (1.63)

1Each column of matrix E is a vector for which all elements are equal to 0 except one
equal to −1 and one equal to 1.
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where z = (zi)i∈X is a vector in R
N such that

zi =





−1 if i = s

1 if i = t

0 otherwise.

(1.64)

The strong duality between min-cut and max-flow problems was proved in
[Elias et al., 1956], [Ford and Fulkerson, 1962]. This classical result is known
as the max-flow/min-cut theorem.

Definition 1.3.8 The max-flow/min-cut theorem [Papadimitriou and Stei-
glitz, 1982, Chapter 6.1] states that the value vs of any s-t flow is no greater
than the capacity cut (X0,X1) of any s-t cut. Furthermore the value of the
maximum flow equals the capacity of the minimum cut, and a flow v and a
cut (X0,X1) are jointly optimal if and only if

∀ (i, j) ∈ E, i ∈ X1, j ∈ X0, vi,j = 0 (1.65)

∀ (i, j) ∈ E, i ∈ X0, j ∈ X1, vi,j = ωi,j . (1.66)

Hence, the optimal set of edges separating X0 and X1 includes the saturated
ones in the forward direction and the empty ones in the backward direction.

The max-flow/min-cut theorem is a special case of linear programming du-
ality. For further discussion, we refer to [Graham and Lovász, 1995].

Several algorithms solving min-cut/max-flow problem have been pro-
posed. For a brief review in the context of image processing we refer to
[Boykov and Kolmogorov, 2004]. Classical examples include Ford and Fulk-
erson [Ford and Fulkerson, 1962] and Push-Relabel [Goldberg and Tarjan,
1988] algorithms, whereas the former is the first polynomial time algorithm
for globally optimal solution [Papadimitriou and Steiglitz, 1982, Theorem
6.3]. Parallel algorithms with some restrictions were studied in [Delong and
Boykov, 2008], [Strandmark et al., 2011].

1.3.2.2 Graph-cut algorithms in imaging

The theory of graph cuts was first applied to image processing in [Greig et al.,
1989], where the authors consider a problem of binary image denoising, i.e.
∀j ∈ X, xj ∈ {0, 1}. The author proposed to rewrite Problem (1.58) in the
following fashion: let xs = 0, xt = 1,

arg min
x∈X

∑

(s,i)∈E
ωs,ixi +

∑

(i,t)∈E
ωi,t(1 − xi) +

∑

(i, j) ∈ E

i 6= s, j 6= t

ωi,j(1 − xi)xj (1.67)

and on the one hand to view the sums involving ωs,i and ωi,t as a data
fidelity term; and on the other hand the sum with ωi,j , i 6= s, j 6= t as a
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regularization. More generally, in the graph cut framework, one usually
considers an additive cost problem with the objective function:

f(x) =
∑

(i,j)∈E
fi,j (xi, xj) . (1.68)

The function fi,j can be represented on the graph provided that it is sub-
modular [Kolmogorov and Zabih, 2004]. The submodularity was originally
defined for functions of subsets of X [Murota and Tamura, 2004]. However,
in the following, we adopt the equivalent definition proposed in [Kolmogorov
and Zabih, 2004], which is more popular in the image processing community.

Definition 1.3.9 A function fi,j : {0, 1}2 7→ R is submodular if the follow-
ing condition holds:

fi,j (0, 0) + fi,j (1, 1) 6 fi,j (0, 1) + fi,j (1, 0) (1.69)

This condition generalizes to a multilabel case [Kolmogorov and Rother,
2007] i.e. fi,j : L2 7→ R, where L is a finite set of real values with cardinality
greater than two and:

fi,j (lβ , lγ) + fi,j (lα, lα) 6 fi,j (lβ , lα) + fi,j (lα, lγ) , (1.70)

for any (lα, lβ , lγ) ∈ L.

Most of the image processing problems are multilabel, i.e. ∀j ∈ X \
{s, t} , xj ∈ L. Despite of the multi-label character of most image pro-
cessing problems, in the graph-cut framework, they are still represented
as binary ones. The goal is to find a new problem representation, which
can be formulated as a maximum flow or a minimum cut problem. Hence,
graph-cut algorithms may be regarded as method for minimizing quadratic
and cubic submodular pseudo-boolean functions [Boros and Hammer, 2002],
[Kohli et al., 2008], [Strandmark and Kahl, 2012]. In such settings, usu-
ally either a multiple binary decision problem or a single binary prob-
lem is considered. More specifically, we present an iteration of a multi-
label graph-cut algorithm as a three-step procedure, i.e. forward trans-
form νB followed by binary data processing and inverse transform ν−1

B i.e,

νB : {0, 1} × LN−2 × {0, 1} 7→ {0, 1}(N−2)K+2 such that the new additive
data cost function is

f ′(x′) =
∑

(i,j)∈E′
f ′i,j(x

′
i, x

′
j), (1.71)

where for a given positive integer K

x′ = νB(x)

=
(
x′j
)
j∈X′

=
(
xs, (xj,k)k={1,...,K},j∈X\{s,t} , xt

)
(1.72)
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is a vector in {0, 1}N ′
, where N ′ = (N −2)K+2. Ideally, given a function f

one needs to find νB such that for all (i, j) ∈ E
′, f ′i,j is submodular. This is

illustrated in the case study in Chapter 6, where the quantized-convex split
moves algorithm is discussed in the context of function f with truncated-
convex terms. Next, we illustrate the presented above general idea behind
multilabel graph-cut algorithms with classical examples.

Example 1.3.10 The first example concerns the Ishikawa method [Ishikawa,
2003]. Let L be an ordered set of evenly spaced labels, i.e. ∀k, lk − lk−1 =
lk+1 − lk, lk ∈ R. The author proposes to associate ∀j ∈ X \ {s, t} xj with
binary variables (xj,k)k∈{1,...,L}, where L denotes the cardinality of L and to

define ν−1
B such that for all j ∈ X it returns xj = li where i = L−∑L

k=1 xj,k.
One deduces that the resulting graph G (X′,E′) related with binary variables
has (N−2)L+2 nodes, i.e. card (X′) = (N−2)L+2, where N = card (X) (2
is due to the special nodes {s, t}). We discuss the details of a graph construc-
tion (the edge set E

′ and a vector ω′) in Chapter 2. The method proposed
by Ishikawa is known for its global convergence properties in the case of
some non-convex objective functions, i.e. in the presence of a non-convex
data fidelity and a convex regularization term.

Example 1.3.11 The second example concerns the moves framework. This
strategy consists of solving a graph-cut problem iteratively. Hence, it can
be regarded as a multiple binary decision problem. The resulting function
value sequence

(
f
(
x(ℓ)
))
ℓ∈N is monotone nonincreasing. At each iteration,

∀j ∈ X \ {s, t} a binary variable x
(ℓ)
j,b is assigned to x

(ℓ)
j , i.e. card (E′) =

card (E). The moves algorithms differ in the choice of ν−1
B . Often in the

case of x
(ℓ+1)
j,b = 0, the associated signal x

(ℓ+1)
j remains unchanged with

respect to previous iteration, i.e. x
(ℓ+1)
j = ν−1

B (0) = x
(ℓ)
j . However, in the

case of x
(ℓ+1)
j,b = 1 the mapping ν−1

B varies depending on the choice of move
algorithm. The examples of moves algorithms include α-expansion [Boykov
et al., 2001], α − β swap [Boykov et al., 2001] and the Murota gradient
algorithm [Murota, 2004]. Some moves algorithms, e.g. the α-expansion
move and α− β swap are appropriate for computing approximate solutions
of non-convex problems, while for the other the optimality is guaranteed,
e.g. Murota gradient descent algorithm for convex functions. The graph
construction (the set of edges E

′ and the definition of ω′) for α-expansion
algorithm is discussed in Chapter 2, while Murota gradient move algorithm
is discussed in Chapter 6.

It is worth noticing that some works in convex optimization were inspired
by min-cut/max-flow results. In the continuous domain, the min-cut/max-
flow problem was studied among others in [Strang, 1983], [Nikolova et al.,
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2006], [Appleton and Talbot, 2006], [Pock et al., 2010], [Strang, 2010], [Yuan
et al., 2010], [Couprie et al., 2011] and [Zach and Kohli, 2012].
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Discrete-continuous framework for vector

quantization

Quantization, defined as the act of attributing a finite number of levels to
an image, is an essential task in image acquisition and coding. It is also
intricately linked to many image analysis tasks, such as denoising and seg-
mentation. In this chapter1, we investigate vector quantization combined
with regularity constraints. This is a little-studied area which is of interest,
in particular, when quantizing in the presence of noise or other acquisition
artifacts. We present an optimization approach to the problem involving
a novel two-step, iterative, flexible, joint quantizing-regularization method
featuring both convex and combinatorial optimization techniques. We show
that when using a small number of levels, our approach can yield lower en-
tropy and better quality images in terms of SNR, than conventional optimal
quantization methods.

§ 2.1 Introduction

Quantization is a fundamental task in digital image processing and informa-
tion theory [Gersho and Gray, 1992]. It plays a prominent role in early pro-
cessing stages such as image digitization, and it is essential in lossy coding.
It bears close resemblance to high level tasks such as denoising, segmenta-
tion, and data classification. In particular, quantizing a grey scale image in
Q levels can be viewed as a classification or segmentation of the image in
Q areas following an intensity homogeneity criterion. Each segmented area
then corresponds to a decision class of the quantizer.

A classical solution for designing an optimal quantizer of a monochrome
image is provided by the celebrated Lloyd-Max (LM) algorithm [Max, 1960],

1Published in JMIV, 2011

41



42 Chapter 2. Discrete-continuous framework for vector quantization

[Lloyd, 1982]. An extension to the general vector case is the Linde–Buzo–
Gray(LBG) algorithm [Linde et al., 1980]. The LBG algorithm proceeds
iteratively by alternatively optimizing codevectors and decision classes so as
to minimize a flexible quantization error measure. It is known to present
good convergence properties in practice [Wu, 1992b], [Du et al., 2006]. How-
ever, one drawback is the lack of spatial regularity of the quantized image.
Spatially smooth properties may be useful in low-rate compression when
using advanced coding algorithms (e.g based on run length, differential or
multi-resolution techniques), especially in the context of medical and low
bit-rate video compression applications like compression of confocal laser
scanning microscopy image sequences [Arya et al., 2005] or mobile televi-
sion [Kawada et al., 2006]. It may also be of interest for quantizing images
featuring noise. In the latter case, quantization can be viewed as a means
for denoising discrete-valued images that are piecewise constant.

Since the LBG algorithm is closely related to K-means, which are widely
used in data classification, a possibility to enforce spatial smoothness of the
quantized image would be to resort to fuzzy C-means clustering techniques
and their extensions [Chuang et al., 2006]. These algorithms are however
based on local measures of smoothness. The C-means with total-variation
global smoothness constraint is discussed in [He et al., 2012]. Furthermore,
an interesting approach was proposed by Alvarez et al. [Alvarez and Esclaŕın,
1997]. However, this method is based on reaction-diffusion PDEs and it
addresses the quantization of grey-scale images, while our approach is more
general and applicable to multicomponent images.

In this chapter, we propose a quantization method that enforces some
global spatial smoothness. This is achieved by introducing an adjustable
regularization term in the minimization criterion, in addition to a quanti-
zation error measure. Similarly to the LBG algorithm, the optimal design
of the quantizer is performed iteratively by alternating the minimization of
a label field iP and of a codebook r. The latter minimization reduces to a
convex optimization problem whereas the former is carried out by efficient
combinatorial optimization techniques.

Section 2.2 describes the background of the work. The considered reg-
ularization approach is formulated in Section 2.3. Section 2.4 describes the
proposed quantizer design algorithm. Section 2.5 provides more details on
the combinatorial optimization step. Finally, some simulation results are
provided in Section 2.6 before a conclusion is drawn in Section 2.7.

§ 2.2 Background

We consider the vector quantization of a multichannel image f =(
f(n,m)

)
(n,m)∈X where X = {1, . . . , N} × {1, . . . ,M} is the image support



2.2. Background 43

and, for every (n,m) ∈ X,

f(n,m) =
(
f1(n,m), . . . , fD(n,m)

)⊤ ∈ R
D. (2.1)

A similar notation will be used for the D-channel fields defined throughout
the chapter. Example of such multivariate data are complex-valued images
(D = 2), color images (D = 3), multispectral images (D usually less than
10), hyperspectral images (D usually more than 10),... In the following, the
vector quantizer will operate on each D-dimensional vector of pixel values.
The case when D = 1 corresponds to a scalar quantization of a monochannel
image.

In order to define such a vector quantizer, we introduce the following
variables: Q is a positive integer, P = (Dk)1≤k≤Q is a partition of X and
r = (r1, . . . , rQ) is a matrix belonging to a nonempty closed convex subset
C of R

D×Q. The role of this constraint set will be made more explicit in
the next sections. The partition P can be characterized by the label image(
iP(n,m)

)
(n,m)∈X ∈ {1, . . . , Q}N×M , defined as: for every (n,m) ∈ X and

k ∈ {1, . . . , Q},
iP(n,m) = k ⇔ (n,m) ∈ Dk. (2.2)

A vector quantized image over Q codevectors r1, . . . , rQ and associated with
the partition P is then given by

qiP ,r = (riP (n,m))(n,m)∈X ∈ {r1, . . . , rQ}N×M . (2.3)

A numerical example is given below to better explain the relation between
variables Q,r, iP and qiP ,r, which play a prominent role in the rest of the
chapter. For instance, if a quantization over 2 bits of a 3 × 3 monochannel
image is performed, we have N = M = 3, D = 1, Q = 4, and we may have

r = (1, 4, 9, 10) and iP =
[
1 2 3
1 4 1
3 2 3

]
, then qiP ,r =

[
1 4 9
1 10 1
9 4 9

]
. Note that the iP

matrix values belong to the set {1, 2, 3, 4} which corresponds to the set of
labels and qiP ,r matrix values belong to r.

An “optimally” quantized image qiP ,r of f is usually obtained by looking

for (iP , r) ∈ {1, . . . , Q}N×M ×C solution to the following problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) (2.4)

where Φ: (RD)N×M×(RD)N×M → (−∞,+∞] is some measure of the quan-
tization error.

Standard choices for Φ are separable functions of the form

(
∀g =

(
g(n,m))(n,m)∈X ∈ (RD)N×M)

Φ(g, f) =
N∑

n=1

M∑

m=1

ϕn,m
(
g(n,m), f(n,m)

)
(2.5)
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where, for every (n,m) ∈ X, ϕn,m : RD × R
D → (−∞,+∞]. For example,

one can use:

• the matrix weighted quadratic norm

ϕn,m
(
g(n,m), f(n,m)

)
= ‖g(n,m) − f(n,m)‖2Γn,m

(2.6)

where Γn,m ∈ R
D×D is a symmetric definite positive matrix and we

have used the notation

(∀a ∈ R
D) ‖a‖Γn,m = (a⊤Γn,ma)1/2; (2.7)

• the weighted ℓp norm measure (p ∈ [1,+∞[)

ϕn,m
(
g(n,m), f(n,m)

)
=

D∑

d=1

ωd(n,m)|gd(n,m) − fd(n,m)|p (2.8)

where ωd(n,m) ∈ [0,+∞[. As a special case, a mean absolute error
criterion is found when p = 1.

• the generalized Kullback-Leibler divergence

ϕn,m
(
g(n,m), f(n,m)

)
=

D∑

d=1

κ
(
gd(n,m), fd(n,m)

)
(2.9)

where

(
∀(u, v) ∈ R

2
)

κ(u, v) =





−v ln(u/v) + u− v if (u, v) ∈ (0,+∞)2

u if u ∈ [0,+∞) and v = 0

+∞ otherwise.

(2.10)

Maximum error measures may also be useful, which are expressed as

(
∀g =

(
g(n,m))(n,m)∈X ∈ (RD)N×M)

Φ(g, f) = max
1≤n≤N
1≤m≤M

ϕn,m
(
g(n,m), f(n,m)

)
(2.11)

where, for every (n,m) ∈ X, ϕn,m : RD × R
D → (−∞,+∞]. For example,

we can use the sup norm:

ϕn,m
(
g(n,m), f(n,m)

)
= max

1≤d≤D
|gd(n,m) − fd(n,m)|. (2.12)

In this context, a numerical solution to problem (2.4) when C = R
D×Q is

provided by the LBG algorithm, the general form of which is recalled below.
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Algorithm 1 LBG Algorithm

Fix Q ∈ N
∗ and r

(0) ∈ R
D×Q.

For ℓ = 0, 1, . . .⌊
i
(ℓ)
P ∈ arg miniP∈{1,...,Q}N×M Φ(qiP ,r(ℓ) , f)

r
(ℓ+1) ∈ arg min

r∈RD×Q Φ(q
i
(ℓ)
P ,r

, f)

For separable and maximum error measures (see (2.5) and (2.11)), the
optimization of the label field at iteration ℓ then amounts to applying a

nearest neighbour rule, i.e. finding i
(ℓ)
P such that, for every (n,m) ∈ X and,

for every k ∈ {1, . . . , Q}, i
(ℓ)
P (n,m) = k only if

(∀k′ ∈ {1, . . . , Q})

ϕn,m
(
rk, f(n,m)

)
≤ ϕn,m

(
rk′ , f(n,m)

)
. (2.13)

Note that, in general, i
(ℓ)
P (n,m) is not uniquely defined since there may exist

k′ ∈ {1, . . . , Q} \ {k} such that ϕn,m
(
rk, f(n,m)

)
= ϕn,m

(
rk′ , f(n,m)

)
.

On the other hand, updating of the codebook at iteration ℓ is performed

by computing the centroid of each region D
(ℓ)
k , k ∈ {1, . . . , Q}. For the ma-

trix weighted quadratic norm ((2.5) and (2.6)), we thus obtain the classical

center of mass of D
(ℓ)
k :

r
(ℓ+1)
k =

( ∑

(n,m)∈D(ℓ)
k

Γn,m

)−1( ∑

(n,m)∈D(ℓ)
k

Γn,mf(n,m)
)
. (2.14)

For the mean absolute value criterion ((2.5) and (2.8) with p = 1 and equal

weights), r
(ℓ+1)
k is the vector median of the pixel values located in D

(ℓ)
k :

r
(ℓ+1)
k =

(
median

{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

})
1≤d≤D. (2.15)

For the generalized Kullback-Leibler divergence ((2.5), (2.9) and (2.10)), we
get

r
(ℓ+1)
k =

1

cardD
(ℓ)
k

∑

(n,m)∈D(ℓ)
k

f(n,m) (2.16)

provided that f ∈ ([0,+∞)D)N×M . For the sup norm ((2.11) and (2.12)),
we have

r
(ℓ+1)
k =

(βd,k + γd,k
2

)
1≤d≤D

(2.17)

where
βd,k = min

{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

}
(2.18)

and
γd,k = max

{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

}
. (2.19)
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When a closed form expression of r
(ℓ+1)
k is not available, one may resort

to numerical optimization algorithms [Boyd and Vandenberghe, 2004] to
compute centroids.

It can also be noticed that an alternative to the LBG algorithm is the
dynamic programming approach proposed in [Bruce, 1965] (see also [Wu and
Rokne, 1989], [Wu, 1991] for more recent extensions) which features better
global convergence properties. Generally, if LBG is used, the final solution
is sub-optimal.

§ 2.3 Considered design criterion

One drawback of the approach described in the previous section is that it
does not guarantee any spatial homogeneity of the resulting quantized image.
To alleviate this shortcoming, we propose to solve the following problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) + ρ(iP) (2.20)

where ρ : {1, . . . , Q}N×M → (−∞,+∞] is some penalty function which is
used to promote the spatial regularity of the label image. Note that an
alternative approach for ensuring the smoothness of the quantized image
would be to solve a problem of the form

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) + ρ̃(qiP ,r) (2.21)

where the regularization term ρ̃ is now a function from (RD)N×M to
(−∞,+∞]. The latter problem appears however more difficult to solve
than (2.20) since the regularization term in (2.21) is a multivariate function
depending both on iP and r.

The existence of a solution to problem (2.20) is secured by the following
result:

Proposition 2.3.1 Assume that Φ(·, f) is a lower-semicontinuous function
and that one of the following conditions holds:

1. Φ(·, f) is coercive;2

2. C is bounded.

Then, problem (2.20) has a solution.

Proof. Let iP be any given label field in {1, . . . , Q}N×M . According to (4.1),
r 7→ qiP ,r is a linear operator, and consequently r 7→ Φ(qiP ,r, f) is a lower-
semicontinuous function. As a direct consequence of Weierstrass theorem

2This means that lim‖g‖→+∞ Φ(g, f) = +∞.
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[Rockafellar and Wets, 2004], under Assumption 1 or 2, there exists rP ∈ C
such that

Φ(qiP ,rP , f) = min
r∈C

Φ(qiP ,r, f). (2.22)

Problem (2.20) can thus be reexpressed as

minimize
iP∈{1,...,Q}N×M

Φ(qiP ,rP , f) + ρ(iP). (2.23)

The latter minimization can be performed by a search among a finite num-
ber of candidate values, so leading to an optimal label field iP . Hence,
(iP , qiP ,rP ) is a solution to problem (2.20).

Typical choices for ρ in (2.20) that can be made are the following:

• isotropic variation functions

ρ(iP) = µ

N−1∑

n=1

M−1∑

m=1

ψ(‖∇iP(n,m)‖), µ ≥ 0 (2.24)

where ∇iP(n,m) =
(
iP(n + 1,m) − iP(n,m),

iP(n,m + 1) − iP(n,m)
)

is the discrete gradient of iP at location
(n,m).

• anisotropic variation functions

ρ(iP) = µ
(N−1∑

n=1

M∑

m=1

ψ(|iP(n+ 1,m) − iP(n,m)|)

+
N∑

n=1

M−1∑

m=1

ψ(|iP(n,m+ 1) − iP(n,m)|)
)
, µ ≥ 0. (2.25)

In the above two examples, ψ is a function from [0,+∞) to (−∞,+∞].
When ψ is the identity function, the classical isotropic or anisotropic total
variations are obtained. A more flexible form is given by the truncated linear
function [Veksler, 1999] defined as

(∀x ∈ [0,+∞)) ψ(x) =

{
x if x < ζ

ζ otherwise
(2.26)

where ζ > 0 is the limiting constant. If ψ = (·)2, then a Tikhonov-like
regularization is performed. Another interesting choice of ψ is the binary
cost function (also named ℓ0 criterion).

(∀x ∈ [0,+∞)) ψ(x) =

{
0 if x = 0

1 otherwise.
(2.27)
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When ψ is a (strictly) increasing function, higher local differences of
the label values entail a stronger penalization. For this behaviour to be
consistent with the quantized image values, some ordering relation should
typically exist between the codevectors. Hence, if D = 1, a natural choice
is to constrain the vector r to belong to the closed convex cone:

C =
{

(s1, . . . , sQ) ∈ R
Q
∣∣ s1 ≤ · · · ≤ sQ

}
. (2.28)

When D > 1, the definition of C becomes more debatable since there exists
no total order on R

D. A possibility is to impose an artificial total order.
In mathematical morphology, authors have proposed various lexicographic
orderings [Vertan et al., 1996], [Talbot et al., 1998] or bit-mixing [Chanussot
and Lambert, 1997] along space-filling (Peano-like) curves.

A possible choice for C is the closed convex cone:

C =
{

(s1, . . . , sQ) ∈ R
D×Q ∣∣ θ(s1) ≤ · · · ≤ θ(sQ)

}
(2.29)

where
(∀u ∈ R

D) θ(u) = η⊤u (2.30)

and η ∈ R
D. For example, for color images, by an appropriate choice of

η ∈ R
3 (possibly depending on the considered color system [Hill et al.,

1997]), the function θ may serve to extract the luminance component of the
codevectors.

More generally, the parameter vector η ∈ R
D may be obtained through a

principal component analysis [Eckart and Young, 1936] of the original mul-
tichannel data. Note that, when the binary function in (2.27) is employed,
the magnitudes of the local differences of the label fields have no influence
as soon as they are nonzero. This means that ordering the codevectors does
not appear useful in this case, and that one can set C = R

D×Q.
In addition to these considerations, when the regularization constant µ

in (2.24) or (2.25) takes large values, solving (2.20) under the constraints
modeled by (2.28) may lead to very close or even equal values of codevectors.
As a consequence, the readibility of the quantized image may be affected. In
some applications, it may therefore be beneficial to redefine the constraint
C in order to prevent this effect. When D = 1, the closed convex set C can
thus be given by

C = {(s1, . . . , sQ) ∈ R
Q | (∀k ∈ {1, . . . , Q − 1}) sk+1 − sk ≥ δ} (2.31)

where δ ≥ 0. Similarly, when D > 1, we propose to set

C = {(s1, . . . , sQ) ∈ R
D×Q | (∀k ∈ {1, . . . , Q − 1}) θ(sk+1 − sk) ≥ δ}

(2.32)

where δ ≥ 0 and θ is the function given by (2.30). Penalization of quanti-
zation values for being too close to each other was previously introduced in
the energy model proposed in [Alvarez and Esclaŕın, 1997].
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§ 2.4 Proposed optimization method

Even if Φ(·, f) and ρ are convex functions, problem (2.20) is a nonconvex
optimization problem due to the fact that iP belongs to a (nonconvex) set
of discrete values. In order to solve numerically this problem, we propose to
use the following alternating optimization algorithm:

Algorithm 2 Proposed algorithm for solving (2.20)

Fix Q ∈ N
∗ and r

(0) ∈ C.
For ℓ = 0, 1, . . .
i
(ℓ)
P ∈ arg min

iP∈{1,...,Q}N×M

Φ(qiP ,r(ℓ) , f) + ρ(iP)

r
(ℓ+1) ∈ arg min

r∈C
Φ(q

i
(ℓ)
P ,r

, f)

It is worth noticing that this algorithm constitutes an extension of the
LBG algorithm (see Algorithm 1) which would correspond to the case when
ρ is the null function and C = R

D×Q. Similarly to the LBG algorithm, un-
der the assumptions of proposition 2.3.1, Algorithm 2 generates a sequence

(i
(ℓ)
P , r(ℓ+1))ℓ∈N such that

(
Φ(q

i
(ℓ)
P ,r(ℓ+1) , f) + ρ(i

(ℓ)
P )
)
ℓ∈N is a convergent de-

caying sequence. At each iteration ℓ, the determination of i
(ℓ)
P given r

(ℓ) is a
combinatorial optimization problem for which there exist efficient solutions
for particular choices of Φ and ρ, as explained in the next section.

In turn, if Φ(·, f) is a convex function, the determination of r(ℓ+1) given

i
(ℓ)
P is a constrained convex optimization problem the solution of which can

be determined numerically. For any given iP ∈ {1, . . . , Q}N×M , let LiP be
the linear operator defined as

LiP : RD×Q → (RD)N×M

r 7→ qiP ,r (2.33)

the adjoint of which is

L∗
iP : (RD)N×M → R

D×Q

g 7→
( ∑

(n,m)∈D1

g(n,m), . . . ,
∑

(n,m)∈DQ

g(n,m)
)

(2.34)

(with the convention
∑

(n,m)∈∅ · = 0). Then,

L∗
iPLiP : RD×Q → R

D×Q

r 7→ r Diag(cardD1, . . . , cardDQ). (2.35)
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In addition, let Θ be the linear operator defined as

Θ: RD×Q → R
Q−1

(s1, . . . , sQ) 7→
(
θ(s2 − s1), . . . , θ(sQ − sQ−1)

)
(2.36)

where θ is given by (2.30) (with η = 1 when D = 1). The set C defined in
(2.31) or (2.32) is thus equal to Θ−1([δ,+∞[Q−1). Hence, the problem of
minimization of r 7→ Φ(qiP ,r, f) over C can be reexpressed as

minimize
r∈RD×Q

Φ(LiPr, f) + ι[δ,+∞[Q−1(Θr) (2.37)

where ιS denotes the indicator function of a set S, which is zero on S and
equal to +∞ on its complement. If we assume that Φ(·, f) belongs to
Γ0

(
(RD)N×M), the class of lower-semicontinuous proper convex functions

from (RD)N×M to (−∞,+∞], (2.37) can be solved through existing con-
vex optimization approaches [Boyd and Vandenberghe, 2004], [Combettes
and Pesquet, 2011], [Hiriart-Urruty and Lemaréchal, 1993]. One possible
solution is to employ the method proposed in [Pesquet and Pustelnik, 2012]
(hereafter called PPXA+) which constitutes an extension of the parallel
proximal algorithm (PPXA) developed in [Combettes and Pesquet, 2008]
and of the simultaneous direction of multipliers method proposed in [Setzer
et al., 2010] (see also [Goldstein and Osher, 2009], [Afonso et al., 2010b],
[Afonso et al., 2010a]).

Algorithm 3 PPXA+ for solving (2.37)

Initialization:

(ω1, ω2, ω3) ∈ (0,+∞)3

t(1,0) ∈ (RD)N×M , t(2,0) ∈ R
Q−1, s(0) ∈ R

D×Q

R = (ω1L
∗
iPLiP + ω2Θ

∗Θ + ω3I)−1

r
(0) = R (ω1L

∗
iP t

(1,0) + ω2Θ
∗t(2,0) + ω3s

(0))
Main loop:

For ℓ = 0, 1, . . .

p(1,ℓ) = prox 1
ω1

Φ(·,f)
(
t(1,ℓ)

)

p(2,ℓ) = P[δ,+∞[Q−1

(
t(2,ℓ)

)

c
(ℓ) = R (ω1L

∗
iPp

(1,ℓ) + ω2Θ
∗p(2,ℓ) + ω3s

(ℓ))

λℓ ∈ ]0, 2[

t(1,ℓ+1) = t(1,ℓ) + λℓ
(
LiP (2c(ℓ) − r

(ℓ)) − p(1,ℓ)
)

t(2,ℓ+1) = t(2,ℓ) + λℓ
(
Θ(2c(ℓ) − r

(ℓ)) − p(2,ℓ)
)

s
(ℓ+1) = s

(ℓ) + λℓ(2c
(ℓ) − r

(ℓ) − s
(ℓ))

r
(ℓ+1) = r

(ℓ) + λℓ(c
(ℓ) − r

(ℓ)).

In the above algorithm, prox 1
ω1

Φ(·,f) is the proximity operator of ω−1
1 Φ(·, f)

[Moreau, 1965] and P[δ,+∞[Q−1 is the projector onto [δ,+∞[Q−1. Expressions
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of proximity operators for usual convex functions are listed in [Chaux et al.,
2007]. The convergence of the PPXA+ algorithm is guaranteed under weak
assumptions.

Proposition 2.4.1 Assume that

1. there exists λ ∈]0, 2[ such that (∀ℓ ∈ N) λ ≤ λℓ+1 ≤ λℓ.

2. There exists r ∈ R
D×Q such that

LiPr ∈ ri dom Φ(·, f) and Θr ∈]δ,+∞[Q−1 (2.38)

where dom Φ(·, f) is the domain of Φ(·, f) and ri dom Φ(·, f) is its
relative interior.

Then, the sequence (r(ℓ))ℓ∈N generated by Algorithm 3 converges to a solution
to problem (2.37).

Proof. See [Pesquet and Pustelnik, 2012].

§ 2.5 Combinatorial partitioning

We now consider two combinatorial optimization methods for finding

iP̂ ∈ arg min
iP∈{1,...,Q}N×M

Φ(qiP ,r, f) + ρ(iP) (2.39)

for a given value of r ∈ C. Here we seek to use standard methods in
combinatorial optimization which have proved to be useful in applications
to image processing. In this context, a common form for regularization
problems is the following:

minimize
iP∈{1,...,Q}N×M

Φ̃(iP , f) + ρ(iP), (2.40)

where Φ̃ : {1, . . . , Q}N×M × (RD)N×M → (−∞,+∞] is a data fidelity func-
tion, ρ a regularization function, f the initial image and iP the target discrete
one. To formulate our problem in this framework, we need to introduce the
auxiliary function

χr : {1, . . . , Q}N×M → {r1, . . . , rQ}N×M

iP 7→ qiP ,r.
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Then, our problem becomes

minimize
iP∈{1,...,Q}N×M

Φ(χr(iP), f) + ρ(iP). (2.41)

Note that χr is monotonic but nonlinear. Note further that the set {r1, . . . , rQ}
changes at each iteration of the complete algorithm. However, during the
regularization step, this set is fixed.

In this section, we use graph-cut based algorithms briefly introduced in
Chapter 1.3.2.

2.5.1 Method I - convex regularization term

Here we describe a way to formulate the problem as a globally optimal graph
cut, inspired by the approach of Ishikawa et al. [Ishikawa and Geiger, 1999].
In this approach, we build a discrete graph that will allow us to represent
the quantized and regularized version of our original image. Let us define
the oriented, edge-weighted graph G = (V, E) as follows:

1. V = X×{1, . . . , Q} ∪ {s, t} the set of vertices quantized over Q levels,
where X is the image support as defined in section 2.2. We add two
special vertices, the source s and the sink t.

2. E = ED ∪ EC ∪ EP , the set of edges. In the following we denote an ori-
ented edge by [a, b], with a and b the vertices it joins in the direction
from a to b. We have :

(a) ED =
⋃
v∈X EvD the upward columns of the graph. For all v ∈ X,

let hv,k denote the node in column v and row k. A single column
associated with pixel v is defined as

EvD = {[s, hv,1]} ∪ {[hv,k, hv,k+1] | k ∈ {1, ..., Q− 1}} ∪ {hv,Q, t} ,
(b) EC =

⋃
v∈X EvC the downward columns of the graph, with

EvC = {[hv,k, hv,k+1] | k ∈ {1, ..., Q− 1}},

(c) and the penalty edges of the graph are thus defined as

EP = {[hv,k, hw,k] | v, w ∈ X, {v, w} neighbours, k ∈ {1, ..., Q}} .

The above graph is depicted in Fig. 2.1. In this figure, for simplicity we
assume each pixel has only two neighbours, which allows us to represent the
graph in a 2D planar layout. For actual 2D images, there exist many more
penalty edges between all neighbours in X. The graph layout is then non-
planar, but remains similar. For 2D images, it is best to see the arrangement
of v vertices as in the original images, with the column of penalty edges in
an extra dimension.
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NM321

1

2

3

Q

Q−1

Q−2

s

t

Arrows represent the edges E and circles the nodes in V. Horizontal edges are in
EP , the dotted upward vertical edges are in ED and the plain downward vertical
edges are in EC . Vertices s and t are respectively the source and the sink. All
pixels in the image from 1 to NM are represented in the columns. In actual 2D
images, there exist many more penalty edges EP than depicted here: all those
between neighbours in X.

Figure 2.1: Construction of the Ishikawa-like optimization graph.

If Φ is the separable function defined in (2.5) and ρ is the anisotropic
TV in (2.25) where ψ is the identity function, we define the capacities (or
weights) c of edges [a, b] ∈ E as follows:
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1. Links to the source have infinite capacity:

∀v ∈ X, c ([s, hv,1]) = +∞.

2. Data fidelity terms for any pixel v ∈ X is

∀k ∈ {1, . . . , Q − 1}, c ([hv,k, hv,k+1]) = ϕv(rk, f(v)), c ([hv,Q, t]) =
ϕv(rQ, f(v)).

3. The capacity of downward columns is infinite to constrain a single cut
per column:

∀v ∈ X, ∀k ∈ {1 . . . Q− 1}, c ([hv,k+1, hv,k]) = +∞.

4. The regularization term along the penalty edges of the graph is:

for every v, w ∈ X, and {v, w} neighbours
∀k ∈ {1, . . . , Q}, c ([hv,k, hw,k]) = µ

The above graph G has the same topology as the one proposed by
Ishikawa and it can be extended to any convex function ψ [Ishikawa and
Geiger, 1999]. The capacities of E are adjusted in such a way that a cut of
G corresponds to the solution of (2.41), granted by the following result:

Proposition 2.5.1 If ρ is the anisotropic TV in (2.25) where ψ is the iden-
tity function, then the min cut of G = (V, E) is the globally optimal solution
to (2.41).

Proof. This result is derived from the construction of the graph. First
note that we build here a binary flow network with one source and one
sink. Following Ishikawa, relying on the celebrated discrete maxflow/mincut
theorem of Ford and Fulkerson [Ford and Fulkerson, 1962], any binary cut
that separates s and t along a series of edges, that can be interpreted as
a solution iP . Indeed, the infinite capacity of the downward edges ensure
a single cut edge in each column of the graph, and the infinite capacity of
the upward [s, hv,1] edges for all v ensures that, in all columns, this cut will
be located above one of the nodes corresponding to a level k ∈ {1, . . . , Q}.
We can therefore associate the cut in column v with the value of the level
immediately below the cut, and associate this with iP(v). Recalling that
all labels below the cut will have the same label as s, and all that above
the cut the same label as t, the value of iP at pixel v is the highest level
l in column v of the graph that is labelled like the source s. Here, by
convention, the source is labelled with 1 and the sink with 0. We can then
write iP(v) = max{k, hv,k = 1}.

Now, the computation of the maxflow/mincut on this graph minimizes
the energy of the cut, interpreted as the sum of two terms:

1. since the downward constraint edges ensure a single cut edge along
each column of the graph, this corresponds to contribution of the data
fidelity term ϕv(rQ, f(v)) to the total energy.
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2. Similarly, we note that each penalty edges in EP with capacity µ can be
cut at most once. Let u and v be two neighbouring pixels in the graph.
The cut along penalty edges between iP(u) and iP(v) crosses exactly as
many penalty edges as there are quantization level differences between
u and v. We note that this correspond to a contribution of µ|iP(u) −
iP(v)| to the total energy.

Hence, the computation of the maxflow/mincut on this graph solves (2.41)
exactly, in the case of (2.25), when ψ is the identity.

Remark 2.5.2

1. It is also possible to solve this problem exactly in the case when ψ
is convex and not necessarily the identity, by adding non-horizontal
penalty edges [Ishikawa, 2003], but we do not consider this case here,
as ψ = Id is favorable when discontinuities exist in the original image.

2. In the case when the number of quantized levelsQ is small (say between
1 and 32), the Ishikawa framework is very efficient.

3. As the dimensionality of the problem increases, so does the number
of penalty edges in the graph. The cut is always an hypersurface of
codimension 1.

4. Ishikawa recommends solving the maxflow/mincut by using a push-
relabel algorithm, which makes perfect sense as the dimensionality
increases, because these algorithms have an asymptotic complexity
independent of the number of edges.

2.5.2 Method II - submodular regularization term

Since the method proposed in Section 2.5.1 works only for a convex function
ψ, we propose to solve the general problem defined in (2.39) with the α-
expansion algorithm [Boykov et al., 2001], which has been proven to be very
effective for some non-convex functions ψ such as the Potts model of (2.27).
Though only a local minimum is then guaranteed, the resulting energy will
be within a known factor of the global minimum energy [Boykov et al.,
2001]. Here we reintroduce the standard notation of α-expansions as we
need to specify the capacities on the corresponding edges in the context of
this chapter. Following Kolmogorov et al. [Kolmogorov and Zabih, 2004],
we build a directed graph for each quantization level, called α-expansion
graph Gα = (V, E), defined as follows:

1. V = V ∪ {α, α} is the set of vertices, with α and α two special term
nodes and V = {1, ..., NM} is the set of image nodes ;
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2. E = EV ∪ EN is the set of edges, defined as follows :

(a) EV =
⋃
v∈V {[α, v], [v, α]} is the set of edges between special term

nodes and image nodes ;

(b) EN =
⋃

{u,v} neighbours is the set of edges between neighbours and
N is the set of neighbours pairs containing only ordered pairs
u, v, i.e. such that u < v.

(c) The capacity for all edges are given in Table 2.1.

Computing the max-flow/min-cost cut of Gα separates vertices α and α
in such a way that the α region can only expand, hence the name of the
algorithm. The value of the function associating new values to iP , based
on cut of Gα, is called “α-move of iP” [Veksler, 1999]. The algorithm is as
follows:

Algorithm 4 α-expansion algorithm

Fix i
(0)
P .

For ℓ = 0, 1, . . .⌊
α̃(ℓ) ∈ arg minα∈{1,...,Q}

{
Φ(χr (̂iP), f) + ρ(̂iP) | îP = α-move of i

(ℓ)
P
}

i
(ℓ+1)
P = α̃(ℓ)-move of i

(ℓ)
P

Proposition 2.5.3 If (2.39) is submodular then it can be solved with the
α-expansion algorithm.

Proof. It is shown in [Kolmogorov and Zabih, 2004] that in order to employ
the α-expansion algorithm, (2.39) has to satisfy the following conditions at
iteration ℓ:

1. (2.39) has a binary representation of the form:

minimize
∑

u∈V B
(ℓ)
1 (b(nu,mu))+∑

{u,v}neighboursB
(ℓ)
2 (b(nu,mu), b(nv ,mv)),

(2.42)

where b is a binary field while B
(ℓ)
1 and B

(ℓ)
2 have binary arguments.

2. The binary representation b is graph-representable, which can be ver-

ified by testing if term B
(ℓ)
2 satisfies the submodular inequality:

B
(ℓ)
2 (0, 0) +B

(ℓ)
2 (1, 1) 6 B

(ℓ)
2 (1, 0) +B

(ℓ)
2 (0, 1) . (2.43)

We now propose the following binary formulation of (2.39) by defining :

B
(ℓ)
1 (b(nu,mu)) = ϕnu,mu(r̂iP (nu,mu)

, f(nu,mu)) (2.44)
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and

B
(ℓ)
2 (b(nu,mu), b(nv ,mv)) = ψ(|̂iP(nu,mu) − îP(nv,mv)|) (2.45)

where

îP(nu,mu) =

{
i
(ℓ)
P (nu,mu) if b(nu,mu) = 0

α if b(nu,mu) = 1.
(2.46)

More standard graph-cut formulations would only allow us to optimize (2.40).
These formulations would be problematic because we would not be able to
separate the two steps in the inner loop of Algorithm 2, and therefore no
convergence property could be derived.

Assuming (2.39) submodular, then the terms of its binary representation
defined in (2.45) satisfy (2.43). Furthermore, it is shown in [Veksler, 1999]
that for ψ defined as Potts model of (2.27) or the truncated linear func-
tion in (2.26), and when ρ is the anisotropic TV of (2.25), then this type
of energy is indeed submodular. Consequently (2.39) can be solved with
α-expansions.

α

u v

c([α, u]) c([α, v])

α
c([v, α])c([u, α])

c([u, v])

Notations for the α-expansion graph, following Kol-
mogorov et al. [Kolmogorov and Zabih, 2004]. Here
we took a simplified 2-pixel neighbourhood. The cost
(or capacity) between u and v is labelled as c([u, v])
for instance, and so on for all edges. The expressions
for the capacity for all edges are given in Table 2.1.

Figure 2.2: Construction of the α-expansion graph.

Figure 2.2 provides an illustration of the notation for edge weights in a
simplified situation. In order to solve problem (2.39) with the α-expansion
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algorithm, we propose to define the capacities c of edges E in the graph Gα
for all {u, v} pairs of neighbours, as described in Table 2.1.

Table 2.1: Capacities for the α-expansion graph of Fig 2.2.

edge capacity a

c([u, α]) R (Ku) +
∑

(u,v)∈N R(Au,v − Cu,v) +
∑

(v,u)∈N Cv,u
c([α, u]) R(−Ku) +

∑
(u,v)∈N R(Cu,v −Au,v)

c([u, v])
∑

(u,v)∈N (Bu,v + Cu,v −Au,v)

a The following notation is used:
R denotes the ramp function, i.e. R(x) = 0 if x ∈ (−∞, 0) and R(x) = x if x ∈ [0,+∞)
Ku = ϕnu,mu

(riP (nu,mu), f(nu,mu))− ϕnu,mu
(rα, f(nu,mu))

Au,v = ψ(|iP(nu,mu)− iP(nv,mv)|)
Bu,v = ψ(|iP(nu,mu)− α|)
Cu,v = ψ(|α− iP(nv,mv)|)

2.5.3 Other methods

Other combinatorial optimization methods might also be used. For instance,
when minimizing isotropic TV as in (2.24), one might want to use Cham-
bolle’s algorithm [Chambolle, 2004]. Similarly to the Ishikawa framework,
we would obtain the global optimum in this case also. Moreover isotropic
TV minimization was recently discussed among others by Lellmann et al.
[Lellmann et al., 2009], Trobin et al. [Trobin et al., 2008] and Zach et al.
[Zach et al., 2009]. One other possibility is the use of α - β generalized range
moves algorithm, which is shown in [Veksler, 2007] to be able to optimize a
wider range of combinatorial energies than α-expansion method presented
in Section 2.5.2. Furthermore, similar properties are held by the FastPD
[Komodakis et al., 2008] and the PD3a [Komodakis and Tziritas, 2007] al-
gorithms, both introduced by Komodakis et al.. Also worth mentioning is
the Darbon and Sigelle method for levelable energies, introduced in [Darbon
and Sigelle, 2006], the Kolmogorov and Shioura primal and primal-dual al-
gorithms and Zalesky’s MSFM algorithm [Zalesky, 2003], since they are all
faster than Ishikawa’s approach, while still providing an exact solution for
a similar class of functions. Our method can be also improved using higher
order cliques, which already has been proven to provide effective filtering
results [Ishikawa, 2009]. It might be also possible to extend the quanti-
zation techniques proposed by Chambolle and Darbon in [Chambolle and
Darbon, 2009]. Also of interest would be to explore variants of anisotropic
diffusion, and other combinatorial optimizers such as generalized Dirichlet
solvers, which are naturally multi-label [Couprie et al., 2009] and could pro-
vide much simpler algorithms.
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(a) Fragment of the original image

(b) Fragment of LM result

(c) Fragment of our result

Note that LM retained acquisition vertical artifacts, which are absent in our result.

Figure 2.3: Low resolution quantization (grey scale image)
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§ 2.6 Simulation examples

In this section we present four experiments in order to demonstrate the
performance of our method in various scenarii. Both color and grey scale
images are considered. For grey scale images, our approach is confronted
with the LM method [Lloyd, 1982]. It is a fair comparison, since the same
function Φ is used for both algorithms. Although sophisticated initializa-
tion procedures [Wu, 1990; Peric and Nikolic, 2007], [Katsavounidis et al.,
1994] can be employed for LM and our approach, the methods presented
in the following were simply initialized with either uniform or cumulative
histograms based decision levels.

In the case of color images, we compared our method with: i) spe-
cial case of LBG algorithm with Φ defined as ℓ2 norm (K-means), ii) me-
dian cut [Heckbert, 1982] and iii) Wu’s method [Wu, 1992a]. Ximagic
(http://www.ximagic.com) quantization package was used to generate results
of K-means, Wu and median cut algorithms. Their performance is measured
in terms of SNR between the original and quantized images and also by the
Shannon entropy of order (2, 2) (that is the entropy over image blocks of size
3 × 3). Note that, in all the following experiments, regularization functions
are used corresponding to a 4-pixel neighbourhood (2 pixels in horizontal
and 2 in vertical direction) in the employed graph cut techniques. They
were implemented with the help of the publicly available library described
in [Boykov and Kolmogorov, 2004]. When running experiments using Algo-
rithm 3, there are 4 parameters to set. We have set ω1 = ω2 = ω3 = 1/3 and
λℓ was fixed and equaled 1.5. The appropriate choice of parameter µ de-
pends on the ratio between maximum values of Φ and ρ codomain, the level
of noise in original image and prior knowledge about the desired entropy of
output images.

2.6.1 Low resolution quantization

First, we consider grey scale image quantization over Q = 8 levels. The
combinatorial method described in Section 2.5.1 was used to find the global
optimum of convex criterion (2.20) with function Φ defined as the ℓ1 norm
and function ρ defined by (2.25) where ψ is the identity. It was applied to
8 bit microscopy image of size 512 × 512, the fragment of which is shown
in Fig. 2.3(a) (from public domain, http://www.remf.dartmouth.edu). Regu-
larization parameter µ was hand-optimized to 10. Both methods, LM and
ours, were initialized with uniform decision levels. In order to solve (2.37),
Algorithm 3 was used. The convex set C is defined by (2.31), where δ = 12.
As expected, our results provide the best spatial smoothness among the con-
sidered methods, which is confirmed by the entropy equal to 0.58 bpp, while
in case of LM it is equal to 0.84 bpp. In this example, it is shown that, in
case of quantization with high level reduction, our method provides smaller
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entropy rate while maintaining the desired fidelity.

In the second example, we show that a similar behaviour is obtained for
different choices of Φ, regularity criterion and combinatorial method. This
time, the number of quantization levels is Q = 32, function (2.20) is specified
by Φ defined as the squared ℓ2 norm and ρ defined by (2.25) where ψ is the
binary cost-function (2.27). It is applied to the color-image of size 256×256,
which is shown in Fig. 2.4(a). Fig. 2.4(e) presents the results when µ is set
to 25 and in Fig. 2.4(f), when it is set to 50. The difference between the two
presented images (Fig. 2.4(e) and Fig. 2.4(f)) is not significant but highlights
the visual influence of parameter µ. The criterion (2.20) was minimized by
using the modified α-expansion graph described in Section 2.5.2, which was
initialized with r

(0) obtained by median cut algorithm. Image pixels were
mapped into the XY Z image space [Ohno, 2000]. Similarly to the previous
example, Fig. 2.4 shows that a better spatial smoothness is obtained with
the proposed approach. This is also verified by inspecting the entropy value,
which in our case is equal to 1.06 bpp for µ = 25, and 1.00 bpp for µ = 50,
whereas in the case of Wu, K-means and Median-cut the entropies are equal
to 1.18 bpp, 1.14 bpp, 1.19 bpp, respectively.

2.6.2 Quantization in the presence of noise

Next, we present the performance of our method in the presence of noise.
Note that here function Φ is chosen based on two noise models, i.e. ℓ2 for
Gaussian and ℓ1 for Laplacian noise. Firstly, the problem of grey scale image
quantization over 16 levels is investigated. The image of size 256×256, shown
in Fig. 2.5(b), is corrupted by zero-mean i.i.d. Laplacian noise with standard
deviation 9. Quantization is performed using Algorithm 2. The method
described in Section 2.5.2 is used to minimize energy (2.20), where Φ is
defined as the ℓ1 norm and ρ is given by (2.25) with ψ taken as the truncated
linear function (2.26), where the limiting constant is set to ζ = 3. The
associated regularization parameter µ was experimentally chosen equal to 6.
Both methods, LM and ours, were initialized with cumulative histogram
based decision levels. Problem (2.37) was solved by using Algorithm 3. The
convex set C is defined by (2.31), where δ = 1. The proposed approach
shows satisfactory results when dealing with Laplacian noise: i) the visual
effect of the noise is reduced (see Fig. 2.5(d)), ii) the SNR, which was equal
to 22.7 dB for the noisy image increases to 24.6 dB, and iii) the entropy is
only 0.96 bpp. In case of LM (see Fig. 2.5(c)), the SNR is equal 22.4 dB
and the entropy is 1.41 bpp. In this example, we show that, in case of
quantization in the presence of noise, our method reconstructs the original
image, while performing image quantization.

Similar properties have been observed for D > 1. To illustrate this fact,
the quantization over 16 quantization levels of a 300 × 300 color image is
presented in Fig. 2.6. Zero-mean Gaussian noise with standard deviation 20
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(a) Original (b) Wu result

(c) K-means result (d) Median-cut result

(e) Ours result with µ equal 25 (f) Ours result with µ equal 50

Note that there are many isolated small regions in (b,c,d), while both (e) and (f) feature
only smooth large regions, retaining global aspect nonetheless.

Figure 2.4: Low resolution quantization (color image)
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(a) Original (b) Noisy

(c) LM result (d) Ours result

Figure 2.5: Quantization in the presence of noise (grey scale image)

was added to the image presented in Fig. 2.6(a) (source: photo by Neon JA,
colored by Richard Bartz / Wikimedia Commons). This image was transformed
from the RGB space into a more appropriate one, using the linear transfor-
mation defined by the matrix of its PCA (Principal Component Analysis)
components. Then, the total order of quantization levels along the principal
component is chosen, which corresponds to η⊤ =

[
1 0 0

]
. The convex

set C is defined by (2.31). Since the probability of merging codevectors is
negligible in three-channel color space, the associated parameter δ was set to
0. The resulting image (see Fig. 2.6(f)) was obtained by minimizing energy
(2.20), which was initialized with decision levels computed by the median
cut method. Function Φ was defined by (2.6) and ρ by (2.25) where ψ is
identity and µ is equal to 250. The algorithm described in Section 2.5.1 was

used for computing i
(ℓ)
P . One can observe that the noise has been highly

reduced in our result (Fig. 2.6(f)), while the K-means method (Fig. 2.6(d))
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preserved noise in the images. This is also verified by SNR values which is
equal to 13.8 dB for our method and 10.6 dB, 10.4 dB and 9.8 dB for the
K-means, Wu and median-cut, respectively. The difference is even greater in
terms of entropy: our method led to 0.79 bpp and the other ones to 1.48 bpp.
Additionally, the quantization result for the original image is presented. Our
result (Fig. 2.6(e)) was obtain with the same algorithm settings as described
above except µ, which here is equal to 30 and of course the PCA parameters,
which were computed from the original image. Our method performs the
required quantization and provides an interesting tradeoff between precision
and smoothness, which is validated with an SNR of 18.5 dB and an entropy
of 0.9 bpp. In contrast, K-means (Fig. 2.6(c)) achieved a SNR = 20.2 dB
and an entropy = 1.1 bpp.

2.6.3 Note about computation time

The time complexity of Algorithm 2 is equal to the product of the complex-
ity of each iteration and the complexity of the number of iterations ℓ. The
bound on ℓ is not known a priori. Our observation suggests that it is a func-
tion of the weight of smoothness term µ, number of quantization levels Q,
and the spatial entropy of original image f . Moreover, there may be small
differences in the number of iterations, depending on the choice of the com-
binatorial optimization method. For instance, the first problem described
in Section 2.6.1, which was solved with an Ishikawa-like graph, converges in
18 iterations. In contrast, using the α-expansion algorithm (Algorithm 4),
it converges in only 16. In practice the number of iterations never seems
to exceed 50 for grey-scale and 200 for color images. By analyzing the in-
ner loop of Algorithm 2, one can observe that the complexity of step 1 is
greater than the one of step 2. Thus, the computation time of each itera-

tion is strongly dominated by the cost of step 1, namely finding i
(ℓ)
P . Note

that Algorithm 3 is run only if matrix r derived from a centroid rule does
not belong to C, so usually its influence on the overall time complexity of
Algorithm 2 is small for grey-scale images. It becomes more important for
multi-channel images. Generally, the cost of combinatorial graph-cut based
methods depends on card(X) and on the number of quantization levels Q.
More precisely, the relabeling algorithm finds solution for single graphs in
polynomial time O((card(V))3), where card(V) is equal to Q × card(X) for
the method described in Section 2.5.1 and to card(X) for the method de-
scribed in Section 2.5.2. However, Algorithm 4 (in Section 2.5.2) requires
solving many different graphs independently, so its computation cost in-
creases linearly with the number of quantization levels Q. It is worth noting
that some recently published extensions of the α-expansion algorithm are
faster. In particular, Lipitsky et al. presented the LogCut and Fusion move
methods that lead to nearly logarithmic growth [Lempitsky et al., 2010],
e.g. for Q = 256 the algorithm converges approximately 10 times faster.
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A similar acceleration was obtained by the FastPD algorithm introduced
by Komodakis et al. [Komodakis et al., 2008] and analyzed by Kolmogorov
in [Kolmogorov, 2007]. Likewise, recently introduced primal and primal-dual
algorithms by Kolmogorov et al. in [Kolmogorov and Shioura, 2009] may be
an alternative for the method described in Section 2.5.1. They offer a signifi-
cant improvement in terms of time efficiency. For instance, our first problem
described in Section 2.6.1 solved with the method described in Section 2.5.1
takes 37 seconds, while using Kolmogorov’s primal only algorithm, it takes
only 12 seconds. As an alternative to the methods presented in Section 2.5,
one may adopt these novel methods. Constant progress in the efficiency of
graph-cut algorithms makes our approach increasingly competitive with the
ones that do not feature a smoothness constraint. Nonetheless, our method
may take significantly more time than the use of basic quantization methods
(for details see Table 2.2). The tests were performed single-threaded, on a
computer with a 2.5GHz Intel Xeon processor, in the RedHat Enterprise
Linux 5.5 environment, using the GCC compiler version 4.1 in 64-bit mode.

Ex1 Ex2 a Ex3 Ex4 b

No. of iter. 18 183 (113) 6 51 (42)

Time [s] 37 1618 (1015) 27 808 (625)

Table 2.2: Iteration number and computation time

aThe values in and without brackets correspond to µ = 50, and µ = 25, respectively.
bThe values in and without brackets concerns case without and with noise, respectively.

§ 2.7 Conclusion

In this chapter, we have proposed a new quantization method based on a
two-step procedure combining a convex optimization algorithm for the se-
lection of quantization levels, and a combinatorial regularization procedure.
Unlike classical methods, the proposed approach allows us to enforce a tun-
able spatial regularity in the quantized image. We have also shown that both
grey scale and color images can be processed. As shown by our simulation
results, the proposed approach leads to promising results, in particular in
the presence of noise. As future work, we plan to explore isotropic regular-
ization methods, to adapt and implement faster combinatorial algorithms
and to take advantage of this method in various applications such as image
compression and multispectral/hyperspectral imaging. Moreover, since in
the context of segmentation TV was shown to be outperformed by other
regularization strategies [Hauser and Steidl, 2013], we plan to extend the
list of considered priors, e.g. with Non Local TV.
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(a) Original (b) Noisy

(c) K-means result for original image (d) K-means result for noisy image

(e) Ours result for original image (f) Ours result for noisy image

Figure 2.6: Quantization in the presence of noise (color image)
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Noise estimation from time series data

The problem of estimating the parameters of a Poisson-Gaussian model from
experimental data has recently raised much interest in various applications,
especially for CCD imaging systems. In this context, a field of independent
random variables is observed, which is varying both in time and space. Each
variable is a sum of two components, one following a Poisson and the other a
Gaussian distribution. In this chapter1, a general formulation is considered
where the associated Poisson process is nonstationary in space and also ex-
hibits an exponential decay in time, whereas the Gaussian component corre-
sponds to a stationary white noise with arbitrary mean. To solve the consid-
ered parametric estimation problem, an iterative Expectation-Maximization
(EM) approach is proposed. Much attention is paid to the initialization of
the EM algorithm for which an adequate moment-based method using recent
optimization tools is proposed. In addition, a performance analysis of the
proposed approach is carried out by computing the Cramer-Rao bounds on
the estimated variables. The performance of the proposed estimation proce-
dure is illustrated on both synthetic data and real fluorescence microscopy
image sequences. The algorithm is shown to provide reliable estimates of
the mean/variance of the Gaussian noise and of the scale parameter of the
Poisson component, as well as of its exponential decay rate.

§ 3.1 Introduction

Estimating the parameters of a probability distribution constitutes a funda-
mental task in many statistical signal processing problems. This estimation
problem becomes more challenging when the observed data are distributed
according to some mixture of given probability laws [Redner and Walker,
1984]. Most existing works are focused on Gaussian mixture models [Roberts

1Published in part in Proc. of EUSIPCO, 2011 and Proc. of ISBI, 2012
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et al., 1998]. However, due to their importance in signal/image recovery
problems, there has been recently a growing interest in Poisson-Gaussian
probabilistic models. The Poisson component is often related to the quan-
tum nature of light and accounts for photon-counting principles in signal
registration, whereas the Gaussian component is typically related to thermal
noise present in the electronic part of the imaging system. Despite constant
improvements in data acquisition devices, electronic noise usually cannot
be neglected. Among existing works dealing with Poisson-Gaussian noise, a
number of methods have addressed noise identification problems [Healey and
Kondepudy, 1994], [Starck and Murtagh, 1998], [Zhang, 2007], [Foi et al.,
2008], [Boulanger et al., 2008], [Abramov et al., 2010], [Acito et al., 2011],
as well as denoising [Delpretti et al., 2008], [Boulanger et al., 2008], [Foi,
2009a], [Bosco et al., 2010], [Luisier et al., 2011], [Begovic et al., 2011] and
reconstruction [Snyder et al., 1993], [Lantéri and Theys, 2005], [Benvenuto
et al., 2008], [Gil-Rodrigo et al., 2011], [Chakrabarti and Zickler, 2012], [Li
et al., 2012], [Jezierska et al., 2012a]. The developed algorithms are use-
ful in various areas such as digital photography [Foi et al., 2008], medicine
[Nichols et al., 2002], biology [Pawley, 1994] and astronomy [Lantéri and
Theys, 2005].

A brief overview of published works primarily directed towards the prob-
lem of parameter estimation of Poisson-Gaussian densities is useful. It re-
veals that most existing methods assume a zero-mean Gaussian noise com-
ponent. Furthermore, they are usually grounded on some approximations
based on variance stabilization techniques [Healey and Kondepudy, 1994],
[Foi et al., 2008], [Boulanger et al., 2008], [Abramov et al., 2010], [Acito
et al., 2011]. Only a few publications differ. Zhang, in [Zhang, 2007], pro-
poses a cumulant-based approach. A method estimating solely the Gaus-
sian component was also proposed in [Starck and Murtagh, 1998]. Although
methods based on maximum likelihood are very popular in parametric esti-
mation [Fessler and Hero, 1994], [Stein, 1994], they have not been extensively
investigated in the context of Poisson-Gaussian distribution yet.

In the following, we propose a new framework dealing with Poisson-
Gaussian noise parameter estimation from multidimensional time series. We
first discuss the properties of the observation model. The versatility of the
considered non-stationary model allows us to take into account an exponen-
tial decay of the intensity of the Poisson component. Analysis of time series
including such an exponential decay covers a broad range of application
areas, e.g. nuclear magnetic resonance (NMR) spectroscopy [Ernst et al.,
1991], magnetic resonance imaging (MRI) [Hornak, 2008] and fluorescence
imaging systems [Pawley, 2006, Chapter 2].

For mixed probability distributions, one must usually resort to some
iterative estimation procedure. In the Poisson-Gaussian case, we propose
to employ an Expectation-Maximization (EM) [Dempster et al., 1977] ap-
proach. In Chapter 1.3.1.1 we presented EM algorithm as a special case of
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MM algorithmic framework. In this chapter we show that the development
of our EM algorithm is nontrivial in the sense that it requires tackling some
numerical problems. Also a sufficiently accurate initialization procedure is
required. In this work, the initialization is performed through a Douglas-
Rachford [Lions and Mercier, 1979], [Eckstein and Bertekas, 1992], [Com-
bettes and Pesquet, 2007] method which aims at optimizing a moment-based
estimate of the unknown parameters.

The chapter is organized as follows. We provide a description of the
considered parameter estimation problem in Section 3.2. Then, we interpret
it as an incomplete data problem and derive the associated EM algorithm in
Section 3.3. The numerical issues raised by the implementation of the algo-
rithm are investigated in Section 3.4 as well as the proposed moment-based
initialization. In addition, in Section 3.5, we derive the Fisher Information
matrix and the Cramer-Rao bounds for the estimation problem. Section 3.6
illustrates the algorithm performance on both synthetic data and real con-
focal image sequences. Finally, Section 3.7 concludes the chapter.

§ 3.2 Problem

Of interest here is a parametric model arising in the case of random vari-
ables modeled as a weighted sum of Poisson and Gaussian components. The
problem is to estimate the vector of parameters θ characterizing the as-
sociated mixed continuous-discrete probability distribution from available
observations r = (rs,t)1≤s≤S,1≤t≤T , which are realizations of a random field
R = (Rs,t)1≤s≤S,1≤t≤T . Here, s corresponds to a location index (e.g. locat-
ing pixel (x, y) in 2D or voxel (x, y, z) in 3D) and t is the time index.

More precisely, the considered stochastic model reads :

∀(s, t) ∈ S Rs,t = αQs,t +Ws,t (3.1)

where S = {1, . . . , S}×{1, . . . , T}, α ∈ (0,+∞) is a scaling parameter, and,
for every (s, t) ∈ S, Qs,t is a random variable following a Poisson distribution,
and Ws,t is a normally distributed random variable, which are expressed as

Qs,t ∼ P
(
vs,t
)
, Ws,t ∼ N (c, σ2) (3.2)

where v = (vs,t)1≤s≤S,1≤t≤T ∈ [0,+∞)ST is the vector of intensities of the
Poisson distribution and c ∈ R (resp. σ > 0) is the mean value (resp.
standard-deviation) of the Gaussian distribution.

Our goal is to estimate the vector of unknown parameters (v, α, c, σ2)
under the following assumptions:

• Q = (Qs,t)1≤s≤S,1≤t≤T and W = (Ws,t)1≤s≤S,1≤t≤T are mutually sta-
tistically independent;
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• the components of Q (resp. W ) are independent.

Note that some special instances of this model have been studied in the
literature, in the case when, for example, vs,t is no longer depending on t,
thus reducing to

∀(s, t) ∈ S vs,t = us. (3.3)

Most existing works [Foi et al., 2008], [Abramov et al., 2010], [Uss et al.,
2011] assume that c = 0, whereas in [Jezierska et al., 2011a] we considered
a Gaussian noise with non-zero mean. The motivation of these works was
to identify noise parameters, the knowledge of which is required in many
algorithms used for denoising [Luisier et al., 2011] or restoration [Benvenuto
et al., 2008], [Gil-Rodrigo et al., 2011]. These parameters are usually not
known in advance and their values may depend on experimental conditions,
for instance in the case of imaging systems on camera settings, temperature,
vibrations, . . . Gaussian approximations [Foi et al., 2008], [Abramov et al.,
2010] of the Poisson distribution are sometimes performed in the identifica-
tion process, which often rely on the use of variance stabilization methods
like the Anscombe transform [Anscombe, 1948] in the subsequent data re-
covery tasks [Delpretti et al., 2008].

Variable Definition

s location index, 1 ≤ s ≤ S

t time index, 1 ≤ t ≤ T

r = (rs,t)1≤s≤S,1≤t≤T observed signal in R
ST

Rs,t random variable following a Poisson-Gaussian distrib.

q = (qs,t)1≤s≤S,1≤t≤T the numbers of occurrences in N
ST

Qs,t random variable following a Poisson distrib.

α > 0 scaling parameter

v = (vs,t)1≤s≤S,1≤t≤T mean values in (R+)ST of the Poisson distrib.

u = (us)1≤s≤S ∈ (R∗
+)S initial values of the exponential change rate

k = (ks)1≤s≤S ∈ (R∗
+)S Poisson distrib. decay rates

x = (xs)1≤s≤S ∈ (R∗
+)S Poisson distrib. exponential decays xs = e−ks

a = (as)1≤s≤S ∈ (R∗
+)S mean values of Poisson distrib. for t = 1, as = usxs

Ws,t normally distributed random noise variable

c ∈ R mean value of the Gaussian distribution

σ > 0 standard-deviation of the Gaussian distribution

θ = [u⊤, k⊤, α, c, σ2]⊤ vector of unknown parameters

Table 3.1: Notations of Chapter 3

In this chapter, we consider a more challenging case than (3.3), when

∀(s, t) ∈ S vs,t = use
−kst (3.4)
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with u = (us)1≤s≤S ∈ (0,+∞)S and k = (ks)1≤s≤S ∈ (0,+∞)S . In this
case, the 2S + 3-dimensional vector of unknown noise parameters becomes
θ = [u⊤, k⊤, α, c, σ2]⊤ where (·)⊤ denotes the transpose operator. Some
results concerning time series data decaying exponentially in time in the
presence of additive noise can be found in [Lawunmi, 1997], [Lawunmi, 2004]
but they cannot deal with the considered Poisson model. The notations used
in the chapter are summarized in Table 3.1.

§ 3.3 EM approach

Under the considered statistical assumptions, for every s ∈ {1, . . . , S} and
t ∈ {1, . . . , T}, the mixed continuous-discrete distribution of (Rs,t, Qs,t) is
obtained by applying Bayes rule:

(∀rs,t ∈ R)(∀qs,t ∈ N) pRs,t,Qs,t(rs,t, qs,t | θ)
=fRs,t|Qs,t=qs,t(rs,t | α, c, σ)P(Qs,t = qs,t | us, ks)
=fWs,t(rs,t − αqs,t | c, σ)P(Qs,t = qs,t | us, ks)

=
exp

(
− (rs,t−αqs,t−c)2

2σ2

)

√
2πσ

(use
−kst)qs,t

qs,t!
exp(−use−kst), (3.5)

where fRs,t|Qs,t=qs,t(· | α, c, σ) is the conditional probability density func-
tion (pdf) of Rs,t knowing that Qs,t = qs,t and fWs,t(· | c, σ) is the pdf of
Ws,t. Using the spatial and time independence properties, the associated
likelihood takes the following intricate form:

(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
)

fR(r | θ) =
S∏

s=1

T∏

t=1

+∞∑

qs,t=1

pRs,t,Qs,t(rs,t, qs,t | θ). (3.6)

Deriving the maximum likelihood estimate of the unknown parameter vector
θ from this expression appears to be analytically intractable. To circumvent
this difficulty, we propose to resort to an EM approach. Then, R is viewed as
an incomplete random vector and the chosen completed vector is [R⊤, Q⊤]⊤.
This formulation allows us to estimate θ by using the following EM itera-
tions:

(∀n ∈ N) θ(n+1) = argmax
θ

J(θ | θ(n)) (3.7)

where

J(θ | θ(n)) = EQ|R=r,θ(n) [ln pR,Q(R,Q | θ)] (3.8)
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and
(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
) (

∀q = (qs,t)1≤s≤S,1≤t≤T ∈ N
ST
)

pR,Q(r, q | θ) =
S∏

s=1

T∏

t=1

pRs,t,Qs,t(rs,t, qs,t | θ) (3.9)

is the mixed continuous-discrete probability distribution of (R,Q). The
complete data log-likelihood can now be rewritten as:

ln pR,Q(R,Q | θ) = − 1

2σ2

S∑

s=1

T∑

t=1

(Rs,t − αQs,t − c)2

− ST

2
ln(2πσ2) −

S∑

s=1

use
−ks 1 − e−Tks

1 − e−ks

+
S∑

s=1

lnus

T∑

t=1

Qs,t −
S∑

s=1

ks

T∑

t=1

tQs,t −
S∑

s=1

T∑

t=1

ln(Qs,t!). (3.10)

By dropping the terms that are independent of θ and via a change of sign,
we see that the EM algorithm reduces to:

(∀n ∈ N) θ(n+1) = argmin
θ

J̃(θ | θ(n)) (3.11)

where

J̃(θ | θ(n)) =
1

2σ2

S∑

s=1

T∑

t=1

EQ|R=r,θ(n) [(rs,t − αQs,t − c)2]

+
S∑

s=1

ks

T∑

t=1

tEQ|R=r,θ(n) [Qs,t] +
S∑

s=1

use
−ks 1 − e−Tks

1 − e−ks

−
S∑

s=1

lnus

T∑

t=1

EQ|R=r,θ(n) [Qs,t] + ST lnσ. (3.12)

The EM algorithm alternates between expectation and maximization steps,
guaranteeing that the likelihood is increased at each iteration [Dempster
et al., 1977], [Fessler and Hero, 1995].

The update rules are found by differentiating (3.12). The obtained rela-
tions lead us to the following operations to be performed at iteration n:

1. For every s ∈ {1, . . . , S}, find k
(n+1)
s satisfying:

1 + Te−(T+1)k
(n+1)
s − (T + 1)e−Tk

(n+1)
s

(1 − e−k
(n+1)
s T )(1 − e−k

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t]

=
T∑

t=1

tEQ|R=r,θ(n) [Qs,t]. (3.13)
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2. For every s ∈ {1, . . . , S} compute

u(n+1)
s =

1 − e−k
(n+1)
s

e−k
(n+1)
s (1 − e−Tk

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t]. (3.14)

3. Determine c(n+1) and α(n+1) by solving the following system of linear
equations:




ST
∑

(s,t)∈S
EQ|R=r,θ(n) [Qs,t]

∑

(s,t)∈S
EQ|R=r,θ(n) [Qs,t]

∑

(s,t)∈S
EQ|R=r,θ(n [Q2

s,t]



[
c(n+1)

α(n+1)

]

=




∑

(s,t)∈S
rs,t

∑

(s,t)∈S
rs,tEQ|R=r,θ(n) [Qs,t]


 . (3.15)

4. Set (σ2)(n+1) to

1

ST

∑

(s,t)∈S
EQ|R=r,θ(n) [(rs,t − α(n+1)Qs,t − c(n+1))2] =

1

ST

∑

(s,t)∈S
rs,t

(
rs,t − α(n+1)EQ|R=r,θ(n) [Qs,t] − c(n+1)

)
. (3.16)

As discussed in the next section, the procedure however raises a number of
numerical issues which need to be carefully addressed.

§ 3.4 Implementation issues of the EM algorithm

3.4.1 Computation of the required conditional means

According to (3.12), the expectation step requires to compute the conditional
expectations EQs,t|Rs,t=rs,t,θ[Qs,t] and EQs,t|Rs,t=rs,t,θ[Q

2
s,t], for every (s, t) ∈

S. These are expressed as follows

EQs,t|Rs,t=rs,t,θ[Qs,t] =

+∞∑

qs,t=1

qs,tP(Qs,t = qs,t | R = r, θ(n)) (3.17)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

+∞∑

qs,t=1

q2s,tP(Qs,t = qs,t | R = r, θ(n)) (3.18)
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where, for every qs,t ∈ N,

P(Qs,t = qs,t | R = r, θ) =
pRs,t,Qs,t(rs,t, qs,t | θ)

fRs,t(rs,t | θ)
, (3.19)

pRs,t,Qs,t(·, · | θ) is given by (3.5) and

(∀rs,t ∈ R) fRs,t(rs,t | θ) =
+∞∑

qs,t=0

pRs,t,Qs,t(rs,t, qs,t | θ). (3.20)

Hence, one can reexpress (3.17) and (3.18) as

EQs,t|Rs,t=rs,t,θ[Qs,t] =
ζs,t(θ)

ηs,t(θ)
(3.21)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

ξs,t(θ)

ηs,t(θ)
(3.22)

where

ζs,t(θ) =
+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) (3.23)

ηs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 0, qs,t) (3.24)

ξs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) +

+∞∑

qs,t=0

Πs,t(θ, 2, qs,t) (3.25)

and, for every (d, qs,t) ∈ N
2,

Πs,t(θ, d, qs,t) = exp

(
−(rs,t − α(qs,t + d) − c)2

2σ2

)
(use

−kst)qs,t+d

qs,t!
. (3.26)

The computation of a ratio of two infinite sums is not always an easy
task when these sums do not have closed form expressions. Next a method
allowing us to get a reliable approximation of the series given by (3.23),
(3.24) and (3.25) while simultaneously limiting the required computational
time is described.

Let (s, t) ∈ S and let d ∈ N. The presented here results are based on the
following upper bound for function Πs,t obtained through Stirling’s formula:

(
∀qs,t ∈ N

∗) Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, qs,t) (3.27)

where (∀τ ∈ (0,+∞))

Π̂s,t(θ, d, τ) = exp

(
−(rs,t − α(τ + d) − c)2

2σ2

)
(use

−kst)τ+d√
2πτ τe−τ

. (3.28)
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Lemma 3.4.1 Function Π̂s,t(θ, d, ·) has a unique maximizer

q∗s,t =
σ2

α2
W

(
α2

σ2
use

α

σ2 (rs,t−c−dα)−tks
)

(3.29)

where W denotes the Lambert W function. In addition,
(
∀qs,t ∈ N

∗)

Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, q
∗
s,t) exp

(
− α2

2σ2
(
qs,t − q∗s,t

)2
)
. (3.30)

Proof. For every τ ∈ (0,+∞), we have

ln
(

Π̂s,t(θ, d, τ)
)

= −(rs,t − α(τ + d) − c)2

2σ2
− tks(τ + d)

+ (τ + d) lnus − τ ln τ + τ − 1

2
ln(2π). (3.31)

This allows us to deduce that

∂
(

ln Π̂s,t(θ, d, τ)
)

∂τ
= − ln τ − α2

σ2
τ + lnus +

α

σ2
(rs,t − c− αd) − tks.

Hence, any extremum value q∗s,t of Π̂s,t(θ, d, ·) must satisfy the following
equation:

ln q∗s,t +
α2

σ2
q∗s,t − lnus −

α

σ2
(rs,t − c− αd) + tks = 0. (3.32)

There exists a unique solution to this equation which is given by (3.29)
[Cranmer, 2004]. It is easy to check from (3.32) that

∂
(

ln Π̂s,t(θ, d, τ)
)

∂τ
> 0 ⇔ τ < q∗s,t (3.33)

so that q∗s,t is the unique maximizer of Π̂s,t(θ, d, ·). In addition, we derive
from (3.32) that

ln
(
Π̂s,t(θ, d, τ)

)
− ln

(
Π̂s,t(θ, d, q

∗
s,t)
)

= − α2

2σ2
(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q∗s,t

+ (τ − q∗s,t)
(

lnus +
α

σ2
(rs,t − c− αd) − tks + 1

)

= − α2

2σ2
(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q∗s,t + (τ − q∗s,t)

(
ln q∗s,t +

α2

σ2
q∗s,t + 1

)

= − α2

2σ2
(
τ − q∗s,t

)2
+ τ(ln q∗s,t − ln τ) + τ − q∗s,t. (3.34)
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By using now the concavity of the logarithm function, we get

ln q∗s,t − ln τ ≤ 1

τ
(q∗s,t − τ). (3.35)

Altogether (3.27), (3.34) and (3.35) yield (3.30).

As illustrated by Fig. 3.1, the value q∗s,t corresponding to the maximum

of function Π̂s,t(θ, d, ·) is a close approximation to the maximizer of function
Πs,t(θ, d, ·). We show next that the above lemma is useful to derive finite

(a) α = 1, c = 0, σ2 = 50, us = 100 (b) α = 9, c = 0, σ2 = 300, us = 30

Maximum value q∗s,t is marked in blue while function Πs,t(θ, 0, qs,t) as a function of qs,t
for rs,t = 50 in green.

Figure 3.1: The value q∗s,t as an approximation to the maximizer of function
Πs,t(θ, d, ·).

sum approximations to the series in (3.23), (3.24) and (3.25).

Proposition 3.4.2 Let ∆ > 0 and set

q−s,t = ⌊q∗s,t − ∆
σ

α
⌋, q+s,t = ⌈q∗s,t + ∆

σ

α
⌉ (3.36)

where q∗s,t is given by (3.29) and ⌊·⌋ (resp. ⌈·⌉) denotes the lower (resp.

upper) rounding operation. Then,
∑q+s,t

qs,t=max(1,q−s,t)
Πs,t(θ, d, qs,t) constitutes

a lower approximation to
∑+∞

qs,t=1 Πs,t(θ, d, qs,t) with maximum error value

√
2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1 − erf

( ∆√
2

))
.

Proof. For every qs,t ∈ N such that qs,t ≥ q∗s,t and, for every τ ∈ R such that
qs,t ≤ τ ≤ qs,t + 1, we have

exp

(
− α2

2σ2
(qs,t + 1 − q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
. (3.37)
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This allows us to deduce that

+∞∑

qs,t=q
+
s,t+1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ +∞

q+s,t

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ ≤

∫ +∞

q∗s,t+∆ σ
α

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√

2π
σ

2α

(
1 − erf

( ∆√
2

))
(3.38)

where erf is the error function. Similarly, for every qs,t ∈ N such that
qs,t ≤ q∗s,t − 1 and, for every τ ∈ R such that qs,t ≤ τ ≤ qs,t + 1, we get

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
, (3.39)

which, by assuming that q−s,t ≥ 2, yields

q−s,t−1∑

qs,t=1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ q−s,t

1
exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ ≤

∫ q∗s,t−∆ σ
α

−∞
exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√

2π
σ

2α

(
1 − erf

( ∆√
2

))
. (3.40)

By using now (3.30), (3.38) and (3.40), it can be concluded that

0 ≤
+∞∑

qs,t=1

Πs,t(θ, d, qs,t) −
q+s,t∑

qs,t=max(1,q−s,t)

Πs,t(θ, d, qs,t)

≤ Π̂s,t(θ, d, q
∗
s,t)




max(q−s,t−1,0)∑

qs,t=1

e−
α2

2σ2 (qs,t−q∗s,t)2
+∞∑

qs,t=q
+
s,t+1

e−
α2

2σ2 (qs,t−q∗s,t)2




≤
√

2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1 − erf

( ∆√
2

))
. (3.41)

Note that, when ∆ = 5,
√

2π
(

1 − erf
(

∆√
2

))
≃ 1.44 × 10−6.

Fig. 3.2 indicates that the bounds proposed in Proposition 3.4.2 given
by q−st = max(0,

⌊
q∗s,t − ∆σ

α

⌋
) and q+st =

⌈
q∗s,t + ∆σ

α

⌉
, where ∆ > 0 and

q∗s,t = σ2

α2W
(
α2

σ2use
α

σ2 (rs,t−c−dα)−tks
)

, are sufficiently precise in practice. We
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compare them with the summation bounds proposed in [Lantéri and Theys,
2005], [Benvenuto et al., 2008] given by q−st = 0 and q+st = rs,t + 4σ. Those
bounds are not guaranteed to include all the significant coefficients (see
Fig. 3.2(a)) or to be very effective (see Fig. 3.2(b)), unlike the ones we
propose.

(a) α = 1, c = 0, σ2 = 50, us = 100 (b) α = 9, c = 0, σ2 = 300, us = 30

Function Πs,t(θ, 0, qs,t) as a function of qs,t for rs,t = 50 is marked in green, the proposed
summation bounds for ∆ = 5 are marked in blue and the one proposed in [Benvenuto
et al., 2008] in red. The black dotted line indicates rs,t while the pink dotted one indicates
us.

Figure 3.2: Infinite summation bounds.

3.4.2 Estimation of the exponential decay rates

In the previous developments, a difficulty also arises in solving the update
equation (3.13). A useful result is the following one:

Proposition 3.4.3 For every n ∈ N, s ∈ {1, . . . , S} and x ∈ R, let

gn,s(x) =

T−1∑

β=0

xβ

(
(β + 1)

T∑

t=1

EQ|R=r,θ(n) [Qs,t]

−
T∑

t=1

tEQ|R=r,θ(n) [Qs,t]

)
. (3.42)

Then, e−k
(n+1)
s is the unique positive real root x∗n,s of polynomial gn,s.

Proof. Simplifying the double root at 1 in the numerator of (3.13), we see

that e−k
(n+1)
s is a root x∗n,s in (0, 1) of polynomial gn,s. We now show that

x∗n,s is the unique positive root of this polynomial.

For every β ∈ {0, . . . , T − 1}, let b
(β)
n,s denote the coefficient of the term

of degree β in gn,s. According to (3.42) we have:
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• b
(0)
n,s =

∑T
t=1(1 − t)EQ|R=r,θ(n)[Qs,t] < 0 (Due to (3.21), (3.23) and

(3.26), for every (s, t) ∈ S, us > 0 ⇒ EQ|R=r,θ(n)[Qs,t] > 0.)

• ∀β ∈ {1, . . . , T − 2}, b
(β)
n,s = b

(β−1)
n,s +

∑T
t=1 EQ|R=r,θ(n) [Qs,t]

• b
(T−1)
n,s =

∑T
t=1(T − t)EQ|R=r,θ(n) [Qs,t] > 0.

Since the sequence (b
(β)
n,s)0≤β≤T−1 is an increasing arithmetic sequence, the

number of sign differences between consecutive nonzero coefficients is at

most 1. Moreover, since b
(T−1)
n,s > 0, we can conclude using Descartes’ rule

of signs that the maximum number of positive roots of gn,s is equal to 1. As

g
(0)
n,s < 0 and limx→+∞ gn,s(x) = +∞, it can be deduced that there exists a

unique positive root of gn,s.

In practice, we propose to compute k
(n+1)
s by using Halley’s iterative pro-

cedure [Gander, 1985]. The iterations are given by Algorithm 5, where g′n,s
(resp. g′′n,s) denotes the first (resp. second) derivative of gn,s.

Algorithm 5 Halley’s algorithm for computing k
(n+1)
s

Init : x
(0)
n,s = e−k

(n)
s

For m = 0, . . . ,M − 1⌊
x
(m+1)
n,s = x

(m)
n,s −

2gn,s(x
(m)
n,s )g′n,s(x

(m)
n,s )

2(g′n,s(x
(m)
n,s ))2 − gn,s(x

(m)
n,s )g′′n,s(x

(m)
n,s )

k
(n+1)
s = − log x

(M)
n,s

3.4.3 Moment-based initialization

Since the EM algorithm is not guaranteed to converge to a global maximizer
of the likelihood, its behavior can be improved by a judicious initialization.
Usually, the choice of a good starting value is discussed in the context of spe-
cific applications [Biernacki et al., 2003], [Pereira et al., 2010], [Huda et al.,
2006], [Jezierska et al., 2011a]. For the considered problem, we propose a
moment-based approach. Although methods of moments are often outper-
formed by other estimators, their simplicity makes them popular statistical
tools [Zhang, 2007].

Due to the independence assumptions made in Section 3.2, the first and
second order statistics of the observations can be expressed as

• mean value: E[Rs,t] = αe−kstus + c (3.43)

• variance: var [Rs,t] = α2e−kstus + σ2. (3.44)
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Note that (3.43) can be re-expressed as

Rs,t = ase
−kst + c+ Es,t (3.45)

where as = αus and (Es,t)1≤s≤S,1≤t≤T are independent zero-mean random
variables. This suggests adopting a nonlinear least squares approach to
compute estimates â = (âs)1≤s≤S , k̂ = (k̂s)1≤s≤S and ĉ of the parameters:

(â, k̂, ĉ) ∈ arg min
a,k,c

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (3.46)

The traditional approach to address such a problem is to rewrite it as

minimize
k∈(0,+∞)S

ψ(k) (3.47)

where, for every k = (ks)1≤s≤S ∈ (0,+∞)S ,

ψ(k) = min
a∈RS ,c∈R

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (3.48)

Finding the expression of ψ reduces to a linear least squares problem the
solution of which can be expressed in a closed form. However, for large-size
problems where S takes a high value, the minimization of ψ requires solving
a large dimensional non-convex minimization problem. Alternatively, by
setting xs = e−ks for every s ∈ {1, . . . , S}, (3.46) can be reexpressed as the
problem of finding a minimizer of a real-valued multivariate polynomial on
a set defined by polynomial inequalities. Global optimization methods for
such problems were introduced in [Lasserre, 2001], [Parrilo and Sturmfels,
2001]. Nevertheless, these methods do not scale well with the size of the
problem.

In order to circumvent these difficulties, we propose to adopt a splitting
strategy. More specifically, we reformulate the problem in the product space
R
S × R

S as follows:

minimize
(c1,...,cS)∈RS

(x1,...,xS)∈RS

S∑

s=1

ϕs(cs, xs) + ιD(c1, . . . , cS) (3.49)

where, for every (cs, xs) ∈ R
2,

ϕs(cs, xs) =





min
as∈R

∑T
t=1

(
rs,t − cs − asx

t
s

)2
if xs ∈ [ε, 1 − ε]

+∞ otherwise,
(3.50)
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ε ∈ (0, 1/2) is a tolerance parameter, D is the vector space {(c1, . . . , cS) ∈
R
S | c1 = · · · = cS}, and ιD is the indicator function of D defined as

(∀c = (c1, . . . , cS) ∈ R
S) ιD(c1, . . . , cS) =

{
0 if c ∈ D

+∞ otherwise.
(3.51)

Guidelines for addressing such split optimization problems is provided in
[Combettes and Pesquet, 2008] by employing proximal tools. namely algo-
rithms involving computations of proximity operators (see Chapter 1.3.1.2).
However, there is a limited number of results concerning the convergence
of proximal splitting algorithms in the non-convex case. Among these al-
gorithms, we propose to use the Douglas-Rachford algorithm which was
observed to behave satisfactorily [Borwein and Sims, 2011] in a number of
non-convex optimization problems.

For many functions the proximity operator has an explicit form [Com-
bettes and Pesquet, 2011]. For instance, the proximal operator proxιD of ιD
reduces to the projection onto D, i.e.

(∀(cs)1≤s≤S ∈ R
S) proxιD(c1, . . . , cS) =

c1 + · · · + cS
S

(1, . . . , 1). (3.52)

For every s ∈ {1, . . . , S}, we have the following expression of the proximity
operator of γϕs with γ ∈ (0,+∞)

(∀(cs, xs) ∈ R
2) (c̃s, x̃s) = proxγϕs

(cs, xs) ⇔

(c̃s, x̃s) = argmin
(cs,xs)∈R2

γϕs(cs, xs) +
1

2
(cs − cs)

2 +
1

2
(xs − xs)

2. (3.53)

We substitute ϕs in (3.53) with (3.50). We need to solve the following
problem:

minimize
as∈R,xs∈[ε,1−ε],cs∈R

γ
T∑

t=1

(
rs,t − cs − asx

t
s

)2
+

1

2
(cs − cs)

2 +
1

2
(xs − xs)

2.

(3.54)

For any value of xs ∈ [ε, 1 − ε], differentiating with respect to cs and as
yields ãs(xs) and c̃s(xs) as the optimal values of as and cs in the above
minimized quadratic function. The solution can be written in a 2×2 matrix
form: [

T + (2γ)−1 ωs
ωs ω2

s

] [
c̃s(xs)
ãs(xs)

]
=

[
(2γ)−1cs + rs

ρs

]
(3.55)
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where

ωs =
T∑

t=1

xts = χ(xs), ω2
s =

T∑

t=1

x2ts = χ(x2s) (3.56)

rs =
T∑

t=1

rs,t, ρs =
T∑

t=1

rs,tx
t
s (3.57)

and

∀υ ∈ [0,+∞), χ(υ) = υ
1 − υT

1 − υ
. (3.58)

The linear solution to (3.55) yields

c̃s(xs) =
ω2
s((2γ)−1cs + rs) − ωsρs

(T + (2γ)−1)ω2
s − (ωs)2

(3.59)

ãs(xs) =
(T + (2γ)−1)ρs − ωs((2γ)−1cs + rs)

(T + (2γ)−1)ω2
s − (ωs)2

. (3.60)

The solution to (3.54) thus reduces to the one-variable minimization prob-
lem:

Find x̃s = argmin
xs∈[ε,1−ε]

γ

T∑

t=1

(
rs,t − c̃s(xs) − ãs(xs)x

t
s

)2
(3.61)

+
1

2

(
c̃s(xs) − cs

)2
+

1

2
(xs − xs)

2

= argmin
xs∈[ε,1−ε]

− γ
(
((2γ)−1cs + rs)c̃s(xs) + ρsãs(xs)

)
+

1

2
(xs − xs)

2.

The minimization of this rational function can be performed by various
numerical methods. For instance, the global optimization method pro-
posed in [Kostrowicki and Scheraga, 1995], [Fang et al., 2000], [Jibetean
and de Klerk, 2006], [Nie et al., 2008] can be employed. We conclude that
proxγϕs

(cs, xs) = (c̃s(x̃s), x̃s).
This allows us to apply the Douglas-Rachford method summarized in

Algorithm 6. It is worth noticing that the computation of the proximity
operators proxγϕs

for different values of s ∈ {1, . . . , S} can be implemented
in a parallel manner.

Once estimates ĉ and (x̂s)1≤s≤S have been obtained in this fashion, the
following estimates of the amplitude values can be derived from (3.50):

(∀s ∈ {1, . . . , S}) âs =
1

χ(x̂2s)

T∑

t=1

(rs,t − ĉ)x̂ts (3.62)

Note that an alternative approach relying upon an alternating minimization
approach was proposed in [Jezierska et al., 2012b]. However, it was observed
to exhibit slower convergence.



3.4. Implementation issues of the EM algorithm 83

Algorithm 6 Douglas-Rachford iterations for computing moment-based
estimates of k and c.

Initialization:

Initialize ĉ(0).
Set c

(0)
s = ĉ(0), for every s ∈ {1, . . . , S}.

Set initial values in [ε, 1 − ε] for (x̂
(0)
s )1≤s≤S .

Main loop:

For m = 0 . . .M − 1

For s = 1 . . . S⌊
(ĉ

(m)
s , x̂

(m+1)
s ) = proxγϕs

(c
(m)
s , x̂

(m)
s )

ĉ(m+1) = 1
S

∑S
s=1 ĉ

(m)
s

For s = 1 . . . S⌊
c
(m+1)
s = c

(m)
s + 2ĉ(m+1) − ĉ(m) − ĉ

(m)
s

Outputs:

ĉ = ĉ(M)

For s = 1 . . . S⌊
k̂s = − ln

(
x̂(M)
s

)

It remains now to deduce estimates of α, u and σ. To do so, we start by
rewriting (3.44) as

E[(Rs,t − E[Rs,t])
2] = E[(Rs,t − ase

−kst − c)2] = αase
−kst + σ2. (3.63)

The following weighted least squares estimate for α can then be derived:

α̂ =
ν
∑S

s=1 νsâsµs −
∑S

s=1 νses
∑S

s=1 νsâsωs

ν
∑S

s=1 νsâ
2
sω

2
s − (

∑S
s=1 νsâsωs)

2
, (3.64)

where (νs)1≤s≤S are positive weights, ν = T
∑S

s=1 νs, and, for every s ∈
{1, . . . , S},

ωs = χ(x̂s), ω2
s = χ(x̂2s), es =

T∑

t=1

es,t, µs =

T∑

t=1

x̂tses,t, (3.65)

(∀t ∈ {1, . . . , T}) es,t = (rs,t − âsx̂
t
s − ĉ)2. (3.66)

An estimate of u follows as

(∀s ∈ {1, . . . , S}) ûs =
âs
α̂
. (3.67)

Finally, the estimation process is completed by computing

σ̂2 =

∑
(s,t) νs

(
es,t − α̂âsx̂

t
s

)
∑

(s,t) νs
=

∑S
s=1 νs

(
es − α̂âsωs

)

ν
. (3.68)

The final proposed noise modeling procedure is summarized in Fig. 3.3.
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Initialization

EM algorithm

1. Init k̂ and ĉ using Algo. 6

2. Init â using (3.62)

3. Init α̂ using (3.64)

4. Init û using (3.67)

5. Init σ̂2 using (3.68)

For n = 1, . . .

E - Step

M - Step

Update EQs,t|Rs,t=rs,t,θ[Qs,t] using (3.21)

Update EQs,t|Rs,t=rs,t,θ[Q
2
s,t] using (3.22)

∀s ∈ {1, . . . , S} update k
(n+1)
s using Algo. 5

∀s ∈ {1, . . . , S} update u
(n+1)
s using (3.14)

Update c(n+1) and α(n+1) using (3.15)

Update (σ2)(n+1) using (3.16)

r

θ0

θ∗

∀(s, t) ∈ S

Figure 3.3: Flowchart of the proposed parametric estimation method

§ 3.5 Performance bounds

This section aims at deriving lower bounds on the best achievable perfor-
mance in estimating the parameters of Model (3.1). These bounds will allow
us to evaluate the performance of the estimator proposed in Section 3.3. A
well-known lower bound on the variance of an unbiased estimator is provided
by the Cramer-Rao inequality, which involves the inverse of the Fisher Infor-
mation Matrix (FIM) [Rao, 1945]. The problem of computing the required
FIM is addressed in Section 3.5.1, whereas the inversion of the FIM is dis-
cussed in Section 3.5.2.

3.5.1 Form of the Fisher information matrix

Recall that the FIM is expressed from the log-likelihood as follows

I(θ) = ER|θ

[
∂ln(fR(R | θ))

∂θ

(
∂ln(fR(R | θ))

∂θ

)⊤]
=

S∑

s=1

T∑

t=1

ER|θ[Us,tU
⊤
s,t]

(3.69)

where, for every (s, t) ∈ S, Us,t is the score function defined as

Us,t =
∂ln(fRs,t(Rs,t | θ))

∂θ
(3.70)

and the marginal pdf of Rs,t is given by (3.20). This yields

∂fRs,t(rs,t | θ)
∂θ

=
+∞∑

qs,t=0

∂pRs,t,Qs,t(rs,t, qs,t | θ)
∂θ

(3.71)
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which allows us to deduce that Us,t is equal to

∑+∞
qs,t=0

{
∂ln(pRs,t,Qs,t

(rs,t,qs,t|θ))
∂θ pRs,t,Qs,t(rs,t, qs,t | θ)

}

∑+∞
qs,t=0 pRs,t,Qs,t(rs,t, qs,t | θ)

= EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂θ

]
. (3.72)

The components of vector Us,t can then be expressed from the conditional
means of Qs,t and Q2

s,t. Indeed, according to (3.5), we have: for every
s′ ∈ {1, . . . , S},

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂us′

]

=

(
1

us
EQs,t|Rs,t=rs,t,θ[Qs,t] − e−kst

)
δs′−s (3.73)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂ks′

]

= t
(
use

−kst − EQs,t|Rs,t=rs,t,θ[Qs,t]
)
δs′−s (3.74)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂c

]

=
1

σ2
(
rs,t − αEQs,t|Rs,t=rs,t,θ[Qs,t] − c

)
(3.75)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂α

]

=
1

σ2
(
(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t] − αEQs,t|Rs,t=rs,t,θ[Q

2
s,t]
)

(3.76)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t(rs,t, Qs,t | θ))

∂σ

]
=

1

σ3
(
(rs,t − c)2

−σ2 + α2EQs,t|Rs,t=rs,t,θ[Q
2
s,t] − 2α(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t]

)
(3.77)

where δs′−s = 1 if s′ = s and 0 otherwise. So, provided that EQs,t|Rs,t=rs,t,θ[Qs,t]
and EQs,t|Rs,t=rs,t,θ[Q

2
s,t] are known, the above equations allow us to deduce

the expression of Us,t. We still need to calculate the expectation with re-
spect to R in (3.69), which is unfortunately intractable. To circumvent this
difficulty, we propose to proceed similarly to the Monte Carlo approach in
[Dauwels and Korl, 2006], by drawing L≫ 1 realizations of R and calculat-
ing, for each realization r(ℓ) with ℓ ∈ {1, . . . , L}, the associated correlation

matrix
∑S

s=1

∑T
t=1 U

(ℓ)
s,t (U

(ℓ)
s,t )⊤. Then, the FIM is approximated by the fol-

lowing consistent sample estimate

ÎL(θ) =
1

L

L∑

ℓ=1

S∑

s=1

T∑

t=1

U
(ℓ)
s,t (U

(ℓ)
s,t )⊤. (3.78)
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3.5.2 Inversion of the Fisher information matrix

Let θ̂i : R
ST → R with i ∈ {1, . . . , 2S + 3} be an unbiased estimator of the

i-th component θi of vector θ. A lower bound of the mean square error
E[(θ̂i(R)− θi)

2] is given by the i-th diagonal term of the inverse of the FIM.
It is thus of main interest to compute the diagonal terms of the inverse of
matrix I(θ) ∈ R

(2S+3)×(2S+3). Note that, the FIM is assumed to be invertible
as otherwise some parameters would not be identifiable. Although S may
take large values, the inversion can be efficiently performed due to the sparse
structure of the FIM.

More precisely, the FIM can be expressed as the following block matrix:

I(θ) =

[
A B
B⊤ C

]
(3.79)

where
• the matrix A ∈ R

2S×2S takes the following form

A =

[
A1,1 A1,2

A⊤
1,2 A2,2

]
(3.80)

with

A1,1 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

S×S (3.81)

A1,2 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S (3.82)

A2,2 = ER|θ

[
∂ln(fR(R | θ))

∂k

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S ; (3.83)

• the matrix B is given by

B⊤ = [B1 | B2] (3.84)

where

B1 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

3×S (3.85)

B2 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

3×S (3.86)

with θ̃ = [c, α, σ]⊤;

• C = ER|θ

[
∂ln(fR(R|θ))

∂θ̃

(
∂ln(fR(R|θ))

∂θ̃

)⊤]
∈ R

3×3.
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From the standard Frobenius-Schur formula for the inverse of a block
matrix [Horn and Johnsone, 1990], the i-th diagonal terms of I(θ)−1 is given
by

[I(θ)−1]i,i =

{
[A−1 +A−1B(C −B⊤A−1B)−1B⊤A−1]i,i if i 6 2S

[(C −B⊤A−1B)−1]i,i otherwise.

(3.87)

Hence, both C − B⊤A−1B ∈ R
3×3 and A need to be inverted. The former

inversion is easy due to the small size of the matrix, but a more challenging
task is to invert the latter, which is typically of large dimension. However, a
closer look at (3.73) and (3.74) allows us to observe that matrices A1,1, A1,2

and A2,2 in (3.81)-(3.83) are diagonal. Thus, using again the block matrix
inversion formula, we get

A−1 = [A−1
1 | A−1

2 ] (3.88)

with A−1
1 =

[
(A1,1 −A1,2A

−1
2,2A1,2)

−1

−A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

]
and

A−1
2 =

[ −A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

(A2,2 −A1,2A
−1
1,1A1,2)

−1

]
, where all the required inver-

sions are straightforward due to the diagonal structure of all the involved
matrices.

In summary, the mean square error E[(θ̂i(R)− θi)
2] is lower bounded by

[I(θ)−1]i,i which is given by (3.87).

§ 3.6 Experimental results

This section illustrates the good performance of the proposed approach and
shows its usefulness in a real microscopy application. The algorithm perfor-
mance is measured by computing the mean square error (MSE) between the
original and reconstructed noise parameters and by inspecting the difference
between the variance of our estimator and the Cramer-Rao bounds (CRB).
Results of a series of synthetic data simulation are provided in Section 3.6.1,
while Section 3.6.2 is devoted to practical considerations, necessary details
about the application and presentation of the results on a real data set.

3.6.1 Validation of the proposed approach on synthetic data

Firstly we evaluate the performance of the proposed algorithm under differ-
ent working conditions. In particular the influence of the values of param-
eters ∆, S, T , c, α, σ2, us and ks is studied. Realizations of the observed
signal Rs,t are generated according to (3.1) for different set of parameter
values for θ, S and T . Randomly chosen values of us and ks are uniformly
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distributed over [u, u] and
[
k, k
]
, respectively. Poisson and Gaussian noise

realizations are drawn using the random number generators proposed in
Park et al. [Park and Miller, 1988]. The bias on the estimate of the i-th

component of the parameter vector is computed as 1
L

∑L
ℓ=1(θi − θ̂

(ℓ)
i ) over

L = 100 different noise realizations. As expected, Table 3.2 illustrates that
our estimator is asymptotically unbiased when T → +∞. Average values

of the MSE are computed by 1
L

∑L
ℓ=1(θi − θ̂

(ℓ)
i )2. Similarly, the SNR values

provided in Table 3.2 correspond to averages computed over the L realiza-
tions. The good performance of the proposed estimator is confirmed by the
small difference between the MSE and the associated CRB (usually less than
50%).

Remark 3.6.1 Note that, for finite T , our estimator is biased, so that the
CRB constitutes only a quality measure which is not theoretically guaran-
teed to provide an achievable lower bound for the MSE.

Firstly, the influence of the approximation of the infinite summations
proposed in Proposition 3.4.2 is investigated. The inspection of the MSE,
bias and CRB values in the provided example illustrates that 5 is an ade-
quate choice for ∆ and that any higher value does not improve the estimation
results. Note that the CRB computation procedure appears to be less sen-
sitive to the choice of ∆ than the EM algorithm. Additionally, the influence
of the choice of T and S on the estimation quality is assessed. As expected,
the estimation performance is improved by increasing T and S, but the in-
fluence of T is more important. Finally, we provide some numerical results
related to the behaviour of our algorithm for different choices of θ. The
following points have been highlighted through our study:

• the accuracy of u and k estimation increases with α, while the accuracy
of α, c and σ estimation decreases with α ;

• the estimation performance of our algorithm does not depend on the
value of c ;

• the accuracy of c, u and k estimation decreases with σ2, while the
estimation of σ is improved ;

• σ is better estimated when low values of us are present in signal u ;

• the considered estimation problem becomes more difficult when the
decay rate ks is small.

One can observe that our EM estimates can be quite precise for some good
choices of S, T and ∆ as the estimation error can fall under 5%.
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Param.
α̂ ĉ σ̂ û k̂

bias MSE CRB bias MSE CRB bias MSE CRB SNR SNR

Identified noise parameters vs

∆ (α = 5, c = 150, σ2 = 200,
u = 5, u = 100, k = 0.0001,
k = 0.01, S = 200, T = 200)

3 -0.29 9.31× 10−2 4.44× 10−3 2.60 6.76× 102 3.80× 100 8.27 6.84× 101 1.59× 10−1 27.1 12.0
4 0.06 8.01× 10−3 4.44× 10−3 0.63 4.21× 100 1.68× 100 0.13 1.68× 10−1 1.59× 10−1 30.9 22.5
5 0.06 8.40× 10−3 4.44× 10−3 0.47 3.89× 100 1.68× 100 0.09 1.59× 10−1 1.59× 10−1 30.9 22.5
6 0.06 8.40× 10−3 4.44× 10−3 0.47 3.89× 100 1.68× 100 0.09 1.59× 10−1 1.59× 10−1 30.9 22.6

Identified noise parameters vs T

(α = 5, c = 150, σ2 = 1000,
u = 5, u = 150, k = 0.0001,
k = 0.01, S = 200)

150 0.08 2.07× 10−2 1.36× 10−2 -1.17 7.78× 101 4.77× 101 0.04 6.49× 10−1 4.49× 10−1 25.8 12.8
200 0.07 1.55× 10−2 1.04× 10−2 0.85 1.73× 101 1.11× 101 0.13 2.21× 10−1 1.69× 10−1 30.1 19.2
300 0.04 1.03× 10−2 7.14× 10−3 0.45 1.72× 100 1.54× 100 0.11 8.54× 10−2 5.90× 10−2 31.9 23.1
350 0.04 8.80× 10−3 6.17× 10−3 0.06 8.75× 10−1 7.52× 10−1 0.08 5.54× 10−2 4.15× 10−2 32.3 23.8

Identified noise parameters vs S

(α = 5, c = 150, σ2 = 1000,
u = 5, u = 150, k = 0.0001,
k = 0.01, T = 200)

150 0.06 1.78× 10−2 1.36× 10−2 0.53 1.60× 101 1.43× 101 0.17 2.27× 10−1 2.13× 10−1 29.8 17.6
200 0.07 1.55× 10−2 1.04× 10−2 0.85 1.73× 101 1.11× 101 0.13 2.21× 10−1 1.69× 10−1 30.1 19.2
300 0.06 1.14× 10−2 6.94× 10−3 −0.14 9.31× 100 7.69× 100 0.11 1.47× 10−1 1.12× 10−1 30.8 19.7
350 0.06 8.76× 10−3 6.23× 10−3 0.71 1.08× 101 6.74× 100 0.16 1.34× 10−1 1.02× 10−1 31.2 19.4

Identified noise parameters vs α

(c = 150, σ2 = 1000, u = 5,
u = 150, k = 0.0001, k = 0.01,
S = 200, T = 200)

5 0.07 1.55× 10−2 1.04× 10−2 0.85 1.73× 100 1.11× 101 0.13 2.21× 10−1 1.69× 10−1 30.1 19.2
10 0.12 2.97× 10−2 1.53× 10−2 0.99 3.08× 101 2.10× 101 0.16 9.98× 10−1 7.58× 10−1 32.3 23.4
15 0.12 4.21× 10−2 2.47× 10−2 0.04 4.21× 101 3.36× 101 0.11 2.68× 100 2.24× 100 33.5 24.9
20 0.20 7.92× 10−2 3.72× 10−2 1.00 6.22× 101 4.77× 101 0.28 6.14× 100 5.00× 100 33.3 25.6

Identified noise parameters vs c

(α = 30, σ2 = 3000, u = 5,
u = 150, k = 0.0001, k = 0.01,
S = 200, T = 200)

−10 0.32 1.95× 10−1 9.03× 10−2 1.84 1.65× 102 1.20× 102 0.41 1.27× 100 1.00× 101 33.2 25.3
0 0.32 1.94× 10−1 9.03× 10−2 1.83 1.65× 102 1.20× 102 0.41 1.26× 100 1.00× 101 33.2 25.3
10 0.32 1.95× 10−1 9.03× 10−2 1.84 1.65× 102 1.20× 102 0.41 1.26× 100 1.00× 101 33.2 25.3
150 0.32 1.95× 10−1 9.03× 10−2 1.85 1.65× 102 1.20× 102 0.41 1.26× 100 1.00× 101 33.2 25.3

Identified noise parameters vs

σ2 (α = 30, c = 150, u = 5,
u = 150, k = 0.0001, k = 0.01,
S = 200, T = 200)

2000 0.10 1.50× 10−1 8.15× 10−2 −2.85 1.35× 102 1.03× 102 −0.22 1.26× 101 1.18× 101 33.7 25.6
3000 0.32 1.94× 10−1 9.03× 10−2 1.83 1.65× 102 1.20× 102 0.41 1.26× 101 1.00× 101 33.2 25.3
4000 0.33 2.10× 10−1 1.21× 10−1 2.09 1.89× 102 1.04× 102 0.41 1.15× 101 6.80× 100 33.0 24.9
6000 0.34 2.34× 10−1 1.15× 10−1 2.46 2.28× 102 1.59× 102 0.42 1.01× 101 7.73× 100 32.7 24.2

Identified noise parameters vs u

(α = 1, c = 150, σ2 = 25,
u = 150, k = 0.0001, k = 0.01,
S = 200, T = 200)

1 0.01 3.96× 10−4 2.61× 10−4 −0.03 4.46× 10−1 3.29× 10−1 0.02 6.54× 10−3 6.04× 10−3 25.2 9.4
5 0.01 4.56× 10−4 2.80× 10−4 0.15 4.99× 10−1 3.36× 10−1 0.02 8.59× 10−3 6.60× 10−3 31.0 21.1
15 0.01 5.29× 10−4 3.21× 10−4 0.10 3.87× 10−1 3.56× 10−1 0.02 9.48× 10−3 8.31× 10−3 31.2 24.6
30 0.01 4.47× 10−4 3.66× 10−4 0.04 4.13× 10−1 3.84× 10−1 0.03 1.20× 10−2 1.11× 10−2 31.6 26.7

Identified noise parameters vs k

(α = 30, c = 150, σ2 = 103,
u = 5, u = 150, S = 200, T =

200, k̃0 = 0.01, k̃i+1 = k̃i/2)

k̃1, k̃0 0.31 1.67×10−1 7.48×10−2 0.18 6.98×101 6.98×101 0.27 1.50×101 1.33×101 33.5 27.0

k̃2, k̃1 0.33 2.79×10−1 8.20×10−2 0.41 5.69×102 4.72×102 0.81 8.59×101 8.30 ×101 32.7 22.2

k̃1, k̃2 0.21 1.68×10−1 8.42×10−2 -19.8 1.67×103 9.47×102 -5.86 1.65×102 1.65×102 32.9 16.4

k̃2, k̃3 0.28 2.27×10−1 8.48×10−2 -34.47 5.72×103 1.33×103 -8.70 4.50×102 2.44×102 28.4 5.4

Table 3.2: Performance of the proposed EM algorithm under different working conditions.
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(a) (rs,1)1 (b) (rs,1)2

(c) (rs,300)1 (d) (rs,300)2

(e) reconstructed (ûs)1 (f) reconstructed (ûs)2

Figure 3.4: Real data results.

3.6.2 Application to fluorescence imaging system - macroscopy

case

We have applied our algorithm to time series of real fluorescence images,
acquired using a macro confocal laser scanning microscope (Leica TCS-LSI)
from a cross-section through the rhizome of Convallaria majalis (Lily of the
Valley). The reported signal intensities at each location within the biological
sample result from natural occurring auto-fluorescence caused by different
compounds like lignin and other phenolics. In microscopy practice, the
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intensity decay modeled in (3.4) is due to the photobleaching effect [Song
et al., 1995]. The acquired data is corrupted with noise. Thus our noise
identification problem arises naturally [Zhang, 2007], [Bernas et al., 2007],
[Delpretti et al., 2008], [Boulanger et al., 2008], [Paul et al., 2010], [Kedziora
et al., 2011]. We evaluated our algorithm using cross validation techniques,
i.e. we applied our algorithm to two subsets coming from one dataset. We
can then assume that the two sequences are corrupted with the same noise
model and parameters. The processed time lapse sequences consists of 300
images with 12-bit resolution of size 190×190, which translates into T = 300
and S = 36100. Fig. 3.4 (a,c) and Fig. 3.4 (b,d) illustrate the first and
last images of the considered sequences 1 and 2, respectively. The visual
results are presented in Fig. 3.4 (e,f). The identified models are given by

168×P
(
ûse

−k̂st)+N (114, 64.12) and 174×P
(
ûse

−k̂st)+N (114, 62.992) for
sequence 1 and 2, respectively. One can observe that these parameter values
are indeed quite close, which shows the validity of our hypotheses. The plots
in Fig. 3.5 illustrate the variation of the measured and reconstructed signals
along t, while s is fixed. One can observe that the bleaching curves are a
good fit for the series of measured data points. The estimated ûs values lie
in [0, 13]. The relatively small data value range can be explained by the fact
that the sampling time is only 1.2 µs.

(a) 168× 4.5 e−3.1×10−4t + 114 (b) 174× 9 e−2.2×10−4t + 114

(a,b) illustrate time variations for fixed s for time series 1 and 2, respectively. The

observed data are plotted in blue and the reconstructed ones (using formula α̂ûse
−k̂st+ ĉ)

in red.

Figure 3.5: Time characteristic

§ 3.7 Conclusions

In this chapter, we have proposed a new EM-based approach for dealing
with Poisson-Gaussian noise parameter estimation problems. We have pre-
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sented a practical procedure for computing the corresponding Cramer-Rao
bounds. We have shown that the proposed method can lead to accurate
results given sufficient measurements. The numerical issues related to the
computation of our estimator have been addressed. In particular, we have
proposed a fast and reliable way to approximate the infinite sums arising
in our estimator with a high degree of accuracy. We have proposed an im-
proved moment based estimation method, which we used to initialize the
EM algorithm. As a side result, the proposed algorithm can deliver a good
estimation of the original data when the noise parameters are unknown.
Finally we have shown that our approach constitutes a solution for high
quality noise parameter estimation of fluorescence macroscopy data.
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Iterative noise estimation over image segments

In the previous chapter we discussed the problem of Poisson-Gaussian noise
parameter identification from multiple images. The focus of this chapter is
on single image noise estimation. The problem is formulated within a mixed
discrete-continuous optimization framework. The proposed approach jointly
estimates the signal of interest and the noise parameters. This is achieved by
introducing an adjustable regularization term in a minimization criterion,
together with a data fidelity error measure. The optimal solution is sought
iteratively by alternating the minimization of a label field and of a noise
parameter vector. The proposed algorithm is inspired from the spatial reg-
ularization approach for vector quantization introduced in Chapter 2, while
noise parameters are updated at each iteration using the results established
in Chapter 3. We illustrate the usefulness of our approach on synthetic data
and macroconfocal images. In the provided simulation results, we demon-
strate the effectiveness of our approach.

§ 4.1 Introduction

Estimation of noise parameters is a classical problem in signal and image
processing. In this context, for example, Donoho [Donoho, 1995] classically
proposed to employ a robust Gaussian variance estimator from the wavelet
coefficients of a single image, known as the median absolute deviation esti-
mator (MAD). Since then, many alternative methods addressing this prob-
lem have been proposed [De Stefano et al., 2004], [Amer and Dubois, 2005],
[Danielyan and Foi, 2009], [Li et al., 2010], [Pei et al., 2010], [Liu et al., 2011],
[Abramov et al., 2012], [Tomaszewska, 2012] and from a Bayesian perspec-
tive, e.g. in [Dobigeon et al., 2009]. A more general problem has been
investigated in [Grou-Szabo and Shibata, 2011] where the authors consider
the mixture of a white Gaussian noise and a random impulsive noise.

93
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Unfortunately, in many cases, the imaging noise is not additive. Due to
the quantum nature of light, the images are degraded by shot noise, while
thermal noise may play a less prominent role. Although a Gaussian approxi-
mation is well justified in some cases, one may need to consider noise mean or
variance that depend on the image intensity. Consequently, studies related
to image recovery in the presence of signal dependent noise constitutes an
active area of research. Examples include restoration methods in the pres-
ence of Poisson [Pustelnik et al., 2011] and more recently Poisson-Gaussian
noise [Luisier et al., 2011], [Jezierska et al., 2012a]. However, the associ-
ated noise identification problems have not yet been extensively studied in
the literature. An intermediate step between additive stationary noise and
signal dependent noise is to take advantage of variance stabilization tech-
niques [Foi et al., 2008], [Uss et al., 2011]. Variance stabilization simplifies
models by recovering the additivity and normality properties [Anscombe,
1948], [Fryzlewicz and Nason, 2004]. A review of some recent works in this
direction is provided in [Foi, 2009b]. However, as already mentioned, little
attention has been devoted to methods allowing us to acurately estimate
the noise parameters. In this context, we should mention the contribution
by Hwang et al. [Hwang et al., 2012] related to Poisson noise.

The present work is mainly motivated by the problem of estimating
noise parameters in fluorescence macroconfocal images, which is a new tool
in biomedical and pharmaceutic research. These images are characterized by
a low signal-to-noise ratio. We assume that similarly to other fluorescence
imaging systems, a major contribution to image noise stems from the photon
counting process. However, we do not neglect other possible sources of noise
resulting from electrical or thermal noise. Hence, we consider the noise to
be distributed according to a Poisson-Gaussian law. Other types of images
corrupted with such a noise include: hyperspectral [Acito et al., 2011], [Uss
et al., 2011], computed tomography [Liao et al., 2012], radar [Lukin et al.,
2008] and CCD camera [Foi et al., 2008] data.

In this chapter, we address the problem of estimating the parameters
of Poisson-Gaussian noise. The problem is formulated within a variational
framework. The proposed alternating optimization algorithm jointly esti-
mates the signal of interest and the noise parameters from a single image.
More precisely, the original target image x and the noise parameter vector
θ are estimated from an observed image y in an inverse problem setting, by
assuming that x admits a sparse gradient prior. We consider various choices
of regularization functions promoting sparsity, including non-convex ones
and both local and nonlocal choices of the neighborhood. The optimization
proceeds iteratively by alternating the minimization of a label field and of
the noise parameters.

The chapter is organized as follows. We review related works in Sec-
tion 4.2. The model is introduced in Section 4.3. Then, the considered pa-
rameter estimation problem is presented in Section 4.4. Next, in Section 4.5
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interesting special cases of our problem are discussed and the associated so-
lutions are described. We provide experimental results in Section 4.6, where
the performance of our approach is illustrated on both synthetic and real
data. Finally, Section 4.7 concludes the chapter.

§ 4.2 Related work

In this section, we discuss existing techniques for noise parameter estima-
tion. First, one can assume that a noise parametric model is available and
that there are homogeneous regions in the image where the noise can be
considered as stationary. This approach is fairly common as resulting meth-
ods are rather fast and efficient. Usually algorithms are defined as a two
stage approach. The first task consists of finding the homogeneous image
regions and the second performs the estimation of the parameters of the
considered distribution model. The first task is performed by using either
some segmentation methods [Liu et al., 2006], [Liu et al., 2008] or sliding
window methods [Amer and Dubois, 2005], [Bosco et al., 2010]. The major
disadvantage of this two-step approach is that the estimation performance
is strongly dependent on the errors in the segmentation process. Alter-
natively, the assumption of a prior statistical model for the image can be
exploited in addition to the noise model. For instance, in [De Stefano et al.,
2004] it is assumed that the noise is Gaussian and the original image has
a Laplacian distribution. The main drawback of this approach is that the
image statistics are usually unknown. A simple prior model may however
be defined in some transformed domain. For example, in [Donoho, 1995]
it is assumed that the wavelet coefficient in the so-called HH subband are
dominated by noise (the contribution from small image details being ne-
glected). This model has been used for additive zero-mean white Gaussian
noise parameter estimation [Li et al., 2010], but it was also combined with
a segmentation step for the Poisson-Gaussian case [Foi et al., 2008].

The estimation of noise parameters in the presence of either multi-
plicative or Poisson noise is more challenging than for additive stationary
Gaussian noise. Additional challenges arise from the noise non-stationarity.
There have been many attempts to address this issue, for instance in the
context of CCD camera [Liu et al., 2006], [Liu et al., 2008], [Foi et al., 2008],
radar [Lukin et al., 2008], confocal microscopy [Bernas et al., 2007], [Del-
pretti et al., 2008], [Paul et al., 2010] and hyperspectral images [Aiazzi et al.,
2006]. These methods are often tailored for some specific data. However, the
general structure of all these approaches is similar to the model discussed
above. Namely, they consist of determining pixel groups with uniform in-
tensities [Liu et al., 2006], [Aiazzi et al., 2006], [Liu et al., 2008], [Lukin
et al., 2008], [Bosco et al., 2010], [Abramov et al., 2010], [Liao et al., 2012]
followed by a parameter fitting procedure.



96 Chapter 4. Iterative noise estimation over image segments

Similarly to most of the mentioned techniques, our approach includes
both a segmentation and an estimation process. However, unlike the previ-
ous works, the two main steps are repeated iteratively. At each iteration,
the new partition and noise parameters are obtained by minimizing a cost
function. In order to design such an optimization framework, we assume
that the number of distinct intensity values present in the original image
is known. Note that a similar strategy was previously introduced in [Paul
et al., 2010], where the authors define a given number of histogram bins.
In the following, the proposed cost function constrains the pixel values to
belong to a relatively small finite set of intensities, and takes into account
the spatial regularity of the associated label field. The algorithm we propose
is inspired from the optimal quantization procedure described in Chapter 2.
In both applications, the first step consists of finding the right partition (i.e.
the sets of pixels whose intensities are assumed to be equal) provided that
the size of the partition is known. The difference lies in the second step. In
the quantization case, only the centroids of each class are computed while
in the present case the centroids and corresponding noise parameters need
to be found simultaneously.

§ 4.3 Model

Let x be the original image of size N ×M . Its values are assumed to belong
to a finite set {u1, . . . , uK} where K ∈ N

∗ is the number of distinct intensity
values. We will denote by u the vector [u1, . . . , uK ]⊤ ∈ R

K . We consider a
partition P = (Dk)16k6K of the image support X = {1, . . . , N}×{1, . . . ,M},
which is related to the image x through the following relation:

x = (uiP(s))s∈X ∈ {u1, . . . , uK}N×M , (4.1)

where
(
iP(s)

)
s∈X ∈ I = {1, . . . ,K}N×M is a label image defined as

(∀s ∈ X)(∀k ∈ {1, . . . ,K}) iP(s) = k ⇔ s ∈ Dk. (4.2)

Since x is a function of iP and u, it will be denoted by xiP,u throughout this
paper.

The observed noisy image y ∈ R
N×M is a realization of a random vector

Y and is such that
y = α q + w (4.3)

where α is a positive scaling factor, and q (resp. w) are realizations of
mutually independent random vectors Q (resp. W = (W (s))

s∈X) with inde-
pendent components. More precisely,

Q ∼ P(xiP,u) (4.4)

(∀s ∈ X) W (s) ∼ N (c, σ2), (4.5)
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where c ∈ R and σ ∈ (0,+∞) are the mean and the standard deviation of
the Gaussian noise component, respectively, and P(x) denotes a multivariate
Poisson distribution with mean vector x.

Then, the parameter estimation problem corresponds to finding a vector
of unknown noise parameters θ ∈ T , where θ = [c, σ2, α, u]⊤ and T is the
parameter set which is here equal to R × (0,+∞)2 × C, C being a closed
convex subset of R

K . The unknown vector θ is related to the vector of
observations y through the probability density function of Y , which has the
following form: ∀y =

(
y(s)

)
s∈X ∈ R

N×M ,

pY (y; iP, θ) =
K∏

k=1

∏

s∈Dk




+∞∑

qs=0

e−uk (uk)
qs

qs!

e−
(y(s)−αqs−c)2

2σ2

√
2πσ2


 . (4.6)

§ 4.4 Problem formulation

We adopt a variational approach where the parameter vector θ is estimated
by minimizing a penalized criterion. We have then to

minimize
(iP,θ)∈I×T

Φ(θ, iP, y) + ρ(iP). (4.7)

The above Φ is defined as the neg-log-likelihood of y:

Φ(θ, iP, y) = − log
(
pY (y; iP, θ)

)
(4.8)

and ρ is a regularization function aiming at incorporating a-priori informa-
tion about the homogeneity of the level sets of the image. Note that Problem
(4.7) is non-convex due to the fact that iP belongs to a (non-convex) set of
discrete values.

We shall see that Problem (4.7) is a simple extension of the criteria,
considered in Chapter 2. However, in the following instead of minimizing
over vector u and iP, we minimize over θ and iP, where vector θ include
values of u. Typical choices for regularization function ρ were discussed in
Chapter 2. We refer the reader to (2.24), (2.25), (2.26), (2.27) for more
details.

§ 4.5 Proposed approach

4.5.1 Algorithm

We propose the following alternating optimization algorithm:
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Algorithm 7 Proposed algorithm

Initialization:

Fix K ∈ N
∗ and θ(0) ∈ T .

Main loop:

For ℓ = 0, 1, . . .
i
(ℓ)
P

∈ arg min
iP∈I

Φ(θ(ℓ), iP, y) + ρ(iP)

θ(ℓ+1) ∈ arg min
θ∈T

Φ(θ, i
(ℓ)
P
, y)

Assuming that noise parameters (α, c, σ) are known, the Algorithm 7
reduces to Algorithm 2. Consequently, the first step of the Algorithm 7,
which consists of estimating iP, is unchanged with respect to the first step
of Algorithm 2. Consequently the combinatorial methods discussed in Chap-
ter 2 can be applied to this problem. Additional difficulties arise due to the
second step of the proposed Algorithm 7, which is no longer convex. Hence,
the previously derived PPXA+ algorithm (Algorithm 3) cannot be directly
employed. However, some of the results of Chapter 3 may still be helpful.
Note that there are three main differences with respect to the noise identi-
fication problem from time series discussed in the previous chapter. Firstly,
the cardinalities of all partitions are not equal. Note that one can relate one
time series with one partition. Previously we considered the number of sam-
ples in each time series to be equal. (The time series length in Chapter 3 was
denoted by T .) Secondly, we do not here consider any signal decay within
one partition. Hence, in the present chapter, we do not need to consider
any exponential term. Finally, an additional challenge may stem from the
constraint u ∈ C. We recall from Chapter 2 that, in the special case when
ρ is defined as the anisotropic TV (2.25) with ψ given by the binary cost
function defined in (2.27), then C = R

Q. Otherwise, set C is employed to
impose the total order constraint defined in (2.28).

4.5.2 Parameter update

In order to solve numerically the non-convex problem stated in the second
step of Algorithm 7, we propose to employ the Expectation-Maximization
(EM) algorithm [Dempster et al., 1977]. In such settings, the EM algorithm
generates a sequence of estimates (θ(ℓ))ℓ∈N which is given by

(∀ℓ ∈ N) θ(ℓ+1) = argmin
θ∈T

Φ(θ | θ(ℓ)) (4.9)

where

Φ(θ | θ(ℓ)) =
1

2σ2

∑

s∈S
EQ|Y=y,θ(ℓ) [(y(s) − αQ(s) − c)2] +

NM

2
ln(σ2)
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+
K∑

k=1

card(D
(ℓ)
k )uk −

K∑

k=1

lnuk
∑

s∈D(ℓ)
k

EQ|R=r,θ(ℓ) [Q(s)]. (4.10)

and (Q(s))s∈S are the components of Q as defined in (4.4) with iP = i
(ℓ)
P

.
This leads to the following operations to be performed at each iteration

ℓ:

1. Find u(ℓ+1) as a solution of:

u(ℓ+1) ∈ arg min
u∈C

ϑ(u) (4.11)

where ϑ(u) =
∑K

k=1 ϑk(uk), and, for every k ∈ {1, . . . ,K},

ϑk(uk) = card(D
(ℓ)
k )uk − lnuk

∑

s∈D(ℓ)
k

EQ|R=r,θ(ℓ) [Q(s)]. (4.12)

In the unconstrained case when C = R
K , we have then

u(ℓ+1) =

∑
s∈D(ℓ)

k

EQ|R=r,θ(ℓ) [Q(s)]

card(D
(ℓ)
k )

. (4.13)

On the other hand, for some regularization terms (see Section 2.3), set
C is useful to impose a total order constraint. This amounts to min-
imizing ϑ under the constraints that V u ∈ D = [δ,+∞[×[0,+∞[K−1

where δ is some small positive value, and V is the linear operator
defined as

V : RK → R
K

(u1, . . . , uK) 7→
(
u1, u2 − u1, . . . , uK − uK−1

)
. (4.14)

2. Determine c(ℓ+1) and α(ℓ+1) by solving the following system of linear
equations:




NM
∑

s

EQ|Y=y,θ(ℓ) [Q(s)]

∑

s

EQ|Y=y,θ(ℓ) [Q(s)]
∑

s

EQ|Y=y,θ(ℓ) [Q(s)2]



[
c(ℓ+1)

α(ℓ+1)

]

=




∑

s

y(s)

∑

s

y(s)EQ|Y=y,θ(ℓ) [Q(s)]


 . (4.15)



100 Chapter 4. Iterative noise estimation over image segments

3. Compute (σ2)(ℓ+1) as

∑

s

y(s)
(
y(s) − α(ℓ+1)EQ|Y=y,θ(ℓ) [Q(s)] − c(ℓ+1)

)

NM
. (4.16)

Note that even when a closed form solution to Problem (4.11) does not
exist, it can still be solved efficiently using proximal tools. We propose
to solve numerically this problem by using a primal-dual proximal algo-
rithm [Combettes and Pesquet, 2012].

Algorithm 8 Primal-dual algorithm for solving (4.11)

Initialization

γ ∈ (0,+∞), u
(0)
1 ∈ R

K , v
(0)
1 ∈ R

K .
Main loop

For j = 0, . . .

w
(j)
1 = u(j) − γV ⊤v(j)1

p
(j)
1 = proxγϑ(w

(j)
1 )

w
(j)
2 = v

(j)
1 + γV u(j)

p
(j)
2 = w

(j)
2 − γPD(γ−1w

(j)
2 )

v
(j+1)
1 = v

(j)
1 − w

(j)
2 + p

(j)
2 + γV p

(j)
1

u(j+1) = u(j) − w
(j)
1 + p

(j)
1 − γV ⊤p(j)2

In the above algorithm, we denote the projector onto the closed convex
set D by PD. The proximity operator of γϑ with and γ > 0 admits a closed
form expression [Combettes and Pesquet, 2011] and it is given by

(
∀u = (uk)1≤k≤K ∈ R

K
)

proxγϑ(u) =
(
proxγϑk(uk)

)
1≤k≤K (4.17)

where, for every k ∈ {1, . . . ,K},

proxγϑk(uk) =
1

2

(
uk − card(Dk)

+

√
|uk − card(Dk)|2 + 4

∑

s∈Dk

EQ|R=r,θ(ℓ) [Q(s)]
)
. (4.18)

The convergence of the primal-dual algorithm is guaranteed by the following
result deduced from [Combettes and Pesquet, 2012, Theorem 4.2].

Theorem 4.5.1 Under the assumptions that γ ∈ [ǫ, (1 − ǫ)/β] where ǫ ∈
(0, 1/(β + 1)) and β = ‖V ‖, there exists a minimizer û of (4.11) such that

the sequences
(
u(j)
)
j∈N and

(
p
(j)
1

)
j∈N

converge to û.
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Concerning the computation of the required conditional expectation val-
ues, it can be shown that, for every s ∈ X,

EQ|Y=y,θ(ℓ) [Q(s)] =
ζ
(ℓ)
s

η
(ℓ)
s

and EQ|Y=y,θ(ℓ) [Q(s)2] =
ξ
(ℓ)
s

η
(ℓ)
s

(4.19)

where

ζs(θ
(ℓ)) =

∞∑

qs=0

Πs(θ
(ℓ), 1, qs) (4.20)

ηs(θ
(ℓ)) =

∞∑

qs=0

Πs(θ
(ℓ), 0, qs) (4.21)

ξs(θ
(ℓ)) =

∞∑

qs=0

Πs(θ
(ℓ), 1, qs) +

∞∑

qs=0

Πs(θ
(ℓ), 2, qs) (4.22)

In these formulas, for every (d, qs) ∈ N
2,

Πs(θ, d, qs) = exp

(
−(y(s) − α(qs + d) − c)2

2σ2

) (u
i
(ℓ)
P

(s)
)qs+d

qs!
. (4.23)

The infinite summations in (4.20), (4.21) and (4.22) are approximated by
finite sums with the following bounds:

q+s = q∗s + ∆
σ

α
, q−s = q∗s − ∆

σ

α
(4.24)

where q∗s = σ2

α2W
(
α2

σ2ui(ℓ)
P

(s)
e

α

σ2 (y(s)−c−dα)
)

. Here, W denotes the Lambert

product logarithm function and ∆ > 0. This choice has been shown to
ensure a fast decay of the approximation error as a function of ∆.

4.5.3 Patch-based initialization

Since Problem (4.7) is non-convex, the proposed approach is sensitive to
initialization. In the following, we propose an initialization procedure based
on image patches. Firstly, the observed image y is decomposed into non
overlapping patches Θy = {Θy1, . . . ,ΘyO}, where O stands for the total
number of patches. Next, we compute the vectors mean (Θy) ∈ R

O and
var (Θy) ∈ R

O, whose elements are the mean and the variance over the
pixels belonging to each patch, respectively. Under the assumption that the
intensity of each patch is constant, the mean and variance of the patch is
given by: ∀o ∈ {1, . . . , O},

[mean (Θy)]o = αυo + c (4.25)

[var (Θy)]o = α2υo + σ2 (4.26)
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where υo ∈ {u1, . . . , uK}. Although, the assumption about the constant
intensity of each patch is not exactly satisfied, an approximation θ(0) of the
parameter vector is given by

• α(0) = [var (Θy)]o1 / [mean (Θy)]o1 ,
where o1 = arg maxo∈{1,...,O} [mean (Θy)]o

• c(0) = mino∈{1,...,O} [mean (Θy)]o

•
(
σ2
)(0)

= [var (Θy)]o2 ,
where o2 = arg mino∈{1,...,O} [mean (Θy)]o.

• u
(0)
1 = ǫ, where ǫ is a small value greater than 0, and (∀k ∈ {2, . . . ,K})

u
(0)
k = u

(0)
k−1 + umax/(K − 1). The maximum intensity value umax of x

is assumed to be known.

Note that in contrast with the approach proposed in Chapter 3 the EM
algorithm is started iteratively. In each iteration, it is initialized with a
better parameter set.

§ 4.6 Results

The aim of this section is to illustrate the performance of the proposed noise
identification method with synthetic and real data examples. We experimen-
tally evaluate the robustness of our model under different working conditions
integrated into the algorithmic framework from Section 4.5. Hence, for all
presented experiments in this section we fix the patch size to 12×12, Q = 20,
ǫ = 0.2 and ρ to the anisotropic total variation (2.25). Moreover, for differ-
ent experiments we set the regularization parameter µ to 1.3 when ψ is the
binary cost function (2.27) and to 0.8 when it is the identity.

The results presented in Fig. 4.1 indicate that in the four considered cases
the reconstructed noise parameters are subject to small error with respect
to the true values. In the first experiment we use a neuron phantom [Dupé,
2008] as an original image (Fig. 4.1 (a)) whose intensities range between
0.25 and 17.25. Hence, we set umax = 20. The image is then corrupted
by noise with parameters α = 20, c = 100, σ2 = 1000 (Fig. 4.1 (b)). The
noise identification procedure with ψ given by binary cost function (2.27) is
applied yielding α̂ = 19.8, ĉ = 103, σ̂2 = 1039.
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(a) Confocal microscopy
phantom

(b) Noisy image (α = 20,
c = 100, σ2 = 1000)

(c) Our result (α̂ = 19.8, ĉ =
103, σ̂2 = 1039)

(d) Confocal macroscopy
ground truth (1)

(e) Noisy image (α = 5, c =
150, σ2 = 125)

(f) Our result (α̂ = 4.89, ĉ =
156.35, σ̂2 = 115.2)

(g) Confocal macroscopy
ground truth (2)

(h) Noisy image (α = 20,
c = 150, σ2 = 1000)

(i) Our result (α̂ = 19.5, ĉ =
142, σ̂2 = 907)

(j) Confocal macroscopy
ground truth (3)

(k) Noisy image (α = 30,
c = 150, σ2 = 3000)

(l) Our result (α̂ = 30.96,
ĉ = 149.95, σ̂2 = 3183.9)

Figure 4.1: Single image noise identification results
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The results of the time series noise identification procedure described in
Chapter 3 provide a ground truth for next experiments (Fig. 4.1 (d-l)). In
order to show the versatility of our model, we use ψ defined as the identity
function for experiments presented in Fig. 4.1 (d-f) and Fig. 4.1 (j-l), and
the binary cost function for experiment illustrated in images Fig. 4.1 (g-i).
We recall that for the identity function, the constrained problem needs to
be taken into account in the EM step. For these three experiments umax is
set to 150, 40 and 512 respectively. In the first case, image in Fig. 4.1 (d)
was corrupted by noise with parameters α = 5, c = 150, σ2 = 125. The
identified noise parameters are α̂ = 4.89, ĉ = 156.35, σ̂2 = 115.2. In the
second case Fig. 4.1 (h) the estimated value of α = 20, c = 150, σ2 = 1000
are α̂ = 19.5, ĉ = 142, σ̂2 = 907. The corresponding visual results are
presented in Fig. 4.1 (i). Finally, for α = 30, c = 150, σ2 = 3000 we
get α̂ = 30.96, ĉ = 149.95, σ̂2 = 3183.9 (see Fig. 4.1 (h)). This experiment
shows that the proposed procedure provides reliable results. The presence of
a regularization parameter does not appear to be a significant disadvantage.
Indeed our experiments show that for various images, similar choices of
regularization parameter leads to good noise identification results.

§ 4.7 Conclusions

Noise arises in all images as an effect of the imperfectness of image acqui-
sition systems and of the stochastic nature of light. As a consequence, it
is sometimes included into image models, often in a parametric manner.
One of the relevant problems in image processing is to estimate the param-
eters of these arising models. In the previous chapter we have presented
a method for noise identification from time-series. The developed statisti-
cal framework validates the theoretical results related to approximation of
Poisson-Gaussian neg-log likelihood. Here, we have shown how these results
can be incorporated into a reliable, single image noise estimation method.
This work also suggests to expect that the algorithmic concepts proposed in
Chapter 2 can be used across a broad area of applications. Here, Algorithm 7
is developed as a simple extension of Algorithm 2. The simulation results
demonstrate the usefulness of our approach on synthetic data and macro-
confocal images. Finally, we identify several directions for future work. One
possible extension would be to consider the single image noise estimation
problem for other complex noise distributions. The estimation results also
can be further improved by using a more flexible regularization term, e.g.
non-local TV and a more carefully chosen initialization.



- Chapter 5 -

Image Restoration in the presence of

Poisson-Gaussian noise

This chapter1 marks the beginning of the central part of our work related
to restoring data corrupted by Poisson-Gaussian noise. A Poisson-Gaussian
model may accurately describes the noise present in a significant variety of
imaging systems. However most existing restoration strategies rely on ap-
proximations of the Poisson-Gaussian noise statistics. We propose a convex
optimization algorithm for the reconstruction of signals degraded by a linear
operator and corrupted with a mixed Poisson-Gaussian noise. The original-
ity of our approach consists of considering the exact, mixed continuous-
discrete model corresponding to the data statistics. After establishing the
Lipschitz differentiability and convexity of the Poisson-Gaussian neg-log like-
lihood, we derive a primal-dual iterative scheme for minimizing the associ-
ated penalized criterion. The proposed method is applicable to a large choice
of convex penalty terms. The robustness of our scheme allows us to handle
computational difficulties due to infinite sums arising from the computation
of the gradient of the criterion. The proposed approach is validated on image
restoration examples.

§ 5.1 Introduction

Noise in a large variety of real imaging systems can be accurately described
through a mixed Poisson-Gaussian model. For example, it is frequently
encountered in astronomy [Benvenuto et al., 2008], [Snyder et al., 1993],
medicine [Nichols et al., 2002] and biology [Delpretti et al., 2008]. There
has been a growing interest for denoising problems involving images cor-
rupted in this fashion [Luisier et al., 2011], [Boracchi and Foi, 2008], [Begovic

1Published in part in Proc. of ICASSP, 2012
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et al., 2011]. However, the literature involving this model together with de-
convolution and reconstruction problems remains scarse. Among existing
works, Benvenuto et al. [Benvenuto et al., 2008] proposed a scaled gradient
method and more recently Gil-Rodrigo et al. [Gil-Rodrigo et al., 2011] de-
veloped an alternating minimization algorithm. An augmented Lagrangian
method grounded on a Poisson approximation of noise characteristics was
proposed in [Chakrabarti and Zickler, 2012], while a similar framework with
a weighted squared ℓ2 norm noise approximation was proposed in [Li et al.,
2012].

Generally, restoration strategies are grounded on some approximations of
the noise statistics, which may be detrimental to the quality of the results.
The use of approximations is motivated by the mathematical difficulties
raised by the Poisson-Gaussian model. Indeed, the corresponding probabil-
ity distribution has a discrete-continuous nature, and the expression of the
associated log-likelihood function involves an infinite sum. For simplifica-
tion, one usually neglects either the Poisson or the Gaussian component, or
performs an approximation of the Poisson-Gaussian model based on variance
stabilization techniques [Murtagh et al., 1995], [Foi, 2009a].

In this chapter, we investigate the properties of the Poisson-Gaussian
negative log-likelihood, showing that it is a convex Lipschitz differentiable
function. Since the gradient of the Poisson-Gaussian neg-log likelihood re-
quires the computation of infinite series, we propose to utilize proximal
optimization methods, since their convergence is guaranteed even in the
presence of summable numerical errors. Among recent approaches, only a
few primal-dual splitting algorithms [Combettes and Pesquet, 2012], [Raguet
et al.], [Condat, 2012], [Vu, 2011] can cope with the sum of a gradient Lips-
chitz term and a possibly non-smooth penalty term. Such a term can model
a wide range of prior information, e.g. criteria promoting sparsity in a frame,
total-variation and more generally hybrid regularization functions.

The chapter is organized as follows: Section 5.2 investigates the Poisson-
Gaussian model and introduces the notation used in this work. Section 5.3
describes the proposed optimization framework. Our approach is illustrated
via experiments in Section 5.4. Finally, some conclusions are drawn in Sec-
tion 5.5.

§ 5.2 Degradation model

Let y ∈ R
Q be a vector of observations related to an original signal x ∈

[0,+∞)N through the model y = z(x) + w, where z(x) =
(
zi(x)

)
1≤i≤Q and

w = (wi)1≤i≤Q are realizations of mutually independent random vectors
Z(x) =

(
Zi(x)

)
1≤i≤Q and W = (Wi)1≤i≤Q having independent components.
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It is further assumed that, for every i ∈ {1, . . . , Q},

Zi(x) ∼ P([Hx]i) (5.1)

Wi ∼ N (c, σ2), (5.2)

whereH is a matrix in [0,+∞)Q×N modeling the degradation process (e.g., a
convolution operator) and (c, σ) ∈ R× (0,+∞) are the mean and standard
deviation, respectively, of the Gaussian noise component. Hence, y is a
realization of a random vector Y with probability density function

pY (y;x) =

Q∏

i=1




+∞∑

n=0

e−[Hx]i([Hx]i)
n

n!

e
−
(

yi−c−n√
2σ

)2

√
2πσ2


 (5.3)

In the context of inverse problems, the original signal can be recovered by
minimizing a penalized criterion:

min
x∈RN

(f(x) = Φ(x) + ρ(x)) , (5.4)

where Φ is the so-called data fidelity term and ρ is a regularization function
incorporating a priori information, so as to guarantee the stability of the
solution w.r.t. the observation noise. In the Bayesian framework, this allows
us to compute the maximum a posteriori (MAP) estimate [Demoment, 1989]
of the original image. In this context, the data fidelity term is defined as
the negative logarithm of pY (y;x):

Φ(x) = − log(pY (y;x)) (5.5)

=

Q∑

i=1

Φi([Hx]i)

where for all i ∈ {1, . . . , Q}

Φi([Hx]i) = − log




+∞∑

n=0

e−[Hx]i([Hx]i)
n

n!

e
−
(

yi−c−n√
2σ

)2

√
2πσ2


 (5.6)

and the regularization term ρ corresponds to the potential of the chosen
prior probability distribution.

The gradient and Hessian of Φ on the positive orthant are given by(
∀x ∈ [0,+∞)N

)

∇Φ(x) = H⊤(1− ξ(Hx)) (5.7)

∇2Φ(x) = H⊤diag (ηi([Hx]i))H (5.8)
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where, for every z = (zi)1≤i≤Q ∈ [0,+∞)Q, ξ(z) =
(
ξi(zi)

)
1≤i≤Q, η(z) =(

ηi(zi)
)
1≤i≤Q with

ξi(zi) = s(zi, yi − c− 1)/s(zi, yi − c) (5.9)

ηi(zi) =
(s(zi, yi − c− 1))2 − s(zi, yi − c)s(zi, yi − c− 2)

(s(zi, yi − c))2
, (5.10)

and, for every (a, b) ∈ R
2,

s(a, b) =

+∞∑

n=0

an

n!
e
−
(

b−n√
2σ

)2

. (5.11)

We recall that proximal splitting strategy consists of decomposing f into
a sum of simpler convex functions such that either an element of the sum
is µ-Lipschitz differentiable or the closed form solution of the associated
proximity operator exists. In view of this, the two following results become
useful.

Theorem 5.2.1 The function Φ is µ-Lipschitz differentiable on [0,+∞)N

with

µ = ‖H‖2
(

1 − e−
1
σ2

)
exp

((
2 max
i∈{1,...,Q}

{yi} − 2c− 1

)
/σ2
)
. (5.12)

Proof. The proof consists of showing that ηi(zi) is upper bounded over the
domain zi > 0 by ηi(0). Firstly, we note that for zi = 0 the infinite sum

(5.11) simplifies to the first sum element, i.e. s(0, b) = e−
1

2σ2 (b)
2

, where we
have set b = yi − c. Hence,

ηi(0) =
(

1 − e−
1
σ2

)
e

1
σ2 (2b−1) (5.13)

and ∀zi ∈ (0,+∞),

ηi(0) − ηi(zi) > 0 (5.14)

⇔ (s(zi, b))
2 ηi(0) −

(
(s(zi, b− 1))2 − s(zi, b)s(zi, b− 2)

)
> 0

⇔
∞∑

m=0

∞∑

n=0

zm+n
i

m!n!

(
e

−(b−m)2−(b−n)2

2σ2 ηi(0)−

e
−(b−1−m)2−(b−1−n)2

2σ2 + e
−(b−m)2−(b−2−n)2

2σ2

)
> 0

⇔
∞∑

m=0

∞∑

n=0

zm+n
i

m!n!
e

−(b−n)2−(b−m)2+4b−2

2σ2

{(
1 − e−

n+m

σ2

)
+ e−

1
σ2

(
e−

2n
σ2 − 1

)}
> 0
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⇔
∞∑

m=0

m−1∑

n=0

zm+n
i

m!n!
e

−(b−n)2−(b−m)2+4b−2

2σ2

{
2
(

1 − e−
n+m

σ2

)(
1 − e−

1
σ2

)
+ e−

1
σ2

(
e−

n

σ2 − e−
m

σ2

)2}
+

∞∑

m=0

z2mi
(m!)2

e
−(b−m)2+2b−1

σ2

{
(1 − e−

2m
σ2 )(1 − e−

1
σ2 )
}
> 0.

Hence the expression of the µ-Lipschitz in (5.12) is obtained by finding the
maximum value of ηi(0) for all possible values of i ∈ {1, . . . , Q}.

The next convexity result can be regarded as the extension of the one pre-
sented in [Benvenuto et al., 2008].

Theorem 5.2.2 The neg-log likelihood Φ(β) of a mixture of Generalized-
Gaussian and Poisson variables defined over the positive orthant as

Φ(β)(x) =

Q∑

i=1

Φ
(β)
i ([Hx]i) (5.15)

where for all i ∈ {1, . . . , Q}

Φ
(β)
i ([Hx]i) = − log




+∞∑

n=0

e−[Hx]i([Hx]i)
n

n!

β

2
√

2σΓ( 1
β )
e
−
(
|yi−c−n|√

2σ

)β



(5.16)

is strictly convex if β > 1 and convex if β = 1.

Proof. The proof consists of showing that ∀a ∈ (0,+∞),

{
Φ̈
(β)
i (a) > 0 if β > 1

Φ̈
(β)
i (a) > 0 if β = 1

(5.17)

where

Φ̈
(β)
i (a) =

(
s(β)(a, yi − c− 1)

)2 − s(β)(a, yi − c)s(β)(a, yi − c− 2)
(
s(β)(a, yi − c)

)2 , (5.18)

∀b ∈ R

s(β)(a, b) =

+∞∑

n=0

an

n!
ζ
(β)
b (n), (5.19)

and ζ
(β)
b (·) = e

−
(

|·−b|√
2σ

)β

.
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Thus we turn our attention to the numerator of Φ̈
(β)
i . For all a ∈ [0,+∞),

b ∈ R and positive β the following holds:

(
s(β)(a, b− 1)

)2
− s(β)(a, b)s(β)(a, b− 2) > 0 (5.20)

⇔
∞∑

m=0

∞∑

n=0

an+m

n!m!

(
ζ
(β)
b (m+ 1)ζ

(β)
b (n+ 1) − ζ

(β)
b (m)ζ

(β)
b (n+ 2)

)
> 0

⇔
∞∑

m=0

∞∑

n=1

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n) − ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
> 0

⇔
∞∑

m=0

∞∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n) − ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
> 0

⇔
∞∑

m=0

{
m∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n) − ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
+

∞∑

n=m

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n) − ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)}
> 0

⇔
∞∑

m=0

{
m∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n) − ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
+

m∑

n=0

an+m−1

n!m!
m
(
ζ
(β)
b (n+ 1)ζ

(β)
b (m) − ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)}
> 0

⇔
∞∑

m=0

m∑

n=0

an+m−1

n!m!
(m− n)

(
ζ
(β)
b (n+ 1)ζ

(β)
b (m) − ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)
> 0.

Next, we show that each element of the above sum is positive, i.e. ∀a ∈
(0,+∞), ∀b ∈ R, ∀n ∈ N, ∀m ∈ N and m > n

an+m−1

n!m!
(m− n)

(
ζ
(β)
b (n+ 1)ζ

(β)
b (m) − ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)
> 0

⇔ ζ
(β)
b (n+ 1)ζ

(β)
b (m) − ζ

(β)
b (n)ζ

(β)
b (m+ 1) > 0

⇔ exp

(
−
( |b− n− 1|

σ

)β
−
( |b−m|

σ

)β)
−

exp

(
−
( |b− n|

σ

)β
−
( |b−m− 1|

σ

)β)
> 0

⇔ |b− n|β − |b− n− 1|β − (|b−m|β − |b−m− 1|β) > 0. (5.21)
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The above inequality holds if the function

π(β) : R → R

u 7→ |u|β − |u− 1|β (5.22)

is increasing over its domain. In this way, we study the positivity of the
derivative of the function π(β) over its domain. The singularity points, i.e.
u ∈ {0, 1}, can be excluded from the study due to the continuity of π(β).
We firstly note that ∀u ∈ R

sign(u− 1) =

{
−sign(u) if u ∈ (0, 1)

sign(u) otherwise.
(5.23)

Then, for β > 1 and u ∈ R \ {0, 1} the derivative is given by

∂(π(β)(u))

∂u
= β (sign(u) |u|β−1 − sign(u− 1) |u− 1|β−1) (5.24)

=

{
β (|u|β−1 + |u− 1|β−1) if u ∈ (0, 1)

β sign(u)(|u|β−1 − |u− 1|β−1) if u ∈ (−∞, 0) ∪ (1,∞)

and

sign

(
∂(π(β)(u))

∂u

)
=





sign
(

1 − |u/u− 1|β−1
)

if u ∈ (−∞, 0)

sign
(
|u/u− 1|β−1 + 1

)
if u ∈ (0, 1)

sign
(
|u/u− 1|β−1 − 1

)
if u ∈ (1,+∞) .

(5.25)

Hence, it is strictly positive for β > 1 and positive for β = 1.

For the optimization methods that are developed in the next section, it
is also important to note that the definition of the negative log-likelihood
can be extended to the whole space R

N by setting

Φ(x) = h(x) + ι[0,+∞)N (x), (5.26)

where

h(x) =

Q∑

i=1

ϕi([Hx]i) (5.27)

ι[0,+∞)N (x) =

{
0 if x ∈ [0,+∞)N

+∞ otherwise.
(5.28)
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For every i ∈ {1, . . . , Q} the function ϕi is a convex, twice-differentiable
function, whose expression is given by

ϕi : R → R

u 7→
{

Φi(u) if u ∈ [0,+∞]
1
2ηi(0)u2 + (1 − ξi(0))u+ Φi(0) otherwise

(5.29)

where Φi and ξi are defined in (5.6) and (5.9), respectively. The expres-
sion of ηi(0) was given in (5.13) and, in terms of yi − c, reads ηi(0) =(

1 − e−
1
σ2

)
e

1
σ2 (2(yi−c)−1). Consequently h is a convex function with a µ-

Lipschitz gradient on R
N . The positivity constraint in the original problem

is imposed by (5.28).

§ 5.3 Proposed optimization method

5.3.1 Minimization problem

According to the analysis carried out in Section 5.2, the objective function
takes the following form

f(x) = h(x) + ψ0(x) +

R∑

r=1

ψr(Vrx), (5.30)

where the regularization term is split in a sum of simpler functions. More
precisely, it will be assumed that ψ0 ∈ Γ0(R

N ) and, for every r ∈ {1, . . . , R},
ψr ∈ Γ0(R

Pr) and Vr ∈ R
Pr×N .2 Note that (5.30) covers a large range of

penalization strategies. For instance, a sparsity prior in an analysis frame
with frame operator Vr is introduced by taking ψr equal to λr‖ · ‖1 with
λr > 0. Block sparsity measures [Eldar et al., 2010] can also be easily
addressed in the proposed framework. Another popular example in image
restoration is the total variation penalization [Rudin et al., 1992a]. In this

case, Pr = 2N , Vr =
[
(∆h)⊤ (∆v)⊤

]⊤
, where ∆h ∈ R

N×N (resp. ∆v ∈
R
N×N ) corresponds to a horizontal (resp. vertical) gradient operator, and,

for every x ∈ R
N , ψr(Vrx) = λr

∑N
n=1

(
([∆hx]n)2 + ([∆vx]n)2

)1/2
with λr >

0. Another interesting choice is the Hessian-based penalization [Geman
and Reynolds, 1992], [Lefkimmiatis et al., 2012] i.e., Pr = 3N and Vr =

[
(
∆hh

)⊤ √
2
(
∆hv

)⊤
(∆vv)⊤]⊤ where ∆hh ∈ R

N×N , ∆hv ∈ R
N×N and

∆vv ∈ R
N×N model the second-order finite difference operators between

neighbooring pixels as described in [Lefkimmiatis et al., 2012, Sec.III-A] and,

∀x ∈ R
N , ψr(Vrx) = λr

∑N
n=1

(
([∆hhx]n)2 + 2([∆hvx]n)2 + ([∆vvx]n)2

)1/2

2 We recall from Definition 1.3.1 that Γ0(R
N ) is the class of lower-semicontinuous,

proper, convex functions from R
N to (−∞,+∞].
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with λr > 0. The above penalties can be considered individually (R = 1)
or combined in a hybrid manner (R > 1) [Pustelnik et al., 2011]. Finally,
following (5.26), ψ0 should be the indicator function ι[0,+∞)N . However, to
take into account the dynamic range of the expected output image, it can
be more generally chosen equal to ιC , where C is a closed convex subset of
[0,+∞)N .

5.3.2 Primal-dual splitting algorithm

Problem (5.4) where f takes the form (5.30) can be efficiently addressed us-
ing proximal splitting algorithms [Combettes and Pesquet, 2008], [Briceños
Arias and Combettes, 2011], [Combettes and Pesquet, 2012], [Raguet et al.].
The solution is obtained iteratively by evaluating the individual proximity
operators of the functions (ψr)0≤r≤R, provided that they have an explicit
expression. A brief description of proximal-splitting methods was provided
in Section 1.3.1.2. The required notion of proximity operator was introduced
in Definition 1.3.3.

We are now ready to present our primal-dual splitting algorithm. The
main advantage of the primal-dual splitting algorithm that we employ is that
it allows us to solve (5.4) for any Lipschitz differentiable function h while
allowing arbitrary linear operators (Vr)1≤r≤R. This algorithm, proposed
recently in [Combettes and Pesquet, 2012], is summarized in Algorithm 9.

Algorithm 9 Proposed algorithm.

Let γ ∈ (0,+∞). Let (ak)k∈N and (ck)k∈N be some sequences of elements
of RN corresponding to possible errors in the computation of the gradient
of h.
Initialization:

Set x0 ∈ R
N , and (∀r ∈ {1, . . . , R}) vr,0 ∈ R

Pr .
Iterations:

For k = 0, . . .

y1,k = xk − γ
(
∇h(xk) +

∑R
r=1 V

⊤
r vr,k

)
+ ak

p1,k = proxγψ0
(y1,k)

For r = 1, . . . , R

y2,r,k = vr,k + γVrxk
p2,r,k = y2,r,k − γproxγ−1ψr

(γ−1y2,r,k)

q2,r,k = p2,r,k + γVrp1,k
vr,k+1 = vr,k − y2,r,k + q2,r,k

q1,k = p1,k − γ
(
∇h(p1,k) +

∑R
r=1 V

⊤
r p2,r,k

)
+ ck

xk+1 = xk − y1,k + q1,k
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5.3.3 Convergence result

The convergence of the proposed primal-dual proximal splitting algorithm is
guaranteed by the following result deduced from Theorem 5.2.1 and [Com-
bettes and Pesquet, 2012, Theorem 4.2]:

Theorem 5.3.1 Given the following assumptions:

1. f is coercive, i.e. lim‖x‖→+∞ f(x) = +∞,

2. for every r ∈ {1, . . . , R}, ψr is finite valued,

3. γ ∈ [ǫ, (1 − ǫ)/δ] where ǫ ∈ (0, 1/(δ + 1)) and

δ = µ+

√√√√
R∑

r=1

‖Vr‖2,

4. (ak)k∈N and (ck)k∈N are absolutely summable sequences,

then there exists a minimizer x of (5.30) such that the sequences (xk)k∈N
and (p1,k)k∈N converge to x.

5.3.4 Implementation issues

Note that Algorithm 9 is robust to numerical errors. This feature is es-
sential in our problem, as the gradient of the Poisson-Gaussian negative
log-likelihood given by (5.7) involves infinite sums and cannot be computed
exactly. We propose to perform the sum of (5.11) between nmin and nmax,
to include only the significant coefficients. The approximations are obtained
in a similar way to the one derived in Chapter 3.

§ 5.4 Simulation examples

We now demonstrate the practical performance of our method on image
restoration experiments in the context of data corrupted by Poisson-Gaussian
noise. The image resulting from the time series noise identification proce-
dure described in Chapter 3 provides a ground truth for this experiment.
The considered ground truth images, i.e. x1 of size 128× 128 and x2 of size
190 × 190 are illustrated in Figs. 5.1 (a) and 5.2 (a).

First, a study of the influence of the data fidelity choice in terms of image
restoration results intensity level is presented. For a data fidelity term h de-
rived from Gaussian likelihood, Generalized Anscombe Transform (GAST)
or given by the exact expression given in (5.5), the resulting problem involves
the minimization of

f = h+ ιC +

R∑

r=1

ψr, (5.31)
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where ιC is the indicator function of C = [x−, x+]N and (x−, x+) ∈ [0,+∞)2

define the expected pixel value range. In the following x− is set to 0. In the
proposed framework, GAST is handled in a manner similar to [Dupé et al.,
2009], i.e. taking advantage of Lipschitz-differentiability properties of (1.28)
as described in Section 1.2.2.1.

(x+, σ2) Init. Poiss. Gauss. GAST Exact

(15,9)

λ - 0.145 0.139 0.069 0.079

MAE 54.26 13.29 10.86 11.38 10.60

SNR 6.31 18.68 19.74 19.27 19.89

SSIM 0.088 0.659 0.730 0.736 0.747

(30,12)

λ - 0.105 0.120 0.056 0.048

MAE 34.81 9.60 8.46 8.71 8.25

SNR 10.72 21.13 21.60 21.41 21.85

SSIM 0.179 0.752 0.811 0.807 0.812

(60,30)

λ - 0.076 0.069 0.032 0.032

MAE 26.72 8.28 7.41 7.44 7.28

SNR 12.34 22.23 22.67 22.67 22.85

SSIM 0.255 0.783 0.845 0.834 0.839

(90,50)

λ - 0.065 0.052 0.022 0.025

MAE 22.67 7.43 6.64 6.59 6.55

SNR 13.73 23.13 23.59 23.79 23.82

SSIM 0.312 0.804 0.864 0.855 0.859

(120,60)

λ - 0.047 0.042 0.017 0.018

MAE 19.64 6.71 6.11 5.92 5.92

SNR 14.85 24.01 24.39 24.62 24.67

SSIM 0.367 0.829 0.876 0.877 0.877

(150,80)

λ - 0.046 0.032 0.016 0.016

MAE 18.17 6.61 5.94 5.85 5.85

SNR 15.46 24.02 24.59 24.54 24.65

SSIM 0.399 0.829 0.878 0.878 0.878

Table 5.1: Intensity level influence on restoring image x1 degraded with a
convolution operator H corresponding to a truncated Gaussian point spread
function of standard deviation 1.6 with kernel size 25 × 25 and corrupted
by Poisson-Gaussian noise.
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For a data fidelity term derived from the Poisson likelihood, we consider

f = ιC + ψ1 +

R∑

r=2

ψr, (5.32)

where ψ1 denotes a Kullback-Leibler divergence as defined in (1.18). The
observed image is generated by degrading the original image x1 with a
convolution operator H, which corresponds to a truncated Gaussian point
spread function of standard deviation 1.6 and kernel size 25 × 25. The
image was further corrupted with a scaled Poisson noise and a zero-mean
additive Gaussian noise. In this experiment the proposed framework is ap-
plied to NLTV restoration briefly introduced in Section 1.2.2.2. The lin-
ear operators Vr associated with NLTV are computed from image restored
with a Wiener filter using code by X. Bresson [Bresson, 2009] (available
at http://www.cs.cityu.edu.hk/∼ xbresson/codes.html). The prior term is
weighted by parameter λ tuned so as to minimize the Mean Absolute Er-
ror (MAE). The provided relative MAE values are normalized with a factor
255/x+. One can observe by inspecting the evaluation scores in Table 5.1,
that the exact model leads to the best result. In case of Poisson data fi-
delity term, the required positivity of the observation image was ensured by
data truncation. The associated results provided in Table 5.1 show that this
strategy leads to relatively poor performance.

Next a study of penalization strategies for low-count image is presented.
As mentioned previously, the problem formulation given in (5.30) allows us
to address a wide range of problems. For the sake of illustration we consider
the restoration with three penalization strategies, namely TV, NLTV and
hybrid regularization, which integrate TV and a Hessian prior [Lefkimmi-
atis et al., 2012]. The TV and Hessian denote the total variation and second
order differences semi-norm defined in Section 5.3.1, respectively. We use
two images: the same images as previously x1 with x+ = 30 and x2 with
x+ = 12. The original image x1 was degraded with a convolution operator
H corresponding to a truncated Gaussian point spread function of standard
deviation 1.6 and kernel size 25 × 25, further corrupted with a Poisson noise
and a zero-mean additive Gaussian noise, described by the noise variance
σ2 = 12. The original image x2 was degraded with a convolution operator
H also corresponding to a truncated Gaussian point spread function of stan-
dard deviation 1.6 and kernel size 25 × 25, corrupted with a Poisson noise
and a zero-mean additive Gaussian noise, described by the noise variance
σ2 = 9. Both examples illustrate the performance of the proposed technique
for the restoration of image with fairly low initial SNR, i.e. only 10.05 dB
and 2.19 dB for image given in Fig. 5.1 (b) and Fig. 5.2 (b), respectively.
By inspecting the numerical evaluation scores presented in Tables 5.2 and
5.3 one can conclude that the performance gain obtained by using the exact
data fidelity term is independent of the chosen regularization strategy.
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Poiss. Gauss. GAST Exact

TV

λ 0.163 0.197 0.093 0.083

MAE 10.71 9.42 9.70 8.90

SNR 20.21 20.6 20.55 21.22

SSIM 0.715 0.777 0.782 0.802

NLTV

λ 0.105 0.120 0.056 0.048

MAE 9.60 8.46 8.71 8.25

SNR 21.13 21.60 21.41 21.85

SSIM 0.752 0.811 0.807 0.812

TV + Hessian

λTV 0.042 0.258 0.026 0.032

λH 0.148 0.376 0.070 0.082

MAE 8.99 7.92 8.10 7.91

SNR 21.09 21.52 21.40 21.52

SSIM 0.794 0.854 0.851 0.854

Table 5.2: Penalization strategies for low-count image x1 (x+ = 30) degra-
dated with a convolution operator H corresponding to a truncated Gaussian
point spread function of standard deviation 1.6 with kernel size 25 × 25
and corrupted by Poisson-Gaussian noise, described by the noise variance
σ2 = 12 (MAE = 34.81, SNR = 10.07 dB, SSIM = 0.178).

Poiss. Gauss. GAST Exact

TV

λ 0.394 0.254 0.176 0.158

MAE 11.58 9.02 10.16 8.66

SNR 16.7 18.49 17.49 18.81

SSIM 0.643 0.670 0.660 0.679

NLTV

λ 0.283 0.197 0.138 0.138

MAE 11.80 9.33 10.35 9.27

SNR 16.69 18.28 17.37 18.29

SSIM 0.622 0.643 0.632 0.644

TV + Hessian

λTV 0.079 0.167 0.125 0.119

λH 0.856 0.690 0.582 0.346

MAE 10.69 7.84 9.13 7.79

SNR 17.32 19.48 18.38 19.53

SSIM 0.726 0.755 0.742 0.755

Table 5.3: Penalization strategies for low-count image x2 (x+ = 12) degra-
dated with a convolution operator H corresponding to a truncated Gaussian
point spread function of standard deviation 1.6 with kernel size 25 × 25
and corrupted by Poisson-Gaussian noise, described by the noise variance
σ2 = 9 (MAE = 61, SNR = 2.19 dB, SSIM = 0.022).
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(a) Original x1 (x+ = 30) (b) Degraded (MAE = 35, SNR = 10.07 dB)

(c) Image result obtained with data fidelity term given by exact expression and Hessian-
TV prior (MAE= 7.91 , SNR= 21.52 dB, ISNR = 11.44 dB, SSIM = 0.854)

Figure 5.1: An example of macroconfocal image restored with proposed
techniques. The original image (a) was degraded with 25 × 25 trun-
cated Gaussian blur with standard deviation 1.6 and corrupted by Poisson-
Gaussian noise (σ2 = 12).
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(a) Original x2 (x+ = 12) (b) Degraded (MAE = 61, SNR = 2.19 dB)

(c) Result obtained with data fidelity term given by exact expression and Hessian-TV
prior (MAE = 7.79 , SNR = 19.53 dB, ISNR = 17.34 dB, SSIM = 0.755)

Figure 5.2: An example of macroconfocal image restored with proposed
techniques. The original image (a) was degraded with 25 × 25 truncated
Gaussian blur with standard deviation 1.6 and Poisson-Gaussian noise (σ2 =
9).
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Figure 5.3: Fragment of the original x1 (x+ = 30) and its degraded version.

a) Poisson (MAE = 8.99) b) Gaussian (MAE = 7.92)

c) GAST (MAE = 8.10) d) Exact (MAE = 7.91)

Figure 5.4: An influence of data fidelity term. The fragment of image x1
reconstructed with different data fidelity terms and Hessian-TV prior.

a) TV (MAE = 8.90) b) NLTV (MAE = 8.25)

Figure 5.5: An influence of penalization strategy. The fragment of image
x1 reconstructed with data fidelity term given by exact expression and either
(a) TV or (b) NLTV prior.
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The Gaussian data fidelity term may be very competitive as illustrated
in Table 5.3. However in some instances the performance gain between the
exact and Gaussian data fidelity term is significant (see Table 5.2). One can
observe in Fig. 5.1 (c) and Fig. 5.2 (c) that the hybrid Hessian-TV regu-
larization strategy leads to a very good result. This can be also validated
by inspecting the final MAE relative value equal to 7.91 and 7.79, ISNR
equal to 11.44 dB and 17.34 dB for the first and the second image, respec-
tively. The NLTV regularization strategy yields worse performance for the
experiment presented in Table 5.3. This reflects the fact that the similarity
between local image features is almost lost in initial image (Fig. 5.2 (b),
SNR = 2.19 dB). Consequently, the NLTV weights were not well adjusted.

Complementary to these numerical results, Figs. 5.4 and 5.5 illustrate
the visual differences resulting from various data fidelity terms and regu-
larization strategies. One can observe that more low intensity components
are lost when using a data fidelity term derived from Gaussian statistics
(Fig. 5.4 (b)). The shape of low intensity component is also not well re-
constructed when using a data fidelity term derived from Poisson statistics
(Fig. 5.4 (a)). Most of the artifacts are corrected with GAST data fidelity
term (Fig. 5.4 (c)) while even better result is obtained with the exact one
(Fig. 5.4 (d)). The NLTV regularization term should be expected to reduce
the undesired staircase effect visible in TV result (see Fig. 5.5 (a)) but for
the considered low SNR observation images the improvement is in fact only
incremental (see Fig. 5.5 (b)). In contrast, the Hessian-TV regularization
seems more effective at alleviating this effect (see Fig. 5.4 (d)).

§ 5.5 Conclusion

We have shown that Poisson-Gaussian neg-log likelihood is a convex,
Lipschitz-differentiable function. The provided convexity result is actu-
ally more general as it applies to the neg-log likelihood of a mixture of
Generalized-Gaussian and Poisson variables. Building upon these results, we
have proposed a new variational approach for solving data recovery problems
in the presence of Poisson-Gaussian noise. We have observed performance
gain using the exact data fidelity term instead of various approximations of
it. We have also noticed that Gaussian and GAST fidelity terms approxi-
mate well the exact fidelity term for low and higher count data, respectively.
We have developed a practical implementation of an efficient primal-dual
algorithm, which is particularly flexible, i.e. a large range of penalization
strategies are applicable. Among the ones we consider, the hybrid TV-
Hessian prior was shown to produce naturally looking, high quality results
for low count data restoration problem in the presence of Poisson-Gaussian
noise. In the case of Gaussian noise, this regularization strategy is shown to
be further improved when we use a non-convex ℓ2−ℓ0 sparsity measure that
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we will describe in detail in Chapter 7. In a future work we would like to
extend our approach to encompass the case of Generalized Gaussian-Poisson
noise and to study the performance of other regularization strategies than
the ones we have considered here. Although here only TV, NLTV and hy-
brid TV-Hessian priors were analyzed, the versatility of our approach should
allow us to address a wide range of applications by making use of various
forms of convex penalty functions.



- Chapter 6 -

Discrete formulations for truncated-convex priors

This chapter1 addresses the problem of minimizing multilabel energies with
truncated convex priors. Such priors are known to be useful but difficult
and slow to optimize because of their nonconvexity. We propose two novel
classes of binary Graph-Cuts (GC) moves, namely the convex move and the
quantized move. The moves are complementary to each other. To signif-
icantly improve efficiency, the label range is split into an even number of
intervals. Quantized moves tend to efficiently put pixel labels into the cor-
rect intervals for the energy with truncated convex prior. Then the convex
move assigns the labels more precisely within these intervals for the same
energy. The quantized move is a modified α-expansion move, adapted to
handle a generalized Potts prior, which assigns a constant penalty to argu-
ments above some threshold. Our convex move is a graph-cut representation
of the efficient Murota algorithm. We assume that the data terms are con-
vex, since this is a requirement for Murota’s algorithm. We then introduce
the Quantized-Convex Split Moves algorithm, which minimizes energies with
truncated priors by alternating both moves. This algorithm is a fast solver
for labeling problems with a high number of labels and convex data terms.
We illustrate its performance on image denoising problems.

§ 6.1 Introduction

We consider the well-known combinatorial optimization problem defined as
follows. Let G(V, E) be an undirected graph with a set of edges E and a set
of vertices V. The goal of our optimization problem is to restore an unknown
x̂ based on observations y, under the condition that the components of x
take values over a finite set of labels L, representing e.g. grey level values in
an image. Here we define L as an ordered discrete set of labels {0, 1, . . . , L}

1Published in Proc. of EMMCVPR, 2011
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and xu as the label assigned to node u ∈ V . The unknown x̂ is a minimum
argument of the energy function:

E(x) =
∑

u∈V
Φ(xu) + λ

∑

(u,v)∈E
ρ(xu, xv), (6.1)

where λ is a positive real value. Φ(xu) is often called the data fidelity term
and ρ(xu, xv) the regularization or smoothness term. A common choice of
data term Φ is a pixelwise distance Φ = |xu − yu|p between the desired
labeling x and a reference y, representing noisy acquired data, where p is a
small positive integer, e.g. 1 or 2.

Many choices of ρ lead to useful algorithms and results. A common model
is the so-called Potts model, where ρ(xu, xv) = wuv min(1, |xu−xv|), and wuv
are spatially variant positive pairwise weights. This model corresponds to a
piecewise constant prior. Other choices for ρ include ρ(xu, xv) = wuv|xu −
xv|q, where q is typically 1 or 2 for linear and quadratic priors respec-
tively. For q = 1 or q = 2, regularization term ρ = wuv min(T q, |xu − xv|q)
with threshold T ∈ L is respectively called truncated linear or truncated
quadratic [Veksler, 1999]. More generally, a pairwise truncated convex prior
can be formulated as:

ρ(xv, xu) =

{
f(xu − xv) if |xu − xv| < T

f(T ) if |xu − xv| > T
(6.2)

where f is a convex function with f(0) = 0. Discrete random field models
characterized by such a prior are well known and extensively discussed in
the literature. Their popularity in low level vision is due to their ability
to capture natural image statistics [Huang and Mumford, 1999]. Indeed,
Nikolova [Nikolova, 2002] shows that the robustness of regularization terms
depends on both their characteristics at ±∞, and their differentiability at
zero. Non-differentiable terms at zero reconstruct sharp edges well but lead
to undesirable staircase effects. In light of this “everywhere smooth” (e.g.
quadratic) prior has good denoising properties with lack of staircase effect
in the result, but with blurred boundaries. With respect to the behavior
at +∞/−∞, truncated regularization terms imply no penalty for outliers,
and so are less sensitive to them for noise removal. In this way, truncated
models may combine noise suppression with edge preservation. In general,
depending on the application, a sharp (e.g. truncated linear) or smooth (e.g.
truncated quadratic) term might be desirable.

In the following, we introduce new GC algorithm solving optimization
problem characterized by energy (6.1) and prior (6.2). In recent years,
energy-based optimization methods using GC have become very popular in
computer vision applications [Boykov et al., 1998], [Ishikawa, 2003], [Boykov
et al., 2001]. GC optimization has been applied to e.g. stereo-vision [Wood-
ford et al., 2008], multiview reconstruction [Sinha et al., 2007], motion anal-
ysis [Xiao and Shah, 2007], segmentation [Boykov and Jolly, 2001] and image



6.1. Introduction 125

restoration [Darbon and Sigelle, 2006]. GC methods tend to provide optimal
or near-optimal solutions to classical Markov Random Fields (MRF) prob-
lems, with some guarantees and in reasonable time. From the algorithmic
point of view, GC problems can be solved when the energy is submodular,
which was shown for the binary case (binary L) in [Murota, 2000], [Kol-
mogorov and Zabih, 2004] and for multilabel case in [Schlesinger, 2008].
When the energy E is not submodular, some GC methods can still be used,
for instance the move algorithms [Kolmogorov and Rother, 2007], [Veksler,
2007], [Kumar and Torr, 2008], [Lempitsky et al., 2010].

GC move algorithms have typically good theoretical quality guarantees
for certain sets of regularization terms containing truncated convex functions
considered in this chapter. Classical move algorithms include expansion and
swap moves [Boykov et al., 2001]. More recently, improved moves have been
proposed e.g. range moves and fusion moves [Veksler, 2007], [Kumar and
Torr, 2008], [Veksler, 2009], [Lempitsky et al., 2010]. All are geared to-
wards improving the quality of the solution and the speed of the algorithm.
The time complexity of move algorithms usually increases steeply with the
number of labels. For example, the worst-case complexity of swap moves is
quadratic in the number of labels while range-moves perform even poorer.
However, for problems where the number of labels is relatively low, these
methods can be fast enough. Hence, move algorithms scale well with con-
nectivity, are flexible with respect to data fidelity terms, but do not scale
well with the number of labels.

It is worth noting that when ρ is convex, e.g. in the non-truncated linear
or quadratic cases, the energy E of (6.1) may be optimized exactly and
efficiently [Ishikawa, 2003], [Darbon and Sigelle, 2006]. Moreover, Szeliski et
al. [Szeliski et al., 2008] have shown that expansion and swap moves work
well in practice for the multilabel Potts model. Conversely, in the truncated
linear or quadratic cases, due to non-convexity and non-differentiability (at
the truncation and also at zero for truncated linear regularization term),
such optimization problems remain challenging. In the multilabel case (non
binary L) the minimization problem of (6.1) is NP-hard.

The GC algorithms dedicated for energies with truncated convex pri-
ors, e.g [Veksler, 2007], [Kumar and Torr, 2008], [Kumar and Koller, 2009],
have been developed to meet this challenge. We discuss them in detail in
section 6.2. This group of algorithms can be extended with our Quantized-
Convex Split Moves. This two-step approach produces results comparable
to the current state-of-the-art move based algorithms and yet outperforms
them by a significant factor in terms of time efficiency, especially when the
number of labels is large. As these convex priors and the Potts model can be
optimized efficiently with move methods, we split the label set into two parts,
a regular quantized one that we optimize using a modified Potts model, and
a remainder part, which we optimize using a convex framework. We pro-
pose two types of moves, which are complementary, namely the quantized
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move and the convex move. Our quantized move is a modified α-expansion
move, adapted to cope with a generalized Potts prior taking zero value for
arguments in the range (−T,+T ). This move is designed to efficiently put
pixel labels into the right intervals. These approximate results are corrected
by the convex move, which performs finer changes with respect to the pre-
viously chosen label. A new, more precise label is found within previously
chosen interval. The convex move is a GC representation of an efficient
Murota’s gradient descent algorithm [Murota, 2000], [Murota, 2004].

The rest of the chapter is organized as follows. The description of our
method in the context of most related works is given in Section 6.2. We
present our Quantized and Convex moves in Section 6.3, and the Quantized-
convex split moves algorithm in Section 6.4. Then we provide experimental
comparison of the different energy minimization methods in Section 6.5, and
conclude with Section 6.6.

§ 6.2 Related work

In recent years, many algorithms utilizing truncated regularization terms
have been proposed. Apart from GC move algorithms, the sequential tree
reweighted message passing (TRW-S) [Kolmogorov, 2006] has currently the
most accurate results and provides a Lagrangian approximation of the dual
energy, e.g. estimates the gap between current and globally optimal ener-
gies. However, it is relatively slow [Wainwright et al., 2005] and is not well
suited to highly-connected graphs [Kolmogorov and Rother, 2006]. Belief
propagation (BP) [Felzenszwalb and Huttenlocher, 2004] methods, though
faster than TRW, are not guaranteed to converge. GC methods were shown
to outperform BP in several cases examined in [Szeliski et al., 2008]. Ener-
gies with truncated linear priors (truncated ℓ1) may be optimized e.g. using
α-expansions [Boykov et al., 2001] or Gupta and Tardos [Gupta and Tardos,
2000] algorithm. The latter offers good theoretical properties.

Veksler proposed in [Veksler, 2007] to minimize energies with truncated
convex priors by splitting the problem into several subproblems that are all
convex with respect to the prior. Each subproblem is defined for subsets
of pixels û, v̂ ∈ V with labels xû ∈ T such that T ⊂ L and |xû − xv̂| 6 T .
According to the theorem presented in [Veksler, 2007], the original energy
with labeling L is minimized with each subenergy having sublabeling T . An
algorithm that takes advantage of this property is the range move. Range
move solves different subproblems for different choices of T iteratively using
an Ishikawa-like approach [Ishikawa, 2003]. The advantage of the Ishikawa
approach is that it guarantees a global minimum even with a non-convex
data fidelity term, provided the prior is convex. This is particularly im-
portant for stereo-vision. In this article, we show that using what we call
a convex move instead of the Ishikawa approach, it is possible to consider
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all possible choices of T ⊂ L such that dT = T − 1 simultaneously, where
dT = max {|xû − xv̂| , {xû, xv̂} ∈ T }. This allows us to improve the time
efficiency of the overall algorithm considerably. Additionally, we propose a
quantized move, allowing for changes of xu between T1 ⊂ L and T2 ⊂ L such
that T1 ∩ T2 = ∅. This further improves the time efficiency of our algorithm
compared to the range move. The proposed algorithm alternates iteratively
between quantized and convex moves. Note that if T1 ∩ T2 = ∅, the en-
ergy (6.1) is no longer convex with respect to the prior term. For the convex
move introduced in this chapter, the energy is guaranteed to decrease but
the optimal solution is not secured.

More recent work by Kumar and Torr [Kumar and Torr, 2008] is better
grounded theoretically than Veksler’s range move. The quality of the solu-
tion is guaranteed by bounds on the converged energy for truncated ℓ1 and
ℓ2, which are calculated with respect to dT , and equal 2 +

√
2 if dT = 2

√
T

and O(
√
T ) if dT =

√
T , for truncated ℓ1 and ℓ2, respectively. However,

according to the results presented in [Kumar and Torr, 2008], the practical
performance of both algorithms is similar for truncated ℓ2 prior, although
the greatest improvement is achieved for the truncated ℓ1 prior. In terms
of time efficiency, range move outperforms the approach proposed by Ku-
mar and Torr, but not significantly. Similarly to the range move, authors
use the graph construction proposed by Ishikawa, but they introduce small
modifications. Namely, they adopt the Ishikawa approach for dealing with
non-convex priors at the cost of not representing the energy exactly. (Here
we will not analyze our algorithm as a function of dT . The convex move in
our quantized-convex split moves algorithm is associated with two sets: (i)
the set of all possible T ⊂ L with dT = T − 1 and (ii) the set of all possible
T ⊂ L with dT = T ).

In [Kumar and Koller, 2009], authors proposed a hierarchical approach.
The original problem was replaced by a series of r-HST metric2 labeling
subproblems and obtained solutions were combined with α-expansion al-
gorithm. The previously presented approximation bounds were improved.
They are equal to O(ln(L)) and O((γ ln(L))2), γ > 1 for truncated ℓ1 and
ℓ2, respectively. However, this approach is computationally expensive.

§ 6.3 Move algorithms

Move algorithms have been developed to solve multilabeling problems. Ac-
cording to the definition given in [Veksler, 2007], a move algorithm is an

2An r-HST metric d(·, ·) is specified by a rooted tree r-HST whose edge capacity are
non-negative and satisfy: (i) the edge capacity from any node to all of its children are the
same; (ii) the edge capacities along any path from the root to a leaf decrease by a factor
of r > 1. Then, d(u, v) is the sum of the edge capacity on the unique path between nodes
u and v.
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iterative algorithm where x(n+1) ∈M(x(n)) and M(x) is a “moves” space of
x. The local minimum with respect to a set of moves is at x if E(x′) > E(x)
for any x′ ∈ M(x). Each move algorithm is characterized by its space of
“moves” M(x).

In this section we describe two moves that we develop. The quantized
move is closely related to α-expansion and convex move to Murota’s gradi-
ent descent algorithm. In Section 6.3, we explain why linking these moves
together leads to improvement of efficiency in the context of minimization
of energy functions with truncated convex prior.

6.3.1 Quantized move

The main idea behind the quantized move is to divide the label range into
equal subintervals of length T and, ideally, put pixel labels into the correct
intervals, thus reducing the number of categories from the original range L
to L/T . This greatly accelerates the execution time of the algorithm.

The proposed move algorithm minimizes the energy Ep with an arbitrary
data fidelity term Φp and a pairwise term defined as:

ρp(xv, xu) =

{
0 if |xu − xv| < T

f(T ) if |xu − xv| > T,
(6.3)

where T is a positive integer value. This prior is potentially interesting
for other applications, but here we will use it as an intermediate step for
minimizing truncated convex priors.

A quantized move is a new labeling where xu is either left as xu or moved
to a new value according to the following transformation:

α(xu, k) =

{
tk1 if xu 6 tk1
tkT if xu > tkT ,

(6.4)

where k is an integer belonging to a regular quantization of the label set
L, i.e,: k ∈ K = {k0, k1, . . . , kK} such that k0 = 0, ki = iT , i ∈ N+,
KT > L and (K − 1)T < L. Recall that L is the maximum label in L.
T k =

{
tk1, . . . , t

k
T

}
is an ordered label set, such that tki+1 = tki + 1. The

values in T k change from k− T
2 +1 to k+ T

2 and from k− T
2 + 1

2 to k+ T
2 − 1

2
for odd and even T , respectively. The tk1 and the tkT is a first and last element
of set T k, respectively. The acceptable moves for a label depending on its
current position are illustrated in Fig. 6.1.

The set of quantized moves MQ(x) is then defined as the collection of
moves for all k ∈ K. Quantized moves act much like expansion moves in the
case of a Potts model on a quantized subset of labels. We now prove that
quantized moves are graph-representable and can be optimized by GC.
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(a) (b)

(c)

(a,b,c) illustrate the label moves when its current value is below, above, and inside the
considered interval T k (denoted by square brackets), respectively.

Figure 6.1: The basic idea behind a quantized move

Proposition 6.3.1 For the energy in (6.1) with a regularization term given
by (6.3), the optimal quantized move (i.e. giving the maximum decrease in
energy) can be computed with a graph cut.

Proof: We show that quantized move satisfies all conditions specified in [Kol-
mogorov and Zabih, 2004]. Let b = {bu, u ∈ V} be a binary vector coding a
quantized move. Then the move can be described by a transformation func-
tion B(x(n), b) returning a new labeling x(n+1), based on b and x(n). Here
(n) is the iteration number. The transformation function Bq(x(n), b) for a
quantized move is given by:

x(n+1)
u = Bq(x(n)u , bu) =

{
α(x

(n)
u , k) if bu = 1

x
(n)
u if bu = 0

(6.5)

The considered move finds b̂ = arg minbE(Bq(x(n), b)), where E(Bq(x(n), b))
is a pseudo-boolean energy, defined as

∑
u∈V Φ(Bq(x(n)u , bu))+∑

(u,v)∈E ρ(Bq(x(n)u , bu),Bq(x(n)v , bv)). Let us denote the pairwise term of the

binary quantized move energy by B(bu, bv), omitting x(n) from the notation
for simplification. Then:

B(bu, bv) =





ρp(x
(n)
u , x

(n)
v ) if bu = 0, bv = 0

ρp(x
(n)
u , α(x

(n)
v , k)) if bu = 0, bv = 1

ρp(α(x
(n)
u , k), x

(n)
v ) if bu = 1, bv = 0

ρp(α(x
(n)
u , k), α(x

(n)
v , k)) if bu = 1, bv = 1.

(6.6)

The pairwise term B needs to be submodular, i.e.: B(0, 0) + B(1, 1) 6

B(1, 0)+B(0, 1). Since for all n and k we have that ρp(α(x
(n)
u , k), α(x

(n)
v , k)) =

0, the submodularity inequality takes the form:

ρp(x
(n)
u , α(x(n)v , k)) + ρp(α(x(n)u , k), x(n)v ) > ρp(x

(n)
u , x(n)v ), (6.7)
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or equivalently:

B(0, 1) +B(1, 0) > B(0, 0). (6.8)

The only case when B(0, 0) is not 0 is when neighbors xu and xv are at
least T apart, i.e. |xu − xv| > T , in which case we have B(0, 0) = f(T ).
However, in this case either B(0, 1) or B(1, 0) or both are equal to f(T ), so
the inequality is verified.

The problem of minimizing energy E(Bq(x(n), b)) can be solved globally
with respect to b using discrete maxflow-mincut methods [Ford and Fulk-
erson, 1962]. Note that when T = 1 our quantized move reduces to the
α-expansion move.

6.3.2 Convex moves

In the previous section, we showed how to assign the pixel values into the
correct intervals, and now we propose a convex algorithm to optimize these
values within these intervals. To achieve this, we view the steepest descent
algorithm of Murota [Murota, 2000], [Murota, 2004] as a special case of GC
move. The primal and a primal-dual algorithms proposed in [Kolmogorov
and Shioura, 2009] are also related to Murota’s approach. It minimizes
globally (6.1) for L♮-convex choice of E. Note that the solution is not
guaranteed to be unique. The case of non-convex data fidelity term was
not examined. This can be regarded as disadvantage compared to Ishikawa
approach [Ishikawa, 2003], which guaranties a global minimum even for non-
convex data fidelity. In contrast, both primal and primal-dual algorithms are
more memory and time efficient than the non-iterative Ishikawa’s method.
The convex move is conceptually similar to the jump move [Veksler, 1999].
However, the jump move processes pixels with odd and even values differ-
ently. As a consequence, Potts functions can be represented on jump-move
graphs, whereas convex functions generally cannot.

As in the previous case (section 6.3.1), a convex move is described by a
binary vector b and the transformation function Bc(x(n), b) defined as

x(n+1)
u = Bc(x(n)u , bu) =

{
x
(n)
u + s if bu = 1

x
(n)
u if bu = 0,

(6.9)

where s ∈ S and S is a set of discrete values from Z. The convex move
space MC(x) is then defined as the collection of convex moves for all s ∈ S.
We call the algorithm finding b̂ = arg minbE(Bc(x(n), b)) the convex move
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algorithm. The pseudo-boolean prior term representation is given by:

ρ(Bc(x(n)u , bu),Bc(x(n)v , bv)) =





ρc(x
(n)
u , x

(n)
v ) if bu = 0, bv = 0

ρc(x
(n)
u , x

(n)
v + s) if bu = 0, bv = 1

ρc(x
(n)
u + s, x

(n)
v ) if bu = 1, bv = 0

ρc(x
(n)
u + s, x

(n)
v + s) if bu = 1, bv = 1

(6.10)
(6.10) is submodular as ρc (xu, xv) is a L♮-convex function (since f is con-
vex, its submodularity inequality f (|xu + s− xv|) + f (|xu − xv − s|)
> 2f (|xu − xv|) is always satisfied). The optimal convex move can be found
with Murota’s gradient descent algorithm [Murota, 2004]. It is worth noting
that GC formulation does not impose any requirements on data fidelity term
thus guaranteeing that the energy decreases. Hence, in this case energy (6.1)
is guaranteed to decrease but the optimal solution of arbitrary multilabel
problems is not secured.

§ 6.4 Truncated convex prior algorithm

In this section, we present an effective method combining both moves in-
troduced in section 6.3 for minimizing energies with truncated convex prior
functionals (6.2).

The convex move submodularity inequality is a function of (xu, xv) s.t.
(u, v) ∈ N and s ∈ S. The choice of S influences the number of pairs of
neighboring pixels u ∈ V which satisfies the convex move submodularity
inequality. We examine the case where S = {−1,+1} and f(xu, xv) is
defined as in (6.2). To specify the sets of pixels the convex move applies
to, we define Ti for 0 6 i 6 L to be the collection of all subsets SV

i of

V such that ∀û, v̂ ∈
(
SV
i

)2
, |û − v̂| 6 i. We note that all xu belong to at

least one SV
i irrespective of i, and so the entire image is covered by Ti. A

convex move characterized by S = {−1,+1} is a function which maps TT−1

onto TT , guaranteeing that the energy defined as (6.2) decreases with each
move. This comes from the fact that the energy for the TT−1 is represented
exactly using our convex graph and as s is equal to either 1 or −1, the
solution belongs to TT .

Following [Kolmogorov and Zabih, 2004], we define the edge capacities of
graph G(V, E). The cost c(u, v) between (u, v) ∈ N is set to f (|xu + s− xv|)+
f (|xu − xv − s|) − 2f (|xu − xv|) if |xu − xv| < T and 0 otherwise. Because
of the many such null connections, the final MRF is sparser which improves
the time efficiency of the algorithm. The energy is guaranteed to go down,
but the resulting labeling and corresponding energy are not as good as ob-
tained by other minimizers. To improve our results, we combine this convex
move with our proposed quantized move.
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An arbitrary new labeling set by the quantized move part is not guar-
anteed to improve the energy with respect to the truncated convex prior
energy (only a Potts-like energy is guaranteed to be minimized). However,
we can easily impose this extra condition: the new labeling is accepted
only if the proposed energy is better with respect to truncated convex prior
energy, and rejected otherwise, which yields the desired effect. Since quan-
tized move regularizes distant outliers, it is a powerful complement method
for convex moves, for which S = {−1,+1} regularizes close outliers. Now,
we present our two-step algorithm alternating convex and quantized move.
Here, Q(x, k) denotes the quantized move of image x and interval k. We
also denote the convex move by C(x, s), where s is the considered step and
x the input image. Note that the loops indexed by n are repeated until
convergence.

Algorithm 10 Quantized-convex split moves algorithm

Initialization:

Set x(0),S = {−1, 1}
Iterations:

For j = 0, 1, . . .

z(0) = x(j)

For n = 0, 1, . . .

Assign to K a set of randomly ordered elements from K
For i = 0, 1, . . . ,K

Set ki to be the i-th element of K
z = Q(z(Kn+i), ki)

if (E(z) 6 E(z(Kn+i))) then z(Kn+i+1) = z

else z(Kn+i+1) = z(Kn+i)

z(0) = z(Kn)

For n = 0, 1 . . .

Assign to S a set of randomly ordered elements from S
For i = 0, 1⌊

Set si to be the i-th element of S
z(2n+i) = C(z(2n+i−1), si)

x(j+1) = z(2n)

Proposition 6.4.1 Algorithm 10 iteratively decreases energy (6.1), with ρ
defined as a truncated convex function.

Proof: This result comes straightforwardly from the previous discussion,
where it was shown that all steps reduce the energy E(x).

As this algorithm combines quantized and convex moves, it is important
to understand what happens at the boundary between them. A difficulty
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is that neighboring pairs u, v ∈ N with labels |xu − xv| = T cannot be
represented exactly on the convex graph. This comes from the fact that
the convex move cannot map TT to TT−1. We cope with this problem in a
similar way as in [Rother et al., 2005], where α-expansions were shown to be
able to minimize energies involving a truncated prior, as long as the number
of pairs xu, xv not satisfying the submodularity inequality is relatively small.
This is the reason why we limited the convex moves to S = {−1,+1}. We
represent truncated priors on convex move graph in a similar spirit.

§ 6.5 Results

We implemented our proposed algorithm in the framework of the Middle-
bury MRF vision code (http://vision.middlebury.edu/MRF/code/), based on
[Szeliski et al., 2008], so we could compare our approach with the follow-
ing methods: Iterated Conditional Modes (ICM) [Besag, 1986], α-expansion
and swap moves [Boykov and Kolmogorov, 2004], [Boykov et al., 2001], Max-
ProdBP, BP-S (using software provided by Marshall Tappen [Tappen and
Freeman, 2008]), and TRW-S [Wainwright et al., 2005], [Kolmogorov, 2006].
We also endeavoured to compare it with the range move, but range move did
not work in our tests because the value of T was too large. The tests were
performed single-threaded on an Intel Xeon 2.5GHz with 32GB of RAM run-
ning RedHat Enterprise Linux 5.5. All algorithms were run either until full
convergence for GC algorithms, ICM, and ours, or until the first oscillation
for the other algorithms.

We evaluated our proposed algorithm only in the context of image denois-
ing for different prior functions, namely truncated ℓ2 and truncated ℓ1-ℓ2,
defined as

√
ǫ+ x2. In each case, we also examined the influence of pa-

rameter T . The grey scale images (L = 255) of size 512 × 512 (for ℓ2)
and 256 × 256 (for ℓ1-ℓ2) were corrupted with additive zero mean, white
Gaussian noise with standard deviation 25.3 corresponding to initial SNR
values 13.75 dB, 15.09 dB, and 14.26 dB for images gold rec, elaine,
and barbara, respectively. Consequently, all experiments were performed
with an ℓ2 data fidelity term, which is most appropriate for this noise dis-
tribution. All the algorithms were initialized with an empty zero image.
The algorithm accuracy is evaluated in terms of absolute error defined as
err = (E(x̂) − E(xTRW−Sl

))/E(xTRW−Sl
), where E(xTRW−Sl

) is the lower
bound value reported by TRW-S and E(x̂) is an energy corresponding to
the solution obtained by the algorithm. The restoration quality is evaluated
in terms of SNR. The mean time, the energy, SNR, and the error presented
in Table 6.1 and Table 6.2 are computed from 3 different realizations of the
noise added to 3 considered images. The performance of our algorithm is
also illustrated by energy vs. time plots (Fig. 6.2).
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T = 25 , λ = 2 T = 35, λ = 2 T = 50, λ = 1

time err SNR time err SNR time err SNR

ICM 39.8 3.02.10−2 20.11 39.06 1.71.10−2 21.70 25.4 5.25.10−3 21.53

BP-S 1807.8 8.29.10−4 20.82 1658.7 5.10.10−4 21.74 1641.8 7.21.10−5 21.52

BP 153.0 1.05.10−3 20.80 154.5 7.21.10−4 21.76 153.3 1.17.10−4 21.52

TRW-S 154.9 1.36.10−3 20.85 154.6 7.55.10−4 21.72 172.2 8.53.10−3 21.54

α-exp 307.6 1.98.10−2 20.53 294.6 2.01.10−2 21.61 240.3 1.98.10−2 21.28

αβ swap 360.1 2.57.10−2 20.33 362.3 1.48.10−2 21.75 359.5 4.26.10−3 21.53

Proposed 27.1 1.57.10−2 21.53 28.6 6.30.10−3 21.71 29.2 3.28.10−3 21.51

Table 6.1: Truncated ℓ2 prior results on 512 × 512 images. The SNR is given in dB, and the time in seconds. Best results
are in bold. TRW-S and BP were stopped after 15 iterations (after this, the energy did not improve significantly).

T = 35, λ = 55 T = 50, λ = 45 T = 60, λ = 30

time err SNR time] err SNR time err SNR

ICM 104.4 2.69.10−2 19.51 84.4 8.67.10−3 20.57 46.8 2.39.10−3 20.88

BP-S 4871.9 7.28.10−4 20.08 5069.9 1.34.10−4 20.68 3866.7 1.42.10−5 20.97

BP 13950.0 9.40.10−4 20.12 16048.7 2.10.10−4 20.69 14902.3 4.31.10−5 20.97

TRW-S 2508.9 2.54.10−4 20.06 2259.0.4 4.30.10−5 20.66 2852.2 5.08.10−6 20.97

α-exp 61.8 7.96.10−3 20.10 50.3 7.36.10−3 20.72 50.9 7.37.10−3 20.80

αβ swap 200.4 1.12.10−2 19.94 178.9 4.31.10−3 20.63 112.7 1.19.10−3 20.95

Proposed 9.4 1.16.10−2 20.37 9.3 4.00.10−3 20.86 7.9 1.51.10−3 21.19

Table 6.2: Truncated ℓ1-ℓ2 prior results with ǫ = 10 on 256× 256 images. The SNR is given in dB, and the time in seconds.
Best results are in bold.
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The quality of the results is also verified by inspecting the mean SNR
value, which is not further improved by other algorithms in comparison to
ours. Indeed, our algorithm appears to perform better at removing isolated
noisy pixels compared with other algorithms (see Fig. 6.3 (i)). Since our
Quantized-convex split moves algorithm leads to very good results (Fig. 6.3),
is fast and less memory expensive than other algorithms, it appears to be
well suited for image denoising application. In Table 6.2, our quantized-
convex split moves algorithm outperforms all other GC based algorithms in
terms of minimum energy and time efficiency for truncated ℓ2 prior. How-
ever, the best final energy is obtained by the BP (contrary to what was
found in [Szeliski et al., 2008]) and TRW-S algorithms, the latter converg-
ing faster than the former. One can observe in Fig. 6.2 (a) that in the
case of truncated ℓ2, TRW-S offers a speed/energy compromise comparable
with our quantized-convex split moves algorithm when it is stopped early,
for instance after two iterations. However, for truncated ℓ1-ℓ2 prior, our
algorithm is significantly faster (Fig. 6.2 (b)), while still achieving energies
comparable with other algorithms (Table 6.2).

(a) (b)

Energy versus log time characteristics of convergence for algorithm comparison: ICM
(solid line with crosses), BP-S (solid line with diamonds), BP (dashed line), TRW-S
(dotted line), αβ swap (dash-dot line), α-exp (solid line with squares), ours (solid line).
(a,b) illustrates the case of ℓ2 and ℓ1-ℓ2 prior, respectively.

Figure 6.2: Algorithm comparison

§ 6.6 Conclusion

In this chapter, we have presented a novel move-based algorithm to solve GC
problems with truncated convex priors in the context of image denoising.
Our move is split in two parts, a first Potts-like move that denoises a quan-
tized version of the image, and a second move that processes the result of the
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(a) Original (b) Noisy N (0, 25.3) (c) ICM 20.11 dB

(d) BP-S 20.16 dB (e) BP 20.15 dB (f) TRW-S 20.16 dB

(g) α-exp 20.14 dB (h) αβ swap 20.15 dB (i) Ours 20.35 dB

Figure 6.3: The image restoration results for truncated ℓ1-ℓ2 prior with
threshold T = 50, ℓ2 data fidelity term, and λ = 2.

first move according to a fully convex prior. We have shown that combining
these moves corresponds to denoising with a truncated convex prior. For a
convex prior truncated at threshold T and for an image with L labels, the
Potts-like denoising operates on L/T labels and the convex part on T labels
only. This results in two optimization procedures over a much reduced set
of labels for most useful values of T , and therefore it translates into large
savings in computing time. Because only submodular moves are effected,
the algorithm is guaranteed to converge in finite time. The result of these
moves appears better in terms of energy than all moves, and depending on
the problems, our algorithm is at least 5 times and up to several orders of
magnitude faster than current state-of-the-art algorithms. We believe this
constitutes an interesting compromise between efficiency and precision.
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Since our algorithm uses versions of Potts and discrete convex optimiza-
tion methods that are close to the original, future progress in this area will
also translate into improvements for the proposed method. In particular,
future work will include analyzing primal-dual methods for convex optimiza-
tion. Precision can also be improved by using more sophisticated Potts-like
moves. We will also explore the behaviour of our algorithm with non-convex
data terms and consider other applications, such as stereo-vision.
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ℓ2 − ℓ0 sparsity measures for imaging

In this chapter1, we consider a class of differentiable criteria for sparse im-
age computing problems, where a non-convex regularization is applied to an
arbitrary linear transform of the target image. As special cases, it includes
edge preserving measures or frame analysis potentials commonly used in im-
age processing. As shown by our asymptotic results, the ℓ2−ℓ0 penalties we
consider may be employed to provide approximate solutions to ℓ0-penalized
optimization problems. One of the advantages of the proposed approach is
that it allows us to derive an efficient Majorize-Minimize subspace algorithm.
The convergence of the algorithm is investigated by using recent results in
non-convex optimization. The fast convergence properties of the proposed
optimization method are illustrated through image processing examples. In
particular, its effectiveness is demonstrated on several data recovery prob-
lems.

§ 7.1 Introduction

The objective of this chapter is to show that, for a wide range of variational
problems in image processing, an estimation x̂ ∈ R

N of the target image can
be efficiently obtained by using a class of non-convex, regularizing criteria
that promote sparsity. More specifically, we focus on the following penalized
optimization problem:

minimize
x∈RN

(
Fδ(x) = Φ(Hx− y) + Ψδ(x)

)
, (7.1)

where H 6= 0 is a matrix in R
Q×N , y is a vector in R

Q, Φ: RQ → R and
Ψδ : RN → R are functions, and δ is a positive scalar. We are mainly inter-
ested in the case when Φ is a differentiable function. This includes the classi-
cal squared Euclidean norm. The problem then reduces to a penalized least

1The content of this chapter is to appear in SIAM Journal on Imaging Sciences
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squares (PLS) problem [Tikhonov and Arsenin, 1977], [Titterington, 1985].
Another case of interest is when Φ is the separable Huber function [Huber,
1981, Example 5.4] which is useful for limiting the influence of outliers in
some observed data. Other examples shall be mentioned subsequently.

Note that the considered optimization problem is frequently encountered
in the field of inverse problems. Then, y is some vector of observations
related to the original image x ∈ R

N through a linear model of the form

y = Hx+ w, (7.2)

where H models the measurement process (e.g. a convolution operator or a
projection operator), w is an additive noise vector, Φ is a data-fidelity term
and Ψδ is a regularization term.

An efficient strategy to promote images formed by smooth regions sep-
arated by sharp edges, is to use regularization functions of the form

(∀x ∈ R
N ) Ψδ(x) =

S∑

s=1

ψs,δ(‖Vsx− cs‖) + ‖V0x‖2, (7.3)

where ‖ · ‖ denotes the Euclidean norm, and, for every s ∈ {1, . . . , S},
cs ∈ R

Ps , Vs ∈ R
Ps×N and ψs,δ : R → R. An important example of such

a framework is when, for every s ∈ {1, . . . , S}, Ps = 1 and cs = 0, and
V =

{
V ⊤
s , s ∈ {1, . . . , S}

}
⊂ R

N constitutes a frame of R
N , leading to a

so-called frame-analysis regularization [Elad et al., 2007]. For every s ∈
{1, . . . , S}, Vs may also be a matrix serving to compute discrete gradients
(or higher-order differences), useful for edge preservation. In particular, if
S = N and, for every s ∈ {1, . . . , N}, Ps = 2, cs = 0 and Vs = [∆h

s ∆v
s ]

⊤

where ∆h
s ∈ R

N (resp. ∆v
s ∈ R

N ) corresponds to a horizontal (resp. vertical)
gradient operator, and (∀t ∈ R) ψs,δ(t) = λ|t| with λ > 0, the first term in
the right hand side of (7.3) corresponds to a discrete version of the isotropic
total variation semi-norm [Rudin et al., 1992b]. Note that other choices of Vs
lead to different penalization strategies. For instance, one can use nonlocal
mean regularization, which has been recently studied in the context of edge
preserving functions in [Peter et al., 2010].

In order to preserve significant coefficients in V, one may require the
functions (ψs,δ)1≤s≤S to have a slower-than-parabolic growth, as this limits
the cost associated with these components. Two of the main families of such
functions known in the literature are:

1. ℓ2 − ℓ1 functions, i.e. convex, continuously differentiable, asymptoti-
cally linear functions with a quadratic behavior near 0 [Allain et al.,
2006], [Charbonnier et al., 1997], [Lange, 1990], [Zibulevsky and Elad,
2010]. Typical examples are the functions (∀s ∈ {1, . . . , S}) (∀t ∈ R)
ψs,δ(t) = λ

√
t2 + δ2 with λ > 0. In the limit case when δ → 0, the

classical ℓ1 penalty is obtained.
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2. ℓ2−ℓ0 functions, i.e. asymptotically constant functions with a quadratic
behavior near 0 [Fornasier and Solombrino, 2012], [Hebert and Leahy,
1992], [Nikolova et al., 2008], [Veksler, 2007], [Zhang and Kingsbury,
2010]. Typical examples are the truncated quadratic functions (∀s ∈
{1, . . . , S}) (∀t ∈ R) ψs,δ(t) = λmin(t2/(2δ2), 1) with λ > 0. When
δ → 0, an ℓ0 penalty is obtained.

The last quadratic penalty term x 7→ ‖V0x‖2 in (7.3) plays a role similar to
the elastic net regularization introduced in [Zou and Hastie, 2005]. It allows
us to guarantee some properties of the minimizers and minimization algo-
rithms, when H is not injective (e.g. an ideal low-pass filtering operator).

The ℓ2 − ℓ0 approach has been shown in the literature to be advanta-
geous in many applications, for instance sparse component analysis [Mohi-
mani et al., 2009], compressive sensing [Hyder and Mahata, 2009], matrix
completion [Malek-Mohammadi et al., 2011], robust regression [Meer et al.,
1991], segmentation [Rivera and Marroquin, 2003], and image recovery [De-
laney and Bresler, 1998], [Peter et al., 2010]. This chapter mainly addresses
the latter problem, where ℓ2 − ℓ0 is recognized for its ability to preserve
edges between homogeneous regions [Nikolova, 2005]. The non-convexity
and sometimes non-differentiability of the potential function lead however
to a difficult optimization problem. In this chapter, we consider a class
of non-convex differentiable potential functions, which can be viewed as
smoothed versions of a truncated quadratic penalty function.

An effective approach for the minimization of differentiable criteria is
to consider a subspace descent algorithm [Elad et al., 2006], [Zibulevsky
and Elad, 2010]. For such methods, at each iteration, a stepsize vector
representing an optimized combination of several search directions is com-
puted through a multidimensional search. Recently, an original stepsize
strategy based on a Majorize-Minimize (MM) recursion was introduced in
[Chouzenoux et al., 2011]. This latter approach leads to a closed-form al-
gorithm whose practical efficiency has been demonstrated in the context of
image restoration, when using convex penalized least squares criteria.

Our main contributions in this chapter are:

• to establish conditions under which a solution to an ℓ0 penalized cri-
terion can be asymptotically obtained by using the considered class of
penalty functions;

• to extend the approach in [Chouzenoux et al., 2011] to non necessarily
convex minimization problems of the form (7.1);

• to provide a proof of convergence of the proposed subspace MM algo-
rithm;

• to illustrate the good practical performance of the proposed method
for image denoising and deblurring.
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It must be stressed that the convergence proofs in this chapter rely on recent
results demonstrating the prominent role played by the Kurdyka- Lojasiewicz
inequality [Attouch and Bolte, 2008], [Attouch et al., 2010], [Attouch et al.,
2011], [Bolte et al., 2010] in the study of the convergence of various iterative
optimization methods. Our results constitute a significant improvement over
those in [Chouzenoux et al., 2011]. In this previous article, the analysis was
restricted to showing that the gradient of the objective function converges
to zero.

The rest of the chapter is organized as follows: properties of the con-
sidered optimization problem are first investigated in section 7.2. Then, we
introduce in section 7.3 a minimization strategy based on an MM subspace
scheme. In section 7.4, we investigate the general convergence properties
for the proposed algorithm. Finally, section 7.5 illustrates the performance
of our algorithm through a set of comparisons and experiments in image
processing.

§ 7.2 Considered class of objective functions

In this section, we briefly mention some useful properties of Problem (7.1).

7.2.1 Existence of a minimizer

First, we provide a preliminary result concerning the existence of a solution
to the problem under the following assumption on the functions in (7.1) and
on the nullspaces KerH and KerV0 of H and V0, respectively:

Assumption 7.2.1

1. Φ is continuous and coercive (that is lim‖z‖→+∞ Φ(z) = +∞).

2. For every δ > 0 and s ∈ {1, . . . , S}, ψs,δ is continuous and takes
nonnegative values.

3. KerH ∩ KerV0 = {0}.

Proposition 7.2.2 Suppose that Assumption 7.2.1 holds. Then, for every
δ > 0,

1. Fδ is coercive;

2. the set of minimizers of Fδ is nonempty and compact.

Proof. Let δ > 0. Since, for every s ∈ {1, · · · , S}, ψs,δ ≥ 0, we have

(∀x ∈ R
N ) Fδ(x) ≥ Φ(Hx− y) + ‖V0x‖2 = F (x). (7.4)
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This implies that, for every η ∈ R, 2

lev≤η Fδ ⊂ lev≤η F . (7.5)

As Φ is continuous and coercive, inf Φ > −∞. For every x ∈ R
N and η ∈ R,

if x ∈ lev≤η F , then

Φ(Hx− y) ≤ η (7.6)

‖V0x‖2 ≤ η − inf Φ. (7.7)

Then, as a consequence of (7.6) and the coercivity of Φ, there exists ζ > 0
such that, for every x ∈ lev≤η F ,

‖Hx‖ ≤ ζ. (7.8)

The combination of (7.7) and (7.8) shows that there exists ζ ′ > 0 such that,
for every x ∈ lev≤η F , ‖Ax‖ ≤ ζ ′ where

A =

[
H
V0

]
. (7.9)

It can be deduced that, for every x ∈ lev≤η F ∩ (KerA)⊥,

ν‖x‖ ≤ ζ ′ (7.10)

where ν is the minimum non-zero singular value of A (the existence of which
is guaranteed since A 6= 0). In addition, KerA = KerH ∩ KerV0 = {0},
which implies that (KerA)⊥ = R

N . Hence, F is a level-bounded function,
that is, for every η ∈ R, lev≤η F is bounded (and possibly empty). Using
(7.5), we can conclude that Fδ is a level-bounded function (or equivalently,
it is coercive [Rockafellar and Wets, 1997, Proposition 11.11]). As Fδ is also
continuous, 2 follows from [Rockafellar and Wets, 1997, Theorem 1.9].

Remark 7.2.3

1. In the particular case when H is injective, Assumption 7.2.1 (3) is
satisfied if V0 = 0. The injectivity of H obviously holds when H = I

in (7.2), which typically corresponds to denoising applications.

2. When V0 = 0, the existence of a minimizer of Fδ with δ > 0 can also be
guaranteed under other useful conditions. For example, this property
holds under Assumptions 7.2.1 (1 - 2), if KerH ∩⋂S

s=1 KerVs = {0},
and when for every s ∈ {1, . . . , S}, ψ−1

s,δ (0) is a nonempty bounded set.

2Operator lower level set is defined as lev≤η Fδ := {x ∈ R
N | Fδ(x) ≤ η} [Rockafellar

and Wets, 1997, Chapter 1]
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7.2.2 Non-convex regularization functions

In the remainder of this work, we will be interested in potentials satisfying
the following additional property:

Assumption 7.2.4

1. (∀s ∈ {1, . . . , S}) (∀(δ1, δ2) ∈ (0,+∞)2) δ1 ≤ δ2 ⇒ (∀t ∈ R) ψs,δ1(t) ≥
ψs,δ2(t).

2. There exists λ > 0 such that

(∀s ∈ {1, . . . , S})(∀t ∈ R) lim
δ→0
δ>0

ψs,δ(t) = λχR\{0}(t) (7.11)

where χR\{0}(t) =

{
0 if t = 0

1 otherwise.

The latter condition shows that a binary penalty function is asymptot-
ically obtained. Examples of functions ψs,δ with s ∈ {1, . . . , S} and δ > 0
satisfying Assumptions 7.2.1 (2) and 7.2.4 are provided below:

Example 7.2.5

1. Truncated quadratic potential [Veksler, 1999]:

(∀t ∈ R) ψs,δ(t) = λmin

(
t2

2δ2
, 1

)
, λ > 0.

2. Geman-McClure potential [Geman and McClure, 1985]:

(∀t ∈ R) ψs,δ(t) =
λt2

2δ2 + t2
, λ > 0.

3. Welsch potential [Dennis and Welsch, 1978]:

(∀t ∈ R) ψs,δ(t) = λ
(

1 − exp(− t2

2δ2
)
)
, λ > 0.

4. Hyberbolic tangent potential:

(∀t ∈ R) ψs,δ(t) = λ tanh
( t2

2δ2

)
, λ > 0.

5. Tukey biweight potential [Black et al., 1998]:

(∀t ∈ R) ψs,δ(t) =

{
λ
(

1 − (1 − t2

6δ2
)3
)

if |t| ≤
√

6δ

λ otherwise
, λ > 0.

The latter four functions are such that ψs,δ(t) ∼ λt2/(2δ2) as t → 0.
They can thus be viewed as smoothed versions of the one-variable truncated
quadratic function in Example 7.2.5 (1) (see Fig. 7.1).
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Truncated quadratic penalty in Example 7.2.5 (1) (black, full) and its smooth approxi-
mations ψs,δ(t) as defined in Examples 7.2.5 (2) (red, dashed), 7.2.5 (3) (blue, dash-dot),
7.2.5 (4) (green, dot), and 7.2.5 (5) (magenta, cross), for parameters λ = 1 and δ = 1.

Figure 7.1: Examples of smoothed versions of the one-variable truncated
quadratic function.

7.2.3 Asymptotic convergence to ℓ0 criterion

The asymptotic behavior of the considered class of potentials can now be
derived by showing the epi-convergence of Fδ to the following block (or
group) ℓ0-penalized objective function:

F0 : x 7→ Φ(Hx− y) + λℓ0(V x− c) + ‖V0x‖2, (7.12)

where V =
[
V ⊤
1 | . . . |V ⊤

S

]⊤
, c =

[
c⊤1 , . . . , c

⊤
S

]⊤
, and ℓ0 denotes the so-called

‘block ℓ0 cost’ [Eldar et al., 2010] defined as

(∀t = [t⊤1 , . . . , t
⊤
S ]⊤ ∈ R

P1+···+PS ) ℓ0(t) =

S∑

s=1

χR\{0}(‖ts‖), (7.13)

where, for every s ∈ {1, . . . , S}, ts ∈ R
Ps . When P1 = . . . = PS = 1, (7.13)

provides the standard expression of the ℓ0 cost of RS .

Proposition 7.2.6 Suppose that Assumptions 7.2.1 and 7.2.4 hold. Let
(δn)n∈N be a decreasing sequence of positive real numbers converging to 0.
Then,
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1. inf Fδn → inf F0 as n→ +∞.

2. If (∀n ∈ N) x̂n is a minimizer of Fδn, then the sequence (x̂n)n∈N is
bounded and all its cluster points are minimizers of F0.

3. If F0 has a unique minimizer x̃, then x̂n → x̃ as n→ +∞.

Proof. First, note that, according to Assumption 7.2.4 (1), for every n ∈ N,
Fδn+1 ≥ Fδn . In addition, for every n ∈ N, Fδn is a continuous function as
a consequence of Assumptions 7.2.1 (1 - 2). Then it can be deduced from
[Rockafellar and Wets, 1997, Theorem 7.4(d)] that (Fδn)n∈N epi-converges to
supn∈N Fδn . The latter function is equal to F0 by virtue of Assumption 7.2.4
(2). In addition, (Fδn)n∈N is eventually level-bounded3 as a consequence of
[Rockafellar and Wets, 1997, Ex. 7.32(a)], the lower bound in (7.4) and the
fact that F : x 7→ Φ(Hx − y) + ‖V0x‖2 is level-bounded (as shown in the
proof of Proposition 7.2.2). We complete the proof by noticing that F0 is
lower semicontinuous and proper, and by applying [Rockafellar and Wets,
1997, Theorem 7.33].

The above proposition guarantees that a minimizer of F0 can be well-
approximated by choosing a small enough δ. Note that the existence /
uniqueness of a minimizer of F0 is discussed in the literature on compressed
sensing under some specific assumptions [Candès, 2008], [Davenport et al.,
2012], [Donoho, 2005].

We will now turn our attention to numerical methods allowing us to
efficiently solve Problem (7.1) when all the involved functions are smooth.

§ 7.3 Proposed optimization method

7.3.1 Subspace algorithm

A classical strategy to minimize the criterion Fδ consists of building a se-
quence (xk)k∈N of RN such that

(∀k ∈ N) Fδ(xk+1) ≤ Fδ(xk). (7.14)

This can be performed by translating the current solution xk at each itera-
tion k ∈ N along a suitable direction dk ∈ R

N :

xk+1 = xk + αkdk, (7.15)

3(Fδn)n∈N is eventually level-bounded if, for every η ∈ R, there exists some subset N
of N such that N \ N is finite and ∪n∈N lev≤η Fδn is bounded.
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where αk > 0 is the stepsize, and dk is a descent direction. When Fδ is
differentiable, this direction is chosen such that g⊤k dk ≤ 0 where gk denotes
the gradient of Fδ at xk.

A significant practical improvement regarding the convergence rate is
achieved by performing subspace acceleration, i.e. by considering a set of
M search directions {d1k, . . . , dMk } ⊂ R

N and by defining the new iteration
as

xk+1 = xk +Dkǫk, (7.16)

where Dk = [d1k, . . . , d
M
k ] ∈ R

N×M is the search direction matrix and ǫk ∈
R
M is a multivariate stepsize, which is computed so as to minimize

fk,δ : ǫ 7→ Fδ(xk +Dkǫ). (7.17)

The memory gradient subspace algorithm, initially proposed in the late
1960’s by Miele and Cantrell [Miele and Cantrell, 1969], corresponds to:

(∀k ≥ 1) Dk = [−gk | xk − xk−1]. (7.18)

When the objective function is quadratic, this algorithm is equivalent to the
linear conjugate gradient algorithm [Cantrell, 1969]. More recently, several
other subspace algorithms have been proposed, where, at each iteration
k ∈ N, Dk usually includes a descent direction (e.g. gradient, Newton,
truncated Newton directions) and a short history of previous directions (see
[Chouzenoux et al., 2011, Tab.1] for a general review).

In addition, the subspace scheme (7.16) was shown to outperform stan-
dard descent algorithms such as nonlinear conjugate gradient over a set of
PLS minimization problems in [Chouzenoux et al., 2011], [Zibulevsky and
Elad, 2010]. The convergence of Algorithm (7.16) however requires the de-
sign of a proper strategy to determine the stepsizes (ǫk)k∈N, which we discuss
in the next section.

7.3.2 Majorize-Minimize stepsize

At each iteration k ∈ N, the minimization of fk,δ using the Majorization-
Minimization (MM) principle is approximately performed by successive min-
imizations of tangent majorant functions for fk,δ. Let qk : RM × R

M → R

and let ǫ′ ∈ R
M . We recall from Section 1.3.1.1 that the function qk(., ǫ

′) is
said to be a tangent majorant for fk,δ at ǫ′ if (∀ǫ ∈ R

M ) qk(ǫ, ǫ
′) ≥ fk,δ(ǫ)

and qk(ǫ
′, ǫ′) = fk,δ(ǫ

′).
From this point forward, we assume that fk,δ is differentiable. Follow-

ing [Chouzenoux et al., 2011], we propose to employ a convex quadratic
tangent majorant function of the form:

(∀ǫ ∈ R
M ) qk(ǫ, ǫ

′) = fk,δ(ǫ
′) + ∇fk,δ(ǫ′)⊤(ǫ− ǫ′) +

1

2
(ǫ− ǫ′)⊤Bk,ǫ′(ǫ− ǫ′),

(7.19)
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where ∇fk,δ(ǫ′) denotes the derivative of fk,δ at ǫ′, and Bk,ǫ′ is an M ×
M symmetric positive semi-definite matrix that ensures the fulfillment of
majorization properties (1.38) and (1.39). The initial minimization of fk,δ
is replaced by a sequence of easier subproblems, corresponding to the MM
update rule summarized in Algorithm 11. Note that for M = 1, this reduces

Algorithm 11 General form of MM stepsize procedure

Initialization:

ǫ0k = 0

Iterations:

For j = 0, . . . , J⌊
ǫjk ∈ Argmin

ǫ∈RM

qk(ǫ, ǫ
j−1
k )

to the scalar MM line search [Labat and Idier, 2008].

7.3.3 Construction of the majorizing approximation

We now make the following assumption:

Assumption 7.3.1

1. Φ is differentiable with an L-Lipschitzian gradient, i.e.

(∀z ∈ R
Q)(∀z′ ∈ R

Q) ‖∇Φ(z) −∇Φ(z′)‖ ≤ L‖z − z
′‖. (7.20)

2. For every s ∈ {1, · · · , S}, ψs,δ is a differentiable function.

3. For every s ∈ {1, · · · , S}, ψs,δ(
√
.) is concave on [0,+∞).

4. For every s ∈ {1, · · · , S}, there exists ωs ∈ [0,+∞) such that (∀t ∈
(0,+∞)) 0 ≤ ψ̇s,δ(t) ≤ ωst where ψ̇s,δ is the derivative of ψs,δ. In
addition, limt→0

t 6=0
ψ̇s,δ(t)/t ∈ R.

We emphasize the fact that Assumptions 7.3.1 (2-4) hold for the ℓ2-ℓ0 penal-
ties in Examples 7.2.5 (2-5). Morever, Tab. 7.1 presents several examples of
functions fulfilling Assumption 7.3.1 (1).

By defining

(∀s ∈ {1, . . . , S})(∀t ∈ R) ωs,δ(t) = ψ̇s,δ(t)/t, (7.21)

(the function ωs,δ is extended by continuity at 0), a tangent majorant can
be built as described below:
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Φ(z)
z = (zq)1≤q≤Q ∈ R

Q L

Least squares
1
2z

⊤Λz, Λ ∈ R
Q×Q -symmetric positive

semi-definite
‖Λ‖

Huber [Huber, 1981]
∑Q

q=1 φq(zq) (∀t ∈ R)

φq(t) =

{
ρqt

2 if |t| ≤ νq

ρqνq(2|t| − νq|) if |t| > νq

νq > 0, ρq > 0

2 max1≤q≤Q ρq

Cauchy [Antoniadis et al., 2002]
∑Q

q=1 φq(zq) (∀t ∈ R) φq(t) = ln(ρq + t2),

ρq > 0
max1≤q≤Q( 2

ρq
)

Squared distance to a closed convex set B
[Bauschke and Combettes, 2011]

1
2d

2
B(z) 1

Smoothed max [Ben-Tal and Teboulle, 1989]

ρ ln(
∑Q

q=1 e
zq/ρ), ρ > 0 1/ρ

Inf-convolution [Bauschke and Combettes, 2011]

infz1+z2=z Φ1(z1) + Φ2(z2)
Φ1 ∈ Γ0(R

Q), Φ2 ∈ Γ0(R
Q)

Φ2 ρ-Lipschitz differentiable,
ρ > 0, such that lim‖z‖→+∞

Φ2(z)
‖z‖ = +∞

ρ

Table 7.1: Some examples of functions Φ with an L-Lipschitzian gradient.
(‖Λ‖ denotes the spectral norm of Λ and Γ0(R

Q) denotes the class of proper
lower-semicontinuous convex functions from R

Q to (−∞,+∞].)

Lemma 7.3.2 [Allain et al., 2006] For every x ∈ R
N , let

A(x) = µH⊤H + 2V ⊤
0 V0 + V ⊤Diag {b(x)}V, (7.22)

where µ ∈ [L,+∞) and b(x) =
(
bi(x)

)
1≤i≤SP ∈ R

SP with P =
∑S

s=1 Ps is
such that

(∀s ∈ {1, . . . , S}) (∀p ∈ {1, . . . , Ps}) bP1+···+Ps−1+p(x) = ωs,δ(‖Vsx− cs‖).

Let ǫ′ ∈ R
M and k ∈ N. Then, under Assumption 7.3.1, qk(·, ǫ′) with

Bk,ǫ′ = D⊤
k A(xk +Dkǫ

′)Dk, (7.23)
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is a convex quadratic tangent majorant of fδ,k at ǫ′.

Hence, according to (7.19) and procedure summarized in Algorithm 11,
the optimality condition for the choice of the stepsize in the MM iteration
is given by:

(∀k ∈ N)(∀j ∈ {1, . . . , J}) B
k,ǫj−1

k

(ǫjk − ǫj−1
k ) + ∇fk,δ(ǫj−1

k ) = 0. (7.24)

This yields the explicit stepsize formula

ǫjk = ǫj−1
k − B−1

k,ǫj−1
k

∇fk,δ(ǫj−1
k ), (7.25)

where B−1

k,ǫj−1
k

is the pseudo-inverse of B
k,ǫj−1

k

∈ R
M×M . One of the main

advantages of this approach is that the computational cost of the required
inversion is low, provided that the number M of search directions remains
small. The resulting MM subspace algorithm is summarized in Algorithm 12.

Algorithm 12 MM subspace algorithm

Initialization:

Set x0 ∈ R
N

Iterations:

For k = 0, . . .

ǫ0k = 0,
For j = 1, . . . , J B

k,ǫj−1
k

= D⊤
k A(xk +Dkǫ

j−1
k )Dk

ǫjk = ǫj−1
k − B−1

k,ǫj−1
k

D⊤
k ∇Fk,δ(xk +Dkǫ

j−1
k )

xk+1 = xk +Dkǫ
J
k

§ 7.4 Convergence result

We first provide some preliminary technical lemmas before stating the main
convergence result. In the following, for every k ∈ N and j ∈ {0, . . . , J}, we
define

xjk = xk +Dkǫ
j
k, (7.26)

gjk = ∇Fδ(xjk), (7.27)

(thus, xJk = xk+1 and gJk = gk+1). Moreover, we assume that the set of
directions (Dk)k∈N fulfills the following condition:
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Assumption 7.4.1 For every k ∈ N, the matrix of directions Dk is of size
N×M with 1 ≤M ≤ N and the first subspace direction d1k is gradient-related
i.e.,

g⊤k d
1
k ≤ −γ0‖gk‖2, (7.28)

‖d1k‖ ≤ γ1‖gk‖, (7.29)

with γ0 > 0 and γ1 > 0.

As emphasized in [Bertsekas, 1999, Sec.1.2] and [Chouzenoux et al., 2011,
Sec.III-D], conditions (7.28) and (7.29) hold for a large family of descent
directions, such as the steepest descent direction or the truncated Newton
direction.

7.4.1 Preliminary results

Lemma 7.4.2 Under Assumptions 7.3.1 and 7.4.1, there exists a constant
ν > 0 such that, for every k ∈ N and j ∈ {1, . . . , J}, Fδ(xk) − Fδ(x

j
k) ≥

γ20
γ21
ν−1‖gk‖2.

Proof. According to Assumption 7.3.1 (4) and (7.21), for every s ∈ {1, · · · , S},
ωs,δ is upper-bounded on (0,+∞). Hence, there exists ν > 0 such that, for
every x ∈ R

N and V ∈ R
N , V ⊤A(x)V ≤ ν‖V ‖2/2. The result then follows

from [Chouzenoux et al., 2011, Theorem 1].

Lemma 7.4.3 Under Assumptions 7.2.1 and 7.3.1, the MM subspace iter-
ates are such that

(∀k ∈ N)(∀j ∈ {0, . . . , J − 1}) Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ η

2
‖xj+1

k − xjk‖2

(7.30)

where η > 0 is the smallest eigenvalue of µH⊤H + 2V ⊤
0 V0.

Proof. Let k ∈ N and j ∈ {0, . . . , J − 1}. According to (7.19) and the
definition of ǫj+1

k ,

fk,δ(ǫ
j
k) − qk(ǫ

j+1
k , ǫjk) = −1

2
∇fk,δ(ǫjk)⊤(ǫj+1

k − ǫjk). (7.31)

Furthermore, qk(ǫ
j+1
k , ǫj) ≥ fk,δ(ǫ

j+1
k ). Thus,

fk,δ(ǫ
j
k) − fk,δ(ǫ

j+1
k ) ≥ −1

2
∇fk,δ(ǫj)⊤(ǫj+1

k − ǫjk). (7.32)
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The last inequality also reads

Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ −1

2
∇fk,δ(ǫj)⊤(ǫj+1

k − ǫjk). (7.33)

So, using (7.23) and (7.24),

Fδ(x
j
k) − Fδ(x

j+1
k ) ≥ 1

2

(
Dk(ǫ

j+1
k − ǫjk)

)⊤
A(xjk)Dk(ǫ

j+1
k − ǫjk) (7.34)

≥ η

2
‖Dk(ǫ

j+1
k − ǫjk)‖2. (7.35)

In the latter inequality, we make use of the fact that, since KerH ∩KerV0 =
{0}, η is positive, and

(∀x ∈ R
N )(∀V ∈ R

N ) V ⊤A(x)V ≥ η‖V ‖2. (7.36)

Lemma 7.4.4 Under Assumptions 7.2.1 and 7.3.1, the MM subspace iter-
ates are such that

(∀k ∈ N)(∀j ∈ {0, . . . , J − 1}) η‖xj+1
k − xjk‖ ≤ ‖gjk‖, (7.37)

where η > 0 is the same constant as in Lemma 7.4.3.

Proof. According to (7.24), we have, for every k ∈ N and j ∈ {0, . . . , J − 1},

D⊤
k g

j
k +D⊤

k A(xjk)Dk(ǫ
j+1
k − ǫjk) = 0. (7.38)

Hence,

(
Dk(ǫ

j+1
k − ǫjk)

)⊤
gjk +

(
Dk(ǫ

j+1
k − ǫjk)

)⊤
A(xk)Dk(ǫ

j+1
k − ǫjk) = 0. (7.39)

By using (7.36), (7.39) leads to

−
(
Dk(ǫ

j+1
k − ǫjk)

)⊤
gjk ≥ η‖Dk(ǫ

j+1
k − ǫjk)‖2. (7.40)

In addition, the Cauchy-Schwarz inequality leads to

−
(
Dk(ǫ

j+1
k − ǫjk)

)⊤
gjk ≤ ‖gjk‖‖Dk(ǫ

j+1
k − ǫjk)‖. (7.41)

Thus, the latter two inequalities yield:

η‖Dk(ǫ
j+1
k − ǫjk)‖2 ≤ ‖gjk‖‖Dk(ǫ

j+1
k − ǫjk)‖. (7.42)

Substituting with (7.26), obtaining the desired result is straightforward.
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7.4.2 Convergence theorem

Based on the two previous lemmas, classical results in the optimization liter-
ature [Ortega and Rheinboldt, 1970] may allow us to deduce the convergence
of the sequence (xk)k∈N generated by the MM subspace algorithm, but these
results require restrictive conditions on the critical points of the objective
function Fδ. We propose here a more general approach based on recent re-
sults in non-convex optimization [Attouch and Bolte, 2008], [Attouch et al.,
2010], [Attouch et al., 2011]. We first recall the following definition from
[ Lojasiewicz, 1963]:

Definition 7.4.5 A differentiable functionG : RN → R satisfies the Kurdyka-
 Lojasiewicz inequality if, for every x̃ ∈ R

N and every bounded neighborhood
E of x̃, there exist three constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that

‖∇G(x)‖ ≥ κ|G(x) −G(x̃)|θ, (7.43)

for every x ∈ E such that |G(x) −G(x̃)| < ζ.

The interesting point is that this inequality is satisfied for a wide class of
functions. In particular, it holds for real analytic functions, semi-algebraic
functions as well as many others [ Lojasiewicz, 1963], [Kurdyka and Parusin-
ski, 1994] [Bolte et al., 2006], [Bolte et al., 2007]. Recall that a function
G : RN → R is semi-algebraic if its graph {(x, η) ∈ R

N × R | η = G(x)}
is a semi-algebraic set, i.e. it can be expressed as a finite union of sub-
sets of RN × R defined by a finite number of polynomial inequalities. The
semi-algebraicity property is stable under various operations (sum, prod-
uct, inversion, composition,...). Examples of semi-algebraic functions in-
clude x 7→ ‖Hx − y‖2, Ψδ when the functions (ψs,δ)1≤s≤S are given by
Example 7.2.5 (2) or 7.2.5 (5), the squared distance to a closed convex
semi-algebraic set. In turn, examples of real-analytic functions include
x 7→ ‖Hx− y‖2 and Ψδ when the functions (ψs,δ)1≤s≤S are given by Exam-
ples 7.2.5 (2-4). Note that a more general local version of inequality (7.43)
can also be found in the literature [Bolte et al., 2007].

Let us now state our main convergence result:

Theorem 7.4.6 Assume that Fδ satisfies the Kurdyka- Lojasiewicz inequal-
ity. Under Assumptions 7.2.1, 7.3.1 and 7.4.1, the MM subspace algorithm
given by (12) generates a sequence (xk)k∈N converging to a critical point x̃
of Fδ. Moreover, this sequence has a finite length in the sense that

+∞∑

k=0

‖xk+1 − xk‖ < +∞. (7.44)

Proof. As lev≤Fδ(x0) =
{
x ∈ R

N |Fδ(x) ≤ Fδ(x0)
}

is a bounded set (by virtue
of Proposition 7.2.2 (1)) and (Fδ(xk))k∈N is a decreasing sequence, the se-
quence (xk)k∈N belongs to a compact subset E of RN . Hence, there exists
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a subsequence (xki)i∈N of (xk)k∈N converging to a vector x̃ of R
N . Be-

sides, since Fδ is a continuous function, (Fδ(xki))i∈N converges to Fδ(x̃). As
(Fδ(xk))k∈N is decreasing, and Proposition 7.2.2 (1) shows that it is bounded
from below, we deduce that (Fδ(xk) − Fδ(x̃))k∈N is a nonnegative sequence
converging to 0.

Now, by invoking Lemma 7.4.2 (with j = J), we have that, for every
k ∈ N,

γ20
γ21
ν−1‖gk‖2 ≤ Fδ(xk) − Fδ(xk+1) = Fδ(xk) − Fδ(x̃) −

(
Fδ(xk+1) − Fδ(x̃)

)
.

(7.45)

According to the  Lojasiewicz property, there exist constants κ > 0, ζ > 0
and θ ∈ [0, 1) such that

‖∇Fδ(x)‖ ≥ κ|Fδ(x) − Fδ(x̃)|θ, (7.46)

for every x ∈ E such that |Fδ(x)−Fδ(x̃)| < ζ. Let us now apply to the convex
function ϕ : [0,+∞) → [0,+∞) : u 7→ u1/(1−θ) the gradient inequality

(∀(u, v) ∈ [0,+∞)2) ϕ(v) ≥ ϕ(u) + ϕ̇(u)(v − u) (7.47)

which, after a change of variables, can be rewritten as

(∀(u, v) ∈ [0,+∞)2) u− v ≤ (1 − θ)−1uθ(u1−θ − v1−θ). (7.48)

Combining the latter inequality with (7.45) leads to

Fδ(xk) − Fδ(x̃) −
(
Fδ(xk+1) − Fδ(x̃)

)
≤ (1 − θ)−1(Fδ(xk) − Fδ(x̃))θ∆k

(7.49)

where

∆k =
(
Fδ(xk) − Fδ(x̃)

)1−θ −
(
Fδ(xk+1) − Fδ(x̃)

)1−θ
. (7.50)

Thus,

‖gk‖2 ≤
γ21
γ20
ν(1 − θ)−1(Fδ(xk) − Fδ(x̃))θ∆k. (7.51)

Since (Fδ(xk))k∈N converges to Fδ(x̃), there exists k∗ ∈ N, such that, for ev-
ery k ≥ k∗, 0 ≤ Fδ(xk)−Fδ(x̃) < ζ. By applying the  Lojasiewicz inequality,

(∀k ≥ k∗) ‖gk‖2 ≤
γ21
γ20
νκ−1(1 − θ)−1‖gk‖∆k. (7.52)

This allows us to deduce that

+∞∑

k=k∗
‖gk‖ ≤ γ21

γ20
νκ−1(1 − θ)−1

(
Fδ(xk∗) − Fδ(x̃)

)1−θ
. (7.53)
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Furthermore, according to (7.26),

η

2
‖xk+1 − xk‖2 =

η

2

∥∥∥
J−1∑

j=0

(xj+1
k − xjk)

∥∥∥
2

(7.54)

which, by using Lemma 7.4.3 and the convexity of the squared norm, yields
for every k ∈ N,

η

2
‖xk+1 − xk‖2 ≤

ηJ

2

J−1∑

j=0

‖xj+1
k − xjk‖2

≤ J

J−1∑

j=0

Fδ(x
j
k) − Fδ(x

j+1
k ) = J

(
Fδ(xk) − Fδ(xk+1)

)
.

(7.55)

By proceeding similarly to the derivation of (7.52), we obtain: for every
k ≥ k∗,

η

2
‖xk+1 − xk‖2 ≤ J(1 − θ)−1

(
Fδ(xk) − Fδ(x̃)

)θ
∆k ≤ Jκ−1(1 − θ)−1‖gk‖∆k.

(7.56)
By using the fact that, for every (u, v) ∈ [0,+∞)2, (uv)1/2 ≤ u + v

4 , and
taking u = Jη−1κ−1(1 − θ)−1∆k and v = 2‖gk‖, (7.56) leads to

‖xk+1 − xk‖ ≤ Jη−1κ−1(1 − θ)−1∆k +
1

2
‖gk‖. (7.57)

By summing now over k and using (7.50) and (7.53), we finally obtain

+∞∑

k=k∗
‖xk+1−xk‖ ≤ κ−1(1−θ)−1(Jη−1+

γ21
γ20

ν

2
)
(
Fδ(xk∗)−Fδ(x̃)

)1−θ
. (7.58)

This gives us the desired finite length property. In addition, since this
condition implies that (xk)k∈N is a Cauchy sequence, it converges towards a
single point, which is necessarily x̃. Finally, due to the continuity of Fδ and
Lemma 7.4.2, (gk)k∈N converges to zero. As (xk, Fδ(xk)) → (x̃, Fδ(x̃)), the
closedness property of the gradient implies that ∇Fδ(x̃) = 0, i.e. x̃ must be
a critical point of Fδ.

Note that the inexact gradient methods that are studied in [Attouch
et al., 2011] are distinct from the subspace algorithms we consider.



156 Chapter 7. ℓ2 − ℓ0 sparsity measures for imaging

§ 7.5 Simulation results

The aim of this section is to illustrate and analyze the performance of the
proposed algorithm in the context of Problem (7.1). We also show the non-
convex penalization functions in Example 7.2.5 to be appropriate for image
processing applications. In the following, denoising and deblurring image
processing problems are considered. Our algorithm has also been applied
to other image processing tasks, i.e. segmentation and tomographic image
reconstruction, in [Chouzenoux et al., 2012]. However these applications are
not in the main scope of this thesis. For each of the presented problems,
the produced image x̂ ∈ R

N is defined as a minimizer of the function Fδ,
where Φ, H, y and V depend on the considered application. For the elastic
net regularization term, we choose V0 = τI, τ ≥ 0. For deblurring, the
linear operator H is not necessarily injective. Thus, we set τ equal to a
small positive value in order to fulfill Assumption 7.2.1 (3). In the two other
cases, τ is set to zero.

For every s ∈ {1, . . . , S}, we have set cs = 0. For the potential func-
tion ψs,δ, we have tested the smooth convex ℓ2 − ℓ1 function ψs,δ : t 7→
λ(
√

1 + t2/δ2 − 1) with λ > 0 (SC) and the smooth non-convex functions
in Example 7.2.5 (2) (SNC2), Example 7.2.5 (3) (SNC3), Example 7.2.5 (4)
(SNC4) and Example 7.2.5 (5) (SNC5). Moreover, in the case of denoising
example, we provide optimization results for four state-of-the-art combi-
natorial optimization algorithms, namely the α-expansion [Boykov et al.,
2001] (α-EXP), Quantized-Convex Move Splitting [Jezierska et al., 2011b]
(QCSM), Tree-Reweighted (TRW) [Kolmogorov, 2006] and Belief Propaga-
tion (BP) [Felzenszwalb and Huttenlocher, 2004] algorithms, for which the
nonsmooth non-convex truncated quadratic function in Example 7.2.5 (1)
(NSNC) is considered. When the linear degradation operator is not the
identity matrix, we do not provide comparisons with the combinatorial al-
gorithms. Indeed, although a few algorithms [Raj and Zabih, 2005], [Raj
et al., 2007] are applicable to inverse problems involving a linear degradation
operator, these methods are well-founded only for a sparse convolution oper-
ator H. Moreover, they rely on an adaptation of the graph cut α-expansion
algorithm, which is shown in our segmentation and denoising examples to
be outperformed by our proposed approach.

The computation of the proposed MM subspace algorithm requires spec-
ifying the direction set Dk, for every k ∈ N, and the number of MM sub-
iterations J . First, the memory-gradient direction matrices,

(∀k ≥ m) Dk = [−gk | xk − xk−1 | · · · | xk−m+1 − xk−m] ∈ R
N×(m+1),

(7.59)
with memory parameter m ≥ 0, is considered. Moreover, in all our exper-
iments, we set J = 1. This choice was observed to yield the best results
in terms of convergence profile in the context of MM-based stepsize compu-
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tation [Chouzenoux et al., 2011], [Labat and Idier, 2008]. In the following,
we compare our proposed subspace algorithm, denoted hereafter by 3MG-m
(for Majorize-Minimize Memory Gradient) with three other iterative first
order descent methods. The methods we compare against are namely the
nonlinear conjugate gradient (NLCG) algorithm [Hager and Zhang, 2006],
the L-BFGS algorithm [Liu and Nocedal, 1989] with the memory parame-
ter set to 3, and the fast version of half quadratic (HQ) algorithm [Allain
et al., 2006]. For each descent algorithm, the MM scalar line search with
J = 1 is employed for the computation of the stepsize. In the case of HQ,
the inner optimization problems are solved partially with conjugate gradient
iterations. Note that this algorithm has been previously studied in the con-
text of non-convex regularization functions in [Delaney and Bresler, 1998],
[Rivera and Marroquin, 2003]. In order to limit the influence of possible
local minima in the non-convex case, the result of 10 iterations of convex
minimization using an ℓ2−ℓ1 penalty is employed as an initialization. In the
convex case, minimization is started with the constant null image. The com-
putational complexity is evaluated in terms of iteration number and compu-
tational time necessary to achieve the global stopping rule ‖gk‖/

√
N < 10−4.

C++ codes were compiled with the Intel C++ compiler icpc (version 12.1.0)
and were run on an Intel(R) Xeon(R) CPU X5570 at 2.93GHz, in a single
thread.

7.5.1 Image denoising

The first problem considered in this section corresponds to the recovery of
an image x from noisy observations u = x + w where w is a realization of
a zero-mean white Gaussian noise. The vector x here corresponds to Word

image of size N = 128 × 128 pixels. The variance of the noise was adjusted
to correspond to a signal-to-noise ratio (SNR) of 15 dB (Fig. 7.2). The
recovery of the original image is performed by solving (7.1) where Q = 2N ,

H =

[
I

I

]
y =

[
u
0

]
, (7.60)

and

(∀z = (zq)1≤q≤2N ) Φ(z) =
1

2




N∑

q=1

z2q + β
2N∑

q=N+1

d2B(zq)


 , (7.61)

where dB denotes the distance to the closed convex interval B = [0, 255]
and β > 0 is a weighting factor. Then, Φ is Lipschitz differentiable with
Lipschitz constant L = max(1, β). In the sequel, we choose β = 1 so that
we have L = 1. Moreover, the penalization term (7.3) is used, with τ = 0
and an anisotropic penalization on neighboring pixels i.e., S = 2N , and for
every s ∈ {1, . . . , N} (resp. s ∈ {N+1, . . . , 2N}), Ps = 1 and Vs corresponds
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to a horizontal (resp. vertical) gradient operator. This anisotropic term is
chosen so as to compare more fairly our approach with the combinatorial
methods.

Parameters λ and δ were automatically chosen to maximize the SNR
between the original image and its reconstructed version. In Fig. 7.3, the
reconstructed images are displayed and the corresponding SNR and MSSIM
[Wang et al., 2004] values are provided. Morever, the absolute values of the
reconstruction errors x̂ − x are illustrated. It should be noticed that the
non-convex regularization strategy with penalty function SNC2 leads to the
best results in terms of reconstruction quality.

7.5.1.1 Influence of memory size

We first analyze the effect of the memory size m on the performance of our
algorithm. We recall that the detailed performance analysis of 3MG algo-
rithm with respect to the size of the memory was provided in [Chouzenoux
et al., 2011], but it was restricted to the convex case. The results in Tab. 7.2
illustrate that the choice of a memory equal to one, which corresponds to
a subspace with size 2, leads to the best results in terms of computational
time. Hence, our experiments confirm the conclusions drawn in [Chouzenoux
et al., 2011] for the convex case. Consequently, the setting m = 1, i.e.
Dk = [−gk | xk − xk−1] for all k ≥ 1 was retained for the remaining experi-
ments presented in the chapter, and the shorter notation 3MG is employed
for denoting the 3MG-1 algorithm.

7.5.1.2 Comparison with NLCG algorithm

The NLCG algorithm is based on the following iterations:

(∀k ≥ 1) xk+1 = xk + αk(−gk + βk(xk − xk−1)), (7.62)

where αk > 0 is the stepsize and βk ∈ R is the conjugacy parameter. Tab. 7.3
summarizes the performances of NLCG for five different conjugacy strategies
described in [Hager and Zhang, 2006]. Contrary to the convex case, in
the non-convex case the conjugacy formula has a major influence on the
convergence speed (see Tab. 7.3 results related to NLCG in rows 1-6 and
7-30). In particular the conjugacy strategies FR and DY do not appear well-
adapted to the non-convex problems. On the other hand, the HS, LS and
PRP+ conjugacy parameters yield a good numerical performance. Thus,
they have been selected for the numerical experiments in the following. For
comparison, we include in Tab. 7.3 the results of 3MG for m = 1. Although
the superiority of 3MG versus NLCG is not established theoretically, these
experimental results are very promising. They show that 3MG algorithm is
faster than the considered non-linear conjugate gradient algorithms.
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(a) Original 128 × 128 (b) Noisy N (0, 100)

SNR= 15 dB

MSSIM = 0.66

Figure 7.2: Denoising test image.

(a) 3MG SC (b) TRW (c) 3MG SNC2

λ = 0.3 λ = 350 λ = 280

δ = 0.07 δ = 3.5 δ = 7.25

SNR = 20.41 dB SNR = 22.8 dB SNR = 22.74 dB

MSSIM = 0.89 MSSIM = 0.93 MSSIM = 0.92

Figure 7.3: Denoising results and absolute reconstruction error.
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ψs,δ(·)
(λ, δ)

Algorithm Iteration Time (s) Fδ
SNR
(dB)

SNC2
(280, 7.25)

3MG-0 998 1.08 1.54 · 106 22.74

3MG-1 270 0.35 1.54 · 106 22.74

3MG-2 247 0.38 1.54 · 106 22.74

3MG-3 248 0.44 1.54 · 106 22.74

3MG-4 243 0.51 1.54 · 106 22.74

3MG-5 239 0.59 1.54 · 106 22.74

SNC3
(301, 8.76)

3MG-0 536 0.66 1.59 · 106 22.55

3MG-1 101 0.21 1.59 · 106 22.55

3MG-2 159 0.28 1.59 · 106 22.55

3MG-3 158 0.32 1.59 · 106 22.55

3MG-4 156 0.36 1.59 · 106 22.55

3MG-5 155 0.41 1.59 · 106 22.55

SNC4
(381, 10)

3MG-0 287 0.61 1.8 · 106 22.47

3MG-1 69 0.16 1.8 · 106 22.47

3MG-2 70 0.19 1.8 · 106 22.47

3MG-3 67 0.21 1.8 · 106 22.47

3MG-4 66 0.22 1.8 · 106 22.47

3MG-5 67 0.28 1.8 · 106 22.47

SNC5
(386, 9)

3MG-0 202 0.42 1.8 · 106 22.48

3MG-1 49 0.11 1.8 · 106 22.48

3MG-2 51 0.13 1.8 · 106 22.48

3MG-3 51 0.16 1.8 · 106 22.48

3MG-4 52 0.17 1.8 · 106 22.48

3MG-5 52 0.21 1.8 · 106 22.48

Table 7.2: Denoising problem with word image. Influence of memory pa-
rameter m in 3MG algorithm.
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ψs,δ(·)
(λ, δ)

Algorithm Iteration Time (s) Fδ
SNR
(dB)

SC
(0.3, 0.07)

NLCG-HS 138 0.84 2.7 · 106 20.41

NLCG-FR 305 1.86 2.7 · 106 20.41

NLCG-PRP+ 143 0.87 2.7 · 106 20.41

NLCG-LS 158 0.96 2.7 · 106 20.41

NLCG-DY 223 1.35 2.7 · 106 20.41

3MG 122 0.22 2.7 · 106 20.41

SNC2
(280, 7.25)

NLCG-HS 1250 2.34 1.54 · 106 22.74

NLCG-FR > 10000 − − −
NLCG-PRP+ 292 0.55 1.54 · 106 22.74

NLCG-LS 320 0.79 1.54 · 106 22.74

NLCG-DY > 10000 − − −
3MG 270 0.35 1.54 · 106 22.74

SNC3
(301, 8.76)

NLCG-HS 112 0.26 1.59 · 106 22.55

NLCG-FR > 10000 − − −
NLCG-PRP+ 179 0.42 1.59 · 106 22.55

NLCG-LS 210 0.54 1.59 · 106 22.55

NLCG-DY > 10000 − − −
3MG 101 0.21 1.59 · 106 22.55

SNC4
(381, 10)

NLCG-HS 102 1.1 1.8 · 106 22.47

NLCG-FR 3289 36.3 1.8 · 106 22.47

NLCG-PRP+ 79 0.9 1.8 · 106 22.47

NLCG-LS 90 1 1.8 · 106 22.47

NLCG-DY 3342 36.8 1.8 · 106 22.47

3MG 69 0.16 1.8 · 106 22.47

SNC5
(386, 9)

NLCG-HS 52 0.15 1.8 · 106 22.48

NLCG-FR > 10000 − − −
NLCG-PRP+ 55 0.16 1.8 · 106 22.48

NLCG-LS 56 0.16 1.8 · 106 22.48

NLCG-DY > 10000 − − −
3MG 49 0.11 1.8 · 106 22.48

Table 7.3: Denoising problem with word image. Influence of conjugacy
parameter βk in NLCG algorithm.
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7.5.1.3 Summary

We summarize the results by comparing the performance of continuous
and discrete algorithms with SC, SNC and NSNC potential functions (see
Tab. 7.4). One can observe that the considered discrete optimization algo-
rithms lead to a SNR which is very similar to that obtained with smooth
non-convex regularization. However, they are more demanding in terms
of computational time than 3MG. Thus, we can conclude that the 3MG
algorithm behaves well in comparison with the considered continuous and
discrete algorithms.

7.5.2 Image deblurring

Our second experiment corresponds to the problem of restoring an image
x from observations u corrupted by noise and blur R. The recovery of the
original image is performed by solving (7.1) where Q = 2N

H =

[
R
I

]
y =

[
u
0

]
, (7.63)

and

(∀z = (zq)1≤q≤2N ) Φ(z) =
1

2




N∑

q=1

z2q + β

2N∑

q=N+1

d2B(zq)


 , (7.64)

where dB denotes the distance to the closed convex interval B = [0, 255] and
β = 0.01. Furthermore, function Ψδ is given by (7.3) with τ = 10−10 and
S = 2N . We consider, for every s ∈ {1, . . . , N}, an isotropic regularization
between neighbooring pixels, i.e., Ps = 2 and Vs = [∆h

s ∆v
s ]

⊤ where ∆h
s ∈

R
N (resp. ∆v

s ∈ R
N ) corresponds to a horizontal (resp. vertical) gradient

operator, and, for every s ∈ {N+1, . . . , 2N}, the Hessian-based penalization
from [Lefkimmiatis et al., 2012] i.e., Ps = 3 and Vs = [∆hh

s

√
2∆hv

s ∆vv
s ]⊤

where ∆hh
s ∈ R

N , ∆hv
s ∈ R

N and ∆vv
s ∈ R

N model the second-order finite
difference operators between neighbooring pixels, as described in [Lefkimmi-
atis et al., 2012, Sec.III-A]. For s ∈ {N + 1, . . . , 2N} we consider the ℓ2 − ℓ1
function ψs,δ : t 7→ ρ(

√
1 + t2/(θδ)2−1), where ρ and θ take positive values.

We illustrate the performance of our algorithm on the image montage of size
256 × 256, which represents different cases of natural and artificial images,
in the case of the Gaussian noise i.e. u = Rx + w where w is a realization
of a zero-mean white Gaussian noise. Tab. 7.5 presents the results for SC
and SNC2 regularization of the image gradient (i.e. ψs,δ for s ∈ {1, . . . , N}).
Parameters (ρ, θ, λ, δ) are tuned to maximize the SNR of the restored image.
In both cases, the 3MG algorithm outperforms the three considered descent
algorithms in terms of time efficiency.
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ψs,δ(·)
(λ, δ)

Algorithm Iteration Time (s) Fδ
SNR
(dB)

SC
(0.3, 0.07)

3MG 122 0.22 2.7 · 106 20.41

NLCG-HS 138 0.35 2.7 · 106 20.41

NLCG-PRP+ 143 0.37 2.7 · 106 20.41

NLCG-LS 158 0.96 2.7 · 106 20.41

L-BFGS 209 0.73 2.7 · 106 20.41

HQ 670 3.03 2.7 · 106 20.41

SNC2
(280, 7.25)

3MG 270 0.35 1.54 · 106 22.74

NLCG-HS 1250 2.34 1.54 · 106 22.74

NLCG-PRP+ 292 0.55 1.54 · 106 22.74

NLCG-LS 320 0.79 1.54 · 106 22.74

L-BFGS 332 0.96 1.54 · 106 22.73

HQ 1025 3.84 1.54 · 106 22.74

SNC3
(301, 8.76)

3MG 101 0.21 1.59 · 106 22.55

NLCG-HS 112 0.26 1.59 · 106 22.55

NLCG-PRP+ 179 0.42 1.59 · 106 22.55

NLCG-LS 210 0.54 1.59 · 106 22.55

L-BFGS 351 1.08 1.59 · 106 22.55

HQ 604 2.53 1.59 · 106 22.54

SNC4
(381, 10)

3MG 69 0.16 1.8 · 106 22.47

NLCG-HS 102 0.27 1.8 · 106 22.47

NLCG-PRP+ 79 0.21 1.8 · 106 22.47

NLCG-LS 90 1 1.8 · 106 22.47

L-BFGS 94 0.32 1.8 · 106 22.46

HQ 287 1.36 1.8 · 106 22.47

SNC5
(386, 9)

3MG 49 0.11 1.8 · 106 22.48

NLCG-HS 52 0.15 1.8 · 106 22.48

NLCG-PRP+ 55 0.16 1.8 · 106 22.48

NLCG-LS 56 0.16 1.8 · 106 22.48

L-BFGS 80 0.25 1.8 · 106 22.48

HQ 202 1.1 1.8 · 106 22.48

NSNC
(350, 3.5)

α-EXP 4 4.67 1.31 · 106 22.69

QCSM 2 1.25 1.31 · 106 22.60

TRW 5 1.65 1.31 · 106 22.80

BP 18 5.33 1.31 · 106 22.73

Table 7.4: Results for the denoising problem.
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(a) Original 256 × 256 (b) Degraded N (0, 16)

3 × 3 uniform blur

SNR= 18.65 dB

MSSIM = 0.82

Figure 7.4: Deblurring test image.

(a) 3MG SC (b) 3MG SNC2

ρ = 0.56, θ = 0.18 ρ = 41.55, θ = 0.86

λ = 0.042, δ = 4.19 λ = 3.68, δ = 18.65

SNR = 26.90 dB SNR = 27.69 dB

MSSIM = 0.94 MSSIM = 0.94

Figure 7.5: Deblurring results.
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ψs,δ(·)
(ρ, θ, λ, δ)

Algorithm Iteration Time (s) Fδ
SNR
(dB)

SC
(0.56, 0.18,
0.042, 4.19)

3MG 121 8.36 8.22 · 106 26.90
NLCG-HS 121 8.92 8.22 · 106 26.90

NLCG-PRP+ 129 9.32 8.22 · 106 26.90
NLCG-LS 131 9.51 8.22 · 106 26.90
L-BFGS 162 12.42 8.22 · 106 26.90

HQ 418 94.3 8.22 · 106 26.90

SNC2
(41.55, 0.86,
3.68, 18.65)

3MG 196 11.58 7.92 · 106 27.69
NLCG-HS 243 15.93 7.92 · 106 27.69

NLCG-PRP+ 221 14.41 7.92 · 106 27.69
NLCG-LS 246 15.62 7.92 · 106 27.69
L-BFGS 216 14.78 7.92 · 106 27.69

HQ 616 104.9 7.92 · 106 27.69

Table 7.5: Results for the deblurring problem.

Additionally, the non-convex strategy leads to better results in terms of
SNR (see Fig. 7.4). One can also observe that in this case the staircasing
effect is reduced (see some image details in Fig. 7.4).

§ 7.6 Conclusion

In this chapter, we have considered a class of smooth non-convex regulariza-
tion functions and we have proposed an efficient minimization strategy for
solving the associated variational problems in imaging applications. Connec-
tions with ℓ0 penalized problems were exhibited asymptotically. In addition,
a novel convergence proof of the proposed subspace MM algorithm relying on
the Kurdyka- Lojasiewicz inequality was given. Numerical experiments were
carried out to compare the proposed approach with other state-of-the art
continuous optimization methods (both for non-convex and convex penaliza-
tions) and with discrete optimization approaches dealing with a truncated
quadratic penalization. In the presented image processing examples, we ar-
gue that the proposed approach constitutes an appealing alternative to the
existing methods in terms of recovered image quality and computational
time.
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- Chapter 8 -

Conclusion

As we have seen, there is an increasing interest for high resolution 3D con-
focal macroscopy images. However, human understanding and automatic
assessment of an observed scene is still limited due to noise and blur. In
low-count discrete photon imaging systems the spatial distribution of only a
few photons per pixel may encode important information about the shape of
an observed object. In order to retrieve these informations, the associated
methods need to be carefully tailored to cover the specificity of low-count
images, their noise distribution and the characteristics of their blur. The
physics-driven design of such approaches requires learning noise parameters
and blur operator model. This thesis contributed into the development of
such tools. Our next step was to restore the degraded image. Our goal
was to improve over existing restoration methods taking into account more
realistic models.

§ 8.1 Contributions

Poisson-Gaussian noise parameter estimation: The parameters of sig-
nal dependent noise are particularly difficult to estimate. Concerning
confocal data, when one attempts to identify noise parameters from
time series, the data is nonstationary in time and in space. The time
nonstationarity is essentially due to the bleaching problem. In this
thesis an EM-based approach was proposed to handle this problem.
The high accuracy of the proposed method was illustrated through
the comparison between obtained estimates and associated Cramer-
Rao bounds. In the case of parameter estimation from a single im-
age, a selection procedure of pixels with similar values is required.
While most published approaches incorporate two steps i.e. segmen-
tation and identification, we proposed an iterative noise parameter

167
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estimation algorithm over image segments. The proposed minimiza-
tion method alternates between discrete and continuous optimization
procedures. The first aims at finding group of pixels with similar val-
ues by enforcing a spatial regularity in the considered image, while the
latter estimates new noise parameters by employing an EM approach.
As shown by our simulation results, our proposed approach leads to
promising results.

Restoration of Poisson-Gaussian data: So far the usage of a mixed
continuous-discrete model corresponding to Poisson-Gaussian noise
statistics was limited due to the lack of theoretical advances in this
area. Given a Poisson-Gauss noise model, only approximative restora-
tion methods have been proposed so far. In contrast, we have provided
restoration models based on the true Poisson-Gaussian neg-log likeli-
hood. In this thesis we have proved that the Poisson-Gaussian neg-log
likelihood is a convex, Lipschitz-differentiable function. The provided
convexity result is in fact more general as it concerns the neg-log like-
lihood of a mixture of Generalized-Gaussian and Poisson variables.
Numerical difficulties related to the computation of the infinite sums
arising in the computation of the gradient of the Poisson-Gaussian neg-
log likelihood function have been addressed. In light of these theoret-
ical results, we have proposed a new variational approach for solving
data recovery problems in the presence of Poisson-Gaussian noise. We
have developed the first implementation of the primal-dual algorithm
presented in [Combettes and Pesquet, 2012]. We have shown that it is
of great practical value and flexibility, since it can be used with a large
range of penalization strategies. Our results indicate the performance
gain using the exact data fidelity term instead of various approxima-
tion for low photon count images. This work was recognized by the
European Organization for Nuclear Research (CERN), and presented
during an invited talk in June 2012.

Non-convex sparsity measures: In the context of image restoration, the
most common assumption is that the signal of interest has a sparse
representation with respect to preassigned operator. According to
[Donoho et al., 1995], an ideal measure of sparsity is the ℓ0 measure.
However, due to the non-convexity of ℓ0, different measures of sparsity
have been proposed. Among them the ℓ1 measure is the most popular,
because it is convex. In this thesis we examined the ℓ2 − ℓ0 measure.
Firstly we proposed a fast discrete optimization algorithm for denois-
ing with sparsity measures given by truncated convex function. One
limitation of this approach is that it cannot be easily extended to han-
dle general restoration problem (e.g. with a convolution kernel). One
advantage is that it does not require data fidelity term to be Lips-



8.2. Perspectives 169

chitz differentiable. Building on this, we have proposed alternative
continuous optimization algorithm for restoration problem. This work
was the result of a collaboration with Emilie Chouzenoux. We have
considered a class of smooth non-convex regularization functions. Con-
vergence to ℓ0 penalized problems have been shown asymptotically. In
addition, contributions to a novel convergence proof of the proposed
subspace MM algorithm relying on the Kurdyka- Lojasiewicz inequal-
ity were given. In the presented image restoration examples, we argue
that our proposed approaches constitute an appealing alternative to
existing methods in terms of recovered image quality and computa-
tional time.

Mixed discrete-continuous optimization methods: Continuous and dis-
crete optimization methods increasingly inspire and depend on each
other. In the context of image processing, approaches often cross the
boundary between discrete and continuous optimization. In this thesis
we have proposed an optimization framework featuring both contin-
uous and combinatorial techniques. Our approach address problems,
in which all of the variables take values from an unknown discrete set.
The discrete set is described by its cardinality and is known to be an in-
clusion of a given continuous set. We have shown a vector quantization
and a single image noise parameter estimation problem to be naturally
formulated in such framework. The associated discrete-continuous op-
timization algorithms have led to interesting and promising results.

§ 8.2 Perspectives

Restoration of Generalized Poisson-Gaussian data: The convexity re-
sult presented here allows us to address the problem of denoising data
corrupted by Generalized Gaussian-Poisson noise in the framework
proposed in Chapter 6. In such case the convergence speed is in-
dependent of the Lipschitz constant. Provided that we use convex
regularization term, the convex move is guaranteed to converge in a
number of iterations lower or equal to the number of labels. For trun-
cated convex sparsity measures the convergence is also fast, although
not guaranteed by any theoretical results. However, the problem of
data restoration in the presence of Generalized Gaussian-Poisson noise
is more difficult, as the associated neg-log likelihood function has not
been shown to be a Lipschitz differentiable function. Having this re-
sult, we may extend our proposed algorithm in Chapter 5 to the case
of Generalized Gaussian-Poisson data.

Non-convex regularization strategies for Poisson-Gaussian data:

As mentioned in the previous point the Poisson-Gaussian data denois-
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ing problem can be adopted in the framework proposed in Chapter 6.
However, in order to handle the restoration problem with ℓ2− ℓ0 spar-
sity measures using algorithm developed in Chapter 7, we need an
extra theoretical result, that is to show that the objective function
with data fidelity term derived from Poisson-Gaussian likelihood sat-
isfies the Kurdyka- Lojasiewicz inequality.

Comparison with other Primal-Dual algorithms: The algorithm pro-
posed in Chapter 5 was formulated in the framework introduced in [Com-
bettes and Pesquet, 2012]. However, the problem (5.30) can also be
addressed using a primal-dual extension of the forward-backward algo-
rithm proposed independently in [Vu, 2011] and [Condat, 2012]. This
algorithm offers the same flexibility of incorporating regularization
terms as Algorithm 9. However in the algorithm proposed by [Vu,
2011], [Condat, 2012] a gradient descent term needs to be computed
only once per iteration, while in our proposed algorithm it needs to be
computed twice. In future work we will compare both algorithms for
our problem in terms of time efficiency.

Robustness of restoration algorithm to noise parameters: In this
thesis we have proposed two Poisson-Gaussian noise parameters iden-
tification approaches and associated restoration algorithm. In light of
these contributions, a study related to the restoration algorithm ro-
bustness to the precision of the provided noise parameters is missing.
The main difficulty would be to separate the impact of the noise pa-
rameter choice on the final results from the other factors, e.g. regular-
ization parameter choice. A possibility could be to try to reformulate
the Poisson-Gaussian restoration problem into epigraphical projection
framework [Chierchia et al., 2012], [Harizanov et al., 2012].

Inter-channel prior for confocal images: The problem of multichannel
confocal macroscopy images restoration has not been addressed in
this thesis. Some multi-channel image restoration techniques do exist.
However most of them are adapted to natural color images [Aujol and
Kang, 2006], [Joshi et al., 2009]. As far as we are concerned, modeling
inter-channel dependency for confocal macroscopy images is an open
problem. Thus, the simplest solution is to restore each channel inde-
pendently. However, enforcing inter-channel constraints should lead to
an improvement of the quality of the restored images. One goal could
be to extend the proposed primal-dual algorithm to multi-channel
problems incorporating inter-channel regularization term adapted to
confocal macroscopy images.

Confocal macroscopy optical PSF estimation: One subject that has
not yet been fully studied in this work is the estimation of confocal
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macroscopy PSFs. PSF determination is a crucial preliminary step to
image restoration. Even if one resorts to blind deconvolution schemes,
a priori knowledge related to the PSF is desired [Thiébaut, 2002],
[Bolte et al., 2010], [Soulez et al., 2012]. This knowledge can be ac-
quired either by studying PSF theoretical properties or experimental
data. In the context of fluorescence imaging, the theoretical approach
usually relies on diffraction-limited PSF model [Kirshner et al., 2012].
Experimental PSFs may be measured using calibration beads [Yoo
et al., 2006] or directly from the image by extracting small point-like
objects [Von Tiedemann et al., 2006]. Such PSFs can be used for in-
stance to validate theoretical parametric PSF model or to assess the
aberration of point spread function in given imaging systems [Panka-
jakshan et al., 2012].

The PSF modeling problem becomes more complex if the PSF is spa-
tially variant. The space variation model usually relies on one of
the following strategies. Firstly, assuming that the PSF variation
is smooth, the PSF can be represented as a weighted sum of basis
functions [Arigovindan et al., 2010]. The efficiency can be further
improved by applying interpolation methods [Denis et al., 2011]. Al-
ternatively an image can be segmented into regions inside which PSFs
are assumed to be invariant [Reràbek and Pàta, 2008]. In fluorescence
microscopy, the aberrations increase as a function of depth from the
coverslip [Aguet et al., 2008], [Pawley, 2006, Chapter 23]. A scheme il-
lustrating an effect of spherical aberration is illustrated in Fig. 8.1 (a).
One can observe that the peripheral rays passing through a lens are fo-
cused closer to the lens than paraxial rays. In microscopy, the strength
of the spherical aberration depends on refractive index of specimen
medium. Consequently, the effect of spherical aberration may mani-
fest itself in a non-homogenous way due to refractive index gradient
in a sample. This is a common phenomenon observed in microscopy,
and the main reason for PSF depth variation. In Fig. 8.1 (b) one can
observe the characteristic effect of growing PSF size with depth. This
effect is accompanied with a decrease of image intensity [Ben Hadj and
Blanc-Féraud, 2012].

One goal related to confocal macroscopy images would be to assess
experimentally the PSF depth variation by imaging sample with point
sources (beads) placed at different depths by using the experimental
set up illustrated in Fig. 8.2. This is a similar experimental setup as
the one proposed in [Hanser et al., 2004] (see Fig. 8.1 (b)) but adapted
to observe several PSF distributed over the field in different depths.

The sections of prepared specimen illustrate the PSF depth variation
for two choices of objectives (see Fig. 8.3 (a)). One can observe that
the high magnitude depth PSF variation for 20 × objective lens are
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no longer visible for 10 × objective lens and conclude that the depth
intensity variation of PSF decreases with objective magnification.

(a) Spherical aberra-
tion. Peripheral
rays (red lines)
passing through a
spherically shaped
lens are focused
closer to the lens
than paraxial rays
(those rays entering
the objective closest
to the optical axes).

Objective

Support

water

Depth

0 µm

11.6 µm

24.2 µm

34.0 µm

lens

ball

(b) PSF depth variation due to the depth dependent
spherical aberration in widefield microscope (re-
drawn from [Hanser et al., 2004]). The exper-
iment set up for locating beads at a variety of
well-characterized depths below the cover slip.
Beads are applied onto a support ball (1-mm-
diameter sapphire ball lens, Edmund Industrial
Optics, Barrington, NJ, U.S.A.) immobilized in
near contact with the cover glass surface. The
space between the support ball and the cover
glass is filled with water.

Figure 8.1: PSF depth variation due to the spherical aberration

Point source

Cover slip
Mounting medium

Figure 8.2: Proposed experimental setup.

Consequently, we should expect a confocal macroscope system, work-
ing with 5 × objective under very low numerical aperture not to suffer
from the depth intensity variation observed in the microscope system.
Indeed the results presented in Fig. 8.3 (b) indicate that the typical in-
tensity decrease for confocal microscopy are not present in macroscopy
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imaging modality.

The confocal macroscopy PSF varies in the field of view, i.e. the
optical aberrations increase towards the margins (Fig. 8.4). Similar
phenomena occur in the context of astronomy [Denis et al., 2011], but
for 2D-PSF. In macroscopy the problem of field aberration is coupled
with the problem of out-of-focus blur, in the depth-direction, due to
the diffraction-limited nature of the lens. An associated 3D-PSF model
was proposed in [Pankajakshan et al., 2010].

(a) Microscope. Confocal microscope PSF radial projection (author:
Gilbert Engler). The observed sample consists of point sources
(beads) mounted on 5 different depth. The right and left image il-
lustrate the confocal microscope PSF radial projection and depth
intensity profile for 20 × (left) and 10 × (right) objective lens

(b) Macroscope. Confocal macroscope PSF radial projection and depth
intensity profile for 5 × objective lens (author: Gilbert Engler). The
observed sample consists of point sources (beads) mounted on 2 dif-
ferent depth.

Figure 8.3: An example illustrating PSF depth variation

One limitation of the proposed PSF model is that it requires two pa-
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rameters to be estimated at each pixel position. Certainly, the problem
is untractable without any prior knowledge about unknown parame-
ters. Conclusions derived in this previous work were based on exper-
iments with beads mounted only one depth. Hence, it is not stated
clearly if field aberrations vary with depth. The PSFs symmetry also
needs to be investigated. We would assume that the principal axes
of the PSFs observed around each bead converge to one point, called
the optical center. More specifically, we would aim at comparing the
optical center coordinates identified using the PSFs originating from
different depth. In [Pankajakshan et al., 2012] the authors observed
that the PSFs are symmetrical around the optical center but a proce-
dure for optical center identification is missing.

Regions of invariant macroscopy PSFs in the presence of field aberra-
tions. The top and bottom images illustrate the radial projection of
PSFs cropped from the periphery and center of the field, respectively.

Figure 8.4: An example illustrating macroscope PSF field variation

In order to achieve this goal, we have performed some first tests. The
experiment was designed to detect the signal originating from point
sources distributed over sample as illustrated in Fig. 8.2. The reported
signal was expected to consist of PSFs distributed over the 3D image
in field and depth. The distribution in field was as uniform as possible,
while in depth each PSF took one position from a discrete set of num-
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bers, associated with beads layers. The PSF was assumed to be 3D.
Further we expected the principal axes of the PSFs to all converge to
one point (the optical center). Hence, the idea of the experiment was
to segment all the PSF in the acquired image and then to detect their
center and their principal axes. To this aim, we proposed the following
two step procedure. (1) Find the discrete finite set of ellipsoids in an
image, which we assumed to be related by injection with PSFs. (2)
Compute the grey-level statistics of each independent ellipsoid. Next,
we briefly discuss the proposed implementation of each step.

Difficulties that can arise in the process of identifying the signal of in-
terest associated with PSF stem from noise, beads sticking together in
the original sample or very low image SNR. To overcome them, we pro-
posed the following simple implementation using morphological tools.
First, the noise was reduced by anisotropic Gaussian blurring. Then
small maxima were suppressed by volume opening [Vincent, 1993],
which had the effect of suppressing small objects. A top-hat oper-
ator was then used to remove low frequency variations in the back-
ground [Serra, 1982]. Next, segmentation was performed by thresh-
olding, resulting in a binary image where 1 correspond to the signal of
interest and 0 the background. Finally we extended the volume of each
detected nonzero ellipsoid using the Watershed algorithm [Beucher and
Lantuéjoul, 1979], i.e. we searched for the maximum region around
each volume under the constraint that the regions of any two PSFs
may not intersect. The size of resulting volume was also limited by
maximum length, width and height. In the second step we computed
the grey-level statistics of each independent ellipsoid. More specifi-
cally we used principal component analysis [Eckart and Young, 1936]
to find the center and principal axes of each ellipsoid.

An example of the results of the above described procedure is illus-
trated in Fig. 8.5. In the experimental sample, the beads were dis-
tributed over two layers. Images were acquired using a macro confocal
laser scanning microscope (Leica TCS-LSI). Measurements were done
on images taken according to the following settings: pinhole 1.0 airy,
400 Hz scan speed, excitation line 405/532 nm, and emission range
534 nm-690nm. In the processed 12 bit precision image stack of size
2048 × 2048 × 350 we have identified 967 PSFs, within 930 lay in the
first layer and only 37 in the second one. The nonuniform distribution
of PSFs in two layers can be also observed in Fig. 8.4. This is clearly
an undesired effect. Nevertheless, as expected the results presented in
Fig. 8.5 indicates that the collection of lines associated with couples
(the PSF center, principal axes of the PSF) form a cone like shape,
which is in agreement with our assumption that the principal axes of
the PSFs all converge to one point. The cross-section over the PSFs
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cone in the the x, y plane close to the optical center is illustrated in the
zoomed image in Fig. 8.5. Ideally, one should expect only a point in
this plane. However, the acquired data are noisy and there are many
outliers.

Figure 8.5: An example illustrating PSFs the convergence of the main
direction of some measured PSFs.

The further study would start from the experimental setting presented
here . The principal goal would be to identify the optical center using
all PSFs, and PSFs originating from each layer separately, thus allow-
ing us to to acquire more prior information about field aberration in
a confocal macroscopy imaging system.
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F.-X. Dupé, J. M. Fadili, and J.-L. Starck. A proximal iteration for de-
convolving Poisson noisy images using sparse representations. IEEE
Trans. Image Process., 18(2):310–321, Feb. 2009. ISSN 1057-7149. doi:
10.1109/TIP.2008.2008223. 16, 23, 115

C. Eckart and G. Young. The approximation of one by another of lower
rank. Psychometrika, 1(3):211–218, Sep. 1936. 48, 175

J. Eckstein and D. P. Bertekas. On the Douglas-Rachford splitting methods
and the proximal point algorithm for maximal monotone operators. Math.
Programm., 55(3):293–318, 1992. 69

M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace optimiza-
tion methods for linear least squares with non-quadratic regularization.
Appl. Comput. Harmon. Anal., 23:346–367, 2006. 141

M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal
priors. Inverse Prob., 23(3):947–968, 2007. 140

Y. C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: uncer-
tainty relations and efficient recovery. IEEE Trans. Signal Process., 58(6):
3042 –3054, Jun. 2010. ISSN 1053-587X. doi: 10.1109/TSP.2010.2044837.
112, 145

P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through
a network. IEEE Trans. Inform. Theory, 2(4):117–119, 1956. ISSN 0018-
9448. 37

R. R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of nuclear mag-
netic resonance in one and two dimensions. International Series of Mono-
graphs on Chemistry. Clarendon Press Oxford University Press, Oxford
Oxfordshire New York, 1991. 68

D. Fairbairn, K. L. O’Neill, and M. D. Standing. Application of confocal
laser scanning microscopy to analysis of H2O2-induced DNA damage in



Bibliography 191

human cells. Scanning, 15(3):136–139, 1993. ISSN 1932-8745. doi: 10.
1002/sca.4950150305. 1

W. Fang, T. Wu, and J. Chen. An algorithm of global optimization for ra-
tional functions with rational constraints. Journal of Global Optimization,
18:211–218, 2000. ISSN 0925-5001. 10.1023/A:1008318925663. 82

P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object
recognition. International Journal of Computer Vision, 61(1):55–79, 2005.
33

P. F. Felzenszwalb and D. R. Huttenlocher. Efficient belief propagation
for early vision. In Proc. IEEE Comput. Soc. Conf. Comput. Vision and
Pattern Recogn. (CVPR), pages 261–268, 2004. doi: 10.1109/CVPR.2004.
1315041. 33, 126, 156

P. F. Felzenszwalb and R. Zabih. Dynamic programming and graph algo-
rithms in computer vision. IEEE Trans. Pattern Anal. Mach. Int., 33(4):
721–740, 2011. 33

J. A. Fessler and A. O. Hero. Space-alternating generalized expectation-
maximization algorithm. IEEE Trans. Signal Process., 42(10):2664–2677,
1994. ISSN 1053-587X. doi: 10.1109/78.324732. 27, 68

J. A. Fessler and A.O. Hero. Penalized maximum-likelihood image recon-
struction using space-alternating generalized EM algorithms. IEEE Trans.
Image Process., 4(10):1417–1429, 1995. 29, 72

J. Fischer and K. Kersting. Scaled CGEM: A fast accelerated EM. In
N. Lavrac, D. Gamberger, L. Todorovski, and H. Blockeel, editors,
ECML, volume 2837 of Lecture Notes in Computer Science, pages 133–
144. Springer, 2003. ISBN 3-540-20121-1. 29

A. Foi. Clipped noisy images: Heteroskedastic modeling and practical de-
noising. Signal Process., 89:2609–2629, Dec. 2009a. ISSN 0165-1684. doi:
10.1016/j.sigpro.2009.04.035. 68, 106

A. Foi. Optimization of variance-stabilizing transformations. Preprint,
2009b. 94

A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical Poissonian-
Gaussian noise modeling and fitting for single-image raw-data. IEEE
Trans. Image Process., 17:1737–1754, 2008. ISSN 1057-7149. doi: 10.
1109/TIP.2008.2001399. 68, 70, 94, 95

J. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962. 37, 54, 130



192 Bibliography

M. Fornasier and F. Solombrino. Linearly constrained nonsmooth and non-
convex minimization. Technical report, Jan. 2012. http://arxiv.org/

abs/1201.6069. 141

M. Fortin and R. Glowinski. Augmented Lagrangian methods: Applications
to the numerical solution of boundary-value problems. ZAMM - Jour-
nal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte
Mathematik und Mechanik, 65(12):622–622, 1985. ISSN 1521-4001. doi:
10.1002/zamm.19850651211. 31

J. T. Fredrich, B. Menendez, and T.-F. Wong. Imaging the pore structure of
geomaterials. Science, 268:276–279, 1995. doi: 10.1126/science.268.5208.
276. 2

P. Fryzlewicz and G. Nason. A Haar-Fisz algorithm for Poisson intensity
estimation. Journal of Computational and Graphical Statistics, 13(3):
621–638, 2004. 16, 94

P. Furrer and R. Gurny. Recent advances in confocal microscopy for study-
ing drug delivery to the eye: Concepts and pharmaceutical applications.
European Journal of Pharmaceutics and Biopharmaceutics, 74(1):33 – 40,
2010. ISSN 0939-6411. doi: 10.1016/j.ejpb.2009.09.002. 1

W. Gander. On Halley’s iteration method. The American Mathematical
Monthly, 92(2):131–134, 1985. ISSN 00029890. 79

D. Geman and G. Reynolds. Constrained restoration and the recovery of
discontinuities. IEEE Trans. Pattern Anal. Mach. Int., 14(3):367–383,
1992. 20, 112

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach.
Int., 6:721–741, 1984. 20

S. Geman and D. E. McClure. Bayesian image analysis: An application to
single photon emission tomography. In In Proc. Statist. Comput. Sect.,
pages 12–18. American Statistical Association, 1985. 144

A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, MA, US, 1992. 41

E. Gil-Rodrigo, J. Portilla, D. Miraut, and R. Suarez-Mesa. Efficient joint
Poisson-Gauss restoration using multi-frame ℓ2-relaxed-ℓ0 analysis-based
sparsity. In Proc. Int. Conf. Image Process., Brussels, Belgium, Sep. 2011.
68, 70, 106

G. Gilboa and S. Osher. Nonlocal operators with applications to image
processing. Multiscale Modeling and Simulation, 7(3):1005–1028, 2008.
20

http://arxiv.org/abs/1201.6069
http://arxiv.org/abs/1201.6069


Bibliography 193

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, 1988. 37

T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM J. Imaging Sciences, 2(2):323–343, Apr. 2009. 50

R. L. Graham and L. Lovász. Handbook of combinatorics. 1. Handbook of
Combinatorics. North-Holland, 1995. ISBN 9780444823465. 26, 36, 37

D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori
estimation for binary images. J. Royal Stat. Soc. B, 51(2):271–279, 1989.
ISSN 00359246. 33, 37

R. Grou-Szabo and T. Shibata. A dominant-noise discrimination system
for images corrupted by content-independent noises without a priori ref-
erences. In International Conference on Signal Processing and Communi-
cation Systems (ICSPCS), pages 1 –6, Dec. 2011. doi: 10.1109/ICSPCS.
2011.6140861. 93

A. Gupta and E. Tardos. A constant factor approximation algorithm for
a class of classification problems. In In Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, pages 333–342,
2000. 126
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